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Abstract

We start by presenting the ground state phase diagram of q = 1/2 quantum-

rotor chains with the AB2 topology and with competing interactions (frustration)

calculated through cluster variational mean-field approaches. We consider two inter-

action patterns, named F1 and F2 models, between the quantum-rotor momentum

and position operators, which follow exchange patterns of known one-dimensional

spin-1/2 systems with a ferrimagnetic state in their phase diagrams. The spin-1/2

F1 model is known as the diamond chain and is experimentally related to the azurite

compound, while the spin-1/2 F2 model was recently shown to present a frustration-

induced condensation of magnons. We provide a detailed comparison between the

quantum-rotor phase diagrams, in single- and multi-site mean-field approaches, and

known results for the spin-1/2 models, including exact diagonalization (ED) and

density matrix renormalization group (DMRG) data for these systems, as well as

phase diagrams of the associated classical models.

Finally, we turn to the thermodynamics of ferrimagnetic alternating spin-1/2

spin-5/2 chains whose study raises great interest both in the theoretical and the

experimental fields nowadays. Results concerning the magnetic susceptibility, mag-

netization and specific heat of two types of chains were obtained through the finite-

temperature Lanczos method (FTLM), which were then compared with experimen-

tal data as well as theoretical results from semiclassical approaches and spin-wave

theories. The ground state is also explored through ED calculations.

Keywords: quantum rotors, spins, magnetism, phase transitions.
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Resumo

Iniciamos com a apresentação do diagrama de fases do estado fundamental de

rotores quânticos com q = 1/2 situados em cadeias com topologia AB2 e dotadas de

interações competitivas (frustração). Os resultados são obtidos mediante técnicas

de campo médio variacional sobre conjuntos de śıtios (cluster variational mean-field

approaches). Consideramos dois modelos de interação, denominados modelos F1 e

F2, entre os operadores de momento e de posição do rotor quântico, os quais seguem

padrões de troca de sistemas de spins 1/2 conhecidos com um estado ferrimagnético

em seus diagramas de fase. O modelo F1 de spin 1/2 é conhecido como cadeia tipo

losango (diamond chain) e está experimentalmente relacionado à azurita, enquanto

que para o modelo F2 de spin-1/2, mostrou-se recentemente que este apresenta

condensação de mágnons induzida por frustração. Tecemos comparação detalhada

entre os diagramas de fase do rotor quântico, nas metodologias de campo médio em

um único śıtio e em muitos śıtios, incluindo dados de diagonalização exata (sigla

em inglês: ED) e de grupos de renormalização da matriz de densidade (sigla em

inglês: DMRG), e resultados conhecidos para os modelos de spin 1/2 como também

diagramas de fases de modelos clássicos associados.

Finalmente, tratamos da termodinâmica de duas cadeias ferrimagnéticas alter-

nadas com spins 1/2 e 5/2, cujo estudo atualmente tem despertado grande interesse

nos campos tanto teóricos como experimentais. Os resultados referentes à suscepti-

bilidade magnética, magnetização e calor espećıfico das cadeias são obtidos através

do método de Lanczos para temperaturas finitas (sigla em inglês: FTLM), que são

então comparados com os dados experimentais como também com resultados teóricos

de metodologias semiclássicas e teorias de ondas de spins. O estado fundamental das
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cadeias também é estudado mediante diagonalização exata (sigla em inglês: ED).

Palavras-chave: rotores quânticos, spins, magnetismo, transições de fases.
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′

. The

number of states M taken in each random sampling is 50 and the

total number of random samples R is indicated in the figure. Each

curve is the result of one running of the FTLM algorithm with the

indicated parameters, thus there are 10, 5, 2 and 1 runnings in figures

(a), (b), (c) and (d), respectively. The precise value of χT for this

system size as T → 0, limT→0 χT = 5/3, is indicated by the symbol

3. The inset of (a) and (b) show the region near the minimum of the

curve, while the inset of (c) and (d) show the region near T = 0. . . . 119
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Chapter 1

Introduction

This dissertation is composed of two main chapters where we treat correlated

subjects.

In Chapter 2, we present the idea of quantum rotors and their importance in cur-

rent research. We then study the ground state phase diagram of q = 1/2 quantum-

rotor chains with the AB2 topology and with competing interactions (frustration)

calculated through cluster variational mean-field approaches. A detailed compari-

son is provided which emphasizes the similarities between the quantum-rotor phase

diagrams, in single- and multi-site mean-field approaches, and known results for the

spin-1/2 models, including exact diagonalization and density matrix renormalization

group data for these systems, as well as phase diagrams of the associated classical

models. The main results of this chapter were condensed in the article published by

Physical Review B [155].

In Chapter 3, we finally turn to the thermodynamics of ferrimagnetic alternat-

ing spin-1/2 spin-5/2 chains whose study raises great interest both in the theoretical

2



3

and the experimental fields nowadays. We start out with a brief review showing the

relevance of the pertinent materials in decades of intensive research in the area of

molecular magnetism. Then results concerning the magnetic susceptibility, magne-

tization and specific heat of two types of chains are obtained through the finite-

temperature Lanczos method (FTLM). These are compared with experimental data

as well as theoretical results from semiclassical approaches and spin-wave theories.

Work is still being done until we have produced material enough that may warrant

the submission of a new article on the subject.

In the end of each chapter we present the respective summary and conclusions.
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Chapter 2

Quantum rotors on the AB2 chain

with competing interactions

2.1 Introduction

Rotors are tridimensional rigid objects such as a top or a gyroscope (which may have

freedom in all three axes) used to explain rotating systems as well as for maintain-

ing and measuring orientation, based on the principles of angular momentum. To

determine their orientation in space three angles are required (the Euler angles, for

instance). Special among these is the linear rotor, which consists of two point masses

located at fixed distances from the center of mass. The object is three-dimensional,

but requires only two angles to describe its orientation. The quantum version of this

model is a useful point of departure for the study of the rotational transitions of

diatomic molecules (zeroth-order model). A more accurate description of the energy

of the molecule would accordingly include possible variations in bond length due to

rotations or anharmonicity in the potential due to vibrations. As will be seen shortly

4



2.1 Introduction 5

below, this model and its ad hoc variations exhibit interesting physics and lends itself

admirably to the understanding of sundry other physical systems, far outreaching

its basic use for the study of the rotational energy of diatomic molecules.

We now provide a first glimpse of the quantum mechanics of the quantum linear

(rigid) rotor (QLR). This is indeed the case of the spherical rotor, where the three

components of the moment-of-inertia tensor are equal (a symmetric rotor or top has

two equal components and the asymmetric one boasts three different components.

The symmetric top can be analytically addressed by using Wigner D-matrices; the

asymmetric case does not have an exact solution. The rotational energy depends on

the moment of inertia, I, in the center-of-mass reference frame,

I = µR2 (2.1)

where µ is the reduced mass of the molecule and R is the distance between the two

atoms. In addition to its usefulness, the QLR is a very simple model and one case

where the Schrödinger equation can be solved analytically. In a field-free space, the

Hamiltonian operator is given in terms of spherical coordinates and reads

Ĥ =
~

2

2I
L̂

2
= −~

2

2I

[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2

]

, (2.2)

where ~ is Planck’s constant divided by 2π, and θ and φ are the polar and azimuthal

angles, respectively. The eigenvalue equation becomes

ĤY m
l (θ, φ) =

~
2

2I
l(l + 1)Y m

l (θ, φ), (2.3)

where the notation Y m
l (θ, φ) stands for the set of the spherical harmonics. The
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2.1 Introduction 6

energy spectrum is given by the eigenvalues

El =
~

2

2I
l(l + 1), (2.4)

and is independent of m (magnetic quantum number). The energy is indeed (2l+1)-

fold degenerate, because functions with fixed l (azimuthal quantum number) and

m = −l,−l+1, . . . , l have the same energy. Quantum rotors may be seen as existing

almost freely or coupled by intrinsic potentials (dipole interactions, etc) or acted

upon by potentials inherent in the host medium. In many cases, the quantum

planar rotor (QPR), i.e., endowed with only one degree of freedom, is used.

The very simple idea of the quantum rotor presented so far can be viewed as a

fundamental model closest to the natural entity it may be bound to represent: the

molecule. Systematic studies on the rotation of molecules supported by the quantum

theory date back to Dennison [1], and Kronig and Rabi [2], who provided matrix

and wave-mechanics analytical solutions to the rigid rotator (symmetrical top), both

within a year or so of the respective fledgling quantum theory formulations. Later, an

important study by Pauling [3] discussed the wave equation for a diatomic molecule

in a crystal and tried to provide experimental interpretation of the results.

The microscopic dynamics of quantum rotors has been ever since extensively

studied in view of its enormous physical and chemical interest and has always been

a source of new physics. Real physical systems like molecular cryocrystals, ad-

sorbed monolayers of diatomic molecules such as H2, HD, D2, N2, CO, and F2 can

be described by the QLR model [4–6]. The QLR manifests also nontrivial quan-

tum properties such as quantum orientational ordering [6, 7], quantum orientational

melting [4, 6, 8, 9], reentrant behavior [10], and discontinuity points on the phase

diagram [11]. In the latter it is reported evidence for the novel phase behavior in
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2.1 Introduction 7

quantum rotors: at zero temperature, instead of an end critical point of the liquid-

gas type, the phase transition line in a certain range of crystal fields displays two

critical points with a discontinuity (”hole”) between them. By endowing the QLR

with an intrinsic angular momentum (spin) it is possible to study the unusual ther-

modynamics and magnetic properties of molecular crystals containing magnetically

active molecules or molecular groups [12].

The notion of quantum rotors can also be advantageously applied to the un-

derstanding of interstitial oxygen impurities in crystalline germanium, where oxy-

gen atoms are quantum-mechanically delocalized around the bond center position

[13, 14]. Also the correlated dynamics of coupled quantum rotors (Ge2O units)

carrying electric dipole moments is used to gain insight into the peculiar and non-

trivial low-temperature properties of doped germanium [15]. The rotation of oxy-

gen impurities around the Ge-Ge axis has been experimentally observed by phonon

spectroscopy [16]. While the rotation of oxygen impurities in Ge is weakly hindered

by an azimuthal potential caused by the host lattice, several materials are known

to show a free rotation of molecules. An example is ammonia groups in certain

Hofmann clathrates M(NH3)2M’(CN)4-G [17–19], usually abbreviated as M-M’-G,

where M and M’ are divalent metal ions and G is a guest molecule. Nearly free

uniaxial quantum rotation of NH3 has been observed for the first time in Ni-Ni-

(C6D6)2 by inelastic neutron scattering [17]. It is also known that the phase II

[20] of solid methane as well as methane hydrates [21] show almost free rotation of

CH4 molecules. A surprising variation of the linewidth has been observed for Ni-Ni-

(C12H10)2 [22], which can be interpreted as a novel line-broadening mechanism based

on rotor-rotor couplings [23]. The linewidths of methane in hydrates show inhomo-

geneous broadening owing to the dipolar coupling with water molecules [24]. The
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2.1 Introduction 8

theory of the damped rotation of methyllike atomic groupings and more complex

molecules such as benzene rings is developed through the use of hindered (N-fold)

quantum rotors in contact with a thermal bath [25, 26].

Arrays of surface-mounted quantum rotors with electric dipole moments are of

particular interest because dipole-dipole interactions can be controlled and even de-

signed to yield a specific behavior such as ferroelectricity. Ordered two-dimensional

arrays of dipole rotors yield either ferroelectric or antiferroelectric ground states,

depending on the lattice type, while disordered arrays are predicted to form a glass

phase [27, 28]. These facts prop up the role of quantum rotors as a fundamental

element of molecular machines, an old and new field of endeavor of both synthetic

chemistry and nanotechnology [29–33].

The kicked rotor has played a central role in the research of both classical and

quantum chaos (which is defined as the quantum behavior of a system whose clas-

sical counterpart is chaotic). A kicked rotor is formed by a particle revolving in a

fixed circular orbit and subject to an instantaneous force (a kick) that is applied pe-

riodically. The driven rotor is operated on by pulses of any form (generally strong).

Despite its apparent simplicity, the quantum kicked rotor has very remarkable dy-

namical properties [34–38]. Since its experimental realization in 1995 [39], a great

number of studies have been produced involving dynamical localization, quantum

transport, ratchets, chaos-assisted tunneling, and classical and quantum resonances.

Quantum resonances in turn have been used in understanding fundamental aspects

of quantum chaos such as quantum stabilization or measurements of gravitation

[37]. High-order quantum resonances have also been observed recently both with

laser-cooled atoms and a Bose-Einstein condensate [40–42].

We now move up a notch toward a more elaborated rotor model that finds
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2.1 Introduction 9

applications specially in the study of quantum phase transitions, the main goal

of this work as far as quantum rotors and spin systems are concerned. So, we

present another glimpse of the quantum mechanics involved [43]. Each rotor can be

constructed as a particle constrained to move on the surface of an N -dimensional

sphere. Here we treat our Euclidean space as having (N > 1) dimensions, a quite

natural extension nowadays. We thus have the so-called O(N) quantum rotor model.

The orientation of each rotor is represented by an N -component unit vector n̂i

satisfying:

n̂2 = 1. (2.5)

The caret notation should be reminiscent of the fact that the rotor orientantion is

a quantum operator, while i indexes the site whereupon the rotor resides. For the

time being, it will be considered an infinite number of such rotors placed on the

sites of a d-dimensional lattice. Each rotor possesses a linear momentum p̂i and

constraint (2.5) obliges it to be tangent to the surface of the N -dimensional sphere

n̂ · p̂ = 0. (2.6)

The rotor position and momentum obey the canonical commutation relations:

[n̂α, p̂β] = i~δαβ . (2.7)

It seems more convenient to work with the N(N − 1) components of the angular

momentum tensor:

L̂αβ = n̂αp̂β − n̂β p̂α. (2.8)

Their commutation relations follow directly from Eqs. (2.7) and (2.8). Of foremost
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2.1 Introduction 10

importance is the N = 3 case. The angular momentum can be more conveniently

expressed as

L̂α = (1/2)ǫαβγL̂βγ, (2.9)

or alternatively

L̂α = −i~ǫαβγn̂β
∂

∂n̂γ
, (2.10)

where ǫαβγ stands for the Levi-Civita tensor (totally antisymmetric tensor, with

ǫ123 = 1). Obviously the constraint Eq. (2.6) carries through to

n̂ · L̂ = 0. (2.11)

Accordingly, the commutation relations between operators standing on the same site

follow:

[L̂α, L̂β] = i~ǫαβγL̂γ ,

[L̂α, n̂β] = i~ǫαβγn̂γ , (2.12)

[n̂α, n̂β] = 0;

operators situated on different sites commute. The rotor dynamics is governed by

its kinetic energy term, which may be expressed as

ĤK =
1

2I
L̂2 → g

2
L̂2, (2.13)

where I is the moment of inertia and we have introduced a coupling g. The Hamil-

tonian ĤK can be diagonalized for general values of N by making use of group

theory. For N = 3, the eigenvalues were already shown through Eq. (2.3) and Eq.
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2.1 Introduction 11

(2.4). Interesting effects show up when a potential energy term coupling the rotors

together is added. Then we construct the Hamiltonian, which has been object of

intensive study:

Ĥrot =
g

2

∑

i

L̂2
i + Jij

∑

<ij>

n̂i.n̂j , (2.14)

where the notation < ij > indicates the sum over nearest neighbors, and Jij repre-

sent couplings between the respective rotor orientations. A generalization thereof,

with the addition of novel couplings, will be considered shortly.

Quantum transitions of models based on Eq. (2.14) and its Ising-model coun-

terpart have been extensively studied for decades. A review of the theoretical in-

vestigations as well as their experimental connotations can be found in the book by

Sachdev [43]. The effort to understand the model goes on and every now and then

rich and interesting phase diagrams unfold, which yield invaluable insights into the

real physical systems. So, quantum rotors have been studied and their phase dia-

gram investigated through renormalization group techniques [44], the dynamics and

thermodynamics of interacting one-dimensional quantum rotors with emphasis on

equilibrium and non-equilibrium properties have been explored through a mean-field

(MF) model [45], the quantum phase transitions of a site-diluted two-dimensional

O(3) rotor model have been worked out through Monte Carlo simulations [46], just

to mention a few additional important studies.

Dating back to a work by Sachdev and Senthil [47] there exists a generalization

of the Hamiltonian in Eq. (2.14). In its most general terms, it is given by

Ĥ ′
rot =

g

2

∑

i

[L̂2
i +α(L̂2

i )
2]+

∑

<ij>

[Jijn̂i · n̂j +KijL̂i · L̂j +Mij(n̂i · L̂j + n̂j · L̂i)], (2.15)

where for O(3) rotors the three-component unit position vector (operator) and
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2.1 Introduction 12

the canonically conjugate angular momentum (operator) are explicitly given by

n̂ = (n̂x, n̂y, n̂z), L̂ = (L̂x, L̂y, L̂z), respectively, and the couplings g, α, J , K e M are

all positive. The introduction of the couplings K and M in Eq.(2.15) enriches the

model and yields novel results in relation to systems modeled by the Hamiltonian of

Eq. (2.14). A fundamental property of Ĥ ′
rot is that the three charges (µ = x, y, z)

Q̂µ =
∑

i

L̂iµ, (2.16)

commute with it, and are therefore conserved. A quartic term, with coefficient gα, is

inserted and acts as an inhibitor of contributions of unimportant high-energy states.

For in-depth considerations of the model, a knowledge of the pertinent discrete

symmetries may afford one a vantage point. In this respect, the model boasts time-

reversal symmetry, and for the special case M = 0, spatial inversion (parity) is also

present. Time-reversal symmetry is realized by the transformations:

τ : L̂µ → −L̂µ, n̂µ → n̂µ, (2.17)

and parity by

π : L̂µ → L̂µ, n̂µ → −n̂µ. (2.18)

The MF phase diagram of Ĥ ′
rot was then reproduced in Fig. 2.1, where all the

phases are duly described. The figure shows, for instance, that the distinction

between the GP and the N phases can only be made through the value of < n̂z >,

which happens to be zero in the former and nonzero in the latter phase. This phase

diagram exemplifies the case of rotors with q = 0, that is, rotors whose minimum

angular momentum is zero. We see that there is a gap to all excitations. The phase
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2.1 Introduction 13

diagram for q = 1/2 rotors, that is, rotors whose minimum angular momenta has the

value l = 1/2 bears a close resemblance with the one presented here, except for one

important difference: it does not possess an energy gap (the GP phase is absent), as

is reasonable to expect so. The momentum-state tower of each rotor is not limited

(only the first two QFl phases are shown), and this fact leads to the interpretation

of a rotor as an effective quantum degree of freedom for the low energy states of

a small number (even, when 2q is pair, and odd, if 2q is odd) of closely coupled

electrons. In this work we shall relinquish this interpretation and adopt a simpler

one: we will attempt to ”lure” each rotor into representing just a single spin posed

on each site. The more precise meaning of q shall be addressed in a short while.

The connection between O(N) quantum-rotor (QR) and spin models on

d-dimensional lattices has proved very useful in the context of phase transitions

[43, 48]. About three decades ago, Hamer, Kogut and Susskind [49] mapped two-

dimensional O(N) Heisenberg models (N = 2, 3 and 4) onto the corresponding [(1+1)

spatial and time dimensions] nonlinear-sigma or QR models. The critical behavior

was then inferred using strong-coupling expansion (high-temperature, g = kT/J → ∞,

where J is the spin coupling): a Kosterlitz-Thouless transition for the O(2) model

and a prediction of critical points at zero coupling (Padé continued) for both O(3)

and O(4) models. On the other hand, by mapping O(3) antiferromagnetic (AF)

Heisenberg chains onto nonlinear sigma models in the semiclassical weak-coupling

limit (g = 2/S, S → ∞), Haldane [50] suggested that the ground state of chains with

integral spins are gapped, while those with half-integral spins are gapless. Moreover,

Shankar and Read [51] precisely clarified the distinction between gapped AF spin

models, characterized by the θ = 0 mod 2π topological term, and gapless models

for which θ = π mod 2π, including the connection of the latter with a Laplacian
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Figure 2.1: MF phase diagram of Ĥ ′
rot as a function of the couplings J and K at

MZ = 4, g = 1, and α = 1; Z is the coordination number of the lattice. Thin lines
represent second-order transitions while thick lines are first order. The quantized
ferromagnetic phases QFl have magnetic moment per site l; there is an infinite
sequence of such phases for all integer l > 0 at larger values of K, and only the first
two are shown. The phases have the following ground-state expectation values, up to
a global O(3) rotation: gapped quantum paramagnet (GP): < L̂µ >= 0, < n̂µ >= 0;

quantized ferromagnet (QFl): < L̂z >= l, < n̂z > 6= 0; < L̂x,y >= 0, < n̂x,y >= 0;

Néel (N): < L̂µ >= 0, < n̂z > 6= 0, < n̂x,y >= 0; canted (C): < L̂x,z > 6= 0,

< n̂x,z > 6= 0, < L̂y >= 0, < n̂y >= 0 (reproduced from Ref. [47]).
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2.1 Introduction 15

minimally coupled to the monopole potential [52]. In fact, by putting the model on

a lattice and adopting a nontrivial procedure, which ended up with the inclusion of

the θ = π term into the known theory, they worked out the discretized version of

the sigma model, whose action reads

S = −
∫ β

0

dτ
∑

j

{ [∂τn(j)]2

2g2
− i

2
(−1)jA(n(j)) · dn

dτ
+

1

2g2
[n(j)−n(j+ 1)]2}, (2.19)

where n = n(τ) is the unit position vector, g is a coupling constant, A(n) (with

∇n × A = n) is the vector potential, and j labels the lattice sites. A remarkable

result in Eq. (2.19) arises from its second term. It tells us of a particle that at

each site is constrained to move on a unit sphere acted upon by the field of a unit

monopole. Further, masslessness (gaplessness) at θ = π for all nonzero g is inferred,

and this leads to the mapping of the sigma model onto the spin-1/2 nearest-neighbor

antiferromagnetic Heisenberg chain. The angular part of the Laplacian L̂2 (see Eq.

(29) in the cited article) is constructed and can easily be linked (by setting q = 1/2

and using m→ −i ∂
∂φ

) to the ordinary differential equation for the θ-dependent part

of the monopole harmonics [52], namely:

[l(l + 1) − q2]Θq,l,m = [− 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ
(m+ q cos θ)2]Θq,l,m, (2.20)

which is a direct evaluation of the operator [̂r×(p̂−ZeÂ)]2 acting on the Yq,l,m(θ, φ)

- the so-called monopole harmonics. Here 2q is any integer (positive, negative, or

zero) and is directly related to the monopole strength. We will provide further treat-

ment of this subject in appendix A.1. Following the above developments, Sachdev

and Senthil [43, 47] have presented a quite general MF and renormalization-group

analysis of quantum phase transitions in magnets with the aid of the generalized
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QR modeled by the Hamiltonian that was already introduced in Eq. (2.15). In

particular, they showed that, under certain conditions, one can establish a mapping

of double-layer antiferromagnets onto quantum rotors which sheds intuitive light on

the way in which a quantum rotor can be used as an effective representation of a

pair of antiferromagnetically coupled spins.

Still in a similar context, a single-site MF approximation was used to study an

effective Hamiltonian for spin-one bosons in an optical lattice in the presence of a

magnetic field [53]. Further, a QR description of the Mott-insulator transition in the

Bose-Hubbard model within a functional-integral approach has also been elaborated

in order to include particle number fluctuation effects [54]. Low-dimensional bosonic

systems described in terms of the (disordered) Hubbard model can effectively be

studied through equivalent QR models, such as carried out by Alet and Sorensen

[55] by way of a wormlike cluster Monte Carlo algorithm. Pushing the theory far

afield, Levin et al. found that the rotor model on the 3D cubic lattice can exhibit

low-energy excitations which behave like massless U(1) gauge bosons and massless

Dirac fermions [56].

In this chapter we focus our attention on the study of the ground-state phase

diagram of generalized quantum rotors on the frustrated AB2 chain, modeled by

a Hamiltonian similar to that defined by Eq. (2.15). The (rotor) AB2 chain is

depicted in Fig. 2.2. The quantum rotors at each site are constrained, through

sufficiently high values of the coupling g (and the coupling α of the quartic term

in the angular momentum), to mostly retain states with the minimum value of

the angular momentum, i.e., ℓ = 1/2, as the frustration parameter J is varied,

thus enabling us to make a direct comparison with the corresponding quantum

spin-1/2 AB2 chains. In this manner, each rotor can be viewed as approximately
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representing only one spin 1/2 localized on the repective site. We analyze two

types of frustration, as illustrated in Fig. 2.2, and try to interpret the derived phase

diagrams in light of the ones of previous works on frustrated quantum spin-1/2

chains (or mixed spin-1/2-spin-1 chains) with the AB2 topology [57–62]. Instead of

attempting to formalize a specific (and probably rather complex) mapping between

the rotor and the spin models, we have opted to treat the rotor chain numerically

by using a cluster variational MF theory. In this way we were able to derive the

rotor phase diagrams of both frustration cases. We also supplemented our analysis

with exact diagonalization via the Lanczos algorithm (ED) [63] and density matrix

renormalization group (DMRG) [64] of finite-size spin-1/2 chains.

With respect to spin systems, as a motivation on the experimental side, the com-

pound Cu3(CO)2(OH)2, a natural mineral that is best known by the name azurite

[65], has been successfully explained by the distorted diamond chain model [61], i.e.,

a system with three spin-1/2 magnetic sites per unit cell and frustrated ferrimag-

netic state. Also, along with the study on the effect of frustration [57–62], for J = 0

this class of models shares its phenomenology and unit-cell topology with quasi-

one-dimensional compounds, such as the line of trimer clusters present in copper

phosphates [66, 67] and the ferrimagnet PNNBNO, which is the abbreviation of the

organic triradical 2-[3′, 5′-bis(N -tert-butylaminoxyl)phenyl-4,4,5,5-tetramethyl-4,5-

dihydro-1H-imidazol-1-oxyl 3-oxide [68]. The modeling of the ferrimagnetic phase

[69] has been mainly undertaken in the context of other models such as Hubbard [70],

t−J [71], Ising [72], classical [72] and quantum Heisenberg [73], including magnetic

excitations [74, 75], and the quantum spherical model [76]. The occurrence of new

phases induced by hole-doping of the electronic band [77] has also been carried out.

More recently, a topological approach to describe the frustration- and field-induced
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2.2 Outline of the theory and methods 18

phase transitions exhibited by the infinite-range XY model on the AB2 chain, in-

cluding noncollinear spin structures, was adopted [78]. Also, a functional-integral

formalism suitable to describe the strong-coupling regime below half-filling of the

AB2 Hubbard chains was published [79].

Finally, this chapter is organized as follows. In the next section we describe

our specific QR system which is modeled by the Hamiltonian Ĥ ′
rot of Eq. (2.15)

imposed on the AB2 chain for particular values of the couplings. We also provide a

glimpse of the numerical methods deployed. In an appendix, we present an overview

of the monopole harmonics and derive the matrix elements of the operators acting

on the single-site Hilbert space represented by these functions. In Sec. 2.3 we use

single-site variational MF theory to study the rotor models, for the two frustration

cases, and discuss the shortcomings of this semiclassical approach. Then in Sec. 2.4

we adopt a multi-site (two-unit cell) variational MF Hamiltonian, which provides a

substantial improvement on the treatment of quantum fluctuation effects, particu-

larly in connection with the case of frustrated interaction between quantum rotors

on B sites at the same unit cell. Then we treat the respective spin-1/2 systems

by making use of ED and DMRG techniques in order to pave the way for a direct

comparison between rotors and spins. Finally we report our conclusions in Sec. 2.5.

2.2 Outline of the theory and methods

Quantum rotors can be classified according to their minimum angular momentum

[47, 52]: rotors with q = 0 have zero minimum angular momentum, which can be

made to correspond to an even number of Heisenberg spins in an underlying spin

model. Free rotors with q = 0 have Eq. (2.2) as eigenvalue equation: the eigenstates
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are just the spherical harmonics and the eigenvalues are given be Eq. (2.4). On the

other hand, we also have rotors with q 6= 0, where q is chosen to have one of the

values: 1/2, 1, 3/2, ..., They have in turn Eq. (2.20) as eigenvalue equation. As we

have just seen above, this arises naturally form the theory and the rotor with q = 0

may be considered a particular case of a more general rotor (where 2q could be any

integer, including zero), which will be clarified in Appendix A.1. Quantum rotors

with half-integer values of q are duly suited to refer to an odd number of underlying

spins-1/2 (at least one spin remains unpaired).

We shall focus on (q = 1/2)-quantum rotors in view of the stated objective of

comparing our results with those of the referred chains of spin-1/2 operators. From

now on we set ~ ≡ 1. For a general q, the angular momentum operator is now given

by

L̂µ = −ǫµνλn̂ν

[

i
∂

∂n̂λ

+ qAλ(n̂)

]

− qn̂µ, (2.21)

which incorporates the effect of a Dirac monopole at the origin of n space. As before,

Greek letters stand for the Cartesian components x, y, z (summation over repeated

indices is subtended and ǫµνλ is the Levi-Civita tensor). The vector potential Â may

be conveniently chosen to satisfy [52] (see also Eq. (2.19))

ǫµνλ∂Aλ/∂n̂ν = n̂µ. (2.22)

It is quite a simple task to show that the commutation relations (Eq. (2.12)) are

all verified for the case of L̂ defined by Eq. (2.21). The appropriate Hilbert space

is made up of angular section states, which are eingenstates of Eq (2.20), for which
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the following are true [52]:

L̂2|q, l,m >= l(l + 1)|q, l,m >, L̂z|q, l,m >= m|q, l,m >, (2.23)

and the usual ladder operators (L̂± = L̂x ± iL̂y) satisfy

L̂±|q, l,m >=
√

(l ∓m)(l ±m+ 1)|q, l,m± 1 > . (2.24)

Here l = q, q+1, q+2, . . ., and m = −l,−l+1, . . . , l. The |q, l,m > are the eigensec-

tions also called monopole harmonics. An important constraint follows immediately

from Eq.(2.21):

n̂ · L̂ = −q. (2.25)

Thus, we shall consider the quite general frustrated O(3) QR Hamiltonian for

the quantum rotors placed on the sites of a chain with the AB2 topology:

ĤR =
g

2

∑

i

[(L̂2
i + α(L̂2

i )
2)] +

∑

<ij>

[n̂i · n̂j + L̂i · L̂j +M(n̂i · L̂j + n̂j · L̂i)] +

∑

(i,j)∈F1orF2

[J(n̂i · n̂j + L̂i · L̂j) +M(n̂i · L̂j + n̂j · L̂i)]. (2.26)

This is nevertheless a special case of the more general Hamiltonian given by Eq.

(2.15), where the restrictions on the couplings Jij , Kij,Mij are already taken into

account and explicitly shown in Eq. (2.26). A word about the special notation

used here is in order. The index i labels the sites of the AB2 chain; in the second

summation, < ij > indexes nearest-neighbor couplings between rotors on distinct

sublattices (A and B sublattices) which, except for M , are all set to unity (see

Fig. 2.2, illustrated by the full lines); in the third summation (i, j) indexes nearest-
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neighbor couplings between rotors on the same sublattice which, except for M , are

set to J(≥ 0). Here we shall study two frustration patterns, namely, F1 and F2. In

F1, only frustrated interactions (J and M) between rotors at the B sites of the same

unit cell are present, as illustrated in Fig. 2.2 (a) (red dashed lines), whereas for

F2 we consider all nearest-neighbor intra- and intercell interactions, as illustrated

in Fig. 2.2 (b) (red and green dashed lines). In order to isolate the effect of the

coupling M in the two above-referred cases, we take either M = 0 or M = 1.

We then start off by treating ĤR by means of a variational MF theory based on

the Bogoliubov theorem [80, 81]. Thus, the variational expression of the MF energy

at T = 0 satisfies the inequality:

Emf ≤ E0 + 〈ĤR − Ĥtrial〉0, (2.27)

where E0 is the ground-state energy of the trial Hamiltonian - here denoted by Ĥtrial

- and the expectation value is taken with respect to its ground-state wavefunction.

So, we need firstly to diagonalize Ĥtrial by way of the Lanczos algorithm [63] to

construct the Bogoliubov inequality, which is then minimized with respect to its

variational parameters: for chosen values of the frustration control parameter (J),

minimization is carried out numerically, by deploying a simplex procedure [82].

For trial Hamiltonians we use both single-site and multi-site Hamiltonians, as

described in Sec. 2.3 and Sec. 2.4, respectively.

Before going on to the two approaches described in Sec. 2.3 and Sec. 2.4, we

emphasize the following features about the stability of the numerical implementa-

tions carried out in this work. So, in our simulations we have verified that we could

safely work with a minimally reduced Hilbert space if the values of g and α were set

sufficiently large. In fact, the Hilbert space size and the value of g and α determine
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the stability of our problem: for small space sizes (e.g., ℓ = 3/2) and small values

of g and α (e.g., g = α = 0.1), the system becomes completely unstable due to con-

tributions of high-energy terms which cause the system to fluctuate beyond control.

On the other hand, by choosing a small space size (ℓ = 3/2), but a sufficiently large

value of g, the system behaves quite stably. Therefore, in this work we shall use

small space size, i.e., ℓ = 3/2, associated with a large value of g, in order to make

computations feasible and establish a close contact with spin-1/2 models. We shall

exhibit an example of this phenomenon in due time.

2.3 Quantum rotors on the AB2 chain: single-site

variational mean-field approach on the unit

cell

As a first and straightforward application of the aforementioned variational MF

theory, we postulate the following trial Hamiltonian, acting on one unit cell of the

AB2 chain:

Ĥtrial =
∑

i

[g

2

(

L̂2
i + α(L̂2

i )
2
)

+ Ni · n̂i + hi · L̂i

]

, (2.28)

where h = (hx, hy, hz) and N = (Nx, Ny, Nz) are the variational c-number fields and

the subscript i goes over the sites A1, B1, and B2.

The ground-state wavefunction of Ĥtrial and energy are given by

|Ψ0 >= |Ψ0 >A1
|Ψ0 >B1

|Ψ0 >B2
(2.29)
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Figure 2.2: Illustration of the QR chains with three rotors per unit cell i : Ai, B2i−1,
and B2i. Full lines indicate antiferromagnetic exchange couplings (J1 ≡ 1) which
give rise to the ferrimagnetic ground state, while dashed lines represent exchange
couplings (J ≥ 0) which frustrate the magnetic order: (a) frustration pattern F1

and (b) frustration pattern F2.
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and

E0 =
∑

i

E0i
= E0A1

+ E0B1
+ E0B2

, (2.30)

where E0i
= E0i

(g, α;Ni, hi) represents the ground-state energy of the respective

wavefunction, such that for any pair of operators X̂i, X̂j, with i 6= j:

< Ψ0|X̂i · X̂j|Ψ0 >=< X̂i >0 · < X̂j >0, (2.31)

We then get, for frustration F1, the Bogoliubov inequality for the unit cell :

E
(F1)
mf ≤ E1 + E2 + E3, (2.32)

where the Eν read:

E1 =
∑

i

E0i
−

∑

i

(Ni· < n̂i >0 +hi· < L̂i >0);

E2 = 2
∑

i>j,j=A1

[< n̂i >0 · < n̂j >0 + < L̂i >0 · < L̂j >0

+M(< n̂i >0 · < L̂j >0 + < n̂j >0 · < L̂i >0)];

E3 = J(< n̂B1
>0 · < n̂B2

>0 + < L̂B1
>0 · < L̂B2

>0)+

M(< n̂B1
>0 · < L̂B2

>0 + < n̂B2
>0 · < L̂B1

>0);

the index i (j) visits the sites of the unit cell, with the convention: A1 < B1 < B2.
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For frustration F2, a fourth term must be added to the Bogoliubov inequality:

E4 = 2
∑

i

[J < n̂i >0 · < n̂i >0 + < L̂i >0 · < L̂i >0 +

M(< n̂i >0 · < L̂i >0 + < n̂i >0 · < L̂i >0)].

The GS wavefunction and energy of Ĥtrial are obtained through ED. The MF energy

– best evaluation of E
(F1)
mf ≡ E

(F1)
mf (g, α, J) or E

(F2)
mf ≡ E

(F2)
mf (g, α, J) – is then obtained

by performing the minimization with respect to variations of the fields Ni and hi.

To produce the results of this section, it sufficed to set g = α = 10 and a space

size determined by truncating the Hilbert space at ℓ = 3/2. Further, we have focused

only on those quantities that suffice to afford the relevant information needed for the

proper interpretation of the problem at this level, i. e., the two-point MF momentum

products, defined here through the products < L̂i > · < L̂j >, where i 6= j runs over

the sites of the unit cell, and the MF energy. We thereby leave out the position-

and momentum-position products, for they are redundant. This is due to the fact

that L̂µ and n̂µ have the same signature under all allowed symmetries for q≥ 0, and

so their expectation values turn out to be proportional to each other on a given site

[47].

We then proceed to discuss the results in Fig. 2.3 (frustration F1) and Fig. 2.4

(frustration F2), which reveal some salient features. Firstly, we verified that the

classical result < L̂i >
2= 0.25, with i = A1, B1, B2, independent of J , is produced.

The momentum products show that, in all cases, the system starts out with a

magnetization plateau: < L̂B1
> · < L̂B2

>= 0.25 and< L̂A1
> · < L̂B1,2

>= −0.25,

which corresponds to the Lieb-Mattis[83] phase of the analogous spin-1/2 system,

before undergoing a phase transition at J = 1. This transition is of second order
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(M ≡ 0), as shown in Fig. 2.3 (a) and Fig. 2.4 (a), and of first order (M ≡ 1), as

shown in Fig. 2.3 (c) and Fig. 2.4 (c).

In the first case (M ≡ 0), the system evolves continually (with the MF en-

ergy curve - Fig. 2.3 (b) and Fig. 2.4 (b) - smooth at the point J = 1) to a

stable phase where the momenta at the A and B sites become uncorrelated, i.e.,

< L̂A1
> · < L̂B1,2

>≈ 0, while the momenta at the B sites tend to directly oppose

each other with increasing J , forming a singletlike configuration:

< L̂B1
> · < L̂B2

>≈ −0.25, for J ≫ 1.

In the second case (M ≡ 1), the transition takes place quite abruptly, having

undoubtedly first-order characteristics, and the system immediately accommodates

into the stable singletlike phase that we have just referred to. The MF energy curves

of these first-order transitions at J = 1 are shown in Fig. 2.3 (d) and Fig. 2.4 (d),

and we notice that the cusp in the latter is less pronounced.

We notice further, that the products between the momenta at the A and B

sites display quite sizable fluctuations around < L̂A1
> · < L̂B1,2

>≈ 0, as seen in

Fig. 2.3 (c) and Fig. 2.4 (c) (M 6= 0), and in lesser degree in Fig. 2.4 (a) for frus-

tration F2 and M = 0. The corresponding wide points occur pairwise and fairly

symmetrically with respect to the classical curves (see below) that represent the

decoupling of the momenta at the A and B sites, leaving the MF energy practically

unaltered. In fact, with increasing J , the system becomes more prone to wandering

through near-degenerate states, which give rise to these stray points.

The phase, for J ≫ 1, with the A sites uncoupled and the B sites with opposing

momenta in a singletlike configuration, is much like the dimer-monomer phase of the

work by Takano, Kubo, and Sakamoto [57]. We perceive, however, that important

features in between those J extremes of the phase diagram do not appear by way of
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this naive single-site MF theory.

We now get back to the instability situation mentioned in the previous section.

When the Hilbert space is truncated at a small value of ℓ and the system is given

free reins to accomodate in higher-energy states (through a small value of g and

α), then we end up by having an ill-defined problem in our hands. It happens that

truncation problems (the system seeks out nonexistent states in the cutoff region)

make numerical implementation errors too important. The result is we come up

with a picture that is totally blurred and no physics arises, as can be visualized

in Fig. 2.5. On the other hand, for larger values of ℓ (ℓ = 6.5, in this example),

the phase diagram is stable and shows the same pattern that was analyzed so far

(see Fig. 2.3). But all momenta are scaled up thirteenfold to the maximum ℓ = 6.5

value, and we undestand this behavior as a signature of an all-classical system. This

is illustrated in Fig. 2.6.

We now notice, through Eq. (2.31), that with the rotor momenta being fixed

at ℓ = 1/2, and having < Li >
2= 0.25, for all sites i, independent of J , all dot

products can only vary between the extremes -0.25 and 0.25. Therefore, through

this MF approach, we are led to envision the momenta on the unit cell of the AB2

chain as classical vectors of constant magnitude, such as represented in Fig. 2.7.

We can thus provide a simple interpretation based on this configuration of classical

vectors on the xy plane (akin to the XY model). We then build the energy function

for the configuration in Fig. 2.7 on a symmetric unit of the AB2 chain centered on

the A site. The classical constraints may be set as

|LAl
| = |LB1

| = |LB2
| ≡ 1/2,

|nAl
| = |nB1

| = |nB2
| ≡ n, (2.33)
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Figure 2.3: Frustration F1. Two-point MF momentum products [(a) M ≡ 0, (c)
M ≡ 1] between the indicated rotors and MF energy curve [(b) M ≡ 0, (d) M ≡ 1],
where we have drawn straight (full) lines to show that at J = 1 the system steers
away from the linear regime that prevails for J ≤ 1 and so a phase transition takes
place. Full and dashed lines in (a) and (c) indicate the results of the classical vector
model. Dashed lines in (b) and (d) are guides to the eye.
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Figure 2.4: Frustration F2. Same as in Fig. 2.3.
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Figure 2.5: Two-point MF momentum products for frustration F1. Here an inappro-
priate choice of the parameters g = α = 1 and a Hilbert space truncated at ℓ = 1/2
was made. One cannot make any physical pattern out of the plots.
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Figure 2.6: Two-point MF momentum products for frustration F1. Here we show a
choice of the parameters g = α = 1 with a Hilbert space truncated at ℓ = 6.5. The
momenta are scaled up to the highest ℓ.
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(we take n constant, which is about true for small ℓ, as verified in the simulations,

and whose value must be read off from the plots). We start off with the energy

function for the frustration F1 , taking into account the cases M = 0 and M = 1.

So, for each case, up to a constant independent of θ:

E(M=0)(θ) = −2(1 + 4n2) cos
θ

2
+
J

2
(1 + 4n2) cos θ,

E(M=1)(θ) = −2(1 − 4n+ 4n2) cos
θ

2
− 2n cos θ +

J

2
(1 + 4n2) cos θ. (2.34)

Upon imposing the minimization conditions (relative to the unique parameter θ),

we obtain: (i) for J < 1 we have θ = 0, which holds for both M = 0 and M = 1;

(ii) for J > 1, we have θ 6= 0, which in turn implies that J = 1
cos θ

2

, for M = 0, while

J =
(1−2n)2+4n cos θ

2

(1+4n2) cos θ
2

, for M = 1. The momentum products are accordingly given by:

• for J < 1, and both M = 0 and M = 1,

LA1
· LB1,2

= −0.25,

LB1
· LB2

= +0.25. (2.35)

• for For J> 1,

LA1
· LB1,2

= − 1

4J
,

LB1
· LB2

=
1

2J2
− 1

4
, M = 0; (2.36)
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LA1
· LB1,2

= −1

4
(

(1 − 2n)2

J(1 + 4n2) − 4n
),

LB1
· LB2

=
1

4
(

2(1 − 2n)4

[J(1 + 4n2) − 4n]2
−1), M = 1. (2.37)

With respect to frustration F2, our present MF approach can only “sense”

a repetition of the configuration of Fig. 2.7, in that we get additional terms to

the energy functions above that are independent of θ (and therefore vanish upon

minimization), implying the same results for the dot products.

This classical description fully accounts for the momentum products in both

frustration types for M = 0, including the nature of the phase transition at J = 1,

as seen in Fig. 2.3 (a) and Fig. 2.4 (a) through the matching fit to the points of the

numerical implementation for the rotors; for M = 1, this interpretation confirms

the first-order transition at J = 1 and offers hints at the expected behavior of these

momentum products, were it not for the stray points, as can be seen in the diagrams

of Fig. 2.3(c) and Fig. 2.4(c). In Eq. (2.37) we have used n = 0.34, that can be read

off from the plots of < n̂2 >, which were not explicitly presented in this work. One

might be misled to understand that a coupling M 6= 0 always changes the transition

to first order. This not the case for the system plotted in Fig. 2.8, where M = 1

in all couplings, except for the frustation coupling which is allowed to vary. With a

slight modification, the classical interpretation above assures us that the transition

continues to be of second order and that the transition point is shifted to the right,

i. e, the new transition point is approximately given by

Jt = 1 +
nM

1 + 4n2
. (2.38)

We have also detected other situations with (M 6= 0) whose transition remains
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Figure 2.7: Classical vector configuration. The angle θ is the unique order parameter.
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Figure 2.8: Two-point MF momentum products for frustration F1. Here we show
a choice of the parameters g = α = 1 with a Hilbert space truncated at ℓ = 5.5.
M = 10 in the frustration coupling and M = 1 elsewhere. The system behaves just
like the one depicted in Fig. 2.3, but the transition takes place at Jt ≈ 1.8, i.e., with
a shift to the right hinted at by Eq. (2.38).
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second order with no shift at all and whose transition changes to first order with a

shift, all explainable in this classical framework.

In the following section we try a more elaborate MF technique on a double-cell

structure, as a way to circumvent Eq. (2.31), as well as to get a direct evaluation of

the intra- and intercell two-point correlations. For simplicity, we restrict ourselves

to M = 0.

2.4 Quantum rotors on the AB2 chain: the double-

cell variational mean-field approach

Differently from the approach presented in Sec. 2.3, we build our trial Hamiltonian

acting on the global space formed by the six sites of the double-cell structure made

up of two contiguous unit cells, such as showed in Fig. 2.2, i.e., we build one six-site

trial Hamiltonian acting, say, on the sites A1, A2, B1, B2, B3, and B4. In order to

achieve that, we assigned to each site its own local vector subspace, and we then

constructed our global space by forming the tensor product of these subspaces in

one chosen order. Aiming at simplifying the equations below, when necessary, the

local operator that acts on the quantum rotor located at site A1, for instance, is

denoted by X̂A1
, which may refer to either operator L̂ or operator n̂. The extended

operator on the same site was then defined by

X̂∗
A1

= X̂A1
⊗ IA2

⊗ IB1
⊗ IB2

⊗ IB3
⊗ IB4

, (2.39)

where an order is implicitly chosen, and I stands for the identiy operators (rep-

resented by the unit matrix) acting on the respective site subspaces. For a dot

Doctoral Dissertation - Departamento de F́ısica - UFPE



2.4 Quantum rotors on the AB2 chain: the double-cell variational mean-field
approach 37

product, for example, between operators acting on sites A1 and B2, we have

X̂∗
A1

· X̂∗
B2

= (X̂∗
A1

)x(X̂
∗
B2

)x + (X̂∗
A1

)y(X̂
∗
B2

)y + (X̂∗
A1

)z(X̂
∗
B2

)z

=
∑

i=x,y,z

[(X̂A1
)i ⊗ IA2

⊗ · · · ⊗ IB4
][IA1

⊗ · · · ⊗ (X̂B2
)i ⊗ · · · ⊗ IB4

]

=
∑

i=x,y,z

[(X̂A1
)i ⊗ IA2

⊗ IB1
⊗ (X̂B2

)i ⊗ IB3
⊗ IB4

], (2.40)

and here the (X̂site)i, (i = x, y, z), is represented by the matrix formed of the matrix

elements given in Appendix A.1, which were thoroughly deduced for both operators

n̂ and L̂. We see that the ordinary product of extended operators is indeed a tensor

product of local operators. More appropriately speaking, the matrix operation above

is realized through the Kronecker product of matrices as opposed to the ordinary

product. A tensor product as is commonly referred to in the mathematical literature

occurs between two vectors and has as result a matrix. From now on, in order to

unburden the notation, we will make do with the star superscript in the equations

and relations with extended operators in the rest of this section.

We now write down the trial Hamiltonian acting on a given double-cell structure

for frustration F1:

Ĥtrial = Ĥ
(1)
trial + Ĥ

(2)
trial + Ĥ

(3)
trial. (2.41)

The first term (the kinetic energy term plus effective fields) is given by

Ĥ
(1)
trial =

∑

i

[g

2

(

L̂2
i + α(L̂2

i )
2
)

+ Ni · n̂i + hi · L̂i

]

, (2.42)

where the index i goes over the sites A1, A2, B1, B2, B3, and B4; Ni and hi being

the effective fields (variational c-numbers) due to the rest of the system (which plays
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the role of a bath), and acting on each site i of the double-cell cluster. The next

term (first neighbors or bonds) reads

Ĥ
(2)
trial =

∑

X̂=n̂,L̂

[(X̂A1
+ X̂A2

) · (X̂B1
+ X̂B2

)

+X̂A2
· (X̂B3

+ X̂B4
)], (2.43)

while the last one (frustration interaction) is written as

Ĥ
(3)
trial = J

∑

X̂=n̂,L̂

[(X̂B1
· X̂B2

) + (X̂B3
· X̂B4

)], (2.44)

where in the first term we opted to use the explicit operators, i.e., L̂i and n̂i. For

frustration F2, the following term (intercell frustration interaction) must be added

to Eq. (2.41):

Ĥ
(4)
trial = J

∑

X̂=n̂,L̂

[(X̂A1
· X̂A2

+ X̂B1
· X̂B3

+ X̂B2
· X̂B4

)]. (2.45)

The direct application of Eq. (2.27) yields for frustration F1 the following ex-

pression for the double-cell variational MF energy E
(F1)
mf ≡ E

(F1)
mf (g, α, J), where

the equals sign implies that minimization with respect to the variational fields has

already been carried through:

E
(F1)
mf = E0 + 2

∑

X̂=n̂,L̂

< X̂A1
>0 ·(< X̂B3

>0 + < X̂B4
>0)

−
∑

i

(Ni· < n̂i >0 +hi· < L̂i >0), (2.46)

where, E0 represents the ground-state energy of Ĥtrial and, as before, the index i
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visits the sites A1, A2, B1, B2, B3, and B4.

For frustration F2, we get analogously E
(F2)
mf ≡ E

(F2)
mf (g, α, J):

E
(F2)
mf = E0 + 2

∑

X̂=n̂,L̂

< X̂A1
>0 ·(< X̂B3

>0 + < X̂B4
>0)

+2J
∑

X̂=n̂,L̂

(< X̂A1
>0 · < X̂A2

>0 +

< X̂B1
>0 · < X̂B3

>0 + < X̂B2
>0 · < X̂B4

>0)

−
∑

i

(Ni· < n̂i >0 +hi· < L̂i >0). (2.47)

Now, a given eigenfunction of Ĥtrial may not necessarily be a tensor product

of the eigenfunctions of the respective site subspaces, differently from the case in

Sec. 2.3, so that, for example,

< Ψ0|X̂A1
· X̂B2

|Ψ0 > 6=< Ψ0|X̂A1
|Ψ0 > · < Ψ0|X̂B2

|Ψ0 >, (2.48)

where |Ψ0 > designates the ground-state wavefunction of Htrial. It is an impor-

tant aspect in this approach, which differs from the standard MF result given by

Eq. (2.31). Thus, in principle, taking advantage of the available capability of diago-

nalizing more complex operators (trial Hamiltonians), we can produce more reliable

cluster variational MF theories.

The dimension of the global space is d6, where d is the dimension of the local

subspace. Therefore, due to computational implementability, this fact prompted us

to limit the size of the Hilbert space by deploying rotors with maximum ℓ = 3/2 .

An observation about the value of g is in order. On studying frustration F1,

when we had set g = 10, as in the preceding section, we verified that the momentum
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correlation < L̂A1
· L̂A2

> remained pegged at 0.25, even after the transition at

J = 2, which turns out not to be true (see below). In solving this problem, we

resorted in this section to a higher value of g (namely, g = 1000), which then

inhibited more strongly the appearance of disturbing states; however one should

notice that if much greater values of g are employed, the kinetic energy becomes

overwhelmingly dominant, and as a consequence, small changes in the correlations

tend to go unnoticed.

As before, we concentrated on the relevant quantities that can provide the in-

formation needed for the physical interpretation of the problem: namely, the MF

energy, the expectation value of the total angular momentum, and the momentum

correlations. The expectation value of the total angular momentum per unit cell

was calculated according to the formula | < L > |2 = 1/2
∑

µ < L2
µ >, where Lµ

(µ = x, y, z) is the respective resultant component (component sum over all the

six sites of the double-cell structure).

2.4.1 Frustration F1

In order to facilitate comparison between the QR results and those of the spin-1/2

counterpart with the same type of frustration, we present in Fig. 2.9 the phases

obtained for the spin-1/2 diamond chain[57]. The Lieb-Mattis[83] ferrimagnetic

phase (FERRI) appears when J < 0.909 (J is also used to indicate the frustration

control parameter for the spin system). In the tetramer-dimer (TD) phase, which

ensues when 0.909 < J < 2, the state is precisely the regular array of singlet

tetramers (the closed loop encompasses four spins, in which the B sites form a triplet

pair, and the spins on the A sites oppose those on the B sites, so that zero total spin

takes place), and singlet dimers (two spins within the elliptical contour) as shown in
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(a) (c)(b)

DIMER−MONOMERTETRAMER−DIMERFERRIMAGNETISM

Figure 2.9: Illustration of the ground states found for the spin-1/2 diamond chain[57]
as J is increased from 0. (a) The ferrimagnetic (FERRI) state. (b) The tetramer-
dimer (TD) state, where rectangles represent singlet tetramers and ellipses singlet
dimers. (c) The dimer-monomer (DM) state. There are two first-order phase tran-
sitions: at J = 0.909 (FERRI/TD) and J = 2 (TD/DM).

Fig. 2.9 (b). Finally, the dimer-monomer (DM) state is shown in Fig. 2.9 (c) and

sets in when J > 2; it is composed of the regular array of singlet dimers and free

spins, and vanishing total spin is also expected. Because of the free spins, the DM

state is macroscopically 2N/3-fold degenerate for a chain with N sites. Furthermore,

both transitions are of first order.

In order to allow a direct comparison with our MF results for quantum rotors, we

have solved the spin-1/2 diamond chain (AB2 chain with frustration between spins

at sites B of the same unit cell) for sizes up to 28 sites, using the ED procedure with

open boundary conditions. The results are displayed as follows: the relevant correla-

tions are represented by the curves plotted in Fig. 2.10; in Fig. 2.11 (a) and (b) we

plotted respectively the energy and total-spin curves (normalized by the Lieb-Mattis

value [83]).

Examination of the correlation plots show clear correspondence with the phases

exhibited in Fig. 2.9. The phase FERRI is characterized by the following correla-

tions: < ŜB1
· ŜB2

>=< ŜB3
· ŜB4

>= 0.25, < ŜB1
· ŜB3

>= 0.21, < ŜA1
· ŜA2

>=
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Figure 2.10: Spin-1/2 diamond chain: ED results for the correlation functions be-
tween spins at a central cluster of a system with 28 sites. Dashed lines are guides
to the eye.
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Figure 2.11: Spin-1/2 diamond chain: ED results for the (a) average ground-state
energy and (b) rescaled total spin of a system with 28 sites. Phase transitions occur
at J = 0.88 and J = 2.0, both of first order. Dashed lines are guides to the eye.

0.18, < ŜA1
· ŜB3

>= −0.15, < ŜA1
· ŜB1

>= −0.36. The total spin per unit cell in

Fig. 2.11 (b) shows the Lieb-Mattis value of 0.5 throughout. The transition to the

intermediate phase TD then occurs at J = 0.88, very close to the estimated value for

the infinite chain [57]: J = 0.909. We note that in this phase the chain breaks up into

smaller units - tetramers and dimers - and quantum fluctuations within each unit do

not affect the spin correlations. Hence the correlations are just those calculated for

the TD configuration of spins in Fig. 2.9 (b): < ŜA1
· ŜA2

>=< ŜB1
· ŜB2

>= 0.25

(triplets), < ŜB3
· ŜB4

>= −0.75 (singlets), < ŜA1
· ŜB1

>= −0.5, the other correla-

tions being zero. With increasing J though, quantum fluctuations become strong

enough to disrupt the tetramer unit and a new transition to the DM phase happens

at J = 2, this point being independent of size because of the chain breakup. In

this phase correlation < ŜA1
· ŜA2

> has varying nonzero values due to finite size

effects, and does not vanish as should be expected in the thermodynamic limit. On

the other hand, the B spins, which are interlocked in singlet units, are totally un-

affected. This phase, depicted in Fig. 2.9 (c), shows the final chain breakup as the
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tetramer gives way to two monomer units and another dimer, clearly indicated by

the correlations in Fig. 2.10 (J ≥ 2). The energy curve in Fig. 2.11 (a) exhibits

cusps at the transition points, typical of a first-order nature, also verified through

the discontinuities of the correlations at these points. The total spin per unit cell

in Fig. 2.11 (b) corroborates the above phase description; however in the last phase

the apparent nonzero value is a finite-size effect.

Finally, getting down to the QR AB2 chain, we display our variational MF

numerical results in Fig. 2.12 (momentum correlations) and Fig. 2.13 (energy and

total angular momentum) and we proceed to a comparative examination with re-

spect to the preceding spin results. A blow-by-blow confrontation of the correlations

in both Fig. 2.10 and Fig. 2.12 shows that the double-cell variational MF approach

is able to reproduce the three phases exhibited in Ref. [57], namely, the FERRI,

TD, and DM phases. In the FERRI phase, quantum fluctuations appear to be

equally important, causing the same correlations to deviate somewhat from calcu-

lated results for stiff momenta. A closer examination shows that, up to two decimal

digits, we have same correlations for < L̂B1
· L̂B2

>=< L̂B3
· L̂B4

>= 0.25, but

slightly different correlations, namely: < L̂A1
· L̂A2

>= 0.22, < L̂A1
· L̂B1

>= 0.46,

< L̂A1
·L̂B3

>= 0.20, and < L̂B1
·L̂B3

>= 0.22, for the rotor system, which should be

compared with < ŜA1
· ŜA2

>= 0.18, < ŜA1
· ŜB1

>= 0.36, < ŜA1
· ŜB3

>= 0.16, and

< ŜB1
· ŜB3

>= 0.21, for the spin system. Phase transitions occur at J = 0.68 and

J = 2, evidently of first order; in the first transition we have a lesser value (J = 0.68)

than the Lanczos result for the 28-site spin-1/2 chain (J = 0.88), and that of Ref.

[57] (J = 0.909). The momentum and spin correlations match one another, respec-

tively, in both phases: in the DM phase, correlation < L̂A1
· L̂A2

> shows also an

erratic behavior similar to its spin counterpart, in other words, finite size effects are
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also at play. The minor differences in correlations in the FERRI phase, as well as in

the first transition point do not constitute a fundamental discrepancy between the

respective phase diagrams, which are endowed with the same topological features.

In Fig. 2.13 (a) the cusps in the MF energy at J = 0.68 and J = 2 also bespeak

the occurrence of these first-order transitions. Comparing the total momentum in

Fig. 2.13 (b) with the total spin in Fig. 2.11 (b), we observe similar results for the

ED calculations for the spin model, including finite-size effects in the last phase.

It is instructing to study the QR system regarding the average singlet density per

unit cell of the B momenta [59], which in our case (double-cell cluster) is calculated

directly using

< η >=
1

4
− 1

2
(< L̂B1

· L̂B2
> + < L̂B3

· L̂B4
>), (2.49)

and which is displayed in Fig. 2.14. These results permit a direct comparison with

the phase diagram of Fig. 2.9, as far as the buildup of singlet pairs out of B momenta

is concerned. As is the case for spins, size effects are not important here, so that

one perceives that the number of singlets is very clearly a quantized quantity within

each phase.

2.4.2 Frustration F2

Before getting down to quantum rotors, we describe succinctly existent results[59] for

the spin-1/2 AB2 chain with the same frustration F2 pattern. The rich phase diagram

of the model was studied through DMRG, ED, and a hard-core boson model. The

phase diagram thus obtained presented three transition points. The first one is

continuous and occurs at J = 0.34 between the Lieb-Mattis ferrimagnetic phase
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Figure 2.12: QR momentum correlations calculated by using the double-cell
variational MF approach for frustration F1. One notices the phase sequence
FERRI↔TD↔DM, with first-order transitions at J = 0.68 and J = 2. Dashed
lines are guides to the eye.
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Figure 2.13: Quantum rotors by using the double-cell variational MF results for
frustration F1: (a) the energy plot (E0 = 1962) shows cusps at the first-order
transition points J = 0.68 and J = 2.0; (b) expectation value of the total angular
momentum per unit cell. Dashed lines are guides to the eye.

(F1) and a ferrimagnetic phase (F2) characterized by the condensation of the singlet

component of the spins at the sites B1 and B2 of the same unit cell, with transverse

critical antiferromagnetic correlations. At J = 0.445, a first-order transition to a

phase characterized by spiral and predominantly AF correlations (singlet spiral)

takes place. The number of singlets in the lattice is quantized before this transition,

but is a continuous quantity afterwards, and can be envisioned by measuring the

singlet density. Further, a continuous chain-ladder decoupling transition at J = 0.91

is observed. Above this value, the A spins present critical AF correlations following

the asymptotic behavior observed in a linear chain, with power-law decay, while the

ladder of B spins are short-range correlated with a finite correlation length, whose

value is J-dependent, and nears the two-legged-ladder configuration (decoupled chain

ladder).

As far as quantum rotors are concerned, the examination of the momentum

correlations in Fig. 2.15 reveals that the system starts out with the FERRI phase
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Figure 2.14: Quantum rotors with frustration F1: average singlet density per unit
cell for the momenta of the B sites at the same unit cell. One can make out the
three phases: FERRI, TD, and DM, as well as pertinent transitions. Dashed lines
are guides to the eye.
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Figure 2.15: QR momentum correlations calculated by using the double-cell vari-
ational MF approach for frustration F2. One can distinguish three major phases:
FERRI, CANTED, and the decoupled AF chain ladder system, with transitions
occurring around J = 0.35 and J = 0.75. Dashed lines are guides to the eye.
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Figure 2.16: Quantum rotors by using the double-cell variational MF results for
frustration F2: (a) energy and (b) expectation value of the total angular momentum
per unit cell. The inset shows details of the phase transition around J = 0.35.
Dashed lines are guides to the eye.

which is the counterpart of phase F1 of the spin system studied in Ref. [59]. The

double-cell variational MF energy plotted in Fig. 2.16 (a) exhibits a pattern quite

similar to that of frustration F1, shown in Fig. 2.11 (a). But resorting to Fig. 2.15

with the help of Fig. 2.16 (b) (total average momentum per unit cell), we can clear

up the picture: in fact, at J = 0.34 its reasonable to think that a second-order

transition takes place giving rise to a narrow transient phase that corresponds to

the phase F2 (condensation of singlet components of the spins at the sites B of the

same unit cell) for the spin system and is best visualized through the inset in the

latter figure, which shows the behavior of the total angular momentum. In this phase

the momenta of the A sites keep their ferromagnetic configuration (< L̂A1
· L̂A2

>=

0.25) while the B momenta conform to a magnetic canted configuration. A first-

order transition follows at J ≈ 0.36 to a new state that should correspond to the

phase singlet spiral of the respective spin system. With respect to the momenta

at the A sites, the ferromagnetic configuration also prevails in this phase. The
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total angular momentum of the A sublattice exactly counterbalances that of the

B sublattice, so that, as it happens for the spin system, a vanishing expectation

value of the total angular momentum (spin) per unit cell occurs. Furthermore,

upon inspecting the B correlations in Fig. 2.15, this phase appears here to have

also a semiclassical canted configuration, hence the name CANTED that we use to

designate this QR phase together with the previous one. In the same manner for the

spin system [59], the additional intercell interactions produce nonquantized values of

the B momenta (see, for example, correlation < L̂B1
· L̂B3

>). The nonquantization

verified in the spin system, which is a coherent superposition of singlet and triplet

configurations, may rather be seen as manifestation of the symmetry-breaking of

the invariance of the Hamiltonian under interchange of the B sites in the same cell

brought about by the additional frustration. This is also clearly verified in the

QR system. In the absence of the additional frustration, as is the the case for

frustration F1 (Fig. 2.2 (a)), this symmetry stays unscathed, so that there is no

singlet-triplet superposition: we have either a singlet or a triplet configuration per

cell, but never both simultaneously, which was already verified for both spin and

QR systems. Finally, as seen in Fig. 2.15, at J = 0.75, quantum fluctuations bring

the sudden decoupling of the chain through another phase transition with first-order

characteristics (in the spin system the transition is second-order), and the system

settles into an antiferromagnetic (AF) phase, also marked by a vanishing expectation

value of the total angular momentum per unit cell, as shown in Fig. 2.16 (b). In

this phase the frustrated AB2 chain splits into two decoupled chains, namely, an AF

linear chain (< L̂A1
· L̂A2

>= −0.75) and an AF two-legged ladder (< L̂B1
· L̂B2

>=

< L̂B1
·L̂B3

>=< L̂B1
·L̂B3

>= −0.5 and< L̂B1
·L̂B4

>= 0.25); the decoupling is seen

through < L̂A1
· L̂B3,4

>∼= 0. In Fig. 2.17, we show a pictorial representation of the
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(a) (c)(b)

CANTED AF−LADDER + AF−CHAINFERRIMAGNETISM

Figure 2.17: Illustration of the major QR ground states for frustration F2: (a)
FERRI; (b) CANTED; (c) AF, which is composed of two decoupled 1D systems: a
linear chain (A sites) and the two-legged ladder (B sites).

the three major phases FERRI, CANTED and AF. With respect to this AF phase,

our QR simulations evidently shed no light onto the criticality and short-rangedness

of the linear and two-legged ladder chains, respectively. This phase corresponds to

the decoupled chain-ladder system, which in turn has a vanishing total spin. The

first-order transition at J = 0.75 may rather be seen as a manifestation of finite-size

effects of our two-cell approach: the absence of many intermediate states preclude

a smooth transition.

The average singlet density for this frustration pattern is shown in Fig. 2.18:

the singlet number is quantized (except for the narrow interval around J = 0.36,

until the frustration reaches the value J = 0.75, wherefrom the singlet number goes

on nonquantized. We see that the QR system exhibits a four-phase pattern quite

similar to that of the respective spin system, with the nature of all but the last phase

transitions being similar in both systems. With respect to singlet quantization, we

find agreement in the first and last phases (where singlet densities 0 and 0.7 are

observed); in the intermediate phases no match is observed and again we impute this

naturally to finite size effects of our two-cell approach, which hinder a discrete one-
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by-one singlet condensation. Also, because of the additional intercell frustration, it

was not possible to form isolated singlet configurations, differently from frustration

F1.

In what follows, we provide a more detailed comparison between QR MF results

and the spin-1/2 chain, in its quantum and classical versions. The phase diagram

initially described of the spin-1/2 chain from Ref. [59] is summarized in Fig. 2.19 (a).

The spiral phase can be exposed in a clear fashion through the pitch angle q obtained

from the magnetic structure factor defined as

F (q) =
1

2N

∑

j,k

< Ŝj · Ŝk > eiq(j−k), (2.50)

where N ≡ Nc (in the figure) is the number of cells, with q = 2πn/(2N), for

n = 0, 1, 2, . . .2N − 1, and Sj = A(j+1)/2, if j is odd, while Sj = B1,j/2 + B2,j/2,

if j is even, and here we are labeling the sites in a more convenient way: A1, B1l,

and B2l just denote the sites A1, B1, and B2 of the lth unit cell. In the Lieb-Mattis

phase the ferrimagnetic order is indicated by a sharp peak at q = π (a period-

2 configuration); while in the decoupled phase, in which a period-4 structure is

observed (see also Fig. 2.17), there is a peak at q = π/2. These two situations are

magnetic configurations commensurate with the lattice, while the spiral phase is

indicated by a peak at a value of q between q = π/2 and q = π. In Fig. 2.19 (a)

we display the behavior of q as a function of J for finite systems calculated through

ED and DMRG (we took advantage of previous results produced in our laboratory).

Finite size effects lead to a little shift in the transition point from the spiral phase

to the decoupled phase, even though q can be clearly used to mark the spiral phase.
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Figure 2.18: Quantum rotors with frustration F2: average singlet density per unit
cell for the momentum correlations at B sites along the same rung of the ladder.
The inset shows details of the phase transition around J = 0.36.
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Motivated by these results, we consider the classical model in the space spanned

by two parameters (in the approach of Sec. 2.3, one single parameter sufficed to

explain the results): a canting angle θ between the B momenta at the same cell

and the pitch angle q associated with the spiral order. The classical vectors are

accordingly written as:

Al = cos[q(2l − 1)]x + sin[q(2l − 1)]z;

B1l = cos(θ) cos(2ql)x + sin(θ)(−1)ly

+ cos(θ) sin(2ql)z, and

B2l = cos(θ) cos(2ql)x + sin(θ)(−1)l+1y

+ cos(θ) sin(2ql)z, (2.51)

with |Al| = |B1l| = |B2l| ≡ 1, while x,y and z are orthogonal unit vectors in

the three-dimensional space. Substituting these fields in the classical version of

the Hamiltonian, Eq. (2.26), we get the energy function E(q, θ) ∼ 4cosq cos θ +

J(cos 2θ+cos 2q+2cos2θ cos 2q− 2sin2θ) and minimizing this function with respect

to q and θ, we find that cos(θ) = 1 and cos(q) = π for 0 < J < (1/3), which is the

classical version of the Lieb-Mattis phase found for 0 < J < 0.34 in the quantum

Hamiltonian, for both quantum rotors (FERRI phase) and spin system (Phase F1

of Ref. [59]). For (1/3) < J < 1 we obtain

cos(θ) =

√

1 − J

2J
; (2.52)

cos(q) = − cos(θ), (2.53)

which may be seen as the classical version of the CANTED phase (0.34 . J .
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0.75) and of the spiral phase (0.445 . J . 0.91) found in Ref. [59]. This phase

holds some similarities with the second phase observed for the quantum rotors in

the first single-site approach of Sec. 2.3. Finally, for J > 1 the three chains are

antiferromagnetically ordered with the B momenta lying in the y direction and the

A momenta ordered in the z direction, which is the classical analog of the decoupled

phase observed for J > 0.75 for the quantum rotors and for J > 0.91 for the spin

system [59]. Such phase does not exist in the single-site approach: it is only obtained

asymptotically (J → ∞). Therefore, the classical solution presents two critical

points: Jc1,classical = 1/3 and Jc2,classical = 1, and the transitions remain second order.

Also, the first-order transition at J = 0.36 (Jt ≈ 0.445, for the spin systems) is not

observed in the classical model. In fact, in the F2 phase[59] (0.34 . J . 0.445) the

number of singlets is quantized and the spiral peak is absent, while in the classical

model the two orders coexist for Jc1,classical < J < Jc2,classical. This classical result is

also indicated in Fig. 2.19 (a).

In Fig. 2.19 (b), we present the results of this classical interpretation for the

momentum correlations. A direct relationship with Fig. 2.15 can be established: we

have the classical counterparts of the FERRI phase (J ≤ 1/3) and the AF phase

(J ≥ 1); the CANTED phase is but a gradual continuous transition between the

FERRI and AF phases. Further, the decoupling transition in the classical model is

clearly observed at J = 1 through the dot products indicated in the figure. Finally,

we notice that when this classical approach is applied to frustration F1, the minimum

energy configuration obtained is the same as that derived through the first classical

model discussed in Sec. 2.3.
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Figure 2.19: (a) Pitch angle for the quantum spin-1/2 model calculated through ED,
DMRG, and for the minimum energy configuration of the classical vector model with
two order parameters: q (pitch angle) and θ (canting angle). The transition points
estimated in Ref. [59] are indicated. (b) Momentum dot products (i = 1, 2, and l
denotes the unit cell) in the minimum energy configuration of the classical vector
model.
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2.5 Summary and conclusions

In dealing with quantum rotors placed at the sites of an AB2 chain we resorted

to a cluster variational MF theory implemented via two distinct approaches, which

yielded different results. First, we learned that the size of the Hilbert space could be

considerably reduced without affecting results, with the proviso that the rotor states

should be kept possibly nearest (ℓ = 1/2)-momentum states. Our main goal was

then to attempt to freeze the QR momentum tower at the least value of ℓ and so be

able to trace a paralell between rotor and spin-1/2 systems. That was attained by

increasing the importance of the kinetic energy term in the Hamiltonian (by setting

relatively high values of the coupling g), and a judicious choice of the Hilbert space,

whenever needed. This was a most important fact for the computations in multiple-

cell clusters that were to be performed in the second approach, where processing

capacity is a crucial limiting factor.

In the first approach the natural single-site MF theory was developed. A two-

phase pattern was produced with the phase transition between them being of second

order for M = 0 and of first order for M = 1. For J ≤ 1, the Lieb-Mattislike phase

typical in the spin-1/2 system arose, and for J ≫ 1, we observed the decoupling

of the system, where the momenta on the A sites tend to become uncorrelated

with the momenta on the B sites, which in turn formed singletlike pairs, while the

decoupling of the A sites was a salient feature laid bare by this approach, much like

the dimer-monomer phase in Ref. [59]. A classical interpretation was laid down

that conformed to our QR numerical findings, inclusively showing how the fixed

coupling of momentum and position turns the second-order transition into a first-

order one within certain scenarios: in this case when M = 1. With the benefit of

hindsight it was obvious that the results would be classical: in this methodology
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we dealt but with averages of quantum observables. Therefore, we were not able to

provide a reasonable quantum picture that could relate to the known behavior of the

corresponding quantum AB2 chain. Furthermore, treated this way the system was

not able to essentially tell apart frustration F1 from frustration F2 and this alone

constituted a major setback. So, all this was a reminder that the main goal of our

work still remained to be achieved.

In our last step, we then improved the former approach by producing a cluster

(double-cell) variational MF theory in which the trial Hamiltonian acts on the space

composed of the tensor product of the respective local subspaces of the six sites at

two neighboring unit cells. The gist of this theory stands on the important fact that

it allows the construction of the two-point correlations < X̂i · Ŷj > between any

pairs of operators acting on sites i, j of the cluster. This afforded us the observation

of quantum features inherent in the system, as well as to distinguish between both

frustrations F1 and F2. For the construction of this more complex “system”, we

relied on the availability of processing capacity to carry out the numerical imple-

mentation. The experience acquired in the first approach through our endeavor to

optimize computations just carried over.

For frustration F1, besides the QR numerical simulation, we performed ED

on the spin-1/2 diamond chain using a system with 28 sites and calculated the

correlation functions between spin at a central cluster, as well as other relevant

physical quantities. Upon confronting with the QR results, we verified that the

QR phase diagrams obtained through numerical implementation of the double-cell

MF variational approach exhibited a sequence of phases analogous to those of the

spin chains, with phase transitions of the same nature. We therefore produced the

FERRI-TD-DM phase sequence, with first order transitions, which is in essence
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the phase diagram of Ref. [57]. The transition point FERRI-TD at J = 0.68

is somewhat displaced, but the transition point TD-DM at J = 2 was exactly

calculated by our approach.

For frustration F2, we obtained a phase diagram in good agreement with the

results of Ref. [59] on the respective spin-1/2 chains, endowed with the equiva-

lent frustration pattern: FERRI, CANTED, and AF which are associated with the

phases F1, F2/Spiral Singlet, and decoupled ladder chain, respectively, of the spin

model. Notwithstanding, the criticality of the A spins correlations manifests itself

here as an AF magnetic ordering due to finite-size effects. For the same reason, we

were not able to probe the short-rangedness of the correlation functions between

the B momenta. We also produced ED as well as DMRG results that helped us

to visualize the spiral phase in the spin system, and derived an insightful classical

interpretation.
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Chapter 3

Ground state and thermodynamics

of alternating quantum spin chains

3.1 Introduction

In what follows, we present a brief review of the latest developments in molecular

magnetism. Although not at all biased, it is quite a partial account considering on

one hand the overwhelming extensiveness of the available literature on the subject

matter and, on the other hand, the limited time to carry out a thorough research.

Nevertheless, we drew on the most important facts and kept as close as possible to

our objectives in the present chapter.

The field of molecular magnetism has become nowadays a hot topic of research at

the frontier between chemistry and physics. Chemists bustle at research centers the

world over in their quest to sinthesize new compounds and predict their properties

on the basis of a molecular approach to the exchange phenomenon, while physicists

in turn test on one-dimensional (1D) materials the validity of phenomenological
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models. As one example of the early successes of these joint efforts we cite the

experimental proof of the Haldane conjecture [50] in a molecular chain compound

[85]. So far, the organic chemistry synthesis endeavor in this field has afforded a

great deal of original compounds with properties that are characteristic of both

magnets and organic compounds. Notwithstanding, to date and to the best of our

knowledge, molecular magnetism has not yet provided materials that can measure

up to metallic hard magnets at the high-temperature regime and thus be suitable

for use in everyday objects. Due to the fact that 1D magnetic systems are unable to

display long-range order at finite temperatures [86], one of the main lines of research

in molecular magnetism of the last three decades has therefore been driven by the

vehement quest to efficiently connect magnetic 1D chains in three-dimensional (3D)

networks in order to enhance bulk magnetism and make it observable and eventually

a viable industrial product. On the other hand, low-dimensional magnetic materials

besides continuing to represent a source of intermediate building blocks to be used

in the synthesis of such yearned-for bulk molecular-based materials are also very

interesting objects on their own.

So we will focus our review mostly on 1D or quasi-1D materials. At first, inves-

tigated compounds were regular homometallic chains in which the magnetic centers

are equally spaced along the chain [87–89]. In the meantime, work was also being

done on purely organic compounds (that is, which consist only of the light elements

H, C, N, and O) and one of the first bulk ferromagnets of this kind was discovered,

to wit p-nitrophenyl nitronyl nitroxide, abbreviated as p-NPNN [90]. Only ten years

later the first example of a genuine organic ferrimagnetic material having well de-

fined chemical and crystal structure was synthesized, viz the PNNBNO compound

[68]. Since the possibilities of synthesis in molecular chemistry are virtually limitless,
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the appearance of other interesting structures was naturally foreseeable. We speak

here of polymetallic chains, that is, those endowed with various metallic centers, dif-

ferent spatial intra- and interchain architectures, alternating interaction pathways

(superexchange), leading to different magnetic properties especially at low temper-

ature where interchain interactions begin to play a more significant role [91, 92].

Most important among these are the structurally ordered bimetallic chains of the

type (A-X-B-X-)n , where A and B are two different paramagnetic metal ions and

X is a bridging ligand. The first example of a bimetallic ferrimagnetic chain com-

pound [93, 94] was built of Mn2+ and Cu2+ ions endowed with spin 5/2 and spin

1/2, respectively, linked through a dithioxalato ligand. Bimetallic chains possess

intrachain interactions that are mostly of antiferromagnetic nature [93–101], with a

number of ferromagnetic chains also known [102–105]. This line of research is still

very active with the focus on cyano- and oxamato-bridged compounds being very

intense, mainly because of the discovery of slow relaxation of the magnetization at

low temperature in many of them; the cyano groups offer other possible interesting

features on the side, to wit redox activity, photosensitivity, or chirality [106].

The materials referred to so far are considered from the magnetic standpoint

either to be organic, that is, the spin carriers are organic entities, or inorganic

(homometallic chains), where the magnetic centers reside on metal complexes. An

intermediate synthesis approach resulted in the family of compounds of paramount

importance constituted by the metallo-organic (hybrid) chains, in which the spin

carriers are a metallic ion and an organic free radical, generally nitroxide. Spec-

imens of this novel family have also been synthesized and contributed to enrich

further the large variety of magnetic materials [92, 107–113]. The success of the

metallo-organic route chosen by several groups owes to the use of nitronyl nitroxide
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free radicals (NITR) where R stands for an alkyl (methyl, ethyl) or aromatic group

(phenyl). This organic entity has one unpaired electron carrying a spin 1/2, delo-

calized over the 5 atoms of its O-N-C-N-O fragment as shown by polarized neutron

studies on a compound of very weakly interacting nitronyl nitroxide molecules [114],

and the electronic configuration allows the radical to be coupled simultaneously to

two metallic groups. Such groups can be built of one magnetic 3d metallic ion such

as Cu, Ni, Mn or Co, surrounded by magnetic inactive bulky organic moieties like

hexafluoroacetylacetonates (hfac) [107–110, 113, 115]. The use of the NITR free rad-

ical leads preferentially to an antiferromagnetic intrachain coupling which proves to

be stronger as against the interaction in the bimetallic counterparts, except for the

case of some Cu complexes where ferromagnetic interactions are manifest. The pos-

sible cis or trans NITR-M(hfac)2 (M stands for a metallic ion) coordination scheme,

determined by the R group, can yield different architectural arrangements leading to

linear, zig-zag or helical chains endowed with different magnetic properties. Worth

mentioning are the studies by the pioneering research group around Caneschi [109]

within the rich and very important family of the Mn-NITR compounds, where the

underlying interaction is the strong antiferromagnetic coupling of the spin-1/2 rad-

icals and the spin-5/2 maganese(II) ions. Several other compounds with different R

groups, investigated by magnetometry and electron paramagnetic resonance (EPR),

were shown to present a ferrimagnetic 1D behavior.

The temperature dependence of the product of the molar magnetic susceptibil-

ity (χm) and the temperature (T ), in the mid- and high-temperature regime, for

ferrimagnetic polymers, when the intrachain interaction is antiferromagnetic, ex-

hibits a characteristic minimum, which may be considered as the signature of the

1D ferrimagnetic behavior. On the other hand, the magnetic properties in the very
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low-temperature range are influenced by interchain interactions, which can never be

totally ignored. In most cases, these interchain interactions lead to the onset of a

three-dimensional (3D) antiferromagnetic ordering with a sharp maximum of χmT

(and χm), as shown in Fig. 3.1. Let us consider now the case of the Mn-NITR

compounds. It is known that in these materials the chains are well magnetically

isolated from each other thanks to their large separation by bulky magnetically in-

active organic moieties. This ensures very weak interchain exchange interactions,

resulting in a ratio of intra- to interchain interaction that reaches several orders of

magnitude, so that the virtual isolation of the chains prompts a quite accentuated

1D behavior. But at low temperature, between 5K and 9K, these materials are

reported to exhibit bulk magnetic order, and this is imputed to a phase transition

toward a 3D long-range order consisting of a ferromagnetic ordering of the magnetic

centers, because in pure 1D compounds, long-range order is not expected at finite

temperature [86]. Altogether, it is necessary to take into account other usually ne-

glected interactions such as dipolar to justify such phase transition. Indeed, very

weak interchain dipolar interactions, reinforced by strong intrachain correlations,

can induce such a 3D long-range order [116–118]. The role of the dipolar interaction

has also been invoked to explain the 3D magnetic ordering of high spin molecular

cluster compounds [119–121]. More generally, the transition to the 3D long-range

order of 1D compounds is a very complex phenomenon and not totally understood

nowadays.

Now we digress briefly to touch upon an important development in the field

of molecular magnetism. More recently polynuclear clusters (complex molecules)

[122] and 1D chains [106] are being widely investigated for their ability to retain a

magnetic memory of purely molecular origin as well as for an assortment of interest-
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Figure 3.1: Temperature dependence of χmT for the first bimetallic chain (CuM-
nDTO) [93, 94], where χm is the molar susceptibility and T is the temperature.
Squares represent experimental points, and the full line is a plot of Eq. (3.35). A
minimum occurs at T = 130K. Reproduced from Seiden[141].
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ing quantum effects. These two classes of materials have been given the evocative

acronyms single-molecule magnets (SMM) and single-chain magnets (SCM), respec-

tively. The observation of slow magnetic relaxation in SMMs is now considered a

paramount achievement of molecular magnetism of the last few years. Such systems

have provided unique opportunities for the study of molecular magnetic hysteresis

[123], quantum tunneling of the magnetization [124], magnetic avalanches, that is

to say, abrupt magnetic reversals [125], and phase interference (Berry phase) [126],

which are features where slow magnetic relaxation plays an important part. As

already stated above, purely 1D systems do not exhibit any long-range ordering at

finite temperatures and so they cannot be stabilized as thermodynamic magnets in

consequence, for instance, of a ferromagnetic order. Nevertheless, as for SCMs the

possibility to observe the freezing of the magnetization, in a processs of very slow

relaxation, was predicted in the 1960s by Glauber [127], who developed the kinetic

model for a chain of ferromagnetically coupled spins showing Ising-type anisotropy.

Gatteschi and co-workers were the first to report observation of a slow magnetiza-

tion in a cobalt(II)-nitronyl-nitroxide alternating chain where the effective Ising-type

spin Seff = 1/2 of Co(II) and the isotropic S = 1/2 of the radical are antiferromag-

netically coupled [128]. This is another example of an experimental confirmation of

a brilliant theoretical prediction formulated more than four decades ago. Since then,

SCM behavior in several compounds has been observed [106, 129, 130], and a new

field of research opened up. Most recently it was discovered that one-dimensional

cobalt-radical coordination magnets have revealed an astounding facet: when 1D

units undergo a phase transition to 3D magnetic order, a very large coercivity arises

and increases so pronouncedly at low temperature as to make these materials com-

parable to the hardest magnets ever known [131, 132]. On the other hand, new
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perspectives for storing information in a single magnetic polymer are wide open.

Also interesting physical properties other than magnetic are a proven possibility.

All in all, the physics and chemistry of these systems have become more and more

very active fields of research with a long, winding, but all the more exciting and

rewarding road to tread.

3.2 Theoretical models and methods

Almost all the systems referred to in the previous section can be well described,

insofar as they are considered 1D systems, by the quantum isotropic Heisenberg

Hamiltonian

Ĥex =
∑

i,j

JijŜi · Ŝj, (3.1)

where Ŝi, Ŝj are spin operators at sites i and j (i 6= j) and Jij are the exchange inter-

actions between the respective spins and may be negative (ferromagnetic) or positive

(antiferromagnetic). Further studying the magnetic susceptibility, the Zeeman term

must be considered

Ĥzee = −µBHz

∑

i

giŜ
z
i , (3.2)

where the gi are the Landé factors associated with the Sz
i , the z projection of the

spin at site i. As opposed to the uniform linear chain, an alternating (binuclear,

i.e., the unit cell contains two spin carriers) chain, with only nearest-neighbor in-

teractions, is such a system where at least one of the following relations occur: i)

Ŝ2k−1 6= Ŝ2k, ii)J2k−1,2k 6= J2k,2k+1, or iii) g2k−1 6= g2k. Many a system reviewed in

the previous section, while thermodynamically behaving at the 1D regime, above

a certain usually low temperature threshold, can be well described by such alter-
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nating spin chains. Among these materials, spin-1/2 spin-5/2 chains with isotropic

intrachain interaction and g factor have been the focus of intense research in the

past three decades. Materials of the sort, exhibiting both ferromagnetic systems

[91] as well as antiferromagnetic [93–95, 97, 99, 102, 109] have been character-

ized. Also chains with other alternating spin values [98, 103–105, 108], and systems

with both alternating spins and interactions have been reported [97, 100], as well

as systems with both alternating spins and g factors [97]. The first example of

an alternate ferromagnetic-antiferromagnetic spin-1/2 chain was announced by the

Caneschi team [107]. Furthermore, for a large number of other systems known in the

literature, the experimental evidence indicates that single-ion anisotropy is relevant

and so a finite magnetic anisotropy must be included in the model,

Ĥan = D
∑

i,j

Ŝz
i Ŝ

z
j , (3.3)

where D is a coupling constant that gives the strength of the single-ion anisotropy.

So far, compounds modeled by this anisotropic Halmiltonian have been widely re-

searched and are particularly indicated as possible candidates to choose from in the

synthesis of SCMs [106]. Finally, we simply have a large class of compounds that can

be satisfactorily modeled by a fully isotropic Hamiltonian in which the three condi-

tions i, ii and iii above are just equalities [89, 90]. To proceed with our discussions,

we will write Eq. (3.1) in such a way as to become easy to specialize in a quantum

linear chain made up of two sublattices, with a uniform exchange interaction, which

may be either positive (antiferromagnetic) or negative (ferromagnetic):

ĤsS =
N−1
∑

i

Ĥi, Ĥi = J(Ŝi + Ŝi+1) · ŝi, (3.4)
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for a chain with N [s,S] cells.

When s = S we fall back to the totally isotropic and uniform Heisenberg spin

chain. So far, this model, as it is, for N → ∞, has been analytically intractable.

A closed-form solution has been provided only in the classical limit, when S → ∞
[133]. So, when the spins are large enough, this method may be applied as was

the case of a spin-5/2 chain, with some modifications [89]. A limiting behavior

may be established from numerical results worked out on finite closed forms (rings)

extrapolated in order to yield the thermodynamic limit (N → ∞). This approximate

approach was first used by Bonner and Fisher [134], for the S = 1/2 chain and

later on extended to chains with arbitrary quantum spin numbers [135]. The only

limitation of this model is the storage and processing capacitiy of the available

computers. Therefore, other recourses have been sought in the quest to estimate

the behavior in the infinite chain limit. Among early efforts in this field of endeavor,

we cite spin-wave theory [136, 137], high-temperature series expansions [138], and

Green’s functions approaches [139].

With respect to alternating chains, i.e., chains made up of unequal sublattices

(s 6= S), the first attempt at finding a closed form for the susceptibility χ was carried

out by Blöte [140], who set one of the spin quantum numbers infinite (i.e., it could

be treated classically). However, in his calculations he neglected the contribution of

the quantum sublattice vis-à-vis the classical one, thus rendering his procedure un-

able to take into account the experimental results. In 1981, Verdaguer and Gleizes

discovered the first bimetallic chain [93, 94], and this stimulated extensive theoreti-

cal research in the area. The compound CuMn(S2C2O2)2 ·7.5H2O (CuMnDTO) was

made up of two different paramagnetic ions, Cu2+ and Mn2+, structurally ordered

in an alternating manner and bridged by a polyatomic dithioxalato anion ligand
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- showing the pattern of a regular -Cu-Mn-Cu-Mn- alternating spin-1/2 spin-5/2

chain. Motivated by the failure of previous models to explain the properties of the

new compound, Seiden [141] set about solving analytically the magnetic suscepti-

bility of the [1/2, S] chain, where S is large enough to be considered classical. So

far, this simple model has been a valuable tool in the research of new materials

[97, 108, 109, 112, 115, 122], besides constituting another interesting example of the

interplay between the experimental and theoretical assembly lines.

In the context of pure quantum methods, alternating-spin Heisenberg chains

were initially approached by numerical diagonalization [142]. Further investiga-

tions were carried through with the use of the powerful techniques of density-matrix

renormalization group [143, 144] and quantum Monte Carlo methods [145, 146] in

an attempt to clear up dual features of ferrimagnetic excitations. The conventional

antiferromagnetic spin-wave formalism [136, 137] has been modified, on the one

hand by following the Takahashi prescription [147], which was orginally proposed

for ferromagnets, and then for 2D antiferromagnets [148], while on the other hand

with the introduction of a slightly different approach [149]. The finite-temperature

Lanczos method (FTLM) [150] - which is based on the Lanczos diagonalization tech-

nique and random sampling - has also become a very useful tool in the evaluation

of both static and dynamical quantities in small many-body quantum systems. We

will take advantage of such method in this chapter in a similar manner we did ED

previously.
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3.3 Static properties of an alternating isotropic

chain of quantum spins 1/2 and classical spins

We now provide an overview of the article by Seiden [141], which as stated before,

has been taken advantage of in the determination of the coupling constant J , as an

indicator of the dimensionality as well as the overall behavior of the investigated

materials (for which one sublattice spin can be treated as a classical vector) in the

mid- and high-temperature ranges. We proceed then with the main purpose of

retrieving the analytical expresssion of the magnetic susceptibility, which will later

be recalled in this chapter, but also with a didactical mind so that, when deemed

necessary, we try to clarify a couple of passages here and there in the paper.

The Hamiltonian was already given in Eq. (3.4), and in Fig. 3.2 (a) we provide

a depiction of the alternating chain (sS chain) in question, illustrating the ground

state, which according to the Lieb-Mattis theorem [83] possesses a net spin 2 per

unit cell. In what follows, the spins ŝi will be treated as quantum operators, with

s = 1/2, whereas the spins Ŝi will be considered vectors of length S. As a result,

each ŝi is coupled only with its two classical next neighbors Si and Si+1, so that

all the Ĥi commute. This is the great advantage of interspersing classical vectors

throughout the chain, in between the quantum spins, allowing for a simple expression

of the partition function below, from which quantities of interest can be analitically

derived.
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3.3.1 Free energy

One sets about calculating the free energy. The partition function is given by

Z =

(

2S + 1

4π

)N ∫

dΩ1 . . . dΩN z1,2z2,3 . . . zN−1,N , (3.5)

with

zi,i+1 = exp

(−βJSi,i+1

2

)

+ exp

(

βJSi,i+1

2

)

, (3.6)

and

Si,i+1 = Si + Si+1, Si,i+1 = |Si,i+1| = S
√

2(1 + cos θi,i+1), (3.7)

where θi,i+1 is the angle formed by Si and Si+1, and we consider the z direction as

that of Si +Si+1. There are N classical spins (which amounts to say N cells) and N-1

quantum spins: open boundary conditions, where each quantum spin is surrounded

by two classical vectors. In Eq. (3.6), one summed over the quantum degrees of free-

dom (sz = −1/2,+1/2) projected on the zi direction. In Eq. (3.5), the integration

over the classical degrees of freedom was already performed in dS, where the coor-

dinate S was assumed to take on 2S + 1 discrete values (semi-quantum approach),

while remaining N angular integrations to be carried out (dΩi = sin θi dθi dφi). 4π

is just a normalization constant related to the solid angle of the entire sphere.

The next step consists in developing Eq. (3.6) in a series of Legendre polyno-

mials:

zi,i+1 = z(θi,i+1) =
∞

∑

l=0

alPl(cos θi,i+1). (3.8)

The above polynomials, involving an angle between two vectors (θi,i+1), can be

farther developed in terms of the individual angles (θi and θi+1) by using the addition
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theorem for spherical harmonics

Pl(cos θi,i+1) =
4π

(2l + 1)

m=l
∑

m=−l

Y ∗
l,m(θi, φi)Yl,m(θi+1, φi+1). (3.9)

Upon using the normalization and orthogonality conditions

∫ 2π

0

dφ

∫ π

0

Y ∗
l′,m′(θ, φ)Yl,m(θ, φ) = δl,l′δm,m′ , (3.10)

the partition function for a finite chain (with N classical vectors) can be evaluated,

namely:

Z = (2S + 1)N

∞
∑

l=0

aN−1
l

(2l + 1)N−1
. (3.11)

and for an open and infinite chain (N → ∞), one gets finally the mathematically

rigorous result

Z = (2S + 1)NaN−1
0 , (3.12)

from which the desired expression for the free energy can be derived, which then

reads

F = − 1

β
logZ, (3.13)

where the term a0 must yet be calculated. This will be done in a short while.

3.3.2 Two-spin correlations

There are three types of correlations to be calculated, defined below so as to cohere

with the rotational invariance of the Hamiltonian in Eq. (3.4), namely

Doctoral Dissertation - Departamento de F́ısica - UFPE



3.3 Static properties of an alternating isotropic chain of quantum spins 1/2 and
classical spins 75

• all-classical correlations

< Sz
i S

z
i+p > =

(

2S + 1

4π

)N
1

Z

∫

dΩ1 . . . dΩN z1,2 . . . zi−1,i S cos θi zi,i+1 ×

· · · × zi+p−1,i+p S cos θi+p zi+p,i+p+1 . . . zN−1,N ; (3.14)

• quantum-classical correlations

< sz
iS

z
i+p > =

(

2S + 1

4π

)N
1

Z

∫

dΩ1 . . . dΩN z1,2 . . . zi−1,i yi,i+1 zi+1,i+2 ×

· · · × zi+p−1,i+p S cos θi+p zi+p,i+p+1 . . . zN−1,N , (3.15)

where the spin operator is averaged by the temperature:

yi,i+1 = trace [sz
i exp (−βJSi,i+1 · ŝi) ; (3.16)

• all-quantum correlations

< sz
i s

z
i+p > =

(

2S + 1

4π

)N
1

Z

∫

dΩ1 . . . dΩN z1,2 . . . zi−1,i yi,i+1 zi+1,i+2 ×

· · · × zi+p−1,i+p yi+p,i+p+1 zi+p+1,i+p+2 . . . zN−1,N . (3.17)

3.3.3 Evaluation of the classical correlations

To this end, one needs to calculate the first two terms of Eq. (3.8), as it is easy

to infer from examining Eq. (3.14). For a general term an, we have (from the

normalization and orthogonality of Legendre polynomials):

an =
(2n+ 1)

2

∫ π

0

z(θ)Pn(cos θ) sin θ dθ, (3.18)
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from which derive

a0 =
1

2

∫ π

0

z(θ) sin θ dθ and a1 =
3

2

∫ π

0

z(θ) cos θ sin θ dθ. (3.19)

Noting that cos θ/2 = [(1 + cos θ)/2)]1/2, with the appropriate change of variables

(βJS cos θ/2 = u), and by using the formulas from elementary calculus

∫

u cosh(u) du = u sinh(u) − cosh(u),
∫

u3 cosh(u) du = (u3 + 6u) sinh(u) − (3u2 + 6) cosh(u), (3.20)

one finds finally:

a0 = 4(x−1 sinh(x) − x−2 cosh(x) + x−2),

a1 = 12[(x−1+ 12x−3) sinh(x) − (5x−2+ 12x−4) cosh(x) − x−2 + 12x−4], (3.21)

where x = βJS = JS/kBT . Now, with the value of a0 at hand, the free energy can

then be calculated as a by-product.

To calculate the classical correlations as prescribed by Eq. (3.14), we note

that the integrals over dΩ1 . . . dΩi−1 as well as those over dΩi+p+1 . . . dΩN can be

factored off (they contribute a factor of 4π(4πa0)
N−p−1 which cancel out with an

equal contribution coming from 1/Z outside of the integral). To accomplish our

task we have to calculate now the correlated integrals (dΩi+1 . . . dΩl+p, whereto we

resort to a technique used by Fisher [133]: The angles θi and θi+p are polar angles

referred to the z axis. By using Si+p−1 as polar axis, with Si defining the reference
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plane for φi+p, we have

cos θi+p = cos Θi+p cos θi+p−1 + sin Θi+p sin θi+p−1 cos(Φi+p − φi+p−1), (3.22)

where Θi+p is the angle between Si+p and Si+p−1. Upon integration only the first

term in Eq. (3.22) survives due to < cos Φi+p >≡ 0, and so we get

< cos θi+p >=< cos Θi+p > < cos θi+p−1 >=< cos θi+p−1 > < cos θ >, (3.23)

where Θi+p is turned into the integration variable θ. By repeating the procedure

for cos θi+p−1, we can then infer a simple recurrence relation. Thus, by means

of Eq. (3.23), we perform the last part of the integration, yielding a factor of

(4π)p(a1/3)pS2, which divided by the rest factor (4πa0)
p coming from 1/Z (outside

the integral) gives finally (a1/3a0)
pS2. The pair correlation function is defined here

so that < Sz
i S

z
i+p >= 1

3
< Si · Si+p > (rotational invariance), whereby a factor of

1/3 must be brought into the final result:

< Sz
i S

z
i+p >= δp S

2

3
, (3.24)

with

δ =
a1

3a0
. (3.25)
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3.3.4 Evaluation of correlations comprising quantum spins

One uses the basis spanned by the eigenstates of sz (sz|m >= m|m >) to evaluate

the expression of Eq. (3.16), resulting in

y =
∑

m

∑

µ

< m|µ >< µ| exp (−βJS · ŝ) |µ >< µ|m >, (3.26)

where |µ > are the eigenstates of the projection of ŝ on S, and < m|µ > are the

matrix elements of the Wigner-D1/2(ψ) matrix:

D1/2(ψ) =





cosψ/2 − sinψ/2

sinψ/2 cosψ/2





and ψ is naturally the angle with the z axis. One gets straightforwardly (s = 1/2)

y = − cosψ sinh

(

βJS

2

)

; (3.27)

cosψi,i+1 =
Sz

i,i+1

Si,i+1

=
(cos θi + cos θi+1)

Si,i+1

. (3.28)

By expanding the following in a series of Legendre polynomials

sinh
(

βJSi,i+1

2

)

Si,i+1

=
∞

∑

l=0

blPl(cos θi,i+1), (3.29)

and with the aid of the calculus formula, with the same change of variables used

previously
∫

u2 sinh(u) du = (u2 + 2) cosh(u) − 2u sinh(u), (3.30)
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one obtains

b0 = x−1[cosh(x) − 1],

b1 = 3[(x−1+ 4x−3) cosh(x) − 4x−2 sinh(x)+ x−1 − 4x−3]. (3.31)

Proceeding analogously to the determination of the all-classical correlations carried

out in the previous subsection and introducing

Λ = 2

(

b1
3a0

+
b0
a0

)

, (3.32)

one gets finally

< sz
iS

z
i+p > = −Λδp−1sS

3
,

< sz
i s

z
i+p > = Λ2δp−1s

2

3
, (3.33)

where p > 0. For completeness, the self-correlations are included: < sz
i s

z
i >=

s(s + 1)/3 and < Sz
i S

z
i >= S(S + 1)/3; the latter defined in such a manner as to

build a consistent theory.

3.3.5 Magnetic susceptibility

The susceptibility in zero field can now be calculated from the fluctuation relation

χ = βµ2
B

∑

i,j

< (gS S
z
i + gs s

z
i ) (gS S

z
j + gs s

z
j) >, (3.34)

where gS and gs are the g factors of the classical and quantum spins, respectively.

By using the correlations just calculated and noting that δ < 1, so that
∑∞

p δp =
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δ/(1 − δ)
∑∞

p δp−1 = 1/δ
∑∞

p δp = 1/(1 − δ), one gets the closed form for the

magnetic susceptibility

χ=
Nβµ2

B

3

[

g2
SS

2

(

S + 1

S
+ 2

δ

1 − δ

)

−4gSgsΛsS
1

1 − δ
+ g2

s

(

s(s+ 1)+2Λ2s2 1

1 − δ

)]

,

(3.35)

for a chain with N ≫ 1 cells. When J > 0, the quantity Tχ(T ) has a minimum at

a temperature Tm which is generally situated in a region where βJS < 1, a feature

which has been known to be typical of 1D ferrimagnets. At low temperatures, i.e.,

x≫ 1, or J |S|
kBT

≫ 1, it is found in first order δ
1−δ

= Λ
1−δ

= Λ2

1−δ
≈ x

4
, so that

χ =
Nβµ2

B

3

[

g2
SS(S + 1) + g2

ss(s+ 1) +
βJS

2
(gSS − J

|J |gss)
2

]

, (3.36)

and we note that only integer powers of the temperature are present.

To adjust Eq. (3.35) to the experimental data of Fig. 3.1, by setting gS = gs,

Seiden identified J = 59.7 and g = 1.9.

In another paper [94], Verdaguer et al., by making use of the same classical

approximation, centered on the transfer matrix technique, developed a numerical

method for the calculation of the susceptibility yielding a more precise value of the

intrachain coupling J = 43.6 (as opposed to the value of J = 59.7 found by way of

Eq. 3.35). This new approach may be viewed as a refinement of the results discussed

here, albeit not analytical.

In Fig. 3.2 (b), we sketch the alternating chain (ssS chain), with the zero-

field ground state explicitly indicated, which was used to model the compound

[Mn(NITIm)(NITImH)]ClO4, from now on indicated as MnNN, where NITIm is a

bis-chelating nitronyl nitroxide ligand, that was studied in the work by Fegy et al.
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[111]. This chain can be expressed by a Hamiltonian of the form

ĤssS = J

N−1
∑

l=1

ŝl · (Ŝl + Ŝl+1) + J
′

N
∑

l=1

Ŝl · ŝ
′

l, (3.37)

where ŝl and ŝ
′

l are spin-1/2 variables (nitronyl nitroxide radical) and Ŝl are spin-

5/2 variables (ion MnII). By using this semiclassical approximation, where the

spin-5/2 are treated as classical vectors, they calculated a closed expression for the

susceptibility in an analogous way, namely

χ =
Nβg2µ2

B

3
[S2 + s(s+ 1) + s′(s′ + 1) − St+

1

1 − δ
(−4SΛ + 2Λ2 + 2Λt) +

δ

1 − δ

(

2S2 − 2St+
t2

2

)

], (3.38)

where t = tanh(J ′βs), with δ and Λ as defined previously..

In the next section we will apply FTLM [150] to finite-size chains described by

the Hamiltonians given by Eqs. (3.4) and (3.37), for the case where s = s′ = 1/2 and

S = 5/2. The results so produced will be put together in the context of experimental

data [93, 94, 111] as well as calculations from other theoretical approaches, namely,

the semiclassical magnetic susceptibility expressed by Eqs. (3.35) and (3.38) and

spin-wave results [143, 147, 149, 151] and then comparisons will be drawn. Thus a

brief review of FTLM is in order. This is provided in Appendix A.2.
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J

J

J´

(a): sS chain

(b): ssS chain

Figure 3.2: Schematic representation of the Hamiltonian and ground-state magnetic
order of the (a) sS and (b) ssS alternating chains. In Seiden’s paper [141] the larger
spin (longer arrow) is a classical quantity, the other one being quantum.
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3.4 Alternating spin-1/2 spin-5/2 ferrimagnetic

chains - ground state and thermodynamics

We now present ED and FTLM results for the ground state and thermodynamic

functions. Whenever possible, we bring together pertinent experimental data as

well as results from other theoretical approaches for the sake of comparison. From

now on, differently from the previous subsection, the number of magnetic sites in the

chain will be indicated with the letter N, so that the sS chain has N/2 cells and the

ssS chain, N/3 cells. To avoid confusion, the number of cells will be appropriately

indicated by Nc.

3.4.1 Ground states - ED results

One-magnon bands

In Figs. 3.3 and 3.4 we display one-magnon bands for the sS and ssS chains, respec-

tively. For the sS chain, where we have set J = 44.8K (see Subsection 3.4.2, Fig.

3.10), the ground state of a system with Nc cells is found to be ferrimagnetic with

total spin SG = 2Nc. The bands show that there is a gapless excitation to a state

with spin SG − 1 and a gapped one to a state with spin SG + 1. Testing for various

sizes we can infer the size of the gap ∆, and so we have arrived at ∆ = 4.90J . In the

respective figure appear also plots of the dispersion relations from the calculations
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of non-interacting spin waves of Ref. [143], for s1 = 1/2 and s2 = 5/2, namely

ω1q = J(−s1 + s2) + ωq,

ω2q = J(s1 − s2) + ωq,

ωq = J
√

(s1 − s2)2 + 4s1s2 sin2(q/2). (3.39)

The acoustical mode (gapless) calculated through both approaches superimpose,

whereas the optical mode (gapped) does not: the non-interacting spin-wave disper-

sion is different and has a smaller gap, as is often the case with other mixed-spin

systems. See, for example, Ref. [151].With respect to the ssS chain, where we have

set J ′/J = 1.7 (see Subsection 3.4.2, Fig. 3.11), similar results were produced, with

a lesser value for the gap (∆ = 3.88J). We have not found in the literature calcu-

lations of the dispersion relations for this chain topology, which could be taken for

referral.

Magnetization

In Fig. 3.5 we show the magnetization per cell for the sS chain as a function of the

applied magnetic field. The first plateau ends at a field bc = gµBBc/J ≈ 4.9, which

corresponds to the gap of the first antiferromagnetic excitation already shown in

Fig. 3.3. This corresponds to a huge field that must be turned on to bridge this

gap (Bc ∼ 150T ). To reach the saturation point, we need a very high field BS =

JbS/gµB ∼ 200 T. In order to estimate the thermodynamic-limit transition pathway,

we have used various chain sizes. Next we exhibit in Fig. 3.6 the magnetization of

the ssS chain, which conveys a similar pattern of behavior. The first plateau ends

at bc = gµBBc/J ≈ 3.9, which is the spin-wave gap height of Fig. 3.4.
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Figure 3.3: One-magnon bands of the sS chain. Full lines are spin-wave results from
Ref. [143], while dashed lines are guides to the eyes. Sz = SG−1 for the lower band,
while Sz = SG+1 for the upper one. Inset: Size dependence of the antiferromagnetic
gap ∆, which is estimated to be ∆ = 4.9046J in the thermodynamic limit.

Doctoral Dissertation - Departamento de F́ısica - UFPE



3.4 Alternating spin-1/2 spin-5/2 ferrimagnetic chains - ground state and
thermodynamics 86

0 1 2 3
q

0

1

2

3

3.9

5

[E
(S

z ,q
)-

E
G

S] 
/ J

N=18
N=21

0 0,05 0,1

1 / N

3,88

3,89

3,9

3,91

∆

Figure 3.4: One-magnon bands of the ssS chain with J
′

= 1.7J . Dashed lines are
guides to the eyes.Sz = SG − 1 for the lower band, while Sz = SG + 1 for the upper
one. Inset: Size dependence of the antiferromagnetic gap ∆, which is estimated to
be ∆ = 3.88J in the thermodynamic limit.
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Figure 3.5: Magnetization per cell M normalized by its saturation value Msat =
3gµB as a function of applied magnetic field B in units of J/gµB at T = 0 for the sS
chain. We have set J = 44.8K (see Subsection 3.4.2, Fig. 3.10). The first plateau
ends at bc = gµBBc/J ≈ 4.9 which implies that Bc ∼ 150 T. On the other hand,
the saturation field BS = JbS/gµB ∼ 200 T.
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Figure 3.6: Magnetization per cell M normalized by its saturation value Msat =
3.5gµB as a function of applied magnetic field B in units of J/gµB at T = 0 for the
ssS chain with J

′

= 1.7J (see Subsection 3.4.2, Fig. 3.11). The first plateau ends
at bc = gµBBc/J ≈ 3.9 which implies that Bc ∼ 400T . On the other hand, the
saturation field BS = JbS/gµB ∼ 600T .
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Figure 3.7: Magnetization per mol for the sS chain as a function of the applied
magnetic field B for T = 4.2 K. Experimental data of the compound CuMnDTO
from Ref. [94, 141]. FTLM for a system with N = 16, J = 44.8 K and g = 1.93.
Quantum paramagnet: fitting of the FTLM data to the magnetization per mol of a
quantum paramagnet (Brillouin function) with total spin S. Taking g = 1.93, the
best fit implying S = 15.8. The inset serves the purpose of showing how the finite
temperature modifies the field-induced Lieb-Mattis ferrimagnetic ground state.

3.4.2 Thermodynamic quantities

The study of the thermodynamic functions is carried out through the numerical

implementation of the FTLM on chains of finite size. Unless expressly indicated

otherwise, we use in our FTLM computations M = 50 for both sS and ssS chains,

while setting R = 40000 for the former and R = 50000 for the latter. Periodic

boundary conditions were used. When not explicitly shown, we have deemed con-

venient to set kB = 1 throughout this section.
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Figure 3.8: FTLM results for the magnetization normalized by its value at T =
0(M(T = 0) = 1.5 per cell) for the ssS chain as a function of the normalized applied
magnetic field at T = 0.1J . The system size is N = 18. Quantum paramagnet:
fitting of the FTLM data to the expected curve for a quantum paramagnet (Brillouin
function) with total spin S, the best fit implying S = 8.74. The inset serves the
purpose of showing how the finite temperature modifies the field-induced Lieb-Mattis
ground state.
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Magnetization

In Fig. 3.7 we show the FTLM results of the molar magnetization as a function of

the applied magnetic field for T = 4.2K. The experimental data [94, 141] for the

compound CuMnDTO are also included. A good agreement between both results is

observed. We have also contemplated the magnetization M(B, T ) of the quantum

paramagnet given by the Brillouin function, namely

BJ(x) =
1

S

{

(S + 1/2) coth [(S + 1/2)x] − 1

2
coth(

x

2
)

}

,

M(B, T ) = NgµBJBJ(x), (3.40)

where x = gµBB/kBT , and B is the applied magnetic field. Eq. (3.40) is also plotted

and fitted to the FTLM data. Taking g = 1.93, and chain size N = 16, we attain

the best fit by setting S = 15.8. This means that the spins are stirred thermally, so

that the total spin is less than its field-induced Lieb-Mattis ferrimagnetic ground-

state value, that is, SLieb = 16. We then envision an ensemble formed by insulated

spin-15.8 units in a thermal bath, i.e., a quantum paramagnet, no less. We have

proceeded in the same way relative to the ssS chain and display the results in Fig

3.8: a good fit is verified by using S = 8.74, which because of ensuing thermal

fluctuations is less than the total spin SLieb = 9 of the field-induced Lieb-Mattis

ferrimagnetic ground state.

Magnetic susceptibility

In Fig. 3.9 we present the product of the susceptibility per site by the temperature

as a function of the temperature - (χT × T ) - for the sS chain. The chain size is

N = 16. The characteristic 1D ferrimagnetic minimum takes place at Tm = 2.9J ,
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Figure 3.9: Product of the susceptibility per site χ and the temperature T for the
sS chain with N = 16. In the inset we present the derivative of this curve in the
temperature range in which its minimum, Tmin = 2.9J , is found.

Doctoral Dissertation - Departamento de F́ısica - UFPE



3.4 Alternating spin-1/2 spin-5/2 ferrimagnetic chains - ground state and
thermodynamics 93

0 100 200
T(K)

0

2

4

6

8

10

12

χ m
T
(c

m
3 K

 m
ol

-1
)

Experimental
Semiclassical 
FTLM 

Figure 3.10: Product of the molar susceptibility χm and temperature T as a function
of T for the sS chain. Experimental data for the compound CuMnDTO from Ref.
[141]. Semiclassical susceptibility according to Eq. (3.35): J = 59.7 K, S = 2.5 and
g = 1.9. FTLM results for a system with N = 16, the best fit to the experimental
data implies J= 44.8 K and g = 1.90.
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Figure 3.11: Product of the susceptibility per site χ and the temperature T for the
ssS chain with N = 18. (a) The numerical data, for the indicated values of J

′

/J ,
are compared with the experimental data for the compound MnNN from Ref. [111]
by arbitrarily defining J = 100K, in order to enhance graph readability. (b) χT
for J

′

= 1.7J and its derivative, shown in the inset. The minimum of this curve is
found at Tmin = 1.7J .

calculated in the way indicated in the inset, through the numerical derivative. Then

in Fig. 3.10 we put together our FTLM results, the semiclassical susceptibility

(Eq. (3.35)), and the experimental data [94, 141] for the compound CuMnDTO.

By using Eq. (3.35), Seiden estimated J = 59.7K and g = 1.9. The best fit of

our FTLM results to the experimental data yielded J = 44.8K and g = 1.90. Our

estimate of J is closer to the one obtained through other numerical approach [94] to

which we have already referred in Subsection 2.3.5. The evaluation of J is made by

using the value of Tmin = 130K, which indicates the minimum of the experimental

curve. We see that both FTLM and semiclassical approaches agree with experiment

in the mid- and high-temperature regimes. This is the regime where the interchain

interactions can be considered negligible. Otherwise, and with the concurrence of

other factors, the system seems to evolve toward a 3D long-range ferromagnetic
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Figure 3.12: Product of the molar susceptibility χm and temperature T as a function
of T for the ssS chain. Experimental data of the MnNN compound from Ref. [111].
Semiclassical susceptibility according to Eq. (3.38): J = 144 K, J

′

= 248 K, S = 2.5
and g = 2.0. FTLM results for a system withN = 18, the best fit to the experimental
data implies J = 150 K and J

′

= 255 K, while g(= 2.0) is not taken as a fitting
parameter.
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ordering, and therefore, we are unable to push further with our simple 1D model in

the quest of explaining experimental data, for this material and the like.

Next, in Fig. 3.11. we show the temperature dependence of χT for the ssS chain.

The ratio J ′/J nearest the experimental data is determined as indicated in Fig. 3.11

(a). The ubiquitous characteristic minimum is estimated as in the previous case and

is shown in Fig. 3.11 (b). Next we present in Fig. 3.12 the FTLM and semiclassical

results (Eq. (3.38)), derived ad hoc for this chain, alongside the experimental data

of the MnNN compound. The FTLM results stray from the other two below a

certain temperature. We cannot but impute to finite-size effects the discrepancy of

the FTLM procedure, a hindrance which is unfortunately difficult to be bypassed

by means of the present technique alone, because of machine limitations.

Specific heat

In Fig. 3.13 we show the specific heat at zero applied field for both sS and ssS

chains. The outstanding features are the double peaks, which are reminiscent of

the Schottky effect [149, 151, 152]. This phenomenon is actually observed in the

laboratory [96]. We also drew the respective Schottky specific heat curves. We

see that the ssS and Schottky curves fit together nicely, and furthermore the peak

height that comes out agrees with the spin-wave band gap - the Schottky energy

gap δ ≈ 4.1J being just a bit over the expected value, to wit ∆ = 3.9j. But we seem

to have a problem with respect of the fit to the sS chain: we do not get so good an

adjustment as with the other chain. To verify if a reasonable adjustment was ever

possible, we then worked based on the faint premise that the first left-hand peak

somehow strongly influences the higher one, whereas this does not happen with the

ssS chain, whose first peak is almost nonexistent, appearing as a mere inflection
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Figure 3.13: Specific heat per site as a function of temperature T for sS and the
ssS, with J

′

= 1.7J , chains. The full lines are the respective Schottky specific heats
(Eq. (3.41)). Dashed lines are guides to the eye.

point. We finally opted to calculate the specific heat of the sS chain with an applied

magnetic field. Our surmise: by using such stratagem, we end up winnowing, upon

increasing the field intensity, unwanted low-energy states, and as a result the first

peak which in turn is made up of these states vanishes, so that a configuration similar

to that of the ssS chain is produced. The peak height initially shifts to the right and

then reverses this trend with increasing field. A possible explanation: at lower fields

mid-energy states still compound the first peak, enhancing its importance, but as

the field is augmented higher energy states (second band) are activated and become

available even at lower temperatures and so that the second peak gains dominance

and trails back on the temperature scale.

We now try to elaborate on how the fitting and evaluation of the gap is made.
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Figure 3.14: Specific heat per site as a function of temperature T of the sS chain, for
various intensities of the applied magnetic field, as indicated. The height position
wanders to the right and then back to the left.
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Figure 3.15: (a) Specific heat per site as a function of temperature T of the sS
chains, for various intensities of the applied magnetic field. The full lines represent
the respective Schottky specific heat. (b) Schottky δB (Eq. (3.41)) and chain ∆B

gaps as functions of the applied field (Eq. (3.43)). At B/(J/gµB) ≈ 3.5, we find
that δB ≈ ∆B.
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For this goal, we use the Schottky specific heat formula of Ref. [149]:

f =
C

NkB

= (Ar)
(βδ)2eβδ

(eβδ + r)2
, (3.41)

where A is an adjustable parameter, r = 1, in the thermodynamic limit, and δ is

the Schottky gap. Setting f̃ ≡ f/A and T̃ ≡ T/δ, with kB ≡ 1, we get

f̃ = (
1

T̃
)2 e1/T̃

(e1/T̃ + 1)2
, (3.42)

which upon maximizing yields f̃max = 0.439229 and T̃max = 0.416778, so that fmax =

0.439229A and Tmax = 0.416778δ. From Tmax and fmax read off from the specific-

heat plots for the sS chain in a given applied magnetic field B, we determine the

parameters A(B) and the gap δ(B), and so the fitting process is complete. By using

the magnon bands, we can also determine the chain specific-heat gap dependence

with the applied field (∆(B)), namely

∆(B) = ∆0 −B, (3.43)

where ∆0 is the gap at zero field measured from the middle of the second band, i.e.,

∆0 = 5.4. The best fit will come about when δ(B) = ∆(B) for a certain field B as

shown in Fig. 3.15 (b), that is, for this value of the applied field both Schottky and

band gap coincide.

Magnetic susceptibility at the low-temperature regime (T < J)

We now attempt to explore the temperature regime where ferromagnetic excita-

tions tend to be a predominant feature. For the compounds treated here the in-
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trachain interaction (J ≈ 50K) is relatively small, so that temperatures within this

range may be considered low in a certain sense. On the other hand, for some one-

dimensional ferrimagnets formed by manganese (II) and nitronyl nitroxides [109]2,

the characteristic minimum occurs above room temperature and the coupling con-

stant is evaluated at J ≈ 260cm−1 = 374K, and even higher values can be found

among materials composed of nickel (II) and nitronyl nitroxides [108], for which

the intrachain interaction is found to be J = 424cm−1 = 610K (to operate the

cm−1 ↔ K coupling conversion we use the value of kB expressed in cm−1/K, i.e.

kB = 0.6950356cm−1/K). So, in many occasions the expression low temperature in

the context of this subsection, may be quite misleading. What we do intend actually

is to fix a narrow normalized low-temperature interval 0 ≤ T/J ≤ 1 and get a close-

up view of the behavior of 1D chains as far as various theoretical and experimental

results are concerned. This is the regime wherein the materials under study undergo

a 3D ordering toward T/J ≪ 1, so that our present models fail to provide a faithful

picture of their magnetic behavior in the vicinity of the transition temperature and

below.

In Fig. 3.16 we have made FTLM simulations for spin-1/2 linear ferromagnetic

chains with 8 and 24 sites, and plotted the quantity χT 2/J(gµB)2 as a function

of T/J . We note that down to T/J ≈ 0.3, both graphs superimpose, whereby we

conclude that we have already attained the thermodynamic limit at and above this

temperature value for such chain sizes. We then resort to the expansion formula of

the modified spin-wave theory worked out by Takahashi [147], which up to second

order in T/J reads

χ =
8

3
S4JT−2

[

1 − 3

S

ζ(1
2
)

(2π)1/2

(

T

2SJ

)1/2

+
3

S2

ζ2(1
2
)

2π

T

2SJ
+O(T 3/2)

]

, (3.44)
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Figure 3.16: Product of the susceptibility per site χ and the temperature T squared
for the ferromagnetically coupled linear chain in the low temperature region, T < J .
Spin-wave result up to second order in T/J from Ref. [147]. The temperature range
T < 0.1J for which the spin-wave result is almost exact is shown in the inset. The
FTLM calculations were made on spin-1/2 ferromagnetic linear chains.

where ζ(z) is the Riemann zeta function. At S = 1/2, and by using ζ(1/2) =

−1.460354, this becomes

χ = JT−2

[

1

6
+ 0.5825974(T/J)1/2 + 0.6788396(T/J) +O(T 3/2)

]

, (3.45)

whose graph is also included in Fig 3.16. As showed in Ref. [147], in the range

0 < T/J < 0.1, the formula of Eq. (3.45) and the Bethe-ansatz integral equation

[153, 154] yield the same results, and this serves to attest Takahashi’s derivation

as suitable in this temperature regime. So, we could take advantage of this fact

and even push a bit further the temperature lower value (T/J ≈ 0.08) of the range
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in which our FTLM results, for N = 24, are valid in the thermodynamic limit, as

shown in the inset of Fig. 3.16. On the other hand, for T/J ≥ 0.5, the graph of

Eq. (3.45) slopes down away from the FTLM duo, which indicates that the FTLM

is better suited in the higher-temperature region.

Getting back to the sS chain, we now try to sort through the jumble of curves in

Fig 3.17, plotted together to facilitate comparison. Firstly, we examine the FTLM

results for N = 14 and N = 16, and we note that both graphs coincide as far down

as T/J ≈ 0.5, and so they converge to the thermodynamic limit for temperatures

equal or above that point. The experimental data normalized by J = 44.8K and J =

59.7K show the expected agreement with the FTLM results and the semiclassical

formula, respectively - Eq. (3.35) - as already displayed in Fig. 3.10. The modified-

spin-wave result comes from the expansion formula derived by Yamamoto et al.

[149], up to second order in T/J :

χJ

N(gµB)2
=
Ss(S − s)2

3
t−2−(Ss)1/2(S−s)3/2 ζ(

1
2
)√

2π
t−3/2+(S−s)

[

ζ(1
2
)√

2π

]2

t−1+O(t−1/2),

(3.46)

where t = T/J . We then have set s = 1/2 and S = 5/2, to obtain

χJ

N(gµB)2
=

5

3
t−2 + 1.842334t−3/2 + 0.678839t−1 +O(t−1/2). (3.47)

Evidently, we do not seem to boast a good agreement with any of the other data

whatsoever. To get a closer look, we fitted to the FTLM results a function of the

form [5
3

+ a0(
T
J
)

1

2 + a1(
T
J
)], where integer and half-integer powers of T appear. The

estimated values of the coefficients were a0 = 1.28 and a1 = 0.69. A good fit is

apparent only in the interval 0.5 < T/J < 0.9, where the FTLM results already

represent the thermodynamic limit. By the way, one should stress that while the
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Figure 3.17: Product of the normalized susceptibility χ per unit cell and the tem-
perature T squared. FTLM data were obtained for the indicated system sizes. The
semiclassical result comes from Eq. (3.35). Modified spin-wave results up to second
order in T/J from Ref. [149]. The FTLM result for 0.5 < T

J
< 0.9 is fitted to a

function of the form [5
3

+ a0(
T
J
)

1

2 + a1(
T
J
)] and a0 and a1 are estimated to be 1.28

and 0.69, respectively. Experimental results were normalized by taking J = 59.7 K
(g = 1.9) and J = 44.8 K (g = 1.85), which must be compared with the semiclassical
and FTLM results, respectively.

semiclassical, spin-wave and fitting results for χT 2/J(gµB)2 approach the constant

value sS(S−s)2/3 = 5/3 as (T/J) → 0, the FTLM results and the experimental data

cross over to zero. Here one must distiguinsh two effects: with respect to FTLM, this

is evidently a manifestation of finite-size effects, while for the experimental data one

can attribute this to the 1D/3D crossover affecting them, where the critical exponent

γ < 2, which entails χT 2/J(gµB)2 → 0, as one obviously has the power law χ ∼ T−γ

obeyed in this region.
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Figure 3.18: Product of the susceptibility per site χ and the temperature T squared
for the sS chain. Inset: Temperature region 0 < (T/J) < 2. Best fit, in the
region T > 0.8J , to a function as a0 + a1x

0.5 + a2x + a3x
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2 + a5x
2.5, with

x = T/J , implies a0 = 1.73, a1 = 0.12, a2 = −1.83, a3 = 2.40, a4 = −0.65 and
a5 = 0.06; while if the fitting function is a0+a1x+a2x

2+a3x
3+a4x

4+a5x
5, the best

parameters are a0 = 1.4211, a1 = 0.0289, a2 = 0.4255, a3 = −0.0623, a4 = 0.0046
and a5 = −0.0001.

A look in the literature [72, 133, 141] leads us to infer that classical systems

contribute integer powers of the temperature for the magnetic susceptibiliy, while

in the quantum case also half-integer contributions arise and may be linked to low-

temperature spin-waves [147]. In Fig. 3.18 we provided fits to the FTLM results

comprising two polynomials: one which contains exclusively integer powers of the

temperature, while the second includes both integer and half-integer contributions.

We note that the best fit occurs for T/J > 0.8, where all three graphs superimpose

exactly, and this must be the region where the classical results are satisfactory.

Lastly, one should notice the presence of finite-size effects in the FTLM results as

(T/J) → 0.
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3.5 Summary and conclusions

We have so far highlighted the importance of 1D systems in present-day research in

the field of molecular magnetism - both theoretical and experimental. One area of

endeavor is to build more complex assemblages capable of exhibiting bulk magnetism

at higher and higher temperatures, starting with the so-called low-dimensional ma-

terials, such as the ones referred to in this work. On the other hand, quasi-1D

systems are very interesting objects on their own and continue to attract the atten-

tion of physicists and chemists from all over the world. The discovery of SMMs and

SCMs opened up a new era of activity with research directed to the efficient design

of magnetic materials that can be tailored to suit specific needs.

In this chapter, we have principally devoted our attention to an important subset

of the quasi-1D materials - the compounds that can be fairly modeled by ferrimag-

netic alternating quantum spin-1/2 spin-5/2 chains. We have gathered experimental

data of a couple of compounds, namely CuMnDTO and MnNN, the former described

by the sS chain and the latter by ssS chain, down to the neighborhood of a certain

critical temperature whereon a phase transition to a 3D ferromagnetic ordering takes

place. We have concentrated our efforts on applying the finite-temperature Lanczos

method (FTLM) to finite-size chains. The magnetic susceptibility, magnetization

and specific heat were calculated and the thermodynamic limit estimated for cer-

tain temperature regimes. Interesting features in the specific heat as well as in the

magnetization were brought to light. The ground-state magnetization and excita-

tion gap were also studied by way of an exact diagonalization procedure (ED); the

one-magnon bands for the sS chain were compared with spin-wave results. In addi-

tion, we have carried out a comparison of the FTLM results with the semiclassical

approach as well as the experimental data concerning the magnetic susceptibility,
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and as shown in the figures, and good overall agreement was attained.

Next we have probed further the magnetic susceptibility in the special tempera-

ture regime 0 < T/J < 1, now taking into account results from modified spin waves.

In particular, the Takahashi expansion formula for low temperature was used and it

showed that the FTLM results could converge to the thermodynamic limit in a tem-

perature range that reaches down to very low temperatures. It became clear that

the FTLM results are bested by the spin-wave approach in the very low-temperature

regime. Finite-size effects are to blame for this setback, although other culprits in-

herent in the FTLM technique proper may play a part. All told, the FTLM results

revealed themselves as reliable and convergence to the thermodynamic limit with

relatively small chain sizes, for a wide temperature range, was verified. As already

stated, we have not yet considered interacting spin waves results and we intend to do

so in the near future. Evidently, near and below the 3D-ordering temperature none

of the instruments used so far are adequate and much work is currently under way

worldwide in the attempt to explain the intricate behavior of the physical systems

in this regime.

In toto, we have explored to some extent the thermodynamics of these interest-

ing systems and touched upon the rich gamut of features that they exhibit, and the

potentiality of FTLM in the study of 1D systems was reasonably demonstrated .

Doctoral Dissertation - Departamento de F́ısica - UFPE



Appendix A

Appendix

A.1 The Basis of monopole harmonics states

The appropriate Hilbert space is made up of angular section states, which are eigen-

states of Eq. (2.20), for which the following are true [52]:

L̂2|q, l,m >= l(l + 1)|q, l,m >; L̂z|q, l,m >= m|q, l,m >, (A.1)

where

l = |q|, |q|+ 1, |q| + 2, . . . , m = −l,−l + 1, . . . , l. (A.2)

In particular,

L̂+|q, l,m > =
√

(l −m)(l +m+ 1)|q, l,m+ 1 >,

L̂−|q, l,m > =
√

(l +m)(l −m+ 1)|q, l,m− 1 > . (A.3)
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where L̂± = L̂x ± iL̂y are the usual ladder operators. Here the operator L̂ is given

by Eq. (2.21) and the vector potential is conveniently expressed by Eq. (2.22). The

|q, l,m > are the so-called eigensections also known as monopole harmonics. For

a given region a or b around the magnetic monopole [52], the explicit form of the

monopole harmonics, also most frequently referred to by the notation Yq,l,m, reads

(Yq,l,m)a = Mq,l,m(1 − x)α/2(1 + x)β/2P (α,β)
n (x)ei(m+q)φ,

(Yq,l,m)b = (Yq,l,m)a e
(−2iq)φ, (A.4)

with the following definitions

α = −q −m, β = q −m, n = l +m, x = cos θ; (A.5)

Mq,l,m = 2m

√

[

(2l + 1)

4π

(l −m)!(l +m)!

(l − q)!(l + q)!

]

; (A.6)

and P
(α,β)
n (x) are the Jacobi polynomials [84],

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn
[(1 − x)(α+n)(1 + x)(β+n)] (A.7)

which together with the orthogonality relation for the Jacobi polynomials [84], yield

the orthogonality relation for the monopole harmonics

∫

Y ∗
q,l′,m′(θ, φ)Yq,l,m(θ, φ)dΩ = δl′lδm′m. (A.8)
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We now use the definition of the monopole harmonics and various recurrence rela-

tions of the Jacobi polynomials [84] to establish the following relations valid for all q:

l

[

(l +m+ 1)(l −m+ 1)(l + q + 1)(l − q + 1)

(2l + 3)(l +m)(l −m)

]1/2

Yq,l+1,m(θ, φ) =

[l(l + 1) cos θ + 2mq]

[

2l + 1

(l +m)(l −m)

]1/2

Yq,l,m(θ, φ)

−(l + 1)

[

(l + q)(l − q)

2l − 1

]1/2

Yq,l−1,m(θ, φ), (A.9)

[

(1 − x2)e−iφ
]

[

1

(l +m)(l +m− 1)

]1/2

Yq,l−1,m+1(θ, φ) =

1

l

[

(l + q)(l − q)(l −m− 1)(l −m)

(2l + 1)(2l − 1)(l +m)(l +m− 1)

]1/2

Yq,l,m(θ, φ)

− q

l(l − 1)

[

l −m− 1

l +m− 1

]

Yq,l−1,m(θ, φ)

− 1

l − 1

[

(l + q − 1)(l − q − 1)

(2l − 3)(2l− 1)

]1/2

Yq,l−2,m(θ, φ), (A.10)

[

(1 − x2)eiφ
]

[

1

(l −m+ 1)(l −m)

]1/2

Yq,l,m−1(θ, φ) =

−q(l +m)

l(l + 1)

[

1

(l +m)(l −m)

]1/2

Yq,l,m(θ, φ)

− 1

(l + 1)

[

(l +m)(l +m+ 1)(l + q + 1)(l − q + 1)

(2l + 1)(2l + 3)(l −m+ 1)(l −m)

]1/2

Yq,l+1,m(θ, φ)

+
1

l

[

(l + q)(l − q)

(2l + 1)(2l − 1)

]1/2

Yq,l−1,m(θ, φ). (A.11)
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We then set n̂± = n̂x ± in̂y, similarly to L̂±, and put the following: x = cos θ and

n̂z → cos θ, n̂+ → eiφ sin θ. The last step is to make use the orthogonality relation

for the monopole harmonics and specialize in the case q = 1
2

to get the respective

non-zero matrix elements for the operator n̂, used in this work:

<
1

2
, l,m|n̂z|

1

2
, l,m > = − m

l(2l + 2)
, (A.12)

<
1

2
, l + 1, m|n̂z|

1

2
, l,m > =

1

(2l + 2)

√

(l +m+ 1)(l −m+ 1),(A.13)

<
1

2
, l,m|n̂z|

1

2
, l − 1, m > =

1

(2l)

√

(l −m)(l +m), (A.14)

<
1

2
, l,m|n̂−|

1

2
, l − 1, m+ 1 > =

1

2l

√

(l −m− 1)(l −m), (A.15)

<
1

2
, l − 1, m|n̂−|

1

2
, l − 1, m+ 1 > = − 1

2l(l − 1)

√

(l +m)(l −m− 1),(A.16)

<
1

2
, l − 2, m|n̂−|

1

2
, l − 1, m+ 1 > = − 1

2(l − 1)

√

(l +m)(l +m− 1),(A.17)

<
1

2
, l,m|n̂+|

1

2
, l,m− 1 > = − 1

2l(l + 1)

√

(l −m+ 1)(l +m),(A.18)

<
1

2
, l + 1, m|n̂+|

1

2
, l,m− 1 > = − 1

2(l + 1)

√

(l +m)(l +m+ 1), (A.19)

<
1

2
, l − 1, m|n̂+|

1

2
, l,m− 1 > =

1

2l

√

(l −m+ 1)(l −m). (A.20)

These can be grouped neatly together as follows (the matrix elements of n̂− are

obtained by complex conjugation and this fact may be used as a check on the
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correctness of relations expressed in Eqs. (A.10) and (A.11):

<
1

2
, l,m|n̂z|

1

2
, l,m > = − m

l(2l + 2)
,

<
1

2
, l,m|n̂z|

1

2
, l − 1, m > =

1

2l

√

(l −m)(l +m),

<
1

2
, l,m|n̂+|

1

2
, l,m− 1 > = − 1

2l(l + 1)

√

(l −m+ 1)(l +m),

<
1

2
, l,m|n̂+|

1

2
, l − 1, m− 1 > = − 1

2l

√

(l +m)(l +m− 1),

<
1

2
, l,m|n̂+|

1

2
, l + 1, m− 1 > =

1

2(l + 1)

√

(l −m+ 1)(l −m+ 2). (A.21)

Furthemore, making use of the relation [52]

Y0,l,m(θ, φ) = Yl,m(θ, φ), (A.22)

we can take advantage of Eqs. (A.9), (A.10), and (A.11) to deduce the matrix

elements for q = 0, instead of using the Legendre polynomials. This fact may come

in handy as another test of the airtightedness of our derivations.

With the ladder-operator relations given by Eqs. (A.3) and Eqs. (A.1) we get

the nonzero matrix elements for L̂, which are valid for all q:

< l,m|L̂2|l,m > = l(l + 1),

< l,m|L̂z|l,m > = m,

< l,m|L̂+|l,m− 1 > = [(l +m)(l −m+ 1)]1/2. (A.23)
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A.2 Finite-temperature Lanczos method (FTLM)

A.2.1 Overview

For completeness, we provide some highlights of FTLM by following the review

by Jaklic̆ and Prelovs̆ec [150]. In the study of strongly correlated systems one

is mostly faced with the problem of finding the eigenvalues and eigenvectors of

very large matrices, which is not feasible with standard algorithms performing full

diagonalization. One must instead resort to power algorithms, among which the

Lanczos algorithm [63] is one of the most widely known. The core idea behind the

Lanczos algorithm is that it begins with a normalized random vector |φ0〉 in the

vector space in which the Hamiltonian operator Ĥ is defined. Then Ĥ is applied to

|φ0〉 and the resulting vector is split up into components parallel to |φ0〉, and |φ1〉
orthogonal to it, respectively,

Ĥ|φ0〉 = a0|φ0〉 + b1|φ1〉. (A.24)

Since Ĥ is Hermitian, a0 = 〈φ0|Ĥ|φ0〉 is real, while the phase of |φ1〉 can be chosen

so that b1 be also real. In the next step, Ĥ is applied to |φ1〉:

Ĥ|φ1〉 = b′1|φ0〉 + a1|φ1〉 + b2|φ2〉, (A.25)

where |φ2〉 is orthogonal to |φ0〉 and |φ1〉. It follows also b′1 = 〈φ0|Ĥ|φ1〉 = b1. Going

ahead with the iteration one gets in i steps

Ĥ|φi〉 = bi|φi−1〉 + ai|φi〉 + bi+1|φi+1〉, 1 ≤ i ≤M. (A.26)
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By stopping the iteration at i = M and putting the last coefficient bM+1 = 0,

the Hamiltonian can be represented in the basis of orthogonal Lanczos functions

|φi〉 as the tridiagonal matrix HM with diagonal elements ai with i = 0 . . .M , and

off-diagonal ones bi with i = 1 . . .M . Such matrix is easily diagonalized using

the standard numerical paraphernalia to obtain approximate eigenvalues ǫj and the

corresponding orthonormal eigenvectors |ψj〉,

|ψj〉 =

M
∑

i=0

vji|φi〉, j = 0 . . .M. (A.27)

It is important to realize that |ψj〉 are in general not exact eigenfunctions of Ĥ, but

show a remainder

Ĥ|ψj〉 − ǫj |ψj〉 = bM+1vjM |φM+1〉. (A.28)

On the other hand it is evident from the diagonalization of HM that the matrix

elements

〈ψi|Ĥ|ψj〉 = ǫjδij , i, j = 0 . . .M (A.29)

are exact, without restriction to the subspace LM . This the crucial identity of the

ED procedure.

If in Eq. (A.26) bM+1 = 0, an (M + 1)-dimensional eigenspace where HM is

already an exact representation of Ĥ has been found. This happens inevitably when

M = Nst − 1, where Nst is the space dimension, but for M < Nst − 1 it can only

occur if the starting vector is orthogonal to some invariant subspace of Ĥ. Evidently

this should not be the case if the input vector |φ0〉 is random, without any hidden

symmetries.

The number of operations needed to perform M Lanczos iterations scales as
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MNst. Numerically the Lanczos procedure is subject to roundoff errors introduced

by the finite-precision arithmetics. Correctional steps then require operations which

number in the order of M2Nst, and can become computationally more demanding

than the Lanczos iterations proper, and so the determinant drawback that thwarts

its application in large matrices.

By making use of Eq. (A.29), one can construct the fundamental identity:

〈n|ĤkB̂Ĥ lÂ|n〉 =

M
∑

i0=0

. . .

M
∑

ik=0

M
∑

j0=0

. . .

M
∑

jl=0

〈φ0|ψi0〉〈ψi0 |Ĥ|ψi1〉 . . . 〈ψik−1
|Ĥ|ψik〉

×〈ψik |B̂|ψ̃jl
〉〈ψ̃jl

|Ĥ|ψ̃jl−1
〉 . . . 〈ψ̃j1|Ĥ|ψ̃j0〉〈ψ̃j0|Â|φ0〉 =

=
M

∑

i=0

M
∑

j=0

〈φ0|ψi〉〈ψi|B̂|ψ̃j〉〈ψ̃j |Â|φ0〉(ǫi)k(ǫ̃j)
l, (A.30)

where |n〉 is an arbitrary normalized vector, and A,B are general operators. To

obtain this expression, one performs two Lanczos procedures with M = max(k, l)

steps. The first one begins with the vector |φ0〉 = |n〉 and produces the subspace

LM = {|φj〉, j = 0 . . .M} along with approximate eigenvectors |ψj〉 and eigenvalues

ǫj . The second Lanczos procedure is started with the normalized vector

|φ̃0〉 = A|φ0〉/
√

〈φ0|A†A|φ0〉, (A.31)

and results in the subspace L̃M = {|φ̃j〉, j = 0 . . .M} with approximate |ψ̃j〉 and

ǫ̃j . To see the derivation in detail, look up the important review in Ref. [150]. So,

Eq. (A.30) shows how the matrix element on the left can been written in terms of

the Lanczos approximate eigenvectors and eigenvalues alone, and by means of it one

can introduce finite temperature in the Lanczos procedure.

The next step is to consider the expectation value of an operator Â in the

Doctoral Dissertation - Departamento de F́ısica - UFPE



A.2 Finite-temperature Lanczos method (FTLM) 116

canonical ensemble

〈Â〉 =
Nst
∑

n=1

〈n|e−βĤÂ|n〉
/ Nst

∑

n=1

〈n|e−βĤ |n〉, (A.32)

whereupon one performs the high-temperature expansion of the Boltzmann factor

e−βH ,

〈Â〉 = Z−1
Nst
∑

n=1

∞
∑

k=0

(−β)k

k!
〈n|ĤkÂ|n〉,

Z =

Nst
∑

n=1

∞
∑

k=0

(−β)k

k!
〈n|Ĥk|n〉. (A.33)

The terms in the expansion 〈n|ĤkÂ|n〉 can be calculated exactly using the Lanczos

procedure with M ≥ k steps and with |φn
0〉 = |n〉 as a starting function, since this

is a special case of Eq. (A.30):

〈n|ĤkÂ|n〉 =
M

∑

i=0

〈n|ψn
i 〉〈ψn

i |Â|n〉(ǫni )k. (A.34)

Working with a restricted basis k ≤ M , Eq. (A.34) can be inserted into the sums

expressed by Eqs. (A.33), extending them to k > M , which yields

〈Â〉 ≈ Z−1
Nst
∑

n=1

M
∑

i=0

e−βǫn
i 〈n|ψn

i 〉〈ψn
i |Â|n〉,

Z ≈
Nst
∑

n=1

M
∑

i=0

e−βǫn
i 〈n|ψn

i 〉〈ψn
i |n〉, (A.35)

and the error of the approximation is of the order of βM+1. It can be verified that

the expectation value so calculated is also valid for T → 0 [150].
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The computation of static quantities in Eq. (A.35) still involves the summation

over the complete set of Nst states |n〉, which is not doable in practice. To obtain a

useful method, one further approximation which replaces the full summation by a

partial one over a much smaller set of random states must be made. One considers

the expectation value 〈Â〉 at T > 0, as defined by Eq. (A.32). Instead of the whole

sum, a restricted one over several random vectors |r〉, r = 1 . . .R, given by

|r〉 =

Nst
∑

n=1

βrn|n〉, (A.36)

where the βrn are assumed to be distributed randomly, is carried out. Therefore in

the FTLM, the full summation in Eq. (A.32) is replaced by

〈Â〉 =
R

∑

r=1

〈r|e−βĤÂ|r〉
/ R

∑

r=1

〈r|e−βĤ|r〉.

Such approximation is made analogously to Monte Carlo methods and is of course

hard to justify rigorously, although the errors involved can in principle be estimated

[150].

So, the fundamental relations required for the implementation of the FTLM for

the calculation of static quantities are

〈Â〉 ≈ Nst

ZR

R
∑

r=1

M
∑

j=0

e−βǫr
j 〈r|ψr

j 〉〈ψr
j |Â|r〉,

Z ≈ Nst

R

R
∑

r=1

M
∑

j=0

e−βǫr
j |〈r|ψr

j 〉|2. (A.37)

where the sampling is carried over R random states |r〉 = |φr
0〉, which serve as initial
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functions for the M-step Lanczos procedure, and which results in M approximate

eigenvalues ǫrj with corresponding eigenvectors |ψr
j 〉.

In order to reduce computational and storage requirements, taking into account

the symmetries of the model Hamiltonian is crucial. One must not forget to ”tune

up” the method through various tests in order to verify if the results are consistent

and satisfactory. The verification of the convergence of results for various system

sizes may give a hint at the extent of finite-size effects.

A.2.2 Adjusting FTLM

In Fig. A.1, we indicate step by step how the FTLM was tuned up. The limit

susceptibility was calculated as follows

χ =
< (Sz)2 >

NT
=
< S2 >

3NT

< S2 > → N

2

(

N

2
+ 1

)

lim
T→0

χT → 1

6

(

N

2
+ 1

)

=
5

3
.

(A.38)

We observe that the deviation of the FTLM results from the expected value

is very little for R > 24000. Since the error is increased as T → 0, we expect

that the error introduced by the sampling of the Hilbert space is negligible in the

temperature range studied in this dissertation. Notice, particularly, that the value of

the minimum in χT is free of this type of error for samplings as small as R = 10000.

Doctoral Dissertation - Departamento de F́ısica - UFPE



A.2 Finite-temperature Lanczos method (FTLM) 119

0 2 4 6 8 10
T / J

0,6

0,8

1

1,2

1,4

1,6

1,8

2
χT

 / 
g2 µ B

2

1,2 1,6 2

0,68

0,72

0,76

0 2 4 6 8 10
T / J

0,6

0,8

1

1,2

1,4

1,6

1,8

2

χT
 / 

g2 µ B

2

1,2 1,6 2

0,68

0,72

0,76

0 2 4 6 8 10
T / J

0,6

0,8

1

1,2

1,4

1,6

1,8

2

χT
 / 

g2 µ B

2

0 0,4 0,8 1,2

1,6

1,64

1,68

0 2 4 6 8 10
T  / J

0,6

0,8

1

1,2

1,4

1,6

1,8

2

χT
 / 

g2 µ B

2

0 0,4 0,8 1,2

1,6

1,64

1,68

R = 2000

R = 10000

R= 24000

R = 52000

(a)

(b)

(c)

(d)

Figure A.1: The behavior of the product of the susceptibility per site χ and the
temperature T of the ssS chain with N = 18 and J = 1.5J

′

. The number of states
M taken in each random sampling is 50 and the total number of random samples
R is indicated in the figure. Each curve is the result of one running of the FTLM
algorithm with the indicated parameters, thus there are 10, 5, 2 and 1 runnings in
figures (a), (b), (c) and (d), respectively. The precise value of χT for this system
size as T → 0, limT→0 χT = 5/3, is indicated by the symbol 3. The inset of (a) and
(b) show the region near the minimum of the curve, while the inset of (c) and (d)
show the region near T = 0.
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Phys. Rev. Lett. 74, 1851 (1995); G.-S. Tian and T.-H. Lin, Phys. Rev. B 53,

8196 (1996); E. P. Raposo and M. D. Coutinho-Filho, Phys. Rev. Lett. 78,

4853 (1997); E. P. Raposo and M. D. Coutinho-Filho, Phys. Rev. B 59, 14384

(1999)..

[71] G. Sierra, M. A. Mart́ın-Delgado, S. R. White, D. J. Scalapino and J. Dukelsky,

Phys. Rev. B 59, 7973 (1999).

[72] C. Vitoriano, M. D. Coutinho-Filho, and E. P. Raposo, J. Phys. A: Math. Gen.

35, 9049 (2002);

[73] F. C. Alcaraz and A. L. Malvezzi, J. Phys. A: Math. Gen. 30, 767 (1997); M. A.

Mart́ın-Delgado, J. Rodriguez-Laguna, and G. Sierra, Phys. Rev. B 72, 104435

(2005).

[74] C. Vitoriano, F. B. de Brito, E. P. Raposo, and M. D. Coutinho-Filho, Mol.

Cryst. Liq. Cryst. 374, 185 (2002); S. Yamamoto and J. Ohara, Phys. Rev. B

76, 014409 (2007).

[75] R. R. Montenegro-Filho and M. D. Coutinho-Filho, Physica A 357, 173 (2005).

[76] M. H. Oliveira, M. D. Coutinho-Filho, and E. P. Raposo, Phys. Rev. B 72,

214420 (2005).

Doctoral Dissertation - Departamento de F́ısica - UFPE



BIBLIOGRAPHY 127

[77] R. R. Montenegro-Filho and M. D. Coutinho-Filho, Phys. Rev. B 74, 125117

(2006), and references therein.

[78] F. A. N. Santos and M. D. Coutinho-Filho, Phys. Rev. E 80, 031123 (2009).

[79] M. H. Oliveira, E. P. Raposo, and M. D. Coutinho-Filho, Phys. Rev. B 80,

205119 (2009).

[80] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (John

Wiley & Sons Inc, New York-NY, 1985); R. P. Feynman, Statistical Mechanics–

A Set of Lectures (The Benjamin Cummings Publishing Company Inc, Reading-

MA, 1972).

[81] C. S. O. Yokoi, M. D. Coutinho-Filho, and S. R. Salinas, Phys. Rev. B 24, 4047

(1981).

[82] Numerical Recipes Inc: The Art of Scientific Computing (Cambridge University

Press, Cambridge-UK, 1992).

[83] E. H. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962).

[84] A. Ederlyi (editor), Higher Transcendental Functions (Bateman Project)

(McGraw–Hill Book Company Inc, New York-NY, 1953).

[85] J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens, J. Rossat-

Mignot, J. Ribas, W. G. Stirling, and C. Vettier, J. Appl. Phys. 63, 3538

(1988).

[86] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

Doctoral Dissertation - Departamento de F́ısica - UFPE



BIBLIOGRAPHY 128

[87] A. Daoud, A. B. Salah, C. Chappert, J.-P. Renard, A. Cheick-Rouhou, T. Duc,

and M. Verdaguer, Phys. Rev. B 33, 6253 (1986).

[88] J. S. Miller, J. C. Calabrese, H. Rommelmann, S. R. Chittipeddi, J. H. Zhang,

M. R. William, and M. R. Epstein, J. Am. Chem. Soc. 109, 769 (1987).

[89] A. Das, G. M. Rosair, M. S. El Fallah, J. Ribas, and S. Mitra, Inorg. Chem.

45, 3301 (2006).

[90] M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa,

M. Takahashi, and M. Kinoshita, Chem. Phys. Lett. 186, 401 (1991); M. Taka-

hashi, P. Turek, Y. Nakasawa, M. Tamura, K. Nozawa, D. Shiomi, M. Ishiwawa,

M. Kinoshita, Phys. Rev. Lett. 67, 746 (1991).

[91] Y. Pei, O. Kahn, and J. Sletten, J. Am. Chem. Soc. 108, 3143 (1986).

[92] O. Kahn, in Molecular Magnetism, (Wiley-VCH 1993).

[93] A. Gleizes and M. Verdaguer, J. Am. Chem. Soc. 103, 7373 (1981).

[94] M. Verdaguer, A. Gleizes, J.-P. Renard, and J. Seiden, Phys. Rev. B 29, 5144

(1984).

[95] A. Gleizes and M. Verdaguer, J. Am. Chem. Soc. 106, 3727 (1984).

[96] A. Mosset, J. Galy, E. Coronado, M. Drillon, and D. Beltran, J. Am. Chem.

Soc. 106, 2864 (1984); E. Coronado, M. Drillon, P. R. Nugteren, L. J. de Jongh,

D. Beltran, and R. Georges, J. Am. Chem. Soc 111, 3874 (1989).

[97] Y. Pei, M. Verdaguer, O. Kahn, J. Sletten, and J.-P. Renard, J. Am. Chem.

Soc. 108, 7428 (1986); Y. Pei, O. Kahn, J. Sletten, J.-P. Renard, R. Georges,

Doctoral Dissertation - Departamento de F́ısica - UFPE



BIBLIOGRAPHY 129

J-C. Gianduzzo, J. Curely, and Q. Xu, Inorg. Chem. 27, 47 (1988); Y. Pei, K.

Nakatani, O. Kahn, J. Sletten, and J.-P. Renard, Inorg. Chem. 28, 3170 (1989).

[98] P.J. van Koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J-P. Renard, M.

Drillon, and P. Legoll, Inorg. Chem. 29, 3325 (1990).

[99] J. H. Yoon, H. C. Kim, and C. S. Hong, Inorg. Chem. 44, 7714 (2005).

[100] D. Zhang, H. Wang, Y. Chen, Z.-H. Ni, L. Tian, and J. Jiang, Inorg. Chem.

48, 5488 (2009).

[101] E. F. Pedroso, C. L. M. Pereira, H. F. dos Santos, L. F. C. de Oliveira, W. C.

Nunes, M. Knobel, and H. O. Sumpf, J. Mag. Mag. Mat. 320, e200 (2008).

[102] O. Khan, E. Bakalbassis, C. Mathonière, M. Hagiwara, K. Katsumata, and L.

Ouahab, Inorg. Chem. 36, 1530 (1997).

[103] J.-P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu, and J.-P. Tuch-

agues, Inorg. Chem. 43, 7792 (2005).

[104] E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-Garćıa, and C. Mast́ı-
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