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RESUMO 

A presente dissertação obteve sucesso na caracterização de uma cavidade Fabry-

Perot de baixa finesse. A cavidade foi construída localmente e acoplada a um laser 

comercial de frequência única da QPhotonics. Para realizar o experimento, 

desenvolvemos um aparato de estabilização de vibrações mecânicas. Conseguimos 

medir um valor de finesse de 720 ± 16, o tempo de vida do fóton de (50 ± 0,03) ns, a 

reflectância dos espelhos de 0.9966 ± 0.0006, um fator de qualidade de 8,86 × 10⁷ e 

uma largura de linha de (4.0 ± 0.7) MHz. Também foi possível estimar um valor para 

o coeficiente de perdas da cavidade em (0,017 ± 0,003) m⁻¹. 

 

Palavras-chave: metrologia; tempo de vida do fóton; coeficiente de perda da 

cavidade; fator de qualidade; finesse. 

 



 
 

ABSTRACT 

The present dissertation successfully characterized a low-finesse Fabry-Perot cavity. 

The cavity was locally constructed and coupled to a commercial single-frequency laser 

from QPhotonics. We needed to develop an apparatus to stabilize the mechanical 

vibrations to realize the experiment. We measured a finesse value of 720 ± 16, a 

photon lifetime of (50 ± 0.03) ns, a mirror reflectance of 0.9966 ± 0.0006, a quality 

factor of 8.86 × 10⁷, and a cavity’s linewidth of (4.0 ± 0.7) MHz. Estimating a value for 

the cavity propagation-loss coefficient of (0.017 ± 0.003) m⁻¹ was also possible. 

 

Keywords: metrology; photon lifetime; cavity loss coefficient; quality factor; finesse. 
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1  INTRODUCTION 

The field of Metrology has witnessed significant advancements in the last two 

decades, especially in optics and laser systems. For example, the physics Nobel prizes 

from 2022[31] and 2023[32] came from metrological advancement, 2022 for experiments 

with entangled photons, establishing the violation of Bell inequalities and pioneering 

quantum information science and 2023 for the development of experimental methods 

for generating attosecond laser pulses (10−18 seconds). These are examples of high-

precision experiments where optical metrology is essential. With growing interest in 

narrower linewidth lasers, methods to achieve it are very important. This dissertation 

aims to explore a Fabry-Perot cavity to acquire a narrow laser. 

A narrow-frequency laser is essential for high-precision spectroscopy, and laser 

cooling and trapping. For example, for cooling and trapping Strontium atoms can deal 

with a natural linewidth of 7.6 kHz for the 1𝑆0 −3𝑃1 transition[1]. An ultra-high finesse 

cavity can offer such narrow linewidth, or even narrower, such as sub-40mHz 

linewidth[6]. Despite these advantages, the coupling of a laser to an ultra-high finesse 

cavity is generally difficult and requires some properties from the laser, such as 

tunability in frequency. A tunable laser can be acquired from commercial means, or it 

can be homemade. 

A tunable laser provides a range of workable wavelengths that make the laser 

useful in a variety of experiments. Generally, commercial tunable lasers are more 

stable through a wider range of wavelengths. However, the wider the range, more 

expensive they are. A stable laser is of great importance in experimental physics 

because it can hold its frequency for long periods. On the other hand, a stable 

cavity helps minimize laser frequency fluctuations primarily by serving as a stable 

reference. To serve as a reference, the cavity must have a low-frequency drift. Optical 

cavities that are employed for special relativity tests, can achieve low long-term 

frequency drifts of  40 mHz∙s-1 [2]. 

At first, the primary objectives of this dissertation were to couple a laser into an 

ultra-stable high-finesse cavity and characterize it, measuring its finesse, photon 

lifetime, frequency drift, and quality factor. To achieve this, we would employ a Pound-

Drever-Hall (PDH) technique, which consists of a phase modulation of the incident 
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laser by an Electro-Optic Modulator (EOM). However, a succession of problems 

occurred and changed the main goal of this dissertation. 

We discovered that the laser we were using was a single-frequency and was 

tunable only for a few kiloHertz range. Another difficulty was with the Fabry-Perot 

cavity, which has a fixed distance between the mirrors. Therefore, the setup was not 

suited for the experiment. The second step was to find an alternative, which was the 

construction of an External Cavity Diode Laser (ECDL), which would provide the 

tunability required. Due to importation bureaucracy and the delivery time of the needed 

equipment, the experiment was delayed some months, which was partially used to 

write the theoretical background of this dissertation. 

The first attempt to construct the ECDL was to use a Littrow configuration, but 

it was thermally unstable. The second attempt was a Littman-Metcalf configuration, 

although it was thermally stable, could not be frequency stabilized and kept in a mono 

mode regime. Without a tunable laser to continue the experiment, the ultra-stable high-

finesse cavity was not used. Instead, the solution was to use a low-finesse homemade 

cavity.  

For the commercial laser, the central wavelength measured was 1063.27 nm 

with a linewidth limited by the spectrometer resolution of (1.00 ± 0.03) nm. For the low-

finesse cavity, the original single-frequency laser was used, and the modulation was 

done at the cavity’s PZT. For this cavity, we were able to measure a finesse value of 

(720 ± 16), a photon lifetime of (50 ± 0.03) ns, a reflectance of 0.9966, and a quality 

factor of 8.86∙107. A greater photon lifetime means that the light lasts longer inside the 

cavity; consequently, the laser intensity is greater within the cavity, contributing to a 

greater enhancement factor, which means that the transmitted intensity would also be 

higher. The frequency drift could not be measured because the cavity was free-

running. Using the values for finesse and photon lifetime inside the cavity, a cavity loss 

coefficient was estimated to be (0.017 ± 0.003) m-1. 

Here is an overview of this dissertation. Chapter 2 explores the theoretical 

foundations, discussing relevant literature and setting the backgrounds on the 

functioning of a Fabry-Perot cavity for both cases: with and without the losses of the 

cavity. Chapter 3 will discuss the method and theory of the construction of an ECDL 

and the three main approaches to do so: Littrow, Littman-Metcalf, and Double grating 
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configurations. The results and discussion are presented in Chapter 4, where key 

findings are interpreted considering the research objectives. Finally, Chapter 5 offers 

the conclusion. 
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2 THEORETICAL BACKGROUNDS 

2.1 FABRY-PEROT CAVITY 

A Fabry-Perot cavity is used for stabilizing the laser frequency. Its operation is 

straightforward, but it requires precise alignment. In this section, we will explain how a 

Fabry-Perot Cavity works. Let's start by discussing the structure of the cavity, as shown 

in Figure 1. 

Figure 1: Representation of a Fabry-Perot Cavity. The quantities R, 𝐫𝟏 

and 𝐫𝟐 are the curvature of the mirror, and the reflectivity of the mirrors 
1 and 2, respectively. The curvature of the mirror 1 is exaggerated in 
the figure. 

 

Source: Author, 2024. 

Typically, Fabry-Perot mirrors possess high reflectivity, resulting in a transmitted 

beam with a narrow linewidth. Furthermore, at the cavity’s resonance, the transmitted 

beam has power similar to the incident beam's. This is achievable by forming a 

standing wave inside the cavity. This standing wave is composed of numerous 

reflections, which have a slight leakage that can either constructively interfere to 

produce a transmitted beam in the order of the incident beam's power or destructively 

interfere in the reflected beam. 

Let's investigate how it functions and its practical applications. A Fabry-Perot 

Cavity offers several remarkable properties, one of which is the ability to filter the laser 

beam's frequency spectrum. In essence, it can control the laser's linewidth by 

permitting only a specific frequency band, centered on the cavity's resonance, to pass 

through. The quality of the cavity directly influences the narrowness of the transmitted 

beam's linewidth. This is very important in experiments related to atomic physics, 

where a narrow linewidth is crucial, and in other applications[33],[34],[35]. For a more 

quantitative understanding, a rigorous approach is essential. 
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2.1.1 A QUANTITATIVE APPROACH TO THE FABRY-PEROT CAVITY 

It's necessary to account for a system that resembles real-world conditions. This 

includes considering the presence of losses, primarily arising from the dispersion and 

absorption of light within the cavity. Hence, we will examine two scenarios: (a) a 

lossless system and (b) a scenario where losses play a significant role. 

2.1.1.1 Lossless Fabry-Perot Cavity 

The first case is the lossless Cavity. To proceed, we will depict the beam at a 

slight angle with respect to the normal of the mirrors. This simplification helps us 

visualize the problem more easily, even though such an angle is not present. This 

angulation is represented in Fig. 2:  

Figure 2: Cavity diagram with exaggerated angulation of the reflected 
beams inside the cavity for better visualization. 

 

Source: Author, 2024. 

Each time the beam hits the mirror surfaces, there will be a transmitted beam 

traveling in the same direction as the original and a reflected beam traveling backward 

to it. Considering that the absorption of the laser by the mirrors is negligible, we have:  

𝕋 + ℝ  =  1, 

Equation 2.1 

where 𝕋 is the transmission coefficient and ℝ is the reflection coefficient. For simplicity, 

let’s consider the incident beam traveling without a phase and in the positive direction 

of the z axis and that the mirrors have the same reflectivity, then we have:  

For the input beam:  

𝐸𝑖𝑛 = 𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡). 

Equation 2.2 
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To find out the output Field, one must follow the path of the input field, as the 

reflectivity is considered the same for both mirrors. Then, 𝑟1 = 𝑟2 ≡ 𝑟 and 𝑡1 = 𝑡2 ≡ 𝑡 

(transitivity). The first reflection occurs with the back of the mirror 1, 𝐸𝑟𝑒𝑓, and there is 

a transmitted beam with field given by 𝑡𝐸𝑖𝑛. 

Figure 3: First reflection of the beam occurs with the back of the first 
mirror.  

 

Source: Author, 2024. 

The second interaction will be between the transmitted beam and the second 

mirror, so there will be a transmitted beam through the second mirror given by 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 

and a reflected beam given by 𝑟𝑡𝑒𝑖𝑘𝐿𝐸𝑖𝑛, where the term 𝑒𝑖𝑘𝐿 is the phase shift 

originated by the cavity length.  

Figure 4: Second interaction of the light beam with the front of the 
second mirror. 

 

Source: Author, 2024. 

Note that the backwards traveling beam gain a phase shift of 𝑒𝑖2𝑘𝐿 until reach 

the second mirror one more time. Then, we have for each round trip an additional term 

of 𝑟𝑒𝑖2𝑘𝐿. Considering that there are an infinite number of round trips inside the cavity, 

then the output beam can be represented by:  

𝐸𝑜𝑢𝑡 = 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 + 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 ∙ 𝑟2𝑒2𝑖𝑘𝐿 + 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 ∙ (𝑟2𝑒2𝑖𝑘𝐿)
2
+ ⋯, 

𝐸𝑜𝑢𝑡 = 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 ∙ [1 + (𝑟2𝑒2𝑖𝑘𝐿) + (𝑟2𝑒2𝑖𝑘𝐿)
2
+ ⋯ ],  

𝐸𝑜𝑢𝑡 = 𝑡2𝑒𝑖𝑘𝐿𝐸𝑖𝑛 ∙ ∑(𝑟2𝑒2𝑖𝑘𝐿)
𝑛

∞

𝑛=0

. 

Considering that 𝕋 = |𝑡|2 and ℝ = |𝑟|2, then:  
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𝐸𝑜𝑢𝑡 = (1 − ℝ)𝑒𝑖𝑘𝐿𝐸𝑖𝑛 ∙ ∑(ℝ𝑒2𝑖𝑘𝐿)
𝑛

∞

𝑛=0

, 

identifying the geometric sum, which rises:  

∑(ℝ𝑒2𝑖𝑘𝐿)
𝑛

∞

𝑛=0

=
1

1 − ℝ𝑒2𝑖𝑘𝐿
 , 

that is true as long as |ℝ𝑒2𝑖𝑘𝐿| < 1, which is true here. That brings for the output field:                   

𝐸𝑜𝑢𝑡 = 
(1−ℝ)𝑒𝑖𝑘𝐿

1−ℝ𝑒2𝑖𝑘𝐿
𝐸𝑖𝑛. 

Equation 2.3 

Note that what the photodetector measures the intensity, but not the electric 

field. Similarly, to the electric field, there will be a reflected intensity and a transmitted 

intensity, that follows the same law:  

𝒯 + ℛ = 1. 

Equation 2.4 

Where  𝒯 is the transmitted intensity coefficient (transmittance) and ℛ is the 

reflected intensity coefficient (reflectance), they’re given by:  𝒯 = |
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
|
2

 and ℛ =

|
𝐸𝑟𝑒𝑓

𝐸𝑖𝑛
|
2

 and the reflected electric field can be found in a analogous way to the transmitted 

field. Therefore:  

𝒯 =  |
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
|
2

= |
(1 − ℝ)𝑒𝑖𝑘𝐿

1 − ℝ𝑒2𝑖𝑘𝐿
|

2

. 

Where:  

|(1 − ℝ)𝑒𝑖𝑘𝐿|
2

= (1 − ℝ)2. 

And:  

|1 − ℝ𝑒2𝑖𝑘𝐿|
2

= (1 − ℝ𝑒2𝑖𝑘𝐿)(1 − ℝ𝑒−2𝑖𝑘𝐿) 

= 1 − ℝ𝑒−2𝑖𝑘𝐿 − ℝ𝑒2𝑖𝑘𝐿 + ℝ2 = 1 + ℝ2 − 2ℝ ∙ (
ℝ𝑒−2𝑖𝑘𝐿 + ℝ𝑒2𝑖𝑘𝐿

2
) 

= 1 + ℝ2 − 2ℝ ∙ cos(2𝑘𝐿). 
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Using that 𝑠𝑖𝑛2 𝑥 =
1−cos(2𝑥)

2
, we have:  

|1 − ℝ𝑒2𝑖𝑘𝐿|
2

=  1 + ℝ2 − 2ℝ ∙ (1 − 2 𝑠𝑖𝑛2(𝑘𝐿)) = 1 + ℝ2 − 2ℝ + 4ℝ𝑠𝑖𝑛2(𝑘𝐿), 

∴  |1 − ℝ𝑒2𝑖𝑘𝐿|
2

= (1 − ℝ)2 + 4ℝ 𝑠𝑖𝑛2(𝑘𝐿). 

Therefore, the transmitted intensity coefficient is:  

𝒯 =
(1 − ℝ)2

(1 − ℝ)2 + 4ℝ 𝑠𝑖𝑛2(𝑘𝐿)
=

1

1 + [
4ℝ

(1 − ℝ)2] ∙ 𝑠𝑖𝑛2(𝑘𝐿)
 . 

Equation 2.5 

The function reveals an interesting behavior. Plotting it we begin to understand 

the role of a Fabry-Perot cavity in laser systems Fig. 5: 

Figure 5: Graph of the transmittance of a Fabry-Perot Cavity. With the 
reflectivity of the mirrors being 94.8% (blue) and 77.4% (golden). 

  

Source: Author, 2024. 

It's important to note that increasing the reflectivity of the mirrors results in better 

frequency filtering. The formation of a standing wave inside the cavity plays a crucial 

role in ensuring that the transmitted intensity matches the incident intensity. This is 

achieved through the enhancement of the electric field within the cavity, which can be 

quantified using the internal resonance enhancement factor. Now, let's examine the 

field inside the cavity. 
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Figure 6: Internal electric fields of the Fabry-Perot cavity. The 𝑬𝒄𝒊𝒓𝒄 is 

the electric field that is circulating the cavity, the 𝑬𝒍𝒂𝒖𝒏𝒄𝒉𝒆𝒅 in the filed 

that was launched into the cavity by the first mirror, the 𝑬𝑹𝑻 is the field 

after n round trips, the 𝑬𝒕𝒓𝒂𝒏𝒔 is the transmitted electric field and 

𝑬𝒃−𝒕𝒓𝒂𝒏𝒔 is the filed transmitted back by the cavity.  

 

Source: Author, 2024. 

In the context of the enhancement factor, our focus is on the electric field 

circulating within the cavity. This electric field is the cumulative result of the fields that 

are initially introduced into the cavity and the multiple round trips they make. Therefore: 

𝐸𝑐𝑖𝑟𝑐 = 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + 𝐸𝑅𝑇 , 

as 𝐸𝑅𝑇 is the result field after n round trips, then:  

𝐸𝑐𝑖𝑟𝑐 = 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + 𝑟2𝑒2𝑖𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + (𝑟2𝑒2𝑖𝑘𝐿)
2
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + (𝑟2𝑒2𝑖𝑘𝐿)

3
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + ⋯, 

𝐸𝑐𝑖𝑟𝑐 = 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 ∙ ∑(𝑟2𝑒2𝑖𝑘𝐿)
𝑛

∞

𝑛=0

=
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

1 − 𝑟2𝑒2𝑖𝑘𝐿
 . 

The intensities that are circulating within the cavity and launched into it are: 

I𝑐𝑖𝑟𝑐 = |𝐸𝑐𝑖𝑟𝑐|
2.  

and 

 I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 = |𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑|2, 
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the internal resonance enhancement factor is defined as:  

℧𝑖𝑛𝑡 ≡
|𝐸𝑐𝑖𝑟𝑐|

2

|𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑|2
 . 

Then:  

℧𝑖𝑛𝑡 =
|

𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

1 − 𝑟2𝑒2𝑖𝑘𝐿|
2

|𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑|2
= |

𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

1 − 𝑟2𝑒2𝑖𝑘𝐿
|
2 1

|𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑|2
=

1

|1 − 𝑟2𝑒2𝑖𝑘𝐿|2
 , 

similarly to what was done for Equation 2.5: 

℧𝑖𝑛𝑡 =
1

(1 − ℝ)2 + 4ℝ𝑠𝑖𝑛2(𝑘𝐿)
 . 

Equation 2.6 

Where ℝ is the electric field reflection coefficient, ℝ = 𝑟2. The internal 

resonance enhancement factor has its maximum value when sin (𝑘𝐿) is equal zero. 

This happens when the laser frequency is in resonance with the cavity. Therefore, ℧𝑖𝑛𝑡 

is spectrally dependent. As k is the wave number, we can associate it to the frequency 

of the emitted light:  

𝑘𝐿 =  
2𝜋

𝜆
𝐿 =  

2𝜋
𝑐

𝜈⁄
𝐿 =  

2𝜋𝜈

𝑐
𝐿. 

Where c if the light velocity in the vacuum and 𝜈 is the frequency of the emitted 

light. Then in terms of the frequency of the emitted light: 

℧𝑖𝑛𝑡(𝜈) =
1

(1 − ℝ)2 + 4ℝ 𝑠𝑖𝑛2 (
2𝜋𝜈
𝑐 𝐿)

 , 

at the resonance:  

℧𝑖𝑛𝑡(𝜈𝑅𝐸𝑆) =
1

(1 − ℝ)2
 . 

For different values of reflectivity, we get the following graph:  
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Figure 7: spectrally dependent internal resonance enhancement factor 
which the resonator provides to light that is launched into it. The 
curves plotted are for 𝒓 = 𝟎. 𝟒 (blue), 𝒓 = 𝟎. 𝟔 (orange), 𝒓 = 𝟎. 𝟕𝟓 (red) 

and for 𝒓 = 𝟎. 𝟗 (green, ℧𝒊𝒏𝒕(𝝂) = 𝟐𝟓), outside the scale of the ordinate. 
The dashed red line marks the enhancement factor equal to one, that 
occurs when there is no reflectivity, that is ℝ = 𝟎. 

 

Source: Author, 2024. 

The enhancement factor provides us with insight into the degree by which the 

electric field's intensity is amplified within the cavity. For instance, in a cavity with both 

mirrors having a reflectivity of 0.75, the electric field intensity within the cavity is 

approximately five times greater than the initial intensity launched into it, for mirrors 

with 0.95 the intensity is 100 times greater. This enhancement factor increases 

significantly with higher mirror reflectivities, playing a crucial role in high finesse 

cavities. 

To have the enhancement factor linked to the incident intensity, we note that the 

incident intensity and the launched intensity are related by:  

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 = (1 − ℝ)I𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡, 

℧′
𝑖𝑛𝑡(𝜈) =

I𝑐𝑖𝑟𝑐

I𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
=

I𝑐𝑖𝑟𝑐

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑
(1 − ℝ)⁄

= (1 − ℝ)
I𝑐𝑖𝑟𝑐

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑
= (1 − ℝ)℧𝑖𝑛𝑡(𝜈). 

Equation 2.7 
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Where the prime corresponds to the incident intensity. ℧′
𝑖𝑛𝑡(𝜈) is the external 

intensity enhancement factor. This new factor is smaller than the enhancement of the 

intensity launched into the resonator (internal), as expected. Additionally, we can prove 

that in certain conditions the transmitted intensity matches the incident. Let us consider 

Fig. 6 again, the transmitted intensity in terms of the circulating intensity is given by:  

I𝑡𝑟𝑎𝑛𝑠 = (1 − ℝ2)I𝑐𝑖𝑟𝑐 . 

From the definition of the enhancement factor:  

I𝑡𝑟𝑎𝑛𝑠 = (1 − ℝ2)℧𝑖𝑛𝑡(𝜈)I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑, 

as seen in Equation 2.7: 

I𝑡𝑟𝑎𝑛𝑠 = (1 − ℝ2)℧𝑖𝑛𝑡(𝜈)(1 − ℝ1)I𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡, 

then, for a cavity with mirrors with the same reflectivity:  

I𝑡𝑟𝑎𝑛𝑠 =
(1 − ℝ2)

2I𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

(1 − ℝ)2 + 4ℝ𝑠𝑖𝑛2 (
2𝜋𝜈
𝑐 𝐿)

 . 

At resonance the sine term vanishes, so:  

∴ I𝑡𝑟𝑎𝑛𝑠 = I𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡. 

If the laser frequency matches the resonance frequency of the cavity, the only 

condition for the output and input intensities be equal is mirrors with the same 

reflectivity. To continue obtaining information about the Fabry-Perot resonator, let’s get 

back to the transmittance. Rewriting Equation 2.5 so 𝒯 is explicitly dependent on the 

laser frequency:  

𝒯(𝜈) =
1

1 + [
4ℝ

(1 − ℝ)2] ∙ 𝑠𝑖𝑛2 (
2𝜋𝜈
𝑐 𝐿)

. 

Equation 2.8 

In this manner, there are periodically spaced frequencies that match the 

required configuration, which is the resonance frequency of the cavity. It can be found 

noticing that the peaks occur whenever the sine term is zero, then: 

sin2 (
2𝜋𝜈

𝑐
𝐿) = 0 → 𝑠𝑖𝑛 (

2𝜋𝜈

𝑐
𝐿) = 0, 
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2𝜋𝜈

𝑐
𝐿 = 𝑚𝜋 → 𝜈𝑚 = 𝑚

𝑐

2𝐿
 , 

Equation 2.9 

where 𝜈𝑚 is the resonance frequency of the cavity. From this relation is possible to 

retrieve a relation between the wavelength and the length of the cavity: 

𝜈𝑚 =
𝑐

𝜆
= 𝑚

𝑐

2𝐿
→ 𝑚𝜆 = 2𝐿. 

Equation 2.10 

From that, we can inquire that the wavelength from the input beam must be an 

integer multiple of twice the cavity length. The spacing between peaks is known as the 

Free Spectral Range (FSR), which depends exclusively on the geometry of the cavity. 

It can be determined by examining the distance between two consecutive peaks in the 

transmitted intensity:  

𝜈𝑚+1 − 𝜈𝑚 = (𝑚 + 1)
𝑐

2𝐿
− 𝑚

𝑐

2𝐿
=

𝑐

2𝐿
 , 

∴ 𝐹𝑆𝑅 =
𝑐

2𝐿
 . 

Equation 2.11 

The FSR is a fascinating quantity, as it is inversely proportional to the length of 

the cavity. When the mirrors are positioned closer to each other, the spacing between 

the resonances becomes larger. Another important characteristic of the transmitted 

intensity is the linewidth of the peaks. While maintaining a fixed distance between the 

mirrors, the linewidth changes through alterations in the reflectivity of the mirrors. This 

behavior is demonstrated by analyzing 𝒯 near the peaks. To do this, we will use the 

approximation that sin(x) ~ x for x << 1. This approximation holds true near the peaks. 

Therefore, we have: 

𝒯 =
1

1 + [
4ℝ

(1 − ℝ)2] ∙ 𝑠𝑖𝑛2 (
2𝜋𝜈
𝑐 𝐿)

=
1

1 + [
4ℝ

(1 − ℝ)2] ∙ (
2𝜋𝜈
𝑐 𝐿)

2 . 

Note that this function follows the law of (1 + 𝑎𝑥2)−1, a Lorentzian curve. Then, 

looking more carefully to the varying term we have:  
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[
4ℝ

(1 − ℝ)2
] ∙ (

2𝜋𝜈

𝑐
𝐿)

2

= [
2√ℝ

1 − ℝ
]

2

∙ (
2𝜋𝜈

𝑐
𝐿)

2

= [2
𝜋√ℝ

1 − ℝ
∙
2𝐿

𝑐
𝜈]

2

, 

we can identify some terms and label another:  

[
4ℝ

(1 − ℝ)2
] ∙ (

2𝜋𝜈

𝑐
𝐿)

2

= 4 (
ℱ

𝐹𝑆𝑅
)
2

∙ 𝜈2, 

where:  

ℱ ≡
𝜋√ℝ

1 − ℝ
, 

Equation 2.12 

ℱ is the finesse of the cavity. Then near the peaks we have:  

𝒯 =
1

1 + 4 (
ℱ

𝐹𝑆𝑅)
2

∙ 𝜈2

. 

From that, it is possible to find the Full Width at Half Maximum (FWHM) of the 
transmitted intensity by finding it for a Lorentzian curve and comparing the functions:  

1

2
=

1

1 + 𝑎𝑥2
→ 2 = 1 + 𝑎𝑥2 → 1 = 𝑎𝑥2, 

𝑥2 =
1

𝑎
→ 𝑥 =

1

√𝑎
 , 

then the width is twice as much: 

∆𝑥 =
2

√𝑎
 , 

as a is given by 𝑎 = 4 (
ℱ

𝐹𝑆𝑅
)
2

, then:  

∆𝜈𝐹𝑊𝐻𝑀 =
2

√4(
ℱ

𝐹𝑆𝑅)
2

=
2

2
ℱ

𝐹𝑆𝑅

∴ ∆𝜈𝐹𝑊𝐻𝑀 =
𝐹𝑆𝑅

ℱ
, 

Equation 2.13 

where ∆𝜈𝐹𝑊𝐻𝑀 is the Full Width at Half Maximum of the beam’s transmitted intensity. 

Note that this approximation works only near the resonances, therefore this result is 

good if the linewidth is narrow. In terms of the reflectivity of the cavity:  
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∆𝜈𝐹𝑊𝐻𝑀 =
𝐹𝑆𝑅

𝜋√ℝ
1 − ℝ

=
(1 − ℝ)𝐹𝑆𝑅

𝜋√ℝ
. 

Equation 2.14 

Figure 8: Dependence of the Linewidth of the peaks with the reflectivity 
coefficient of the cavity. 

 

Source: Author, 2024. 

As the reflectivity of the mirrors increases, the peaks become narrower. From 

Equation 2.13, it is possible to derive the meaning of finesse. Finesse is a 

measurement of how narrow the resonances are in relation to their frequency distance, 

with high finesse indicating sharp resonances. This quality is important for various 

applications, such as the excitation of ultracold rubidium gas[3] and Rydberg atom 

experiments[4],[5]. The ability to resolve peaks is essential in spectroscopy[6] and atomic 

physics. 

Another important characteristic of a Fabry-Perot cavity is the Quality Factor, 

often referred to as the 𝒬 factor. As light becomes trapped within the Fabry-Perot 

cavity, it stores energy. While a significant amount of optical energy is stored at 

resonant wavelengths as the light bounces back and forth between the mirrors, some 

light still leaks out. In a steady state, the power being coupled into the cavity must be 

equal to the sum of the power leaving the cavity, quantifying how effectively the cavity 

stores energy is of interest. A high 𝒬 cavity is exceptionally efficient at storing energy, 

which experiences minimal loss. Following this, we can define the 𝒬 factor as:  

𝒬 = 2𝜋
𝒲𝑠𝑡𝑜𝑟𝑒𝑑

𝒲𝑙𝑜𝑠𝑡
. 

Equation 2.15 
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Where 𝒲𝑠𝑡𝑜𝑟𝑒𝑑 is the energy stored in the resonator at resonance frequency and 

𝒲𝑙𝑜𝑠𝑡 is the energy lost per oscillation cycle. Our attention, now, turns to the mentioned 

energies. As we’re looking the case for lossless resonator, the energy loss in the cycles 

is due to the decay of the photons from the beam inside the cavity. The relationship 

between the energy inside of the cavity and the photon-decay is given by the following 

equation[16]:  

𝑑𝒲

𝑑𝑡
= −

𝒲

𝜏𝑐
, 

Equation 2.16 

where 𝜏𝑐 is the photon-decay time of the resonator. Therefore, trying a solution of the 

form 𝒲(𝑡) = 𝒲0𝑒
𝑎𝑡:  

𝑑𝒲0𝑒
𝑎𝑡

𝑑𝑡
= −

𝒲0𝑒
𝑎𝑡

𝜏𝑐
, 

𝑎𝒲0𝑒
𝑎𝑡 = −

𝒲0𝑒
𝑎𝑡

𝜏𝑐
→ 𝑎 = −

1

𝜏𝑐
, 

where 𝒲0 is the energy of the electric field that was launched into the cavity. Then, we 

will work with energy given by 𝒲(𝑡) = 𝒲𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑𝑒−𝑡 𝜏𝑐⁄ . For the energy loss, we can 

relate it to the power dissipated by the cavity as[15][16]:  

𝒲𝑙𝑜𝑠𝑡 =
1

𝜈𝑅𝐸𝑆
𝑃𝑙𝑜𝑠𝑡 , 

here 𝜈𝑅𝐸𝑆 is the center frequency of the resonance peak. Also, by the definition of 

dissipated power:  

𝑃𝑙𝑜𝑠𝑡 = −
𝑑𝒲(𝑡)

𝑑𝑡
, 

then, we can rewrite the quality factor as:  

𝒬 = 2𝜋
𝒲𝑠𝑡𝑜𝑟𝑒𝑑

−
1

𝜈𝑅𝐸𝑆

𝑑𝒲(𝑡)
𝑑𝑡

= −2𝜋𝜈𝑅𝐸𝑆

𝒲(𝑡)

𝑑𝒲(𝑡)
𝑑𝑡

 , 

𝒬 = −2𝜋𝜈𝑅𝐸𝑆

𝒲𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑𝑒−𝑡 𝜏𝑐⁄

(−
𝒲𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑𝑒−𝑡 𝜏𝑐⁄

𝜏𝑐
)

, 
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∴ 𝒬 = 2𝜋𝜈𝑅𝐸𝑆𝜏𝑐. 

Equation 2.17 

In the lossless case, the photon-decay time is related only to the outcoupling of 

the mirrors[15]. The Quality factor can be related to the full width at half maximum by[15]:  

𝒬 =
𝜈𝑅𝐸𝑆

∆𝜈𝐹𝑊𝐻𝑀
. 

Equation 2.18 

The 𝒬 factor is a commonly used parameter to assess the overall performance 

of Fabry-Perot cavities. It provides valuable information about both the selectivity of 

resonant frequencies and the efficiency in energy storage within the cavity. A high 𝒬 

value suggests that the cavity is exceptionally selective when it comes to resonant 

frequencies, meaning it allows only very specific and narrow frequencies to pass 

through. Additionally, it denotes that the cavity can store a significant amount of the 

energy. As the 𝒬 factor presents a higher value, the Fabry-Perot cavity exhibits better 

overall quality, regarding selectivity, narrower resonance frequency, in energy storage 

and overall performance. These attributes are very important for applications in high-

resolution spectroscopy and high-precision lasers. 

2.1.1.2 Fabry-Perot Cavity with Losses 

Typically, a resonator experiences various optical losses along the path of light 

propagation. These losses can be categorized as discrete or continuous and often 

exhibit variation with frequency 𝜈. Discrete outcoupling losses stem from the imperfect 

reflectivity of the resonator mirrors, which is often the case[15]. 

|𝑟𝑖|
2 = ℝ𝑖 = 1 − |𝑡𝑜𝑢𝑡,𝑖|

2
= 1 − 𝕋𝑜𝑢𝑡,𝑖 = 𝑒

−𝑡𝑅𝑇
𝜏𝑜𝑢𝑡,𝑖

⁄
. 

Where 𝑟𝑖 and ℝ𝑖 are the electric field and intensity reflection coefficients of the 

mirror i, respectively[14][15]. Analogously, 𝑡𝑜𝑢𝑡,𝑖 and 𝕋𝑜𝑢𝑡,𝑖 are the electric field and 

intensity transmission coefficients of the mirror i, respectively. The index “out” in 𝑡𝑜𝑢𝑡,𝑖 

refers to outcoupling. Furthermore, 𝑡𝑅𝑇 is the time for a round trip and 𝜏𝑜𝑢𝑡,𝑖 is the 

exponential decay-time resulting from the outcoupling loss at the mirror i. From the 

equation above:  
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ℝ𝑖 = 𝑒
−𝑡𝑅𝑇

𝜏𝑜𝑢𝑡,𝑖
⁄

 →  −
𝑡𝑅𝑇

𝜏𝑜𝑢𝑡,𝑖
= 𝑙𝑛(ℝ𝑖)  →  

1

𝜏𝑜𝑢𝑡,𝑖
= 

−𝑙𝑛(ℝ𝑖)

𝑡𝑅𝑇
=

−𝑙𝑛(1 − 𝕋𝑜𝑢𝑡,𝑖)

𝑡𝑅𝑇
, 

defining the mirror coupling coefficient as:  

𝛿𝑜𝑢𝑡,𝑖 = −ln(ℝ𝑖) =
𝑡𝑅𝑇

𝜏𝑜𝑢𝑡,𝑖
. 

Equation 2.19 

Considering the entire cavity, with two mirrors characterized by their respective 

reflectivities ℝ1 and ℝ2, the overall outcoupling losses arise from the transmission of 

light through these mirrors. 

ℝ1ℝ2 = 𝑒
−𝑡𝑅𝑇

𝜏𝑜𝑢𝑡
⁄ → ln(ℝ1ℝ2) =

−𝑡𝑅𝑇

𝜏𝑜𝑢𝑡
→

1

𝜏𝑜𝑢𝑡
= −

ln(ℝ1) + ln(ℝ2)

𝑡𝑅𝑇
=

1

𝜏𝑜𝑢𝑡,1
+

1

𝜏𝑜𝑢𝑡,2
. 

Rewriting in terms of the mirror coupling coefficients:  

𝛿𝑜𝑢𝑡 = −ln(ℝ1ℝ2) = 𝛿𝑜𝑢𝑡,1 + 𝛿𝑜𝑢𝑡,2. 

There are additional losses from two other natures that can be considered in the 

general case. First, are the individual discrete losses that can occur due to various 

factors, such as: (a) absorption and scattering losses in the mirror coatings or (b) 

diffraction losses at the mirrors with finite lateral dimensions. Although exists losses 

related to the presence of an active medium inside the cavity, this is not the scenario 

in this dissertation and will be completely discarded. 

On the other hand, we have continuous losses that can be characterized by the 

intensity propagation-loss coefficient per unit length, denoted as 𝛼𝑝𝑟𝑜𝑝. These losses 

can be caused by various factors within the cavity, such as: (a) Scattering losses 

resulting from material imperfections, (b) waveguide propagation losses due to 

interface roughness1 at the mirrors[26], or (c) losses in the propagation within the cavity 

due to non-perfect vacuum.  

These losses, whether from discrete or continuous nature, represent intrinsic 

resonator losses and are often quantified using the intrinsic round-trip loss coefficient, 

 
1 the surface roughness is regarded as the quality of a surface of not being smooth, presence of 

imperfections. 
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denoted as 𝕃𝑅𝑇. This coefficient incorporates any possible losses during the round-trip 

regardless its nature. In one round-trip:  

1 − 𝕃𝑅𝑇 ≡ 𝑒−𝛼𝑝𝑟𝑜𝑝(2𝐿) = 𝑒
−𝑡𝑅𝑇

𝜏𝑙𝑜𝑠𝑠
⁄ , 

Equation 2.20 

from Equation 2.20:  

−ln(1 − 𝕃𝑅𝑇) =
𝑡𝑅𝑇

𝜏𝑙𝑜𝑠𝑠
= 𝛼𝑝𝑟𝑜𝑝(2𝐿), 

1

𝜏𝑙𝑜𝑠𝑠
=

−ln(1 − 𝕃𝑅𝑇)

𝑡𝑅𝑇
=

2𝐿

𝑡𝑅𝑇
𝛼𝑝𝑟𝑜𝑝 = 𝑐𝛼𝑝𝑟𝑜𝑝, 

Where c is the velocity of the light within the cavity. As we did to the mirror 

coupling coefficient, we can define an intrinsic loss coefficient: 

𝛿𝑙𝑜𝑠𝑠 ≡ −ln(1 − 𝕃𝑅𝑇) =
𝑡𝑅𝑇

𝜏𝑙𝑜𝑠𝑠
. 

Equation 2.21 

The overall decay-rate constant, which encompasses both the outcoupling 

losses and the intrinsic losses, can be expressed as the sum of the decay rates we've 

identified above: 

1

𝜏𝑐
=

1

𝜏𝑜𝑢𝑡
+

1

𝜏𝑙𝑜𝑠𝑠
= −

ln(ℝ1ℝ2)

𝑡𝑅𝑇
+ 𝑐𝛼𝑝𝑟𝑜𝑝, 

Equation 2.22 

where 𝜏𝑐 is the photon-decay time of the resonator. We can express it in terms of the 

coupling and intrinsic loss coefficients as:  

𝛿𝑐 = 𝛿𝑜𝑢𝑡 + 𝛿𝑙𝑜𝑠𝑠 =
𝑡𝑅𝑇

𝜏𝑐
. 

Now, let's turn our attention to the internal resonance enhancement factor and 

consider the implications of the losses by outcoupling and intrinsic nature. Similar to 

the lossless scenario, the enhancement factor represents the ratio between the field 

circulating within the cavity and the field initially launched into the cavity. The circulating 

field is the outcome of its interference with the fields from multiple round trips. 

Therefore:  
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𝐸𝑐𝑖𝑟𝑐 = 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + (𝑟1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)
2
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

+ (𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)

3
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + ⋯, 

𝐸𝑐𝑖𝑟𝑐 = 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 ∑(𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)

𝑛
∞

𝑛=0

, 

𝐸𝑐𝑖𝑟𝑐 =
1

1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿

𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑, 

Equation 2.23 

then:  

℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠 ≡

I𝑐𝑖𝑟𝑐

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑
=

|
𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿

|

2

|𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑|2
=

1

|1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿|

2, 

from the denominator:  

|1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿|

2
= (1 − 𝑟1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)(1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒−𝑖2𝑘𝐿) 

= 1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒−𝑖2𝑘𝐿 − 𝑟1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿 + (𝑟1𝑟2)
2𝑒−2𝛼𝑝𝑟𝑜𝑝(2𝐿) 

= 1 + (𝑟1𝑟2)
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑐𝑜𝑠(2𝑘𝐿) 

= 1 + (𝑟1𝑟2)
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿[1 − 2𝑠𝑖𝑛2(𝑘𝐿)] 

= 1 + (𝑟1𝑟2)
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿 + 4𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿) 

= (1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿)2 + 4𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿), 

finally:  

℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠 =

1

(1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿)2 + 4𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿)
. 

In terms of the laser frequency:  

℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠(𝜈) =

1

(1 − 𝑟1𝑟2𝑒
−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟1𝑟2𝑒
−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2 (
𝜋𝜈
𝐹𝑆𝑅)

. 

For the case of a cavity with both mirror with equal reflectivity:  
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℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠(𝜈) =

1

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2 (
𝜋𝜈
𝐹𝑆𝑅)

. 

Plotting the curve for ℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠(𝜔):  

Figure 9: spectrally dependent internal resonance enhancement factor 
when there are propagation losses which the resonator provides to 
light that is launched into it. The curves plotted are for 𝒓 = 𝟎. 𝟒 (blue), 

𝒓 = 𝟎. 𝟔 (orange), 𝒓 = 𝟎. 𝟕𝟓 (red) and for 𝒓 = 𝟎. 𝟗 (green) that isn’t 

outside the scale anymore. Here the 𝜶𝒑𝒓𝒐𝒑 is assumed to be 0.01𝐦−𝟏 

and the cavity length to be 0.1m. The dashed line represents the value 
one, that would mean no enhancement. 

 

Source: Author, 2024. 

In the presence of losses, the enhancement of the electric field experiences a 

significant reduction, depending on the propagation-loss coefficient. In the lossless 

scenario, a reflectivity of 0.9 yielded an enhancement of approximately 25 times the 

launched intensity. However, with propagation losses considered, this enhancement 

drops to around 9 times for the same reflectivity for 𝛼𝑝𝑟𝑜𝑝 = 0.01m−1. 

Similarly, we can determine the transmittance in the presence of losses using a 

method analogous to the one described above for the circulating and launched 

intensity. For the transmittance, we will use the transmitted intensity and the circulating 

intensity. 

𝒯 =
I𝑡𝑟𝑎𝑛𝑠

I𝑖𝑛𝑐
, 
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note that:  

I𝑡𝑟𝑎𝑛𝑠 = (1 − ℝ2)𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)I𝑐𝑖𝑟𝑐 , 

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 = (1 − ℝ1)I𝑖𝑛𝑐, 

then: 

𝒯(𝜈) =
I𝑡𝑟𝑎𝑛𝑠

I𝑖𝑛𝑐
=

(1 − ℝ2)𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)I𝑐𝑖𝑟𝑐

I𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑
(1 − ℝ1)

⁄
= (1 − ℝ2)(1 − ℝ1)𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)℧𝑖𝑛𝑡
𝑙𝑜𝑠𝑠(𝜈), 

finally, for mirrors with same reflectivities:  

𝒯(𝜈) =
(1 − 𝑟2)2𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2 (
𝜋𝜈
𝐹𝑆𝑅)

. 

Equation 2.24 

So, plotting it gives us:  

Figure 10: Graph of the transmittance of a Fabry-Perot Cavity with 

propagation losses given by 𝜶𝒑𝒓𝒐𝒑 = 𝟎. 𝟎𝟎𝟏𝐦−𝟏. With the reflectivity of 

the mirrors being 0.9 (blue) and 0.75 (orange). 

 

Source: Author, 2024. 

As depicted in Figure 10, it's evident that the transmittance doesn't approach 

unity in the presence of propagation losses, meaning that the transmitted intensity is 
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not equal to the input beam intensity, even at resonance. Additionally, for mirrors with 

lower reflectivity, there is greater transmittance, mainly due to the light that can pass 

through them. In the limit where 𝛼𝑝𝑟𝑜𝑝 approaches zero, the transmittance approaches 

unity at resonance. 

In the absence of propagation losses, and when only outcoupling losses are 

considered, the sum of transmitted and reflected intensities equals unity, as we 

previously examined in the lossless scenario. However, when propagation losses are 

introduced, this relationship adjusts to accommodate an intrinsic propagation-loss. 

This adjustment is due to the consideration of propagation losses, and it can be 

expressed as: 

ℛ + 𝒯 + 𝔏 = 1. 

Equation 2.25 

To find the intrinsic propagation-loss intensity we must first find the reflectance. 

For this, we’re going to look to the first reflected, reflected by the back of the first mirror, 

and back-transmitted fields, that is, the field that is transmitted by the first mirror: 

𝐸𝑟𝑒𝑓𝑙𝑒𝑐 = 𝐸𝑟𝑒𝑓𝑙𝑒𝑐,1 + 𝐸𝑏−𝑡𝑟𝑎𝑛𝑠. 

The first reflected electric field is easy to obtain, it is just the reflected incident 

field:  

𝐸𝑟𝑒𝑓𝑙𝑒𝑐,1 = 𝑟1𝐸𝑖𝑛𝑐𝑒
𝑖𝜋. 

Here 𝑒𝑖𝜋 is introduced to account for the opposite directions of the reflected and 

incident fields. The back-transmitted field: 

𝐸𝑏−𝑡𝑟𝑎𝑛𝑠 = 𝑡1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 + 𝑡1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

∙ (𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿) + 𝑡1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

∙ (𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)

2
+ ⋯, 

here we have a minus signal to represent that the back-transmitted field is propagating 

in the opposite direction of the launched field. Considering that 𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 = 𝑡1𝐸𝑖𝑛𝑐, then: 
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𝐸𝑏−𝑡𝑟𝑎𝑛𝑠 = 𝑡1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑 ∑(𝑟1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿)
𝑛

∞

𝑛=0

=
𝑡1𝑟2𝑒

−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿𝐸𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑

1 − 𝑟1𝑟2𝑒
−𝛼𝑝𝑟𝑜𝑝(2𝐿)𝑒𝑖2𝑘𝐿

=
𝑡1
2𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿𝐸𝑖𝑛𝑐

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

, 

then the total reflected field is:  

𝐸𝑟𝑒𝑓𝑙𝑒𝑐 = −𝑟1𝐸𝑖𝑛𝑐 +
𝑡1
2𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿𝐸𝑖𝑛𝑐

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

= (−𝑟1 +
𝑡1
2𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

)𝐸𝑖𝑛𝑐 

=
−𝑟1(1 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿) + 𝑡1
2𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

𝐸𝑖𝑛𝑐, 

as 𝑡1
2 = 1 − 𝑟1

2, then: 

=
−𝑟1(1 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿) + (1 − 𝑟1
2)𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

𝐸𝑖𝑛𝑐 

=
−𝑟1 + 𝑟1

2𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿 + 𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿 − 𝑟1
2𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

𝐸𝑖𝑛𝑐 

𝐸𝑟𝑒𝑓𝑙𝑒𝑐 =
−𝑟1 + 𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿

𝐸𝑖𝑛𝑐, 

then the reflectance is given by:  

ℛ =
|𝐸𝑟𝑒𝑓𝑙𝑒𝑐|

2

|𝐸𝑖𝑛𝑐|2
=

|−𝑟1 + 𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿|

2

|1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿|2

 

=
(−𝑟1 + 𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿)(−𝑟1 + 𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒−𝑖2𝑘𝐿)

(1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿)(1 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒−𝑖2𝑘𝐿)
 

=
𝑟1

2 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒−𝑖2𝑘𝐿 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿 + 𝑟2
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿

1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒−𝑖2𝑘𝐿 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑒𝑖2𝑘𝐿 + 𝑟1
2𝑟2

2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 

=
𝑟1

2 + 𝑟2
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿2𝑐𝑜𝑠(2𝑘𝐿)

1 + 𝑟1
2𝑟2

2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿2𝑐𝑜𝑠(2𝑘𝐿)

, 

using trigonometric identities:  

ℛ =
𝑟1

2 + 𝑟2
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿(1 − 2𝑠𝑖𝑛2(𝑘𝐿))

1 + 𝑟1
2𝑟2

2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿(1 − 2𝑠𝑖𝑛2(𝑘𝐿))
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=
𝑟1

2 + 𝑟2
2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿 + 4𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿)

1 + 𝑟1
2𝑟2

2𝑒−4𝛼𝑝𝑟𝑜𝑝𝐿 − 2𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿 + 4𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿)
 

=
(𝑟1 − 𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿)2 + 4𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿)

(1 − 𝑟1𝑟2𝑒
−2𝛼𝑝𝑟𝑜𝑝𝐿)2 + 4𝑟1𝑟2𝑒

−2𝛼𝑝𝑟𝑜𝑝𝐿𝑠𝑖𝑛2(𝑘𝐿)
, 

in terms of the laser frequency and considering both mirrors to have equal reflectivity:  

ℛ(𝜈) =
𝑟2 (1 − 𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2(
𝜋𝜈
𝐹𝑆𝑅)

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2(
𝜋𝜈
𝐹𝑆𝑅

)

. 

Equation 2.26 

Where Equation 2.26 gives the cavity’s spectrally dependent reflectance on the 

presence of propagation losses. Plotting it with the spectrally dependent transmittance:  

Figure 11: Transmittance (blue), Reflectance (orange) and the resulting 
sum of the transmitted and reflected intensities (green) for a reflectivity 

of 0.9 and a propagation-loss coefficient of 0.1𝐦−𝟏.  

 

Source: Author, 2024. 

The sum of the reflectance and transmittance does not sum up to unity as it did 

before. For that, we need to consider Equation 2.25[15] and from that we get:  
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Figure 12: Transmittance (blue), Reflectance (orange), Intrinsic 
propagation-loss Intensity (red) and the resulting sum of these 
intensities (green) for a reflectivity of 0.9 and a propagation-loss 

coefficient of 0.1𝐦−𝟏.  

 

Source: Author, 2024. 

To proceed with our analysis, it's essential to consider the parameters 

associated with Fabry-Perot Cavities. The Free Spectral Range (FSR), which depends 

solely on the cavity's geometry, remains unchanged when transitioning from the 

lossless case to the scenario with propagation losses. Consequently, the condition for 

resonance, which stipulates that twice the cavity length must be equal to an integer 

multiple of the laser's wavelength, also remains unaltered. 

For the linewidth, we must be careful.  Considering the region near the peaks of 

the transmittance and making the approximation for the sin(x) when 𝑥 ≪ 1, we get:   

𝒯(𝜈) =
(1 − 𝑟2)2𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 𝑠𝑖𝑛2 (
𝜋𝜈
𝐹𝑆𝑅)

. 

Unlike what we did in the case of no losses, we cannot directly associate a 

Lorentzian curve with the transmittance due to the presence of the propagation-loss 

term. Instead, we will work directly with the expression for transmittance. Initially, we 
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will consider the Full Width at Half Maximum (FWHM). To do this, we will use high-

reflectivity mirrors, so that the transmittance curve exhibits narrow peaks, as shown by 

the blue curve in Figure 10. In this scenario, the frequency variation required to go from 

the maximum of the peak to its half value is very small, making the approximation for 

the sine function suitable. Therefore:  

𝒯(𝜈) =
(1 − 𝑟2)2𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈
𝐹𝑆𝑅)

2
, 

as we are interested in the half value of the transmittance at resonance, then: 

(1 − 𝑟2)2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈1 2⁄

𝐹𝑆𝑅 )
2

=
𝒯(𝜈𝑅𝐸𝑆)

2
, 

at resonance 𝑠𝑖𝑛2 (
𝜋𝜈𝑅𝐸𝑆

𝐹𝑆𝑅
) = 0, then:  

(1 − 𝑟2)2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈1 2⁄

𝐹𝑆𝑅 )
2

=
(1 − 𝑟2)2𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

2 (1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2 , 

1

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈1 2⁄

𝐹𝑆𝑅 )
2

=
1

2 (1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2 , 

(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

+ 4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈1 2⁄

𝐹𝑆𝑅
)
2

= 2(1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

, 

4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 (
𝜋𝜈1 2⁄

𝐹𝑆𝑅
)
2

= (1 − 𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

, 

(
𝜋𝜈1 2⁄

𝐹𝑆𝑅
)
2

=
(1 − 𝑟2𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )
2

4𝑟2𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

, 

using ℝ = |𝑟|2, then: 

𝜋𝜈1 2⁄

𝐹𝑆𝑅
=

(1 − ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )

2√ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

, 
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finally:    

∆𝜈𝐹𝑊𝐻𝑀
𝑙𝑜𝑠𝑠 = 2𝜈1 2⁄ , 

∴ ∆𝜈𝐹𝑊𝐻𝑀
𝑙𝑜𝑠𝑠 =

(1 − ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )

𝜋√ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

𝐹𝑆𝑅. 

Equation 2.27 

In the scenario where the propagation-loss coefficient is equal to zero, Equation 

2.27 reverts to Equation 2.14, and we obtain the linewidth for the lossless case, as 

expected. Using the definition of Finesse, we can derive: 

ℱ =
𝐹𝑆𝑅

∆𝜈𝐹𝑊𝐻𝑀
, 

therefore:            

ℱ𝑙𝑜𝑠𝑠 =
𝐹𝑆𝑅

∆𝜈𝐹𝑊𝐻𝑀
𝑙𝑜𝑠𝑠 =

𝐹𝑆𝑅

(1 − ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅 )

𝜋√ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

𝐹𝑆𝑅

, 

ℱ𝑙𝑜𝑠𝑠 =
𝜋√ℝ𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

1 − ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

. 

Equation 2.28 

When the propagation-loss coefficient is equal to zero, Equation 2.28 reverts to 

Equation 2.12, and we obtain the finesse for the lossless case, as expected. The losses 

represent a great drop in the finesses. For example, when the propagation-loss 

coefficient is 𝛼𝑝𝑟𝑜𝑝 = 0.1m−1 the Finesse in the lossless case is about 10 times of the 

case with losses. Plotting both cases: 
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Figure 13: Finesse of the Fabry-Perot Cavity without propagation 
losses (orange, off scale, Equation 2.12) and with the propagation-loss 

coefficient is 𝜶𝒑𝒓𝒐𝒑 = 𝟎. 𝟏𝐦−𝟏 (blue, Equation 2.28).  

 

Source: Author, 2024. 

Indeed, as finesse decreases in the presence of losses while the FSR remains 

constant, the linewidth becomes wider. This broadening of the linewidth is not desirable 

for experiments that demand a stable and narrow frequency linewidth. It underscores 

the importance of minimizing losses in such experiments to maintain the required 

frequency stability. 

Finally, we have the quality factor. For the case with losses, we going to use the 

equations 2.15 and 2.16. The Equation 2.15 remains equal as it was, however, the 

Equation 2.16 suffers a change in the photon-decay time, that now englobes not only 

the outcoupling but also the propagation-loss time, given by Equation 2.22. Then, the 

quality factor is given by:  

𝒬 = −2𝜋𝜈𝑅𝐸𝑆

𝒲(𝑡)

𝑑𝒲(𝑡)
𝑑𝑡

, 

where 
1

𝜏𝑐
→

1

𝜏𝑜𝑢𝑡
+

1

𝜏𝑙𝑜𝑠𝑠
, then:  
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𝒬 = −2𝜋𝜈𝑅𝐸𝑆

𝒲𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑𝑒
−𝑡(

1
𝜏𝑜𝑢𝑡

+
1

𝜏𝑙𝑜𝑠𝑠
)

(−
𝒲𝑙𝑎𝑢𝑛𝑐ℎ𝑒𝑑𝑒

−𝑡(
1

𝜏𝑜𝑢𝑡
+

1
𝜏𝑙𝑜𝑠𝑠

)

1
𝜏𝑜𝑢𝑡

+
1

𝜏𝑙𝑜𝑠𝑠

)

, 

from Equation 2.22: 

𝒬 = 2𝜋𝜈𝑅𝐸𝑆

1

(
1

−
ln(ℝ1ℝ2)

𝑡𝑅𝑇
+ 𝑐𝛼𝑝𝑟𝑜𝑝

)

= 2𝜋𝜈𝑅𝐸𝑆 (−
ln(ℝ1ℝ2)

𝑡𝑅𝑇
+ 𝑐𝛼𝑝𝑟𝑜𝑝), 

the round-trip time can be rewritten in terms of the light velocity and the cavity length 

by 𝑡𝑅𝑇 =
2𝐿

𝑐
, then: 

𝒬 = 2𝜋𝑐𝜈𝑅𝐸𝑆 (𝛼𝑝𝑟𝑜𝑝 −
ln(ℝ1ℝ2)

2𝐿
), 

Equation 2.29 

and using Equation 2.18 and adapting the FWHM to the loss case: 

𝒬 =
𝜈𝑅𝐸𝑆

∆𝜈𝐹𝑊𝐻𝑀
𝑙𝑜𝑠𝑠 . 

Equation 2.30 
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3 EXTERNAL CAVITY LASER DIODE 

Shifting our focus to the laser itself, let's begin by considering the type of laser 

that aligns with our interest – Distributed Feedback (DFB) Lasers. Monolithic DFB 

lasers can operate in both a single transverse mode and a single longitudinal mode. 

However, their spectral linewidth can be relatively large since the Schawlow–Townes 

linewidth is proportional to the square of the cavity linewidth, that is, the FWHM of the 

resonator, which can be significant in monolithic DFB lasers[17]. 

An important obstacle is that achieving a significant electronic tuning range in a 

DFB laser is challenging. The tuning range resulting from changes in the injection 

current is relatively small, and one is often compelled to use a slower mechanism to 

do so, like diode temperature changes to tune the diode over a large range. 

To address these challenges, one approach is to extend the diode cavity by 

coupling it with an external cavity, essentially forming a much larger compound cavity. 

In this configuration, the diode serves as the gain medium in this expanded cavity. To 

achieve this, optical elements such as mirrors, gratings can be used. Due to the 

presence of an additional cavity, this modified laser is called External Cavity Diode 

Laser (ECDL).  

Firstly, a longer cavity brings about a reduction in the Laser Shawlow–Townes 

width, due to its inverse proportionality with the square of the cavity length, the greater 

the cavity length, the smaller the Shawlow–Townes width of that cavity will be. 

Additionally, the increase in cavity length significantly mitigates the impact of the α 

parameter, as the active medium length becomes a very small fraction of the overall 

cavity length. To overcome the challenges associated with the limited tuning range 

resulting from changes in injection current and the slow temperature tuning process, 

tunability can be transferred to other elements. For instance, the incorporation of a 

coarse frequency-selecting element, typically a grating, along with adjustments to the 

cavity length, by a Piezoelectric Transducer (PZT), provides a broad tuning range 

without the need to alter the diode current or temperature. 

The arrangement of optical elements in an ECDL can be constructed in various 

ways, with common configurations including the Littrow configuration, the Littman 

configuration, or a combination of both. In the subsequent sections of this dissertation, 
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we will explore these configurations. For now, let's use a simplified illustration (shown 

in Figure 14) to establish the basic theory.  

Figure 14: Schematic of the overall cavity reflective surfaces. Here 𝒓𝟏 

and 𝒓𝟐 are the reflectivities of the first and second surfaces of the diode 
laser, and 𝒓𝟑 is the reflectivity of the second surface of the external 
cavity. 

 

Source: Author, 2024. 

The construction of an ECDL can be intricate, and opting for a commercial one 

may be a practical alternative. Here, we will look into the basic theory for the 

construction of an ECDL. A fundamental consideration that can significantly impact the 

analysis is the coating problem, specifically the presence or absence of antireflection 

coating on the diode laser cavity. Optimal results are typically achieved when one of 

the diode facets has zero reflectivity, and the other is highly reflecting. This aspect is 

crucial because if there is an antireflection coating on the diode, it essentially acts as 

a gain element in a larger cavity. If there isn't, the problem must be treated as a 

composite cavity formed by the coupling of the diode cavity and the external cavity, 

presenting a more complex scenario. Nevertheless, the complex scenario is our case.  

In the absence of an antireflection coating, small amounts of feedback into the 

diode can lead to adverse effects. To analyze these effects, let's initially focus on the 

second surface of the external cavity, 𝑟3, without specifying its nature (mirror, grating, 

etc.) but considering only its reflectivity and its distance to the diode output facet, 𝐿𝑒𝑥𝑡. 

Making a realistic assumption that the external cavity can accommodate only a single 
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reflection aligns with the fact that the second diode facet is uncoated, yielding a 

reflectivity, 𝑟2, of around 0.6 (using GaAs)[17]. With only one reflection from the external 

cavity, we can associate the output facet of the diode with an effective reflectivity, 

considering both the first reflected beam and the one that was reflected by the external 

cavity and re-entered the diode. This effective reflectivity is given by: 

𝑟2,𝑒𝑓𝑓 = 𝑟2 + |𝑡2|
2𝑟3𝑒

−𝑖2𝑘𝐿𝑒𝑥𝑡 . 

Here we’re considering that there are two transmissions at the diode output 

facet, one leaving the diode cavity towards 𝑟3 and other that enters back to the diode 

cavity coming back from 𝑟3, and the phase shift given by the round-trip in the external 

cavity. Considering that 𝑘 = 𝜔 𝑐⁄  and 2𝐿𝑒𝑥𝑡 = 𝑐𝜏𝑒𝑥𝑡, where 𝜏𝑒𝑥𝑡 is the round-trip time of 

the external cavity. Therefore, only in terms of reflectivity:  

𝑟2,𝑒𝑓𝑓(𝜔) = 𝑟2 + (1 − |𝑟2|
2)𝑟3𝑒

−𝑖𝜔𝜏𝑒𝑥𝑡 . 

Equation 3.1 

The optical coherence from lasers offers numerous advantages compared to 

conventional light sources, including a narrower monochromatic light, and 

directionality. These characteristics, however, are tied to the processes of laser 

oscillation. Laser light is produced through the stimulated emission of electromagnetic 

waves resulting from these oscillations in a specific mode[18]. To attain the necessary 

oscillations, the diode laser must satisfy two key conditions for laser oscillation. Firstly, 

the optical gain must surpass losses. Secondly, the presence of an external cavity 

must introduce feedback (reflected light) that aligns in phase with the recently emitted 

light. These conditions can be expressed as: 

𝑟1|𝑟2,𝑒𝑓𝑓|𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 = 1, 

2𝑘′𝐿 + 𝜑𝑟 = 2𝜋𝑚. 

Equation 3.2 

Here, 𝑔𝑡ℎ
′  is the threshold gain of the diode’s medium, 𝛼 is the loss of the 

compound cavity, 𝑘′ is the wave number of the diode’s medium (the prime is to 

differentiate from the free space wave number) and 𝜑𝑟 is the phase of the complex 

number 𝑟2,𝑒𝑓𝑓. It is interesting to define a coupling parameter:  
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𝜅𝑒𝑥𝑡 ≡
𝑟3
𝑟2

(1 − |𝑟2|
2), 

Equation 3.3 

then, rewriting Equation 3.1: 

𝑟2,𝑒𝑓𝑓(𝜔) = 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑒
−𝑖𝜔𝜏𝑒𝑥𝑡], 

Equation 3.4 

from Equation 3.4, we can extract some quantities, like the modulus and the phase of 

the complex number, 𝜑𝑟. When 𝜅𝑒𝑥𝑡 ≪ 1:  

|𝑟2,𝑒𝑓𝑓(𝜔)|
2

= 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑒
−𝑖𝜔𝜏𝑒𝑥𝑡] ∙ 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑒

𝑖𝜔𝜏𝑒𝑥𝑡] 

= 𝑟2
2[1 + 𝜅𝑒𝑥𝑡𝑒

−𝑖𝜔𝜏𝑒𝑥𝑡 + 𝜅𝑒𝑥𝑡𝑒
𝑖𝜔𝜏𝑒𝑥𝑡 + 𝜅𝑒𝑥𝑡

2 ], 

considering that 𝜅𝑒𝑥𝑡 ≪ 1: 

|𝑟2,𝑒𝑓𝑓(𝜔)|
2

= 𝑟2
2[1 + 𝜅𝑒𝑥𝑡𝑒

−𝑖𝜔𝜏𝑒𝑥𝑡 + 𝜅𝑒𝑥𝑡𝑒
𝑖𝜔𝜏𝑒𝑥𝑡] 

= 𝑟2
2[1 + 2𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)], 

then: 

|𝑟2,𝑒𝑓𝑓(𝜔)| = 𝑟2√1 + 2𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡), 

once again, 𝜅𝑒𝑥𝑡 ≪ 1, then using a Taylor expansion:  

√1 + 𝑥 ≈ 1 +
1

2
𝑥, 

finally: 

|𝑟2,𝑒𝑓𝑓(𝜔)| ≈ 𝑟2,𝑑[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)], 

Equation 3.5 

for the phase 𝜑𝑟 in the regime of 𝜅𝑒𝑥𝑡 ≪ 1, we have by definition:  

𝜑𝑟 = arctan (
ℑ𝑚[𝑟2,𝑒𝑓𝑓(𝜔)]

ℜ𝑒[𝑟2,𝑒𝑓𝑓(𝜔)]
). 

Expanding Equation 3.4: 
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𝑟2,𝑒𝑓𝑓(𝜔) = 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑒
−𝑖𝜔𝜏𝑒𝑥𝑡] = 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡) − 𝑖𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡)], 

then the phase is given by:  

𝜑𝑟 = arctan (
−𝑟2𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡)

𝑟2[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]
) = arctan (

−𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡)

[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]
). 

Considering 𝜅𝑒𝑥𝑡 ≪ 1 and 𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡) ≤ 1, then [1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)] ≈ 1, which 

gives:  

𝜑𝑟 =  arctan(−𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡)), 

using a Taylor expansion for the arctan(x):  

arctan(𝑥) ≈ 𝑥 −
𝑥3

3
+ ⋯, 

up to the first order:  

𝜑𝑟 = −𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡). 

Equation 3.6 

In our analysis, we want to quantify the effects of an external cavity, and 

consequently the presence of feedback on the diode. In that manner, we seek the 

change in the threshold gain and phase due to the presence of the feedback. For the 

threshold gain we will use the Equations 3.2 and 3.5: 

With the presence of the external cavity:  

𝑟1|𝑟2,𝑒𝑓𝑓|𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 = 1, 

|𝑟2,𝑒𝑓𝑓(𝜔)| ≈ 𝑟2[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)], 

then: 

𝑟1𝑟2[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 = 1. 

Without the presence of the external cavity the effective reflectivity is just 𝑟2, 

then: 

𝑟1𝑟2𝑒
(𝑔𝑡ℎ−𝛼)𝐿 = 1. 

Here 𝑔𝑡ℎ is the threshold gain in the absence of the external cavity. Subtracting 

one of the other:  
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𝑟1𝑟2[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 − 𝑟1𝑟2𝑒
(𝑔𝑡ℎ−𝛼)𝐿 = 0, 

[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 − 𝑒(𝑔𝑡ℎ−𝛼)𝐿 = 0, 

[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿 = 𝑒(𝑔𝑡ℎ−𝛼)𝐿, 

𝑙𝑛 {[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]𝑒
(𝑔𝑡ℎ

′ −𝛼)𝐿} = (𝑔𝑡ℎ − 𝛼)𝐿, 

𝑙𝑛[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)] + (𝑔𝑡ℎ
′ − 𝛼)𝐿 = (𝑔𝑡ℎ − 𝛼)𝐿, 

(𝑔𝑡ℎ
′ − 𝛼)𝐿 − (𝑔𝑡ℎ − 𝛼)𝐿 = −𝑙𝑛[1 + 𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡)]. 

Considering, again, that 𝜅𝑒𝑥𝑡 ≪ 1, then a Taylor expansion represents a good 

approach: 

ln(1 + 𝑥) ≈ 𝑥 −
𝑥2

2
+ ⋯, 

up to the first order: 

(𝑔𝑡ℎ
′ − 𝑔𝑡ℎ)𝐿 ≈ −𝜅𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡), 

therefore:  

𝑔𝑡ℎ
′ − 𝑔𝑡ℎ = −

𝜅𝑒𝑥𝑡

𝐿
𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡). 

Equation 3.7 

In the other hand, the condition for phase in the absence of feedback is given 

by: 

2𝑛𝐿𝜔𝑡ℎ

𝑐
= 2𝜋𝑚. 

Equation 3.8 

Here, 𝑛 represents the index of refraction in the diode cavity, 𝜔𝑡ℎ is the angular 

frequency at threshold, and 𝑚 is an integer. The introduction of feedback and an 

external cavity leads to slight changes in the frequency at threshold (∆𝜔 = 𝜔 − 𝜔𝑡ℎ) 

and the index of refraction (∆𝑛), respectively. Thus, the modified condition can be 

expressed as: 
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2𝐿

𝑐
(𝑛 + ∆𝑛)(𝜔𝑡ℎ + ∆𝜔) + 𝜑𝑟 = 2𝜋𝑚 + ∆𝜑. 

Equation 3.9 

The presence of 𝜑𝑟 is due to the effective reflectivity that must be considered in 

the case when there is feedback. The ∆𝜑 is the difference between the round-trip 

phase and 2𝜋𝑚. For laser oscillation to occur, we will require that ∆𝜑 is either a multiple 

of 2𝜋 or zero. Using the equation for no feedback (Equation 3.8) in Equation 3.9, we 

have:  

2𝐿

𝑐
(𝑛 + ∆𝑛)(𝜔𝑡ℎ + ∆𝜔) + 𝜑𝑟 =

2𝑛𝐿𝜔𝑡ℎ

𝑐
+ ∆𝜑, 

2𝐿

𝑐
(𝑛𝜔𝑡ℎ + 𝑛∆𝜔 + 𝜔𝑡ℎ∆𝑛 + ∆𝑛∆𝜔) + 𝜑𝑟 =

2𝑛𝐿𝜔𝑡ℎ

𝑐
+ ∆𝜑, 

2𝐿𝑛𝜔𝑡ℎ

𝑐
+

2𝐿

𝑐
(𝑛∆𝜔 + 𝜔𝑡ℎ∆𝑛 + ∆𝑛∆𝜔) + 𝜑𝑟 =

2𝑛𝐿𝜔𝑡ℎ

𝑐
+ ∆𝜑, 

2𝐿

𝑐
(𝑛∆𝜔 + 𝜔𝑡ℎ∆𝑛 + ∆𝑛∆𝜔) + 𝜑𝑟 = ∆𝜑. 

Considering that ∆𝑛 and ∆𝜔 are small, keeping only the terms up to the first 

order in small quantities:  

∆𝜑 =
2𝐿

𝑐
(𝑛∆𝜔 + 𝜔𝑡ℎ∆𝑛) + 𝜑𝑟 . 

Equation 3.10 

To quantify ∆𝑛, we can consider the expansion of the refractive index around 

the threshold values of frequency and carrier density[17]:  

𝑛 = 𝑛0 +
𝜕𝑛

𝜕𝜔
(𝜔 − 𝜔𝑡ℎ) +

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ), 

∆𝑛 =
𝜕𝑛

𝜕𝜔
(𝜔 − 𝜔𝑡ℎ) +

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ). 

Here, 𝑁𝑡ℎ is the carrier density at threshold without feedback. Inserting it into 

Equation 3.10: 

∆𝜑 =
2𝐿

𝑐
(𝑛∆𝜔 + 𝜔𝑡ℎ [

𝜕𝑛

𝜕𝜔
(𝜔 − 𝜔𝑡ℎ) +

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ)]) + 𝜑𝑟 , 
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∆𝜑 =
2𝐿

𝑐
(𝑛∆𝜔 + 𝜔𝑡ℎ∆𝜔

𝜕𝑛

𝜕𝜔
+ 𝜔𝑡ℎ

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ)) + 𝜑𝑟 , 

∆𝜑 =
2𝐿

𝑐
[∆𝜔 (𝑛 + 𝜔𝑡ℎ

𝜕𝑛

𝜕𝜔
) + 𝜔𝑡ℎ

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ)] + 𝜑𝑟 . 

Now, we can recognize the group index of refraction, where:  

𝑛𝑔 = 𝑛 + 𝜔𝑡ℎ

𝜕𝑛

𝜕𝜔
. 

Equation 3.11 

Then: 

  

∆𝜑 =
2𝐿

𝑐
[𝑛𝑔∆𝜔 + 𝜔𝑡ℎ

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ)] + 𝜑𝑟 . 

For the carrier density, we can associate it to the difference in gain and the 

linewidth enhancement factor by using the relations given by Nagourney[17]: 

𝜈 − 𝜈𝑡ℎ = −
𝜈𝑡ℎ

𝑛𝑔

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ), 

Equation 3.12 

and  

𝜈 − 𝜈𝑡ℎ =
𝓋𝑔𝛼

4𝜋

𝜕𝑔

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ), 

Equation 3.13 

where 𝓋𝑔 is the laser’s group velocity and 𝛼 is the linewidth enhancement factor, that 

besides quantifying the amplitude-phase coupling, also helps characterize to which 

degree variations in the carrier density, 𝑁, alter the index of refraction of the active 

layer, 𝑛[27]. Moreover, 𝛼 is related to how the laser linewidth is bigger than the 

Schawlow-Townes linewidth by the factor of (1 + 𝛼2)[28]. Comparing these equations:  

𝓋𝑔𝛼

4𝜋

𝜕𝑔

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ) = −

𝜈𝑡ℎ

𝑛𝑔

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ), 

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ) = −

𝑛𝑔𝓋𝑔

4𝜋𝜈𝑡ℎ
𝛼

𝜕𝑔

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ), 
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by the definition of group index of refraction, 𝑛𝑔 ≡ 𝑐 𝓋𝑔⁄ , then:  

𝜕𝑛

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ) = −

𝑐𝛼

2𝜔𝑡ℎ

𝜕𝑔

𝜕𝑁
(𝑁 − 𝑁𝑡ℎ) = −

𝑐𝛼

2𝜔𝑡ℎ

(𝑔𝑡ℎ
′ − 𝑔𝑡ℎ), 

where we used that the product of 𝜕𝑔 𝜕𝑁⁄  and 𝑁 − 𝑁𝑡ℎ is the increment in the gain 

above threshold, 𝑔𝑡ℎ
′ − 𝑔𝑡ℎ

[17]. Therefore:  

∆𝜑 =
2𝐿

𝑐
[𝑛𝑔∆𝜔 − 𝜔𝑡ℎ

𝑐𝛼

2𝜔𝑡ℎ

(𝑔𝑡ℎ
′ − 𝑔𝑡ℎ)] + 𝜑𝑟 , 

substituting 𝑔𝑡ℎ
′ − 𝑔𝑡ℎ (Equation 3.7) and 𝜑𝑟 (Equation 3.6): 

∆𝜑 =
2𝐿

𝑐
[𝑛𝑔∆𝜔 −

𝑐𝛼

2
(−

𝜅𝑒𝑥𝑡

𝐿
𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡))] − 𝜅𝑒𝑥𝑡𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡), 

finally:  

∆𝜑 =
2𝑛𝑔𝐿

𝑐
(𝜔 − 𝜔𝑡ℎ) + 𝜅𝑒𝑥𝑡[𝛼𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡) − 𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡)]. 

Equation 3.14 

The term 
2𝑛𝑔𝐿

𝑐
 in Equation 3.14 represents the round-trip time in the diode cavity, 

denoted as 𝜏𝑑. Additionally, let's leverage trigonometric relations to consolidate these 

two trigonometric functions into a single expression. 

𝐴𝑠𝑖𝑛(𝑥 + 𝜃) =  𝛼𝑐𝑜𝑠(𝑥) − 𝑠𝑖𝑛(𝑥), 

expanding the sine of the sum:  

𝐴[𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝜃) + cos (𝑥)𝑠𝑖𝑛(𝜃)] =  𝛼𝑐𝑜𝑠(𝑥) − 𝑠𝑖𝑛(𝑥), 

by orthogonality:  

𝐴𝑐𝑜𝑠(𝜃) = −1, 

𝐴𝑠𝑖𝑛(𝜃) = 𝛼, 

taking the squared on both sides and equations:  

𝐴2𝑐𝑜𝑠2(𝜃) = 1, 

𝐴2𝑠𝑖𝑛2(𝜃) = 𝛼2, 

summing:  
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𝐴2[𝑐𝑜𝑠2(𝜃) + 𝑠𝑖𝑛2(𝜃)] = 1 + 𝛼2 → 𝐴 = √1 + 𝛼2, 

for the 𝜃 we use:  

𝐴𝑠𝑖𝑛(𝜃)

𝐴𝑐𝑜𝑠(𝜃)
=

𝛼

−1
, 

𝑡𝑎𝑛(𝜃) = −𝛼, 

then:  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(−𝛼) = −𝑎𝑟𝑐𝑡𝑎𝑛(𝛼), 

for 𝑥 = 𝜔𝜏𝑒𝑥𝑡, we have:  

𝛼𝑐𝑜𝑠(𝑥) − 𝑠𝑖𝑛(𝑥) = √1 + 𝛼2𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)), 

the phase change turns into:  

∆𝜑 = 𝜏𝑑(𝜔 − 𝜔𝑡ℎ) + 𝜅𝑒𝑥𝑡√1 + 𝛼2𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)). 

Now, it is useful to define another coupling parameter, related to the oscillations 

of the difference between the round-trip phase and 2𝜋: 

𝐶 ≡
𝜏𝑒𝑥𝑡

𝜏𝑑
𝜅𝑒𝑥𝑡√1 + 𝛼2, 

Equation 3.15 

then, the equation for ∆𝜑 becomes:  

∆𝜑 = 𝜏𝑑(𝜔 − 𝜔𝑡ℎ) + 𝐶
𝜏𝑑

𝜏𝑒𝑥𝑡
𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)). 

Equation 3.16 

By graphing Equation 3.16, we can underscore the significance of coupling the 

diode to an external cavity. The figure below illustrates a series of plots for this function, 

encompassing various values of the coupling parameter, C. These plots provide 

insights into the diode's behavior under varying degrees of feedback. Notably, as the 

feedback increases, ∆φ exhibits more pronounced oscillations.  
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Figure 15: Difference between the round-trip phase and 𝟐𝝅 for various 
values of the coupling parameter, C. For C equals zero (blue), C equals 
1 (orange), C equals 5 (green) and C equals 10 (red). Values Normalized 
by 𝝉𝒅 = 𝟏. 

 

Source: Author, 2024. 

In the absence of feedback, ∆φ and 𝜔 − 𝜔𝑡ℎ exhibit a linear relationship, 

affirming that the laser operates solely at the threshold frequency, 𝜔𝑡ℎ. An intriguing 

scenario arises when C < 1, wherein ∆φ remains strictly monotonic. In this weak 

feedback regime, the laser would still oscillate at a single frequency, but not at the 

threshold frequency, 𝜔𝑡ℎ. Instead, the frequency undergoes a shift by ∆ω. It's 

noteworthy that this frequency shift is contingent on 𝜏𝑒𝑥𝑡, implying that a slight 

modification in the external cavity's length, on the order of the laser's wavelength, can 

influence the laser's frequency. In this manner, the maximum frequency shift can be 

determined by satisfying the laser oscillation condition for phase (∆𝜑 = 0): 

0 = 𝜏𝑑∆ω + 𝐶
𝜏𝑑

𝜏𝑒𝑥𝑡
𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)), 

then: 
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∆ω = −
𝐶

𝜏𝑒𝑥𝑡
𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)), 

Equation 3.17 

the maximum value for the frequency shift is given when 𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)) =

 −1, then:  

∆ω𝑚𝑎𝑥 =
𝐶

𝜏𝑒𝑥𝑡
=

𝜏𝑒𝑥𝑡

𝜏𝑑
𝜅𝑒𝑥𝑡√1 + 𝛼2

𝜏𝑒𝑥𝑡
=

𝜅𝑒𝑥𝑡

𝜏𝑑

√1 + 𝛼2. 

As an example, considering Equation 3.17, a variation in the external cavity 

length of approximately 𝜆/4, a laser cavity with a length of 300μm, and an external field 

reflectivity on the order of 10−4, the frequency shift would be approximately 18MHz 

(𝛼 = 5). Hence, if maintaining laser frequency stability is crucial for your experiment, 

incorporating an optical isolator could prove beneficial. 

Moreover, there are three primary methods for providing feedback: (a) utilizing 

the first-order light reflected from a diffraction grating, known as the Littrow 

Configuration, (b) using the light reflected from a combination of a grating and a mirror, 

where the first-order light reflected from the grating reaches a mirror before returning 

to the diode, referred to as the Littman-Metcalf Configuration, or (c) replacing the mirror 

of the Littman-Metcalf Configuration with another grating, forming the double-grating 

configuration. Starting with the Littrow configuration, the simplest. The linewidth of the 

laser is given by the modified Schawlow-Townes formula[19][20]: 

∆𝜈𝑙𝑎𝑠𝑒𝑟 = ∆𝜈0 (1 +
𝜏𝑒𝑥𝑡

𝜏𝑑
′ )

−2

, 

Equation 3.18 

here, ∆𝜈0 is the linewidth of the laser without the external cavity and 𝜏𝑑
′  is the round-

trip time of the diode using the group velocity. Then:  

∆𝜈𝑙𝑎𝑠𝑒𝑟 = ∆𝜈0 (
𝜏𝑑

′ + 𝜏𝑒𝑥𝑡

𝜏𝑑
′ )

−2

= ∆𝜈0 (
𝜏𝑑

′

𝜏𝑑
′ + 𝜏𝑒𝑥𝑡

)

2

= ∆𝜈0 (
𝜏𝑑

′

𝜏𝑒𝑓𝑓
)

2

, 

where 𝜏𝑒𝑓𝑓 is the effective round-trip time. Moreover, the effective round-trip time can 

be found using the round trip phase by[17]: 
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𝜏𝑒𝑓𝑓 =
𝑑(∆𝜑)

𝑑𝜔
, 

then, from Equation 3.16:  

𝑑(∆𝜑)

𝑑𝜔
= 𝜏𝑑

′ + 𝐶
𝜏𝑑

′

𝜏𝑒𝑥𝑡
𝜏𝑒𝑥𝑡𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)) = 𝜏𝑑

′ + 𝐶𝜏𝑑
′ 𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)), 

consequently:  

∆𝜈𝑙𝑎𝑠𝑒𝑟 = ∆𝜈0 (
𝜏𝑑

′

𝜏𝑒𝑓𝑓
)

2

= ∆𝜈0 (
𝜏𝑑

′

𝜏𝑑
′ + 𝐶𝜏𝑑

′ 𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼))
)

2

, 

finally:  

∆𝜈𝑙𝑎𝑠𝑒𝑟 =
∆𝜈0

(1 + 𝐶 ∙ 𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)))
2, 

Equation 3.19 

in the regime of strong feedback, 𝐶 ≫ 1, the laser oscillation occurs when 

𝑠𝑖𝑛(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)) ≈ 0, then 𝑐𝑜𝑠(𝜔𝜏𝑒𝑥𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝛼)) ≈ 1 and we get:  

∆𝜈𝑙𝑎𝑠𝑒𝑟 ≈
∆𝜈0

(1 + 𝐶)2
. 

Equation 3.20 

The addition of an external cavity can significantly reduce the linewidth of a 

diode laser. For instance, in the case of large coupling (C), for an uncoated diode with 

𝑟2 = 0.6 and an external reflector with 𝑟3 of about 0.5, the coupling parameter 𝜅𝑒𝑥𝑡 is 

0.6. With a diode length of 0.3 mm, an external cavity of 10 mm, and a loss coefficient 

𝛼 = 2, the C parameter is approximately 39.75. Consequently, the modified linewidth 

experiences a reduction of about 1660 compared to the solitary diode linewidth. This 

reduction can be even more significant for external reflectors with higher reflectivity or 

increased external cavity length. In the strong feedback regime, the frequency 

modulation sensitivity is reduced by a factor of 1+C in relation to the no feedback 

regime[17]:  

(
𝜕𝜈𝑙𝑎𝑠𝑒𝑟

𝜕𝐼
)
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

=
1

1 + 𝐶
(
𝜕𝜈0

𝜕𝐼
)
𝑛𝑜 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

. 

Equation 3.21 
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Up to this point, our analysis has been general, irrespective of the chosen 

configuration. Now, we will examine specific configurations in more detail, starting with 

the Littrow mount. 

3.1 THE LITTROW CONFIGURATION 

In the Littrow configuration, a grating serves as the reflecting surface, and the 

first-order diffracted light is back-reflected back to the laser along the same path as the 

incident light. To enhance frequency selectivity and avoid beam divergence, a 

collimating lens is employed, allowing the light incident on the grating to cover as many 

lines as possible. Additionally, an antireflection coating is applied to the lens to 

minimize the feedback sensitivity of the diode laser. To better illustrate it, Figure 16 

brings a scheme. 

Figure 16: Littrow configuration for an ECDL, where the groove 
spacing is given by a, and with an incident angle of 𝜽 with respect to 
the normal. Where we can see the position of the pivot point in relation 
to the origin, set to be at the first mirror of the diode cavity. We use 
point A just to express the z coordinate of the pivot point. 

 

Source: Author, 2024. 

In this setup, coarse tuning is achieved by tilting the grating, whereas fine 

adjustments require the translation of the grating along the z-axis. This fine adjustment 
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can be performed by using a Piezoelectric Transducer (PZT), indicated in green in the 

figure. Additionally, the output beam corresponds to the zeroth order diffraction. To 

prevent mode hops during tuning the laser with the grating, it's essential to tilt the 

grating around an axis that maintains the relationship between the grating center 

frequency and the cavity resonance frequency. To achieve this, we begin by 

determining the location of the pivot point that accomplishes this. For the grating 

wavelength, 𝜆𝑟, we have:  

𝜆𝑟 = 2𝑎𝑠𝑖𝑛(θ). 

Equation 3.22 

Where a is the groove spacing and θ the angle of incidence. Considering that 

the diode cavity is much smaller than the external cavity, the diode becomes part of a 

larger cavity of length given by 𝐿, the cavity resonances will occur whenever the 

following condition is satisfied:  

𝐿 = 𝑚
𝜆𝑚

2
. 

Equation 3.23 

Here, we are disregarding the refractive index of the grating. "m" is an integer, 

and 𝜆𝑚 is the resonance wavelength of the grating. Adjusting the laser geometry so for 

an initial angle of incidence (𝜃0) and a cavity length (𝐿0) these two wavelengths, 𝜆𝑚 

and 𝜆𝑟, are equal, ensuring the resonance cavity wavelength matches the grating 

wavelength. 

𝜆𝑚(𝐿0) = 𝜆𝑟(𝜃0). 

Equation 3.24 

We want to find the pivot point, that is, the point where the rotation axis of the 

grating is, which is at the coordinates 𝑦𝑅 and 𝑧𝑅 with respect to the origin. We need to 

find the pivot point that preserves the equality in Equation 3.24 over the largest possible 

range of wavelengths.  

The wavelength difference can be defined as: 
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Λ(𝜃) = 𝜆𝑚(𝜃) − 𝜆𝑟(𝜃). 

We will find the location of the pivot point where the second derivative of Λ(𝜃) 

with respect to 𝜃 is zero. Before we proceed, we must consider the translations of the 

grating due to the PZT. A translation of the grating by an amount of 𝑡0 generates a 

phase shift, due to the decrease of the external cavity length. For a variation of length 

equal to the grating period, 𝑎, the phase shifts by −2𝜋. Then, the round-trip phase 

change turns to:  

∆𝜑𝑅𝑇 =
4𝜋𝐿

𝜆
−

2𝜋𝑡0
𝑎

, 

Equation 3.25 

considering the condition for resonance, that the round-trip beam phase must be in 

phase with the initial beam, then the resonance wavelength is:  

2𝜋𝑚 =
4𝜋𝐿

𝜆𝑚
−

2𝜋𝑡0
𝑎

, 

𝑚 =
2𝐿

𝜆𝑚
−

𝑡0
𝑎

, 

2𝐿

𝜆𝑚
= 𝑚 +

𝑡0
𝑎

→ 𝜆𝑚 =
2𝐿

𝑚 +
𝑡0
𝑎

, 

now, the wavelength resonance condition englobes the translations of the grating. 

Therefore, Λ(𝜃) becomes:  

Λ(𝜃) =
2𝐿(𝜃)

𝑚 +
𝑡0(𝜃)

𝑎

− 2𝑎𝑠𝑖𝑛(θ), 

Equation 3.26 

from Equation 3.24, and assuming that in the initial conditions the grating isn’t 

translated, 𝑡0(𝜃0) = 0, we have:  

2𝐿0

𝑚
= 2𝑎𝑠𝑖𝑛(𝜃0), 

then:  

𝑚 =
𝐿0

𝑎𝑠𝑖𝑛(𝜃0)
, 
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putting it into Equation 3.26: 

Λ(𝜃) =
2𝐿(𝜃)

𝐿0

𝑎𝑠𝑖𝑛(𝜃0)
+

𝑡0(𝜃)
𝑎

− 2𝑎𝑠𝑖𝑛(θ), 

finally:  

 

Λ(𝜃) = 2𝑎 [
𝐿(𝜃)𝑠𝑖𝑛(𝜃0)

𝐿0 + 𝑡0(𝜃)𝑠𝑖𝑛(𝜃0)
− 𝑠𝑖𝑛(θ)]. 

Equation 3.27 

Using Figure 16 and some geometry, the cavity length can be expressed as[17]: 

𝐿(𝜃) = −𝑦𝑅 (
𝑠𝑖𝑛(𝜃0)

𝑐𝑜𝑠(𝜃)
− 𝑡𝑎𝑛(𝜃)) − 𝑧𝑅 (

𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
− 1) +

𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
𝐿0, 

Equation 3.28 

Here we have 𝐿(𝜃) in terms of the initial values for angle and cavity length. 

Furthermore, the cavity length satisfies Λ(𝜃0) = 0. Therefore, by Figure 16, using 

geometry we can infer that:  

𝑡𝑎𝑛(𝜃0) =
𝐿0

𝑦𝑅
, 

then:  

𝑦𝑅 =
𝐿0

𝑡𝑎𝑛(𝜃0)
, 

Equation 3.29 

substituting in 𝐿(𝜃): 
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𝐿(𝜃) = −𝐿0 (
𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
−

𝑡𝑎𝑛(𝜃)

𝑡𝑎𝑛(𝜃0)
) − 𝑧𝑅 (

𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
− 1) +

𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
𝐿0, 

𝐿(𝜃) = 𝐿0

𝑡𝑎𝑛(𝜃)

𝑡𝑎𝑛(𝜃0)
− 𝑧𝑅 (

𝑐𝑜𝑠(𝜃0)

𝑐𝑜𝑠(𝜃)
− 1), 

then for the first derivative of Λ(𝜃) with respect to 𝜃: 

𝑑Λ(𝜃)

𝑑𝜃
= 0 =

𝑑𝐿(𝜃)
𝑑𝜃

𝑠𝑖𝑛(𝜃0)

𝐿0 + 𝑡0(𝜃)𝑠𝑖𝑛(𝜃0)
−

𝐿(𝜃)𝑠𝑖𝑛2(𝜃0)
𝑑𝑡0(𝜃)

𝑑𝜃

(𝐿0 + 𝑡0(𝜃)𝑠𝑖𝑛(𝜃0))
2 − 𝑐𝑜𝑠(θ), 

the derivative vanishes when: 

𝑑𝑡0(𝜃)

𝑑𝜃
=

𝐿0 − 𝑧𝑅

𝑐𝑜𝑠(θ)
. 

To calculate the translation, let's assume that the translated lengths are small 

variations around the initial position. Then, we can expand 𝑡0(𝜃) up to the first order:  

𝑡0(𝜃) = 𝑡0(𝜃0) +
𝑑𝑡0(𝜃)

𝑑𝜃
|
θ=𝜃0

(θ − 𝜃0), 

as said before, 𝑡0(𝜃0) = 0, then:  

𝑡0(𝜃) =
𝐿0 − 𝑧𝑅

𝑐𝑜𝑠(𝜃0)
(θ − 𝜃0). 

Equation 3.30 

To determine the z-coordinate of the pivot point, we evaluate the second 

derivative and make it equal to zero. Consequently, we find that 𝑧𝑅 = −𝐿0. This implies 

that the pivot point is situated behind the rear facet of the diode by a distance of 𝐿0. 

Optimal position of the pivot point in this manner ensures the broadest possible range 

of wavelengths where the resonance wavelength and grating wavelength remain 

equal. 

The Littrow configuration offers advantages in terms of simplicity and efficiency, 

with lower losses compared to the Littman configuration. However, a notable drawback 

is the variation in the output beam angle during wavelength tuning. This challenge can 

be addressed by attaching a mirror parallel to the grating on the grating assembly, as 

illustrated in Figure 17. The inclusion of this mirror retains the angle of the output beam, 
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as now the grating mount is what we going to tilt, so the mirror gets adjusted 

equivalently. Consequently, during the tuning process, the output beam maintains its 

angle, although there is a limited parallel displacement determined by ≈ 2𝐿𝐺𝑀∆𝜃 for an 

angular change in the grating mount of ∆𝜃, where 𝐿𝐺𝑀 represents the distance between 

the grating and the mirror. 

Figure 17: Littrow configuration with the addition of a mirror aligned 
with the grating. This arrangement eliminates angle changes with 
wavelength tuning. 

 

Source: Author, 2024. 

Nevertheless, while the Littrow configuration is simpler than the Littman 

configuration, it suffers from poor cavity dispersion. In practice, achieving good mode 

stability often requires the use of additional elements such as prism beam expanders 

or wavelength-selective components like etalons[24]. This drawback is effectively 

addressed in the Littman mount without the need for supplementary elements. This 

improvement is achieved by employing a grazing incident angle of the grating along 

with a mirror to reflect the first-order diffraction. 

3.2 THE LITTMAN CONFIGURATION  

In the Littman configuration, coarse frequency tuning is accomplished by 

adjusting the grating at near grazing incidence, and a rotating mirror reflects the first-

order diffracted beam back into the laser. The grazing incidence is used to illuminate 

the whole diffraction grating (Figure 18), which is crucial for a narrowband operation[22]. 

Like the Littrow configuration, the output beam is formed by the zeroth diffraction order, 
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and its orientation remains fixed. In this setup, tuning is achieved by rotating the mirror, 

leading to changes in the cavity length. The pivot point is strategically chosen to 

maintain a connection between the cavity modes and the grating frequency. In this 

configuration, the tracking in the Littman configuration is precise across the entire 

tuning range of the grating. Similarly to the Littrow case, we assume that the optical 

length of the diode matches its physical length. 

In the Littman configuration, we adhere to the same conditions as in the Littrow 

configuration, aiming to match the grating wavelength with the cavity resonance 

wavelength. The Littman mount provides an alternative approach to satisfy these 

conditions. To avoid mode hops during the tuning process, it is crucial to design the 

geometry such that Equation 3.24 is satisfied. Figure 18 illustrates the geometry 

required to meet the wavelength condition. 

Figure 18: Littman configuration for accomplishing self-tracking. PZT 
now is placed behind the mirror instead of the grating and the grating 
is placed with a grazing incidence angle, 𝜽𝟎 ≈ 𝟗𝟎°. 

 

Source: Author, 2024. 

Figure 18 highlights significant distinctions between the Littrow and Littman 

approaches. In the Littman approach, an additional element is introduced into the 

cavity — a mirror responsible for reflecting the first-order diffraction. This mirror is 

crucial for utilizing the first-order diffraction as feedback. In contrast, the Littrow 

approach concludes at the grating, where the inclusion of a mirror is primarily to 

maintain the output angle without directly influencing the laser tuning process. 
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In the Littman configuration, the mirrors play a pivotal role in the tuning process. 

The cavity extends beyond the grating, ending at the mirror. Consequently, the 

placement of the PZT, which facilitates changes in cavity length, is positioned behind 

the last cavity component, i.e., behind the mirror. Additionally, as the grating angle is 

fixed, the analysis stands by other angle, the mirror angulation with respect to the 

grating normal. The cavity modes, or resonances, follow Equation 3.31: 

𝐿(ϕ) = 𝑚
𝜆𝑚

2
= 𝐿𝑓 + 𝐿𝐺𝑀(ϕ). 

Equation 3.31 

This condition remains consistent with the previous analysis, with the only modification 

being the inclusion of an additional path in the cavity length, represented by the 

distance between the grating and the mirror, 𝐿𝐺𝑀(ϕ). The variables 𝑚 and ϕ represent 

the cavity axial order (cavity resonances) and the angle between the mirror and grating 

normal, respectively.  

For the grating wavelength, the standard grating master relationship is utilized, 

considering the angles of incidence and reflection of the grating. The incoming beam 

has an angle of incidence 𝜃0 and reflects to the mirror at an angle ϕ. The condition is 

expressed as: 

𝜆𝑟 =
𝑎

𝑝
(𝑠𝑖𝑛(𝜃0) + 𝑠𝑖𝑛(ϕ)), 

Equation 3.32 

where 𝑎 is the grating period, 𝑝 is an integer representing the propagation-mode of 

interest called the diffraction order. We are using 𝑝 to avoid confusion with the cavity 

axial order, 𝑚. Moreover, the wavelength difference of the Littman configuration is: 

Λ𝐿𝑖𝑡𝑡𝑚𝑎𝑛(ϕ) = 𝜆𝑚(ϕ) − 𝜆𝑟(ϕ), 

Equation 3.33 

we have then:  

Λ𝐿𝑖𝑡𝑡𝑚𝑎𝑛(ϕ) =
2𝐿(ϕ)

𝑚
−

𝑎

𝑝
(𝑠𝑖𝑛(𝜃0) + 𝑠𝑖𝑛(ϕ)), 

note that with some geometry we can express 𝐿(ϕ) as:  

𝐿(ϕ) = 𝐿𝑓 + 𝐿𝑝𝑠𝑖𝑛(ϕ), 
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therefore:  

Λ𝐿𝑖𝑡𝑡𝑚𝑎𝑛(ϕ) =
2 (𝐿𝑓 + 𝐿𝑝𝑠𝑖𝑛(ϕ))

𝑚
−

𝑎

𝑝
(𝑠𝑖𝑛(𝜃0) + 𝑠𝑖𝑛(ϕ)). 

The wavelength, as in Littrow configuration must be equal to match the modes 

of the cavity and the grating. Then:  

Λ𝐿𝑖𝑡𝑡𝑚𝑎𝑛(ϕ) = 0 =
2 (𝐿𝑓 + 𝐿𝑝𝑠𝑖𝑛(ϕ))

𝑚
−

𝑎

𝑝
(𝑠𝑖𝑛(𝜃0) + 𝑠𝑖𝑛(ϕ)), 

2𝐿𝑓

𝑚
+

2𝐿𝑝𝑠𝑖𝑛(ϕ)

𝑚
=

𝑎

𝑝
𝑠𝑖𝑛(𝜃0) +

𝑎

𝑝
𝑠𝑖𝑛(ϕ), 

by orthogonality, we must have, for the tracking to occur:  

2𝐿𝑓

𝑚
=

𝑎

𝑝
𝑠𝑖𝑛(𝜃0). 

Equation 3.34 

2𝐿𝑝

𝑚
=

𝑎

𝑝
. 

Equation 3.35 

Dividing one equation by the other:  

𝐿𝑓

𝐿𝑝
= 𝑠𝑖𝑛(𝜃0). 

The location of the pivot point is consistent with Figure 18. As implied by the 

figure, the pivot point is situated at the intersection of the mirror and grating planes. 

Additionally, we can deduce that the pivot point is directly below the rear facet of the 

diode, i.e., at 𝑧𝑅 = 0, and according to Figure 18, 𝑦𝑅 = 𝐿𝑝𝑐𝑜𝑠(𝜃0). Thus, this 

configuration provides the necessary pivot point to construct a Littman-Metcalf type 

ECDL, offering a narrower lasing linewidth and improved wavelength selectivity 

compared to the Littrow type[21]. 

The bandwidth of the Littman-Metcalf configuration (Full Width at Half 

Maximum) has a minimum value when the active medium and the grating are spaced 

by the Rayleigh length, which is a parameter that describes the distance over which 
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the cross-sectional area of a focused laser beam remains relatively small, that is, the 

distance that the beam doesn’t diverge. Where this parameter is given by: 

𝐿𝑅 =
𝜋𝑤2

𝜆
, 

Equation 3.36 

in that case, the linewidth for the Littman configuration is expressed as:  

(∆𝜆)𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ
𝐿𝑖𝑡𝑡𝑚𝑎𝑛

𝜆
=

2√2𝜆

𝜋𝑙(𝑠𝑖𝑛(𝜃0) + 𝑠𝑖𝑛(ϕ))
, 

as we’re using a grazing incidence angle (𝜃0 ≈ 𝜋 2⁄ ), we can approximate the last 

equation to:  

(
∆𝜆

𝜆
)
𝐿𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ

𝐿𝑖𝑡𝑡𝑚𝑎𝑛

=
2√2𝜆

𝜋𝑙(1 + 𝑠𝑖𝑛(ϕ))
. 

Equation 3.37 

In this equation, 𝑙 represents the illuminated width of the grating. A larger 

illuminated portion of the grating corresponds to a smaller linewidth for the laser. This 

is the most significant achievement of the Littman configuration, as it enables a narrow 

linewidth without the need for additional high-quality intracavity optical elements[24], 

such as beam expander[23], which are required in a conventional Hänsch dye 

laser[22][23]. 

3.3 THE DOUBLE-GRATING CONFIGURATION 

Now, let's investigate a more advanced configuration based on the Littman-

Metcalf design. Initially theorized by Littman[22] and experimentally tested by 

Oppenheim and Shoshan[23], this modification replaces the mirror in the Littman-

Metcalf configuration with another grating. This enhancement brings notable 

improvements to mode stability and provides a broader, continuous tuning range for 

the laser system. Moreover, this refined design ensures reliable operation in a single 

longitudinal cavity mode. Additionally, this configuration offers enhanced conversion 

efficiency when operated in multimode[22]. 

The crucial distinction in this configuration lies in the use of a Littrow grating 

instead of the tuning mirror. A Littrow grating is a standard grating positioned at an 
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angle such that the first-order diffraction reflects and overlaps with the incident beam, 

known as the Littrow condition or Littrow angle. There are two potential scenarios for 

the second grating to meet the Littrow condition, as illustrated by solid and dashed 

lines in Figure 19. Improved operation requires the dispersion of the grazing-incidence 

grating and the dispersion of the Littrow grating to combine. This condition is satisfied 

only in one of the two possible orientations of the Littrow grating, represented by the 

solid lines in Figure 19. However, the dashed configuration offers a reduction in net 

dispersion due to the dispersions of the gratings having opposite signs. 

Figure 19: Double-grating configuration for an ECDL. The laser beam 
has a grazing Incident angle. The period spacing of each grating is 𝒂 

for the incident grating and 𝒃 for the Littrow grating. The tuning is done 
by rotating the Littrow grating. 

 

Source: Author, 2024. 

To find the tunning curve of the double-grating case, we will use the basic 

equations for the diffraction on both gratings:  

𝑚𝜆 = 𝑎(sin(𝜃0)+ 𝑠𝑖𝑛(𝜃1)), 

Equation 3.38 

𝑚′𝜆 = 2𝑏𝑠𝑖𝑛(𝜃2). 

Equation 3.39 

Equation 3.38 gives the condition for the incident grating, and Equation 3.39 for 

the Littrow grating. Here, 𝜃0 is the angle of incidence, 𝜃1 is the angle of the diffracted 

ray and 𝜃2 is the Littrow angle. From now on, we’re assuming that the Littrow grating 
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is in fact at the Littrow angle. Note that we can extract from Figure 19 that 𝜃1 + 𝜃2 = Φ, 

where Φ is the angle between the gratings normals. Then, we can eliminate 𝜃2 from 

Equation 3.39 and substitute the result in Equation 3.38, we can eliminate 𝜃1 as well. 

Therefore, by solving the system we get a quadratic equation in 𝜆 which has as solution 

two possibilities:  

𝜆+ =
(4𝛼 + 2𝛽𝑐𝑜𝑠(Φ)) sin(𝜃0) + 2𝑠𝑖𝑛(Φ)√𝛽2𝑐𝑜𝑠2(𝜃0) + 4𝛼(𝛼 + 𝛽𝑐𝑜𝑠(Φ))

4𝛼2 + 𝛽2 + 4𝛼𝛽𝑐𝑜𝑠(Φ)
, 

𝜆− =
(4𝛼 + 2𝛽𝑐𝑜𝑠(Φ)) sin(𝜃0) − 2𝑠𝑖𝑛(Φ)√𝛽2𝑐𝑜𝑠2(𝜃0) + 4𝛼(𝛼 + 𝛽𝑐𝑜𝑠(Φ))

4𝛼2 + 𝛽2 + 4𝛼𝛽𝑐𝑜𝑠(Φ)
. 

However, only the 𝜆+ solution returns to Equation 3.32 in the case that 𝑚′ = 0, 

that is, if the Littrow grating was acting as a mirror (using its zero-order diffraction). 

Here, 𝛼 = 𝑚 𝑎⁄  and 𝛽 = 𝑚′ 𝑏⁄ . Then our tunning curve is given by:  

𝜆 =
(4𝛼 + 2𝛽𝑐𝑜𝑠(Φ)) sin(𝜃0) + 2𝑠𝑖𝑛(Φ)√𝛽2𝑐𝑜𝑠2(𝜃0) + 4𝛼(𝛼 + 𝛽𝑐𝑜𝑠(Φ))

4𝛼2 + 𝛽2 + 4𝛼𝛽𝑐𝑜𝑠(Φ)
, 

to simplify our calculations, let us consider the case that the diffraction orders and the 

period of the grooves of both gratings are equal, 𝑚 = 𝑚′ and 𝑎 = 𝑏, respectively. Also, 

for the grazing incidence angle case, 𝜃0 ≈ 𝜋 2⁄ , then:  

𝜆 =
(4𝛼 + 2𝛼𝑐𝑜𝑠(Φ)) + 2𝑠𝑖𝑛(Φ)√4𝛼(𝛼 + 𝛼𝑐𝑜𝑠(Φ))

4𝛼2 + 𝛼2 + 4𝛼𝛼𝑐𝑜𝑠(Φ)
, 

𝜆 =
2𝛼(2 + 1𝑐𝑜𝑠(Φ)) + 2𝑠𝑖𝑛(Φ)√4𝛼2(1 + 𝑐𝑜𝑠(Φ))

5𝛼2 + 4𝛼2𝑐𝑜𝑠(Φ)
, 

𝜆 =
2𝛼(2 + 1𝑐𝑜𝑠(Φ)) + 4𝛼𝑠𝑖𝑛(Φ)√(1 + 𝑐𝑜𝑠(Φ))

𝛼2(5 + 4𝑐𝑜𝑠(Φ))
, 

𝜆 =
4 + 2𝑐𝑜𝑠(Φ) + 4𝑠𝑖𝑛(Φ)√(1 + 𝑐𝑜𝑠(Φ))

𝛼(5 + 4𝑐𝑜𝑠(Φ))
, 

finally:  
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𝜆𝐷𝐺 =
𝑎

𝑚

[
 
 
 4 + 2𝑐𝑜𝑠(Φ) + 4𝑠𝑖𝑛(Φ)√(1 + 𝑐𝑜𝑠(Φ))

(5 + 4𝑐𝑜𝑠(Φ))
]
 
 
 

. 

Equation 3.40 

Where in 𝜆𝐷𝐺, DG stands for Double Grating. For a grazing incident grating, the 

single-grating configuration yields the tuning curve:  

𝜆𝑆𝐺 =
𝑎

𝑚
[1 + 𝑠𝑖𝑛(Φ)]. 

Where in 𝜆𝑆𝐺 stands for Single Grating. Plotting both curves, double and single 

grating, we have: (10−6)   

Figure 20: Tuning curve for single and double grating laser using 2400 
lines/mm gratings. The blue curve corresponds to double-grating 
design and the golden curve, the single-grating design. Plot has been 

done in the domain of −
𝝅

𝟐
≤ 𝚽 ≤ 𝝅. 

 

Source: Author, 2024. 

In both tuning curves, the original single-grating design and the double-grating 

design are shown for the case of 2400 lines/mm gratings used in first order. From this 

figure, we can infer that the double-grating configuration has the advantages of a less-

steep turning curve and a broad, nearly linear region. An expression for the single-

pass linewidth (bandwidth) of the double-grating laser can be obtained from Equations 

3.38 and 3.39. For the case when 𝑎 = 𝑏 and 𝑚 = 𝑚′, we have:  
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𝑚𝜆 = 𝑎(sin(𝜃0)+ 𝑠𝑖𝑛(𝜃1)), 

𝑚𝜆 = 2𝑎𝑠𝑖𝑛(𝜃2), 

using the equation for the bandwidth[25]: 

∆𝜆 = √(∆𝜆𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑔𝑙𝑒)
2
+ (∆𝜆𝑒𝑥𝑖𝑡 𝑎𝑛𝑔𝑙𝑒)

2
, 

the input angle is given by 𝜃0 and exit angle is given by 𝜃2: 

∆𝜆 = √(
𝜕𝜆

𝜕𝜃0
Δ𝜃𝑖𝑛𝑝𝑢𝑡)

2

+ (
𝜕𝜆

𝜕𝜃0
Δ𝜃𝑒𝑥𝑖𝑡)

2

, 

where Δ𝜃𝑖𝑛𝑝𝑢𝑡 and Δ𝜃𝑒𝑥𝑖𝑡 are the beam spread during the travel from the first grating to 

the second. It is possible to show that[22]: 

(
∆𝜆

𝜆
)
𝐿𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ

𝐷𝑜𝑢𝑏𝑙𝑒−𝑔𝑟𝑎𝑡𝑖𝑛𝑔

=
4√2

𝜋𝑙

[
 
 
 
 
 
 2𝛼 + 𝛽𝑐𝑜𝑠(Φ) −

𝛽2𝑠𝑖𝑛(Φ)𝑠𝑖𝑛(𝜃0)

√𝛽2𝑐𝑜𝑠2(𝜃0) + 4𝛼(𝛼 + 𝛽𝑐𝑜𝑠(Φ))

𝛽2 + 4𝛼2 + 4𝛼𝛽𝑐𝑜𝑠(Φ)

]
 
 
 
 
 
 

. 

Equation 3.41 

Equation 3.41 is valid in the limit that the distance between the active medium 

and the grazing-incidence grating is equal to the Rayleigh length. In the special case 

when 𝑚 = 𝑚′, 𝑎 = 𝑏, and 𝜃0 ≈ 𝜋 2⁄ , the equation simplifies to:  

(
∆𝜆

𝜆
)
𝐿𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ

𝐷𝑜𝑢𝑏𝑙𝑒−𝑔𝑟𝑎𝑡𝑖𝑛𝑔

=
4𝑎√2

𝑚𝜋𝑙

[
 
 
 
 
 2 + 𝑐𝑜𝑠(Φ) −

𝑠𝑖𝑛(Φ)

2√(1 + 𝑐𝑜𝑠(Φ))

5 + 4𝑐𝑜𝑠(Φ)

]
 
 
 
 
 

. 

Equation 3.42 

Having the expression for the linewidth in both cases, single and double grating, 

in hand, we can compare them in a graph of ∆𝜆 𝜆⁄  versus the rotation angle.  
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Figure 21: Graph of ∆𝝀 𝝀⁄  versus rotation angle, 𝚽, for single and 

double-grating laser using 𝒍 = 𝟒 cm wide 2400-lines/mm gratings. Blue 
curve corresponds to double-grating design, and the golden curve 
represents the single-grating laser, 𝒎′ = 𝟎. 

 

Source: Author, 2024. 

We note that the double-grating arrangement provides a single-pass linewidth 

that can be almost twice as narrower than that of the single-grating design. Other way 

to interpret this result is that for operation with a given linewidth, the new design 

requires a smaller value of 𝜃0. By decreasing 𝜃0 we can effectively decrease the 

illuminated length of the incident grating, 𝑙, which results in an increased spectral width. 

This last point is significant regarding conversion efficiency for multimode operation, 

since the off-Littrow grating losses increase dramatically as 𝜃0 approaches 𝜋 2⁄ .  

For single-mode operation of the double-grating laser, several parameters must 

be carefully determined. First, it is necessary to shrink the cavity length (diode till 

incident grating) as much as possible so that the free spectral range (FSR) between 

adjacent cavity modes is large. A consequence of reducing the spacing between the 

output mirror and the diode is increased background fluorescence. 
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4 RESULTS AND DISCUSSION 

In this chapter, I will present the construction of an External Cavity Diode Laser 

(ECDL) and the characterization of a Fabry-Perot Cavity using a commercial diode 

laser. 

4.1 ECDL 

As an ECDL is sensible as to current and temperature, its construction must 

have strict control over them. For that, it was done by two controllers from Thorlabs, 

the LDC240C for current and the TED200C for temperature. To accomplish the 

construction it was used, a tunable diode laser (M9-A64-0200), an adjustable 

collimation tube (LTN330-C), a 12.7mm squared diffraction grating (GR13-1210), a 

PZT (PA3JEW), two 12.7mm mirrors (BB05-E03), two mirror mounts, a temperature 

sensor (AD592ANZ To-92), a 10 𝑘Ω thermistor, a Peltier tablet (TEC1-12706). Besides 

these components, there were some homemade pieces, such as the copper case for 

the diode, the aluminum platforms, two 1D translators, and the acrylic box where the 

system was mounted. 

The construction started with an 8mm thick acrylic box without the bottom and 

was replaced by a 19mm thick aluminum plate to serve as the thermal reservoir for 

temperature stabilization. See figure 22. 

 

 

 

 

 

 

 

 

 

 

https://www.thorlabs.com/thorproduct.cfm?partnumber=LDC240C
https://www.thorlabs.com/thorproduct.cfm?partnumber=TED200C
https://www.thorlabs.com/thorproduct.cfm?partnumber=M9-A64-0200
https://www.thorlabs.com/thorproduct.cfm?partnumber=LTN330-C
https://www.thorlabs.com/thorproduct.cfm?partnumber=GR13-1210
https://www.thorlabs.us/thorproduct.cfm?partnumber=PA3JEW
https://www.thorlabs.com/thorproduct.cfm?partnumber=BB05-E03
https://www.pontodaeletronica.com.br/circuito-integrado-ad592anz-to-92.html?srsltid=AfmBOor4udL0ADAF_sPANeG_8AwLKT3WmyFYfYo0BTCe3h6GSWq6OwRD
https://produto.mercadolivre.com.br/MLB-3387943126-pastilha-placa-peltier-tec1-12706-bebedouro-40-x-40mm-12v-_JM?matt_tool=38545640&matt_word=&matt_source=google&matt_campaign_id=22090354508&matt_ad_group_id=173090615236&matt_match_type=&matt_network=g&matt_device=c&matt_creative=727882733517&matt_keyword=&matt_ad_position=&matt_ad_type=pla&matt_merchant_id=736911513&matt_product_id=MLB3387943126&matt_product_partition_id=2387478591827&matt_target_id=aud-1966857867496:pla-2387478591827&cq_src=google_ads&cq_cmp=22090354508&cq_net=g&cq_plt=gp&cq_med=pla&gad_source=1&gclid=CjwKCAiAtYy9BhBcEiwANWQQLy5qz0tEjNlBbE-u94PINi4cZZ9BtQy-t5dJtscNIUcW_a97NlRwcxoCHRcQAvD_BwE
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Figure 22: acrylic box and thermal reservoir. The acrylic box is made 
with 8 mm thick acrylic with dimensions of 131mm by 131 mm and 80 
mm in height, all external measures. The thermal reservoir is made of 
a high-density aluminum block with dimensions of 115 mm by 115mm 
and 19 mm in height. The box is made of independent acrylic plates, 
which are put together by M3 millimetric screws, and the box is also 
fixed to the aluminum block by these screws. 

  

Source: Author, 2025. 

After that, the Peltier should be put on the thermalization platform with the 

cooling side up, which can be found by simply giving tension and checking which side 

heats or cools. Above the Peltier, we put the copper structure that will hold the diode, 

the thermistor, and the temperature sensor. Let’s define this structure as the diode 

thermalization housing (DTH). As the DTH should stabilize the diode temperature, 

copper was chosen over aluminum because of its better heat conductivity. 

Furthermore, stabilization would work more efficiently as the diode thermalization 

housing weighs less, then instead of a block of copper, it had as many extremities 

removed as possible. In doing so, the volume is reduced by 5.6%. The scheme of the 

diode thermalization housing is in figure 23. 
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Figure 23: Scheme with the structure of the thermalization housing and 
its dimensions with front, back and up views. The four M4 screw holes 
are designed to securely fasten the structure to the aluminum block, 
ensuring precise horizontal and vertical alignment. The two holes in 
the upper side of the case are used to fasten tightly the collimation 
tube to the structure. 

 

Source: Author, 2025. 

The DTH, is placed above the Peltier and it is placed on an aluminum block, 

which is placed over the thermal reservoir, as shown in the next figure. 

Figure 24: side view of the DTH, Peltier and Fixating aluminum block 
put together and fastened to the thermal reservoir. 

 

Source: Author, 2025. 
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With the DTH placed as shown in figure 24, the temperature control must be 

tested. The temperature sensor and the thermistor are placed inside the DTH and have 

their terminals soldered to the Db9 female connector through wires as indicated by the 

temperature controller manual. Using the controller, the first thing to do is adjust the 

controller’s PID so the actual temperature oscillates around the set temperature no 

more than twice. The whole process of thermalization, after PID adjustment, took 

around 2 minutes. After the temperature control, the laser current control must be set 

as well. After that, we soldered the terminals of the diode and the LED to the Db9 male 

connector as the current controller indicates in its manual. Next, a small current is given 

to the diode, and a NIR card is used to check if the diode is operating correctly. Then, 

the PID of the temperature controller should be re-adjusted because there is a 

temperature rise, as the diode operates. 

The laser’s collimation must be adjusted as well. Then, the next step is to plot 

the curve of power versus current before the introduction of the grating. The results 

are in the figure below. 

Figure 25: Power x current graph for the ECDL without introducing the 
grating (blue solid line). The threshold current found by plotting the 
data with a Python code was 22.50 mA. The maximum current applied 
to the laser was 325 mA, which gave a power of 266 mW.  

 

Source: Author, 2025. 

This first characterization revealed some differences between some of the 

measured parameters and the corresponding values in the datasheet. From datasheet 

information, the typical threshold current should be around 50 mA, a minimum 

threshold value was not informed. However, the measured value was 22.5 mA, 
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considerably smaller. Also, although the maximum current is 350 mA, to avoid 

damaging the laser, the maximum current was set in 325 mA. At this value, the 

maximum power measured was 266 mW, exceeding the expected maximum power of 

200 mW, from the datasheet. 

The laser’s spectrum should be the second parameter to be measured before 

the grating introduction. A spectrometer (HR4000) from Ocean Optics, with an optical 

resolution of 0.03nm, was used. By using a Python code, the central spectrum 

wavelength was found by simply determining the wavelength that corresponds to the 

maximum spectrum intensity. Moreover, the laser presented additional peaks in the 

spectrum for current values near the current threshold, 30.3 mA, and near the 

maximum current, 300.8 mA. The additional peaks were not static, they appeared and 

disappeared constantly. For current values around 150.2 mA, the spectrum did not 

show additional peaks and had a smaller laser linewidth. For current values greater 

than 230 mA, secondary and tertiary peaks started to appear again. The spectrum for 

each current value is plotted in the figure below. 
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Figure 26: Laser’s spectrum (blue solid line) throughout four values of 
applied current. For each graph, there are colored dashed lines 
indicating the central peak wavelength. The spectrum for 30.3 and 
300.8 mA presented peaks for multiple wavelengths, indicating that at 
these currents the laser emitted laser beams with more than one 
principal wavelength value. The peaks are organized from left to right. 
These spectra are for the laser at 20.04ºC. 

 

Source: Author, 2025. 
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The Laser linewidth was only calculated for the first three graphs, due to the last 

spectrum having more than one distinct peak. The error values are the standard error 

of the mean. The laser presented a big variation in its linewidth with the current change. 

From the datasheet, the laser has a spectral bandwidth of 0.5 nm to 2 nm, and the 

FWHM for the first three spectrum are inside this range. 

Progressing with the ECDL construction, we will add the grating. The grating 

coupling type chosen was the Littman-Metcalf configuration due to its theoretically 

better wavelength selectivity and smaller linewidth. The scheme used is given in Figure 

27.  

Figure 27: Littman-Metcalf ECDL configuration scheme. The laser 
output is represented by the solid red arrow, the external cavity is 
composed of Path 1, Path 2 and the length the laser travels inside the 
collimation tube till the diode. The grating is placed with its normal 
vector pointing 74º to the incident laser path. The laser beam leaves 
the grating at a tilted angle, that is corrected by the second mirror. 

 

Source: Author, 2025. 

The beam leaves the collimation tube with an elliptical shape with a waist of 1 

mm horizontally and 0.5 mm vertically. From Equation 3.36 the Rayleigh length, that 
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is, the distance between the grating and diode that gives the smaller linewidth of the 

Littman configuration, is 𝐿𝑅 ≈ 3 mm. The distance between the grating and diode is 

about 32.7 mm. The actual distance is approximately 10.9 times the Rayleigh length. 

This was the smallest distance possible considering that the laser’s beam should not 

be partially blocked in Path 2. 

With the setup mounted, the first data to be acquired is the power versus current 

curve, to verify if the laser is functioning properly.  

Figure 28: Power x current graph for the ECDL with introducing the 
grating (blue solid line) at 74º to the laser incident axis. The threshold 
current found by plotting the data with a Python code was 17.50 mA. 
The maximum current applied to the laser was 325 mA, which gave a 
power of 157 mW. 

 

Source: Author, 2025. 

From figures 25 and 28, there are differences between the curves with and 

without grating, the first one to analyze is the laser’s power. After grating, the laser 

power was reduced to 54.04% of the value without the grating, as seen in Figure 29. 

 

 

 

 

 



83 
 

 

Figure 29: Comparison of the output power of the laser with grating 
(ochre solid line) and the laser without grating (blue solid line) and its 
respective threshold current. 

 

Source: Author, 2025. 

Another of the changes induced by the grating presence is the threshold current 

modification for a smaller value. It was measured to be a reduction of 5 mA in the 

threshold current, as seen in Figure 30.  

Figure 30: Reduction of the laser’s threshold current from 22.50 mA 
(red dashed line) for the laser without grating (blue solid line) to 17.50 
mA (green dashed line) for the laser with grating (ochre solid line). 

 

Source: Author, 2025. 
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The last parameter to compare was the laser linewidth. The data was collected 

for 3 currents for the spectrum: 24.8 mA (above threshold), 150.2 mA, and 300.8 mA 

(below maximum current). The system was kept at the same temperature, 20.04ºC. 

With the grating, the central wavelength stayed at 1057.17 nm. 

From Equation 3.37 we can estimate the linewidth of the Littman configuration. 

The 𝑙 parameter in Equation 3.37 is the illuminated length of the grating, with an angle 

of 74º. The grating had its horizontal axis fully illuminated by the incoming laser beam. 

The angle between the first diffraction order and the grating normal vector was 22º. 

Then the predicted Littman linewidth would be 0.0059 nm, which the spectrometer 

does not have resolution to measure. 

 The best configuration we got was with the spectrometer data. Making an 

average over the data spectrum for 150.2 mA, the linewidth with grating found was 

1.03 ± 0.03 nm, where the error is the standard error of the mean. This value is 

approximately 14% greater than the value without grating. 

Figure 31: FWHM of the ECDL with grating at 20.04ºC and applied 
current of 150.2 mA. 

 

Source: Author, 2025. 

This value in frequency can be found through the equation ∆𝜈𝐹𝑊𝐻𝑀 = (𝑐 𝜆0
2⁄ )∆𝜆𝐹𝑊𝐻𝑀, 

that yields to a frequency of 276 GHz, which is very high. This measurement is limited 

by the spectrometer resolution. The best way to measure this parameter is to build a 

beat signal between this laser and another more stable, with similar wavelength and a 
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known linewidth. However, there was not a laser with these characteristics available, 

and the correct value could not be found. 

The last step in this initial characterization is to measure how the wavelength 

behaves to changes in the system temperature. To do so, it was used a wavemeter, 

the Bristol 621 Wavelength Meter. The results are discussed below. 

Figure 32: Relation of the current to the wavelength at 20.04ºC. The 
graph is divided into two regimens to ease the understanding. The 
graph presents plateaus where the laser mode is kept constant and 
slopes that represent regions of instability, where mode hops occur.  

 
Source: Author, 2025. 

First, it is possible to recognize regions of stability in the laser’s wavelength, the 

plateaus, which do not have mode hops, which means the laser’s wavelength is 

approximately constant. The slopes represent regions with laser’s wavelength (and its 

frequency) instabilities, which do occur mode hops, which means changes in the 

wavelength, discontinuously and abruptly, and cannot be controlled.  

It is worth mentioning that the laser works till the current of 325 mA, but the 

graph only goes to 120 mA. That occurs because for currents above 120 mA, it 

presents only unstable wavelength regions. After this instability, the laser could not be 

stabilized, even after months of tries, the stability accomplished was brief and smaller 

than needed. This graph should be repeated more times at different temperatures to 

keep track of the wavelength variation it produces. However, it was not possible to 

keep the laser’s wavelength stable for any value of temperature from 18ºC to 30ºC.  
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The wavelength (frequency) stability is mandatory to couple the laser to a Fabry-

Perot cavity. The experiment could not be continued with this laser, and an alternative 

should be presented to continue the experiment. The only suitable solution, with little 

time left to complete the master’s degree, was to use a commercial single-frequency 

laser, which the process is described in the next subchapter.  

4.2 COMMERCIAL SINGLE FREQUENCY LASER 

Let's begin with the description of the laser. The chip used was the QFBGLD-

1060-40 from QPHOTONICS, with a 14-pin butterfly case. The laser was set to work 

at 25ºC and controlled by the Benchtop Laser Controller EM595 from Gooch & 

Housego. The laser fiber is connected to a collimation mount composed of one 

FC/APC Fiber Adapter Plate (SM1FCA), which is inserted in a cage plate (CP02T/M) 

and connected to a Z-Axis Translation Mount with millimetric adjust (SM1ZA) and 

inside it a collimation lens (A260TM-C) is put using a Lens Cell Adapter (S1TM09). 

This entire structure is mounted over a Kinematic Prism Mount (KM100PM/M). After 

collimating the laser beam, the first step is to verify if the laser behaves properly by 

plotting the curve of Power versus Current. 

Figure 33: Plot of the laser power by the applied current. From the 
plotting it was possible to determine the threshold current of the laser 
to be 𝑰𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 20.00 mA, indicated by the ochre dashed line. after a 

certain current value of 𝑰𝒎𝒂𝒙𝒊𝒎𝒖𝒎 = 140.00 mA, the laser does not 
behave properly anymore, that will be the maximum current limit for 
the laser.  

 

Source: Author, 2024. 

https://www.thorlabs.com/thorproduct.cfm?partnumber=SM1FCA#ad-image-0
https://www.thorlabs.de/thorproduct.cfm?partnumber=CP02T/M
https://www.thorlabs.com/thorproduct.cfm?partnumber=SM1ZA
https://www.thorlabs.com/thorproduct.cfm?partnumber=A260TM-C
https://www.thorlabs.com/thorproduct.cfm?partnumber=S1TM09
https://www.thorlabs.com/thorproduct.cfm?partnumber=KM100PM/M
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From this data, there was some information that differed from what was in the 

laser’s datasheet. First, from the datasheet, the threshold current should be 70 mA, 

which is 50 mA above the threshold current measured. Besides that, the datasheet 

brings an operating current up to 245 mA, but there is an unstable regime after 140 

mA, and the current shall not pass this limit. The next step is measuring the laser’s 

spectrum. For that, the Ocean Optics spectrometer HR4000 was used. By using 

Python code, it was possible to find the central spectrum wavelength by simply 

determining the wavelength that corresponds to the maximum spectrum intensity. 

Then, making an average, the average central wavelength found was 𝜆0 = 1063.27 ±

0.01 nm, where the error is the standard error of the mean. The spectrum plot is given 

in Figure 34. 

Figure 34: plot of the laser spectrum for a current of 50 mA, blue solid 
line, so that the spectrometer is not saturated and does not need an 
intensity filter. Central wavelength is given by the ochre dashed line. 

 

Source: Author, 2025. 

Furthermore, by zooming in the graph, it was possible to find the FWHM of the 

laser spectrum. Once again, making an average over the values, the average FWHM 

found was ∆𝜆𝐹𝑊𝐻𝑀 = 1.00  nm, as indicated by the black horizontal line. We can 

transform the FWHM from wavelength to frequency by a derivative on 𝜈 = (𝑐 𝜆⁄ ) and 

getting ∆𝜈𝐹𝑊𝐻𝑀 = (𝑐 𝜆0
2⁄ )∆𝜆𝐹𝑊𝐻𝑀. It yields a FWHM in frequency of over 265 GHz. 

From the datasheet, the FWHM in frequency should be typically 1 MHz up to 10 MHz 

at maximum. These values correspond to a FWHM in wavelength of about 0.377 
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femtometer to 3.77 femtometer, which the spectrometer does not have resolution to 

measure. That explains the difference between the values expected and found. 

4.2.1 FABRY-PEROT CAVITY COUPLING AND CHARACTERIZATION 

The characterization of a Fabry-Perot cavity is done by measuring some 

properties, such as cavity finesse, cavity FSR, the mirrors reflectivities, the photon 

lifetime, and its quality factor. These properties can be measured, directly or indirectly, 

by the transmission signal of the cavity. 

First, we want to construct an ECDL and use an ultra-high finesse Fabry-Perot 

ULE to characterize it. As seen in topic 4.1 (ECDL) from the RESULTS AND 

DISCUSSION, the ECDL presented instability due to the quality of the diode used, 

making the laser not suitable for locking it at the ultra-finesse cavity. The solution to 

this problem was to use the commercial single-frequency laser, QFBGLD-1060-40 

from QPHOTONICS. This laser, even though it was single frequency, was capable of 

modulating its frequency for a few kilohertzs. However, the ultra-stable cavity had a 

FSR of 1.5GHz and the modulation was not enough for the coupling. The solution was 

to use a low-finesse homemade Fabry-Perot interferometer. 

The homemade cavity has a PZT behind one of its mirrors, allowing it to change 

the cavity length and, therefore, change its FSR. As we scam the PZT, we can measure 

the fundamental transmission in the oscilloscope. The laser frequency does not 

change. If the laser frequency peak is originally close enough to one of the fundamental 

cavity resonance peaks, the modulation of the cavity will force a superposition between 

the bandwidths, which gives the same result as modulating the laser frequency. 

This superposition will allow a transmitted signal that can be analyzed, however, 

it will not approach the same intensity as the incident beam, as expected by coupling 

the cavity with a tunable laser. The cavity scheme is illustrated in Figure 35. 
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Figure 35: Scheme of the Fabry-Perot interferometer. The mirrors used 
were the CM254P-025-E03 from Thorlabs, with a 12mm diameter and 
50mm curvature radii. The mirror center was 1.6mm deeper than its 
borders. There was no information about the PZT used, but its 
dimensions were 8mm in height and 16mm in external diameter, it was 
a ring PZT. The separation cylinder was 68mm in height. The distance 
between the mirrors was 50.2mm.  

 

Source: João Guilherme, 2024. 

We can estimate some parameters of the cavity to compare to the measured 

ones. The first parameter is the FSR, FSR = 2985.98 MHz, by using Equation 2.11. 

The reflectivity used was found in the datasheet. The fabricant gives the raw data for 

plotting the reflectance versus the laser wavelength. With a Python code it was 

possible to locate in the curve the value of the reflectance for the wavelength found for 

the laser, as shown in Figure 36. 

 

 

 

 

 

 

 

 

https://www.thorlabs.com/thorproduct.cfm?partnumber=CM254P-025-E03
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Figure 36: reflectance of the concave mirror used to build up the Fabry-
Perot interferometer (blue solid line). The vertical ochre dashed line 
marks the wavelength value. Finding the corresponding value at the 
reflectance curve showed a value of 99.750% reflectance. 

 

Source: Author, 2025. 

With the extracted reflectance of ℝ = 0.9975 and using Equation 2.12, the 

finesse value of ℱ = 1255. The photon lifetime can be found using Equation 2.22 for a 

lossless case, then:  

1

𝜏𝑐
= −

ln(ℝ1ℝ2)

𝑡𝑅𝑇
. 

Since the mirrors used to build the cavity are identical, ℝ1 = ℝ2 = ℝ. The round-

trip time, 𝑡𝑅𝑇, can be found by dividing twice the cavity length by the speed of light, 

then:  

1

𝜏𝑐
= −

299792458 ∙ ln(0.99752)

2 ∙ 50.2 ∙ 10−3
= 1.4948 ∙ 107 𝑠−1. 

Then 𝜏𝑐 = 66.9 nanoseconds. The quality factor for this value 𝜏𝑐 can be found 

using Equation 2.17, where 𝒬 = 1.18 ∙ 108. Also, it is possible to estimate the linewidth 

of the cavity by using Equation 2.13, which yields ∆𝜈𝐹𝑊𝐻𝑀 = 2.38 MHz. We show these 

parameters at Table 4.1.  

 

 

 



91 
 

Table 4.1: Theoretical Fabry-Perot Interferometer Parameters. 

 
Source: Author, 2025. 

With these theoretical values, the next step is to measure the actual data to 

compare. We are going to start with the experimental setup used. With the same 

collimation mount described on the first paragraph of section 4.2 (COMMERCIAL 

SINGLE FREQUENCY LASER). A Free Space Optical Isolator (IO-D-1064-VLP) was 

placed before any other equipment, to prevent any reflected light from entering the 

fiber and causing instability to the laser. Then there was a polymer halfwave plate 

(WPH05ME-1064), a Polarizing Beam Splitter and a PBS (PBS125) mounted on a 

kinematic prims mount (KM100PM). The halfwave plate and the PBS control the laser’s 

polarization and helps to align the cavity reflected beam. The PBS output was the p-

polarized beam and the halfwave plate maximized this component. 

A telescope was introduced after the PBS to reduce the beam diameter. The 

telescope was made with two lenses, one of 50 mm (the objective) and a 30 mm (the 

ocular) spaced 80 mm apart from each other. The diameter of the beam was reduced 

from approximately 1.5 mm to approximately 1 mm. Then, a polymer zero-order 

quarter-wave plate (WPQ10E-1064) is placed to control the reflected beam 

polarization. The polarization was cleaned by the PBS, so the quarter-wave plate 

placed at the entrance of the cavity works as a half-wave plate (the beam passes 

through it twice), then it is possible to make the polarization of the reflected beam 

change from p-polarized to s-polarized and be reflected at the PSB. After the laser 

passes the quarter-wave plate, the beam finally enters the cavity. The experimental 

setup is illustrated in Figure 37.  

 

 

 

Parameter Value 

Cavity Length (L) 50.2 mm 

Free Spectral Range (FSR) 2985.98 MHz 

Reflectance ( ℛ ) 0.9975 

Finesse ( ℱ) 1255 

Photon Lifetime (𝜏𝑐)   66.9 ns 

Quality Factor ( 𝒬) 1.18 ∙ 108 

Linewidth (∆𝜈𝐹𝑊𝐻𝑀) 2.38 MHz 

https://www.thorlabs.com/thorproduct.cfm?partnumber=IO-D-1064-VLP
https://www.thorlabs.com/thorproduct.cfm?partnumber=WPH05ME-1064
https://www.thorlabs.com/thorproduct.cfm?partnumber=PBS125
https://www.thorlabs.com/thorproduct.cfm?partnumber=KM100PM
https://www.thorlabs.com/thorproduct.cfm?partnumber=WPQ10E-1064


92 
 

Figure 37: Experimental setup to couple the commercial laser to the 
homemade Fabry-Perot interferometer. 

 

Source: Author, 2025. 

Before continuing with the experiment, it is necessary to stabilize the cavity by 

reducing mechanical vibrations. To do so, it was ordered another acrylic box, but now 

with an apparatus to absorb the mechanical vibration as well to keep the cavity aligned 

horizontally and vertically since it is crucial for coupling. The next figure contains the 

scheme for it. 
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Figure 38: apparatus to absorb mechanical vibrations and keep cavity 
alignment. There are two layers of rubber sheet, the first layer is placed 
between the lab table and the fixed platform, which absorbs the 
vibrations. The second layer is placed between the platforms and 
absorbs the remaining vibrations from the first layer. The sliding stem 
is used to adjust the cavity height and keep it aligned vertically, helped 
by the millimetric marks in both arms. There is an acrylic box with its 
walls covered inside by black styrofoam and outside with yellow 
Ethylene Vinyl Acetate (EVA), to block light from entering and 
vibrations from air. There is a slit in the acrylic box for the laser and 
on the box lid for the camera (or detector) wires and on one of the sides 
for the PZT wires.  

 

Source: Author, 2025. 

We must mode-match the laser beam to the cavity in order to couple light into 

it. That can be accomplished by introducing a lens before the cavity entrance. 

However, this lens must have its focus and distance from the cavity center calculated. 

To do so, first we shall find the cavity ABCD matrix. To do so, the laser’s path gives us 

the interactions relevant to the resultant matrix. Since the ABCD transfer matrix is given 

by the smallest reproducible cell and the mirrors are identical, the matrix is made of 

the interaction with one mirror and the propagation to the next one.  
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Figure 39: smallest reproducible cell for the ABCD transfer matrix. The 
concave mirror acts the same way as a lens to the ABCD matrix. 

 

Source: Author, 2025. 

[
𝐴 𝐵
𝐶 𝐷

] = [
1 0

−1
𝑓⁄ 1] [
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[
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] 

Knowing that[29]: 

𝜋𝜔0
2

𝜆0
=

𝐵

√1 − (
𝐴 + 𝐷

2 )
2

=
𝑑

√1 − (
2𝑓 − 𝑑

2𝑓
)
2

 

Equation 4.1 

and[16][29]: 

𝑅 =
2𝐵

𝐷 − 𝐴
= −2𝑓. 

Equation 4.2 

 

Where 𝜔0 is the beam waist at the cavity focus (at its center) and R is the radius 

of curvature of the wavefronts to couple with the cavity. With the cavity properties, we 

have 𝜔0 ≈ 0.130 mm of waist at focus and 𝑅 = −50 mm. These values correspond to 

the cavity, to find the focus of the lens that will reproduce this behavior we can use[30]:  

2𝜔0 = 
1.22𝜆0𝑓

2𝜔
 , 

where 𝜔 is the beam waist at the lens. This yields value for the focus of 𝑓 = 201.5 mm. 

As displayed in Figure 40.  
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Figure 40: scheme of the correct lens to mode-match the cavity with 
the laser wavefronts. The lens gives the laser a wavefront of R = 50 
mm, which matches the curvature of the cavity mirrors and provides 
the laser waist required. The values f and r are the focus and mirror 
curvature. 

 

Source: Author, 2025. 

Besides that, by calculating the Rayleigh length, we would have an acceptable 

range, where the focus can deviate without compromising the desired behavior. For 

this focus, the length is 𝑧𝑅 = 𝜋𝜔0
2 𝜆0⁄ = 50.2 mm. Then using a lens with a focus from 

150 mm to 250 mm should be fine. Before continuing, we must check the general 

condition for stability for the cavity, given by[29]: 

0 ≤
𝐴 + 𝐷 + 2

4
≤ 1. 

Substituting the values we get a value of 0.498, which is inside the region for 

stability, confirming that the cavity is stable. The lens used had a focus of 200 mm. It 

is important to notice that the focus of the lens must coincide with the focus of the 

cavity, so the distance of 200 mm is to the center of the cavity, not to its entrance. It is 

useful to put this lens on a translator to have better control over the distance it is placed.  

Settled the experimental setup, the next step is the alignment. Setting every 

optical component to have its middle at the same height should guarantee that the 

laser beam hits the mirror cavity at its center. The laser’s wavelength was in the Near 

Infrared (NIR) spectrum, so an IR viewer was needed. The reflected beam must be 

antiparallel to the incident beam, superposed. Hence, it is impossible to distinguish 

between them, so the quarter-wave plate is essential here because, with the s-
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polarized and proper alignment, the output of the PBS should show the reflected beam, 

which must be collimated.  

With this pre-alignment, a camera (CS165MU1/M) was put on the back of the 

cavity. Here the layers on the inside and outside walls were essential to block any 

external light. The output signal on the oscilloscope was on a scale of 2 mV per 

division. To see it with the camera, we needed to use it with maximum gain. If the pre-

alignment is well done, with modulating the cavity’s PZT it would be possible to already 

see higher cavity modes on the camera. The PZT modulation was done using a 

waveform generator from SIGLENT Technologies (SDG1032X) connected to an 

amplifier (HVA200). With this modulation, it was possible to see higher Gaussian 

modes without changing the alignment. The alignment was done with mirrors M1 and 

M2.  

Figure 41: some of the Gaussian cavity modes. The first line is closer 
to a rectangular symmetry (Hermite-Gauss modes) and the second line 
is closer to a cylindrical symmetry (Laguerre-Gauss modes). 

 

Source: Author, 2025. 

From Figure 41, we can distinguish two kinds of cavity modes. These changes 

in the symmetry are due to some little imperfections on the mirror and misalignment 

along the procedure. Besides that, generally, the modes are not pure, and usually, they 

are the result of the sum of more than one mode.  As the Gaussian mode approaches 

the fundamental mode, the intensity the camera captures grows and the need for the 

camera gain decreases. We changed the camera by a detector when the fundamental 

mode is achieved. 

Since the expected signal should be weak, the detector used was the Si 

avalanche photodetector (APD130A/M) from Thorlabs. The oscilloscope (DSO7104B) 

read the photodetector signal. By modulating the PZT, the transmitted signal should 

https://www.thorlabs.com/thorproduct.cfm?partnumber=CS165MU1/M
https://siglentna.com/product/sdg1032x/
https://www.thorlabs.com/thorproduct.cfm?partnumber=HVA200
https://www.thorlabs.com/thorproduct.cfm?partnumber=APD130A/M
https://www.keysight.com/br/pt/support/DSO7104B/oscilloscope-1ghz-4-analog-channels.html
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display two peaks for each upward or downward part of the modulation ramp. The 

presence of smaller peaks indicates that the laser coupling is not purely at the 

fundamental mode, but there are also higher modes with a weaker coupling. The goal 

is to reduce these higher modes as much as possible. If the oscilloscope read shows 

only one peak per upward (downward) ramp, changing the parameter of the 

modulation such as a DC offset and amplitude can help solve this problem. 

The coupling achieved was not purely at the fundamental mode, instead, the 

acquired one had some higher mode that could not be extinguished. This may happen 

because the modulation was done by the cavity’s PZT and not at the laser frequency. 

The transmitted signal is displayed in Figure 42.  

Figure 42: cavity’s transmitted signal (blue solid line) for a modulation 
ramp (ochre solid line) of amplitude of 100 volts and repeat frequency 
of 1 Hz applied to the PZT. Alongside the fundamental mode (bigger 
peaks), there are two other higher modes (smaller peaks). 

 

Source: Author, 2025. 

Although it was possible to see the fundamental mode peaks, its power was 

weak. From the photodetector datasheet, we can estimate the power of the 

fundamental mode peak, for a set of data the average power found was around 15.8 

nW, in comparison to 30 mW of cavity incident laser intensity. The output intensity of 

the cavity was 2 ∙ 106 smaller than the input. That could indicate that even though the 

cavity is being modulated, the modulation is not enough to make the cavity resonance 

come near the laser peak. Another signal’s characteristic was that the peaks were not 

static, they changed positions, including concerning each other, and height, this can 

also indicate an instability in the cavity, due to the cavity not being locked. 
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To find the cavity’s finesse, we used its definition of FSR divided by FWHM. The 

FSR is the separation between two consecutive fundamental modes at the same 

upward (downward) ramp, and it was easy to find by Python code. The FWHM was 

obtained by a curve fit. As seen in section 2.1.1.1 (Lossless Fabry-Perot Cavity), near 

the resonance, the transmitted signal follows a Lorentzian. Then a Lorentzian fit makes 

it possible to find the FWHM, where:  

𝐿(𝑡) =
𝐴 ∙ 𝑤𝑖𝑑2

(𝑡 − 𝑏)2 + 𝑤𝑖𝑑2
+ 𝐷𝐶𝑜𝑓𝑓𝑠𝑒𝑡, 

here, the parameter b gives the t value for the peak, A is the amplitude, the wid is the 

Half Width at Half Maximum and the 𝐷𝐶𝑜𝑓𝑓𝑠𝑒𝑡 is usually given by the natural DC that 

comes from the detector. Then the FWHM is given by 𝐹𝑊𝐻𝑀 = 2 ∙ 𝑤𝑖𝑑. To find the 

finesse, we used more than 400 collected peaks and made an average over them. The 

higher modes can create problems when fitting the data, then they need to be out of 

the t range for the fitting. 

Figure 43: A peak to represent the value of the average finesse and the 
Lorentzian fit. For this figure we used the second fundamental peak 
(ochre solid line) from Figure 42 as an example. The blue points 
represent the data that were used to make the fitting. The finesse 
displayed is an average of over 434 peaks, the error is the standard 
error. 

 

Source: Author, 2025. 

The finesse value found was 720 ± 16, approximately 0.57 of the theoretical 

value. This difference can be explained by cavity losses not accounted by the initial 

theoretical prediction. Another way to measure the cavity’s finesse is through the 

photon lifetime. To find the photon lifetime, the cavity should be locked to the laser, 
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however, due to short time and lack of equipment, the locking was not possible. 

Instead, a DC offset was chosen by hand to maximize the cavity’s output. 

Nevertheless, the output did not hold continuously and had a noisy pattern, which 

sometimes showed peaks. 

To determine the photon lifetime, we can find an exponential decay time from 

the photodetector, to see how long it naturally takes to diminish the signal. To do so, 

we used a chopper (SR540) from Stanford Research Systems set to work at a 

frequency of 50Hz. To find the photodetector parameter we put the proper filter so it 

did not saturate. We plotted a monolog scale graph to find the time constant and did a 

linear fit at the exponential part with a form of 𝑦 = 𝑎 ∙ 𝑥 + 𝑏. The time constant was 

given be the inverse of the slope. The average time constant for the photodetector was 

145.25 ± 0.01 𝜇𝑠, where the error is given by the standard error. 

For the cavity’s photon lifetime, a monolog-scaled graph would not give any 

useful information due to noise. Therefore, a different fit was done, using the following 

curve: 

𝑦 = {

𝑎 𝑓𝑜𝑟 𝑡 < 𝑐

𝑏 + (𝑎 − 𝑏) ∙ 𝑒𝑥𝑝 (−
(𝑡 − 𝑐)

𝜏
)  𝑓𝑜𝑟 𝑡 ≥ 𝑐

 , 

Equation 4.3 

where “a” is the average value of the higher plateau, “b” is the average value of the 

lower plateau, “c” is the transitional time when the curve changes from a constant to 

an exponential and 𝜏 is the time decay constant. A Python code adjusted the 

parameters to better fit the data. The average value for the time constant with the cavity 

was 145.30 ± 0.1 𝜇𝑠. Where the error is given by the standard error of the mean. The 

curve and the fit are in Figure 44. 

 

 

 

 

 

https://alltest.net/categories/products/SR540-Stanford-Research
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Figure 44: Curve fit to find the exponential decay time with the laser 
passing through the cavity. The data is given by the solid blue line and 
the curve fit by the dashed ochre line. 

  

Source: Author, 2025. 

With both values in hand, to find the photon lifetime we must compare the value 

for the time decay constant with and without the cavity. The decay constant for the 

photodetector alone is the detector’s response. Then subtracting the detector’s 

response from the value found with the cavity, the extra time is the photon lifetime. 

Then, 𝜏𝑐 = 50 ± 0.03 ns. Where the error is given by the error propagation between 

the individual errors. The value is smaller than the predicted value of 66.9 ns. Since 

the finesse was also lower than expected, a smaller value for the photon lifetime is 

consistent. 

With the value for the photon lifetime is possible to find the quality factor. Using 

Equation 2.17, the quality factor found was 8.86 ∙ 107. Since these differences between 

the predicted and measured values can come from the losses at the cavity, we can 

use Equations 2.22 and 2.26 to estimate the propagation-loss coefficient 𝛼𝑝𝑟𝑜𝑝. From 

Equation 2.22: 

1

𝜏𝑐
= −

ln(ℝ1ℝ2)

𝑡𝑅𝑇
+ 𝑐𝛼𝑝𝑟𝑜𝑝 

Since the mirrors are identical ℝ1 = ℝ2 ≡ ℝ. And from Equation 2.26: 
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ℱ𝑙𝑜𝑠𝑠 =
𝜋√ℝ𝑒−

𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

1 − ℝ𝑒−
𝑐𝛼𝑝𝑟𝑜𝑝

𝐹𝑆𝑅

 , 

By the photon lifetime, the coefficient value is 𝛼 = 0.0168 ± 0.0004 𝑚−1 and by 

the finesse value the coefficient is 𝛼 = 0.018 ± 0.003 𝑚−1. Making an average between 

these values we get 𝛼𝑝𝑟𝑜𝑝 = 0.017 ± 0.003 𝑚−1. Where the error is given by the error 

propagation. At last, we can estimate the mirror reflectance by using[14]: 

1

𝜏𝑐
= −

ln(ℝ1ℝ2)

𝑡𝑅𝑇
 

ℝ2 = 𝑒
−

𝑡𝑅𝑇
𝜏𝑐  

Then for a 50 ns photon lifetime, we get a reflectance of ℝ ≈ 0.9966 ± 0.0006, 

the error is given by error propagation. The measured value deviates from the 

estimated value by about 0.09%. Equation 2.27 gives the value for the cavity’s 

linewidth as 4.0 ± 0.7 MHz, where the uncertainty propagation provides the error. The 

estimated and measured values of the parameters are in Table 4.2. 

Table 4.2: Values predicted and measured for the cavity’s parameters.  

Parameter Predicted Value Measured Value 

Reflectance (ℝ) 0.9975 0.9966 ± 0.0006 

Finesse (ℱ) 1255 720 ± 16 

Photon Lifetime (𝜏𝑐) 66.9 ns 50 ± 0.03 ns 

Quality Factor (𝒬) 1.18 ∙ 108 8.86 ∙ 107 

Linewidth (∆𝜈𝐹𝑊𝐻𝑀) 2.38 MHz 4.0 ± 0.7 MHz 

Source: Author, 2025. 
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5 CONCLUSIONS 

The research presented in this dissertation has explored the construction of an 

ECDL and the characterization of a homemade Fabry-Perot cavity. For the ECDL, the 

goal was to lock it to an ultra-high finesse Fabry-Perot through the Pound-Drever Hall 

(PDH) technique. The ECDL could not be stabilized, so the PDH technique was not 

implemented, and the ECDL was unused. For future steps, we aim to acquire a better 

diode to remake the characterization. An ECDL locked to an ultra-high finesse Fabry-

Perot cavity provides a laser suited for metrologic purposes, such as high-precision 

spectroscopy. 

Despite that, it was possible to measure the optical parameters of the cavity. 

Table 4.2 has measured parameters for the finesse, photon lifetime, mirror reflectance 

and quality factor. Also, we were able to estimate the cavity’s loss coefficient. With the 

cavity characterized it can be used for a laser to work as a reference. However, as the 

laser was not coupled into the cavity with its central wavelength, it could not be 

characterized as well, and its properties were not measured. In summary, this 

dissertation has successfully characterized a homemade Fabry-Perot interferometer 
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APPENDIX A – PYTHON CODE TO THE SIMULATION OF THE INTERNAL RESONANCE 

ENHANCEMENT FACTOR 

@author: João L. R. Daré 

# Simulation of the Internal Resonance Enhancement Factor 

import numpy as np 

import matplotlib.pyplot as plt 

# Function ℧(ω, r) 

def ℧(ω, r): 

    return 1/((1 - r**2*np.exp(-(α*c)/FSR))**2 + 4 *np.exp(-(α*c)/FSR)* r**2 * 

(np.sin(ω*np.pi))**2) 

# Values of importants constants and r 

α = 0.1 

c = 299792458 

FSR = c/(2*0.1) 

r = 0.9 

# Values de ω_c 

ω_c_values = np.linspace(-1.5, 1.5, 100000) 

# Calculate ℧ values of ω_c 

℧_values = ℧(ω_c_values, r) 

# Create a graph of the Enhancement Factor 

plt.plot(ω_c_values, ℧_values, linewidth=0.9) 

plt.xlabel(r'$\frac{ω - ω_{RESONANCE}}{FSR}$', fontsize=12) 

plt.ylabel('Intensity', fontsize=12) 

plt.title(r'Internal Resonance Enhancement Factor',fontsize=12) 

plt.grid(False)  # Disable the grids of the graph 
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plt.xticks([-1.5,-1,-0.5, 0.0,0.5,1,1.5])  # Define the values to mark in the x-axis 

#plt.axhline(y=1, color='red', linestyle='--', label='y = 1', linewidth=0.9) 

#plt.ylim(0, 10) 

plt.show() 
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APPENDIX B – PYTHON CODE TO THE SIMULATION OF THE TRANSMITTANCE, 

REFLECTTANCE AND INTRINSIC PROPAGATION-LOSS INTENSITY 

@author: João L. R. Daré 

# Simulation of the Transmittance, Reflectance and Intrinsic Propagation-loss Intensity 

import numpy as np 

import matplotlib.pyplot as plt 

def L(ω, r): 

    return  ((1-r**2*np.exp(-(α*c)/FSR))**2-(1-r**2)**2*np.exp(-(α*c)/FSR))/((1-

r**2*np.exp(-(α*c)/FSR))**2 + 16*r**4*np.exp(-(α*c)/FSR)*(np.sin(ω*np.pi))**4 + 

((4*r**2*(1+np.exp(-(α*c)/FSR))*(1+r**4*np.exp(-(α*c)/FSR))-4*r**3*np.exp(-

(α*c)/FSR)*(1+2*r))*(np.sin(ω*np.pi))**2)/((1-r**2)**2)) 

def T(ω, r): 

    return  (1-r**2)**2*np.exp(-(α*c)/FSR)/((1 - r**2*np.exp(-(α*c)/FSR))**2 + 4 *np.exp(-

(α*c)/FSR)* r**2 * (np.sin(ω*np.pi))**2) 

def R(ω, r): 

    return (r**2*(1-np.exp(-(α*c)/FSR))**2 + 4*r**2*np.exp(-

(α*c)/FSR)*(np.sin(ω*np.pi))**2)/((1 - r**2*np.exp(-(α*c)/FSR))**2 + 4 *np.exp(-

(α*c)/FSR)* r**2 * (np.sin(ω*np.pi))**2) 

# Values of the importants constants and r 

α = 0.1 

c = 299792458 

FSR = c/(2*0.1) 

r = 0.9 

# Values of ω_c 

ω_c_values = np.linspace(-1.5, 1.5, 100000) 

# Calculate the values of T, R, L and S for different values of ω_c 

T_values = T(ω_c_values, r) 
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R_values = R(ω_c_values, r) 

L_values = 1 - T_values - R_values 

S_values =  + T_values + R_values + L_values 

# Creating a graph of the imaginary part with respect to ω_c 

plt.plot(ω_c_values, T_values, linewidth=0.9, label = 'Transmittance') 

plt.plot(ω_c_values, R_values, linewidth=0.9, label = 'Reflectance') 

plt.plot(ω_c_values, S_values, linewidth=0.9, label = 'Sum') 

plt.plot(ω_c_values, L_values, linewidth=0.9, label = 'Intrinsic Losses') 

plt.xlabel(r'$\frac{ω - ω_{RESONANCE}}{FSR}$', fontsize=16) 

plt.ylabel('Intensity', fontsize=12) 

plt.title(r'Transmittance, Reflectance and Intrinsic Intensity Loss of a Fabry-Perot 

Cavity',fontsize=12) 

plt.grid(False)  # Disable the grids in the graph 

plt.xticks([-1.5,-1,-0.5, 0.0,0.5,1,1.5])  # Define the values to mark in the x-axis 

#plt.axhline(y=1, color='red', linestyle='--', label='y = 1', linewidth=0.9) 

#plt.ylim(0, 10) 

plt.legend(fontsize=10) 

plt.show() 
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APPENDIX C – PYTHON CODE TO THE SIMULATION OF THE POUND-DREVER-HALL ERROR 

SIGNAL FOR LOW-FREQUENCY MODULATION 

@author: João L. R. Daré 

# Simulation of the Pound-Drever-Hall Error Signal for Low-Frequency Modulation 

import numpy as np 

import matplotlib.pyplot as plt 

# Function of R(ω, r) 

def R(ω, r): 

    return (r * (np.exp(1j *1*(ω)-1)))/(1-r**2*np.exp(1j*1*(ω))) 

# Derivative of the squared modulus of R(ω_c) with respect to ω_c 

def derivative_mod_squared_R(ω, r): 

    R_val = R(ω, r) 

    return 2 * np.abs(R_val)**2 * np.imag(np.conj(R_val) * np.exp(1j*1*(ω))) 

# Values of the constants Ω and r 

Ω = 0.00001  # Valor constante de Ω 

r = 0.9999 # Valor constante de r 

# Values of ω_c 

ω_c_values = np.linspace(-0.002,0.002, 500) 

# Calculate the expression for |d|R(ω_c)|^2/dω_c| * Ω 

expression_values = [-derivative_mod_squared_R(ω_c, r) * Ω * np.sin(2*Ω) for ω_c in 

ω_c_values] 

# Creating a graph of the expression part with respect to ω_c 

plt.plot(ω_c_values, expression_values,linewidth=0.9) 

plt.xlabel('ω - ω$_{RESONANCE}$') 

plt.ylabel(r'$\frac{\varepsilon_r}{2J_0(\beta)J_1(\beta)P_0}$', fontsize = 16) 
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plt.title('Normalized Error Signal for Low-Frequency Modulation') 

plt.grid(False)  # Aqui, definimos grid como False para remover as grades 

plt.show() 

xticks = [-0.002,-0.001, 0.0,0.001, 0.002] 

plt.xticks(xticks) 
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APPENDIX D – PYTHON CODE TO THE SIMULATION OF THE POUND-DREVER-HALL ERROR 

SIGNAL FOR HIGH-FREQUENCY MODULATION 

# Simulation of the Pound-Drever-Hall Error Signal for High-Frequency Modulation 

@author: João L. R. Daré 

import numpy as np 

import matplotlib.pyplot as plt 

# Function R(ω, r) 

def R(ω, r): 

    return (r * (np.exp(1j * 1*(ω) )- 1)) / (1 - r**2 * np.exp(1j * 1*ω)) 

# Values of the constants Ω and r 

Ω = 0.001 # Valor constante de Ω 

r = 0.99999  # Valor constante de r 

# Values of ω_c 

ω_c_values = np.linspace(-0.002, 0.002, 100000) 

# Calculate the imaginary part of the expression for various values of ω_c 

imaginary_part_values = [] 

for ω_c in ω_c_values: 

    term1 = R(ω_c, r) * np.conj(R(ω_c + Ω, r)) 

    term2 = np.conj(R(ω_c, r)) * R(ω_c - Ω, r) 

    expression = (term1 - term2)*np.cos(2*Ω) 

    imaginary_part_values.append(expression.imag) 

# Creating a graph of the imaginary part with respect to ω_c 

plt.plot(ω_c_values, imaginary_part_values, linewidth=0.9, color='#dc9c34') 

plt.xlabel('ω - ω$_{RESONANCE}$') 

plt.ylabel(r'$\frac{\varepsilon_r}{2J_0(\beta)J_1(\beta)P_0}$', fontsize = 16) 
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plt.title('Normalized Error Signal for Low abd High Frequency Modulation') 

plt.grid(False)  # Here, we have defined the grid as False to remove the grids 

xticks = [-0.002, 0.0, 0.002] 

plt.xticks(xticks) 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

APPENDIX E – PYTHON CODE TO AUTOMATIZE OSCILLOSCOPE DATA COLLECTION 

import pyvisa 

import time 

import pygame 

from pygame import mixer 

import pandas as pd 

import numpy as np 

from datetime import date 

from pathlib import Path 

import time 

import os 

 

# Definition of the oscilloscope data parameters, they can be found on the manual of 

your oscilloscope 

def channel_data(instrument, channel, n_points_mode, n_points): 

     

    instrument.write(f':DIGitize [CHANnel{channel}:]') 

    instrument.write(f':WAVeform:SOURce CHANnel{channel}') 

    instrument.write(f':WAVeform:FORMat ASCii') 

    instrument.write(f':WAVeform:POINts:MODE {n_points_mode}') 

    instrument.write(f':WAVeform:POINts {n_points}') 

    instrument.write(':WAVeform:DATA?') 

 

    values = [n for n in instrument.read().replace(' ', ',').split(',')] 

    data_list = list(map(float,filter(None,values[1:]))) 
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    return data_list 

 

def time_vector(instrument, channel, n_points_mode, n_points): 

 

    instrument.write(f':DIGitize [CHANnel{channel}:]') 

    instrument.write(f':WAVeform:SOURce CHANnel{channel}') 

    instrument.write(f':WAVeform:FORMat ASCii') 

    instrument.write(f':WAVeform:POINts:MODE {n_points_mode}') 

    instrument.write(f':WAVeform:POINts {n_points}') 

     

    instrument.write(':WAVeform:XORigin?') 

    x_0 = float(instrument.read()) 

 

    instrument.write(':WAVeform:XINCrement?') 

    dx= float(instrument.read()) 

 

    array = np.linspace(x_0, x_0 + n_points * dx, n_points) 

     

    return array 

 

rm = pyvisa.ResourceManager()  

inst_addr_list = rm.list_resources() 

osc_addr = "USB0::0x0957::0x175D::MY50340840::INSTR" #USB port, can be found 

at the back of the oscilloscope or by the lines below, just uncomment them: 
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################## 

# # Initiate o resource generator 

# rm = pyvisa.ResourceManager() 

 

# # List all the resources available 

# resources = rm.list_resources() 

 

# # Filter only the address of the UBS ports 

# usb_resources = [resource for resource in resources if 'USB' in resource] 

 

# # exhibit the addresses of the UBS ports 

# print("Endereços das portas USB disponíveis:") 

# for resource in usb_resources: 

#     print(resource) 

################### 

# lab LMO: "USB0::0x0957::0x175D::MY50340840::INSTR" 

# lab FELINTO: "USB0::0x0957::0x1798::MY51138309::INSTR" 

 

# Definition of the Path to save the data 

path = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Coletados\Janeiro 2025\Laser Comercial' 

# channels used: to add one, for example, just add channel_3 = 3 

channel_1 = 1 

channel_2 = 2 

# total points collected in each round 
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total_points = 10000 

# number of files that will be collected 

rounds = 500 

# frequency, voltage and offset of the signal to put at the name of the file, it does not 

influence the data collection and can be removed 

frequency = 1 

voltage = 20 

offset = 10 

 

today = date.today().strftime('%d_%m_%Y') 

hour = time.strftime("%H_%M", time.localtime()) 

output_dir = rf'{path}\{today}\{hour}' 

output_avg_dir = rf'{path}\{today}\Médias\{hour}' 

Path(output_dir).mkdir(parents=True, exist_ok=True) 

Path(output_avg_dir).mkdir(parents=True, exist_ok=True) 

 

if inst_addr_list.count(osc_addr) >= 1: 

    pass 

else: 

    ValueError(f'Error: Oscilloscope address "{osc_addr}" does not exist') 

 

osc_inst = rm.open_resource(osc_addr) 

 

file_paths = [] 
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for i in range(rounds): 

 

    osc_inst.write(':STOP') 

 

    x_vector = time_vector(osc_inst, channel_1, 'MAXimum', total_points) 

 

    data_1 = channel_data(osc_inst, channel_1, 'MAXimum', total_points) 

    data_2 = channel_data(osc_inst, channel_2, 'MAXimum', total_points) 

    # if more channels are used, just uncomment the line below and add the channel 

number 

    # data_3 = channel_data(osc_inst, channel_3, 'MAXimum', total_points) 

 

    osc_inst.write(':RUN') 

 

    if len(x_vector) != len(data_1) or len(x_vector) != len(data_2): 

        minimum = min([len(x_vector), len(data_1), len(data_2)])  

        x_vector = x_vector[:minimum] 

        data_1 = data_1[:minimum] 

        data_2 = data_2[:minimum] 

        # if more channels are used, just uncomment the line below and add the 

channel number 

        # data_3 = data_3[:minimum] 

     

    print(len(x_vector), len(data_1), len(data_2)) 

    f_data = pd.DataFrame({'second': x_vector, 'Volt': data_1, 'Volt.1': data_2}) 
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    file_name = rf'{frequency}hz_{voltage}v_{offset}of_coleta_{i+1}.csv' 

    file_path = os.path.join(output_dir, file_name) 

    f_data.to_csv(file_path, sep=';', index=False, header=True) 

    file_paths.append(file_path) 

 

    print(f'Coleta feita: {i+1} de {rounds}') 

 

    time.sleep(2) 

 

# Calculate the mean of the total collection 

all_data = [] 

for file_path in file_paths: 

    df = pd.read_csv(file_path, sep=';') 

    all_data.append(df) 

 

# Calculate the average point by point 

mean_data = pd.concat(all_data).groupby(level=0).mean() 

 

# save the average data 

mean_file_path = os.path.join(output_avg_dir, 

f'{frequency}_{voltage}v_{offset}of__media.csv') 

mean_data.to_csv(mean_file_path, sep=';', index=False, header=True) 

 

print(f'Arquivo com valores médios salvo em: {mean_file_path}') 
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print("COLETA FINALIZADA!") 

 

# Play a sound when the collection is finished, does not influence the collection and 

can be removed 

mixer.init() 

mixer.music.load(r"C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\musica\C

oleta FINALIZADA.mp3") # path to the sound file 

pygame.mixer.music.set_volume(0.1) 

mixer.music.play() 

while mixer.music.get_busy():  # wait for music to finish playing 

    time.sleep(1)    
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APPENDIX F – PYTHON CODE TO NORMALIZE THE OSCILLOSCOPE DATA 

# Import the libraries 

 

import pandas as pd 

import os 

import numpy as np 

 

# PATH TO THE ORIGINAL OSCILLOSCOPE FILE, DATA SOURCE 

path_1 = r'C:\Users\deskl\OneDrive\Documents\Daré\Cavities\Small\Collected 

Data\January 2025\Commercial Laser\16_01_2025' 

 

# PATH TO SAVE THE FILE TO BE USED TO CREATE THE FREQUENCY RULER 

path_2 = r'C:\Users\deskl\OneDrive\Documents\Daré\Cavities\Small\Collected 

Data\January 2025\Commercial Laser\16_01_2025\08_24' 

 

# Name of the new destination folder 

path_day = r'C:\Users\deskl\OneDrive\Documents\Daré\Cavities\Small\Processed 

Data\Normalized Data\Finesse\January 2025' 

 

# Names of the new destination folders 

folder_day_name = os.path.basename(path_1) 

folder_destiny_name = os.path.basename(path_2) + " Normalized" 

 

folder_day = os.path.join(path_day, folder_day_name) 

folder_destiny = os.path.join(folder_day, folder_destiny_name) 

 

os.makedirs(folder_day, exist_ok=True) 

os.makedirs(folder_destiny, exist_ok=True) 

 

#### CODE TO CREATE A FILE WITH NORMALIZED DATA OF THE 

TRANSMISSION SIGNAL #### 
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# Select the background noise 

noise = [i for i in os.listdir(path_2) if i.endswith('_noise.csv')] 

 

noise_file = os.path.join(path_2, noise[0]) 

 

noise_data = pd.read_csv(noise_file, header=0, sep=';') 

 

# Iterate over all files in the directory 

for file in os.listdir(path_2): 

 

    # Check if the file is a CSV 

    if file.endswith('.csv') and not file.endswith("_noise.csv"): 

        # Full file path 

         

        file_path = os.path.join(path_2, file) 

 

        # Load data from the files 

        data = pd.read_csv(file_path, header=0, sep=';') 

 

        # Remove spaces from column names 

        data.columns = data.columns.str.strip() 

        noise_data.columns = noise_data.columns.str.strip() 

 

        # Variables (only the first y column) 

        x = data['second'] 

        y = data['Volt']  # First y column of the data 

        y_noise = noise_data['Volt']  # First y column of the corresponding noise, MUST 

BE THE SAME COLUMN AS THE DATA 

        y1 = data['Volt.1'] 

 

        # Subtract the noise signal 
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        y = y - y_noise 

 

        # Normalize the data 

        x = x - x.min() 

        x = x / (x.max() - x.min()) 

 

        y = y - y.min() 

        y = y / (y.max() - y.min()) 

 

        y1 = y1 - y1.min() 

        y1 = y1 / (y1.max() - y1.min()) 

 

        # Save only the first normalized column in a new CSV file 

        normalized_file_name = os.path.splitext(file)[0] + '_normalized.csv' 

        output_path = os.path.join(folder_destiny, normalized_file_name) 

        df_normalized = pd.DataFrame({'x': x, 'signal': y, 'ramp': y1}) 

        df_normalized.to_csv(output_path, index=False) 

        print("File saved at:", output_path) 
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APPENDIX G – PYTHON CODE TO PLOT THE CURVE OF CURRENT VERSUS POWER 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import os 

import ruptures as rpt 

 

# Defining the path 

path = r'C:\Users\deskl\OneDrive\Documents\Daré\Dissertation\Data\New folder' 

# Creating the folder to save the graphs 

folder_name = 'Current vs Power Graphs for ECDL' 

folder_destiny = os.path.join(path, folder_name) 

 

os.makedirs(folder_destiny, exist_ok=True) 

plt.figure(figsize=(12, 6)) 

# Accessing the files in the folder 

for file in os.listdir(path): 

     if file.endswith('Commercial Laser_.csv'): 

         file_path = os.path.join(path, file) 

         data = pd.read_csv(file_path, header=0, sep=';') 

         data.columns = data.columns.str.strip() 

          

         Current = data['Current - mA'] 

         Power = data['Power - mW'] 
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         # If there is an unstable regime, you can use this mask to remove it. If not, you 

can just use the original datasets 

         mask = Current < 140  # stable regime 

 

         Current_stable = Current[mask] 

         Power_stable = Power[mask] 

 

         # Finding the threshold current, by detecting the point where the slope changes 

from a constant value to a linear curve 

         signal = Power.values 

         algo = rpt.Pelt(model="rbf").fit(signal) 

         result = algo.predict(pen=30) 

 

         # Plotting the figure 

         plt.plot(Current_stable, Power_stable, label='Laser Intensity', color='#0c3fa5') 

         for cp in result: 

             # You can adjust Current.iloc[20] to the point of your threshold current 

             plt.axvline(x=Current.iloc[20], color='#ef8c14', linestyle='--', label=f'Threshold 

Current = {Current.iloc[20]:.2f} mA' if cp == result[0] else "") 

         plt.xlabel('Current (mA)', fontsize=13) 

         plt.ylabel('Power (mW)', fontsize=13) 

         plt.legend(fontsize=13) 

         plt.title(f'Power x Current Curve for the {file.split("_")[2]} {file.split("_")[3]}', 

fontsize=14) 

         plt.grid(True) 



127 
 

         graph_name = f'Graph of Power x Current for {file.split("_")[2]} 

{file.split("_")[3]}.png' 

         # Save the graph 

         output_graph = os.path.join(folder_destiny, graph_name) 

         plt.savefig(os.path.join(output_graph)) 

         plt.show() 
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APPENDIX H – PYTHON CODE TO PLOT THE LASER’S SPECTRUM 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from scipy.signal import find_peaks 

from scipy.interpolate import interp1d 

import os 

 

# Path to directories 

path_1 = r'C:\Users\deskl\OneDrive\Documents\Daré\Dissertation\Raw Data\07-02-

2025' 

path_2 = r'C:\Users\deskl\OneDrive\Documents\Daré\Ocean\Littman\20.04ºC\Without 

Grating\230 mA' 

# PATH TO SAVE THE FILE TO BE USED FOR MAKING THE FREQUENCY SCALE 

path_graph = r'C:\Users\deskl\OneDrive\Documents\Daré\Dissertation\Processed 

Data\Graphs' 

# Create destination directories to save the graphs 

folder_day_name_graphs = os.path.basename(path_1) 

folder_destiny_name_graphs = os.path.basename(path_2) + " Spectrum Graph" 

 

folder_day_graphs = os.path.join(path_graph, folder_day_name_graphs) 

folder_destiny_graphs=os.path.join(folder_day_graphs,folder_destiny_name_graphs) 

 

os.makedirs(folder_day_graphs, exist_ok=True) 

os.makedirs(folder_destiny_graphs, exist_ok=True) 
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# Process files in the folder 

for file in os.listdir(path_2): 

    # Full path to the normalized file 

    file_path = os.path.join(path_2, file) 

     

    # Load normalized data 

    data = pd.read_csv(file_path, sep=';', header=0) 

 

    data.columns = data.columns.str.strip() 

 

    Wavelength = data['Wavelength - nm'] 

    Intensity = data['Intensity'] 

     

    # Filter data within the desired wavelength range 

    mask = (Wavelength > 1040) & (Wavelength < 1075) 

    Wavelength_zoom = Wavelength[mask] 

    Intensity_zoom = Intensity[mask] 

 

    # Normalize intensity 

    Intensity_normalized = Intensity_zoom / Intensity_zoom.max() 

 

    # Limits for peak detection 

    lower_limit = 0.9  # replace with the desired lower limit 
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    upper_limit = 1.1 # replace with the desired upper limit 

 

    # Find peaks within the y range 

    peak_indices, _ = find_peaks(Intensity_normalized, height=(lower_limit, 

upper_limit)) 

 

    Peak_wavelength = Wavelength_zoom.iloc[peak_indices] 

     

    # Create the graph 

    plt.figure(figsize=(12, 24)) 

    plt.title(f"ECDL Laser's Spectrum without Grating for 30.3 mA and at 20.04ºC", 

fontsize=20) 

    plt.plot(Wavelength_zoom, Intensity_normalized, label="Laser's Spectrum", 

color='#0c3fa5') 

    plt.axvline(x = Peak_wavelength.iloc[0], color='#ef8c14', linestyle='--', label = 

f'Central Wavelength of the main peak = {Peak_wavelength.iloc[0]:.2f} nm', 

linewidth=1.0) 

    # If there are more peaks, just uncomment the lines below and adjust the values 

    # plt.axvline(x = Peak_wavelength.iloc[1], color='green', linestyle='--', label = 

f'Central Wavelength of the secondary peak = {Peak_wavelength.iloc[1]:.2f} nm', 

linewidth=1.0) 

    # plt.axvline(x = Peak_wavelength.iloc[2], color='red', linestyle='--', label = f'Central 

Wavelength of the secondary peak = {Peak_wavelength.iloc[2]:.2f} nm', linewidth=1.0) 

    plt.xticks(fontsize=20)  

    plt.yticks(fontsize=20) 

    plt.xlabel('Wavelength (nm)', fontsize=20)  

    plt.ylabel('Normalized Intensity', fontsize=20)  
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    plt.legend(fontsize=18) 

    plt.grid('true') 

     

    # Save the graph 

    spectrum_graph_name = f'Spectrum of the {file.split('_')[0]} for a Current of 

{file.split('_')[1]}.png' 

    output_graph_lifetime=os.path.join(folder_destiny_graphs, spectrum_graph_name) 

    plt.savefig(output_graph_lifetime) 

    plt.show() 

    plt.close() 
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APPENDIX I – PYTHON CODE TO FIND THE CAVITY FINISSE 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

from scipy.signal import find_peaks 

from scipy.optimize import curve_fit 

 

                                                         #### Caminho dos arquivos #### 

 

# CAMINHO PARA O ARQUIVO ORIGINAL DO OSCILOSCÓPIO, FONTE DOS 

DADOS 

path_1 = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Tratados\Dados normalizados\Finesse\Janeiro 2025\16_01_2025' 

 

# CAMINHO PARA O ARQUIVO NORMALIZADO UTILIZADO  

path_2 = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Tratados\Dados normalizados\Finesse\Janeiro 2025\16_01_2025\08_24 

Normalizado' 

 

# Caminho para salvar os gráficos da FINESSE 

path_dia = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Tratados\Gráficos com a Finesse\Cavidade Pequena\Janeiro 2025' 

 

# Certifique-se de que o diretório para os gráficos exista 
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folder_day_name_graficos = os.path.basename(path_1) 

folder_destiny_name_graficos = os.path.basename(path_2) + " Finesse" 

 

folder_day_graficos = os.path.join(path_dia, folder_day_name_graficos) 

folder_destiny_graficos = os.path.join(folder_day_graficos, 

folder_destiny_name_graficos) 

 

os.makedirs(folder_day_graficos, exist_ok=True) 

os.makedirs(folder_destiny_graficos, exist_ok=True)  

 

frequencias_modulacao = {}  # Dicionário para armazenar frequências 

 

larguras_fwhm = []  # Lista para armazenar as larguras a meia altura 

erro_larguras_fwhm = []  # Lista para armazenar os erros das larguras a meia altura 

erro_centro_picos_ajustados = []  # Lista para armazenar os erros dos centros dos 

picos ajustados 

 

erro_Finesse_coleta = []  # Lista para armazenar os erros das Finesses de todos os 

picos do arquivo 

 

finesse_coleta = []  # Lista para armazenar as Finesses de todos os arquivos 

amp_coleta = []  # Lista para armazenar as amplitudes de todos os arquivos 

wid_coleta = []  # Lista para armazenar as larguras de todos os arquivos 

arquivos_utilizados = []  # Lista para armazenar os arquivos utilizados 

picos_usados = [] 



134 
 

# Percorrer todos os arquivos no diretório de arquivos normalizados 

for arquivo in os.listdir(path_2): 

     # Verificar se o arquivo é um CSV 

     if arquivo.endswith('_normalizado.csv'): 

         # Caminho completo do arquivo normalizado 

         caminho_arquivo = os.path.join(path_2, arquivo) 

      

         # Extração de valores de voltagem e frequência do nome do arquivo 

         frequencia = arquivo.split('_')[0]  # Frequência (ex: '1hz') 

         voltagem = arquivo.split('_')[1][:-1]  # Voltagem (ex: '110v', removendo o 'v') 

 

         # Extração da frequência de modulação do nome do arquivo (por exemplo, '1hz') 

         frequencia_modulacao = float(frequencia.replace("hz", ""))  # Converter para 

número float 

          # Armazenar a frequência no dicionário com a chave sendo o nome do arquivo 

         frequencias_modulacao[arquivo] = frequencia_modulacao 

 

         # Calcular o período da modulação (T = 1 / f) 

         periodo_modulacao = 1 / frequencia_modulacao 

 

         print(f"Arquivo da {arquivo.split('_')[3]} {arquivo.split('_')[4]}, Frequência de 

Modulação: {frequencia_modulacao} Hz, Período de Modulação: 

{periodo_modulacao} s") 

 

         # Carregar os dados normalizados 



135 
 

         dados = pd.read_csv(caminho_arquivo) 

 

         # Criar o título do gráfico 

         titulo_grafico = f"Finesse Value for a {voltagem} Volts Modulation Ramp of 

{frequencia} Repeat Frequency" 

 

         # Extrair colunas x e y 

         x_regua = dados['x'] 

         y_regua = dados['sinal'] 

         y_rampa = dados['rampa'] 

 

         # Definir o regime de y para localizar picos 

         limite_inferior = 0.6  # substitua pelo limite inferior desejado 

         limite_superior = 1.1  # substitua pelo limite superior desejado  

 

         limite_inferior_maximos = 0.95 

         limite_superior_maximos = 1.1 

 

         # Localizar picos dentro do regime de y 

         indices_picos, _ = find_peaks(y_regua, height=(limite_inferior, limite_superior)) 

         indices_maximos, _ = find_peaks(y_rampa, height=(limite_inferior_maximos, 

limite_superior)) 

 

         if len(indices_maximos) > 1: 

             # Calcular a distância entre os máximos consecutivos 
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             picos_x_rampa = x_regua.iloc[indices_maximos].dropna()  # Remover 

possíveis NaNs 

             distancia_maximos = picos_x_rampa.diff().dropna()       # Calcular a diferença 

e remover NaNs 

             if distancia_maximos.empty: 

                 print("Erro: Não foi possível calcular a distância entre máximos.") 

             else: 

                 escala_tempo = periodo_modulacao / distancia_maximos.mean() 

                 print(f"Escala de tempo (usando máximos): {escala_tempo} s") 

         else: 

             print("Erro: Número insuficiente de picos máximos encontrados.") 

 

         # Verifique se o arquivo tem dois máximos e um mínimo ou dois mínimos e um 

máximo 

         if len(indices_maximos) == 2: 

              # Usar apenas os máximos para calcular a distância 

             picos_x_rampa = x_regua.iloc[indices_maximos] 

             picos_y_rampa = y_rampa.iloc[indices_maximos] 

             # Calcular a distância entre os máximos consecutivos 

             distancia_maximos = abs(picos_x_rampa.diff().dropna()) 

             escala_tempo = periodo_modulacao / distancia_maximos.mean() 

     

         # Obter as posições dos picos nos eixos x e y para o SINAL 

         picos_x = x_regua.iloc[indices_picos] 

         picos_y = y_regua.iloc[indices_picos] 
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         # Criar lista para preencher com os picos filtrados, que se encontram na janela 

de modulação 

         distancia_minima = 0.25 

         picos_filtrados_x = [] 

         picos_filtrados_y = [] 

 

         # filtrar os picos que se encontram apenas dentro da janela de modulação 

         if len(picos_x) > 1: 

              for i in range(len(picos_x)): 

                 # The + 1 (or -1) is given by the modulation frequency, you can adjust it 

according to your needs 

                 if picos_x_rampa.iloc[0] <= picos_x.iloc[i] <= picos_x_rampa.iloc[0] + 1 or 

picos_x_rampa.iloc[1] - 1 <= picos_x.iloc[i] <= picos_x_rampa.iloc[1] and picos_x[1]-

picos_x[0] > distancia_minima: 

                     picos_filtrados_x.append(picos_x.iloc[i])  

                     picos_filtrados_y.append(picos_y.iloc[i]) 

 

         # Exibir os picos encontrados 

         if len(picos_filtrados_x) ==4 and len(picos_filtrados_y) ==4: 

             print(f'Arquivo utilizado {arquivo.split('_')[3]} {arquivo.split('_')[4]}:')     

         for i in range(len(picos_filtrados_x)):  

             print(f"Pico {i+1}: x = {picos_filtrados_x[i]}, y = {picos_filtrados_y[i]}") 

 

         # Nova escala de tempo para ser utilizada  

         x_tempo = x_regua * escala_tempo 



138 
 

 

         # Plotar o gráfico com o eixo x na nova escala de tempo 

         plt.plot(x_tempo, y_regua, color='green', label='Fabry-Perot Trasmitted Signal') 

         plt.plot(x_tempo, y_rampa, color='blue', label='Modulation Ramp') 

         plt.plot([pico * escala_tempo for pico in picos_filtrados_x], picos_filtrados_y, 'ro') 

          

         # Adicionar linhas tracejadas verticais nos picos de y_rampa (maximos ou 

minimos) 

         if len(indices_maximos) > 1: 

             for pico in picos_x_rampa:  # Picos de y_rampa (máximos) 

                 delta_tempo_1_2_rampa = (picos_x_rampa.iloc[1] - picos_x_rampa.iloc[0]) 

* escala_tempo 

                 plt.arrow(picos_x_rampa.iloc[0] * escala_tempo, 1, (picos_x_rampa.iloc[1] 

- picos_x_rampa.iloc[0]) * escala_tempo, 0, head_width=0.02, head_length=0.005 * 

escala_tempo, fc='blue', ec='blue') 

                 plt.text(((picos_x_rampa.iloc[0] + picos_x_rampa.iloc[1]) / 2) * escala_tempo, 

0.95, f'{delta_tempo_1_2_rampa:.3f} segundos', ha='center', color='blue') 

          

         # Calcular a diferença de tempo entre os picos 1 e 2, e 3 e 4  

         if len(picos_filtrados_x) == 4: 

            delta_tempo_1_2 = (picos_filtrados_x[1] - picos_filtrados_x[0]) * escala_tempo  

            delta_tempo_3_4 = (picos_filtrados_x[3] - picos_filtrados_x[2]) * escala_tempo 

         else:  

             print('Menos de 4 picos encontrados') 
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                                                ## FUNÇÃO PARA AJUSTE LORENTZIANO (PROXIMO 

AOS PICOS) ## 

         larguras_fwhm = [] 

         centro_picos_ajustados = [] 

 

         def lorentzian(x, amp, cen, wid, offset): 

             return amp * (wid**2) / ((x - cen)**2 + wid**2) + offset 

 

         # separar os picos da rampa de descida 

         picos_descida_x = picos_filtrados_x[:2] 

         picos_descida_y = picos_filtrados_y[:2] 

 

         # separar os picos da rampa de subida 

         picos_subida_x = picos_filtrados_x[2:] 

         picos_subida_y = picos_filtrados_y[2:] 

 

         # definir os picos que serão utilizaveis para o ajuste, usar somente os picos que 

tem aproximadamente a mesma altura que o pico imediatamente adjacente 

         picos_utilizaveis_x = [] 

         picos_utilizaveis_y = [] 

 

         # Função para verificar se dois picos têm alturas semelhantes 

         def alturas_semelhantes(y1, y2, tolerancia=0.85): 

             return min(y1, y2) / max(y1, y2) >= tolerancia 

          



140 
 

 

         # Verificar pares na rampa de descida 

         if len(picos_descida_x) == 2:  # Garantir que há dois picos na rampa de descida 

             if alturas_semelhantes(picos_descida_y[0], picos_descida_y[1]): 

                 picos_utilizaveis_x.append(picos_descida_x[0]) 

                 picos_utilizaveis_x.append(picos_descida_x[1]) 

                 picos_utilizaveis_y.append(picos_descida_y[0]) 

                 picos_utilizaveis_y.append(picos_descida_y[1]) 

 

         # Verificar pares na rampa de subida 

         if len(picos_subida_x) == 2:  # Garantir que há dois picos na rampa de subida 

             if alturas_semelhantes(picos_subida_y[0], picos_subida_y[1]): 

                 picos_utilizaveis_x.append(picos_subida_x[0]) 

                 picos_utilizaveis_x.append(picos_subida_x[1]) 

                 picos_utilizaveis_y.append(picos_subida_y[0]) 

                 picos_utilizaveis_y.append(picos_subida_y[1]) 

 

         # Exibir a quantidade de pares utilizáveis 

         print(f'Quantidade de pares de picos utilizáveis: {len(picos_utilizaveis_x)}') 

 

         if len(picos_utilizaveis_x) >= 1: 

             for i, (pico_x, pico_y) in enumerate(zip(picos_utilizaveis_x, 

picos_utilizaveis_y)): 

 

                 # Definir o intervalo para o ajuste (por exemplo, 0.1s ao redor do pico) 



141 
 

                 limite_inferior = pico_x - 0.02 

                 limite_superior = pico_x + 0.02 

 

                 # Selecionar os dados no intervalo definido 

                 indices_intervalo = (x_regua >= limite_inferior) & (x_regua <= 

limite_superior) 

                 x_intervalo = x_regua[indices_intervalo] 

                 y_intervalo = y_regua[indices_intervalo] 

 

                 # Estimativas iniciais para os parâmetros: amplitude, centro e largura 

                 amp_inicial = np.max(y_intervalo) 

                 cen_inicial = pico_x 

                 wid_inicial = 0.002  # Valor inicial arbitrário para a largura 

                 offset_inicial = np.min(y_intervalo) 

 

                 try: 

 

                     # Realizar o ajuste de curva usando curve_fit 

                     parametros_ajuste, parametros_covariancia = curve_fit(lorentzian, 

x_intervalo, y_intervalo, p0=[amp_inicial, cen_inicial, abs(wid_inicial), offset_inicial], 

bounds = ([0, -np.inf, 0, 0], [np.inf, np.inf, np.inf, np.inf]), maxfev=50000) 

 

                     # Parâmetros ajustados 

                     amp_ajustado, cen_ajustado, wid_ajustado, offset_ajustado = 

parametros_ajuste 

                     print(f"Ajuste para o pico {i+1}:") 
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                     print(f"Amplitude ajustada: {amp_ajustado}") 

                     print(f"Centro ajustado: {cen_ajustado}") 

                     print(f"Largura ajustada: {wid_ajustado}") 

 

                     erro_amp_ajustado, erro_cen_ajustado, erro_wid_ajustado, 

erro_offset_ajustado = np.sqrt(np.diag(parametros_covariancia)) 

                      

                     # Calcular o FWHM a partir da largura 

                     FWHM = 2 * wid_ajustado 

                     # Calcular o erro estatístico do FWHM 

                     erro_FWHM_ajustado = 2 * wid_ajustado * erro_wid_ajustado 

                     print(f"FWHM para o pico {i+1}: {FWHM} ± {erro_FWHM_ajustado} 

segundos") 

                     larguras_fwhm.append(FWHM) 

                     erro_larguras_fwhm.append(erro_FWHM_ajustado) 

                     centro_picos_ajustados.append(cen_ajustado) 

                     erro_centro_picos_ajustados.append(erro_cen_ajustado) 

 

                     # Plot do ajuste de Lorentziana 

                     y_ajustado = lorentzian(x_intervalo, *parametros_ajuste) 

                     # Plota o ajuste 

                     if i == 0:  # Adiciona o label somente para o primeiro ajuste 

                         plt.plot(x_intervalo*escala_tempo, y_ajustado, 'r--', label=f'Ajuste 

Lorentziano', color = 'orange') 

                     else: 
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                         plt.plot(x_intervalo*escala_tempo, y_ajustado, 'r--', color = 'orange') 

                 

                 except RuntimeError as e: 

                     print(f"Erro ao ajustar o pico {i+1}: {e}") 

             else: 

                print(f'{arquivo.split('_')[3]} {arquivo.split('_')[4]} apresenta picos com 

divergencia em altura') 

             if len(picos_utilizaveis_x) == 4: 

                 # Calcular a finesse 

                 Finesse_pico_1 = (centro_picos_ajustados[1]- 

centro_picos_ajustados[0])/larguras_fwhm[0] 

                 Finesse_pico_2 = (centro_picos_ajustados[1]- 

centro_picos_ajustados[0])/larguras_fwhm[1] 

                 Finesse_pico_3 = (centro_picos_ajustados[3]- 

centro_picos_ajustados[2])/larguras_fwhm[2] 

                 Finesse_pico_4 = (centro_picos_ajustados[3]- 

centro_picos_ajustados[2])/larguras_fwhm[3] 

 

                 erro_FSR_1_2 = np.sqrt(erro_centro_picos_ajustados[0]**2 + 

erro_centro_picos_ajustados[1]**2) 

                 erro_FSR_3_4 = np.sqrt(erro_centro_picos_ajustados[2]**2 + 

erro_centro_picos_ajustados[3]**2) 

                 erro_Finesse_pico_1 = Finesse_pico_1 * 

np.sqrt((erro_FSR_1_2/(centro_picos_ajustados[1]- centro_picos_ajustados[0]))**2 + 

(erro_larguras_fwhm[0]/larguras_fwhm[0])**2) 
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                 erro_Finesse_pico_2 = Finesse_pico_2 * 

np.sqrt((erro_FSR_1_2/(centro_picos_ajustados[1]- centro_picos_ajustados[0]))**2 + 

(erro_larguras_fwhm[1]/larguras_fwhm[1])**2) 

                 erro_Finesse_pico_3 = Finesse_pico_3 * 

np.sqrt((erro_FSR_3_4/(centro_picos_ajustados[3]- centro_picos_ajustados[2]))**2 + 

(erro_larguras_fwhm[2]/larguras_fwhm[2])**2) 

                 erro_Finesse_pico_4 = Finesse_pico_4 * 

np.sqrt((erro_FSR_3_4/(centro_picos_ajustados[3]- centro_picos_ajustados[2]))**2 + 

(erro_larguras_fwhm[3]/larguras_fwhm[3])**2) 

                 if Finesse_pico_1 >= 150: 

                     finesse_coleta.append(Finesse_pico_1) 

                     erro_Finesse_coleta.append(erro_Finesse_pico_1) 

                 if Finesse_pico_2 >= 150: 

                     finesse_coleta.append(Finesse_pico_2) 

                     erro_Finesse_coleta.append(erro_Finesse_pico_2) 

                 if Finesse_pico_3 >= 150: 

                     finesse_coleta.append(Finesse_pico_3) 

                     erro_Finesse_coleta.append(erro_Finesse_pico_3) 

                 if Finesse_pico_4 >= 150: 

                     finesse_coleta.append(Finesse_pico_4) 

                     erro_Finesse_coleta.append(erro_Finesse_pico_4) 

                 print(f"Finesse do pico 1: {Finesse_pico_1} ± {erro_Finesse_pico_1}") 

                 print(f"Finesse do pico 2: {Finesse_pico_2} ± {erro_Finesse_pico_2}") 

                 print(f"Finesse do pico 3: {Finesse_pico_3} ± {erro_Finesse_pico_3}") 

                 print(f"Finesse do pico 4: {Finesse_pico_4} ± {erro_Finesse_pico_4}") 
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                 plt.text(picos_filtrados_x[0] * escala_tempo, picos_filtrados_y[0]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_1:.3f} ± {erro_Finesse_pico_1: .3f}', ha='center', 

color='black') 

                 plt.text(picos_filtrados_x[1] * escala_tempo, picos_filtrados_y[1]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_2:.3f} ± {erro_Finesse_pico_2: .3f}', ha='center', 

color='black') 

                 plt.text(picos_filtrados_x[2] * escala_tempo, picos_filtrados_y[2]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_3:.3f} ± {erro_Finesse_pico_3: .3f}', ha='center', 

color='black') 

                 plt.text(picos_filtrados_x[3] * escala_tempo, picos_filtrados_y[3]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_4:.3f} ± {erro_Finesse_pico_4: .3f}', ha='center', 

color='black') 

             else:  

                 erro_FSR_1_2 = np.sqrt(erro_centro_picos_ajustados[0]**2 + 

erro_centro_picos_ajustados[1]**2) 

 

                 Finesse_pico_1 = (centro_picos_ajustados[1]- 

centro_picos_ajustados[0])/larguras_fwhm[0] 

                 Finesse_pico_2 = (centro_picos_ajustados[1]- 

centro_picos_ajustados[0])/larguras_fwhm[1] 

                 erro_Finesse_pico_1 = Finesse_pico_1 * 

np.sqrt((erro_FSR_1_2/(centro_picos_ajustados[1]- centro_picos_ajustados[0]))**2 + 

(erro_larguras_fwhm[0]/larguras_fwhm[0])**2) 

                 erro_Finesse_pico_2 = Finesse_pico_2 * 

np.sqrt((erro_FSR_1_2/(centro_picos_ajustados[1]- centro_picos_ajustados[0]))**2 + 

(erro_larguras_fwhm[1]/larguras_fwhm[1])**2) 

 

                 if Finesse_pico_1 >= 150: 

                     finesse_coleta.append(Finesse_pico_1) 
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                     erro_Finesse_coleta.append(erro_Finesse_pico_1) 

                 if Finesse_pico_2 >= 150: 

                     finesse_coleta.append(Finesse_pico_2) 

                     erro_Finesse_coleta.append(erro_Finesse_pico_2) 

 

                 print(f"Finesse do pico 1: {Finesse_pico_1} ± {erro_Finesse_pico_1}") 

                 print(f"Finesse do pico 2: {Finesse_pico_2} ± {erro_Finesse_pico_2}") 

 

                 plt.text(picos_filtrados_x[0] * escala_tempo, picos_filtrados_y[0]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_1:.3f} ± {erro_Finesse_pico_1: .3f}', ha='center', 

color='black') 

                 plt.text(picos_filtrados_x[1] * escala_tempo, picos_filtrados_y[1]/2 , 

r'$\mathcal{F}$ ' f'= {Finesse_pico_2:.3f} ± {erro_Finesse_pico_2: .3f}', ha='center', 

color='black') 

             # salvar o gráfico 

             nome_grafico_finesse = os.path.splitext(arquivo)[0] + '_FINESSE.png' 

             output_grafico_finesse = os.path.join(folder_destiny_graficos, 

nome_grafico_finesse) 

 

             if len(picos_utilizaveis_x) == 4: 

                 Finesse_arquivo = 

(Finesse_pico_1+Finesse_pico_2+Finesse_pico_3+Finesse_pico_4)/4 

                 erro_Finesse_arquivo = Finesse_arquivo * 

np.sqrt((erro_Finesse_pico_1/Finesse_pico_1)**2 + 

(erro_Finesse_pico_2/Finesse_pico_2)**2 + 

(erro_Finesse_pico_3/Finesse_pico_3)**2 + 

(erro_Finesse_pico_4/Finesse_pico_4)**2) 
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                 print(f"Finesse da Coleta com 4 picos utilizaveis: {Finesse_arquivo} ± 

{erro_Finesse_arquivo}") 

                 amp_coleta.append(amp_ajustado) 

                 wid_coleta.append(wid_ajustado) 

                 picos_usados.append(picos_utilizaveis_x) 

                 

             else:  

                 Finesse_arquivo = (Finesse_pico_1+Finesse_pico_2)/2 

                 erro_Finesse_arquivo = Finesse_arquivo * 

np.sqrt((erro_Finesse_pico_1/Finesse_pico_1)**2 + 

(erro_Finesse_pico_2/Finesse_pico_2)**2) 

                 print(f"Finesse da Coleta com 2 picos utilizaveis: {Finesse_arquivo} ± 

{erro_Finesse_arquivo}") 

                 amp_coleta.append(amp_ajustado) 

                 wid_coleta.append(wid_ajustado) 

                 picos_usados.append(picos_utilizaveis_x) 

                 

 

             plt.plot([], [], ' ', label= f"Lorentzian Finesse Average: {Finesse_arquivo:.3f} ± 

{erro_Finesse_arquivo:.3f}") 

             plt.xlabel('Tempo (s)') 

             plt.ylabel('Voltagem (normalizada)') 

             # Plotar o gráfico com o título 

             plt.title(titulo_grafico) 

             plt.legend() 

             plt.grid(True) 
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             plt.savefig(output_grafico_finesse) 

             plt.close() 

             arquivos_utilizados.append(arquivo) 

         # Remover arquivos que não possuem 4 picos utilizáveis 

         if arquivo not in arquivos_utilizados: 

             os.remove(caminho_arquivo) 

             print(f'Arquivo da {arquivo.split('_')[3]} {arquivo.split('_')[4]} removido com 

sucesso!') 

if len(finesse_coleta) > 0: 

     pesos = 1/np.array(erro_Finesse_coleta)**2 

     finesse_coleta_media = sum(np.array(finesse_coleta)*pesos)/sum(pesos) 

     erro_Finesse_coleta_media = np.sqrt(1/sum(pesos)) 

     largura_media = sum(wid_coleta) / len(wid_coleta) 

     amplitude_media = sum(amp_coleta) / len(amp_coleta) 

     finesse_coleta_average = sum(finesse_coleta)/len(finesse_coleta) 

     erro_average = np.std(finesse_coleta)/np.sqrt(len(finesse_coleta)) 

     print(f'Quantidade de picos utilizadas: {len(finesse_coleta)} picos') 

     print(f"Finesse média da Cavidade Média Ponderada: {finesse_coleta_media:.5f} ± 

{erro_Finesse_coleta_media:.5f}")  

     print(f"Finesse média da Cavidade Média Aritmética: {finesse_coleta_average:.5f} 

± {erro_average:.5f}")  

     print(f"Largura média da Cavidade: {largura_media:.5f}") 

     print(f"Amplitude média da Cavidade: {amplitude_media:.5f}") 
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APPENDIX J – PYTHON CODE TO FIND THE PHOTON LIFETIME INSIDE THE CAVITY 

import ruptures as rpt 

import pandas as pd 

import matplotlib.pyplot as plt 

import os 

import numpy as np  

from scipy.optimize import curve_fit 

from scipy.stats import norm 

from scipy.special import erf 

 

# CAMINHO PARA O ARQUIVO ORIGINAL DO OSCILOSCÓPIO, FONTE DOS 

DADOS 

path_1 = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Coletados\Janeiro 2025\Laser Comercial\16_01_2025' 

path_2 = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Coletados\Janeiro 2025\Laser Comercial\16_01_2025\16_48 foton' 

 

# CAMINHO PARA SALVAR O ARQUIVO A SER UTILIZADO PARA FAZER A 

REGUA DE FREQUÊNCIA 

path_dia = r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Tratados\Dados normalizados\Tempo de vida do Foton\Janeiro 2025' 

 

path_grafico = 

r'C:\Users\deskl\OneDrive\Documentos\Daré\Cavidades\Pequena\Dados 

Tratados\Grafico do Tempo de vida do Fóton\Janeiro 2025' 

 

# Nome das novas pastas de destino 
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folder_day_name = os.path.basename(path_1) 

folder_destiny_name = os.path.basename(path_2) + " Normalizado" 

 

folder_day_name_graficos = os.path.basename(path_1) 

folder_destiny_name_graficos= os.path.basename(path_2) + " Graficos" 

 

folder_day = os.path.join(path_dia, folder_day_name) 

folder_destiny = os.path.join(folder_day, folder_destiny_name) 

 

folder_day_graficos = os.path.join(path_grafico, folder_day_name_graficos) 

folder_destiny_graficos = os.path.join(folder_day_graficos, 

folder_destiny_name_graficos) 

 

os.makedirs(folder_day_graficos, exist_ok=True) 

os.makedirs(folder_destiny_graficos, exist_ok=True) 

 

os.makedirs(folder_day, exist_ok=True) 

os.makedirs(folder_destiny, exist_ok=True) 

 

Constante_de_tempo_coleta = [] 

erro_Constante_de_tempo_coleta = [] 

 

#### CÓDIGO PARA CRIAR UM ARQUIVO COM OS DADOS NORMALIZADOS 

DO TEMPO DE VIDA DO FOTON #### 
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# Percorrer todos os arquivos no diretório 

for arquivo in os.listdir(path_2): 

 

    # Verificar se o arquivo é um CSV 

    if arquivo.endswith('.csv') and not arquivo.endswith("_ruido.csv"): 

        plt.clf() 

 

        # Caminho completo do arquivo 

        caminho_arquivo = os.path.join(path_2, arquivo) 

 

        # Carregar os dados dos arquivos 

        data = pd.read_csv(caminho_arquivo, header=0, sep=';') 

 

        # Remover espaços dos nomes das colunas 

        data.columns = data.columns.str.strip() 

 

        # Variáveis 

        x = data['second'] 

        y = data['Volt']  # Primeira coluna de y dos dados 

 

        if max(y) > 0.0050: 

         dado_filtrado = data[data['Volt'] < 0.007] 

 

         if not dado_filtrado.empty:  
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             x_filtrado = dado_filtrado['second']  

             y_filtrado = dado_filtrado['Volt'] 

 

             dado_suavizado = dado_filtrado.rolling(window=1).mean() 

             x_suavizado = dado_suavizado['second'] 

             y_suavizado = dado_suavizado['Volt'] 

 

             # Detectar mudanças de regime usando ruptures 

             signal = y_suavizado.dropna().values  # Remover valores NaN 

             algo = rpt.Pelt(model="rbf").fit(signal) 

             result = algo.predict(pen=25) 

              

             combined_intervals = [] 

             # identificar os regimes 

             regimes = [(result[i], result[i+1]) for i in range(len(result)-1)] 

              

                         # Definição do teste de Chauvenet 

              

             def chauvenet_criteria(dado_suavizado, media, desvio_padrao, N, 

threshold=1/2): 

                 media = np.mean(dado_suavizado)  # Média dos pontos  do regime 

                 desvio_padrao = np.std(dado_suavizado)  # Desvio padrão dos pontos do 

regime 

                 N = len(dado_suavizado)  # Número de pontos do regime 

                 deviations = np.abs(dado_suavizado - media) / desvio_padrao 
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                 prob = 1 - (2 * (1 - 0.5 * (1 + erf(deviations / np.sqrt(2))))) 

                 return prob > threshold / N 

              

             def apply_chauvenet(signal, result): 

                 filtered_signal = np.copy(signal) 

                 start = 0 

 

                 for end in result: 

                     sub_regime = signal[start:end] 

                     mean_chauvenet = np.mean(sub_regime) 

                     std_dev_chauvenet = np.std(sub_regime) 

                     N_chauvenet = len(sub_regime) 

 

                     if N_chauvenet > 1:  # Evita cálculo com regimes muito curtos 

                         mask = chauvenet_criteria(sub_regime, mean_chauvenet, 

std_dev_chauvenet, N_chauvenet) 

                         sub_regime_filtered = sub_regime[mask] 

                         # Substitui os valores fora do critério com a média do regime 

                         filtered_signal[start:end] = np.where(mask, sub_regime, 

np.mean(sub_regime)) 

                     start = end     

                 return filtered_signal 

 

             filtered_signal = apply_chauvenet(signal, result) 

             # fim da definição do teste de Chauvenet 
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             # Comparar a média do primeiro regime com o próximo 

             if len(regimes) > 1: 

                 first_start, first_end = regimes[0] 

                 second_start, second_end = regimes[1] 

              

             mean_first = y_suavizado.iloc[first_start:first_end].mean() 

             mean_second = y_suavizado.iloc[second_start:second_end].mean() 

 

             # se a média do primeiro for menor que a do segundo, então descartamos o 

primeiro regime 

             if mean_first < mean_second: 

                    regimes = regimes[1:] # começa do segundo regime 

              

             if len(regimes) > 1:  # Garantir que há pelo menos dois regimes para 

comparar 

                 last_start, last_end = regimes[-1] 

                 penultimate_start, penultimate_end = regimes[-2] 

 

                 mean_last = y_suavizado.iloc[last_start:last_end].mean() 

                 mean_penultimate = 

y_suavizado.iloc[penultimate_start:penultimate_end].mean() 

 

                 if mean_last > mean_penultimate: 

                     regimes = regimes[:-1]  # Remover o último regime 
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             # Agrupar os regimes em pares parte alta + parte baixa 

             for i in range(0, len(regimes)-1, 2): 

                if i + i < len(regimes): # garantir que ha ao menos um par 

                     start = regimes[i][0] 

                     end = regimes[i+1][1] # incluir o final do proximo regime 

                     combined_intervals.append((start, end)) 

              

             # Função para o ajuste com decaimento exponencial 

             def transition_model(t, a, b, c, d, tau): 

                 return np.where( 

                     t < c, a, 

                     b + (a - b) * np.exp(-(t - c) / tau) 

                 ) + d 

             # Ajustar o modelo em cada intervalo 

             fitted_params = [] 

             covariances = [] 

             constante_tempo = [] 

             erro_constante_tempo = [] 

 

             for i, (start, end) in enumerate(combined_intervals): 

                 plt.clf() 

                 regime_data = y_suavizado.iloc[start:end].values 
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                 regime_time = x_suavizado.iloc[start:end].values 

 

                    # Aplicar o teste de Chauvenet para remover outliers 

                 regime_data = apply_chauvenet(regime_data, result) 

                 regime_time = regime_time[:len(regime_data)]  # Ajustar o tempo para 

corresponder aos dados filtrados 

 

                 # Redefinir o eixo x para começar em zero 

                 regime_time_zeroed = regime_time - regime_time[0] 

 

                 # Normalização do regime 

                 min_val = regime_data.min() 

                 max_val = regime_data.max() 

                 normalized_data = (regime_data - min_val) / (max_val - min_val) 

                 

                 try: 

                     # Valores iniciais estimados: [amplitude alta, amplitude baixa, tempo de 

transição, offset, constante de tempo] 

                     inicial_guess = [mean_first, mean_second, 

regime_time_zeroed.mean(), 0.005, 0.0001] 

                     popt, pcov = curve_fit(transition_model, regime_time_zeroed, 

normalized_data, p0=inicial_guess, maxfev=30000) 

 

                     amp_a_ajustado, amp_b_ajustado, c_ajustado, d_ajustado, 

tau_ajustado = popt 
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                     erro_amp_a_ajustado, erro_amp_b_ajustado, erro_c_ajustado, 

erro_d_ajustado, erro_tau_ajustado = np.sqrt(np.diag(pcov)) 

                     fitted_params.append(popt) 

                     covariances.append(pcov) 

                     if erro_tau_ajustado < tau_ajustado and 0 < tau_ajustado <= 0.001: 

                         constante_tempo.append(tau_ajustado) 

                         erro_constante_tempo.append(erro_tau_ajustado) 

                         Constante_de_tempo_coleta.append(tau_ajustado) 

                         erro_Constante_de_tempo_coleta.append(erro_tau_ajustado) 

 

                     # gerar o modelo ajustado 

                     y_fit = transition_model(regime_time_zeroed, *popt) 

                      

                 except RuntimeError: 

                     print(f"Ajuste falhou para o intervalo {i+1}") 

                     continue 

                 if erro_tau_ajustado < tau_ajustado and 0 < tau_ajustado <= 0.001: 

                     plt.figure(figsize=(10, 10)) 

                     plt.plot(regime_time_zeroed, normalized_data, label='Sinal', 

color='#0c3fa5') 

                     plt.plot(regime_time_zeroed, y_fit, label=f'Ajuste do intervalo {i+1}, tau = 

{tau_ajustado:.7} ± {erro_tau_ajustado:.7} ', color='#ef8c14', linestyle='--') 

                     plt.xlabel('Tempo') 

                     plt.ylabel('Tensão') 

                     plt.legend() 
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                     plt.title('Ajuste dos Intervalos com Decaimento Exponencial') 

                     #  plt.show() 

                     # Salvar as constantes de tempo em um arquivo CSV 

                     output_file = os.path.join(folder_destiny, f"Constantes_de_tempo_da 

{arquivo.split('_')[4]} {arquivo.split('_')[5]}_intervalo {i+1}.csv") 

                     resultado_df = pd.DataFrame({'x': regime_time_zeroed, 'sinal': 

normalized_data}) 

 

                     if os.path.exists(output_file): 

                         resultado_df.to_csv(output_file, mode='a', header=False, 

index=False, sep=';') 

                     else: 

                         resultado_df.to_csv(output_file, index=False, sep=';') 

 

                     nome_grafico_lifetime = f'Intervalo {i+1} da {arquivo.split('_')[4]} 

{arquivo.split('_')[5]}_foton lifetime.png' 

                     output_grafico_lifetime = os.path.join(folder_destiny_graficos, 

nome_grafico_lifetime) 

                     plt.savefig(output_grafico_lifetime) 

                     plt.close() 

              

             # Calcular a média da constante de tempo 

             if len(constante_tempo) >= 1: 

                 pesos = 1/(np.array(erro_constante_tempo))**2 

                 Constante_de_tempo_arquivo = 

np.sum(np.array(constante_tempo)*pesos)/np.sum(pesos) 
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                 erro_Constante_de_tempo_arquivo = np.sqrt(1/np.sum(pesos)) 

             else: 

                 print(f"Não foi possível calcular a constante de tempo para a 

{arquivo.split('_')[4]} {arquivo.split('_')[5]}") 

              

             # Exibir os parâmetros ajustados 

             for i, params in enumerate(fitted_params): 

                 errors = np.sqrt(np.diag(pcov)) 

                 print(f"Intervalo {i+1} - Parâmetros Ajustados (normalizados):") 

                 print(f"Amplitude Alta (a) = {params[0]:.7f} ± {errors[0]:.7f}") 

                 print(f"Amplitude Baixa (b) = {params[1]:.7f} ± {errors[1]:.7f}") 

                 print(f"Tempo de Transição (c) = {params[2]:.7f} ± {errors[2]:.7f}") 

                 print(f"Offset (d) = {params[3]:.7f} ± {errors[3]:.7f}") 

                 print(f"Constante de Tempo (tau) = {params[4]:.7f} ± {errors[4]:.7f}") 

             if len(constante_tempo) >= 1: 

                 for constante, erro in zip(constante_tempo, erro_constante_tempo): 

                     print(f'Constantes de tempo usados para analisar o ARQUIVO: Coleta: 

{constante:.7f}, Erro: {erro:.7f}') 

                 print(f"Constante de Tempo do arquivo (tau) = 

{Constante_de_tempo_arquivo:.7f} ± {erro_Constante_de_tempo_arquivo:.7f}") 

        # else: 

        #      os.remove(caminho_arquivo) 

        #      print(f"Arquivo {arquivo} removido por não ter valor máximo maior que 

0.0050") 

 

if len(Constante_de_tempo_coleta) >= 1: 
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     pesos_coleta = 1/(np.array(erro_Constante_de_tempo_coleta))**2 

     Tau_Coleta = 

sum(np.array(Constante_de_tempo_coleta)*pesos_coleta)/sum(pesos_coleta) 

     erro_Tau_Coleta = np.sqrt(1/sum(pesos_coleta)) 

     Tau_Coleta_a = np.mean(Constante_de_tempo_coleta) 

     erro_Tau_Coleta_a = np.mean(erro_Constante_de_tempo_coleta) 

     for constante, erro in zip(Constante_de_tempo_coleta, 

erro_Constante_de_tempo_coleta): 

         print(f"Constantes de tempo usados para analisar a COLETA: Coleta: 

{constante:.7f}, Erro: {erro:.7f}") 

     print(f"Quantidade de regimes analisados: {len(Constante_de_tempo_coleta)}") 

     print(f"Constante de Tempo da Coleta (tau) - Média Aritmética = 

{Tau_Coleta_a:.10f} ± {erro_Tau_Coleta_a:.10f}") 

     print(f"Constante de Tempo da Coleta (tau) - Média Ponderada = 

{Tau_Coleta:.10f} ± {erro_Tau_Coleta:.10f}") 

              

 


