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ABSTRACT

The study of nonlinear interactions of light with an atomic sample has been fundamental
for the understanding of several problems. In particular, it is well known that different pro-
cesses can occur simultaneously and interfere with each other. In this work we investigate the
frequency dependence of two processes: degenerated four-wave mixing and Faraday rotation,
using a sample of hot rubidium atoms as a nonlinear medium. We use a single cw laser to
generate two input laser beams with linear and orthogonal polarizations, labeled by their wave
vectors 𝑘𝑎 and 𝑘𝑏. These two beams interact with the sample, generating two four-wave mixing
(FWM) signals in the 2𝑘𝑎 − 𝑘𝑏 and 2𝑘𝑏 − 𝑘𝑎 directions. This is a degenerated process with the
input and output beams tuned in the D2 line, 5𝑆1/2 → 5𝑃3/2 transition, of Rb. We focused
our studies in one of the FWM signals,2𝑘𝑏 − 𝑘𝑎, and analyzed the rotation of polarization
of the transmitted beam, 𝑘𝑏, after it passed through the sample. Measurements were made
for three temperatures and different intensity ratios between the two input beams. For high
temperatures and low probe beam intensity, 𝐼𝑎, we observe a large Faraday rotation effect in
the 𝑘𝑏 pump beam while the FWM signal presents a Doppler-type spectrum. As the probe
beam intensity increases, reaching the same intensity as the b beam, a peak structure appears
in the FWM signal spectra, while the Faraday rotation effect appears to diminish due to the
presence of an intense a beam.

Keywords: Faraday effect. Four-wave mixing. Nonlinear optics. Atomic vapor.



RESUMO

O estudo de interações não lineares da luz com vapores atômicos tem sido fundamen-
tal para a compreensão de vários problemas. Em particular, sabe-se que diferentes processos
podem acontecer simultaneamente e interferir entre si. Neste trabalho investigamos a de-
pendência com a frequência de dois processos: mistura de quatro ondas degenerada e rotação
da polarização devido ao efeito Faraday. Usamos um único laser cw para gerar dois feixes de
entrada com polarizações lineares e ortogonais, designadas por seus vetores de onda 𝑘𝑎 e 𝑘𝑏.
Estes dois feixes interagem com a amostra, gerando dois sinais de mistura de quatro ondas, nas
direções 2𝑘𝑎 − 𝑘𝑏 e 2𝑘𝑏 − 𝑘𝑎. Este é um processo degenerado com os feixes de entrada e saída
sintonizados na linha D2, na transição 5𝑆1/2 → 5𝑃3/2, do rubídio. Nós focamos nossos estudos
em um dos sinais, 2𝑘𝑏 − 𝑘𝑎, e analisamos a rotação da polarização do feixe transmitido, 𝑘𝑏,
após este passar pela amostra. As medidas foram feitas em três temperaturas diferentes e com
razões de intensidades entre os feixes de entrada variadas. Para altas temperaturas e baixa
intensidade do feixe de prova, 𝐼𝑎, observamos um grande efeito de rotação da polarização no
feixe de bombeio, 𝐼𝑏, enquanto o sinal de mistura de quatro ondas apresenta um espectro do
tipo Doppler. Quando a intensidade do feixe de prova cresce, alcançando a mesma intensidade
do feixe de bombeio, uma estrutura de picos aparece no espectro de mistura de quatro onda,
enquanto a rotação da polarização do feixe b parece diminuir na presença do feixe de prova.

Palavras-chaves: Efeito Faraday. Mistura de quatro ondas. Óptica não linear. Vapor atômico.
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1 INTRODUCTION

Nonlinear optics is an interesting area that looks into optical behaviors when a material
doesn’t respond linearly to a strong electromagnetic field, instead involves higher powers. This
subject has made substantial advances, impacting fields like telecommunications and quantum
optics. Its roots go back to mid-20th century papers, gaining momentum after the invention
of lasers in 1960 (MAIMAN, 1960), which allowed researchers to experimentally test concepts
like two-photon excitation, second harmonic generation and four-wave mixing (FWM).

Four-wave mixing is a third-order nonlinear effect where two input electromagnetic waves
interact with a nonlinear medium to generate new waves at different frequencies (ARMSTRONG

et al., 1962).While researchers have explored this phenomenon in various nonlinear media, we
are particularly interested in its manifestation in atomic vapors. This phenomenon has been
observed in systems that are relatively simple, with two and three energy levels, in different
configurations like lambda, V and cascade. Regarding recent FWM applications connected
to the studies in this work, notable examples include the generation of quantum-correlated
beams (MA et al., 2018), quantum memory storage (CHOPINAUD et al., 2018), transfer of orbital
angular momentum among light beams (OFFER et al., 2018) and the reduction of paraxial light
diffraction (KATZIR; RON; FIRSTENBERG, 2015).

In the year 1846, Michael Faraday achieved a significant breakthrough by uncovering a
remarkable phenomenon. His discovery showed that when light propagates through different
materials under the influence of a magnetic field along its axis, the plane of the light polarization
undergoes a rotation. This discovery, referred to as the Faraday effect, was groundbreaking
as it represented the initial recognition of a magneto-optic phenomenon (FARADAY; COLLIN;

LIBRARY, 1846). Some of the Faraday effect applications involve magnometry and optical
isolation.

In this work, our focus is on two intriguing optical phenomena: the Faraday effect and the
four-wave mixing process. Initially, our primary goal is centered around the exploration of four-
wave mixing. As some experiments, involving Hermite-Gauss and Laguerre-Gauss modulated
beams, were being carried at the laboratory a noteworthy observation emerged: we detected
light propagating in the direction of the transmitted beam, with polarization perpendicular to
that of the incident beam. Delving into the origins of this phenomenon, we noted that the
use of a magnetic shield led to the disappearance of this light with perpendicular polarization.
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Coupled with the fact that the incoming beam is linearly polarized we were led to the conclusion
that the observed light with the unexpected polarization is a consequence of the Faraday Effect.

Further on this Introduction we are going to give some important characteristics of the
rubidium atomic structure, since it is the atomic element used as the nonlinear medium. In
the sequence we are going to talk about the Zeeman effect, needed to explain the Faraday
rotation.

In chapter 2 we will give an overview of the Faraday effect and a brief explanation about the
saturated absorption spectroscopy (SAS) experiment, which is used to control and monitor
the laser frequency. Next, we will explain the Faraday’s rotation experiment and show our
experimental results from which we estimated the rotation angle.

In chapter 3 our focus is the four wave mixing (FWM) experiment. We give a short
introduction to the FWM process, explain our experimental setup and then show our results.
In chapter 4 we present our conclusions and perspectives.

1.1 RUBIDIUM

For Faraday rotation and four wave mixing experiments we use rubidium vapour as the
nonlinear medium. Rubidium is an alkali metal that is commonly used in optical experiments.
In the experiments that we performed we focused in the transition 5𝑆1/2 - fundamental state
- to the 5𝑃3/2 excited state.

In nature, two most common isotopes of rubidium are found: 85𝑅𝑏, constituting 72% with
nuclear spin I = 5/2, and 87𝑅𝑏, constituting 28% with nuclear spin I = 3/2. The values
of nuclear spin cause the 5𝑆1/2 state to split into two levels, and the 5𝑃3/2 state into four
hyperfine levels, as shown in the energy level diagram presented in figures 1 and 2. In our
experiments, we used a rubidium vapor cell at its natural concentration.
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Figure 1 – Level diagram of 85𝑅𝑏, D2 line

Source: taken from reference (STECK, 2007)
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Figure 2 – Level diagram of 87𝑅𝑏, D2 line

Source: taken from reference (STECK, 2003)
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1.2 WEAK-FIELD ZEEMAN EFFECT

The presence of an external magnetic field causes a shift in the energy levels of an atom,
due to a magnetic dipole interaction. This phenomenon is known as the Zeeman effect. This
effect depends strongly on the strength of the external magnetic field. Since we are going to
deal only with the Earth magnetic field, with order of magnitude of 0.5 G, in this text we will
focus in the weak field regime.

When the energy shift caused by the magnetic field is considerably smaller than the hyper-
fine splittings neither 𝐼, the nuclear spin, nor 𝐽 , the total angular momentum, are individually
conserved but their sum 𝐹 is. Therefore 𝐹 is a good quantum number. We can then write the
Hamiltonian term that describes the interaction with the external magnetic field as (FOOT,
2004):

𝐻
′

𝑍 = −𝜇𝐹 · 𝐵𝑒𝑥𝑡, (1.1)

where 𝜇𝐹 is the total magnetic moment. Taking the 𝐵𝑒𝑥𝑡 parallel to the z direction we can
write this term as:

𝐻
′

𝑧 = 𝜇𝐵𝑔𝐹 𝐹𝑧𝐵𝑧,

where 𝜇𝐵 is the Bohr magneton, 𝑔𝐹 is the hyperfine Landé g-factor, 𝐹𝑧 is the component of
the total angular momentum along the z-direction, and 𝐵𝑧 represents the z-component of the
external magnetic field.

Solving the hamiltonian to the lowest order will give us the energy splitting from the
hyperfine sublevels (STECK, 2003):

Δ𝐸 = 𝜇𝐵𝑔𝐹 𝑚𝐹 𝐵𝑧. (1.2)

The splittings depends on 𝑚𝐹 , the magnetic quantum number associated with the total
angular momentum F, so the energy will be higher for positive 𝑚𝐹 and lower for negative
𝑚𝐹 . This shift of the energy levels with dependence on the values of 𝑚𝐹 will be important to
explain the Faraday rotation, as we will see in the next chapter.
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2 THE FARADAY EFFECT

This chapter is dedicated to the Faraday rotation. First, we give a small theoretical intro-
duction to the Faraday effect and then we explain our experiment setup, including the saturated
absorption spectroscopy. Finally, we show our results and estimate the rotation angle.

The Faraday effect denotes the rotation of light polarization during its propagation through
a material to which a magnetic field is applied. Light with linear polarization can be considered
as a superposition of right- and left-circularly polarized components interacting differently with
the material. Without a magnetic field, each of the components will have the same resonance
frequency. However, when a magnetic field is applied, there is a shift in the energy levels due
to the Zeeman effect. As a result the resonance frequency is changed and one component of
the linearly polarized light is slowed more than the other. This creates a phase shift between
the two orthogonal components. When they recombine, the resulting light is again linearly
polarized, but with a rotated polarization direction. We will see that the actual amount and
direction depend both on material properties and on the relative strength of the magnetic
field. The angle of rotation is given by:

𝜑 = 𝑉 𝐵𝑧𝐿, (2.1)

where 𝑉 is the Verdet constant, 𝐵𝑧 is the longitudinal magnetic field and 𝐿 is the length of
the sample (WELLER et al., 2012). This was the first effect discovered to relate light, electricity,
and magnetism.

The Verdet constant plays an important role in this effect, representing the material-specific
factor determining the extent of rotation induced by the magnetic field. Notably, materials
such as low-density alkali vapors (e.g., rubidium and cesium) exhibit a Faraday effect with
exceptionally high Verdet constants compared to other substances. For rubidium, the Verdet
constant is 𝑉 = 1.4 × 103 rad T−1m−1, in contrast, the Verdet constant for YIG is only
𝑉 = 3.8 × 102 rad T−1m−1 and for TGG is even smaller, 𝑉 = 82 rad T−1m−1. (WELLER et

al., 2012). This constant can, however, be greater in cooled atoms, as observed in (LABEYRIE;

MINIATURA; KAISER, 2001).
The Macaluso-Corbino effect is a specific form of the Faraday effect observed near reso-

nance absorption lines. This phenomenon becomes apparent in a specific atomic transition,
like the 𝐹 = 1 −→ 𝐹

′ = 0 transition. Without a magnetic field, the 𝑚𝐹 = ±1 sublevels are
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degenerate, and the optical resonance frequencies for circular polarizations (𝜎+ and 𝜎−) align.
(WILSON, 2020) However, introducing a magnetic field leads to Zeeman shifts, as seen in figure
3. These shifts depend on 𝑚𝐹 , so for positive 𝑚𝐹 we have an increase and for negative 𝑚𝐹 we
have a decrease in the energy level. When this happens, each component of linear polarization,
𝜎+ and 𝜎− sees a distinct refractive index, 𝑛+ and 𝑛−, as figure 4 shows, and therefore each
has a different velocity in the medium, leading to a rotation in the linearly polarized light. The
angle of rotation can also be expressed by (BUDKER et al., 2002):

𝜑 = 𝜋(𝑛+ − 𝑛−)𝐿

𝜆
, (2.2)

where 𝜆 is the light wavelength, this is for the linear Faraday effect which depends linearly on
B (for small magnetic fields).

Figure 3 – In the presence of a longitudinal magnetic field, the Zeeman sublevels of the ground state experience
an energy shift of 𝑔𝜇𝐵𝑀 . Consequently, this results in a disparity in resonance frequencies between
left-circularly polarized (𝜎+) and right-circularly polarized (𝜎−) light.

Source: taken from reference (BUDKER et al., 2002)

To calculate the rotation angle, we can use the density matrix formalism. From equation
2.2 we can relate the rotation angle to the refraction index and thus to the susceptibility
(BOYD, 2008):

𝑛± =
√︁

1 + 𝑅𝑒(𝜒±). (2.3)

For 𝜒 ≪ 1 we can approximate the rotation angle, in first order, to:

𝜑 ≈ 𝜋

2𝜆
𝑅𝑒(𝜒+ − 𝜒−)𝐿, (2.4)
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where the susceptibility is related to the density matrix through (BOYD et al., 1981):

𝜒𝑖𝑗 = 2𝑁𝜇𝑖𝑗

𝜖0𝐸
𝜌𝑖𝑗. (2.5)

where N is the number density of atoms. The Liouville equation gives us the relation between
the density matrix and the Hamiltonian of the problem. Considering the electric dipole ap-
proximation for the interaction of a two level system |1⟩ to |2⟩ and an electromagnetic wave
𝐸⃗ = 𝐸0𝑒

(𝑖𝜔𝑡−𝑘⃗·𝑟)ê, we obtain for the coherence, in stationary regime (the resolution of this
problem can be found in (BOYD et al., 1981)):

𝜎12 = −𝑖(𝜌11 − 𝜌22)Ω12

𝑖𝛿0
12 + 𝛾12 + 𝛾′ , (2.6)

where 𝜌𝑖𝑖 are the populations, 𝛿0
12 is the frequency detuning, 𝛾12 is the rate decay and 𝛾′ is

related to the flight time. Ω12 is the Rabi’s frequency:

Ω12 = 𝜇12𝐸0

ℎ̄
.

Due to the Doppler effect we have that the frequency detuning will depend on the velocity

Figure 4 – The variation of the refractive index concerning light frequency detuning Δ is depicted both in the
absence (𝑛) and presence (𝑛±) of a magnetic field. The illustration corresponds to the scenario
where 2𝑔𝜇𝐵 = ℎ̄Γ.

Source: taken from referencec (BUDKER et al., 2002)
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of the atoms. Thus, we need to integrate in velocity:

𝛿0
12 = 𝛿12 + 𝜔𝑏

𝑣

𝑐
,

where 𝜔𝑏 is the frequency of the beam b, v is the velocity of the atom and c is the velocity of
the light. Considering 𝜌11 ≈ 1, we can write:

𝜒𝑖𝑗 =
2𝑁𝜇2

𝑖𝑗

𝜖0ℎ̄
𝑅𝑖, (2.7)

where 𝑅𝑖 is given by:

𝑅𝑖 =
∫︁ ∞

−∞

1
𝛾12 − 𝑖

(︁
𝛿12 + 𝜔𝑏

𝑣
𝑐

)︁𝑓(𝑣) 𝑑𝑣,

and 𝑓(𝑣) is the velocity distribution assumed to obey the Maxwell-Boltzmann distribution as:
(MüLLER-KIRSTEN, 2022)

𝑓(𝑣)𝑑𝑣 = 1
𝑢
√

𝜋

∫︁
𝑒

−𝑣2
𝑢2 𝑑𝑣, (2.8)

where 𝑢 is the most probable velocity in the ensemble:

𝑢 = 2𝑘𝐵𝑇

𝑚
, (2.9)

𝑘𝑏 is the Boltzmann constant and 𝑚 is the mass of the particle. Considering the magnetic
dipole interaction, the frequency detuning will be given by:

𝛿0
12 = 𝛿12 + 𝜔𝑏

𝑣

𝑐
+ 𝜇𝑏

ℎ̄
𝑔𝐹 𝑚𝐹 𝐵𝑧.

We will have to sum over all hyperfine sublevels, for the 𝜎+ and 𝜎− transitions, illustrated
in figures 5 and 6. As we can see in the figures, there are many transitions and because of
that we also need to take into account the electric dipole moment of each transition and the
shift of each sublevel so the calculation of the rotation angle is not simple.

In fact, we will not calculate the Faraday rotation angle, but rather measure this angle and
then compare it with existing values in the literature.
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Figure 5 – All 𝜎+ and 𝜎− transitions from F = 2 to F’ = 1,2,3. There is a total of 24 transitions. The green
lines show the 𝜎+ transitions and the pink lines the 𝜎− transitions.

Source: the author (2024)
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Figure 6 – All 𝜎+ and 𝜎− transitions from 𝐹𝑔 = 3 to 𝐹 ′ = 2, 3, 4. There is a total of 36 transitions. The
green lines show the 𝜎+ transitions and the pink lines the 𝜎− transitions.

Source: the author (2024)
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2.1 THE FARADAY EFFECT EXPERIMENT

For our experiments, we used a saturation absorption spectroscopy as a rule to measure
the laser frequency. In this section, we are going to explain the experimental setup for the
Faraday effect, as well as the saturated absorption spectroscopy.

2.1.1 Saturated Absorption Spectroscopy

In figure 7 we have a linear absorption spectrum for rubidium atoms in a cell. We see
four dips, each one corresponds to a transition from one hyperfine level from the ground state
5𝑆1/2 to the excited state 5𝑃3/2 of rubidium, as indicated. The dips have a Gaussian-like format
and hide the hyperfine structure of the excited state due to Doppler broadening. Saturated
absorption spectroscopy is a powerful way to eliminate this effect and allows us to measure
the hyperfine energy levels of the sample.

Figure 7 – Linear absorption spectroscopy of rubidium 𝐷2 line. With this method we cannot see the hyperfine
transitions.

Source: the author (2023)

In the linear absorption spectroscopy, when we pass the laser beam through the vapour
cell, with a frequency 𝜔𝐿 in the laboratory reference frame, each atom has a random velocity
and then each one of them sees the laser with a different Doppler frequency, 𝜔, related to
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their velocities in the z direction, 𝑣𝑧, through the equation:

𝜔 = 𝜔𝐿

[︂
1 − 𝑣𝑧

𝑐

]︂
, (2.10)

where c is the velocity of light and 𝑣𝑧 << 𝑐.

Because the atoms have different velocities they absorb energy at different frequencies,
obeying the Maxwell-Boltzmann distribution and thus the peaks are gaussians, with a width
at half height of the order of 500 MHz. The excited states are only 29 to 270 MHz apart and
cannot be seen using this simpler spectroscopy technique.

Figure 8 – Saturated absorption spectroscopy experimental setup

Source: the author (2024)

Saturated absorption spectroscopy allows observation of hyperfine excited states hidden
by Doppler broadening. The experimental scheme is very simple and can be seen in figure 8.
For the saturation absorption spectroscopy we use a diode laser from Sanyo, model DL7140-
201S, with 𝜆 = 780 nm, with homemade electronics for current and temperature control. We
modulate the frequency of the laser using a wave form generator (WFG) from Agilent, model
33521A. This laser will also be used in the main experiments, the Faraday’s rotation and the
four wave mixing. We first pass the beam through an optical isolator to avoid reflected light
from returning to the laser head. Then, the laser beam passes through a non polarizing beam
splitter (a simple thin glass plate), letting only a small part of the laser beam (about 10 %)
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pass through the rubidium cell (JACQUES et al., 2009). We place a neutral density (ND) filter
after the cell to obtain a much smaller intensity beam and reflect it back to the cell in such
a way that we have two counter propagating beams, one much more intense than the other
crossing in the middle of the cell. Since the beams are counter propagating, each one of them
interacts with a different velocity group except for the atoms with 𝑣𝑧 = 0. In this situation
the pump beam saturates the transitions, causing a decrease in the absorption of the probe
beam, and thus showing us peaks in the Doppler profiles, as seen in figure 9.

Figure 9 – Saturated absorption spectroscopy of rubidium. With this technique we can see the hyperfine levels
inside the Doppler profile.

Source: the author (2024)

We could expect three peaks in each profile, since the quantum number 𝐹 obeys the
selection rule: Δ𝐹 = 0, ±1, each peak corresponding to one of the three possible transitions
from the ground hyperfine state to an excited state. We see, however, six peaks, three due
to the pure transitions and three due to the crossover transitions, as shown in figure 10. The
crossover peaks occur when two transitions are very close to each other, in such a way that
the difference between them is smaller than the Doppler broadening and the laser frequency
is exactly in the middle point between the two pure transitions. In this situation both beams
interact with the same velocity group ±𝑣, but each one of them interacts with a different pure
transition. The pump beam saturates the transition, and we see a decrease in the absorption
of the probe beam, generating an extra peak in the Doppler profile.
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Figure 10 – Saturated absorption spectroscopy of rubidium. We can see the three hyperfine transitions and
the crossover transitions, as indicated.

Source: the author (2024)

2.1.2 Faraday Rotation

The experimental setup for the Faraday rotation is shown in figure 11. We use saturated
absorption spectroscopy to monitor the laser frequency. The transmitted part of the laser
beam divided in the SAS experiment will be used for the Faraday’s rotation experiment (about
90 % of the laser power). The laser beam goes through an optical fiber to have a spatially
well-defined profile. We then pass the laser through another optical isolator to eliminate any
reflections in the laser head due to the optical fiber. With a polarizing beam splitter (PBS)
we divide the beam in two, with linear perpendicular polarizations and the power of each side
is controlled using a half wave plate before the PBS. We use guide masks to align the laser
beams in such a way that there is a small angle between them and that they cross each other
in the center of the rubidium vapor cell, like in figure 12. To confirm that the effect we were
seeing was caused by a the interaction of the atoms with an external magnetic field, we used a
magnetic shield, a metallic cylinder with a hole for the light beam to pass through. Figure 13
shows the same experimental setup for the Faraday’s rotation, but with the magnetic shield
positioned. In this case, with the magnetic shield, no rotation is observed, since the shield
blocks the external magnetic field. After passing the cell, each beam follows its direction. To
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detect the Faraday rotation, we measure the intensity of the beam that is transmitted with
polarization perpendicular to the incident polarization. We use a half wave plate between the
cell and the third PBS to align the detector and then remove the plate. The external magnetic
field under which the sample is subjected is the Earth’s magnetic field, with magnitude of 0.5
G, which goes near zero when we use the magnetic shield. To measure the Earth magnetic
field strength and its direction we used a gaussimeter which we borrowed from the magnetism
lab. We measured a field of an order of 0.5 G and in about the same direction of the beam
passing through the cell. Our results indicate that the Earth’s magnetic field is responsible for
the observed Faraday effect. We use two beams because we are also interested in studying
the FWM process, where the nonlinear signal is generated when atoms interact simultaneously
with two beams. We will call the beam that is being transmitted by PBS 1 beam a and the
beam that is reflected by PBS 1 as beam b, as depicted in figures 11 and 13. Beams a and b
have the same diameter. For most experiments, with higher intensity, we used a beam diameter
of 0.32 mm.

Figure 11 – Faraday’s rotation experimental setup

Source: the author (2024)

For the Faraday rotation we have done experiments for different situations: (i) varying
the b beam intensity, to see the influence of intensity in the rotation peaks; (ii) varying the
temperature, to check how the rotation varies with atomic density; (iii) with and without a
magnetic shield, to verify that the effect of polarization rotation that we were seeing was,
in fact, the Faraday effect and (iv) with different intensities of beam a to see if there is an
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Figure 12 – We pass the beams a and b through guide mask in such a way that there is a small angle between
them and they cross in the center of the cell

Source: the author (2024)

Figure 13 – Faraday’s rotation experimental setup: we used a magnetic shield to check that the effect was due
to an external magnetic field.

Source: the author (2024)

influence of a second beam in Faraday’s rotation.
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2.2 RESULTS

In figure 14 we see two curves of the intensity of the perpendicular component of beam b:
one obtained without of a magnetic shield (green curve) and another one using the magnetic
shield (pink curve). For these measurements we blocked beam a. Because the polarizers we
have used are not perfect a small part of the light goes through the wrong direction, and we
see in the pink curve an absorption of this light. In the green curve, we have the rotation of
polarization by the Faraday effect. The two peaks indicated that the rotation occurs at the
resonance, for the two isotopes.

Figure 14 – The intensity of the perpendicular component of beam b as a function of the laser detuning, with
and without a magnetic shield. 𝐼𝑏 = 370 mW/cm2

Source: the author (2024)

Figure 15 shows the intensity of the perpendicular component of beam b for different
input intensities as a function of the frequency detuning. The black curve is the saturated
absorption. For these measurements, the beam a is blocked. The pink curve is for a higher
intensity: 890 mW/cm2. We see the polarization rotation peaks only for the 87𝑅𝑏, 𝐹𝑔 = 2 and
the 85𝑅𝑏, 𝐹𝑔 = 3 transitions. Decreasing the incident beam intensity we start to see peaks in
the other two Doppler profiles. For the green and blue curves a very small peak appear for the
87𝑅𝑏, 𝐹𝑔 = 1 and for the 85𝑅𝑏, 𝐹𝑔 = 2, while for the purple curve, when the intensity is set to
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Figure 15 – Intensity of the perpendicular component of beam b as a function of the laser detuning for different
intensities of the incident beam.

Source: the author (2024)

be 70 mW/cm2, a clear rotation of polarization is observed for the four Dopplers of rubidium,
where all the intensities were measured at the entrance of the cell. We understand that the
reason for the observed polarization rotation only for two Dopplers, when the incident beam
intensity is very high, is associated with an optical pumping process.

The process of optical pumping can be exemplified as follows: for the 87𝑅𝑏 the atoms are
initially distributed in the 𝐹𝑔 = 1 and 𝐹𝑔 = 2 ground states. When the laser beam passes
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through the sample the atoms go to the excited states. Our laser beam is varying in frequency
so it passes through the resonances of all of the hyperfine transitions of the 𝐷2 line. The
transitions obey the selection rule Δ𝐹 = 0, ±1. The atoms that are in the 𝐹𝑔 = 1 state can
be excited to the 𝐹𝑒 = 0, 1, 2 states. Similarly, the atoms which are in the 𝐹𝑔 = 2 state can
be excited to the 𝐹𝑒 = 1, 2, 3 states. There are two closed transitions, one for each ground
state which is when the atom cannot decay to another ground state but its original one. The
closed transitions are 𝐹𝑔 = 1 −→ 𝐹𝑒 = 0 and the 𝐹𝑔 = 2 −→ 𝐹𝑒 = 3 transitions. Because the
frequency separation between the 𝐹𝑒 = 0, 1, 2 are quite small, when we have a high intensity
light passing by, the probability of the other transitions occur increase significantly and the
atoms that are in the closed transition 𝐹𝑔 = 1 −→ 𝐹𝑒 = 0 also decay to the 𝐹𝑔 = 2 state. These
atoms, which are now in the 𝐹𝑔 = 2 state, can do the closed transition 𝐹𝑔 = 2 −→ 𝐹𝑒 = 3

which is far in frequency from the 𝐹𝑒 = 0, 1, 2 (see figure 2) resulting in the rapid depopulation
of 𝐹𝑔 = 1 state. This is the process of optical pumping: in this case, the atoms are pumped
from the 𝐹𝑔 = 1 to the 𝐹𝑔 = 2 state (ŠKOLNIK; VUJIčIć; BAN, 2009).

We understand that the optical pumping process is responsible for the absence of the
87𝑅𝑏, 𝐹𝑔 = 1 and 85𝑅𝑏, 𝐹𝑔 = 2 Dopplers in the polarization rotation for higher intensities.
The same process explained for the 87𝑅𝑏 occurs for the 85𝑅𝑏, where the atoms are pumped
from the 𝐹𝑔 = 2 to the 𝐹𝑔 = 3 state.

In figure 15 we also note that in the 85𝑅𝑏, 𝐹𝑔 = 3 there is a dip in the Faraday rotation
signal. We expect that this peak may be caused by the Stark effect, however, this is not very
clear since the peak diminishes when the intensity increases. We did not investigate this effect
because this is not our main interest in this work.

In figure 16 we see the results of the Faraday’s rotation for different temperatures.The black
curve corresponds to the saturated absorption. The other curves correspond to the intensity
of the perpendicular part of beam b. For this high intensity, 𝐼 = 2.26 W/cm2, we see only
the two peaks corresponding to the 87𝑅𝑏, 𝐹𝑔 = 2 and the 85𝑅𝑏, 𝐹𝑔 = 3 Doppler profiles.
Because we worked mostly with intense beams we decided to focus in the 87𝑅𝑏, 𝐹𝑔 = 2 and
the 85𝑅𝑏, 𝐹𝑔 = 3 Doppler profiles, where the rotation peaks appear even for higher intensities.
It is very clear that the intensity 𝐼𝑏⊥ increases with temperature and thus with atomic density.

To estimate the angle of rotation we need to measure the intensity of the two polarization
components of the incident beam. We can understand this remembering that we measure
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Figure 16 – Intensity of the perpendicular component of the incident beam b as a function of the frequency
detuning of beam b at different temperatures.

.
Source: the author (2024)

intensity:

𝜑 = 1
2𝑐𝑜𝑠−1

(︃
𝐼𝑏⊥ − 𝐼𝑏‖

𝐼𝑏⊥ + 𝐼𝑏‖

)︃
, (2.11)

where 𝐼𝑏⊥ is the intensity of the perpendicular component of beam b, transmitted by PBS 3,
𝐼𝑏‖ is the intensity of the parallel component of beam b, reflected by PBS 3. This formula can
be used because the intensity of each side (parallel or perpendicular) is a component of the
squared vector of the electric field:

𝐼𝑏⊥ = 𝐼𝑠𝑖𝑛2𝜑 (2.12)

𝐼𝑏‖ = 𝐼𝑐𝑜𝑠2𝜑 (2.13)

then

𝐼𝑏⊥ − 𝐼𝑏‖ = 𝐼(𝑠𝑒𝑛2𝜑 − 𝑐𝑜𝑠2𝜑) = 𝐼𝑐𝑜𝑠(2𝜑) (2.14)

since

𝐼 = 𝐼𝑏⊥ + 𝐼𝑏‖ (2.15)
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is the total intensity of beam b we have that:

𝑐𝑜𝑠(2𝜑) =
𝐼𝑏⊥ − 𝐼𝑏‖

𝐼𝑏⊥ + 𝐼𝑏‖

, (2.16)

and thus

𝜑 = 1
2𝑐𝑜𝑠−1

(︃
𝐼𝑏⊥ − 𝐼𝑏‖

𝐼𝑏⊥ + 𝐼𝑏‖

)︃
. (2.17)

For using this formula we had to mesure 𝐼𝑏⊥ and 𝐼𝑏‖ simultaneously. In figure 17 we
show the intensity difference,𝐼𝑏⊥ − 𝐼𝑏‖ , between the two polarizations, normalized by the total
intensity, 𝐼𝑏⊥ + 𝐼𝑏‖ , as function of the frequency detuning. From this figure, we can see that
the rotation angle reaches its maximum at the resonances, where

𝐼𝑏⊥ −𝐼𝑏‖
𝐼𝑏⊥ +𝐼𝑏‖

is minimum. We

Figure 17 – Intensity difference between the two polarizations, normalized by the total intensity, as a function
of the frequency detuning

Source: the author (2024)

took the minimum points of figure 17 to calculate the angles shown in figure 18. For the 70ºC
curve, corresponding to an atomic density of 7.31 × 1012𝑎𝑡/𝑐𝑚3, in the 85𝑅𝑏 minimum we
have

𝐼𝑏⊥ −𝐼𝑏‖
𝐼𝑏⊥ +𝐼𝑏‖

= 0.85. This give a rotation angle of:

𝜑 = 1
2𝑐𝑜𝑠−1(0.85) = 0.28∘ = 4.9 ± 0.2 mrad. (2.18)

On literature we find a Verdet constant 𝑉 = 1.4×103 rad T−1 m−1 (WELLER et al., 2012).
For the geomagnetic field of 0.5 G and the cell length of 5 cm it predicts an angle of 3.5 mrad,
in the same order of magnitude of our result.
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In figures 18 and 19 we see the dependence of the rotation angle with the atomic density.
For calculating the atomic densities from the temperature we used (GLORIEUX et al., 2023):

𝑛 = 109,318− 4040
𝑇

𝑘𝐵𝑇
, (2.19)

where T is the sample temperature in Kelvin and 𝑘𝐵 is Boltzmann constant. We made then
a linear fit, we can verify if the Verdet constant we have got from our data matches with the
one on literature.

Figure 18 – Rotation angle vs the atomic density for 85𝑅𝑏. The red line is the linear fit

.
Source: the author (2024)

To verify the Verdet constant we used equation 2.1:

𝜑 = 𝑉 𝐵𝐿

Because the atomic density is not explicitly given in this formula we divide and multiply the
right hand side by Δ𝑁 :

𝜑 = 𝑉 𝐵𝐿
Δ𝑁

Δ𝑁
(2.20)

The angular coefficient 𝛼 of the linear fit given by the plot of the angle versus the atomic
density. We can write:

𝛼 = Δ𝜑

Δ𝑁
= 𝑉 𝐵𝐿

Δ𝑁
,
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Figure 19 – Rotation angle vs the atomic density for 87𝑅𝑏. The red line is the linear fit

.
Source: the author (2024)

and

𝛼

𝐵𝐿
= 𝑉

Δ𝑁

so

𝑉 = 𝛼

𝐵𝐿
Δ𝑁

The angular coefficient of the 87𝑅𝑏 rotation angle linear fit is about 𝛼 = 4 × 10−13 mrad
cm .

Using the geomagnetic field 𝐵 = 0.5 G, and knowing that the length of the cell is 𝐿 = 5 cm,
we obtain:

𝑉

Δ𝑁
= 4 × 10−13

0.5 × 5
mrad × cm2

at × G = 1.6 × 10−16 rad × cm2

at × G .

The atomic density interval we are working on is Δ𝑁 = 7 × 1012, as seen in figure 18 and we
find:

𝑉 = 1.6 × 10−16 × 7 × 1012 = 11 × 10−4 rad
G × cm = 1.1 × 103 rad

T × m . (2.21)

As said before, the Verdet constant we found on literature is 1.4 × 103 rad T−1m−1 (WELLER

et al., 2012), showing us that our result is reasonable. In fact, the values of the rotation angle
and the Verdet constant clearly indicate that what we are observing is a Faraday rotation, in
a linear regime related to the external magnetic field.
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Figure 20 – Intensity of the perpendicular component of beam b in the presence of beam a for different
intensities. 𝐼𝑏 = 500 mW/cm2

Source: the author (2024)

In figure 20 we investigated the effect of a second beam in the sample. The green curve
is the Faraday polarization rotation without the presence of a second beam. The pink and
blue curves show the Faraday rotation in the presence of a second beam. We can see that the
polarization rotation decreases.

In the literature, we find that a second beam is frequently used to control the Faraday
polarization rotation, for example, in (PATNAIK; AGARWAL, 2001) a second beam with circular
polarization is used to enhance the Faraday rotation. In our case, we observe a decrease in the
signal. This may occur because both laser beams are varying in frequency simultaneously and
as a result, when one laser beam is in resonance, so is the other. Consequently, both beams
interact with the same group of atoms at the same time and can then inhibit each other’s
rotation process.
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3 FOUR WAVE MIXING

In this chapter we are going to focus in the four wave mixing experiment. First, we give a
brief introduction to the four wave mixing process, followed by a simple theoretical overview of
a three-level system, then we explain the experimental setup, and lastly we show our results.

3.1 NON-LINEAR OPTICS - FOUR WAVE MIXING

The optical response of a non-linear medium due to the interaction with electromagnetic
fields can be described through the polarization induced in the medium, which represents the
dipole moment per unit volume. The polarization 𝑃 can be expressed as a power series in
terms of the electric field 𝐸⃗ (BOYD, 2008):

𝑃 = 𝜀0
(︁
𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3

)︁
, (3.1)

where 𝜒𝑛 is the n𝑡ℎ order optical susceptibility of the medium. Because atomic vapors are
centrosymetric systems, the first non-linear term is the third order one, given by 𝜒(3).

When two incident fields of frequencies 𝜔𝑎 and 𝜔𝑏 interact with a medium characterized by
a thrid order susceptibility, 𝜒(3), various frequency combinations are allowed. In this work, we
are particularly interested in the 2𝜔𝑏 −𝜔𝑎 combination, that is, in the four wave mixing (FWM)
process where two photons of beam b are absorbed and one photon of beam a is emitted,
generating a new field. Figure 21 shows the two fields 𝐸𝑎 and 𝐸𝑏 interacting with a non-linear
medium in such a way that two four wave mixing signals are emitted. There is conservation
of momentum and energy in such a way that we can predict the energy and direction of each
FWM signal. Figure 22 shows the spatial orientation of the wave-vectors of the incident and
generated beams involved in the FWM process, with a schematic representation of phase-
matching.

The associated polarization is given by (BOYD, 2008):

𝑃 (2𝜔𝑏 − 𝜔𝑎) = 3𝜀0𝜒
(3)𝐸2

𝑏 𝐸*
𝑎, (3.2)

where the factor of 3 accounts for different field permutations contributing to this polarization
term. 𝜒(3) is the third order nonlinear susceptibility that contain the information about the
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Figure 21 – The directions of input and output beams of the FWM near interaction region.

Source: the author (2024)

Figure 22 – The spatial orientation of the wave-vectors of both the incident and generated beams of the four
wave mixing process.

Source: the author (2024)

interaction of the driven fields and the atomic medium. This nonlinear susceptibility can be
calculated using the density matrix formalism with a semiclassical treatment, considering the
electromagnetic fields as classical quantities and quantitizing the atomic medium. A very simple
treatment for our system is presented in the following section.

3.1.1 The three level system for the four wave mixing

For a theoretical description of the FWM signal,we can use a three level system with two
fields, 𝐸𝑎 and 𝐸𝑏, interacting with the atomic medium, as shown in figure 23. In the case
of the FWM signal that we are investigating it is important to take into account that in the
experiment we have two beams with the same frequency and that they have orthogonal linear
polarizations. The Hamiltonian of such a scheme can be written as the free atom one plus the
interaction Hamiltonian, which we will consider as an electric dipole interaction. The matrix
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representing the Hamiltonian is then:⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝐻1 𝐻𝑖𝑛𝑡12 0

𝐻𝑖𝑛𝑡21 𝐻2 𝐻𝑖𝑛𝑡23

0 𝐻𝑖𝑛𝑡32 𝐻3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.3)

where 𝐻𝑖𝑛𝑡 = −𝜇⃗ · 𝐸⃗. We are not considering any interaction between the ground states |1⟩

and |3⟩, the components of the Hamiltonian matrix 𝐻13 and 𝐻31 are both equal to zero.

Figure 23 – Three level scheme for two fields.

Source: the author (2024)

The electric fields can be written as:

𝐸𝛼 = 𝜀𝛼𝑒−𝑖(𝑘𝛼·𝑟⃗−𝜔𝛼𝑡) 𝑒𝛼, 𝛼 = 𝑎, 𝑏. (3.4)

From the electric field we can write the Rabi’s frequencies:

Ω𝑖𝑗 = 𝜇𝑖𝑗𝜀𝛼

ℎ̄
. (3.5)

To resolve this problem we can use the density matrix formalism. The Liouville equation
relates the density matrix to the Hamiltonian:

𝜌̇ = 𝑖

ℎ̄
[𝜌, 𝐻̂]. (3.6)

We can use the completeness relations to obtain the equations for populations and coherences:

𝜌𝑖𝑗 = 𝑖

ℎ̄

∑︁
𝑙

(𝜌𝑖𝑙𝐻𝑙𝑗 − 𝐻𝑖𝑙𝜌𝑙𝑗), (3.7)



41

so:

˙𝜌11 = 𝑖

ℎ̄
(𝜌11𝐻11 + 𝜌12𝐻21 + 𝜌13𝐻31 − 𝐻11𝜌11 − 𝜌21𝐻12 − 𝜌31𝐻13) , (3.8)

˙𝜌22 = 𝑖

ℎ̄
(𝜌21𝐻12 + 𝜌22𝐻22 + 𝜌23𝐻32 − 𝜌12𝐻21 − 𝜌22𝐻22 − 𝜌32𝐻23) , (3.9)

˙𝜌33 = 𝑖

ℎ̄
(𝜌31𝐻13 + 𝜌32𝐻23 + 𝜌33𝐻33 − 𝜌13𝐻31 − 𝜌23𝐻32 − 𝜌33𝐻33) , (3.10)

˙𝜌12 = 𝑖

ℎ̄
[(𝜌11 − 𝜌22)𝐻12 + (𝐸2 − 𝐸1)𝜌12 + 𝜌13𝐻32 − 𝜌32𝐻13] , (3.11)

˙𝜌13 = 𝑖

ℎ̄
[(𝐸3 − 𝐸1)𝜌13 + 𝜌11𝐻13 + 𝜌12𝐻23 − 𝜌23𝐻12 − 𝜌33𝐻13] , (3.12)

˙𝜌32 = 𝑖

ℎ̄
[(𝜌33 − 𝜌22)𝐻32 + (𝐸2 − 𝐸3)𝜌32 + 𝜌12𝐻31 + 𝜌31𝐻12] , (3.13)

where 𝐸1, 𝐸2, 𝐸3 are the energy of each level. Simplifying and substituting the Hamiltonian
components 𝐻𝑖𝑛𝑡𝑖𝑗

= −ℎ̄Ω𝑖𝑗𝑒
−𝑖(𝑘𝛼·𝑟⃗−𝜔𝛼𝑡):

˙𝜌11 = −𝑖
[︁
𝜌12Ω21𝑒

𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡) − 𝜌21Ω12𝑒
−𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡)

]︁
, (3.14)

˙𝜌22 = −𝑖
[︁
𝜌21Ω12𝑒

−𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡) + 𝜌23Ω32𝑒
−𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡) − 𝜌12Ω21𝑒

𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡) − 𝜌32Ω23𝑒
𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡)

]︁
,

(3.15)

˙𝜌33 = −𝑖
[︁
𝜌32Ω23𝑒

𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡) − 𝜌23Ω32𝑒
−𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡)

]︁
, (3.16)

˙𝜌12 = −𝑖

[︃
(𝜌11 − 𝜌22)Ω12𝑒

−𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡) + (𝐸2 − 𝐸1)𝜌12

ℎ̄
+ 𝜌13Ω32𝑒

−𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡)
]︃

(3.17)

˙𝜌13 = −𝑖

[︃
(𝐸1 − 𝐸3)𝜌13

ℎ̄
+ 𝜌12Ω23𝑒

𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡) − 𝜌23Ω12𝑒
−𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡)

]︃
(3.18)

˙𝜌32 = −𝑖

[︃
(𝜌33 − 𝜌22)Ω32𝑒

−𝑖(𝑘𝑏·𝑟⃗−𝜔𝑏𝑡) − (𝐸2 − 𝐸3)𝜌32

ℎ̄
− 𝜌31Ω12𝑒

−𝑖(𝑘𝑎·𝑟⃗−𝜔𝑎𝑡)
]︃

(3.19)

At this point, we introduce the slow variables of the system to later eliminate explicit time
dependence.

𝜌12 = 𝜎12𝑒
𝑖𝜔𝑎𝑡 (3.20)

𝜌32 = 𝜎32𝑒
𝑖𝜔𝑏𝑡 (3.21)

𝜌13 = 𝜎13𝑒
𝑖(𝜔𝑎−𝜔𝑏)𝑡, (3.22)

We also consider a perfect phase-matching:

Δ𝑘 = 2𝑘𝑏 − 𝑘𝑎 − 𝑘𝑠 = 0, (3.23)
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so we can rewrite the density matrix elements as (using Ω𝑒𝑖𝑘⃗·𝑟⃗ as Ω to simplify notation):

˙𝜌11 = 𝑖(𝜎12Ω21 − 𝜎21Ω12) (3.24)

˙𝜌22 = 𝑖(𝜎21Ω12 + 𝜎23Ω32 − 𝜎12Ω21 − 𝜎32Ω23) (3.25)

˙𝜌33 = 𝑖(𝜎32Ω23 − 𝜎23Ω32) (3.26)

𝜎̇12 = 𝑖

[︃
(𝜌22 − 𝜌11)Ω12 + (𝐸1 − 𝐸2)

ℎ̄
𝜎12 − 𝜎13Ω32 − 𝑖𝜔𝑎𝜎12

]︃
(3.27)

𝜎̇13 = 𝑖

[︃
−𝜎12Ω*

32 + 𝜎13
(𝐸3 − 𝐸1)

ℎ̄
+ 𝜎*

23Ω*
12 − (𝜔𝑎 − 𝜔𝑏)𝜎13

]︃
(3.28)

𝜎̇32 = 𝑖

[︃
(𝜌22 − 𝜌33)Ω32 + (𝐸2 − 𝐸3)

ℎ̄
𝜎32 − 𝜎*

13Ω12 + 𝑖𝜔𝑏𝜎32

]︃
(3.29)

Now, we can add the relaxation terms: 𝛾′, related to time of flight, 𝛾𝑖𝑗, related to the
coherence and Γ𝑖𝑗, related to the population:

˙𝜌11 = −𝑖(𝜎12Ω21 − 𝜎21Ω12) − 𝛾′(𝜌11 − 𝜌0
11) + Γ12𝜌22 (3.30)

˙𝜌22 = −𝑖(𝜎21Ω12 + 𝜎23Ω32𝑒 − 𝜎12Ω21 − 𝜎32Ω23) − (Γ21 + Γ23 + 𝛾′)𝜌22 (3.31)

˙𝜌33 = −𝑖(𝜎32Ω23 − 𝜎23Ω32) − 𝛾′(𝜌33 − 𝜌0
33) + Γ23𝜌22 (3.32)

𝜎̇12 = 𝑖

[︃
(𝜌22 − 𝜌11)Ω12 + (𝐸1 − 𝐸2)

ℎ̄
𝜎12 − 𝜎13Ω32 − 𝑖𝜔𝑎𝜎12

]︃
− (𝛾12 + 𝛾′)𝜎12 (3.33)

𝜎̇13 = 𝑖

[︃
−𝜎12Ω*

32 + 𝜎13
(𝐸3 − 𝐸1)

ℎ̄
+ 𝜎*

23Ω*
12 − (𝜔𝑎 − 𝜔𝑏)𝜎13

]︃
− (𝛾13 + 𝛾′)𝜎13 (3.34)

𝜎̇32 = 𝑖

[︃
(𝜌22 − 𝜌33)Ω32 + (𝐸2 − 𝐸3)

ℎ̄
𝜎32 − 𝜎*

13Ω12 + 𝑖𝜔𝑏𝜎32

]︃
− (𝛾23 + 𝛾′)𝜎32 (3.35)

We now define the frequency detunings, using 𝜔21 = 𝜔23 = 𝜔0:

𝐸𝑖 − 𝐸𝑗

ℎ̄
= 𝜔𝑖𝑗, (3.36)

𝛿𝑎 = 𝜔𝑎 − 𝜔0, (3.37)

𝛿𝑏 = 𝜔𝑏 − 𝜔0, (3.38)
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so the equations will be written as:

˙𝜌11 = 𝑖(𝜎12Ω21 − 𝜎21Ω12) − 𝛾(𝜌11 − 𝜌0
11) + Γ12𝜌22 (3.39)

˙𝜌22 = 𝑖(𝜎21Ω12 + 𝜎23Ω32 − 𝜎12Ω21 − 𝜎32Ω23) − (Γ21 + Γ23 + 𝛾)𝜌22 (3.40)

˙𝜌33 = 𝑖(𝜎32Ω23 − 𝜎23Ω32) − 𝛾(𝜌33 − 𝜌0
33) + Γ23𝜌22 (3.41)

𝜎̇12 = 𝑖 [(𝜌22 − 𝜌11)Ω12 − 𝜎13Ω32] − (𝑖𝛿𝑎 + 𝛾12 + 𝛾)𝜎12 (3.42)

𝜎̇13 = 𝑖 [−𝜎12Ω*
32 + 𝜎*

23Ω*
12] − (𝑖𝛿𝑎 − 𝑖𝛿𝑏 + 𝛾13 + 𝛾)𝜎13 (3.43)

𝜎̇32 = 𝑖 [(𝜌22 − 𝜌33)Ω32 − 𝜎*
13Ω12] − (𝑖𝛿𝑏 + 𝛾23 + 𝛾)𝜎32. (3.44)

Now, we have all of our Bloch equations. We shall then, solve for the coherence between
levels |1⟩ and |2⟩, 𝜎12. For this we will use the steady-state solution, where 𝜌̇𝑖𝑖 and 𝜎̇𝑖𝑗 are
zero, giving us the set of equations:

𝜌11 = 𝑖 [−𝜎12Ω*
12 + 𝜎*

12Ω12] + 𝛾𝜌0
11 + Γ12𝜌22

𝛾
, (3.45)

𝜌22 = −𝑖 [−𝜎*
12Ω12 + 𝜎12Ω*

12 − 𝜎*
32Ω32 + 𝜎32Ω*

32]
Γ21 + Γ23 + 𝛾

, (3.46)

𝜌33 = 𝑖 [−𝜎32Ω*
32 + 𝜎*

32Ω32] + 𝛾𝜌0
33 + Γ23𝜌22

𝛾
, (3.47)

𝜎12 = 𝑖 [(𝜌22 − 𝜌11)Ω12 − 𝜎13Ω32]
𝑖𝛿𝑎 + 𝛾12 + 𝛾

, (3.48)

𝜎13 = 𝑖 [−𝜎12Ω*
32 + 𝜎*

32Ω12]
𝑖𝛿𝑎 − 𝑖𝛿𝑏 + 𝛾13 + 𝛾

, (3.49)

𝜎32 = 𝑖 [(𝜌22 − 𝜌33)Ω32 − 𝜎*
13Ω12]

𝑖𝛿𝑏 + 𝛾23 + 𝛾
. (3.50)

As we measure intensity, the FWM signal will be given by the |𝜎12|2. To solve for it, we
must first solve for 𝜎13:

𝜎13(𝑖𝛿𝑎 − 𝑖𝛿𝑏 + 𝛾13 + 𝛾′) = 𝑖

[︃
−Ω*

32
(𝜌22 − 𝜌22)Ω12 − 𝜎13Ω32

𝑖𝛿𝑎 + 𝛾12 + 𝛾′ + Ω12
(𝜌33 − 𝜌22)Ω*

32 + 𝜎13Ω*
12

−𝑖𝛿𝑏 + 𝛾23 + 𝛾′

]︃
,

𝜎13 =
Ω*

32Ω12
[︁

𝜌22−𝜌11
𝑖𝛿𝑎+𝛾12+𝛾′ − 𝜌33−𝜌22

−𝑖𝛿𝑏+𝛾23+𝛾′

]︁
𝑖(𝛿𝑎 − 𝛿𝑏) + 𝛾′ + 𝛾13 + |Ω32|2

𝑖𝛿𝑎+𝛾12+𝛾′ + |Ω12|2
−𝑖𝛿𝑏+𝛾23+𝛾′

. (3.51)

Substituting eq. 3.51 in eq. 3.48:

𝜎12 = 1
𝑖𝛿𝑎 + 𝛾12 + 𝛾′ ×

⎡⎣𝑖(𝜌22 − 𝜌11)Ω12 +
Ω32Ω*

32Ω12
[︁

𝜌22−𝜌11
𝑖𝛿𝑎+𝛾12+𝛾′ − 𝜌33−𝜌22

−𝑖𝛿𝑏+𝛾23+𝛾′

]︁
𝑖(𝛿𝑎 − 𝛿𝑏) + 𝛾′ + 𝛾13 + |Ω32|2

𝑖𝛿𝑎+𝛾12+𝛾′ + |Ω12|2
−𝑖𝛿𝑏+𝛾23+𝛾′

⎤⎦ .

(3.52)
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Due to Doppler-broadening it is necessary to integrate this equation in a Maxwell-Boltzmann
velocity distribution. To integrate in velocity, and get figure 24 (b) we used a Mathematica
program, shown in appendix A. We did not considerate the first term of equation 3.52, the
propagation term. Typically, FWM processes are investigated when one laser has a fixed fre-
quency and the frequency of the other one is swept, as showed by (ALVAREZ; ALMEIDA; VIANNA,
2021), where 𝛿𝑎 = 0 and 𝛿𝑏 varying or vice versa. In our case, we use a single laser, and the
resulting signal, for 𝛿𝑎 = 𝛿𝑏 varying together is shown in figure 24 (b). Figure 24 (a) shows
us the FWM signal for only one velocity group, without integrating in velocity. Figure 24 (b)
shows us the expected result, a large Gaussian shaped peak (XUE-MEI et al., 2012), due to
Doppler effect.

In figures 24 and 25 we have the calculated four wave mixing signal versus the frequency
detuning. We can see in part (a) of figure 24 and in figure 25 that there is a power broadening.
This broadening is due to the terms that go with the square of Rabi’s frequency in the
denominator of the second term of equation 3.52. However, when we do velocity integration,
we cannot see the power broadening in the system response since the Doppler broadening is
much greater than the power broadening, as seen in part (b) of figure 24. In figure 26 we see
the same power broadening, but for only one beam varying in frequency. In this case, more
commom on literature, the power broadening is more clear.

To get the peak structure that we observed, we would have to use a more complicated
model, probably with another excited level to take into account other hyperfine excited states
and another ground state, to consider optical pumping effects. We also need to take into
account propagation effects, given by the first term of equation 3.52. Unfortunately, we did
not have time to continue this calculation.
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Figure 24 – The FWM signal (|𝜎12|2 ) by the frequency detuning: (a) without integrating in velocities and (b)
with integration in velocities. All curves are normalized.

Source: the author (2024)
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Figure 25 – Four wave mixing signal for two beams varying in frequency for different intensities. This is the
same as figure 24 (a) but with a zoom. We can see more clearly that for the higher intensity there
is a discrete broadening in the signal.

Source: the author (2024)

Figure 26 – Four wave mixing signal for one beam varying in frequency and the other with fixed frequency for
different intensities. We can see that for the higher intensity there is a discrete broadening in the
signal.

Source: the author (2024)
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3.2 THE FOUR WAVE MIXING EXPERIMENT

In figure 27 we can see the experimental setup for the FWM, which is very similar to the
setup used to observe the Faraday effect. Comparing figures 11 and 27 we see that the two
setups are identical from the diode laser until PBS 1. This PBS 1 divide the laser beam in two
beams with linear orthogonal polarizations. We call beam a the beam which is transmitted
by the PBS 1 and beam b the reflected one. Beams a and b go through different ways until
they meet again in PBS 2. We align beams a and b so that they cross each other about the
center of the cell. The four wave mixing signals are generated due to the interaction of the
two incident beams with the Rb atoms. After the sample we have then four beams: the two
transmitted incident beams a and b and the two generated FWM signals at the directions
2𝑘𝑏 − 𝑘𝑎 and 2𝑘𝑎 − 𝑘𝑏. We first separate the beams using PBS 3, since the 2a-b beam has
the same polarization as beam b and 2b-a beam has the same polarization as beam a. In the
last step, we separate beams of the same polarization spatially, placing the detector far from
the sample, since there is a small angle, of about 10 mrad, between the beams. To predict
the direction of the beams we use a guide mask, as shown in figure 28. We make a guide
beam pass through the first hole in mask 1 and the fourth hole in mask 2, in such a way we
can align the detector in the expected direction of the generated beam 2b-a. For looking into
the influence of the geomagnetic field into the FWM signal we used a magnetic shield, like
in figure 13. Most of our measurements were made without the magnetic shield, when it was
used it is indicated.
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Figure 27 – Experimental setup for the FWM measurements

Source: the author (2024)

Figure 28 – The 4 beams passing through the guide mask. The incident beams are the ones in solid line while
the guide beams are on dashed line.

Source: the author (2024)

3.3 RESULTS

In this section, we discuss the results of the FWM experiment. The experiment was per-
formed for different temperatures, with and without a magnetic shield and for various intensities
varying in the range of about 100 to 1000 times the saturation intensity. The saturation in-
tensity is the light intensity at which the rate of excitation of atoms or molecules to a higher
energy level by the light matches the rate at which they spontaneously return to a lower energy
level.

In figures 29 and 30 we see that when the ground states are the 87𝑅𝑏, 𝐹𝑔 = 1 and 85𝑅𝑏, 𝐹𝑔 =

2 the FWM signal was not observed for the range of intensities used, so we decided to focus
our studies at the other two hyperfine states, 87𝑅𝑏, 𝐹𝑔 = 2 and 85𝑅𝑏, 𝐹𝑔 = 3. We can also see
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(figure 30) that there is a peak structure in each Doppler of the FWM signal. This structure
is not in the Gaussian shape expected, as the simple theoretical model of a three level system
suggested (figure 24).

Figure 29 – FWM signal versus the frequency detuning. The FWM signal is only observed for hyperfine levels
87𝑅𝑏, 𝐹𝑔 = 2 and 85𝑅𝑏, 𝐹𝑔 = 3.

Source: the author (2024)

Since we observed a Faraday rotation in the transmitted beam due to the geomagnetic field
we decided to investigate if the FWM signal was also influenced by this external magnetic field.
Figure 31 shows the SA curve, a green curve, that corresponds to the FWM signal obtained
without the magnetic shield, and a pink curve, that shows the FWM signal obtained with a
magnetic shield around the cell, as shown in figure 13. Both FWM signals, obtained with and
without the magnetic shield, are very similar, suggesting that the observed peak structure is
not due to the magnetic field of the Earth.

Figure 32 shows our results for different intensity ratios. The pink curve is the same for
both figures 32 (a) and (b). The intensity of beam b was kept at 350 mW/cm2 while we
varied the intensity of beam a. In these figures there are two interesting behaviors. In the
87𝑅𝑏, 𝐹𝑔 = 2 Doppler, the green curve, for an intensity ratio of 0.003, we have a softer curve,
without any peaks, as we increase the ratio the peak structure becomes more evident. We can
also notice in this Doppler that the relative intensity between the peaks varies with the ratio.
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Figure 30 – FWM signal versus the frequency detuning.

Source: the author (2024)

In the 85𝑅𝑏, 𝐹𝑔 = 3 Doppler the peak structure also becomes more evident, and as 𝐼𝑎/𝐼𝑏 −→ 1,
the observed structure becomes a large dip.

One could expect that this dip is due to an absorption effect, that increases with temper-
ature (and thus atomic density). However, as we can see in figure 33, that is not the case.
In this figure we have curves for three different temperatures: 72 ºC, 62 ºC and 53 ºC, for
similar intensity ratios. The dip is present in all three curves but is deeper in the blue curve,
for 53ºC and the depth decreases as the temperature increases, suggesting that the existence
of the dip is not due to an absorption effect.

A similar behavior, with the FWM spectrum strongly dependent on the intensity of the
driven fields, was described in (SILANS et al., 2011), using a degenerated backward FWM
configuration. In this case, when the pump power is increased, the intensity of the conjugated
signal at resonances and crossover changes from a peak to a dip. For high pump powers, they
observe a spectrum very similar to what we obtain, a broadened signal with dips in resonances
and crossovers. In this case, the explanation for the broadened signal comes from large Stark
shifts induced by the pump beams at resonances and the dip formation from some saturation
effect.

In figure 34 we have a reproduction of the curves with intensity ratios 𝐼𝑎/𝐼𝑏 = 0.1 (a) and
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Figure 31 – FWM signal versus the frequency detuning for the 87𝑅𝑏, 𝐹𝑔 = 2 and 85𝑅𝑏, 𝐹𝑔 = 3 transitions.
The green curve shows the FWM signal in the presence of the geomagnetic field and the pink
curve was obtained with a magnetic shield.

Source: the author (2024)

𝐼𝑎/𝐼𝑏 = 1 (b) of figure 32. The coloured line shows the FWM signal versus frequency detuning
while the black line shows us the saturated absorption. As we can see from the dashed lines
in figure 34 (a), we have dips in the peaks of the saturated absorption. These dips are located
at the position of the cyclic transition, the ones more to the right in each Gaussian curve,
and, at the position of the crossover peaks, the ones more to the left of each Gaussian curve.
In figure 34 (b), when the intensity ratio is 1, the 85𝑅𝑏 Gaussian has a single large dip. This



52

Figure 32 – FWM signal versus the frequency detuning for the 87𝑅𝑏 𝐹𝑔 = 2 and 85𝑅𝑏 𝐹𝑔 = 3 transitions.
Each curve shows the FWM signal for a different intensity ratio for 𝐼𝑏 = 350 mW/cm2 (a) for
lower intensity ratios and (b) for higher intensity ratios.

Source: the author (2024)

likely occurs for two reasons: an enlargement caused by high intensity, and the fact that the
transitions are very close together, potentially overlapping due to the high intensity.
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Figure 33 – FWM versus the frequency detuning for the 87𝑅𝑏, 𝐹𝑔 = 2 and 85𝑅𝑏, 𝐹𝑔 = 3 transitions. Each
curve shows the FWM signal for a different temperature and similar intensity ratios. 𝐼𝑎/𝐼𝑏 ≈ 0.5

Source: the author (2024)

Our FWM experiment used a co-propagating beams configuration and explored different
conditions, including changes in temperature, the presence or absence of a magnetic shield,
and varying light intensities from 100 to 1000 times the saturation intensity. Overall, our results
show that FWM signals depend on a complex interplay of atomic states, intensity ratios, and
temperature. This complexity suggests that we need more detailed models to fully understand
the phenomena we have observed.
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Figure 34 – FWM signal versus the frequency detuning for the 87𝑅𝑏 𝐹𝑔 = 2 and 85𝑅𝑏 𝐹𝑔 = 3 transitions. (a)
For intensity ratio 0.1 and (b) for intensity ratio 1. We can see from the dashed lines that the
peaks in the saturated absorption become dips in the FWM signal.

Source: the author (2024)
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4 CONCLUSIONS

In this work we have presented experimental results obtained for the FWM signal generated
in Rb vapor where the non linear process is driven by a single laser and fields of high intensity.
We also investigated the Faraday rotation in the transmitted beam. We have got results for
different intensities ratios, different temperatures and with and without a magnetic shield.

For the FWM experiment we have obtained spectra with a peak structure instead of the
Gaussian shaped signal predicted by a simple theoretical model. Our results indicate that to
theoretically describe this peak structure it will be necessary to consider a more robust model,
including a second excited state.

From the different FWM temperatures measurements we have seen that the peak structure
is not due to a simple absorption effect, since the dip in the 85𝑅𝑏, 𝐹𝑔 = 3 decreases when we
increase temperature. We also verified that the peak structure was not due to the geomagnetic
field. We verified that the external magnetic field does not influence this structure.

The polarization rotation effect observed in the transmitted beam was confirmed to be due
to the Faraday effect. For this Faraday rotation we focused our studies in the 85𝑅𝑏, 𝐹𝑔 = 3

and 87𝑅𝑏, 𝐹𝑔 = 2 Dopplers, since the rotation for the other two Dopplers were only seen for
lower intensities. We suggested that this happens because of an optical pumping that takes the
atoms from the levels 85𝑅𝑏, 𝐹𝑔 = 2 and 87𝑅𝑏, 𝐹𝑔 = 1 to the 85𝑅𝑏, 𝐹𝑔 = 3 and 87𝑅𝑏, 𝐹𝑔 = 2

levels. Using the results from the Faraday rotation experiment we were able to measure the
rotation angle as well as obtained the Verdet constant, getting a result with good agreement
with values cited in the literature.

We have the perspective to further investigate the peak structure in the FWM, working in
a more sophisticated theoretical analysis.
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In[1]:= u =

raiz quadrada

Sqrt2 * 295 * 1.38 * 10^-23  1.443 * 10^-25  10^6;

Γ = 12.14 *

número pi

Pi  2;

γ = Γ  100;

c = 2.99792458 * 10^2;

ω21 = 2 *

número pi

Pi * 384 228.116 * 10^3;

ρ110 = 1  2;

ρ220 = 0;

ρ330 = 1  2;

Ω23 = 10 * Γ;

Ω12 = 10 * Γ;

In[ ]:=

define diretório

SetDirectory["
símbolo de constante

C:\\Users\\raiss\\OneDrive\\Nova pasta\\OneDrive\\faculdade"]

Out[ ]= C:\Users\raiss\OneDrive\Nova pasta\OneDrive\faculdade

In[11]:= l[δ12_ , δ23_ ] :=

- ⅈ Ω12 Ω23 Ω23

ρ110

1

γ +
Γ

2
+ ⅈ δ12

+

ρ330

1

γ +
Γ

2
- ⅈ δ23

 γ +
Γ

2
+ ⅈ δ12

Ω122

γ +
Γ

2
+ ⅈ δ12

+

Ω232

γ +
Γ

2
- ⅈ δ23

+ γ +
Γ

2
+ ⅈ δ12 - δ23 -

0 * ⅈ Ω12 ρ110

2 Ω122 γ+
Γ

2
Γ+2 γ

(γ (γ+Γ+Γ)) γ+
Γ

2

2
+δ122

+1

γ +
Γ

2
+ ⅈ δ12

;

In[ ]:= casos =

transposição

Transpose[

{

tabela

Table[δ1, {δ1, -50 Γ, 50 Γ, 1}],
tabela

Table[
valor absoluto

Abs[l[δ1, δ1]], {δ1, -50 Γ, 50 Γ, 1}] }];

In[ ]:=

exporta

Export["alargamento_10gamma.csv", casos]

Out[ ]= alargamento_10gamma.csv

"alargamento_gamma_delta0.csv"
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APPENDIX A – MATHEMATICA PROGRAM FOR THE THREE LEVEL

SYSTEM



In[12]:=

gráf⋯

Plot[
valor absoluto

Abs[l[δ1, δ1]], {δ1, -3 Γ, 3 Γ},
legenda dos eixos

AxesLabel → {δ (MHz), σ12},
intervalo do g⋯

PlotRange →

tudo

All]

Out[12]=

-40 -20 20 40
δ MHz

2

4

6

8

10

σ12

In[13]:= {maxValue, maxPos} =

encontra o má⋯

FindMaximum[
parte real

Re[l[δ12, δ12]], {δ12, -1000, 1000}];

(*Calculate the half of the maximum value*)

halfMax = maxValue  2;

(*Define a function for the half maximum*)

fHalfMax[δ12_] :=
parte real

Re[l[δ12, δ12]] - halfMax;

(*

resolve

Solve for the values of δ12 where l[δ12,δ23] equals halfMax*)

(*Use real parts and valid range*)

root1 =

encontra raiz

FindRoot[fHalfMax[δ12] ⩵ 0, {δ12, -1000, 0},
número máximo de iteraç⋯

MaxIterations → 100,
meta de exatidão

AccuracyGoal → 6];

root2 =

encontra raiz

FindRoot[fHalfMax[δ12] ⩵ 0, {δ12, 0, 1000},

número máximo de iteraç⋯

MaxIterations → 100,
meta de exatidão

AccuracyGoal → 6];

(*Calculate the
completo

Full Width at Half Maximum (FWHM)*)

fwhm =

valor absoluto

Abs[root2[[1, 2]] - root1[[1, 2]]];

(*Output the FWHM*)

fwhm

Out[19]= 33.0278

2     gamma 18-09-24.nb
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In[20]:= Qi =

transposição

Transpose
tabela

Table[δ, {δ, -1000, 1000, 1}],

tabela

Table
integra numérica⋯

NIntegratel2
número pi

Pi δ - ω21 * v * 10^-6  c, 2
número pi

Pi δ - ω21 * v * 10^-6  c *

1  u
raiz quadrada

Sqrt[π] *

exponencial

Exp-v - δ * c  ω21 * 10^-6^2  u^2,

{v, -

infinito

Infinity,
infinito

Infinity},
método

Method → "LocalAdaptive" *

integra numé⋯

NIntegrate
conjugado

Conjugatel2
número pi

Pi δ - ω21 * v * 10^-6  c, 2
número pi

Pi δ - ω21 * v * 10^-6  c *

1  u
raiz quadrada

Sqrt[π] *

exponencial

Exp-v - δ * c  ω21 * 10^-6^2  u^2, {v, -

infinito

Infinity,

infinito

Infinity},
método

Method → "LocalAdaptive" //

parte real

Re, {δ, -1000, 1000, 1};

In[22]:=

gráfico de uma l⋯

ListPlot[Qi,
unido

Joined →

verd⋯

True,
legenda dos eixos

AxesLabel → {δ (MHz), σ12},
intervalo do g⋯

PlotRange →

automático

Automatic]

Out[22]=

-1000 -500 500 1000
δ MHz

1×109

2×109

3×109

4×109

5×109

6×109

7×109

σ12
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In[23]:= (*

encontra

Find the maximum value in the data*)

maxValue =

máximo

Max[Qi[[
tudo

All, 2]]];

(*Calculate half of the maximum value*)

halfMax = maxValue  2;

(*Interpolate the data within the valid range*)

interpFunc =

interpolação

Interpolation[Qi];

(*

encontra

Find the approximate X-range of the data*)

xMin =

mínimo

Min[Qi[[
tudo

All, 1]]];

xMax =

máximo

Max[Qi[[
tudo

All, 1]]];

(*Use
encontra raiz

FindRoot to find the X-values where the data crosses halfMax*)

root1 =

encontra raiz

FindRootinterpFunc[x] ⩵ halfMax,

x, xMin, xMin + xMax  2,
número máximo de iteraç⋯

MaxIterations → 100,
meta de exatidão

AccuracyGoal → 6;

root2 =

encontra raiz

FindRootinterpFunc[x] ⩵ halfMax, x, xMin + xMax  2, xMax,

número máximo de iteraç⋯

MaxIterations → 100,
meta de exatidão

AccuracyGoal → 6;

(*Step 6:Calculate the FWHM as the distance between the two roots*)

fwhm =

valor absoluto

Abs[root2[[1, 2]] - root1[[1, 2]]];

(*Output the FWHM*)

fwhm

Out[31]= 364.148

4     gamma 18-09-24.nb
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