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RESUMO

Esta tese investiga as propriedades do estado fundamental e os diagramas de fase

quânticos de sistemas de spin de baixa dimensionalidade, com foco em cadeias do tipo

escada de spin–1/2 e modelos relacionados. Esses sistemas oferecem um terreno fértil para

explorar a interação entre frustração magnética, correlações quânticas, topologia e campos

externos. Combinando métodos numéricos avançados, principalmente o grupo de renor-

malização da matriz densidade (DMRG), com abordagens analíticas, analisamos como

diferentes geometrias de acoplamento e campos magnéticos dão origem a fases quânticas

distintas, incluindo platôs de magnetização, fases topológicas e protegidas por simetria, e

transições de primeira ordem. O estudo abrange escadas uniformes e alternadas, bem como

sistemas de escadas acopladas que interpolam entre comportamentos unidimensionais e

bidimensionais. Em particular, examinamos como a frustração influencia a estabilidade

dos estados coletivos de spin e como os acoplamentos entre escadas podem induzir tran-

sições entre estados de valência ressonante (RVB), fases de Haldane e fases triviais com

excitações coletivas de spin. Embora modelos analíticos aproximados, como mapeamentos

para bósons duros e teoria de ondas de spin, captem certos aspectos qualitativos desses

sistemas, nossos resultados destacam suas limitações na descrição precisa de fenômenos

críticos e fronteiras de fase, reforçando a importância de análises numéricas de alta pre-

cisão.

Palavras-chaves: Transições de Fase Quânticas. Escadas de Spin. Sistemas Frustrados.

Magnetismo Quântico. DMRG.



ABSTRACT

This thesis investigates the ground-state properties and quantum phase diagrams of

low-dimensional spin systems, with a focus on spin–1/2 ladder chains and related models.

These systems provide a fertile ground for exploring the interplay between magnetic frus-

tration, quantum correlations, topology, and external fields. By combining advanced nu-

merical methods, primarily the density matrix renormalization group (DMRG), with ana-

lytical approaches, we analyze how different coupling geometries and magnetic fields give

rise to distinct quantum phases, including magnetization plateaus, symmetry-protected

and topological phases, and first-order transitions. The study covers both uniform and

alternating ladders, as well as coupled ladder systems that interpolate between one- and

two-dimensional behavior. In particular, we examine how frustration influences the stabil-

ity of collective spin states, and how interladder couplings can drive transitions between

resonating valence bond (RVB) states, Haldane phases, and trivial phases hosting collec-

tive spin excitations. Although approximate analytical models, such as hard-core boson

mappings and spin-wave theory, capture some qualitative aspects of these systems, our

results highlight their limitations in accurately describing critical behavior and phase

boundaries, reinforcing the importance of high-precision numerical analysis.

Keywords: Quantum Phase Transitions. Spin Ladders. Frustrated Systems. Quantum

Magnetism. DMRG.



LIST OF FIGURES

Figure 1 – Examples of magnetic ordering: (FM) Spins align parallel in the same

direction. (AFM) Spins alternate in opposing directions. (FiM) Spins

oppose with unequal magnitudes. (PM) Spins orient randomly. . . . . . 28

Figure 2 – Magnetization per spin, 𝑚, as a function of the dimensionless tem-

perature, 𝑘𝐵𝑇/𝐽 , for the Ising model on a 32 × 32 square lattice in

the absence of an external magnetic field. Simulations were performed

using the demon algorithm. Due to the symmetry of the system, two

degenerate ferromagnetic states are possible: one with all spins aligned

up and the other with all spins aligned down. . . . . . . . . . . . . . . 30

Figure 3 – Field-temperature phase diagram of the spin–ladder compound (Hpip)2CuBr4,

showing quantum disordered (QD), quantum critical (QC), and spin

Luttinger-liquid (LL) phases . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4 – (A) Ladder compound (VO)2P2O7. (B) Schematic representation of a

two-leg compound, SrCu2O3, and a three-leg compound, Sr2Cu3O5. The

black dots represent Cu atoms, the intersections of solid lines represent

O atoms, and the dashed lines indicate Cu–O bonds. 𝐽 denotes the

coupling along the ladder, while 𝐽 ′ represents the coupling along the

rungs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 5 – (a) Tetragonal crystal structure of Li2Cu2O(SO4)2 at room tempera-

ture. Cu are in blue, O in red, S in yellow, and Li in green. (b) Detail of

the atomic structure of the chains running along the c axis. (c) Magnetic

model deduced from the atomic structure, with the three dominant in-

teractions along the chain: 𝐽⊥ in green, 𝐽 = 𝐽× in blue, and 𝐽2 in red.

(d) Topologically equivalent frustrated two-leg spin ladder. . . . . . . . 35

Figure 6 – Ba2CuTeO6 exhibits a coupled ladder structure, where the exchange

interactions 𝐽rung and 𝐽leg define individual two-leg ladders, and 𝐽inter

couples these ladders together. . . . . . . . . . . . . . . . . . . . . . . . 36



Figure 7 – (a) Monoclinic structure of Ba2CuTeO6 showing the 12𝑅 hexagonal

stacking sequence. The intra-ladder (𝐽leg and 𝐽rung) interactions be-

tween the Cu2+ cations (colored green) are indicated by the red ar-

rows. The inter-ladder interaction 𝐽inter through the face- sharing CuO6-

TeO6-CuO6 trimer is indicated by the blue arrow. (b) Two-leg spin

ladder structure of Cu2+ cations in Ba2CuTeO6 viewed along the a

axis. (c) Two-leg spin ladder phase diagram. The red arrow shows that

Ba2CuTeO6 lies close to the quantum critical point (QCP) on the Néel

ordered side of the phase diagram. . . . . . . . . . . . . . . . . . . . . 36

Figure 8 – Schematic representation of two coupled, frustrated two-leg ladders.

Solid lines denote intra-ladder interactions, while dashed lines indicate

inter-ladder couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 9 – (a) Representation of an iterative growth process in the NRG method.

(b) Representation of an iterative growth process in the DMRG method. 40

Figure 10 – Finite-size DMRG algorithm. . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 11 – Case where the operators belong to the same block. . . . . . . . . . . . 49

Figure 12 – Case where the operators belong to different blocks. . . . . . . . . . . . 49

Figure 13 – Graphical representation of an iterative construction of an exact MPS

representation of an arbitrary quantum state by a sequence of singular

value decompositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 14 – (a) Examples of tensors represented in diagrammatic (graphical) no-

tation, where each leg corresponds to a tensor index. (b) Basic tensor

operations such as contraction, represented by joining legs correspond-

ing to summed indices. (c) A closed loop indicating a trace operation,

exemplified by tracing over a single tensor’s indices. . . . . . . . . . . . 56



Figure 15 – (a) The left MPS |Ψ⟩ (orange) and the Hamiltonian ℋ̂ as an MPO

(blue) are shown as tensor networks, with physical indices 𝑑 and bond

dimensions 𝑚𝑖 annotated. (b) The variational problem ⟨Ψ|ℋ̂|Ψ⟩ =

𝐸⟨Ψ|Ψ⟩ is represented diagrammatically. (c) Two adjacent sites (green)

are selected for local optimization. The problem is reformulated as an

eigenvalue equation, and redundant contractions are eliminated by ex-

ploiting gauge freedom. (d) Instead of evaluating the full network, left

and right environments are pre-contracted, allowing efficient optimiza-

tion of the two-site tensor (orange) via the Davidson algorithm. (e) The

optimized tensor is factorized using SVD, truncated to bond dimension

𝑚𝑗, and the singular values are absorbed according to the sweep direc-

tion to preserve orthogonality. . . . . . . . . . . . . . . . . . . . . . . 58

Figure 16 – (a) and (b) represents two forms of make a linear path in a 2D system. 59

Figure 17 – Results of a DMRG calculation for the Heisenberg model on a 16 × 8

cylinder with antiferromagnetic order pinned at the open boundaries.

To work in the strong pinning limit, it is useful to imagine the finite

system embedded within a larger system acted on by an infinitely strong

field (shown here as the shaded regions). The pinning fields at the

physical edges are determined by the Hamiltonian bonds connecting

the real and fictitious system. . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 18 – Spin gap ∆𝐸 versus 1/𝐿 for a linear spin chain with open boundary

conditions. Red and blue points represent DMRG results for spin-1
2

and spin-3
2

chains, respectively. Dashed lines show extrapolations to

the thermodynamic limit using Eq. (3.34). The maximum truncation

error is ∼ 10−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 19 – Local magnetization of the ground state and the first two magnetic exci-

tations in a linear spin chain with open boundary conditions, computed

using DMRG. The magnetization distribution, ⟨𝑆𝑧
𝑖 ⟩, and excitation,

⟨∆𝑆𝑧
𝑖 ⟩𝑘, are shown for the 𝑘-th excitation (e.g., 𝑘 = 1 corresponds to a

transition from 𝑆𝑧
total = 0 to 𝑆𝑧

total = 1). Panels (a.1)–(a.3) depict spin-1
2

chain; panels (b.1)–(b.3) depict spin-3
2

chain. The maximum truncation

error is ∼ 10−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Figure 20 – Spin gap ∆𝐸 versus 1/𝐿 for a linear spin chain with open bound-

ary conditions. Panels (a) and (b) represent DMRG results for spin-1

and spin-2 chains, respectively. Dashed lines show extrapolations to the

thermodynamic limit using Eq. (3.34). The maximum truncation error

is ∼ 10−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 21 – Local magnetization of the ground state and magnetic excitations in

a linear spin chain with open boundary conditions, computed using

DMRG. The magnetization distribution, ⟨𝑆𝑧
𝑖 ⟩, and excitation, ⟨∆𝑆𝑧

𝑖 ⟩𝑘,
are shown for the 𝑘-th excitation. Panels (a.1)–(a.3) depict spin-1 chain;

panels (b.1)–(b.3) depict spin-2 chain. The maximum truncation error

is ∼ 10−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 22 – Illustration of the AKLT state for a spin-1 chain with open boundary

conditions. Large shaded circles represent spin-1 sites, each a symmetric

combination of two spin-1
2

particles (small solid circles). Blue lines in-

dicate singlet bonds between neighboring spin-1
2

particles. Under open

boundary conditions, an unpaired spin-1
2

remains at each boundary,

leading to a fourfold degenerate ground state in the thermodynamic

limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 23 – Schematic of a spin ladder with coupled linear chains. The leg coupling

𝐽‖ governs interactions along each chain, while the rung coupling 𝐽⊥

connects adjacent chains. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 24 – Valence bond configurations in spin ladders. (a) Resonating configura-

tion with alternating dimer bonds. (b) Staggered configuration without

resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 25 – Ground-state phase diagram of a spin-1
2

two-leg ladder, computed using

DMRG as a function of rung coupling 𝐽⊥ and leg coupling 𝐽‖. The

color scale represents the average rung correlation 𝑅, calculated for

𝐿 = 100 rungs with a truncation error of ∼ 10−10. At 𝐽⊥ = 0, 𝑅 ≈ 0,

indicating two decoupled spin-1
2

chains. In the strong rung coupling

limit (|𝐽⊥| ≫ 𝐽‖), 𝑅 → −0.75 for 𝐽⊥ > 0 (singlet-dominated RS phase)

and 𝑅 → 0.25 for 𝐽⊥ < 0 (triplet-dominated RT phase). In the weak

rung coupling regime (|𝐽⊥| ≪ 𝐽‖), 𝑅 ≈ 0, reflecting nearly independent

legs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Figure 26 – A triangular arrangement of antiferromagnetically interacting Ising spins,

constrained to point either up or down, serves as the simplest exam-

ple of frustration. In this configuration, it is impossible for all three

spins to be fully antiparallel. Consequently, instead of the two ground

states expected from Ising symmetry (all spins flipped up or down), the

system exhibits six degenerate ground states. . . . . . . . . . . . . . . 87

Figure 27 – Schematic representation of a frustrated two-leg ladder. Here, 𝐽‖ de-

notes the interactions along the legs, 𝐽⊥ along the rungs, and 𝐽× along

the diagonals. The diagonal coupling 𝐽× introduces magnetic frustra-

tion into the antiferromagnetic arrangement. . . . . . . . . . . . . . . . 88

Figure 28 – DMRG results for a spin-1
2

frustrated ladder with 𝐽⊥ = 1, 𝐽‖ = 0.8,

𝐽× = 0.72, 𝐿 = 100 rungs, and open boundary conditions. (a) Spin-
1
2

edge states, characteristic of a spin-1 chain. (b) First magnetization

excitation, confirming the edge-state nature. (c) Local rung correlation,

indicating a rung-triplet state. (d) Energy gap ∆ ≈ 0.306, obtained via

linear extrapolation in 1/𝐿 . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 29 – Schematic of possible phases in a spin-1
2

frustrated ladder: rung-singlet

(RS), Haldane, columnar dimerized (CD), and staggered dimerized

(SD). The RS and Haldane phases are well-established, but the dimer-

ized phases remain debated . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 30 – Ground-state phase diagram of the spin-1
2

frustrated ladder. The sys-

tem features two distinct phases, the rung-singlet and the rung-triplet,

separated by a quantum phase transition (red line). Purple rungs with

ellipses represent rung-singlet spin states, while red rungs with paral-

lel spins represent rung-triplet states. Numbered circles denote specific

points in the phase diagram for which thermodynamic results are pro-

vided in the source of the figure. . . . . . . . . . . . . . . . . . . . . . . 93

Figure 31 – Magnetization per rung, 𝑚 = ⟨𝑆𝑧
total⟩/𝐿, versus magnetic field ℎ for a

ladder with 𝐿 = 128 rungs and 𝐽‖ = 0.55. Shown are the paramagnetic

(PM), 𝑚 = 1/2, and fully polarized (FP) plateaus, with critical fields

ℎ𝑃𝑀 , ℎ−, ℎ+, and ℎ𝐹𝑃 . The field ℎ𝑓 indicates a magnetization jump,

and ℎ0 marks the finite-size splitting of the 𝑚 = 1/2 plateau into two

steps under open boundary conditions. . . . . . . . . . . . . . . . . . . 95



Figure 32 – Magnetization per rung 𝑚 = ⟨𝑆𝑧
total⟩/𝐿 versus external magnetic field

ℎ from DMRG calculations for a ladder with 𝐿 = 128 rungs, 𝐽‖ = 0.2,

and 𝐽× = 0.18. For a finite-size ladder, The small magnetization step in

the middle of the 𝑚 = 1/2 plateau occurs when the spinon changes its

spin from ∆𝑆𝑧 = −1/2 to +1/2. Maximum truncation error is ∼ 10−10. 98

Figure 33 – Critical field ℎFP for the fully polarized state as a function of 𝐽× and 𝐽‖.100

Figure 34 – DMRG-derived phase diagram of magnetic field ℎ versus frustration 𝐽×

for 𝐽‖ = 0.55 in the thermodynamic limit. Magnetization 𝑚 is color-

coded for a system with 𝐿 = 128 rungs. Gapped plateaus at 𝑚 =

1 (fully polarized, FP), 𝑚 = 1/2, and 𝑚 = 0 (paramagnetic, PM)

are bounded by ℎFP, ℎ+, ℎ−, and ℎPM, respectively. Gapless Luttinger

liquid (LL) phases lie between plateaus. The Luttinger parameter 𝐾

approaches 1 (FP, PM) or 1/4 (𝑚 = 1/2) at second-order transitions

from the LL side and 1/2 at Kosterlitz-Thouless (KT) transitions (∙)
closing the 𝑚 = 1/2 plateau. A first-order transition line ℎ𝑓 , marked

by magnetization jumps, begins at a bicritical point (♦) on ℎFP and

includes two points (∙) at 𝐽× = 𝐽‖. . . . . . . . . . . . . . . . . . . . . 101

Figure 35 – DMRG results for singlet ⟨𝑛̂𝑠⟩ and triplet ⟨𝑛̂𝑡0⟩ densities versus magne-

tization 𝑚 for 𝐽‖ = 0.55, 𝐽× = 0.75, and 𝐿 = 128. Magnetization states

within the jump occur for 0.70 < 𝑚 < 0.78. Inset: same parameters

except 𝐽× = 0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 36 – Transverse spin correlations Γ11(𝑟) (same leg) and Γ12(𝑟) (different legs)

near the fully polarized (FP) plateau for 𝐽‖ = 0.55, shown in the bot-

tom panels. In phases I and I′, the singlet density ⟨𝑛̂𝑠⟩ ≠ 0 and triplet
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1 INTRODUCTION

Magnetism has long attracted scientific interest, with its earliest documentation linked

to lodestones—naturally magnetized minerals known for their ability to attract iron. Prior

to the 19th century, electricity and magnetism were regarded as unrelated phenomena.

This perspective changed in 1820 when Hans Christian Ørsted demonstrated that an

electric current can deflect a magnetic compass needle [1], revealing a fundamental con-

nection between electric and magnetic fields and initiating the development of classical

electromagnetism.

Despite this progress, the microscopic origin of magnetism remained elusive for much

of the 19th century. James Clerk Maxwell’s formulation of the electromagnetic field equa-

tions in the 1860s provided a unified description of electric and magnetic phenomena [2].

These equations describe how time-varying electric and magnetic fields give rise to one an-

other and accurately capture the macroscopic behavior of electromagnetic fields. However,

they do not account for the microscopic sources of magnetism, such as the spontaneous

alignment of magnetic domains observed in ferromagnetic materials like lodestones.

Lodestones, primarily composed of magnetite (Fe3O4), are known to exhibit permanent

magnetization. Although classical electromagnetism can describe the field generated by

such materials, it lacks a mechanism for explaining the internal alignment of atomic

magnetic moments. This limitation pointed to the necessity of a microscopic theory of

magnetism.

The advent of quantum mechanics in the early 20th century provided the necessary

framework. The discovery of the electron in 1897 [3], followed by the development of atomic

models such as that of Bohr in 1913 [4], highlighted the inadequacy of classical physics

in describing atomic-scale phenomena. A key conceptual advance was the introduction of

the electron’s intrinsic angular momentum, or spin, which plays a central role in magnetic

behavior.

The quantization of angular momentum was first observed experimentally in the

Stern–Gerlach experiment of 1922 [5], which demonstrated that silver atoms possess dis-

crete magnetic moment orientations. While initially interpreted in terms of orbital angular

momentum, later developments clarified that spin is the primary source of the observed

quantization. This finding established spin as the fundamental microscopic origin of mag-
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netism.

The macroscopic magnetic properties of materials arise from interactions between the

spins of individual electrons. Depending on the nature and geometry of these interactions,

different types of magnetic ordering can emerge:

• Ferromagnetism: characterized by parallel alignment of spins, leading to a net

magnetic moment (e.g., magnetite).

• Antiferromagnetism: involves alternating spin orientations, resulting in zero net

magnetization.

• Ferrimagnetism: similar to antiferromagnetism but with unequal opposing mo-

ments, yielding a net magnetization (e.g., hematite).

• Paramagnetism: unpaired electron spins tend to align with an external magnetic

field but become disordered by thermal agitation in its absence.

These types of magnetic order are schematically illustrated in Fig. 1.

Figure 1 – Examples of magnetic ordering: (FM) Spins align parallel in the same direction. (AFM) Spins
alternate in opposing directions. (FiM) Spins oppose with unequal magnitudes. (PM) Spins
orient randomly.

Ferromagnetism (FM)

Antiferromagnetism (AFM)

Ferrimagnetism (FiM) 

Paramagnetism (PM)

Source: The author (2025)



29

Magnetic properties are also sensitive to external conditions, particularly tempera-

ture and pressure. In 1895, Pierre Curie discovered that ferromagnetic materials exhibit

spontaneous magnetization only below a specific temperature, now known as the Curie

temperature [6]. Above this threshold, thermal fluctuations overcome spin alignment, and

the material enters a paramagnetic state. This phenomenon provided early insight into

magnetic phase transitions and remains a cornerstone in the study of magnetic materials.

1.1 SPIN MODELS AND PHASE TRANSITIONS

Spin models are fundamental to understanding magnetic systems and their associated

phase transitions. Among the earliest and most influential is the Ising model, introduced

by Wilhelm Lenz in the 1920s [7] and solved in one dimension by Ernst Ising [8]. In

its classical formulation, the Ising model describes spins as discrete variables (𝑠𝑖 = ±1),

interacting with their nearest neighbors. Despite its simplicity, it serves as a cornerstone

in the study of magnetic ordering and critical phenomena. Its Hamiltonian, including a

coupling to an external magnetic field ℎ, is given by

ℋ = −
∑︁
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 − ℎ
∑︁
𝑖

𝑠𝑖, 𝑠𝑖 = ±1, (1.1)

where 𝐽𝑖𝑗 denotes the coupling constant: positive for ferromagnetic (𝐽𝑖𝑗 > 0) and negative

for antiferromagnetic (𝐽𝑖𝑗 < 0) interactions. The second term represents the Zeeman

energy due to the external field. In one dimension, thermal fluctuations inhibit long-range

order at finite temperature, precluding a phase transition due to entropic dominance.

In two dimensions, however, the model undergoes a continuous phase transition at a

finite critical temperature 𝑇𝑐. Lars Onsager’s exact solution for the zero-field case (ℎ = 0)

in 1944 [9], employing transfer matrix techniques, revealed the emergence of spontaneous

magnetization below 𝑇𝑐, signaling a transition from a disordered Paramagnetic (PM)

phase to an ordered ferromagnetic phase. This seminal result, illustrated in Fig. 2, firmly

established the Ising model as a prototypical framework for studying criticality.

The three-dimensional Ising model remains analytically unsolved due to its inher-

ent complexity. Numerical approaches, particularly Monte Carlo simulations [10, 11] and

Renormalization Group (RG) methods, provide valuable insights. Monte Carlo techniques

yield statistical estimates for thermodynamic quantities such as magnetization and suscep-
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tibility, while RG analyses uncover universal behavior and critical exponents, in agreement

with experimental results for materials such as iron and nickel.

Figure 2 – Magnetization per spin, 𝑚, as a function of the dimensionless temperature, 𝑘𝐵𝑇/𝐽 , for the
Ising model on a 32×32 square lattice in the absence of an external magnetic field. Simulations
were performed using the demon algorithm. Due to the symmetry of the system, two degenerate
ferromagnetic states are possible: one with all spins aligned up and the other with all spins
aligned down.
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Extending beyond discrete spin variables, vector spin models offer a more general

description. In the classical Heisenberg model, spins are treated as continuous vectors

𝑆⃗ = (𝑆𝑥, 𝑆𝑦, 𝑆𝑧) with components constrained to lie on a unit sphere. The quantum

Heisenberg model generalizes this further by introducing spin operators 𝑆𝛼, satisfying the

angular momentum commutation relations:

[𝑆𝛼, 𝑆𝛽] = 𝑖𝜖𝛼𝛽𝛾𝑆
𝛾, (1.2)

where 𝜖𝛼𝛽𝛾 is the Levi-Civita symbol. The corresponding Hamiltonian is

ℋ̂ =
∑︁

𝛼∈{𝑥,𝑦,𝑧}

∑︁
⟨𝑖,𝑗⟩

𝐽𝛼𝑆
𝛼
𝑖 𝑆

𝛼
𝑗 , (1.3)

which includes, as special cases, the isotropic Heisenberg (XXX) model (𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧),

the anisotropic XXZ model (𝐽𝑥 = 𝐽𝑦 ̸= 𝐽𝑧), and the fully anisotropic XYZ model (𝐽𝑥 ̸=
𝐽𝑦 ̸= 𝐽𝑧).

In classical Two-Dimensional (2D) systems with continuous symmetry, the Mermin–Wagner

theorem [12] forbids spontaneous symmetry breaking at finite temperatures. This result
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arises from the divergence of low-energy fluctuations (Goldstone modes), which destabilize

long-range order. Nonetheless, certain 2D systems exhibit unconventional transitions. A

prominent example is the 2D XY model, where spins are confined to a plane. This model

undergoes a topological phase transition, known as the Kosterlitz-Thouless (KT) transi-

tion, at a critical temperature 𝑇KT [13]. Unlike conventional transitions, it is not associated

with spontaneous symmetry breaking, but rather with the unbinding of vortex–antivortex

pairs. Below 𝑇KT, the system enters a quasi-long-range ordered phase characterized by al-

gebraically decaying spin correlations. In contrast, three-dimensional systems can exhibit

true long-range order through conventional continuous symmetry breaking.

Quantum extensions of these models replace classical spins with discrete quantum

degrees of freedom, introducing quantum fluctuations that are particularly relevant in low-

dimensional systems. These fluctuations lead to phenomena such as quantum criticality,

where zero-temperature phase transitions occur due to quantum rather than thermal

fluctuations.

Classical phase transitions arise from the competition between thermal energy and

interaction-induced ordering, and typically occur at finite temperature (𝑇 > 0K). By

tuning external parameters such as pressure or magnetic field, a system may transition

between distinct phases—for example, from a PM to a ferromagnetic phase. Above the

critical temperature (e.g., the Curie temperature), thermal agitation disrupts spin align-

ment, while below it, interactions dominate and stabilize ordered configurations.

As temperature approaches absolute zero (𝑇 → 0K), thermal fluctuations are sup-

pressed, but quantum fluctuations, arising from the Heisenberg uncertainty principle,

remain significant. These drive quantum phase transitions, which are governed by a non-

thermal control parameter 𝑔 (e.g., pressure, magnetic field, or chemical doping). The

transition occurs at a Quantum Critical Point (QCP) located at 𝑔 = 𝑔𝑐. Near the QCP,

the system becomes scale-invariant, and physical quantities exhibit power-law scaling.

The divergence of the correlation length 𝜉 and characteristic timescale 𝑡𝑐 follows

𝜉 ∼ |𝑔 − 𝑔𝑐|−𝜈 , 𝑡𝑐 ∼ |𝑔 − 𝑔𝑐|−𝜈𝑧, (1.4)

where 𝜈 is the correlation length exponent and 𝑧 is the dynamical critical exponent. At

the critical point, fluctuations span all spatial and temporal scales, resulting in universal

behavior characterized by critical exponents. Although strictly speaking quantum critical-

ity occurs at 𝑇 = 0K, its signatures can be observed experimentally at low temperatures,
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where quantum and thermal fluctuations coexist. These features are depicted schemati-

cally in Fig. 3.

Figure 3 – Field-temperature phase diagram of the spin–ladder compound (Hpip)2CuBr4, showing quan-
tum disordered (QD), quantum critical (QC), and spin Luttinger-liquid (LL) phases

Source: Reference [14]

Accurate analysis of these models—particularly in the quantum regime—relies on nu-

merical techniques. Monte Carlo simulations, despite being hindered by the sign problem

in many quantum systems, remain widely used in both classical and quantum contexts.

The Density Matrix Renormalization Group (DMRG) method [15–17] has become a stan-

dard tool for studying One-Dimensional (1D) quantum systems, offering highly accurate

ground-state and low-energy spectra. A diverse array of numerical methods is available

for studying many-body quantum systems, including variational methods, exact diago-

nalization, tensor networks, and neural quantum states [18].

1.2 LOW-DIMENSIONAL QUANTUM MAGNETISM

Quantum spin models, defined by lattice geometry (e.g., linear chains, ladders, square

or Kagome lattices), interaction strengths (𝐽𝑖𝑗), and dimensionality, offer a versatile frame-

work for describing a wide range of physical systems, including real magnetic materials.

Among these, the 1D Heisenberg Antiferromagnetic (HAF) model plays a foundational

role in the study of quantum phenomena. Haldane famously conjectured that the ground



33

state of such systems depends crucially on the spin magnitude: half-odd-integer spin

chains
(︀
𝑆 = 1

2
, 3
2
, . . .

)︀
are gapless, whereas integer-spin chains (𝑆 = 1, 2, . . . ) possess a fi-

nite energy gap—the so-called Haldane gap—separating the ground state from the lowest

excitations [19, 20]. This prediction triggered a surge of interest in low-dimensional spin

systems, particularly for 𝑆 = 1, where the resulting Haldane phase has been well estab-

lished both theoretically [21, 22] and experimentally [23–25]. As a topological phase [26],

it evades the traditional Landau paradigm of symmetry breaking, featuring hidden string

order and characteristic edge states in open chains [22, 27–29]. These traits mirror more

general topological phases of matter, such as topological insulators [30], which also ex-

hibit bulk-edge correspondence—insulating bulk behavior coexisting with conducting edge

modes.

Spin ladders form an important class of quantum many-body systems that interpolate

between 1D chains and 2D lattices. They serve as effective models for several real mate-

rials, including (Hpip)2CuBr4 [14], (C5H12N)2CuBr4 [31], (VO)2P2O7, and SrCu2O3 [32],

all of which realize spin–1
2

ladders. The structural and magnetic properties of these com-

pounds—illustrated in Fig. 4—make them ideal platforms for exploring low-dimensional

quantum effects.

Figure 4 – (A) Ladder compound (VO)2P2O7. (B) Schematic representation of a two-leg compound,
SrCu2O3, and a three-leg compound, Sr2Cu3O5. The black dots represent Cu atoms, the
intersections of solid lines represent O atoms, and the dashed lines indicate Cu–O bonds. 𝐽
denotes the coupling along the ladder, while 𝐽 ′ represents the coupling along the rungs.

Source: Reference [32]
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The ground-state properties of spin ladders depend strongly on the number of legs:

even-leg ladders typically exhibit a finite spin gap and host gapped spin–liquid phases,

while odd-leg ladders are generally gapless [33–35]. This even-odd effect is supported

by analytical results, such as Lieb-Schultz-Mattis-type theorems [36], and by extensive

numerical studies up to four-leg ladders [37–39], scaling analyses [40], and experimen-

tal data [32, 41–43]. Ladders with higher spin also attract theoretical and experimental

attention. For instance, Na2Ni2(C2O4)3(H2O)2 and 𝛽-CaCr2O4 realize spin–1 [44] and

spin–3
2

[45, 46] ladders, respectively.

The spin–1
2

frustrated two-leg ladder, featuring diagonal couplings, has attracted con-

siderable interest [47–51]. These couplings introduce magnetic frustration, which sup-

presses full Antiferromagnetic (AFM) order. The resulting ground-state phase diagram

includes Rung-Singlet (RS) and Rung-Triplet (RT) phases [49, 51], with the latter often

associated with Haldane-like behavior. Frustrated two-leg ladders display several unique

phenomena, including equivalence to spin–1 chains under specific exchange patterns [49,

52, 53], fractional magnetization plateaus [48, 54–56], first-order transitions [48, 49, 54],

spinon and magnon condensation [48], and KT transitions [55–57].

Nevertheless, only a few materials are known to realize spin–1
2

frustrated ladders,

limiting experimental validation. BiCu2PO6 [58] is a rare example, where frustration

stems from next-nearest-neighbor couplings along the ladder legs [59]. Another candi-

date, Li2Cu2O(SO4)2, exhibits 𝐽× = 𝐽‖ and a ferromagnetic rung coupling 𝐽⊥, along with

a strong antiferromagnetic next-nearest-neighbor exchange 𝐽2 [60–63], as illustrated in

Fig.5.

In mixed-spin ladders, the interplay between spin arrangement and coupling strengths

can give rise to ferrimagnetism, as anticipated by the Lieb-Mattis theorem [64–76]. Similar

behavior is found in other 1D ferrimagnetic models [77, 78], such as alternating spin

chains with spin–(1
2
, 1) and spin–(1

2
, 5

2
), which exhibit ferrimagnetic ground states and

magnetization plateaus at 1/3 and 2/3, respectively [79–85].

Studies using DMRG have explored the roles of density-dependent magnon hopping,

magnon-magnon interactions, and edge-state behavior [86]. In certain anisotropic models,

the 1/3 magnetization plateau terminates in a KT transition [87], similar to findings in

anisotropic ferrimagnetic chains [88–90]. In contrast, isotropic trimer systems exhibit a

1/3 plateau without a KT transition [91].
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Figure 5 – (a) Tetragonal crystal structure of Li2Cu2O(SO4)2 at room temperature. Cu are in blue, O in
red, S in yellow, and Li in green. (b) Detail of the atomic structure of the chains running along
the c axis. (c) Magnetic model deduced from the atomic structure, with the three dominant
interactions along the chain: 𝐽⊥ in green, 𝐽 = 𝐽× in blue, and 𝐽2 in red. (d) Topologically
equivalent frustrated two-leg spin ladder.
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FIG. 1. (a) Tetragonal crystal structure of Li2Cu2O(SO4)2 at room
temperature. Cu are in blue, O in red, S in yellow, and Li in green.
(b) Detail of the atomic structure of the chains running along the c

axis. (c) Magnetic model deduced from the atomic structure, with the
three dominant interactions along the chain: J⊥ in green, J = J× in
blue, and J2 in red. (d) Topologically equivalent frustrated two-leg
spin ladder.

calculations have been carried out using the pseudopotential
plane-wave method as implemented in the QUANTUM ESPRESSO

suite of codes [16]. Exchange and correlation has been
accounted for in the generalized gradient approximation
(GGA) parametrized by Perdew, Burke and Ernzerhof (PBE)
[17]. Ultrasoft pseudopotentials [18] have been employed with
a plane-wave and charge density cutoffs of 60 and 480 Ry, re-
spectively. The four half-filled bands of dominant Cu-3dx2−y2

character hybridized with the 2p states of the neighboring
oxygen ions are well separated from the continuum manifold.
Strikingly, these bands are almost dispersionless except along
�-Z, i.e., along the chain direction, confirming therefore the
marked quasi-1D character of these electronic states, expected
from structural considerations. Maximally localized Wannier
function [19] (MLWF) interpolation of the band structure was
performed using WANNIER90 [20] and is shown in Fig. 2. This
interpolation allows the extraction of the effective hopping
integrals between magnetic orbitals and reveals that three
interactions largely dominate the dispersion: the intraplatelet
hopping t⊥ = −146 meV, the NN interplatelet hopping t =
161 meV, and the NNN hopping along the legs t2 = 101 meV.
Considering these three terms only, a tight-binding description
of the band structure can easily be constructed leading to the

FIG. 2. Detail of the paramagnetic Cu-3dx2−y2 band manifold
around the Fermi level in Li2Cu2O(SO4)2 calculated using GGA-PBE
and interpolated with MLWFs (left panel) and corresponding total
and partial density of states (right panel). The inset shows one of the
MLWFs centered on the Cu site; the large antibonding O-2p tails are
clearly visible on neighboring atoms.

analytical results

ε1,2(k) = ε3d − t⊥ + 2t2 cos(2πkz),

ε3(k) = ε3d + t⊥ − 4t cos(πkz) + 2t2 cos(2πkz),

ε4(k) = ε3d + t⊥ + 4t cos(πkz) + 2t2 cos(2πkz). (2)

The corresponding bands are represented in Fig. 2 with red
lines and clearly illustrate the excellent description of the
electronic structure provided by this simplified 1D model. A
mapping of the paramagnetic band structure onto a single-band
Hubbard model at half-filling, eventually reducing to an
antiferromagnetic (AFM) Heisenberg model in the strongly
correlated limit, provides a direct link between these hopping
parameters and the AFM component of the magnetic cou-
plings, through the expression J AFM = 4t2/Ueff . One could
therefore expect the three dominant couplings J⊥, J , and J2

to be essentially AFM and of the same order of magnitude.
However, this simple analysis overlooks the presence of poten-
tially large ferromagnetic (FM) contributions [21–23] which,
depending on the detailed atomic arrangement supporting the
superexchange mechanisms, could partially balance or even
dominate their AFM counterparts. J is primarily associated
with a Cu-O-Cu bond forming an angle of 116◦ and is likely
to be dominated by its AFM component. J2 corresponds to
a long-range interaction mediated by a bridging SO4 group,
a geometry which usually favors antiferromagnetism too and
might give rise to strong couplings [15,24]. The situation is,
however, very different for J⊥ where the Cu-O-Cu bond forms
an angle of 97◦, close to the FM-AFM crossover [25].

In order to investigate this point, the magnetic couplings
were estimated within the broken symmetry formalism,
i.e., by mapping total energies corresponding to various
collinear spin arrangements within a supercell [15,26] onto

180406-2

Source: Reference [62]

Extending from 1D to higher dimensions presents significant theoretical and compu-

tational challenges. Coupled spin ladders, shown in Fig. 6, offer a practical step toward

2D systems. These have been extensively studied [33, 92–97], and are known to exhibit

quantum phase transitions between gapped disordered states and magnetically ordered

Néel phases.

One notable compound is Ba2CuTeO6 [98–100], which realizes weakly coupled spin–1
2

ladders through orbital ordering of Cu2+ ions. While isolated ladders would feature a

spin–singlet ground state, the system undergoes magnetic ordering at a Néel temperature

much lower than the dominant exchange energy scale. This suggests that interladder

couplings are weak but sufficient to drive magnetic order, placing the compound near the

quantum critical point separating the gapped and ordered phases (see Fig. 7).

Another relevant example is C9H18N2CuBr4 [101], a spin–1
2

magnetic insulator com-
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posed of coupled two-leg ladders. Its low-temperature magnetic behavior and proximity

to the quantum critical point have been characterized [102–104].

Figure 6 – Ba2CuTeO6 exhibits a coupled ladder structure, where the exchange interactions 𝐽rung and
𝐽leg define individual two-leg ladders, and 𝐽inter couples these ladders together.

Source: Reference [100]

Figure 7 – (a) Monoclinic structure of Ba2CuTeO6 showing the 12𝑅 hexagonal stacking sequence. The
intra-ladder (𝐽leg and 𝐽rung) interactions between the Cu2+ cations (colored green) are indi-
cated by the red arrows. The inter-ladder interaction 𝐽inter through the face- sharing CuO6-
TeO6-CuO6 trimer is indicated by the blue arrow. (b) Two-leg spin ladder structure of Cu2+
cations in Ba2CuTeO6 viewed along the a axis. (c) Two-leg spin ladder phase diagram. The
red arrow shows that Ba2CuTeO6 lies close to the quantum critical point (QCP) on the Néel
ordered side of the phase diagram.

Source: Reference [100]

Frustrated magnetic systems hold greater promise for hosting exotic quantum phases,

such as spin liquids and topological states, due to competing interactions. Yet, frustration

in coupled ladder systems remains relatively unexplored [105]. While numerical methods

like quantum Monte Carlo are powerful for unfrustrated models, they suffer from the
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sign problem in frustrated systems, especially in 2D, necessitating the use of advanced

computational techniques.

Given the success of unfrustrated coupled ladders in modeling quantum materials,

the frustrated case is particularly compelling. Frustrated two-leg ladders exhibit rich and

complex phase diagrams that go beyond those of unfrustrated systems, providing strong

motivation for the present study. The model shown in Fig. 8 offers a promising framework

for exploring the interplay of frustration and dimensional crossover in quasi-1D and 2D

settings, including the emergence of novel and potentially topological phases.

Figure 8 – Schematic representation of two coupled, frustrated two-leg ladders. Solid lines denote intra-
ladder interactions, while dashed lines indicate inter-ladder couplings.

Source: The author (2025)

1.3 THESIS OUTLINE

This thesis is organized as follows:

Chapter 2 introduces the DMRG method, the primary numerical tool used in this work.

We present both its traditional formulation and modern Matrix Product State (MPS)-

based approach, with attention to implementation details. The chapter also describes the

computational libraries employed, includes code examples, and outlines the methodology

applied throughout the thesis.

Chapter 3 focuses on low-dimensional quantum spin systems. We begin with spin–𝑆

chains for 𝑆 =
(︀
1
2
, 1, 3

2
, 2
)︀
, presenting DMRG results and discussing the Haldane conjecture

and associated topological phases. The chapter concludes with an analysis of spin ladder

models, including the ground-state phase diagram of the spin–1
2

two-leg ladder.
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Chapter 4 analyzes the phase diagram of the spin–1
2

frustrated two-leg ladder under

an external magnetic field. We examine ground-state properties, identify distinct phases

and their boundaries, and estimate KT transition points.

Chapter 5 investigates a Heisenberg two-leg ladder with alternating spins (1
2
, 1) in a

magnetic field. Combining DMRG and spin–wave theory, we construct the phase diagram,

estimate critical points, determine phase boundaries, and compare numerical results with

analytical predictions.

Chapter 6 explores systems of coupled spin–1
2

two-leg ladders, considering both un-

frustrated and frustrated configurations. Using DMRG, we construct phase diagrams,

characterize the resulting phases, and extend the study to even-leg systems, with partic-

ular emphasis on the four-leg case.

Chapter 7 summarizes the main findings of this thesis and outlines possible directions

for future research.
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2 DENSITY MATRIX RENORMALIZATION GROUP (DMRG)

The DMRG, introduced by Steven White in 1992 [16, 17], is a powerful numerical

method for investigating strongly correlated 1D and quasi-1D quantum systems. A defin-

ing feature of such systems is the exponential growth of their Hilbert space with system

size, which poses significant obstacles for both analytical approaches and conventional

approximation methods, such as perturbation theory or standard variational techniques.

The core challenge addressed by DMRG lies in the computational intractability associ-

ated with this vast Hilbert space. The method’s key innovation is to represent the ground

state within an optimally reduced basis, retaining only the most relevant components

while discarding less significant contributions. This strategy enables a drastic reduction

in the effective Hilbert space dimension while preserving the essential physical properties

of the system.

The traditional formulation of DMRG has its roots in the broader context of RG

theories, which aim to capture the behavior of many-body systems near criticality. The

development of DMRG was motivated by the limitations of the Numerical Renormaliza-

tion Group (NRG) method [106], as critically assessed by White and Noack [107]. While

NRG proceeds by iteratively diagonalizing the Hamiltonian and retaining only the lowest-

energy eigenstates, it often fails to provide accurate descriptions of low-energy properties

in extended systems. In contrast, DMRG improves upon this approach by introducing a

two-block scheme (see Fig. 9(b)), which outperforms the single-block strategy employed

in NRG (see Fig. 9(a)).

In the NRG framework, one begins with a small block of sites in a 1D system and

incrementally adds new sites. To mitigate the exponential growth of the Hilbert space,

a maximum number of retained states, denoted by 𝑚, is imposed. Once this limit is

reached, truncation is performed by discarding states beyond this threshold after each

site addition. This iterative procedure continues until convergence of the ground-state

energy is achieved. The selection process, commonly referred to as decimation, retains

states associated with the lowest eigenvalues and thus plays a decisive role in the method’s

effectiveness. DMRG retains the iterative structure of NRG but enhances its precision by

using a two-block architecture, which offers a superior balance between computational

efficiency and the fidelity of physical information.
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Figure 9 – (a) Representation of an iterative growth process in the NRG method. (b) Representation of
an iterative growth process in the DMRG method.

Source: Adapted from [108] and [109].

2.1 FORMULATION

The ground state of the system can be expressed in terms of a bipartite decomposition

as

|Ψ⟩ =
∑︁
𝑖,𝑗

𝑐𝑖𝑗|𝑖⟩ ⊗ |𝑗⟩ =
∑︁
𝑖,𝑗

𝑐𝑖𝑗|𝑖𝑗⟩, (2.1)

where |𝑖⟩ and |𝑗⟩ form orthonormal bases for subsystems A and B, respectively, and the

coefficients 𝑐𝑖𝑗 are given by 𝑐𝑖𝑗 = ⟨𝑖𝑗|Ψ⟩. It is assumed that the state |Ψ⟩ is normalized, i.e.,

⟨Ψ|Ψ⟩ = 1. When the dimension of the basis for block A reaches a maximum allowed value

𝑚, a change of basis is performed through a procedure known as decimation, transforming

the basis to |𝑖′⟩. This transformation aims to minimize the squared norm of the difference

between the true ground state |Ψ⟩ and its approximation |Ψ̃⟩:

𝑆 =
⃒⃒
|Ψ⟩ − |Ψ̃⟩

⃒⃒2
, (2.2)

where the approximate state is defined as

|Ψ̃⟩ =
𝑚∑︁

𝑖′=1

∑︁
𝑗

𝑐𝑖′𝑗|𝑖′𝑗⟩. (2.3)

Considering the system illustrated in Fig. 9(b) as a bipartite structure composed of

blocks A and B, the Hilbert space of the full system (superblock) is given by ℋ̂𝐴+𝐵 =

ℋ̂𝐴⊗ℋ̂𝐵, with total dimension 𝒟𝐴+𝐵 = 𝒟𝐴 ·𝒟𝐵. For a pure state |Ψ⟩, the density matrix
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is

𝜌 = |Ψ⟩⟨Ψ|. (2.4)

The reduced density matrix associated with block A is obtained by tracing out the degrees

of freedom of block B:

𝜌𝐴 = TrB|Ψ⟩⟨Ψ|. (2.5)

The matrix elements of 𝜌𝐴 are

𝜌𝐴𝑛𝑚 = ⟨𝑛|𝜌𝐴|𝑚⟩ =
∑︁
𝑖

⟨𝑛𝑖|Ψ⟩⟨Ψ|𝑖𝑚⟩ =
∑︁
𝑖

𝑐𝑛𝑖𝑐
*
𝑖𝑚, (2.6)

For pure states, the density matrix 𝜌 satisfies several key properties:

• Idempotency: 𝜌2 = 𝜌,

• Hermiticity: 𝜌† = 𝜌,

• Normalization: Tr 𝜌 = 1,

• Positivity: all eigenvalues are non-negative.

The eigenvectors |𝜌𝐴𝑖 ⟩ of 𝜌𝐴 form an orthonormal basis for the reduced Hilbert space

of block A, with associated eigenvalues 𝜌𝐴𝑖 ≥ 0 that satisfy the normalization condition∑︀
𝑖 𝜌

𝐴
𝑖 = 1. The spectral decomposition of 𝜌𝐴 then takes the form

𝜌𝐴 =
∑︁
𝑖

𝜌𝐴𝑖 |𝜌𝐴𝑖 ⟩⟨𝜌𝐴𝑖 |, (2.7)

and a completely analogous decomposition applies to the reduced density matrix of block

B.

2.1.1 Singular Value Decomposition

For a general complex matrix M of dimensions 𝑀 × 𝑁 (with 𝑀 > 𝑁), the Singular

Value Decomposition (SVD) provides a decomposition of the form

M = USV†, (2.8)

where U is an 𝑀 × 𝑁 matrix with orthonormal columns (U†U = I𝑁), V is an 𝑁 × 𝑁

unitary matrix, and S is a diagonal 𝑁 ×𝑁 matrix whose non-negative diagonal elements

𝜔𝑖 are known as the singular values of M. Equation (2.8) defines the SVD of M.
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Applying this decomposition to the matrix of coefficients 𝑐𝑖𝑗 appearing in Eq. (2.1),

we obtain

𝑐𝑖𝑗 =
∑︁
𝑘

𝑈𝑖𝑘𝜔𝑘 (𝑉𝑘𝑗)
† =

∑︁
𝑘

𝑈𝑖𝑘𝜔𝑘𝑉
*
𝑗𝑘, (2.9)

which allows the many-body wavefunction |Ψ⟩ to be re-expressed as

|Ψ⟩ =
∑︁
𝑖,𝑗,𝑘

𝑈𝑖𝑘𝜔𝑘𝑉
*
𝑗𝑘|𝑖𝑗⟩

=
∑︁
𝑘

(︃∑︁
𝑖

𝑈𝑖𝑘|𝑖⟩
)︃
𝜔𝑘

(︃∑︁
𝑗

𝑉 *
𝑗𝑘|𝑗⟩

)︃

=
∑︁
𝑘

𝜔𝑘|𝑎𝑘⟩|𝑏𝑘⟩, (2.10)

where we define the orthonormal states

|𝑎𝑘⟩ =
∑︁
𝑖

𝑈𝑖𝑘|𝑖⟩, |𝑏𝑘⟩ =
∑︁
𝑗

𝑉 *
𝑗𝑘|𝑗⟩. (2.11)

In the context of Hilbert spaces, unitary transformations preserve inner products and

therefore the norm of vectors, playing an analogous role to rotation operators in Euclidean

space R3. In this framework, the matrices U and V serve as change-of-basis operators

that rotate the original bases of blocks A and B, respectively, into new orthonormal sets.

The resulting vectors |𝑎𝑘⟩ and |𝑏𝑘⟩ form orthonormal bases referred to as the Schmidt

basis.

Thus, the wavefunction |Ψ⟩ can be expressed in Schmidt form as

|Ψ⟩ =
∑︁
𝑘

𝜔𝑘|𝑎𝑘𝑏𝑘⟩, (2.12)

which highlights the bipartite entanglement structure of the state. In this basis, the re-

duced density matrices for subsystems A and B take particularly simple diagonal forms:

𝜌𝐴 = Tr𝐵|Ψ⟩⟨Ψ| =
∑︁
𝑘

𝜔2
𝑘|𝑎𝑘⟩⟨𝑎𝑘|, (2.13)

𝜌𝐵 = Tr𝐴|Ψ⟩⟨Ψ| =
∑︁
𝑘

𝜔2
𝑘|𝑏𝑘⟩⟨𝑏𝑘|. (2.14)

The squared singular values 𝜔2
𝑘 thus correspond to the eigenvalues of both reduced

density matrices. These quantities are central to DMRG, as they determine which basis

states contribute most significantly to the entanglement between blocks and guide the

truncation process in the renormalization procedure.
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2.1.2 The Decimation

Returning to the truncation procedure introduced previously, we now express both the

exact ground state |Ψ⟩ and its approximation |Ψ̃⟩ in terms of the Schmidt decomposition:

|Ψ⟩ =
𝑀∑︁
𝑘=1

𝜔𝑘|𝑎𝑘𝑏𝑘⟩, (2.15)

|Ψ̃⟩ =
𝑚<𝑀∑︁
𝑘=1

𝜔𝑘|𝑎𝑘𝑏𝑘⟩. (2.16)

where 𝑀 is the full dimension of the Schmidt decomposition and 𝑚 is the number of

states retained in the truncated basis. The approximation |Ψ̃⟩ is obtained by keeping only

the 𝑚 Schmidt vectors associated with the largest singular values 𝜔𝑘.

The error in this approximation can be quantified using the squared norm introduced

in Eq. (2.2). In analogy with the Frobenius norm for matrices,

||M||2 = Tr(M†M), (2.17)

the squared norm for vectors in Hilbert space corresponds to their inner product. As-

suming the singular values are ordered such that 𝜔1 ≥ 𝜔2 ≥ · · · ≥ 𝜔𝑀 ≥ 0, the squared

difference between the full and truncated states becomes:

𝑆 = |||Ψ⟩ − |Ψ̃⟩||2

=

⃒⃒⃒⃒
⃒

𝑀∑︁
𝑘=1

𝜔𝑘|𝑎𝑘𝑏𝑘⟩ −
𝑚<𝑀∑︁
𝑘=1

𝜔𝑘|𝑎𝑘𝑏𝑘⟩
⃒⃒⃒⃒
⃒
2

=

⃒⃒⃒⃒
⃒

𝑀∑︁
𝑘=𝑚+1

𝜔𝑘|𝑎𝑘𝑏𝑘⟩
⃒⃒⃒⃒
⃒
2

=
𝑀∑︁

𝑘,𝑙=𝑚+1

𝜔𝑘𝜔𝑙⟨𝑎𝑙𝑏𝑙|𝑎𝑘𝑏𝑘⟩ =
𝑀∑︁

𝑘,𝑙=𝑚+1

𝜔𝑘𝜔𝑙𝛿𝑘,𝑙

=
𝑀∑︁

𝑘=𝑚+1

𝜔2
𝑘, (2.18)

where the last equality follows from the orthonormality of the Schmidt vectors: ⟨𝑎𝑙𝑏𝑙|𝑎𝑘𝑏𝑘⟩ =
𝛿𝑘,𝑙.

From Eqs. (2.13) and (2.14), the squared singular values 𝜔2
𝑘 are the eigenvalues of the

reduced density matrices 𝜌𝐴 and 𝜌𝐵, and the vectors |𝑎𝑘⟩ and |𝑏𝑘⟩ are their corresponding

eigenvectors. Therefore, Eq. (2.18) gives the sum of the eigenvalues associated with the

discarded states in the reduced Hilbert space.

To minimize the truncation error 𝑆, one must retain the eigenvectors corre-

sponding to the largest eigenvalues of the reduced density matrix, as these carry the
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dominant weight in the entanglement spectrum. This procedure is the core of the density

matrix-based truncation in the DMRG algorithm.

At each renormalization step, the quantity

𝜖 = 1−
𝑚∑︁
𝑘=1

𝜔2
𝑘, (2.19)

defines the discarded weight, representing the loss in norm resulting from the truncation.

Since the singular values satisfy the normalization condition
∑︀𝑀

𝑘=1 𝜔
2
𝑘 = 1, Eq. (2.19)

directly measures the contribution from the states removed during the decimation. The

total discarded weight accumulates throughout the successive truncations and serves as a

reliable metric of the approximation quality.

2.1.3 Lanczos Method

A central objective in many numerical algorithms for quantum systems is the diag-

onalization of the Hamiltonian. The Lanczos method [110] is one of the most widely

used techniques for this task, particularly in large Hilbert spaces. It is favored for its

low memory requirements—storing only three vectors at any given step—and for its

rapid convergence to extremal eigenvalues, typically limited only by machine precision.

Through an iterative process, the Lanczos algorithm generates an orthonormal basis in

which the Hamiltonian is represented as a tridiagonal matrix [111].

We begin with an arbitrary normalized vector |Ψ0⟩ from the Hilbert space. The next

vector in the sequence is generated by applying the Hamiltonian ℋ̂ and orthogonalizing

via the Gram-Schmidt procedure:

|Ψ1⟩ = ℋ̂|Ψ0⟩ −
⟨Ψ0|ℋ̂|Ψ0⟩
⟨Ψ0|Ψ0⟩

|Ψ0⟩, (2.20)

which ensures orthogonality: ⟨Ψ0|Ψ1⟩ = 0. The process continues with

|Ψ2⟩ = ℋ̂|Ψ1⟩ −
⟨Ψ1|ℋ̂|Ψ1⟩
⟨Ψ1|Ψ1⟩

|Ψ1⟩ −
⟨Ψ1|Ψ1⟩
⟨Ψ0|Ψ0⟩

|Ψ0⟩, (2.21)

which guarantees ⟨Ψ0|Ψ2⟩ = ⟨Ψ1|Ψ2⟩ = 0.

Generalizing this process, we recursively define the (𝑛 + 1)-th vector in the Krylov

subspace as

|Ψ𝑛+1⟩ = ℋ̂|Ψ𝑛⟩ − 𝑎𝑛|Ψ𝑛⟩ − 𝑏2𝑛|Ψ𝑛−1⟩, (2.22)
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for 𝑛 = 1, 2, . . . , with initial conditions |Ψ−1⟩ = 0 and 𝑏0 ≡ 0. The scalar coefficients 𝑎𝑛

and 𝑏2𝑛 are given by

𝑎𝑛 =
⟨Ψ𝑛|ℋ̂|Ψ𝑛⟩
⟨Ψ𝑛|Ψ𝑛⟩

, 𝑏2𝑛 =
⟨Ψ𝑛|Ψ𝑛⟩

⟨Ψ𝑛−1|Ψ𝑛−1⟩
, (2.23)

In the basis |Ψ0⟩, |Ψ1⟩, |Ψ2⟩, . . ., the Hamiltonian is represented by the tridiagonal

matrix:

ℋ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0 𝑏0 0 0 . . .

𝑏1 𝑎1 𝑏2 0 . . .

0 𝑏2 𝑎2 𝑏3 . . .

0 0 𝑏3 𝑎3 . . .

...
...

...
... . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.24)

This sparse structure allows for efficient diagonalization using standard numerical

routines, such as the QR algorithm or specialized methods for tridiagonal matrices.

A key feature of the Lanczos method is its extreme memory efficiency. At any

given iteration 𝑛, only three vectors need to be stored: |Ψ𝑛−1⟩, |Ψ𝑛⟩, and the result of

applying the Hamiltonian, ℋ̂|Ψ𝑛⟩. This feature makes the Lanczos algorithm especially

attractive for large-scale problems, such as those encountered in exact diagonalization or

as part of the DMRG warm-up process.

2.1.4 DMRG Algorithms

Having established how to select the reduced basis, we now describe how DMRG

performs numerical calculations using its two core variants: the infinite-size DMRG and

its enhanced form, the finite-size DMRG. Both follow the block growth scheme illustrated

in Fig. 9(b), where two blocks are initialized and sites are added iteratively until the

system reaches a predefined target size. At each step, the Hilbert space is truncated using

the reduced density matrix, and the process repeats until the desired size is attained or

the energy error satisfies a prescribed tolerance.

The general procedure is as follows:

• Construct the local operators for each site and the interaction terms between neigh-

boring sites.
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• Begin the block growth as depicted in Fig. 9(b).

• When the block dimension exceeds 𝑑×𝑚 (where 𝑑 is the local Hilbert space dimen-

sion and 𝑚 is the maximum number of states retained), perform truncation using

the density matrix.

• Diagonalize the superblock Hamiltonian using the Lanczos method to obtain the

ground state.

• Compute the reduced density matrices for blocks A and B.

• Retain the 𝑚 eigenvectors corresponding to the largest eigenvalues.

• Transform the Hamiltonian and operators into the new basis |𝑎𝑖⟩ |𝑏𝑖⟩.

In the first iteration, the basis transformation reads:

⃒⃒
𝑎1𝑖
⟩︀
=
∑︁
𝑘

⟨︀
𝑎0𝑘
⃒⃒
𝑎1𝑖
⟩︀ ⃒⃒
𝑎0𝑘
⟩︀
,
⃒⃒
𝑏1𝑘
⟩︀
=
∑︁
𝑘

⟨︀
𝑎0𝑘
⃒⃒
𝑏1𝑖
⟩︀ ⃒⃒
𝑎0𝑘
⟩︀
, (2.25)

where |𝑎0𝑘⟩ |𝑏0𝑘⟩ denotes the initial basis.

In the second iteration, a site |𝑠1⟩ is added to the right of block A and to the left of

block B, leading to

|𝑎′𝑖⟩ = |𝑠1⟩ ⊗
⃒⃒
𝑎1𝑖
⟩︀
=
⃒⃒
𝑠1𝑎

1
𝑖

⟩︀
, |𝑏′𝑖⟩ = |𝑠1⟩ ⊗

⃒⃒
𝑏1𝑖
⟩︀
=
⃒⃒
𝑠1𝑏

1
𝑖

⟩︀
. (2.26)

The updated basis becomes

⃒⃒
𝑎2𝑖
⟩︀
=

𝑚∑︁
𝑘=1

⟨︀
𝑠1𝑎

1
𝑘

⃒⃒
𝑎2𝑖
⟩︀ ⃒⃒
𝑠1𝑎

1
𝑘

⟩︀
,
⃒⃒
𝑏2𝑖
⟩︀
=

𝑚∑︁
𝑘=1

⟨︀
𝑠1𝑏

1
𝑘

⃒⃒
𝑏2𝑖
⟩︀ ⃒⃒
𝑠1𝑏

1
𝑘

⟩︀
. (2.27)

At the 𝑛-th iteration, the basis evolves as

|𝑎𝑛𝑖 ⟩ =
𝑚∑︁
𝑘=1

⟨︀
𝑠𝑛−1𝑎

𝑛−1
𝑘 |𝑎𝑛𝑖 ⟩

⃒⃒
𝑠𝑛−1𝑎

𝑛−1
𝑘

⟩︀
=

𝑚∑︁
𝑘=1

(𝑈𝐴)
𝑛
𝑖,𝑘

⃒⃒
𝑠𝑛−1𝑎

𝑛−1
𝑘

⟩︀
, (2.28)

|𝑏𝑛𝑖 ⟩ =
𝑚∑︁
𝑘=1

⟨︀
𝑠𝑛−1𝑎

𝑛−1
𝑘 |𝑏𝑛𝑖 ⟩

⃒⃒
𝑠𝑛−1𝑏

𝑛−1
𝑘

⟩︀
=

𝑚∑︁
𝑘=1

(𝑈𝐵)
𝑛
𝑖,𝑘

⃒⃒
𝑠𝑛−1𝑏

𝑛−1
𝑘

⟩︀
, (2.29)

where the transformation matrices are defined by

(𝑈𝐴)
𝑛
𝑖,𝑘 =

⟨︀
𝑠𝑛−1𝑎

𝑛−1
𝑘 |𝑎𝑛𝑖 ⟩ , (𝑈𝐵)

𝑛
𝑖,𝑘 =

⟨︀
𝑠𝑛−1𝑏

𝑛−1
𝑘 |𝑏𝑛𝑖 ⟩ . (2.30)
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By convention, |𝑠0⟩ = I. Operators are then rotated into the new basis:(︁
𝑂̂𝑎𝑛𝑖 ,𝑎

𝑛
𝑗

)︁𝑛
𝐴
= ⟨𝑎𝑛𝑖 | 𝑂̂

⃒⃒
𝑎𝑛𝑗
⟩︀

=
𝑚∑︁
𝑘=1

𝑚∑︁
𝑘′=1

⟨︀
𝑎𝑛𝑖
⃒⃒
𝑠𝑛−1𝑎

𝑛−1
𝑘

⟩︀ ⟨︀
𝑠𝑛−1𝑎

𝑛−1
𝑘

⃒⃒
𝑂̂
⃒⃒
𝑠𝑛−1𝑎

𝑛−1
𝑘′

⟩︀⟨︀
𝑠𝑛−1𝑎

𝑛−1
𝑘′

⃒⃒
𝑎𝑛𝑗
⟩︀

=
𝑚∑︁
𝑘=1

𝑚∑︁
𝑘′=1

(︁
𝑈 †
𝐴

)︁𝑛
𝑖,𝑘

(︁
𝑂̂𝑠𝑛−1𝑎

𝑛−1
𝑘 ,𝑠𝑛−1𝑎

𝑛−1
𝑘′

)︁𝑛
𝐴
(𝑈𝐴)

𝑛
𝑗,𝑘′ , (2.31)(︁

𝑂̂𝑏𝑛𝑖 ,𝑏
𝑛
𝑗

)︁𝑛
𝐵
= ⟨𝑏𝑛𝑖 | 𝑂̂

⃒⃒
𝑏𝑛𝑗
⟩︀

=
𝑚∑︁
𝑘=1

𝑚∑︁
𝑘′=1

⟨︀
𝑏𝑛𝑖
⃒⃒
𝑠𝑛−1𝑏

𝑛−1
𝑘

⟩︀ ⟨︀
𝑠𝑛−1𝑏

𝑛−1
𝑘

⃒⃒
𝑂̂
⃒⃒
𝑠𝑛−1𝑏

𝑛−1
𝑘′

⟩︀⟨︀
𝑠𝑛−1𝑏

𝑛−1
𝑘′

⃒⃒
𝑏𝑛𝑗
⟩︀

=
𝑚∑︁
𝑘=1

𝑚∑︁
𝑘′=1

(︁
𝑈 †
𝐵

)︁𝑛
𝑖,𝑘

(︁
𝑂̂𝑠𝑛−1𝑏

𝑛−1
𝑘 ,𝑠𝑛−1𝑏

𝑛−1
𝑘′

)︁𝑛
𝐵
(𝑈𝐵)

𝑛
𝑗,𝑘′ . (2.32)

This procedure is repeated until the system reaches the target size or the energy error

falls within the desired tolerance. This describes the infinite-size DMRG algorithm.

For the finite-size DMRG, the process initially mirrors the infinite-size algorithm

until the system reaches its maximum size. At that point, an optimization phase known

as sweeping is introduced (see Fig. 10). Sweeping improves accuracy by refining the basis

through a sequence of right-to-left and left-to-right passes.

Figure 10 – Finite-size DMRG algorithm.

Source: Reference [109].

During a sweep, sites are shifted between the two blocks. In a right-to-left sweep, for

example, sites are sequentially moved from block B to block A. At each step, a site from

B is added to A, followed by truncation of block A’s basis and rotation of all relevant

operators. This continues until block B is reduced to a single site. The left-to-right sweep
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then reverses this process. Sweeping continues until the energy error satisfies the tolerance

or a fixed number of sweeps is completed to balance both computational cost and accuracy.

2.1.5 Correlations

During each DMRG sweep iteration, local operators are rotated into a new truncated

basis. Consequently, special care must be taken when computing correlation functions

involving operators acting on different sites. Let 𝑂̂𝑖 and 𝑂̂′
𝑗 be operators acting on sites 𝑖

and 𝑗, respectively. Depending on the sweep configuration, these sites may belong to the

same block or to different blocks. Denote by |𝑎⟩ and |𝑏⟩ orthonormal bases for blocks A

and B, respectively. The ground state is written as

|Ψ⟩ =
∑︁
𝑎,𝑏

𝑐𝑎𝑏|𝑎𝑏⟩. (2.33)

2.1.5.1 Sites in the Same Block

If both sites 𝑖 and 𝑗 belong to block A during a particular iteration (see Fig. 11), the

correlation function is given by:

⟨𝑂̂𝑖𝑂̂
′
𝑗⟩ = ⟨Ψ|𝑂̂𝑖𝑂̂

′
𝑗|Ψ⟩

=
∑︁
𝑎,𝑏

∑︁
𝑎′,𝑏′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏′⟨𝑎′𝑏′|𝑂̂𝑖𝑂̂

′
𝑗|𝑎𝑏⟩

=
∑︁
𝑎,𝑏

∑︁
𝑎′,𝑏′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏′⟨𝑏′|𝑏⟩⟨𝑎′|𝑂̂𝑖𝑂̂

′
𝑗|𝑎⟩

=
∑︁
𝑏

∑︁
𝑎,𝑎′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏(𝑂̂𝑖𝑗)𝑎𝑎′ , (2.34)

where 𝑂̂𝑖𝑗 = 𝑂̂𝑖𝑂̂
′
𝑗 is the composite operator acting entirely within block A, and orthonor-

mality of the B basis implies ⟨𝑏′|𝑏⟩ = 𝛿𝑏𝑏′ .

During the truncation procedure, 𝑂̂𝑖𝑗 must be rotated into the new reduced basis just

like other operators. Importantly, one must not compute the product 𝑂̂𝑖𝑂̂
′
𝑗 after trun-

cating the individual operators, as this yields incorrect results due to loss of information

during truncation.
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Figure 11 – Case where the operators belong to the same block.

Source: Reference [108].

2.1.5.2 Sites in Different Blocks

When sites 𝑖 and 𝑗 belong to different blocks—say, 𝑖 is in block A and 𝑗 is in block B

(see Fig. 12)—the correlation function becomes:

⟨𝑂̂𝑖𝑂̂
′
𝑗⟩ = ⟨Ψ|𝑂̂𝑖𝑂̂

′
𝑗|Ψ⟩

=
∑︁
𝑎,𝑏

∑︁
𝑎′,𝑏′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏′⟨𝑎′𝑏′|𝑂̂𝑖𝑂̂

′
𝑗|𝑎𝑏⟩

=
∑︁
𝑎,𝑏

∑︁
𝑎′,𝑏′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏′⟨𝑎′|𝑂̂𝑖|𝑎⟩⟨𝑏′|𝑂̂′

𝑗|𝑏⟩

=
∑︁
𝑏,𝑏′

∑︁
𝑎,𝑎′

𝑐𝑎𝑏𝑐
*
𝑎′𝑏′(𝑂̂𝑖)𝑎𝑎′(𝑂̂

′
𝑗)𝑏𝑏′ . (2.35)

Figure 12 – Case where the operators belong to different blocks.

Source: Reference [108].

2.1.6 Theoretical Foundation of DMRG Success

The remarkable efficiency of DMRG for 1D systems with open boundary conditions—contrasting

sharply with its limited performance for periodic boundaries and higher dimensions—initially

puzzled researchers. This behavior was later elucidated through the lens of quantum in-
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formation theory: the effectiveness of DMRG is fundamentally linked to the geometry and

topology of the system, as these govern the structure of quantum entanglement—a mea-

sure of the information required to faithfully represent a quantum state. A key quantity

capturing this is the von Neumann entropy.

In quantum mechanics, entanglement characterizes composite systems in which sub-

systems cannot be described independently. Consider two spin–1
2

particles in the following

states:

|Ψ1⟩ =
| ↑↓⟩ − | ↓↑⟩√

2
, (2.36)

|Ψ2⟩ =
| ↑↑⟩ − | ↑↓⟩+ | ↓↑⟩ − | ↓↓⟩

2
. (2.37)

The state |Ψ2⟩ can be factorized, allowing each spin to be described independently:

|Ψ2⟩ =
(︂ | ↑⟩1 + | ↓⟩1√

2

)︂
⊗
(︂ | ↑⟩2 − | ↓⟩2√

2

)︂
. (2.38)

In contrast, |Ψ1⟩ cannot be factorized in this way; the state of one particle depends on

the state of the other. This inseparability is the hallmark of entanglement.

Entanglement is quantitatively captured by the von Neumann entropy:

𝑆 = −Tr (𝜌 ln 𝜌) , (2.39)

where 𝜌 is the reduced density matrix of one subsystem. In the Schmidt basis (see

Eqs. (2.13) and (2.14)), this entropy becomes:

𝑆𝐴 = −Tr
(︀
𝜌𝐴 ln 𝜌𝐴

)︀
= −

∑︁
𝑘

𝜔𝑘 ln𝜔𝑘, (2.40)

𝑆𝐵 = −Tr
(︀
𝜌𝐵 ln 𝜌𝐵

)︀
= −

∑︁
𝑘

𝜔𝑘 ln𝜔𝑘. (2.41)

where 𝜔𝑘 are the Schmidt coefficients. The equality 𝑆𝐴 = 𝑆𝐵 ̸= 0 indicates the presence

of entanglement between blocks A and B.

Within the DMRG algorithm, truncation is performed by retaining the states with

the largest Schmidt coefficients 𝜔𝑘, which effectively maximizes the von Neumann en-

tropy. This procedure ensures that the most entangled—and thus most physically rele-

vant—states are preserved, while less significant ones are discarded. As a result, DMRG is

particularly powerful for strongly correlated systems, such as low-dimensional spin mod-

els, where capturing the entanglement structure is essential for an accurate description of

the ground state.
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2.2 MPS FORMULATION OF DMRG

Over the years, the DMRG method has been recast within the broader formalism of

tensor network states, which naturally encode entanglement structures in 1D quantum

systems. Among these, the MPS representation has emerged as a central framework,

providing both conceptual clarity and computational efficiency. More generally, tensor

networks furnish a unifying language for the efficient representation of quantum states

in higher dimensions, with notable extensions such as Projected Entangled Pair State

(PEPS). These developments have established tensor network methods as indispensable

tools in modern computational quantum physics, bridging areas such as condensed matter

theory, quantum information, and statistical mechanics.

2.2.1 MPS Representation

Consider a quantum system composed of 𝑁 sites, each associated with a local basis

|𝑠𝑖⟩. The most general pure state of the system can be written as

|Ψ⟩ =
∑︁

𝑠1,...,𝑠𝑁

𝑐𝑠1,...,𝑠𝑁 |𝑠1𝑠2 · · · 𝑠𝑁⟩, (2.42)

where, for brevity, we adopt the notation∑︁
𝑠⃗

≡
∑︁

𝑠1,𝑠2,...,𝑠𝑁

. (2.43)

Assuming all sites have the same local Hilbert space dimension 𝑑, i.e., dim(|𝑠𝑖⟩) = 𝑑

for all 𝑖, the state coefficients 𝑐𝑠1,...,𝑠𝑁 can be viewed as entries of a rank-𝑁 tensor. To

begin constructing a MPS, we reshape |Ψ⟩ into a matrix Ψ̃ of dimension 𝑑 × 𝑑𝑁−1, with

the mapping

𝑐𝑠1,(𝑠2,··· ,𝑠𝑁 ) = 𝑐𝑠1,··· ,𝑠𝑁 , (2.44)

Performing a SVD on this matrix yields

𝑐𝑠1,(𝑠2,...,𝑠𝑁 ) =
𝑟∑︁
𝑘1

𝑈𝑠1,𝑘1𝑆𝑘1𝑘1𝑉
†
𝑘1,𝑠2...𝑠𝑁

. (2.45)

where 𝑟1 ≤ 𝑑 is the rank of Ψ̃. The matrix 𝑈 can be interpreted as a collection of 𝑑 row

vectors 𝐴𝑠1 , with components 𝐴𝑠1
𝑘1

= 𝑈𝑠1,𝑘1 . The product 𝑆𝑉 † is then reshaped into a new
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matrix Ψ̃(𝑘1𝑠2),(𝑠3...𝑠𝑁 ) of dimension 𝑟1𝑑× 𝑑𝑁−2, giving

𝑐𝑠1,...,𝑠𝑁 =

𝑟1∑︁
𝑘1=1

𝐴𝑠1
𝑘1
Ψ̃(𝑘1𝑠2),(𝑠3...𝑠𝐿). (2.46)

Applying another SVD to Ψ̃ and continuing this process iteratively, we obtain

𝑐𝑠1,...,𝑠𝑁 =
∑︁
𝑘⃗

𝐴𝑠1
𝑘1
𝐴𝑠2

𝑘1,𝑘2
· · ·𝐴𝑠𝑁−1

𝑘𝑁−2,𝑘𝑁−1
𝐴𝑠𝑁

𝑘𝑁−1
, (2.47)

which we often write more compactly as a product of matrices:

𝑐𝑠1,...,𝑠𝑁 = 𝐴𝑠1𝐴𝑠2 · · ·𝐴𝑠𝑁−1𝐴𝑠𝑁 . (2.48)

Here, the matrices 𝐴𝑠𝑖 are site-dependent and indexed by the local physical index 𝑠𝑖, while

the auxiliary bond indices 𝑘𝑖 encode the entanglement between adjacent sites. If necessary,

dummy indices of dimension one can be introduced at the boundaries to treat all tensors

uniformly as matrices.

The state is now exactly represented in the MPS form:

|Ψ⟩ =
∑︁
𝑠⃗

𝐴𝑠1𝐴𝑠2 · · ·𝐴𝑠𝑁−1𝐴𝑠𝑁 |𝑠1, · · · , 𝑠𝑁⟩. (2.49)

In the exact construction above, the bond dimensions grow rapidly, reaching a maxi-

mum of 𝑑𝑁/2 in the middle of the chain. More precisely, the dimensions of the intermediate

tensors scale as (1×𝑑), (𝑑×𝑑2), ..., (𝑑𝑁/2−1×𝑑𝑁/2), ..., (𝑑2×𝑑), (𝑑×1) from left to right.

This exponential growth in bond dimension renders exact MPS representations impracti-

cal for large systems. Truncated SVDs are typically employed to maintain a manageable

bond dimension while controlling approximation error.

At each SVD step, the unitarity condition 𝑈 †𝑈 = I implies that the corresponding

𝐴𝑠𝑛 matrices satisfy ∑︁
𝑠𝑛

(𝐴𝑠𝑛†𝐴𝑠𝑛)𝑘𝑛𝑘′𝑛 = 𝛿𝑘𝑛𝑘′𝑛 , (2.50)

∑︁
𝑠𝑛

𝐴𝑠𝑛†𝐴𝑠𝑛 = I. (2.51)

Matrices that satisfy this condition are referred to as left-normalized, and a state in which

all tensors are left-normalized is said to be in the left-canonical form. This construction

is illustrated schematically in Fig. 13.
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Figure 13 – Graphical representation of an iterative construction of an exact MPS representation of an
arbitrary quantum state by a sequence of singular value decompositions.

σ1 σL

σ1 σL

σ1 σL

σ1 σL

.....

Figure 5: Graphical representation of an iterative construction of an exact MPS representation of an arbitrary quantum
state by a sequence of singular value decompositions.
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Figure 6: Graphical representation ofA-matrices at the ends and in the bulk of chains: the left diagram representsA σ1
1,a1

,

the row vector at the left end, the right diagram representsA
σL

aL ,1
, the column vector at the right end. In the center there

is A
σℓ
aℓ−1,aℓ .

21

Source: Reference [109].

The choice of starting from the left is arbitrary. An analogous construction starting

from the right produces the right-canonical form, with tensors satisfying∑︁
𝑠𝑛

𝐴𝑠𝑛𝐴𝑠𝑛† = I, (2.52)

where the 𝐴𝑠𝑛 are now right-normalized.

Combining these two canonical forms leads to the mixed-canonical representation, in

which the decomposition is left-normalized up to site 𝑖 and right-normalized from site

𝑖+ 1 onward:

|Ψ⟩ =
∑︁
𝑠1

= 𝐴𝑠1 · · ·𝐴𝑠𝑖𝑆𝐵𝑠𝑖+1 · · ·𝐵𝑠𝑁 |𝑠1, · · · , 𝑠𝑁⟩, (2.53)

where 𝑆 is a diagonal matrix containing the singular values from the last SVD, and the

𝐵 tensors are right-normalized, satisfying Eq. (2.52).

The various exact MPS representations discussed above highlight the fact that the

MPS form is not unique. In particular, the left-, right-, and mixed-canonical forms each
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offer specific advantages for algorithmic implementations. Moreover, the MPS structure

admits a gauge freedom: for any pair of adjacent tensors 𝐴𝑠𝑖 and 𝐴𝑠𝑖+1 sharing a bond

dimension 𝐷, we can insert the identity I =𝑀𝑀−1 between them:

𝐴𝑠𝑖𝐴𝑠𝑖+1 = 𝐴𝑠𝑖I𝐴𝑠𝑖+1 = 𝐴𝑠𝑖𝑀𝑀−1𝐴𝑠𝑖+1 , (2.54)

which leaves the overall state unchanged under the transformation

𝐴𝑠𝑖 → 𝐴𝑠𝑖𝑀, 𝐴𝑠𝑖+1 =𝑀−1𝐴𝑠𝑖+1 , (2.55)

for any invertible 𝐷 × 𝐷 matrix 𝑀 . This gauge freedom can be exploited to enforce

canonical forms or optimize numerical stability during simulations.

2.2.2 MPO Representation

Operators can be represented analogously to states using Matrix Product Operators

(MPOs). Consider an arbitrary operator 𝑂̂ expressed in the local basis as

𝑂̂ =
∑︁
𝑠⃗,𝑠⃗′

𝐶
𝑠′1,...,𝑠

′
𝑁

𝑠1,...,𝑠𝑁 |𝑠1𝑠2 · · · 𝑠𝑁⟩⟨𝑠′1𝑠′2 · · · 𝑠′𝑁 |, (2.56)

Applying successive SVDs to the coefficient tensor yields an exact MPO representation:

𝑂̂ =
∑︁
𝑠⃗,𝑠⃗′

𝑊 𝑠1𝑠′1𝑊 𝑠2𝑠′2 · · ·𝑊 𝑠𝑁−1𝑠
′
𝑁−1𝑊 𝑠𝑁𝑠′𝑁 |𝑠1𝑠2 · · · 𝑠𝑁⟩⟨𝑠′1𝑠′2 · · · 𝑠′𝑁 |, (2.57)

where each 𝑊 𝑠𝑖𝑠
′
𝑖 is a matrix associated with site 𝑖 and physical indices (𝑠𝑖, 𝑠

′
𝑖).

The action of an MPO on an MPS yields another MPS. Explicitly, for 𝑂̂MPO and

|Ψ⟩MPS, we have:

𝑂̂MPO|Ψ⟩MPS =
∑︁
𝑠⃗,𝑠⃗′

𝑊 𝑠1𝑠′1𝑊 𝑠2𝑠′2 · · ·𝑊 𝑠𝑁 ,𝑠′𝑁𝐴𝑠1𝐴𝑠2 · · ·𝐴𝑠𝑁 |𝑠1𝑠2 · · · 𝑠𝑁⟩

=
∑︁
𝑠⃗,𝑠⃗′

∑︁
𝑘⃗,𝑝

(𝑊
𝑠1𝑠′1
1,𝑝1

𝑊 𝑠2𝑠′2
𝑝1,𝑝2

· · ·𝐴𝑠1
1,𝑘1

𝐴𝑠2
𝑘1,𝑘2

· · · )|𝑠1𝑠2 · · · 𝑠𝑁⟩

=
∑︁
𝑠⃗,𝑠⃗′

∑︁
𝑘⃗,𝑝

(𝑊
𝑠1𝑠′1
1,𝑝1

𝐴𝑠1
1,𝑘1

𝑊 𝑠2,𝑠′2
𝑝1,𝑝2

𝐴𝑠2
𝑘1,𝑘2

· · · )|𝑠1𝑠2 · · · 𝑠𝑁⟩

=
∑︁
𝑠⃗

∑︁
𝑘⃗,𝑝

𝜆𝑠1(1,1),(𝑝1,𝑘1)𝜆
𝑠2
(𝑝1,𝑘1),(𝑝1,𝑘2)

· · · |𝑠1𝑠2 · · · 𝑠𝑁⟩

=
∑︁
𝑠⃗

𝜆𝑠1𝜆𝑠2 · · · |𝑠1𝑠2 · · · 𝑠𝑁⟩ = |Φ⟩MPS, (2.58)

where the new MPS tensors 𝜆𝑠𝑖 are constructed by contracting the physical indices of

𝑊 𝑠𝑖𝑠
′
𝑖 with the corresponding 𝐴𝑠′𝑖 . The resulting bond dimension increases to the product

of the original MPS and MPO bond dimensions [109].
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2.2.3 Tensor Networks in DMRG

The mathematical structure of MPS and MPO can be elegantly formulated using

tensor notation. A tensor is a mathematical object characterized by a set of indices,

where each combination of index values corresponds to a numerical entry. The number of

indices defines the rank of the tensor: for example, a rank-0 tensor is a scalar, a rank-1

tensor is a vector, and a rank-2 tensor is a matrix. The coefficients in Eq. (2.42) can be

regarded as components of a rank-𝑁 tensor:

𝑇𝑠1,𝑠2,...,𝑠𝑁 = 𝑐𝑠1,𝑠2,...,𝑠𝑁 . (2.59)

Up to this point, MPS has been described in terms of one matrix per site. However, for

a lattice consisting of 𝑁 sites, it is advantageous—especially in the context of the DMRG

algorithm—to access all 𝑁 − 1 possible bipartitions of the system (i.e., into subsystems

A and B with a single cut) [112]. To accommodate this, the MPS can be rewritten as a

sequence of rank-1 and rank-3 tensors. This representation is commonly referred to as the

tensor-train form:

|Ψ⟩ =
∑︁
𝑠⃗,𝛼⃗

Γ[1]𝑠1𝛼1
Λ[1]𝛼1Γ[2]

𝑠2
𝛼1𝛼2

Λ[2]𝛼2Γ[3]
𝑠3
𝛼2𝛼3

Λ[3]𝛼3 · · ·Γ[𝑁 ]𝑠𝑁𝛼𝑁
|𝑠1, ..., 𝑠𝑁⟩, (2.60)

where 𝑠𝑖 indexes the local physical basis at site 𝑖 (e.g., for a spin–1
2

system, 𝑠𝑖 ∈ ↑, ↓ or

equivalently 𝑠𝑖 ∈ 0, 1). The bond index 𝛼𝑖 ranges from 1 to the bond dimension 𝑚, which

controls the amount of entanglement retained. The tensor Γ[𝑖]𝑠𝑖𝛼𝑖−1𝛼𝑖
is a rank-3 tensor

associated with site 𝑖, and Λ[𝑖]𝛼𝑖
is a rank-1 tensor containing the Schmidt coefficients

between sites 𝑖 and 𝑖+ 1.

Similarly, an MPO can be expressed as:

𝑂̂ =
∑︁
𝑠⃗,𝑠⃗′

∑︁
𝛼⃗

Γ[1]𝑠1𝑠
′
1

𝛼1
Λ[1]𝛼1Γ[2]

𝑠2𝑠′2
𝛼1𝛼2

Λ[2]𝛼2 · · ·Γ[𝑁 ]
𝑠𝑁𝑠′𝑁
𝛼𝑁 |𝑠1, . . . , 𝑠𝑁⟩⟨𝑠′1, . . . , 𝑠′𝑁 |. (2.61)

Working with a large number of tensors quickly becomes algebraically cumbersome

due to the proliferation of indices. To address this, a graphical notation—known as tensor

network diagrams—offers an intuitive and powerful visualization tool. The basic rules for

this diagrammatic notation are:

• Tensors are represented as shapes (typically filled or shaded), and indices appear as

lines extending from these shapes.
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• Connecting two index lines represents a contraction, i.e., a summation over the

shared index.

Figure 14(a) illustrates examples of tensors represented using diagrammatic notation.

Basic tensor operations, such as contraction, are shown in Fig. 14(b). A closed loop in

these diagrams indicates a trace over a contracted index, as exemplified in Fig. 14(c),

which depicts the trace of a single tensor.

Figure 14 – (a) Examples of tensors represented in diagrammatic (graphical) notation, where each leg
corresponds to a tensor index. (b) Basic tensor operations such as contraction, represented by
joining legs corresponding to summed indices. (c) A closed loop indicating a trace operation,
exemplified by tracing over a single tensor’s indices.

(a)

(b)

(c)

Source: The author (2025).

2.2.4 The Algorithm

The modern formulation of DMRG is grounded in tensor network theory, particularly

through the use of the MPS and MPO representations [109, 113–116]. The objective is to

determine the MPS that minimizes the variational energy:

𝐸 =
⟨Ψ|ℋ̂|Ψ⟩
⟨Ψ|Ψ⟩ . (2.62)

The algorithm proceeds through the following steps:

• Initialization
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– Initialize the system with a trial MPS of small bond dimension 𝑚.

– Represent the Hamiltonian ℋ̂ as an MPO.

• Sweeping Procedure

The optimization is performed by successively updating the MPS tensors in a local

basis:

– Select a pair of neighboring sites within the MPS.

– Contract the surrounding MPS tensors and the MPO to construct an effective

Hamiltonian ℋ̂eff acting on the selected sites.

– Solve the eigenvalue problem

ℋ̂eff|Ψopt⟩ = 𝐸min|Ψopt⟩, (2.63)

typically using iterative methods such as Lanczos or Davidson [117], to obtain

the locally optimal state |Ψopt⟩.

– Apply a Schmidt decomposition to |Ψopt⟩ using SVD, and retain only the lead-

ing Schmidt coefficients to update the MPS tensors.

– Shift the optimization window to the next site pair and repeat the process,

sweeping from left to right and then from right to left (completing a full sweep).

– Continue the sweeping procedure until the energy 𝐸 converges within a desired

threshold.

The use of the Schmidt decomposition allows for systematic truncation of the bond

dimension by discarding small singular values. This adaptive truncation ensures that com-

putational resources are focused on the most relevant entanglement degrees of freedom.

The overall procedure can also be represented diagrammatically. Figure 15 provides a

schematic summary of the DMRG algorithm in tensor network notation:
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Figure 15 – (a) The left MPS |Ψ⟩ (orange) and the Hamiltonian ℋ̂ as an MPO (blue) are shown as tensor
networks, with physical indices 𝑑 and bond dimensions 𝑚𝑖 annotated. (b) The variational
problem ⟨Ψ|ℋ̂|Ψ⟩ = 𝐸⟨Ψ|Ψ⟩ is represented diagrammatically. (c) Two adjacent sites (green)
are selected for local optimization. The problem is reformulated as an eigenvalue equation,
and redundant contractions are eliminated by exploiting gauge freedom. (d) Instead of eval-
uating the full network, left and right environments are pre-contracted, allowing efficient
optimization of the two-site tensor (orange) via the Davidson algorithm. (e) The optimized
tensor is factorized using SVD, truncated to bond dimension 𝑚𝑗 , and the singular values are
absorbed according to the sweep direction to preserve orthogonality.

≈

E

b)

d)

e)

=

E=
c)

E=
I

⏟I ⏟I

a)
m1 m2 m3 m4 m5 m6 m7

d d d d d d d d d d d d d d d d

d d d d d d d d
H =

<latexit sha1_base64="09yrekidxuCZVhU6+TTUhbncVxo=">AAACFHicbVDLSgMxFM3UV62vUZe6CJaCqzIjFd0IBTddVrAPaMeSSdM2NMkMSUYow2z8CL/Bra7diVv3Lv0TM9NZ2NYDgcM593Jujh8yqrTjfFuFtfWNza3idmlnd2//wD48aqsgkpi0cMAC2fWRIowK0tJUM9INJUHcZ6TjT29Tv/NIpKKBuNezkHgcjQUdUYy0kQb2aaXv87jfVDQpZYwjPcGIxY0kuRnYZafqZICrxM1JGeRoDuyf/jDAESdCY4aU6rlOqL0YSU0xIyYhUiREeIrGpGeoQJwoL85+kcCKUYZwFEjzhIaZ+ncjRlypGffNZHqkWvZS8T+vF+nRtRdTEUaaCDwPGkUM6gCmlcAhlQRrNjMEYUnNrRBPkERYm+IWUnyemE7c5QZWSfui6taql3e1cv0hb6cITsAZOAcuuAJ10ABN0AIYPIEX8ArerGfr3fqwPuejBSvfOQYLsL5+AZ0Tny0=</latexit>

 =

<latexit sha1_base64="Q+X+CfHgz9sJNP1B9NEH67KxLSY=">AAACFXicbZDLSsNAFIYnXmu9RV2KECwFVyWRim4KBTddVrAXaGKZTCft0JlJmJkIJWTlQ/gMbnXtTty6dumbOEmzsK0/DHz85xzOmd+PKJHKtr+NtfWNza3t0k55d2//4NA8Ou7KMBYId1BIQ9H3ocSUcNxRRFHcjwSGzKe4509vs3rvEQtJQn6vZhH2GBxzEhAElbaG5pnrs8RtS5I2ytWcGVQTBGnSStPG0KzYNTuXtQpOARVQqD00f9xRiGKGuUIUSjlw7Eh5CRSKIIrTshtLHEE0hWM80Mghw9JL8m+kVlU7IysIhX5cWbn7dyKBTMoZ83VndqRcrmXmf7VBrIIbLyE8ihXmaL4oiKmlQivLxBoRgZGiMw0QCaJvtdAECoiUTm5hi89SnYmznMAqdC9rTr12dVevNB+KdErgFJyDC+CAa9AELdAGHYDAE3gBr+DNeDbejQ/jc966ZhQzJ2BBxtcvLOafdA==</latexit>

Figure 1: a) left the matrix product state (MPS) Ψ in orange
as a tensor network and right the Hamiltonian H as a matrix
product operator (MPO) in blue as a tensor network H. An-
notated are the physical indices d and the bond dimensions of
the MPS mi. b) The original problem 〈Ψ|H|Ψ〉 = E〈Ψ|Ψ〉
with constraint shown in the tensor network representation.
c) We select two adjacent sites to optimize simultaneously,
shown in green. The optimization problem for these sites
with normalization constraint is then recast as an eigenvalue
problem. By exploiting an extra degree of freedom of the MPS,
certain contractions can be reduced to the identity. d) The
full optimization problem in b is never directly used, instead
an efficient representation is created by contracting all other
sites into left and right environments. The two site tensor,
shown in orange, is then optimized via a Davidson routine. e)
After optimization, the order-4, two site tensor is split using
SVD and (potentially) truncated to a bond dimension mj .
The singular values can then be absorbed either left or right,
following the sweep direction, in order to retain a proper the
orthogonal structure.

tries), which describe the sparsity structure of tensors in
DMRG. More comprehensive reviews are available for ten-
sor networks [15], DMRG [1]–[3] and quantum number
symmetries [16]. At a high-level, given a Hermitian matrix
represented as a 1D tensor network, the DMRG algorithm
seeks to compute the eigenpair with the smallest eigenvalue
(ground state energy) by using alternating optimization of a 1D
tensor network that approximately represents the eigenvector.

A. Tensors, Tensor Networks, and Tensor Diagrams

The DMRG algorithm works with complex tensors. We
denote an order N (with N modes) tensor of dimensions
s1×· · ·×sN as T ∈ Cs1×···×sN and its elements as ti1···iN . A
tensor network fG(T (1), · · · ,T (M)) is described by a multi-
graph G = (V,E), where V = {T (1), · · · ,T (M)} and the

edges denote indices that define contraction between a pair
of modes of two tensors or an uncontracted index (which we
represent by a loop). If Ei = {ei1, · · · , eimi} ⊆ E is the col-
lection of edges adjacent to vertex i and L = {l1 · · · lK} ⊆ E
is the set of loops, we can write the tensor network function
as

wl1···lk =
∑
e∈E

M∏
j=1

t
(j)
ei1···eimi .

Any such tensor contraction can be mapped to a matrix
multiplication. If matrix multiplication is performed using
the classical O(n3) algorithm, the cost of the contraction is
given by the product of the dimensions of the tensor modes
corresponding to all of the indices in E. We leverage the
Einstein summation convention, omitting summation indices
to describe tensor contractions, for instance we describe matrix
multiplication as cij = aikbkj .

A tensor diagram is a depiction of a tensor network fG
via the graph G, except that instead of loops, uncontracted
edges correspond to edges that point into whitespace. Tensor
diagrams provide a precise and intuitive way of expressing
tensor networks, through which it is easier to see both the geo-
metric structure as well as reason about contraction orderings,
than via the algebraic expression of the tensor contraction.
Tensor diagrams are widely used in tensor network literature;
we refer the reader to [15] for a comprehensive introduction
to their applications and interpretation.

B. Matrix Product States

The DMRG algorithm uses 1D tensor networks, namely the
matrix product state (MPS) and the matrix product operator
(MPO) [3]. These tensor networks are referred to as tensor
trains in literature on tensor decompositions [17]. The MPS
and MPO are used to represent a vector (the eigenvector
guess in DMRG) and a matrix (the Hamiltonian in DMRG),
respectively. Figure 1a provides the tensor diagram for an MPS
(left) and displays the tensor diagram for an MPO (right).

The MPS is used as an approximation of the sought-after
eigenvector in DMRG, also referred to as the wave function.
The MPS tensor network contracts into an order N tensor
Ψ ∈ Cd×···×d described by a set of N sites, each of which is
represented by an order three tensor1 T (j) whose elements are
t
(j)
ijσjij+1

. The MPS contracts to yield a tensor that corresponds
to a folding of a vector vec(Ψ) ∈ CdN ,

ψσ1···σN =
∑

i1···iN+1

N∏
j=1

t
(j)
ijσjij+1

.

The MPO represents the Hamiltonian matrix H as a tensor H
of order 2N and factorizes it into a product of order 4 tensors,

hσ1···σNν1···νN =
∑

i1···iN+1

N∏
j=1

h
(j)
ijσjνjij+1

.

1the first and last tensor would have one mode be of unit dimension by
this convention

Source: Reference [116]

2.3 APPLYING DMRG TO 2D SYSTEMS

Any 2D spin model can be mapped onto a 1D chain by introducing long-range inter-

actions. This reformulation allows the application of DMRG to 2D systems, albeit with

significantly greater computational challenges and typically lower accuracy than in the

1D case. Figure 16 shows two examples of constructing a 1D path within a 2D lattice.

The absence of a unique mapping complicates this extension. Different paths induce

different interaction ranges, and the resulting computational cost is highly sensitive to

the chosen layout. Optimal mappings depend on both lattice geometry and the structure

of interactions.

Despite these challenges, the computational cost of DMRG in 2D scales exponentially
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Figure 16 – (a) and (b) represents two forms of make a linear path in a 2D system.

(a)

(b)

Source: The author (2025).

with the system width—rather than the total number of sites as in exact diagonaliza-

tion—making moderate-width cylinders or strips feasible. In practice, the scaling pref-

actor can be favorable. Notably, even in the absence of a sign problem, DMRG often

yields results with accuracy comparable to that of Quantum Monte Carlo methods [118].

The method has been successfully applied to various 2D lattices, including triangular

[118–120], kagome [121, 122], and square lattices [123, 124].

2.3.1 Convergence

A reliable DMRG study of a 2D system requires multiple, independent calculations

across different system sizes and parameter regimes. To extract meaningful insight into

the true 2D behavior, each ground state must be computed with high precision and

thoroughly characterized. Two main factors can prevent DMRG from identifying the true

ground state: (i) an insufficient number of retained states after truncation, leading to a

poor approximation of the wavefunction; and (ii) convergence to a metastable state due

to the variational nature of the algorithm [125].

Convergence is typically assessed by increasing the number of states kept until the

energy and key observables stabilize within a chosen tolerance. This can be achieved by
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fixing the bond dimension 𝑚, by imposing a target truncation error, or by combining

both. In practice, it is often effective to set a target truncation error alongside a minimum

and maximum 𝑚. The minimum 𝑚 is particularly important, as truncation errors can be

misleading at low bond dimensions and may result in slow or false convergence.

To mitigate metastability, it is advantageous to initialize the simulation with a wave-

function that closely approximates the true ground state. However, finding such an initial

state can be nontrivial, especially for unfamiliar systems. Preliminary calculations on

smaller systems or at low 𝑚—where DMRG is more controlled—can help identify domi-

nant correlations that guide the construction of an appropriate initial guess.

For systems with conventional symmetry breaking (e.g., antiferromagnets on bipartite

lattices), a Néel state often serves as a suitable starting point. For more complex orders,

an initial wavefunction can be prepared using a modified Hamiltonian with symmetry-

breaking “pinning” fields [126]. For example, to favor a valence bond solid, one can add

local terms of the form 𝜆Ŝ𝑖 · Ŝ𝑗 between selected pairs (𝑖, 𝑗), as illustrated in Fig. 17. The

pinning strength 𝜆 is then gradually reduced during the sweeps, allowing the system to

relax toward the true ground state.

Figure 17 – Results of a DMRG calculation for the Heisenberg model on a 16 × 8 cylinder with antifer-
romagnetic order pinned at the open boundaries. To work in the strong pinning limit, it is
useful to imagine the finite system embedded within a larger system acted on by an infinitely
strong field (shown here as the shaded regions). The pinning fields at the physical edges are
determined by the Hamiltonian bonds connecting the real and fictitious system.5

generally the noise is turned off in later sweeps. This
technique is particularly important if, for some reason,
fully periodic boundary conditions must be used.

A key way to avoid metastability is to begin with a
wavefunction that is already close to the true ground
state. Good initial wavefunctions may be hard to come
by for an unfamiliar model; here careful calculations on
smaller system sizes or at smaller values of m where
DMRG has better control can be an excellent guide. Such
calculations allow one to identify the dominant correla-
tions within the ground state which may otherwise be
obscured by strong fluctuations on larger lattices or for
larger m.

For a system which is expected to have a conventional
symmetry breaking ground state, such as an antiferro-
magnet on a bipartite lattice, a Néel state may be a
sufficiently good starting point. For systems with more
subtle order, the initial wavefunction can be produced by
starting with a lower symmetry or ‘pinned’ Hamiltonian.
For example, if a system is expected to have a ground
state with valence bond solid order, the Hamiltonian can

be modified by adding pinning fields λ ~Si · ~Sj for each pair
of sites i, j connected by a valence bond. Then, after a
few sweeps λ can be gradually tuned to zero allowing the
system to relax to its true ground state.

Using an initial state or a pinning field can also be
helpful for ruling out hypothesized properties of a model.
If DMRG restores a symmetry explicitly broken by the
initial state, one has strong evidence against that par-
ticular ordering scenario. This method has been used to
rule out a type of checkerboard order for the t−J model58

and more recently as evidence against a particular type
of valence bond solid order for the kagome Heisenberg
antiferromagnet.9

When dealing with a complex lattice or a phase with
a large unit cell, one way to deal with metastability is-
sues and minimize the number of states needed is to ex-
periment with multiple DMRG paths. For a fixed value
of m, DMRG is better able to capture entanglement on
Hamiltonian bonds that remain nearest-neighbor when
mapped to 1D. Choosing the DMRG path judiciously
can even permit complex initial wavefunctions such as
valence bond solids to be represented exactly with only
a small value of m. Having the ability to reproduce
the same ground state with different DMRG paths can
also provide strong evidence that one has found the true
ground state and not a metastable solution.

After having gained a good understanding of smaller
systems, one wants to push DMRG calculations up to the
largest accessible widths. At these widths, there is less
control, so in order to produce accurate results it is very
useful to extrapolate from more controlled limits. For
DMRG, a natural extrapolation parameter is the trunca-
tion error ε (the sum of discarded density matrix eigen-
values). The energy has long been extrapolated to zero
truncation error, where normally a linear extrapolation
of E versus ε is best. Remarkably, within a DMRG calcu-
lation local measurements performed on the two central

0.5

0.0001FIG. 3: Results of a DMRG calculation for the Heisenberg
model on a 16×8 cylinder with antiferromagnetic order pinned
at the open boundaries. To work in the strong pinning limit,
it is useful to imagine the finite system embedded within a
larger system acted on by an infinitely strong field (shown
here as the shaded regions). The pinning fields at the physical
edges are determined by the Hamiltonian bonds connecting
the real and fictitious system.

sites at each step also have errors varying linearly with ε!
This is one reason why measuring local quantities, per-
haps in response to a perturbation, is usually preferred to
correlation functions, whose error varies as ε1/2.19 Effi-
cient extrapolations can be performed using results from
a single DMRG calculation with increasing m, but it is
important to repeat eachm for two full sweeps (and to ex-
trapolate using the last of the four half-sweeps) to ensure
that the calculated ε is consistent enough for extrapola-
tion.

The flexibility of DMRG even allows the use of other
extrapolation parameters that may work better than the
truncation error in certain cases. For example, one can
add a small perturbation λH ′ to the Hamiltonian and ex-
trapolate the energy in λ. For this approach to work well,
the ground states of the perturbed Hamiltonian should
be less entangled than the true ground state. Further-
more, by choosing H ′ to have a vanishing expectation
value with respect to the ground state of H, the first
derivative of the energy with λ can be tuned to zero,
increasing the accuracy of the extrapolation.9

B. Working Around Finite Size Limitations

A variety of approaches can be taken to predict bulk
2D behavior from sets of finite systems - here we dis-
cuss some that are particularly useful in the context
of DMRG. Most of these approaches utilize cylindrical
boundaries. On the two open edges of the cylinder, one
is free to apply local fields (“pinning” it), or to perturb
it in other ways, in order to make the bulk represent
2D most accurately. A favorable side-effect of applying
a boundary pinning field may be a reduction of entan-
glement, improving the DMRG convergence. For exam-
ple, an antiferromagnet on a finite system typically has
a singlet ground state, but one may regard it as a su-
perposition of antiferromagnetically ordered states with
different directions for the order parameter. Pinning can

Source: Reference [126]

For complex lattices or phases with large unit cells, exploring alternative DMRG paths

can reduce the risk of metastability and the required bond dimension. Since DMRG

more efficiently captures entanglement along bonds that remain short-range in the 1D

mapping, the choice of path significantly influences performance. In favorable cases, a well-

designed path can represent nontrivial initial states, such as valence bond solids, exactly
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with modest 𝑚. Furthermore, observing consistent results across different paths strongly

suggests convergence to the true ground state, rather than a metastable configuration.

2.3.2 Gaps and Excited States

In addition to ground state properties, the study of elementary excitations is crucial

for phase classification, stability analysis, and the computation of experimentally relevant

quantities. A central objective in this context is the determination of the energy gap to

the first excited state.

Two main strategies exist for computing excited states and energy gaps within DMRG.

When the excited state resides in a different quantum number sector than the ground

state—as in spin gap calculations for magnetic systems—DMRG can directly target the

lowest-energy state in the desired sector by exploiting quantum number conservation.

This method is generally preferred unless the excitation becomes localized at the system’s

boundaries, which can be verified by inspecting local observables. In such cases, alternative

techniques such as restricted sweeping may be more suitable.

For excitations within the same quantum number sector as the ground state (e.g.,

singlet excitations), or in systems lacking conserved quantities, DMRG can target mul-

tiple low-lying eigenstates simultaneously. This involves maintaining distinct superblock

wavefunctions for each state while sharing common boundary blocks. However, accurately

representing multiple states within a single truncated basis typically requires a larger bond

dimension than for single-state calculations.

In scenarios such as topological phases with large ground state degeneracies and no

relevant conserved quantum numbers, these standard methods can become inefficient.

In such cases, the flexibility of the MPS and MPO formalisms proves advantageous. By

representing states as MPSs, one can compute full wavefunctions and perform overlap

calculations between independently obtained states, enabling a more robust exploration

of the low-energy manifold.

2.3.3 Boundary Conditions

Boundary conditions play a crucial role in determining local observables, such as the

site-resolved magnetization ⟨𝑆𝑧
𝑖 ⟩. Open Boundary Condition (OBC), the most commonly
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used scheme, introduces finite-size effects due to the absence of neighbors at the edges,

leading to asymmetric interactions. To mitigate such edge effects, Periodic Boundary

Condition (PBC) can be employed by connecting the first and last sites, thereby preserving

translational invariance. This makes PBC more suitable for studying bulk properties and

performing reliable finite-size extrapolations, even in smaller systems.

A compromise between these two extremes is offered by Cylindrical Boundary Condi-

tion (CBC), which applies periodicity in one direction while keeping the other open. This

is particularly effective for ladder or quasi-1D geometries, as it reduces edge effects while

limiting entanglement growth, thus remaining more computationally tractable than full

PBC. Although CBC still retains some boundary influence, it often yields more accurate

bulk properties than OBC.

Nevertheless, both PBC and CBC come with increased computational cost. Reaching

the same level of accuracy as with OBC typically requires a significantly larger bond

dimension 𝑚, often scaling as 𝑚2 [109, 127], due to the need to capture nonlocal entan-

glement—particularly between distant sites connected by periodicity. In practice, CBC

demands a smaller 𝑚 than PBC, though the precise scaling depends on the specific model

and system size.

Boundary conditions also influence the physical interpretation of numerical results.

In systems exhibiting spontaneous symmetry breaking, OBC can stabilize symmetry-

broken states through boundary-induced asymmetry, facilitating their detection. In con-

trast, PBC enforces global symmetry, which may obscure such phases or mix degenerate

ground states. The effectiveness of CBC in revealing symmetry breaking is system depen-

dent; it may either preserve or suppress such features, depending on the geometry and

correlations of the model under study.

2.4 COMPUTATIONAL METHODOLOGY

Implementing the DMRG algorithm from scratch is no longer necessary, thanks to

several efficient and well-tested library implementations. These frameworks streamline

DMRG simulations to the task of specifying the appropriate model and computational

parameters. This section outlines the tools employed in this work.
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2.4.1 ALPS

The Algorithms and Libraries for Physics Simulations (ALPS) project [128–130] pro-

vides a comprehensive software suite for simulating correlated quantum systems. It sup-

ports a variety of numerical methods, including Classical and Quantum Monte Carlo,

Exact Diagonalization, and DMRG.

To define a simulation, the following components must be specified:

• Lattice: The geometric structure of the system.

• Degrees of Freedom: The local Hilbert space and the operators acting on it.

• Model: The Hamiltonian, defined in terms of the available operators.

• Measurements: The observables to be computed.

• Simulation Parameters: Numerical settings controlling the simulation.

Standard lattices and Hamiltonians are predefined in the lattices.xml and models.xml

files. Once the system is specified via the ALPS interface, a standardized input file is gen-

erated. This file can then be used with various ALPS solvers, including Exact Diagonal-

ization, DMRG, and Quantum Monte Carlo. Additionally, ALPS provides tools for data

analysis and visualization, along with a graphical interface via VisTrails, which improves

transparency and reproducibility.

While many parameters are shared across ALPS applications, DMRG simulations

require several specific inputs:

• NUMBER_EIGENVALUES: The number of eigenstates and energies to com-

pute (default is 1; set to 2 when computing energy gaps).

• SWEEPS: The number of DMRG sweeps to perform.

• MAXSTATES: The maximum number of retained states. The bond dimension

increases with each sweep up to this limit.

• CONSERVED_QUANTUMNUMBERS: The set of quantum numbers con-

served by the model. These allow matrix block-diagonalization for improved perfor-

mance. If not specified, the simulation assumes a grand canonical ensemble.
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Additional parameters exist but typically require no modification. A practical example

of defining and running a DMRG simulation using ALPS is provided in Code 1.

Code 1 – A typical Python setup script for running DMRG simulations in ALPS.

1 import pyalps

import numpy as np

3 import matplotlib.pyplot as plt

import pyalps.plot

5

#prepare the input parameters

7 parms = [{

'LATTICE ' : "open ladder frustrated",

9 'MODEL ' : "spin",

'CONSERVED_QUANTUMNUMBERS ' : 'N,Sz',

11 'Sz_total ' : 0,

'J0' : 1,

13 'J1' : 0.55,

'J2' : 0.44,

15 'SWEEPS ' : 10,

'NUMBER_EIGENVALUES ' : 1,

17 'MAXSTATES ' : 500,

'L' : 128

19 } ]

21

input_file = pyalps.writeInputFiles('parm_local_mag_open_frustrated64_44 ',parms)

23 res = pyalps.runApplication('dmrg',input_file ,writexml=True)

Source: The author (2025)

2.4.2 ITensor

ITensor [113] is a tensor library inspired by tensor diagram notation. Its design phi-

losophy emphasizes translating tensor diagrams directly into code, minimizing the need

for auxiliary concepts. For instance, summing two ITensors requires only that they share

the same indices—regardless of order—with index matching and contraction handled au-

tomatically.

Unlike ALPS, which operates largely as a black box with predefined lattices and mod-

els, ITensor provides greater flexibility, allowing detailed customization of models and

simulations. It includes DMRG implementations based on the MPS formalism and sup-

ports both C++ and Julia. This work uses the Julia version.
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The DMRG parameters from ALPS carry over to ITensor with some renaming—for

example, “max states kept” corresponds to the “maximum bond dimension.” A typical

DMRG simulation in ITensor involves defining lattice sites, constructing the Hamiltonian,

specifying algorithmic parameters, and executing the code.

As an illustrative example, consider a 1D spin–1
2

chain of 𝑁 sites governed by the

Heisenberg Hamiltonian:

ℋ̂ = 𝐽

𝑁−1∑︁
𝑖=1

Ŝ𝑖 · Ŝ𝑖+1 = 𝐽
𝑁−1∑︁
𝑖=1

[︂
𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1 +

1

2

(︁
𝑆+
𝑖 𝑆

−
𝑖+1 + 𝑆−

𝑖 𝑆
+
𝑖+1

)︁]︂
. (2.64)

The workflow in ITensor typically consists of the following steps:

• Create Sites: Use siteinds("S=1/2", 𝑁; conserve_qns=false) to define 𝑁

spin–1
2

sites. Setting conserve_qns=false indicates that quantum numbers such

as total 𝑆𝑧 are not conserved.

• Construct the Hamiltonian: Define the operator sum using ITensor’s OpSum/AutoMPO

system. The OpSum interface provides a high-level language to specify sums of local

operators, which AutoMPO compiles into an MPO representation.

Code 2 – Creation of the Hamiltonian (2.64) using the OpSum system.

os = OpSum()

2

for i = 1:N-1

4 os += J, "Sz", j, "Sz", j+1

os += J/2, "S+", j, "S-", j+1

6 os += J/2, "S-", j, "S+", j+1

end

Source: The author (2025)

• Convert to MPO: Use MPO(os, sites) to convert the operator sum into an

MPO.

• Initialize the State: For simulations without conserved quantities, initialize the

state with randomMPS(sites) . If quantum number conservation is enabled, use

productMPS(sites, state) to specify an initial product state explicitly.

• Set DMRG Parameters and Run: Define algorithmic parameters such as the

number of sweeps and bond dimension, then execute the simulation.
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A complete code example is provided in:

Code 3 – The following code provides a basic illustration of setting up a one-dimensional spin-1/2 chain

using ITensor in Julia. While this example is simplified for clarity, a typical implementation

would include additional commands to compute local quantities and utilize packages to save

the output data.

1 using ITensors

3 function heisenberg(J,N,n_sweeps ,n_maxdim)

sites = siteinds("S=1/2",N;conserve_qns = false)

5 os = OpSum()

for j=1:N-1

7 os += J,"Sz",j,"Sz",j+1

os += J/2,"S+",j,"S-",j+1

9 os += J/2,"S-",j,"S+",j+1

end

11 H = MPO(os,sites)

psi0 = randomMPS(sites)

13 sweeps = Sweeps(n_sweeps)

setmaxdim !(sweeps ,maxdim)

15 setcutoff !(sweeps ,1E-10)

noise!(sweeps ,1E-5,1E-5,1E-8,1E-8,1E-10,1E-12,0)

17 energy , psi = dmrg(H,psi0 , sweeps)

println(" energy = $energy")

19 return energy , psi

end

21 energy , psi = heisenberg(J,N,sweeps ,maxdim)

Source: The author (2025)

A key feature of ITensor is its OpSum/AutoMPO system, which offers an intuitive and

flexible interface for building Hamiltonians. This contrasts with ALPS, which requires

editing structured XML files such as lattices.xml and models.xml. In ITensor, the

geometry is implicitly defined by the pattern of site interactions. For example, in the

ladder geometry of Fig. 16(a), interactions like 𝐽⊥Ŝ1 · Ŝ2 (rungs) and 𝐽‖Ŝ1 · Ŝ8 (legs) are

defined directly from site indexing.

ITensor provides prebuilt site types such as spin–1
2

and spin–1, specified via "S=1/2"

or "S=1" in siteinds. For higher spin values or custom models, users must define site

objects and operator sets manually. The library also supports a variety of physical degrees

of freedom, including electrons, bosons, and fermions; see [113] for further details.
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2.4.3 Our Approach

This work employs both ALPS and, primarily, ITensor to compute ground-state prop-

erties of the studied models. A central element of the methodology is the use of the cut-

off parameter, which dynamically controls the retained bond dimension during DMRG

sweeps. Since the required bond dimension is typically unknown a priori, this adaptive

strategy ensures that the simulation maintains the desired accuracy while optimizing

computational efficiency.

Another important parameter is the noise, which introduces small perturbations dur-

ing early sweeps to improve convergence, particularly in models with complex energy

landscapes. This helps avoid metastable configurations by promoting exploration of the

variational space. The noise is initially set to 10−5 and progressively reduced over the

course of the sweeps [113].

The adopted methodology consists of the following key elements:

• Bond Dimension and Cutoff : A maximum bond dimension of 3000 is allowed

per sweep. The cutoff parameter ensures that only the minimum number of states

necessary to achieve the target accuracy is retained.

• Cutoff Values: For low-dimensional systems (e.g., chains and two-leg ladders),

cutoff values in the range of 10−8 to 10−10 are employed. For more complex or

effectively higher-dimensional systems, such as multi-leg ladders, the cutoff is relaxed

to the range of 10−6 to 10−7.

• Initial State: A Néel state is typically used as the initial state in AFM models. In

some cases, a random initial state is adopted to avoid bias and improve convergence.

• Extrapolation to the Thermodynamic Limit: Linear extrapolation is per-

formed using results for systems of lengths 𝐿, 3𝐿/2, and 2𝐿, providing estimates for

the thermodynamic limit.

• Boundary Conditions: All simulations are carried out with open boundary con-

ditions.



68

3 QUANTUM MAGNETISM IN LOW DIMENSIONS

The study of low-dimensional magnetic systems, particularly those constrained to 1D,

has evolved into a highly active and insightful area of research. These systems offer a

fertile ground for investigating quantum ground states, excitation spectra, exotic phases

of matter, and the intricate interplay between quantum and thermal fluctuations. From

a theoretical standpoint, 1D magnetism is remarkably rich, serving as an ideal testbed

for a broad range of analytical and numerical approaches. These include exact solutions

(such as the Bethe ansatz and mappings to fermionic models), quantum field-theoretical

techniques (e.g., conformal field theory and bosonization), many-body formulations (in-

cluding hardcore boson representations), perturbative expansions (notably high-order se-

ries techniques), and powerful numerical methods such as exact diagonalization—either

via full spectrum computations or restricted to low-lying eigenstates using the Lanczos

algorithm—alongside the DMRG and quantum Monte Carlo simulations.

A defining characteristic of 1D magnetism is the profound and sustained synergy

between theoretical predictions and experimental observations. The early 1980s marked

a pivotal moment in the field with groundbreaking theoretical contributions: Faddeev

and Takhtajan revealed the spinon nature of excitations in the spin–1
2

HAF chain [131],

while Haldane established a fundamental dichotomy between half-integer and integer spin

chains, now known as the Haldane conjecture [19, 20]. These seminal works reignited in-

terest in quasi-1D magnetic materials and catalyzed substantial developments in experi-

mental techniques aimed at probing low-dimensional quantum magnets.

3.1 LUTTINGER LIQUID

Quantum magnets confined to one spatial dimension (1D) exhibit a rich interplay be-

tween strong correlations and enhanced quantum fluctuations, leading to physical behavior

that markedly deviates from that of higher-dimensional systems. A unifying theoretical

framework for describing the low-energy properties of such systems is provided by the

Tomonaga-Luttinger liquid (Luttinger Liquid (LL)) theory [132, 133]. Initially developed

in the context of interacting fermions, LL theory has been successfully extended to spin

chains through bosonization techniques, whereby spin operators are mapped onto bosonic
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fields that represent collective excitations.

This formalism accounts for hallmark features of 1D quantum systems, such as power-

law decaying correlation functions, fractionalized excitations (e.g., spinons), and universal

low-energy behavior that transcends microscopic details. In particular, it captures the crit-

ical behavior of paradigmatic models like the spin–1
2

HAF chain, where the conventional

Fermi liquid theory fails. The LL paradigm thus provides a coherent and robust descrip-

tion of a broad class of gapless 1D quantum fluids, encompassing both fermionic and

bosonic systems, as well as spin chains.

3.1.1 Density Operator and Bosonization

Consider a one-dimensional system of particles located at positions 𝑥𝑖. The microscopic

density operator is defined as:

𝜌(𝑥) =
∑︁
𝑖

𝛿(𝑥− 𝑥𝑖). (3.1)

To describe the system in the continuum limit, we introduce a smooth and monotonically

increasing field 𝜑(𝑥), constrained such that 𝜑(𝑥𝑖) = 2𝜋𝑖 at the particle positions. In terms

of this field, the density operator becomes:

𝜌(𝑥) =
∑︁
𝑖

𝛿(𝜑(𝑥)− 𝜑(𝑥𝑖))|∇𝜑(𝑥)|. (3.2)

Employing the Poisson summation formula, the density can be rewritten as:

𝜌(𝑥) =
|∇𝜑(𝑥)|

2𝜋

∑︁
𝑝

𝑒𝑖𝑝𝜑(𝑥). (3.3)

Introducing a field Φ(𝑥) associated with deviations from a uniform background density

𝜌0, we define:

𝜑(𝑥) = 2(𝜋𝜌0𝑥− Φ(𝑥)), (3.4)

which yields the expression:

𝜌(𝑥) =

[︂
𝜌0 −

1

𝜋
∇Φ(𝑥)

]︂∑︁
𝑝

exp (2𝑖𝑝(𝜋𝜌0𝑥− Φ(𝑥))). (3.5)

At length scales much larger than the interparticle spacing, oscillatory contributions with

𝑝 ̸= 0 average out, leading to the smooth approximation:

𝜌(𝑥) ≈ 𝜌0 −
1

𝜋
∇Φ(𝑥). (3.6)
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Since the density operators at distinct positions commute, it follows that Φ(𝑥) is a self-

commuting bosonic field.

3.1.2 Particle Creation Operators

The particle creation operator in the bosonized description takes the general form:

𝜓†(𝑥) =
√︀
𝜌(𝑥)𝑒−𝑖𝑂̂(𝑥), (3.7)

where the operator 𝑂̂(𝑥) is chosen to ensure that the appropriate (anti)commutation

relations are satisfied. For bosonic particles, the canonical commutation relation,

[𝜓𝐵(𝑥), 𝜓
†
𝐵(𝑥

′)] = 𝛿(𝑥− 𝑥′), (3.8)

requires: [︁
𝜌(𝑥), 𝑒−𝑖𝑂̂(𝑥′)

]︁
= 𝛿(𝑥− 𝑥′)𝑒−𝑖𝑂̂(𝑥′). (3.9)

Using Eq. (3.6), this relation is fulfilled if:[︂
1

𝜋
∇Φ̂(𝑥), 𝑂̂(𝑥′)

]︂
= −𝑖𝛿(𝑥− 𝑥′). (3.10)

Thus, the bosonic creation operator becomes:

𝜓†
𝐵(𝑥) ∝

√︂
𝜌0 −

1

𝜋
∇Φ̂(𝑥)

∑︁
𝑝

exp (2𝑖𝑝(𝜋𝜌0𝑥− Φ̂(𝑥)))𝑒−𝑖𝑂̂(𝑥). (3.11)

In the fermionic case, anticommutation relations must be enforced. Exploiting the

fact that 𝑒𝑖𝜑(𝑥)/2 alternates in sign at particle positions, the fermionic creation operator is

constructed as:

𝜓†
𝐹 (𝑥) = 𝜓†

𝐵(𝑥)𝑒
𝑖𝜑(𝑥)/2

∝
√︂
𝜌0 −

1

𝜋
∇Φ̂(𝑥)

∑︁
𝑝

exp (𝑖(2𝑝+ 1)(𝜋𝜌0𝑥− Φ̂(𝑥)))𝑒−𝑖𝑂̂(𝑥). (3.12)

These operators effectively describe excitations in the continuum limit and are especially

suited for analyzing the asymptotic properties of correlation functions.
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3.1.3 Luttinger Liquid Hamiltonian

The universal low-energy physics of gapless one-dimensional systems is captured by

the effective Hamiltonian [134]:

ℋ̂ =
𝑢𝐾

2𝜋

∫︁ [︂
(𝜋Π(𝑥))2 +

1

𝐾2
(∇Φ(𝑥))2

]︂
𝑑𝑥, (3.13)

where Φ(𝑥) is the bosonic field introduced above, and Π(𝑥) is its conjugate momentum.

The parameters 𝑢 and 𝐾 represent the excitation velocity and the Luttinger parameter,

respectively, and fully characterize the low-energy behavior of the system [135]. Analogous

to the role of quasiparticle mass and interaction strength in Fermi liquid theory, these

parameters encode the effects of interactions and collective behavior in 1D systems.

The LL framework describes systems with a gapless excitation spectrum and power-

law correlation functions, whose exponents depend non-universally on the value of 𝐾 [136,

137]. For a system with average density 𝜌0, the density-density correlation function as-

sumes the form [138]:

⟨𝛿𝜌(𝑥, 𝜏)𝛿𝜌(0)⟩ = 1

𝑟2
+ 𝐴2 cos(2𝜋𝜌0𝑥)

(︂
1

𝑟

)︂2𝐾

+ 𝐴4 cos(4𝜋𝜌0𝑥)

(︂
1

𝑟

)︂8𝐾

+ · · · , (3.14)

where 𝛿𝜌(𝑥) = 𝜌(𝑥) − 𝜌0, 𝑟 =
√︀
𝑥2 + (𝑢𝜏)2, and 𝐴𝑛 are non-universal, model-dependent

amplitudes. This expression highlights the quasi-long-range order and scale-invariant na-

ture of the LL phase, governed entirely by the parameters 𝑢 and 𝐾.

3.2 LINEAR SPIN CHAIN

The linear spin chain is one of the most fundamental models in quantum magnetism,

yet it displays a remarkably rich variety of physical phenomena. Despite its apparent

simplicity, it captures essential features of strong correlations and quantum fluctuations

that also appear in higher-dimensional systems. Linear spin chains serve as paradigmatic

platforms for both theoretical investigations and experimental realizations, including im-

plementations in cold-atom setups and magnetic materials.

In this section, we focus on chains with nearest-neighbor AFM interactions. The cor-

responding Hamiltonian is given by:

ℋ̂ = 𝐽
∑︁
𝑖

Ŝ𝑖 · Ŝ𝑖+1 = 𝐽
∑︁
𝑖

(︁
𝑆𝑥
𝑖 𝑆

𝑥
𝑖+1 + 𝑆𝑦

𝑖 𝑆
𝑦
𝑖+1 + 𝑆𝑧

𝑖 𝑆
𝑧
𝑖+1

)︁
, (3.15)
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where 𝐽 > 0 denotes the AFM coupling strength, and the model corresponds to the 1D

isotropic Heisenberg chain.

Using the spin ladder operators, 𝑆±
𝑖 = 𝑆𝑥

𝑖 ± 𝑖𝑆𝑦
𝑖 , the Hamiltonian can be rewritten as:

ℋ̂ = 𝐽
∑︁
𝑖

(︂
𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1 +

1

2

(︁
𝑆+
𝑖 𝑆

−
𝑖+1 + 𝑆−

𝑖 𝑆
+
𝑖+1

)︁)︂
, (3.16)

subject to the standard angular momentum commutation relations:

[𝑆𝑧
𝑖 , 𝑆

±
𝑗 ] = ±𝛿𝑖𝑗𝑆±

𝑗 , [𝑆+
𝑖 , 𝑆

−
𝑗 ] = 2𝛿𝑖𝑗𝑆

𝑧
𝑗 . (3.17)

A landmark result for spin chains is Haldane’s conjecture (1983) [19, 20], which predicts

fundamentally different ground-state properties depending on whether the spin quantum

number 𝑆 is integer or half-integer:

• Integer spin (𝑆 = 1, 2, . . . ): The system possesses a finite excitation gap (the

Haldane gap) above the ground state, and spin-spin correlations decay exponentially,

indicating short-range magnetic order.

• Half-integer spin (𝑆 = 1
2
, 3
2
, . . . ): The spectrum is gapless, with a continuum of

low-energy excitations and power-law decaying spin correlations characteristic of

critical behavior.

This distinction underscores the role of quantum statistics and topological effects in

1D systems and has profound implications for both theory and experiment. The spin–1
2

Heisenberg chain, in particular, serves as a prototype of a gapless quantum critical system

described by LL theory (see Section 3.1).

3.2.1 Spin–1
2

Chain

For a single spin–1
2

site, with ℏ = 1, the spin operators in the 𝑧-basis are represented

by the matrices:

𝑆𝑧 =
1

2

⎛⎜⎝1 0

0 −1

⎞⎟⎠ , 𝑆+ =

⎛⎜⎝0 1

0 0

⎞⎟⎠ , 𝑆− =

⎛⎜⎝0 0

1 0

⎞⎟⎠ , (3.18)

which act on the basis states | ↑⟩ and | ↓⟩ as:

𝑆𝑧| ↑⟩ = 1

2
| ↑⟩, 𝑆+| ↑⟩ = 0, 𝑆−| ↑⟩ = | ↓⟩,

𝑆𝑧| ↓⟩ = −1

2
| ↓⟩, 𝑆+| ↓⟩ = | ↑⟩, 𝑆−| ↓⟩ = 0. (3.19)
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In a chain of 𝐿 spin–1
2

sites, local operators are defined via tensor products, such as

𝑆𝑧
𝑖 = I⊗ · · · ⊗ 𝑆𝑧 ⊗ · · · ⊗ I. Consider the fully polarized ferromagnetic state:

|Ψ0⟩ = | ↑↑ · · · ↑⟩. (3.20)

Under periodic boundary conditions, 𝑆𝑧
𝐿+1 ≡ 𝑆𝑧

1 , the Hamiltonian from Eq. (3.16) yields:

ℋ̂|Ψ0⟩ = 𝐽
∑︁
𝑖

𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1|Ψ0⟩ =

𝐽𝐿

4
|Ψ0⟩ = 𝐸0|Ψ0⟩, 𝐸0 =

𝐽𝐿

4
. (3.21)

For AFM coupling (𝐽 > 0), this state corresponds to the highest-energy eigenstate; con-

versely, for ferromagnetic coupling (𝐽 < 0), it represents the ground state.

Excited states with 𝑛 down spins (magnons) are obtained by applying spin-lowering

operators to |Ψ0⟩:

|𝑛1, 𝑛2, . . . , 𝑛𝐿⟩ =
∏︁
𝑖

(𝑆−
𝑖 )

𝑛𝑖 |Ψ0⟩,
∑︁
𝑖

𝑛𝑖 = 𝑛, 𝑛𝑖 ∈ 0, 1. (3.22)

A general 𝑛-magnon state takes the form:

|Ψ⟩ =
∑︁

𝑛1,...,𝑛𝐿

𝐶𝑛1,...,𝑛𝐿
|𝑛1, 𝑛2, . . . , 𝑛𝐿⟩. (3.23)

The Bethe Ansatz [139] postulates that the coefficients 𝐶𝑛1,...,𝑛𝐿
follow a plane-wave form.

For a single magnon, the trial wavefunction is:

|Ψ(𝑝)⟩ =
𝐿∑︁

𝑛=1

𝑒𝑖𝑝𝑛|𝑛⟩, |𝑛⟩ = |0, . . . , 1𝑛, . . . , 0⟩. (3.24)

To evaluate ℋ̂|Ψ(𝑝)⟩, consider how its components act on |𝑛⟩. The Ising term con-

tributes:

𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1|𝑛⟩ =

⎧⎪⎨⎪⎩
1
4
|𝑛⟩, if 𝑖 ̸= 𝑛, 𝑛− 1,

−1
4
|𝑛⟩, if 𝑖 = 𝑛− 1 or 𝑖 = 𝑛.

(3.25)

Summing over 𝑖:∑︁
𝑖

𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1|𝑛⟩ =

[︂
(𝐿− 2) · 1

4
− 1

4
− 1

4

]︂
|𝑛⟩ =

(︂
𝐿

4
− 1

2

)︂
|𝑛⟩. (3.26)

The ladder terms yield:

𝑆+
𝑖 𝑆

−
𝑖+1|𝑛⟩ =

⎧⎪⎨⎪⎩|𝑛+ 1⟩, 𝑖 = 𝑛− 1,

0, otherwise,
(3.27)

𝑆−
𝑖 𝑆

+
𝑖+1|𝑛⟩ =

⎧⎪⎨⎪⎩|𝑛− 1⟩, 𝑖 = 𝑛,

0, otherwise.
(3.28)
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Thus,

1

2

∑︁
𝑖

(︁
𝑆+
𝑖 𝑆

−
𝑖+1 + 𝑆−

𝑖 𝑆
+
𝑖+1

)︁
|𝑛⟩ = 1

2
(|𝑛+ 1⟩+ |𝑛− 1⟩) . (3.29)

Applying the full Hamiltonian:

ℋ̂|Ψ(𝑝)⟩ = 𝐽

𝐿∑︁
𝑛=1

𝑒𝑖𝑝𝑛
[︂(︂

𝐿

4
− 1

2

)︂
|𝑛⟩+ 1

2
(|𝑛+ 1⟩+ |𝑛− 1⟩)

]︂

= 𝐽

(︂
𝐿

4
− 1

2
+ cos 𝑝

)︂ 𝐿∑︁
𝑛=1

𝑒𝑖𝑝𝑛|𝑛⟩

= 𝐸1(𝑝)|Ψ(𝑝)⟩, (3.30)

with energy:

𝐸1(𝑝) = 𝐽

(︂
𝐿

4
− 1

2
+ cos 𝑝

)︂
, 𝜀(𝑝) = 𝐸1(𝑝)− 𝐸0 = 𝐽(cos 𝑝− 1). (3.31)

For 𝑁 magnons, the exact solution [139] gives:

𝐸𝑁 = −𝐽
2

𝑁∑︁
𝑗=1

1

𝜆2𝑗 + 1/4
, (3.32)

where the rapidities 𝜆𝑗 satisfy the Bethe equations:(︂
𝜆𝑗 + 𝑖/2

𝜆𝑗 − 𝑖/2

)︂𝐿

=
𝑁∏︁
𝑘=1
𝑘 ̸=𝑗

𝜆𝑗 − 𝜆𝑘 + 𝑖

𝜆𝑗 − 𝜆𝑘 − 𝑖
, 𝑗 = 1, . . . , 𝑁. (3.33)

In the AFM ground state, the 𝜆𝑗 are real and symmetrically distributed around zero. In

the thermodynamic limit (𝐿 → ∞), they form a continuous distribution, leading to a

gapless excitation spectrum.

The spin–1
2

HAF chain exemplifies a LL, exhibiting gapless excitations, power-law spin

correlations, and fractionalized spinon excitations. These features are rigorously confirmed

through bosonization and conformal field theory, which map the system to a Tomonaga-

Luttinger liquid with Luttinger parameter 𝐾 = 1/2 [134].

3.2.2 Numerical Results for Linear Spin Chains

For spin–𝑆 > 1
2

systems, the Bethe Ansatz becomes increasingly intricate, and exact

solutions are generally intractable. In such cases, Haldane’s conjecture offers critical the-

oretical guidance. To compute thermodynamic properties of spin–𝑆 chains, the DMRG
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method proves highly effective, allowing accurate analysis of 1D quantum systems with

moderate computational resources. Nonetheless, DMRG is limited by the maximum sys-

tem size it can reliably simulate—typically 𝐿 ≲ 1000 sites—due to the exponential growth

of the Hilbert space.

The Hilbert space dimension per site is 2𝑆 + 1, so for a chain of 𝐿 sites, the full

dimension scales as (2𝑆 + 1)𝐿, or 2𝐿 for spin–1
2
. As DMRG relies on a variational op-

timization over matrix product states, increasing system size leads to computationally

intensive operations.

To address finite-size effects, simulations are performed for various lengths and ex-

trapolated to the thermodynamic limit (𝐿→ ∞) via finite-size scaling. A commonly used

ansatz for the spin gap is

∆𝐸(𝐿) = ∆ +
𝑎

𝐿
+

𝑏

𝐿2
, (3.34)

where ∆ denotes the thermodynamic gap, and 𝑎 and 𝑏 are fitting parameters. This ap-

proach also applies to other observables such as the correlation length, entanglement

entropy, and specific heat. Using Eq. (3.34), we extract the Haldane gap in the thermo-

dynamic limit.

3.2.2.1 The Spin–1
2

and Spin–3
2

Chains

For half-integer spin chains (𝑆 = 1
2
, 3
2
, with 𝐽 = 1), DMRG simulations yield the

thermodynamic spin gap values shown in Fig. 18:

∆1/2 = 0, ∆3/2 = 0. (3.35)

These results confirm Haldane’s conjecture, which predicts gapless excitations for half-

integer spin chains, in contrast with the gapped spectra of integer-spin chains. The gapless

nature of the spin–1
2

chain is exactly verified by the Bethe Ansatz. Experimental realiza-

tions include quasi-1D compounds such as Cs4CuSb2Cl12 [140], CuPzN [141], and KCuF3

[142] for 𝑆 = 1
2
, and AgCrP2S6 [143] and CsVCl3 [144] for 𝑆 = 3

2
, all belonging to the

same universality class [145].

The ground states of both chains exhibit vanishing local magnetization (⟨𝑆𝑧
𝑖 ⟩ = 0,

Fig. 19), due to quantum superposition. Half-integer spins lack a |0⟩ eigenstate, prevent-

ing a simple classical description. Their excitations are spinons—fractional quasiparticles
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carrying spin–1
2

[140, 146]. In the spin–1
2

HAF chain, a spin flip disrupts the singlet

ground state and fractionalizes into two spinons, each with ∆𝑆𝑧 = 1
2
. Unlike classical do-

main walls, spinons are delocalized and propagate freely. In finite systems, spinons appear

in pairs to conserve total spin. The spin–3
2

chain also supports spinon excitations, con-

sistent with its gapless nature. The low-energy behavior of both systems is described by

the 𝑆𝑈(2)1 Wess-Zumino-Witten conformal field theory [147], confirming the deconfined

spinon picture.

Figure 18 – Spin gap ∆𝐸 versus 1/𝐿 for a linear spin chain with open boundary conditions. Red and
blue points represent DMRG results for spin- 12 and spin- 32 chains, respectively. Dashed lines
show extrapolations to the thermodynamic limit using Eq. (3.34). The maximum truncation
error is ∼ 10−8.
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Figure 19 – Local magnetization of the ground state and the first two magnetic excitations in a linear spin
chain with open boundary conditions, computed using DMRG. The magnetization distribu-
tion, ⟨𝑆𝑧

𝑖 ⟩, and excitation, ⟨∆𝑆𝑧
𝑖 ⟩𝑘, are shown for the 𝑘-th excitation (e.g., 𝑘 = 1 corresponds

to a transition from 𝑆𝑧
total = 0 to 𝑆𝑧

total = 1). Panels (a.1)–(a.3) depict spin-12 chain; panels
(b.1)–(b.3) depict spin- 32 chain. The maximum truncation error is ∼ 10−8.
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3.2.2.2 The Spin–1 and Spin–2 Chains

For integer-spin chains (𝑆 = 1, 2, with 𝐽 = 1), DMRG results in Fig. 20 provide the

following thermodynamic gaps:

∆1 ≈ 0.41, ∆2 ≈ 0.08. (3.36)

The Haldane gap for the spin–1 chain (∆1 ≈ 0.41𝐽) is a well-established result [148–

150], experimentally observed in compounds such as NENP [23, 151, 152]. For the spin–2

chain, the gap is significantly smaller, with early DMRG estimates around ∆2 ≈ 0.08𝐽

[153–155]. The most accurate value to date, (0.0890± 0.0007)𝐽 , was obtained by Nakano

and Sakai [156]. Experimental signatures of the spin–2 Haldane gap have been reported

in MnCl3(bpy) [157, 158].

Figure 20 – Spin gap ∆𝐸 versus 1/𝐿 for a linear spin chain with open boundary conditions. Panels (a)
and (b) represent DMRG results for spin-1 and spin-2 chains, respectively. Dashed lines show
extrapolations to the thermodynamic limit using Eq. (3.34). The maximum truncation error
is ∼ 10−8.
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The spin–1 chain exhibits edge magnetization while remaining non-magnetic in the

bulk, as shown in Fig. 21. In the 𝑆𝑧
total = 0 sector, two spin–1

2
edge states form a doublet

(panel a.1). A transition to 𝑆𝑧
total = 1 flips one edge spin, producing a localized excitation

(panel a.2). These edge states contribute to a fourfold degeneracy across 𝑆𝑧
total = 0,±1

in the thermodynamic limit. Bulk excitations are spin–1 magnons—delocalized triplet

states—with energy ∆1 ≈ 0.41𝐽 , as shown in panel a.3.
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Figure 21 – Local magnetization of the ground state and magnetic excitations in a linear spin chain with
open boundary conditions, computed using DMRG. The magnetization distribution, ⟨𝑆𝑧

𝑖 ⟩,
and excitation, ⟨∆𝑆𝑧

𝑖 ⟩𝑘, are shown for the 𝑘-th excitation. Panels (a.1)–(a.3) depict spin-1
chain; panels (b.1)–(b.3) depict spin-2 chain. The maximum truncation error is ∼ 10−8.
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The ground state of spin–2 chains can differ markedly from that of spin–1 chains. A

trivial product state, such as

|𝜓⟩ = |1⟩1 ⊗ |0⟩2 ⊗ · · · ⊗ | − 1⟩𝐿, (3.37)

is unentangled and lacks topological features. In contrast, the spin–1 Haldane phase is a

highly entangled quantum state. In the Valence-Bond Solid (VBS) picture provided by the

Affleck-Kennedy-Lieb-Tasaki (AKLT) model [159], each spin–1 site is represented as two

symmetrized spin–1
2

particles forming singlet bonds with neighboring sites. This results

in a gapped Symmetry-Protected Topological (SPT) phase, characterized by short-range

entanglement and nonlocal string order. Certain spin–2 chains, however, such as trivial

AKLT-like configurations, may exhibit ground states that are close to product states,

with minimal quantum correlations and no topological order—for instance, with all spins

in the 𝑚 = 0 state.

Figure 22 – Illustration of the AKLT state for a spin-1 chain with open boundary conditions. Large
shaded circles represent spin-1 sites, each a symmetric combination of two spin- 12 particles
(small solid circles). Blue lines indicate singlet bonds between neighboring spin- 12 particles.
Under open boundary conditions, an unpaired spin- 12 remains at each boundary, leading to
a fourfold degenerate ground state in the thermodynamic limit.
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Characterizing the Haldane phase in Q1D spin-1 Heisenberg antiferromagnets

Fig. 1. (Color online) Illustration of the AKLT state for a six-site open chain. Large shaded
circles represent spin S = 1 degrees of freedom composed of the symmetric combination of two

spin S = 1
2

spins (small solid circles). In the AKLT state, pairs of S = 1
2

spins on neighboring

sites form a singlet state (blue lines). For open boundaries, this leaves an unpaired S = 1
2
degree

of freedom at each boundary. In the thermodynamic limit, these spins are completely decoupled
from the rest of the lattice, leading to a fourfold degenerate ground state.

parameter was a marked departure from the conventional practice of characterizing

quantum many-body states in terms of local order parameters and ushered in the

study of topological phases — an area of intense current research. Much insight

into the nature of the Haldane phase can be gained from the Affleck–Kennedy–

Lieb–Tasaki (AKLT) state — the exact ground state of a 1D S = 1 spin chain

where the near-neighbor Heisenberg interaction is supplemented by an additional

interaction between neighboring spins.47 The AKLT state may be understood by

noting that the spin at each site can be thought of as a symmetric combination of

two S = 1
2 spins. Pairs of these spins on neighboring sites form a singlet on each

bond. For a periodic chain, this forms a unique valence bond solid (VBS) ground

state — a singlet on each bond — with a gap to lowest excitations. But for open

chains, there remains an unpaired S = 1
2 moment at each end which is doubly

degenerate (see Fig. 1 for an illustration of this state). Consequently, the ground

state is gapped in the “bulk” and has degenerate gapless edge states. The state is

protected by this Z2 × Z2 symmetry. Using the current terminology of topological

states, this state is a symmetry protected topological (SPT) phase. The Haldane

phase is adiabatically connected to the AKLT state — in other words, it has the

same qualitative character. In fact, the Haldane phase is widely recognized as the

earliest and best understood SPT phase in interacting many-body systems.48,49

What happens to the Haldane phase in the presence of additional interactions,

such as, interchain coupling and single-ion anisotropy? The question is not simply

of academic interest — all real materials have nonzero interchain coupling and in

many quantum magnets, the crystal electric field lifts the degeneracy of the local

Hilbert space in the form of a single-ion anisotropy. Theoretical studies have shown

that both these interactions destroy the Haldane phase at sufficiently strong in-

teraction strength — the single-ion anisotropy drives a transition to a quantum

paramagnetic (QPM) phase whereas interchain coupling favors long-range antifer-

romagnetic (AFM) ordering — but the ground state remains gapped up to finite

values of the couplings. What is the nature of the gapped ground state away from the

isotropic Heisenberg point? Does it still retain its SPT character? The string order

parameter — the only definitive probe for the Haldane phase — is strictly defined

only in one dimension and its extension to coupled chains cannot be trusted without

corroboration from additional measurements. Fortunately, recent advancements in
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3.3 TOPOLOGICAL PHASES

Phases of matter are traditionally characterized by an order parameter, which quan-

tifies the macroscopic organization of microscopic degrees of freedom and is typically

associated with spontaneous symmetry breaking. For instance, in magnetic systems, the

magnetization acts as an order parameter, distinguishing between magnetically ordered

and disordered phases.

In a broken-symmetry phase, the order parameter acquires a finite expectation value,

signaling long-range order. In contrast, it vanishes in the symmetric, disordered phase.

A paradigmatic example is the Ising model, whose ordered and disordered phases are

separated by a phase transition associated with the breaking of a discrete 𝑍2 symmetry.

In the absence of such a symmetry, the two states can be adiabatically connected, and no

true phase transition needs to occur.

Phase transitions may also arise in the absence of symmetry breaking. These are often

first-order transitions, terminating at critical endpoints, as exemplified by the liquid-gas

transition. More remarkably, certain quantum phases — known as topological phases — are

distinct despite lacking any local order parameter or conventional symmetry breaking. The

classification of such phases, especially in higher dimensions, remains an open problem,

with symmetry playing a nuanced role in their stability and distinction.

Topology, in the mathematical sense, concerns properties invariant under continu-

ous deformations. In physical systems, topological invariants classify phases according to

global features such as connectivity and winding, rather than local order. In the context

of quantum matter, topological phases [160] are characterized by entanglement structures

that cannot be adiabatically transformed into one another without closing the energy gap

or breaking a protecting symmetry, such as time-reversal or particle-hole symmetry.

The discovery of the integer [161] and fractional [162] quantum Hall effects in the

1980s provided the first experimental realizations of topological phases. Simultaneously,

Haldane’s conjecture on integer-spin chains revealed a new class of gapped quantum phases

in one dimension, now recognized as SPT phases. These breakthroughs have established

topological phases as a central theme in modern condensed matter physics.
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3.3.1 The Haldane Phase

The ground state of the spin–1 HAF chain, introduced earlier, is a topological phase

known as the Haldane phase. This phase lacks a conventional local order parameter, yet

it can be characterized by a nonlocal string order parameter. A hallmark of this phase is

the presence of fractionalized edge states under OBC, where excitations are localized at

the boundaries while the bulk remains gapped — a feature reminiscent of edge currents

in the quantum Hall effect.

As illustrated in Fig. 21, the spin–1 chain exhibits a nontrivial ground state, in contrast

to the trivial ground state found in the spin–2 chain. In general, topological phases can

be categorized as follows:

• Nontrivial topological phase: A phase that cannot be adiabatically connected to

a trivial product state without either closing the excitation gap or breaking a

protecting symmetry. Such phases typically exhibit long-range entanglement and

symmetry-protected edge states.

• Trivial topological phase: A phase that can be smoothly deformed into a product

state without a phase transition, and that lacks topological signatures such as edge

modes or string order.

The Haldane 𝑆 = 1 phase is a prime example of a SPT phase [29, 163], meaning it is

topologically distinct from a trivial phase only in the presence of certain symmetries, such

as lattice translation, time-reversal, and spatial inversion [163]. Its nontrivial character

originates from bulk entanglement rather than solely from edge properties. In contrast,

the spin–2 ground state is topologically trivial, as it can be adiabatically transformed into

a product state in the absence of symmetry constraints. Pollmann et al. [21] demonstrated

that odd-integer spin chains generically host SPT phases, while even-integer spin chains

tend to realize trivial phases.

3.3.2 Order Parameters

Order parameters provide a means to detect magnetic order in quantum spin systems.

They assume nonzero values in the presence of a particular type of order and vanish
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otherwise. For a spin–1 chain, consider the following representative states:

|Ψ⟩Ferro = | ↑↑ · · · ↑⟩, (3.38)

|Ψ⟩AFM = | ↑↓ · · · ↑↓⟩, (3.39)

where the AFM order parameter satisfies ⟨𝑂AFM⟩Ferro = 0, ⟨𝑂AFM⟩AFM = 1.

Common magnetic order parameters include:

• Ferromagnetic order

– Order parameter : Magnetization (𝑀)

– Definition: Quantifies the net spin polarization.

– Expression:

𝑀 =
1

𝐿

𝐿∑︁
𝑖=1

⟨𝑆𝑧
𝑖 ⟩ (3.40)

– Signature: 𝑀 ̸= 0 in ferromagnetic phases; 𝑀 = 0 in PM or AFM phases.

• Antiferromagnetic order

– Order parameter : Staggered magnetization (𝑀𝑠)

– Definition: Measures alternating spin orientation.

– Expression:

𝑀𝑠 =
1

𝐿

𝐿∑︁
𝑖=1

(−1)𝑖⟨𝑆𝑧
𝑖 ⟩ (3.41)

– Signature: 𝑀𝑠 ̸= 0 in AFM phases; 𝑀𝑠 = 0 in disordered or ferromagnetic

phases.

• Spin-dimerized order

– Order parameter : Dimerization (𝐷)

– Definition: Detects alternating bond strengths, indicative of spontaneously

dimerized states.

– Expression:

𝐷 =
1

𝐿

𝐿−1∑︁
𝑖=1

(−1)𝑖⟨Ŝ𝑖 · Ŝ𝑖+1⟩ (3.42)
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– Signature: 𝐷 ̸= 0 in dimerized phases; 𝐷 = 0 otherwise.

A finite 𝑀𝑠 indicates AFM correlations, although it does not necessarily imply long-

range order, especially in finite systems where fluctuations may give rise to a nonzero

value even in paramagnetic phases. In the thermodynamic limit, a finite 𝑀𝑠 confirms long-

range AFM order, while a vanishing 𝑀𝑠 suggests short-range correlations. In particular,

disordered phases such as spin liquids or VBSs may exhibit short-range spin correlations,

yet satisfy 𝑀𝑠 → 0 as 𝐿→ ∞.

3.3.2.1 String Order Parameter

The Haldane phase in spin–1 chains exhibits only short-range AFM correlations and

lacks conventional long-range magnetic order. Instead, it is characterized by a nonlocal

hidden order, captured by the string order parameter introduced by Rommelse and den

Nijs [164]. For spin–1 systems, this parameter is defined as

𝒪𝛼 = lim
|𝑗−𝑖|→∞

⟨
𝑆𝛼
𝑖 exp

(︃
𝑖𝜋

𝑗−1∑︁
𝑘=𝑖+1

𝑆𝛼
𝑘

)︃
𝑆𝛼
𝑗

⟩
, (3.43)

where 𝛼 = 𝑥, 𝑧 denotes the spin component. This nonlocal correlator detects hidden

order by effectively filtering out local spin fluctuations through the exponential phase

factor, which acts as a string of phase shifts. In the Haldane phase, both longitudinal and

transverse components of 𝒪𝑧 are nonzero [164, 165], with 𝒪𝑧 ≈ −0.37 for 𝑆 = 1 [150].

For arbitrary integer spin 𝑆, Oshikawa generalized the string order parameter to ac-

count for the broader spin Hilbert space [166]:

𝒪𝛼
str = lim

|𝑗−𝑖|→∞

⟨
𝑆𝛼
𝑖 exp

(︃
𝑖𝜋

𝑆

𝑗−1∑︁
𝑘=𝑖+1

𝑆𝛼
𝑘

)︃
𝑆𝛼
𝑗

⟩
. (3.44)

For 𝑆 = 2, the generalized string order parameter is also nonzero, with 𝒪𝑧
str ≈ −0.72

[153], indicating that a form of hidden order persists despite the absence of conventional

magnetic order.

Although the string order parameter is nonzero for both 𝑆 = 1 and 𝑆 = 2, it does

not, by itself, guarantee a nontrivial phase. In the 𝑆 = 1 case, nonzero string order

reflects a nontrivial SPT Haldane phase, characterized by edge states and a nontrivial

projective symmetry action. However, for 𝑆 = 2, the string order parameter remains finite,

indicating hidden antiferromagnetic correlations, yet the phase is topologically trivial.
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This demonstrates that string order captures certain nonlocal correlations but is not

sufficient to distinguish SPT phases: even trivial phases can exhibit nonzero string order

in the absence of protected edge modes or projective symmetry representations.

Using ITensor, we compute Eq. (3.44) for finite systems, following Ueda et al. [167].

Measurement points are chosen as 𝑖 = ⌊𝐿/3⌋+ 1, 𝑗 = ⌊2𝐿/3⌋, ensuring:

• Maximal distance from edges.

• Large correlation distance |𝑗 − 𝑖|.

• Proportional scaling of |𝑗 − 𝑖| with system size 𝐿.

Extrapolating 𝒪𝛼
str across system sizes yields the thermodynamic limit value.

3.4 SPIN LADDERS

A spin ladder consists of 𝑁 coupled spin chains, each with intrachain coupling 𝐽‖.

Interchain coupling 𝐽⊥ connects corresponding sites across adjacent chains, forming a

ladder-like geometry (Fig. 23).

Figure 23 – Schematic of a spin ladder with coupled linear chains. The leg coupling 𝐽‖ governs interactions
along each chain, while the rung coupling 𝐽⊥ connects adjacent chains.

J∥
J⊥

Source: The author (2025)

Spin ladders are quasi-2D systems, characterized by a width 𝑁 (number of legs) and

length 𝐿 (number of rungs). Typically, 𝐿 ≫ 𝑁 , so ladders retain strong 1D character.
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When 𝐿 = 𝑁 , the geometry approaches that of a square lattice, and 2D effects become

more pronounced. Assuming only nearest-neighbor interactions, the Hamiltonian reads:

ℋ̂ = 𝐽⊥

𝐿∑︁
𝑖=1

𝑁−1∑︁
𝑙=1

Ŝ𝑖,𝑙 · Ŝ𝑖,𝑙+1 + 𝐽‖

𝐿−1∑︁
𝑖=1

𝑁∑︁
𝑙=1

Ŝ𝑖,𝑙 · Ŝ𝑖+1,𝑙, (3.45)

where Ŝ𝑖,𝑙 is the spin operator at rung 𝑖, leg 𝑙.

For the isotropic case 𝐽⊥ = 𝐽‖, the nature of the ground state depends on the par-

ity of 𝑁 : ladders with even 𝑁 form gapped spin–liquid phases, while odd-𝑁 ladders are

gapless [33–35]. This distinction is supported by Lieb-Schultz-Mattis-type theorems [36],

numerical studies up to 𝑁 = 6 [37–39, 168], scaling theory [40], and experimental realiza-

tions [32, 41–43].

Sénéchal [169] and Sierra [170] extended Haldane’s conjecture to ladder systems,

proposing that spin–𝑆, 𝑁 -leg ladders are gapless when 𝑆𝑁 is a half-integer and gapped

when 𝑆𝑁 is an integer. This generalized conjecture is well supported for spin–1
2

lad-

ders [39, 168, 171], while evidence for 𝑆 > 1/2 remains limited. Using DMRG, Ramos and

Xavier [168] provided numerical data for systems with 𝑆 ≤ 5/2 and 𝑁 ≤ 6, confirming

the gap behavior for several combinations of 𝑆 and 𝑁 .

White et al. [39] proposed a Resonating-Valence-Bond (RVB) picture [172] to interpret

the qualitative differences between even- and odd-leg ladders. In this framework, the

ground state consists of valence bond singlets resonating between different configurations.

These resonances, including four-site plaquette flips [173], lower the ground state energy.

Two main classes of configurations are considered (Fig. 24): resonating configurations,

which support quantum fluctuations and minimize energy, and staggered configurations,

which are energetically unfavorable and suppress resonance.

Figure 24 – Valence bond configurations in spin ladders. (a) Resonating configuration with alternating
dimer bonds. (b) Staggered configuration without resonance.
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FIG. 3. Various dimer valence bond configurations, with and
without topological spin defects present.

Although, as we have seen, the correlation length is
poorly determined with the dimer RVB ansatz, a variety
of qualitative features predicted by the ansatz are indeed
present. For example, the variational state has a greater
bond strength for interchain nearest-neighbor bonds com-
pared to intrachain bonds [c.f. Fig. 4(b)]. Most impor-
tantly, within the short-range RVB picture one expects to
find that pairs of topological spin defects are bound. We
see from Fig. 3(c) that two spin defects produce a region
of staggered bond order between them if they are sep-
arated. Furthermore, one expects from this picture that
the pair of defects should reside predominantly on a sin-

gle rung, as in Fig. 3(d), rather than on adjacent sites on
a single chain, in order to maximize resonance. Each of
these predictions is supported by the DMRG calculations.

If we remove one of the sites of the lattice from both
the first and last rungs, as shown in Fig. 3(b), in order to
force the system to have staggered bond order, we expect
a topological spin defect to appear at each end to remove
the staggering effect. The resulting spin defects are
confined to the ends of the lattice, and are similar to the
effective S =

2 spins on the ends of open S = 1 chains

[9,18]. As in that case, instead of an isolated ground
state, we have a singlet and a triplet of states with a
separation in energy which falls off exponentially with L.
Figure 4 shows DMRG results for the local spin moment
and nearest-neighbor bond strengths in the vicinity of a
modified end of an n, = 2 lattice. A localized spin defect
is clearly present.

Now, it is possible to represent any singlet state as
an RVB state [10], provided long-range singlet bonds
are allowed. The crucial point in considering such an
RVB representation is whether the amplitude for long-
range bonds decays exponentially or algebraically, and if
algebraically, with what exponent. Our DMRG results
indicate that for the n, = 2 and n, = 4 systems the

-0.30

—0.85— / ~ ~+~——~~——
o

-O.45 - ~

~ upper bond. s
o lower bonds

ung bonds

-0.50
10

FIG. 4. One end of a long (L = 50) n, = 2 chain with the
first site of the bottom chain missing. A topological spin
defect (an 5 =

2 up spin) is trapped near the end of the chain.
The defect "heals" the staggered bond order imposed by the
modified chain end. In (a) we show the local magnetization,
and in (b) we show the nearest-neighbor bond strengths.

universality class is that of the short-range RVB. The
generalization of the LSM theorem, plus our results for
n, = 3, indicate that the universality class for odd n, is
the long-range RVB state.

What is the behavior for even n, ~ 4, and why is
there different behavior for odd and even n, 7 We believe
the answer to this can be understood in terms of the
confinement of topological defects present within a dimer
RVB state with even n, . The confinement for n, = 2 is
represented in Fig. 3(c), and the lack of confinement for
n, = 3 is shown in Fig. 3(e). In general, for even n„,
the presence of a single defect puts the system into a
generalized form of staggered order characterized by an

odd number of bonds crossing any vertical line separating
rungs. We expect that this staggered order, although still

capable of resonance for n, ~ 4, is higher in energy thm

888

Source: Adapted from [39]
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3.4.1 Spin–1
2

Two-Leg Ladder

For spin–1
2

sites and 𝑁 = 2, Eq. (3.45) describes the two-leg Heisenberg ladder. As-

suming 𝐽‖ > 0, the system exhibits distinct regimes depending on the rung coupling

𝐽⊥:

• No rung coupling (𝐽⊥ = 0): The ladder decouples into two independent spin–1
2

HAF chains. Each chain is gapless and described by LL theory [134], as discussed

in Section 3.2.2.1.

• Isotropic coupling (𝐽⊥ = 𝐽‖): A gapped spin–liquid phase emerges, characterized by

short-range correlations and a finite spin gap ∆ ≈ 0.5𝐽⊥ [39, 174].

• Weak rung coupling (|𝐽⊥| ≪ 𝐽‖): The legs remain nearly independent, retaining LL

behavior similar to a single HAF chain.

In the strong rung-coupling limit (|𝐽⊥| ≫ 𝐽‖), two distinct gapped phases arise:

• Antiferromagnetic rungs (𝐽⊥ > 0): The ground state consists of rung singlets

(𝑆 = 0), forming a gapped RS phase [175, 176]. The gap corresponds to the en-

ergy required to break a singlet bond.

• Ferromagnetic rungs (𝐽⊥ < 0): Rung triplets (𝑆 = 1) dominate, leading to a gapped

RT phase [49]. This phase can be mapped to an effective spin–1 HAF chain with

reduced coupling 𝐽‖/2.

Early numerical studies suggested a finite critical value 𝐽⊥ for gap opening [37, 177].

However, field-theoretical and scaling arguments [40, 178, 179], later confirmed by numer-

ical simulations [180, 181], established that the critical point lies at 𝐽⊥, c = 0, with the

spin gap scaling linearly with |𝐽⊥| for any nonzero coupling.

3.4.1.1 Ground-State Phase Diagram of the Spin–1
2

Two-Leg Ladder

We compute the ground-state phase diagram of Eq. (3.45) for the spin–1
2

two-leg ladder

using DMRG, focusing on rung correlations. The local rung operator is defined as

𝑅̂𝑖 = Ŝ𝑖,1 · Ŝ𝑖,2, (3.46)
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and the average rung correlation is given by

𝑅 =
1

𝐿

𝐿∑︁
𝑖=1

⟨𝑅̂𝑖⟩ =
1

𝐿

𝐿∑︁
𝑖=1

⟨Ŝ𝑖,1 · Ŝ𝑖,2⟩. (3.47)

The resulting phase diagram, shown in Fig. 25, illustrates the competition between 𝐽⊥

and 𝐽‖. For 𝐽⊥ = 0, the system consists of two decoupled spin–1
2

chains, yielding 𝑅 ≈ 0

and a gapless LL phase, as discussed earlier. For 𝐽⊥ > 0, rung singlets dominate; in the

strong-coupling limit, 𝑅 → −0.75, corresponding to the ideal singlet value and indicating

a gapped RS phase. Conversely, for 𝐽⊥ < 0, rung triplets form with 𝑅 > 0, characteristic

of a gapped RT phase. In the weak-coupling regime (|𝐽⊥| ≪ 𝐽‖), the system behaves

similarly to decoupled chains, with 𝑅 ≈ 0.

Both regions 𝐽⊥ > 0 and 𝐽⊥ < 0 are fully gapped, with the spin gap scaling linearly

with |𝐽⊥|. No phase transition occurs for finite 𝐽⊥; the only critical point is at 𝐽⊥, c = 0,

where the gap closes and the system becomes critical [178–180].

Figure 25 – Ground-state phase diagram of a spin- 12 two-leg ladder, computed using DMRG as a func-
tion of rung coupling 𝐽⊥ and leg coupling 𝐽‖. The color scale represents the average rung
correlation 𝑅, calculated for 𝐿 = 100 rungs with a truncation error of ∼ 10−10. At 𝐽⊥ = 0,
𝑅 ≈ 0, indicating two decoupled spin- 12 chains. In the strong rung coupling limit (|𝐽⊥| ≫ 𝐽‖),
𝑅 → −0.75 for 𝐽⊥ > 0 (singlet-dominated RS phase) and 𝑅 → 0.25 for 𝐽⊥ < 0 (triplet-
dominated RT phase). In the weak rung coupling regime (|𝐽⊥| ≪ 𝐽‖), 𝑅 ≈ 0, reflecting
nearly independent legs.
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4 SPIN–1
2

FRUSTRATED LADDER

Magnetic frustration arises when competing AFM interactions prevent all spin pairs

from simultaneously minimizing their energy. A prototypical example is shown in Fig. 26,

where three mutually interacting Ising spins cannot all align antiparallel. This incom-

patibility leads to a macroscopically degenerate ground state. Under certain conditions,

frustration stabilizes exotic quantum phases, such as spin liquids, where spins remain

entangled and fluctuate down to zero temperature despite the absence of long-range or-

der [182].

Figure 26 – A triangular arrangement of antiferromagnetically interacting Ising spins, constrained to
point either up or down, serves as the simplest example of frustration. In this configuration,
it is impossible for all three spins to be fully antiparallel. Consequently, instead of the two
ground states expected from Ising symmetry (all spins flipped up or down), the system
exhibits six degenerate ground states.They also identified deviations from the Arrhenius form at lower tem-

peratures as a result of Coulomb interactions between monopoles. In 
an intriguing paper, Bramwell and colleagues applied an old theory put 
forward by Onsager18 for the electric-field dependence of thermal charge 
dissociation in electrolytes — the Wien effect — to the magnetic analogue 
in spin ice, that is, to the dis association of monopole–antimonopole pairs 
with a magnetic field19. The theory allows an extraction of the absolute 
value of the magnetic charge of a monopole from the dependence of the 
magnetic relaxation rate on the magnetic field. The authors measured 
muon spin relaxation in Dy2Ti2O7 to obtain the rate, and from this they 
extracted a magnetic charge in near perfect agreement with theoreti cal 
expectations. In addition to these quantitative measures of the energy 
and charge of a monopole, two recent papers presented neutron-scat-
tering mea surements in magnetic fields, interpreting them as evidence 
of monopoles and the ‘strings’ emanating from monopoles20,21. Many 
more experiments in which the monopoles in spin ice are studied and 
manipulated are likely to emerge soon.

Quantum spin liquids
In spin ice, as the temperature is lowered, the spins themselves fluctuate 
ever more slowly, eventually falling out of equilibrium and freezing 
below about 0.5 K (from theory, it is predicted that, in equilibrium, 
the spins should order at T = 0.1−0.2 K (ref. 6)). This is a consequence 
of the large energy barriers between different ice-rule configurations, 
which require the flipping of at least six spins, and the weak quantum 
amplitude for such large spins to cooperatively tunnel through these 
barriers. By contrast, for materials with spins of S = ½ and approximate 
Heisenberg symmetry, quantum effects are strong, and there are no 
obvious energy barriers. I now turn to such materials in the search for 
a QSL ground state, in which spins continue to fluctuate and evade 
order even at T = 0 K. Such a QSL is a strange beast: it has a non-mag-
netic ground state that is built from well-formed local moments. The 
theoretical possibility of QSLs has been hotly debated since Anderson 
proposed them in 1973 (ref. 22).

Wavefunctions and exotic excitations
A natural building block for non-magnetic states is the valence bond, 
a pair of spins that, owing to an antiferromagnetic interaction, forms a 
spin-0 singlet state (Fig. 3a). A valence bond is a highly quantum object, 
the two spins being maximally entangled and non-classical. If all of the 
spins in a system are part of valence bonds, then the full ground state has 
spin 0 and is non-magnetic. One way in which this can occur is by the 
partitioning of all of the spins into specific valence bonds, which are static 
and localized. Mathematically, such a ground state is well approximated as 
a product of the valence bonds, so that each spin is highly entangled with 
only one other, its valence-bond partner. This is known as a valence-bond 
solid (VBS) state (Fig. 3a) and occurs in several materials23–25. VBS states 
are interesting because, for instance, they provide an experimental way 
of studying Bose–Einstein condensation of magnons (which are triplet 
excitations of the singlet valence bonds) in the solid state26.

A VBS state is not, however, a true QSL, because it typically breaks 
lattice symmetries (because the arrangement of valence bonds is not 
unique) and lacks long-range entanglement. To build a QSL, the valence 
bonds must be allowed to undergo quantum mechanical fluctuations. 
The ground state is then a superposition of different partitionings of 
spins into valence bonds (Fig. 3b, c). If the distribution of these partition-
ings is broad, then there is no preference for any specific valence bond 
and the state can be regarded as a valence-bond ‘liquid’ rather than a 
solid. This type of wavefunction is generally called a resonating valence-
bond (RVB) state22. RVB states became subjects of intense theoretical 
interest when, in 1987, Anderson proposed that they might underlie the 
physics of high-temperature superconductivity4. Only relatively recently, 
however, have RVB wavefunctions been shown to be ground states of 
many specific model Hamiltonians27–32.

It is now understood that not all QSLs are alike. Generally, different 
states have different weights of each valence-bond partition in their 
wavefunctions. The valence bonds need not be formed only from nearby 

spins33. If a valence bond is formed from spins that are far apart, then 
those spins are only weakly bound into a singlet and the valence bond can 
be ‘broken’ to form free spins with relatively little energy. So states that 
have a significant weight from long-range valence bonds have more low-
energy spin excitations than states in which the valence bonds are mainly 
short range (see, for example, ref. 34). There are also other excitations that 
do not break the valence bonds but simply re arrange them. Such excita-
tions can have low energy even in short-range RVB states.

Given the possibility of different QSL states, it is interesting to attempt 
to classify these states. This problem is only partly solved, but it is clear 
that the number of possible states is huge, if not infinite. For instance, 
Wen has classified hundreds of different ‘symmetrical spin liquids’ 
(QSLs with the full space-group symmetry) for S = ½ antiferromagnets 
on the square lattice35. Finding the correct QSL ground state among all 
of the many pos sible RVB phases, many of which have similar energies, 
is a challenge to theory, reminiscent of the landscape problem in string 
theory, in high-energy physics.

Even with this diversity of possible states, one feature that theorists 
expect QSLs to have in common is that they support exotic excitations. 
What is meant by exotic? In most phases of matter, all of the excitations 
can be constructed from elementary excitations that are either electron-
like (spin S = ½ and charge ±e) or magnon-like (spin S = 1 and charge 
neutral). Only in rare examples, such as the fractional quantum Hall 
states, do the elementary excitations differ from these, in this case by 
carrying fractional quantum numbers. The magnetic monopoles in spin 

A triangle of antiferromagnetically interacting Ising spins, which must 

point upward or downward, is the simplest example of frustration. All 

three spins cannot be antiparallel. As a re sult, instead of the two ground 

states mandated by the Ising symmetry (up and down), there are six 

ground states (see figure; blue circles denote magnetic ions, arrows 

indicate the direction of spin, and black and red lines indicate the shape 

of the triangular lattice, with red lines denoting the axis on which the 

spins are parallel). On 2D and 3D lattices, such degeneracies can persist. 

When they do, fluctuations are enhanced and ordering is suppressed. 

On the basis of this fact, Ramirez introduced a simple empirical measure 

of frustration that has become widely used50. At high temperatures, the 

spin (or magnetic) susceptibility of a local-moment magnet generally 

has a Curie–Weiss form, χ�≈ C/(T − ΘCW), where T is temperature and 

C is the Curie constant. This allows extraction of the Curie–Weiss 

temper ature, ΘCW, from a plot of 1/χ versus T. |ΘCW| provides a natural 

estimate for the strength of magnetic interactions (ΘCW�<�0 for an 

antiferromagnet) and sets the scale for magnetic ordering in an 

unfrustrated material. By comparing the Curie–Weiss temper ature with 

the temperature at which order freezes, Tc, the frustration parameter, f, is 

obtained: f = |ΘCW|/Tc. Typically, f�>�5–10 indicates a strong suppression 

of ordering, as a result of frustration. For such values of f, the temperature 

range Tc�<�T�<�|ΘCW| defines the spin-liquid regime. 

Box 1 | Elements of frustration
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Source: Reference [182]

Frustrated quantum magnets constitute a fertile ground for exploring unconventional

critical phenomena [183, 184], including quantum analogs of water’s liquid–gas critical

point [185], critical endpoints [186], and quantum bicriticality, such as that observed in

the heavy-fermion compound YbAgGe [187]. In antiferromagnetic systems, an external

magnetic field ℎ⃗ = (0, 0, ℎ) often acts as a tuning parameter. If the total longitudinal spin

component 𝑆𝑧
total is conserved, the magnetization,

𝑀 = 𝑔𝜇𝐵⟨𝑆𝑧
total⟩, (4.1)

may exhibit quantized plateaus—regions where 𝑑𝑀/𝑑ℎ = 0—interspersed with phases of

continuously varying magnetization.
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Introducing a diagonal AFM coupling 𝐽× into a spin ladder geometry, as depicted

in Fig. 27, generates frustration by introducing competing interactions between spins on

opposite legs.

Figure 27 – Schematic representation of a frustrated two-leg ladder. Here, 𝐽‖ denotes the interactions
along the legs, 𝐽⊥ along the rungs, and 𝐽× along the diagonals. The diagonal coupling 𝐽×
introduces magnetic frustration into the antiferromagnetic arrangement.

J⊥

J∥

J×

Ŝi,2

Ŝi,1

Source: The author (2025)

The Hamiltonian for a spin–1
2

frustrated ladder with 𝐿 rungs and open boundary

conditions, restricted to nearest-neighbor interactions, is given by:

ℋ̂ = 𝐽⊥

𝐿∑︁
𝑖=1

[︁
Ŝ𝑖,1 · Ŝ𝑖,2 − ℎ

(︁
𝑆𝑧
𝑖,1 + 𝑆𝑧

𝑖,2

)︁]︁
+ 𝐽‖

𝐿−1∑︁
𝑖=1

2∑︁
𝑘=1

Ŝ𝑖,𝑘 · Ŝ𝑖,𝑘

+ 𝐽×

𝐿−1∑︁
𝑖=1

(︁
Ŝ𝑖,1 · Ŝ𝑖+1,2 + Ŝ𝑖,2 · Ŝ𝑖+1,1

)︁
, (4.2)

where Ŝ𝑖,1 and Ŝ𝑖,2 denote spin–1
2

operators at rung 𝑖 on the lower and upper legs, respec-

tively. The magnetic field ℎ is expressed in energy units, with 𝑔𝜇𝐵 ≡ 1, where 𝑔 is the

Landé factor and 𝜇𝐵 is the Bohr magneton.

It is convenient to define the total and difference spin operators on each rung as:

Ŝ𝑖 ≡ Ŝ𝑖,1 + Ŝ𝑖,2, (4.3)

D̂𝑖 ≡ Ŝ𝑖,1 − Ŝ𝑖,2, (4.4)

which yield the inverse relations:

Ŝ𝑖,1 =
Ŝ𝑖 + D̂𝑖

2
, Ŝ𝑖,2 =

Ŝ𝑖 − D̂𝑖

2
. (4.5)

The operators Ŝ𝑖 and D̂𝑖 satisfy specific commutation relations detailed in Appendix A.

Substituting Eq. (4.5) into Eq. (4.2), the Hamiltonian can be recast as:

ℋ̂ = 𝐽⊥

𝐿∑︁
𝑖=1

[︃
Ŝ2
𝑖 − 2𝑠(𝑠+ 1)

2
− ℎ𝑆𝑧

𝑖

]︃
+
𝐽‖
2

𝐿−1∑︁
𝑖=1

(︁
Ŝ𝑖 · Ŝ𝑖+1 + D̂𝑖 · D̂𝑖+1

)︁
+
𝐽×
2

𝐿−1∑︁
𝑖=1

(︁
Ŝ𝑖 · Ŝ𝑖+1 − D̂𝑖 · Ŝ𝑖+1

)︁
. (4.6)
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For spin–1
2

sites (𝑠 = 1/2), this simplifies to:

ℋ̂ = 𝐽⊥

𝐿∑︁
𝑖=1

(︁
Ŝ2
𝑖 /2− ℎ𝑆𝑧

𝑖

)︁
+
𝐽‖ + 𝐽×

2

𝐿−1∑︁
𝑖=1

Ŝ𝑖 · Ŝ𝑖+1 +
𝐽‖ − 𝐽×

2

𝐿−1∑︁
𝑖=1

D̂𝑖 · D̂𝑖+1

− 3𝐿𝐽⊥
4

. (4.7)

The constant term −3𝐿𝐽⊥/4 may be omitted for practical purposes. Since Ŝ𝑖 represents

the total spin of two spin–1
2

sites, each rung hosts either a singlet (𝑆 = 0) or triplet

(𝑆 = 1) configuration, depending on the parameters 𝐽⊥, 𝐽‖, 𝐽×, ℎ.

Importantly, the Hamiltonian (4.7) exhibits a symmetry under the exchange 𝐽‖ ↔ 𝐽×.

The first two terms remain invariant under this transformation, while the third changes

sign. However, as shown by the original Hamiltonian (4.2), swapping the spins on each

rung, Ŝ𝑖,1 ↔ Ŝ𝑖,2, is a symmetry operation that leaves the system unchanged. This opera-

tion effectively inverts D̂𝑖 or D̂𝑖+1, thereby restoring the invariance of the full Hamiltonian.

4.1 GROUND-STATE PROPERTIES AT ZERO FIELD

The energy spectrum of the Hamiltonian (4.7), denoted as 𝐸(ℎ, 𝐽⊥, 𝐽‖, 𝐽×), depends

on four parameters, where all exchange couplings (𝐽⊥, 𝐽‖, 𝐽×) are assumed to be AFM.

For fixed couplings, the spectrum becomes a function of the magnetic field ℎ, written

as 𝐸(ℎ). As ℎ increases, spins progressively align, eventually reaching a Fully Polarized

(FP) ferromagnetic state at sufficiently large fields. Due to the antiferromagnetic nature

of the couplings, this fully polarized state corresponds to the highest energy, leading to a

monotonically increasing 𝐸(ℎ).

At zero field (ℎ = 0), the ground state is governed by the Hamiltonian:

ℋ̂ =
𝐽⊥
2

𝐿∑︁
𝑖=1

Ŝ2
𝑖 +

𝐽‖ + 𝐽×
2

𝐿−1∑︁
𝑖=1

Ŝ𝑖 · Ŝ𝑖+1 +
𝐽‖ − 𝐽×

2

𝐿−1∑︁
𝑖=1

D̂𝑖 · D̂𝑖+1

− 3𝐿𝐽⊥
4

. (4.8)

4.1.1 Fully Frustrated Case

In the fully frustrated case (𝐽× = 𝐽‖), the Hamiltonian simplifies to:

ℋ̂ = −3𝐿𝐽⊥
4

+
𝐽⊥
2

𝐿∑︁
𝑖=1

Ŝ2
𝑖 + 𝐽‖

𝐿−1∑︁
𝑖=1

Ŝ𝑖 · Ŝ𝑖+1. (4.9)
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In this regime, many eigenstates can be constructed exactly [49]. A rung in a singlet state

(𝑆 = 0) decouples from its neighbors [188]. Thus, any configuration with 𝑁𝑡 spatially

separated triplet rungs (𝑆 = 1) embedded in a background of singlets forms an exact

eigenstate of Eq. (4.9), with energy:

𝐸(𝑁𝑡) = −3𝐿𝐽⊥
4

− 𝐽⊥𝑁𝑡, 𝑁𝑡 ≤ 𝐿/2, (4.10)

where 𝑁𝑡 ≤ 𝐿/2 ensures sufficient spacing to maintain triplet isolation. For polarized

triplets with 𝑆𝑧 = ±1, the total magnetization is 𝑀 = 𝑁+ −𝑁−, where 𝑁± denotes the

number of triplets with 𝑆𝑧 = ±1, respectively. These states span all quantum sectors of

fixed total spin and have energy:

𝐸(𝑚) =

(︂
𝑚− 3

4

)︂
𝐽⊥𝐿, for 0 ≤ 𝑚 ≤ 1/2, (4.11)

𝐸(𝑚) =

(︂
𝑚− 3

4

)︂
𝐽⊥𝐿+ (2𝑚− 1)𝐽‖𝐿, for 1/2 ≤ 𝑚 ≤ 1, (4.12)

where 𝑚 = 𝑀/𝐿 is the magnetization per rung. In the latter regime, the triplets are no

longer separated, and the interaction term Ŝ𝑖 · Ŝ𝑖+1 contributes to the energy.

For large 𝐽⊥, the Ŝ2
𝑖 term favors singlets, stabilizing the RS phase. Conversely, for small

𝐽⊥, the exchange interaction promotes rung triplets, leading to the RT phase [49]. A first-

order transition between these two phases occurs at 𝐽⊥/𝐽‖ ≈ 1.4 [49, 51, 189], and this

transition remains robust under small deviations from the fully frustrated condition [47,

48, 190, 191].

4.1.2 Haldane Phase

In the limit 𝐽⊥ ≪ 𝐽‖, the Hamiltonian (4.9) reduces to:

ℋ̂ = 𝐽‖
∑︁
𝑖

Ŝ𝑖 · Ŝ𝑖+1, (4.13)

describing an effective spin–1 Heisenberg chain. In this regime, the frustrated ladder enters

the RT phase, wherein each rung behaves effectively as a spin–1 degree of freedom. This

raises the question: is the RT phase distinct from the Haldane 𝑆 = 1 phase? The answer is

no. The spin–1
2

HAF ladder maps onto a spin–1 chain and belongs to the same universality

class [53], establishing the equivalence between the RT phase and the Haldane phase.

For example, at 𝐽⊥ = 1 and 𝐽‖ = 0.8, the RS–Haldane phase transition occurs at

𝐽× ≈ 0.67 ± 0.01 [47]. Choosing 𝐽× = 0.72, we analyze the ground-state properties
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(Fig. 28). The RT phase exhibits characteristic features of the Haldane phase: spin–1
2

edge

states (Figs. 28(a) and (b)) and a finite spin gap ∆ ≈ 0.306 (Fig. 28(d)). In comparison,

the spin–1 chain has a gap ∆ = 0.411𝐽 , implying an effective coupling:

𝐽eff =
0.306

0.411
≈ 0.74, (4.14)

which closely matches the chosen value 𝐽× = 0.72.

Figure 28 – DMRG results for a spin- 12 frustrated ladder with 𝐽⊥ = 1, 𝐽‖ = 0.8, 𝐽× = 0.72, 𝐿 = 100 rungs,
and open boundary conditions. (a) Spin- 12 edge states, characteristic of a spin-1 chain. (b)
First magnetization excitation, confirming the edge-state nature. (c) Local rung correlation,
indicating a rung-triplet state. (d) Energy gap ∆ ≈ 0.306, obtained via linear extrapolation
in 1/𝐿
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To further confirm this identification, we compute the string order parameter:

𝒪𝑧
str(𝑖, 𝑗) =

⟨(︁
𝑆𝑧
1,𝑖 + 𝑆𝑧

2,𝑖

)︁
exp

(︃
𝑖𝜋

𝑗−𝑖∑︁
𝑘=𝑖+1

(︁
𝑆𝑧
1,𝑘 + 𝑆𝑧

2,𝑘

)︁)︃(︁
𝑆𝑧
1,𝑗 + 𝑆𝑧

2,𝑗

)︁⟩
, (4.15)

using ITensor tools. By evaluating 𝒪𝑧
str for system sizes 𝐿, 3𝐿/2, and 2𝐿 with 𝐿 = 100,

and extrapolating to the thermodynamic limit, we find:

lim
|𝑗−𝑖|→∞

𝑂𝑧
str(𝑖, 𝑗) = −0.37, (4.16)

which is nearly indistinguishable from the spin–1 chain value of −0.38 [150, 192].
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4.1.3 Weakly Coupled Chain Limit

In the weak-coupling limit (𝐽⊥, 𝐽× ≪ 𝐽‖), field-theoretical analysis predicts a phase

boundary at 𝐽⊥ = 2𝐽× separating the RS and Haldane phases [193, 194]. However, the

nature of this boundary—whether it marks a direct transition or harbors an intermediate

phase—remains a subject of debate.

Starykh and Balents [194] argued that fine-tuning 𝐽⊥ and 𝐽× cannot eliminate all

relevant inter-leg couplings. They proposed the emergence of a spontaneously dimerized

intermediate phase—either Columnar Dimer (CD) or Staggered Dimer (SD)—where spin

pairs form singlet dimers (Fig. 29). These phases would separate the RS and Haldane

regimes.

Figure 29 – Schematic of possible phases in a spin- 12 frustrated ladder: rung-singlet (RS), Haldane, colum-
nar dimerized (CD), and staggered dimerized (SD). The RS and Haldane phases are well-
established, but the dimerized phases remain debated

causes further frustration among quantum spins, and hence,
may give rise to some new phases. By using the bosonization
technique, Vekua and Honecker uncovered a rich phase dia-
gram as well as intriguing nature of elementary excitations
for the frustrated spin ladder. Especially, the existence of
columnar dimer phase in this model was confirmed.

However, as is well known, the bosonization technique is
based on the continuum limit approximation and the weak-
coupling field theory.24 As a result, errors caused by these
approximations cannot be avoided. Therefore, one would
naturally like to check these conclusions by other indepen-
dent approaches. In the present paper, we shall reinvestigate
the phase diagrams of both Hamiltonians �Eqs. �1� and �2��
by the density-matrix renormalization-group numerical
method,25 which is an unbiased and accurate numerical tech-
nique in computing the ground-state properties of one-
dimensional quantum spin systems. Furthermore, in order to
determine the phase diagrams of these models more pre-
cisely, we shall study the behaviors of both the conventional
dimerization order parameters and the two-rung localizable
entanglement, which has been recently introduced to study
quantum phase transitions in various strongly correlated
electron models26–41 as parameters J� , J�, and J2 change.

We find that, although it is very difficult to observe, an
intermediate dimerized phase exists indeed between the
rung-singlet and the Haldane phases in the spin ladder model
even if the additional exchange interaction J2 is absent. As a
matter of fact, our data on the order parameter is actually
inconclusive, as noticed previously in Ref. 20. However, the
critical behavior of localizable entanglement and, in particu-
lar, its first-order derivative reveals clearly that quantum
transitions occur in a very narrow region of parameters. Fur-
thermore, we also observe that the stability of both the stag-
gered dimerized and the columnar dimerized phases are
greatly enhanced by introducing the exchange interaction J2
into the system, as predicted in Ref. 21.

This paper is organized as follows. In Sec. II, we intro-
duce the definitions of dimerized order parameters and two-
rung localizable entanglement, which will be used to inves-
tigate phase transitions in the frustrated spin ladder model. In
Secs. III and IV, we describe the phase diagrams of the frus-
trated spin ladder model with and without the next-nearest-
neighbor intrachain exchange interaction, respectively. Fi-
nally, in Sec. V, we summarize our main results in this paper.

II. DIMERIZED ORDER PARAMETERS AND TWO-RUNG
LOCALIZABLE ENTANGLEMENT

To begin with, let us first introduce the definitions of
dimerized order parameters and the concept of two-rung lo-

calizable entanglement for the frustrated spin ladder models.
In Ref. 21, by applying the bosonization technique and

the exact diagonalization method on small size samples,
Vekua and Honecker concluded that, when J2=J /2, the
ground-state phase diagram of Hamiltonian �Eq. �2�� consists
of four regions, which are the so-called Haldane, the stag-
gered dimerization �SD�, the columnar dimerization �CD�,
and the RS phases, respectively. Intuitively, these phases can
be depicted by graphs in Fig. 2. While the Haldane and the
rung-singlet phases are characterized by the corresponding

string operators Ôodd and Ôeven �see Ref. 20 for their defini-
tions�, the existence of the staggered dimerized and the co-
lumnar dimerized phases can be detected by the following
local order parameters:20,42

OSD =
1

2
���0�Ŝ1,i · Ŝ1,i+1 − Ŝ2,i · Ŝ2,i+1 + Ŝ2,i+1 · Ŝ2,i+2

− Ŝ1,i+1 · Ŝ1,i+2��0�� ,

OCD =
1

2
� �
�=1,2

��0�Ŝ�,i · Ŝ�,i+1 − Ŝ�,i+1 · Ŝ�,i+2��0�� , �3�

respectively. We would like to emphasize that all of these
phases are gapped. Particularly, in the weak-coupling regime
with 0.18�J� /J�0.32, it has been shown that the system
undergoes subsequent transitions from the initial Haldane
phase to the final rung-singlet phase, as J� /J increases from
zero to 1/2.21

Conceptually, one should compute directly both order pa-
rameters OSD and OCD in their ground states to establish
numerically the existence of dimerized phases in the spin
ladder models. We shall carry out this task in the next sec-
tion. In addition, as mentioned in Sec. I, we shall also inves-

FIG. 1. The structure of the spin-1/2 ladder with next-nearest-
neighbor interaction J2 along the legs. J, Jrung, and J� denote the
couplings on legs, rungs, and diagonal interchains, respectively.

FIG. 2. The schematic pictures of four phases that may exist in
this spin ladder model.

LIU, WANG, AND TIAN PHYSICAL REVIEW B 77, 214418 �2008�

214418-2

Source: Reference [195]

For 𝐽× ≪ 𝐽‖, the CD phase is predicted within:

2𝐽× − 5𝐽2
×

𝜋2
≤ 𝐽⊥ ≤ 2𝐽× − 𝐽2

×

𝜋2
(4.17)

Early numerical studies reported no evidence for such an intermediate phase [196, 197].

Although Liu et al. [195] suggested a dimerized region for 0.373 ≤ 𝐽⊥ ≤ 0.386 at 𝐽× = 0.2,
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their results were inconclusive. Hikihara and Starykh [198] observed tentative signs of

dimerization at 𝐽⊥ = 0.38, 𝐽× = 0.2. However, Barcza et al. [199], using high-precision

DMRG over 0.36 ≤ 𝐽⊥ ≤ 0.4, found no such phase. More recent studies agree that the

HAF ladder does not host a dimerized phase [200, 201], although such phases may appear

with ferromagnetic interactions [198] or next-nearest-neighbor leg couplings [202–204].

4.1.4 Ground-State Phase Diagram

The ground-state phase diagram, derived from numerical methods [47, 51, 190, 191,

195–197, 199, 200], is shown in Fig. 30. The model hosts two distinct phases: the RS phase

and the Haldane phase, separated by a quantum phase transition (red line). Fixing 𝐽‖ = 1

as the energy scale, setting 𝐽× = 0 recovers the conventional spin ladder of Section 3.4.

Conversely, for 𝐽⊥ = 0, the system maps to a spin–1 chain with gapped spin–1 magnons.

While early studies suggested a first-order transition at all coupling strengths, subsequent

work revealed a continuous transition at weak rung couplings, becoming first-order at

stronger couplings [190, 196].

Figure 30 – Ground-state phase diagram of the spin-12 frustrated ladder. The system features two distinct
phases, the rung-singlet and the rung-triplet, separated by a quantum phase transition (red
line). Purple rungs with ellipses represent rung-singlet spin states, while red rungs with
parallel spins represent rung-triplet states. Numbered circles denote specific points in the
phase diagram for which thermodynamic results are provided in the source of the figure.
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Figure 1: Ground-state phase diagram of the frustrated spin ladder, as established by a range
of numerical methods [36–42]. The system shows only two phases, rung-singlet and rung-
triplet, which are separated by a quantum phase transition (red line). In the inset schematics,
the ladder sites (spheres) host S = 1/2 quantum spins and the Heisenberg couplings between
spins are specified by the parameters J⊥ for the ladder rungs, J‖ for the ladder legs (blue), and
J× for the cross-plaquette couplings (green), which we take to be symmetrical. Purple rungs
with ellipses represent rung-singlet spin states and red rungs with two parallel spins represent
rung triplets. The numbered circles designate those points in the phase diagram for which
we present thermodynamic results, each number matching that of the corresponding figure in
Sec. 4.

physical interpretation. We summarize and offer some perspectives for reduced-sign-problem
QMC in Sec. 5.

2 Model: Frustrated ladder

2.1 Hamiltonian and conservation laws

The Hamiltonian of a frustrated two-leg ladder with L rungs, for any spin quantum number,
S, is

H = J⊥
∑

i

~S1
i · ~S

2
i + J‖
∑

i,m=1,2

~Sm
i · ~S

m
i+1 + J×
∑

i,m=1,2

~Sm
i · ~S

m̄
i+1, (1)

where i is the rung index, m = 1 and 2 denote the two chains of the ladder, and m̄ is the
chain opposite to m. The superexchange parameters, J⊥, J‖, and J× are depicted in the insets
of Fig. 1 and we comment that the ladder we consider is always symmetrical under reflection
through an axis bisecting all its rungs (i.e. under exchange of chains 1 and 2). In our numerical
calculations we will impose periodic boundary conditions, such that i + L ≡ i.

Let us introduce the total-spin and spin-difference operators on rung i,

~Ti = ~S
1
i + ~S

2
i , ~Di = ~S

1
i − ~S

2
i . (2)

3

Source: Reference [51]
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4.2 FRUSTRATED LADDER IN AN EXTERNAL MAGNETIC FIELD

In the presence of an external magnetic field (ℎ ̸= 0) and fixing 𝐽⊥ = 1, the Hamilto-

nian in Eq. (4.7) can be decomposed into three terms:

ℋ̂1 =
𝐿∑︁
𝑖=1

(Ŝ2
𝑖 /2− ℎ𝑆𝑧

𝑖 ), ℋ̂2 = 𝐽

𝐿−1∑︁
𝑖=1

Ŝ𝑖 · Ŝ𝑖+1, ℋ̂3 =
𝛿𝐽

2

𝐿−1∑︁
𝑖=1

D̂𝑖 · D̂𝑖+1, (4.18)

with effective couplings defined as:

𝐽 =
𝐽‖ + 𝐽×

2
, 𝛿𝐽 = 𝐽‖ − 𝐽×. (4.19)

Each term plays a distinct physical role:

• ℋ̂1 favors rung singlets at low fields (ℎ < 1) but promotes triplets at high fields

(ℎ > 1).

• ℋ̂2 introduces repulsion between adjacent rung triplets, stabilizing a magnetization

plateau at 𝑚 = 1/2, where triplets occupy alternating rungs.

• ℋ̂3 enables triplet mobility due to the non-commutation of D̂𝑖 with ℋ̂1, leading to

gapless regions between plateaus.

Previous studies [47–49, 55, 205, 206] predict magnetization plateaus at 𝑚 = 0, 𝑚 =

1/2, and 𝑚 = 1, with intervening gapless LL phases exhibiting square-root singularities

at the plateau edges. However, numerical results show deviations: the singularity near

𝑚 = 1/2 is weak, and a magnetization jump is observed between 𝑚 = 1/2 and 𝑚 = 1, as

illustrated in Fig. 31.

According to the condition established by Oshikawa, Yamanaka, and Affleck [207], a

magnetization plateau at 𝑚 is allowed only if:

(𝑆𝑢 −𝑚𝑢) = integer, (4.20)

where 𝑆𝑢 and 𝑚𝑢 are the total spin and magnetization per unit cell, respectively. For

a unit cell containing two spin–1
2

sites, plateaus preserving translational symmetry can

appear at 𝑚 = 0 (the PM state) and 𝑚 = 1 (the FP state), as observed for specific

values of 𝐽× in Fig. 31, with corresponding critical fields ℎPM and ℎFP. For moderate 𝐽×,

a plateau at 𝑚 = 1/2 is stabilized with a doubled unit cell of four spins. This plateau
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is bounded by critical fields ℎ− and ℎ+, and in finite systems with open boundaries, it

manifests two steps associated with domain walls, connected at ℎ = ℎ0.

In the gapless LL phases between plateaus, transverse spin correlations decay as power

laws:

Γ(𝑟) ∼ 𝑟−1/2𝐾 , (4.21)

where 𝐾 is the LL exponent and 𝑟 is the spin separation along the chain.

Figure 31 – Magnetization per rung, 𝑚 = ⟨𝑆𝑧
total⟩/𝐿, versus magnetic field ℎ for a ladder with 𝐿 = 128

rungs and 𝐽‖ = 0.55. Shown are the paramagnetic (PM), 𝑚 = 1/2, and fully polarized (FP)
plateaus, with critical fields ℎ𝑃𝑀 , ℎ−, ℎ+, and ℎ𝐹𝑃 . The field ℎ𝑓 indicates a magnetization
jump, and ℎ0 marks the finite-size splitting of the 𝑚 = 1/2 plateau into two steps under open
boundary conditions.
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The nature of elementary excitations varies across the magnetization plateaus:

• At 𝑚 = 0, the lowest-energy excitations are magnons (triplet excitations) with

∆𝑆𝑧 = +1.

• At 𝑚 = 1/2, the excitations are spinons, interpreted as domain walls separating

ordered triplets. These carry ∆𝑆𝑧 = ±1/2, depending on the field direction.
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• At 𝑚 = 1, magnons correspond to singlet states embedded in a polarized back-

ground, with ∆𝑆𝑧 = −1.

Quantum phase transitions between gapped plateaus and gapless regions are driven by

the condensation of these elementary excitations.

4.2.1 Mapping to the XXZ Chain

In the fully frustrated limit discussed in Section 4.1.1, the total spin on each rung

is conserved, and the ground state is exactly known. We now consider a regime in the

vicinity of this limit, characterized by:

𝛿𝐽 ≪ 𝐽 ≪ 1. (4.22)

In this parameter regime, each rung predominantly occupies either the singlet state or the

𝑆𝑧 = 1 triplet state. The remaining triplet components are energetically unfavorable for

any value of the magnetic field. This restriction effectively reduces the Hilbert space to two

states per rung. Employing perturbation theory in 𝛿𝐽 , we derive an effective Hamiltonian

restricted to this low-energy subspace.

By identifying the singlet with a spin-up state and the 𝑆𝑧 = 1 triplet with a spin-down

state, the original ladder model maps onto an spin–1
2

AFM XXZ chain with easy-axis

anisotropy [48, 55]:

ℋ̂xxz =
𝐿−1∑︁
𝑖=1

(︂
𝑗
𝑠+𝑖 𝑠

−
𝑖+1 + 𝑠−𝑖 𝑠

+
𝑖+1

2
+ 𝑗𝑧𝑠

𝑧
𝑖 𝑠

𝑧
𝑖+1

)︂
−𝐻

𝐿∑︁
𝑖=1

𝑠𝑧𝑖 −𝐻edge(𝑠
𝑧
1 + 𝑠𝑧𝐿)/2, (4.23)

where 𝑠𝛼𝑖 are spin–1
2

operators, and the effective couplings and fields are given by:

𝑗 = 𝛿𝐽 +𝑂(𝛿𝐽2), 𝑗𝑧 = 𝐽 +𝑂(𝛿𝐽2), 𝐻 = ℎ− 1− 𝐽 +𝑂(𝛿𝐽2), 𝐻edge = 𝐽. (4.24)

The edge field 𝐻edge breaks the degeneracy between the Néel states, selecting a particular

ordering and stabilizing the fractional magnetization plateau where singlets and triplets

coexist in a nearly degenerate configuration.

The XXZ chain exhibits a spin gap in the AFM regime (𝑗𝑧/|𝑗| > 1) at zero field [208],

yielding a plateau at zero magnetization for |𝐻| < 𝐻min. At 𝐻 = ±𝐻min, the gap closes

and spinons condense, leading to a gapless LL phase. These transition points correspond,

in the original ladder, to the boundaries of the 𝑚 = 1/2 magnetization plateau. For



97

|𝐻| > 𝐻min, the system remains in the LL phase until saturation at |𝐻| = 𝐻max, marking

the transitions to the 𝑚 = 0 and 𝑚 = 1 plateaus.

The critical fields of the XXZ chain are given by [208]:

𝐻max = 𝑗𝑧 + |𝑗|, 𝐻min = |𝑗|sihn 𝑔
∞∑︁

𝑘=−∞

(−1)𝑘

cosh 𝑘𝑔
, (4.25)

where cosh 𝑔 = 𝑗𝑧/|𝑗|. Translating back to the original ladder variables, with ℎ = 𝐻+𝐽+

1 +𝑂(𝛿𝐽2), we define the following critical fields:

ℎ0 = 1− |𝛿𝐽 |, (4.26)

ℎ1 = 2𝐽 + |𝛿𝐽 |+ 1, (4.27)

ℎ± = 1 + 𝐽

(︃
1±

∞∑︁
𝑘=−∞

(−1)𝑘

𝑇𝑘(𝐽/|𝛿𝐽 |)

)︃
, (4.28)

where 𝑇𝑘(𝑥) denotes the 𝑘-th Chebyshev polynomial of the first kind:

𝑇𝑘(𝑥) =
(𝑥+

√
𝑥2 − 1)𝑘 + (𝑥−

√
𝑥2 − 1)𝑘

2
. (4.29)

The phase structure is thus described as:

• ℎ < ℎ0: Gapped 𝑚 = 0 plateau.

• ℎ0 < ℎ < ℎ−: LL phase.

• ℎ− < ℎ < ℎ+: Gapped 𝑚 = 1/2 plateau.

• ℎ+ < ℎ < ℎ1: LL phase.

• ℎ ≥ ℎ1: 𝑚 = 1 plateau.

As a concrete example, consider 𝐽‖ = 0.2 and 𝐽× = 0.18, which yield 𝐽 = 0.19 and

|𝛿𝐽 | = 0.02. Using Eqs. (4.26)–(4.28), the critical fields computed via the XXZ mapping

are:

ℎ0 = 0.98 (XXZ), 0.98 (DMRG),

ℎ− = 1.00 (XXZ), 1.04 (DMRG),

ℎ+ = 1.38 (XXZ), 1.34 (DMRG),

ℎ1 = 1.40 (XXZ), 1.40 (DMRG).
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These results, compared with numerical data from DMRG in Fig. 32, demonstrate

the accuracy of the XXZ mapping in the regime defined by Eq. (4.22). However, as

|𝛿𝐽 | increases, higher-order corrections become relevant, and the mapping loses precision.

Moreover, since the XXZ chain does not exhibit magnetization jumps, it cannot capture

discontinuities observed in the ladder model for larger values of 𝛿𝐽 .

Figure 32 – Magnetization per rung 𝑚 = ⟨𝑆𝑧
total⟩/𝐿 versus external magnetic field ℎ from DMRG calcu-

lations for a ladder with 𝐿 = 128 rungs, 𝐽‖ = 0.2, and 𝐽× = 0.18. For a finite-size ladder,
The small magnetization step in the middle of the 𝑚 = 1/2 plateau occurs when the spinon
changes its spin from ∆𝑆𝑧 = −1/2 to +1/2. Maximum truncation error is ∼ 10−10.

1 1.2 1.4

h

0

0.2

0.4

0.6

0.8

1

m

h
0

h
-

h
+

h
1

Source: The author (2025)

4.2.2 Hard-Core Boson Mapping

The spin system can be mapped onto hard-core bosons to determine the critical field

ℎFP associated with the transition from the FP state. The mapping is given by:

𝑆𝑧
𝑖,𝑘 =

1

2
− 𝑎̂†𝑖,𝑘𝑎̂𝑖,𝑘, (4.30)

𝑆+
𝑖,𝑘 = 𝑎̂𝑖,𝑘, (4.31)

𝑆−
𝑖,𝑘 = 𝑎̂†𝑖,𝑘, (4.32)

where 𝑎̂𝑖,𝑘 are hard-core bosonic operators. To preserve the spin commutation relations

(Eq. 3.17), these operators satisfy:

[𝑎̂†𝑖,𝑘, 𝑎̂𝑗,𝑘′ ] = 𝛿𝑖𝑗𝛿𝑘𝑘′(1− 2𝑎̂†𝑖,𝑘𝑎̂𝑖,𝑘), (𝑎̂𝑖,𝑘)
2 = (𝑎̂†𝑖,𝑘)

2 = 0. (4.33)
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enforcing the hard-core constraint, i.e., at most one boson per site.

Using this mapping, the Hamiltonian in Eq. (4.2) becomes:

ℋ̂(free hc) =

(︂
𝐽‖ + 𝐽× + ℎ− 1

2

)︂
𝑁̂ +

𝐽‖
2

∑︁
𝑖

(𝑎̂†𝑖,1𝑎̂𝑖+1,1 + 𝑎̂†𝑖,2𝑎̂𝑖+1,2 + h.c)

+
1

2

∑︁
𝑖

(𝑎̂†𝑖,1𝑎̂𝑖,2 + 𝑎̂†𝑖,2𝑎̂𝑖,1) +
𝐽×
2

∑︁
𝑖

(𝑎̂†𝑖,1𝑎̂𝑖+1,2 + 𝑎̂†𝑖,2𝑎̂𝑖+1,1 + h.c), (4.34)

where 𝑁̂ =
∑︀

𝑖,𝑘 𝑎̂
†
𝑖,𝑘𝑎̂𝑖,𝑘 is the total boson number. Interaction terms are neglected for

simplicity.

To describe low-energy excitations above the fully polarized background, we define

bosonic operators that create singlet and 𝑆𝑧 = 0 triplet states:

𝑠†𝑖 ≡
𝑎̂†𝑖,1 − 𝑎̂†𝑖,2√

2
, (4.35)

𝑡†0,𝑖 ≡
𝑎̂†𝑖,1 + 𝑎̂†𝑖,2√

2
, (4.36)

These operators act on the FP state |FP⟩, where all spins point up:

𝑠†𝑖 |FP⟩ = | ↓↑⟩𝑖 − | ↑↓⟩√
2

= |𝑠⟩𝑖, (4.37)

𝑡†0,𝑖|FP⟩ = | ↓↑⟩𝑖 + | ↑↓⟩√
2

= |𝑡0⟩𝑖. (4.38)

Applying a Fourier transform and diagonalizing Eq. (4.34) yields:

ℋ̂(free hc) =
∑︁
𝑞

𝜀𝑠𝑞𝑠
†
𝑞𝑠𝑞 +

∑︁
𝑞

𝜀𝑡𝑞𝑡
†
0,𝑞𝑡0,𝑞, (4.39)

with the dispersion relations:

𝜀𝑡(𝑞) = (𝐽‖ + 𝐽×)(cos(𝑞)− 1) + ℎ, (4.40)

𝜀𝑠(𝑞) = (𝐽‖ − 𝐽×) cos(𝑞)− (𝐽‖ + 𝐽×)− 1 + ℎ (4.41)

The band minima determine the onset of condensation:

𝜀𝑡min = 𝜀𝑡(𝜋) = ℎ− 2(𝐽‖ + 𝐽×), (4.42)

𝜀𝑠min =

⎧⎪⎨⎪⎩𝜀
𝑠(𝜋) = ℎ− 1− 2𝐽‖ if 𝐽× < 𝐽‖,

𝜀𝑠(0) = ℎ− 1− 2𝐽× if 𝐽× > 𝐽‖.

(4.43)

The corresponding critical fields are:

ℎ𝑡𝑐 = 2(𝐽‖ + 𝐽×), (4.44)

ℎ𝑠𝑐 =

⎧⎪⎨⎪⎩1 + 2𝐽‖ if 𝐽× < 𝐽‖,

1 + 2𝐽× if 𝐽× > 𝐽‖.

(4.45)



100

Comparing Eqs. (4.42) and (4.43) allows us to determine which excitation condenses first

as a function of 𝐽‖ and 𝐽×, thus identifying the critical field ℎFP. The resulting phase

boundaries are shown in Fig. 33.

Figure 33 – Critical field ℎFP for the fully polarized state as a function of 𝐽× and 𝐽‖.
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Source: Reference [47]

4.3 PHASE DIAGRAM

Figure 34 shows the phase diagram of the magnetization 𝑚 as a function of the mag-

netic field ℎ and the diagonal coupling 𝐽× for a frustrated ladder with 𝐽‖ = 0.55 and

system size 𝐿 = 128 rungs. The color scale indicates the magnetization 𝑚, and the

boundaries of the magnetization plateaus in the thermodynamic limit are indicated. For

fixed 𝐽×, plateaus at 𝑚 = 0, 1/2, and 1 are generally bounded by second-order quantum

phase transitions occurring at the critical fields ℎFP, ℎ−, ℎ+, and ℎPM. As these transitions

are approached from the gapless Luttinger liquid phase [135], the Luttinger parameter 𝐾

flows to characteristic values: 𝐾 → 1 at the boundaries of the FP and PM plateaus, and

𝐾 → 1/4 at the boundaries of the 𝑚 = 1/2 plateau.

Nevertheless, the phase diagram also features first-order transitions. Specifically, for

𝐽× = 𝐽‖ = 0.55, both the PM-to-𝑚 = 1/2 and 𝑚 = 1/2-to-FP transitions exhibit
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discontinuous jumps in the magnetization along the line ℎ𝑓 . This first-order transition

line terminates at a bicritical point located at 𝐽× = 0.5, where the two second-order lines

associated with the FP plateau merge.

The 𝑚 = 1/2 plateau closes at two KTs transition points, characterized by the Lut-

tinger parameter flowing to 𝐾 → 1/2 from the gapless side. These transitions occur at

(𝐽×, KT1 , ℎKT1) = (0.255± 0.005, 1.467± 0.002), (4.46)

(𝐽×, KT2 , ℎKT2) = (0.935± 0.005, 1.98± 0.01). (4.47)

Figure 34 – DMRG-derived phase diagram of magnetic field ℎ versus frustration 𝐽× for 𝐽‖ = 0.55 in
the thermodynamic limit. Magnetization 𝑚 is color-coded for a system with 𝐿 = 128 rungs.
Gapped plateaus at 𝑚 = 1 (fully polarized, FP), 𝑚 = 1/2, and 𝑚 = 0 (paramagnetic, PM)
are bounded by ℎFP, ℎ+, ℎ−, and ℎPM, respectively. Gapless Luttinger liquid (LL) phases lie
between plateaus. The Luttinger parameter 𝐾 approaches 1 (FP, PM) or 1/4 (𝑚 = 1/2) at
second-order transitions from the LL side and 1/2 at Kosterlitz-Thouless (KT) transitions
(∙) closing the 𝑚 = 1/2 plateau. A first-order transition line ℎ𝑓 , marked by magnetization
jumps, begins at a bicritical point (♦) on ℎFP and includes two points (∙) at 𝐽× = 𝐽‖.

Source: Reference [47]
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4.3.1 First-Order Phase Transition

The magnetization jump observed in Fig. 31 indicates a first-order transition between

singlet and triplet |𝑡0⟩ states. The probability densities of singlets and triplets on rung 𝑖

are given by:

⟨𝑛̂𝑠
𝑖 ⟩ = ⟨𝑠†𝑖𝑠𝑖⟩ =

1

4
− ⟨Ŝ𝑖,1 · Ŝ𝑖,2⟩+ ⟨𝑛̂𝑖,1𝑛̂𝑖,2⟩ ≈

1

4
− ⟨Ŝ𝑖,1 · Ŝ𝑖,2⟩, (4.48)

⟨𝑛̂𝑡0
𝑖 ⟩ = ⟨𝑡†0,𝑖𝑡0,𝑖⟩ =

3

4
− ⟨𝑆𝑧

𝑖 ⟩+ ⟨Ŝ𝑖,1 · Ŝ𝑖,2⟩ − ⟨𝑛̂𝑖,1𝑛̂𝑖,2⟩ ≈
3

4
− ⟨𝑆𝑧

𝑖 ⟩+ ⟨Ŝ𝑖,1 · Ŝ𝑖,2⟩, (4.49)

where the contribution from ⟨𝑛̂𝑖,1𝑛̂𝑖,2⟩ is neglected, which is nonzero if the rung is in the

triplet state |𝑡−1⟩, which has a low probability of occurrence.

The corresponding system-wide densities are defined as:

⟨𝑛̂𝑠⟩ =
1

𝐿

𝐿∑︁
𝑖=1

⟨𝑛̂𝑠
𝑖 ⟩, ⟨𝑛̂𝑡0⟩ =

1

𝐿

𝐿∑︁
𝑖=1

⟨𝑛̂𝑡0
𝑖 ⟩. (4.50)

Figure 35 displays ⟨𝑛̂𝑠⟩ and ⟨𝑛̂𝑡0⟩ as functions of 𝑚 for 𝐽× = 0.75 (main panel) and

𝐽× = 0.4 (inset), in the range 0.5 < 𝑚 < 1.

Figure 35 – DMRG results for singlet ⟨𝑛̂𝑠⟩ and triplet ⟨𝑛̂𝑡0⟩ densities versus magnetization 𝑚 for 𝐽‖ =
0.55, 𝐽× = 0.75, and 𝐿 = 128. Magnetization states within the jump occur for 0.70 < 𝑚 <
0.78. Inset: same parameters except 𝐽× = 0.4

Source: Reference [47]

For 𝐽× = 0.75, a clear first-order transition occurs at ℎ = ℎ𝑓 , leading to a discontinuous

magnetization jump (see also Fig. 33). In the magnetized phase 𝑚𝑓 ≈ 0.78 < 𝑚 < 1, the
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system is fully dominated by triplets, with ⟨𝑛̂𝑠⟩ = 0 and ⟨𝑛̂𝑡0⟩ ̸= 0. Conversely, in the

interval 0.5 < 𝑚 < 0.70, singlets dominate, with ⟨𝑛̂𝑠⟩ ≠ 0 and ⟨𝑛̂𝑡0⟩ = 0. Within the

narrow coexistence window ∆𝑚 ≈ 0.08, the system exhibits domain separation between

singlet-rich and triplet-rich regions. In contrast, for 𝐽× = 0.4, no magnetization jump is

observed, and singlet dominance persists throughout, with ⟨𝑛̂𝑠⟩ ≠ 0 and ⟨𝑛̂𝑡0⟩ = 0.

The nature of these phases is further elucidated by examining transverse spin corre-

lations, defined as

Γ𝑖𝑗(𝑟) =
1

2
⟨⟨𝑆+

𝑙,𝑖𝑆
−
𝑚,𝑗 + 𝑆−

𝑙,𝑖𝑆
+
𝑚,𝑗⟩⟩|𝑚−𝑙|=𝑟. (4.51)

where Γ11(𝑟) = Γ22(𝑟) corresponds to correlations along the same leg, and Γ12(𝑟) = Γ21(𝑟)

to opposite-leg correlations. These correlators decay algebraically in the critical phases I,

I′, and II, as shown in Fig. 36.

Figure 36 – Transverse spin correlations Γ11(𝑟) (same leg) and Γ12(𝑟) (different legs) near the fully polar-
ized (FP) plateau for 𝐽‖ = 0.55, shown in the bottom panels. In phases I and I′, the singlet
density ⟨𝑛̂𝑠⟩ ≠ 0 and triplet |𝑡0⟩ density ⟨𝑛̂𝑡0⟩ ≈ 0, while in phase II, ⟨𝑛̂𝑠⟩ ≈ 0 and ⟨𝑛̂𝑡0⟩ ≠ 0.
The bicritical point (♦) is at 𝐽× = 0.5, ℎ = 1 + 2𝐽‖ = 2.1. The dashed line ℎ𝑠𝑐 denotes
the singlet condensation critical line for the noninteracting model, and ℎ𝑓 is the first-order
transition line from DMRG in the thermodynamic limit.

FP state

m = 1/2

Source: Reference [47]
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At the bicritical point (𝐽× = 0.5, ℎ = 2.1) [209–211], the critical phases I and II merge

into the FP phase, where both ⟨𝑛̂𝑠⟩ and ⟨𝑛̂𝑡0⟩ vanish and the excitation gap remains

finite. For 𝐽× < 0.5, decreasing ℎ drives a condensation of singlets, yielding ⟨𝑛̂𝑠⟩ ≠ 0 and

⟨𝑛̂𝑡0⟩ = 0 in phase I. For 𝐽× > 0.5, triplet |𝑡0⟩ condensation occurs, with ⟨𝑛̂𝑠⟩ = 0 and

⟨𝑛̂𝑡0⟩ ≠ 0 in phase II, which maps onto a spin–1 chain in a magnetic field [49, 52, 53].

The transition from phase II to phase I or I′ along the line ℎ𝑓 (𝐽×) is of first order, as

is the transition from the 𝑚 = 1/2 plateau to phase II at 𝐽× ≈ 𝐽‖. All three phases— I,

I′, and II—are gapless and characterized by distinct local configurations: rungs in phases

I and I′ are in superpositions of singlets and |𝑡1⟩ triplets, while in phase II, they are in

|𝑡0⟩ triplets. At ℎ = ℎ𝑓 , the energy becomes flat as a function of magnetization in the

thermodynamic limit, indicating a degenerate ground state for 𝑚(jump)
𝑖 < 𝑚 < 𝑚

(jump)
𝑓 and

macroscopic phase separation between singlet-rich (I or I′) and triplet-rich (II) domains.

Figure 37 presents the phase diagram for 0.5 ≤ 𝑚 ≤ 1, 0.5 ≤ 𝐽× ≤ 1.12, and 𝐿 = 128.

Figure 37 – DMRG results for the magnetization jump boundaries 𝑚(jump)
𝑖 (lower) and 𝑚(jump)

𝑓 (upper)
versus 𝐽× at 𝐽‖ = 0.55. Data are shown for 𝐿 = 128 (∙) and the thermodynamic limit
𝐿 → ∞ (*), with error bars ∆𝑚 = 1/128. Phases I, I′, and II correspond to Fig.36. The
bicritical point at 𝐽× = 0.5, 𝑚 = 1 (ℎ = 2.1) and the Kosterlitz-Thouless (KT) point are
marked. Inset: singlet (⟨𝑛̂𝑠⟩) and triplet |𝑡0⟩ (⟨𝑛̂𝑡0⟩) probability densities along the chain for
𝐽× = 0.52, 𝑚 = 102/128 and 𝐽× = 0.55, 𝑚 = 90/128.

Source: Reference [47]

The phase separation region spans from the bicritical point at (𝐽× = 0.5, 𝑚 = 1) to
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the termination point of the magnetization jump at 𝐽× ≳ 1.1. Within the coexistence

region 𝑚
(jump)
𝑖 < 𝑚 < 𝑚

(jump)
𝑓 , phase II coexists with phase I for 0.5 < 𝐽× < 0.55, and

with phase I′ for 𝐽× > 0.55. At 𝐽× = 𝐽‖, phase II also coexists with the 𝑚 = 1/2 plateau.

4.3.2 Kosterlitz-Thouless Transition Points

At the KT transitions, the magnetization remains fixed at 𝑚 = 1/2, and the excitation

gap ∆ℎ closes with an essential singularity. On the gapless side, the transverse spin cor-

relations Γ𝑖𝑗(𝑟) (Eq. (4.51)) follow the asymptotic behavior of Eq. (4.21) with Luttinger

parameter 𝐾 = 1/2, indicating broken translational symmetry and one boson per two

rungs [135].

To estimate the critical coupling 𝐽𝑐 in finite systems with open boundaries, we extrap-

olate the thermodynamic-limit value of 𝐾 based on the known critical condition 𝐾 = 1/2

at 𝐽 = 𝐽𝑐 [87, 212]. Figures 38(a) and (b) display Γ11(𝑟) for two representative values of

𝐽× at 𝑚 = 1/2. Fits to Eq. (4.21) yield estimates for 𝐾. Because 𝐾 depends on the fitting

range 𝑟 in systems with open boundaries [212], we perform fits over multiple intervals and

extrapolate the resulting 𝐾 values, as shown in Figs. 38(c) and (d).

Figure 38 – Transverse spin correlations Γ11(𝑟) and Luttinger parameter 𝐾 at 𝑚 = 1/2, 𝐽‖ = 0.55. (a)
(−1)𝑟Γ11(𝑟) for 𝐽× = 0.25; (b) Γ11(𝑟) for 𝐽× = 0.95; both for 𝐿 = 128, 192, 256. (c,d) 𝐾 vs
1/𝐿 for 𝐽× = 0.25 and 0.95, respectively, from fits to 1/𝑟1/2𝐾 over 𝑟 ∈ [8, 16], [16, 32], [32, 48].
Extrapolated 𝐾 = (𝐾min +𝐾max)/2 with error 𝛿𝐾 = (𝐾max −𝐾min)/2.
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The extrapolated thermodynamic-limit value of 𝐾 is estimated as the midpoint of its

range over the two largest system sizes:

𝐾 =
𝐾max +𝐾min

2
, 𝛿𝐾 =

𝐾max −𝐾min

2
(4.52)

Figures 39(a) and (b) present 𝐾 versus 𝐽× near the two KT transitions, for 𝐽× < 𝐽‖

and 𝐽× > 𝐽‖, respectively. The critical couplings are identified as:

𝐽×, KT1 = 0.255± 0.005, 𝐽×, KT2 = 0.935± 0.005. (4.53)

The corresponding critical fields ℎKT1 and ℎKT2 are determined by extrapolating the

plateau boundaries ℎ− and ℎ+ at 𝑚 = 1/2, for 𝐽× values close to the critical points

(Figs. 39(c,d)):

ℎKT1 = 1.467± 0.002, ℎKT2 = 1.98± 0.01. (4.54)

Figure 39 – (a, b) Thermodynamic-limit Luttinger parameter 𝐾 versus 𝐽× near Kosterlitz-Thouless tran-
sitions, with critical points 𝐽×, KT1

= 0.255 ± 0.005 and 𝐽×, KT2
= 0.935 ± 0.005. (c, d)

Extrapolation of critical fields ℎ−, ℎ+ at 𝑚 = 1/2 to the thermodynamic limit, yielding
ℎKT1

= 1.467± 0.002 and ℎKT2
= 1.98± 0.01.
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In the regime described by Eq. (4.22), the system maps onto an spin–1
2

XXZ chain, for

which the Bethe ansatz predicts a KT transition at 𝐽× = 𝐽‖/3 for 𝐽× < 𝐽‖. For 𝐽‖ = 0.55,

this yields 𝐽× = 0.18, which deviates from the numerical result 𝐽×, KT1 = 0.255 ± 0.005

by a correction of order ∼ 𝐽2
×, KT1

. For 𝐽×, KT2 = 0.935 ± 0.005, the mapping becomes

unreliable as 𝐽× ≈ 𝐽‖.
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Exploiting symmetry under leg exchange, we generalize the KT transition curves for

𝐽‖ = 0.2, 0.55, and 0.8, and include the corresponding symmetric points, as shown in

Fig. 40. The critical lines are well described by perturbative fits:

KT1 : 𝐽× =
𝐽‖
3

+ 0.16𝐽2
‖ + 0.12𝐽3

‖ , (4.55)

KT2 : 𝐽× = 3𝐽‖ − 3.77𝐽2
‖ + 2.60𝐽3

‖ . (4.56)

Figure 40 – KT transitions in the 𝐽× versus 𝐽‖ plane. Calculated points (∙) and symmetric points (∙)
are shown, with error bars smaller than or equal to symbol size. Solid lines 𝐽× = 𝐽‖/3 and
𝐽× = 3𝐽‖ represent perturbation theory results. Dashed lines are fits to KT1 (𝐽‖/3+0.16𝐽2

‖ +

0.12𝐽3
‖ ) and KT2 (3𝐽‖ − 3.77𝐽2

‖ + 2.60𝐽3
‖ ).

KT2

KT1

Source: Reference [47]

4.3.3 Other Phase Diagrams

We now examine the phase diagrams for 𝐽‖ = 0.2 and 𝐽‖ = 0.8, shown in Figs. 41(a)

and 41(b), respectively. For 𝐽‖ = 0.2, no bicritical point or first-order transition line is

observed, as the minima of the singlet and triplet bands do not cross for 𝐽‖ < 0.5 (see

Fig. 33). In contrast, for 𝐽‖ = 0.8, a bicritical point emerges at 𝐽× = 0.5, ℎ = 1 + 2𝐽‖,

consistent with the expected behavior for 𝐽‖ > 0.5.
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Figure 41 – (b) DMRG phase diagram of magnetic field ℎ versus frustration 𝐽× for 𝐽‖ = 0.8.
Thermodynamic-limit transition lines are derived from finite-size scaling of magnetization
𝑚 versus ℎ, with 𝑚 color-coded for 𝐿 = 128. The diagram highlights fully polarized (FP),
gapped paramagnetic (PM), gapless Luttinger liquid (LL), and singlet Haldane phases, with
Luttinger parameter 𝐾 at incommensurate transitions, Kosterlitz-Thouless (KT) points, a
first-order transition line (dashed), and a bicritical point (♦). (c) Intradimer correlation
⟨S𝑙,1 ·S𝑙,2⟩ versus 𝐽× for fixed ℎ, with first-order transitions marked (orange lines) as in (b).
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4.3.3.1 Case: 𝐽‖ = 0.2

At 𝐽‖ = 0.2, two first-order transitions occur at 𝐽× = 𝐽‖ = 0.2: one between the

𝑚 = 0 and 𝑚 = 1/2 plateaus at ℎ = 1, and another between the 𝑚 = 1/2 and 𝑚 = 1

plateaus at ℎ = ℎFP. Each transition point lies at the junction of four second-order lines,

delineating coexistence regions between disordered phases: 𝑚 = 0 with 𝑚 = 1/2, and

𝑚 = 1/2 with 𝑚 = 1. The surrounding Luttinger liquid phases (0 < 𝑚 < 1/2 at ℎ = 1

and 1/2 < 𝑚 < 1 at ℎ = ℎFP) merge with these disordered phases, analogously to the

scenario at 𝐽× = 𝐽‖ = 0.55, ℎ = 1 (Fig. 34).

The 𝑚 = 1/2 plateau closes via KT transitions for both 𝐽× < 𝐽‖ and 𝐽× > 𝐽‖. DMRG

simulations show that the ground state is a coherent superposition of |𝑡1⟩ triplets and |𝑠⟩
singlets, similar to the case 𝐽‖ = 0.55, 𝐽× = 0.4 (Fig. 35).

According to Landau theory, a tetracritical point arises at the intersection of four

second-order lines separating three ordered phases [209, 210]. However, at 𝐽× = 𝐽‖ = 0.2,

both ℎ = 1 and ℎ = ℎFP involve disordered phases (𝑚 = 0, 1/2, or 1), thus precluding

classification as a tetracritical point.
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4.3.3.2 Case 𝐽‖ = 0.8

The phase diagram for 𝐽‖ = 0.8 features both a bicritical point and a first-order

transition line. In contrast to the 𝐽‖ = 0.2 and 0.55 cases, the 𝑚 = 1/2 plateau closes

via a KT transition only for 𝐽× < 𝐽‖. For 𝐽× > 𝐽‖, no KT transition occurs due to the

steeper decline of the singlet condensation field, driven by interactions that go beyond

the free hard-core boson picture.

While finite-size scaling identifies the phase boundaries, additional insight is gained

from dimer correlations ⟨S𝑙,1 · S𝑙,2⟩. In simulations with a spatially varying 𝐽× at fixed

ℎ [213], a linear gradient of 𝐽× is applied along the ladder (Fig. 41(c)). Across the first-

order transition (orange line), the correlation takes ⟨S𝑙,1 · S𝑙,2⟩ = 0.25 in phase II (right

side), resembling a spin–1 chain, and varies from approximately −0.75 to 0 on the left

side as ℎ increases from 0 to 2.43.

At 𝑚 = 0, the right side of the first-order line (phase II) realizes a gapped Haldane

phase with nontrivial topology, in contrast to the trivial gapped PM (𝑚 = 0) state on the

left.



110

5 MIXED-SPIN LADDER

One-dimensional spin–1
2

ladder models constitute a fundamental framework for in-

vestigating interacting quantum systems in reduced dimensions. The prototypical spin–1
2

two-leg ladder is known to possess a gapped singlet ground state accompanied by short-

range spin correlations. In contrast, mixed-spin ladders—where the spin magnitudes and

exchange couplings alternate along the rungs or legs—can give rise to ferrimagnetic ground

states, as anticipated by the Lieb–Mattis theorem [75]. A substantial body of work [64–

66, 68, 69, 71–74] has been devoted to exploring these systems, revealing a rich variety

of ground-state phases and quantum phenomena. Notably, ferrimagnetic order is not ex-

clusive to mixed-spin ladders but also emerges in other one-dimensional quantum spin

models, where it exhibits remarkable and often unconventional features [77, 78].

Alternating spin chains composed of spin–(1
2
, 1) and spin–(1

2
, 5
2
) units exhibit ferri-

magnetic ground states characterized by quantized magnetization plateaus. In particular,

the former system displays a 1/3 magnetization plateau [79–84], while the latter supports

both 1/3 and 2/3 plateaus [85]. Recent studies employing the DMRG method have inves-

tigated various aspects of these systems, including density-dependent magnon hopping,

magnon-magnon interactions within the spin–wave framework, and the presence of edge

states [86].

In certain anisotropic spin models, the 1/3 plateau vanishes via a KT-type transi-

tion [87], a phenomenon also observed in anisotropic ferrimagnetic chains [88–90]. By

contrast, isotropic spin–1
2

trimer systems exhibit a robust 1/3 plateau without undergo-

ing a KT transition [91].

The Hamiltonian describing the alternating spin–(𝑠, 𝑆) ladder in the presence of an

external magnetic field ℎ is given by

ℋ̂ = 𝐽
∑︁
𝑗

[︁
ŝ
(1)
𝑗 · Ŝ(1)

𝑗 + ŝ
(2)
𝑗 · Ŝ(2)

𝑗 + Ŝ
(1)
𝑗 · ŝ(1)𝑗+1 + ŝ

(2)
𝑗 · Ŝ(2)

𝑗+1

]︁
+ 𝐽⊥

∑︁
𝑗

[︁
ŝ
(1)
𝑗 · Ŝ(2)

𝑗 + Ŝ
(1)
𝑗 · ŝ(2)𝑗

]︁
− ℎ𝑆𝑧, (5.1)

where ŝ𝛼𝑗 and Ŝ𝛼
𝑗 are spin operators located at unit cell 𝑗 and leg 𝛼 = 1, 2, with quantum

numbers 𝑠 and 𝑆, respectively. These satisfy (ŝ𝛼𝑗 )
2 = 𝑠(𝑠+ 1) and (Ŝ𝛼

𝑗 )
2 = 𝑆(𝑆 + 1). The

exchange coupling along the legs is denoted by 𝐽 = 1, which sets the energy scale. The
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parameter 𝐽⊥ represents the rung coupling, and 𝑆𝑧 is the total spin 𝑧-component, with

𝑔𝜇𝐵 ≡ 1.

Figure 42 – (a) Spin-(𝑠, 𝑆) ladder with a four-spin unit cell (two spins of each type) and periodicity 2𝑢,
where 𝑢 is the rung spacing. The leg coupling 𝐽 sets the scale; phases are tuned via 𝐽⊥.
(b) Swapping spins on alternate rungs reduces the periodicity to 𝑢. (c) Folded and unfolded
Brillouin zones for 𝐽⊥ = −0.5 in a system with 𝐿 = 20 rungs.
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For analytical approaches such as spin–wave theory, it is convenient to consider a unit

cell of size 2𝑢, where 𝑢 denotes the spacing between neighboring rungs (see Fig. 42(a)).

This unit cell contains four spins—two of magnitude 𝑠 and two of magnitude 𝑆—resulting

in four magnon bands and a first Brillouin zone (Folded Brillouin Zone (FBZ)) of size

𝑘 = 2𝜋/2𝑢. The Hamiltonian is invariant under a glide reflection symmetry [214, 215],

which combines a translation by 𝑢 with leg exchange (1 ↔ 2). This symmetry permits the

use of a reduced unit cell containing only one rung (two spins: 𝑠 and 𝑆), leading to two

magnon bands and an Unfolded Brillouin Zone (UBZ) of size 𝑘 = 2𝜋/𝑢. Upon reindexing
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the spins accordingly (see Fig. 42(b)), the Hamiltonian takes the simplified form:

ℋ̂ = 𝐽⊥
∑︁
𝑗

ŝ𝑗 · Ŝ𝑗 +
∑︁
𝑗

(︁
ŝ𝑗 · Ŝ𝑗+1 + Ŝ𝑗 · ŝ𝑗+1

)︁
− ℎ𝑆𝑧, (5.2)

where 𝑗 indexes the rungs.

In the presence of a magnetic field, these systems develop a quantized magnetization

plateau at 𝑠𝑧 = 𝑆−𝑠 = 1/2 per unit cell. For the decoupled case 𝐽⊥ = 0, the critical fields

are given by ℎ− = 0 and ℎ+ = ∆, where ∆ denotes the gap to the next magnetization

sector. More generally, the critical fields can be computed as

ℎ± = |𝐸[𝑠𝑧 = (𝑆 − 𝑠)± 1, ℎ = 0]− 𝐸[𝑠𝑧 = (𝑆 − 𝑠), ℎ = 0]| , (5.3)

where 𝐸[𝑠𝑧, ℎ = 0] denotes the ground state energy in the sector with total magnetization

𝑠𝑧 at zero field.

5.1 THE ALTERNATING SPIN–(1
2
, 1) LADDER

For 𝑠 = 1/2 and 𝑆 = 1, Eq. (5.3) predicts a magnetization plateau at one third

of the fully polarized value. The critical fields in the thermodynamic limit, ℎ−(𝐽⊥) and

ℎ+(𝐽⊥), were determined via DMRG simulations combined with finite-size scaling [74].

The resulting phase diagram is shown in Fig. 43.

At 𝐽⊥ = 0, the system consists of two decoupled alternating spin chains with (1/2, 1)

rungs, each with a unit cell of length 2𝑢 (see Fig. 42(a)). The ground state carries a

total spin 1/2 per unit cell, corresponding to 1/3 of the fully polarized magnetization, in

agreement with the Lieb-Mattis theorem. The system displays long-range ferrimagnetic

order with a spin gap ∆ ≈ 1.76 [80–84] for spin-raising excitations, while spin-lowering

excitations remain gapless due to spontaneous breaking of spin-rotational symmetry.

For 𝐽⊥ < 0, the conditions of the Lieb-Mattis theorem no longer apply, and the ground

state becomes a singlet (𝑆GS = 0) at ℎ = 0. Nonetheless, the 1/3 magnetization plateau

remains stable for 𝐽⊥ < 0, with a finite lower critical field (ℎ− > 0). As 𝐽⊥ increases, the

plateau terminates at a KT transition where ℎ− = ℎ+ in the thermodynamic limit, with

surrounding gapless regions in the LL universality class.
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Figure 43 – DMRG-derived phase diagram of magnetic field ℎ versus rung coupling 𝐽⊥ for the (1/2, 1)
alternating spin ladder. Thermodynamic-limit transition lines are obtained via finite-size
scaling of the per-rung magnetization 𝑚 as a function of ℎ. The color scale indicates 𝑚 for a
system with 𝐿 = 100 rungs.
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Source: Reference [74]

5.1.1 Spin-Wave Theory

Spin-wave theory provides a useful framework for analyzing the critical field of the FP

plateau and other regions of the phase diagram for general 𝑠 and 𝑆. Using the Holstein-

Primakoff transformation, spin operators are mapped to bosonic variables:

𝑠𝑧 = 𝑠− 𝑛̂, (5.4)

𝑠+ =
√
2𝑠− 𝑛̂𝑎̂, (5.5)

𝑠− = 𝑎̂†
√
2𝑠− 𝑛̂, (5.6)
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where 𝑎̂† and 𝑎̂ are bosonic creation and annihilation operators, and 𝑛̂ = 𝑎̂†𝑎̂. For large-𝑆

expansions, a leading-order approximation is used:

𝑠+ =
√
2𝑠

(︂
1− 𝑛̂

4𝑠
+𝒪(𝑠2)

)︂
𝑎̂ ≈

√
2𝑠𝑎̂, (5.7)

𝑠− = 𝑎̂†
√
2𝑠

(︂
1− 𝑛̂

4𝑠
+𝒪(𝑠2)

)︂
≈

√
2𝑠𝑎̂†. (5.8)

This is valid in the low-density regime.

Applying this to Eq. (5.2) for rung 𝑗 yields:

𝑠𝑧𝑗 =
1

2
− 𝑛̂𝑎𝑗, 𝑆𝑧

𝑗 = 1− 𝑛̂𝑏𝑗, (5.9)

𝑠+𝑗 = 𝑎̂𝑗, 𝑆+
𝑗 =

√
2𝑏̂𝑗, (5.10)

𝑠−𝑗 = 𝑎̂†𝑗, 𝑆−
𝑗 =

√
2𝑏̂†𝑗. (5.11)

The interaction term ŝ𝑖 · Ŝ𝑗 becomes:

ŝ𝑖 · Ŝ𝑗 = 𝑠𝑧𝑖𝑆
𝑧
𝑗 +

𝑠+𝑖 𝑆
−
𝑗 + 𝑆+

𝑗 𝑠
−
𝑖

2

= 𝑛̂𝑎𝑖(𝑛̂𝑏𝑗 − 1)− 1− 𝑛̂𝑏𝑗

2
+
𝑎̂𝑖𝑏̂

†
𝑗 + 𝑏̂𝑗 𝑎̂

†
𝑖√

2
. (5.12)

Substituting into Eq. (5.2), neglecting constants, and applying a Fourier transform gives:

ℋ̂ =
∑︁
𝑘

[︁
𝑡𝑘𝑘(𝑎̂

†
𝑘𝑏̂𝑘 + 𝑏̂†𝑘𝑎̂𝑘) + (𝜀𝑎 + ℎ)𝑛̂𝑎𝑘 + (𝜀𝑏 + ℎ)𝑛̂𝑏𝑘

]︁
, (5.13)

where 𝑡𝑘𝑘 = (𝐽⊥ + 2 cos 𝑘𝑢)/
√
2, 𝜀𝑎 = −(𝐽⊥ + 2), and 𝜀𝑏 = −(𝐽⊥ + 2)/2.

Diagonalizing this Hamiltonian yields the dispersions:

𝜔
(±)
ℎ (𝑘) =

𝜀𝑎 + 𝜀𝑏
2

± 1

2

√︁
(𝜀𝑎 − 𝜀𝑏)2 + 4𝑡2𝑘𝑘 + ℎ

= −3

4
(𝐽⊥ + 2)± 1

4

√︁
(𝐽⊥ + 2)2 + 8(𝐽⊥ + 2 cos 𝑘𝑢)2 + ℎ. (5.14)

The FP state remains stable for ℎ larger than the minimum of the lower band 𝜔(−)
ℎ (𝑘),

which occurs at 𝑘 = 0 for 𝐽⊥ > 0 and at 𝑘 = 𝜋/𝑢 for 𝐽⊥ < 0. Thus, the critical field for

the onset of the FP plateau is:

ℎFP(𝐽⊥ > 0) = −𝜔(−)
ℎ=0(0) =

3

2
(𝐽⊥ + 2), (5.15)

ℎFP(𝐽⊥ < 0) = −𝜔(−)
ℎ=0

(︁𝜋
𝑢

)︁
=

3

4
(𝐽⊥ + 2) +

1

4

√︁
(𝐽⊥ + 2)2 + 8(𝐽⊥ − 2)2. (5.16)

The two bands for ℎ = 0 are shown in Fig. 44.
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Figure 44 – Lower 𝜔(−)(𝑘) and upper 𝜔(+)(𝑘) free spin-wave magnon bands, calculated from the classical
ferromagnetic vacuum at zero magnetic field (ℎ = 0). The bands are shown for 𝐽⊥ ranging
from -1 to 1 in steps of 0.2.
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1.0

1.0

0.0

-1.0

-1.0

Source: Reference [74]

Interpreting magnons as hard-core bosons (equivalent to spinless fermions), the 1/3

magnetization plateau corresponds to full occupancy of the lower band, whose number

of states matches the number of rungs. The plateau width is given by the band gap, as

shown in Fig. 43. However, spin-wave theory predicts a gap closure (ℎ− = ℎ+) at 𝐽⊥ = −2,

ℎ = 0, which deviates from DMRG results [74]:

𝐽⊥,KT = −1.32 (5.17)

ℎKT = 1.02 (5.18)

5.1.2 Magnetization

The magnetization on spin–1
2
, spin–1, and full (1

2
, 1) rungs for 𝐽⊥ = −0.25 and 0.25

is shown in Fig. 45(a), obtained via DMRG simulations with an ℎ-scan from ℎ = 0 to

ℎ ≈ 3.39. The FP critical fields match Eqs. (5.15) and (5.16):

ℎFP(𝐽⊥ = −0.25) = 2.96, (5.19)

ℎFP(𝐽⊥ = 0.25) = 3.38. (5.20)
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Figure 45 – DMRG results showing average magnetizations of spin- 12 and spin-1 sites, and the average
rung magnetization, from ℎ-scan calculations for (a) 𝐽⊥ = 0.25 and (b) 𝐽⊥ = −0.25. (c)
Comparison of critical fields estimated from ℎ-scans with those obtained via finite-size scaling
of per-rung magnetization curves.
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Source: Reference [74]

Ferrimagnetic order is visible in the 1/3 plateau for both values of 𝐽⊥. Magnon occu-

pancy at spin–1/2 sites, ⟨𝑛̂𝑎⟩ = 1/2−⟨𝑆𝑧
𝑎⟩, exceeds that at spin–1 sites, ⟨𝑛̂𝑏⟩ = 1−⟨𝑆𝑧

𝑏 ⟩, for

rung magnetizations between 𝑚 = 0.5 and full polarization. This asymmetry originates

from the local potential difference:

∆𝜀 = 𝜀𝑎 − 𝜀𝑏 = −1

2
(𝐽⊥ + 2). (5.21)

For 𝐽⊥ = −0.25, the reduced ∆𝜀 diminishes the imbalance. In the range 0 < 𝑚 < 0.5,

magnon occupancy at spin–1 sites rises steeply while it decreases at spin–1/2 sites, as the

total rung magnon density ⟨𝑛̂rung⟩ = 1.5−𝑚 exceeds 1, highlighting the role of interaction

effects.

Critical fields ℎ− and ℎ+ extracted from finite-size scaling and ℎ-scans show excellent

agreement. For 𝐽⊥ < 0, the gap becomes small, making ℎ− and ℎ+ harder to resolve.

Centering ℎ-scans around the expected critical fields improves accuracy in these regimes.

Rung magnetization from 𝐽⊥-scans—where 𝐽⊥ varies linearly across the system under
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fixed ℎ—is shown in Fig. 46. Results from uniform systems with 𝐽⊥ = −0.4 and −0.25

closely match the 𝐽⊥-scan data at ℎ = 0.45, except for minor boundary effects near the

plateau’s critical point.

Figure 46 – The average rung magnetization, computed using DMRG for a 𝐽⊥-scan at ℎ = 0.45, is shown
in the main plot. The inset displays results for ℎ = 0.45, 1.35, and 2.5. Critical transition
points 𝐽𝑐 to the 1/3-plateau are marked for ℎ = 0.45 and 1.35.

Jc (h = 1.35)

Jc (h = 0.45)

1/3 - plateau

1/3 - plateau

Source: Reference [74]

The inset of Fig. 46 displays rung magnetization for 𝐽⊥-scans at ℎ = 2.5, 1.35, and

0.45. At ℎ = 2.5, the system never reaches the 1/3 plateau (𝑚 = 0.5), while at ℎ = 1.35

and 0.45, the plateau becomes visible. The corresponding critical values of 𝐽⊥ match

those in Fig. 43. For ℎ = 0.45, the plateau is approached from below, while for ℎ = 1.35,

magnetization remains above 𝑚 = 0.5 as 𝐽⊥ decreases past the critical point.

5.2 KOSTERLITZ-THOULESS TRANSITION

In gapless phases, the transverse spin correlation function exhibits a power-law decay

at long distances:

Γ(𝑟) ∼ 𝑟−1/2𝐾 , (5.22)

where 𝐾 is the Luttinger parameter. At the 1/3 magnetization plateau, the system hosts

two bosons per unit cell, corresponding to integer filling. The KT transition occurs when

𝐾 = 2 [135]. To locate this transition, the magnetization is fixed at the 1/3-plateau
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value (𝑚 = 1/2), and 𝐽⊥ is varied to identify the point where 𝐾 = 2. In practice, finite-

size effects and the exponentially small energy gap near the KT transition render this

determination nontrivial.

5.2.1 Transverse Spin Correlations

Figure 47 presents transverse spin correlation functions between spin–1
2

and spin–1

sites within the same rung and along the ladder for representative values of 𝐽⊥ in both

the 𝐽⊥ < 0 and 𝐽⊥ > 0 regimes.

Figure 47 – (a) Transverse spin correlation function between spin-1/2 and spin-1 sites on the same rung,
computed using DMRG for 𝐽⊥ = −0.25 and 𝐽⊥ = 0.25 in an ℎ-scan, for a system size
𝐿 = 128. Local extrema are indicated by triangles. (b) Transverse spin correlation function
Γ(𝑟) for specified magnetization per rung 𝑚 and 𝐽⊥ values, calculated for 𝐿 = 128. (c)
Schematic of short-range magnetic order for the indicated 𝑚 and 𝐽⊥ values.
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Source: Reference [74]

The transverse spin correlation function is defined as:

𝐶𝑖𝑗 =
1

2
⟨𝑆+

𝑖 𝑆
−
𝑗 + 𝑆+

𝑗 𝑆
−
𝑖 ⟩, (5.23)
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where 𝑖 and 𝑗 denote ladder sites. In Fig. 47(a), for 𝐽⊥ < 0, the transverse correlation

remains positive from ℎ = 0 up to the saturation field. Semiclassically, spin–1
2

and spin–1

projections in the 𝑥𝑦-plane align in the same direction, as illustrated in Fig. 47(c). For

𝐽⊥ > 0, the spin projections on each rung point in opposite directions, also depicted

in Fig. 47(c). In both cases, correlations remain stable within the plateau regions. Lo-

cal extrema, marked by triangles, appear near the field where the spin–1
2

magnetization

vanishes, as observed in Fig. 45(a).

The transverse spin correlation along a ladder leg is shown in Fig. 47(b) and defined

as:

Γleg(𝑟)𝐿 = ⟨𝐶𝑖𝑗⟩|𝑙(𝑖)−𝑙(𝑗)|=𝑟, (5.24)

for a system of size 𝐿, where 𝑙(𝑖) denotes the rung index of site 𝑖. A spatial average

over all site pairs on the same leg separated by distance 𝑟 mitigates boundary effects. In

the gapless phases (𝑚 = 0.25 and 𝑚 = 1.25), correlations follow the power-law behavior

characteristic of the LL phase, except at large distances due to open boundary conditions.

In contrast, for the 𝑚 = 0.5 plateau, the correlation decays exponentially, indicating a

gapped phase. For both signs of 𝐽⊥, leg correlations alternate in sign, consistent with

the semiclassical configurations shown in Fig. 47(c). Magnetization profiles of spin–1
2

and

spin–1 sites, displayed in Fig. 46, further corroborate this picture.

5.2.2 Identifying KT Transition Points

The correlation function in Eq. (5.22) is evaluated for system sizes 𝐿 = 128, 192, and

256 over a range of 𝐽⊥ values near the anticipated transition. Figures 48(a) and 48(b)

show representative cases for 𝐽⊥ = −1.4 and 𝐽⊥ = −1.2, respectively.

To estimate the Luttinger parameter 𝐾 in the thermodynamic limit, the correlation

data are fitted to Eq.(5.22) over the distance intervals (8,16), (16,32), and (32,48) for each

system size. The resulting𝐾 values are extrapolated to the infinite-size limit, as illustrated

in Figs. 48(c) and 48(d). The extrapolated 𝐾 and its uncertainty are estimated from the

variation across system sizes as 𝐿→ ∞.

Finally, Fig. 48(e) plots 𝐾 as a function of 𝐽⊥ near the transition. The crossing point

with 𝐾 = 2 yields an estimate for the KT transition:

𝐽⊥,KT = −1.32± 0.02, (5.25)
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This estimate is supported by the error behavior: errors are larger in the gapped region,

where finite-size effects dominate, and become negligible in the gapless phase, where the

correlation length diverges.

Figure 48 – DMRG results for the transverse spin correlation function (−1)𝑟Γ(𝑟), with 𝑟 as the distance
along a ladder leg, at 𝑚 = 1/3 for (a) 𝐽⊥ = −1.4 and (b) 𝐽⊥ = −1.2, shown for system sizes 𝐿
as indicated. The Luttinger parameter 𝐾 is computed for (c) 𝐽⊥ = −1.4 and (d) 𝐽⊥ = −1.2
by fitting the correlation data to 𝑟−1/(2𝐾) over distance intervals 8 ≤ 𝑟 ≤ 16, 16 ≤ 𝑟 ≤ 32,
and 32 ≤ 𝑟 ≤ 48. (e) Thermodynamic-limit 𝐾 versus 𝐽⊥ near the Kosterlitz-Thouless (KT)
transition, with the critical point estimated at 𝐽⊥,KT = −1.32± 0.02.
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6 COUPLED TWO-LEG LADDERS

The preceding chapters focused on isolated two-leg ladders, including both frustrated

and mixed-spin variants. In this chapter, we turn our attention to coupled spin-1
2

two-

leg ladders with both nearest-neighbor and diagonal exchange interactions. While two-

leg ladders have been extensively investigated through analytical and numerical tech-

niques—leading to a nearly complete characterization of their phase diagrams—the de-

termination of precise phase boundaries remains an open problem. In contrast, fully 2D

quantum spin systems, despite substantial research over the past decades, are far less un-

derstood. Their increased complexity and the significantly higher computational demands

pose formidable challenges relative to their 1D and quasi-1D counterparts.

Low-dimensional quantum systems host a variety of emergent phenomena, including

the LL phase, which is restricted to 1D. Coupled spin ladders thus offer an appealing

theoretical framework for probing emergent 2D physics while retaining the analytical

tractability and numerical accessibility of quasi-1D models. However, the phase diagram

of 2D coupled ladders remains largely unexplored, particularly in the presence of frus-

tration, making it a fertile ground for further investigation. Most prior studies have fo-

cused on unfrustrated coupled ladders, since standard techniques for studying frustrated

2D quantum magnets—such as Quantum Monte Carlo—are hindered by the minus-sign

problem.

Experimentally, several materials have been identified as realizations of coupled spin

ladder systems [98, 99, 102, 216]. These compounds provide valuable platforms to test

theoretical predictions and to explore exotic quantum phases. Advances in experimental

techniques such as inelastic neutron scattering, nuclear magnetic resonance, and other

spectroscopic probes have revealed signatures of spin gap formation, quantum critical-

ity, and phases stabilized by frustration and interladder coupling. Further experimental

efforts—particularly under extreme conditions such as high magnetic fields or ultra-low

temperatures—hold the potential to unveil novel aspects of the intricate interplay between

dimensionality, frustration, and quantum correlations in these systems.
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6.1 𝑁 COUPLED LADDERS

A system of 𝑁 coupled spin–1
2

two-leg ladders can be represented as a single 2𝑁 -leg

ladder with alternating rung couplings, as illustrated in Figure 49. The corresponding

Hamiltonian is given by

ℋ̂ =
𝐿∑︁
𝑖=1

[︃
𝐽⊥

2𝑁−1∑︁
𝑘=1
odd

Ŝ𝑖,𝑘 · Ŝ𝑖,𝑘+1 + 𝐽 ′
⊥

2𝑁−1∑︁
𝑘=2
even

Ŝ𝑖,𝑘 · Ŝ𝑖,𝑘+1

]︃
+ 𝐽‖

𝐿−1∑︁
𝑖=1

2𝑁∑︁
𝑘=1

Ŝ𝑖,𝑘 · Ŝ𝑖+1,𝑘, (6.1)

where Ŝ𝑖,𝑘 denotes the spin–1
2

operator at rung position 𝑖 and leg 𝑘, and 0 ≤ 𝐽 ′
⊥ ≤ 𝐽⊥.

The limits 𝐽 ′
⊥ = 0 and 𝐽 ′

⊥ = 𝐽⊥ correspond, respectively, to decoupled two-leg ladders

and a uniform 2𝑁 -leg ladder. The former exhibits independent RS states on each ladder

with a finite gap for 𝐽⊥ > 0 and a critical point at 𝐽⊥, c = 0. In contrast, the latter

is characterized by an extended, uniform geometry. These limiting cases provide useful

benchmarks for understanding the behavior of the intermediate regime.

Figure 49 – Schematic of coupled two-leg ladders. Thick lines denote antiferromagnetic exchange cou-
plings within each ladder (𝐽⊥, 𝐽‖), and dashed lines indicate interladder couplings (𝐽 ′

⊥). All
couplings are positive.

J∥

J⊥

J ′
⊥

Source: The author (2025).

When 𝐽⊥ = 𝐽 ′
⊥, the model describes a uniform 2𝑁 -leg ladder, an even-leg quasi-2D

system. As discussed in Section 3.4, such systems exhibit a finite spin gap at the isotropic

point 𝐽⊥ = 𝐽‖. Fixing 𝐽‖ > 0 as the energy scale, the phase diagram can be explored by
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tuning 𝐽⊥. In the strong-rung limit 𝐽⊥ ≫ 𝐽‖, the system effectively consists of decoupled

2𝑁 -spin rungs, forming a product of singlet states with an energy gap that scales as

∆ ∼ 𝐽⊥ [176]. Numerical estimates at the isotropic point 𝐽⊥ = 𝐽‖ = 𝐽 yield ∆2 = 0.5𝐽

(𝑁 = 1), ∆4 = (0.16± 0.01)𝐽 (𝑁 = 2), and ∆6 = 0.05𝐽 (𝑁 = 3) [168, 171].

Nishiyama et al. [217] demonstrated that the four-leg ladder exhibits a RVB structure

(see Figure 50), with a phase diagram qualitatively similar to the two-leg case. They

identified two distinct disordered phases, one for 𝐽⊥ > 0 and another for 𝐽⊥ < 0, separated

by a critical point at 𝐽⊥, c = 0. Their findings suggest that the RVB character is a generic

feature of even-leg ladders.

Figure 50 – Schematic of the expected resonating valence bond (RVB) state in a four-leg ladder. The
RVB pattern (a) dominates for 𝐽⊥ > 0, and pattern (b) dominates for 𝐽⊥ < 0.

Source: Reference [217]

Figure 51 shows the ground state configuration for a four-leg ladder at 𝐽⊥ = 1. In the

strong-rung regime (𝐽‖ = 0.2), the ground state is predominantly composed of singlets on

each rung. As 𝐽‖ increases, these singlets resonate and delocalize along the leg direction,

reducing local rung-singlet correlations. As the number of legs 2𝑁 increases, the gap

decreases due to enhanced singlet delocalization. This behavior follows an exponential

decay [170]:

∆𝒩 ∼ 𝒩𝑆2 exp (−𝑆𝒩𝑎), (6.2)



124

where 𝑎 is a constant, 𝑆 is the spin magnitude, and 𝒩 is the even number of legs.

Figure 51 – DMRG results for the ground state of a spin- 12 four-leg ladder with 𝐿 = 32 rungs, open
boundary conditions, and couplings 𝐽⊥ = 𝐽 ′

⊥ = 1. Panels show 𝐽‖ = 0.2 (a), 𝐽‖ = 0.6 (b),
and 𝐽‖ = 1 (c). In (a), rung singlets are prominent. As 𝐽‖ increases, singlets delocalize along
the legs, weakening rung-singlet correlations. Calculations used a bond dimension of 3000
and a truncation error of 10−7.

(a)

(b)

(c)

Source: The author (2025).

For the case 𝑁 = 2, we investigate the spin gap and dimerization order parameters.

The latter are defined as

𝐷𝛼 =
1

𝑁𝛼

∑︁
i

(−1)i𝛼⟨Ŝi · Ŝi+e𝛼⟩, (6.3)

where 𝛼 ∈ {𝑥, 𝑦} denotes the spatial direction, i = (𝑖𝑥, 𝑖𝑦) specifies the lattice site, and 𝑁𝛼

is the total number of bonds in direction 𝛼. For a four-leg ladder of length 𝐿, we have 𝑁𝑥 =

4(𝐿−1) and 𝑁𝑦 = 3𝐿. This quantity serves as an order parameter for detecting dimerized

phases, such as a VBS. In contrast, an RVB state corresponds to a quantum superposition

of multiple singlet coverings and does not exhibit fixed dimerization patterns. Accordingly,

we expect 𝐷𝛼 = 0 in the RVB phase.

If even-leg ladders generically host RVB-type ground states with finite gaps, their

phase diagram is expected to consist exclusively of disordered phases. As 𝐽 ′
⊥ is increased

from zero, the system smoothly interpolates between decoupled two-leg ladders and a

uniform 2𝑁 -leg ladder, remaining within the same gapped phase for finite 𝑁 . Therefore,

no quantum phase transition is expected as long as 𝑁 ≪ 𝐿/2 remains, since the limiting

states at 𝐽 ′
⊥ = 0 and 𝐽 ′

⊥ = 𝐽⊥ are adiabatically connected. Numerical results for 𝑁 = 2,

shown in Figure 52, are consistent with this expectation.
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Figure 52 – DMRG results for a spin- 12 2𝑁 -leg ladder with 𝐽⊥ = 1. (a) Spin gap extrapolated to the
thermodynamic limit for 𝑁 = 2 and 𝑁 = 3 at the isotropic point (𝐽⊥ = 𝐽‖). (b) Spin gap
extrapolated for 𝑁 = 2 at the non-isotropic point (𝐽‖ = 𝐽⊥/2). (c, d) Linear extrapolations of
dimerization order parameters 𝐷𝑥 and 𝐷𝑦, respectively, for 𝑁 = 2 and 𝐽‖ = 𝐽⊥. Calculations
used a bond dimension of 3000 and a truncation error of 10−7.

0 0.2 0.4 0.6 0.8 1
J′

⊥
 / J

⊥

0

0.2

0.4

0.6

∆

N = 2
N = 3

0 0.2 0.4 0.6 0.8 1
J′

⊥
 / J

⊥

0

0.2

0.4

0.6

∆

0 0.005 0.01 0.015 0.02
1/L

0

0.001

0.002

0.003

0.004

0.005

D
x

J′
⊥
 = 0

J′
⊥
 = 0.2

J′
⊥
 = 0.4

J′
⊥
 = 0.6

J′
⊥
 = 0.8

J′
⊥
 = 1

0 0.005 0.01 0.015 0.02
1/L

0

0.002

0.004

0.006
D

y

(a) (b)

(c) (d)

Source: The author (2025).

6.1.1 The Square Lattice Limit

For 𝑁 ≪ 𝐿/2, the system exhibits no phase transition. However, as 𝑁 approaches

𝐿/2, the 2𝑁 -leg ladder gradually approximates a 2D square lattice. Unlike finite even-leg

ladders, which are gapped and exhibit short-range RVB correlations, the square lattice

displays long-range Néel order. Despite their similar short-distance physics, the qualitative

difference in long-range behavior implies the emergence of a quantum phase transition in

the thermodynamic limit—from a disordered phase to one with long-range magnetic order.

Consider the case of isotropic couplings (𝐽⊥ = 𝐽‖ ≡ 𝐽) in the limit 𝑁 → 𝐿/2. For

𝐽 ′
⊥ = 0, the system consists of decoupled two-leg ladders in the gapped RVB phase.

At the other extreme, 𝐽 ′
⊥ = 𝐽 corresponds to a spin–1

2
AFM square lattice, character-

ized by Néel order and gapless excitations [218]. A quantum critical point emerges at

a finite interladder coupling 𝐽 ′
⊥, c ≈ 0.31𝐽 , as reported by mean-field theory [33], quan-

tum Monte Carlo simulations [92, 96], iPEPS calculations [219], and the coupled cluster

method [105]. Experimental realizations of this transition are observed in materials such
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as Ba2CuTeO6 [98, 99] and C9H18N2CuBr4 [102].

For small 𝑁 , tuning 𝐽 ′
⊥ interpolates smoothly between the disordered RVB phases of

two-leg and even-leg ladders, with no indication of a phase transition. As 𝑁 increases,

however, the energy gap decreases exponentially, as described by Eq. (6.2), and square-

lattice effects begin to dominate. This ultimately leads to the development of long-range

order. Therefore, a genuine quantum phase transition arises between the disordered phase

characteristic of finite-width ladders and the ordered phase of the square lattice in the 2D

limit.

6.2 𝑁 COUPLED FRUSTRATED TWO-LEG LADDERS

Introducing diagonal exchange couplings 𝐽× and 𝐽 ′
× into the system shown in Figure 49

results in a model of 𝑁 coupled spin–1
2

frustrated two-leg ladders, illustrated in Figure 53.

Figure 53 – Schematic of coupled frustrated two-leg ladders. Thick lines denote antiferromagnetic cou-
plings within each ladder (𝐽⊥, 𝐽‖, 𝐽×), and dashed lines indicate interladder couplings (𝐽 ′

⊥,
𝐽 ′
×). All couplings are positive.

J∥

J⊥
J×

J ′
⊥

J ′
×

Source: The author (2025).
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The corresponding Hamiltonian extends Eq. (6.1) and is given by:

ℋ̂ =
2𝑁−1∑︁
𝑘=1

[︁ 𝐿∑︁
𝑖=1

𝐽
(rung)
𝑘 Ŝ𝑖,𝑘 · Ŝ𝑖,𝑘+1 +

𝐿−1∑︁
𝑖=1

𝐽
(diag)
𝑘 (Ŝ𝑖,𝑘 · Ŝ𝑖+1,𝑘+1 + Ŝ𝑖,𝑘+1 · Ŝ𝑖+1,𝑘)

]︁
+ 𝐽‖

2𝑁∑︁
𝑘=1

𝐿−1∑︁
𝑖=1

Ŝ𝑖,𝑘 · Ŝ𝑖+1,𝑘. (6.4)

Here, the rung and diagonal couplings alternate: 𝐽 (rung)
𝑘 = 𝐽⊥ for odd 𝑘 and 𝐽 ′

⊥ for even 𝑘,

while 𝐽 (diag)
𝑘 = 𝐽× (odd 𝑘) or 𝐽 ′

× (even 𝑘). We consider the parameter ranges 0 ≤ 𝐽 ′
⊥ ≤ 𝐽⊥

and 0 ≤ 𝐽 ′
× ≤ 𝐽×. When 𝐽 ′

⊥ = 𝐽 ′
× = 0, the system consists of 𝑁 decoupled frustrated

two-leg ladders, which exhibit RS and Haldane ground states. On the other hand, setting

𝐽 ′
⊥ = 𝐽⊥ and 𝐽 ′

× = 𝐽× yields a uniform 2𝑁 -leg frustrated ladder.

To facilitate the analysis, we define rung operators:

R̂𝑖,𝑘 = Ŝ𝑖,𝑘 + Ŝ𝑖,𝑘+1, D̂𝑖,𝑘 = Ŝ𝑖,𝑘 − Ŝ𝑖,𝑘+1. (6.5)

Using these definitions, the Hamiltonian becomes:

ℋ̂ =
2𝑁−1∑︁
𝑘=1
odd

[︃
𝐽⊥
2

𝐿∑︁
𝑖=1

R̂2
𝑖,𝑘 +

𝐽‖ + 𝐽×
2

𝐿−1∑︁
𝑖=1

R̂𝑖,𝑘 · R̂𝑖+1,𝑘 +
𝐽‖ − 𝐽×

2

𝐿−1∑︁
𝑖=1

D̂𝑖,𝑘 · D̂𝑖+1,𝑘

]︃

+
2𝑁−1∑︁
𝑘=2
even

[︃
𝐽 ′
⊥
2

𝐿∑︁
𝑖=1

R̂2
𝑖,𝑘 +

𝐽 ′
×

2

𝐿−1∑︁
𝑖=1

(R̂𝑖,𝑘 · R̂𝑖+1,𝑘 − D̂𝑖,𝑘 · D̂𝑖+1,𝑘)

]︃
, (6.6)

=
2𝑁−1∑︁
𝑘=1
odd

ℋ̂𝑘(𝐽⊥, 𝐽‖, 𝐽×) +
2𝑁−1∑︁
𝑘=2
even

ℋ̂′
𝑘(𝐽

′
⊥, 𝐽

′
×). (6.7)

In this form, ℋ̂𝑘 corresponds to the Hamiltonian of a single frustrated two-leg ladder,

while ℋ̂′
𝑘 represents a two-leg ladder with rung coupling 𝐽 ′

⊥ and leg coupling 𝐽 ′
×. The full

Hamiltonian thus describes a system composed of 𝑁 frustrated two-leg ladders and 𝑁 −1

interleaved unfrustrated ladders.

The structure of the Hamiltonian leads to the following commutation relations:

[ℋ̂𝑛, ℋ̂𝑚] = [ℋ̂′
𝑛, ℋ̂′

𝑚] = 0 for all 𝑛,𝑚, (6.8)

since frustrated and unfrustrated ladders do not share sites among themselves. However,

frustrated and unfrustrated ladders do share sites when adjacent, which leads to:

[ℋ̂𝑛, ℋ̂′
𝑚] ̸= 0 for 𝑚 = 𝑛± 1, (6.9)

[ℋ̂𝑛, ℋ̂′
𝑚] = 0 for 𝑚 ̸= 𝑛± 1. (6.10)
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As discussed in Chapter 4, a single frustrated two-leg ladder is invariant under the

exchange 𝐽‖ ↔ 𝐽×. In the coupled system, this symmetry remains valid only if 𝐽 ′
× ̸= 𝐽×; it

is explicitly broken when 𝐽 ′
× = 𝐽× due to the presence of cross-coupling terms in Eq. (6.6).

To characterize different phases, we compute the average effective rung spin 𝑆, defined

through the total rung spin operator:

𝑆𝑖 =
2𝑁∑︁
𝑘=1

𝑆𝑖,𝑘, (6.11)

which leads to:

𝑆2
𝑖 =

2𝑁∑︁
𝑘=1

𝑆2
𝑖,𝑘 + 2

2𝑁−1∑︁
𝛼=1

2𝑁∑︁
𝛽=𝛼+1

𝑆𝑖,𝛼 · 𝑆𝑖,𝛽, (6.12)

⟨𝑆2
𝑖 ⟩ =

2𝑁∑︁
𝑘=1

⟨𝑆2
𝑖,𝑘⟩+ 2

2𝑁−1∑︁
𝛼=1

2𝑁∑︁
𝛽=𝛼+1

⟨𝑆𝑖,𝛼 · 𝑆𝑖,𝛽⟩, (6.13)

𝑆𝑖(𝑆𝑖 + 1) =
3𝑁

2
+ 2

2𝑁−1∑︁
𝛼=1

2𝑁∑︁
𝛽=𝛼+1

⟨𝑆𝑖,𝛼 · 𝑆𝑖,𝛽⟩. (6.14)

Here, 𝑆𝑖 denotes the total spin on rung 𝑖, and 2𝑁 is the number of legs. The average

effective rung spin is then computed as:

𝑆 =
1

𝐿

𝐿∑︁
𝑖=1

𝑆𝑖, (6.15)

with each 𝑆𝑖 extracted from Eq. (6.14).

6.2.1 Square Lattice Models

When 𝐽 ′
⊥ = 𝐽⊥ and 𝐽 ′

× = 𝐽×, the system becomes a uniform even-leg frustrated ladder,

which can be viewed as a quasi-2D analogue of the square lattice with nearest-neighbor

(𝐽1 = 𝐽⊥ = 𝐽‖) and next-nearest-neighbor (𝐽2 = 𝐽×) interactions. This configuration

corresponds to the well-known 𝐽1–𝐽2 Heisenberg model.

6.2.1.1 The 𝐽1–𝐽2 Model

The spin1
2

HAF 𝐽1–𝐽2 model on the square lattice has long been conjectured to host

a Quantum Spin Liquid (QSL) phase and is often discussed in connection with high-

𝑇𝑐 superconductivity [220–224]. Despite extensive investigation over the past decades,
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the zero-temperature phase diagram of this model remains under debate. For 𝐽2/𝐽1 ≲

0.41, the ground state exhibits Néel AFM order. For 𝐽2/𝐽1 ≳ 0.62, the system enters

a collinear AFM phase. The nature of the intermediate region (0.41 ≲ 𝐽2/𝐽1 ≲ 0.62)

remains controversial, with quantum fluctuations possibly destabilizing magnetic order

and giving rise to a magnetically disordered PM phase.

Several competing scenarios have been proposed for this intermediate regime. These

include columnar [225–229] or plaquette [230–237] VBS states, as well as gapless [238–249]

or gapped [123] QSL phases.

A 2012 DMRG study suggested the presence of a gapped Z2 QSL in the range

0.41 ≲ 𝐽2/𝐽1 ≲ 0.62 [123]. In contrast, a 2014 SU(2)-symmetric DMRG study identi-

fied a plaquette VBS phase for 0.5 ≲ 𝐽2/𝐽1 ≲ 0.61, and a near-critical region between

0.44 ≲ 𝐽2/𝐽1 ≲ 0.5 [233]. More recently, a 2018 DMRG analysis proposed a gapless QSL

phase for 0.46 ≲ 𝐽2/𝐽1 ≲ 0.52, and a VBS phase for 0.52 ≲ 𝐽2/𝐽1 ≲ 0.62 [247]. A 2022

PEPS study on 24 × 24 lattices found a gapless QSL for 0.45 ≲ 𝐽2/𝐽1 ≲ 0.56, followed

by a VBS for 0.56 ≲ 𝐽2/𝐽1 ≲ 0.61 [250], as shown in Figure 54. However, a 2024 study

challenged these results, favoring a direct transition from Néel to collinear order via an

intermediate plaquette VBS phase and reporting no evidence of a QSL [124, 251].

Figure 54 – Proposed phase diagram of the spin- 12 antiferromagnetic 𝐽1–𝐽2 square-lattice model, as pre-
sented in the work referenced by the figure. The nonmagnetic region is 0.45 ≲ 𝐽2/𝐽1 ≲ 0.61,
and it is a gapless spin liquid phase for 0.45 ≲ 𝐽2/𝐽1 ≲ 0.56 and a VBS phase for
0.56 ≲ 𝐽2/𝐽1 ≲ 0.61.

To understand the properties of potential QSL phase of frus-
trated magnets systematically, Wen [50] created the framework
of the projective symmetry group (PSG) and proposed many differ-
ent types of QSL variational states for the square lattice J1 � J2
model. Among different variational quantum Monte Carlo (vQMC)
calculations [19,35,39,40], a particular gapless Z2 QSL state was
intensively studied with Lanczos projection [35]. As its variational
energy is the lowest one among all possible QSL constructed by
projective wavefunctions classified by PSG, and is also competitive
with the most accurate ones of density matrix renormalization
group (DMRG) method, people conjecture that such a QSL state
could be stabilized in the intermediate paramagnetic phase. How-
ever, it is still unclear whether a second order phase transition is
possible between such a QSL phase and the usual Néel AFM phase.
Morevoer, the PSG framework only considers symmetry fractional-
ization patterns for spinons and, hence, cannot capture all gapped
QSL phases predicted by the general theoretical concept of symme-
try enriched topological order [51]. Thus, it would not be a surprise
if the PSG framework cannot describe all gapless QSL states as well.

On the other hand, as there are also numerical evidences indi-
cating that a valence-bond solid (VBS) [7,9–12,16–18,21,24–27,31,
36,38,45] might develop in the intermediate paramagnetic phase,
an alternative scenario – the deconfined quantum critical point
(DQCP) [22,52–59] was also proposed to describe the direct phase
transition between the usual Néel AFM phase and the VBS phase.
DQCP is an intrinsically strong coupling quantum critical point and
it is indeed a Landau forbidden second order phase transition
between two ordered phases. This kind of phase transition has
already been observed in frustrated-free models, e.g., the J � Q
model first proposed by Anders Sandvik [54].

For convenience, we set J1 ¼ 1 throughout the whole paper. An
early density matrix renormalization group (DMRG) study suggests
that the nonmagnetic region 0:41KJ2K0:62 is a gapped Z2 spin liq-
uid phase [32], without any spin and dimer orders in the thermo-
dynamic limit. However, a more recent DMRG study with SU(2)
symmetry proposes a PVBS phase for 0:5KJ2K0:61 with a near
critical region 0:44KJ2K0:5 [38]. Later, a very recent DMRG study
further proposes two phases in the nonmagnetic region: a gapless
spin liquid phase for 0:46KJ2K0:52 and a VBS phase for
0:52KJ2K0:62 [44]. On the other hand, a vQMC study [35] and a
finite projected entangled pair state (PEPS) [46] suggest a gapless
QSL phase in the entire intermediate nonmagnetic region. A well
known fact is that DMRG is almost numerically exact, but essen-
tially as a one-dimensional algorithm, the precision of DMRG for
2D systems strongly depends on the system width and states kept
[60]. New approaches that can go beyond DMRG for 2D simulation
is in great urgency. PEPS, a higher dimensional extension of DMRG,
which is also a systematically improvable variational ansatz, pro-
vides a very promising tool for solving 2D quantum many-body
problems [61–63]. However, the expensive cost of PEPS greatly
limits its practical application. Recently, in the scheme of combin-
ing variational Monte Carlo method and tensor network states
[64–68], where physical quantities can be evaluated through
Monte Carlo sampling and ground states can be obtained by the
means of gradient optimization, an accurate PEPS method was
established to deal with finite 2D systems on open boundary con-
ditions (OBC) [69], making it possible to simulate large systems
with very high precision. Particularly, it allows us to compare PEPS
and DMRG results directly on the same system, which could be
crucial to clarify some long-standing controversial many-body
problems.

In this paper, we apply the state-of-the-art finite PEPS method
to accurately simulate the J1 � J2 model up to 24� 24. Our results
show that the nonmagnetic region 0:45KJ2 6 0:61 consists of a
gapless QSL phase for 0:45KJ2K0:56 and a VBS phase for
0:56KJ2 6 0:61, shown in Fig. 1. The QSL phase is gapless by

observing a power law decay of both spin-spin and dimer-dimer
correlation functions. Through detailed comparison with DMRG,
we provide very solid numerical results beyond DMRG. We also
propose an effective field theory to understand the nature of such
a gapless spin liquid and discuss the potential relationship with
DQCP scenario.

2. Methods

We use the finite PEPS method in the scheme of Monte Carlo
sampling [68,69]. In this scheme, the summation of physical
degree of freedoms is replaced by Monte Carlo sampling [64,65].
Physical quantities and energy gradient with respect to variational
parameters can be evaluated by Monte Carlo sampling. The varia-
tional PEPS wave function is initialized by a simple update imagi-
nary time evolution method, and then is further optimized by the
stochastic gradient method [64,68,69]. After the optimization,
order parameters and correlation functions are computed by
Monte Carlo sampling. As we know, the representation ability of
PEPS is determined by its bond dimension D, and the energy is
variational with respect to D. For a given tensor network, one has
to set a maximal bond dimension Dc as a cutoff during the contrac-
tion process, to avoid the bond dimension of resulted tensor net-
works increasing exponentially. We always use large enough Dc

to guarantee the results are convergent with respect to Dc, so that
variational principle is ensured about D. Usually, we use Dc1 ¼ 2D
to generate spin configurations and use Dc2 ¼ 3D to compute the
relevant observable terms at a certain configuration. The variance
of physical results with respect to Dc can be seen in Section VIII
in the Supplementary materials, and more details can be found
in Ref. [69].

As a well established method for 1D and quasi-1D systems, the
DMRG here used are incorporated into SU(2) spin rotation symme-
try. The energy and correlation functions obtained by PEPS and
DMRG are compared on fully open strips Ly � Lx up to 12� 28. Both
PEPS and DMRG methods give accurate results, and the one-to-one
direct PEPS and DMRG comparisons on different system sizes make
it possible to produce a solid PEPS calculation that can go beyond
DMRG. Detailed results are shown in Section IX in the Supplemen-
tary materials.

3. Results

3.1. Order parameters and critical exponents

All calculations are performed with D ¼ 8 PEPS, if not otherwise
specified. The obtained thermodynamic limit ground state energies
are among the most accurate ones, see Section II in the Supplemen-
tary materials. Now we consider spin orders including AFM Néel
order and collinear order. The spin order parameter (squared) is

Fig. 1. (Color online) The phase diagram of spin-1/2 J1 � J2 square-lattice
Heisenberg antiferromagnetic model. The nonmagnetic region is 0:45KJ2 6 0:61,
and it is a gapless spin liquid phase for 0:45KJ2K0:56 and a VBS phase for
0:56KJ2 6 0:61.

W.-Y. Liu et al. Science Bulletin 67 (2022) 1034–1041
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Source: Reference [250]
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6.2.1.2 The 𝐽1𝑥–𝐽1𝑦–𝐽2 Model

The 𝐽1𝑥–𝐽1𝑦–𝐽2 model generalizes the 𝐽1–𝐽2 model by introducing anisotropic nearest-

neighbor couplings 𝐽1𝑥 and 𝐽1𝑦 along the 𝑥- and 𝑦-directions, respectively [194, 252–254].

This additional degree of freedom enriches the phase diagram and may stabilize novel

quantum phases.

Using tensor network techniques, Liu et al. [252] mapped out the phase diagram of this

model (Figure 55). In the strongly anisotropic regime, a continuous transition is observed

between Néel AFM and columnar VBS phases, characterized by emergent O(4) symmetry.

As the anisotropy is reduced, this transition line terminates at a tricritical point, beyond

which a gapless QSL phase appears between the AFM and VBS phases.

Figure 55 – Ground-state phase diagram of the 𝐽1𝑥-𝐽1𝑦-𝐽2 model, including four phases: the Néel (AFM),
VBS, gapless QSL, and a collinear (stripe) phase. The dashed blue lines denote the hypothet-
ical shape of the VBS phase close to the origin. Solid blue lines in the middle region denote
the unknown QSL shape close to the tricritical point (filled blue circle). Open blue circles
have emergent O(4) symmetry. 2
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Figure 1. Ground-state phase diagram of the J1x-J1y-J2 model,
including four phases: the AFM, VBS, and gapless QSL (red region)
phases, and a stripe phase. The dashed blue lines denote the
hypothetical shape of the VBS phase close to the origin. Solid blue
lines in the middle region denote the unknown QSL shape close to the
tricritical point (filled blue circle). Open blue circles have emergent
O(4) symmetry.

neighbor AFM Heisenberg couplings J1x > 0, J1y > 0 and the
next nearest neighbor AFM Heisenberg coupling J2 > 0, with
the Hamiltonian:

H = J1x

∑
⟨i, j⟩x

Si · Sj + J1y

∑
⟨i, j⟩y

Si · Sj + J2

∑
⟨⟨i, j⟩⟩

Si · Sj. (1)

This model was introduced to study the interplay between
quantum frustration and spinon excitations [35]. The strong
frustration present in this model makes it challenging to
simulate accurately, and thus its global phase diagram remains
elusive, despite previous studies [36–38].

Recently, the advancement in tensor network methods,
specifically the finite projected entangled pair state algorithm
[39, 40], has provided a powerful tool for investigating frus-
trated models with high accuracy [23, 24] By applying such
a state-of-the-art method, we elaborately investigated this
model through performing large-scale computations. The
global phase diagram is shown in Fig. 1. In the small
J1y region, we observe a direct AFM–VBS transition with
an emergent O(4) symmetry, formed by three-component
AFM order parameters and the one-component VBS order
parameter. In the larger J1y region, we observe a gapless
quantum spin liquid (QSL) phase between the AFM and
VBS phases. Surprisingly, the emergent O(4) symmetry
persistently exists on the QSL–VBS transition line.

Continuous AFM-to-VBS transition. We set J1x = 1
throughout the paper and sweep J2 with fixed J1y to obtain the
phase diagram. We first consider the large anisotropy region,
where we find that a direct AFM–VBS transition can occur up
to J1y = 0.55 but probably vanishes at J1y ≃ 0.6. The AFM

order parameter ⟨M2
0⟩ is defined as the spin order parameter

m2(k) = 1
L4

∑
ij⟨Si · Sj⟩eik·(i−j) at k = (π, π), where i = (ix, iy)

is the site position. Taking J1y = 0.4 as an example, we show
the AFM order parameter on different L × L systems up to
20 × 20 in Fig. 2(a). The finite size scaling of the system
suggests that the AFM order vanishes at Jc1 = J2 ≃ 0.17 in
the two-dimensional (2D) limit. We also use the crossing of
the dimensionless quantity ξm/L to determine the transition
point, where ξm is the spin correlation length defined as ξm =
L
2π

√
m2(π,π)

m2(π+2π/L,π) − 1 [23]. This gives rise to a consistent Jc1, as
shown in the inset of Fig. 2(a).

The dimer order parameter Dα = 1
Nb

∑
i(−1)iαBαi is used to

detect possible VBS patterns, where Bαi = Si · Si+eα is the
bond operator between nearest sites i and i + eα with α = x
or y, and Nb = L(L − 1) is the total number of counted bonds
along the α direction for open-boundary systems. Fig. 2(b)
presents the horizontal VBS order parameter ⟨D2

x⟩ with the
largest system size up to a 20 × 20 matrix at fixed J1y = 0.4.
It is seen that the extrapolated value of ⟨D2

x⟩ for the 2D limit
is zero at J2 = 0.16 but nonzero at J2 = 0.18. Note that
the y-direction VBS order parameter ⟨D2

y⟩ is very small for
finite sizes and clearly extrapolates to zero in the 2D limit.
The results indicate that the VBS order sets in at Jc2 = J2 ≃

0.17, and there is thus a direct AFM–VBS transition at Jc =

Jc1 = Jc2. We later confirm such an AFM–VBS transition
through other means. The order parameters for each system
size have a smooth change with J2, as presented in the inset
of Fig. 2(b), and the AFM–VBS transition is thus likely to
be continuous, although the possibility of a weakly first-order
transition cannot be fully excluded.
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Figure 2. (a) Finite size scaling of the AFM order parameter (main
panel) and crossing of ξm/L (inset) at J1y = 0.4. (b) Finite size scaling
of the VBS order parameter (main panel) and J2-dependence of VBS
order parameters at J1y = 0.4. (c) Finite size scaling of the AFM
order parameter (main panel) and crossing of ξm/L (inset) at J1y =

0.85. (d) Finite size scaling of VBS order parameters including ⟨D2
x⟩

and boundary-induced dimerization ⟨Dx⟩
2 at J1y = 0.85. Second-

order polynomial fits are used for all extrapolations.

Source: Reference [252]

6.2.2 Numerical Results for the Frustrated Four-Leg Ladder

As the ladder width increases, square lattice models become increasingly relevant.

However, narrow ladders retain quasi-1D behavior. As discussed in Section 4.1, a frus-
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trated two-leg ladder in the RT phase maps onto a spin–1 chain exhibiting a Haldane

phase. For a four-leg ladder, one might expect spin–2 chain behavior, although spin–1

rung states are also possible due to the presence of four spin–1
2

sites per rung.

Figure 56 presents the finite-size phase diagram of a frustrated four-leg ladder with

fixed perpendicular coupling 𝐽⊥ = 1. The diagram identifies distinct regions based on the

average rung spin 𝑆, notably 0 < 𝑆 < 1 and 1.5 < 𝑆 < 1.9. The 𝑆 = 0 region corresponds

to the gapped RS phase, characterized by a fully gapped configuration. In contrast, the

𝑆 = 1 and 𝑆 = 2 regions suggest analogies with spin–1 and spin–2 chains, respectively, im-

plying distinct magnetic behaviors. To characterize these phases, we analyze key physical

quantities such as local magnetization, spin gaps, and order parameters, offering insights

into the nature of the underlying quantum states and their transitions.

Figure 56 – DMRG results for the ground-state phase diagram of a spin- 12 frustrated four-leg ladder with
𝐿 = 32 rungs. The color scale represents the average total rung spin, excluding four rungs
from each edge to minimize finite-size effects. Calculations used a bond dimension of 3000
and a truncation error of 10−7.
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Source: The author (2025).
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Figure 57 displays the local rung spin 𝑆𝑖 and magnetization profiles for the ground and

first excited states. In the ground state, ⟨𝑆𝑧
𝑖 ⟩ = 0, consistent with both spin–1

2
and spin–2

chains. In the first excited state, behavior varies across regions: the 𝑆 = 1/2 region exhibits

a localized magnon, while the 𝑆 ≈ 1 region shows a magnon-like excitation without edge

states. The 𝑆 ≈ 1.9 region displays a magnetization profile closely resembling that of a

spin–2 chain, indicating that the system effectively mimics a spin–𝑆 chain when 𝑆 ≈ 2.

Figure 57 – DMRG results for a spin- 12 frustrated four-leg ladder with 𝐿 = 96 rungs and open boundary
conditions. Shown are the local rung spin 𝑆𝑖, ground-state magnetization ⟨𝑆𝑧

𝑖 ⟩, and first
excited-state magnetization ⟨∆𝑆𝑧

𝑖 ⟩ at selected phase diagram points. Calculations used a
bond dimension of 3000 and a truncation error of 10−7.
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Unlike the two-leg ladder, the four-leg ladder does not exhibit spin–1 chain behavior

or the associated SPT Haldane phase. The string order parameter is defined as:

𝒪𝑧
str = lim

|𝑗−𝑖|→∞

⟨
𝑆𝑧
𝑖 exp

[︃
𝑖𝜋

𝑆

𝑗−𝑖∑︁
𝑘=𝑖+1

𝑆𝑧
𝑘

]︃
𝑆𝑧
𝑗

⟩
, 𝑆𝑧

𝑛 = 𝑆𝑧
𝑛,1 + 𝑆𝑧

𝑛,2 + 𝑆𝑧
𝑛,3 + 𝑆𝑧

𝑛,4 (6.16)

DMRG calculations yield 𝒪𝑧
str = 0 for 𝑆 = 0.98 and 𝒪𝑧

str ≈ −0.58 for 𝑆 = 1.9, after linear

extrapolation. These results are shown in Figure 58, alongside spin gap extrapolations.

Figure 58 – DMRG results for a spin- 12 frustrated four-leg ladder with 𝐿 = 48, 72, and 96 rungs under
open boundary conditions. Shown are linear extrapolations of the spin gap ∆ and string order
parameter 𝒪𝑧

str. Calculations used a bond dimension of 3000 and a truncation error of 10−7.
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For 𝑆 = 1.9, the four-leg ladder mimics a spin–2 chain, with a nonzero string order

parameter and spin–2-like magnetization profile. The nearly vanishing spin gap may reflect

numerical limitations, as the spin–2 chain gap is known to be small (∆ ≈ 0.09 [156]).

The exponential decay of the spin gap with increasing leg number likely renders linear

extrapolation unreliable.

The RT phase observed here is distinct from the SPT Haldane phase and is adiabat-

ically connected to the RS phase. For 𝑆 < 1, Figure 57 reveals a localized magnon in

the RS phase at 𝑆 = 0, which progressively delocalizes as 𝑆 increases, reducing the spin

gap. Both phases are gapped and exhibit trivial ground states. This adiabatic connection

explains the absence of spin–1 chain behavior in the four-leg ladder: unlike the two-leg

ladder, which undergoes a first-order RS–RT transition, the four-leg system smoothly
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interpolates between RS and RT phases, bypassing the topologically nontrivial Haldane

phase.

6.3 NUMERICAL RESULTS FOR TWO COUPLED FRUSTRATED LADDERS

We consider a system of two coupled frustrated ladders, with interladder couplings

satisfying 0 ≤ 𝐽 ′
⊥ ≤ 𝐽⊥ and 0 ≤ 𝐽 ′

× ≤ 𝐽×. The Hamiltonian is given by

ℋ̂ = 𝐽⊥
∑︁

𝛼∈{1,3}

𝐿∑︁
𝑖=1

Ŝ𝑖,𝛼 · Ŝ𝑖,𝛼+1 + 𝐽×
∑︁

𝛼∈{1,3}

𝐿−1∑︁
𝑖=1

(︁
Ŝ𝑖,𝛼 · Ŝ𝑖+1,𝛼+1 + Ŝ𝑖+1,𝛼 · Ŝ𝑖,𝛼+1

)︁

+ 𝐽 ′
⊥

𝐿∑︁
𝑖=1

Ŝ𝑖,2 · Ŝ𝑖,3 + 𝐽 ′
×

𝐿−1∑︁
𝑖=1

(︁
Ŝ𝑖,2 · Ŝ𝑖+1,3 + Ŝ𝑖+1,2 · Ŝ𝑖,3

)︁
+ 𝐽‖

4∑︁
𝛼=1

𝐿−1∑︁
𝑖=1

Ŝ𝑖,𝛼 · Ŝ𝑖+1,𝛼. (6.17)

The couplings 𝐽⊥, 𝐽‖, and 𝐽× define two identical, individually frustrated spin ladders,

while the interladder interactions 𝐽 ′
⊥ and 𝐽 ′

× form an effective ladder structure, with

𝐽 ′
⊥ acting as a rung coupling and 𝐽 ′

× as a leg coupling. Throughout this section, we fix

𝐽⊥ = 1 and 𝐽‖ = 0.8. For these values, an isolated frustrated ladder hosts both the RS

and Haldane phases, separated by a first-order quantum phase transition occurring at

𝐽×, c ≈ 0.67± 0.01 [47]. We investigate the effects of interladder coupling by focusing on

the lower ladder, taking advantage of the system’s reflection symmetry.

For 𝐽× = 0.64, the isolated frustrated ladder resides in the RS phase. Figure 59(a)

presents the phase diagram of the lower frustrated ladder when it is coupled to an identical

upper ladder. The interladder couplings 𝐽 ′
⊥ and 𝐽 ′

× can drive a phase transition from the

RS phase to a RT phase within specific regions of parameter space. This transition emerges

due to the structure of the Hamiltonian, which consists of two decoupled frustrated ladders

and an additional effective ladder. While the two frustrated ladders do not share any sites,

the effective ladder overlaps with both, mediating indirect interactions between them.

The effective ladder, characterized by AFM couplings (𝐽 ′
⊥, 𝐽

′
× > 0), favors the forma-

tion of an RS phase. In contrast, the frustration within the individual ladders tends to

destabilize this RS phase, promoting an RT phase instead. The competition between the

effective ladder and the frustrated ladders thus underlies the phase transitions observed

in the system.
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Consider two limiting cases. First, when 𝐽× = 0, the effective ladder reduces to a set

of decoupled rungs. For 𝐽 ′
⊥ > 0, these rungs form local singlets, thereby stabilizing the

RS phase. At 𝐽× = 0.64, the isolated frustrated ladder is also in the RS phase. However,

as 𝐽 ′
⊥ increases, the effective ladder increasingly favors singlet formation on its rungs. For

sufficiently large 𝐽 ′
⊥, this singlet formation competes with that of the frustrated ladder,

effectively capturing singlets and destabilizing its RS phase, thereby inducing a transition

to the RT phase.

Second, in the limit 𝐽 ′
⊥ = 0, singlets preferentially form along the legs of the effective

ladder rather than on its rungs. This accounts for the extended region in Figure 59(a)

where the frustrated ladder remains in the RS phase. When 𝐽 ′
⊥ ≈ 𝐽 ′

×, the competition

between rung and leg singlet formation within the effective ladder reduces its ability to

disrupt the singlet structure of the frustrated ladder, thereby allowing it to retain its

rung-singlet character. As 𝐽 ′
⊥ → 𝐽⊥, the phase transition becomes increasingly smooth,

and the system begins to resemble a four-leg frustrated ladder.

Figure 59 – Ground-state phase diagram obtained via DMRG for (a) the lower ladder and (b) the effective
ladder of two coupled frustrated ladders with 𝐿 = 32 rungs and 𝐽× = 0.64. To mitigate
finite-size effects, four rungs at each edge were excluded during averaging. The coupling 𝐽 ′

⊥
promotes rung-singlet formation in the effective ladder, whereas 𝐽 ′

× encourages singlets along
the legs. The effective ladder captures rung-singlets from the frustrated ladder, causing the
frustrated ladder to transition from a rung-singlet to a rung-triplet phase.

(a) (b)

Source: The author (2025).

Figure 59(b) presents the phase diagram of the effective ladder. In the regime 𝐽 ′
⊥ ≫ 𝐽 ′

×,

singlet formation is predominantly localized on the rungs, whereas for 𝐽 ′
⊥ ≪ 𝐽 ′

×, singlets
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form primarily along the legs, giving rise to the RT phase. In both limits, the effective

ladder competes with the frustrated ladder for singlet correlations, driving the latter’s

transition from the RS phase to the RT phase. Conversely, when 𝐽 ′
⊥ ≈ 𝐽 ′

×, the effective

ladder lacks a dominant singlet configuration, allowing the frustrated ladder to preserve

its rung-singlet order.

For 𝐽× = 0.7, the isolated frustrated ladder is in the Haldane phase, characterized by

a rung-triplet formation rather than rung singlets. Figure 60 shows the phase diagram

for the lower frustrated ladder (a) and the effective ladder (b) in this regime. Since the

frustrated ladder no longer hosts rung singlets, the effective ladder cannot compete for

them and consequently remains in the RS phase. However, near the four-leg ladder limit

(𝐽 ′
⊥ ≈ 𝐽⊥, 𝐽

′
× ≈ 𝐽×), the system gradually loses its quasi-1D character.

Figure 60 – Ground-state phase diagram obtained via DMRG for (a) the lower ladder and (b) the effective
ladder of two coupled frustrated ladders with 𝐿 = 32 rungs and 𝐽× = 0.7. To mitigate
finite-size effects, four rungs at each edge were excluded during averaging. The lower ladder
predominantly remains in the rung-triplet phase but transitions to a rung-singlet phase near
the four-leg regime, losing its quasi-one-dimensional behavior.

(a) (b)

Source: The author (2025).

To quantify this transition, we compute the string order parameter for the lower lad-

der at 𝐽× = 0.7, performing a linear extrapolation to the thermodynamic limit in two

representative cases: 𝐽 ′
⊥ = 0, and 𝐽 ′

× = 0. As shown in Figure 61, both types of coupling

suppress the nontrivial Haldane order, reducing it to the trivial 𝑆 = 1 phase previously

observed in the four-leg ladder.
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Figure 61 – DMRG-based linear extrapolation of the string order parameter 𝒪𝑧
str for the lower frustrated

ladder with 𝐽× = 0.7. Two paths were analyzed: (1) fixing 𝐽 ′
⊥ = 0 while varying 𝐽 ′

×, and (2)
fixing 𝐽 ′

× = 0 while varying 𝐽 ′
⊥. In both cases, the couplings destabilize the SPT Haldane

𝑆 = 1 phase.
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Considering the full system, Figure 62 displays phase diagrams of the effective rung

spin for various values of 𝐽×. These diagrams closely follow the structure seen in the lower

ladder, but account for the contributions of both ladders. As 𝐽× approaches the transition

point (𝐽×, c ≈ 0.67), the RS phase region narrows considerably. Notably, even at 𝐽× = 0.7,

a small RS phase region survives near the four-leg limit (𝐽 ′
⊥ ≈ 𝐽⊥, 𝐽 ′

× ≈ 𝐽×).

In contrast to unfrustrated systems, frustration induces quantum phase transitions

even for a small number of coupled ladders. However, interladder coupling ultimately

diminishes the quasi-1D character of the original frustrated two-leg ladder, particularly

through the emergence of the RT phase, which lacks topological order.
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Figure 62 – Ground-state phase diagrams of the entire system with 𝐿 = 32 rungs, obtained via DMRG.
To mitigate finite-size effects, four rungs at each edge were excluded when calculating the
average rung total spin 𝑆. The phase diagrams reveal three primary regions: 𝑆 = 0, 𝑆 = 1,
and 𝑆 ≈ 2. These transitions are driven by the shifts in the upper and lower frustrated
ladders from rung-singlet to rung-triplet phases.

Source: The author (2025).
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7 CONCLUSION

This thesis has explored the intricate quantum phase diagrams of low-dimensional

quantum systems, with particular emphasis on spin–1
2

ladder chains and their variants. By

combining advanced numerical techniques—chiefly the DMRG method—with analytical

approaches, we have investigated the emergence of distinct quantum phases, topological

properties, and critical phenomena in these systems. Our contributions advance the field

of quantum magnetism by elucidating how frustration, topology, and external magnetic

fields govern the ground-state behavior of spin ladders. The results, published in [47, 74],

offer a solid foundation for both theoretical development and experimental exploration in

condensed matter physics.

A central achievement of this thesis is the comprehensive analysis of the spin–1
2

frus-

trated two-leg ladder in an external magnetic field. By computing transverse spin correla-

tion functions, we accurately estimated the KT transition points associated with the clo-

sure of the fractional 𝑚 = 1/2 magnetization plateau for intra-ladder couplings 𝐽‖ = 0.2,

0.55, and 0.8. For 𝐽‖ = 0.2 and 0.55, two KT transitions were identified: one in the regime

𝐽× < 𝐽‖ and another in 𝐽× > 𝐽‖. In contrast, the case 𝐽‖ = 0.8 exhibits only a single KT

transition in the 𝐽× < 𝐽‖ region, followed by a first-order transition into a spin–1 phase.

Exploiting the symmetry of the ladder, we mapped out the full curve of KT points in the

𝐽× vs. 𝐽‖ plane, thus delineating the phase boundaries of the 𝑚 = 1/2 plateau. These

findings, detailed in [47], reveal the delicate competition between frustration and rung

coupling in stabilizing fractional magnetization plateaus. We expect these results to moti-

vate experimental studies in candidate materials or optical lattice platforms, particularly

those probing dynamical and finite-temperature effects in non-equilibrium regimes.

Another significant contribution lies in the study of the mixed spin–(1
2
, 1) alternating

ladder under an external field. We constructed its phase diagram as a function of the

magnetic field ℎ and the interdimer coupling 𝐽⊥, identifying two distinct magnetization

plateaus: one at full polarization and another at 1/3 of the saturation magnetization. The

1/3 plateau, occurring for negative 𝐽⊥, vanishes at 𝐽⊥ = −1.32 via a KT-type transition,

which we characterized using transverse spin correlations and the Luttinger parameter

𝐾 = 2. The critical fields delimiting the fully polarized phase were obtained exactly from

magnon dispersion relations, treating the polarized state as the vacuum. While a hard-core



140

boson approximation combined with a free-spin-wave treatment qualitatively reproduces

the 1/3 plateau, it significantly overestimates the width and fails to capture the precise

critical points determined by DMRG. This highlights the importance of numerical accu-

racy in analyzing mixed-spin systems. These results, presented in [74], suggest promising

directions for future studies, including the effects of disorder on magnetization plateaus

[255], edge-state coupling in mixed-spin chains [86], and ferrimagnetic coupled ladders

[256].

The thesis also advances our understanding of coupled ladder systems, both unfrus-

trated and frustrated. In the unfrustrated case, our DMRG results for two and three

coupled ladders indicate the absence of sharp quantum phase transitions: increasing the

interladder coupling 𝐽 ′
⊥ leads to an adiabatic evolution of the RVB state from two-leg

to multi-leg systems. This continuity underscores the robustness of RVB physics in such

systems. In contrast, the frustrated case exhibits a rich variety of phase transitions. For

two coupled ladders, we constructed phase diagrams near the first-order transition be-

tween the RS and Haldane phases observed in a single frustrated ladder. We showed that

interladder coupling drives a transition from the RS phase to a trivial RT phase, while

stronger intra-ladder coupling destabilizes the SPT Haldane phase. Furthermore, for the

four-leg frustrated ladder, our results demonstrate that the system behaves effectively as

a spin–2 chain, distinct from spin–1
2

or spin–1 chains. These findings open a promising

route for exploring phase transitions in coupled spin ladders—an area still under active

investigation.

Altogether, the results presented in this thesis deepen the theoretical framework for

understanding low-dimensional quantum systems. The precise determination of phase

boundaries, the identification of fractional and topological phases, and the treatment of

coupled systems all highlight the synergy between advanced numerical tools like DMRG

and physical intuition. Our results help bridge the gap between theoretical models and

realizable experimental platforms such as solid-state compounds or cold atoms in optical

lattices. Moreover, the failure of certain approximate methods, such as the hard-core boson

approach, to capture critical phenomena underscores the need for further refinement of

both numerical and analytical methods.

Several avenues remain open for future work. The role of disorder in stabilizing or

destroying magnetization plateaus, especially in mixed-spin chains, is still not fully un-

derstood. Finite-size scaling of phase boundaries in coupled ladders could clarify the
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thermodynamic behavior and reveal emergent criticality. The extension to three or six

coupled frustrated ladders may uncover novel phases and transitions. Exploring the out-

of-equilibrium dynamics under quantum quenches or thermal driving could shed light on

non-equilibrium physics in these systems. Further studies on edge-state coupling and frus-

tration in ferrimagnetic ladders may also reveal new topological or symmetry-protected

phases.
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APPENDIX A – RUNG OPERATORS ALGEBRA

The rung operators Ŝ𝑖 = Ŝ𝑖,1 + Ŝ𝑖,2 and D̂𝑖 = Ŝ𝑖,1 − Ŝ𝑖,2 are defined for each rung 𝑖,

where Ŝ𝑖,1 and Ŝ𝑖,2 are the spin–1
2

operators on the two legs of the rung. Their commutation

relations are derived as follows:

[Ŝ𝑖, Ŝ𝑗] = [D̂𝑖, D̂𝑗] = [Ŝ𝑖,1, Ŝ𝑗,1] + [Ŝ𝑖,2, Ŝ𝑗,2], (A.1)

[Ŝ𝑖, D̂𝑗] = [Ŝ𝑖,1, Ŝ𝑗,1]− [Ŝ𝑖,2, Ŝ𝑗,2]. (A.2)

Since spin operators on different sites commute, cross-leg commutators vanish for 𝑖 ̸= 𝑗:

[Ŝ𝑖,1, Ŝ𝑗,2] = [Ŝ𝑖,2, Ŝ𝑗,1] = 0, (A.3)

For spins on the same leg, the standard spin–1
2

commutation relations apply:

[𝑆𝛼
𝑘,1, 𝑆

𝛽
𝑗,1] = 𝑖𝛿𝑘𝑗𝜖𝛼𝛽𝛾𝑆

𝛾
𝑘,1, [𝑆𝛼

𝑘,2, 𝑆
𝛽
𝑗,2] = 𝑖𝛿𝑘𝑗𝜖𝛼𝛽𝛾𝑆

𝛾
𝑘,2, (A.4)

where 𝛿𝑘𝑗 is the Kronecker delta, 𝜖𝛼𝛽𝛾 is the Levi-Civita symbol, and 𝛼, 𝛽, 𝛾 ∈ {𝑥, 𝑦, 𝑧}.
Combining these, the rung operator commutators simplify to:

[𝑆𝛼
𝑖 , 𝑆

𝛽
𝑗 ] = 𝑖𝛿𝑖𝑗𝜖𝛼𝛽𝛾𝑆

𝛾
𝑖 , [𝐷̂𝛼

𝑖 , 𝐷̂
𝛽
𝑗 ] = 𝑖𝛿𝑖𝑗𝜖𝛼𝛽𝛾𝑆

𝛾
𝑖 , [𝑆𝛼

𝑖 , 𝐷̂
𝛽
𝑗 ] = 𝑖𝛿𝑖𝑗𝜖𝛼𝛽𝛾𝐷̂

𝛾
𝑖 . (A.5)

where 𝑆𝛾
𝑖 = 𝑆𝛾

𝑖,1 + 𝑆𝛾
𝑖,2 and 𝐷̂𝛾

𝑖 = 𝑆𝛾
𝑖,1 − 𝑆𝛾

𝑖,2. These relations show that Ŝ𝑖 and D̂𝑖 form a

closed algebra under commutation.

Each rung, comprising two spin–1
2

sites, has a local Hilbert space spanned by four

states: one singlet state |𝑠⟩ and three triplet states |𝑡0⟩, |𝑡+⟩, and |𝑡−⟩, corresponding to

total spin 𝑆 = 0 and 𝑆 = 1 with 𝑧-components 𝑚 = 0,+1,−1, respectively. The action

of the rung operators Ŝ𝑖 and D̂𝑖 on these basis states is summarized in Table 1.

Table 1 – Action of the rung operators on the basis states.

𝑆𝑧
𝑖 𝑆+

𝑖 𝑆−
𝑖 𝐷̂𝑧

𝑖 𝐷̂+
𝑖 𝐷̂−

𝑖

|𝑠⟩𝑖 0 0 0 |0⟩𝑖 −
√
2|+⟩𝑖

√
2|−⟩𝑖

|0⟩𝑖 0
√
2|+⟩𝑖

√
2|−⟩𝑖 |𝑠⟩𝑖 0 0

|+⟩𝑖 |+⟩𝑖 0
√
2|0⟩𝑖 0 0 −

√
2|𝑠⟩𝑖

|−⟩𝑖 −|−⟩𝑖
√
2|0⟩𝑖 0 0

√
2|𝑠⟩𝑖 0

Source: The author (2025)


	Title page
	
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Spin Models and Phase Transitions
	Low-Dimensional Quantum Magnetism
	Thesis Outline

	Density Matrix Renormalization Group (DMRG)
	Formulation
	Singular Value Decomposition
	The Decimation
	Lanczos Method
	DMRG Algorithms
	Correlations
	Sites in the Same Block
	Sites in Different Blocks

	Theoretical Foundation of DMRG Success

	MPS Formulation of DMRG
	MPS Representation
	MPO Representation
	Tensor Networks in DMRG
	The Algorithm

	Applying DMRG to 2D Systems
	Convergence
	Gaps and Excited States
	Boundary Conditions

	Computational Methodology
	ALPS
	ITensor
	Our Approach


	Quantum Magnetism in Low Dimensions
	Luttinger Liquid
	Density Operator and Bosonization
	Particle Creation Operators
	Luttinger Liquid Hamiltonian

	Linear Spin Chain
	Spin–a Chain
	Numerical Results for Linear Spin Chains
	The Spin–(a) and Spin–(b) Chains
	The Spin–1 and Spin–2 Chains


	Topological Phases
	The Haldane Phase
	Order Parameters
	String Order Parameter


	Spin Ladders
	Spin–a Two-Leg Ladder
	Ground-State Phase Diagram of the Spin–a Two-Leg Ladder



	spin–a Frustrated Ladder
	Ground-State Properties at Zero Field
	Fully Frustrated Case
	Haldane Phase
	Weakly Coupled Chain Limit
	Ground-State Phase Diagram

	Frustrated Ladder in an External Magnetic Field
	Mapping to the XXZ Chain
	Hard-Core Boson Mapping

	Phase Diagram
	First-Order Phase Transition
	Kosterlitz-Thouless Transition Points
	Other Phase Diagrams
	Case: a
	Case a



	Mixed-Spin Ladder
	The alternating spin–(s,S) Ladder
	Spin-Wave Theory
	Magnetization

	Kosterlitz-Thouless Transition
	Transverse Spin Correlations
	Identifying KT Transition Points


	Coupled Two-Leg Ladders
	N Coupled Ladders
	The Square Lattice Limit

	N Coupled Frustrated two-leg Ladders 
	Square Lattice Models
	The a–a Model
	The a–a–a Model 

	Numerical Results for the Frustrated Four-Leg Ladder

	Numerical results for two coupled frustrated ladders

	Conclusion
	References
	Rung Operators Algebra

