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Abstract

We study a new kind of random processes in discrete time, which we call substitution

processes. Since time is discrete, we can define a process by presenting an operator trans-

forming one probability measure on a certain space into another. It is noteworthy that

the bulk of studies of locally interacting particle processes is based on the assumption that

the set of sites, also called the space, does not change in the process of interaction. There

are only a few works where the sites themselves may appear and disappear in the course

of the process, and this work is one of them. Consider a non-empty finite set A called

alphabet, whose elements are called letters. Finite sequences of letters are called words

and length of a word is the number of letters in it. Bi-infinite sequences of letters, that

is, elements of AZ , are called configurations. M denotes the set of translation-invariant

probability measures on AZ . We can informally define a generic substitution operator as

the operator from M to M , which substitutes each occurrence of a word G (G needs

to satisfy some condition) in a configuration by another word H with probability ρ ,

where ρ ∈ [0, 1] , independently from each other. Our main contribution is a definition

and study of substitution operators in general. The most interesting case of the substitu-

tion operator, in our opinion, is the case when G and H have different lengths. The very

definition of a substitution operator in this situation is non-trivial and needs an involved

preparation. In fact, we had to develop a certain theory of approximation of measures

by sequences of words to deal with this case. One difficulty with this case is that the

substitution operators are not linear. However, we prove that all of them are fine, which

in our context seems to be the next best thing after linearity. We also prove that all

substitution operators are continuous and use this to make conclusions about existence

of their invariant measures, which help us to study their ergodicity. These properties give

us hope to relate our work with various needs of applied sciences.

Keywords: Substitution operators; Substitution Processes; Markov Processes.
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Resumo

Nós estudamos um novo tipo de processo estocástico a tempo discreto, que nós chamamos

de processos de substituição. Como o tempo é discreto, nós podemos definir este processo

através de um operador que transforma uma medida de probabilidade (em um certo

espaço) em outra. Vale a pena notar que a maioria dos estudos de processos de part́ıculas

interagentes se baseia na suposição de que o conjunto de śıtios, também chamado de

espaço, não muda ao longo da interação. Existem apenas poucos trabalhos onde os śıtios

podem aparecer e desaparecer durante a realização do processo, e este trabalho é um

deles. Considere então um conjunto finito não-vazio A chamado de alfabeto, cujos ele-

mentos são chamados de letras. Sequências finitas de letras são chamadas de palavras e o

comprimento de uma palavra é o número de letras que existe nela. Os elementos de AZ

(sequências bi-infinitas de letras) são chamados de configurações. Denotamos por M o

conjunto de medidas de probabilidade invariantes por translação. Nós podemos definir

um operador de substituição genérico como um operador de M em M que substitui

cada ocorrência de uma palavra G (onde G precisa satisfazer uma certa condição) em

uma configuração por outra palavra H com probabilidade ρ , onde ρ ∈ [0, 1] , indepen-

dentemente das outras ocorrências. A nossa maior contribuição é dada pela definição

e estudo dos operadores de substituição em geral. O caso mais interessante do oper-

ador de substituição, na nossa opinião, é o caso em que G e H têm comprimentos

diferentes; a própria definição do operador neste caso é não-trivial. De fato, foi preciso

desenvolver uma teoria de aproximação de medidas por sequências de palavras para lidar

com este caso. Uma dificuldade com este caso é que os operadores de substituição não

são lineares. No entanto, foi posśıvel provar que todos eles são finos, que nos parece

ser a melhor propriedade depois da linearidade. Nós também provamos que todos os

operadores de substituição são cont́ınuos e nós utilizamos este fato para obter conclusões

a respeito da existência de medidas invariantes por estes operadores, o que nos ajuda

a estudar ergodicidade do processo de substituição. Por fim, nós esperamos que estas

propriedades possam ser relacionadas com certas necessidades de ciências aplicadas.

Palavras-Chave: Operadores de Substituição; Processos de Substituição; Processos

Markovianos.
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Chapter 1

Introduction

The bulk of modern studies of locally interacting particle processes is based on the as-

sumption that the set of sites, also called the space, does not change in the process of

interaction. Elements of this space, also called components, may be in different states,

e.g. 0 and 1, often interpreted as absence vs. presence of a particle, and may go from

one state to another, which may be interpreted as birth or death of a particle, but the

sites themselves do not appear or disappear in the process of functioning. Operators and

processes which do not create or eliminate sites will be called constant-length ones.

However, in the last dozen of years some attention started to be paid to two new

similar kinds of processes with one-dimensional local interaction, where sites may appear

and disappear in the course of functioning of a process. In all of them we choose a

non-empty finite set A called alphabet, the elements of which are called letters.

One kind of these processes are called random grammars [2, 3, 5, 6, 7, 8]. All of them

have a finite space, whose elements are finite sequences of letters, and are special cases

of Markov chains with continuous time and countable sets of states.

Another kind of processes, called variable-length processes, [9, 10, 11, 13, 14, 15], are
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closer to our approach. They have infinite space Z and discrete time and have a continual

set of states AZ . Until now, their study was reduced to several special cases and it is

our contribution to present a general framework, which includes all these cases.

The main purpose of this thesis is to define rigorously and study a large class of

variable-length processes, called substitution processes. Since all the processes considered

here have discrete time, they can be defined in terms of substitution operators acting

on certain probability measures, and these operators are our main subject of study.

Let us give an insight into how a substitution operator works. The set of states of

our process is AZ , the set of configurations. We denote by M the set of translation-

invariant probability measures on AZ . A generic substitution operator acts from M to

M roughly as follows. Let us call a word a finite sequence of letters. Length of a word

is the number of letters in it. There is the empty word, whose length is zero. Given

two words G and H (where G must satisfy a certain condition of self-avoiding, which

will be presented below) and a real number ρ ∈ [0, 1] , a substitution operator, informally

speaking, substitutes every occurrence of the word G in any configuration by the word

H with a probability ρ (and leaves this occurrence unchanged with a probability 1−ρ ).

Our definition can be used only if all the occurrences of G in any configuration do not

overlap, and this is why we need a special assumption about G .

It is natural to ask which studies in concrete sciences may be relevant to those cited

above and our studies. Some answers to this question have been presented in the quoted

papers. In particular, some connections with statistical and quantum physics have been

pointed at.

Before going into detail in our approach let us mention a few more of those many

areas of science where a study of such transformations under which units may appear
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and disappear may be relevant.

One is error correction in information transmission. When a long sequence of sym-

bols is transmitted at a long distance, all kinds of local distortions may occur including

those which change the length of the sequence and it may be useful to approximate them

with certain classes of abstract transformations. See for example: In mathematics, com-

puter science, telecommunication, and information theory, error detection and correction

has great practical importance in maintaining data (information) integrity across noisy

channels and less-than-reliable storage media. [16]

Another area is molecular biology. It is well-known that DNA and RNA are polymers,

that is, chains of units called nucleotides. These polymers can produce other polymers

along themselves many times. It is important for us that the relation between the units

of the old and new polymers is not exactly one-to-one. The acts of violation of the 1-1

principle are called insertions and deletions and all of them together are called indels.

It seems appropriate for us to idealize these processes as iterations of transformation

operators. See for example: The polymerase chain reaction is an extremely versatile

technique for copying DNA. In brief, PCR allows a single DNA sequence to be copied

(millions of times), or altered in predetermined ways. [18]

Still another area where our theoretical considerations may be relevant is historical

linguistics. It is well-known that evolution of natural languages is not a chaotic mess

of individual changes, but a sequence of systematic changes. Lately the well-known

linguist Andrei Zaliznyak put it this way: ... the external forms of words of a language

do not change individually for every word; they change according to the functioning of

so called phonetical changes: at any period of time any language is subject to certain

phonetical transitions, which act on all those words, which include certain phonemes
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or certain combinations of phonemes, without exception ... Even the most astonishing

transformation of a shape of a word, which may occur in the course of history is not a

result of a random singular substitution of sounds, but a display of systematic phonetical

changes, which occured in a certain language at a certain time.[19]

We hope that our study may serve as a first step towards mathematical theories of real

processes with variable sets of units. Also we must note that all our constructions would

be much simpler if we dealt only with finite sequences. Our main technical difficulties

come from our desire to deal with infinite sequences. This choice is supported by the

fact that our interest in processes with infinite space is shared by most researchers. (Of

course, interest in finite spaces remains valid.) In fact, mathematicians have deep reasons

to study infinite systems, but we leave explanation of this fact to philosophers of science.
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Chapter 2

Basic Definitions

Throughout this text A is a non-empty finite set called alphabet, which we assume to be

fixed. Its elements are called letters and finite sequences of letters are called words. The

number of letters in a word W is called its length and denoted by |W | . Any letter may

be considered as a word of length one. There is the empty word, denoted by Λ , whose

length is zero. The set of words in a given alphabet A is called dictionary and denoted

by dic(A) .

We assume that our alphabet contains no brackets or commas. Given any finite

sequence of words W1, . . . ,Wk (perhaps separated by commas or put in brackets), we

denote by concat(W1, . . . ,Wk) and call their concatenation the word obtained by writing

all these words one after another in that order in which they are listed, all brackets and

commas eliminated. In particular, W n means concatenation of n words, everyone of

which is a copy of W . If n = 0 , the word W n is empty, W 0 = Λ .

We denote by Z the set of integer numbers and AZ the set of bi-infinite sequences

whose terms are elements of A . We consider probability measures on the σ -algebra AZ

on the product space AZ generated by the product of discrete topologies on all copies
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of A . We note that since A is finite, it is compact in the discrete topology, and by

Tychonoff’s compact theorem, AZ is also compact. As usual, shifts on Z generate shifts

on AZ and shifts on AZ . We call a measure µ on AZ uniform if it is invariant under

all shifts. In this case for any word W = (a1, . . . , an) , where a1, . . . , an is the sequence

of letters that forms the word W, the right side of

µ(W ) = µ(a1, . . . , an) = µ(si+1 = a1, . . . , si+n = an)

is one and the same for all i ∈ Z , whence we may use the left side as a shorter denotation.

We denote by M the set of uniform probability measures on AZ . Since AZ is

compact, M is also compact. Any uniform measure is determined by its values on all

words and it is a probability measure if its value on the empty word equals 1 .

In order for values µ(W ) to form a uniform probability measure, it is necessary and

sufficient that: all the numbers µ(W ) must be non-negative, µ on the empty word must

equal one and for any letter a and any word W (including the empty one) we must have

µ(W ) =
∑
a∈A

µ(W,a) =
∑
a∈A

µ(a,W ),

where (W,a) and (a,W ) are concatenations of the word W and the letter a in the two

possible orders.

Given two words W = (a1, . . . , am) and V = (b1, . . . , bn) , where |W | ≤ |V | , we call

the integer numbers in the interval [0, n −m] positions of W in V . We say that W

enters V at a position k if

∀ i ∈ Z : 1 ≤ i ≤ m⇒ ai = bi+k.

We call a word W self-overlapping if there is a word V such that |V | < 2 · |W |

and W enters V at two different positions. A word is called self-avoiding if it is not
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self-overlapping. In particular, the empty word, every word consisting of one letter and

every word consisting of two different letters are self-avoiding.

It is known that self-avoiding words are not very rare: in fact for any alphabet with

at least two letters the number of self-avoiding words of length n divided by the number

of all words of length n tends to a positive limit when n → ∞ and this limit tends to

one when the number of letters in the alphabet tends to infinity. [1]

We denote by #(W in V ) the number of positions at which W enters V . If W

is the empty word, it enters any word V at |V | + 1 positions. If |W | ≤ |V | , we call

the frequency of a word W in a word V and denote by freq(W in V ) the number of

positions at which W enters V divided by the total number of positions of W in V ,

that is, the fraction

freq(W in V ) =
#(W in V )

|V | − |W |+ 1
. (2.1)

Notice that the frequency of the empty word in any word is 1. If |W | > |V | , the set of

positions of W in V is empty and the frequency of W in V is zero by definition.

We call a pseudo-measure any map µ : dic(A) → R . In particular, any measure

µ ∈M is a pseudo-measure.

Definition 2.0.1. For every word V ∈ dic(A) we define the corresponding pseudo-

measure, denoted by V ′ and defined by the rule V ′(W ) = freq(W in V ) for all

words W .

Since the set dic(A) is countable, we can enumerate it in some order

dic(A) = {W1, W2, W3, . . .}. (2.2)
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Also we choose a sequence of positive numbers w1, w2, w3, . . . , whose sum equals 1 .

Thus, given a pseudo-measure ν , the norm of ν defined by the sequence is as

‖ν‖ =
∞∑
i=1

wi · |ν(Wi)|. (2.3)

We denote by Mnorm the set of those pseudo-measures whose norm is finite. Thus

Mnorm is a normed linear space which contains M . Having a norm, we define a metric

dist in the space by the usual rule dist(µ, ν) = ‖µ− ν‖ .

Definition 2.0.2. We say that a sequence of pseudo-measures ν1, ν2, ν3, . . . converges

to a pseudo-measure µ ∈M if

‖νn − µ‖ → 0 as n→∞.

Our main definition is the following:

Definition 2.0.3. We say that a sequence (Vn) of words V1, V2, V3, . . . ∈ dic(A) con-

verges to a measure µ ∈M if any of the following equivalent conditions holds:

a) for every word W ∈ dic(A) the frequency of W in Vn tends to µ(W ) as n→∞ .

b) the sequence (V ′n) converges to µ .

Remark 2.0.4. Notice that since the frequencies of all W in a given V are zeros for all

W longer than V , the convergence in Definition 2.0.3 is possible only if the length of Vn

tends to ∞ as n→∞ .

Lemma 2.0.5. The equivalence in Definition 2.0.3 holds. That is, let V1, V2, V3, . . . be

a sequence of words, and V ′1 , V
′
2 , V

′
3 , . . . be the sequence of their pseudo-measures. Then

(Vn) converges to µ if and only if (V ′n) converges to µ .
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Proof: First we prove in one direction. Suppose that (Vn) converges to µ and let

ε > 0 be any real number. Then choose J so large that

∞∑
i=J+1

wi <
ε

4
.

Further, let us consider the enumeration of the words that defines the norm, that is,

consider an enumeration of dic(A) , for instance dic(A) = {W1, W2, W3, . . .} such that

‖µ‖ =
∞∑
i=1

wi · |µ(Wi)|.

Let i ∈ {1, . . . , J} . Then we choose ni so large that

|freq(Wi in Vni
)− µ(Wi)| <

ε

2i+1 · wi

and let N = max{n1, . . . , nJ} . Then, since |V ′N(W )| ≤ 1 and |µ(W )| ≤ 1 for any word

W , we have

‖V ′N − µ‖ =
∞∑
i=1

wi · |V ′N(Wi)− µ(Wi)|

=
J∑
i=1

wi · |V ′N(Wi)− µ(Wi)|+
∞∑

i=J+1

wi · |V ′N(Wi)− µ(Wi)|

≤
J∑
i=1

wi · |V ′N(Wi)− µ(Wi)|+ 2 ·
∞∑

i=J+1

wi

≤
J∑
i=1

ε

2i+1
+
ε

2
≤ ε,

which concludes the proof.

Proof in the other direction. Let ‖V ′n − µ‖ → 0 . Then, for any W ∈ dic(A) there
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exists j ∈ {1, 2, 3, . . .} such that W = Wj . Therefore

|freq(W in Vn)− µ(W )| = |freq(Wj in Vn)− µ(Wj)| ≤
1

wj
‖V ′n − µ‖,

which tends to zero as n→∞ .

Lemma 2.0.5 is proved in both directions.

The following definition is more technical:

Definition 2.0.6. Given a real number ε > 0 and a natural number r , a word V is

said to (ε, r) -approximate a measure µ ∈M if for every word W ∈ dic(A) ,

|W | ≤ r ⇒ |freq(W in V )− µ(W )| ≤ ε.

Lemma 2.0.7. A sequence (Vn) of words converges to a measure µ if and only if for

any positive ε > 0 and any natural r there is n0 such that for every n ≥ n0 the word

Vn (ε, r) -approximates µ .

Proof in one direction: Suppose that (Vn) converges to µ . We want to prove that

∀ ε > 0, ∀ r ∈ N ∃ n0, ∀ n ≥ n0, ∀ W ∈ dic(A) :

|W | ≤ r ⇒ |freq(W in Vn)− µ(W )| ≤ ε.

 (2.4)

Let us choose W such that 0 < |W | ≤ r . Since (Vn) converges to µ ,

lim
n→∞

freq(W in Vn) = µ(W ),

that is

∀ ε′ > 0 ∃ nW ∀ n ≥ nW : |freq(W in Vn)− µ(W )| ≤ ε′.

Taking ε′ = ε and n0 equal to the maximum of nW over all these non-empty W , whose

length does not exceed r , we obtain (2.4).
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In the other direction the proof is straightforward.

Lemma 2.0.7 is proved.

We define a random word X on an alphabet A as a probability distribution on

dic(A) which is concentrated on a finite subset of dic(A) . A random word is determined

by its non-negative components XV for all V whose sum is 1 and the set {V : XV > 0}

is finite, where XV denotes the probability that X = V . We denote by Ω the set of

random words on the alphabet A .

Definition 2.0.8. We define the mean length of any random word X as

E|X| =
∑

V ∈dic(A)

XV · |V |.

Definition 2.0.9. We define the expected number of entrances of a word W in a random

word X as

E#(W in X) =
∑

V ∈dic(A)

XV ·#(W in V ).

Definition 2.0.10. We define the mean frequency of a word W in a random word X

as

freq(W in X) =
E#(W in X)

E|X| − |W |+ 1
. (2.5)

For any random word X we define the corresponding pseudo-measure X ′ by the rule

X ′(W ) = freq(W in X) for all W .

Definition 2.0.11. We say that a sequence (Xn) of random words X1, X2, X3, . . . ∈ Ω

converges to a measure µ ∈M if any of the following equivalent conditions holds:

a) for every word W ∈ dic(A) the mean frequency of W in Xn tends to µ(W ) as

n→∞

b) (X ′n) tends to µ as n→∞ .
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Definition 2.0.12. Given a positive number ε > 0 and a natural number r , we say

that a random word X (ε, r) -approximates a measure µ ∈M if for every non-empty

word W ∈ dic(A) ,

|W | ≤ r ⇒ |freq(W in X)− µ(W )| ≤ ε.

Definition 2.0.13. Let ν be any pseudo-measure. Then let ν||W |≤r be the pseudo-

measure obtained from ν by truncation to the words whose length is not greater than r .

Thus, for every word W

Aqui ele diz que a notação é confusa e sugere νI|W |≤r(W ) .

ν||W |≤r(W ) =


ν(W ), if |W | ≤ r,

0, if |W | > r.

Then we say that a pseudo-measure ν (ε, r) -approximates a measure µ ∈M if

‖ν||W |≤r − µ||W |≤r‖ < ε.

Lemma 2.0.14. If a random word X (ε, r) -approximates a measure µ ∈M in the

sense of Definition 2.0.12, then the pseudo-measure X ′ associated with X also (ε, r) -

approximates the same µ in the sense of Definition 2.0.13. Conversely, if a pseudo-

measure X ′ associated with the random word X (ε, r) -approximates a measure µ ∈M ,

then X (ε′, r) -approximates the same µ , where

ε′ =
ε

w
and w = min{wi; |Wi| ≤ r}.

Notice that w defined as that minimum is well-defined since the set of words such

that |Wi| ≤ r is finite.
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Proof in one direction: If X (ε, r) -approximates a measure µ ∈M , then

‖X ′||W |≤r − µ||W |≤r‖ =
∞∑
i=1

wi|X ′||W |≤r(Wi)− µ||W |≤r(Wi)|

=
∑

i:|Wi|≤r

wi|X ′||W |≤r(Wi)− µ||W |≤r(Wi)| (2.6)

≤ ε
∑

i:|Wi|≤r

wi

≤ ε ·
∞∑
i=1

wi = ε, (2.7)

which concludes this part of the proof.

In the other direction. Let X ′ (ε, r) -approximate µ . Then by (2.6) and (2.7)

we have ∑
i:|Wi|≤r

wi|X ′||W |≤r(Wi)− µ||W |≤r(Wi)| ≤ ε,

which implies trivially that for any word W , such that |W | ≤ r , there exists j ∈

{i; |Wi| ≤ r} such that W = Wj and

wj|X ′||W |≤r(Wj)− µ||W |≤r(Wj)| ≤ ε.

Thus for any W , such that |W | ≤ r ,

|X ′||W |≤r(W )− µ||W |≤r(W )| ≤ ε

w
,

where w = min{wi} , with i such that |Wi| ≤ r .

Lemma 2.0.14 is proved.

Theorem 2.0.15. For any µ ∈ M , any ε > 0 and any natural r there is a random

word which (ε, r) -approximates µ .
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Proof: If A contains only one letter, the theorem is trivial. So let #(A) ≥ 2 . As usual,

for any real x we denote by [x] the greatest integer number which is not greater than

x and by ]x[ the least integer number which is not less than x . Consider the following

parameters

s =

]
4r

ε

[
and N = #(A)s.

Hence r/s ≤ ε/4 . There are N words in dic(A) , whose lengths equal s and we denote

them by U1, . . . , UN . Further, let us consider the random word X such that

∀i = 1, . . . , N, P (X = Ui) = µ(Ui).

Since
∑

i µ(Ui) = 1 , our random word is well defined. Furthermore, for any position k

of W in Ui , that is, for any k ∈ [1, s− |W |+ 1] , we define

#(W in Ui)k =


1 if W enters Ui at the position k,

0 otherwise.

Then
s−|W |+1∑
k=1

#(W in Ui)k = #(W in Ui) (2.8)

and
N∑
i=1

(#(W in Ui)k · µ(Ui)) = µ(W ),

for all k fixed. Summing this over k yields

s−|W |+1∑
k=1

N∑
i=1

(#(W in Ui)k · µ(Ui)) = (s− |W |+ 1) · µ(W ),

whence
N∑
i=1

µ(Ui) ·
s−|W |+1∑
k=1

#(W in Ui)k

 = (s− |W |+ 1) · µ(W ). (2.9)

Replacing (2.8) by (2.9) gives
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N∑
i=1

(#(W in Ui) · µ(Ui)) = (s− |W |+ 1) · µ(W ). (2.10)

Let us estimate the mean frequency of W in X . First we get the lower estimation.

In the present case the numerator of that fraction is

E#(W in X) =
N∑
i=1

#(W in Ui)µ(Ui)

and an estimation for the denominator of the mean frequency is

E|X| − |W |+ 1 ≤ E|X| = s.

Hence

freq(W in X) ≥ 1

s

N∑
i=1

#(W in Ui)µ(Ui)

=
s− |W |+ 1

s
µ(W )

≥
(

1− ε

4

)
µ(W )

≥ µ(W )− ε.

Now we want to estimate the mean frequency from above. Notice that the denomi-

nator of the mean frequency of W in X is not less than

E|X| − |W |+ 1 ≥ s− r.

Further,

s− |W |+ 1

s− r
≤ s

s− r
≤ 1

1− ε/4
≤ 1 + ε/2.
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Thus we have

freq(W in X) ≤ 1

s− r

N∑
i=1

#(W in Ui)µ(Ui)

=
s− |W |+ 1

s− r
µ(W )

≤
(

1 +
ε

2

)
µ(W )

≤ µ(W ) + ε.

Theorem 2.0.15 is proved.

Corollary 2.0.16. For any µ ∈M there is a sequence of random words which converges

to it.

Proof: Due to the previous theorem 2.0.15, for every natural n we can take a ran-

dom word Xn which (1/n, n) -approximates µ . Notice that if a random word (ε, r) -

approximates a measure, then it (ε′, r′) -approximates the same measure for any ε′ ≥ ε

and r′ ≤ r . Therefore the sequence (Xn) converges to µ .

Corollary 2.0.16 is proved

Theorem 2.0.17. For any µ ∈M , any ε > 0 and any natural r there is a word which

(ε, r) -approximates µ .

Proof: Like in the proof of Theorem 2.0.15, if A contains only one letter, the theorem

is trivial. So let #(A) ≥ 2 . Let us introduce parameters

s =

]
4r

ε

[
, N = #(A)s and Q =

]
4N

ε

[
,
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whence

r

s
≤ ε

4
and

N

Q
≤ ε

4
.

Like in Theorem 2.0.15, there are N words in dic(A) , whose length equals s , and we

denote them by U1, U2, . . . , UN . Further, for every i = 1, . . . , N we denote

pi = [Q · µ(Ui)] ,

where Q was defined in the beginning of the proof. Hence

Q · µ(Ui)− 1 < pi ≤ Q · µ(Ui). (2.11)

For every i from 1 to N we take pi copies of Ui and define V as their concatenations

in any order, for instance

V = concat(Up1
1 , . . . , U

pN

N ).

Let us check that the word V has the desired property, namely (ε, r) -approximates the

measure µ . Since µ(U1) + · · ·+ µ(UN) = 1 , summing (2.11) over i = 1, . . . , N gives

Q−N <
N∑
i=1

pi ≤ Q. (2.12)

Let us estimate the frequency of W in V . First we get the lower estimation. In the

present case the numerator of that fraction is

#(W in V ) ≥
N∑
i=1

#(W in Ui) · pi

and the denominator is

|V | − |W |+ 1 ≤ |V | = s ·
N∑
i=1

pi ≤ s ·Q.

Hence, using equation (2.10), we obtain

freq(W in V ) ≥ 1

s ·Q
·
N∑
i=1

(#(W in Ui) · pi) ≥

17



1

s ·Q
·
N∑
i=1

(#(W in Ui) · (Q · µ(Ui)− 1)) =

1

s
·
N∑
i=1

(#(W in Ui) · µ(Ui))−
1

s ·Q
·
N∑
i=1

#(W in Ui) ≥

s− |W |+ 1

s
· µ(W )− s ·N

s ·Q
≥
(

1− r

s

)
· µ(W )− N

Q
≥

(
1− ε

4

)
· µ(W )− ε

4
≥ µ(W )− ε. (2.13)

Now let us estimate the frequency of W in V from above. The numerator of the fraction

(2.1) is not greater than

N∑
i=1

(#(W in Ui) + |W |) · pi ≤
N∑
i=1

(#(W in Ui) + |W |) ·Q · µ(Ui)

and the denominator is not less than

|V | − |W |+ 1 ≥ s ·
N∑
i=1

pi − r ≥ s · (Q−N)− r.

Since #(A) ≥ 2 , r ≥ 1 and ε ≤ 1 ,

r

Q ·N
≤ r · ε

4 ·N2
≤ s · ε2

16 ·N2
≤ s · ε2

16 · 4s
=
( s

4s

)
· ε

2

16
≤ ε2

16
.

Therefore

s ·Q
s · (Q−N)− r

=
1

1− N
Q
− r

Q·N
≤ 1

1− ε
4
− ε2

16

≤ 1 +
ε

2
.

Thus, using (2.11), (2.12) and (2.13),

freq(W in V ) ≤
(

1 +
ε

2

)
· 1

s ·Q
·
N∑
i=1

((#(W in Ui) + |W |) ·Q · µ(Ui)) ≤

18



(
1 +

ε

2

)
· 1

s
·

(
N∑
i=1

(#(W in Ui) · µ(Ui)) + r ·
N∑
i=1

µ(Ui)

)
≤

(
1 +

ε

2

)
· 1

s
· (s · µ(W ) + r) ≤

(
1 +

ε

2

)
·
(
µ(W ) +

r

s

)
≤

(
1 +

ε

2

)
·
(
µ(W ) +

ε

4

)
≤ µ(W ) + ε.

Theorem 2.0.17 is proved.

Corollary 2.0.18. For any µ ∈M there is a sequence of words which converges to it.

Proof: Due to the previous theorem 2.0.17, for every natural n we can find a word Vn

which (1/n, n) -approximates µ . Note that if a word (ε, r) -approximates a measure,

then it (ε′, r′) -approximates the same measure for any ε′ ≥ ε and r′ ≤ r . Therefore,

the sequence (Vn) converges to µ . Corollary 2.0.18 is proved

Definition 2.0.19. We say that a sequence of words (Vn) is Cauchy if for any word W

and any ε > 0 there is k such that

∀m,n > k : | freq(W in Vm)− freq(W in Vn)| < ε,

note that n and m do not depend on the word W .

Theorem 2.0.20. A sequence of words is Cauchy if and only if it converges to some

measure.

Proof: In one direction. Let us suppose that the sequence (Vn) is Cauchy. Then

freq(W in Vn) is a Cauchy sequence of real numbers for any W . Therefore the fol-

19



lowing limit exists:

lim
n→∞

freq(W in Vn).

So let us define the following map having dic(A) as its domain:

µ(W ) = lim
n→∞

freq(W in Vn).

We want to prove that µ(·) is indeed a measure. In other words, we want to prove that

∀ word W : 0 ≤ µ(W ) ≤ 1 and also that
∑

a µ(W,a) =
∑

a µ(a,W ) = µ(W ) .

It is easy to see that 0 ≤ freq(W in Vn) ≤ 1 . Therefore

0 ≤ lim
n→∞

freq(W in Vn) ≤ 1.

So we have

0 ≤ µ(W ) ≤ 1.

We still have to show that
∑

a µ(W,a) =
∑

a µ(a,W ) = µ(W ) . To do this, let us

first notice that |(W,a)| = |(a,W )| = |W | + 1 . First let us deal with the case when a

is on the right side, that is, we show that
∑

a µ(W,a) = µ(W ) . If a 6= b , then (W,a)

must enter Vn in a different position than that of (W, b) . Moreover, if W enters Vn

in a position which is not the last one, that is, if W does not enter Vn at the position

|Vn|−|W | , then there must exist a letter, say a , at the right side of W , such that (W,a)

still enters Vn at the same position.

Now let us make two observations. First, the number of entrances of W in Vn is

always greater or equal than the sum over all the letters a of the numbers of entrances of

(W,a) in Vn , that is,
∑

a #((W,a) in Vn) ≤ #(W in Vn) , because if (W,a) enters

Vn , then W also enters it at the same position. Second, if W enters Vn except for the
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last position, (W,a) enters Vn for some a , as explained before. From these observations:

0 ≤ #(W in Vn)−
∑
a

#((W,a) in Vn) ≤ 1.

Now, dividing by (|Vn| − |W |+ 1) gives

0 ≤ freq(W in Vn)−
∑
a

#((W,a) in Vn)

|Vn| − |W |+ 1
≤ 1

|Vn| − |W |+ 1
,

which simplifies to

0 ≤ freq(W in Vn)−
∑
a

freq((W,a) in Vn)
|Vn| − |W |
|Vn| − |W |+ 1

≤ 1

|Vn| − |W |+ 1
,

Now, 1/(|Vn| − |W |+ 1)→ 0 as n→∞ , because |Vn| → ∞ as n→∞ . For a similar

reason,

(|Vn| − |W |)
(|Vn| − |W |+ 1)

→ 1 as n→∞.

Therefore,

0 ≤ lim
n→∞

freq(W in Vn)−
∑
a

lim
n→∞

freq((W,a) in Vn) ≤ 0,

that is

µ(W ) =
∑
a

µ(W,a).

The argument for concatenation from the left side is analogous. Thus, the map µ(·) is

indeed a measure.

In the other direction. From the definition of convergence of words to a measure we have

that for each W :

lim
n→∞

freq(W in Vn) = µ(W ).

So, let N be such that for every m, n > N , we have

| freq(W in Vm)− µ(W )| < ε

2
and | freq(W in Vn)− µ(W )| < ε

2
.
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Now,

| freq(W in Vm)− freq(W in Vn)|

≤ | freq(W in Vm)− µ(W )|+ | freq(W in Vn)− µ(W )| < ε.

Therefore, if (Vn) tends to a measure, then it is Cauchy.

Theorem 2.0.20 is proved in both directions.

Definition 2.0.21. We say that a sequence of random words (Xn) is Cauchy if for any

word W and any ε > 0 there is k such that

∀ m, n > k : | freq(W in Xm)− freq(W in Xn)| < ε.

Theorem 2.0.22. A sequence of random words is Cauchy if and only if it converges to

some measure.

Proof in one direction. Let us choose a word W and suppose that the sequence (Xn)

is Cauchy, thus freq(W in Xn) is a Cauchy sequence of real numbers. Therefore the

limit limn→∞ freq(W in Xn) exists. So let us define the following map having the set

of all words as its domain:

µ(W ) = lim
n→∞

freq(W in Xn).

We want to prove that µ is indeed a measure. In other words, we want to prove that

∀ ‘word W : 0 ≤ µ(W ) ≤ 1 and also that
∑

a µ(W,a) =
∑

a µ(a,W ) = µ(W ) .

It is easy to see that 0 ≤ freq(W in Xn) ≤ 1 . Then

0 ≤ lim
n→∞

freq(W in Xn) ≤ 1.
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Therefore

0 ≤ µ(W ) ≤ 1.

We still have to show that
∑

a µ(W, a) =
∑

a µ(a,W ) = µ(W ) . To do so, note

initially that |(W,a)| = |(a,W )| = |W |+ 1 .

Let us take first the case when a is on the right side, that is, we show that∑
a µ(W,a) = µ(W ) . Let V be any word on dic(A) . If a 6= b , then (W, a) must

enter V in a different position than that of (W, b) . Moreover, if W enters V in a posi-

tion which is not the last one, that is, if W does not enter V at the position |V | − |W | ,

there must exist a letter, say a , at the right side of W , such that (W,a) still enters Vn

at the same position. Now we can make two remarks. First, the number of entrances of

W in V is always greater or equal than the sum over all the letters a of the numbers

of entrances of (W,a) in V , for if (W,a) enters V , then W also enters. Second, if W

enters V except for the last position, (W, a) enters V for some a , as explained before.

Therefore

0 ≤ #(W in V )−
∑
a

#((W,a) in V ) ≤ 1

for any word V . Then, multiplying the above expression by (Xn)V , where (Xn)V stands

for the probability of Xn = V , we get

0 ≤ {Xn}V ·#(W in V )− (Xn)V ·
∑
a

#((W,a) in V ) ≤ (Xn)V .

Thus, summing over all words V , and noting that the set {V : XV > 0} is finite, yields

0 ≤ E#(W in Xn)−
∑
a

E#((W,a) in Xn) ≤ 1.
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Now, dividing by (E|Xn| − |W |+ 1) gives

0 ≤ freq(W in Xn)−
∑
a

E#((W,a) in Xn)

E|Xn| − |W |+ 1
≤ 1

E|Xn| − |W |+ 1
,

which yields

0 ≤ freq(W in Xn)−
∑
a

freq((W,a) in Xn)
E|Xn| − |W |

E|Xn| − |W |+ 1
≤ 1

E|Xn| − |W |+ 1
,

since 1/(E|Xn| − |W | + 1) → 0 as n → ∞ , because E|Xn| → ∞ as n → ∞ , and

by the same reason,

E|Xn| − |W |
E|Xn| − |W |+ 1

,

tends to 1 as n→∞ . Therefore,

0 ≤ lim
n→∞

freq(W in Xn)−
∑
a

lim
n→∞

freq((W,a) in Xn) ≤ 0

that is

µ(W ) =
∑
a

µ(W,a).

The argument for a on the left side is analogous. Thus, the map µ(·) is indeed a

measure.

In the other direction. From the definition of convergence of words to a measure we

have that for each W

lim
n→∞

freq(W in Xn) = µ(W ).

So, let N be such that for every m, n > N , we have

| freq(W in Xm)− µ(W )| < ε

2
and | freq(W in Xn)− µ(W )| < ε

2
.
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Now,

| freq(W in Xm)− freq(W in Xn)| ≤

≤ | freq(W in Xm)− µ(W )|+ | freq(W in Xn)− µ(W )| < ε.

Thus, if (Xn) tends to a measure, then it is Cauchy.

Theorem 2.0.22 is proved in both directions.

Definition 2.0.23. We denote Mword = {V ′ : V ∈ dic(A)} . We turn Mword into a

metric space defining dist(µ, ν) = ‖µ − ν‖ , where the norm ‖ · ‖ is the norm of the

space Mnorm .

Definition 2.0.24. Given any metric space S , we say that a sequence of non-empty sets

S1, S2, S3, · · · ⊂ S converges or tends to a point p ∈ S if for any ε > 0 there is k such

that

∀ n > k ∀ q ∈ Sn : dist(q, p) < ε.

Definition 2.0.25. We say that a sequence of sets S1, . . . , Sn, . . . ⊂Mword is Cauchy if

∀ ε > 0 ∃ N ∀ n, m > N : ∀ p ∈ Sn ∀ q ∈ Sm : dist(q, p) < ε.

Theorem 2.0.26. A sequence of sets S1, S2, S3, . . . ,⊂Mword is Cauchy if and only if

these sets converge to some measure (in the sense of Definition 2.0.24).

Proof in one direction. Suppose that S1, . . . , Sn, . . . is a Cauchy sequence of sets, that

is

∀ ε > 0 ∃ N ∀ n, m > N : ∀ p ∈ Sn ∀ q ∈ Sm : ‖p− q‖ < ε.

Construct a sequence pn by selecting for each n an element pn in Sn . Then for every

ε > 0 there exists an N such that for n,m > N we have ‖pn− pm‖ < ε , since pn ∈ Sn
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and pm ∈ Sm , and we are assuming the sequence of sets Sn to be Cauchy. Therefore,

the sequence of pseudo-measures (pn) is Cauchy. But pn are also in Mword . Thus there

is some sequence of words (Vn) such that pn = V ′n , and therefore the sequence (V ′n) is

Cauchy. Thus, for any word W there exists j such that W = Wj and therefore

|V ′n(W )− V ′m(W )| = |V ′n(Wj)− V ′m(Wj)| ≤
1

wj
‖V ′n − V ′m‖ ≤

ε

wj
,

which implies that the sequence (Vn) is Cauchy. By Theorem 2.0.20, this sequence

converges to some measure µ , and by the equivalence in Definition 2.0.3, the sequence of

pseudo-measures V ′n converges to one and the same measure µ . We now have to prove

that the sequence of sets also converges to µ : ∀ ε > 0 ∃ k ∀ n > k ∀p ∈ Sn : ‖µ−p‖ < ε.

But this follows trivially from the fact that, since the sequence (Sn) is Cauchy, we have

∀ε > 0 ∃ N ∀ n,m > N ∀ q ∈ Sm. : ‖pn − q‖ < ε.

This implies that if n is so large that ‖pn − µ‖ < ε/2 and that ‖pn − q‖ < ε/2 for

any q ∈ Sn , then

‖q − µ‖ ≤ ‖q − pn‖+ ‖pn − µ‖ ≤ ε.

This concludes the proof in one direction.

In the other direction. Suppose that the sequence of sets S1, . . . , Sn, . . . converges

to some measure µ . Let ε > 0 and let n be so large that for all p ∈ Sn we have

‖p− µ‖ < ε . Then, if m > n , we have for any p ∈ Sn and q ∈ Sm :

‖p− p‖ ≤ ‖p− µ‖+ ‖p− µ‖ ≤ 2ε.

Theorem 2.0.26 is proved in both directions.
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Chapter 3

Substitution Operators

A generic substitution operator is determined by two words G and H , where G is

self-avoiding, and a real number ρ ∈ [0, 1] . We denote this operator by (G
ρ→ H) . The

informal idea of this operator is that it substitutes every entrance of the word G in a

long word by the word H with a probability ρ or leaves it unchanged with a probability

1 − ρ independently of states and fate of all the other components. Following some of

the articles in this area, we write operators on the right side of objects (words, measures)

on which they act.

3.1 General Definition of a Substitution Operator

acting on Words

Our goal in this Section is to define a general substitution operator, which is denoted by

(G
ρ→ H) , acting on words. If G and H are empty, the operator (G

ρ→ H) changes

nothing. Now let G or H be non-empty.

Let us choose a word V and define how (G
ρ→ H) acts on it. Let us denote N =

#(G in V ) , i.e. N is the number of entrances of G in V . Since G is self-avoiding,
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these entrances do not overlap. Further, let i1, . . . , iN ∈ {0, 1} and let us denote by

V (i1, . . . , iN) the word obtained from V after replacing each entrance of G by the word

H in those positions ij where ij = 1 , the others left unchanged. We then define the

substitution operator (G
ρ→ H) as follows: the random word obtained from the word V

is concentrated on the words V (i1, . . . , iN) , where i1, . . . , iN ∈ {0, 1} with probabilities

P
(
V (G

ρ→ H) = V (i1, . . . , iN)
)

= ρk(1− ρ)N−k, where k =
∑
j

ij.

Now let us extend this definition to random words.

Let us define the result of application of (G
ρ→ H) to a random word X . Let X

equal the words V1, . . . , Vn with positive probabilities XVj
. We define X(G

ρ→ H) as

the random word which equals the words Vj(i1, . . . , iN) with probabilities

XVj
· ρ
∑

j ij (1− ρ)N−
∑

j ij .

Lemma 3.1.1. For any non-empty word V and ρ ∈ [0, 1] we can express the mean

length of the random word V (G
ρ→ H) in the following simple way

E|V (G
ρ→ H)| = |V |+ ρ · (|H| − |G|) ·#(G in V ).

Proof: Let us evaluate the mean length (Def. 2.0.8) of the random word V (G
ρ→ H) .

We begin by noting that

|V (G
ρ→ H)| = |V |+ (|H| − |G|) · k,

where k ∼ Bin(N, ρ) , where N = #(G in V ) . Therefore,

E|V (G
ρ→ H)| = |V |+ (|H| − |G|) · E(k),

which is equal to

E|V (G
ρ→ H)| = |V |+ ρ · (|H| − |G) ·#(G in V ).
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Lemma 3.1.1 is proved.

Lemma 3.1.2. For any random word X and ρ ∈ [0, 1] we can express the mean length

of the random word X(G
ρ→ H) in the following simple way

E|X(G
ρ→ H)| = E|X|+ ρ · (|H| − |G|) · E#(G in X).

Proof: Suppose that X may assume the words V1, . . . , Vn , then, we first note that

E|X(G
ρ→ H)| =

n∑
j=1

E|Vj(G
ρ→ H)|XVj

· ρ
∑

j ij (1− ρ)N−
∑

j ij .

Now, we use Lemma 3.1.1 to obtain

E|X(G
ρ→ H)| =

n∑
j=1

[|Vj|+ ρ · (|H| − |G|)#(G in Vj)]XVj
· ρ
∑

j ij (1− ρ)N−
∑

j ij

= E|X|+ ρ · (|H| − |G|)E#(G in X).

Lemma 3.1.2 is proved.

3.2 Operators Acting on Random Words

Remember our usual notation (see also the Index of Symbols): A is an alphabet, Ω is

the set of random words on A , M is the set of uniform probability measures on dic(A) ,

V ′ is the pseudo-measure corresponding to the word V , and Mword = {V ′;V ∈ dic(A)} .

3.2.1 Consistency

Definition 3.2.1. We say that a map P : Ω → Ω is consistent if any of the following

equivalent conditions holds:

a) for any µ ∈M and any sequence of random words (Xn)→ µ the limit

lim
n→∞

(XnP )
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exists and is one and the same for all sequences Xn → µ .

b) for any µ ∈M and any sequence of sets

S1, S2, . . . , Sn, . . . ⊂Mword

such that Sn → µ , the limit

lim
n→∞

SnP

exists and is one and the same for all sequences (Sn)→ µ , where SnP = {V P : V ∈ Sn} .

Lemma 3.2.2. The conditions (a) and (b) in Definition 3.2.1 are equivalent.

Proof: We begin proving that if the limit XnP exists for all sequences (Xn) → µ ,

then the limit of SnP exists for all sequences (Sn)→ µ .

From Definition 2.0.24 it is clear that if Sn → µ , then Vn → µ for any sequence

(Vn) such that each Vn ∈ Sn . Therefore, by assumption, we have that for each sequence

(Vn) , where Vn belongs to Sn , the limit limn→∞ VnP exists and is one and the same.

Therefore the limit of sequence of sets limn→∞ SnP also exists and is one and the same

for each sequence (Sn)→ µ .

In the other direction: if for each sequence (Sn) → µ , the limit of SnP exists and

is one and the same, it is enough to choose the sequence of sets Sn = {Xn} , that is the

set containing only one element, which easily implies the desired result. Lemma 3.2.2 is

proved.

Definition 3.2.3. Given any consistent map P : Ω → Ω (see Def. 3.2.1), and any

µ ∈M , we define µP , that is, the result of application of P to µ , as the measure (which

is unique according to Definition 3.2.1), to which (XnP ) converges for all (Xn)→ µ .
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Lemma 3.2.4. Let P1, P2 : Ω→ Ω be consistent operators. Then their superposition is

also consistent.

Proof: Consider any sequence of random words (Xn) converging to µ . Then, the

sequence of random words Qn = XnP1 tends to µP1 (following Definition 3.2.3), hence

QnP2 tends to µP1P2 .

Lemma 3.2.4 is proved.

3.2.2 Extension

Definition 3.2.5. For any µ ∈M and any P : Ω→ Ω , we define extension of µ under

P as the limit

Ext(µ|P ) = lim
n→∞

E|XnP |
E|Xn|

for any sequence of random words (Xn)→ µ if this limit exists and is one and the same

for all sequences (Xn) which tend to µ .

Informally speaking, extension of a measure µ under operator P is that coefficient

by which P multiplies the length of a long word approximating µ .

Lemma 3.2.6. Suppose that P1, P2 : Ω → Ω have extensions for all measures and P1

is consistent. Then their superposition P1P2 also has extension for all measures and

∀ µ : Ext(µ|P1P2) = Ext(µ|P1)× Ext(µP1|P2).

Proof: Since we are assuming that P1 is consistent, we have by Definition 3.2.3

that XnP1 → µP1 as n → ∞ for any sequence (Xn) of random words converging to

µ . Thus, since we are assuming that P2 has extension for all measures µ ∈ Mnorm ,
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Definition 3.2.5 implies that

Ext(µP1|P2) = lim
n→∞

E|VnP2|
E|Vn|

,

for any sequence of random words (Vn) converging to µP1 . Thus, since XnP1 → µP1 ,

as seen in the beginning of the proof,

Ext(µP1|P2) = lim
n→∞

E|XnP1P2|
E|XnP1|

,

Therefore,

lim
n→∞

E|XnP1P2|
E|Xn|

= lim
n→∞

(
E|XnP1P2|
E|XnP1|

· E|XnP1|
E|Xn|

)
=

lim
n→∞

E|XnP1P2|
E|XnP1|

· lim
n→∞

E|XnP1|
E|Xn|

= Ext(µP1|P2) · Ext(µ|P1).

The above expression implies that the extension of µ resulting from application of a

superposition P1P2 exists and equals

Ext(µ|P1P2) = Ext(µP1|P2)× Ext(µ|P1).

Lemma 3.2.6 is proved.

3.3 Extension of a Substitution Operator

Now let us show that every measure has an extension under every substitution operator

and provide an explicit expression for it.

Proposition 3.3.1. If (G
ρ→ H) is a substitution operator acting on random words,

then the extension of any µ ∈M under this operator exists and equals

Ext(µ|(G ρ→ H)) = 1 + ρ · (|H| − |G|) · µ(G), .
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Proof: We know from Lemma 3.1.2 that:

E|Xn(G
ρ→ H)| = E|Xn|+ ρ · (|H| − |G|) · E#(G in Xn)

Dividing the above expression by E|Xn| yields

E|Xn(G
ρ→ H)|

E|Xn|
= 1 + ρ(|H| − |G|) · freq(G in Xn)

E|Xn| − |G|+ 1

E|Xn|
.

Therefore

lim
n→∞

E|Vn(G
ρ→ H)|

|Vn|
= 1 + ρ(|H| − |G|) · µ(G).

Proposition 3.3.1 is proved.

3.4 General Definition of a Substitution Operator

acting on Measures

Given a measure µ and a triple (G, ρ,H) , a generic substitution operator acting on

measures is also denoted by (G
ρ→ H) , where G and H are words, G is self-avoiding

and ρ is a number in [0, 1] . Informally speaking, this operator substitutes every entrance

of the word G by the word H with a probability ρ or leaves it unchanged with a

probability 1− ρ independently of states and fate of the other components.

The main task of this section is to define a general substitution operator acting on

measures and to prove that it is always consistent. If both G and H are empty, our

operator (G
ρ→ H) leaves all measures unchanged by definition. Leaving this trivial case

aside, we assume that at least one of the words G and H is non-empty.

The following attempt of definition seems the most natural to us. Given a measure

µ , approximate it with a sequence of words (Vn) , that is, let (Vn) → µ as n → ∞ .
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Then apply (G
ρ→ H) to each Vn . Thus we get a sequence of random words

Vn(G
ρ→ H). (3.1)

Then we would like to prove that the above sequence is Cauchy and therefore converges

to a measure and that this measure is one and the same for all sequences (Vn) which

tend to µ . All this proved, we might take this limit as the desired definition:

µ(G
ρ→ H) = lim

n
Vn(G

ρ→ H).

To prove the statement above we will introduce several special operators, prove their

consistency, and represent a general substitution operator as superposition of those op-

erators.

These special classes will also help us in another way. Having described our work up

to this point, we see that our approach is more general than the areas mentioned in the

introduction. One might say that we generalize beyond necessity. The following special

classes of operators help us to show that our theoretic constructions are not very far from

possible applications.

3.4.1 Basic Substitution Operators

Let us define several small classes of operators, which we call basic operators and prove

that all of them are consistent. In doing this we follow our previous setup of consistent

operators to define how they act on measures (see Definition 3.2.3).

Basic operator 1: Conversion (g
ρ→ h) is the only linear operator in our list. For

any two different letters g, h ∈ A , we define conversion from g to h as a map from M

to M . Informally, conversion changes each occurrence of the letter g into the letter h
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with probability ρ ∈ [0, 1] or doesn’t change it with probability 1− ρ independently of

the states of the other occurrences. In biological literature the analogous transformation

is often called substitution.

Lemma 3.4.1. The basic operator conversion is consistent.

Proof: Let (Vn) be a sequence of words converging to µ . We know that the extension

of this operator equals 1, that is

Ext(µ|(g ρ→ h)) = 1.

Therefore, it is sufficient to verify that the following limit exists:

lim
n→∞

E#(W in Vn(g
ρ→ h))

|Vn|
,

since, from the expression of the extension of this operator, we have the identity

lim
n→∞

E#(W in Vn(g
ρ→ h))

E|Vn(g
ρ→ h)| − |W |+ 1

= lim
n→∞

E#(W in Vn(g
ρ→ h))

|Vn|
.

Indeed, denoting m = #(g in Vn) , it is easy to see that

#(g in Vn(g
ρ→ h)) ∼ Bin(m, 1− ρ),

and hence

E#(g in Vn(g
ρ→ h)) = (1− ρ)#(g in Vn).

This yields

lim
n→∞

E#(g in Vn(g
ρ→ h))

|Vn|
= (1− ρ) lim

n→∞

#(g in Vn)

|Vn|
= (1− ρ)µ(g).

After similar calculations we obtain

lim
n→∞

E#(h in Vn(g
ρ→ h))

|Vn|
.
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We now note that it is easy to see that

#(h in Vn(g
ρ→ h)) = #(h in Vn) +K,

where K ∼ Bin(m, ρ) represents the letters g that turned into h , and m =

#(g in Vn) .

Therefore

E#(h in Vn(g
ρ→ h)) = #(h in Vn) + ρ ·#(g in Vn),

whence

lim
n→∞

E#(h in Vn(g
ρ→ h))

|Vn|
= lim

n→∞

#(h in Vn)

|Vn|
+ ρ lim

n→∞

#(g in Vn)

|Vn|
= µ(h) + ρ · µ(g).

For any letter e different from g and h

lim
n→∞

E#(e in Vn(g
ρ→ h))

|Vn|
= lim

n→∞

#(e in Vn)

|Vn|
= µ(e).

Thus, we define how this operator acts on the measure µ as follows:

µ(g
ρ→ h)(g) = lim

n→∞

E#(g in Vn(g
ρ→ h))

|Vn|
,

µ(g
ρ→ h)(h) = lim

n→∞

E#(h in Vn(g
ρ→ h))

|Vn|

and

µ(g
ρ→ h)(e) = lim

n→∞

E#(e in Vn(g
ρ→ h))

|Vn|
.

Then, if we let F (g|g) = 1− ρ , F (h|g) = ρ and F (h|h) = F (e|e) = 1 , we have

µ(g
ρ→ h)(g) = F (g|g)µ(g) = (1− ρ)µ(g),

µ(g
ρ→ h)(h) = F (h|h)µ(h) + F (h|g)µ(g) = µ(h) + ρ · µ(g)

36



and

µ(g
ρ→ h)(e) = F (e|e)µ(e) = µ(e).

More generally, given a word W = (a1, . . . , ak) , we have by similar calculations:

lim
n→∞

E#(W in Vn(g
ρ→ h))

|Vn|
=

∑
b1,...,bk∈A

(
k∏
i=1

F (ai|bi)× µ(b1, . . . , bk)

)
,

where

F (a|b) =



1− ρ if b = g, a = g,

ρ if b = g, a = h,

0 if b = g and a is not g nor h,

1 if b 6= g and a = b,

0 if b 6= g and a 6= b.

Lemma 3.4.1 is proved.

Now we can use the consistency of this operator to define the conversion operator

acting on any measure µ applied in any word W = (a1, . . . , ak) :

µ(g
ρ→ h)(W ) =

∑
b1,...,bk∈A

(
k∏
i=1

F (ai|bi)× µ(b1, . . . , bk)

)
.

Basic operator 2: Insertion (Λ
ρ→ h) . Informally, insertion of a letter h 6∈ A into a

measure in the alphabet A with a rate ρ ∈ [0, 1] means that a letter h is inserted with

probability ρ between every two neighbor letters independently from other places. This

term is identical to the one used in biological literature and the meaning is similar.

We already know that the extension of any µ for this operator equals

Ext(µ|(Λ ρ→ h)) = 1 + ρ.

Lemma 3.4.2. The basic operator insertion is consistent.

37



Proof: Let (Vn) be a sequence of words converging to some measure µ . It is enough to

prove that the left and right sides of the following equation exist:

lim
n→∞

E#(W in Vn(Λ
ρ→ h))

E|Vn(Λ
ρ→ h)| − |W |+ 1

=
1

Ext(µ|(Λ ρ→ h))
lim
n→∞

E#(W in Vn(Λ
ρ→ h))

|Vn|
. (3.2)

The fact that the above limits are equal comes from the definition and existence of

extension of this operator. We begin by noting that for any word W in the alphabet

A′ = A ∪ {h} :

E#(W in Vn(Λ
ρ→ h))

=
∑

ij∈{0,1}

#(W in Vn(i1, . . . , i|Vn|+1)ρ
∑

j ij (1− ρ)|Vn|+1−
∑

j ij ,

where Vn(i1, . . . , i|Vn|+1) is the word obtained from Vn after inserting the letter h

in the positions where ij = 1 . It is clear that if
∑

j ij < #(h in W ) , then

#(W in Vn(i1, . . . , i|Vn|+1) = 0 , using this, we may simplify the above expression to

obtain

E#(W in Vn(Λ
ρ→ h)) = #(W ′ in Vn)ρ#(h in W )(1− ρ)M ,

where M is the number of pairs of consecutive letters in W both of which are not h ,

and W ′ is the word obtained from W by deleting all the letter h . Therefore it is easy

to conclude that the limits on 3.2 exist.

Lemma 3.4.2 is proved.

Then we use the consistency of this operator to define how the operator (Λ
ρ→ h)

acts on any measure µ . We define the result of its application to an arbitrary word W
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by:

µ(Λ
ρ→ h)(W )

=
1

Ext(µ|(Λ ρ→ h))
µ(W ′)ρ#(h in W )(1− ρ)M

=
1

1 + ρ
µ(W ′)ρ#(h in W )(1− ρ)M

Basic operator 3: Deletion (g
ρ→ Λ) . Informally, deletion of a letter g ∈ A with

some probability ρ ∈ [0, 1) means that each occurrence of g disappears with probability

ρ or remains unchanged with probability 1−ρ independently from the other occurrences.

Like insertion operator, this operator is similar to what is called deletion in the biological

literature.

We already know that the extension of any measure µ under this operator is

Ext(µ|(g ρ→ Λ)) = 1− ρ · µ(g).

Lemma 3.4.3. The basic operator deletion is consistent.

Proof: Let (Vn) be a sequence of words converging to a measure µ . We then must prove

that the following limits exist:

lim
n→∞

E#(W in Vn(g
ρ→ Λ))

E|Vn(g
ρ→ Λ)| − |W |+ 1

=
1

Ext(µ|(g ρ→ Λ))
lim
n→∞

E#(W in Vn(g
ρ→ Λ))

|Vn|
, (3.3)

The equality in the above expression is due to the definition of extension. Let W =

(a0, . . . , am) be any word and Nn = #(g in Vn) , then, from Definition 2.0.9

E#(W in Vn(g
ρ→ Λ)) =

∑
k;i1,...,ik

#(W in Vn(k; i1, . . . , ik))ρ
k(1− ρ)Nn−k,
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where M = #(g in W ) and V (k; i1, . . . , ik) is the word obtained from V by the

deletion of k letters g in positions i1, . . . , ik .

Then, by a “change of variables”, we may disregard the letters g deleted from Vn ,

and put them in the word W . With this the number k of deletions is now the total

number of insertions of the letter g in the word W :

E#(W in Vn(g
ρ→ Λ)) =

∑
k;i1,...,ik

=
∑

n1+···+nm+1≤Nn

#((gn1 , a1, g
n2 , . . . , gnm , am, g

nm+1) in Vn)ρn1+···+nm+nm+1(1− ρ)M ,

Therefore, we have:

E#(W in Vn(g
ρ→ Λ))

|Vn|

=
∑

n1+···+nm+1≤Nn

#((gn1 , a1, g
n2 , . . . , gnm , am, g

nm+1) in Vn)ρn1+···+nm+1(1− ρ)M

|Vn|

=
∞∑

n1,...,nm+1=0

I{n1+···+nm+1≤Nn}
#((gn1 , a1, g

n2 , . . . , am, g
nm+1) in Vn)ρn1+···+nm+1(1− ρ)M

|Vn|

where IA is the indicator function of the set A , and, in the last identity, the indicator

function was used to avoid dependence of n on the index of summation.

Clearly, I{n1+···+nm+1≤Nn}
n→∞−→ 1 (i.e. converges to the function identically equal to 1).

Also ∣∣∣∣I{n1+···+nm+1≤Nn}
#((gn1 , a1, g

n2 , . . . , gnm , am, g
nm+1) in Vn)

|Vn|

∣∣∣∣ ≤ 1,

and, since
∞∑

n1,...,nm+1=0

ρn1+···+nm+1(1− ρ)M <∞ if ρ < 1,
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from the dominated convergence theorem:

lim
n→∞

E#(W in Vn(g
ρ→ Λ))

|Vn|

= lim
n→∞

∞∑
n1,...,nm+1=0

I{n1+···+nm+1≤Nn}
#((gn1 , a1, . . . , am, g

nm+1) in Vn)ρn1+···+nm+1(1− ρ)M

|Vn|

=
∞∑

n1,...,nm+1=0

lim
n→∞

I{n1+···+nm+1≤Nn}
#((gn1 , a1, . . . , am, g

nm+1) in Vn)ρn1+···+nm+1(1− ρ)M

|Vn|

=
∞∑

n1,...,nm+1=0

µ(gn1 , a1, . . . , am, g
nm+1)ρn1+···+nm+1(1− ρ)M

Now it is easy to conclude that both limits in equation 3.3 exist.

Lemma 3.4.3 is proved.

Then we use the consistency of this operator to define how the operator (g
ρ→ Λ) acts

on an arbitrary measure µ :

µ(g
ρ→ Λ)(W ) =

1

Ext(µ|(g ρ→ Λ))

∞∑
n1,...,nm+1=0

µ(gn1 , a1, . . . , am, g
nm+1)ρn1+···+nm+1(1− ρ)M =

1

1− ρ · µ(g)

∞∑
n1,...,nm+1=0

µ(gn1 , a1, . . . , am, g
nm+1)ρn1+···+nm+1(1− ρ)M ,

for all words W = (a1, . . . , am) , and M = #(g in W ) .

Basic operator 4: Compression (G
1→ h) . Given a non-empty self-avoiding word G

in an alphabet A and a letter h /∈ A , compression from G into h is the following map

from MA to MA′ , where A′ = A∪{h} : each occurrence of the word G is replaced by

the letter h with probability 1.
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We already know that the extension of any measure µ under this operator is

Ext(µ|(G 1→ h)) = 1− (|G| − 1) · µ(G).

Lemma 3.4.4. The basic operator compression is consistent.

Proof: Let (Vn) be a sequence of words converging to µ . Then, it is enough to prove

that the following limits exist.

lim
n→∞

#(W in Vn(G
1→ h))

|Vn(G
ρ→ h)| − |W |+ 1

=
1

Ext(µ|(G 1→ h))
lim
n→∞

#(W in Vn(G
1→ h))

|Vn|
. (3.4)

The identity on the equation above follows from the definition of extension of an operator.

First notice that for any word W in the alphabet A′

#(W in Vn(G
1→ h)) = #(W ′ in Vn)−#(W in G)#(G in Vn),

where W ′ is the word obtained from W by replacing every letter h by the word G .

Then

lim
n→∞

#(W in Vn(G
1→ h))

|Vn|
= lim

n→∞

#(W ′ in Vn)−#(W in G)#(G in Vn)

|Vn|

= µ(W ′)−#(W in G)µ(G).

It is easy to see that the limits in equation 3.4 exist.

Lemma 3.4.4 is proved.

Now we use the consistency of this operator to define how the operator (G
1→ h) acts

on any measure µ :

µ(G
1→ h)(W ) =

µ(W ′)−#(W in G)µ(G)

Ext(µ|(G 1→ h))
=
µ(W ′)−#(W in G)µ(G)

1− (|G| − 1)µ(G)
.
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Basic operator 5: Decompression (g
1→ H) . Given a non-empty self-avoiding word

H in an alphabet A and a letter g 6∈ A , decompression of g into H is the following

map from MA′ to MA , where A′ = A ∪ {g} : every occurrence of the letter g is

replaced by the word H with probability 1.

We already know that the extension of any measure µ for this operator is

Ext(µ|(g 1→ H)) = 1 + (|H| − 1) · µ(g).

Lemma 3.4.5. The basic operator decompression is consistent.

Proof: Let (Vn) be a sequence of words converging to the measure µ . Then it is enough

to prove that the following limits exist.

lim
n→∞

#(W in Vn(g
1→ H))

|Vn(g
ρ→ H)| − |W |+ 1

=
1

Ext(µ|(g 1→ H))
lim
n→∞

#(W in Vn(g
1→ H))

|Vn|
. (3.5)

The equality in the above equation follows from the definition of extension. Let us prove

that the limits in equation 3.5 exist. First let us consider the decompression of the letter

g into the word (h1, h2) with probability 1, where the letters h1 and h2 are different

and do not belong to the alphabet A . The extension for this operator equals 1 + µ(g) .

Now let us compute the following limit

lim
n→∞

#(W in Vn(g
1→ (h1, h2)))

|Vn|
.

Let W be a word in the alphabet A ∪ {h1, h2} . We define a new word W ′ as the

concatenation W ′ = concat(U,W, V ) , where

U =


h1 if the first letter of W is h2,

Λ otherwise.

and

V =


h2 if the last letter of W is h1,

Λ otherwise.
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Afterwards, we turn each entrance of the word (h1, h2) in W ′ into the letter g

and denote the resulting word by W ′′ . (This is well-defined since the word (h1, h2)

is self-avoiding.) Now, if W ′′ contains any entrance of h1 or h2 it means that

#(W in Vn(g
1→ (h1, h2))) = 0 , and therefore the above limit equals zero. Otherwise,

#(W in Vn(g
1→ (h1, h2))) = #(W ′′ in Vn),

and thus,

lim
n→∞

#(W in Vn(g
1→ (h1, h2)))

|Vn|
= lim

n→∞

#(W ′′ in Vn)

|Vn|
= µ(W ′′).

Therefore, if W ′′ constrains any entrance of h1 or h2 , we define µ(g
1→ (h1, h2))) = 0 ,

otherwise, we define:

µ(g
1→ (h1, h2)))(W ) =

µW ′′

Ext(µ|(g 1→ (h1, h2)))
=

µ(W ′′)

1 + µ(g)
.

Now, we will define the decompression of a letter g into the word (h1, . . . , hk) with

probability 1, where the letters h1, . . . , hk are all different from each other and do not

belong to the alphabet A . Let us then define how the operator (g
1→ (h1, . . . , hk))) acts

on the measure µ by induction in k . The case k = 2 was treated above. Now, let us

take k > 2 and a letter s not belonging to A . Then for any word W in the alphabet

A ∪ {h1, . . . , hk}

#(W in Vn(g
1→ (h1, . . . , hk))) = #(W in (Vn(g

1→ (h1, s)))(s
1→ (h2, . . . , hk))),

and then we can prove by induction that the following limit exists and is well-defined:

lim
n→∞

#(W in Vn(g
1→ (h1, . . . , hk)))

|Vn|
=

lim
n→∞

#(W in Vn(g
1→ (h1, s))(s

1→ (h2, . . . , hk)))

|Vn|
.
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Now it is easy to see that the limits in equation 3.5 exist.

Lemma 3.4.5 is proved.

We will now use the consistency of this operator to define how it acts on an arbitrary

measure. Let Vn → µ when n → ∞ , and assume that h1, . . . , hk, s do not belong to

A . Then

Ext(µ|(g 1→ (h1, s))(s
1→ (h2, . . . , hk)))

= lim
n→∞

|Vn(g
1→ (h1, s)(s

1→ (h2, . . . , hk))))

|Vn|

= lim
n→∞

|Vn(g
1→ (h1, s))|+ (|H| − 2)#(s in Vn(g

1→ (h1, s)))

|Vn|

= lim
n→∞

|Vn(g
1→ (h1, s))|+ (|H| − 2)#(g in Vn))

|Vn|

= lim
n→∞

|Vn|+ (|H| − 1)#(g in Vn)

|Vn|

= Ext(µ|(g 1→ (h1, . . . , hk))).

After that, we define how the operator (g
1→ (h1, . . . , hk)) acts on an arbitrary measure

µ in the following inductive way:

µ(g
1→ (h1, . . . , hk)) = µ(g

1→ (h1, s))(s
1→ (h2, . . . , hk)),
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we can check this claim by noting that:

µ(g
1→ (h1, s))(s

1→ (h2, . . . , hk))(W )

= lim
n→∞

#(W in Vn(g
1→ (h1, s))(s

1→ (h2, . . . , hk))

Ext(µ|(g 1→ (h1, s))(s
1→ (h2, . . . , hk)))

= lim
n→∞

#(W in Vn(g
1→ (h1, . . . , hk))

Ext(µ|(g 1→ (h1, . . . , hk)))

= µ(g
1→ (h1, . . . , hk))(W ).

This is a superposition of the decompression from g to (h1, s) and the decompression

from s into (h2, . . . , hk) .

Finally, we define the decompression operator, acting on a measure µ , from a letter

g to an arbitrary word H = (s1, . . . , sk) , with no restrictions on letters s1, . . . , sk , that

us they may belong to the alphabet and/or coincide with each other in the following

way: first, we use the decompression from g to a word (h1, . . . , hk) , where all the letters

h1, . . . , hk are different from each other and do not belong to the alphabet A . Further,

we perform k conversions, each with probability 1, from hi to si for all i = 1, . . . , k .

3.4.2 Superposition of Basic Operators

The main goal of this subsection is to give a general definition of the substitution operator

(G
ρ→ H) acting on measures. We will do it by representing an arbitrary substitution

operator as a superposition of several basic operators, which we have defined in the

previous section.

This definition is based on the following facts.
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Theorem 3.4.6. Let (G
ρ→ H) be a substitution operator acting on words. Let also

(G
ρ→ Λ) and (Λ

ρ→ H) be substitution operators acting on words, where Λ is the empty

word, G is self-avoiding, s, g, h are different letters not belonging to A , and ρ ∈ [0, 1]

(and ρ < 1 for the operator (G
ρ→ Λ) ). Then, for any word V and any W :

#(W in V (G
ρ→ H)) = #(W in V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)), (3.6)

#(W in V (G
ρ→ Λ)) = #(W in V (G

1→ g)(g
ρ→ Λ)(g

1→ G)), (3.7)

and,

#(W in V (Λ
ρ→ H)) = #(W in V (Λ

ρ→ h)(h
1→ H)). (3.8)

Also

E|V (G
ρ→ H)| = E|V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)|, (3.9)

E|V (G
ρ→ Λ)| = E|V (G

1→ g)(g
ρ→ Λ)(g

1→ G)|, (3.10)

and finally,

E|V (Λ
ρ→ H)| = E|V (Λ

ρ→ h)(h
1→ H)|. (3.11)

We postpone the proof of this theorem to the end of this Section.

Before that we shall state several corollaries of it.

Corollary 3.4.7. Let the substitution operators

(G
ρ→ H), (G

ρ→ Λ), (Λ
ρ→ H)

act on words. Here G is a self-avoiding word, s, g, h 6∈ A , and ρ ∈ [0, 1] (and ρ < 1

for the operator (G
ρ→ Λ) ). Then, for any words V, W

freq(W in V (G
ρ→ H)) = freq(W in V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)), (3.12)
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freq(W in V (G
ρ→ Λ)) = freq(W in V (G

1→ g)(g
ρ→ Λ)(g

1→ G)), (3.13)

and

freq(W in V (Λ
ρ→ H)) = freq(W in V (Λ

ρ→ h)(h
1→ H)). (3.14)

Therefore, if (Vn) is a sequence of words, then

Vn(G
ρ→ H) converges ⇐⇒ Vn(G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G) converges, (3.15)

Vn(G
ρ→ Λ) converges ⇐⇒ Vn(G

1→ g)(g
ρ→ Λ)(g

1→ G) converges, (3.16)

and,

Vn(Λ
ρ→ H) converges ⇐⇒ Vn(Λ

ρ→ h)(h
1→ H) converges. (3.17)

Proof: Equation (3.12) follows directly from (3.6) and (3.9);

equation (3.13) follows directly from (3.7) and (3.10); and

equation (3.14) follows directly from (3.8) and (3.11).

Moreover,

equation (3.15) follows from (3.12);

equation (3.16) follows from (3.13); and

equation (3.17) follows from (3.14).

Corollary 3.4.7 is proved.

To imitate the (G
ρ→ H) operator we compress each entrance of the word G into

a letter h which does not belong to the alphabet. Then, we turn each letter h with

probability ρ into a letter s 6= h which does not belong to the alphabet. We then

decompress the letter s into a word H and decompress the letter h into a word G .

To imitate the (G
ρ→ Λ) operator we compress the word G into the letter g which
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does not belong to the alphabet A . Then we delete the letter g with probability ρ , and

lastly we decompress the letter g into the word G with probability 1.

Finally, to imitate the (Λ
ρ→ H) operator we insert the letter h which does not

belong to the alphabet, between every two consecutive letters with probability ρ inde-

pendently from other places. After that we decompress the letter h into the word H

with probability 1.

Corollary 3.4.8. For any words G, H , where G is self-avoiding, and ρ ∈ [0, 1] (where

ρ < 1 if H = Λ ), the operator (G
ρ→ H) acting on words is consistent.

Proof: The identities (3.12), (3.13) and (3.14) yield that the substitution operator is the

superposition of basic operators described in the last subsection, and each basic operator is

consistent. Thus, by Lemma 3.2.4, their superposition is also consistent. Thus (G
ρ→ H)

is consistent.

Corollary 3.4.8 is proved.

The next Corollary shows how to define substitution operators acting on

measures.

Corollary 3.4.9. We define µ(G
ρ→ H) , that is, the result of application of the operator

(G
ρ→ H) to a measure µ ∈M (following Definition 3.2.3) by

µ(G
ρ→ H)) = lim

n→∞
Vn(G

ρ→ H)),

where Vn is a sequence converging to µ . Corollary 3.4.9 is an obvious consequence of

Corollary 3.4.8, and therefore we omitted the proof. Note also that the above definition

is similar to the one we stated without proof in page 34.
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Thus, we have succeeded to define an arbitrary substitution operator (G
ρ→ H) acting

on measures.

Corollary 3.4.10. Consider the operator (G
ρ→ H) acting on measures, for G self-

avoiding and ρ ∈ [0, 1] ( ρ < 1 if H = Λ ). Then, for s, g, h 6∈ A , the following

identities hold:

µ(G
ρ→ H)) = µ(G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G),

µ(G
ρ→ Λ)) = µ(G

1→ g)(g
ρ→ Λ)(g

1→ G),

and

µ(Λ
ρ→ H)) = µ(Λ

ρ→ h)(h
1→ H).

Proof: It is a straightforward consequence of Corollary 3.4.7.

Corollary 3.4.10 is proved.

Proof of Theorem 3.4.6.

Now we start to prove theorem 3.4.6, which was stated on page 46.

Lemma 3.4.11. For s, h /∈ A , we have:

E#(W in V (G
ρ→ H)) = E#(W in V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)).
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Proof:

E#(W in V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G))

= E#(W ′ in V (G
1→ h)(h

ρ→ s)(s
1→ H))

= E#(W ′′ in V (G
1→ h)(h

ρ→ s))

=
∑

ij∈{0,1}

E#(W ′′ in (V (G
1→ h)))(i1, . . . , iN)ρ

∑
j ij (1− ρ)N−

∑
j ij

=
∑

ij∈{0,1}

E#(W in (V (G
1→ h)(s

1→ H)(h
1→ G))(i1, . . . , iN))ρ

∑
j ij (1− ρ)N−

∑
j ij

=
∑

ij∈{0,1}

E#(W in V (i1, . . . , iN))ρ
∑

j ij (1− ρ)N−
∑

j ij

= E#(W in V (G
ρ→ H)),

where the word W ′ is obtained from W by replacing each entry of G by h , and the

word W ′′ is obtained from W ′ by replacing each entry of H by s .

Lemma 3.4.11 is proved.

Lemma 3.4.12. Suppose that h, s /∈ A , and that G and H are non-empty words, G

is self-avoiding and µ is any measure. Then

E|V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G)| = E|V (G
ρ→ H)|.

Proof: First notice that for any different letters g, h ∈ A and any word V it follows

from the definition of the conversion operator that

E#(g in V (g
ρ→ h)) = (1− ρ)#(g in V )
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and

E#(h in V (g
ρ→ h)) = #(h in V ) + ρ ·#(g in V ).

Therefore

E|V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G)|

= E|V (G
1→ h)(h

ρ→ s)(s
1→ H)|

+ (|G| − 1)E#(h in V (G
1→ h)(h

ρ→ s)(s
1→ H))

= E|V (G
1→ h)(h

ρ→ s)(s
1→ H)|+ (|G| − 1)E#(h in V (G

1→ h)(h
ρ→ s))

= E|V (G
1→ h)(h

ρ→ s)(s
1→ H)|+ (|G| − 1)(1− ρ)#(G in V ) (3.18)

= E|V (G
1→ h)(h

ρ→ s)|+ (|H| − 1)E#(s in V (G
1→ h)(h

ρ→ s))

+ (|G| − 1)(1− ρ)#(G in V )

= E|V (G
1→ h)(h

ρ→ s)|+ (|H| − 1)ρ#(G in V ) (3.19)

+ (|G| − 1)(1− ρ)#(G in V ).
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Hence

E|V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G)|

= |V (G
1→ h)|+ (|H| − 1)ρ#(G in V )

+ (|G| − 1)(1− ρ)#(G in V )

= |V |+ (1− |G|)#(G in V ) + (|H| − 1)ρ#(G in V )

+ (|G| − 1)(1− ρ)#(G in V )

= |V |+ #(G in V )(1− |G|+ ρ|H| − ρ+ |G| − 1− ρ|G|+ ρ)

= |V |+ ρ(|H| − |G|)#(G in V )

= E|V (G
ρ→ H)|

Here (3.18) follows from (3.4.2), (3.19) follows from (3.4.2) and (3.20) follows from

the fact that the conversion operator has extension one.

Lemma 3.4.12 is proved.

Lemma 3.4.13. For any g 6∈ A :

E#(W in V (G
ρ→ Λ)) = E#(W in V (G

1→ g)(g
ρ→ Λ)(g

1→ G)).

Proof:

E#(W in V (G
1→ g)(g

ρ→ Λ)(g
1→ G))
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= E#(W ′ in V (G
1→ g)(g

ρ→ Λ))

=
∑

ij∈{0,1}

E#(W ′ in (V (G
1→ g)))(i1, . . . , iN)ρ

∑
j ij (1− ρ)N−

∑
j ij

=
∑

ij∈{0,1}

E#(W in (V (G
1→ g)(g

1→ G))(i1, . . . , iN))ρ
∑

j ij (1− ρ)N−
∑

j ij

=
∑

ij∈{0,1}

E#(W in V (i1, . . . , iN))ρ
∑

j ij (1− ρ)N−
∑

j ij

= E#(W in V (G
ρ→ Λ)),

where W ′ is the word obtained from W by replacing each entry of G by g .

Lemma 3.4.13 is proved.

Lemma 3.4.14. Given g ∈ A and a non-empty word V in the alphabet, we have

E#(g in V (g
ρ→ Λ)) = (1− ρ)#(g in V ).

Proof: First notice that for any h /∈ A

E#(g in V (g
ρ→ Λ)) = E#(g in V (g

ρ→ h)).

But we already know that

E#(g in V (g
ρ→ h)) = (1− ρ)#(g in V ).

Lemma 3.4.14 is proved.

Lemma 3.4.15. Suppose that g /∈ A and that G is a self-avoiding non-empty word.

Then for any measure µ

E|V (G
1→ g)(g

ρ→ Λ)(g
1→ G)| = E|V (G

ρ→ Λ)|.
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Proof: Let V be a word. Then, using Lemma 3.4.14 and Lemma 3.1.1, we have:

E|V (G
1→ g)(g

ρ→ Λ)(g
1→ G)|

= E|V (G
1→ g)(g

ρ→ Λ)|+ (|G| − 1)E#(g in V (G
1→ g)(g

ρ→ Λ))

= E|V (G
1→ g)(g

ρ→ Λ)|+ (|G| − 1)(1− ρ)#(G in V ) (15)

= |V (G
1→ g)| − ρ#(g in V (G

1→ g))

+ (|G| − 1)(1− ρ)#(G in V )

= |V |+ (1− |G|)#(G in V )− ρ#(G in V )

+ (|G| − 1)(1− ρ)#(G in V )

= |V | − ρ|G|#(G in V ) = E|V (G
ρ→ Λ)|.

Lemma 3.4.15 is proved.

Lemma 3.4.16. For g 6∈ A , we have:

E#(W in V (Λ
ρ→ H)) = E#(W in V (Λ

1→ h)(h
ρ→ H)).
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Proof:

E#(W in V (Λ
ρ→ h)(h

1→ H)) = #(W ′ in V (Λ
ρ→ h))

=
∑

ij∈{0,1}

#(W ′ in V (i1, . . . , iN))ρ
∑

j ij (1− ρ)N−
∑

j ij

=
∑

ij∈{0,1}

#(W in Ṽ (i1, . . . , iN))ρ
∑

j ij (1− ρ)N−
∑

j ij

= E#(W in V (Λ
1→ H)),

where W ′ is the word obtained from W by replacing each entry of H by h , and for

ij ∈ {0, 1} , we define the word Ṽ (i1, . . . , iN) by the word obtained from V by inserting

W at the positions in which ij = 1 and leaving it unchanged in the positions in which

ij = 0 .

Lemma 3.4.16 is proved.

Lemma 3.4.17. Let h 6∈ A . Then

E#(h in V (Λ
ρ→ h)) = (|V | − 1) · ρ.

Proof: We have that

#(h in V (Λ
ρ→ h)) ∼ Bin(|V | − 1, ρ),

and hence

E#(h in V (Λ
ρ→ h)) = (|V | − 1) · ρ.

Lemma 3.4.17 is proved.

Lemma 3.4.18. Let h /∈ A , H be a non-empty word in A and µ any measure on AZ .

Then

E|V (Λ
ρ→ h)(h

1→ H)| = E|V (Λ
ρ→ H)|.
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Proof: By Lemma 3.4.17 and Lemma 3.1.1, we have

E|V (Λ
ρ→ h)(h

1→ H)|

= E|V (Λ
ρ→ h)|+ (|H| − 1)E#(h in V (Λ

ρ→ h))

= |V |+ ρ#(Λ in V ) + (|H| − 1)#(Λ in V )ρ

= |V |+ ρ|H|#(Λ in V ) = E|V (Λ
ρ→ H)|

Lemma 3.4.18 is proved.

Proof of Theorem 3.4.6: It is a simple consequence of Lemmas 3.4.11, 3.4.13, 3.4.16,

3.4.12, 3.4.15 and 3.4.18.

Theorem 3.4.6 is proved.
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Chapter 4

Convexity and Fine Operators

For any two measures µ, ν we denote by convex (µ, ν) their convex hull , that is

convex(µ, ν) = {kµ+ (1− k)ν | 0 ≤ k ≤ 1}. (4.1)

Lemma 4.0.19. Let (Vn) and (Wn) be sequences of words converging to measures µ

and ν respectively. Let the following limit exist

lim
n→∞

|Vn|
|Vn|+ |Wn|

= L.

Then the sequence concat(Vn, Wn) converges to the measure L · µ + (1 − L) · ν when

n→∞ .

Proof: We clearly have |concat(Vn, Wn)| = |Vn|+ |Wn| and also

#(W in Vn) + #(W in Wn) ≤ #(W in concat(Vn,Wn))

≤ #(W in Vn) + #(W in Wn) + |W |.
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Hence,

#(W in Vn)

|Vn|+ |Wn|
+

#(W in Wn)

|Vn|+ |Wn|
≤ freq(W in concat(Vn,Wn))

≤
(

#(W in Vn)

|Vn|+ |Wn|
+

#(W in Wn)

|Vn|+ |Wn|
+

|W |
|Vn|+ |Wn|

)
· |Vn|+ |Wn|
|Vn|+ |Wn| − |W |+ 1

.

Therefore

|Vn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Vn) +

|Wn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Wn)

≤ freq(W in concat(Vn,Wn))

≤
(
|Vn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Vn) +

|Wn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Wn)

|W |
|Vn|+ |Wn|

)

· |Vn|+ |Wn|
|Vn|+ |Wn| − |W |+ 1

.

But

|Vn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Vn) +

|Wn| − |W |+ 1

|Vn|+ |Wn|
· freq(W in Wn)

→ L · µ(W ) + (1− L) · ν(W ) as n→∞

and

|W |
|Vn|+ |Wn|

→ 0 as n→∞,

also

|Vn|+ |Wn|
|Vn|+ |Wn| − |W |+ 1

→ 1 as n→∞.

Thus the left and right sides of the above inequality tend to L · µ(W ) + (1− L) · ν(W ) .

Then

lim
n→∞

freq(W in concat(Vn,Wn)) = L · µ+ (1− L) · ν.
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That is, the sequence of words concat(Vn, Wn) converges to the measure Lµ+(1−L)ν .

Lemma 4.0.19 is proved.

Lemma 4.0.20. Let (Vn) be a sequence of words such that (Vn) → µ and (kn) a

sequence of natural (therefore positive) numbers. Then

V kn
n → µ, as n→∞.

Proof: Follows immediately from the inequalities:

kn ·#(W in Vn) ≤ #(W in V kn
n ) ≤ kn ·#(W in Vn) + kn · |W |

and from the fact that |V kn
n | = kn|Vn| .

Lemma 4.0.20 is proved.

The following Theorem tells us that we can get approximations to any convex com-

bination of measures by words. This will be very useful when we apply the substitution

operators on any convex combinations of two measures, because in order to see how it

behaves we will need only to check how it behaves on certain sequences of words.

Theorem 4.0.21. Given L ∈ [0, 1] and any measures, µ and ν , there is a sequence of

words (Vn) converging to µ and another sequence of words (Wn) converging to ν , such

that concat(Vn, Wn) converges to L · µ+ (1− L) · ν .

Proof: Take any sequences of words (Vn) and (Wn) such that (Vn)→ µ and (Wn)→ ν

as n→∞ . Then we construct a sequence of pairs (Ṽn, W̃n) , such that Ṽn → µ, W̃n → ν

and |Ṽn| = |W̃n| . Indeed, let us consider

Ṽn = V tn
n , where tn = |Wn|, and W̃n = W un

n , and un = |Vn|.
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Then we get |Ṽn| = |Vn| · |Wn| = |W̃n| .

Now we need to obtain a new sequence of pairs (V̂n, Ŵn) , such that V̂n → µ , Ŵn → ν

and

concat(V̂n, Ŵn)→ L · µ+ (1− L) · ν.

To do so, let r ≥ 0 be given as r = 1/L− 1 , and r = +∞ if L = 0 . Further, consider

rn > 0 a sequence of positive rational numbers such that rn → r . Let us write rn in

a more convenient way: rn = pn/qn , where pn, qn > 0 are natural numbers. Then we

take

V̂n = Ṽ qn
n and Ŵn = W̃ pn

n .

Noting that |V̂n| = qn · |Ṽn| , |Ŵn| = pn · |W̃n| and |Ṽn| = |W̃n| , thus, Ṽn = V tn+qn
n ,

W̃n = W un+pn
n , and therefore, by Lemma 4.0.20, V̂n → µ and Ŵn → ν . We also get

that

|V̂n|
|V̂n|+ |Ŵn|

=
1

1 + pn/qn
→ 1

1 + r
= L,

and by Lemma 4.0.19, we have that

concat(V̂n, Ŵn)→ 1

1 + r
· µ+

r

1 + r
· ν = Lµ+ (1− L)ν.

Theorem 4.0.21 is proved.

The following definition gives us a remarkable property, which all substitution oper-

ators have, as we shall prove. This property is trivially satisfied for all linear operators,

but is not true in general.

Definition 4.0.22. An operator P : MA → MB , where A and B are alphabets, is

called fine if:

∀µ, ν ∈MA λ ∈ convex(µ, ν)⇒ λP ∈ convex(µP, νP ),
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where convex(µ, ν) was defined in (4.1).

Theorem 4.0.23. Every substitution operator (G
ρ→ H) is fine and

(L · µ+ (1− L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1− L̃) · ν(G
ρ→ H)

for any measures µ, ν , where

L̃ =
L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
. (4.2)

Proof: The proof will be done by first obtaining a similar result for words, then taking

the limit as n→∞ and finally proving it for measures. The key tool is Theorem 4.0.21.

Let L ∈ (0, 1) . Due to Theorem 4.0.21 we can take two sequences of words (Vn) and

(Wn) converging to µ and ν , respectively, such that

concat(Vn,Wn)→ L · µ+ (1− L) · ν, as n→∞.

We want to show that the substitution operator (G
ρ→ H) satisfies:

(L · µ+ (1− L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1− L̃) · ν(G
ρ→ H).

Now we need Corollary 3.4.8.

Let us choose any word W . Then

|E#(W in concat(Vn,Wn)(G
ρ→ H))−

−(E#(W in Vn(G
ρ→ H)) + E#(W in Wn(G

ρ→ H)))| < K,

where K = (#(W in H) + #(W in G) + 4 + |W |) . Moreover, note that

K

E|concat(Vn, Wn)(G
ρ→ H)|

=
(#(W in H) + #(W in G) + 4 + |W |)

E|concat(Vn, Wn)(G
ρ→ H)|

→ 0.
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Therefore, to prove the convergence of the sequence of the words concat(Vn, Wn)(G
ρ→

H) , it is sufficient to look at the limit values of

E#(W in Vn(G
ρ→ H)) + E#(W in Wn(G

ρ→ H))

E|concat(Vn, Wn)(G
ρ→ H)|

.

Notice further that

E|concat(Vn, Wn)(G
ρ→ H)| = |Vn|+ |Wn|+ ρ(|H| − |G|) ·#(G in concat(Vn, Wn))

and furthermore that

#(G in Vn) + #(G in Wn) ≤ #(G in concat(Vn,Wn))

≤ #(G in Vn) + #(G in Wn) + |G|,

Due to the analogies between several parts of our argument, we will examine in detail

only some cases and omit the others since they are analogous to those studied below. For

instance, if we sandwich (in terms of inequality) the quantity

E#(W in Vn(G
ρ→ H)) + E#(W in Wn(G

ρ→ H))

E|concat(Vn,Wn)(G
ρ→ H)|

between two values, say an and bn , such that

an ≤
E#(W in Vn(G

ρ→ H)) + E#(W in Wn(G
ρ→ H))

E|concat(Vn,Wn)(G
ρ→ H)|

≤ bn (4.3)

we will prove one part of the inequality considered in equation (4.3) (i.e., we will find a

quantity bn , such that the equation 4.3 holds), since the other one is entirely analogous

(i.e., the strategy to obtain a quantity an such that equation (4.3) holds is entirely anal-

ogous). Thus, we obtain the inequality by taking the explicit values of the denominator
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in the above expression:

E#(W in Vn(G
ρ→ H)) + E#(W in Wn(G

ρ→ H))

E|concat(Vn,Wn)(G
ρ→ H)|

=
E#(W in Vn(G

ρ→ H)) + E#(W in Wn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)#(G in concat(Vn,Wn))

≤ E#(W in Vn(G
ρ→ H)) + E#(W in Wn(G

ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))
,

that is, if we set

bn =
E#(W in Vn(G

ρ→ H)) + E#(W in Wn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))
, (4.4)

equation (4.3) holds. Further, as mentioned before, the other inequality can be proved

analogously.

We want to check the limiting behavior of bn . Therefore, we begin by checking the

limiting behavior of:

E#(W in Vn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))
,

the limit behavior of the other part is obtained by simply replacing each entry of Vn by

Wn , and each entry of Wn by Vn in the above expression. Therefore for the second case

we will just give the resulting expression. Thus, we begin with:

E#(W in Vn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))

=
|Vn|

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))
× Sn ×Mn

=
|Vn|+ |Wn|

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))
× Ln × Sn ×Mn
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where

Ln =
|Vn|

(|Vn|+ |Wn|)
→ L,

Sn =
E|Vn(G

ρ→ H)|
|Vn|

→ Ext(µ|G ρ→ H)

Mn =
E#(W in Vn(G

ρ→ H))

E|Vn(G
ρ→ H)|

→ µ(G
ρ→ H)(W ).

Going on, we have

|Vn|+ |Wn|
|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))

× Ln × Sn ×Mn

=
LnSnMn

Ln

[
1 + ρ(|H| − |G|)#(G in Vn)

|Vn|

]
+ (1− Ln)

[
1 + ρ(|H| − |G|)#(G in Wn)

|Wn|

]
n→∞−→ L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
µ(G

ρ→ H)(W )

By means of the same calculations, one obtains:

E#(W in Wn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn))

n→∞−→ (1− L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
ν(G

ρ→ H)(W )

Therefore, we have obtained the limiting behavior of bn in equation (4.4):

bn
n→∞−→ L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
× µ(G

ρ→ H)(W )

+
(1− L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
× ν(G

ρ→ H)(W ).

Analogously, it is possible to find an an satisfying equation (4.3) such that it has the
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same limit as bn , that is

an
n→∞−→ L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
× µ(G

ρ→ H)(W )

+
(1− L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1− L) · Ext(ν|(G ρ→ H))
× ν(G

ρ→ H)(W ).

For instance, choose

an =
E#(W in Vn(G

ρ→ H)) + E#(W in Wn(G
ρ→ H))

|Vn|+ |Wn|+ ρ(|H| − |G|)(#(G in Vn) + #(G in Wn) + |G|)
.

Finally, we conclude that

concat(Vn,Wn)(G
ρ→ H)

n→∞−→ L · Ext(µ|(G ρ→ H)

L · Ext(µ|(G ρ→ H) + (1− L) · Ext(ν|(G ρ→ H)
× µ(G

ρ→ H)

+
(1− L)Ext(ν|(G ρ→ H)

L · Ext(µ|(G ρ→ H) + (1− L) · Ext(ν|(G ρ→ H)
× ν(G

ρ→ H).

Thus, applying Theorem 4.0.21, since

concat(Vn, Wn)→ L · µ+ (1− L) · ν,

we have

(L · µ+ (1− L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1− L̃) · ν(G
ρ→ H),

for all L ∈ (0, 1) , where L̃ was defined in (4.2).

Theorem 4.0.23 is proved.
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Chapter 5

Continuity and Invariant Measures

We say that an operator P :M′ →M′ is continuous if whenever a sequence µn ∈ M′

tends to λ ∈M′ , the sequence µnP tends to λP (the well-known sequential continuity),

where M′ is a subset of M .

Definition 5.0.24. A measure µ is called invariant for an operator P if µP = µ .

Toom [15] proved the following result:

Theorem 5.0.25. For any non-empty compact convex M′ ⊂M , any continuous oper-

ator P :M′ →M′ has an invariant measure.

We now state an important result regarding continuity of consistent operators.

Theorem 5.0.26. Every consistent operator P :M′ →M′ is continuous.

Proof: Let µ be a measure in M′ and let (µn) be a sequence of measures in M′

converging to µ . Then µn(W )→ µ(W ) as n→∞ for every word W .

Let (Vnk
) be a sequence of words converging to µn as k → ∞ . We claim that the

sequence (Vkk
) converges to µ as k → ∞ . In fact, let ε > 0 be any small positive
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number and choose k large such that

|V ′kk
(W )− µk(W )| < ε/2 and |µk(W )− µ(W )| < ε/2,

then

|V ′kk
(W )− µ(W )| ≤ |V ′kk

(W )− µk(W )|+ |µk(W )− µ(W )| ≤ ε.

Hence (Vkk
) converges to µ as k →∞ .

Now, since P is consistent (see Definition 3.2.1), we have that Vnk
P → µnP as

k → ∞ and Vkk
P → µP as k → ∞ . Therefore, for large k , and ε > 0 any fixed

positive real number, we have

|µkP (W )− (VkkP )′(W )| < ε/2 and |µP (W )− (VkkP )′(W )| < ε/2,

therefore,

|µkP (W )− µP (W )| ≤ |µkP (W )− (VkkP )′(W )|+ |µP (W )− (VkkP )′(W )| ≤ ε.

Theorem 5.0.26 is proved.

We now note that M is convex and compact and apply Theorem 5.0.25 to conclude the

following:

Corollary 5.0.27. Let P : M′ → M′ be a consistent operator, where M′ is a closed

and convex subset of M . Then P has an invariant measure.

Proof: Since M′ is closed and M is compact, M′ is also compact. Further, by

Theorem 5.0.26, the operator P is continuous, then by Theorem 5.0.25 P has an invari-

ant measure.

Corollary 5.0.27 is proved.

The next corollary applies these results to substitution operators:
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Corollary 5.0.28. Every substitution operator (G
ρ→ H) (where ρ < 1 if H = Λ ) is

continuous and has an invariant measure.

Proof: By Corollary 3.4.8, the substitution operator (G
ρ→ H) is consistent. There-

fore by Theorem 5.0.26, it is continuous. Then, by Corollary 5.0.27, there exists an

invariant measure µ .

Corollary 5.0.28 is proved.

Remark 5.0.29. We note that in Toom [15], the proof of continuity of the substitution

operator is different, since he proves there that the basic operators are quasi-local and

therefore continuous, and further, that any superposition of continuous operators is con-

tinuous.
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Chapter 6

The Substitution Process

6.1 The discrete substitution process

We now introduce a large class of stochastic processes that contains as particular cases,

for instance, the process defined by Toom [14]. For this class we prove the existence of

invariant measures, and also that, in general, this invariant measure is not unique, and

thus, in general the process is not ergodic.

Definition 6.1.1. Let µ be a measure, and let (G
ρ→ H) (where ρ < 1 if H = Λ ) be

a substitution operator. We define the discrete substitution process µn starting initially

at µ , by

µn(W ) = µ(G
ρ→ H)n(W ),

for every word W . Accordingly, let P1, . . . , Pj be a finite quantity of substitution oper-

ators and ν a measure. Then we define the generalized discrete substitution process (νn)

starting initially at ν , by

νn(W ) = ν(P1P2 · · ·Pj)n(W ),

for all words W .
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It is easy to see that the process defined in Toom [14] is a special case of the generalized

discrete substitution process, and further, that the substitution process itself is a special

case of the generalized substitution process.

We will now apply the results of the last section to these processes. In fact, we will

apply them to even more general class of processes, which we will call the consistent

processes and define as follows:

Definition 6.1.2. Let P :M′ →M′ be a consistent operator and let µ be a measure

in M′ . Then we say that (µn) is a consistent process starting at µ if

µn(W ) = µP n(W )

for all words W .

Since the substitution operator is consistent (see Corollary 3.4.8), and superposition of

several consistent operators is also consistent the generalized discrete substitution process

is a consistent process.

The next result regards the existence of invariant measures for such processes.

Theorem 6.1.3. Let P : M′ → M′ be a consistent operator, where M′ is a convex

and closed subset of M . Then P has an invariant measure.

Proof: Follows from a straightforward application of Corollary 5.0.27.

Theorem 6.1.3 is proved.

Remark 6.1.4. Since any generalized discrete substitution process is a special case of con-

sistent processes, every generalized discrete substitution process has at least one invariant

measure.
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The following result is very useful, for instance, to check ergodicity of processes.

Theorem 6.1.5. Let us consider a generalized discrete substitution process (µn) and let

S ⊂ AZ be some subset of the σ -algebra AZ . Then, if for every c ∈ S , µn(c) < δ

(respectivelly µn(c) > ε ), then, there exists an invariant measure µ , such that µ(c) ≤ δ

(respectivelly µ(c) ≥ ε) for every c ∈ S , where δ, ε > 0 are some positive constants.

Proof: Let M′ denote the closure in M of the convex hull of the measures

µ0, µ1, . . . . Therefore, M′ is a non-empty convex closed subset of M . Since M is

compact, M′ is also compact.

We now apply Corollary 5.0.28 to note that P is continuous. Further, the continuity

together with Theorem 4.0.23 yields that if ν ∈ M′ , then νP also belongs to M′ .

Therefore, by Theorem 5.0.25 the operator P has an invariant measure µ in M′ . Since

for every n and every c ∈ S , µn(c) < δ (respectivelly µn(c) > ε ), a simple calculation

shows that for every ν ∈M′ and every c ∈ S we have ν(c) < δ (respectivelly ν(c) > ε ).

Therefore, the invariant measure µ satisfies µ(c) < δ (respectivelly µ(c) > ε ) for every

c ∈ S .

Theorem 6.1.5 is proved.

Remark 6.1.6. We conclude this Section by showing that neither the discrete substitution

process and thus nor the generalized substitution process need to be ergodic in general.

Let A = {a, b} , let h 6∈ A , and let us consider the operator ((a, b)
ρ→ h) :MA →MA′ ,

where A′ = A ∪ {h} , for 0 < ρ < 1 . Then it is clear that both δ{a} and δ{b} are

invariant for this operator and thus, are invariant for the discrete substitution processes

induced by ((a, b)
ρ→ h) starting at δ{a} and δ{b} . Therefore this process is not ergodic,

which implies that, in general, the discrete substitution process is not ergodic.
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The next Section contains an application of these results to the process defined in

Toom [14] and, as a byproduct, we get another proof that the generalized discrete sub-

stitution process is not ergodic. In fact, the proof we will give there is more interesting

since it is not entirely obvious as the example give in Remark 6.1.6.

6.2 Applications to Toom’s Process

We now consider a process studied by Toom [14], which is a special case of the generalized

substitution process defined in last Section. In fact, consider the alphabet A = {⊕,	} ,

whose elements are called plus and minus, and two specific operators: flip denoted by

Flip β and annihilation denoted by Ann α . Flip β is a special case of the basic operator

which we called conversion. More precisely, Flip β is (	 β→ ⊕) , which turns every

occurrence of minus into plus with probability β independently from the fate of other

components. Also, Ann α is ((⊕,	)
α→ Λ) , which makes every entrance of the self-

avoiding word (⊕,	) disappear with probability α < 1 independently from fates of the

other components. We therefore consider the process (µn) , where

µn = δ	(FlipβAnnα)n. (6.1)

Note that the process (µn) is a special case of the generalized substitution process, and

thus, by Remark 6.1.4, it has at least one invariant measure. But going further, Toom

[14] proved the following result:

Theorem 6.2.1. For all β ∈ [0, 1] and α ∈ (0, 1) the frequency of pluses in the measure

µn does not exceed 250 · β/α2 for all n .

Therefore, we have as simple corollary of the above theorem and of the results in last
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Section the following result:

Theorem 6.2.2. For all β ∈ [0, 1] and α ∈ (0, 1) the operator FlipβAnnα has an

invariant measure, whose frequency of pluses does not exceed 250 · β/α2 .

Proof: Let us use Theorem 6.1.5 with S = {⊕} and δ = 250 · β/α2 , since by

Theorem 6.2.1, µn(⊕) < 250 · β/α2 for all n . Therefore, by Theorem 6.1.5 there exists

an invariant measure ν , such that ν(⊕) < 250 · β/α2 .

Theorem 6.2.2 is proved. An immediate corollary is that this process is not ergodic on

some conditions:

Corollary 6.2.3. For β < α2/250 , the process 6.1 is not ergodic.

Proof: On one hand, the measure δ⊕ concentrated in “all pluses” is invariant for the

operator Flip β Ann α . On the other hand, by Theorem 6.2.2 above, this operator has an

invariant measure, in which the frequency of pluses does not exceed 250 · β/α2 . Thus,

with appropriate α and β this operator has at least two different invariant measures.

Corollary 6.2.3 is proved.

Notice also that this variable length process is a non-trivial example of non-ergodic

process, which is a special case of the general substitution process. This also shows the

usefulness of Theorem 4.0.23, since it was the main tool to prove Theorem 6.1.5.
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Chapter 7

Discussion and Expectations for the
Future

The notion of variable length interaction processes appeared in the literature only a

dozen years ago, so the theory to which this thesis contributes is still very young. The

publications in this area, according to our knowledge, may be counted on fingers and

toes. (We think that a good deal of them are mentioned in our list of references.) Our

approach was close to that of [13, 14, 15], but the idea to approximate a measure with a

sequence of words has never been mentioned in print, according to our knowledge.

As we have mentioned above, substitution operators in general are not linear, which

is a major difficulty in dealing with them. However, we have shown that they possess

the property of being fine, which seems to be almost as good in our setting as linearity.

Our study was motivated by a general feeling of its relevance, which we have tried to

exemplify by short references to some sciences, including biology, information theory,

computer science, among others, as discussed in the introduction.

Moving to expectations for the future, we have several ideas which we plan to explore.

Let us shortly describe them in the order of accessibility. First, the easiest one: we
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propose to study the k -superposed substitution operators, which means the following:

let G1, G2, . . . , Gk be self-avoiding words and let H1, . . . , Hk be any words. Let also

ρ1, . . . , ρk ∈ [0, 1] . Then we may define the corresponding operator, which we call the

k -superposed substitution operator, as a superposition of k operators treated above. In

short,

µPSP = µ(G1
ρ1→ H1) · · · (Gk

ρk→ Hk).

We believe that this operator has the following extension:

Ext(µ|PSP) = 1 +
k∑
i=1

ρi(|Hi| − |Gi|)

(
µ

i∏
j=1

(Gj
ρj→ Hj)

)
(Gi), (7.1)

where

µ
i∏

j=1

(Gj
ρj→ Hj)

means that we are considering the superposition of the first i substitution operators. The

substitution operator defined in Chapter 3 is a special case of this operator with k = 1 .

Note also that the operators defined in Chapter 3 do not commute in general, whence

the operator introduced here is not symmetric in the sense that changing the order of the

operators changes the resulting measure.

Now let us mention another hypothetical class of operators, which also generalizes the

operator defined in Chapter 3, but in a different way. Let us say that two different words

U and V overlap if there is a word W , such that |W | < |U | + |V | and both U and

V enter W . Consider k different self-avoiding words G1, . . . , Gk , every two of which

do not overlap. Also consider k words H1, . . . , Hk and k numbers ρ1, . . . , ρk ∈ [0, 1] .

We propose to define a “ k -joint substitution operator” acting on words, which may be

denoted by

(G1
ρ1→ H1, . . . , Gk

ρk→ Hk),
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Informally speaking, each entrance of Gi is substituted by Hi with probability ρi for

all i = 1, . . . , k simultaneously. We expect to successfully define this operator and prove

that it is consistent by representing it as a superposition of several basic operators in a

convenient way. Also we expect to prove that its extension is

Ext(µ|(G1
ρ1→ H1, . . . , Gk

ρk→ Hk)) = 1 +
k∑
i=1

ρi(|Hi| − |Gi|)µ(Gi). (7.2)

We expect this operator (unlike the previous one) to be symmetric in the sense that

permutations of the list of the triples (Gi, ρi, Hi) do not change the result.

Finally, there is also another type of substitution operators that we think is interesting.

We will call it a full substitution operator, or shortly, f-substitution operator. Let G be

a self-avoiding word and H1, . . . , Hk be k words, also, let ρ1, . . . , ρk ∈ [0, 1] be such

that
∑k

i=1 ρi = 1 , then, the f-substitution operator, denoted by (G
ρ1,...,ρk−→ H1, . . . , Hk)

acts on a word V by replacing each entry of the word G in V by Hi with probability

ρi . Formally speaking in this situation the word G is always replaced by some word Hi ,

there is no way of letting an entry of G unchanged. However, it is easy to circumvent by

assuming that one of Hi is in fact G . In particular, it is easy to see that the substitution

operator defined in Chapter 3 is a special case of this one if we set (G
ρ,1−ρ−→ H,G) . We

believe that the extension of this operator is given by

Ext(µ|(G ρ1,...,ρk−→ H1, . . . , Hk)) = 1 +

(
k∑
i=1

ρi(|Hi| − |G|)

)
· µ(G).

We also would like to study a larger class of operators which includes all the operators

mentioned above as special cases. We want to call operators of this class local operators.

We do not know yet how to define the property of being local for an operator acting on

random words, but we have a tentative definition of local deterministic operators, which

turn any word into a word.
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Definition 7.0.4. Let us take some alphabet A and define some metric d(·, ·) on

dic(A) , for instance the Levenshtein distance [4, 17]. Let us call an operator

P : dic(A)→ dic(A),

local if

lim
|V |+|W |→∞

d(concat(V, W )P, concat(V P, WP ))

|V |+ |W |
= 0.

As mentioned above, we expect to prove that deterministic versions of all the opera-

tors mentioned above, that is k -superposed substitution operators, k -joint substitution

operators and the f-substitution operators are local operators in this sense. We also would

like to generalize this concept of local operators for operators acting on random words.

We believe that the following generalization of one of our results is also true:

Conjecture 7.0.5. Let P : Ω→ Ω be an operator, where Ω is the set of random words.

Denote also by P its version acting on measures, which exists since the former P is

consistent. Then, if

E|concat(U, V )P |
E|UP |+ E|V P |

→ 1 as E|V |, E|U | → ∞,

and if

E#(W in concat(U, V )P )

E#(W in UP ) + E#(W in V P )
→ 1 as E|V |, E|U | → ∞,

then P :M→M is fine.

This conjecture being true, we would expect that the local operators satisfy the above

conditions and hence are fine. Further, we expect that it would not be difficult to prove

that the k -superposed substitution operator, the k -joint substitution operator and the
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f-substitution operator satisfy the above conditions, and hence that all of them are fine,

which would help us a lot.

Finally, we shall try to use our constructions to define a substitution process in con-

tinuous time. This is a tentative definition: let µ be a measure, let G be a self-avoiding

word and let H be any word. Then

µt = lim
n→∞

µ(G
t/n→ H)n,

where the limit exists as we expect. We are able prove that the sequence (µ(G
t/n→ H)n)

has at least one convergent subsequence, but it remains to prove the uniqueness of limit

points. This being proved, the next definition we think would be useful is the derivative

of µt at time zero:

µL = lim
t↓0

µt − µ
t

.

We expect L to behave like the well-known infinitesimal generator. In particular, we

expect a measure µ to be invariant for the substitution process with continuous time if

and only if µL = 0 .

Another issue that arises from the study of the continuous time substitution processes

is that we expect to remove the need of G to be self-avoiding, since the probability of

two changes in neighboring words at the same time is zero.

We believe that the theory developed in this thesis deserves attention and further

development.
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