Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/64064

Compartilhe esta página

Título: A systematic review of algorithms for breast cancer diagnosis using thermography.
Autor(es): NOGUEIRA, Gustavo
Palavras-chave: breast cancer; artificial intelligence; thermal imaging; diagnosis; algorithms
Data do documento: 11-Abr-2025
Citação: NOGUEIRA, Gustavo. A systematic review of algorithms for breast cancer diagnosis using thermography. 2025. Trabalho de Conclusão de Curso (Sistemas de informação) – Universidade Federal de Pernambuco, Recife, 2025.
Abstract: Breast cancer tumorigenesis usually takes place in the cells of the mammary ducts and poses a significant health challenge globally, as it remains the most common cancer type. Early diagnosis and advancements in treatment have substantially enhanced survival rates for breast cancer. Currently, mammography, ultrasound, and magnetic resonance imaging are the primary techniques for early breast cancer detection. In contrast, thermography-based diagnostics, despite its decreased cost when compared to all other techniques, remains underused. This happens largely due to the challenges faced by current computational methods to correctly classify thermography-based images. This study conducts a systematic literature review to identify and understand which artificial intelligence algorithms are currently employed in diagnosing breast cancer using such thermographic images. Additionally, it seeks to map the main challenges stemming from this specific research area. To achieve this, a significant number of international studies were scrutinized, considering criteria such as: employed methodology, databases utilized, publication venues, impact factors, algorithms applied, overall contributions to the field, findings, and conclusions.
Descrição: 7
URI: https://repositorio.ufpe.br/handle/123456789/64064
Aparece nas coleções:(TCC) - Sistemas da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TCC Gustavo Nogueira.pdf2,48 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons