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ABSTRACT 
 

Monitoring Aedes aegypti populations is crucial for dengue prevention, with egg 

counts collected from ovitraps serving as a primary method for tracking. This study 

addresses the limitations of smartphone-captured images, which may suffer from 

motion blur, defocus, and noise—factors that significantly impair automated counting 

accuracy. We evaluated three deep learning image restoration models—MPRNet, 

Real-ESRGAN, and Restormer—to enhance image quality prior to automated egg 

detection. Using a dataset of 82 ovitrap images, the models were trained and 

evaluated based on both perceptual metrics (PSNR and NIQE) and their impact on 

automated egg counting compared to manual counts. Among the tested models, 

Real-ESRGAN achieved the best performance, improving counting accuracy from 

78.4% to 106.5%. In contrast, MPRNet and Restormer performed poorly with the 

provided training data, reaching 331.7% and 1.5% accuracy, respectively. The results 

demonstrate that appropriate image enhancement techniques can improve the 

precision of mosquito egg counting under real-world conditions without requiring 

specialized equipment, potentially contributing to more efficient disease prevention 

strategies. 

 

Keywords: mosquito surveillance; deep learning; image restoration; aedes aegypti. 
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1. INTRODUCTION 

​ Aedes aegypti mosquitoes are primary vectors for significant diseases such as 

chikungunya, yellow fever, Zika, and dengue, predominantly affecting tropical and 

subtropical regions, especially in the Americas. Since 2019 the number of dengue 

fever cases has rapidly increased. That year alone saw over 5.2 million reported 

cases worldwide, marking a significant increase compared to previous years. By April 

2024, the World Health Organization had already documented over 7.6 million cases, 

surpassing the total of 4.6 million cases reported in 2023 (WORLD HEALTH 

ORGANIZATION, 2014). This upward trend imposes a substantial economic burden, 

with estimates indicating that the annual cost of dengue in Latin America exceeds 

US$3 billion (LASERNA et al, 2018). 

 

Graph 1. Comparison of confirmed dengue cases: Brazil vs. World

Source: Adapted from World Health Organization, 2014. 
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Given the scenario, mosquito surveillance and population control have 

become critical public health priorities, led by institutions such as FIOCRUZ-PE and 

regional health surveillance agencies. A common method for monitoring these 

populations is through the use of ovitraps - devices designed to collect mosquito 

eggs for counting and analysis. Typically, the egg-counting process is conducted 

manually by health technicians, sometimes without magnification tools, making it 

labor-intensive and susceptible to human error. As a result, recent research has 

turned to automation as a means of improving both the efficiency and accuracy of 

this task.  

Figure 1. A ovitrap consisting of a dark recipient and a wooden plaque 

 

Source: BERNARDES, 2021. 

Figure 2. Technician manually counting eggs with a stereomicroscope 

 

Source: BAÊTA, 2007 
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Figure 3. Mosquito eggs on a wooden plaque, collected from an ovitrap. 

 

Source: BARRETO, 2021. 

At the current stage, the available solutions are highly dependent on the 

quality of the images used, which can be hindered by personal smartphone cameras. 

Result’s accuracy is significantly impacted by image quality, as blurry or unclear 

images complicate accurate egg counting. This criterion makes it inaccessible to 

real-life, in-field professionals who could benefit from research. To address this 

challenge, this research explores the use of image restoration deep learning models 

to enhance ovitrap images captured by smartphones. By systematically training and 

evaluating these models using a dataset consisting of close-up, real-world images of 

mosquito egg pallets, this study seeks to identify different methods for mitigating 

visual defects and improving overall analysis reliability. 

This study is structured as follows: Chapter 2 presents the background and 

related works in this field by presenting the progress achieved and its limitations. 

Chapter 3 details the methodology, including dataset preparation, image restoration 

model architectures and evaluation metrics. Chapter 4 presents the results of 

experimentation and comparative analyses. Chapter 5 summarizes the results, 

discussing the implications, limitations, and avenues for future research. 
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2. RELATED WORK 

Numerous research efforts have been dedicated to facilitating the process of 

counting Aedes aegypti eggs with image detection over the recent years. This 

section highlights the main contributions in this field and relates them to this study's 

goals and methodology. 

Several studies have successfully applied convolutional neural networks 

(CNNs) to automate mosquito egg counting. Most notably, Javed et al. (2023) 

proposed EggCountAI, a robust counting tool based on Mask Region-based CNN 

that achieved up to 98% accuracy when counting Aedes eggs. Similarly, Santana 

(2019) developed a system using deep learning to recognize Aedes aegypti and A. 

albopictus eggs in field conditions, demonstrating the feasibility of deploying AI 

models for health surveillance. 

Rodrigo da Silva's 2021 research was a foundational reference for this work. 

Silva designed a low-cost system for automated egg counting based on deep 

learning, incorporating YOLOv10 for object detection. While Silva achieved high 

accuracy (92%), his solution, like the others previously mentioned, required a 

carefully controlled setup and depended on consistent image quality. 
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Figure 4. Comparison of images from related works: (a) image from Javed et al. (2023); (b) image 

from Santana (2019); (c) image from Silva (2021); and (d) a lower-resolution image captured by 

smartphone for the present research. 

Recent efforts have focused on building more flexible systems that operate 

effectively with lower-quality images, such as those captured by smartphones in the 

field. Wang et al. (2024) introduced a two-step approach using the Segment Anything 

Model (SAM) and Faster Region-based CNN for identifying and counting Aedes 

albopictus eggs. Their work reached a precision of 0.997 in egg count correlation 

compared to manual annotations, confirming the feasibility of high-accuracy 

automated counting in uncontrolled environments. 

Outside the mosquito-specific domain, image quality improvement has shown 

substantial impact on counting accuracy across various fields. In particular, Huynh et 

al. (2024) integrated super-resolution into a YOLOv4-based system for small object 
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detection, demonstrating that enhancing input image quality directly contributed to 

improved object detection accuracy. This approach mirrors the strategy used in this 

study: improving smartphone-captured ovitrap images before object detection. 

These recent studies validate the hypothesis that pre-processing images 

through enhancement techniques can substantially improve the performance of 

object detection models in egg counting. The current work extends these findings by 

applying restoration models (Real-ESRGAN, MPRNet, and Restormer) directly to 

smartphone ovitrap images. 
 

2.1 IMAGE RESTORATION MODELS 

The decision to use image restoration deep learning models in this research 

comes from the necessity to address common issues observed in real-life images 

captured by smartphones, such as motion blur, inadequate focus, and other 

limitations inherent in mobile camera technology. Image restoration models are 

designed specifically to mitigate these issues 

Initially, several prominent image restoration models were considered for 

evaluation. The criterion for consideration included disponibility of source code, ease 

to execute training and inference, computational resources and duration required and 

results described in source paper. Ultimately, three models were ultimately selected 

for experimentation in this research. 

Table 2. Comparison of benchmarks on image restoration tasks. 

Model PSNR (dB) SSIM Dataset Task 

MPRNet 32.66 0.95 GoPro Deblurring 

RealESRGAN 24.32 0.735​ 
RealSR 

(real-world) Real-ESRGAN 

Restormer 25.98 0.81 DPDD 
Defocus 

Deblurring 

Restormer 32.92 0.96 GoPro 
Motion 

Deblurring 

 
Source: Adapted from ZAMIR et al, 2021; ZAMIR et al, 2022; LI, 2025.  
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2.1.1 Multi-Stage Progressive Image Restoration (MPRNet) 

Published in 2021 by Zamir et al., the Multi-Stage Progressive Image 

Restoration (MPRNet) paper proposes a multi-stage restoration framework designed 

to tackle image degradation problems such as deblurring, deraining, and denoising. 

This architecture progressively learns restoration functions through multiple stages, 

effectively breaking down the complex restoration process into manageable 

sub-tasks. The first stages of MPRNet utilize an encoder-decoder structure to 

capture extensive contextual information, while the final stage operates directly at the 

original image resolution to preserve spatial details. 

A notable advantage of MPRNet, particularly in its image deblurring method, is 

its ability to balance high-level contextual understanding and detailed spatial 

accuracy. The framework employs supervised attention modules between stages, 

which refine intermediate features using ground-truth guidance, thereby ensuring 

effective feature propagation and restoration accuracy. Additionally, cross-stage 

feature fusion mechanisms enhance information flow, preserving critical contextual 

details across stages. 

However, despite its strong performance, MPRNet presents some limitations. 

The complexity increases with each additional stage, affecting runtime, especially in 

resource-constrained environments, making it potentially less efficient for real-time 

applications and use on resource-constrained devices. Additionally, the supervised 

attention module's effectiveness strongly relies on the availability of accurate 

ground-truth images, which might not always be accessible in real-world scenarios. 

It is important to note that while MPRNet was trained in this study to adapt to 

our custom dataset, the model does not necessarily require training to be used. 

Pre-trained versions are available and can be used directly for inference. The original 

MPRNet model was trained on several benchmark datasets depending on the 

restoration task. 

MPRNet is a supervised learning model, meaning it is trained using paired 

data (i.e., degraded images and their corresponding high-quality reference images). 

During training, it learns to minimize reconstruction errors by comparing its outputs to 

these references. 
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For motion deblurring, the GoPro dataset was used. This dataset contains 

real-world high-resolution videos captured using a GoPro Hero5 Black camera. 

Frames from these videos are averaged to create blurred images, paired with sharp 

ground-truth frames. This dataset is widely used for benchmarking single-image 

motion deblurring due to its realistic motion blur and diverse scenes. MPRNet is 

trained in a supervised manner using these paired blurry/sharp images. 

2.1.2 Real-ESRGAN 

The model was released in 2021 by Wang et al. and it is designed to perform 

real-world blind image super-resolution (SR), It addresses images with complex, 

unknown degradations. Its key goal is to improve the realism and clarity of low-quality 

images, simulating real-world degradation processes more effectively through 

synthetic training data 

Real-ESRGAN utilizes a high-order degradation model instead of the classical 

first-order model. For training, it employs in sequence the addition of blur, noise, 

downsampling and JPEG compression to mimic real-life degradation scenarios. The 

model also integrates sinc filters to emulate common real-world artifacts such as 

ringing and overshoot. The training process of Real-ESRGAN involves two 

sequential stages: 

1.​ Real-ESRNet Training: Initially, a Peak Signal-to-Noise Ratio (PSNR) oriented 

model, named Real-ESRNet, is trained using the L1 loss function. This model 

serves as a foundation to capture basic image restoration capabilities. 

2.​ Real-ESRGAN Training: In sequence, the weights from the Real-ESRNet 

training serves as an initialization for the Real-ESRGAN training phase, which 

employs a combination of L1 loss, perceptual loss (JOHNSON, 2016), and 

GAN loss (GOODFELLOW, 2014). This sequential step further enhances the 

model’s ability to produce visually appealing and detailed restorations by 

optimizing perceptual quality. 

Nevertheless, the Real-ESRGAN model has certain limitations. It is a heavy 

network, so the extensive degradation modeling and the complexity of training 

synthetic datasets can lead to higher computational demands and longer training 
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periods. Additionally, the model may occasionally produce unnatural textures or 

amplify certain degradation patterns. 

Like the other models tested, it does not require training to function; 

pre-trained weights are publicly available for immediate use. It is a supervised model 

trained on synthetic datasets generated by applying degradations to high-quality 

images. The training consists of two stages: first, a PSNR-oriented network is trained 

using L1 loss; then a GAN-based version is fine-tuned with perceptual and 

adversarial losses to enhance realism. 

Real-ESRGAN was trained using synthetic datasets generated from 

high-quality images to simulate real-world degradations. Specifically, it was trained on 

the DF2K dataset, which is a combination of DIV2K and Flickr2K datasets, consisting 

of high-resolution natural images. These images were synthetically degraded by 

applying random combinations of blur, noise, downsampling, and compression to 

mimic realistic image quality issues. Although the degradations are synthetic, the 

dataset offers a wide variety of real-world textures, lighting conditions, and content 

types, making it suitable for blind super-resolution training. 

2.1.3 Restormer 

Released in 2021 by Zamir et. al, the Restormer (Restoration Transformer) 

framework is designed to perform efficient and effective high-resolution image 

restoration by addressing limitations of CNN-based methods using Transformers 

architectures. It incorporates a design for a multi-head attention mechanism and 

feed-forward neural network to effectively capture long-range pixel interactions while 

maintaining computational efficiency. It provides solutions such as image deraining, 

single-image motion deblurring, defocus deblurring (single-image and dual-pixel 

data), and image denoising (Gaussian grayscale/color denoising, and real image 

denoising). 

In this research, Restormer's capabilities in single-image motion deblurring 

and defocus deblurring (single-image data) were specifically utilized. The motion 

deblur method targets images degraded by camera or subject motion, effectively 

recovering sharp details by modeling dynamic motion patterns. In contrast, the 
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defocus deblur approach addresses images degraded by out-of-focus blurring, 

restoring fine textures and structural details. 

The architecture employs a strategy where it trains on progressively larger 

patches, effectively capturing global statistics from high-resolution images. It 

introduces the Multi-Dconv Head Transposed Attention (MDTA) architecture to 

compute attention across feature channels rather than spatial dimensions; this 

approach drastically reduces computational complexity. Additionally, it incorporates 

the Gated-Dconv Feed-forward Network (GDFN), introducing depth-wise 

convolutions and gating mechanisms that selectively emphasize crucial image 

features, enhancing detail preservation and image clarity. 

Despite its strengths and focus on improving Transformers models, Restormer 

still is a complex structure. It requires careful optimization especially when used in 

resource-limited environments. The model's effectiveness depends on a specific 

training strategy, where patch sizes increase over training epochs; deviations from 

this strategy may degrade performance. Furthermore, despite demonstrating strong 

generalization, Restormer can struggle with severely out-of-distribution degradations 

or unusual blur patterns, occasionally introducing artifacts or overly smoothed 

textures in challenging cases. 

Similar to the other chosen models, Restormer can be used without training by 

using pre-trained weights made available by the authors. When training is performed, 

it follows a supervised learning approach, requiring pairs of degraded and 

high-quality images. The architecture is optimized through a curriculum that gradually 

increases input patch sizes during training, improving performance on high-resolution 

data. 

The original Restormer was trained and evaluated on multiple datasets 

tailored for specific image restoration tasks. For motion deblurring, it used the GoPro 

dataset, which contains real-world motion blur scenarios. For defocus deblurring, it 

used the DPDD dataset (Dual-Pixel Defocus Deblurring), which provides paired 

blurry and sharp images captured using a dual-pixel camera to simulate realistic 

defocus blur.  
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3. METHODOLOGY 

This study adopted a structured methodology to guide the experimental 

procedures. An overview of the process is presented in Fluxogram 1, which 

illustrates the five interconnected phases: image capture, pre-processing, training, 

evaluation, and feedback. 

The process began with image acquisition, followed by pre-processing to 

refine and structure the dataset according to the requirements of the deep learning 

models. The data was then used for training and initial evaluation. Based on the 

outcomes of this evaluation, a feedback loop was established, prompting a second 

iteration of pre-processing, training, and evaluation to enhance the model's 

performance. 

Fluxogram 1. Workflow of the methodology adopted in the study

 

Source: Author, 2025. 

Each step will be discussed in detail in the following sections of the current 

Chapter. 

 

3.1. DATASET COLLECTION 

The dataset utilized in this study consists of images of mosquito egg collection 

plates, also known as ovitraps. Ovitraps consist of dark containers with wide 

openings, partially filled with water, and a rough wooden paddle installed vertically 

inside them (GOMES, 2003). A total of 130 ovitrap plates were provided for this 

research. Each plate is rectangular and designed specifically for egg collection. 
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Figure 5. Ovitrap plaque and its dimensions

 

Source: SILVA, 2021 

Images were captured using a Samsung Galaxy A03s smartphone, equipped 

with a primary camera featuring a 13 MP sensor, an f/2.2 aperture lens and 

autofocus capability. To ensure consistency and stability during image capture, a 

custom-built support device was provided. The support consists of two distinct 

components: 

1.​ The first component is similar to a table and securely holds the smartphone 

horizontally. In its interior, it integrates an internal chamber with built-in lighting 

to illuminate the image evenly. 

2.​ The second component is similar to a plate and serves as the base and 

precisely matches the dimensions of the ovitrap plaques. This base contains 

grooves strategically placed to divide each plate into three equal sections. By 

adjusting the position of the upper part of the support device, the smartphone 

camera consistently captures one-third of the plate per image. 
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Figure 6. Setup to capture ovitrap plaque images 

Using this method, three distinct images were captured for each ovitrap plate, 

yielding a total of 390 images. After initial data collection, a manual selection process 

was conducted to identify images suitable for training. Selection criteria included the 

presence of at least one mosquito egg, adequate focus in any part of the image, and 

minimal interference from debris such as mud stains, hair, or other artifacts. Based 

on these criteria, 82 images were deemed suitable and selected for training. 

3.2 DATASET SETUP 

Table 1. Summary of training and testing image pairs after cropping strategy 

Training round Number of image pairs 
(Training) 

Number of image pairs 
(Testing) 

1 70 12 

2 1199 133 

 

To enable the training of supervised learning models, the dataset was 

organized into paired images — one low-quality input and one high-quality reference. 

This pairing was necessary because two out of the three selected models (MPRNet 

and Restormer) rely on supervised learning provided by the user, which requires a 

degraded image and its corresponding clean version to perform effective training. 
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Two distinct rounds of training were carried out, each employing a different 

image cropping strategy. In both training rounds, central image crops were 

deliberately chosen as the input (degraded) images, while the peripheral crops 

(corners and edges) served as reference targets. This design choice was made 

because the center regions of the photos consistently showed reduced focus, likely 

due to camera lens limitations.  

In the first round of training, each original image was divided into nine sections 

(Figure 4). For training pairs, clear corner crops were selected as reference targets 

while center crops were selected as inputs. This approach prioritized image quality 

improvement. The process created 82 pairs of images. As shown in Figure 4, crop A 

serves as the reference for crop 1. 

A more detailed approach was implemented for the second round of training 

(Figure 5), dividing each image into sixteen equal parts. The four center sections 

were reserved to act as training inputs. Corresponding corner sections were selected 

as references. This expanded the dataset to 1332 pairs of images. For 

demonstration, in Figure 5, crop 1 references crop A, crop 2 references crop B, and 

so on. 
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Figure 7. Representation of cropping and selection for the first round of training. 

 

Figure 8. Representation of cropping and selection for the second round of training. 

 
3.3. EXPERIMENTATION RESOURCES 

The experiments were conducted on two different, but complementary 

computational resources. Kaggle1, a platform that provides free computational 

resources for data scientists, including a Jupyter Notebook feature and access to 

GPUs. For this research, the NVIDIA Tesla P100 GPU was primarily used, which 

allowed efficient computation and accelerated training. However, Kaggle enforces a 

weekly usage limitation of 40 hours per user, making continuous or extensive training 

challenging. 

To supplement this resource, a shared university clustered virtual machine 

called Apuana2 was also employed. The Apuana virtual machine houses NVIDIA 

A100 80GB PCIe GPUs and NVIDIA GeForce RTX 3090 GPUs and 5,24 TB RAM 

(ASCOM, 2023). Although it has more GPUs available, institutional restrictions permit 

the use of no more than two GPUs simultaneously. 

2 https://apuana.cin.ufpe.br/ 

1 https://www.kaggle.com/ 
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3.4 EVALUATION METRICS 

To evaluate the effectiveness of the image restoration models, one of the 

metrics chosen was the Peak Signal-to-Noise Ratio (PSNR). PSNR is widely used as 

a benchmark for quality in image processing tasks. In practice, it is calculated from 

the mean squared error (MSE) between the restored image and a reference, where I 

denote the image (1). 

  𝑃𝑆𝑁𝑅 =  10. 𝑙𝑜𝑔
10

𝑚𝑎𝑥(𝐼)2 
𝑀𝑆𝐸( ) (1) 

A higher PSNR (in dB) indicates the restored image is closer to the ground 

truth in pixel intensity – thus, a higher PSNR is better. PSNR is useful for quantifying 

overall fidelity and is easy to compute, but it correlates imperfectly with perceived 

visual quality, since it treats all pixel errors equally and neglects human visual system 

characteristics. 

While PSNR requires a reference image for its calculation, NIQE does not. 

The Natural Image Quality Evaluator (NIQE) is a blind image quality assessment 

metric that evaluates image quality based on a statistical model of natural image 

patches, measuring deviations from naturalness (MITTAL, 2013). Lower NIQE scores 

indicate higher perceptual image quality, meaning the image more closely resembles 

natural image statistics. 

In addition to the mathematical comparison, the evaluation also consists of 

assessing the accuracy of mosquito egg count after image inference. Six ovitrap 

plates were provided—representing approximately 4.6% of the full dataset of 130 

plates—and were counted by trained professionals from the health institution Fiocruz. 

This data serves as a base for the comparison and evaluation of the effectiveness 

after training. 



23 
 

3.5 AUTOMATED MOSQUITO EGG COUNTING SYSTEM 

The automated mosquito egg counting system used in this study was 

developed using the source code from Silva (2021), employing the YOLOv10 object 

detection model with weights specifically trained for mosquito egg detection. 

The counting model operates by initially dividing each image given as input 

into a 7x6 grid, resulting in smaller sub-images. This approach aims to optimize 

processing performance and reduce the overall demand for computational resources. 

Each of these sub-images is then processed by the YOLOv10 model, which has 

been fine-tuned with pre-trained weights specific to the detection of mosquito eggs. 

The model performs object detection on each sub-image and returns the number of 

detected eggs, which is then used for analysis. 

The system produces two key outputs: a numerical count of detected eggs for 

each image, and a set of annotated images where each detected egg is highlighted. 

The annotated outputs allow for visual inspection to verify the presence of false 

positives or false negatives, thereby supporting further refinement of the model's 

accuracy and offering transparency in the automated counting process. 

 

Figure 9. Example of the counting system output. Each red rectangle highlights a mosquito egg 

detected by the counting system. 

Six ovitrap plaques (labeled A to F) were provided by Fiocruz, each manually 

analyzed and counted by trained professionals. These manual counts served as the 

ground truth reference for evaluating the performance of the automated mosquito 

egg counting system under different conditions. All analyses, comparisons, and 
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metrics were based on how closely automated results approached these verified 

manual counts. 

To assess the accuracy of each automated count, a metric called Relative 

Accuracy was used. This value is calculated by dividing the number of eggs detected 

automatically by the number counted manually for each individual plaque (2). A 

relative accuracy of 1.0 means the automated system perfectly matched the manual 

count; values below 1.0 indicate undercounting, while values above 1.0 suggest 

overcounting. These scores will be presented throughout the paper in bar charts, with 

each bar representing the relative accuracy for a specific model and training stage, 

always in reference to the manual count. 

  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑢𝑛𝑡
𝑀𝑎𝑛𝑢𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 (2) 

This approach allows for a detailed comparison of each image restoration 

model's performance on a per-plaque basis. By analyzing changes in relative 

accuracy before and after each training stage, it is possible to identify trends in how 

different models and training strategies affect detection precision—either improving 

alignment with the manual baseline or, in some cases, leading to overestimation. 

To complement this detailed view, a Total Detection Score was also calculated. 

This score reflects the overall performance of each model by summing the 

automated counts across all six plaques and dividing by the total manual count (3). It 

offers a system-wide perspective on whether the model, as a whole, improves or 

worsens detection. For instance, unprocessed images resulted in 885 detected eggs 

out of 1,129 manually counted—about 78.4%. This is the score that will be used for 

comparison throughout the paper.  

  𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =  𝑇𝑜𝑡𝑎𝑙 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑢𝑛𝑡
𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑛𝑢𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 (3) 
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4. RESULTS 

Going forward, the results obtained from the experiments with MPRNet, 

Restormer, and Real-ESRGAN will be discussed. Each model was evaluated based 

on image quality metrics discussed and the accuracy of automated mosquito egg 

counting, benchmarked against manual counts performed by trained technicians. 

4.1 MPRNET RESULTS 

Among the tested models, MPRNet presented the most unstable behavior, 

showing limited performance improvements in early stages and significant 

overestimation after training. While initial tests on unprocessed images and 

pre-trained weights produced counts moderately close to manual results, the custom 

training iterations caused the model to degrade image quality or generate severe 

visual artifacts, resulting in either a collapse in detection or an explosion in false 

positives. In its final form, MPRNet reached a relative accuracy of 331.7%, more than 

tripling the manual count, which represents the models’ generalization to the ovitrap 

dataset. 

Graph 2. Relative accuracy scores by method - MPRNet

Source: Author, 2025 

Table 3. Egg counting results using MPRNet at different training stages 
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Ovitrap 
plaque 

Fiocruz  
technician 

manual 
count 

Unprocessed 
image 

automated 
count 

Pre-trained 
model 

automated 
count 

Automated 
count after 

first training 

Automated 
count after 

second 
training 

A 213 194 145 1 780 

B 361 312 206 1 479 

C 113 70 62 0 374 

D 137 122 101 0 379 

E 133 64 37 0 569 

F 172 123 72 0 698 

 

Initial testing established baseline performance metrics for MPRNet deblurring 

training on the available hardware. Using 10 image pairs from the GoPro dataset, 

each epoch averaged approximately 6 seconds in duration, with individual image 

inference during about 3 seconds. The training process followed standard protocol 

with 3001 epochs. 

Initially, MPRNet inference was tested using the authors’ pre-trained model, 

originally trained on the GoPro dataset for motion deblurring. Visual inspection of 

inferred images showed only subtle improvements, mostly in color and brightness, 

rather than in focus or sharpness. Accordingly, the pre-trained model did not improve 

counting performance and, in fact, consistently underperformed compared to the 

original unprocessed images, as shown in Graph 2. 
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Figure 10. Progression of image enhancement using MPRNet. (a): original image; (b): output using the 
original pre-trained weights; (c): result after the first training iteration; (d): result after the second 

training iteration. 

 

To better tailor the model to the characteristics of the ovitrap dataset, a custom 

training phase was conducted in two rounds. The first training round, using a small 

dataset of 70 image pairs, lasted 14 hours, with an average epoch duration of 17.1 

seconds. Despite a moderate PSNR validation score of 21.54, the resulting images 

suffered from increased blur and smoothing effects. These distortions led to severe 

degradation in automated egg detection, with plate-level counts falling 

dramatically—even to zero in some cases. 
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The second training round, using an expanded dataset of 1332 training pairs, 

extended over 6 days and 21 hours, with an average epoch time of 315 seconds. 

However, the training did not converge successfully: the validation PSNR dropped to 

6.70, and the NIQE score worsened significantly to 26.39. Images inferred at this 

stage exhibited extreme color distortions and unnatural visual artifacts, including 

blocks of green, yellow, and blue, severely compromising the ability of the detection 

system to distinguish eggs from the background. Consequently, egg counts spiked 

unrealistically, leading to inflated totals and a dramatic loss in reliability. 

Table 4. Evaluation scores for images processed with MPRNet at different training stages 

 No training 
First 

training 
Second 
training 

PSNR ↑ n/a 21.54 6.70 

NIQE ↓ 4.80 9.15 26.39 

 

Graph 2 illustrates the relative accuracy scores by method. While both the 

original and pre-trained inference results remained relatively close to the ground 

truth, the first training worsened performance in most cases. The second training 

produced visually distorted outputs, which the YOLOv10-based detection system 

interpreted as hundreds of false positives, drastically inflating the egg count. 

4.2 REAL-ESRGAN RESULTS 

The application of Real-ESRGAN progressively improved the performance of 

the automated mosquito egg counting system across all tested ovitrap plates. 

Starting from underwhelming results on unprocessed images, each stage of model 

refinement—first with pre-trained inference and then with two rounds of custom 

training—produced increasingly accurate outcomes. The most significant gains were 

achieved after the second training iteration, where restored images led to counts that 

not only matched but in some cases exceeded the manual annotations, indicating a 

strong potential for real-world deployment. 

To quantitatively illustrate this improvement, a Total Detection Score was 

calculated. While the baseline score is 78.4%, the second round of evaluation 
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summed 1,202 eggs, making it a score of 106.5% of the manual benchmark. This 

increase illustrates both the potential of image restoration to enhance detection and 

the need to balance sensitivity to avoid overcounting. 

Table 5. Egg counting results using RealESRGAN at different training stages 

Ovitrap 
plaque 

Fiocruz  
technician 

manual 
count 

Unprocessed 
image 

automated 
count 

Pre-trained 
model 

automated 
count 

Automated 
count after 

first training 

Automated 
count after 

second 
training 

A 213 194 190 209 226 

B 361 312 366 395 458 

C 113 70 97 122 125 

D 137 122 121 153 172 

E 133 64 59 87 93 

F 172 123 96 125 128 

Graph 3. Relative accuracy scores by method - RealESRGAN

 

Source: Author, 2025 

Real-ESRGAN performance was initially evaluated by performing a short 

training round with a set of 20 images from the DF2K dataset to establish baseline 
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metrics. The total number of iterations selected were the recommended 1,400,000 

epochs and results averaged approximately 4 seconds per epoch. 

Initially, inference using the authors' pre-trained model, trained on the DF2K 

dataset, offered only subtle gains in image clarity and marginal improvement in egg 

detection performance. To better adapt the model to the characteristics of the ovitrap 

images, a custom training process was initiated. 

The first training round, which followed the RealESRNet and RealESRGAN 

sequential architecture, lasted 11 days and 14 hours, with approximately 1,400,000 

iterations and average epochs of 12 seconds. Although this phase enhanced 

perceptual sharpness and edge definition around the mosquito eggs, the NIQE score 

slightly worsened (from 4.1 to 7.26), and visual noise was introduced. Nonetheless, it 

led to improved detection compared to the pre-trained model. 
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Figure 11. Progression of image enhancement using RealESRGAN. (a): original image; (b): output 

using the original pre-trained weights; (c): result after the first training iteration; (d): result after the 

second training iteration. 

A second, optimized training round was conducted, lasting 8 days and 13 

hours. Even though epochs averaged 221.15 seconds, the inherent early stop 

mechanism was activated resulting in a total number of epochs around 2800. This 

round yielded the most promising results, with the NIQE improving to 4.42 and visible 

gains in both image quality and detection alignment with manual counts. The 

restored images revealed clearer egg boundaries and more defined textures, aiding 

the automated model in more accurate object detection. 

Table 6. Evaluation scores for Real-ESRGAN at each training stage (PSNR not applicable due to blind 

architecture). 

 No training 
First 

training 
Second 
training 

PSNR ↑ n/a n/a n/a 

NIQE ↓ 4.1 7.26 4.42 
 

As summarized in Graph 3, relative accuracy scores improved at each stage. 

While unprocessed images consistently underestimated the number of eggs, results 

improved with pre-trained inference and continued to rise after each round of custom 

training. The final model, trained specifically on ovitrap images, consistently 

outperformed the others and achieved the best balance between visual restoration 

and detection precision. 

4.3 RESTORMER RESULTS 

The evaluation of Restormer was conducted in two distinct image restoration 

tasks: Motion Deblurring and Defocus Deblurring, each trained and tested 

independently. While the goal was to assess whether either approach could enhance 

ovitrap images and improve automated egg detection, Restormer demonstrated the 

lowest overall detection performance among all tested models. While the pre-trained 

models showed moderate improvements over the baseline in some plates, both the 
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Motion Deblurring and Defocus Deblurring training paths failed to enhance image 

quality in a way that supported reliable automated egg detection. 

Graph 4. Relative accuracy scores by method - Restormer (Motion Deblur)

 

Source: Author, 2025 

Table 9. Egg counting results using Restormer Motion Deblur task at different training stages 

Ovitrap 
plaque 

Fiocruz  
technician 

manual 
count 

Unprocessed 
image 

automated 
count 

Pre-trained 
model 

automated 
count 

Automated 
count after 

first training 

Automated 
count after 

second 
training 

A 213 194 187 1 2 

B 361 312 303 2 3 

C 113 70 73 3 4 

D 137 122 136 2 4 

E 133 64 68 5 9 

F 172 123 121 1 4 

 

In the initial evaluation phase, the pre-trained models offered promising 

results. As shown in Graph 4 and 5, most plates reached relative accuracy scores 
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above 0.80, with some approaching the manual benchmark. In particular, the Motion 

Deblur pre-trained model achieved up to 99% accuracy on one of the plates. This 

suggests that, when not retrained, the architecture was able to offer a level of 

restoration compatible with detection requirements. 

Graph 5. Relative accuracy scores by method - Restormer (Defocus Deblur)

 

Source: Author, 2025 

Table 10. Egg counting results using Restormer Defocus Deblur task at different training stages 

Ovitrap 
plaque 

Fiocruz  
technician 

manual 
count 

Unprocessed 
image 

automated 
count 

Pre-trained 
model 

automated 
count 

Automated 
count after 

first training 

Automated 
count after 

second 
training 

A 213 194 177 1 0 

B 361 312 283 0 0 

C 113 70 67 1 0 

D 137 122 117 2 0 

E 133 64 58 0 0 

F 172 123 101 1 0 
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Initially, both motion and defocus deblur tasks were assessed using the official 

pre-trained models, trained respectively on the GoPro dataset (for motion deblurring) 

and the DPDD dataset (for defocus deblurring). To replicate this setup and establish 

a performance baseline, brief training sessions were conducted using 20 image pairs 

from each dataset. For the Motion Deblurring task, each epoch required 

approximately 12 seconds, while for the Defocus Deblurring task, epochs averaged 

around 7 seconds.  

Initial evaluations using the pre-trained weights provided by the authors 

generated NIQE scores of 4.35 for Motion Deblurring and 3.79 for Defocus 

Deblurring, serving as reference points for subsequent training improvements. 

The first round of training for Motion Deblur lasted 1 day and 22 hours, 

achieving a PSNR score of 21.64 and NIQE score of 5.89. The second round of 

motion deblurring training extended to 3 days and 30 minutes, with improved PSNR 

(22.5) but a decreased perceptual quality (NIQE of 7.26). 

Table 7. Evaluation scores for images processed with Restormer Motion Deblur task at different 

training stages 

 No training 
First 

training 
Second 
training 

PSNR ↑ n/a 21.64 22.5 

NIQE ↓ 4.35 5.89 7.26 

 

Table 8. Evaluation scores for images processed with Restormer Defocus Deblur task at different 

training stages 

 No training 
First 

training 
Second 
training 

PSNR ↑ n/a 20.99 22.5 

NIQE ↓ 3.79 5.88 7.24 
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Defocus deblur first training round required 3 days and 19 hours of training, 

reaching a PSNR of 20.99 and an NIQE of 5.88. The second training round lasted 1 

day and 22 hours, resulting in improved PSNR (22.5) but an increased NIQE of 7.24. 

Visual analysis indicated a noticeable degradation in image quality over 

successive training iterations for both motion and defocus deblur methods. Images 

became excessively smooth, accompanied by irregular, repetitive grainy patches. 

Notably, small white tags containing handwritten labels, deliberately excluded from 

the training data, became significantly distorted post-training while trying to blend 

unsuccessfully with the background. Overall, both tasks suffered with the dataset 

provided and had similar degradation patterns. 

 

Figure 13. Progression of image enhancement using Restormer Motion Deblur. (a): original image; (b): 

output using the original pre-trained weights; (c): result after the first training iteration; (d): result after 

the second training iteration. 
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Figure 14. Progression of image enhancement using Restormer Defocus Deblur. (a): original image; 

(b): output using the original pre-trained weights; (c): result after the first training iteration; (d): result 

after the second training iteration. 

Overall, after processing the images with the two tasks following the second 

training round, the automated detection system identified only 22 eggs using the 

Motion Deblur model and 17 eggs using the Defocus Deblur model. These 

correspond to relative accuracies of just 1.9% and 1.5%, respectively, when 

compared to the total manual count of 1,129 eggs. These results indicate a critical 

failure in both training approaches, where the model completely suppressed 

identifiable structures in its inference, rendering the automated system ineffective. 

4.4 RESULTS DISCUSSION 

In summary, among the models tested, Real-ESRGAN was the only model to 

consistently enhance both visual image quality and the accuracy of automated 

mosquito egg counting, achieving a relative improvement of 28.1 percentage points. 

Its blind super-resolution approach proved more adaptable to real-world ovitrap 
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images, effectively handling motion blur, defocus, and various noise types without 

relying on explicit reference pairs. This allowed it to generalize better than models 

based on supervised training. 

In contrast, MPRNet and Restormer did not perform well when retrained with 

the ovitrap dataset. The pre-trained versions of both models showed moderate 

performance in some test cases, but once retraining was applied, the models failed 

to adapt their weights effectively to the characteristics of the new data. MPRNet 

reached a relative accuracy of 331.7%, significantly overestimating the number of 

eggs due to the generation of artifacts and distortions in the restored images. 

Restormer, on the other hand, reached only 1.9% accuracy in its Motion Deblur 

version and 1.5% in the Defocus Deblur version, underestimating the count and often 

failing to detect any eggs at all. 

These results highlight that models relying on supervised training and 

reference-based restoration, such as MPRNet and Restormer, may struggle to 

generalize when applied to datasets with different noise patterns, resolution levels, 

and structural features than those they were originally trained on. Real-ESRGAN, 

despite having the longest overall training time among the three models, 

demonstrated a significant reduction in duration between the first and second training 

rounds. The adaptability to the dataset, combined with its blind super-resolution 

strategy, gave Real-ESRGAN greater flexibility, making it more suitable for practical 

applications in field scenarios with resource constraints and varying image 

conditions. 
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5. CONCLUSIONS 

This study set out to address a real-world challenge in mosquito surveillance: 

the manual counting of Aedes aegypti eggs, which is labor-intensive, error-prone, 

and often performed under limited conditions without magnification tools. 

Recognizing that poor image quality captured via smartphones in the field poses a 

major barrier to automation, this study proposed and evaluated the application of 

deep learning-based image restoration models—MPRNet, Restormer, and 

Real-ESRGAN—to improve the accuracy of automated egg counting systems, 

focusing on the application of a YOLOv10-based system. 

To ground the study in practical applicability, a low-cost and consistent image 

acquisition method was developed, using a smartphone mounted on a custom 

support structure to photograph ovitrap plates. The dataset derived from this setup 

was processed using different cropping strategies to prepare training pairs for deep 

learning models. 

Across the experiments, Real-ESRGAN demonstrated the best overall 

performance, successfully enhancing both perceptual image quality and object 

detection accuracy. After two rounds of training using ovitrap-specific data, 

Real-ESRGAN achieved a Total Detection Score of 1.065, detecting 1,202 eggs 

compared to the 1,129 manually counted by Fiocruz technicians. This corresponds to 

a relative accuracy of 106.5%, representing an improvement of 28.1 percentage 

points over the baseline performance of 78.4%. The model also achieved a NIQE 

score of 4.42, indicating substantial perceptual quality gains. 

In contrast, MPRNet, while theoretically capable of high-quality restoration, 

failed to generalize to the characteristics of ovitrap images. After training, it produced 

images with severe color distortions and artifacts that led to an excessive number of 

false positives, with a final relative accuracy of 331.7%, indicating a collapse in 

detection precision. 

Restormer, evaluated through both Motion Deblurring and Defocus Deblurring 

tasks, showed promising results in its pre-trained form. However, after training on 

ovitrap data, both versions experienced a dramatic drop in performance, with final 

relative accuracies of 1.9% and 1.5%, respectively. This was caused by excessive 
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smoothing and structural degradation in the restored images, preventing the 

detection system from identifying the mosquito eggs. 

This study demonstrates that while certain deep learning models struggled 

with the challenging dataset (consisting of close-up images containing debris and 

inexact image pairs), blind super-resolution models like Real-ESRGAN showed 

effective adaptation when retrained with domain-specific data. The approach offers 

public health institutions a low-cost, replicable solution for deployment, particularly 

beneficial for those currently performing manual egg counting under microscopes. By 

combining smartphone cameras with open-source models, this workflow reduces 

operational effort, improves consistency, and enhances surveillance efficiency. 

Throughout the research, several technical and methodological challenges 

were encountered. One major limitation was that supervised image restoration 

models such as MPRNet and Restormer were unable to effectively recalibrate their 

pre-trained weights when exposed to ovitrap plate images. Even with custom training 

using paired data, the models failed to converge meaningfully, producing images that 

either degraded visually or introduced structural noise, ultimately impairing the 

detection process. Additionally, the recommended training configuration for these 

models specifies four or more GPUs, which was not feasible during this 

experimentation. This hardware limitation resulted in significantly extended training 

durations. 

For future research, additional training of Real-ESRGAN on a larger dataset 

promises to increase the effectiveness of image restoration. Applying this 

methodology to newer blind image restoration models also shows promise for 

improved results. A brief experimentation of InstantIR (HUANG et al., 2024) 

demonstrated visually compelling outcomes without any training, although a 

complete experiment could not be performed due to time constraints.  

Overall, this work highlights the value of adapting machine learning tools to 

the specific conditions of public health research. By combining deep learning image 

restoration with automated detection, the study offers a practical and affordable 

approach to support mosquito egg counting. The results contribute to ongoing efforts 
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to reduce manual workload and improve data reliability in the surveillance of 

mosquito populations, especially in resource-constrained environments. 
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