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RESUMO

O presente trabalho aborda o problema da adaptação a ambientes em mudança. No con-
texto da teoria dos relevos de adaptação, o impacto de uma mudança ambiental sazonal e
unidirecional finita sobre os níveis de adaptação e, mais importante, sobre a repetibilidade do
processo evolutivo são explorados. A implementação de relevos de adaptação que variam ao
longo do tempo, por vezes denominados seascapes, permite investigar concomitantemente as
duas principais contingências do efeito de uma mutação: as condições ambientais e a interação
entre loci, mais conhecida como epistasia nas ciências biológicas. Os relevos de adaptação e a
dinâmica populacional aplicados correspondem tanto a processos estocásticos, como é comum
no paradigma evolucionário, quanto a sistemas complexos, de modo que os resultados são obti-
dos a partir de simulações de Monte Carlo. As trajetórias evolutivas são registradas como séries
temporais de genótipos, a partir das quais é realizada uma análise estatística. Alternativamente,
um cenário de mudança ambiental sustentada é estudado analiticamente. Partindo da hipótese
padrão de seleção e mutação Gaussianas, o estado estacionário da evolução fenotípica de uma
população muito grande é encontrado, e o paradigma da população em declínio é explorado
em termos da taxa crítica de mudança ambiental. Neste modelo de genética quantitativa, a
presença de plasticidade linear manifesta uma propriedade interessante: apesar dos benefícios
inegáveis para a aptidão média da população, a plasticidade também acarreta um custo em
termos de tempo de recuperação de perturbações.

Palavras-chave: Mudança ambiental. Relevo de adaptação. Caminhada adaptativa. Pre-
visibilidade. Plasticidade fenotípica.



ABSTRACT

The present work addresses the problem of adaptation to changing environments. Under
the fitness landscape theory, the impact of a seasonal as well as a finite unidirectional envi-
ronmental change on the levels of adaptation and, most importantly, on the repeatability of
the evolutionary process are explored. The implementation of time-varying fitness landscapes,
sometimes dubbed seascapes, allows a concomitantly investigation of the two major contingen-
cies of the effect of a mutation: environmental conditions and interaction among loci, better
known as epistasis in biological sciences. Fitness landscapes and the population dynamics ap-
plied correspond both to stochastic processes, as it is common in the evolutionary paradigm,
as well as to complex systems, so that results are obtained from Monte Carlo simulations.
Evolutionary trajectories are recorded as temporal series of genotypes, from which a statistical
analysis is performed. Alternatively, a scenario of sustained environmental change is studied
analytically. Departing from the standard hypothesis of Gaussian selection and mutation, the
stationary state of the phenotypic evolution of a very large population is found, and the de-
clining population paradigm is explored in terms of the critical rate of environmental change.
In this quantitative genetics model, the presence of linear plasticity manifests an interesting
property. Despite the undeniable benefits to the mean population fitness, development also
incurs a cost in terms of the recovery time from disturbances.

Keywords: Environmental change. Fitness landscape. Adaptive walk. Predictability. Phe-
notypic plasticity.
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1 INTRODUCTION

The Theory of Evolution and Natural Selection is one of the greatest achievements of
modern science. In fact, its formulation played a fundamental role in the consolidation of
the scientific method itself. However, the evolution of species is far from being a complete
and closed theory. Its structure has been continually reformulated through the elucidation of
several of the inherent mechanisms due to the wide range of variables involved (MORRIS, 2009).
Among these variables, there is one that always stands out whatever the biological system in
focus: time.

Current estimates confidently indicate that our planet was born almost 4.5 billion years ago,
embedded in a Universe of roughly three times its age (CHABOYER, 1998; DALRYMPLE, 2001;
VALCIN et al., 2020). A primary triumph of geology is precisely the corroboration that during all
this time, change has ruled on Earth, which is itself the historical proof of events of extremely
diverse spatial and temporal scales (HIDE; DICKEY, 1991; GRADSTEIN et al., 2012; STERN,
2018). The findings of paleontology strongly confirm the fundamental and irreversible role of
life in this process and, conversely, geological events of significant intensity and range have
triggered equally important evolutionary responses (PARSONS, 1987; MCELWAIN; PUNYASENA,
2007; DOBRETSOV; KOLCHANOV; SUSLOV, 2008; SESSIONS et al., 2009; WILLIAMS et al., 2015).
These must belong to three non-exclusive types: migration, adaptation, and development
(CRONIN; SCHNEIDER, 1990; HOLT, 1990; CARLSON; CUNNINGHAM; WESTLEY, 2014).

It is common knowledge among ecologists that the gravity of environmental changes re-
sides precisely in the endless chain of side effects. Given the intricate relationship between
species through the food web as well as with the environment, variations in a single biotic
or abiotic factor always have the potential to unveil several disruptions in the entire commu-
nity (TYLIANAKIS et al., 2008). A typical scenario of changing environment is related to the
phenomenon of coevolution, such as that found in the victim-exploiter relationship and its
well-known variants predator–prey and host-parasite systems. In those systems, each species
determines most of the other’s selective constraints through an intricate balance between
attack and defense traits (GILMAN; NUISMER; JHWUENG, 2012).

Environmental changes are not just one more ingredient in adaptation but commonly de-
lineate the onset of events that spur any evolutionary process and innovation. Moreover, there
is clear evidence that the achievement of optimal biological solutions takes exponential time
and adaptation can only operate locally, targeting sufficient rather than perfect responses, so
time is of the essence in the evolutionary paradigm (CHATTERJEE et al., 2014). In order to cope
with the amplitude and constancy of environmental changes, living organisms have evolved,
among other features, the capacity to regulate gene expression in tune with immediate phys-
iological needs, a mechanism that is thought to fuel phenotypic variation and evolutionary
innovation (LÓPEZ-MAURY; MARGUERAT; BÄHLER, 2008). Besides, the complexity of biological
systems is such that theoretical works have already revealed scenarios where recurrent environ-
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mental changes are paramount to survival by preventing excessive adaptation and consequent
large loss of fitness under sudden fluctuations (TRUBENOVA et al., 2019). It was also on a
simulational basis that an even more impressive finding had arisen: occasionally, the evolution
towards temporally varying goals is substantially faster than towards fixed ones, a difference
that is amplified with the complexity of the problem. This result is in agreement with the idea
that evolution is far more capable of solving a problem once it has already solved a similar
one (KASHTAN; NOOR; ALON, 2007). Indeed, environments are substantially correlated through
time, specifically when the former best sequences remain at high-rank positions on fitness after
an environmental change. Once a significant fraction of mutations are deleterious and give rise
to individuals unable to perform the required functions in both initial and final environments,
it is unlikely that the wild-type sequence falls into this group after the transition (ORR, 2005).

Along with environmental conditions, the genetic background sets the other major contin-
gency on the properties of a genotype or, alternatively, on the effect of a mutation. Naturally,
the interaction between loci, known as epistasis, has been one of the most explored phenomena
in the evolutionary theory. Both theoretically and experimentally, this task has been substan-
tially carried out through the concept of fitness landscapes (HALL et al., 2019), introduced in
the early 30’s by WRIGHT (WRIGHT, 1931). Formally, the fitness landscape is a mapping from
genotype to reproductive capacity. The fundamental elements are the set of sequences which
are the conveyors of information and the attribution of a proxy of performance to them which
is ultimately related to their chances of replication. In any case, the space of sequences is dis-
crete and subject to the metrics of the Hamming distance (or its generalizations), while fitness
sets the topography, the determinant of the course of evolution: adaptation is depicted as the
uphill movement of the distribution of genotypes in the population towards fitness peaks. In
physics, the concept is analogous to that of energy landscapes, relating possible states of a
system to their corresponding energy levels (SHIRES; PICKARD, 2021). While from a biological
perspective, evolution is portrayed as a hill-climbing process toward higher peaks of the fitness
landscape, physical systems are driven to states of low energy (NOWAK; KRUG, 2015).

The fitness landscape theory successfully harbors crucial evolutionary constraints and the
potential for adaptation and speciation, allowing direct links between evolution, molecular
biology, and systems biology (FRAGATA et al., 2019). The typical experimental approach consists
of characterizing the topography of empirical fitness landscapes by analyzing the interactions
among a small subset of mutations and re-constructing all possible genotypes from the wild-
type to the evolved one (VISSER et al., 2018). In turn, genotypic fitness landscape models
have been widely used to explain experimental data (SZENDRO et al., 2013b; ROWE et al.,
2010). Obviously, the genotype-fitness relationship describes a particular environment. Under
frequently changing environments, multiple fitness landscapes should be measured (LI; ZHANG,
2018). The investigation of temporally varying fitness landscapes targets thus the fundamental
bridge where ecology meets evolution (VOS; SCHOUSTRA; VISSER, 2018). In this thesis, such
investigation is performed theoretically in the first two chapters resorting to different fitness
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landscape models.
In Section 3, Fisher’s Geometric Model (FGM) is explored. The genotypic landscape under

Fisher’s Geometric Model provides a genotype → phenotype → fitness map, in which an
additional layer is considered relative to genotypic landscape models. These landscapes are an
important and useful extension of the original Fisher’s formulation in which mutation effects
on the phenotypes are assumed to be additive. So deviations from additivity on the genotype-
fitness map are a direct consequence of the nonlinear mapping from phenotype to fitness
(HWANG; PARK; KRUG, 2017). Epistasis emerges due to this nonlinearity of the phenotype to the
fitness map and is particularly important around the optimum phenotype, where the curvature
is larger. The levels of epistasis and ruggedness of the fitness landscape are fundamental
features of the process of adaptation (WEINREICH; WATSON; CHAO, 2005; POELWIJK et al., 2011;
BLANQUART et al., 2014), influencing its degree of repeatability and predictability (COLEGRAVE;

BUCKLING, 2005; SALVERDA et al., 2011; CHEVIN; DECORZENT; LENORMAND, 2014).
The FGM has been a valuable tool in the study of the impact of environmental variations

on many processes found in both evolutionary and ecological contexts (BÜRGER; LYNCH, 1995;
GORDO; CAMPOS, 2013; MATUSZEWSKI; HERMISSON; KOPP, 2014), including those leading to
ecological diversification and speciation events (AMICONE; GORDO, 2021; FREITAS; ARAUJO;

CAMPOS, 2022). A common approach for the FGM in the study of environmental variation
is to assume that the population or community adapts to a dynamic optimum phenotype
(BÜRGER; LYNCH, 1995; GORDO; CAMPOS, 2013). The effect of the environment on reshaping
the landscape is analogous to physical systems, such as the effect of temperature in changing
the energy landscape associated with protein folding, RNA macromolecules and amorphous
solids (GUO; LAMPOUDI; SHEA, 2004; SHAH; GILCHRIST, 2010; LIU; FAN, 2021). The influence
of the rate of environmental variation is quite a controversial issue, especially in the face of
the debate about the role of climatic and ecological changes in shaping biodiversity (BOTTA

et al., 2019).
In Section 4 we concentrate on a scenario similar to that of TRUBENOVA et al.. A basic

premise of the modeling is the existence of a mechanism of gene regulation, which enables
the cells to induce or repress a gene’s expression, thus helping the cell organism to respond
to environmental changes appropriately and thrive under different external conditions LÓPEZ-

MAURY; MARGUERAT; BÄHLER(LÓPEZ-MAURY; MARGUERAT; BÄHLER, 2008). We simulate the
changing environment by assuming that different sets of genes can be expressed according to
environmental conditions that change seasonally. The contribution of Section 4 to the frame-
work of TRUBENOVA et al. concerns the introduction of a crucial element. In the mentioned
work, the absence of epistasis TRUBENOVA et al. creates a modular structure in the genome,
where different parts evolve independently, either subject to strong selection when gene expres-
sion is induced, or to neutral selection when gene expression is suppressed. Epistasis, however,
prevents modular structures.

To mimic the existence of interactions among genes, we consider a class of fitness land-
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scapes known as the NK landscape model KAUFFMAN et al.; MACKEN; PERELSON. An essential
feature of the NK landscape model is that the degree of ruggedness is tunable through the
number of epistatic interactions among the genome elements. The choice of the NK model
resides in two aspects. First, its ability to control the level of epistasis is essential since pre-
dictability is intimately related to this phenomenon (VISSER; KRUG, 2014). Second, the NK
model has undeniable historical importance in the realm of fitness landscapes. Its properties
and results for the static situation are well known, allowing a clear understanding of the new
features associated with the time changing kind.

The formulation of time-dependent fitness landscapes is not new, and the NK fitness
landscape model has also been explored within such a context. It is worth mentioning the
contributions by WANG; DAI and WILKE; MARTINETZ, in which a dynamic fitness landscape
is generated by periodically changing the individual contribution of each site to the organ-
ism’s adaptation. Contrarily, here we follow a similar approach to that of TRUBENOVA et al.’s
combined with the convenience of the NK landscape model, thereby avoiding the modular
genotype structure of their approach. The resulting fitness landscape is time-dependent not
because locus contributions are changed but because different sets of genes are expressed as
a consequence of environmental variation. Thus, it is crucial to understand how epistasis can
restrain the adaptive responses to environmental changes.

While understanding in what conditions the population presents adaptability, i.e., the ability
to endure abrupt changes of selective forces, sets an exclusive objective of Section 4, clarifying
the consequences to the predictability of evolutionary trajectories sets a common problem to
both initial chapters. The issue of repeatability in evolution arises from the conflict between
the deterministic factor, promoted by selection, and the stochastic factor, intrinsic to mutation
and sampling (SZENDRO et al., 2013b). Evolutionist Stephen Jay Gould summed up the problem
in a simple question: if the movie of life could be replayed, would we end up with beings and
structures similar to those we have today, or completely different systems (GOULD, 1989)? In
Section 4, a measure of entropy, as previously defined by SZENDRO et al., is used as a proxy
for the level of repeatability of the resulting genoypes at the end of each evolutionary phase.
Other measurements of predictability and path divergence are used in Section 3 to quantify the
degree of repeatability of the evolutionary endpoints as well as trajectories upon environmental
variation.

The third and last chapter is concerned with quite a different framework. In Section 5,
a discrete-time model is developed on the phenotypic evolution of a metric character un-
der a sustained environmental change, as well as Gaussian selection and mutation. Unlike
previous chapters, this work is completely analytical. A varied handful of works has been per-
formed in this manner, covering many scenarios of population dynamics, yet all concerned with
the chances of persistence and, therefore, invariably leading to critical values, especially the
critical rate of environmental change (LYNCH; GABRIEL; WOOD, 1991; LYNCH; LANDE, 1993;
GOMULKIEWICZ; HOULE, 2009; CHEVIN; LANDE; MACE, 2010). While several parameters asso-
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ciated with demography and environment influence this quantity, emphasis on the role played
by the genetic variance needs to be improved.

The dynamics of the genetic variance is, indeed, a key feature of long-term selection.
Gradual evolution requires genetic variation, and despite the feasibility of significant pheno-
typic changes based only on the genetic variance of the original population (EISEN, 1980;
KEIGHTLEY; HILL, 1990; WEBER; DIGGINS, 1990; BARRETT; SCHLUTER, 2008), polygenic muta-
tion is indispensable to the maintenance of variation when it comes to sustained environmental
change (LYNCH, 1988; NOTTER, 1999; CABALLERO; TORO; LOPEZ-FANJUL, 1991). Incorporat-
ing such elements in a model is defying, and hence a theme of historical debate (BARTON;

TURELLI, 1989). Nonetheless, even in the realm of populations of infinite size under stabilizing
selection, which notably has received more attention than any other domain (LANDE, 1976a;
TURELLI, 1984; SLATKIN, 1987; BARTON; TURELLI, 1989; LYNCH; LANDE, 1993), it remains an
uncomfortable conceptual vacancy among the models: dynamics of the mean phenotype and
phenotypic variance subject to natural selection are not directly related in any case, i.e., they
result from completely distinct assumptions.

Here, we address this conceptual problem by extending the reasonings developed by LANDE

for populations of infinite size with constant phenotypic fitnesses and discrete generations.
Rather than independently focusing on the evolution of the mean phenotype or phenotypic
variance, each evolutionary force operates over the entire distribution of phenotypes. Under
Gaussian stabilizing selection and normally distributed mutation effects, the stationary distri-
bution of phenotypes must also be normal, and the dynamics comes down to that of the mean
phenotype and the phenotypic variance. Such dynamics constitute a two-dimensional map that
fruitfully allows analysis based on the theory of Dynamical Systems (OTT, 2002) and evinces
two fundamental aspects of long-term adaptation. First, an optimal value of mutation rate
naturally emerges since the phenotypic load is opposed by the approximation to the phenotypic
optimum as variance increases, as first observed by MATHER. The second and main finding
concerns the role of development.

Development is here explored through phenotypic plasticity. The mathematical description
of plasticity for continuous traits involves the concept of reaction norm, the function associ-
ating phenotype to an environmental variable for each genotype (SCHEINER, 1993; CHEVIN;

LANDE; MACE, 2010). For simplicity, one constrains the discussion to linear reaction norms.
More precisely, it is linear when measured relative to the phenotypic distance to the opti-
mum phenotype, which is a more appropriate assumption, since in the context of sustained
environmental change, linearity on the environmental variable clearly induces a monotonically
increasing magnitude of plasticity, accumulated over generations and unfeasible due to phys-
iological constraints (ROCHA; MEDEIROS; KLACZKO, 2009). Remarkably, departing from no a
priori assumption on constitutional or inherent costs of plasticity (DEWITT; SIH; WILSON, 1998;
CROZIER; HUTCHINGS, 2014), the present modeling presents a clear trade-off between viability
and stability as a function of the magnitude of development.
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2 THEORETICAL FOUNDATION

The Theory of Evolution is a landmark of science. The recognition of its stochastic nature
was decisive in the consolidation of probabilistic systems as an essential discipline, at a time
dominated by the deterministic school of thought. The dynamic character of the species high-
lighted, in turn, the relevance and generality of phenomena out of thermodynamic equilibrium.
The collective aspect opened the doors to a newly born scientific vision, emergentism, while
reinforcing the importance of interdisciplinarity in understanding the natural world.

2.1 EVOLUTION

The evolutionary process is based on three pillars: reproduction, mutation and selection.
All living organisms have been and are continually shaped by these factors, at the most di-
verse scales of organization, space and time. In a favorable environment, a living being must
reproduce. When two types of individuals compete for resources and reproduce at different
rates, selection occurs, favoring the one with the higher rate (NOWAK, 2006). It turns out that
at the level of DNA and RNA, reproduction means replication, i.e., copying information, a
process usually prone to errors (DOMINGO; SCHUSTER, 2015). These occasional errors in the
transmission of genetic material produce new types of individuals and, with them, diversity,
which will be subject to selection, perpetuating the cycle. It is important to emphasize that
the ability to evolve does not belong to genes, cells or organisms, but rather to populations.
Only populations can maintain and transmit the information generated in the process (NOWAK,
2006).

There are two basic postulates. First, mutations are random with respect to their effec-
tiveness or functionality (SMITH, 1970). It should be clear that nothing is said, however, about
randomness concerning their generation, in terms of their chemical and physical origins. In fact,
the process can be very biased in this regard, resulting, for example, in the existence of certain
regions in genetic sequences that are strongly affected by mutations (SMITH, 1970; EIGEN;

MCCASKILL; SCHUSTER, 1989). The second hypothesis states the natural selection of favorable
mutations. In the case of neutral mutations, fixation occur by chance. These hypotheses are
strong, no plausible alternative has ever been suggested and no evidence to invalidate them
has been found so far (SMITH, 1970). However, an apparent incompatibility in the structure
of this system is the subject of intense discussion and is worth mentioning.

First of all, it is necessary to have an idea of the magnitudes involved in the number of
possibilities of genomic and protein sequences. Consider proteins constituted of 100 amino
acids, for instance, which is quite a modest length. Once there are 20 distinct amino acids, it
results in a diversity of 20100 possible proteins, or about 10130. Comparatively, it is estimated
that there are about 1080 protons in the Universe (NOWAK, 2006). These numbers reveal
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that evolution has not been and will not be able to explore more than a small subset of all
possibilities.

Aware of this fact, SALISBURY noted an inconsistency: the astronomical number of possi-
bilities associated with genomes and proteins seems to make adaptation via random mutations
unsustainable, that is, favorable mutations would be too rare to be found by chance. In this
scenario, natural selection would have nothing to act on. However, this conflict is only appar-
ent and the result of an incorrect way of interpreting the probabilities in question. In fact, the
probability of any given sequence being functional is not the relevant quantity in the evolu-
tionary process. The probability that plays a central role is that of a mutant being better or
equally efficient than its predecessor, that is, the one from which it was generated, within the
particular set of all mutants accessible to this ancestor (SMITH, 1970). To understand how
this conditional probability is sufficient to sustain adaptation, it is necessary to go deeper into
what is meant by accessible mutants. From this need arises the concept of sequence space.

2.2 SEQUENCE SPACE

One can distinguish between two classes of mutations: (i) those that cause small changes,
as a replacement, addition or deletion of a single informational basis, and (ii) those related to
major changes. In many respects, it is plausible to assume that mutations involving more than
one locus are not evolutionarily determinant, considering that the probability that they result
in an efficient product must be very low (SMITH, 1970).

Figure 1 – Space of binary sequences of length 𝐿 = 3. For a binary alphabet of arbitrary length, the space of
sequences constitutes a hypercube.

Source: NOWAK (2006)

Under this assumption, the archetype of the evolutionary dynamics that leads from a wild-
type sequence to a favorable mutant sequence becomes that of a process that occurs by
unitary mutational steps, via intermediate sequences that are also favorable. Such a process
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must therefore involve a continuous network of functional sequences immersed in the space of
all possible sequences. Continuity here refers to the passage exclusively through neighboring
sequences, and neighborhood, in turn, refers to sequences that differ from each other by the
mutation of a single locus (SMITH, 1970). We thus have the sequence space as the abstraction
of the complete set of possible sequences of the same length endowed with the concept of
neighborhood defined by the Hamming distance, measured by the number of sites by which
two objects differ (NOWAK, 2006). Fig. 1 illustrates the concept for binary sequences, where
vertices represent genomes and edges connect first neighbors.

It is now clear that the term accessible mutant refers to the set of first neighbors of a
given sequence and we are now able to clarify the problem raised in the last section. The
evolutionary process follows an algorithm based on already existing sequences, and therefore,
functional sequences. It turns out that there is a strong correlation between the efficiency of a
sequence and its neighbors, resulting in a greater probability of finding an efficient mutant in
the neighborhood of an also efficient sequence than of selecting an efficient sequence from all
sequences by pure chance. Illustratively, it is easier to find a peak in the Andes than to choose
any place on the surface of the Earth (SMITH, 1970).

While pictures like the one above are quite useful, they do have their limitations and
should be considered with caution. Sequence spaces are peculiar places characterized by high
dimensionality and a huge number of close neighbors, as well as routes between two points. In
particular, there are 𝑑! direct routes between any two sequences that differ by 𝑑 sites (NOWAK,
1992; EIGEN; MCCASKILL; SCHUSTER, 1989). Taking the estimate of protons in the Universe as
a reference, a space with 1080 points would have a diameter of 133 units, and clearly a small
number of mutations would lead to totally different regions. From this it can be inferred that
any walk in spaces of this nature requires a very effective guide. In evolution, natural selection
plays this role (NOWAK, 1992).

2.3 FITNESS LANDSCAPE

The concepts of fitness and evolutionary walk motivated the formulation of the sequence
space. The attribution of reproductive capacity into the picture, known as the fitness, gives
rise to another entity known as fitness landscape. The fitness landscape was introduced by
Sewall Wright in 1932 (NOWAK, 2006; NOWAK, 1992). WRIGHT proposed the concept through
the following question: if all possible combinations of genes were graded in some way with
respect to their adaptive value, what would be the nature of this entity?

In order to imagine such a space, let us start with the combination with the greatest
adaptive value. In relation to that, the fitness of the other sequences must decline more or
less regularly according to the number of substitutions by which they differ. A distribution of
individuals concentrated in one of these intermediate sequences would then be able to “feel”
the adaptive gradient and “climb” until it stabilizes at the top, that is, those sequences close
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Figure 2 – Two-dimensional representation of a fictitious fitness landscape. + and - signs represent fitness
maxima and minima, respectively.

Source: WRIGHT (1932)

to the fittest tend to dominate in the population and mutations directed at them become fixed
more frequently. (WRIGHT, 1932). Due to the difficulty of graphically representing these hy-
perdimensional spaces, 2D or 3D illustrations are inappropriate caricatures and often resemble
representations of contour lines as in Fig. 2, presented by WRIGHT under the term “field of
gene combinations”.

Actually, these landscapes usually have more than one peak. Given an arbitrary initial
condition, the selective force drives the population towards the nearest peak. Since adaptive
peaks are separated by valleys of fitness, the gradient can no longer guide the optimization
process once a peak has been reached. The evolutionary problem abstracted onto a rugged
terrain like this is then characterized by the need for a search engine that allows the population
to explore the surroundings of the small region it occupies waiting to experience a gradient
belonging to another peak, thus having the chance to be continually taken from lower to
higher peaks. The mechanism in question is trial and error, fueled by the occurrence of de
novo mutations (WRIGHT, 1932).

2.4 THEORETICAL MODELS

Parallel to the slow progress of experimental studies, the theoretical area was extensively
explored through various models. Such models were built on a wide variety of hypotheses,
some even contradictory to each other (SZENDRO et al., 2013b). They have an important
complementary role to experimental advances, being useful, for example, to quantify devia-
tions associated with the inference of large-scale experimental landscapes from small samples
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(VISSER; KRUG, 2014).
A widely explored class of models concerns the random field models. In these landscapes,

fitness is attributed directly to each genotype through some probabilistic algorithm. They are
especially useful in assessing how landscapes vary with dimensionality. The simplest model
of this class is known as House of Cards, in which fitness is independently assigned to each
sequence from a fixed probability distribution (VISSER; KRUG, 2014). Another example is the
Rough Monti Fuji. Departing from an additive model, i.e., one in which each locus additively
contributes to fitness, and then a noise is applied to that individual contribution. Through the
intensity of the noise it is possible to adjust the deviation of the additivity and, therefore, the
roughness of the landscape (VISSER; KRUG, 2014).

Following this adjustment capacity of the Rough Monti Fuji, there is also the NK model.
It is characterized by the length 𝐿 of the genomes and the number 𝐾 of epistatic interactions.
A given gene forms a set of 𝐾 +1 interacting genes, and the fitness of the 2𝐾+1 possible com-
binations of this set is randomly assigned (VISSER; KRUG, 2014). For 𝐾 = 0, the contribution
of each gene is independent of the others and the sequence with the highest adaptive value is
obtained by optimizing all genes simultaneously and individually, giving rise to the only maxi-
mum of the landscape. With 𝐾 = 𝑁 − 1, however, each gene depends on all the others and,
therefore, it is not possible to optimize even a single pair of them simultaneously, characterizing
the phenomenon of frustration and resulting in a completely uneven landscape. Between these
two extremes, intermediate levels of roughness can be obtained. The NK Model incorporates
the ability to simulate the statistics associated with genetic interactions that lead to differ-
ent roughness in the landscape without the need to formulate the biochemical mechanisms
involved (SZENDRO et al., 2013b).

All the landscapes mentioned so far share one similarity. In these models the formulation
of the structural origins of properties such as roughness is avoided in favor of the direct ap-
plication of their immediate effects. A priori constructs, based on the chemical and physical
underpinnings of proteins and genetic sequences, such as binding affinity, stability, and inter-
actions, provide an alternative class of models made from first principles. Due to their larger
complexity, they usually require great simulation and analysis capacity, which can represent an
unnecessary difficulty depending on the object of study (SZENDRO et al., 2013b; VISSER; KRUG,
2014).

2.5 EVOLUTIONARY PREDICTABILITY

Considering the undeniable component of randomness involved in the directions and results
of evolution, a list of pertinent questions arise (MORRIS, 2009):

• Would evolution be predictable in some way?

• Is it possible to identify and quantify the viability of alternative forms of biological
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organization?

• How fortuitous are major transitions in the history of life?

• How bound by the past is evolutionary diversification?

• Do evolutionary solutions come closer to a merely sufficient answer or a highly efficient
one?

Figure 3 – Differentiation of populations (shaded and patterned circles) subject to different environmental con-
ditions (lines) since their origin from an unknown ancestor. Repeatable evolution can be referred to
as the attainment of the same final character state, or the undergoing of the same evolutionary pro-
cesses by different independent lineages. In terms of process, C and D are equivalent (repeatable),
although the pattern is different: C represents parallel evolution, while D shows convergent evolu-
tion. Divergent evolution, represented by A and B, will exacerbate initial phenotypic and genetic
differences between populations, either under different (A) or similar (B) environmental conditions.
With parallel evolution, those same differences will be maintained.

Source: TEOTÓNIO; ROSE (2001)

These questions, far from representing an objection to the existence of evolution and
the consistency of the selection mechanism, only bring to light the fact that we most likely
do not have a complete explanation of the phenomenon yet (MORRIS, 2009). There is no
doubt that nature flaunts a great divergence of populations and species, and even under the
assumption that divergence is inherently adaptive, we are still left with another question: is
such divergence an adaptive response to different environments or a different adaptation to
the same environment? In other words, does the diversity of solutions represent the diversity of
the problem or the contingency of the process (DYKHUIZEN, 1992)? In practice, two lines can
be directly explored: (i) identical populations evolving in parallel or (ii) different populations
converging to the same solution (COLEGRAVE; BUCKLING, 2005). Parallelism, convergence, and
divergence are illustrated in Fig. 3.

The adaptive process is ruled by essentially two types of factors, deterministic selective
forces and fortuitous events of reproduction and mutation, whose influence on the evolution-
ary outcome is the cause of intense discussion and the reason behind great experimental and
theoretical efforts. Experimentally, the study of predictability has been approached at the micro
evolutionary scale through the repeatability of adaptive changes in replicated populations of
microbes. In one of these studies, for example, strong evidence was observed of parallelism
in the acquisition of antibiotic resistance by certain pathogens, a highly relevant result in the
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context of pharmaceutical development (SZENDRO et al., 2013a). While the first experimental
studies of predictability were limited to inference from their final result, currently the use of
microorganisms offers a much richer procedure. Due to the short time between generations,
microorganisms can be used to monitor adaptation in real time and under controlled environ-
mental conditions. Furthermore, such beings can be maintained in an inanimate state, which
allows direct comparison between ancestors and descendants (DYKHUIZEN, 1992; COLEGRAVE;

BUCKLING, 2005).
One of the oldest studies in microbial evolution involves the bacteria Escherichia coli,

investigated since 1988, and leads to some interesting results. In one of the experiments,
LENSKI et al., twelve identical populations were subjected to a glucose-limited environment
and their fitness was measured through direct competition with the ancestor. The experiment
indicates that similar phenotypes can be obtained in different ways, through mutations in
different genes. In this same study, the role of initial conditions was also explored. Although
different populations showed divergences in fitness, this divergence did not depend on the
starting point (COLEGRAVE; BUCKLING, 2005).

Figure 4 – Two possible adaptive landscapes for a simple two-gene organism. The circles represent the four
possible genotypes and the size of the circle indicates the fitness of that genotype. To consider
how evolution occurs on such landscapes, we will make a number of simplifying assumptions:
(1) mutations only occur one at a time (so for example an ab individual cannot mutate to an
AB individual in a single step), (2) genetic change is very rapid compared to the rate at which
mutations occur, so that populations are effectively genetically uniform and, if a mutation arises that
increases fitness, it will immediately spread through the population, whilst a deleterious mutation is
immediately lost. Evolutionary changes that will be favored by selection are shown by arrows. Left
panel: A smooth landscape, all trajectories lead to the AB genotype, and so selection will inevitably
get to the same point wherever it begins. Right panel: A rugged landscape with two adaptive peaks
(AB and ab) separated from each other by lower fitness genotypes. Now whether a population that
starts at Ab evolves to the AB peak or the ab peak will depend on which mutations occur first,
and a population that starts at the ab peak has no way of reaching the fitter AB peak.

Source: COLEGRAVE; BUCKLING (2005)

Many factors can influence the repeatability of adaptive trajectories, the main ones being
population size, mutation rate and landscape topography, the latter closely related to epistatic
interactions (SZENDRO et al., 2013a). Regarding the relationship between topography and pre-
dictability, a notably important aspect is the roughness of the landscape. In a landscape with
a single peak, for example, it is expected that regardless of the initial genotype and the or-
der in which mutations occur, at the end of any walk the population will have reached the
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global maximum. In rugged terrain, however, even when the initial condition is fixed, each step
can be decisive in leading toward the basin of attraction of one of the several local maxima.
Thus, the distinction between smooth and rough landscapes characterizes one of the most
general and common ways of approaching the problem of evolutionary predictability. Rough-
ness and abundance of local maxima have another immediate effect: often the population will
not achieve the best possible result (COLEGRAVE; BUCKLING, 2005; KORONA et al., 1994). The
great variability of the landscapes is so striking that even the smallest possible landscape, one
of dimension two with only one type of mutation in each gene (see Fig. 4), is not a trivial
case in terms of roughness and number of peaks and, consequently, possible walks. Such a
landscape is capable of presenting two notably different situations that, ultimately, are decisive
in the adaptive biases (COLEGRAVE; BUCKLING, 2005).

According to the intuition of stochastic processes, the dependence of evolutionary pre-
dictability on population size is expected to be quite simple: the larger the population, the
more deterministic the system. A more detailed analysis of the problem, however, reveals a
much richer relationship. Population and mutation rate together determine mutant breeding
regimes whose effect on trajectory repeatability is nontrivial, for instance the SSWM (strong se-
lection weak mutation), clonal interference, and stochastic tunneling (SZENDRO et al., 2013a).
The first and simplest regime, SSWM, is characterized by a mutation rate low enough that the
emergence and fixation of a given mutant occurs in isolation, that is, rarely there is the pres-
ence of two or more different mutations. In this way, the population behaves as a homogeneous
entity, a walker forced to perform unitary mutation steps of ascending fitness. In general, such
monotonically increasing paths are not abundant in the landscapes, which implies considerable
predictability in the SSWM (SZENDRO et al., 2013a).

Despite its solidity, Darwinian theory should not be considered a complete theory. There is
still a great lack of understanding of fundamental aspects, such as the way in which organisms
take on increasingly complex forms and why evolutionary convergence is so recurrent. Under-
lying these doubts is growing evidence that these processes are predictable to some extent
(MORRIS, 2010).
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3 ADAPTIVE WALKS ON TIME-VARYING FISHER’S LANDSCAPES

The results displayed in this chapter correspond to the article published by CIRNE; CAMPOS.

DOI: 10.1103/PhysRevE.106.064408

3.1 PROLOGUE

Most evolutionary biologists are familiar to the concept of fitness landscapes and the
general problem of combinatorial optimization. A stand-out class of fitness landscapes are the
phenotypic fitness landscapes, those which map phenotype to fitness. Since the Neo-Darwinian
paradigm of evolution, the set of possible phenotypes has been usually modeled into Euclidean
vector spaces (STADLER; STADLER, 2006). Such mappings typically involve multiple nonlinear-
ities that are paramount to the actual effect of mutations (SRIVASTAVA; PAYNE, 2022). Under
biologically realistic genotype-phenotype maps, fitness landscapes become quite navigable even
under random fitness assignment, presenting pervasive neutral networks and fitness maxima
that can be reached from almost any other phenotype (GREENBURY; LOUIS; AHNERT, 2022).

The most important theoretical instance of a phenotype-fitness map is probably the Fisher
Geometric Model (FGM) (FISHER, 1958). The FGM assumes a continuous multidimensional
phenotypic landscape originally built to investigate the properties of individual mutation effects
(TENAILLON, 2014), and successfully demonstrates the experimentally observed tendency of
accumulation for small deleterious mutations (KIBOTA; LYNCH, 1996). Despite slightly detri-
mental mutations being somewhat less likely to become fixed than favorable ones, the former
kind is far more abundant (HARTL; TAUBES, 1996). Under the FGM, this property emerges
from geometrical properties associated with pleiotropy, i.e., the capacity of a mutation to
affect multiple traits.

If supplemented with the assumption of additivity of mutational effects on phenotypic
traits, the FGM provides a class of fitness landscapes where epistasis emerges from the non-
linear phenotype-fitness map (HWANG; PARK; KRUG, 2017). In the region where the curvature
of the map is maximized, in particular, the associated fitness landscape presents reciprocal
sign epistasis, i.e., pairs of genes that are separately unfavorable but jointly advantageous
and known as a necessary condition for the existence of multiple fitness peaks (POELWIJK

et al., 2011). Epistasis, the conditional effect of a mutation on the genetic background, is
widely observed and is thought to play a fundamental role in evolution by natural selection
(WEINREICH; WATSON; CHAO, 2005), and the FGM has been proven to be very useful in the
understanding of the theme (BLANQUART et al., 2014).

As a framework targeted to multidimensional phenotypes, the FGM has been equally im-
portant in the investigation of the constraints imposed by multiple trait combinations in a
species response to environmental changes (LAUGHLIN; MESSIER, 2015). Under distinct envi-
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ronments, mutation effects usually vary significantly, affecting the patterns of evolution. More
precisely, stressful conditions are thought to cause an increased variance of mutations’ fitness
effects, average value, and a number of expressed mutations (MARTIN; LENORMAND, 2006).
Once again, the FGM can account for the observed patterns of fitness change (PERFEITO

et al., 2014). In this context, here we propose a model of genotypic evolution in a changing
environment based on Fisher landscapes.

3.2 MODEL

Here we propose a model for the genotypic evolution of isogenic populations under a
period of stabilizing and directional selection. The adaptation process is depicted in a fitness
landscape, which is built in two steps: (i) a genotype-phenotype map is produced by associating
fixed phenotypic changes to a set of mutations that occur upon the ancestral phenotype to
determine the resultant phenotype of each possible mutant; (ii) a phenotype-fitness map is
provided by the Fisher Geometric Model (FGM). The environmental change is implemented in
this last mapping, where the phenotypic global optimum, which originally coincides with the
ancestral phenotype, is gradually moved to match the phenotype of the antipode sequence,
the genotype that accumulates all mutations under investigation. The strong-selection weak-
mutation regime (SSWM) is assumed, so that the population is isogenic most of the time and
thus may be described as a single adaptive walker on the fitness landscape.

3.2.1 Fisher’s landscapes

The usual design of experimental setups of adaptation is focused on a particular set of
mutations that confer some advantage to the population relative to the ancestral genotype.
Generally, this reasoning applies not only to the genome with its four genetic basis but to any
level of biologic codification, such as proteins with amino acids. In any case, the actual alphabet
concerned is irrelevant as it is only necessary to identify the absence or presence of each of the
𝐿 mutations of interest, which occur in distinct loci, so that the material basis of information
may be treated as a binary sequence 𝐺 = (𝐺(1), 𝐺(2), . . . , 𝐺(𝐿)), where 𝐺(𝑙) ∈ {0, 1}. Hence,
the genotypic space contains 2𝐿 possible configurations which are subject to the metrics of
the Hamming distance.

To each sequence 𝐺 corresponds a phenotype 𝑧⃗(𝐺) = (𝑧(1)(𝐺), 𝑧(2)(𝐺), . . . , 𝑧(𝑁)(𝐺))
with 𝑁 continuous-valued traits. Once the phenotype 𝑧⃗(𝐺0) of the ancestral genotype 𝐺0 =
(0, 0, . . . , 0) is ascribed, then defining a particular displacement vector 𝜂⃗𝑙 = (𝜂(1)

𝑙 , 𝜂
(2)
𝑙 , . . . , 𝜂

(𝑁)
𝑙 )

in the phenotypic space to the mutation in the 𝑙-th locus is enough to uniquely determine the
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phenotype of any combination. The phenotype of an arbitrary sequence is given by

𝑧⃗(𝐺) =
𝐿∑︁

𝑙=1
𝐺(𝑙)𝜂⃗𝑙 . (3.1)

In particular, the antipode of the ancestral genotype, the sequence 𝐺0 = (1, 1, . . . , 1) that
accumulates all mutations, has the following phenotype,

𝑧⃗(𝐺0) = 𝑧⃗(𝐺0) + 𝜂1 + 𝜂2 + . . . + 𝜂𝐿 . (3.2)

At this point it is fundamental to highlight that, in nature, the phenotypic effect of a
mutation usually depends on the genetic background, .i.e., the state of the other loci. Here, the
mutational displacement vectors are constant, however, and according to Eq. 3.2, mutations
are combined additively in this model, at least in phenotypic terms. Furthermore, mutations
are assumed to be isotropic, so that each component of each mutational displacement vector
is assumed to be an independent normal variable of null mean and standard deviation 𝛿,

𝜂
(𝑖)
𝑙 ∼ 𝒩 (0, 𝛿) ∀ 𝑙, 𝑖 . (3.3)

The genotype-phenotype map is settled and the next step is to assign the phenotype-fitness
map. For this purpose, we resort to the FGM. Under this framework, the fitness of a given
phenotype is a monotonically decreasing function of the phenotypic distance to the optimum
phenotype, denoted by 𝜃. The most common estimation of fitness for this model is known as
Gaussian selection,

𝑊 (𝑧⃗) = 𝑊𝑜𝑝𝑡 exp

⎡⎢⎣−1
2

⎛⎝ 𝑧⃗ − 𝜃𝑡

𝜔

⎞⎠2
⎤⎥⎦ , (3.4)

where 𝑊𝑜𝑝𝑡 is the optimum fitness, and 𝜔 is the selection width (with 1/𝜔 as the strength of
stabilizing selection). By setting 𝜔 = 1, the phenotypic distances to the optimum 𝑧(𝑖) − 𝜃

(𝑖)
𝑡 ,

the rate of environmental change 𝐵(𝑖), and the mutation effect 𝛿, are measured in units of the
width of selection.

We have formally defined the fitness landscapes in which the adaptation process is depicted.
These particular genotype-fitness maps under investigation are equipped with an intermediate
phenotypic layer given by the FGM. Its main property is the presence of pleiotropy, i.e., the
capacity of a mutation to affect multiple traits.

3.2.2 Moving optimum

The environmental change proposed is implemented in phenotypic terms. In the scenario
of interest, it is assumed that the ancestral genotype 𝐺0 used to be the fittest one in the
original environment. Thus, the phenotype associated with 𝐺0 is taken as the closest one to
the optimum phenotype in the original environment. In order to avoid one more parameter,
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Figure 5 – Top: The distinct phenotype-fitness maps experienced by two consecutive generations 𝑡 = 0 and
𝑡 = 1 are shown from left to right along with the optimum phenotype (blue) and each mutant
phenotype (red). Bottom: The respective fitness landscapes ℱ0 and ℱ1 are shown with the gradients
of fitness indicated by arrows, and maxima and minima symbolized by up and down triangles,
respectively, and circles otherwise. The transient time interval, sequence size and number of traits
are set at 𝜏 = 3, 𝐿 = 2, and 𝑁 = 2, respectively.

Source: Prepared by the author (2024)

we further assume that they coincide initially. Similarly, the optimum phenotype ends up at
the phenotype of the ancestral genotype’s antipode, in accordance with the experimental bias
that the mutations addressed are precisely those which lead to the greatest adaptation in the
new environment. Such change occurs uniformly along the straight line that connects these
two phenotypes and during 𝜏 discrete time steps, so that the rate of environmental change is
given by

𝐵⃗ = 𝑧⃗(𝐺0) − 𝑧⃗(𝐺0)
𝜏

. (3.5)

Since the total change is finite, the parameter 𝜏 is called the transient time interval. It
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Pseudocode
1: time = 0
2: 𝜃 = 𝑧⃗(𝐺0)
3: walker = 𝐺0

4: repeat
5: 𝜃 → 𝜃 + 𝐵⃗

6: if (walker ̸= local maximum)
7: adaptive step
8: time → time + 1
9: until (time = 𝜏)
10: repeat
11: adaptive step
12: until (walker = local maximum)

Table 1 – Pseudocode for the evolutionary dynamics concurrent to the ecological dynamics.

should be noted that neither 𝑧⃗(𝐺0) nor 𝑧⃗(𝐺0) have an influence on the environmental dynamics,
but only the phenotypic displacement 𝑧⃗(𝐺0) − 𝑧⃗(𝐺0) between them. Thus, 𝑧⃗(𝐺0) is initially
placed at the origin without loss of generality. After each time step, the fitness landscape is
reshaped, and the 𝑡-th step is denoted by ℱ𝑡. A complete illustration is provided in Fig. 5.

3.2.3 Adaptive walk

Figure 6 – Illustration of the strong-selection weak-mutation regime. The y-axis represents the frequency of
genotypes that carry a specific mutation. Most of the time the population is composed of a single
genotype, as new mutations (represented by different colors) are quickly either fixed (green, blue,
cyan) or lost (red).

Source: PAIXÃO et al.(2017)

Here we consider a particular pattern of adaptation known as the strong-selection weak-
mutation (SSWM) regime. As suggested by its designation, this regime is characterized by two
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hypotheses. Under low mutation rates or small population sizes, the consecutive emergence
and establishment of two mutants are separated by several generations (see Fig. 6). As a
result, the adaptive process of the whole population may be depicted as the random walk of
a single genotype on the fitness landscape. In this context, the temporal steps correspond to
mutational events rather than biological generations.

The population in the isogenic state 𝐺 has 𝐿 first neighbors but can only move to those
that are fitter. When allowed, the passage to the first neighbor 𝐺𝑙 that differs from 𝐺 in locus
𝑙 occurs with a chance that is proportional to the gain of fitness 𝑠𝑙 = 𝑊 (𝑧⃗(𝐺𝑙)) − 𝑊 (𝑧⃗(𝐺))
conferred, a quantity known as selective advantage, so that the associated transition probability
is given by

𝑝(𝐺, 𝑙) = 𝑠𝑙𝐻(𝑠𝑙)∑︀𝐿
𝑙′=1 𝑠𝑙′𝐻(𝑠𝑙′)

, (3.6)

where 𝐻 denotes the Heaviside step function. The version of the walk described above is known
as a natural adaptive walk. Note that the optimum fitness is canceled out in the transition
probabilities so that one is dealing with relative fitness.

The connection between evolutionary and ecological dynamics is simple. During the tran-
sient time interval, the adaptive walker is allowed to execute a unique mutational step at each
new landscape it faces in the series ℱ1 → ℱ2 → . . . → ℱ𝜏 . Once ℱ𝜏 is attained, the environ-
mental change ceases and the adaptive walker keeps following the positive gradients of fitness
until it reaches a local maximum. At this point, the adaptive dynamics is also concluded.

Actually, the population may also stall at fitness peaks even during the transient period.
These states, however, may be metastable, as subsequent environmental change may modify
the distribution of local maximums and allow the re-establishment of the adaptive dynamics.
Moreover, since the landscape ℱ0 plays no role (the first step is taken at ℱ1), 𝜏 = 1 corresponds
to a standard adaptive walk study on the static fitness landscape ℱ𝜏 . Naturally, the initial
condition of this evolutionary process is the ancestral genotype 𝐺0, so that the population
is adapted to the original environment ℱ0. A pseudocode (basic algorithm) of the complete
dynamics is provided in Tab. 1.

3.2.4 Simulation protocol

The realization of the above model is subject to chance twice: (i) the mutational displace-
ment basis {𝜂⃗𝑙} and (ii) the adaptive step (Eq. 3.6). For a given mutational basis, the family
{ℱ1, ℱ2, . . . ℱ𝜏 } of fitness landscapes is completely determined. Monte Carlo simulations are
performed over 103 samples of families, and 103 initially identical populations are left to evolve
independently in each family. All simulations were implemented in the C++ language.
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3.3 LANDSCAPE CHARACTERIZATION

The investigation begins with determining the signature of the FGM in the fitness land-
scapes. First, departing from the ancestral genotype, the probability 𝑃𝑏 of the last mutation
acquired by the ancestral strain being beneficial is computed and shown in Fig. 7-A as a func-
tion of the sequence size and the number of traits. Since the ancestral strain has the optimum
phenotype initially, the first mutation is harmful in any circumstance. With each new mutation,
𝑃𝑏 increases along with the average distance to the optimum phenotype. The slope, however,
is monotonically decreasing with 𝐿, saturating at 0.5 as the distance diverges. The phenotypic
complexity also plays a role as its increment causes a decrease in the chances of beneficial
mutations. These are the main properties of the FGM and they have been thoroughly examined
so far (TENAILLON, 2014; ORR, 2006; RAM; HADANY, 2015).

In Figs. 7-B and 7-C, the dependences of the number and density of local maxima with the
number of traits and sequence size are also addressed. As a function of 𝑁 , both quantities are
monotonically decreasing, a trend that follows the diminishing of the probability of beneficial
mutations. The stronger the bias on the mutation effect, the more correlated the fitness of
the first neighbors and the smoother the landscape (STADLER, 2002). Moreover, the decrease
of the density with 𝐿 is expected since even in the uncorrelated landscapes the increment in
the number of maxima is below the exponential increment of the total number of sequences
(KAUFFMAN; LEVIN, 1987; WEINBERGER, 1991).
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Figure 7 – Panel A: Probability 𝑃𝑏 of the 𝐿-th mutation acquired by the ancestral strain being beneficial
for different numbers of traits 𝑁 . The magnitude of the mutation effect is set at 𝛿 = 1 and
the error bars are the standard deviation of the mean over 105 independent realizations of the
mutational displacement basis {𝜂⃗𝑖}. Panel B: Number of local maxima versus number of traits 𝑁
for different values of sequence size 𝐿. The magnitude of the mutation effect is set at 𝛿 = 0.05𝜔
and the measures are averages over 103 independent realizations of the mutational displacement
basis {𝜂⃗𝑖}. Panel C: Density of local maxima versus number of traits 𝑁 for different values of
sequence size 𝐿. The magnitude of the mutation effect is set at 𝛿 = 0.05𝜔 and the measures are
averages over 103 independent realizations of the mutational displacement basis {𝜂⃗𝑖}.
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3.4 WALK LENGTH

A measure invariably present in static adaptive walk studies is the mean walk length, i.e.,
the average number of substitutions in the genome up to reaching a fitness peak. As previously
discussed, such fitness peak must belong to the final landscape ℱ𝜏 in our model. This quantity
is strongly influenced by the density of local maxima or, alternatively, by the level of correlation
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of the fitness landscape (FILHO et al., 2012).

Figure 8 – Panel A: Mean walk length versus transient time interval 𝜏 for different values of sequence size 𝐿
and number of traits set at 𝑁 = 12. Panel B: Mean walk length versus transient time interval 𝜏 for
different values of number of traits 𝑁 and sequence size set at 𝐿 = 12. Panel C: Mean walk length
of the subset of trajectories which ends up at the antipode 𝐺0 versus transient time interval 𝜏 for
different values of number of traits 𝑁 and sequence size set at 𝐿 = 12. In all panels the magnitude
of the mutation effect is set at 𝛿 = 0.05𝜔 and the error bars are the standard deviation of the mean
over 103 independent populations and 103 realizations of the mutational displacement basis {𝜂⃗𝑖}.
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In Fig. 8 the dependence of the mean walk length on the transient time interval, sequence
size and number of traits are shown. A general observation across the panels concerns the
time scale of adaptation to steady environments, inferred from the values displayed for 𝜏 = 1,
which are of the order of 10 mutational events, and seems to mark the threshold of influence of
the ecological dynamics on the adaptive dynamics. While 𝜏 is below this value, corresponding
to abrupt changes, it has little effect on the number of gene substitutions. Above this value,
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however, there is noticeable increase with 𝜏 .
According to Fig. 8-A, increased genome size results in longer adaptive walks, a feature

not seen in uncorrelated fitness (CAMPOS; MOREIRA, 2005; ORR, 2003). Under the FGM and
Gaussian selection, sign epistasis is prevalent among the genotypes whose phenotypes are
closer to the phenotypic optimum as a consequence of the enhanced curvature of the fitness
function in this region (BLANQUART et al., 2014; HWANG; PARK; KRUG, 2017). As the optimum
phenotype moves, the local maxima follow it through the genotypic space and are expected to
finish the transient period clustered around the domain of 𝐺0. Thus, the walker is compelled
to accumulate mutations towards this domain, a number that increases with the genome size.

The effect of the number of traits, shown in Fig. 8-B, is contingent on the magnitude
of the transient time. Below the time scale of adaptation to steady landscapes, increasing 𝑁

enlarges the trajectories as a consequence of the decreasing number of local maxima. Above
this threshold, a conflict takes place. An increment of 𝑁 also makes the routes less erratic
through the intensification of the bias in the mutation effect, leading to an opposite effect
in the mean walk length. This feature becomes more clear among the paths ending up in 𝐺0

as they are the longer ones, analyzed separately in Fig. 8-C. Under this condition, a larger
number of traits is certainly associated to shorter walks.

3.5 ENDPOINT PREDICTABILITY

In this section the degree of determinism of the evolutionary trajectories is investigated. The
measures defined below are designed to quantify how repeatable is the adaptive process and are
key to distinguishing between possible evolutionary patterns such as parallelism, convergence
and speciation (MORRIS, 2009; MORRIS, 2010; DYKHUIZEN, 1992; COLEGRAVE; BUCKLING,
2005; TEOTÓNIO; ROSE, 2001). Stochasticity manifests itself in many forms so there is no
unique way to make this evaluation.

Let 𝐺𝑖
𝑒𝑛𝑑 denote the endpoint of the 𝑖-th independent adaptive walk for a fixed mutational

displacement basis. Then, the probability distribution of the random variable 𝐺𝑒𝑛𝑑 associated
with the endpoints is given by

𝑝𝑒𝑛𝑑(𝐺𝑒𝑛𝑑 = 𝐺) =
∑︀

𝑖 𝛿(𝐺(𝑖)
𝑒𝑛𝑑, 𝐺)∑︀
𝑖 1 , (3.7)

where 𝛿(𝐺(𝑖)
𝑒𝑛𝑑, 𝐺) is the Kronecker delta between sequences 𝐺

(𝑖)
𝑒𝑛𝑑 and 𝐺, whose application may

be more simply visualized in terms of the one-to-one correspondence of the genotypic space
{𝐺} with the natural subset {1, 2, . . . , 2𝐿}, and ∑︀𝑖 1 accounts for all independent realizations
of the adaptive walk. Then, the first measure, named endpoint predictability and denoted by
𝑝2,𝑒𝑛𝑑, stands for the probability that two arbitrary independent trajectories result in the same
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genotype,

𝑝2,𝑒𝑛𝑑 =
∑︁
{𝐺}

[𝑝𝑒𝑛𝑑(𝐺𝑒𝑛𝑑 = 𝐺)]2 , (3.8)

where the sum runs over the whole the genotypic space (WEINREICH et al., 2006).

Figure 9 – Panel A: Endpoint predictability 𝑝2,𝑒𝑛𝑑 versus transient time interval 𝜏 for different values of
sequence size 𝐿 and numbers of traits set at 𝑁 = 12. Panel B: Endpoint predictability 𝑝2,𝑒𝑛𝑑

versus transient time interval 𝜏 for different values of numbers of traits 𝑁 and sequence size set
at 𝐿 = 12. In all panels the magnitude of the mutation effect is set at 𝛿 = 0.05𝜔, the probabilities
𝑝𝑒𝑛𝑑(𝐺𝑒𝑛𝑑 = 𝐺) are estimated from 103 independent populations and the error bars are the
standard deviation of the mean over 103 realizations of the mutational displacement basis {𝜂⃗𝑖}.
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According to Fig. 9, the dependence of the endpoint predictability on the sequence size
and number of traits simply reflects the influence of these quantities on the total number
of local maxima. There is increasing availability of fitness peaks both with increasing 𝐿 and
decreasing 𝑁 thus making the outcome less predictable. Actually, the strengthening of the
bias to detrimental mutations also intensifies this effect concerning the number of traits.
Further, unlike the mean walk length, the endpoint predictability is strongly affected by the
rate of environmental change under the time scale of adaptation to steady environments. As
expected, smoother environmental variations always lead to more predictable outcomes. This
feature is portrayed in more detail in Fig. 10 in terms of the accessibility of the endpoints
in two sample landscapes, i.e., the fraction of the adaptive walks ending up in a given local
maximum. Both landscapes allow access to all of their fitness peaks when 𝜏 = 2 but have
this number severely diminished as the transient time increases. The ecological dynamics has
been shown to be crucial in the evolutionary trajectories by reshaping the attraction basin of
endpoints.
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Figure 10 – Accessibility of endpoints for different values of the transient time. Each row corresponds to
an independent sample landscape of size 𝐿 = 12, number of traits 𝑁 = 12, mutation effect
𝛿 = 0.05𝜔, and 104 independent populations. The global optimum is highlighted in red. Local
maxima are in ascending order of fitness from left to right.
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3.6 PATH PREDICTABILITY

Alternatively, one can consider the repeatability of evolutionary pathways. Following a
similar procedure, the ensemble of simulated paths gives rise to the probabilities 𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 =
𝑇 ) that the evolutionary trajectory 𝑇𝑒𝑣𝑜 corresponds to the trajectory 𝑇 among all possible
series of sequences {𝑇} in the genotypic sequence,

𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 = 𝑇 ) =
∑︀

𝑖 𝛿(𝑇 (𝑖)
𝑒𝑣𝑜, 𝑇 )∑︀
𝑖 1 , (3.9)

where ∑︀𝑖 1 accounts for all independent realizations of the adaptive walk. Then the quantity
known as path predictability and denoted by 𝑝2,𝑝𝑎𝑡ℎ is built by the same principle,

𝑝2,𝑝𝑎𝑡ℎ =
∑︁
{𝑇 }

[𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 = 𝑇 )]2 , (3.10)

as the probability that an arbitrary and fixed path is drawn twice in a row by chance.
Its dependence on the magnitude of the transient time and the number of traits is plotted

in Fig. 11 for the complete ensemble as well as for the set of paths ending up at the antipode.
Except for small 𝑁 , the path predictability is a monotonically increasing function of 𝜏 . As
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Figure 11 – Panel A: Path predictability 𝑝2,𝑝𝑎𝑡ℎ versus transient time interval 𝜏 for different numbers of
traits 𝑁 . Panel B: Path predictability of the subset of trajectories which ends up at the antipode
𝑝2,𝑒𝑛𝑑(𝐺0) versus transient time interval 𝜏 for different numbers of traits 𝑁 . In all panels the
sequence size and the magnitude of the mutation effect are set at 𝐿 = 12 and 𝛿 = 0.05𝜔,
respectively, the probabilities 𝑝𝑒𝑛𝑑(𝐺𝑒𝑛𝑑 = 𝐺) are estimated from 103 independent populations
and the error bars are the standard deviation of the mean over 103 realizations of the mutational
displacement basis {𝜂⃗𝑖}.
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observed for the endpoints, smother changes lead to more predictable paths too. When it
comes to the number of traits, the outcome depends on the regime of environmental change.
Under low rates of change, path predictability decreases with 𝑁 as the trajectories become
less erratic and towards less endpoints. Under high rates, on the other hand, the effect on
the mean walk length is more determinant in the path predictability, making it decrease with
the phenotypic complexity. Naturally, this trend is clearer among the paths ending up in the
antipode.

3.7 DIVERGENCE

One more measure of evolutionary repeatability is provided in order to overcome an impor-
tant limitation present in the path predictability: similarity between trajectories is not taken
into account. In other words, pairs of trajectories that slightly differ contribute to 𝑝2,𝑝𝑎𝑡ℎ in
the same way as completely divergent paths. First we define the pairwise divergence 𝑑(𝑇, 𝑇 ′)
between two paths 𝑇 and 𝑇 ′ as the sum of the minimum distance ℎ𝑚𝑖𝑛(𝐺, 𝑇 ′) from each
sequence 𝐺 ∈ 𝑇 to 𝑇 ′ added to the same sum in the opposite direction, then pondered by the
sum of the total lengths,

𝑑(𝑇, 𝑇 ′) = 1
𝑛 + 𝑛′

⎛⎝∑︁
𝐺∈𝑇

ℎ𝑚𝑖𝑛(𝐺, 𝑇 ′) +
∑︁

𝐺′∈𝑇 ′
ℎ𝑚𝑖𝑛(𝐺′, 𝑇 )

⎞⎠ , (3.11)
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where 𝑛 denotes the number of genotypes composing trajectory 𝑇 . Note that the pairwise
divergence is symmetric with respect to the paths. Next, the mean path divergence is estimated
from the ensemble of simulated trajectories,

𝑑 =
∑︁
{𝑇 }

𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 = 𝑇 )
∑︁
{𝑇 ′}

𝑝𝑝𝑎𝑡ℎ(𝑇 ′
𝑒𝑣𝑜 = 𝑇 ′) 𝑑(𝑇𝑒𝑣𝑜, 𝑇 ′

𝑒𝑣𝑜) . (3.12)

In addition to the conceptual differences, predictability and divergence also differ on an im-
portant operational aspect. While the former considers any set of paths, the latter is meaningful
only when applied to paths that share the same initial and final genotypes. In this context,
for such a given set, 𝑑 is calculated separately, weighted by the accessibility of endpoints (the
initial sequence is always the ancestral strain) and then summed to generate the average value
𝐷 (LOBKOVSKY; WOLF; KOONIN, 2011; MANHART; MOROZOV, 2014; LOBKOVSKY; KOONIN,
2012).

Figure 12 – Panel A: Mean path divergence 𝐷 versus transient time interval 𝜏 for different numbers of traits
𝑁 . Panel B: Mean path divergence 𝐷(𝐺0) versus transient time interval 𝜏 for different numbers
of traits 𝑁 . In all panels the sequence size and the magnitude of the mutation effect are set
at 𝐿 = 12 and 𝛿 = 0.05𝜔, respectively, the probabilities 𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 = 𝑇 ) are estimated from
103 independent populations and the error bars are the standard deviation of the mean over 103

realizations of the mutational displacement basis {𝜂⃗𝑖}.
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In Fig. 12 the mean path divergence is plotted as a function of the transient time for the
complete ensemble as well as for the set of paths ending up at the antipode. In all scenarios, 𝐷

is a monotonically decreasing function of 𝜏 so smoother changes must be associated with less
diffuse paths. Besides, the rate of environmental change regulates the effect of the number of
traits on this measure too. Below the threshold of adaptation to steady environments, 𝐷 grows
with 𝑁 . For large 𝜏 , the influence of the number of traits on 𝐷 is mitigated. Concerning the
relation with predictability, mean path divergence is negatively correlated except for small 𝑁

(REIA; CAMPOS, 2020). The discrepancy observed under a small number of traits indicates the
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existence of a considerably diverse collection of evolutionary paths yet very similar, differing
only by a few sequences.

3.8 QUASI-STATIC APPROXIMATION

Lastly, an alternative dynamics is proposed in which the ecological timescale of environmen-
tal change is much slower than the timescale of adaptation. Operationally, this is implemented
by allowing an environmental change only after the walker has attained a local maximum.
In other words, variations in the fitness landscape occur as in the original formulation while
the population is allowed to achieve complete adaptation to the current environment, at least
locally. In this context, the parameter 𝜏 is no longer the transient but the exact number of
moves performed by the optimum phenotype before reaching the antipode’s phenotype. The
pseudo-code associated with the quasi-static approximation is provided in Tab. 2. Some results
for the quasi-static approximation are compared to those of the original formulation in Fig.
13. For 𝜏 = 1, both approaches are formally equivalent, while an effective equivalence also
occurs for very large 𝜏 . For the mean walk length, the quasi-static approximation establishes
an upper bound, obviously. Probably for this reason both types of predictability are also higher
under the quasi-static approximation.

Pseudo-code
1: time = 0
2: 𝜃 = 𝑧⃗(𝐺0)
3: walker = 𝐺0

4: repeat
5: 𝜃 → 𝜃 + 𝐵⃗

6: repeat
7: adaptive step
8: until (walker = local maximum)
9: time → time + 1
10: until (time = 𝜏)
11: repeat
12: adaptive step
123: until (walker = local maximum)

Table 2 – Pseudo-code for the quasi-static approximation.
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Figure 13 – Panel A: Endpoint predictability 𝑝2,𝑒𝑛𝑑 under the original formulation (filled) and under the quasi-
static approximation (empty) versus transient time interval 𝜏 for different numbers of traits 𝑁 .
Panel B: Path predictability 𝑝2,𝑝𝑎𝑡ℎ under the original formulation (filled) and under the quasi-static
approximation (empty) versus transient time interval 𝜏 for different numbers of traits 𝑁 . Panel C:
Mean walk length under the original formulation (filled) and under the quasi-static approximation
(empty) versus transient time interval 𝜏 for different numbers of traits 𝑁 . In all panels the sequence
size and the magnitude of the mutation effect are set at 𝐿 = 12 and 𝛿 = 0.05𝜔, respectively.
The probabilities 𝑝𝑒𝑛𝑑(𝐺𝑒𝑛𝑑 = 𝐺) and 𝑝𝑝𝑎𝑡ℎ(𝑇𝑒𝑣𝑜 = 𝑇 ) are estimated from 103 independent
populations and 103 realizations of the mutational displacement basis {𝜂⃗𝑖}. Error bars are omitted
for better visualization.
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3.9 SYNTHESIS AND PERSPECTIVES

Using an adaptive walk approximation, expected to hold in the strong-selection weak-
mutation regime, the evolutionary patterns and outcomes induced by an ecological change
occurring over a series of temporary intermediate states have been investigated. Under this
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scenario, our simulations evince that the timescale of adaptation to static environments sets
a threshold that delimits distinct regimes of influence of the rate of environmental change in
the number of substitutions. While transient times below 10 units have very little influence
on the walk length, slowly changing environments (several time steps) are associated with a
greater number of substitutions. Concerning repeatability, on the other hand, the same thresh-
old coincides with a steeper growth of the endpoint predictability. While abrupt environmental
changes are proven to lead to more unpredictable outcomes, increasing 𝜏 causes the rise of
𝑝2,𝑒𝑛𝑑 through a drastic reduction of accessibility of most locally optimal genotypes. Concomi-
tantly, the measures of path predictability and mean path divergence point to an increased
constraint of the paths as the magnitude of transient time grows. Lastly, the quasi-static ap-
proximation evinces that temporary maladaptation is the major cause of the unpredictability
of outcomes and trajectories. At this point, the immediate direction of extension for this work
seems to reside in the relaxation of the strong-selection weak mutation regime, so that finite
population dynamics should be explicitly simulated.
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4 EPISTASIS AND SEASONAL GENE EXPRESSION

The results displayed in this chapter correspond to the article published by CIRNE; CAMPOS.

DOI: 10.1016/j.physa.2021.126453

4.1 PROLOGUE

All species are subject to seasonally changing selective pressures. Thus, the coordination
of seasonal activities through adaptive physiological and behavioral changes according to the
circannual timing is paramount to persistence (SCHWARTZ; ANDREWS, 2013). In trees, con-
served periodic gene expression patterns arise from the response to day length or temperature,
which determines their adaptive evolution (CHU et al., 2024). The investigation of the eco-
physiological shifts of harmful cyanobacteria Microcystis from rapid growth in early summer
to bloom maintenance in late summer and autumn may be decisive to the maintenance of
freshwater resources globally (TANG et al., 2018). The extreme photoperiodic conditions expe-
rienced by the Antarctic krill Euphausia superba demand a flexible behavior and physiology
provided by seasonal gene expression (HÖRING et al., 2021). Similarly, the annual migration of
a bird requires accurately timed seasonal changes, where the differential expression of genes
associated with cell adhesion, proliferation and motility indicates regulation by seasonal neural
plasticity (JOHNSTON et al., 2016). In a study with two Junco hyemalis subspecies exposed to
identical seasonal environmental cues, 547 genes differentially expressed were identified along
with pronounced differences when comparing migrant juncos and resident breeders (FUDICKAR

et al., 2016).
The theme is equally pertinent to human health as several diseases and physiological

processes display annual periodicities. Indeed, multiple cell counts demonstrate significant
association with a 12-month seasonal cycle, especially those linked to immune function, which
is expected to vary throughout the year in healthy individuals, a behavior that stems mainly
from red blood cells and blood platelets. During winter, for example, the blood is marked by
a profound pro-inflammatory transcriptomic profile and increased levels of risk biomarkers for
cardiovascular, psychiatric and autoimmune diseases characteristic of the season, a response
that unveils even cytoarchitectural changes in brain regions. The elucidation of an atlas of
how transcriptomes from human tissues adapt to major cycling environmental conditions is
therefore an invaluable endeavor (GOLDINGER et al., 2015; JONG et al., 2014; DOPICO et al.,
2015; WUCHER et al., 2023).

At the same time, the phenomenon of the maturation of the immune response was pre-
cisely the subject of a remarkable application within the fitness landscape theory carried by
KAUFFMAN; WEINBERGER. In this work, a simple fitness landscape model originally introduced
by KAUFFMAN; LEVIN to evaluate the role of epistasis in the adaptive process had been used
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to build a general picture of the microevolutionary process sustained by hypermutation and
clonal selection on the antibody V region mutant variants towards a higher affinity for the
immunizing antigen. Notwithstanding, the same model also implies that complex biological
systems, such as genetic regulatory systems, have evolved so as to be close to the mean prop-
erties of the ensemble of alternatives explored by evolution. Most importantly, all these results
are open to detailed testing by in vitro mutagenesis experiments on the “affinity” landscape
for the immunizing antigen.

More than evolutionary frameworks, fitness landscapes are fundamentally linked to the
broad problem of complex combinatorial optimization processes. Mathematically, the concept
stands for a mapping of the vertices of a finite graph to the real numbers. In this context, the
NK model has been used to address the NP-completeness of the traveling salesman problem, for
instance (WEINBERGER et al., 1996), while physically it corresponds to a dilute 𝐾-ary spin glass,
i.e., one in which the state of each site is affected by that site and 𝐾 of its neighbors, useful
for approximating unconventional landscapes beyond the quadratically coupled spin glasses
(WEINBERGER, 1991), and whose properties have been extensively investigated by simulation
as well as analytically (DURRETT; LIMIC, 2003). In general, the NK model has been proven to
be impressively suitable for modeling the process of innovation as an iterative, trial-and-error
search (GANCO, 2017).

Concerning selection under seasonal gene expression, it has been recognized by (TRUBEN-

OVA et al., 2019) that modularity, i.e., the independent adaptation of traits associated to the
selective pressures of distinct seasons, is structurally maintained as long as epistasis is not
present. Although modular behavior is common among regulatory networks without structural
modularity (VERD; MONK; JAEGER, 2019), a model is presented here where even a low number
of epistatic interactions leads to loss of functional modularity.

4.2 MODEL

Here we propose a model for the genotypic evolution of finite-size populations under sea-
sonal environmental changes. The adaptation process is depicted in a fitness landscape, which
is reshaped between seasons as a consequence of the alternation of selective pressures, a mech-
anism known as gene regulation. Special attention is paid to the role of epistasis as it prevents
modularity, i.e., the independent adaptation of the distinct sets of traits. The degree of frustra-
tion may be tuned among a discrete set by using the NK model. The Wright-Fisher algorithm
of reproduction is considered. Results are obtained from Monte Carlo simulations over two
sources of stochasticity: (i) the NK model realization and (ii) the Wright-Fisher process.
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4.2.1 NK model

In the original NK model, the genotype of an individual is represented by a binary string
𝐺 = (𝐺(1), 𝐺(2), . . . , 𝐺(𝐿)) of size 𝐿, where 𝐺(𝑙) ∈ {0, 1}. The fitness of such genetic sequence,

𝑊 (𝐺) = 1
𝐿

𝐿∑︁
𝑙=1

𝑤𝑙(𝐺(𝑙), 𝐺(𝑙1), 𝐺(𝑙2), . . . , 𝐺(𝑙𝐾)) , (4.1)

is the average value over the individual fitness contribution of each locus, which depends not
only on its state but on the states of a set Ω(𝑙) = {𝑙1, 𝑙2, . . . , 𝑙𝐾} of 𝐾 other loci called
epistatic neighbors. The set of epistatic neighbors is particular to each locus and assigned
randomly from a discrete uniform distribution among the remaining 𝐿 − 1 loci. Thus, 𝑤𝑙 can
assume 2𝐾+1 distinct values across genotypic space. These are obtained from independent
continuous uniform distributions,

𝑤𝑙 ∼ 𝒰(0, 1) . (4.2)

4.2.2 Gene regulation

Species respond to the seasonal dynamics of the environment through gene regulation.
Gene regulation implies that each temporal phase 𝑃 ∈ {1, 2, . . . , 𝑁𝑃 }, from a total of 𝑁𝑃

phases supposed equally spaced of period 𝜏 , inflicts selective pressures on different traits. Each
of these traits, in turn, is encoded by a particular set of genes Γ(𝑃 ), which are assumed to have
no overlapping among different phases and a constant size 𝐿𝑅, so that 𝐿 = 𝑁𝑃 𝐿𝑅. Since the
epistatic interactions are randomly allocated, there is no loss of generality in ascribing the sets
Γ(𝑃 ) sequentially, i.e., Γ(𝑃 ) = {(𝑃 − 1)𝐿𝑅 + 1, (𝑃 − 1)𝐿𝑅 + 2, . . . , 𝑃𝐿𝑅}. In this context,
each phase is associated with its own fitness landscape,

𝑊𝑅(𝐺, 𝑃 ) = 1
𝐿𝑅

∑︁
𝑙∈Γ(𝑃 )

𝑤𝑙(𝐺(𝑙), 𝐺(𝑙1), 𝐺(𝑙2), . . . , 𝐺(𝑙𝐾)) . (4.3)

Due to epistasis, in addition to the directly selected genes of a given phase, there is also
an indirect selection of genes belonging to other phases, in general. Nonetheless, the fitness
of an arbitrary sequence under phase 𝑃 does not depend on all 𝐿 loci necessarily, but only
on a number that depends on the superposition among the set Γ(𝑃 ) and the sets Ω(𝑙) of
the epistatic neighbors of each locus 𝑙 ∈ Γ(𝑃 ). Consequently, the concept of global optimum
can be subject to degenerescence, in the physical sense. We denote by {𝐺𝐺𝑂(𝑃 )} the set (or
network) of all sequences that share the highest value in the fitness landscape but differ in any
of the loci that do not contribute to fitness, when available. Further, it is useful to define the
optimal subconfiguration 𝐺𝐺𝑂,Γ(𝑃 ) of phase 𝑃 as the state of the portion of 𝐺𝐺𝑂(𝑃 ) located
at Γ(𝑃 ).
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4.2.3 Wright-Fisher process

We consider haploid organisms that reproduce asexually through the Wright-Fisher model.
This model describes a population with discrete, non-overlapping generations of constant size
𝑀 . Reproduction is abstracted as the replacement of every individual of the parental generation
by a new one, whose parent is chosen by random sampling with a probability 𝑝𝑊 𝐹 (𝐺) that is
proportional to the fitness 𝑊 (𝐺) of the genotype 𝐺 it carries. Let 𝑓(𝐺, 𝑡) denote the fraction
of individuals with this genotype in generation 𝑡, then

𝑝𝑊 𝐹 (𝐺, 𝑡) = 𝑓(𝐺, 𝑡)𝑊𝑅(𝐺, 𝑃 (𝑡))∑︀
{𝐺′} 𝑓(𝐺′, 𝑡)𝑊𝑅(𝐺′, 𝑃 (𝑡)) , (4.4)

where the sum runs all over the 2𝐿 sequences of the genotypic space {𝐺}. The genotypic
structure of the whole offspring is a random variable of multinomial distribution, consequently.

Actually, it is more precise to say that Eq. 4.4 describes the gametic distribution. The
ensemble of gametes, in turn, is subject to mutations that act in the following form: there is a
chance 0 < 𝛿 < 1 that a newborn individual inherits a genotype that differs from its parent’s
genotype by a unique locus. The locus by which parent and prole differ is a random variable
ruled by a discrete uniform distribution among the loci. Therefore, the probability 𝑝𝑚𝑢𝑡(𝐺, 𝐺′)
that sequence 𝐺 mutates into sequence 𝐺′ can be formally written as

𝑝𝑚𝑢𝑡(𝐺, 𝐺′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 𝛿, if 𝐺 = 𝐺′

𝛿/𝐿, if ℎ(𝐺, 𝐺′) = 1

0, if ℎ(𝐺, 𝐺′) > 1

, (4.5)

where ℎ(𝐺, 𝐺′) is the Hamming distance between sequences 𝐺 and 𝐺′. Taking mutations into
account, the Wright-Fisher probabilities (Eq. 4.5) give place to the reproductive probabilities
𝑝𝑟𝑒𝑝(𝐺, 𝑡):

𝑝𝑟𝑒𝑝(𝐺, 𝑡) =
∑︁
{𝐺′}

𝑝𝑚𝑢𝑡(𝐺′, 𝐺)𝑝𝑊 𝐹 (𝐺′, 𝑡) (4.6)

=
∑︀

{𝐺′} 𝑝𝑚𝑢𝑡(𝐺, 𝐺′)𝑓(𝐺, 𝑡)𝑊𝑅(𝐺, 𝑃 (𝑡))∑︀
{𝐺′′} 𝑓(𝐻 ′′, 𝑡)𝑊𝑅(𝐺′′, 𝑃 (𝑡)) . (4.7)

4.2.4 Simulation protocol

The realization of the above model is subject to chance twice: (i) the NK model landscape
realization and (ii) the Wright-Fisher process (selection and mutation). Monte Carlo simula-
tions are performed on 102 samples of landscapes and 104 initially identical populations are left
to evolve independently in each landscape. For fixed sequence size 𝐿 and epistatic parameter
𝐾, the ensemble of landscapes is the same. All simulations were implemented in the C++
language.
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4.3 FITNESS CORRELATION

A key measure in characterizing the topography of a fitness landscape is the fitness cor-
relation 𝜌(ℎ(𝐺, 𝐺′)) of two sequences 𝐺 and 𝐺′ as a function of their Hamming distance
ℎ(𝐺, 𝐺′). Originally, the correlation between first neighbors is estimated as the chance that a
single mutation does not affect the individual fitness contribution of a fixed and arbitrary locus.
In the NK model, such mutation should neither hit the focal locus nor any of its 𝐾 epistatic
neighbors, so that 𝜌(1) = (𝐿 − 𝐾 − 1)/𝐿. Following similar reasoning, 𝑤𝑙 will pass unharmed
by two mutations in distinct loci with a chance 𝜌(2) = (𝐿 − 𝐾 − 1)(𝐿 − 𝐾 − 2)/[𝐿(𝐿 − 1)].
By induction, it is possible to achieve the general formula (CAMPOS; ADAMI; WILKE, 2002)

𝜌(ℎ) = (𝐿 − 𝐾 − 1)!(𝐿 − ℎ)!
(𝐿 − 𝐾 − 1 − ℎ)!𝐿! . (4.8)

Obviously, the correlation is a monotonically decreasing function of the number of epistatic
interactions. For 𝐾 = 0, the mean fitness variation caused by one mutation is 1/𝐿 and the
similarity of first neighbors approaches unity, 𝜌(1) = (𝐿−1)/𝐿. When 𝐾 = 𝐿−1, on the other
hand, any two genotypes present no correlation since the fitness of a sequence is randomly
assigned, or more precisely, assigned by independent and identical distributions that tend to
normal distributions as 𝐿 increases, in accordance with the Central Limit Theorem. In this
case, any mutation certainly affects a given locus contribution, and the correlation is null for
any Hamming distance.

Under gene regulation, however, a subtle modification arises once the chance that a unitary
mutation does not alter 𝑤𝑙 gains one more type of event in its favor. For a given phase 𝑃 ,
the focal locus 𝑙 can simply be out of the region Γ(𝑃 ), which occurs with a probability of
1 − 𝐿𝑅/𝐿. Otherwise, Eq. 4.8 still holds, so that the modified correlation function is given by

𝜌𝑅(ℎ) =
(︂

1 − 𝐿𝑅

𝐿

)︂
+ 𝐿𝑅

𝐿
𝜌(ℎ) (4.9)

=
(︂

1 − 1
𝑁𝑃

)︂
+ 1

𝑁𝑃

𝜌(ℎ) . (4.10)

The main difference relative to the original formula concerns the presence of an inferior
bound for the correlation (see Fig. 14), therefore, resulting in smoother fitness landscapes. This
effect is associated to the existence of neutral networks percolating the genotype space when
the genome is fragmented into regions that alternate periods of selective pressure (AGUIRRE

et al., 2018).
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Figure 14 – Fitness correlation 𝜌𝑅 versus Hamming distance ℎ for different numbers of phases 𝑁𝑃 , different
numbers of epistatic neighbors 𝐾 and sequence size set at 𝐿 = 16. In the limit case 𝑁𝑃 = 1
(black curves), the modified correlation 𝜌𝑅 equals the original one 𝜌.
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4.4 ADAPTATION LEVELS

The average response of a population to seasonal environmental change is portrayed in
Fig. 15 in terms of the time series of the mean population fitness 𝑊 (𝑡) (measured relative to
the global optimal set) as well as the Hamming distance ℎ(𝐺𝑀𝐴(𝑡), 𝐺𝐺𝑂(𝑃 (𝑡))) of the most
adapted sequence 𝐺𝑀𝐴(𝑡) in the population to the global optimum of the respective phase
𝐺𝐺𝑂(𝑃 (𝑡)) (usually the dominant one). The stationary state is an oscillatory dynamics of
period 𝜏 , as expected. Discontinuous changes in both quantities reflect the instantaneous re-
shaping of the fitness landscape, while continuous ones manifest the gradual action of selection
supplied by mutation.

The enlargement of the amplitude of oscillations in fitness with the phase’s length is no-
ticeable. The larger the period the closer the population gets to the global optimum set, a
distancing which is still high so that the evolutionary solution attained is considered interme-
diate. The gap to 𝐺𝐺𝑂 immediately after a phase change is also smaller as 𝜏 increases, even
though the initial level of adaptation becomes poorer under the same circumstance.

Naturally, one can also track the approximation of the phase subset state 𝐺𝑀𝐴,Γ(𝑃 ) (the
portion of genotype 𝐺𝑀𝐴 located at Γ(𝑃 )) to the corresponding optimal subconfiguration
𝐺𝐺𝑂,Γ(𝑃 ). Note that the upper limit is 𝐿𝑅. The general picture of the temporal evolution of
the Hamming distance ℎ(𝐺𝑀𝐴,Γ(𝑃 ), 𝐺𝐺𝑂,Γ(𝑃 )) of the distinct phases is depicted in Fig. 16.

The abrupt fall at the beginning of a phase indicates that considerable part of the adap-
tation is preserved during a complete cycle. Notwithstanding, the continuous decrease for the
target phase is accompanied by a symmetrical increase for the other phase when 𝑁𝑃 = 2,
excluding the hypothesis of neutral evolution for the unexpressed genes and evincing the con-
siderable indirect selective pressure on them even at a low number of epistatic neighbors. For
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Figure 15 – Panel A: mean population fitness 𝑊 of a single population versus time (number of generations)
𝑡 for different values of period 𝜏 . Panel B: Hamming distance of the most adapted sequence in
the population to the global optimum ℎ(𝐺𝑀𝐴, 𝐺𝐺𝑂(𝑃 )) versus time (number of generations) 𝑡
for different values of period 𝜏 . In both panels the population size, mutation rate, sequence size,
number of epistatic neighbors and number of phases are set at 𝑀 = 104, 𝛿 = 10−4, 𝐿 = 16,
𝐾 = 2 and 𝑁𝑃 = 2 (𝐿𝑅 = 8), respectively, and the measures are averages over 104 independent
populations in a single fitness landscape.
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𝑁𝑃 = 4, this is observed in the reinforced rises under phase switches that keep the focal phase
out of selection.

A more detailed analysis of the mean population fitness is brought in Fig. 17. Maximum
and minimum values, denoted by 𝑊𝑚𝑎𝑥 and 𝑊𝑚𝑖𝑛, respectively, as well as the amplitude of the
oscillations 𝑊𝑎𝑚𝑝 = 𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛 are plotted. The tendency previously pointed out in Fig. 15
is decidedly corroborated now: the longer the phases the larger the amplitude of oscillations.
Such behavior has already been observed in additive fitness landscapes (TRUBENOVA et al.,
2019), and is also achieved by an increasing number of phases. As a matter of fact, 𝑁𝑃 has
no effect on 𝑊𝑚𝑎𝑥, and the variation in 𝑊𝑎𝑚𝑝 comes entirely from the diminishing of 𝑊𝑚𝑖𝑛.
The reason is simple. As the number of phases increases so does the time during which a
subset Γ(𝑃 ) is not targeted, which enables greater misalignment of this portion relative to
the optimal subconfiguration of the phase owing to accumulation of mutations. On top of
that, the effect is enhanced by epistasis as genetic drift gives place to selection against the
optimal subconfiguration. In fact, when any other phase 𝑃 ′ in under direct selection, each
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Figure 16 – Hamming distance of the phase subset state of the most adapted sequence in the population
to the corresponding optimal subconfiguration ℎ(𝐺𝑀𝐴(𝑃 ), 𝐺𝐺𝑂(𝑃 )) versus time (number of
generations) 𝑡 for all phases, with number of phases set at 𝑁𝑃 = 2 in panel A and 𝑁𝑃 = 4 in
panel B. In both panels the population size, mutation rate, sequence size, number of epistatic,
neighbors and period are set at 𝑀 = 104, 𝛿 = 10−4, 𝐿 = 16, 𝐾 = 2 and 𝜏 = 200 respectively,
and the measures are averages over 104 independent populations in a single fitness landscapes.
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locus 𝑙 ∈ Γ(𝑃 ) of a given phase 𝑃 which is the epistatic neighbor of a locus 𝑙′ ∈ Γ(𝑃 ′) will be
selected in favor of 𝐺𝐺𝑂,Γ(𝑃 ′) instead of drifting. Furthermore, larger 𝐾 also leads to poorer
adaptation. The lower values of both minimum and maximum mean population fitness are
caused by the greater accessibility of lower peaks observed in more rugged landscapes. Indeed,
for 𝑁𝑃 = 4 and 𝐾 = 8, the average minimum approaches 0.5𝑊 ({𝐺𝐺𝑂}), which is exactly
the mean fitness value all over the ensemble of landscapes.

As another option, the role of epistasis is endorsed by measures of the Hamming dis-
tance from the phase subset state of the most adapted genotype in the population to the
optimal subconfiguration. Minimum and maximum values attained ℎ𝑚𝑖𝑛(𝐺𝑀𝐴Γ, 𝐺𝐺𝑂,Γ) and
ℎ𝑚𝑎𝑥(𝐺Γ, 𝐺𝐺𝑂,Γ), respectively, as well as the amplitude of oscillation ℎ𝑎𝑚𝑝 = ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛 are
plotted in Fig. 18. Additionally, the case 𝐾 = 0 is also shown, for which a perfect adaptation
is feasible even for small periods. The maximum value of about 1 confirms that the distancing
from 𝐺𝐺𝑂,Γ under genetic drift is very small.

Last but not least, the effect of the population size on the level of adaptation is addressed
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Figure 17 – Panel A: minimum mean population fitness 𝑊 𝑖𝑛𝑓 (dashed line) and maximum population fitness
𝑊 𝑠𝑢𝑝 (solid line) versus period 𝜏 for different values of number of phases 𝑁𝑃 and number of
epistatic neighbors 𝐾. Panel B: amplitude of oscillation in the mean population fitness 𝑊 𝑎𝑚𝑝

versus period 𝜏 for different values of number of phases 𝑁𝑃 and number of epistatic neighbors 𝐾.
In both panels the population size, mutation rate and sequence size are set at 𝑀 = 104, 𝛿 = 10−4

and 𝐿 = 16, respectively, and the measures are averages over 𝑁𝑃 phases, 104 independent
populations and 102 distinct fitness landscapes.
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in Fig. 19. The role played by the population size is very similar to that of the period. Increasing
number of individuals also allows higher levels of adaptation at the end of the phase but leads,
in turn, to lower minimum levels at the beginning of the following phase as well as the greater
amplitude of oscillation. Unlike 𝜏 , however, 𝑀 is not associated with a saturating behavior.
Moreover, the dependence with 𝑁𝑃 is not affected by the population size.
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Figure 18 – Panel A: minimum Hamming distance of the phase subset state of the most adapted genotype
in the population to the optimal subconfiguration ℎ𝑚𝑖𝑛(𝐺𝑀𝐴,Γ(𝑃 ), 𝐺𝐺𝑂,Γ(𝑃 )) (dashed line)
and maximum Hamming distance of the phase subset state of the most adapted genotype in
the population to the optimal subconfiguration ℎ𝑚𝑎𝑥(𝐺𝑀𝐴,Γ(𝑃 ), 𝐺𝐺𝑂,Γ(𝑃 )) (solid line) versus
period 𝜏 for different values of number of epistatic neighbors 𝐾. Panel A: amplitude of oscillation
in the minimum Hamming distance of the phase subset state of the most adapted genotype in
the population to the optimal subconfiguration ℎ𝑎𝑚𝑝 = ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛 versus period 𝜏 for different
values of number of epistatic neighbors 𝐾. In both panels the population size, mutation rate,
sequence size and number of phases are set at 𝑀 = 104, 𝛿 = 10−4, 𝐿 = 16 and 𝑁𝑃 = 2,
respectively, and the measures are averages over 𝑁𝑃 phases, 104 independent populations and
102 distinct fitness landscapes.
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Figure 19 – Panel A: minimum mean population fitness 𝑊 𝑚𝑖𝑛 (dashed line) and maximum mean population
fitness 𝑊 𝑚𝑎𝑥 (solid line) versus population size 𝑀 for different values of number of phases 𝑁𝑃

and number of epistatic neighbors 𝐾. Panel B: amplitude of oscillation in the mean population
fitness 𝑊 𝑎𝑚𝑝 versus population size 𝑀 for different values of number of phases 𝑁𝑃 and number
of epistatic neighbors 𝐾. In both panels the mutation rate, sequence size, number of epistatic
neighbors and period are set at 𝛿 = 10−4, 𝐿 = 16, 𝐾 = 2 and 𝜏 = 200, respectively, and the
measures are averages over 𝑁𝑃 phase, 104 independent populations and 102 independent fitness
landscapes.
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4.5 REPEATABILITY

A more complete investigation of the evolutionary process may be achieved through the
analysis of the degree of determinism in the trajectories, which is intimately associated with
the establishment of the evolutionary pattern of the species. For this purpose we record the
time series of the most adapted genotype present in the population at the end of a given
phase, which is invariably a fitness peak. Let 𝐺

(𝑖𝑗)
𝑒𝑛𝑑(𝑃 ) denote the sequence recorded in the

𝑖-th occurrence of phase 𝑃 of the 𝑗-th population dynamics for a fixed and arbitrary fitness
landscape. According to this definition, the indexes 𝑖 and 𝑗 correspond to the intra- and inter-
trajectory sources of stochasticity, respectively. Each source has its own biological meaning
and is dealt with separately. In both cases, however, the unpredictability of the endpoint is
measured by means of the Shannon entropy.

First, the probability distribution of the random variable 𝐺
(𝑗)
𝑒𝑛𝑑(𝑃 ) associated with the

temporal series of the 𝑗-th path is given by

𝑝
(𝑗)
𝑡𝑒𝑚𝑝(𝐺(𝑗)

𝑒𝑛𝑑(𝑃 ) = 𝐺) =
∑︀

𝑖 𝛿(𝐺(𝑖𝑗)
𝑒𝑛𝑑, 𝐺)∑︀
𝑖 1 , (4.11)

where 𝛿(𝐺(𝑖𝑗)
𝑒𝑛𝑑, 𝐺) is the Kronecker delta between sequences 𝐺

(𝑖𝑗)
𝑒𝑛𝑑 and 𝐺, whose application

may be more simply visualized in terms of the one-to-one correspondence of the genotypic
space {𝐺} with the natural subset {1, 2, . . . , 2𝐿}, and ∑︀𝑖 1 accounts for all realizations of the
phase in the 𝑗-th trajectory. This gives rise to the temporal entropy of the 𝑗-th path

𝑆
(𝑗)
𝑡𝑒𝑚𝑝(𝑃 ) =

∑︁
{𝐺}

𝑝
(𝑗)
𝑡𝑒𝑚𝑝(𝐺(𝑗)

𝑒𝑛𝑑(𝑃 ) = 𝐺) . (4.12)

Finally, an average over the ensemble of paths is taken

𝑆𝑡𝑒𝑚𝑝(𝑃 ) =
∑︀

𝑗 𝑆
(𝑗)
𝑡𝑒𝑚𝑝(𝑃 )∑︀

𝑗 1 . (4.13)

Alternatively, the probability distribution associated to the endpoint 𝐺
(𝑖)
𝑒𝑛𝑑(𝑃 ) of the 𝑖-th

occurrence of phase 𝑃 in the ensemble of paths reads

𝑝
(𝑖)
𝑝𝑎𝑡ℎ(𝐺(𝑖)

𝑒𝑛𝑑(𝑃 ) = 𝐺) =
∑︀

𝑗 𝛿(𝐺(𝑖𝑗)
𝑒𝑛𝑑, 𝐺)∑︀

𝑗 1 , (4.14)

where ∑︀𝑗 1 accounts for all 𝑖-th occurrences of phase 𝑃 among the trajectories, and for which
the path entropy is calculated as

𝑆
(𝑖)
𝑝𝑎𝑡ℎ(𝑃 ) =

∑︁
{𝐺}

𝑝
(𝑖)
𝑝𝑎𝑡ℎ(𝐺(𝑖)

𝑒𝑛𝑑(𝑃 ) = 𝐺) , (4.15)

whose average over the repetitions of the phase results in

𝑆𝑝𝑎𝑡ℎ(𝑃 ) =
∑︀

𝑖 𝑆
(𝑖)
𝑝𝑎𝑡ℎ(𝑃 )∑︀

𝑖 1 . (4.16)
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Figure 20 – Panel A: temporal entropy 𝑆𝑡𝑒𝑚𝑝 versus period 𝜏 for different values of number of phases 𝑁𝑃 and
number of epistatic neighbors 𝐾. Panel B: path entropy 𝑆𝑝𝑎𝑡ℎ versus period 𝜏 for different values
of number of phases 𝑁𝑃 and number of epistatic neighbors 𝐾. In both panels the population size,
mutation rate and sequence size are set at 𝑀 = 104, 𝛿 = 10−4 and 𝐿 = 16, respectively, and the
measures are averages over the 𝑁𝑃 phases and 102 distinct fitness landscapes.

100 200 300 400 500 600 700 800 900 1000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

S t
em

p

A
NP = 2 K = 2
NP = 2 K = 4
NP = 4 K = 2

100 200 300 400 500 600 700 800 900 1000

1.0

1.2

1.4

1.6

1.8

S p
at

h

B

Source: Prepared by the author (2024)

Numerical results are shown in Fig. 20. Due to practical reasons, however, the measure of
path entropy was taken in a slightly different way of the one defined above. Instead of the
data for 𝑆𝑝𝑎𝑡ℎ, we have calculated the overall entropy,

𝑆(𝑃 ) =
∑︁
{𝐺}

𝑝(𝑖𝑗)(𝐺(𝑖𝑗)
𝑒𝑛𝑑(𝑃 ) = 𝐺) , (4.17)

associated to the joint distribution,

𝑝(𝑖𝑗)(𝐺(𝑖𝑗)
𝑒𝑛𝑑(𝑃 ) = 𝐺) =

∑︀
𝑖𝑗 𝛿(𝐺(𝑖𝑗)

𝑒𝑛𝑑, 𝐺)∑︀
𝑖𝑗 1 , (4.18)

of the random variable 𝐺
(𝑖𝑗)
𝑒𝑛𝑑 of both the ensemble of paths and occurrences of the phase, and

then obtained the temporal entropy as the difference

𝑆𝑝𝑎𝑡ℎ(𝑃 ) = 𝑆(𝑃 ) − 𝑆𝑡𝑒𝑚𝑝(𝑃 ) , (4.19)

relying on the additive property of entropy. In fact, averages were also taken over the 𝑁𝑃 phases
and ensemble of landscapes before this operation, as usual, so the approach is certainly not
numerically equivalent. We expect, however, that it conveys a reasonable proxy of 𝑆𝑝𝑎𝑡ℎ(𝑃 ).

Curiously, the minimum values of the temporal entropy are obtained under large periods,
despite the population having a longer time to explore a larger domain of the fitness landscape.
There is an opposite situation for the path entropy, which is minimized at low values of 𝜏 . In
sum, the increased degree of repeatability of the evolutionary response in a given population as
the phases are extended is not accompanied by an increased evolutionary convergence among
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independent populations. A similar antagonism is seen in the dependence on the number of
epistatic neighbors. In this case, the increase of path entropy with 𝐾 is associated with the
increase in the number of local maxima of the fitness landscape. As the fitness landscape
becomes more rugged, experiments of parallel evolution tend to display divergent adaptive
solutions. The frustration of the adaptive topography, however, seems to severely constrain
the domain explored by a given population. Concerning the number of phases, the effect is the
same in both measures. As previously discussed in terms of the fitness correlation, the growth
of 𝑁𝑃 leads to the formation of larger neutral networks, which enhances drift in the genotypic
space and, therefore, diminishes temporal as well path predictability.

Figure 21 – Panel A: temporal entropy 𝑆𝑡𝑒𝑚𝑝 versus population size 𝑀 for different values of number of
phases 𝑁𝑃 . Panel B: path entropy 𝑆𝑝𝑎𝑡ℎ versus population size 𝑀 for different values of number
of phases 𝑁𝑃 In both panels the mutation rate, sequence size, number of epistatic neighbors and
period are set at 𝛿 = 10−4, 𝐿 = 16, 𝐾 = 2 and 𝜏 = 200, respectively, and the measures are
averages over the 𝑁𝑃 phases and 102 distinct fitness landscapes.
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Lastly, the effect of the population size on the predictability of the endpoints is examined in
Fig. 21. The minimum levels of both kinds of entropy are achieved at higher 𝑀 , as expected.
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5 NON-STOCHASTIC DISCRETE-TIME PHENOTYPIC EVOLUTION

The results displayed in this chapter correspond to the article published by CIRNE; CAMPOS.

DOI: 10.1016/j.amc.2024.128781

5.1 PROLOGUE

A model is proposed for the phenotypic evolution of a very large population under sustained
environmental change and non-overlapping generations, with a single trait considered. Due to
an extension of the standard law of quantitative inheritance, each evolutionary mechanism
corresponds to a function between random variables associated with distinct stages of the life
cycle. Such an approach leads to a two-dimensional map where the dynamics of the phenotypic
mean and variance are directly connected. Then, the declining population paradigm is explored
in terms of the critical rate of environmental change and use of techniques of the dynamical
systems theory. Our results first reveal the opposing pressures on the phenotypic variance due
to the conflict between phenotypic load and the ability to pursue the optimum, translated into
an optimal value for maximizing the critical rate. Secondly, the introduction of development,
through the particular case of linear plasticity, leads to a decreasing degree of stability with the
magnitude of plasticity, which means that the recovery time from disturbances is increased as
the plastic effect intensifies, even though no constitutive costs have been assumed, a feature
almost as important as the mean fitness to the viability of populations subject to persistent
changes. Notwithstanding, the system is stable, and the growth rate benefits from increased
plasticity, as expected.

5.2 MODEL

Here we propose a model for the phenotypic evolution of effectively infinite populations
under sustained environmental change. Only one metric character is considered. This trait
subject to Gaussian selection to a steadily moving optimum which means there is directional
and stabilizing selection at the same time. The population is under Gaussian mutation as
well. Furthermore, heritability and plasticity are also introduced as evolutionary mechanisms.
Each of these mechanisms is associated to a transformation between random variables that
describe distinct stages of the life cycle. After a complete life cycle one obtains the phenotypic
distribution of the prole, which occurs in discrete generations. A stationary solution is possible
and fully analyzed.
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5.2.1 Selection

Selection is assumed to be density-independent and determined by a single continuous-
valued trait. The fitness of the phenotype 𝑧 is given by

𝑊𝑡(𝑧) = 𝑊𝑚𝑎𝑥 exp
⎡⎣−1

2

(︃
𝑧 − 𝜃𝑡

𝜔

)︃2
⎤⎦ , (5.1)

where 𝑊𝑚𝑎𝑥 is the optimum fitness, 𝜔 is the selection function width (with 1/𝜔2 as the strength
of stabilizing selection), and 𝜃𝑡 is the optimum phenotype at generation 𝑡. The sustained
environmental change hypothesis resides in a constant pace displacement of the optimum
phenotype,

𝜃𝑡+1 = 𝜃𝑡 + 𝐵 , (5.2)

with 𝐵 being the rate of environmental change. Admitting an effectively infinite population
size and non-overlapping generations, the resulting distribution of the selected phenotypes
follows from

𝑝𝑆,𝑡(𝑧) = 𝑝0,𝑡(𝑧) 𝑊𝑡(𝑧)
𝑊 𝑡

, (5.3)

where 𝑝0,𝑡(𝑧) is the distribution of phenotypes in the zygotic stage, and 𝑊 𝑡 is the corresponding
mean fitness,

𝑊 𝑡 =
∫︁ ∞

−∞
𝑑𝑧 𝑝0,𝑡(𝑧)𝑊𝑡(𝑧) . (5.4)

For later purposes, it is worth mentioning that Eq. 5.3 induces a map,

𝑍𝑆,𝑡 = 𝑆𝑡(𝑍0,𝑡) , (5.5)

which is denoted by 𝑆𝑡, between random variables 𝑍0,𝑡 and 𝑍𝑆,𝑡, associated to the zygotic and
selection stage, respectively.

Eq. 5.1 establishes what is known as Gaussian stabilizing selection. The main evidence for
stabilizing selection is probably the identification of low variability, as it suggests functional
optimization for a very specific form of the structures involved. This is frequently observed
in reproductive characters, given their intimate relation to fitness. The attributes associated
with pollination performance in flowers convey a paradigmatic example of the stabilizing role
of selection. Flowers seem to be precisely formed for pollen transfer or, more precisely, for
accurate mechanical fit with the pollinators, presenting very low inter and intraspecific levels
of variability for this trait (CRESSWELL, 1998). Further, the assumption made in Eq. 5.2 also
makes the selection to be directional.

By assuming a deterministic dynamics for the moving optimum, we have eliminated stochas-
tic effects of the environment. The actual importance of such effects essentially depends on
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the system in focus. Whilst stochasticity is proven to have a special role in many facets of the
evolutionary process, including selection (LENORMAND; ROZE; ROUSSET, 2009), an impressive
degree of determinism has been found in the episodes of glacial fluctuation in the Pleistocene
epoch, which are predicted by the Milankovitch theory (HAYS; IMBRIE; SHACKLETON, 1976;
BERGER, 1980). Actually, evidence of major geological events with a statistically significant
periodic component span an even larger interval of about 250 million years (Mesozoic and
Cenozoic eras) and are as diverse as increased orogeny, volcanism, global sea level changes,
and discontinuities in sea-floor spreading. The Fourier analysis of 89 events grouped into ten
clusters displays a spacing of roughly 27 million years at the confidence level of 96% (RAMPINO;

CALDEIRA; ZHU, 2021).

Figure 22 – Gaussian smoothing of the ages of the 89 major geologic events from the last 250 million years
with a standard deviation of 5 million years centered at every 0.1 million years.

Source: RAMPINO; CALDEIRA; ZHU (2021)

If the causes are not certain, possibly associated with a flux of planetesimals due to the
cyclic passage of the Solar System through the central plane of the galaxy, or simply an
internal earth-pulsation process, the consequences are unequivocal. These occurrences have
seriously impacted the carbon cycle and global climate, and as might be expected, are strongly
and positively correlated with mass extinction events (RAMPINO; CALDEIRA, 1992; RAMPINO;

CALDEIRA, 1993). Notwithstanding, biostratigraphic studies points the catastrophic incidents
as just a portion of the set of periodic occurrences, and while these are associated with extinc-
tion, their counterpart have occurred over several stratigraphic stages and have continuously
shaped the conditions for the remaining species and ecosystems (RICH et al., 1986; JR, 1989).
In this context, the sustained environmental change proposed would be quite adequate for
describing, for instance, the selective pressures in half period, from a valley to a peak and vice
versa, when the rate of environmental change is nearly constant (see Fig. 22). In general, the
interval of the change belongs to one of the four-tier hierarchy of time scales of evolution-
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ary processes from which the evolutionary consequences should be contextualized (BENNETT,
1990).

5.2.2 Plasticity

When available, development offers a non-genetic mechanism of adaptation, one that
occurs and improves fitness during the lifetime of a single generation. In these circumstances,
the actual phenotype 𝑍𝑡, regardless the life cycle stage (e.g. zygotic, selected), depends on
a genetically determined component 𝐴𝑡 (or simply genetic component) of the phenotype and
on the environment conditions. Here, the reaction norm proposed works adding to the genetic
component a fraction 0 ≤ 𝑏 < 1 of its phenotypic distance to the optimum phenotype,

𝑍𝑡 = 𝐴𝑡 + 𝑏(𝜃𝑡 − 𝐴𝑡) (5.6)
= (1 − 𝑏)𝐴𝑡 + 𝑏𝜃𝑡 (5.7)
= 𝑃𝑡(𝐴𝑡) , (5.8)

Since some evolutionary mechanisms act directly on the genetic system, it is operationally
useful to establish the inverse of 𝑃𝑡,

𝑃 −1
𝑡 (𝑍𝑡) = 𝑍𝑡 − 𝑏𝜃𝑡

1 − 𝑏
, (5.9)

in order to extract the genetic component from a given phenotype.
The proposal of reaction norm in Eq. 5.7 is obviously adaptive. For the interval of the

parameter 𝑏 considered, the plastic effect improves adaptation, by definition. Nonetheless, it
is important to highlight that, contrary to expectation, phenotypic plasticity is not necessarily
adaptive. If this was the case, then the proximity of a characteristic to fitness and the oc-
currence of plasticity should be negatively correlated, a hypothesis that has been overturned
in a recent analysis of 213 studies. Despite considerable variability of plastic effects among
distinct traits, no clear relation with fitness was observed (ACASUSO-RIVERO et al., 2019). If
the plastic response results in a harmful or a highly integrated phenotype crucially depends
on specific conditions. At this point, however, few theoretical predictions on the issue have
been tested (WHITMAN; AGRAWAL et al., 2009). A remarkable example is found in a study of
adaptive responses to foliage shade in the Arabidopsis plant. The genotypic selection analysis
of the relation between environment and life-history traits revealed that there is no adaptive
plasticity to density (crowding) while evidence of both adaptive and maladaptive responses to
foliage shade were found. The same study also suggests that active developmental responses
usually are more adaptive than passive resource-mediated responses and that costs of plasticity
are not common as normally assumed (DORN; PYLE; SCHMITT, 2000).

The debate on the evolution of plasticity, which essentially concerns identification of the
underlying genetic mechanisms and selective pressures shaping the reaction norms, is marked
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by substantial controversy (VIA et al., 1995). Quantitative genetic models developed in the
second half of the last century may be conceptually grouped into one of two kinds: evolution
of plasticity is assumed to be either linked or independent from the evolution of the trait
involved (NICOGLOU, 2015). According to the first approach, plasticity is not a trait in itself,
but rather an outcome of evolution over several loci (a property of the genome as a whole), a
view that lacks significant experimental evidence and whose appeal is limited to quantitative
genetic models (see (VIA; LANDE, 1985)). The alternative perspective, by the other hand,
assumes that plasticity is determined by an specific set of genes exclusively dedicated to the
environmentally dependent control of structural gene expression. This view is in line with
the observation of an astonishing diversity in the degree of phenotypic sensitivity of closely
related species, and is corroborated by a wealth of evidence (SCHLICHTING; PIGLIUCCI, 1993;
VIA, 1993). As an example, such single gene region has been found to be in control of the
spawning migration timing of the Chinook salmon, a result of paramount importance to the
conservation of this threatened species (THOMPSON et al., 2020). Our model presumes this
view in which adaptation of the trait does not affect adaptation of the reaction norm and
vice versa. While artificial selection experiments have undoubtedly proven the occurrence of
selective response of plasticity (SCHEINER; LYMAN, 1991), we further assume that the reaction
norm is not under adaptation at all, for simplicity.

5.2.3 Heritability

The standard law of quantitative genetics,

⟨𝐴𝐻,𝑡⟩ = ℎ2⟨𝐴𝑆,𝑡⟩ + (1 − ℎ2)⟨𝐴0,𝑡⟩ , (5.10)

states that, due to genetic constraints, the average genetic component of the value inherited
by progeny lies between the average genetic component of the zygotic stage and the average
genetic component of the selection stage in a proportion assigned by the parameter known as
heritability, ℎ2 (LANDE, 1976b). Here, this principle is extended to the random variables,

𝐴𝐻,𝑡 = ℎ2𝐴𝑆,𝑡 + (1 − ℎ2)𝐴0,𝑡 (5.11)
= ℎ2𝐴𝑆,𝑡 + (1 − ℎ2)𝑃 −1(𝑆−1(𝑃 (𝐴𝑆,𝑡))) (5.12)
= 𝐻𝑡(𝐴𝑆,𝑡) , (5.13)

where 𝐻𝑡 designates the corresponding function. The inverse function 𝑆−1
𝑡 , alike 𝑃 −1

𝑡 in Eq.
5.9, is not associated to a real evolutionary mechanism, but involves the identification of the
zygotic phenotypic constitution from the selected one.
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5.2.4 Mutation

Once selection has taken place, the genetic component of a portion of the gametes pro-
duced by the survivors is subject to change by mutation. In this model, the conditional prob-
ability of the mutational effect on the inherited value is normal,

𝑝𝑀,𝑡(𝑎) =
∫︁ ∞

−∞
𝑑𝑎′ 𝑝𝐻,𝑡(𝑎′)

⎧⎨⎩ 1
𝛿
√

2𝜋
exp

⎡⎣−1
2

(︃
𝑎 − 𝑎′

𝛿

)︃2
⎤⎦⎫⎬⎭ , (5.14)

a hypothesis known as Gaussian mutation, where 𝑝𝑀,𝑡(𝑎) is the probability distribution of the
genetic component of the mutated stage, 𝑝𝐻,𝑡(𝑎′) is the probability distribution of the genetic
component of the inherited stage, and 𝛿 is the magnitude of the mutation effect. Whereas
this framework does not address a specific species or trait, no further specification on the
magnitude of the mutation effect is made and it is regarded as a fundamental parameter. The
underlying function is denoted by 𝑀 ,

𝐴𝑀,𝑡 = 𝑀(𝐴𝐻,𝑡) . (5.15)

Unlike the other mechanisms defined so far, mutation does not depend on the optimum
phenotype and, consequently, on the generation 𝑡.

5.2.5 Progeny

The convention adopted is that a complete life cycle begins and ends at the zygotic stage.
In this case, mutation is the last mechanism of genetic change, whereas development to the
new environment is the last mechanism of phenotypic change. Then, following Eqs. 5.5, 5.8,
5.9, 5.13 and 5.15, the total phenotypic modification between two consecutive generations is
operationally described by

𝑍0,𝑡+1 = 𝑃𝑡+1(𝐴0,𝑡+1) (5.16)
= 𝑃𝑡+1(𝐴𝑀,𝑡) (5.17)
= 𝑃𝑡+1(𝑀(𝐴𝐻,𝑡)) (5.18)
= 𝑃𝑡+1(𝑀(𝐻𝑡(𝐴𝑆,𝑡))) (5.19)
= 𝑃𝑡+1(𝑀(𝐻𝑡(𝑃 −1

𝑡 (𝑍𝑆,𝑡)) . . .) (5.20)
= 𝑃𝑡+1(𝑀(𝐻𝑡(𝑃 −1

𝑡 (𝑆𝑡(𝑍0,𝑡)) . . .) . (5.21)

The operation defined above presents a singular property: if the phenotypic value of the
zygotic stage is normally distributed,

𝑍0,𝑡 ∼ 𝒩 (𝜇0,𝑡, 𝜎0,𝑡) , (5.22)

with 𝜇0,𝑡 and 𝜎0,𝑡 designating mean and standard deviation, respectively, then each mapping
composing Eq. 5.21 results in a normal random variable as well. This is proved in the Appendix
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(Section 6.1) and is especially valid for the outcome, 𝑍0,𝑡+1, making the Gaussian distribution
the appropriate ansatz for the stationary state. This is a consequence of the Gaussian nature of
selection and mutation alongside the linearity of the other mechanisms. Since we are exclusively
interested in the long term dynamics, it is reasonable to assume normality for an arbitrary state
as well. Actually, most phenotypes do exhibit a normal distribution whatever the circumstances.
Due to the polygenic basis of the metric characters, this property is assured by the central
limit theorem (FALCONER, 1989). The theory of adaptation of normally distributed characters
has been fundamental to development of the theory of quantitative genetics as whole.

5.3 MUTATION-SELECTION BALANCE

Mutation and selection are indispensable forces for any type of long-term directional stress.
Accordingly, the mutation-selection balance is explored first. Assuming 𝑏 = 0 and ℎ2 = 1, both
operations 𝑃𝑡 and 𝐻𝑡 become the identity function, and the life cycle reduces to

𝑍0,𝑡+1 = 𝑀(𝑆𝑡(𝑍0,𝑡)) . (5.23)

From Eqs. 6.44 and 6.47, it follows that the relation between the phenotypic constitutions of
the parental and offspring generations is established by the formulas

𝜎2
0,𝑡+1 =

𝜔2𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

+ 𝛿2 , (5.24)

and

𝜇0,𝑡+1 =
𝜔2𝜇0,𝑡 + 𝜎2

0,𝑡 𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

. (5.25)

Together, these equations constitute a two-dimensional map. Nonetheless, the variance dynam-
ics does not depend on that of the mean dynamics and, therefore, may be handled separately
as an unidimensional map.

Expressions for the variance map where the magnitude of the mutation effect is explicitly
written in terms of the fundamental properties of the genetic system are provided by LANDE

(LANDE, 1976a) for a polygenic character with linked loci in a random mating population, by
LANDE (LANDE, 1977) for nonrandom systems of mating, and by (LYNCH; GABRIEL, 1983) for
a parthenogenetic species. Since the mean map is the same in any of these circumstances,
differences on the phenotypic evolutionary rates are confined to the particularities of the genetic
system.

The stationary phenotypic variance is given by,

𝜎2
0,* = 𝛿2 +

√
𝛿4 + 4𝜔2𝛿2

2 , (5.26)

whose value at very small magnitudes of the mutation effect coincides with the equilibrium
value of the homologous continuous growth model (LYNCH; GABRIEL; WOOD, 1991),

lim
𝛿→0

𝜎2
0,* = 𝜔𝛿 . (5.27)
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The equation above unveils the main role of mutations, that is, maintenance of genetic vari-
ability. If the mutational effect is null (𝛿 = 0), the phenotypic variance eventually vanishes as
a consequence of the recurrent erosion inflicted by selection (see Eq. 6.4) (FISHER, 1958),

𝜎2
𝑆,𝑡

𝜎2
0,𝑡

= 𝜔2

𝜔2 + 𝜎2
0,𝑡

, (5.28)

where 𝜎2
𝑆,𝑡 denotes the phenotypic variance of the selection stage. The ubiquity of this ratio

makes it worth of a particular designation for the remainder of this chapter: the “coefficient
of selection”.

The significance of selection is manifested in the mean dynamics. Adapting means getting
closer to the optimum phenotype, a task to which mutation is unable to contribute by itself.
In the presence of selection, however, the intensity of such approximation is proportional
to the phenotypic variance, as evinced by Eq. 5.25. In short, selection produces adaptation,
mutation fuels it. These relations enclose the set of interplay determining what is known
as the mutation-selection balance. A thorough revision of the set of models on the subject
of the maintenance of genetic variability under Gaussian mutation and selection is found in
TURELLI. TURELLI concludes that, in spite of reasonable qualitatively agreement across distinct
frameworks, there is uncomfortable quantitative divergence. As a consequence, the question
of how significant levels of inheritable genetic variance are kept in natural populations remains
elusive, at least in terms of mathematical modeling.

Given an environmental change, there are basically two sources of beneficial alleles over
which selection may act: pre-existing genetic variation and de novo mutations. The outcome
of adaptation crucially depends on which of these sources contributes the most and creates a
genomic signature that is fundamental for predicting microevolutionary responses to changing
environments (BARRETT; SCHLUTER, 2008). Detection of standing genetic variation for a trait
in quantitative genetic studies is the rule rather than the exception (LEWONTIN, 1974), and
several examples of adaptation fueled by this source have been reported, such as the recent
observations of rapid response of the mediterranean mussel Mytilus galloprovincialis to reduced
seawater pH, a notable stressor from current global changes (BITTER et al., 2019). In another
investigation of natural populations of guppies, the higher speed of adaptation of male traits
relative to female traits under an artificial scheme of directional selection has been attributed
to larger genetic variation (REZNICK et al., 1997). Even among large populations, greater pop-
ulation sizes of Drosophila melanogaster are associated to enhanced long term response to
selection for ethanol vapor resistance for the same reason (WEBER; DIGGINS, 1990). To provide
one more example, the maintenance of large reservoirs of inter and intraspecific diversity has
been pointed out as one of the four pillars of the evolutionary success in oaks (KREMER; HIPP,
2020).

In spite of that, it is obvious that the longer the selective pressure the higher the chances
of complete utilization of the initial genetic variation being attained. Exhaustion of additive
genetic variance has been observed and considered the main cause of stagnation in experiments
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of selection for body weight in mice, for instance (EISEN, 1980). While recombination may
support further genetic improvement, as observed in livestock population studies, its impact is
also finite (NOTTER, 1999). Thus, in the context of sustained environmental change, the only
trustable source of variation are de novo mutations. Once de novo mutations are available, a
last requirement is that they convey enough adaptive variation, i.e., variation with significant
contribution to fitness. Lack of appropriate variability has been shown to curb evolution even in
the presence of high levels of protein polymorphism, a condition called genostasis (BRADSHAW,
1991). It should be noted that the number of generations that distinguishes short and long term
selection, when accessible, depends sensibly on the particular problem. An example is found in
the selection for the bristle number in the genus Drosophila, where de novo mutations seem
to have influence on adaptation in no less than 20 generations (HILL, 1982).

Analysis of adaptation under the stationary state requires measuring the mean phenotype
relative to the optimum phenotype. A useful quantity is the phenotypic lag:

Δ0,𝑡 = 𝜃𝑡 − 𝜇0,𝑡 . (5.29)

The map for this new quantity reads (see Eq. 6.50),

Δ0,𝑡+1 = 𝐵 +
(︃

𝜔2

𝜔2 + 𝜎2
0,𝑡

)︃
Δ0,𝑡 , (5.30)

while the fixed point is given by

Δ0,* = 𝐵

(︃
𝜔2 + 𝜎2

0,*

𝜎2
0,*

)︃
, (5.31)

a result first obtained by CHARLESWORTH (CHARLESWORTH, 1993). The stationary lag is
always greater than the rate of environmental change. Despite the distinct essences of the
phenotypic variance and the phenotypic lag, the effect of selection on the later is also related
to a contraction by the coefficient of selection (see Eq. 6.7),

Δ𝑆,𝑡

Δ0,𝑡

=
𝜎2

𝑆,𝑡

𝜎2
0,𝑡

. (5.32)

Actually, alternative measures of the shrinkage effect of selection had been proposed formerly.
For instance, LATTER (LATTER, 1970) defined it as the proportional reduction of the mean
phenotype relative to the optimum phenotype,

Δ𝑆,𝑡 − Δ0,𝑡

Δ0,𝑡

= −
𝜎2

0,𝑡

𝜔2 + 𝜎2
0,𝑡

(5.33)

= −
(︃

1 −
𝜎2

𝑆,𝑡

𝜎2
0,𝑡

)︃
, (5.34)

designated by “coefficient of centripetal selection”. Though, the current definition in Eq. 5.28
is much more meaningful in our context.
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Although rapid evolution is not considered a standard working hypothesis, its interpretation
as an ecological process (evolutionary ecology) potentially sets the most relevant area of applied
biological sciences currently (THOMPSON, 1998). One of the latest artificial experiments with
Drosophila melanogaster have tested this hypothesis under strong and rapidly fluctuating
selection, for which it was obtained exceptionally rapid phenotypic adaptation as a result
(RUDMAN et al., 2022). A far longer and robust example concerns the changes observed in snail
shell form (shape and thickness) of natural populations of the intertidal snail Littorina obtusata
over more than a century as a response to predation by the intertidal crab Carcinus maenas
as it expanded its range. These observations are in agreement with the classical paradigm of
Darwinian selection and demonstrate that it can lead to rapid morphological transition without
speciation (SEELEY, 1986). Nonetheless, some caution is necessary. It is worth mentioning that
such reports attributing the phenotypic changes to environmental change usually present at
least one of three caveats: (i) difficulty in determining if the changes are genetically based or
simply plastic, (ii) assuming rather than testing that the change is adaptive (iii) and climate
change is its causal agent (MERILÄ; HENDRY, 2014).

Once the variance map does not depend on the phenotypic lag, the stability analysis of
the two-dimensional map becomes significantly easier, the diagonal elements of the Jacobian
matrix corresponds to its eigenvalues. Both cumulants are the result of a composite function,
likewise the life cycle, so the diagonal elements may also be broken down into the effects of
each mechanism by the chain rule, resulting in

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

=
𝑑𝜎2

𝑀,𝑡

𝑑𝜎2
0,𝑡

(5.35)

=
𝑑𝜎2

𝑀,𝑡

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
0,𝑡

(5.36)

=
𝑑𝜎2

𝑆,𝑡

𝑑𝜎2
0,𝑡

(5.37)

=
(︃

𝜎2
𝑆,𝑡

𝜎2
0,𝑡

)︃2

, (5.38)

and
𝜕Δ0,𝑡+1

𝜕Δ0,𝑡

= 𝜕Δ𝑀,𝑡

𝜕Δ𝑆,𝑡

𝜕Δ𝑆,𝑡

𝜕Δ0,𝑡

(5.39)

= 𝜕Δ𝑆,𝑡

𝜕Δ0,𝑡

(5.40)

=
𝜎2

𝑆,𝑡

𝜎2
0,𝑡

, (5.41)

where Eqs. 6.4, 6.37, 6.7 and 6.41 have been applied (notice that in the absence of phenotypic
plasticity there is no distinction between the phenotype and its genetic component).

Since both stability coefficients correspond to a power of the selection coefficient, the
system is stable for any set of physically significant values of the parameters. In both instances



73

the derivative of the mutational effect equals one. Thereby, it is clear that the degree of
stability is determined by the capacity of selection to narrow the distribution. The route to
increasing stability is then twofold. The first and most evident is through a greater strength of
selection (smaller width of selection). The other is through a greater mutational effect, as it
leads to greater stationary variance. In this sense, mutation still plays a role in stability, even
if the mechanism itself is not able to mitigate a deviation from the fixed point by any amount.

Lastly, concerning the natural measures of the system, it can be easily verified from each
map, as well as from their stationary values, that the variance and the magnitude of the
mutation effect may be measured in units of the width of selection, while the lag is measurable
in units of the rate of environmental change. These properties establish the eco-evolutionary
scale of the system and may be fundamental in locating it as a part of more complex scenarios
(LEVIN, 1992).

5.4 CRITICAL RATE OF ENVIRONMENTAL VARIATION

Long term adaptation to sustained environmental change has proven to be dynamically
feasible and robust. The other half of the issue concerns examining the circumstances under
which the population can maintain a positive growth rate. For discrete generation times, the
ratio between the population sizes of two consecutive generations is precisely the mean fitness,

𝑁𝑡+1 =
∫︁

𝑑𝑧 𝑁𝑡 𝑝0,𝑡(𝑧) 𝑊𝑡(𝑧) (5.42)

= 𝑁𝑡 𝑊 𝑡 , (5.43)

where 𝑁 denotes the population size. The growth rate is then defined as

𝑅𝑡+1 = ln 𝑊 𝑡 . (5.44)

Thus the growth rate is also a monotonically increasing function of the fitness so that these
quantities are qualitative similar and used interchangeably in this text. For a normally dis-
tributed character under Gaussian selection, the mean fitness reads as

𝑊 𝑡 = 𝑊𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,𝑡

)︃1/2

exp
[︃
−1

2

(︃
Δ2

0,𝑡

𝜔2 + 𝜎2
0,𝑡

)︃]︃
. (5.45)

In the case of perfect adaptation (Δ0,𝑡 = 0), the above expression reduces to the first factor,
which represents the selective load due to variance on a completely adapted population. As
long as the mean phenotype and the optimum phenotype match, any increment in variance
will certainly increase the level of maladaptation in the population. This kind of load is usually
referred to as mutational or genetic load, as it emerges from the accumulation of mutations
through generations in most cases. The mutational load is an important factor determining
the extinction risk. The impressive high levels of genetic load among long-lived plants make
them a useful case study on the topic (FRANKHAM, 2005; KLEKOWSKI, 1988).
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Figure 23 – Mean fitness 𝑊 𝑡 versus phenotypic variance 𝜎2
0,𝑡 for different values of phenotypic lag Δ0,𝑡. The

curves may be distinguished into two types. Below the limiting value of lag (Δ0,𝑡 = 𝜔), the curves
decrease monotonically. Above this value, the curves are non-monotonic and present a unique
local maximum.
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For non-zero lag, the second factor contributes to the mean fitness. It is precisely the relative
mean fitness of a population displaced from the optimum by an amount of Δ𝑡 with respect to
the perfectly adapted population (LATTER, 1960). An increment of phenotypic variance has
an effect on the mean fitness that is contingent on the magnitude of the lag. Note that any
increase is made possible through the gain in frequency of the phenotypes between mean and
optimum whilst widening the distribution. The net effect depends essentially on the magnitude
of the lag, as evinced by the derivative of the mean fitness with respect to the variance,

𝜕𝑊 𝑡

𝜕𝜎2
0,𝑡

= 𝑊𝑚𝑎𝑥

𝜔
[︁
Δ2

0,𝑡 −
(︁
𝜔2 + 𝜎2

0,𝑡

)︁]︁
2
(︁
𝜔2 + 𝜎2

0,𝑡

)︁5/2 exp
[︃
−1

2

(︃
Δ2

0,𝑡

𝜔2 + 𝜎2
0,𝑡

)︃]︃
. (5.46)

If the lag is below the width of the selection function (Δ0,𝑡 < 𝜔), then the smaller the variance
the higher the population growth rate. This statement is especially interesting as one visualizes
that by compressing the distribution indefinitely, the frequency of the optimum tends to zero.
Thus, the absolute concentration of the distribution of phenotypes around the mean phenotype
is therefore curiously advantageous for the population (as long as the mean is fixed, obviously).
However, when the lag exceeds the selection width (𝜔 < Δ0,𝑡), the mean fitness is maximized
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at an intermediate value of variance of

𝜎2
0,𝑡 = Δ2

0,𝑡 − 𝜔2 . (5.47)

All reasoning developed so far is portrayed in Fig. 23.

Figure 24 – Mean stationary fitness 𝑊 * versus stationary variance 𝜎2
0,* for different values of rate of environ-

mental change 𝐵. Unless the optimum phenotype is static (𝐵 = 0), the curves are non-monotonic
and present a unique local maximum.
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Until now, we have treated the variance and the lag as independent quantities. This is no
longer valid in the stationary state, when the lag is constrained by the variance. Due to the
dynamics, the stationary mean fitness,

𝑊 * = 𝑊𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,*

)︃1/2

exp
[︃
−1

2𝐵2
(︃

𝜔2 + 𝜎2
0,*

𝜎4
0,*

)︃]︃
, (5.48)

is always a non-monotonic function of the stationary variance, as shown in Fig. 24. While the
load prevents expanding the distribution with no bound, as before, excessive concentration
is also avoided as long as the approach to the optimum is promoted by the variance. These
opposing pressures on the variance of a quantitative character as a consequence of simultane-
ously directional and stabilizing selection have been recognized by MATHER (MATHER, 1943)
long ago, who synthesized the dilemma as the conflict between fitness and flexibility. From
the derivative of the stationary mean fitness with respect to the stationary variance,

𝜕𝑊 *

𝜕𝜎2
0,𝑡

= −𝑊𝑚𝑎𝑥

𝜔
[︁
𝜎6

0,* − 𝐵2(𝜔2 + 𝜎2
0,*)(2𝜔2 + 𝜎2

0,*)
]︁

2𝜎6
0,𝑡

(︁
𝜔2 + 𝜎2

0,*

)︁3/2 exp
[︃
−1

2𝐵2
(︃

𝜔2 + 𝜎2
0,*

𝜎4
0,*

)︃]︃
, (5.49)
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one obtains a polynomial equation for which the single optimal value of stationary variance
observed in Fig. 24 must be one of the roots,

0 = 𝜎6
0,* − 𝐵2(𝜔2 + 𝜎2

0,*)(2𝜔2 + 𝜎2
0,*) . (5.50)

This value increases with the rate of environmental change.
In Eq. 5.45, for the mean population fitness, Δ0,𝑡 is no longer measurable in units of 𝐵,

but rather in units of 𝜔, as is the variance. In the stationary mean fitness (Eq. 5.49), on the
other hand, this occurs with 𝐵 as well. Then, both fundamental parameters of phenotypic
nature (𝐵 and 𝛿) are scaled by 𝜔 regarding the population growth rate in the stationary state.

Figure 25 – Critical rate of environmental change 𝐵𝑐 versus stationary variance 𝜎2
0,* for different values of

maximum fitness 𝑊𝑚𝑎𝑥. All curves are non-monotonic and present a unique local maximum. A
limiting value for the variance exists, 𝜎2

0,𝑡 = 𝜔2(𝑊 2
𝑚𝑎𝑥 − 1), beyond that a progressive decline in

population size occurs.
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When it comes to conservation issues, it is useful to establish the rate of change below
which the growth rate is negative. The quantity designated as the critical rate of environmental
change is obtained by equating the stationary mean fitness to one:

𝐵𝑐 =
𝜎2

0,*√︁
𝜔2 + 𝜎2

0,*

⎯⎸⎸⎷ln
[︃
𝑊 2

𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,*

)︃]︃
. (5.51)

Notice that, for a fixed value of the rate of environmental change, the same procedure may
be applied to provide the critical value of any other parameter (e.g. heritability and maximum
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fitness). As might be expected, the dependence of the critical rate with on the stationary
variance is non-monotonic as well (see Fig. 25). Taking the derivative of 𝐵𝑐 with respect to
𝜎2

0,* and evaluated at the stationary state reads as

𝜕𝐵𝑐

𝜕𝜎2
0,*

= 1√︃
ln
[︂
𝑊 2

𝑚𝑎𝑥

(︂
𝜔2

𝜔2+𝜎2
0,*

)︂]︂ 1

2
(︁
𝜔2 + 𝜎2

0,*

)︁3/2

{︃(︁
2𝜔2 + 𝜎2

0,*

)︁
ln
[︃
𝑊 2

𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,*

)︃]︃
− 𝜎2

0,*

}︃
.

(5.52)

Equating to zero, it provides an implicit equation for which the value of sigma that maximizes
𝐵𝑐 must be a solution,

0 = (2𝜔2 + 𝜎2
0,*) ln

[︃
𝑊 2

𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,*

)︃]︃
− 𝜎2

0,* , (5.53)

which depends on the maximum fitness. Despite the similarities, an important qualitative
difference may be drawn in relation to the stationary mean fitness. An inspection of the
domain of Eq. 5.51 reveals that there is a prohibitive region beyond the value of

𝜎2
0,* = 𝜔2(𝑊 2

𝑚𝑎𝑥 − 1) , (5.54)

i.e., a set of values of variance that leads to a negative growth rate given any rate of environ-
mental change.

The restoration of positive growth rate results from the incapacity to adapt rapidly enough
to an environmental change (SMITH, 1989), while the restoration of a positive growth rate
through adaptation in the face of the new circumstances is a phenomenon known as evolu-
tionary rescue (CARLSON; CUNNINGHAM; WESTLEY, 2014). The critical rate of environmental
change is an important measure within the context of the evolutionary rescue issue which, in
turn, belongs to the domain of conservation biology. In spite of extinction being an ubiquitous
and constitutive occurrence of evolution, this discipline comes up in response to the contem-
porary depletion of biological diversity by anthropogenic action and, ironically, the demand for
human intervention to maintain endangered species (FRANKHAM, 2014).

5.5 HERITABILITY

The heritability of a character, unlike mutation and selection, does not change the qual-
itative aspects of the dynamics of adaptation already discussed. The quantitative features
involved, however, are always present and may be critical for species’ fate. The addition of
this mechanism updates the life cycle to

𝑍0,𝑡+1 = 𝑀(𝐻𝑡(𝑆𝑡(𝑍0,𝑡))) . (5.55)

Heritability rules the efficacy of selection by determining how much of its outcome is
inheritable. In the original formulation of the standard law of quantitative genetics (Eq. 5.10),
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Figure 26 – Effective coefficient of selection 𝜎2
𝐻,𝑡/𝜎2

0,𝑡 versus variance of the zygotic stage 𝜎2
0,𝑡 for different

values of heritability ℎ2. Each asymptote in red is the constant curve (1 − ℎ2)2. In the limit case
ℎ2 = 1, the variance of the inherited stage 𝜎2

𝐻,* equals the variance of the selection stage 𝜎2
𝑆,*.
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this is established in terms of mean values,

𝜇𝐻,𝑡 = ℎ2𝜇𝑆,𝑡 + (1 − ℎ2)𝜇0,𝑡 , (5.56)

according to Eq. 6.28. The novelty emerges in the expansion of this effect to the standard
deviation (see Eqs. 6.25),

𝜎𝐻,𝑡 = ℎ2𝜎𝑆,𝑡 + (1 − ℎ2)𝜎0,𝑡 . (5.57)

This expression may be rearranged to provide the reduction of the intensity of selection upon
the inherited character,

𝜎2
𝐻,𝑡

𝜎2
0,𝑡

=
[︃
1 − ℎ2

(︃
1 − 𝜎𝑆,𝑡

𝜎0,𝑡

)︃]︃2

. (5.58)

The variance of the inherited character, as well as that of the selected character, is always
smaller than the variance of the parental generation and the supplying role of mutation is
still indispensable. Moreover, the ratio above is higher than the coefficient of selection for a
fixed and arbitrary value of variance of the zygotic stage and could be easily identified as the
“effective coefficient of selection”, as evinced by its inferior bound,

lim
𝜎0,𝑡 →∞

𝜎2
𝐻,𝑡

𝜎2
0,𝑡

= (1 − ℎ2)2 , (5.59)
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the coefficient of selection representing an ideal case (see Fig. 26).
The asymptote is just one of the several evidences of how the role of selection is mitigated

as heritability diminishes. An alternative and convincing visualization of this feature and the
quantitative role of the parameter ℎ2 involves the determination of the value required to make
the standard deviation of the inherited character smaller than the width of selection in a single
round of selection,

𝜔 < 𝜎0,𝑡 & 𝜎𝐻,𝑡 < 𝜔 ⇒ ℎ2 >

(︃
1 − 𝜔

𝜎0,𝑡

)︃⎛⎝1 − 𝜔√︁
𝜔2 + 𝜎2

0,𝑡

⎞⎠−1

. (5.60)

This limiting value of ℎ2 is an increasing function of the variance of the zygotic stage, always
smaller than one, and approaches unity as 𝜎2

0,𝑡 diverges. Only in a scenario of perfect heritability
(ℎ2 = 1), the above condition is satisfied whatever the original variance.

Figure 27 – Stationary variance 𝜎0,* versus scaled squared magnitude of the mutation effect 𝛿2 for different
values of heritability ℎ2. Each asymptote in red is the linear function of slope [1 − (1 − ℎ2)2]−1.
Each curve in purple corresponds to the function 𝜎2

0,𝑡 = 𝜔𝛿/ℎ.
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The map for the variance of the zygotic stage is (see Eq. 6.27)

𝜎2
0,𝑡+1 = 𝜎2

0,𝑡

⎡⎣ℎ2 𝜔√︁
𝜔2 + 𝜎2

0,𝑡

+ (1 − ℎ2)
⎤⎦2

+ 𝛿2 , (5.61)
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whose stationary state can not be found analytically (see numerical solutions in Fig. 27).
Notwithstanding, it is straightforward to see that the fixed point satisfies the following equality,

𝜎2
0,*

⎧⎪⎨⎪⎩1 −

⎡⎣ℎ2 𝜔√︁
𝜔2 + 𝜎2

0,*
+ (1 − ℎ2)

⎤⎦2
⎫⎪⎬⎪⎭ = 𝛿2 . (5.62)

from which closed expressions for 𝜎2
0,* can be easily obtained in the limit 𝛿 → ∞ and 𝛿 → 0,

as follows,

lim
𝛿→∞

𝜎2
0,*

𝛿2 = 1
1 − (1 − ℎ2)2 , (5.63)

and

lim
𝛿→0

𝜎2
0,* = 𝜔𝛿

ℎ
. (5.64)

When it comes to the lag, the relation between inherited, selected and zygotic stages is
identical to that of the mean as well as that of the variance,

Δ𝐻,𝑡 = ℎ2Δ𝑆,𝑡 + (1 − ℎ2)Δ0,𝑡 . (5.65)

The resulting map is shown below (see Eq. 6.50),

Δ0,𝑡+1 = 𝐵 +
[︃

𝜔2 + (1 − ℎ2)𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

]︃
Δ0,𝑡 . (5.66)

Similarly to the coefficient of selection, an analogue of the effective coefficient of selection had
been defined earlier in association with the proportional return of the mean to the optimum,

Δ𝐻,𝑡 − Δ0,𝑡

Δ0,𝑡

= −ℎ2
(︃

𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

)︃
, (5.67)

named the “homeostatic strength” by ROBERTSON (ROBERTSON, 1956).
The fixed point is

Δ0,* = 𝐵

ℎ2

(︃
𝜔2 + 𝜎2

0,*

𝜎2
0,*

)︃
, (5.68)

and plotted in Fig. 28. Compared to the case of maximum heritability, an arbitrary value of
ℎ2 induces larger lag. The overall capacity of pursuing the optimum is mitigated despite a
greater value of variance, which can only be compensated by intensifying the magnitude of
the mutation effect. The minimum achievable distance from the optimum is a monotonically
decreasing function of ℎ2,

lim
𝛿→∞

Δ0,* = 𝐵

ℎ2 . (5.69)

Last but not least, the critical rate of environmental change becomes

𝐵𝑐 =
ℎ2𝜎2

0,*√︁
𝜔2 + 𝜎2

0,*

⎯⎸⎸⎷ln
[︃
𝑊 2

𝑚𝑎𝑥

(︃
𝜔2

𝜔2 + 𝜎2
0,*

)︃]︃
. (5.70)
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Figure 28 – Stationary lag Δ0,* versus scaled squared magnitude of the mutation effect 𝛿2 for different values
of heritability ℎ2. Each asymptote in red is the constant curve 1/ℎ2.
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In addition to the multiplicative explicit factor, the value of ℎ2 also influences 𝐵𝑐 through 𝜎2
0,*.

The dependence on ℎ2 is exposed in Fig. 29.
Now, the stability coefficients are investigated. The analysis follows the procedure applied

for the mutation-selection balance and the unidimensional map for variance is considered first.
With heritability included, the right-hand side of Eq. 5.36 becomes,

𝑑𝜎2
𝐻,𝑡

𝑑𝜎2
𝑆,𝑡

=
[︃
ℎ2 + (1 − ℎ2)

(︃
𝜎0,𝑡

𝜎𝑆,𝑡

)︃]︃⎡⎣ℎ2 + (1 − ℎ2)
(︃

𝜎0,𝑡

𝜎𝑆,𝑡

)︃3
⎤⎦ , (5.71)

The resulting eigenvalue is still below one for any set of parameters,

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

=
[︃
ℎ2
(︃

𝜎𝑆,𝑡

𝜎0,𝑡

)︃
+ (1 − ℎ2)

]︃ ⎡⎣ℎ2
(︃

𝜎𝑆,𝑡

𝜎0,𝑡

)︃3

+ (1 − ℎ2)
⎤⎦ , (5.72)

with the coefficient presenting a lower bound given by

lim
𝛿→∞

⃒⃒⃒⃒
⃒⃒𝑑𝜎2

0,𝑡+1

𝑑𝜎2
0,𝑡

⃒⃒⃒⃒
⃒⃒
𝜎2

0,𝑡=𝜎2
0,*

= (1 − ℎ2)2 , (5.73)

as shown in Fig. 30.
For the lag, the extra factor is

𝜕Δ𝐻,𝑡

𝜕Δ𝑆,𝑡

= ℎ2 + (1 − ℎ2)
𝜎2

𝑆,𝑡

𝜎2
0,𝑡

. (5.74)
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Figure 29 – Critical rate of environmental change 𝐵𝑐 versus scaled squared magnitude of the mutation effect
𝛿2 for different values of heritability ℎ2 and maximum fitness set at 𝑊𝑚𝑎𝑥 = 2.0.
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Once again, the remaining factors are preserved and the outcome is below unity (see Fig. 31),

𝜕Δ0,𝑡+1

𝜕Δ0,𝑡

= 1 − ℎ2
(︃

1 −
𝜎2

𝑆,𝑡

𝜎2
0,𝑡

)︃
. (5.75)

The lower bound of the second coefficient is

lim
𝛿→∞

⃒⃒⃒⃒
⃒⃒𝜕Δ0,𝑡+1

𝜕Δ0,𝑡

⃒⃒⃒⃒
⃒⃒
(𝜎2

0,𝑡,Δ0,𝑡)=(𝜎2
0,*,Δ0,*)

= 1 − ℎ2 . (5.76)

Both stability coefficients mimic the behavior of the effective coefficient of selection regarding
all parameters (see Fig. 32 for a precise comparison with its stationary value). By reducing the
efficacy of selection, decreasing heritability leads to the attenuation of the degree of stability.

Estimates of heritability are available everywhere and vary significantly from trait to trait
as well as among species (VISSCHER; HILL; WRAY, 2008). As we have investigated a sustained
environmental change and its consequences to extinction risk, however, the traits in focus are
presumed to be of a very particular nature, those closely related to fitness. Several studies
have reported that the heritability of these traits are severely biased to low values. This is
the case for life history traits such as fecundity, viability and development, in contrast to
morphological, behavioral and physiological ones (BARTON; TURELLI, 1989; ROFF; MOUSSEAU,
1987; MOUSSEAU; ROFF, 1987; VISSCHER; HILL; WRAY, 2008), as shown in Fig. 33.
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Figure 30 – First coefficient of stability |𝑑𝜎2
0,𝑡+1/𝑑𝜎2

0,𝑡

⃒⃒
𝜎2

0,𝑡=𝜎2
0,*

versus scaled squared magnitude of the mu-
tation effect 𝛿2 for different values of heritability ℎ2. Each asymptote in red is the constant curve
(1 − ℎ2)2.
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Figure 31 – Second coefficient of stability
⃒⃒
𝑑Δ𝑡+1/𝑑Δ𝑡

⃒⃒
(𝜎2

0,𝑡,Δ0,𝑡)=(𝜎2
0,*,Δ0,*) versus scaled squared magnitude

of the mutation effect 𝛿2 for different values of heritability ℎ2. Each asymptote in red is the
constant curve (1 − ℎ2).
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Figure 32 – Stationary effective coefficient of selection 𝜎2
𝐻,*/𝜎2

0,* versus scaled squared magnitude of the
mutation effect 𝛿2 for different values of heritability ℎ2. Each asymptote in red is the constant
curve (1−ℎ2)2. In the limit case ℎ2 = 1, the stationary variance of the inherited stage 𝜎2

𝐻,* equals
the stationary variance of the selection stage 𝜎2

𝑆,*.
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Figure 33 – A set of heritability estimates across several studies has been assembled by VISSCHER; HILL; WRAY
(VISSCHER; HILL; WRAY, 2008) and corroborates the tendency for traits associated with fitness to
have lower heritability.

Source: VISSCHER; HILL; WRAY (2008)



86

5.6 PHENOTYPIC PLASTICITY

Lastly, The role of phenotypic plasticity is addressed. Heritability is taken out of the picture
(ℎ2 = 1), for simplicity, and the life cycle is now represented by

𝑍0,𝑡+1 = 𝑃𝑡+1(𝑀(𝑃 −1
𝑡 (𝑆𝑡(𝑍0,𝑡)))) . (5.77)

Concerning the two-dimensional map, the introduction of plasticity culminates in the rescaling
of two fundamental parameters (see Eqs. 6.44 and 6.50),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛿 → (1 − 𝑏)𝛿

𝐵 → (1 − 𝑏)𝐵

. (5.78)

Thus, the outcome of plasticity is mainly quantitative, in the very same fashion of heritability.
The mechanisms by which this happens, however, are intricate and worth of elucidation.

By introducing plasticity we are dealing with adaptation by simultaneous genetic and plastic
response to selection. The propensity for earlier egg laying in birds is thought to be an example
of such instance. While substantial heritability for this trait is found among several populations,
there is growing evidence of individual adjustment to local conditions by phenotypic plasticity
(PULIDO; BERTHOLD, 2004). Similar interplay is found in the water flea Daphnia magna in
reaction to increased fish predation (STOKS et al., 2016).

The primary consequence is the splinting of the phenotype into the genetic and non-
genetic components. The phenotypic variance and its genetic component, here denoted by 𝛾2,
are related by the same linear transformation whatever the stage of the life cycle (see Eqs.
6.9, 6.27 and 6.38),

𝜎2
𝑡 = (1 − 𝑏)2𝛾2

𝑡 . (5.79)

The variability of the genetic component is greater than that of the actual phenotype in any
circumstances, as shown in Fig. 34. This is essentially due to the bias introduced by a plastic
effect which is proportional to the lag: phenotypes further from the optimum develop more.
More precisely, the genetic and non-genetic components present a negative covariance,

⟨⟨𝐴0,𝑡, 𝑏(𝜃𝑡 − 𝐴0,𝑡)⟩⟩ = ⟨𝐴0,𝑡 [𝑏(𝜃𝑡 − 𝐴0,𝑡)]⟩ − ⟨𝐴0,𝑡⟩⟨𝑏(𝜃𝑡 − 𝐴0,𝑡)⟩ (5.80)
= −𝑏⟨⟨𝐴0,𝑡⟩⟩ , (5.81)

so that the variance of the actual phenotype is smaller than the sum of the variances of the
complementary components,

⟨⟨𝑃 (𝐴0,𝑡)⟩⟩ = ⟨⟨𝐴0,𝑡⟩⟩ + ⟨⟨𝑏(𝜃𝑡 − 𝐴0,𝑡)⟩⟩ + 2⟨⟨𝐴0,𝑡, 𝑏(𝜃𝑡 − 𝐴0,𝑡)⟩⟩ (5.82)
= ⟨⟨𝐴0,𝑡⟩⟩ + 𝑏2⟨⟨𝐴0,𝑡⟩⟩ − 2𝑏⟨⟨𝐴0,𝑡⟩⟩ (5.83)
= (1 − 𝑏)2⟨⟨𝐴0,𝑡⟩⟩ . (5.84)
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Figure 34 – Stationary variance 𝜎2
0,* (in black) along with its genetic component (in grey) versus magnitude of

plasticity 𝑏 for different magnitudes of mutation 𝛿2. Each asymptote in red is the constant curve
of the value of phenotypic variance in the absence of plasticity, case in which it is equivalent to
its genetic component.
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When compared to the value expected in the absence of plasticity, the phenotypic variance is
lower too. A comparison with the hypothetical case of a sub-population that develops plasticity
“instantly” from a population that has attained the stationary state is very useful to understand
the issue, explored in Fig. 35. Both populations share the genetic component of variance
initially, so that the values after development differ exactly by a factor (1 − 𝑏)2. Selection,
however, is not a linear operation like plasticity, such that the ratio between developed and
non-developed instances above (1 − 𝑏)2 bout lower than 1, while the opposite happens to the
genetic component of the selected character. An opposite situation stands for the mutated
state. Mutation is not linear as well. Unlike selection, mutation is proportionally more noticeable
on decreasing values of variance, and an opposite situation stands for the mutated state.

The influence of plasticity on the phenotypic variance is displayed in Fig 36. From Eq. 5.63
(applying ℎ2 = 1), it follows that the asymptotes to diverging values of the magnitude of the
mutation effect have a slope of

lim
𝛿→∞

𝜎2
0,*

𝛿2 = (1 − 𝑏)2 . (5.85)

In the limit of small delta, 𝛿 →, one has (see Eq. 5.64)

lim
𝛿→0

𝜎2
0,* = (1 − 𝑏)𝜔𝛿 . (5.86)
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Figure 35 – Ratio between the variance of the character of a population “instantly” endowed with plasticity
and that of the original population (not endowed) at consecutive stages of the life cycle (shown
in the x-axis). The superior and inferior constant curves in red denote (1 − 𝑏)−2 and (1 − 𝑏)2,
respectively.
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In spite of causing the weakening of the coefficient of selection (see Fig. 37), the decrease of
the stationary variance with the plasticity 𝑏 originated on the rescaling of 𝛿2 (Eq. 5.78) does
not convey enough information to determine the actual effect on the chance of survival as the
critical rate is a non-monotonic function of this quantity.

From Fig. 38, we observe that phenotypic plastic allows the mean population phenotype
to remain closer to the phenotypic optimum with a lag that is smaller than the rate of envi-
ronmental change, as we can see from Eq. 5.69,

lim
𝛿→∞

Δ0,*

𝐵
= (1 − 𝑏) . (5.87)

Any individual in the next generation presents a larger plastic effect than its parent, i.e., of a
fixed genetic component of the phenotype. The development of the offspring is always larger
than that of the parent’s generation for the same genetic component of the character. This is
clearly inferred for the average value from

𝜇0,𝑡+1 = (1 − 𝑏)𝜈𝑀,𝑡 + 𝑏𝜃𝑡+1 (5.88)
= 𝜇𝑆,0 + 𝑏 (𝜃𝑡+1 − 𝜃𝑡) (5.89)
= 𝜇𝑆,0 + 𝑏𝐵 . (5.90)

Conversely, it means that the cost of selection is larger on phenotypes that display larger
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Figure 36 – Stationary variance 𝜎2
0,* versus scaled squared magnitude of the mutation effect 𝛿2 for different

magnitudes of plasticity 𝑏. Each asymptote in red is the linear function of slope (1 − 𝑏)2. Each
curve in purple corresponds to the function 𝜎2

0,* = (1 − 𝑏)𝜔𝛿.
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genetic component for a fixed phenotype. The map for the lag follows directly,

Δ0,𝑡+1 = 𝜃𝑡+1 − 𝜇0,𝑡+1 (5.91)
= (𝜃𝑡 + 𝐵) − (𝜇𝑆,0 + 𝑏𝐵) (5.92)
= (1 − 𝑏)𝐵 + Δ𝑆,𝑡 . (5.93)

The critical rate of environmental change then increases with plasticity, according to Fig. 39.
As phenotypic plasticity is thought to be an important mechanism of population’s persis-

tence in the face of environmental change, the developmental mechanisms and, more impor-
tantly, their potential forms of application to management and conservation practice have been
in focus on the last decades (DONELSON et al., 2023). When it comes to the impacts of climate
change on the taxa of mosquitoes, for instance, precise estimates of the role of phenotypic
plasticity to thermal adaptation may be decisive to public health policies (COUPER et al., 2021).
Moreover, current evidence indicates that directional selection is the most predictable scenario
for adaptive plasticity, although it frequently originates from past selection events where it
was previously non-adaptive (GHALAMBOR et al., 2007). The major limitation to the benefits
of phenotypic plasticity under sustained environmental change seems to be the reliability of
the environmental cues (DEWITT; SIH; WILSON, 1998). Different levels of cue reliability were
investigated by (REED et al., 2010) REED et al. through a stochastic individual-based model.
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Figure 37 – Stationary coefficient of selection 𝜎2
𝑆,*/𝜎2

0,* versus scaled squared magnitude of the mutation effect
𝛿2 for different magnitudes of plasticity 𝑏 and maximum reproductive rate set at 𝑊𝑚𝑎𝑥 = 2.0.
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While tightly correlated cue and optimum lead to high and invariant population sizes, plasticity
may increase the chance of extinction under a small correlation.

Moreover, it may be useful to determine the selective advantage of plasticity. For a fixed
genetic component of the character 𝐴0,𝑡, the selective advantage 𝑠𝑡 of an individual endowed
with plasticity relative to one deprived of it is here defined as

1 − 𝑠𝑡 = 𝑊𝑡(𝐴0,𝑡)
𝑊𝑡(𝑃𝑡(𝐴0,𝑡))

(5.94)

= exp

⎧⎨⎩−1
2

(︃
𝜃𝑡 − 𝐴0,𝑡

𝜔

)︃2 [︁
1 − (1 − 𝑏)2

]︁⎫⎬⎭ , (5.95)

and plotted in Fig. 40. The concept may be extended to the population level. Under stationarity,
plasticity confers a selective advantage for the population given by

1 − 𝑠* = 𝑊 *(𝑏 = 0)
𝑊 *

(5.96)

=

⎯⎸⎸⎷ 𝜔2 + 𝜎2
0,*

𝜔2 + 𝜎2
0,*(𝑏 = 0) exp

{︃
−1

2𝐵2
[︃(︃

𝜔2 + 𝜎2
0,*(𝑏 = 0)

𝜎4
0,*(𝑏 = 0)

)︃
− (1 − 𝑏)2

(︃
𝜔2 + 𝜎2

0,*

𝜎4
0,*

)︃]︃}︃
,

(5.97)

where 𝜎2
0,*(𝑏 = 0) denotes the stationary variance in the absence of plasticity.
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Figure 38 – Stationary lag Δ0,* versus scaled squared magnitude of the mutation effect 𝛿2 for different mag-
nitudes of plasticity 𝑏. Each asymptote in red is the constant curve (1 − 𝑏).
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The dependence of the selective advantage, s, on the scaled mutation effect is explored in
Fig. 41. The differences brought by plasticity in load and capacity of pursuing the optimum
are mitigated as 𝛿2 decreases,

lim
𝛿→0

𝑠* = 0 , (5.98)

severely attenuating the advantages of plasticity at the domain of small values. In the limit
𝛿 → ∞, although, the constriction of phenotypic variance caused by plasticity on variance is
amplified, and so it does the differences in selective load too, resulting in a maximum possible
ratio given by

lim
𝛿→∞

𝑠* = 1 − lim
𝛿→∞

(︃
𝜎0,*(𝑏 = 0)

𝜎0,*

)︃
(5.99)

= 𝑏 . (5.100)

Now we prove that all phenotypic evolution is purely genetic in the stationary state. First,
the difference between the genetic component of the mean of two arbitrary consecutive gen-
erations is

𝜈0,𝑡+1 − 𝜈0,𝑡 = 𝜇0,𝑡+1 − 𝑏𝜃𝑡+1

1 − 𝑏
− 𝜇0,𝑡 − 𝑏𝜃𝑡

1 − 𝑏
(5.101)

= 𝐵 − (Δ0,𝑡+1 − Δ0,𝑡) . (5.102)
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Figure 39 – Critical rate of environmental change 𝐵𝑐 versus scaled squared magnitude of the mutation effect
𝛿2 for different magnitudes of plasticity 𝑏.
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Then it is straightforward to see that in the stationary state the value reads

(𝜈0,𝑡+1 − 𝜈0,𝑡)* = 𝐵 . (5.103)

Finally, the repercussions on stability are scrutinized. As mentioned before, plasticity is
associated with the mitigation of the coefficient of selection which is, in turn, a proxy of
the stability coefficients (see Eqs. 5.38 and 5.41). From this link we can derive non beneficial
consequences of the presence of plasticity to the population, but in terms of stability rather than
fitness. Actually, the impact of the mechanism of plasticity in the propagation or mitigation
of a disturbance is not direct but only indirect through the modification of the stationary
variance. This is an outcome of linearity, as revealed by the chain rule in

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

=
𝑑𝜎2

𝑀,𝑡

𝑑𝛾2
𝑀,𝑡

𝑑𝛾2
𝑀,𝑡

𝑑𝛾2
𝑆,𝑡

𝑑𝛾2
𝑆,𝑡

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
0,𝑡

(5.104)

= (1 − 𝑏)2 𝑑𝛾2
𝑀,𝑡

𝑑𝛾2
𝑆,𝑡

1
(1 − 𝑏)2

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
0,𝑡

(5.105)

=
𝑑𝛾2

𝑀,𝑡

𝑑𝛾2
𝑆,𝑡

𝑑𝜎2
𝑆,𝑡

𝑑𝜎2
0,𝑡

(5.106)

=
𝑑𝜎2

𝑆,𝑡

𝑑𝜎2
0,𝑡

, (5.107)
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Figure 40 – Selective advantage of plasticity 𝑠𝑡 versus difference of the genetic component of the character to
the optimum phenotype (𝜃𝑡 − 𝐴0,𝑡) for different magnitudes of plasticity 𝑏.
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and
𝑑Δ0,𝑡+1

𝑑Δ0,𝑡

= 𝑑Δ𝑀,𝑡

𝑑𝜖𝑀,𝑡

𝑑𝜖𝑀,𝑡

𝑑𝜖𝑆,𝑡

𝑑𝜖𝑆,𝑡

𝑑Δ𝑆,𝑡

𝑑Δ𝑆,𝑡

𝑑Δ0,𝑡

(5.108)

= (1 − 𝑏)2 𝑑𝜖𝑀,𝑡

𝑑𝜖𝑆,𝑡

1
(1 − 𝑏)2

𝑑Δ𝑆,𝑡

𝑑Δ0,𝑡

(5.109)

= 𝑑𝜖𝑀,𝑡

𝑑𝜖𝑆,𝑡

𝑑Δ𝑆,𝑡

𝑑Δ0,𝑡

(5.110)

= 𝑑Δ𝑆,𝑡

𝑑Δ0,𝑡

, (5.111)

where 𝜖𝑡 denotes the genetic component of the lag and relates to it by

Δ𝑡 = (1 − 𝑏)𝜖𝑡 , (5.112)

and Eq. 5.79 has been applied. The inferior limits of the coefficients are not affected by
plasticity as well (see Eqs. 5.73 and 5.76):

lim
𝛿→∞

⃒⃒⃒⃒
⃒⃒𝑑𝜎2

0,𝑡+1

𝑑𝜎2
0,𝑡

⃒⃒⃒⃒
⃒⃒
𝜎2

0,𝑡=𝜎2
0,*

= 0 , (5.113)

lim
𝛿→∞

⃒⃒⃒⃒
⃒⃒𝑑Δ0,𝑡+1

𝑑Δ0,𝑡

⃒⃒⃒⃒
⃒⃒
(𝜎2

0,𝑡,Δ0,𝑡)=(𝜎2
0,*,Δ0,*)

= 0 . (5.114)
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Figure 41 – Populational selective advantage of plasticity at the stationary state 𝑠* versus scaled squared mag-
nitude of the mutation effect 𝛿2 for different magnitudes of plasticity 𝑏 and rate of environmental
change set at 𝐵 = 0.5𝜔. Each asymptote in red is the constant curve 𝑏.

10 2 10 1 100 101 102

2/ 2

0.0

0.2

0.4

0.6

0.8

1.0
s *

b = 0
b = 0.25
b = 0.5
b = 0.75

Source: Prepared by the author (2024)

This issue deserves further exploration. It is useful, for instance, to determine the cost
to the population, in terms of time, to recover from a given amount of perturbation, for a
given level of plasticity, assuming the normality of the distribution is preserved under this
perturbation. A Taylor series expansion of the 𝑝-th composition of the variance map of first
order in the perturbation 𝑑𝜎2 provides the relation below,

𝜎2
0,𝑡+𝑝(𝜎2

0,* + 𝑑𝜎2) − 𝜎2
0,*

𝑑𝜎2 ≈
𝑑𝜎2

0,𝑡+𝑝

𝑑𝜎2
0,𝑡

(𝜎2
0,*) (5.115)

=
𝑝−1∏︁
𝑙=0

𝑑𝜎2
0,𝑡+𝑙+1

𝑑𝜎2
0,𝑡+𝑙

(𝜎2
0,𝑡+𝑙(𝜎2

0,*)) (5.116)

=
𝑝−1∏︁
𝑙=0

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

(𝜎2
0,*) (5.117)

=
[︃

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

(𝜎2
0,*)

]︃𝑝

(5.118)

=
(︃

𝜎2
𝑆,*

𝜎2
0,*

)︃2𝑝

, (5.119)

from which the minimum number of generations required to mitigate a deviation by half is
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Figure 42 – Minimum number of generations required to mitigate a pertubation in the stationary phenotypic
variance by half 𝑝𝑚𝑖𝑛,𝜎 versus scaled squared magnitude of the mutation effect 𝛿2 for different
magnitudes of plasticity 𝑏. Each asymptote in red is the linear function of slope (1 − 𝑏)2. Each
curve in red corresponds to the function −(ln 2) 𝜎2

0,*/(2𝜎2
0,*).
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Source: Prepared by the author (2024)

easily obtained,

𝑝𝑚𝑖𝑛,𝜎 =
⎡⎢⎢⎢−1

2 ln 2
(︃

𝜎2
𝑆,*

𝜎2
0,*

)︃−1⎤⎥⎥⎥ . (5.120)

As shown in Fig. 42, such cost and the role of plasticity on it crucially depend on the mutation
effect. While values of 𝛿 above the width of selection lead to a prompt mitigation of disturbance,
regardless the intensity of plasticity, below this value the recovery demands several generations
and becomes very sensitive to the plastic effect.

The recovery from deviations in the lag concerns a more tricky analysis as they can appear
both spontaneously and induced by deviations in variance. The former situation is addressed
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Figure 43 – Minimum number of generations required to mitigate a pertubation in the stationary phenotypic
variance by half 𝑝𝑚𝑖𝑛,Δ versus scaled squared magnitude of the mutation effect 𝛿2 for different
magnitudes of plasticity 𝑏. Each asymptote in red is the linear function of slope (1 − 𝑏)2. Each
curve in red corresponds to the function −(ln 2) 𝜎2

0,*/(𝜎2
0,*).
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first, and involves a calculation analogous to the one that originated Eq. 5.119,

Δ0,𝑡+𝑝(𝜎2
0,*, Δ0,* + 𝑑Δ) − Δ0,*

𝑑Δ ≈ 𝜕Δ0,𝑡+𝑝

𝜕Δ𝑡

(Δ0,*) (5.121)

=
𝑝−1∏︁
𝑙=0

𝜕Δ0,𝑡+𝑙+1

𝜕Δ0,𝑡+𝑙

(𝜎2
0,𝑡+𝑙(𝜎2

0,*), Δ0,𝑡+𝑙(𝜎2
0,*, Δ0,*)) (5.122)

=
𝑝−1∏︁
𝑙=0

𝜕Δ0,𝑡+1

𝜕Δ2
0,𝑡

(𝜎2
0,*, Δ0,*) (5.123)

=
[︃

𝜕Δ0,𝑡+1

𝜕Δ0,𝑡

(𝜎2
0,*, Δ0,*)

]︃𝑝

(5.124)

=
(︃

𝜎2
𝑆,*

𝜎2
0,*

)︃𝑝

. (5.125)

The resulting minimum number of generations, in this case,

𝑝𝑚𝑖𝑛,Δ =
⎡⎢⎢⎢− ln 2

(︃
𝜎2

𝑆,*

𝜎2
0,*

)︃−1⎤⎥⎥⎥ (5.126)

= 2 𝑝𝑚𝑖𝑛,𝜎 , (5.127)

differs from the previous one by a factor of 2. Thus, the plot in Fig. 43 repeats the same
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analysis of Fig. 42, and the same observations raised hold here. The only difference regards
the doubling of the vertical scale.

Now we discuss the instance of a lag deviation induced by a perturbation on variance. A
primary point is this discussion involves quantifying how much deviation on lag corresponds
to a given deviation on variance in the next generation:⃒⃒⃒⃒

Δ0,𝑡+1(𝜎2
0,* + 𝑑𝜎2, Δ0,*) − Δ0,*

⃒⃒⃒⃒
=
⃒⃒⃒⃒
Δ0,𝑡+1(𝜎2

0,*, Δ0,* + 𝑑Δ) − Δ0,*

⃒⃒⃒⃒
(5.128)⃒⃒⃒⃒

𝑑𝜎2
⃒⃒⃒⃒⃒⃒⃒⃒

𝜕Δ0,𝑡+1

𝜕𝜎2
0,𝑡

(𝜎2
0,*, Δ0,*)

⃒⃒⃒⃒
≈
⃒⃒⃒⃒
𝑑Δ

⃒⃒⃒⃒⃒⃒⃒⃒
𝜕Δ0,𝑡+1

𝜕Δ0,𝑡

(𝜎2
0,*, Δ0,*)

⃒⃒⃒⃒
(5.129)⃒⃒⃒⃒

𝑑𝜎2
⃒⃒⃒⃒

𝜎2
0,*

=

⃒⃒⃒⃒
𝑑Δ

⃒⃒⃒⃒
𝐵

. (5.130)

According to the last expression, the stationary variance and the rate of environmental change
are the natural units for the comparison between distinct origins of lag deviation. There may
be then two possible situations: first, the deviation in variance is negligible compared to an
spontaneous deviation in the lag and Eq. 5.127 provides a precise measure of the recovery
time; or the deviation in variance is of an order equal or greater than an spontaneous deviation
in the lag and so Eq. 5.127 only gives a lower limit for the recovery time, since it sums up with
the spontaneous deviation and continues to provoke new deviations during the time scale of
restoration of the stationary variance.

At last, the range of values for the plastic effect 𝑏 is discussed. As a matter of fact, a
closer look at any expression in this section confirms that any value of the parameter 𝑏 leads
to physically possible systems. Although the range 0 ≤ 𝑏 < 1 has been introduced along with
the operational definition of plasticity in Eq. 5.8 because, in practice, that range satisfactorily
synthesizes the role played by an adaptive plasticity. While the interval 1 < 𝑏 < 2, associated
with a plastic effect that overcomes the optimum, is equivalent to the interval 0 ≤ 𝑏 < 1,
except for the change of sign of the lag, values outside these ranges are harmful (non-adaptive).

5.6.1 Alternative case I: linear on the optimum

To thoroughly justify the features assigned to the particular case of plasticity linear with the
lag, the other two possibilities are investigated now. What changes occur if the plastic effect
is proportional to the optimum value instead of the distance to it? The instance mentioned is
defined by

𝑍𝑡 = 𝐴𝑡 + 𝑏𝜃𝑡 . (5.131)

A primary property is the equivalence between the phenotypic variance and its genetic
component. The random variable associated to the first differs from the later by a constant
(see Eq. 5.131), and the variance of a normal variable is unaltered by such transformation.
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With no correlation between the genetic and non-genetic components of the phenotype, this
form of plasticity has no effect in terms of variance,

𝜎2
𝑡 = 𝛾2

𝑡 . (5.132)

The equation of motion of the mean value, although, is preserved,

𝜇0,𝑡+1 = 𝜈𝑀,𝑡 + 𝑏𝜃𝑡+1 (5.133)
= 𝜇𝑆,0 + 𝑏 (𝜃𝑡+1 − 𝜃𝑡) (5.134)
= 𝜇𝑆,0 + 𝑏𝐵 , (5.135)

as well as the lag map. The conclusion is that this form of plasticity brings about the rescaling
of the rate of environmental change.

Figure 44 – Selective advantage of plasticity (linear to the optimum) 𝑠𝑡 versus difference of the genetic compo-
nent of the character to the optimum phenotype (𝜃𝑡 − 𝐴0,𝑡) for different magnitudes of plasticity
𝑏 and optimum phenotype set at 𝜃𝑡 = 𝜔.

0.0 0.2 0.4 0.6 0.8 1.0
b

0.6

0.4

0.2

0.0

0.2

0.4

0.6

s t

( t A0, t)/ = 0
( t A0, t)/ = 0.5
( t A0, t)/ = 1.0
( t A0, t)/ = 1.5

Source: Prepared by the author (2024)

It is essential to highlight that the plastic effect 𝑏 has a similar meaning yet not completely
equivalent to the previous one. Unlike the main case, pushing the current parameter 𝑏 beyond
1 should be considered unfeasible as it does not lead to a symmetrical but an even stranger
situation of a genetic evolution opposed to the direction of the environmental change. Values
below 0, on the other hand, are still associated with a counterproductive development and
decreasing chances of survival. Furthermore, the value of 𝑏 that causes the overcoming of the
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optimum (formerly 1) depends on the actual value of the optimum itself as well as on the
genetic component of the phenotype:

𝑍0,𝑡 < 𝜃𝑡 ⇒ 𝑏 <
𝜃𝑡 − 𝐴0,𝑡

𝜃𝑡

. (5.136)

Beyond this value, the selective advantage of plasticity,

1 − 𝑠𝑡 = exp
{︃

−1
2

𝑏𝜃𝑡

𝜔2 [2 (𝜃𝑡 − 𝐴0,𝑡) − 𝑏𝜃𝑡]
}︃

, (5.137)

starts to decrease, as demonstrated in Fig. 44.

Figure 45 – Populational selective advantage of plasticity (linear to the optimum) at the stationary state 𝑠*
versus scaled squared magnitude of the mutation effect 𝛿2 for different magnitudes of plasticity 𝑏
and rate of environmental change set at 𝐵 = 0.5𝜔.
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The population selective advantage, on the other hand, is obtained by equating the phe-
notypic variance under plasticity 𝜎2

0,* to that in its absence 𝜎2
0,*(𝑏 = 0) in Eq. 5.97, which

simplifies to

1 − 𝑠* = exp
{︃

−1
2𝐵2

(︃
𝜔2 + 𝜎2

0,*

𝜎4
0,*

)︃ [︁
1 − (1 − 𝑏)2

]︁}︃
. (5.138)

As opposed to the main case, there are no differences in variance and, therefore, in load.
The improvement of the capacity of pursuing the optimum dominates the dependence on the
mutation effect all over the domain. These are maximal at small values of 𝛿2,

lim
𝛿→0

𝑠* = 1 , (5.139)
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when the ability to seek the optimum is most intensely impaired, amplifying the advantages
of plasticity in this case, as shown in Fig. 45. By the same reasoning, any advantage vanishes
at high values of 𝛿2,

lim
𝛿→0

𝑠* = 0 . (5.140)

The overall result is precisely the opposite of that observed in a plasticity linear to the lag: the
dependence is monotonically decreasing instead of increasing.

The amount of genetic evolution of the mean value per generation is calculated,

𝜈0,𝑡+1 − 𝜈0,𝑡 = (𝜇0,𝑡+1 − 𝑏𝜃𝑡+1) − (𝜇0,𝑡 − 𝑏𝜃𝑡) (5.141)
= (1 − 𝑏)𝐵 − (Δ0,𝑡+1 − Δ0,𝑡) , (5.142)

which in the stationary state constitutes only a fraction of the phenotypic evolution,

(𝜈0,𝑡+1 − 𝜈0,𝑡)* = (1 − 𝑏)𝐵 . (5.143)

The remainder comes from the non-genetic component,

(𝜇0,𝑡+1 − 𝜈0,𝑡+1) − (𝜇0,𝑡 − 𝜈0,𝑡) = (Δ0,𝑡+1 + 𝑏𝜃𝑡+1) − (Δ0,𝑡 − 𝑏𝜃𝑡) (5.144)
= 𝑏𝐵 + (Δ0,𝑡+1 − Δ0,𝑡) (5.145)

[(𝜇0,𝑡+1 − 𝜈0,𝑡+1) − (𝜇0,𝑡 − 𝜈0,𝑡)]* = 𝑏𝐵 . (5.146)

This means development accumulates at a rate of exactly 𝑏𝐵 per generation, increasing in-
definitely as the optimum moves forward, while the genetic component of the mean becomes
more and more distant from the optimum as time goes by,

lim
𝑡→∞

𝜖𝑡

𝜃𝑡

= Δ0,* lim
𝑡→∞

(︂ 1
𝜃𝑡

)︂
+ 𝑏 (5.147)

= 𝑏 . (5.148)

The new relation between the lag and its genetic component,

Δ𝑡 = 𝜖𝑡 − 𝑏𝜃𝑡 , (5.149)

has been applied in the previous calculation.
The lack of rescaling on the mutation effect leads to a major difference concerning stability.

The mechanism of plasticity in focus has no direct influence on the eigenvalues of the Jacobian
matrix,

𝑑𝜎2
𝑀,0

𝑑𝛾2
𝑀,0

= 1 (5.150)

=
(︃

𝑑𝛾2
𝑆,0

𝑑𝜎2
𝑆,0

)︃−1

, (5.151)
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and
𝑑Δ𝑀,0

𝑑𝜖𝑀,0
= 1 (5.152)

=
(︃

𝑑𝜖𝑆,0

𝑑Δ𝑆,0

)︃−1

, (5.153)

as before. The total derivatives are then kept. The coefficients, however, no longer depend on
the magnitude of plasticity, since the stationary variance does not as well, and plasticity has
no impact on the degree of stability.

This specific form of plasticity has been implemented by CHEVIN; LANDE; MACE (CHEVIN;

LANDE; MACE, 2010) under the same circumstances that we have explored, with exception of
the extension of the standard law of quantitative genetics (Eq. 5.11), which is irrelevant to
the conclusions drawn about plasticity. A stability analysis has not been performed, however.
This is understandable as long as the system is stable and, even if done, it could not unveil a
decrease of the degree of stability as consequence of plasticity, as seen above. Naturally, the
authors imposed a fitness cost explicitly, so that the resulting critical rate of environmental
change is a non-monotonic function of the plastic effect, with the analysis focused on the role
of the different parameters on the persistence of the population.

5.6.2 Alternative case II: constant plasticity

One more case is addressed, which happens to be the most simple one, that of a fixed
amount of plasticity regardless the genetic component of the phenotype,

𝑍𝑡 = 𝐴𝑡 + 𝑏 . (5.154)

The parameter 𝑏 is no longer dimensionless but defines the exact measure of development in
phenotypic units. Similarly to the first alternative case, this kind of transformation is unable
to alter the variance of a normal variable,

𝜎2
𝑡 = 𝛾2

𝑡 , (5.155)

thus no rescaling of mutation effects is needed, while it makes the mean phenotypic value to
differ from its genetic component by the additive constant 𝑏,

𝜇𝑡 = 𝜈𝑡 + 𝑏 , (5.156)

Notwithstanding, no consequences are observed in the equation of motion for the mean value,

𝜇0,𝑡+1 = 𝜈𝑀,𝑡 + 𝑏 (5.157)
= 𝜈𝑆,0 + 𝑏 (5.158)
= 𝜇𝑆,0 , (5.159)
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as well as on the lag,

Δ0,𝑡+1 = 𝜃𝑡+1 − 𝜇0,𝑡+1 (5.160)
= (𝜃𝑡 + 𝐵) − 𝜇𝑆,0 (5.161)
= 𝐵 + Δ𝑆,𝑡 . (5.162)

The conclusion is that the rescaling of the rate of environmental change is also lost and the
effects of a fixed amount of plasticity in viability are proven to be completely unnoticed, at
least under sustained environmental change.

This feature is specially interesting as one notices that the individual advantages of plas-
ticity are solid for an arbitrary generation. The expression of the individual selective advantage
is totally equivalent to that of the previous case of plasticity linear to the optimum with the
exception that the parameter 𝑏 occupies the role of 𝑏𝜃𝑡 (see Eq. 5.137),

1 − 𝑠𝑡 = exp
{︃

−1
2

𝑏

𝜔2 [2 (𝜃𝑡 − 𝐴0,𝑡) − 𝑏]
}︃

, (5.163)

and, accordingly, it confers benefits as long as the distance from the genetic component of
the phenotype to the optimum does not exceed 𝑏/2. Notice that the selective advantage given
above would result in exactly the same plot of Fig. 44, once 𝜃𝑡 measured in units of the
width of selection, making the equivalence absolute. Given this identity, added to the fact
that the unidirectional dynamics of the optimum should favor, in principle, a unidirectional
development, we would expect an advantage for plasticity, but

𝑠* = 0 . (5.164)

Once the stationary state has been achieved, parents and offspring are always subject to
the same environmental stress at the selection stage while displaying the same development
as usual. All phenotypic evolution comes from the genes,

𝜈0,𝑡+1 − 𝜈0,𝑡 = (𝜇0,𝑡+1 − 𝑏) − (𝜇0,𝑡 − 𝑏) (5.165)
= 𝐵 − (Δ0,𝑡+1 − Δ0,𝑡) (5.166)

(𝜈0,𝑡+1 − 𝜈0,𝑡)* = 𝐵 . (5.167)

The only difference relative to a scenario without plasticity is observed on the genetic compo-
nent of the mean, which stands 𝑏 phenotypic units behind the value expected in the absence
of plastic effects.

𝜖0,𝑡 = Δ0,𝑡 + 𝑏 (5.168)
𝜖0,* = Δ0,* + 𝑏 . (5.169)
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Furthermore, stability is not affected by the addition of a fixed amount of plasticity, either
directly,

𝑑𝜎2
𝑀,0

𝑑𝛾2
𝑀,0

= 1 (5.170)

=
(︃

𝑑𝛾2
𝑆,0

𝑑𝜎2
𝑆,0

)︃−1

, (5.171)

𝑑Δ𝑀,0

𝑑𝜖𝑀,0
= 1 (5.172)

=
(︃

𝑑𝜖𝑆,0

𝑑Δ𝑆,0

)︃−1

, (5.173)

or indirectly (no rescaling of the mutation effect).

5.7 OTHER FIXED POINTS OR ORBITS?

Figure 46 – 𝑝-th composition of the phenotypic variance map 𝜎2
𝑡+𝑝 for different periods 𝑝 and scaled squared

magnitude of the mutation effect set at 𝛿2 = 0.1𝜔2. The map corresponds to the most simple form
of the life-cycle (Eq. 5.23) for simplicity, since the qualitative behavior is preserved for arbitrary
values of heritability ℎ2 and magnitude of plasticity 𝑏.
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This section is devoted to the proofs of two important properties on the two-dimensional
map of phenotypic cumulants (Eqs. 6.44 and 6.50) derived from the most general form of the
life cycle defined in Eq. 5.21. These are:

1. The fixed point established in Eqs. 5.62 and 5.68 is unique.

2. There are no superior orbits.

The first statement follows directly from Eq. 5.72: given that the value of the derivative
of the variance map (Eq. 5.61) belongs to the interval

0 <
𝑑𝜎2

0,𝑡+1

𝑑𝜎2
0,𝑡

< 1, 𝜎2
0,𝑡 ∈ [0, ∞) , (5.174)

in the entire domain, the map must cross the bisector axis exactly once (see Fig. 46). For a
given value of the stationary variance, in turn, there is always a unique value of stationary lag.

Figure 47 – 𝑝-th composition of the lag map for different periods 𝑝 and stationary variance of 𝜎2
0,* = 0.5𝜔2.

The map corresponds to the most simple form of the life-cycle (Eq. 5.23) for simplicity, since the
qualitative behavior is preserved for arbitrary values of heritability ℎ2 and magnitude of plasticity
𝑏.
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Regarding the second statement, the approach is virtually the same: non-trivial superior
orbits of period 𝑝 exist if and only if the fixed point of the 𝑝-th composition of the map is not
unique. Being a product of the derivative of the variance map evaluated at distinct points of
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the same domain,

𝑑𝜎2
0,𝑡+𝑝

𝑑𝜎2
0,𝑡

=
𝑝−1∏︁
𝑙=0

𝑑𝜎2
0,𝑡+1

𝑑𝜎2
0,𝑡

(︁
𝜎2

0,𝑡+𝑙

)︁
, (5.175)

the derivative of the 𝑝-th composition is clearly constrained to the interval

0 <
𝑑𝜎2

0,𝑡+𝑝

𝑑𝜎2
0,𝑡

< 1, 𝜎2
0,𝑡 ∈ [0, ∞) , (5.176)

as well, and the previous reasoning applies promptly The extension to the two-dimensional map
is trivial since the lag map and any composition of it are linear (see Fig. 47). An alternative
analytical confirmation is also possible as an explicit expression of the 𝑝-th composition of the
lag map is obtained by induction,

Δ0,𝑡+𝑝 = 𝐵
𝑝−1∑︁
𝑡=0

𝑝−1∏︁
𝑙=𝑡

(︃
𝜔2

𝜔2 + 𝜎2
𝑡+𝑙

)︃
+ Δ0,𝑡

𝑝−1∏︁
𝑙=0

(︃
𝜔2

𝜔2 + 𝜎2
𝑡+𝑙

)︃
, (5.177)

from which the uniqueness of the fixed point of Eq. 5.68 can be readily verified. Notice that
the rescalings owe to plasticity can not affect these proofs and this is the reason why the
formulas relative to the form of the life cycle in Eq. 5.55 have been correctly used for the
general case.
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6 APPENDIX

6.1 GENERAL PROCESS

The general case of the random variable mapping of Eq. 5.21 defining a complete species
life cycle is thoroughly developed in this appendix. As mentioned in Sec. 5.2.5, departing from
a normally distributed zygotic character, each consecutive stage of this process represents
a normal random variable as well, conferring to Eq. 5.22 the status of ansatz rather than
hypothesis. Hereafter, the stage are addressed in their order of occurrence and 4 informations
are provided for each:

1. Why this transformation results in a Gaussian variable.

2. Phenotypic variance 𝜎2 (denoted by 𝛾2 when associated to the genetic component).

3. Phenotypic mean 𝜇 (denoted by 𝜈 when associated to the genetic component).

4. Phenotypic lag Δ (denoted by 𝜖 when associated to the genetic component).

6.2 SELECTED PHENOTYPE: 𝑍𝑆,𝑡 = 𝑆𝑡(𝑍0,𝑡)

A normally distributed character subjected to Gaussian selection (Eq. 5.1) results in a
distribution of the selected character (Eq. 5.3) which is proportional to

𝑝0,𝑡(𝑧)𝑊𝑡(𝑧) = 𝑊𝑚𝑎𝑥

𝜎0,𝑡

√
2𝜋

exp

⎧⎨⎩−1
2

⎡⎣(︃𝑧 − 𝜇0,𝑡

𝜎0,𝑡

)︃2

+
(︃

𝑧 − 𝜃𝑡

𝜔

)︃2
⎤⎦⎫⎬⎭ , (6.1)

where the mean fitness (Eq. 5.4) fits the role of the normalizing constant. The convolution of
two normal distributions must be a normal distribution as well. Through the completing the
square method, the exponent may be shown to satisfy(︃

𝑧 − 𝜇0,𝑡

𝜎0,𝑡

)︃2

+
(︃

𝑧 − 𝜃𝑡

𝜔

)︃2

=
(︃

𝜔2𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

)︃−1 [︃
𝑧 −

(︃
𝜔2𝜇0,𝑡 + 𝜎2

0,𝑡𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

)︃]︃2

(6.2)

+ (𝜃 − 𝜇0,𝑡)2

𝜔2 + 𝜎2
0,𝑡

, (6.3)

from which variance and mean stand out as,

𝜎2
𝑆,𝑡 =

𝜔2𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

, (6.4)

and

𝜇𝑆,𝑡 =
𝜔2𝜇0,𝑡 + 𝜎2

0,𝑡 𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

, (6.5)
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respectively. Lag follows directly,

Δ𝑆,𝑡 = 𝜃𝑡 − 𝜇𝑆,𝑡 (6.6)

=
(︃

𝜔2

𝜔2 + 𝜎2
0,𝑡

)︃
Δ0,𝑡 . (6.7)

6.3 GENETIC COMPONENT OF THE SELECTED PHENOTYPE: 𝐴𝑆,𝑡 = 𝑃 −1
𝑡 (𝑍𝑆,𝑡)

The plasticity function (Eq. 5.7), as its inverse (Eq. 5.9), are linear operations. Maintaining
normality is an immediate property of linearity. The rescaling involved becomes obvious by
appropriately introducing and rearranging mean and variance of the original variable as to
convert it to the standard normal distribution:

𝑍𝑆,𝑡 − 𝜇𝑆,𝑡

𝜎𝑆,𝑡

=
(︂

𝜎𝑆,𝑡

1 − 𝑏

)︂−1
[︃
𝐴𝑆,𝑡 −

(︃
𝜇𝑆,𝑡 − 𝑏𝜃𝑡

1 − 𝑏

)︃]︃
. (6.8)

Variance and mean are clearly given by

𝛾2
𝑆,𝑡 =

𝜎2
𝑆,𝑡

(1 − 𝑏)2 (6.9)

=
𝜔2𝜎2

0,𝑡

(1 − 𝑏)2(𝜔2 + 𝜎2
0,𝑡)

, (6.10)

and

𝜈𝑆,𝑡 = 𝜇𝑆,𝑡 − 𝑏𝜃𝑡

1 − 𝑏
(6.11)

=
𝜔2𝜇0,𝑡 +

[︁
−𝑏𝜔2 + (1 − 𝑏)𝜎2

0,𝑡

]︁
𝜃𝑡

(1 − 𝑏)(𝜔2 + 𝜎2
0,𝑡)

, (6.12)

while lag reads

𝜖𝑆,𝑡 = 𝜃𝑡 − 𝜈𝑆,𝑡 (6.13)

= 1
1 − 𝑏

(︃
𝜔2

𝜔2 + 𝜎2
0,𝑡

)︃
Δ0,𝑡 . (6.14)

6.4 GENETIC COMPONENT OF THE INHERITED PHENOTYPE: 𝐴𝐻,𝑡 = 𝐻𝑡(𝐴𝑆,𝑡)

The heritability function (Eq. 5.12) is also an affine transformation. Notice that the con-
volution associating 𝑍𝑆,𝑡 and 𝑍0,𝑡 (Eq. 5.3) constitutes a linear operation as well, a property
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which extends to their genetic components 𝐴𝑆,𝑡 and 𝐴0,𝑡 due to the linearity of plasticity:
𝑍0,𝑡 − 𝜇0,𝑡

𝜎0,𝑡

= 𝑍𝑆,𝑡 − 𝜇𝑆,𝑡

𝜎𝑆,𝑡

(6.15)

[(1 − 𝑏)𝐴0,𝑡 + 𝑏𝜃𝑡] − 𝜇0,𝑡

𝜎0,𝑡

= [(1 − 𝑏)𝐴𝑆,𝑡 + 𝑏𝜃𝑡] − 𝜇𝑆,𝑡

𝜎𝑆,𝑡

(6.16)

𝜎−1
0,𝑡

[︃
𝐴0,𝑡 −

(︃
𝜇0,𝑡 − 𝑏𝜃𝑡

1 − 𝑏

)︃]︃
= 𝜎−1

𝑆,𝑡

[︃
𝐴𝑆,𝑡 −

(︃
𝜇𝑆,𝑡 − 𝑏𝜃𝑡

1 − 𝑏

)︃]︃
(6.17)

𝐴0,𝑡 − 𝜈0,𝑡

𝛾0,𝑡

= 𝐴𝑆,𝑡 − 𝜈𝑆,𝑡

𝛾𝑆,𝑡

. (6.18)

This time, the suitable rescaling comes from

𝐴𝐻,𝑡 − 𝐴0,𝑡 = ℎ2(𝐴𝑆,𝑡 − 𝐴0,𝑡) (6.19)
𝐴𝐻,𝑡 = ℎ2𝐴𝑆,𝑡 + (1 − ℎ2)𝐴0,𝑡 (6.20)

= ℎ2
[︃
𝜈𝑆,𝑡 + 𝛾𝑆,𝑡

𝛾0,𝑡

(𝐴0,𝑡 − 𝜈0,𝑡)
]︃

+ (1 − ℎ2)𝐴0,𝑡 (6.21)

= ℎ2
(︃

𝜈𝑆,𝑡 + 𝛾𝑆,𝑡

𝛾0,𝑡

𝜈0,𝑡

)︃
+
[︃
1 − ℎ2

(︃
1 − 𝛾𝑆,𝑡

𝛾0,𝑡

)︃]︃
𝐴0,𝑡 (6.22)

𝐴0,𝑡 = 1
1 − ℎ2

(︁
1 − 𝛾𝑆,𝑡

𝛾0,𝑡

)︁ [︃𝐴𝐻,𝑡 − ℎ2
(︃

𝜈𝑆,𝑡 − 𝛾𝑆,𝑡

𝛾0,𝑡

𝜈0,𝑡

)︃]︃
(6.23)

𝐴0,𝑡 − 𝜈0,𝑡

𝛾0,𝑡

= 1
ℎ2𝛾𝑆,𝑡 + (1 − ℎ2)𝛾0,𝑡

{𝐴𝐻,𝑡 − [ℎ2𝜈𝑆,𝑡 + (1 − ℎ2)𝜈0,𝑡]} . (6.24)

The relationship between variances is most simply expressed in terms of the standard deviations
at this stage,

𝛾𝐻,𝑡 = ℎ2𝛾𝑆,𝑡 + (1 − ℎ2)𝛾0,𝑡 (6.25)

= ℎ2𝜔𝜎0,𝑡

(1 − 𝑏)
√︁

𝜔2 + (𝜎0,𝑡)2
+ (1 − ℎ2)𝜎0,𝑡

1 − 𝑏
(6.26)

= 𝜎0,𝑡

1 − 𝑏

⎡⎣ ℎ2𝜔√︁
𝜔2 + 𝜎2

0,𝑡

+ (1 − ℎ2)
⎤⎦ . (6.27)

Mean and lag worth

𝜈𝐻,𝑡 = ℎ2𝜈𝑆,𝑡 + (1 − ℎ2)𝜈0,𝑡 (6.28)

=
ℎ2
{︁
𝜔2𝜇0,𝑡 +

[︁
−𝑏𝜔2 + (1 − 𝑏)𝜎2

0,𝑡

]︁
𝜃𝑡

}︁
(1 − 𝑏)(𝜔2 + 𝜎2

0,𝑡)
+ (1 − ℎ2)(𝜇0,𝑡 − 𝑏𝜃𝑡)

1 − 𝑏
(6.29)

=

[︁
𝜔2 + (1 − ℎ2)𝜎2

0,𝑡

]︁
𝜇0,𝑡 +

[︁
−𝑏𝜔2 + (ℎ2 − 𝑏)𝜎2

0,𝑡

]︁
𝜃𝑡

(1 − 𝑏)(𝜔2 + 𝜎2
0,𝑡)

, (6.30)

and

𝜖𝐻,𝑡 = 𝜃𝑡 − 𝜈𝐻,𝑡 (6.31)

= 1
1 − 𝑏

[︃
𝜔2 + (1 − ℎ2)𝜎2

0,𝑡

𝜔2 + 𝜎2
0,𝑡

]︃
Δ0,𝑡 , (6.32)

respectively.
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6.5 GENETIC COMPONENT OF THE MUTATED PHENOTYPE: 𝐴𝑀,𝑡 = 𝑀(𝐴𝐻,𝑡)

When applied to a normal distribution,

𝑝𝑀,𝑡(𝑎) =
∫︁ ∞

−∞
𝑑𝑎′

⎧⎨⎩ 1
𝛾𝐻,𝑡

√
2𝜋

exp
⎡⎣−1

2

(︃
𝑎′ − 𝜈𝐻,𝑡

𝛾𝐻,𝑡

)︃2
⎤⎦⎫⎬⎭

⎧⎨⎩ 1
𝛿
√

2𝜋
exp

⎡⎣−1
2

(︃
𝑎 − 𝑎′

𝛿

)︃2
⎤⎦⎫⎬⎭

(6.33)

=
∫︁ ∞

−∞
𝑑𝑎′ 1

𝛾𝐻,𝑡

√
2𝜋

exp
⎡⎣−1

2

(︃
𝑎′ − 𝜈𝐻,𝑡

𝛾𝐻,𝑡

)︃2
⎤⎦ ∫︁ ∞

−∞
𝑑𝑎′′ 1

𝛿
√

2𝜋
exp

⎡⎣−1
2

(︃
𝑎′′

𝛿

)︃2
⎤⎦
(6.34)

𝛿(𝑎 − 𝑎′ − 𝑎′′) , (6.35)

(notice that the last 𝛿 corresponds to the Dirac delta function and not to the magnitude of
the mutation effect) the Gaussian mutation procedure defined in Eq. 5.14 is equivalent to the
addition of an independent normally distributed random variable of null mean and variance of
𝛿2,

𝐴𝑀,𝑡 = 𝐴𝐻,𝑡 + 𝒩 (0, 𝛿) , (6.36)

also resulting in an normal variable whose variance is increased by an amount of 𝛿2,

𝛾2
𝑀,𝑡 = 𝛾2

𝐻,𝑡 + 𝛿2 (6.37)

=
𝜎2

0,𝑡

(1 − 𝑏)2

⎡⎣ ℎ2𝜔√︁
𝜔2 + 𝜎2

0,𝑡

+ (1 − ℎ2)
⎤⎦2

+ 𝛿2 , (6.38)

same mean value,

𝜈𝑀,𝑡 = 𝜈𝐻,𝑡 . (6.39)

and same lag,

𝜖𝑀,𝑡 = 𝜃𝑡 − 𝜈𝑀,𝑡 (6.40)
= 𝜖𝐻,𝑡 , (6.41)

evidently.

6.6 OFFSPRING PHENOTYPE: 𝑍0,𝑡+1 = 𝑃𝑡+1(𝐴𝑀,𝑡)

The pertinent rescaling in the case of the direct plasticity function is

𝐴𝑀,𝑡 − 𝜈𝑀,𝑡

𝛾𝑀,𝑡

= 𝑍0,𝑡+1 − [(1 − 𝑏)𝜈𝑀,𝑡 + 𝑏𝜃𝑡+1]
(1 − 𝑏)𝛾𝑀,𝑡

. (6.42)
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Variance:

𝜎2
0,𝑡+1 = (1 − 𝑏)2𝛾2

𝑀,𝑡 (6.43)

= 𝜎2
0,𝑡

⎡⎣ ℎ2𝜔√︁
𝜔2 + 𝜎2

0,𝑡

+ (1 − ℎ2)
⎤⎦2

+ (1 − 𝑏)2𝛿2 . (6.44)

Mean:

𝜇0,𝑡+1 = (1 − 𝑏)𝜈𝑀,𝑡 + 𝑏𝜃𝑡+1 (6.45)

=

[︁
𝜔2 + (1 − ℎ2)𝜎2

0,𝑡

]︁
𝜇0,𝑡 +

[︁
−𝑏𝜔2 + (ℎ2 − 𝑏)𝜎2

0,𝑡

]︁
𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

+ 𝑏(𝜃𝑡 + 𝐵) (6.46)

=

[︁
𝜔2 + (1 − ℎ2)𝜎2

0,𝑡

]︁
𝜇0,𝑡 + ℎ2𝜎2

0,𝑡𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

+ 𝑏𝐵 . (6.47)

Lag:

Δ0,𝑡+1 = 𝜃𝑡+1 − 𝜇0,𝑡+1 (6.48)

= 𝐵 + 𝜃𝑡 −

[︁
𝜔2 + (1 − ℎ2)𝜎2

0,𝑡

]︁
𝜇0,𝑡 + ℎ2𝜎2

0,𝑡𝜃𝑡

𝜔2 + 𝜎2
0,𝑡

− 𝑏𝐵 (6.49)

= (1 − 𝑏)𝐵 +
[︃

𝜔2 + (1 − ℎ2)𝜎2
0,𝑡

𝜔2 + 𝜎2
0,𝑡

]︃
Δ0,𝑡 . (6.50)
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7 CONCLUSIONS

In the last years, we have considerably enhanced our understanding of adaptation in con-
stant and stable environments, both theoretically and empirically (BLEUVEN; LANDRY, 2016;
GOOD et al., 2017; COOPER, 2018). However, an understanding of how environmental changes
can affect adaptation remains challenging. Environmental variation triggers organisms’ re-
sponses, which may improve their fitness by modifying their traits. Phenotypic plasticity, the
ability of an organism to express different phenotypes from the same genome in response to
stimuli or inputs from the environment, is an important mechanism of adaptation, being ubiq-
uitous (AGRAWAL, 2001; OOSTRA et al., 2018). Alternatively, evolutionary adaptation shaped
by natural selection acting on genetic variation can also account for such responses (SHIMADA;

ISHII; SHIBAO, 2010; BOYER; HÉRISSANT; SHERLOCK, 2021).
Our present study aimed a better characterization of the dynamics of the evolution of

populations under a scenario of environmental variation. It is important to emphasize that as
opposed to the environmental dynamics used in the work of BOYER; HÉRISSANT; SHERLOCK, in
our formulation of Chapter 3, the switching between the two ecological conditions ensues from
a series of short-lived states. In particular, we look for quantification of the adaptive process
itself by measuring not only the degree of repeatability of outcomes but also evolutionary
trajectories. Using an adaptive walk approximation, expected to hold in a scenario of strong-
selection weak-mutation, we have shown that the rate of environmental variation influences
the number of substitutions that occur during adaptive walks to a locally optimal genotype.
In general, slowly changing environments lead to a greater number of substitutions.

According to our simulation results, abrupt environmental variations lead to more un-
predictable outcomes. The increase of the predictability with the transient time 𝜏 can be
understood as a drastic reduction of accessibility of some of the locally optimal genotypes.
The rise of predictability with 𝜏 is notably steeper when the timescale of ecological variation
surpasses that of the timescale of adaptation. The results reveal the role of the dynamics of
environmental changes in shaping the attraction basin of the locally optimal genotypes. This
occurs concomitantly with the constraint of the evolutionary paths towards those local optima
of the fitness landscape, as clearly established by measures of the predictability with respect
to the evolutionary pathways and mean path divergence.

In Chapter 4, the two main premises of our modeling are the existence of an underlying
mechanism of gene regulation that allows the population to promptly respond to environmental
variation and the occurrence of epistatic interactions among genes. As different sets of genes
are directly selected at each phase, gene regulation naturally leads to some degree of neutrality,
causing the fitness landscape to be smoother. The degree of neutrality depends on the amount
of epistasis; the larger the 𝐾, the smaller the correlation among one-mutant neighbors. In the
absence of epistasis, the gene subsets not directly under selection will solely be driven by
genetic drift. The misalignment of the subsets over the periods at which they are not directly



112

selected explains the abrupt drops in fitness when a phase switch takes place.
As observed by (TRUBENOVA et al., 2019), the amplitude of the oscillations gets larger

when the length of the seasons is extended. This result is independent of the topography of
the fitness landscape. Another interesting feature, not previously shown, but made possible in
our finite population approach, is that the demography plays a role in oscillation. We show that
larger populations result in larger fluctuations. The effect of population size is twofold: first,
larger populations allow them to reach higher fitness peaks but at the same time lead to more
profound valleys of the fitness landscape at the moment a phase switch occurs. In principle,
larger populations get more easily trapped in local optima of the fitness landscape as evolution
is expected to be more deterministic, but at the same time, they generate more beneficial
mutations per generation, while smaller populations follow more erratic evolutionary paths,
thus increasing their potential to reach higher fitness peaks HANDEL; ROZEN. The latter effect
seems to be the dominating mechanism, mainly because the population suddenly becomes
maladapted at the phase change. The abundant supply of beneficial mutations at the earlier
stages of each phase creates a favorable scenario and provides alternative routes to find higher
fitness peaks. This observation becomes even more pronounced with the amount of epistasis
𝐾, especially as the number of distinct phases increases.

We observe a strong influence of the oscillations on the amount of epistasis 𝐾 and the
number of phases 𝑁𝑃 . The rise of both quantities results in more significant oscillations.
While the change of 𝑁𝑃 does not affect the efficacy of the search for fitness peaks, it has a
profound effect on the fitness drop at the phase change. For fixed genome size 𝑁 , by making
𝑁𝑃 greater, we increase the influence of loci outside a given subset Γ(𝑃 ) on fitness. So when
the subset Γ(𝑃 ) is not being directly selected, the likelihood that those loci find themselves
in a less favorable configuration grows. In turn, the rise of 𝐾 has a more profound effect
on the evolutionary dynamics, as it lowers both the maximum and the minimum fitness levels
achieved by the population. The epistasis has a critical role in the dynamics as its enhancement
constrains the population to even smaller domains of the fitness landscape. This outcome is
clearly shown in Fig. 18, where we see that ℎ𝑎𝑚𝑝(𝐺𝑀𝐴,Γ, 𝐺𝐺𝑂,Γ), the variation of the Hamming
distance to the suboptimal configuration of each subset Γ(𝑃 ), narrows with 𝐾, i.e., a large
amount of the loci freeze out the genotype. Despite small changes at the genotypic level,
the increase of 𝐾 precipitates bigger fitness gaps as the phase change occurs. This can be
explained in part because the larger the 𝐾, the smaller the correlation of fitness effects among
first mutant neighbors. As shown in Fig 17, in which for 𝐾 = 8 the minimum fitness approaches
0.5, corresponding to the average fitness value. At the same time, the population seems to
evolve to increase its evolvability at the phase changes despite little genetic variation, thus
mitigating the effect of frustration inflicted by epistasis. The evidence that larger 𝐾 entails
the exploration of a smaller domain of the fitness landscape is reflected in the drop of the
entropy 𝑆𝑝𝑎𝑡ℎ with 𝐾, as exhibited in Fig. 20-B.

Our analysis of entropy is concerned with the distribution of ending points at the end of
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each phase, i.e., it is closely related to the distribution of fitness peaks found by the population
at a genotypic level. The entropy is influenced by both dynamics of environmental changes and
demography. Looking at the distribution of ending points within a given evolutionary path, the
entropy analysis reveals that 𝑁𝑃 and 𝐾 display opposite effects. While 𝑆𝑝𝑎𝑡ℎ grows with 𝑁𝑃 ,
mainly because of increased levels of neutrality that allow the population to more likely drift
over the landscape, the epistasis 𝐾 confines the population to smaller domains increasing the
repeatability of the ending points.

Finally, we discuss the findings and perspectives of Chapter 5. The hypotheses on the
agents of selection and mutation are quite conservative. Eqs. 5.3, 5.1 and 5.14 define what is
known as Gaussian selection and mutation and have been widely explored in the investigation
of the mutation-selection balance. In the particular case of non-overlapping generations and
a single trait, LYNCH; GABRIEL set the formulas for the change of the phenotypic mean and
variance, Eqs. 5.25 and 5.24, between parents and prole for a maladapted population, as well
as the mean population fitness, Eq. 5.45. Since the change in the variance does not depend
on the value of the optimum phenotype but only on the strength of selection and its value,
LYNCH; GABRIEL were also able to determine the stationary variance (Eq. 5.26) achieved after
repeated rounds of selection, regardless the trajectory of the optimal phenotype during this
period.

Development has already been explored by CHEVIN; LANDE; MACE in the context of sus-
tained environmental change. Departing from the same stationary lag of Eq. 5.31 and assuming
a fitness cost due to plasticity in the form of a multiplicative factor that increases with the
plasticity 𝑏, they have found an optimal magnitude for the plasticity that maximizes the critical
rate of environmental change tolerated by a population. Without any fitness cost associated
with plasticity, the critical rate of environmental change would grow indefinitely with the
amount of plasticity allowed. A stability analysis, on the other hand, was not carried out by
CHEVIN; LANDE; MACE, which is understandable given it could not unveil the inherent harmful
effect of plasticity to stability as long as the phenotypic variance was taken as a constant.
From Eqs. 5.72 and 5.75, it is clear that the dependence of the stability coefficients on 𝑏 is
wholly confined to that present in the stationary standard deviation 𝜎0,*. Furthermore, the
type of plasticity investigated by CHEVIN; LANDE; MACE is linear in the absolute value of the
optimum (see Eq. 5.131) and not in the lag as we propose (see Eq. 5.7). In their scenario,
only one of the rescalings, Eq. 5.78, namely 𝐵 → (1 − 𝑏)𝐵, comes up. In the absence of the
rescaling of the mutation rate, the stability coefficients do not depend on the plastic effect.
Such difference in the type of plasticity assumed also hides the effect of plasticity on stability
and makes their case more stable. When confronting the validity of each hypothesis, there is
a crucial difference. A plastic effect proportional to the optimum, as in CHEVIN; LANDE; MACE

(CHEVIN; LANDE; MACE, 2010), incurs an endless accumulation of the plastic effect, given by
𝑏𝜃𝑡 at generation 𝑡, which sounds especially inconsistent in the case of sustained environmental
change. Our choice, plasticity linear in the lag, seems far more reasonable as the phenotypic
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evolution per generation is completely genetic in the stationary state, equaling the rate of
environmental change 𝐵.

Rather than a pure mathematical feature, the direct relation between the stability and
the time to recover from a disturbance has profound biological consequences in this con-
text. Mathematically, our model of the infinite-size population directly addresses one of the
two paradigms of the conservation problem, the declining population (CAUGHLEY, 1994). The
small population paradigm, on the other hand, is indirectly connected with the stability issue.
Disturbances in real populations induce demographic costs (bottlenecks) and, in particular,
depletion of genetic variation, which enhances genetic drift as an evolutionary driving force
compared to natural selection. In sum, the selective benefits of an increasing magnitude of
plasticity are opposed by the amplification of the stochastic forces threatening the popula-
tion’s viability (LANDE; BARROWCLOUGH, 1987; LANDE, 1995; LACY, 1997; BOOY et al., 2000;
FLATHER et al., 2011).

Concerning its generality and perspective, as already mentioned, proposing a map between
random variables constitutes a technical innovation. Nonetheless, as carried out here, the de-
velopment through cumulants is not characteristic of the technique. The analytical formulation
developed here was possible only due to our particular choices for each operation in the life
cycle. We have dealt with a two-dimensional map, and this is so only because the first two cu-
mulants can perfectly describe the normal distribution. The normal distribution occurs, in turn,
because this is the unique distribution that could fit the stationary state of the operational
life cycle in Eq. 5.21, i.e., proposition 5.22 represents an ansatz rather than an assumption. In
sum, the analytical approach presented here depends first on the recognition of the distribution
of the stationary state and, secondly, the possibility of describing it in a finite number of mo-
ments. Since these conditions are not expected to hold commonly, exploring new forms for the
operations represents a current limitation of the model. Overcoming such restrictions would
allow questions of impressive generality to be pursued, especially concerning the identification
of features common to stable systems. Identifying systems with superior orbits and even chaos
would be equally enjoyable, while in the present one, it may be proved that the period one
orbit is unique (SMART, 1980).
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