Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/58277
Compartilhe esta página
Título: | Low-Rank Transformations of the Syntactic-Semantic Space in Multiple Natural Language Tasks |
Autor(es): | EMMANUEL, Yves Emmanuel Francisco do Ó |
Palavras-chave: | Natural Language Processing; Machine Learning; Neural Networks; Fine-tuning |
Data do documento: | 11-Out-2024 |
Citação: | EMMANUEL, Yves. Low-Rank Transformations of the Syntactic-Semantic Space in Multiple Natural Language Tasks. 2024. 22 f. TCC (Graduação) - Curso de Ciência da Computação, Centro de Informática, Universidade Federal de Pernambuco, Recife, 2024. |
Abstract: | This project evaluates the LoRA-multi approach for parameterefficient fine-tuning of Transformer models across various natural language processing tasks. By applying Low-Rank Adaptation (LoRA) to BERT and DistilBERT models and combining them with a Mixture-of-Expert strategy on the X-LoRA framework, we assess their performance on established benchmarks, including SWAG, SQuAD, and WNUT17. Our experimental results validate that while full fine-tuning yields higher performance on specific tasks, the use of LoRA significantly reduces the number of trainable parameters, providing a practical balance between model performance and computational efficiency. This is particularly beneficial for multi-task learning scenarios, where minimizing resource consumption is crucial. Additionally, we explore the implications of these findings for deploying specialized models in real-world applications, highlighting the X-LoRA framework’s capability to maintain versatility while adapting to various downstream tasks. Ultimately, our work aims to advance the understanding of how low-rank adaptations can enhance the efficiency of Transformer models, paving the way to understanding how these models encode syntactic-semantic information. |
URI: | https://repositorio.ufpe.br/handle/123456789/58277 |
Aparece nas coleções: | (TCC) - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TCC - Yves Emmanuel.pdf | 488,11 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons