

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

GERALDO LETE MAIA JÚNIOR

NORMA DE REDES E SISTEMAS DE COMUNICAÇÃO PARA AUTOMAÇÃO DE CONCESSIONÁRIA DE ENERGIA (IEC 61850) APLICADA A SISTEMAS INDUSTRIAIS

GERALDO LETE MAIA JÚNIOR

NORMA DE REDES E SISTEMAS DE COMUNICAÇÃO PARA AUTOMAÇÃO DE CONCESSIONÁRIA DE ENERGIA (IEC 61850) APLICADA A SISTEMAS INDUSTRIAIS

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do título de Doutor em Engenharia Elétrica.

Área de Concentração: Processamento de Energia

Orientador: Prof. D.Sc. Leonardo Rodrigues Limongi

Coorientador: Prof. D.Sc. Márcio Evaristo da Cruz Brito

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Maia Júnior, Geraldo Leite.

Norma de redes e sistemas de comunicação para automação de concessionária de energia (IEC 61850) aplicada a sistemas industriais / Geraldo Leite Maia Júnior. - Recife, 2025. 257f.: il.

Tese (Doutorado)- Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Programa de Pós-Graduação em Engenharia Elétrica, 2025.

Orientação: Leonardo Rodrigues Limongi. Coorientação: Márcio Evaristo da Cruz Brito.

1. Automação; 2. Fieldbus; 3. Industrial; 4. IEC 61158; 5. IEC 61784; 6. IEC 61850. I. Limongi, Leonardo Rodrigues. II. Brito, Márcio Evaristo da Cruz. III. Título.

UFPE-Biblioteca Central

UNIVERSIDADE FEDERAL DE PERNAMBUCO

Ata da defesa/apresentação do Trabalho de Conclusão de Curso de Doutorado do Programa de Pós-graduação em Engenharia Elétrica - CTG da Universidade Federal de Pernambuco, no dia 15 de agosto de 2025.

ATA Nº 170

Aos quinze dias do mês de agosto de dois mil e vinte e cinco, às oito horas, em sessão pública realizada de forma remota, teve início a defesa/apresentação do Trabalho de Conclusão de Curso intitulado Aplicação da Norma IEC 61850 em Redes e Sistemas de Comunicação: da Automação de Concessionárias de Energia à Indústria do doutorando GERALDO LEITE MAIA JÚNIOR, na área de concentração em Processamento de Energia, sob a orientação do Prof. Leonardo Rodrigues Limongi e coorientação do prof. Márcio Evaristo da Cruz Brito. A Comissão Examinadora foi aprovada pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica em vinte e três de julho de dois mil e vinte e cinco, sendo composta pelos examinadores: Rafael Cavalcanti Neto, da Universidade Federal de Pernambuco; Márcio Evaristo da Cruz Brito, da Universidade Federal de Pernambuco; Roberto Feliciano Dias Filho, da Universidade de Pernambuco; Felipe Vigolvino Lopes, da Universidade Federal da Paraíba e Douglas Contente Pimentel Barbosa, da Universidade Federal de Pernambuco. Após cumpridas as formalidades conduzidas pelo presidente da comissão, professor Rafael Cavalcanti Neto, o candidato ao grau de Doutor foi convidado a discorrer sobre o conteúdo do Trabalho de Conclusão de Curso. Concluída a explanação, o candidato foi arguido pela Comissão Examinadora que, em seguida, reuniu-se para deliberar e conceder, ao mesmo, a menção APROVADO. Para a obtenção do grau de Doutor em Engenharia Elétrica, o concluinte deverá ter atendido todas às demais exigências estabelecidas no Regimento Interno e Normativas Internas do Programa, nas Resoluções e Portarias dos Órgãos Deliberativos Superiores, assim como no Estatuto e no Regimento Geral da Universidade, observando os prazos e procedimentos vigentes nas normas.

Dr. FELIPE VIGOLVINO LOPES, UFPB

Examinador Externo à Instituição

Dr. ROBERTO FELICIANO DIAS FILHO, UPE

Examinador Externo à Instituição

Dr. DOUGLAS CONTENTE PIMENTEL BARBOSA, UFPE

Examinador Externo ao Programa

Dr. MARCIO EVARISTO DA CRUZ BRITO, UFPE

Examinador Externo ao Programa

Dr. RAFAEL CAVALCANTI NETO, UFPE

Presidente

Dedico este trabalho a Juraci Ancilon de Alencar Barros (in memoriam), um homem admirado e amado. Sua sabedoria e profundo conhecimento da língua portuguesa me ajudaram a redigir esta obra. Deixará muitas saudades, especialmente pelo cuidado com as explicações sobre as melhores palavras a serem utilizadas no texto e seus mais diversos significados. Suas contribuições foram além de simples orientações; foram verdadeiras aulas, ministradas por um notável professor, capaz de prender a atenção de seus alunos. É sabido que, por vontade do nosso bom Deus, não o teremos mais neste mundo, mas suas lembranças estão firmes e vivas dentro de nós, dentro de mim. Obrigado por tudo.

AGRADECIMENTOS

Agradeço à empresa CPFL Energia pelo financiamento para a construção do laboratório, onde os equipamentos adquiridos possibilitaram a viabilização da prova de conceito desta tese.

Agradeço aos professores Luiz Henrique, coordenador do projeto P&D em parceria com a CPFL Energia, Prof. Pedro Rosas e Prof. José Castro.

Agradeço a Paulo Moneta pelo incrível trabalho técnico realizado em conjunto nas atividades de laboratório.

Agradeço aos meus orientadores, Prof. Leonardo Limongi e Prof. Márcio Evaristo, cuja orientação técnica e científica foi essencial para a produção dos artigos submetidos.

Agradeço à minha família: à minha mãe, pelo seu amor incondicional; ao meu pai, por ser uma referência; e aos meus irmãos.

Agradeço, especialmente, à minha esposa, Juliane, por seu amor e paciência na construção deste trabalho, e ao meu filho, Felipe, por ter sido luz enviada por Deus a todos da minha família.

Agradeço, acima de tudo, a Deus, nosso Senhor, a quem devo tudo em minha vida. Sou grato por todos os momentos em que orei ao meu Senhor e Ele inclinou seus ouvidos, orientando-me, guiando meus passos, pensamentos e mostrando-me oportunidades para que tudo isso fosse possível.

RESUMO

A interoperabilidade entre dispositivos industriais, historicamente limitada por uma multiplicidade de protocolos proprietários e estruturas de dados incompatíveis, representa um desafio recorrente no contexto da automação de processos. Este trabalho investiga a aplicação da norma IEC 61850, originalmente desenvolvida para o setor elétrico, como solução para esse desafio em ambientes industriais. A partir de uma análise aprofundada da estrutura da norma, de seus modelos de dados e serviços de comunicação, são identificados os elementos compatíveis com a realidade da automação industrial, bem como os pontos de adaptação necessários. O estudo realiza o mapeamento de Logical Nodes relevantes para variáveis típicas de processos industriais, propondo uma modelagem padronizada conforme a IEC 61850-7-4. Para validar essa proposta, foi desenvolvido um arquivo .icd completo e autodescritivo, estruturado segundo a IEC 61850-6, e implementado em plataformas embarcadas como microcontroladores e dispositivos IIoT. Ensaios laboratoriais comprovaram a capacidade desses dispositivos de operar em conformidade com a norma, comunicando-se com softwares certificados sem a necessidade de conversores ou adaptações externas. Com isso, a tese demonstra a viabilidade técnica da adoção da IEC 61850 como referência na automação industrial, com potencial para reduzir custos, simplificar integrações e favorecer a interoperabilidade no chão de fábrica.

Palavras-chave: Automação. Fieldbus. Industrial. IEC 61158. IEC 61784. IEC 61850.

ABSTRACT

Interoperability among industrial devices, historically constrained by a multiplicity of proprietary protocols and incompatible data structures, remains a recurring challenge in the context of process automation. This work investigates the application of the IEC 61850 standard, originally developed for the electric power sector, as a potential solution to this challenge in industrial environments. Based on an in-depth analysis of the standard's architecture, data models, and communication services, the study identifies elements that are compatible with industrial automation requirements, as well as aspects that require adaptation. The study maps relevant Logical Nodes (LNs) to typical process variables in industrial systems, proposing a standardized modeling approach in accordance with IEC 61850-7-4. To validate this proposal, a complete and self-descriptive icd file was developed, structured in compliance with IEC 61850-6, and implemented on embedded platforms such as microcontrollers and IIoT devices. Laboratory tests confirmed the ability of these devices to operate in compliance with the standard, communicating with certified software tools without the need for external converters or adaptations. Accordingly, this thesis demonstrates the technical feasibility of adopting IEC 61850 as a reference framework for industrial automation, with the potential to reduce costs, simplify system integration, and enhance interoperability on the shop floor.

Keywords: Automation. Fieldbus. Industrial. IEC 61158. IEC 61784. IEC 61850.

LISTA DE FIGURAS

Figura 1 — Funções distribuídas e Logical Nodes em diferentes dispositivos físicos .	34
Figura 2 – Modelagem da informação na IEC 61850	35
Figura 3 – Hierarquia de gerenciamento de dispositivos lógicos	40
Figura 4 – Domínios de aplicação da IEC 61850	42
Figura 5 - Specific Communication Service Mapping (SCSM)	43
Figura 6 – Virtualização de componentes reais de campo	47
Figura 7 – Multiplos mapeamentos da IEC 61400-25	49
Figura 8 – Detalhamento das partes da norma	50
Figura 9 – CHP com turbina a gás	53
Figura 10 – CHP com turbina a vapor	53
Figura 11 – Detalhe da máquina primária em uma CHP	54
Figura 12 – Sistema supervisório na produção de vidro	55
Figura 13 – Logical Nodes em um sistema distribuído de energia	57
Figura 14 – Tipos de variáveis de processo na indústria	60
Figura 15 – Hierarquia no modelo ACSI	62
Figura 16 – Modelo gráfico ACSI	67
Figura 17 – Grupos de Logical Nodes por função	68
Figura 18 – Topologia de rede utilizada	72
Figura 19 – Bancada de testes utilizada	72
Figura 20 – Logical Node FSPT lido pelo sistema IED Scout	73
Figura 21 – Exemplo de virtualização da planta de controle	74
Figura 22 – Sampled Values packet captured in Wireshark	75
Figura 23 – Arquivos do padrão IEC 61850	76
Figura 24 – Interface ACSI e grupo de Logical Nodes para aplicação em processos	
industriais. Adaptado da IEC 61850-1	82
Figura 25 — Mundo - Industrial Domain	83

LISTA DE TABELAS

Tabela 1 –	Resumos das redes de campo da IEC 61158	21
Tabela 2 –	Resumos dos perfis de rede de campo da IEC 61784	22
Tabela 3 –	MMXN class: Single-phase Measurement	36
Tabela 4 –	MV class: Measured Value	37
Tabela 5 –	Common LN class	39
Tabela 6 –	Número de Logical Nodes por Grupo	41
Tabela 7 –	Functional Constraint (FC)	59
Tabela 8 –	Classe genérica para servidor	64
Tabela 9 –	Classe genérica para dispositivo lógico	64
Tabela 10 –	Classe genérica para Logical Node	65
Tabela 11 –	Classe genérica para Data Objects	66
Tabela 12 –	Classe genérica para Common Data Class	66
Tabela 13 –	Logical Nodes e suas localizações na norma IEC 61850. Grupos A, C,	
	D,F,G,H,I,K	70
Tabela 14 –	Logical Nodes e suas localizações na norma IEC 61850. Grupos L, M,	
	S, T	71
Tabela 15 –	AVCO class	92
Tabela 16 –	Análise dos Objetos de Dados na classe AVCO	92
Tabela 17 –	CALH class: Alarm handling	93
Tabela 18 –	Análise dos Objetos de Dados na classe CALH	93
Tabela 19 –	CCGR class: Cooling groups	94
Tabela 20 –	Análise dos Objetos de Dados na classe CCGR	95
Tabela 21 –	CILO class: Interlocking	96
Tabela 22 –	Análise dos Objetos de Dados na classe CILO	96
Tabela 23 –	DCHB class	98
Tabela 24 –	Análise dos Objetos de Dados na classe DCHB	98
Tabela 25 –	FCNT class: Counter	100
Tabela 26 –	Análise dos Objetos de Dados na classe FCNT	100
Tabela 27 –	FCSD class: Curve Shape Description	101
Tabela 28 –	Análise dos Objetos de Dados na classe FCSD	101

Tabela 29 – FFIL class: Filter
Tabela 30 – Análise dos Objetos de Dados na classe FFIL
Tabela 31 – FLIM class: Limiter
Tabela 32 – Análise dos Objetos de Dados na classe FLIM
Tabela 33 – FPID class: PID Controller
Tabela 34 – Análise dos Objetos de Dados na classe FPID
Tabela 35 – FRMP class: Ramp Function
Tabela 36 – Análise dos Objetos de Dados na classe FRMP
Tabela 37 – FSPT class: Set-Point Control
Tabela 38 – Análise dos Objetos de Dados na classe FSPT
Tabela 39 – FXOT class: Upper Threshold Action
Tabela 40 – Análise dos Objetos de Dados na classe FXOT
Tabela 41 – FXUT class: Lower Threshold Action
Tabela 42 – Análise dos Objetos de Dados na classe FXUT
Tabela 43 – GAPC class: Generic Automatic Process Control
Tabela 44 – Análise dos Objetos de Dados na classe GAPC
Tabela 45 – GGIO class: Generic Input/Output
Tabela 46 – Análise dos Objetos de Dados na classe GGIO
Tabela 47 – GLOG class: Generic Logging
Tabela 48 – Análise dos Objetos de Dados na classe GLOG
Tabela 49 – GSAL class: Generic Security Applications
Tabela 50 – Análise dos Objetos de Dados na classe GSAL
Tabela 51 – HLVL class: Hydraulic Level Indicator
Tabela 52 – Análise dos Objetos de Dados na classe HLVL
Tabela 53 – HVLV class: Hydraulic Valve Controller
Tabela 54 – Análise dos Objetos de Dados na classe HVLV
Tabela 55 – IARC class: Archiving
Tabela 56 – Análise dos Objetos de Dados na classe IARC
Tabela 57 – IHMI class: Human Machine Interface
Tabela 58 – Análise dos Objetos de Dados na classe IHMI
Tabela 59 – ISAF class: Safety Alarm Function
Tabela 60 – Análise dos Objetos de Dados na classe ISAF
Tabela 61 – ITCI class: Telecontrol Interface

Tabela 62 – Análise dos Objetos de Dados na classe ITCI $\ \ldots \ \ldots \ \ldots \ 126$
Tabela 63 – ITMI class: Telemonitoring Interface
Tabela 64 – Análise dos Objetos de Dados na classe ITMI $\ \ldots \ \ldots \ \ldots \ 127$
Tabela 65 – KFAN class: Fan
Tabela 66 – Análise dos Objetos de Dados na classe KFAN
Tabela 67 – KFIL class: Filter
Tabela 68 – Análise dos Objetos de Dados na classe KFIL
Tabela 69 – KPMP class: Pump $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ 131$
Tabela 70 – Análise dos Objetos de Dados na classe KPMP
Tabela 71 – KTNK class: Tank
Tabela 72 – Análise dos Objetos de Dados na classe KTNK
Tabela 73 – LPHD class: Physical Device Information
Tabela 74 – Análise dos Objetos de Dados na classe LPHD
Tabela 75 – LLN0 class: Logical Node Zero $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ 135$
Tabela 76 – Análise dos Objetos de Dados na classe LLN 0
Tabela 77 – LCCH class: Supervisão de Canal de Comunicação Física
Tabela 78 – Análise dos Objetos de Dados na classe LCCH
Tabela 79 – LGOS class: Assinatura de GOOSE
Tabela 80 – Análise dos Objetos de Dados na classe LGOS
Tabela 81 – LSVS class: Assinatura de Sampled Values
Tabela 82 – Análise dos Objetos de Dados na classe LSVS
Tabela 83 – LTIM class: Gerenciamento de Tempo
Tabela 84 – Análise dos Objetos de Dados na classe LTIM
Tabela 85 – LTMS class: Supervisão do Mestre de Tempo
Tabela 86 – Análise dos Objetos de Dados na classe LTMS
Tabela 87 – LTRK class: Rastreamento de Serviço
Tabela 88 – Análise dos Objetos de Dados na classe LTRK
Tabela 89 – MENV class: Monitoramento Ambiental
Tabela 90 – Análise dos Objetos de Dados na classe MENV
Tabela 91 – MMDC class: Medições de Corrente Contínua
Tabela 92 – Análise dos Objetos de Dados na classe MMDC
Tabela 93 – MMET class
Tabela 94 – Análise dos Data Objects do MMET

Tabela 95 – MMTN class
Tabela 96 – Análise dos Data Objects do MMTN
Tabela 97 – MMTR class
Tabela 98 – Análise dos Data Objects do MMTR
Tabela 99 – MMXN class: Medições Não Relacionadas à Fase
Tabela 100 – Análise dos Data Objects do MMXN
Tabela 101 – MMXU class
Tabela 102 – MSTA class: Measurement Statistics
Tabela 103 – Análise dos Objetos de Dados na classe MSTA
Tabela 104 – MPRS class: Measurement Pressure Statistics
Tabela 105 – Análise dos Objetos de Dados na classe MPRS
Tabela 106 – MHET class: Measured Heat Values
Tabela 107 – Análise dos Objetos de Dados na classe MHET
Tabela 108 – MFLW class: Measured Flow Values
Tabela 109 – Análise dos Objetos de Dados na classe MFLW
Tabela 110 – MFUL class: Fuel Characteristics
Tabela 111 – Análise dos Objetos de Dados na classe MFUL
Tabela 112 – STMP class: Temperature Supervision
Tabela 113 – Análise dos Objetos de Dados na classe STMP
Tabela 114 – SVBR class: Vibration Supervision
Tabela 115 – Análise dos Objetos de Dados na classe SVBR
Tabela 116 – SFLW class: Flow Supervision
Tabela 117 – Análise dos Objetos de Dados na classe SFLW
Tabela 118 – SLVL class: Level Supervision
Tabela 119 – Análise dos Objetos de Dados na classe SLVL
Tabela 120 – SPOS class: Position Supervision
Tabela 121 – Análise dos Objetos de Dados na classe SPOS
Tabela 122 – SPRS class: Pressure Supervision
Tabela 123 – Análise dos Objetos de Dados na classe SPRS
Tabela 124 – TDST class: Distance Measurement
Tabela 125 – Análise dos Objetos de Dados na classe TDST
Tabela 126 – TFLW class: Liquid Flow Supervision
Tabela 127 – Análise dos Objetos de Dados na classe TFLW

Tabela 128–TGSN class: Generic Sensor
Tabela 129 – Análise dos Objetos de Dados na classe TGSN
Tabela 130-THUM class: Humidity Sensor
Tabela 131 – Análise dos Objetos de Dados na classe THUM
Tabela 132–TLVL class: Media Level Sensor
Tabela 133 – Análise dos Objetos de Dados na classe TLVL
Tabela 134–TMVM class: Movement Sensor
Tabela 135 – Análise dos Objetos de Dados na classe TMVM
Tabela 136–TPOS class: Position Indicator
Tabela 137 – Análise dos Objetos de Dados na classe TPOS
Tabela 138–TPRS class: Pressure Sensor
Tabela 139 – Análise dos Objetos de Dados na classe TPRS
Tabela 140 – TRTN class: Rotation Transmitter
Tabela 141 – Análise dos Objetos de Dados na classe TRTN
Tabela 142–TTMP class: Temperature Sensor
Tabela 143 – Análise dos Objetos de Dados na classe TTMP
Tabela 144 – TVBR class: Vibration Sensor
Tabela 145 – Análise dos Objetos de Dados na classe TVBR
Tabela 146 – TWPH class: Water pH Level
Tabela 147 – Análise dos Objetos de Dados na classe TWPH

SUMÁRIO

1	INTRODUÇÃO	18
1.1	OBJETIVO	24
1.2	ESCOPO DO TRABALHO	24
1.3	CONTRIBUIÇÕES DO TRABALHO	25
1.4	ORGANIZAÇÃO DO TEXTO	25
2	REVISÃO DA LITERATURA	26
2.1	UM POUCO DA HISTÓRIA DA IEC 61850	26
2.2	OBJETIVOS DA IEC 61850	28
2.3	ORIENTAÇÃO A OBJETO NA AUTOMAÇÃO	31
2.4	INTEROPERABILIDADE NA IEC 61850	32
2.5	TRABALHOS PUBLICADOS NA ÁREA	44
3	O TRABALHO DE TESE	47
3.1	CASO GERAL	47
3.2	ORGANIZAÇÃO DA INTERFACE ABSTRATA	56
3.3	GRUPOS DE LOGICAL NODES	67
3.4	TESTE E AVALIAÇÃO	69
3.5	DEFINIÇÃO DO ARQUIVO ICD DA PROPOSTA DE TESE	74
4	CONCLUSÕES	84
	REFERÊNCIAS	85
	APÊNDICES	89
	APÊNDICE A – MAPEAMENTO DE LOGICAL NODES PARA	
	APLICAÇÕES INDUSTRIAIS	90
A.1	GRUPO A - CONTROLE AUTOMÁTICO	91
A.1.1	AVCO - CONTROLE AUTOMÁTICO DE TENSÃO	91
A.2	GRUPO C - CONTROLE SUPERVISÓRIO	92
A.2.1	CALH - MANIPULAÇÃO DE ALARMES	93
A.2.2	CCGR - GRUPOS DE RESFRIAMENTO	94
A.2.3	CILO - INTERTRAVAMENTO	95
A.3	GRUPO D - RECURSOS ENERGÉTICOS DISTRIBUÍDOS	96

A.3.1	DCHB - GERENCIAMENTO DE CALDEIRAS 97
A.4	GRUPO F - BLOCOS FUNCIONAIS
A.4.1	FCNT - CONTADOR
A.4.2	FCSD: DESCRIÇÃO DA FORMA DE CURVA 100
A.4.3	FFIL: FILTRO GENÉRICO
A.4.4	FFIL: FILTRO GENÉRICO
A.4.5	FPID: REGULADOR PID
A.4.6	FRMP: FUNÇÃO DE RAMPA
A.4.7	FSPT: CONTROLE DE SETPOINT
A.4.8	FXOT: AÇÃO EM LIMIAR SUPERIOR
A.4.9	FXUT: AÇÃO EM LIMIAR INFERIOR
A.5	GRUPO G - REFERÊNCIAS FUNCIONAIS GENÉRICAS
A.5.1	GAPC: CONTROLE AUTOMÁTICO GENÉRICO DE PROCES-
	SOS
A.5.2	GGIO: ENTRADA/SAIDA GENÉRICA DE PROCESSOS 112
A.5.3	GLOG: REGISTRO GENÉRICO
A.5.4	GSAL: APLICAÇÕES GENÉRICAS DE SEGURANÇA 115
A.6	GRUPO H - ENERGIA HIDRELÉTRICA
A.6.1	HLVL: INDICADOR DE NÍVEL DE ÁGUA
A.6.2	HLVL: VÁLVULAS
A.7	GRUPO I - INTERFACE E ARQUIVAMENTO
A.7.1	IARC: ARQUIVAMENTO
A.7.2	IHMI: INTERFACE HOMEM-MÁQUINA
A.7.3	ISAF: FUNÇÃO DE ALARME DE SEGURANÇA
A.7.4	ITCI: INTERFACE DE TELECONTROLE
A.7.5	ITMI: INTERFACE DE TELEMONITORAMENTO 126
A.8	Grupo K: EQUIPAMENTOS PRIMÁRIOS MECÂNICOS E NÃO ELÉ-
	TRICOS
A.8.1	KFAN: VENTILADOR
A.8.2	KFIL: FILTRO
A.8.3	KPMP: BOMBA
A.8.4	KTNK: TANQUE
A.9	GRUPO L - SISTEMA

A.9.1	LPHD - DISPOSITIVO LÓGICO
A.9.2	LLN0 - LOGICAL NODE ZERO
A.9.3	LCCH - SUPERVISÃO DO CANAL FÍSICO DE COMUNICAÇÃO 136
A.9.4	LGOS - MONITORAMENTO DE MENSAGENS GOOSE 137
A.9.5	LSVS - ASSINATURA DE SAMPLED VALUES
A.9.6	LTIM - GERENCIAMENTO DE TEMPO
A.9.7	LTMS - SUPERVISÃO MASTER DE TEMPO
A.9.8	LTRK - RASTREAMENTO DE SERVIÇO
A.10	GRUPO M - MEDIÇÕES E MONITORAMENTO
A.10.1	MENV - INFORMAÇÕES AMBIENTAIS
A.10.2	MMDC - MEDIÇÕES DE CORRENTE CONTÍNUA 146
A.10.3	MMET - INFORMAÇÕES METEOROLÓGICAS
A.10.4	MMTN - MEDIÇÃO MONOFÁSICA
A.10.5	MMTR - MEDIÇÃO TRIFÁSICA
A.10.6	MMXN - MEDIÇÃO NÃO RELACIONADA A FASE
A.10.7	MMXU - MEDIÇÔES GERAIS
A.10.8	MSTA - ESTATÍSTICAS DE MEDIÇÕES
A.10.9	MPRS - MEDIÇÕES DE PRESSÃO
A.10.10	MHET - VALORES MEDIDOS DE CALOR
A.10.11	MFLW - MEDIÇÕES DE FLUXO
A.10.12	MFUL - CARACTERÍSTICAS DO COMBUSTÍVEL 160
A.11	GRUPO S - SUPERVISÃO E MONITORAMENTO
A.11.1	STMP - SUPERVISÃO DE TEMPERATURA
A.11.2	SVBR - SUPERVISÃO DE VIBRAÇÃO
A.11.3	SFLW - SUPERVISÃO DE FLUXO
A.11.4	SLVL - SUPERVISÃO DE NÍVEL
A.11.5	SPOS - SUPERVISÃO DE POSIÇÃO
A.11.6	SPRS- SUPERVISÃO DE PRESSÃO
A.12	GRUPO T - TRANSDUTORES DE INSTRUMENTOS E SENSORES 172
A.12.1	TDST - DISTÂNCIA
A.12.2	TFLW - FLUXO DE LÍQUIDOS
A.12.3	TGSN - SENSOR GENÉRICO
A.12.4	THUM - UMIDADE 175

A.12.5	TLVL - NÍVEL	176
A.12.6	TMVM - SENSOR DE MOVIMENTO	177
A.12.7	TPOS - INDICADOR DE POSIÇÃO	178
A.12.8	TPRS - SENSOR DE PRESSÃO	179
A.12.9	TRTN - TRANSMISSOR DE ROTAÇÃO	180
A.12.10	OTTMP - SENSOR DE TEMPERATURA	181
A.12.11	TVBR - SENSOR DE VIBRAÇÃO	182
A.12.12	TWPH - ACIDEZ DA ÁGUA	183
A.13	GRUPOS P, Q, R, W, X, Y, Z	184
	APÊNDICE B – ARQUIVO SCL CONTENDO TODOS OS LO-	
	GICAL NODES PARA APLICAÇÕES INDUS-	
	TRIAIS	186

1 INTRODUÇÃO

Em meados da década de 70, mais precisamente em 1973, o projeto de padrão de barramento de dados seriais que foi publicado pela Society of Automotive Engineers (SAE) em 1968, era adotado pela força aérea dos Estados Unidos da América (EUA), e renomeado para MIL-STD-1553. Após revisões em anos posteriores tornou-se o principal padrão de rede de campo para aplicações da indústria aeronáutica militar e aeroespacial dos EUA(ESA, 2012). Este padrão de comunicação é considerado um importante marco, visto que, até o início da década de 70, apenas figurava nos barramentos de campo equipamentos que utilizavam a comunicação paralela, com todos os seus problemas e limitações, que dificultavam, ou até mesmo inviabilizavam sua utilização na indústria (SAUTER; WOLLSCHLAEGER; GUERICKE, 2000).

Padrões de interfaces seriais ponto a ponto começaram a surgir no início da década de 70, sendo o mais relevante entre eles o RS-232 (Recommended Standard 232), renomeado em outubro de 1997 para TIA-232 (Telecommunications Industry Association 232) (TIA, 1997). Este padrão foi desenvolvido para interfacear equipamentos terminais de dados (data terminal equipment - DTE) com equipamentos de terminação de circuitos de dados (circuit terminating equipment - DCE). Na prática, o padrão TIA-232 foi criado para interfacear dispositivos gerais com modems (MACKAY et al., 2004), ou seja, não atendia plenamente aos rígidos padrões de comunicação necessários para ampla aplicação em planta industriais, tais como, imunidade a EMI (Electromagnetic Interference) e comunicação multiponto.

Alguns anos se passaram até que em 1983 fosse publicado pela *Electronics Industry Association* (EIA) o padrão de interface física cujo nome original foi EIA RS485 (ZURAWSKI, 2015). Este padrão utiliza um tipo de codificação serial diferencial que possibilitou não só conexões de dispositivos à distâncias superiores a 1 km, como também a conexão multiponto dos equipamentos de campo (MACKAY *et al.*, 2004). Em 2011, com a dissolução da EIA, o padrão foi renomeado pela *Telecommunications Industry Association* para TIA-485, porém atualmente é amplamente conhecido pela sigla RS-485. No decorrer dos anos até meados da década de 80, dois padrões de interface física, serial, diferencial e multiponto se destacavam no cenário mundial, o MIL-STD-1553 e o RS-485, todavia, este último foi mais utilizado por se apresentar tão robusto quanto o padrão MIL-STD-1553, entretanto muito mais simples de se implementar. Essa simplicidade e robustez fizeram

com que o padrão RS-485 se tornasse o principal padrão de meio físico dos barramentos de campo industriais (MACKAY *et al.*, 2004).

No início da década de 80, outros movimentos importantes se destacaram na criação de padrões industriais. Três destes movimentos técnicos se tornaram relevantes no contexto de redes de campo industrial. São eles: O projeto *Process Data Highway* (PROWAY) capitaneado pela *International Electrotechnical Commission* (IEC) em 1975 (ISA, 1986), o projeto *Manufacturing Automation Protocol* (MAP) liderado pela General Motors em 1980 (MENDES; MAGALHãES, 1988) e o projeto IEEE 802, desenvolvido pelo *Institute of Electrical and Electronics Engineers* (IEEE) também em 1980 (GELLIE, 1979). A falta de uma norma internacional à época fez com que os principais fornecedores de tecnologia para a indústria propusessem modelos dos mais diversos e incompatíveis entre si.

Em paralelo as tentativas e movimentos de padronização das redes de campo no setor industrial, o desenvolvimento das redes de computadores tornou-se bem relevante, impactando diretamente a evolução das redes de campo industriais. Dentre as entidades padronizadoras destacou-se a *International Organization for Standardization* (ISO), quando implementou o modelo de referência *Open System Interconnection* (OSI) e publicou a norma ISO 7498 em 1984. Este trabalho desenvolvido pela ISO tratava de um modelo conceitual abstrato, dividido em camadas com o objetivo de interconectar sistemas. Apesar da sua publicação ter sido em 1984, o início do seu desenvolvimento ocorreu em 1977, e influenciou todas as redes de comunicação em todas as áreas de utilização (DAY; ZIMMERMANN, 1983).

Em 1973, um experimento na área de redes de computadores realizado por Metcalfe da Xerox PARC (*Palo Alto Research Center*) modificou a forma como os dispositivos se comunicavam em rede, quando colocou vários equipamentos para compartilhar dados em um único barramento utilizando um protocolo de acesso ao meio, que ficou conhecido como CSMA/CD (*Carrier Sense Multiple Access with Collision Detection*) (SPURGEON; ZIMMERMAN, 2014). Este protocolo tornou-se norma IEEE 802.3 em 1985, e posteriormente aplicado ao setor de automação industrial introduzindo os conceitos de *Industrial Ethernet* (IE) e LAN (*Local Area Network*) Industrial.

Outros padrões de LAN, além do IEEE 802.3, foram introduzidos à época, principalmente os desenvolvidos pelo projeto IEEE 802, e pelos projetos MAP, da General Motors e TOP (*Technical and Office Protocol*), da Boeing, que trouxeram novas formas de acesso ao meio (MENDES; MAGALHÃES, 1988), não sendo apenas os aplicados a redes de computadores, mas, também, utilizados amplamente no chão de fábrica. Surgiram,

portanto, os padrões IEEE 802.4 (token-bus) em 1985, com utilização ampla na indústria automotiva e o IEEE 802.5 (token-ring) em 1989, através de esforços capitaneados pela IBM (International Business Machines Corporation) em redes de computadores de grande porte (mainframes). A característica de tempo real desejada e imposta ao token-bus, de fato era uma pré-condição demasiadamente importante, visto que o estocástico protocolo CSMA/CD se utilizava de tempos aleatórios para que o dado pudesse acessar o barramento, o que inviabilizava a sua aplicação em chão de fábrica, onde o tempo precisava ser conhecido a priori. Dessa forma, outras arquiteturas de rede surgiram como alternativas proprietárias similares ao token-bus, como foi o caso das redes Profibus (Process Field Bus), desenvolvida na Alemanha, e FIP (Factory Instrumentation Protocol), desenvolvida na França. Ambas tecnologias trouxeram novos paradigmas de comunicação, como: Modelo Produtor/Consumidor e o Modelo Editor/Assinante, além daquele que já existia nas redes de computadores no modelo Cliente/Servidor (SAUTER; WOLLSCHLAEGER; GUERICKE, 2000). Esses novos paradigmas trouxeram não só conceitos de tempo real, como também a ideia de controle distribuído para os processos industriais, visto que muitos protocolos permitiam a troca de dados diretamente sem a necessidade de um dispositivo intermediário. Assim, em meados da década de 80, dezenas de fabricantes já possuíam soluções na área de DCS (Distributed control system), atualmente conhecido no Brasil como SDCD (Sistema Digital de Controle Distribuído), com protocolos fechados de comunicação, porém, incompatíveis entre os dispositivos de fornecedores diferentes (SEGOVIA; THEORIN, 2013).

No final da década de 80, diante das centenas de soluções em redes de campo industrial disponíveis, tentou-se, através dos organismos internacionais de padronização, a busca por um padrão que atendesse as necessidades das empresas. Porém, nesta época, muitos sistemas já haviam se estabelecidos no mercado, com investimentos vultosos realizados e normas nacionais aprovadas pelos países nos quais determinadas tecnologias foram desenvolvidas, ou seja, a busca por uma padronização tornou-se um desafio difícil, o qual à época, gerou conflitos entre empresas e governos nacionais. O período de 1986 a 1999 ficou conhecido como *The fieldbus war*, que ensejou, no ano 2000, a criação da norma internacional IEC 61158 que possuía 7 famílias de perfis de comunicação (CPF) das principais arquiteturas de rede da época: Foundation Fieldbus H1, HSE e H2 (EUA), ControlNet e Ethernet/IP (EUA), PROFIBUS DP, PA e PROFInet (Alemanha), P-Net RS485 e RS232 (Dinamarca), WorldFIP (França), INTERBUS e INTERBUS TCP/IP

(Alemanha), Swiftnet transport e full stack (EUA). A tabela 1 evidencia as estruturas de redes da norma IEC 61158 (FELSER; SAUTER, 2002a).

Tabela 1 – Resumos das redes de campo da IEC 61158

Systems				
Standards Part	Contents	Contents and Meaning		
IEC 61158-1	Introduction	Only technical report		
IEC 61158-2	PhL: Physical Layer	8 types of data transmission		
IEC 61158-3	DLL: Data Link Layer Services	8 types		
IEC 61158-4	DLL: Data Link Layer Protocols	8 types		
IEC 61158-5	AL: Application Layer Services	10 types		
IEC 61158-6	AL: Application Layer Protocols	10 types		
IEC 61158-7	Network Management	Must be completely revised		
IEC 61158-8	Conformance Testing	Work has been canceled		

Fonte: Adaptado de (FELSER; SAUTER, 2002b)

A IEC 61158 da forma como foi publicada gerou problemas de ordem prática, visto que se fazia necessário detalhar como cada parte da norma poderia ser aplicada em um sistema real. Esses detalhamentos geraram perfis de comunicação, os quais foram reunidos em outra norma chamada IEC 61784 (THOMESSE, 2005). Foram gerados, portanto, outros 18 sub-perfis associados a nomes utilizados no mercado e os tipos de camadas 1 e 2 praticadas no modelo OSI-ISO. A tabela 2 mostra como foram mapeados esses perfis.

Tabela 2 – Resumos dos perfis de rede de campo da IEC 61784

IEC 61784					
Profile	Phy	DLL	AL	CENELEC Stan-	Brand Names
				dard	
CPF-1/1	Type 1	Type 1	Type 9	EN 50170-A1 (Apr.	Foundation Fieldbus (H1)
				2000)	
CPF-1/2	Ethernet	TCP/UDP/IP	Type 5	EN 50170-A1 (Apr.	Foundation Fieldbus
				2000)	(HSE)
CPF-1/3	Type 1	Type 1	Type 9	EN 50170-A1 (Apr.	Foundation Fieldbus (H2)
				2000)	
CPF-2/1	Type 2	Type 2	Type 2	EN 50170-A3 (Aug.	ControlNet
				2000)	
CPF-2/2	Ethernet	TCP/UDP/IP	Type 5	_	EtherNet/IP
CPF-3/1	Type 3	Type 3	Type 3	EN 50254-3 (Oct.	Profibus-DP
				1998)	
CPF-3/2	Type 3	Type 3	Type 3	EN 50170-A2 (Oct.	Profibus-PA
				1998)	
CPF-3/3	Ethernet	TCP/UDP/IP	Type 10		PROFINet
CPF-4/1	Type 4	Type 4	Type 4	EN 50170-1 (July	P-Net RS-485
			<u> </u>	1996)	
CPF-4/2	Type 4	Type 4	Type 4	EN 50170-1 (July	P-Net RS-232
CDD 7/4				1996)	W. 11818 (2.680, 2.680)
CPF-5/1	Type 7	Type 7	Type 7	EN 50170-3 (July	WorldFIP (MPS, MCS)
GDD 7/0				1996)	W. 11010 (1100 1100
CPF-5/2	Type 7	Type 7	Type 7	EN 50170-3 (July	WorldFIP (MPS, MCS,
CDD 7 /0	(II) 7	TD 7	TD 7	1996)	SubMMS)
CPF-5/3	Type 7	Type 7	Type 7	EN 50170-3 (July	WorldFIP (MPS)
CDE C/1	/m 0	TD 0	TD 0	1996)	T , 1
CPF-6/1	Type 8	Type 8	Type 8	EN 50254-2 (Oct. 1998)	Interbus
CPF-6/2	Type 8	Type 8	Type 8	1990)	Interbus TCP/IP
$\frac{\text{CPF-6/2}}{\text{CPF-6/3}}$	Type 8	Type 8	Type 8		Interbus 1CP/IP Interbus subest
CPF-0/3 CPF-7/1	Type 6	Type o	Type o	EN 50254-2 (Oct.	SwiftNet transport
OFF-1/1	Type o			1998)	Swittnet transport
CPF-7/2	Type 6	Type 6	Type 6	1330)	SwiftNet full stack
011-1/2	Type o				DWITH THE THII STACK

Fonte: Adaptado de (FELSER; SAUTER, 2002b)

Em paralelo às áreas de automação industrial e redes de computadores, um trabalho intenso acontecia para a normatização dos protocolos ligados ao setor elétrico. Diferentemente do que aconteceu na indústria e nas redes de computadores, no setor elétrico não existia um padrão de rede de comunicação estabelecido até 1985, destacando nesta época protocolos proprietários em interfaces seriais padrão RS-232 e RS-485, e o protocolo Modbus serial, que surgiu para o setor industrial em 1979 e foi aplicado no setor elétrico com limitações (GUNGOR; LAMBERT, 2006). Entre 1985 e 1995 padrões mais robustos de rede surgiram no sistema elétrico, com destaque para o DNP3 e os protocolos da norma IEC 60870-5.

A norma IEC 60870-5, refere-se a uma coleção de padrões iniciados em 1988, através de um projeto chamado IEC 870 Telecontrol equipment and systems, no qual a parte

5 deste projeto descreve os protocolos, com ênfase para IEC 60870-5-101 (*Companion Standard for Basic Telecontrol*) publicado em 1995, e o IEC 60870-5-104 (*Network Access using Standard Transport*), publicado em 2000 (CLARKE; REYNDERS; WRIGHT, 2004).

O DNP3 foi um protocolo layer 3 proprietário criado pela *Harris Controls Division* no início da década de 90, para uso em sistemas elétricos industriais. Em novembro de 1993, o DNP3 foi transferido para o *DNP3 User Group*, uma corporação sem fins lucrativos instalada na Califórnia EUA, cujo objetivo principal é a manutenção do *Distributed Network Protocol* (DNP3) como um protocolo de comunicação não proprietário e utilizado no setor de serviços públicos (CLARKE; REYNDERS; WRIGHT, 2004). Uma observação importante é que os protocolos da IEC 60870-5 ficou confinado ao setor elétrico, enquanto o DNP3 encontrou aplicações industriais em setores como petróleo, gás e saneamento.

Tanto o DNP3 quanto os protocolos da IEC60870-5 foram concebidos para transmitir pacotes de dados relativamente pequenos em tempo real e de maneira confiável (CLARKE; REYNDERS; WRIGHT, 2004). Porém, desafios importantes ainda precisavam ser abordados, tais como: infraestrutura de comunicação, interface de aplicativo e modelo de dados uniforme, tudo isso em ambiente multi-fornecedor. Assim, com o objetivo de solucionar esses desafios, o instituto EPRI (Electric Power Research Institute) iniciou o desenvolvimento do padrão UCA (Utility Communications Architecture) em 1986, e em 1999 o IEEE publicou o padrão UCA versão 2, que especificava com mais detalhes o uso do protocolo Manufacturing Message Specification standard (MMS) e o desenvolvimento do modelo Generic Object Models for Substation and Feeder Equipment (GOMSFE) (IEEE, 1999).

Um ponto importante a ser destacado foi a criação dos grupos de trabalho em 1992, no *The Forum for Electric Utility ISO 9506 (MMS) Implementation*, com o objetivo de discutir a aplicação do protocolo MMS no controle de processos. Além disso, o MMS já se destacava como um dos principais protocolos de comunicação aplicados ao setor industrial na arquitetura MAP da General Motors, sendo também o principal protocolo da camada 7 do modelo de referência OSI da ISO, utilizado para fornecer dados em tempo real e funções em sistemas de supervisão.

Até 1996, dois grupos de trabalho estavam atuando na busca de padrões para a interoperabilidade e intercambiabilidade de dispositivos na área de automação de subestações, o EPRI através do UCA, e o IEC através do projeto IEC 61850. Porém, devido as similaridades dos projetos em desenvolvimento buscou-se um único padrão internacional, criando em 1997, portanto, o grupo de trabalho IEC TC 57 (IEEE, 2005). O projeto

IEC 61850 incorporou o UCA 2.0 trazendo a modelagem, definição de dados e serviços utilizados.

Assim, entre os anos de 1970 e 2000, dezenas de normas de comunicação distintas e incompatíveis entre si coexistiam em inúmeras plantas industriais. A partir do ano 2000 até a atualidade, diversos organismos internacionais propuseram normas que uniformizassem projetos e protocolos existentes e garantissem a interoperabilidade entre os fabricantes, porém sem sucesso na industria de processo.

1.1 OBJETIVO

O objetivo geral deste trabalho de tese propõe trazer interoperabilidade na comunicação entre dispositivos do setor de automação industrial através da aplicação da norma IEC 61850.

Essa aplicação passa pela integração de todo o projeto, incluindo o diagrama elétrico unifilar, mapa de protocolos e uma linguagem de configuração comum aos dispositivos industriais, que possa trazer informações sobre: descrição, configuração, comunicação e fluxo de informações na rede industrial de chão de fábrica.

1.2 ESCOPO DO TRABALHO

O trabalho proposto limita-se a área de automação de processos industriais, sendo portanto aplicado a redes de campo para comunicação com controladores industriais programáveis e dispositivos de instrumentação, tais como, transdutores, atuadores e sensores locais, de acordo com a definição dada ao termo *Fieldbus* encontrado na norma internacional IEC 61158-1 (IEC, 2003). A delimitação deste trabalho também se estende ao projeto elétrico da planta a ser automatizada e a comunicação com os sistemas supervisórios de chão de fábrica ou de nível 2, como definido pelo modelo *Purdue Enterprise Reference Architecture* (WILLIAMS, 1990).

1.3 CONTRIBUIÇÕES DO TRABALHO

A principal contribuição deste trabalho é propor a interoperabilidade de diferentes fornecedores através da utilização da norma IEC 61850 em ambientes industriais. Como contribuições secundárias, temos:

- a) Revisão histórica dos principais protocolos aplicados a automação industrial e a automação de sistemas elétricos;
- b) Padronização das linguagens de configuração do Controlador Lógico Programável (CLP);
- c) Padronização de interfaces de serviços de comunicação industrial;
- d) Virtualização de dispositivos industriais;
- e) Padronização dos protocolos de comunicação industrial;

1.4 ORGANIZAÇÃO DO TEXTO

O trabalho de tese proposto está organizado da seguinte forma:

- a) No Capítulo 2, é realizada uma breve revisão da literatura relacionada à norma IEC 61850;
- b) No Capítulo 3, a tese é detalhada tecnicamente de forma geral;
- c) No Capítulo 4, é apresentada uma análise aprofundada da tese;
- g) No Capítulo 5, conclui-se, portanto, este trabalho.
- h) No Apêndice A, é apresentado o código-fonte contendo todos os *Logical Nodes* mapeados para aplicações industriais.

2 REVISÃO DA LITERATURA

De forma geral, a normal IEC 61850 possui 28 partes que descrevem as suas aplicações em 7.889 páginas (IEC, 2022), não se limitando apenas à área de automação de subestação, mas expandindo seus conceitos para novos domínios tais como: usinas hidroelétricas, usinas eólicas e sistemas de recursos de energia distribuída (distributed energy resource - DER).

Até o momento, não foi objeto da IEC 61850 sua utilização no setor de automação de processos industriais, e sua aplicação, nesta área, encontra-se limitada à troca de informações entre a planta industrial e a subestação de energia que a alimenta.

Visto que a interoperabilidade na automação industrial ainda hoje é estudada como um desafio a ser superado, e visto que este desafio é o cerne da norma IEC 61850, a aplicabilidade desta norma, na indústria, que não seja na área de energia, mostra-se agora como o desafio neste trabalho de tese.

Portanto, duas perguntas se sobressaem nessa primeira parte do trabalho de tese. Como a IEC 61850 alcançou a interoperabilidade entre os dispositivos? E como aplicá-la na automação de processos industriais?

2.1 UM POUCO DA HISTÓRIA DA IEC 61850

Tanto na indústria quanto em concessionárias de energia, a troca de informações entre controladores industriais ou IEDs (*Intelligent Electronic Device*) de fabricantes distintos sempre foi um ponto de dificuldade para realizar a automação de sistemas, sendo necessário, a utilização de conversores de protocolos, acrescentando novos pontos de manutenção à planta e tornando o trabalho complexo, exigindo a presença de profissionais especializados em diversas arquiteturas de rede.

Segundo o mapeamento realizado em 2003 pelo *Electric Power Research Institute* - EPRI, apenas em concessionárias de energia existiam 152 tipos de protocolos distintos de diferentes fabricantes (IEEE, 1999).

Na virada do século XX, a busca por um único padrão que atendesse os mais rígidos requisitos na indústria e no sistema elétrico, seguiam por caminhos distintos. A busca por novas arquiteturas interoperáveis reuniu engenheiros especialistas, empresas de mercado, universidades, institutos de pesquisa e organismos internacionais de padronização. Contudo, interesses políticos e comerciais inviabilizavam a busca por consenso nos trabalhos desenvolvidos (FELSER; SAUTER, 2002a).

Talvez por coincidência, em 1982, ano em que foi publicada a principal arquitetura de rede na indústria, *Manufacturing Automation Protocol* - MAP, foram também iniciados os trabalhos da principal norma de rede para a área de subestação de energia (FALK, 2019).

As tecnologias utilizadas na arquitetura de comunicação industrial MAP foram aproveitadas pelo ERPI para iniciar o projeto intitulado: *Utility Communications Architecture* - UCA. A escolha da tecnologia, nas redes MAP, para o controle de acesso ao meio utilizando o padrão IEEE 8802.4 (*token bus*) fez com que a arquitetura UCA caminhasse para o uso do IEEE 8802.3 (CSMA/CD), amplamente utilizado no padrão Ethernet. Estudos comparativos entre a tecnologia por *token* e a usada nas redes Ethernet por detecção de portadora e colisões levaram à propositura de uma arquitetura distinta da utilizada nas redes MAP. Portanto, a partir deste ponto, o UCA divergia do caminho seguido na indústria e prometia trazer a tão buscada interoperabilidade entre dispositivos eletrônicos de controle que operavam em empresas de serviços públicos (FALK, 2019).

Devido a altos custos operacionais, suporte técnico deficitário, disputas comerciais pelo padrão token bus, ascensão do padrão Ethernet na indústria, generalidade e falta de funcionalidades aplicadas ao protocolo da camada de aplicação da rede MAP (MMFS - Manufacturing Message Format Standard) fizeram essa rede cair em declínio em 1992 (SISCO, 1995). Apesar do declínio do projeto MAP, o seu principal protocolo evoluiu para se tornar, em 1985, um padrão internacional chamado de ISO/IEC 9506 MMS ou apenas MMS.

O MMS foi uma evolução do MMFS da General Motors, que evoluiu do padrão EIA 1393A - User Level Format and Protocol for Bidirectional Transfer of Digitally Encoded Information in a Manufacturing Environment (SISCO, 1995). O MMS tinha como principal objetivo construir um sistema não genérico de mensagens que poderiam ser trocadas entre dispositivos, em um contexto não específico.

Em 1992, o ERPI, com a colaboração do Northern States Power Company (NSP), promoveu um dos mais importantes forums em redes de comunicação já desenvolvido, chamado de Forum for Electric Utility ISO 9506 (MMS) Implementation. Este evento promoveu a cooperação de diversos grupos de trabalho entre concessionárias para prestação de serviços públicos como: água, gás e energia elétrica (IEEE, 2005). O forum MMS, como

ficou conhecido, teve como foco a interoperabilidade da comunicação, detalhando os protocolos que seriam usados, os serviços abstratos disponíveis e os modelos de dispositivos do mundo real baseado no paradigma de orientação a objeto, todos pré-definidos e padronizados na sua forma de nomeá-los, trazendo uma característica muito importante da própria norma IEC 61850, que é a auto-descrição, detalhada mais à frente.

Enquanto, no final do século XX, trabalhos intensos nos comitês que definiam a norma IEC 61158 para padronização das redes de campo na indústria aconteciam, na mesma intensidade ocorriam trabalhos dos comitês que definiam os padrões de comunicação no sistema elétrico, iniciado por projetos voltados à transferência de dados entre centros de comando, como: ICPP (*Inter Control Center Protocol*), e posteriormente o padrão IEC 60870-6 TASE.2, todos baseados em MMS.

Apesar da existência de uma cooperação conjunta entre europeus e americanos na busca de um único padrão de automação para o sistema elétrico, o projeto UCA, tocado pelos EUA, caminhava para ser padronizado pelo IEEE, quando, em 1999, foi publicado o relatório técnico IEEE TR 1550 (FALK, 2019).

Na mesma direção, em 1999, foi publicado a norma IEC 61158 contendo os padrões de redes de comunicação industrial, especificações *Fieldbus*. Apesar do projeto IEC 61850 ter-se iniciado em 1995, tudo indicava que o fracasso da padronização das redes de campo industriais ocorresse também no sistema elétrico. Porém, a decisão, em 1997, de harmonização dos padrões IEC e UCA e seu início, de fato, em 1998, fez com que o desfecho se desse de uma forma completamente distinta do que ocorreu no padrão *Fieldbus* (IEEE, 2005).

Essa cooperação para harmonização dos trabalhos entre americanos e europeus movimentou grandes organizações à época para pensarem juntas em como ter uma única norma que atendesse aos interesses dos grupos envolvidos, tudo o que não aconteceu com a IEC 61158 para a indústria de processo.

2.2 OBJETIVOS DA IEC 61850

A harmonização dos padrões existentes UCA e IEC 61850 tiveram alguns objetivos considerados fundamentais (IEEE, 2005):

a) Modelagem da informação;

- b) Modelagem da comunicação;
- c) Auto-descrição do dispositivo ligado à rede;
- d) Redução da fiação nos painéis e no campo;
- e) Alta velocidade na comunicação.

Um ponto crítico na busca pela interoperabilidade estava relacionado com a semântica padronizada dos dados. A ideia era a utilização de funções semânticas ao invés de números, índices ou registros. A atribuição de significado aos registros precisava ser necessariamente realizada por profissionais especializados, o que, para muitos sistemas complexos, envolvia o preenchimento de tabelas, muitas das vezes com intertravamentos e redundâncias que tornavam o sistema complexo e caro de manter. Antes da Arquitetura UCA, todas as principais redes se utilizavam de regras de endereçamento para que se tivesse um mínimo grau de interoperabilidade local dentro da planta. O não mapeamento dos registros adequadamente traria a ausência de interoperabilidade entre os sistemas.

É de se imaginar que o endereço de um registrador que armazene a temperatura de um processo em um determinado controlador, quando implementado em outro dispositivo, não necessariamente esteja no mesmo endereço. Isso é indiferente se os controladores são do mesmo fabricante ou não.

Quando falamos em fabricantes distintos, a forma de endereçamento muda totalmente. Como exemplo, temos: o endereço do registrador que armazene um valor analógico em um controlador S7-1500 da Siemens pode ser representado por uma variável do tipo MD16.0; já em um controlador da Rockwell Micrologix 1200 este endereço pode ser representado por uma variável do tipo N78:85; e em um dispositivo Modbus da Schneider essa leitura poderá ser realizada em um endereço M40107. Percebe-se, portanto, que a semântica dos dados é uma característica importante para garantir a interoperabilidade entre sistemas.

A semântica é a ciência que estuda o significado das palavras, frases e expressões que estão a serviço das comunicações (MICHAELIS, 2022). A semântica padronizada além de ser uma característica importante para garantir a interoperabilidade, pode trazer uma certa independência técnica dos gestores operacionais das plantas, afetando diretamente a implantação e manutenção dos sistemas de automação.

Para que fique mais claro, elaborar-se-á outros dois exemplos hipotético comparativos. Imaginemos uma caldeira em uma indústria qualquer. Por hipótese, valores de pressões em campo superiores a 1,25 kgf/cm2 acionaria um alarme sonoro. Temperaturas acima de 200 °C acionaria um outro alarme sonoro. Portanto, como exemplo, faremos a implementação deste pequeno sistema utilizando uma determinada linguagem de programação em dois diferentes pontos de vista:

```
a) Exemplo 1: Código com sintaxe correta e semântica bem elaborada if valor_pressao >=1,25 then saida_alarme_pressao:=1; else saida_alarme_pressao:=0; if valor_temperatura >= 200 then saida_alarme_temperatura:=1; else saida_alarme_temperatura:=0;
```

```
b) Exemplo 2: Código com sintaxe correta e ausência de semântica if M40.1 >=1,25 then O35.4:=1;
else O35.4:=0;
if M42.3>= 200 then O133.6:=1;
else O133.6:=0;
```

Assim, percebe-se que um sistema elaborado da forma como está descrito no exemplo 2 depende exclusivamente do engenheiro que o implementou, enquanto que no primeiro exemplo os dados são auto-descritíveis.

Em plantas reais, softwares de controle podem conter milhares de lógicas, sequenciais e intertravadas, trazendo uma dependência inequívoca com a equipe que implanta e mantém o sistema, o que torna a operação, a longo prazo, frágil e muito onerosa.

Durante a elaboração da UCA, os usuários dessa arquitetura relataram problemas de integração e manutenção com semânticas não padronizadas ou inexistentes nos programas embarcados dos dispositivos de campo (FALK, 2019). Esses problemas representaram 80% dos custos de integração de uma subestação (FALK, 2019). A padronização da semântica na IEC 61850 veio através do paradigma de orientação a objeto, com a padronização de objetos e atributos.

2.3 ORIENTAÇÃO A OBJETO NA AUTOMAÇÃO

Em meados de 1960, o mundo experimentou uma das maiores crises já vividas em uma área até então relativamente simples. Nesta época, hardwares de baixa complexidade exigiam softwares também de baixa complexidade. Porém, com a contínua modernização das máquinas, os softwares que as comandavam começavam a ser difíceis de implementar e manter, gerando atrasos na entrega de novos produtos, custos adicionais de manutenção e baixa qualidade dos códigos. Nesta época, identificou-se que os custos de software superavam os custos de hardware, o que nunca havia acontecido até aquele momento, gerando a chamada "crise do software". A busca por técnicas de programação mais eficientes culminou na ampla utilização do paradigma de orientação a objeto na década de 80 (BRAUN; HORN, 2017).

A maciça aplicação das técnicas de orientação a objeto na área de informática também deu lugar para que essas mesmas técnicas fossem aplicadas na formulação do projeto UCA em 1982, e posteriormente em 1990, aplicadas ao protocolo MMS ISO/IEC 9506, um dos principais protocolos de comunicação usados na IEC 61850 (FALK, 2019).

Os conceitos e termos técnicos aplicados à norma IEC 61850 tem sua base em componentes utilizados no paradigma de orientação a objeto, como: abstração, encapsulamento, herança, polimorfismo, classe, objeto, atributos e interface (MAURO, 1995) (BUTZEN, 2014). Todos os componentes citados são utilizados de forma específica na área de automação de subestações, e visto que a origem dos conceitos aplicados a automação de subestações são gerais, não haveria impedimento para que fossem também aplicados à automação industrial de processos. O entendimento do conceito técnico geral dos elementos do paradigma de orientação objeto é fundamental para a compreensão de toda norma IEC 61850 e sua aplicação conforme proposto neste trabalho de tese.

O paradigma de orientação a objeto originalmente modelou o mundo real em uma coleção de objetos (BRAUN; HORN, 2017), como por exemplo: pessoas, animais e ativos de empresas. No campo da engenharia elétrica, estes objetos puderam ser modelados como dispositivos de proteção, medição, controle e supervisão. Portanto, de maneira geral, um objeto pode ser considerado uma entidade com propriedades e funções bem definidas e encapsuladas ao objeto, não sendo permitido o seu acesso direto, garantido um modelo padrão com segurança para a proteção dos códigos e dados. Assim, o mundo externo troca

informações com o objeto através de mensagens padronizadas, sem necessariamente saber como é a estrutura de programação interna ao objeto (BUTZEN, 2014).

Tendo em vista o grande número de tipos distintos de objetos com características diferentes entre si, faz-se necessário ter um modelo abstrato desse objeto, descrevendo precisamente seus atributos e métodos. Esse modelo abstrato é chamado de classe. A abstração é considerada uma das principais partes do paradigma, cujo objetivo é exibir apenas informações essenciais de um objeto e ocultar os seus detalhes. Dessa forma, é possível implementar lógicas diversas sem entender toda a complexidade oculta de uma determinada classe de objeto (MAURO, 1995).

Como exemplo, é possível ter uma classe geral de disjuntor com várias características possíveis: chave local/remoto, número de operações, capacidade de curto-circuito, status de posição fechado, aberto ou bloqueado, tempo de fechamento, etc. No momento em que é instanciado um objeto (trazido do abstrato para o concreto), a partir dessa classe disjuntor, não teríamos mais um modelo de um disjuntor, e sim um elemento real de campo com características peculiares à área em que o dispositivo está operando, por exemplo: disjuntor 1 do alimentador 1 com bloqueio remoto por telecomando.

Outro componente importante aplicado à programação orientada a objeto é interface, que tem como principal objetivo separar a descrição da função de sua implementação de fato em uma classe, ou seja, a interface define o que uma classe deve fazer e não como deve fazer, não possuindo código de programação, mantendo seus métodos abstratos e públicos. Assim, uma classe que é implementada por uma interface tem seu comportamento definido e padronizado e deve conter todos os métodos definidos pela interface. Portanto, a relação entre diferentes tipos de objetos e suas trocas de informações são definidas por uma interface (BRAUN; HORN, 2017).

2.4 INTEROPERABILIDADE NA IEC 61850

Para atingir a interoperabilidade em um sentido amplo, três são os pilares (IEC, 2013a).:

 a) Um conjunto de nomes padronizados, onde os dados para comunicação são agrupados de acordo com sua relação com funções específicas;

- b) Uma linguagem formal que permite descrever a especificação do sistema em termos de diagrama unifilar e o conjunto de nomes padronizados, o dispositivo pré-configurado e a configuração completa do processo com todos os dispositivos;
- c) Um conjunto padrão e abstrato de serviços de comunicação para a troca de informações em tempo real, independente do protocolo e do meio de comunicação.

Portanto, através de nomes e serviços padronizados e uma linguagem que descreva o sistema é possível garantir a interoperabilidade entre dispositivos, utilizando de decomposição funcional, modelagem do fluxo de dados e modelagem da informação.

A decomposição funcional identifica as principais funções do sistema e as granula nas menores entidades capazes de trocar informações, ou seja, as funções são divididas em pequenas partes cujo comportamento da comunicação entre essas partes é padronizado. É importante frisar que a alocação de funções nos controladores não é padronizada e sim a interação entre elas. Pelo fato dessas entidades serem alocadas livremente e em dispositivos quaisquer, e também pelo fato delas serem singulares, recebem o nome de $Logical\ Node\ (LN)\ (IEC,\ 2013a)$.

A modelagem do fluxo de dados se relaciona com as interfaces de comunicação. Essas interfaces padronizadas pela IEC 61850 diferem bastante das aplicadas na indústria. Porém, através do modelo da pirâmide de automação proposto pela Universidade de Pordue é possível fazer a compatibilização entre interfaces do sistema elétrico e industrial (ISA, 1989) (WILLIAMS, 1990). Essas interfaces visam trazer serviços de comunicação de forma abstrata, e assim serem mapeadas para protocolos específicos de acordo com a especificidade da comunicação.

Por fim, a modelagem da informação se utiliza de uma semântica abstrata baseada no paradigma de orientação a objeto, com foco em granular funções e elementos externos aos controladores e transformá-los em uma representação virtual (IEC, 2013a). No sistema elétrico, essa representação virtual se relaciona a dispositivos de proteção, controle e medição, porém a industria possui elementos que muitas vezes são distintos na aplicação, mas similares em sua função elementar. Neste trabalho de tese serão abordados esses elementos em áreas específicas da indústria e seu paralelo em aplicações de sistemas de potência.

A IEC 61850 aposta na decomposição funcional, definindo um *Logical Node*, que descreve funções padronizadas garantindo, portanto, a interoperabilidade entre essas

funções que podem estar alocadas em dispositivos fisicamente separados e de qualquer fornecedor. Assim, a norma IEC 61850 não só garante a interoperabilidade como, também, padroniza uma estrutura de funções distribuídas de controle e monitoramento, importantes também na indústria.

A figura 1 apresenta um exemplo de como podem ser granuladas as funções importantes no sistema elétrico em subfunções, e como os Logical Nodes (LN) podem ser distribuídos em dispositivos distintos para que essas funções sejam realizadas. Neste exemplo, a proteção de sobrecorrente é uma função que precisa ser executada no momento adequado, porém percebe-se, na figura, que para ela ser executada faz-se necessário que outras subfunções também as sejam, como: medição das correntes através de um transformador de corrente, lógica de proteção de sobrecorrente e a proteção de fato através de um disjuntor real, podendo também este disjuntor ser desarmado por um comando manual de uma IHM (Interface Homem-Máquina). Assim, os dispositivos físicos 1, 3, 4 e 5 participam em conjunto, através de seus Logical Nodes, em subfunções distribuídas para a execução da função principal.

Os Logical Nodes podem ser identificados neste exemplo por subfunções capazes de, em conjunto, executar uma função determinada no sistema elétrico. Faz-se importante ratificar que a padronização da função sobrecorrente ou de outras mais não é escopo da normal IEC 61850, e sim a interação das subfunções consideradas Logical Nodes.

-Funcões Comutação Logical Proteção de Proteção de Sincronizada distância sobrecorrente **Nodes** (CB) НМІ X X X Dispositivos Físicos-----2 Sy.Switch. Χ Dist.Prot. X 3 X O/C Prot. Breaker Χ X X 5 Bay CT X X Bay VT Χ Χ 6 BB VT X

Figura 1 – Funções distribuídas e Logical Nodes em diferentes dispositivos físicos

Fonte: Adaptado de (IEC, 2013a)

A modelagem da informação se apresenta na IEC 61850 seguindo o paradigma de orientação a objeto. Primeiramente, quebrando o dispositivo físico em dispositivos

lógicos que representam um grupo de funções de automação, proteção, medição, supervisão, configuração, dentre outras (IEC, 2013a), e em segundo lugar granulando o dispositivo lógico em *Logical Nodes* que são os objetos virtualizados do mundo real, através de funções e elementos externos de fato, destacando seus *Data Objects* e seus atributos.

O Data Object, também conhecido pela sigla DO, define um local de armazenamento que contém uma coleção de atributos que caracteriza o objeto propriamente dito. Os atributos definem as propriedades de um Data Object. A figura 2 evidencia, em uma visão tridimensional do que foi dito.

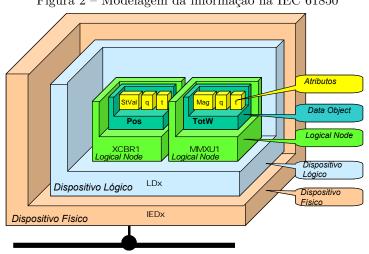


Figura 2 – Modelagem da informação na IEC 61850

Fonte: Adaptado de (IEC, 2013a)

A figura 2 apresenta dois *Logical Nodes* dentro de um dispositivo físico. Esses dois *Logical Nodes* representam elementos reais de campo. A IEC 61850 utiliza-se de classes de objetos para que estes sejam instanciados em objetos virtualizados de elementos reais de campo.

Essa mesma figura mostra o elemento XCBR1, objeto instanciado da classe XCBR, usado para modelar chaves com capacidade de interrupção de curto-circuito e abranger todos os tipos de disjuntores. Já o elemento MMX1 é um objeto instanciado da classe MMXU e usado para modelar medidores ligados a transformadores de corrente (TC) e transformadores de potencial (TP) em cálculos de correntes, tensões, potências e impedâncias em um sistema trifásico (IEC, 2013b).

Portanto, podemos afirmar que o *Logical Node* é uma classe que quando instanciado transforma-se em um elemento concreto com funções bem definidas e mapeadas, ou seja, sintaxe e semântica normatizadas, garantindo assim a interoperabilidade almejada (IEC, 2010b).

Além da semântica do *Logical Node* estar bem definida, também é necessário que a semântica dos *Data Objects*, bem como seus atributos estejam normatizados através de nomes padrões atribuídos a eles.

Como exemplo, a norma define o *Logical Node* MMXN, similar ao *Logical Node* MMXU, porém usado para modelar medidores ligados a transformadores de corrente (TC) e transformadores de potencial (TP) em cálculos de correntes, tensões, potências e impedâncias em um circuito monofásico. Essa classe de objeto é detalhada na tabela 3.

Tabela 3 - MMXN class: Single-phase Measurement

	MMXN class						
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Measure	Measured and Metered Values						
Amp		MV		Current I not allocated to a phase.		О	
Vol	MV			Voltage V not allocated to a phase.		О	
Watt MV			Power (P) not allocated to a phase.		О		
VolAmpr MV			Reactive power (Q) not allocated to a phase.		О		
VolAmp	VolAmp MV			Apparent power (S) not allocated to a phase.		О	
PwrFact MV			Power factor not allocated to a phase.		О		
Imp		CMV		Impedance.		О	
Hz		MV		Frequency.		О	

Fonte: Adaptado de (IEC, 2010b)

Observa-se que a tabela preserva a semântica dos dados fixa e bem definida com nomes padronizados atribuídos ao *Data Object*. Sua descrição e a sua característica é um item mandatório, representado pela letra M, ou opcional, representado pela letra O.

Outra observação importante está relacionada ao conjunto de atributos do *Data Object*, também chamados de classe de dados comum ou CDC (*Common Data Class*). A classe de dados comum também tem sua semântica padronizada da mesma forma que as classes de *Logical Nodes*, como mostrado na tabela 4.

Tabela 4 – MV class: Measured Value

	MV class					
Data Attri-	Type	FC	TrgOp	Value/Value	M/O/C	
bute Name				range	, ,	
DataName	DataName Inherited from GenDataObject Class or from GenSubDataObject Class				ject Class	
Measured A	ttributes					
instMag	AnalogueValue	MX			О	
mag	AnalogueValue	MX	dchg, dupd		M	
range	ENUMERATED	MX	dchg	normal high low high-high low-low	О	
q	Quality	MX	qchg		M	
t	TimeStamp	MX			M	
Substitution	and Blocked					
subEna	BOOLEAN	SV			PICS_SUBST	
subMag	AnalogueValue	SV			PICS_SUBST	
subQ	Quality	SV			PICS_SUBST	
subID	VISIBLE STRING64	SV			PICS_SUBST	
blkEna	BOOLEAN	BL			0	
Configuration	on, Description, and	Extens	ion			
units	Unit	CF	dchg	see Annex A	О	
db	INT32U	CF	dchg	0 100 000	О	
zeroDb	INT32U	CF	dchg	0 100 000	О	
sVC	ScaledValueConfig	CF	dchg	AC_SCAV	O	
rangeC	RangeConfig	CF	dchg	GC_CON_range	О	
smpRate	INT32U	CF	dchg		O	
d	VISIBLE STRING255	DC		Text	О	
dU	UNICODE2	DC			О	
cdcNs	VISIBLE STRING255	EX		AC_DLNDA_M	О	
$\operatorname{cdcName}$	VISIBLE STRING255	EX		AC_DLNDA_M	О	
dataNs	VISIBLE STRING255	EX		AC_DLN_M	О	

Fonte: Adaptado de (IEC, 2010b)

A classe de dados comum lista os atributos referente a uma classe específica de um atributo, o seu tipo, categoria, condição para envio de relatórios, descrição do atributo e um flag para informar se o atributo é mandatório, opcional ou condicional.

Da mesma forma que os atributos possuem uma classe comum e padronizada, os Logical Nodes também possuem uma classe semelhante chamada Common Logical Node Class. Por exemplo, a classe MMXN, que foi apresentada, é na realidade uma especialização da classe mãe Common Logical Node, onde os atributos são herdados para todas as instâncias criadas. Portanto, a classe MMXN herda seus atributos da classe mãe Common Logical Node. A tabela 5 descreve a classe mãe para toda especialização de Logical Node. Observa-se, sem o aprofundamento que seria necessário, apenas o parâmetro Beh (Behaviour) se coloca como mandatório. Beh trata-se de um flag que determina como

se encontra a relação entre o dispositivo lógico e o *Logical Node* especifico, visto que o dispositivo lógico controla todos os *Logical Nodes* que fazem parte do dispositivo lógico, e, portanto, este flag é importante para mapear problemas comuns.

Assim, de acordo com a tabela 5, qualquer *Logical Node* específico irá herdar obrigatoriamente o atributo Beh, adicionando novos atributos de acordo com sua aplicação.

No exemplo do $Logical\ Node\ MMXN$ para medições monofásicas, após a escolha da grandeza ou grandezas a serem medidas, a classe de atributos está mapeada na classe de dados comum MV (Measured Value). Essa classe de dados tem como mandatório 3 atributos: mag que indica o valor instantâneo com um valor de banda morta, o atributo q, referente à qualidade do ponto, e o atributo t, que significa a estampa de tempo do valor medido, conforme mostrado na tabela 4.

Tabela5 – Common LN class

		Common LN class		
Data Object Name	Data Class	Explanation	Т	M/O/C
· · · · · · · · · · · · · · · · · · ·		itional logical node information (shall be	inhe	rited by ALL LN but LPHD)
Descriptions				
NamPlt	LPL	Name plate		C1
Status Inform				
Beh	ENS	Behaviour		M
Health	ENS	Health		C1
Blk	SPS	Dynamic blocking of function described by the LN		О
Controls				
Mod	ENC	Mode		C1
Data Object	\mathbf{s}			
CmdBlk	SPC	Blocking of control sequences and action triggers of controllable data objects		C2
Settings	'			
InRef1	ORG	General input reference		О
BlkRef1	ORG	Blocking reference shows the receiving of dynamically blocking signal		O
Logical node	informa	tion (statistical calculation specific – refer	to	Annex F)
Status Inform		_		,
ClcExp	SPS	Calculation period expired	Т	СЗ
Controls		• •		
ClcStr	SPC	Enables the calculation start at time operTm from the control model (if set) or immediately		O
Settings		from the control model (it set) of immediately		
ClcMth	ENG	Calculation method of statistical data objects		C3
ClcMod	ENG	Calculation mode. Allowed values: TOTAL, PERIOD, SLIDING		C4
ClcIntvTyp	ENG	Calculation interval type		C4
ClcIntvPer	ING	Number of units to consider in case of different interval types (MS, PER-CYCLE, CYCLE, DAY, WEEK, MONTH, YEAR)		O
NumSubIntv	ING	The number of sub-intervals a calculation period interval duration contains		O
ClcRfTyp	ENG	Refreshment interval type		O
ClcRfPer	ING	Number of units to consider for refreshment interval duration (if ClcIntvTyp applies)		O
ClcSrc	ORG	Object reference to source logical node		C5
ClcNxTmms	ING	Remaining time up to the end of the current calculation interval (expressed in milliseconds)		O
InSyn	ORG	Object reference to the source of the external synchronization signal for the calculation interval		O

Fonte: Adaptado de (IEC, 2010b)

Detalhando o exemplo acima, a figura 3 apresenta uma hierarquia de gerenciamento de dispositivos lógicos seguindo o paradigma de orientação a objeto com a nomenclatura da norma IEC 61850. Portanto, a partir de uma classe mãe de *Logical Node* comum são

geradas, por herança, novas classes especializadas, como a classe especializada MMXN para medição de sinais monofásicos.

Common Logical Node + NamPlt + Beh Data Object + Heath + Mod Logical Node MMXN -(Classe de objeto) + Amp + Vol + Watt + VolAmpr Data Object + VolAmp + PwrFact + Imp + Hz Classe de ΜV dado comun (CDC) + mag + q Data Attribute

Figura 3 – Hierarquia de gerenciamento de dispositivos lógicos

Fonte: O próprio autor.

Portanto, de acordo com a classe especializada MMXN, pode-se medir corrente (Amp), tensão (Vol), potência ativa (Watt), potência reativa (VolAmpr) e aparente (VolAmp), fator de potência (PwrFact), impedância (Imp) e frequência (Hz) em redes monofásicas. Todos esses parâmetros herdam da classe *Measured value* (MV) atributos dos quais são obrigatórios: o valor analógico propriamente dito da grandeza escolhida (mag), a qualidade da informação (q) e o TimeStamp (t) com informações de data/hora com a última modificação do atributo e resolução de 24 bits a intervalos de tempo de até 60 ns.

Até o momento, comentamos sobre os *Logical Nodes* MMXU, MMXN e XCBR para medição de sinais trifásicos, monofásicos e comutação respectivamente, porém a norma IEC 61850 possui mais de 250 *Logical Nodes* distribuídos em 19 grupos(IEC, 2013a), conforme mostra a tabela 6.

Tabela 6 – Número de Logical Nodes por Grupo

Grupo	Descrição do Grupo	Número de Logical Nodes
A	Automatic control	5
С	Supervisory control	6
D	DER (Distributed Energy Resources)	43
F	Functional blocks	9
G	Generic function references	4
Н	Hydro power	46
I	Interfacing and archiving	6
K	Mechanical and non-electrical primary equip-	5
	ment	
L	System logical nodes	9
M	Metering and measurement	13
P	Protection functions	30
Q	Power quality events detection related	6
R	Protection related functions	11
S	Supervision and monitoring	11
Т	Instrument transformer and sensors	20
W	Wind power	17
X	Switchgear	2
Y	Power transformer and related functions	4
Z	Further (power system) equipment	18
Total		265

Fonte: Adaptado de (IEC, 2010b)

Observa-se, na tabela 6, que o grupo D (aplicações em sistemas distribuídos), H (aplicações em usinas hidroelétricas) e W (aplicações em usinas eólicas) referem-se a domínios dedicados, tratados em capítulos específicos na norma IEC, em virtude do grande número de detalhes que possuem essas áreas, e muitas das vezes parâmetros bem distintos dos aplicados ao sistema elétrico de potência, como por exemplo: medição de vazão de gás, vibração, temperatura, condições meteorológicas, tipo de combustível, tipo de válvula, sistema contra incêndio, etc.

Dado, a presença desses domínios citados na norma IEC 61850, percebe-se que muitas das variáveis presentes em *Logical Nodes* mapeados também são aplicados na indústria de processo, e portanto uma reorganização desses *Logical Nodes* viabilizaria a aplicação da IEC 61850 dentro da indústria, em sua integralidade, trazendo assim a interoperabilidade não encontrada nas normas que descrevem o setor de automação industrial de redes de campo, a IEC 61158 e IEC 61784.

Este detalhamento será realizado no próximo capítulo, visto que se trata do conteúdo central do trabalho de tese que está sendo apesentado, porém, como ilustração ao que foi dito, são apresentados na figura 4 os vários domínios de aplicação na norma aplicada ao sistema elétrico de potência.

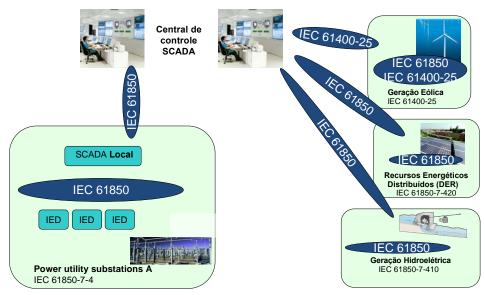


Figura 4 – Domínios de aplicação da IEC 61850

Fonte: Adaptado de (IEC, 2011)

Em usinas hidroelétricas, o mapa de Logical Nodes específico para esse domínio e suas particularidades está descrito na IEC 61850-7-410. Aplicações em recursos energéticos distribuídos ou DERs (Distributed Energy Resources), os Logical Nodes são detalhados na IEC 61850-7-420. Para turbinas eólicas as especificidades são tratadas na IEC 61400-25, que foi harmonizada com a IEC 61850. Outros conjuntos de Logical Nodes aplicados em domínios diversos, como mobilidade elétrica são tratados em outras normas, porém, para o contexto desta tese serão considerados os documentos relacionados acima.

Essa separação da norma em muitos documentos, que a princípio são distintos entre si, todavia integrados no contexto global de comunicação, traz uma característica da IEC 61850 bastante comentada na literatura do assunto em pauta, que é uma norma a prova de futuro (BALAN et al., 2019), ou seja, a norma trabalha de forma independente da aplicação e comunicação, criando uma interface abstrata para acesso aos dados e equipamentos reais, isolando a aplicação da comunicação entre os dispositivos, podendo, assim, recepcionar o estado da arte nas camadas inferiores do modelo de referência OSI/ISO quando ocorrer.

A figura 5 evidencia esse isolamento através da ACSI. De um lado tem-se as classes de objetos representadas pelos *Logical Nodes* de diversos domínios específicos, e do outro lado tem-se as SCSMs (*Specific Communication Service Mapping*), que traz o mapeamento dos serviços de comunicação para aplicações com requisitos de engenharia específicos.

A norma define três tipos de modelos de comunicação: Um modelo de comunicação vertical Cliente/Servidor, que utiliza mapeamento para o protocolo MMS, um modelo

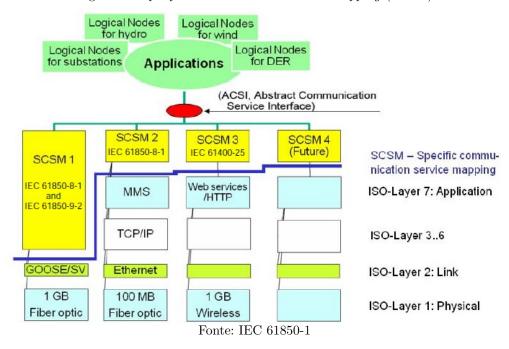


Figura 5 – Specific Communication Service Mapping (SCSM)

de comunicação horizontal Editor-Assinante, que utiliza mapeamento para o protocolo Generic Object Oriented Substation Event (GOOSE) em transmissão rápida e confiável multicast de sinais analógicos e digitais e modelo de amostragem de valores analógicos para medição, que utiliza o protocolo Sample Value, também em uma transmissão multicast, rápida, confiável e sincronizada com relógio de precisão.

Observa-se que as SCSMs desempenham um papel importante para que o sinal chegue de fato ao dispositivo e cumpra o que lhe é cabido, e que futuros protocolos mais eficientes, ou até meios de comunicação mais robustos e rápidos sejam implementados através da representação no SCSM 4 da figura 5 .

Entretanto, é importante frisar que a criação de SCSMs sem o devido critério da necessidade observado, pode trazer problema para a interoperabilidade atingida pela norma, visto que o demasiado número de mapeamentos tornará muitos dos dispositivos incompatíveis entre si, remetendo ao que foi vivido no desenvolvimento da norma *Fieldbus* IEC 61158 e IEC 61784, quando se tinha um grande número de protocolos que desempenhavam funções similares e que eram incompatíveis entre si.

2.5 TRABALHOS PUBLICADOS NA ÁREA

Foi realizada uma revisão sistemática dos artigos publicados em revistas indexadas, conduzida de acordo com um processo estruturado, utilizando o argumento de pesquisa "IEC 61850" AND (industr* OR manufactur* OR "process control" OR factory) NOT (substation OR "power system*" OR "smart grid" OR "distribution automation" OR "protection relay*" OR "wind farm" OR photovoltaic OR PV).

As bases científicas consultadas foram IEEE Xplore e, posteriormente, Scopus (Elsevier), ACM Digital Library, ScienceDirect (Elsevier), SpringerLink (Springer Nature), Wiley Online Library, MDPI e SciELO, com apoio complementar do Google Scholar.

Em todas essas bases, não foram encontrados artigos publicados em periódicos que abordassem a aplicação da norma IEC 61850 em sistemas de automação industrial de processos. As aplicações identificadas, quando relacionadas ao ambiente industrial, restringem-se à integração com subestações de energia ou a outras aplicações vinculadas ao domínio elétrico.

Neste trabalho de tese, são apresentados apenas os resultados obtidos na base IEEE Xplore, cujo conteúdo é analisado e discutido, considerando-se que os artigos encontrados nas demais bases citadas apresentam conteúdo equivalente. Os resultados foram organizados cronologicamente e são apresentados a seguir, artigo por artigo.

- Mazur et al. (2015) (MAZUR; SOTTILE; NOVAK, 2015) apresentam um estudo de caso em mineração de taconita que integra IEDs de proteção/medição ao SCADA de processo via MMS, com relatórios buffered (tipicamente na escala de 1 s, ajustáveis) e um gateway IEC 61850→EtherNet/IP que mapeia atributos do modelo IEC 61850 para tags CIP/AOI no controlador de processo (PAC). O foco do trabalho permanece na monitoração e no comando do subsistema elétrico (MCCs, relés, medidores; reconstrução de SOE e gestão de demanda), sem modelagem de variáveis nem de malhas de processo industrial.
- Kunz et al. (2017) (KUNZ et al., 2017) propõem uma metodologia formal em cinco etapas para cumprir requisitos temporais da IEC 61850, priorizando GOOSE/SMV (tempo real) em contraste com MMS (supervisão). O fluxo abrange modelagem, simulação, verificação formal (por exemplo, autômatos temporizados), tradução da especificação para o controlador e ensaio de conformidade; revisita ainda a semântica

- por Logical Devices/Logical Nodes/atributos. O escopo é explicitamente voltado a sistemas de energia, sem casos de uso em controle de processo industrial.
- Urbina et al. (2018) (URBINA et al., 2018) apresentam um gateway CPPS em plataforma SoC/FPGA para interoperabilidade com Modbus e Profibus, com ênfase em arquiteturas de alta disponibilidade (PRP/HSR) e testes funcionais (leitura/escrita, tramas SD1/SD2/SC). A IEC 61850 aparece apenas como palavra-chave; o conteúdo técnico permanece focado em fieldbuses e redes industriais, sem mapeamentos IEC 61850 processo.
- Habib et al. (2018) (HABIB; LASHWAY; MOHAMMED, 2018) revisam os impactos de falhas de comunicação na proteção adaptativa de microrredes e propõem o uso de armazenamento de energia como contingência para garantir atuação quando a comunicação falha. Os autores situam a IEC 61850 no contexto de subestações e destacam restrições temporais severas (ordem de 4 ms) para GOOSE/SMV, reforçando o papel do padrão na proteção do sistema elétrico, sem interface com malhas/sensores de processo.
- Volkova et al. (2019) (VOLKOVA et al., 2019) realizam um survey comparativo de segurança em protocolos de redes de controle (Modbus, OPC UA, TASE.2, DNP3, IEC 60870-5-101/104 e IEC 61850), com metodologia comum de testes e análise da eficácia da IEC 62351. Embora transversal, os exemplos e o enquadramento permanecem ancorados em aplicações elétricas, não em processo de manufatura.
- Gayo et al. (2020) (GAYO et al., 2020) propõem um mercado local em microrredes baseado em blockchain e contratos inteligentes, obtendo dados/comandos dos prosumidores por comandos padronizados IEC 61850 para garantir interoperabilidade agnóstica a fabricante, com validação em testbed de baixo custo. Trata-se de infraestrutura transacional/energética; não há integração com variáveis/atuadores de processo.
- Qusayer et al. (2024) (QUSAYER; HUSSAIN, 2024) apresentam um esquema de proteção assistida por comunicação, centralizado, com redes neurais para localização
 e isolamento de faltas em multi-microgrid. O trabalho emprega IEC 61850 para
 monitoramento e emissão de comandos de trip e mede o atraso fim-a-fim (soma de
 rede e de computação), mantendo o foco em proteção de potência.
- Nadeem et al. (2024) (NADEEM et al., 2024) propõem um modelo de agendamento multiestágio de VPP com DLMP e MILP, além de um framework de comunicação

- IEC 61850-8-2 (XMPP) que exemplifica a troca de stanzas entre clientes, incluindo servidores IEC 61850 de EVSE/CHP conectados a múltiplos domínios. O escopo é orientado à coordenação/mercado de energia.
- Kishore et al. (2025) (KISHORE et al., 2025) desenvolvem uma estratégia diferencial para proteção de microrrede CA com cargas derivadas (tapped loads), baseada em grandezas superimposed (sequência negativa e corrente de fase) e lógica AND temporizada (aprox. 1,5 ciclo), com validação HIL. O disparo é emitido por IEC 61850 GOOSE, reforçando o emprego do padrão como mecanismo de atuação em proteção; não aborda controle de processo.

Também foram pesquisados artigos publicados em anais de congresso, distribuídos em diversas bases científicas, totalizando mais de 42 trabalhos identificados. De forma semelhante aos artigos de revista, nenhum desses estudos apresentou relação direta com a automação industrial de processos. O trabalho mais próximo desse contexto foi encontrado no Congresso Brasileiro de Automática (CBA – 2024), em que Martins et al. (2024) (MARTINS et al., 2024) apresentaram o artigo "Monitoramento e Modelagem de Dados da IEC 61850 em Plantas Industriais". Nesse estudo, os autores propõem uma adaptação conceitual da norma IEC 61850 para o monitoramento de uma estação de compressão de gás, utilizando dados sintéticos em ambiente laboratorial com um IED SEL-451 e um sistema SCADA Elipse E3, sem integração com controladores industriais ou dispositivos de campo reais. Assim, a norma é aplicada apenas como modelo de dados, sem implementação prática das comunicações GOOSE, MMS ou Sampled Values e nenhum estudo aprofundado sobre a aplicabilidade semântica. Embora o trabalho apresente a criação de um Logical Node denominado KTUR para representar turbinas, a modelagem proposta não segue integralmente a estrutura definida na IEC 61850-6, tampouco emprega arquivos SCL autodescritivos. Dessa forma, o estudo não caracteriza uma aplicação da norma em sistemas industriais de processo, mas sim uma simulação conceitual distinta da abordagem desenvolvida nesta tese, que propõe a usabilidade plena e interoperável em plantas industriais de processo.

3 O TRABALHO DE TESE

3.1 CASO GERAL

Conforme visto no capítulo anterior, a norma IEC 61850 alcançou a interoperabilidade entre os dispositivos aplicados a sistemas de potência, utilizando-se de conceitos de orientação a objeto, modelos de informação e métodos de modelagens através de semântica padronizada, ou seja, a norma identifica as informações comuns presentes em dispositivos reais, gera padrões e virtualiza para serem aplicados à automação de sistemas elétricos.

A questão neste momento é como aplicar esses mesmos conceitos à área de automação de sistemas industriais?

No sistema elétrico, todos os componentes de campo são conhecidos e bem determinados, o que faz com que a virtualização desses componentes ocorra de forma padronizada. A figura 6 representa dispositivos reais de campo em uma subestação de energia e sua virtualização através de partes determinadas na norma IEC para a sua devida modelagem.

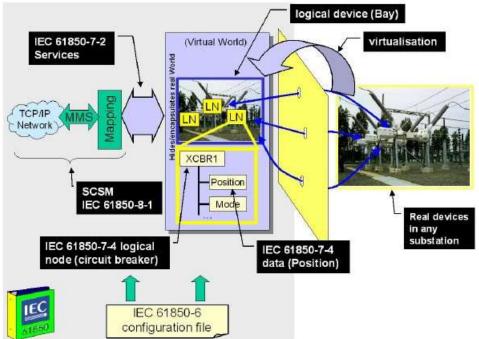


Figura 6 – Virtualização de componentes reais de campo

Fonte: IEC/TR 61850-7-1

Essa virtualização padronizada ocorre observando um conjunto de outras normas, todas ligadas à IEC 61850, sendo que esses documentos são aplicados ao contexto de sistemas elétricos de potência ou dedicados a domínios específicos que não envolvem a automação em ambientes industriais.

Na automação industrial, assim como na automação de sistemas elétricos, os componentes de campo também são bem determinados, porém muitos dos dispositivos que são encontrados na indústria não são comuns de serem vistos em subestações ou redes de distribuição de energia elétrica. Assim sendo, é identificada uma dificuldade preliminar em ter componentes comuns, visto que a IEC 61850 se utiliza de semântica padronizada para definir esses componentes.

Diante dessas limitações impostas pela própria norma à sua aplicabilidade na indústria, e com o fato de que o domínio relacionado a sistemas de potência e o domínio relacionado a sistemas industriais têm particularidades distintas, tanto em elementos de campo quanto em requisitos de comunicação, tentativas de harmonização com protocolos industriais já ocorreram no passado, porém sem sucesso na sua implantação como documento normativo de fato.

Um exemplo claro dessa tentativa de harmonização na indústria é a elaboração de uma diretriz responsável por mapear para IEC 61850 o protocolo Modbus, que é um dos principais protocolos encontrados na indústria, gerando o documento IEC 61850-80-5: Guideline for mapping information between IEC 61850 and IEC 61158-6(Modbus), inclusive fazendo parte de um grupo de trabalho criado em 2016 pela EPRI (Electric Power Research Institute) para documentar e relatar o processo do grupo de trabalho 10 do comitê técnico 57, responsável pela IEC 61850 de forma geral (EPRI, 2016). Todavia, atualmente esse documento não é encontrado na base de dados no site oficial da IEC, e nem outro mapeamento utilizando protocolos industriais foram realizados pelo grupo de trabalho da IEC (IEC, 2023b).

Essa frente técnica que ocorreu para mapear o protocolo Modbus para a norma IEC esbarra em uma orientação da própria norma IEC 61850, de que a interoperabilidade é afetada pelo número de mapeamentos existentes, ou mais especificamente pelo número de SCSMs (Specific communication service mapping) existentes, assim, visto que somente são interoperáveis os componentes do aplicativo que implementa a mesma SCSM, a criação indiscriminada de SCSMs tornaria comprometida a interoperabilidade da norma como um todo.

Portanto, a busca por integrar a IEC 61850, através de mapeamentos aos principais protocolos industriais da norma IEC 61158 e IEC 61784, torná-la-ia interoperável, assim como são os protocolos que hoje compõem a norma IEC Fieldbus.

Outro exemplo claro de um grande número de mapeamentos é a aplicação no domínio de geração eólica. A IEC 61400-25-1 trata das comunicações para monitoramento e controle de usinas eólicas através de princípios e modelos da IEC 61850. Porém, a IEC 61400-25-4 detalha os vários mapeamentos para perfis de comunicação diversos, como: Web-services, OPC-DA clássico, MMS, IEC 60870-5-104 e DNP3. Observa-se que, para todos esses mapeamentos, apenas o MMS traz a intersecção com o já praticado pela IEC, através da IEC 61850-8-1. A figura 7 apresenta a filosofia aplicada à norma para geração eólica, e observa-se que são previstos múltiplos mapeamentos para diferentes perfis de comunicação. Esses mapeamentos são abordados em outro documento IEC 61400-25-4.

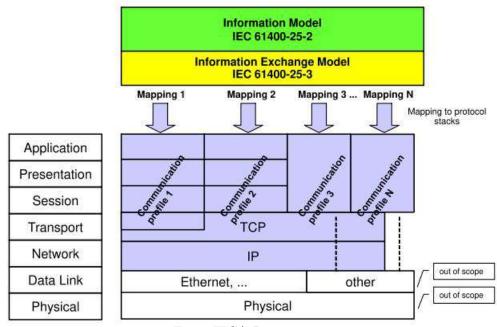


Figura 7 – Multiplos mapeamentos da IEC 61400-25

Fonte: IEC/TR 61400-25-1

A IEC 61400-25-4 foi harmonizada com a IEC 61850, porém, não foi integrada a nenhum dos seus capítulos, visto que ela desaconselha a criação de mapeamentos sem a devida justificativa tecnológica (IEC, 2013a).

O trabalho de tese aqui detalhado traz uma nova visão das que foram buscadas nestes quase 20 anos da norma para sistemas elétricos. Portanto, buscou-se a integração, não através de novas SCSMs para os protocolos industriais existentes, ou um modelo comum que o faça, e sim através da ACSI (Abstract Communication Service Interface) ou interface de serviço de comunicação abstrata, como evidenciado na figura 5.

A figura 5 mostra principalmente a ACSI como interface que liga SCSMs às aplicações integradas pelos *Logical Nodes* vinculados aos domínios específicos. E como não

se tem domínio específico para aplicações em ambientes industriais, a IEC 61850 não é aplicada a estes ambientes.

Entretanto, o fato de não existir um domínio específico para aplicações industriais não significa dizer que ela não possa ser aplicada, pois os domínios existentes na norma, apesar de estarem ligados a sistemas elétricos de potência, possuem componentes comuns aos verificados na indústria, e portanto esse trabalho de tese tem como um dos seus principais objetivos mapear esses componentes, através dos seus *Logical Nodes*, para que a sua inserção seja estabelecida da aplicação à interface de serviços abstratos, sem necessidade de criar novas SCSMs como é mandatório na norma.

De forma geral, a indústria de processo possui medições, controles, supervisão, máquinas e equipamentos muitas das vezes similares a um ambiente de geração distribuída de energia DER (*Distributed Energy Resources*), ou a ambientes de geração tradicional, como usinas hidroelétricas, e em outras muitas vezes bem distintas, visto que as especificidades nos domínios de geração de energia não se coadunam com os ambientes fabris.

A norma IEC 61850 define um domínio de aplicação geral e específicos, bem como, também, partes independentes que tratam do modelamento do fluxo de dados e da informação. A figura 8 apresenta como se encontra dividida a norma.

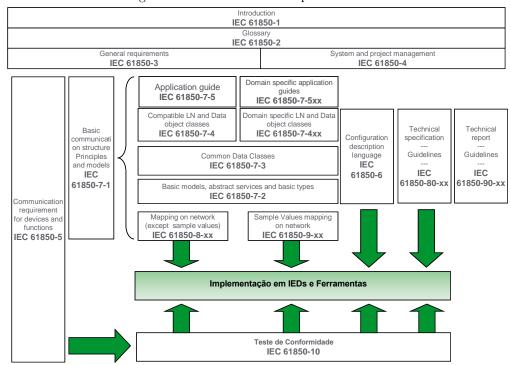


Figura 8 – Detalhamento das partes da norma

Fonte: Adaptado de (IEC, 2013a)

Observa-se no topo da figura 8 uma estrutura mais geral com introdução, glossário, requisitos e gerenciamento. Após, vem a parte da norma orientada a objeto modelando a informação com classes comuns de dados, *Logical Nodes*, classes de objetos de dados e a interface de serviços abstratos (ASCI). Em seguida, vêm os mapeamentos através das SCSMs, como: Sample Value, GOOSE e MMS e, por fim, a implementação de fato, no IED (intelligent electronic device). Nas laterais da figura observa-se ainda importantes documentos, sendo o principal aquele que detalha a linguagem de descrição de configuração, também conhecida com *System Configuration description Language* (SCL).

Novamente, na parte central da figura 8 remete-se a atenção aos *Logical Nodes* e classes de objetos de dados para domínios específicos, onde os únicos dois domínios específicos da norma são detalhados: recursos energéticos distribuidos (DERs) e usinas hidroelétricas.

Portanto, o documento chave para o desenvolvimento deste trabalho está na norma IEC 61850-7-4 (Basic communication structure – Compatible logical node classes and data object classes), incluindo os dominios específicos detalhados na norma IEC 61850-7-4XX, mais especificamente IEC 61850-7-410 (Basic communication structure - Hydroelectric power plants - Communication for monitoring and control) e a IEC 61850-7-420 (Basic communication structure - Distributed energy resources and distribution automation logical nodes).

Incluem-se nesta lista, outrossim, os guias de aplicação, tanto os ligados ao caso geral quanto aos domínios específicos. São as normas IEC TR 61850-7-5 (IEC 61850 modelling concepts), IEC TR 61850-7-500 (Basic information and communication structure - Use of logical nodes for modeling application functions and related concepts and guidelines for substations) e IEC TR 61850-7-510 (Basic communication structure - Hydroelectric power plants, steam and gas turbines - Modelling concepts and guidelines).

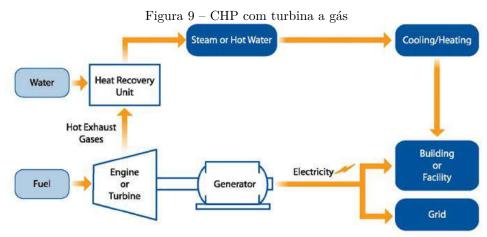
É importante destacar que os technical reports (TR) mostrados acima são documentos orientativos específicos relacionados com técnicas, abordagens, estudos de caso, metodologias ou qualquer outra informação útil para o usuário da norma, e, portanto, não são considerados documentos normativos. Dessa forma, a estrutura normativa, cerne deste trabalho, concentra-se na IEC 61850-7-4 e IEC 61850-7-4XX (IEC, 2023a).

Para aplicações da IEC 61850 na indústria de processos faz-se necessário entender mais sobre esse domínio específico, visto que não é detalhado em nenhum dos seus relatórios técnicos e em nenhuma diretriz técnica.

Um dos pontos em comum, tanto na geração de energia elétrica quanto na produção da indústria, está no fato de ambas possuírem máquinas térmicas das mais diversas. Nas fábricas, em sua grande maioria, essas máquinas não são usadas para a geração de energia, mas para a fabricação de produtos e peças, também conhecida como indústria de transformação ou de processos.

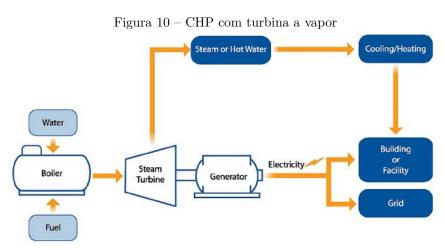
Colocando alguns números para se ter uma ideia do tamanho desse tipo de indústria no país, no terceiro quadrimestre de 2022 existiam mais de 20 milhões de empresas ativas, considerando matrizes, filiais e microempreendedores individuais. Dessas empresas citadas, a indústria de transformação perde apenas para o setor de serviços e comércio, representando mais de 9% do total (MDIC, 2022).

Apesar da aplicação final da máquina térmica não ser a mesma para os domínios citados, a sua operação depende da medição, controle e supervisão das mesmas variáveis, e neste caso independe do domínio observado.


A produção simultânea de eletricidade e energia térmica útil, tanto aquecimento quanto resfriamento, a partir de uma única fonte de energia é chamada de cogeração ou processo de calor e energia combinados, CHP (Combined heat and power) (EERE, 2023). Esse processo é bem discutido e detalhado na norma IEC 61850-7-420 que cuida da geração distribuída de energia.

A norma que detalha a geração de energia, através de CHPs, deixa claro que não é viável desenvolver o modelamento deste tipo de geração, tendo em vista o grande número de possibilidades de instalações distintas para diferentes propósitos (IEC, 2009). Usinas CHP são tipicamente baseadas em turbinas a gás, vapor ou em ambos em configuração de ciclo simples ou combinado. Em uma configuração de ciclo simples, o calor excedente gerado por uma turbina a gás é capturado em um gerador de vapor de recuperação de calor ou caldeira e usado para aquecimento ou produção de vapor de processo. Em uma configuração de ciclo combinado, o calor é usado para alimentar uma turbina a vapor produzindo energia (SIEMENS, 2023).

Na indústria de base, a configuração de ciclo simples é o que existe de mais próximo de uma cogeração CHP, sendo que, neste caso, o calor de um processo de combustão seria capturado em um sistema de recuperação de calor e reusado para aquecimento e aumento da eficiência da queima de queimadores em fornos ou caldeiras industriais.


Nas figuras 9 e 10 são evidenciados exemplos típicos e comuns de turbinas CHP.

Na primeira figura, tem-se uma arquitetura onde o motor primário pode ser a gás, célula de combustível ou a diesel. Esses motores queimam combustível para acionar geradores na produção de eletricidade, e através de equipamentos específicos, recupera o calor e a converte em energia térmica útil, geralmente na forma de vapor ou água quente (EPA, 2023).

Fonte: U.S. Environmental Protection Agency

Já na segunda figura, o processo de geração de energia começa em uma caldeira para a produção de vapor. O vapor é então usado para girar uma turbina e acionar um gerador para produzir eletricidade. O vapor que sai da turbina pode ser usado para produzir energia térmica útil (EPA, 2023).

Fonte: U.S. Environmental Protection Agency

Nos dois casos vistos nas figuras 9 e 10 percebe-se a utilização de componentes comuns da indústria de transformação, como caldeiras, queimadores, combustíveis fósseis, motores, tubulações, etc.

Na figura 11, observa-se alguns detalhes de uma turbina típica movida a gás natural. Nela verifica-se a existência de componentes característicos da indústria, operando

basicamente em um processo industrial. Do lado esquerdo da figura um gerador de energia elétrica, e do outro lado um sistema completo de combustão, comum em praticamente qualquer chão de fábrica (HADLEY et al., 2023).

Air Inlet
Filter

Generator

Gas
Turbine
Engine

Supplementary
Burner (optional)

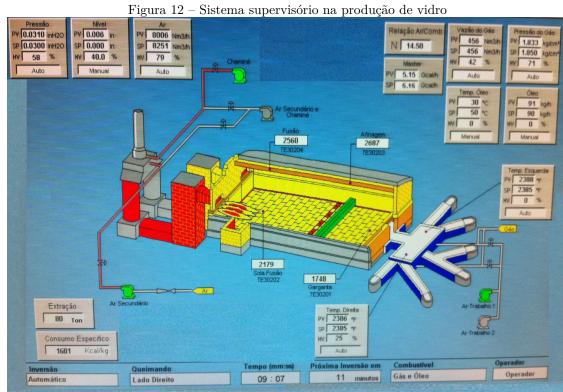
Exhaust

To Thermal
Process (Steam and Hot Water)

Steam Generator
(HASC)

Burner (optional)

Figura 11 – Detalhe da máquina primária em uma CHP


Fonte: Analysis of Potential at Federal Sites

A semelhança do sistema de combustão da figura 11 com os sistemas já existentes na indústria faz com que as características de ambos os sistemas não estejam apenas limitadas aos componentes presentes em uma cogeração CHP, como: queimadores, câmara de combustão e sistema de exaustão dos gases, mas também a toda instrumentação utilizada, malhas de controle e sistemas supervisórios existentes.

Um sistema como o mostrado na figura 11 possui várias malhas de controle atuando simultaneamente, necessitando realizar dezenas de medições em tempo real e acionando outra dezena de atuadores para que tudo funcione adequadamente. Observando a figura acima, apesar de não estar explicito, verifica-se a existência de controles necessários à operação normal da CHP. Explicitamos alguns desses: controle de temperatura em diferentes partes da câmera de combustão, monitoramento de temperatura em zonas críticas da câmera de combustão, monitoramento e controle da pressão interna do sistema através do sistema de exaustão, medição da temperatura dos gases de exaustão, medição de vibração dos motores, controle da eficiência da chama na combustão realizado através da medição de oxigênio, monóxido de carbono e temperatura dos gases, controle da pressão da caldeira na produção de vapor, etc.

Com o objetivo de mostrar a semelhança, não da arquitetura do processo, mas das variáveis monitoradas, instrumentação e controles utilizados, será realizado um paralelo com a figura 12. Nesta figura é mostrada a tela de um sistema supervisório de um forno de fusão para a produção de vidro doméstico (copos e pratos). Em razão de critérios de sigilo

e confidencialidade, não será informada qual a fábrica que possui o sistema apesentado na figura abaixo.

Fonte: O próprio autor

Essa estrutura, em particular de fornos de fusão de vidro, repete-se em quase todas as indústria do Brasil e do mundo, tanto indústria de base (produção de matéria prima utilizada em companhia de outros setores) quanto em indústria de transformação (MDIC, 2022), alterando o porte do forno e o tipo de produto que está sendo produzido.

Esse tipo de planta possui diversas zonas de controle de temperatura para manter a viscosidade do produto em valores conhecidos, além de manter pontos críticos (como a abóboda do forno) monitorados constantemente a fim de evitar sobretemperatura e, portanto, a degradação acelerada dos materiais refratários. A fusão do material ocorre necessariamente por irradiação da chama, e, consequentemente, faz-se necessário manter a relação estequiométrica ar/combustível em valores de máxima transferência de energia, não abrindo mão dos valores mínimos de oxigênio que devem existir na câmara de combustão, com o objetivo de manter características físico/químicas do produto inalteradas. Também, em uma planta como essa, busca-se maximizar a relação consumo de combustível e produção, ou seja, busca-se o menor consumo para a maior produção possível. Para isso, controla-se a temperatura da matéria prima, sua umidade e pureza do combustível,

bem como a pressão da câmera, dentre outros fatores. Malhas de controle independente trabalham em paralelo para manter essas variáveis em valores determinados.

Portanto, apesar da arquitetura das plantas e suas aplicações finais serem bem distintas, os dispositivos de engenharia, sua instrumentação, controle e supervisão são similares, neste contexto de cogeração.

Quanto ao fato da existência de uma grande variedade de esquemas de instalações térmicas diferentes, concluiu-se que não seria viável o desenvolvimento de um modelo geral CHP, decidindo-se por modelar suas partes individuais, visto que poderiam essas partes serem utilizadas para a construção de diferentes sistemas CHP (IEC, 2009).

Esse tipo de raciocínio trouxe para o cerne desse trabalho de tese a possibilidade da utilização plena da IEC 61850 também em domínios da indústria de base e transformação, como mostrado até então. Para isto, faz-se necessário que, assim como foi desenvolvido para domínios específicos como geração distribuída e, hidroelétricas, os *Logical Nodes* já existentes nestes domínios possam ser devidamente mapeados e criados os modelos de informações para o domínio industrial.

3.2 ORGANIZAÇÃO DA INTERFACE ABSTRATA

Para se chegar a um modelo aplicável à indústria utilizando a norma IEC 61850, primeiramente, faz-se necessário mapear quais os componentes comuns já listados pela IEC e que podem ser utilizados em plantas fabris. A figura 13 mostra todos os dispositivos e *Logical Nodes* existentes em um sistema de cogeração CHP.

Observa-se nesta figura Logical Nodes específicos presentes no capítulo da norma de geração distribuída e Logical Nodes já existentes, presentes na estrutura de comunicação básica que elenca os Logical Nodes comuns a sistema de potência.

Um ponto que precisa ser melhor investigado está relacionado à classe de dados comuns (*Common Data Class* - CDC). Como foi visto anteriormente, a classe de dados comuns especifica classes de dados para informações de status, medida, controle, configurações de status e configurações analógicas, e são compostas por classes de atributos bem definidos. Essas classes de dados definem a relação entre seus atributos e a restrição funcional imposta (IEC, 2010a).

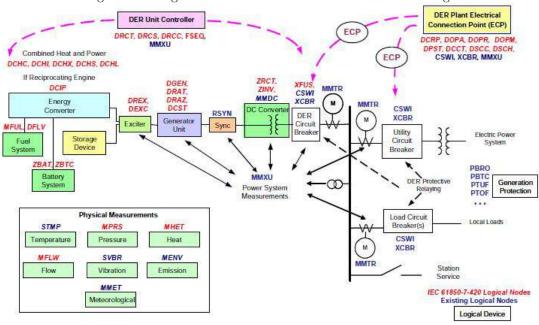


Figura 13 – Logical Nodes em um sistema distribuído de energia

Fonte: IEC 61850-7-420

As restrições funcionais, também conhecidas como Functional Constraints - FC, desempenham um importante papel no modelamento da informação e em seus serviços de acesso à informação, sendo portanto uma propriedade que caracteriza o uso específico do atributo.

A tabela 7 apresenta todos os tipos de restrições funcionais descritos na IEC 61850. Observa-se nesta tabela que diversas restrições são completamente aplicáveis na indústria, sendo as mais usadas (SCHWEITZER, 2022):

- ST Status information;
- MX Measurands (analogue values);
- CF Configuration;
- DC Description;
- EX Extended definition (application name space)

Em aplicações industriais três ações são muito importantes: Medir, controlar e supervisionar. Verifica-se na tabela 7 que todas essas ações são mapeadas por funções de restrição adequadas, com exceção da função de restrição de controle que, após a edição 2 da IEC 61850, foi retirada da tabela e adicionada diretamente ao campo de classes de dados comuns.

As classes com funções de controle são: SPC (Controllable single point), DPC (Controllable double point), INC (Controllable integer status), ENC (Controllable enumerated

status), BSC (Binary controlled step position information), ISC (Integer controlled step position information), SPC (Controllable analogue process value) e BAC (Binary controlled analog process value). Todas essas classes citadas têm aplicação direta na indústria em funções específicas de controle de processos.

Tabela 7 – Functional Constraint (FC)

	Functional Constraint (FC)			
FC	Semântica	Serviços Permitidos		
ST	Status information	Data Attribute deve representar informações de status cujo valor pode ser lido, substituído, relatado e registrado, mas não deve ser gravável.		
MX	Measurands (analogue values)	Data Attribute deve representar informações de medidas cujo valor pode ser lido, substituído, relatado e registrado, mas não deve ser gravável.		
SP	Setting (outside setting group)	Data Attribute deve representar informações de parâmetro de configuração cujo valor é lido e pode ser escrito. Alterações de valores entrarão em vigor imediatamente e poderão ser comunicadas.		
SV	Substitution	Data Attribute deve representar informações de substituição cujo valor pode ser escrito e lido para substituir o valor. Uma mudança de valor pode ser relatada.		
CF	Configuration	Data Attribute deve representar informações de configuração cujo valor pode ser escrito e lido. Os valores escritos podem se tornar efetivos imediatamente ou diferidos por motivos fora do escopo desta norma. Alterações de valores podem ser informadas.		
DC	Description	Data Attribute deve representar informações de descrição cujo valor pode ser escrito e lido.		
SG	Setting group	Os dispositivos lógicos que implementam a classe SGCB mantêm vários valores agrupados de todas as instâncias de Data Attributes com a restrição funcional SG. Cada grupo contém um valor para cada Data Attribute. Data Attributes com restrição funcional SG devem ser o valor ativo atual (para detalhes, consulte IEC 61850-7-2). Data Attributes com FC=SG não devem ser graváveis.		
SE	Setting group editable	Data Attribute que pode ser editado pelos serviços SGCB. Define o buffer de edição para os conjuntos de valores pertencentes a atributos com FC=SG.		
SR	Service response	Data Attribute deve representar dados de diferentes objetos de processo com o mesmo objeto de rastreamento cujos valores podem ser usados para serem relatados e registrados; os valores não devem ser graváveis. Esses atributos são usados para rastreamento de serviço (consulte IEC 61850-7-2).		
OR	Operate received	Data Attribute deve representar o resultado de uma requisi- ção Operate no Data Object que recebe a requisição Operate, mesmo que a execução da Operate esteja bloqueada.		
BL	Blocking	Data Attribute é usado para bloquear atualizações de valor.		
EX	Extended definition (application name space)	Data Attribute deve representar um espaço de nome de aplicativo. Espaços de nome de aplicativo são usados para definir as semânticas de LNs, classe de objeto de dados e Data Attributes conforme especificado em 61850-7-3 e IEC 61850-7-4. Data Attributes com FC=EX não devem ser graváveis. Observe que extensões privadas de blocos de controle podem usar o FC EX no nível SCSM.		

Fonte: IEC 61850-7-2

Assim como o sistema elétrico, o setor de automação industrial de processo possui também centenas de variáveis que podem ser controladas ou apenas monitoradas. Muitas

dessas variáveis são encontradas na IEC 61850 por ser comum a ambos os domínios, como: tensão, corrente, potência, bloqueio de equipamentos, controle PID, válvulas, bombas, ventilador, vibração, temperatura, disjuntor, etc. Porém, outras muitas variáveis de processos específicos da indústria não estão mapeadas na norma, visto que a IEC 61850 não foi concebida com esse fim.

Apesar dessa limitação, quando se analisa os principais processos industriais, percebe-se que um número pequeno de variáveis estão presentes em um número grande de indústrias. A figura 14 apresenta um levantamento que teve como foco a utilização de transmissores analógicos em plantas fabris, porém evidencia que mais de 80% das indústrias no mundo utilizam 4 variáveis de processo, sendo elas: pressão, temperatura, vazão e nível.

Sabe-se que a IEC 61850-7-4 não possuem *Logical Nodes* para as demais variáveis de processo como: condutividade, pH, oxigênio e densidade, porém isso não inviabiliza a aplicação da norma, pois apenas restringe a sua interoperabilidade, dado a previsão da utilização de *Logical Nodes* genéricos.

A proposta deste trabalho de tese não é sugerir a criação de novos *Logical Nodes*, o que poderia ser factualmente possível, mas a tese, presente em tela, vem mostrar como a norma IEC 61850 pode ser atualmente aplicável ao setor de automação industrial de processo, sem a necessidade de se realizar nenhuma alteração em sua última edição, tendo, portanto, uma norma internacional viável e interoperável.

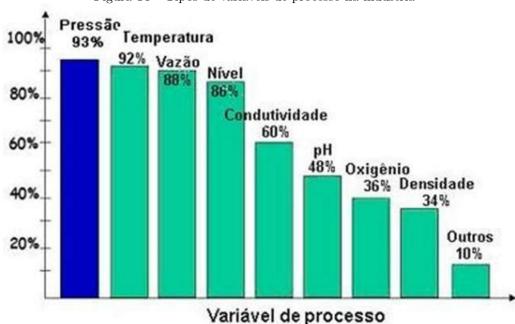


Figura 14 – Tipos de variáveis de processo na indústria

Fonte: Control Engineering Magazine, 2002

Considerando as limitações identificadas em determinados processos e visando preservar a interoperabilidade na aplicação da IEC 61850, esta tese propõe a identificação de novos domínios de aplicação. A figura 12 ilustra processos como fusão, recozimento e têmpera de vidro; fusão, recozimento e laminação de alumínio; e tratamento térmico em siderurgias e cerâmicas, entre outros. No entanto, a análise apresentada neste trabalho será conduzida em um contexto mais abrangente, dado o grande número e a diversidade de domínios no setor industrial. Ainda assim, conforme destacado, a maioria das variáveis associadas à automação de processos permanece a mesma, garantindo a aplicabilidade da IEC 61850 sem comprometer sua interoperabilidade.

Para iniciar o estudo de aplicação proposto, faz-se-a necessário apresentar de forma fidedigna, sob condição necessária e suficiente, que há uma correspondência entre as variáveis mapeadas na IEC 61850 e as principais variáveis na industria.

Vimos na figura 5 que a IEC define uma interface bem importante para garantia da interoperabilidade na comunicação. A ACSI na IEC fornece dois tipos de serviços bem comum na indústria: Cliente/Servidor e Produtor/Consumidor, esta última descrita como uma interface rápida e confiável de eventos em modo unicast (de um para um), multicast (de um para muitos) ou broadcast (de um para todos). Já a interface Cliente/Servidor pode trabalhar com acesso a dados em tempo real, controle, relatórios, transferência de arquivos e auto-descrição dos dispositivos, bem como autodescoberta.

Na indústria, desde 1985, estas duas formas de comunicação já eram amplamente difundida, inclusive palco de disputas comerciais intensas e de normatização nos comitês técnicos internacionais, conhecidas em artigos como *The fieldbus war* (FELSER; SAUTER, 2002b). Fabricantes de rede renomados baseavam suas redes em um sistema de comunicação vertical, distribuído, orientada a objetos inclusive, de acordo com o modelo Cliente/Servidor, como era o caso do sistema alemão PROFIBUS. Já outros fabricantes promoviam através de um controlador central um sistema de comunicação horizontal conhecido como Produtor/Consumidor, a exemplo do sistema francês FIP.

As filosofias de comunicação vigentes à época eram bastante divergentes entre as principais redes industriais, o que dificultava ainda mais a padronização de uma norma comum a todos os sistemas existentes. A IEC 61850 foi concebida já contemplando esses dois tipos de transferência de dados, combinando confiabilidade e rapidez para atender às demandas dos sistemas elétricos de potência, que se caracterizam por um alto grau de exigência, especialmente no que se refere à segurança.

Assim, a ideia é que a interface abstrata ACSI forneça um modelo de informação orientado a objeto com classes de dados comuns para as mais diversas aplicações na automação, bem como classes de *Logical Nodes* e uma linguagem de configuração conhecida. É aqui que a IEC 61850 começa a se diferenciar das demais arquiteturas de redes existentes.

A IEC 61850 parte da construção de modelos e meta-modelos, ou seja, modelos que descrevam a estrutura e as características de outro modelo. No caso concreto, a IEC define uma estrutura com servidor, dispositivo lógico, Logical Node e Data Object, como mostrado na figura 15. É bom frisar, que neste caso, o servidor não possui apenas uma comunicação vertical como visto anteriormente em redes industriais, mas, também envia dados para dispositivos parceiros em uma comunicação horizontal. Os dispositivos lógicos representam as informações produzidas ou consumidas por um conjunto de funções dentro de um domínio específico. Os Logical Nodes já possuem essas informações organizadas para uma única função bem definida, como, por exemplo, a medição da temperatura de uma máquina. Por sua vez, os Data Objects contêm as informações propriamente ditas. A figura 1, apresentada anteriormente, ilustra essa estrutura de maneira mais clara.

contains 1..n

Logical Device

contains 1..n

Logical Node

contains 1..n

Data Object

Figura 15 – Hierarquia no modelo ACSI

Fonte: IEC 61850-2

Na forma como está exporto, a IEC se preocupou em criar classes genéricas para que sejam instanciadas em situiações concretas. Por exemplo: É possível dá um nome qualquer para um dispositivo lógico, e os *Logical Nodes* que estão vinculados a ele serem todos padronizados de acordo com a função desejada. Então seria:

- Dispositivo Lógico: Indústria UFPE;
- Logical Node: MMXU (medição de correntes, tensões, potências e impedâncias em um sistema trifásico);
- Data Object: Hz (Valor da frequência);
- Atributo do Data Object: instMag (valor instantâneo da frequência);

Portanto, a interface abstrata utilizada para a troca de informações na IEC 61850 é completamente compatível com os tipos de comunicação comuns na indústria.

Além da modelagem da informação, a interface abstrata da IEC modela também a troca de informações com um conjunto de 10 características que podem ocorrer em uma troca de dados entre dois dispositivos, como: agrupamento de dados e atributos, substituição de valores ativos nos processos em tempo de execução, alteração de conjunto dinâmico de valores de configuração, condições de geração e relatórios, configurações para transmissão confiável de valores ultra-rápidos, transferência de valores analógicos ultra-rápidos em tempo real, definição de serviços de controle, serviços de sincronização de dispositivos, troca de arquivos em grandes blocos de dados e rastreamento de informações.

Percebe-se que a quantidade de serviços modelados pela IEC para automação de sistemas elétricos é demasiadamente grande e robusta quando o domínio a ser observado é o da automação de processo industriais. Portanto, tanto a modelagem da informação quanto os modelos para a troca dessas informações são plenamente compatíveis com o setor industrial, sem a necessidade de nenhuma alteração no que foi proposto pela IEC.

A propriedade de abstração herdada da orientação a objeto e implementada na IEC 61850 traz uma ferramenta importante para a garantia da interoperabilidade. Os modelos abstratos da interface de serviços de comunicação abstrata (ACSI) se utilizam de modelos genéricos de classes para definir qualquer modelo de informação em um domínio específico. Observando a figura 15, a norma define modelos genéricos para todas as partes da hierarquia ACSI, são eles:

• Modelo GenServerClass: Representa o comportamento de um dispositivo. Um servidor pode conter um ou mais dispositivos lógicos internos a ele e seu relacionamento com o sistema de comunicação dependerá do mapeamento SCSM (specific communication service mapping) usado. Em sistemas simples, um servidor conterá apenas um único dispositivo lógico. Esse é o modelo que adequará a maioria dos casos industriais, e o que será explorado neste documento. A tabela abaixo ilustra o modelo de classe

genérica para servidores, com os possíveis dispositivos lógicos, os clientes para troca de informações do tipo Cliente/Servidor ou Produtor/Consumidor e os serviços previstos.

Tabela 8 – Classe genérica para servidor

GenSERVER class				
Attribute Name	Attribute Type	Value/Value Range/Explanation		
ServiceAccessPoint [1n]	(*)	(*) Type is SCSM specific		
LogicalDevice [1n]	GenLogicalDeviceClass			
FileSystem [01]	FILE-SYSTEM			
TPAppAssociation [0n]	TWO-PARTY-			
	APPLICATION-			
	ASSOCIATION			
MCAppAssociation [0n]	MULTICAST-			
	APPLICATION-			
	ASSOCIATION			
Services				
GetServerDirectory				

Fonte: Adaptado de (IEC, 2010b)

• Modelo GenLogicalDeviceClass: Usado como contêiner de grupo de Logical Nodes, podendo funcionar também como gateway ou proxy em uma estrutura de rede. A tabela 9 evidencia os atributos desse modelo e deixa claro a estrutura de grupo de Logical Nodes. Neste modelo dois atributos se destacam como importantes para a industria: LLN0, que é o Logical Node que contem informações comuns do dispositivo lógico, e LDName, que é a instancia de um dispositivo lógico de fato.

Tabela 9 – Classe genérica para dispositivo lógico

GenLOGICAL-DEVICE class				
Attribute Name	Attribute Type	Value/Value Range/Explanation		
LDName	ObjectName	Instance name of an instance of GenLo-		
		gicalDeviceClass		
LogicalNode [1n]	GenLogicalNodeClass	IEC 61850-7-4 specifies specialized clas-		
		ses of GenLogicalNodeClass		
Services				
GetServerDirectory				

Fonte: Adaptado de (IEC, 2010b)

• Modelo GenLogicalNodeClass: Esse modelo representa um conjunto de Data object, como por exemplo: Tensão da fase A, corrente da fase A, frequência, etc. A tabela 10 apresenta os atributos relacionados a essa classe generalizada, também evidenciado a sua compatibilidade com a área industrial, visto a utilização de controles clássicos encontrados na indústria como: conjunto de dados, relatórios buferizados e não buferizados, bem como serviços de alta velocidade e confiabilidade.

Tabela 10 – Classe genérica para Logical Node

GenLogicalNodeClass				
Attribute Name	Attribute Type	Explanation		
LNName	ObjectName	Instance name of an instance of		
		LOGICAL-NODE		
LNRef	ObjectReference	Path-name of an instance of LOGICAL-		
		NODE		
DataObject [1n]	GenCommonDataClass			
DataSet [0n]	DATA-SET			
BufferedReportControlBlock	BRCB			
[0n]				
UnbufferedReportControlBl	odkRCB			
[0n]				
Ü	all only be available if their s			
	efinition of a compatible LN	class.		
SettingGroupControlBlock	SGCB			
[01]				
Log [0n]	LOG			
LogControlBlock [0n]	LCB			
GOOSEControlBlock	GoCB			
[0n]				
MulticastSampledValueCon	transnæb			
[0n]				
UnicastSampledValueContro	\$1BBMCB			
[0n]				
Services				
GetLogicalNodeDirectory, GetAllDataValues				

Fonte: Adaptado de (IEC, 2010b)

Modelo Generic data object class: Esse modelo identifica um Data Object dentro
de um Logical Node e representam informações gerais em um dispositivo, como a
posição de um disjuntor (aberto ou fechado). A tabela 11 evidencia a simplicidade
dos atributos relacionados aquela classe.

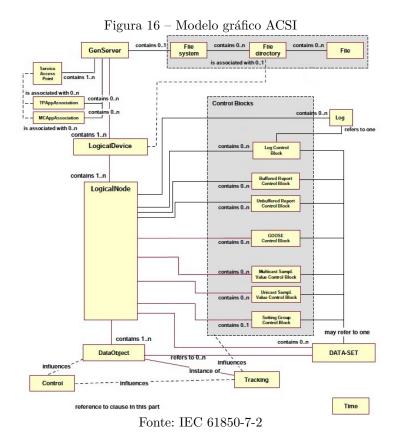
Tabela 11 – Classe genérica para Data Objects

GenDataObjectClass class				
Attribute Name	Attribute Type	Value/Value Range/Explanation		
DataObjectName	ObjectName	Instance name of an instance of a data		
		object class, for example, PhV (1st level),		
		phsA (2nd level). The 1st level shall		
		start with an upper case letter, all lower		
		levels with lower case letters.		
DataObjectRef	ObjectReference	Path-name of an instance of a		
		data object class, for example,		
		myLD/MMXU1.PhV or for exam-		
		ple, myLD/MMXU1.PhV.phsA		
m/o/c	CODED ENUM	Indicates mandatory/optional/conditio-		
		nal		
DataObjectType	GenCommonDataClass	For example, CMV class of IEC 61850-		
		7-3		
Services	Services			
GetDataValues, SetDataVa	GetDataValues, SetDataValues, GetDataDirectory, GetDataDefinition			

Fonte: Adaptado de (IEC, 2010b)

• Modelo Generic common data class: Neste modelo os Data object são representados por classes de dados comuns ou CDC (common data classes), tornando uma ferramente importante na organização das centenas de tipos existentes de atributos nas áreas de engenharia. Para a classe genérica de dados comuns, a tabela 12 mostra também a simplicidade na organização dos dados.

Tabela 12 – Classe genérica para Common Data Class


GenCommonDataClass				
Attribute Name	Attribute Type	Value/Value Range/Explanation		
CDC-ID	Visible String	Use only capital letters; example WYE		
Options				
SubDataObject [0n]	GenCommonDataClass	Recursive class definition		
or/and				
DataAttribute [0n]	GenDataAttributeClass			

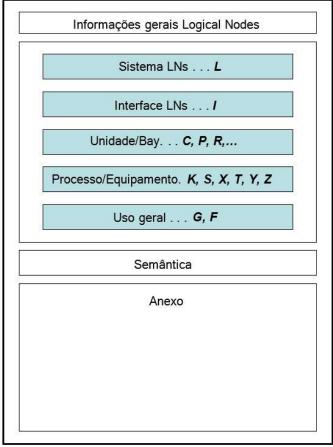
Fonte: Adaptado de (IEC, 2010b)

Esse detalhamento das classes apresentadas nas tabelas acima são incipientes e tem o objetivo de identificar as principais classes que a IEC usa para a modelagem da informação e dos serviços previstos.

Para ficar mais claro, a figura 16 abaixo mostra de uma forma gráfica e sintética a hierarquia de comunicação.

A figura 16 é um modelo generalizado, porém bem definido que prevê um grande número de ações que podem ocorrer na automação de sistemas elétricos. Este mesmo

modelo pode ser definido para a indústria, tornando-se compatível a sua utilização em ambientes fabris de diversos domínios específicos.


3.3 GRUPOS DE LOGICAL NODES

Assumindo que em uma estrutura industrial, teremos um dispositivo lógico para cada servidor, o ponto chave neste momento é de fato a definição de quais Logical Nodes podem mapear a maior parte, se não, todas as variáveis existentes na indústria. Far-se-a portanto, esse levantamento seguindo inicialmente os Logical Nodes pertencentes a um domínio comum, e depois os Logical Nodes pertencentes a domínios específicos. Esse mapeamento trará os detalhes do Logical Node, sua descrição para o sistema elétrico, sua possível aplicabilidade no setor industrial e sua tabela com os atributos que lhe é previsto.

A norma IEC 61850 organiza os Logical Nodes conforme a Tabela 6, apresentada no capítulo anterior. A Figura 17 ilustra a disposição desses grupos segundo suas funções, evidenciando que eles são classificados de acordo com aplicações típicas em sistemas de potência.

Para os grupos L e I, ligados a *Sistemas* e *Interface* respectivamente, a compatibilidade com a industria ocorre de forma natural, visto que esses conceitos também são aplicados em plantas fabris.

Figura 17 – Grupos de Logical Nodes por função

Fonte: Adaptado de (IEC, 2010b)

Quando o grupo analisado é o de $Processos \setminus Equipamentos$, também não é enxergado incompatibilidade em ambientes de fábrica pela mesma razão relatada acima.

O grupo relativo a $Unidade \setminus Bay$ requer uma atenção a mais, visto que esse conceito não é aplicado na industria.

Os grupos de uso geral, apesar de previsto na norma, apenas serão utilizados quando não estiverem previsto *Logical Nodes* para as variáveis de processo encontradas na indústria, porém seu uso não é recomendado.

No Apêndice A serão detalhados todos os *Logical Nodes* encontrados na Norma IEC 61850-7-4, IEC 61850-7-410 e IEC 61850-7-420 com relação a automação industrial.

A análise dos grupos será realizada observando os registros cujo o preenchimento é obrigatório ou condicional. A norma define de forma simplificada três parâmetros:

• Parâmetro M - Dado é de preenchimento obrigatório;

- Parâmetro O Dado é de preenchimento opcional;
- Parâmetro C Dado é de preenchimento condicional;

Os *Logical Nodes* compatíveis com a indústria e exclusivos do sistema elétrico serão marcados com os seguintes símbolos:

- Logical Node compatível com a indústria ✓;
- Logical Node exclusivo do sistema elétrico ✗;

3.4 TESTE E AVALIAÇÃO

A partir do mapeamento dos *Logical Nodes* com aplicação industrial, conforme detalhado no Apêndice A, foram conduzidos ensaios laboratoriais com dois objetivos principais: (i) embarcar, em microcontroladores, o conjunto de *Logical Nodes* selecionado; e (ii) validar a interoperabilidade das mensagens trocadas, assegurando que fossem corretamente interpretadas por dispositivos e softwares compatíveis e certificados segundo a IEC 61850.

Os testes foram executados em uma planta piloto implantada fora dos domínios tradicionalmente abordados pela norma IEC 61850, como sistemas de potência e subestações. Essa escolha teve como finalidade demonstrar a viabilidade de aplicação da norma em ambientes industriais de processo, nos quais a interoperabilidade, a padronização semântica e o controle distribuído são igualmente relevantes.

As Tabelas 13 e 14 sintetizam os resultados obtidos, apresentando os *Logical Nodes* utilizados, suas respectivas descrições funcionais e a referência normativa correspondente no escopo da IEC 61850.

Tabela 13 – Logical Nodes e suas localizações na norma IEC 61850. Grupos A, C, D, F, G, H, I, K

Grupo A: Automatic control				
Logical Node	Descrição do Logical Node	Localização na Norma		
AVCO	Voltage control	IEC 61850-7-4		
	Grupo C: Supervisory control			
CALH	Alarm handling	IEC 61850-7-4		
CCGR	Cooling group control	IEC 61850-7-4		
CILO	Interlocking	IEC 61850-7-4		
Gr	upo D: DER (Distributed Energy Re	esources)		
DCHB	Boiler	IEC 61850-7-420		
	Grupo F: Functional blocks			
FCNT	Counter	IEC 61850-7-4		
FCSD	Curve shape description	IEC 61850-7-4		
FFIL	Generic filter	IEC 61850-7-4		
FLIM	Control function output limitation	IEC 61850-7-4		
FPID	PID regulator	IEC 61850-7-4		
FRMP	Ramp function	IEC 61850-7-4		
FSPT	Set-point control function	IEC 61850-7-4		
FXOT	Action at over threshold	IEC 61850-7-4		
FXUT	Action at under threshold	IEC 61850-7-4		
	Grupo G: Generic function referen	ices		
GAPC	Generic Automatic process control	IEC 61850-7-4		
GGIO	Generic Process I/O	IEC 61850-7-4		
GLOG	Generic log	IEC 61850-7-4		
GSAL	Generic security application	IEC 61850-7-4		
	Grupo H: Hydro power			
HLVL	Water level indicator	IEC 61850-7-410		
HLVV	Valve (butterfly valve, ball valve)	IEC 61850-7-410		
	Grupo I: Interfacing and archivi			
IARC	Archiving	IEC 61850-7-4		
IHMI	Human machine interface	IEC 61850-7-4		
ISAF	Safety alarm function	IEC 61850-7-4		
ITCI	Telecontrol interface	IEC 61850-7-4		
ITMI	Telemonitoring interface	IEC 61850-7-4		
	K: Mechanical and non-electric prima			
KFAN	Fan	IEC 61850-7-4		
KFIL	Filter	IEC 61850-7-4		
KPMP	Pump	IEC 61850-7-4		
KTNK	Tank	IEC 61850-7-4		
KVLN	Valve control	IEC 61850-7-4		

Fonte: O próprio autor

Tabela 14 – Logical Nodes e suas localizações na norma IEC 61850. Grupos L, M, S, T

Grupo L: System Logical Nodes				
Logical Node	Descrição do Logical Node	Localização na Norma		
LPHD	Physical device information	IEC 61850-7-4		
LLN0	Logical node zero	IEC 61850-7-4		
LCCH	Physical communication channel super-	IEC 61850-7-4		
	vision			
LGOS	GOOSE subscription	IEC 61850-7-4		
LTIM	Time management	IEC 61850-7-4		
LTMS	Time master supervision	IEC 61850-7-4		
LTRK	Service tracking	IEC 61850-7-4		
	Grupo M: Metering and Measurer	nent		
MENV	Environmental information	IEC 61850-7-4		
MMDC	DC measurement	IEC 61850-7-4		
MMET	Meteorological information	IEC 61850-7-4		
MMXN	Metering Single Phase	IEC 61850-7-4		
MMTN	Metering 3 Phase	IEC 61850-7-4		
MMXU	Non-phase-related measurement	IEC 61850-7-4		
MSTA	Metering statistics	IEC 61850-7-4		
MPRS	Pressure measurements	IEC 61850-7-4		
MHET	Heat measured values	IEC 61850-7-420		
MFLW	Flow measurements	IEC 61850-7-420		
MFUL	Fuel characteristics	IEC 61850-7-420		
	Grupo S: Supervision and Monito	ring		
STMP	Temperature supervision	IEC 61850-7-4		
SVBR	Vibration supervision	IEC 61850-7-4		
SFLW	Supervision of media flow	IEC 61850-7-410		
SLVL	Supervision of media level	IEC 61850-7-410		
SPOS	Supervision of the position of a device	IEC 61850-7-410		
SPRS	Supervision media pressure	IEC 61850-7-410		
G	Grupo T: Instrument Transformers and	d Sensors		
TDST	Distance	IEC 61850-7-4		
TFLW	Liquid flow	IEC 61850-7-4		
TGSN	Generic sensor	IEC 61850-7-4		
THUM	Humidity	IEC 61850-7-4		
TLVL	Media level	IEC 61850-7-4		
TMVM	Movement sensor	IEC 61850-7-4		
TPOS	Position indicator	IEC 61850-7-4		
TPRS	Pressure sensor	IEC 61850-7-4		
TRTN	Rotation transmitter	IEC 61850-7-4		
TTMP	Temperature sensor	IEC 61850-7-4		
TVBR	Vibration sensor	IEC 61850-7-4		
TWPH	Water acidity	IEC 61850-7-4		

Fonte: O próprio autor

Nos ensaios de comunicação baseados nos protocolos GOOSE e MMS, foram empregados microcontroladores ESP32-S3-WROOM-1, fabricados pela Espressif, interconectados em uma mesma rede local (LAN) juntamente com Controladores Lógicos Programáveis (CLPs) de diferentes fabricantes: Siemens, modelo S7-1200 1214-DCDCDC, e Rockwell Automation, modelo MicroLogix 1100. A utilização de dispositivos heterogêneos teve como

objetivo demonstrar a interoperabilidade entre equipamentos de distintos fabricantes, em conformidade com os princípios estabelecidos pela norma IEC 61850.

As Figuras 18 e 19 ilustram, respectivamente, a topologia de rede adotada e a bancada experimental utilizada nos testes. O ambiente de avaliação foi composto por três CLPs (Siemens e Rockwell), um switch gerenciável com suporte à norma IEC 61850, fabricado pela Schweitzer Engineering Laboratories (SEL), um Controlador de Automação em Tempo Real (RTAC) do mesmo fabricante, além de um sistema SCADA (Supervisory Control and Data Acquisition), responsável pela supervisão das variáveis e análise das mensagens trafegadas.

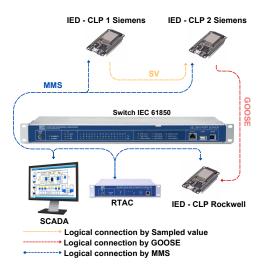


Figura 18 – Topologia de rede utilizada

Figura 19 - Bancada de testes utilizada

As trocas de mensagens GOOSE e MMS entre os dispositivos, na configuração experimental descrita, foram monitoradas por meio de um software com funcionalidade de sistema SCADA: o IED Scout (OMICRON, 2024), ferramenta certificada para operar em sistemas profissionais baseados na norma IEC 61850 e tradicionalmente aplicada a domínios do sistema elétrico.

Todos os dispositivos IEC integrados, conectados à rede, responderam com êxito à solicitação de autodescoberta realizada pelo IED Scout, conforme ilustrado na Figura 20. Essa resposta confirma o correto reconhecimento e a troca de informações associadas aos Logical Nodes mapeados e embarcados nos microcontroladores (μ Cs).

Dentre os *Logical Nodes* testados, destaca-se o FSPT (Controle de Setpoint), cuja modelagem e aplicação específica estão detalhadas na Subseção A.4.7.

esp32 • Data Model • contdevc • FSPT								
LN FSPT								
Name		Value						
▶ <mark>™</mark> SptMem		0						
► DO ErrTerm		0						
▶ DO Out		0						
▶ <mark>™</mark> SptChg		0						
■ D0 SptVal	!	45						
■ DA mxVal	[MX] 👬	45						
DA f	[MX] 🗯	45						
▶ DA q	[MX]	good						
▶ DA t	[MX]	31/12/1969 22:00:00.000						
▶ <mark>DA</mark> Oper	[CO]							
DA ctlModel	[CF]	direct-with-normal-security						

Figura 20 – Logical Node FSPT lido pelo sistema IED Scout

Para os testes de comunicação utilizando o protocolo Sampled Values (SV), foi adotada uma abordagem distinta, também aplicada a um contexto fora do domínio tradicional da norma IEC 61850, ou seja, desvinculado do setor elétrico. Para isso, utilizouse uma plataforma didática empregada no controle de um aeropêndulo. O sistema de controle, originalmente centralizado, foi redimensionado para uma arquitetura distribuída, em que as variáveis de interesse foram alocadas em subsistemas fisicamente independentes.

A Figura 21 ilustra um exemplo de virtualização da planta de controle, conforme princípios da IEC 61850, aplicado ao aeropêndulo. Nessa modelagem, destaca-se a atuação do Logical Node TANG, responsável pela aquisição e pelo processamento do valor do ângulo durante a operação do sistema. A configuração experimental foi inspirada na plata-

forma didática de aeropêndulo descrita por Neto et al. (2023), que apresenta modelagem, implementação e práticas de ensino aplicáveis ao contexto aqui considerado (NETO et al., 2023).

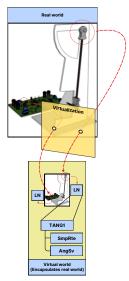


Figura 21 – Exemplo de virtualização da planta de controle

A ESP32, atuando como sensor, foi responsável pela aquisição das medições de tensão provenientes de um potenciômetro acoplado ao eixo do pêndulo. As medições, associadas ao ângulo da haste, foram digitalizadas por meio de um conversor analógico-digital (ADC) de 12 bits. Com isso, o dispositivo consolidou, em uma única unidade, as funções de medição angular e de publicação de valores amostrados via protocolo SV. O valor do ângulo, após processamento, foi associado ao atributo AngSV.

A Figura 22 apresenta o pacote Sampled Values capturado no Wireshark (WI-RESHARK, 2024), evidenciado pela ASDU (Application Service Data Unit) contendo o valor transmitido pelo dispositivo, correspondente à medição do ângulo. Portanto, de modo semelhante aos testes realizados com os protocolos GOOSE e MMS, a transmissão contínua de dados analógicos amostrados, como o ângulo do pêndulo, foi corretamente interpretada por ferramentas de análise de rede e pelos dispositivos receptores.

3.5 DEFINIÇÃO DO ARQUIVO ICD DA PROPOSTA DE TESE

A norma IEC 61850, em sua Parte 6, especifica uma linguagem de configuração baseada em XML (*Extensible Markup Language*), denominada *Substation Configuration Language* (SCL). Essa linguagem foi concebida com o objetivo de padronizar a modela-

```
> Frame 155: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface \Device
> Ethernet II, Src: Espressif 31:c7:af (b0:b2:1c:31:c7:af), Dst: IecTc57 01:00:01 (01:0c:cd

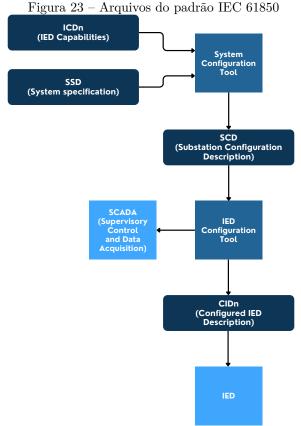
▼ IEC61850 Sampled Values

     APPID: 0x4000
     Length: 54
    Reserved 1: 0x0000 (0)
     Reserved 2: 0x0000 (0)
     savPdu
       noASDU: 1

✓ seqASDU: 1 item

        ✓ ASDU
             svID: espsvpub
              smpCnt: 257
              confRev: 1
              smpSynch: none (0)
             seqData: 0000000000000234e560400
```

Figura 22 – Sampled Values packet captured in Wireshark.


gem, a descrição funcional e a configuração de sistemas de automação, promovendo a interoperabilidade entre dispositivos de diferentes fabricantes. Por meio da SCL, é possível representar desde a topologia física e lógica do sistema até os dispositivos individuais, suas capacidades, os fluxos de dados e os protocolos utilizados nas comunicações.

Em um sistema baseado na IEC 61850, todas as informações necessárias para descrever a estrutura e o funcionamento de uma planta estão contidas nos próprios arquivos de configuração utilizados na rede. Essa abordagem não apenas facilita a integração entre equipamentos de diferentes fabricantes, como também contribui para reduzir a dependência de profissionais que detenham conhecimento informal ou não documentado sobre a planta.

A SCL possibilita a criação de diferentes arquivos voltados a distintas fases do projeto e operação da planta. Entre os principais arquivos definidos pela norma, destacamse:

- ICD (IED Capability Description): descreve as capacidades funcionais de um IED, servindo como modelo de base para composição do sistema;
- SSD (System Specification Description): define os requisitos funcionais do sistema e sua topologia esperada, ainda sem atribuição de dispositivos físicos;
- SCD (Substation Configuration Description): consolida as informações do sistema completo, vinculando funções lógicas a dispositivos físicos e detalhando suas conexões;
- CID (Configured IED Description): contém a configuração específica de um IED já inserido em uma topologia definida, gerada a partir do SCD.

A Figura 23 ilustra, de forma esquemática, a relação entre esses arquivos no processo de desenvolvimento e configuração de sistemas compatíveis com a IEC 61850, assim como as principais ferramentas utilizadas na sua geração e manipulação.

Fonte: Arquivos padrão da IEC 61850. Adaptado da IEC 61850-1.

Entre os arquivos definidos pela norma, destaca-se o arquivo ICD, que possui um papel central neste trabalho de tese por descrever o dispositivo utilizado nos ensaios de laboratório. Trata-se de um modelo simplificado e mais específico do arquivo SCD que descreve as capacidades de um único dispositivo eletrônico inteligente.

Diferentemente do SCD, o ICD não contém informações completas sobre o sistema, mas sim uma descrição detalhada das capacidades do IED individual, como suas funções lógicas, conjuntos de dados, controles e parâmetros de comunicação. Ele é geralmente criado pelo fabricante do dispositivo e disponibilizado para o integrador do sistema para que seja gerado o arquivo CID, que contém a configuração final embarcada no dispositivo.

Embora não desempenhe papel central nesta proposta, vale mencionar o arquivo SSD, que pode ser utilizado na construção do arquivo SCD. Ele reúne informações de alto nível sobre a topologia do sistema, requisitos funcionais e interações esperadas entre os dispositivos. Sua estrutura inclui, por exemplo, o diagrama unifilar, que representa graficamente as conexões e relações entre os diversos componentes elétricos da instalação.

No contexto da automação industrial, considerando as diferenças estruturais e funcionais entre os equipamentos típicos desse domínio e aqueles presentes em sistemas elétricos, os *Logical Nodes* definidos pela IEC 61850, originalmente concebidos para representar

funções de proteção, controle e supervisão em subestações, podem ser reinterpretados e adaptados para aplicações industriais. Nesses casos, passam a representar medições e funções associadas a variáveis de processo, como temperatura, vazão, pressão e nível, entre outras. Essa possibilidade de mapeamento funcional, amplamente discutida ao longo desta tese, permite que os *Logical Nodes* sejam utilizados como abstrações padronizadas para monitoramento, controle e integração de dados provenientes de sensores e atuadores em redes industriais, ampliando o escopo de aplicação da norma IEC 61850 para além do setor elétrico.

Como exemplo, a seguir são apresentados quatro elementos modelados em SCL, que compõem o arquivo ICD proposto para uma aplicação no domínio da automação industrial. Os elementos representam dispositivos típicos de processo: um sensor de temperatura, um sensor de vazão, um sensor de pressão e um atuador com função de válvula e controle associado. Cada elemento é descrito por meio de um *Logical Node* conforme a estrutura padronizada da IEC 61850, permitindo sua integração em redes industriais com interoperabilidade semântica e funcional. Destaca-se, ainda, a clareza com que as variáveis de campo e seus principais atributos podem ser identificados diretamente no código, o que favorece a legibilidade e a manutenção do sistema.

• TTMP (Temperature Sensor)

Representa medições de temperatura para controle de processos industriais, aquecimento ou refrigeração, como sensores de temperatura PT100, termopares e sensores ópticos.

Exemplo de aplicação: Medição da temperatura em um canal de fabricação de vidro. O *Listing 3.1* mostra a representação utilizando SCL no modelo IEC 61850:

```
<LN lnClass="TTMP" lnType="SENSOR/TTMP" inst="1">
2
         <DOI name="TmpSv">
3
4
           <DAI name="instMag">
5
             <Val>25.0</Val> <!-- Temperatura medida em C --->
6
           </DAI>
7
           <DAI name="q">
             <Val>good</Val> <!-- Qualidade da informação -->
8
9
           </DAI>
           <DAI name="t">
10
             <Val>2025-01-23T16:00:00Z</Val><!-- Timestamp -->
           </DAI>
12
           <DAI name="units">
13
           <Val>C</Val> <!-- Unidade da medicao --
14
```

```
15
           </DAI>
16
           <DAI name="min">
17
              <Val>0.0</Val><!— Valor minimo medido —>
18
           </DAI>
19
           <DAI name="max">
20
             <Val>100.0</Val> <!-- Valor maximo medido -->
           </DAI>
         </DOI>
         <DOI name="SmpRte">
23
24
           <DAI name="setVal">
             <Val>1000</Val><!— Taxa de amostragem —>
25
26
           </DAI>
         </DOI>
27
       </LN>
28
```

Listing 3.1 – Codigo exemplo para a representacao do dispositivo de controle de temperatura. Fonte: O próprio autor.

• TFLW (Liquid Flow Sensor)

Utilizado para monitorar o fluxo de líquidos em sistemas de bombeamento ou refrigeração, como medidores de vazão magnéticos, ultrassônicos ou por pressão diferencial.

Exemplo de aplicação: Controle do fluxo de água em uma planta de tratamento de efluentes.

O Listing 3.2 mostra a representação utilizando SCL no modelo IEC 61850:

```
<LN lnClass="TFLW" lnType="SENSOR/TFLW" inst="1">
2
3
         <DOI name="FlwSv">
4
           <DAI name="instMag">
             <Val>3.5</Val><!— Vazao medida em m3/s —>
6
           </DAI>
           <DAI name="q">
             <Val>good</Val> <!-- Qualidade da informação -->
           </DAI>
9
           <DAI name="t">
10
             <Val>2025-01-23T16:00:00Z</Val><!-- Timestamp -->
11
12
           </DAI>
13
           <DAI name="units">
             <Val>m3/s</Val> <!-- Unidade da medicao -->
14
           </DAI>
15
16
           <DAI name="min">
             <Val>0.1</Val> <!-- Valor minimo medido -->
17
18
           </DAI>
           <DAI name="max">
19
             <Val>10.0</Val> <!-- Valor maximo medido -
20
21
           </DAI>
```

Listing 3.2 – Codigo exemplo para a representacao do dispositivo de medicao de fluxo. Fonte: O próprio autor.

• TPRS (Pressure Sensor)

Mede pressão em sistemas industriais, como linhas de gás em caldeiras.

Exemplo de aplicação: Monitoramento da pressão em uma linha de gás natural industrial que alimenta um forno de fusão de alumínio.

O Listing 3.3 mostra a representação utilizando SCL no modelo IEC 61850:

```
2
       <LN lnClass="TPRS" lnType="SENSOR/TPRS" inst="1">
         <DOI name="PresSv">
3
            <DAI name="instMag">
4
             <Val>101325</Val> <!—— Pressao\ medida\ em\ Pa -->
5
6
            </DAI>
            <DAI name="q">
8
              <Val>good</Val> <!-- Qualidade da informação --->
9
            </DAI>
            <DAI name="t">
10
             <Val>2025-01-23T16:00:00Z</Val> <!-- Timestamp --->
11
            </DAI>
12
           <DAI name="units">
13
              <Val>Pa</Val> <!-- Unidade da medicao --->
14
            </DAI>
15
           <DAI name="min">
16
             <Val>90000</Val><!— Valor\ minimo\ medido\ —>
17
            </DAI>
18
            <DAI name="max">
19
             <Val>110000</Val> <!— Valor\ maximo\ medido\ —>
20
            </DAI>
21
22
          </DOI>
23
         <DOI name="SmpRte">
           <DAI name="setVal">
24
              <Val>1000</Val> <!-- Taxa de amostragem -->
25
26
            </DAI>
          </DOI>
27
28
       </LN>
```

Listing 3.3 – Exemplo de código para a representação do dispositivo de medição de pressão. Fonte: O próprio autor.

Observa-se que os três elementos de campo citados em Listing 3.1, Listing 3.2, Listing 3.3, modelados por seus respectivos Logical Nodes, compartilham atributos comuns relacionados à amostragem e digitalização de sinais analógicos, e utilizam o protocolo Sampled Values para a transmissão contínua de dados analógicos em tempo real. No entanto, considerando que as taxas de variação das variáveis em processos industriais são significativamente inferiores às típicas observadas em sistemas elétricos, a elevada precisão do sinal de sincronização não constitui um requisito crítico em ambientes industriais. Nesses casos, a sincronização temporal pode ser realizada de forma satisfatória por meio de protocolos consolidados em redes Ethernet industriais, como o Network Time Protocol (NTP) ou o Precision Time Protocol (PTP). Essa conclusão decorre de observações empíricas em campo e ainda requer estudos complementares para uma análise sistemática mais aprofundada, o que, contudo, não é objeto da presente tese.

Como último exemplo de dispositivo relacionado a Logical Nodes em ambientes fabris, destaca-se o Logical Node KVLV (Valve Control and Monitoring), responsável pela modelagem de funções de atuação e supervisão de válvulas industriais. Nesse caso, observa-se uma mudança significativa no tipo de atributos utilizados: em vez de estarem associados a variáveis analógicas, os dados representados passam a ser predominantemente digitais, refletindo estados e comandos discretos. Consequentemente, a comunicação entre esse dispositivo e outros controladores da rede é realizada por meio do protocolo GOOSE, caracterizado por sua estrutura orientada a eventos e pelo uso de comunicação horizontal no paradigma Editor/Assinante.

• KVLV (Valve Control and Monitoring)

Representa a monitoramento e controle de válvulas em sistemas industriais, permitindo a supervisão da posição da válvula, fluxo de líquido e comandos de ajuste de posição. Aplicável em processos químicos, refinarias e redes de distribuição de fluidos.

O Listing 3.4 mostra a representação utilizando SCL no modelo IEC 61850:

```
9
            </DAI>
10
           <DAI name="q">
11
              <Val>good</Val> <!-- Qualidade da informação --->
12
            </DAI>
13
           <DAI name="t">
14
             <Val>2025-01-23T16:00:00Z</Val><!-- Timestamp -->
15
            </DAI>
          </DOI>
16
         <DOI name="Flw">
17
18
           <DAI name="instMag">
              <Val>10.5</Val> <!— Magnitude instantanea do fluxo atraves da valvula
19
            </DAI>
20
21
           <DAI name="mag">
             <Val>10.5</Val> <!—— Fluxo medido atraves da valvula ->
22
            </DAI>
24
           <DAI name="q">
             <Val>good</Val> <!-- Qualidade da informação --->
25
            </DAI>
26
           <DAI name="t">
27
28
             <Val>2025-01-23T16:00:00Z</Val><!-- Timestamp -->
29
            </DAI>
30
          </DOI>
         <DOI name="PosSpt">
31
           <DAI name="mxVal">
32
33
              <Val>100.0</Val><!— Valor maximo permitido para a posicao da valvula
            </DAI>
34
35
           <DAI name="q">
             <Val>good</Val> <!--- Qualidade da informação --->
36
            </DAI>
37
           <DAI name="t">
38
             <Val>2025-01-23T16:00:00Z</Val><!— Timestamp —>
39
            </DAI>
40
41
         </DOI>
42
       </LN>
```

Listing 3.4 – Exemplo de código para a representação do controle e monitoramento de válvula. Fonte: O próprio autor.

Com base nos exemplos expostos, em termos gerais, a norma não apenas identifica as informações presentes nos dispositivos físicos, mas também estabelece regras para sua estruturação e promove a virtualização desses elementos, permitindo sua aplicação direta na automação de sistemas elétricos. Retomando a discussão em torno da Figura 5, a solução proposta neste trabalho para a integração da IEC 61850 em ambientes industriais

fundamenta-se no uso dos serviços de mapeamento já definidos pela norma e na interface abstrata ACSI, que constitui o núcleo da interoperabilidade funcional da IEC 61850.

Dessa forma, ao redesenhar a arquitetura original apresentada na Figura 5, é possível agrupar os *Logical Nodes* previamente definidos neste trabalho para aplicações típicas da indústria de processos, adaptando-os ao modelo conceitual da norma sem comprometer sua estrutura ou semântica. Esse agrupamento, ilustrado na Figura 24, demonstra como os elementos industriais podem ser organizados em conformidade com a ACSI existente, permitindo que funcionalidades industriais, como medições de variáveis de processo, controle de atuadores e supervisão de equipamentos, sejam integradas em redes padronizadas segundo a IEC 61850.

A proposta aqui apresentada reforça a ideia de que a norma, embora originalmente concebida para o domínio elétrico, possui flexibilidade suficiente para ser aplicada a outros contextos industriais, desde que respeitadas suas abstrações. Essa abordagem não requer a criação de novos serviços ou estruturas fora do padrão, mas sim a reutilização consciente dos elementos já estabelecidos, o que garante conformidade, portabilidade, interoperabilidade e aplicação imediata.

A adoção dessa arquitetura unificada contribui para a consolidação de um modelo comum de comunicação e automação industrial baseado na IEC 61850, promovendo o alinhamento entre o chão de fábrica e os sistemas corporativos, e abrindo caminho para aplicações compatíveis com os paradigmas da Indústria 4.0, como a modularização, reconfigurabilidade e integração orientada a serviços.

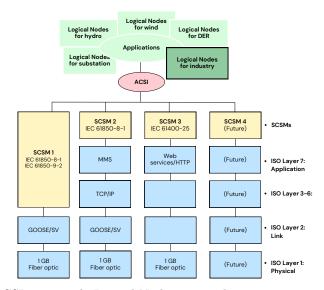


Figura 24 – Interface ACSI e grupo de Logical Nodes para aplicação em processos industriais. Adaptado da IEC 61850-1.

Como exemplo final, a Figura 25 apresenta uma aplicação do Logical Node TTMP em um cenário virtualizado de um processo de fabricação de vidro, no qual a medição de temperatura exerce papel importante na garantia da qualidade do produto final. Nesse contexto, o Logical Node TTMP, originalmente pertencente à classe de medição de temperatura utilizada em subestações, é instanciado como o objeto TTMP1, configurado com os respectivos atributos de interesse. Este exemplo evidencia a viabilidade de adaptação do modelo da IEC 61850 para variáveis típicas de processo industrial, possibilitando sua replicação e expansão para diversas áreas de uma planta de controle contínuo.

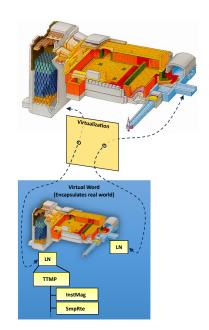


Figura 25 – Mundo - Industrial Domain

Dessa forma, com base nos exemplos apresentados em *Listing 3.1*, *Listing 3.2*, *Listing 3.3* e *Listing 3.4*, em conjunto com os mapeamentos consolidados nas Tabelas 13 e 14, é possível compor o arquivo ICD final da proposta. Esse arquivo, detalhado no Apêndice B, contempla todos os Logical Nodes definidos neste estudo, os quais podem ser implementados tanto em dispositivos IIoT de alto nível, como uma Raspberry Pi, quanto em plataformas embarcadas de baixo nível, como microcontroladores. A partir dessa estrutura em SCL, é possível gerar o arquivo .icd específico que habilita esses dispositivos a operar de forma compatível com a norma IEC 61850 em ambientes industriais.

4 CONCLUSÕES

Este trabalho demonstrou a viabilidade de aplicação da norma IEC 61850 no domínio da automação industrial, expandindo seu uso para além do setor elétrico. A partir de uma análise detalhada dos princípios da norma, foram identificadas as condições necessárias para garantir a interoperabilidade semântica entre dispositivos industriais, com base em uma modelagem de dados padronizada, estrutura hierárquica de objetos e integração por meio de arquivos SCL.

Foram documentados e mapeados diversos *Logical Nodes* (LNs) voltados à representação de sensores e atuadores típicos de processos industriais, como transmissores de temperatura, sensores de fluxo, válvulas e medidores de pressão. Esses LNs foram organizados conforme a estrutura definida pela IEC 61850-7-4 e incorporados em um arquivo .icd autodescritivo, construído segundo os requisitos da IEC 61850-6.

Apesar dos avanços obtidos, verificou-se que a principal limitação para a adoção plena da norma na indústria de processos reside na indisponibilidade, no mercado atual, de controladores industriais com suporte nativo à IEC 61850. Isso reforça a importância de soluções complementares para viabilizar a integração, como dispositivos intermediários e bibliotecas de software embarcado.

Como perspectivas futuras, destaca-se a continuidade do desenvolvimento de ferramentas de geração automatizada de arquivos .icd para diferentes topologias industriais, bem como a ampliação do catálogo de *Logical Nodes* voltados a setores específicos, como indústria alimentícia, petroquímica e farmacêutica.

Conclui-se, portanto, que a IEC 61850 pode ser aplicada com sucesso em ambientes industriais, desde que acompanhada de estratégias adequadas de modelagem, documentação e integração, promovendo uma arquitetura aberta e interoperável para controle e supervisão de processos industriais.

REFERÊNCIAS

- BALAN, S. *et al.* Design methodology for developing a future-proof iec 61850 based intelligent electronic device. In: **TENCON 2019 2019 IEEE Region 10 Conference** (**TENCON**). [S.l.: s.n.], 2019. p. 2210–2215.
- BRAUN, M.; HORN, W. Object-Oriented Programming with SIMOTION: Fundamentals, Program Examples and Software Concepts According to IEC 61131-3. [S.l.]: Publicis MCD Werbeagentur GmbH, 2017.
- BUTZEN, E. APLICAÇÃO DA ORIENTAÇÃO A OBJETOS EM SISTEMAS DE AUTOMAÇÃO INDUSTRIAL. Dissertação (Mestrado) UNIVERSIDADE FEEVALE, 2014.
- CLARKE, G.; REYNDERS, D.; WRIGHT, E. Practical Modern SCADA Protocols. DNP3, 60870.5 and Related Systems. [S.l.]: Elsevier, 2004.
- DAY, J.; ZIMMERMANN, H. The osi reference model. **Proceedings of the IEEE**, v. 71, n. 12, p. 1334–1340, 1983.
- EERE. CHP. 2023.
- EPA. Combined Heat and Power (CHP) Partnership. 2023. [Online; Acessado em 22-02-2023]. Disponível em: https://www.epa.gov/chp/what-chp.
- EPRI. **IEC 61850 Working Group Activity 2016 Summary**. 2016. [Online; Acessado em 10-02-2023]. Disponível em: https://www.epri.com/research/products/000000003002007477.
- ESA. The history and basics of the Milbus 1553b. 2012. [Online; Acessado em 21-12-2022]. Disponível em: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Mil-STD-1553>.
- FALK, H. IEC 61850 Demystified. [S.l.]: Artech House, 2019.
- FELSER, M.; SAUTER, T. The fieldbus war: history or short break between battles? In: **4th IEEE International Workshop on Factory Communication Systems**. [S.l.: s.n.], 2002. p. 73–80.
- FELSER, M.; SAUTER, T. The fieldbus war: history or short break between battles? In: **4th IEEE International Workshop on Factory Communication Systems**. [S.l.: s.n.], 2002. p. 73–80.
- GAYO, M. et al. Addressing challenges in prosumer-based microgrids with blockchain and an iec 61850-based communication scheme. **IEEE Access**, v. 8, 2020.
- GELLIE, R. W. 'proway' a standard for distributed control systems. 1979.
- GUNGOR, V. C.; LAMBERT, F. C. A survey on communication networks for electric system automation. **Computer Networks**, Elsevier, v. 50, p. 877–897, 5 2006. ISSN 1389-1286.
- HABIB, H. F.; LASHWAY, C. R.; MOHAMMED, O. A. A review of communication

- failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency. **IEEE Transactions on Industry Applications**, v. 54, n. 2, 2018.
- HADLEY, S. et al. Analysis of chp potential at federal sites. 02 2023.
- IEC. Digital data communications for measurement and control Fieldbus for use in industrial control systems. Geneva, CH, 2003.
- IEC. Basic communication structure Distributed energy resources logical nodes. Geneva, CH, 2009.
- IEC. Communication networks and systems for power utility automation Part 7-3: Basic communication structure Common data classes. Geneva, CH, 2010.
- IEC. Communication networks and systems for power utility automation Part 7-4: Basic communication structure Compatible logical node classes and data object classes. Geneva, CH, 2010.
- IEC. Communication networks and systems for power utility automation Part 7-1: Basic communication structure Principles and models. Geneva, CH, 2011.
- IEC. Basic communication structure Hydroelectric power plants Communication for monitoring and control. Geneva, CH, 2012.
- IEC. Communication networks and systems for power utility automation Part 1: Introduction and overview. Geneva, CH, 2013.
- IEC. Communication networks and systems for power utility automation Part 5: Communication requirements for functions and device models. Geneva, CH, 2013.
- IEC. IEC 61850:2022 SER Series. 2022. [Online; Acessado em 23-12-2022]. Disponível em: https://webstore.iec.ch/publication/6028>.
- IEC. **Definição de TR**. 2023. [Online; Acessado em 19-02-2023]. Disponível em: https://www.iec.ch/publications/technical-reports#:~:text=Technical%20report% 20(TR)&text=Technical%20Reports%20(TR)%20focus%20on,They%20are%20never% 20normative.>
- IEC. IEC 61850:2022 SER Series. 2023. [Online; Acessado em 10-02-2023]. Disponível em: https://webstore.iec.ch/searchform&q=IEC%2061850-80-5.
- IEEE. Utility Communications Architecture (UCATM) Version 2.0. Palo Alto, EUA, 1999.
- IEEE. Application considerations of iec 61850/uca 2 for substation ethernet local area network communication for protection and control. 2005.
- ISA. PROWAY-LAN Industrial Data Highway. Noth carolina, EUA, 1986.
- ISA. A Reference Model For Computer Integrated Manufacturing (CIM), A Description from the Viewpoint of Industrial Automation. North Carolina,

- EUA, 1989. Disponível em: http://www.pera.net/Pera/PurdueReferenceModel/ReferenceModel.pdf>.
- KISHORE, C. *et al.* A novel differential fault detection strategy for smart ac microgrid incorporating tapped loads. **IEEE Transactions on Industrial Informatics**, 2025. Early Access.
- KUNZ, G. *et al.* A formal methodology for accomplishing iec 61850 real-time communication requirements. **IEEE Transactions on Industrial Electronics**, v. 64, n. 8, p. 6582–6589, 2017.
- MACKAY, S. et al. Practical Industrial Data Networks: Design, Installation and Troubleshooting. [S.l.]: Elsevier, 2004.
- MARTINS, N. et al. Monitoramento e modelagem de dados da IEC 61850 em plantas industriais: Estudo de caso. In: **Anais do Congresso Brasileiro de Automática** (CBA). Niterói, RJ, Brasil: Sociedade Brasileira de Automática (SBA), 2024. FRIENDS Lab. Disponível em: https://youtu.be/_qjjXV9RvoQ.
- MAURO, N. M. **ORIENTAÇÃO POR OBJETOS APLICADA À AUTOMAÇÃO INDUSTRIAL : OBJETO-IMAGEM**. Dissertação (Mestrado) Universidade Federal de Santa Catarina, 1995.
- MAZUR, D. C.; SOTTILE, J.; NOVAK, T. An electrical mine monitoring system utilizing the iec 61850 standard. **IEEE Transactions on Industry Applications**, v. 51, n. 2, p. 1317–1325, 2015.
- MDIC. Mapa de Empresas 2022. 2022.
- MENDES, M.; MAGALHãES, M. Redes locais industriais e o projeto de padronizaÇÃo map/top. 1988.
- MICHAELIS. **Definição de semântica**. 2022. [Online; Acessado em 23-12-2022]. Disponível em: https://michaelis.uol.com.br/moderno-portugues/busca/portugues-brasileiro/semantica/.
- NADEEM, F. et al. Multistage scheduling of vpp under distributed locational marginal prices and looe evaluation. **IEEE Access**, v. 12, 2024.
- NETO, R. C. *et al.* An aeropendulum-based didactic platform for the learning of control engineering. **Journal of Control, Automation and Electrical Systems**, Springer, v. 34, n. 3, p. 566–577, 2023. Disponível em: https://link.springer.com/article/10.1007/s40313-022-00981-4.
- OMICRON. **IEDScout Versatile software tool for working with IEC 61850 devices**. 2024. [Online; Acessado em 20-08-2024]. Disponível em: https://www.omicronenergy.com/en/products/iedscout/>.
- QUSAYER, A. F.; HUSSAIN, S. M. S. Communication assisted protection scheme based on artificial neural networks for multi-microgrid. **IEEE Access**, v. 12, 2024.
- SAUTER, T.; WOLLSCHLAEGER, M.; GUERICKE, O. V. Feldbussysteme historie, eigenschaften und entwicklungstrends. it Information Technology, v. 42, n. 4, p. 7–16, April 2000.

SCHWEITZER. Norma IEC 61850 - Teoria e Prática. [S.l.]: Universidade SEL, 2022.

SEGOVIA, V. R.; THEORIN, A. History of control history of plc and dcs. 2013.

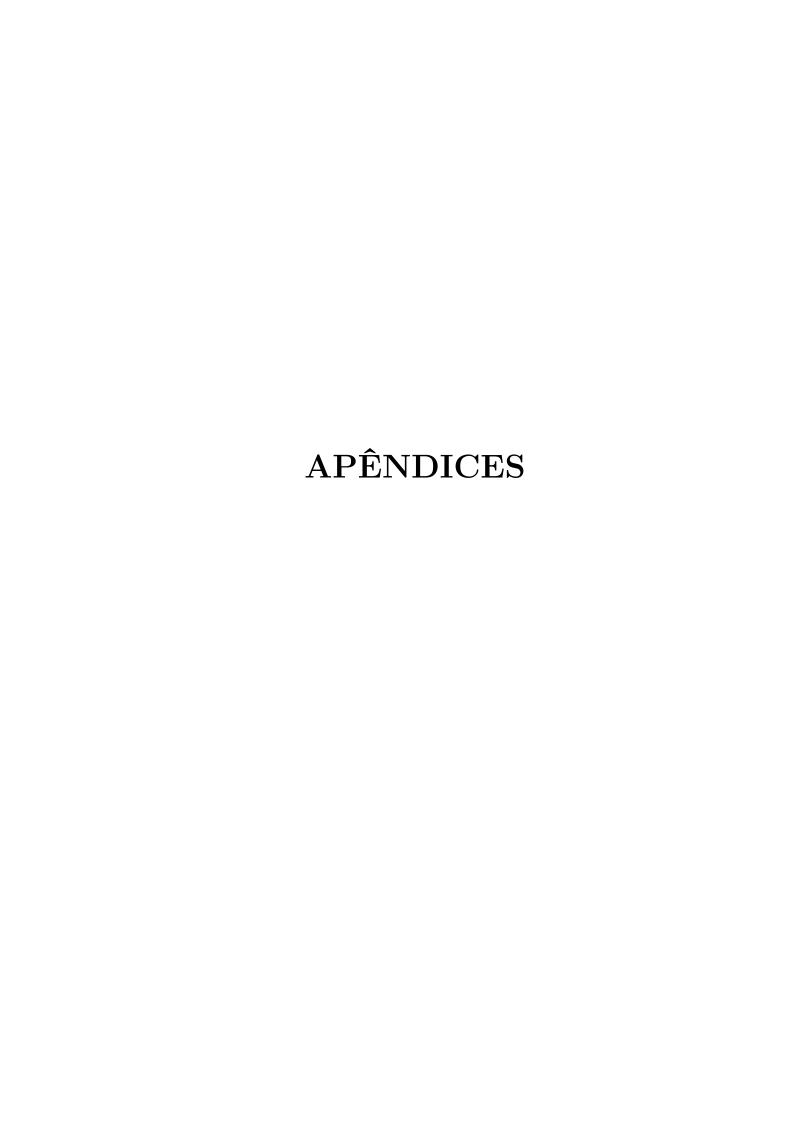
SIEMENS. Combined Heat and Power. 2023.

SISCO. Overview and introduction to the manufacturing message specification (mms). 1995.

SPURGEON, C. E.; ZIMMERMAN, J. Ethernet The Definitive Guide. [S.l.]: O Reilly, 2014.

THOMESSE, J.-P. Fieldbus technology and industrial automation. In: **2005 IEEE** Conference on Emerging Technologies and Factory Automation. [S.l.: s.n.], 2005. v. 1, p. 651–653.

TIA. Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange. Arlington, EUA, 1997.


URBINA, M. et al. Cpps gateway: Implementation of modbus and profibus on a programmable soc platform. **IEEE Latin America Transactions**, v. 16, n. 2, 2018.

VOLKOVA, A. et al. Security challenges in control network protocols: A survey. **IEEE** Communications Surveys & Tutorials, v. 21, n. 1, 2019.

WILLIAMS, T. A reference model for computer integrated manufacturing from the viewpoint of industrial automation. **IFAC Proceedings Volumes**, v. 23, n. 8, Part 5, p. 281–291, 1990. ISSN 1474-6670. 11th IFAC World Congress on Automatic Control, Tallinn, 1990 - Volume 5, Tallinn, Finland. Disponível em: https://www.sciencedirect.com/science/article/pii/S1474667017517486.

WIRESHARK. Wireshark – Network Protocol Analyzer. 2024. [Online; Acessado em 19-05-2025]. Disponível em: https://www.wireshark.org/>.

ZURAWSKI, R. Industrial Communication Technology Handbook. [S.l.]: CRC Press, 2015.

APÊNDICE A – MAPEAMENTO DE LOGICAL NODES PARA APLICAÇÕES INDUSTRIAIS

A.1 GRUPO A - CONTROLE AUTOMÁTICO

O grupo A possui 5 Logical Nodes com o objetivo de descrever funções que desempenham atividades de controle automático em sistemas. Apesar do título da seção ser bem alinhado com ações encontradas na indústria, os Logical Nodes encontrados neste grupo da IEC estão focados em automação de sistemas elétricos. Em nosso estudo encontramos apenas um Logical Node com função alinhada a da indústria. Abaixo é descrito apenas o Logical Node pertencente ao grupo com o mapeamento para utilização em ambiente fabril.

- ANCR Regulador de corrente do neutro (exclusivo do sistema elétrico); 🗡
- ARCO Controle de potência reativa (exclusivo do sistema elétrico); 🗡
- ARIS Controle do resistor (exclusivo do sistema elétrico); X
- ATCC Controlador do comutador automático (exclusivo do sistema elétrico); 🗡
- AVCO Controle automático de tensão (compatível com a indústria); 🗸

A.1.1 AVCO - CONTROLE AUTOMÁTICO DE TENSÃO

Observa-se que o *Logical Node* em tela, apesar de ter aplicações claras em sistemas de potência, pode ser encontrado também em funções para controle de alguns tipos de motores e resistências em fornos de tratamento térmico. A tabela 15 apresenta a classe responsável por esse tipo de controle, verificando parâmetros comuns encontrados na indústria, como: chave local ou remota, limites de corrente e tensão, o valor do setpoint propriamente dito, dentre outros.

Tabela 15 – AVCO class

AVCO class						
Data object name	Common data	Explanation	\mathbf{T}	M/O/C		
	class					
LNName		The name shall be composed of the class				
		name, the LN-Prefix and LN-Instance-				
		ID according to IEC 61850-7-2, Clause				
		22.				
Data objects						
Status information						
LocKey	SPS	Local or remote key		О		
Loc	SPS	Local control behaviour		M		
BlkEF	SPS	Blocked by earth fault		О		
BlkAOv	SPS	Blocked by current limit overflow		О		
BlkVOv	SPS	Blocked by voltage limit overflow		О		
Controls						
OpCntrRs	INC	Resettable operation counter		О		
LocSta	SPC	Switching authority at station level		О		
TapChg	BSC	Change voltage (stop, higher, lower)		M		
SptVol	APC	Voltage setpoint		О		
Auto	SPC	Automatic operation		О		
Settings	'					
LimAOv	ASG	Current limit for overflow blocking		О		
LimVOv	ASG	Voltage limit for overflow blocking		О		

Tabela 16 - Análise dos Objetos de Dados na classe AVCO

Análise dos Objetos de Dados no AVCO					
Objeto de Dados	Descrição				
LocKey (SPS)	Indica se a chave de controle está em modo local ou remoto.				
Loc (SPS)	Indica o comportamento do controle local.				
BlkEF (SPS)	Indicação de bloqueio devido a falha à terra.				
BlkAOv (SPS)	Indicação de bloqueio devido a sobrecorrente.				
BlkVOv (SPS)	Indicação de bloqueio devido a sobretensão.				
OpCntrRs (INC)	Contador de operações reinicializável.				
LocSta (SPC)	Autoridade de comutação no nível da estação.				
TapChg (BSC)	Comando para alterar a tensão (aumentar, diminuir ou				
	parar).				
SptVol (APC)	Valor de setpoint da tensão.				
Auto (SPC)	Indicação se o controle está em modo automático ou manual.				
LimAOv (ASG)	Limite de corrente para bloqueio por sobrecorrente.				
LimVOv (ASG)	Limite de tensão para bloqueio por sobretensão.				

Fonte: O próprio autor

A.2 GRUPO C - CONTROLE SUPERVISÓRIO

O grupo C possui 6 *Logical Nodes* em ações de controle muito específicas para a indústria e passíveis de ser aplicadas. Dos 6 *Logical Nodes* pertencentes a esse grupo, 3 foram mapeados como compatíveis na industria e outros 3 *Logical Nodes* de aplicação

exclusiva em sistemas elétrios. Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- CALH Manipulação de alarmes (compatível com a indústria); 🗸
- CCGR Grupos de resfriamento (compatível com a indústria); 🗸
- CILO Intertravamento (compatível com a indústria); ✓
- CPOW Comutação point-on-wave (exclusivo do sistema elétrico); X
- CSWI Controlador de comutação (exclusivo do sistema elétrico); X
- CSYN Controlador do sincronizador (exclusivo do sistema elétrico); 🗡

A.2.1 CALH - MANIPULAÇÃO DE ALARMES

Esse Logical Node permite a criação de warmings e alarmes de grupo. Trata-se de uma função muito usada na indústria, visto a importância dos grupos de gerenciamento de alarmes encontrados em sistemas supervisórios. A forma de como os alarmes são gerados não são tratados por este Logical Node, sendo necessário que programas locais façam essa geração. A tabela 17 apresenta a classe responsável por esse tipo de manipulação de alarmes.

Tabela 17 – CALH class: Alarm handling

CALH class							
Data object	Common data	Explanation	\mathbf{T}	M/O/C			
name	class						
LNName		The name shall be composed of the class name,					
		the LN-Prefix and LN-Instance-ID according					
		to IEC 61850-7-2, Clause 22.					
Data objects							
Status information	Status information						
GrAlm	SPS	Group alarm		С			
GrWrn	SPS	Group warning		С			
GrInd	SPS	Group indication		С			
AlmLstOv	SPS	Alarm list overflow		О			

Fonte: Adaptado de (IEC, 2010b)

Tabela 18 – Análise dos Objetos de Dados na classe CALH

Análise dos Objetos de Dados no CALH					
Objeto de Dados	Descrição				
GrAlm (SPS)	Indicação de alarme de grupo.				
GrWrn (SPS)	Indicação de aviso de grupo.				
GrInd (SPS)	Indicação geral de grupo.				
AlmLstOv (SPS)	Indicação de sobrecarga na lista de alarmes.				

Fonte: O próprio autor

A.2.2 CCGR - GRUPOS DE RESFRIAMENTO

Resfriamento e arrefeicimento é um tipo de ação de controle comum na indústria, sendo encontrada principalmente em processos que envolvem combustão industrial. Ações de controle inverso, quando a variável manipulada de saida aumenta com a diminuição da temperatura, é um possível exemplo de um sistema de resfriamento, encontrados em fornos de ceramica e tratamento de vidro. A tabela 19 apresenta a classe responsável por esse grupo. Observa-se que todos os atributos deste *Logical Node* são de preenchimento opcional, visto a grande possibilidade de aplicações distintas que podem ser identificadas na tabela abaixo.

Tabela 19 – CCGR class: Cooling groups

CCGR class						
Data object	Common data	Explanation	T	M/O/C		
name	class					
LNName		The name shall be composed of the class name,				
		the LN-Prefix and LN-Instance-ID according				
		to IEC 61850-7-2, Clause 22.				
Data objects						
Status information	n					
OpTmh	INS	Operation time		О		
FanOvCur	SPS	Fan overcurrent trip		O		
PmpOvCur	SPS	Pump overcurrent trip		О		
PmpAlm	SPS	Loss of pump		0		
Measured and me	tered values					
EnvTmp	MV	Temperature of environment		О		
OilTmpIn	MV	Oil temperature cooler in		О		
OilTmpOut	MV	Oil temperature cooler out		О		
OilMotA	MV	Oil circulation motor drive current		0		
FanFlw	MV	Air flow in fan		О		
CETmpIn	MV	Temperature of secondary cooling medium in		O		
CETmpOut	MV	Temperature of secondary cooling medium out		O		
CEPres	MV	Pressure of secondary cooling medium		O		
CEFlw	MV	Flow of secondary cooling medium		O		
FanA	MV	Motor drive current fan		O		
Controls						
CEBlk	SPC	Control of automatic / manual operation (bloc-		О		
		king)				
CECtl	SPC	Control of complete cooling group (pumps and		O		
		fans)				
PmpCtlGen	ENC	Control of all pumps		О		
PmpCtl	ENC	Control of a single pump		О		
FanCtlGen	ENC	Control of all fans		О		
FanCtl	ENC	Control of a single fan		О		
Auto	SPC	Automatic or manual		О		
Settings						
OilTmpSet	ASG	Set point for oil temperature		О		
*	1					

Fonte: Adaptado de (IEC, 2010b)

Tabela 20 – Análise dos Objetos de Dados na classe CCGR

Análise dos Objetos de Dados no CCGR					
Objeto de Dados	Descrição				
OpTmh (INS)	Tempo de operação do grupo de resfriamento.				
FanOvCur (SPS)	Indicação de sobrecorrente do ventilador.				
PmpOvCur (SPS)	Indicação de sobrecorrente da bomba.				
PmpAlm (SPS)	Indicação de falha na bomba.				
EnvTmp (MV)	Temperatura do ambiente ao redor do sistema de resfria-				
	mento.				
OilTmpIn (MV)	Temperatura do óleo na entrada do resfriador.				
OilTmpOut (MV)	Temperatura do óleo na saída do resfriador.				
OilMotA (MV)	Corrente do motor de circulação de óleo.				
FanFlw (MV)	Fluxo de ar no ventilador.				
CETmpIn (MV)	Temperatura do meio de resfriamento secundário na entrada.				
CETmpOut (MV)	Temperatura do meio de resfriamento secundário na saída.				
CEPres (MV)	Pressão do meio de resfriamento secundário.				
CEFlw (MV)	Fluxo do meio de resfriamento secundário.				
FanA (MV)	Corrente do motor do ventilador.				
CEBlk (SPC)	Controle para ativação/desativação do resfriamento automático/manual.				
CECtl (SPC)	Controle do grupo de resfriamento completo (bombas e ventiladores).				
PmpCtlGen (ENC)	Controle de todas as bombas.				
PmpCtl (ENC)	Controle de uma bomba individual.				
FanCtlGen (ENC)	Controle de todos os ventiladores.				
FanCtl (ENC)	Controle de um ventilador individual.				
Auto (SPC)	Indica se o sistema de resfriamento está em modo automático				
	ou manual.				
OilTmpSet (ASG)	Valor de setpoint para a temperatura do óleo.				

Fonte: O próprio autor

A.2.3 CILO - INTERTRAVAMENTO

Este Logical Node irá permitir a operação se houver as pré-condições para que isso ocorra. Observa-se um conjunto simples de atributos no Data Object. Para o caso de intertravamento, de fato, apenas existirá duas condições: Permitir ou não permitir. Apesar da função apresentada está relacionada a pré-condições para abertura ou não de dispositivos de comutação, sua aplicação generalizada pode ser feita sem nenhum problema aparente. A tabela 21 apresenta a classe responsável por esse Logical Node e seus dois atributos de preenchimento obrigatório.

Tabela 21 – CILO class: Interlocking

CILO class						
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C
name		class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data objects						
Status inf	Status information					
EnaOpn		SPS		Enable Open		M
EnaCls		SPS		Enable Close		M

Fonte: Adaptado de $\overline{(IEC, 2010b)}$

Tabela 22 – Análise dos Objetos de Dados na classe CILO

Análise dos Objetos de Dados no CILO					
Objeto de Dados	Descrição				
EnaOpn (SPS)	Indica se a abertura do dispositivo intertravado está habili-				
	tada.				
EnaCls (SPS)	Indica se o fechamento do dispositivo intertravado está				
	habilitado.				

Fonte: O próprio autor

A.3 GRUPO D - RECURSOS ENERGÉTICOS DISTRIBUÍDOS

O Grupo D da norma IEC 61850-7-420 define os *Logical Nodes* relacionados à geração distribuída de energia, controle de inversores, sistemas fotovoltaicos, células de combustível, motores térmicos e armazenamento térmico. Os *Logical Nodes* deste grupo possibilitam o gerenciamento da energia gerada por fontes distribuídas. Muito voltado ao sistema elétrico, este grupo em aplicações industriais está restrito a apenas um LN com ampla aplicação na indústria de processo.

Abaixo é descrito apenas o *Logical Nodes* pertencente ao grupo com os mapeamento para utilização em ambiente fabril.

- DCHB Boiler (compatível com a indústria); ✓
- DCRP DER plant corporate characteristics at the ECP (exclusivo do sistema elétrico);
- DOPR Operational characteristics at ECP (exclusivo do sistema elétrico); 🗡
- DOPA DER operational authority at the ECP (exclusivo do sistema elétrico); X
- DOPM Operating mode at ECP (exclusivo do sistema elétrico); X
- DPST Status information at the ECP (exclusivo do sistema elétrico); X

- DCCT DER economic dispatch parameters (exclusivo do sistema elétrico); 🗡
- DSCC DER energy and/or ancillary services schedule control (exclusivo do sistema elétrico);
- DSCH DER energy and/or ancillary services schedule (exclusivo do sistema elétrico);
- DRCT DER controller characteristics (exclusivo do sistema elétrico); X
- DRCS DER controller status (exclusivo do sistema elétrico); X
- DRCC DER supervisory control (exclusivo do sistema elétrico); 🗡
- DGEN DER unit generator (exclusivo do sistema elétrico); 🗡
- DRAT DER generator ratings (exclusivo do sistema elétrico); 🗡
- DRAZ DER advanced generator ratings (exclusivo do sistema elétrico); 🗡
- DCST Generator cost (exclusivo do sistema elétrico); 🗡
- DREX Excitation ratings (exclusivo do sistema elétrico);
- DEXC Excitation (exclusivo do sistema elétrico); X
- DSFC Speed/Frequency controller (exclusivo do sistema elétrico); X
- DCIP Reciprocating engine (exclusivo do sistema elétrico); X
- DFCL Fuel cell controller (exclusivo do sistema elétrico); X
- DSTK Fuel cell stack (exclusivo do sistema elétrico); X
- DFPM Fuel processing module (exclusivo do sistema elétrico); X
- DPVM Photovoltaics module ratings (exclusivo do sistema elétrico); X
- DPVA Photovoltaics array characteristics (exclusivo do sistema elétrico); X
- DPVC Photovoltaics array controller (exclusivo do sistema elétrico); 🗡
- DTRC Tracking controller (exclusivo do sistema elétrico); 🗡
- DCHC CHP system controller (exclusivo do sistema elétrico); X
- DCTS Thermal storage (exclusivo do sistema elétrico); 🗡

A.3.1 DCHB - GERENCIAMENTO DE CALDEIRAS

O Logical Node DCHB modela as características do sistema de caldeiras de um sistema CHP (Combined Heat and Power). Esse Logical Node possibilita o monitoramento do tipo de caldeira, seu estado operacional e a energia consumida pelo sistema. Esse nó é

amplamente aplicável na indústria, principalmente em sistemas de cogeração e plantas térmicas.

A tabela 23 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela23 – DCHB class

DCHB class						
Data object name	Comi	non data	Explanation	n	\mathbf{T}	M/O/C
	class					
LNName				nerited from logical-node		
			class (see IEC	C 61850-7-2)		
Data						
System logical node dat	a					
				rit all mandatory data from		M
			Ÿ	cal node class		
				m LLN0 may optionally be		О
			used			
BoilTyp	ENG		Type of boi	iler:		M
	Value	Explanation				
	0		le / Unknown			
	1	Regular boile				
	2	Condensing b	ooiler			
	99	Other				
Status information						
BoilRdy	SPS		v	for operation: $True = ready$		M
BoilDnReg	SPS		Boiler down	regulating warning		О
Control						
BoilCtl	DPC			and stop: True = Start;		M
			False = Stop			
Measured values						
BoilWh	MV		Energy being	g consumed by boiler		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 24 – Análise dos Objetos de Dados na classe DCHB

Análise dos Objetos de Dados no DCHB					
Objeto de Dados	Descrição				
BoilTyp (ENG)	Tipo de caldeira: convencional, condensação ou outro.				
BoilRdy (SPS)	Indica se a caldeira está pronta para operação.				
BoilDnReg (SPS)	Alerta de regulação descendente da caldeira.				
BoilCtl (DPC)	Comando de controle para ligar ou desligar a caldeira.				
BoilWh (MV)	Energia consumida pela caldeira.				

Fonte: O próprio autor

A.4 GRUPO F - BLOCOS FUNCIONAIS

O Grupo F na IEC 61850-7-4 engloba Blocos Funcionais, que são responsáveis pelo processamento de sinais, filtragem e controle dentro de sistemas automatizados, podendo realizar a manipulação de variáveis e ajustes dinâmicos dentro de sistemas de

controle e automação. Esses Logical Nodes pertencentes a este grupo podem ser utilizados em processos industriais, controle automático, ajuste de variáveis e sistemas SCADA, realizando ações como por exemplo: Sistemas de controle de motores e inversores, ajuste de setpoints e rampas de aceleração, PID industriais com controle de temperatura, pressão e vazão, alteração de set-points para automação de processos e ajuste dinâmico de valores de referência. Abaixo são descritos apenas os Logical Nodes pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- FCNT Contador (compatível com a indústria); ✓
- FCSD Descrição da forma de curva (compatível com a indústria); 🗸
- FFIL Filtro genérico (compatível com a indústria); ✓
- FLIM Limitação de saída da função de controle (compatível com a indústria); 🗸
- FPID Regulador PID (compatível com a indústria); 🗸
- FRMP Função de rampa (compatível com a indústria); 🗸
- FSPT Controle de set-point (compatível com a indústria); 🗸
- FXOT Ação em limiar superior (compatível com a indústria); 🗸
- FXUT Ação em limiar inferior (compatível com a indústria); 🗸

A.4.1 FCNT - CONTADOR

O Logical Node FCNT (Counter) pertence ao Grupo F - Blocos Funcionais da IEC 61850-7-4 e é responsável pelo monitoramento e registro de contagens de eventos ou pulsos dentro de um sistema. Ele pode ser aplicado tanto em subestações elétricas quanto em automação industrial, sendo útil para rastrear eventos discretos como acionamentos, ciclos de operação e tempo de funcionamento de equipamentos. O FCNT pode ser utilizado em diversas aplicações industriais, incluindo: Contagem de ciclos de operação de motores elétricos para manutenção preditiva, monitoramento de partidas de bombas e compressores em processos contínuos, registro de acionamentos de válvulas e atuadores pneumáticos em processos de manufatura, controle de produção em linhas de montagem, acompanhando o número de peças produzidas e análise de eventos em sistemas SCADA registrando a frequência de determinadas condições operacionais.

A tabela 25 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 25 – FCNT class: Counter

FCNT class							
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C	
name		class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Data obje	ects						
Status in	formation	1					
Up		SPS		Last count direction upward		О	
Dn		SPS		Last count direction downward		О	
Measured	Measured and metered values						
CntRs		BCR		Counter		M	

Tabela 26 – Análise dos Objetos de Dados na classe FCNT

Análise dos Objetos de Dados no FCNT					
Objeto de Dados	Descrição				
Up (SPS)	Indica a última direção da contagem para cima (incremento).				
Dn (SPS)	Indica a última direção da contagem para baixo (decre-				
	mento).				
CntRs (BCR)	Valor atual do contador.				

Fonte: O próprio autor

A.4.2 FCSD: DESCRIÇÃO DA FORMA DE CURVA

O Logical Node FCSD é responsável pela definição da forma de curva para funções de controle e proteção. Esse LN permite que sistemas automatizados utilizem curvas de resposta personalizadas para ajustar a atuação de dispositivos com base em variáveis monitoradas. Em contexto industrial, o FCSD pode ser aplicado em várias aplicações, como por exemplo: Curvas de torque para controle de motores elétricos, ajuste de setpoints dinâmicos em processos industriais, modulação de acionamentos de inversores de frequência com base em características do processo e controle de variáveis como pressão e temperatura em processos químicos.

A tabela 27 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 27 – FCSD class: Curve Shape Description

FCSD class							
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C	
name		class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Data obje	Data objects						
Measured	l and me	tered values					
Out		MV		Output		M	
Settings							
Crv		CSG		Curve shape		M	

Tabela 28 – Análise dos Objetos de Dados na classe FCSD

Análise dos Objetos de Dados no FCSD					
Objeto de Dados	Descrição				
Out (MV)	Valor da saída da função de descrição da forma de curva.				
Crv (CSG)	Parâmetro que define a forma da curva utilizada no controle.				

Fonte: O próprio autor

A.4.3 FFIL: FILTRO GENÉRICO

O Logical Node FFIL (Filter) é responsável pela filtragem de sinais. Ele pode ser utilizado para atenuar ruídos, picos indesejados e oscilações em medições de variáveis elétricas e de processos. Na indústria, o FFIL pode ser aplicado para filtragem de sinais de sensores de temperatura, pressão e vazão, evitando leituras instáveis. Em sistemas SCADA, pode ser empregado para suavizar oscilações de dados. No controle com CLPs e inversores de frequência, ajuda a evitar oscilações abruptas.

A tabela 29 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 29 – FFIL class: Filter

FFIL class					
Data object	Common da	ata	Explanation	\mathbf{T}	M/O/C
name	class				
LNName			The name shall be composed of the class name,		
			the LN-Prefix and LN-Instance-ID according		
			to IEC 61850-7-2, Clause 22.		
Data objects					
Measured and me	tered values				
Out	MV		Output		M
ErrTerm	MV		Control loop termination error value		О
Settings					
FilTyp	ENG		Filter type		M
KP	ASG		Proportional gain		О
KLd	ASG		K lead		О
KLg	ASG		K lag		О
Tm1ms	ING		Time 1 [ms]		О
Tm1ldms	ING		Time 1 (lead) [ms]		О
Tm2ms	ING		Time 2 [ms]		О
Tm2ldms	ING		Time 2 (lead) [ms]		О
Tm3ms	ING		Time 3 [ms]		О
DeaBnd	ASG		Deadband		О

Tabela 30 – Análise dos Objetos de Dados na classe FFIL

Análise dos Objetos de Dados no FFIL					
Objeto de Dados	Descrição				
Out (MV)	Valor de saída filtrado após a aplicação do filtro.				
ErrTerm (MV)	Erro de terminação do controle de malha após o processa-				
	mento do filtro.				
FilTyp (ENG)	Tipo de filtro utilizado (ex: passa-baixa, passa-alta, média				
	móvel).				
KP (ASG)	Ganho proporcional aplicado ao filtro.				
KLd (ASG)	Constante de avanço (lead) do filtro.				
KLg (ASG)	Constante de atraso (lag) do filtro.				
Tm1ms (ING)	Tempo 1 (em milissegundos).				
Tm1ldms (ING)	Tempo 1 de avanço (lead) (em milissegundos).				
Tm2ms (ING)	Tempo 2 (em milissegundos).				
Tm2ldms (ING)	Tempo 2 de avanço (lead) (em milissegundos).				
Tm3ms (ING)	Tempo 3 (em milissegundos).				
DeaBnd (ASG)	Banda morta (deadband) do filtro, utilizada para evitar				
	pequenas oscilações.				

Fonte: O próprio autor

A.4.4 FFIL: FILTRO GENÉRICO

O Logical Node FLIM (Limiter) é responsável pela limitação de saída da função de controle, garantindo que variáveis controladas permaneçam dentro de faixas operacionais. Esse LN é utilizado em sistemas onde a saída de um controlador precisa ser restringida

para evitar sobrecarga, instabilidade ou operação fora dos limites aceitáveis. O FLIM pode ser utilizado para limitar a saída de controladores de processos industriais, impedindo que valores ultrapassem faixas predefinidas. Ele é útil no controle de motores elétricos, prevenindo correntes excessivas ou velocidades perigosas. Em sistemas hidráulicos e pneumáticos, pode restringir pressões para evitar danos estruturais. Além disso, pode ser aplicado na regulação de potência de inversores de frequência, garantindo que a carga conectada não seja sobrecarregada.

A tabela 31 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 31 – FLIM class: Limiter

	FLIM class						
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C	
name		class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Data obje	ects						
Measured	d and me	tered values					
Out		MV		Limited output value		M	
Settings							
LimTyp		ENG		Limiting type (e.g., absolute, relative)		M	
LimMax		ASG		Maximum allowable output value		О	
LimMin		ASG		Minimum allowable output value		О	
LimRate		ASG		Rate limit for output change		О	

Fonte: Adaptado de (IEC, 2010b)

Tabela 32 – Análise dos Objetos de Dados na classe FLIM

Análise dos Objetos de Dados no FLIM						
Objeto de Dados	Descrição					
Out (MV)	Valor da saída limitada após a aplicação das restrições.					
LimTyp (ENG)	Define o tipo de limitação aplicada (absoluta, relativa, etc.).					
LimMax (ASG)	Define o valor máximo permitido para a saída do sistema.					
LimMin (ASG)	Define o valor mínimo permitido para a saída do sistema.					
LimRate (ASG)	Define a taxa máxima de variação da saída, evitando mu-					
	danças bruscas.					

Fonte: O próprio autor

A.4.5 FPID: REGULADOR PID

O Logical Node FPID (PID Controller) é responsável por implementar um controlador PID (Proporcional-Integral-Derivativo). Esse LN é utilizado para regulação automática de processos, ajustando a saída do sistema para atingir um valor desejado. O FPID pode ser utilizado no controle de processos industriais, por exemplo, na regulação de temperatura

em fornos e caldeiras, no ajuste de pressão em sistemas hidráulicos e pneumáticos, no controle de velocidade em motores e inversores de frequência, e no controle de nível de líquidos em tanques.

A tabela 33 apresenta a classe responsável por esse $Logical\ Node$ e seus atributos.

Tabela 33 – FPID class: PID Controller

FPID class						
Data object	Common data	Explanation	\mathbf{T}	M/O/C		
name	class					
LNName		The name shall be composed of the class name,				
		the LN-Prefix and LN-Instance-ID according				
		to IEC 61850-7-2, Clause 22.				
Data objects						
Measured and me	etered values					
Out	MV	PID output		M		
PAct	MV	Proportional action		C		
IAct	MV	Integral action		C		
DAct	MV	Derivative action		C		
ErrTerm	MV	Control loop termination error value		О		
Settings						
PIDAlg	ENG	P I D PI PD ID PID		M		
KP	ASG	Proportional gain		C		
KI	ASG	Integral gain		С		
ITmms	ING	Integral time (ms)		С		
KD	ASG	Derivative gain		С		
DTmms	ING	Derivative time (ms)		С		
DFiTmms	ING	Derivative time filter (ms)		С		
Bias	ASG	Bias added to process variable		О		
ILim	ASG	Anti-windup integral limit		О		
Droop	ASG	Percent change in effective setpoint at maxi-		О		
		mum action				

Fonte: Adaptado de (IEC, 2010b)

Tabela 34 – Análise dos Objetos de Dados na classe FPID

Análise dos Objetos de Dados no FPID					
Objeto de Dados	Descrição				
Out (MV)	Valor da saída do controlador PID após o processamento				
	dos ganhos.				
PAct (MV)	Ação proporcional aplicada ao controle.				
IAct (MV)	Ação integral aplicada ao controle.				
DAct (MV)	Ação derivativa aplicada ao controle.				
ErrTerm (MV)	Valor do erro de terminação do controle.				
PIDAlg (ENG)	Algoritmo PID utilizado (P, I, D, PI, PD, ID ou PID).				
KP (ASG)	Ganho proporcional, ajustando a resposta do controlador.				
KI (ASG)	Ganho integral, corrigindo erros acumulados ao longo do				
	tempo.				
ITmms (ING)	Tempo de integração para a ação integral.				
KD (ASG)	Ganho derivativo, antecipando mudanças rápidas no pro-				
	cesso.				
DTmms (ING)	Tempo derivativo para a ação derivativa.				
DFiTmms (ING)	Filtro de tempo da ação derivativa.				
Bias (ASG)	Termo de compensação (bias) adicionado à variável do pro-				
	cesso.				
ILim (ASG)	Limite de anti-windup para a ação integral.				
Droop (ASG)	Percentual de variação no set-point efetivo na ação máxima.				

Fonte: O próprio autor

A.4.6 FRMP: FUNÇÃO DE RAMPA

O Logical Node FRMP (Ramp Function) é responsável pela implementação de funções de rampa em sistemas de controle. Essa funcionalidade permite que a variação de uma variável controlada ocorra de forma gradual, evitando mudanças abruptas que poderiam causar sobrecargas mecânicas, elétricas ou térmicas.

O FRMP pode ser utilizado no controle de processos industriais, por exemplo, em controle de motores elétricos, garantindo que a aceleração e desaceleração ocorram de forma suave, evitando esforços excessivos nos componentes mecânicos. Também é aplicado na regulação de temperatura em processos térmicos. Em sistemas hidráulicos e pneumáticos, esse LN permite ajustes progressivos de pressão, prevenindo oscilações e cavitação.

A tabela 35 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 35 – FRMP class: Ramp Function

FRMP class						
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C
name		class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data obje	ects					
Status inf	formation	1				
AdjSt		ENS		State of adjustment process		О
Measured	l and me	tered values				
Out		MV		Ramp output		M
ErrTerm		MV		Control loop termination error value		О
Settings						
RmpUp		ASG		Ramping rate on an upward trend		О
RmpDn		ASG		Ramping rate on a downward trend		О
StepPs		ASG		Step size when turning from negative to posi-		О
				tive direction		
StepNg		ASG		Step size when turning from positive to nega-		О
				tive direction		

Tabela 36 – Análise dos Objetos de Dados na classe FRMP

Análise dos Objetos de Dados no FRMP					
Objeto de Dados	Descrição				
AdjSt (ENS)	Indica o status do processo de ajuste da rampa.				
Out (MV)	Valor de saída da função de rampa após o processamento.				
ErrTerm (MV)	Valor do erro de terminação do controle.				
RmpUp (ASG)	Taxa de subida da rampa (variação por unidade de tempo).				
RmpDn (ASG)	Taxa de descida da rampa (variação por unidade de tempo).				
StepPs (ASG)	Tamanho do passo ao alternar de direção negativa para				
	positiva.				
StepNg (ASG)	Tamanho do passo ao alternar de direção positiva para				
	negativa.				

Fonte: O próprio autor

A.4.7 FSPT: CONTROLE DE SETPOINT

O Logical Node FSPT (SetPoint Control) é responsável pelo gerenciamento e ajuste de setpoints em sistemas de controle automático. Esse Logical Node permite a modificação de valores de referência utilizados em controladores industriais.

O FSPT é amplamente utilizado no ajuste de setpoints em processos industriais, por exemplo, permite que operadores ou sistemas automáticos alterem valores de referência para controle de variáveis como temperatura, pressão e vazão.

A tabela 37 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 37 – FSPT class: Set-Point Control

FSPT class						
Data object	Common data	Explanation	\mathbf{T}	M/O/C		
name	class					
LNName		The name shall be composed of the class name,				
		the LN-Prefix and LN-Instance-ID according				
		to IEC 61850-7-2, Clause 22.				
Data objects						
Status information	1					
Loc	SPS	Local control behaviour		О		
SptDvAlm	SPS	Deviation alarm		О		
SptUp	SPS	Setpoint going up (raising)		О		
SptDn	SPS	Setpoint going down (lowering)		О		
SptDir	SPS	Setpoint direction		О		
SptEndSt	ENS	End status of set-point control		О		
AdjSt	ENS	Adjustment status		О		
Measured Values						
SptMem	MV	Setpoint in memory		M		
ErrTerm	MV	Control loop termination error value		О		
Out	MV	Output		О		
Controls						
SptChg	BAC	Setpoint change (raise, lower)		О		
SptVal	APC	Setpoint		M		
Auto	SPC	Automatic operation		О		
Settings						
MaxRst	ASG	Maximum restriction		О		
MinRst	ASG	Minimum restriction		О		
DvAlm	ASG	Deviation alarm		О		

Tabela 38 – Análise dos Objetos de Dados na classe FSPT

Análise dos Objetos de Dados no FSPT	
Objeto de Dados	Descrição
Loc (SPS)	Indica se o controle do set-point está sendo feito localmente
	ou remotamente.
SptDvAlm (SPS)	Gera um alarme caso o set-point desvie do valor esperado.
SptUp (SPS)	Indica que o set-point está sendo aumentado.
SptDn (SPS)	Indica que o set-point está sendo reduzido.
SptDir (SPS)	Direção do ajuste do set-point (subindo ou descendo).
SptEndSt (ENS)	Indica o status final do controle do set-point após ajuste.
AdjSt (ENS)	Status do processo de ajuste do set-point.
SptMem (MV)	Set-point armazenado na memória para referência futura.
ErrTerm (MV)	Valor do erro de terminação do controle de set-point.
Out (MV)	Saída correspondente ao set-point ajustado.
SptChg (BAC)	Comando para alteração do set-point (aumentar ou dimi-
	nuir).
SptVal (APC)	Valor do set-point sendo utilizado pelo sistema.
Auto (SPC)	Indica se a operação do set-point está em modo automático.
MaxRst (ASG)	Define a restrição máxima para o set-point.
MinRst (ASG)	Define a restrição mínima para o set-point.
DvAlm (ASG)	Define os limites para ativação do alarme de desvio do set-
	point.

Fonte: O próprio autor

A.4.8 FXOT: AÇÃO EM LIMIAR SUPERIOR

Logical Node FXOT (Upper Threshold Action) é responsável pela detecção e resposta a valores que ultrapassam um limiar superior pré-definido. Esse LN é utilizado para monitorar variáveis operacionais e acionar alarmes, eventos de proteção ou ajustes de controle quando o valor monitorado excede um limite máximo especificado.

O FXOT pode ser empregado em sistemas industriais, por exemplo, para monitoramento de variáveis críticas, como temperatura, pressão, corrente elétrica e velocidade. Em processos térmicos, pode acionar alarmes ou desligamentos caso a temperatura ultrapasse um limite seguro. No controle de motores e inversores de frequência, pode limitar a corrente para evitar sobrecarga. Em sistemas hidráulicos, pode interromper o fornecimento de fluido caso a pressão ultrapasse um patamar crítico. Além disso, pode ser integrado a sistemas SCADA para análise preditiva e resposta automatizada a condições anormais.

A tabela 39 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 39 - FXOT class: Upper Threshold Action

				FXOT class		
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C
name		class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data obje	ects					
Status inf	ormation	1				
ThdSt		SPS		Threshold exceeded status		M
Act		SPS		Action triggered by exceeding the threshold		О
Measured	and met	tered values				
Val		MV		Monitored value		M
Settings						
ThdVal		ASG		Threshold value		M
Hys		ASG		Hysteresis value to prevent oscillation		О
Dly		ING		Time delay before action is taken		О
RstVal		ASG		Reset threshold value		О

Análise dos Objetos de Dados no FXOT Objeto de Dados Descrição ThdSt (SPS) Indica se o valor monitorado ultrapassou o limiar superior. Act (SPS) Representa a ação tomada quando o limiar superior é ultrapassado. Val (MV) O valor monitorado que está sendo comparado ao limiar. ThdVal (ASG) Define o valor do limiar superior que, quando excedido, dispara uma ação. Hys (ASG) Define um valor de histerese para evitar oscilações frequentes no acionamento do evento.

Configura um atraso antes da ativação da ação, permitindo

Define o valor de redefinição do limiar, garantindo que a ação seja desativada quando a variável retornar ao intervalo

Tabela 40 – Análise dos Objetos de Dados na classe FXOT

Fonte: O próprio autor

tempo para estabilidade.

A.4.9 FXUT: AÇÃO EM LIMIAR INFERIOR

seguro.

Dly (ING)

RstVal (ASG)

O Logical Node FXUT (Lower Threshold Action) é responsável por detectar e responder a valores que caem abaixo de um limiar inferior predefinido. Esse LN é utilizado para monitorar variáveis operacionais e acionar alertas, ajustes de controle ou eventos de proteção sempre que um valor monitorado estiver abaixo do limite mínimo estabelecido.

O FXUT é empregado em sistemas de monitoramento e controle industrial, por exemplo, sendo importante para evitar condições operacionais inadequadas. Em controle de temperatura, pode acionar um aquecedor quando a temperatura cair abaixo de um limite crítico. Em sistemas hidráulicos, pode disparar um alarme caso a pressão fique abaixo de um nível seguro. No controle de motores, pode indicar uma falha quando a corrente elétrica estiver muito baixa, sugerindo uma possível desconexão ou sobrecarga.

A tabela 41 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 41 - FXUT class: Lower Threshold Action

	FXUT class						
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C	
name		class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Data obje	ects						
Status inf	ormation	1					
Op		ACT		Level of action reached	Т	M	
Settings							
StrVal		ASG		Start level set-point		С	
OpDlTmm	s	ING		Operate delay time [ms]		О	
StrCrv		CSG		Start level curve		С	
RsDlTmms	3	ING		Reset operate delay time [ms]		О	

Condition: Start level shall be given as a singular point or as a curve.

Fonte: Adaptado de (IEC, 2010b)

Tabela 42 – Análise dos Objetos de Dados na classe FXUT

Análise dos Objetos de Dados no FXUT				
Objeto de Dados	Descrição			
Op (ACT)	Indica que o nível de ação foi atingido.			
StrVal (ASG)	Define o valor de set-point do nível inicial.			
OpDlTmms (ING)	Tempo de atraso para a ativação da ação (em milissegundos).			
StrCrv (CSG)	Curva do nível inicial para acionamento da função.			
RsDlTmms (ING)	Tempo de atraso para redefinir a operação após a normali-			
	zação do valor.			

Fonte: O próprio autor

A.5 GRUPO G - REFERÊNCIAS FUNCIONAIS GENÉRICAS

O Grupo G da norma IEC 61850-7-4 reúne *Logical Nodes* destinados a funções genéricas dentro de sistemas de automação. Esses nós não estão vinculados a aplicações específicas, como proteção, medição ou controle de processos, mas sim a funcionalidades amplas que podem ser utilizadas em diversos contextos industriais e energéticos. Apesar de todos esses *Logical Nodes* estarem aptos a utilização em ambientes industriais, a sua aplicação reduz a interoperabilidade semântica buscada neste trabalho.

Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- GAPC Controle automático genérico de processos (compatível com a indústria); 🗸
- GGIO Entrada/Saída genérica de processos (compatível com a indústria); ✓
- GLOG Registro genérico (compatível com a indústria); 🗸

• GSAL - Aplicações genéricas de segurança (compatível com a indústria); 🗸

A.5.1 GAPC: CONTROLE AUTOMÁTICO GENÉRICO DE PROCESSOS

O Logical Node GAPC (Generic Automatic Process Control) tem como finalidade fornecer uma estrutura genérica para controle automático de processos industriais. Diferente de LNs mais especializados, o GAPC não está vinculado a um processo específico, o que permite sua utilização em diferentes setores da indústria.

O Logical Node GAPC pode ser utilizado para automatizar processos industriais em diversas aplicações. Ele pode ser empregado, por exemplo, no acionamento automático de motores, válvulas e atuadores industriais, estrutura que possibilita a supervisão de alarmes e status operacionais.

A tabela 43 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 43 – GAPC class: Generic Automatic Process Control

		GAPC class		
Data object name	Common data class	Explanation	Т	M/O/C
LNName		The name shall be composed of the class name,		
		the LN-Prefix and LN-Instance-ID according		
		to IEC 61850-7-2, Clause 22.		
Data objects				
Status information	n			
LocKey	SPS	Local or remote key		О
Loc	SPS	Local control behaviour		О
Auto	SPC	Automatic operation		О
Str1	ACD	Start		О
Op1	ACT	Operate	Т	О
Alm1	SPS	Generic single alarm		О
Wrn1	SPS	Generic single warning		О
Ind1	SPS	Generic single indication		О
Controls				
OpCntrRs	INC	Resettable operation counter		О
LocSta	SPC	Switching authority at station level		O
SPCS01	SPC	Single point controllable status output		О
DPCS01	DPC	Double point controllable status output		О
ISCS01	INC	Integer status controllable status output		О
Settings				•
StrVal1	ASG	Start value		О

Tabela 44 – Análise dos Objetos de Dados na classe GAPC

An	Análise dos Objetos de Dados no GAPC						
Objeto de Dados	Descrição						
LocKey (SPS)	Indica se a chave de controle está em modo local ou remoto.						
Loc (SPS)	Indica o comportamento do controle local.						
Auto (SPC)	Indica se o controle automático está ativado.						
Str1 (ACD)	Comando de partida do processo.						
Op1 (ACT)	Indica se a operação foi realizada.						
Alm1 (SPS)	Indicação de alarme genérico.						
Wrn1 (SPS)	Indicação de aviso genérico.						
Ind1 (SPS)	Indicação de status genérico.						
OpCntrRs (INC)	Contador de operações reinicializável.						
LocSta (SPC)	Autoridade de comutação no nível da estação.						
SPCS01 (SPC)	Saída de status controlável de ponto único.						
DPCS01 (DPC)	Saída de status controlável de ponto duplo.						
ISCS01 (INC)	Saída de status controlável de valor inteiro.						
StrVal1 (ASG)	Define o valor inicial do processo.						

A.5.2 GGIO: ENTRADA/SAIDA GENÉRICA DE PROCESSOS

O Logical Node GGIO (Generic Input/Output) tem como principal função fornecer um mecanismo padronizado para entrada e saída genérica de sinais em sistemas de automação. Ele é utilizado quando não há um Logical Node específico para representar determinado sinal, permitindo flexibilidade na modelagem e comunicação de dados.

Esse LN é empregado na integração de sensores, atuadores e outros dispositivos de campo com sistemas SCADA, CLPs e redes industriais baseadas na IEC 61850. O GGIO pode ser utilizado tanto para leitura de entradas digitais e analógicas quanto para o acionamento de saídas controláveis.

A tabela 45 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 45 – GGIO class: Generic Input/Output

GGIO class					
Data object	Common data	Explanation	\mathbf{T}	M/O/C	
name	class				
LNName		The name shall be composed of the class name,			
		the LN-Prefix and LN-Instance-ID according			
		to IEC 61850-7-2, Clause 22.			
Data objects					
Descriptions					
EEName	DPL	External equipment name plate		О	
Status information	1				
EEHealth	ENS	External equipment health		О	
LocKey	SPS	Local or remote key		О	
Loc	SPS	Local control behaviour		О	
IntIn1	INS	Integer status input		О	
Alm1	SPS	General single alarm		О	
Wrn1	SPS	General single warning		О	
Ind1	SPS	General indication (binary input)		О	
Measured and me	tered values				
AnIn1	MV	Analogue input		О	
AnOut1	APC	Controllable analogue output		О	
CntRs1	BCR	Counter, resettable		О	
Controls					
OpCntrRs	INC	Resettable operation counter		О	
LocSta	SPC	Switching authority at station level		О	
SPCS01	SPC	Single point controllable status output		О	
DPCS01	DPC	Double point controllable status output		О	
ISCS01	INC	Integer status controllable status output		О	

Tabela 46 – Análise dos Objetos de Dados na classe GGIO

An	Análise dos Objetos de Dados no GGIO						
Objeto de Dados	Descrição						
EEName (DPL)	Nome do equipamento externo.						
EEHealth (ENS)	Estado de saúde do equipamento externo.						
LocKey (SPS)	Indicação se a chave de controle está em modo local ou						
	remoto.						
Loc (SPS)	Indicação do comportamento do controle local.						
IntIn1 (INS)	Entrada de status inteiro para medições genéricas.						
Alm1 (SPS)	Indicação de alarme genérico.						
Wrn1 (SPS)	Indicação de aviso genérico.						
Ind1 (SPS)	Indicação geral de status binário.						
AnIn1 (MV)	Entrada analógica para medições.						
AnOut1 (APC)	Saída analógica controlável.						
CntRs1 (BCR)	Contador com possibilidade de reset.						
OpCntrRs (INC)	Contador de operações reinicializável.						
LocSta (SPC)	Autoridade de comutação no nível da estação.						
SPCS01 (SPC)	Saída de status controlável de ponto único.						
DPCS01 (DPC)	Saída de status controlável de ponto duplo.						
ISCS01 (INC)	Saída de status controlável de valor inteiro.						

Fonte: O próprio autor

A.5.3 GLOG: REGISTRO GENÉRICO

O Logical Node GLOG (Generic Logging) tem como principal função o registro de eventos e dados operacionais em sistemas de automação. Ele permite a criação de logs para armazenar informações de status, alarmes, eventos e comandos acionados dentro do sistema.

O GLOG pode ser aplicado, por exemplo, na gestão de alarmes e eventos críticos, auxiliando na detecção de falhas em equipamentos e processos. Outra aplicação relevante do GLOG é em ambientes fabris que necessitam de registros detalhados para auditoria e conformidade regulatória, garantindo a documentação precisa de ocorrências operacionais. Ele pode ser configurado para armazenar dados de sensores, comandos de operadores e informações de acionamento de dispositivos.

A tabela 47 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 47 – GLOG class: Generic Logging

				GLOG class		
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C
name		class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data objec	ts					
Logged Sta	tus info	ormation, Mo	easured	and metered values, Controls, Settings		
Access via	LOG			Included value assigned to InRef1		О
only						
Controls						
OpCntrRs		INC		Counts the events logged (resettable)		О
LogTrg		SPC		Trigger logging by operator		О
Settings						
LogRef		ORG		Reference to Log		О
TrgRef1		ORG		Trigger reference shows the receiving trigger		O
				signal		
InRef1		ORG		Reference to data objects / data attributes to		O
				include in LOG according to IEC 61850-7-2,		
				when the configured trigger was active		

Tabela 48 – Análise dos Objetos de Dados na classe GLOG

Ana	Análise dos Objetos de Dados no GLOG							
Objeto de Dados	Descrição							
Access via LOG	Indica o valor incluído no log, atribuído a InRef1.							
only								
OpCntrRs (INC)	Contador de eventos registrados, com possibilidade de reini-							
	cialização.							
LogTrg (SPC)	Permite que um operador acione manualmente o registro de							
	eventos.							
LogRef (ORG)	Referência ao log onde os eventos são armazenados.							
TrgRef1 (ORG)	Referência ao sinal de disparo que acionou o registro de							
	evento.							
InRef1 (ORG)	Referência a objetos de dados e atributos incluídos no LOG							
	conforme a norma IEC 61850-7-2, quando um disparo confi-							
	gurado foi ativado.							

A.5.4 GSAL: APLICAÇÕES GENÉRICAS DE SEGURANÇA

O Logical Node GSAL (Generic Security Applications) tem como principal função monitorar falhas de autorização, violações de privilégios e associações inativas dentro do sistema de automação. Esse LN desempenha importante um papel na segurança operacional e cibernética em redes industriais

O GSAL tem aplicações diretas em sistemas de automação industrial, principalmente na proteção contra acessos não autorizados e falhas de autenticação. Esse Logical Node pode ser utilizado para registrar tentativas de acesso não autorizado a sistemas SCADA e redes industriais, fornecendo um mecanismo para análise e auditoria de segurança.

A tabela 49 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 49 – GSAL class: Generic Security Applications

	GSAL class						
Data	object	Common	data	Explanation	\mathbf{T}	M/O/C	
name		class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Data obje	cts						
Status info	ormation	ı					
AuthFail		SEC		Authorisation failures		M	
AcsCtlFail		SEC		Access control failures detected		M	
SvcViol		SEC		Service privilege violations		M	
Ina		SEC		Inactive associations		О	
NumCntRs		INS		Number of counter resets		О	
Controls							
OpCntrRs		INC		Resettable operation counter		M	

NOTE: An operation in the context of this logical node is a security violation.

Fonte: Adaptado de (IEC, 2010b)

Tabela 50 – Análise dos Objetos de Dados na classe GSAL

An	Análise dos Objetos de Dados no GSAL				
Objeto de Dados	Descrição				
AuthFail (SEC)	Indica falhas de autorização ao tentar acessar o sistema.				
AcsCtlFail (SEC)	Detecta falhas no controle de acesso, como tentativas mal-				
	sucedidas de autenticação.				
SvcViol (SEC)	Registra violações de privilégios de serviço, como tentativas				
	de execução de comandos sem autorização.				
Ina (SEC)	Indica associações inativas, que podem ser sinais de falhas				
	na comunicação ou tentativas de ataque.				
NumCntRs (INS)	Armazena o número de redefinições do contador de eventos.				
OpCntrRs (INC)	Contador de operações reinicializável, permitindo rastrear				
	quantas vezes uma operação foi executada.				

Fonte: O próprio autor

A.6 GRUPO H - ENERGIA HIDRELÉTRICA

O Grupo H da norma IEC 61850-7-410 reúne *Logical Nodes* projetados para o monitoramento e controle de usinas hidrelétrica e infraestruturas relacionadas ao gerenciamento de água. Esses nós são responsáveis por representar níveis de água, controle de válvulas e outros dispositivos hidráulicos.

Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- HBRG Rolamento do eixo da turbina-gerador (exclusivo do sistema elétrico); 🗡
- HCOM Combinador (exclusivo do sistema elétrico); 🗡

- HDAM Barragem hidrelétrica (exclusivo do sistema elétrico); 🗡
- HDFL Controle de defletor (exclusivo do sistema elétrico); X
- HDLS Supervisão de vazamento da barragem (exclusivo do sistema elétrico); X
- HEBR Freio elétrico (exclusivo do sistema elétrico); X
- HGOV Modo de controle do regulador de velocidade (exclusivo do sistema elétrico);
- HGPI Indicador de posição da comporta (exclusivo do sistema elétrico); 🗡
- HGTE Comporta da barragem (exclusivo do sistema elétrico); 🗡
- HITG Comporta de admissão (exclusivo do sistema elétrico); 🗡
- HJCL Controle conjunto (exclusivo do sistema elétrico); 🗡
- HLKG Supervisão de vazamento (exclusivo do sistema elétrico); 🗡
- HLVL Indicador de nível de água (compatível com a indústria); 🗸
- HMBR Freio mecânico (exclusivo do sistema elétrico); 🗡
- HNDL Controle de agulha (exclusivo do sistema elétrico); X
- HNHD Dados da carga líquida de água (exclusivo do sistema elétrico); X
- HOTP Proteção contra transbordamento da barragem (exclusivo do sistema elétrico);
- HRES Reservatório de água hidrelétrica (exclusivo do sistema elétrico); 🗡
- HSEQ Sequenciador de unidade hidrelétrica (exclusivo do sistema elétrico); X
- HSPD Monitoramento de velocidade (exclusivo do sistema elétrico); 🗡
- HSST Poço de alívio (exclusivo do sistema elétrico); X
- HTGV Pás-guia (palhetas diretrizes) (exclusivo do sistema elétrico); 🗡
- HTRB Pás do rotor (exclusivo do sistema elétrico); 🗡
- HTRK Grade de retenção de detritos (exclusivo do sistema elétrico); X
- HTUR Turbina (exclusivo do sistema elétrico); X
- HUNT Unidade hidrelétrica (exclusivo do sistema elétrico); X
- HVLV Válvula (válvula borboleta, válvula esférica) (compatível com a indústria);
- HWCL Controle de água (exclusivo do sistema elétrico); X

A.6.1 HLVL: INDICADOR DE NÍVEL DE ÁGUA

O Logical Node HLVL (Hydraulic Level Indicator) tem como principal função o monitoramento de nível de água em sistemas hidráulicos. Esse LN é usado para usinas hidrelétricas, rios, comportas e reservatórios que dependem do controle de nível de líquidos.

Na automação industrial, esse Logical Node pode ser aplicado para controlar processos de enchimento e esvaziamento de tanques, supervisionar níveis de água em sistemas de resfriamento e monitorar a vazão em sistemas hidráulicos. Além disso, sua integração com CLPs e sistemas SCADA permite que alertas sejam gerados automaticamente quando o nível da água atinge limites críticos.

A tabela 51 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 51 – HLVL class: Hydraulic Level Indicator

	HLVL class						
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to Clause 22 of IEC 61850-7-2:2010.			
Data Ob	jects						
Status in	formation	1					
Stuck		SPS		Device is blocked through external influence		О	
Settings							
LevOfs		ASG		Offset from power plant base level		О	
Measure	d values						
LevM		MV		Water level at the point of measuring (inclu-		M	
				ding offset if given) [m]			

Fonte: Adaptado de (IEC, 2012)

Tabela 52 – Análise dos Objetos de Dados na classe HLVL

Análise dos Objetos de Dados no HLVL				
Objeto de Dados	Descrição			
Stuck (SPS)	Indica se o dispositivo está bloqueado devido a influências			
	externas.			
LevOfs (ASG)	Define um deslocamento em relação ao nível base da usina			
	hidrelétrica.			
LevM (MV)	Mede o nível da água no ponto de medição, considerando			
	possíveis deslocamentos definidos.			

Fonte: O próprio autor

A.6.2 HLVL: VÁLVULAS

O Logical Node HVLV (Hydraulic Valve Controller) é responsável pelo controle e monitoramento de válvulas hidráulicas utilizadas em usinas hidrelétricas e processos de controle de fluxo de líquidos. Esse LN permite supervisionar a posição da válvula, detectar falhas de movimento e configurar limites de operação. Ele possibilita a integração com sistemas SCADA, permitindo controle remoto, automação de abertura/fechamento e definição de setpoint.

Na automação industrial, esse Logical Node pode ser aplicado, por exemplo, para regular fluxos de água em sistemas hidráulicas, sistemas de resfriamento, processos químicos e redes de distribuição de fluidos. Ele permite que válvulas sejam abertas ou fechadas automaticamente com base em parâmetros configuráveis. Além disso, o HVLV pode ser empregado para monitoramento do desgaste das válvulas, identificação de bloqueios e acionamento de alarmes em caso de desvios operacionais. Em sistemas a combustão, pode ser usado para o controle do fluxo de ar por válvulas borboleta.

A tabela 53 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela $53-{\rm HVLV}$ class: Hydraulic Valve Controller

				HVLV class		
Data Name	Object	Common Class	Data	Explanation	T	M/O/C
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to Clause 22 of IEC 61850-7-2:2010.		
Data Obj						
Status inf	formation					
LocKey		SPS		Local or remote key		О
Loc		SPS		Local control behaviour		О
PosCls		SPS		Closed end position reached (valve cannot move further)		C^1
PosOpn		SPS		Open end position reached (valve cannot move further)		C^1
Mvm		SPS		Valve is moving		О
Stuck		SPS		Device is blocked through external influence		О
DvWrn		SPS		Position deviation warning		О
DvAlm		SPS		Position deviation alarm		О
Settings					•	
OpnLim		RST		Opening limit of valve position (temporary restriction)		О
ClsLim		RST		Closing limit (temporary restriction)		О
Incr		ING		Increment of position change for open / close commands		О
SldStrPs		ASG		Solidity compensation start in positive direction		O
SldStrNg		ASG		Solidity compensation start in negative direction		O
SldOfsPs		ASG		Solidity offset in positive direction		О
SldOfsNg		ASG		Solidity offset in negative direction		О
CbrRng		ASG		Calibration range		О
DvWrnSpt		ASG		Position deviation warning (margin)		О
DvAlmSpt		ASG		Position deviation alarm (margin)		О
Measured	l values					
PosPct		MV		Valve position given as 0 – 100 %		C^2
PosDeg		MV		Valve position given as 0° – 90°		C^2
Flw		MV		Calculated liquid flow through the valve [m ³ /s]		O
Controls						
LocSta		SPC		Remote control blocked		O
OpCntrRs		INC		Resetable operation counter		O
PosSpt		APC		Valve position set-point		O
Opn		SPC		Valve to full open position		О
Cls		SPC		Valve to full closed position		О
PosChg		ENC		Change valve position (stop, raise, lower)		C^2
PosChgInc	r	BSC		Incremental change of position		C^2
BlkOpn		SPC		Block opening of the valve		О
BlkCls		SPC		Block closing of the valve		О

Tabela54 – Análise dos Objetos de Dados na classe HVLV

An	álise dos Objetos de Dados no HVLV
Objeto de Dados	Descrição
LocKey (SPS)	Indica se a chave de controle está no modo local ou remoto.
Loc (SPS)	Define o comportamento de controle local da válvula.
PosCls (SPS)	Indica se a válvula atingiu a posição completamente fechada.
PosOpn (SPS)	Indica se a válvula atingiu a posição completamente aberta.
Mvm (SPS)	Indica se a válvula está em movimento.
Stuck (SPS)	Indica se a válvula está bloqueada por influência externa.
DvWrn (SPS)	Gera um aviso caso a posição da válvula esteja desviada do setpoint.
DvAlm (SPS)	Aciona um alarme caso o desvio da posição da válvula
DVAIII (SI S)	ultrapasse um limite definido.
OpnLim (RST)	Define um limite temporário para a abertura da válvula.
ClsLim (RST)	Define um limite temporário para o fechamento da válvula.
Incr (ING)	Define o incremento de mudança de posição para comandos
mer (mvo)	de abrir/fechar.
SldStrPs (ASG)	Define a compensação de solidez no início do movimento
Sidsul 5 (risd)	em direção positiva.
SldStrNg (ASG)	Define a compensação de solidez no início do movimento
	em direção negativa.
SldOfsPs (ASG)	Define um deslocamento de solidez na direção positiva.
SldOfsNg (ASG)	Define um deslocamento de solidez na direção negativa.
CbrRng (ASG)	Define a faixa de calibração da válvula.
DvWrnSpt (ASG)	Define um limite de margem para aviso de desvio de posição.
DvAlmSpt (ASG)	Define um limite de margem para alarme de desvio de posição.
PosPct (MV)	Mede a posição da válvula em percentual (0 – 100%).
PosDeg (MV)	Mede a posição angular da válvula em graus $(0^{\circ} - 90^{\circ})$.
Flw (MV)	Mede a vazão calculada do líquido através da válvula em metros cúbicos por segundo.
LocSta (SPC)	Define se o controle remoto da válvula está bloqueado.
OpCntrRs (INC)	Contador de operações reinicializável.
PosSpt (APC)	Define o setpoint da posição da válvula.
Opn (SPC)	Comando para abrir completamente a válvula.
Cls (SPC)	Comando para fechar completamente a válvula.
PosChg (ENC)	Comando para mudar a posição da válvula (parar, subir,
	descer).
PosChgIncr (BSC)	Comando para mudança incremental de posição.
BlkOpn (SPC)	Bloqueia a abertura da válvula.
BlkCls (SPC)	Bloqueia o fechamento da válvula.

A.7 GRUPO I - INTERFACE E ARQUIVAMENTO

O Grupo I da norma IEC 61850-7-4 compreende *Logical Nodes* voltados para a comunicação, arquivamento de dados e interfaces homem-máquina (HMI). Esses LNs trabalham na interação entre operadores, sistemas SCADA e dispositivos de automação, garantindo a coleta, armazenamento e troca de informações em automação de sistemas

elétricos. Eles são importantes para registrar eventos, processar comandos remotos e garantir que operadores possam interagir com os dispositivos de campo.

Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- IARC Arquivamento (compatível com a indústria); 🗸
- IHMI Interface homem-máquina (compatível com a indústria); 🗸
- ISAF Função de alarme de segurança (compatível com a indústria); 🗸
- ITCI Interface de telecontrole (compatível com a indústria); 🗸
- ITMI Interface de telemonitoramento (compatível com a indústria); 🗸
- ITPC Interface de comunicação de teleproteção (exclusivo do sistema elétrico); X

A.7.1 IARC: ARQUIVAMENTO

O Logical Node IARC (Archiving) é responsável pelo armazenamento e gerenciamento de registros de dados. Esse LN é importante para registrar eventos, alarmes e tendências operacionais.

Na automação fabril e infraestrutura crítica, esse Logical Node permitiria a coleta contínua de dados de processos, manutenção preditiva e conformidade com normas regulatórias.

A tabela 55 apresenta a classe responsável por esse Logical Node e seus atributos.

IARC class Object Common Explanation M/O/CData Data Name Class The name shall be composed of the class name, LNName the LN-Prefix and LN-Instance-ID according to IEC 61850-7-2, Clause 22. Data Objects Status information MemOv SPS Memory overflow Μ MemUsed INS Memory used in % 0 Actual number of records \overline{O} NumRcd INS Settings О InTrg1 ORG Reference to trigger InLog1 ORG Reference to data objects O MaxNumRcd ING Maximum number of records О RcdMod ENG Recorder operation mode (saturation, over-О write) MemFull ING Memory full level O

Tabela 55 – IARC class: Archiving

Tabela 56 – Análise dos Objetos de Dados na classe IARC

Análise dos Objetos de Dados no IARC				
Objeto de Dados	Descrição			
MemOv (SPS)	Indica se ocorreu um estouro de memória, quando o arma-			
	zenamento ultrapassa o limite.			
MemUsed (INS)	Exibe a porcentagem de memória utilizada para armazena-			
	mento de registros.			
NumRcd (INS)	Número total de registros atualmente armazenados no sis-			
	tema.			
InTrg1 (ORG)	Referência a um gatilho que inicia a gravação de dados.			
InLog1 (ORG)	Referência aos objetos de dados que devem ser registrados.			
MaxNumRcd	Define o número máximo de registros que podem ser arma-			
(ING)	zenados.			
RcdMod (ENG)	Define o modo de operação do registrador (saturação ou			
	sobrescrita).			
MemFull (ING)	Nível de preenchimento total da memória de armazena-			
	mento.			

A.7.2 IHMI: INTERFACE HOMEM-MÁQUINA

O Logical Node IHMI (Human Machine Interface) é responsável por fornecer uma interface interativa entre operadores e dispositivos de automação. Esse LN é importante para monitoramento, controle e visualização de informações operacionais de processos industriais. O IHMI permite a exibição de alarmes, status do sistema, tendências de operação e envio de comandos manuais.

Na automação industrial, esse Logical Node permite a visualização e controle remoto de equipamentos, através de uma interface gráfica para operação e diagnóstico do sistema. Ele possibilita que dados sejam apresentados em telas de sinóticos, gráficos de tendências e alarmes, auxiliando na tomada de decisão e na resposta a eventos críticos.

A tabela 57 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 57 – IHMI class: Human Machine Interface

				IHMI class		
Data	Object	Common	Data	Explanation	T	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Obj	jects					
Description	ons					
EEName		DPL		External equipment name plate		О
Status in	formation	1				
EEHealth		ENS		External equipment health		О
LocKey		SPS		Local or remote key		О
Loc		SPS		Local control behaviour		О
Controls	Controls					
LocSta		SPC		Switching authority at station level		О

Tabela 58 – Análise dos Objetos de Dados na classe IHMI

An	Análise dos Objetos de Dados no IHMI				
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado geral da saúde do equipamento externo.				
LocKey (SPS)	Indica se a chave de controle está no modo local ou remoto.				
Loc (SPS)	Define o comportamento de controle local da interface.				
LocSta (SPC)	Define a autoridade de comutação no nível da estação.				

Fonte: O próprio autor

A.7.3 ISAF: FUNÇÃO DE ALARME DE SEGURANÇA

O Logical Node ISAF (Safety Alarm Function) é responsável pelo gerenciamento de alarmes de segurança em sistemas de automação. Esse LN é usado para a detecção e notificação de condições anômalas ou perigosas em sistemas elétricos prevenindo falhas operacionais, acidentes e danos a equipamentos.

O ISAF na indústrias de processos pode ser usado para monitorar condições de risco, como sobrecarga de equipamentos, falhas elétricas, vazamentos de substâncias perigosas, aumento excessivo de temperatura e outros eventos críticos.

A tabela 59 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 59 – ISAF class: Safety Alarm Function

	ISAF class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Obj						
Status in:	formation	1				
Alm1		SPS		Safety alarm 1		M
Alm2		SPS		Safety alarm 2		О
Wrn1		SPS		Safety warning 1		О
Wrn2		SPS		Safety warning 2		О
Settings						
AlmLvl1		ASG		Alarm level 1 threshold		M
AlmLvl2		ASG		Alarm level 2 threshold		О
WrnLvl1		ASG		Warning level 1 threshold		О
WrnLvl2		ASG		Warning level 2 threshold		О

Tabela 60 – Análise dos Objetos de Dados na classe ISAF

Análise dos Objetos de Dados no ISAF				
Objeto de Dados	Descrição			
Alm1 (SPS)	Alarme de segurança 1 ativado quando uma condição crítica			
	é detectada.			
Alm2 (SPS)	Alarme de segurança 2 para eventos menos críticos.			
Wrn1 (SPS)	Aviso de segurança 1 para indicar uma condição de atenção.			
Wrn2 (SPS)	Aviso de segurança 2 para eventos não críticos.			
AlmLvl1 (ASG)	Define o limiar do primeiro nível de alarme de segurança.			
AlmLvl2 (ASG)	Define o limiar do segundo nível de alarme de segurança.			
WrnLvl1 (ASG)	Define o limiar do primeiro nível de aviso de segurança.			
WrnLvl2 (ASG)	Define o limiar do segundo nível de aviso de segurança.			

Fonte: O próprio autor

A.7.4 ITCI: INTERFACE DE TELECONTROLE

O Logical Node ITCI (Telecontrol Interface) é responsável por habilitar a interface de telecontrole de sistemas elétricos. Esse LN trabalha na comunicação entre sistemas SCADA, centros de controle remoto e equipamentos de campo, permitindo monitoramento, envio de comandos e aquisição de dados operacionais.

Em ambientes industriais, o ITCI possibilitaria a troca de informações entre controladores lógicos programáveis (CLPs) e sensores inteligentes e unidades remotas de telemetria (RTUs).

A tabela 61 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 61 – ITCI class: Telecontrol Interface

			ITCI class			
Data Ob	ject Common	Data	Explanation	\mathbf{T}	M/O/C	
Name	Class					
LNName			The name shall be composed of the class name,			
			the LN-Prefix and LN-Instance-ID according			
			to IEC 61850-7-2, Clause 22.			
Data Objects						
Descriptions						
EEName	DPL		External equipment name plate		О	
Status inform	ation					
EEHealth	ENS		External equipment health		О	
Loc	SPS		Local control behaviour		О	
Alm1	SPS		Alarm signal		О	
Controls	Controls					
LocSta	SPC		Switching authority at station level		О	

Tabela 62 – Análise dos Objetos de Dados na classe ITCI

Análise dos Objetos de Dados no ITCI				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado geral da saúde do equipamento externo.			
Loc (SPS)	Define o comportamento do controle local.			
Alm1 (SPS)	Indica a presença de um alarme na interface de telecontrole.			
LocSta (SPC)	Define a autoridade de comutação na estação.			

Fonte: O próprio autor

A.7.5 ITMI: INTERFACE DE TELEMONITORAMENTO

O Logical Node ITMI (Telemonitoring Interface) é responsável pelo monitoramento remoto do estado de equipamentos elétricos.

Em ambientes industriais, o ITMI pode possibilitar a integração de sensores inteligentes, medidores de energia e sistemas de diagnóstico remoto. Além disso, ele permite a coleta contínua de informações sobre a saúde do equipamento, auxiliando na manutenção preditiva e otimização da eficiência operacional.

A tabela 63 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 63 – ITMI class: Telemonitoring Interface

				ITMI class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	Data Objects					
Descripti	Descriptions					
EEName		DPL		External equipment name plate		О
Status in	Status information					
EEHealth		ENS		External equipment health		О

Tabela 64 – Análise dos Objetos de Dados na classe ITMI

Análise dos Objetos de Dados no ITMI				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado geral da saúde do equipamento externo.			

Fonte: O próprio autor

A.8 Grupo K: EQUIPAMENTOS PRIMÁRIOS MECÂNICOS E NÃO ELÉTRICOS

O Grupo K da IEC 61850-7-4 é responsável pela modelagem de equipamentos industriais utilizados em automação de sistemas elétricos, abrangendo componentes presentes em chão de fábrica como ventiladores, filtros, bombas, tanques e válvulas. Esse grupo é pode ser aplicável a sistemas de manufatura, processos químicos, automação de HVAC, tratamento de água, controle térmico e diversas indústrias de base.

Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- KFAN Fan (compatível com a indústria); ✓
- KFIL Filter (compatível com a indústria); ✓
- KPMP Pump (compatível com a indústria); ✓
- KTNK Tank (compatível com a indústria); ✓
- KVLV Valve control (compatível com a indústria); ✓

A.8.1 KFAN: VENTILADOR

O Logical Node KFAN (Fan) é responsável por modelar ventiladores utilizados em processos de climatização. Esse LN permite monitorar e controlar o funcionamento do ventilador. O KFAN é utilizado para gerenciar a operação, definir setpoints de velocidade e monitorar parâmetros operacionais, sendo utilizado em processos que exigem controle do fluxo de ar, como HVAC (Heating, Ventilation and Air Conditioning), refrigeração de equipamentos, tratamento de ar e controle térmico em subestações elétricas.

Na indústria pode ser aplicado em sistemas de climatização industrial, ventilação de processos e controle térmico de equipamentos elétricos, além de sistemas de exaustão, refrigeração de transformadores, ventilação em túneis.

A tabela 65 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela65 – KFAN class: Fan

	KFAN class					
Data Name	Object	Common Class	Data	Explanation	\mathbf{T}	M/O/C
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Descripti	ions					
EEName		DPL		External equipment nameplate		О
Status in	formation	n				
EEHealth		ENS		External equipment health		О
Loc		SPS		Local control behaviour		O
LocKey		SPS		Local or remote key		O
OpTmh		INS		Operation time		O
Measure	d and me	tered values				'
Spd		MV		Rotational speed of the fan		О
Controls						
OpCtl		SPC		Operate fan		С
SpdSpt		APC		Speed set-point (in case of speed regulated		С
				motor)		
LocSta		SPC		Switching authority at station level		O
Settings	Settings					
MinOpTm	nm	ING		Minimum operation time in minutes		О
MaxOpTn	nm	ING		Maximum operation time in minutes		O

Tabela 66 – Análise dos Objetos de Dados na classe KFAN

An	Análise dos Objetos de Dados no KFAN					
Objeto de Dados	Descrição					
EEName (DPL)	Placa de identificação do equipamento externo.					
EEHealth (ENS)	Estado geral da saúde do equipamento externo.					
Loc (SPS)	Define o comportamento do controle local.					
LocKey (SPS)	Define se o ventilador está em modo local ou remoto.					
OpTmh (INS)	Tempo total de operação do ventilador.					
Spd (MV)	Velocidade de rotação do ventilador.					
OpCtl (SPC)	Comando para ligar/desligar o ventilador.					
SpdSpt (APC)	Define o setpoint de velocidade (se houver controle de velo-					
	cidade).					
LocSta (SPC)	Define a autoridade de comutação na estação.					
MinOpTmm (ING)	Tempo mínimo de operação do ventilador em minutos.					
MaxOpTmm (ING)	Tempo máximo de operação do ventilador em minutos.					

A.8.2 KFIL: FILTRO

O Logical Node KFIL (Filter) é responsável por modelar sistemas de filtragem utilizados em instalações elétricas e podendo ser utilizados em processos industriais. Esse LN permite monitorar e controlar o funcionamento dos filtros em processos envolvendo filtragem de fluidos, ar ou partículas sólidas.

A tabela 67 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela $67-{\rm KFIL}$ class: Filter

				KFIL class		
Data O	bject	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Object						
Descriptions	5					
EEName		DPL		External equipment nameplate		О
Status infor	mation	L				
EEHealth		ENS		External equipment health		О
OpTmh		INS		Operation time		О
Loc		SPS		Local control behaviour		О
LocKey		SPS		Local-remote key		О
ACAlm		SPS		AC supply failure (fuse or other problem)		О
MotPro		SPS		Motor protection tripped		О
Flush		SPS		Filter flushing		О
FilAlm		SPS		Filter alarm		О
Measured a	nd met	ered values				
DifPresHi		MV		Differential pressure over the filter		О
Controls	Controls					
FlushCnt		INC		Filter flushing counter (resettable)		О
OpCtl		SPC		Operate filter		О
LocSta		SPC		Switching authority at station level		О
Settings	· ·					
AlmSpt		ASG		Alarm level set-point		О

Tabela 68 – Análise dos Objetos de Dados na classe KFIL

Ar	Análise dos Objetos de Dados no KFIL					
Objeto de Dados	Descrição					
EEName (DPL)	Placa de identificação do equipamento externo.					
EEHealth (ENS)	Estado geral da saúde do equipamento externo.					
OpTmh (INS)	Tempo total de operação do filtro.					
Loc (SPS)	Define o comportamento do controle local.					
LocKey (SPS)	Indica se o filtro está operando em modo local ou remoto.					
ACAlm (SPS)	Indica falha na alimentação elétrica (ex.: fusível queimado).					
MotPro (SPS)	Indica ativação da proteção do motor.					
Flush (SPS)	Indica se o filtro está sendo lavado ou limpo.					
DifPresHi (MV)	Diferença de pressão medida através do filtro.					
FlushCnt (INC)	Contador do número de lavagens do filtro.					
OpCtl (SPC)	Comando para operar o filtro.					
LocSta (SPC)	Define a autoridade de controle na estação.					
AlmSpt (ASG)	Define o ponto de alarme para substituição ou manutenção					
	do filtro.					

Fonte: O próprio autor

A.8.3 KPMP: BOMBA

O Logical Node KPMP (Pump) é responsável por monitorar e controlar bombas utilizadas no transporte de fluidos em processos de automação. Esse LN possibilita acompanhar o estado operacional, detectar falhas e controlar o acionamento de bombas em sistemas hidráulicos, de refrigeração e abastecimento de fluidos.

O KPMP pode ser utilizado em sistemas de bombeamento para processos industriais, HVAC (aquecimento, ventilação e ar condicionado) e abastecimento de água.

A tabela 69 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 69 – KPMP class: Pump

	KPMP class					
Data Ol	bject	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Objects	s					
Descriptions	3					
EEName		DPL		External equipment nameplate		О
Status inform	mation	1				
EEHealth		ENS		External equipment health		О
Loc		SPS		Local control behaviour		О
LocKey		SPS		Local-remote key		О
OpTmh		INS		Operation time		О
Measured an	nd met	ered values				
Spd		MV		Rotational speed of the pump		О
Controls						
OpCtl		SPC		Operate pump		С
SpdSpt		APC		Speed set-point (in case of speed regulated		С
				motor)		
LocSta		SPC		Switching authority at station level		О
Settings						
MinOpTmm		ING		Minimum operation time in minutes		О
MaxOpTmm		ING		Maximum operation time in minutes		О

Tabela 70 – Análise dos Objetos de Dados na classe KPMP

Ana	Análise dos Objetos de Dados no KPMP					
Objeto de Dados	Descrição					
EEName (DPL)	Placa de identificação do equipamento externo.					
EEHealth (ENS)	Estado geral da saúde do equipamento externo.					
Loc (SPS)	Define o comportamento do controle local.					
LocKey (SPS)	Indica se a bomba está em operação local ou remota.					
OpTmh (INS)	Tempo total de operação da bomba.					
Spd (MV)	Velocidade de rotação da bomba.					
OpCtl (SPC)	Comando para ligar/desligar a bomba.					
SpdSpt (APC)	Define o setpoint de velocidade (se houver controle de velo-					
	cidade variável).					
LocSta (SPC)	Define a autoridade de comutação na estação.					
MinOpTmm (ING)	Tempo mínimo de operação permitido para a bomba.					
MaxOpTmm (ING)	Tempo máximo de operação permitido para a bomba.					

A.8.4 KTNK: TANQUE

O Logical Node KTNK (Tank) é utilizado para monitorar o nível, volume e condição de tanques. Esse LN realiza o controle de armazenamento de líquidos, gases e sólidos granulares, permitindo a medição do nível, volume e tipo de fluido armazenado. Todas essas variáveis encontram-se em ambientes fabris.

A tabela 71 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 71 – KTNK class: Tank

	KTNK class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Descript	ions					
EEName		DPL		External equipment nameplate		О
Status in	ıformatior	1				
EEHealth		ENS		External equipment health		О
Measure	d and me	tered values				
LevPct		MV		Level in the tank (as percentage of full tank		O
				level)		
Vlm		MV		Volume of media in tank		O
Settings						
VlmCap		ASG		Total volume capacity		O
TnkTyp		ENG		Type of data representing the tank fill status		M
				(pressure only, level only, both pressure and		
				level)		

Análise dos Objetos de Dados no KTNK				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado geral da saúde do equipamento externo.			
LevPct (MV)	Nível do fluido no tanque como porcentagem da capacidade			
	total.			
Vlm (MV)	Volume do fluido presente no tanque.			
VlmCap (ASG)	Capacidade total do tanque em volume.			
TnkTyp (ENG)	Tipo de medição do tanque (pressão, nível ou ambos).			

Tabela 72 – Análise dos Objetos de Dados na classe KTNK

A.9 GRUPO L - SISTEMA

O grupo L possui 8 *Logical Nodes* com o objetivo de descrever informações específicas do sistema, como dados relativos ao dispositivo físico e dados comuns ao *Logical Node* (placa de identificação, comportamento e tempo e operação). Com esse grupo, é possível realizar diagnósticos remotos, detectar falhas, garantir a transmissão de mensagens GOOSE e SV, sincronizar relógios de dispositivos e supervisionar os serviços da rede. Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- LPHD Informações do dispositivo físico (compatível com a indústria); 🗸
- LLN0 Logical Node zero (compatível com a indústria); 🗸
- LCCH Supervisão de canal de comunicação física (compatível com a indústria); 🗸
- LGOS Assinatura de GOOSE (compatível com a indústria); 🗸
- LSVS Assinatura de valores amostrados (compatível com a indústria); 🗸
- LTIM Gerenciamento de tempo (compatível com a indústria); 🗸
- LTMS Supervisão do mestre de tempo (compatível com a indústria); 🗸
- LTRK Rastreamento de serviço (compatível com a indústria); 🗸

A.9.1 LPHD - DISPOSITIVO LÓGICO

Logical Node responsável pela modelagem das informações comuns ao dispositivo físico. Ratifica-se que o dispositivo físico implementa os dispositivos lógicos e os Logical Nodes, como mostrado na figura 1. A tabela 73 abaixo evidencia os campos deste Logical Node, com destaque para os registros cujo o campo é obrigatório seu preenchimento. Em

todos os casos o *Data Object* descrito como obrigatório, observa-se compatibilidade com o domínio industrial.

A tabela 73 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 73 – LPHD class: Physical Device Information

			LPHD class		
Data Obj	ect Common	Data	Explanation	\mathbf{T}	M/O/C
Name	Class				
LNName			The name shall be composed of the class name,		
			the LN-Prefix and LN-Instance-ID according		
			to IEC 61850-7-2, Clause 22.		
Data Objects	·				
Descriptions					
PhyNam	DPL		Physical device name plate		M
Status inform	ation				
PhyHealth	ENS		Physical device health		M
OutOv	SPS		Output communications buffer overflow		О
Proxy	SPS		Indicates if this LN is a proxy		M
InOv	SPS		Input communications buffer overflow		О
NumPwrUp	INS		Number of power-ups		О
WrmStr	INS		Number of warm starts		О
WacTrg	INS		Number of watchdog device resets detected		О
PwrUp	SPS		Power-up detected		О
PwrDn	SPS		Power-down detected		О
PwrSupAlm	SPS		External power supply alarm		О
Controls					
RsStat	SPC		Reset device statistics		ТО
Sim	SPC		Receive simulated GOOSE or simulated SV		О

Fonte: Adaptado de (IEC, 2010b)

Tabela74 – Análise dos Objetos de Dados na classe LPHD

Análise dos Objetos de Dados no LPHD				
Objeto de Dados	Descrição			
PhyNam (DPL)	Nome do dispositivo físico.			
PhyHealth (ENS)	Estado de saúde do dispositivo físico.			
OutOv (SPS)	Indica overflow no buffer de saída da comunicação.			
Proxy (SPS)	Identifica se este LN está atuando como proxy.			
InOv (SPS)	Indica overflow no buffer de entrada da comunicação.			
NumPwrUp (INS)	Número de inicializações do dispositivo.			
WrmStr (INS)	Número de reinicializações quentes do dispositivo.			
WacTrg (INS)	Número de resets do watchdog detectados.			
PwrUp (SPS)	Indica se o dispositivo foi ligado recentemente.			
PwrDn (SPS)	Indica se o dispositivo foi desligado recentemente.			
PwrSupAlm (SPS)	Alarme de falha na alimentação externa.			
RsStat (SPC)	Comando para resetar as estatísticas do dispositivo.			
Sim (SPC)	Habilita recebimento de mensagens GOOSE simuladas ou			
	valores amostrados (SV).			

Fonte: O próprio autor

A.9.2 LLN0 - LOGICAL NODE ZERO

Trata-se de um Logical Node simples, porém importante, com a função de relatar dados comuns dos Logical Nodes para o dispositivo lógico, como: tempo de operação, saúde do Logical Node, modo e comportamento. Observa-se na tabela 75 que todos os Data Objects são opcionais, visto que não há a obrigatoriedade do preenchimento, porém, por exemplo, o modo de operação quando alterado de remoto para local todos os Logical Nodes naquele dispositivo físico são afetados por essa mudança.

A tabela 75 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 75 – LLN0 class: Logical Node Zero

	LLN0 class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Status in	nformation	1				
OpTmh		INS		Operation time		О
LocKey		SPS		Local operation for complete logical device		О
Loc		SPS		Local control behaviour		О
Controls	3					
LocSta		SPC		Switching authority at station level		О
Diag		SPC		Run diagnostics		О
LEDRs		SPC		LED reset		ТО
Settings	Settings					
GrRef		ORG		Reference to a higher level logical device		О
MltLev		SPG		Select mode of authority for local control (True		О
				– control from multiple levels is allowed, False		
				- no other control level allowed)		

Fonte: Adaptado de (IEC, 2010b)

Tabela 76 – Análise dos Objetos de Dados na classe LLN0

An	Análise dos Objetos de Dados no LLN0				
Objeto de Dados	Descrição				
OpTmh (INS)	Tempo total de operação do Logical Node.				
LocKey (SPS)	Indica se a operação local do dispositivo lógico está habili-				
	tada.				
Loc (SPS)	Comportamento do controle local.				
LocSta (SPC)	Autoridade de comutação no nível da estação.				
Diag (SPC)	Comando para execução de diagnósticos do dispositivo.				
LEDRs (SPC)	Comando para resetar os LEDs de status.				
GrRef (ORG)	Referência para um dispositivo lógico de nível superior.				
MltLev (SPG)	Define se o controle local pode ser realizado em múltiplos				
	níveis (True) ou apenas em um nível (False).				

Fonte: O próprio autor

A.9.3 LCCH - SUPERVISÃO DO CANAL FÍSICO DE COMUNICAÇÃO

Aqui se observa um Logical Node também compatível com o setor industrial, visto que praticamente em todas as plantas possuem sistemas de supervisão de campo. É usado para canais físicos individuais ou redundantes, este último muito usado na industria de petróleo e gás. Aqui, esse Logical Node pode ter um controle mais fino das mensagens perdidas, portanto, caso se use um canal redundante de comunicação, o Data Object que possui o parâmetro C - Condicional, será de preenchimento obrigatório. Neste caso, o registro RedChLiv - Physical channel status of redundant channel é de preenchimento obrigatório quando a rede de comunicação possuir canal redundante. A tabela 77 apresenta a estrutura do Logical Node discutido.

A tabela 77 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 77 – LCCH class: Supervisão de Canal de Comunicação Física

LCCH class					
Data Obj		Data	Explanation	\mathbf{T}	M/O/C
Name	Class				
LNName			The name shall be composed of the class name,		
			the LN-Prefix and LN-Instance-ID according		
			to IEC 61850-7-2, Clause 22.		
Data Objects					
Status informa					
ChnLiv	SPS		Physical channel status; true, if channel recei-		M
			ves telegrams within a specified time interval.		
RedChnLiv	SPS		Physical channel status of redundant channel.		С
OutOv	SPS		Output communications buffer overflow.		О
InOv	SPS		Input communications buffer overflow.		О
Measured and	metered values				
Fer	INS		Frame error rate on this channel; count of erro-		О
			neous (or missed, in case of redundancy) mes-		
			sages for each 1 000 messages forwarded to the		
			application.		
RedFer	INS		Frame error rate on redundant channel; count		О
			of missed messages on this channel for each 1		
			000 messages forwarded to the application.		
RxCnt	BCR		Number of received messages.		O
RedRxCnt	BCR		Number of received messages on redundant		O
			channel.		
TxCnt	BCR		Number of sent messages.		О
Settings					
ApNam	VSG		Access point name to which this channel be-		О
			longs; only needed, if more than one access		
			point and more than one physical channel exist.		
ChnLivTms	ING		Timeout time for channel live supervision; de-		О
			fault 5 s.		

Tabela 78 – Análise dos Objetos de Dados na classe LCCH

Análise dos Objetos de Dados no LCCH						
Objeto de Dados	Descrição					
ChnLiv (SPS)	Indica se o canal de comunicação física está ativo, ou seja, se					
	há recebimento de mensagens dentro do intervalo de tempo					
	especificado.					
RedChnLiv (SPS)	Estado do canal redundante de comunicação.					
OutOv (SPS)	Indica se houve estouro no buffer de saída da comunicação.					
InOv (SPS)	Indica se houve estouro no buffer de entrada da comunicação.					
Fer (INS)	Taxa de erro de quadros neste canal, medindo mensagens					
	com erro ou perdidas a cada 1.000 mensagens enviadas para					
	a aplicação.					
RedFer (INS)	Taxa de erro de quadros no canal redundante, indicando					
	mensagens perdidas a cada 1.000 mensagens encaminhadas					
	para a aplicação.					
RxCnt (BCR)	Número total de mensagens recebidas.					
RedRxCnt (BCR)	Número total de mensagens recebidas no canal redundante.					
TxCnt (BCR)	Número total de mensagens enviadas.					
ApNam (VSG)	Nome do ponto de acesso ao qual este canal pertence, neces-					
	sário apenas se houver múltiplos pontos de acesso e canais					
	físicos.					
ChnLivTms (ING)	Tempo limite para supervisão da atividade do canal, sendo					
	o padrão 5 segundos.					

A.9.4 LGOS - MONITORAMENTO DE MENSAGENS GOOSE

Esse Logical Node é usado para o monitoramento de mensagens GOOSE, ou seja, mensagens ultra-rápidas de alta confiabilidade, muito aplicadas em automação de sistemas elétricos onde envolve mensagens de Trip (desarme).

Na automação industrial, também existe a necessidade de mensagens ultra-rápidas de contexto semelhante, como o desarme de válvulas de gás natural em caldeiras, onde a vazão do combustível é muito alta, e em situações de controle de máquinas, como robôs. Portanto, apesar da aplicação descrita para mensagens GOOSE não ser a mesma nos domínios citados acima, a aplicação deste *Logical Node* gera resultados semelhantes.

A tabela 79 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 79 – LGOS class: Assinatura de GOOSE

LGOS class						
Data Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name	Class					
LNName			The name shall be composed of the class name,			
			the LN-Prefix and LN-Instance-ID according			
			to IEC 61850-7-2, Clause 22.			
Data Objects						
Status information	n					
NdsCom	SPS		Subscription needs commissioning.		О	
St	SPS		Status of the subscription (True = active, False		M	
			= not active).			
SimSt	SPS		Status showing that really Sim messages are		О	
			received and accepted.			
LastStNum	INS		Last state number received.		О	
ConfRevNum	INS		Expected configuration revision number.		О	
Settings	Settings					
GoCBRef	ORG		Reference to the subscribed GOOSE control		О	
			block.			

Tabela 80 – Análise dos Objetos de Dados na classe LGOS

An	Análise dos Objetos de Dados no LGOS					
Objeto de Dados	Descrição					
NdsCom (SPS)	Indica se a assinatura de GOOSE precisa de configuração.					
St (SPS)	Status da assinatura da mensagem GOOSE (True = Ativo,					
	False = Inativo).					
SimSt (SPS)	Indica se as mensagens GOOSE de simulação estão sendo					
	recebidas e aceitas corretamente.					
LastStNum (INS)	Último número de estado recebido pela assinatura GOOSE.					
ConfRevNum (INS)	Número esperado da revisão da configuração do bloco GO-					
	OSE assinado.					
GoCBRef (ORG)	Referência ao bloco de controle GOOSE assinado pelo dis-					
	positivo.					

Fonte: O próprio autor

A.9.5 LSVS - ASSINATURA DE SAMPLED VALUES

O Logical Node LSVS tem como objetivo gerenciar e monitorar a assinatura de mensagens Sampled Values (SV) enviadas dentro de uma rede IEC 61850. Esse LN faz com que os dispositivos assinantes possam receber e validar corretamente os fluxos de amostras de sinais analógicos digitalizados, permitindo que sistemas de proteção, medição e controle em redes elétricas possam reconstruir o sinal e analisá-lo.

Na automação industrial, a mesma lógica pode ser feita, visto que sinais analógicos são comuns em chão de fábrica. Porém, na industria os requisitos de sincronização do

sinal e estampa de tempo serão bem menos rigorosos em relação aos aplicados ao sistema elétrico.

A tabela 81 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 81 – LSVS class: Assinatura de Sampled Values

	LSVS class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Obj	ects					
Status in	formation	1				
NdsCom		SPS		Subscription needs commissioning.		О
St		SPS		Status of the subscription ($True = active$, False		О
				= not active).		
SimSt		SPS		Status showing that really Sim messages are		О
				received and accepted.		
LastStNum	1	INS		Last state number received.		О
ConfRevN	um	INS		Expected configuration revision number.		О
Settings	Settings					
SvCBRef		ORG		Reference to the subscribed SV control block.		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 82 – Análise dos Objetos de Dados na classe LSVS

An	Análise dos Objetos de Dados no LSVS				
Objeto de Dados	Descrição				
NdsCom (SPS)	Indica que a assinatura precisa de comissionamento.				
St (SPS)	Status da assinatura (True = ativo, False = inativo).				
SimSt (SPS)	Indica que mensagens Sampled Values (SV) estão sendo				
	recebidas e aceitas corretamente.				
LastStNum (INS)	Último número de estado recebido pelo assinante.				
ConfRevNum (INS)	Número de revisão esperado para a configuração da assina-				
	tura.				
SvCBRef (ORG)	Referência ao bloco de controle SV ao qual esta assinatura				
	está vinculada.				

Fonte: O próprio autor

A.9.6 LTIM - GERENCIAMENTO DE TEMPO

Este Logical Node traz informações sobre configurações relacionadas ao horário de um controlador. Há controladores que precisam saber informações sobre, se aquele local existe ou não horário de verão, para que os controles de processos ocorram adequadamente. Para sistemas com esse grau de automação, este Logical Node será útil. Apesar dos sistemas que utilizam base de tempo normalmente ficarem em ambientes de mais alto

nível, com o avanço da industria 4.0 e IIoT (Industrial Internet of Things), controladores já desempenham papeis que antes eram destinados a sistemas de supervisão e servidores.

A tabela 83 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 83 – LTIM class: Gerenciamento de Tempo

				LTIM class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Status in	ıformatior	1				
TmDT		SPS		Indicating if for this location daylight saving		M
				time is in effect now.		
Settings						
TmOfsTm	nm	ING		Offset of local time from UTC in minutes.		M
TmUseDT		SPG		Flag indicating if this location is using daylight		M
				saving time.		
TmChgDa	ayTm	TSG		Local time of next change to daylight saving		О
				time.		
TmChgSt	dTm	TSG		Local time of next change to standard time.		О
StrWeekD	ay	ENG		Day of the start of the local week for statisti-		О
				cal calculation (Monday (default) Tuesday		
				Wednesday Thursday Friday Saturday		
				Sunday).		

Fonte: Adaptado de (IEC, 2010b)

Tabela 84 – Análise dos Objetos de Dados na classe LTIM

An	Análise dos Objetos de Dados no LTIM					
Objeto de Dados	Descrição					
TmDT (SPS)	Indica se o horário de verão está atualmente em vigor para					
	essa localização.					
TmOfsTmm (ING)	Define o deslocamento do horário local em relação ao UTC					
	(tempo universal coordenado) em minutos.					
TmUseDT (SPG)	Sinalizador que indica se essa localidade utiliza horário de					
	verão.					
TmChgDayTm	Horário local da próxima mudança para o horário de verão.					
(TSG)						
TmChgStdTm	Horário local da próxima mudança para o horário padrão.					
(TSG)						
StrWeekDay (ENG)	Define o dia inicial da semana local para cálculos estatísticos,					
	podendo ser segunda-feira (padrão), terça-feira, quarta-feira,					
	quinta-feira, sexta-feira, sábado ou domingo.					

Fonte: O próprio autor

A.9.7 LTMS - SUPERVISÃO MASTER DE TEMPO

Esse *Logical Node* deve ser usado quando se quer configurar ou supervisionar a função de sincronização de tempo no controlador. Para sistemas industriais que necessitam de sincronização, essa função se torna importante.

A tabela 85 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 85 – LTMS class: Supervisão do Mestre de Tempo

	LTMS class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Status in	formation	1				
TmAcc		INS		Number of significant bits in the Fraction Of		О
				Second in the time accuracy part of the time		
				stamp. See IEC 61850-7-2.		
TmSrc		VSS		Current time source.		M
TmSyn		ENS		Time synchronized according to IEC 61850-9-		О
				2.		
TmChSt1		SPS		Time channel status (up/down).		О
Settings	Settings					
TmSrcSet	1	VSG		Time source setting ("1588"in case the time		О
				source is an IEEE 1588 source or dotted IP-		
				address).		

Fonte: Adaptado de (IEC, 2010b)

Tabela 86 – Análise dos Objetos de Dados na classe LTMS

An	Análise dos Objetos de Dados no LTMS					
Objeto de Dados	Descrição					
TmAcc (INS)	Número de bits significativos na fração de segundo da preci-					
	são do tempo no timestamp, conforme IEC 61850-7-2.					
TmSrc (VSS)	Fonte de tempo atual utilizada pelo sistema.					
TmSyn (ENS)	Indica se o tempo está sincronizado conforme a IEC 61850-					
	9-2.					
TmChSt1 (SPS)	Estado do canal de tempo (ativo/inativo).					
TmSrcSet1 (VSG)	Configuração da fonte de tempo. Define se a fonte de tempo					
	é IEEE 1588 ou um endereço IP de um servidor de tempo.					

Fonte: O próprio autor

A.9.8 LTRK - RASTREAMENTO DE SERVIÇO

Esse *Logical Node* permite o rastreamento de serviços, registrando os valores dos parâmetros utilizados, após a execução do serviço. É possível, dessa forma, ler, registrar e

reportar esse valores para a análise do sistema. Trata-se de uma função específica da IEC 61850, porém completamente compatível com sua aplicação na industria.

A tabela 87 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 87 – LTRK class: Rastreamento de Serviço

		LTRK class		
Data Object	Common Data	Explanation	\mathbf{T}	M/O/C
Name	Class			
LNName		The name shall be composed of the class name,		
		the LN-Prefix and LN-Instance-ID according		
		to IEC 61850-7-2, Clause 22.		
Data Objects				
Control and acces				
SpcTrk	CTS	Control service tracking for controllable single		О
		point.		
DpcTrk	CTS	Control service tracking for controllable double		О
		point.		
IncTrk	CTS	Control service tracking for controllable inte-		O
		ger.		
EncTrk1	CTS	Control service tracking for enumerated con-		О
		trollable.		
ApcTrk	CTS	Control service tracking for controllable analo-		О
		gue set point with float command.		
ApcIntTrk	CTS	Control service tracking for controllable analo-		О
		gue set point with integer command.		
BscTrk	CTS	Control service tracking for binary controlled		О
		step position information.		
IscTrk	CTS	Control service tracking for integer controlled		О
		step position information.		
BacTrk	CTS	Control service tracking for binary controlled		О
		analogue process value.		
GenTrk	CST	Common service tracking for all services for		О
		which no specific tracking data exists.		
UrcbTrk	UTS	Access service tracking for unbuffered report		О
		control block.		
BrcbTrk	BTS	Access service tracking for buffered report con-		О
		trol block.		
LocbTrk	LTS	Access service tracking for local control block.		0
GocbTrk	GTS	Access service tracking for goose control block.		0
MsvcbTrk	MTS	Access service tracking for multicast sampled		О
		values control block.		
UsvcbTrk	UTS	Access service tracking for unicast sampled		О
		values control block.		
SgcbTrk	STS	Access service tracking for setting group con-		O
		trol block.		

Tabela 88 – Análise dos Objetos de Dados na classe LTRK

An	Análise dos Objetos de Dados no LTRK					
Objeto de Dados	Descrição					
SpcTrk (CTS)	Rastreia o serviço de controle para um ponto de controle					
	simples.					
DpcTrk (CTS)	Rastreia o serviço de controle para um ponto de controle					
	duplo.					
IncTrk (CTS)	Rastreia o serviço de controle para um valor inteiro contro-					
	lável.					
EncTrk1 (CTS)	Rastreia o serviço de controle para valores enumerados con-					
	troláveis.					
ApcTrk (CTS)	Rastreia o serviço de controle para um set-point analógico					
	com comando de ponto flutuante.					
ApcIntTrk (CTS)	Rastreia o serviço de controle para um set-point analógico					
	com comando inteiro.					
BacTrk (CTS)	Rastreia o serviço de controle para um valor de processo					
	analógico binário controlado.					
GenTrk (CST)	Rastreia serviços comuns para os quais não há dados de					
	rastreamento específicos.					
GocbTrk (GTS)	Rastreia acessos ao bloco de controle GOOSE.					
MsvcbTrk (MTS)	Rastreia acessos ao bloco de controle de valores amostrados					
	multicast.					
SgcbTrk (STS)	Rastreia acessos ao bloco de controle de grupo de configura-					
	ções.					

A.10 GRUPO M - MEDIÇÕES E MONITORAMENTO

O Grupo M da norma IEC 61850-7-4 compreende *Logical Nodes* responsáveis por medições, monitoramento de grandezas elétricas e não elétricas, e estatísticas relacionadas ao desempenho do sistema. No contexto da automação industrial, os LNs do Grupo M podem ser empregados para monitoramento de qualidade de energia, medições de grandezas físicas (temperatura, fluxo, pressão, umidade) e acompanhamento de variáveis ambientais.

- MENV Informações ambientais (compatível com a indústria); ✓
- MMDC Medições de corrente contínua (compatível com a indústria); 🗸
- MMET Informações meteorológicas (compatível com a indústria); 🗸
- MMTN Medição monofásica (compatível com a indústria); ✓
- MMTR Medição trifásica (compatível com a indústria); ✓
- MMXN Medições não relacionadas a fase (compatível com a indústria); 🗸
- MMXU Medições gerais (compatível com a indústria); ✓
- MSTA Estatísticas de medição (compatível com a indústria); 🗸
- MPRS Medições de pressão (compatível com a indústria); ✓

- MHET Valores medidos de calor (compatível com a indústria); 🗸
- MFLW Medições de fluxo (compatível com a indústria); ✓
- MFUL Características do combustível (compatível com a indústria); 🗸
- MFLK Medição de cintilação (exclusivo do sistema elétrico); 🗡
- MHAI Medições de harmônicos e inter-harmônicos (exclusivo do sistema elétrico);
- MHAN Medições de harmônicos não relacionados à fase (exclusivo do sistema elétrico); 🗡
- MHYD Informações hidrológicas (exclusivo do sistema elétrico); X
- MSQI Sequência e desequilíbrio de fase (exclusivo do sistema elétrico); X

A.10.1 MENV - INFORMAÇÕES AMBIENTAIS

O Logical Node MENV é responsável por monitorar parâmetros ambientais relevantes para sistemas elétricos. Esse LN fornece medições em tempo real de variáveis ambientais, como níveis de poluentes, alarme de fumaça e inundações.

Na industria, o MENV pode ser aplicado aos mesmas variáveis com total compatibilidade, como por exemplo, pode ser utilizado para supervisionar a qualidade do ar, emissões de gases poluentes (CO2, NOx, SO2), detecção de partículas em suspensão e presença de gás oxigênio na combustão.

A tabela 89 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela89 – MENV class: Monitoramento Ambiental

MENV class					
Data Object	Common Data	Explanation	\mathbf{T}	M/O/C	
Name	Class				
LNName		The name shall be composed of the class name,			
		the LN-Prefix and LN-Instance-ID according			
		to IEC 61850-7-2, Clause 22.			
Data Objects					
Status information	1				
SmokAlm	SPS	Smoke alarm.		О	
FloodAlm	SPS	Flood alarm.		О	
Measured and me	tered values				
CO2Ems	MV	CO2 emissions.		О	
COEms	MV	CO emissions.		О	
NOxEms	MV	NOx emissions.		О	
SOxEms	MV	SO2 emissions.		О	
Dust	MV	Dust particles suspended in air.		О	
Snd	MV	Sound pressure level.		О	
O2CmbuGas	MV	Oxygen in combustion gases.		О	
O2Air	MV	Ozone in air.		О	
Settings					
CTrd	SPG	Involved in carbon trading.		О	
CCdt	ASG	Carbon production credit value.		О	
GrnTag	SPG	Green tag information.		О	
PartSens	ASG	Sensitivity to particulates.		О	
FloodLev	ASG	Flood alarm level.		О	

Tabela 90 – Análise dos Objetos de Dados na classe MENV

Análise dos Objetos de Dados no MENV				
Objeto de Dados	Descrição			
SmokAlm (SPS)	Alarme de detecção de fumaça.			
FloodAlm (SPS)	Alarme de inundação.			
CO2Ems (MV)	Medição da emissão de dióxido de carbono (CO2).			
COEms (MV)	Medição da emissão de monóxido de carbono (CO).			
NOxEms (MV)	Medição da emissão de óxidos de nitrogênio (NOx).			
SOxEms (MV)	Medição da emissão de dióxido de enxofre (SO2).			
Dust (MV)	Quantidade de partículas de poeira em suspensão no ar.			
Snd (MV)	Nível de pressão sonora no ambiente.			
O2CmbuGas (MV)	Medição do oxigênio presente em gases de combustão.			
O3Air (MV)	Medição da concentração de ozônio no ar.			
CTrd (SPG)	Indica se o sistema está envolvido no comércio de carbono.			
CCdt (ASG)	Valor de crédito de produção de carbono.			
GrnTag (SPG)	Informações relacionadas à certificação ambiental (Green			
	Tag).			
PartSens (ASG)	Sensibilidade à detecção de partículas suspensas no ar.			
FloodLev (ASG)	Nível crítico para alarme de inundação.			

Fonte: O próprio autor

A.10.2 MMDC - MEDIÇÕES DE CORRENTE CONTÍNUA

O Logical Node MMDC é utilizado para medir grandezas elétricas em sistemas de corrente contínua (DC). Esse LN fornece dados para o monitoramento da qualidade da energia em sistemas DC, como tensões, correntes e resistências elétricas. Apesar de suas aplicações em sistemas industriais não serem comuns, sua aplicação é possível devido a expansão dos sistemas fotovoltaicos e de armazenamento de energia.

A tabela 91 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 91 – MMDC class: Medições de Corrente Contínua

	MMDC class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Ob	jects					
Measure	d and me	tered values				
Watt		MV		Power.		О
Amp		MV		Current (DC current).		О
Vol		MV		Voltage (DC voltage) between poles.		О
VolPsGnd		MV		Voltage between positive pole and earth.		О
VolNgGno	d	MV		Voltage between negative pole and earth.		О
Ris		MV		Resistance in DC circuit.		О
RisPsGnd		MV		Resistance between positive pole and earth.		О
RisNgGno	1	MV		Resistance between negative pole and earth.		O

Fonte: Adaptado de (IEC, 2010b)

Tabela 92 – Análise dos Objetos de Dados na classe MMDC

Análise dos Objetos de Dados no MMDC				
Objeto de Dados	Descrição			
Watt (MV)	Medição da potência elétrica em corrente contínua.			
Amp (MV)	Medição da corrente elétrica em corrente contínua.			
Vol (MV)	Tensão elétrica entre os polos de corrente contínua.			
VolPsGnd (MV)	Tensão entre o polo positivo e a terra.			
VolNgGnd (MV)	Tensão entre o polo negativo e a terra.			
Ris (MV)	Resistência elétrica do circuito de corrente contínua.			
RisPsGnd (MV)	Resistência elétrica entre o polo positivo e a terra.			
RisNgGnd (MV)	Resistência elétrica entre o polo negativo e a terra.			

Fonte: O próprio autor

A.10.3 MMET - INFORMAÇÕES METEOROLÓGICAS

O Logical Node MMET é responsável por fornecer dados meteorológicos para sistemas elétricos.

Esse LN permite medir parâmetros ambientais como temperatura, umidade, velocidade do vento e precipitação, sendo utilizado para o monitoramento climático em tempo real. Sua aplicações em sistemas industriais também não são comuns, porém, sua aplicação é possível em fábricas que fazem esse tipo de monitoramento.

A tabela 93 apresenta a classe responsável por esse *Logical Node* e seus atributos.

Tabela 93 – MMET class

		MI	MET class		
Data Object Name	Common Class	Data	Explanation	Т	M/O/C
LNName			The name shall be composed of the class		
			name, the LN-Prefix and LN-Instance-		
			ID according to IEC 61850-7-2, Clause		
			22.		
Measured and metere	ed values				
EnvTmp	MV		Ambient temperature		О
WetBlbTmp	MV		Wet bulb temperature		О
CloudCvr	MV		Cloud cover level		О
EnvHum	MV		Humidity		О
DewPt	MV		Dew point		О
DffInsol	MV		Diffuse insolation		О
DctInsol	MV		Direct normal insolation		О
DlDur	MV		Daylight duration (time elapsed between		О
			sunrise and sunset)		
HorInsol	MV		Total horizontal insolation		О
HorWdDir	MV		Horizontal wind direction		О
HorWdSpd	MV		Horizontal wind speed		О
VerWdDir	MV		Vertical wind direction		0
VerWdSpd	MV		Vertical wind speed		0
WdGustSpd	MV		Wind gust speed		0
EnvPres	MV		Barometric pressure		О
RnFll	MV		Rainfall		О
SnwDen	MV		Density of snowfall		О
SnwTmp	MV		Temperature of snowfall		О
SnwCvr	MV		Snow cover		O
SnwFll	MV		Snowfall		О
SnwEq	MV		Water equivalent of snowfall		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 94 – Análise dos Data Objects do MMET

Ar	aálise dos Data Obje	ects do MMET
Data Object	Classe de Dados	Descrição
EnvTmp	MV	Temperatura ambiente em tempo real.
WetBlbTmp	MV	Temperatura de bulbo úmido, utilizada
		para cálculos psicrométricos.
CloudCvr	MV	Cobertura de nuvens expressa em por-
		centagem do céu coberto.
EnvHum	MV	Umidade relativa do ar.
DewPt	MV	Ponto de orvalho, temperatura em que
		a condensação ocorre.
DffInsol	MV	Insolação difusa, radiação solar recebida
		de fontes indiretas.
DctInsol	MV	Insolação direta, radiação solar recebida
		diretamente do sol.
DlDur	MV	Duração do dia, tempo decorrido entre
		nascer e pôr do sol.
HorInsol	MV	Insolação horizontal total medida em
		uma superfície horizontal.
HorWdDir	MV	Direção do vento horizontal.
HorWdSpd	MV	Velocidade do vento horizontal.
VerWdDir	MV	Direção do vento vertical.
VerWdSpd	MV	Velocidade do vento vertical.
WdGustSpd	MV	Velocidade máxima das rajadas de vento
		registradas.
EnvPres	MV	Pressão atmosférica medida em tempo
	2.57.7	real.
RnFll	MV	Volume de chuva precipitada.
SnwDen	MV	Densidade da neve acumulada.
SnwTmp	MV	Temperatura da neve em superfície.
SnwCvr	MV	Cobertura de neve sobre o solo.
SnwFll	MV	Quantidade total de neve precipitada.
SnwEq	MV	Equivalente em água da neve precipi-
		tada.

Fonte: O próprio autor

A.10.4 MMTN - MEDIÇÃO MONOFÁSICA

O Logical Node (LN) MMTN representa a medição de energia em sistemas elétricos monofásicos. Esse LN é responsável pelo monitoramento de grandezas elétricas como energia ativa, reativa e aparente, diferenciando o sentido do fluxo de energia para avaliação do fornecimento e consumo. Apesar de esta intrissicamente ligado ao sistema elétrico, esses são atributos que também são comuns de encontrar nas indústrias.

A tabela 95 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 95 - MMTN class

	MMTN class						
Data Object Name	Common	Data	Explanation	\mathbf{T}	M/O/C		
	Class						
LNName			The name shall be composed of the class				
			name, the LN-Prefix and LN-Instance-				
			ID according to IEC 61850-7-2, Clause				
			22.				
Measured and metered	values						
TotVAn	BCR		Net apparent energy		О		
TotWh	BCR		Net real energy		О		
TotVArh	BCR		Net reactive energy		О		
SupWh	BCR		Real energy supply (default supply di-		О		
			rection: energy flow towards busbar)				
SupVArh	BCR		Reactive energy supply (default supply		О		
			direction: energy flow towards busbar)				
DmdWh	BCR		Real energy demand (default demand		О		
			direction: energy flow from busbar away)				
DmdVArh	BCR		Reactive energy demand (default de-		О		
			mand direction: energy flow from busbar				
			away)				

Tabela 96 - Análise dos Data Objects do MMTN

Análise dos Data Objects do MMTN					
Data Object	Classe de Dados	Descrição			
TotVAn	BCR	Energia aparente líquida total medida.			
TotWh	BCR	Energia ativa líquida total medida.			
TotVArh	BCR	Energia reativa líquida total medida.			
SupWh	BCR	Energia ativa fornecida (fluxo de energia			
		para a barra principal).			
SupVArh	BCR	Energia reativa fornecida (fluxo de ener-			
		gia para a barra principal).			
DmdWh	BCR	Energia ativa demandada (fluxo de ener-			
		gia da barra principal para a carga).			
DmdVArh	BCR	Energia reativa demandada (fluxo de			
		energia da barra principal para a carga).			

Fonte: O próprio autor

A.10.5 MMTR - MEDIÇÃO TRIFÁSICA

O Logical Node (LN) MMTR é utilizado para medição de energia em sistemas elétricos trifásicos. Ele permite o monitoramento e registro de variáveis elétricas, incluindo energia ativa, reativa e aparente. O MMTR pode ser utilizado em sistemas de medição e faturamento de energia em indústrias, possibilitando o monitoramento contínuo do consumo energético de máquinas e processos. Além disso, ele pode ser aplicado em sistemas de gerenciamento de energia operacional e redução de custos.

A tabela 97 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 97 – MMTR class

	MMTR class					
Data Object Name	Common	Data	Explanation	\mathbf{T}	M/O/C	
	Class					
LNName			The name shall be composed of the class			
			name, the LN-Prefix and LN-Instance-			
			ID according to IEC 61850-7-2, Clause			
			22.			
Measured and metered	values					
TotVAn	BCR		Net apparent energy		О	
TotWh	BCR		Net real energy		О	
TotVArh	BCR		Net reactive energy		О	
SupWh	BCR		Real energy supply (default supply di-		О	
			rection: energy flow towards busbar)			
SupVArh	BCR		Reactive energy supply (default supply		О	
			direction: energy flow towards busbar)			
DmdWh	BCR		Real energy demand (default demand		О	
			direction: energy flow from busbar away)			
DmdVArh	BCR		Reactive energy demand (default de-		О	
			mand direction: energy flow from busbar			
			away)			

Fonte: Adaptado de (IEC, 2010b)

Tabela 98 – Análise dos Data Objects do MMTR

An	Análise dos Data Objects do MMTR					
Data Object	Classe de Dados	Descrição				
TotVAn	BCR	Energia aparente líquida total medida.				
TotWh	BCR	Energia ativa líquida total medida.				
TotVArh	BCR	Energia reativa líquida total medida.				
SupWh	BCR	Energia ativa fornecida (fluxo de energia				
		para a barra principal).				
SupVArh	BCR	Energia reativa fornecida (fluxo de ener-				
		gia para a barra principal).				
DmdWh	BCR	Energia ativa demandada (fluxo de ener-				
		gia da barra principal para a carga).				
DmdVArh	BCR	Energia reativa demandada (fluxo de				
		energia da barra principal para a carga).				

Fonte: O próprio autor

A.10.6 MMXN - MEDIÇÃO NÃO RELACIONADA A FASE

O Logical Node (LN) MMXN é utilizado para representar medições elétricas que não estão associadas a uma fase específica do sistema. Esse LN permite o monitoramento de grandezas como corrente total, tensão, potência ativa, reativa e aparente, além de fator de potência, impedância e frequência. Em aplicações na industria, o MMXN é utilizado em aplicações onde é necessário monitorar grandezas elétricas globais, sem necessidade

de separação por fase. Ele é empregado em sistemas de geração e distribuição de energia, permitindo a supervisão da qualidade da energia entregue à cargas das mais diversas, como por exemplo, o controle contínuo do fator de potência e da frequência da rede, mantendo o funcionamento adequado de máquinas e equipamentos.

A tabela 99 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela $99-\operatorname{MMXN}$ class: Medições Não Relacionadas à Fase

	MMXN class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Data Obj	jects					
Measured	d and me	tered values				
Amp		MV		Current I not allocated to a phase.		О
Vol		MV		Voltage V not allocated to a phase.		О
Watt		MV		Power (P) not allocated to a phase.		О
VolAmpr		MV		Reactive power (Q) not allocated to a phase.		О
VolAmp		MV		Apparent power (S) not allocated to a phase.		О
PwrFact		MV		Power factor not allocated to a phase.		О
Imp		CMV		Impedance.		О
Hz		MV		Frequency.		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 100 - Análise dos Data Objects do MMXN

	Análise dos Data Objects do MMXN				
Data Object	Classe de Dados	Descrição			
Amp	MV	Corrente total medida, não associada a uma			
		fase específica.			
Vol	MV	Tensão total medida, não associada a uma fase			
		específica.			
Watt	MV	Potência ativa total medida, sem alocação por			
		fase.			
VolAmpr	MV	Potência reativa total medida, sem alocação			
		por fase.			
VolAmp	MV	Potência aparente total medida, sem alocação			
		por fase.			
PwrFact	MV	Fator de potência total do sistema, sem distin-			
		ção por fase.			
Imp	CMV	Impedância elétrica medida no sistema.			
Hz	MV	Frequência da rede elétrica.			

Fonte: O próprio autor

A.10.7 MMXU - MEDIÇÕES GERAIS

O Logical Node (LN) MMXU representa medições gerais em sistemas elétricos, sendo utilizado para o monitoramento de grandezas elétricas fundamentais, como corrente, tensão, potência, fator de potência e frequência. Essas medições tambem são encontradas em sistemas industriais e utilizadas para os mais diversos controles.

A tabela 101 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 101 - MMXU class

			AXU class		
Data Object Name	Common	Data	Explanation	\mathbf{T}	M/O/C
	Class				
LNName			The name shall be composed of the class		
			name, the LN-Prefix and LN-Instance-		
			ID according to IEC 61850-7-2, Clause		
			22.		
Measured and meter	ed values				
TotW	MV		Total active power (total P).		О
TotVar	MV		Total reactive power (total Q).		О
TotVA	MV		Total apparent power (total S).		О
TotPF	MV		Average power factor (total PF).		О
Hz	MV		Frequency.		О
PPV	DEL		Phase-to-phase voltages $(V_{L1}, V_{L2},)$.		О
PNV	WYE		Phase-to-neutral voltage.		О
PhV	WYE		Phase-to-ground voltages $(V_{L1ER},)$.		О
A	WYE		Phase currents (I_{L1}, I_{L2}, I_{L3}) .		О
W	WYE		Phase active power (P) .		О
Var	WYE		Phase reactive power (Q) .		О
VA	WYE		Phase apparent power (S) .		О
PF	WYE		Phase power factor.		О
Z	WYE		Phase impedance.		О
AvAPhs	MV		Arithmetic average of the magni-		О
			tude of current of the 3 phases.		
			Average (I_a, I_b, I_c)		

Data Object Name	Common	Data	Explanation	\mathbf{T}	M/O/C
Data Object Hame	Class	Dava		_	111/0/0
AvPPVPhs	MV		Arithmetic average of the magnitude of		O
	111 1		phase-to-phase voltage of the 3 phases.		O
			Average(PPVa, PPVb, PPVc)		
AvPhVPhs	MV		Arithmetic average of the magnitude		О
	112 1		of phase-to-reference voltage of the 3		Ü
			phases. Average(PhVa, PhVb, PhVc)		
AvWPhs	MV		Arithmetic average of the magnitude		О
			of active power of the 3 phases. Ave-		
			rage(Wa, Wb, Wc)		
AvVAPhs	MV		Arithmetic average of the magnitude of		О
			apparent power of the 3 phases. Ave-		
			rage(VAa, VAb, VAc)		
AvVArPhs	MV		Arithmetic average of the magnitude		О
			of reactive power of the 3 phases. Ave-		
			rage(VAra, VArb, VArc)		
AvPFPhs	MV		Arithmetic average of the magnitude		О
			of power factor of the 3 phases. Ave-		
			rage(PFa, PFb, PFc)		
AvZPhs	MV		Arithmetic average of the magnitude of		О
			impedance of the 3 phases. Average(Za,		
			Zb, Zc)		
MaxAPhs	MV		Maximum magnitude of current of the		О
			3 phases. $Max(I_a, I_b, I_c)$		
MaxPPVPhs	MV		Maximum magnitude of phase-to-phase		О
			voltage of the 3 phases. Max(PPVa,		
			PPVb, PPVc)		
MaxPhVPhs	MV		Maximum magnitude of phase-to-		О
			reference voltage of the 3 phases.		
			Max(PhVa, PhVb, PhVc)		
MaxWPhs	MV		Maximum magnitude of active power of		О
			the 3 phases. Max(Wa, Wb, Wc)		
MaxVAPhs	MV		Maximum magnitude of apparent power		О
			of the 3 phases. Max(VAa, VAb, VAc)		
MaxVArPhs	MV		Maximum magnitude of reactive power		О
			of the 3 phases. Max(VAra, VArb, VArc)		

Continua na próxima página

Data Object Name	Common Data	Explanation	Т	M/O/C
MaxPFPhs MaxZPhs	MV MV	Maximum magnitude of power factor of the 3 phases. Max(PFa, PFb, PFc) Maximum magnitude of impedance of the 3 phases. Max(Za, Zb, Zc)		0
Settings				
ClcTotVA	ENG	Calculation method used for total apparent power (TotVA)		О
PFSign	ENG	Sign convention for VAr and power factor (PF)		О

A.10.8 MSTA - ESTATÍSTICAS DE MEDIÇÕES

O MSTA (Measurement Statistics) é um Logical Node definido na IEC 61850-7-4 que fornece estatísticas relacionadas às medições elétricas em sistemas de potência. Ele permite o armazenamento e análise de valores médios, máximos e mínimos, além do cálculo de desvios estatísticos sobre medições elétricas, facilitando a detecção de variações anômalas no sistema. De forma análoga ao LN anterior, todas as funções desempenhadas por este componente no sistema elétrico é completamente aplicável no sistema industrial.

Em ambientes fabris, como exemplo, o uso dessa classe pode realizar análise de variações de tensão, corrente e frequência ao longo do tempo, identificação de padrões de consumo anômalos que podem indicar falhas iminentes em motores e geradores, cálculo de médias e desvios-padrão para entender o consumo de energia e tomar ações para reduzir desperdícios.

A tabela 102 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 102 – MSTA class: Measurement Statistics

MSTA class						
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Metered va	alues					
AvAmps		MV		Average current.		О
MaxAmps		MV		Maximum current.		О
MinAmps		MV		Minimum current.		О
AvVolts		MV		Average voltage.		О
MaxVolts		MV		Maximum voltage.		О
MinVolts		MV		Minimum voltage.		О
AvVA		MV		Average apparent power.		О
MaxVA		MV		Maximum apparent power.		О
MinVA		MV		Minimum apparent power.		О
AvW		MV		Average active power.		О
MaxW		MV		Maximum active power.		О
MinW		MV		Minimum active power.		О
AvVAr		MV		Average reactive power.		О
MaxVAr		MV		Maximum reactive power.		О
MinVAr		MV		Minimum reactive power.		О
Controls						
EvStr		SPC		Start of evaluation interval.		О
Settings						
EvTmms		ING		Evaluation time (time window) for averages,		О
				etc.		

Tabela 103 – Análise dos Objetos de Dados na classe MSTA

Análise dos Objetos de Dados no MSTA				
Objeto de Dados	Descrição			
AvAmps (MV)	Corrente média medida durante um período de avaliação.			
MaxAmps (MV)	Corrente máxima registrada durante um período de avalia-			
	ção.			
MinAmps (MV)	Corrente mínima registrada durante um período de avalia-			
	ção.			
AvVolts (MV)	Tensão média medida durante um período de avaliação.			
MaxVolts (MV)	Tensão máxima registrada durante um período de avaliação.			
MinVolts (MV)	Tensão mínima registrada durante um período de avaliação.			
AvVA (MV)	Potência aparente média durante um período de avaliação.			
MaxVA (MV)	Potência aparente máxima registrada.			
MinVA (MV)	Potência aparente mínima registrada.			
AvW (MV)	Potência ativa média durante um período de avaliação.			
MaxW (MV)	Potência ativa máxima registrada.			
MinW (MV)	Potência ativa mínima registrada.			
AvVAr (MV)	Potência reativa média durante um período de avaliação.			
MaxVAr (MV)	Potência reativa máxima registrada.			
MinVAr (MV)	Potência reativa mínima registrada.			
EvStr (SPC)	Início do intervalo de avaliação para cálculos estatísticos.			
EvTmms (ING)	Tempo de avaliação (janela de tempo) usado para cálculos			
	médios.			

Fonte: O próprio autor

A.10.9 MPRS - MEDIÇÕES DE PRESSÃO

O Logical Node MPRS (Measurement Pressure Statistics) pertence à família de Logical Nodes da IEC 61850-7-420 e é utilizado para fornecer estatísticas relacionadas à medição de pressão em sistemas elétricos. Esse Logical Node coleta, processa e disponibiliza informações sobre pressão e variações de pressão, permitindo a detecção de padrões e anomalias. Ele inclui medições diretas da pressão, taxas de variação, limites configuráveis e alarmes de sobrepressão. A variável pressão é uma das mais presentes em ambientes de chão de fábrica, sendo portanto um *Logical Node* aplicável a automação industrial de processos.

A tabela 104 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 104 – MPRS class: Measurement Pressure Statistics

				MPRS class		
Data (Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				Shall be inherited from logical-node class (see		
				IEC 61850-7-2).		
System log	gical noc	le data				
				LN shall inherit all mandatory data from com-		M
				mon logical node class.		
				The data from LLN0 may optionally be used.		О
Status info	rmation	ı				
PresSt		SPS		Pressure alarm status.		О
PresRteSt		SPS		Pressure rate change alarm status.		О
Settings						
MaxPres		ASG		Maximum pressure.		О
MinPres		ASG		Minimum pressure.		О
MaxPresRte)	ASG		Maximum pressure change rate.		О
Measured values						
Pres		MV		Pressure measurement.		M
PresRte		MV		Rate of pressure change.		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 105 – Análise dos Objetos de Dados na classe MPRS

Análise dos Objetos de Dados no MPRS				
Objeto de Dados	Descrição			
PresSt (SPS)	Indica o status de alarme de pressão.			
PresRteSt (SPS)	Indica o status de alarme de variação da taxa de pressão.			
MaxPres (ASG)	Define a pressão máxima permitida no sistema.			
MinPres (ASG)	Define a pressão mínima permitida no sistema.			
MaxPresRte (ASG)	Define a taxa máxima permitida de variação da pressão.			
Pres (MV)	Mede a pressão no sistema em tempo real.			
PresRte (MV)	Mede a taxa de variação da pressão ao longo do tempo.			

Fonte: O próprio autor

A.10.10 MHET - VALORES MEDIDOS DE CALOR

O Logical Node MHET (Measured Heat Values) faz parte da IEC 61850-7-420 e é responsável por representar medições e estatísticas relacionadas ao calor em sistemas. Esse Logical Node permite monitorar parâmetros térmicos, como volume e percentual de ocupação de um recipiente, conteúdo de calor de um material, taxa de saída de calor e calor acumulado ao longo do tempo.

A aplicabilidade do MHET na automação industrial, por se tratar de calor, é vasta. Na indústria química, por exemplo, pode ser empregado para acompanhar processos exotérmicos e endotérmicos. No setor de gás e petróleo, esse Logical Node auxilia no monitoramento da transferência de calor em processos de refino e transporte de combustíveis. Além disso, na indústria alimentícia, o MHET pode ser aplicado para o controle térmico em sistemas de pasteurização e secagem.

A tabela 106 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 106 – MHET class: Measured Heat Values

	MHET class					
Data Object	Common Data	Explanation	T	M/O/C		
Name	Class					
LNName		Shall be inherited from logical-node class (see				
		IEC 61850-7-2).				
System logical noc	le data					
		LN shall inherit all mandatory data from com-		M		
		mon logical node class.				
		The data from LLN0 may optionally be used.		О		
Settings						
MatTyp	ENG	Type of material (e.g., air, water, oil, hydrogen,		M		
		natural gas, butane, propane).				
HeatSpec	ASG	Specific heat of the material.		O		
MaxMatCal	ASG	Maximum heat content of material.		О		
MaxHeatOut	ASG	Maximum heat output of the heating system.		О		
Measured values						
MatVolm	MV	Volume of material.		О		
MatPct	MV	Percent of container filled with material.		O		
MatCal	MV	Heat content of the material.		О		
HeatOut	MV	Instantaneous heat output.		О		
AccHeatOut	MV	Accumulated heat output since last reset.		О		
Controls						
AccHeatCtl	SPC	Reset accumulated heat output since last reset.		O		

Fonte: Adaptado de (IEC, 2010b)

Tabela 107 – Análise dos Objetos de Dados na classe MHET

Ana	Análise dos Objetos de Dados no MHET				
Objeto de Dados	Descrição				
MatTyp (ENG)	Tipo de material monitorado (exemplo: água, óleo, vapor,				
	gás natural).				
HeatSpec (ASG)	Calor específico do material.				
MaxMatCal (ASG)	Quantidade máxima de calor que o material pode armazenar.				
MaxHeatOut	Potência térmica máxima do sistema de aquecimento.				
(ASG)					
MatVolm (MV)	Volume do material presente no sistema.				
MatPct (MV)	Percentual de preenchimento do recipiente com o material.				
MatCal (MV)	Quantidade de calor contida no material.				
HeatOut (MV)	Quantidade de calor liberada instantaneamente.				
AccHeatOut (MV)	Quantidade total de calor liberada desde o último reset.				
AccHeatCtl (SPC)	Comando para reiniciar a medição do calor acumulado.				

Fonte: O próprio autor

A.10.11 MFLW - MEDIÇÕES DE FLUXO

O Logical Node MFLW (Measured Flow Values) faz parte da IEC 61850-7-420 e é responsável por representar medições relacionadas ao fluxo de materiais em sistemas elétricos. Esse Logical Node permite monitorar parâmetros como taxa de fluxo volumétrico, velocidade de fluxo, direção de fluxo, densidade do material, condutividade térmica e nível do material no recipiente.

Na automação industrial, sua aplicabilidade, especialmente se encontra em processos que envolvem a movimentação de fluidos e gases. Sendo uma das variáveis mais presentes na indústria junto com a temperatura, pressão e nível.

A tabela 108 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 108 – MFLW class: Measured Flow Values

		MFLW class		
Data Object Name	Common Data Class	Explanation	Т	M/O/C
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2).		
System logical noc	de data	,		
		LN shall inherit all mandatory data from common logical node class.		M
		The data from LLN0 may optionally be used.		О
Settings				
MatTyp	ENG	Type of material (e.g., air, water, oil, steam, hydrogen, natural gas).		M
MatStat	ENG	State of material (e.g., gaseous, liquid, solid).		M
MaxFlwRte	ASG	Maximum volume flow rate.		О
MinFlwRte	ASG	Minimum volume flow rate.		О
MinXsecArea	ASG	Smallest restriction on flow: area of cross- section of restricted point.		О
Measured values				1
FlwRte	MV	Volume flow rate.		C1
FanSpd	MV	Fan or other fluid driver speed.		О
FlwHorDir	MV	Flow horizontal direction.		О
FlwVerDir	MV	Flow vertical direction.		О
MatDen	MV	Material density.		О
MatCndv	MV	Material thermal conductivity.		О
MatLev	MV	Material level as percent of full.		О
FlwVlvPct	MV	Flow valve opening percent.		О
Controls				
FlwVlvCtr	APC	Set flow valve opening percent.		О
FanSpdSet	APC	Set fan (or other fluid driver) speed.		О
Metered values				
MtrVol	BCR	Metered volume of fluid since last reset.		C2

Tabela 109 – Análise dos Objetos de Dados na classe MFLW

Análise dos Objetos de Dados no MFLW				
Objeto de Dados	Descrição			
MatTyp (ENG)	Tipo de material transportado (exemplo: ar, água, vapor,			
	gás natural).			
MatStat (ENG)	Estado físico do material (gasoso, líquido ou sólido).			
MaxFlwRte (ASG)	Taxa máxima de fluxo volumétrico permitida.			
MinFlwRte (ASG)	Taxa mínima de fluxo volumétrico permitida.			
MinXsecArea	Área mínima da seção transversal em pontos de restrição			
(ASG)	de fluxo.			
FlwRte (MV)	Medição da vazão volumétrica do fluido transportado.			
FanSpd (MV)	Velocidade do ventilador ou outro dispositivo de propulsão			
	de fluido.			
FlwHorDir (MV)	Direção do fluxo na orientação horizontal.			
FlwVerDir (MV)	Direção do fluxo na orientação vertical.			
MatDen (MV)	Densidade do material transportado.			
MatCndv (MV)	Condutividade térmica do material.			
MatLev (MV)	Nível do material no reservatório em relação à capacidade			
	total.			
FlwVlvPct (MV)	Percentual de abertura da válvula de fluxo.			
FlwVlvCtr (APC)	Controle de abertura da válvula de fluxo.			
FanSpdSet (APC)	Controle de velocidade do ventilador ou dispositivo de pro-			
	pulsão.			
MtrVol (BCR)	Volume total de fluido medido desde o último reset.			

Fonte: O próprio autor

A.10.12 MFUL - CARACTERÍSTICAS DO COMBUSTÍVEL

O Logical Node MFUL (Fuel Characteristics) pertence à IEC 61850-7-4 e IEC 61850-7-420 e é utilizado para representar as características do combustível em um sistema. Ele fornece informações relacionadas ao consumo de combustível, eficiência, custo e poder calorífico, permitindo que os sistemas de automação monitorem o uso de combustíveis.

Na automação industrial, o MFUL pode ser aplicado a sistemas de geração de energia movidos a combustíveis fósseis, como usinas termelétricas, caldeiras industriais e geradores a diesel.

A tabela 110 apresenta a classe responsável por esse $Logical\ Node$ e seus atributos.

Tabela 110 – MFUL class: Fuel Characteristics

		MFUL class				
Data Object	Common Data	Explanation	\mathbf{T}	M/O/C		
Name	Class					
LNName		Shall be inherited from logical-node class (see				
		IEC 61850-7-2).				
System logical noc	de data					
		LN shall inherit all mandatory data from com-		M		
		mon logical node class.				
		The data from LLN0 may optionally be used.		О		
Status information	1					
AccOpTms	INS	Accumulated operational time since reset.		О		
Settings						
FuelTyp	ENG	Type of fuel (use # in Table 36).		M		
Currency	CUG	Currency used for costs.		О		
FuelCost	ASG	Base cost of fuel.		О		
GrossCalVal	ASG	Gross calorific value for the fuel.		О		
FuelEffCoef	ASG	Rated fuel efficiency coefficient as percent.		О		
Measured values						
FuelCostAv	MV	Running average cost of fuel.		О		
FuelEfcPct	MV	Fuel efficiency coefficient measured as percent.		О		
AccTotFuel	MV	Accumulated total fuel consumption.		О		
AccFuel	MV	Accumulated fuel consumption since reset.		О		
FuelRte	MV	Fuel usage rate.		O		
FuelCalAv	MV	Running caloric content of fuel.		О		
Controls	Controls					
AccFuelRs	DCP	Reset cumulative fuel accumulation.		M		
AccOpTmRs	DCP	Reset accumulated operational time.		О		

Tabela 111 – Análise dos Objetos de Dados na classe MFUL

Ana	Análise dos Objetos de Dados no MFUL							
Objeto de Dados	Descrição							
AccOpTms (INS)	Tempo operacional acumulado desde o último reset.							
FuelTyp (ENG)	Tipo de combustível utilizado no sistema (exemplo: diesel,							
	gás natural).							
Currency (CUG)	Moeda utilizada para calcular o custo do combustível.							
FuelCost (ASG)	Custo base do combustível.							
GrossCalVal (ASG)	Valor calorífico bruto do combustível.							
FuelEffCoef (ASG)	Coeficiente de eficiência de combustível em percentual.							
FuelCostAv (MV)	Custo médio do combustível ao longo do tempo.							
FuelEfcPct (MV)	Coeficiente de eficiência do combustível medido em percen-							
	tual.							
AccTotFuel (MV)	Consumo total acumulado de combustível.							
AccFuel (MV)	Consumo acumulado de combustível desde o último reset.							
FuelRte (MV)	Taxa de consumo de combustível em tempo real.							
FuelCalAv (MV)	Valor calorífico médio do combustível ao longo do tempo.							
AccFuelRs (DCP)	Comando para resetar a acumulação de combustível.							
AccOpTmRs	Comando para resetar o tempo operacional acumulado.							
(DCP)								

Fonte: O próprio autor

A.11 GRUPO S - SUPERVISÃO E MONITORAMENTO

O Grupo S da IEC 61850-7-4 abrange Logical Nodes relacionados à supervisão e diagnóstico de equipamentos em sistemas elétricos. Esses LNs são utilizados para monitorar parâmetros operacionais e de integridade de dispositivos, garantindo que anomalias, falhas ou degradações sejam identificadas de forma preventiva. Os *Logical Nodes* desse grupo estão associados ao monitoramento térmico, vibração, pressão, fluxo, nível de fluido, posição de componentes elétricos e estado de isolação. Eles permitem que equipamentos elétricos sejam supervisionados continuamente

No contexto industrial, parte dos LNs do Grupo S pode ser diretamente aplicada à automação e supervisão de processos industriais, enquanto outros são mais específicos para sistemas elétricos de potência. Abaixo são descritos apenas os *Logical Nodes* pertencentes ao grupo com os mapeamentos para utilização em ambiente fabril.

- SARC Monitoramento e diagnóstico de arco elétrico (exclusivo do sistema elétrico); X
- SCBR Supervisão de disjuntor (exclusivo do sistema elétrico); 🗡
- SIMG Supervisão do meio isolante (gás) (exclusivo do sistema elétrico); 🗡
- SIML Supervisão do meio isolante (líquido) (exclusivo do sistema elétrico); X
- SLTC Supervisão de comutadores de derivação (exclusivo do sistema elétrico); X
- SOPM Supervisão do mecanismo de operação de disjuntores (exclusivo do sistema elétrico); X
- SPDC Monitoramento e diagnóstico de descargas parciais (exclusivo do sistema elétrico); 🗡
- SPTR Supervisão de transformador de potência (exclusivo do sistema elétrico); 🗡
- SSWI Supervisão de chave seccionadora (exclusivo do sistema elétrico); 🗡
- STMP Supervisão de temperatura (compatível com a indústria); 🗸
- SVBR Supervisão de vibração (compatível com a indústria); 🗸
- SFLW Supervisão de fluxo de mídia (compatível com a indústria); 🗸
- SLVL Supervisão de nível de mídia (compatível com a indústria); 🗸
- SPOS Supervisão da posição de um dispositivo (compatível com a indústria); 🗸
- SPRS Supervisão de pressão de mídia (compatível com a indústria); 🗸

A.11.1 STMP - SUPERVISÃO DE TEMPERATURA

O Logical Node STMP (Supervision of Temperature) é responsável pelo monitoramento e supervisão de temperaturas em diversos pontos de um sistema industrial ou elétrico. Ele pode ser utilizado para rastrear variações térmicas em equipamentos, detectar anomalias e acionar alarmes em caso de superaquecimento.

Aplicabilidade na Automação Industrial Na indústria, o STMP pode ser aplicado no monitoramento de motores elétricos, transformadores, fornos industriais, caldeiras, sistemas de refrigeração e processos que exigem controle térmico rigoroso. A medição da temperatura permite a implementação de estratégias de manutenção preditiva, reduzindo falhas inesperadas e otimizando o desempenho dos equipamentos.

Além disso, sua integração com sistemas SCADA e IIoT possibilita o envio de dados para análise remota e automação de respostas a condições anormais.

A tabela 112 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 112 – STMP class: Temperature Supervision

	STMP class							
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C		
Name		Class						
LNName				The name shall be composed of the class name,				
				the LN-Prefix and LN-Instance-ID according				
				to IEC 61850-7-2, Clause 22.				
Description	ons							
EEName		DPL		External equipment nameplate.		О		
Status In	formatio	n						
EEHealth		ENS		External equipment health.		О		
Alm		SPS		Temperature alarm level reached.		О		
Trip		SPS		Temperature trip level reached.		О		
Measured	d and Me	tered Values	5					
Tmp		MV		Temperature.		О		
Controls								
OpCntRs		INC		Resettable operation counter.		О		
Settings	Settings							
TmpAlmS	pt	ASG		Temperature alarm level set-point.		О		
TmpTripS	pt	ASG		Temperature trip level set-point.		О		

Fonte: Adaptado de (IEC, 2010b)

Tabela 113 – Análise dos Objetos de Dados na classe STMP

Análise dos Objetos de Dados no STMP					
Objeto de Dados Descrição					
EEName (DPL)	Nome do equipamento externo.				
EEHealth (ENS)	Estado geral de saúde do equipamento externo.				
Alm (SPS)	Indica que o nível de alarme de temperatura foi atingido.				
Trip (SPS)	Indica que o nível de desligamento por temperatura foi				
	atingido.				
Tmp (MV)	Temperatura medida do equipamento monitorado.				
OpCntRs (INC)	Contador de operação reiniciável.				
TmpAlmSpt (ASG)	Ponto de ajuste para o nível de alarme de temperatura.				
TmpTripSpt (ASG)	Ponto de ajuste para o nível de desligamento por tempera-				
	tura.				

Fonte: O próprio autor

A.11.2 SVBR - SUPERVISÃO DE VIBRAÇÃO

O Logical Node SVBR (Vibration Supervision) é responsável pelo monitoramento das vibrações em equipamentos e sistemas elétricos. Ele possibilita a identificação de falhas mecânicas ao medir sinais de vibração e deslocamento axial, acionando alarmes quando os valores ultrapassam limites pré-estabelecidos.

Na automação industrial, o SVBR pode ser utilizado para monitorar vibrações em motores elétricos, turbinas, bombas, ventiladores e outros equipamentos rotativos. O controle de vibrações é importante para

a manutenção preditiva, pois oscilações excessivas podem indicar desalinhamento, desgaste de rolamentos ou problemas estruturais.

A tabela 114 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 114 – SVBR class: Vibration Supervision

	SVBR class						
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Status Inf	formation	n					
Alm		SPS		Vibration alarm level reached.		M	
Trip		SPS		Vibration trip level reached.		О	
Measured	and Me	tered Values	8				
Vbr		MV		Vibration level.		О	
AxDsp		MV		Total axial displacement.		О	
Controls	,						
OpCntRs		INC		Resettable operation counter.		О	
Settings	,						
VbrAlmSpt	t	ASG		Vibration alarm level set-point.		О	
VbrTripSpt	t	ASG		Vibration trip level set-point.		О	
AxDAlmSp	ot	ASG		Axial displacement alarm level set-point.		О	
AxDTripSp	ot	ASG		Axial displacement trip level set-point.		О	

Fonte: Adaptado de (IEC, 2010b)

Tabela 115 – Análise dos Objetos de Dados na classe SVBR

Análise dos Objetos de Dados no SVBR						
Objeto de Dados Descrição						
Alm (SPS)	Indica que o nível de alarme de vibração foi atingido.					
Trip (SPS)	Indica que o nível de desligamento por vibração foi atingido.					
Vbr (MV)	Nível de vibração medido no equipamento monitorado.					
AxDsp (MV)	Deslocamento axial total do equipamento.					
OpCntRs (INC)	Contador de operação reiniciável.					
VbrAlmSpt (ASG)	Ponto de ajuste para o nível de alarme de vibração.					
VbrTripSpt (ASG)	Ponto de ajuste para o nível de desligamento por vibração.					
AxDAlmSpt (ASG)	Ponto de ajuste para o nível de alarme de deslocamento					
	axial.					
AxDTripSpt (ASG)	Ponto de ajuste para o nível de desligamento por desloca-					
	mento axial.					

Fonte: O próprio autor

A.11.3 SFLW - SUPERVISÃO DE FLUXO

O Logical Node SFLW (Flow Supervision) é responsável pelo monitoramento de fluxos em geral, como água, óleo, vapor, gás e outros fluidos. Ele fornece informações sobre a taxa de fluxo, acionando alarmes quando os valores ultrapassam ou caem abaixo de limites predefinidos. Além disso, permite configurar pontos de acionamento e desativação de ações automáticas.

Na automação industrial, o SFLW pode ser aplicado em sistemas de tubulações, refrigeração, processos químicos, redes de distribuição de água e combustíveis.

A tabela 116 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 116 – SFLW class: Flow Supervision

		SFLW class		
Data Objec Name	Class Data	Explanation	\mathbf{T}	M/O/C
LNName		The name shall be composed of the class name,		
		the LN-Prefix and LN-Instance-ID according		
		to IEC 61850-7-2, Clause 22.		
Status Informati	ion			'
HiInd	SPS	Hi indication over level.		О
HiAlm	SPS	Hi alarm over level.		О
HiTrip	SPS	Hi trip over level.		О
LoAct	SPS	Lo start action when under activation th-		О
		reshold.		
LoDeAct	SPS	Lo stop action when underactivation threshold.		О
LoInd	SPS	Lo indication under level.		О
LoAlm	SPS	Lo alarm under level.		О
LoTrip	SPS	Lo trip under level.		О
Settings				'
Media	ENG	Type of media being measured (water, oil, gas,		О
		etc.).		
HiActSpt	ASG	Hi start action when activation threshold set-		О
		point.		
HiDeActSpt	ASG	Hi stop action when activation threshold set-		О
		point.		
HiAlmSpt	ASG	Hi alarm level set-point.		О
HiTripSpt	ASG	Hi trip level set-point.		О
LoActSpt	ASG	Lo start action when activation threshold set-		О
		point.		
LoDeActSpt	ASG	Lo stop action when activation threshold set-		О
		point.		
LoAlmSpt	ASG	Lo alarm level set-point.		О
LoTripSpt	ASG	Lo trip level set-point.		О
Measured Value				
Flw	MV	Flow-rate of media (m ³ /s).		О

Fonte: Adaptado de (IEC, 2012)

Tabela 117 - Análise dos Objetos de Dados na classe SFLW

Análise dos Objetos de Dados no SFLW						
Objeto de Dados	Descrição					
HiInd (SPS)	Indica que o nível superior de fluxo foi atingido.					
HiAlm (SPS)	Indica que o nível de alarme superior foi atingido.					
HiTrip (SPS)	Indica que o nível de desligamento superior foi atingido.					
LoInd (SPS)	Indica que o nível inferior de fluxo foi atingido.					
LoAlm (SPS)	Indica que o nível de alarme inferior foi atingido.					
LoTrip (SPS)	Indica que o nível de desligamento inferior foi atingido.					
Media (ENG)	Define o tipo de mídia sendo medida (água, óleo, gás, etc.).					
HiAlmSpt (ASG)	Define o ponto de ajuste para alarme de nível superior.					
HiTripSpt (ASG)	Define o ponto de ajuste para desligamento de nível superior.					
LoAlmSpt (ASG)	Define o ponto de ajuste para alarme de nível inferior.					
LoTripSpt (ASG)	Define o ponto de ajuste para desligamento de nível inferior.					
Flw (MV)	Taxa de fluxo do meio em m ³ /s.					

Fonte: O próprio autor

A.11.4 SLVL - SUPERVISÃO DE NÍVEL

O Logical Node SLVL (Level Supervision) é utilizado para monitorar o nível em reservatórios, tanques e sistemas que necessitam de controle de volume. Esse Logical Node permite a detecção de níveis altos e baixos, acionando alarmes ou gatilhos para controle automático de processos.

Na automação industrial a aplicabilidade deste LN é automática, visto que se trata de uma das variáveis mais presentes no chão de fábrica.

A tabela 118 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 118 – SLVL class: Level Supervision

	SLVL class								
	Object	Common	Data	Explanation	\mathbf{T}	M/O/C			
Name		Class							
LNName				The name shall be composed of the class name,					
				the LN-Prefix and LN-Instance-ID according					
				to IEC 61850-7-2, Clause 22.					
Status Info	ormatio								
HiAct		SPS		Hi start action when over activation threshold.		О			
HiDeAct		SPS		Hi stop action when under activation threshold.		О			
HiInd		SPS		Hi indication over level.		О			
HiAlm		SPS		Hi alarm over level.		О			
HiTrip		SPS		Hi trip over level.		О			
LoAct		SPS		Lo start action when under activation th-		О			
				reshold.					
LoDeAct		SPS		Lo stop action when underactivation threshold.		О			
LoInd		SPS		Lo indication under level.		О			
LoAlm		SPS		Lo alarm under level.		О			
LoTrip		SPS		Lo trip under level.		О			
Activ		SPS		Start action when over activation threshold.		О			
DeAct		SPS		Stop action when under activation threshold.		О			
Ind		SPS		Indication over level.		О			
Alm		SPS		Alarm over level.		О			
Trip		SPS		Trip at over level.		О			
Settings		I		1 *					
Media		ENG		Type of media being measured (water, oil, gas,		О			
				etc.).					
HiActSpt		ASG		Hi start action when activation threshold set-		О			
•				point.					
HiDeActSpt		ASG		Hi stop action when activation threshold set-		О			
-				point.					
HiAlmSpt		ASG		Hi alarm level set-point.		О			
HiTripSpt		ASG		Hi trip level set-point.		О			
LoActSpt		ASG		Lo start action when activation threshold set-		0			
-				point.					
LoDeActSpt		ASG		Lo stop action when activation threshold set-		О			
1				point.					
LoAlmSpt		ASG		Lo alarm level set-point.		О			
LoTripSpt		ASG		Lo trip level set-point.		О			
Measured	Values			·					
LevPct		MV		Media level (% of full capacity).		О			
		1				L			

Tabela 119 – Análise dos Objetos de Dados na classe SLVL

Análise dos Objetos de Dados no SLVL						
Objeto de Dados	Descrição					
HiAct (SPS)	Aciona uma ação quando o nível alto ultrapassa o limite de					
	ativação.					
HiDeAct (SPS)	Desativa uma ação quando o nível alto cai abaixo do limite					
	de ativação.					
HiInd (SPS)	Indica que o nível superior foi atingido.					
HiAlm (SPS)	Alarme quando o nível superior foi atingido.					
HiTrip (SPS)	Desligamento quando o nível superior foi atingido.					
LoAct (SPS)	Aciona uma ação quando o nível baixo ultrapassa o limite					
	de ativação.					
LoDeAct (SPS)	Desativa uma ação quando o nível baixo cai abaixo do limite					
	de ativação.					
LoInd (SPS)	Indica que o nível inferior foi atingido.					
LoAlm (SPS)	Alarme quando o nível inferior foi atingido.					
LoTrip (SPS)	Desligamento quando o nível inferior foi atingido.					
Media (ENG)	Define o tipo de mídia sendo medida (água, óleo, gás, etc.).					
HiAlmSpt (ASG)	Define o ponto de ajuste para alarme de nível alto.					
HiTripSpt (ASG)	Define o ponto de ajuste para desligamento de nível alto.					
LoAlmSpt (ASG)	Define o ponto de ajuste para alarme de nível baixo.					
LoTripSpt (ASG)	Define o ponto de ajuste para desligamento de nível baixo.					
LevPct (MV)	Percentual de ocupação do reservatório.					

Fonte: O próprio autor

A.11.5 SPOS - SUPERVISÃO DE POSIÇÃO

O Logical Node SPOS (Position Supervision) é utilizado para monitorar e supervisionar a posição de dispositivos móveis dentro de um sistema elétrico. Ele fornece informações sobre a posição relativa do equipamento, permitindo a detecção de variações e acionamento de alarmes caso valores limite sejam ultrapassados.

O SPOS pode ser utiliza na supervisão da posição de válvulas, atuadores e dispositivos mecânicos móveis em processos industriais. Essa funcionalidade é importante para sistemas que exigem controle preciso de posição, como válvulas de controle de fluxo em tubulações de óleo e gás, posicionamento de equipamentos em linhas de montagem e controle de sistemas hidráulicos.

A tabela 120 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 120 – SPOS class: Position Supervision

Data Object	Common I				
		Data	Explanation	\mathbf{T}	M/O/C
Name	Class				
LNName			The name shall be composed of the class name,		
			the LN-Prefix and LN-Instance-ID according		
			to IEC 61850-7-2, Clause 22.		
Status Information					
HiAct	SPS		Hi start action when over activation threshold.		О
HiDeAct	SPS		Hi stop action when overactivation threshold.		О
HiInd	SPS		Hi indication over level.		О
HiAlm	SPS		Hi alarm over level.		О
HiTrip	SPS		Hi trip over level.		О
LoAct	SPS		Lo start action when under activation th-		О
			reshold.		
LoDeAct	SPS		Lo stop action when underactivation threshold.		О
LoInd	SPS		Lo indication under level.		O
LoAlm	SPS		Lo alarm under level.		О
LoTrip	SPS		Lo trip under level.		О
Act	SPS		Start action when over activation threshold.		O
DeAct	SPS		Stop action when overactivation threshold.		O
Ind	SPS		Indication over level.		О
Alm	SPS		Alarm over level.		O
Trip	SPS		Trip at over level.		О
Settings					
HiActSpt	ASG		Hi start action activation threshold set-point.		О
HiDeActSpt	ASG		Hi stop action activation threshold set-point.		О
HiAlmSpt	ASG		Hi alarm level set-point.		О
HiTripSpt	ASG		Hi trip level set-point.		О
LoActSpt	ASG		Lo start action activation threshold set-point.		О
LoDeActSpt	ASG		Lo stop action activation threshold set-point.		О
LoAlmSpt	ASG		Lo alarm level set-point.		О
LoTripSpt	ASG		Lo trip level set-point.		О
GrdDirNg	ASG		Limit gradient in negative direction.		О
GrdDirPs	ASG		Limit gradient in positive direction.		O
Measured Values					
PosPct	MV		Position (% of full movement).		О

Tabela 121 – Análise dos Objetos de Dados na classe SPOS

Análise dos Objetos de Dados no SPOS						
Objeto de Dados	Descrição					
HiAct (SPS)	Aciona uma ação quando a posição ultrapassa o limite					
	superior.					
HiDeAct (SPS)	Desativa uma ação quando a posição retorna abaixo do					
	limite superior.					
HiAlm (SPS)	Alarme quando a posição atinge o limite superior.					
HiTrip (SPS)	Desligamento quando a posição atinge o limite superior.					
LoAct (SPS)	Aciona uma ação quando a posição cai abaixo do limite					
	inferior.					
LoDeAct (SPS)	Desativa uma ação quando a posição sobe acima do limite					
	inferior.					
LoAlm (SPS)	Alarme quando a posição atinge o limite inferior.					
LoTrip (SPS)	Desligamento quando a posição atinge o limite inferior.					
PosPct (MV)	Indica a posição atual do dispositivo em percentual do					
	movimento total.					
GrdDirNg (ASG)	Define o limite de variação da posição na direção negativa.					
GrdDirPs (ASG)	Define o limite de variação da posição na direção positiva.					

Fonte: O próprio autor

A.11.6 SPRS- SUPERVISÃO DE PRESSÃO

O Logical Node SPRS (Pressure Supervision) é responsável pelo monitoramento da pressão de fluidos sistemas elétricos. Ele permite a supervisão contínua dos valores de pressão, acionamento de alarmes e definição de limites operacionais para evitar sobrepressão ou pressão insuficiente.

O SPRS pode ser utiliza em sistemas pneumáticos e hidráulicos, permitindo o controle da pressão em equipamentos como compressores, válvulas de controle, reservatórios de gás e óleo, sistemas de vapor e processos químicos.

A tabela 122 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 122 – SPRS class: Pressure Supervision

	SPRS class							
	Object	Common	Data	Explanation	T	M/O/C		
Name		Class						
LNName				The name shall be composed of the class name,				
				the LN-Prefix and LN-Instance-ID according				
G				to IEC 61850-7-2, Clause 22.				
Status Info	rmation							
HiAct		SPS		Hi start action when over activation threshold.		0		
HiDeAct		SPS		Hi stop action when overactivation threshold.		О		
HiInd		SPS		Hi indication over level.		О		
HiAlm		SPS		Hi alarm over level.		О		
HiTrip		SPS		Hi trip over level.		О		
LoAct		SPS		Lo start action when under activation threshold.		О		
LoDeAct		SPS		Lo stop action when underactivation threshold.		О		
LoInd		SPS		Lo indication under level.		О		
LoAlm		SPS		Lo alarm under level.		О		
LoTrip		SPS		Lo trip under level.		О		
Act		SPS		Start action when over activation threshold.		О		
DeAct		SPS		Stop action when overactivation threshold.		О		
Ind		SPS		Indication over level.		О		
Alm		SPS		Alarm over level.		О		
Trip		SPS		Trip at over level.		О		
Settings								
Media		ENG		Type of media being measured.		О		
HiActSpt		ASG		Hi start action activation threshold set-point.		O		
HiDeActSpt		ASG		Hi stop action activation threshold set-point.		О		
HiAlmSpt		ASG		Hi alarm level set-point.		О		
HiTripSpt		ASG		Hi trip level set-point.		О		
LoActSpt		ASG		Lo start action activation threshold set-point.		O		
LoDeActSpt		ASG		Lo stop action activation threshold set-point.		О		
LoAlmSpt		ASG		Lo alarm level set-point.		O		
LoTripSpt		ASG		Lo trip level set-point.		0		
Measured '	Values							
Pres		MV		Pressure [Pa].		O		

Tabela 123 – Análise dos Objetos de Dados na classe SPRS

An	Análise dos Objetos de Dados no SPRS							
Objeto de Dados	Descrição							
HiAct (SPS)	Aciona uma ação quando a pressão ultrapassa o limite su-							
	perior.							
HiDeAct (SPS)	Desativa uma ação quando a pressão retorna abaixo do							
	limite superior.							
HiAlm (SPS)	Alarme quando a pressão atinge o limite superior.							
HiTrip (SPS)	Desligamento quando a pressão atinge o limite superior.							
LoAct (SPS)	Aciona uma ação quando a pressão cai abaixo do limite							
	inferior.							
LoDeAct (SPS)	Desativa uma ação quando a pressão sobe acima do limite							
	inferior.							
LoAlm (SPS)	Alarme quando a pressão atinge o limite inferior.							
LoTrip (SPS)	Desligamento quando a pressão atinge o limite inferior.							
Pres (MV)	Mede a pressão do sistema em pascais (Pa).							

Fonte: O próprio autor

A.12 GRUPO T - TRANSDUTORES DE INSTRUMENTOS E SENSORES

O grupo T da IEC 61850-7-4 reúne *Logical Nodes* voltados para sensores e transdutores, responsáveis por medir diversas grandezas físicas e variáveis ambientais, permitindo a coleta e supervisão de dados em sistemas elétricos. Esses LNs são projetados para integrar sensores de posição, temperatura, pressão, vibração, nível de líquido, fluxo, umidade, entre outros.

A lista a seguir classifica os Logical Nodes do Grupo T de acordo com sua aplicabilidade:

- TDST Distância (compatível com a indústria); ✓
- TFLW Fluxo de líquido (compatível com a indústria); 🗸
- TGSN Sensor genérico (compatível com a indústria); 🗸
- THUM Umidade (compatível com a indústria); ✓
- TLVL Nível de mídia (compatível com a indústria); ✓
- TMVM Sensor de movimento (compatível com a indústria); 🗸
- TPOS Indicador de posição (compatível com a indústria); 🗸
- TPRS Sensor de pressão (compatível com a indústria); 🗸
- TRTN Transmissor de rotação (compatível com a indústria); 🗸
- TTMP Sensor de temperatura (compatível com a indústria); 🗸
- TVBR Sensor de vibração (compatível com a indústria); 🗸
- TWPH Acidez da água (compatível com a indústria); 🗸
- TANG Ângulo (exclusivo do sistema elétrico); X
- TAXD Deslocamento axial (exclusivo do sistema elétrico); X
- TCTR Transformador de corrente (exclusivo do sistema elétrico); 🗡
- TFRQ Frequência (exclusivo do sistema elétrico); 🗡
- TMGF Campo magnético (exclusivo do sistema elétrico); 🗡
- TVTR Transformador de tensão (exclusivo do sistema elétrico); 🗡

A.12.1 TDST - DISTÂNCIA

O Logical Node (LN) TDST pertence ao grupo T da IEC 61850-7-4 e é responsável por fornecer medições de distância em diferentes aplicações elétricas. Este LN permite a obtenção de valores de deslocamento, espaçamento entre objetos ou qualquer outra grandeza expressa em metros.

A utilização do TDST na indústria abrange desde sensores de posição e deslocamento em linhas de produção até medição de distâncias em equipamentos móveis. Ele pode ser aplicado a monitoramento de movimentação de robôs industriais em processos automatizados, controle de deslocamento em máquinas CNC e outros equipamentos de manufatura, medição de posição em transportadores e esteiras industriais.

A tabela 124 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 124 – TDST class: Distance Measurement

				TDST class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	ions					
EEName		DPL		External equipment nameplate.		О
Status In	nformation	n				
EEHealth		ENS		External equipment health.		О
Measure	d and Me	tered Values	3			
DisSv		SAV		Distance [m].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 125 – Análise dos Objetos de Dados na classe TDST

Análise dos Objetos de Dados no TDST					
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
DisSv (SAV)	Medição da distância em metros. Esse valor pode ser obtido				
	de sensores a laser, ultrassônicos ou ópticos.				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas da distância.				

Fonte: O próprio autor

A.12.2 TFLW - FLUXO DE LÍQUIDOS

O Logical Node TFLW (Liquid Flow Supervision) é responsável pelo monitoramento e supervisão do fluxo de líquidos em um sistema. Ele coleta dados sobre a taxa de fluxo, realiza diagnósticos do equipamento e permite ajustes na taxa de amostragem das medições.

Na automação industrial, o TFLW pode ser utilizado em diversos cenários, como no monitoramento de tubulações de processos químicos, sistemas de refrigeração, controle de fluxos em geral.

A tabela 126 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 126 - TFLW class: Liquid Flow Supervision

				TFLW class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	ons					
EEName		DPL		External equipment nameplate.		О
Status In	formation	n				
EEHealth		ENS		External equipment health.		О
Measured	d and Me	tered Values	3			
FlwSv		SAV		Liquid flow rate [m ³ /s].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Fonte: Adaptado de (IEC, 2010b)

Tabela 127 – Análise dos Objetos de Dados na classe TFLW

Análise dos Objetos de Dados no TFLW					
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
FlwSv (SAV)	Taxa de fluxo de líquido em metros cúbicos por segundo				
(m³/s). Pode ser obtido de sensores de vazão ou medidores					
	de fluxo.				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas da taxa de fluxo.				

Fonte: O próprio autor

A.12.3 TGSN - SENSOR GENÉRICO

O Logical Node TGSN (Generic Sensor) é um Logical Node destinado a representar sensores genéricos que não se enquadram em categorias específicas de sensores definidos pela norma IEC 61850-7-4. Ele fornece medições genéricas e metadados sobre a integridade do sensor, permitindo a supervisão e configuração da taxa de amostragem dos dados capturados.

Na automação industrial, o TGSN pode ser utilizado para integrar sensores personalizados ou não convencionais a um sistema de supervisão, possibilitando o monitoramento de variáveis específicas em processos industriais. Visto que se trata de um LN para sensores genéricos, a sua utilização deve ser restrita para não ocorrer a diminuição da interoperabilidade na comunicação.

Tabela 128 - TGSN class: Generic Sensor

				TGSN class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	ions					
EEName		DPL		External equipment nameplate.		О
Status In	formation	n				
EEHealth		ENS		External equipment health.		О
Measure	d and Me	tered Values	5			
GenSv		SAV		Generic sampled values.		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Tabela 129 – Análise dos Objetos de Dados na classe TGSN

Análise dos Objetos de Dados no TGSN					
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
GenSv (SAV)	Valor amostrado genérico, que pode representar diversas				
	medições conforme a aplicação do sensor.				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas.				

Fonte: O próprio autor

A.12.4 THUM - UMIDADE

O Logical Node THUM (Humidity Sensor) representa sensores utilizados para medir a umidade relativa do ar ou de substâncias específicas dentro de sistemas industriais. Esse Logical Node permite monitorar e registrar dados sobre umidade, além de fornecer informações sobre o estado de saúde do equipamento.

O THUM pode ser aplicado na automação industrial para monitoramento de ambientes controlados, como salas de controle, processos químicos, armazenamento de materiais sensíveis à umidade e sistemas de climatização industrial. Em indústrias farmacêuticas e alimentícias, a medição da umidade garantem a qualidade dos produtos.

A tabela 130 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 130 - THUM class: Humidity Sensor

				THUM class			
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix, and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Descripti	ions						
EEName		DPL		External equipment nameplate.		О	
Status In	formation	n					
EEHealth		ENS		External equipment health.		О	
Measure	Measured and Metered Values						
HumSv		SAV		Humidity [%].		С	
Settings							
SmpRte		ING		Sampling rate setting.		О	

Tabela 131 – Análise dos Objetos de Dados na classe THUM

Análise dos Objetos de Dados no THUM					
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
HumSv (SAV)	Mede a umidade em porcentagem, essencial para controle				
	ambiental e processos industriais.				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas da umidade.				

Fonte: O próprio autor

A.12.5 TLVL - NÍVEL

O Logical Node TLVL (Media Level Sensor) representa sensores utilizados para medir o nível de líquidos, sólidos granulares ou outros materiais em tanques e reservatórios.

O TLVL pode ser aplicado na automação industrial para supervisão do nível de líquidos e sólidos em processos químicos, petroquímicos, alimentícios e farmacêuticos, além de aplicações em estações de tratamento de água e sistemas de armazenamento de combustíveis. Nível é uma das principais variáveis encontradas na indústria, tendo portanto aplicação direta em chão de fábrica.

A tabela 132 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 132 – TLVL class: Media Level Sensor

				TLVL class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	ions					
EEName		DPL		External equipment nameplate.		О
Status In	formation	n				
EEHealth		ENS		External equipment health.		О
Measure	d and Me	tered Values	8			
LevPctSv		SAV		Level [%].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Tabela 133 – Análise dos Objetos de Dados na classe TLVL

Análise dos Objetos de Dados no TLVL					
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
LevPctSv (SAV)	Mede o nível do meio em percentual, essencial para controle				
	de processos industriais.				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas do nível do meio.				

Fonte: O próprio autor

A.12.6 TMVM - SENSOR DE MOVIMENTO

O Logical Node TMVM (Movement Sensor) é projetado para monitorar e medir deslocamentos físicos de equipamentos ou materiais. Ele registra a taxa de movimento e auxilia na identificação de mudanças na posição ou velocidade de objetos móveis.

O TMVM pode ser utilizado em diversas aplicações industriais, incluindo monitoramento de esteiras transportadoras, supervisão de máquinas móveis, controle de robôs industriais e detecção de anomalias em processos mecânicos.

Tabela 134 – TMVM class: Movement Sensor

				TMVM class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	ions					
EEName		DPL		External equipment nameplate.		О
Status In	ıformatio	n				
EEHealth		ENS		External equipment health.		О
Measured	d and Me	tered Values	5			
MvmRteS	V	SAV		Movement rate [m/s].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Tabela 135 – Análise dos Objetos de Dados na classe TMVM

Análise dos Objetos de Dados no TMVM				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar			
	falhas ou necessidade de manutenção.			
MvmRteSv (SAV)	Mede a taxa de movimento em metros por segundo, sendo			
	útil para monitoramento de deslocamento.			
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-			
	dicas do movimento.			

Fonte: O próprio autor

A.12.7 TPOS - INDICADOR DE POSIÇÃO

O Logical Node TPOS (Position Indicator) é responsável por monitorar e indicar a posição de um componente ou dispositivo, expressando sua posição em relação ao seu deslocamento total.

O TPOS pode ser empregado em diversas aplicações industriais, incluindo o monitoramento da posição de válvulas, atuadores lineares, sistemas robóticos, máquinas CNC e elevadores industriais.

A tabela 136 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 136 - TPOS class: Position Indicator

TPOS class							
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix, and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Descriptions							
EEName		DPL		External equipment nameplate.		О	
Status Information							
EEHealth		ENS		External equipment health.		О	
Measured and Metered Values							
PosPctSv		SAV		Position given as percentage of full movement		С	
				[%].			
Settings							
SmpRte		ING		Sampling rate setting.		О	

Tabela 137 – Análise dos Objetos de Dados na classe TPOS

Análise dos Objetos de Dados no TPOS				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar			
	falhas ou necessidade de manutenção.			
PosPctSv (SAV)	Mede a posição do dispositivo como uma porcentagem do			
	deslocamento total.			
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-			
	dicas da posição.			

Fonte: O próprio autor

A.12.8 TPRS - SENSOR DE PRESSÃO

O Logical Node TPRS (Pressure Sensor) é responsável por monitorar e medir a pressão de um meio específico. Ele permite que sistemas de automação tenham acesso em tempo real às variações de pressão, possibilitando ações corretivas e ajustes automáticos quando necessário.

Visto que a variável pressão é umas das principais variáveis encontradas no chão de fábrica, este LN pode ser aplicado em sistemas hidráulicos, pneumáticos, tubulações de gás e líquidos, monitoramento de pressão em caldeiras, processos químicos e controle de pressão em sistemas de refrigeração.

Tabela 138 - TPRS class: Pressure Sensor

				TPRS class			
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix, and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Descripti	ions						
EEName		DPL		External equipment nameplate.		О	
Status In	ıformatioı	n					
EEHealth		ENS		External equipment health.		О	
Measure	Measured and Metered Values						
PresSv		SAV		Pressure of media [Pa].		С	
Settings	Settings						
SmpRte		ING		Sampling rate setting.		О	

Tabela 139 – Análise dos Objetos de Dados na classe TPRS

An	Análise dos Objetos de Dados no TPRS				
Objeto de Dados	Descrição				
EEName (DPL)	Placa de identificação do equipamento externo.				
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar				
	falhas ou necessidade de manutenção.				
PresSv (SAV)	Mede a pressão do meio monitorado em pascais (Pa).				
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-				
	dicas da pressão.				

Fonte: O próprio autor

A.12.9 TRTN - TRANSMISSOR DE ROTAÇÃO

O Logical Node TRTN (Rotation Transmitter) é responsável pela medição da velocidade rotacional de equipamentos. Ele fornece informações para o monitoramento e controle de máquinas rotativas.

O TRTN pode ser utilizado em aplicações industriais para monitorar a rotação de motores elétricos, turbinas, bombas, compressores e outros dispositivos que dependem da velocidade de rotação para seu funcionamento adequado.

 ${\bf A}$ tabela 140 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 140 – TRTN class: Rotation Transmitter

	TRTN class						
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C	
Name		Class					
LNName				The name shall be composed of the class name,			
				the LN-Prefix, and LN-Instance-ID according			
				to IEC 61850-7-2, Clause 22.			
Descripti	Descriptions						
EEName		DPL		External equipment nameplate.		О	
Status In	ıformatioı	n					
EEHealth		ENS		External equipment health.		О	
Measure	Measured and Metered Values						
RotSpdSv		SAV		Rotational speed [1/s].		С	
Settings	Settings						
SmpRte		ING		Sampling rate setting.		О	

Tabela 141 – Análise dos Objetos de Dados na classe TRTN

Análise dos Objetos de Dados no TRTN				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar			
	falhas ou necessidade de manutenção.			
RotSpdSv (SAV)	Mede a velocidade rotacional do equipamento monitorado,			
	em rotações por segundo $(1/s)$.			
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-			
	dicas da velocidade de rotação.			

Fonte: O próprio autor

A.12.10 TTMP - SENSOR DE TEMPERATURA

O Logical Node TTMP (Temperature Sensor) é utilizado para monitoramento e medição da temperatura em equipamentos em sistemas elétricos.

Em aplicações industriais temperatura é a principal variável junto com pressão e nível, podendo ser utilizada em motores elétricos, fornos industriais, sistemas de refrigeração, caldeiras, processos químicos e ambientes onde variações de temperatura podem indicar falhas ou necessidade de manutenção.

A tabela 142 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 142 – TTMP class: Temperature Sensor

				TTMP class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	Descriptions					
EEName		DPL		External equipment nameplate.		О
Status In	Status Information					
EEHealth		ENS		External equipment health.		О
Measured	Measured and Metered Values					
TmpSv		SAV		Temperature [°C].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Tabela 143 – Análise dos Objetos de Dados na classe TTMP

Análise dos Objetos de Dados no TTMP				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar			
	falhas ou necessidade de manutenção.			
TmpSv (SAV)	Mede a temperatura do ambiente ou do equipamento moni-			
	torado, em graus Celsius (°C).			
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-			
	dicas da temperatura.			

Fonte: O próprio autor

A.12.11 TVBR - SENSOR DE VIBRAÇÃO

 $\label{eq:observable} O\ Logical\ Node\ TVBR\ (Vibration\ Sensor)\ \'e\ utilizado\ para\ monitoramento\ e\ medição\ de\ vibração\ em\ equipamentos\ e\ estruturas.$

Na indústria, o TVBR é pode ser empregado em motores elétricos, turbinas, compressores, bombas, geradores e estruturas mecânicas sujeitas a vibração.

A tabela 144 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 144 – TVBR class: Vibration Sensor

				TVBR class		
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	Descriptions					
EEName		DPL		External equipment nameplate.		О
Status In	Status Information					
EEHealth		ENS		External equipment health.		О
Measure	Measured and Metered Values					
VbrSv		SAV		Vibration [mm/s ²].		С
Settings						
SmpRte		ING		Sampling rate setting.		О

Tabela 145 – Análise dos Objetos de Dados na classe TVBR

Ana	Análise dos Objetos de Dados no TVBR					
Objeto de Dados	Descrição					
EEName (DPL)	Placa de identificação do equipamento externo.					
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar					
	falhas ou necessidade de manutenção.					
VbrSv (SAV)	Mede a vibração do equipamento monitorado, em mm/s ² .					
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-					
	dicas de vibração.					

Fonte: O próprio autor

A.12.12 TWPH - ACIDEZ DA ÁGUA

O Logical Node TWPH (Water pH Level) é responsável pelo monitoramento do nível de pH da água, garantindo que sua acidez ou alcalinidade esteja dentro dos limites operacionais adequados.

O TWPH pode ser aplicado em sistemas de tratamento de água, caldeiras industriais, refinarias e indústrias químicas.

A tabela 146 apresenta a classe responsável por esse Logical Node e seus atributos.

Tabela 146 – TWPH class: Water pH Level

	TWPH class					
Data	Object	Common	Data	Explanation	\mathbf{T}	M/O/C
Name		Class				
LNName				The name shall be composed of the class name,		
				the LN-Prefix, and LN-Instance-ID according		
				to IEC 61850-7-2, Clause 22.		
Descripti	Descriptions					
EEName		DPL		External equipment nameplate.		О
Status In	formation	n				
EEHealth		ENS		External equipment health.		О
Measured	Measured and Metered Values					
H2OPhSv		SAV		Water pH level (0-14).		С
Settings	Settings					
SmpRte		ING		Sampling rate setting.		О

Tabela 147 – Análise dos Objetos de Dados na classe TWPH

Análise dos Objetos de Dados no TWPH				
Objeto de Dados	Descrição			
EEName (DPL)	Placa de identificação do equipamento externo.			
EEHealth (ENS)	Estado de saúde do equipamento externo, podendo indicar			
	falhas ou necessidade de manutenção.			
H2OPhSv (SAV)	Mede o nível de pH da água na escala de 0 a 14.			
SmpRte (ING)	Configuração da taxa de amostragem para medições perió-			
	dicas do pH da água.			

Fonte: O próprio autor

A.13 GRUPOS P, Q, R, W, X, Y, Z

Os grupos P, Q, R, W, X, Y e Z da norma não possuem *Logical Nodes* aplicáveis à automação industrial, sendo exclusivos para o setor elétrico. Esses *Logical Nodes* são projetados para funções específicas dentro de proteção, controle e supervisão de sistemas de potência, como transformadores, disjuntores e proteção de relés, não possuindo aplicabilidade direta em processos industriais.

• Grupo P - Proteção

- − PDIS Relé de distância (exclusivo do sistema elétrico); X
- − PDOP Relé de potência direcional (exclusivo do sistema elétrico); X
- − PDUP Relé de potência reversa (exclusivo do sistema elétrico);
- − PHIZ Relé de falha de fase (exclusivo do sistema elétrico);
- PMRI Relé de restrição de diferencial (exclusivo do sistema elétrico); X
- PTOV Relé de sobretensão (exclusivo do sistema elétrico); ✗
- PZSU Relé de impedância de sequência zero (exclusivo do sistema elétrico); ✗

• Grupo Q - Controle da Qualidade de Energia

− QFVR - Regulador de fator de potência (exclusivo do sistema elétrico); X

- QPIR Regulador de potência reativa (exclusivo do sistema elétrico); ✗
- QVVR Regulador de tensão (exclusivo do sistema elétrico); ✗

• Grupo R - Controle de Regulação

- RDRC Controle de redução de demanda (exclusivo do sistema elétrico); ✗
- RLOC Controle de local/remoto (exclusivo do sistema elétrico); ✗
- RSYN Sincronização de geradores (exclusivo do sistema elétrico); ✗

• Grupo W - Controle de Comutação

- − WAPC Controle de potência ativa (exclusivo do sistema elétrico); X
- WAVR Regulador de tensão automático (exclusivo do sistema elétrico); ✗
- WFSC Controle de fator de potência (exclusivo do sistema elétrico); ✗

• Grupo X - Proteção contra Faltas

- XCBR Disjuntor (exclusivo do sistema elétrico); ✗
- − XSWI Seccionadora (exclusivo do sistema elétrico);

• Grupo Y - Funções de Teleproteção

- YLTC Controle de comutador de tap de transformador (exclusivo do sistema elétrico); ✗
- YPTR Controle de transformadores de potência (exclusivo do sistema elétrico); ✗

• Grupo Z - Controle de Sincronismo e Condições de Rede

- ZGEN Controle de geradores (exclusivo do sistema elétrico); ✗
- ZINT Intertravamento entre dispositivos (exclusivo do sistema elétrico); ✗

APÊNDICE B – ARQUIVO SCL CONTENDO TODOS OS LOGICAL NODES PARA APLICAÇÕES INDUSTRIAIS

```
1 <?xml version="1.0" encoding="utf-8"?>
 2
 3
   <?xml version="1.0" encoding="UTF-8"?>
 5
   <SCL xmlns="http://www.iec.ch/61850/2003/SCL"</pre>
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 6
        xsi:schemaLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd"
 7
 8
        version="2007" revision="A">
 9
10
       11
       <Header
12
           id="Industrial_ICD_Template"
13
           toolID="Industrial_template"
14
           nameStructure="IEDName"
           version="1.0"
           revision="1"/>
16
17
18
       <!-- ======= Communication ========== -->
19
       <Communication>
           <SubNetwork name="Industrial_Network" type="8-MMS">
20
               <ConnectedAP iedName="IED_Industrial" apName="AP_1">
21
22
                   <Address>
23
                      <P type="IP">192.168.1.1</P>
                      <P type="IP-SUBNET">255.255.255.0</P>
24
                      <P type="IP-GATEWAY">192.168.1.254</P>
25
26
                   </Address>
27
               </ConnectedAP>
           </SubNetwork>
28
29
       </Communication>
30
31
       <IED name="IED_Industrial" manufacturer="YourCompany"</pre>
32
            type="Gateway" desc="IED para integração IEC 61850 em ambiente industrial">
33
34
35
           <!-- ---- Acesso lógico (um por placa de rede, por ex.) -->
           <AccessPoint name="AP_1">
36
37
               <Server>
                   <!-- ====== LDevice ======= -->
38
39
                   <LDevice inst="LD1" desc="LDevice de Controle & Medição">
40
                      <!-- Logical Node Zero (obrigatório) -->
41
                      <LN lnClass="LLN0" lnType="C_LLN0" inst="1"/>
42
43
                      <!-- Logical Node Physical Device (obrigatório) -->
                      <LN lnClass="LPHD" lnType="C_LPHD" inst="1"/>
ЦЦ
45
                      <!-- Grupo A: Controle Automático -->
46
47
                      <!-- AVCO: Controle de tensão -->
                      <LN lnClass="AVCO" lnType="CONTROL/AVCO" inst="1">
48
49
                          <DOI name="VolInst">
50
                              <DAI name="instMag">
51
                                  <Val>118.5</Val>
                                  <!-- Magnitude instantanea da tensao -->
52
53
                              </DAI>
                              <DAI name="mag">
54
55
                                  <Val>118.5</Val>
                                  <!-- Valor medido da tensao -->
56
57
                              </DAI>
                              <DAI name="q">
58
                                  <Val>good</Val>
59
60
                                  <!-- Qualidade da informacao -->
61
                              </DAI>
                              <DAI name="t">
62
                                  <Val>2025-01-23T16:00:00Z</Val>
63
64
                                  <!-- Timestamp -->
```

```
65
                                  </DAI>
66
                              </DOI>
 67
 68
                              <DOI name="VolSpt">
                                  <DAI name="setMag">
69
70
                                      <Val>120.0</Val>
                                      <!-- Setpoint da tensao -->
71
72
                                  </DAI>
                              </DOI>
 73
 74
 75
                              <DOI name="CtlVal">
 76
                                  <DAI name="mxVal">
 77
                                      <Val>125.0</Val>
 78
                                      <!-- Valor maximo permitido -->
79
                                  <DAI name="q">
80
                                      <Val>good</Val>
81
 82
                                      <!-- Qualidade da informacao -->
 83
                                  </DAI>
                                  <DAI name="t">
84
                                      <Val>2025-01-23T16:00:00Z</Val>
85
86
                                      <!-- Timestamp -->
87
                                  </DAI>
                              </DOI>
88
89
 90
                              <DOI name="VolTol">
 91
                                  <DAI name="setMag">
92
                                      <Val>5.0</Val>
93
                                      <!-- Margem de tolerancia da tensao -->
 94
                                  </DAI>
                              </DOI>
 95
96
 97
                              <DOI name="VolAlm">
 98
                                  <DAI name="stVal">
99
                                      <Val>false</Val>
100
                                      <!-- Alarme de tensao desativado -->
                                  </DAI>
101
                                  <DAI name="q">
102
103
                                      <Val>good</Val>
104
                                      <!-- Qualidade da informacao -->
105
                                  </DAI>
106
                                  <DAI name="t">
107
                                      <Val>2025-01-23T16:00:00Z</Val>
108
                                      <!-- Timestamp -->
109
                                  </DAI>
110
                              </DOI>
111
                          </LN>
112
113
                         <!-- Grupo C: Controle Supervisório -->
114
                          <!-- CALH: Gerenciamento de alarmes -->
                         <LN lnClass="CALH" lnType="ANALYSIS/CALH" inst="1">
115
                              <DOI name="HarA">
116
117
                                  <DAI name="mag">
118
                                      <Val>3.2</Val>
119
                                      <!-- Valor da componente harmonica positiva -->
120
                                  </DAI>
                                  <DAI name="q">
121
122
                                      <Val>good</Val>
123
                                      <!-- Qualidade da informacao -->
                                  </DAI>
124
125
                                  <DAI name="t">
126
                                      <Val>2025-01-23T16:00:00Z</Val>
127
                                      <!-- Timestamp -->
128
                                  </DAI>
```

```
C:\Users\gjmai\Downloads\XMLFile4.xml
```

```
129
                              </DOI>
130
131
                              <DOI name="HarB">
132
                                  <DAI name="mag">
133
                                      <Val>1.1</Val>
134
                                      <!-- Valor da componente harmonica negativa -->
135
                                  </DAI>
                                  <DAI name="q">
136
137
                                      <Val>good</Val>
138
                                      <!-- Qualidade da informacao -->
139
140
                                  <DAI name="t">
1Д1
                                      <Val>2025-01-23T16:01:00Z</Val>
142
                                      <!-- Timestamp -->
143
                                  </DAI>
                              </DOI>
144
145
146
                              <DOI name="HarC">
147
                                  <DAI name="mag">
148
                                      <Val>0.8</Val>
149
                                      <!-- Valor da componente harmonica de sequencia zero >
150
                                  </DAI>
                                  <DAI name="q">
151
152
                                      <Val>good</Val>
153
                                      <!-- Qualidade da informacao -->
154
                                  </DAI>
                                  <DAI name="t">
155
156
                                      <Val>2025-01-23T16:01:30Z</Val>
157
                                      <!-- Timestamp -->
                                  </DAI>
158
                              </DOI>
159
160
161
                              <DOI name="TotHar">
162
                                  <DAI name="mag">
                                      <Val>5.0</Val>
163
164
                                      <!-- Total Harmonic Distortion (THD) -->
                                  </DAI>
165
166
                                  <DAI name="q">
167
                                      <Val>good</Val>
168
                                      <!-- Qualidade da informacao -->
169
                                  </DAI>
170
                                  <DAI name="t">
171
                                      <Val>2025-01-23T16:02:00Z</Val>
172
                                      <!-- Timestamp -->
173
                                  </DAI>
174
                              </D0I>
                          </LN>
175
176
177
                          <!-- CCGR: Controle de grupos de refrigeração -->
                          <LN lnClass="CCGR" lnType="CONTROL/CCGR" inst="1">
178
179
                              <DOI name="LocSta">
                                  <DAI name="stVal">
180
181
                                      <Val>true</Val>
182
                                      <!-- Controle local ativado -->
183
                                  </DAI>
                                  <DAI name="q">
184
185
                                      <Val>good</Val>
186
                                      <!-- Qualidade da informacao -->
187
                                  </DAI>
                                  <DAI name="t">
188
189
                                      <Val>2025-01-23T16:00:00Z</Val>
190
                                      <!-- Timestamp -->
191
                                  </DAI>
```

```
192
                              </DOI>
193
194
                              <DOI name="CmdBlk">
195
                                  <DAI name="stVal">
196
                                      <Val>false</Val>
197
                                      <!-- Comandos nao bloqueados -->
198
                                  </DAI>
                                  <DAI name="q">
199
200
                                      <Val>good</Val>
201
                                      <!-- Qualidade da informacao -->
202
203
                                  <DAI name="t">
204
                                      <Val>2025-01-23T16:01:00Z</Val>
205
                                      <!-- Timestamp -->
206
                                  </DAI>
                              </DOI>
207
208
                              <DOI name="OpCntRs">
209
210
                                  <DAI name="stVal">
211
                                      <Val>134</Val>
212
                                      <!-- Numero de operacoes realizadas -->
                                  </DAI>
213
214
                              </DOI>
215
216
                              <DOI name="TotWh">
217
                                  <DAI name="mag">
218
                                      <Val>45213.6</Val>
219
                                      <!-- Energia ativa total gerada em Wh -->
220
                                  </DAI>
221
                                  <DAI name="q">
222
                                      <Val>good</Val>
223
                                      <!-- Qualidade da informacao -->
224
                                  </DAI>
225
                                  <DAI name="t">
226
                                      <Val>2025-01-23T16:02:00Z</Val>
227
                                      <!-- Timestamp -->
                                  </DAI>
228
229
                              </DOI>
230
                              <DOI name="TotVArh">
231
232
                                  <DAI name="mag">
233
                                      <Val>9132.7</Val>
234
                                      <!-- Energia reativa total gerada em VArh -->
235
                                  </DAI>
236
                                  <DAI name="q">
237
                                      <Val>good</Val>
238
                                      <!-- Qualidade da informacao -->
                                  </DAI>
239
240
                                  <DAI name="t">
241
                                      <Val>2025-01-23T16:02:30Z</Val>
242
                                      <!-- Timestamp -->
                                  </DAI>
243
244
                              </DOI>
245
                          </LN>
246
247
                          <!-- CILO: Intertravamento -->
                          <LN lnClass="CILO" lnType="PROT/CILO" inst="1">
248
249
                              <DOI name="EnaOpn">
                                  <DAI name="stVal">
250
251
                                      <Val>true</Val>
252
                                      <!-- Liberacao para abrir o disjuntor -->
253
                                  <DAI name="q">
254
255
                                      <Val>good</Val>
```

```
256
                                      <!-- Qualidade da informacao -->
257
                                  </DAT>
258
                                  <DAI name="t">
259
                                      <Val>2025-01-23T16:00:00Z</Val>
260
                                      <!-- Timestamp -->
                                  </DAI>
261
                              </D0I>
262
263
                              <DOI name="EnaCls">
264
                                  <DAI name="stVal">
265
266
                                      <Val>false</Val>
267
                                      <!-- Liberacao para fechar o disjuntor -->
268
                                  </DAT>
                                  <DAI name="q">
269
270
                                      <Val>good</Val>
271
                                      <!-- Qualidade da informacao -->
272
                                  </DAI>
273
                                  <DAI name="t">
274
                                      <Val>2025-01-23T16:01:00Z</Val>
275
                                      <!-- Timestamp -->
                                  </DAI>
276
                              </DOI>
277
278
279
                              <DOI name="OpnReq">
280
                                  <DAI name="ctlVal">
281
                                      <Val>true</Val>
282
                                      <!-- Solicitacao de abertura -->
283
                                  </DAI>
284
                              </DOI>
285
                              <DOI name="ClsReq">
286
287
                                  <DAI name="ctlVal">
288
                                      <Val>false</Val>
                                      <!-- Solicitacao de fechamento -->
289
                                  </DAI>
290
                              </D0I>
291
292
                              <DOI name="General">
293
294
                                  <DAI name="setVal">
295
                                      <Val>3</Val>
296
                                      <!-- Codigo geral de condicao de intertravamento -->
297
                                  </DAI>
298
                              </D0I>
299
                         </LN>
300
                         <!-- Grupo D: Recursos Energéticos Distribuídos (DER) -->
301
302
                         <!-- DCHB: Gerenciamento de caldeiras -->
                         <LN lnClass="DCHB" lnType="SUPERV/DCHB" inst="1">
303
304
                              <DOI name="PhV">
305
                                  <DAI name="mag">
306
                                      <Val>110.0</Val>
307
                                      <!-- Tensao medida no barramento DC -->
308
                                  </DAI>
309
                                  <DAI name="q">
310
                                      <Val>good</Val>
311
                                      <!-- Qualidade da informacao -->
312
                                  </DAI>
313
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:00Z</Val>
314
                                      <!-- Timestamp -->
315
                                  </DAI>
316
317
                              </D0I>
318
                              <DOI name="Amp">
319
```

```
320
                                  <DAI name="mag">
321
                                      <Val>45.0</Val>
322
                                      <!-- Corrente medida no barramento DC -->
323
                                  </DAI>
                                  <DAI name="q">
324
325
                                      <Val>good</Val>
326
                                      <!-- Qualidade da informacao -->
327
                                  </DAI>
                                  <DAI name="t">
328
329
                                      <Val>2025-01-23T16:01:00Z</Val>
330
                                      <!-- Timestamp -->
                                  </DAI>
331
332
                              </DOI>
333
334
                              <DOI name="VolErr">
335
                                  <DAI name="stVal">
336
                                      <Val>false</Val>
337
                                      <!-- Tensao dentro do limite permitido -->
338
                                  </DAI>
                                  <DAI name="q">
339
340
                                      <Val>good</Val>
341
                                      <!-- Qualidade da informacao -->
342
                                  </DAI>
                                  <DAI name="t">
343
344
                                      <Val>2025-01-23T16:01:30Z</Val>
345
                                      <!-- Timestamp -->
346
                                  </DAI>
                              </DOI>
347
348
349
                              <DOI name="AmpErr">
350
                                  <DAI name="stVal">
                                      <Val>false</Val>
351
352
                                      <!-- Corrente dentro do limite permitido -->
353
                                  </DAI>
354
                                  <DAI name="q">
                                      <Val>good</Val>
355
356
                                      <!-- Qualidade da informacao -->
357
                                  </DAI>
358
                                  <DAI name="t">
359
                                      <Val>2025-01-23T16:02:00Z</Val>
360
                                      <!-- Timestamp -->
361
                                  </DAI>
362
                              </D0I>
363
                         </LN>
364
                         <!-- Grupo F: Blocos Funcionais -->
365
366
                         <!-- FCNT: Contador -->
                         <LN lnClass="FCNT" lnType="MEAS/FCNT" inst="1">
367
368
                              <DOI name="Hz">
369
                                  <DAI name="mag">
370
                                      <Val>59.8</Val>
371
                                      <!-- Frequencia medida em Hz -->
372
                                  </DAI>
373
                                  <DAI name="q">
374
                                      <Val>good</Val>
375
                                      <!-- Qualidade da informacao -->
376
                                  </DAI>
377
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:00Z</Val>
378
379
                                      <!-- Timestamp -->
                                  </DAI>
380
381
                              </D0I>
382
383
                              <DOI name="FrqAlm">
```

```
384
                                  <DAI name="stVal">
385
                                      <Val>false</Val>
386
                                      <!-- Alarme de frequencia desativado -->
387
                                  </DAI>
                                  <DAI name="q">
388
389
                                      <Val>good</Val>
390
                                      <!-- Qualidade da informacao -->
391
                                  </DAI>
                                  <DAI name="t">
392
393
                                      <Val>2025-01-23T16:00:30Z</Val>
394
                                      <!-- Timestamp -->
                                  </DAI>
395
396
                              </DOI>
397
398
                              <DOI name="FrqSpt">
399
                                  <DAI name="setMag">
400
                                      <Val>60.0</Val>
401
                                      <!-- Setpoint de frequencia -->
402
                                  </DAI>
                              </DOI>
403
404
                              <DOI name="FrqTol">
405
406
                                  <DAI name="setMag">
407
                                      <Val>0.2</Val>
408
                                      <!-- Tolerancia da frequencia -->
409
                                  </DAI>
410
                              </D0I>
411
                         </LN>
412
413
                         <!-- FCSD: Descrição da forma de curva -->
414
                         <LN lnClass="FCSD" lnType="MEAS/FCSD" inst="1">
                              <DOI name="HzChg">
415
416
                                  <DAI name="mag">
417
                                      <Val>0.5</Val>
418
                                      <!-- Variacao de frequencia detectada -->
419
                                  </DAI>
420
                                  <DAI name="q">
                                      <Val>good</Val>
421
422
                                      <!-- Qualidade da informacao -->
                                  </DAI>
423
                                  <DAI name="t">
424
425
                                      <Val>2025-01-23T16:00:00Z</Val>
426
                                      <!-- Timestamp -->
427
                                  </DAI>
428
                              </DOI>
429
                              <DOI name="RateOfChg">
430
431
                                  <DAI name="mag">
432
                                      <Val>0.3</Val>
433
                                      <!-- Taxa de variacao de frequencia em Hz/s -->
434
                                  </DAI>
435
                                  <DAI name="q">
436
                                      <Val>good</Val>
437
                                      <!-- Qualidade da informacao -->
438
                                  </DAI>
                                  <DAI name="t">
439
440
                                      <Val>2025-01-23T16:00:30Z</Val>
441
                                      <!-- Timestamp -->
                                  </DAI>
442
                              </DOI>
443
444
445
                              <DOI name="HzChgAlm">
                                  <DAI name="stVal">
446
447
                                      <Val>false</Val>
```

```
448
                                      <!-- Alarme de variacao de frequencia desativado -->
449
                                  </DAI>
450
                                  <DAI name="q">
451
                                      <Val>good</Val>
452
                                      <!-- Qualidade da informacao -->
453
                                  </DAI>
454
                                  <DAI name="t">
455
                                      <Val>2025-01-23T16:01:00Z</Val>
456
                                      <!-- Timestamp -->
457
                                  </DAI>
458
                              </DOI>
                         </LN>
459
460
461
                         <!-- FFIL: Filtro genérico -->
462
                         <LN lnClass="FFIL" lnType="SUPERV/FFIL" inst="1">
                             <DOI name="FilTyp">
463
                                  <DAI name="stVal">
464
465
                                      <Val>2</Val>
466
                                      <!-- Tipo de filtro utilizado (por exemplo, passa- >
                           baixa) -->
467
                                 </DAI>
                             </DOI>
468
469
                             <DOI name="St">
470
471
                                  <DAI name="stVal">
472
                                      <Val>true</Val>
473
                                      <!-- Filtro esta ativo -->
474
                                  </DAI>
                                  <DAI name="q">
475
476
                                      <Val>good</Val>
477
                                      <!-- Qualidade da informacao -->
478
                                  </DAI>
479
                                  <DAI name="t">
480
                                      <Val>2025-01-23T16:00:00Z</Val>
481
                                      <!-- Timestamp -->
                                  </DAI>
482
483
                             </DOI>
484
485
                              <DOI name="BlkFil">
486
                                  <DAI name="ctlVal">
487
                                      <Val>false</Val>
488
                                      <!-- Filtro nao bloqueado -->
489
                                  </DAI>
490
                             </DOI>
491
492
                             <DOI name="OpTmh">
493
                                  <DAI name="stVal">
494
                                      <Val>267</Val>
495
                                      <!-- Tempo total de operacao do filtro em horas -->
496
                                  </DAI>
497
                             </DOI>
498
                         </LN>
499
500
                         <!-- FLIM: Limitação de saída da função de controle -->
501
                         <LN lnClass="FLIM" lnType="SUPERV/FLIM" inst="1">
502
                              <DOI name="AnIn">
503
                                  <DAI name="mag">
504
                                      <!-- Valor medido da variavel supervisionada -->
505
506
                                  </DAI>
                                  <DAI name="q">
507
508
                                      <Val>good</Val>
                                      <!-- Qualidade da informacao -->
509
510
                                  </DAI>
```

```
<DAI name="t">
511
                                      <Val>2025-01-23T16:00:00Z</Val>
512
513
                                      <!-- Timestamp -->
514
                                  </DAI>
515
                              </DOI>
516
517
                              <DOI name="Hi">
518
                                  <DAI name="stVal">
519
                                      <Val>false</Val>
520
                                      <!-- Limite superior nao ultrapassado -->
521
522
                                  <DAI name="q">
523
                                      <Val>good</Val>
524
                                      <!-- Qualidade da informacao -->
525
                                  <DAI name="t">
526
                                      <Val>2025-01-23T16:00:10Z</Val>
527
528
                                      <!-- Timestamp -->
529
                                  </DAI>
                              </DOI>
530
531
                              <DOI name="Lo">
532
533
                                  <DAI name="stVal">
534
                                      <Val>false</Val>
535
                                      <!-- Limite inferior nao ultrapassado -->
536
                                  </DAI>
537
                                  <DAI name="q">
538
                                      <Val>good</Val>
539
                                      <!-- Qualidade da informacao -->
540
                                  </DAI>
541
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:10Z</Val>
542
543
                                      <!-- Timestamp -->
544
                                  </DAI>
545
                              </D0I>
546
547
                              <DOI name="LimSpt1">
548
                                  <DAI name="setMag">
549
                                      <Val>100.0</Val>
550
                                      <!-- Limite superior configurado -->
551
                                  </DAI>
552
                              </DOI>
553
554
                              <DOI name="LimSpt2">
555
                                  <DAI name="setMag">
556
                                      <Val>50.0</Val>
557
                                      <!-- Limite inferior configurado -->
558
                                  </DAI>
559
                              </D0I>
560
                         </LN>
561
                         <!-- FPID: Regulador PID -->
562
                         <LN lnClass="FPID" lnType="CONTROL/FPID" inst="1">
563
564
                              <DOI name="InRef">
565
                                  <DAI name="mag">
566
                                      <Val>48.7</Val>
567
                                      <!-- Valor de entrada do processo -->
568
                                  </DAI>
                                  <DAI name="q">
569
570
                                      <Val>good</Val>
571
                                      <!-- Qualidade da informacao -->
572
                                  <DAI name="t">
573
574
                                      <Val>2025-01-23T16:00:00Z</Val>
```

```
575
                                      <!-- Timestamp -->
576
                                  </DAI>
577
                              </D0I>
578
                              <DOI name="OutRef">
579
580
                                  <DAI name="mag">
581
                                      <Val>51.3</Val>
582
                                      <!-- Saida do controlador PID -->
                                  </DAI>
583
                                  <DAI name="q">
584
585
                                      <Val>good</Val>
586
                                      <!-- Qualidade da informacao -->
587
                                  </DAI>
                                  <DAI name="t">
588
589
                                      <Val>2025-01-23T16:00:10Z</Val>
590
                                      <!-- Timestamp -->
591
                                  </DAI>
592
                              </DOI>
593
                              <DOI name="SetPt">
594
                                  <DAI name="setMag">
595
596
                                      <Val>50.0</Val>
597
                                      <!-- Setpoint da variavel controlada -->
                                  </DAI>
598
599
                              </DOI>
600
                              <DOI name="Kp">
601
602
                                  <DAI name="setMag">
603
                                      <Val>1.5</Val>
604
                                      <!-- Ganho proporcional -->
                                  </DAI>
605
                              </DOI>
606
607
608
                              <DOI name="Ki">
609
                                  <DAI name="setMag">
                                      <Val>0.8</Val>
610
                                      <!-- Ganho integral -->
611
612
                                  </DAI>
613
                              </DOI>
614
615
                              <DOI name="Kd">
616
                                  <DAI name="setMag">
617
                                      <Val>0.2</Val>
618
                                      <!-- Ganho derivativo -->
619
                                  </DAI>
620
                              </D0I>
621
                              <DOI name="Mod">
622
623
                                  <DAI name="stVal">
624
                                      <Val>2</Val>
625
                                      <!-- Modo automatico -->
626
                                  </DAI>
627
                              </D0I>
628
                         </LN>
629
630
                         <!-- FRMP: Função de rampa -->
                          <LN lnClass="FRMP" lnType="CONTROL/FRMP" inst="1">
631
632
                              <DOI name="In">
                                  <DAI name="mag">
633
                                      <Val>60.0</Val>
634
635
                                      <!-- Valor de entrada da rampa -->
636
                                  <DAI name="q">
637
638
                                      <Val>good</Val>
```

```
639
                                      <!-- Qualidade da informacao -->
640
                                  </DAI>
641
                                  <DAI name="t">
642
                                      <Val>2025-01-23T16:00:00Z</Val>
643
                                      <!-- Timestamp -->
                                  </DAI>
644
645
                              </D0I>
646
647
                              <DOI name="Out">
                                  <DAI name="mag">
648
649
                                      <Val>55.0</Val>
650
                                      <!-- Valor de saida da rampa -->
                                  </DAI>
651
                                  <DAI name="q">
652
653
                                      <Val>good</Val>
654
                                      <!-- Qualidade da informacao -->
655
                                  </DAI>
656
                                  <DAI name="t">
657
                                      <Val>2025-01-23T16:00:10Z</Val>
658
                                      <!-- Timestamp -->
                                  </DAI>
659
                              </DOI>
660
661
662
                              <DOI name="RampUp">
663
                                  <DAI name="setMag">
664
                                      <Val>5.0</Val>
665
                                      <!-- Taxa de subida da rampa -->
                                  </DAI>
666
667
                              </DOI>
668
                              <DOI name="RampDn">
669
                                  <DAI name="setMag">
670
671
                                      <Val>4.0</Val>
672
                                      <!-- Taxa de descida da rampa -->
                                  </DAI>
673
                              </D0I>
674
675
                              <DOI name="Mod">
676
677
                                  <DAI name="stVal">
678
                                      <Val>1</Val>
679
                                      <!-- Modo automatico -->
680
                                  </DAI>
681
                              </DOI>
                         </LN>
682
683
684
                         <!-- FSPT: Controle de set-point -->
685
                         <LN lnClass="FSPT" lnType="CONTROL/FSPT" inst="1">
                              <DOI name="SetPt">
686
687
                                  <DAI name="setMag">
688
                                      <Val>75.0</Val>
689
                                      <!-- Valor de setpoint aplicado -->
690
                                  </DAI>
691
                              </D0I>
692
693
                              <DOI name="SetPtRdy">
694
                                  <DAI name="stVal">
695
                                      <Val>true</Val>
696
                                      <!-- Setpoint pronto para ser aplicado -->
697
                                  </DAI>
                                  <DAI name="q">
698
699
                                      <Val>good</Val>
700
                                      <!-- Qualidade da informacao -->
                                  </DAI>
701
702
                                  <DAI name="t">
```

```
703
                                      <Val>2025-01-23T16:00:00Z</Val>
704
                                      <!-- Timestamp -->
705
                                  </DAI>
706
                              </D0I>
707
                              <DOI name="SetPtFb">
708
709
                                  <DAI name="mag">
                                      <Val>74.8</Val>
710
711
                                      <!-- Feedback do valor aplicado -->
712
                                  </DAI>
713
                                  <DAI name="q">
714
                                      <Val>good</Val>
715
                                      <!-- Qualidade da informacao -->
716
                                  </DAI>
717
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:10Z</Val>
718
                                      <!-- Timestamp -->
719
720
                                  </DAI>
721
                              </D0I>
722
723
                              <DOI name="Mod">
724
                                  <DAI name="stVal">
725
                                      <Val>2</Val>
726
                                      <!-- Modo automatico -->
727
                                  </DAI>
728
                              </D0I>
729
                         </LN>
730
731
                         <!-- FXOT: Ação em limiar superior -->
732
                         <LN lnClass="FXOT" lnType="CONTROL/FXOT" inst="1">
                              <DOI name="ExtOp">
733
                                  <DAI name="ctlVal">
734
735
                                      <Val>true</Val>
736
                                      <!-- Comando logico de saida externa -->
                                  </DAI>
737
738
                              </D0I>
739
740
                              <DOI name="ExtVal">
741
                                  <DAI name="mxVal">
742
                                      <Val>10.5</Val>
743
                                      <!-- Valor analogico de saida externa -->
744
                                  </DAI>
745
                                  <DAI name="q">
746
                                      <Val>good</Val>
747
                                      <!-- Qualidade da informacao -->
748
                                  </DAI>
749
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:00Z</Val>
750
751
                                      <!-- Timestamp -->
752
                                  </DAI>
753
                              </DOI>
754
                              <DOI name="OpCnt">
755
756
                                  <DAI name="stVal">
757
                                      <Val>57</Val>
                                      <!-- Contador de operacoes -->
758
759
                                  </DAI>
760
                              </D0I>
761
762
                              <DOI name="BlkOp">
                                  <DAI name="stVal">
763
764
                                      <Val>false</Val>
765
                                      <!-- Saida nao bloqueada -->
766
                                  </DAI>
```

```
<DAI name="q">
767
768
                                      <Val>good</Val>
769
                                      <!-- Qualidade da informacao -->
770
                                  </DAI>
                                  <DAI name="t">
771
772
                                      <Val>2025-01-23T16:00:10Z</Val>
773
                                      <!-- Timestamp -->
774
                                  </DAI>
                              </D0I>
775
776
                         </LN>
777
                         <!-- FXUT: Ação em limiar inferior -->
778
                         <LN lnClass="FXUT" lnType="CONTROL/FXUT" inst="1">
779
                              <DOI name="ExtSt">
780
781
                                  <DAI name="stVal">
782
                                      <Val>true</Val>
783
                                      <!-- Estado da entrada externa -->
784
                                  </DAI>
785
                                  <DAI name="q">
786
                                      <Val>good</Val>
787
                                      <!-- Qualidade da informacao -->
788
                                  </DAI>
789
                                  <DAI name="t">
790
                                      <Val>2025-01-23T16:00:00Z</Val>
791
                                      <!-- Timestamp -->
792
                                  </DAI>
793
                              </DOI>
794
795
                              <DOI name="ExtVal">
796
                                  <DAI name="mag">
797
                                      <Val>27.4</Val>
798
                                      <!-- Valor analogico da entrada externa -->
799
                                  </DAI>
800
                                  <DAI name="q">
801
                                      <Val>good</Val>
802
                                      <!-- Qualidade da informacao -->
                                  </DAI>
803
804
                                  <DAI name="t">
805
                                      <Val>2025-01-23T16:00:10Z</Val>
806
                                      <!-- Timestamp -->
807
                                  </DAI>
808
                              </DOI>
809
                              <DOI name="OpCnt">
810
                                  <DAI name="stVal">
811
812
                                      <Val>12</Val>
813
                                      <!-- Contador de ativacoes da entrada -->
                                  </DAI>
814
815
                              </DOI>
816
                              <DOI name="BlkIn">
817
                                  <DAI name="stVal">
818
819
                                      <Val>false</Val>
820
                                      <!-- Entrada nao bloqueada -->
821
                                  </DAI>
                                  <DAI name="q">
822
823
                                      <Val>good</Val>
824
                                      <!-- Qualidade da informacao -->
825
                                  </DAI>
                                  <DAI name="t">
826
                                      <Val>2025-01-23T16:00:20Z</Val>
827
828
                                      <!-- Timestamp -->
                                  </DAI>
829
830
                              </DOI>
```

```
831
                          </LN>
832
833
                         <!-- Grupo G: Referências Funcionais Genéricas -->
834
                         <!-- GAPC: Controle automático genérico de processos -->
                         <LN lnClass="GAPC" lnType="CONTROL/GAPC" inst="1">
835
836
                              <DOI name="InVal">
837
                                  <DAI name="mag">
838
                                      <Val>32.7</Val>
839
                                      <!-- Valor de entrada do processo -->
840
                                  </DAI>
841
                                  <DAI name="q">
                                      <Val>good</Val>
842
843
                                      <!-- Qualidade da informacao -->
844
                                  </DAI>
845
                                  <DAI name="t">
                                      <Val>2025-01-23T16:00:00Z</Val>
846
847
                                      <!-- Timestamp -->
848
                                  </DAI>
849
                              </D0I>
850
                              <DOI name="OutVal">
851
                                  <DAI name="mag">
852
853
                                      <Val>35.1</Val>
854
                                      <!-- Valor de saida do controle -->
                                  </DAI>
855
856
                                  <DAI name="q">
                                      <Val>good</Val>
857
858
                                      <!-- Qualidade da informacao -->
859
                                  </DAI>
                                  <DAI name="t">
860
861
                                      <Val>2025-01-23T16:00:10Z</Val>
                                      <!-- Timestamp -->
862
863
                                  </DAI>
864
                              </DOI>
865
                              <DOI name="SetPt">
866
                                  <DAI name="setMag">
867
                                      <Val>36.0</Val>
868
869
                                      <!-- Setpoint configurado -->
870
                                  </DAI>
871
                              </DOI>
872
873
                              <DOI name="Mod">
874
                                  <DAI name="stVal">
875
                                      <Val>2</Val>
876
                                      <!-- Modo automatico -->
877
                                  </DAI>
                              </D0I>
878
879
880
                              <DOI name="BlkCtl">
881
                                  <DAI name="stVal">
882
                                      <Val>false</Val>
883
                                      <!-- Controle nao bloqueado -->
884
                                  </DAI>
                                  <DAI name="q">
885
                                      <Val>good</Val>
886
887
                                      <!-- Qualidade da informacao -->
888
                                  <DAI name="t">
889
                                      <Val>2025-01-23T16:00:20Z</Val>
890
891
                                      <!-- Timestamp -->
892
                                  </DAI>
                              </DOI>
893
894
```

```
<DOI name="St">
895
896
                                  <DAI name="stVal">
897
                                      <Val>true</Val>
898
                                      <!-- Funcao de controle ativa -->
899
                                  </DAI>
900
                                  <DAI name="q">
901
                                      <Val>good</Val>
902
                                      <!-- Qualidade da informacao -->
903
                                  </DAI>
904
                                  <DAI name="t">
905
                                      <Val>2025-01-23T16:00:30Z</Val>
906
                                      <!-- Timestamp -->
907
                                  </DAI>
                              </D0I>
908
909
                          </LN>
910
                          <!-- GGIO: Entrada/Saída genérica de processos -->
911
912
                          <LN lnClass="GGIO" lnType="GENERIC/GPIO" inst="1">
913
                              <DOI name="Ind1">
                                  <DAI name="stVal">
914
915
                                      <Val>true</Val>
916
                                      <!-- Entrada digital 1 ativada -->
917
                                  </DAI>
                                  <DAI name="q">
918
919
                                      <Val>good</Val>
920
                                      <!-- Qualidade da informacao -->
921
                                  </DAI>
                                  <DAI name="t">
922
923
                                      <Val>2025-01-23T16:00:00Z</Val>
924
                                      <!-- Timestamp -->
                                  </DAI>
925
                              </D0I>
926
927
928
                              <DOI name="AnIn1">
929
                                  <DAI name="mag">
930
                                      <Val>12.5</Val>
931
                                      <!-- Valor analogico da entrada 1 -->
                                  </DAI>
932
933
                                  <DAI name="q">
934
                                      <Val>good</Val>
935
                                      <!-- Qualidade da informacao -->
936
                                  </DAI>
937
                                  <DAI name="t">
938
                                      <Val>2025-01-23T16:00:10Z</Val>
939
                                      <!-- Timestamp -->
940
                                  </DAI>
941
                              </DOI>
942
943
                              <DOI name="SpcSO1">
944
                                  <DAI name="ctlVal">
945
                                      <Val>false</Val>
946
                                      <!-- Comando digital simples desativado -->
947
                                  </DAI>
948
                              </D0I>
949
950
                              <DOI name="Beh">
951
                                  <DAI name="stVal">
952
                                      <Val>1</Val>
953
                                      <!-- Modo padrao de comportamento -->
954
                                  </DAI>
955
                              </DOI>
956
                              <DOI name="NamPlt">
957
958
                                  <DAI name="vendor">
```

```
959
                                       <Val>ExemploFabricante</Val>
 960
                                   </DAI>
 961
                                   <DAI name="swRev">
 962
                                       <Val>v1.0</Val>
 963
                                   </DAI>
                                   <DAI name="d">
 964
 965
                                       <Val>Instancia generica de I/O</Val>
 966
                                   </DAI>
                               </DOI>
 967
 968
                           </LN>
 969
 970
 971
                           <!-- GLOG: Registro genérico -->
                           <LN lnClass="GLOG" lnType="EVENT/GLOG" inst="1">
 972
 973
                               <DOI name="EvId">
                                   <DAI name="vendor">
 974
                                       <Val>LOG001</Val>
 975
 976
                                       <!-- Identificacao do evento -->
 977
                                   </DAI>
 978
                                   <DAI name="swRev">
 979
                                       <Val>v1.0</Val>
 980
                                       <!-- Revisao do evento -->
 981
                                   </DAI>
                               </DOI>
 982
 983
 984
                               <DOI name="EvCat">
 985
                                   <DAI name="stVal">
 986
                                       <Val>2</Val>
 987
                                       <!-- Categoria do evento (ex: alarme operacional) -- >
 988
                                   </DAI>
                               </D0I>
 989
 990
 991
                               <DOI name="EvVal">
 992
                                   <DAI name="val">
 993
                                       <Val>27</Val>
 994
                                       <!-- Contador ou valor associado ao evento -->
 995
                                   </DAI>
 996
                                   <DAI name="q">
 997
                                       <Val>good</Val>
 998
                                       <!-- Qualidade da informacao -->
 999
                                   </DAI>
1000
                                   <DAI name="t">
1001
                                       <Val>2025-01-23T16:00:00Z</Val>
1002
                                       <!-- Timestamp -->
1003
                                   </DAI>
1004
                               </D0I>
1005
1006
                               <DOI name="EvTim">
1007
                                   <DAI name="setTm">
1008
                                       <Val>2025-01-23T16:00:00Z</Val>
1009
                                       <!-- Timestamp registrado -->
1010
                                   </DAI>
1011
                               </D0I>
1012
1013
                               <DOI name="Txt">
1014
                                   <DAI name="d">
1015
                                       <Val>Falha na leitura do sensor de pressao</Val>
1016
                                       <!-- Descricao do evento -->
1017
                                   </DAI>
                               </DOI>
1018
1019
                               <DOI name="LogEna">
1020
1021
                                   <DAI name="stVal">
```

```
1022
                                       <Val>true</Val>
1023
                                       <!-- Registro de log habilitado -->
1024
                                   </DAI>
1025
                                   <DAI name="q">
1026
                                       <Val>good</Val>
1027
                                   </DAI>
1028
                                   <DAI name="t">
1029
                                       <Val>2025-01-23T15:59:50Z</Val>
1030
                                   </DAI>
                               </D0I>
1031
1032
                           </LN>
1033
1034
                           <!-- GSAL: Aplicações genéricas de segurança -->
                           <LN lnClass="GSAL" lnType="GENERIC/GSAL" inst="1">
1035
1036
                               <DOI name="AnIn1">
                                   <DAI name="mag">
1037
1038
                                       <Val>18.4</Val>
1039
                                       <!-- Valor analogico generico 1 -->
1040
                                   </DAI>
1041
                                   <DAI name="q">
1042
                                       <Val>good</Val>
1043
                                       <!-- Qualidade da informacao -->
1044
                                   </DAI>
                                   <DAI name="t">
1045
1046
                                       <Val>2025-01-23T16:00:00Z</Val>
1047
                                       <!-- Timestamp -->
1048
                                   </DAI>
                               </DOI>
1049
1050
1051
                               <DOI name="AnIn2">
1052
                                   <DAI name="mag">
1053
                                       <Val>33.1</Val>
1054
                                       <!-- Valor analogico generico 2 -->
1055
                                   </DAI>
                                   <DAI name="q">
1056
1057
                                       <Val>good</Val>
1058
                                   </DAT>
1059
                                   <DAI name="t">
1060
                                       <Val>2025-01-23T16:00:10Z</Val>
1061
                                   </DAI>
1062
                               </DOI>
1063
1064
                               <DOI name="Ind1">
1065
                                   <DAI name="stVal">
1066
                                       <Val>true</Val>
1067
                                       <!-- Estado logico generico 1 -->
1068
                                   </DAI>
                                   <DAI name="q">
1069
1070
                                       <Val>good</Val>
1071
                                   </DAI>
                                   <DAI name="t">
1072
1073
                                       <Val>2025-01-23T16:01:00Z</Val>
1074
                                   </DAI>
1075
                               </DOI>
1076
                               <DOI name="Ind2">
1077
                                   <DAI name="stVal">
1078
1079
                                       <Val>false</Val>
1080
                                       <!-- Estado logico generico 2 -->
1081
                                   </DAI>
1082
                                   <DAI name="q">
1083
                                       <Val>good</Val>
                                   </DAI>
1084
1085
                                   <DAI name="t">
```

```
1086
                                       <Val>2025-01-23T16:01:10Z</Val>
1087
                                   </DAI>
1088
                               </DOI>
1089
                               <DOI name="Beh">
1090
1091
                                   <DAI name="stVal">
1092
                                       <Val>1</Val>
1093
                                       <!-- Comportamento padrao do LN -->
                                   </DAI>
1094
                               </DOI>
1095
1096
1097
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
1098
1099
                                       <Val>ExemploFabricante</Val>
1100
                                   <DAI name="swRev">
1101
                                       <Val>v1.0</Val>
1102
1103
                                   </DAI>
1104
                                   <DAI name="d">
1105
                                       <Val>LN generico de status e analogicos</Val>
1106
                                   </DAI>
1107
                               </DOI>
1108
                          </LN>
1109
1110
                          <!-- Grupo H: Energia Hidráulica -->
1111
1112
                          <!-- HLVL: Indicador de nível de água -->
                          <LN lnClass="HLVL" lnType="SUPERV/HLVL" inst="1">
1113
1114
                               <DOI name="Lvl">
1115
                                   <DAI name="mag">
1116
                                       <Val>2.7</Val>
                                       <!-- Nivel atual do liquido em metros -->
1117
1118
                                   </DAI>
1119
                                   <DAI name="q">
1120
                                       <Val>good</Val>
1121
                                       <!-- Qualidade da informacao -->
1122
                                   </DAT>
1123
                                   <DAI name="t">
1124
                                       <Val>2025-01-23T16:00:00Z</Val>
1125
                                       <!-- Timestamp -->
1126
                                   </DAI>
1127
                               </DOI>
1128
1129
                               <DOI name="LvlAlm">
1130
                                   <DAI name="stVal">
1131
                                       <Val>false</Val>
1132
                                       <!-- Alarme de nivel desativado -->
1133
                                   </DAI>
                                   <DAI name="q">
1134
1135
                                      <Val>good</Val>
1136
                                   </DAI>
                                   <DAI name="t">
1137
1138
                                       <Val>2025-01-23T16:00:10Z</Val>
1139
                                   </DAI>
1140
                               </DOI>
1141
                               <DOI name="LvlSpt">
1142
1143
                                   <DAI name="setMag">
                                       <Val>3.0</Val>
1144
1145
                                       <!-- Setpoint de nivel desejado -->
1146
                                   </DAI>
1147
                               </DOI>
1148
1149
                               <DOI name="LvlHi">
```

```
<DAI name="stVal">
1150
1151
                                       <Val>false</Val>
1152
                                       <!-- Nivel alto nao atingido -->
1153
                                   </DAI>
                                   <DAI name="q">
1154
1155
                                       <Val>good</Val>
1156
                                   </DAI>
                                   <DAI name="t">
1157
1158
                                       <Val>2025-01-23T16:00:20Z</Val>
1159
                                   </DAI>
1160
                               </D0I>
1161
1162
                               <DOI name="LvlLo">
                                   <DAI name="stVal">
1163
1164
                                       <Val>false</Val>
                                       <!-- Nivel baixo nao atingido -->
1165
1166
                                   </DAI>
1167
                                   <DAI name="q">
1168
                                       <Val>good</Val>
1169
                                   </DAI>
1170
                                   <DAI name="t">
1171
                                       <Val>2025-01-23T16:00:25Z</Val>
1172
                                   </DAI>
                               </D0I>
1173
1174
1175
                               <DOI name="Mod">
1176
                                   <DAI name="stVal">
1177
                                       <Val>2</Val>
1178
                                       <!-- Modo automatico -->
1179
                                   </DAI>
1180
                               </D0I>
                           </LN>
1181
1182
1183
                           <!-- HVLV: Válvulas -->
                           <LN lnClass="HVLV" lnType="SUPERV/HVLV" inst="1">
1184
1185
                               <DOI name="OpSt">
1186
                                   <DAI name="stVal">
1187
                                       <Val>2</Val>
1188
                                       <!-- Estado da valvula: 2 = aberta -->
1189
                                   </DAI>
1190
                               </DOI>
1191
1192
                               <DOI name="Pos">
1193
                                   <DAI name="mag">
1194
                                       <Val>100.0</Val>
1195
                                       <!-- Posicao da valvula em porcentagem -->
1196
                                   </DAI>
1197
                                   <DAI name="q">
1198
                                       <Val>good</Val>
1199
                                   </DAI>
                                   <DAI name="t">
1200
1201
                                       <Val>2025-01-23T16:00:00Z</Val>
1202
                                   </DAI>
1203
                               </DOI>
1204
1205
                               <DOI name="OpFail">
                                   <DAI name="stVal">
1206
1207
                                       <Val>false</Val>
1208
                                       <!-- Sem falha de operacao -->
1209
                                   </DAI>
1210
                                   <DAI name="q">
1211
                                       <Val>good</Val>
                                   </DAI>
1212
1213
                                   <DAI name="t">
```

```
1214
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
1215
1216
                               </DOI>
1217
                               <DOI name="BlkVal">
1218
                                   <DAI name="stVal">
1219
1220
                                       <Val>false</Val>
1221
                                       <!-- Valvula nao bloqueada -->
1222
                                   </DAT>
                                   <DAI name="q">
1223
1224
                                       <Val>good</Val>
1225
                                   </DAI>
                                   <DAI name="t">
1226
                                       <Val>2025-01-23T16:00:20Z</Val>
1227
1228
                                   </DAI>
                               </D0I>
1229
1230
1231
                               <DOI name="Mod">
1232
                                   <DAI name="stVal">
                                       <Val>2</Val>
1233
1234
                                       <!-- Modo automatico -->
1235
                                   </DAI>
1236
                               </DOI>
                          </LN>
1237
1238
                          <!-- Grupo I: Interfaces e Arquivamento -->
1239
1240
                          <!-- IARC: Arquivamento -->
                          <LN lnClass="IARC" lnType="LOGIC/IARC" inst="1">
1241
                               <DOI name="OpOk">
1242
1243
                                   <DAI name="stVal">
1244
                                       <Val>true</Val>
1245
                                       <!-- Condicao geral de operacao satisfeita -->
1246
                                   </DAI>
1247
                                   <DAI name="q">
1248
                                       <Val>good</Val>
1249
                                   </DAI>
                                   <DAI name="t">
1250
1251
                                       <Val>2025-01-23T16:00:00Z</Val>
1252
                                   </DAI>
                               </DOI>
1253
1254
1255
                               <DOI name="General">
1256
                                   <DAI name="setVal">
1257
                                       <Val>2</Val>
1258
                                       <!-- Codigo de condicao liberada (exemplo) -->
1259
                                   </DAI>
                               </DOI>
1260
1261
                               <DOI name="BlkA">
1262
1263
                                   <DAI name="stVal">
1264
                                       <Val>false</Val>
                                       <!-- Bloco A nao ativo -->
1265
1266
                                   </DAI>
1267
                                   <DAI name="q">
1268
                                       <Val>good</Val>
1269
                                   </DAI>
                                   <DAI name="t">
1270
1271
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
1272
                               </D0I>
1273
1274
1275
                               <DOI name="BlkB">
                                   <DAI name="stVal">
1276
1277
                                       <Val>false</Val>
```

```
<!-- Bloco B nao ativo -->
1278
1279
                                   </DAT>
1280
                                   <DAI name="q">
1281
                                       <Val>good</Val>
1282
                                   </DAI>
                                   <DAI name="t">
1283
1284
                                       <Val>2025-01-23T16:00:20Z</Val>
1285
                                   </DAI>
1286
                               </DOI>
1287
1288
                               <DOI name="Beh">
1289
                                   <DAI name="stVal">
1290
                                       <Val>1</Val>
1291
                                       <!-- Comportamento padrao -->
1292
                                   </DAI>
                               </DOI>
1293
1294
1295
                               <DOI name="NamPlt">
1296
                                   <DAI name="vendor">
                                       <Val>ExemploFabricante</Val>
1297
1298
                                   </DAT>
1299
                                   <DAI name="swRev">
1300
                                       <Val>v1.0</Val>
1301
                                   </DAI>
                                   <DAI name="d">
1302
1303
                                       <Val>Funcao de liberacao logica combinada</Val>
1304
                                   </DAI>
                               </DOI>
1305
1306
                          </LN>
1307
1308
                          <!-- IHMI: Interface homem-máquina -->
                          <LN lnClass="IHMI" lnType="INTERFACE/IHMI" inst="1">
1309
1310
                               <DOI name="SelScr">
1311
                                   <DAI name="stVal">
1312
                                       <Val>4</Val>
                                       <!-- Tela atual selecionada (por exemplo, tela de
1313
                            alarme) -->
1314
                                   </DAI>
1315
                               </D0I>
1316
1317
                               <DOI name="OpMsg">
1318
                                   <DAI name="d">
1319
                                       <Val>Falha no sensor de pressao</Val>
1320
                                       <!-- Mensagem exibida ao operador -->
1321
                                   </DAI>
1322
                               </D0I>
1323
                               <DOI name="AlarmAck">
1324
1325
                                   <DAI name="ctlVal">
1326
                                       <Val>true</Val>
1327
                                       <!-- Comando de reconhecimento de alarme emitido -->
1328
                                   </DAI>
1329
                               </D0I>
1330
1331
                               <DOI name="CmdSt">
                                   <DAI name="ctlVal">
1332
1333
                                       <Val>1</Val>
1334
                                       <!-- Comando enviado via HMI (ex: ligar bomba) -->
1335
                                   </DAI>
                               </D0I>
1336
1337
1338
                               <DOI name="Beh">
                                   <DAI name="stVal">
1339
1340
                                       <Val>1</Val>
```

```
1341
                                       <!-- Modo padrao de comportamento -->
1342
                                   </DAI>
1343
                               </D0I>
1344
1345
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
1346
1347
                                       <Val>ExemploHMI</Val>
1348
                                   </DAI>
                                   <DAI name="swRev">
1349
1350
                                       <Val>v2.3</Val>
1351
                                   <DAI name="d">
1352
1353
                                       <Val>Interface homem-maquina local</Val>
1354
                                   </DAI>
1355
                               </D0I>
                           </LN>
1356
1357
1358
                           <!-- ISAF: Função de alarme de segurança -->
                           <LN lnClass="ISAF" lnType="SAFETY/ISAF" inst="1">
1359
                               <DOI name="SftySt">
1360
                                   <DAI name="stVal">
1361
1362
                                       <Val>2</Val>
1363
                                       <!-- Estado da seguranca: 2 = normal -->
1364
                                   </DAI>
1365
                               </DOI>
1366
                               <DOI name="OpAllwd">
1367
                                   <DAI name="stVal">
1368
1369
                                       <Val>true</Val>
1370
                                       <!-- Operacao permitida -->
1371
                                   </DAI>
                                   <DAI name="q">
1372
1373
                                       <Val>good</Val>
1374
                                   </DAI>
                                   <DAI name="t">
1375
1376
                                       <Val>2025-01-23T16:00:00Z</Val>
1377
                                   </DAI>
1378
                               </DOI>
1379
                               <DOI name="TripSt">
1380
                                   <DAI name="stVal">
1381
1382
                                       <Val>false</Val>
1383
                                       <!-- Sistema nao disparado por falha de seguranca -- >
1384
                                   </DAI>
1385
                                   <DAI name="q">
1386
                                       <Val>good</Val>
1387
                                   </DAI>
1388
                                   <DAI name="t">
1389
                                       <Val>2025-01-23T16:00:10Z</Val>
1390
                                   </DAI>
1391
                               </D0I>
1392
1393
                               <DOI name="FailSt">
1394
                                   <DAI name="stVal">
1395
                                       <Val>false</Val>
1396
                                       <!-- Nenhuma falha detectada no sistema de seguranca 🤊
1397
                                   </DAI>
                                   <DAI name="q">
1398
1399
                                       <Val>good</Val>
1400
                                   </DAI>
                                   <DAI name="t">
1401
1402
                                       <Val>2025-01-23T16:00:20Z</Val>
```

```
1403
                                   </DAI>
1404
                               </DOI>
1405
1406
                               <DOI name="Mod">
1407
                                   <DAI name="stVal">
1408
                                       <Val>2</Val>
1409
                                       <!-- Modo automatico -->
1410
                                   </DAI>
                               </DOI>
1411
1412
1413
                               <DOI name="Beh">
1414
                                   <DAI name="stVal">
1415
                                       <Val>1</Val>
1416
                                       <!-- Comportamento padrao -->
1417
                                   </DAI>
                               </DOI>
1418
1419
1420
                               <DOI name="NamPlt">
1421
                                   <DAI name="vendor">
1422
                                       <Val>SegurInd</Val>
1423
                                   </DAT>
1424
                                   <DAI name="swRev">
1425
                                       <Val>v1.1</Val>
1426
                                   </DAI>
                                   <DAI name="d">
1427
1428
                                       <Val>Supervisao de seguranca industrial</Val>
1429
                                   </DAI>
                               </DOI>
1430
1431
                           </LN>
1432
1433
                           <!-- ITCI: Interface de telecontrole -->
                           <LN lnClass="ITCI" lnType="COMM/ITCI" inst="1">
1434
1435
                               <DOI name="StVal">
1436
                                   <DAI name="stVal">
1437
                                       <Val>1</Val>
1438
                                       <!-- Estado da conexao: 1 = conectada -->
1439
                                   </DAI>
1440
                               </DOI>
1441
                               <DOI name="ExtRef">
1442
                                   <DAI name="vendor">
1443
1444
                                       <Val>Modbus_TCP_192.168.1.10:502</Val>
1445
                                       <!-- Referencia externa associada -->
1446
                                   </DAI>
1447
                                   <DAI name="swRev">
1448
                                       <Val>v3.2</Val>
1449
                                   </DAI>
                               </D0I>
1450
1451
1452
                               <DOI name="RxStr">
1453
                                   <DAI name="setVal">
1454
                                       <Val>1542</Val>
1455
                                       <!-- Pacotes ou strings recebidas -->
1456
                                   </DAI>
1457
                               </DOI>
1458
                               <DOI name="TxStr">
1459
1460
                                   <DAI name="setVal">
1461
                                       <Val>1489</Val>
1462
                                       <!-- Pacotes ou strings transmitidas -->
                                   </DAI>
1463
1464
                               </DOI>
1465
1466
                               <DOI name="ComFail">
```

```
1467
                                   <DAI name="stVal">
1468
                                       <Val>false</Val>
1469
                                       <!-- Sem falha de comunicacao detectada -->
1470
                                   </DAI>
                                   <DAI name="q">
1471
1472
                                       <Val>good</Val>
1473
                                   </DAI>
                                   <DAI name="t">
1474
1475
                                       <Val>2025-01-23T16:00:30Z</Val>
1476
                                   </DAI>
1477
                               </DOI>
1478
1479
                               <DOI name="Beh">
1480
                                   <DAI name="stVal">
1481
                                       <Val>1</Val>
1482
                                       <!-- Comportamento padrao -->
1483
                                   </DAI>
1484
                               </DOI>
1485
                               <DOI name="NamPlt">
1486
1487
                                   <DAI name="vendor">
                                       <Val>ConexaoCliente</Val>
1488
1489
                                   </DAI>
                                   <DAI name="swRev">
1490
                                       <Val>v1.0</Val>
1491
1492
                                   </DAI>
1493
                                   <DAI name="d">
1494
                                       <Val>Interface de comunicacao cliente com sistema
                            externo</Val>
1495
                                   </DAI>
1496
                               </D0I>
                           </LN>
1497
1498
1499
                           <!-- ITMI: Interface de telemonitoramento -->
                           <LN lnClass="ITMI" lnType="INTERFACE/ITMI" inst="1">
1500
                               <DOI name="StVal">
1501
1502
                                   <DAI name="stVal">
                                       <Val>1</Val>
1503
1504
                                       <!-- Estado da comunicacao com HMI: 1 = ativa -->
1505
                                   </DAI>
1506
                               </DOI>
1507
1508
                               <DOI name="RxMsg">
1509
                                   <DAI name="setVal">
1510
                                       <Val>273</Val>
                                       <!-- Mensagens recebidas do HMI -->
1511
1512
                                   </DAI>
                               </D0I>
1513
1514
1515
                               <DOI name="TxMsg">
1516
                                   <DAI name="setVal">
1517
                                       <Val>301</Val>
1518
                                       <!-- Mensagens enviadas ao HMI -->
1519
                                   </DAI>
1520
                               </DOI>
1521
                               <DOI name="ComFail">
1522
1523
                                   <DAI name="stVal">
                                       <Val>false</Val>
1524
1525
                                       <!-- Sem falha na comunicacao com o HMI -->
1526
                                   </DAI>
1527
                                   <DAI name="q">
                                       <Val>good</Val>
1528
1529
                                   </DAI>
```

```
<DAI name="t">
1530
1531
                                       <Val>2025-01-23T16:00:00Z</Val>
1532
                                   </DAI>
1533
                               </D0I>
1534
                               <DOI name="OpMsg">
1535
1536
                                   <DAI name="d">
1537
                                       <Val>Modo automatico ativado</Val>
1538
                                       <!-- Mensagem exibida ao operador -->
1539
                                   </DAI>
1540
                               </DOI>
1541
1542
                               <DOI name="Beh">
1543
                                   <DAI name="stVal">
1544
                                       <Val>1</Val>
1545
                                       <!-- Comportamento padrao -->
1546
                                   </DAI>
1547
                               </DOI>
1548
                               <DOI name="NamPlt">
1549
1550
                                   <DAI name="vendor">
1551
                                       <Val>HMIConnect</Val>
1552
                                   </DAI>
                                   <DAI name="swRev">
1553
                                       <Val>v2.1</Val>
1554
1555
                                   </DAI>
1556
                                   <DAI name="d">
1557
                                       <Val>Interface com supervisao local</Val>
1558
                                   </DAI>
1559
                               </D0I>
1560
                          </LN>
1561
1562
                          <!-- Grupo K: Equipamentos Primários Mecânicos e Não-Elétricos
1563
                          <!-- KFAN: Ventilador -->
                           <LN lnClass="KFAN" lnType="AUX/KFAN" inst="1">
1564
1565
                               <DOI name="St">
1566
                                   <DAI name="stVal">
1567
                                       <Val>2</Val>
1568
                                       <!-- Estado: 2 = em operacao normal -->
1569
                                   </DAI>
1570
                               </DOI>
1571
1572
                               <DOI name="OpCnt">
1573
                                   <DAI name="stVal">
1574
                                       <Val>157</Val>
1575
                                       <!-- Numero de partidas do ventilador -->
                                   </DAI>
1576
1577
                               </D0I>
1578
                               <DOI name="PermOp">
1579
                                   <DAI name="stVal">
1580
1581
                                       <Val>true</Val>
1582
                                       <!-- Permissao para operar concedida -->
1583
                                   </DAI>
                                   <DAI name="q">
1584
1585
                                       <Val>good</Val>
1586
                                   <DAI name="t">
1587
                                       <Val>2025-01-23T16:00:00Z</Val>
1588
1589
                                   </DAI>
1590
                               </D0I>
1591
1592
                               <DOI name="ActFan">
```

```
<DAI name="stVal">
1593
1594
                                       <Val>true</Val>
1595
                                       <!-- Ventilador em funcionamento -->
1596
                                   </DAI>
                                   <DAI name="q">
1597
1598
                                       <Val>good</Val>
1599
                                   </DAI>
                                   <DAI name="t">
1600
1601
                                       <Val>2025-01-23T16:00:10Z</Val>
1602
                                   </DAI>
1603
                               </D0I>
1604
1605
                               <DOI name="AlmFan">
                                   <DAI name="stVal">
1606
1607
                                       <Val>false</Val>
1608
                                       <!-- Nenhuma falha detectada -->
1609
                                   </DAI>
1610
                                   <DAI name="q">
1611
                                       <Val>good</Val>
1612
                                   </DAI>
                                   <DAI name="t">
1613
1614
                                       <Val>2025-01-23T16:00:20Z</Val>
1615
                                   </DAI>
                               </DOI>
1616
1617
1618
                               <DOI name="Mod">
1619
                                   <DAI name="stVal">
                                       <Val>2</Val>
1620
1621
                                       <!-- Modo automatico -->
1622
                                   </DAI>
                               </DOI>
1623
1624
1625
                               <DOI name="Beh">
1626
                                   <DAI name="stVal">
1627
                                       <Val>1</Val>
1628
                                       <!-- Comportamento padrao -->
1629
                                   </DAI>
1630
                               </DOI>
1631
                               <DOI name="NamPlt">
1632
                                   <DAI name="vendor">
1633
1634
                                       <Val>VentSys</Val>
1635
                                   </DAI>
                                   <DAI name="swRev">
1636
                                       <Val>v1.0</Val>
1637
1638
                                   </DAI>
                                   <DAI name="d">
1639
                                       <Val>Controle e supervisao de ventilador</Val>
1640
1641
                                   </DAI>
1642
                               </DOI>
                           </LN>
1643
1644
1645
                           <!-- KFIL: Filtro -->
1646
                           <LN lnClass="KFIL" lnType="AUX/KFIL" inst="1">
1647
                               <DOI name="St">
                                   <DAI name="stVal">
1648
1649
                                       <Val>2</Val>
1650
                                       <!-- Estado: 2 = operacao normal -->
1651
                                   </DAI>
                               </DOI>
1652
1653
1654
                               <DOI name="OpCnt">
                                   <DAI name="stVal">
1655
1656
                                       <Val>98</Val>
```

```
1657
                                       <!-- Quantidade de operacoes do filtro -->
1658
                                   </DAI>
1659
                               </DOI>
1660
                               <DOI name="PermOp">
1661
                                   <DAI name="stVal">
1662
1663
                                       <Val>true</Val>
1664
                                       <!-- Permissao para operar o filtro -->
1665
                                   </DAI>
                                   <DAI name="q">
1666
1667
                                       <Val>good</Val>
1668
                                   </DAI>
                                   <DAI name="t">
1669
1670
                                       <Val>2025-01-23T16:00:00Z</Val>
1671
                                   </DAI>
                               </DOI>
1672
1673
1674
                               <DOI name="ActFil">
1675
                                   <DAI name="stVal">
1676
                                       <Val>true</Val>
1677
                                       <!-- Filtro em operacao -->
1678
                                   </DAI>
1679
                                   <DAI name="q">
1680
                                       <Val>good</Val>
1681
                                   </DAI>
1682
                                   <DAI name="t">
1683
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
1684
                               </DOI>
1685
1686
                               <DOI name="AlmFil">
1687
                                   <DAI name="stVal">
1688
1689
                                       <Val>false</Val>
1690
                                       <!-- Sem falha ou obstrucao detectada -->
1691
                                   </DAI>
                                   <DAI name="q">
1692
1693
                                       <Val>good</Val>
1694
                                   </DAI>
1695
                                   <DAI name="t">
1696
                                       <Val>2025-01-23T16:00:20Z</Val>
1697
                                   </DAI>
1698
                               </DOI>
1699
                               <DOI name="Mod">
1700
1701
                                   <DAI name="stVal">
1702
                                       <Val>2</Val>
1703
                                       <!-- Modo automatico -->
                                   </DAI>
1704
1705
                               </D0I>
1706
                               <DOI name="Beh">
1707
1708
                                   <DAI name="stVal">
1709
                                       <Val>1</Val>
1710
                                       <!-- Comportamento padrao -->
1711
                                   </DAI>
                               </DOI>
1712
1713
1714
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
1715
                                       <Val>Filtronic</Val>
1716
1717
                                   </DAI>
1718
                                   <DAI name="swRev">
                                      <Val>v2.0</Val>
1719
1720
                                   </DAI>
```

```
<DAI name="d">
1721
1722
                                       <Val>Supervisao de filtro industrial</Val>
1723
                                   </DAI>
1724
                               </DOI>
1725
                           </LN>
1726
1727
                           <!-- KPMP: Bomba -->
                           <LN lnClass="KPMP" lnType="AUX/KPMP" inst="1">
1728
1729
                               <DOI name="St">
1730
                                   <DAI name="stVal">
1731
                                       <Val>2</Val>
1732
                                       <!-- Estado: 2 = bomba ligada -->
1733
                                   </DAI>
1734
                               </DOI>
1735
                               <DOI name="OpCnt">
1736
                                   <DAI name="stVal">
1737
1738
                                       <Val>245</Val>
1739
                                       <!-- Numero de partidas da bomba -->
                                   </DAI>
1740
1741
                               </DOI>
1742
1743
                               <DOI name="PermOp">
1744
                                   <DAI name="stVal">
1745
                                       <Val>true</Val>
1746
                                       <!-- Permissao para operacao concedida -->
1747
                                   </DAI>
1748
                                   <DAI name="q">
1749
                                       <Val>good</Val>
1750
                                   </DAI>
                                   <DAI name="t">
1751
                                       <Val>2025-01-23T16:00:00Z</Val>
1752
1753
                                   </DAI>
1754
                               </DOI>
1755
1756
                               <DOI name="ActPmp">
1757
                                   <DAI name="stVal">
1758
                                       <Val>true</Val>
1759
                                       <!-- Bomba em funcionamento -->
                                   </DAI>
1760
                                   <DAI name="q">
1761
1762
                                       <Val>good</Val>
1763
                                   </DAI>
                                   <DAI name="t">
1764
1765
                                       <Val>2025-01-23T16:00:10Z</Val>
1766
                                   </DAI>
                               </DOI>
1767
1768
1769
                               <DOI name="AlmPmp">
1770
                                   <DAI name="stVal">
1771
                                       <Val>false</Val>
1772
                                       <!-- Sem falha detectada na bomba -->
1773
                                   </DAI>
1774
                                   <DAI name="q">
1775
                                       <Val>good</Val>
1776
                                   </DAI>
                                   <DAI name="t">
1777
1778
                                        <Val>2025-01-23T16:00:20Z</Val>
1779
                                   </DAI>
1780
                               </D0I>
1781
1782
                               <DOI name="Mod">
1783
                                   <DAI name="stVal">
1784
                                       <Val>2</Val>
```

```
1785
                                       <!-- Modo automatico -->
1786
                                   </DAI>
1787
                               </D0I>
1788
                               <DOI name="Beh">
1789
1790
                                   <DAI name="stVal">
1791
                                       <Val>1</Val>
1792
                                       <!-- Comportamento padrao -->
                                   </DAI>
1793
                               </DOI>
1794
1795
                               <DOI name="NamPlt">
1796
                                   <DAI name="vendor">
1797
                                       <Val>BombControl</Val>
1798
1799
                                   </DAI>
                                   <DAI name="swRev">
1800
1801
                                       <Val>v3.4</Val>
1802
                                   </DAI>
1803
                                   <DAI name="d">
1804
                                       <Val>Controle e supervisao de bomba centrífuga</Val>
1805
                                   </DAI>
1806
                               </DOI>
1807
                          </LN>
1808
1809
                          <!-- KTNK: Tanque -->
1810
                           <LN lnClass="KTNK" lnType="SUPERV/KTNK" inst="1">
1811
                               <DOI name="Lvl">
                                   <DAI name="mag">
1812
1813
                                       <Val>2.85</Val>
1814
                                       <!-- Nivel atual do liquido em metros -->
1815
                                   </DAI>
                                   <DAI name="q">
1816
1817
                                       <Val>good</Val>
1818
                                   </DAI>
                                   <DAI name="t">
1819
1820
                                       <Val>2025-01-23T16:00:00Z</Val>
1821
                                   </DAI>
1822
                               </D0I>
1823
                               <DOI name="Vol">
1824
                                   <DAI name="mag">
1825
1826
                                       <Val>4500.0</Val>
1827
                                       <!-- Volume estimado em litros -->
1828
                                   </DAI>
1829
                                   <DAI name="q">
1830
                                       <Val>good</Val>
1831
                                   </DAI>
                                   <DAI name="t">
1832
1833
                                       <Val>2025-01-23T16:00:10Z</Val>
1834
                                   </DAI>
1835
                               </D0I>
1836
                               <DOI name="Temp">
1837
1838
                                   <DAI name="mag">
1839
                                       <Val>36.2</Val>
1840
                                       <!-- Temperatura do liquido no tanque em graus
                            Celsius -->
1841
                                   </DAI>
                                   <DAI name="q">
1842
1843
                                       <Val>good</Val>
1844
                                   </DAI>
1845
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:15Z</Val>
1846
1847
                                   </DAI>
```

```
1848
                               </DOI>
1849
1850
                               <DOI name="AlmTnk">
1851
                                   <DAI name="stVal">
1852
                                       <Val>false</Val>
1853
                                       <!-- Sem alarme ativo no tanque -->
                                   </DAI>
1854
                                   <DAI name="q">
1855
1856
                                       <Val>good</Val>
1857
                                   </DAI>
1858
                                   <DAI name="t">
1859
                                       <Val>2025-01-23T16:00:20Z</Val>
1860
                                   </DAI>
                               </DOI>
1861
1862
                               <DOI name="PermOp">
1863
                                   <DAI name="stVal">
1864
1865
                                       <Val>true</Val>
1866
                                       <!-- Permissao para operacao concedida -->
1867
                                   </DAI>
                                   <DAI name="q">
1868
1869
                                       <Val>good</Val>
1870
                                   </DAI>
                                   <DAI name="t">
1871
1872
                                       <Val>2025-01-23T16:00:25Z</Val>
1873
                                   </DAI>
1874
                               </DOI>
1875
                               <DOI name="Mod">
1876
1877
                                   <DAI name="stVal">
1878
                                       <Val>2</Val>
1879
                                       <!-- Modo automatico -->
1880
                                   </DAI>
1881
                               </D0I>
1882
                               <DOI name="Beh">
1883
1884
                                   <DAI name="stVal">
1885
                                       <Val>1</Val>
1886
                                       <!-- Comportamento padrao -->
1887
                                   </DAI>
1888
                               </DOI>
1889
1890
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
1891
1892
                                       <Val>TankSys</Val>
1893
                                   </DAI>
1894
                                   <DAI name="swRev">
1895
                                       <Val>v1.5</Val>
1896
                                   </DAI>
1897
                                   <DAI name="d">
1898
                                       <Val>Supervisao de tanque industrial</Val>
1899
                                   </DAI>
1900
                               </DOI>
1901
                           </LN>
1902
1903
                           <!-- KVLV: Controle de válvulas -->
                           <LN lnClass="KVLV" lnType="CONTROL/KVLV" inst="1">
1904
1905
                               <DOI name="PosSpt">
1906
                                   <DAI name="mxVal">
1907
                                       <Val>100.0</Val>
1908
                                       <!-- Setpoint da posicao da valvula (em %) -->
1909
                                   <DAI name="q">
1910
1911
                                       <Val>good</Val>
```

```
1912
                                   </DAI>
1913
                                   <DAI name="t">
1914
                                       <Val>2025-01-23T16:00:00Z</Val>
1915
                                   </DAI>
                               </D0I>
1916
1917
1918
                               <DOI name="PosVlv">
                                   <DAI name="instMag">
1919
1920
                                       <Val>96.2</Val>
1921
                                       <!-- Posicao atual da valvula em % -->
1922
                                   <DAI name="mag">
1923
1924
                                       <Val>96.2</Val>
1925
                                   </DAI>
1926
                                   <DAI name="q">
                                       <Val>good</Val>
1927
1928
                                   </DAI>
1929
                                   <DAI name="t">
1930
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
1931
                               </DOI>
1932
1933
1934
                               <DOI name="Flw">
1935
                                   <DAI name="instMag">
                                       <Val>2.75</Val>
1936
1937
                                       <!-- Vazao atual passando pela valvula (em m3/h) -->
1938
                                   </DAI>
                                   <DAI name="mag">
1939
1940
                                       <Val>2.75</Val>
1941
                                   </DAI>
                                   <DAI name="q">
1942
1943
                                       <Val>good</Val>
1944
                                   </DAI>
1945
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:20Z</Val>
1946
1947
                                   </DAI>
1948
                               </D0I>
1949
1950
                               <DOI name="OpCnt">
1951
                                   <DAI name="stVal">
1952
                                       <Val>782</Val>
1953
                                       <!-- Numero de operações realizadas -->
1954
                                   </DAI>
                               </DOI>
1955
1956
1957
                               <DOI name="AlmVlv">
1958
                                   <DAI name="stVal">
                                       <Val>false</Val>
1959
1960
                                       <!-- Sem falha detectada -->
1961
                                   </DAI>
                                   <DAI name="q">
1962
1963
                                       <Val>good</Val>
1964
                                   </DAI>
1965
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:30Z</Val>
1966
                                   </DAI>
1967
                               </DOI>
1968
1969
1970
                               <DOI name="Beh">
1971
                                   <DAI name="stVal">
1972
                                       <Val>1</Val>
1973
                                       <!-- Comportamento padrao -->
1974
                                   </DAI>
1975
                               </DOI>
```

```
1976
1977
                               <DOI name="NamPlt">
1978
                                   <DAI name="vendor">
1979
                                       <Val>FlowSys</Val>
1980
                                   </DAI>
                                   <DAI name="swRev">
1981
1982
                                       <Val>v1.2</Val>
1983
                                   </DAI>
                                   <DAI name="d">
1984
1985
                                       <Val>Controle de valvula industrial proporcional/
                            Val>
1986
                                   </DAI>
1987
                               </DOI>
1988
                           </LN>
1989
                           <!-- Grupo L: Logical Nodes do Sistema -->
1990
                           <!-- LPHD: Informações do dispositivo físico -->
1991
1992
                           <LN lnClass="LPHD" lnType="DEVICE/LPHD" inst="1">
1993
                               <DOI name="PhyHealth">
                                   <DAI name="stVal">
1994
1995
                                       <Val>1</Val>
1996
                                       <!-- Estado de saude: 1 = bom -->
1997
                                   </DAI>
                               </DOI>
1998
1999
2000
                               <DOI name="Proxy">
2001
                                   <DAI name="stVal">
2002
                                       <Val>false</Val>
2003
                                       <!-- Dispositivo nao esta operando como proxy -->
2004
                                   </DAI>
2005
                                   <DAI name="q">
2006
                                       <Val>good</Val>
2007
                                   </DAI>
2008
                                   <DAI name="t">
2009
                                       <Val>2025-01-23T16:00:00Z</Val>
2010
                                   </DAI>
                               </DOI>
2011
2012
2013
                               <DOI name="AddCause">
2014
                                   <DAI name="stVal">
2015
                                       <Val>0</Val>
2016
                                       <!-- Sem causa adicional de falha -->
2017
                                   </DAI>
2018
                               </DOI>
2019
2020
                               <DOI name="Beh">
2021
                                   <DAI name="stVal">
2022
                                       <Val>1</Val>
2023
                                       <!-- Comportamento padrao (on) -->
2024
                                   </DAI>
2025
                               </D0I>
2026
                               <DOI name="NamPlt">
2027
2028
                                   <DAI name="vendor">
2029
                                       <Val>EquipInd</Val>
2030
                                   </DAI>
                                   <DAI name="swRev">
2031
2032
                                       <Val>v1.0.5</Val>
2033
                                   </DAI>
                                   <DAI name="d">
2034
2035
                                       <Val>Dispositivo fisico de automacao</Val>
2036
                                   </DAI>
                               </D0I>
2037
2038
                           </LN>
```

```
2039
2040
                           <!-- LLNO: Nó lógico zero -->
2041
                           <LN lnClass="LLN0" lnType="DEVICE/LLN0" inst="">
2042
                               <DOI name="Beh">
2043
                                   <DAI name="stVal">
2044
                                       <Val>1</Val>
2045
                                       <!-- Comportamento padrao (on) -->
2046
                                   </DAI>
2047
                               </DOI>
2048
2049
                               <DOI name="Health">
2050
                                   <DAI name="stVal">
2051
                                        <Val>1</Val>
2052
                                       <!-- Estado de saude do Logical Device -->
2053
                                   </DAI>
                               </DOI>
2054
2055
2056
                               <DOI name="Loc">
2057
                                   <DAI name="stVal">
2058
                                       <Val>false</Val>
2059
                                       <!-- Controle remoto (false = remoto) -->
2060
                                   </DAI>
2061
                                   <DAI name="q">
2062
                                       <Val>good</Val>
2063
                                   </DAI>
2064
                                   <DAI name="t">
2065
                                        <Val>2025-01-23T16:00:00Z</Val>
2066
                                   </DAI>
2067
                               </DOI>
2068
                               <DOI name="Mod">
2069
2070
                                   <DAI name="stVal">
2071
                                       <Val>1</Val>
2072
                                       <!-- Modo on -->
                                   </DAI>
2073
2074
                               </DOI>
2075
2076
                               <DOI name="EnaReg">
2077
                                   <DAI name="ctlVal">
2078
                                       <Val>true</Val>
2079
                                       <!-- Comando para habilitar funcao -->
2080
                                   </DAI>
2081
                               </DOI>
2082
2083
                               <DOI name="EnaOpn">
2084
                                   <DAI name="stVal">
2085
                                       <Val>true</Val>
2086
                                       <!-- Permissao para operacao habilitada -->
2087
                                   </DAI>
2088
                                   <DAI name="q">
2089
                                       <Val>good</Val>
2090
                                   </DAI>
                                   <DAI name="t">
2091
2092
                                        <Val>2025-01-23T16:00:10Z</Val>
2093
                                   </DAI>
                               </DOI>
2094
2095
2096
                               <DOI name="NamPlt">
2097
                                   <DAI name="vendor">
2098
                                       <Val>AutomSys</Val>
2099
                                   </DAI>
2100
                                   <DAI name="swRev">
                                       <Val>v3.1</Val>
2101
2102
                                   </DAI>
```

```
<DAI name="d">
2103
2104
                                       <Val>Dispositivo logico central de controle</Val>
2105
                                   </DAI>
2106
                               </DOI>
                           </LN>
2107
2108
2109
                           <!-- LCCH: Supervisão de canal de comunicação física -->
                           <LN lnClass="LCCH" lnType="COMM/LCCH" inst="1">
2110
                               <DOI name="St">
2111
2112
                                   <DAI name="stVal">
2113
                                       <Val>1</Val>
                                       <!-- Estado do canal: 1 = normal -->
2114
2115
                                   </DAI>
                               </DOI>
2116
2117
                               <DOI name="ComFail">
2118
                                   <DAI name="stVal">
2119
2120
                                       <Val>false</Val>
2121
                                       <!-- Sem falha de comunicacao detectada -->
2122
                                   </DAI>
2123
                                   <DAI name="q">
2124
                                       <Val>good</Val>
2125
                                   </DAI>
                                   <DAI name="t">
2126
2127
                                       <Val>2025-01-23T16:00:00Z</Val>
2128
                                   </DAI>
2129
                               </DOI>
2130
2131
                               <DOI name="TxCnt">
2132
                                   <DAI name="stVal">
2133
                                       <Val>126743</Val>
2134
                                       <!-- Total de pacotes transmitidos -->
2135
                                   </DAI>
2136
                               </D0I>
2137
                               <DOI name="RxCnt">
2138
2139
                                   <DAI name="stVal">
2140
                                       <Val>126500</Val>
2141
                                       <!-- Total de pacotes recebidos -->
2142
                                   </DAI>
2143
                               </DOI>
2144
2145
                               <DOI name="BlkChn">
2146
                                   <DAI name="stVal">
2147
                                       <Val>false</Val>
2148
                                       <!-- Canal nao esta bloqueado -->
2149
                                   </DAI>
                                   <DAI name="q">
2150
2151
                                       <Val>good</Val>
2152
                                   </DAI>
                                   <DAI name="t">
2153
2154
                                       <Val>2025-01-23T16:00:10Z</Val>
2155
                                   </DAI>
2156
                               </D0I>
2157
2158
                               <DOI name="Beh">
2159
                                   <DAI name="stVal">
2160
                                       <Val>1</Val>
2161
                                       <!-- Comportamento padrao -->
2162
                                   </DAI>
                               </DOI>
2163
2164
                               <DOI name="NamPlt">
2165
2166
                                   <DAI name="vendor">
```

```
<Val>NetMon</Val>
2167
2168
                                   </DAI>
2169
                                   <DAI name="swRev">
2170
                                       <Val>v4.0</Val>
2171
                                   </DAI>
                                   <DAI name="d">
2172
2173
                                       <Val>Supervisao do canal Ethernet 1</Val>
2174
                                   </DAI>
                               </DOI>
2175
                           </LN>
2176
2177
                           <!-- LGOS: Assinatura de GOOSE -->
2178
2179
                           <LN lnClass="LGOS" lnType="COMM/LGOS" inst="1">
                               <DOI name="GoEna">
2180
2181
                                   <DAI name="stVal">
2182
                                       <Val>true</Val>
                                       <!-- Assinatura GOOSE habilitada -->
2183
2184
                                   </DAI>
2185
                                   <DAI name="q">
2186
                                       <Val>good</Val>
2187
                                   </DAT>
                                   <DAI name="t">
2188
2189
                                       <Val>2025-01-23T16:00:00Z</Val>
                                   </DAI>
2190
2191
                               </DOI>
2192
                               <DOI name="GoID">
2193
2194
                                   <DAI name="vendor">
2195
                                       <Val>G00SE_CB01</Val>
2196
                                       <!-- Identificador da publicacao GOOSE -->
                                   </DAI>
2197
                               </DOI>
2198
2199
2200
                               <DOI name="St">
2201
                                   <DAI name="stVal">
2202
                                       <Val>1</Val>
2203
                                       <!-- Estado da assinatura: 1 = ok -->
2204
                                   </DAI>
2205
                               </D0I>
2206
                               <DOI name="NdsCom">
2207
2208
                                   <DAI name="stVal">
2209
                                       <Val>false</Val>
2210
                                       <!-- Comunicacao disponivel -->
2211
                                   </DAI>
2212
                                   <DAI name="q">
2213
                                       <Val>good</Val>
2214
                                   </DAI>
2215
                                   <DAI name="t">
2216
                                       <Val>2025-01-23T16:00:10Z</Val>
2217
                                   </DAI>
2218
                               </D0I>
2219
2220
                               <DOI name="ConfRevNum">
2221
                                   <DAI name="stVal">
2222
                                       <Val>12</Val>
2223
                                       <!-- Numero de revisao da configuração GOOSE -->
2224
                                   </DAI>
                               </DOI>
2225
2226
2227
                               <DOI name="SqNum">
2228
                                   <DAI name="stVal">
2229
                                       <Val>8721</Val>
2230
                                       <!-- Numero de sequencia da mensagem recebida -->
```

```
2231
                                   </DAI>
2232
                               </DOI>
2233
2234
                               <DOI name="T">
2235
                                   <DAI name="setTm">
2236
                                       <Val>2025-01-23T15:59:59Z</Val>
                                       <!-- Timestamp da ultima mensagem GOOSE valida -->
2237
2238
                                   </DAI>
                               </DOI>
2239
2240
2241
                               <DOI name="Beh">
2242
                                   <DAI name="stVal">
2243
                                       <Val>1</Val>
2244
                                       <!-- Comportamento padrao -->
2245
                                   </DAI>
                               </DOI>
2246
2247
2248
                               <DOI name="NamPlt">
2249
                                   <DAI name="vendor">
2250
                                       <Val>CommMon</Val>
2251
                                   </DAT>
2252
                                   <DAI name="swRev">
2253
                                       <Val>v1.3</Val>
2254
                                   </DAI>
                                   <DAI name="d">
2255
                                       <Val>Supervisao de assinatura GOOSE</Val>
2256
2257
                                   </DAI>
                               </D0I>
2258
2259
                           </LN>
2260
2261
                           <!-- LTIM: Gerenciamento de tempo -->
                           <LN lnClass="LTIM" lnType="SUPERV/LTIM" inst="1">
2262
2263
                               <DOI name="Tmmark">
2264
                                   <DAI name="setTm">
2265
                                       <Val>2025-01-23T16:00:00Z</Val>
2266
                                       <!-- Marca de tempo recebida da fonte -->
2267
                                   </DAI>
2268
                               </DOI>
2269
                               <DOI name="SrcRef">
2270
2271
                                   <DAI name="vendor">
2272
                                       <Val>NTP_Server_10.0.0.1</Val>
2273
                                       <!-- Fonte de tempo utilizada -->
                                   </DAI>
2274
2275
                               </DOI>
2276
                               <DOI name="SynSt">
2277
                                   <DAI name="stVal">
2278
2279
                                       <Val>true</Val>
2280
                                       <!-- Tempo sincronizado -->
2281
                                   </DAI>
                                   <DAI name="q">
2282
2283
                                       <Val>good</Val>
2284
                                   </DAI>
                                   <DAI name="t">
2285
                                       <Val>2025-01-23T16:00:10Z</Val>
2286
2287
                                   </DAI>
2288
                               </DOI>
2289
2290
                               <DOI name="ComFail">
2291
                                   <DAI name="stVal">
2292
                                       <Val>false</Val>
                                       <!-- Sem falha de comunicacao com a fonte de tempo
2293
```

```
2294
                                   </DAI>
2295
                                   <DAI name="q">
2296
                                       <Val>good</Val>
2297
                                   </DAI>
                                   <DAI name="t">
2298
2299
                                       <Val>2025-01-23T16:00:20Z</Val>
2300
                                   </DAI>
                               </D0I>
2301
2302
                               <DOI name="Beh">
2303
2304
                                   <DAI name="stVal">
2305
                                        <Val>1</Val>
2306
                                       <!-- Comportamento padrao -->
2307
                                   </DAI>
2308
                               </DOI>
2309
2310
                               <DOI name="NamPlt">
2311
                                   <DAI name="vendor">
2312
                                       <Val>TimeSyncCorp</Val>
2313
                                   </DAI>
                                   <DAI name="swRev">
2314
2315
                                       <Val>v1.1</Val>
2316
                                   </DAI>
                                   <DAI name="d">
2317
                                        <Val>Supervisao da fonte de tempo NTP</Val>
2318
2319
                                   </DAI>
2320
                               </D0I>
2321
                           </LN>
2322
2323
                           <!-- LTMS: Supervisão do mestre de tempo -->
                           <LN lnClass="LTMS" lnType="SUPERV/LTMS" inst="1">
2324
                               <DOI name="Tmp">
2325
2326
                                   <DAI name="mag">
2327
                                       <Val>84.3</Val>
2328
                                       <!-- Temperatura atual em graus Celsius -->
2329
                                   </DAI>
                                   <DAI name="q">
2330
2331
                                       <Val>good</Val>
2332
                                   </DAI>
                                   <DAI name="t">
2333
2334
                                        <Val>2025-01-23T16:00:00Z</Val>
2335
                                   </DAI>
2336
                               </D0I>
2337
2338
                               <DOI name="AlmTmp">
2339
                                   <DAI name="stVal">
2340
                                       <Val>false</Val>
                                       <!-- Nenhum alarme termico ativo -->
2341
2342
                                   </DAI>
2343
                                   <DAI name="q">
2344
                                       <Val>good</Val>
2345
                                   </DAI>
                                   <DAI name="t">
2346
2347
                                        <Val>2025-01-23T16:00:10Z</Val>
2348
                                   </DAI>
                               </D0I>
2349
2350
2351
                               <DOI name="BlkTmp">
2352
                                   <DAI name="stVal">
2353
                                       <Val>false</Val>
2354
                                       <!-- Nenhum bloqueio termico em andamento -->
2355
                                   <DAI name="q">
2356
2357
                                       <Val>good</Val>
```

```
2358
                                   </DAI>
2359
                                   <DAI name="t">
2360
                                        <Val>2025-01-23T16:00:20Z</Val>
2361
                                   </DAI>
2362
                               </DOI>
2363
2364
                               <DOI name="TmpSpt">
2365
                                   <DAI name="setMag">
2366
                                       <Val>95.0</Val>
2367
                                       <!-- Limite superior de temperatura permitida -->
2368
                                   </DAI>
2369
                               </DOI>
2370
                               <DOI name="OpTmh">
2371
2372
                                   <DAI name="stVal">
2373
                                       <Val>512</Val>
2374
                                       <!-- Horas acumuladas de operacao termica -->
2375
                                   </DAI>
2376
                               </D0I>
2377
                               <DOI name="Beh">
2378
2379
                                   <DAI name="stVal">
2380
                                       <Val>1</Val>
2381
                                       <!-- Comportamento padrao -->
2382
                                   </DAI>
2383
                               </D0I>
2384
2385
                               <DOI name="NamPlt">
2386
                                   <DAI name="vendor">
2387
                                       <Val>ThermoSys</Val>
2388
                                   </DAI>
                                   <DAI name="swRev">
2389
2390
                                       <Val>v1.0</Val>
2391
                                   </DAI>
                                   <DAI name="d">
2392
2393
                                       <Val>Supervisao termica de equipamentos</Val>
2394
                                   </DAI>
2395
                               </DOI>
2396
                           </LN>
2397
2398
                           <!-- LTRK: Rastreamento de serviço -->
2399
                           <LN lnClass="LTRK" lnType="SUPERV/LTRK" inst="1">
2400
                               <DOI name="ExpVal">
2401
                                   <DAI name="mag">
2402
                                       <Val>100.0</Val>
2403
                                       <!-- Valor esperado (referencia) -->
2404
                                   </DAI>
                                   <DAI name="q">
2405
2406
                                       <Val>good</Val>
2407
                                   </DAI>
                                   <DAI name="t">
2408
2409
                                       <Val>2025-01-23T16:00:00Z</Val>
2410
                                   </DAI>
2411
                               </DOI>
2412
2413
                               <DOI name="ActVal">
2414
                                   <DAI name="mag">
2415
                                        <Val>97.2</Val>
2416
                                       <!-- Valor real medido -->
2417
                                   </DAI>
2418
                                   <DAI name="q">
2419
                                       <Val>good</Val>
2420
                                   </DAI>
2421
                                   <DAI name="t">
```

```
2422
                                       <Val>2025-01-23T16:00:10Z</Val>
2423
                                   </DAI>
2424
                               </DOI>
2425
2426
                               <DOI name="AlmTrk">
                                   <DAI name="stVal">
2427
2428
                                       <Val>false</Val>
2429
                                       <!-- Sem alarme de desvio no rastreamento -->
2430
                                   </DAT>
                                   <DAI name="q">
2431
2432
                                        <Val>good</Val>
2433
                                   </DAI>
                                   <DAI name="t">
2434
2435
                                       <Val>2025-01-23T16:00:20Z</Val>
2436
                                   </DAI>
                               </DOI>
2437
2438
2439
                               <DOI name="BlkTrk">
2440
                                   <DAI name="stVal">
2441
                                       <Val>false</Val>
2442
                                       <!-- Rastreamento nao bloqueado -->
2443
                                   </DAI>
2444
                                   <DAI name="q">
2445
                                       <Val>good</Val>
                                   </DAI>
2446
2447
                                   <DAI name="t">
2448
                                        <Val>2025-01-23T16:00:30Z</Val>
                                   </DAI>
2449
2450
                               </DOI>
2451
                               <DOI name="Beh">
2452
2453
                                   <DAI name="stVal">
2454
                                       <Val>1</Val>
                                       <!-- Comportamento padrao -->
2455
                                   </DAI>
2456
2457
                               </D0I>
2458
2459
                               <DOI name="NamPlt">
2460
                                   <DAI name="vendor">
2461
                                       <Val>TrackSys</Val>
                                   </DAI>
2462
2463
                                   <DAI name="swRev">
2464
                                        <Val>v1.2</Val>
2465
                                   </DAI>
2466
                                   <DAI name="d">
2467
                                       <Val>Supervisao de rastreamento de atuadores</val>
2468
                                   </DAI>
                               </D0I>
2469
2470
                           </LN>
2471
2472
                           <!-- Grupo M: Medição -->
                           <!-- MENV: Informações ambientais -->
2473
                           <LN lnClass="MENV" lnType="MEASURE/MENV" inst="1">
2474
2475
                               <DOI name="TmpEnv">
2476
                                   <DAI name="mag">
                                       <Val>27.4</Val>
2477
2478
                                       <!-- Temperatura ambiente em graus Celsius -->
2479
                                   <DAI name="q">
2480
2481
                                       <Val>good</Val>
2482
                                   </DAI>
2483
                                   <DAI name="t">
2484
                                       <Val>2025-01-23T16:00:00Z</Val>
2485
                                   </DAI>
```

```
2486
                               </DOI>
2487
2488
                               <DOI name="HumEnv">
2489
                                   <DAI name="mag">
                                       <Val>58.2</Val>
2490
2491
                                       <!-- Umidade relativa em % -->
2492
                                   <DAI name="q">
2493
2494
                                       <Val>good</Val>
2495
                                   </DAI>
2496
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:10Z</Val>
2497
2498
                                   </DAI>
                               </DOI>
2499
2500
                               <DOI name="PresEnv">
2501
2502
                                   <DAI name="mag">
2503
                                       <Val>1013.5</Val>
2504
                                       <!-- Pressao atmosferica em hPa -->
2505
                                   </DAI>
2506
                                   <DAI name="q">
2507
                                       <Val>good</Val>
2508
                                   </DAI>
                                   <DAI name="t">
2509
2510
                                       <Val>2025-01-23T16:00:20Z</Val>
2511
                                   </DAI>
2512
                               </DOI>
2513
                               <DOI name="VibEnv">
2514
2515
                                   <DAI name="mag">
2516
                                       <Val>0.7</Val>
2517
                                       <!-- Nivel de vibracao ambiental em mm/s -->
2518
                                   </DAI>
2519
                                   <DAI name="q">
2520
                                       <Val>good</Val>
2521
                                   </DAI>
                                   <DAI name="t">
2522
2523
                                       <Val>2025-01-23T16:00:30Z</Val>
2524
                                   </DAI>
                               </DOI>
2525
2526
2527
                               <DOI name="Beh">
2528
                                   <DAI name="stVal">
2529
                                       <Val>1</Val>
2530
                                       <!-- Comportamento padrao -->
2531
                                   </DAI>
2532
                               </D0I>
2533
                               <DOI name="NamPlt">
2534
2535
                                   <DAI name="vendor">
2536
                                       <Val>EnviroMon</Val>
2537
                                   </DAI>
                                   <DAI name="swRev">
2538
2539
                                       <Val>v1.0</Val>
2540
                                   </DAI>
                                   <DAI name="d">
2541
2542
                                       <Val>Monitoramento ambiental para subestacoes</Val>
2543
                                   </DAI>
2544
                               </DOI>
2545
                           </LN>
2546
2547
                           <!-- MMDC: Medições de corrente contínua -->
                           <LN lnClass="MMDC" lnType="MEASURE/MMDC" inst="1">
2548
2549
                               <DOI name="Vib">
```

```
<DAI name="mag">
2550
2551
                                       <Val>1.4</Val>
2552
                                       <!-- Nivel de vibracao em mm/s -->
2553
                                   </DAI>
                                   <DAI name="q">
2554
2555
                                       <Val>good</Val>
2556
                                   </DAI>
                                   <DAI name="t">
2557
2558
                                        <Val>2025-01-23T16:00:00Z</Val>
2559
                                   </DAI>
2560
                               </D0I>
2561
2562
                               <DOI name="Tq">
                                   <DAI name="mag">
2563
2564
                                       <Val>210.0</Val>
2565
                                       <!-- Torque em Nm -->
2566
                                   </DAI>
2567
                                   <DAI name="q">
2568
                                       <Val>good</Val>
2569
                                   </DAI>
2570
                                   <DAI name="t">
2571
                                       <Val>2025-01-23T16:00:10Z</Val>
2572
                                   </DAI>
                               </D0I>
2573
2574
2575
                               <DOI name="Tem">
2576
                                   <DAI name="mag">
                                       <Val>72.5</Val>
2577
2578
                                       <!-- Temperatura do motor em graus Celsius -->
2579
2580
                                   <DAI name="q">
2581
                                       <Val>good</Val>
2582
                                   </DAI>
2583
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:20Z</Val>
2584
2585
                                   </DAI>
2586
                               </D0I>
2587
2588
                               <DOI name="CondAlm">
2589
                                   <DAI name="stVal">
2590
                                       <Val>false</Val>
2591
                                       <!-- Nenhuma condicao mecanica anormal detectada -->
2592
                                   </DAI>
2593
                                   <DAI name="q">
2594
                                       <Val>good</Val>
2595
                                   </DAI>
                                   <DAI name="t">
2596
                                       <Val>2025-01-23T16:00:30Z</Val>
2597
2598
                                   </DAI>
2599
                               </D0I>
2600
                               <DOI name="Beh">
2601
2602
                                   <DAI name="stVal">
2603
                                       <Val>1</Val>
2604
                                       <!-- Comportamento padrao -->
2605
                                   </DAI>
                               </DOI>
2606
2607
                               <DOI name="NamPlt">
2608
                                   <DAI name="vendor">
2609
2610
                                       <Val>DriveCheck</Val>
2611
                                   </DAI>
                                   <DAI name="swRev">
2612
2613
                                       <Val>v1.0</Val>
```

```
2614
                                   </DAI>
2615
                                   <DAI name="d">
2616
                                        <Val>Supervisao de condicao mecanica de motor</Val>
2617
2618
                               </D0I>
                           </LN>
2619
2620
                           <!-- MMET: Informações meteorológicas -->
2621
                           <LN lnClass="MMET" lnType="MEASURE/MMET" inst="1">
2622
                               <DOI name="Tem">
2623
2624
                                   <DAI name="mag">
                                        <Val>67.8</Val>
2625
2626
                                       <!-- Temperatura do motor em graus Celsius -->
2627
                                   </DAI>
2628
                                   <DAI name="q">
                                       <Val>good</Val>
2629
2630
                                   </DAI>
2631
                                   <DAI name="t">
2632
                                        <Val>2025-01-23T16:00:00Z</Val>
                                   </DAI>
2633
                               </DOI>
2634
2635
2636
                               <DOI name="Cur">
2637
                                   <DAI name="mag">
2638
                                       <Val>45.2</Val>
2639
                                       <!-- Corrente do motor em A -->
2640
                                   </DAI>
2641
                                   <DAI name="q">
2642
                                       <Val>good</Val>
2643
                                   <DAI name="t">
2644
                                       <Val>2025-01-23T16:00:10Z</Val>
2645
2646
                                   </DAI>
2647
                               </DOI>
2648
2649
                               <DOI name="Spd">
2650
                                   <DAI name="mag">
2651
                                       <Val>1480</Val>
2652
                                       <!-- Velocidade em RPM -->
2653
                                   </DAI>
                                   <DAI name="q">
2654
2655
                                       <Val>good</Val>
2656
                                   </DAI>
                                   <DAI name="t">
2657
2658
                                       <Val>2025-01-23T16:00:20Z</Val>
2659
                                   </DAI>
                               </DOI>
2660
2661
                               <DOI name="AlmMot">
2662
2663
                                   <DAI name="stVal">
                                       <Val>false</Val>
2664
                                       <!-- Nenhum alarme ativo -->
2665
2666
                                   </DAI>
2667
                                   <DAI name="q">
2668
                                       <Val>good</Val>
2669
                                   </DAI>
2670
                                   <DAI name="t">
2671
                                        <Val>2025-01-23T16:00:30Z</Val>
                                   </DAI>
2672
                               </DOI>
2673
2674
2675
                               <DOI name="OpTmh">
2676
                                   <DAI name="stVal">
2677
                                       <Val>3896</Val>
```

```
2678
                                       <!-- Horas acumuladas de operacao -->
2679
                                   </DAI>
2680
                               </DOI>
2681
                               <DOI name="Beh">
2682
2683
                                   <DAI name="stVal">
2684
                                       <Val>1</Val>
2685
                                       <!-- Comportamento padrao -->
                                   </DAI>
2686
2687
                               </DOI>
2688
                               <DOI name="NamPlt">
2689
                                   <DAI name="vendor">
2690
2691
                                       <Val>MotorWatch</Val>
2692
                                   </DAI>
                                   <DAI name="swRev">
2693
2694
                                       <Val>v2.0</Val>
2695
                                   </DAI>
2696
                                   <DAI name="d">
2697
                                       <Val>Supervisao eletrica de motor trifasico</Val>
2698
                                   </DAI>
2699
                               </DOI>
2700
                           </LN>
2701
2702
2703
                           <!-- MMTN: Medição monofásica -->
                           <LN lnClass="MMTN" lnType="MEASURE/MMTN" inst="1">
2704
2705
                               <DOI name="Tmp">
2706
                                   <DAI name="mag">
2707
                                       <Val>43.5</Val>
2708
                                       <!-- Temperatura do liquido em graus Celsius -->
2709
                                   </DAI>
2710
                                   <DAI name="q">
2711
                                       <Val>good</Val>
2712
                                   </DAI>
                                   <DAI name="t">
2713
2714
                                       <Val>2025-01-23T16:00:00Z</Val>
2715
                                   </DAI>
2716
                               </D0I>
2717
2718
                               <DOI name="Lvl">
2719
                                   <DAI name="mag">
2720
                                       <Val>2.2</Val>
2721
                                       <!-- Nivel do liquido em metros -->
2722
                                   </DAI>
2723
                                   <DAI name="q">
2724
                                       <Val>good</Val>
2725
                                   </DAI>
2726
                                   <DAI name="t">
2727
                                       <Val>2025-01-23T16:00:10Z</Val>
2728
                                   </DAI>
2729
                               </D0I>
2730
2731
                               <DOI name="Vol">
2732
                                   <DAI name="mag">
                                       <Val>3200.0</Val>
2733
2734
                                       <!-- Volume em litros -->
2735
2736
                                   <DAI name="q">
2737
                                       <Val>good</Val>
2738
                                   </DAI>
2739
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:20Z</Val>
2740
2741
                                   </DAI>
```

```
2742
                               </DOI>
2743
2744
                               <DOI name="AlmTnk">
2745
                                   <DAI name="stVal">
2746
                                       <Val>false</Val>
2747
                                       <!-- Sem alarme de tanque ativo -->
2748
                                   </DAI>
                                   <DAI name="q">
2749
2750
                                        <Val>good</Val>
2751
                                   </DAI>
2752
                                   <DAI name="t">
2753
                                        <Val>2025-01-23T16:00:30Z</Val>
2754
                                   </DAI>
                               </DOI>
2755
2756
                               <DOI name="Beh">
2757
2758
                                   <DAI name="stVal">
2759
                                       <Val>1</Val>
2760
                                       <!-- Comportamento padrao -->
                                   </DAI>
2761
2762
                               </DOI>
2763
2764
                               <DOI name="NamPlt">
2765
                                   <DAI name="vendor">
2766
                                       <Val>TankMon</Val>
2767
2768
                                   <DAI name="swRev">
                                        <Val>v1.3</Val>
2769
2770
                                   </DAI>
2771
                                   <DAI name="d">
2772
                                       <Val>Monitoramento de tanque de oleo isolante</Val>
2773
                                   </DAI>
2774
                               </D0I>
2775
                           </LN>
2776
2777
                           <!-- MMTR: Medição trifásica -->
                           <LN lnClass="MMTR" lnType="MEASURE/MMTR" inst="1">
2778
2779
                               <DOI name="TotWh">
2780
                                   <DAI name="mag">
2781
                                       <Val>125320.5</Val>
2782
                                       <!-- Energia ativa acumulada em Wh -->
2783
                                   </DAI>
2784
                                   <DAI name="q">
2785
                                       <Val>good</Val>
2786
                                   </DAI>
2787
                                   <DAI name="t">
2788
                                       <Val>2025-01-23T16:00:00Z</Val>
2789
                                   </DAI>
2790
                               </DOI>
2791
                               <DOI name="TotVArh">
2792
2793
                                   <DAI name="mag">
                                       <Val>68412.7</Val>
2794
2795
                                       <!-- Energia reativa acumulada em VArh -->
2796
                                   </DAI>
                                   <DAI name="q">
2797
2798
                                       <Val>good</Val>
2799
2800
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:10Z</Val>
2801
2802
                                   </DAI>
2803
                               </D0I>
2804
2805
                               <DOI name="TotVAh">
```

```
2806
                                   <DAI name="mag">
2807
                                       <Val>137894.9</Val>
2808
                                       <!-- Energia aparente acumulada em VAh -->
2809
                                   </DAI>
2810
                                   <DAI name="q">
2811
                                       <Val>good</Val>
2812
                                   </DAI>
                                   <DAI name="t">
2813
2814
                                        <Val>2025-01-23T16:00:20Z</Val>
2815
                                   </DAI>
2816
                               </DOI>
2817
2818
                               <DOI name="Beh">
2819
                                   <DAI name="stVal">
2820
                                       <Val>1</Val>
2821
                                       <!-- Comportamento padrao -->
2822
                                   </DAI>
2823
                               </DOI>
2824
                               <DOI name="NamPlt">
2825
2826
                                   <DAI name="vendor">
2827
                                       <Val>EnerMon</Val>
2828
                                   </DAI>
                                   <DAI name="swRev">
2829
2830
                                       <Val>v1.4</Val>
2831
                                   </DAI>
2832
                                   <DAI name="d">
2833
                                        <Val>Medidor de energia trifasico acumulador</Val>
2834
                                   </DAI>
2835
                               </D0I>
2836
                           </LN>
2837
2838
                           <!-- MMXN: Medições não relacionadas a fase -->
2839
                           <LN lnClass="MMXN" lnType="MEASURE/MMXN" inst="1">
                               <DOI name="TotW">
2840
2841
                                   <DAI name="mag">
2842
                                       <Val>18500.0</Val>
2843
                                       <!-- Potencia ativa total em W -->
2844
                                   </DAI>
                                   <DAI name="q">
2845
2846
                                        <Val>good</Val>
2847
                                   </DAI>
2848
                                   <DAI name="t">
2849
                                        <Val>2025-01-23T16:00:00Z</Val>
2850
                                   </DAI>
2851
                               </D0I>
2852
                               <DOI name="TotVAr">
2853
2854
                                   <DAI name="mag">
2855
                                       <Val>5300.0</Val>
2856
                                       <!-- Potencia reativa total em VAr -->
2857
                                   </DAI>
                                   <DAI name="q">
2858
2859
                                       <Val>good</Val>
2860
                                   </DAI>
                                   <DAI name="t">
2861
2862
                                        <Val>2025-01-23T16:00:05Z</Val>
2863
                                   </DAI>
2864
                               </DOI>
2865
2866
                               <DOI name="TotVA">
2867
                                   <DAI name="mag">
                                       <Val>19500.0</Val>
2868
2869
                                       <!-- Potencia aparente total em VA -->
```

```
2870
                                   </DAI>
2871
                                   <DAI name="q">
2872
                                        <Val>good</Val>
2873
                                   </DAI>
                                   <DAI name="t">
2874
2875
                                        <Val>2025-01-23T16:00:10Z</Val>
2876
                                   </DAI>
                               </DOI>
2877
2878
                               <DOI name="Hz">
2879
2880
                                   <DAI name="mag">
2881
                                        <Val>59.98</Val>
2882
                                        <!-- Frequencia da rede em Hz -->
2883
                                   </DAI>
2884
                                   <DAI name="q">
                                        <Val>good</Val>
2885
2886
                                   </DAI>
2887
                                   <DAI name="t">
2888
                                        <Val>2025-01-23T16:00:15Z</Val>
                                   </DAI>
2889
                               </DOI>
2890
2891
2892
                               <DOI name="PF">
2893
                                   <DAI name="mag">
2894
                                        <Val>0.95</Val>
2895
                                        <!-- Fator de potencia -->
2896
                                   </DAI>
2897
                                   <DAI name="q">
2898
                                       <Val>good</Val>
2899
                                   <DAI name="t">
2900
                                        <Val>2025-01-23T16:00:20Z</Val>
2901
2902
                                   </DAI>
2903
                               </D0I>
2904
                               <DOI name="A">
2905
                                   <DAI name="mag">
2906
2907
                                        <Val>82.1</Val>
2908
                                        <!-- Corrente total RMS em A -->
2909
                                   </DAI>
                                   <DAI name="q">
2910
2911
                                        <Val>good</Val>
2912
                                   </DAI>
                                   <DAI name="t">
2913
2914
                                        <Val>2025-01-23T16:00:25Z</Val>
2915
                                   </DAI>
                               </DOI>
2916
2917
                               <DOI name="PhV">
2918
2919
                                   <DAI name="mag">
                                        <Val>400.0</Val>
2920
2921
                                        <!-- Tensao total RMS em V -->
2922
                                   </DAI>
2923
                                   <DAI name="q">
2924
                                        <Val>good</Val>
2925
                                   </DAI>
                                   <DAI name="t">
2926
2927
                                        <Val>2025-01-23T16:00:30Z</Val>
2928
                                   </DAI>
2929
                               </D0I>
2930
2931
                               <DOI name="Beh">
2932
                                   <DAI name="stVal">
2933
                                        <Val>1</Val>
```

```
2934
                                       <!-- Comportamento padrao -->
2935
                                   </DAI>
2936
                               </D0I>
2937
2938
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
2939
2940
                                       <Val>MeterSys</Val>
2941
                                   </DAI>
                                   <DAI name="swRev">
2942
2943
                                       <Val>v3.2</Val>
2944
                                   </DAI>
                                   <DAI name="d">
2945
2946
                                        <Val>Medidor de potencia trifasica</Val>
2947
                                   </DAI>
2948
                               </D0I>
                           </LN>
2949
2950
2951
2952
                           <!-- MMXU: Medições gerais -->
                           <LN lnClass="MMXU" lnType="MEASURE/MMXU" inst="1">
2953
2954
                               <DOI name="A">
2955
                                   <DAI name="phsA.mag">
2956
                                       <Val>35.2</Val>
2957
                                       <!-- Corrente fase A em A -->
                                   </DAI>
2958
2959
                                   <DAI name="phsB.mag">
2960
                                        <Val>34.9</Val>
2961
                                       <!-- Corrente fase B em A -->
2962
                                   </DAI>
2963
                                   <DAI name="phsC.mag">
2964
                                       <Val>36.1</Val>
2965
                                       <!-- Corrente fase C em A -->
2966
                                   </DAI>
2967
                               </DOI>
2968
                               <DOI name="PhV">
2969
                                   <DAI name="phsA.mag">
2970
2971
                                       <Val>230.0</Val>
2972
                                       <!-- Tensao fase A em V -->
2973
                                   </DAI>
2974
                                   <DAI name="phsB.mag">
2975
                                       <Val>231.5</Val>
2976
                                       <!-- Tensao fase B em V -->
2977
                                   </DAI>
2978
                                   <DAI name="phsC.mag">
2979
                                       <Val>229.2</Val>
2980
                                       <!-- Tensao fase C em V -->
                                   </DAI>
2981
2982
                               </D0I>
2983
                               <DOI name="W">
2984
2985
                                   <DAI name="mag">
2986
                                       <Val>19500.0</Val>
2987
                                       <!-- Potencia ativa em W -->
2988
                                   </DAI>
                                   <DAI name="q">
2989
                                       <Val>good</Val>
2990
2991
                                   </DAI>
2992
                               </DOI>
2993
2994
                               <DOI name="VAr">
2995
                                   <DAI name="mag">
2996
                                       <Val>6200.0</Val>
2997
                                       <!-- Potencia reativa em VAr -->
```

```
2998
                                   </DAI>
2999
                                   <DAI name="q">
3000
                                        <Val>good</Val>
3001
                                   </DAI>
3002
                               </DOI>
3003
3004
                               <DOI name="VA">
                                   <DAI name="mag">
3005
3006
                                        <Val>20800.0</Val>
3007
                                        <!-- Potencia aparente em VA -->
3008
                                   <DAI name="q">
3009
3010
                                        <Val>good</Val>
                                   </DAI>
3011
3012
                               </DOI>
3013
3014
                               <DOI name="Hz">
3015
                                   <DAI name="mag">
3016
                                       <Val>60.0</Val>
3017
                                        <!-- Frequencia em Hz -->
3018
                                   </DAI>
3019
                                   <DAI name="q">
3020
                                        <Val>good</Val>
                                   </DAI>
3021
                               </D0I>
3022
3023
                               <DOI name="PF">
3024
3025
                                   <DAI name="mag">
3026
                                        <Val>0.93</Val>
3027
                                        <!-- Fator de potencia -->
3028
                                   </DAI>
                                   <DAI name="q">
3029
3030
                                       <Val>good</Val>
3031
                                   </DAI>
                               </D0I>
3032
3033
                               <DOI name="Beh">
3034
3035
                                   <DAI name="stVal">
3036
                                        <Val>1</Val>
3037
                                        <!-- Comportamento padrao -->
3038
                                   </DAI>
3039
                               </DOI>
3040
3041
                               <DOI name="NamPlt">
3042
                                   <DAI name="vendor">
3043
                                        <Val>ElecMon</Val>
3044
                                   </DAI>
3045
                                   <DAI name="swRev">
3046
                                       <Val>v2.5</Val>
3047
                                   </DAI>
                                   <DAI name="d">
3048
                                        <Val>Unidade de medicao trifasica com fase</Val>
3049
3050
                                   </DAI>
3051
                               </D0I>
3052
                           </LN>
3053
3054
3055
                           <!-- MSTA: Estatísticas de medição -->
3056
                           <LN lnClass="MSTA" lnType="STATUS/MSTA" inst="1">
3057
                               <DOI name="StVal1">
3058
                                   <DAI name="stVal">
3059
                                        <Val>false</Val>
3060
                                        <!-- Alarme geral inativo -->
3061
                                   </DAI>
```

```
<DAI name="q">
3062
3063
                                       <Val>good</Val>
3064
                                   </DAI>
                                   <DAI name="t">
3065
                                       <Val>2025-01-23T16:00:00Z</Val>
3066
3067
                                   </DAI>
3068
                               </D0I>
3069
3070
                               <DOI name="StVal2">
3071
                                   <DAI name="stVal">
3072
                                       <Val>true</Val>
3073
                                       <!-- Permissao de operacao ativa -->
3074
                                   </DAT>
                                   <DAI name="q">
3075
3076
                                       <Val>good</Val>
3077
                                   </DAT>
                                   <DAI name="t">
3078
3079
                                       <Val>2025-01-23T16:00:05Z</Val>
3080
                                   </DAI>
3081
                               </D0I>
3082
3083
                               <DOI name="StVal3">
3084
                                   <DAI name="stVal">
3085
                                       <Val>false</Val>
3086
                                       <!-- Sem falha interna detectada -->
3087
                                   </DAI>
3088
                                   <DAI name="q">
3089
                                       <Val>good</Val>
3090
                                   </DAI>
3091
                                   <DAI name="t">
3092
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
3093
3094
                               </DOI>
3095
                               <DOI name="Beh">
3096
3097
                                   <DAI name="stVal">
3098
                                       <Val>1</Val>
3099
                                       <!-- Comportamento padrao -->
3100
                                   </DAI>
                               </DOI>
3101
3102
3103
                               <DOI name="NamPlt">
3104
                                   <DAI name="vendor">
3105
                                       <Val>StatusMon</Val>
3106
                                   </DAI>
3107
                                   <DAI name="swRev">
3108
                                       <Val>v1.1</Val>
3109
                                   </DAI>
3110
                                   <DAI name="d">
3111
                                       <Val>Monitoramento de estados operacionais gerais
                            Val>
3112
                                   </DAI>
3113
                               </DOI>
3114
                           </LN>
3115
                           <!-- MPRS: Medições de pressão -->
3116
                           <LN lnClass="MPRS" lnType="PROCESS/MPRS" inst="1">
3117
3118
                               <DOI name="StVal">
                                   <DAI name="stVal">
3119
3120
                                       <Val>true</Val>
3121
                                       <!-- Processo em estado ativo ou normal -->
3122
                                   <DAI name="q">
3123
3124
                                       <Val>good</Val>
```

```
3125
                                   </DAI>
3126
                                   <DAI name="t">
3127
                                       <Val>2025-01-23T16:00:00Z</Val>
3128
                                   </DAI>
3129
                               </DOI>
3130
3131
                               <DOI name="AlmPrs">
3132
                                   <DAI name="stVal">
3133
                                       <Val>false</Val>
3134
                                       <!-- Nenhum alarme de processo ativo -->
3135
                                   <DAI name="q">
3136
3137
                                       <Val>good</Val>
3138
                                   </DAI>
3139
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:10Z</Val>
3140
3141
                                   </DAT>
3142
                               </DOI>
3143
                               <DOI name="BlkPrs">
3144
3145
                                   <DAI name="stVal">
3146
                                       <Val>false</Val>
3147
                                       <!-- Processo nao bloqueado -->
3148
                                   </DAI>
                                   <DAI name="q">
3149
3150
                                       <Val>good</Val>
3151
                                   </DAI>
                                   <DAI name="t">
3152
3153
                                       <Val>2025-01-23T16:00:20Z</Val>
3154
                                   </DAI>
                               </DOI>
3155
3156
                               <DOI name="Beh">
3157
3158
                                   <DAI name="stVal">
3159
                                       <Val>1</Val>
3160
                                       <!-- Comportamento padrao (on) -->
                                   </DAI>
3161
                               </DOI>
3162
3163
                               <DOI name="NamPlt">
3164
                                   <DAI name="vendor">
3165
                                       <Val>ProcSuperv</Val>
3166
3167
                                   </DAI>
                                   <DAI name="swRev">
3168
3169
                                       <Val>v1.0</Val>
3170
                                   </DAI>
                                   <DAI name="d">
3171
                                       <Val>Supervisao de processo industrial</Val>
3172
3173
                                   </DAI>
3174
                               </DOI>
                           </LN>
3175
3176
3177
                           <!-- MHET: Valores medidos de calor -->
3178
                           <LN lnClass="MHET" lnType="MODEL/MHET" inst="1">
3179
                               <DOI name="TmpEst">
3180
                                   <DAI name="mag">
3181
                                       <Val>92.7</Val>
3182
                                       <!-- Temperatura estimada em graus Celsius -->
3183
                                   </DAI>
                                   <DAI name="q">
3184
3185
                                       <Val>good</Val>
3186
                                   </DAI>
                                   <DAI name="t">
3187
3188
                                       <Val>2025-01-23T16:00:00Z</Val>
```

```
3189
                                   </DAI>
3190
                               </D0I>
3191
3192
                               <DOI name="AlmTmp">
                                   <DAI name="stVal">
3193
                                       <Val>true</Val>
3194
3195
                                       <!-- Alarme de sobreaquecimento ativo -->
3196
                                   </DAI>
                                   <DAI name="q">
3197
3198
                                       <Val>good</Val>
3199
                                   </DAI>
                                   <DAI name="t">
3200
3201
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
3202
3203
                               </DOI>
3204
                               <DOI name="BlkTmp">
3205
3206
                                   <DAI name="stVal">
3207
                                        <Val>false</Val>
3208
                                       <!-- Bloqueio termico nao acionado -->
3209
                                   </DAT>
3210
                                   <DAI name="q">
3211
                                       <Val>good</Val>
3212
                                   </DAI>
                                   <DAI name="t">
3213
3214
                                        <Val>2025-01-23T16:00:20Z</Val>
3215
                                   </DAI>
                               </D0I>
3216
3217
3218
                               <DOI name="Tmh">
3219
                                   <DAI name="stVal">
                                       <Val>537.5</Val>
3220
3221
                                       <!-- Tempo termico acumulado em horas -->
3222
                                   </DAI>
                               </D0I>
3223
3224
3225
                               <DOI name="Beh">
3226
                                   <DAI name="stVal">
3227
                                        <Val>1</Val>
3228
                                       <!-- Comportamento padrao -->
3229
                                   </DAI>
3230
                               </DOI>
3231
3232
                               <DOI name="NamPlt">
3233
                                   <DAI name="vendor">
3234
                                       <Val>ThermModelSys</Val>
3235
                                   </DAI>
                                   <DAI name="swRev">
3236
3237
                                       <Val>v1.1</Val>
3238
                                   </DAI>
                                   <DAI name="d">
3239
3240
                                       <Val>Modelo termico equivalente para motor</Val>
                                   </DAI>
3241
3242
                               </D0I>
                           </LN>
3243
3244
3245
                           <!-- MFLW: Medições de fluxo -->
3246
                           <LN lnClass="MFLW" lnType="MEASURE/MFLW" inst="1">
3247
                               <DOI name="Flw">
3248
                                   <DAI name="mag">
3249
                                       <Val>4.25</Val>
3250
                                       <!-- Vazao atual em m3/h -->
                                   </DAI>
3251
                                   <DAI name="q">
3252
```

```
3253
                                       <Val>good</Val>
3254
                                   </DAI>
3255
                                   <DAI name="t">
3256
                                       <Val>2025-01-23T16:00:00Z</Val>
                                   </DAI>
3257
3258
                               </D0I>
3259
                               <DOI name="TotFlw">
3260
3261
                                   <DAI name="mag">
3262
                                       <Val>15234.0</Val>
3263
                                       <!-- Volume acumulado em m3 -->
3264
                                   </DAI>
                                   <DAI name="q">
3265
3266
                                       <Val>good</Val>
3267
                                   </DAI>
                                   <DAI name="t">
3268
                                       <Val>2025-01-23T16:00:10Z</Val>
3269
3270
                                   </DAI>
3271
                               </DOI>
3272
                               <DOI name="AlmFlw">
3273
3274
                                   <DAI name="stVal">
3275
                                       <Val>false</Val>
3276
                                       <!-- Nenhum alarme de vazao -->
                                   </DAI>
3277
3278
                                   <DAI name="q">
3279
                                       <Val>good</Val>
3280
                                   </DAI>
                                   <DAI name="t">
3281
3282
                                       <Val>2025-01-23T16:00:20Z</Val>
3283
                                   </DAI>
                               </DOI>
3284
3285
3286
                               <DOI name="Beh">
3287
                                   <DAI name="stVal">
                                       <Val>1</Val>
3288
3289
                                       <!-- Comportamento padrao -->
3290
                                   </DAI>
3291
                               </D0I>
3292
3293
                               <DOI name="NamPlt">
3294
                                   <DAI name="vendor">
3295
                                       <Val>FlowSense</Val>
3296
                                   </DAI>
                                   <DAI name="swRev">
3297
3298
                                       <Val>v1.0</Val>
3299
                                   </DAI>
                                   <DAI name="d">
3300
3301
                                       <Val>Medidor de vazao tipo ultrassonico</Val>
3302
                                   </DAI>
3303
                               </DOI>
                           </LN>
3304
3305
3306
                           <!-- MFUL: Características do combustível -->
                           <LN lnClass="MFUL" lnType="MEASURE/MFUL" inst="1">
3307
                               <DOI name="LvlFul">
3308
                                   <DAI name="mag">
3309
3310
3311
                                       <!-- Nivel de combustivel em porcentagem (72%) -->
3312
                                   </DAI>
                                   <DAI name="q">
3313
3314
                                       <Val>good</Val>
                                   </DAI>
3315
3316
                                   <DAI name="t">
```

```
3317
                                       <Val>2025-01-23T16:00:00Z</Val>
                                   </DAI>
3318
3319
                               </D0I>
3320
                               <DOI name="VolFul">
3321
3322
                                   <DAI name="mag">
3323
                                       <Val>1450.0</Val>
3324
                                       <!-- Volume atual de combustivel em litros -->
3325
                                   </DAT>
                                   <DAI name="q">
3326
3327
                                       <Val>good</Val>
3328
                                   </DAI>
                                   <DAI name="t">
3329
3330
                                       <Val>2025-01-23T16:00:10Z</Val>
3331
                                   </DAI>
                               </D0I>
3332
3333
3334
                               <DOI name="AlmFul">
3335
                                   <DAI name="stVal">
3336
                                       <Val>false</Val>
3337
                                       <!-- Nenhum alarme de combustivel -->
3338
                                   </DAI>
3339
                                   <DAI name="q">
3340
                                       <Val>good</Val>
3341
                                   </DAI>
3342
                                   <DAI name="t">
3343
                                       <Val>2025-01-23T16:00:20Z</Val>
                                   </DAI>
3344
3345
                               </DOI>
3346
                               <DOI name="Beh">
3347
3348
                                   <DAI name="stVal">
3349
                                       <Val>1</Val>
                                       <!-- Comportamento padrao -->
3350
                                   </DAI>
3351
3352
                               </D0I>
3353
3354
                               <DOI name="NamPlt">
3355
                                   <DAI name="vendor">
                                       <Val>FuelMon</Val>
3356
3357
                                   </DAI>
3358
                                   <DAI name="swRev">
3359
                                       <Val>v2.0</Val>
3360
                                   </DAI>
3361
                                   <DAI name="d">
3362
                                       <Val>Supervisao de tanque de diesel de gerador</Val>
3363
                                   </DAI>
                               </D0I>
3364
3365
                           </LN>
3366
3367
                           <!-- Grupo S: Supervisão e Monitoramento -->
3368
                           <!-- STMP: Supervisão de temperatura -->
                           <LN lnClass="STMP" lnType="SUPERV/STMP" inst="1">
3369
3370
                               <DOI name="TmpSpt">
3371
                                   <DAI name="setMag">
3372
                                       <Val>90.0</Val>
3373
                                       <!-- Setpoint de temperatura em graus Celsius -->
3374
                                   </DAI>
3375
                               </DOI>
3376
3377
                               <DOI name="AlmTmp">
3378
                                   <DAI name="stVal">
3379
                                       <Val>true</Val>
3380
                                       <!-- Alarme de temperatura ativa -->
```

```
3381
                                   </DAI>
3382
                                   <DAI name="q">
3383
                                       <Val>good</Val>
3384
                                   </DAI>
                                   <DAI name="t">
3385
3386
                                       <Val>2025-01-23T16:00:00Z</Val>
3387
                                   </DAI>
                               </DOI>
3388
3389
                               <DOI name="BlkTmp">
3390
3391
                                   <DAI name="stVal">
                                        <Val>false</Val>
3392
3393
                                       <!-- Sem bloqueio termico ativo -->
3394
                                   </DAI>
3395
                                   <DAI name="q">
                                       <Val>good</Val>
3396
                                   </DAI>
3397
3398
                                   <DAI name="t">
3399
                                       <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
3400
3401
                               </D0I>
3402
3403
                               <DOI name="Beh">
3404
                                   <DAI name="stVal">
3405
                                       <Val>1</Val>
                                       <!-- Comportamento padrao -->
3406
3407
                                   </DAI>
                               </D0I>
3408
3409
3410
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
3411
3412
                                       <Val>TempSuperv</Val>
3413
                                   </DAI>
3414
                                   <DAI name="swRev">
3415
                                       <Val>v1.0</Val>
3416
                                   </DAI>
                                   <DAI name="d">
3417
3418
                                       <Val>Supervisao termica de inversor de frequencia</ >
                            Val>
3419
                                   </DAI>
3420
                               </DOI>
3421
                           </LN>
3422
3423
                           <!-- SVBR: Supervisão de vibração -->
                           <LN lnClass="SVBR" lnType="SUPERV/SVBR" inst="1">
3424
3425
                               <DOI name="VibSpt">
3426
                                   <DAI name="setMag">
3427
                                       <Val>5.0</Val>
3428
                                       <!-- Setpoint de vibracao em mm/s -->
3429
                                   </DAI>
3430
                               </DOI>
3431
                               <DOI name="AlmVib">
3432
3433
                                   <DAI name="stVal">
3434
                                       <Val>true</Val>
3435
                                       <!-- Alarme de vibracao ativa -->
3436
                                   </DAI>
3437
                                   <DAI name="q">
3438
                                       <Val>good</Val>
3439
                                   </DAI>
3440
                                   <DAI name="t">
3441
                                       <Val>2025-01-23T16:00:00Z</Val>
                                   </DAI>
3442
3443
                               </DOI>
```

```
3444
3445
                               <DOI name="BlkVib">
3446
                                   <DAI name="stVal">
3447
                                        <Val>false</Val>
3448
                                        <!-- Sem bloqueio por vibracao -->
3449
                                   </DAT>
3450
                                   <DAI name="q">
3451
                                        <Val>good</Val>
3452
                                   </DAI>
                                   <DAI name="t">
3453
3454
                                        <Val>2025-01-23T16:00:10Z</Val>
                                   </DAI>
3455
3456
                               </D0I>
3457
3458
                               <DOI name="Beh">
3459
                                   <DAI name="stVal">
3460
                                        <Val>1</Val>
3461
                                        <!-- Comportamento padrao -->
3462
                                   </DAI>
3463
                               </DOI>
3464
3465
                               <DOI name="NamPlt">
3466
                                   <DAI name="vendor">
3467
                                        <Val>VibroSys</Val>
3468
                                   </DAI>
3469
                                   <DAI name="swRev">
3470
                                        <Val>v1.0</Val>
3471
                                   </DAI>
3472
                                   <DAI name="d">
3473
                                        <Val>Supervisao de vibracao em motor de inducao</
                            Val>
3474
                                   </DAI>
3475
                               </D0I>
3476
                           </LN>
3477
3478
                           <!-- SFLW: Supervisão de fluxo de mídia -->
                           <LN lnClass="SFLW" lnType="SUPERV/SFLW" inst="1">
3479
3480
                               <DOI name="FlwSpt">
3481
                                   <DAI name="setMag">
3482
                                        <Val>8.0</Val>
3483
                                        <!-- Setpoint de vazao em m3/h -->
3484
                                   </DAI>
3485
                               </DOI>
3486
3487
                               <DOI name="AlmFlw">
3488
                                   <DAI name="stVal">
3489
                                        <Val>true</Val>
3490
                                        <!-- Alarme de vazao ativa -->
3491
                                   </DAI>
3492
                                   <DAI name="q">
3493
                                        <Val>good</Val>
3494
                                   </DAI>
                                   <DAI name="t">
3495
3496
                                        <Val>2025-01-23T16:00:00Z</Val>
3497
                                   </DAI>
                               </D0I>
3498
3499
3500
                               <DOI name="BlkFlw">
3501
                                   <DAI name="stVal">
3502
                                        <Val>false</Val>
3503
                                        <!-- Sem bloqueio por vazao -->
3504
                                   <DAI name="q">
3505
3506
                                        <Val>good</Val>
```

```
3507
                                   </DAI>
3508
                                   <DAI name="t">
3509
                                        <Val>2025-01-23T16:00:10Z</Val>
3510
                                   </DAI>
3511
                               </DOI>
3512
3513
                               <DOI name="Beh">
3514
                                   <DAI name="stVal">
3515
                                       <Val>1</Val>
3516
                                       <!-- Comportamento padrao (on) -->
3517
                                   </DAI>
3518
                               </DOI>
3519
3520
                               <DOI name="NamPlt">
3521
                                   <DAI name="vendor">
                                       <Val>FlowGuard</Val>
3522
3523
                                   </DAI>
3524
                                   <DAI name="swRev">
3525
                                       <Val>v1.0</Val>
3526
                                   </DAI>
                                   <DAI name="d">
3527
3528
                                       <Val>Supervisao de fluxo em tubulacao de agua</Val>
3529
                                   </DAI>
                               </DOI>
3530
3531
                           </LN>
3532
3533
                           <!-- SLVL: Supervisão de nível de mídia -->
                           <LN lnClass="SLVL" lnType="SUPERV/SLVL" inst="1">
3534
                               <DOI name="LvlSpt">
3535
3536
                                   <DAI name="setMag">
3537
                                       <Val>1.80</Val>
3538
                                       <!-- Setpoint de nivel em metros -->
3539
                                   </DAI>
3540
                               </D0I>
3541
                               <DOI name="AlmLvl">
3542
                                   <DAI name="stVal">
3543
3544
                                       <Val>true</Val>
3545
                                       <!-- Alarme de nivel ativo -->
                                   </DAI>
3546
                                   <DAI name="q">
3547
3548
                                       <Val>good</Val>
3549
                                   </DAI>
                                   <DAI name="t">
3550
3551
                                       <Val>2025-01-23T16:00:00Z</Val>
3552
                                   </DAI>
                               </DOI>
3553
3554
                               <DOI name="BlkLvl">
3555
3556
                                   <DAI name="stVal">
3557
                                       <Val>false</Val>
                                       <!-- Sem bloqueio por nivel -->
3558
3559
                                   </DAI>
3560
                                   <DAI name="q">
3561
                                       <Val>good</Val>
3562
                                   </DAI>
                                   <DAI name="t">
3563
3564
                                        <Val>2025-01-23T16:00:10Z</Val>
3565
                                   </DAI>
3566
                               </D0I>
3567
3568
                               <DOI name="Beh">
                                   <DAI name="stVal">
3569
3570
                                       <Val>1</Val>
```

```
3571
                                       <!-- Comportamento padrao (on) -->
3572
                                   </DAI>
3573
                               </D0I>
3574
3575
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
3576
3577
                                       <Val>LevelGuard</Val>
3578
                                   </DAI>
                                   <DAI name="swRev">
3579
3580
                                       <Val>v1.0</Val>
3581
                                   </DAI>
                                   <DAI name="d">
3582
3583
                                        <Val>Supervisao de nivel em tanque de processo</Val>
3584
                                   </DAI>
3585
                               </D0I>
                           </LN>
3586
3587
3588
                           <!-- SPOS: Supervisão da posição de um dispositivo-->
                           <LN lnClass="SPOS" lnType="SUPERV/SPOS" inst="1">
3589
3590
                               <DOI name="PosSpt">
                                   <DAI name="setMag">
3591
3592
                                       <Val>100.0</Val>
3593
                                       <!-- Posição desejada em % -->
3594
                                   </DAI>
3595
                               </DOI>
3596
3597
                               <DOI name="PosVal">
3598
                                   <DAI name="mag">
                                       <Val>92.5</Val>
3599
3600
                                       <!-- Posição real em % -->
3601
                                   </DAI>
                                   <DAI name="q">
3602
3603
                                       <Val>good</Val>
3604
                                   </DAI>
                                   <DAI name="t">
3605
3606
                                       <Val>2025-01-23T16:00:00Z</Val>
3607
                                   </DAI>
3608
                               </DOI>
3609
                               <DOI name="AlmPos">
3610
3611
                                   <DAI name="stVal">
3612
                                        <Val>true</Val>
3613
                                       <!-- Alarme de divergencia de posicao -->
3614
                                   </DAI>
3615
                                   <DAI name="q">
3616
                                       <Val>good</Val>
3617
                                   </DAI>
                                   <DAI name="t">
3618
3619
                                       <Val>2025-01-23T16:00:10Z</Val>
3620
                                   </DAI>
3621
                               </DOI>
3622
                               <DOI name="BlkPos">
3623
3624
                                   <DAI name="stVal">
3625
                                       <Val>false</Val>
3626
                                       <!-- Sem bloqueio de posicao -->
3627
                                   </DAI>
3628
                                   <DAI name="q">
3629
                                       <Val>good</Val>
3630
                                   </DAI>
                                   <DAI name="t">
3631
3632
                                       <Val>2025-01-23T16:00:20Z</Val>
                                   </DAI>
3633
3634
                               </DOI>
```

```
3635
3636
                               <DOI name="Beh">
3637
                                   <DAI name="stVal">
3638
                                       <Val>1</Val>
3639
                                       <!-- Comportamento padrao (ativo) -->
                                   </DAI>
3640
3641
                               </D0I>
3642
                               <DOI name="NamPlt">
3643
                                   <DAI name="vendor">
3644
3645
                                       <Val>PosiTrack</Val>
3646
                                   </DAT>
3647
                                   <DAI name="swRev">
3648
                                       <Val>v2.1</Val>
3649
                                   </DAI>
                                   <DAI name="d">
3650
3651
                                       <Val>Supervisao de atuador de valvula proporcional
                            Val>
3652
                                   </DAI>
                               </DOI>
3653
3654
                           </LN>
3655
3656
                           <!-- SPRS: Supervisão de pressão de mídia -->
                           <LN lnClass="SPRS" lnType="SUPERV/SPRS" inst="1">
3657
                               <DOI name="PresSpt">
3658
3659
                                   <DAI name="setMag">
3660
                                       <Val>6.0</Val>
3661
                                       <!-- Setpoint de pressao em bar -->
3662
                                   </DAI>
3663
                               </DOI>
3664
                               <DOI name="AlmPres">
3665
3666
                                   <DAI name="stVal">
3667
                                       <Val>true</Val>
3668
                                       <!-- Alarme de pressao ativa -->
3669
                                   </DAI>
                                   <DAI name="q">
3670
3671
                                       <Val>good</Val>
3672
                                   </DAI>
                                   <DAI name="t">
3673
3674
                                       <Val>2025-01-23T16:00:00Z</Val>
3675
                                   </DAI>
3676
                               </D0I>
3677
3678
                               <DOI name="BlkPres">
3679
                                   <DAI name="stVal">
3680
                                       <Val>false</Val>
3681
                                       <!-- Sem bloqueio por pressao -->
3682
                                   </DAI>
3683
                                   <DAI name="q">
3684
                                       <Val>good</Val>
3685
                                   </DAI>
                                   <DAI name="t">
3686
3687
                                       <Val>2025-01-23T16:00:10Z</Val>
3688
                                   </DAI>
3689
                               </D0I>
3690
3691
                               <DOI name="Beh">
3692
                                   <DAI name="stVal">
3693
                                       <Val>1</Val>
3694
                                       <!-- Comportamento padrao (ativo) -->
3695
                                   </DAI>
                               </DOI>
3696
3697
```

```
<DOI name="NamPlt">
3698
3699
                                   <DAI name="vendor">
3700
                                       <Val>PressuMon</Val>
3701
                                   </DAI>
                                   <DAI name="swRev">
3702
                                       <Val>v1.0</Val>
3703
3704
                                   </DAI>
                                   <DAI name="d">
3705
3706
                                       <Val>Supervisao de pressao em sistema hidraulico</ >
                            Val>
3707
                                   </DAI>
3708
                               </D0I>
3709
                           </LN>
3710
3711
                           <!-- Grupo T: Transformadores de Instrumento e Sensores -->
3712
                           <!-- TDST: Distância -->
                           <LN lnClass="TDST" lnType="SENSOR/TDST" inst="1">
3713
3714
                               <DOI name="StVal">
3715
                                   <DAI name="stVal">
3716
                                       <Val>true</Val>
3717
                                       <!-- Sensor digital ativado (ex: fim de curso
                            atingido) -->
3718
                                   </DAI>
                                   <DAI name="q">
3719
3720
                                       <Val>good</Val>
3721
                                       <!-- Qualidade da informacao -->
3722
                                   </DAI>
                                   <DAI name="t">
3723
3724
                                       <Val>2025-01-23T16:00:00Z</Val>
3725
                                       <!-- Timestamp da leitura -->
                                   </DAI>
3726
                               </D0I>
3727
3728
3729
                               <DOI name="Beh">
3730
                                   <DAI name="stVal">
3731
                                       <Val>1</Val>
3732
                                       <!-- Comportamento padrao -->
3733
                                   </DAI>
3734
                               </DOI>
3735
3736
                               <DOI name="NamPlt">
3737
                                   <DAI name="vendor">
3738
                                       <Val>SmartSense</Val>
3739
                                   </DAI>
3740
                                   <DAI name="swRev">
3741
                                       <Val>v1.0</Val>
3742
                                   </DAI>
                                   <DAI name="d">
3743
3744
                                       <Val>Sensor de fim de curso - cilindro A</Val>
3745
                                   </DAI>
3746
                               </DOI>
3747
                           </LN>
3748
3749
                           <!-- TFLW: Fluxo de líquido -->
3750
                           <LN lnClass="TFLW" lnType="SENSOR/TFLW" inst="1">
                               <DOI name="FlwSv">
3751
3752
                                   <DAI name="instMag">
3753
                                       <Val>3.5</Val>
3754
                                       <!-- Vazao medida em m3/h -->
3755
                                   </DAI>
3756
                                   <DAI name="q">
3757
                                       <Val>good</Val>
3758
                                       <!-- Qualidade da informacao -->
3759
                                   </DAI>
```

```
<DAI name="t">
3760
3761
                                       <Val>2025-01-23T16:00:00Z</Val>
3762
                                       <!-- Timestamp -->
3763
                                   </DAI>
3764
                                   <DAI name="units">
3765
                                       <Val>m3/h</Val>
3766
                                       <!-- Unidade da medicao -->
3767
                                   </DAI>
3768
                                   <DAI name="min">
3769
                                       <Val>0.1</Val>
3770
                                        <!-- Valor minimo medido -->
3771
                                   </DAI>
                                   <DAI name="max">
3772
                                       <Val>10.0</Val>
3773
3774
                                       <!-- Valor maximo medido -->
                                   </DAI>
3775
                               </D0I>
3776
3777
3778
                               <DOI name="SmpRte">
3779
                                   <DAI name="setVal">
3780
                                       <Val>1000</Val>
3781
                                       <!-- Taxa de amostragem em ms -->
3782
                                   </DAI>
                               </D0I>
3783
3784
3785
                               <DOI name="Beh">
3786
                                   <DAI name="stVal">
3787
                                        <Val>1</Val>
3788
                                       <!-- Comportamento padrao -->
3789
                                   </DAI>
                               </DOI>
3790
3791
3792
                               <DOI name="NamPlt">
3793
                                   <DAI name="vendor">
3794
                                       <Val>FlowSens</Val>
3795
                                   </DAI>
                                   <DAI name="swRev">
3796
3797
                                       <Val>v1.0</Val>
3798
                                   </DAI>
                                   <DAI name="d">
3799
3800
                                        <Val>Transdutor de vazao principal da linha 1</Val>
3801
                                   </DAI>
3802
                               </D0I>
3803
                           </LN>
3804
3805
                           <!-- TGSN: Sensor genérico -->
3806
                           <LN lnClass="TGSN" lnType="SENSOR/TGSN" inst="1">
                               <DOI name="GasSv">
3807
3808
                                   <DAI name="instMag">
3809
                                       <Val>450.0</Val>
3810
                                       <!-- Concentração de gás em ppm -->
3811
                                   </DAI>
3812
                                   <DAI name="q">
3813
                                        <Val>good</Val>
3814
                                        <!-- Qualidade da medicao -->
3815
                                   </DAI>
3816
                                   <DAI name="t">
3817
                                        <Val>2025-01-23T16:00:00Z</Val>
3818
                                        <!-- Timestamp -->
                                   </DAI>
3819
3820
                                   <DAI name="units">
3821
                                        <Val>ppm</Val>
                                       <!-- Unidade da medicao -->
3822
3823
                                   </DAI>
```

```
3824
                                   <DAI name="min">
3825
                                       <Val>0.0</Val>
3826
                                       <!-- Valor minimo medido -->
3827
                                   </DAI>
                                   <DAI name="max">
3828
3829
                                       <Val>1000.0</Val>
3830
                                       <!-- Valor maximo medido -->
3831
                                   </DAI>
3832
                               </DOI>
3833
3834
                               <DOI name="SmpRte">
3835
                                   <DAI name="setVal">
3836
                                       <Val>1000</Val>
3837
                                       <!-- Taxa de amostragem em ms -->
3838
                                   </DAI>
                               </DOI>
3839
3840
3841
                               <DOI name="Beh">
3842
                                   <DAI name="stVal">
3843
                                       <Val>1</Val>
3844
                                       <!-- Comportamento padrao -->
3845
                                   </DAI>
3846
                               </D0I>
3847
3848
                               <DOI name="NamPlt">
3849
                                   <DAI name="vendor">
3850
                                        <Val>GasSensTech</Val>
3851
                                   </DAI>
                                   <DAI name="swRev">
3852
3853
                                       <Val>v1.2</Val>
3854
                                   </DAI>
                                   <DAI name="d">
3855
3856
                                       <Val>Sensor de concentracao de CO2 na linha de
                            processo</Val>
3857
                                   </DAI>
3858
                               </DOI>
3859
                           </LN>
3860
3861
                           <!-- THUM: Umidade -->
                           <LN lnClass="THUM" lnType="SENSOR/THUM" inst="1">
3862
3863
                               <DOI name="HumSv">
3864
                                   <DAI name="instMag">
3865
                                        <Val>58.6</Val>
3866
                                       <!-- Umidade relativa em % -->
3867
                                   </DAI>
3868
                                   <DAI name="q">
3869
                                       <Val>good</Val>
3870
                                       <!-- Qualidade da medicao -->
3871
                                   </DAI>
3872
                                   <DAI name="t">
3873
                                        <Val>2025-01-23T16:00:00Z</Val>
3874
                                       <!-- Timestamp -->
3875
                                   </DAI>
3876
                                   <DAI name="units">
3877
                                       <Val>%</Val>
                                       <!-- Unidade da medicao -->
3878
3879
                                   </DAI>
3880
                                   <DAI name="min">
                                        <Val>10.0</Val>
3881
3882
                                       <!-- Valor minimo medido -->
                                   </DAI>
3883
3884
                                   <DAI name="max">
                                       <Val>90.0</Val>
3885
3886
                                       <!-- Valor maximo medido -->
```

```
3887
                                   </DAI>
3888
                               </DOI>
3889
3890
                               <DOI name="SmpRte">
3891
                                   <DAI name="setVal">
3892
                                       <Val>1000</Val>
3893
                                       <!-- Taxa de amostragem em ms -->
3894
                                   </DAI>
                               </DOI>
3895
3896
3897
                               <DOI name="Beh">
3898
                                   <DAI name="stVal">
3899
                                        <Val>1</Val>
3900
                                       <!-- Comportamento padrao -->
3901
                                   </DAI>
                               </DOI>
3902
3903
3904
                               <DOI name="NamPlt">
3905
                                   <DAI name="vendor">
3906
                                       <Val>HumidTrack</Val>
3907
                                   </DAT>
3908
                                   <DAI name="swRev">
3909
                                       <Val>v1.0</Val>
3910
                                   </DAI>
                                   <DAI name="d">
3911
3912
                                        <Val>Sensor de umidade relativa da sala de
                            controle</Val>
3913
                                   </DAI>
3914
                               </D0I>
3915
                           </LN>
3916
                           <!-- TLVL: Nível de mídia -->
3917
3918
                           <LN lnClass="TLVL" lnType="SENSOR/TLVL" inst="1">
3919
                               <DOI name="LvlSv">
3920
                                   <DAI name="instMag">
3921
                                       <Val>1.45</Val>
                                       <!-- Nivel medido em metros -->
3922
3923
                                   </DAI>
3924
                                   <DAI name="q">
3925
                                       <Val>good</Val>
3926
                                       <!-- Qualidade da informacao -->
3927
                                   </DAI>
3928
                                   <DAI name="t">
3929
                                        <Val>2025-01-23T16:00:00Z</Val>
                                       <!-- Timestamp -->
3930
3931
                                   </DAI>
3932
                                   <DAI name="units">
3933
                                       <Val>m</Val>
3934
                                       <!-- Unidade da medicao -->
3935
                                   </DAI>
                                   <DAI name="min">
3936
3937
                                       <Val>0.00</Val>
3938
                                       <!-- Nivel minimo detectavel -->
3939
                                   </DAI>
3940
                                   <DAI name="max">
                                        <Val>3.00</Val>
3941
3942
                                        <!-- Nivel maximo detectavel -->
3943
                                   </DAI>
3944
                               </DOI>
3945
3946
                               <DOI name="SmpRte">
3947
                                   <DAI name="setVal">
3948
                                       <Val>1000</Val>
3949
                                       <!-- Taxa de amostragem em ms -->
```

```
3950
                                   </DAI>
3951
                               </DOI>
3952
3953
                               <DOI name="Beh">
3954
                                   <DAI name="stVal">
3955
                                       <Val>1</Val>
                                       <!-- Comportamento padrao -->
3956
3957
                                   </DAI>
                               </D0I>
3958
3959
3960
                               <DOI name="NamPlt">
3961
                                   <DAI name="vendor">
3962
                                       <Val>LevelSense</Val>
3963
                                   </DAI>
3964
                                   <DAI name="swRev">
                                       <Val>v1.0</Val>
3965
3966
                                   </DAI>
3967
                                   <DAI name="d">
3968
                                       <Val>Transdutor de nivel do tanque 3</Val>
3969
                                   </DAI>
3970
                               </DOI>
3971
                           </LN>
3972
                           <!-- TMVM: Sensor de movimento -->
3973
3974
                           <LN lnClass="TMVM" lnType="SENSOR/TMVM" inst="1">
3975
                               <DOI name="TmpSv">
3976
                                   <DAI name="instMag">
3977
                                       <Val>26.8</Val>
3978
                                       <!-- Temperatura em graus Celsius -->
3979
                                   </DAI>
3980
                                   <DAI name="q">
3981
                                       <Val>good</Val>
3982
                                   </DAI>
3983
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:00Z</Val>
3984
3985
                                   </DAI>
                                   <DAI name="units">
3986
3987
                                       <Val>C</Val>
3988
                                   </DAI>
                                   <DAI name="min">
3989
3990
                                       <Val>-10.0</Val>
3991
                                   </DAI>
3992
                                   <DAI name="max">
3993
                                       <Val>60.0</Val>
3994
                                   </DAI>
3995
                               </DOI>
3996
                               <DOI name="PresSv">
3997
3998
                                   <DAI name="instMag">
3999
                                       <Val>4.2</Val>
4000
                                       <!-- Pressao em bar -->
4001
                                   </DAI>
                                   <DAI name="q">
4002
4003
                                       <Val>good</Val>
4004
                                   </DAI>
                                   <DAI name="t">
4005
4006
                                       <Val>2025-01-23T16:00:05Z</Val>
4007
4008
                                   <DAI name="units">
4009
                                       <Val>bar</Val>
4010
                                   </DAI>
4011
                                   <DAI name="min">
4012
                                       <Val>0.0</Val>
4013
                                   </DAI>
```

```
4014
                                   <DAI name="max">
4015
                                       <Val>10.0</Val>
4016
                                   </DAI>
4017
                               </D0I>
4018
                               <DOI name="HumSv">
4019
4020
                                   <DAI name="instMag">
4021
                                       <Val>53.0</Val>
                                       <!-- Umidade relativa em % -->
4022
4023
                                   </DAI>
4024
                                   <DAI name="q">
                                       <Val>good</Val>
4025
4026
                                   </DAI>
4027
                                   <DAI name="t">
4028
                                       <Val>2025-01-23T16:00:10Z</Val>
4029
                                   </DAI>
4030
                                   <DAI name="units">
4031
                                       <Val>%</Val>
4032
                                   </DAI>
                                   <DAI name="min">
4033
4034
                                       <Val>0.0</Val>
4035
                                   </DAI>
4036
                                   <DAI name="max">
4037
                                       <Val>100.0</Val>
4038
                                   </DAI>
4039
                               </DOI>
4040
4041
                               <DOI name="SmpRte">
4042
                                   <DAI name="setVal">
4043
                                       <Val>1000</Val>
4044
                                       <!-- Taxa de amostragem comum -->
4045
                                   </DAI>
4046
                               </DOI>
4047
                               <DOI name="Beh">
4048
4049
                                   <DAI name="stVal">
4050
                                       <Val>1</Val>
4051
                                       <!-- Comportamento padrao -->
4052
                                   </DAI>
                               </DOI>
4053
4054
4055
                               <DOI name="NamPlt">
4056
                                   <DAI name="vendor">
4057
                                       <Val>MultiSense</Val>
4058
                                   </DAI>
4059
                                   <DAI name="swRev">
4060
                                       <Val>v1.3</Val>
4061
                                   </DAI>
4062
                                   <DAI name="d">
4063
                                       <Val>Sensor integrado de temperatura, pressao e
                            umidade</Val>
4064
                                   </DAI>
                               </DOI>
4065
4066
                           </LN>
4067
4068
                           <!-- TPOS: Indicador de posição -->
4069
                           <LN lnClass="TPOS" lnType="SENSOR/TPOS" inst="1">
4070
                               <DOI name="PosSv">
4071
                                   <DAI name="instMag">
4072
                                       <Val>87.4</Val>
4073
                                       <!-- Posição atual em % de abertura -->
4074
                                   <DAI name="q">
4075
4076
                                       <Val>good</Val>
```

```
4077
                                       <!-- Qualidade da informação -->
4078
                                   </DAI>
4079
                                   <DAI name="t">
4080
                                       <Val>2025-01-23T16:00:00Z</Val>
4081
                                       <!-- Timestamp -->
4082
                                   </DAI>
4083
                                   <DAI name="units">
4084
                                       <Val>%</Val>
4085
                                       <!-- Unidade de medida -->
4086
                                   </DAI>
4087
                                   <DAI name="min">
                                       <Val>0.0</Val>
4088
4089
                                       <!-- Limite inferior -->
4090
                                   </DAI>
4091
                                   <DAI name="max">
                                       <Val>100.0</Val>
4092
4093
                                       <!-- Limite superior -->
4094
                                   </DAI>
4095
                               </D0I>
4096
4097
                               <DOI name="SmpRte">
4098
                                   <DAI name="setVal">
4099
                                       <Val>500</Val>
4100
                                       <!-- Taxa de amostragem em ms -->
4101
                                   </DAI>
4102
                               </D0I>
4103
                               <DOI name="Beh">
4104
4105
                                   <DAI name="stVal">
4106
                                       <Val>1</Val>
4107
                                       <!-- Comportamento padrão (ativo) -->
                                   </DAI>
4108
4109
                               </DOI>
4110
                               <DOI name="NamPlt">
4111
                                   <DAI name="vendor">
4112
                                       <Val>PosiTrack</Val>
4113
4114
                                   </DAI>
4115
                                   <DAI name="swRev">
4116
                                       <Val>v2.0</Val>
                                   </DAI>
4117
4118
                                   <DAI name="d">
4119
                                       <Val>Transdutor analogico de posicao da valvula de
                            controle</Val>
4120
                                   </DAI>
4121
                               </DOI>
4122
                           </LN>
4123
4124
                          <!-- TPRS: Sensor de pressão -->
4125
                           <LN lnClass="TPRS" lnType="SENSOR/TPRS" inst="1">
4126
                               <DOI name="PresSv">
4127
                                   <DAI name="instMag">
4128
                                       <Val>5.4</Val>
4129
                                       <!-- Pressao medida em bar -->
4130
                                   </DAI>
                                   <DAI name="q">
4131
4132
                                       <Val>good</Val>
4133
                                       <!-- Qualidade da informacao -->
4134
                                   </DAI>
4135
                                   <DAI name="t">
                                       <Val>2025-01-23T16:00:00Z</Val>
4136
4137
                                       <!-- Timestamp -->
                                   </DAI>
4138
4139
                                   <DAI name="units">
```

```
шт цо
                                       <Val>bar</Val>
4141
                                       <!-- Unidade da medicao -->
4142
                                   </DAI>
4143
                                   <DAI name="min">
4144
                                       <Val>0.0</Val>
4145
                                       <!-- Valor minimo esperado -->
4146
                                   </DAI>
4147
                                   <DAI name="max">
                                       <Val>10.0</Val>
4148
                                       <!-- Valor maximo esperado -->
4149
4150
                                   </DAI>
                               </DOI>
4151
Д152
                               <DOI name="SmpRte">
4153
4154
                                   <DAI name="setVal">
4155
                                       <Val>1000</Val>
4156
                                       <!-- Taxa de amostragem em ms -->
4157
                                   </DAI>
4158
                               </D0I>
4159
4160
                               <DOI name="Beh">
4161
                                   <DAI name="stVal">
4162
                                       <Val>1</Val>
4163
                                       <!-- Comportamento padrao -->
4164
                                   </DAI>
4165
                               </D0I>
4166
                               <DOI name="NamPlt">
4167
                                   <DAI name="vendor">
4168
4169
                                       <Val>PressuTrack</Val>
4170
                                   </DAI>
                                   <DAI name="swRev">
4171
4172
                                       <Val>v1.1</Val>
4173
                                   </DAI>
                                   <DAI name="d">
4174
4175
                                       <Val>Transdutor de pressao de linha principal</val>
4176
                                   </DAI>
4177
                               </DOI>
4178
                          </LN>
4179
4180
                          <!-- TRTN: Transmissor de rotação -->
4181
                           <LN lnClass="TRTN" lnType="SENSOR/TRTN" inst="1">
4182
                               <DOI name="SpdSv">
4183
                                   <DAI name="instMag">
4184
                                       <Val>1485.0</Val>
4185
                                       <!-- Velocidade de rotacao em RPM -->
4186
                                   </DAI>
                                   <DAI name="q">
4187
4188
                                       <Val>good</Val>
4189
                                       <!-- Qualidade da informacao -->
4190
                                   </DAI>
                                   <DAI name="t">
4191
4192
                                       <Val>2025-01-23T16:00:00Z</Val>
4193
                                       <!-- Timestamp -->
4194
                                   </DAI>
4195
                                   <DAI name="units">
4196
                                       <Val>rpm</Val>
4197
                                       <!-- Unidade da medicao -->
                                   </DAI>
4198
                                   <DAI name="min">
Ц199
4200
                                       <Val>0.0</Val>
4201
                                       <!-- Valor minimo medido -->
                                   </DAI>
4202
                                   <DAI name="max">
4203
```

```
4204
                                       <Val>3000.0</Val>
4205
                                       <!-- Valor maximo esperado -->
4206
                                   </DAI>
4207
                               </D0I>
4208
                               <DOI name="SmpRte">
4209
4210
                                   <DAI name="setVal">
4211
                                       <Val>500</Val>
4212
                                       <!-- Taxa de amostragem em ms -->
4213
                                   </DAI>
4214
                               </D0I>
4215
Д216
                               <DOI name="Beh">
4217
                                   <DAI name="stVal">
4218
                                       <Val>1</Val>
4219
                                       <!-- Comportamento padrao -->
4220
                                   </DAI>
4221
                               </DOI>
4222
                               <DOI name="NamPlt">
4223
4224
                                   <DAI name="vendor">
4225
                                       <Val>Rotasens</Val>
4226
                                   </DAI>
                                   <DAI name="swRev">
4227
                                       <Val>v2.0</Val>
4228
4229
                                   </DAI>
4230
                                   <DAI name="d">
4231
                                       <Val>Sensor de velocidade de eixo do motor
                            principal</Val>
4232
                                   </DAI>
4233
                               </D0I>
4234
                           </LN>
4235
4236
                          <!-- TTMP: Sensor de temperatura -->
                           <LN lnClass="TTMP" lnType="SENSOR/TTMP" inst="1">
4237
4238
                               <DOI name="TmpSv">
                                   <DAI name="instMag">
4239
4240
                                       <Val>72.3</Val>
4241
                                       <!-- Temperatura em graus Celsius -->
                                   </DAI>
4242
                                   <DAI name="q">
4243
4244
                                       <Val>good</Val>
4245
                                       <!-- Qualidade da informacao -->
4246
                                   </DAI>
4247
                                   <DAI name="t">
4248
                                       <Val>2025-01-23T16:00:00Z</Val>
4249
                                       <!-- Timestamp -->
4250
                                   </DAI>
4251
                                   <DAI name="units">
4252
                                       <Val>C</Val>
4253
                                       <!-- Unidade de medida -->
4254
                                   </DAI>
                                   <DAI name="min">
4255
4256
                                       <Val>-20.0</Val>
4257
                                       <!-- Limite inferior do sensor -->
                                   </DAI>
4258
                                   <DAI name="max">
4259
4260
                                       <Val>150.0</Val>
4261
                                       <!-- Limite superior do sensor -->
4262
                                   </DAI>
4263
                               </DOI>
4264
                               <DOI name="SmpRte">
4265
4266
                                   <DAI name="setVal">
```

```
4267
                                       <Val>1000</Val>
4268
                                       <!-- Taxa de amostragem em ms -->
4269
                                   </DAI>
4270
                               </D0I>
4271
                              <DOI name="Beh">
4272
4273
                                   <DAI name="stVal">
4274
                                       <Val>1</Val>
4275
                                       <!-- Comportamento padrao (ativo) -->
4276
                                   </DAI>
4277
                               </DOI>
4278
4279
                              <DOI name="NamPlt">
                                   <DAI name="vendor">
4280
4281
                                       <Val>TempTrack</Val>
4282
                                   </DAI>
                                   <DAI name="swRev">
4283
4284
                                       <Val>v1.2</Val>
4285
                                   </DAI>
                                   <DAI name="d">
4286
4287
                                       <Val>Transdutor de temperatura do forno principal
                            Val>
4288
                                   </DAI>
                              </D0I>
4289
4290
                          </LN>
4291
4292
                          <!-- TVBR: Sensor de vibração -->
                          <LN lnClass="TVBR" lnType="SENSOR/TVBR" inst="1">
4293
                               <DOI name="VibSv">
4294
4295
                                   <DAI name="instMag">
4296
                                       <Val>3.2</Val>
4297
                                       <!-- Vibracao em mm/s RMS -->
4298
                                   </DAI>
4299
                                   <DAI name="q">
4300
                                       <Val>good</Val>
4301
                                       <!-- Qualidade da informacao -->
4302
                                   </DAI>
                                   <DAI name="t">
4303
4304
                                       <Val>2025-01-23T16:00:00Z</Val>
4305
                                       <!-- Timestamp -->
4306
                                   </DAI>
4307
                                   <DAI name="units">
4308
                                       <Val>mm/s</Val>
4309
                                       <!-- Unidade da medicao -->
4310
                                   </DAI>
4311
                                   <DAI name="min">
4312
                                       <Val>0.0</Val>
4313
                                       <!-- Valor minimo medido -->
4314
                                   </DAI>
4315
                                   <DAI name="max">
4316
                                       <Val>10.0</Val>
4317
                                       <!-- Valor maximo medido -->
4318
                                   </DAI>
4319
                               </D0I>
4320
4321
                               <DOI name="SmpRte">
4322
                                   <DAI name="setVal">
4323
                                       <Val>500</Val>
4324
                                       <!-- Taxa de amostragem em ms -->
                                   </DAI>
4325
4326
                              </DOI>
4327
                              <DOI name="Beh">
4328
                                   <DAI name="stVal">
4329
```

```
4330
                                       <Val>1</Val>
4331
                                       <!-- Comportamento padrao -->
4332
                                   </DAI>
4333
                               </D0I>
4334
                               <DOI name="NamPlt">
4335
4336
                                   <DAI name="vendor">
4337
                                       <Val>VibraSense</Val>
4338
                                   </DAI>
                                   <DAI name="swRev">
4339
4340
                                       <Val>v1.0</Val>
4341
                                   </DAI>
                                   <DAI name="d">
4342
4343
                                       <Val>Sensor de vibracao em motor de inducao</Val>
4344
                                   </DAI>
                               </DOI>
4345
                          </LN>
4346
4347
4348
                          <!-- TWPH: Acidez da água -->
                          <LN lnClass="TWPH" lnType="SENSOR/TWPH" inst="1">
4349
4350
                               <DOI name="PhSv">
4351
                                   <DAI name="instMag">
4352
                                       <Val>7.2</Val>
4353
                                       <!-- Valor de pH medido -->
4354
                                   </DAI>
4355
                                   <DAI name="q">
4356
                                       <Val>good</Val>
                                       <!-- Qualidade da informacao -->
4357
4358
                                   </DAI>
4359
                                   <DAI name="t">
4360
                                       <Val>2025-01-23T16:00:00Z</Val>
4361
                                       <!-- Timestamp -->
4362
                                   </DAI>
4363
                                   <DAI name="units">
4364
                                       <Val>pH</Val>
4365
                                       <!-- Unidade da medicao -->
4366
                                   </DAI>
4367
                                   <DAI name="min">
4368
                                       <Val>0.0</Val>
4369
                                       <!-- Valor minimo possivel -->
4370
                                   </DAI>
4371
                                   <DAI name="max">
4372
                                       <Val>14.0</Val>
4373
                                       <!-- Valor maximo possivel -->
4374
                                   </DAI>
4375
                               </D0I>
4376
                               <DOI name="SmpRte">
4377
4378
                                   <DAI name="setVal">
4379
                                       <Val>2000</Val>
4380
                                       <!-- Taxa de amostragem em ms -->
4381
                                   </DAI>
4382
                               </D0I>
4383
4384
                               <DOI name="Beh">
4385
                                   <DAI name="stVal">
4386
                                       <Val>1</Val>
4387
                                       <!-- Comportamento padrao -->
4388
                                   </DAI>
                               </DOI>
4389
4390
4391
                               <DOI name="NamPlt">
                                   <DAI name="vendor">
4392
4393
                                       <Val>pHSense</Val>
```

```
C:\Users\gjmai\Downloads\XMLFile4.xml
```

```
70
```

```
4394
                  </DAI>
4395
                  <DAI name="swRev">
4396
                    <Val>v1.1</Val>
4397
                  </DAI>
                  <DAI name="d">
4398
4399
                    <Val>Sensor de pH para tanque de efluente
              industrial</Val>
4400
                  </DAI>
4401
                </DOI>
              </LN>
4402
4403
4404
           </LDevice>
4405
         </Server>
4406
       </AccessPoint>
     </IED>
4407
     <!-- ======== DataTypeTemplates (a completar) ========== -->
4408
4409
     <DataTypeTemplates>
4410
       <!-- TODO: Adicionar os EnumType, DAType, DOType, LNodeType -->
4411
       <!-- EnumType -->
4412
       4413
4414
4415
       4416
       <!-- DAType -->
       4417
4418
4419
       4420
       <!-- DOType -->
4421
       4422
4423
       4424
       <!-- LNodeType -->
4425
       4426
     </DataTypeTemplates>
4427 /SCL>
4428
```