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RESUMO

Defeitos topológicos, que surgem como soluções de teorias de campos, estão intimamente lig-
ados aos fenômenos de transições de fase. Um exemplo fundamental desses defeitos é o kink (e
seu contraparte, antikink) em sistemas (1+1) dimensionais, representando soluções estáticas.
Quando esses defeitos interagem, exibem uma ampla variedade de comportamentos, incluindo
a formação de estruturas fractais. Em modelos bem conhecidos, como a teoria 𝜆𝜑4, as inter-
ações envolvem modos vibracionais localizados, que estão confinados a elementos individuais
do sistema. Em contraste, o modelo 𝜑6 apresenta modos deslocalizados que se estendem ao
longo do par kink-antikink. Neste último, as frequências dos modos deslocalizados dependem
da separação entre o par. Esta dissertação introduz um modelo simplificado baseado em um
potencial por partes, 𝑉 (𝜑) ∼ 𝜑2, que facilita a exploração detalhada do fenômeno conhecido
como mecanismo de troca de energia. Ajustando dois parâmetros livres, o modelo permite
estudar sistematicamente o impacto da adição de frequências localizadas e deslocalizadas e
sua interação com a energia cinética dos kinks.

Palavras-chaves: Física de Altas Energias. Kink. Colisão. Estrutura de Ressonância. Modos
de Vibração. Defeitos Topológicos.



ABSTRACT

Topological defects, which emerge as solutions to field theories, are intimately linked to phase
transition phenomena. A fundamental example of such defects is the kink (and its counterpart,
antikink) in (1 + 1) dimensional systems, representing static solutions. When these defects
interact, they exhibit a wide variety of behaviors, including the formation of fractal structures.
In well-known models such as the 𝜆𝜑4 theory, interactions involve localized vibrational modes,
which are confined to individual elements of the system. In contrast, the 𝜑6 model features
delocalized modes extending across the kink-antikink pair. In the latter, the frequencies of
the delocalized modes depend on the pair’s separation. This thesis introduces a toy model
based on a piecewise potential, 𝑉 (𝜑) ∼ 𝜑2, which facilitates a detailed exploration of the
phenomenon known as the energy exchange mechanism. By adjusting two free parameters,
the model allows for systematically studying the impact of adding localized and delocalized
frequencies and their interplay with the kinetic energy of the kinks.

Keywords: High Energy Physics. Kink. Collision. Resonance Structure. Vibrational Modes.
Topological Defects.



LIST OF FIGURES

Figure 1 – (a) The 𝜆𝜑4 potential and (b) the pair kink (blue) and antikink (red). The
values are 𝜆 = 2 and 𝑚 = 1. Source: The Author (2024). . . . . . . . . . 17

Figure 2 – 𝜆𝜑4 energy density (red) and kink solution (blue). The values are 𝑚 = 1

and 𝜆 = 2. Source: The Author (2024). . . . . . . . . . . . . . . . . . . . 18
Figure 3 – The linearized potential 𝑈(𝑥) for the 𝜆𝜑4 model is shown in the figure. The

red dotted lines represent the eigenvalues 𝜔2
0 = 0 and 𝜔2

1 = 3/2. The blue
solid line represents the potential 𝑈(𝑥), the orange solid line is the first
eigenfunction 𝜂0, and the green solid line is the second eigenfunction 𝜂1.
Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 4 – (a) The kink-antikink profile (b) the antikink-kink profile. In orange and
blue, the energy densities and the dotted lines are the field profiles. Source:
The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5 – Scheme to calculate the force between the kink-antikink pair. To avoid
infinities, we need to make the integral between −𝑥𝑜 − 𝐷 and +𝑥𝑜 + 𝐷,
since in the left (right) part of that interval, the derivatives of the field
quickly decay to zero. Source: The Author (2024). . . . . . . . . . . . . . 22

Figure 6 – (a) The sine-Gordon potential. The dots represent the zeros of the potential.
(b) The kink-antikink pairs from different sectors. Source: The Author (2024). 23

Figure 7 – Breathers field configuration for different times. The parameter 𝑣 is 0.2.
Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 8 – (a) The 𝜑6 potential and (b) the pair kink and antikink from both sectors.
Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 9 – Linearized potential for 𝜑6 model. (a) for the kink and (b) for the antikink.
Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 10 – (a) Reflection for 𝑣in = 0.350, (b) bion formation for 𝑣in = 0.150, and (c)
two-bounce solution for 𝑣in = 0.228. Source: The Author (2024). . . . . . 29

Figure 11 – Center of the field as a function of time for 𝑣in = 0.228. Source: The Author
(2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 12 – Final velocity as a function of initial velocity. Source: (CAMPBELL; SCHON-

FELD; WINGATE, 1983). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Figure 13 – The center of the field as function of time for some values of initial velocity.
Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 14 – Time between collisions as a function of the window number. The dots
represent the points we collected from the first 8 resonance windows, and
the line is the linear regression line. The Author (2024). . . . . . . . . . . 31

Figure 15 – Kink-antikink collision in the sine-Gordon potential for initial velocity 𝑣 =

0.1. Source: The Author (2024). . . . . . . . . . . . . . . . . . . . . . . 32
Figure 16 – Antikink-kink solutions: (a) Reflection for 𝑣in = 0.050, (b) bion formation

for 𝑣in = 0.027 and (c) two-bounce solution for 𝑣in = 0.0228. Kink-antikink
solutions: (d) sector switch for 𝑣in = 0.300 and (e) bion formation for
𝑣in = 0.250. Source: The Author (2024). . . . . . . . . . . . . . . . . . . 33

Figure 17 – Linearized potential for 𝜑6 model. (a) for the antikink-kink collision and (b)
for the kink-antikink collision. Source: The Author (2024). . . . . . . . . . 34

Figure 18 – Evolution of the center of the field as a function of the initial velocity. (a)
antikink-kink and (b) kink-antikink collisions. Source: The Author (2024). . 34

Figure 19 – Frequencies for 𝑣in = 0.04548 vs. (b) even (solid) and odd (dashed) bound
states for antikink-kink configuration, as a function of the half-separation
a. Source:(DOREY et al., 2011). . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 20 – The piecewise functions. (a) the potential and (b) the four topological
defects. The values are 𝐴 =

√
3 and 𝐵 = 2. Source: (SANTOS; CAMPOS;

MOHAMMADI, 2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 21 – The linearized potentials. (a) kink (b) pair. The parameters are 𝐴 =

√
3

and 𝐶 =
√

6. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . 40
Figure 22 – Number of modes as function of 𝐴 and 𝐶. The dotted line shows the

number of modes for 𝐴 = 𝐶 Source: (SANTOS; CAMPOS; MOHAMMADI,
2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 23 – Bion formation in (a) an kink-antikink with 𝑣𝑜 = 0.15, and (b) a antikink-
kink collision with 𝑣𝑜 = 0.2. Two-bounce window for (c) a kink-antikink with
𝑣𝑜 = 0.211, and (d) an antikink-kink collision with 𝑣𝑜 = 0.23. Reflection
for (e) a kink-antikink with 𝑣𝑜 = 0.40, and (f) an antikink-kink collision
with 𝑣𝑜 = 0.4. Parameters are 𝐴2 = 𝐶2 = 8/3. Source: (SANTOS; CAMPOS;

MOHAMMADI, 2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



Figure 24 – Center of the field as function of time and initial velocity. The collisions cases
are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 𝐶2 = 8/3.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . . . . . . . . . 45

Figure 25 – Center of the field as a function of time and initial velocity. The collisions
cases are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 1.5

and 𝐶2 = 7.0. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . 46
Figure 26 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink

and (b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 7.0. Source:
(SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . . . . . . . . . . . . . 46

Figure 27 – Center of the field as a function of time and initial velocity. The collisions
cases are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 2.5

and 𝐶2 = 6.125. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . 47
Figure 28 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink

and (b) antikink-kink. The parameters are 𝐴2 = 2.5 and 𝐶2 = 6.125.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . . . . . . . . . 48

Figure 29 – Center of the field as a function of time and initial velocity. The collisions
cases are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 =

𝐶2 = 6.025. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . . 48
Figure 30 – Center of the field as a function of time and initial velocity. The collisions

cases are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 1.5

and 𝐶2 = 9.0. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . 49
Figure 31 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink

and (b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 9.0. Source:
(SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . . . . . . . . . . . . . 49

Figure 32 – Center of the field as a function of time and initial velocity for antikink-kink
collisions. The parameters are (a) 𝐴2 = 7.0 and 𝐶2 = 9.5 (b) 𝐴2 = 7.0

and 𝐶2 = 12.0. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . 50
Figure 33 – Center of the field as a function of time and initial velocity. The collisions

cases are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 2.7

and 𝐶2 = 9.5. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024). . . . . . . 51
Figure 34 – Spacetime grid. Source: the Author (2024). . . . . . . . . . . . . . . . . . 55



CONTENTS

1 (1+1)-DIMENSIONAL TOPOLOGICAL DEFECTS . . . . . . . . . 12

1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 ENERGY STUDY AND BOGOMOLNY METHOD . . . . . . . . . . . . . 13
1.3 TOPOLOGICAL CHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 DERRICK’S ARGUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 THE 𝜆𝜑4 MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 The potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Conserved Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 THE "PERFECT" BROTHER: THE SINE-GORDON MODEL . . . . . . . 22
2.2.1 Bound States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 THE 𝜑6 MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 𝜆𝜑4 POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 SINE-GORDON POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 THE 𝜑6 MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 ON THE LOCALIZED AND DELOCALIZED MODES IN KINK-

ANTIKINK INTERACTIONS: A TOY MODEL . . . . . . . . . . . 37

4.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 THE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 STABILITY EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 KINK-ANTIKINK AND ANTIKINK KINK COLLISIONS . . . . . . . . . . 42
4.4.1 (𝐴2, 𝐶2) = (8/3, 8/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 (𝐴2, 𝐶2) = (1.5, 7.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.3 (𝐴2, 𝐶2) = (2.5, 6.125) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.4 (𝐴2, 𝐶2) = (6.05, 6.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.5 (𝐴2, 𝐶2) = (1.5, 9.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



4.4.6 (𝐴2, 𝐶2) = (7.0, 9.5) and (𝐴2, 𝐶2) = (7.0, 12.0) . . . . . . . . . . . . . . 50

4.4.7 (𝐴2, 𝐶2) = (2.7, 9.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A DISCRETIZATION METHODS FOR DIFFERENTIAL EQUATIONS 55

A.1 FINITE DIFFERENCES METHOD FOR PDE . . . . . . . . . . . . . . . . 56
A.1.1 Python Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.2 Five Points Stencil for PDE . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 FINITE DIFFERENCE METHOD FOR EIGENVALUE PROBLEM . . . . . 59
A.2.1 Python Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B KINK-ANTIKINK ALGORITHMS . . . . . . . . . . . . . . . . . . . 61

B.1 KINK FINAL VELOCITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2 CONSERVATION OF ENERGY . . . . . . . . . . . . . . . . . . . . . . . 62
B.2.1 Python Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C CONTINUITY RELATIONS OF THE POTENTIAL AND KINK

PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D SOLUTIONS OF ONE AND TWO ASYMMETRIC SQUARE-WELLS 64

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



12

1 (1+1)-DIMENSIONAL TOPOLOGICAL DEFECTS

1.1 INTRODUCTION

The classical field theory allows us to describe systems with many degrees of freedom.
Instead of a discrete set of free variables that the dynamics depends on, there is a continuum
of values.

Our object of study is the scalar field 𝜑, which has a spacetime dependence. The dynamics
of the field are obtained by minimizing the functional 𝑆[𝜑], the action in (1+1) dimensions 1.1:

𝑆[𝜑] =
∫︁ ∞

−∞

(︂1
2𝜕𝜇𝜑𝜕

𝜇𝜑− 𝑉 (𝜑)
)︂

⏟  ⏞  
ℒ

𝑑𝑥 𝑑𝑡, (1.1)

where the function 𝑉 (𝜑) is the potential energy function and ℒ is the Lagrangian.
Due to the translational symmetry of space and time in the theory, conserved quantities

such as energy and momentum densities arise through the conserved energy-momentum tensor:

Θ𝜇𝜈 = 𝜕𝜇𝜑𝜕𝜈𝜑− 𝜂𝜇𝜈ℒ, (1.2)

where 𝜂𝜇𝜈 = diag(1,-1) is the metric. The energy and momentum densities can be derived
from it

⎧⎪⎪⎨⎪⎪⎩
𝒫 = −𝜕𝑥𝜑𝜕𝑡𝜑,

ℋ = 1
2(𝜕𝑡𝜑)2 + 1

2(𝜕𝑥𝜑)2 + 𝑉 (𝜑).
(1.3)

In particular, the action 1.1 can be used to handle wave-equation-like problems. If the
potential energy is identically zero, the Euler-Lagrange equations of motion for fields yield the
classical wave equation:

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑡2

− 𝑣2𝜕
2𝑦(𝑥, 𝑡)
𝜕𝑥2 = 0, (1.4)

which allows solutions that obey the superposition principle. However, if 𝑉 (𝜑) ̸= 0, a class of
solutions called solitons and solitary waves can emerge in the model.

Solitons are solutions of the equations of motion that exhibit integrability. While there is no
exact definition of integrability, one of the requirements is that the system must have infinitely
many conserved quantities. Solitary waves, on the other hand, differ significantly. They can
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appear in field theories with similar actions 1.1, but they do not correspond to integrable
systems. Nevertheless, it is common in the literature to use the term "soliton" in the context
of solitary waves. For clarity, we will refer to the objects studied here as solitons, but it is
important to keep this distinction in mind.

Since the action 1.1 has symmetries, a Lorentz boost can be applied, leading to a Lorentz-
invariant relation by integrating the densities 1.3:

𝐸2 − 𝑃 2 = 𝑀2, (1.5)

where 𝐸 is the energy, 𝑃 the momentum, and 𝑀 the mass.

1.2 ENERGY STUDY AND BOGOMOLNY METHOD

Since we know the energy density 1.3, the total energy of the system can be written
through an integration process.

ℰ =
∫︁ ∞

−∞

[︂1
2(𝜕𝑡𝜑)2 + 1

2(𝜕𝑥𝜑)2 + 𝑉 (𝜑)
]︂
𝑑𝑥,

=
∫︁ ∞

−∞

[︃
1
2(𝜕𝑡𝜑)2 + 1

2

(︂
𝜕𝑥𝜑∓

√︁
2𝑉 (𝜑)

)︂2
]︃
𝑑𝑥±

∫︁ 𝜑(+∞)

𝜑(−∞)

√︁
2𝑉 (𝜑′) 𝑑𝜑′,

=
∫︁ ∞

−∞

[︃
1
2(𝜕𝑡𝜑)2 + 1

2

(︂
𝜕𝑥𝜑∓

√︁
2𝑉 (𝜑)

)︂2
]︃
𝑑𝑥± ℰmin,

(1.6)

The latter equation defines the minimum energy of the system and can be rewritten as:

ℰmin =
∫︁ 𝜑(+∞)

𝜑(−∞)

√︁
2𝑉 (𝜑′)𝑑𝜑′,

=
∫︁ 𝜑(+∞)

𝜑(−∞)

𝑑𝑊

𝑑𝜑′ 𝑑𝜑
′,

= 𝑊 (𝜑(+∞)) −𝑊 (𝜑(−∞)),

(1.7)

defining the prepotential 𝑊 . This observation is due to Bogomol’nyi (BOGOMOL’NYI, 1976),
and energy bounds of this general type, where the energy is bounded from below in terms of
solely topological data, are known as Bogomol’nyi bounds.

Replacing the prepotential in 1.9, we reach the so-called Bogomol’nyi-Prasad-Sommerfield
(BPS) condition:

𝜕𝑥𝜑 = ±𝑑𝑊

𝑑𝜑
. (1.8)
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This means that we have a first-order differential equation as the equation of motion that
also minimizes energy:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝜑 = 0,

𝜕𝑥𝜑∓
√︁

2𝑉 (𝜑) = 0,
(1.9)

So we can find a solution that minimizes the energy. First of all, the solution must be
static since the time derivative is zero. Furthermore, there is an easy way to obtain the solution
analytically by using the second equation of 1.9. The boundary conditions help us with this.
The field must be finite as the positions go to infinity, and the value of 𝑥0 appears due to the
translational symmetry of the system, leading to:

𝑥− 𝑥0 = ±
∫︁ 𝜑(+∞)

𝜑(−∞)

𝑑𝜑′√︁
2𝑉 (𝜑′)

. (1.10)

1.3 TOPOLOGICAL CHARGE

Topologically, the model also has conserved quantities. The current 𝑗𝜇 = 1
2𝜑(+∞)𝜖

𝜇𝜈𝜕𝜈𝜑,
where 𝜇, 𝜈 = 0, 1 and 𝜖𝜇𝜈 is the antisymmetric symbol in two dimensions. The conserved
charge is:

𝑄 =
∫︁ ∞

−∞
𝑗0 𝑑𝑥 = 1

2𝜑(+∞) [𝜑(+∞) − 𝜑(−∞)], (1.11)

For the models we are going to study, the topological charge 𝑄 assumes the values ±1.
The solution with 𝑄 = 1 corresponds to the plus sign in 1.10 and is called a kink. The solution
with the minus sign is called an antikink.

1.4 DERRICK’S ARGUMENT

The static solution to 1.9 is crucial for achieving a configuration where the energy is
minimized. Starting with a general Lagrangian involving multiple fields, we will verify the
conditions to obtain static solutions. Given a field theory and its action as a function of
arbitrary scalar fields 𝜑𝑎:

𝑆[𝜑𝑎] =
∫︁ [︃

1
2
∑︁

𝑎

(𝜕𝜇𝜑
𝑎)2 − 𝑉 (𝜑𝑎)

]︃
𝑑𝑛+1𝑥, (1.12)
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where, as mentioned earlier, 𝑉 (𝜑𝑎) ≥ 0. For static solutions, the field configurations satisfy
𝜑𝑎 → 𝜑𝑎

0, and time derivatives in 1.12 vanish:

𝑆[𝜑𝑎
0] =

∫︁ [︃
1
2
∑︁

𝑎

(∇𝜑𝑎
0)2 − 𝑉 (𝜑𝑎)

]︃
𝑑𝑛+1𝑥, (1.13)

resulting in the energy of the field configuration as:

ℰ [𝜑𝑎
0] =

∫︁ [︂1
2(∇𝜑𝑎

0)2 + 𝑉 (𝜑𝑎
0)
]︂
𝑑𝑛+1𝑥. (1.14)

We now transform our coordinate system by rescaling 𝑥𝑗 → 𝛼𝑥𝑗 (modifying only the spatial
coordinates), with 𝛼 > 0, and introduce new variables 𝑦𝑗 = 𝛼𝑥𝑗. The energy as a function of
the new field configuration 𝜓𝑎

0(𝑦) becomes:

ℰ [𝜓𝑎
0 ] =

∫︁ [︃
𝛼2−𝑛

2 (∇𝜓𝑎
0(𝑦))2 + 𝛼−𝑛𝑉 (𝜓𝑎

0(𝑦))
]︃
𝑑𝑛+1𝑦. (1.15)

Since the first term in 1.15 is always positive, it follows that:

ℰ [𝜓𝑎
0 ] < ℰ [𝜑𝑎

0], (1.16)

for 𝑛 ≥ 2, implying that the energy is not minimized when 𝛼 → 1. Therefore, static and
stable field configurations do not minimize the energy in dimensions higher than one. These
configurations are only possible if 𝑛 = 1.
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2 POTENTIALS

In the previous chapter, we saw that the potential of our field theory must obey a few
properties since we are searching for stable, particle-like solutions that continuously connect
two vacua of the potential. Now, we will see a few examples of the models with the solutions
with these properties. We have the freedom to choose the potential 𝑉 (𝜑), it should be a
non-negative function of the field.

2.1 THE 𝜆𝜑4 MODEL

2.1.1 Motivation

Starting with the 𝜆𝜑4 model is not random. In fact, this model appears in several areas of
physics. First of all, Landau (GINZBURG; LANDAU, 1965) used it to describe second-order phase
transition phenomena, demonstrating in a phenomenological way the theory of superconduc-
tors. Although we are presenting the historical context of the 𝜆𝜑4 model, the field theory of
superconductors is quite different from the scalar field discussed here, as it involves a complex
scalar field and a vector field.

In the particle physics context, the 𝜆𝜑4 model is used in the Higgs Mechanism to explain
how the fundamental particles of physics obtain mass (HIGGS, 1964). In the realm of quantum
field theory, this model is often used as a toy model for interacting field theories, as extensively
discussed in (PESKIN; SCHROEDER, 2019) and (TONG, 2006). Finally, when we couple a fermion
field with the bosonic one from 𝜆𝜑4, we obtain a toy model for nuclear physics (CAMPBELL;

LIAO, 1976) and study the effect of the bosonic field and its topology on the fermion number
(JACKIW; REBBI, 1976).

The solutions we will find in the next chapter for some potentials are called Topological
Defects. They are the most straightforward solutions because we will only deal with (1 + 1)𝐷

field theories. As the area of topological defects is very rich in literature, We recommend
checking more details in consecrated textbooks like (RAJARAMAN, 1982), (VACHASPATI, 2006),
and (MANTON; SUTCLIFFE, 2010).

In the next section, we will do a process that can be applied to any potential 𝑉 (𝜑) that
obeys the conditions we have discussed from the beginning. Once the process is understood,
we can apply it to any potential other than 𝜆𝜑4.
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Figure 1 – (a) The 𝜆𝜑4 potential and (b) the pair kink (blue) and antikink (red). The values
are 𝜆 = 2 and 𝑚 = 1. Source: The Author (2024).

2.1.2 The potential

Let us now study the potential 𝜆4 (𝜑2 −𝑚2)2 shown in Fig. 1 It is interesting to notice that
the potential shown in Fig. 1.a) has the properties discussed in chapter 1. The Lagrangian of
the problem is given by

ℒ = 1
2𝜕𝜇𝜑𝜕

𝜇𝜑− 𝜆

4 (𝜑2 −𝑚2)2, (2.1)

and consequently the equation of motion are given in 2.1

𝜕2
𝑡 𝜑− 𝜕𝑥𝜑+ 𝜆(𝜑2 −𝑚2)𝜑 = 0. (2.2)

We need to search for static solutions that obey

𝑥− 𝑥𝑜 = ±
∫︁ +𝑚

−𝑚

𝑑𝜑√︃
𝜆

2 (𝜑2 −𝑚2)2

, (2.3)

which can be easily integrated to obtain two different solutions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜑K = 𝑚 tanh

⎛⎝√︃𝜆
2𝑚(𝑥− 𝑥𝑜))

⎞⎠,
𝜑K̄ = −𝑚 tanh

⎛⎝√︃𝜆
2𝑚(𝑥− 𝑥𝑜))

⎞⎠. (2.4)

The solutions 2.4 are, respectively, the kink and antikink of the model and can be seen in
Fig. 1.b). The kink solution is a static solution of the equations of motion that connects the
vacua −𝑚 to +𝑚 of the potential shown in 1. The antikink is similar but connects the vacua
in the opposite direction.
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Once we have found the static solution, it is possible to obtain the time-dependent solution
by applying a Lorentz boost to these solutions. If the velocity of the kink is 𝑣, then we set
𝑋 = 𝛾(𝑥− 𝑥0 + 𝑣𝑡) to reach the traveling solutions:

𝜑K(𝑥, 𝑡) = 𝑚 tanh
⎛⎝√︃𝜆

2𝑚𝑋
⎞⎠. (2.5)

2.1.3 Conserved Quantities

As we mentioned in Chapter 1, there are particle-like solutions that arise from non-linear
wave equations. This becomes clear if we study the energy of these solutions. By using the
methods we studied before, we can obtain the static energy density ℋ using the functions 2.4:

ℋ = 1
2

(︃
𝑑𝜑K

𝑑𝑥

)︃2

+ 𝜆

4 (𝜑2
K −𝑚2)2,

= 𝜆𝑚4

2 sech4

⎛⎝√︃𝜆
2𝑚𝑥

⎞⎠ . (2.6)

The energy density concentrates around the center of the kink profile as shown in Fig. 2.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ki
nk

 a
nd

 e
ne

rg
y 

de
ns

ity

Figure 2 – 𝜆𝜑4 energy density (red) and kink solution (blue). The values are 𝑚 = 1 and 𝜆 = 2.
Source: The Author (2024).

Since the Lagrangian has translational symmetry, it means that there is no cost to move this
energy density from one place to another. Consequently, a zero mode, also called a translational
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mode, must exist. It can be found by investigating fluctuations in the kink solution

𝜑(𝑥, 𝑡) = 𝜑K(𝑥) + 𝜂(𝑥) cos(𝜔𝑡). (2.7)

By substituting 2.7 into the equation of motion 2.2, we obtain a Schrödinger-like equation

−𝜕2
𝑥𝜂(𝑥) + [4 − 7sech2(𝑥)]𝜂(𝑥) = 𝜔2𝜂(𝑥) (2.8)

. The potential in 2.8, 𝑈(𝑥) = 4 − 7sech2(𝑥) shown in Fig. 3, is a Pöschl-Teller type one
resulting in analytical modes and spectrum for the above differential equation.
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Figure 3 – The linearized potential 𝑈(𝑥) for the 𝜆𝜑4 model is shown in the figure. The red
dotted lines represent the eigenvalues 𝜔2

0 = 0 and 𝜔2
1 = 3/2. The blue solid line

represents the potential 𝑈(𝑥), the orange solid line is the first eigenfunction 𝜂0,
and the green solid line is the second eigenfunction 𝜂1. Source: The Author (2024).

There are two discrete solutions given by 𝜔2
0 = 0 and 𝜔2

1 = 3/2 (SUGIYAMA, 1979).
The first one is the frequency of the zero mode arising from the translational symmetry of
the system. The second one is the massive vibrational mode bound to the kink. The latter
one gives origin to a resonance phenomenon that will be explored in the next chapter. For
𝜔2 > 2, there are infinitely many solutions, forming a continuous spectrum. This continuum
corresponds physically to radiation that propagates to spatial infinity. The modes associated
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to the above normal modes are as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜔2
0 = 0 −→ 𝜂0(𝑥) =

√︃
3

4
√

2
sech2

(︃
𝑥√
2

)︃
,

𝜔2
1 = 3

2 −→ 𝜂1(𝑥) =
√︃

3
2
√

2
tanh

(︃
𝑥√
2

)︃
sech

(︃
𝑥√
2

)︃
,

𝜔2
𝑛 = 𝑛2 + 2 −→ 𝜂𝑛(𝑥) = 𝑁𝑛𝑒

𝑖𝑛𝑥

[︃
3 tanh2

(︃
𝑥√
2

)︃
− 1 − 2𝑛2 − 3

√
2𝑖𝑛 tanh

(︃
𝑥√
2

)︃]︃
,

(2.9)

where 𝑁𝑛 is given by 𝑁−2
𝑛 = 4𝜋 [2(𝑛2 + 1)2 + 𝑛2]. The discrete solutions and the potential

can be seen in Fig. 3.

2.1.4 Rescaling

Since we plan to solve some differential equations numerically, we need to rescale the
physical parameters to work with dimensionless ones. It is convenient to change variables in
the following form ⎧⎪⎪⎨⎪⎪⎩

𝜑 −→ 𝜑

𝑚
,

𝑥𝜇 −→
√
𝜆𝑚𝑥𝜇.

(2.10)

The Lagrangian with the dimensionless parameters become

ℒ = 1
2𝜕𝜇𝜑𝜕

𝜇𝜑− 1
4(𝜑2 − 1)2. (2.11)

Integrating the energy density in the whole space leads to 𝐸𝜑4 =
√

2
3 for the kink (antikink)

of the model.

2.1.5 Interactions

The kink and antikink pair interact via the static force between them. The purpose of
this section is to understand how this interaction works. Since they are particle-like objects,
the first thing that comes to mind is their behavior during collisions. We position the kink at
𝑥 = −𝑥0 and the antikink at 𝑥 = +𝑥0. But why are we considering two different types of
topological defects (kink and antikink) instead of two kinks or two antikinks?

The reason is that during the collision, the kink-antikink (KK̄) and antikink-kink (K̄K)
pairs exhibit an attractive interaction, while two identical topological defects (either two kinks
or two antikinks) show a repulsive interaction. This means that the interaction between two
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different types of topological defects is more interesting and complex than the interaction
between two identical ones.

We are going to deal with 𝜑K(𝑥+ 𝑥0) and 𝜑K̄(𝑥− 𝑥0). The field configuration is shown in
Fig. 4. Furthermore, the initial kink-antikink and antikink-kink conditions to solve the equations
of motion are given in 2.12.⎧⎪⎪⎨⎪⎪⎩

𝜑KK̄(𝑥, 0) = 𝜑K[𝛾(𝑥+ 𝑥𝑜)] + 𝜑K̄[𝛾(𝑥− 𝑥𝑜)] − 1,

𝜑K̄K(𝑥, 0) = 𝜑K[𝛾(𝑥− 𝑥𝑜)] + 𝜑K̄[𝛾(𝑥+ 𝑥𝑜)].
(2.12)

The −1 factor in the first equation of 2.12 serves to ensure that the initial condition remains
between the vacuum values ±1. The ansartz above is valid when we lead with a well separated
pair of topological defects.
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Figure 4 – (a) The kink-antikink profile (b) the antikink-kink profile. In orange and blue, the
energy densities and the dotted lines are the field profiles. Source: The Author
(2024).

There is a method to determine the force between the kink-antikink (antikink-kink) pair.
We need to use the momentum 𝑃 can be obtained by integrating the momentum density 1.3

𝑃 = −
∫︁

kink
𝜕𝑡𝜑𝜕𝑥𝜑 𝑑𝑥. (2.13)

We can use the scheme described in Fig. 5 to avoid infinities. So, our integration process in
equation 2.13 becomes

𝑃 = −
∫︁ −𝑥𝑜+𝐷

−𝑥𝑜−𝐷
𝜕𝑡𝜑𝜕𝑥𝜑 𝑑𝑥. (2.14)

The force can be calculated by differentiating the equation with respect to time. We can use
the initial field configuration given by the first equation in 2.12 and assume that the pair is
initially at rest

𝐹 =
[︃

− 𝜕𝑥𝜑K𝜕𝑥𝜑𝐾̄ + 𝑉 (𝜑(𝑥, 0)) − 𝑉 (𝜑𝐾̄) − 𝑉 (𝜑𝐾)
]︃−𝑥𝑜+𝐷

−𝑥𝑜−𝐷

. (2.15)
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Figure 5 – Scheme to calculate the force between the kink-antikink pair. To avoid infinities, we
need to make the integral between −𝑥𝑜 −𝐷 and +𝑥𝑜 +𝐷, since in the left (right)
part of that interval, the derivatives of the field quickly decay to zero. Source: The
Author (2024).

Finally, by using the second-order Taylor series expansion for the potential terms and applying
the kink-antikink solutions 2.4, we obtain

𝐹 ≈ 16𝜆2𝑚2

𝜆
𝑒−2

√
2𝜆𝑚2𝑥𝑜 . (2.16)

The result obtained in the equation 2.16 shows that the force between the pair is attrac-
tive. There is an explanation for why a field configuration with more than one topological
defect cannot be static. In the initial configuration, the isolated solutions are static, but they
immediately start to attract, leading to acceleration.

2.2 THE "PERFECT" BROTHER: THE SINE-GORDON MODEL

The model we saw in section 2.1 is an example of a non-integrable theory. An example of
an integrable theory arises with the sine-Gordon potential 𝑉 (𝜑) = 1 − cos𝜑. The potential
is shown in Fig. 6. Once we have already seen the calculation of static and energy density
configurations, we can proceed faster.

The potential has infinitely many minima since the condition 𝜑 = 2𝜋𝑛 (𝑛 = 0,±1,±2,±3, . . .)

yields zero. This implies that the problem now involves infinitely many topological sectors. Con-
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sequently, there is a kink-antikink pair between each pair of subsequent vacuum states, as we
can see in Fig. 6.

By using 1.10, the kink-antikink solutions are given by
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Figure 6 – (a) The sine-Gordon potential. The dots represent the zeros of the potential. (b)
The kink-antikink pairs from different sectors. Source: The Author (2024).

⎧⎪⎪⎨⎪⎪⎩
𝜑K(𝑥) = 4 tan−1

[︁
𝑒(𝑥−𝑥𝑜)

]︁
𝜑K̄(𝑥) = 4 tan−1

[︁
𝑒−(𝑥−𝑥𝑜)

]︁
.

(2.17)

Furthermore, it is also possible to calculate the energy density, which has the same profile
as Fig. 2 and is given by ℋ(𝑥) = 4sech2(𝑥−𝑥𝑜). Integrating it leads to the total energy equal
to 𝐸sG = 8.

The sine-Gordon model also has a linearized potential, given by 𝑈(𝑥) = cos[4 arctan(𝑒𝑥)],
but the only eigenvalue is 𝜔2

0 = 0.

2.2.1 Bound States

The sine-Gordon theory allows a type of solution to the equation of motion that is not
present in the 𝜆𝜑4 model. This type of solution, known as breathers, is present in integrable
field theories and arises when we put a kink and an antikink together, interacting in a bound
state. Such configurations can be seen in Fig. 7.
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Figure 7 – Breathers field configuration for different times. The parameter 𝑣 is 0.2. Source:
The Author (2024).

The beauty of the bound states in Fig. 7 is that they can be found analytically. There are
other bound states in non-integrable theories (such as 𝜆𝜑4), but we will see them in the next
chapter. The breather solutions are

𝜑𝑣(𝑥, 𝑡) = 4 tan−1

⎡⎢⎢⎢⎢⎣
sin

(︃
𝑣𝑡√

1 + 𝑣2

)︃

𝑣 cosh
(︃

𝑥√
1 + 𝑣2

)︃
⎤⎥⎥⎥⎥⎦ . (2.18)

where 𝑣 is a free parameter. Despite the fact that this solution is long-lived, it is important to
note that the kink-antikink (antikink-kink) configuration also has a force ∼ 𝑒−2𝐷, as we saw
in 2.1.5.

The solution given by 2.18 is a bound state of a kink-antikink pair. Although it is a bound
state, it is long-lived. This occurs because the theory is what we call integrable, allowing the
waves to interact with each other without losing their shape (or energy). It is also possible
to have a similar bound state in the case of the 𝜆𝜑4 potential, but since the theory is non-
integrable, the bound state of the kink-antikink quickly decays into radiation. This state is
called bion, and we will explore it further in the next chapter.
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Figure 8 – (a) The 𝜑6 potential and (b) the pair kink and antikink from both sectors. Source:
The Author (2024).

2.3 THE 𝜑6 MODEL

In 2.1, we saw a non-integrable field theory that has only two vacuum states. In 2.2, we
saw an integrable field theory that has infinite vacuum states. Now, we are going to add more
vacuum states to the well-known 𝜆𝜑4 model. The second simplest non-integrable field theory
is the 𝜑6 model, which has three vacua in the vacuum manifold.

The 𝜑6 potential 𝑉 (𝜑) = 1
2𝜑

2(𝜑2 −1)2 has three vacua, at 𝜑 = 0,±1. As a result, we have
two different topological sectors and two distinct pairs of kinks and antikinks. The potential
and the pair of topological sectors are shown in 9.

Once again, we reach two kink-antikink configurations by using 1.10 with the 𝜑6 potential
given above. If we call 𝜑(0,1)(𝑥) a kink solution from 𝜑 = 0 to 𝜑 = 1 and also 𝜑(1,0), the
antikink, from 1 to 0, we can use symmetry to write⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑K(𝑥) = 𝜑(0,1)(𝑥) =
√︃

1 + tanh(𝑥)
2 ,

𝜑(1,0) = 𝜑K(−𝑥),

𝜑(0,−1) = −𝜑K(𝑥),

𝜑(−1,0) = −𝜑K(−𝑥).

(2.19)

Due to the symmetry of the potential, all these configurations have the same energy, which can
be found using the localized energy density ℋ(𝑥) = 1

8
[︁
tanh3(𝑥) − tanh2(𝑥) − tanh(𝑥) + 1

]︁
.

All topological defects’ mass (energy) in this model equals 𝑀 = 1/4.
The 𝜑6 model is also a non-integrable theory, which means that the solutions cannot form

a bound state as found in the sine-Gordon model. Additionally, with one more topological
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Figure 9 – Linearized potential for 𝜑6 model. (a) for the kink and (b) for the antikink. Source:
The Author (2024).

sector than in the 𝜆𝜑4 model, the dynamics of the interactions between a kink and an antikink
in the 𝜑6 model are quite different. The 𝜑6 model linearized potential is asymmetric in the
following form ⎧⎪⎪⎨⎪⎪⎩

𝑈K = 15𝜑4
K − 12𝜑2

K + 1,

𝑈K̄ = 15𝜑4
K̄ − 12𝜑2

K̄ + 1.
(2.20)

The potential 2.20 also has only one discrete solution: 𝜔2
0 = 0, similar to the sine-Gordon

model, but there are also continuum solutions which are explored in (LOHE, 1979). The asym-
metry shown in Fig. 9 and in equation 2.20 causes the dynamics of the interaction between
kink-antikink and antikink-kink to differ in several aspects. These aspects will be explored in
the next chapter.
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3 INTERACTIONS

Interactions between topological defects have been extensively studied over the last few
decades. We will begin with exploring the well-known 𝜆𝜑4 model.

In 1983, a paper was published by Campbell (CAMPBELL; SCHONFELD; WINGATE, 1983) and
his collaborators. Through an extensive numerical approach, they showed that there are three
possible outcomes for an interaction between a kink-antikink pair in a non-integrable theory:
bion formation, reflection, and resonance. The resonance phenomenon is an intermediate case
between bion formation and reflection. In bion formation, the pair undergoes a large number
of bounces (collisions) before eventually disappearing, while in reflection, there is only one
bounce before they separate and move to infinity. In resonance, there are a finite number of
bounces before the pair separates and moves to infinity.

Since then, many other works and new models, inspired by sine-Gordon and 𝜆𝜑4 ones, have
been investigated to explore different aspects of the dynamics. In literature, it is possible to
explore modifications of sine-Gordon models in order to get non-integrable models (CAMPBELL;

PEYRARD; SODANO, 1986; GANI; KUDRYAVTSEV, 1999; BELENDRYASOVA et al., 2019; GANI; MAR-

JANEH; SAADATMAND, 2019; PAVA; PLAZA, 2021; DOREY et al., 2021a; CARRETERO-GONZáLEZ

et al., 2022; MUKHOPADHYAY et al., 2022).
Working on polynomial models, such as 𝜆𝜑4 and 𝜑6, as discussed in (ROMANCZUKIEWICZ,

2003; HOSEINMARDY; RIAZI, 2010; BELENDRYASOVA; GANI, 2017; DOREY et al., 2017; GANI;

MARJANEH; JAVIDAN, 2021; ADAM et al., 2022), has revealed additional phenomena in the
literature over the years. When studying the resonance frequency spectra, there is a fine
line in the curve of frequencies as a function of the distance between the centers of the
kink and antikink. This line is called the spectral wall. The spectral wall phenomenon was
discovered in 2019 through (ADAM et al., 2019). Since then, a few other works have explored
the phenomenon (ADAM et al., 2022; CAMPOS et al., 2023).

In this chapter, we will explore the interactions between kink-antikink and antikink-kink
pairs generated by different potentials. We will begin with the non-integrable 𝜆𝜑4 model and
examine the three different phenomena mentioned above. Next, we will discuss the integrable
sine-Gordon model, highlighting the differences arising from integrability. Finally, we will study
the 𝜑6 model, focusing on the differences in phenomenology between the dynamics of the 𝜆𝜑4

and 𝜑6 models.
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The integration process going to be done using the methods of the appendix 5.

3.1 𝜆𝜑4 POTENTIAL

In 2.1, we already discussed many aspects of the 𝜆𝜑4 model. The potential and the kink are
shown in 1, while the analytic form of the kink-antikink pair is given in 2.4. We will integrate
the equation of motion 2.2 using the initial additive ansatz presented in 2.12. Due to the
symmetry of the potential 1 and the equality of the linearized potential 3, the kink-antikink
and antikink-kink cases yield the same results. Therefore, we will only present the kink-antikink
case. Fig. 10 shows the possible results of the collisions for the initial position 𝑥𝑜 = 10. The
large blue regions represent one of the vacua, 𝜑(𝑥, 𝑡) = −1. The dark red regions represent the
other vacuum, 𝜑(𝑥, 𝑡) = 1. The center of the kink-antikink pair is the yellow line, 𝜑(𝑥, 𝑡) = 0,
which separates the two vacua of the potential.

Fig. 10(a) shows the center of the topological defects approaching, colliding, and then
separating to infinity. Fig. 10(b) shows the pair colliding multiple times. As time 𝑡 → ∞, the
field approaches zero.

In the last case, Fig. 10(c) is the most intricate. The pair approach each other, collide,
stay trapped, separate, and then collide again. Initially, it appears that a bion formation is
occurring, but suddenly, they separate and move to infinity after the second bounce.

The process can be clearly seen in Fig. 11. Before the collision, for 0 ≤ 𝑡 ≤ 33, the center of
the field remains constant at 1.0. After the collision, the field value fluctuates slightly around
1.0. These fluctuations represent another way to store energy, aside from kinetic energy:
the energy of the discrete bound mode called shape mode. Here’s how it happens: the pair
accumulates a significant amount of kinetic energy before the collision. After the first collision,
most of this kinetic energy is converted into shape mode energy. As the distance between the
pair decreases, the force between them increases, leading to another collision where the energy
of the shape mode is converted back into kinetic energy. If the kinetic energy is sufficient, the
pair can overcome the attraction force and separate to infinity.

It was observed in (CAMPBELL; SCHONFELD; WINGATE, 1983) that this phenomenon does
not occur for every initial velocity. Surprisingly, when studying the initial velocity, a critical
velocity 𝑣c is found, above which reflection always occurs. Below 𝑣c, bion formation predomi-
nates. In the intermediate velocity region, the resonance phenomenon emerges.



Chapter 3. Interactions 29

(a) 0 20 40 60 80 100
t

20

10

0

10

20

x

1.5

1.0

0.5

0.0

0.5

1.0

(x
,t

)

(b) 0 20 40 60 80 100
t

20

10

0

10

20

x

1.5

1.0

0.5

0.0

0.5

1.0

(x
,t

)

(c) 0 20 40 60 80 100
t

20

10

0

10

20

x

1.5

1.0

0.5

0.0

0.5

1.0

(x
,t

)

Figure 10 – (a) Reflection for 𝑣in = 0.350, (b) bion formation for 𝑣in = 0.150, and (c) two-
bounce solution for 𝑣in = 0.228. Source: The Author (2024).
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Figure 11 – Center of the field as a function of time for 𝑣in = 0.228. Source: The Author
(2024).

Figure 12 – Final velocity as a function of initial velocity. Source: (CAMPBELL; SCHONFELD;
WINGATE, 1983).
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Figure 13 – The center of the field as function of time for some values of initial velocity.
Source: The Author (2024).

The final velocity as a function of the initial velocity is shown in Fig. 3.1. For the 𝜆𝜑4

model, the critical velocity 𝑣c is 0.2598. Above this velocity, the energy exchange mechanism is
always guaranteed. Since there are no resonance windows for every velocity in the system, there
must be another condition on the frequencies for the phenomenon to occur. In (CAMPBELL;

SCHONFELD; WINGATE, 1983), it was shown that the frequency with the time between collisions
follows a linear relation 3.1.

𝜔𝑠𝑇 = 2𝜋𝑛+ 𝛿. (3.1)

The phase 𝛿 is chosen to always be within the interval 0 < 𝛿 < 2𝜋, and 𝑛 in the equation
represents the resonance window number.

The profile of the center of the field can be seen in Fig. 13. As we increase the initial
velocity, more "fingers" appear in the collision, as can be seen in the first figure of Fig. 13
between 𝑡 ≈ 48 and 𝑡 ≈ 58. The frequency in 3.1 is the shape mode frequency. There is a
very convenient way to find that frequency. If we compute the time between collisions in the
resonance windows and the window numbers, the slope of the line connecting the points is
2𝜋/𝜔𝑠.

The result can be seen for the first 8 resonance windows in Fig. 14. The slope of the
line is 2𝜋/𝑛 ≈ 5.189 and 𝛿 ≈ 3.049. This leads to a resonance frequency of 𝜔𝑠 = 1.211.
There is a way to check the integrity of the results we found. By looking at 2.9, we find the
theoretical frequency of the kink-antikink bound state by studying perturbations around the
kink (antikink) function. The value 𝜔2

1 = 3
2 is quite close to the value we found, with an error

of around 1%.
By collecting the data, we have found a way to characterize the kink-antikink bound state

both theoretically and through numerical experiments. Since the frequency obtained from the
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Figure 14 – Time between collisions as a function of the window number. The dots represent
the points we collected from the first 8 resonance windows, and the line is the
linear regression line. The Author (2024).

theoretical approach is very close to that from the simulations, Fig. 3 shows good agreement
between the two eigenfunctions of the kink-antikink resonance bound state.

3.2 SINE-GORDON POTENTIAL

In order to study the difference between the interactions of an integrable model and a non-
integrable one, we will examine the sine-Gordon kink-antikink dynamics. The initial conditions
are

𝜑KK̄(𝑥, 0) = 𝜑K[𝛾(𝑥+ 𝑥𝑜)] + 𝜑K̄[𝛾(𝑥− 𝑥𝑜)] − 2𝜋. (3.2)

The result of the collision can be seen in Fig. 15. It is interesting to compare it with
Fig. 10(a). Firstly, the collision does not generate radiation. This means that the pair does not
lose energy, and the initial velocity equals the final velocity. This can be seen by noting that
the slope of the line of the center is the same before and after the collision. Independently of
the initial velocity we choose, this fact will always occur, and it is guaranteed by the solutions
of the linearized potential we described in 2.2. Unlike in Fig. 3.1, the final velocity as a function
of the initial velocity is just a straight line 𝑣 = 𝑣𝑜.

Another intriguing effect that is also present in non-integrable models (but not in 𝜆𝜑4) is
the switching of sectors. Initially, the kink-antikink pair is in one of the vacua, connecting 0

to 2𝜋. Ultimately, the pair connects the vacua −2𝜋 to 0. The kink-antikink pair can jump to
another sector if a theory has more than two vacuum states.

As we have seen, it may seem like the sine-Gordon model does not correspond to any
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Figure 15 – Kink-antikink collision in the sine-Gordon potential for initial velocity 𝑣 = 0.1.
Source: The Author (2024).

realistic physical system since there is no radiation in interactions. However, like 𝜆𝜑4, the
sine-Gordon model is a prototype in physics since it naturally appears in many areas.

The sine-Gordon equation and its properties appear in the Frenkel–Kontorova model for
perturbations in crystals (BRAUN; KIVSHAR, 1998), thin superconductors (SWIHART, 1961),
and the theoretical study of vortex solutions (BARASHENKOV; PELINOVSKY, 1998) of field theo-
ries. More applications are extensively discussed in (CUEVAS-MARAVER; KEVREKIDIS; WILLIAMS,
2014).

3.3 THE 𝜑6 MODEL

Continuing the work we started in 2.3, we will study the interactions between the pair of
topological defects. Again, we need to solve the field equations of motion for the potential and
kink-antikinks described in 9. Now, as the linearized potentials in 9 are asymmetric, there is a
difference between the kink-antikink collision and the antikink-kink one. The initial conditions
are given in 2.12.

The collision results can be seen in Fig. 16. The first three collisions show behavior similar
to Fig. 10, with the exception that the duration of the phenomena is longer because the initial
velocities are smaller. Fig. 16 (c) is similar to Fig. 15 since the sector switching phenomenon
occurs. The last image shows a bion formation combined with sector switching: the pair keeps
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Figure 16 – Antikink-kink solutions: (a) Reflection for 𝑣in = 0.050, (b) bion formation for
𝑣in = 0.027 and (c) two-bounce solution for 𝑣in = 0.0228. Kink-antikink solutions:
(d) sector switch for 𝑣in = 0.300 and (e) bion formation for 𝑣in = 0.250. Source:
The Author (2024).

switching between sectors.
The theory we have presented so far must be reviewed at some point. Since the linearized

potentials in Fig. 9 do not show any discrete solution different from the zero mode, the
interactions should not present resonance windows.

Another point of view arises in (DOREY et al., 2011). The authors showed that the bound
mode frequencies are not stored in a single topological defect but in the entire pair. The
modes we have seen in (CAMPBELL; SCHONFELD; WINGATE, 1983) are called localized modes,
and consequently, the modes in the 𝜑6 model are the delocalized ones.

To explain how the phenomena occur, we need to analyze the potential in 2.8. We now have
to take derivatives with respect to the combination of kink + antikink or antikink + kink. A
combination of the potentials in 9 is reached. Fig. 17 (a) shows the potential for the antikink-
kink case and (b) for the kink-antikink case. Viewing the situation as an analogy with quantum
mechanics dynamics under a potential well, as can be seen in (GRIFFITHS; SCHROETER, 2018),
the kink-antikink case leads us to a barrier where there are no bound states. However, the
antikink-kink case with energy 1 < 𝜔2 < 4, as shown in Fig. 17, has bound states.

Fig. 18 supports the discussion above. The antikink-kink case in (a) is characterized by
the presence of resonance windows, which can be seen by observing the blue lines. The first
bounce is marked by the lowest line, where the value of the field changes abruptly. There are
regions where the field changes multiple times, which can be interpreted as bion formation,
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(a) (b)
Figure 17 – Linearized potential for 𝜑6 model. (a) for the antikink-kink collision and (b) for

the kink-antikink collision. Source: The Author (2024).

as in Fig. 16 (b), and there are regions where the field changes twice and then returns to its
initial value, as in Fig. 16 (c). These are the resonance windows. Finally, there are regions
where the field changes abruptly only once, corresponding to the reflection in Fig. 16 (a).

Now Fig. 18 (b) shows the kink-antikink collisions for several initial velocity values. The
first thing we notice is the absence of resonance windows, a characteristic of kink-antikink
collisions, as mentioned above. Further to the right, the field value changes abruptly to the
other vacuum value. It starts at 𝜑(0, 𝑡) = 1 and goes to 𝜑(0, 𝑡) = −1, which is a sector change
that happens only once, as in Fig. 16 (d). The green region is characterized by multiple changes
between vacuum values, indicating the bion formation seen in Fig. 16 (e).

The antikink-kink case exhibits resonance windows for small initial velocities, as allowed
by the linearized potential. The theoretical process to get eigenfrequencies is different now.
Unlike the localized ones, the delocalized modes depend on the distance between the kink and
the antikink.
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Figure 18 – Evolution of the center of the field as a function of the initial velocity. (a) antikink-
kink and (b) kink-antikink collisions. Source: The Author (2024).
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Fig. 19 shows the method that we mentioned). Since there are several modes, the frequency
converges to the one with the smaller energy. The vertical line represents the half-separation
of the resonance window and allows us to conclude that the theoretical approach aligns with
the collision results. Each resonance window has a group of curves, as shown in Fig. 19 (b).
The key point is that the resonance frequency is not determined by just one resonance window
but by an entire group, as indicated by 3.1. A method to obtain the graph is described in A.2.
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Figure 19 – Frequencies for 𝑣in = 0.04548 vs. (b) even (solid) and odd (dashed) bound
states for antikink-kink configuration, as a function of the half-separation a.
Source:(DOREY et al., 2011).

Fig. 19 also shows the four delocalized frequencies (horizontal lines). Since in the resonance
window the half separation distance is 𝑎 ≈ 6.13 (blue vertical line), it is possible to check that
these frequencies match the first four even solutions. The collision results show the frequency
𝜔 = 1.0452, which is very close to the point where the first horizontal line in Fig. 19 is
𝜔 = 1.045. The other lines are 𝜔 = 1.28, 1.61, and 1.92.

It is important to notice that, although the delocalized modes store energy differently, the
way we characterize these modes is very similar to what was done in (CAMPBELL; SCHONFELD;

WINGATE, 1983). The linear relation between the time between collisions and the resonance
window number is still valid. This is proven by the slight difference between the frequency
values, generating an error of less than 0.02%. This result is also promising since we found
the curves in Fig. 19 by solving Schrödinger’s equation for the linearized potential in Fig. 17,
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and the approximations of the field equation we used to derive Schrödinger’s equation are
sufficiently accurate.
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4 ON THE LOCALIZED AND DELOCALIZED MODES IN KINK-ANTIKINK

INTERACTIONS: A TOY MODEL

4.1 OVERVIEW

Topological defects are the results of non-linearity that originate from a potential in
field theory. There are many kinds of topological defects, always connected to spontaneous
symmetry-breaking phenomena (CAMPO; ZUREK, 2014). In (2+1)-dimensional field theories,
vortices have significant applications in superconductors (YANAGISAWA; HASE, 2013; YANAG-

ISAWA; HASE; TANAKA, 2018), while in (3+1) theories, skyrmions (KUCHKIN et al., 2020;
KUCHKIN et al., 2023; KUCHKIN; KISELEV, 2023) and monopoles (RAJANTIE, 2012) are ex-
amples.

The simple kink-antikink pair is found in dislocations in gold (EL-BATANOUNY et al., 1987)
and buckled graphene (YAMALETDINOV; SLIPKO; PERSHIN, 2017). Additionally, in condensed
matter and crystallography, applications appear in liquid crystals (DELEV et al., 2019; LI; HOU;

GAO, 2022; MUNIYAPPAN; RAVICHANDRAN; MANIKANDAN, 2023).
The 𝜆𝜑4 model discussed earlier exhibits chaotic structures in the interactions between its

topological defects (CAMPBELL; SCHONFELD; WINGATE, 1983). The shape mode obtained by
the kinks is called a localized mode, as it is stored in the kink and antikink separately. On the
other hand, the 𝜑6 model has a different structure in its modes, where the so-called delocalized
modes are stored in the pair, as we have seen before.

The method we use to evaluate our results when dealing with delocalized modes differs
from the localized ones. More than one localized mode often destroys the resonance windows’
structure due to competition between them. Aliakbar et al. (MARJANEH; SIMAS; BAZEIA, 2022)
contributed to this scenario, where they constructed a model in which resonance windows arise
from more than one localized mode.

Delocalized modes were first studied by Dorey et al. in (DOREY et al., 2011) using the
𝜑6 model. Due to the asymmetry between the kink-antikink and antikink-kink configurations,
resonance windows only appear in the antikink-kink configuration. Since there are many modes,
the resonance frequency is estimated by a numerical inspection. Each resonance frequency
corresponds to a distance between the pair’s center in a two-bounce window. Using this, we
can construct a graph of the spectral structure 𝜔2 as a function of the half-separation 𝑥𝑜 and
determine which mode is stored in the collision.
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To explore some properties of delocalized modes, we need to analyze the linearized potential
of the pair. However, solving the Schrödinger-like equation with that potential is difficult, as
there are only a few potentials with analytic solutions. To study these properties, we build a
𝜑2 toy model. Since the derivatives that appear in the linearized potential are second-order
in the field, we will obtain potential wells like those in quantum mechanics and apply their
properties.

4.2 THE MODEL

We will work with a field theory described by 1.1. The potential is a piecewise 𝜑2 described
by 4.1.

𝑉 (𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴2

2 𝜑2, 0 < 𝜑 < 𝜑1,

−𝐵2

2 (𝜑− 𝜑𝑜)2 + 𝑉+, 𝜑1 < 𝜑 < 𝜑2,

𝐶2

2 (𝜑− 𝜆)2, 𝜑 > 𝜑2.

(4.1)

The potential was built to have three minima, like the 𝜑6 potential, which means there are two
different topological sectors. The continuity of the potential leads us to a well-behaved function
and also solutions of the equations of motion that are piecewise well-behaved functions. By
using the methods of 1.9 and applying the potential 4.1, we obtain the following solution for
a kink in the sector (0, 1)

𝜑K(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑒𝐴𝑥, 𝑥 < 𝑥1,

𝜑0 +𝐾 sin[𝐵(𝑥− 𝑥1) + 𝜃0], 𝑥1 < 𝑥 < 𝑥2,

𝜆+ (𝜑2 − 𝜆)𝑒−𝐶(𝑥−𝑥2), 𝑥 > 𝑥2.

(4.2)

The potential 4.1 has eight parameters that we still need to discuss. By requiring continuity
of the potential and its derivative at the points 𝜑 = 𝜑1 and 𝜑 = 𝜑2, we can eliminate four
of the quantities and express 𝑉+, 𝜑1, 𝜑2, and 𝜆, which means that only 𝐴, 𝐵, 𝐶, and 𝜑0 are
indeed free parameters. By making a rescaling of units, i.e., 𝑥𝜇 → 𝐵−1𝜑−1

0 𝑥𝜇, the quantities
𝐵 and 𝜑0 can be merged into a single one, which we set to 1. This means that our model has
only two free parameters, 𝐴 and 𝐶.

Finally, the piecewise equations 4.2 also have four new constants 𝑥1, 𝑥2, 𝜃0, and 𝐾. By
working with the continuity of the function and its derivative at points 𝑥 = 𝑥1 and 𝑥 = 𝑥2, all
of these four quantities can be expressed as functions of the free parameters 𝐴 and 𝐶. The
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Figure 20 – The piecewise functions. (a) the potential and (b) the four topological defects.
The values are 𝐴 =

√
3 and 𝐵 = 2. Source: (SANTOS; CAMPOS; MOHAMMADI,

2024).

relation between the quantities can be found in appendix C. The other topological defects
can be written as functions of the kink 𝜑K(𝑥) = 𝜑(0,1)(𝑥) as follows: 𝜑(1,0)(𝑥) = 𝜑(0,1)(−𝑥),
𝜑(0,−1)(𝑥) = −𝜑(0,1)(𝑥), and 𝜑(−1,0)(𝑥) = −𝜑(0,1)(−𝑥). All four topological sectors, as well as
the potential, can be seen in Fig. 20.

4.3 STABILITY EQUATION

Searching for fluctuations like 2.7 in the kink solution, we obtain a Schrödinger-like equation
with the linearized potential given by the second derivative of 4.1. Since the potential is a
piecewise 𝜑2, the linearized potential will also be a piecewise one with constant functions.
Then we obtain a finite square well in the form

𝑈(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴2, 𝑥 < 𝑥1,

−1, 𝑥1 < 𝑥 < 𝑥2,

𝐶2, 𝑥 > 𝑥2.

(4.3)
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Figure 21 – The linearized potentials. (a) kink (b) pair. The parameters are 𝐴 =
√

3 and
𝐶 =

√
6. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

Otherwise, when we work with the entire pair and study the delocalized modes, the linearized
potential is given by

𝑈(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶2, 𝑥 < −𝐷

2 − 𝐿,

−1, −𝐷

2 − 𝐿 < 𝑥 < −𝐷

2 ,

𝐴2, −𝐷

2 < 𝑥 <
𝐷

2 ,

−1, 𝐷

2 < 𝑥 <
𝐷

2 + 𝐿,

𝐶2, 𝑥 >
𝐷

2 + 𝐿.

(4.4)

Both linearized potentials are shown in Fig. 21.
For localized modes, the square-well potential, described in 4.3, gives solutions of interest

in the region 0 ≤ 𝜔 < 𝐴 in the case 𝐶 > 𝐴 and 0 < 𝜔 < 𝐶 otherwise. Solutions with
𝜔 > 𝐶(𝐴) > 𝐴(𝐶) do not describe the bound localized states.

Since the square well is easily solvable, the eigenfunctions 𝜂(𝑥) can be found by using the
functions in D, their continuities, and continuities in their derivatives. It is possible to reach a
transcendental equation for the eigenfrequency spectrum, given by 4.5, with 𝑘1 =

√
𝐴2 − 𝜔2,

𝑘2 =
√

1 + 𝜔2, and 𝑘3 =
√
𝐶2 − 𝜔2.

A profile of the potential for the parameters 𝐴 =
√

3 and 𝐶 =
√

6 can be found in Fig. 21
(a). As we are interested in different scenarios for the number of localized modes, changing
the values of 𝐴 and 𝐶 allows us to control the number of modes that fit in the potential. The
number of modes as a function of the parameters 𝐴 and 𝐶 can be found in Fig. 22.

tan(𝑘2𝐿) = 𝑘2(𝑘1 + 𝑘3)
𝑘2

2 − 𝑘1𝑘3
(4.5)
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Figure 22 – Number of modes as function of 𝐴 and 𝐶. The dotted line shows the number of
modes for 𝐴 = 𝐶 Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

Since the transcendental equation is symmetric under the transformations 𝐴 → 𝐶 and
𝐶 → 𝐴, Fig. 22 is also symmetric with respect to the line 𝐴2 = 𝐶2. The blue region
represents the region with only the trivial zero mode solution, while the green and red regions
correspond to one and two modes, respectively.

It is interesting to understand the limits of the square well. If 𝐶 → ∞, we reach a semi-
infinite square well with the transcendental equation

tan(𝑘2𝐿) = −𝑘2

𝑘1
, (4.6)

that agrees with the well-known problem. Looking at the line 𝐴2 = 𝐶2, we reach a symmet-
ric finite square well satisfying the transcendental equation tan(𝑘2𝐿) = 2𝑘1𝑘2

𝑘2
2 − 𝑘2

1
, with both

symmetric and antisymmetric solutions.
Changing the scenario, Fig. 21 (b) shows the delocalized modes potential. The shape of

the potential is essential to the problem. If the height 𝐴 is greater than 𝐶, we reach a situation
similar to the 𝜑6 model with kink-antikink collisions, as seen in Fig. 17 (b). This means that
only cases where 𝐶 > 𝐴 are of interest. Furthermore, we need to work only in the region
𝐴 < 𝜔 < 𝐶.

Taking the solutions in D and considering the continuity of the eigenfunction and its deriva-
tive, we obtain two different transcendental equations for the eigenfrequencies: one for the even
solutions and the other for the odd ones. The equations below represent the transcendental
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equations for the even and odd solutions, respectively.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tan

(︂
𝑘1
𝐷

2

)︂
=

𝑘3
𝑘1

− 𝑘2
𝑘1

tan(𝑘2𝐿)
1 + 𝑘3

𝑘2
tan(𝑘2𝐿)

tan
(︂
𝑘1
𝐷

2

)︂
=

𝑘1
𝑘2

[︁
1 + 𝑘3

𝑘2
tan(𝑘2𝐿)

]︁
tan(𝑘2𝐿) − 𝑘3

𝑘2

(4.7)

The 𝐷
2 factor in 4.7 is the half separation distance between the pair.

Equations 4.7 also allow an interesting analysis of the limiting cases. If we make 𝐶 → ∞,
we reach the infinite square well with a small perturbation at the center. Therefore, the bound
frequencies can be expanded in powers of 𝐴2 in the following form

𝜔2
𝑛 = 𝑛2𝜋2

(𝐷 + 2𝐿)2 − 1 + 𝐴2
[︂

𝐷

𝐷 + 2𝐿 − 1
𝑛𝜋

sin
(︂

𝑛𝜋𝐷

𝐷 + 2𝐿

)︂]︂
+ 𝒪(𝐴4) (4.8)

Now we have all we need to numerically solve the equations of motion for the kink-antikink
(antikink-kink) collisions and study the results. That is what we will do in the next section.

4.4 KINK-ANTIKINK AND ANTIKINK KINK COLLISIONS

As we already know, initial conditions are needed to solve the partial differential equations.
For the kink-antikink case, we initiate the collision with⎧⎪⎪⎨⎪⎪⎩

𝜑(𝑥, 0) = 𝜑K[𝛾(𝑥+ 𝑥0)] + 𝜑K̄[𝛾(𝑥− 𝑥0)] − 1,

𝜑̇(𝑥, 0) = −𝛾𝑣
{︁
𝜑′

K[𝛾(𝑥+ 𝑥0)] − 𝜑′
K̄[𝛾(𝑥− 𝑥0)]

}︁
,

(4.9)

and for antikink-kink case

⎧⎪⎪⎨⎪⎪⎩
𝜑(𝑥, 0) = 𝜑K[𝛾(𝑥− 𝑥0)] + 𝜑K̄[𝛾(𝑥+ 𝑥0)],

𝜑̇(𝑥, 0) = −𝛾𝑣
{︁
−𝜑′

K[𝛾(𝑥− 𝑥0)] + 𝜑′
K̄[𝛾(𝑥+ 𝑥0)]

}︁
.

(4.10)

In order to explore the scenarios we want, we need to adjust the parameters 𝐴 and 𝐶

properly. If we choose the pair (𝐴,𝐶) = (𝑝1, 𝑝2) to obtain a number 𝑛D of delocalized modes
in the antikink-kink collision analysis, to get the same number of modes when analyzing the
kink-antikink scenario, it is necessary to change the values to (𝐴,𝐶) = (𝑝2, 𝑝1). This is needed
because we know that the number of modes depends on the depth of the well, and switching
from kink-antikink to antikink-kink also changes the heights of the potential.

We need to use the linear relation between the time between collisions and the number
of resonance windows 3.1 to obtain the frequencies of the vibrational modes excited in the
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collisions. The phase 𝛿 has the same condition as before, in the interval (0, 2𝜋). Then, we
can define an error by comparing the numerical frequency with the theoretical one from the
transcendental equation for localized modes. The relative error can be estimated as

𝛿𝜔 = |𝜔theoretical − 𝜔collision|
𝜔theoretical

. (4.11)

For delocalized modes, a graphical construction will be presented.

4.4.1 (𝐴2, 𝐶2) = (8/3, 8/3)

The most common case in the literature occurs when there is only one localized mode, as
in (CAMPBELL; SCHONFELD; WINGATE, 1983). The possible scenarios for the kink-antikink and
antikink-kink collisions can be seen in Fig. 23. The case where we choose 𝐴2 = 𝐶2 = 8/3

is particularly special because we reach a symmetric square well in Fig. 21(a) that matches
precisely with the one in (CAMPOS; MOHAMMADI, 2020).

More details of the collision results can be seen in Fig. 24. We interpret the graphs similarly
to what we did in the 𝜑6 model, except that in the kink-antikink case, there is a new feature:
we can see something like a resonance window. There are regions where the field changes
abruptly twice and then returns to its initial value, as in Fig. 23(c). It means that we can also
use what we saw in the 𝜆𝜑4 model to determine the resonance frequencies of such windows.

Fig. 24 (a) shows the kink-antikink collision, while (b) shows the antikink-kink collision.
The first thing we notice is that the resonance windows in the kink-antikink scenario are thinner
than those in the antikink-kink case. Another characteristic of the kink-antikink collision is the
higher critical velocity, especially when there is more than one localized mode or a mixture of
localized and delocalized modes. This leads us to believe there is competition between these
modes, disrupting the multi-resonance windows’ chaotic structure.

The theoretical approach involves measuring the time between collisions for resonance
windows in Fig. 24, which allows us to find the resonance frequencies through 4.5 since there
is only one localized mode. The calculated frequency is 𝜔T = 1.533. For the antikink-kink
case, we obtain a frequency of 𝜔𝐾̄𝐾 = 1.500, and for the kink-antikink case, the frequency is
𝜔𝐾𝐾̄ = 1.499. The associated error for both cases is practically the same, around 0.55%.

From now on, we also need to account for the discontinuity between the values of 𝐴 and
𝐶. A larger difference between 𝐴 and 𝐶 leads to a greater discontinuity in the linearized
potentials, which also contributes to numerical errors.
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Figure 23 – Bion formation in (a) an kink-antikink with 𝑣𝑜 = 0.15, and (b) a antikink-kink
collision with 𝑣𝑜 = 0.2. Two-bounce window for (c) a kink-antikink with 𝑣𝑜 =
0.211, and (d) an antikink-kink collision with 𝑣𝑜 = 0.23. Reflection for (e) a
kink-antikink with 𝑣𝑜 = 0.40, and (f) an antikink-kink collision with 𝑣𝑜 = 0.4.
Parameters are 𝐴2 = 𝐶2 = 8/3. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

4.4.2 (𝐴2, 𝐶2) = (1.5, 7.0)

We will now examine the case where there are only delocalized modes. This case is similar
to the 𝜑6 model in (DOREY et al., 2011), achieved by setting the parameters as 𝐴2 = 1.5 and
𝐶2 = 7.0. The center of the field as a function of time and initial velocity can be seen in
Fig. 25.

In addition to the thinner resonance windows in the kink-antikink case, the critical velocity
is higher than in the antikink-kink scenario. Although the system has the same configuration
as the 𝜑6 model, we can look at Fig. 25(a) and observe the resonance structure, indicating
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Figure 24 – Center of the field as function of time and initial velocity. The collisions cases are
(a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 𝐶2 = 8/3. Source:
(SANTOS; CAMPOS; MOHAMMADI, 2024).

that the pair continues exchanging energy between the vacua.
The numerical simulations gives the frequencies 𝜔𝐾̄𝐾 = 1.381 and 𝜔𝐾𝐾̄ = 1.371. The

difference between the frequencies has become larger now and we believe that is due to the
radiation from the sector changing. The spectrum for both cases is shown in Fig. 26.

Since the linearized potential for both cases in Fig. 21 is the same, the lines are also identical
for both cases, and this fact will persist in future analyses. In both Fig. 26 (a) and (b), the
resulting frequency falls within the area of the lines, indicating that a good approximation has
been achieved through our methods. The kink-antikink case also shows a larger separation
between the pair. This is because the resonance windows in the kink-antikink case typically
occur at higher initial velocities than in the antikink-kink case. A higher initial velocity implies
more incredible kinetic energy, leading to a larger separation.
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Figure 25 – Center of the field as a function of time and initial velocity. The collisions cases are
(a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 7.0.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).
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Figure 26 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink and
(b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 7.0. Source: (SANTOS;
CAMPOS; MOHAMMADI, 2024).

4.4.3 (𝐴2, 𝐶2) = (2.5, 6.125)

It is time to mix the modes. Until now, the state of the art has focused on systems with
only localized or delocalized modes. Our model can combine both. The first case we analyze
is achieved by setting the parameters to (𝐴2, 𝐶2) = (2.5, 6.125). The profile of the center of
the field as a function of initial velocity and time can be seen in Fig. 27. Notably, the critical
velocity for the antikink-kink case is still smaller than for the kink-antikink case. In the kink-
antikink case, for 𝑣𝑜 ≈ 0.375, it is possible to observe a triple bounce with a sector-changing
phenomenon.
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Figure 27 – Center of the field as a function of time and initial velocity. The collisions cases are
(a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 2.5 and 𝐶2 = 6.125.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

For these parameters, the transcendental equations provide a theoretical resonance fre-
quency of localized modes 𝜔T = 1.563. Since there is a mixture of modes, it is interesting to
check what frequency the system will present. By studying the resonance windows in Fig. 27,
we obtain 𝜔K = 1.528 and 𝜔K = 1.501.

The associated errors are 𝛿𝜔K = 2.1% and 𝛿𝜔K = 4.0%. Regarding the delocalized modes,
Fig. 28 shows the spectrum as a function of the half separation distance of the pair 𝐷/2. The
modes start only at 𝐴 ≈ 1.581, so there is no horizontal line in the spectrum graph in Fig. 28.

Finally, the first line in Fig. 28 is an odd mode. This occurs because quantum systems bound
in a symmetric potential always have the lowest eigenfunction as an even one. Therefore, the
localized mode is symmetric, and the first delocalized mode is asymmetric.

4.4.4 (𝐴2, 𝐶2) = (6.05, 6.05)

The next case is the one where 𝐴2 = 𝐶2 = 6.05. This case presents two localized modes
and no delocalized ones. The transcendental equation gives us two solutions: 𝜔T1 = 1.678

and 𝜔T2 = 2.457. However, Fig. 29 shows the center of the field as a function of time and
initial velocity, and it is clear that the resonance windows are suppressed in both cases. This
situation is common in the literature, although there are a few exceptions (DOREY et al., 2021b;
MARJANEH; SIMAS; BAZEIA, 2022).
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Figure 28 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink
and (b) antikink-kink. The parameters are 𝐴2 = 2.5 and 𝐶2 = 6.125. Source:
(SANTOS; CAMPOS; MOHAMMADI, 2024).
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Figure 29 – Center of the field as a function of time and initial velocity. The collisions cases
are (a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 𝐶2 = 6.025.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

Despite the resonance windows in Fig. 29 being suppressed, it is still possible to determine
the system’s resonance frequency by examining the false resonance windows, intervals of initial
velocity where the system nearly exhibits a resonance window. In these intervals, the pair gains
a significant amount of energy but not enough to separate to infinity. The presence of the
second localized mode creates competition between modes.

The resonance frequency from the simulations is 𝜔𝐾̄𝐾 = 1.588, while in the kink-antikink
scenario, even the false resonance windows are absent, consistent with the windows being
thinner whenever they do appear. The associated error is then 𝛿𝜔𝐾̄𝐾 = 5.2%.
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4.4.5 (𝐴2, 𝐶2) = (1.5, 9.0)

Now, we will add to the cases where the number of localized modes equals two. From the
previous section, we already know that the localized resonance windows are suppressed. By
adding delocalized modes, the situation becomes even worse.

Fig. 32 shows the center of the fields as a function of time and initial velocity. While the
profile of the curves appears similar, they are actually quite different.

(a)
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

vo

0

50

100

150

200

250

300

350

400

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(0
,t

)

(b)
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

vo

0

50

100

150

200

250

300

350

400

t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(0
,t

)

Figure 30 – Center of the field as a function of time and initial velocity. The collisions cases are
(a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 9.0.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).
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Figure 31 – Spectrum of interactions in the collisions. The scenarios are (a) kink-antikink and
(b) antikink-kink. The parameters are 𝐴2 = 1.5 and 𝐶2 = 9.0. Source: (SANTOS;
CAMPOS; MOHAMMADI, 2024).

In the kink-antikink case, the resonance windows are suppressed, while in the antikink-kink
case, the windows are thinner than those in the previous similar case (𝐴2, 𝐶2) = (1.5, 7.0).
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This leads us to conclude that the addition of delocalized modes can also disturb the struc-
ture of resonance windows, as was previously known to happen with localized modes. Since
the resonance structure in the kink-antikink case is more fragile due to the sector-changing
phenomena, the windows are suppressed.

The collisions provide a frequency of 𝜔𝐾̄𝐾 = 1.358, and the spectrum in Fig. 31(b) shows
that the result is in good agreement with this structure. In that range of inter-kink distances,
the numerical frequency is indeed compatible with the lowest delocalized mode.

4.4.6 (𝐴2, 𝐶2) = (7.0, 9.5) and (𝐴2, 𝐶2) = (7.0, 12.0)

Now, let us add to the cases in which the number of localized modes is equal to two. We
already know from the previous section that the localized resonance windows are suppressed.
By adding delocalized modes, the structure that was already messy due to localized modes
becomes even worse in this sense.

Fig. 32 shows the center of the fields as a function of time and initial velocity. The profile
of the curves seems to be the same, but they are quite different.
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Figure 32 – Center of the field as a function of time and initial velocity for antikink-kink
collisions. The parameters are (a) 𝐴2 = 7.0 and 𝐶2 = 9.5 (b) 𝐴2 = 7.0 and
𝐶2 = 12.0. Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).

In Fig. 32 (a), a few resonance windows and many false ones are visible. This allows us
to calculate the resonance frequency, which is 𝜔𝐾̄𝐾 = 1.563. The transcendental equation
approach provides two theoretical frequencies: 𝜔T1 = 1.697 and 𝜔T2 = 2.624. This indicates
that our predictions converge to the lowest frequency mode with an error of 𝛿𝜔T = 7%. We
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can now affirm that the system converges to the resonance frequency of the lowest frequency
(energy), even if the resonance frequency is reached through false resonance windows.

In Fig. 32 (b), the scenario shows a fully suppressed resonance structure, even in the
antikink-kink case. While a few resonance windows were found, they were not sufficient to
ensure acceptable accuracy. This suggests that the additional delocalized modes destroyed the
resonance window structure.

4.4.7 (𝐴2, 𝐶2) = (2.7, 9.5)

Finally, the last case emphasizes the influence of delocalized modes in cases with only one
localized mode. The profile of the center of the field is presented in Fig. 33. The kink-antikink
case gets its resonance windows fully suppressed, so we will not calculate the frequency in such
cases. The result is expected since we saw in previous sections the effect of the addition of
delocalized modes, and the kink-antikink resonance structure is more fragile than the antikink-
kink scenario.

The antikink-kink case presents a theoretical frequency of 𝜔T = 1.596 and a collision
frequency of 𝜔𝐾̄𝐾 = 1.548 so we can estimate the error 𝛿𝜔𝐾̄𝐾 = 3%. The delocalized modes
start at 𝐴 ≈ 1.643, which is far from the collision frequency. Therefore, our results reinforce
the notion that the lowest vibrational mode primarily governs the appearance of resonance
windows.
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Figure 33 – Center of the field as a function of time and initial velocity. The collisions cases are
(a) kink-antikink (b) antikink-kink. The parameters are 𝐴2 = 2.7 and 𝐶2 = 9.5.
Source: (SANTOS; CAMPOS; MOHAMMADI, 2024).
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4.5 CONCLUSION

In this work, we have constructed a 𝜑2 piecewise potential to help understand localized
and delocalized modes’ role in the resonance structure of kink and antikink interactions. When
small perturbations around static solutions are studied, the toy model leads to an asymmetric
square well potential. The model has two controllable parameters, 𝐴 and 𝐶, which allow us
to change the heights of the asymmetric square well and obtain more modes of each kind.

Since the potential has three minima, the kink-antikink case presents a sector change with
resonance windows, i.e., intervals of initial velocity where the pair switches the sector and
comes back multiple times. On the other hand, the antikink-kink case shows a resonance
structure very similar to what we observe in the 𝜆𝜑4 model, the expected resonance structure.
Notably, in both scenarios, the resonance frequency converges to the lowest level of the energy
spectrum.

Collisions with one localized mode or a few delocalized ones present a rich resonance
structure, similar to (CAMPBELL; SCHONFELD; WINGATE, 1983) and (DOREY et al., 2011). Our
results show that when we increase the number of modes, whether localized or delocalized,
the resonance structure becomes narrower until it is suppressed. This happens because even
if the system exhibits the lowest frequency, other modes are not negligible when the energy
is redistributed after the collision process. The frequent occurrence of resonance windows
suggests that higher-frequency modes are only weakly excited. However, these modes can
become significantly excited, suppressing any resonant behavior.

The model helps also to understand the radiation emitted after kink and antikink interac-
tions, as it allows for the study of detailed scenarios with and without sector switching, while
keeping all linear features of the model fixed. This can be done by measuring the amount of
radiation that reaches the boundary at infinity after the interaction.
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5 FINAL REMARKS

In this work, we have explored the phenomenon of resonance windows in kink and antikink
interactions. These phenomena occur in (1 + 1)-dimensional field theory and arise from the
properties of the potential function 𝑉 (𝜑).

In chapter 1, we examined the fundamental aspects of the field theories of interest. The
linearity of the wave equation can be disrupted by nonlinear phenomena due to the addition
of a function on the right-hand side. We discussed essential concepts such as energy, action,
and how static solutions can emerge from the BPS condition.

Chapter 2 focused on understanding the potentials. We identified two principal properties
that potentials must satisfy: they must be positive-definite and even functions. These properties
allow for the existence of topological defects, which were discussed in this chapter, along with
the kink and antikink pairs related to the potentials we consider.

Topological defects serve as particle-like solutions, meaning their energy density is local-
ized. These objects can also interact with each other, exhibiting attractive interactions between
kink and antikink pairs, while kink-kink and antikink-antikink pairs repel each other. By exam-
ining small perturbations around the static solutions, we arrive at a Schrödinger-like equation.
The solution 𝜔 = 0 is always guaranteed due to the system’s translational symmetry. Dis-
crete solutions (𝜔 ̸= 0) represent bound states, whereas continuum solutions correspond to
radiation.

In chapter 3, we focused on the numerical results of interactions between kink and antikink
pairs. Three possible outcomes emerge from these interactions: first, a reflection where the
kink-antikink (or antikink-kink) pair interacts and escapes to infinity separately; second, a
collision leading to annihilation, known as bion formation.

Additionally, the pair can interact, collide, separate, collide again, and then separate to
infinity. This scenario lies between reflection and bion formation and can be explained through
the energy exchange mechanism. This mechanism involves an exchange between kinetic and
shape mode energy, allowing the pair to remain in a bound state for a while before separating.
The range of initial velocities for which this occurs is termed resonance windows, with shape
modes referred to as localized modes.

All these scenarios are observed in the 𝜆𝜑4 theory. In contrast, while 𝜑6 theory also exhibits
these scenarios, they differ significantly. In the 𝜆𝜑4 theory, the shape mode is localized within
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each topological defect, whereas in the 𝜑6 model, the mode is distributed across the entire
pair, leading to the concept of delocalized modes. Furthermore, antikink-kink collisions exhibit
phenomenology similar to that of 𝜆𝜑4, while kink-antikink interactions have unique features,
including the sector change phenomenon, where the pair transitions to another topological
sector.

Finally, chapter 4 presents a toy model for studying localized and delocalized modes. In
this model, we created a 𝑉 ∼ 𝜑2 piecewise potential that yields a square well as the stability
potential in the linearized regime. With two free parameters, 𝐴 and 𝐶, representing the height
of the square well, we can introduce more localized or delocalized modes or even a mixture of
them.

Our results align with the 𝜆𝜑4 and 𝜑6 models. When only one localized mode is present,
the resonance structure is rich, as seen in (CAMPBELL; SCHONFELD; WINGATE, 1983). Adding
more localized modes can disrupt this structure due to competition among modes. In contrast,
a few localized modes remain consistent with (DOREY et al., 2011), presenting a rich resonance
structure, but adding more delocalized modes may also compromise the resonance structure
due to mode competition.

In conclusion, both localized and delocalized modes can influence the resonance windows,
indicating that even higher modes must be considered when discussing energy distribution
among the various possible modes.
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A DISCRETIZATION METHODS FOR DIFFERENTIAL EQUATIONS

𝜕2

𝜕𝑡2
𝜑(𝑥, 𝑡) − 𝜕2

𝜕𝑥2𝜑(𝑥, 𝑡) + 𝑏(𝑥) 𝜕
𝜕𝑡
𝜑(𝑥, 𝑡) = 𝑓(𝑥), (A.1)

In order to solve problems like A.1 and in 3, we need to study a few methods to assist us in
that task. We will not show all methods, but the problems we solved here have been addressed
using the methods described below. First of all, we need to present the numerical language we
are going to use here. On a computer, there is no way to represent an infinite spacetime grid.
Instead, we solve problems within a box of length 2𝐿 (from −𝐿 to +𝐿) in space and 𝑇 in time.
This means that the x-axis will be divided into 𝑁𝑥 points and the time-axis into 𝑁𝑡 points,
leading to small intervals between two subsequent points of 𝑑𝑥 = 2𝐿/𝑁𝑥 and 𝑑𝑡 = 𝑇/𝑁𝑡.

Instead of working with a field 𝜑(𝑥, 𝑡), we are going to work with a field in points 𝑥𝑖 and
𝑡𝑗 of spacetimes, like 𝜑(𝑥𝑖, 𝑡𝑗) where 𝑖 is the space index, 𝑖 = 0, 1, ..., 𝑁𝑥−1 and 𝑗 the time
index, 𝑗 = 0, 1, ..., 𝑁𝑡−1. So, the field configuration in the point (𝑥𝑖, 𝑡𝑗) can be expressed as
𝜑𝑖,𝑗. That process is called the discretization of the spacetime grid.
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Figure 34 – Spacetime grid. Source: the Author (2024).

Furthermore, setting limits on the spacetime grid can introduce some finite-size problems,
so we need to develop techniques to minimize these effects. Since our problem involves radi-
ation, the waves generated at specific points may travel to the box’s walls and then reflect
back, influencing our field solutions.



Appendix A. Discretization Methods for Differential Equations 56

A.1 FINITE DIFFERENCES METHOD FOR PDE

To solve the differential equations, we need to teach the computer how to compute deriva-
tives. The simplest method is the finite difference method, which follows the usual definition
of derivatives given in mathematics A.2. If the intervals 𝑑𝑥 and 𝑑𝑡 are sufficiently small, this
method provides a good approximation. Finite difference methods are helpful for problems
with discontinuities, as the derivatives depend on only a few points, minimizing the associated
error.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕

𝜕𝑥
𝜑𝑖,𝑗 ≈ 𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

𝑑𝑥
+ 𝒪(𝑑𝑥) or 𝜕

𝜕𝑥
𝜑𝑖,𝑗 ≈ 𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗

2𝑑𝑥 + 𝒪(𝑑𝑥),
𝜕

𝜕𝑡
𝜑𝑖,𝑗 ≈ 𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

𝑑𝑡
+ 𝒪(𝑑𝑡) or 𝜕

𝜕𝑡
𝜑𝑖,𝑗 ≈ 𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1

2𝑑𝑡 + 𝒪(𝑑𝑡),
(A.2)

In second-order derivatives we reach⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕2

𝜕𝑥2𝜑𝑖,𝑗 ≈ 𝜑𝑖+1,𝑗 − 2𝜑𝑖,𝑗 + 𝜑𝑖−1,𝑗

𝑑𝑥2 + 𝒪(𝑑𝑥2),
𝜕2

𝜕𝑡2
𝜑𝑖,𝑗 ≈ 𝜑𝑖,𝑗+1 − 2𝜑𝑖,𝑗 + 𝜑𝑖,𝑗−1

𝑑𝑡2
+ 𝒪(𝑑𝑡2).

(A.3)

We can then transform a partial differential equation into an algebraic one by using the
boundary conditions to obtain the previous values of the field. Let us begin with equation A.1.
By inserting the discretization

𝜑𝑖,𝑗+1 − 2𝜑𝑖,𝑗 + 𝜑𝑖,𝑗−1

𝑑𝑡2
+ 𝑏𝑖

𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1

2𝑑𝑡 = 𝜑𝑖+1,𝑗 − 2𝜑𝑖,𝑗 + 𝜑𝑖−1,𝑗

𝑑𝑥2 + 𝑓𝑖, (A.4)

reorganizing the equation leads to

𝜑𝑖,𝑗+1 = 2
𝛼+

(1 − 𝜆2)𝜑𝑖,𝑗 − 𝛼−

𝛼+
𝜑𝑖,𝑗−1 + 𝜆2

𝛼+
(𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗) + 𝑑𝑡2

𝛼+
𝑓𝑖, (A.5)

where 𝛼± = 1 ± 𝑏𝑖

2 𝑑𝑡 and 𝜆 = 𝑑𝑡

𝑑𝑥
. We will use initial conditions as A.6.

⎧⎪⎪⎨⎪⎪⎩
𝜑(𝑥, 0) = 𝜂(𝑥) −→ 𝜑𝑖,0 = 𝜂𝑖

𝜑̇(𝑥, 0) = 𝜓(𝑥) −→ 𝜑̇𝑖,0 = 𝜓𝑖

(A.6)

Thus, it is possible to rewrite A.5 for 𝑡 = 0 using the derivative 𝜑𝑖,1 − 𝜑𝑖,−1

2𝑑𝑡 ≈ 𝜓𝑖

𝜑𝑖,1 = (1 − 𝜆2)𝜑𝑖,0 + 𝑑𝑡𝛼−𝜓𝑖 + 𝜆2

2 (𝜑𝑖+1,0 + 𝜑𝑖−1,0) + 𝑑𝑡2

2 𝑓𝑖, (A.7)

The equation A.7 gives us the first step towards solving the partial differential equation.
By knowing 𝜑𝑖,1, we can continue the iterative process until we have the field solution at every
point on the spacetime grid.



Appendix A. Discretization Methods for Differential Equations 57

The function 𝑏(𝑥) is called a bump function, essential for minimizing error. Since our
collisions between kinks and antikinks generate radiation, it is crucial that this radiation does
not return and alter the field. The bump function acts as a wall that absorbs the radiation
near the boundary of the interval. An example of a bump function is A.8.

𝑏(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5𝑒
(︁

1− 102
102−𝑥2

)︁
, −10 < 𝑥 < 10,

0, otherwise.
(A.8)

A.1.1 Python Implementation

Using Python 3.12.4, it is possible to implement the algorithm in the following way
1 def solver(phi0 , phi0t , dV, L, x, t,v_o , gamma , lamb , nx, nt, dt, dx):

#EDP SOLVER

3 phi_old = np.zeros(nx) #phi_i -1

phi = np.zeros(nx) #phi_i

5 phi_new = np.zeros(nx) #phi_i+1

7 field = np.zeros((int(nx/e),int(nt/E)))

#field function initialization

9

for i in range(0,nx):

11 phi[i] = phi0(x[i], gamma)

I = int(i/e)

13 if i%e == 0:

field[I,0] = phi[i]

15 #phi(x,0) = initial condition

alfa = 1 + dt*bump(x[0])

17 beta = 1/alfa

value = (beta /(1+ beta))*(2*(1 - lamb*lamb)*phi[0] + lamb*lamb*(phi[nx -1] + phi

[1]) + 2*dt*phi0t(x[0], gamma , v_o) - dt*dt*dV(phi [0]) + dt*bump(x[0])*

phi [0])

19

phi_old [0] = phi[0]

21 phi_new [0] = value

field [0,1] = value

23 #first step

25 for i in range(1,nx):

#next steps

27 alfa = 1 + dt*bump(x[i])

beta = 1/alfa

29 value = (beta/(beta +1))*(2*(1 - lamb*lamb)*phi[i] + lamb*lamb*(phi[i-1] +

phi[(i+1)%nx]) + 2*dt*phi0t(x[i], gamma , v_o) - dt*dt*dV(phi[i]) +
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bump(x[i])*dt*phi[i])

phi_old[i] = phi[i]

31 phi_new[i] = value

I = int(i/e)

33 if i%e == 0:

field[I,1] = value

35 for i in range(1,nx):

phi[i] = phi_new[i]

37 #field update

39

for j in range(2,nt):

41 #solving for all times

alfa = 1 + dt*bump(x[0])

43 beta = 1/alfa

value = beta *(2*(1 - lamb*lamb)*phi[0] + lamb*lamb*(phi[nx -1] + phi [1]) -

phi_old [0] - dt*dt*dV(phi [0]) + bump(x[0])*dt*phi [0])

45 phi_old [0] = phi[0]

phi_new [0] = value

47 J = int(j/E)

if j%E == 0:

49 field[0,J] = value

for i in range(1,nx):

51 alfa = 1 + dt*bump(x[i])

beta = 1/alfa

53 value = beta *(2*(1 - lamb*lamb)*phi[i] + lamb*lamb*(phi[i-1]+ phi[(i+1)%

nx]) - phi_old[i] - dt*dt*dV(phi[i]) + bump(x[i])*dt*phi[i])

phi_old[i] = phi[i]

55 phi_new[i] = value

I = int(i/e)

57 J = int(j/E)

if i%e == 0 and j%E == 0:

59 field[I,J] = value

61 for k in range(0,nx):

phi[k] = phi_new[k]

63 #field update

65 return field

#returning solution

The code above solves the partial differential equation for the field using finite difference
methods. It is suitable for field solutions with high precision. In cases where 𝑁𝑡 > 105, the
calculations are performed at all points, but the field is only saved after every 25 time steps.
This approach ensures high precision while optimizing memory usage.
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A.1.2 Five Points Stencil for PDE

There are other ways to discretize derivatives. For problems involving smooth linearized
potentials, the Five Points Stencil discretization provides a better approach.

𝜕2

𝜕𝑥2𝜑𝑖,𝑗 ≈ −𝜑𝑖+2,𝑗 + 16𝜑𝑖+1,𝑗 − 30𝜑𝑖,𝑗 + 16𝜑𝑖−1,𝑗 − 𝜑𝑖−2,𝑗

12𝑑𝑥2 + 𝒪(𝑑𝑥4). (A.9)

The point at which we want to calculate the derivative has a greater weight than the other
five points. This method is helpful since the error is of order 𝒪(𝑑𝑥4). There is no need to
change the time evolution discretization because the program’s error is small.

By using A.9 in A.1, we reach similar expressions like A.5 and A.7⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜑𝑖,𝑗+1 = 2

𝛼+
𝜑𝑖,𝑗 − 𝛼−

𝛼+
𝜑𝑖,𝑗−1 + 𝜆2

12𝛼+
[−(𝜑𝑖+2,𝑗 + 𝜑𝑖−2,𝑗) + 16(𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗) − 30𝜑𝑖,𝑗] − 𝑑𝑡2

𝛼+
𝑓𝑖,

𝜑𝑖,1 = 𝜑𝑖,0 + 𝛼−𝑑𝑡𝜓𝑖 + 𝜆2

24[−(𝜑𝑖+2,0 + 𝜑𝑖−2,0) + 16(𝜑𝑖+1,0 + 𝜑𝑖−1,0) − 30𝜑𝑖,0] − 𝑑𝑡2

2 𝑓𝑖,

(A.10)
following the same initial value problem as in A.6. The Python implementation of the dis-
cretization described in A.10 is similar to the one we saw for the finite differences method,
changing only the mathematical expression for time evolution.

A.2 FINITE DIFFERENCE METHOD FOR EIGENVALUE PROBLEM

We plan to solve the Schrödinger-like equation A.11(︃
− 𝑑2

𝑑𝑥2 + 𝑈(𝑥)
)︃
𝜂(𝑥) = 𝐸𝜂(𝑥). (A.11)

It is also possible to solve the problem using finite differences discretization. By using the finite
difference method to approximate the second-order derivatives, as given in equation A.3, we
calculate the equation at point 𝑥𝑖.

−
(︂
𝜂𝑖+1 − 2𝜂𝑖 + 𝜂𝑖−1

𝑑𝑥2

)︂
+ 𝑈𝑖𝜂𝑖 = 𝐸𝜂𝑖 −→

(︂ 2
𝑑𝑥2 + 𝑈𝑖

)︂
𝜂𝑖 − (𝜂𝑖+1 + 𝜂𝑖−1)

𝑑𝑥2 = 𝐸𝜂𝑖. (A.12)
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It is possible to see A.12 as an eigenvalue problem of a matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
𝑑𝑥2 + 𝑈0 − 1

𝑑𝑥2 0 0 ... 0

− 1
𝑑𝑥2

2
𝑑𝑥2 + 𝑈1 − 1

𝑑𝑥2 0 ... 0

0 − 1
𝑑𝑥2

2
𝑑𝑥2 + 𝑈2 − 1

𝑑𝑥2 ... 0

0 0 − 1
𝑑𝑥2

2
𝑑𝑥2 + 𝑈3 ... 0

... ... ... ... . . . − 1
𝑑𝑥2

0 0 0 0 ...
2
𝑑𝑥2 + 𝑈𝑁𝑥−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝐸𝜂𝑖 (A.13)

All we have to do is diagonalize the matrix in A.13.

A.2.1 Python Implementation

Taking the Numpy library of Python, we can use the functions diag and eigh to build the
Hamiltonian A.13.

def diagonal(V, dx, N):

2 return np.diag(V + (2 / (dx**2)) * np.ones(N))

4 def off_diagonal(dx, N):

return -1/(dx**2)*np.ones(N-1)

6

H = diagonal(V(x), dx, N) + np.diag(off_diagonal(dx, N), k=1) + np.diag(

off_diagonal(dx, N), k=-1)

8 E, eta = eigh(H)

The 𝐸 in the code is a vector with all eigenvalues, and 𝜂 is a matrix of eigenfunctions, where
each line represents an eigenfunction.
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B KINK-ANTIKINK ALGORITHMS

The system kink-antikink by itself has algorithms that we should use once we want to
obtain information about the simulation.

B.1 KINK FINAL VELOCITY

Velocity is the time derivative of the position function. As we know from 2, the force
between a kink-antikink pair is 𝑒−2𝑅, which means that if the pair is well separated, the force
is almost zero.

Knowing that, if we are dealing with a pair that goes from -1 to 1 (for example, in the
𝜆𝜑4 model), the center of the field occurs at 𝜑(𝑥, 𝑡) = 0. Thus, we can proceed as follows:

• After a time 𝑡1 following the collision, mark the position 𝑥1 of the center of the kink;

• After a time 𝑡2, mark the position 𝑥2 of the center of the kink again;

• Calculate the distance Δ𝑥 between the positions 𝑥1 and 𝑥2;

• The velocity is given by 𝑣 = 𝑥2−𝑥1
𝑡2−𝑡1

.

for i in range(N_t -1):

2 for j in range(N_x.size -1):

if field[j,i] > 0 and field[j+1,i] < 0:

4 l = (j+1)%x.size

distance = dx*j + dx*field[j,i]/( field[j,i] - field[l,i]) - L

6 if (t3 == 0 and d >= 7 and co < 7):

x1 = d

8 t3 = i + 100

if i == t3:

10 x2 = d

co = d

12 v = (x2-x1)/(100* dt)

The code marks the position of the field in a position that 𝜑(𝑥, 𝑡) = 0 when the distance
between the centers of kink-antikink is 𝑑 > 7.
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B.2 CONSERVATION OF ENERGY

Estimating errors is an important part of numerical approaches. Since we are working in
physics, there is an exciting way to do that by using one of the most important laws we know:
energy conservation. Although the problems often involve radiation, the information about
radiation is also contained in the resulting field 𝜑(𝑥, 𝑡) from the equations of motion. This
means that if we calculate the total energy as a function of time, we obtain the system’s total
energy, including the energy of the radiation.

If any energy is lost, it is due to the numerical error. Therefore, we have a mechanism
to estimate the error in numerical simulations. By using 1.6, we can numerically rewrite the
energy at time 𝑡 as

𝜀(𝑡) ≈
𝑁−1∑︁
𝑖=0

[︂1
2(𝜕𝑥𝜑(𝑥𝑖, 𝑡))2 + 1

2(𝜕𝑡𝜑(𝑥𝑖, 𝑡))2 + 𝑉 (𝜑(𝑥𝑖, 𝑡))
]︂

· 𝑑𝑥. (B.1)

If the 𝑑𝑥 is small enough, then B.1 gives us a good approximation for the energy.

B.2.1 Python Implementation

Let us now implement energy conservation in the following form
for i in range(Nt -2):

2 energy = 0

for j in range(Nx):

4 field_x = (field[(j+1)%Nx,i] - field[j,i])/dx

field_t = (field[j,i+1] - field[j,i])/dt

6 auxiliar = dx *(0.5* field_t + 0.5* field_x + V(field[j,i]))

energy = energy + auxiliar

8 energy_vector[i] = energy

The program gives us the energy as a function of time. It is easy for us now to compare the
energy at the beginning and at the end of the simulation process.
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C CONTINUITY RELATIONS OF THE POTENTIAL AND KINK PARAME-

TERS

By using the continuity of the potential 4.1, the kink 4.2and its derivatives we reach

𝐴2 = 𝐵2 (𝜑0 − 𝜑1)
𝜑1

, (C.1)

𝑉+ = 1
2𝐵

2[𝜑1(𝜑0 − 𝜑1) + (𝜑0 − 𝜑1)2], (C.2)

𝜆 = 2𝑉+

𝐵2(𝜑2 − 𝜑0)
+ 𝜑0, (C.3)

𝐶2 = 𝐵2 (𝜑0 − 𝜑2)
(𝜑2 − 𝜆) , (C.4)

𝐾 =
√

2𝑉+

𝐵
, (C.5)

𝜃0 = sin−1
[︂ 1
𝐾

(𝜑1 − 𝜑0)
]︂
, (C.6)

𝑥1 = 1
𝐴

ln𝜑1, (C.7)

𝑥2 = 𝑥1 + 1
𝐵

sin−1
(︃
𝜑2 − 𝜑0

𝐾

)︃
− 𝜃0

𝐵
. (C.8)



64

D SOLUTIONS OF ONE AND TWO ASYMMETRIC SQUARE-WELLS

In the text, we solved the Schrödinger-like equation by using the continuity of the eigen-
function and its derivatives in the region of space, obtaining a transcendental equation for the
problem and determining the frequencies. For the localized modes, the momenta in the tran-
scendental equation are 𝑘2

1 = 𝐴2 −𝜔2, 𝑘2
2 = 1+𝜔2, and 𝑘2

3 = 𝐶2 −𝜔2, and the corresponding
eigenfunctions are piecewise.

𝜂(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐺𝑒𝑘1(𝑥−𝑥1), 𝑥 < 𝑥1,

𝐻1 sin[𝑘2(𝑥− 𝑥1)] +𝐻2 cos[𝑘2(𝑥− 𝑥1)], 𝑥1 < 𝑥 < 𝑥2,

𝐼𝑒−𝑘3(𝑥−𝑥2), 𝑥 > 𝑥2.

(D.1)

where the quantites are obtained imposing continuity of 𝜂(𝑥) and 𝜂′(𝑥)

𝐻1 = 𝑘1

𝑘2
𝐺, (D.2)

𝐻2 = 𝐺, (D.3)

𝐼 = 𝐺

{︃
𝑘1

𝑘2
sin[𝑘2(𝑥2 − 𝑥1)] + cos[𝑘2(𝑥2 − 𝑥1)]

}︃
. (D.4)

and the parameter 𝐺 can be fixed in order to aquire a normalization of the modes.
To lead with delocalized modes we need to change the momenta 𝑘1 to 𝑘2

1 = 𝜔2 − 𝐴2. As
we have a bigger number of regions the eigenfunction general solution are

𝜂(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺 exp
[︁
𝑘3
(︁
𝑥+ 𝐷

2 + 𝐿
)︁]︁
, 𝑥 < −𝐷

2 − 𝐿,

𝐻1 sin
[︁
𝑘2
(︁
𝑥+ 𝐷

2

)︁]︁
+𝐻2 cos

[︁
𝑘2
(︁
𝑥+ 𝐷

2

)︁]︁
, −𝐷

2 − 𝐿 < 𝑥 < −𝐷
2 ,

𝐼 cos(𝑘1𝑥), −𝐷
2 < 𝑥 < 𝐷

2 ,

−𝐻1 sin
[︁
𝑘2
(︁
𝑥− 𝐷

2

)︁]︁
+𝐻2 cos

[︁
𝑘2
(︁
𝑥− 𝐷

2

)︁]︁
, 𝐷

2 < 𝑥 < 𝐷
2 + 𝐿,

𝐺 exp
[︁
−𝑘3

(︁
𝑥− 𝐷

2 − 𝐿
)︁]︁
, 𝑥 > 𝐷

2 + 𝐿.

(D.5)

Requiring continuity of 𝜂 and its first derivative, we obtain

𝐻1 = 𝐺

[︃
𝑘3

𝑘2
cos(𝑘2𝐿) − sin(𝑘2𝐿)

]︃
, (D.6)

𝐻2 = 𝐺

[︃
cos(𝑘2𝐿) + 𝑘3

𝑘2
sin(𝑘2𝐿)

]︃
, (D.7)

𝐼 = 𝐺

cos(𝑘1𝐷/2)

[︃
cos(𝑘2𝐿) + 𝑘3

𝑘2
sin(𝑘2𝐿)

]︃
. (D.8)
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Likewise, the odd delocalized are expressed as

𝜂(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺 exp
[︁
𝑘3
(︁
𝑥+ 𝐷

2 + 𝐿
)︁]︁
, 𝑥 < −𝐷

2 − 𝐿,

𝐻1 sin
[︁
𝑘2
(︁
𝑥+ 𝐷

2

)︁]︁
+𝐻2 cos

[︁
𝑘2
(︁
𝑥+ 𝐷

2

)︁]︁
, −𝐷

2 − 𝐿 < 𝑥 < −𝐷
2 ,

𝐼 sin(𝑘1𝑥), −𝐷
2 < 𝑥 < 𝐷

2 ,

𝐻1 sin
[︁
𝑘2
(︁
𝑥− 𝐷

2

)︁]︁
−𝐻2 cos

[︁
𝑘2
(︁
𝑥− 𝐷

2

)︁]︁
, 𝐷

2 < 𝑥 < 𝐷
2 + 𝐿,

−𝐺 exp
[︁
−𝑘3

(︁
𝑥− 𝐷

2 − 𝐿
)︁]︁
, 𝑥 > 𝐷

2 + 𝐿.

(D.9)
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