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Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.

Good men, the last wave by, crying how bright
Their frail deeds might have danced in a green bay,
Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way,
Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay,
Rage, rage against the dying of the light.

And you, my father, there on the sad height,
Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night.
Rage, rage against the dying of the light.

—Dylan Thomas, Do Not Go Gentle into That Good Night



RESUMO

Este estudo investiga a influência de redes livres de escala do tipo Barabási-Albert na dinâmica

social, destacando seu papel na evolução do consenso e na formação de preços. Na primeira

parte, estendemos o modelo de voto da maioria de dois estados ao incorporar um parâmetro

de visibilidade 𝑉 , que representa a probabilidade de um indivíduo considerar a opinião de um

vizinho com uma posição divergente em um debate social. Essa modificação captura a influên-

cia assimétrica entre concordância e discordância, impulsionada por algoritmos na chamada

economia do clique, na qual os usuários são expostos predominantemente a conteúdos al-

inhados às suas crenças pessoais. Simulações Monte Carlo revelam que o parâmetro crítico

de ruído 𝑞𝑐 aumenta com 𝑉 , exibindo um exuberante diagrama de fases caracterizado por

transições de fase de primeira e segunda ordem, dependendo do valor de 𝑉 e do parâmetro

de crescimento da rede 𝑧. Na segunda parte, analisamos um modelo de dinâmica de opinião

de três estados para investigar a formação de preços em mercados financeiros. Nosso modelo

inclui dois tipos de agentes financeiros em relação às suas estratégias de mercado: investi-

dores de ruído e fundamentalistas, cujas opções financeiras evoluem sob influências locais ou

globais, respectivamente. Simulações numéricas mostram que o modelo reproduz os principais

fatos estilizados de mercados financeiros, como distribuições de retornos com caudas longas,

volatilidade clusterizada e memória de longo prazo na volatilidade. O aumento na fração de

agentes fundamentalistas reflete uma redução progressiva das caudas nas distribuições de re-

torno, à medida que transicionam de um regime leptocúrtico para um mesocúrtico. Nossos

resultados destacam o impacto crucial das redes livres de escala em promover comportamen-

tos emergentes em sistemas socioeconômicos, oferecendo uma estrutura abrangente para a

investigação de sistemas complexos.

Palavras-chaves: Sociofísica. Econofísica. Simulações Monte Carlo. Transições de fase. Redes

complexas.



ABSTRACT

This study investigates the influence of Barabási-Albert scale-free networks in shaping social

dynamics, highlighting their role in driving two key phenomena: consensus evolution and price

formation. In the first part, we extend the two-state majority-vote model by incorporating a

visibility parameter 𝑉 , which models a chance that an individual considers the opinion of a

neighbor holding a differing stance in some social debate. This modification captures the asym-

metric influence of agreement and dissent driven by algorithms in the so-called click economy,

in which users are presented with content that agrees with their personal beliefs. Monte Carlo

simulations reveal that the critical noise parameter 𝑞𝑐 increases with 𝑉 , exhibiting an exuberant

phase diagram characterized by both first-order and second-order phase transitions depending

on the value of 𝑉 and the network growth parameter 𝑧. In the second part, we analyze a

three-state opinion dynamics model to investigate price formation in financial markets. Our

model comprises two types of financial agents regarding their market strategies: noise traders

and fundamentalists, whose financial options evolve via local or global influences, respectively.

Numerical simulations show that the model reproduces key stylized facts of financial markets,

including heavy-tailed return distributions, volatility clustering, and long-term memory of the

volatility. An increase in the fraction of fundamentalist agents reflects a progressive loss of tails

in the return distributions as they transition from a leptokurtic to a mesokurtic regime. Our

results underscore the crucial impact of scale-free networks in driving emergent behaviors in

socioeconomic modeling, providing an extensive framework for complex systems investigation.

Keywords: Sociophysics. Econophysics. Monte Carlo simulation. Phase transitions. Complex

networks.
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1 INTRODUCTION TO COMPLEX SYSTEMS

“[...] complexity is not about what happens in laboratories. It is about what happens all around us.

Our job as scientists is to illuminate for everyone the truths that we discover.”

Giorgio Parisi

1.1 FUNDAMENTAL PROPERTIES OF COMPLEX SYSTEMS

How can one define complexity? Or, more specifically, what are the elements that com-

pose a complex system? The most natural definition would be that such systems are simply

challenging to define, model, and investigate. And by all means, this is not a false statement.

Nevertheless, a slightly more formal description would state that complex systems comprise

interdisciplinary areas of research in which their central topic of study is by definition entwined

(MITCHELL, 2009). This intricacy is what drives such systems to be difficult to analyze and

draw tangible conclusions from, hence the name.

Several features encompass the behavior of complex systems and thus may help us identify

when we are dealing with one. Below, we identify some of these features:

– Emergence: interactions among individual components often lead to complex, large-

scale behavior, which may not be directly predicted from the microscopic examination

of individual parts. Essential observations of such property are found in opinion models,

for example, where local connections between individuals are modeled to display rich

social phenomena such as consensus formation, polarization and decision-making pro-

cesses (SOOD; REDNER, 2005; DEFFUANT et al., 2000; SZNAJD-WERON; SZNAJD, 2000;

STAUFFER; SOUSA; OLIVEIRA, 2000; OLIVEIRA, 1992).

– Non-linearity: the relationship between local interactions and the overall outcome in

the system is not directly proportional. In this context, small changes in one part of

the system may lead to largely unpredictable effects at the global level. In real-world

scenarios, such as financial markets, for example, the strategy adopted by some agents

to “follow the crowd,” referred to as herding behavior, often leads to crucial consequences

such as expectation bubbles formation and stock market crashes (LUX; MARCHESI, 1999;

CONT; BOUCHAUD, 2000; BORNHOLDT, 2001)
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– Self-organization: spontaneous emergence of structured patterns (order) arising from

local interactions without the need for external driving forces. It is a central feature

that may aid scientists in unveiling more resilient systems as they adapt and create

order out of chaotic interactions. This feature has been largely investigated in biological

physics models, highlighting its foundational role in shaping modern evolutionary theory

(KAUFFMAN, 1993).

– Feedback loops: mechanism in which the outputs of a system directly influence its

inputs, creating a cyclical feeding relationship. Such loops can either be positive, in

which the observed behavior is strengthened or amplified, or negative, where fluctuations

get stabilized. Positive feedback loops, for instance, are often related to self-organizing

behaviors, where individual system components create localized feeding mechanisms that

may rapidly grow into a collectively organized pattern. An interesting example of this

feature is the artificial fabrication of local consensus bubbles, often observed in the

algorithms of social networking platforms (VILELA et al., 2021).

Despite their inherent complexity, complex systems have been majorly investigated in recent

years. It currently expands a wide range of research topics, from climate analysis (FELDHOFF

et al., 2015) to applications in neuroscience and brain networks (REIJNEVELD et al., 2007). This

recent effervescence in complex system analysis has fostered the development of independent

research fields that substantiate the study of complex phenomena such as network science,

largely investigated by Barabási (2016). In this context, the individual parts that compose a

given system (individuals, websites, molecules, neurons, etc.) are represented as nodes, and

their interactions (social relations, hyperlinks, biochemical bonds, synapsis, etc.) are described

as links.

A curious finding within network science is the remarkable similarity in network properties

and structures exhibited by real-world systems across diverse domains. For instance, stud-

ies of brain neural networks have identified two fundamental features that facilitate synaptic

processes: the small-world effect, which ensures efficient communication across the network,

and hubs, neurons with an exceptionally high number of connections that are fundamental in

information integration and processing (BASSETT; BULLMORE, 2006; YAO et al., 2015). Inter-

estingly, these features are also present in human social networks, metabolic networks, citation

networks, and the World Wide Web, among others (BARABÁSI; ALBERT, 2002; ALBERT, 2005).

The underlying idea is that, despite the differences in the nature of these systems, they often
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share universal topological traits. This apparent universality highlights the impact of network

structures on the macroscopic behavior of complex systems, in which network science stands

out as a framework to explore their diverse manifestations.

1.2 SOCIOPHYSICS AND ECONOPHYSICS

Within complex systems, two phenomena are particularly relevant to this work: consensus

formation in social debates and price formation in financial markets. In both cases, their

dynamics are driven by thousands, if not millions, of individuals constantly interacting in order

to decide which stance they should take in a political election or if they should buy or sell

stocks of a given company. Furthermore, as previously mentioned, the topological structure

of these socioeconomic connections between individuals, which may arise from personal or

professional relationships, fundamentally impacts the behavior of macroscopic observables.

To properly address these phenomena, one must consider how to effectively model the un-

derlying mechanisms that drive the collective behavior of millions of individuals. This brings us

to an essential consideration: what role do physics tools play in simulating socioeconomic-based

problems? The connection of these apparently unrelated fields is made via statistical mechan-

ics, a branch of physics that investigates the dynamics of physical systems by analyzing the

macroscopic behavior of their physical quantities rather than their individual components. This

realization fostered the development of the interdisciplinary fields of sociophysics and econo-

physics, which use statistical mechanics, network science and nonlinear dynamics techniques

to investigate collective human behavior and emergent phenomena in social and economic

systems (GALAM, 2012; MANTEGNA; STANLEY, 2000).

The use of statistical tools to investigate social phenomena dates back to the late 18th

century when the French astronomer Pierre-Simon Laplace studied the reasons that led to

near-equal numbers of male and female births in Paris. He theorized that the birth process

could be understood as a random process with equal probabilities rather than being shaped

by divine intervention (BALL, 2002).

Later, in the early 19th century, the statistical view of human behavior began to take shape,

particularly within the scientific community. During this period, the French philosopher Auguste

Comte introduced the term “social physics,” envisioning it as a field that could complement

the scientific description of the world that classical mechanics could not capture. Building

on this statement, the Belgian astronomer Adolphe Quetelet made pioneering contributions
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that set the foundations for the quantitative study of social phenomena (BALL, 2002). His

work focused on understanding statistical patterns in areas such as crime rates and mortality,

introducing the concept of the “average man” (l’homme moyen) as a central figure in his

analysis. In particular, in 1832, he wrote the following:

It seems to me that whatever concerns the human species, considered en
masse, belongs to the domain of physical facts; the greater the number of
individuals, the more the individual will is submerged beneath the series of
general facts which depend on the general causes according to which society
exists and is conserved (QUETELET, 1832, p. 80).

The overarching idea of his statement is that there seems to be a sociophysical law that

compels individuals to adopt reasonable collective behaviors, especially within large societies.

Ideas such as the ones proposed by Comte and Quetelet, along with the later development

of computational tools, were responsible for the later effervescence of research within socio-

physics. In particular, in 1982, Serge Galam, Yuval Gefen and Yonathan Shapir published for

the first time a scientific work that linked strikes in industrial plants or factories with phase

transitions in Ising-like systems (GALAM; GEFEN; SHAPIR, 1982). They investigated the sta-

ble state agents assumed, working or striking, by considering a competing effect between an

external field, representing the individuals’ effective salary, and nearest neighbor interactions.

Furthermore, their work contained a call to the development of sociophysics, therefore being

regarded as the founding paper of sociophysics, despite not being the first contribution in the

field.

Since then, sociophysics has progressively become an essential field within statistical physics

research, with several models being proposed to investigate social phenomena. For instance,

Serge Galam introduced a variety of models to study problems such as minority opinion spread-

ing in public debates (GALAM, 2002) and the effects of hierarchical voting in societies (GALAM,

1986; GALAM, 1990; GALAM, 1999; GALAM, 2000). Alternative approaches, such as the Sz-

najd model (SZNAJD-WERON; SZNAJD, 2000; STAUFFER; SOUSA; OLIVEIRA, 2000), attempt to

model the effects of the outward flow of opinions in social discussions—an individual’s opinion

spreads out to their neighbors—in contrast to the voter model in which opinion flows inward

(SOOD; REDNER, 2005; CASTELLANO; MUÑOZ; PASTOR-SATORRAS, 2009). Moreover, other im-

plementations investigate how individuals with distinct opinions may interact in order to find

common ground between their beliefs, a framework known as the Deffuant model (DEFFUANT

et al., 2000).
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Within the context of opinion dynamics, one model that is particularly relevant for the

purpose of this work is the majority-vote model with noise proposed by Mário de Oliveira

(OLIVEIRA, 1992). In his seminal work, he introduces a framework to explore the effects of social

inertia—an intrinsic tendency of individuals to resist changing their beliefs. This resistance is

quantified via a social anxiety parameter, which represents the probability that an individual

acts in non-conformity with the majority opinion of their acquaintances. Using numerical

simulations, Oliveira investigates how the average social order, or consensus, is influenced by

this parameter, demonstrating that beyond some critical threshold, the system transitions into

a polarized state. The majority-vote model has since become a cornerstone in the study of

opinion dynamics and has been extensively explored in recent literature, where researchers

have introduced modifications to the topological structure of the social connections (CAMPOS;

OLIVEIRA; MOREIRA, 2003; PEREIRA; MOREIRA, 2005; LIMA, 2007; LIMA; SOUSA; SUMUOR, 2008)

and to the dynamics of the model (VILELA; MOREIRA, 2009; VILELA; MOREIRA; SOUZA, 2012;

VIEIRA; CROKIDAKIS, 2016; VILELA; STANLEY, 2018; VILELA et al., 2021; OLIVEIRA et al., 2024).

The growing interest in investigating complex social phenomena has not only advanced

the field of sociophysics but has also catalyzed progress in related research areas. Among

these, econophysics stands out as a particularly relevant application of insights from studies

on human collective behavior, as financial markets are fundamentally composed of interacting

individuals. Recent research in econophysics leverages statistical physics tools, mathematical

modeling and computer simulations to reveal the fundamental mechanisms that shape price

formation in modern financial markets. For the purpose of this work, we shall focus exclusively

on agent-based modeling of economic systems for the impact of financial agents in shaping

macroscopic market phenomena (CHAKRABORTI et al., 2011).

Some of the opinion models previously discussed were later extended to econophysics

applications, investigating phenomena such as price evolution and the formation of market

bubbles and crashes. In particular, Serge Galam adapted his local majority model to investigate

the mechanisms behind market fluctuations, also exploring the effects of the presence of

contrarians—agents who never adopt the local majority opinion (GALAM, 2013; GALAM, 2016).

Similarly, the Sznajd model of outward opinion spreading was modified to analyze the process

of price formation, offering a simple yet powerful framework for understanding how local

interactions between financial agents shape global market trends (SZNAJD-WERON; WERON,

2002).

Yet, this work shall focus exclusively on the extension of the majority-vote model for
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financial markets, which we shall refer to as the global-vote model, proposed by Vilela et

al. (2019). In their work, the authors consider a heterogeneous composition of the market

comprising two distinct market strategies: noise traders and fundamentalists. The former acts

according to the regular majority-vote prescription, following the option of the majority of their

friends, while the latter acts based on the market index. By relating changes in the average

order parameter of the system with the returns of a financial asset, the authors are able to

reproduce key stylized facts of financial markets, such as fat-tailed distribution of returns and

volatility clustering. This framework has been investigated in its two-state (VILELA et al., 2019;

GRANHA et al., 2022) and three-state (ZUBILLAGA et al., 2022b) configurations, differing by the

number of financial options that the agents may adopt.

1.3 PROBLEM STATEMENT

Building on recent advances in sociophysics and econophysics, we propose an extension of

the majority-vote framework to explore the effects of scale-free networks and biased visibility

algorithms on social order and price formation. The body of this work is structured into two

primary sections, each addressing distinct aspects of these phenomena.

In the first section, we define an opinion dynamics model that incorporates social network

algorithms designed to reinforce converging opinions. Similar to the standard majority-vote

model (OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS, 1993), individuals assume one of two

possible stances on some political issue, adopting the majority opinion of their acquaintances

with a probability influenced by the social anxiety parameter 𝑞.

In this work, we shall extend this framework to explore the effects of biased visibility

algorithms often present in modern social media platforms. In such a context, individuals

tend to be disproportionately exposed to opinions that align with their current stance, while

exposure to opposing views is limited. This approach simulates social media environments,

where algorithms often amplify echo chambers and foster polarization. Our model implements

a biased visibility parameter 𝑉 , which measures the chance that an individual may access

diverging opinions of his nearest acquaintances.

In the second section, we focus on expanding the three-state global-vote model for finan-

cial markets to encompass complex socioeconomic interaction network topologies. Our model

comprises two types of economic strategies for their impact on price formation: noise traders

and fundamentalists. We introduce a set of local update rules that drive noise traders’ behavior
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and global update rules that describe fundamentalist strategies based on the three-state Potts

model (WU, 1982; BRUNSTEIN; TOMÉ, 1999; TOMÉ; PETRI, 2002).

This work builds upon recent investigations of the global-vote model framework by con-

sidering the effects of complex network topologies (GRANHA et al., 2022) on its three-state

variant (ZUBILLAGA et al., 2022b). More specifically, we aim to shed light on the possible im-

pacts of implementing complex networks with different average connectivities and how such

topological structures influence the financial observables of our model. In this framework, we

relate the time variations of the order parameter of the system with the logarithmic returns

of real-world financial markets (BORNHOLDT, 2001; KAIZOJI; BORNHOLDT; FUJIWARA, 2002;

TAKAISHI, 2005; CONT, 2007). As a result, we are able to explore crucial features of real-world

financial time series via a fairly straightforward approach.

In both cases, individuals shall be represented as nodes in a Barabási-Albert network

(BARABÁSI; ALBERT; JEONG, 2000), with links symbolizing socioeconomic interactions between

them. The choice to use Barabási-Albert networks in our simulations stems from their ability

to replicate key properties of real-world networks. These include the small-world effect, where

distances between social media users are much smaller than their geographic separation, and

the presence of hubs, which are highly influential individuals characterized by a disproportional

number of connections.

1.4 ORGANIZATION OF THIS WORK

This work is organized as follows. Chapter 2 introduces the fundamental properties and

basic vocabulary of network science. It shall present the concepts of graphs and complex

network structures and their particular relevance to this work. Lastly, it introduces three critical

models for the construction of distinct complex network topologies and their main properties.

Chapter 3 presents the theoretical background of stochastic processes and the Monte Carlo

method. We shall discuss the mathematical description of Markovian processes, including the

master equation. Finally, we discuss the theoretical basis of Monte Carlo sampling and its

relation to time averages of thermodynamic quantities.

Chapter 4 presents and discusses the existing literature on opinion formation models for

simulating social and economic systems. In particular, we define the majority-vote model, both

in its two-state and three-state formulations, as well as the three-state global-vote model,

an extension of the majority-vote framework for the investigation of price formation in stock
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markets. Furthermore, we introduce a social opinion formation model that investigates filter

bubble and echo chamber effects on consensus break. We shall also present a set of math-

ematical and statistical tools for analyzing critical systems, known as finite-size scaling, and

obtain the unitary relation for critical exponents.

Chapter 5 and 6 present the numerical results of the Monte Carlo simulation of the models

proposed in this work: a two-state majority-vote model that investigates the effects of artificial

consensus bubbles on social order; and a three-state global-vote model for financial markets.

In both cases, we consider the impacts of Barabási-Albert networks, a fundamental topology

in investigating real-world complex systems.

In chapter 7, we present our concluding remarks, discussing the key conclusion of this work,

as well as possible directions for future research on socioeconomic simulations.
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2 NETWORK SCIENCE AND COMPLEX TOPOLOGIES

“The real world is controlled not by laws, but by networks.“

Albert-László Barabási

2.1 A NETWORKED WORLD

As physicists, we are captivated by the possibility of solving what may at first glance seem

unsolvable—of finding order in chaos and simplicity in complexity. This innate restlessness

is what drove humankind, through the minds of brilliant scientists, to remarkable findings

in diverse fields. Researchers often adopt a reductionist approach when dealing with such

complex problems, breaking down the phenomena into simpler, treatable steps. Analyzing

these manageable components enables them to gain insights into the mechanisms at play in

the original problem, thus proving a valuable strategy for investigating complex phenomena.

Take, for instance, the study of the human brain. Billions of neurons form this highly

complex structure, and their connections form what we understand as cognition. We expect

that if an individual is affected by a neurological pathology, these connections should be altered

somehow, negatively impacting their standard cognition. Thus, investigating and understanding

the standard structure of the brain’s neuronal connections could provide a non-invasive method

to diagnose possible neurological conditions at an early stage. There are entire teams of

neuroscientists devoted to defining this standard pattern of neuronal connections, a structure

referred to as the connectocome (SPORNS; TONONI; KÖTTER, 2005).

Another interesting example lies in the study of the dynamic process involved in collective

decision-making in political elections. Humans are complex beings that tend to interact with

other individuals, family, friends, or even social influencers in order to form their opinions on

a given social topic. Investigating how these influence webs are shaped can thus provide key

insights into how opinions are formed and evolve. Ultimately, the study of opinion formation in

modern societies can be a powerful tool in analyzing political election outcomes, providing a

way to understand how consensus is reached or how polarization emerges in modern societies

(WATTS; DODDS, 2007).

Finally, consider the behavior of financial assets in stock markets over time. We expect stock

prices to fluctuate due to several factors, from individual strategies of investors to the arrival
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of external news that impacts the market’s public image. Predicting such fluctuations could

provide one with the unique ability to navigate market price dynamics, hence the popularity of

market prediction models (KIMOTO et al., 1990; GANDHMAL; KUMAR, 2019; JIANG, 2021). Yet,

a simplified approach could suppose that the structure of socioeconomic interactions among

market traders plays a fundamental role in shaping the global market behavior for the impact

of collective buy-and-sell movements performed by financial agents.

The striking detail across these examples is observing the common thread they share, at

least in a reductionist approach: the relationships among the components of these systems

exert a deep influence on the outcomes observed. The substrate on which these dynamic

processes unfold is known as a network, where the individual parts are denoted as nodes and

their interactions as links. These are the basis of network science, an interdisciplinary field that

investigates the mechanisms that shape the dynamics of complex systems via their underlying

topological structure.

Network science, therefore, forms a crucial pillar of our work. In this chapter, we will explore

the properties of networks that are relevant to our study, as well as discuss three essential

models for the assembly of complex networks: Erdös-Rényi random graphs, Watts-Strogatz

small-world networks, and Barabási-Albert scale-free networks.

2.2 BASIC DEFINITIONS AND KEY PROPERTIES

From a mathematical perspective, a network, or graph, comprises a set of elements called

nodes (or vertices) and connections between them, known as links (or edges). These links

represent various relationships, such as physical, social, political, or economic, between the

network elements. Two connected nodes are usually referred to as neighboring nodes. Graphi-

cally, networks are typically depicted as dots representing the nodes and lines connecting them,

symbolizing the links.

Let us now delve into a set of basic definitions that will compose the fundamental vocab-

ulary for the study and comprehension of networks.

2.2.1 Connection Structure

Initially, networks can be divided into two groups regarding their links’ structure: directed

or undirected. A network is directed when there is an asymmetry in its connection structure,
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i.e., a connection between node 𝑖 and node 𝑗 does not imply that there exists a connection

between node 𝑗 and node 𝑖. Such connections are usually graphically depicted as arrows and

are referred to as arcs. On the other hand, a network is undirected if its connections do not

obey a specific orientation. In this case, the network’s connections are symmetric (if node 𝑖 is

connected to node 𝑗, node 𝑗 is also connected to node 𝑖), and links are simply represented as

lines connecting neighboring nodes.

Within the topic of the network’s connections, another fundamental definition in network

theory is that of degree of connectivity or, in simpler terms, degree. The degree 𝑘𝑖 of node

𝑖 measures the number of connections, or neighbors, it has. Note that we must extend this

concept when regarding directed networks since, in this case, nodes have outward and inward

connections. Hence, for directed networks, we introduce the idea of in-degree 𝑘in (out-degree

𝑘out), which relates to the number of connections of a given node that points towards (away

from) it.

Still regarding the connectivity of the network, note that we may have two extreme cases:

1. Disconnected regime, in which there are no connections between any two nodes of the

network. In this case, we say that each node of the network represents an independent

component since there are no available paths from one element to another;

2. Fully connected regime, where each node 𝑖 of the network is connected to all other

nodes. In this way, every node in the network is accessible via any other node and the

system is said to belong to a single component.

Typically, we find ourselves in some connectivity regime between these two extremes, in which

there is a non-zero amount of links in the network and a comparatively small number of network

components. Furthermore, note that once again, for directed networks, we must define an in-

component (out-component) as the set of nodes that can reach (can be reached by) the node

in question.

One particularly relevant way to mathematically store the topological features of networks

is via the so-called adjacency matrix. For a network of size 𝑁 , its adjacency matrix is defined

as a 𝑁 × 𝑁 matrix in which its elements 𝐴𝑖𝑗 contain the information about the connection

structure of the network: if there is a connection between nodes 𝑖 and 𝑗, 𝐴𝑖𝑗 = 1, otherwise

𝐴𝑖𝑗 = 0. Furthermore, we remark that there is a unique correspondence between a network’s
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connection structure and its adjacency matrix, i.e., such a matrix can only represent one

network.

Note that we may use the information contained in the adjacency matrix in order to identify

the degree of the nodes in the network. For undirected networks, given its symmetry, the degree

of a node 𝑖 is identified as the sum of the elements in the row or column that contains it.

Mathematically we have

𝑘𝑖 =
𝑁∑︁

𝑗=1
𝐴𝑖𝑗 =

𝑁∑︁
𝑗=1

𝐴𝑗𝑖. (2.1)

We can use this information to define the average connectivity of the network as

⟨𝑘⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑘𝑖. (2.2)

Conversely, as previously mentioned, we must differentiate the inward and outward connections

for directed networks. Hence, for these networks, we have

𝑘𝑖𝑛
𝑖 =

𝑁∑︁
𝑗=1

𝐴𝑗𝑖, and 𝑘𝑜𝑢𝑡
𝑖 =

𝑁∑︁
𝑗=1

𝐴𝑖𝑗, (2.3)

where the total degree of connections is 𝑘𝑖𝑛
𝑖 + 𝑘𝑜𝑢𝑡

𝑖 = 𝑘𝑖. Additionally, their corresponding

average degrees are expressed as

⟨𝑘𝑖𝑛⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑘𝑖𝑛
𝑖 , and ⟨𝑘𝑜𝑢𝑡⟩ = 1

𝑁

𝑁∑︁
𝑖=1

𝑘𝑜𝑢𝑡
𝑖 . (2.4)

For the purpose of this work, we shall focus exclusively on undirected networks. In this

case, the concept of inward and outward degrees becomes redundant, as all connections are

symmetric. Consequently, each node 𝑖 has a single degree 𝑘𝑖.

2.2.2 Degree Distributions

Naturally, we do not expect all nodes to have the same degrees in most real-world networks.

In fact, in social networks, for example, we observe the presence of hubs—highly connected

individuals—who tend to play a fundamental role in modern societal debates. In this way, we

can define a degree distribution 𝑃 (𝑘), which measures the dispersion of the degrees of the

nodes within the network. As expected, since 𝑃 (𝑘) represents a distribution of probabilities,

it must obey the normalization condition
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∞∑︁
𝑘=0

𝑃 (𝑘) = 1 =
𝑘𝑚𝑎𝑥∑︁

𝑘=𝑘𝑚𝑖𝑛

𝑃 (𝑘), (2.5)

where 𝑘𝑚𝑖𝑛 (𝑘𝑚𝑎𝑥) represents the lowest (largest) number of connections of a node in the

network. In other words, 𝑃 (𝑘 < 𝑘𝑚𝑖𝑛) = 0 and 𝑃 (𝑘 > 𝑘𝑚𝑎𝑥) = 0.

The degree distribution of a network plays a fundamental role in shaping many of its

properties and associated phenomena. For instance, we may identify the network’s average

connectivity as

⟨𝑘⟩ =
∞∑︁

𝑘=0
𝑘𝑃 (𝑘). (2.6)

2.2.3 Average Path Length

Take a pair of nodes (𝑖, 𝑗) in the network. The path length between the pair is defined

as the number of edges required in the trajectory from node 𝑖 to node 𝑗. In particular, we

are often interested in the shortest path between each pair of nodes, a characteristic known

as geodesic distance 𝑑𝑖𝑗. Note that this definition does not require uniqueness (there may be

more than one distinct geodesic path between a pair of nodes). Moreover, the length of the

longest geodesic path in the network is referred to as the network’s diameter 𝑑𝑚𝑎𝑥.

In particular, for undirected networks, we may define the average path length ⟨𝑑⟩, which

provides an overall measure of how effectively “small” the network is—a feature known as the

small-world effect. Thus, the mean geodesic distance is defined as

⟨𝑑⟩ = 1
𝑁(𝑁 − 1)

∑︁
𝑖 ̸=𝑗

𝑑𝑖𝑗. (2.7)

Networks that exhibit the small-world property are characterized by relatively shorter average

path lengths than their network size 𝑁 . This phenomenon alludes to the renowned experiment

conducted by the social psychologist Stanley Milgram, known as the six degrees of separation

(MILGRAM, 1967). In this experiment, individual A was tasked with delivering a letter to

individual B, and the delivery process could only be accomplished through manual transmission

from person to person (TRAVERS; MILGRAM, 1977). Results showed that the average number

of required individuals for the letter to reach its final recipient was close to six, which is small

compared to the size of the population of the United States—where the experiment took

place—hence the name of the effect.
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2.2.4 Cliques and Clustering

Imagine we are investigating a network structure where each node represents a student in

a given university, and links relate to their social relations. In real-world scenarios, individuals

often have a high probability of interacting with the friends of their friends, forming social

interaction triangles—a feature known as cliques. Formally, cliques are defined as a set of

nodes in a network in which, for every pair in that set, there is a connection between them,

such as a group of friends in which every individual interacts with the others.

As social beings, humans tend to organize themselves in groups, inducing the formation

of cliques. This characteristic is commonly referred to as clustering, and we may quantify its

impact via the clustering coefficient 𝐶 (STROGATZ, 2001; NEWMAN, 2003; BARABÁSI, 2016).

We define the local clustering coefficient of node 𝑖 as follows:

𝐶𝑖 = 2𝐿𝑖

𝑘𝑖(𝑘𝑖 − 1) , (2.8)

where 𝐿𝑖 represents the number of links between the 𝑘𝑖 neighbors of site 𝑖. In practical terms,

Eq. (2.8) equates the fraction of connections that actually exist between the neighbors of site

𝑖 over the total number of possible links between those nodes 1
2𝑘𝑖(𝑘𝑖 − 1). Furthermore, the

network’s clustering coefficient 𝐶 is defined as the average of the local clustering coefficient

𝐶𝑖 over all nodes, thus

𝐶 = 1
𝑁

𝑁∑︁
𝑖=1

𝐶𝑖. (2.9)

2.2.5 From Regular to Complex Networks

The properties discussed thus far form the fundamental theoretical apparatus for charac-

terizing network structures. The investigation of real-world systems, such as the topology of

the connections within the World Wide Web, the organization of power grid networks, or the

structure of social relationships in social networking apps, have highlighted key features that

regular networks failed to capture. This context spurred the development of complex networks,

which aim to address some of the limitations displayed by regular structures.

In the following sections, we shall explore three of the most influential models for the assem-

bly of complex networks: Erdös-Rényi random graphs, Watts-Strogatz small-world networks,
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Figure 1 – Visual representation of three distinct complex network architectures with size 𝑁 = 16, and average
connectivity ⟨𝑘⟩ = 4. This visualization highlights key features of these topological structures: from
the randomness of (a) random networks to the clusters and shortcuts of (b) small-world networks
and hubs of (c) scale-free networks.

(a) (c)(b)

Source: The author (2025).

and Barabási-Albert scale-free networks. Each of these complex network models provides a spe-

cific set of features that attempt to reproduce the topological behavior of real-world complex

systems. Random networks, for instance, provide a baseline for studying connectivity patterns

through probabilistic link formation. In contrast, small-world networks simultaneously intro-

duce a high clustering coefficient and short path lengths, a phenomenon widely observed in

social and biological systems. Furthermore, scale-free networks include the presence of hubs,

individuals with a higher number of connections, that tend to influence the dynamics of many

natural and artificial systems.

Figure 1 provides a schematic visualization of the aforementioned properties of these three

different complex networks. In the figure, we show (a) a random network, (b) a small-world

network and (c) a scale-free network, each built with 𝑁 = 16 nodes and average connectivity

of ⟨𝑘⟩ = 4. The plot illustrates the disordered connectivity of random structures, the clusters

and shortcuts that emerge in small-world networks and the hub-like structure of scale-free

networks.

2.3 ERDÖS-RÉNYI RANDOM NETWORKS

Picture a scientific conference attended by 𝑁 participants, none of whom know each

other beforehand. After the formal sessions, the organizers host a cocktail party to encourage

networking among attendees. As the evening progresses, conversations naturally begin to form,

and by the end of the event, we expect that a network of connections will emerge, with

nodes representing each participant and links representing social connections created at the

gathering. If we lack detailed information about the exact formation of these connections,
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a reasonable assumption is to consider that the connections were formed randomly between

the participants. This framework is captured by the widely known random networks (ERDÖS;

RÉNYI, 1959; ERDÖS; RÉNYI, 1960), representing an initial approach to the investigation of

real-world complex systems.

In its original formulation, Paul Erdös and Alfréd Rényi define the construction of a random

graph as taking a set of 𝑁 isolated nodes and connecting every possible pair of nodes in the

network [𝑁(𝑁 − 1)/2] with chance 0 < 𝑤 ≤ 1, while forbidding double connections (ERDÖS;

RÉNYI, 1959). Note that in this formulation, the expected number of links present in the

network depends on 𝑤 and is given by

⟨𝐿⟩ = 𝑤𝑁(𝑁 − 1)
2 . (2.10)

Furthermore, we remark that the average connectivity of the network is

⟨𝑘⟩ = 2⟨𝐿⟩
𝑁

= 𝑤(𝑁 − 1), (2.11)

where each link needs to be counted twice since we are dealing with undirected networks.

Additionally, in the thermodynamic limit (𝑁 → ∞) we shall consider the approximation

⟨𝑘⟩ = 𝑤(𝑁 − 1) ≈ 𝑤𝑁. (2.12)

In the construction process of random networks, each link has a probability 𝑤 of being

formed and a complementary chance (1 − 𝑤) of not being formed. Hence, random networks

constructed via the Erdös-Rényi formulation clearly follow a binomial process, and their cor-

responding probability distribution are given by

𝑃 (𝑘) =
(︃

𝑁 − 1
𝑘

)︃
𝑤𝑘(1 − 𝑤)𝑁−1−𝑘. (2.13)

Moreover, for large enough networks (𝑁 >> 𝑘) and small values of the connection probability

(𝑤 << 1), while holding 𝑤𝑁 ≈ ⟨𝑘⟩, it can be shown that the binomial distribution tends to

a Poisson distribution, given by

𝑃 (𝑘) ≈ 𝑒⟨𝑘⟩ ⟨𝑘⟩𝑘

𝑘! . (2.14)

In Figure 2(a) to (d), we present an illustration of the connection process of random net-

works constructed using the Erdös-Rényi formulation with 𝑁 = 10 and 𝐿 = 15 links for an
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Figure 2 – Representation of the Erdös-Rényi process for the assembly of random networks. From (a) to (d),
consider a network with 𝑁 = 10 initially isolated nodes which are connected by adding a total of
𝑤𝑁(𝑁 − 1)/2 = 15 random links between them. The final network has ⟨𝑘⟩ = 3. In (e), it is also
shown the degree distribution 𝑃 (𝑘) averaged over ten networks for ⟨𝑘⟩ = 6, 8, 10, and 20, each
with 𝑁 = 2 × 104 nodes. The lines represent Poisson fits for the data.

Source: Granha et al. (2022).

average connectivity ⟨𝑘⟩ = 3. Furthermore, Fig. 2(e) displays the degree distributions for net-

works built with 𝑁 = 2×104 nodes averaged over ten network realizations for several average

connectivity values. Results show that the degree distributions closely follow the theoretical

expected results for a Poisson distribution in such a limit.

As previously stated, random networks constitute an initial approach to studying complex

systems, and as such, they lack certain structural properties that limit their capability to

reproduce real-world network features. Since the chance of two randomly selected nodes being

connected (𝑤) is often held to small values, random graphs are characterized by a low clustering

coefficient. This is a reflection of the absence of local links as a result of the random nature of

the network’s formation process. Still, random networks present a considerably small network

diameter, indicating the presence of the small-world property. In general, while Erdös-Rényi

random graphs display some aspects found in real-world networks, they fail to capture some

subtleties of those systems, such as the presence of hubs or cliques.

2.4 WATTS-STROGATZ SMALL-WORLD NETWORKS

Prior to Watts and Strogatz’s seminal paper (WATTS; STROGATZ, 1998), the theoretical

study of complex systems involved the application of networks characterized by either com-
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pletely regular or random topological structures. Yet, several real-world systems, from biological

to social realms, are built on network structures that lie somewhere between these two limit-

ing cases. Thus, the Watts-Strogatz network model proposes to interpolate between regularity

and randomness by introducing a tunable parameter. Such structures are known as small-world

networks, in allusion to the six degrees of separation experiment (MILGRAM, 1967).

In its original formulation, small-world networks are constructed according to the following

prescription: start with a ring lattice of 𝑁 nodes, where each is linked to its first 𝐾 neighbors

(𝐾/2 neighbors on either side); each of the network’s links will be rewired with probability

𝑝 while forbidding that a link is rewired to the original node, self-connections and double

connections (WATTS; STROGATZ, 1998). Note that when 𝑝 = 0, we recover the standard

regular lattice. Conversely, when 𝑝 = 1, all links will be rewired, and we approach a random

network regime. The probability 𝑝 is often referred to as the rewiring parameter, and it tunes

the degree of randomness present in the network.

The Watts and Strogatz model is remarkable for formulating networks encompassing small

average path lengths ⟨𝑑⟩ and high clustering coefficients 𝐶, a feature observed in many real-

world networks. As they are built on a regular substrate, we still observe network cliques for

intermediate values of 𝑝. Likewise, rewiring its regular links progressively introduces long-range

interactions in the network, which reflect a decrease in the average path distances. Such effects

are observed in Fig. 3, illustrating how small-world networks’ average path length and clustering

coefficient depend on the rewiring parameter. Indeed, we observe that for a particular range

of values of 𝑝, Watts-Strogatz small-world networks can reproduce both features mentioned

previously.

Before we rewire the network’s links, the average connectivity of small-world networks is

simply ⟨𝑘⟩ = 𝐾 (the number of links each node has in the original regular structure). Since no

links are added to the network in the rewiring process, the average connectivity of the network

shall be preserved, irrespective of the value of the rewiring parameter 𝑝.

Small-world networks represent a significant advancement in the investigation of real-world

complex systems. They provide a clever bridge between the clustered structures of regular lat-

tices and the small network diameter of random graphs. These features are often observed in

systems such as social networking apps, where individuals tend to connect to those around

them as well as people from other countries, eliminating the typical geographic constraints.

Nevertheless, Watts-Strogatz small-world networks still fail to capture another crucial charac-

teristic of social systems: the presence of highly connected and influential individuals. This is
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a cornerstone of the Barabási-Albert model for the assembly of scale-free networks, presented

in the following section.

Figure 3 – Plot of the average path length 𝐿 = ⟨𝑑⟩ and clustering coefficient 𝐶 of Watts-Strogatz small-world
networks as functions of the rewiring parameter 𝑝. Note that for a range of values of 𝑝, the resulting
networks will present both the small-world effect and high clustering coefficients.

Source: Watts and Strogatz (1998).

2.5 BARABÁSI-ALBERT SCALE-FREE NETWORKS

In modern society, the presence of individuals known as social influencers has become

increasingly prominent. Such social players tend to strongly influence trends across various

fields, from lifestyle and fashion to politics and economics. A distinguishing characteristic of

influencers is how they usually concentrate a large number of followers, often serving as opinion

formers for their respective audiences. As previously discussed, this feature is not observed in

random or small-world networks; it is actually a hallmark of a class of graphs known as scale-

free networks. Mathematically, a scale-free network is a graph whose degree distribution follows

a power law:

𝑃 (𝑘) ∼ 𝑘−𝛾, (2.15)

where 𝛾 is positive and real. Such networks are termed scale-free due to the lack of a charac-

teristic scale in their degree distributions—the overall shape of the distributions is unchanged

when altering the function’s scale of observation.
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A question that naturally arises at this point is: is there a mechanism behind the emergence

of the scale-free property? And, if this is the case, how can we define a network model so

that it displays said property? This was the central topic of the work by Barabási and Albert

(2002), in which they discuss two fundamental characteristics observed in real-world networks

regarding the emergence of the scale-free property:

1. Growth

Most systems observed in the real world are not static—their number of nodes con-

stantly evolves in time. The most distinguished example of this feature is the network of

connections in the World Wide Web, where Web pages represent nodes and hyperlinks

between pages represent edges. The World Wide Web represents the largest network

ever built by humanity, and its size continues to grow daily (BARABÁSI, 2016). Random

and small-world networks do not encompass this dynamic behavior observed in real-world

complex networks.

2. Preferential Attachment

Another curious behavior observed in systems such as social networking apps is individu-

als’ innate tendency to connect themselves with influential players in the network. Thus,

it is reasonable to assume that a mechanism is at play that reflects this “rich get richer”

effect. This feature was formally termed preferential attachment, and it states that the

probability that an existing node in the network receives new connections is proportional

to its current degree (BARABÁSI; ALBERT, 2002).

Based on these two features, Barabási and Albert (2002) proposed the Barabási-Albert

model for the construction of scale-free networks. The connection scheme considers an initial

small set of nodes 𝑧0 with 𝑛0 links between them. Then, at each time step of the growth

process, a new node with 𝑧 ≤ 𝑧0 new links is added to the network, where double connections

are forbidden. These connections are created via the aforementioned preferential attachment

mechanism, in which the probability Π that a newly added node will link itself with node 𝑖

depends linearly on the degree 𝑘𝑖 of such node. Mathematically, we have

Π𝑖(𝑘𝑖) = 𝑘𝑖∑︀
𝑗 𝑘𝑗

, (2.16)

where the summation represents a normalization factor and runs over all nodes present in

the network except the one currently being added. In this way, both the number of nodes
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𝑁(𝑡) = 𝑧0 + 𝑡 and the number of links 𝐿(𝑡) = 𝑛0 + 𝑧𝑡 are functions of time.

For the purpose of this work, we shall consider Barabási-Albert networks constructed with

a fully connected initial core of 𝑧0 = 𝑧 + 1 nodes. A new node with 𝑧 links is added to the

network at each time step. In this way, the parameter 𝑧 will be the only control parameter of

the model, and we shall refer to it as the growth parameter of the network.

Analytical results (BARABÁSI; ALBERT, 2002) show that, in fact, the Barabási-Albert model

effectively produces a scale-free network with a power law degree distribution. In particular,

scale-free networks built according to such algorithm are known to display a power law degree

distribution with exponent 𝛾 = 3, irrespective of the growth parameter’s value.

Furthermore, the connection process of Barabási-Albert networks, via the preferential at-

tachment algorithm, facilitates the emergence of hubs—small number of nodes with a great

number of connections. In this way, hubs play a crucial role in the effective connectedness of

said network, as they essentially act as connection bridges between nodes in the system. As a

result, scale-free networks built according to the Barabási-Albert algorithm display a smaller

average path length than those observed in random networks.

Another critical feature displayed by Barabási-Albert networks is that they display a clus-

tering coefficient approximately five times greater than the ones obtained in random networks.

This is an interesting feat, as it shows that beyond the capability of displaying the small-world

property and the emergence of hubs, these networks also show a tendency to form cliques,

which are commonly present in real social networks. Results show that the clustering coefficient

of Barabási-Albert networks scales with the number of nodes of the network as 𝐶 ∼ 𝑁−0.75.

Moreover, we remark that such networks are characterized by an average connectivity ⟨𝑘⟩ ≈ 2𝑧

for 𝑁 ≫ 1 (BARABÁSI; ALBERT, 2002).

Figure 4(a) displays a visual representation of a Barabási-Albert scale-free network with

𝑁 = 300 nodes and a growth parameter 𝑧 = 5. In this representation, the size of a node is

proportional to its degree. Note that the figure shows a small number of hubs, displayed as

larger circles, which are expected to be presented in such topological structures.

Moreover, Fig. 4(b) shows the degree distributions of Barabási-Albert networks with size

𝑁 = 104 nodes and several values of the growth parameter 𝑧. Note that the degree distri-

butions follow the expected behavior of scale-free networks, displaying a power law degree

distribution with the expected exponent of 𝛾 = 3, as shown by the comparative dashed red

line. Furthermore, note that this behavior is independent of the value of the growth parameter

used.
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Figure 4 – (a) Visual representation of Barabási-Albert scale-free networks with size 𝑁 = 300 and a growth
parameter 𝑧 = 5. A node’s size is proportional to its number of connections. Also displayed is (b)
the degree distributions 𝑃 (𝑘) for several values of 𝑧 = 4, 8, 10, 50 and 100, and networks of size
𝑁 = 104. The dashed red line corresponds to a power-law function with exponent 𝛾 = 3.

Source: The author (2025).

Barabási-Albert networks provide a powerful substrate for the investigation of real-world

complex systems due to their capability of displaying key features observed in modern socioe-

conomic networks. Its construction mechanisms are responsible for the natural emergence of

hubs in the network, which play a crucial role in lowering its average path length. Hence,

Barabási-Albert networks will be the primary focus of this work. We shall explore its impact

on opinion dynamics and consensus formation in social systems, as well as on price formation

and financial return distributions in modern economic systems.
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3 STOCHASTIC PROCESSES AND MONTE CARLO SIMULATIONS

This chapter shall closely follow the discussion presented by Reichl (2016) and Tomé

(2001) to introduce the formal treatment for stochastic processes. We shall obtain the master

equation and introduce the foundations for Monte Carlo simulations, a widely implemented

method for the simulation of random processes. Our objective is to establish the theoretical

fundamentals that will be implemented in this work, in particular, the basis for Monte Carlo

sampling, finite-size scaling relations and their implication in obtaining the system’s critical

points.

3.1 RANDOM VARIABLES

Picture a financial stock of a given company. Over time, the daily number of trades involving

this stock can fluctuate significantly due to factors like market sentiment, breaking news, or

strategic decisions by financial agents. While we can observe a discrete number of trades

that occurred at the end of the day, the exact value remains unpredictable beforehand. This

behavior exemplifies the nature of a random variable, a quantity whose outcome is determined

by many other underlying random factors, making it impossible to predict its value. Moreover,

the trading activity itself may be modeled as a stochastic process – a mathematical framework

describing the evolution of a system through a set of time-dependent random variables.

In real-world scenarios, such mathematical representations are fundamental in modeling

complex systems across diverse domains. In particular, the interdisciplinary field of sociophysics

investigates how individual interactions and randomness crucially influence consensus dynamics

or polarization in social subjects, where models such as the majority-vote (OLIVEIRA, 1992)

play a key role. Furthermore, as mentioned previously, the price dynamics in stock markets is

strongly impacted by individual strategies and external news, where stochastic models have

confirmed the emergence of expectation bubbles and market crashes (LUX; MARCHESI, 1999;

BORNHOLDT, 2001). Finally, crucial global events such as the COVID-19 pandemic are similarly

driven by random factors such as individual interactions, transmission rates, and recovery times,

where stochastic models such as the SIR framework are critical in understanding and managing

global outbreaks (COOPER; MONDAL; ANTONOPOULOS, 2020).

Before delving into the mathematical details of stochastic processes, we shall first set the
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foundations of random variables and some key properties, where, for simplicity, we will consider

the discrete case. Let 𝑥 be a random variable described by a distribution 𝑃𝑥, which relates each

possible outcome of 𝑥 = 𝑥𝑖 with a given probability 0 ≤ 𝑃𝑥𝑖
≤ 1. Naturally, such probability

distribution must obey the normalization condition, expressed as

∑︁
𝑖

𝑃𝑥𝑖
= 1, (3.1)

where the summation runs over all possible realizations of the variable 𝑥 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}.

3.2 STOCHASTIC PROCESSES

Suppose that we are investigating a system in which its state depends exclusively on a

random variable 𝑥, which by itself evolves over time 𝑡. We shall consider that the variable

𝑥 may adopt discrete integer values and the time 𝑡 may adopt discrete non-negative integer

values, for simplicity. In this framework, the evolutionary dynamics of the system is governed

by a stochastic process, while the variable 𝑥(𝑡) is referred to as stochastic variable. Thus, such

process at time 𝑡 = ℓ will be described by the joint probability

𝑃ℓ(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ). (3.2)

Note that the expression describes the history preceding the present state of the system, where

the variable 𝑥 adopted values 𝑥0, 𝑥1, . . . , 𝑥ℓ at times 𝑡 = 0, 𝑡 = 1, . . . , 𝑡 = ℓ respectively.

Naturally, the probability that the variable 𝑥 = 𝑥ℓ+1 at time 𝑡 = ℓ + 1 is given by the

conditional probability

𝑃ℓ+1(𝑥ℓ+1|𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ). (3.3)

A particular type of stochastic process is defined when such conditional probability of

𝑥 = 𝑥ℓ+1 at 𝑡 = ℓ+1 depends exclusively on the previous state 𝑥 = 𝑥ℓ at time 𝑡 = ℓ, regardless

of the previous values adopted by the stochastic variable 𝑥0, 𝑥1, . . . , 𝑥ℓ−1. In this case, such

process is termed a Markovian process in honor of the distinguished Russian mathematician

Andreyevich Markov, who made significant contributions to the theory of stochastic systems.

Thus, in a Markovian process, Eq. (3.3) can be simplified as

𝑃ℓ+1(𝑥ℓ+1|𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ) = 𝑃ℓ+1(𝑥ℓ+1|𝑥ℓ). (3.4)
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In simpler terms, while Eq. (3.3) holds the entire history of the system, a Markovian process

is inherently memoryless, as the future state of the system exclusively depends on its current

state. Furthermore, Eq. (3.4) is known as the Markov property. In such systems, the joint

probability expressed in Eq. (3.2) may be expressed as

𝑃ℓ(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ) = 𝑃ℓ(𝑥ℓ|𝑥ℓ−1)𝑃ℓ−1(𝑥ℓ−1|𝑥ℓ−2) · · · 𝑃1(𝑥1|𝑥0)𝑃0(𝑥0). (3.5)

The probability that the variable 𝑥 = 𝑥ℓ at time 𝑡 = ℓ, regardless of the values adopted

previously is expressed as

𝑃ℓ(𝑥ℓ) =
∑︁

𝑥0,𝑥1,...,𝑥ℓ−1

𝑃ℓ(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ), (3.6)

where the summation runs over all possible values adopted by the stochastic variable 𝑥 at

each time step except for the present state 𝑥ℓ. Plugging Eq. (3.4) in the above expression, we

obtain

𝑃ℓ(𝑥ℓ) =
∑︁
𝑥ℓ−1

𝑃ℓ(𝑥ℓ|𝑥ℓ−1)𝑃ℓ−1(𝑥ℓ−1), (3.7)

in which the sum encapsulates all the possible paths linking states 𝑥ℓ−1 and 𝑥ℓ. Note that

knowledge of the initial condition of the system 𝑃0(𝑥0) allows us to determine future states

𝑃ℓ(𝑥ℓ) via the recursive relation above. Moreover, the conditional probability 𝑃ℓ(𝑥ℓ|𝑥ℓ−1) may

be physically interpreted as the transition probability between subsequent states 𝑥ℓ−1 and 𝑥ℓ.

We remark that such transition probabilities are, in principle, time-dependent; nevertheless,

through the course of this work, we shall only consider stationary Markovian processes. In this

way, the transition probabilities may be expressed as

𝑃ℓ(𝑥ℓ|𝑥ℓ−1) = 𝑇 (𝑥ℓ, 𝑥ℓ−1), (3.8)

where 𝑇 (𝑥ℓ, 𝑥ℓ−1) represents the stationary transition probabilities. Thus, Eq. (3.7) may be

adjusted as follows:

𝑃ℓ(𝑥ℓ) =
∑︁
𝑥ℓ−1

𝑇 (𝑥ℓ, 𝑥ℓ−1)𝑃ℓ−1(𝑥ℓ−1). (3.9)
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3.3 STOCHASTIC MATRIX

We may express Eq. (3.9) in simpler terms if we consider 𝑇 (𝑛, 𝑚) as entries of a stochastic

matrix T. Thus, we write

𝑃ℓ(𝑛) =
∑︁
𝑚

𝑇 (𝑛, 𝑚)𝑃ℓ−1(𝑚). (3.10)

In a stochastic matrix, each element 𝑇 (𝑛, 𝑚) relates to the transition probability from state 𝑚

to state 𝑛. For all pairs (𝑛, 𝑚), the elements of the stochastic matrix must be non-negative,

𝑇 (𝑛, 𝑚) ≥ 0, as a consequence of their definition. Furthermore, the transition probabilities

must obey the normalization condition expressed as

∑︁
𝑛

𝑇 (𝑛, 𝑚) = 1. (3.11)

This is equivalent to stating that the probability that the state 𝑚 transitions to any other

state 𝑛 is equal to unity.

In this matrix representation, let 𝑃ℓ be understood as a column vector with components

𝑃ℓ(𝑛). Thus, Eq. (3.10) may be expressed in the matrix form as

𝑃ℓ = 𝑇𝑃ℓ−1. (3.12)

As previously mentioned, with knowledge of the initial probabilities of the system 𝑃0 and the

transition probabilities, now expressed in terms of the stochastic matrix (𝑇 ), we have access

to the state of the system at any time 𝑡 = ℓ. In other words, we may rewrite Eq. (3.12) in

terms of the initial probabilities as

𝑃ℓ = 𝑇 ℓ𝑃0. (3.13)

Hence, we simplify the problem of determining the probability distribution of the system at time

𝑡 = ℓ to the calculation of the ℓ−th power of the stochastic matrix. Applying this condition

to Eq. (3.10) we have, for state 𝑛:

𝑃ℓ(𝑛) =
∑︁
𝑚

𝑇 ℓ(𝑛, 𝑚)𝑃0(𝑚), (3.14)

where 𝑇 ℓ(𝑛, 𝑚) is the transition probability from state 𝑚 to state 𝑛 after ℓ time steps.
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3.4 MASTER EQUATION AND EXPECTATION VALUES

Consider a Markovian stochastic process governed by a stochastic matrix T. Suppose that

the transitions between states 𝑚 and 𝑛 occur within a time scale 𝜏 and that the elements

𝑇 (𝑛, 𝑚) of the stochastic matrix may be expressed as

𝑇 (𝑚, 𝑛) = 𝜏𝑊 (𝑚, 𝑛), (3.15)

𝑇 (𝑛, 𝑛) = 1 − 𝜏Ω(𝑛), (3.16)

where Eq. (3.15) considers transitions for 𝑛 ̸= 𝑚 while Eq. (3.16) considers transitions for

𝑛 = 𝑚.

Recall that the elements of the stochastic matrix must obey the normalization condition,

which states that the sum of the transition probabilities from state 𝑛 to any other state in the

system must equate to unity. Thus, if we express such normalization condition in terms of Eq.

(3.15) and Eq. (3.16), we have

1 =
∑︁

𝑛

𝑇 (𝑚, 𝑛) = 1 − 𝜏Ω(𝑛) +
∑︁

𝑛̸=𝑚

𝜏𝑊 (𝑚, 𝑛). (3.17)

Simplifying the equation above, we obtain

Ω(𝑛) =
∑︁

𝑛̸=𝑚

𝑊 (𝑚, 𝑛), (3.18)

independent of the time window 𝜏 . Note that 𝑊 (𝑚, 𝑛) can be interpreted as the transition

probability per unit time from state 𝑛 to state 𝑚, whereas Ω(𝑛) represents the transition

probability per unit time from state 𝑛 to any other state of the system except itself, as

elucidated by the equation above.

We may interpret the probability that the system finds itself on state 𝑛 at any given time

𝑡 = ℓ + 1 as the probability that the system, in the previous time 𝑡 = ℓ, does one of the

following movements:

1. Being on state 𝑛 and remaining on it;

2. Transitioning from any other state 𝑚 to state 𝑛.

Mathematically, these conditions are expressed as follows:
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𝑃ℓ+1(𝑛) = 𝑇 (𝑛, 𝑛)𝑃ℓ(𝑛) +
∑︁

𝑚 ̸=𝑛

𝑇 (𝑛, 𝑚)𝑃ℓ(𝑚). (3.19)

Plugging Eq. (3.15) and Eq. (3.16) on the expression above, we find:

𝑃ℓ+1(𝑛) = [1 − 𝜏Ω(𝑛)]𝑃ℓ(𝑛) + 𝜏
∑︁

𝑚̸=𝑛

𝑊 (𝑛, 𝑚)𝑃ℓ(𝑚). (3.20)

We now seek to investigate the time evolution of this quantity. Let 𝑃 (𝑛, 𝑡) ≡ 𝑃ℓ(𝑛) be

defined as the probability that the system is on state 𝑛 at time 𝑡 = ℓ𝜏 . Thus, substituting

𝑃 (𝑛, 𝑡) on Eq. (3.20) and reorganizing the terms, we find:

𝑃 (𝑛, 𝑡 + 𝜏) − 𝑃 (𝑛, 𝑡)
𝜏

=
∑︁

𝑚̸=𝑛

𝑊 (𝑛, 𝑚)𝑃 (𝑚, 𝑡) − Ω(𝑛)𝑃 (𝑛, 𝑡) (3.21)

If we apply the limit 𝜏 → 0, the left-hand side of the equation above becomes the time

derivative of the probability 𝑃 (𝑛, 𝑡). Thus, for continuous-time we have

𝑑

𝑑𝑡
𝑃 (𝑛, 𝑡) =

∑︁
𝑚̸=𝑛

𝑊 (𝑛, 𝑚)𝑃 (𝑚, 𝑡) − Ω(𝑛)𝑃 (𝑛, 𝑡). (3.22)

Recalling Eq. (3.18), we finally obtain

𝑑

𝑑𝑡
𝑃 (𝑛, 𝑡) =

∑︁
𝑚̸=𝑛

[𝑊 (𝑛, 𝑚)𝑃 (𝑚, 𝑡) − 𝑊 (𝑚, 𝑛)𝑃 (𝑛, 𝑡)]. (3.23)

Eq. (3.23) is known as the master equation, which describes the dynamics of Markovian

stochastic processes with time-dependent transition rates 𝑊 (𝑛, 𝑚). Such probabilities are

elements of the evolution matrix of the system.

In this work, we will consider that the system is composed of 𝑁 constituents, such as

individuals in a voting system, each placed in the nodes of a complex network. We shall

associate the state of site 𝑖 with a stochastic variable that may assume one out of two values

𝜎𝑖 = ±1. In the social context, for example, state +1 could indicate voting for candidate A,

while state −1 would suggest supporting candidate B. Collectively, the state of the system

shall be defined by the 𝑁−tuple 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑁), where each combination of states

relates to a microstate of the system. Naturally, there are 2𝑁 accessible microstates in the

system’s configuration space.

If we consider 𝜎 and 𝜎′ as distinct microstate configurations, we may reorganize the master

equation of the system as follows
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𝑑

𝑑𝑡
𝑃 (𝜎, 𝑡) =

∑︁
𝜎′ ̸=𝜎

[𝑊 (𝜎, 𝜎′)𝑃 (𝜎′, 𝑡) − 𝑊 (𝜎′, 𝜎)𝑃 (𝜎, 𝑡)]. (3.24)

Note that the diagonal elements of the evolution matrix are excluded from this expression,

which enables us to conveniently define them so that the condition below is satisfied:

∑︁
𝜎′

𝑊 (𝜎, 𝜎′) = 0. (3.25)

Thus, the elements of the evolution matrix are related to the diagonal elements as

𝑊 (𝜎, 𝜎) = −
∑︁

𝜎′ ̸=𝜎

𝑊 (𝜎, 𝜎′). (3.26)

Plugging this expression in Eq. (3.24) allows the master equation to be expressed as

𝑑

𝑑𝑡
𝑃 (𝜎, 𝑡) =

∑︁
𝜎′

𝑊 (𝜎, 𝜎′)𝑃 (𝜎′, 𝑡), (3.27)

where the sum in 𝜎′ is irrestricted and runs over all 2𝑁 available microstates.

For the sake of simplicity, in this work, we shall only consider transitions between states

that differ in only one site 𝑖. In this case, the transition rate 𝑊 (𝜎′, 𝜎) is written as

𝑊 (𝜎′, 𝜎) =
∑︁

𝑖

𝛿(𝜎′
1, 𝜎1)𝛿(𝜎′

2, 𝜎2) . . . 𝛿(𝜎′
𝑖, −𝜎𝑖) . . . 𝛿(𝜎′

𝑁 , 𝜎𝑁)𝑤𝑖(𝜎), (3.28)

where 𝛿(𝑖, 𝑗) is the Kronecker delta function and 𝑤𝑖(𝜎) is the transition rate of the 𝑖−th site

from state 𝜎𝑖 to state −𝜎𝑖. Using this notation, we may rewrite the master equation for this

process as

𝑑

𝑑𝑡
𝑃 (𝜎, 𝑡) =

𝑁∑︁
𝑖=1

[𝑤𝑖(𝜎𝑖)𝑃 (𝜎𝑖, 𝑡) − 𝑤𝑖(𝜎)𝑃 (𝜎, 𝑡)], (3.29)

where 𝜎𝑖 represents the microstate obtained by flipping the state of the 𝑖−th site, from 𝜎𝑖 to

−𝜎𝑖.

Expressing the master equation as Eq. (3.29) allows us to determine the time evolution of

the expectation values of any given state function of the system 𝑓(𝜎). In statistical mechanics,

the expectation value of a state function is defined as

⟨𝑓(𝜎)⟩𝑐 =
∑︁

𝜎

𝑓(𝜎)𝑃 (𝜎, 𝑡), (3.30)
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where ⟨· · · ⟩𝑐 represents configurational averages of the state function. Multiplying both sides

of the master equation (3.29) by the state function 𝑓(𝜎) and taking a sum over all possible

system microstates 𝜎, we obtain

𝑑

𝑑𝑡
⟨𝑓(𝜎)⟩𝑐 =

∑︁
𝜎

𝑁∑︁
𝑖=1

𝑓(𝜎)[𝑤𝑖(𝜎𝑖)𝑃 (𝜎𝑖, 𝑡) − 𝑤𝑖(𝜎)𝑃 (𝜎, 𝑡)]. (3.31)

Note that we can conveniently separate the two terms of the sum as

𝑑

𝑑𝑡
⟨𝑓(𝜎)⟩𝑐 =

∑︁
𝜎

𝑁∑︁
𝑖=1

𝑓(𝜎)𝑤𝑖(𝜎𝑖)𝑃 (𝜎𝑖, 𝑡) −
∑︁

𝜎

𝑁∑︁
𝑖=1

𝑓(𝜎)𝑤𝑖(𝜎)𝑃 (𝜎, 𝑡). (3.32)

Now consider the change of variables 𝜎 ↔ 𝜎𝑖 in the first term on the right-hand side of

the equation. Importantly, since the summation runs over all 2𝑁 available microstates, the

summation is invariant under this transformation. This allows us to rewrite the above equation

in a much simpler fashion, as shown below:

𝑑

𝑑𝑡
⟨𝑓(𝜎)⟩𝑐 =

𝑁∑︁
𝑖=1

⟨
[𝑓(𝜎𝑖) − 𝑓(𝜎)]𝑤𝑖(𝜎)

⟩
𝑐
. (3.33)

3.5 THEORETICAL FOUNDATIONS OF MONTE CARLO SAMPLING

The study of complex systems often involves dealing with intricate dynamics between

the individual parts of the system and high-dimensional configuration spaces, rendering the

analytical treatment of the system simply impractical. In this context, computational tools

offer a pathway to model, simulate and analyze such systems. Within this framework, Monte

Carlo methods stand out as a versatile alternative to investigating the statistical properties

of complex phenomena, especially for systems comprised of several degrees of freedom. As

suggested by Ulam, Metropolis and Teller, among other important collaborators, the idea was

to explore the capability of pseudo-random number generation of computers in the simulation

of the distinct stochastic trajectories available in the configuration space of a given system

(METROPOLIS; ULAM, 1949; METROPOLIS et al., 1953). Such a walk through the system’s phase

space enables the determination of thermodynamic averages of macroscopic observables since

the system displays the ergodic property.1

1 Describes the tendency of a system to eventually explore all regions of its space uniformly. This property
ensures that the average behavior of the system can be inferred from a sufficiently large sample.
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For the purpose of this work, we shall focus our attention on the majority-vote model,

which is known to display a stationary state after a thermalization time. Consider that in

such a stationary regime, a given trajectory of the system may visit a total of M microstates,

attainable via the transition probabilities 𝑃 (𝜎), which do not depend on time in the stationary

state. The Monte Carlo framework allows us to estimate the time average of the state function

𝑓(𝜎) upon visiting the M sampled microstates

⟨𝑓⟩𝑡 = 1
M

M∑︁
𝑖=1

𝑓(𝜎𝑖), (3.34)

where ⟨· · · ⟩𝑡 represents time averages of the state function, 𝜎𝑖 represents the 𝑖−th microstate,

and the sum runs over all M microstates in the stationary regime. Assuming ergodicity, time

averages in the stationary state provide estimators for ensemble expectation values of macro-

scopic quantities

⟨𝑓⟩𝑡 = 1
M

M∑︁
𝑖=1

𝑓(𝜎𝑖) ≈
∑︁

𝜎

𝑓(𝜎)𝑃 (𝜎) = ⟨𝑓(𝜎)⟩𝑐. (3.35)

By macroscopic quantities, we are essentially referring to the system’s opinionization O

and noise sensitivity 𝜒 in the context of the majority-vote model. While the former acts as an

order parameter, measuring the average consensus in the system, the latter is defined as the

variance of the order parameter, quantifying the degree of fluctuations in the system. Within

this framework, Monte Carlo simulations play a crucial role in enabling the calculation of the

opinionization and noise sensitivity via the exploitation of time and ensemble averages within

the system’s configuration space. The quantities mentioned above are defined as

O = ⟨o(𝜎)⟩, (3.36)

𝜒 = 𝑁
[︁
⟨o2(𝜎)⟩ − ⟨o(𝜎)⟩2

]︁
, (3.37)

where o(𝜎) is the instantaneous order parameter of the system and shall be defined and

explored in Chapter 4.
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4 THE MAJORITY-VOTE MODEL

The following chapter presents the theoretical and probabilistic foundations of the majority-

vote model, which implements Monte Carlo simulations to investigate opinion dynamics and

consensus formation in societal scenarios. We shall define the macroscopic quantities inves-

tigated and their essential properties, addressing their relevance in determining the critical

behavior of the system. We then introduce a modified version of the majority-vote model in-

spired by biased opinion algorithms commonly found in real-world social networks. Moreover,

we introduce the global-vote model, an extension of the majority-vote framework to study

price formation in financial markets.

As will be discussed through the course of this chapter, some of the thermodynamic quan-

tities studied in the majority-vote model are size-dependent; thus, we shall also introduce the

theoretical basis of finite-size scaling, a mathematical framework that allows the extrapolation

of some properties of the system beyond the constraints of simulating finite systems. This

scaling technique will enable us to estimate the critical exponents of the system, which are

related to the behavior of physical quantities near criticality and are fundamental for identifying

the universality class of the model.

4.1 THEORETICAL MODELING IN STATISTICAL PHYSICS

In recent years, computational models have emerged as crucial tools for investigating com-

plex phenomena, especially when the dynamics involve many interacting constituents. These

models offer insights into the fundamental principles governing systems where analytical so-

lutions are infeasible, bridging theoretical formulations and experimental observations. Within

this framework, a particularly relevant example of statistical mechanical modeling is the in-

vestigation of magnetic systems, where the Ising model (ONSAGER, 1944) stands out for its

capability of capturing critical features of the system via a reasonably straightforward mathe-

matical framework. Furthermore, it played a key role in fomenting similar models in statistical

mechanics, such as the Heisenberg, Potts, and XY models (STANLEY, 1971; LANDAU; BINDER,

2021). The effectiveness of such physical models inspired scientists to extend them toward

broader interdisciplinary areas, with applications ranging from social dynamics to economic

systems (BORNHOLDT, 2001; STAUFFER, 2008).
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These stochastic models can be divided into two categories regarding the processes involved

in their dynamics: microscopically reversible and microscopically irreversible (TOMÉ, 2001).

The time evolution of reversible models is characterized by the presence of a Hamilto-

nian, which models the interaction between the many particles of the system. The statistical

mechanics theory supposes that we may associate a partition function to this Hamiltonian,

from which we may extract the transition probabilities between states based on the energetic

configuration of the system and the energy involved in the transition process itself. Reversible

systems naturally evolve toward stationary states of thermodynamic equilibrium; hence, the

probability that the system goes through a sequence of microstates in one direction is the

same as in the inverse direction, a feature known as detailed balance.

Conversely, irreversible models cannot be described via a Hamiltonian. Their time evolution

does not involve an associated partition function yet is still governed by transition probabilities

between states. As discussed in the previous chapter, they may evolve towards stationary states,

but those are not thermodynamic states of equilibrium. Moreover, the lack of a Hamiltonian

describing the system’s dynamics implies that the evolution of irreversible models does not

obey detailed balance.

In this work, we shall investigate the majority-vote model, a stochastic irreversible model

designed to simulate opinion dynamics and consensus formations in modern societies. Possible

applications of the majority-vote formulation range from investigating the effects of social

networks in opinion propagation and collective decision-making processes in economic markets.

4.2 THE MAJORITY-VOTE MODEL

The majority-vote model with noise is one of the most simple yet powerful formulations of

agent-based models within sociophysics (OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS, 1993).

It is designed as a social analogous to the Ising model, where individuals are represented as

nodes (sites) in a network. For the purpose of this work, we shall associate a stochastic opinion

variable 𝜎𝑖 to each individual 𝑖, which may assume one out of two values regarding some social

issue. We remark that possible extensions of this framework include the generalization of the

stochastic opinion variable, allowing it to assume more than two values, where the three-state

framework (BRUNSTEIN; TOMÉ, 1999; TOMÉ; PETRI, 2002) stands out as one of the most

relevant examples.
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4.2.1 Two-state Majority-vote Model

Let us initially focus on the two-state configuration of the model’s dynamics. In this case,

we consider a group of 𝑁 individuals who position themselves in one of two ways: favorable or

contrary to some political debate, for example. In real-world scenarios, individuals’ opinions are

expected to change over time due to interactions with their closest acquaintances (neighbors).

Social beings tend to follow the majoritarian opinion within their peer groups driven by social

pressure, an effect known as conformity, which was well demonstrated in Asch’s experiments

(ASCH, 2016). Still, we implement a parameter 𝑞 to model situations in which individuals might

disagree with the majority of their friends (OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS, 1993).

This parameter is usually referred to as the noise parameter, and it measures a level of social

anxiety inherently present in decision-making processes.

The majority-vote dynamics follows the master equation (3.29), with the single spin-flip

probability being defined as

𝑤𝑖(𝜎) = 1
2

⎧⎨⎩1 − (1 − 2𝑞)𝜎𝑖𝑆

⎛⎝ 𝑘𝑖∑︁
𝛿=1

𝜎𝛿

⎞⎠⎫⎬⎭ , with 𝑆(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1, if 𝑥 < 0,

0, if 𝑥 = 0,

+1, if 𝑥 > 0,

(4.1)

where the summation runs over all 𝑘𝑖 nearest neighbors of site 𝑖 and 𝑆(𝑥) is the sign function.

We remark that the model displays inversion symmetry, i.e., flipping the states of all the

network sites, we obtain an equivalent global state to the initial one.

The overall behavior of the system depends on the value of the noise parameter 𝑞. As

the Ising model, its thermal analogous, the majority-vote model displays a second-order phase

transition, where 𝑞 acts as a social temperature of the system. Hence, just as there is a

critical temperature 𝑇𝑐 in the Ising model (Curie temperature), there is a critical value of the

social anxiety parameter 𝑞𝑐 that divides the systems into ordered (consensus) and disordered

(dissensus) phases.

Consider a network of individuals where the links indicate social relations among them. Let

us adopt the absolute consensus as the system’s initial condition, i.e., all individuals in the

network have the same opinion regarding some social issue. If we randomly visit sites in the

network and flip their states with the probabilities defined in Eq. (4.1), we shall find that the

system, after some time, lies in one of the following states:
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1. For 𝑞 = 0, all sites in the network will be in the same state;

2. For 0 < 𝑞 < 𝑞𝑐, the majority of the sites in the network will be in the same state (+1

or −1), while the rest will adopt the contrary state;

3. For 𝑞 ≥ 𝑞𝑐, half of the individuals will adopt one opinion and the other half the contrary

one, on average. The system is polarized at this point, and we have transitioned to a

dissensus phase.

To investigate the critical behavior of the system, let us define some macroscopic quantities

of interest. The first of these quantities is the order parameter of the system, which we shall

refer to as the opinionization O. This quantity is a social analogous to the magnetization of

spin systems and measures the average consensus in the network. Thus, the opinionization of

the system is defined as

O𝑁(𝑞) = ⟨⟨o⟩𝑡⟩𝑐, with o = 1
𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝜎𝑖

⃒⃒⃒⃒
⃒ , (4.2)

where o is the instantaneous order parameter of the system, ⟨· · · ⟩𝑐 represents configurational

averages and ⟨· · · ⟩𝑡 represents time averages of the quantity. Note that we consider the

modulus of the summation over the individuals’ states 𝜎𝑖 due to the inversion symmetry

mentioned previously.

Furthermore, we are interested in investigating the fluctuations of the order parameter.

Thus, we define the noise sensitivity 𝜒 as the variance of the order parameter, shown below

𝜒𝑁(𝑞) = 𝑁
[︁
⟨⟨o2⟩𝑡⟩𝑐 − ⟨⟨o⟩𝑡⟩2

𝑐

]︁
. (4.3)

Similarly to the behavior of magnetic systems, the noise sensitivity acts as a tool to indicate

consensus-dissensus phase transitions in the system, displaying a peak in the vicinity of 𝑞𝑐.

Notably, in the thermodynamic limit, values of 𝜒 would diverge at 𝑞𝑐.

Finally, we define another useful quantity, especially regarding the finite size limitations of

the simulations, known as the fourth-order Binder cumulant (BINDER, 1981)

𝑈𝑁(𝑞) = 1 − ⟨⟨o4⟩𝑡⟩𝑐

3⟨⟨o2⟩𝑡⟩2
𝑐

. (4.4)

The fourth-order Binder cumulant is a mathematical tool that allows us to identify the critical

value of the noise parameter 𝑞𝑐. It is constructed in such a way that its value is independent
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of the system size at the critical social temperature. Thus, if we simulate different system

sizes and calculate the Binder cumulant for each one, we may extract the critical noise of the

system via the intersection of the curves for different sizes.

4.2.2 Three-state Majority-vote Model

Another significant development of the majority-vote model’s theory is considering more

than two possible states for each individual in the system. In particular, consider that any agent

may adopt one out of three possible opinions 𝑠 ∈ {1, 2, 3}, such as voting for candidates A,

B or C in a political election. Similar to the two-state case, individuals tend to follow the

predominant opinion of their closest friends with probability 1 − 𝑞 or disagree with them

with chance 𝑞. Once again, 𝑞 is referred to as the social anxiety parameter and models a

non-conforming behavior in the system dynamics.

In the three-state majority-vote model (BRUNSTEIN; TOMÉ, 1999; TOMÉ; PETRI, 2002), we

shall consider a set of probabilistic opinion update rules instead of single spin-flip probabilities.

Let 𝑖 represent an individual in the network of social connections and 𝑘𝑖,𝑠 represent the number

of neighboring sites of 𝑖 occupying a given state 𝑠 ∈ {1, 2, 3}. Below, we summarize the

stochastic update rules for an agent to adopt the state 𝑠 = 1:

𝑃 (1|𝑘𝑖,1 > 𝑘𝑖,2; 𝑘𝑖,3) = 𝑃 (2|𝑘𝑖,2 > 𝑘𝑖,3; 𝑘𝑖,1) = 𝑃 (3|𝑘𝑖,3 > 𝑘𝑖,1; 𝑘𝑖,2) = 1 − 𝑞,

𝑃 (1|𝑘𝑖,1 = 𝑘𝑖,2 > 𝑘𝑖,3) = 𝑃 (2|𝑘𝑖,2 = 𝑘𝑖,3 > 𝑘𝑖,1) = 𝑃 (3|𝑘𝑖,3 = 𝑘𝑖,1 > 𝑘𝑖,2) = (1 − 𝑞)/2,

𝑃 (1|𝑘𝑖,1 < 𝑘𝑖,2 = 𝑘𝑖,3) = 𝑃 (2|𝑘𝑖,2 < 𝑘𝑖,3 = 𝑘𝑖,1) = 𝑃 (3|𝑘𝑖,3 < 𝑘𝑖,1 = 𝑘𝑖,2) = 𝑞,

𝑃 (1|𝑘𝑖,1; 𝑘𝑖,2 < 𝑘𝑖,3) = 𝑃 (2|𝑘𝑖,2; 𝑘𝑖,3 < 𝑘𝑖,1) = 𝑃 (3|𝑘𝑖,3; 𝑘𝑖,1 < 𝑘𝑖,2) = 𝑞/2,

𝑃 (1|𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3) = 𝑃 (2|𝑘𝑖,2 = 𝑘𝑖,3 = 𝑘𝑖,1) = 𝑃 (3|𝑘𝑖,3 = 𝑘𝑖,1 = 𝑘𝑖,2) = 1/3.

(4.5)

Note that the probabilities for the states follow from the symmetry operations of the 𝐶3𝜈 group:

1 → 2, 2 → 3 and 3 → 1. Furthermore, the probabilities must be normalized, i.e., 𝑃 (1|{𝑘𝑖})+

𝑃 (2|{𝑘𝑖}) + 𝑃 (3|{𝑘𝑖}) = 1 for any global state configuration {𝑘𝑖} ≡ {𝑘𝑖,1, 𝑘𝑖,2, 𝑘𝑖,3}.

Once again, we remark that the global stationary state of the system is highly dependent

on the social anxiety parameter 𝑞. As 𝑞 increases, the system undergoes a second-order phase
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transition at 𝑞 = 𝑞𝑐. Thus, for 𝑞 < 𝑞𝑐, the system finds itself in a consensus phase, with one

of the opinions having the majority of the votes, whereas for 𝑞 > 𝑞𝑐, dissensus dominates, and

approximately 1/3 of the individuals adopt each of the possible opinion states.

We shall investigate the system dynamics via the order parameter of the system, which,

following the analogy with magnetic systems, will be defined as the magnitude of the average

magnetization as in the three-state Potts model (WU, 1982). In this way, consider 𝑁𝑠 as

the number of individuals of the system that find themselves on state 𝑠 ∈ {1, 2, 3}, where

𝑁1 + 𝑁2 + 𝑁3 = 𝑁 , naturally. In this way, the instantaneous opinionization of the three-state

majority-vote model may be understood as the magnitude of a vector with components o𝑠.

Hence, the elements of the opinionization vector are defined as

o𝑠 =
√︃

3
2

(︂
𝑁𝑠

𝑁
− 1

3

)︂
, (4.6)

with the instantaneous opinionization being defined as follows

o =
√︁
o2

1 + o2
2 + o2

3. (4.7)

Furthermore, the statistical quantities of interest, namely the opinionization, the noise sen-

sitivity and the fourth-order Binder cumulant, are defined in a similar fashion to the two-state

case. Thus, below, we recall the mathematical expressions for the aforementioned quantities

O𝑁(𝑞) = ⟨⟨o⟩𝑡⟩𝑐, (4.8)

𝜒𝑁(𝑞) = 𝑁
[︁
⟨⟨o2⟩𝑡⟩𝑐 − ⟨⟨o⟩𝑡⟩2

𝑐

]︁
, (4.9)

𝑈𝑁(𝑞) = 1 − ⟨⟨o4⟩𝑡⟩𝑐

3⟨⟨o2⟩𝑡⟩2
𝑐

, (4.10)

where ⟨· · · ⟩𝑐 represents configurational averages, and ⟨· · · ⟩𝑡 represents time averages taken

on the stationary regime.

4.3 VISIBILITY ALGORITHMS AND THE MAJORITY-VOTE DYNAMICS

In today’s highly connected world, social media platforms have become powerful drivers of

content dissemination and user engagement, with many companies profiting directly from these



52

interactions. To maximize revenue, these platforms deploy algorithms that operate behind the

perception of average users, determining which content to promote based on user behavior.

A key example of such algorithmic strategies is collaborative filtering, which recommends

content by analyzing patterns of similarity between users’ past interactions (KOREN; RENDLE;

BELL, 2021). This phenomenon is commonly referred to as the click economy, highlighting the

economic incentives that prioritize engagement metrics over content diversity, shaping how

individuals consume information in the digital age.

Thus, social media algorithms are tuned to maximize clicks, often favoring content that trig-

gers strong emotional responses as they tend to drive higher interaction rates. While effective

for delivering personalized recommendations, these techniques also contribute to amplifying

sensationalism, spreading misinformation, and forming filter bubbles, where curated content

reinforces users’ pre-existing beliefs. Such opinion echo chambers intensify polarization in pub-

lic debates via the formation of artificial majorities. Thus, content algorithms have become

crucial players in modern social platforms, and obtaining insights into how they operate is

essential for understanding the influence of biased content sharing and its broader societal

impacts.

The model investigated in this work draws inspiration from previous studies of opinion

dynamics driven by algorithmic visibility, such as the work of (VILELA et al., 2021). Their ap-

proach considers an unbiased visibility model, where content may be hidden with a certain

probability but without favoring converging opinions. While this framework provides valuable

insights into the evolution of collective opinions under neutral conditions, it does not capture

the inherent biases present in real-world social media algorithms. In contrast, our model ex-

plores the effects of an opinion-biased visibility algorithm fostered by the click economy, in

which engagement-driven content curation is prioritized.

Similar to the standard majority-vote model (OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS,

1993), our model represents a society of 𝑁 individuals, each associated with a stochastic

spin variable 𝜎𝑖 that can assume one of two possible states, ±1. Individuals shall follow their

near-neighbor majority with chance 1 − 𝑞 while dissenting from it with chance 𝑞, where 𝑞

is the noise parameter, as previously mentioned. Furthermore, we extend this framework by

introducing a biased visibility parameter 𝑉 , quantifying the probability that an agent is able to

access the fraction of its neighborhood holding opposing opinions on a given social issue. The

parameter 𝑉 ranges from 0 ≤ 𝑉 ≤ 1, allowing us to tune the degree of strength of the bias

algorithm. When 𝑉 = 0, an individual exclusively considers like-minded neighbors, while when
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𝑉 = 1, the visibility bias is removed, and the model reduces to the standard majority-vote

formulation.

Let Λ𝑖 denote the set of neighbors of site 𝑖 that share the same opinion, and Λ⋆
𝑖 represent

the set of neighbors with opposing views in a given social debate. Moreover, we define a

visibility index 𝐼(𝑉 ) as

𝐼(𝑉 ) =

⎧⎪⎪⎨⎪⎪⎩
1, with probability 𝑉 ;

0, with probability 1 − 𝑉,

(4.11)

where V is the visibility parameter. Once again, we remark that the majority-vote model evolves

via the master equation (3.29), where the single-spin flip probability shall be rewritten as

𝑤𝑖(𝜎) = 1
2

⎧⎨⎩1 − (1 − 2𝑞)𝜎𝑖𝑆

⎛⎝∑︁
𝛿∈Λ𝑖

𝜎𝛿 +
∑︁

𝛿∈Λ⋆
𝑖

𝐼𝛿(𝑉 )𝜎𝛿

⎞⎠⎫⎬⎭ , (4.12)

where 𝑆(𝑥) = +1, 0, −1 for 𝑥 > 0, 𝑥 = 0, 𝑥 < 0, respectively. We note that in the special

case where all neighboring nodes of site 𝑖 hold opposing opinions, i.e., Λ⋆
𝑖 = {1, 2, · · · , 𝑘𝑖},

and the visibility index satisfies 𝐼𝛿(𝑉 ) = 0 for all 𝛿 ∈ Λ⋆
𝑖 , the spin of site 𝑖 remains unchanged.

Furthermore, the critical behavior of the system shall be investigated via the aforementioned

macroscopic quantities, namely the opinionization (4.2), the noise sensitivity (4.3) and the

fourth-order Binder cumulant (4.4).

4.4 GLOBAL-VOTE MODEL FOR FINANCIAL MARKETS

In this section, we shall discuss one of the most critical applications of the majority-

vote framework: investigating price formation and dynamics in financial markets. In this case,

individuals in the network now represent financial agents in the market, and the possible

opinion states 𝜎𝑖 relates to financial actions an agent may perform in the market. The global-

vote model has been investigated both in its two-state (VILELA et al., 2019; GRANHA et al., 2022)

and in its three-state configuration (ZUBILLAGA et al., 2022b), where they differ essentially in

the number of actions that may be performed:

1. Two-state: considers individuals who may buy or sell a financial asset at each time step;

2. Three-state: models individuals who may buy, sell or remain inactive at each time step.
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Furthermore, we still consider the presence of a noise parameter 𝑞, which models a level of

socioeconomic anxiety present in the decision-making process of financial agents.

In such a complex environment as financial markets, we expect that an agent’s decisions

arise not only from rational strategies they may have but also from the psychological circum-

stances that define one’s psiché. For instance, we have previously discussed how individuals

may feel pressured to conform with their closest friends upon making a decision, an effect

known as herding behavior. Such behavior is also present in financial market decision-making

processes, where herding is often displayed as informational cascades, in which individuals

base their decisions on the observed actions of others rather than on their private information,

amplifying collective trends (CONT; BOUCHAUD, 2000; RAAFAT; CHATER; FRITH, 2009; HONG;

KUBIK; STEIN, 2005; ZHAO et al., 2011; BIKHCHANDANI; HIRSHLEIFER; WELCH, 1992; GALAM,

2008).

The global-vote model (VILELA et al., 2019) considers two types of financial strategies that

the financial agents may carry out in the system for their impact on price dynamics. The first

of these strategies implements the effects of herding behavior, and individuals who adopt it

will be referred to as noise traders. Such agents tend to follow the local majority of their

acquaintances when deciding which action to perform and tend to overreact to the arrival of

news in the market.

Conversely, the second type of agents comprised in the model tend to follow the global

minority of the system as an investment strategy; essentially, they tend to buy (sell) when noise

traders are selling (buying). Such agents are widely present in the literature, being referred

to as fundamentalists, contrarians, sophisticated traders, or 𝛼−investors (DAY; HUANG, 1990;

VOIT, 2005; BORNHOLDT, 2001; KAIZOJI; BORNHOLDT; FUJIWARA, 2002; TAKAISHI, 2005; LUX;

MARCHESI, 1999; LUX; MARCHESI, 2000; LONG et al., 1990). Fundamentalist agents guide their

rational decision-making on analyzing the underlying fundamentals of assets, and their actions

contribute to price movements that converge towards the assets’ fundamental values.

4.4.1 Three-state Global-vote Model

For the purpose of this work, we shall focus exclusively on the three-state configuration

of the global-vote model (ZUBILLAGA et al., 2022b). As previously mentioned, a noise trader

agent tends to follow the behavior adopted by the majority of their closest friends. Thus, the

time evolution of their option state will be described by the probabilistic prescriptions in Eq.
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(4.5).

Conversely, fundamentalist agents interact globally with the market in order to determine

their course of action in the following steps. As per their strategy, they tend to follow the global

minority of the market, avoiding market trends and crowd movements. Hence, the state update

rules for a fundamentalist agent to adopt the state 𝑠 = 1 are described by the probabilistic

prescription below

𝑃 (1|𝑁1 < 𝑁2; 𝑁3) = 𝑃 (2|𝑁2 < 𝑁3; 𝑁1) = 𝑃 (3|𝑁3 < 𝑁1; 𝑁2) = 1 − 𝑞,

𝑃 (1|𝑁1 = 𝑁2 < 𝑁3) = 𝑃 (2|𝑁2 = 𝑁3 < 𝑁1) = 𝑃 (3|𝑁3 = 𝑁1 < 𝑁2) = (1 − 𝑞)/2,

𝑃 (1|𝑁1 > 𝑁2 = 𝑁3) = 𝑃 (2|𝑁2 > 𝑁3 = 𝑁1) = 𝑃 (3|𝑁3 > 𝑁1 = 𝑁2) = 𝑞,

𝑃 (1|𝑁1; 𝑁2 > 𝑁3) = 𝑃 (2|𝑁2; 𝑁3 > 𝑁1) = 𝑃 (3|𝑁3; 𝑁1 > 𝑁2) = 𝑞/2,

𝑃 (1|𝑁1 = 𝑁2 = 𝑁3) = 𝑃 (2|𝑁1 = 𝑁2 = 𝑁3) = 𝑃 (3|𝑁1 = 𝑁2 = 𝑁3) = 1/3.

(4.13)

where 𝑁𝑠 represents the total number of agents in the network within a given state 𝑠 ∈

{1, 2, 3}, and 𝑁 = 𝑁1 + 𝑁2 + 𝑁3. Similarly to the noise trader case, the probabilities can

be obtained from symmetry operations of the 𝐶3𝜈 group. Furthermore, the normalization

condition, i.e. 𝑃 (1|{𝑁}) + 𝑃 (2|{𝑁}) + 𝑃 (3|{𝑁}) = 1, holds for any configuration of the

system {𝑁} ≡ {𝑁1, 𝑁2, 𝑁3}.

In the financial context, we shall relate fluctuations of the order parameter of the system

with market volatility for their impact on asset price dynamics. We define the order parameter

of the system as the three-state opinionization (4.7) in analogy to the Potts model, and it

measures the market’s stability. The global-vote formulation interprets opinionization as a

measure of price in modern markets. It relates variations in the instantaneous order parameter

o(𝑡) to the logarithmic returns 𝑟(𝑡) of a financial asset. Thus, the logarithmic returns are

defined as (BORNHOLDT, 2001; KAIZOJI; BORNHOLDT; FUJIWARA, 2002; TAKAISHI, 2005; CONT,

2007)

𝑟(𝑡) = log [o(𝑡)] − log [o(𝑡 − 1)] . (4.14)

Another important quantity we shall investigate is the volatility, denoted by 𝑣, which measures

the amplitude of price fluctuations in the time series. Hence, the volatility is defined as follows
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𝑣(𝑡) ≡ |𝑟(𝑡)|. (4.15)

4.5 FINITE-SIZE SCALING

As previously discussed, the thermodynamic functions defined to investigate the system’s

global behavior display a unique behavior near the phase transition. Formally, a second-order

phase transition in the majority-vote formulation would only be displayed at the thermodynamic

limit, 𝑁 → ∞, where we would observe a divergence of the noise sensitivity at 𝑞 = 𝑞𝑐. This

would pose a significant challenge to the numerical investigation of such systems since one

would require access to infinite memory resources as well as an infinite simulation time. Hence,

one is unable to computationally simulate the behavior of critical systems directly.

Within this context, finite-size scaling techniques are fundamental tools for the analysis of

the statistical mechanical properties of complex systems near criticality. The reasoning is to

simulate systems with finite sizes and extrapolate the results obtained to analyze the behavior

of such complex systems near criticality. Moreover, from this mathematical analysis, we may

extract the critical exponents of the system, which are related to the behavior of thermo-

dynamic quantities at the phase transition. The set of critical exponent values defines the

so-called universality class, which groups systems with distinct microscopic details but similar

macroscopic behavior near their critical points, highlighting the shared underlying physics of

phase transitions (STANLEY, 1971; CARDY, 1996).

For the majority-vote model, let us define an adimensional parameter 𝜀 as

𝜀 = 𝑞 − 𝑞𝑐, (4.16)

which provides a measure of how distant the system is from the critical social temperature 𝑞𝑐.

Hence, we may define the critical exponent related to a thermodynamic function in terms of

the adimensional parameter 𝜀

𝜆 = lim
𝜀→0

ln |𝑓(𝜀)|
ln |𝜀|

, (4.17)

where we assume the existence of the limit above. In such a limit, i.e., when we are sufficiently

close to the critical social temperature of the system, it is more useful to express the relation

above explicitly in terms of the thermodynamic function as
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𝑓(𝜀) ∼ |𝜀|𝜆. (4.18)

For Ising-like systems, such as the majority-vote model, the scaling laws for the relevant

macroscopic quantities, i.e., the opinionization and the noise sensitivity, are given by

O ∼ |𝜀|𝛽, (4.19)

𝜒 ∼ |𝜀|−𝛾. (4.20)

Furthermore, another crucial quantity in the investigation of the critical behavior of such

systems is the correlation length 𝜉, as it measures the typical distance over which the opinion

state of an individual affects other agents in the network. This quantity is known to diverge

in the thermodynamic limit, and its associated scaling function is defined as:

𝜉 ∼ |𝜀|−𝜈 . (4.21)

However, we are dealing with systems with finite size 𝑁 = 𝐿𝑑, where 𝑑 represents the

dimension and 𝐿 relates to the linear size of the system. In this case, the system becomes

effectively ordered when the correlation length is of the order of 𝐿. Consequently, the thermo-

dynamic functions also depend on the system size, as mentioned previously. Hence, we may

rewrite the scaling function of the correlation length as

𝜉 ∼ 𝐿 ∼ |𝜀|−𝜈 . (4.22)

Moreover, we may explicitly express the parameter 𝜀 in terms of the system size, as shown

below:

|𝜀| ∼ 𝐿1/𝜈 . (4.23)

Rewriting the scaling functions for the thermodynamic quantities, we obtain:

O𝐿 ∼ 𝐿−𝛽/𝜈 , (4.24)

𝜒𝐿 ∼ 𝐿𝛾/𝜈 . (4.25)

Hence, the exponents 𝛽/𝜈 and 𝛾/𝜈 determine the opinionization and the noise sensitivity,

respectively, with the system size at the critical temperature of the system. Simulating the
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majority-vote dynamics and calculating the aforementioned quantities for different system sizes

enables us to obtain the critical exponents of the system.

Furthermore, as discussed previously, the Binder fourth-order cumulant is constructed so

that it does not depend on the system size at the critical social temperature of the system.

With that in mind, we may write the scaling relations for the investigated quantities in the

limit 𝜀 → 0 as

O𝐿(𝑞) = 𝐿−𝛽/𝜈 ̃︀O(𝜀𝐿1/𝜈), (4.26)

𝜒𝐿(𝑞) = 𝐿𝛾/𝜈 ̃︀𝜒(𝜀𝐿1/𝜈), (4.27)

𝑈𝐿(𝑞) = ̃︀𝑈(𝜀𝐿1/𝜈), (4.28)

where ̃︀O(𝑥), ̃︀𝜒(𝑥) and ̃︀𝑈(𝑥) are the universal scaling functions. The set of equations above

describes the so-called finite-size scaling relations of the majority-vote model.

We remark that we may obtain the exponent 1/𝜈 via the scaling relation for the Binder

cumulant. Taking the derivative of Eq. (4.28) in terms of the noise parameter in the critical

region, we find

𝑑𝑈𝐿(𝑞)
𝑑𝑞

= 𝐿1/𝜈 𝑑 ̃︀𝑈(𝜀𝐿1/𝜈)
𝑑𝑞

. (4.29)

Thus, at the critical temperature (𝜀 = 0), the derivative of the Binder fourth-order cumulant

behaves as:

𝑈 ′
𝐿(𝑞𝑐) = 𝐿1/𝜈 ̃︀𝑈 ′(0). (4.30)

Hence, determining the value of the derivative of the Binder fourth-order cumulant at the

critical social temperature for different system sizes allows us to obtain the critical exponent

1/𝜈.

4.5.1 The Hyperscaling Relation

The underlying theory of renormalization groups connects the exponents related to the

scaling functions of the opinionization (4.26) and noise sensitivity (4.27) with the critical

dimension of the system. This is possible via a unique mathematical expression known as the
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hyperscaling relation. Initially, let us recall the known result for the hyperscaling relation for

many-body systems in regular arrays (STANLEY, 1971; CARDY, 1996):

2𝛽

𝜈
+ 𝛾

𝜈
= 𝑑, (4.31)

where 𝑑 represents the dimension of the lattice. Thus, Eq. (4.31) displays the fundamental

role played by the dimension of the system in its critical behavior.

Note that the expression above supposes that the system we are dealing with is regu-

lar, consisting of an array of dimension 𝑑. Conversely, real-world complex systems are rarely

regular, exhibiting rich topologies, where complex networks rise as important substrates for

their dynamics. In such structures, the concept of physical dimension becomes less clear,

and recent developments generalized the hyperscaling relation for a broader range of network

topologies—the unitary relation under volumetric scaling(VILELA et al., 2020).

4.5.2 The Unitary Relation

Note that the demonstration of the finite-size scaling relations considered a system of size

𝑁 = 𝐿𝑑, where 𝐿 represents the linear size and 𝑑 is the dimension of the system. Nevertheless,

when simulating complex network topologies, the concepts of physical dimension and linear size

are unclear, which in part questions our initial assumption that the correlation length scales

with the system’s linear size at the critical region. Hence, considering a volumetric scaling

of the correlation length, we write (BOTET; JULLIEN; PFEUTY, 1982; HONG; HA; PARK, 2007;

VILELA et al., 2020)

𝜉 ∼ 𝑁. (4.32)

Following a similar mathematical formulation for the scaling relations of the thermodynamic

functions under this new assumption, the finite-size scaling relations take the form:

O𝑁(𝑞) = 𝑁−𝛽/𝜈 ̃︀O(𝜀𝑁1/𝜈), (4.33)

𝜒𝑁(𝑞) = 𝑁𝛾/𝜈 ̃︀𝜒(𝜀𝑁1/𝜈), (4.34)

𝑈𝑁(𝑞) = ̃︀𝑈(𝜀𝑁1/𝜈), (4.35)

where 𝜈 highlights that we are now assuming a volumetric scaling for the correlation length.
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Consider now a regular lattice of linear size 𝐿 in 𝑑 dimensions. In this case, the size of

the system is 𝑁 = 𝐿𝑑, and the scaling relations for the opinionization and noise sensitivity in

terms of a volumetric scaling become:

O𝐿(𝑞) = 𝐿−𝑑𝛽/𝜈 ̃︀O(𝜀𝑁1/𝜈), (4.36)

𝜒𝐿(𝑞) = 𝐿𝑑𝛾/𝜈 ̃︀𝜒(𝜀𝑁1/𝜈). (4.37)

Consequently, the hyperscaling relation will now be expressed as

2𝑑
𝛽

𝜈
+ 𝑑

𝛾

𝜈
= 𝑑. (4.38)

Simplifying the terms in the expression above, we find the unitary relation for critical

exponents 𝜐 = 1 (VILELA et al., 2020):

2𝛽

𝜈
+ 𝛾

𝜈
≡ 𝜐 = 1, (4.39)

which is independent of the dimension and topological complexities of the network. In this

work, the unitary relation shall be used to confirm the accuracy and validity of the critical

exponents estimated in our analysis.

4.6 OVERVIEW OF THE EXISTING LITERATURE

4.6.1 The Majority-Vote Model

The two-state majority-vote model with noise was proposed by Oliveira (1992) and Oliveira,

Mendes and Santos (1993). In this work, he simulates a system of individuals that are repre-

sented as sites in a regular network (square lattice). Via Monte Carlo simulations, he obtains the

critical social noise as 𝑞𝑐 = 0.075(1). Furthermore, he implements finite-size scaling to estimate

the critical exponents of the system, where he obtains 𝛽/𝜈 = 0.125(5), 𝛾/𝜈 = 1.73(5) and

1/𝜈 = 1.01(5). Oliveira thus confirmed the previous assumption that non-equilibrium models

with inversion symmetry lie within the same universality class as the Ising model (GRINSTEIN;

JAYAPRAKASH; HE, 1985).

The framework presented by Oliveira essentially involved two fundamental aspects: the

topological structure of the network of social interactions and the nature of the social dynamics
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within the system. From the standpoint of the dynamics, several authors investigated distinct

effects on the system’s overall behavior. Santos and Teixeira (1995) introduced anisotropic ef-

fects, while Vilela et al. (VILELA; MOREIRA, 2009; VILELA; MOREIRA; SOUZA, 2012) investigated

the impacts of heterogeneous agents and bimodal social temperature distributions. Vieira and

Crokidakis (2016) explored the role of different types of social noise, and Vilela et al. (VILELA;

STANLEY, 2018; VILELA et al., 2021) examined the effects of opinion weight disparities and

social visibility parameters. More recently, Oliveira et al. (2024) considered the influence of

cooperative behavior on social order.

Additionally, inspired by the three-state Potts model (WU, 1982), Brunstein and Tomé

(1999), and Tomé and Petri (2002) proposed the three-state majority-vote model on square

lattices. Their numerical simulations display the presence of a second-order phase transition at a

critical social parameter of 𝑞𝑐 ≈ 0.118 and critical exponent values 𝛽/𝜈 = 0.134(5) and 𝛾/𝜈 =

1.74(2). Comparatively, simulations on the three-state Potts model obtained 𝛽/𝜈 = 2/15 and

𝛾/𝜈 = 26/15 (WU, 1982), suggesting that both models lie within the same universality class.

Similarly, from the topological perspective, the majority-vote dynamics were implemented

in several complex network structures. Within the two-state isotropic configuration, Cam-

pos, Oliveira and Moreira (2003) investigated the effects of long-range interactions via the

small-world framework (WATTS; STROGATZ, 1998); Pereira and Moreira (2005) considered the

implementation of random networks (ERDÖS; RÉNYI, 1960); and (LIMA, 2007) studied the

impacts of scale-free networks via the Barabási-Albert algorithm of preferential attachment

(BARABÁSI; ALBERT; JEONG, 2000). Furthermore, recent works also considered implementing

the three-state majority-vote model on the complex network structures mentioned previously

(MELO; PEREIRA; MOREIRA, 2010; VILELA et al., 2020; ZUBILLAGA et al., 2022a).

4.6.2 The Global-Vote Model for Financial Markets

Building on the majority-vote framework, Vilela et al. (2019) proposed the global-vote

model to simulate price formation in modern financial markets. The model comprised two

distinct financial strategies: a “follow the crowd” behavior, adopted by the so-called noise

trader agents, and a “ride against the tide” strategy, taken by more experienced agents referred

to as fundamentalists or noise contrarian traders. Each agent may adopt one out of two options

related to buying or selling an asset for each time step. Furthermore, the system presents a

finite socioeconomic anxiety parameter 𝑞 that models a change of adrift financial actions. The
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global-vote model on square lattice networks displays fundamental features of financial market

time series, such as volatility clustering and long-term memory of the volatility (VILELA et al.,

2019).

More recently, the two-state global-vote model has been extended to incorporate complex

network structures, more specifically random networks (GRANHA et al., 2022). In this study,

the authors explore how the connectivity patterns of agents’ socioeconomic interactions in-

fluence price formation dynamics. Random graphs allow for the analysis of more realistic and

heterogeneous interaction structures, providing insights into the effects of network topology

on key financial market phenomena. Beyond the discussion on the numerical results of the

model, the authors compared their results with crucial financial indices such as the S&P 500

and Dow Jones, displaying the outstanding capability of the model to reproduce real-world

market stylized facts, despite its simplicity.

Another important contribution in this context considers applying a three-state global-vote

model for financial markets, where agents may now adopt one out of three possible options

regarding buying, selling, or neither (remaining inactive) at each time step. The three-state

framework was originally considered on regular networks Zubillaga et al. (2022b). In this work,

we present an extension of the discussion contained in (ZUBILLAGA, 2020), in which we show

inaugural results for the three-state global-vote model in Barabási-Albert networks. These

recent results are organized in a scientific paper submitted to an international peer-reviewed

journal and found in Appendix A.
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5 BIASED VISIBILITY AND SCALE-FREE EFFECTS ON THE TWO-STATE

MAJORITY-VOTE MODEL

We shall now proceed to the main results of our study on biased algorithms in the majority-

vote model. We consider the implementation of a visibility parameter 𝑉 , which only impacts

diverging opinions. Furthermore, the macroscopic behavior of the system shall be investigated

via Monte Carlo simulations of the majority-vote dynamics.

Individuals shall be represented as nodes in a scale-free Barabási-Albert network, where

links stand for social connections between agents. Hence, individuals may interact with each

other in order to evolve their current stance in some social debate depending on the influence

they receive from their closest acquaintances. The model’s dynamics are governed by the

single-spin flip probability, described by Eq. (4.12). We remark that the scale-free networks

considered in this work are built via the Barabási-Albert algorithm described in Sec. 2.5, in

which 𝑁 and 𝑧 represent the network’s size and growth parameter, respectively.

In Monte Carlo simulations, a unit of time, named Monte Carlo Step (MCS), is defined as

a total of 𝑁 attempts to update the states of randomly selected individuals with probabilities

according to Eq. (4.12). Note that, on average, each network site shall be visited at least once

for each MCS.

We consider a fully ordered state as the initial condition of our system, i.e., 𝜎𝑖 = +1, ∀𝑖 ∈

[1, 𝑁 ]. For every Monte Carlo simulation, we allow the system to run for an initial 104 MCS

as the thermalization time. As the system relaxes into the stationary state, we then proceed

to calculate the thermodynamic quantities in the following 5 × 104 MCS, sampling over the

configuration space. Furthermore, for every value of the noise parameter 𝑞, we perform 100

independent samples, averaging over network disorder. This process shall be repeated for every

set of parameters (𝑁, 𝑧, 𝑉, 𝑞) considered.

We recall that the thermodynamic quantities of interest in our simulations, namely the

opinionization (4.2), the noise sensitivity (4.3) and the fourth-order Binder cumulant (4.4),

were defined in Sec. 4.2.1.
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5.1 NUMERICAL RESULTS AND BEHAVIOR OF THE MACROSCOPIC QUANTITIES

5.1.1 Overview of Biased Visibility Effects

Figure 5 displays the dependence of the system’s average order on the visibility parameter

𝑉 . Here we show (a) the opinionization O𝑁(𝑞, 𝑧, 𝑉 ), (b) the noise sensitivity 𝜒𝑁(𝑞, 𝑧, 𝑉 ) and

(c) the fourth-order Binder cumulant 𝑈𝑁(𝑞, 𝑧, 𝑉 ) and their dependence on the noise parameter

𝑞. The specific network parameters considered were 𝑁 = 12000 and 𝑧 = 10. In particular, note

that Fig. 5(a) clearly displays two distinct phases concerning the behavior of the system: an

ordered phase for lower values of 𝑞, where the system adopts a consensus macroscopic state,

as reflected by O𝑁(𝑞, 𝑧, 𝑉 ) = 𝑂(1); and a disordered phase for higher values of 𝑞, where on

average half of the individuals adopt one opinion and the other half the opposing one, and, in

this case, O𝑁(𝑞, 𝑧, 𝑉 ) ∼ 0.

In this way, increasing the social noise parameter 𝑞 reflects a consensus-dissensus phase

transition in the system. Additionally, upon further analysis of Fig. 5(a), one may note that the

phase transitions do not occur in a similar fashion for different values of the visibility parameter

𝑉 . As we progressively decrease the visibility parameter from 𝑉 = 1.0 to 0.1, thus enhancing

opinion biases in the system, we observe that the phase transitions in the order parameter

shift from smooth and continuous to sharp and discontinuous. Hence, for a fixed value of the

growth parameter 𝑧, the system shall display both first-order (discontinuous) and second-order

(continuous) phase transitions near a critical social temperature 𝑞𝑐(𝑧, 𝑉 ) depending on the

value of the visibility parameter 𝑉 .

Furthermore, note that Fig. 5 shows that the visibility parameter strongly impacts the

system’s ability to withstand the disorder promoted by the noise parameter 𝑞. In particular,

as we decrease the visibility parameter, we observe that the system becomes less robust to

social noise, as evidenced by the left shift in the order-disorder phase transitions of the order

parameter O𝑁 . This behavior is further confirmed by the noise sensitivity curves 𝜒𝑁 , which

display a maximum (pseudocritical noise) pointing towards the approximate location of the

critical noise 𝑞𝑐(𝑧, 𝑉 ), and by the fourth-order Binder cumulants, which present a clear drop

from their expected value in the fully ordered state 𝑈𝑁 = 2/3. Hence, strongly biased opinion

algorithms, modeled in our simulations by lower values of the visibility parameter 𝑉 , exert a

highly polarizing influence, making the system more prone to fragmentation as the individuals

have less access to diverging opinions in social debates.
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Figure 5 – Impacts of the biased visibility parameter 𝑉 on the two-state majority-vote model in Barbási-Albert
networks with 𝑧 = 10 and 𝑁 = 12000. Here, we display the behavior of (a) the order parameter, (b)
the noise sensitivity and (c) the fourth-order Binder cumulant as a function of social temperature
𝑞. From left to right, the system slightly shifts from first-order to second-order phase transitions as
𝑉 increases from 0.1 to 1.0. Lines represent visual guides.

Source: The author (2025).

In Fig. 6, we investigate the effects of the growth parameter of Barbási-Albert networks 𝑧

on the system’s social order for a visibility parameter 𝑉 = 0.5 and network size 𝑁 = 12000.

Here we plot (a) the order parameter O𝑁 , (b) the noise sensitivity 𝜒𝑁 and (c) the fourth-

order Binder cumulant 𝑈𝑁 as a function of the social noise 𝑞. We observe that increasing the

growth parameter influences the behavior of the phase transition of the order parameter of

the system, progressively shifting them from second-order to first-order. Similar to what was

discussed previously, we further confirm this effect via the peaks in the noise sensitivity curves

and the drop in the fourth-order Binder cumulants.

Furthermore, Fig. 6 highlights two interesting effects regarding the shape of the phase

transitions of the system. Initially, the pseudocritical noise parameters for distinct values of the

growth parameter 𝑧, related to the maxima of the noise sensitivity curves in Fig. 6(b), indicate

that networks constructed with higher values of 𝑧 display a higher resilience to social disorder.

We remark that increasing 𝑧 reflects an increase in the average connectivity of the network

⟨𝑘⟩ ≈ 2𝑧, which promotes higher robustness to the disorder effects fostered by the social

temperature 𝑞 (LIMA, 2007; PEREIRA; MOREIRA, 2005; VILELA et al., 2020; MELO; PEREIRA;

MOREIRA, 2010). Conversely, more connected networks display a stronger sensitivity to biased

visibility algorithms, as displayed by the sharper transitions in the order parameter for higher

values of 𝑧. Thus, in our model, highly connected networks act as opinion amplifiers in social

debates, fostering strong polarizing effects and intensively impacting the system’s behavior
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near the critical social temperature 𝑞𝑐(𝑧, 𝑉 ).

Figure 6 – Plots of (a) the opinionization, (b) the noise sensitivity, and (c) the fourth-order Binder cumulant
for distinct values of Barabási-Albert network’s growth parameter 𝑧. Here, we consider a fixed
visibility parameter value 𝑉 = 0.5 and networks of size 𝑁 = 12000. As we increase the growth
parameter 𝑧, from left to right, we observe that the phase transitions become sharper as they shift
from second-order to first-order. Lines represent guides to the eyes.

Source: The author (2025).

As it might have become clear by now, the implementation of the biased visibility parameter

in our simulations introduces exuberant effects in the system’s behavior. By tuning its strength,

we not only modify the critical social noise threshold at which consensus dissolves but also

influence the very nature of the phase transitions themselves. Given this distinct feature, we

shall structure the following two sections of our analysis accordingly: firstly, we focus on first-

order phase transitions, and secondly, we examine second-order phase transitions. In this way,

we hope to provide a more precise framework for investigating our model under different

regimes.

5.2 FIRST-ORDER PHASE TRANSITIONS OF THE TWO-STATE MAJORITY-VOTE MODEL

WITH BIASED VISIBILITY

In Fig. 7, we extend our previous discussion by investigating the order parameter of the

system O𝑁(𝑞, 𝑧, 𝑉 ) for distinct values of the visibility 𝑉 . In particular, we consider Barabási-

Albert networks of size 𝑁 = 12000 and growth parameter 𝑧 = 10, and several values of the

visibility parameter: 𝑉 = 1.0, 0.7, 0.5 and 0.3, from (a) to (d). This plot compares the results

obtained for forward and backward simulations of the majority-vote dynamics with limited
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visibility. Forward simulations start with a fully ordered state and progressively increase the

system’s social temperature, while backward simulations begin with a fully disordered state and

gradually decrease the social temperature. In both cases, the final configuration at each noise

value will be used as the initial condition for the subsequent step. Both curves are expected

to coincide for continuous phase transitions but diverge for first-order phase transitions. Thus,

for discontinuous consensus-dissensus transitions, we shall observe the emergence of hysteresis

loops in the order parameter, indicating the system’s bistability regarding ordered and disor-

dered states, depending on its initial condition (CHEN et al., 2017; HARUNARI; OLIVEIRA; FIORE,

2017; ENCINAS et al., 2018).

Figure 7 – Order parameter of the system O𝑁 (𝑞, 𝑧, 𝑉 ) as a function of the noise parameter 𝑞 for distinct values
of the visibility parameter: (a) 𝑉 = 1.0, (b) 𝑉 = 0.7, (c) 𝑉 = 0.5 and (d) 𝑉 = 0.3. Here, we
consider networks of size 𝑁 = 12000 and growth parameter 𝑧 = 10. The green (blue) symbols
relate to forward (backward) simulations. As we decrease the visibility parameter, a hysteresis loop
emerges, indicating a shift in the nature of the phase transitions. Lines are included as visual guides
only.

Source: The author (2025).

Thus, in Fig. 7(a), we observe the behavior of the order parameter of the system for

𝑉 = 1.0. We remark that in such limit, we recall the standard two-state majority-vote model

on Barabási-Albert networks, which is known to display second-order phase transitions irre-

spective of the growth parameter value adopted (LIMA, 2007). Our simulations confirm this
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behavior, as the forward and backward paths coincide. For (b) 𝑉 = 0.7, despite the transition

becoming sharper, both paths still coincide, indicating a continuous regime. Further decreasing

the visibility parameter, as in (c) 𝑉 = 0.5 and (d) 𝑉 = 0.3, we observe the emergence of

hysteresis loops, with forward and backward simulations displaying sharp transitions at distinct

critical social noise values 𝑞𝑐𝐹
(𝑧, 𝑉 ) ̸= 𝑞𝑐𝐵

(𝑧, 𝑉 ). Hence, we confirm that lower values of the

visibility parameter 𝑉 yield first-order consensus-dissensus phase transitions in the system.

Another hallmark of the system’s behavior under discontinuous phase transitions is the

multimodality of the probability distribution of the order parameter. This reflects the system’s

bistability between ordered and disordered states within the aforementioned hysteresis region.

In contrast, second-order phase transitions are characterized by a single peaked probability

distribution, whose position naturally depends on the value of social temperature 𝑞 adopted

(CHEN et al., 2017; HARUNARI; OLIVEIRA; FIORE, 2017).

Thus, Fig. 8 displays (a) the time series of 𝑜𝑁(𝑞, 𝑧, 𝑉 ) for 𝑞 = 0.102. In this result,

𝑜𝑁(𝑞, 𝑧, 𝑉 ) = 𝜎1 + 𝜎2 + · · · + 𝜎𝑁 to highlight the sign variations of the average opinion of

the system. Also shown are the probability distributions of the 𝑜𝑁(𝑞, 𝑧, 𝑉 ) for different noise

parameter values: 𝑞 = 0.098, 0.102 and 0.106 from (b) to (d), respectively. In all cases, we

consider Barabási-Albert networks of size 𝑁 = 500 and growth parameter 𝑧 = 10, as well

as a visibility parameter of 𝑉 = 0.3. From Fig. 7(d), we expect the system to lie within the

hysteretic region for these parameter combinations.

Figure 8 – (a) Time series of the order parameter of the system 𝑜𝑁 (𝑞, 𝑧, 𝑉 ) = 𝜎1 + 𝜎2 + · · · + 𝜎𝑁 for a
Barabási-Albert network of size 𝑁 = 500 and growth parameter 𝑧 = 10. Here, we consider a
visibility 𝑉 = 0.3 and a social noise 𝑞 = 0.102. Also included are the probability distributions of the
opinionization for (b) 𝑞 = 0.098, (c) 𝑞 = 0.102 and (d) 𝑞 = 0.106. Within the hysteresis region, the
system displays a bistable regime, as highlighted by the transitions between ordered and disordered
states in the time series and the multimodal behavior of the probability distributions.

Source: The author (2025).
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In fact, Fig. 8(a) displays a clear bistable behavior, showing multiple transitions between

ordered and disordered states within the analyzed time frame. The probability distributions in

Fig. 8(b)—(d) further confirm this feature, as highlighted by their multimodal shape. Note

that for lower values of the noise parameter 𝑞, as we approach the non-hysteretic region, the

ordered phase starts to dominate the distributions, as shown by the almost not visible peak

around zero. Conversely, the disordered phase dominates for higher values of 𝑞, and the peaks

at the ordered state become less apparent.

Finally, we briefly remark that the finite-size scaling techniques discussed in Sec. 4.5 are

inadequate for investigating first-order phase transitions. Such tools suppose the divergence

of the system’s correlation length, a characteristic feature of continuous phase transitions.

Furthermore, as mentioned previously, discontinuous phase transitions are characterized by a

hysteretic loop, with forward and backward simulations diverging near the transition. Hence,

for first-order phase transitions, we shall adopt the social noise values at which the system

becomes fully disordered (O𝑁 ∼ 0) as estimators of the critical social temperatures of the

system 𝑞𝑐𝐹
and 𝑞𝑐𝐵

, for forward and backward simulations respectively (CHEN et al., 2017).

Figure 9 – Phase diagrams of the system under first-order phase transitions for several values of (a) visibility
parameter and 𝑧 = 10 and (b) several values of the growth parameter and 𝑉 = 0.3. The green
(blue) symbols relate to the critical noises found for forward (backward) simulations obtained for
networks of size 𝑁 = 12000.

(a) (b)

Source: The author (2025).

Thus, Fig. 9 displays the phase diagrams for first-order transitions in the system, highlighted

by the diverging critical social noises between forward and backward simulations. The critical

social noises were obtained from numerical simulations of social systems with 𝑁 = 12000

individuals. In the figures, the regions above the green data points reflect the disordered

state, while the blue regions define the ordered state of the system. Additionally, the green

region determines the metastable region, where the order parameter of the system is bistable,
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reflecting the aforementioned hysteretic behavior. Furthermore, in Fig. 9(a), we observe that

by increasing the visibility parameter, the system gradually shifts towards continuous phase

transitions, as shown by the forward and backward critical social noises slowly gravitating

toward each other. In contrast, Fig. 9(b) shows that increasing the growth parameter of the

network leads to an opposite effect, further pushing the system towards discontinuous order-

disorder phase transitions.

5.3 SECOND-ORDER PHASE TRANSITIONS OF THE TWO-STATE MAJORITY-VOTE

MODEL WITH BIASED VISIBILITY

Figure 10 – Plots of (a) the opinionization, (b) the noise sensitivity, and (c) the fourth-order Binder cumulant
for several network sizes 𝑁 . Here, we consider a visibility parameter 𝑉 = 0.7 and a growth
parameter 𝑧 = 8. The opinionization and noise sensitivity curves display a size-dependent behavior
at the critical region, while the fourth-order Binder cumulant is independent of size at the critical
social temperature. Lines are just guides to the eyes.

Source: The author (2025).

In Fig. 10, we observe the behavior of the macroscopic quantities of the system, namely (a)

the opinionization O, (b) the noise sensitivity 𝜒𝑁 and (c) the fourth-order Binder cumulant

𝑈𝑁 for a growth parameter 𝑧 = 8 and visibility 𝑉 = 0.7. As mentioned in Sec. 4.2.1, we

expect the order parameter of the system and the noise sensitivity to display a size-dependent

behavior near the critical region. In fact, we observe that before the phase transitions take

place, the order parameter curves for different system sizes are essentially superposed. In

contrast, as we approach the critical melting point of the system, their behavior diverges. This

behavior is further observed in the pseudocritical social temperature values, extracted from

the maxima of the noise sensitivity curves, which also demonstrate to depend on the system



71

size. More importantly, we observe that the fourth-order Binder cumulants in Fig. 10(c) are

indeed size-independent at the critical temperature, showing a clear crossing at 𝑞 = 𝑞𝑐(𝑧, 𝑉 ).

Furthermore, Fig. 11 displays a closer detail of the behavior of the fourth-order Binder cu-

mulant 𝑈𝑁 near the critical region, for 𝑧 = 8 and 𝑉 = 0.7. Here we consider five distinct system

sizes 𝑁 = 1000, 2000, 3600, 6400, and 12000. Indeed, we observe that curves for different sys-

tem sizes intersect each other, allowing us to estimate the critical social temperature of the sys-

tem near the thermodynamic limit 𝑁 → ∞. Here we obtain 𝑞𝑐(𝑧 = 8, 𝑉 = 0.7) = 0.2889(1).

Figure 11 – Fourth-order Binder cumulant near the critical social temperature for a growth parameter 𝑧 = 8
and a visibility 𝑉 = 0.7. The crossing of the curves for different system sizes indicates the critical
social temperature of the system. Lines correspond to B-spline interpolations of the data points.

Source: The author (2025).

Following the discussion contained in Sec. 4.5, we expect the order parameter of the system

and the noise sensitivity to follow volumetric scaling relations of the form:

O𝑁(𝑞, 𝑧, 𝑉 ) = 𝑁−𝛽/𝜈 ̃︀O(𝜀𝑁1/𝜈), (5.1)

𝜒𝑁(𝑞, 𝑧, 𝑉 ) = 𝑁𝛾/𝜈 ̃︀𝜒(𝜀𝑁1/𝜈). (5.2)

Hence, by plotting ln[O𝑁(𝑞𝑐, 𝑧, 𝑉 )] versus ln[𝑁 ] and ln[𝜒𝑁(𝑞𝑐, 𝑧, 𝑉 )] versus ln[𝑁 ], we may

extract their corresponding critical exponents 𝛽/𝜈 and 𝛾/𝜈, via a linear fit of the data in a

log-log plot. We remark that these exponents relate themselves in a unique fashion, known as

the unitary relation of critical exponents (VILELA et al., 2020). Below we recall the result for

the unitary relation

2𝛽

𝜈
+ 𝛾

𝜈
≡ 𝜐 = 1. (5.3)
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Furthermore, such mathematical relation acts as a confirmation tool for the accuracy of the

calculated critical exponents, regardless of the topological structure adopted.

Thus, Fig. 12 displays the numerical results for (a) the opinionization O𝑁 and (b) the

noise sensitivity 𝜒𝑁 at the critical social temperature for 𝑞 = 𝑞𝑐(𝑧, 𝑉 ) for 𝑧 = 8 and limited

visibility 𝑉 = 0.7. Furthermore, we perform a linear fit for the data, from which we extract

𝛽/𝜈 = 0.0371(4) and 𝛾/𝜈 = 0.96(2). Thus, for the unitary relation, we have:

2𝛽

𝜈
+ 𝛾

𝜈
= 1.03(2). (5.4)

Hence, our model shows considerable agreement with the unitary relation within the error bars.

Figure 12 – Plots of (a) ln[O𝑁 (𝑞𝑐, 𝑧, 𝑉 )] and (b) ln[𝜒𝑁 (𝑞𝑐, 𝑧, 𝑉 )] versus ln[𝑁 ] for a growth parameter 𝑧 = 8
and a visibility 𝑉 = 0.7. Data points correspond to simulations of different system sizes at the
corresponding critical temperature 𝑞𝑐(𝑧, 𝑉 ). Lines relate to linear fits for the data, and their slope
corresponds to the respective critical exponents.

(a) (b)

Source: The author (2025).

5.4 DISCUSSIONS AND FUTURE PERSPECTIVES

In the current highly connected status of social media platforms, algorithms tuned for

the so-called click economy have become important drivers of opinion spreading. Within this

context, individuals are often restricted from accessing diverging opinions, being artificially led

into fake majorities. Such a scenario has crucial impacts on modern social debates, contributing

to the amplification of sensationalism and the formation of echo chambers.

In this context, we investigate an extension of the two-state majority-vote dynamics

(OLIVEIRA, 1992; OLIVEIRA; MENDES; SANTOS, 1993) by incorporating biased visibility effects.

In our model, we consider a biased visibility parameter 𝑉 that impacts the individuals’ ability

to perceive opposing views in some social debate. Hence, individuals shall always be presented
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with converging opinions while only viewing distinct ones with probability 𝑉 . When 𝑉 = 0,

an individual shall only consider like-minded neighbors, while for 𝑉 = 1, the visibility bias is

effectively removed, and our model reduces to the standard majority-vote formulation.

We place individuals in the nodes of a Barabási-Albert network of social connections, with

links representing social connections between them. Furthermore, individuals shall adopt the

opinion of the majority of their acquaintances with chance 1 − 𝑞 while following the opposing

stance with probability 𝑞. The parameter 𝑞 is termed the social temperature of the system,

and it measures the level of social unrest in decision-making processes.

Our simulations display both first-order (discontinuous) and second-order (continuous)

order-disorder phase transitions for a critical value of the social temperature 𝑞 = 𝑞𝑐(𝑧, 𝑉 )

depending on the growth parameter and visibility adopted. Regarding first-order phase transi-

tions, we confirm the presence of a hysteretic behavior near the phase transition as a reflection

of the bistability between order and disorder displayed in such systems. Additionally, for second-

order phase transitions, we obtain the critical social temperature and the critical exponents

for 𝑧 = 8 and 𝑉 = 0.7, confirming the unitary relation (VILELA et al., 2020).

Based on the results presented in this Chapter, we expect to expand our analysis by

investigating the behavior of the system under distinct configurations of the control parameters

of the system, namely the growth parameter of the system 𝑧 and the visibility parameter 𝑉 ,

furthering our understandings of first and second-order critical phase transitions in biased

emergent phenomena of social systems.
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6 THREE-STATE GLOBAL-VOTE MODEL ON SCALE-FREE NETWORKS

We now discuss the main results of our investigation on the extension of the three-state

majority-vote model to study price formation in financial markets. Our work expands on the

current status of the three-state global-vote framework by implementing scale-free network

topologies and analyzing their impact on the system’s macroscopic observables. We perform

Monte Carlo simulations on Barabási-Albert networks of size 𝑁 = 104 and distinct values of

the growth parameter 𝑧.

Within a complex network structure, financial agents are represented as nodes, with links

representing socioeconomic connections between them. We consider a financial market com-

prised of two types of individual strategies for their impact on price dynamics: noise traders

and fundamentalists. The former acts based on the majority of their closest friends, while the

latter is influenced by the global behavior of the market. Furthermore, we randomly assign a

fraction 1 − 𝑓 as noise traders and the remaining, 𝑓 , as fundamentalist agents.

We map the agents’ financial options at any time 𝑡 via stochastic variables, which may

assume one out of three possible states 𝑠 ∈ {1, 2, 3}, regarding buying, holding, or selling an

asset, for example. Moreover, noise traders and fundamentalists shall update their financial op-

tions according to the probability prescriptions given by Eq. (4.5) and Eq. (4.13), respectively.

Nevertheless, we introduce a noise parameter 𝑞 that models a level of socioeconomic anxiety

present in the market, which shall impact both noise trader and fundamentalist actions.

We recall that in Monte Carlo simulations, 𝑁 attempts to update the states of randomly

selected financial agents define a unit of time—Monte Carlo steps (MCS). In our simulations,

we consider a randomized initial state, assigning to each agent any of the three possible states

with equal probability. In each simulation, we discard the initial 104 MCS as the thermalization

time, performing our analysis in the subsequent 104 MCS. Additionally, for every pair (𝑞, 𝑓),

we consider 100 independent Monte Carlo simulations to average over topological disorder.

Hence, an effective 106 MCS were recorded for every set of parameters (𝑞, 𝑓) analyzed.

Based on previous studies of the global-vote model, we expect essential market features to

be present when the system is near its socioeconomic melting point 𝑞 ≈ 𝑞𝑐 in the absence of

contrarian individuals 𝑓 = 0 (VILELA et al., 2019; ZUBILLAGA et al., 2022b; GRANHA et al., 2022).

Thus, we shall focus our investigation on systems built near criticality, where fluctuations in the

order parameter are more expressive. We shall extract the critical noise values 𝑞𝑐(𝑧) for each
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value of the growth parameter considered from previous studies on the three-state majority-

vote model on Barabási-Albert networks (VILELA et al., 2020).

In the financial context, we relate time variations of the instantaneous opinionization (4.7)

of the system with a financial asset’s logarithmic returns (4.14). We remark these quantities

were defined in Sec. 4.2.2 and 4.4.1, respectively.

6.1 TIME SERIES OF LOGARITHMIC RETURNS

In Fig. 13, we show the logarithmic returns of NYSE Composite’s daily closing values in US

dollars from May 28, 1985, to February 03, 20251. Here we highlight that the price dynamics

of the NYSE Composite is mainly driven by market supply and demand, similar to any other

economic asset. The imbalance between these two economic forces leads to periods of intense

price fluctuations, as observed in several time windows in the plot. The curious detail is that

such periods of strong volatility tend to be compressed over the time series, an effect known

as volatility clustering (LUX; MARCHESI, 2000; KRAWIECKI; HOLYST; HELBING, 2002; CONT,

2007). This is an essential feature of real-world financial markets and may be understood via

Maldelbrot’s observation that "large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes" (MANDELBROT, 1963).

Figure 14 displays the time series of logarithmic returns obtained in our model for two

distinct socioeconomic network compositions: (a) 𝑧 = 6 and 𝑞 = 0.4550, and (b) 𝑧 = 50 and

𝑞 = 0.5918. Furthermore, we consider in each case two concentrations of market strategies,

𝑓 = 0.20 and 𝑓 = 0.50. Here we aim to understand the impacts of the growth parameter 𝑧

and the concentration of fundamentalists 𝑓 on the market behavior near the critical point.

Thus, Fig. 14(a) illustrates two clearly distinct market phases regarding the concentration

of fundamentalist agents in the market: a strong market phase for 𝑓 = 0.20, where the time

series of log-returns are characterized by several events of high volatility, as depicted by the large

spikes in the plot; and a weak market phase for 𝑓 = 0.50, where such events are attenuated,

as the market becomes stabilized. This observation agrees with previous investigations in the

global-vote framework, in which a higher presence of fundamentalist agents drives market

stability (VILELA et al., 2019; ZUBILLAGA et al., 2022b; GRANHA et al., 2022).

Conversely, Fig. 14(b) shows that for higher values of the network growth parameter,

the log-returns display an intensively volatile behavior for both values of 𝑓 considered. As a
1 Data provided by Yahoo Finance
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Figure 13 – Time series of the logarithmic returns of NYSE Composite’s daily closing values in US dollars.
Here we analyzed dates ranging from May 28, 1985, to February 03, 2025, comprising a time
window of approximately 104 market trading days.

Source: The author (2025).

reflection, the presence of clustered volatility becomes less clear as the system deviates from

the expected behavior of real-world financial markets. Hence, we focus our investigation on

lower values of the growth parameter 𝑧, i.e., lower values of the average connectivity of the

network ⟨𝑘⟩ ≈ 2𝑧, for their ability to reproduce key market features (GRANHA et al., 2022).

Figure 14 – Time series of the logarithmic returns 𝑟(𝑡) for two sets of network growth and social noise pa-
rameters: (a) 𝑧 = 6 and 𝑞 = 0.4550, and (b) 𝑧 = 50 and 𝑞 = 0.5918. Greater concentrations
of fundamentalist agents (𝑓 = 0.50) tend to stabilize log-return fluctuations, as highlighted by
the lower spikes in the plot. In contrast, increasing the growth parameter of the network reduces
clustered volatility, deviating from real-world market behavior.

(a) (b)

Source: The author (2025).
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6.2 VOLATILITY CLUSTERING AND TIME CORRELATIONS

In real-world financial time series, we expect the returns of any given asset to display

a short-term memory with a fast correlation decay. This feature is consistent with the effi-

cient market hypothesis, which states the statistical independence of returns in time (PEIRIS;

HUNT, 2023; TIMMERMANN; GRANGER, 2004; MALKIEL, 1989). In contrast, correlations in the

volatilities tend to persist on much longer time scales as a reflection of volatility clustering

effects (MANDELBROT, 1963). Hence, to quantify correlations in the time series of the financial

observables, we define the autocorrelation functions of the logarithmic returns and volatility,

respectively, as

𝐶𝑟𝑒𝑡(𝜏) =
∑︀𝑇

𝑡=𝜏+1 [𝑟(𝑡) − 𝑟] [𝑟(𝑡 − 𝜏) − 𝑟]∑︀𝑇
𝑡=1 [𝑟(𝑡) − 𝑟]2

, (6.1)

𝐴(𝜏) =
∑︀𝑇

𝑡=𝜏+1 [|𝑟(𝑡)| − |𝑟|] [|𝑟(𝑡 − 𝜏)| − |𝑟|]∑︀𝑇
𝑡=1 [|𝑟(𝑡)| − |𝑟|]2

. (6.2)

Here, 1 ≤ 𝜏 ≤ 104 MCS is the time-step difference between observations, 𝑇 = 104 MCS

is the time of simulation for each network sample, 𝑟(𝑡) is the return at a time 𝑡 and 𝑟 the

average return value.

We remark that the function defined in Eq. (6.2) measures non-linear correlations in the

volatility time series, and we expect such quantity to be strongly correlated in time. In other

words, we empirically anticipate that the volatility autocorrelation functions should display a

power law regime for at least two orders of magnitude (MANTEGNA; STANLEY, 2000; VOIT,

2005). Furthermore, due to the finite size of the data, an exponential decay for longer time

scales is also expected (BORNHOLDT, 2001; TAKAISHI, 2005).

In Fig. 15, we display (a) the autocorrelation of the volatilities |𝑟(𝑡)| for several market

compositions regarding the fraction of fundamentalist agents 𝑓 and the daily closing values of

the NYSE composite. We include financial data comprising approximately 104 market trading

days from May 28, 1985, to February 03, 2025. Additionally, we present the outcomes for the

autocorrelation functions of (b) the volatilities and (c) the returns 𝑟(𝑡), averaged over 100

distinct network realizations. In our simulations, we consider a growth parameter 𝑧 = 6 and a

socioeconomic noise value 𝑞 = 0.4550.

Thus, Fig. 15(a) displays a qualitative comparison between our simulations and real-world

financial time series regarding time correlations of the volatilities. As previously mentioned,
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Figure 15 – (a) Qualitative comparison of the autocorrelation function of the volatility |𝑟(𝑡)| for several values
of the fraction of fundamentalist agents 𝑓 , and daily closing values of the NYSE Composite.
Here, we consider dates ranging from May 28, 1985, to February 03, 2025, for an average of 104

market trading days. The dashed red lines correspond to power-law data fits. Also included are
the averaged autocorrelation functions of (b) the volatilities and (c) logarithmic returns 𝑟(𝑡), with
the red dots representing an exponential fit of the data.
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we expect the autocorrelation of the volatilities to display a power-law behavior for at least

two orders of magnitude. Hence, we perform power-law fits for the autocorrelation functions,

𝐴(𝜏) ∼ 𝜏−𝜂, over the same time periods 101 ≤ 𝜏 ≤ 𝑇 3. The numerical simulations and

empirical data display a quantitative agreement in the order of the decay rate, with power-law

exponents 𝜂 ∼ 0.04(1) for our simulations with 𝑓 = 0.0 and 𝜂𝑁𝑌 𝑆𝐸 ∼ 0.083(1) for the NYSE

Composite (BORNHOLDT, 2001; TAKAISHI, 2005; ZUBILLAGA et al., 2022b).

In Figure 15(b), we display the average autocorrelation of the volatilities |𝑟(𝑡)| for several

values of the fraction of fundamentalists 𝑓 and 100 market simulations. As expected, results

display a persistent correlation in time, presenting a slow exponential decay that spans several

orders of magnitude. We confirm this effect via an exponential fit of the data ⟨𝐴(𝑞, 𝑓, 𝜏)⟩ ∼

exp(−𝜏/𝜏0) for 𝑓 = 0.10, in which we obtain 𝜏0 ≈ 7×107 MCS, with other values of 𝑓 yielding

similar results. We highlight that this behavior is consistent with the expected exponential

cut-off due to finite size effects of the available data (GOPIKRISHNAN et al., 1999; MANTEGNA;

STANLEY, 2000; BORNHOLDT, 2001; KAIZOJI; BORNHOLDT; FUJIWARA, 2002; TAKAISHI, 2005;

VOIT, 2005). Figure 15(a) also exhibits such finite size effect and exponential long-time decay.

Moreover, Fig. 15(c) presents the autocorrelation function 𝐶𝑟𝑒𝑡 for the returns time series

𝑟(𝑡) obtained in our simulations for several values of the fundamentalist fraction 𝑓 , and aver-

aged over 100 network realizations. For enhanced plot visualization, we connect data points
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via B-spline curves that interpolate between those, resulting in a smooth, continuous curve.

Our results display an excellent agreement with the expected behavior of financial observables,

showing that returns are essentially uncorrelated in time as 𝐶𝑟𝑒𝑡 → 0 on a short-time scale of

𝜏 ∼ 𝑂(1), especially for lower values of 𝑓 . Hence, our model is in accordance with the efficient

market hypothesis (PEIRIS; HUNT, 2023; TIMMERMANN; GRANGER, 2004; MALKIEL, 1989). Yet,

for larger fractions of contrarians, 𝐶𝑟𝑒𝑡 displays diminishing anti-persistent oscillations in the

short term. This stems from the cyclical behavior of the system, primarily driven by a large

fraction of noise contrarians consistently seeking to occupy the instantaneous global minority

state (ZUBILLAGA et al., 2022b).

6.3 DISTRIBUTIONS OF LOGARITHMIC RETURNS AND VOLATILITIES

Figure 16 displays the histogram of the log-returns in 106 MCS for a growth parameter

𝑧 = 6, noise parameter 𝑞 = 0.4550 and several values of the fraction of fundamentalist

agents 𝑓 . Following our previous discussion, we observe that higher values of the fraction of

contrarians are associated with a stabilization of the system. In contrast, for lower values of

𝑓 , the distributions display fat tails as a reflection of the high number of intense volatility

events. Increasing the values of 𝑓 , distributions’ tails become less heavy as they gradually shift

towards a Gaussian regime.

Figure 16 – Distribution of logarithmic returns in 106 MCS for a growth parameter 𝑧 = 6, socioeconomic
anxiety level 𝑞 = 0.4550 and several values of the fraction of fundamentalists 𝑓 . Increasing the
presence of contrarian agents leads to a progressive loss of the distribution tails.
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We quantify the return distributions via a statistical analysis of the data obtained in our

simulations. In particular, we calculate the kurtosis 𝐾(𝑧, 𝑓) for the distributions at distinct

market phases, and we obtain 𝐾(6, 0.10) = 4.48 in the strong market phase and 𝐾(6, 0.50) =

3.12 in the weak market phase. We remark that for a Gaussian distribution, 𝐾 = 3. Thus,

increasing the fraction of contrarian agents 𝑓 shifts the system’s behavior from a leptokurtic

regime (𝐾 > 3) to a mesokurtic regime (𝐾 ≈ 3), deviating from the expected results of

real-world financial markets.

For further qualification of the distributions displayed in Fig. 16, we perform comparative

quantile-quantile (Q–Q) plots. These plots provide a visual means to assess how well a given

distribution aligns with an expected theoretical distribution. If the data points closely follow

the theoretical reference line, shown in red, this suggests a strong agreement between the

distributions. Thus, Fig. 17 displays comparative Q–Q plots (a) of the logarithmic returns

against a normal distribution and (b) of the volatility against an exponential distribution.

In Fig. 17(a), lower values of the fraction of contrarians 𝑓 (specifically 𝑓 ≤ 0.30) show

significant nonlinearity, indicating the aforementioned fat-tailed behavior, typical of real-world

financial data. As 𝑓 increases, the distribution tails are lost, as those approaches a Gaussian

behavior, as indicated by the close alignment between data points and the reference line.

Furthermore, Fig. 17(b) shows that the distributions display deviations in higher quantiles,

revealing a slower decay than expected for an exponential distribution. Such behavior implies

a higher probability of large values than an exponential distribution would predict, confirming

the heavy-tailed regime (MANDELBROT, 1963; GOPIKRISHNAN et al., 1999; CONT, 2001).

We may also quantify the transition observed in the logarithmic return distributions—from

a heavy-tailed (leptokurtic) regime into a Gaussian (mesokurtic) regime—as we progressively

increase the fraction of contrarians in the system via the coupled exponential family of distri-

butions 𝑃𝜇,𝜎,𝜅,𝛼(𝑟) (NELSON; UMAROV; KON, 2017; NELSON; KON; UMAROV, 2019). Within this

family of functions, we shall refer to the shape parameter 𝜅 as the nonlinear statistical coupling

and to 𝜎 as the scale parameter in an interpretation of non-extensive statistical mechanics of

complex systems (TSALLIS et al., 2003; QUEIRÓS et al., 2007; NELSON; UMAROV; KON, 2017;

NELSON; KON; UMAROV, 2019; BIONDO; PLUCHINO; RAPISARDA, 2015). Moreover, the scale

parameter 𝜎 measures the spread of the distribution.

We adopt the mean value of the distributions of logarithmic returns as zero for all values

of the fraction of fundamentalist agents considered, in agreement with Fig. 19. In this way,

we fit the distributions via the symmetric coupled exponential family 𝑃𝜇,𝜎,𝜅,𝛼(𝑟) = 𝑃𝜎,𝜅,𝛼(𝑟),
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Figure 17 – Quantile–quantile plots of the distributions of (a) normal versus logarithmic returns 𝑟(𝑡) and (b)
exponential versus volatility |𝑟(𝑡)|. Our simulations consider a growth parameter 𝑧 = 6 and noise
parameter 𝑞 = 0.4550 for a time series of 106 MCS long. The red line displays the theoretically
expected results for each distribution.

(a) (b)

Source: The author (2025).

defined as

𝑃𝜎,𝜅,𝛼(𝑟) ≡
[︃
𝑍(𝜎, 𝜅, 𝛼)

(︂
1 + 𝜅

⃒⃒⃒⃒
𝑟

𝜎

⃒⃒⃒⃒𝛼)︂ 1+𝜅
𝛼𝜅

+

]︃−1

, (6.3)

where (𝑥)+ ≡ max(0, 𝑥).

We remark that the coupled exponential family of distributions is able to accommodate a

wide variety of statistical distributions upon varying its control parameters. In particular, by

setting the parameter 𝛼 = 2, we recall the coupled Gaussian distribution: for 𝜅 = 0, we obtain

the Gaussian distribution; and for 𝜅 > 0, we have the Student’s t distribution. Moreover, in the

latter, the degree of freedom 𝜈 is related to the shape parameter as 𝜈 = 1/𝜅. Thus, the shape

parameter 𝜅 provides a quantitative measure for the transition between distribution regimes

(TSALLIS et al., 2003; QUEIRÓS et al., 2007; BIONDO; PLUCHINO; RAPISARDA, 2015; NELSON;

UMAROV; KON, 2017; NELSON; KON; UMAROV, 2019).

Hence, Fig. 18 shows the probability distribution of the volatilities |𝑟(𝑡)| for several values

of the fraction of fundamentalists 𝑓 in 106 MCS. Here we consider a network growth param-

eter 𝑧 = 6 and a noise parameter 𝑞 = 0.4550. The lines correspond to symmetric coupled

exponential fits for the data, and the values obtained for the nonlinear coupling parameter 𝜅

and scale 𝜎 are displayed in Table 1. Our results support the aforementioned behavior shift

in the system as we increase the fraction of contrarian agents 𝑓 . More specifically, it pro-

vides a quantitative measure of said shift: as we progressively increase 𝑓 , we observe that
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Figure 18 – Distributions of the volatility |𝑟(𝑡)| for a growth parameter 𝑧 = 6 and socioeconomic noise 𝑞 =
0.4550 in 106 MCS. The lines correspond to symmetric coupled exponential fits for the data.
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the nonlinear coupling parameter 𝜅 is pushed towards zero, indicating that distributions are

indeed transitioning to a Gaussian regime; simultaneously, the scale 𝜎 is progressively reduced,

indicating smaller spreads as the system becomes more stable. Thus, the coupled exponential

fits performed provide an effective numerical measure of the transition from a heavy-tailed

(leptokurtic) regime to a Gaussian (mesokurtic) as we increase the presence of fundamentalist

agents in the system.

Figure 19 displays the cumulative distribution of logarithmic returns Φ for 𝑧 = 6 and

𝑞 = 0.4550 in 106 MCS. The inset shows an approximation of the plot around zero. As

previously mentioned, we observe that the mean of the distributions remains zero, irrespective

of the fraction of contrarian agents 𝑓 present in the market.

Table 1 – Values obtained for the scale 𝜎 and shape 𝜅 parameters in the coupled exponential fits for the data.
Here we consider a network growth parameter 𝑧 = 6, a socioeconomic anxiety level 𝑞 = 0.4550 and
several values of the fraction of fundamentalists 𝑓 .

Fraction 𝑓 0.10 0.20 0.30 0.40 0.50

Shape 𝜅 0.16(3) 0.205(2) 0.070(2) 0.024(2) 0.017(1)

Scale 𝜎 0.74(1) 0.4499(4) 0.3204(3) 0.2258(3) 0.1651(1)

Source: The author (2025).
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Figure 19 – Cumulative distribution of logarithmic returns Φ in 106 MCS for 𝑧 = 6, 𝑞 = 0.4550 and several
values of the fraction of contrarians 𝑓 . In the inset, we show the behavior of Φ for 𝑟(𝑡) near zero.
We confirm that for all values of 𝑓 considered the mean of the distributions remains zero.
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We also extensively investigate the model’s behavior under several market configurations,

which depend on the network growth parameter 𝑧, the socioeconomic anxiety level 𝑞 and

the fraction of fundamentalists 𝑓 . In Fig. 20, we show a multi-plot table of the histograms

of logarithmic returns for such micro-state configurations defined by (𝑞, 𝑓, 𝑧) triplets, all of

which investigated near the criticality of the system 𝑞 ≈ 𝑞𝑐(𝑧) for each value of 𝑧 considered.

Columns correspond to values of 𝑞, below criticality (left), at criticality (center), and above

criticality (right), while rows investigate the effects of different growth parameter 𝑧 values.

We remark that the selected noise values above and below criticality are 𝑞 = 𝑞𝑐(𝑧) ± 0.1.

Moving vertically (from top to bottom) in the plot along a column, we observe the strong

effects of increasing the growth parameter of the network in the return distributions. In partic-

ular, as we increase 𝑧, we note that the spreads and tails of the distributions tend to increase

slightly, suggesting broader return distributions. Nevertheless, increasing 𝑓 leads to the usual

progressive loss of tails in the return distributions. We remark that this behavior may be ob-

served for most cells in the grid, highlighting the model’s robustness over a wide range of

scale-free networks near criticality.

Nevertheless, we highlight critical outliers of this behavior, especially for noise parameter

values that deviate from criticality. For instance, the distributions for 𝑓 = 0.10 below criticality

for 𝑧 ≥ 4, which do not display the expected fat-tailed behavior, become highly peaked around
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𝑟 = 0. Similarly, the distributions for 𝑧 = 8 and 10 above criticality show that higher fractions

of contrarians still display a heavy-tailed behavior instead of the expected transition to a

Gaussian regime. Hence, this result conforms with our choice for the growth parameter 𝑧 and

noise parameter 𝑞 = 𝑞𝑐 values used throughout our analysis.

Figure 20 – Distributions of logarithmic returns 𝑟(𝑡) in 106 MCS for different combinations of network growth
and noise parameter values (𝑧, 𝑞) in the vicinity of 𝑞𝑐(𝑧) and several values of the fraction of
fundamentalists: 𝑓 = 0.10, 0.20, 0.30, 0.40, and 0.50 in dark blue, purple, pink, orange, and yellow,
respectively. Rows depict distinct values of the growth parameter 𝑧 = 2, 4, 6, 8, and 10, from top
to bottom, while columns correspond, respectively, to values of 𝑞 below, at and above criticality
for each value of 𝑧 considered.
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6.4 DISCUSSIONS AND CONCLUDING REMARKS

The three-state global-vote framework proposes to investigate price formation in economic

systems through the lens of social psychology (ZUBILLAGA et al., 2022b). In particular, it

considers a microscopic stochastic model in which agents may adopt three financial options

regarding buying, selling or remaining inactive at any given time. Furthermore, as an agent-

based model, it introduces two distinct financial strategies in the market: noise traders who

perform financial actions based on local interactions with their nearest neighbors and tend

to agree with the state of the local majority with probability 1 − 𝑞; and fundamentalists, or

contrarian traders, whose decisions are based on the financial index, and thus tend to follow

the state of the global minority of the system with probability 1−𝑞. The parameter 𝑞 quantifies

a level of socioeconomic anxiety inherent to stock markets.

In this work, we extend the previous results on the three-state global-vote model (ZUBIL-

LAGA et al., 2022b) by considering the implementation of Barabási-Albert networks. Within such

structures, individuals are represented as nodes, with links regarding socioeconomic relations

among them. Effectively, this work investigates how the control parameter of Barabási-Albert

networks, namely the growth parameter 𝑧, impacts the macroscopic financial observables.

By relating changes in the instantaneous order parameter of this system to price fluctuations

in stock markets, our model is able to reproduce the main stylized facts of real-world financial

markets (BORNHOLDT, 2001; KAIZOJI; BORNHOLDT; FUJIWARA, 2002; TAKAISHI, 2005). In

particular, our results demonstrate key features such as fat-tailed distributions of returns,

volatility clustering, and long-term memory of the volatility, consistent with the efficient market

hypothesis and previous investigations (VILELA et al., 2019; ZUBILLAGA et al., 2022b; GRANHA

et al., 2022).

Hence, our model considers three main factors as drivers of the macroscopic behavior

of financial observables: a heterogeneous composition of agents with different strategies, a

scale-free network of economic interactions, and a finite level of socioeconomic uncertainty

near consensus-dissensus criticality. We highlight that despite the model’s simplicity, it is

remarkably capable of shedding light on the underlying mechanisms at play in such complex

systems as financial markets.
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7 CONCLUSION AND FINAL REMARKS

This work aims to explore the underlying mechanisms that drive emergent behaviors in

social and economic systems. At the center of this study lies the premise that large-scale

collective phenomena—such as consensus formation in public debates or price fluctuations in

financial markets—arise from local interactions between individuals. To capture the effects of

micro-level interactions, we adopted agent-based models, which offer a robust framework for

linking microscopic decision-making processes to macroscopic observables.

Within this context, two key research areas constitute the fundamental backbone of our

work: statistical mechanics and network science. The theoretical foundations of statistical

physics provide a natural framework for analyzing systems composed of a large number of

interacting individuals by shifting the focus from individual components to macroscopic prop-

erties. Similarly, networks are a natural feature of human interactions, in which network science

provides an essential tool for assessing how these underlying structures fundamentally shape

individual decisions. Hence, statistical mechanics and complex networks constitute crucial ele-

ments in our analysis as we aim to explore how local interactions propagate through large-scale

systems, influencing consensus formation, market stability, and information diffusion.

This thesis focuses on two central problems: the role of biased visibility algorithms in opinion

formation and the impact of distinct financial strategies on price dynamics. In the first part, we

introduce a variant of the two-state majority-vote model incorporating a visibility parameter 𝑉 ,

which restricts an individual’s exposure to opposing viewpoints. This modification is inspired

by the urgent need to assess the possible side effects of algorithmic filtering on modern social

media platforms that foster polarization and opinion echo chambers. The second part of the

study extended the three-state global-vote model to investigate how financial decisions evolve

within a complex network of socioeconomic relations.

Real-world networks are rarely regular. Their structures are typically heterogeneous, com-

posed of a mixture of sparsely and densely connected nodes within a wide variety of complex

systems. One of the most striking features observed in many of these networks is the pres-

ence of hubs—nodes with an exceptionally high number of connections. This is a hallmark of

scale-free networks, a topological structure that underlies systems as diverse as social media

platforms, financial markets, and even neural connections in the brain. Hence, we implement

scale-free networks built with the Barabási-Albert algorithm as the substrate for the socioeco-
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nomic interactions in our investigation.

For the opinion dynamics model, our findings revealed strikingly different behaviors depend-

ing on the degree of visibility bias. As the visibility parameter 𝑉 decreases, phase transitions in

the system shift from continuous (second-order) to abrupt and discontinuous (first-order). In

this regime, we confirmed the presence of hysteresis loops, indicating bistable behavior where

the system fluctuates between ordered and disordered states. Furthermore, within the second-

order transition region, our results remained consistent with the unitary relations of critical

exponents, validating the robustness of our simulations.

In the context of financial modeling, our results demonstrate that the three-state global-

vote model successfully reproduces key stylized facts of real-world markets, including fat-

tailed return distributions and volatility clustering. We identify three primary factors driving

market behavior: the fraction of contrarian traders, the level of socioeconomic anxiety, and

the network’s topological structure. Our results suggest that real-world market fluctuations

arise in systems with lower fractions of fundamentalist traders and networks with relatively low

average connectivity. These findings not only align with previous studies on the global-vote

model but also extend its applicability to a broader class of network structures, offering new

insights into the role of connectivity in financial dynamics.

Ultimately, this work investigates the influence of social psychology in shaping critical social

and economic emergent behavior. The majority-vote and global-vote frameworks offer a simple

yet powerful approach to the study of real-world complex systems in which individual actions

lead to exuberant collective phenomena. Our results shed light on the possible mechanisms

that shape socioeconomic phenomena, allowing us to enrich the current knowledge of such

complex systems without using an extensive number of variables.
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Abstract

This work investigates the effects of complex networks on the collective behavior of a three-state

opinion formation model in economic systems. Our model considers two distinct types of investors

in financial markets: noise traders and fundamentalists. Financial states evolve via probabilistic

dynamics that include economic strategies with local and global influences. The local majoritarian

opinion drives noise traders’ market behavior, while the market index influences the financial

decisions of fundamentalist agents. We introduce a level of market anxiety q present in the decision-

making process that influences financial action. In our investigation, nodes of a complex network

represent market agents, whereas the links represent their financial interactions. We investigate

the stochastic dynamics of the model on three distinct network topologies, including scale-free

networks, small-world networks and Erdös-Rényi random graphs. Our model mirrors various traits

observed in real-world financial return series, such as heavy-tailed return distributions, volatility

clustering, and short-term memory correlation of returns. The histograms of returns are fitted

by coupled Gaussian distributions, quantitatively revealing transitions from a leptokurtic to a

mesokurtic regime under specific economic heterogeneity. We show that the market dynamics

depend mainly on the average agent connectivity, anxiety level, and market composition rather

than on specific features of network topology.

Keywords: Econophysics, Sociophysics, Monte Carlo simulation, Phase transitions, Complex networks
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I. INTRODUCTION

Network science has become an essential tool for the study and analysis of complex

systems such as financial markets. The structure of connections and dependencies intrinsic

to commercial activities critically influences the economic landscape. As a complex system,

financial markets can be modeled as networks, in which nodes represent individual investors

and connections stand for interactions between them related to the purchase, sale or holding

of financial assets. The convergence of individual decisions between different economic agents

has repercussions on the behavior of the financial market observables, yielding essential

collective behaviors, such as financial contagion and herd movements, speculative pricing,

and crashes [1–4].

Figure 1: Illustration of distinct architectures of three complex networks with N = 16, and

the average connectivity 〈k〉 = 4: from the hubs of (a) scale-free networks, (b) to the

clusters and shortcuts of small-world networks and (c) the randomness of random networks.

In the context of a society, two connected nodes may represent the fact that a pair of

individuals know each other and may talk, trade, and exert influence on one another, for

example. Different socioeconomic relations and organizational networks have a unique pat-

tern of connectivity and structure. Figure 1 describes the visualization of three different

complex networks with N = 16 nodes and average connectivity of 〈k〉 = 4 and highlights

their fundamental properties. We illustrate (a) a scale-free network and its hub-like struc-

ture, (b) a small-world network characterized by the presence of clusters and shortcuts and

(c) a random network with disordered connectivity [5–7]. From network representation, we

can infer fundamental principles that underlie complex systems and their collective critical

behavior.

The dynamics of financial markets emerge from, among other factors, investors’ rational

and emotional activity, driven by the complex social dynamics and influences between agents
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in a network of economic investors. An example of such a phenomenon is herding, whereby

individuals tend to follow the opinion or behavior of their neighbors. Buying, selling, or

holding an asset is an agent’s decision taken in a social environment with which he interacts.

In this context, herding behavior has been suggested to play an essential role in finance,

where often coherence in social and economic imitation manifests as informational cascades

[8–13].

In financial markets, behavioral finance has identified herding as a key to understand-

ing the collective irrationality of investors [14]. An important class of economic agents is

called noise traders, who typically follow their neighbors’ trends and tend to overreact to

the arrival of news when buying or selling. Another essential group of agents seems to fol-

low the trends of the global minority as an investment strategy. They tend to buy when

noise traders drive prices down and sell when they move prices up. We shall refer to these

agents as fundamentalists, but they are also known as contrarians, sophisticated traders, or

α−investors [15–22]. For fundamentalist agents, the analysis of the fundamentals of an as-

set, based on financial data, guides their rational decision-making, and their action promotes

price movements toward more realistic or fundamental values.

Over the years, several agent-based models capable of reproducing statistical features of

real economic time series have been proposed as frameworks for understanding the dynamics

of financial systems, with applications inspired by Ising systems and sociophysics models,

such as the majority-vote dynamics [16–28]. Bornholdt proposed a spin model inspired

by market dynamics, where local interactions and a competing global coupling create frus-

tration, leading to metastable states, intermittency, and chaotic phases [17]. Kaizoji et al.

expanded this Ising framework, linking log-returns to magnetization and finding correlations

with trading volume, as well as scaling behavior in log-return distributions [18].

Takaishi designed a three-state Potts model for financial markets, in which agents can

buy, sell, or remain inactive, reproducing key stylized facts such as fat-tailed return dis-

tributions and long-term correlations, with inactivity levels influencing the emergence of

exponential return distributions [19]. Krawiecki et al. proposed a microscopic spin-based

financial market model with coupled agents and randomly changing interactions, which ex-

hibits chaotic bursts, attractor bubbling, and on-off intermittency, representing volatility

clustering in financial markets [24]. Another spin-based model for price formation was pro-

posed by K. Sznajd-Weron et al., in which the influence spreads outward from a central
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agent to neighbors, emulating the spread of opinions among traders [23]. Bartolozzi et al.

[25], modeled model opinion formation as a stochastic process in which agents respond to lo-

cal social influences and global feedback on a scale-free Barabási-Albert network, exhibiting

intermittent dynamics for certain parameter ranges.

Vilela et al. proposed a majority-vote dynamics model linking herding behavior and

investment strategy to price formation, demonstrating strong agreement with several real-

world financial time series [27]. The agent-based majority-vote model enables the investiga-

tion of the time evolution of opinion in society using an opinion variable and social anxiety

noise. Similar to the Ising model, it also exhibits second-order phase transitions in several

network topologies for a critical noise level [27–40].

The inherent complexity of collective human behavior is subject to interdisciplinary con-

siderations. However, microscopic models of opinion formation attempt to simplify group

dynamics to essential interaction mechanisms. The majority-vote consensus dynamics cap-

ture critical social phenomena, inspiring scientists to expand it further to model group be-

havior and financial market evolution. In this context, the global-vote model frames opinion

dynamics as the foundation of agent decisions in financial markets [26–28]. The three-state

model supports four essential features: individuals’ strategies regarding market decisions,

influence networks connecting agents in a market, a socioeconomic anxiety level, and agent

financial action space. The latter is represented by a three-state stochastic variable standing

for their opinion on a market decision, e.g., buying, selling, or holding an asset.

An extensive number of studies have explored agent-based interactive dynamics to model

price formation in financial markets, often focusing on agent behavior and market features.

In this work, we investigate the effects of the social connectivity structure in financial mar-

kets, which plays a crucial role in shaping collective behavior, opinion propagation, and

market fluctuations. We examine emergent phenomena in a three-state opinion model on

three distinct complex network topologies: scale-free, small-world, and random networks,

and compare the outcomes [5–7]. We reveal insights into network topology’s potential im-

pact on market behavior by investigating how opinions propagate and evolve within these

diverse network structures. Through our analysis, we seek to uncover valuable information

about the interplay between market dynamics and network architecture, shedding light on

the factors that may influence the formation and spread of financial opinions across different

network types.
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This work is organized as follows. Sec. II presents the main characteristics of the three-

state global-vote model modeling for financial markets. Sec. III exhibits our Monte Carlo

numerical results on scale-free networks, small-world networks, and random graphs. In Sec.

IV, we present our concluding remarks, briefly synthesizing the results of this work.

II. FINANCIAL DYNAMICS

We map the agent’s financial decision at a given time t by a stochastic variable, which

may assume one of three states s ∈ {1, 2, 3}, which may represent buying, holding, or selling

an asset. Financial market dynamics is driven by a heterogeneous composition of agents,

randomly distributed in a network of social connections: a fraction 1−f of noise traders and

the remaining fraction f of fundamentalist agents, also called noise contrarian traders. The

former acts based on their nearest neighbors’ decisions, whereas the latter on the behavior

of the market as a whole. The total number of agents defines network size and equals N .

Financial markets often reflect the socioeconomic stability of nations. Critical worldwide

events may lead to economic anxiety and uncertainty, impacting stock market volatility.

To model the level of economic anxiety present in a financial market, we introduce the

socioeconomic noise parameter q. We assume that q impacts both noise contrarians and

noise traders’ decisions and q represents the probability of an agent not following its standard

strategy when negotiating in the financial market [26–28].

A noise trader agent updates its financial option according to the probabilistic prescrip-

tion in Eq. (1), following the three-state dynamics [28–33]. A noise trader tends to follow the

local majority, i.e., it agrees with the state of the majority of its nearest neighbors with prob-

ability 1− q or dissents from it with probability q. Let i represent a noise trader agent and

ki,s represent the number of near-neighbors of i occupying a given state s ∈ {1, 2, 3}. Below,

we summarize the stochastic update rules for the state of a noise trader. The probability

for an agent to adopt state s = 1, 2 or 3 is given by
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P (1|ki,1 > ki,2; ki,3) = P (2|ki,2 > ki,3; ki,1) = P (3|ki,3 > ki,1; ki,2) = 1− q,

P (1|ki,1 = ki,2 > ki,3) = P (2|ki,2 = ki,3 > ki,1) = P (3|ki,3 = ki,1 > ki,2) = (1− q)/2,

P (1|ki,1 < ki,2 = ki,3) = P (2|ki,2 < ki,3 = ki,1) = P (3|ki,3 < ki,1 = ki,2) = q,

P (1|ki,1; ki,2 < ki,3) = P (2|ki,2; ki,3 < ki,1) = P (3|ki,3; ki,1 < ki,2) = q/2,

P (1|ki,1 = ki,2 = ki,3) = P (2|ki,2 = ki,3 = ki,1) = P (3|ki,3 = ki,1 = ki,2) = 1/3.

(1)

Note that the probabilities for the states follow from the symmetry operations of the

C3ν group: 1 → 2, 2 → 3 and 3 → 1. Furthermore, the probabilities must be nor-

malized, i.e., P (1|{ki}) + P (2|{ki}) + P (3|{ki}) = 1 for any global state configuration

{ki} ≡ {ki,1, ki,2, ki,3}.

By contrast, a noise contrarian trader updates its financial option according to the proba-

bilistic description in Eq. (2). Fundamentalist agents tend to follow the global minority with

probability 1− q or dissent from it with probability q. Let Ns represent the total number of

agents in the network within a given state s ∈ {1, 2, 3}, where N = N1 + N2 + N3. Below,

we summarize the update rules for the state of a fundamentalist agent. The probability of

adopting state s = 1, 2 or 3 is

P (1|N1 < N2;N3) = P (2|N2 < N3;N1) = P (3|N3 < N1;N2) = 1− q,

P (1|N1 = N2 < N3) = P (2|N2 = N3 < N1) = P (3|N3 = N1 < N2) = (1− q)/2,

P (1|N1 > N2 = N3) = P (2|N2 > N3 = N1) = P (3|N3 > N1 = N2) = q,

P (1|N1;N2 > N3) = P (2|N2;N3 > N1) = P (3|N3;N1 > N2) = q/2,

P (1|N1 = N2 = N3) = P (2|N1 = N2 = N3) = P (3|N1 = N2 = N3) = 1/3.

(2)

Once more, the probabilities for the states follow from the symmetry operations of the C3ν

group. The normalization condition, i.e. P (1|{N}) + P (2|{N}) + P (3|{N}) = 1 also holds

for any global state configuration {N} ≡ {N1, N2, N3}.

Moreover, we remark that economic stability fundamentally impacts market volatility.

Thus, the order parameter M is defined in analogy to the three-state Potts model, and it

measures the average market opinion, revealing the economic order

M =
󰁴
M2

1 +M2
2 +M2

3 . (3)
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The order parameter M will be referred to as the opinionization in analogy to the mag-

netization of physical spins. The opinionization measures the uniformity of opinion in the

market. If all the agents share the same opinion, then M = 1. If the opinions are split

evenly between the three states, then M = 0. We express M as the magnitude of a vector

with components

Ms =

󰁵
3

2

󰀕
Ns

N
− 1

3

󰀖
, (4)

with s ∈ {1, 2, 3}.

In the market context, we shall interpret the order parameter of the system M as propor-

tional to the price of a given asset [17–19]. We relate the time variations of the instantaneous

opinionization M(t) to a financial asset’s logarithmic returns r(t). Our model assumes that

the investors’ demands drive prices to update instantaneously. We define the logarithmic

return at time t as follows:

r(t) = log [M(t)]− log [M(t− 1)] . (5)

The log-return measures the relative price changes of a financial asset between two instants

of time. As such, it is a measure of the efficiency or performance of an investment. The

volatility v of a financial asset estimates the risk of investment in such an asset. A usual

measure of volatility, locally in time, is the absolute value of the returns, since it quantifies

the amplitudes of price variations as measures of fluctuations in the time series v(t) ≡ |r(t)|.

III. NUMERICAL RESULTS

We perform Monte Carlo simulations on distinct complex network topologies with N =

104 nodes. We extensively investigate several network parameters: the growth parameter z

for scale-free networks, the rewiring parameter p for small-world networks, and the average

connectivity 〈k〉 for random graphs. We build the network of financial interactions by

considering a fraction f of fundamentalist agents and the remaining fraction 1− f as noise

traders. From previous investigations [26–28], we expect essential market features to emerge

in the noise region near criticality q ≃ qc, when contrarians are absent f = 0 for all networks

investigated [31–33].
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Figure 2: Time series of the logarithmic returns for (a) z = 6 and q = 0.4550, (b) z = 50

and q = 0.5918.

At each instant or Monte Carlo step (MCS), we perform N attempts to update the

state of randomly selected individuals. Once selected, a financial agent updates his opinion

accordingly with the probabilities given by Eqs. (1) or (2) for a noise trader or a fundamen-

talist agent, respectively. We randomize the initial state of the system, assigning to each

agent any of the three available states with equal probability. We allow the dynamics to run

during 104 MCS to discard the transient regime and perform our analysis in the subsequent

104 MCS. For every set of parameters (q, f), we perform 100 Monte Carlo simulations for

each network topology considered, averaging over network disorder. Therefore, a total of

106 MCS was recorded for each pair of parameters (q, f) and network topology from all the

runs. In this way, the statistics gathered many realizations of the disorder caused by the

random allocation of contrarians and the disorder from the network construction models.

In our investigation, we place N agents on the nodes of three distinct network topologies:

scale-free networks, small-world networks, and random graphs. Several network properties

differentiate between each complex network topology [5–7]. The following sections detail the

mechanisms for constructing the complex networks implemented in this work and the main

results obtained for each topology considered. We aim to understand the socioeconomic

dynamics under the effects of different network structures and compare our results with the

observations made in behavioral economics and finance.
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Figure 3: Autocorrelation function of volatility |r(t)| for z = 6, q = 0.4550, and varying

values of f from 0 to 0.5. Also included is the volatility autocorrelation of daily closing

values for the NYSE Composite, covering 104 trading days from May 28, 1985, to February

2, 2025. The red dashed lines indicate power-law fits. Averaged autocorrelation functions

for (b) volatility and (c) logarithmic returns r(t), with the red dots representing an

exponential fit.

A. Financial Markets on Scale-free Networks

Upon analyzing the topology of social networks, airline networks, or the World Wide Web,

we observe the presence of hubs – highly connected nodes – a feature displayed by several

other real-world networks. Such networks are frequently referred to as scale-free networks.

The Barabási-Albert model is a well-known method for building scale-free networks via two

fundamental mechanisms: growth, where we consider that nodes are iteratively added, and

preferential attachment, which describes the “rich–get–richer” effect, in which nodes with a

high degree of connectivity have a higher chance of obtaining new connections [5, 41, 42].

To generate scale-free networks, we use the Barabási-Albert model and start with a fully

connected core of z nodes, where z is the growth parameter. According to the preferential

attachment algorithm, a new node adds z new links to the existing network at each step

of network growth. In this way, such networks present an average degree of 〈k〉 = 2z.

We remark that the degree distribution of Barabási-Albert scale-free networks display a

power-law decay with exponent λ ∼ 3 [5].

We focus the study of the financial dynamics near criticality q ≃ qc when there is an
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absence of contrarians since we expect opinionization fluctuations to be more significant in

that region of the phase diagram. We collect the respective critical noise values, qc(z), from

previous studies of the three-state majority-vote model on Barabási-Albert networks [32].

In Fig. 2, we show the influence of the growth parameter z and the concentration of

fundamentalist agents f on the market behavior at the critical point. Fig. 2(a) illustrates

two distinct market phases for q = 0.4550 and z = 6: a strong market phase or turbulent

phase for f = 0.20, where the system presents several events of considerable volatility, as

depicted by the large spikes in the plot; and a weak market phase or laminar phase for

f = 0.50, where returns fluctuations are attenuated. This finding agrees with previous

investigations in which increasing the number of contrarian agents drives market stability

[26–28]. Furthermore, Fig. 2(b) shows that for q = 0.5918 and z = 50, the frequency of high

volatility events for both values of f increases with higher z, appearing in an uncorrelated

form, indicating a deviation from the expected behavior of real-world financial markets.

Fig. 2(a) also demonstrates that periods of considerable return fluctuations are com-

pressed for lower values of f , indicating the real-world market feature known as volatility

clustering [21, 24, 43]. This financial phenomenon can be comprehended by Mandelbrot’s

observation that “large changes tend to be followed by large changes – of either sign – and

small changes tend to be followed by small changes” [44]. To quantify the effects of volatility

clustering, we define the autocorrelation function of the absolute returns as follows:

A(τ) =

󰁓T
t=τ+1 [|r(t)|− |r̄|] [|r(t− τ)|− |r̄|]

󰁓T
t=1 [|r(t)|− |r̄|]2

, (6)

where 1 ≤ τ ≤ 104 MCS is the time-step difference between observations, T = 104 MCS

is the time of simulation for each network sample, r(t) is the return at a time t and r̄ the

average return value.

The function defined by Eq. (6) measures non-linear correlations in a given time series,

namely the autocorrelation function of the absolute value of log-returns, as a function of

the time delay between observations. Many real-world studies demonstrate a strong positive

correlation in the volatility |r(t)| over extended periods such as days, weeks or months,

consistent with the presence of volatility clustering in the data [27]. Figure 3(a) illustrates

the autocorrelation function of the absolute values of log-returns for different fractions of

fundamentalist agents, considering z = 6, q = 0.4550 and a simulation time of T = 104
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MCS. For comparison, we also present the autocorrelation function of the daily volatility of

the NYSE Composite’s closing values, spanning from May 28, 1985, to February 2, 2025,

covering a total of 104 trading days1. We explore power-law fits for the autocorrelation

functions, A(τ) ∼ τ−η, over the same time periods, and the simulations and empirical data

exhibit a quantitative agreement in the order of the rate of decay, with power-law exponents

η ∼ 0.04(1) for the simulations and ηNY SE ∼ 0.083(1) for the closing values of the NYSE

Composite [28].

In Figure 3(b), we display the average autocorrelation of the absolute value of log-returns

for several values of f and 100 network samples and market simulations. Results show

the persistent correlation between high-volatility events and a slow exponential decay in

time spanning over several orders of magnitude. We also exhibit an exponential fit of

the data 〈A(q, f, τ)〉 ∼ exp(−τ/τ0) for f = 0.10, in which we obtain τ0 ≈ 7 × 107 MCS

[4, 16, 18, 45]. Other values of f yield similar results. We highlight that the observation of

an exponential cut-off near 104 time steps for our averaged autocorrelation is to be expected.

Since our simulations are 104 MCS long, the exponential decay is a reflection of the finite

size of the data samples presented for the time series, agreeing with previous investigations

[17, 19, 26, 28]. Figure 3(a) also exhibits such finite size effect and exponential long-time

decay.

Figure 3(c) presents the autocorrelation function Cret for the returns time series r(t)

generated by the model for several values of the fundamentalist fraction f , and averaged

over 100 network realizations. We connect data points using B-spline curves that smoothly

interpolate between the control points, resulting in a continuous curve. As expected from

real-world markets, returns are uncorrelated in time as Cret → 0 on a short-time scale of

τ ∼ O(1), reflecting that our model lacks long-term memory, agreeing with the efficient

market hypothesis [47–49]. For large fractions of contrarians, Cret displays diminishing anti-

persistent oscillations in the short term. This oscillation stems from the cyclical dynamics

of the system, primarily driven by a substantial portion of noise contrarians consistently

striving to inhabit the instantaneous global minority state [28].

Figure 4 displays the histogram of the log-returns in 106 MCS for z = 6 and several values

of f . As previously discussed, we observe increased market stability for increasing fractions

of contrarians in the network. Our results show that for lower values of the fraction f , the

1 Data provided by Yahoo Finance.
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Figure 4: Distribution of logarithmic returns in 106 MCS for z = 6 and q = 0.4550 and

several values of the fraction of noise contrarians.

distributions display fat tails as a reflection of the high number of intense volatility events.

As we increase the values of f , distributions’ tails become less heavy as they gradually shift

towards a Gaussian regime. To quantify the return distributions, we perform a statistical

analysis of the data. We calculate the kurtosis K(z, f) for the distributions and obtain

K(6, 0.10) = 4.48 in the strong market phase and K(6, 0.50) = 3.12 in the weak market

phase. Thus, increasing the fraction of contrarian agents f shifts the system’s behavior

from a leptokurtic regime (K > 3) to a mesokurtic regime (K ≈ 3).

To further qualify the distributions in Fig. 4, we compute comparative quantile-quantile

(Q–Q) plots. In such plots, the reference line, depicted in red, represents the expected

results of a theoretical distribution and, should data points align with it, would indicate

a match to the distribution. Fig. 5 displays Q–Q plots (a) of the log-returns against a

normal distribution and (b) of the volatility against an exponential distribution. In Fig.

5(a), lower values of the fraction of contrarians f (specifically f ≤ 0.30) show significant

nonlinearity, indicating fat-tailed, non-Gaussian behavior typical of real-world financial data.

As f increases, the distributions approach Gaussian behavior, with data points aligning

closer to the reference line. Additionally, Fig. 5(b) shows that deviations in higher quantiles

reveal a slower decay than the expected for an exponential distribution, confirming the
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Figure 5: Quantile–quantile plots of the distributions of (a) normal versus logarithmic

returns and (b) exponential versus volatility in 106 MCS for z = 6 and q = 0.4550. The red

line displays the theoretically expected results for each distribution.
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Figure 6: Distributions of the volatility for z = 6 and q = 0.4550 in 106 MCS. The lines

correspond to symmetric coupled exponential fits for the data.

heavy-tailed regime [44–46]. Such behavior implies a higher probability of extreme values

than an exponential distribution would predict, further highlighting the complex nature of

the data.

To quantify the transition of the log-return distributions from a heavy-tailed (leptokurtic)
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regime into a Gaussian (mesokurtic) regime, we consider the coupled exponential family of

distributions Pµ,σ,κ,α(r), where µ is the mean value, σ, κ and α are the parameters of the

function [46]. We shall refer to the shape parameter κ as the nonlinear statistical coupling

and to σ as the scale parameter in an interpretation of non-extensive statistical mechanics

of complex systems [50–54]. Considering the mean value of the distributions as zero, in

agreement with Fig. 7, we fit the distributions via the symmetric coupled exponential

family Pµ,σ,κ,α(r) = Pσ,κ,α(r), defined as follows.

Pσ,κ,α(r) ≡
󰀗
Z(σ,κ,α)

󰀓
1 + κ

󰀏󰀏󰀏
r

σ

󰀏󰀏󰀏
α󰀔 1+κ

ακ

+

󰀘−1

, (7)

where (x)+ ≡ max(0, x). Furthermore, if we set the parameter α = 2, we obtain the coupled

Gaussian distribution: for κ = 0, we recover the Gaussian distribution; and for κ > 0, we

have the Student’s t distribution, where the degree of freedom ν is related to the shape

parameter as ν = 1/κ. Thus, the shape parameter κ yields a quantitative measure for the

transition between distribution regimes [50–54].

Table I: Correlation between the scale σ and shape κ as a function of the fraction of

contrarian agents f , growth parameter z and noise q.

Fraction f 0.10 0.20 0.30 0.40 0.50

Shape κ 0.16(3) 0.205(2) 0.070(2) 0.024(2) 0.017(1)

Scale σ 0.74(1) 0.4499(4) 0.3204(3) 0.2258(3) 0.1651(1)

Figure 6 displays the probability distribution of the volatilities for several values of the

fraction of fundamentalists f in 106 MCS. The lines correspond to symmetric coupled ex-

ponential fits for the data, and the values obtained for the nonlinear coupling parameter κ

and scale σ are portrayed in Table I. The results provide a quantitative measurement of

the gradual regime shift depending on the fraction of contrarians f : increasing f pushes the

nonlinear coupling parameter κ towards zero, indicating the loss of fat tails as distributions

become Gaussian; simultaneously, the scale σ is progressively reduced, as the higher presence

of fundamentalists tends to stabilize market dynamics. Thus, the coupled exponential fits
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performed provide a numerical measure of the transition from a heavy-tailed (leptokurtic)

regime to a Gaussian (mesokurtic) regime depending on the fraction of contrarians f .
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Figure 7: Cumulative distribution of logarithmic returns in 106 MCS for z = 6 and

q = 0.4550. The inset displays the behavior of Φ for r(t) near zero.

Figure 7 displays the cumulative distribution of logarithmic returns Φ for z = 6 in 106

MCS. As previously stated, we observe that the mean of the distributions remains zero for

all investigated values of f .

We also extensively investigate the model’s behavior for several micro-state configura-

tions, depending on the growth parameter z, the fraction of contrarians f , and the noise

parameter q. Figure 8 displays a multi-plot table of the histograms of logarithmic returns

for several (q, f, z) triplets investigated near the criticality of the system q ≈ qc(z). Columns

correspond to values of q, below criticality (left), at criticality (center), and above criticality

(right). The selected noise values above and below criticality are q = qc(z)± 0.1.

As one moves vertically (from top to bottom) in the grid along a column, one observes the

topological effect of increasing the growth parameter of the network, especially in the center

column. Increasing z reveals that the spreads and tails of the return distributions tend

to increase slightly, suggesting broader return distributions. Furthermore, shifting towards

higher values of f leads to a progressive loss of tails in the return distributions. In contrast,

this behavior is lost for noise parameter values that deviate from criticality, as observed in
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Figure 8: Distributions of logarithmic returns in 106 MCS for different combinations of

parameter values (z, q) in the vicinity of qc(z) with f = 0.10, 0.20, 0.30, 0.40, and 0.50 in

dark blue, purple, pink, orange, and yellow, respectively.

particular by the distributions for f = 0.10 below criticality, which becomes highly peaked

around r = 0 for higher values of z, as well as the distributions for z = 8 and 10 above

criticality, where higher fractions of contrarians still display a heavy-tailed behavior. Hence,

this result conforms with our choice for the growth parameter z and noise parameter q = qc

values.
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Furthermore, we consider a quantitative approach to the distributions shown in Fig. 8,

focusing exclusively on the system’s behavior at the critical point q = qc(z). We perform

fits for the volatility distributions of the system for different growth parameter values at

their corresponding critical points according to the symmetric coupled exponential family of

distributions Eq. (7) with α = 2. Thus, Fig. 9 displays a heat map of the fitting parameters

obtained for the nonlinear coupling κ and the scale parameter σ for several values of z. The

rows correspond to different average connectivity values, each at their own critical noise

parameter. Along the rows, we explore the effect of the different values of the fraction of

contrarians f .

Figure 9(a) displays the heat map for κ where we observe the usual transition from

a leptokurtic to a mesokurtic regime with increasing fractions of contrarians, evidence of

the loss of heavy tails tending toward a Gaussian distribution for high values of f . For

large enough values of f , this transition occurs in a universal-like way for Barabási-Albert

networks. Nevertheless, we observe the effect of the topology on the tails of the distributions

for small values of f . Indeed, the distributions for z = 2 display considerably heavier tails

when compared with higher values of z.

Furthermore, Fig. 9(b) displays the heat maps for the scale parameter σ. We note that the

scale parameter is small for f ≈ 0. It rapidly grows with f , reaching a peak around the same

value of f , decaying for larger fractions of contrarians as a reflection of the aforementioned

transition between leptokurtic and mesokurtic regimes. Furthermore, we observe the effects

of the topology on the volatility distributions as the peaks shift slightly to higher values of

f as z increases.

We now proceed to investigate the influence of small-world networks and Erdös-Rényi

random graphs on the behavior of the system’s dynamics. For these topologies, the lack

of correlations in the time series of log-returns is still present, consistent with the efficient

market hypothesis. Anti-persistence emerges for large values of contrarians. Long-term

correlation is still a feature of the volatilities as a reflection of the volatility clustering effect.

Therefore, in the following subsections, we shall explore the effects of the topology on the

histograms of log-returns.
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Figure 9: Heat map of (a) the nonlinear statistical coupling κ and (b) the scale parameter

σ as a function of the critical noise parameter qc(z) at each corresponding value of z and

the percentage of contrarians f .

B. Small-world Effects on Financial Dynamics

The term small-world effect alludes to the fact that most pairs of nodes in many real-

world networks connect their elements by paths of short lengths, even though the sizes of

complex networks are typically very large [6]. Furthermore, small-world networks encompass

two essential features of real-world networks: short average path lengths and many network

cliques.

Inspired by the Watts-Strogatz model, we build our networks by rewiring the links that

connect the N = L × L nodes of bidimensional square lattices with probability p, while

forbidding rewiring to the original nearest neighbors and double connections [6, 28, 33, 34].

We refer to p as the rewiring parameter, which also relates to the degree of randomness

of the rewired network. When p = 0, we recover the standard square lattice, whereas we

obtain a random network for p = 1. We remark that the rewiring process does not affect the

original average connectivity of the square network. Thus, for small-world networks built

via rewiring square lattices, 〈k〉 = 4 for all values of p [6, 28].

We examine the return distributions and shall focus our investigation on the region around

the critical points qc(p) for each corresponding value of the rewiring parameter p to inves-

tigate distinct system configurations near criticality. In this case, we also reference the

critical social anxiety level qc(p) in market dynamics, with values obtained from previous

investigations of the three-state majority-vote model on small-world networks [28].
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Figure 10: Distributions of logarithmic returns for various noise parameters q and rewiring

probability p in the vicinity of qc(p) for several values of the fraction of contrarians:

f = 0.10, 0.20, 0.30, 0.40, and 0.50 (dark blue, purple, pink, orange, and yellow,

respectively).

In Fig. 10, we present a multi-plot table with the logarithmic return distributions for

several (q, f, p) triplets. In analogy to the previously performed investigation, the rows

correspond to distinct rewiring probabilities p, whereas the columns correspond to noise

values below criticality, at criticality and above criticality for each value of p considered.
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Hence, each cell in the grid depicts a (p, q) pair and shows several distributions corresponding

to different concentrations of contrarians. The values of noise above and below criticality

are taken to be q ≡ qc ± 0.07.

We observe that for macroscopically relevant fractions of contrarians, an increase in f

leads to a progressive loss of tails in the return distributions, suggesting a similar transition

between a leptokurtic regime and a mesokurtic regime. This feature is displayed in all the

cells in the grid, i.e., for a broad spectrum of small-world networks at criticality or in its

vicinity. Thus, the model shows evident robustness for these networks over different topolo-

gies and social temperatures q (above and below the critical point). Furthermore, moving

vertically (from top to bottom) in the grid along a column displays the topological effect

of increasing the rewiring probability of the system. In particular, for q < qc, increasing p

reveals that the spreads and tails of the return distributions also tend to increase, especially

for low values of f . In contrast, the behavior along the q = qc and q > qc columns sug-

gests that not much variation (if any) is present as one varies p, suggesting a universal-like

behavior.

Figure 11: Heat map of (a) the nonlinear statistical coupling κ and (b) the scale parameter

σ as a function of the critical noise parameter qc(p) at each corresponding rewiring

probability p and the fraction of contrarians f .

We follow the above discussion with a quantitative approach, focusing on the volatility

distributions for different values of p at their corresponding critical points q = qc(p). We

perform fits for the data according to the symmetric coupled exponential family of distribu-

tions Eq. (7) with α = 2. In Fig. 11, we display the fitting parameters corresponding to the
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nonlinear coupling (a) κ and the scale parameter (b)n σ by means of heat maps. The rows

correspond to distinct values of p, and along the rows, we explore the effects of different

values of the fraction of contrarians f .

Once more, Fig. 11(a) displays the clear transition from a leptokurtic to a mesokurtic

regime, i.e., the loss of tails due to the increasing fractions of contrarians. As previously

remarked, for large enough values of f , this transition takes place universally for small-

world networks built according to the link rewiring scheme. Fig. 11(b) shows the heat

map corresponding to the scale parameter σ. Following the discussion regarding random

networks, the scale parameter is small for f ≈ 0, rapidly increasing with f , reaching a peak

and then decaying similarly for macroscopically large fractions of contrarians. This indicates

that the tails are lost in this regime as the distributions approach a Gaussian behavior.

C. Random Interacting Networks

A random network connects pairs of nodes with chance 0 < w ≤ 1, having an expected

number of links equal to 〈L〉 = wN(N − 1)/2 out of the maximum number of links Lmax =

N(N − 1)/2 as w → 1. We adopt the Erdös-Rényi method for enabling random graphs

on computers. This method adds wN(N − 1)/2 links to the N initially isolated nodes,

forbidding double connections. Such networks display a Poisson degree distribution for

large values of N , with an average degree of connectivity 〈k〉 = 2 〈L〉 /N = w(N − 1)

or 〈k〉 ≈ wN [7, 42, 55]. We study market evolution under a socioeconomic network of

randomly connected opinions and average connectivity 〈k〉 as a function of the anxiety level

q and the fraction f of fundamentalist agents.

In Fig. 12, we present a multi-plot table with a set of logarithmic return distributions

for several (q, f, 〈k〉) triplets. In the plot, rows correspond to simulations done on random

networks with different values of 〈k〉, whereas the three columns represent values of the noise

parameter q below criticality, at criticality, and above criticality for each studied value of

〈k〉. In this way, each cell in the grid relates to a pair of values (〈k〉 , q) and investigates

several system micro-states regarding the fraction of contrarians f . The noise values above

and below criticality are q ≡ qc ± 0.1, as we explore the model dynamics near criticality.

As in the other topologies explored thus far, it is clear from Fig. 12 that an increase

in f leads to the aforementioned loss of tails in the return distributions, indicating the
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Figure 12: Distributions of logarithmic returns for various noise parameters q and average

connectivity 〈k〉 in the vicinity of qc(〈k〉) for various concentrations of contrarians:

f = 0.10, 0.20, 0.30, 0.40, and 0.50 (dark blue, purple, pink, orange, and yellow,

respectively).

gradual shift between leptokurtic and mesokurtic regimes. We observe such behavior for

most cells in the grid, suggesting that the model is robust over a wide range of topologies

and noise parameter values. Nevertheless, we remark on some visible exceptions, such as

the distributions for 〈k〉 = 2 below criticality, where lower fractions of contrarians display
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unusual behavior. Furthermore, moving vertically (from top to bottom) along a column

sheds light on the topological effects of increasing 〈k〉. In this way, increasing the growth

parameter of the network correspondingly increases slightly the spreads and tails of the

return distributions, as observed in previous investigations of the two-state global-vote model

[27].

We deepen the previous discussion with a quantitative approach by focusing on the

system’s behavior at the critical point q = qc(〈k〉), as we did for scale-free and small-

world topologies. We fit the volatility distributions of the system for different values of 〈k〉

according to the symmetric coupled exponential family of distributions Eq. (7) with α = 2.

Figure 13 displays the heat maps of the fitting parameters corresponding to the nonlinear

coupling κ and the scale parameter σ. The rows correspond to distinct values of the average

connectivity 〈k〉, and we explore the influence of different values of the fraction of contrarians

f along the rows.

Figure 13: Heat map of (a) the nonlinear statistical coupling κ and (b) the scale parameter

σ as a function of the critical noise parameter qc(〈k〉) at each corresponding average degree

〈k〉 and the fraction of contrarians f .

Fig. 13(a) depicts the gradual transition from a leptokurtic to a mesokurtic regime with

increasing fractions of contrarians, evidence of the loss of heavy tails for all investigated

values of 〈k〉. Similarly, Fig. 13(b) displays the scale parameter’s behavior for different

system configurations: σ is small for small values of f ≈ 0, rapidly growing with f ; it peaks

around the same value of f before decaying for macroscopically large fractions of contrarians.

The peak, however, shifts slightly to higher values of f as 〈k〉 increases, a manifestation of
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the effect of increasing the average degree. The scale parameter of the distribution will then

tend to decay for larger values of f as the tails weaken and the distributions approach a

Gaussian behavior.

Additional quantification of the transition between fat-tailed and normal regimes is ob-

tained via calculating the excess kurtosis of the return distributions, where for γ2 = 0, we

recall a Gaussian distribution. Thus, in Fig. 14, we plot the excess kurtosis of the return

distributions for several values of the fraction of contrarians and different values of network

parameters, (a) the growth parameter z for scale-free networks, (b) the rewiring probability

p for small-world networks and the average connectivity (c) 〈k〉 for random networks, at

their corresponding real-world market (critical) noise values. We confirm that higher values

of f tend to soften the distribution tails for all investigated network topologies, driving the

market into a Gaussian regime.

Figure 14: Excess kurtosis of the return distributions for several values of the fraction of

contrarians f and different values of the network parameters at their corresponding critical

noise values (a) z for scale-free networks, (b) p for small-world networks and (c) 〈k〉 for

random networks. Recall that the excess kurtosis of a Gaussian distribution is γ2 = 0.

Furthermore, closer inspection of Fig. 14 reveals the effects of the network’s average

connectivity on the distribution of logarithmic returns of the model. Recall that the average

degree for scale-free networks is 〈k〉 = 2z whereas 〈k〉 = 4 is constant and independent of

the rewiring probability p. Thus, Fig. 14(a) and (c) show that the kurtosis’ decay tends to

spread out for increasing values of f as we vary the network’s average degree of connectivity.

We observe that high (low) values of the average individual connectivity promote a slow

(rapid) decay of γ2. Therefore, the network’s average degree plays a crucial role in shaping

the distribution of returns.
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IV. CONCLUSION AND FINAL REMARKS

This work investigates the stochastic dynamics of a three-state economic opinion forma-

tion model on complex networks, extending and generalizing previous investigations on the

three-state global-vote model for financial markets [26–28]. As in the standard version, two

different types of individuals are considered: noise traders who interact locally with their

nearest neighbors and tend to agree with the state of the local majority with probability

1−q and fundamentalists, who are subject to global interactions with the market as a whole

and tend to follow the state of the global minority with probability 1− q. The parameter q

quantifies the socioeconomic anxiety level.

Financial agents are represented as nodes on complex networks, and the links between

neighboring pairs of nodes represent opinion-driven financial interactions. We simulate the

dynamics of the model on scale-free, small-world, and random networks and investigate how

the distributions of returns are influenced by modifying specific network parameters, namely

the growth parameter z for scale-free networks, the rewiring parameter p for small-world

networks and the average connectivity 〈k〉 for random networks. In this work, financial

systems comprise three main features: a heterogeneous population of agents with distinct

strategies, a complex network of financial interactions, and a level of economic uncertainty

near some consensus-dissensus criticality.

By relating changes in the instantaneous financial order of this system to price fluctu-

ations, the model can reproduce the main features of real-world financial markets [17–19].

Our results display such stylized facts of financial time series as fat-tailed distributions of

returns, volatility clustering, and long-term memory of the volatility, consistent with the

efficient market hypothesis and previous investigations [26–28].

The logarithmic returns of the simulations fit a coupled exponential distribution, which

is parameterized by the scale or generalized standard deviation and the shape or nonlinear

statistical coupling [50–54]. This family of distributions is typically used within the context

of non-extensive statistical mechanics as a tool for the characterization of the complexity of a

system. For macroscopically relevant fractions of contrarians, an increase in the contrarians

decreases both the scale and the shape of the distributions. This macroscopic effect results

from a loss of local order at a microscopic level and the emergence of global order, deviating

the dynamics from heavy-tailed real-world to Gaussian distributions of returns.
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We frame socioeconomic anxiety levels with the critical point where the opinionization

fluctuations diverge in the thermodynamic limit, leading to return distributions with heavy

tails and volatility clustering. Furthermore, the topology effects of the underlying network

on the returns and volatilities are observed in the distinct ways that the tails decay for

networks with different average degrees. The higher the average degree of the network, the

slower the decay of the tails of the distributions with increasing fractions of contrarians,

as evidenced by the behavior of the performed fits for scale-free and random networks. In

contrast, since the average degree for the small-world networks is constant 〈k〉 = 4, the decay

of the tails appears to approach a universal behavior independent of the rewiring probability

p.

We observe that the larger the fraction of contrarians, the less important the role of

the topology is, and the more mean-field the financial system becomes. This observation

is reasonable since contrarians do not interact locally with their neighbors. In fact, they

interact globally with the state of the market as a whole. Our findings suggest that the

behavior of the model is closely tied to broader factors such as the average connectivity of the

analyzed network, the level of socioeconomic anxiety, and the proportion of fundamentalist

agents, regardless of the detailed topology of the socioeconomic networks.
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