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RESUMO

Este trabalho investiga como o comportamento colaborativo social e a conectividade
influenciam a formação de consenso no modelo do voto da maioria com ruído q. Agentes
colaborativos experimentam uma redução efetiva no ruído social µq, onde 0 < µ < 1 é o pa-
râmetro de sensibilidade ao ruído que amplifica a validação social. Usando simulações Monte
Carlo, encontramos transições de fase de segunda ordem entre dissenso e consenso, com o mo-
delo de voto da maioria cooperativo pertencendo à mesma classe de universalidade do modelo
de Ising em equilíbrio 2D. Investigamos a produção de entropia social no modelo do voto da
maioria em redes regulares quadradas e conjecturamos que a heterogeneidade entre indivíduos
cooperativos e não cooperativos pode ser uma manifestação natural do Princípio da Produção
Máxima de Entropia, no qual os estados estacionários fora do equilíbrio mais prováveis são
aqueles com a maior taxa de produção de entropia. Nossos resultados destacam os efeitos de
um nível de atenuação da ansiedade social na melhoria do consenso de grupo. Inspirados por
redes sociais como X e Facebook, também propomos e analisamos os efeitos de redes livres de
escala baseadas em afinidade na dinâmica de formação de opinião. Nesse contexto, definimos
um substrato contínuo e modificamos o algoritmo de Barabási-Albert introduzindo uma pro-
babilidade de conexão baseada na distância e no expoente de lei de potência ω, definido como
o parâmetro de afinidade. Essas redes baseadas em afinidade exibem a propriedade livre de
escala, apresentam um coeficiente de agrupamento mais alto e geram distribuições de lei de
potência côncavas, alinhando-se com dados reais de redes sociais populares. Descobrimos que a
afinidade local promove o surgimento de polarização de opinião e transições de fase no modelo
de voto da maioria, introduzindo uma nova classe de universalidade. Nosso trabalho evidencia
como as conexões entre cooperação, afinidade e dinâmica de opinião moldam a formação de
consenso em redes sociais, fornecendo perspectivas essenciais sobre o comportamento social
e os mecanismos subjacentes dos sistemas complexos.

Palavras-chave: Fenômenos críticos, Sistemas complexos, Redes complexas, Simulações Monte
Carlo, Teoria de Campo Médio, Sociofísica.



ABSTRACT

This work investigates how social collaborative behavior and connectivity influence con-
sensus formation of the majority-vote model with noise q. Collaborative agents experience a
reduced e!ective social noise µq, where 0 < µ < 1 is the noise sensibility parameter that
enhances social validation. Using Monte Carlo simulations, we find second-order dissensus-
consensus phase transitions and the cooperative majority-vote model belongs to the same
universality class as the 2D equilibrium Ising model. We investigate social entropy produc-
tion in the majority-vote model on regular square networks and conjecture the heterogeneity
between cooperative and non-cooperative individuals could be a potential natural manifesta-
tion of the Maximum Entropy Production Principle, where the most probable non-equilibrium
steady states have the highest entropy production rate. Our results highlight the e!ects of a
social anxiety attenuation level in improving group consensus. Inspired by social media, such as
X and Facebook, we also propose and examine the e!ects of a"nity-based scale-free networks
on opinion formation dynamics. In this context, we define a continuous substrate and modify
the Barabási-Albert algorithm by introducing a connection probability based on distance and
power law exponent ω, defined as the a"nity parameter. These a"nity-based networks display
the scale-free property, feature a higher clustering coe"cient, and generate concave power law
distributions, aligning with real-world data of popular social media. We find that local a"nity
promotes the emergence of opinion polarization and phase transitions in the majority-vote
model, introducing a new universality class. Our work exhibits how the connections between
cooperation, a"nity, and opinion dynamics shape consensus formation in social networks, pro-
viding essential perspectives on societal behavior and the underlying mechanisms of complex
systems.

Keywords: Critical Phenomena, Complex systems, Complex networks, Monte Carlo simula-
tion, Mean-field theory, Sociophysics.
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1 COMPLEX SCIENCE INTRODUCTION

"I think the next century will be the century of complexity."
Stephen Hawking

"The science of complexity is about
how interactions lead to patterns,

and patterns lead to changes."
Stephen Wolfram

This chapter introduces the basic concepts behind complex systems, complex networks,
and two exciting applications: Sociophysics and Econophysics. These young multidisciplinary
research fields investigate topics from "soft sciences", such as opinion formation and voting,
using tools and formalism from the "hard science", such as physics, mathematics and computer
science.

1.1 COMPLEX SYSTEMS

Complexity is the footprint behind highly unpredictable phenomena, not reducible to closed
laws of mathematics, and that cannot be understood by studying the independent components
of a system. Complex systems show emergent behavior due to many nonlinear interactions
among their elements, so perturbations in one part of the system may have dramatic cascading
e!ects elsewhere. From interactions among such systems, properties beyond the combination
of their parts can arise, leading to new properties and behavior emerging from the interactions
of components that can be completely di!erent from those between the original individual
elements interacting with each other (LADYMAN; LAMBERT; WIESNER, 2013).

For example, just a single stopped car on a busy highway can trigger a massive tra"c jam,
cascading backward as more vehicles slow down, which can change the entire city tra"c flow.
In an ecosystem, humans artificially introducing new plant species alter the habitat’s nutrient
distribution, which impacts the food web a!ects the behavior and population of local animals
and can even lead to the extinction of some of them. In financial markets, rumors, (fake) news
and political events can lead to sudden sell-o!s or buying waves, amplifying market fluctuations
that can trigger even more substantial volatility, a!ecting the value of companies, currencies
and the economy of entire countries. A famous example is the 2008 global economic crisis,
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Figure 1 – When panic meets euphoria, collective market decisions dance between "Sell!" and "Buy!". Rumors
can generate giant financial fluctuations and a!ect the global economy.

Source: Illustration by Kevin Kallaugher.

where localized failures in the subprime mortgage sector in the United States had catastrophic
consequences worldwide.

Similarly, in power grids, a single line failure or a sudden spike in demand can cascade
through the network, overloading subsequent lines and leading to large-scale outages or even a
blackout, a!ecting the lives of millions of people. Even the human brain can also be viewed as
a complex system where neurons, synapses, and neurotransmitters interact to produce sophis-
ticated cognition, emotions, and behavior. Indeed, activating a single new neural pathway can
form new memories or generate an entirely new mood shift. The brain’s emergent behaviors,
like consciousness and learning, cannot be fully explained by examining neurons in isolation, as
they depend on the complex network of neural interactions. Likewise, the interactions among
genes, proteins, and metabolites cause the emergence of complex, organized cellular behav-
ior necessary for life. Ultimately, some researchers consider our entire universe as a complex
system (GELL-MANN, 1995).

The feedback loops are one of the most important mechanisms behind the behavior of
complex systems. They are processes where the system itself a!ects its behavior and can
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Figure 2 – In 2014, scientists from the University of Minnesota described how people move to avoid colliding
with each other using models of interacting particle systems. The researchers derived a mathematical
rule for an electron-like repulsive force between pedestrians, enabling them to accurately predict
how a moving crowd moves when crossing a narrow passage or spontaneously forms organized
directional lanes when they exit a football stadium.

Source:daily.jstor.org.

strengthen the continued behavior (positive feedback) or counteract it (negative feedback).
These feedback loops help the system to self-organize, as order arises organically from the
components’ interactions and self-adaptation to the environmental response. A classic example
that tricked scientists for a long time is the example of a flock of birds. We know that each bird
tailors its flight speed and direction to match the movements of nearby birds (local feedback
of closest peers), constructing macroscopically coordinated patterns (murmurations) without
any form of central control, a deep signature of many complex systems (GELL-MANN, 1995).

1.2 COMPLEXITY IN NETWORK SCIENCE

We must answer two key questions to understand a complex system: How do they interact?
With whom do they interact? That is, we need to know the dynamics of the system and the
interaction network. For example, when one studies a social system like a community, it is
necessary to not only model how and why people change their opinions but also how they are
connected with each other. We must consider aspects like social media, peer groups, television,
and cultural norms and figure out who influences whom and who is influenced by whom within
the social network. It’s impossible to know how the network behaves without charting these
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relationships and exploring how di!erent components impact one another across the network
(SAVOIU; SIMAN, 2012) .

Figure 3 – The coordination of bird flocks, often seen in murmurations of starlings demonstrate how feedback
can lead to emergent patterns. Even though each bird acts individually based on local feedback, the
group can form intricate, beautiful patterns in the sky. These patterns are not planned; rather, they
emerge from the continuous interaction of feedback loops among the birds synchronized movement.

Source: Lems Levity Blog

Network Science has developed as a separate field of analysis inside complexity science and
establishes a formal framework to study complex interaction structures. It is oriented towards
the topology and dynamics of networks, where nodes (e.g., substations, neurons, cities, peo-
ple, or webpages) and edges or links represent the relationships or interactions between them
(e.g., transmission lines, synapsis, roads, social connections or hyperlinks). A profound finding
in network science is the universality of system structure: from genetic and protein-protein
interaction networks to cellular metabolism, social ties, and internet connectivity, several sys-
tems networks manifest similar structural characteristics. That is because some topologies,
like scale-free and small worlds, play a significant role in the robustness and e"ciency of how
complex systems withstand perturbations, process information, and maintain emergent behav-
iors. Therefore, it is not a coincidence that diverse, complex systems are structured similarly
(BARABÁSI, 2013).

Network science is at the heart of this recent data revolution; the vast advancements in
data collection and computational tools that emerged at the turn of the 21st century and the
increased availability of large datasets enabled researchers to map and analyze networks in

https://comonocreerendios-lem.blogspot.com/2013_11_03_archive.html
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unprecedented detail. For example, organizations like the Human Connectome Project develop
brain maps of neural interconnections. They look to fundamentally impact neurobiology and
assist in constructing memory, mental disorders, conscience and human cognition. Similarly,
due to platforms such as Facebook, LinkedIn, and large-scale social networks, researchers have
access to rich datasets to study human interactions, social influence, and (des)information
di!usion.

Network science can help understand how interactions at the microscopic level generate
macroscopic phenomena. An example of success is that in the 2009 H1N1 pandemic, such
network-based models could accurately predict the spread of the virus, showing the power of
network science for real-time epidemiological forecasting (TIZZONI et al., 2012). By studying
the network architectures that underlie complicated systems, researchers open the path for
innovations to solve some of the most urgent challenges of the 21st century.

1.3 SOCIOPHYSICS

"Sociophysics is the quantitative study of societies using concepts and techniques
that have been applied successfully in physics."

Serge Galam

Sociophysics is a new complex science subfield that uses physics concepts to address
complex social systems. This subfield adopts techniques originally elaborated in statistical
mechanics, nonlinear dynamics and complex network interaction modeling, phase transitions,
and network analysis to analyze human behavior and societal dynamics. (BALL, 2002)

More precisely, Sociophysics seeks to interpret and forecast macroscopic collective and
similar phenomena like opinion dynamics, crowd movement, and voting behavior. Similarly,
Econophysics focuses on economic decision-making, financial markets, stock market crashes,
and power laws in financial data in the Physics of Economics. Both fields o!er a paradigm shift
toward a more quantitative, empirical approach to social science with ambitions of bridging
the gap between the "soft sciences" of sociology and economics and the "hard sciences", such
as physics and chemistry.

"Econophysics is not just a buzzword; it is a new way to think about economics. It uses models
from physics to explore economic systems, emphasizing complexity, collective behavior, and

statistical properties rather than purely rational assumptions."
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Jean-Philippe Bouchaud

Sociophysics has historical roots in the 19th-century work of Adolphe Quetelet, who started
to apply statistical methods to socio-economic data in his pioneering treatise Physique sociale.
He contended that social phenomena like marriage, birth and crime rates were not just random
in the way people of the time believed. Instead, it followed more profound statistical laws, and
scientists could study these social patterns just as they study the natural laws governing the
physical world. After all, society is but one part of nature, governed by Nature’s laws (BALL,
2002). For example, Quetelet showed that crime rates were relatively stable over time in a
given population, suggesting that individual criminal acts were not merely individual choices
but also reflected broader social and economic forces. Elaborating on this idea, He posited
that societies have an inherent order that could be discovered via statistical analysis.

In the 20th century, scholars like Serge Galam and Dietrich Stau!er advanced the formal-
ization of sociophysics, applying models from statistical mechanics to phenomena like opinion
formation, social contagion, and crowd dynamics. They showed that the same models that
describe magnetization in ferromagnetic materials can be adapted to explain how individuals
align their opinions in a social network. Such models have been used to simulate opinion dy-
namics and show how a small initial group of individuals can influence a large groups opinions,
potentially leading to consensus or polarization. For example, in the same way, people tend
to agree with their friends and family because of peer pressure and social validation e!ects,
spins in a ferromagnetic material tend to point in the same direction because of the magnetic
field influence of their nearest neighbors. These striking similarities enabled scientists to adapt
physical models to describe complex social systems (GALAM, 2008; STAUFFER et al., 2006).

The work of Galam, in particular, demonstrated how simple local interactions among agents
can lead to global phenomena like the sudden shifts in public opinion observed during polit-
ical campaigns. Indeed, a central tool that Sociophysics and Econophysics use to investigate
complex systems is phase transitions, where systems undergo drastic, nontrivial macroscopic
e!ects due to small, gradual changes in individual behavior or an external parameter. While
in physics, phase transitions describe how matter changes state, such as water changing from
solid to liquid phase, in response to gradual variations in external conditions such as tem-
perature or pressure, in sociophysics, sociophysical models with phase transitions help explain
phenomena like the sudden shift from moderate to extreme opinions within a population, as
observed in political polarization studies. Similarly, in Econophysics, small perturbations in
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trading behavior can cascade to significant, nonlinear market movements, dramatically chang-
ing asset values. These models provide a theoretical framework to understand how complex
collective behaviors emerge from individual actions, capturing complex systems’ nonlinear and
unpredictable nature with higher precision (SAVOIU; SIMAN, 2012; GALAM; MOSCOVICI, 1991).

One of the most simple and powerful sociophysics models is the majority-vote model
(OLIVEIRA, 1992). While it is common to imagine humans as fully rational beings, the experi-
ments of Solomon Asch and Gregory Berns (ASCH, 1955; BERNS et al., 2005) show how social
pressure plays a major role in human behavior and can even alter the perception of reality and
cause changes in the brain (See Sec. 4.1 for a detailed explanation of Solomon Asch’s and
Gregory Berns’ experiments). Often, the human decision-making process is not purely rational,
and individuals can exhibit irrational behavior in conforming with the group, even against their
personal truth and logic.

There is a parallel between the opinion dynamics described by Solomon Asch’s and Gregory
Berns’ experiments and the magnetic behavior of ferromagnetic materials. For instance, the
Ising model considers a lattice of spins, where each spin can adopt the states up or down, and
each spin also interacts with its neighbors. To minimize their energy, the spins tend to align
with each other, but thermal fluctuations can break their alignment.

Building on the empirical evidence from Solomon Asch’s and Gregory Berns’ experiment
and inspired by the Ising model, the majority-vote model considers an agent-based represen-
tation of interacting individuals in a contact network where the opinion of an individual for or
against some issue is represented by a stochastic variable, which assumes one of two allowed
values. For instance, +1 or →1. Each agent agrees with the majority of its social interactions
with probability 1 → q and disagrees with chance q. The quantity q is called the noise pa-
rameter of the model, and it measures the average nonconformity level of the individuals. In
this analogy, the opinions of the individuals stand for the spin values, and the nonconformity
parameter q corresponds to the temperature in the Ising model (OLIVEIRA, 1992; OLIVEIRA;

MENDES; SANTOS, 1993).

1.4 ORGANIZATION AND GOALS OF THIS WORK

In this work, we explore two di!erent problems. In the first one, we investigate how one
of the most widespread social behavior, cooperation, impacts the dynamics of the majority-
vote model. Collaboration still challenges scientists from several fields, often surpassing logical
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assumptions. We explore how collaborative behavior a!ects opinion dynamics and the entropy
production of social groups using Monte Carlo simulations and mean-field calculations.

The second problem we investigate is how real-world network structure a!ects majority-
vote opinion dynamics in social networks. To accomplish that, we define a new network model
that can approximate the network of social media such as X (formerly Twitter) and Meta
(previously Facebook). We investigate the network properties and how this structure impacts
social collective behavior.

We organize the work as follows: In Chapter 2, we review the basic theory behind network
science, introduce the Barabási-Albert model for scale-free networks, discuss its limitations,
and then define our new network model.

Next, in Chapter 3, we cover the mathematical background of stochastic systems dynamics
and the application of the Monte Carlo method for complex systems.

In Chapter 4, we present and explain the majority-vote model, a stochastic opinion forma-
tion model for simulating social systems. Building on that, we define the cooperative majority-
vote model and execute mean-field calculations for the order parameter and the entropy pro-
duction.

We present the cooperative majority-vote model results in Chapter 5, and in Chapter 6,
we evaluate the properties of the a"nity-based Scale-Free Network we defined and how they
impact the opinion dynamics of the majority-vote model.

Finally, In Chapter 7, we write our final remarks, elaborate on the work’s main conclusions
we found and discuss possible approaches for future research.
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2 NETWORK SCIENCE

"Networks are present everywhere.
All we need is an eye for them."

Albert-László Barabási

In this chapter, we follow the discussion presented in the book Network Science of Albert-
László Barabási (BARABÁSI, 2013). We discuss how to represent a network mathematically and
the foundations of one of the most famous network models: the Barabási-Albert model. We
also discuss the limitations and generalizations of the model to emulate real social networks
such as Meta and X and introduce a new model for a"nity-based scale-free networks that
generate more realistic degree distributions of social networks.

2.1 BASIC NETWORK CONCEPTS

Networks (graphs) are a powerful tool for representing complex systems’ structure and
interaction dynamics. Essentially, a network consists of N nodes (vertices) connected by L

links (edges). This mathematical abstraction o!ers a general framework to study numerous
systems, from proteins interacting in a cell to routers connected to the internet and people
interacting in social media (BARABÁSI, 2013).

The network’s links can be directed or undirected. Undirected links are symmetric: if node
i is connected to node j, then j is also connected to i. Some examples include romantic ties (if
Alice dates Bob, then Bob dates Alice), transmission lines in power grids (electric currents can
flow in both directions), friendships, protein interactions (mutual physical bonding), transport
networks (two-way tra"c flows), collaboration networks (if two researchers co-author a paper,
there is an undirected link between them) and molecular networks (undirected links represent
biochemical pathways where metabolites can transform into one another).

Directed links, however, are asymmetric: if node i is connected to node j, not necessarily
j is also connected to i. For example, interactions in social media are generally directed (you
can follow a rock star, but they do not follow you back). Other directed cases include phone
calls and hyperlinks (URLs) pointing to websites on the internet, brain networks (the electric
neuron synapsis flows in specific directions), food webs (the direction of the link shows the flow
of energy or biomass, indicating predator-prey relationships) and financial networks (you can
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Figure 4 – Representation of a social network and the corresponding adjacency matrix.

Source: Author.

make a payment to someone, or a bank can owe money to another bank) and gene regulatory
responses (the gene A can influence the expression of gene B).

Mathematically, we can represent a network using an adjacency matrix A. The adjacency
matrix is defined such that if there is a link from node i to node j, then Aij = 1; otherwise,
Aij = 0. We provide a simple example of a directed network and the correspondent adjacency
matrix in Fig. 4. Note that real networks often are sparse, meaning that the number of links
L is much smaller than the maximum possible number of links Lmax, which is given by

Lmax = N(N → 1)
2 . (2.1)

Using the adjacency matrix, we can calculate several network properties. A fundamental
concept is the node degree, the number of links a given node i has. For undirected networks,
we can calculate the degree of a node ki as a sum over either the rows or the columns of the
adjacency matrix

ki =
N∑

j=1
Aij =

N∑

i=1
Aij, (2.2)

we can then calculate the network average degree as

〈k〉 = 1
N

N∑

i=1
ki = 2L

N
, (2.3)

where L is the total number of links in the network.
In directed networks, the incoming and outgoing degrees given by

kin
i =

N∑

j=1
Aji, kout

i =
N∑

j=1
Aij. (2.4)
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For example, a celebrity may have many followers on social media but may not follow too
many other accounts. Thus, this celebrity would have a big incoming degree but not a big
outgoing degree. In direct networks, we can also calculate the node’s total degree ki

ki = kout
i + kin

i . (2.5)

The average degree is

〈
kin
〉

= 1
N

N∑

i=1
kin

i =
〈
kout

〉
= 1

N

N∑

i=1
kout

i = L

N
. (2.6)

Note that we can also have weighted networks, where Aij = wij, where some connections
are stronger than others. For instance, in transport networks, the weight can represent the
tra"c intensity, or in social media, the amount of interactions between two individuals. While
most networks are weighted, it is common only to represent unweighted networks and leave
these aspects to the dynamical modeling of the complex system, which emphasizes a modular
approach. Indeed, most books and papers focus on unweighted networks, and we will do the
same.

The degree distribution pk provides the probability that a randomly selected node has
degree k. Given Nk is the number of nodes with degree k, then we have

pk = Nk

N
, (2.7)

where pk ≥ 0,⇒ k ∈ {0, 1, 2, 3, . . . } and ∑∞
k=0 pk = 1.

Another important metric is the clustering coe"cient, which captures the degree to which
the neighbors of a given node link to each other. Thus, high clustering suggests a strong sense
of local community or indicates more redundant or reliable communication channels within the
network. Mathematically, for a node i with degree ki, the local clustering coe"cient is defined
as

Ci = 2Li

ki(ki → 1) , (2.8)

where Li represents the number of links between the ki neighbors of node i and we divide by
the maximum number of connections the ki neighbors of node i could have that is ki(ki→1)/2.
Note that Li can also be interpreted as the number of triangles with the node i. Hence, it is
possible to calculate

Li = 1
2

n∑

j=1

n∑

k=1
AijAjkAki, (2.9)
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where the multiplication AijAjkAki is 1 if the nodes i, j, k form a triangle and 0 otherwise.
The average clustering coe"cient of the network 〈C〉 is given by

〈C〉 = 1
N

N∑

i=1
Ci. (2.10)

Many real-world networks have high clustering coe"cients, generating more resilient net-
works, as they have redundant paths for information flow. Indeed, in social networks, people
tend to form groups based on common interests, mutual friends, or shared environments.
Friends of a person are often friends with each other, forming highly connected clusters. Ru-
mors or innovations can rapidly propagate within a group with high clustering before spreading
to the broader network. Other networks, such as power grids, intentionally have redundant con-
nections and high clustering so the network can still function even if some transmission lines
fail.

Finally, an important global measure to describe the overall network structure is the average
path length 〈d〉 that represents the average number of links separating any two nodes:

〈d〉 = 1
N(N → 1)

∑

i#=j

dij, (2.11)

where dij is the shortest path length between nodes i and j. Note that two web pages could
be hosted on computers on opposite sides of the globe yet have a link to each other. Hence,
while their physical distance may be considerable, their distance on the network is just one. At
the same time, two individuals who live in the same building may not know each other but can
be connected to people in another country on a phone call. Thus, in networks, the distance
is a route that runs along the network links, not a physical distance. If there is no path from
node i to node j, then by definition, dij =∞. In Eq. (2.11), we only consider node pairs i, j

where dij is finite.
In practice, we require connected networks, which means there is always a path between

two nodes. Indeed, we need our phone to be able to call any other valid phone number and
an email service that can send emails to any other email address. Note that in undirected
networks, dij = dji, but this is not generally true for directed networks. In particular, in
directed networks, there may be a path from node i to node j, but it is possible there is not
a path from node j to node i. For example, if Alice follows Bob on Instagram but Bob does
not follow Alice, Alice may be able to see Bob’s posts, but Bob will not see Alice’s posts.

The network diameter dmax is the longest shortest path between any two nodes in the
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network:
dmax = max

i,j
dij. (2.12)

The diameter helps us measure how e"ciently information or resources can travel across
the network. A smaller diameter indicates the network is well-connected, and two nodes can
reach each other relatively quickly. If the network has several disconnected components, it will
have an infinite diameter, and this could represent several issues with a phone or email service.
Here, a component is a maximal subset of nodes such that there exists a path between every
pair of nodes within this subset. In other words, within a component, every node is reachable
from any other node, but there are no connections to nodes outside the component. Hence,
connected networks have only one big component since there is always a path between any
two nodes.

In real-world networks, node failures are common, a!ecting the network structure and
functionality. For example, in computer networks or power grids, nodes can fail due to hardware
malfunction, power outages, tra"c overload and environmental factors. In social networks,
nodes can be removed from the network when users deactivate or delete their accounts, or when
users become inactive due to loss of interest or external pressures, or even due to community
migration (as when WhatsApp users move to Telegram). Additionally, some accounts can
get suspended or banned, or we can have large-scale removal of bots and fake accounts or
marketing campaigns.

Some networks can be totally disrupted into disconnected pieces when a relatively small
fraction of the nodes are removed, while others are more resilient. We can assess the network’s
robustness by measuring how the removal of some nodes a!ects the network giant component
(the biggest network component). If the size of the giant component decays dramatically, it
indicates potential structural vulnerabilities. Thus, the robustness of a network is given by

R(f) = S(f)
S(f = 0) , (2.13)

where S(f) is the size of the giant component after a fraction f of the network nodes are
removed, and R(f) is the fraction of nodes that remain functional after the failures.

2.2 SCALE-FREE NETWORKS

The discovery of scale-free networks reveals that hubs, or highly connected nodes,
play a crucial role in the structure and resilience of networks,
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whether biological, social, or technological.
Albert-László Barabási

2.2.1 Why do we need scale-free networks?

One of the first attempts to model real-world networks was the random network model by
Paul Erdös and Alfréd Rényi. In fact, at first inspection, many real networks look as if they
were totally random. In this spirit, the model constructs a random network as follows:

1. Start with N isolated nodes.

2. For each N(N → 1)/2 possible pair of nodes, link them with probability p. Otherwise,
leave them disconnected.

Observe that each random network generated is generally di!erent, even if you use the same
values of N and p. Also, the total number of links L may di!er for each generated network.
Indeed, the probability pL the network has L links can be calculated using the binomial theorem

pL =
(N(N−1)

2
L

)

pLq
N(N→1)

2 −L, (2.14)

where q = 1→ p. Thus, the expected number of links is

〈L〉 =
N(N→1)

2∑

L=0
LpL =

N(N→1)
2∑

L=0
p

∂

∂p

⎡

⎣
(N(N−1)

2
L

)

pLq
N(N→1)

2 −L

⎤

⎦ . (2.15)

Applying the binomial theorem,

〈L〉 = p
∂

∂p
(p + q)

N(N→1)
2 = p

N(N → 1)
2 , (2.16)

where we used p+q = 1, this result is intuitive because it means the expected number of links
is the maximum possible number of links multiplied by the connection probability. Similarly,
we can obtain the degree distribution of the random network. A given node i can connect with
N → 1 other nodes. Hence, the probability that i has k links is

pk =
(

N → 1
k

)

pk(1→ p)n−1−k. (2.17)

With that, we can obtain the degree first moment similarly as we calculated the expected
number of links

〈k〉 =
∞∑

k=0
kpk = (N → 1)p, (2.18)
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in the second moment, apply the same trick twice:
〈
k2
〉

=
∞∑

k=0
k2pk = p

∂

∂p

(

p
∂

∂p
(p + q)N−1

)

= p(1→ p)(N → 1) + p2(N → 1)2. (2.19)

Therefore, the standard deviation is given by

σk =
√
〈k2〉 → 〈k〉2 =

√
p(1→ p)(N → 1). (2.20)

In the 90s, there was a general expectation that a random network could approximate the
WWW network. In practice, real-world networks have many nodes and few connections (sparse
networks) so that N * k and p + 1. In these limits, we can make some approximations in
Eq. (2.17). First, note that.

(
N → 1

k

)

= (N → 1)(N → 1→ 1)(N → 1→ 2) · · · (N → 1→ k + 1)
k! ≈ Nk

k! . (2.21)

Additionally,

(1→ p)N−1−K =
(

1→ 〈k〉
N → 1

)N−1−K

≈ (1→ 〈k〉
N

)N , (2.22)

where we used Eq. (2.18). Using the exponential limit definition,

ex = lim
N→∞

(
1 + x

N

)N

, (2.23)

we got that
(1→ p)N−1−K ≈ e−〈k〉. (2.24)

Therefore, we can write the degree distribution as

pk = (N)k

k! pke−〈k〉 = (pN)k

k! e−〈k〉. (2.25)

Applying Eq. (2.18) again, we get the Poisson Distribution:

pk = 〈k〉
k

k! e−〈k〉. (2.26)

Hence, if the WWW is a random network, it would follow a Poisson distribution. Indeed, as
the content of each web document reflects the diverse personal and professional interests of its
creators, from individuals to organizations, it seems a reasonable assumption that the WWW
is a random network. In 1998, Hawoong Jeong from the University of Notre Dame generated
the first WWW mapping to understand the WWW structure and make a comparison with the
random network model.
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Figure 5 – Sample Snapshots of the World Wide Web (WWW) mapped out by Hawoong Jeong in 1998. The
sequence of images shows zooms of specific regions of the network. The the first photo displays
a global view of the 1998 WWW with all its 325,729 nodes. Nodes with more than 50 links are
represented in red and nodes with more than 500 links in purple. These snapshots reveal that there
are a few highly connected nodes (hubs), a signature of scale-free networks.

Source: (ALBERT; JEONG; BARABÁSI, 1999).

However, Fig. 5 reveals that the WWW has extremely highly connected nodes, hubs, and
several small-degree nodes. The problem is that, in a random network, highly connected nodes
are extremely improbable. Indeed, using the Stirling approximation, we know that

k! ≈
√

2πk

(
k

e

)k

. (2.27)

Hence, we can write the degree distribution as

pk = e−〈k〉 〈k〉k

k! = e−〈k〉
√

2πk

(
e 〈k〉

k

)k

. (2.28)

Therefore, the chance of observing a degree k > e 〈k〉 decreases quickly. Indeed, let’s estimate
how the maximum degree increases with the network size. If Nk as the number of nodes with
degree k, then the expected value of Nk is given by

E[Nk] = Npk = N
(Np)ke−Np

k! . (2.29)

Hence, to find the largest degree kmax, we need to estimate the degree k for which E[Nk] ≈
1, as this corresponds to the expected degree of the highest-degree node in the network. Thus,

N
(Np)ke−Np

k! ≈ 1. (2.30)

Taking the logarithm of both sides, we obtain

ln N + k ln(Np)→Np→ ln(k!) ≈ 0. (2.31)
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Using Stirling’s approximation ln(k!) ≈ k ln k → k for large k, we get

ln N + k ln(Np)→Np→ (k ln k → k) ≈ 0. (2.32)

k ln
(

Np

k

)
+ k →Np + ln N ≈ 0. (2.33)

Since we know we have a Poisson distribution, the largest degree is expected to be close
to the average degree Np. Thus, lets write k = Np + δ, where δ is a small deviation term.
We can substitute k = Np + δ and expand ln

(
Np
k

)
around k = Np = 〈k〉 using a Taylor

expansion:
ln
(

Np

Np + δ

)

≈ → δ

Np
. (2.34)

Thus,
(Np + δ)

(

→ δ

Np

)

+ (Np + δ)→Np + ln N ≈ 0. (2.35)

→ δ2

Np
+ δ + ln N ≈ 0. (2.36)

Solving the quadratic equation for δ, we have:

δ ≈ Np

2 ±
√

(Np)2

4 + Np ln N. (2.37)

For large N , the term √Np ln N dominates, so we approximate

δ ≈
√

2Np ln N. (2.38)

Therefore, the largest degree scales as

kmax ≈ Np +
√

2Np ln N. (2.39)

This means the maximum degree of a random network grows slowly with the network size. In
fact, Fig. 6 shows that the Poisson fit does not capture the empirical data pattern. Instead,
the actual distribution is well approximated by a power-law fit.

This discovery suggests that the degree distribution of the WWW follows a power-law
distribution

pk = k−ω. (2.40)

It turns out that hubs are not unique to the WWW but are present in several real-world
networks, from social media to biological networks. We call the networks that follow Eq.
(2.40) as scale-free networks because, as we will see, these networks lack a finite scale, which
enables them to have hubs.
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Figure 6 – Here, we show the incoming (a) and outgoing (b) degree distribution of the 1999 WWW sample
in the study (ALBERT; JEONG; BARABÁSI, 1999). In this log-log degree distribution plot, the circles
represent the empirical data, the green curve is the Poisson distribution with an average degree of
the WWW sample, and the purple line is a power-law fit.

Source: (BARABÁSI, 2013).

2.2.2 Scale-free networks

In this section, we will analyze scale-free networks in detail. To begin with, the power-law
distribution pk = Ck−ω can be analyzed using both discrete and continuum formalisms.

In the discrete case, we determine the normalization constant C by the condition:

∞∑

k=1
pk = 1 hence, pk = k−ω

ζ(γ) , (2.41)

where ζ(γ) is the Riemann-zeta function.
In the continuum formalism, the degree k is approximated as a continuous variable, and

we use the normalization condition:
∫ ∞

kmin
p(k) dk = 1. (2.42)

Thus,
p(k) = γ → 1

kω−1
min

k−ω, (2.43)

where kmin is the smallest degree for which the power law holds. Note that, in the discrete for-
malism, pk precisely describes the probability that a node has degree k. However, in continuous
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formalism, only the integral of pk has a physical meaning. In this case, the integral
∫ kmax

kmin

p(k)dk, (2.44)

is the probability that a node has degree between kmin and kmax.
Verifying the presence of hubs, or highly connected nodes, is essential because hubs are

a defining feature of scale-free networks. To assess the network’s ability to generate hubs,
let’s estimate the largest degree kmax for a network of size N . First, note that the cumulative
distribution function P (k ≥ K) gives the probability that a randomly chosen node has a
degree at least K:

P (k ≥ K) ∼ K−(ω−1). (2.45)

For the largest degree kmax, the expected number of nodes with a degree larger than kmax

should be approximately 1. Thus,

P (k ≥ kmax) ≈ 1
N

. (2.46)

Hence, substituting the cumulative distribution, we get

k−(ω−1)
max ≈ 1

N
→→ kmax ≈ N

1
ω→1 . (2.47)

This implies that if γ > 1, as the network size grows, the largest hubs become significantly
more connected, unlike in random networks where the largest degree grows with O(

√
N ln N).

2.2.3 Barabási-Albert (BA) model

The big question is, how can we generate scale-free networks in practice? That would allow
us to run simulations and experiments and study how scale-free networks impact complex real-
world systems. One of the most famous models is the Barabasi-Albert (BA) model, based on
the preferential attachment principle for producing scale-free networks. The model is composed
of the following steps:

1. Initialization: Generate an initial (fully connected) network of size z0.

2. Growth: A new node is added into the network at each time step.

3. Preferential Attachment: The new node connects to z existing nodes, where the proba-
bility that the new node connects to an existing node i is proportional to the degree of
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node i:
Π(i) = ki∑

j kj
, (2.48)

where ki is the degree of node i, the sum is taken over all previously existing nodes in
the network.

Does this model give rise to a scale-free network? To find out, we apply the rate equation
method to derive the exact shape of the degree distribution. Denote by N(k, t) the number
of degree nodes k at time t and N(t) is the total of nodes at time t. The degree distribution
pk(t) is related to this quantity through

pk(t) = N(k, t)
N(t) , (2.49)

since we start with z0 nodes and a new node is added to the network at each time step, we
have N(t) = z0 + t. The initial fully connected network of m0 nodes has a total degree sum
of z0(z0→ 1). As each new node adds z edges to the network, the total degree of the network
at time t becomes

∑

j

kj(t) = z0(z0 → 1) + 2zt. (2.50)

Thus, the preferential attachment mechanism can be expressed as:

Π(k) = k

z0(z0 → 1) + 2zt
, (2.51)

where the 2z term accounts for each link contributing to two nodes in an undirected network.
When a new node is added, the number of nodes with degree k can change due to two

events

• A new link to a degree-k node turns it into a degree-(k + 1) node, decreasing N(k, t).

• A new link to a degree-(k → 1) node turns it into a degree-k node, increasing N(k, t).

The rate equation for nodes with degree k > m becomes

(N + 1)pk(t + 1)→Npk(t) = → k

z0(z0 → 1) + 2zt
zNpk(t) + k → 1

z0(z0 → 1) + 2zt
zNpk−1(t).

(2.52)
Here, the left term in the right side of the equation indicates the probability that one of the
Npk(t) nodes with degree k are selected for attachment in one of the new z links hence turns
into degree-(k + 1) node while the right term indicates the probability that a degree-(k → 1)
node gets a link and turns into degree-k one.
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For nodes with degree z, the rate equation is

(N + 1)pz(t + 1)→Npz(t) = 1→ z

z0(z0 → 1) + 2zt
zNpz(t), (2.53)

where 1 represents the addition of a new node with z connections at each time step.
We are interested in the limit t → ∞, assuming that the degree distribution has reached

a stationary state: pk(t) = pk(t + 1) = pk. Hence, applying this limit to Eq. (2.52) and
considering z0(z0 → 1) + 2zt ≈ 2zt, we obtain the recursive relation

pk = k → 1
k + 2pk−1, k > z. (2.54)

Similarly, from Eq. (2.53), we get
pz = 2

z + 2 . (2.55)

Using these recurrence relations iteratively gives us the following

pz+1 = z

z + 3 pz = 2z

(z + 2)(z + 3) , (2.56)

pz+2 = z + 1
z + 4 pz+1 = 2z(z + 1)

(z + 2)(z + 3)(z + 4) , (2.57)

pz+3 = z + 2
z + 5 pz+2 = 2z(z + 1)(z + 2)

(z + 3)(z + 4)(z + 5) , (2.58)

pz+4 = z + 3
z + 6 pz+3 = 2z(z + 1)(z + 2)

(z + 4)(z + 5)(z + 6) . (2.59)

Now, we can spot the pattern and generalize to find the probability of a node with degree k:

pk = 2z(z + 1)
k (k + 1)(k + 2) . (2.60)

This is the exact degree distribution equation of the Barabási-Albert model. For large k, this
looks like this:

pk ∼ k−3, (2.61)

which is a power-law decay with exponent γ = 3, showing that a network produced from the
Barabási-Albert model is indeed of scale-free degree distribution.

2.2.4 Estimating the exponent of a scale-free network

Empirical scale-free networks can have di!erent values of the power-law decay exponent.
For example, in Fig. 6, the exponent of the incoming (outgoing) degree distribution of the
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WWW is 2.1 (2.45). We can use the Maximum Likelihood Estimation (MLE) method to
estimate the degree exponent of a scale-free network.

Given a set of observed node degrees {k1, k2, . . . , kn} from empirical data, the likelihood
function assuming the data follows a power-law distribution can be written as the joint prob-
ability of observing these degrees under the distribution

L(γ; k1, k2, . . . , kn) =
n∏

i=1
pki , (2.62)

where pk is assumed to be a power-law distribution

pk = γ → 1
k1−ω

min
k−ω, (2.63)

and γ → 1/k1−ω
min is the normalization constant.

The logarithm of the likelihood function, or the log-likelihood, simplifies the product of
probabilities into a sum, making it easier to handle mathematically:

ln L(γ; k1, k2, . . . , kn) =
n∑

i=1
ln pki . (2.64)

Substituting pk from above, we obtain

ln L(γ; k1, k2, . . . , kn) =
n∑

i=1
[ln(γ → 1)→ (1→ γ) ln kmin → γ ln ki] . (2.65)

Simplifying further, we get

ln L(γ; k1, k2, . . . , kn) = n ln(γ → 1)→ n(1→ γ) ln kmin → γ
n∑

i=1
ln ki. (2.66)

To find the most probable exponent, we maximize the likelihood by taking the derivative
of the log-likelihood with respect to γ and setting it to zero:

d

dγ
ln L(γ; k1, k2, . . . , kn) = n

γ → 1 + n ln kmin →
n∑

i=1
ln ki = 0. (2.67)

Solving for γ, we get

γ̂ = 1 + n

(
n∑

i=1
ln ki

kmin

)−1

. (2.68)

Here, γ̂ is the MLE estimate of the degree exponent γ, assuming that the data follows a
power-law distribution.

One challenge is that the degree distribution of many actual networks does not follow a
pure power law, not even the WWW. Empirical networks often have low-degree saturations,
high-degree cuto!s and outliers. Due to this, estimating the degree exponent is still not yet an
exact science, but a practical approach involves discarding points that deviate from the power
law to estimate the exponent for the region k * 1.
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2.2.5 Why the name "scale-free"?

The degree exponent γ plays a crucial role in determining the properties of a scale-free
network. Here, we examine three regimes based on the value of γ and discuss their impact on
network characteristics. First, note that the average degree 〈k〉 is given by

〈k〉 =
∞∑

k=kmin

kpk. (2.69)

Substituting pk = Ck−ω, where C is the normalization constant, we have

〈k〉 = C
∞∑

k=kmin

k1−ω. (2.70)

This sum converges for γ > 2, giving a finite average degree. However, the sum diverges for
γ ≤ 2, implying an infinite average degree as the network grows.

The variance 〈k2〉 → 〈k〉2 is calculated from the second moment:

〈k2〉 =
∞∑

k=kmin

k2pk = C
∞∑

k=kmin

k2−ω. (2.71)

This sum converges for γ > 3, leading to a finite variance. However, the variance diverges for
γ ≤ 3, indicating that degree distribution fluctuations are significant and dominated by large
hubs. Hence, we can classify three di!erent regimes as follows.

(i) Anomalous Regime

For γ < 2, the exponent in Eq. (2.47) 1/(γ → 1) is larger than one, meaning that the
number of links connected to the largest hub grows faster than the size of the network. This
implies that as the network grows, the largest hubs degree must eventually exceed the total
number of nodes, which is unsustainable. Additionally, for γ < 2, the average degree 〈k〉
diverges as N → ∞, highlighting the extreme concentration of links on the largest hubs.
For networks in this range, the largest hub grows faster than the network size, and without
multi-links (multiple links between 2 nodes) and self-links, there will be no additional nodes
for the most significant hub to connect to once its degree surpasses N → 1. Hence, scale-free
networks with γ < 2 cannot exist unless there are multi-links.
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(ii) Scale-Free Regime

In the range 2 < γ < 3, the first moment (average degree) is finite, but higher moments
diverge as N →∞. The term "scale-free" originates from the absence of a characteristic scale
in the network’s degree distribution since the variance diverges. This lack of a characteristic
scale is what gives the network its "scale-free" nature, as the structure looks similar regardless of
the scale at which it is observed. The divergence of the second moment (variance) indicates that
fluctuations in the degree distribution are dominated by a small number of highly connected
nodes or hubs. Empirical scale-free networks like the WWW and social media apps have an
exponent in this regime.

(iii) Weak Scale-Free Regime

For 3 < γ < 3.5, the network still follows a power-law degree distribution, but hubs are less
dominant than in the classical scale-free regime. The second moment of the degree distribution
(variance) is now finite, meaning that extreme hubs become rarer. Networks in this regime
often display a mix of scale-free and random network properties, with hubs still playing a role
but with decreasing influence as γ increases.

(iv) Random Network Regime

For γ > 3.5, the degree distribution pk decays rapidly, limiting the presence and influence
of hubs. As a result, the connectivity is more evenly distributed among nodes, leading to a
network topology that is structurally closer to classical random graphs, such as Erdös-Rényi
networks.

2.2.6 Limitations and Generalizations

Although the Barabási-Albert (BA) model reproduces some of the key attributes of real-
world networks, it su!ers some drawbacks regarding the versatility of its network construction.
For instance, we notice in Figure 7 that the data as separate circles for Twitter (purple) and
Facebook (green) significantly deviate from the power-law prediction, meaning they di!er from
the scale-free network, especially for small values of connectivity. In fact, extensive empirical
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data often shows concave power-law degree distributions and a high clustering coe"cient,
which is absent in the standard Barabási-Albert model.
Figure 7 – Degree distribution of Twitter (purple) and Facebook (green) social online networks. The trans-

parent hollow circles represent the degree distribution, while the filled circles represent the binned
data. The black line is the power-law degree distribution fit equal to 3.

Source: (PORCIÚNCULA et al., 2024)

The degree distribution of real social networks is naturally saturated at a low degree because
of individual limitations, such as time and resources to maintain proximity relationships. Indeed,
using the 2012 datasets from Facebook and Twitter, Figure 7 shows a deviation from the pure
power law at lower degrees, where the degree distribution flattens. The BA model does not
consider this saturation e!ect but considers that the network’s highly connected nodes (hubs)
can accumulate links indefinitely without restrictions (MCAULEY; LESKOVEC, 2012a; MCAULEY;

LESKOVEC, 2012b).
In addition, the properties of the standard BA model network yield a low clustering coe"-

cient, which indicates a low probability of two neighbors of a node being related. But, in reality,
social networks, in particular, usually exhibit high clustering because people form tightly-knit
communities in which their connections are also connected to each other. For example, on
Twitter and Facebook, the existence of communities shows individuals interacting frequently
within their internal groups, which significantly increases the network clustering coe"cient.

In fact, homophily (the tendency for nodes to connect with other nodes that are similar to
each other) is an intrinsic property of social networks. Users on such networks as Twitter and
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Facebook are more likely to be linked to other users with similar interests, demographics, or
geographic locations. Therefore, there is a high chance of interacting with and developing rela-
tionships with this local attachment that the Barabási model cannot explain. This phenomenon
plays a major role in the development and connectedness of social networks, determining the
propagation of information, di!usion of behavior, and formation and disintegration (when two
individuals are not similar anymore) of social links among community members, leading to mu-
tual reinforcement of social ties and the formation of similarity clusters. In contrast, the BA
model adopts a standard random preferential attachment mechanism as the probability of con-
necting the new link is only a function of the degree of existing nodes without considering any
similarity between nodes. The absence of homophily hinders the model’s capability to mimic
realistic social network configurations that depend on shared characteristics for connections.

2.3 AFFINITY-BASED SCALE-FREE NETWORK

Spatial social networks incorporate the geographical dimension into the study of social
interactions. In these networks, the physical proximity of individuals plays a crucial role in
forming and maintaining social ties. Prior research has modified the preferential attachment
rule by introducing links generated among existing nodes and considering preferences according
to the geographical distance between nodes to reflect empirical networks more precisely and
achieve convex and concave shapes of cumulative degree distributions. Some studies proposed
a network generation method based on social circles where agents are located on a social
map according to some socio-demographic properties. While some consider a city-block-based
distance measure, others apply an Euclidean measure. In these studies, Agents connect with
other individuals within a radius around their position (BOGUNÁ et al., 2004; FARZAM; SAMAL;

JOST, 2020).
Empirically, studies have shown that the number of in-person memorable interactions is

inversely proportional to the distance value, suggesting a connection probability given by p ∝

d−1. Analyzing mobile phone data, researchers detected a link probability function decaying
with the square of the distance. Onnela et al. investigated mobile phone call data of 3.4 million
users in Finland and found a connection-distance power law with exponent →1.5. This suggests
that people tend to establish closer connections over shorter distances because of the reduced
costs and because closer proximity increases the likelihood of interaction and accountability.
Even when technology enables one to call anyone, some of the strongest relationships of an
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individual have a local nature (ONNELA et al., 2007).
Building on that, in this work, we propose a simple algorithm to generate networks with

a connection distance power law exponent ω that displays the scale-free property and can
generate concave power law distributions, aligning with real-world data on popular social media
like Facebook (Meta) and Twitter (X). We also investigate the e!ects of these a"nity-based
scale-free networks on opinion formation dynamics. We consider a continuous substrate to
create the network and modify the Barabási-Albert model for scale-free networks by introducing
a connection probability based on distance with power law exponent ω, defined as the a"nity
parameter.

Figure 8 – Snapshot of a small A"nity-Based Scale-Free Network with N = 15 nodes, z = 3, ω = 1, ε = 0.9.
Note that the periodic boundary conditions of the substrate allow for connections between nodes
positioned in opposite coordinates since their distance is small due to the periodicity. Here, the size
of the node is proportional to the node degree. We highlight a particular node as green and paint
its connections as blue nodes.

Source: Author.

Our model considers the baseline homophily in the social connections, considering that
individuals who live nearby naturally have a higher likelihood of building relationships. We also
consider the inbreeding homophily e!ect as people tend to live with similar individuals around
their neighborhood, leisure, and workplaces. Indeed, individuals tend to live in neighborhoods
with similar socioeconomic status and race, and people often form connections with colleagues
who share similar backgrounds or interests (PINCHAK et al., 2021; THOMAS, 2019). However,
this is not deterministic since individuals living nearby can still build relationships and connect
with people living far away but with similar views, opinions or occupations. To account for
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this, we define the probability of individual i connecting with individual j as

pij ∝ εikj + (1→ εi)
[(xi → xj)2 + (yi → yj)2]ε/2 , (2.72)

where kj is the degree of individual j, εi is the globalization factor of individual i and xi and
yi are the coordinate locations of individual i (generated using a random uniform distribution
in this work). In that way, we simulate a competition between popularity and baseline and
inbreeding homophily in the connection probability, mediated by the globalization parameter.
Note that if the globalization factor εi = 1, we recover the usual Barabási-Albert model, and
if εi = 0, we have the gravity model with exponent ω. Hence, people have a high probability of
connecting with popular persons living nearby, such as their city’s mayor. They also have a good
probability of connecting with popular individuals living far away, such as the USA president,
and have a good probability of linking with non-famous nearby individuals, such as family,
neighbors, and professionals of the local institutions such as schools, bakeries, restaurants,
gyms, barbershops, and so on. However, they have a minimal probability of connecting with
non-famous individuals living far away.

We illustrate this in Fig. 8, where we generated a small network using Eq. (2.72). We
highlight a particular individual as green and his social connections as blue nodes. Observe that
the model favors connecting closer individuals (homophily) and popular agents (preferential
attachment). Indeed, some of the connections are close individuals, but some close people
are not connected, and instead, the agent links with some popular individuals who are a little
farther away.

Note that, in general, every individual has its own globalization parameter ε, and primitive
societies have a smaller ε. As societies develop communication and transport technologies such
as mobile phones, the World Wide Web, airplanes and cars, they yield a higher globalization
factor ε, and people make more connections with people living far away from them.

In this work, for simplicity, we consider εi = ε, ⇒ i, such ε is the average globalization
factor of the society. We distribute the location coordinates of the individuals randomly using
a uniform distribution in a square space of side L = 1 with periodic boundary conditions. We
start with a core of z individuals in a clique (a network where all nodes are connected with
each other) and construct a growing network where each new individual makes z links with
previous individuals with a connection probability given by Eq. (2.72).
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3 STOCHASTIC DYNAMICS

"The beauty of theoretical physics
is that it allows us to see order in chaos

and chaos in order."
Murray Gell-Mann

In this chapter, we closely follow the development made by Tomé and Oliveira in the
book Stochastic Dynamics and Irreversibility (TOMÉ; OLIVEIRA, 2015). We shall present the
mathematical formalism of stochastic systems and prove the master equation, a powerful
equation for studying the dynamics of stochastic systems. We will also discuss the Monte
Carlo method for numerically simulating complex systems and the ergodicity condition.

3.1 RANDOM VARIABLES AND STOCHASTIC SYSTEMS

A random variable is any quantity whose value depends on random processes, making it
impossible to exactly and deterministically predict it a priori. For example, the outcome of
rolling a die, the amount of rainfall on a given day, the price of a stock at the end of a trading
day and the final score of a basketball game are random variables.

In this context, a stochastic process is a mathematical model describing a sequence of
random variables, typically indexed by time. For example, we can define a stochastic process
as a collection of random variables {Xt : t ∈ T}, where T represents the set of time frames.
If the set T is discrete, the process is said to be discrete-time, whereas if T is a continuous
interval, the process is continuous-time. The state space S of a stochastic process is the set
of all possible values the random variables can assume. For instance, in a random walk, S may
represent possible positions the walker can assume (TOMÉ; OLIVEIRA, 2015).

Stochastic processes arise naturally in a wide variety of scientific phenomena. A classic
example is Brownian motion, the erratic movement of pollen grains suspended in water, first
observed by Robert Brown. This phenomenon was later rigorously explained through the work
of Einstein and Langevin, who described such motion using the Fokker-Planck and stochastic
di!erential equations.

We can also apply stochastic modeling to social sciences. In opinion dynamics, stochastic
models simulate how individual beliefs and opinions evolve under the influence of social in-
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teractions and how they spread information within their social networks. Similarly, stochastic
epidemiological models account for randomness in individual transmission events, analyzing
the competition between infection, recovery, and vaccination dynamics and leading to more
realistic predictions, considering the impact of rare events such as superspreaders.

In engineering, the operation of modern electrical grids involves numerous stochastic ele-
ments, from fluctuating energy demands to variable renewable energy inputs such as wind and
solar power. Stochastic models enable grid stability analysis and the design of robust control
strategies to ensure continuous operation despite unpredictable fluctuations.

3.2 MARKOV PROCESSES

Stochastic processes can be categorized based on their dependency structure. A critical
case is the Markov process, named after Andrey Markov, where the future state depends only
on the present state and not on the past states. This property, known as the Markov prop-
erty, dramatically simplifies the mathematical treatment of these processes. Non-Markovian
processes, by contrast, involve memory e!ects, requiring information about past states to
determine future evolution (TOMÉ; OLIVEIRA, 2015).

So, mathematically, the Markov property is given by

P (Xt+!t = xt+!t | Xt = xt, Xt−1 = xt−1, . . .) = P (Xt+!t = xt+!t | Xt = xt).

The state space S of the process can be discrete or continuous, and t may represent discrete
or continuous time. The transition probabilities between states are denoted by P (x′, t′ | x, t),
which is the probability of transitioning from state x at time t to state x′ at time t′.

Hence, the joint probability distribution for a Markovian stochastic system until time t#

can be written in the form:

P (x0, t0; x1, t1; . . . ; x#, t#) = P (x#, t#|x#−1, t#−1)P (x#−1, t#−1|x#−2, t#−2) · · ·

· · · P (x1, t1|x0, t0)P (x0).
(3.1)

Thus, the marginal probability at t is given by

P (x, t) =
∑

xt→1

P (x|xt−1)P (xt−1). (3.2)

In general, these transition probabilities depend on time. However, for this work, we will
consider stationary Marvok processes. In this case, we can write the probability of the random
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variable x transitioning from state m to n as

P (n, tn|m, tm) = P (n|m) = T (n, m). (3.3)

Hence,
P (n, tm+1) =

∑

m

T (n, m)P (m, tm). (3.4)

The transition probabilities can be conveniently expressed as a stochastic matrix T (n, m),
where some element defines the probability of transitioning from state m to state n. The
matrix satisfies

∑

n

T (n, m) = 1, T (n, m) ≥ 0 ⇒m, n. (3.5)

Let Pt be a column vector whose entries are given by P (n, t). Then, we can write the
marginal probability in matrix form

Pt = TPt−1. (3.6)

We can extend it until the initial probability vector

Pt = T tP0 =
∑

m

T t(n, m)P0(m), (3.7)

where T t(n, m) is the transition probability from state m to state n after t time units.

3.3 THE MASTER EQUATION

One question of great interest is how we can describe the evolution in continuous time of
a Markovian stochastic system probability distribution with time-independent transition rates.
For this purpose, let us consider that the transitions in the process occur within a tiny time
window ▷ so that the elements of the stochastic matrix are

T (n, m) = ▷W (n, m), (3.8)

for n ′= m. Here, W (n, m) is the transition rate between states m and n. In other words, it
is the probability per unit time of a transition from state m to state n. Therefore, note that
for the special case m = n, we must have

T (n, n) = 1→ ▷
∑

m,m #=n

W (m, n). (3.9)

We can write the probability that the system will be in state n at time t + ▷ is

P (n, t + ▷) =
∑

m

T (n, m)P (m, t) = T (n, n)P (n, t) +
∑

m,m #=n

T (n, m)P (m, t). (3.10)
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But, using Eqs. (3.8) and (3.9) , we can rewrite it as

P (n, t + ▷) = [1→ ▷
∑

m#=n

W (m, n)]P (n, t) + ▷
∑

m,m #=n

W (n, m)P (m, t). (3.11)

Hence, we can organize to find the time derivative definition of the probability distribution:

P (n, t + ▷)→ P (n, t)
▷

=
∑

m,m #=n

[W (n, m)P (m, t)→W (m, n)P (n, t)]. (3.12)

Taking the limit ▷ → 0, we obtain a di!erential equation for the probability distribution P (n, t)

d

dt
P (n, t) =

∑

m,m #=n

[W (n, m)P (m, t)→W (m, n)P (n, t)], (3.13)

which is the master equation. That equation shows us how the stochastic transition rates
govern the evolution of the probability distribution of the states. That equation is fundamental
when analyzing Markovian stochastic systems with time-independent transition probabilities.
The master equation bridges the microscopic dynamics of individual components and the
macroscopic observables of the system as a whole.

3.3.1 Intuitive derivation of the master equation

Considering the assumptions of a Markovian stochastic system, it is also possible to get a
more intuitive and interpretable derivation of the master equation. Indeed, the rate of change
of P (n, t) is determined by the net flow of probability into and out of state n. This is expressed
as:

dP (n, t)
dt

= Incoming Rate→ Outgoing Rate. (3.14)

The incoming rate is the sum of probabilities for all transitions into state n, weighted by the
transition rates:

Incoming Rate =
∑

m,m #=n

W (n, m)P (n, t). (3.15)

While the outgoing rate is the sum of probabilities for all transitions out of state n, also
weighted by the transition rates:

Outgoing Rate =
∑

m,m #=n

W (m, n)P (n, t). (3.16)

Observe that transitions from state n to itself do not a!ect the value of dP (n,t)
dt , as it does not

impact how the distribution is changing.
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Substituting the expressions for the incoming and outgoing rates into the balance equation
yields the master equation:

dP (n, t)
dt

=
∑

m,m #=n

[
W (n, m)P (m, t)→W (m, n)P (n, t)

]
. (3.17)

This equation describes the time evolution of the probability P (n, t), accounting for all tran-
sitions into and out of state n.

3.3.2 Average values and observables

One of the most significant applications of the master equation is that it allows us to
calculate the time evolution of the average value of a state function of the system f(n). For
example, the expectation value of the function f(n) within an ensemble is defined as

〈f(n)〉 =
∑

n

f(n)P (n, t). (3.18)

Di!erentiating by time gives

d

dt
〈f(n)〉 =

∑

n

f(n)dP (n, t)
dt

. (3.19)

Substituting the master equation, we obtain:

d

dt
〈f(n)〉 =

∑

m,m #=n

f(n)
[
W (n, m)P (m, t)→W (m, n)P (n, t)

]
. (3.20)

3.4 ERGODICITY AND MONTE CARLO SIMULATIONS

Phase space is defined in statistical mechanics as a space in which every point corresponds
to a particular configuration of the system, fully specified by its generalized coordinates and
momenta. For tridimensional gas with N particles, it is thus 6N -dimensional: 3N position
coordinates and 3N momentum coordinates of the particles. All possible values of both mo-
menta and positions of the particles in the system define the phase space (METROPOLIS et al.,
1953).

A system is ergodic if its trajectory in phase space will pass arbitrarily closely to all phase
space points consistent with its conservation laws (for example, energy or momentum). Er-
godicity in maths means, for a dynamical system explained by a phase space Γ, which contains
the generalized position and momentum vector x, and a probability measure P (x):
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lim
T →∞

1
T

∫ T

0
f(x(t)) dt =

∫

Γ
f(x)P (x) dx,

for any observable f(x). That is the equality between the time average (left-hand side) and
the ensemble average (right-hand side), which is the defining property of an ergodic system.

For a system to be ergodic, the dynamics must explore a volume in phase space consistent
with conserved quantities rather than be confined to a small region. ∂P

∂t = 0 for a time-invariant
system, and the system describes over time the evolution of the probability distribution P (x)
that describes the system. Moreover, the system’s dynamics must visit phase space points
rapidly enough so that there is no statistically significant correlation between the initial and
final states.

As long as phase-space exploration is not constrained, most equilibrium statistical me-
chanics systems are ergodic, from ideal gases to liquids and many spin systems (for instance,
the Ising model in its usual conditions). Due to ergodicity, all phase space will ultimately
be explored and equilibrated, while in non-ergodic systems like glasses or systems with en-
ergy barriers, due to being stuck in a part of phase space or long-lived correlations due to
constraints.

The Monte Carlo method is a computational approach that uses pseudo-random numbers
sampling to simulate stochastic phenomena and to estimate valuable properties. The technique
was popularized during the 1940s by researchers working on nuclear physics and the Manhattan
Project, such as Stanislaw Ulam and John von Neumann (GOULD et al., 1996). Ulam coined
the term in collaboration with Nicholas Metropolis because his uncle was fond of gambling at
the famous Monte Carlo casino, which also works based on random sampling. In particular,
von Neumann, Ulam and Metropolis, among others, suggested that these pseudo-random
numbers can be exploited to simulate the phase space trajectories of physical systems. Then,
given that these trajectories are ergodic, we can use them to compute averages that describe
the macroscopic state of the system.

Monte Carlo simulations are especially useful for solving problems with systems with many
degrees of freedom and (or) analytically intractable. Stanislaw Ulam and John von Neumann
utilized the Monte Carlo method to solve complex problems in nuclear physics, particularly
regarding nuclear weapon design and analysis. They used the technique to research the random
behavior of neutron scattering in fissile materials such as uranium and plutonium. The paths
and interactions of millions of neutrons are complex and analytically intractable. However, by
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random sampling, the Monte Carlo method enabled them to identify the probabilities of these
interactions, which helped determine whether some configuration of nuclear material would
achieve a sustained chain reaction to generate enough radiation power.

Algorithms based on detailed balance, which basically means that the probability of the
system being in state A and going to state B is equal to the probability of the system being
in state B and going back to state A, ensure the system’s ergodicity so that the simulation
allows access to the full range of possible micro-states, allowing these computed averages to
converge to their actual values. The equivalence between the time average and the ensemble
average enables using Monte Carlo simulations to sample phase space and compute averages
e"ciently.

Figure 9 – Monte Carlo estimation of Pi. If the dots are generated randomly, the ratio between the blue dots
and the total number of dots is proportional to the ratio between the circle and the square area.

Source: Author.

One of the practical applications of the Monte Carlo method is to approximate integrals
and sums over high-dimensional spaces through random sampling. Consider a function f(x)
defined over a domain Ω with a probability density P (x). The expectation value of f(x) is
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given by:
〈f(x)〉 =

∫

Ω
f(x)P (x) dx. (3.21)

In practice, this integral can be approximated by sampling K points x1, x2, . . . , xK from P (x)
and computing:

〈f(x)〉 ≈ 1
K

K∑

i=1
f(xi). (3.22)

As K →∞, this estimate converges to the actual value of the integral, assuming the system
satisfies the ergodic property. In this work, we use such properties of the Monte Carlo method to
estimate numerically relevant quantities that characterize the system’s dynamics and criticality.

Fig 9 shows a classic example where the coordinates of the dots are generated using
pseudorandom numbers. In that way, the fraction of dots that fall inside the circle (the blue
ones) is proportional to the circle area. Similarly, the total number of dots is proportional to
the square area. It is possible to estimate the value of π using that proportion. In that case,
since the circle has a unit radius and the square has a side equal to 2, then

π ≈ 4 Blue dots
Blue dots + Red dots . (3.23)

Using only 50000 points, it is possible to get a reasonable estimate of π ≈ 3.14.
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4 THE MAJORITY-VOTE MODEL

"Life in society requires consensus as an indispensable condition.
But consensus, to be productive, requires that each individual

contribute independently out of his experience and insight."
Solomon E. Asch

This chapter explains the complex relationship between individual psychology and collective
behavior, drawing from social psychology, neuroscience, and physics. With these psychological
principles, we move on to the majority-vote model, a simple yet powerful Sociophysics model
that adapts the Ising model of statistical mechanics for studying social dynamics. This math-
ematical model helps us infer how individual behaviors and group pressures lead to complex
collective outcomes.

Here, we also define the cooperative majority-vote model and analyze it using mean-field
calculations for the order parameter and the entropy flux. Additionally, we discuss finite-size
scaling techniques and the hyper-scaling and unitary relation for the critical exponents of the
system. The mean-field results closely follow the calculations from the author’s published paper
(OLIVEIRA et al., 2024).

4.1 SOLOMON ASCH’S AND GREGORY BERNS’ EXPERIMENTS

The Solomon Asch Conformity experiment was a landmark study in social psychology
conducted during the early 1950s to demonstrate how social pressure from a majority group
could push a person to conform. Solomon was interested to see whether people would align
with the majority opinion, even when that opinion was clearly incorrect. His experiment has
since been regarded as a foundation for understanding social dynamics, peer pressure, and how
group consensus may shape individual decisions (ASCH, 1955).

In the Asch experiment, the participants were told that they were in a study of visual
perception (See Fig. 10). Each subject was placed in a room with several other people. They
were said to be other participants, but they were actually confederates of the experimenter.
The task was relatively simple: the card deck series would show each group some cards with
lines. On one card was a single line, while on the other card were three lines of varying lengths,
which were referred to as A, B and C, and all that a subject had to do was compare the length



57

of the single line on one card to the three lines on the other card and pick out which line was
the same length as that on the first card. The answer was unequivocal: The lengths of the
lines looked significantly di!erent. The simplicity of the task made the correct answer clear,
making this a good context for studying conformity because mistakes could be clearly due to
social influence and not perceptual di"culty (ASCH, 1955).

Figure 10 – Illustration of one question in the experiment by Solomon Asch. Subjects need to decide which
line on the right, A, B or C, is most similar to the line on the left. However, before deciding,
they hear the answers of other potential subjects, who are actually actors, often giving the wrong
answer on purpose.

Source: Series Discovering Psychology by Zimbardo (1990).

Multiple trials of this task were performed; on some trials, the confederates were asked
to provide identical incorrect responses. For example, if the correct line were line A, all the
confederates would deliberately pick line B or C. One participant, who was seated so that he
answered after almost all the confederates had responded, was thus exposed to the unanimous
but incorrect opinion of the group before he reported his answer. Based on this setup, Asch
predicted that participants would be socially pressured to conform to the group’s wrong answer,
even if they knew it was wrong. This setup enabled him to see if people would accept the
consensus opinion or hold fast to their personal judgment.

The outcome of Asch’s experiment was surprising and significant. It was found that 75% of
the participants conformed to the group consensus in at least one trial during the experiment
(on average, 1/3 of the incorrect answers were agreed upon by the participants). Although



58

the correct alternative was obvious, the influence to align with the group was so powerful
that many subjects doubted or even rejected their own perceptions. Some knew the correct
answer and chose the incorrect one because they did not want to create conflict or were
somewhat doubtful after hearing the group’s collective response. Others began to question
their own judgment, illustrating the power of group dynamics over an individual’s cognition
and decision-making. There was also public compliance versus private acceptance, meaning
that some subjects did conform publicly while privately accepting the correct answer. Others,
by contrast, underwent private acceptance: they believed a group’s incorrect answer was the
correct answer.

One of this experiment’s most striking results is that a considerable fraction of the partic-
ipants consented to a clearly wrong answer. What can we expect in the real world when our
questions are even more challenging, and we often can not see the correct answer? How much
more susceptible to peer pressure and irrational behavior are we?

Asch’s work on group behavior led to substantial research with enormous ramifications
for understanding social dynamics, from adolescent peer pressure to organizational decision-
making. This experiment illustrated how group thinking, the process whereby group consensus
prevails over individual judgment, sometimes leads to suboptimal or even irrational conclusions.
Asch’s work has also illuminated research from fields as varied as economics, marketing, politics
and ethics.

In 2005, Gregory Berns expanded on Asch’s work by using brain imaging (functional mag-
netic resonance imaging or fMRI) in all participants while performing a task that tested their
susceptibility to social conformity. The participants were placed inside an fMRI scanner and
asked to mentally rotate and compare 3D objects to determine if they were the same or
di!erent. However, before making their decisions, participants saw the answers of a group,
where, similar to Asch’s conformity experiment, sometimes the group gave incorrect answers
by design. The idea was to measure brain activity when participants conformed to the group’s
incorrect answers versus when they resisted (BERNS et al., 2005).

When participants conformed to incorrect group answers, brain activity in the occipital and
parietal lobes (visual processing areas) changed, suggesting that social pressure altered their
actual perception of the objects rather than just their willingness to agree with the group.
On the other hand, resisting conformity triggered the amygdala (fear and emotional center of
the brain), indicating that going against social norms causes stress or emotional discomfort.
This study shows that social pressure actually alters the perception of reality, not just decision-
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making. Group pressure is powerful enough to reshape both beliefs and perceptions, influencing
people on a deep level.

4.2 CACIOPPO’S LONELINESS

"Health and well-being for a member of our species
requires, among other things, being satisfied and secure

in our bonds with other people, a condition of ‘not being lonely’
that, for want of a better word, we call social connection."

John T. Cacioppo

Why are humans so susceptible to peer pressure, even when it is clear that what the majority
is saying is wrong? John T. Cacioppo and William Patrick were among the pioneers in the
field of social neuroscience. They became known worldwide for their studies on loneliness and
the neurological bases of social processes. In their seminal book Loneliness: Human Nature
and the Need for Social Connection (CACIOPPO; PATRICK, 2008), they explain that social
contact is an essential part of human existence and evolution. Throughout a significant part
of our history, humans have lived as hunters and gatherers, and being in groups was crucial
to survival. Throughout generations, our brain learned these patterns, and today, in the same
way, the brain creates sensations of hunger and thirst to communicate the body’s needs for
food and water, and the brain creates the feeling of loneliness to communicate its social and
psychological needs.

Therefore, the subjective experience of social disconnection functions as a signal for adap-
tive behavior and survival. Similar to starving, being isolated can precipitate a cascade of
negative life events or outcomes, including diminished brain power, increased susceptibility to
bodily maladies and hypersensitivity to social threats. Indeed, the psychologist and neurosci-
entist Julianne Holt-Lunstad performed a meta-analysis of 148 studies and showed that there
was a 50% increased likelihood of survival for participants with stronger social relationships,
regardless of age, sex, initial health status, cause of death, and follow-up period. Chronic
loneliness can lead to health problems such as increased blood pressure, inflammation, and
compromised immune systems, as well as negatively a!ecting mental health (anxiety and de-
pression), with an overall impact on mortality risk similar in magnitude to that of smoking 15
cigarettes a day. (HOLT-LUNSTAD; SMITH; LAYTON, 2010)
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"The need to connect socially with others
is as basic as our need for food, water, and shelter."

Matthew Lieberman

These findings are strikingly congruent with the dynamics revealed by the experiments on
conformity performed by Solomon Asch. The evolutionary forces require humans to conform to
social groups, and loneliness can serve as a psychological engine for social a"liation. Hence,
the discomfort of being the outlier persuaded individuals to consent to the group’s terms
even in defiance of what they think is right, giving rise to behaviors that foster group cohesion
over objective veracity and ultimately changing their truth. That resembles Asch’s experiment,
where some of his experimental subjects began questioning their perceptual experience after a
succession of group pressures, indicating a more profound layer at which social groups influence
individuals’ cognition.

4.3 SOCIAL INFLUENCE AND THE ISING MODEL: THE MAJORITY-VOTE MODEL

The key finding is that individuals can often exhibit irrational behavior and are evolutionarily
susceptible to conforming with the group even in defiance of their personal truth and logic,
which has striking parallels with some physical systems, like the Ising model. The Ising model
was proposed to describe ferromagnetic materials and consists of a lattice of spins, where
each spin is allowed to adopt one out of two states (e.g., +1 or →1). However, each spin also
interacts with its neighbors, and to minimize their magnetic energy, they tend to be aligned with
each other. On the other hand, thermal energy disrupts spin alignment and causes fluctuations
in the system. Despite its simplicity, this powerful model exhibits a phase transition at a critical
temperature, making it a realistic representation of ferromagnetic behavior.

The majority-vote model generalizes the Ising model to social systems in which spins
correspond to binary individual opinions or behaviors, and the energy minimization principle
corresponds to the tendency of individuals to be influenced by the social environment. For
example, a spin-up (down) could represent voting in the democrats (the republicans) or buying
(selling) an asset in the financial market. In this context, the temperature corresponds to a
noise parameter q, representing the agent’s nonconformity, and models the probability of an
individual disagreeing with their social connections’ majoritarian opinion. (OLIVEIRA, 1992)

Hence, we represent the agent’s i opinion by a stochastic variable σi that may assume
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the values +1 or →1. However, the agents’ opinions, beliefs or behavior may change as they
interact. Consider S(x) to be the signal function given by S(x) = →1, 0, 1 for x < 0, x =
0, x > 0, respectively. Hence, if agent i agrees with the majority of his connections, that is,
σiS

(∑
j∈neighbors σj

)
= 1, the probability wi(σ) of agent i changing his opinion is wi(σ) = q,

following the definition that the social temperature q is the probability of an agent disagreeing
with the majority. Here, σ = (σ1, · · · , σN) denotes the system state or the configuration of
opinion of the N agents.

Similarly, if agent i disagrees with the majority of his friends and family so that we have
σiS

(∑
j∈neighbors σj

)
= →1, the probability wi(σ) of agent i changing his opinion is wi(σ) =

1→q. If there is no majority, σiS
(∑

j∈neighbors σj

)
= 0 and i may assume each possible opinion

with equal probability, so wi(σ) = 1/2.
Hence, wi(σ) is a function of σiS

(∑
j∈neighbors σj

)
subject to the equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wi(σ) = q, if σiS
(∑

j∈neighbors σj

)
= 1, anticonformity.

wi(σ) = 1→ q, if σiS
(∑

j∈neighbors σj

)
= →1, conformity.

wi(σ) = 1/2, if σiS
(∑

j∈neighbors σj

)
= 0, independence.

(4.1)

Thus, since there are three possible cases, we can assume a general equation with three
unknown coe"cients of the form

wi(σ) = a + bσiS

⎛

⎝
∑

j∈neighbors

σj

⎞

⎠+ c

⎡

⎣σiS

⎛

⎝
∑

j∈neighbors

σj

⎞

⎠

⎤

⎦
2

. (4.2)

Substituting each case of Eqs. (4.1) in Eq. (4.2), we have a system of three equations and three
unknown coe"cients a, b and c. The solution yields the general opinion transition probability
that depends on the local majority and the social noise level

wi(σ) = 1
2

⎡

⎣1→ (1→ 2q)σiS

⎛

⎝
∑

j∈neighbors

σj

⎞

⎠

⎤

⎦ . (4.3)

Note that each individual i is a!ected by a di!erent local majority, representing his social
interactions, such as family, coworkers and friends, directly manifesting the social pressure
represented in Asch’s experiments. Furthermore, the model is symmetric under the transfor-
mation σi → →σi, ⇒ i.

The model is deterministic at q = 0 as agents always adopt the local majority opinion. For
increasing values of the social temperature q, the system becomes increasingly disordered, and
agents increasingly act in nonconformity regarding the majority of their social contacts. The
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model has physical meaning when the probability of consenting with the majority is higher than
the probability of acting in nonconformity, following empirical data, such as Aschs experiment.
Therefore, we may impose

1→ q > q > 0 =∞ 0 < q < 1/2. (4.4)

In particular, for q = 1/2, every agent assumes a given opinion randomly.

4.4 OVERVIEW OF THE MAJORITY-VOTE MODEL LITERATURE

Oliveira et al. conducted the first study of the majority-vote model (OLIVEIRA, 1992;
OLIVEIRA; MENDES; SANTOS, 1993), where he obtained the results for the model defined on the
square lattice using Monte Carlo simulations. He shows the model has a critical noise parame-
ter qc = 0.075 ± 0.001, where the order parameter undergoes a second-order phase transition.
He estimated values for the critical exponents as β/ν = 0.125±0.005, γ/ν = 1.73±0.05, and
1/ν = 1.01 ± 0.05, in agreement with the exact values for the two-dimensional Ising model
calculated by Onsager (ONSAGER, 1944).

Therefore, the majority-vote model on a square lattice belongs to the same universality class
as the two-dimensional Ising model; that is, they share the same critical behavior near phase
transitions, yielding the same critical exponents, symmetries, and dimensionality despite their
di!erent microscopic mechanics. The universality classes give us predictive power because if a
new model has the same symmetry and dimensionality, we can predict its critical exponents and
also explain why they behave similarly. Indeed, Grinstein, Jayaparakash, and He (GRINSTEIN;

JAYAPRAKASH; HE, 1985) conjectured that nonequilibrium models with inversion symmetry
belong to the same universality class as the Ising model, both defined on regular lattices.

Scientists have proposed several model variations to investigate a specific problem or ana-
lyze the impact of some factors on the social dynamics of groups. There are two components
defining a complex system: the network structure and the system’s dynamics. In this context,
Some researchers analyzed the e!ect of complex networks of interactions on societal polar-
ization (CAMPOS; OLIVEIRA; MOREIRA, 2003; PEREIRA; MOREIRA, 2005; LIMA, 2007). Other
scholars analyzed di!erent opinion dynamics, such as considering heterogeneous communities,
independence, and more than two possible opinions, among other variations (VILELA; MOR-

EIRA; SOUZA, 2012; LIMA, 2013; VIEIRA; CROKIDAKIS, 2016; VILELA; STANLEY, 2018; SANTOS;

TEIXEIRA, 1995; COSTA; SOUZA, 2005; MELO; PEREIRA; MOREIRA, 2010; LIMA, 2012; VILELA et
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al., 2020).
The majority-vote model and other stochastic lattice models are formulated in terms of

stochastic rules with no prior connection to thermodynamics. However, some scholars have
been analyzing the entropy production and thermodynamics of the majority-vote model using
mean-field approximation and Monte Carlo simulations. These studies explore the thermody-
namics of opinion dynamics and show that entropy production exhibits a singularity at the
critical point. They can also be used to study the system’s phase transitions (HAWTHORNE et

al., 2023; SILVA et al., 2020; CROCHIK; TOMÉ, 2005).

4.5 COOPERATIVE MAJORITY-VOTE MODEL

One of the most important phenomena to our societies, and still also one of the most mis-
understood collective phenomena, is collaborative behavior. Cooperative phenomena challenge
scientists across several fields, from biology, sociology, economics, psychology, anthropology
and sociophysics. Various species, from social insects to humans, create groups that altruis-
tically work toward a common benefit. In human society, this collaborative conduct is crucial
in shaping the actions and opinions of individuals and influencing decision-making in politi-
cal, religious, ethnic, and socioeconomic challenges. Cooperation deeply influences how people
form alliances, build institutions, and perform political and economic negotiations, enabling
the formation of complex social structures (CAPRARO, 2013; PENNISI, 2005; JONG; VEIJER,
2014).

In this work, we investigate how cooperative behavior influences public opinion formation
using the majority-vote model. To accomplish that, we introduce a parameter µ, named the
noise sensitivity, to the standard majority-vote model to yield the distinct influence of the
social temperature over the individuals of the society and consider two types of individuals,
cooperative and regular. Hence, we assume a fraction f of the society as cooperative individuals
under the e!ect of a social temperature µq, where 0 < µ < 1, whilst a regular individual is
under the influence of the regular noise q. Adding the noise sensitivity parameter µ to the model
addresses individuals more socially susceptible to agreeing with others to support them. In the
opinion dynamic context, we consider that cooperation behavior acts supporting consensus and
social order, promoting the ideas, opinions and beliefs from their social interactions. Thus, we



64

denote the flip probability of a given agent i as

wi(σ) = 1
2

⎡

⎣1→ (1→ 2µiq)σiS

⎛

⎝
∑

j∈neighbors

σj

⎞

⎠

⎤

⎦ , (4.5)

where

µi =

⎧
⎪⎪⎨

⎪⎪⎩

µ, if i is a cooperative agent.

1, if i is a regular agent.
(4.6)

Thus, a noise sensitivity µ < 1 increases the agreement probability by attenuating the e!ect
of the noise parameter q of the society.

Note that for f = 0, we recover the standard homogeneous majority-vote model with noise
(OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS, 1993). For f = 1, all individuals are cooperative,
and the system also behaves as the standard MVM under the linear transform q →→ q/µ.
The case for µ = 0 corresponds to a bimodal distribution of noise, where a fraction f of
the individuals are noiseless, always agreeing with their nearest interacting neighbors (VILELA;

MOREIRA; SOUZA, 2012; VILELA; SOUZA, 2017). However, the system’s behavior is nontrivial
for 0 < f < 1 and 0 < µ < 1, the focus of our work.

On the topological aspect, we investigate how A"nity-Based Scale-Free Networks, which
provide a better approximation for the degree distribution of real social media networks such
as X, introduced in Section 2.3, a!ect the opinion dynamics of the majority-vote model.

4.6 REVERSIBILITY OF THE MAJORITY-VOTE DYNAMICS

Stochastic models, like the majority-vote Model, have an initial system’s state and then
evolve until a stationary state, where the probability distribution of finding the system at a
given state is independent of time. These statistical models can have reversible or irreversible
time evolutions. In reversible models, the dynamics is governed by a Hamiltonian that models
the interaction between the system’s components so that the transition between two states
depends on the system’s energy and the energy involved in the transition. On the other hand, we
cannot describe an irreversible model using a Hamiltonian. The transition probability between
the possible states of the system solely controls the dynamics.

For reversible systems, the stationary states correspond to states of thermodynamic equi-
librium: the probability of the system going through a given sequence of microscopic states
in direct order is equal to the likelihood of the system going through the same sequence in
reverse order, a property known as Kolmogorov’s criterion. In other words, reversible systems
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have detailed balance:

P (A)W (A→ B) = P (B)W (B → A),⇒A, B ∈ S. (4.7)

That is, the probability of the system being in state A and transitioning to state B is equal
to the likelihood of the system being in state B and transitioning to state A, for all states A,
B in the state space S.

However, irreversible systems lack detailed balance, and their stationary states are out of
thermodynamic equilibrium: the probability that the system follows a particular trajectory in
phase space from its initial state to a final state, in general, di!ers from the probability that
the system will follow the same trajectory in reverse.

We can prove by contradiction that the majority-vote model fails Kolmogorov’s criterion
and has irreversible dynamics. Let us consider the majority-vote Model on a two-dimensional
square lattice with periodic boundary conditions with side L = 4, hence N = 16 individuals. We
shall represent the system’s state using a matrix, where each element in the matrix represents
its respective site in the lattice along with its state (σij = ±1, σij = σ11, σ12, . . . , σLL). Let A,
B, C and D be four matrices corresponding to four di!erent microstates of this system, each
of them occurring in the stationary regime with probability P (A), P (B), P (C) and P (D),
respectively. If the majority-vote model is reversible, it obeys Kolmogorov’s criterion, and we
must have that

P (A)W (A→ B)W (B → C)W (C → D)W (D → A) =

P (A)W (A→ D)W (D → C)W (C → B)W (B → A).
(4.8)

We consider now the probability of the left trajectory A → B → C → D. So, initially, the
system is in state A, defined as:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 +1

+1 →1 +1 +1

+1 +1 +1 +1

+1 +1 +1 +1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



66

It then transitions to state B (σ23 → →1), represented by:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 +1

+1 →1 →1 +1

+1 +1 +1 +1

+1 +1 +1 +1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a transition probability q. Hence, P (B) = P (A)q. Then it evolves to state C (σ24 → →1),
represented by:

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 +1

+1 →1 →1 →1

+1 +1 +1 +1

+1 +1 +1 +1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

also with a transition probability of q. Thus, P (C) = P (B)q = P (A)q2. Now, it transitions
to state D (σ23 → 1), given by:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 +1

+1 →1 +1 →1

+1 +1 +1 +1

+1 +1 +1 +1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a transition probability 1/2. Hence, P (D) = P (C)1/2 = P (A)q2/2. Then it evolves
back to state A (σ24 → 1) with probability 1 → q. Hence, the whole trajectory A → B →

C → D → A has probability P (A)q2(1→ q)/2.
On the other hand, the reverse trajectory has probability

P (A)W (A→ D)W (D → C)W (C → B)W (B → A) =

P (A)∈ q ∈ 1
2 ∈ (1→ q)∈ (1→ q) = P (A)q

2(1→ q)2.
(4.9)

Therefore,
P (A)W (A→ B)W (B → C)W (C → D)W (D → A) ′=

P (A)W (A→ D)W (D → C)W (C → B)W (B → A).
(4.10)

and the majority-vote model fails Kolmogorov’s criterion and hence has irreversible dynamics
and lacks detailed balance.
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4.7 ENTROPY PRODUCTION

Irreversible systems continuously produce entropy even in the stationary state, as they are
still out of thermodynamic equilibrium. However, the entropy production of reversible systems
vanishes at the equilibrium state. Even though the microstate of a stochastic reversible system
continues to change even in the steady state and the entropy of several parts of the system
varies, the net change is zero. That is because reversible systems satisfy detailed balance. While
some individual transitions might still increase entropy, these increases are counterbalanced by
equally probable transitions that decrease entropy by the same amount. Hence, the production
of entropy of stochastic reversible systems vanishes at the steady state. Therefore, non-zero
stationary entropy production is a signature of irreversibility.

To investigate the irreversibility of the majority-vote model, we consider the Boltzmann-
Gibbs entropy, which states that the entropy S(t) of a system at time t is given by

S(t) = →
∑

σ

P (σ, t) ln P (σ, t). (4.11)

A given society configuration can be denoted by σ = (σ1, σ2, ..., σi, ..., σN), meaning the
first agent has opinion σ1, the second σ2, and so on. Hence, the majority-vote model master
equation that expresses the time evolution of the probability P (σ, t) of finding the system in
the state σ at a time t is

d

dt
P (σ, t) =

N∑

i=1

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]
, (4.12)

where the state σi can be obtained from the state σ flipping the i-th agent’s opinion, i.e.,
σi = (σ1, σ2, ...,→σi, ..., σN).

Therefore, di!erentiating Eq. (4.11) with respect to time and using the master equation,
we can express the time derivative of the entropy as

dS(t)
dt

= →
∑

σ

[
dP (σ, t)

dt
ln P (σ, t) + P (σ, t) 1

P (σ, t)
dP (σ, t)

dt

]

. (4.13)

dS(t)
dt

= →
∑

σ

dP (σ, t)
dt

ln P (σ, t)→ d

dt

∑

σ

P (σ, t), (4.14)

where ∑σ P (σ, t) = 1, so d
dt

∑
σ P (σ, t) = 0. Thus,

∞ dS(t)
dt

= →
∑

σ

dP (σ, t)
dt

ln P (σ, t). (4.15)

Now, we plug the master equation and get
dS(t)

dt
= →

∑

σ

∑

i

ln P (σ, t)
[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]
. (4.16)



68

On the other hand, if we do the transformation σ → σi, we have

dS(t)
dt

= →
∑

σ

∑

i

ln P (σi, t)
[

wi(σ)P (σ, t)→ wi(σi)P (σi, t)
]

=
∑

σ

∑

i

ln P (σi, t)
[

wi(σi)P (σi, t)→ wi(σ)P (σ, t)
]
.

(4.17)

Summing Eqs. (4.16) and (4.17) , we get

dS(t)
dt

= 1
2
∑

σ

∑

i

ln P (σi, t)
P (σ, t)

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]
. (4.18)

The rate of change of entropy has two main components:

dS(t)
dt

= Π→ %, (4.19)

where Π is the system’s entropy production due to irreversible processes and % is the en-
tropy flux from the system to the environment. Following the second law of thermodynamics,
the entropy production Π is positive definite. On the other hand, the entropy flux can be
positive or negative. Entropy production will still exist when a non-equilibrium or irreversible
system achieves the stationary state. Still, the system’s entropy remains constant, so entropy
production is counterbalanced by the entropy flux Π = % > 0.

We don’t have enough equations to determine both the entropy production and the entropy
flux now, but we can find a proper definition for the entropy production. In non-equilibrium
thermodynamics, a natural approach is to consider a space-time description where current
values determine the "action functional" governing the path space measure. The key idea
is that equilibrium states have time-reversal dynamics in space-time, and currents allow this
time-reversal invariance to be broken. Hence, we shall see the entropy production as a measure
of the distance between the original space-time trajectory and the time-reversed one. Thus,
we may define the (average) entropy production of a system as the Kullback-Leibler (KL)
divergence between the forward and reversed trajectory distributions (MAES; REDIG, 2000;
KULLBACK; LEIBLER, 1951)

Π = DKL(P j(ω) ‖ P j(θω)) =
〈

ln P j(ω)
P j(θω)

〉

P j(ω)
=
∑

ω

P j(ω) ln P j(ω)
P j(θω) , (4.20)

where P j(ω) is the probability of a trajectory ω in phase space, θ is the time-reversal operator,
and the average is calculated over the original trajectories’ distribution P j(ω). Note that the
relative trajectory weight must be well defined; that is, time-reversed trajectories must be pos-
sible, even though with a much smaller probability, a property known as dynamical reversibility.
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Therefore, entropy production arises from breaking detailed balance in non-equilibrium pro-
cesses, quantifying irreversibility.

Note that the Kullback-Leibler divergence, unlike standard metrics like Euclidean distance,
is not symmetric in general: DKL(P ||Q) ′= DKL(Q||P ), not satisfying the triangle inequality.
That is because DKL(P ||Q) measures how much information is lost when using the distribution
Q to approximate P , quantifying the expected number of extra bits required to code samples
from a true distribution P when using a code based on an approximate distribution Q, but
DKL(Q||P ) describes the opposite. Thus, the KL divergence quantifies the "distance" between
distributions in terms of the ine"ciency of assuming Q when the true distribution is P . That
asymmetry of the Kullback-Leibler divergence is essential to measure the irreversibility between
the forward and time-reversed trajectory distributions.

Additionally, from analyzing the entropy production from a single trajectory ω, the ratio
of forward and reverse probabilities satisfies:

Π(ω) = ln P j(ω)
P j(θω) ∞

P j(ω)
P j(θω) = eΠ(ω), (4.21)

which is the Fluctuation Theorem (FT). Here, Π(ω) is the stochastic entropy production for
a specific trajectory ω. That result implies that entropy-decreasing fluctuations (time-reversed
trajectories) are exponentially suppressed compared to entropy-increasing fluctuations (forward
trajectories). Therefore, even though negative entropy fluctuations can temporarily occur at
the microscopic scale, entropy always tends to increase in the long run, in agreement with the
Second Law of Thermodynamics. For a formal derivation of the fluctuation theorem, please
see (EVANS; COHEN; MORRISS, 1993).

We remark that the entropy production definition given by Eq. (4.20) agrees with the
second law of thermodynamics because Π is always non-negative. Indeed, note that →log(x)
is a convex function since its second derivative is always positive. Thus, Jensen’s Inequality is
valid (check the appendix for a proof of Jensen’s Inequality), and we have

Π = →
〈

ln P j(θω)
P j(ω)

〉

P j(ω)
≥ → ln

〈
P j(θω)
P j(ω)

〉

P j(ω)
, (4.22)

where we calculate the expectation over the probability distribution P j(ω) as
〈

P j(θω)
P j(ω)

〉

P j(ω)
=
∑

ω

P j(ω)P j(θω)
P j(ω) =

∑

ω

P j(θω) = 1. (4.23)

Therefore, it follows that Π ≥ 0, under the second law of thermodynamics. Additionally, for
a system in equilibrium, P j(ω) = P j(θω),⇒ω, so the entropy production vanishes for systems
in equilibrium, as it should be.
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Note that we can rewrite Eq. (4.20) in terms of transition rates between states:

Π =
∑

i,j

PiWi→j ln PiWi→j

PjWj→i
, (4.24)

where Pi is the probability of the system occupying state i and Wi→j are transition probabilities
from microscopic state i to j. Note that PiWi→j is the probability of the trajectory i→ j.

Hence, applying Eq. (4.24) to the majority-vote model, considering that one individual
opinion can change per transition (or equivalently, one spin can flip per transition, with the
parallel that spins represent opinions), the possible trajectories in phase space are from a
given configuration σ to a state σi, with i ∈ [1, N ]. Therefore, we can calculate the entropy
production as

Π =
∑

σ

∑

i

P (σ, t)wi(σ) ln P (σ, t)wi(σ)
P (σi, t)wi(σi) . (4.25)

Where the sum over σ and i enables us to compute the reversibility between all possible
trajectories from the configuration σ to configuration σi, and P (σ, t)wi(σ) is the probability
of the trajectory σ → σi. Note that the reverse trajectory σi → σ always exists and is possible,
therefore, all time reversed trajectories are well defined.

On the other hand, if we rewrite Eq. (4.25) by doing σ → σi, we have

Π =
∑

σ

∑

i

P (σi, t)wi(σi) ln P (σi, t)wi(σi)
P (σ, t)wi(σ) = →

∑

σ

∑

i

P (σi, t)wi(σi) ln P (σ, t)wi(σ)
P (σi, t)wi(σi) .

(4.26)
Thus, if we sum the Eqs. (4.25) and (4.26), we get

Π = 1
2
∑

σ

∑

i

ln wi(σi)P (σi, t)
wi(σ)P (σ, t)

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]
. (4.27)

Note that this function is also nonnegative because it has the form f(x, y) = (x→ y) ln x
y ≥

0,⇒x, y and it vanishes in the equilibrium when we have detailed balance: wi(σi)P (σi, t) =
wi(σ)P (σ, t). Combining the Equations (4.18) and (4.27), we can calculate the entropy flux:

% =1
2
∑

σ

∑

i

ln wi(σi)P (σi, t)
wi(σ)P (σ, t)

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]

→ 1
2
∑

σ

∑

i

ln P (σi, t)
P (σ, t)

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]

= 1
2
∑

σ

∑

i

ln wi(σi)
wi(σ)

[
wi(σi)P (σi, t)→ wi(σ)P (σ, t)

]

= 1
2
∑

σ

∑

i

wi(σi)P (σi, t) ln wi(σi)
wi(σ) + 1

2
∑

σ

∑

i

wi(σ)P (σ, t) ln wi(σ)
wi(σi) .

(4.28)
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We do the transformation σ → σi just in the left sum and get

% = 1
2
∑

σ

∑

i

wi(σ)P (σ, t) ln wi(σ)
wi(σi) + 1

2
∑

σ

∑

i

wi(σ)P (σ, t) ln wi(σ)
wi(σi) .

=
∑

σ

∑

i

wi(σ)P (σ, t) ln wi(σ)
wi(σi) =∞ % =

〈
∑

i

wi(σ) ln wi(σ)
wi(σi)

〉

.

(4.29)

Therefore, we conclude that the entropy flux can be written as an average. Thus, it is possible
to use Monte Carlo simulations to estimate the system’s entropy flux. While, in general, it
is not possible to calculate the entropy production by Monte Carlo simulations (because the
expression for Π cannot be written as an average), it is possible to estimate the entropy
production using such simulations for the stationary regime, because in these states Π = %.

4.8 THE ORDER PARAMETER AND FINITE SIZE EFFECTS

To quantify the agreement level between individuals in a social system, we calculate the
system order parameter, or magnetization M , to characterize transitions from dissent (M = 0)
to consensus (M = 1). Thus, magnetization is a measure of the order of society, initially used
in the context of models of magnetic spin materials, and is calculated through the equation:

ML(q, µ, f) =
〈〈

1
N

∣∣∣∣∣

N∑

i=1
σi

∣∣∣∣∣

〉

t

〉

c

≡ 〈〈m〉t〉c , (4.30)

where N is the number of individuals in the network, 〈...〉t represents temporal averages made
in the regime stationary and 〈...〉c represents averages over di!erent configurations of society.

Note that as this order parameter measures the agreement between individuals, the mag-
netization is invariant through the transformation σi →→ →σi. In other words, magnetization
is symmetrical in terms of the inversion of the state of opinion of all sites in the network. As
individuals interact with each other, the magnetization of the system changes over time until
it oscillates around an equilibrium value ML(q) reached after a thermalization or relaxation
time ▷ .

In an analogy to a magnetic system, the noise parameter q plays the role of the system
temperature. The lower the social temperature q, the more ordered the system of social
interactions. Hence, one can anticipate that:

1. For a zero social temperature q = 0, all agents will be in the same state, that is, σi = 1
(or →1) for all i, exhibiting an absolute consensus, where the magnetization is maximum.
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2. For non-zero noise, but smaller than a given pseudo-critical value, 0 < q < qc(N), the
majority part of individuals will be in one of two possible states, with no total consensus,
but a predominance of a given opinion. This state characterizes the ferromagnetic phase
of the system. The pseudo-critical temperature qc(N) is analogous to the critical Curie
temperature of a ferromagnetic material at which the system is entirely disordered.

3. Finally, for q ≥ qc(N), the system exhibits the paramagnetic phase, where M →→ 0
in the thermodynamic limit N →→ ∞. On average, half of the individuals present an
opinion, and the other half present an opposite opinion.

In short, with the increase in the noise value, the community evolves from an ordered state
of low entropy to a disordered state of high entropy, characterizing a phase transition of
the system around the pseudo critical noise qc(N), where the production of social entropy is
maximum.

On the other hand, measuring the magnitude of consensus oscillations is interesting as the
balance of agreement of opinions that society achieves is dynamic (since people continue to
change their opinions over time). This property is investigated by the magnetization variance,
called magnetic susceptibility and is given by:

χ(q, µ, f) = N
[
〈〈m2〉t〉c → 〈〈m〉t〉2c

]
. (4.31)

The susceptibility reaches its maximum value at the pseudo-critical social temperature of
the system qc. In this way, the magnetic susceptibility can be used to estimate the critical
temperature of the investigated system.

Another quantity of interest is the fourth-order Binder cumulant:

U(q, µ, f) = 1→ 〈〈m
4〉t〉c

3〈〈m2〉t〉2c
. (4.32)

The cumulant can be explored to find the phase transition point qc(N → ∞) ≡ qc, which
is independent of the system size (valid at the thermodynamic limit N →→ ∞), as will be
explained in more detail below. Such a noise value is denoted by the only point where the
di!erent UN curves intersect.

The magnetization and magnetic susceptibility behavior vary with the system size. In this
context, it is possible to obtain a set of critical exponents that characterize the unique behavior
of thermodynamic functions in the order-disorder phase transition around the critical point qc

and tell us how the system size a!ects these functions. In particular, when two or more distinct
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systems have the same set of critical exponents, they are said to belong to the same universality
class, uniting systems that are apparently very di!erent from each other into the same group
(STANLEY, 1971; YEOMANS, 1992).

Given the parameter, ε = q → qc, which measures the distance to the critical point, the
critical exponent λ associated with a given thermodynamic function f(ε) can be defined as:

λ = lim
φ→0

{
ln |f(ε)|

ln |ε|

}

, (4.33)

if the limit exists. In this case, the function will be:

f(ε) ∼ |ε|λ, (4.34)

valid only in the limit |ε|→ 0, when the system is close to critical noise qc. From the relation
(4.34), it is possible to obtain scaling relations of finite size when the network is a hyperlattice
of side L :

ML(q) = L− ε
ν M̃

(
εL

1
ν

)
, (4.35)

χL(q) = L
ω
ν χ̃
(
εL

1
ν

)
, (4.36)

UL(q) = Ũ
(
εL

1
ν

)
, (4.37)

c(L) = qc + bL− 1
ν . (4.38)

On the one hand, magnetization and susceptibility depend on the size of the lattice L for
finite-dimensional systems. On the other hand, based on the Equations (4.35) and (4.36),
when calculating M and χ in q = qc for systems of di!erent sizes, it is possible to estimate
the critical exponents β/ν and γ/ν and obtain their universal scaled forms, M̃(εL

1
ν ), χ̃(εL

1
ν )

and Ũ(εL
1
ν ) which are independent of the size of the simulated network. However, the critical

exponent associated with the fourth-order Binder cumulant is zero. Therefore, for |ε| = 0, we
have that:

UL(q = qc) = U(q = qc) = Ũ(0). (4.39)

This property makes it possible to find the universal critical noise in the thermodynamic limit
at the intersection of several UL curves. That yields more accurate estimates of the critical
point qc than simply identifying the pseudo-critical noise of a very large system that can be
reasonably numerically simulated, given the constraints of finite resources and time.

By deriving Eq. (4.37) under the condition that |ε| = 0 produces an equation that can be
exploited to investigate the third critical exponent 1/ν

U ′
L(q = qc) = L

1
ν Ũ(0). (4.40)
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Also, using the Equations (4.35), (4.36) and (4.37), we can obtain a relationship between the
critical exponents and the hyperlattice’s dimension:

2β + γ

ν
= d, (4.41)

known as the hyperscaling relation. The majority-vote model does not have second-order phase
transitions for dimensions below the lower critical dimension. For example, the model does not
exhibit a phase transition in one dimension. There is also an upper critical dimension, where
the system’s behavior is known to be indistinguishable from the results predicted by mean-field
theory (which we will explore in detail below). Hence, the hyperscaling relation is valid only for
critical systems with dimensions between the lower and the upper critical dimension (HONG;

HA; PARK, 2007).
However, for systems with complex interaction structures, the concept of network dimen-

sion is unclear. After all, these non-trivial topologies do not have a clear definition of linear size
L. Thus, a volumetric scaling with the number of individuals/spins/nodes of the correlation
length near criticality is often assumed, instead of the linear correlation we used above ε ∼ L

(HONG; HA; PARK, 2007; VILELA et al., 2020)

ε ∼ N. (4.42)

Under this assumption, the finite-size scaling equations now have the following form:

ML(q) = N−β/ν̄M̃(εN1/ν̄), (4.43)

χN(q) = Nω/ν̄χ̃(εN1/ν̄), (4.44)

UL(q) = Ũ(εN1/ν̄), (4.45)

qc(N) = qc + bN−1/ν̄ . (4.46)

In which we use ν̄ instead of ν since we now assume a volumetric scaling for the correlation
length. That emphasizes that the values of these critical exponents are di!erent than the ones
following a linear scaling.

Note that for a regular lattice in d dimensions, N = Ld. Then, the finite-size scaling
relations for the magnetization and magnetic susceptibility are given by:

ML(q) = L−dβ/ν̄M̃(εN1/ν̄), (4.47)

χN(q) = Ldω/ν̄χ̃(εN1/ν̄). (4.48)
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Therefore, the hyper-scaling relation becomes:

2d
β

ν̄
+ d

γ

ν̄
= d, (4.49)

or
2β

ν̄
+ γ

ν̄
≡ υ = 1, (4.50)

known as the unitary relation for critical exponents. Therefore, using the volumetric hyper-
scaling relation for regular lattices cannot estimate the network’s dimension. The unitary
conjecture states that under the volumetric scaling ε ∼ N , the exponent υ = 1 is valid for any
network. This conjecture has already been verified for several regular and complex networks,
and we also verify the validity of this conjecture for the a"nity-based scale-free networks in
this work. Although the unitary relation cannot be used to estimate the network dimension,
the unitary relation can serve as a test of the criticality of systems with regular and complex
interaction topologies to verify the values of the estimated critical exponents (VILELA et al.,
2020).

4.9 MEAN-FIELD APPROACH

4.9.1 Order Parameter

We can obtain an approximate analytical solution for the order parameter and the entropy
flux (which is also the entropy production in the stationary state) as a function of social
noise for the majority-vote model using a mean-field approximation. In this approximation, we
consider that each individual interacts with all the other agents of the society, corresponding
to a mean-field limit.

We denote a given configuration of the society as σ = (σ1, σ2, ..., σi, ..., σN), where the
first agent has opinion σ1, the second σ2, and so on. Let us derive the behavior of the stationary
magnetization m:

dm

dt
= d

dt

(
1
N

N∑

i=1
σi

)

= d

dt
〈σi〉 = d

dt
[σiP (σi, t) + (→σi)P (→σi, t)] , (4.51)

where P (σi, t) is the probability of finding a single agent i with opinion σi. Hence,

dm

dt
= σi

d

dt
P (σi, t)→ σi

d

dt
P (→σi, t). (4.52)
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Consider wi(σ) to be the transition probability from an agent i with opinion σi. Therefore,
using the master equation for P (σi, t) and P (→σi, t), we get

dm

dt
= σi [P (→σi, t)wi(→σi)→ P (σi, t)wi(σ)]→ σi [P (σi, t)wi(σ)→ P (→σi, t)wi(→σi)]

= →2 [σiP (σi, t)wi(σ)→ σiP (→σi, t)wi(→σi)] .

(4.53)
Thus,

dm

dt
= d〈σi〉

dt
= →2 〈σiwi(σ)〉 . (4.54)

That is the general equation governing the time evolution of the order parameter. Using the
transition probability of the cooperative majority-vote model, where a fraction f of the agents
are cooperative (the solution to the standard majority-vote dynamics can be obtained by
considering µi = 1, ⇒i, or f = 0):

wi(σ) = 1
2

[

1→ (1→ 2µiq)σiS

(
∑

δ

σj+δ

)]

, (4.55)

it follows that, for all Nf cooperative individuals with µj = µ, we get the following set of
equations

d

dt
〈σj〉 = →〈σj〉+ Θµ

〈

S

(
∑

δ

σj+δ

)〉

, (4.56)

for j = 1, 2, ..., Nf , where we used σ2
j = 1, ⇒j, and we define Θµ = 1 → 2µq. Similarly, for

the remaining N(1→ f) agents with µk = 1, we have

d

dt
〈σk〉 = →〈σk〉+ Θ

〈

S

(
∑

δ

σk+δ

)〉

, (4.57)

where Θ = 1 → 2q and k = Nf + 1, Nf + 2, ..., N . Adding Equations (4.56) and (4.57) for
all agents, we obtain an equation describing the entire system

N∑

i=1

d

dt
〈σi〉 = →

N∑

i=1
〈σi〉+ N [fΘµ + (1→ f)Θ]

〈

S

(
∑

δ

σi+δ

)〉

. (4.58)

We can write the signal function S (∑δ σδ) as an expansion in terms of products of σδ in
the following form:

S(σ1 + · · · + σg) = a1(σ1 + · · · + σg) + a2(σ1σ2 + · · · + σg−1σg) + . . . ag(σ1σ2 . . . σg), (4.59)

where g is the number of neighbors of the central node i being considered. That is a cumulant
series, a common method in statistical mechanics to capture correlations between variables
at di!erent orders. In this context, the first cumulant (a1) represents linear contributions,
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equivalent to the mean interaction across the neighbors. The second cumulant (a2) cap-
tures non-linear correlations between pairs of individuals, and higher-order cumulants measure
higher-order correlations.

By choosing values for each of the spins σ1 = ±1, . . . , σg = ±1, and calculating S(σ1 +
· · · + σg), we get a set of linear equations that we can solve to find the value of the cumulants
a1, . . . , ag. In particular, by exploiting a given configuration σ1 = ±1, . . . , σg = ±1 and
applying the transformation σi → →σi,⇒i, we conclude that all even cumulants are zero.
Hence, the expansion reduces to

S(σ1 + · · · + σg) = a1(σ1 + · · · + σg) + a3(σ1σ2σ3 + · · · + σg−2σg−1σg) + . . . (4.60)

As we simulate the cooperative majority-vote model on the square lattice, in the mean-field
approach, this corresponds to considering that each agent i interacts with four randomly
selected neighbors that we label as a, b, c and d. In that case,

S

(
∑

δ

σi+δ

)

= S(σa + σb + σc + σd) =

a1(σa + σb + σc + σd) + a3(σaσbσc + σaσbσd + σaσcσd + σbσcσd).

Consider the case σa = σb = σc = σd = 1, so the cumulants must satisfy

4(a1 + a3) = 1. (4.61)

Now, if σa = σb = σc = 1 but σd = →1, we have

2(a1 → a3) = 1. (4.62)

Hence, a1 = 3/8 and a3 = →1/8. That is,

S(σa + σb + σc + σd) = 3
8(σa + σb + σc + σd)→ 1

8(σaσbσc + σaσbσd + σaσcσd + σbσcσd).

In the mean-field approximation, we consider 〈σlσuσv〉 ≈ 〈σl〉 〈σu〉 〈σv〉 ≈ m3. Thus, we write
〈

S

(
∑

δ

σi+δ

)〉

= m

2 (3→m2). (4.63)

By using this result in Eq. (4.58), we obtain a di!erential equation for the order parameter

d

dt
m = →εm + ζm3, (4.64)

where
ε = 1→ 3

2 [fΘµ + (1→ f)Θ] , ζ = →1
2 [fΘµ + (1→ f)Θ] . (4.65)
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Multiplying both sides of the equation by m

1
2

d

dt
m2 = →εm2 + ζm4, (4.66)

which is a first-order separable di!erential equation for the variable η = m2. Therefore, by
separating variables:

1
2η(ε→ ηζ) dη = →dt. (4.67)

Integrating both sides of the equation and considering the initial condition t = 0 and η(0) =
m2(0) = m2

0, we obtain
ln
[

η/η0
(ε→ ζη)/(ε→ ζη0)

]

= →2εt. (4.68)

Thus, substituting back η = m2, η0 = m2
0 and solving the quadratic equation, we get

m(t) = ±m0

√
ε

(ε→ ζm2
0)e2εt + m2

0ζ
. (4.69)

The Eq. (4.69) provides the temporal value of the system’s order parameter. We are particularly
interested in the stationary solution, which we can obtain by taking the limit t → ∞. Then,
if ε > 0, we obtain the paramagnetic or disordered solution:

m = 0. (4.70)

On the other hand, for ε < 0, we obtain the ferromagnetic state (ordered) solution:

m = ±
√

ε

ζ
= ±

√√√√ 2 |ε|
fΘµ + (1→ f)Θ , (4.71)

where we used Eq. (4.65). Substituting ε, Θµ = 1 → 2µq, and Θ = 1 → 2q, we obtain the
stationary ordered solution as a function of the main model parameters:

m = ±

√√√√1→ 6q [1→ f (1→ µ)]
1→ 2q [1→ f (1→ µ)] ≡ ±

√
1→ 6q̄

1→ 2q̄
, (4.72)

with q̄ = µ̄q = q[(1→ f(1→ µ)] is the average social noise value. Imposing m = 0, we obtain
the critical social noise:

qc(µ, f) = 1
6 [1→ f (1→ µ)] . (4.73)

In this case, note that ε > 0 corresponds to q > qc and ε > 0 to q < qc so that Eqs. (4.70)
and (4.72) are valid for q > qc and q < qc, respectively.

Note that when f = 0, Eq. (4.72) yields the standard mean-field result for m

m = ±
√

1→ 6q

1→ 2q
, (4.74)
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with qc = 1/6 for the critical noise in the mean-field limit (CROKIDAKIS; OLIVEIRA, 2012;
CROCHIK; TOMÉ, 2005). For f = 1, qc = 1/6µ as expected because everyone is cooperative,
the system is the standard model with q → q/µ.

Figure 11 – Mean-field solution of the order parameter as a function of the average social noise. Here, full
lines correspond to stable solutions, and dashed lines correspond to unstable stationary solutions.
The black dot where the blue and red curves meet highlights the critical social noise point.

Source: Author.

Near the phase transition where q = qc + !q we know that m ∼ (|q → qc|)β. in this case,
expanding Eq. (4.72) in a Taylor series around !q = 0, we find:

m ≈ ±3
√

!q
√

f(1→ µ)→ 1 + O(!q3/2). (4.75)

Thus, we have the mean-field exponent β = 1/2, indicating that the model belongs to the
mean-field Ising universality class.

For confirmation, note that the three stationary solutions given by Eqs. (4.72) and (4.70)
can also be obtained by imposing dm/dt = 0 in Eq.(4.64). Note, however, that for q < qc,
the m = 0 solution is unstable, while the ordered solutions given by Eq. (4.72) are imaginary
to q > qc. That is, we can represent the order parameter solutions in a bifurcation diagram as
shown in Fig. 11. For q̄ > q̄c, we have a horizontal purple stable solution at m = 0, indicating
a symmetric state where the order parameter is zero. Then, at q̄ = q̄c, marked by the black
dot, a bifurcation/phase transition occurs, where the system exhibits symmetry breaking,
displaying either an excess of +1 opinions (blue solution) or →1 opinions (red curve). These
two symmetric branches became stable for q̄ < q̄c, and the purple solution became unstable
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(represented in dashed lines). That characterizes a Supercritical Pitchfork Bifurcation because,
at the critical point, the system undergoes a transition where the single symmetric solution
loses stability, and symmetry breaking occurs (STROGATZ, 2018).

4.9.2 Entropy Production

In this section, we use the mean-field formulation to develop an analytical expression for
the entropy flux in the stationary regime. The idea is to develop Eq. (4.29). To do that, we
use Eq. (4.55) to calculate

ln wi(σ)
wi(σi) = ln

[
1→ σiS (∑δ σi+δ) + 2µiqσiS (∑δ σi+δ)
1 + σiS (∑δ σi+δ)→ 2µiqσiS (∑δ σi+δ)

]

. (4.76)

Note that the product σiS (∑δ σi+δ) may assume only three possible values: →1, 0 and 1.
Therefore,

ln wi(σ)
wi(σi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ln
(

µiq
1−µiq

)
∈ 1, if σiS (∑δ σi+δ) = 1,

ln
(

µiq
1−µiq

)
∈ 0, if σiS (∑δ σi+δ) = 0,

ln
(

µiq
1−µiq

)
∈→1, if σiS (∑δ σi+δ) = →1.

(4.77)

Hence, one can write that

ln wi(σ)
wi(σi) = ln

[
µiq

1→ µiq

]

σiS

(
∑

δ

σi+δ

)

. (4.78)

Thus, we can apply that to the entropy flux equation (Eq. (4.29)):

% =
〈
∑

i

wi(σ) ln wi(σ)
wi(σi)

〉

. (4.79)

Separating the sum between cooperative and regular agents, we get

% =
Nf∑

j=1

〈

ln
[

µq

1→ µq

]

σjS

(
∑

δ

σj+δ

)

wj(σ)
〉

+
N∑

k=Nf+1

〈

ln
[

q

1→ q

]

σkS

(
∑

δ

σk+δ

)

wk(σ)
〉

.

Thus, substituting the equation for the transition probability, we get

% = Nf

2 ln
[

µq

1→ µq

] [

〈σi〉〈S
(
∑

δ

σj+δ

)

〉 →Θµ〈S2
(
∑

δ

σj+δ

)

〉
]

+

N(1→ f)
2 ln

[
q

1→ q

] [

〈σi〉〈S
(
∑

δ

σj+δ

)

〉 →Θ〈S2
(
∑

δ

σj+δ

)

〉
]

.

(4.80)
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Squaring Eq.(4.63) and using the property σ2
a = σ2

b = σ2
c = σ2

d = 1, we get
[

S

(
∑

δ

σj+δ

)]2

= 1
32 (σbσc + σbσd + σcσd + σaσb + σaσc + σaσd)→ 3

8σaσbσcσd

→ 3
16 (σbσc + σaσb + σaσc + σbσd + σcσd + σaσd) + 5

8
+ 9

32 (σaσb + σaσd + σaσc + σcσd + σcσd + σbσd) .

Thus, we use the approximation 〈σuσv〉 ≈ 〈σu〉 〈σv〉 ≈ m2 and calculate the average value of
the square of the signal function of the social interactions:

〈[

S

(
∑

δ

σj+δ

)]2〉

= 1
8
(
5 + 6m2 → 3m4

)
. (4.81)

Now we divide Eq. (4.80) by the total number N of agents and combine it with equations
(4.63) and (4.81) and derive an expression for the entropy flux per site φ:

φ ≡ %/N = f ln
(

µq

1→ µq

)

∈
[

1
4(3m2 →m4)→ Θµ

16 (5 + 6m2 → 3m4)
]

+

+(1→ f) ln
(

q

1→ q

)

∈
[

1
4(3m2 →m4)→ Θ

16(5 + 6m2 → 3m4)
]

.

(4.82)

That is the general equation for the entropy flux as a function of the order parameter. We get
the temporal value of the entropy flux by substituting the temporal value of the magnetization
given by Eq. (4.69). Thus, we obtain

φ(t) = f ln
(

µq

1→ µq

)⎡

⎣ 1
ε(t)

(
3m2

0ε

4 → 6m2
0εΘµ

16

)

→ 1
ε2(t)

(
m4

0ε
2

4 → 3m4
0ε

2Θµ

16

)

→ Θµ

16 5
⎤

⎦

+ (1→ f) ln
(

q

1→ q

)⎡

⎣ 1
ε(t)

(
3m2

0ε

4 → 6m2
0εΘ

16

)

→ 1
ε2(t)

(
m4

0ε
2

4 → 3m4
0ε

2Θ
16

)

→ Θ
165

⎤

⎦,

(4.83)
where ε(t) = (ε → ζm2

0)e2εt + m2
0ζ. Therefore, to obtain the stationary entropy flux, we can

either take the limit t→∞ in Eq. (4.83), where the disordered (ordered) solution is given by
ε > 0 (ε < 0), or just set m = 0 (use Eq. (4.72)). Thus, the stationary disordered solution of
the entropy flux, valid for q > qc(µ, f) is given by:

φ = 5
16fΘµ ln

(
1→ µq

µq

)

+ 5
16(1→ f)Θ ln

(
1→ q

q

)

. (4.84)

For q < qc(µ, f) (or ε < 0), we get the entropy flux for the ordered/ferromagnetic state of
the system:

φ = f

(1→ 2q̄)2 ln
(

1→ µq

µq

)

{q̄ [3→Θµ(2 + q̄)]→ µq}

+ 1→ f

(1→ 2q̄)2 ln
(

1→ q

q

)

{q̄ [3→Θ(2 + q̄)]→ q} .

(4.85)
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We remark that in the stationary state, the entropy flux is equal to the entropy production.
Hence, these equations also enable us to calculate the entropy production per particle.

In particular, for the special case of f = 0.0, we combine Equations (4.84) and (4.85) to
obtain the expression of the entropy production of the standard majority-vote model:

φ(q) =
(

q

1→ 2q

)2

(3+2q) ln
(

1→ q

q

)

H(qc→q)+ 5
16(1→2q) ln

(
1→ q

q

)

H(q→qc), (4.86)

where H(t) is the Heaviside function and qc(µ, f = 0.0) ≡ qc = 0.075 is the critical noise of
the isotropic majority-vote model.

4.10 MAJORITY-VOTE MONTE CARLO ALGORITHM

We display in the Algorithm 1 the computational steps to simulate the majority-vote model
using the Monte Carlo Method. Note that the numerical quantities still vary in the stationary
regime. Hence, we average over time and over di!erent initial configurations and networks to
obtain a statistically consistent physical result. As we are simulating finite-size systems over
di!erent temperatures, these constraints may drive the system to non-stationary configurations
under the time window analyzed, leading to the possibility of non-ergodic behavior, where
the system gets trapped in specific configurations for long periods. For example, in critical
slowing down phenomena, the correlation length diverges as the system approaches the critical
point so that the transition of a single agent impacts a larger region due to the increased
correlation length, and the system takes longer to explore the whole configuration space and
reach equilibrium after a single perturbation.

In this way, Monte Carlo simulations of the majority-vote model and similar ones like the
Ising model rely on averaging over a finite time and di!erent initial configurations to reduce the
e!ects and the possibility of trapped realizations, thus enhancing ergodicity. If the simulation
happens on a regular network, such as the square lattice, generating and sampling over several
networks is unnecessary. However, it is still possible to simulate di!erent samples and average
them. As the system is stochastic, even simulating the same system with the same initial
condition on the same network several times can lead to di!erent results.
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Algorithm 1 Monte Carlo Simulation for the majority-vote model
1: Initialize the system:

- Create a network with N nodes.
- Assign spins σi ∈ {→1, +1} based on M0.

2: Define parameters: q, τ , Nsteps, tskip, Nsamples and Nnetworks.
3: Initialize accumulators: m← 0, m2 ← 0, m4 ← 0 and s← 0.
4: for Network = 1 to Nnetworks do
5: for Sample = 1 to Nsamples do
6: for t = 1 to τ do % Relaxation (thermalization)
7: for i ∈ network nodes do
8: Compute majority opinion:

Smajority = sign

⎛

⎝
∑

neighbors j

σj

⎞

⎠

9: Compute flip probability:

w = 1
2 [1→ (1→ 2q)σiSmajority]

10: Generate random r ∈ [0, 1).
11: if r < w then
12: Flip spin: σi ← →σi.
13: end if
14: end for
15: end for
16: for t = 1 to Nsteps do % Monte Carlo steps
17: for i ∈ network nodes do
18: Compute w and generate r.
19: if r < w then
20: Flip spin: σi ← →σi.
21: end if
22: end for
23: if t mod tskip = 0 then
24: Compute magnetization and entropy flux:

m(t) = 1
N

∣∣∣∣∣

N∑

i=1
σi

∣∣∣∣∣ , s(t) = 1
N

N∑

i=1
ln qi

1→ qi
σiSmajoritywi

25: Accumulate moments:

m← m + m(t), m2 ← m2 + m(t)2, m4 ← m4 + m(t)4, s← s + s(t)

26: end if
27: end for
28: end for
29: end for
30: Compute averages:

m← m

Nmeasurements
, m2 ←

m2
Nmeasurements

, m4 ←
m4

Nmeasurements
, s← s

Nmeasurements

where
Nmeasurements = Nsteps/tskip/Nnetworks/Nsamples.

31: Compute thermodynamical functions:

M = m, X = N · [m2 →m2], U = 1→ m4
3 · m2

2
, S = s
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5 COOPERATIVE MAJORITY-VOTE MODEL RESULTS

This chapter explores the e!ects of collaborative dynamics on the majority-vote model in
regular square lattice networks for the order parameter and the entropy flux. We also discuss the
results using mean-field simulations and compare them to the mean-field analytical solutions.

5.1 SQUARE LATTICE SOCIAL NETWORKS

We employ Monte Carlo simulations on square lattices with side L ranging from 40 to 200,
so the total number of agents is N = L2. Note that a Monte Carlo step (MCS) corresponds
to the trial of updating N individuals randomly chosen accordingly to Eq. 4.55 (hence, the
same agent may be selected more than one time). Next, we wait 2 ∈ 104 MCS to allow the
system to reach the steady state, and we take the time averages of the thermodynamical
functions over the next 105 MCS. We repeat the process up to 100 independent samples to
calculate configurational averages. The procedure is described in detail in the algorithm 1. In
this system, a fraction f of the agents are cooperative, and we select a random subset of the
society to be collaborative individuals.

Figure 12 – Cooperative majority-vote model in the square lattice with L = 200, µ = 0.5 and several values
of the fraction of cooperative agents f . Here we exhibit the social temperature dependence of
(a) the order parameter ML(q, µ, f), (b) the susceptibility χL(q, µ, f) and (c) Binder cumulant
UL(q, µ, f). From left to right, we vary f from 0.0 to 1.0 with an increment of !f = 0.1. The
lines are just guides to the eyes.

Source: Author.

Figure 12 shows how the fraction f of cooperative individuals with noise attenuation µ =
0.5 a!ects the society. In this case, the collaborative agents have a 50% increased chance of
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agreeing with most of their social connections. We plot (a) the magnetization/order parameter
ML(q, µ, f), (b) the variance of the order parameter/magnetic susceptibility χL(q, µ, f), and
(c) the Binder cumulant UL(q, µ, f) versus the social temperature q, for L = 200 and several
values of the cooperative fraction. Note that for small noise parameter values q, M(q, µ, f) =
O(1) indicates the ordered phase of the social system, where one opinion is dominant in society.

Figure 13 – Snapshots of the simulation on a square network of size L = 150 with social temperature fixed
at q = 0.075 and noise tolerance µ = 0.5. In this result, the white (black) dots stand for +1
(→1). We vary the cooperative fraction from (a) f = 0.00, (b) f = 0.20, (c) f = 0.50, and (d)
f = 1.00. Here, we observe that f promotes consensus of the social system.

Source: Author.

By increasing the social temperature q, ML(q, µ, f) continuously decreases to zero for all
values of the cooperative fraction f . However, systems with more cooperative agents display
higher robustness to the social noise, requiring higher values of q so that the order parameter
vanishes. Additionally, the order parameter does not decay regularly with q. Still, the system
undergoes a second-order phase transition near a critical temperature qc(µ, f), where the
magnetization goes to zero continuously, the magnetic susceptibility χL(q, µ, f) exhibits a
maximum and the Binder cumulant UL(q, µ, f) decreases swiftly. When ML(q, µ, f) ∼ 0, the
two di!erent opinions are found with the same probability on average, characterizing a dissent.

We can visually analyze the same process represented in Figure 12 in Figure 13 where we
show the snapshots of simulations for the model with noise fixed at q = 0.075 and µ = 0.5.
White (black) represents +1 (→1) opinion. Note that the giant white cluster contains a large
portion of individuals with opinion +1, and it grows with f , indicating how f promotes the
social order when there is a cooperative influence on the society, i.e., µ < 1.

We can also see that in Figure 14, where we continuously vary the cooperative fraction f

to improve the order for a square lattice with L = 200 and q = 0.08, 0.09, 0.10, 0.11, 0.12 and
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Figure 14 – Disorder-order transitions as a function of the cooperative fraction f for fixed q, with system size
L = 200 and µ = 0.5. In this figure, (a), (b), and (c) represent the magnetization, susceptibility,
and Binder cumulant, respectively. From left to right, q = 0.08, 0.09, 0.10, 0.11, 0.12, and 0.14.
In (a), we also plot q = 0.0 (pink) and q = 0.3 (wine). The lines are guides to the eyes.

Source: Author.

0.14 (from left to right). Note the system undergoes a disorder-order transition for intermediate
values of q with the collaborative fraction. However, su"ciently low (high) social temperatures
suppress the phase transitions, and the community is ordered (disordered) regardless of the
cooperative fraction f value. We highlight this e!ect in Fig. 14(a), where we use q = 0 (blue)
and q = 0.3 (red symbols).

Similarly, in Figure 15, we analyze how di!erent intensities of the cooperative behavior
phenomena µ a!ect the society’s consensus when half of the community is collaborative f =
0.5. We investigate the behavior of (a) the magnetization ML(q, µ, f), (b) the susceptibility
χL(q, µ, f), and (c) the Binder cumulant UL(q, µ, f) as a function of the social noise q, for
L = 200 and diverse values of the noise sensitivity µ. The decrease in the µ value stimulates
the individuals to cooperate, thus reinforcing society’s robustness to disorder, even if the
number of cooperative agents does not change. Indeed, cooperative agents impact their social
contacts, which also influence their social contacts and so on, in a chain e!ect. Therefore, the
influence of the collaborative agents can propagate over the entire network. We conclude that
qc(µ, f) is a monotonically decreasing function of the noise attenuation µ and a monotonically
increasing function of f , as expected.

We obtain a precise estimate of the critical social temperature in the thermodynamic limit
qc(µ, f) by calculating the Binder cumulant U for di!erent system sizes for each pair of the
social noise sensitivity and cooperative fraction (µ, f). In Figure 16, we exhibit the Binder
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Figure 15 – E!ects of the intensity of cooperative behavior µ on the model for (a) the magnetization
M(q, c, f), (b) the magnetic susceptibility χ(q, c, f), and (c) the Binder fourth-order cumulant
U(q, c, f). From right to left, we vary µ from 0.0 to 1.0 in steps of !µ = 0.1 for a cooperative
fraction of f = 0.5. The lines are guides to the eye.

Source: Author.

cumulant for the µ = 0.5 and f = 0.3 case. Following Eq. (4.39), we use the fact that the
critical exponent of U is zero at the critical point, and we estimate the critical social noise
value qc(µ, f) from the intersection point of Binder curves for di!erent sizes L. In this case,
we estimate qc(µ, f) = 0.0891(2) for µ = 0.5 and f = 0.3. Note that, numerically, the curves
will intersect at several points. The estimate 0.0891 is the average between the rightmost and
the leftmost intersections, and the uncertainty 0.0002 is the distance from the central estimate
to the further intersection. We repeat the same process to other pairs of parameters µ and f

to get the set of critical points qc(µ, f).
We summarize the critical noises for several values of f and µ in Table 1, yielding the phase

diagram shown in Fig. 17. The interpolation of the critical dots qc(µ, f) describes the phase
boundary of the system that separates the ordered and disordered phases for each value of the
noise sensitivity µ. Observe that the critical noise grows linearly with f when f is small but has
considerable nonlinear e!ects with f as f increases, amplified as the collaborative intensity µ

is higher. From the data and mean-field calculations (Recall Eq. (4.73)), we propose the phase
boundary lines to obey an equation of type:

qc(µ, f) = 1
a→ bf

, (5.1)

where a and b are parameters that depend on µ. By executing a non-linear curve-fitting
on the data points, we estimate [a, b] = [12.8(5), 9.4(5)], [13.2(1), 6.5(1)], [13.2(1), 3.3(1)],
respectively for µ = 0.25, 0.50 and 0.75. Note that we obtain qc(µ, 0) = 1/a ≈ 0.075,
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Figure 16 – Binder fourth-order cumulant UL(q, µ, f) for µ = 0.5 and cooperative fraction f = 0.3. The
intersection of curves for societies of di!erent sizes L provides an estimate for the critical social
temperature qc(µ, f) in the thermodynamic limit L → ∞. The dashed lines represent cubic fits
of the data points near the critical region q ≈ qc, while the continuous lines are guides to the eye.

Source: Author.

Table 1 – Phase transition points qc(µ, f) as a function of f and µ for the model on the square lattice. The
critical temperatures were estimated using the Binder cumulant crossing method.

f qc(µ = 0.25) qc(µ = 0.50) qc(µ = 0.75)

0.0 0.0750(1) 0.0750(3) 0.0750(1)
0.1 0.0816(2) 0.0791(2) 0.0771(1)
0.2 0.0894(1) 0.0839(1) 0.0792(1)
0.3 0.0986(1) 0.0891(2) 0.0814(1)
0.4 0.1101(2) 0.0947(2) 0.0837(1)
0.5 0.1243(1) 0.1011(1) 0.0861(2)
0.6 0.1420(3) 0.1085(2) 0.0886(2)
0.7 0.1626(3) 0.1167(2) 0.0912(2)
0.8 0.1963(3) 0.1264(2) 0.0941(2)
0.9 0.2418(3) 0.1374(1) 0.0970(1)
1.0 0.3002(1) 0.1503(2) 0.1000(1)

Source: Author.
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Figure 17 – Phase diagram of the model in the parameter space q versus f . The curves depict the phase
boundary separating ordered and disordered phases for di!erent noise sensitivity values µ. The
circles represent numerical estimates of the critical points qc(µ, f), obtained from the intersection
of the Binder cumulant curves for di!erent system sizes. The lines are non-linear fits based on
Eq. (5.1).

Source: Author.

in agreement with the result of the isotropic majority-vote model, which we also verify for
f = 0.0 in table 1 (OLIVEIRA, 1992). Additionally, qc(µ, 1) = 1/(a→b) ≈ 0.075/µ as expected
the fact that if all agents are cooperative f = 1, the system is equivalent to the isotropic case
with q → q/µ.

We investigate the finite size e!ects on the social dynamics of the cooperative majority-
vote model in Figure 18, where we show the magnetization, susceptibility and Binder cumulant
for f = 0.8 and µ = 0.5, with L = 40, 60, 80, 100 and 120. Note that at the critical point
qc(µ, f) ≈ 0.13 (see Table 1), M → 0 as L → ∞, remaining non-zero for noise values
below qc(µ, f). Also, the larger L, the more intense the magnetization fluctuations, yielding
the highest peaks observed for the magnetic susceptibilities near qc(µ, f). That is because the
correlation length increases with the system size so that, near the phase transition, a single
opinion flip of one agent can cascade through the social network of interactions, a!ecting
several other people in a domino e!ect.

We explore the behavior of M , χ and U near the critical point by estimating the critical
exponents β/ν, γ/ν, and 1/ν that characterize the phase transition of the model following Eqs.
(4.35), (4.36) and (4.37). With these equations, we obtain the critical exponents of the phase
transitions and capture the universal behavior of the magnetization, magnetic susceptibility,
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Figure 18 – System size dependence of the model for (a) the order parameter M , (b) the variance χ, and
(c) the Binder cumulant U , for di!erent system sizes L = 40, 60, 80, 100, and 120. Here, we fix
f = 0.8 and µ = 0.5. The lines are guides to the eyes.

Source: Author.

and Binder cumulant given by the universal scaling functions M̃ , χ̃ and Ũ that depend only
on the scaling variable x = εL

1
ν .

In Figure 19, we illustrate the numerical results for µ = 0.5 and several values of f .
By measuring the linear coe"cient of each line in Fig. 19(a), Fig. 19(b) and Fig. 19(c), we
estimate β/ν ≈ 0.125, γ/ν ≈ 1.75 and 1/ν ≈ 1 considering the error bars. We have f from
0.0 to 1.0 with !f = 0.2 from the bottom to the top. We confirm our results by performing
the data collapse of the rescaled versions of (d) M(q, µ, f), (e) χ(q, µ, f) and (f) U(q, µ, f)
over the rescaled social noise using β/ν = 0.125, γ/ν = 1.75 and 1/ν = 1. We shift all plots
in this figure to avoid overlapping. We remark that despite the di!erent behaviors observed in
Fig. 12, Figs. 19(d), (e), and (f) yield only one universal curve independently on f . We repeat
the same procedure for other µ values, as µ = 0.25 and µ = 0.75 also supplying the same set
of critical exponents.

Note that the µ = 1 case is the isotropic majority-vote model (OLIVEIRA, 1992; OLIVEIRA;

MENDES; SANTOS, 1993), while µ = 0 corresponds to a bimodal distribution of noiseless agents
(VILELA; MOREIRA; SOUZA, 2012). We conclude that the critical exponents of the cooperative
majority-vote model are the same as those in an equilibrium two-dimensional Ising model,
regardless of µ and f . This follows Grinsteins criterion, which states that nonequilibrium
stochastic spin-like systems with up-down symmetry in regular lattices fall into the same
universality class of the equilibrium Ising model (OLIVEIRA, 1992; GRINSTEIN; JAYAPRAKASH;

HE, 1985; BAXTER, 1982).
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Figure 19 – Finite-size scaling analysis of the model on the square lattice. (a) The magnetization, (b) the
magnetic susceptibility, and (c) the Binder fourth-order cumulant as functions of system size L
in log-log scale for several values of the cooperative fraction f evaluated at the critical point
q = qc(µ, f) for µ = 0.5. The solid lines represent linear fits to the data, yielding the standard
Ising model critical exponents for square lattices. Using the critical exponents φ/ν = 0.125,
γ/ν = 1.75, and 1/ν = 1, we rescale (d) the order parameter, (e) its variance, and (f) the Binder
cumulant versus the rescaled noise parameter, yielding a universal collapse for each graph. The
curves are vertically shifted for better visualization. We consider f ∈ [0.0, 1.0] with increments of
!f = 0.2 from bottom to top.

Source: Author.

5.2 MEAN-FIELD INVESTIGATION

We verify the mean-field calculations by performing Monte Carlo simulations using the
mean-field approach. Following the mean-field assumptions, we randomly select an agent whose
four neighbors are also randomly chosen. Here we considered systems with N spins, for N =
1600, 3600, 6400, 10000 and 40000. We skip the thermalization time of 104 MCS and evaluate
the time averages over the next 105 MCS with up to 100 di!erent samples.

In Figure 20, we show (a) the order parameter ML(q, µ, f), (b) its variance χL(q, µ, f) and
(c) the Binder cumulant UL(q, µ, f) as functions of the fraction of collaborative individuals
f for several values of the noise q. We estimate the magnetization numerically from Eq.
(4.30) (circles) and compare it with the analytical solution (4.72) (full lines), thus validating
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Figure 20 – Behavior of the order parameter as a function of the cooperative fraction f for several values of
the noise parameter q at fixed µ = 0.5. (a) Magnetization, (b) magnetic susceptibility, and (c)
Binder cumulant. The dashed lines in (a) correspond to the analytical predictions from Eq. (4.72),
while the symbols represent the numerical results averaged over 20 independent samples for a
system size of L = 200.

Source: Author.

the analytical solution of the mean-field calculations. The small divergences near the phase
transition point result from the limited nature of the simulated network with L = 200, whereas
the analytical solution assumes the thermodynamic limit N →→∞.

Figure 20(a) shows that increasing societal collaborative agents promote social ordering.
Extreme temperatures, q → 0 or q → 0.5, suppress the disorder-order phase transitions,
causing the system to remain ordered or disordered regardless of the presence of cooperative
agents. The maximum of each susceptibility curve in Fig. 20(b) denotes the critical values
of f that yield an order-disorder phase transition on the system. Additionally, as f increases,
the critical temperature necessary to vanish the order consensus increases, improving social
robustness. This system’s behavior agrees with Eq. (4.73), where qc(µ, f) is a monotonically
increasing function of f .

In Figure 21, we obtain the mean-field phase diagram in the q ∈ f parameter space,
expressing how the boundary separating society’s ordered and disordered phases behaves as
a function of f and µ. The lines stand for the analytical solutions given by Eq. (4.73), and
the open circles represent the numerical data estimates, agreeing with the mean-field results.
These results also agree qualitatively with the Monte Carlo simulation data we obtained for
the model on square lattices.

In Fig. 22, we show how cooperative behavior changes the Supercritical Pitchfork Bi-
furcation of the order parameter. In general, it increases the cooperative phenomena (either
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Figure 21 – Mean-field phase diagram in the parameter space q versus f . The solid lines represent the analytical
phase boundaries obtained from Eq. (4.73), which separate the ordered and disordered phases of
the system for di!erent values of the noise sensitivity parameter µ. The open circles correspond
to numerical estimates of the critical points qc(µ, f), determined by the crossing points of the
Binder cumulant curves. Here, we use f ∈ [0.0, 1.0] with increments of !f = 0.1.

Source: Author.

by increasing the collaborative fraction f or decreasing the noise sensitivity µ), attenuates
the bifurcation, and can even suppress it. The collaborative agents boost symmetry breaking
and increase the distance between the two stable symmetric branches. Therefore, cooperative
phenomena incentivize the system’s strong preference for one of the two possible opinions.

Since we have an equation describing the mean-field critical social temperature (Eq.
(4.73)), we can generate a density plot to see how the whole spectrum of collaborative pa-
rameters f and µ a!ects the critical social noise. Fig. 23 reveals the density plot and shows
visually that the critical temperature has symmetry around the line µ = 1 → f . Indeed, from
Eq. (4.73), we can see that the critical noise is invariant due to the transformation µ→ 1→ f

and f → 1→ µ, which is the symmetry around the line µ = 1→ f . Therefore, a society with
a fraction of f cooperative agents with cooperative intensity µ is equivalent to a society with
a fraction of 1 → µ collaborative agents with cooperative intensity 1 → f . Additionally, for
0 < µ < 1/6, there is a critical value of the cooperative agents fc = 5/6(1→ µ) above which
the critical noise is higher than one, corresponding to the white region. In this region, society
is always ordered no matter the value of the social temperature.

Finally, using the finite-size scaling relations given by the equations (4.35), (4.36) and
(4.37), we plot in Figure 24 (a) the magnetization, (b) the magnetic susceptibility, and (c) the
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Figure 22 – Mean-field solution of the order parameter as a function of the social noise in the Cooperative
majority-Vote Model. The full lines represent stable solutions, while the dashed lines indicate un-
stable stationary solutions. (a) Influence of the cooperative fraction f on the bifurcation structure,
showing how varying f modifies the stability of solutions. (b) E!ects of the noise attenuation pa-
rameter µ, highlighting cases where bifurcations are suppressed and there is no phase transition.

Source: Author.

absolute value of the derivative of the Binder cumulant at the critical temperature q = qc(µ, f)
versus the system size for µ = 0.5. The line slopes estimate the critical exponents β ≈ 1/2,
γ ≈ 1 and ν ≈ 1/2 for all values of the f and µ investigated. These results confirm that the
majority-vote model with cooperative agents belongs to the mean-field Ising universality class.
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Table 2 – Numerical estimates of the critical noise qc(µ, f) as a function of µ and f for the mean-field
approach. The values in parentheses indicate numerical errors in the last digit.

f qc(µ = 0.25) qc(µ = 0.50) qc(µ = 0.75)

0.0 0.1665(1) 0.1665(1) 0.1664(3)
0.1 0.1802(1) 0.1753(1) 0.1711(2)
0.2 0.1957(3) 0.1851(1) 0.1750(1)
0.3 0.2149(1) 0.1961(1) 0.1799(2)
0.4 0.2376(4) 0.2077(3) 0.1848(1)
0.5 0.2667(1) 0.2224(2) 0.1904(1)
0.6 0.3031(3) 0.2373(1) 0.1955(1)
0.7 0.3507(1) 0.2566(2) 0.2018(2)
0.8 0.4163(4) 0.2768(2) 0.2076(1)
0.9 0.5128(1) 0.3033(3) 0.2152(1)
1.0 0.6664(1) 0.3332(2) 0.2221(1)

Source: Author.

Figure 23 – Density plot of the social critical noise following the mean-field prediction from Eq. (4.73), span-
ning the full spectrum of the cooperative parameters µ and f .

Source: Author.
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Figure 24 – Log-log plots for (a) the magnetization M(q, µ, f), (b) the susceptibility χ(q, µ, f), and (c) the
Binder cumulant U(q, µ, f), evaluated at the critical noise q = qc(µ, f) versus the system size L
for µ = 0.5. The solid lines are obtained from linear regression, and their slopes correspond to the
respective critical exponents in the mean-field limit. The curves are vertically shifted for better
visualization. We consider f ∈ [0.0, 1.0] with increments of !f = 0.2 from bottom to top.

Source: Author.

Figure 25 – Stationary social entropy flux ϕL(q, µ, f) for the collaborative majority-Vote model as a function
of the social temperature q for di!erent parameters obtained via Monte Carlo simulations on
the square lattice. (a) Fixing µ = 0.5 and f = 0.5 while varying the system size L. (b) Fixing
L = 180 and µ = 0.5 while varying the cooperative fraction f . (c) Fixing L = 180 and f = 0.5
while varying the noise attenuation µ. The solid lines serve as visual guides.

Source: Author.
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5.3 COOPERATIVE MAJORITY-VOTE ENTROPY PRODUCTION

In Figure 25, we plot the numerical results on the square lattice of the social entropy
production per agent φL(q, µ, f) in the stationary regime for several values of (a) the system
size L, (b) the collaborative fraction f and (c) the noise attenuation µ as a function of the
society temperature q. We observe in (a) that the entropy flux per agent has a weak sensitivity
to variations in the population size (therefore, the entropy flux is proportional to the number
of agents, which means the entropy flux is extensive, as expected. Recall that we defined
φ ≡ %/N in Eq. (4.82)) but a strong dependence on (b) the fraction of collaborative agents
present in society and (c) noise attenuation in a log-linear scale.

The curves for f = 0.0 and µ = 1.0 in Figures 25(b) and (c), respectively, display the flux
of entropy of the standard majority-vote model. This flux has a maximum that occurs after
the critical noise qc(µ, f = 0.0) = 0.075 and vanishes for q → 0 or q → 1/2.

Figure 25(b) displays that, when f = 1.00 and µ = 0.5, the entropy flux curve follows the
isotropic flux case under the linear transform q → q/µ. Thus, this flux vanishes for q → 0 and
q → 1/2µ. For 0 < f < 1, we model a nonhomogeneous society with two di!erent types of
agents with distinct noise sensibilities. Hence, after the maximum, instead of approaching zero,
the entropy flux of nonhomogeneous societies increases again, supported by the discrepancy
between the collaborative and regular agents, as depicted in Figure 25(b). Indeed, Figure 25(c)
reveals that this phenomenon intensifies as µ becomes smaller because the social temperature
disparity among the agents increases.

Note that as a general pattern, the critical temperature qc(µ, f) does not coincide with the
maximum of φL(q, µ, f). Actually, the critical noise is an inflection point for the entropy flux
that occurs before the maximum point, as we can see in the detail of Figure 25(a). Therefore,
similarly to the Ising model, the entropy flux yields a finite singularity at the critical point of
the form

φL(q, µ, f) = φL(qc(µ, f), µ, f) + A± | q → qc(µ, f) |(1−ε), (5.2)

where A± are the amplitudes of the regimes before and after the critical social tempera-
ture point qc(µ, f). Thus, instead of a maximum in the entropy flux, the second-order phase
transition that occurs on the critical noise maximizes the derivative of the entropy flux con-
cerning the social temperature, as we can see in Fig. 26(a) for µ = 0.5 and f = 0.5 when
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Figure 26 – (a) System size dependence of the partial derivative of the entropy flux with respect to the social
temperature for µ = 0.5 and f = 0.5. (b) Maximum value of the entropy derivative at the critical
point as a function of the natural logarithm of the system size. The solid lines serve as visual
guides.

Source: Author.

Figure 27 – Mean-field stationary social entropy flux production ϕL(q, µ, f) as a function of the social temper-
ature q. (a) Dependence of ϕL(q, µ, f) on the cooperative fraction f for µ = 0.5. (b) Dependence
of ϕL(q, µ, f) on the noise sensitivity µ for f = 0.5. The open circles represent numerical data
obtained from Monte Carlo simulations for N = 32400 individuals in the mean-field regime, while
the solid lines correspond to the analytical results given by Eqs. (4.84) and (4.85).

Source: Author.

qc(µ = 0.5, f = 0.5) = 0.1011 (Table 1). Indeed, from Eq. (5.2), we can write

∂φL(q, µ, f)
∂q

∼| q → qc(µ, f) |−ε, (5.3)

where the exponent ω corresponds to the same exponent associated with the specific heat of
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the Ising model in the square lattice, ω = 0, which yields a singularity of the logarithm type.
Hence, in analogy, we obtain

∂φL(q, µ, f)
∂q

∼ ln | q → qc(µ, f) | . (5.4)

We use the Savitzky-Golay Smooth algorithm with cubic polynomials to numerically estimate
the derivate of the entropy production regarding the social noise ∂φL(q, µ, f)/∂q for several
systems of di!erent sizes L in Fig. 26(a). By finite-size scaling theory on Eq.(5.4), the max-
imum value of the partial derivative of the entropy flux concerning the social temperature q

must diverge at the critical point as
(

∂φL(q, µ, f)
∂q

)

max

∼ ln L. (5.5)

Indeed, the Fig. 26(b) confirms our conjecture given by Eq.(5.4) for µ = 0.5 and several
values of the cooperative fraction f . We observed the same behavior for other values of the
noise sensitivity µ and f . Therefore, we proved our premise for the cooperative majority-vote
model on square lattices is correct.

Figure 27 shows and confirms the mean-field stationary social entropy flux production
φL(q, µ, f) as a function of the noise q for several values of the cooperative fraction f noise
sensitivity µ. In Figure 27(a) we set µ = 0.5 and f = 0.00, 0.25, 0.50, 0.75 and 1.00 while
in Figure 27(b) we use f = 0.5 and µ = 0.25, 0.50, 0.75 and 1.00. The open circles are
numerical data obtained by Monte Carlo simulations for N = 32400 individuals in the mean-
field limit, and the lines represent the analytical results given by Equations (4.84) and (4.85).
There are slight deviations between the mean-field solutions and the Monte Carlo data in the
ferromagnetic phase of the entropy flux due to the finite nature of the simulated systems,
amplified as µ→ 0.

We highlight that for nonhomogeneous societies (0 < f < 1), where a social temperature
contrast exists between the regular and cooperative individuals, φL(q, µ, f) does not approach
zero when q = 0.5, but remain finite independently of system size L (Figure 27(c)). However,
for any isotropic case, as f = 0 or µ = 1.0, φL(q, µ, f) tends to zero for q = 0.5, as expected.
Di!erently from the square lattice network, in the mean-field framework, besides the inflection
point, the critical temperature qc(µ, f) also corresponds to the point of maximum entropy
flux.

An exciting result is that, for non-equilibrium systems, such as the cooperative majority-
vote model, the Maximum Entropy Production Principle proposes that among all possible non-
equilibrium steady states (NESS) that satisfy the systems constraints, the one with the highest
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entropy production rate is the most likely. Therefore, if real-world societies follow this principle,
the heterogeneity between cooperative and non-cooperative individuals could be explained as a
potential natural manifestation of the achieved NESS since combining cooperative and regular
agents maximizes entropy production (MARTYUSHEV; SELEZNEV, 2006; DYKE; KLEIDON, 2010).
Observe that the NESS with higher entropy production does not necessarily have more disorder,
but actually, it yields a dynamic state that maximizes entropy production.
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6 AFFINITY-BASED SCALE-FREE NETWORK AND SOCIAL DYNAMICS

In this chapter, we investigate the properties of the proposed scale-free network with
a"nity e!ects, defined in Sec. 2.3. Then, we explore how this network a!ects the majority-
vote dynamics using Monte Carlo simulations to approximate opinion dynamics in real social
networks.

6.1 NETWORK CHARACTERIZATION

Aligning with actual data from social networks like X, Facebook and Instagram, our network
model generates scale-free networks with di!erent curvatures as we vary ε or ω in Figures 28
and 29. That result contrasts with the original Barabasi-Albert (BA) model’s distribution,
which is equivalent to the ε = 1 case in Fig. 28 (a), that always features γ ≈ 3 with no
curvature.
Figure 28 – Log-log plots of (a) the degree distribution and (b) the cumulative degree distribution of the

A"nity-Based Scale-Free Network for several values of the average globalization parameter ε.

Source: Author.

The curvature in the degree distribution happens because of the homophilic e!ects gener-
ated by the a"nity parameter, which increases the chance of local connections. Consequently,
some purely preferential attachment connections are rewired to close individuals, causing an
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excess of less connected individuals compared to the original BA model.
On the other hand, the cumulative degree distribution of the A"nity-Based Scale-Free

Network follows the same pattern as the original BA model, converging slowly due to the scale-
free property of the degree distribution. Increasing the globalization parameter ε generates
networks with higher social connectivity inequality with more prominent hubs, causing the
distribution to converge slowly.

Figure 29 – Log-log plots of (a) the degree distribution and (b) the cumulative degree distribution of the
A"nity-Based Scale-Free Network for several values of the average a"nity parameter ω.

Source: Author.

In Fig. 30, we estimate the network degree distribution exponent γ for several values of
the globalization parameter ε and the local a"nity ω. For ε = 1, the exponent is γ ≈ 3,
independently of ω, as expected. By decreasing ε and/or increasing ω, there is a natural
trend to increase γ. However, for several combinations of ε and ω, the network still yields a
degree exponent close to 3, yielding scale-free behavior. Note that networks with 3 < γ < 3.5
are considered weaker scale-free because they still follow a power law, but hubs become less
dominant. Many real-world networks, such as biological, technological, and social networks,
often exhibit γ values slightly greater than 3. In this regime, the degree variance 〈k2〉 converges,
opposite to the divergence of the second moment for γ < 3 (NEWMAN, 2005). Observe that,
for ε = 0; we have a gravitational network with exponent ω, and the degree exponent γ is
independent of ω and is given by γ ≈ 4.
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Figure 30 – Impact of the globalization parameter ε and the local a"nity ω on the degree distribution exponent
γ for a network of size N = 20000. The lines are guides to the eye.

Source: Author.

Figure 31 – Temporal degree dynamics of the first network node for several values of (a) the globalization
parameter ε and (b) the a"nity parameter ω.

Source: Author.

Indeed, In Fig. 31, we show that the temporal degree dynamics of the first network node
over time evolve in the same pattern of the BA model, still reproducing the first mover
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Figure 32 – Clustering coe"cient of the A"nity-Based Scale-Free Network for a network with N = 20000 and
various values of the globalization parameter ε and the local a"nity ω.

Source: Author.

Figure 33 – Average shortest path length of the A"nity-Based Scale-Free Network for a network with N =
20000 and various values of the globalization parameter ε and the local a"nity ω.

Source: Author.

advantage and the rich get richer phenomena. Note, however, that this e!ect is weakened
because of the increased local a"nity e!ects in the network. For the gravitational network
ε = 0, the network behaves like a random graph, and the degree of the initial node doesn’t
grow in a power law. However, globalization values such as ε = 0.8 and ε = 0.6 reproduce
the first mover advantage phenomena similarly to the original BA model (ε = 1.0).



105

Figure 34 – Robustness of the A"nity-Based Scale-Free Network under the random removal of a fraction of
nodes for several values of the globalization parameter ε and the local a"nity ω.

Source: Author.

Figure 32 shows how the a"nity structure a!ects the network clustering coe"cient. For
small values of the local a"nity ω, the global clustering decreased over the original BA network,
but the clustering surpassed the original clustering as ω increased. Thus, for small values of
ω, the network decentralization level increases because some links to central hubs are rewired
to individuals nearby. However, low intermediate values of ω, such as 1.7 to 2.0, already
create networks with higher clustering coe"cients than the original BA model as the local
connections start to group and create locally connected communities. The higher clustering
follows the sociological "friend of my friend is also my friend" principle, as it measures the
level of triadic closure in the network, aligning with real-world network properties (SIMMEL,
2013).

In Fig. 33, we show that even vast networks with N = 20000 nodes feature very low mean
distance. Additionally, the A"nity-Based Scale-Free Network displays a lower mean distance
than the original BA network, only surpassing it with higher a"nity parameter values of 2.5
to 2.7. That shows improvement in e"cient communication as information, news, signals, or
social influence spreads faster across the network.

In Figs. 34 and 35, we explore the robustness of the A"nity-Based Scale-Free Network.
While the Random Graph is highly vulnerable to random attacks and can be destroyed in a
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Figure 35 – Robustness of the A"nity-Based Scale-Free Network under targeted attacks on a fraction of nodes
for several values of the globalization parameter ε and the local a"nity ω.

Source: Author.

relatively small value of the fraction of removed nodes, the original BA network is extremely
robust to random failures, with the giant component being destroyed only when the fraction of
random nodes removed is close to one. In Fig. 34, we show that the A"nity-Based Scale-Free
Network, similarly to the BA model, is also very robust to random failures. In particular, the
network robustness is practically independent of the globalization parameter ε. That is, if some
users leave randomly, the network giant component is not severely a!ected. This shows the
network is robust, and information and influence can still propagate through the network via
alternative paths.

On the other hand, the original BA model is highly vulnerable to targeted attacks, where
hubs and popular nodes are removed first instead of random removal of nodes. Indeed, hubs
(influencers, journalists, or community leaders) are central nodes, and when removed (like ban-
ning a high-profile user or because a user executed disinformation, illegal behavior or spam),
the network can collapse much faster, fragmenting into small components and disrupting infor-
mation flow. However, Fig. 35 shows that the A"nity-Based Scale-Free Network significantly
displays higher robustness to targeted hubs attacks as the global parameter ε decreases. This
happens because local connections improve the global network clustering, generating alternate
paths for information flow to maintain the network.
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6.2 MAJORITY-VOTE ON AFFINITY-BASED SCALE-FREE NETWORKS

Here, we simulate the standard dynamics of the majority-vote model but on a nontrivial
topology designed to capture the behavior of real social networks such as X and Facebook.
In Fig. 36, we show how this network structure a!ects social dynamics. Note that while the
local a"nity modeled by the ω parameter between individuals is a natural phenomenon, it
decreases the community’s robustness to disorder, which can promote social polarization in
social networks. Still, there is an upper-limit e!ect: the impact of ω on the order parameter
saturates and approaches a natural limit. For instance, there is no virtual di!erence between
the curves with ω = 9 and ω = 10.
Figure 36 – E!ects of the intensity of local a"nity ω on the model for (a) the magnetization, (b) the magnetic

susceptibility, and (c) the Binder fourth-order cumulant as functions of the social noise q. Here,
we use N = 10000, ε = 0.9, and z = 5. The lines serve as visual guides.

Source: Author.

Another way to look into these results is using a heat map in Fig. 37. Here, we have
the advantage of extrapolating the numerical results and see at a glance the behavior of the
thermodynamical functions in a spectrum of the model parameters. In particular, the vertical
boundary separating the white region in Fig. 37(a) enables us to estimate the phase boundary
between the ordered and disordered phases of the system. The exact boundary is highlighted
by the magnetic susceptibility in Fig. 37(b) and by the orange curve on the Binder cumulant
in subfigure (c).

To verify that, we estimate the critical social noise in the thermodynamic limit using the
properties of the Binder cumulant, as shown in Fig. 38. Indeed, from Eq. (4.39), the binder
cumulant is invariant to the system size at the critical point, and we estimate the critical
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Figure 37 – Heat map of the e!ects of local a"nity intensity ω on the model for (a) the magnetization, (b)
the magnetic susceptibility, and (c) the Binder fourth-order cumulant as functions of the social
noise q. Here, we use N = 10000, ε = 0.9, and z = 5.

Source: Author.

Figure 38 – Binder cumulant for ω = 4, ε = 0.9, and z = 5. The point where the curves for societies of
di!erent sizes N intersect is the estimate for the critical social temperature in the thermodynamic
limit N → ∞. To estimate the intersection, the lines are cubic fits of the data points near the
critical region q ≈ qc.

Source: Author.

social noise value qc(µ, f) from the intersection point of Binder curves for di!erent sizes N .
We repeat the same process to other values of the social a"nity pairs to obtain the set of
critical points.

We obtain the phase diagram in Fig.39 using the critical social noises data. We remark
that the interpolation of the critical points resembles the boundaries observed in the contour
plot in Fig. 37. In particular, the phase boundary for this system su!ers a phase transition:
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Figure 39 – Phase diagram in the parameter space q versus ω. The line denotes the phase boundary interpola-
tion of numerical data that separates the system’s ordered and disordered phases. The open circles
represent the numerical results of the critical social noise, estimated by the intersection points of
the Binder cumulant curves. The phase boundary undergoes a second-order phase transition at
the critical value of the local a"nity parameter ω.

Source: Author.

Figure 40 – Log-log plots of (a) the order parameter and (b) the order parameter variance over the system
size for several values of the a"nity parameter ω for ε = 0.9. The linear fits enable us to estimate
the critical exponents φ/ν and γ/ν.

Source: Author.

the critical noise value decays abruptly at a critical value of the local a"nity parameter ωc.
Therefore, the system behavior changes dramatically as ω increases: for low ω, long-range
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Figure 41 – Plot of the characteristic unitary line y + 1.05(2)x = 1.03(1) estimated by the linear fit of the
relation between the critical exponents φ/ν̄ and γ/ν̄ for several values of the a"nity parameter
ω and ε = 0.9.

Source: Author.

Table 3 – Critical values of φ/ν̄, γ/ν̄ for z = 5, ε = 0.9, and the unitary relation in the unitary relation
υ = 2φ/ν̄ + γ/ν̄.

ω β/ν̄ γ/ν̄ υ = 2β/ν̄ + γ/ν̄

1 0.2851(1) 0.4265(1) 0.9967(2)
2 0.3076(1) 0.384(1) 0.9992(1)
3 0.253(1) 0.46(1) 0.966(2)
4 0.194(1) 0.613(3) 1.001(4)
5 0.16(2) 0.68(1) 1.000(4)
6 0.179(6) 0.677(4) 1.035(8)
7 0.160(7) 0.685(2) 1.005(10)
8 0.151(7) 0.700(6) 1.002(13)
9 0.165(3) 0.687(3) 1.017(6)
10 0.164(5) 0.692(3) 1.020(8)

Source: Author.

connections predominate following mainly the preferential attachment mechanism, but as ω

increases, the local a"nity e!ects increase, changing the community structure, which becomes
more susceptible to social polarization. However, note that for ω > 7, these a"nity e!ects
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saturate and do not significantly impact the system robustness to disorder.
We use the finite-size scaling relations given by the equations (4.35), (4.36) and (4.37)

and plot in Figure 40(a) the magnetization and (b) the magnetic susceptibility at the critical
temperature versus the system size for several values of the local a"nity ω. The slopes estimate
the critical exponents β/ν̄ and γ/ν̄ for all values of the ω investigated. We remark that we
found a new universality class as the set of critical exponents di!ers from previous systems
and the majority-vote model on standard Barabási networks. We display the critical exponent
values in table 3, also verifying that the unitary relation is followed for each value of ω, as
expected (VILELA et al., 2020). We also relate the critical exponents in Fig. 41, where we obtain
the characteristic unitary line of the model. Here, the linear fit over the critical exponents 2β/ν̄

and γ/ν̄ shows an averaged unitary exponent υ = 1.03(1).
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7 CONCLUSION AND FINAL REMARKS

In this work, we explore two novel, groundbreaking interdisciplinary research fields that use
tools from physics, mathematics, and computer science to investigate social and economic
phenomena – Sociophysics and Econophysics. In particular, building on empirical evidence
from the experiments of Solomon Asch and Gregory Berns that showed how social pressure
shapes human behavior and perception of reality, we investigate the majority-vote model, a
simple and powerful model to explore opinion formation dynamics.

A critical component in modeling social and economic systems is the complex network
behind human connections. Based on the Barabási-Albert (BA) Model for scale-free networks,
we propose a modification to include homophily e!ects and define the A"nity-Based model
for Scale-Free Networks, which can more closely reflect the concave degree distribution of
real social networks such as X and Facebook. We also show that A"nity-Based Scale-Free
Networks can generate concave degree distributions, lower mean distances, higher clusterings
and improved robustness than the original Barabasi-Albert scale-free networks.

In this study, we explored the dynamical and topological e!ects on the majority-vote model.
On the dynamic side, we investigated the impact of collaborative behavior on opinion dynamics
and the production of social entropy in communities. On the topological side, we analyzed
how A"nity-Based Scale-Free Networks a!ect society’s social dynamics.

We employ Monte Carlo simulations for both the cooperative majority-vote model on a
square lattice and the majority-vote model defined on a"nity-based scale-free networks and
found a second-order consensus-dissensus phase transition. While the cooperative majority-
vote model yields the same universality class as the 2D equilibrium Ising model, we discovered
a new one for the majority-vote model on a"nity-based scale-free networks. We show that
improving the cooperative fraction f promotes the formation of a giant cluster of consenting
individuals, suppressing the phase transition. The collaborative behavior enhance the social
robustness of society to opinion disorder. On the other hand, the local a"nity ω decreases the
community robustness and can lead to social polarization in social networks. This result shows
how algorithms that increase the a"nity in users can lead to platforms and virtual communities
with high social polarization.

Using a mean-field approach, we validate the cooperative majority-vote model numerical
results with analytical calculations. We use the master equation to obtain the expressions for
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the order parameter and the critical social noise of the system, exhibiting qualitative agreement
with the Monte Carlo results on the square lattice. We also confirm the analytical equations by
comparing them with mean-field Monte Carlo simulations. We remark that, in the mean-field
limit, the analytical solution is similar to the isotropic majority-vote model expression, where
the noise q is replaced by the average noise of the system q̄ = µ̄q = q[(1→ f(1→ µ)].

We study the cooperative model entropy production by combining the Gibbs entropy with
the master equation, and we find the analytical expression of the entropy production via the
mean-field formulation. Our results for the entropy flux of the isotropic majority-vote model
(f = 0.0) rectify previous results about the entropy production in the majority-vote model
(CROCHIK; TOMÉ, 2005; TOMÉ; OLIVEIRA, 2015). We verify our calculations using the mean-
field Monte Carlo simulation results.

Additionally, we conjecture that the coexistence of cooperative and non-cooperative in-
dividuals could be a potential natural manifestation of the Maximum Entropy Production
Principle, where the most probable non-equilibrium steady states have the highest entropy
production rate. Indeed, our simulations show that systems with a combination of collabora-
tive and regular individuals maximize the system’s stationary entropy production.

As an extension of this work, it would be essential to investigate the e!ects of cooperative
behavior in the majority-vote model in complex networks. Additionally, the presence of non-
compliance agents with 1 < µ ≤ 2, with the opposite behavior of the collaborative agents, can
be explored. A study of the impact of these dissent agents on opinion dynamics can deepen our
understanding of society and the e!ects of collective noncooperative behavior on consensus
dynamics.
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Appendix: Proof of Jensen’s Inequality
Jensen’s inequality is a fundamental theorem of probability theory with applications in in-

formation theory and machine learning. This work uses this theorem to show that the entropy
production equation is always nonnegative, in conformity with the second law of thermody-
namics in Sec. 4.

Theorem (Jensen’s Inequality): Let f : R→ R be a convex function, and let x1, x2, . . . , xn

be real numbers. If t1, t2, . . . , tn are non-negative weights such that

n∑

i=1
ti = 1, (1)

then
f

(
n∑

i=1
tixi

)

≤
n∑

i=1
tif(xi). (2)

Proof by Induction
For n = 1, we trivially have

f(x1) ≤ f(x1). (3)

For n = 2 , let t1 + t2 = 1, with t1, t2 ≥ 0 . Geometrically, the convexity condition means that
the function f lies below the secant line connecting any two points on its graph. Therefore,

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2). (4)

That is, the function evaluated at a weighted average of two points is less than or equal to
the same weighted average of function values at those two points.

We assume the inequality holds for n ∈ N with n > 2. We show by induction that it still
holds for n = k + 1.

If tk+1 = 1, then ti = 0 for i = 1, 2, . . . , k, and the inequality reduces to:

f(xk+1) ≤ f(xk+1), (5)

which is trivially true. Now, if tk+1 ′= 1, then we write

f

(
k+1∑

i=1
tixi

)

= f

(

(1→ tk+1)
k∑

i=1

ti

1→ tk+1
xi + tk+1xk+1

)

. (6)

Now, applying the result for n = 2, we have the upper bound on the right term as:

f

(
k+1∑

i=1
tixi

)

≤ (1→ tk+1)f
(

k∑

i=1

ti

1→ tk+1
xi

)

+ tk+1f(xk+1). (7)
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Thus, applying the inductive hypothesis for f
(∑k

i=1
ti

1−tk+1
xi

)
, we get

f

(
k+1∑

i=1
tixi

)

≤ (1→ tk+1)
k∑

i=1

ti

1→ tk+1
f(xi) + tk+1f(xk+1) =

k+1∑

i=1
tif(xi). (8)

Therefore, we conclude our proof.
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A B S T R A C T

As one of the most widespread social dynamics, cooperative behavior is among the most fascinating collective
phenomena. Several animal species, from social insects to human beings, feature social groups altruistically
working for a common benefit. This collaborative conduct pervades the actions and opinions of individuals,
yielding strategic decision-making between political, religious, ethnic, and economic social puzzles. Here, we
explore how cooperative behavior phenomena impact collective opinion dynamics and entropy generation in
social groups. We select a random fraction 𝜔 of community members as collaborative individuals and model
the opinion dynamics using a social temperature parameter 𝜀 that functions as a social anxiety noise. With
probability 𝜀, regular individuals oppose their companions about a social decision, assuming group dissent.
Collaborative agents experience a reduced effective social noise 𝜗𝜀, where 0 < 𝜗 < 1 is the social anxiety
noise sensibility parameter that enhances social validation. We perform numerical simulations and mean-field
analysis and find the system undergoes nonequilibrium order–disorder phase transitions with expressive social
entropy production. Our results highlight the effects of a social anxiety attenuation level in improving group
consensus and the emergence of cooperative dynamics as a natural maximization of entropy production in
noisy social groups, thus inducing exuberant collective phenomena in complex systems.

1. Introduction

In light of the pervasive influence of technology, the diverse and
significant challenges surrounding information dissemination have pro-
pelled intense scientific research into Sociophysics models. Several dy-
namics regarding opinion formation on regular and complex networks
were widely proposed to investigate social, financial, and professional
interactions in groups of individuals or societies. Such physical models
can capture the main features of complex collective phenomena in
real societies. Similar to condensed matter systems, different opinion
models exhibit intense critical dynamics and nontrivial nonequilibrium
phase transitions [1–25].

Within the Sociophysics framework, the majority-vote model is
an agent-based representation of interacting individuals in a contact
network [24–45]. The model consists of a system of agents that hold
opinions for or against some issue, and the stochastic variable 𝜛𝜚,
which assumes one of the two values ±1, represents the opinion of

ω Corresponding author.
E-mail address: chaowanghn@vip.163.com (C. Wang).

an individual 𝜚 at a given time. The majority-vote model evolves by
an inflow dynamics, where each agent agrees with the majority of
its neighbors with probability 1 ε 𝜀 and disagrees with chance 𝜀. The
quantity 𝜀 is called the noise parameter of the model, and it relates to
a level of social anxiety, or social temperature, of the system.

Among several variations of this model, we highlight the inves-
tigation of majority-vote dynamics under the framework of random
graphs and complex networks of interactions. In these studies, the
authors find that group ordering, or opinion polarization in a society, is
strongly related to the number of interacting neighbors [29–34], while
additional investigations focus on social dynamics of systems composed
of heterogeneous agents [35–38,41].

Inspired by real-world social group behavior, scientists developed
further generalizations of the model, such as the three-state interpreta-
tion and different opinion functions, under the influence of regular and
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complex networks [43–48]. Nonetheless, based on opinion dynamics,
examinations of this model rendered insights on second-order phase
transitions, proposing criteria for the volumetric scaling of physical
quantities at the critical point, yielding a universal relation for critical
exponents regardless of the structure of the interaction network [48].
Recent studies on the economic behavior of brokers in financial mar-
kets reproduced real-world market features apprised by majority-vote
dynamics [49–52].

Cooperative behavior is one of the most widespread collective so-
cial phenomena that still challenge scientists. Several animal species,
from insects to human beings, exhibit social groups working for a
joint benefit. Typical cooperative behavior, such as group hunting and
reciprocity protection, makes species more competitive. Without this
phenomenon, social institutions, non-governmental organizations, gov-
ernments, culture, education, transport, health systems, among others,
could be unattainable. Collaborative manners permeate the actions and
opinions of individuals, imbuing strategic decision-making related to
social dilemmas such as political, religious, ethnic, and economic chal-
lenges [53–55]. In this paper, we design an anisotropic social model
to investigate the influence of cooperative voters on group opinion
evolution.

We propose an agent-based model with two types of individuals,
collaborative and regular, who exhibit different chances to adopt the
dominant opinion expressed in a social group. We introduce a param-
eter 𝜗 ϑ (0, 1), named noise sensibility, to the standard majority-vote
model to yield a distinct influence of social anxiety over individuals.
Hence, a cooperative individual is under an effective attenuated social
temperature 𝜗𝜀, while a regular individual is subject to the regular
noise 𝜀.

Our results show that the consensus is strongly related to the num-
ber of collaborative individuals and noise sensibility. Numerical and
analytical results add a significant new twist to the remarkable observa-
tion of the entropy flux of the mean-field majority-vote model [56–58].
We achieve a general expression for isotropic and anisotropic cases
and verify our results using numerical simulations in the mean-field
formulation.

2. Model

In the isotropic majority-vote model (MVM), each agent occupies
a node 𝜚 of a given network of social interactions. A spin variable 𝜛𝜚
represents the opinion of the agent 𝜚 about a particular subject or in
a referendum in an instant 𝜍. In the isotropic version, an individual
is under a probability 1 ε 𝜀 that its opinion 𝜛𝜚 follows the majority
state of its interacting neighbors while assuming the minority state with
probability 𝜀 [24,25].

In this work, we analyze a square lattice opinion network with
𝜑2 nodes, where a randomly chosen fraction 𝜔 of agents have noise
sensibility 0 < 𝜗 < 1, addressing the behavior of the cooperative
individuals. In contrast, the complementary fraction 1 ε 𝜔 of regular
voters follow the standard majority-vote dynamics, i.e., 𝜗 = 1. Thus,
for noise level 𝜀, we denote the flipping probability of a given opinion
𝜛𝜚 as

𝛻𝜚(𝜛) =
1
2

⌋

1 ε (1 ε 2𝜗𝜚𝜀)𝜛𝜚𝜕
⌈ 4
⌉

ℵ=1
𝜛𝜚+ℵ

{}

, (1)

the summation runs over all the four first neighboring opinions that
influence the individual 𝜚 and 𝜕(ℶ) stands for the signal function, where
𝜕(ℶ) = ε1, 0, 1 for ℶ < 0, ℶ = 0, and ℶ > 0, respectively. Furthermore,

𝜗𝜚 =
⦃

𝜗, if 𝜚 is a cooperative agent.
1, if 𝜚 is a regular agent.

(2)

That is, a cooperative individual agrees with the majority with proba-
bility 1 ε 𝜗𝜀, and disagrees with probability 𝜗𝜀. Thus, noise sensibility
𝜗 < 1 increases the agreement probability by attenuating the effect of
the noise parameter 𝜀 on society.

The cooperative majority-vote dynamics with 𝜔 = 0 capture the
behavior of the isotropic majority-vote model with noise [24,25]. For
𝜔 = 1, all individuals are cooperative, and the system also behaves
as the standard MVM under the linear transformation 𝜀 ⥳ 𝜀ϖ𝜗. In
contrast, highlighting the effects of the noise sensibility 𝜗, we recover
the standard flip probability of the isotropic MVM when 𝜗 = 1,
in which all the agents are under the influence of the same social
temperature 𝜀. The case for 𝜗 = 0 corresponds to a bimodal distribution
of noise, where a fraction 𝜔 of the individuals are noiseless, always
agreeing with its nearest interacting neighbors, scrutinized in previous
investigations [36,41]. In this research, we perform numerical Monte
Carlo simulations and a mean-field analytical procedure for the general
cases of 0 < 𝜔 < 1 and 0 < 𝜗 < 1.

3. Cooperative stationary dynamics

To investigate the critical behavior of the model, we consider the
order parameter ℷ given by

ℷ = 1
𝜑2

⦄

⦄

⦄

⦄

⦄

⦄

𝜑2
⌉

𝜚=1
𝜛𝜚
⦄

⦄

⦄

⦄

⦄

⦄

. (3)

We also consider magnetization ℸ𝜑(𝜀,𝜗,𝜔 ), magnetic susceptibility
⊳𝜑(𝜀,𝜗,𝜔 ), and Binder fourth-order cumulant ⊲𝜑(𝜀,𝜗,𝜔 )

ℸ𝜑(𝜀,𝜗,𝜔 ) = ⟨⟨ℷ⟩𝜍⟩0 , (4)

⊳𝜑(𝜀,𝜗,𝜔 ) = 𝜑2 ⟪
⟨⟨ℷ2

⟩𝜍⟩0 ε ⟨⟨ℷ⟩𝜍⟩20
⟫

, (5)

⊲𝜑(𝜀,𝜗,𝜔 ) = 1 ε
⟨⟨ℷ4

⟩𝜍⟩0

3⟨⟨ℷ2
⟩𝜍⟩

2
0
, (6)

where ⟨...⟩𝜍 represents time averages taken in the stationary regime,
and ⟨...⟩0 stands for configurational averages taken over independent
realizations.

We perform Monte Carlo simulations on square lattice networks
with 𝜑 ranging from 40 to 200 and periodic boundary conditions.
One Monte Carlo step (MCS) corresponds to the trial of updating 1
opinions randomly chosen accordingly to (1). Next, we discard 2 ϱ 104
MCS to allow the system to reach the steady state and take the time
averages over the subsequent 105 MCS. We repeat the process up to
100 independent samples to compute configurational averages. In our
results, the statistical uncertainty is smaller than the symbol size.

In Fig. 1, we deliver snapshots of simulations for square lattices with
𝜑 = 200, 𝜀 = 0.12 and 𝜗 = 0.5, for different values of collaborative frac-
tion 𝜔 : (a) 0.00, (b) 0.20, (c) 0.50 and (d) 1.00. White and black dots
represent opinions +1 and ε1, respectively. For fixed levels of 𝜗 and 𝜀,
the collaborative agents increase the local consensus around them by
supporting their contacts’ opinions. This collective phenomenon yields
a white cluster of agents with the same opinion, which increases with
the fraction 𝜔 of cooperative agents in figures (a) to (d), thus promoting
social order.

Fig. 2 illustrates how the cooperative fraction of agents 𝜔 improves
social order when they have a 50% boosted chance of agreeing with
their neighbors (𝜗 = 0.5). We plot (a) magnetization ℸ𝜑(𝜀,𝜗,𝜔 ), (b)
susceptibility ⊳𝜑(𝜀,𝜗,𝜔 ), and (c) Binder cumulant ⊲𝜑(𝜀,𝜗,𝜔 ) versus
cooperative fraction 𝜔 for 𝜑 = 200, 𝜗 = 0.5 and several values of 𝜀. Note
that for each level of social anxiety 𝜀, the system undergoes a disorder–
order transition for increasing values of 𝜔 , agreeing with Fig. 1. We
highlight the limiting cases 𝜀 = 0 and 𝜀 = 0.3 for 𝜗 = 0.5 in Fig. 2(a),
which are insensitive to 𝜔 .

Fig. 3 shows how the nonconformity parameter 𝜀 affects societies
with different fractions of cooperative individuals for noise sensibility
fixed at 𝜗 = 0.5. We plot (a) magnetization ℸ𝜑(𝜀,𝜗,𝜔 ), (b) susceptibil-
ity ⊳𝜑(𝜀,𝜗,𝜔 ), and (c) Binder cumulant ⊲𝜑(𝜀,𝜗,𝜔 ) versus social anxiety
level 𝜀 for 𝜑 = 200. For small noise 𝜀, ℸ𝜑(𝜀,𝜗,𝜔 ) = 2(1) indicates
the ordered phase of the social system with one dominant opinion. By
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Fig. 1. Snapshots of a single simulation on a square network with 𝜑 = 200, 𝜀 = 0.12 and noise sensibility 𝜗 = 0.5. (a) cooperative fraction 𝜔 = 0.00, (b) 𝜔 = 0.20, (c) 𝜔 = 0.50, and
(d) 𝜔 = 1.00. Increasing 𝜔 promotes social system consensus. White (black) dots represent +1 (ε1) opinions.

Fig. 2. Disorder–order transitions induced by the fraction of cooperative agents. In this configuration, 𝜑 = 200 and 𝜗 = 0.5 for different values of 𝜀. Figures (a), (b), and (c) stand
for magnetization, susceptibility, and Binder cumulant, respectively. From left to right, 𝜀 = 0.08, 0.09, 0.10, 0.11, 0.12 and 0.14. Results for 𝜀 = 0.0 and 𝜀 = 0.3 are insensitive to 𝜔 for
𝜗 = 0.5.

Fig. 3. Stationary averages of the cooperative majority-vote opinion dynamics. Square lattice simulations for 𝜑 = 200, 𝜗 = 0.5, and several values of 𝜔 . Noise dependence of (a)
average opinion (b) susceptibility, and (c) Binder cumulant. From left to right, 𝜔 increases from 0.0 to 1.0 with 3𝜔 = 0.1 increments. The lines are guides to the eyes.

Fig. 4. Effects of the intensity 𝜗 of cooperative behavior on consensus robustness. (a) Magnetization ℸ(𝜀,𝜗,𝜔 ), (b) magnetic susceptibility ⊳(𝜀,𝜗,𝜔 ) and (c) Binder fourth-order
cumulant ⊲ (𝜀,𝜗,𝜔 ) for diverse values of 𝜗. From right to left, 𝜗 changes from 0.0 to 1.0 with 3𝜗 = 0.1 and 𝜔 = 0.5. The lines are guides to the eyes.
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Fig. 5. Critical noise estimative. Binder fourth-order cumulant ⊲𝜑(𝜀,𝜗,𝜔 ) for 𝜗 =
0.5 and cooperative fraction 𝜔 = 0.3. The point where the curves for different
sizes 𝜑 intersect provides an estimate for critical social temperature 𝜀0 (𝜗, 𝜔 ) in the
thermodynamic limit 1  ς. The dashed lines are cubic fits of the data points in
critical region, and the continuous lines are guides to the eyes.

increasing social temperature 𝜀, ℸ𝜑(𝜀,𝜗,𝜔 ) decreases to zero for all
values of the cooperative fraction 𝜔 at a critical noise level 𝜀 = 𝜀0 (𝜗, 𝜔 ).
Systems with more cooperative agents support partial consensus for
higher social temperatures, yielding a higher critical noise 𝜀0 (𝜗, 𝜔 ).

For 𝜀 > 𝜀0 (𝜗, 𝜔 ), ℸ𝜑(𝜀,𝜗,𝜔 ) φ 0, and the community exhibits
two opinions approximately in the same share, not supporting con-
sensus even with the presence of cooperative individuals. The system
undergoes a second-order phase transition near a critical temperature
𝜀0 (𝜗, 𝜔 ), where the magnetic susceptibility ⊳𝜑(𝜀,𝜗,𝜔 ) exhibits a maxi-
mum and the Binder cumulant ⊲𝜑(𝜀,𝜗,𝜔 ) decreases swiftly. We remark
that the critical noise value is an increasing function of the cooperative
fraction 𝜔 since such agents improve consensus.

In Fig. 4, we study how different intensities of the cooperative
behavior phenomena influence consensus when half of the community
is collaborative 𝜔 = 0.5. We investigate the behavior of (a) magnetiza-
tion ℸ𝜑(𝜀,𝜗,𝜔 ), (b) susceptibility ⊳𝜑(𝜀,𝜗,𝜔 ), and (c) Binder cumulant
⊲𝜑(𝜀,𝜗,𝜔 ) as a function of 𝜀 for 𝜑 = 200 and diverse values of the noise
sensibility 𝜗. Decreasing 𝜗 stimulates the individuals to cooperate,
reinforcing robustness to opinion disorder. Consequently, we observe
that the critical noise 𝜀0 (𝜗, 𝜔 ) is a monotonically decreasing function of
the noise sensibility 𝜗 for a non-zero fraction of cooperative agents.

Observe that as 𝜗 decreases, the range of social temperatures 𝜀 for
which the community exhibits a partial consensus increases. Indeed,
each cooperative individual serves as a social influence on their neigh-
bors, promoting the growth of a consenting cluster. This phenomenon
directly affects the critical noise 𝜀0 (𝜗, 𝜔 ), in which ℸ(𝜀0 )  0. We
conclude that the critical noise is a monotonically decreasing function
of 𝜗 for a non-zero fraction of cooperative agents.

3.1. Phase diagram

To obtain a precise estimate of the critical social temperature
𝜀0 (𝜗, 𝜔 ) in the thermodynamic limit 1  ς, which is independent of
the society scale 𝜑, we calculate the Binder fourth-order cumulant for
each pair (𝜗, 𝜔 ) with different system sizes. In Fig. 5, we exemplify this
method by displaying the Binder cumulant for 𝜗 = 0.5 and 𝜔 = 0.3.
We estimate the critical noise value 𝜀0 (𝜗, 𝜔 ) from the intersection point
of Binder curves for different sizes 𝜑, since ⊲ does not depend on the
system size only at 𝜀 = 𝜀0 (𝜗, 𝜔 ). We find 𝜀0 (𝜗, 𝜔 ) = 0.0891(2) for 𝜗 = 0.5
and 𝜔 = 0.3. In Table 1, we summarize the results for the same process
employing other values of 𝜔 and 𝜗, rendering the phase diagram shown
in Fig. 6.

The interpolation of critical points 𝜀0 (𝜗, 𝜔 ) in Fig. 6 generates a
description of the phase boundary that separates the ordered and

Fig. 6. Phase diagram of cooperative majority-vote opinion dynamics. The curves are
descriptions of the phase boundary that separates the ordered and disordered phases
for different values of noise sensibility 𝜗. Circles represent the numerical estimates of
critical points 𝜀0 (𝜗, 𝜔 ), obtained by the crossing point of the Binder cumulant curves
for different system sizes. Lines are fits from Eq. (7).

disordered phases for each value of the noise sensibility 𝜗. We note that
consensus correlates with noise sensibility, and lower values of 𝜗 tend
to yield higher values of 𝜀0 . Consensus robustness is also proportional
to 𝜔 since it controls the fraction under the influence of an effective
noise reduction. From the data, we propose the phase boundary lines
to obey an equation of type

𝜀0 (𝜗, 𝜔 ) =
1

4 ε 5𝜔
, (7)

in which 4 and 5 are parameters that depend on 𝜗. By conduct-
ing a non-linear curve fitting using Eq. (7), we estimate [4, 5] =
[12.8(5), 9.4(5)], [13.2(1), 6.5(1)], [13.2(1), 3.3(1)], for 𝜗 = 0.25, 0.50 and
0.75, respectively. From Table 1, we obtain 𝜀0 (𝜗, 0) = 1ϖ4 φ 0.075, in
agreement with the isotropic MVM [24], and 𝜀0 (𝜗, 1) = 1ϖ(4 ε 5) φ
0.075ϖ𝜗 as expected from previous analysis.

3.2. Critical exponents

We examine finite-size effects on the social dynamics of the cooper-
ative majority-vote model. In Fig. 7, we exhibit (a) magnetization, (b)
susceptibility and (c) Binder cumulant for 𝜔 = 0.8 and 𝜗 = 0.5, with
𝜑 = 40, 60, 80, 100 and 120. Note that at the critical point 𝜀0 (𝜗, 𝜔 ) φ 0.13
(see Table 1), ℸ  0 as 𝜑  ς, remaining non-zero for noise values
below 𝜀0 (𝜗, 𝜔 ). Also, the larger 𝜑, the more intense the magnetization
fluctuations, yielding the highest peaks observed for the magnetic
susceptibilities near 𝜀0 (𝜗, 𝜔 ).

To further analyze the behavior of ℸ , ⊳ , and ⊲ with system size 𝜑
near the critical point, we estimate the critical exponents 6ϖ7, 8ϖ7, and
1ϖ7 that characterize the phase transition of the model. Thus, we write
the following finite-size scaling relations

ℸ𝜑(𝜀,𝜗,𝜔 ) = 𝜑ε 6
7 9ℸ(.𝜑

1
7 ), (8)

⊳𝜑(𝜀,𝜗,𝜔 ) = 𝜑
8
7 ,⊳(.𝜑

1
7 ), (9)

⊲𝜑(𝜀,𝜗,𝜔 ) = ,⊲ (.𝜑
1
7 ), (10)

where . = 𝜀 ε 𝜀0 (𝜗, 𝜔 ) is the distance from critical noise, and the
universal scaling functions 9ℸ , ,⊳ and ,⊲ depend only on scaling variable
ℶ = .𝜑

1
7 . Accordingly, we use these equations to obtain the phase

transition critical exponents and capture the universal behavior of
magnetization, magnetic susceptibility, and Binder cumulant.

In Fig. 8, we illustrate the numerical results for (a)ℸ , (b) ⊳ and (c)
⊲ versus the system size 𝜑 at 𝜀0 (𝜗, 𝜔 ), with 𝜗 = 0.5 and several values
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Table 1
Critical social temperatures on square lattices and mean-field numerical estimates 𝜀0 (𝜗, 𝜔 ) and 𝜀ℸ<

0 (𝜗, 𝜔 ), respectively,
as a function of 𝜔 and 𝜗 for the cooperative majority-vote dynamics.
𝜔 𝜀0 (𝜗 = 1ϖ4) 𝜀0 (𝜗 = 1ϖ2) 𝜀0 (𝜗 = 3ϖ4) 𝜀ℸ<

0 (𝜗 = 1ϖ4) 𝜀ℸ<
0 (𝜗 = 1ϖ2) 𝜀ℸ<

0 (𝜗 = 3ϖ4)

0.0 0.0750(1) 0.0750(3) 0.0750(1) 0.1665(1) 0.1665(1) 0.1664(3)
0.1 0.0816(2) 0.0791(2) 0.0771(1) 0.1802(1) 0.1753(1) 0.1711(2)
0.2 0.0894(1) 0.0839(1) 0.0792(1) 0.1957(3) 0.1851(1) 0.1750(1)
0.3 0.0986(1) 0.0891(2) 0.0814(1) 0.2149(1) 0.1961(1) 0.1799(2)
0.4 0.1101(2) 0.0947(2) 0.0837(1) 0.2376(4) 0.2077(3) 0.1848(1)
0.5 0.1243(1) 0.1011(1) 0.0861(2) 0.2667(1) 0.2224(2) 0.1904(1)
0.6 0.1420(3) 0.1085(2) 0.0886(2) 0.3031(3) 0.2373(1) 0.1955(1)
0.7 0.1626(3) 0.1167(2) 0.0912(2) 0.3507(1) 0.2566(2) 0.2018(2)
0.8 0.1963(3) 0.1264(2) 0.0941(2) 0.4163(4) 0.2768(2) 0.2076(1)
0.9 0.2418(3) 0.1374(1) 0.0970(1) 0.5128(1) 0.3033(3) 0.2152(1)
1.0 0.3002(1) 0.1503(2) 0.1000(1) 0.6664(1) 0.3332(2) 0.2221(1)

Fig. 7. Size dependence on consensus robustness versus noise parameter. In (a) average opinion, (b) susceptibility and (c) Binder cumulant ⊲ for system sizes 𝜑 = 40, 60, 80, 100,
and 120. In this result, 𝜔 = 0.8 and 𝜗 = 0.5. The lines are guides to the eyes.

Fig. 8. Finite-size scaling analysis and universality. (a) Magnetization, (b) magnetic susceptibility, and (c) Binder fourth-order cumulant at the critical point 𝜀 = 𝜀0 (𝜗, 𝜔 ) as functions
of linear system size 𝜑 in log–log scale for several values of the cooperative fraction 𝜔 and 𝜗 = 0.5. The lines represent linear fits to the data, yielding the standard Ising model
critical exponents on square lattices considering error bars. We rescale all quantities, rendering one universal curve for critical exponents 6ϖ7 = 0.125, 8ϖ7 = 1.75, and 1ϖ7 = 1. We
shift curves up to avoid overlap.

of 𝜔 . By measuring the linear coefficient of each line in Fig. 8(a), (b)
and (c), we estimate 6ϖ7 φ 0.125, 8ϖ7 φ 1.75 and 1ϖ7 φ 1 considering
the error bars. We confirm our results by performing a data collapse
of rescaled versions (d) 9ℸ , (e) ,⊳ and (f) ,⊲ over the rescaled social
noise using 6ϖ7 = 0.125, 8ϖ7 = 1.75 and 1ϖ7 = 1. Despite the different
behaviors observed in Figs. 3 and 7, Fig. 8(d), (e), and (f) yield a single
universal curve independently on 𝜔 .

We further investigate critical exponents for 𝜗 = 0.25 and 𝜗 = 0.75,
and the results also supply the same set of critical exponents. We
conclude that the critical exponents of the cooperative majority-vote
model are the same as those in an equilibrium two-dimensional Ising
model and for the isotropic majority-vote dynamics [24], regardless
of 𝜗 and 𝜔 . This result is under Grinstein’s criterion that states that
nonequilibrium stochastic spin-like systems with up-down symmetry in
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Fig. 9. Plots of the (a) magnetization, (b) magnetic susceptibility, and (c) Binder cumulant as a function of 𝜔 for several values of the noise 𝜀 for 𝜗 = 0.5. The dashed lines on
(a) stand for the analytical results given by Eq. (21), and the symbols are the numerical results for 20 samples with 𝜑 = 200.

regular lattices fall into the same universality class of the equilibrium
Ising model [59,60].

3.3. Mean-field analyses

A given configuration of opinions can be denoted by 𝜛 = (𝜛1, 𝜛2,… ,
𝜛𝜚,… , 𝜛1 ), with 1 = 𝜑2. We obtain the behavior of the stationary
magnetization ℷ using the master equation that expresses the evolution
of the probability ℏ (𝜛, 𝜍) of finding the system in the state 𝜛 at a time
𝜍 [61,62]

>
>𝜍

ℏ (𝜛, 𝜍) =
1
⌉

𝜚=1

⟪

𝛻𝜚(𝜛𝜚)ℏ (𝜛𝜚, 𝜍) ε𝛻𝜚(𝜛)ℏ (𝜛, 𝜍)
⟫

, (11)

where the state 𝜛𝜚 can be obtained from state 𝜛 flipping the 𝜚th agent’s
opinion, i.e., 𝜛𝜚 = (𝜛1, 𝜛2,… ,ε𝜛𝜚,… , 𝜛1 ). Factor 𝛻𝜚 is the flip rate of
the 𝜚th individual 𝜛𝜚  ε𝜛𝜚, given by Eq. (1) for the cooperative voter
model. From Eq. (11), it follows that the time evolution of the average
opinion of the agent 𝜛𝜚 is

>
>𝜍

⟨𝜛𝜚⟩ = ε2 ⟨𝜛𝜚𝛻𝜚⟩ . (12)

Thus, for all 1𝜔 cooperative individuals, we write the following set of
equations

>
>𝜍

❲

𝜛⋆
❳

= ε
❲

𝜛⋆
❳

+ ≨𝜗

/

𝜕

⌈

⌉

ℵ
𝜛⋆+ℵ

{\

, (13)

for ⋆ = 1, 2,… ,1𝜔 , where we replace 𝛻⋆ using Eq. (1) with ≨𝜗 = 1ε2𝜗𝜀
and 𝜛2⋆ = 1. Similarly, for the remaining 1(1 ε 𝜔 ) agents, we have

>
>𝜍

⟨𝜛𝐴⟩ = ε ⟨𝜛𝐴⟩ + ≨

/

𝜕

⌈

⌉

ℵ
𝜛𝐴+ℵ

{\

, (14)

where ≨ = 1ε 2𝜀 and 𝐴 = 1𝜔 + 1,1𝜔 + 2,… ,1 . Adding Eqs. (13) and
(14) and summing for all agents, we obtain
1
⌉

𝜚=1

>
>𝜍

⟨𝜛𝜚⟩ = ε
1
⌉

𝜚=1
⟨𝜛𝜚⟩ +1

⟪

𝜔≨𝜗 + (1 ε 𝜔 )≨
⟫

/

𝜕

⌈

⌉

ℵ
𝜛𝜚+ℵ

{\

. (15)

In the mean-field limit, a randomly chosen agent 𝜛𝜚 interacts with four
neighbors also randomly selected. Labeling these neighbors as 𝜛4, 𝜛5,
𝜛0 and 𝜛> , we write [57,58]

𝜕

⌈

⌉

ℵ
𝜛𝜚+ℵ

{

= 𝜕(𝜛4 + 𝜛5 + 𝜛0 + 𝜛> )

= 3
8 (𝜛4 + 𝜛5 + 𝜛0 + 𝜛> ) ε

1
8 (𝜛4𝜛5𝜛0 + 𝜛4𝜛5𝜛> + 𝜛4𝜛0𝜛> + 𝜛5𝜛0𝜛> ).

(16)

In addition, in the stationary state, ℷ φ ⟨𝜛𝜚⟩ and ⟨𝜛𝐵𝜛𝐶𝜛𝐷⟩ φ ⟨𝜛𝐵⟩ ⟨𝜛𝐶⟩ ⟨𝜛𝐷⟩
φ ℷ3. Thus, we write
/

𝜕

⌈

⌉

ℵ
𝜛𝜚+ℵ

{\

= ℷ
2 (3 ε ℷ2). (17)

By using this result in Eq. (15), we obtain

>
>𝜍

ℷ = ℷ
(

ε𝐸 ε ℷ2

2
⟪

𝜔≨𝜗 + (1 ε 𝜔 )≨
⟫

)

, (18)

where

𝐸 = 1 ε 3
2
⟪

𝜔≨𝜗 + (1 ε 𝜔 )≨
⟫

. (19)

In the stationary state, >ℷϖ>𝜍 = 0. For 𝐸 > 0, there is only one real
solution, ℷ = 0, representing the paramagnetic state (disordered). For
𝐸 < 0, we obtain the ferromagnetic state (ordered) solution

ℷ =
⦅

2 ⦆𝐸⦆
𝜔≨𝜗 + (1 ε 𝜔 )≨ , (20)

Then, using ≨𝜗 = 1 ε 2𝜗𝜀 and ≨ = 1 ε 2𝜀 and Eq. (19), we write

ℷ =

⦅

1 ε 6𝜀 [1 ε 𝜔 (1 ε 𝜗)]
1 ε 2𝜀 [1 ε 𝜔 (1 ε 𝜗)] ∱

⦅

1 ε 6 𝐹𝜀
1 ε 2 𝐹𝜀 , (21)

with 𝐹𝜀 = 𝐹𝜗𝜀 = 𝜀[1ε 𝜔 (1ε 𝜗)], valid for 𝜀 < 𝜀ℸ<
0 , the mean-field critical

temperature. By imposing ℷ = 0 in Eq. (21), we obtain

𝜀ℸ<
0 (𝜗, 𝜔 ) = 1

6 [1 ε 𝜔 (1 ε 𝜗)] . (22)

Note that when 𝜔 = 0, Eq. (21) yields the isotropic MVM mean-field
result for ℷ

ℷ =

⦅

1 ε 6𝜀
1 ε 2𝜀 , (23)

with 𝜀ℸ<
0 = 1ϖ6 [63]. For 𝜔 = 1, 𝜀ℸ<

0 = 1ϖ6𝜗 as anticipated.
Additionally, near the phase transition, ℷ ∇ (⦆𝜀 ε 𝜀ℸ<

0 ⦆)6 , and we find
exponent 6 = 1ϖ2, indicating that the cooperative majority-vote model
should belong to the mean-field Ising universality class.

3.4. Mean-field simulations

We confirm our mean-field analytical results by performing Monte
Carlo simulations in the mean-field approach. In this formulation, we
randomly select an agent whose four neighbors are also randomly
chosen [38]. We consider systems of 1 = 𝜑2 agents, with 𝜑 ranging
from 40 to 200. We skip 103 MCS to allow thermalization and evaluate
the time averages over the next 105 MCS up to 100 different samples.

In Fig. 9, we show mean-field numerical estimates for (a) ℸ𝜑(𝜀,𝜗,
𝜔 ), (b) ⊳𝜑(𝜀,𝜗,𝜔 ) and (c) ⊲𝜑(𝜀,𝜗,𝜔 ) as functions of the fraction of
collaborative individuals 𝜔 for several values of the noise 𝜀. We eval-
uate the magnetization numerically (circles) and compare it with the
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Fig. 10. Mean-field consensus-dissensus phase diagram. Lines denote analytical solu-
tions given by Eq. (22), producing the phase boundaries that separate the ordered and
the disordered phases for each noise sensibility 𝜗. Circles represent numerical results
for 𝜀ℸ<

0 (𝜗, 𝜔 ), estimated by intersection points of Binder cumulant curves in mean-field
simulations.

analytical solution of Eq. (21) (lines), exhibiting a satisfactory agree-
ment. We note that mean-field results match the overall behavior
displayed in Fig. 2 for square lattices, in which 𝜔 improves consensus
for different values of social noise 𝜀. The small divergence near the
phase transition point results from the limited nature of the simulated
mean-field network with 1 = 4 ϱ 104, whereas the analytical solution
assumes the thermodynamic limit 1 ⥳ ς.

The maximum value of each susceptibility curve in Fig. 9(b) denotes
the critical values of 𝜔 that yield an order–disorder phase transition.
Additionally, the critical noise 𝜀 necessary to vanish the order consen-
sus increases with 𝜔 , denoting a boost of social robustness. This result
combines the behavior observed in Fig. 2(b) and Eq. (22), in which
𝜀ℸ<
0 (𝜗, 𝜔 ) is a monotonically increasing function of 𝜔 , validating our
mean-field analysis.

Fig. 10 shows the mean-field phase diagram in the 𝜀 ϱ 𝜔 parameter
space, revealing the boundary between ordered and disordered phases
as a function of 𝜔 and 𝜗. The lines represent the analytical solutions
given by Eq. (22), and the circles represent the numerical data estimates
obtained from the intersection points of Binder cumulant curves. The
mean-field phase diagram shows the same qualitative characteristics
of the square lattice scenario of Fig. 6. Numerical results are summa-
rized in Table 1. Finally, we use finite-size scaling relations to plot in
Fig. 11(a) magnetization, (5) magnetic susceptibility, and (c) absolute
value of the Binder cumulant derivative at the critical temperature
𝜀 = 𝜀ℸ<

0 (𝜗, 𝜔 ) versus the system size for 𝜗 = 0.5. The line slopes
estimate critical exponents 6 φ 1ϖ2, 8 φ 1, and 7 φ 2 for all values of the
investigated 𝜔 and 𝜗. These results confirm the mean-field cooperative
majority-vote dynamics belong to the mean-field Ising universality
class.

4. Social entropy production

Entropy production is a manifestation of irreversibility dynamics.
The cooperative majority-vote model generates entropy, even in the
stationary regime; in contrast, reversible models reach thermodynamic
equilibrium states without entropy production in the steady state [56–
58]. In this context, we consider the Boltzmann–Gibbs entropy equation
at time 𝜍

𝜕(𝜍) = ε
⌉

𝜛
ℏ (𝜛, 𝜍) ln ℏ (𝜛, 𝜍). (24)

Combining Eq. (24) with the master equation of Eq. (11), we can
express the time derivative of entropy as

>
>𝜍

𝜕(𝜍) =1
2
⌉

𝜛

⌉

𝜚

⟪

𝛻𝜚(𝜛𝜚)ℏ (𝜛𝜚, 𝜍) ε𝛻𝜚(𝜛)ℏ (𝜛, 𝜍)
⟫

ln ℏ (𝜛𝜚, 𝜍)
ℏ (𝜛, 𝜍) , (25)

We frame the rate of change of the entropy 𝜕 of a system as two
main components: entropy production rate 𝐺 and entropy flux 𝐻 from
system to environment. Thus, we write
>
>𝜍

𝜕(𝜍) = 𝐺 ε𝐻. (26)

Therefore, comparing Eqs. (25) and (26)

𝐺 =1
2
⌉

𝜛

⌉

𝜚

⟪

𝛻𝜚(𝜛𝜚)ℏ (𝜛𝜚, 𝜍) ε𝛻𝜚(𝜛)ℏ (𝜛, 𝜍)
⟫

ln
𝛻𝜚(𝜛𝜚)ℏ (𝜛𝜚, 𝜍)
𝛻𝜚(𝜛)ℏ (𝜛, 𝜍)

, (27)

and

𝐻 =1
2
⌉

𝜛

⌉

𝜚

⟪

𝛻𝜚(𝜛𝜚)ℏ (𝜛𝜚, 𝜍) ε𝛻𝜚(𝜛)ℏ (𝜛, 𝜍)
⟫

ln
𝛻𝜚(𝜛𝜚)
𝛻𝜚(𝜛)

, (28)

Note that𝐺 is positive definite, but 𝐻 can assume either sign depending
on the direction of the flux. We write

𝐻 =
⌉

𝜛

⌉

𝜚
𝛻𝜚(𝜛)ℏ (𝜛, 𝜍) ln

𝛻𝜚(𝜛)
𝛻𝜚(𝜛𝜚)

, (29)

that allows numerical estimates [64–69].

4.1. Flux on square lattices

The flux of entropy as a configurational average over the probability
distribution in the stationary state from Eq. (29) is

𝐻 =
⌉

𝜚

[

𝛻𝜚(𝜛) ln
𝛻𝜚(𝜛)
𝛻𝜚(𝜛𝜚)

]

. (30)

The social entropy 𝜕 remains constant in this state, therefore 𝐺 =
𝐻. Hence, we calculate the stationary social entropy production by
employing Monte Carlo simulations using Eq. (30).

In Fig. 12, we plot numerical results of entropy production 𝐼𝜑(𝜀,𝜗,
𝜔 ) in the stationary regime for several values of (a) system size 𝜑,
(b) collaborative fraction 𝜔 and (c) noise attenuation 𝜗 versus 𝜀. We
observe in (a) that entropy flux has a weak sensibility with population
size but a strong dependence on the fraction of collaborative agents and
noise attenuation. Curves for 𝜔 = 0.0 and 𝜗 = 1.0 in Fig. 12(b) and (c),
respectively, display the flux of entropy of the isotropic MVM [24,25],
where a maximum flux occurs after the critical noise 𝜀0 (𝜗, 𝜔 = 0.0) =
0.075 and tends to zero for 𝜀  0 or 𝜀  1ϖ2 in the isotropic case.

We highlight Fig. 12(b) also displays entropy flux that follows the
isotropic system under the linear transformation 𝜀  𝜀ϖ𝜗, when 𝜔 =
1.00 and 𝜗 = 0.5. This flux vanishes for 𝜀  0 and 𝜀  1ϖ2𝜗.
For 0 < 𝜔 < 1, after the maximum, instead of approaching zero,
the entropy flux increases, supported by a discrepancy between the
behavior of the cooperative and regular individuals. Indeed, (c) reveals
this phenomenon intensifies as 𝜗 becomes smaller since the social
temperature disparity among agents increases. We remark that, in
general, a combination of cooperative and non-cooperative individuals
increases the social entropy production of the society. Nonetheless, for
small values of the social noise, the entropy generation is maximized
when there is no cooperative behavior, 𝜔 = 0.0.

For non-equilibrium systems, such as the cooperative majority-
vote model, the Maximum Entropy Production Principle proposes that
among all possible non-equilibrium steady states (NESS) that satisfy
the system’s constraints, the one with the highest entropy production
rate is the most likely. The NESS with higher entropy production does
not necessarily have more disorder but yields a dynamic balance that
maximizes entropy production. Hence, if real-world societies follow this
principle, the heterogeneity between cooperative and non-cooperative
individuals could be a potential natural manifestation of the achieved
NESS [70,71].
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Fig. 11. Mean-field finite-size estimates for critical exponents. (a) ℸ(𝜀,𝜗,𝜔 ), (b) ⊳(𝜀,𝜗,𝜔 ) and (c) ⦆𝐽⊲ (𝜀,𝜗,𝜔 )ϖ𝐽𝜀⦆ with 𝜀 = 𝜀ℸ<
0 (𝜗, 𝜔 ) versus system size 𝜑 for 𝜗 = 0.5. Lines are

linear regressions to the data, and their slopes equal the respective critical exponents in the mean-field limit.

Fig. 12. Stationary social entropy flux production for collaborative majority-vote opinion dynamics versus noise parameter. We plot 𝐼𝜑(𝜀,𝜗,𝜔 ) vs. 𝜀 for several values of (a) system
size 𝜑, (b) cooperative fraction 𝜔 and (c) noise attenuation 𝜗 on square lattices. On (a) 𝜗 = 0.5 and 𝜔 = 0.5, while in (b) 𝜗 = 0.5 and (c) 𝜔 = 0.5 with 𝜑 = 180. The lines are guides
to the eyes.

Fig. 13. Entropy flux Size dependence. (a) Derivative of entropy flux versus 𝜀 for 𝜗 = 0.5 and 𝜔 = 0.5. (b) Maximum value of the entropy flux derivative at the critical point as a
function of the natural logarithmic of the system size 𝜑. From top to bottom, line slopes are 𝐾 = 0.018(3), 0.020(2), 0.017(1), 0.018(2) and 0.015(2).

As a general pattern, the critical temperature does not coincide with
the maximum of 𝐼𝜑(𝜀,𝜗,𝜔 ). In fact, the critical noise is the point of
inflection for 𝐼 that occurs before the maximum point. We display this
behavior in the inset of Fig. 12(a), in which for 𝜗 = 0.5 and 𝜔 = 0.5,
we obtain 𝜀0 = 0.1011(1) (see Table 1). Therefore, in analogy with the
entropy of equilibrium Ising model, the entropy flux exhibits a finite
singularity at the critical point as

𝐼𝜑(𝜀,𝜗,𝜔 ) = 𝐼𝜑[𝜀0 ,𝜗,𝜔 ] + 𝐿± ⦄

⦄

𝜀 ε 𝜀0 ⦄
⦄

(1ε𝑀) , (31)

where 𝐿± are amplitudes of regimes above and under the critical point
𝜀0 = 𝜀0 (𝜗, 𝜔 ) [57,58]. Hence, instead of a maximum in entropy flux,
the second-order phase transition maximizes the derivative of entropy
flux with respect to 𝜀, as we can observe in Fig. 13(a) for 𝜀0 (0.5, 0.5) =
0.1011(1). Indeed, from Eq. (31), we obtain
𝐽𝐼𝜑(𝜀,𝜗,𝜔 )

𝐽𝜀
∇ ⦄

⦄

𝜀 ε 𝜀0 ⦄
⦄

ε𝑀 , (32)

where 𝑀 corresponds to the same exponent associated with the specific
heat of the Ising model. On square lattices, 𝑀 = 0, generating a
singularity of the logarithm type. Hence, in analogy to the Ising model,
we write
𝐽𝐼𝜑(𝜀,𝜗,𝜔 )

𝐽𝜀
∇ ln ⦄

⦄

𝜀 ε 𝜀0 ⦄
⦄

. (33)

To verify our conjecture, we use the Savitzky-Golay Smooth algorithm
with cubic polynomials to numerically estimate 𝐽𝐼𝜑(𝜀,𝜗,𝜔 )ϖ𝐽𝜀 for
several sizes 𝜑 in Fig. 13(a). By finite-size scaling theory on Eq. (33),
the maximum value of the partial derivative of entropy flux must
diverge at the critical point as
⟦

𝐽𝐼𝜑(𝜀,𝜗,𝜔 )
𝐽𝜀

⟧

ℷ4ℶ
∇ ln 𝜑𝐾 , (34)

with 𝐾 = (1ε𝑁 )ϖ7 and 7 is the critical exponent associated to correlation
length. Indeed, our results support 7 = 1.0, leading to 𝑁 φ 1.0. Fig. 13(b)
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confirms our assumption for 𝜗 = 0.5 and several cooperative fraction
values. We observe the same behavior for other values of 𝜗 and 𝜔 .

4.2. Mean-field approach

The mean-field theory allows us to develop an analytical expression
for entropy flux in the stationary regime. From Eq. (1), we write

ln
𝛻𝜚(𝜛)
𝛻𝜚(𝜛𝜚)

= ln
⌋

1 ε 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

+ 2𝜗𝜚𝜀𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

1 + 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

ε 2𝜗𝜚𝜀𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

}

.

Next, we note that the product 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

may assume only one of
three possible values: ε1, 0 and 1. Therefore,

ln
𝛻𝜚(𝜛)
𝛻𝜚(𝜛𝜚)

=

⌉

{

{

}

{

{

⦃

ln
⦄

𝜗𝜚𝜀
1ε𝜗𝜚𝜀

⟨

ϱ (1), if 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

= 1,

ln
⦄

𝜗𝜚𝜀
1ε𝜗𝜚𝜀

⟨

ϱ (0), if 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

= 0,

ln
⦄

𝜗𝜚𝜀
1ε𝜗𝜚𝜀

⟨

ϱ (ε1), if 𝜛𝜚𝜕
⌊

⌋

ℵ 𝜛𝜚+ℵ
⌈

= ε1.

Thus, we obtain

ln
𝛻𝜚(𝜛)
𝛻𝜚(𝜛𝜚)

= ln
⟦

𝜗𝜚𝜀
1 ε 𝜗𝜚𝜀

⟧

𝜛𝜚𝜕

⌈

⌉

ℵ
𝜛𝜚+ℵ

{

. (35)

Combining Eqs. (30) and (35)

𝐻 =
1𝜔
⌉

⋆=1

/

ln
⟦

𝜗𝜀
1 ε 𝜗𝜀

⟧

𝜛⋆𝜕

⌈

⌉

ℵ
𝜛⋆+ℵ

{

𝛻⋆ (𝜛)
\

+
1
⌉

𝐴=1𝜔+1

/

ln
⟦

𝜀
1 ε 𝜀

⟧

𝜛𝐴𝜕

⌈

⌉

ℵ
𝜛𝐴+ℵ

{

𝛻𝐴(𝜛)
\

. (36)

Furthermore, in the stationary state, we obtain
/⌋

𝜕

⌈

⌉

ℵ
𝜛⋆+ℵ

{}2\

= 1
8
⌊

5 + 6ℷ2 ε 3ℷ4⌈ . (37)

We divide Eq. (36) by the total number of individuals 1 and combine
it with Eqs. (1) and (37) to derive an expression for entropy flux per
site:

𝐼 ∱ 𝐻ϖ1 = 𝜔 ln
⟩

𝜗𝜀
1 ε 𝜗𝜀

⟪

ϱ
⟦

1
4 (3ℷ

2 ε ℷ4) ε
≨𝜗

16 (5 + 6ℷ2 ε 3ℷ4)
⟧

+(1 ε 𝜔 ) ln
⟩

𝜀
1 ε 𝜀

⟪

ϱ
⟫ 1
4 (3ℷ

2 ε ℷ4) ε ≨
16 (5 + 6ℷ2 ε 3ℷ4)

❲

.

(38)

We set ℷ = 0 and get the disordered solution of the entropy flux, valid
for 𝜀 > 𝜀ℸ<

0 (𝜗, 𝜔 ):

𝐼 = 5
16𝜔≨𝜗 ln

⟩

1 ε 𝜗𝜀
𝜗𝜀

⟪

+ 5
16 (1 ε 𝜔 )≨ ln

⟩

1 ε 𝜀
𝜀

⟪

. (39)

On the ordered state, we have that magnetization behaves accordingly
to Eq. (21), which is valid for 𝜀 < 𝜀ℸ<

0 (𝜗, 𝜔 ). Combining Eqs. (21) and
(38), we obtain the entropy flux expression in the ferromagnetic state:

𝐼 = 𝜔
(1 ε 2 𝐹𝜀)2

ln
⟩

1 ε 𝜗𝜀
𝜗𝜀

⟪

❳

𝐹𝜀
⟪

3 ε ≨𝜗(2 + 𝐹𝜀)
⟫

ε 𝜗𝜀
/

+ 1 ε 𝜔
(1 ε 2 𝐹𝜀)2

ln
⟩

1 ε 𝜀
𝜀

⟪

{ 𝐹𝜀 [3 ε ≨(2 + 𝐹𝜀)] ε 𝜀} , (40)

with 𝐹𝜀 = 𝐹𝜗𝜀 = 𝜀[1ε𝜔 (1ε𝜗)]. For the particular case 𝜔 = 0.0, we combine
Eqs. (39) and (40) to obtain an expression for entropy production of the
isotropic majority-vote model:

𝐼(𝜀) =
⟩

𝜀
1 ε 2𝜀

⟪2
(3 + 2𝜀) ln

⟩

1 ε 𝜀
𝜀

⟪

𝑂(𝜀0 ε 𝜀)

Fig. 14. Entropy production for mean-field isotropic majority-vote model. The red
line denotes the results from Eq. (41) and blue circles are numerical estimations and
1 = 180 ϱ 180 = 32400.

+ 5
16 (1 ε 2𝜀) ln

⟩

1 ε 𝜀
𝜀

⟪

𝑂(𝜀 ε 𝜀0 ), (41)

where 𝑂(𝜍) is the Heaviside function and 𝜀ℸ<
0 (𝜗, 𝜔 = 0.0) = 1ϖ16

is the isotropic mean-field MVM critical noise. We further investigate
numerical simulations in the mean-field formulation to demonstrate
this result.

Fig. 14 reveals mean-field entropy flux 𝐼(𝜀,𝜗,𝜔 ) versus 𝜀, with 1 =
180 ϱ 180 = 32400, for the isotropic mean-field MVM simulation (𝜔 = 0
and 𝜗 = 1.0). The red line represents results from Eq. (41), where blue
circles represent numerical data in the mean-field formulation. Note
that 𝐼 exhibits a singularity in mean-field critical noise 𝜀ℸ<

0 = 1ϖ6 and
vanishes for 𝜀  0 and 𝜀  1ϖ2.

We extend our investigation for mean-field stationary social en-
tropy flux production 𝐼(𝜀,𝜗,𝜔 ) versus noise 𝜀 for several values of the
cooperative fraction 𝜔 and noise sensibility 𝜗. In Fig. 15(a), we set
𝜗 = 0.5 and 𝜔 = 0.00, 0.25, 0.50, 0.75 and 1.00, while in Fig. 15(b),
𝜔 = 0.5 and 𝜗 assume 0.25, 0.50, 0.75 and 1.00. The open circles are
mean-field numerical data for 1 = 32400 individuals, and the lines
represent the analytical results given by Eqs. (39) and (40). There are
slight deviations between mean-field solutions and Monte Carlo data
in the ferromagnetic phase for entropy flux due to the finite nature of
simulated systems, amplified as 𝜗  0.

Fig. 15(c) shows that 𝐼 does not approach zero when 𝜀 = 0.5 in
the mean-field limit for 0 < 𝜔 < 1 but remains finite independently
of system size 1 . However, for any isotropic case (𝜔 = 0 or 𝜗 = 1.0),
𝐼 tends to zero for 𝜀 = 0.5, as expected. Distinguished from the square
lattice case, in which 𝐼 reaches a maximum for 𝜀 > 𝜀0 , in the mean-field
framework, the maximum entropy flux point occurs at the mean-field
critical temperature 𝜀ℸ<

0 .

5. Final remarks

This work explores the impacts of collaborative behavior on
majority-vote opinion dynamics and its social entropy production. We
randomly select a fraction 𝜔 of individuals of the society to represent
cooperative agents, while the complementary fraction 1ε𝜔 are regular
voters. We introduce a social noise 𝜀 such that with probability (1ε 𝜀),
individuals agree with each other regarding a social issue subject, such
as a political, professional, or economic matter. The cooperative agents
retain a social temperature sensibility 0 < 𝜗 < 1, experiencing an
effective social noise of 𝜗𝜀, favoring social validation-based decisions.
For 𝜗 = 0 and 𝜗 = 1, we recover bimodal [36,41] and isotropic
majority-vote model [24,25], respectively.
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Fig. 15. Mean-field stationary social entropy flux production as a function of the social temperature. (a) Flux production dependence on cooperative fraction 𝜔 for 𝜗 = 0.5, (b)
and several values of noise sensibility 𝜗 with 𝜔 = 0.5. Open circles are numerical data from mean-field Monte Carlo simulations with 1 = 32400, and lines represent analytical
results of Eqs. (39) and (40). Fig. (c) illustrates the finite behavior of entropy flux production for 𝜀 = 0.5 which is independent of system size.

We employ Monte Carlo simulations and find that the system under-
goes a second-order consensus-dissensus phase transition with the same
universality class of 2D equilibrium Ising model for critical noise values
𝜀 = 𝜀0 (𝜗, 𝜔 ). The critical exponents are not affected by the presence of
collaborative agents, following Grinstein’s criterion which states that
nonequilibrium stochastic spin-like systems with up-down symmetry in
regular lattices fall into the same universality class of the equilibrium
Ising model [59,60].

For heterogeneous societies (0 < 𝜔 < 1), there is a contrast between
the effects of social temperature among regular and cooperative indi-
viduals, and 𝜀0 (𝜗, 𝜔 ) is a monotonically decreasing (increasing) function
of noise attenuation 𝜗 (cooperative fraction 𝜔 ). Indeed, increasing the
cooperative fraction 𝜔 promotes the formation of a giant cluster of
agreeing individuals that suppresses the phase transition. The collabo-
rative behavior phenomena enhance the social robustness of society to
opinion polarization. We highlight that if all individuals are cooperative
(𝜔 = 1.0), the system behaves as if all individuals were regular (𝜔 = 0.0)
under the linear transformation 𝜀 ⥳ 𝜀ϖ𝜗.

Gibbs entropy and the master equation yield an expression that
enables us to compute social entropy production in the stationary
regime for square lattices. We observe that the entropy production of
the isotropic majority-vote model has a maximum that occurs after the
critical noise 𝜀0 (𝜗, 𝜔 = 0.0) = 0.075 and vanishes for 𝜀  0 or 𝜀  1ϖ2.
However, for cooperative societies, the entropy production increases
after the local maximum and is non-zero for 𝜀 = 1ϖ2 due to the social
temperature disparity between the collaborative and regular agents.
Furthermore, combining cooperative and non-cooperative individuals
yields higher social entropy production. Yet, for small social noise val-
ues, maximum entropy generation occurs in the absence of cooperative
behavior, with 𝜔 = 0.0.

Further generalizations of heterogeneous majority-vote opinion dy-
namics may consider complex network framework and the presence of
non-compliance agents, in other words, 𝜗 > 1. Exploring the influence
of these dissenting agents within opinion dynamics can provide a
deeper understanding of societal and (non)cooperative behaviors.
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