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ABSTRACT

The generative artificial intelligence, particularly Large Language Models, has revolution-
ized various stages of the software life cycle, such as requirements elicitation, code generation,
formal specification, and model creation. In software modelling, domain models are abstract rep-
resentations of concepts, entities, and relationships within a specific problem domain, serving as
a guide for software solutions and design. Considered a critical aspect of software development,
it requires specialists with domain expertise and significant time resources, as it is typically a
manual task that demands considerable effort. This work proposes a systematic approach to
generate domain models for the software testing activity (test-based domain models) from natural
language test cases using Gemini. We incorporate a set of rules with an ASP solver to ensure
structural consistency and apply SBERT to validate semantic aspects of the generated models.
We compare prompt engineering techniques and evaluate Gemini’s performance in generating
domain models with and without interaction cycles of feedback, and under the guidance of
ground-truth domain models. The results indicate that Gemini’s effectiveness in producing con-
sistent, test-based domain models, is influenced by domain complexity and feedback, achieving
80-90% satisfiability in simpler domains, with feedback significantly improving model quality.
However, our analysis shows that regardless of the approach, the LLM still encounters limitations

when inferring associations such as dependency, instantiation, and cancellation.

Keywords: Domain Model. LLM. Software Testing.



RESUMO

A inteligéncia artificial generativa, particularmente os Modelos de Linguagem de Grande
Escala (LLMs), revolucionou vdrias etapas do ciclo de vida do software, como elicitacao de
requisitos, geracao de cddigo, especificacdo formal e criacdo de modelos. Na modelagem de
software, os modelos de dominio sdo representagdes abstratas de conceitos, entidades e relacdes
dentro de um dominio especifico, servindo como guia para solugdes e design de software.
Considerada uma parte critica do desenvolvimento de software, essa tarefa exige especialistas
com conhecimento no dominio e recursos significativos de tempo, ja que geralmente € uma tarefa
manual que demanda considerdvel esforco. Este trabalho propde uma abordagem sistemética para
gerar modelos de dominio para a atividade de testes de software (modelos de dominio baseados
em testes) a partir de casos de teste em linguagem natural usando o Gemini. Incorporamos um
conjunto de regras com um solucionador ASP para garantir consisténcia estrutural e aplicamos
o SBERT para validar os aspectos semanticos dos modelos gerados. Comparamos técnicas
de engenharia de prompts e avaliamos o desempenho do Gemini na geragdo de modelos de
dominio com e sem ciclos de interacdo de feedback, e sob a orientacdo de modelos de dominio de
referéncia. Os resultados indicam que a eficicia do Gemini na produ¢do de modelos de dominio
consistentes € influenciada pela complexidade do dominio e pelo feedback, alcancando 80-90%
de satisfatibilidade em dominios mais simples, com o feedback melhorando significativamente a
qualidade do modelo. No entanto, a andlise mostra que, independentemente da abordagem, a
LLM ainda enfrenta limita¢des na inferéncia de associa¢des, como dependéncia, instanciacio e

cancelamento.

Palavras-chave: Modelo de Dominio. LLM. Testes de Software.
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INTRODUCTION

The growing technological advances in artificial intelligence (AI) have allowed innovation
in software life cycles through process optimization based on generative Al (GAI). Unlike other
Als, such as traditional machine learning, GAI focuses on generating new data from pattern
identification in its training set rather than making predictions about a dataset [25].

Requirements elicitation [27, 17], formal specification generation [39, 24], code genera-
tion [31, 13], model generation [10, 9], and test generation [15, 4] are examples of development
stages that have been significantly improved with the use of GAI, more specifically, with Large
Language Models (LLMs). LLMs are generative Al models based on deep learning techniques de-
signed to understand/generate human language and process large amounts of text data efficiently
— reducing effort, complexity, and resources — in different domains [22].

One specific context where LLMs allow optimizations is in software modelling activ-
ity [12]. A model captures the important aspects of a domain based on a certain point of view
while abstracting the remaining elements [33]. Often presented in the early stages of software
development, the modelling activity involves the conceptual definition and representation of the
entities and relationships about a specific problem. Within a shared domain, it operates as a
domain model.

In the context of software testing, domain models arise as an association between actions
that provide test engineers with concrete implementation details when creating test cases. Unlike
requirements, that outline what should be implemented and tested, domain models focus on
describing the specifics of how the system behaves [6].

A test-based domain model includes several relations between test actions. One such
relation is dependency: the occurrence of an action A in a test case requires that all actions
on which A depends must have previously occurred in this test case. For example, sending a
message in a mobile phone domain requires some form of internet connection. Another relation
is cancellation: an action might cancel the effect of a previous action. For instance, airplane
mode cancels a Wi-Fi connection. More details are given in the next section.

These models allow testers to understand the interactions between various components
and ensure that all relevant scenarios are covered. Clearly defining these relations enhances test

case organization, reduces redundancy, and ensures comprehensive test coverage. Furthermore,
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these domain models can be employed to ensure the consistency of both individual test cases and
test suites — a group of selected test cases targeting a specific domain or feature — by analysing
and identifying dependencies, edge cases, and relationships within a test case, across test cases,
and between test cases [5]. From a well-defined domain model, techniques such as creating
sound test cases for concurrent features [2] or Model-Based Testing (MBT) can also be applied
to increase test coverage by adhering to a better representation of complex software behaviours.

Nevertheless, software modelling is not trivial. It requires extensive domain knowledge
and time resources since it is commonly acquired through requirements analysis and by specialists
without an automated process. Besides, manual domain models can sometimes lead to uncovered
edge cases or introduce potential errors due to the high cognitive level required to carry out the
modelling without creating inconsistencies.

Despite some initial attempts previously cited [10, 9], the use of LLMs to support
the automation of the modelling process still lacks further investigation, indicating a need for
additional research and analysis. A significant limitation tied to this is the absence of large
datasets necessary for pre-training or fine-tuning these models [10], requiring much more effort
to achieve satisfying results. When particularly considering domain models for software testing,
the availability of relevant information sources is even more scarce.

This study aims to propose and evaluate a systematic approach to generate domain
models from test cases written in natural language supported by LLMs and, more specifically,
Gemini [36]. The particular context is that of a long-term cooperation with Motorola Mobility,
a Lenovo Company, on techniques for automatic test case generation for mobile devices. The
reason for using test cases (rather than requirements) as input to the process is that our particular
focus is on generating new, and more elaborate, test scenarios for combined mobile features from
test cases for individual features. There is already some evidence that this technique enhances
both code coverage and bug detection [2, 3].

The adoption of LLMs to generate test-based domain models is particularly relevant
because this is the only manual step in the test generation process, which ends up discouraging
test engineering from adopting the process in practice. Besides the use of LLM, we propose
a set of rules to verify the test-based domain model’s consistency using the ASP (Answer Set
Programming) solver, identifying the potential inconsistencies. We develop some case studies to
evaluate the proposed approach and provide some metrics on its capacity to automatically infer
relations between test actions. This is achieved by comparing the results against ground-truth
test-based domain models.

The next section provides some background on software testing, domain models, and
LLMs. Section 3 presents the proposed framework for generating domain models via the Gemini
LLM using test cases, with a rationale for the adopted prompt engineering process. Section 4
presents the research questions, assesses the findings, and briefly examines potential threats to
validity and limitations. Section 5 provides an overview of this study’s field and related work.

Section 6 concludes this study with a summary of the contributions and future work.
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BACKGROUND

2.1 TEST-BASED DOMAIN MODELS

A domain model is a conceptual representation of the entities, their attributes, and the
relationships that exist within a specific domain. Although the modelling activity usually refers
to the model creation of a specific system, this study is based on a concept of domain models
defined specifically for software testing activity [6].

Software testing is one discipline of the software development life cycle that focuses on
validating whether a system correctly fulfils its requirements by executing manual and automated
test cases. A test case is defined as a set of ordered steps with specific results and initial setups,
where each step describes an action that must be executed before proceeding to the next one.
In the context of this work, a test-based domain model defines the associations that connect
all actions inside a specific tested domain by formalizing the requirements hidden within the
execution of the tests.

Figure 1 illustrates the workflow of a test to send a message, for instance, using a mobile
device. In this scenario, all relations represent a dependency since executing the second and
third actions can only be performed once the preceding action has been successfully completed.
From the initial state, the action of opening a message allows the action of typing a message to
be successfully executed. Consequently, the final action of sending a message can be executed

after the typing is done, achieving the final state of the workflow.

[Open Message App ]—»[ Type a Message ]—»[ Send a Message ]

Figure 1: Workflow representation of a test to send a message. Source: The author.

This representation can expand to other types of associations like cancellations and
instantiations. The cancellation association usually describes opposite actions, such as Open
Camera cancels Close Camera. The definition implies that if A cancels B, the action
performed by B will be annulled if A is executed afterward. Thus, B must be re-executed if
a subsequent action depends on it. Along with the dependency association, cancellations are

extremely helpful when verifying test case consistency by checking whether or not an action
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needs to be (re)included to execute the test case successfully.

Instantiation is an association of inheritance. From root action A, it defines possible
actions whose execution will lead to the same purpose as executing action A. For instance, if an
action requires inserting a SIM card, it can be completed by inserting a SIM card into either slot
one or slot two. In this case, any node below the root action can properly fulfil the dependency
of the root itself. However, if the action specifically requires the SIM card to be inserted into slot
one, then the dependency cannot be established with the root action. This approach enables the
use of more generalized actions and the specialization of those actions.

A test-based domain model can be represented as a directed graph where each node
describes an atomic action called "atom" [3], and each edge is an association between the atoms
(nodes). Figure 2 offers a summarized example of a domain model for an email application on
a mobile device. Note that sending the email requires executing the ordered steps of opening
the email app and creating the email. Therefore, depends on is transitive, and so are the other
relations. However, to successfully send an email, an internet connection must be established to
execute the action over the network properly, and can this either be satisfied by turning on the
Wi-Fi or or by turning the mobile data on, since they are instances of the Turn On Internet
Connection action on which Send Email depends. As turning off mobile data cancels
the action of turning it on, the email cannot be sent if there is no other previous occurrence
of an instance of Turn On Internet Connection (in this case, Turn On Wi-Fi)in
the test action sequence. In general, sending an email with any type of internet connection is

possible.

Send Email depends on Create Email depends on Open Email

depends on cancels

l

Turn On 3
) Close Email
Internet Connection

instanceof instanceof

Turn On
Mobile Data

Turn On Wi-Fi

Turn Off
~ n l‘
‘ caneens Mobile Data

Figure 2: Graph representation of a domain model for an email application. Source: The author.

Such representations allow teams responsible for ensuring product and system quality to
rely on precise relationship definitions of associations between the tested components, assisting
the creation and execution of consistent test cases. By exposing the possible triggers that can
lead to a failure in the test execution — such as the cancellation of an action — the domain model

can reduce the effort in creating execution reports and test case analyses.
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Additionally, it can be associated with a Model-Based Testing strategy, where consistent
by construction test cases are automatically generated from a model representing the system’s
behaviour [23]. Since the domain model defines all possible execution flows, it helps explore
uncovered paths inside the tested domain and increases test coverage.

At last, it can also be used to infer the consistency of user-defined test cases automatically.
By using a tool such as Kaki [5], the definition of associations between the atoms within a test
case enables the inference of satisfiability in a given domain model and allows for predictions

about missing atoms essential for ensuring the test case’s consistency [2].

2.2 LARGE LANGUAGE MODELS

A Large Language Model is an Al trained on large volumes of data (parameters) to
understand, generate, and translate natural language. The model predicts the next word or token
by calculating the probability of various options and selecting the most likely one. Its base is a
type of neural network architecture that revolutionized the field of natural language processing
called Transformer and was introduced in 2017 by Vaswani et al. [37].

Transformers are based on the attention mechanism, an encoder-decoder approach
inspired by human attention that allows models to softly search the tokens and focus on a specific
subset when generating the target word [7]. This dynamic attention process enables the model to
identify and emphasize the most relevant parts of the input, improving accuracy in generating
words or phrases in the output.

Strongly disseminated with the rise of the OpenAl model called GPT (Generative Pre-
trained Transformer)! in 2018, the LLMs have been introduced and deeply studied in all kinds of
usages, from law applications [35] to generation of formal rules specification in blockchains [24].
More recently, Deepseek emerged with a new approach by incentivizing the LLMs’ reasoning
with reinforcement learning (RL) without supervised fine-tuning (SFT) — the most common
approach for training in other models [21].

Regardless of structural differences, all LLMs are creative and non-deterministic mod-
els whose performance effectivity depends on prompt engineering techniques and optimized

parameter definitions to create specific responses.

2.2.1 Prompt Engineering

The prompt engineering focuses on creating and refining prompts to maximize the
competence of LLMs in performing a specific task without modifying the model parameters [34].
A prompt is an instruction or query that guides the LLM behaviour by properly taking
advantage of four main elements: instruction, context, input data, and output indicator [20]. The

instruction describes the main tasks that will guide the output. The context contains specific and

! Available at https://openai.com/index/chatgpt
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necessary knowledge about the domain addressed in the task. The input data is the essence of
the question that directly impacts the output. The output indicator is an additional field that can
be used to specify the desired output format. When accessed through APIs, this field can be
hard-coded and included in the request to compel the model to follow the exact pattern.

These elements generally describe one of the most basic prompt formats called zero-shot,
where all interpretation depends upon the natural language description given to the model with
no further exemplifications. However, a new property called in-context learning emerged with
the idea that the LLMs are few-shot learners, meaning that sometimes the interactions with
demonstrations of a few examples to improve reasoning can nearly match the performance of
fine-tuned approaches [8].

Moreover, other prompt engineering techniques emerged to cover different bottlenecks
in using LLMs, such as performing tasks without intensive training, reducing hallucination,
and improving reasoning [34]. In this context, a new strategy called Chain-of-Thought (CoT)
prompting was proposed by Wei et al. [38] as a mechanism to optimize the reasoning capabilities
of LLMs by incorporating intermediate reasoning steps as demonstrations in the exemplars for
few-shot prompting.

However, since the CoT technique gives the LLM the step-by-step thinking, it is a time-
consuming and error-prone activity. Recent approaches such as Automatic Chain-of-Thought
(Auto-CoT) prompting [44] propose optimizations to enhance the creation and correctness of
reasoning. Aligned with a stepwise approach, the CoT can be explored with single prompts that
cover the entire task or with a chain of prompts. The chaining concept suggests that breaking the
tasks into smaller ones can improve the LLM’s effectiveness by allowing reasoning to be made
instruction-by-instruction [40].

Although prompt engineering is guided by the concept of a prompt-based learning
paradigm and has significantly exposed the potential of LLMs, it still has vulnerabilities. Inserting
certain triggers into the text can generate incorrect, fabricated, or misleading information that
sounds plausible but is actually false or not based on real data (LLMs’ hallucinations) [41],

needing external interference in the LLM reasoning when performing complex tasks.
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FRAMEWORK

The proposed framework is illustrated in Figure 3. It conceives a strategy to generate
test-based domain models from a test suite input within a specific domain using LL.Ms. This
process involves evaluation and refinement in the LLMs’ responses through an iterative cycle. In

this work, we used Gemini gemini-2.0-flash as the reference LLM.

JSON
1|
Base Atoms

SO

Dataset Initial
—_—

Suites Prompt

=

Final

Domain

Few-shot
learning

CoT

learning

Semantic

Validation
SBERT

Gemini [—

Figure 3: Proposed framework for generating test-based domain models using LLMs. Source:
The author.

The prompt preparation used an ad-hoc prompt-engineering process' and is based on
the prompt engineering techniques exposed earlier in Section 2.2.1, mainly the most promising
ones — few-shot and chain of thoughts learning —, aiming to assess the impact of each technique’s
characteristics on the final response outcome.

The framework relies on recent evidence that the effectiveness of LLM responses is
widely increased with feedback interaction [24, 26]. By addressing structural and semantic
concerns, inconsistencies in the domain model are given as feedback to the LLM in an automatic
cycle until a valid domain model is created or a pre-defined limit of cycles is reached.

The approach uses a specific domain model format to evaluate the responses in execution
time. Since the LLM is susceptible to hallucinations, directly asking the format in the prompt
is not reliable. To avoid this, the parameters of schema exposed in Listing 3.1 and type mime
as application/json were defined in the request configurations, forcing all responses to follow a

default template and avoiding potential crashes. The schema is represented by a DomainModel

! Available at https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-design-strategies
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class that inherits from Python BaseMode1 class?. The atoms are stored as a list of strings, while
the associations are represented by a list of Association instances (another BaseModel
inheritance). Each Association class has two attributes: source and target, both of
type string. The source indicates the atom from whom the association originates, and the

target indicates the entity with whom the association is made.

Listing 3.1: Domain model template for LLM responses.

class Association(BaseModel):
source: str

target: str

class DomainModel (BaseModel ):
atoms: List[str]
cancellations: List[ Association ]
instances: List[ Association ]

dependencies: List[ Association ]

3.1 PROMPT LEARNING

The prompt preparation is the initial step in providing the LLM with the learning context
related to the framework objectives. Following a preliminary analysis of the LLM responses
to the main task, it became evident that the complexity and the reasoning necessary for the
precise/accurate definition of a domain model were significant factors. Consequently, we
dismissed the zero-shot technique and focused primarily on few-shot learning and CoT methods,
as they proved to offer more effective approaches. More details on each prompt technique are
provided later.

When designing a prompt, a comparison metric can be the effectiveness based on the
number of used tokens since it directly reflects the LLM processing time and cost concerns, but
it is not within our scope to verify these issues. Regardless of the technique used, the first two
sections of the prompt focus on contextualizing the definition of the test-based domain model
and the nature of the associations within domain models.

A few tests were conducted to enhance the understanding of the LLM regarding the
context by adopting various representations, such as Unified Modelling Language (UML) activity
view [33], direct graphs as adjacency lists, and domain ontology [19]. The most promising
one was the direct graph representation, where nodes represent the atoms and the edges their
associations.

Figure 4 illustrates the contextualization prompt, where an overview of the main task is

presented before adding more details in the next prompt sections. It is part of a reaffirmation

2 Available at https://docs.pydantic.dev/latest/api/base_model/
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premise that ratifies the main task to maximize the outcome. A special highlight is added to
the idea of implicit atoms by emphasizing that a test step encompasses one or more atomic
actions. The test step Verify battery percentage with CLI closed comprises
two atomic actions: closing the CLI and verifying the battery percentage, with a relation of
dependency established between them.

Note that composition also constitutes a type of association that could be included
in the domain model. For example, the atom Verify battery percentage with
CLI closed is the composition of the two ordered actions "Close CLI" and "Verify
battery percentage", respectively. However, as an initial proof of concept, we did not
include this association requirement. This means that all examples used for the validation of
this framework only contain atoms and relations that can be easily inferred from the idea of
implicit and explicit atoms. Additional discussion regarding this concern is included in future

work (Section 6).

A domain model in software testing is a domain model where the entities are test actions

and the relations are dependency, cancellation, and instantiation, for example.

It can be represented as a directed graph where the nodes are the atomic actions within

the tests and the edges are the relations between these atomic actions.
A test action can contain one or more atomic actions. For example, the test action
"Open camera by clicking in the menu" has two atomic actions: "Open

camera" and "Click in the menu".

Thus, an atomic action is an atom that is necessary for the execution of one or more test

steps and may not be explicit.

I will provide you test cases formatted as JSON containing multiple test actions.

Your task is to generate a domain model as a directed graph by extracting ALL atoms

and defining ALL relations between these atoms.

Figure 4: Prompt for contextualization of the domain model section.

The second section of the default prompt provides a general overview of each associa-
tion’s meaning and the general rules for describing these associations, as depicted in Figure 5. It
aims to enhance the LLLM ability to generate consistent domain models correctly from the start,
reducing the amount of feedback provided by the structural validation stage of the framework.

The set of rules introduced in this section to guide LLLM responses will be further formalized in
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the structural validation process (Section 3.2).

7

The edges are defined as follows:

* Dependency: An atom depends on another atom when its execution can only occur

after the execution of the atom it depends on.
— Example: The atom “send message” depends on “write message”.

* Cancellation: An atom cancels another when its execution reverses or negates a

previously executed action.

— Example: Atoms like “open something”and “close something”are

opposites, meaning that “open” cancels “close” and vice versa.

 Instantiation: An atom is an instance of another atom when they share a common

atomic action, even if this action is not explicitly defined in the test cases.

— Example: The atoms “Receive a voice call”and “Make a voice

call” are instances of “Participate in a voice call”.
Some rules about the edges:

* An atom A cannot depend on atom B while atom B depends on atom A, directly or

indirectly.
* Anatom A cannot cancel atom B while atom B cancels atom A, directly or indirectly.

* An atom A cannot depend on or cancel atom B while being instantiating atom B.

Figure 5: Prompt for contextualization of domain models associations (edges) section.

After attempts, a key insight was uncovered: incorporating courtesy phrases such as
"please," "think carefully," and "take your time," as well as using bold and uppercase formatting,
substantially enhances the task’s clarity and intent [43], leading to the markdown-based format
exposed in the prompts in Figures 4 and 5, as well as in those that follow. However, it became
evident that the LLM struggled to complete the task successfully, regardless of prompt variations.
To minimize this, the system instruction shown in Figure 6 was introduced. This instruction
provides the LLM with a comprehensive understanding of its expected role and how it should

respond to any given prompt.
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Whenever the user requests the creation or analysis of a domain model for software testing,
carefully consider all explicit and implicit atoms and their relationships. Perform a detailed
semantic analysis of each provided test case, ensuring that no relevant relationship or atom
is omitted. Focus on ensuring that the models presented are complete and coherent and

that all dependencies, cancellations, and instances are accurately represented.

Figure 6: System instruction.

3.1.1 Few-shot learning

The few-shot learning prompt is divided into two more sections: general instructions
with examples and main task reaffirmation.
The first section highlights all instructions as a guideline that must be followed to properly

identify all atoms and associations within the provided domain, as shown in Figure 7.

7

You MUST follow the instructions:

1. Define the explicit nodes: Analyze the test step DESCRIPTIONS and SETUPS
to identify the atoms.

2. Define the implicit nodes: Check if any necessary actions required to execute the
explicit atoms are missing (they can be within the atoms themselves, e.g., “Verify
the message with the camera closed” has an implicit node “Close

camera’).

3. Create the instantiation edges: Analyze the tests and atoms to identify atoms that

share a common atomic action, regardless of whether it is explicit.

4. Create the cancellation edges: Analyze the tests and atoms to identify atoms that

have an opposite atom (e.g., “open” vs “close”, “enable” vs “disable”,

“remove” vs “insert”, etc.).

5. Create the dependency edges: Analyze the tests and atoms to define atoms that

depend on the execution of other atoms.

Figure 7: Prompt for general instructions stage in few-shot learning technique.

Meanwhile, the second and final section presented in Figure 8 adds the few-shot examples
(represented by the placeholder $example$) and concludes the learning context by emphasizing
the main task addressed in the first section of the prompt. It also provides the specific input data

(test suite), represented by the placeholder $test__suite$ regarding the target domain to be
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considered in the test-based domain model generation. Additionally, it employs the previously
mentioned courtesy expressions to prevent "impulsive" answers. A final key finding was the
inclusion of a sentence to account for the semantics of the tests. We observed that, as a result,
more deliberate elements began to be generated, breaking away from the usual identification —

noticeable with an increase in the generation of implicit atoms and instantiations, for example.

N\

Sexample$

Take your time and think carefully before answering. Consider the SEMANTICS
behind the tests.

Follow the instructions step by step.
Do NOT forget ANY explicit or IMPLICIT atom (node).

Do NOT forget ANY relation (edge).

Once you feel confident, generate the domain model as a directed graph based on the

test cases below about a mobile application.

Before answering, review all test cases and check if any atom (explicit or implicit) or

relation is missing!!!

Stest_suites

Figure 8: Prompt for exemplification and main task request with input data stage.

3.1.2 CoT learning

The CoT learning prompt is based on the approach proposed in [38], but also follows
the prompt chaining technique by splitting the generation of the domain models into five stages:
generation of (1) atoms, (2) instantiations, (3) cancellations, (4) dependencies, and (5) domain
model. It focuses on guiding the LLM through the reasoning necessary to properly identify all
the elements presented in the domain model instruction-by-instruction. The entire context is
maintained within the chaining of prompts.

After the initial sections of prompting, the first CoT learning section consists of an initial
setup represented in Figure 9. It introduces the model with the "chain-of-thoughts" keyword and

recaps the need to follow the rules and instructions step-by-step.
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I will guide you through your reasoning process with chain-of-thought examples,
alright?

Follow the rules and instructions step by step.

Figure 9: Prompt for initial CoT setup.

The second section is used across all stages and is illustrated by Figure 10. It aims to
explain the specific task, such as generating the atoms or the dependencies, while showing a
chain of thoughts example about the task.

The $specific_tasks$ placeholder specifies the stage of the chaining. For exam-
ple, in the fourth stage, which involves identifying the instantiations, it can be replaced by
"generate the INSTANTIATION edges". The Srule_explanation$ recaps the rules for
performing the specific task as an instruction. For the last stage, its replacement can be "join
all your responses and give me the domain model as a directed graph". Meanwhile, the
Stest_suite_examples$, Schain_of_thoughts$, and Sresponse$ consist of the
placeholders that compose an exemplification when in a CoT prompting technique. It specifies an
example of input data in $test_suite_example$ that will guide all chain-of-thoughts, the
CoT for solving the specific task based on the input data in $Schain_of_thoughtss$, and the
correct outcome based on the reasoning process in Sresponse$. Finally, the STARGET_NAME $
placeholder represents the specific target for the task based on the stage: atoms, instantiations,
cancellations, dependencies, or domain models (the last stage).

The last prompt section (Figure 11) relates specifically to the final stage of the CoT
learning. As in Figure 8, it concludes the learning context by emphasizing the main task presented
in the first section of the prompt. Unlike the few-shot approach, the instruction to account for
semantics is repeated throughout the chain of thought exemplification, rather than in the final

section.
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Identify the $specific_tasks$, please.

To do this, Srule_explanations§.

For example, given the following test cases:

Stest_suite_example$

The chain of thoughts is:
Schain_of_thoughts$

The response is:

Sresponse$

Now, apply the same reasoning and chain of thought to identify the $STARGET NAMES$
based on the same tests below about a mobile application and the atoms you have already
created.

Figure 10: Prompt with CoT template used across all CoT prompting stages.

Do NOT forget ANY explicit or implicit atom (node).
Do NOT forget ANY relation (edge).

Before answering, review all test cases and check if any atoms (explicit or implicit)

or relations are missing!

Figure 11: Prompt for final stage of CoT learning.

3.2 STRUCTURAL VALIDATION

With the learning context established by the main prompt, the framework employs a
satisfiability analysis to address structural concerns. With the integration of an ASP Solver named
Clingo?, the domain model validation is reduced to a logic verification problem of satisfiability
based on well-defined rules.

Clingo is an ASP solver for modelling complex problems such as planning, automated
reasoning, and combinatorial optimization. It combines a grounder responsible for translating

high-level rules into a processable format and a solver responsible for finding solutions for

3 Available at https://potassco.org/
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the given rules. Besides, it allows the creation of generic models that can be instantiated
with different values or configurations without modifying the ASP code directly through a
Logic Program (LP) Template that uses dynamic parameters — typically through directives or
preprocessing — to generate more flexible and reusable rules.

The structural validation module relies on an LP template with a set of rules and clauses
that infer new associations between atoms — those that may not be explicitly defined in the
domain model — based on the defined associations of cancellation, dependency, and instantiation
established earlier. After taking the domain model generated by the LLM as input, the Clingo ASP
solver defines all possible relations and the consistency of the given domain model. Consequently,
it validates the rules defined in the section of the domain model’s edges contextualization
(Figure 5), which guide the LLM responses. This process involves creating a set of literals based
on the given logical rules and verifying whether the domain model aligns with those rules. If
no assignment of values satisfies all the conditions or constraints simultaneously, the model
is identified as unsatisfiable and the set of unsatisfiable conditions and constraints is given to
the LLM as feedback. More detailed and formalized information about the rules is presented
subsequently.

The first rule (Listing 3.2) states that cancellations are inherited through instantiations,
meaning that when an instantiation occurs, it propagates the cancellation through a chain of
related instances. For example, let A represent Turn ON Wi-Fi, B represent Turn OFF
Wi-Fi, and C represent Turn OFF Wi-Fi from Settings. In this case, C inherits B
once turning off the Wi-Fi using the settings app is a specific mode of turning off the Wi-Fi.
Since turning on the Wi-Fi (A) would override any action related to turning off the Wi-Fi (B)
regardless of the level of specialization, it is possible to infer that A cancels C.

In contrast, if C represents Turn ON Wi-Fi from Settings, then itis a specific
mode of achieving A, meaning that C inherits A. As any action that turns on the Wi-Fi (A) — any
specialization of A — cancels the action of turning off the Wi-Fi (B), then turning on the Wi-Fi

using the settings app (C) cancels the action of turning off the Wi-Fi, meaning that C cancels B.

Listing 3.2: Logical clauses for cancellation-instantiation rule.

cancels (A, C) :— cancels(A, B), instanceof(C, B).
cancels (C, B) :— cancels(A, B), instanceof(C, A).

As explained earlier, if action A depends on action B, but action B has specializations,
then any action inheriting from B can fulfil the dependency required by A. For example, if
executing A requires an internet connection, it can be satisfied by enabling mobile data or Wi-Fi.
In this case, the actions Turn ON Wi-Fiand Turn ON mobile data would be instances
of Turn ON internet. The second rule (Listing 3.3) is based on this definition.

The rule at Listing 3.3 states that the dependency association is inherited from an
instantiation, meaning that dependencies are passed down from the base entity to its instances. For

example, let A represent Send message, Brepresent Create message, and C represent
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Send message using SIM Card 1. Since sending a message using a specific SIM card
is a specialization of the action of sending a message, it inherits all the dependencies of sending a
message. In this case, because sending a message requires creating one first, sending a message

using the default SIM card also inherits this dependency.

Listing 3.3: Logical clause for dependency-instantiation rule.

depends (C, B) :— depends(A, B), instanceof (C, A).

Note that the opposite affirmation is false. If action A depends on action B, then regardless
of any inheritance chain preceding B, action A can only be executed if action B or one of its
specific specializations is executed before A. We observe that a domain model establishing a
dependency of an action A with both a root action B and its specialization C would be redundant,
as the dependency of A with B implies that of A with C.

This reasoning follows the basic principle of inheritance: if a concrete instance is created
with a child and not with the parent, then its parent instance cannot be used to fulfill such a
dependence. For example, if A as Send an email depends on B as Create an email,
and B inherits C as Create a message, itisinvalid to assume that sending an email depends
on creating a message. In this case, the dependency specifically relates to the specialization
where the message is an email. In general, sending an email may depend on more specific
actions, such as sending an email with emojis or with a PDF, but not on higher-level actions like
simply creating a message.

The third rule (Listing 3.4) states that the cancellation association is inherited from
an instantiation, meaning that, as in the cancellation-instantiation rule, a transitive relation is
established between atoms of the same instances. This rule can be more easily understood by
seeing the inheritances as a tree, where any node reachable by traversing the tree from the root is
considered an instance of the root itself. If A is a child of B and B is a child of C, then the main

root of A is also the main root of C, meaning that A inherits C.

Listing 3.4: Logical clauses for instantiation-instantiation rule.

instanceof (A, C) :— instanceof (A, B), instanceof (B, C).

Based on the defined clauses, this validation stage analyses the structural consistency
of the domain models by identifying conflicts, including circular dependencies, cancellation
loops, and inconsistencies between different relation types, such as dependency, cancellation,
and instantiation.

Cyclical dependency (Listing 3.5) occurs when an atom depends on itself with a self-
referential cycle or when an arbitrary number of elements generates a cycle of dependency — e.g.
A depends B, B depends C, and C depends A) — so that the dependency can never be resolved.
This verification avoids situations where sending a message relies on sending a message, or where
sending a message depends on creating a message, which likewise depends on sending a message,

for example. In this study, we only covered the self-referential cycle and cyclical dependencies
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regarding two elements that mutually depend on each other; more complex scenarios will be

further addressed in future work.

Listing 3.5: Logical clauses for identification of cyclical dependency unsatisfiability.

cyclical_dependency (A, A) :— depends(A, A).
cyclical_dependency (A, B) :— depends(A, B), depends(B, A).

Similarly, cyclical cancellation (Listing 3.6) means that an atom cancels itself. In this
case, if atom A depends on atom B, but B cancels itself, A can never be executed because
the dependency can never be resolved. Note that in this case, a cyclical dependency between
different elements is not an issue, since opposite actions mutually cancel each other. For example,
disabling the internet cancels the action of enabling it, just as enabling the internet cancels the

action of disabling it.

Listing 3.6: Logical clause for identification of cyclical cancellation unsatisfiability.

cyclical_cancellation (A, A) :— cancels(A, A).

A conflict between dependency and cancellation (Listing 3.7) arises when an atom A
both depends on and cancels another atom B simultaneously or when A depends on B, but B
cancels A. In the first case, the action defined by A can never be executed, as it cancels its own
dependency. In the second case, A relies on an action that ultimately cancels it, leading to an

inconsistency between execution and cancellation.

Listing 3.7: Logical clauses for identification of dependency-cancellation unsatisfiability.

dependency_cancellation_conflict (A, B)
:— depends (A, B), cancels (A, B).
dependency_cancellation_conflict (A, B)
:— depends (A, B), cancels (B, A).

Analogously, a conflict between dependency and instantiation (Listing 3.8) emerges
when an atom both depends and inherits from another atom B, creating a dependency of its own
base entity, or when atom A depends on atom B, but B is an instance of A, creating a contradictory

and circular dependency that leads to inconsistency.

Listing 3.8: Logical clauses for identification of dependency-instantiation unsatisfiability.

dependency_instance_conflit (A, B)

:— depends (A, B), instanceof (A, B).
dependency_instance_conflit(A, B)

:— depends (A, B), instanceof (B, A).

The structural validation models also verify if Vx € A’ : x € A where A is the set of atoms

defined in the domain model and A’ is the set of atoms appearing in the associations. This ensures
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that a domain model cannot have an atomic action that appears in an association unless the action
is an atom of the domain model.

The ASP verifies the domain model consistency by checking any dependency cycles,
cancellation cycles, and inconsistencies between dependency-cancellation and dependency-
instantiation relations. A parsing is made to extract the core assumptions returned by the ASP
that led to the structural inconsistency based on the rules. The LLM receives all the identified
conflicts and inconsistencies, along with the feedback about atoms from the associations not

being included in the list of mapped atoms.

3.3 SEMANTIC VALIDATION

Semantic correctness refers to the model’s ability to ensure that the interpretations or
results it generates about a domain are accurate with the intended meaning [18]. Although the
domain model can be structurally sound, no guarantee is given that it is semantically correct
since the atoms and associations may not capture the semantics of the correct relationships
(associations) inside the tests.

Starting from the premise that each atom a represents an explicit unique step in a test
suite, let T be the set of atomic actions in a test case and A the set of atoms in the domain model.
Then, it must be the case that Va € T: a € A, which ensures that all atoms defined by the steps
are correctly mapped onto an atom in the domain model. Additionally, to be semantically correct,
the domain model should define all the dependency, cancellation, and instantiation associations
needed to execute any valid sequence of steps inside the domain.

However, addressing semantic correctness check [18] is not trivial without a proper
conformance notion between a domain model and a test suite, as well as the availability of
explicit semantic information (or an inference mechanism of such semantic information) about
the test suite to generate the domain model. Due to such constraints, we verify only whether the
generated domain model includes the minimum set of atoms that appear in the set of atomic
actions in the tests (Va € T: a € A). However, another semantic analysis approach would be to
assume that all tests provided in the test suite as input data are consistent and then verify whether
they are indeed consistent based on the generated domain model. While this does not fully ensure
semantic correctness, it would provide feedback about wrong dependencies and cancellations,
for example. Verifications about the associations and implicit atoms were addressed as part of
the evaluation process and are further discussed as limitations of this work.

An internal solution from our industrial partner involved in this study was used to extract
a list of atomic actions associated with each test step in the suite, based on the approach proposed
in [3]. However, the atom extraction process is highly context-sensitive. Aligned with the level of
creativity and non-determinism in the LLMs’ responses, the generated atoms and those mapped
by the tool may not match exactly in terms of writing, despite conveying the same semantic

meaning.
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To address this issue, a cosine similarity over word embedding technique was applied
to evaluate the semantic similarity of the atomic actions and the generated atoms. Both cosine
similarity and word embedding are strongly related to natural language processing (NLP). The
first metric measures the similarity between two vectors in a vector space by assessing their
angle. The second refers to dense, distributed, fixed-length word vectors created using word
co-occurrence statistics based on the hypothesis that words with similar contexts (other words)
share the same meaning [1].

The techniques for word embedding are usually divided into those that provide non-
contextualized word embeddings, such as GloVe (Global Vectors for Word Representation) [30],
and those that generate contextualized word embeddings, such as BERT (Bidirectional Encoder
Representations from Transformers) [16]. Unlike traditional embeddings, which assign a single
fixed vector to each word, contextual embeddings adjust the representation according to the
word’s meaning within a given sentence or paragraph. However, achieving better accuracy
through contextualization often involves expensive computations, representing a common trade-
off when selecting the optimal embedding technique for an application.

Due to the characteristic of context sensitivity in the domain models, we adhere to
the contextualized advanced word embedding SBERT (Siamese-BERT), a modification of the
pre-trained BERT model that uses Siamese and triplet network architectures. It generates
semantically meaningful sentence embeddings, and reduces the effort for finding the most similar
pair from 65 hours with BERT to about 5 seconds, while maintaining the accuracy [32].

A cosine similarity matrix is created from the embedding generated by SBERT for the
list of base atoms and the generated atoms with a threshold of 0.8. The value was reached after
refinements based on experimental analysis, and it assures that any match with a minimum
similarity of 80% is considered valid. Then, a matching algorithm is employed to map the base
atoms using the maximum semantic similarity, ensuring each generated atom is only mapped to
one specific base atom. If a base atom has no match, feedback is provided to the LLM with a list

of missing atoms, and a new iteration cycle is started.
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This chapter presents the evaluation process and metrics for analysing the generated

domain models. It highlights the research questions that guided the evaluation and their corre-

sponding answers. Finally, it discusses the limitations and threats to this study’s validity.

The evaluation is based on a case study that includes six test suites from the industrial

partner in a representative domain of mobile applications. Each test suite represents a specific

domain, with various test cases, atoms, and associations, as illustrated in Table 1.

Table 1: Distribution of test cases, atoms, and associations of each selected test suite.

Test Suite Test Cases | Atoms | Instantiations | Cancellations | Dependencies
FwUI 2 13 1 6 6
HostpotTimeout 4 33 0 24 11
PreloadContacts 5 10 0 0 9
MobileData 7 43 4 17 22
InternationalRoamingMenu 9 24 3 6 14
VoiceServicesSupport 12 27 5 14 12

The test suites represent the following specific domains:

* FWUI: addresses behaviours related to battery updates.

* HotspotTimeout: refers to the automatic disconnection of a hotspot after inactivity,

helping manage data usage and prevent prolonged idle connections.

* PreloadContacts: involves the importation and storage of contacts to a device.

* MobileData: refers to internet access through a cellular network on mobile devices.

* InternationalRoamingMenu: relates to managing mobile services while travelling inter-

nationally.

* VoiceServicesSupport: provides assistance for customers using VoIP (Voice Over Internet

Protocol) services.
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A set of ground-truth domain models was created to properly validate the generated
domain models. This approach adheres to the earlier embedding technique by ensuring a
similarity check between all atoms and associations in the reference and generated domains. To
keep consistency with the feedback given to the LLM on missing base atoms introduced in the
semantic validation discussion, the same threshold of 0.8 minimal similarity was adopted.

After creating each ground-truth domain model, an analysis was conducted to support
the evaluation process. The goal was to establish a baseline for analysing the results, considering
the complexity of each test suite addressed in the evaluation. The analysis was based on (1) the
difficulty of generating atoms (both implicit and explicit) and (2) the difficulty of generating each
type of association (instantiations, cancellations, and dependencies). Each metric was ranked as

low, medium, or high. Table 2 presents this baseline.

Table 2: Qualitative baseline of test suites difficulty in generating the ground-truth domain
models.

Test Suite Atoms | Instantiations | Cancellations | Dependencies
FWUI Low Low Low Low
HostpotTimeout Medium Low Medium Low
PreloadContacts Low Low Low Low
MobileData High Medium Medium High
InternationalRoamingMenu | Medium Medium Medium Medium
VoiceServicesSupport High High Medium High

To handle the variability in responses caused by LLMs’ non-determinism — where
different interactions (even with the same prompt) may lead to responses with varying degrees
of correctness — the experiments were conducted by generating the domain model for each test
suite 10 times, ensuring no history was preserved between interactions. All LLM parameters

remained with the default values.

4.1 METRICS

The pass rate and recall were utilized as quantitative metrics to assess the strengths and
limitations in generating the domain models. All metrics were applied to each prompt technique
defined in the framework, with the quantitative metrics representing the average value of the 10
runs performed for each test suite. We use A to represent the pass rate difference between the
CoT and the few-shot (FS) approaches.

The pass rate is defined by Equation 4.1. It evaluates Gemini’s capacity to create con-
sistent domain models by analysing the ratio between the number of passed tests and the total
number of tests. The latter equals all validations defined in the structural validation process

(identification of missing atoms in the atoms list mapped into one of the associations, cyclical
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dependency, cyclical cancellation, dependency-cancellation, and dependency-instantiation con-
flicts). It also includes the test of correctly identifying all explicit base atoms presented in the
test actions during the semantic validation process. Thus, the total number of tests equals six.
Given the creativity of LLMs, the pass rate focuses on addressing the LLM capability in
maintaining consistency between associations and atoms, especially since the responses may
contain elements not presented in the ground-truth domain models. Consequently, this particular
metric was adopted to assess the effectiveness of Gemini not only in generating complete domain
models but also in generating valid ones. Additionally, since the feedback is made by dealing
with the structural and semantic errors, it guides the discussion about improvements across

interactions.

Pass Rate =

Number of passed test cases
Total number of tests :

The recall is defined by Equation 4.2. It measures the Gemini’s ability to correctly
identify all the explicit and implicit atoms and associations that should have been generated

(positive instances) compared to the ground-truth domain models used as baselines.

TP
Recall = —— (4.2)
A TP I AN

Where:

* TP (True Positives) represents the number of base atoms or associations correctly gener-
ated by the model.

* FN (False Negatives) represents the number of base atoms or associations that should

have been generated but were not.

4.2 RESEARCH QUESTIONS

To properly evaluate the proposed framework, we formulated three research questions
(RQs). RQI1 and RQ2 focus on assessing Gemini’s effectiveness when no reference model
is provided, directly applying the proposed framework with structural validation and explicit
atom identifications. Meanwhile, the final RQ explores the impact of incorporating base atoms
and associations from the ground-truth domain models, aiming to guide semantic consistency
throughout the interaction cycles.

The research questions were designed as follows:
1. How effective is Gemini for test-based domain model generation?
2. How do the iterative cycles enhance the framework’s effectiveness?

3. How does a ground-truth domain model contribute to the framework’s effectiveness?



32

4.2.1 RQ1: Evaluation of domain models generation

The RQ1 assesses Gemini’s effectiveness in generating domain models by comparing the
results obtained with both prompting techniques. It evaluates the generated results based solely
on the LLM’s interpretation of the given prompts, meaning no structural and semantic feedback
validation was provided to enhance the effectiveness of the outcome. The evaluation results
focus on pass rate (Table 3), structural and semantic validation (Table 4), and recall (Table 5).

Table 3 illustrates the average pass rate of Gemini for each test suite. In general, the
few-shot performed better in addressing all validation requirements, with CoT having an average

decrease of 0.16 when accounting for all test domains.

Table 3: Average pass rate without interaction cycles.

Test Suite FS | CoT | A
FWUI 0.83 | 0.83 | 0.00
HostpotTimeout 0.95 | 097 | 0.02
PreloadContacts 0.95 | 0.83 | -0.12
MobileData 0.65 | 0.65 | 0.00

InternationalRoamingMenu | 0.83 | 0.82 | -0.01
VoiceServicesSupport 0.62 | 0.57 | -0.05
A Total Gain - - -0.16

The VoiceServicesSupport had the minimal pass rate in both scenarios (0.62 and 0.57 for
FS and CoT, respectively), matching the effort baseline addressed previously, where this domain
was considered the most complex one. Generally, the most promising pass rate values occurred
in the test suites where no higher effort was reported, with the average minimal value of 0.83 in
FS and 0.82 in CoT. This demonstrates that for domains with low or medium complexity, the
LLM shows better effectiveness in performing the task properly.

Table 4 highlights the LLM’s bottlenecks in generating domain models based on the
structural and semantic validations presented in Sections 3.2 and 3.3, respectively. It accounts
for the average error occurrences in each test domain distinguished by the learning context. As
each sample was run 10 times, a bottleneck of 0.1 means that from 10 runs, only one has the

error’s occurrence.
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Table 4: Average value of errors occurrence in each test suite without interaction cycles,
where AA = missing atoms in the atom list included in at least one association, CD =
cyclical-dependency, CC = cyclical-cancellation, DC = dependency-cancellation conflict, DI =
dependency-instance conflict, and MA = missing atoms.

Test Suite AA CD CcC DC DI MA
FS | CoT| A |FS|CoT| A |[FS|CoT| A | FS |[CoT| A |FS|CoT| A | FS | CoT | A
FWUI 00 00 |00]00| 00 |00|00] 00 |00/00| 00 |00|00| 00 [00]|10]| 1.0 |0.0
HotspotTimeout 03] 00 |-03]00| 00 00|00] 01 |01/00] 0.1 ]01]00| 00 [0.0]00]| 0.0 0.0
PreloadContacts 00 00 | 000000 00[00] 00 |00/00|03]03[00| 00 [00]03]| 0.7 |04
MobileData 0603 |-03]01|01 00|00] 01 |[01/04]| 06 |02|00| 00 [00]|10]| 1.0 |0.0
InternationalRoamingMenu | 0.8 | 0.5 |-03 | 00| 0.1 |0.1]0.0| 00 [00]00]| 0.1 |0.1[0.0]| 00 |00]02| 04 |0.2
VoiceServicesSupport 0908 |-0102| 04 |{02]00] 00 00]{02| 04 02/00| 00 00|10/ 1.0 |00
A Total Gain - - |-10| - - 103 - - 102 - - 109 - - 100 - - 106

Notably, the only test in which the CoT performed better (less errors occurred compared
to the FS approach) was in verifying that all atoms used in the associations were also listed in
the atoms’ list. Although this is a consistency issue based on the default template adopted as the
domain model, it is not as relevant as the remaining structural validations that generate more
severe inconsistencies, where the FS technique demonstrated better performance.

Table 5 presents the results based on the recall metric. It highlights that Gemini struggles
to define associations, one limitation already reported by other studies regarding the domain
modelling field [9, 12]. Cancellations and instantiations are the most impacted, especially when
dealing with medium and high complexity domains. Although the recall for dependencies did
not reach the ideal values, some dependencies were identified, and no zero recall values occurred,
as seen in situations involving instantiations and cancellations.

The most significant discrepancy between the prompt techniques is observed on the
dependencies identification, where CoT recall decreases by 0.77. However, this value is primarily
influenced by the FWUI test suite, where FS has a recall of 0.50 compared to 0.22 for CoT. This
trend is consistent across other associations as well. CoT appears to perform better in test suites
with medium or high effort baselines, as the significant discrepancies that guide the overall gain

are seen in the FWUI and PreloadContacts test domains, which are ranked as low.

Table 5: Average recall without interaction cycles.

Test Suite Atoms Instantiations Cancellations Dependencies

FS | CoT | A FS | CoT | A FS | CoT | A FS | CoT | A
FWUI 0.68 | 0.62 | -0.06 | 0.00 | 0.00 | 0.00 | 0.70 | 0.40 | -0.30 | 0.50 | 0.22 | -0.28
HotspotTimeout 0.70 | 0.88 | 0.18 | NA | NA | NA [0.13 047 | 033 | 0.75 | 0.77 | 0.02
PreloadContacts 0.88 1062 |-026| NA | NA | NA | NA | NA | NA | 0.77 | 036 | -0.41
MobileData 0.62 | 0.64 | 0.02 | 0.00 | 0.00 | 0.00 | 0.31 | 0.41 | 0.10 | 0.19 | 0.18 | -0.01
InternationalRoamingMenu | 0.82 | 0.80 | -0.02 | 0.00 | 0.00 | 0.00 | 0.40 | 0.07 | -0.33 | 0.49 | 0.37 | -0.12
VoiceServicesSupport 0.82 | 0.83 | 0.01 | 0.06 | 0.00 | -0.06 | 0.00 | 0.09 | 0.09 | 0.20 | 0.24 | 0.04
A Total Gain - - 1-0.14 | - - 1-006| - - |-011 ] - - | -0.77

Analysing the generated domain models revealed difficulties, especially in defining the
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relationships between the atoms. For example, correctly adding the atoms but failing to assign
them to the defined relations, or applying the same initial setup to all the first test steps, were
observed. Challenges appeared when attempting to define associations, such as adding the

dependencies between implicit and explicit atoms or defining the inheritance between atoms.

Answer to RQ1: The Gemini effectiveness in generating consistent test-based domain
models without any provided feedback is increased when considering the context of
medium and low domains, achieving from 80-90% of satisfiability under the structural and
semantic validations proposed in this work (pass rate). When analysing the effectiveness
of generating atoms and associations (recall), it faces a challenge for instantiations and
cancellations, unable to identify any association in instantiation, for example. In depen-
dencies identification, the recall achieved 77% maximum regardless of the prompting
technique. Additionally, the FS overcame the CoT approach by improving overall domain
models completeness and consistency. However, the results were highly influenced by A
within test domains ranked as low. The CoT technique presented better recall values in
some cases of medium or high complexity. Further study is required to reveal the CoT

benefits when properly generating domain models.

4.2.2 RQ2: Evaluation of feedback influence in domain models generation

RQ2 examines the impact of feedback on Gemini’s effectiveness by enhancing the
generation of domain models. This evaluation is based on the predefined interaction cycles
required to produce a domain model that successfully passes all validation stages. In this study,
we set the number of cycles to 10, each incorporating all possible feedback from the validation
phases.

Table 6 illustrates how many times out of 10 runs the LLM generated a valid (but possibly
incomplete) domain model and the interval (in brackets) of interactions necessary to achieve the
values for both prompting techniques. A value 9 [0;3] means Gemini created nine test-based
domain models that passed all structural and semantic validation tests by using an interval
of interaction cycles between zero — no feedback was needed — and a maximum of three. It
highlights that the error feedback indeed guides the LLLM through the process of achieving a

valid domain model, since most experiments have a minimal interaction cycle of at least one.
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Table 6: Frequency out of 10 runs that a valid domain model was created and the interval of
iterated feedback necessary to achieve the result.

Test Suite FS CoT
FWUI 10 [1;1] | 10 [1;1]
HostpotTimeout 10 [0;1] | 10 [0;1]
PreloadContacts 10 [0;1] | 10 [0:4]
MobileData 10[1;8] | 911;4]
InternationalRoamingMenu | 9 [0;2] | 9[0;2]
VoiceServicesSupport 10 [1:;6] | 8[2;5]

Figure 12 shows the pass rate for both prompting techniques concerning the different
test domains. When no value is reported for a subsequent interaction, it indicates that the LLM
successfully addressed all errors and no additional feedback was required. For instance, as
shown above, all FWUI samples passed with just one interaction cycle, so the pass rate was not
measured in subsequent interactions, as they did not occur. The dashed line indicates that, from
the point where the dashes start, no other sample could pass all tests regardless of the increase in
feedback.

From this, we can conclude that the feedback is highly significant to acquiring consistent
domain models, since the ones generated after the last interaction have a pass rate equal to
or close to 1.0 (where all structural and semantic validations are covered). Moreover, we can
infer that even with feedback, the Gemini effectiveness is still remarkable in the FS approach
compared to CoT, as it consistently maintained the highest values throughout all cycles.

The advantages of the feedback are especially highlighted in the MobileData and Voice-
ServicesSupport, both domains catalogued with the highest level of effort. Their first interactions
have the minimum pass rate global values, but their performance has significantly improved
after the second cycle. It re-emphasizes that though prompt engineering is a significant guide, in
complex scenarios it has its vulnerabilities [41] and requires integrated and robust approaches
with validation stages to achieve better results.

Table 7 presents the recall for the atoms and associations for both prompt techniques,
when the interaction cycles reach the maximum, or a valid domain model is created. When
the recall reaches its maximum value, the domains are considered complete, but they may not
be structurally valid, as this metrics is based on all samples rather than only those that passed
the structural tests. Compared to the similar analysis in the previous research question, it is
noticeable that the feedback increases the LLM’s capability to identify the atoms and associations.

However, the limitations for associations, especially for instantiations, remain significant.
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Figure 12: Average pass rate after all possible feedback.
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Table 7: Average recall after all possible feedback.

Test Suite Atoms Instantiations Cancellations Dependencies

FS | CoT | A FS | CoT | A FS | CoT | A FS | CoT | A
FWUI 0.81 | 0.78 | -0.03 | 0.00 | 0.20 | 0.20 | 0.70 | 0.40 | -0.30 | 0.53 | 0.22 | -0.32
HotspotTimeout 0.70 | 0.88 | 0.17 | NA | NA | NA | 0.13 | 0.47 | 033 | 0.72 | 0.77 | 0.05
PreloadContacts 09509 |-005]| NA | NA | NA | NA | NA | NA |0.79 | 053 | -0.26
MobileData 0.80 | 0.82 | 0.02 | 0.00 | 0.00 | 0.00 | 0.27 | 0.38 | 0.11 | 0.41 | 0.36 | -0.05
InternationalRoamingMenu | 0.82 | 0.82 | -0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.08 | -0.28 | 0.44 | 0.39 | -0.06
VoiceServicesSupport 1.00 | 1.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.27 | 0.18 | -0.09 | 0.21 | 0.22 | 0.02
A Total Gain - - 0.11 - - 1022 - - 1-024 ) - - | -0.61

Unlike the recall calculated without interaction cycles, when adding feedback, the CoT
achieved better results in identifying atoms and dependencies, even though the cancellations
and instantiations remained with lower values. However, as reported by Zhang et al. [44], the
creation of CoT is prone to errors and inaccuracies since it is a manual activity. This suggests
that enhancing the reasoning process and providing more examples related to cancellation and

instantiations could help improve the recall values for those associations.

r ")

Answer to RQ2: The Gemini effectiveness in generating consistent test-based results,
when including an oracle providing iterated feedback on the problems in the generated
model, is highly increased. Out of 120 domain models — 10 domains for each of the 6 test
suites, ranging between 2 prompting techniques — only 5 were considered unsatisfiable
based on the structural and semantic validations proposed in this work. Additionally, the
semantic validation improved the overall recall based on atom identification regardless of
the prompt approach. As in RQ1, the few-shot consistently maintained better results than
the CoT technique when accounting for the Gemini effectiveness with pass rate. However,
when comparing the final recall result, the identification of atoms and instantiations

increased with CoT, though the general identification of associations remains challenging.

4.2.3 RQ3: Evaluation on ground-truth influence in domain models gener-

ation

As previously discussed, one central aspect and limitation of the semantics validation
stage is the correct identification of all atoms and edges since there is no default parameter to
address this concern automatically. The RQ3 addresses the impact on Gemini effectiveness if a
ground-truth domain model containing a base for explicit and implicit atoms and associations
were provided as part of the framework (Figure 13), other than just the base atoms extracted
from the test cases’ actions.

The main change lies in the increased feedback provided to the LLM, as associations and

implicit atoms will now be included as part of the requirements when verifying the semantics of
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the domain model. Although it can reduce the number of domain models considered valid, it
possibly guides the LLM in generating more precise associations and generalized atoms, as will

be analysed when evaluating this question response.
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Figure 13: Framework for evaluating RQ3 by generating test-based domain models using LLMs
leveraging ground-truth domain models. Source: The author.

Since this approach only affects the test-based domain models generated with interaction
cycles, only the analysis regarding the presence of feedback was applied. Additionally, even
though it adds the comparison of associations and implicit atoms in each cycle, the metrics
remained unchanged. The total number of test cases addressed in the pass rate was unmodified
to maintain the cross-evaluation of the research questions’ consistency. The missing associations
identified during the interaction cycles were not accounted for in the pass rate values. Its influence
was only reflected when analysing this experiment recall results.

Table 8 illustrates how many times out of 10 runs the LLM generated a valid domain
model and the interval of interactions necessary to achieve the values for both prompting
techniques when using a ground-truth domain model.

As expected, the number of valid domain models that meet all requirements decreases
compared to the approach without ground-truth. However, as previously mentioned, the val-
idation of the atoms is determined by the embedding technique with a threshold of 0.8. This
suggests that a lower semantic similarity might still consider the mapping between generated
and base atoms complete, without compromising semantic integrity. Further discussion on this
analysis will be provided in the limitations section of this work (Section 4.3).

When comparing with the frequency presented in Figure 6, we noticed that as the amount
of the feedback interval range increases, the identification of implicit atoms poses a challenge
for the LLM.

Figure 14 shows a comparison of the pass rate value changes through the interaction

cycles with and without the presence of the ground-truth domain models.
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Table 8: Frequency out of 10 runs that a valid domain model was created and the interval of
iterated feedback necessary to achieve the result when using ground-truth domain models.

Test Suite FS CoT
FWUI 10 [1;1] | 6 [1;3]
HostpotTimeout 811;2] | 31[3;9]
PreloadContacts 10 [0;3] | 8 [1;4]
MobileData 2 [3;3] 0
InternationalRoamingMenu 0 4 [1;5]
VoiceServicesSupport 51([3;9] | 21[2;5]

It recaps the previous finding: although the associations were not included when calculat-
ing the pass rate, the overall results were still affected due to the LLM’s difficulty in finding the
implicit atoms. The worst values occurred essentially for the test domain with the highest number
of atoms — MobileData (43 atoms), and HotsportTimeout (33 atoms). However, the positive
impact of the feedback is still noticeable since, regardless of the number of implicit atoms or the
effort baselines, the pass rate still improved when comparing the first and last interactions.

Meanwhile, the pass rate A between the prompt techniques with and without ground-
truth domain models only showed a significant value when within a test domain ranked at some
medium or high level. The graphs were the same or closely for the easiest ones — FWUI and
PreloadContacts. As before (Figure 12), the few-shot technique surpassed the CoT, reiterating
that the few-shot learning increased the LLM’s knowledge about the specificities of the task. Ex-
perimental analysis shows that the LLM hallucination increased with the amount of information
in the CoT prompting and higher cycles of interaction. Further study on the prompting and LLM
parameters is needed to understand how to reduce this behaviour.

Table 9 presents the recall for the atoms and associations when the interaction cycles
reach the maximum, or a valid domain model is created using ground-truth domain models. It
highlights the Gemini limitation in correctly identifying mostly cancellations and dependencies,
even when feedback about these elements is given. Regardless of the prompt technique, the LLM
could generate all base atoms and instantiations. This last association is the most improved one,
since it had the minimal values in the two previous approaches.

The minimal values lie mainly in the test domains whose associations are ranked with
medium or high complexity. However, when compared to previous results, the inclusion of a
ground-truth domain model improved the recall from a minimum value of 0.00 to 0.85. This
means that the worst-case scenario involved identifying dependencies in the InternationalRoam-
ingMenu, achieving an 85% match. Additionally, the Gemini identification can be considered
satisfactory even for the domains ranked with the highest complexities (VoiceServicesSupport
and MobileData).
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Figure 14: Average pass rate after all possible feedback when using ground-truth domain models.
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Table 9: Average recall after all possible feedback when using ground-truth domain models.

Test Suite Atoms Instantiations Cancellations Dependencies

FS | CoT | A FS | CoT | A FS | CoT | A FS | CoT | A
FWUI 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.93 | -0.07 | 1.00 | 1.00 | 0.00
HotspotTimeout 1.00 | 1.00 | 0.00 | NA | NA | NA | 099 | 0.93 | -0.05 | 1.00 | 1.00 | 0.00
PreloadContacts 1.00 | 1.00 | 0.00 | NA | NA | NA | NA | NA | NA | 1.00 | 0.98 | -0.02
MobileData 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.98 | -0.02 | 0.89 | 0.95 | 0.06
InternationalRoamingMenu | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 0.70 | 0.80 | 0.10 | 0.85 | 0.91 | 0.06
VoiceServicesSupport 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 0.92 | 0.95 | 0.03 | 0.91 | 0.97 | 0.06
A Total Gain - - 1000 | - - 1000 | - - 1-0.01 - - 0.15

A key difference between the results regarding prompt techniques is that the dependencies
were better identified in the CoT approach, especially compared to the recall results without
ground-truth. The previous reasoning helps clarify this effect: the CoT prompt likely influenced
the LLM understanding of the dependencies and cancellation associations. An improved CoT
prompt could have led to better results, directly enhancing the framework’s performance in more
complex scenarios like MobileData. With the highest number of dependencies (22), this domain
outperforms the other test domains. Since the ground-truth approach provides feedback on the
missing dependencies, it enhances the LLM knowledge, which explains the observed differences.
For example, the recall for MobileData dependencies without ground-truth was 0.41 and 0.36,

while with ground-truth, it increased to 0.89 and 0.95 for FS and CoT, respectively.

s )

Answer to RQ3: The Gemini effectiveness in generating consistent test-based results is
affected by feedback insights based on ground-truth domain models. Out of 120 domain
models — 10 domains for each of the 6 test suites, ranging between 2 prompting techniques —
68 were considered unsatisfiable based on the structural and semantic validations proposed
in this work. However, considering the recall results, the decrease only means that more
consistent, correct, and complete domain models are created, as the number of positive
instances (atoms and associations) identification increases. Additionally, regardless of
the decrease, the positive impact of adding an interaction cycle remains, with effects
especially highlighted in the pass rate results. Unlike other analyses, the CoT technique
improves the identification of dependencies. Still, hallucinations were detected during
the experimental evaluation of this specific prompt technique, requiring more careful

consideration in future work.

4.3 LIMITATIONS

The proposed framework’s limitations are rooted in the challenge of validating the
domain model’s semantics. It lacks automatic analysis for new atoms generated by the domain

model that were absent in the base atoms and the associations’ definitions. Without a specialist
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analysis, there is no certainty to guarantee that all atoms and associations are complete and valid.
However, as with most Al-based applications, we can enhance the reliability of the framework
by ensuring that the responses are sound. To achieve this, more robust approaches, such as
fine-tuning the model, can be applied.

Additionally, the SBERT threshold in the embedding stage highly influences the frame-
work’s output. Analysis of the experiments revealed that, in some cases, the LLM generated cor-
rect atoms, but the threshold was high enough to prevent them from being mapped to base atoms.
For example, Set device multi-window mode ON and Enable multi-window
mode were not matched, leading to an extra cycle of interaction and, consequently, to the
accounting of error in the results analysis. Future improvements in this module are necessary to
enhance the inference of semantic similarity, either by decreasing the threshold or by applying
alternative embedding techniques that better suit the application.

Moreover, due to the need for input-provided domain models as ground-truths, the
framework’s effectiveness was not validated in test suites with large test cases or running
experiments with more samples. Besides, all the test suites were manually selected to ensure a
controlled environment where atoms and associations could be correctly inferred, avoiding the
need for specialized training before the experiments. Further analysis is needed to correctly infer
the Gemini’s effectiveness in higher complex scenarios, such as domains covering tests with the

interaction of multiple devices, several test cases, and composition associations.

4.4 THREATS TO VALIDITY

The main threat to the validity of this study revolves around the test suites used to develop
the domain models. In formal approaches, domain models are generated from requirements
or by specialists following the traditional software engineering cycle. Since the test suites are
written in natural language, the clarity of each test step may affect the LLM comprehension,
leading to inefficient responses or even hallucinations. Furthermore, unlike a proper requirements
elicitation, a test suite might not include all the relevant atoms and associations of a domain. So,
completeness analysis is an issue.

Another aspect concerns the correctness of the test cases. If a test case creates an invalid
context by describing incorrect execution steps within the domain being tested, the generated
domain models will reflect these errors and, as a result, will be incorrect. Additionally, for
tests where atomic actions are implicit and the general context does not help to identify those
actions correctly, the identification of atoms may be affected without fine-tuning in the specific
domain. For example, for non-public features — the LLM was not trained with the information
—, identifying specific dependencies that are not in the initial setup and are not common sense
would be hard to achieve.

As we propose generating domain models based on test suites, the outcome depends on

the clarity and correctness of the tests used as input and the accessibility of information about
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the domain. It introduces a bias in all subsequent applications that depend on the generated
domain model. For example, in Kaki [5], the domain model is the ground-truth used to infer the
satisfiability of a given test step order within the domain. If the domain model is incorrect, the
errors will affect all inferences. Similarly, when domain models are used to verify the soundness
of test cases [2], invalid or incomplete models can result in test cases that are themselves invalid.

Lastly, another threat concerns the creation of ground-truths. Since the established
baseline effort was defined by a single individual and used consistently across all evaluations
conducted by the same person, the conclusions are heavily influenced by a single perspective.
Although another researcher reviewed the base domain models, the qualitative analysis of the
LLM-generated domain models could achieve different results if more researchers’ opinions

were considered.
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RELATED WORK

The definition of domain models is one of the most complex and time-consuming tasks
in the software life cycle. Its integration with LLMs has increasingly been explored to enhance
processing and optimize development. However, they are still receiving reduced attention when
compared with that regarding code generation [9].

Chaaben et al. [11] proposed and evaluated a novel approach using LLM and few-shot
prompt learning for domain modelling assistance. This includes a tool, MAGDA, to address
time constraints and incomplete domain understanding, reducing the need for extensive training
on scarce datasets while providing versatile support for modelling activities. Oswald et al. [28]
investigated the use of LLMs for automating the generation of planning domain models from
simple textual descriptions, with the introduction of a framework for evaluating LLM-generated
domains by comparing the sets of plans for domain instances. An empirical analysis of 7 LLMs
across 9 planning domains was performed, and the results indicated that LLMs — especially those
with high parameter counts — show moderate proficiency in generating correct planning domains.

Chaaben et al. [10] focused on the ability of LLMs to enhance model completion in
domain modelling without requiring extensive training, utilizing few-shot prompt learning. They
proposed that LLMs can identify and add missing elements in diagrams by leveraging their
pattern recognition capabilities, effectively modelling static and dynamic diagrams. However,
additional calibration studies are needed to optimize their suggestions. Meanwhile, Cdmara et
al. [9] defended that modelling methods should adapt to include GAI tools and assess ChatGPT’s
capabilities in generating syntactically and semantically correct UML models. The models pro-
duced contain high variability and inconsistency, with limitations in generating basic modelling
concepts like association classes, and performance varying significantly by the problem domain.

The limitation in creating associations has been reported in other studies. Chen et
al. [12] addressed the automation of domain modelling using GPT-3.5 and GPT-4 through
zero-shot, few-shot, and CoT techniques. They found that while LLMs demonstrate strong
domain understanding, they face significant challenges in generating relationships and applying
advanced modelling best practices. The research emphasizes the need for enhanced prompting
methods and the incorporation of explicit modelling knowledge into LLMs to improve results.

More robust approaches have been designed to address the performance and automation



45

limitations. Yang [42] proposes a framework to create domain models without human interaction
or supervised training by adopting a multi-step automated domain modelling approach that
extracts model elements (e.g., class, attributes, and relationships) from problem descriptions. It
also adhered to a self-reflection mechanism that assesses each generated model element, offering
internal feedback for necessary modifications or removals, and integrates the domain model
with the generated feedback. As with most LLM-based applications, one limitation lies in the
coupling with the prompt when adopting different LLMs, since it might need to be adjusted to
ensure the task and format description are followed. Concurrently, Chen et al. [14] proposed an
LLM-based domain modelling approach that utilizes question decomposition to generate object
models from complex system descriptions. It significantly improves model quality and recall
by creating manageable sub-tasks based on human reasoning when modelling, focusing first on
classes, second on associations, and third on inheritances.

The reviewed studies highlight the promising potential of LLMs for automating domain
modelling through different prompt engineering techniques. While LLMs demonstrate strong
capabilities in recognizing patterns and creating general domain models [11], challenges persist
in areas like relationship generation [9, 12], consistency, and adherence to advanced modelling
practices. Approaches such as decomposition [14] and multi-step frameworks [42] have improved
model quality and recall. In general, the most commonly used models are those in the GPT!,
specially the GPT-3.5, and LLama? families. However, this is largely influenced by the timing
of the researches, as more robust models were not yet available. Consequently, some studies
highlight that better results could be achieved by adopting more powerful models in the future.

Unlike our approach, which creates domain models from tests written in natural language,
most studies focus on defining domain models for software system development, where entities
are classes and associations represent the relationships between these classes. These studies are
based on requirements or partial versions of domain models. In the last scenario, the emphasis
is on completing models rather than fully creating them. In general, the use of LLMs to define
test-based domain models remains unexplored, presenting opportunities for further advancements
in both software testing and generative Al.

When comparing the limitations and results of our work with the ones previously men-
tioned, several common issues emerge. The studies also report significant challenges in creating
associations and the difficulty of fully automating the process of domain model generation.
Additionally, as discussed in the limitations, incorporating more domain-specific knowledge into
LLMs is essential for achieving better results, as specific domains can reduce the effectiveness
of general LLMs in accurately resolving the task. This highlights that further research is needed
to refine prompting techniques, integrate explicit modelling knowledge, and optimize the calibra-
tion of LLMs for specific tasks. Despite these limitations, LLLMs provide valuable assistance in

automating and improving domain modelling processes.

I Available at https://platform.openai.com/docs/models
2 Available at https://www.llama.com/docs/overview/
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CONCLUSION

This study proposes an LLM-based approach for generating domain models from test
cases written in natural language. Among all representations of domain models, it specifically
focuses on describing domain models applied in the context of software testing, as defined
by Arruda F. [6]. Additionally, a set of formal rules covering associations of instantiations,
cancellations, and dependencies is proposed to verify the consistency of test-based domain
models using the Clingo ASP Solver.

Experiments involving some case studies were conducted to compare the effectiveness of
the LLM, specifically Gemini, in generating test-based domain models with and without feedback
from structural and semantic validations. Additionally, research questions were designed to
cover the LLM effectiveness in creating a domain model. To achieve consistent evaluations,
we defined a set of ground-truth domain models as a comparison reference. Another research
question also addressed further discussion about the effectiveness of the LLM when under these
baselines, accounting for semantics issues.

The analyses show that Gemini’s effectiveness in generating consistent test-based domain
models varies significantly depending on domain complexity and the presence of feedback
insights. In RQ1, Gemini achieved 80-90% satisfiability in medium and low-complexity domains,
but faced challenges in identifying associations, with the FS model outperforming the CoT
approach in terms of completeness and consistency. In RQ2, results improved significantly
when Gemini received feedback, with 95% of the 120 evaluated instances being considered
satisfiable. Semantic validation also improved atom identification, with the few-shot technique
outperforming CoT in structural and semantic validation, but the limitations in identifying the
associations remained. In RQ3, the impact of feedback based on ground-truth domain models
led to an initial decrease in the number of satisfiable models based on pass rate values, but with
an increase in recall. The CoT technique, while improving dependency identification, showed
challenges such as hallucinations, requiring more careful consideration in its application.

A more thorough analysis will be conducted as future work to determine how Gemini can
generate additional atoms and associations beyond those included in the ground-truth domain
models, while considering relevance and coherence. Besides, our goal is also to explore the

influence of the model’s parameters on the effectiveness when creating test-based domain models.
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For example, the common belief was that the temperature parameter in LLM interactions dictated
response determinism, where lower values ensured more consistent answers. However, as
exposed by Ouyang, S. et al. [29], the LLMs cannot be completely deterministic, meaning that
the influence of this parameter must be properly addressed to improve the evaluation of the
LLM-based applications.

We also aim to evaluate the framework effectiveness using more elaborate test suites by
analysing the pass rate and recall across a larger set of test cases. Additionally, we seek to develop
more sophisticated domain models that encompass more elaborate scenarios, such as multi-
device interactions within the same domain, while also addressing composition associations and
dependency cycles involving multiple atoms. However, since domains in software testing are
not static, features and test cases are always being added and/or updated. To account for this
more dynamic scenario, we intend to evaluate the LLM’s capability of self-updating the domain
models while maintaining the atoms and associations that are still relevant based on the older

version.
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