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RESUMO

Os resultados obtidos nesta tese foram inspirados em um artigo de Paolo Aluffi (Shad-

ows of blow-up algebras, Tohoku Math. J. 56 (2004), 593-619), onde é introduzida

uma álgebra baseada em um par de ideais J ⊂ I, que é intermediária entre a álgebra

simétrica (“blowup ingênuo”) e a álgebra de Rees (“blowup”) do ideal I/J ⊂ R/J .

O objetivo de Aluffi foi o de usar esta álgebra para descrever o chamado ciclo carac-

teŕıstico na teoria da interseção, em paralelo ao ciclo normal desta teoria, este último

já classicamente administrado pelos especialistas. Este objetivo foi atingido no caso

de uma hipersuperf́ıcie – isto é, no caso em que J é um ideal principal e I o seu ideal

Jacobiano. Os resultados da tese se repartem em duas direções: em uma primeira

direção, estuda-se a estrutura da álgebra em geral. Surpreendentemente, a natureza

desta estrutura tem relação forte com vários aspectos da álgebra comutativa, tais

como bases standard, teorema de Artin–Rees, tipo relacional de um ideal, ideais de

tipo linear, e outros. Na segunda direção, estuda-se em maior detalhe o caso de uma

hipersuperf́ıcie projetiva, mais propriamente na linha do interesse do artigo original

de Aluffi. Aqui, desempenha um papel relevante a noção de ideais de tipo linear já

que, se I é de tipo linear, então a álgebra de Aluffi coincide com o blowup ingênuo.

Como fecho, aplica-se a teoria desenvolvida ao estudo de famı́lias de curvas projetivas

planas singulares; em particular, prova-se que curvas projetivas planas de grau ≤ 4

admitem ideal Jacobiano de tipo linear. Em grau ≥ 5 isto é falso, levando-nos a

considerar algumas famı́lias em grau 5 e 6 (Apêndice).

PALAVRAS CHAVES

Álgebra de Blowup Álgebra de Aluffi Famı́lia de Curvas Singulares Quarticas

Racionais
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ABSTRACT

The results in this thesis were motivated by an article of Paolo Aluffi (Shadows

of blow-up algebras, Tohoku Math. J. 56 (2004), 593-619), where he introduces

an algebra based on a pair of ideals J ⊂ I, intermediating between the symmetric

algebra (“naive blowup”) and the Rees algebra (“ blowup”) of the ideal I/J ⊂ R/J .

Aluffi’s goal was to use this algebra to describe the so-called characteristic cycle in

intersection theory, parallel to the conormal cycle of this theory, the latter being

well-known to specialists. His goal has been achieved in the case of a hypersurface

and its singular locus – that is, in the case where J is a principal ideal and I is

its Jacobian ideal. The results of this thesis are divided into two parts: in the first

part, one studies the structure of the algebra in general. Somewhat surprisingly, the

nature of this structure has strong relationship with various notions of commutative

algebra, such as standard bases (à la Hironaka), the Artin-Rees number, the relation

type of an ideal, ideals of linear type, and so forth. The second part takes up in

more detail the case of a projective hypersurface and its singular ideal, along the

line of interest Aluffi’s work. Here, the property of being of linear type for an ideal

plays an important role since, if I is of linear type, then the Aluffi algebra coincides

with the symmetric algebra. In this relation, one deals with families of plane singular

curves, giving special consideration to a sort of generic Jacobian ideal that oversees

the general behavior of the linear type property. In particular, one proves that for

any projective plane curve of degree at most 4, the corresponding Jacobian ideal is

of linear type. In degrees ≥5 this is false. To have a feeling of how the nature of

singularities has a bearing to this question, one has collected some suggestive families

in degree 5 and 6 (Appendix).

KEY WORDS

Blowup Algebra Aluffi Algebra Family of singular curves Rational Quartics
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Introduction

In a remarkable paper ([2]) Paolo Aluffi introduced a graded algebra which he

called quasi-symmetric. His purpose was to introduce the characteristic cycle of a

hypersurface that would stand for the characteristic classes à la Schwartz–MacPherson

the same way the conormal cycle is known to stand for the characteristic classes à la

Chern–Mather.

The procedure he employed, in a nutshell, can be explained as follows. Let X
denote a scheme of finite type over a field and let E stand for a locally free OX -

module of rank e + 1, with P(E) designating the corresponding P-bundle of rank e

over X and the structural map P(E)
π−→ X .

Letting A indicate the Chow group, there is a well known isomorphism that reads

on the graded pieces of the group as

Ar P(E)
π∗

'←− Ar−eX ,

given by the Segre pullback operator. Thus, any cycle C in the left hand side has a

unique expression of the form

C =
e∑
j=0

c1(OP(E)(1))j ∩ π∗(Cr−e+j).

Aluffi calls the sum Cr−e + Cr−e+1 + · · · + Cr the shadow of C. The main result

can be briefly stated in the following way:

Theorem. Let X ⊂M, where X is a hypersurface and M is a smooth variety. Let

Y ⊂ X stand for the singular variety of X . Then

(−1)dimX čMa(X ) = shadow of the conormal cycle [BlY(X )] ⊂ P(T ∗M|X )

(−1)dimX čSM(X ) = shadow of the characteristic cycle [qSY(X )] ⊂ P(T ∗M|X ).

Here, “Ma” stands for “Mather”, while “SM” stands for “Schwartz–Macpherson”.

The algebra qSY(X ) is what Aluffi called quasi-symmetric.
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In this work we trade Aluffi’s original designation for the present one both to

honor its creator and to indicate that the algebra itself has a more complex behavior

for more general schemes than hypersurfaces and, as such, it will often tilt to the

other end of the spectrum, namely, becoming a honest blowup algebra.

Grosso modo the material presented here encloses two sorts of results. First, one

studies the properties of the Aluffi algebra in a quite general ring-theoretic setup,

bringing in some of the typical objects and invariants of commutative algebra. This

will take up most of the first chapter. The second chapter deals with the special case

of a projectively embedded hypersurface and its singular locus (“gradient ideal”) in

an effort to close on the main guidelines for the deeper transit of the algebra amidst

the prevailing notions in commutative algebra.

As a sidekick, one has a better view of how more structured is the algebra in the

case of a homogeneous equation than that of its affine companion. In characteristic

zero – or high enough characteristic – the intervenience of the Euler formula is rather

crucial in order to obtain the specifics of the algebra. We will comment more on this

in the next paragraph.

We now describe the content of the thesis in more detail.

We start with the definition of this algebra for the pair of ideals J ⊂ I of a com-

mutative Notherian ring R and call it embedded Aluffi algebra. The Aluffi algebra of

I/J intermediates between the symmetric algebra of I/J and the corresponding Rees

algebra, thus yielding first crude dimension bounds. In the next step we assume that

the base ring R is local (respectively, standard graded), with maximal (respectively,

irrelevant maximal) ideal m. In the non-degenerate case, this enables us to bring in

the dimension of Aluffi algebra as related to the dimension of the base ring and its

analytic spread. In particular, if I is generated by dimR analytically independent

elements, then the dimension of Aluffi algebra is the dimension of R and the extension

of m to the Rees algebra of I over R is a minimal prime ideal of the Aluffi algebra.

Equidimensionality of the Aluffi algebra may be quite rare. However, it is shown that

for the pair of ideals J ⊂ I ⊂ R, where J is a principal ideal generated by a regular

element, if the base ring R is catenary, equidimensional and equicodimensional, then

the Aluffi algebra is equidimensinal of dimension dimR.

In section 1.5 we proof that the torsion of the Aluffi algebra is the module of

Valabrega–Valla [19]. Thus, provided I has regular elements modulo J , the Rees

algebra is the symmetric algebra modulo torsion of the Aluffi algebra. The natural

question arises as to what pairs of ideals J ⊂ I, the Aluffi algebra is torsion-free.

One of the easy cases is when I/J is of linear type over R/J , thus retrieving a result
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of Valla ([21]. The module of Valabrega-Valla has a close relationship with standard

bases in the sense of Hironaka ([4]), which we distill in relation to properties of the

torsion. In particular, one finds necessary and sufficient conditions for the natural

surjection from the Aluffi algebra to the corresponding Rees algebra of I/J to be an

isomorphism. We show that a power of I annihilates the kernel of the above surjection

and relates the exponent to the Artin-Rees number of J relative to I. The precise

relationship between the Aluffi algebra with this and the notion of relation type are

collected in Sections 1.6 and 1.7.

In section 1.8, we study the minimal primes of the Aluffi algebra. Here, if P is a

prime ideal of R associated to J then its extended-contracted ideal P̃ = PR[t]∩RR(I)

is a prime ideal of RR(I) associated to the Aluffi algebra. It seems suggestive to call

such primes torsion primes. The annihilation nature of the torsion allows us a glimpse

of the remaining minimal primes. This gives that, provided R/J and the Aluffi algebra

be equidimensional, the dimension of the latter is dimension of the Rees algebra of

I/J (i.e., dimR/J + 1). Somewhat surprising is that, for a non-degenerate pair of

ideals J ⊂ I in a regular local ring R, if the Aluffi algebra is Cohen-Macaulay then J

must be principal.

As a matter of illustrating the theory, we have selected examples of pairs of ideals

for which the corresponding Aluffi algebra has no torsion. In this connection, a side

question seems to impose itself naturally, to wit: let J ⊂ R = k[x] denote an ideal

of codimension at least 2, generated by 2-forms, and let I ⊂ R denote the ideal

generated by the r–minors (r ≥ 2) of the Jacobian matrix Θ of the generators of J .

If I is (x)–primary, then I = (x)r.

After the generalities on the Aluffi algebra, we examine more closely the case where

J is a principal ideal in a polynomial ring over an infinite field. A source of motivation

is the original work of Aluffi, where he has inquired into the structure of the algebra in

the case that J is generated by the equation of a reduced hypersurface. Thus, let J =

(f) ⊂ R where f is a squarefree polynomial in the polynomial ring R = k[X1, . . . , Xn].

We shall focus on the Jacobian ideal I = If = (f, ∂f/∂X1, . . . , ∂f/∂Xn).

Now, in general f will not be Eulerian, hence the local number of generators of If

maybe an early obstruction for If being an ideal of linear type – examples of this sort

are available with no difficulty. Of course, if k is algebraically closed of characteristic

zero one knows that a power of f belongs to the gradient ideal (∂f/∂X1, . . . , ∂f/∂Xn)

of f , so up to radical it does not make a difference. Alas, as pointed out by Aluffi,

the radical of the singular locus is hardly of true interest in the present realm.

3



On the other hand, if f is Eulerian – e.g., if f homogeneous in the standard grading

of the polynomial ring and and its degree is not a multiple of the characteristic – then

it seems like a good bet to expect that I often be of linear type over R (of course

I/(f) over R/(f) will never be of linear type – not even generated by analytically

independent elements for that matter – as the defining equations of the dual variety

to V (f) will constitute a perpetual obstruction).

We will modestly consider only the homogeneous case and actually spend a good

deal of effort looking at the case where the projective hypersurface f has isolated

singularities – e.g., in the plane case.

Once for all, we will assume throughout that char(k) = 0 or at least that the

latter does not divide the degree of f . In this case, by the Euler formula, f ∈ If .

In the first section, we shall call the Aluffi algebra of If/(f) the Aluffi gradient

algebra. We suppose that the hypersurface is defined by f has isolated singularity and

its partial derivation are algebraically independent, so we collect the central backstage

for the Aluffi gradient algebra. Note that if If is of linear type, then the symmetric

algebra of If/(f) is isomorphic to the Aluffi gradient algebra. We prove that the

converse is true. In fact, we retrieve a result of Aluffi in the projective hypersurface

case, where he proved the converse only for weakly of linear type. Finally we show

that the symmetric algebra of If/(f) is Cohen-Macaulay, therefore if If is of linear

type the Aluffi gradient algebra is Cohen-Macaulay.

As it will turn, even for projective plane curves, the fine structure of the gradient

Aluffi algebra seems to be fairly intrincate and may depend on the nature of the

singularities. In the above we said that if If is of linear type, then the symmetric

algebra and the Aluffi gradient algebra are isomorphic. This motivate us to study

the Jacobian ideal of a projective hypersurface. In the second section, we study the

linear type property of the jacobian ideal of f . We assume that f has isolated singu-

larity, this means that the gradient ideal If is a strict almost complete intersection.

Fortunately enough, this property is fairly manageable from the algebraic viewpoint.

We prove that, the gradient ideal of f is of linear type if and only if the coordinates

of vector fields of Pnk vanishing on f generate an irrelevant ideal if and only if locally

at each singular prime the gradient ideal is a complete intersection.

As it turns, the gradient ideal If is not of linear type in general. As a simple

application of section 2.2, we show that, if f is a irreducible homogenous polynomial

in R = k[x, y, z] of degree ≤ 3, then the gradient ideal If is of linear type. Our

guiding question is, what can we say about the linear type property of the gradient

4



ideal of f when f defines a irreducible quartic, quintic and sextic. We show simple

examples of rational plane quintics and sextics whose corresponding gradient ideals

are not of linear type. Moreover, the associated Aluffi gradient algebras behaves quite

erratically from the viewpoint of their associated primes.

Using a well-known classification of rational quartics, according to the nature of

its singularities (see [23]), one is able to deal with the linear type property. For this,

one considers families of singular curves with parameter space an affine space, with

coordinates a = a1, . . . , am, assuming that the general member of the family is a

reduced singular plane curve. If F ∈ S = k[x, y, z, a] is the equation which defines

the family, we speak of a normal form of F depending on this singular locus. In

examples 2.4.1 and 2.4.2, we write a normal form for families of irreducible singular

quartic plane curves such that the general member has singularities of type node

and cusp. We can apply the method given in such example for finding a normal

form for an arbitrary family with simple singularities. Note that with more involved

singularities, finding a normal form may be hard.

The normal form has degeneration – in the sense of evaluating the normal form

F on tuples in k – making the singularities of the general member of the family

degenerate to more special singularities (e.g., a node degenerating to a cusp, or a

cusp to a tacnode,etc). In order to deal with this problem, one considers the ideal

I generated by the 1–minors of the a syzygy matrix of the ideal generated by the

x, y, z–partial derivation of F . One shows that codim I = 3 if and only if the plane

projective curve obtained by evaluating (a1, . . . , am) at points in Am off the zero set

of (I : (x, y, z)S ∞)∩k[a] has gradient ideal of linear type. This yields a handy purely

algebraic criterion to verify the property of being of linear type for the gradient ideal

of a plane curve.

The main result of this part is a proof that, for degree up to 4 (inclusive) the

Jacobian ideal is of linear type, hence the Aluffi gradient algebra coincides with the

naive blowup. This is false in higher degrees - we treat some aspects of this in the

Appendix.
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Chapter 1

The embedded Aluffi algebra

1.1 Preliminaries

Let A be a ring and a an ideal of A. The two most common and important commu-

tative algebras related to these data are the symmetric algebra SA(a) and the Rees

algebra RA(a). The latter is defined as

RA(a) :=
⊕
t≥0

at ' A[au] ⊂ A[u],

which immediately implies that it is torsion-free over the base ring A. From the

definition follows a natural surjection of standard A-graded algebras

SA(a)� RA(a). (1.1)

This map is injective locally on the primes of the base off the support of A/a. It

follow by general arguments that, provided a has some regular element, the kernel

is the A-torsion submodule (ideal) of the symmetric algebra. If the map in (1.1) is

injective one says that the ideal a is of linear type, a rather non-negligible notion in

parts of ideal syzygy theory.

While the dimension of the symmetric algebra lacks an easy closed expression in

terms of its basic structural ingredients, there is a general result about dimension of

the Rees Algebra of a ideal which is well-known (see, e.g., [6], also [22]).

Proposition 1.1.1 Let R be a Notherian ring of finite Krull dimension and I be an

ideal of R. Then:

dimRR(I) =

{
dimR + 1, if I *

⋂
P P , P is a prime ideal with dimR/P = dimR;

dimR, otherwise.
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So much for this well-established modicum. Let us now turn to the main object

of the work.

Given a ⊂ A as above, let R� A denote a surjective ring homomorphism and let

I ⊂ R denote the inverse image of a in R. By functoriality of the symmetric algebra

and the above piece, there are surjective A-algebra maps

SR(I)

����

// //RR(I)

SA(a)

This can be naturally completed to a commutative diagram by the obvious tensor

product, thus yielding:

Definition 1.1.2 The R-embedded Aluffi algebra of a is

A
R�A(a) : = SA(a)⊗SR(I) RR(I).

It is rather easy to see that the R-embedded Aluffi algebra is functorial in the sense

that any homomorphism of rings R → S compatible with ring surjections R � A

and S � A induces an A-algebra surjection

A
R�A(a)� A

S�A(a).

Having in mind a notion of the algebra that is independent of a particular map

R � A – or, geometrically, independent of a chosen embedding of Spec (A) – Aluffi

has used the above fact to bring out the inverse limit

AA(a) : = lim
R�A

A
R�A(a),

which takes in account all possible embeddings at once. This he dubbed the quasi-

symmetric algebra of a ⊂ A.

However, in the sequel, he argues that AA(a) is actually independent of the choice

of the source provided R is constrained to be regular, so that if R is indeed regular

then AA(a) ' A
R�A(a) by the structural map ([2, Theorem 2.9]).

In this thesis an approach is taken to look at one single member of the above

inverse limit, pretending that one is in the situation where R is regular, but not

assuming this ab initio - hence, we deal solely with an R-embedded Aluffi algebra as

defined above. Also, provided no confusion is caused, we usually omit “R-embedded”

altogether.

7



With this change of viewpoint, we are dealing with a ring R and two ideals J ⊂
I ⊂ R. Thus, we refer to A

R�R/J
(I/J) as the Aluffi algebra of the pair J ⊂ I and

even write AR/J(I/J) to make it lighter on the reading.

At first, note that if the ideal I is of linear type – i.e., the natural surjection

SR(I) � RR(I) is injective – then trivially SR/J(I/J) = AR/J(I/J). The following

example shows that, in general, there is no converse to this statement even when R

is a hypersurface domain.

Example 1.1.3 Let R = k[x, y, z] = k[X, Y, Z]/(XY −Z2), with J = (x, z) (the ideal

of a ruling in the affine cone) and I = (x, y, z). Then R/J ' k[Y ] and I/J ' (Y ).

Therefore, I/J is of linear type, hence SR/J(I/J) ' AR/J(I/J) ' RR/J(I/J).

More generally, one can take (R,m) to be a non-regular local ring – or a non-

degenerate standard graded algebra over a field and its irrelevant ideal – with J ⊂
I = m such that R/J is regular. Then I/J is generated by a regular sequence on

R/J , hence is of linear type.

A simpler example dropping the integrality assumption on R is given by R =

k[x, y] = k[X, Y ]/(XY ), with J = (x) ⊂ I = (x, y).

It would be interesting to find such examples with (R,m) a regular local ring and

J ⊂ mI. We will see that no such examples exist in certain situations where J is

principal – see Theorem 2.1.1.

As a preliminary, we have a useful presentation of the R-embedded Aluffi algebra.

This has in fact been already observed in [2, Theorem 2.9] in the context of schemes.

Our proof is in the purely algebraic context and perhaps slightly more illuminating.

Lemma 1.1.4 Let J ⊂ I be ideals of the ring R.There are natural A-algebra isomor-

phisms

AR/J(I/J) ' RR(I)

(J, J̃)RR(I)

where J is in degree 0 and J̃ is in degree 1. In particular, there is a surjective A-

algebra homomorphism AR/J(I/J)� RR/J(I/J).

Proof. We have an exact sequence of R/J-module

0→ J/IJ → I/JI → I/J → 0

Hence, by the functorial property of the symmetric algebra, we get an epimorphism

SR/J(I/JI)� SR/J(I/J)

8



whose kernel is the ideal of SR/J(I/JI) generated by J/JI as elements of degree 1.

By the change of base ring property of the symmetric algebra we get SR/J(I/JI) '
SR(I)/JSR(I). Hence

SR/J(I/J) ' SR(I)

(J, J̃)SR(I)
.

Now tensoring with RR(I) gives the first isomorphism. The second one is now im-

mediate from the definition of J̃ .

1.2 A propaedeutic example

The following example may serve as a useful guide through various aspects of the

subsequent sections. We will accordingly analyze the intermediate steps, once at the

time.

• Consider the rational map F : P2 99K P4 defined by five sufficiently general

quadrics q = {q0, q1, q2, q3, q4} ⊂ R. Then the base ideal (q) ⊂ R is a Gorenstein

ideal of finite colength.

It is classically known, and easy to see, that the image of this map is a surface

obtained as a general projection of the 2-Veronese embedding of P2 in P5. Therefore,

the homogeneous coordinate ring of the image is not integrally closed, hence neither is

the k-subalgebra k[q] ⊂ R as they are isomorphic as k-standard graded algebras (up

to an obvious degree normalization). Write P ⊂ k[T] for the homogeneous defining

ideal of the image of F .

• By geometric considerations, one knows that the homogeneous defining ideal of

this smooth surface is generated by cubic forms. Perhaps remarkable is that a set

of minimal generators can be taken to be seven among the ten maximal minors of a

well-structured 5× 3 matrix.

• To explain this supplementary fact, let ϕ denote the 5 × 5 skew-symmetric

matrix whose Pfaffians are the generators of q. Pick a new set of indeterminates

T = {T0, T1, T2, T3, T4} (think of them as the homogeneous coordinates of P4) and

consider the entries of the matrix product T · ϕ. Next take the Jacobian matrix ψ

of these bihomogeneous polynomials of bidegree (1, 1) with respect to x, y, z – the

so-called Jacobian dual matrix of ϕ ([16]). Note that this a 5×3 matrix whose entries

are linear forms in k[T].

• By general argumentation as in [7], one can show that the maximal minors of ψ

are polynomial relations of the 5 original quadrics. Therefore, from previous steps, the
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codimension of the ideal I3(ψ) is at most 2. The hard knuckle is to show that this is a

prime ideal – here one can resort to the classical Northcott induction trick (inverting-

localizing) or else to a computer calculation assuming general data. Altogether this

yields that I3(ψ) is the homogenous defining ideal of the rational map defined by the

5 quadrics. Therefore, this is the homogenous defining ideal of a general projection

of the 2-Veronese embedding of P2 in P5, as mentioned above.

• Returning to the Rees algebra RR(I), as a consequence of the above discussion,

the ideal (I1(T·ϕ), I3(ψ)) ⊂ R[T] is contained in a presentation ideal ofRR(I) onR[T]

and has codimension≥ 4. Therefore, its codimension is exactly 4 by Proposition 1.1.1.

The claim is that this ideal is prime, hence must coincide with the presentation ideal

of RR(I) on R[T].

•Of course, the previous step can be readily accomplished by computer calculation

assuming general data. Else, there is a subtler – but more convoluted – way, consisting

in determining the rank of ψ modulo I3(ψ). This rank is obviously at most 2. Since the

rational map defined by the general quadrics is a birational map of P2 onto image,

as is known by classical arguments, one must have rank(ψ) ≡ 2 (mod I3(ψ)) ([15,

Theorem 2.4]). Moreover, by [loc.cit.], the coordinates of any nonzero homogeneous

syzygy of ψ (mod I3(ψ)) defines the inverse rational map. In particular, these forms

are algebraically independent over k. Actually, they will generate an ideal of linear

type (mod I3(ψ)). From this and from [15, Proposition 2.1] now follows that (I1(T ·
ϕ), I3(ψ)) ⊂ R[T] is a presentation ideal of RR(I) on R[T]

• Now, we go slightly more special. Namely, let J ⊂ R stand for the defining ideal

of four straight lines through the origin of k3, in general position. Let I ⊂ R denote

the Jacobian ideal of R/J lifted to R, i.e., I = (J, I2(Θ)), where I2(Θ) stands for the

ideal of 2-minors of the Jacobian matrix of a set of minimal homogeneous generators

of J .

• Thus, I defines the singular scheme of the four lines. Note that the defining

ideal of the four lines in A3 is a complete intersection of two 2-forms, say, J = (q0, q1).

It is apparent that the 2-minors of the Jacobian matrix of q0, q1, together with these

two quadrics, are five sufficiently general 2-forms. Thus, we can apply the previous

situation.

• So let us now write down a presentation of the Aluffi algebra of the pair J ⊂ I

drawing on Lemma 1.1.4. We present the Rees algebra RR(I) over R[T] based on

10



the assignment Tj 7→ qj, with J = (q0, q1). It follows immediately that

AR/J(I/J) ' R[T]/(J, T0, T1, I1(Tϕ), I3(ψ))

' (R/J)[T2, T3, T4]/(I1(Tϕ̄), I3(ψ̄)), (1.2)

where ϕ̄ denotes the submatrix of ϕ consisting of the three last rows and ψ̄ is obtained

from ψ by evaluating both T0, T1 at zero. The explicit format of the defining equations

of the Aluffi algebra as in (1.2) is a bit involved. Its R/J-torsion is a nonzero ideal

generated in degree 2, i.e, by elements of J ∩ I2 not belonging to JI (a better insight

into the torsion is given in Proposition 1.5.5).

Next is an example with concrete data.

Example 1.2.1 In order to have a familiar geometric transcription, we assume that

k is algebraically closed and of characteristic zero. Let J ⊂ R = k[x, y, z] denote the

homogeneous defining ideal of the four points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and

(1 : 1 : 1) in the projective plane P2
k. An easy calculation gives J = (x2−xz, y2−yz),

while the Jacobian matrix of these 2-forms is:

Θ =

(
2x− z 0 −x

0 2y − z −y

)
Therefore, I = (x2 − xz, y2 − yz, x(2y − z), y(2x − z), (2x − z)(2y − z)). One

can in principle reconstruct the skew-symmetric 5 × 5 matrix whose Pfaffians are

these five 2-forms. However, a computer calculation will do everything for us quite

readily. The defining equations of the Aluffi algebra are still intricate to write down

explicitly. Instead, we can give the torsion ideal, which is fairly simple for these data

(always by computer calculation). In terms of the defining variables and equations,

the torsion of the Aluffi algebra is the ideal generated by the residues of T3(T2 + T3)

and T4(T2 − T4). Or still, in terms of the internal grading of the algebra, using the

description in Proposition 1.5.5, the torsion is generated by the appropriate residues

of {xz2(x− z), yz2(y − z)} ⊂ J ∩ I2.

Remark 1.2.2 In the above example one has the following values for dimensions:

dimSR/J(I/J) = 3, dimAR/J(I/J) = dimRR/J(I/J) = 2.

Thus, it would look like that, at least from a dimension theoretic point of view,

the Aluffi algebra is tilting more towards to the blowup algebra than to the naive

blowup algebra. Aluffi’s original terminology possibly comes from the case where J

is a principal ideal, in which case the situation can tilt over in the other direction.

11



Moreover, if one starts with a set of points in Pn in general position, whose cardi-

nality is at most n + 1, the structural surjection AR/J(I/J)� RR/J(I/J) may turn

out to be an isomorphism (see Example 1.9.7 for the case of the coordinate points of

Pn).

1.3 Dimension

From the definition and Lemma 1.1.4, the Aluffi algebra is squeezed as

SR/J(I/J)� AR/J(I/J)� RI/J(I/J) (1.3)

and is moreover a residue ring of the ambient Rees algebra RR(I).

Therefore, one has right at the outset:

dimRI/J(I/J) ≤ dimAR/J(I/J) ≤ min{RR(I), dimSR/J(I/J)} (1.4)

By general elementary reasons, there is an a priori upper bound:

Lemma 1.3.1 Let J ( I ( R be ideals of the Noetherian ring R. If J has a regular

element then dimAR/J(I/J) ≤ dimR.

Proof. Since RR(I) is R-torsionfree, one has ht JRR(I) ≥ 1. From this it follow

immediately that dimAR/J(I/J) ≤ dimRR(I)/JRR(I) ≤ dimR+ 1− 1 = dimR.

Note that this is all one can assert in such generality because if, e.g., a power

of the ideal I is contained in J , then dimAR/J(I/J) = dimR/J ≤ dimR − ht J is

arbitrarily smaller than dimR. In order to obtain more precise dimensional results

one needs at least that ht (J) < ht (I).

Proposition 1.3.2 Let J ( I ( R be ideals of the Noetherian ring R. Then

(a) If I/J has a regular element then

dimR/J + 1 ≤ dimAR/J(I/J) ≤ min{dimR + 1 , dimSR/J(I/J) }.

(b) If R is universally catenary, J is a prime ideal and I/J has a regular element

then

min{dimR + 1 , dimR/J + 1 + fR/J(I/J)} ≥ dimAR/J(I/J) ≥ dimR/J + 1,

where fR/J(I/J) = min{k ≥ 0 |µ(I/J)℘ ≤ dim(R/J)℘+k+1, ∀℘ ∈ Spec(R/J)},
in particular, if µ(I/J)℘ ≤ dim(R/J)℘ + 1 for every prime ℘ ⊂ R/J then

dimAR/J(I/J) = dimR/J + 1.
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Proof. (a) This follows immediately from (1.3) by the well-known dimension formula

for the Rees algebra of an ideal containing a regular element.

(b) The leftmost inequality follows from (b) by way of an explicit formula for the

dimension of the symmetric algebra based on [18, Theorem 1.1.3].

Remark 1.3.3 The integer fR/J(I/J) has been called the Fitting defect of I/J ([13,

Proposition 2.2]) and, with some additional hypotheses, it can also be given in terms

of the zeroth local cohomology module on I/J .

Next is a reasonably important case where the inequality in Lemma 1.3.1 becomes

an equality.

Theorem 1.3.4 Let R be a catenary, equidimensional and equicodimensional Noethe-

rian ring and let J ⊂ I ( R be ideals, where J is a principal ideal generated by a

regular element. Then AR/J(I/J) is equidimensional and dimAR/J(I/J) = dimR.

Proof. The value of the dimension follows from Lemma 1.3.1, and the right hand

inequality of (b) by noting that, under the assumptions on R and J , dimR/J + 1 =

dimR− 1 + 1 = dimR.

Set J = (f) with f a non-zero-divisor. To prove the equidimensionality part,

we will show that AR/(f)(I/(f)) is equidimensional locally at every prime ideal P ⊂
RR(I) in its support. Localizing first at P ∩R in the base ring one can assume that

(R,m) is local, with P∩R = m and I ⊂ m. Now,M = (m, Iu) ⊂ RR(I) is not a mini-

mal prime of AR/(f)(I/(f)). This is because the Aluffi algebra is graded, with grading

induced from RR(I), hence M would actually be its unique associated prime, which

is impossible as dimR ≥ 1. Thus, for the purpose of showing equidimensionality, we

may assume that P is a homogeneous ideal properly contained in M.

Let I = (f1, . . . , fm). Note that in the present situation, one has by Lemma 1.1.4:

AR/(f)(I/(f)) ' RR(I)/(f, f̃).

Write RR(I) = R[f1u, . . . , fmu] ⊂ R[u], so that f̃ =
∑m

j=1 gjfju, for suitable gj ∈ R.

Suppose first that (Iu) 6⊂ P . Say, f1u /∈ P . Localizing at P yields

AR/(f)(I/(f))P ' R[Iu]P/(f, f̃)P ' R

[
I

f1
, f1u, (f1u)−1

]
P ′

/(
f, g1 +

m∑
j=2

gj
fj
f1

)
P ′

= R

[
I

f1
, f1u, (f1u)−1

]
P ′

/(
f,
f

f1

)
P ′

= R

[
I

f1
, f1u, (f1u)−1

]
P ′

/(
f

f1

)
P ′
,
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where P ′ denotes the corresponding image of P . The rightmost ring above is a factor

ring of a catenary, equidimensional and equicodimensional ring by a principal ideal

generated by a regular element, hence it is equidimensional and so is AR/(f)(I/(f))P

too.

Suppose now that (Iu) ⊂ P . Then m 6⊂ P since P (M, hence p := P ∩ R ( m.

Note that p is a prime containing f .

If I 6⊂ p then AR/(f)(I/(f))P is a localization of the ring

Rp[Ipu]/(f, f̃) = Rp[u]/(f, fu) = Rp[u]/(f)

and we conclude as above. If I ⊂ p then AR/(f)(I/(f))P is a localization of the Aluffi

algebra ARp/(f)(Ip/(f)) and we conclude by induction on dimR.

1.4 Local or graded case

As above, the minimally interesting setup regarding dimensions requires that J have

a regular element - or at least that J have positive codimension. Therefore we will

assume throughout that this is the case.

Let us suppose in this part that (R,m) is a Noetherian local ring and its maximal

ideal or a standard graded algebra over a field and its maximal irrelevant ideal. Let

J ⊂ I ⊂ m with J containing a regular element. We confront ourselves with two quite

opposite situations, namely, when J ⊂ mI and when J contains minimal generators

of I. Note that the first alternative is a trivial obstruction for J being a reduction of

I as together they would entail for t >> 0

I t = JI t−1 ⊂ mI t,

hence I t = {0}, i.e., I would be nilpotent.

Assume as before that I is a proper ideal. Drawing on a terminology of geometric

flavor, let us agree to say that the pair J ⊂ I of ideals is non-degenerate if J ⊂ mI. If

on the other extreme, J ⊂ I is generated by a subset of minimal generators of I, we

may call the pair J ⊂ I totally degenerate. The latter case can usually be disposed

of by a standard argument (see Proposition 1.5.2).

Definition 1.4.1 Let (R,m) be a Noetherian local ring and I ⊂ R an ideal. The

special fiber of the Rees algebra RR(I) is the ring

F(I) = RR(I)/mRR(I) =
⊕
t≥0

I t/mI t.

Its Krull dimension is called the analytic spread of I, and is denoted by `(I)
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Proposition 1.4.2 Let (R,m) be as above with R/m infinite. Suppose that J ⊂ mI

and J has a regular element. Write `(I) for the analytic spread of the ideal I. Then

(i) `(I) ≤ dimAR/J(I/J) ≤ dimR.

(ii) If moreover I is generated by dimR analytically independent elements then

dimAR/J(I/J) = dimR

and mRR(I) is a minimal prime of AR/J(I/J) of maximal dimension.

(iii) If J ⊂ I2 then dimAR/J(I/J) = dimR.

Proof. (i) J ⊂ mI implies JI t−1 ⊂ mI t for every t ≥ 0. This yields a surjective

homomorphism AR/J(I/J) � F(I), showing that `(I) ≤ dimAR/J(I/J). The other

inequality comes from Lemma 1.3.1.

(ii) The first statement is clear from (i).

For the second assertion note that the assumption on I being generated by dimR

analytically independent elements implies that F(I) is a polynomial ring over R/m

and, in particular, that mRR(I) is a prime ideal of RR(I). Since JI t−1 ⊂ mI t ⊂ m

then (J, J̃) ⊂ mRR(I) as ideals of RR(I). Therefore AR/J(I/J)/mAR/J(I/J) '
RR(I)/mRR(I) ' F(I), hence mAR/J(I/J) is a prime ideal with

dimAR/J(I/J)/mAR/J(I/J) = dimR = dimAR/J(I/J)

by the first part.

(iii) Since J ⊂ I2, one has JI t−1 ⊂ I t+1 for every t ≥ 0. This yields a surjective

homomorphism AR/J(I/J) � gr I(R), showing that dimAR/J(I/J) ≥ dimR. The

reverse inequality follows from Lemma 1.3.1.

Example 1.4.3 Let f = x20x2+x0x1x3+x21x4 denote the celebrated Gordan–Noether

cubic whose Hessian vanishes, i.e., the partial derivatives of f are algebraically depen-

dent over k – in other words, the image of the corresponding polar map is a proper

set of P4 (a quadric cone). On the other hand, dimAR/(f)(If/(f)) = dimR = 5 >

4 = `(I), where If denotes the gradient ideal of f .

We wrap up with a comment on the last result. Namely, we actually have

dimAR/J(I/J) ≥ max{`(I), dimR/J + 1}.
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The interesting case is when `(I) ≥ dimR/J + 1. Say, R is catenary and equidimen-

sional. Then it would entail

dimAR/J(I/J) ≥ dimR + 1

2
.

We will have more to say about the dimension in Proposition 1.6.4.

1.5 Torsion: the Valabrega–Valla module

Let J ⊂ I ⊂ R be ideals. By Lemma 1.1.4 one has

AR/J(I/J) ' RR(I)/(J, J̃)RR(I) =
⊕
t≥0

I t/JI t−1.

As was already observed, from this follows immediately that the Aluffi algebra surjects

onto the Rees algebra

RR/J(I/J) =
⊕
t≥0

(I t, J)/J '
⊕
t≥0

I t/J ∩ I t.

Note that both algebras are standard graded over R/J . The kernel of this surjection

is the so-called module of Valabrega–Valla (see [19], also [22, 5.1]):

VVJ⊂I =
⊕
t≥2

J ∩ I t

JI t−1
. (1.5)

Of course, as an ideal this kernel is generated by finitely many homogeneous elements,

but as graded R/J-module it is conceivable that it may fail to be so.

In the present framework we are mainly interested in the case where ht (J) < ht (I)

(strict inequality), while the Valabrega–Valla module has been mainly considered in

connection to the situation in which J is a reduction of the ideal I. Of course in this

case, I t ⊂ J for t >> 0, so (AR�A(I/J))t = (RR/J(I/J))t = {0} all t >> 0, hence

the two algebras are finite R/J-modules, a case one can dismiss as of no interest for

the present theory.

We retrieve a result of Valla ([21, Theorem 2.8]):

Corollary 1.5.1 Let J ⊂ I ( R be ideals of the local ring R. If I/J is of linear type

over R/J (e.g., if I is generated by a regular sequence modulo J) then J ∩ I t = JI t−1

for every positive integer t.
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Proof. This follows immediately from the structural “squeezing” (1.3).

Note that the assumption in [6, Proposition 3.10] to the effect that I be of linear

type over R does not intervene in the above statement.

Here is a useful explicit situation, where we write I = (J, a), with no particular

care for minimal generation.

Proposition 1.5.2 Let I = (J, a). If J∩at ⊂ Jat−1, for every t ≥ 0 then AR/J(I/J)�

RR/J(I/J) is an isomorphism.

Proof. One has:

J∩I t = J∩(J, a)t = J∩(J(J, a)t−1, at) = J(J, a)t−1+J∩at ⊂ JI t−1+Jat−1 ⊂ JI t−1.

Remark 1.5.3 In the notation of the previous proposition, one of the main results

of [8] is that if a is generated by a d-sequence modulo J then the assumption of the

proposition is fulfilled. Therefore, under the hypothesis of [loc.cit.], the surjection

AR�R/J(I/J) � RR/J(I/J) is an isomorphism. This result, however, is a special

case of Corollary 1.5.1 if one uses that an ideal generated by a d-sequence is of linear

type. Of course, the proof of this fact requires some non-trivial work on itself and is

previous to the later results, such as [6].

When J = (f) is a principal ideal, one has a result somewhat subsumed in the

spirit of [21].

Proposition 1.5.4 Let a be an ideal in the ring R and let f ∈ R be an element such

that at : f = at for every integer t ≥ 0. Then the inclusion (f) ⊂ (f, a) induces an

isomorphism AR/(f)((f, a)/(f)) ' RR/(f)((f, a)/(f)).

Proof. The assumption means that (f)∩at = fat for every t ≥ 0, hence (f)∩(f, a)t =

f(f, a)t−1 + (f) ∩ at = f(f, a)t−1 for t > 0.

The Valabrega–Valla module gives the torsion in as many cases as the ones in

which the Rees algebra is the symmetric algebra modulo torsion.

Proposition 1.5.5 Let J ⊂ I ( R be ideals of the Noetherian ring R. If I/J has

a regular element then the R/J-torsion of the embedded Aluffi algebra of I/J is the

kernel of the natural surjection AR/J(I/J)(I/J)� RI/J(I/J). If J is besides a prime

ideal then the R/J-torsion of AR/J(I/J) is a minimal prime ideal.
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Proof. Consider the general elementary observation: given a ring A and A-modules

N �M � K

such that the A-torsion of N is the kernel of the composite N � K then the A-

torsion of M is the kernel of M � K. We apply this to the situation in (1.3), by

recalling that if I/J ⊂ R/J has a regular element in the ring R/J then the R/J-

torsion of the symmetric algebra SR/J(I/J) is the kernel of the natural surjection

SR/J(I/J)� RR/J(I/J).

If J is a prime ideal thenRI/J(I/J) is a domain and it is well-known that the kernel

of the surjection SR/J(I/J) � RI/J(I/J) is a minimal prime ideal of SR/J(I/J).

Therefore it follows that the kernel of AR/J(I/J) � RR/J(I/J) is a minimal prime

of AR/J(I/J).

Corollary 1.5.6 Let J ⊂ I ( R be ideals of the Noetherian ring R. If I/J has a

regular element then VVJ⊂I = H0
I/J(A), where A denotes the Aluffi algebra and VVJ⊂I

is the Valabrega–Valla module as introduced above.

Proof. By Proposition 1.5.5, VVJ⊂I is the R/J-torsion ofA. On the other hand, local-

izing at primes of the base R/J not containing I/J makes the surjection SR/J(I/J)�

RI/J(I/J) an isomorphism, hence also the surjection A� RI/J(I/J). Therefore, A
is torsionfree locally at those primes. Since I/J has regular elements, the result

follows easily (see, e.g., [14, Lemma 5.2]).

Remark 1.5.7 The last result says, in particular, that there exists an integer k ≥ 0

such that Ik (J ∩ I t) ⊂ JI t−1 for every t ≥ 1. In the section 1.7 we relate such an

exponent to the so-called Artin–Rees number.

In the section 1.9 we collect some interesting examples of pairs of ideals whose the

corresponding Aluffi algebra no have torsion.

1.6 Connection to Standard Base

A close associate of the module of Valabrega-Valla VVJ⊂I is the well-known ideal

J = ker (gr I(R)� gr I/J(R/J)) =
⊕
t≥0

(I t+1 + J ∩ I t)/I t+1,
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generated by the I-initial forms of elements of J . Recall that the I-initial form of an

element f ∈ R is the residue class f ∗ of f in Iν(f)/Iν(f)+1 where ν(f) is the Ith order

of f (i.e., f ∈ I t \ I t+1, setting ν(f) =∞ and f ∗ = 0 if f ∈ ∩t≥0I t).

Definition 1.6.1 A set of elements {f1, . . . , fr} of J is called an I-standard base of

J if f ∗1 , . . . , f
∗
r generate J in gr I(R).

If R is Noetherian local then an I-standard base of J is a generating set of J (see [4,

Lemma 6]). We will shorten ν(fi) to νi if fi is sufficiently clear from the context.

The following basic result will be used throughout. We include a proof for com-

pleteness.

Theorem 1.6.2 ([19]) Let J = (f1, . . . , fm) be an ideal of ring R. Then {f1, . . . , fm}
is an I-standard base of J if and only if

J ∩ I t =
m∑
i=1

I t−νifi

for every positive integer t.

Proof. It is clear that (f ∗1 , . . . , f
∗
m) =

(
m∑
i=1

I t−νifi + I t+1

)/
I t+1. Hence, if J ∩ I t =

m∑
i=1

I t−νifi for all t ≥ 1, we have: J = (f ∗1 , . . . , f
∗
m).

conversely, if J is generated by the f ∗i ’s, then we have: J ∩ I t ⊂
m∑
i=1

I t−νifi + I t+1.

for all t ≥ 1. It follows that

J ∩ I t =
⋂
n≥1

(
m∑
i=1

I t−νifi + In+t ∩ J

)

By the Artin–Rees lemma there exists an integer q such that J∩I t+n = In+t−q(J∩Iq)
for all n+ t ≥ q. Then if r is an integer such that r ≥ n− νi for i = 1, . . . ,m, we get

the following equality:

J ∩ I t =
⋂

n≥q−t+r

(
m∑
i=1

I t−νifi + In+t−q(J ∩ Iq)

)
=

m∑
i=1

I t−νifi,

since, if n ≥ q − t+ r, then In+t−q(J ∩ Iq) ⊂ JIr ⊂
m∑
i=1

I t−νifi
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For the sake of shortness we denote by R and A the kernel of the natural epimor-

phisms:

RR(I)� RR/J(I/J)

RR(I)� AR/J(I/J)

The first is described as

R =
⊕
n≥0

J ∩ In = {
s∑
r=0

crt
r ∈ RR(I) | cr ∈ J ∩ Ir} (1.6)

while the second on was already explained in Lemma 1.1.4

A = (J, J̃)RR(I) =
⊕
t≥0

JIn−1 = {
s∑
r=0

crt
r ∈ RR(I) | cr ∈ JIr−1} (1.7)

The ideal R = JR[t] ∩RR(I) has been studied in [21].

Lemma 1.6.3 Let R be a local ring and J ⊂ I be ideals of R. Let {f1, . . . , fm} be

an I-standard base of J such that 1 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm. Then

R ∩ Iνm−1RR(I) ⊂ A ⊂ R ∩ Iν1−1RR(I).

Proof. By definition, we want to show the two inclusions

J ∩ In+νm−1 ⊂ JIn−1 ⊂ J ∩ In+ν1−1

as subideals of J ∩ In, for every n ≥ 1.

This is however a straightforward consequence of Theorem 1.6.2 as one has thereof

J ∩ Iνm+n−1 =
m∑
i=1

fiI
νm+n−1−νi ⊂

m∑
i=1

fiI
n−1 = JIn−1,

and similarly

J ∩ Iν1+n−1 =
m∑
i=1

fiI
ν1+n−1−νi ⊃

m∑
i=1

fiI
n−1 = JIn−1.

Proposition 1.6.4 Let J ⊂ I be ideals of a Noetherian ring R such that J has

positive height and I/J has a regular element in R/J . Let {f1, . . . , fm} be an I-

standard base of J such that 1 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm. Then
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(i) If νm = 1 (i.e., ν1 = · · · = νm = 1), then dimAR/J(I/J) = dimR/J + 1.

(ii) If R is besides local and if ν1 > 1, then dimAR/J(I/J) = dimR.

Proof. (i) Lemma 1.6.3 implies the surjections

RR(I)/R ∩ Iνm−1RR(I)� AR/J(I/J)� RR(I)/R ∩ Iν1−1RR(I),

which are now isomorphisms throughout by the present assumption.

The rest is routine since we assume that I/J has a regular element.

(ii) Quite generally, for a positive integer m one has

dimRR(I)/R ∩ ImRR(I) ≥ max{dimRR(I)/R , dimRR(I)/ImRR(I)}

= max{dimRR/J(I/J), dim gr I(R)} = dimR

since J is assumed to have positive height. On the other hand, again since J has

positive height, by Lemma 1.3.1 one has dimAR/J(I/J) ≤ dimR. The result follows

now immediately.

Example 1.6.5 Let J ⊂ R = k[x, y, z] be the defining ideal of the monomial space

curve with parametric equation x = t3, y = t4, z = t5. Then J is generated by

x3 − yz, y2 − xz, z2 − x2y, let I = (x, y, z), by result of Robbiano and Valla [11]

we can easy verify that x3 − yz, y2 − xz, z2 − x2y is a I standard base of J . Then

ν1 > 1 and dimAR/J(I/J) = dimSR/J(I/J) = dimR = 3

By Lemma 1.6.3, if νi = ν, for i = 1, . . . ,m, then A = R ∩ Iν−1RR(I). In general

the following theorem gives necessary and sufficient conditions for A = R, i.e., for

the natural surjection AR/J(I/J)� RR/J(I/J) to be an isomorphism.

Theorem 1.6.6 Let J ⊂ I ( R be ideals of the local ring R. Then the following

conditions are equivalents:

(a) The natural surjection AR�R/J(I/J)� RR/J(I/J) is an isomorphism ;

(b) J ∩ In = JIn−1 for every positive integer n ;

(c) For every minimal set of generators f1, . . . , fm of J their I-orders are all equal

to 1 and {f1, . . . , fm} is a I-standard base of J ;

(d) There exists a minimal set of generators f1, . . . , fm of J whose I-orders are all

equal to 1 such that {f1, . . . , fm} is a I-standard base of J .
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Proof. Since the module of Valabrega–Valla is the R/J-torsion of the Aluffi algebra,

conditions (a) and (b) are equivalent. It is clear that (c) implies (d), while (d) implies

(b) by Lemma 1.6.3. Now assume that J ∩ In = JIn−1 for every positive integer n

and let f1, . . . , fm be a minimal set of generators of J . If for some i, fi ∈ I2 then

fi ∈ JI, which clearly contradicts the minimality of f1, . . . , fm. Now the implication

(b) ⇒ (c) is immediate by Theorem 1.6.2.

1.7 Relation to the Artin–Rees number

We close with yet another condition for the surjection AR/J(I/J) � RR/J(I/J) to

be an isomorphism.

For this recall that, pretty generally, given ideals J, I ⊂ R the Artin–Rees number

of J relative to I is the integer

min{k ≥ 0 | J ∩ I t = (J ∩ Ik)I t−k ∀ t ≥ k}.

We observe that if J ⊂ I ( R, where R is Noetherian and J has regular elements

then the Artin–Rees number of J relative to I is ≥ 1.

Proposition 1.7.1 Let J ⊂ I ( R be ideals of a Noetherian ring R and let k ≥ 1 be

an upper bound for the Artin–Rees number of J relative to I, i.e., one is given that

J ∩ I t = (J ∩ Ik)I t−k ∀ t ≥ k.

Then Ik−1 annihilates the kernel of the surjectionAR/J(I/J)� RR/J(I/J). More-

over, the latter is an isomorphism if and only if the Artin–Rees number of J relative

to I is 1.

Proof. One has (J ∩I t)Ik−1 = (J ∩Ik)I t−kIk−1 = (J ∩Ik)I t−1 ⊂ JI t−1 for t ≥ k. On

the other hand, for t ≤ k−1, one has Ik−1 ⊂ I t−1, hence (J∩I t)Ik−1 ⊂ (J∩I t)I t−1 ⊂
JI t−1.

The second assertion is clear.

More generally:

Lemma 1.7.2 Let J ⊂ I ⊂ R be ideals of a ring R. Assume that ` is un upper bound

for the Artin–Rees number of J relative to I such that J ∩ I t = JI t−1 for every t ≤ `.

Then AR/J(I/J)� RR/J(I/J) is an isomorphism.

Proof. By assumption J ∩ I t = I t−`(J ∩ I`) for t ≥ `. Now use the assumed equality

J ∩ I` = JI`−1 to get J ∩ I t = JI t−1 for t ≥ `.
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Given a ring A and an ideal a = (a1, . . . , am) ⊂ A, one lets R[T1, . . . , Tm] →
RR(a) = R[aT ] be the graded map sending Ti to ai T . The relation type of a is

the largest degree of any minimal system of homogeneous generators of the kernel

J . Since the isomorphism R[T1, . . . , Tm]/J ' RR(a) is graded, an application of the

Schanuel lemma to the graded pieces shows that the notion is independent of the set

of generators of a.

Corollary 1.7.3 Let R be a Notherian ring and J ⊂ I be ideals in R such that

(i) I/J has relation type at most ` as an ideal of R/J .

(ii) J ∩ I t = JI t−1 for every t ≤ `.

Then AR�R/J(I/J)� RR/J(I/J) is an isomorphism.

Proof. By Lemma 1.7.2, it suffices to show that ` is an upper bound for the Artin–

Rees number of J relative to I. Thus, Let I be generated by elements a1, . . . , am

and let f ∈ J ∩ I t, with t ≥ `. Then there exists a polynomial F in R[T1, . . . , Tm],

homogeneous of degree t, such that F (a1, . . . , am) = f . Since f ∈ J , reducing modulo

J shows that F is a relation on the ai’s. Then by assumption there are polynomials

gi of degree `, and hi of degree t− `, such that F =
∑
gihi in R/J [T1, . . . , Tm] and gi

are relations on the ai. Hence F =
∑
gihi+L for some polynomial L ∈ R[T1, . . . , Tm]

of degree t and coefficients in J . Since

L(a1, . . . , am) ∈ JI t ⊂ I t−`(J ∩ I`)

then gi(a1, . . . , am) ⊂ J ∩ I` and hi(a1, . . . , am) ∈ I t−` for t ≥ `. This shows that the

element f = F (a1, . . . , am) ∈ I t−`(J ∩ I`), that is, J ∩ I t = (J ∩ I`)I t−` for t ≥ `.

1.8 Torsion and minimal primes

In this section we look at the set of primes p ∈ Spec (R) containing J which are

contractions of associated primes of AR/J(I/J) as an RR(I)-module. Note that

AR/J(I/J) is R/J-torsion free if and only if each one of these contractions is contained

in some prime in Ass R(R/J).

To an ideal a ⊂ R, we associate its extended–contracted ideal ã := aR[t] ∩RR(I)

in the Rees algebra RR(I) ⊂ R[t] (t a variable over R). Note that this ‘tilde’ oper-

ation preserves primality. Moreover, it is known or easy to show that this operation
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preserves associated and minimal primes in the following sense:

p ∈ Ass R(R/J)⇒ p̃ ∈ AssRR(I)RR/J(I/J) (1.8)

p ∈ MinR(R/J)⇒ p̃ ∈ MinRR(I)RR/J(I/J) (1.9)

We will prove a similar result for the Aluffi algebra.

Note that if p ∈ SupR(R/J) then

p̃ = ⊕n≥0p ∩ In ⊃ ⊕n≥0J ∩ In ⊃ ⊕n≥0JIn−1 = (J, J̃)RR(I), (1.10)

hence p̃ contains the defining ideal of the Aluffi algebra on RR(I). We may often

identify p̃ with its image in AR/J(I/J); as such it contains the torsion of AR/J(I/J).

In particular, if p is an associated prime of R/J then p̃ contains the torsion. The

next result will show that such primes are actually associated primes of AR/J(I/J) –

which we call the torsion primes.

For the proof, we will use the notation A,R for the defining ideals of the Aluffi

algebra AR/J(I/J) and of the relative Rees algebraRR/J(I/J) onRR(I), respectively.

Proposition 1.8.1 Let J ⊂ I ( R be ideals of a Noetherian ring R such that I/J

has a regular element. Then:

a) p ∈ Ass R(R/J)⇒ p̃ ∈ AssRR(I)(AR/J(I/J))

p ∈ MinR(R/J)⇒ p̃ ∈ MinRR(I)(AR/J(I/J)).

b) If besides R/J is equidimensional then dimAR/J(I/J)/p̃ = dimR/J + 1 for

every p ∈ MinR(R/J).

Proof. (a) Let p ∈ Ass R(R/J). Since I/J contains a regular element, one has I 6⊂ p.

Let f1, . . . , fn be an I-standard base of p, so that p = (f1, . . . , fm) and

p̃ =
∑
r≥0

p ∩ Ir =
∑
r≥0

(
m∑
i=1

fiI
r−νi

)
,

where νi = ν(fi). Write ν = maxi νi for i = 1, . . . ,m and take b ∈ Iν−1 \ P .

Say, p = J : a. We claim that p̃ = A : ab which will prove that p̃ is an associated

prime of AR/J(I/J)) on RR(I).

For this, let cr ∈ J ∩ Ir =
∑m

i=1 fiI
r−νi , with r ≥ 0. Then

bcr ∈
m∑
i=1

fi bI
r−νi ⊂

m∑
i=1

fiI
r−νi+ν−1 ⊂

m∑
i=1

fiI
r−1 = p Ir−1 = (J : a)Ir−1 ⊂ JIr−1 : a,
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hence bp̃ ⊂ A : a, hence p̃ ⊂ A : ab.

For the inverse inclusion, since A ⊂ R, it follows that A : ab ⊂ R : ab = (R : a) : b.

Note that J̃ : a = (J : a)R[t] ∩RR(I) = (JR[t] : a) ∩RR(I) = (JR[t] ∩RR(I)) : a =

R : a.

Therefore A : ba ⊂ p̃ : b = p̃. Thus, p̃ = A : ab as was to be shown.

To see that p̃ is actually a minimal prime thereof provided p ∈ MinR(R/J), note

that if Q ⊂ p̃ is a minimal prime ofAR/J(I/J) onRR(I) then its contraction q = Q∩R
is contained in p̃ ∩ R = p. Since J ⊂ q and p ∈ MinR(R/J) then q = p, hence q̃ ⊂ p̃.

But q̃ ⊂ Q, so then Q = p̃.

(b) Using the same notation for p̃ both as an ideal of RR(I) of AR/J(I/J), one

has

AR/J(I/J)/p̃ ' RR(I)/p̃ ' ⊕n≥0In/p ∩ In ' ⊕n≥0(p, In)/p ' RR/p((p, I)/p).

Now, since R/p is a domain and I 6⊂ p, one has dimRR/p((p, I)/p) = dimR/p + 1,

and since R/J is equidimensional then finally dimAR/J(I/J)/p̃ = dimR/J + 1.

Example 1.8.2 Let J ⊂ I ⊂ R = k[x, y, z] be as example 1.2.1. Since J is a defining

ideal of points, it is a codimension 2 perfect ideal. Thus the minimal primes of R/J

are

p1 = (x, y), p2 = (x, y − z), p3 = (y, x− z), p4 = (y − z, x− z).

Then, the corresponding torsion primes on R[T] are:

q1 = (x, y, T1, T2, T3, T4) q2 = (x, y − z, T1, T2, T3, T4 + T5)
q3 = (y, x− z, T1, T2, T4 + T5, T3 − T5) q4 = (y − z, x− z, T1, T2, T4, T3 − T5)

One can get a hold of other minimal primes of the Aluffi Algebra according to the

following result, pretty much modeled on the case of the symmetric algebra.

Proposition 1.8.3 Let J ⊂ I ( R be ideals of the Noetherian ring R. Any minimal

prime ℘ of AR/J(I/J) on RR(I) is either of the form ℘ = p̃ for some minimal prime

of R/J on R, or else has the form (q, ℘+) where q := ℘∩R contains a minimal prime

of R/I on R and ℘+ = ℘ ∩ (Iu).

Proof. By Corollary 1.5.6 – rather by its proof – a power of I annihilates the kernel of

AR/J(I/J)� RR/J(I/J) lifted to RR(I) – call it K. If ℘ ⊂ RR(I) is a minimal prime

of AR/J(I/J) it follows that ℘ contains either K or I. In the first case, it contains
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a minimal prime of RR(I)/K ' RR/J(I/J) hence must be a minimal prime of the

latter onRR(I). But, it is well known that the above extending-contracting operation

induces a bijection between the minimal primes of R/J on R and the minimal primes

of RR/J(I/J) on RR(I).

In the case I ⊂ ℘, since ℘ is homogeneous in the natural N-grading of RR(I),

then it is clear that ℘ = (q, ℘+), where ℘+ = ℘ ∩ RR(I)+; obviously, q contains a

minimal prime of R/I on R.

Remark 1.8.4 Note that if ℘ ⊂ RR(I) is a minimal prime of AR/J(I/J) containing

I then ℘+ behaves erratically: it can actually be zero in certain cases (see, e.g.,

Proposition 1.4.2, (ii)). On the other hand, its contraction q ⊂ R may turn out to be

an embedded associated prime of R/I and not a minimal one (see Section 2).

Corollary 1.8.5 Let J ⊂ I ( R be ideals of a Noetherian ring R such that I/J has

a regular element and R/J is equidimensional. If AR/J(I/J) is equidimensional then

dimAR/J(I/J) = dimR/J + 1.

Proof. By item (b) of the Proposition 1.8.1, one has dimAR/J(I/J)/p̃ = dimR/J+1,

for every p̃, with p ∈ Spec (R) a minimal prime ofR/J . By (a) of the same proposition,

we know that p̃ is a minimal prime of the Aluffi algebra. Since the latter is assumed

to be equidimensional, the result follows.

Equidimensionality of AR/J(I/J) may be quite rare. The next result shows that,

at least in the local or graded case, pure-dimensionality is really infrequent.

Theorem 1.8.6 Let (R,m) be a Noetherian local ring and its maximal ideal m or

a graded algebra of finite type over a field and its maximal homogeneous ideal m.

Suppose that:

(a) J ⊂ mI and I/J has a regular element.

(b) Either R/m is infinite and I has maximal analytic spread, or else J ⊂ I2.

(c) AR�A(I/J) is pure-dimensional.

Then J is a height one unmixed ideal. If R is besides regular then J must be principal.

Proof. Let p ∈ Ass R(R/J) have height ≥ 2. By Proposition 1.8.1 and the pure-

dimensionality of AR/J(I/J), the torsion prime p̃ satisfies

dimAR/J(I/J) = dimAR/J(I/J)/p̃ = dimRR(I)/p̃ = dimRR/p((p, I)/p)

= dimR/p+ 1 ≤ dimR− ht p+ 1 ≤ dimR− 2 + 1 = dimR− 1.
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However, by Proposition 1.4.2 ((ii) or (iii) according to the case), dimAR/J(I/J) =

dimR – an absurd.

Remark 1.8.7 Assume that J is a prime ideal. In the first alternative of item (b)

of the previous result, regardless of whether or not AR�A(I/J) is pure-dimensional,

one has two basic minimal primes of the Aluffi algebra, namely, mAR/J(I/J) and its

torsion (Proposition 1.5.5). While the first has maximal dimension (Proposition 1.4.2,

(ii)), the latter has dimension dimR/J + 1. Thus, solely requiring that the two have

equal dimensions entails at least that J have codimension 1.

We wrap up with the following

Question 1.8.8 Suppose as above that J = (f) ⊂ mI, I/(f) has a regular element

and I has maximal analytic spread. To what extent can we assert that, conversely,

AR�A(I/J) is pure-dimensional?

This seems to be the case in a variety of situations such as the one considered in

Section 2.

1.9 Examples of Aluffi torsion-free pairs

Let us agree to call a pair of ideals J ⊂ I anA-torsionfree pair if the mapAR�A(I/J)�

RI/J(I/J) is injective.

The examples we have in mind in this part are of the two sorts mentioned previ-

ously, namely, of totally degenerate or non-degenerate pairs. The first kind will be

based on Proposition 1.5.2. For these, we let R = k[X] be an N-graded polynomial

ring over a field k, J ⊂ R is a homogeneous ideal and I ⊂ R is the Jacobian ideal of

J , by which we always mean the ideal (J, Ir(Θ)) where r = ht (J) and Θ stands for

the Jacobian matrix of a set of generators of J . One knows that this maybe a slack

ideal, but it is well defined modulo J .

Example 1.9.1 Let J ⊂ R = k[x, y, z] be the defining ideal of the monomial space

curve with parametric equations x = un1 , y = un2 , z = un3 , where gcd(n1, n2, n3) = 1.

Suppose that n1 = 2q+1, n2 = 2q+p+1, n3 = 2q+2p+1, for non-negative integers

p, q. If I is the Jacobian ideal of J then J ⊂ I is an A-torsionfree pair.

Grading R by the exponents of the parameter u in the parametric equations, one

knows ([5]) that J is a perfect codimension 2 ideal generated by the homogeneous

polynomials

F1 = xc1 − yr12zr13 , F2 = xr21zr23 − yc2 , F3 = xr31yr32 − zc3
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where 0 < rij < ci (i = 1, 2, 3, j 6= i). Note the relations

c1 = r21 + r31, c2 = r12 + r32, c3 = r13 + r23.

The Jacobian matrix of J is

Θ =

 c1x
c1−1 −r12yr12−1zr13 −r13yr12zr13−1

r21x
r21−1zr23 −c2yc2−1 r23x

r21zr23−1

r31x
r31−1yr32 r32x

r31yr32−1 −c3zc3−1


The 2-minors of Θ are

f1 = −c1c2xc1−1yc2−1 + r21r12x
r21−1yr12−1zc3

f2 = c1r23x
c1+r21−1zr23−1 + r13r21x

r21−1yr12zc3−1

f3 = −r12r23xr21yr12−1zc3−1 + c2r13y
c2+r12−1zr13−1

f4 = c1r32x
c1+r31−1yr32−1 + r31r12x

r31−1yc2−1zr13

f5 = −c1c3xc1−1zc3−1 + r31r13x
r31−1yc2zr13−1

f6 = r32r13x
r31yc2−1zr13−1 + c3r12y

r12−1zc3+r13−1

f7 = r21r32x
c1−1yr32−1zr23 + c2r31x

r31−1yc2+r32−1

f8 = −r21r31xc1−1yr32zr23−1 − c3r21xr21−1zc3+r23−1

f9 = −r32r23xc1yr32−1zr23−1 + c2c3y
c2−1zc3−1

Write D for the ideal generated by the following monomials

M1 = xr21−1yr12−1zc3 M2 = xr21−1yr12zc3−1 M3 = yc2+r12−1zr13−1

M4 = xr31−1yc2−1zr13 M5 = xr31−1yc2zr13−1 M6 = yr12−1zc3+r13−1

M7 = xr31−1yc2+r32−1 M8 = xr21−1zc3+r23−1 M9 = yc2−1zc3−1

The following relations come out

f1 = −c1c2xr21−1yr12−1F3 + (r21r12 − c1c2)M1

f2 = c1r23x
r21−1zr23−1F1 + (r31r21 − c1r23)M2

f3 = −r12r23yr12−1zr13−1F2 − (r12r23 + c2r13)M3

f4 = c1r32x
r31−1yr32−1F1 + (r31r12 + c1r32)M4

f5 = −c1c3xr31−1zr13−1F2 + (r31r13 − c1c3)M5

f6 = r32r13y
r12−1zr13−1F3 + (r21c3 + r32r13)M6

f7 = r21r32x
r31−1yr32−1F2 + (r31c2 + r21r32)M7

f8 = −r32r23xr21−1zr23−1F3 − (r21c3 + r23r31)M8

f9 = r32r23y
r32−1zr23−1F1 + (c2c3 − r32r23)M9,
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By above, J is generated by

F1 = xp+q+1 − yzq, F2 = xz − y2, F3 = xp+qy − zq+1

and

I = (J,D) = (xz − y2, xp+q+1, xp+qy, xp+q−1y2, yzq, y2zq−1, zq+1)

Set ∆ = (xp+q+1, xp+qy, xp+q−1y2, yzq, y2zq−1, zq+1). By a slight adaptation of Propo-

sition 1.5.2 it suffices to show that J ∩ ∆t ⊂ J∆t−1 for every t ≥ 0. Let F =

g1F1 + g2F2 + g3F3 ∈ J ∩∆t with gi ∈ R. Now, since F1, F3 ∈ ∆, then g1, g3 ∈ ∆t−1.

A calculation shows that, for 0 ≤ k ≤ n,

zt(q+1)+1+kytF2, x
p+qyk+1z(t−1)(q+1)−1+kF2, x

p+q−1y2z(t−1)(q+1)−1F2 ∈ ∆t.

Then g2 ∈ ∆t−1, thus proving that F ∈ J∆t−1.

Conjecture 1.9.2 Let J ⊂ R = k[x, y, z] be the defining ideal of the monomial space

curve with parametric equations x = tn1 , y = tn2 , z = tn3 , where gcd(n1, n2, n3) = 1.

Let I be the Jacobian ideal of J . If J is almost complete intersection then the pair

J ⊂ I is A–torsionfree.

Example 1.9.3 Let R be a Noetherian ring, let a1, . . . , ar be regular sequence on R

and let I = (a1, . . . , ar). Then J = (an1 , . . . , a
n
i ) ⊂ In for i = 1, . . . , r is A-torsionfree.

By induction on t we show that J ∩ Int = JIn(t−1) for every t ≥ 1. For t = 1 the

conclusion is obvious. Let t > 1, then by inductive assumption

J ∩ Int = Int ∩ J ∩ Int−1 = Int ∩ JIn(t−1)−1 = Int ∩∆

Where ∆ is the ideal generated by the elements as11 . . . asrr such that s1+. . .+sr = nt−1

and sj ≥ n for 1 ≤ j ≤ i. Since a1, . . . , ar are regular sequence, if F (X1, . . . , Xi) is a

homogenous polynomial of degree nt− 1 over R such that F (a1, . . . , ai) ∈ Int, hence

all coefficients of F are in I. Then

J ∩ (In)t = J ∩ Int = Int ∩∆ = I∆ = JIn(t−1)

Example 1.9.4 Let J ⊂ R = k[x] be an ideal generated by forms of the same degree

d ≥ 1. If I = (J,mr), where m = (x) and r ≥ d, then the pair J ⊂ I is A-torsionfree.
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To see why one uses Proposition 1.5.2. It suffices to show that J ∩mrt ⊂ Jmr(t−1) for

every t ≥ 0. Let f1, . . . , fm be generators of J of degree d and let F be a form in the

fi’s such that F ∈ mrt. Then F =
∑m

i=1 gifi where gi =
∑
aαx

α ∈ Rrt−d+δ for δ ≥ 0,

since Rrt−d+δ = Rr−d+δ.Rrt−r, so we can rewrite gi as

gi =
∑

|α|=r−d+δ
|β|=rt−r

aα,β xα+β, hence F =
∑

|α|=r−d+δ

xα

 s∑
i=1

|β|=rt−r

(xβ)fi


Therefore F ∈ Jmrt−r = Jmr(t−1), as required.

Conjecture 1.9.5 Let J ⊂ R = k[x] denote an ideal generated by quadrics such

that ht J ≥ 2, and let I ⊂ R denote the ideal generated by the r–minors of the

Jacobian matrix Θ of the generators of J . If I = Ir(Θ) is (x)–primary, then I = (x)r.

If the conjecture is true then, along with the above result, it implies that the pair

J ⊂ I is torsionfree, where J stands for the homogeneous defining ideal J of any of

the following varieties, and I denotes its Jacobian ideal.

(a) A rational normal curve ;

(b) The Segre embedding of Pr × Ps, with r > 1 or s > 1 ;

(c) The 2–Veronese embedding of a projective space ;

(d) Generic 4× 4 Pfaffians.

Example 1.9.6 Consider the monomial x1 · · ·xn ∈ R = k[x1, . . . , xn] (n ≥ 3) and

let J ⊂ R be the ideal generated by its partial derivatives fi =: x1x2 · · · x̂i · · ·xn, for

i = 1, ..., n. If I is the Jacobian ideal of J the pair J ⊂ I is A-torsionfree.

Proof. Its well-known and easy that J is a codimension 2 perfect ideal with Hilbert–

Burch matrix

ϕ =



x1 0 0 . . . 0
0 0 0 . . . x2
...

...
... . . .

...
0 0 xn−2 . . . 0
0 xn−1 0 . . . 0
−xn −xn −xn . . . −xn


.
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Setting ∆i,j :=
∂fj
∂xi

= x1x2...x̂i...x̂j...xn, and inspecting the Hessian matrix Θ of

x1 · · ·xn – a symmetric matrix:

J =


∆1,n ∆2,n . . . ∆n−1,n 0

∆1,n−1 ∆2,n−1 . . . 0 ∆n,n−1
...

... . . .
...

...
∆1,2 0 . . . ∆n−1,2 ∆n,2

0 ∆2,1 . . . ∆n−1,1 ∆n,1


one finds three basic types of 2× 2 minors, namely

• Principal minors:

det

(
0 ∆i,j

∆i,j 0

)
= ∆2

i,j,

one for each pair i < j;

• vanishing minors:

det

(
∆i,j ∆i,j′

∆i′,j ∆i′,j′

)
= 0,

one for each choice of row indices 1 ≤ i, i′ ≤ n and column indices 1 ≤ j, j′ ≤ n;

• semidiagonal minors of typical form

Λj := det

(
∆i,j 0
∗ ∆i′,i

)
.

Since clearly, Λj ∈ J , we get that the Jacobian ideal I of J is generated by J

and the squares of the second partial derivatives of x1 · · ·xn, i.e., I = (J,∆2
i,j) for

1 ≤ i < j ≤ n.

As a side curiosity we note that I = (J, I2(Θ)) = (J, In−2(ϕ)2), hence
√
I =

In−2(ϕ), so in particular I/J has codimension one. This example will therefore yield

a case of a height one ideal in R/J which is A-torsionfree, but clearly not of linear

type because its number of generators on R/J is too large.

Setting ∆ = (∆2
i,j | 1 ≤ i < j ≤ n), the usual algorithmic procedure to find

generators of the intersection of monomial ideals yields for any t

J ∩∆t = ((xi, xj)∆
2t
i,j, (F))

where F is the set of all monomials in ∆t excluding the monomials ∆2t
i,j for 1 ≤ i <

j ≤ n. Another calculation shows that (xi, xj)∆
2t
i,j ∈ J∆t−1, for 1 ≤ i < j ≤ n, and

that F ⊂ J2∆t−3. This proves that J ∩∆t ⊂ JI t−1. .

31



Example 1.9.7 Let J ⊂ R = k[x1, . . . , xn] denote the ideal of the coordinate points

in projective space Pn−1, i.e., J = (xixj | 1 ≤ i < j ≤ n). If I is the Jacobian ideal of

J the pair J ⊂ I is A-torsionfree.

Proof. Since J contains all square-free monomials of degree 2, it is rather transparent

that the Jacobian ideal I of J is generated by J and pure powers of the variables.

Moreover, a closer inspection shows that, more precisely,

I = (J, xn−11 , . . . , xn−1n ).

Setting ∆ := (xn−11 , . . . , xn−1n ), the usual algorithmic procedure to find generators of

the intersection of monomial ideals yields for any t ≥ 2

J ∩∆t = J ∩ ((xα1
1 ...x

αn
n )n−1 |α1 + ...+ αn = t, αi ≥ 0) = J∆t−1.

Question 1.9.8 (k algebraically closed) Let J ⊂ R = k[x1, . . . , xn] denote a radical

homogeneous ideal of codimension n− 1 (i.e., the ideal of a reduced set of points). If

I is the Jacobian ideal of J , when is J ⊂ I an A-torsionfree pair?
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Chapter 2

The Aluffi algebra of a projective
hypersurface

As seen in the first chapter, (Theorem 1.8.6 and Remark 1.8.7), in order that the

Aluffi algebra have a certain expected behavior over a regular ambient, the ideal J

had better be principal. This may be taken as a motivation for this chapter. Another

source for motivation is the original work of Aluffi, where he has inquired into the

structure of the algebra in the case that ideal J = (f) is generated by the equation

of a reduced hypersurface.

2.1 The Aluffi gradient algebra

By Theorem ??, we know that dimAR/(f)(If/(f)) = dimR = n. One may dub the

Aluffi embedded algebra in this case as the Aluffi gradient algebra of f . The following

result collects the central backstage for the Aluffi gradient algebra.

Proposition 2.1.1 Let k denote an infinite field, let f ∈ R = k[x] = k[x1, . . . , xn] be

a reduced homogeneous polynomial whose degree is not a multiple of the characteristic

of k and let If ⊂ R denote the corresponding gradient ideal. Assume that

(i) The singular locus of V (f) ⊂ Pn−1 consists of a nonempty set of points (equiv-

alently, dimR/If = 1)

(ii) The partial derivatives of f are algebraically independent over k.

Then:

(a) There is a presentation of the Aluffi gradient algebra

AR/(f)(If/(f)) ' R[T]/(Jf , f,
n∑
i=1

xiTi), (2.1)
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where Jf denotes the defining ideal of the Rees algebra RR(If ) on R[T] =

R[T1, . . . , Tn].

(b) The minimal primes of the gradient Aluffi algebra on RR(If ) are

• The minimal prime ideals of RR/(f)(If/(f)), all of the form
∑

t≥0(p) ∩ I t

for a prime factor p of f .

• The extended ideal (x)RR(If ).

• Prime ideals whose lifting to R[T] = R[T1, . . . , Tn] from a presentation

R[T]/A ' RR(I) have the form (P, f), where P ⊂ R is a minimal prime

of R/If and f is an irreducible homogeneous polynomial in k[T].

(c) The Aluffi gradient algebra has non-trivial torsion.

Proof. (a) Since the partials are homogeneous of the same degree algebraic indepen-

dence over k is tantamount to analytic independence (i.e., the relations of the genera-

tors of If have coefficients in the ideal (x)) this follows immediately from Lemma 1.1.4

and the Euler formula taking in account the hypothesis on the characteristic.

(b) We apply Proposition 1.8.3, from which the first set of minimal primes is clear.

By Euler formula, f ∈ (x)If . Therefore, Proposition 1.4.2, (ii) implies that

(x)R[T] is a minimal prime of the Aluffi gradient algebra over R[T].

Let P be a minimal prime of AR/(f)(If/(f)) whose contraction P to R contains If

and is properly contained in (x). By Proposition 1.8.3, P = (P,P+). By assumption

(i) it follows that P is a minimal prime of R/If , hence has height n− 1. By Proposi-

tion 1.3.4, AR/(f)(If/(f)) is equidimensional. Therefore the lifting of P to R[T] has

height n. Since the lifting of any minimal generator of (P+) is irreducible in k[T] it

follows immediately that the lifting of P to R[T] has the required form.

(c) The defining equation of the dual curve to f belongs to the presentation ideal

of RR/(f)(If/(f)) on R[T] and not to (x)R[T], hence by (c) it does not belong to the

defining ideal of AR/(f)(If/(f)) on R[T].

Remark 2.1.2 For n ≤ 4, if the partial derivatives are k-linearly dependent then

the result of Gordan–Hesse–Noether implies that they are algebraically independent

over k (see [3, Proposition 2.7] for a proof based on an observation of Zak). Thus,

the assumption in this range is just linear independence.
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As to (c), it’s valid with no restriction when f is reduced since the defining equa-

tions of the dual variety to the hypersurface V (f) belong to the presentation ideal

Af and, moreover, the ideal generated by these contains properly the defining ideal

of the polar map of V (f) (see [3, Remark 2.4]).

Example 2.1.3 Here is a simple illustration. Let f = x2y2 + x2z2 + y2z2, the

equation of a plane quartic with 3 ordinary nodes. The minimal primes of the cor-

responding gradient Aluffi algebra, lifted to k[x, y, z, T, U, V ] are its lifted torsion,

(x, y, z)k[x, y, z, T, U, V ], (x, y, V ), (x, z, U) and (y, z, T ). Since If is of linear type

(see next section), these are of course the minimal primes of the symmetric algebra

SR/(f)(If/(f)).

The next result deals with the linear type property for the gradient ideal. Without

extra effort one can include the weakly of linear type companion property, as defined

in [2, 3.11], which means the equality of the symmetric and Rees algebra in all high

degrees and is sufficient in order that the characteristic cycle be given in terms of the

naive blowup ([2, Corollary 3.5]).

Theorem 2.1.4 Let k denote an infinite field, let f ∈ R = k[x] = k[x1, . . . , xn] be

a reduced homogeneous polynomial whose degree is not a multiple of the character-

istic of k and let If ⊂ R denote the corresponding gradient ideal. Assume that the

partial derivatives of f are algebraically independent over k. Then the following are

equivalents:

(a) If is an ideal of linear type (respectively, weakly of linear type).

(b) The natural surjection

SR/(f)(If/(f))� AR�R/(f)(If/(f))

is an isomorphism (respectively, an isomorphism in all high degrees).

Proof. One implication is easy and pretty general. Conversely, write Jf =
⊕

i≥1 Ji
for the defining ideal of the Rees algebra RR(If ) on S := R[T ] where Ji is its ho-

mogenous part of degree i in the standard grading of S := R[T]. Note that J1S is

defining ideal of symmetric algebra of If on R, so we need to show that for any r ≥ 0,

Jr ⊂ J1S. We induct on r, the result being trivial if r = 1. Thus, let r ≥ 2. By

hypothesis and by (2.1) one has

Jf ⊂ (J1,

n∑
i=1

xiTi, f)S.
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Let F = F (T) ∈ Jr. Then F = L+ (
∑n

i=1 xiTi)G+ fH where L ∈ J1Sr−1, G ∈ Sr−1
and H ∈ Sr. Let d denote the degree of f . Write fxi = ∂f/∂xi, for 1 ≤ i ≤ n. Then

F (fx1 , . . . , fxn) = L(fx1 , . . . , fxn) + (
n∑
i=1

xifxi)G(fx1 , . . . , fxn) + fH(fx1 , . . . , fxn) = 0.

Since L ∈ Jf , by Euler’s formula, one has f(dG + H)(fx1 , . . . , fxn) = 0, hence dG +

H ∈ Jf and, by homogeneity, G ∈ Jr−1 and H ∈ Jr.
By the inductive hypothesis, G ∈ J1Sr−2, hence (

∑n
i=1 xiTi)G ∈ J1Sr−1. Passing

to the corresponding ideals, it follows that JrS = (J1Sr−1)S + f JrS. By the graded

version of Nakayama’s lemma, this implies that JrS = (J1Sr−1)S. Therefore If is of

linear type.

The argument for the weak version of the property of being of linear type is exactly

the same.

Theorem 2.1.5 Let k denote an infinite field, let f ∈ R = k[x] = k[x1, . . . , xn] be a

reduced homogeneous polynomial whose degree is not a multiple of the characteristic

of k and let If ⊂ R denote the corresponding gradient ideal. Assume that, the singular

locus of V (f) ⊂ Pn−1 consists of a nonempty set of points (equivalently, dimR/If =

1). Then The symmetric algebra SR/(f)(If/(f)) is Cohen–Macaulay ; in particular, if

If is of linear type then the Aluffi algebra is Cohen–Macaulay.

Proof. We apply the criterion of [6, Theorem 10.1]. Namely, we have to verify the

following conditions:

(A) µ(If/(f)P ) ≤ ht (P/(f)) + 1 = htP , for every prime ideal P ⊃ If of R.

(B) depth (Hi)P/(f) ≥ ht (P/(f))−µ(If/(f)P/(f))+ i = htP −µ(If/(f)P/(f))+ i−1,

for every prime ideal P ⊃ If of R and every i such that 0 ≤ i ≤ µ(If/(f)P/(f))−
ht (If/(f)P/(f)), and where Hi denotes the ith Koszul homology module of the

partial derivatives on R/(f).

Note that the primes containing If are m = (x1, . . . , xn) and its minimal primes, the

latter all of height n− 1.

(A) Since If itself is generated by n elements, it suffices to check the minimal

primes. Thus, let P ⊂ R be such a prime. Say, without lost of generality, that

xn 6∈ P . Because of the Euler relation, ∂f/∂xn = fxn ∈ If locally at P and module

(f). Therefore, locally at P and module (f), If is generated by n − 1 = ht (P )

elements.
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(B) If P is a minimal prime of If we saw in (A) that µ(If/(f)P/(f)) = n−1. Since

htP = n− 1, the condition is trivially verified as i = 0, 1.

Thus, let P = m. Again, an easy inspection of the numbers tell us that only the

case where i = 2 needs an argument. Write H2 = (H2)P/(f), so one has to prove that

depth (H2) ≥ 1.

It is well know that

H2 =
(J, f)/(f) : If/(f)

(J, f)/(f)
' HomR/(f)

(
R/(f)

If/(f)
,

R/(f)

(J, f)/(f)

)
where J ⊂ If is an ideal generated by a regular sequence of length n − 2 modulo f .

We have Ass R/(f)(H2) = SuppR/(f)(R/If ) ∩ Ass R/(f)(R/(J, f)) ⊂ Ass R/(f)(R/(J, f))

Since (J, f) is generated by a regular sequence of length n − 1, hence m/(f) 6∈
Ass R/(f)(R/(J, f)), thus m/(f) 6∈ Ass R/(f)(H2), this proofs that depthH2 ≥ 1.

2.2 Linear type property of the Jacobian ideal

If f defines a smooth hypersurface then If is irrelevant, i.e., is generated by a regular

sequence, hence is of linear type. We regard this case as uninteresting and assume

that f has singularities. This entails ht (If/(f)) ≤ n − 2. If moreover f is reduced

then ht (If/(f)) ≥ 1. For n = 3 we therefore find ht (If/(f)) = 1. Ideals of height 1

in non-regular rings of dimension 2 are of course a tall order. Of course these typically

involve a non-trivial primary decomposition,

Again for n = 3, we note that If is complete intersection. Since we regard the lin-

ear type case as uninteresting we would better stay away from the natural conditions

under which If is of linear type. Fortunately, in the almost complete intersection case

this is fairly known. For convenience we file the following general result, which collects

in a more detailed version several known facts about an almost complete intersection

(see [17, Proposition 3.7], also [6, Proposition 8.4, Proposition 10.4, Remark 10.5]).

Proposition 2.2.1 Let R denote a Cohen–Macaulay local ring and let I ⊂ R denote

a proper ideal of height h ≥ 0. Assume that

(i) I is a strict almost complete intersection (i.e., minimally generated by h + 1

elements)

(ii) R/I is equidimensional (i.e., dimR/I = dimR/P for every minimal prime P

of R/I)
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(iii) I satisfies the so-called sliding depth inequality depthR/I ≥ dimR/I − 1.

Let Rm ϕ−→ Rh+1 −→ I −→ 0 stand for a minimal free presentation of I as an

R-module. The following conditions are equivalent:

(a) ht I1(ϕ) ≥ ht I + 1

(b) IP is a complete intersection for every minimal prime P of R/I

(c) I is of linear type.

Proof. (a)⇒ (b) Localizing at such a prime leaves some element of I1(ϕ) invertible,

so up to an elementary transformation on ϕP the local presentation has the form

Rm−1
P ⊕RP

ϕP−→ Rh
P ⊕RP −→ IP −→ 0,

with

ϕP =

(
1 0

0 ψ

)
Therefore, we get a free presentation Rm−1

P

ψ−→ Rh
P −→ IP −→ 0, thus showing that

IP is generated by (at most) h elements.

(b) ⇒ (c) By [6, Proposition 10.4] The symmetric algebra of I is a Cohen–

Macaulay ring. Therefore, by [6, Proposition 8.4] it suffices to show that ht IQ ≤ htQ

for every prime Q ⊂ R containing I. Let P be a minimal prime of R/I contained

in Q. If P = Q the hypothesis guarantees the inequality. Otherwise ht (Q) ≥ h + 1.

But ht (IQ) = ht IP = h because R/I is equidimensional, hence we are through.

(c)⇒ (a) By [6, Lemma 8.2 and Proposition 8.4] one has ht It(ϕ) ≥ rank(ϕ)−t+2

for every 1 ≤ t ≤ rank(ϕ) = h. In particular, ht I1(ϕ) ≥ h− 1 + 2 = ht I + 1.

We get the following Lemma for linear type property of gradient ideal.

Lemma 2.2.2 Let f ∈ R = k[x1, . . . , xn] stand for a reduced homogeneous polyno-

mial. Assume that the singular locus of V (f) ⊂ Pn−1 consists of a nonempty set of

points. The following are equivalent:

(1) The coordinates of the vector fields of Pn−1 vanishing on f generate an irrelevant

ideal.

(2) Locally at each singular point of V (f) the gradient ideal is a complete intersec-

tion.

38



(3) The gradient ideal of f is of linear type.

Proof. A vector field v =
∑n

i=1 ai∂/∂xi vanishes on f if and only if
∑n

i=1 ai∂f/∂xi =

0. Therefore the coordinates of all such vector fields generate the ideal of 1-minors

of a syzygy matrix of the gradient ideal. The result then follows immediately from

Lemma 2.2.1 once its hypotheses are verified in this setup,as we proceed to see now.

Since f is assumed to be reduced, whose singular locus is a nonempty set of

isolated singularities, its gradient ideal is a (homogeneous) ideal of codimension n−1,

hence can only have minimal primes of codimension n − 1 in R. Therefore it is

equidimensional.

Finally, the depth condition is trivially verified for the numbers in question.

So much for the linear type property. Clearly, this property implies that the

partial derivatives are algebraically independent over k. The latter property in turn

reads geometrically to the effect that the polar map associated to the hypersurface

V (f) ⊂ Pn−1 is dominant. characteristic zero this is tantamount to saying that the

Hessian of f does not vanish (cf. [3] for a detailed account on this).

As a simple application of th Lemma 2.2.1 for the case n = 3, we drive the

following corollary:

Corollary 2.2.3 Let f ∈ R = k[x, y, z] denote an irreducible homogeneous polyno-

mial over an algebraically closed field k of characteristic zero. If deg(f) ≤ 3 then the

gradient ideal of f is an ideal of linear type.

Proof. If f is a linear form then its gradient is the ring R which is R-free, hence

trivially of linear type. An irreducible quadric is smooth, hence the partial derivatives

constitute a regular sequence. It is well known that a complete intersection is of linear

type.

Let f be a irreducible cubic, then f admit a singular point of multiplicity 2, say

P , then either P is a simple node or a simple cusp. By projectivities we may assume

that the possible singularity is located at the coordinate point P = (0 : 0 : 1). Then

f is a linear combination of

x3, y3, z3, x2y, xy2, x2z, xz2, z2y, zy2, xyz

and passes through P if and only if coefficient of z3 vanishes. Since P is singular

point, ∂f/∂x, ∂f/∂y, ∂f/∂z vanish at P . Note that ∂f/∂x, ∂f/∂y vanish at P if and

only if the coefficients of z2x, z2y vanish. If P is a simple cusp, one can assume that
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the tangent cone at z 6= 0 has equation y2, then the coefficients of x2z, xyz vanish.

Then

f = y2z + a1x
3 + a2y

3 + a3x
2y + a4xy

2

Note that a1 6= 0, otherwise f reduces, we can assume that a1 = 1 by scaling x. Now

we replace x by z − a3
3
y one has

f = y2z + x3 + a1y
3 + a2xy

2

Finally, replace z by z − a1y − a2x and renaming parameters, we get f = y2z + x3.

If P is a node, one can assume that the tangent cone at z 6= 0 has equation xy,

the the coefficients of x2z, y2z vanish. Then

f = xyz + a1x
3 + a2y

3 + a3x
2y + a4xy

2

Note that a1.a2 6= 0, otherwise f reduces, we can assume that a1 = a2 = 1 by

scaling x and y. Finally replace z by z − a3x− a4y and renaming parameters we get

f = xyz + x3 + y3.

Therefore, If f is a non-smooth irreducible cubic then it is projectively equivalents

to either f = y2z − x3 or f = xyz + x3 + y3. The respective gradient ideals are

(x2, yz, y2) and (3x2 + yz, 3y2 + xz, xy) and in both cases the ideal of the unique

singular point is (x, y). An easy calculation with the generators shows the first one

locally at (x, y) is generated by x2, y, for the second 1–minors of the syzygy matrix

is (x, y, z)–primary. Then by Lemma 2.2.1, the gradient ideal If is of linear type

2.3 The Aluffi gradient algebra of a plane curve

In general, the gradient ideal If will not be of linear type. We have seen in the

corollary 2.2.3, if f is a irreducible homogenous polynomial in R = k[x, y, z] of degree

≤ 3, then the gradient ideal If is of linear type. We can immediately show simple

cases of rational plane quintics and sextic whose corresponding gradient ideals are

not of linear type. Moreover, the associated Aluffi gradient algebras behaves quite

erratically from the viewpoint of their associated primes. One can show that these

examples lie on a suitable family with similar behavior.

Example 2.3.1 Let f = y4z+x5+x3y2. Then If = (x2(5x2+3y2), y(2x3+4y2z), y4).

Canceling the common factor among the last two generators, gives rise to the obvious
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Koszul relation. From this it immediately follows that the radical of the ideal gener-

ated by the coordinates of the syzygies of If has x, y among its minimal generators.

The rest follows by inspection, as it is not difficult to verify that no syzygy coordinate

has as term a pure z-power. By Corollary 2.2.2, If is not of linear type.

Of course everything in this example is easily obtained by machine computa-

tion (e.g,. Macaulay). The three algebras SR/(f)(If/(f)) � AR/(f)(If/(f)) �

RR/(f)(If/(f)) are all distinct, but of the same dimension. By Theorem 2.1.5 the

leftmost is Cohen–Macaulay, while the Aluffi algebra has no embedded primes though

it is not Cohen–Macaulay.

Now let f = zy2(x2 + y2) + x5 + y5 + x3y2. Here the symmetric algebra is Cohen–

Macaulay, while the Aluffi algebra has embedded primes.

Finally, let f = xy4z+x6+y6. A computer calculation yields the following syzygy

matrix of If :  0 −6y3z −6y4

xy 9x4 + y2z2 y3z
−6y2 − 4xz −54x3y − 4yz3 36x4 − 4y2z2


Note that no syzygy coordinate contains a term which is a pure z-power. By Corol-

lary 2.2.2, If is not of linear type. A computer calculation, monitored by the informa-

tion on the format of the minimal primes of the corresponding Aluffi gradient algebra,

shows that this algebra is puredimensional, though it is not Cohen-Macaulay.

2.4 Families of irreducible singular curves

In this part we study families of singular plane curves and a corresponding “relative”

Jacobian ideal for the linear type property and the corresponding Aluffi gradient

algebra. We start by making clear what we mean by a family for our purposes.

Let k[a] = k[a1, . . . , am] stand for a polynomial ring over the field k and let

F ∈ S := k[a][x, y, z] denote a polynomial which is a form on x, y, z. We give S the

structure of standard graded ring over k[a]. The basic assumption is that the content

of F with respect to the a-coefficients is 1. Then F is a non-zero-divisor on k[a]/I for

every ideal I ⊂ k[a], hence Tor1k[a](k[a]/I, k[a][x, y, z]/(F )) = {0} for any such ideal.

This gives that the inclusion k[a] ⊂ k[a][x, y, z]/(F ) is flat, hence defines a family of

curves in P2 over the parameters a.

Thus, we speak of a family of plane curves over the parameters a when referring

to this setup. We will of course adhere to the terminology of calling general member
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of the family the equation of the plane curve obtained by substituting general values

in k for a. Moreover, our interest lies on the case where the general member of the

family is a reduced singular plane curve. In this case we speak of a family of plane

singular curves.

In the sequel we will assume moreover that m ≤
(
d+2
2

)
− 1, where d is the (homo-

geneous) degree of F in x, y, z and that F has the form

F = ϕ0(x, y, z) +
m∑
j=1

ajϕj(x, y, z), (2.2)

where {ϕj(x, y, z) | 0 ≤ j ≤ m} is a set of monomials of degree d in x, y, z, and

ϕ0(x, y, z) 6= 0.

Note that the form of F depends on the singular points of the general member.

Thus, it makes sense to speak about a normal form or canonical form of F depending

on this singular locus. Our convention is that such a normal form is to be obtained

through projective transformations applied to the x, y, z-coordinates allowing coeffi-

cients from k[a]. Besides, in order to account for degeneration of singularities of the

general member we need correspondingly to consider certain degeneration ideals in

the parameter ring k[a].

Write

F ≡ ϕ0(x, y, z) + ψ(x, y, z, a1, . . . , am),

as in (2.2), where ϕ0(x, y, z) involves the singularity type in terms of the projectivized

tangent cones on suitable affine pieces.

Example 2.4.1 Let us write a normal form for the family Γ of irreducible singular

quartic plane curves such that the singular locus of the general member consists of

one simple node - note that at this point it is not totally clear that there exists at

all such a family in the sense we established, since we must first obtain some F ∈ S
that works. By projectivities one can assume that the node is P = (0 : 0 : 1) and the

tangent cone at z 6= 0 has equation xy. Since the general member ought to vanish

at P then we may omit the terms in z4, z3x and z3y. Thus, an intermediate step

towards a normal form is

F = xyz2 + a1x
3z + a2x

2yz + a3xy
2z + a4y

3z + a5x
4 + a6x

3y+ a7x
2y2 + a8xy

3 + a9y
4.

We can see that the specialization of F by k-values factors properly if both a1 and a5

have vanishing k-values; similarly, if both a4 and a9 have vanishing k-values. Thus, for

writing a normal form we may incorporate x4 and y4 as terms of ϕ0(x, y, z). Finally,
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the projectivity x = x, y = y, z = z − 1
2
(a2x + a3y) (characteristic 6= 2) allows to

eliminate the terms in x2yz and xy2z. Up to renaming parameters, this yields the

following normal form:

F = xyz2 + x4 + y4 + a1x
3z + a2y

3z + a3x
3y + a4x

2y2 + a5xy
3

Example 2.4.2 In this example we would like to write a normal form for the family

of irreducible singular quartic plane curve such that the singular locus of the general

member admit two singular points of type node and cusp. By projectivities one can

assume that the node is located at P = (0 : 0 : 1 and the tangent cone at z 6= 0 has

equation x2 − y2 and the cusp is q = (0 : 1 : 0) with the tangent cone at y 6= 0 has

equation z2. Thus, an first step towards a normal form is

F = (x2 − y2)z2 + a1x
4 + a2x

3y + a3x
3z + a4x

2yz

we can see that the specialization of F by k–values factors if a1a2 6= 0. Then we may

incorporate x4 as terms of ϕ0(x, y, z). Then up to renaming parameters, this yields

the following normal form:

F = (x2 − y2)z2 + x4 + a1x
3y + a2x

3z + a3x
2yz

2.5 Degeneration of singularity

The normal form has degenerations to other normal forms whose general member

has more involved singularities or even acquires new singular points. The following

example may illuminate this phenomenon.

Example 2.5.1 Consider the family of irreducible rational plane quartics with ex-

actly three nodes. In [9, Lemma 11.3] a normal form is given of a family whose general

member is an irreducible quartic with three double points, namely

F = αx2y2 + βx2z2 + γy2z2 + 2xyz(a1x+ a2y + a3z), αβγ 6= 0.

To get a normal form whose general member is an irreducible quartic with three

nodes, substitute x = α−1x, β−1y, γ−1z and rename (αβγ)−1a1, (αβγ)−1a2, (αβγ)−1a3

to a1, a2, a3, respectively. One obtains the normal form

F = x2y2 + x2z2 + y2z2 + 2xyz(a1x+ a2y + a3z).
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Note that for k-values a1 = ±1, one of the nodes degenerates into a cusp, similarly,

for a2 = ±1 or a3 = ±1, for k-values a1 = a2 = ±1, two nodes degenerate into

two cusp, similarly a1 = a3 = ±1 or a2 = a3 = ±1 and finally for k-values a1 =

a2 = a3 = ±1 three nodes degenerate to three nodes. Thus the general member

requires that the k-values of the triple (a1, a2, a3) do not lie on the hypersurface

V ((a21 − 1)(a22 − 1)(a23 − 1)) in order that it have exactly three nodes.

Requiring that the general member acquire no new singular points besides the

three nodes imposes yet another obstruction. Of course, in the present low degree 4,

because of genus reason there will be new singular points only if the general member

properly factors. As we will see this obstruction is precisely given by the hypersurface

whose equation is the discriminant 2a1a2a3 + a21 + a22 + a23 − 1 of a suitable conic (see

Section 2.6).

Remark 2.5.2 The last polynomial above can also be computed through resultants,

as follows: first compute g1 := Res (∂F
∂x
, ∂F
∂z
, z) and g2 := Res (∂F

∂y
, ∂F
∂z
, z). These resul-

tants admit the factors 8xy2 and 8x2y, respectively; then compute Res (g1/8xy
2, g2/8x

2y),

which has a21 + a22 + a23 + 2a1a2a3 − 1 as a factor.

The following is our main result for this part. It would mostly suffice for it to

assume that the a-coefficients of the terms of F be algebraically independent over k.

Theorem 2.5.3 Let F denote a family of singular plane curves of degree d, on pa-

rameters a = a1, ..., am, whose general member is reduced and irreducible. Write

S = k[a][x, y, z]. Let IF ⊂ S denote the ideal generated by the x, y, z-partial deriva-

tives of F and let I ⊂ S stand for the ideal of 1–minors of the syzygy matrix of IF .

Then:

(a) codim (IF ) = 2

(b) codim (I) ≤ 3

(c) If k is algebraically closed of characteristic zero, the following are equivalent:

(i) codim (I) = 3

(ii) The contraction of the ideal I : (x, y, z)S ∞ to k[a] is a nonzero ideal.

(iii) The projective plane curve obtained by evaluating (a1, . . . , am) at points in

Am off the zero set of (I : (x, y, z)S ∞) ∩ k[a] has gradient ideal of linear

type.
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Proof. (a) Clearly, codim (IF ) ≤ 3. Since the general member is singular and reduced

its gradient ideal has codimension 2. This forces codim (IF ) = 2.

(b) We go more algebraic: the ring S = k[a][x, y, z] is standard graded with

S0 = k[a]. Since F is a homogeneous polynomial in this grading, its partial derivatives

are homogeneous of same degree. We claim that any syzygy of the partial derivatives

has coefficients in (x, y, z)S. Indeed, since the partials are in the same degree, a

syzygy outside (x, y, z)S would have to be of degree 0, i.e., with all its coordinates

in the zero degree part k[a]. But this would force a syzygy among the coefficients

of degree 0 of the partials, hence a polynomial relation of a, which is nonsense since

these are indeterminates over k.

Incidentally, note this argument breaks down for the second syzygies (and on) as

the first syzygies may have different degrees in S.

(c) (i) ⇒ (ii) Write m = (x, y, z)S. Clearly, I : m∞ 6∈ (x, y, z)S. This is because

codim (I) = 3 and m is a minimal prime therein by the proof of (b), hence the

saturation picks up the remaining primary components of I (possibly empty), hence

cannot be contained in m. This shows that (I : m∞) ∩ k[a] 6= {0}.

(ii)⇒ (iii) Let g = g(a) ∈ (I : m∞)∩k[a] be any nonzero element. By hypothesis,

g conducts a power of (x, y, z)S inside I. Giving a k-values α off V ((I : m∞) ∩ k[a])

yields a power of the maximal ideal (x, y, z) ⊂ k[x, y, z] inside the image I(α) of I
by this evaluation. Let f = F (α) ∈ k[x, y, z] denote the member of the family thus

obtained. Then I(α) ⊂ I1(ϕ), where ϕ denotes the syzygy matrix of the partial

derivatives of f . This shows that I1(ϕ) is (x, y, z)-primary. Therefore, the result

follows from Corollary 2.2.2.

(iii) ⇒ (i) The hypothesis is that the gradient ideal of the general member of

the family is of linear type. Again by Corollary 2.2.2 this implies that the ideal of

1-minors of such a plane curve has codimension 3. On the other hand, for general

value α of a, the ideals I1(ϕα) and I have the same codimension, where ϕα stands

for the syzygy matrix of F (α).

Remark 2.5.4 In the above notation, if the image I(0) ⊂ k[x, y, z] of I through

the evaluation a 7→ 0 is (x, y, z)-primary then I has codimension 3. It follows that if

f ∈ k[x, y, z] is a general fiber (by evaluation), the ideal generated by the entries of

the syzygy matrix of If has codimension 3 as well.

Care has to be exercised: although I(0) is contained in the ideal of 1-minors of the

syzygy matrix of the special member F (0) obtained by evaluating F at 0, they may

45



be different and, in fact, have different codimensions. Thus, e.g., the one-parameter

family F = y4z + x5 + ax3y2 (see Example 2.3.1) is such that I has height 2 – hence

the gradient ideal of the general member F (α) of the family is not of linear type – and

nevertheless the special member F (0) is easily seen to have gradient ideal of linear

type. In particular, this shows a piece of difficulty of the theory in which, perhaps

unexpectedly, the notion of being of linear type is neither kept by specialization nor

by generization.

Remark 2.5.5 In the setting of elimination theory. Let π : P2
k × Am

k → Am
k be the

projection map to the second factor. Since X = V (I) ⊂ P2
k × Am

k define a algebraic

closed set, by the main theorem of the elimination theory, the image of X, say π(X)

is the zero set of I : (x, y, z)∞ ∩ k[a]. We can interpret π(X) as the set of m–tuple α

for which X has a non-trivial solution in x, y, z.

Conjecture 2.5.6 Under the hypotheses of the previous theorem, any of the condi-

tions (i) through (iii) is equivalent to the following one: the contraction of the ideal

I : (x, y, z)S ∞ to k[a] is an ideal of codimension 1.

2.6 Rational quartics curves

We review some preliminaries about rational quartics, the basic reference being [23].

An irreducible rational quartic having only double points can be obtained as a

rational transform from a non-degenerate conic by means of one of the three basic

plane quadratic Cremona maps:

(1) P2 99K P2 with defining coordinates (yz : zx : xy)

The base locus of this Cremona map consists of the points (1 : 0 : 0), (0 : 1 : 0)

and (0 : 0 : 1), each with multiplicity one (in the classical terminology, three

proper points – see [1]).

(2) P2 99K P2 with defining coordinates (xz : yz : y2)

The base locus of this Cremona map consists of the points (0 : 0 : 1) and (1 :

0 : 0), with multiplicity 1 and 2, respectively (in the classical terminology, one

proper point and another proper point with a point in its first neighborhood).

(3) P2 99K P2 with defining coordinates (y2 − xz : yz : z2)
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The base locus of this Cremona map consists of the point (1 : 0 : 0) with

multiplicity 3, a so-called triple structure on a point (in the classical terminology,

one proper point with a point in its first neighborhood and a point in its second

neighborhood).

We will use Theorem 2.5.3 and Corollary 2.2.2, along with the above ideas, to

prove the following curious phenomenon.

Theorem 2.6.1 (k algebraically closed of characteristic zero) Let f ∈ k[x, y, z] be

an irreducible rational quartic plane curve. Then the gradient ideal of f is an ideal

of linear type.

Proof. We may assume that f is singular as otherwise the gradient ideal is generated

by a regular sequence.

Then f has at least one double singular point and at most a triple point as it is

assumed to be rational. Let us first consider the situation where f has a double point

– hence has at most 3 such points and no triple point.

In this case, f comes as explained above from a conic by means of a Cremona

map.

Let F = a1x
2 +a2y

2 +a3z
2 +2a4yz+2a5zx+2a6xy be the equation of the conic as

above, assumed non-singular, i.e., the corresponding symmetric matrix has nonzero

determinant ∆ = a1a2a3 + 2a4a5a6 − a1a24 − a2a25 − a3a26 (the discriminant of F ).

Applying the above Cremona maps, we obtain, respectively:

(1) A quartic with exactly three double points at P1 = (1 : 0 : 0), P2 = (0 : 1 : 0)

and P3 = (0 : 0 : 1), where P1 (respectively, P2, P3) is a node except when

the principal minor a1a2 − a26 vanishes (respectively, except when the principal

minors a1a3 − a25, a2a3 − a24 vanish).

Here we may harmlessly assume that all of them equal to a1 = a2 = a3 = 1

provided they are all nonzero.

(2) A quartic with a double point at P1 = (0 : 0 : 1) (which is a node or a cusp

according as to whether a2 6= 0 or a2 = 0) and a double point at P2 = (1 : 0 : 0)

(which is either a tacnode or a ramphoid cusp according as to whether the

principal minor a1a3 − a25 is nonzero or vanishes).

Here we may assume that a1 = a3 = 1 and a6 = 0.
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(3) A quartic with an oscnode at P1 = (1 : 0 : 0) if a2 6= 0; else, a singularity of

type A6.

Here we may assume that a1 = 1 and a5 = a6 = 0.

An irreducible rational quartic having only double points – ordinary or not – falls

within the following families up to coordinate change, according to the nature of its

singularities. Below we have written f̃ instead of F to help us think of the general

member instead of the family itself, thus making lighter to pinpoint the degeneration

loci. To keep track of the parameters in each case we have maintained the original

indices, however anaesthetical it may look. The requirement that ∆ 6= 0 will mean

that the general member is irreducible.

(a) Three nodes:

f̃a = y2z2 + x2z2 + x2y2 + 2xyz(a4x+ a5y + a6z), a4, a5, a6 6= ±1, ∆ 6= 0

where ∆ = 2a4a5a6 + a24 + a25 + a26 − 1.

(b) Two nodes and one cusp:

f̃b = y2z2+x2z2+x2y2+2xyz(a4x+a5y+z), a4, a5 6= ±1, ∆ = (a4+a5)
2 6= 0

(c) One node and two cusps:

f̃c = y2z2 + x2z2 + x2y2 + 2xyz(a4x+ y + z), a4 6= ±1

(d) Three cusps :

f̃d = y2z2 + x2z2 + x2y2 − 2xyz(x+ y + z)

(e) One tacnode and one cusp:

f̃e = x2z2 + y4 + 2y3z + 2a5xy
2z, a5 6= ±1

(f) One tacnode and one node :

f̃f = z2(x2 + y2) + y4 + 2a4y
3z + 2a5xy

2z, a5 6= ±1, ∆ = a24 + a25 − 1 6= 0

(g) One ramphoid cusp and one node:

f̃g = x2z2 + y4 + 2zy3 + 2xy2z + a2z
2y2, a2 6= 0
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(h) One ramphoid cusp and one cusp:

f̃h = x2z2 + y4 + 2zy3 + 2xy2z

(i) One oscnode :

f̃i = (y2 − xz)2 + y2z2 + a3z
4, a3 6= 0

(j) One singularity of type A6:

f̃j = (y2 − xz)2 + 2yz3

We now consider the case where the quartic has a triple point, say, at P = (0 : 0 :

1). In this case the equation of the curve can be taken in the form ϕ(x, y) z+ψ(x, y) =

0, where ϕ can be brought up to one among the forms xy2−x3, xy2 and y3, and ψ may

be further normalized in such a way that the resulting family has as few parameters

as possible. After these reduction manipulations, up to projective equivalence, any

irreducible plane quartic with a triple point falls within three basic families, according

to the nature of the triple point:

(k) An ordinary triple point:

f̃k = x(y2 − x2)z + y4 + a1x
2y2 + a2yx

3

(l) A triple point with double tangent:

f̃l = xy2z + x4 + y4 + a1x
3y

(m) A higher cusp :

f̃m = y3z + x4 + a1x
2y2.

We divide all above cases to four sets A = {a, c, e, f, k}, B = {i, g, b}, C =

{d, h, j}. and D = {l,m}. We now use the Theorem 2.5.3 and corollary 2.2.2 in each

one of the above cases.

Write Jf̃ = (∂f̃/∂x, ∂f̃/∂y, ∂f̃/∂z) , A = (I : (x, y, z)∞) ∩ k[a] and D =
√
A.

For f̃ξ with ξ ∈ A, inspecting the format of the partial derivatives gives that

their syzygies are the syzygies of the special members f̃ξ(0) for ξ ∈ A. Therefore

the codimension of Iξ(0) for ξ ∈ A is read off the ideal of 1-minors of the following

matrices:
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Ma =

 xy2 − xz2 −x3 − xz2 0 −x2z − y2z x2y + yz2

−y3 − yz2 x2y − yz2 −xz2 − y2z 0 −xy2 − xz2

y2z + z3 x2z + z3 x2y + yz2 xy2 + xz2 0

 ,

Mc =

 −xy + xz 2x2 − 3xy − 3xz + 2yz 3xy2 − 2y2z − 3xz2 + 2yz2

3y2− 2xz + 3yz −2xy + 3y2 − yz −3y3 − yz2

2xy − 3yz − 3z2 −2xz − yz + 3z2 y2z + 3z3

 ,

Mk =

 −12x2 + 8y2 − 2xz 4x2y − 4y3 x3 − xy2 0
−2yz −x2z + y2z 0 x3 − xy2

36xz + 6z2 −12xyz − 2yz2 −3x2z + y2z 4y3 + 2xyz



Mf =

 x2 + y2 2y3 + yz2 0 2xy2 + xz2

0 −xz2 −xz2 − y2z yz2

−xz 0 2y3 + yz2 −2y2z − z3

 ,

Me =

 2xy + 3xz 2x2 − 3y2 0
yz xz −y3 − x2z
2yz − 3z2 −2xz 2y3 + 3y2z

 ,

On the nose manipulation readily shows that x3, y3, z3 ∈ Iξ(0). Thus, Iξ(0) has

codimension 3 for ξ ∈ A. Now Remark 2.5.4 implies that I has codimension 3.

Then, by Theorem 2.5.3 f̃ξ(α) has gradient ideal of linear type for every α ∈ Arξ
k

(rξ is the number of the parameter depend on ξ ∈ A) off the zero sets of Da =

(a24−1)(a25−1)(a26−1)(2a4a5a6 +a24 +a25 +a26−1), Dc = (a24−1),De = (a25−1),Df =

(a25 − 1)(a24 + a25 − 1) and Dk = a21 − a22 + 2a1 − 1, respectively.

For f̃ξ with ξ ∈ B, we denote by Pξ the set of minimal prime ideal of Iξ for

ξ ∈ B. It is easy to see that for ξ = i, g the minimal prime ideal of Iξ other than

(x, y, z) are Pg = {(x, y, a2)} and Pi = {(x, y, a3)}. For Ib, we have the following

minimal prime ideals: Pb := {(x, y, a4 + a5), (xy+xz− yz, a4− 1, a5 + 1), (x, z, a5−
1), (y, z, a4 − 1), (xy + xz − yz, a4 + 1, a5 − 1), (y, z, a4 + 1), (x, z, a5 + 1)}. This

implies that Iξ for ξ ∈ B has codimension 3. Then by Theorem 2.5.3, f̃ξ(α) has

gradient ideal of linear type for every α ∈ Arξ
k off the zero set of Dg = a2, Di = a3

and Db = (a24 − 1)(a25 − 1)(a4 + a5) respectively.

For f̃ξ with ξ ∈ C, we apply directly Lemma 2.2.2. Therefore the jacobian matrix

of f̃ξ for ξ ∈ C is:

Md =

 3xy + 3xz − 2yz 3xz − yz 3x2 − xz
−3y2 + yz 3xy + 3y2 − 3xz + 5yz −3xy + 2xz − 3yz
yz − 3z2 3xy − 3xz − 4yz − 6z2 −xz + 3z2

 ,
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Mh =

 2y2 − 3xz 10xy + 9xz 50x2 − 27xz
−yz −2xz + 3yz 10xy + 10y2 + 6xz − 9yz
3z2 −6yz − 9z2 −20y2 − 50xz − 12yz + 27z2

 ,

Mj =

 6y2 + xz 7xy − 3z2 7x2 + 18yz
3yz 3xz 3xy
−z2 −yz 6y2 − 7xz


An easy calculation shows that x2, y2, z2 ∈ I1(Mξ) for ξ ∈ C. Therefore Lemma

2.2.2 implies that the gradient ideal is of linear type.

For f̃ξ with ξ ∈ D,. It is easy to check that the 1–minors of the syzygy matrix of

ideal Jf̃ξ for ξ = l,m is (x, y, z)-primary, that is, x3, y3, z3 ∈ Iξ. Then the gradient

ideal of f̃ξ(α) for every α ∈ A1
k is of linear type.

Now we verify the linear type property for points in V (Dξ):

Case(a): since the polynomial ∆ = 2a4a5a6 + a24 + a25 + a26 − 1 is the discriminant

of a conic, for α ∈ V (∆) ⊂ A3
k, we have a reducible conic whose transformation by

Cremona map (1) is a reducible rational quartic, but we are interested in irreducible

rational quartic. For k-values a4 = ±1 such that a25+a26±2a5a6 6= 0 , one of the nodes

degenerates into a cusp, then we have a irreducible rational quartic lies in the family,

with two nodes (b). Similarly, for a5 = ±1 or a6 = ±1. For k-values a4 = a5 = ±1

such that a6 6= ±1, two nodes degenerate into two cusp and lies in the family (c).

Similarly a4 = a6 = ±1 or a5 = a6 = ±1. Finally for k-values a1 = a2 = a3 = ±1

three nodes degenerate to three nodes, we have quartic with three cusp.

Case (b): similar argument as case (a).

Case(c): for k-value a4 = ±1, the node type singularity degenerate into cusp, then

we get a quartic with three cusps (d). Case (e), for k-value a5 = ±1, the Tacnode type

singularity degenerate into Ramphoid cusp, hence we a quartic with one ramphoid

cusp and one cusp

Case(f): for k-value in α ∈ V (a24 + a25− 1) we get a reducible quartic. For k-value

a5 = ±1 such that a4 6= 0 we get a family lies in the family with one ramphoid cusp

and one node.

Case (k): by Bezout’s Theorem we note that it is impossible a quartic has two

points of multiplicity 3 and also with multiplicity 2 and 3. Then for for k-value in

V (a21 − a22 + 2a1 − 1) we obtain exactly a reducible quartic.

In case (g),(i), for k-value a2 = 0 and a3 = 0, we obtain a rational quartic in

families (h) and (f), respectively.
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Chapter 3

Appendix

3.1 All quartic curves

In this part we will prove the following general result.

Theorem 3.1.1 Let f ∈ R = k[x, y, z] denote an irreducible homogeneous polyno-

mial over an algebraically closed field k of characteristic zero. If deg(f) = 4 then the

gradient ideal of f is an ideal of linear type.

Proof. An irreducible plane quartic has arithmetic genus 3, hence has at most 3

singular points including infinitely near ones. By projectivities we may assume that

the possible singularities are located at the coordinate points. Then up to this change

and possibly more, any irreducible plane quartic falls within the following families,

according to the nature of its singularities [23]:

• aA1 + bA2 a+ b ≤ 3

• A3, A1 + A3, A2 + A3

• A4, A1 + A4, A2 + A4

• A5, A6

• D4, D5, E6

where we means by; A1 (simple node), A2 (simple cusp), A3 (Tacnode), A4 (Ramphiod

cusp), A5 (Oscnode ) and D4, D5 and E6 (triple points).

We observe that families 3A1, 3A2, 2A1 +A2, A1 + 2A2, A3 +A1, A3 +A2, A4 +

A1, A4 + A2, A5, A6, D4, D5 and E6 are irreducible rational quartics. In the

Theorem 2.6 we proved any rational quartic has gradient ideal of linear type. For the

rest families, we have the following normal forms:
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(a) At least one simple node:

f̃ = xyz2 + x4 + y4 + a1x
3y + a2xy

3 + a3x
2y2 + a4x

3z + a5y
3z,

(a1) At least two nodes:

f̃ = (y2 + x2)z2 + x2y2 + a1x
4 + a2x

3y + a3x
3z + a4x

2yz,

(b) At least one simple cusp:

f̃ = y2z2 + x4 + a1y
4 + a2xy

3 + a3x
2y2 + a4x

3z + a5x
2yz,

(b1) At least two cusps:

f̃ = y2z2 + x4 + a1x
3y + a2x

3z + a3x
2yz,

(c) At least one Tacnode:

f̃ = y2z2 − x4 + a1xy
3 + a2x

2y2 + a3y
4,

(d) At least one Ramphiod cusp:

f̃ = x2z2 + 2xy2z + y4 + y3z + a1yz
3 + a2z

4,

(g) One node and one cusp:

f̃ = z2(y2 − x2) + x4 + a1xy
2z + a2x

3z + a3x
3y

The ultimate goal, as the rational quartics, is to show that any irreducible quartic

whose equation is obtained from any of the above cases, by evaluating the a’s to

elements of the ground field k, has gradient ideal of linear type.

We now apply the Theorem 2.5.3 in each one of the above cases. Write Jf̃ =

(∂f̃/∂x, ∂f̃/∂y, ∂f̃/∂z) , A = (I : (x, y, z)∞) ∩ k[a] and D =
√
A.

Case (a), inspecting the format of the partial derivatives gives that their syzygies is

the syzygies of the special members f̃(0) = xyz2+x4+y4 . Therefore the codimension
of I(0) is read off the ideal of 1-minors of the following matrix:

Ma =

 0 −2xyz 4y3 + xz2 48y3z
−2xy 0 −4x3 − yz2 −12yz3
4y3 + xz2 x2y + yz2 0 96x2y2 + 6z4


On the nose manipulation readily shows that x4, y4, z5 ∈ I(0). Thus, I(0) has

codimension 3. Now Remark 2.5.4 implies that I has codimension 3. Then, by
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Theorem 2.5.3 f̃(α) has gradient ideal of linear type for every α ∈ A5
k off the zero set

D.

For the reminded cases, a direct verification, inspired by (but not dependent upon)

a calculation with Macaualy shows that ideal I has codimension 3. Then, by Theo-

rem 2.5.3 f̃(α) has gradient ideal of linear type for every α ∈ Ar
k ( r depend on the

number of parameteres) off the zero set D.

An easy calculation shows that D for above cases is a messy irreducible polynomial

in parameters a. Since we have a complete classification of irreducible singular quar-

tics then evaluation f̃ for points in V (D) is a quartics which is projectively equivalents

with the general member of other families or a reducible quartic.

Then this prove that a quartic has gradient ideal of linear type.

3.2 Quintics and Sextics

In this section we study the linear type property of an irreducible quintic and sextic

plane curve with only one simple singular point.

we have the following result about linear type property of the gradient ideal of a

quintic plane curve.

Proposition 3.2.1 Let f ∈ R = k[x, y, z] denote an irreducible homogeneous poly-

nomial of degree 5 over an algebraically closed field k of characteristic zero whose

corresponding plane curve has a quadruple singular point P . Then the gradient ideal

of f is of linear type if and only if P is ordinary (i.e., the curve has distinct tangents

at P ).

Proof. By a projective change of coordinates, we may assume that P = (0 : 0 : 1).

In this case the equation of the quintic curve can be taken in the form zϕ(x, y) +

ψ(x, y) = 0 where ϕ and ψ are homogenous polynomials of degree 4 and 5 respectively,

having no common multiple roots, hence ϕ can be brought up to one among the

forms x3y − xy3, y4, xy3, x2y2 and x2y2 − y4 and ψ may be further normalized in

such a way that the resulting family has a few parameters as possible. After these

reduction manipulations, up to projective equivalence, any irreducible plane quintic

with a quadruple point falls within three basic families, according to the nature of

the quadruple points:

(a) Distinct tangent:

f̃ = zxy(x2 − y2) + x5 + y5 + a1x
4y + a2x

3y2
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(b) One single tangent of multiplicity 4:

f̃ = zy4 + x5 + a1x
3y2 + a2x

2y3,

(c) One tangent of multiplicity 3:

f̃ = xy3z + x5 + y5 + a1x
4y + a2x

3y2

(d) Two tangents of multiplicity 2 each:

f̃ = zx2y2 + x5 + y5 + a1x
4y + a2xy

4

(e) One tangent of multiplicity 2 and two remaining distinct tangents:

f̃ = zy2(x2 − y2) + x5 + a1x
4y + a2xy

4 + a3y
5

Write Jf̃ = (∂f̃/∂x, ∂f̃/∂y, ∂f̃/∂z) , A = (I : (x, y, z)∞) ∩ k[a] and D =
√
A.

A direct verification inspired by( but not depended upon) a calculation with

Macaulay shows that, in the case (a), ideal I generated by coordinates of all syzy-

gies of the ideal J(f̃) has codimension 3. Then theorem 2.5.3 implies that f̃(α) has

gradient ideal of linear type for every α ∈ A2
k off the zero set of D.

Since by Bezout Theorem, a quintic by a quadruple singular point can not admit

other singular point, hence for k-value in V (D), we have exactly a reducible quintic.

In the other cases, an easy calculation shows that ideal I has codimension 2, hence

the gradient ideal of the general member f̃(α) of the family is not of linear type.

Proposition 3.2.2 Let f ∈ R = k[x, y, z] be an irreducible homogeneous polynomial

of degree 6 over an algebraically closed field k of characteristic zero whose correspond-

ing plane curve has one singular point P with multiplicity 5. Then the gradient ideal

of f is of linear type if and only if P is ordinary quintuple point.

Proof. By a projective change of coordinates, we may assume that P = (0 : 0 : 1). In

this case the equation of the sextic curve can be taken in the form zϕ(x, y)+ψ(x, y) =

0 where ϕ and ψ are homogenous polynomials of degree 5 and 6 respectively, having

no common multiple roots, hence ϕ can be brought up to one among the forms

xy(x − y)(x2 + y2), y5, xy4, x2y3, y3(x2 − y2) and xy2(x2 − y2) and ψ may be further

normalized in such a way that the resulting family has a few parameters as possible.

After these reduction manipulations, up to projective equivalence, any irreducible

plane sextic with a quintuple point falls within three basic families, according to the

nature of the quintuple points:
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(a) Distinct tangent:

f̃ = xy(x− y)(x2 − y2)z + x6 + y6 + a1x
4y2 + a2x

3y3 + a3x
2y4

(b) One single tangent of multiplicity 5:

f̃ = zy5 + x6 + a1x
4y2 + a2x

3y3 + a3x
2y4

(c) One tangent of multiplicity 4:

f̃ = xy4z + x6 + y6 + a1x
5y + a2x

3y3 + a3x
2y4

(d) Two tangent of multiplicity 2 and 3 each:

f̃ = x2y3z + x6 + y6 + a1x
5y + a2x

4y2 + a3xy
5

(e) One tangent of multiplicity 3 and two remaining distinct tangents:

f̃ = y3(x2 − y2)z + x6 + a1x
5y + a2x

4y2 + a3x
3y3 + a4x

2y4

(f) One tangent of multiplicity 2 and three remaining distinct tangents

f̃ = xy2(x2 − y2)z + x6 + y6 + a1x
5y + a2x

4y2 + a3x
3y3

the rest of proof as similar argument in Proposition 3.2.1
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