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ABSTRACT

Reliability is a critical metric for organizations since it directly influences their performance
in face of the market competition, as well as is essential in maintaining their production systems
available. The prediction of such quantitaive metric is then of great interest, as it may anticipate
the knowledge about system failures and let organizations avoid and/or overcome such unde-
sirable situations. Systems’ reliability depends on the inherent aging factors as well as on the
operational conditions the system is subjected to. This may render the reliability modelling very
complex and then traditional stochastic processes fail to accurately predict its behavior in time.
In this context, learning methods such as Support Vector Machines (SVMs) emerge as alterna-
tive to tackle these shortcomings. One of the main advantages of using SVMs is the fact that
they do not require previous knowledge about the function or process that maps input variables
into output. However, their performances are affected by a set of parameters that appear in the
related learning problems. This gives rise to the SVM model selection problem, which consists
in choosing the most suitable values for these parameters. In this work, this problem is solved
by means of Particle Swarm Optimization, a probabilistic approach based on the behavior of
biological organisms that move in groups. Moreover, a PSO+SVM methodology is proposed
to handle reliability prediction problems, which is validated by the resolution of examples from
literature based on time series data. The obtained results, compared to the ones provided by
other prediction tools such as Neural Networks (NNs), indicate that the proposed methodology
is able to provide competitive or even more accurate reliability predictions. Also, the proposed
PSO+SVM is applied to an example application involving data collected from oil production
wells.

Keywords: Support Vector Machines, Particle Swarm Optimization, Reliability Prediction.
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RESUMO

Confiabilidade é uma métrica crítica para as organizações, uma vez que ela influencia di-
retamente seus desempenhos face à concorrência e é essencial para a manutenção da disponi-
bilidade de seus sistemas produtivos. A previsão dessa métrica quantitativa é então de grande
interresse, pois ela pode antecipar o conhecimento de falhas do sistema e permitir que as or-
ganizações possam evitar ou superar essas situações indesejadas. A confiabilidade de sistemas
depende tanto dos efeitos inerentes da idade assim como das condições operacionais a que
o sistema é submetido. Isso pode tornar a modelagem da confiabilidade muito complexa de
forma que processos estocásticos tradicionais falhem em prever de forma acurada o seu com-
portamento ao longo do tempo. Nesse contexto, métodos de aprendizado como Support Vector
Machines surgem como alternativa para superar essa questão. Uma das principais vantagens de
se utilizar SVMs é o fato de não ser necessário supor ou conhecer previamente a função ou o
processo que mapeia as variáveis de entrada (input) em saída (output). No entanto, seu desem-
penho está associado a um conjunto de parâmetros que aparecem no problema de aprendizado.
Isso dá origem ao problema de seleção de modelo para SVM, que consiste basicamente em
escolher os valores apropriados para esses parâmetros. Nesse trabalho, tal problema é resolvido
por meio de Otimização via Nuvens de Partículas (Particle Swarm Optimization - PSO), uma
abordagem probabilística que é inspirada no comportamento de organismos biológicos que se
movem em grupos. Além disso, é proposta uma metodologia PSO+SVM para resolver prob-
lemas de previsão de confiabilidade, que é validada por meio da resolução de exemplos da
literatura baseados em dados de séries temporais. As soluções encontradas, comparadas às
provenientes de outras ferramentas de previsão como Redes Neurais (Neural Networks - NNs),
indicam que a metodologia proposta é capaz de fornecer previsões de confiabilidade competiti-
vas ou até mesmo mais acuradas. Além disso, a metodologia proposta é utilizada para resolver
um exemplo de aplicação envolvendo dados de poços de produção de petróleo.

Palavras-chave: Support Vector Machines, Otimização via Nuvens de Partículas, Previsão de
Confiabilidade.
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1 INTRODUCTION

1.1 Opening Remarks

Reliability can be understood as the probability of a system to properly perform the tasks
it was designed for, under certain conditions, during a predefined time length (RAUSAND &
HOYLAND, 2004). These systems can be either a specific component or an entire system. With
a slightly different interpretation, the absence of reliability means frequent system breakdowns
and thus loss of productivity and increased costs, which may be associated with maintenance
actions, legal penalties and also with the (bad) image of the organization in face of their cos-
tumers. It is also a critical issue in systems that entails environmental and human risks, such
as oil refineries and nuclear power plants, given that their failures may incur in catastrophic
events. Therefore, reliability is a key factor to production systems, since it is directly related to
the competitive performance of organizations in the market share they are inserted.

The systems’ reliability varies during their lifetime since it is influenced by the environ-
mental and load conditions under which they operate. In this way, it is of great interest to
identify this quantitative indicator of systems’ performance in order to control it by means of
appropriate maintenance actions, so as to guarantee the desired level of production and safety.
According to Zio et al. (2008), reliability prediction modeling of an item may be conducted
during various phases of its life-cycle, including the concept validation and definition, the de-
sign, operation and maintenance phases. At any stage, the reliability predictions obtained serve
the purpose of anticipating the evolution of the reliability of the component so as to allow for
taking the proper actions for its maintaining and, possibly, improvement. For systems design
considering reliability and cost metrics, see for example Lins & Droguett (2008) and Lins &
Droguett (2009).

The evaluation of the reliability behavior in time has been accomplished by means of
stochastic methods, which usually involves simplifying assumptions so as to allow for the an-
alytical treatment. The usual stochastic processes to model the reliability evolution are the
Renewal Process (RP) and Non-Homogeneous Poisson Process (NHPP). If RP is chosen, the
times between failures are independent and identically distributed with an arbitrary probability
distribution. Besides, one assumes that the component, after a failure, is subjected to a perfect
repair and returns into operation with a condition it presented when new (“as good as new”). A
special case of the RP is the Homogeneous Poisson Process (HPP), in which the times between
failures are modeled by identical and independent Exponential distributions and has the under-
lying supposition that the probability of occurrence of a failure in any time interval depends
only on the length of that interval. This assumption may be true for some electronic compo-
nents or in a short period of time (ROSS, 2000). On the other hand, using NHPP, the times
between failures are neither independent nor identically distributed. In addition, it is supposed

1



Chapter 1 INTRODUCTION

that the maintenance crew makes a minimal repair in the failed component, that is, it is returned
to an operational state with the same condition it had just before the failure occurrence (“as bad
as old”).

However, the hypothesis of minimal or perfect repairs required to utilize either NHPP or
RP, respectively, are often not realistic. In practical situations, corrective maintenance actions
are likely to be imperfect repairs, i.e., they are intermediate actions between minimal and perfect
repairs and the equipment returns into operation with a condition better than old and worse than
new. In this context, Generalized Renewal Process (GRP) can be used to model failure-repair
processes of components subject to imperfect repairs. In GRP, a parameter q (rejuvenation
parameter) is introduced in the model and the value it assumes is related to the maintenance
action effectiveness. However, this value is often considered as a constant for all interventions
without taking into consideration the current state of the system. For further details in RP,
HPP, NHPP and GRP, the interested reader may consult Rigdon & Basu (2000) and Rausand
& Hoyland (2004).

In reality, the reliability of a system is affected by a set of time-dependent, external (opera-
tional and environmental) variables which are dependent among them. As an outcome, reliabil-
ity prediction may demand sophisticated probabilistic models so as to realistically capture the
complexities of the systems and components reliability behavior, which may result in burden-
some mathematical formulations that in the end, may not provide the required accuracy of the
reliability estimates (MOURA & DROGUETT, 2009).

In this context, learning methodologies based on data emerge and Support Vector Machine
(SVM) is the one selected to be studied and applied to reliability problems in this dissertation.
SVM has been developed since the years 1960’s and was first introduced by Vapnik and Cher-
vonenkis (see Vapnik (2000)). Loosely speaking, SVM is a learning method whose theory is
based on statistical concepts. It incorporates the idea of learning about the phenomenon under
analysis from real observations about it. The main idea is to train a “machine” with real pairs
of inputs and outputs so as to allow for the prediction of future outputs based on observed in-
puts. The training algorithm is a quadratic optimization problem, where the objective function
essentially entails a generalization error, which comprises the training error as well as the error
related to the machine ability in handling unseen data. The learning problem can be either of
classification, in which the outputs are discrete values representing categories, or of regression,
when the outputs can assume any real value.

Competitive models to SVM are the artificial Neural Network (NN) (HAYKIN, 1999) and
Bayesian Network (BN) (KORB & NICHOLSON, 2003). It is interesting to notice that, in
accordance with Kecman (2005), SVM has been developed in the reverse order to the devel-
opment of NN. SVM evolved from the theory to the implementation and experiments, while
NN followed a more “heuristic” path, from applications to theory. The strong theoretical back-
ground of SVM did not make it widely appreciated at first. It was believed that, despite its
theoretical foundations, SVM was neither suitable nor relevant for practical purposes. How-
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ever, afterwards, the use of SVM in learning benchmark problems involving for example digit
recognition provided excellent results and then such tool was finally taken seriously.

Haykin (1999) asserts that an NN is designed to model the way in which the brain per-
forms a particular task or function of interest and is usually simulated in software on a digital
computer. To achieve good performance, NN employs a massive interconnection of simple
computing cells referred to as “neurons” or “processing units”, which are basically formed by
(i) a set of connecting links, each one of them characterized by a weight; (ii) an adder for sum-
ming the input signals, weighted by the respective connecting links; (iii) an activation function
for limiting the amplitude of its output.

NN involves the Empirical Risk Minimization (ERM), which measures only the errors from
the training step and is appropriate when there is a large quantity of training examples (VAP-
NIK, 2000). On the other hand, the training phase of SVM entails a convex quadratic optimiza-
tion problem, whose objective function embodies the principle of Structural Risk Minimization
(SRM). The general idea of the ERM is to minimize the error during the training phase, while
the SRM aims at minimizing the upper bound on the generalization error. Additionally, the char-
acteristics of the SVM training optimization problem enable the Karush-Kuhn-Tucker (KKT)
conditions to be necessary and sufficient to provide a global optimum, differently from NN that
may be trapped on local minima (SCHÖLKOPF & SMOLA, 2002).

According to Korb & Nicholson (2003), BNs are graphical models for reasoning under
uncertainty, represented by acyclic graphs (BONDY & MURTY, 2008) whose nodes denote
variables and arcs represent causal connections between the related variables. Also, a BN can
model the quantitative strength of the connections between variables, allowing probabilistic
beliefs about them to be updated automatically as information becomes available.

For example, Ramesh et al. (2003) use a hybridism of BN and SVM in order to predict
the axis positioning errors in machine tools. Such errors depend on the machine temperature
profile and also on the specific operating condition the machine is subjected to. Firstly, a BN
approach is used to classify the error into categories associated with the different operating
conditions. After that, a knowledge base of errors due to specific machine conditions is formed
and combined with classification results as input to an SVM regression model for mapping
the temperature profiles with the measured errors. The authors provide the following reasons
for using a BN: paucity of data, expert knowledge can be incorporated when data availability
is sparse and it permits the learning of causal relationships between variables. For the use of
SVM, the authors note that it does not require previous knowledge of the relationship between
input and output variables.

In the context of reliability prediction from time series data, in addition to the previous
methods, there is also the Autoregressive Integrated Moving Average (ARIMA) and the Duane
models as alternatives for SVM. Morettin & Toloi (2004) state that the ARIMA model has
been one of the most popular approaches in time series forecasting and assume that predicted
values are a linear combination of the previous values and errors. The Duane model, in turn,
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are frequently applied on the analysis of reliability during the early stages of product design
and development, which may involve reliability growth modeling. It assumes an empirical
relationship whereby the improvement in Mean Time Between Failures (MTBF) is proportional
to T θ, where T is the equipment’s total operational time and θ is the reliability growth factor
(LEWIS, 1987; SMITH, 2001).

Therefore, the advantages of SVM in relation to the other methods are: (i) no requirements
of previous knowledge of or suppositions about the relation between inputs and outputs; (ii) no
need of a large quantity of data; (iii) incorporation of the SRM principle which provides it with
a better generalization ability and (iv) the resolution of a convex optimization problem in the
training stage.

Although SVM has been introduced in the sixties, its first applications in prediction based
on data series occurred in the end of the years 1990’s, for example see Müller et al. (1999).
Indeed, Sapankevych & Sankar (2009) provide a literature survey of the works using SVM in
time series predictions. They make a count on the number of works regarding the knowledge
areas in which they are inserted (Table 1.1). It can be noticed that only three works were classi-
fied into the reliability prediction context, making it as the last field in number of related works.
From this fact, it can be inferred that SVM is actually in the early stages of its applicability in
the reliability prediction problems based on time series data, if compared for example with the
economic field.

Table 1.1: Number of SVM time series prediction papers by application. Adapted from Sapankevych
& Sankar (2009), p. 26

Application Number of papers

Financial market prediction 21
Electric utility forecasting 17
Control systems and signal processing 8
Miscellaneous applications 8
General business applications 5
Environmental parameter estimation 4
Machine reliability forecasting 3

Nevertheless, the performance of SVM is influenced by a set of parameters that appear in
the training problem. This fact gives rise to the model selection problem that consists in choos-
ing suitable values for these parameters. They are actually very difficult to be manually tuned
and systematic procedures may be required to perform this task. In this way, methods such as
Particle Swarm Optimization (PSO) (BRATTON & KENNEDY, 2007) can be used to tackle
the model selection problem. PSO is an optimization probabilistic heuristic, well-suited to deal
with real variables, based on the behavior of biological organisms that move in groups such as
birds. The nature concepts of cognition and socialization are translated in mathematical formu-
lations for updating particles velocities and positions throughout the search space towards an
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optimum position. There are basically two models of communication networks among parti-
cles: in one of them, the most simple, all particles are connected to each other (gbest) and in the
other, they are able to communicate only with some of them (lbest).

Besides PSO, there are other probabilistic approaches to solve the model selection problem
such as Genetic Algorithm (GA) (GOLDBERG, 1989). GA is a computational method usually
used for optimization tasks and attempts to mimic the natural evolution process. It is based
on several genetic operators such as crossover and mutation and is often computationally more
expensive if compared to PSO. Other possible alternative to tackle the SVM model selection
problem is the grid search method (MOMMA & BENNETT, 2002). The latter assumes the
parameters as discrete values within a range and all possible combinations of them are assessed.
Its main drawbacks consist in the discretization of the search space as well as in the great number
of possibilities to be evaluated when there are several parameters to adjust.

In the following Section, some previous works related to SVM as well as to SVM model
selection problem are presented.

1.2 Previous works

For classification tasks, Rocco & Moreno (2002) have used SVM to classify a component as
operational or faulty in order to evaluate system overall reliability. The authors take advantage
of the SVM velocity, which is greater than the one from the traditional discrete event simulation
approach of Monte Carlo (BANKS et al., 2001). Then, they couple Monte Carlo simulation
with SVM. Rocco & Zio (2007), in turn, use a multi-classification SVM to categorize anoma-
lies in components. Widodo & Yang (2007) make a review of the SVM applied to condition
monitoring and fault diagnosis.

For the prediction of reliability related measures based on time series, Hong & Pai (2006)
use SVM coupled with an iterative method for selecting the associated SVM parameters. They
forecast time failures of an engine. Additionally, Pai (2006) and Chen (2007) propose a GA+
SVM approach to predict reliability values of an engine. GA is used as optimization tool to
obtain the most suitable parameter values. No work was found relating the use of SVM with
system characteristics, like temperature or the number of installed components, to predict con-
tinuous reliability metrics (e.g. Time Between Failures (TBF), Time To Repair (TTR)).

The methodology of PSO+SVM is presented in some works. Lin et al. (2008) use such
approach to the model selection problem but also to the choice of the most relevant input en-
tries (problem known as feature selection). They apply the methodology on freely available
general data sets in Internet repositories. Dissolved gases contents on power transformers’ oil
are predicted in the work of Fei et al. (2009) with PSO+SVM approach. Also in the electricity
context, Hong (2009) predicts the electric load by means of a PSO combined with a regression
SVM. Samanta & Nataraj (2009) apply PSO with a classification SVM in the context of fault
detection.
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In this way, so far, no PSO+SVM approach has been proposed to tackle reliability prediction
tasks based either on time series data or on specific metrics of the system under consideration.
Additionally, all of them involved the most simple communication networks among particles,
the gbest model.

1.3 Justification

As already mentioned, reliability of components and systems is a key element of production
systems due to its direct relation with productivity and costs, and thus with the performance of
organizations within market. Thus, reliability prediction is a subject of great interest that can be
reverted in economic and competitive gains to organizations.

Besides this first motivation and reason, as can be concluded by the survey of Sapankevych
& Sankar (2009), there are few works of reliability prediction based on time series using SVM
as forecast tool. In addition, from the literature review, no work was found either concerning
SVM regression to predict reliability metrics based on system features or relating PSO with
SVM to tackle the model selection problem in this specific context. Also, all works that involved
PSO+SVM used a gbest communication network among particles.

Also, the Condition Based Maintenance (CBM), which is a maintenance program that rec-
ommends maintenance actions based on information collected via equipment condition moni-
toring, may incorporate SVM. CBM consists in three main steps (JARDINE et al., 2006):

• Data acquisition: data regarding equipment status is collected.

• Data processing: the acquired data is processed, analyzed and interpreted.

• Maintenance decision-making: after data interpretation, efficient maintenance policies
are recommended.

SVM may take place in the second step of CBM. If the CBM approach is well established
and implemented, it can provide the decrease of maintenance costs. For example, the work of
Moura et al. (2009) assumes that the considered system is continuously monitored and that its
current state is available. Then, the authors propose maintenance policies based simultaneously
on availability and cost metrics of systems by means of Semi-Markov Decision Process (SMDP)
and GA. Hence, they tackle the last step of a CBM program and the inclusion of SVM as a
previous step would result in a more comprehensive approach of the considered problem.

1.4 Objectives

1.4.1 Main Objective

This dissertation proposes a PSO algorithm to solve the SVM model selection problem. The
resulted PSO+SVM methodology is then applied to the reliability context specifically involving
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regression problems such as reliability prediction problems based on time series data and/or on
system specific features.

1.4.2 Specific Objectives

In order to attain the main objective, the following specific goals are established:

• Literature review of the most used methods to solve the SVM model selection problem.

• Implementation of a PSO algorithm linked with a SVM library to tackle the SVM model
selection problem, resulting in a PSO+SVM approach.

• Application of the proposed PSO+SVM to reliability prediction problems based on time
series data and also based on data collected from a real system.

• Performance comparison between the proposed PSO+SVM and other methodologies such
as GA+SVM, as well as other time series methods such as NN and ARIMA.

• Performance comparison between gbest and lbest models for the application examples
taken into account.

1.5 Dissertation Layout

Besides this introductory chapter, this dissertation comprises four more chapters, whose
contents are described as follows:

• Chapter 2: the theoretical background is presented. Initially, the SVM methods for
classification and regression tasks are detailed. Then, the related model selection problem
as well as a survey of the methods that have been applied to tackle it are described. This
chapter also contains the general ideas underlying PSO algorithms.

• Chapter 3: the PSO methodology proposed in this work to tackle the SVM model selec-
tion problem is detailed. Also, the PSO+SVM combination is commented.

• Chapter 4: three application examples from literature are presented and resolved by
means of the proposed PSO+SVM methodology. One of them is used in two different
ways, which yields four examples. The outcomes are compared to results from other
tools available in literature (NN, ARIMA, among others). Also, an application example
involving data collected from oil production wells is solved. Then, a comparison between
the gbest and lbest PSO and a discussion about the obtained results take place.

• Chapter 5: a summary of the main contributions of this dissertation is provided along
with some comments about its limitations. In addition, this chapter presents some topics
associated with the ongoing research and suggestions for future works.
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2 THEORETICAL BACKGROUND

2.1 Support Vector Machines

SVM is a learning method widely used in pattern recognition and regression problems. The
applications of SVM belong to different domains, from computational biology (BEN-HUR et

al., 2008) to financial series forecasting (GESTEL et al., 2001). In the reliability context, SVM
has been used for example in CBM and fault detection (WIDODO & YANG, 2007), to classify
anomalies in components (ROCCO & ZIO, 2007), to forecast equipments’ reliability (HONG
& PAI, 2006; CHEN, 2007), among others.

In its classical formulation, SVM is a supervised learning method, since it is based on
(input, output) examples. SVM stems from the Statistical Learning Theory (SLT) and it is
particularly useful when the process in which inputs are mapped into outputs is not known.
According to Kecman (2005), the learning problem is as follows: there is an unknown nonlinear
dependence (mapping, function) y = f (x) between a multidimensional input vector x and an
output y. The only information available is a data set D = {(x1,y1),(x2,y2), . . . ,(x`,y`)} , where
` is the number of examples in D. The data set D is called training set due to its purposeful use
in training the learning machine.

Depending on the type of output y, different learning problems are defined:

• Classification problems: y assumes discrete values that represent categories. If only two
categories are considered (e.g. y = −1 or y = +1), the problem at hand is of binary
classification. Otherwise, if three or more categories are taken into account, it is the case
of a multi-classification problem.

• Regression problems: y is real-valued and its relation with the input vector x is given by
a function.

The solution of the learning problem is a decision function or a regression (target) function
when, respectively, a classification or a regression is considered. For some learning machines
like NN, the underlying idea to obtain the answer of the learning problem is the principle of
ERM, which measures only the errors from the training step and is suitable for situations where
there is a large quantity of training examples (VAPNIK, 2000). On the other hand, obtaining the
learning problem solution via SVM involves a convex quadratic optimization problem, whose
objective function embodies the principle of SRM. This principle entails the minimization of the
upper bound of the generalization error, which is formed by two parts: one of them is associated
with the machine ability to classify or predict unseen data (i.e., examples that are not in D), and
the other regards the training errors. In this way, there is a trade-off between model’s capacity
and training accuracy. Machines with low capacity have high training and generalization errors,
which characterizes the situation of underfitting the data. On the other hand, increasing too
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much the machine capacity yields small training error but the generalization error grows due to
its bad performance in classifying or predicting unseen data. This latter is the case of overfitting

the data, that is, the machine is too specialized in the training set that it is unable to work well
on data not in D. The behavior of those errors in relation to the machine capacity is illustrated
in Figure 2.1 and the examples of underfitting and overfitting in classifying linearly separable
data are depicted in Figure 2.2. According to Kecman (2005), the SRM principle was proved

Capacity

Underfitting Overfitting

E
rr

o
r

Generalization error

Training error

Figure 2.1: Relation between model capacity and error

to be useful when dealing with small samples and its main idea consists in finding a model with
adequate capacity to describe the given training data set. For further details in ERM and SRM,
see Vapnik (2000), Kecman (2001) and Kecman (2005).

An important advantage of SVM is that the training phase is accomplished by the resolu-
tion of a convex quadratic optimization problem with a unique local optimum that is also global
(BOYD & VANDENBERGHE, 2004). Such problem involves well-known and established op-
timization theory and techniques to solve it, for example the concept of Lagrangian multipliers
and KKT conditions. Besides that, the desired decision or regression function is always linear
and presented by a hyperplane. Even if the relation in the input space is not linear, SVM uses
kernel functions (see Schölkopf & Smola (2002)) to map the input data x into a feature space,
often of higher dimension, in which such relation is linear. In this feature space the training
procedure is executed. The following subsections introduce the main SVM classifiers as well
as regression via SVM.

2.1.1 Linear Maximal Margin Classifier for Linearly Separable Data

The binary classification of linear separable data is the most simple learning problem. Due
to its simplicity, it is often not applicable in practical situations. Despite that, it presents the
fundamental aspects of SVM and it is useful to understand the more complex and realistic
SVM approaches.

Let D = {(x1,y1),(x2,y2), . . . ,(x`,y`)} be the training set with xi ∈ Rn, yi ∈ {−1,1} and
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x1

x2

x1

x2

x1

x2

Overfitting, perfect
classification

high capacity model,

Perfect classification by low capacity model

Underfitting, low capacity model

Wrong classifications due to underfitting

Perfect classification by high capacity model

Wrong classifications due to overfitting

Overfitting, high capacity model

Perfect classification by low capacity model

Figure 2.2: Underfitting (up) and overfitting (down) the data in the case of binary classification
of linearly separable data. Adapted from Kecman (2005), p. 8

i = 1,2, . . . , ` denoting the ith training example. Suppose that the data is linearly separable, that
is, they can be perfectly separated by hyperplanes. The best of those hyperplanes is the one
with maximal margin, i.e., the one which maximizes the minimum distance between examples
from distinct classes. If this optimal hyperplane is defined, one gets the decision function. The
hyperplane equation in matrix form is given by:

H = wT x+b = 0 (2.1)

where w is the vector normal to the hyperplane, T indicates the matrix transpose operation, x is
the input vector and b is the linear coefficient of the hyperplane.

Since the data is separable, in order to correctly classify a given example (xi,yi), the deci-
sion function should satisfy the constraints:

wT xi +b≥ 1, if yi = 1 (2.2)
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wT xi +b≤−1, if yi =−1 (2.3)

that can be expressed by a single inequality:

yi · (wT xi +b)≥ 1 (2.4)

When (2.2) and (2.3) are active, i.e., equalities hold, two hyperplanes H+ and H− are respec-
tively defined and the distance between them is the margin (M). The vectors x from the training
set which satisfy either H+ or H− are the so-called support vectors. As an illustration, Figure 2.3
depicts a simple two dimensional case of binary classification in which the margin, hyperplanes
and support vectors are indicated.
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T
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Figure 2.3: Binary classification. Adapted from Kecman (2001), p. 154

The margin is, indeed, defined by the distance between support vectors from distinct classes
(e.g. xSV,−1 and xSV,+1) projected onto the same direction of the hyperplanes’ perpendicular
vector w. That is,

M = (xSV,+1−xSV,−1)w = ||xSV,+1||cos(ω)−||xSV,−1||cos(ρ) (2.5)

in which ω and ρ are respectively the angles between xSV,+1 and w and between xSV,−1 and w
(see Figure 2.3). These angles are given by:

cos(ω) =
wT xSV,+1

||w|| · ||xSV,+1||
cos(ρ) =

wT xSV,−1

||w|| · ||xSV,−1||
(2.6)

By replacing (2.6) in (2.5) and considering that xSV,+1 and xSV,−1 belong to H+ and H−, respec-
tively, it is obtained:

M =
wT xSV,+1−wT xSV,−1

||w||
=
−b+1− (−b−1)

||w||
=

2
||w||

(2.7)
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where ||w||=
√

wT w =
√

w2
1 +w2

2 + · · ·+w2
n is the `2-norm of vector w. For further details in

margin definition consult Kecman (2001). Also, one can find information about the underlying
analytic geometry concepts in Reis & Silva (1996).

It is noticeable that minimizing ||w|| is equivalent to maximize M. Moreover, to minimize√
wT w is similar to minimize wT w. In this way, the convex optimization problem to be resolved

during the training step is:

min
w,b

1
2

wT w (2.8)

subject to yi · (wT xi +b)≥ 1, i = 1, . . . , `

where the constant 1
2 is a numerical convenience and does not change the solution. Notice that in

the case of linearly separable data, there is no training error and wT w is associated with machine
capacity (VAPNIK, 2000; KECMAN, 2005). To solve (2.8), a classic quadratic programming
problem, Lagrange multipliers along with KKT conditions are used. Due to its convex nature
(objective function is convex and its constraints result in a convex feasible region), the KKT
conditions are necessary and sufficient for an optimum (BOYD & VANDENBERGHE, 2004).
Firstly, the Lagrangian function is structured as follows:

L(w,b,ααα) =
1
2

wT w−
`

∑
i=1

αi · [yi · (wT xi +b)−1] (2.9)

in which ααα is the `-dimensional vector of Lagrange multipliers. It is necessary to find the saddle
point (w0,b0,ααα0) of L , since (2.9) has to be minimized with respect to the primal variables w
and b and minimized with respect to the dual variables α1,α2, . . . ,α`, which should be non-
negative, i.e., αi ≥ 0 for all i. This problem can be resolved either in the primal or in the dual
space. However, the latter approach has been adopted by a number of works due to the insight-
ful results it provides (for example, see Vapnik (2000), Schölkopf & Smola (2002), Kecman
(2005)).

In order to find the saddle point of L , the KKT conditions are then stated:

∂L(w0,b0,ααα0)
∂w

= 0, w0 =
`

∑
i=1

α0i yi xi (2.10)

∂L(w0,b0,ααα0)
∂b

= 0,
`

∑
i=1

α0i yi = 0 (2.11)

yi · (wT
0 xi +b0)−1≥ 0, i = 1,2, . . . , ` (2.12)

α0i ≥ 0, ∀ i (2.13)

α0i · [yi · (wT
0 xi +b0)−1] = 0, ∀ i (2.14)

where the first two equalities in (2.10) and (2.11) result directly by the derivatives of L with
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respect to the primal variables being null when evaluated at the optimum (w0,b0,ααα0); the in-
equalities in (2.12) and (2.13) require primal and dual feasibility of the solution, respectively;
the last equations (2.14) are the KKT complementarity conditions which states that the product
of dual variables and primal constraints must vanish at the optimum. A useful insight stems
from equations (2.14): support vectors lie on either H+ or H− and then nullify the second
term of the KKT complementarity conditions, which along with condition (2.13) implies non-
negative Lagrange multipliers. According to Nocedal & Wright (2006), the constraints can be
classified as:

• Inactive: if the constraint strictly satisfies the inequality and the related Lagrange mul-
tiplier is exactly 0. Then, the optimal solution as well as the optimal objective function
value are indifferent to whether such constraint is present or not.

• Strongly active: if the constraint satistfies the equality and the respective Lagrange multi-
plier is srictly positive. Thus, a perturbation in the constraint has an impact on the optimal
objective value with magnitude proportional to the Lagrange multiplier.

• Weakly active: if the constraint satisfies the equality and the associated Lagrange multi-
plier is exactly 0. In these cases, small perturbations in such constraint in some directions
hardly affects the optimal objective value and solution.

In this way, for practical purposes, weakly active constraints can be treated as inactive. Hence,
support vectors are identifiable by strictly positive Lagrange multipliers. It is important to
emphasize that solving the SVM training problem is equivalent to solve the system defined by
the KKT conditions, given they are necessary and sufficient for a convex optimization problem.
By substituting the equalities (2.10) and (2.11) into L , it is obtained an expression involving
only the dual variables which has to be maximized:

max
ααα

Ld(ααα) =
`

∑
i=1

αi−
1
2

`

∑
i=1

`

∑
j=1

yiy jαiα jxT
i x j (2.15)

subject to αi ≥ 0, i = 1,2, . . . , ` (2.16)
`

∑
i=1

αi yi = 0 (2.17)

The dual problem resolution yields ` non-negative values for the Lagrange multipliers. By
replacing these values in equation (2.10), the optimal normal vector w0 is directly defined. Still,
notice that the summation over all ` is exactly the same as over only the support vectors, since
αi = 0 if i is not a support vector. Differently from w0, b0 is implicitly determined by KKT
complementarity conditions for any chosen support vector s (s = 1,2, . . . ,nSV , where nSV is
the number of support vectors). However, due to numerical instabilities, it is better to set b0

as the mean over all values resulted from nSV calculations of (2.14), that is (BURGES, 1998;
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KECMAN, 2005):

b0 =
1

nSV

nSV

∑
s=1

(
1
ys
−wT

0 xs

)
(2.18)

Once the optimal solution has been found, the decision function is obtained from the sepa-
rating hyperplane H:

d(x) = wT
0 x+b0 =

`

∑
i=1

α0iyixT
i x+b0 (2.19)

If d(x) < 0, then x is categorized into the negative class (y =−1). Otherwise, if d(x) > 0, x is
classified as being in the positive class (y = +1).

2.1.2 Linear Soft Margin Classifier for Non-Linearly Separable Data

In some situations, the linear classifier still is a good option to separate overlapping data.
The training optimization problem can then be adapted to support the training step for linearly
non-separable data. Differently from the previous classifier, it is now necessary to allow for
training errors, since constraints (2.2) and (2.3) can be violated. Because of this, the margin
becomes soft and examples within or beyond it (either in the correct side of the separating
hyperplane or in the wrong one) are permitted, see Figure 2.4.

w

x1

y = -1

y = +1

x2

H-

H+

H

m
ar

gi
n

Free support vectors

Bounded support vectors

A, D - Missclassified support vectors

B, C - Correctly classified support vectors

A

B

CD

xA
>1 xD

>1

0< <1xB

0< <1xC

Correctly classified examples

Figure 2.4: Binary classification for non-linearly separable data. Adapted from Kecman (2005), p. 20

In order to tackle this situation, new non-negative slack variables (ξi, i = 1,2, . . . , `) along
with a penalization factor for wrongly classified examples (C) are introduced to the training
problem, which becomes:

min
w,b,ξξξ

1
2

wT w+ C ·
`

∑
i=1

ξi (2.20)

subject to yi · (wT xi +b)≥ 1−ξi, i = 1,2, . . . , ` (2.21)

ξi ≥ 0, ∀ i (2.22)
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The ith slack variable concerns the distance from point i to its corresponding margin bound. If
it crosses such bound and is at its “wrong” side, ξi > 0. Otherwise, ξi = 0. In order to clarify
the role of these slack variables, one may see Figure 2.4. The factor C, in turn, is related to
the trade-off between training error and machine capacity. Actually, the problem (2.20)-(2.22)
is a generalization for the training problem for linearly separable data. In the same way, the
Lagrangian function is formulated and the KKT conditions are used to solve it. The Lagrangian
is:

L(w,b,ξξξ,ααα,βββ) =
1
2

wT w+ C ·
`

∑
i=1

ξi−
`

∑
i=1

αi · [yi · (wT xi +b)−1+ξi]−
`

∑
i=1

βiξi (2.23)

in which ααα and βββ are `-dimensional vectors of Lagrange multipliers. Once more, it is necessary
to find the saddle point (w0,b0,ξξξ0,ααα0,βββ0) of (2.23). The KKT conditions are:

∂L(w0,b0,ξξξ0,ααα0,βββ0)
∂w

= 0, w0 =
`

∑
i=1

α0i yi xi (2.24)

∂L(w0,b0,ξξξ0,ααα0,βββ0)
∂b

= 0,
`

∑
i=1

α0i yi = 0 (2.25)

∂L(w0,b0,ξξξ0,ααα0,βββ0)
∂ξi

= 0, α0i +β0i = C, i = 1,2, . . . , ` (2.26)

yi · (wT
0 xi +b0)−1+ξ0i ≥ 0, ∀ i (2.27)

ξ0i ≥ 0, ∀ i (2.28)

α0i ≥ 0, ∀ i (2.29)

β0i ≥ 0, ∀ i (2.30)

α0i · [yi · (wT
0 xi +b0)−1+ξ0i] = 0, ∀ i (2.31)

β0iξ0i = 0, (C−α0i) ·ξ0i = 0, ∀ i (2.32)

If equations (2.24), (2.25) and (2.32) are replaced in (2.23), it is obtained a Lagrangian in
function only of the dual variables αi, i = 1,2, . . . , `. The dual problem is exactly the same as
the one presented for the classifier of linearly separable data, except the fact that the Lagrange
multipliers αi have now parameter C as upper bound so as to respect the non-negativity of the
Lagrange multipliers βi (see (2.32)). The problem is as follows:

max
ααα

Ld(ααα) =
`

∑
i=1

αi−
1
2

`

∑
i=1

`

∑
j=1

yiy jαiα jxT
i x j

subject to 0≤ αi ≤C, i = 1,2, . . . , ` (2.33)
`

∑
i=1

αi yi = 0

The resulting decision function is also given by (2.19) and its signal defines the classi-
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fication of an input x either in the positive or negative class as is presented in the previous
subsection. The Lagrange multipliers, in turn, due to KKT complementarity conditions (2.31)
and (2.32) have the following possible solutions:

• α0i = 0,ξ0i = 0 and the input xi is correctly classified.

• 0 < α0i <C, then yi ·(wT
0 xi +b0)−1+ξ0i = 0 and ξ0i = 0. Therefore, yi ·(wT

0 xi +b0) = 1
and the example (xi,yi) is a support vector. The support vectors with associated Lagrange
multipliers satisfying the condition 0 < α0i <C are named free support vectors and permit
the calculation of b0 as follows:

b0 =
1

nFSV

nFSV

∑
s=1

(
1
ys
−wT

0 xs

)
(2.34)

where nFSV is the number of free support vectors. Again, it is recommended to set b0 as
an average value.

• α0i = C, then yi · (wT
0 xi + b0)− 1 + ξ0i = 0 and ξ0i ≥ 0. Hence, (xi,yi) is a bounded

support vector, given that its related Lagrange multiplier achieves the upper bound C.
Note that the slack variable is not precisely defined and because of this, bounded support
vectors do not participate in the calculation of b0. A bounded support vector is placed
at the wrong side of either H+ or H− depending on the label yi. For 0 < ξ0i < 1, xi

is correctly classified. Otherwise, if ξ0i ≥ 1, xi is wrongly classified. For the sake of
illustration, in Figure 2.4, A’s actual label is y = −1, but it is at the right side of H and
is then misclassified. On the other hand, B has label y = 1, but it is at the left side of
H+. However, because B does not pass the separating hyperplane H, it is still correctly
classified. The same analysis can be done for the bounded support vectors C and D to
conclude they are correctly and wrongly classified, in this order.

2.1.3 Non-Linear Classifier of Maximal Margin

When the decision function is not linear in input space, the linear classifiers previously
described can not be used to separate data. For example, in Figure 2.5-a, the hyperplane has a
poor performance in classifying the examples into their actual categories in the input space. On
the other hand, the non-linear function perfectly accomplishes such task.

In these situations, SVM’s main idea is to map the input vectors xi ∈ Rn into vectors Φ(xi)
of a space of higher dimension named feature space (F ). The notation Φ represents the mapping
Rn→ F . In F , SVM obtains a linear separation hyperplane of maximal margin so as a linear
classification is still executed but in a different space, see Figure 2.5-b.

Notice that the dual formulation (2.15) as well as the decision function (2.19), which hold
for both the linearly separable and overlapping data, present input data only in form of dot
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F

Input space Feature space

(a) (b)

x1

x2

y = -1

y = +1

Figure 2.5: Non-linear binary classification

products xT
i x j, i, j = 1,2, . . . , `. Then, when the mapping Φ is applied, the training algorithm

becomes dependent on products of the form ΦT (xi)Φ(x j). The choice of an appropriate map-
ping may be difficult, and besides that, the explicit calculation of the dot products ΦT (xi)Φ(x j)
may be computationally burdensome if the dimension of F is very large. The latter problem
is related to the phenomenon known as curse of dimensionality and can be avoided by intro-
ducing kernel functions K(xi,x j) = ΦT (xi)Φ(x j). In this way, dot products in feature space are
directly calculated by computing K(xi,x j), which in turn is defined on input space. Therefore,
only the kernel function may be used in the training algorithm, a possibly high dimension of
F is bypassed and explicit knowledge of the mapping Φ is not even required (BURGES, 1998;
KECMAN, 2005). Some kernel functions are presented in Table 2.1.

Table 2.1: Common kernel functions. Adapted from Kecman (2001), p. 171

Kernel Function Type

K(xi,x j) = [(xT
i x j)+1]d Complete polynomial of degree d

K(xi,x j) = exp
[
− (xi−x j)2

2σ2

]
Gaussian Radial Basis Function (RBF)

K(xi,x j) = tanh[(xT
i x j)+b]∗ Multilayer perceptron

∗Only for particular values of b

Kernel functions should satisfy the Mercer’s conditions, which state that to describe a dot
product in some F , K(xi,x j) must be symmetric and fulfill the inequalityZ Z

K(xi,x j)g(xi)g(x j)dxidx j > 0 (2.35)

for all function g(·) 6= 0 satisfying Z
g2(x)dx < ∞ (2.36)

For further details on kernel functions and Mercer’s conditions, the interested reader may con-
sult Cristiniani & Shawe-Taylor (2000), Vapnik (2000), Kecman (2001) and Schölkopf & Smola
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(2002).
The generalized dual Lagrangian adapted to non-linear classifiers then becomes:

Ld(ααα) =
`

∑
i=1

αi−
1
2

`

∑
i=1

`

∑
j=1

yiy jαiα jK(xi,x j) (2.37)

If the data is separable, constraints (2.16) and (2.17) should be taken into account, whereas if
the data is non-separable, the Lagrange multipliers must be upper bounded by parameter C.
Therefore, in the latter case, constraint (2.33) must be considered along with equality (2.17).
The decision function (2.19) is slightly modified so as to incorporate the kernel function and the
decision once again relies on its signal:

d(x) = wT
0 Φ(x)+b0 =

`

∑
i=1

α0iyiK(xi,x)+b0 (2.38)

To compute b0 it is necessary to replace the dot products by the kernel function where they
naturally emerge in (2.18) or (2.34), depending on the nature of training data (separable or not).
Nevertheless, given that the training algorithm for overlapping data is in fact a generalization of
the separable case, SVM non-linear classifiers embody the more general approach.

2.1.4 Multi-classification

The multi-classification problem is a generalization of the binary classification which en-
tails three or more categories (m ≥ 3). A usual technique to tackle multi-classification is to
combine several binary classifiers (HSU & LIN, 2002).

One of the implementations of multi-class classifiers is the one-against-all approach. It
constructs m decision functions by means of the resolution of m training problems of the form:

min
wk,bk,ξξξk

1
2

wT
k wk +C ·

`

∑
i=1

ξki (2.39)

subject to wT
k Φ(xi)+bk ≥ 1−ξki, if yi = k, i = 1,2, . . . , ` (2.40)

wT
k Φ(xi)+bk ≤−1+ξki, if yi 6= k, ∀ i (2.41)

ξki ≥ 0, ∀ i (2.42)

where k = 1,2, . . . ,m is the category index. Note that (2.39)-(2.42) is a general primal formula-
tion of the training problem, since it permits errors during training step and also input vectors xi

are mapped into a feature space through Φ. However, transforming such problem into its dual
counterpart, once more the dot products ΦT (xi)Φ(x j) naturally appear and instead of them, a
kernel function K(xi,x j) may be used. In this way, the explicit knowledge of the mapping Φ

is not necessary. This same argument is valid for the decision functions resulted from training
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problems.
Given an unseen input x (i.e., not from the training set D), one has the task of selecting its

category. For that, the m decision functions are calculated for the considered x. The chosen
category is the one associated with the decision function that has returned the greatest value. In
summary:

Class(x)≡ argmax
k

[wT
0kΦ(x)+b0k] (2.43)

Other approach for multi-classification using binary classifiers is the one-against-one me-
thod. Its main idea consists in the construction of m(m−1)

2 classifiers involving only two cat-
egories each. For instance, to train the data from classes j and k, the following optimization
problem has to be solved:

min
w jk,b jk,ξξξ jk

1
2

wT
jkw jk +C ·

`

∑
i=1

ξ( jk)i (2.44)

subject to wT
jkΦ(xi)+b jk ≥ 1−ξ( jk)i, if yi = j, i = 1,2, . . . , ` (2.45)

wT
jkΦ(xi)+b jk ≤−1+ξ( jk)i, if yi = k, ∀ i (2.46)

ξ( jk)i ≥ 0, ∀ i (2.47)

The dual formulation of such problem may be constructed and then solved as in the binary
classifiers training step described in previous subsections. If in average each class has `

m training
examples, m(m−1)

2 problems with 2`
m decision variables are resolved.

In order to classify an unseen input x, each one of the resulting m(m−1)
2 decision functions

are calculated for x. If the sign of [wT
0 jkΦ(x)+ b0 jk] is positive, than one vote is computed for

class j. Otherwise, if the sign is negative, then class k gains an additional vote. Following this
reasoning, the class that has obtained the greatest number of votes, is the one to be associated
to x. This strategy of class choice is named max-wins strategy.

Platt et al. (2000) consider a similar training algorithm as the one-against-one method. The
selection of class for unseen inputs (x), however, is made by a different strategy. It is based on
a Directed Acyclic Graph (DAG) whose nodes represent the binary decision functions. Then,
before predicting the class of x it is necessary to go through a path along the DAG.

Besides the combination of binary classifiers approach to solve multi-classification pro-
blems, there are methods which consider all classes simultaneously. According to Schölkopf &
Smola (2002), in terms of accuracy, the results obtained from these methods are comparable to
those obtained from the methods previously described. However, the optimization problem has
to deal with all support vectors at the same time and the binary classifiers, in turn, usually have
smaller support vector sets, which has positive effects on training time. In addition, the authors
contend that probably there is no multi-class approach that generally outperforms the others.
In this way, the multi-classification method selection depends on the nature of the problem at
hand, on the required accuracy and also on the available time for training. For further details in
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multi-classification strategies, see Hsu & Lin (2002) and Schölkopf & Smola (2002).
Notice that both classification and multi-classification cases have the parameter C and the

kernel parameter (e.g. σ,d) in their training problems. The values for these parameters must be
defined beforehand by the user or by a systematic procedure. Indeed, this issue is detailed in
Section 2.2, where the influence of these parameters in SVM performance is further discussed.

2.1.5 Support Vector Regression

In a regression, it is necessary to estimate the functional dependence between an output
variable y ∈ R and an input variable x ∈ Rn. The main difference between classification and
the regression problems is that, in the former, only discrete numbers associated with categories
may be attributed to y, whilst in the latter, y assume real values, since y = f (x) and f : Rn→R.
Similar to classification, the function estimate is based on the training of a SVM model using
examples of the form (input, output). The training phase of an SVM for regression resembles
the training phase of an SVM for classification purposes, given that both involve the resolution
of a convex quadratic optimization problem. Nevertheless, Support Vector Regression (SVR)
dual training problem entails 2` decision variables, instead of only ` as in classification training
step (SCHÖLKOPF & SMOLA, 2002; KECMAN, 2005).

Additionally, for the regression case, an analog of the soft margin is constructed in the space
of the target values y by using Vapnik’s linear ε-insensitive loss function (see Figure 2.6), which
is defined as:

L(x,y, f ) = max(0, |y− f (x)|− ε) (2.48)

that is, the loss (cost) is zero if the difference between the predicted f (x) and the observed y

values is less than ε. Otherwise, the loss is given by the absolute difference between these two
values. The Vapnik linear ε-insensitive loss function defines a “tube” of “radius” ε (Figure 2.6-
a). If the observed value is within the tube, there is no computed loss, whilst for values outside
the tube the cost is positive. It follows that:

|y− f (x)|− ε = ξ, for data “above” the ε-tube (2.49)

|y− f (x)|− ε = ξ
∗, for data “below” the ε-tube (2.50)

where ξ and ξ∗ are the slack variables for the mutually exclusive situations presented.
Besides the ε-insensitive loss function, there are other loss functions which can be incor-

porated by SVR as long as they are convex in order to ensure the convexity of the training
optimization problem and then the existence (and uniqueness for strict convexity) of a mini-
mum. For example, the quadratic ε-insensitive (2.51) loss function leads to a training problem
with the same conveniences provided by the linear ε-insensitive loss function. In this work,
however, only the latter loss function is considered. For more information about loss functions
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Figure 2.6: Vapnik’s ε-insensitive loss function

in SVR context, consult Vapnik (2000) and Schölkopf & Smola (2002).

L(x,y, f ) = max(0, |y− f (x)|2− ε) (2.51)

This subsection presents the basic concepts of SVR for the case of linear and non-linear
approximation functions as well as some insights of SVR applied to time series prediction.

2.1.5.1 Linear Regression Function

As in classification, the only information available for a SVR is the training data set D =
{(x1,y1),(x2,y2), . . . ,(x`,y`)},xi ∈ Rn,y ∈ R. It is supposed that a linear function is a good
regression alternative. Then, it is necessary to find the regression hyperplane which describes
best the training data, so as to allow for the use of such hyperplane to effectively regress unseen
input vectors. The equation of the regression hyperplane is:

f (x) = wT x+b (2.52)

In order to find the optimal regression hyperplane, besides the training error measured by
the ε−insensitive loss function, as well as in classification, it is necessary to minimize the term
wT w related to machine capacity. A small wT w corresponds to a linear function that is flat
(SCHÖLKOPF & SMOLA, 2002; SMOLA & SCHÖLKOPF, 2004). The primal optimization
problem is then defined:

min
w,b,ξξξ,ξξξ∗

1
2

wT w+ C ·
`

∑
i=1

ξi +ξ
∗
i (2.53)

subject to yi−wT xi−b≤ ε+ξi, i = 1,2, . . . , ` (2.54)

wT xi +b− yi ≤ ε+ξ
∗
i , ∀ i (2.55)
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ξi ≥ 0, ∀ i (2.56)

ξ
∗
i ≥ 0, ∀ i (2.57)

The corresponding Lagrangian is:

L(w,b,ξξξ,ξξξ
∗
,ααα,ααα∗,βββ,βββ∗) =

1
2

wT w+ C ·
`

∑
i=1

(ξi +ξ
∗
i )−

`

∑
i=1

αi · [wT xi +b− yi + ε+ξi]

−
`

∑
i=1

α
∗
i · [yi−wT xi−b+ ε+ξ

∗
i ]−

`

∑
i=1

(βiξi +β
∗
i ξ
∗
i )

(2.58)

in which ααα,ααα∗,βββ,βββ∗ are the `-dimensional vectors of Lagrange multipliers associated to con-
straints (2.54)-(2.57) respectively. Notice that that αi and α∗i can not be strictly positive si-
multaneously, given that there is no point satisfying both (2.54) and (2.55) at the same time.
Hence, αiα

∗
i = 0. The Lagrangian in (2.58) must be minimized with respect to primal variables

w,b,ξξξ,ξξξ
∗ and maximized with respect to dual variables ααα,ααα∗,βββ,βββ∗. Then the saddle point

(w0,b0,ξξξ0,ξξξ
∗
0,ααα0,ααα

∗
0,βββ0,βββ

∗
0) has to be found. The KKT conditions are:

∂L(w0,b0,ξξξ0,ξξξ
∗
0,ααα0,ααα

∗
0,βββ0,βββ

∗
0)

∂w
= 0, w0 =

`

∑
i=1

(α0i−α
∗
0i)xi (2.59)

∂L(w0,b0,ξξξ0,ξξξ
∗
0,ααα0,ααα

∗
0,βββ0,βββ

∗
0)

∂b
= 0,

`

∑
i=1

(α0i−α
∗
0i) = 0 (2.60)

∂L(w0,b0,ξξξ0,ξξξ
∗
0,ααα0,ααα

∗
0,βββ0,βββ

∗
0)

∂ξi
= 0, C−α0i = β0i, i = 1,2, . . . , ` (2.61)

∂L(w0,b0,ξξξ0,ξξξ
∗
0,ααα0,ααα

∗
0,βββ0,βββ

∗
0)

∂ξ∗i
= 0, C−α

∗
0i = β

∗
0i, ∀ i (2.62)

wT
0 xi +b0− yi + ε+ξ0i ≥ 0, ∀ i (2.63)

yi−wT
0 xi−b0 + ε+ξ

∗
0i ≥ 0, ∀ i (2.64)

ξ0i ≥ 0, ∀ i (2.65)

ξ
∗
0i ≥ 0, ∀ i (2.66)

α0i ≥ 0, ∀ i (2.67)

α
∗
0i ≥ 0, ∀ i (2.68)

β0i ≥ 0, ∀ i (2.69)

β
∗
0i ≥ 0, ∀ i (2.70)

α0i · [wT
0 xi +b0− yi + ε+ξ0i] = 0, ∀ i (2.71)

α
∗
0i · [yi−wT

0 xi−b0 + ε+ξ
∗
0i] = 0, ∀ i (2.72)

β0iξ0i = 0, (C−α0i) ·ξ0i = 0, ∀ i (2.73)

β
∗
0iξ
∗
0i = 0, (C−α

∗
0i) ·ξ∗0i = 0, ∀ i (2.74)

22



Chapter 2 THEORETICAL BACKGROUND

By replacing equalities (2.59)-(2.60) in (2.58), a Lagrangian in function only of the dual vectors
ααα and ααα∗ is obtained. As in classification, the dual optimization problem may be solved:

max
ααα,ααα∗

Ld(ααα,ααα∗) =−1
2

`

∑
i=1

`

∑
j=1

(αi−α
∗
i )(α j−α

∗
j)x

T
i x j−

`

∑
i=1

[ε(αi +α
∗
i )+ yi(αi−α

∗
i )] (2.75)

subject to
`

∑
i=1

(αi−α
∗
i ) = 0 (2.76)

0≤ αi ≤C, i = 1,2, . . . , ` (2.77)

0≤ α
∗
i ≤C, ∀i (2.78)

As a result from the dual problem, non-negative values for the Lagrange multipliers αi

and α∗i for all i are obtained. From them, the optimal normal vector w0 is directly defined by
(2.59). By the possible values for α0i and α∗0i as well as considering the KKT complementarity
conditions (2.71)-(2.74), one may conclude:

• If 0 < α0i < C, then ξ0i = 0 is true. Besides that, the equality wT
0 xi + b− yi = −ε is

obtained and then the example (xi,yi) intercepts the parallel hyperplane that is ε above
the regression hyperplane (H+). Similarly, if 0 < α∗0i < C, from ξ∗0i = 0 holds and conse-
quently the equality yi−wT

0 xi− b = −ε is valid. Hence, the point (xi,yi) intercepts the
hyperplane that is ε below the regression hyperplane (H−). When either 0 < α0i < C or
0 < α∗0i < C is true, the related example (xi,yi) is named free support vector, which allow
for the calculation of the linear coefficient b0:

b0 =
1

nFSV

[
nUFSV

∑
s=1

(ys−wT
0 xs− ε)+

nLFSV

∑
s=1

(ys−wT
0 xs + ε)

]
(2.79)

where nUFSV and nLFSV are respectively the number of free support vectors lying in
H+ and H−.

• For data “above” the ε-tube, i.e. ξ0i > 0, the equality α0i = C holds. On the other hand, if
data is “below” the ε-tube, then ξ∗0i > 0, which implies α∗0i = C. Training data that satisfy
these conditions are called bounded support vectors. As in the case of soft-margin clas-
sifier, these support vectors do not construct the value of b0, since it can not be uniquely
determined due to positive but not exactly known slack variables values.

• For training examples lying “within” the ε-tube, |yi−wT
0 xi− b| < ε is valid and as a

consequence α0i = α∗0i = 0. Such points are not support vectors and also do not construct
the regression hyperplane, which is defined as follows:

f (x) = wT
0 x+b0 =

`

∑
i=1

(αi−α
∗
i )x

T
i x+b0 (2.80)
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2.1.5.2 Non-Linear Regression Function

The generalization from linear to non-linear regression functions is possible by the use of
kernel functions in the same way linear classifiers evolve to non-linear ones. In this way, even
if the regression function is non-linear in input space, a regression hyperplane can be found in
a feature space.

x

y

0

+e

-e

F(x)

H-

H+

y f x= ( ))F(

F

Input space

(a) (b)

Feature space

Support vectors

Figure 2.7: Non-linear regression

Once more notice that the dual training problem in subsection 2.1.5.1 presents input data
in the form of dot products xT

i x j. Analogous to non-linear classifiers, such dot products are
replaced by a kernel function K(xi,x j) = ΦT (xi)Φ(x j) set a priori. The normal vector w0

may not be directly obtained, since its expression (2.81) becomes function of the mapping Φ,
which often involves a high dimension or it is even not known. Both cases render the explicit
computation of w0 impractical.

w0 =
`

∑
i=1

(α0i−α
∗
0i)Φ(xi) (2.81)

The linear coefficient b0, in turn, can be calculated by either the KKT complementarity
conditions (2.71) or (2.72). After replacing w0 in these equations, the dot product ΦT (xi)Φ(x j)
naturally appears and may be substituted by K(xi,x j). Again, it is better to set b0 as the average
over all calculated expressions (KECMAN, 2005).

Therefore, one may have the non-linear regression function:

f (x) = wT
0 Φ(x)+b0 =

`

∑
i=1

(α0i−α
∗
0i)Φ

T (xi)Φ(x)+b0 =
`

∑
i=1

(α0i−α
∗
0i)K(xi,x)+b0 (2.82)

SVR and traditional statistical (non)-linear regression models are different approaches to
solve regression problems. Firstly, traditional models are classified as (non)-linear with respect
to the parameters of the regression function. SVR, however, is classified as (non)-linear de-
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pending on the (non)-linearity on the input variables (x). One advantage of SVR over statistical
linear regression models is the fact that the errors do not need to be drawn from a Normal
distribution with zero mean and constant variance. In fact, SVR does not require assumptions
over the errors. Additionally, differently from SVR, to apply a statistical non-linear regression
model, a previous knowledge about the relationship between the response and input variables
is often required. Also, due to the use of kernels, SVR always involve a linear regression func-
tion, either in the input or in the feature space. For more in traditional statistical (non)-linear
regression methods, see Montgomery et al. (2001).

2.1.5.3 Time Series Prediction

According to Fuller (1996), a real valued time series can be considered as a collection of
random variables indexed in time. For a specific event under analysis (e.g. system failure), the
realizations of such random variables generate a set of observations ordered in time. Some of
the most common purposes of studying time series are to learn about the underlying mecha-
nism generating the data, to predict future values of the phenomenon under analysis and/or to
optimally control a system. For instance, financial series of stock prices may provide investors
with information whether or not they may invest in the next future. Also, a series of reliability
values of a critical machine gives insights of its “health”, which is very useful for maintenance
planning.

Generally, a time series is not drawn independently. Conversely, the statistical learning
model underlying SVR assumes independent and identically distributed samples. Despite this
fundamental difference mentioned by Schölkopf & Smola (2002), SVR has been widely applied
to the problem of time series prediction and has provided excellent results for them, compara-
ble to or even better than the ones originated from other approaches such as NN. This empirical
evidence can be verified in the work by Müller et al. (1999) that shows the superior perfor-
mance of SVR in a benchmark set from the Santa Fe Time Series Competition (WEIGEND &
GERSHENFELD, 1994) as well as in the reliability related papers from Hong & Pai (2006)
and Chen (2007). Moreover, a survey of works using SVM for time series prediction applied to
diverse fields is presented by Sapankevych & Sankar (2009).

The general time series prediction model can be represented as follows:

yt = f (yt−1,yt−2, . . . ,yt−p) (2.83)

where yt is the observation at time t which is function of the p past observations. In other words,
the input vector xt = (yt−1,yt−2, . . . ,yt−p), where p denotes its dimension, is directly related to
the future value yt . Additionally, if t data observations compose the time series, one may have
to construct the examples in the form (xi,yi), i = 1,2, . . . t − p as shown in Table 2.2. In this
way, the training set is comprised by t− p training examples.
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Table 2.2: Construction of data pairs for time series prediction

i Input xi Output yi

1 y1 y2 · · · yp yp+1+k
2 y2 y3 · · · yp+1 yp+2+k
...

...
... · · ·

...
...

t− p yt−p yt−p+1 · · · yt−1 yt+k

Besides that, the future outcomes may be predicted for different steps in time. In Table
2.2, k is the number of steps ahead minus one. For example, if the (i− 1)th values are inputs
to forecast the ith one, it is then performed a single-step-ahead prediction (k = 0). If the same
inputs are used to predict the (i+1)th outcomes, a two-step-ahead forecast takes place (k = 1).
Generally, predicting two or more steps ahead with (i−1)th input values is said to be a multi-
step-ahead forecast.

Once the training examples are formed, the application of SVR follows the same reason-
ing shown in subsections 2.1.5.1 and 2.1.5.2. An advantage of using SVR approach in dealing
with time series prediction is the fact that it is model-independent and can tackle non-linear
and non-stationary series, which may not be handled by traditional methods if simplifying as-
sumptions or alternative techniques to render them stationary are not considered. Basically, a
non-stationary time series randomly varies along time around a constant mean, reflecting a form
of equilibrium (MORETTIN & TOLOI, 2004).

As in the (multi-)classification problems, SVR also depends on a set of parameters that
has to be defined a priori. Besides the penalization for errors C and the kernel parameter
(e.g. σ in RBF case), SVR also demands the definition of ε from the Vapnik’s ε-insensitive loss
function. In both classification and regression tasks, the choice of these parameters is often very
difficult. This issue gives rise to the model selection problem, which is discussed in Section 2.2.
The following Subsection introduces the most used optimization techniques to solve the SVM
training problem.

2.1.6 Optimization Techniques and Available Support Vector Machines Libra-

ries

Different optimization techniques can be applied to the SVM learning problem. One of
them is the Interior Point Method (NOCEDAL & WRIGHT, 2006), that is indicated for small to
moderately sized data sets, up to 104 (SCHÖLKOPF & SMOLA, 2002). Alternatively, the faster
Sequential Minimal Optimization (SMO) approach can be adopted. Loosely speaking, SMO
decomposes the quadratic training problem into the smallest possible quadratic subproblem,
which involves only two examples (two Lagrange multipliers) so as to allow for the analytic
treatment of them instead of numerical. At every step, SMO chooses two Lagrange multipliers
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to jointly optimize, finds the optimal values for these multipliers, and updates the SVM to reflect
the new optimal values. Since the storage of large matrices is not required, large data sets can
be handled and problems with numerical precision are avoided (PLATT, 1998).

There are several free SVM solvers available in the Internet, which are periodically im-
proved by the developers. Two of them are the SVMlight and the LIBSVM. SVMlight is an
implementation of SVM learner that solves the SVM dual problem by means of a decomposi-
tion strategy that generates a series of smaller optimization problems to be resolved. The dual
decision variables (ααα) are divided in two groups: the first one comprises the variables that can
vary their values during the optimization process and forms the so-called working set; the sec-
ond one is formed by variables with fixed values. The selection of which variables will be in the
working set is made through the choice of the steepest descent feasible direction, which in turn
will make much progress towards the minimum of the objective function. For further details,
see Joachims (1999).

LIBSVM is an integrated software for support vector classification, multi-classification and
regression tasks. It can be easily linked with other programs through several programming
languages such as MATLAB. Additionally, it implements a SMO algorithm for solving the
training problem (CHANG & LIN, 2001; FAN et al., 2005). In this dissertation, LIBSVM is the
used library for training of SVM, as well as for prediction via a particular SVM already trained.

SVM performance is influenced by the values of the parameter C, ε (regression case) and
kernel parameter (e.g. σ, d). The problem of selecting the most suitable set of parameters is
detailed in next section.

2.2 Model Selection Problem

The performance of SVM strongly depends on the chosen set of parameters. The task of
tuning the SVM parameters so as to obtain the most suitable set of values for them is known
as the model selection problem. In classification problems, the trade-off between model capac-
ity and training error represented by C and the kernel parameter (e.g. the RBF width σ or the
polynomial degree d) are the user defined parameters. For instance, a large C forces the SVM
classification algorithm to reduce the training errors, which in turn can be accomplished by
increasing the machine capacity (by means of wT w) and as a consequence may reduce the mar-
gin. This is contrary to the main objective of margin maximization and also does not guarantee
a good generalization performance of the classifier.

Regression problems, along with C and the kernel parameter, present the “radius” ε of the
tube. For a small C, penalty on errors gets negligible and regression function becomes flat,
while for a large C a penalty gets more important and the resulting regression function tries to
fit the data. A small ε inclines the SVR function to fit the data, since a very thin ε-tube may
be not sufficiently wide to include even few data points. A large ε-tube, however, may be wide
enough, which renders the SVR function flat and, as a consequence, it may not describe well
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the training set. If a RBF kernel is considered, a small σ means the kernel is more localized.
Thus, the SVR function has a tendency to overfit, while a large σ makes the ε-tube less flexible
(ITO & NAKANO, 2003). In Figure 2.8, it is illustrated the effects of small and large values of
the parameters for the regression case.
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Figure 2.8: Influence of parameters in SVR. Adapted from Ito & Nakano (2003), p. 2078

Given the influence of parameters on SVM performance, it is necessary to select them
as accurately as possible. The most naive attempt to set these parameters is the trial and error
method, which is time consuming and does not ensure a useful set will be found. More educated
ways to tune these parameters are then listed:

• Grid search: ranges of parameters are defined and then made discrete so as to allow for the
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test of all possible combinations. This procedure may be suitable if only few parameters
are to be tuned, but otherwise may be time consuming and may become impractical if
there are several parameters as well as many possible values for each one of them. Hsu
& Lin (2002) use this method for adjusting the SVM parameters in the context of multi-
classification problems.

• Pattern search: is a direct search method, suitable to optimize a wide range of objective
functions, given that it does not require derivatives (LEWIS et al., 2000). The number of
evaluated combinations is smaller than the quantity assessed in the grid-search method. It
was applied to SVR model selection in the context of drug designs by Momma & Bennett
(2002). The authors also make a comparison between the pattern search and the grid
search.

• Gradient-based search: requires continuous and differentiable error functions. Vapnik &
Chapelle (2000) derive some generalization error bounds for classification and in the later
work by Chapelle et al. (2002) a gradient descent method is applied to obtain the set of
parameters that minimize those bounds. Chang & Lin (2005) present some error bounds
for regression and use a quasi-Newton method to get the parameters minimizing them.
As stated by Ito & Nakano (2003) the linear ε loss function does not produce a smooth
error surface, which burden gradient methods. Alternatively, the authors incorporate the
quadratic ε loss function to SVR and then present the derivatives of the error function with
respect to the parameters. For details in gradient-based methods see Nocedal & Wright
(2006).

• Bayesian evidence framework: its main idea is to maximize the posterior probability of
the parameter distribution to get the optimal parameter. The evidence framework was
adapted to SVM model selection by Kwok (2000). The author describes the methodol-
ogy for classification problems. Later, Gestel et al. (2001) and Yan et al. (2004) apply
evidence framework to regression situations. The first work is related to financial series
forecasting. The second one is associated to the refinery oil industry and aims at esti-
mating the freezing point of light diesel oil in a fractionator by means of process data
records.

• Probabilistic search heuristics: are flexible optimization techniques that do not require
derivatives and are often based on nature aspects. For example, GA and PSO are widely
applied to optimization problems from different contexts. Specifically in SVM field, Pai
(2006) and Chen (2007) apply GA to select the SVR parameters to forecast series related
to reliability of engineered components. Additionally, in the electricity management field,
PSO is used by Fei et al. (2009) in a SVR to predict the quantity of gases dissolved in
power transformer oil based on previous observed values and by Hong (2009) in select-
ing the parameter of a SVR to forecast electric load. In the domain of fault detection
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Samanta & Nataraj (2009) apply PSO to choose the kernel parameter of the SVM clas-
sifier. Simulated Annealing (SA) may also be part of this group and is applied to SVR
forecast electricity load and software reliability by respectively Pai & Hong (2005) and
Pai & Hong (2006).

Other systematic manners to find the parameter values so as to allow for generalization
error minimization are available in literature. The interested reader may consult for instance
Fröhlich & Zell (2005) for SVM classification and regression parameters selection and Wu &
Wang (2009) for the classification case only. In this work, the PSO approach is adopted to
select the parameter values of SVM, given it is well-suited to optimize real-valued functions as
well as does not require derivatives, which avoids problems with non-smooth error surfaces. In
addition, if compared to GA, for example, PSO requires less computational effort.

In practice, the data set is divided in two parts, one for actual training (training set formed
by ` elements) and the other for posterior test (test set comprised by λ examples). The test
set plays the role of unseen data and are not used during SVM training. Instead, it is used to
evaluate an error function usually involving the real output values (yh) and the predicted ones
(ŷh) resulted from the trained SVM model, where h = 1,2, . . . ,λ is the index of an example from
the test set. Two error functions commonly applied for SVM testing are the Normalized Root
Mean Square Error (NRMSE) and the Mean Absolute Percentage Error (MAPE). Eventually
the Mean Square Error (MSE) is also used. These error functions are defined as follows:

NRMSE =

√√√√∑
λ

h=1(yh− ŷh)2

∑
λ

h=1 y2
h

(2.84)

MAPE =
1
λ

λ

∑
h=1

yh− ŷh

yh

 ·100% (2.85)

MSE =
1
λ

λ

∑
h=1

(yh− ŷh)2 (2.86)

In order to select the most suitable parameters, the mentioned error functions may be itera-
tively evaluated on the test set so as to guide the quest for improved parameter values. Neverthe-
less, a unique test set may mislead to an error estimate far from the real generalization error. In
this way, specially the grid, pattern and probabilistic search methodologies incorporates during
the training phase a sort of model validation, in which the training set is split into even smaller
subsets that participate in either actual training or model validation in an alternated manner.
One of the following training strategies may be adopted:

• Validation sets: the training set is divided into two subsets, one for actual training and a
second one to guide the search for optimal parameter values (validation set). Once the
parameters are found, the machine’s generalization performance can be evaluated on a
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test set. It is expected a test error greater than the validation error, since the machine
would be specialized in the validation set. However, with this procedure, one may have
insights about the machine ability to generalize. Hong & Pai (2006) and Pai (2006) apply
this strategy. Also, instead of one single validation set, Chen et al. (2004), in their work
related to electricity load prediction, make use of two validation sets and the quest for the
SVR parameters are based on the mean validation error resulted from both of them.

• Cross-validation: the training set is split randomly into several subsets, say k. A k-fold
cross-validation consists in training the SVM model with k−1 subsets and validate it on
the remaining subset by means of an error function. This is made k times so as each sub-
set participate in the validation phase once. The error is averaged over the k validations
(equations (2.84) and (2.85) may be multiplied by 1

k ). This procedure is more time con-
suming than the single test set approach but it gives a better estimate of the generalization
error.

• Leave-one-out: this is the extreme of the cross-validation strategy. If the training set is
formed by ` examples, ` trainings are performed. In each one of them `− 1 examples
actually participate in the training phase and the remaining one is used for model vali-
dation. Hence, every example participate in validation once. This approach is the most
time-consuming but, according to Schölkopf & Smola (2002) it provides an almost un-
biased estimate of the error. Additionally, Lee et al. (2004) present a manner to enhance
the efficiency of this procedure for Gaussian kernel-based SVM.

It is important to emphasize that the described strategies occur during the training phase,
which can be didactically divided in actual training and validation. After that phase, the set of
parameters which return the minor error value may be adopted and are then often used to train
the entire training set (i.e. all ` examples at once). This procedure has some theoretical issues
specially associated with cross-validation that are described by Schölkopf & Smola (2002). For
example, given that the retraining with all examples makes use of the same data which guided
the search for parameters, it can lead to overfitting. Also the optimal parameter settings for data
sets of size (k−1)`

k and ` do not usually coincide. Nevertheless, applications not considering
these potential problems are frequently performed with promising results. Finally, after setting
the parameters, the SVM model is tested on test set.

Additionally, it is noteworthy that when handling time series data it is important to realize
that the entries are inherently indexed on time. This is crucial specially when dealing with non-
stationary time series, where the mixing of data may lead to completely different realizations
of the underlying phenomenon at hand. In this way, choosing random subsets to apply cross-
validation for parameter selection is not an indicated technique for these cases, even if those
subsets could be internally sorted or divided in approximate equal time intervals. Given that a
subset is extracted from the training in order to validate the model, the machine would not be
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able to catch the existent correlation from the original data. As an alternative, the validation
sets approach respecting the time series order can be adopted by dividing data set into training,
validation and test sets considering the original order, so as to allow for performance evalu-
ations of the machine ability to predict future outcomes. The leave-one-out procedure could
also be applied since only one data entry at a time is excluded from training with possibly no
serious influence on the natural relationship among data. However, this latter approach has the
cost of high computational effort, which depending on the parameter search tool used may be
prohibitive.

The majority of the application examples considered in this work are related to reliability
time series (Chapter 4). Thus, along with PSO, this work makes use of the validation sets ap-
proach. Even for the example concerning real data from oil production wells the validation sets
procedure is adopted, since the cross-validation and leave-one-out techniques are time consum-
ing. In next section, the main ideas and characteristics of PSO are described.

2.3 Particle Swarm Optimization

The PSO algorithm was introduced by Kennedy & Eberhart (1995) and it is based on the
social behavior of biological organisms that move in groups such as birds and fishes. It was
originally developed to solve non-linear optimization problems. PSO also has some ties to evo-
lutionary algorithms such as GA, since it is population-based (swarm). However, a fundamental
difference between these paradigms is the fact that evolutionary algorithms are based on natu-
ral evolution concepts, which embody a competitive philosophy denoted by the idea that only
the fittest individuals tends to survive. Conversely, PSO incorporates a cooperative approach to
solve a problem, given that all individuals (particles) – which are allowed to survive – change
themselves over time and one particle’s successful adaptation is shared and reflected in the
performance of its neighbors (KENNEDY et al., 2001).

The basic element of PSO is a particle, which can fly throughout search space towards an
optimum by using its own information as well as the information provided by other particles
comprising its neighborhood. The performance of a particle is determined by its fitness, which
is assessed by calculating a predefined objective function related to the problem to be solved at
its current position.

In PSO, a particle’s neighborhood is the subset of particles with which it is able to commu-
nicate (BRATTON & KENNEDY, 2007). Depending on how the neighborhood is determined,
the PSO algorithm may embody the gbest model, where each particle is connected to every
other particle in the swarm so as it can obtain information from them. In other words, the
neighborhood of a particle is the entire swarm. Alternatively, in the lbest model a particle is
not able to communicate with all other particles but only with some of them. The simplest
lbest model, also known as ring model, connects each particle to only two other particles in the
swarm. It is important to notice that the neighborhood concept gives rise to a communication
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network among particles which does not necessarily depends on distances. Indeed, it is better
to think about the swarm communication network as a graph where vertices represent particles
and edges indicate the connections among them without any associated weight. Then, the gbest

model is related to a complete graph in which all vertices (i.e. particles) are connected to each
other, whereas the ring model forms a cycle with length equal to the number of particles. For
example, the left side of Figure 2.9 depicts a cycle of length 12. Other types of swarm com-
munication networks are also shown in Figure (2.9). For more on graphs, see Bondy & Murty
(2008).

lbest ring lbest with four neighbors gbest

Figure 2.9: Different swarm communication networks. Adapted from Bratton & Kennedy (2007)

If Euclidean distances are used to define particles’ neighbors, the communication networks’
inherent cycles as depicted on Figure 2.9 are not guaranteed. This may eventually lead to a lack
of exploration ability, which is not interesting.

According to Bratton & Kennedy (2007), the gbest model usually converges more rapidly
than the lbest approach. Sometimes this characteristic may be actually a drawback of the for-
mer model, since it can eventually result in premature convergence of the algorithm to a inferior
local in the case of multi-modal functions. However, in some cases the gbest model can de-
liver competitive performance even on complex multi-modal problems. Additionally, the gbest

model has the advantage that it often requires less function evaluations, which is very useful
when such assessments are computationally costly. In fact, as the number of particles’ neigh-
bors increases, one may get a mix of both advantages and shortcomings of lbest and gbest

approaches (EBERHART & KENNEDY, 1995).
A particle i is formed by three vectors:

• Its current position in search space xi = (xi1,xi2, . . . ,xin).

• The best individual position it has found so far pi = (pi1, pi2, . . . , pin).

• Its velocity vi = (vi1,vi2, . . . ,vin).

Traditionally the current positions xi and velocities vi are initialized respectively by means
of a uniform distribution parametrized by the search space and by the maximum velocity vmax.
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The particles then move throughout the search space by the following set of recursive update
equations:

vi j(t +1) = vi j(t)+ c1 u1 · [pi j(t)− xi j(t)]+ c2 u2 · [pg j(t)− xi j(t)], j = 1,2, . . . ,n (2.87)

xi j(t +1) = xi j(t)+ vi j(t +1), ∀ j (2.88)

where c1 and c2 are constants, u1 and u2 are independent uniform random numbers from the
interval [0,1] generated at every update for each individual dimension j = 1,2, . . . ,n and pg(t)
is the n-dimensional vector formed by the best position encountered so far by any neighbor
of particle i. Note that velocities and positions at time t + 1 are influenced by the distances
of the particle’s current position from its own best experience pi(t) and the neighborhood’s
best experience pg(t). The second part of (2.87) represents the “cognition” of the particle,
which is its private “thinking”. The last part of (2.87), in turn, is associated with the particle’s
“social” ability, which represents the collaboration among particles. Notice also that velocities
and positions are part of the same equation, even though units of both being different (length
per time unit and length, respectively). One may interpret the future position as the previous
one plus the velocity multiplied by a time unit. In this way, there is no problem involving units
in equations (2.87) and (2.88), as it would be thought at first glance.

During the iterations, if velocities are not constrained to an upper bound (vmax), the PSO
algorithm is prone to enter a state of explosion, since the random weighting of u1 and u2 causes
velocities and thus particle’s positions to increase rapidly. In this way, the vmax approach, illus-
trated in the following pseudocode, can be used for every dimension j and particle i. According
to Bratton & Kennedy (2007), however, a single value vmax is not necessarily applicable to all
sizes of problem spaces and finding its appropriate value is critical to the PSO performance and
it may be a difficult task.

procedure CONSTRAINVELOCITY(vmax)
if vi j(t +1) > vmax then

vi j(t +1) = vmax

else
if vi j(t +1) <−vmax then

vi j(t +1) =−vmax

end procedure

Alternatively, the inertia weight w may replace vmax to adjust the influence of previous
velocity of the particle during the optimization process and then to balance the trade-off between
global and local search. By adjusting w, the swarm has a tendency to eventually constrict itself
to the region containing the best fitness and exploit this region (SHI & EBERHART, 1998;
BRATTON & KENNEDY, 2007). The function for velocity update (2.87) becomes:

vi j(t +1) = wvi j(t)+ c1 u1 · [pi j(t)− xi j(t)]+ c2 u2 · [pg j(t)− xi j(t)], j = 1,2, . . . ,n (2.89)
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It is also possible to vary the value of w during PSO iteration, which may be greater at the
beginning so as to allow for exploration (coverage of the entire search space) and gradually
smaller while the algorithm evolves to encourage exploitation (fine adjustments in a specific
area) on the most promising regions found during exploration. If w is a constant, Shi & Eberhart
(1998) recommend to pick a value for it from the interval [0.9,1.2]. On the other hand, if it is
changed dynamically, typically it varies from 0.9 to 0.4 throughout PSO iterations (KENNEDY
et al., 2001).

Another manner to avoid the velocity explosion during PSO iterations is to use a constric-

tion factor χ multiplying all parts of the velocity update equation:

vi j(t +1) = χ
{

vi j(t)+ c1 u1 · [pi j(t)− xi j(t)]+ c2 u2 · [pg j(t)− xi j(t)]
}

, j = 1,2, . . . ,n

(2.90)
where

χ =
22−ϕ−
√

ϕ2−4ϕ

 , ϕ = c1 + c2 (2.91)

Notice that χ has no real values when ϕ < 4. The idea of the constriction factor is that the
amplitude of particles’ oscillations decreases as they focus on a previous best point from their
respective neighborhoods. In this way, as ϕ increases, χ decreases and such amplitudes become
even smaller. However, if a member of a neighborhood finds a better point, the other particles
can perfectly explore the new region. Hence, the constriction factor does not forbid particles
switching from exploratory to exploitative mode and vice versa (KENNEDY et al., 2001). Brat-
ton & Kennedy (2007) affirms that for simplicity most implementations of constricted PSO set
ϕ = 4.1, which assures convergence and yields χ≈ 7.2984 ·10−1, c1 = c2 = 2.05.

Although the constriction factor does not require a limit on particles’ velocities, empirical
experiments have shown that taking the variables’ ranges as bounds for velocities can provide
better results. Limiting velocities this way does not confine particles to feasible search space,
but in general does not allow them to go far beyond the region of interest (KENNEDY et al.,
2001). Actually, artificially constraining particles’ positions when they reach the boundary of
search space is not recommended since it can affect the performance of PSO. In this way, in-
feasible particles may emerge and then the most straightforward method for handling them is to
leave their velocities and infeasible positions unaltered. Besides that, the fitness evaluation step
may be skipped in order to avoid infeasible positions becoming particles’ best and/or neigh-
borhood best positions. With this procedure, called let particles fly, infeasible particles may be
drawn back to feasible search space by the influence of their personal and neighborhood bests.
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3 PROPOSED PARTICLE SWARM OPTIMIZATION AND SUP-
PORT VECTOR MACHINE METHODOLOGY FOR RELIABILITY
PREDICTION

In this work, PSO is considered to tackle the model selection problem for SVR tasks. As
the Gaussian RBF kernel is broadly used in reliability related SVM works, it is the one taken
into account. In this way, the parameters C, ε and the Gaussian RBF width σ must be defined.
These three SVR parameters become decision variables to the PSO algorithm and they form
a 3-dimensional search space. In fact, instead of using σ, it is considered γ = 0.5

σ2 , which can
be noticed on the expression of the RBF kernel in Table 2.1. This is necessary due to LIBSVM

requirements, since it works with gamma values and not directly with the width σ. Thus, the ith

particle is described by the vectors xi = (xi1,xi2,xi3), pi = (pi1, pi2, pi3) and vi = (vi1,vi2,vi3),
where the first, second and third dimensions are respectively related to C, ε and γ.

Bratton & Kennedy (2007) contends that a standard PSO algorithm includes a lbest model,
the usage of the constriction factor for velocities’ and thus positions’ updates, the number of
particles set as 50, a non-uniform swarm initialization and the procedure of skipping fitness
evaluation when particles exit the feasible search space.

In this work, similarly to the suggested PSO, it is used the constriction factor, infeasible
particles are allowed but their fitness values are not assessed and a lbest model is implemented.
Differently from the standard algorithm, the traditional random uniform swarm initialization is
performed and the number of particles is set to 30. Indeed, Bratton & Kennedy (2007) states
that 20-100 particles had produced quite similar empirical results.

Additionally, a gbest PSO is also implemented in order to have its performance compared to
the lbest one in the specific context of reliability prediction. Also, in the PSO fitness evaluation
phase, instead of only evaluating an ordinary objective function, the coupling with LIBSVM

takes place. Next Section details the steps involved in the implemented PSO combined to
LIBSVM.

3.1 Steps

3.1.1 Read of Data and Definition of Variables’ Bounds

Before the initialization of PSO swarm, it is necessary to read the available data of inputs
and outputs from a file in text format. Such file is organized as follows: the first column is
comprised of the output values (y1,y2, . . . ,y`+ϑ+λ) and the following ones are each filled with
a dimension of the input vector x. This data set, for example, may have been originated from a
condition monitoring procedure.

After reading all data, the entire set is subdivided in training, validation and test sets, whose
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sizes (`,ϑ,λ, respectively) are defined by the user. Usually, the majority of the entries are
reserved for the training step, and the remaining ones are approximately equally divided to form
the validation and test sets. The implemented PSO+SVM entails the validation sets approach
in which the order of observations are respected, since cross-validation and leave-one-out are
computational costly approaches and problems concerning reliability prediction based on time
series are also considered.

The maximum and minimum values of the variables (xmin
j ,xmax

j , j = 1,2,3) define intervals
with different magnitudes. According to Kecman (2005), the “radius” of the SVR tube ε can be
defined as a percentage of the mean of the training outputs (yi, i = 1,2, . . . , `). Following this
idea, in this work, ε has its lower and upper bounds defined respectively as 0.001

` ∑
`
i=1 yi and

0.15
` ∑

`
i=1 yi. This way of defining the boundary values of ε is adapted to the data under analysis.

However, the minimum and maximum values of C and γ are not defined using the available
observations and are determined rather in an arbitrary way. As a consequence, their ranges are
greater than the one defined for ε.

3.1.2 Particle Swarm Initialization

In this work, it is implemented the traditional random uniform swarm initialization and the
particles’ initial positions are randomly selected from their respective intervals of definition.
The positions pi are initially set equal to xi for each particle i.

Given that the variables’ ranges are very different, the velocities are initialized in a special
manner. The maximum velocity of each dimension vmax

j is set to 10% of the range where the
specific variable is defined:

vmax
j =

1
10

(xmax
j − xmin

j ), j = 1,2,3 (3.1)

in which xmax
j and xmin

j are the maximum and minimum values the related variable can assume.
After that, velocities are randomly chosen from the interval [−vmax

j ,vmax
j ], j = 1,2,3, for all

particles. Only 10% of the range was chosen to initially set small velocities in an attempt to
avoid the exit of particles to infeasible areas in early stages of the PSO algorithm.

The initialization procedure for an arbitrary particle i is summarized in the following pseu-
docode. The notation n indicates the number of dimensions or variables taken into account.
For the SVR model selection problem considering RBF kernels, n = 3. The notation RAND (·),
in turn, is the function that returns a real number randomly selected in the interval passed as
argument, according to a uniform distribution.
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procedure INITIALIZEPARTICLE (xmin
1 ,xmax

1 ,xmin
2 ,xmax

2 , . . . ,xmin
n ,xmax

n )
for j = 1,2, . . . ,n do

xi j← RAND (xmin
j ,xmax

j )
pi j← xi j

vi j← RAND (−vmax
j ,vmax

j ) . vmax
j defined by Equation (3.1)

end for
return particle i

end procedure

3.1.3 Definition of Particles’ Neighborhoods

This step is required only when the lbest model is adopted. If the gbest one is considered,
the neighborhood is equal to the entire swarm and there is no necessity to explicitly define
particles’ neighbors.

In the lbest approach, particles’ neighbors are arbitrarily defined considering the particles’
generation order and not taking into account any sort of distance metrics. For example, in
the case of lbest ring model, particle i has i−1 and i + 1 as neighbors. If i = 1, then the “left”
neighbor is the last particle and, conversely, if the last particle is considered, its “right” neighbor
is the first particle. For the sake of illustration, consider a swarm with 10 particles. Table 3.1
presents the neighborhood of each one of them when it is formed by 2 or 4 other particles. The
list of particles concerns the order of generation in the initialization step.

Table 3.1: Examples of particles’ neighborhoods

Particle 2 neighbors 4 neighbors

1 10, 2 9, 10, 2, 3
2 1, 3 10, 1, 3, 4
3 2, 4 1, 2, 4, 5
4 3, 5 2, 3, 5, 6
5 4, 6 3, 4, 6, 7
6 5, 7 4, 5, 7, 8
7 6, 8 5, 6, 8, 9
8 7, 9 6, 7, 9, 10
9 8, 10 7, 8, 10, 1
10 9, 1 8, 9, 1, 2

3.1.4 Fitness Evaluation: Coupling of Particle Swarm Optimization and Sup-

port Vector Machine

The objective function denoting the fitness of particles, in this work, is the NRMSE (2.84).
At the fitness evaluation step, the coupling between PSO and SVM takes place. The validation
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sets approach is adopted so as to guide the search of optimal parameter values by PSO. In this
way, given a specific particle, whose current position (x) defines a set of parameters, C,ε,γ,
along with the training and validation sets at hand, LIBSVM is able to perform the SVR. Firstly,
it solves the training problem taking into account the training set. It then provides the support
vectors (both bounded and free), their respective Lagrange multipliers values as well as the
value of the linear coefficient b0. With these results it is possible to calculate the regression
function. Secondly, these outcomes are used to feed the prediction portion of LIBSVM. Thus,
the trained “machine” is used to predict the outputs from the input values of the validation set.
With the predicted and the available real values it is possible to calculate the validation NRMSE.

Also, the fitness evaluation phase entails the update of particles’ best positions (p). If
a particle’s current position x results in a smaller validation NRMSE, then its best position
becomes x and the calculated fitness value is stored. That is, p is made equal to x and a particle
fitness is always related to its best position p. Otherwise, nothing changes.

The fitness evaluation of all particles takes place immediately after the initialization and
definition of neighborhoods (if lbest is adopted) steps so as to start the search procedure by
PSO. It is also performed after the update of particles’ velocities and positions and is followed
by the update of the global best particle and the particles’ best neighbors (when lbest model is
considered).

3.1.5 Update of Particles’ Velocities and Positions

Similarly to the standard algorithm, the developed PSO use the constriction factor in its up-
dating rules as well as the permission of infeasible particles existence without fitness evaluation
in such circumstance. In fact, the impacts of the let particles fly strategy could be empirically
observed by some experiments performed in early stages of this work. When the particles ex-
ited the feasible search space in terms of one or more variables, their positions were set as
either the lower or upper bound of the related dimensions, depending on the limit they have
surpassed. This procedure negatively influenced the PSO performance, given that the particles
were inclined to occupy the boundary regions of the feasible search space, which prejudiced its
exploration. The implementation of let particles fly gave noticeable improvements to the PSO
performance.

The update of particles’ velocities and positions is accomplished by computing Equations
(2.90) and (2.88), respectively. Additionally, along with the constriction factor, velocities are
bounded to the definition ranges of variables so as to avoid particles going to far from the
feasible search space. Hence, after initialization step, vmax

j = xmax
j − xmin

j , j = 1,2,3.
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3.1.6 Update of Global Best and Particles’ Best Neighbors

The update of global best and particles’ best neighbors always takes place after the fitness
evaluation step, given that it is based on particles’ fitness values. The global best updating
consists in identifying and storing the particle that have led to the smallest validation NRMSE
overall particles of the swarm up to the present iteration. Not only the global best particle with
its associated positions and fitness is stored, but also the number of the iteration in which it was
found (bIter). This number may be used in the assessment of the stop criteria.

If the lbest model is adopted, then it is necessary to verify the best particles’ neighbors
at each PSO iteration, since they play the role of guiding search along with particles’ best
positions. In a particle’s neighborhood, including itself, the one with the smallest validation
NRMSE becomes the best neighbor in the current iteration.

3.1.7 Stop Criteria

These steps are repeated until a stop criterion is reached. The proposed PSO involves three
of them:

1. Maximum number of iterations (nIter).

2. The global best particle (and thus the fitness value) is the same in 10% of the maximum
number of iterations.

3. The global best fitness value in consecutive iterations are different but such difference is
less than a tolerance δ.

The update of particles’ velocities and positions, the fitness evaluation and the update of
global best and best particles’ neighbors are repeated until one of the considered stop criteria
is met. As a result, the PSO+SVM procedure provides the “machine” with the most suitable
parameter values C,ε,γ. This PSO-optimized SVM is then used to predict the outputs from the
input values of the test set so as to have at least an idea of its generalization ability, which is
given by the test NRMSE. Such evaluation, as in the fitness assessment step, is made by means
of the prediction portion of LIBSVM.

In order to summarize and to provide the reader with the essence of what has been just
explained the PSO+SVM algorithm is given in the forms of pseudocode and flow chart (Figure
3.1).

3.2 Proposed Methodology Pseudocode and Flow Chart

In the pseudocode, nPart and nNeigh are respectively the number of particles and of par-
ticles’ neighbors. Besides that, svm is a “machine” returned from LIBSVM, fi is the the fitness
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value (validation NRMSE) of particle i and ftest is the test NRMSE returned by the best particle
found in all PSO iterations. The symbol ∗ means optimal in relation to the validation NRMSE.

procedure PARTICLESWARMOPTIMIZATION (n,xmin,xmax,nPart,nNeigh,c1,c2,χ,nIter,δ,D, `,ϑ,λ)
. read data from a text file
. define variables’ bounds
. particle swarm initialization and first fitness evaluation
for i = 1, . . . ,nPart do

INITIALIZEPARTICLE(xmin,xmax)
svm← trainLIBSVM (pi, D1,D2, . . . ,D`) . train
(ŷ1, ŷ2, . . . , ŷϑ)← predLIBSVM(svm, D`+1,D`+2, . . . ,D`+ϑ) . predict validation outputs
fi← NRMSE (ŷ1, ŷ2, . . . , ŷϑ) . particle fitness, Equation (2.84)

end for
. find best global particle
f ∗←mini ( fi), i = 1,2, . . . ,nPart; b← i . update best global fitness
p∗← pb . update best global positon
bIter← 0 . update best iteration
. define particles’ neighborhood and best neihgbor
. perform PSO
for k = 1,2, . . . ,nIter do

for i = 1,2, . . . ,nPart do
vi←min(Equation (2.90),xmax−xmin) . update particle velocity
xi← Equation (2.88) . update particle current position
if xi is feasible then

. evaluate fitness
svm← trainLIBSVM (xi, D1,D2, . . . ,D`)
(ŷ1, ŷ2, . . . , ŷϑ)← predLIBSVM(svm, D`+1,D`+2, . . . ,D`+ϑ)
f ← NRMSE (ŷ1, ŷ2, . . . , ŷϑ)
if f < fi then

fi← f . update particle fitness
pi← xi . update particle best position

end for
. update best global particle ( f ∗,p∗,bIter)
. update best particles’ neighbors
. verify whether stop criterion 2 or 3 is met
if 0 < | f ∗k − f ∗k−1|< δ or (k−bIter = 10% ·nIter and f ∗k = f ∗bIter) then

break
end for
(ŷ`+ϑ+1, ŷ`+ϑ+2, . . . , ŷ`+ϑ+λ)← predLIBSVM (svm∗, D`+ϑ+1,D`+ϑ+2, . . . ,D`+ϑ+λ) . predict test outputs
ftest ← NRMSE (ŷ`+ϑ+1, ŷ`+ϑ+2, . . . , ŷ`+ϑ+λ) . Equation (2.84)
return f ∗,p∗, ftest

end procedure . end of procedure
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Figure 3.1: Flow chart of the proposed PSO+SVM methodology
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4 RELIABILITY PREDICTION BY PARTICLE SWARM OPTIMIZA-
TION AND SUPPORT VECTOR MACHINES

This chapter presents three problems from literature related to reliability prediction based
on time series data and one application example with data collected from oil production wells.
They are solved by means of the PSO+SVM algorithm described in Chapter 3. As recom-
mended by Bratton & Kennedy (2007), the lbest model is adopted. The first two literature
examples are related to the forecast of failure times of engineered components and the third one
concerns the prediction of miles to failure of a car engine. It is worth to forecast these aspects
associated with component failures so as to capture non-linear trends they may present and thus
provide support to reliability-based maintenance decisions.

Xu et al. (2003) contends that in practice the short-term (single-step) forecasts are more
useful since they provide timely information for preventive and corrective maintenance plans,
even though the multi-step predictions may catch some of system dynamics. In this way, single-
step-ahead forecasts are taken into account. In addition, one-dimensional input vectors are
considered, that is, p = 1 and xi = xi = yi−1 and consequently the data sets are reduced by one
entry.

The last example is related to the prediction of TBF of oil wells by means of different
characteristics of the system, such as the number of installed rods. This example illustrates the
application of the proposed methodology in a real situation. Also, it entails numerical as well
as categorical variables, which may be handled in different manners before they are used by the
PSO+SVM. In addition, differently from the time series based examples, the last one involves
a multi-dimensional input vector.

Given that PSO is a stochastic tool, 30 runs of the algorithm are performed in order to ana-
lyze its behavior. Although the NRMSE was the only error function which guided the search for
parameters by PSO, the MAPE and the MSE related to particles were also computed. Addition-
ally, in the forthcoming Sections 4.1, 4.2, 4.3 and 4.4, apart from the Tables regarding descrip-
tive statistics, all other Tables along with the Figures are associated with the lbest PSO+SVM
run that resulted in the smallest test NRMSE value. Even though such “machines” may not
give the most suitable validation NRMSE, they show the best generalization performance. For
comparison purposes, all examples were also solved by means of a gbest PSO model combined
with SVM (Section 4.5.1).

The PSO algorithm was implemented in MATLAB 7.8 and linked with LIBSVM. All exper-
iments were run in a computer with 2GHz, 2.9Gb of RAM and Linux Ubuntu 9.04 operational
system.
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4.1 Example 1: Failure Times of a Submarine Diesel Engine

In this first example, the time series regards the times of unscheduled maintenance ac-
tions for a submarine diesel engine under deterioration process and is extracted from Ascher &
Feingold (1984). The data is presented in Table 4.1. Since a single-step ahead forecast with
one-dimensional input vectors is performed, the data set is reduced from 71 to 70 in order to
elaborate a time series in the same reasoning described in Section 2.1.5.3. Then the first 44 data
points are used for training, the following 12 for validation and the last 14 for test purposes.

Table 4.1: Engine age (× 1000 hours) at time of unscheduled maintenance actions. Adapted from
Ascher & Feingold (1984), p. 75

Action Age Action Age Action Age Action Age Action Age

1 1.382 16 17.632 30 21.061 44 21.888 58 23.491
2 2.990 17 18.122 31 21.309 45 21.930 59 23.526
3 4.124 18 19.067 32 21.310 46 21.943 60 23.774
4 6.827 19 19.172 33 21.378 47 21.946 61 23.791
5 7.472 20 19.299 34 21.391 48 22.181 62 23.822
6 7.567 21 19.360 35 21.456 49 22.311 63 24.006
7 8.845 22 19.686 36 21.461 50 22.634 64 24.286
8 9.450 23 19.940 37 21.603 51 22.635 65 25.000
9 9.794 24 19.944 38 21.658 52 22.669 66 25.010
10 10.848 25 20.121 39 21.688 53 22.691 67 25.048
11 11.993 26 20.132 40 21.750 54 22.846 68 25.268
12 12.300 27 20.431 41 21.815 55 22.947 69 25.400
13 15.413 28 20.525 42 21.820 56 23.149 70 25.500
14 16.497 29 21.057 43 21.822 57 23.305 71 25.518
15 17.352

The lbest model involves 4 neighbors and the underlying swarm communication network
can be visualized in the middle graph of Figure 2.9. The PSO required parameters are listed in
Table 4.2 and are also valid for the subsequent examples.

Table 4.2: PSO required parameters

Parameter Value

Number of particles 30
Number of neighbors 4
c1 = c2 2.05
Constriction factor (χ) 7.2984 ·10−1

Maximum number of iterations 6000
Maximum number of iterations
with equal best fitness value

600

Tolerance (δ) 1 ·10−12

In addition, the definition intervals of the PSO variables (C,ε,γ) as well as the initial values
of vmax

j , j = 1,2,3 (i.e. 10% of variables ranges) are shown in Table 4.3. Notice that after the
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swarm initialization, these maximum velocities become equal to the definition range of each
variable. Additionally, ε interval is determined as described in Chapter 3, that is, from 0.1% to
15% of the mean of training outputs.

Table 4.3: PSO variables’ intervals and initial maximum velocities, Example 1

Variable Interval Initial vmax
j

C [1 ·10−1,2000] 199.9900
ε [1.7302 ·10−2,2.5953] 2.5780 ·10−1

γ [1 ·10−6,50] 4.9999

The descriptive statistics of the obtained results from the 30 PSO+SVM runs are in Table
4.4. The parameters related to the machine which provided the smallest test NRMSE are C =
263.6966, ε = 1.3701 ·10−1 and γ = 6.7315 ·10−3.

Table 4.4: Descriptive statistics of parameters and error functions, stop criteria frequency and
performance for 30 PSO+SVM runs, lbest, Example 1

Minimum Maximum Median Mean Std. dev.∗

Parameters
C 190.4848 1930.2743 732.5368 822.3439 560.3221
ε 3.4194 ·10−2 2.3899 ·10−1 1.9672 ·10−1 1.5857 ·10−1 6.0396 ·10−2

γ 4.4980 ·10−3 49.9974 6.6326 ·10−3 1.6729 9.1270

Validation NRMSE 4.4060 ·10−3 2.9305 ·10−1 4.4123 ·10−3 1.4035 ·10−2 5.2700 ·10−2

error MAPE (%) 3.7297 ·10−1 26.2757 3.7501 ·10−1 1.2384 4.7288
MSE 9.9229 ·10−3 43.8973 9.9515 ·10−3 1.6979 8.6070

Test error
NRMSE 7.1126 ·10−3 3.8265 ·10−1 7.4624 ·10−3 2.0307 ·10−2 6.8440 ·10−2

MAPE (%) 4.7571 ·10−1 38.1006 5.2994 ·10−1 1.8181 6.8533
MSE 3.0472 ·10−2 88.1988 3.3680 ·10−2 3.4281 17.2899

Absolute (relative, %) frequency

Stop criteria
Maximum number of iterations (6000) 13 (43.3333)
Equal best fitness for 600 iterations 13 (43.3333)
Tolerance δ = 1 ·10−12 4 (13.3334)

Metric value

Performance
Mean time per run (minutes) 10.8342
Mean number of trainings 116016.1667
Mean number of predictions 116016.1667

∗Standard deviation

Figure 4.1 provides a snapshot of the swarm evolution during the optimization process.
Notice that at the 50th iteration there are particles outside the feasible search space, but the final
swarm is comprised only by feasible particles. Observe also that given the influence of the
lbest model and of the validation NRMSE, particles were inclined to form clusters in the search
space. Figure 4.2, in turn, shows the NRMSE convergence along PSO. This specific PSO run
stopped at iteration 703, in which the tolerance δ = 1 ·10−12 was attained.
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Figure 4.1: Swarm evolution during PSO, Example 1
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Table 4.5 presents the real output values as well as validation and prediction results from
the selected SVR. Table 4.6, in turn, shows the support vectors, their respective Lagrange mul-
tipliers values and the classification as free or bounded support vector. Notice that only 22
from the 44 training points were chosen to be support vectors and from these, only 5 are free.
Substituting the values from Table 4.6 in equations (2.79) and (2.82), one may obtain the linear
coefficient b0 and the regression function f (x), in this order. The real outputs, the validation
and test prediction values as well as the support vectors are depicted in Figure 4.3.

Table 4.5: Real failure time (engine age) and predictions by SVR, Example 1

Validation Test

Action Real age Predicted age Action Real age Predicted age

46 21.9430 22.0328 58 23.4910 23.4414
47 21.9460 22.0459 59 23.5260 23.6327
48 22.1810 22.0489 60 23.7740 23.6686
49 22.3110 22.2870 61 23.7910 23.9224
50 22.6340 22.4195 62 23.8220 23.9398
51 22.6350 22.7503 63 24.0060 23.9714
52 22.6690 22.7513 64 24.2860 24.1582
53 22.6910 22.7863 65 25.0000 24.4398
54 22.8460 22.8089 66 25.0100 25.1356
55 22.9470 22.9684 67 25.0480 25.1450
56 23.1490 23.0725 68 25.2680 25.1809
57 23.3050 23.2807 69 25.4000 25.3857

70 25.5000 25.5062
71 25.5180 25.5962

NRMSE 4.4142 ·10−3 NRMSE 7.1126 ·10−3

MAPE(%) 3.7486 ·10−1 MAPE (%) 4.7767 ·10−1

MSE 9.9597 ·10−3 MSE 3.0472 ·10−2

Table 4.6: Support vectors’ details, Example 1

(x,y) α α∗ Type (x,y) α α∗ Type

(1.382, 2.990) 0 135.2668 free (16.497, 17.352) 122.0212 0 free
(4.124, 6.827) 263.6966 0 bounded (17.352, 17.632) 0 263.6966 bounded
(7.472, 7.567) 0 263.6966 bounded (18.122, 19.067) 263.6966 0 bounded
(7.567 , 8.845) 263.6966 0 bounded (19.067, 19.172) 0 263.6966 bounded
(8.845 , 9.450) 0 263.6966 bounded (19.172, 19.299) 0 44.2857 free
(9.450 , 9.794) 0 263.6966 bounded (19.299, 19.360) 0 263.6966 bounded
(9.794 , 10.848) 263.6966 0 bounded (19.940, 19.944) 0 263.6966 bounded
(10.848, 11.993) 57.7336 0 free (20.121, 20.132) 0 263.6966 bounded
(11.993, 12.300) 0 263.6966 bounded (20.132, 20.431) 263.4942 0 free
(12.300, 15.413) 263.6966 0 bounded (20.525, 21.057) 263.6966 0 bounded
(15.413, 16.497) 263.6966 0 bounded (21.061, 21.309) 263.6966 0 bounded

Indeed, Hong & Pai (2006) solve this same example application by means of SVM coupled
with a method to find the parameters C,ε,σ as well as with other forecast tools, namely the
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Figure 4.3: SVR results, Example 1

Duane model, the ARIMA and the General Regression Neural Network (GRNN). The search
method for SVR parameters entails the following idea: (i) fix the values of two parameters (C,ε)
and find the optimal value of the remaining one (σ0); (ii) given σ0 and ε, obtain the optimal value
C0; (iii) find ε0 based on σ0 and C0. This procedure is guided by the evaluation of NRMSE and
the authors consider 45, 12 and 14 points for training, validation and test, respectively.

Nevertheless, the optimal parameters’ values presented along with the information provided
are not sufficient to reproduce the NRMSE value of 6.4500 ·10−3 reported. This data set with the
mentioned division as well as the presented optimal parameters were used to train and predict
the validation and test outputs by means of LIBSVM, but the NRMSE found was much greater
than 6.4500 ·10−3 and also the tendency of both validation and test predictions was the opposite
of the real one. Despite that, the test NRMSE results from Hong & Pai (2006) are presented
in Table 4.7 with the additional entry corresponding to the best test NRMSE obtained by the
PSO+SVM approach from this work. It can be observed that it is competitive with all other
values provided by the different tools.

Table 4.7: Test NRMSE from different forecast models, Example 1. Adapted from Hong & Pai
(2006), p. 160

Method Test NRMSE

PSO+SVM 7.1126 ·10−3

SVM 6.4500 ·10−3

Duane 1.0590 ·10−2

GRNN 9.7300 ·10−3

ARIMA 3.3660 ·10−2
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4.2 Example 2: Turbochargers in Diesel Engines

The second application example is extracted from Xu et al. (2003) and is related to tur-
bochargers in diesel engines. As stated by the authors, the reliability is the one of the most
important considerations for diesel engine systems. In this way, an accurate prediction of its re-
liability provides a good assessment of its performance. Table 4.8 presents the failure times of
40 turbochargers of the same type as well as the non-parametric estimation of their reliabilities
calculated by:

R(Ti) = 1− i−0.3
n+0.4

(4.1)

where i is the failure index and n is the data sample size.

Table 4.8: Turbochargers failure times (× 1000 hours) and reliability data. Adapted from Xu et al.
(2003), p. 259

i Ti R(Ti) i Ti R(Ti) i Ti R(Ti) i Ti R(Ti)

1 1.6 0.9930 11 5.1 0.8934 21 6.5 0.7938 31 7.9 0.6942
2 2.0 0.9831 12 5.3 0.8835 22 6.7 0.7839 32 8.0 0.6843
3 2.6 0.9731 13 5.4 0.8735 23 7.0 0.7739 33 8.1 0.6743
4 3.0 0.9631 14 5.6 0.8635 24 7.1 0.7639 34 8.3 0.6643
5 3.5 0.9532 15 5.8 0.8536 25 7.3 0.7540 35 8.4 0.6544
6 3.9 0.9432 16 6.0 0.8436 26 7.3 0.7440 36 8.4 0.6444
7 4.5 0.9333 17 6.0 0.8337 27 7.3 0.7341 37 8.5 0.6345
8 4.6 0.9233 18 6.1 0.8237 28 7.7 0.7241 38 8.7 0.6245
9 4.8 0.9133 19 6.3 0.8137 29 7.7 0.7141 39 8.8 0.6145
10 5.0 0.9034 20 6.5 0.8038 30 7.8 0.7042 40 9.0 0.6046

Xu et al. (2003) made two experiments with these data, both regarding reliability forecasts.
In a first situation they considered previous reliability values and also the failure times as input
data. The second experiment, in turn, had their inputs comprised only by past reliability values.
The authors used several sorts of NN as forecast tool and observed that better results were
obtained in the latter experiment. Additionally, they compared various types of NN (Multilayer
Perceptron Neural Network (MLP-NN) with logistic and Gaussian activations and Radial Basis
Function Neural Network (RBF-NN) with Gaussian activation) and ARIMA performances.

Also, Chen (2007) makes use of the same data set to train a SVM and then predict reliability
using it. The authors consider 4-dimensional input vectors x (i.e. p = 4) and the SVR parameters
are obtained by GA. Also, despite the time series characteristics, they adopt a cross-validation
technique embedded in GA so as to guide the search for optimal C,ε,σ. Once this set is found,
they retrain all training data and then perform prediction tasks on the test set. The author
compared GA+SVM results with the ones obtained by GRNN, MLP-NN, RBF-NN, Neural
Fuzzy Network (NFN) and ARIMA.

In this work, besides the turbocharger reliability prediction it is also performed the forecast
of its failure times. The input vectors for the reliability experiment are made only by a single
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past reliability value and do not consider failure times at all. For failure times case, similarly,
input vectors are one-dimensional and formed by the immediately previous failure time.

4.2.1 Example 2.1: Reliability Forecast

Actually, this example is the simplest among the ones presented in this work, given that the
reliability values does not depend on previous values of reliability or on failure times, but only
on the failure index (see Equation (4.1)). In this way, the time series pairs (yi−1,yi), i = 1,2, · · ·n
form a straight line. One may question why such an “easy” problem may need sophisticated
tools like NN, ARIMA and SVM to be solved. However, this particular example is widely
used in literature works, as can be inferred from the comments in the beginning of this Section,
maybe to show the effectiveness of these methods in also tackling simple problems.

For this case the first 30 points are used for SVR training, the following 4 entries guide the
search for optimal parameters C, ε and γ by PSO and the last 5 examples form the test set. The
only difference in parameters’ intervals shown in Table 4.3 regards the lower and upper bounds
of ε, whose definition depends on the data at hand. For the reliability prediction case, they are
respectively 8.5358 ·10−4 and 1.2804 ·10−1.

The descriptive statistics of the model selection results for the 30 PSO+SVM runs are pre-
sented in Table 4.9. Observe that due to problem simplicity, standard deviations of all param-
eters and errors were small if compared to the ones from the other examples. Additionally,
none of the runs made use of the maximum number of iterations as stop criterion and the mean
elapsed time was very low, only about one minute per run.

The parameter values associated with the PSO+SVM run that resulted in the smallest test
NRMSE are C = 1923.6203,ε = 8.3873 ·10−4,γ = 8.9796 ·10−4. Figure 4.4 depicts the particle
swarm in the initial, 50th and 1822th (final) iterations. At this particular run, the best global val-
idation NRMSE was found in iteration 1222 and remained the same for the next 600 iterations.
The validation NRMSE evolution can be seen in Figure 4.5.

The real and predicted values for validation and test outputs were very near from each
other and are listed in Table 4.10. The support vectors features are shown in Table 4.11, from
which can be noted that only two bounded support vectors were required by the SVR model.
Figure 4.6 presents the two support vectors in addition to the validation and reliability forecasts.
Interestingly, the chosen support vectors were the first and last training points.

Xu et al. (2003) and Chen (2007) present the test NRMSE values for this example from
different time series models. In order to update the list of such values with the results of the
proposed methodology in this work, Table 4.12 is provided. Notice that among all methods,
PSO+SVM was able to give the smallest test NRMSE. This fact indicates the ability of PSO in
handling the model selection problem related to SVR as well as the great capacity of SVR itself
to tackle reliability forecast problems. It is important to emphasize that this better result was
attained even with a smaller training set size. Xu et al. (2003) mention only the training and
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Table 4.9: Descriptive statistics of parameters and error functions, stop criteria frequency and
performance for 30 PSO+SVM runs, lbest, Example 2.1

Minimum Maximum Median Mean Std. dev.∗

Parameters
C 1900.9063 1946.8917 1917.5483 1919.3760 10.8901
ε 8.3864 ·10−4 8.4078 ·10−4 8.3869 ·10−4 8.3906 ·10−4 6.7860 ·10−7

γ 8.8721 ·10−4 9.0869 ·10−4 9.0078 ·10−4 9.0041 ·10−4 4.6488 ·10−6

Validation NRMSE 8.4451 ·10−5 4.1839 ·10−4 8.4487 ·10−5 1.0678 ·10−4 8.4700 ·10−5

error MAPE (%) 7.4023 ·10−3 4.1137 ·10−2 7.4037 ·10−3 9.6523 ·10−3 8.5579 ·10−3

MSE 3.1960 ·10−9 7.8443 ·10−8 3.1987 ·10−9 8.2172 ·10−9 1.9088 ·10−8

Test error
NRMSE 2.0304 ·10−4 5.8311 ·10−4 2.0444 ·10−4 2.2999 ·10−4 9.5987 ·10−5

MAPE (%) 1.8678 ·10−2 5.7884 ·10−2 1.8831 ·10−2 2.1465 ·10−2 9.8995 ·10−3

MSE 1.6087 ·10−8 1.3267 ·10−7 1.6308 ·10−8 2.4114 ·10−8 2.9507 ·10−8

Absolute (relative, %) frequency

Stop criteria
Maximum number of iterations (6000) 0 (0)
Equal best fitness for 600 iterations 25 (83.3333)
Tolerance δ = 1 ·10−12 5 (16.6667)

Metric value

Performance
Mean time per run (minutes) 1.0066
Mean number of trainings 67989.7000
Mean number of predictions 67989.7000

∗Standard deviation

Table 4.10: Real failure time and predictions by SVR, Example 2.1

Validation Test

i R(Ti) Predicted R(Ti) i R(Ti) Predicted R(Ti)

32 0.6843 0.6842 36 0.6444 0.6445
33 0.6743 0.6743 37 0.6345 0.6345
34 0.6643 0.6644 38 0.6245 0.6247
35 0.6544 0.6544 39 0.6145 0.6147

40 0.6046 0.6047

NRMSE 8.4525 ·10−5 NRMSE 2.0305 ·10−4

MAPE (%) 7.4037 ·10−3 MAPE (%) 1.8678 ·10−2

MSE 3.2016 ·10−9 MSE 1.6087 ·10−8

Table 4.11: Support vectors’ details, Example 2.1

(x,y) α α∗ Type

(0.9930, 0.9831) 1923.6203 0 bounded
(0.7042, 0.6942) 0 1923.6203 bounded

validation sets. Thus, one may infer that the validation set actually played the role of the test
set. Chen (2007), in turn, makes use of the cross-validation approach and after parameters have
been found, all training set was retrained by SVR. Hence, in both cases, the training sets were
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Figure 4.4: Swarm evolution during PSO, Example 2.1
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Figure 4.5: Validation NRMSE convergence, Example 2.1

indeed greater than the one used in this work.
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Table 4.12: Test NRMSE from different forecast models, Example 2.1. Updated from Xu et al.
(2003), p. 260, and Chen (2007), p.430

Method Test NRMSE

PSO+SVM 2.0305 ·10−4

GA+SVM 4.0000 ·10−4

NFN 3.6900 ·10−3

RBF-NN (Gaussian activation) 3.9100 ·10−3

MLP-NN (Gaussian activation) 2.4970 ·10−2

MLP-NN (logistic activation) 3.9700 ·10−2

GRNN 1.0850 ·10−2

ARIMA 1.9900 ·10−2

4.2.2 Example 2.2: Failure Times Forecast

Differently from the reliability prediction problem, in the failure times forecast the data set
is divided approximately with the same proportions of the first example, that is, 63%, 17% and
20% from the data dedicated to training, validation and test purposes, in this order. This yields
respectively 24, 7 and 8 points. Also, ε ∈ [5.2750 ·10−3,7.9125 ·10−1].

Descriptive statistics of parameters and error functions as well as some performance metrics
for lbest model are listed on Table 4.13. Observe that in the majority of the runs, the best global
fitness value remained the same in 600 consecutive iterations and the maximum number of
iterations was not attained in none of them. This indicates that the PSO is able to find good
solutions without requiring the maximum number of iterations, which positively influence the
algorithm elapsed time.

The parameter values associated with the “machine” which provided the smallest lbest test
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Table 4.13: Descriptive statistics of parameters and error functions, stop criteria frequency and
performance for 30 PSO+SVM runs, lbest, Example 2.2

Minimum Maximum Median Mean Std. dev.∗

Parameters
C 34.3824 1997.3652 1650.7974 1276.5337 778.9501
ε 1.1999 ·10−2 1.5487 ·10−1 5.2240 ·10−2 8.8812 ·10−2 6.3591 ·10−2

γ 4.6374 ·10−3 5.2242 ·10−1 1.9170 ·10−2 1.5319 ·10−1 2.2412 ·10−2

Validation NRMSE 1.6620 ·10−2 1.6862 ·10−2 1.6823 ·10−2 1.6777 ·10−2 9.3827 ·10−5

error MAPE (%) 1.2262 1.3132 1.2422 1.2539 2.8847 ·10−2

MSE 1.6274 ·10−2 1.6751 ·10−2 1.6674 ·10−2 1.6583 ·10−2 1.8497 ·10−4

Test error
NRMSE 1.3412 ·10−2 7.1785 ·10−2 1.7837 ·10−2 3.1674 ·10−2 2.4001 ·10−2

MAPE (%) 1.1299 5.0759 1.4722 2.4071 1.6025
MSE 1.3087 ·10−2 3.7489 ·10−1 2.3149 ·10−2 1.1353 ·10−1 1.5178 ·10−1

Absolute (relative, %) frequency

Stop criteria
Maximum number of iterations (6000) 0 (0)
Equal best fitness for 600 iterations 29 (96.6667)
Tolerance δ = 1 ·10−12 1 (3.3333)

Metric value

Performance
Mean time per run (minutes) 10.5648
Mean number of trainings 68977.6667
Mean number of predictions 68977.6667

∗Standard deviation

NRMSE are C = 1936.7744,ε = 1.5474 ·10−1,γ = 4.6374 ·10−3 and that specific run stopped at
iteration 2836 since the global best particle reached the associated best position 600 iterations
earlier. Figure 4.7 show the evolution of the particle swarm in three different phases of the
algorithm and Figure 4.8 depicts the NRMSE values versus the PSO iterations. Tables 4.14 and
4.15 present, respectively, the real and predicted failure times for validation and test sets and
the support vectors’ details. Notice that for this example the test errors are smaller than the
validation ones and that only 6 from the 24 training examples are support vectors (50% of them
are free). Lastly, the SVR results are summarized in Figure 4.9.

4.3 Example 3: Miles to Failure of a Car Engine

This example is associated with the prediction of Miles To Failure (MTF) of a car engine
and it also comes from Xu et al. (2003), who collected data from 100 units of a specific car
engine (Table 4.16).

The objective is to predict future MTF of car engines based on past failure evidence. Once
more, it is performed a single-step-ahead forecast with one-dimensional input vectors, which re-
sults in a data set with 99 entries. From these 80, 9 and 10 points are used for training, validation
and test purposes, respecting their natural order. In this example ε ∈ [3.7590 ·10−2,5.6385].

Table 4.17 presents the descriptive statistics related to parameters and error functions in 30
PSO+SVM runs. Only in this example the mean number of predictions were different from
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Figure 4.8: Validation NRMSE convergence, Example 2.2

the number of trainings. This is possible because, for some values of ε, all points may lay
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Table 4.14: Real failure time and predictions by SVR, Example 2.2

Validation Test

i Ti Predicted Ti i Ti Predicted Ti

26 7.3 7.4145 33 8.1 8.0696
27 7.3 7.4145 34 8.3 8.1622
28 7.7 7.4145 35 8.4 8.3464
29 7.7 7.7902 36 8.4 8.4381
30 7.8 7.7902 37 8.5 8.4381
31 7.9 7.8836 38 8.7 8.5294
32 8.0 7.9767 39 8.8 8.7109

40 9.0 8.8011

NRMSE 1.6827 ·10−2 NRMSE 1.3412 ·10−2

MAPE (%) 1.2344 MAPE (%) 1.1299
MSE 1.6682 ·10−2 MSE 1.3087 ·10−2

Table 4.15: Support vectors’ details, Example 2.2

(x,y) α α∗ Type

(1.6, 2.0) 0 390.8909 free
(3.9, 4.5) 1936.7744 0 bounded
(4.5, 4.6) 0 975.3477 free
(6.0, 6.0) 0 1936.7744 bounded
(6.5, 6.5) 0 570.5358 free
(6.7, 7.0) 1936.7744 0 bounded
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Figure 4.9: SVR results, Example 2.2
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Table 4.16: Miles to failure (× 1000 hours) of a car engine. Adapted from Xu et al. (2003), p. 262-263

Number MTF Number MTF Number MTF Number MTF

1 37.1429 26 35.8095 51 37.1429 76 36.3810
2 37.4286 27 36.9524 52 37.8095 77 38.0000
3 37.6190 28 37.6190 53 38.0952 78 38.1905
4 38.5714 29 37.8095 54 38.6667 79 38.6667
5 40.0000 30 38.0952 55 40.0619 80 38.6667
6 35.8095 31 36.8571 56 36.1905 81 37.1429
7 36.2857 32 38.0952 57 36.3810 82 37.6190
8 36.2857 33 38.0952 58 37.0476 83 37.6190
9 36.4762 34 38.3810 59 37.2381 84 38.0952
10 38.1905 35 39.0476 60 38.0000 85 39.0476
11 36.1905 36 37.2381 61 35.7143 86 36.2857
12 36.8571 37 37.3333 62 36.4762 87 37.1429
13 37.6190 38 37.5238 63 37.3333 88 37.5238
14 37.8095 39 37.8095 64 37.6190 89 37.8095
15 38.7619 40 38.5714 65 38.4762 90 38.0000
16 35.9048 41 37.1429 66 36.8571 91 36.8571
17 36.4762 42 37.2381 67 37.1429 92 37.0476
18 36.8571 43 37.6190 68 37.9048 93 37.9048
19 37.1429 44 38.1905 69 38.0952 94 38.1905
20 37.4286 45 38.5714 70 38.8571 95 39.5238
21 37.4286 46 36.0952 71 37.1429 96 35.4286
22 37.6190 47 37.2381 72 37.6190 97 36.0000
23 38.3810 48 37.4286 73 37.6190 98 37.7143
24 38.5714 49 37.5238 74 37.8095 99 38.0952
25 39.4286 50 39.0476 75 38.3810 100 38.5714

within the ε-tube, resulting in a model without support vectors. In this way, the first part of
the regression function vanish. Then, when LIBSVM predicts based on a “machine” with these
features, it returns only a constant value equal to b0. This situation is not desirable, thus when
the outcome of a training is an SVM without support vectors, LIBSVM is not allowed to predict
and the fitness values associated with the particle under consideration remains unaltered.

The run which resulted in the smallest test NRMSE is related to the following parameter
values: C = 18.2629, ε = 7.9411 ·10−2 and γ = 6.8979 ·10−1. In this particular run, PSO+SVM
steps continued up to the 4225th iteration and, like all other runs, stopped after 600 iterations
with the same best global validation NRMSE.

Figure 4.10 depicts the particle swarm in three different moments. The final swarm, as in
Example 1, forms some clusters. However it can be noticed from the axes ranges that the pa-
rameter values are rather concentrated in those ranges if compared with their respective original
intervals. The validation NRMSE convergence can be visualized in Figure 4.11.

Table 4.18 shows the real and predicted values by the SVM which provided the smallest
test NRMSE. Table 4.19, in turn, lists the support vectors, the associated Lagrange multipliers
and also their classification as free or bounded. From the 80 training points, 68 were selected
as support vectors and only 5 of them were free. This high number of support vectors can be
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Table 4.17: Descriptive statistics of parameters and error functions, stop criteria frequency and
performance for 30 PSO+SVM runs, lbest, Example 3

Minimum Maximum Median Mean Std. dev.∗

Parameters
C 16.3248 30.1075 21.7998 22.5316 5.4798
ε 7.9411 ·10−2 2.3345 ·10−1 1.6092 ·10−1 1.5861 ·10−1 7.6099 ·10−2

γ 4.9354 ·10−1 7.2213 ·10−1 5.9863 ·10−1 6.0241 ·10−1 1.0515 ·10−1

Validation NRMSE 8.5041 ·10−3 9.1959 ·10−3 8.8512 ·10−3 8.8506 ·10−3 3.5098 ·10−4

error MAPE (%) 6.2633 ·10−1 7.0907 ·10−1 6.7005 ·10−1 6.6897 ·10−1 4.0743 ·10−2

MSE 1.0273 ·10−1 1.2012 ·10−1 1.1145 ·10−1 1.1144 ·10−1 8.8249 ·10−3

Test error
NRMSE 1.8969 ·10−2 1.9468 ·10−2 1.9265 ·10−2 1.9242 ·10−2 2.2394 ·10−4

MAPE (%) 1.4338 1.4978 1.4697 1.4679 2.9455 ·10−2

MSE 5.0739 ·10−1 5.3441 ·10−1 5.2338 ·10−1 5.2217 ·10−1 1.2150 ·10−2

Absolute (relative, %) frequency

Stop criteria
Maximum number of iterations (6000) 0 (0)
Equal best fitness for 600 iterations 30 (100)
Tolerance δ = 1 ·10−12 0 (0)

Metric value

Performance
Mean time per run (minutes) 4.9337
Mean number of trainings 66653.6333
Mean number of predictions 66563.8000

∗Standard deviation

justified by the small ε (near 0.2% of the mean of output training values), which results in a thin
ε-tube and also by the complex behavior of the time series, as can be visualized in Figure 4.12.

Table 4.18: Real MTF and predictions by SVR (× 1000 hours), Example 3

Validation Test

Number MTF Predicted MTF Number MTF Predicted MTF

82 37.6190 37.5078 91 36.8570 38.3673
83 37.6190 37.8891 92 37.0480 37.4383
84 38.0960 37.8891 93 37.9050 37.4813
85 39.0470 38.4474 94 38.1900 38.2621
86 36.2860 36.9183 95 39.5240 38.4914
87 37.1430 37.0125 96 35.4290 35.7357
88 37.5240 37.5082 97 36.0000 36.3744
89 37.8090 37.7766 98 37.7140 36.6496
90 38.0000 38.1398 99 38.0950 38.0127

100 38.5714 38.4468

NRMSE 8.5074 ·10−3 NRMSE 1.8969 ·10−2

MAPE (%) 6.3127 ·10−1 MAPE (%) 1.4338
MSE 1.0281 ·10−1 MSE 5.0739 ·10−1

Zio et al. (2008) applied an Infinite Impulse Response Locally Recurrent Neural Network
(IIR-LRNN) to solve this example and updated the results presented in Xu et al. (2003). These
results are repeated in Table 4.20 along with the best test NRMSE provided by the PSO+SVM
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Figure 4.10: Swarm evolution during PSO, Example 3
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Figure 4.11: Validation NRMSE convergence, Example 3

methodology. The latter value occupies the third position in the rank. One possible reason for
that is the smaller number of training points, due to the validation phase adopted. In order to
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Table 4.19: Support vectors’ details, Example 3

(x,y) α α∗ Type (x,y) α α∗ Type

(37.1429, 37.4286) 0 7.3029 free (37.1420, 37.2390) 8.9927 0 free
(37.4286, 37.6190) 18.2629 0 bounded (37.6190, 38.1900) 0 18.2629 bounded
(37.6190, 38.5714) 18.2629 0 bounded (38.1900, 38.5710) 18.2629 0 bounded
(38.5714, 40.0000) 0 15.1115 free (38.5710, 36.0960) 0 18.2629 bounded
(40.0000, 35.8095) 0 18.2629 bounded (36.0960, 37.2380) 0 18.2629 bounded
(35.8095, 36.2857) 0 18.2629 bounded (37.2380, 37.4280) 18.2629 0 bounded
(36.2857, 36.2857) 0 18.2629 bounded (37.4280, 37.5240) 18.2629 0 bounded
(36.2857, 36.4762) 18.2629 0 bounded (39.0480, 37.1430) 18.2629 0 bounded
(36.4762, 38.1905) 0 18.2629 bounded (37.1430, 37.8090) 18.2629 0 bounded
(38.1905, 36.1905) 18.2629 0 bounded (38.0950, 38.6670) 18.2629 0 bounded
(36.8571, 37.6190) 0 18.2629 bounded (38.6670, 40.0620) 18.2629 0 bounded
(37.6190, 37.8095) 18.2629 0 bounded (40.0620, 36.1900) 0 18.2629 bounded
(37.8095, 38.7619) 0 18.2629 bounded (36.1900, 36.3810) 0 18.2629 bounded
(38.7619, 35.9048) 0 18.2629 bounded (36.3810, 37.0480) 18.2629 0 bounded
(36.4762, 36.8571) 0 18.2629 bounded (37.0480, 37.2380) 0 18.2629 bounded
(36.8571, 37.1429) 0 18.2629 bounded (37.2380, 38.0000) 1.0729 0 free
(37.6190, 38.3810) 18.2629 0 bounded (38.0000, 35.7140) 18.2629 0 bounded
(38.3810, 38.5714) 18.2629 0 bounded (35.7140, 36.4770) 18.2629 0 bounded
(38.5714, 39.4286) 18.2629 0 bounded (36.4770, 37.3330) 0 18.2629 bounded
(39.4286, 35.8095) 0 18.2629 bounded (37.6190, 38.4760) 0 18.2629 bounded
(35.8095, 36.9524) 18.2629 0 bounded (38.4760, 36.8570) 18.2629 0 bounded
(36.9524, 37.6190) 18.2629 0 bounded (36.8570, 37.1430) 0 18.2629 bounded
(37.6190, 37.8095) 0 18.2629 bounded (37.1430, 37.9050) 18.2629 0 bounded
(38.0952, 36.8571) 0 18.2629 bounded (37.9050, 38.0950) 0 18.2629 bounded
(36.8571, 38.0960) 18.2629 0 bounded (38.8570, 37.1430) 18.2629 0 bounded
(38.0960, 38.0950) 0 18.2629 bounded (37.1430, 37.6190) 0 18.2629 bounded
(38.0950, 38.3810) 18.2629 0 bounded (37.6190, 37.6190) 0 5.9140 free
(38.3810, 39.0470) 18.2629 0 bounded (37.6190, 37.8100) 18.2629 0 bounded
(39.0470, 37.2390) 0 18.2629 bounded (37.8100, 38.3810) 0 18.2629 bounded
(37.2390, 37.3330) 0 18.2629 bounded (38.3810, 36.3810) 18.2629 0 bounded
(37.3330, 37.5240) 18.2629 0 bounded (38.0000, 38.1900) 0 18.2629 bounded
(37.5240, 37.8090) 0 18.2629 bounded (38.1900, 38.6670) 18.2629 0 bounded
(37.8090, 38.5720) 0 18.2629 bounded (38.6670, 38.6670) 18.2629 0 bounded
(38.5720, 37.1420) 18.2629 0 bounded (38.6670, 37.1420) 0 18.2629 bounded

investigate this issue, 30 runs of PSO+SVM with the same parameters and without a validation
set were executed. In this way, the number of training points increased to 89 and the number of
test entries remained the same (10). The best test NRMSE result was 1.2536 ·10−2 with associ-
ated parameters quite different from the ones obtained with the validation and test procedures:
C = 1144.3099,ε = 5.7140 ·10−3,γ = 7.8020. In addition, 37 of the 89 training points became
support vectors, and 20 from these were free. Such test NRMSE would shift the PSO+SVM
approach to a second position, only loosing for MLP-NN (Gaussian activation), but for a small
amount, in the order of 10−4.
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Figure 4.12: SVR results, Example 3

Table 4.20: Test NRMSE from different forecast models, Example 3. Updated from Xu et al. (2003),
p. 264, Zio et al. (2008)

Method Test NRMSE

PSO+SVM 1.8969 ·10−2∗; 1.2536 ·10−2∗∗

RBF-NN (Gaussian activation) 2.1100 ·10−2

MLP-NN (Gaussian activation) 1.2200 ·10−2

MLP-NN (logistic activation) 1.5600 ·10−2

IIR-LRNN 1.5800 ·10−2

ARIMA 4.2200 ·10−2

∗ With validation; ∗∗ Without validation

4.4 Example 4: Time Between Failures of Oil Production Wells

In this example, differently from the previous ones, it is resolved a regression problem
involving real data related to features (numerical and categorical) of the system under analysis.

The systems of interest are oil production wells. The reliability metric considered is the
TBF, which is believed to be influenced by specific features of the wells. The failure of wells
represent the interruption of oil production and, as a consequence, economical losses. In this
way, the prediction of the TBF of these systems may permit preventive actions so as to reduce
or even avoid the effects of the very next failure.

This example is based on a database that was presented by Barros Jr. (2006). It contains
records of TBF, TTR and related factors of different onshore wells from 1983 to 2006. The
author makes a comprehensive analysis of the variables of the database and proposes the use of
BNs integrated with Markov chains to estimate the availability of oil wells. The database incor-
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porates the concept of socket (ASCHER & FEINGOLD, 1984), which loosely speaking means
that the records are associated with the equipments installed in the wells and are not related to
the equipments themselves. For example, it is expected that the behaviors of pumps consecu-
tively installed in a specific place of a well are approximately the same, since the environmental
and operational conditions to which they are subjected have not changed.

According to Barros Jr. (2006), in the considered context, it has been observed that the
most critical components of an oil production well are the pump, the rods and the columns.
These equipments are related to the artificial elevation of oil to the surface. The two considered
artificial elevation methods are the mechanical and the one via progressive cavities. For both
types of elevation methods the columns have the same role of permitting the passage of the rods
and also of isolating the well boundaries. In the mechanical elevation, the rotating energy of an
engine is transformed in an alternating motion that is transmitted to the rods and the pump is
responsible to transmit the energy to the fluid, which is brought to the surface. In the elevation
by progressive cavities, in turn, the rotating energy of an engine on the surface is transmitted to
the rods that also rotates. The rotating rods transmit energy to the pump, which is within the
well and whose components’ disposition permits the passage of the oil.

In this example, it is considered the wells’ failures due to failures on their installed rods.
The elevation method type, the kind of installed filter and the concentration of water and solids
within the well are factors that influence the rods’ performance. These factors, along with the
number of installed rods, are the variables considered to predict the wells’ TBF. Hence, only a
subset of the entire database is used. Despite the great number of entries in this subset (more
than 10.000), there are many empty cells or cases that present inconsistent information. Also,
the database involves essentially non-homogeneous data, given that the records concern various
wells located in different places and consequently subject to diverse environmental factors.

As an attempt to reduce the effects of the data non-homogeneity, it was selected a specific
group of wells that are located essentially in the same geographical area with similar charac-
teristics. The cases that presented any empty cell associated with a variable of interest were
eliminated. After pre-processing the database, a data set with 214 examples was obtained and
divided in a training set with the first 170 points, a validation set with the following 20 entries
and a test set formed by the last 24 examples.

The description of the input variables selected from the database are presented in Table 4.21
along with the characteristics of the TBF itself. Each one of the input variables reflects a specific
feature of the wells taken into account. Basically, it is considered the percentage of water and
solids within the wells; the number of installed rods of different lengths (3/4, 5/8, 7/8, 1, in
inches); the absence (N) or presence of a filter (if present, its type C, S or F is recorded and the
related quality increases from C to F); the way the oil is pumped upwards (Progressive Cavities
Pumping (PCP) or Mechanical Pumping (MP)).

Notice that x6 and x7 are categorical variables. The former has an ordinal scale, that is, the
associated categories have an underlying order, but can not be quantified. The latter, in turn, has
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Table 4.21: Selected variables that influence the TBF

Name Variable Type Range/Categories

x1 Percentage of water and solids in the well Numerical [0,98.3]
x2 Number of 3/4” rods installed Numerical [0,104]
x3 Number of 5/8” rods installed Numerical [0,101]
x4 Number of 7/8” rods installed Numerical [0,96]
x5 Number of 1” rods installed Numerical [0,95]
x6 Type of installed filter Categorical N∗, C, S, F
x7 Type of elevation method Categorical PCP, MP

y Time Between Failures (TBF, in days) Numerical [2,3469]
∗No filter installed

a nominal scale and then its categories only denotes the sort of elevation method, which forbids
any sort of ordering or arithmetical operations. Nevertheless, the SVM training problem only
accepts numerical values, thus the categorical variables have to be treated before being used by
the PSO+SVM algorithm. Traditional statistical regression methods often handle categorical
variables by transforming them into indicator or dummy variables (MONTGOMERY et al.,
2001). That is, if a variable has two associated categories, for example the type of pump used,
the indicator variable xind is either 0 to denote that a PCP is used or 1 to indicate that a MP
is installed. In general, if a categorical variable has r related categories, then r− 1 indicator
variables are necessary. For SVM, Hsu et al. (2009) also recommend the use of indicator
variables to handle categorical variables. The transformation of the categorical variables x6

and x7 are shown in Table 4.22.

Table 4.22: Transformation of categorical variables x6 and x7 into indicator variables

x6 xind
6,1 xind

6,2 xind
6,3 x7 xind

7

N 0 0 0 PCP 0
C 0 0 1 MP 1
S 0 1 0
F 1 0 0

It can be observed from Table 4.21 that the TBF’ interval is quite different from the ranges
of the numerical input variables. In this way, in order to obtain better results, it is necessary to
scale the data. The usual scaling range is [0,1], however, a 0 value for the output y gives rise
to a division by 0 in the computation of MAPE. Thus, instead of using [0,1], the data is scaled
within [1,2]. In addition, each variable is scaled by using its proper minimum and maximum
training values (scaling factors), which results in 8 different scales, 7 for inputs and 1 for the
TBF. In other words, each dimension of the input vector x as well as the output variable y are
scaled on their own. Also, as the validation and test sets play the role of unseen data, they are
scaled using the scaling factors from the training set. The formula is as follows:
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Scaled xi j =
(xi j− xmin, j)

(xmax, j− xmin, j)
· (up− low)+ low (4.2)

where i is the example index, j is the dimension of xi under consideration, low and up are the
boundaries of the scale interval, xmin, j and xmax, j are respectively the minimum and maximum
training values of the jth dimension of xi for i = 1,2, . . . , `. When validation and test points are
considered (i > `), the same scaling factors xmin, j and xmax, j are used. Moreover, for the present
example, low = 1 and up = 2. Following the same reasoning from Equation (4.2), one obtains
a scaling expression for the output variable y:

Scaled yi =
(yi− ymin)

(ymax− ymin)
· (up− low)+ low (4.3)

in which ymin and ymax are the minimum and maximum training values of y, that is, ymin =
mini(y1,y2, . . . ,yi, . . . ,y`) and ymax = maxi(y1,y2, . . . ,yi, . . . ,y`). Again, when validation and
test values of y are considered (i > `), ymin and ymax are also used.

Montgomery et al. (2001) assert that, although indicator variables with 0-1 values are often
a best choice, any two distinct values (e.g. 1 and 2) for an indicator variable would be satisfac-
tory. Hence, in order to follow the same scale of the numerical variables, the categorical ones
are transformed in 1-2 indicator variables. In Table 4.22, 0 and 1 values are then substituted by
1 and 2, in this order.

After applying the necessary transformations and scales, the proposed PSO+SVM method-
ology can be used. The PSO parameters as well as the bounds for C and γ were the same as the
ones adopted in the previous time series based examples. However, ε ∈ [1.1106 ·10−3,1.6659 ·
10−1].

Descriptive statistics of the 30 PSO+SVM runs are presented in Table 4.23. All runs at-
tained the stop criterion related to equal best fitness values for 600 consecutive iterations.
The parameter values related to the “machine” that provided the smallest test NRMSE are
C = 4.4422, ε = 1.1774 · 10−2 and γ = 2.1226 · 10−1. The related errors are listed in Table
4.24.

In Figure 4.13, the evolution of the particle swarm can be visualized in three different
moments. Notice that in iteration 50 there were infeasible particles, but at the 5276th and last
iteration all particles were within the feasible search space. The validation NRMSE convergence
is shown in Figure 4.14.

For this example, the SVR results are presented in separate pictures, given that a unique
graphic would be very dense due to the number of data entries involved and would render its
analysis difficult. In this way, Figure 4.15 presents the SVR training results, whilst Figure 4.16
depicts the SVR validation and test outcomes. From the former figure, it can be observed that
the majority of the training examples became support vectors. Indeed, from the 170 training
points, 141 were selected as support vectors (120 bounded and 21 free). From the latter figure,
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Table 4.23: Descriptive statistics of parameters and error functions, stop criteria frequency and
performance for 30 PSO+SVM runs, lbest, Example 4

Minimum Maximum Median Mean Std. dev.∗

Parameters
C 2.6099 11.5072 2.8707 3.7511 2.6397
ε 1.1774 ·10−2 2.1867 ·10−2 1.5028 ·10−2 1.5799 ·10−2 2.1879 ·10−3

γ 1.1226 ·10−1 7.5687 ·10−1 6.7570 ·10−1 6.5571 ·10−1 1.0901 ·10−1

Validation NRMSE 3.1551 ·10−2 3.1852 ·10−2 3.1561 ·10−2 3.1595 ·10−2 9.3203 ·10−5

error MAPE (%) 2.2365 2.4069 2.2412 2.2602 5.0494 ·10−2

MSE 1.0697 ·10−3 1.0903 ·10−3 1.0704 ·10−3 1.0728 ·10−3 6.3498 ·10−6

Test error
NRMSE 4.2354 ·10−2 4.8617 ·10−2 4.7869 ·10−2 4.7234 ·10−2 1.8450 ·10−3

MAPE (%) 3.4024 4.1029 3.9496 3.9067 1.7208 ·10−1

MSE 1.9059 ·10−3 2.5112 ·10−3 2.4346 ·10−3 2.3739 ·10−3 1.7768 ·10−4

Absolute (relative, %) frequency

Stop criteria
Maximum number of iterations (6000) 0 (0)
Equal best fitness for 600 iterations 30 (100)
Tolerance δ = 1 ·10−12 0 (0)

Metric value

Performance
Mean time per run (minutes) 14.6685
Mean number of trainings 67929.3000
Mean number of predictions 67929.3000

∗Standard deviation

Table 4.24: Validation and test errors from the “machine” with the smallest test NRMSE, Ex-
ample 4

Error function Validation Test

NRMSE 3.1747 ·10−2 4.2354 ·10−2

MAPE (%) 2.4069 3.4024
MSE 1.0831 ·10−3 1.9059 ·10−3

notice that despite the low quantity of precise predictions, the machine attempts to catch the
trend of the validation and test data. Additionally, both figures have the scaled output as vertical
axis and the example number as the horizontal one, provided that the input vectors are multi-
dimensional and it is not possible to draw a graphic involving all input vectors with the output
TBF values.

4.5 Discussion

In all presented examples, the validation NRMSE dropped to values very near the best
one found in early stages of the PSO algorithm, which suggests the ability of PSO in finding
good solutions even with a few number of iterations. Additionally, it can be inferred that the
SVM, with an appropriate set of parameters, is able to provide excellent results to reliability
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Figure 4.13: Swarm evolution during PSO, Example 4
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Figure 4.14: Validation NRMSE convergence, Example 4
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Figure 4.15: SVR training results, Example 4
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Figure 4.16: SVR validation and test results, Example 4

prediction based on time series, better than or comparable to its competitive models such as NN
and ARIMA.

Considering Example 4, the quality of the obtained results certainly is related to the qual-
ity of the data set used. Firstly, even considering wells from the same geographical area, the
original database subset presented, essentially, non-homogeneous records and many empty cells
or cases with contradictory information. Moreover, the use of categorical variables influences
the SVM performance, since it involves a quadratic programming problem in its training step,
which treat all variables as if they were numerical. Hence, the use of categorical variables are
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indicated for the cases when there is not a quantitative manner to measure the factor of interest.
For example, transform a variable that is naturally numerical into a categorical one is usually
not recommended.

Even with these shortcomings, the PSO+SVM was able to provide small NRMSE test val-
ues in Example 4. In this way, its performance would be certainly enhanced if the data set were
originated from a database without errors. Additionally, other manners to handle categorical
variables have to be analyzed.

In the majority of the examples, the descriptive statistics showed a high variance for the
parameter representing the trade-off between training error and machine capacity (C). This fact
indicates the difficulty in tuning this parameter and also in using techniques that assign only
discrete values for it, such as the grid search model. If the inherent trade-off of SVM could
be explicitly treated, C could be omitted, remaining only the other two parameters ε and γ to
adjust. Indeed, Mierswa (2007) proposes a multi-objective approach of SVM, in which the
minimization of training errors is one objective and the margin maximization is the other one.
In this situation, C is no longer needed.

4.5.1 Performance Comparison Between lbest and gbest Models

All examples were solved also by the gbest model, in the same conditions of lbest, i.e.,
using the same PSO parameters and SVM data set division among training, validation and test
points. The test NRMSE is the metric of greatest interest because it provides an idea of the
generalization ability of the “machine” under consideration. By taking the 30 test NRMSE
values resulted from each PSO model as independent samples, a Wilcoxon-Mann-Whitney test
(WACKERLY et al., 2002) can be performed for each example so as to assess the chance of
obtaining greater values for the test NRMSE values with the gbest model than with the lbest

approach. In Table 4.25, the p-value of the one-sided test is presented for every case. Notice
that the two examples concerning the reliability and failure times of turbochargers as well as
Example 4 yielded a non-significant p-value for the level of significance of 5%.

Table 4.25: Mean test NRMSE values and Wilcoxon-Mann-Whitney test results lbest × gbest

Example Mean test NRMSE
p-value

lbest gbest

1 2.0307 ·10−2 3.3670 ·10−2 9.3340 ·10−5

2.1 2.2999 ·10−4 5.5485 ·10−4 1.1490 ·10−1

2.2 3.1674 ·10−2 3.3395 ·10−2 9.1130 ·10−2

3 1.9242 ·10−2 2.0282 ·10−2 2.0160 ·10−3

4 4.7234 ·10−2 5.0871 ·10−2 6.1820 ·10−1

An interesting point of the turbochargers failure times (Example 2.2) is that not all PSO runs
could catch their increasing trend. Only 20% from the gbest runs were not able to predict output
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values from the test set with the correct increasing trend against 26.6667% of the lbest runs.
Nevertheless, the Wilcoxon-Mann-Whitney test was non-significant, i.e., there is no evidence
to affirm that the gbest provides better test NRMSE values than the lbest does, considering the
level of significance of 5%.

Bratton & Kennedy (2007) asserts that usually the gbest approach presents a faster conver-
gence if compared to lbest. However, for the presented examples, all lbest runs had a smaller
mean time per run in absolute terms (Table 4.26). Also, apart from Example 1, the mean num-
ber of SVM predictions (fitness evaluations) was smaller for the lbest approach for all examples
(Table 4.27). In order to statistically compare the required times by each model and also the
number of predictions, Wilcoxon-Mann-Whitney tests may be performed for each case.

For the computational time case, Table 4.26 presents the p-values from the related statistical
tests. Notice that, for a level of significance of 10%, all results were statistically significant.
Table 4.27, in turn, provides the p-values resulted from the statistical tests associated with the
mean number of predictions. Taking into account a level of significance of 10%, only the test
concerning Example 1 was non-significant. Therefore, the lbest model is prone to require less
time as well as less fitness evaluations than the gbest model does.

Table 4.26: Mean time per run (minutes) and Wilcoxon-Mann-Whitney test results lbest× gbest

Example Mean time per run (minutes)
p-value

lbest gbest

1 10.8342 13.2886 6.3310 ·10−2

2.1 1.0066 1.3956 1.1710 ·10−3

2.2 10.5648 15.3496 6.9060 ·10−2

3 4.9337 9.4805 2.6620 ·10−2

4 14.6685 16.9978 8.4030 ·10−2

Table 4.27: Mean number of predictions per run and Wilcoxon-Mann-Whitney test results lbest
× gbest

Example Mean number of predictions per run
p-value

lbest gbest

1 116016.1667 106998.6333 6.8340 ·10−1

2.1 67989.7000 85499.2000 3.7350 ·10−2

2.2 68977.6667 82603.7000 8.8710 ·10−2

3 66563.8000 89619.9333 1.0790 ·10−2

4 67929.3000 89402.3000 1.8560 ·10−2

In this way, for the resolved examples, one can infer that the lbest approach is inclined to
provide smaller values of test NRMSE than the gbest model does, or at least comparable ones.
Moreover, for the considered examples, the lbest PSO has a tendency to converge more rapidly
than the gbest approach.
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This chapter provides some concluding remarks. In addition, limitations as well as a de-
scription of the ongoing research along with some suggestions for future works are presented.

5.1 Conclusions

This work proposed a PSO+SVM methodology for solving reliability prediction problems.
PSO+SVM combined with a validation set approach to guide the search for appropriate SVR
parameters’ values was validated with examples from literature concerning reliability prediction
based on time series data. The results showed that PSO+SVM can achieve outcomes compa-
rable to or better than the ones provided by other time series prediction tools, such as NN and
ARIMA.

Moreover, PSO+SVM was applied to an example involving data from oil production wells.
The TBF was predicted by considering specific characteristics of the system, differently from
the other examples, which were all from literature and based on time series data. The input vari-
ables were both numerical and categorical. The latter were transformed into indicator variables,
so as to be used by the SVR algorithm. In addition, the numerical input variables as well as the
output variable were scaled in [1,2] in order to avoid scale problems and then to get improved
solutions. Although the original database presented non-homogeneous data and some problems
related to data gathering, the proposed PSO+SVM methodology was able to provide quite small
error values.

PSO was adopted to tackle the SVM problem in the specific context of reliability predic-
tion. The implemented PSO involved an empirical manner to avoid particles from exiting the
feasible search space in early iterations of the algorithm by initially setting a small value for
their maximum velocities. Also, both lbest and gbest communication network among particles
were incorporated.

For all examples, apart from 13 runs in Example 1, the PSO runs converged before reaching
the maximum number of iterations. This reflects the ability of the PSO algorithm to find good
solutions in early steps of the algorithm. Also, for every example, the validation NRMSE, which
guided the search for the parameters (fitness), did not present considerable differences along the
30 runs, which can be observed from the related standard deviations.

Furthermore, a comparison between lbest and gbest PSO models was performed. The re-
sults for the specific examples considered in this dissertation indicated that the lbest was faster
and also provided test NRMSE values statistically comparable to or better than the ones yielded
from the gbest approach.

Therefore, given the obtained results, the coupling of PSO with SVM is a promising me-
thodology to tackle reliability prediction problems based on time series or on data related to
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specific features of the system, for example, obtained by a condition monitoring procedure.

5.2 Limitations

Although the implemented PSO linked with LIBSVM is quite general and can be easily
adapted to other application domains, the results achieved in this dissertation are limited to
regression problems in the specific context of reliability prediction from time series data sets
or from system features. Thus, they can not be generalized to other applications without a
previous investigation of the behavior of the proposed methodology applied to the problem
under consideration.

Additionally, PSO is a heuristic search procedure based on probabilities, then it does not
guarantee the convergence to optimum point. However, it is a useful tool for complex objective
functions that, for example, have no defined derivatives in their domains or whose search for
their optimum is very burdensome. It is rather a mechanism to go in the “right” direction so as
to obtain good solutions. In many contexts these good solutions are indeed valuable.

Furthermore, the generalization capability in all provided examples was assessed by the test
NRMSE. This is an indication of such ability but by no means guarantees that the corresponding
trained machine will have a good performance when predicting outputs from inputs not in the
training, validation or test sets. If some time after the prediction of an outcome the real value
could be observed, this new observation may be incorporated in the data set. With this proce-
dure, the SVM can be periodically retrained and thus improve its performance in predicting the
phenomenon under analysis.

This work considered that failure times and TBF predictions were related to systems subject
to a single failure mode. The modeling of various failure modes can be tackled analytically by
means of a competitive risks framework (COOKE, 1996), in which the different failure modes
represent risks that compete for leading the system to a failed state. To handle different failure
modes with an SVM approach, it would be necessary to associate an SVM to each one of them.
In this way, the estimate of the system’s very next failure time or TBF would be determined by
the most critical failure mode at the moment, that is, the one with the smallest failure time or
TBF returned by the associated SVM.

5.3 Ongoing Research

The following items can be cited as topics of ongoing or future research effort:

• The application of the proposed methodology in the context of fault diagnostic and prog-
nostic. The former usually demands a SVM classification or a multi-classification task
and the latter, often requires a SVR based on metrics obtained via condition monitoring.

• The combination of PSO+SVM with SMDP so as to allow for the development of a more
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comprehensive tool to support maintenance decisions.

• A further investigation of the multi-objective approach for SVM.

• The SVM training problem may involve huge matrices, which can render the optimization
procedure burdensome. The paralellization of the SVM code can be an alternative to this
issue, by dividing the entire problem in smaller ones to be solved in parallel.

• The handling of different failure modes considering a PSO+SVM modeling.
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