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RESUMO

Problemas de desbalanceamento são comuns em diversos cenários do mundo real e apre-
sentam desafios significativos, especialmente para tarefas de regressão, devido à raridade de
certos valores-alvo contínuos. Embora essas questões tenham sido amplamente exploradas em
tarefas de classificação, elas também afetam a regressão, complicando o desempenho dos mod-
elos. Este trabalho apresenta um estudo experimental extenso envolvendo várias estratégias
de balanceamento e modelos de aprendizado, introduzimos uma taxonomia para abordagens
de regressão desbalanceada baseada em modelos de regressão, modificação no processo de
aprendizado e métricas de avaliação, e destaca novos insights sobre as vantagens de diferentes
estratégias. A partir deste estudo, ficou evidente que a escolha do método de reamostragem
depende do problema, dos modelos de aprendizado e das métricas, tornando difícil selecionar
uma estratégia de reamostragem e um modelo de aprendizado apropriados. Como resultado, é
necessário testar a maioria das combinações existentes. Com base nessas descobertas, este tra-
balho propõe o modelo Meta-learning for Imbalanced Regression (Meta-IR) para enfrentar esses
desafios. O Meta-IR recomenda pipelines ideais que consistem em estratégias de reamostragem
e modelos de aprendizado para tarefas de regressão desbalanceada. Duas formulações são pro-
postas: Independente, que recomenda separadamente algoritmos de aprendizado e estratégias
de reamostragem, e Encadeada, que modela suas interdependências sequencialmente. A abor-
dagem Encadeada demonstrou desempenho superior, sugerindo uma relação significativa entre
algoritmos de aprendizado e estratégias de reamostragem. Em comparação com modelos de
AutoML e configurações de linha de base, o Meta-IR superou todos, oferecendo uma solução
mais eficaz para a regressão desbalanceada e indicando direções para futuras pesquisas.

Palavras-chave: Regressão desbalanceada, Estratégias de reamostragem, Meta-aprendizado



ABSTRACT

Imbalanced problems are common in various real-world scenarios and present significant chal-
lenges, especially for regression tasks due to the rarity of certain continuous target values.
While these issues have been extensively explored in classification tasks, they also affect re-
gression, complicating model performance. This work presents an extensive experimental study
involving various balancing strategies and learning models, introduces a taxonomy for imbal-
anced regression approaches based on regression models, learning process modification, and
evaluation metrics, and highlights new insights into the advantages of different strategies.
From this study, it became evident that the choice of resampling method depends on the
problem, learning models, and metrics, making it difficult to select an appropriate resam-
pling strategy and learning model. As a result, it is necessary to test the majority of existing
combinations. Based on these findings, this work proposes the Meta-learning for Imbalanced
Regression (Meta-IR) framework to address these challenges. Meta-IR recommends optimal
pipelines consisting of resampling strategies and learning models for imbalanced regression
tasks. Two formulations are proposed: Independent, which separately recommends learning
algorithms and resampling strategies, and Chained, which models their interdependencies se-
quentially. The Chained approach demonstrated superior performance, suggesting a significant
relationship between learning algorithms and resampling strategies. Compared with AutoML
models and baseline configurations, Meta-IR outperformed all, offering a more effective solu-
tion for imbalanced regression and indicating directions for future research.

Keywords: Imbalanced Regression, Resampling Strategies, Meta-learning.
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1 INTRODUCTION

In machine learning, imbalanced data poses significant challenges for analysis and model
development (HE; GARCIA, 2009). This issue arises when certain classes or values are under-
represented, leading to biased models that perform inadequately on minority classes or rare
values. Both classification and regression problems can suffer from imbalance. In classification,
this manifests as one class (the minority class) having significantly fewer instances than others
(the majority classes). In regression, where target values are continuous, imbalance can occur
in more complex forms. To address this, Ribeiro (2011) introduced the concept of a relevance
function that assesses the importance of continuous target values, distinguishing between rare
and normal examples. This approach helps in identifying and rectifying imbalances to ensure
a more balanced and fair analysis.

While the issue of imbalance in classification problems has been widely studied, it is also
a significant but overlooked problem in regression tasks (BRANCO; RIBEIRO; TORGO, 2016).
Learning algorithms often struggle with underrepresented values, focusing on more common
value ranges and neglecting rare cases. This leads to poor performance on these specific cases.
Additionally, evaluating model performance can be challenging, as some metrics may not cap-
ture what is most important to users (BRANCO; TORGO; RIBEIRO, 2019). Metrics that effectively
capture the imbalanced problem include Precision, Recall, F1-score (TORGO; RIBEIRO, 2009),
and the SERA metric (RIBEIRO; MONIZ, 2020).

One of the most common solutions to address imbalanced regression is the application of
various resampling strategies. These strategies aim to balance the training data by altering
the distribution of examples (GALAR et al., 2011). Key strategies include SmoteR (TORGO et

al., 2013), Random Under-sampling (TORGO et al., 2013), Random Over-sampling (BRANCO;

TORGO; RIBEIRO, 2019), Introduction of Gaussian Noise (BRANCO; TORGO; RIBEIRO, 2019),
SmoteR with Gaussian Noise (SMOGN) (BRANCO; TORGO; RIBEIRO, 2017), and WEighted
Relevance based Combination Strategy (WERCS) (BRANCO; TORGO; RIBEIRO, 2019). However,
choosing the best solution among these strategies is complex, as it depends on the specific
combination of resampling strategy and learning model for each dataset, which is a classic
example of the algorithm selection problem.

The algorithm selection problem (RICE, 1976) involves determining the most effective al-
gorithm for a given dataset based on its specific characteristics (BRAZDIL et al., 2022b). The
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process of selecting the right solution can be achieved through the use of Meta-Learning
(MtL) models. Meta-learning relies on meta-features to learn new tasks more efficiently (VAN-

SCHOREN, 2019). Using a set of prior tasks, a meta-model is trained to correlate these meta-
features with meta-labels, representing the best model for specific tasks. When faced with new
tasks, the meta-model can then suggest suitable algorithms based on the meta-features of the
new problem, effectively addressing the algorithm selection problem.

Based on this concept, this work introduces the Meta-Learning for Imbalanced Regression
(Meta-IR) framework. Specifically designed to address challenges in imbalanced regression,
Meta-IR employs meta-classifiers to recommend optimal pipelines that integrate both resam-
pling strategies and learning models. The framework is presented in two distinct formulations:
Independent and Chained. The Independent formulation separately recommends learning al-
gorithms and resampling strategies, while the Chained formulation systematically models the
relationship between resampling strategies and learning algorithms, recommending them in a
sequential manner.

This chapter is organized as follows: Section 1.1 motivates our research and present the
main contributions; Section 1.2 presents the objectives and hypotheses of this thesis; and
Section 1.3 outlines the organization of this document.

1.1 MOTIVATION AND MAIN CONTRIBUTIONS

Imbalance problems frequently arise in various real-world applications such as health-
care (HE; MUNASINGHE, 2021), finance (RUDD; HUO; XU, 2022), and atmospheric phenomena
(GHIMIRE et al., 2022; SALCEDO-SANZ et al., 2022). Most proposed studies for imbalanced regres-
sion focus on resampling strategies that alter the data distribution with the aim of balancing
and are independent of the learning model. Although resampling strategies are applicable to
any dataset and are independent of learning models, each problem tends to have its own
preferred combination of resampling strategy and learning model. Furthermore, the learning
model can be positively or negatively affected depending on the resampling strategy used.
Given the existence of various resampling strategies and learning models, making this choice
is not trivial. To address this issue, we propose a meta-learning-based model to recommend
an appropriate resampling strategy and learning model for imbalanced regression datasets. To
the best of our knowledge, while several studies have explored meta-learning in other scenarios
(e.g., (MONIZ; CERQUEIRA, 2021; ROSSI et al., 2014; ROSSI et al., 2021; AMORIM; CAVALCANTI;
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CRUZ, 2024; AGUIAR et al., 2019)), no existing proposals of meta-learning-based models have
been developed specifically for imbalanced regression. This highlights the originality of our
work, as it is the first to address this gap.

The main contributions of this work are:

• A comprehensive review of the main strategies used for imbalanced regression tasks with
an extensive experimental study comparing the performance of state-of-the-art resam-
pling strategies and their effects on multiple learning algorithms and novel performance
metrics proposed in the literature.

• A new taxonomy for imbalanced regression tasks according to the regression model,
learning strategy and metrics.

• An analysis of the impact of dataset characteristics (e.g., dataset size and the number
of rare cases) on the model’s predictive performance.

• A meta-learning method for recommending pipelines for imbalanced regression problems
with two meta-learning recommendation approaches: Independent and Chained.

• An analysis of meta-feature importance, identifying key meta-features crucial for the
meta-model’s predictive ability in recommending learning models and resampling strate-
gies for imbalanced regression problems.

In addition, the following two papers were written:

• AVELINO, J. G.; CAVALCANTI, G. D.; CRUZ, R. M. Resampling strategies for imbal-
anced regression: a survey and empirical analysis. Artificial Intelligence Review, Springer,
v. 57, n. 4, p. 82, 2024

• AVELINO, J. G.; CAVALCANTI, G. D.; CRUZ, R. M. Imbalanced Regression Pipeline
Recommendation. Under review

1.2 OBJECTIVE AND HYPOTHESES

The primary goal of this study is to introduce a meta-learning method for addressing
imbalanced regression problems. The aim is to improve the process of selecting learning models
and resampling strategies, which is currently complex and time-consuming. To achieve this, we
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started by conducting an analysis of resampling strategies proposed in the existing literature
for imbalanced regression. Our hypotheses and the corresponding chapters in which they are
discussed are outlined below.

• Chapter 2:

1. It is beneficial to use resampling strategies for improving predictive performance in
imbalanced regression problems.

2. Certain resampling strategies have a greater impact on predictive performance
compared to others.

3. The effectiveness of the best resampling strategy is influenced by the specific prob-
lem, the learning model employed, and the metrics used for evaluation.

4. The number of training examples generated by each resampling strategy affects
the predictive results.

5. Data features such as the percentage of rare cases, number of rare cases, dataset
size, number of attributes, and imbalance ratio have a significant impact on the
predictive performance of the models.

• Chapter 3:

1. Meta-learning can be used to recommend resampling strategies and learning models
for imbalanced regression tasks.

2. Employing specialized metrics and methods for imbalanced regression is crucial for
improving the performance and reliability of machine learning models.

3. The selection of a resampling strategy influences the choice of the learning model,
and vice versa.

4. Meta-IR is more effective for imbalanced regression tasks compared to AutoML
methods.

5. Resampling strategies improve the performance of AutoML methods.

1.3 THESIS ORGANIZATION

This thesis is structured around two papers written during the Ph.D. program. Firstly, we
introduce the basic concepts in chapter 2. The papers compose Chapters 3 and 4 of the thesis,
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presenting the core research and findings. Chapter 5 consolidates the principal conclusions
drawn from these works, summarizing the insights gained throughout the research period.

• Chapter 2: Basic Concepts

It presents the basic concepts to provide the foundation for understanding the proposed
method, including meta-learning (MtL), algorithm selection problem (ASP), and auto-
mated machine learning (AutoML).

• Chapter 3: Resampling strategies for imbalanced regression: a survey and em-

pirical analysis

In this study, we performed a comprehensive experimental analysis on imbalanced regres-
sion tasks. We assessed different strategies for resampling and predictive models, and
introduced a taxonomy based on regression models, learning processes, and evaluation
metrics.

• Chapter 4: Imbalanced Regression Pipeline Recommendation

This work introduces the Meta-learning for Imbalanced Regression (Meta-IR) framework,
which utilizes meta-learning-based model to recommend optimal pipelines of resampling
strategies and learning models for imbalanced regression tasks.

• Chapter 5: Conclusion

We present the main findings of the work, discuss its limitations, and outline directions
for future research.
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2 BASIC CONCEPTS

In this section, we present the basic concepts applied in this thesis: Meta-learning (MtL),
Algorithm Selection Problem (ASP) and Automated Machine Learning (AutoML). These con-
cepts provide the foundation and context necessary for understanding the methodologies and
approaches proposed.

2.1 META-LEARNING

Meta-learning is a field that focuses on learning from previous experiences, involving us-
ing metadata to adapt algorithms on new tasks more efficiently (BRAZDIL et al., 2022b). This
approach encompasses techniques enabling machine learning systems to effectively adjust to
new datasets and tasks (VANSCHOREN, 2018). Meta-learning systems can solve some types
of problems. In Brazdil et al. (2022b), the types are presented; the main ones are Algorithm
Selection (AS), Hyperparameter optimization (HPO), Combined algorithm selection and hy-
perparameter optimization (CASH), and Workflow synthesis (pipeline).

Algorithm selection involves identifying the most suitable algorithm for a given dataset
from a set of available algorithms, while hyperparameter optimization focuses on fine-tuning
the settings of an algorithm’s hyperparameters to improve its performance. When combining
these approaches, combined algorithm selection and hyperparameter optimization (CASH)
tackles both selecting the best algorithm and optimizing its hyperparameters simultaneously.
Furthermore, Workflow (pipeline) synthesis extends CASH by designing a series of steps or a
pipeline of multiple algorithms to a dataset.

In this work, we proposed an algorithm selection method based on meta-learning to select
the best resampling strategy and learning model for imbalanced regression problems. Therefore,
the following section describes this topic, exploring methodologies and strategies for algorithm
selection.

Algorithm Selection Problem

Initially formulated by Rice (1976), the Algorithm Selection Problem ASP can be described
as the problem of selecting the most suitable algorithm to solve a given problem instance based
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on its characteristics. This problem is crucial because the performance of machine learning
algorithms can vary significantly across different datasets, and selecting the wrong algorithm
can lead to suboptimal results.

Thus, Rice’s formulation defines ASP in terms of four main components: problem space,
algorithm space, feature space, and performance measure (RICE, 1976). The problem space
is the data sets that need to be solved, which may include classification problems, regression
problems, and time series problems. The algorithm space is the set of algorithms available to
solve these problems. This includes a range of machine learning algorithms such as decision
trees, support vector machines, neural networks, and others. The feature space is characterized
by a set of characteristics that describe the problems. These characteristics, or features, may
include statistical measures, data complexity measures, and other properties of the data set.
Lastly, the performance measure maps a pair (problem, algorithm) with a performance value.
The metric quantifies the effectiveness of the algorithm in solving the problem. With these
components, metadata is built, where each example is represented by a set of characteristics
and how each algorithm performed for the problem.

The algorithm selection problem is one of the central problems addressed by meta-learning.
Figure 1 presents a general architecture for meta-learning systems that address the algorithm
selection problem. First, the metadata is constructed, including the dataset characterization
(meta-features), algorithms (e.g., machine learning pipelines), and performance information
(meta-target). Finally, a meta-learner is generated from this data and can recommends
algorithms for each dataset. The recommendation can be made in different ways, such as the
best algorithm from a set, a subset of the top algorithms, a linear ranking, a nearly linear
(weak) ranking, and an incomplete ranking for the user.

Figure 1 – A general architecture for meta-learning systems that address the algorithm selection problem.

Datasets

Algorithms

Evaluate

Characterize

Metadata
Metalearner Meta-level

Model

Source: Adapted from Brazdil et al. (2022b).

In the following sections, the main meta-features used for regression problems (Section
2.1.1) and the recommendation methods (Section 2.1.2) are presented.
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2.1.1 Dataset characterization

Characterizing the data is a crucial step in building a meta-learning model, as the recom-
mendations rely on its effectiveness. There are various ways to extract features from the data.
Brazdil et al. (2022a) presented a review of the main meta-features used in classification, re-
gression, time series, and clustering tasks. Below, we present the commonly used meta-features
in regression problems.

• Simple and statistical: These features are extracted directly from the datasets and
are similar to those used in classification problems, except for those involving the target
variable, which need to be adapted for the continuous target value. Simple meta-features
include measures such as the number of examples, the number of attributes, the pro-
portion of discrete attributes, the proportion of missing values, and the proportion of
outliers. Statistical measures can include calculations such as skewness, kurtosis, corre-
lation, and covariance of instances.

• Complexity-based: Various studies have utilized data complexity measures as meta-
features. For classification problems, this category is investigated in (CAVALCANTI; REN;

VALE, 2012; LEYVA; GONZÁLEZ; PEREZ, 2014; GARCIA; CARVALHO; LORENA, 2016; MORÁN-

FERNÁNDEZ; BOLÓN-CANEDO; ALONSO-BETANZOS, 2017; GARCIA et al., 2018), and for
regression in (LORENA et al., 2018). Complexity measures have also been adapted for
imbalanced classification problems (BARELLA et al., 2018; BARELLA; GARCIA; CARVALHO,
2020; BARELLA et al., 2021).

• Model-based: This measure provides information obtained from learning models. The
measures of mean absolute error and the variation of residuals from a linear regressor
were described in Lorena et al. (2018) as complexity-based measures, but since they are
derived from models, they can also be considered model-based measures.

• Smoothness measures: In this category, meta-features are based, for example, on
estimating the similarity of examples in the output space using the idea of a minimum
spanning tree to connect the most similar examples in the input space, weighting the
edges with Euclidean distance, and then calculating the average distance between target
values.
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• Non-linearity measures: The meta-features in this category are adaptations of those
defined for classification problems. The non-linearity of a linear or nearest neighbor
regressor is calculated by considering two examples with similar outputs that are inter-
polated to generate a new test example. The linear regressor is then trained with the
original data and tested with the new test set. The Mean Squared Error (MSE) obtained
is used as a meta-feature.

2.1.2 Forms of Recommendation

According to Brazdil et al. (2022b), the system can recommend the best algorithm in
a set, a subset of the top algorithms, a linear ranking, a quasi-linear (weak) ranking, and
an incomplete ranking to the user. The best algorithm in a set is a single top-performing
algorithm. Alternatively, it can suggest a subset of the top algorithms, offering a few high-
performing options. Another type of recommendation is a linear ranking, where algorithms are
ordered from best to worst. A quasi-linear (or weak) ranking provides a less strict ordering,
indicating relative performance without a precise order, used when two or more algorithms are
tied. Lastly, an incomplete ranking suggests a partial order of some top algorithms without
necessarily including all algorithms in the set.

2.2 AUTOMATED MACHINE LEARNING (AUTOML)

Automated machine learning (AutoML) aims to automate the process of applying machine
learning to real-world problems. The goal of AutoML methods is to make machine learning
accessible to non-experts and to improve the efficiency and effectiveness of machine learning
pipelines for experts (BAHRI et al., 2022; BARATCHI et al., 2024). These systems reduce the need
for extensive human intervention and can significantly accelerate the development of machine
learning models.

The AutoML systems can include data pre-processing, feature engineering, model selec-
tion, hyperparameter optimization, and model evaluation (HUTTER; KOTTHOFF; VANSCHOREN,
2019). The data pre-processing process involves cleaning the data, addressing missing val-
ues, encoding categorical variables, and normalizing numerical features. Feature engineering
includes creating new features or modifying existing ones to enhance the performance of ma-
chine learning models. Model selection is the stage where the best machine learning algorithm
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for the given task and dataset is determined. Hyperparameter tuning focuses on optimizing
the hyperparameters of the chosen model to improve its performance, and model evaluation
assesses the model’s performance using appropriate metrics and validation techniques.

AutoML systems have three main components (HUTTER; KOTTHOFF; VANSCHOREN, 2019):
1) search space, 2) search strategy, and 3) performance evaluation:

1. Search space: The search space defines all possible solution choices. This can include
a list of pre-processing strategies, learning models, and hyperparameters. The search
strategy specifies the method that will be used to explore the search space and optimize
the performance of the selected models.

2. Search strategies: Several search strategies are employed by AutoML models, includ-
ing Bayesian optimization (HUTTER; HOOS; LEYTON-BROWN, 2011; SNOEK; LAROCHELLE;

ADAMS, 2012; GARNETT, 2023), Evolutionary algorithms (BÄCK; FOGEL; MICHALEWICZ,
1997; SIMON, 2013), Gradient-based optimization (BENGIO, 2000), Random search (BERGSTRA;

BENGIO, 2012), and Meta-Learning (BRAZDIL et al., 2022b). In AutoML models, meta-
learning is often used to warm-start the search process by recommending good initial
hyperparameter settings (BARATCHI et al., 2024). This approach leverages prior knowl-
edge from similar tasks to speed up and improve the optimization process. For example,
this method is utilized in tools like Auto-sklearn (FEURER et al., 2015).

3. Performance evaluation: The search strategies provide some candidate options, and it
is necessary to evaluate the performance of these solutions. A commonly used method to
address this situation involves dividing the dataset utilized by the AutoML system into a
training set and a validation set. The search algorithm of the AutoML system trains any
considered model on the training set and evaluates it on the validation set (BARATCHI et

al., 2024). This process is typically carried out using a nested cross-validation technique
(VARMA; SIMON, 2006).
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ABSTRACT

Imbalanced problems can arise in different real-world situations, and to address this, certain
strategies in the form of resampling or balancing algorithms are proposed. This issue has largely
been studied in the context of classification, and yet, the same problem features in regression
tasks, where target values are continuous. This work presents an extensive experimental study
comprising various balancing and predictive models, and wich uses metrics to capture important
elements for the user and to evaluate the predictive model in an imbalanced regression data
context. It also proposes a taxonomy for imbalanced regression approaches based on three
crucial criteria: regression model, learning process, and evaluation metrics. The study offers
new insights into the use of such strategies, highlighting the advantages they bring to each
model’s learning process, and indicating directions for further studies. The code, data and
further information related to the experiments performed herein can be found on GitHub:
<https://github.com/JusciAvelino/imbalancedRegression>.

3.1 INTRODUCTION

Imbalanced datasets are often encountered in multiple real-world applications. For clas-
sification tasks, such an issue has been studied (HAIXIANG et al., 2017; KRAWCZYK, 2016;
JOHNSON; KHOSHGOFTAAR, 2019). Nonetheless, it is also present in regression tasks (BRANCO;

RIBEIRO; TORGO, 2016). Branco, Torgo e Ribeiro (2017) define imbalanced problems based on
the simultaneity of two factors: i) a disproportionate preference of the user at the domain of
the target variable, and ii) insufficient representation of the data available in the most relevant
cases for the user. In classification tasks, an imbalanced dataset is determined through the

https://github.com/JusciAvelino/imbalancedRegression


28

presence of a class having a smaller representation (minority class) than another one (majority
class). However, in regression problems, the target value is continuous, thus representing a
complex definition, because the target value is not constrained to a limited set of discrete
values, unlike in classification problems where the target value represents specific categories
or classes. Figure 2 presents the distribution and frequency of examples drawn from an imbal-
anced dataset (FuelCons) with target values ranging from 2.7 to 17.3. To analyze this range,
we employed a bin width of approximately 0.2, resulting in a total of 74 bins. The values at the
chart’s edges show little frequency and are considered rare examples. In this context, Ribeiro
(2011) proposes the concept of a relevance function which determines the relevance of con-
tinuous target values in defining certain examples as rare and others as normal. This definition
allows to verify an imbalanced between instances considered rare and those seen as normal.

Figure 2 – Distribution and frequency of the target value Y from the FuelCons dataset.

Source: Prepared by the author.

Standard regression tasks assume that all values of the domain are of equal importance,
and are typically evaluated based on the performance of the most frequent values. How-
ever, values that are little represented are often extremely relevant, not only to the user, but
also in the prediction process. For example, in the context of software engineering prediction
mistakes in large projects are associated with higher development costs (RATHORE; KUMAR,
2017a), whereas during temperatures prediction in a meteorological application, errors that
surface while predicting extreme conditions (e.g., very high temperatures) are even much more
costly (RIBEIRO; MONIZ, 2020). This scenario presents particular difficulties for learning algo-



29

rithms, which tend to follow the interval of values in greater quantity while neglecting the
rare ones in the distribution. Hence, failing to obtain a good prediction performance for these
particular examples.

Studies looking at solutions for imbalanced regression problems have faced relatively little
scrutiny when compared to those related to classification problems (HAIXIANG et al., 2017). The
most common approach used to address this gap has been to modify the distribution of exam-
ples by balancing the training data before the actual learning process begins. Some of these
strategies are Random Under-sampling (TORGO et al., 2013), which removes examples from
intervals having greater quantities, Random Over-sampling (BRANCO; TORGO; RIBEIRO, 2019),
which replicates rare values in the dataset, and the WEighted Relevance-based Combination
Strategy (WERCS) (BRANCO; TORGO; RIBEIRO, 2019), which creates a weighted combina-
tion biased versions of the under- and over-sampling strategies. In addition, several real-world
imbalanced regression problems rely on resampling strategies to properly deal with rare and
extreme cases, such as in software defect prediction ((BAL; KUMAR, 2018), (BAL; KUMAR,
2020), (RATHORE; KUMAR, 2017a) and (RATHORE; KUMAR, 2017b)) and Enzyme Optimum
Temperature prediction (GADO; BECKHAM; PAYNE, 2020), as well as to assist in detecting ar-
senic concentration in soil using satellite imagery (AGRAWAL; PETERSEN, 2021). Hence, the
variety of problems and increased interest in this field demonstrates the need for studies on
imbalanced regression techniques.

Another difficulty encountered in such scenarios is related to the fact that traditional perfor-
mance metrics, such as the Mean Squared Error (MSE) and the Mean Absolute Error (MAE),
do not adequately capture user-defined criteria (BRANCO; TORGO; RIBEIRO, 2019). Addition-
ally, recent works have proposed new performance metrics for evaluating the performance of
regression models under imbalanced target distributions, and place greater emphasis on errors
occurring in rare cases. In these cases, Precision, Recall, and F1-score metrics, as described for
regression tasks (TORGO; RIBEIRO, 2009), and the squared error-relevance area (SERA) metric
proposed in Ribeiro e Moniz (2020), are commonly used. Nevertheless, a comparison between
multiple imbalanced regression strategies under these performance metrics, and of how they
differ in their approach to assessing the model’s performance, is still an open question.

Therefore, our main goal is to analyze the effects of resampling strategies for dealing
with imbalanced regression problems from different perspectives. To this end, we conduct an
extensive experimental study employing different resampling strategies and learning algorithms.
In addition, we use metrics that can assess the models’ performance in imbalanced regression
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tasks, such as the F1-score for regression and SERA (RIBEIRO; MONIZ, 2020). To the best
of our knowledge, this is the first work that performs a comprehensive empirical analysis of
resampling techniques for imbalanced regression tasks. In contrast, for imbalanced classification
tasks, numerous surveys and empirical studies have evaluated resampling algorithms in different
scenarios, such as binary problems (GARCÍA et al., 2020; KOVÁCS, 2019; WOJCIECHOWSKI; WILK,
2017; ROY et al., 2018; ALI et al., 2019; RIO; BENÍTEZ; HERRERA, 2015; DÍEZ-PASTOR et al.,
2015; MONIZ; MONTEIRO, 2021), multiclass classification (CRUZ et al., 2019; SÁEZ; KRAWCZYK;

WOŹNIAK, 2016), and data streams (AGUIAR; KRAWCZYK; CANO, 2022; ZYBLEWSKI; SABOURIN;

WOŹNIAK, 2019).
The broad scope of our experimental analysis, which considers multiple resampling strate-

gies, regression models, and performance metrics, is at the core of the uniqueness of our
research since it allowed us to assess the relationship among these three variables. Our study
thus differs from Branco, Torgo e Ribeiro (2016), which addresses only theoretical aspects of
imbalanced problems in general. Moreover, regarding the performance metrics, using the SERA
metric (RIBEIRO; MONIZ, 2020) is highlighted since no other work has evaluated all resampling
strategies using it specifically.

The following research questions guide this study: i) Is it worth using resampling strate-
gies? ii) Which resampling strategies influence predictive performance the most? iii) Does the
choice of best strategy depend on the problem, the learning model, and the metrics used? iv)
Does the number of training examples resulting from each strategy influence the results? v)
Do the features of the data (percentage of rare cases, number of rare cases, dataset size, num-
ber of attribues and imbalance ratio) impact the predictive performance of the models? The
experimental analysis revealed that resampling strategies are beneficial to the vast majority
of regression models. The best strategies include Gaussian Noise Introduction, Random Over-
sampling and WERCS. Another important point is that choosing the best strategy depends
on the dataset, the regression model, and the metric used when evaluating the system’s per-
formance. Furthermore, we found that the dataset size, the number of rare cases, the number
of attribute and the imbalance ratio significantly influence the results. The smallest datasets
and those with the fewest rare cases are the most challenging. Models demonstrate superior
performance in datasets with fewer features. Lastly, concerning the imbalance ratio, regression
models encounter more significant challenges with a higher imbalance ratio.
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Contributions

• We propose a novel taxonomy for imbalanced regression tasks according to the regression
model, learning strategy and metrics.

• We review the main strategies used for imbalanced regression tasks.

• We conduct an extensive experimental study comparing the performance of state-of-
the-art resampling strategies and their effects on multiple learning algorithms and novel
performance metrics proposed in the literature.

• We analyze the impact of dataset characteristics (e.g., dataset size and the number of
rare cases) on the model’s predictive performance.

This work is organized as follows: Section 3.2 presents the basic concepts and proposes a
taxonomy for imbalanced regression problems. Section 3.3 describes the resampling approaches
evaluated in this study highlighting their advantages and disadvantages. Section 3.4 presents
the experimental methodology by describing the data, algorithms, parameters, and performance
metrics used in this work. Results are shown in Section 3.5. Section 3.6 presents the lessons
learned by revisiting and answering the research questions. Finally, Section 3.7 brings our
conclusions.

3.2 BASIC CONCEPTS AND PROPOSED TAXONOMY

Some fundamental concepts must be grasped in order to understand the notion of imbal-
anced regression. In this context, the concept of relevance function is presented herein and a
taxonomy is proposed to organize the strategies required. The relevance function is a funda-
mental concept in imbalanced regression, as it defines the importance of each sample in the
dataset. Finally, a taxonomy is proposed to categorize the approaches used to address imbal-
anced regression problems, providing a way to understand the existing literature. Based on this
taxonomy, we review the main strategies for dealing with imbalanced regression problems.
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3.2.1 Relevance Function

The concept of relevance function is crucial when it comes to understanding the imbalanced
regression problem and some strategies for dealing with it. Proposed by Ribeiro (2011), the
relevance function (𝜑 : 𝑌 → [0, 1]) determines the relevance of the examples in each dataset
using an automatic method. The relevance value determines the examples that are normal and
those that are rare, with the rare ones being the least represented in the dataset. The intuition
of the relevance function is to automatically set the significance of data points within a dataset
by assigning relevance scores. In this way, the relevance function serves as the foundation for
evaluating models in the context of imbalanced regression, as well as for data resampling.
Consequently, using a different relevance function alters both the model evaluation and data
resampling.

To the best of our knowledge, this definition of relevance function is unique in the literature.
In Ribeiro (2011) and Ribeiro e Moniz (2020), the relevance function is showcased using the
Piecewise Cubic Hermite Interpolating Polynomials (pchip) and cubic spline methods. However,
it was noted that cubic spline interpolation cannot provide precise control over the function. It
fails to confine the relevance function within the specified [0, 1] interval scale. This limitation
is rectified by the pchip method, employing suitable derivatives at control points, thereby
ensuring properties like positivity, monotonicity, and convexity. Consequently, Ribeiro (2011)
proposed relevance function utilizes the pchip method and aligned with this, the works in the
field utilize this function.

The relevance function (𝜑) is calculated using Piecewise Cubic Hermite Interpolating Poly-
nomials (pchip) (DOUGHERTY; EDELMAN; HYMAN, 1989) over a set of control points (Algo-
rithm 1). The algorithm receives as input the control points (𝑆) with their respective relevance
values (𝜙(𝑦𝑘)) and derivative (𝜙′(𝑦𝑘)). The condition 𝑦1 < 𝑦2 < ... < 𝑦𝑠 ensures that the
data points are ordered in ascending order of their y-values. This ordering is fundamental for
properly functioning the pchip algorithm. As a result, the algorithm produces a separate 𝜑(𝑦)

polynomial for each interval [𝑦𝑘, 𝑦𝑘+1], with coefficients calculated based on the control points
and their derivatives within that specific interval, where the variable 𝑘 represents the index for
the input set 𝑆 control points.
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Algorithm 1 pchip(𝑆): Piecewise Cubic Hermite Interpolating Polynomials

Input:
𝑆 = {⟨𝑦𝑘, 𝜙(𝑦𝑘), 𝜙′(𝑦𝑘)⟩}𝑠

𝑘=1, with 𝑦1 < 𝑦2 < ... < 𝑦𝑠, relevance values 𝜙(𝑦𝑘) and
preliminary derivative 𝜙′(𝑦𝑘)

Output:
𝜑(𝑦): a Piecewise Cubic Hermite Interpolating Polynomial

1: for 𝑘 ← 1 to 𝑠− 1 do
2: ℎ𝑘 ← 𝑦𝑘+1 − 𝑦𝑘

3: 𝛿𝑘 ← (𝜙(𝑦𝑘+1)− 𝜙(𝑦𝑘))/ℎ𝑘

4: 𝑎𝑘 ← 𝜙(𝑦𝑘)
5: end for
6: {𝑏𝑘}𝑠−1

𝑘=1 ← check_slopes ({𝜙′(𝑦𝑘)}𝑠−1
𝑘=1, {𝛿𝑘}𝑠−1

𝑘=1) ◁ Monotone Cubic Spline
7: for 𝑘 ← 1 to 𝑠− 1 do
8: 𝑐𝑘 ← (3𝛿𝑘 − 2𝑏𝑘 + 𝑏𝑘+1)/ℎ𝑘

9: 𝑑𝑘 ← (𝑏𝑘 − 2𝛿𝑘 + 𝑏𝑘+1)/ℎ2
𝑘

10: end for
11: return 𝜑(𝑦) = 𝑎𝑘 + 𝑏𝑘(𝑦 − 𝑦𝑘) + 𝑐𝑘(𝑦 − 𝑦𝑘)2 + 𝑑𝑘(𝑦 − 𝑦𝑘)3, 𝑦 ∈ [𝑦𝑘, 𝑦𝑘+1]

The control points can be defined based on domain knowledge or provided by an automated
method. When control points are defined based on domain knowledge, selecting them is guided
by the expertise and understanding of the specific problem or dataset. This approach relies on
the insights and experience of individuals familiar with the data and its context. Ideally, access
to domain knowledge for defining control points would be preferred. However, this knowledge
is often unavailable or nonexistent (RIBEIRO; MONIZ, 2020). Therefore, the utilization of an
automatic method for control point definition becomes necessary. An example of defining con-
trol points of the NO2 emissions problem based on domain knowledge is presented in Table 1.
Control points are determined based on Directive 2008/50/EC. The objective is to maintain
the 𝐿𝑁𝑂2 (target) hourly concentration values below a limit equal to 𝑙𝑛(150𝜇𝑔/𝑚3) ≈ 5.0,
indicating maximum relevance, and the annual average guideline of 𝑙𝑛(40𝜇𝑔/𝑚3) ≈ 3.7, in-
dicating minimal relevance. And the lowest 𝐿𝑁𝑂2 concentration value 𝑙𝑛(3𝜇𝑔/𝑚3) ≈ 1.1 is
attributed minimal relevance.

Table 1 – Control points of LNO2 concentration thresholds according to Directive 2008/50/EC.

𝑦𝑘 : 𝐿𝑁𝑂2 concentration values 𝜑(𝑦𝑘) 𝜑′(𝑦𝑘)

Low concentration: 𝑙𝑛(3𝜇𝑔/𝑚3) ≈ 1.1 0.0 0.0
Annual mean guideline: 𝑙𝑛(40𝜇𝑔/𝑚3) ≈ 3.7 0.0 0.0
Limit threshold: 𝑙𝑛(150𝜇𝑔/𝑚3) ≈ 5.0 1.0 0.0

Source: Ribeiro e Moniz (2020).
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In this work, we employ the automatic method, proposed by Ribeiro (2011), to define
the control points. This method is based on Tukey’s boxplot (TUKEY, 1970). The Tukey’s
boxplot is a graphical representation used to display the distribution of a dataset through its
five summary statistics: The adjacent limits 𝑎𝑑𝑗𝐿 (Eq. 3.1) and 𝑎𝑑𝑗𝐻 (Eq. 3.2), first quartile
(𝑄1), third quartile (𝑄3) and median 𝑌 (Eq. 3.3). In turn, the control points are defined by
the adjacent limits and the median value. The input to the pchip algorithm consists of control
points, their relevance and derivatives. For this purpose, to the adjacent values (𝑎𝑑𝑗𝐿, 𝑎𝑑𝑗𝐻)
maximum relevance is assigned, which equals 1, and the median value (𝑌 ) with relevance value
equal to zero. All control points are initialized with derivative 𝜑′(𝑦𝑘) equal to 0. In addition
to defining the control points using Tukey’s boxplot, Ribeiro e Moniz (2020) proposes the
utilization of the adjusted boxplot, as proposed by Hubert e Vandervieren (2008).

𝑎𝑑𝑗𝐿 = 𝑄1− 1.5 · 𝐼𝑄𝑅 (3.1)

𝑎𝑑𝑗𝐻 = 𝑄3 + 1.5 · 𝐼𝑄𝑅 (3.2)

𝑌 = median of 𝑌 (3.3)

where 𝑄1 and 𝑄3 are the first and third quartile, respectively, and 𝐼𝑄𝑅 = 𝑄3−𝑄1.
Figure 3 illustrates the relevance function resulting from the pchip algorithm, for the

fuelCons dataset. The points approaching 𝑌 have negligible relevance, whereas points that
move away from 𝑌 and approach 𝑎𝑑𝑗𝐿 or 𝑎𝑑𝑗𝐻 have maximum relevance.

Figure 3 – Relevance function of the fuelCons dataset.

Source: Prepared by the author.
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Algorithm 2 check_slopes (Φ, Δ) (FRITSCH; CARLSON, 1980)

Input:
Φ = {𝜙′(𝑦𝑘)}𝑠−1

𝑘=1, Δ = {𝛿𝑘}𝑠−1
𝑘=1

Output:
Φ: Modified derivative values

1: for 𝑘 ← 1 to 𝑠− 1 do
2: if 𝛿𝑘 = 0 then ◁ Initialize the derivatives
3: 𝜙′(𝑦𝑘)← 𝜙′(𝑦𝑘+1)← 0
4: else
5: 𝛼← 𝜙′(𝑦𝑘)/𝛿𝑘

6: 𝛽 ← 𝜙′(𝑦𝑘+1)/𝛿𝑘

7: if 𝜙′(𝑦𝑘) ̸= 0 ∧ 𝛼 < 0 then ◁ select an underset to preserve monotonicity
8: 𝜙′(𝑦𝑘)← −𝜙′(𝑦𝑘)
9: 𝛼← 𝜙′(𝑦𝑘)/𝛿𝑘

10: end if
11: if 𝜙′(𝑦𝑘+1) ̸= 0 ∧ 𝛽 < 0 then ◁ select an underset to preserve monotonicity
12: 𝜙′(𝑦𝑘+1)← −𝜙′(𝑦𝑘+1)
13: 𝛽 ← 𝜙′(𝑦𝑘+1)/𝛿𝑘

14: end if
15: 𝜏1 ← 2𝛼 + 𝛽 − 3
16: 𝜏2 ← 𝛼 + 2𝛽 − 3
17: if 𝜏1 > 0 ∧ 𝜏2 > 0 ∧ 𝛼(𝜏1 + 𝜏2) < 𝜏1𝜏2 then ◁ modifying the derivative values
18: 𝜏 ← 3𝛿𝑘/

√
𝛼2 + 𝛽2

19: 𝜙′(𝑦𝑘)← 𝛼𝜏
20: 𝜙′(𝑦𝑘+1)← 𝛽𝜏
21: end if
22: end if
23: end for
24: return Φ = {𝜙′(𝑦𝑘)}𝑠−1

𝑘=1

The interpolation generates a function that crosses the control points. One of the main
goals is to learn the correct slopes in the data points such that the interpolant is monotonic by
parts. To this end, a method that implements the Monotone Cubic Spline (FRITSCH; CARLSON,
1980) (line 6) is used. The check_slopes method (Algorithm 2) ensures that the derivative is
zero when the control point for a maximum or minimum local (RIBEIRO; MONIZ, 2020).

A relevance threshold (𝑡𝑅) defined by the user is employed to divide the data into rare (𝐷𝑅)
and normal (𝐷𝑁) values. Given a dataset 𝐷, the sets 𝐷𝑅 and 𝐷𝑁 are defined considering
the superior and inferior thresholds as follows: 𝐷𝑅 = {⟨x, 𝑦⟩ ∈ 𝐷 : 𝜑(𝑦) ≥ 𝑡𝑅} and 𝐷𝑁 =

{⟨x, 𝑦⟩ ∈ 𝐷 : 𝜑(𝑦) < 𝑡𝑅}.
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3.2.2 Proposed Taxonomy

In the context of class imbalanced problems, solutions are often classified into four groups:
Algorithmic level, Cost-sensitive, Ensemble learning, and Data preprocessing (GALAR et al.,
2011; LÓPEZ et al., 2013). However, one problem with this classification is that there is a sig-
nificant overlap between the ensemble learning, data preprocessing, and cost-sensitive groups.
Ensemble learning approaches can be used in conjunction with any other approaches by learn-
ing the base models, accounting to target imbalance at the algorithmic level, or applying
data preprocessing prior to training each base model in the ensemble. Therefore, to better
understand the different approaches for dealing with imbalanced regression problems, we can
categorize the strategies into three main groups: i) Regression Models, ii) Learning Process
Modification, and iii) Evaluation Metrics.

Figure 4 – Proposed taxonomy for imbalanced regression problems.

Strategies for
Imbalanced Regression

Cost-sensitive

Algorithmic level

Regression Models Learning Process Modification

Single regressors

Ensemble regressors

Data preprocessing

Over-sampling

Under-sampling

Hybrid

Evaluation Metrics

Local

Global

Source: Prepared by the author.

The first group of strategies comprises regression models, such as single models and en-
sembles, which can be used to address imbalanced regression problems. However, their perfor-
mance can be further improved by incorporating data preprocessing, cost-sensitive learning, and
algorithmic-level modifications. The second group describes these additional strategies which
can help adjust the learning process to deal with the target imbalance, thus leading to better
results when compared to using the models alone. The third group comprises the evaluation
metrics and is divided into local and global subgroups. The local metrics require a relevance
threshold to distinguish extreme values and conduct a local evaluation, and thus, cases with
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a relevance score lower than the threshold are disregarded. Conversely, global metrics do not
require a relevance threshold, making a global evaluation, considering all the examples. To
conclude, categorizing these strategies into three groups can provide a better understanding of
the approaches and enable the selection of the most suitable strategy for dealing with imbal-
anced regression problems. As shown in Figure 4, data preprocessing takes the spotlight, which
is the main focus of this work. Herein, we explore and compare different data preprocessing
techniques to improve the performance of regression models (single models and ensembles) in
imbalanced regression problems.

Regression Models

Regression models such as MLPRegressor, Linear Support Vector Regression (SVR) and
decision trees can be used to solve problems with imbalanced regression data, but they may
not perform well due to the imbalance. In such cases, it may be necessary to utilize other
techniques such as data preprocessing or cost-sensitive learning, or to modify the algorithm,
to address the issue. In the same perspective, ensemble models, such as bagging, boosting,
and random forest, can also be utilized in addressing these problems. Solutions based on en-
semble learning combined with data preprocessing strategies and cost-sensitive were proposed.
In Branco, Torgo e Ribeiro (2018) the REsampled BAGGing (REBAGG) model was proposed
in a bid to integrate data resampling strategies with bagging, and had the advantage of gener-
ating a diverse set of models taking into account the different ways training data are resampled
using the Random Under-sampling, Random Over-sampling and SmoteR strategies. SMOTE-
Boost (MONIZ et al., 2018) includes a resampling step when boosting, where SmoteR is used
to direct the distribution of data towards rare cases. In the same context, Moniz, Branco e
Torgo (2017) carried out a performance study of ensemble methods in regression tasks with
imbalanced datasets.

Learning Process Modification

Learning Process Modification refers to the techniques used to modify the training process
of machine learning algorithms to take into account rare cases. These techniques include
algorithmic level modification, as well as the cost-sensitive and data preprocessing methods. At
an algorithmic level, a model is introduced in Torgo e Ribeiro (2003) with new division criteria



38

for the regression trees that allow to induce trees at extreme and rare predicted values. Yang et
al. (2021) proposed methods aimed at favoring the similarity between near targets by applying a
kernel distribution to soften the distribution in the target and space of attributes. Ribeiro (2011)
then addressed a utility-based algorithm involving cost-sensitive learning designed with a set of
rules extracted from the generation of different regression trees aimed at obtaining accurate and
interpretable predictions for imbalanced regression. Steininger et al. (2021) proposed a density-
based weighting approach to address the issue of imbalanced regression, building on the cost-
sensitive method. This approach assigns higher weights to rare cases by taking into account
their local densities. Finally, one of the most common approaches for treating imbalanced
issues is data preprocessing, also known as resampling or balancing algorithms, which precede
the learning process, altering the examples distribution. The method works by either removing
samples from common cases (i.e., under-sampling) or generating synthetic samples for rare
events (i.e., oversampling). Data processing techniques have the advantage of allowing the
use of just about any learning algorithm concurrently, without affecting the explicability of the
model (BRANCO; TORGO; RIBEIRO, 2019).

Different resampling strategies have been proposed to deal with imbalanced regression
problems. Most such techniques are based on existing resampling strategies proposed for clas-
sification problems. That is the case, for example, of the SmoteR algorithm, which is a variation
of the Smote (CHAWLA et al., 2002) algorithm, with the following main adaptations made to
adjust to the issue of regression: i) the definition of rare cases, ii) the creation of synthetic ex-
amples, and iii) the definition of target values for newly generated examples. Also on the basis
of the Smote algorithm, Camacho, Douzas e Bacao (2022) proposed Geometric SMOTE, which
generates synthetic data points along the line connecting two existing data points. Other strate-
gies adapted from imbalanced classification are: Random Under-sampling (TORGO et al., 2013),
based on the idea of Kubat, Matwin et al. (1997); Random Over-sampling (BRANCO; TORGO;

RIBEIRO, 2019), proposed for the classification in Batista, Prati e Monard (2004), and Intro-
duction of Gaussian Noise (BRANCO; TORGO; RIBEIRO, 2019), adapted from Lee (1999), Lee
(2000). In contrast, the SMOGN (SmoteR with Gaussian Noise) (BRANCO; TORGO; RIBEIRO,
2017) and the WERCS (WEighted Relevance-based Combination Strategy) (BRANCO; TORGO;

RIBEIRO, 2019) strategies were originally proposed for handling imbalanced regression prob-
lems. Furthermore, Song, Dao e Branco (2022) introduced a distributed version of the SMOGN
called DistSMOGN. The method uses a weighted sampling technique to generate synthetic
samples for rare cases, in addition to considering the data distribution in each node of the
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distributed system. For the imbalanced data streams in regression models context, Aminian,
Ribeiro e Gama (2021) introduced two sampling strategies (ChebyUS, ChebyOS) based on
the Chebyshev inequality to improve the performance of existing regression methods on im-
balanced data streams. The approaches use a weighted learning strategy that assigns higher
weights to rare cases in order to balance the training process.

Each strategy resamples data differently. However, they appear to be based on the same
principles: reducing normal examples and/or increasing rare examples. Under-sampling, which
reduces normal examples, is the basis of the Random Under-sampling strategy. In contrast,
over-sampling, which increases rare examples, can have a simple performance, as in Random
Over-sampling, or by generating synthetic cases, as in the SmoteR Algorithm and Introduction
of Gaussian Noise. Other strategies are based on the aforementioned models. Examples include
the SmoteR with Gaussian Noise (SMOGN), which combines the Random Under-sampling
strategy with the SmoteR and Introduction of Gaussian Noise over-sampling strategies. Also,
the WEighted Relevance-based Combination Strategy (WERCS) combines the Random Under-
sampling and Random Over-sampling strategies by using weights to perform the resampling
without establishing a relevance threshold.

In our study, we analyze a variety of data preprocessing techniques to optimize the perfor-
mance of single and ensemble regression models in addressing imbalanced regression problems.
Our objective is to compare the effectiveness of different approaches in identifying the most
suitable strategies for this situation. By carefully assessing these techniques, we aim to provide
guidance as to how to increase the success rate of regression models using data preprocessing
techniques in imbalanced regression tasks.

Evaluation Metrics

The choice of assessment metrics is fundamental in an imbalanced datasets scenario. Some
metrics, such as the MSE, may fool users when the focus is on the accuracy of rare values of the
target variable (MONIZ; TORGO; RODRIGUES, 2014) since it does not consider the relevance of
each testing example. To show the limitations of the MSE metric and how the scores obtained
by different metrics can significantly differ, we present a synthetic example (Table 2). For
10 examples in the FuelCons dataset, we present hypothetical predictions for two artificial
models: 𝑀1 and 𝑀2. The True row represents the true target for each instance in the dataset,
directly obtained from the FuelCons dataset. The 𝜑 row is the relevance value of each example.
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Meanwhile, the 𝑀1 and 𝑀2 rows showcase predictions generated by the respective models for
individual test examples. In parallel, the 𝑀1 and 𝑀2 loss rows quantify the differences between
the true target and the predictions made by the models for each test example. The example
shows that 𝑀1 generates more accurate predictions for the less relevant examples, which are
less represented in the dataset, while 𝑀2 performs better for more relevant examples, which
are more frequently represented. Nonetheless, if the models’ performances are assessed using
the MSE metric, there will be no difference in scores between them. This is because the MSE
metric considers all examples as having the same relevance (𝜑). Therefore, for the imbalanced
data scenario, where each example has a particular relevance, it is more interesting to use
metrics that consider the relevance of each particular example.

Table 2 – Predictions of two artificial models.

Test examples
True 2.70 3.20 3.50 4.10 4.50 4.70 5.20 5.70 9.20 17.30

𝜑 0.00 0.00 0.00 0.00 0.00 0.02 0.57 1.00 1.00 1.00
𝑀1 2.66 3.14 3.40 3.80 4.00 3.80 4.10 4.40 7.70 15.50

𝑀1 Loss 0.04 0.06 0.10 0.30 0.50 0.90 1.10 1.30 1.50 1.80
𝑀2 0.90 1.70 2.20 3.00 3.60 4.20 4.90 5.60 9.14 17.26

𝑀2 Loss 1.80 1.50 1.30 1.10 0.90 0.50 0.30 0.10 0.06 0.04
Source: Prepared by the author.

True - Target values
𝜑 - Relevance values
M1 and M2 - Model predictions
M1 Loss and M2 Loss - Prediction errors

Other metrics consider each example as having a particular relevance score, such as Pre-
cision, Recall, and the F1-score, which were proposed for regression applications in Torgo
e Ribeiro (2009). In addition, the Squared error-relevance area (SERA) metric, which was
specifically created for imbalanced regression, was proposed by Ribeiro e Moniz (2020). This
metric aims to effectively assess the model’s performance for predictions of extreme values
while being robust to model bias. Table 3 presents the MSE, F1-score, and SERA values for
the example presented in Table 2. As earlier mentioned, for the MSE, the models are regarded
as equals since they both have the same error amplitude. Nonetheless, for the F1-score and
SERA, which consider each example’s relevance, 𝑀2 is the best model as it presents a lower
error in the most important examples.

The Precision, Recall, and F1-score metrics require that a relevance threshold be defined
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Table 3 – Performances of two artificial models

Estimated Performance

MSE F1-score SERA
𝑀1 0.955 0.598 7.885
𝑀2 0.955 0.983 0.076

Source: Prepared by the author.

to determine extreme values. Thus, a local evaluation is performed, since examples below the
threshold are ignored. Furthermore, these metrics use the concept of a utility-based frame-
work (TORGO; RIBEIRO, 2007), (RIBEIRO, 2011). Such a structure uses the numeric error of the
prediction and the relevance of the actual and predicted values. The utility of predicting a value
𝑦 for 𝑦 is calculated from the notions of costs and benefits of numeric predictions (BRANCO;

TORGO; RIBEIRO, 2019), and thus, the utility function 𝑈𝑝
𝜑(𝑦, 𝑦) is given by Equation 3.4, where

𝑦 is the predicted value and 𝑦 is the actual value.

𝑈𝑝
𝜑(𝑦, 𝑦) = 𝐵𝜑(𝑦, 𝑦)− 𝐶𝑝

𝜑(𝑦, 𝑦) = 𝜑(𝑦) · (1− Γ𝐵(𝑦, 𝑦))− 𝜑𝑝(𝑦, 𝑦) · Γ𝐶(𝑦, 𝑦) (3.4)

The utility is given by the difference between the prediction benefit (𝐵𝜑(𝑦, 𝑦)) and cost
(𝐶𝑝

𝜑(𝑦, 𝑦)) of prediction 𝑦 for 𝑦. The benefit is defined as a proportion of the relevance of the
actual value according to the following equation: 𝜑(𝑦) · (1− Γ𝐵(𝑦, 𝑦)), where Γ𝐵(𝑦, 𝑦) is the
bounded loss function (Equation 3.5). This equation defines a loss function, Γ𝐵(𝑦, 𝑦), which
quantifies the loss incurred when making a prediction 𝑦 for the actual value 𝑦 (Equation 3.6).
This loss function operates on a scale from 0 to 1, where 0 represents no loss, and 1 represents
maximum loss.

Γ𝐵(𝑦, 𝑦)) =

⎧⎪⎪⎨⎪⎪⎩
𝐿(𝑦, 𝑦)/𝐿̇𝐵(𝑦, 𝑦), if 𝐿(𝑦, 𝑦) < 𝐿̇𝐵(𝑦, 𝑦)

1, if 𝐿(𝑦, 𝑦) ≥ 𝐿̇𝐵(𝑦, 𝑦)
(3.5)

𝐿 is a “standard" loss function (e.g., absolute deviation (Equation 3.6)) and 𝐿̇𝐵 is the benefit
threshold function, (Equation 3.7). The benefit threshold function identifies the point at which
the predicted value ceases to provide a benefit. This can happen because of two conditions:
(i) surpassing the maximum acceptable loss of the bump or (ii) being situated on a different
bump (RIBEIRO, 2011).
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𝐿(𝑦, 𝑦) = |𝑦 − 𝑦| (3.6)

𝐿̇𝐵(𝑦, 𝑦) = 𝑚𝑖𝑛{𝑏Δ
𝛾(𝑦), 𝐿̈𝐵(𝑦, 𝑦)} (3.7)

where 𝑏Δ
𝛾(𝑦) is the maximum admissible loss, defined in Equation 3.8. The maximum admissible

loss is calculated for each bump 𝑖. A bump refers to a interval of the domain, denoted as
𝐵 ⊆ 𝑌 (RIBEIRO, 2011). 𝑏− is the mean value at which the target variable reaches the
minimum relevance before reaching its maximum value, and 𝑏* is the mean value at which
the target variable reaches the maximum relevance. The reason for this definition is that
this function is contingent upon the smallest discrepancy concerning the target variable when
transitioning from the most pertinent value within a bump (𝑏*

𝑖 ) to an alternative bump. The
smallest differences regarding the target variable can have two effects on model performance.
On the positive side, it can make the model more accurate by focusing on the areas where
predictions must be very close to the actual values. This is useful when you need high accuracy
in specific parts of the data. Conversely, the model might become too fixated on the training
data, making it sensitive to unusual data points and not very good at handling new data,
leading to overfitting. Consequently, this implies that when dealing with “narrow" bumps, our
sensitivity to prediction errors is heightened, whereas for broader bumps, we are more inclined
to deem larger disparities between the actual and forecasted values as acceptable (RIBEIRO,
2011).

𝑏Δ
𝛾(𝑦) = 2 ·min{| 𝑏−

𝑖 − 𝑏*
𝑖 |, | 𝑏*

𝑖 − 𝑏−
𝑖+1 |} (3.8)

Figure 5 shows the bump partition obtained for a relevance function and the maximum
admissible loss for each bump. This arbitrary relevance function, defined in the context of
non-uniform utility regression, has four quite different bumps.

And 𝐿̈𝐵(𝑦, 𝑦)) (Equation 3.9) is defined as follows:

𝐿̈𝐵(𝑦, 𝑦)) =

⎧⎪⎪⎨⎪⎪⎩
| 𝑦 − 𝑏−

𝛾(𝑦) |, if 𝑦 < 𝑦)

| 𝑦 − 𝑏−
𝛾(𝑦)+1 |, if 𝑦 ≥ 𝑦)

(3.9)

This definition satisfies two essential conditions: (1) The initial component within the
min function addresses the maximum allowable error range within the true value’s context,
guaranteeing a level of reasonable accuracy in the prediction; (2) The subsequent component
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Figure 5 – Bumps partition of 𝑌 with respect to relevance function 𝜑 and the maximum admissible loss in
bumps. Each bump 𝑖 is characterized by its partition node 𝑏− and by one global maximum 𝑏*. Each
bump has a maximum error tolerance defined by the double of the smalles amplitude in the bump
between each of one of its bounds and its maximum value.

Source: Ribeiro (2011).

within the min function evaluates whether the predicted value aligns with the correct action
by considering its proximity to the boundaries of the context associated with the true value.

The cost is given by the mean of weighted relevance (𝜑𝑝(𝑦, 𝑦)) (Equation 3.10), where
the parameter 𝑝 is used to define the weights between the two relevances and Γ𝐶(𝑦, 𝑦) is the
bounded loss function in the scale [0;1]. This equation calculates the weighted relevance of
the predicted value 𝑦 and the actual value 𝑦. The parameter 𝑝 defines the weights between
these two relevances. The intuition here is to balance the predicted value’s importance and
the utility function’s actual value.

𝜑𝑝(𝑦, 𝑦) = (1− 𝑝)𝜑(𝑦) + 𝑝𝜑(𝑦) (3.10)

The cost function Γ𝐶(𝑦, 𝑦) is calculated according to Equation 3.11.

Γ𝐶(𝑦, 𝑦)) =

⎧⎪⎪⎨⎪⎪⎩
𝐿(𝑦, 𝑦)/𝐿̇𝐶(𝑦, 𝑦), if 𝐿(𝑦, 𝑦) < 𝐿̇𝐶(𝑦, 𝑦)

1, if 𝐿(𝑦, 𝑦) ≥ 𝐿̇𝐶(𝑦, 𝑦)
(3.11)

where 𝐿 is the standard loss function, and 𝐿̇𝐶 is the cost threshold function (Equa-
tion 3.12):
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𝐿̇𝐶(𝑦, 𝑦) = 𝑚𝑖𝑛{𝑏Δ
𝛾(𝑦), 𝐿̈𝐶(𝑦, 𝑦)} (3.12)

and 𝐿̈𝐶(𝑦, 𝑦)) is defined as follows:

𝐿̈𝐶(𝑦, 𝑦)) =

⎧⎪⎪⎨⎪⎪⎩
| 𝑦 − 𝑏*

𝛾(𝑦)−1 |, if 𝑦 < 𝑦)

| 𝑦 − 𝑏*
𝛾(𝑦)+1 |, if 𝑦 ≥ 𝑦)

(3.13)

Captured using the utility function, the Precision and Recall metrics are defined by Equa-
tions 3.14 and 3.15, respectively.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑︀

𝜑(𝑦𝑖)>𝑡𝑅
(1 + 𝑈𝑝

𝜑(𝑦𝑖, 𝑦𝑖))∑︀
𝜑(𝑦𝑖)>𝑡𝑅

(1 + 𝜑(𝑦𝑖))
(3.14)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑︀

𝜑(𝑦𝑖)>𝑡𝑅
(1 + 𝑈𝑝

𝜑(𝑦𝑖, 𝑦𝑖))∑︀
𝜑(𝑦𝑖)>𝑡𝑅

(1 + 𝜑(𝑦𝑖))
(3.15)

The relevance of the actual value 𝑦𝑖 is defined by 𝜑(𝑦𝑖), as defined in Section 3.2.1, and
𝜑(𝑦𝑖) is the relevance of the predicted value 𝑦𝑖. 𝑡𝑅 is a threshold defined by the user for the
relevance values, and 𝑈𝑝

𝜑(𝑦𝑖, 𝑦𝑖) is the utility function previously described.
The Precision and Recall metrics can be aggregated in compound measures, such as F1-

score, defined by Equation 3.16:

F1-score = (𝛽2 + 1) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3.16)

where 0 ≤ 𝛽 ≤ 1 controls the relative importance of the Recall for the Precision. These
compound measures have the advantage of allowing comparisons between models by providing
a single score (TORGO; RIBEIRO, 2009).

These metrics require the definition of an ad-hoc relevance threshold and do not consider
examples below the threshold for model evaluation (RIBEIRO; MONIZ, 2020). To address this,
Ribeiro e Moniz (2020) proposed the SERA metric.

SERA metric can assess models’ efficacy and optimize them for predicting rare and extreme
cases. This metric does not require a definition of a relevance threshold and thus performs a
global evaluation since all data points are considered. The Squared error-relevance is obtained
in relation to a cutting 𝑡 achieved based on a relevance function 𝜑 : 𝑌 → [0, 1]. A subset
𝐷𝑡 = {⟨x, 𝑦⟩ ∈ 𝐷 : 𝜑(𝑦) ≥ 𝑡} formed based on the cutting 𝑡 is considered for this estimate,
such as in Equation 3.17:
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𝑆𝐸𝑅𝑡 =
∑︁

𝑖∈𝐷𝑡

(𝑦𝑖 − 𝑦𝑖)2 (3.17)

The Squared error-relevance area (SERA) represents the area below the curve 𝑆𝐸𝑅𝑡,
obtained through integration presented in Equation 3.18:

𝑆𝐸𝑅𝐴 =
1∫︁

0

𝑆𝐸𝑅𝑡 𝑑𝑡 =
1∫︁

0

∑︁
𝑖∈𝐷𝑡

(𝑦𝑖 − 𝑦𝑖)2 𝑑𝑡 (3.18)

The 𝑆𝐸𝑅𝑡 curve offers a broad view of prediction errors in the domain at various relevance
cutoff values. Therefore, a smaller area under the curve (SERA) indicates a better model. It is
noteworthy that assuming uniform preferences with 𝜑(𝑦) = 1, SERA is comparable with the
sum of squared errors.

3.3 RESAMPLING STRATEGIES

The most common way to deal with imbalanced datasets is to use resampling strategies
changing the data distribution to balance the targets (MONIZ; BRANCO; TORGO, 2017). Such
strategies are concentrated on the following three main approaches: i) over-sampling, ii) under-
sampling, and iii) a combination of these two approaches. In over-sampling, rare cases are
generated to compensate for the imbalanced distribution. The Random Over-sampling tech-
nique (BRANCO; TORGO; RIBEIRO, 2019) is an example of such a technique, which works by
replicating rare cases prior to training. However, it is also possible to perform over-sampling
by generating synthetic cases, as in the SmoteR (TORGO et al., 2013) and Introduction of
Gaussian Noise strategies (BRANCO; TORGO; RIBEIRO, 2019).

Conversely, under-sampling techniques aim to exclude larger quantity data (i.e., normal
examples). The Random Under-sampling algorithm (TORGO et al., 2013) uses this notion.
Some strategies employ a combination of approaches, such as the SmoteR and Introduction
of Gaussian Noise, which generates synthetic cases and uses under-sampling, WEighted Rel-
evance based Combination Strategy (BRANCO; TORGO; RIBEIRO, 2019) , thus combining the
approaches of under-sampling and over-sampling. The SMOGN (BRANCO; TORGO; RIBEIRO,
2017) uses the generation of synthetic cases with SmoteR and GN and under-sampling.

Sections 3.3.1-3.3.6 provide an overview of the resampling strategies evaluated in this work.
These strategies were selected based on their wide adoption in the literature. Conversely, other
strategies were disregarded due to an absence of publicly available source code for them, limited
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reproducibility, and infrequent utilization by researchers for diverse problem domains. Finally,
Section 3.3.7 critically analyzes the resampling strategies with a visual example.

3.3.1 SmoteR

The SMOTE for regression (SmoteR) algorithm was proposed in Torgo et al. (2013)
(Algorithm 3). Like the other methods addressing imbalanced regression issues, it requires a
relevance function (𝜑(𝑦)) and a relevance threshold (𝑡𝑅). The relevant or unimportant examples
are defined from such a function. The algorithm removes the least relevant examples (lines 4 to
7), which are considered “normal", and then generates synthetic examples based on the most
relevant examples (line 8). The generation process basically follows the idea in the SMOTE,
namely, first selecting one rare case from the dataset as the seed case and one of its K-Nearest
Neighbors to generate a new data point between the reference and its selected neighbor.
Algorithm 4 presents the procedure for generating the synthetic cases using SmoteR. First the
number of synthetic examples that is generated from a selected rare case, 𝑛𝑔, is determined
based on the percentage of over-sampling 𝑜 determined by the user and the dataset cardinality
|𝐷| (line 3). Then, for each rare case 𝑐 that will be used as a reference in the generation
process, its K-Nearest Neighbors are computed (Line 5) 𝑛𝑛𝑠. After the set of neighbors are
obtained, the algorithms execute multiple iterations to generate 𝑛𝑔 synthetic examples by
picking one of the examples in the 𝑛𝑛𝑠 set at random and interpolating with the reference
one. This generation process is presented from lines 8 to 15, which show how attribute values
for the synthetic case are generated. If the attributes are numeric, the difference between the
attributes of the two seed cases is calculated (line 10). Subsequently, (line 11) multiplies this
difference by a random number between 0 and 1, and then adds to the example’s attribute.
Otherwise, a random selection between the values of the seed cases is performed. On lines 16
to 18, the value of the target is generated, calculated by the weighted average of the two cases.
The weights are obtained by the distance between the new case and the two seed cases (lines
16 and 17). In Branco (2018), this strategy is extended, and is able to handle any number of
either normal or rare cases.
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Algorithm 3 SmoteR
Input:

𝐷 - original dataset
𝑡𝑅 - relevance threshold
𝑜 - percentage of over-sampling
𝑢 - percentage of under-sampling
𝑘 - the number of neighbors used in case generation

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝐵𝑖𝑛𝑠𝑅 ← {𝐷𝑖 ∈ 𝐷 : ∀(𝑥, 𝑦) ∈ 𝐷𝑖, 𝜑(𝑦) ≥ 𝑡𝑅} ◁ partitions into relevant bins
2: 𝐵𝑖𝑛𝑠𝑁 ← 𝐷∖𝐵𝑖𝑛𝑠𝑅 ◁ partitions into normal bins
3: 𝑛𝑒𝑤𝐷 ← 𝐵𝑖𝑛𝑠𝑅

4: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑁 do
5: 𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠← random sample of 𝑢× |𝐵| cases of 𝐵 ◁ under-sampling procedure
6: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠

7: end for
8: 𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠← 𝐺𝐸𝑁𝑆𝑌 𝑁𝑇𝐻𝐶𝐴𝑆𝐸𝑆(𝐵𝑖𝑛𝑠𝑅, 𝑜, 𝑘) ◁ Generation of the attribute values
9: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠

10: return 𝑛𝑒𝑤𝐷
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Algorithm 4 Generating synthetic cases
Input:

𝐷 - original dataset
𝑜 - percentage of over-sampling
𝑘 - the number of neighbors used in case generation

1: function GENSYNTHCASES(𝐷, 𝑜, 𝑘)
2: 𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠← {}
3: 𝑛𝑔 ← (𝑜− 1)× |𝐷| ◁ number of new cases to generate for each existing case
4: for all 𝑐𝑎𝑠𝑒 ∈ 𝐷 do
5: 𝑛𝑛𝑠← 𝑘𝑁𝑁(𝑘, 𝑐𝑎𝑠𝑒, 𝐷𝑅∖{𝑐𝑎𝑠𝑒}) ◁ k-Nearest Neighbours of case
6: for 𝑖← 1 to ng do
7: 𝑥← randomly choose one of the 𝑛𝑛𝑠
8: for each 𝑎 ∈ attributes do ◁ generation of the attribute values
9: if ISNUMERIC(𝑎) then

10: 𝑑𝑖𝑓𝑓 ← 𝑐𝑎𝑠𝑒[𝑎]− 𝑥[𝑎]
11: 𝑛𝑒𝑤[𝑎]← 𝑐𝑎𝑠𝑒[𝑎] + 𝑅𝐴𝑁𝐷𝑂𝑀(0, 1)× 𝑑𝑖𝑓𝑓
12: else
13: 𝑛𝑒𝑤[𝑎]← randomly select among case[𝑎] and 𝑥[𝑎]
14: end if
15: end for ◁ generation of the target value
16: 𝑑1 ← 𝐷𝐼𝑆𝑇 (𝑛𝑒𝑤, 𝑐𝑎𝑠𝑒)
17: 𝑑2 ← 𝐷𝐼𝑆𝑇 (𝑛𝑒𝑤, 𝑥)
18: 𝑛𝑒𝑤[𝑦]← 𝑑2×𝑐𝑎𝑠𝑒[𝑦]+𝑑1×𝑥[𝑦]

𝑑1+𝑑2
19: end for
20: 𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠← 𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠

⋃︀
𝑛𝑒𝑤 ◁ add the new synthetic case

21: end for
22: return 𝑛𝑒𝑤𝐶𝑎𝑠𝑒𝑠
23: end function

3.3.2 Random Over-sampling

The Random over-sampling (BRANCO; TORGO; RIBEIRO, 2019) strategy, presented in Algo-
rithm 5, works by first selecting the examples that are above the relevance threshold 𝑡𝑅 (line 2)
as candidates to be duplicated, 𝐵𝑖𝑛𝑠𝑅. Then, for each bin 𝐵 belonging to the rare examples
𝐵𝑖𝑛𝑠𝑅, the number of replicas 𝑡𝑔𝑡𝑁𝑟 generated is defined according to its cardinality |𝐵| and
the oversampling percentage 𝑜 (Line 4). The |𝐵| represents the number of elements (data
points or examples) contained within that specific bin 𝐵. This oversampling percentage is a
hyperparameter defined by the user. Random sampling is performed on line 5, and the dupli-
cated cases are added to the new dataset (𝑛𝑒𝑤𝐷) on line 6. When performing this algorithm,
no special treatment is required to generate the target values. As the examples generated are
identical to the existing rare cases, the duplicated ones have exactly the same target value.
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Algorithm 5 Random over-sampling
Input:

𝐷 - original dataset
𝑡𝑅 - relevance threshold
𝑜 - percentage of over-sampling

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝑛𝑒𝑤𝐷 ← 𝐷
2: 𝐵𝑖𝑛𝑠𝑅 ← {𝐷𝑖 ∈ 𝐷 : ∀(𝑥, 𝑦) ∈ 𝐷𝑖, 𝜑(𝑦) ≥ 𝑡𝑅}
3: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑅 do
4: 𝑡𝑔𝑡𝑁𝑟 ← 𝑜× |𝐵| ◁ number of replicas to be added
5: 𝑠𝑒𝑙𝐶𝑎𝑠𝑒𝑠← sample randomly 𝑡𝑔𝑡𝑁𝑟 elements from 𝐵
6: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑠𝑒𝑙𝐶𝑎𝑠𝑒𝑠 ◁ add the replicas to the new data

7: end for
8: return 𝑛𝑒𝑤𝐷

Algorithm 6 Random under-sampling

Input:
𝐷 - original dataset
𝑡𝑅 - relevance threshold
𝑢 - percentage of under-sampling

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝐵𝑖𝑛𝑠𝑅 ← {𝐷𝑖 ∈ 𝐷 : ∀(𝑥, 𝑦) ∈ 𝐷𝑖, 𝜑(𝑦) ≥ 𝑡𝑅}
2: 𝐵𝑖𝑛𝑠𝑁 ← 𝐷∖𝐵𝑖𝑛𝑠𝑅

3: 𝑛𝑒𝑤𝐷 ← 𝐵𝑖𝑛𝑠𝑅

4: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑁 do
5: 𝑡𝑔𝑡𝑁𝑟 ← 𝑢× |𝐵| ◁ number of replicas to be removed
6: 𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠← randomly under-sample 𝑡𝑔𝑡𝑁𝑟 elements from 𝐵 ◁ remove the

examples from B
7: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠

8: end for
9: return 𝑛𝑒𝑤𝐷

3.3.3 Random Under-sampling

The Random Under-Sampling strategy (Algorithm 6) was proposed by Torgo et al. (2013).
In this approach, the under-sampling is performed by first using the relevance function (Sec-
tion 3.2.1) and a relevance threshold 𝑡𝑅 to define the rare cases in the dataset (line 1). The
examples below 𝑡𝑅 are considered normal, being candidates to be removed from the final
dataset (BRANCO; RIBEIRO; TORGO, 2016) (line 2), while rare cases are kept. The removal of
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the normal examples is thus performed according to an under-sampling rate provided by the
user 𝑢, which defines the percentage of under-sampling applied in the dataset. For each bin
𝐵 belonging to the set of normal examples 𝐵𝑖𝑛𝑠𝑁 , the number of examples removed from it
is computed based on its cardinality and the percentage of undersampling 𝑢 (Line 5). Line 6
performs the under-sampling in 𝐵 by randomly selecting data points to be removed, resulting
in a reduced set that is used to compose the final dataset 𝑛𝑒𝑤𝐷.

3.3.4 Introduction of Gaussian Noise

Generating synthetic examples through Gaussian noise (Introduction of Gaussian Noise -
GN) constitutes an adaptation of the method proposed in Lee (1999), Lee (2000) for classi-
fication tasks to the regression context. Algorithm 7 presents the GN technique. It starts by
dividing the dataset into normal cases 𝐵𝑖𝑛𝑠𝑁 and rare cases 𝐵𝑖𝑛𝑠𝑅 according to the relevance
function 𝜑(𝑦) and the relevance threshold 𝑡𝑅 (Lines 1 and 2). Examples belonging to 𝐵𝑖𝑛𝑠𝑁

(i.e., normal examples) are reduced in size, using the Random under-sampling technique (lines
4 to 6). The amount of reduction is controlled by the percentage of the under-sampling hy-
perparameter 𝑢 defined by the user.

From lines 8 to 20, the over-sampling procedure is performed using the samples in 𝐵𝑖𝑛𝑠𝑅.
For each seed case selected and used in the generation process, a total of 𝑛𝑔 new artificial
generated examples are added to the dataset. 𝑛𝑔 is computed based on the percentage of
the overs-sampling hyperparameter 𝑜 and the number of examples in the corresponding set
𝐵 ∈ 𝐵𝑖𝑛𝑠𝑅 (Line 9). The artificial cases are generated by introducing a small perturbation on
both the attributes and the target variable value of the seed case. If the attributes are nominal
(line 13), the generation is performed with probability proportional to the frequency of the
values found in the category (lines 14 and 15). Otherwise, for the numeric attributes, a random
perturbation from a normal distribution is added, as indicated on lines 17 and 18, where 𝛿

is the perturbation amplitude defined by the user and 𝑠𝑑(𝑎) is the standard deviation of the
attribute 𝑎 estimated using the examples in the category. The normal perturbation is also
applied to the seed target value in order to generate the target value of the newly generated
example.
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Algorithm 7 Introduction of Gaussian Noise
Input:

𝐷 - original dataset
𝑡𝑅 - relevance threshold
𝑢 - percentage of under-sampling
𝑜 - percentage of over-sampling
𝛿 - perturbation amplitude

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝐵𝑖𝑛𝑠𝑁 ← {𝐷𝑖 ∈ 𝐷 : ∀(𝑥, 𝑦) ∈ 𝐷𝑖, 𝜑(𝑦) < 𝑡𝑅}
2: 𝐵𝑖𝑛𝑠𝑅 ← {𝐷𝑖 ∈ 𝐷 : ∀(𝑥, 𝑦) ∈ 𝐷𝑖, 𝜑(𝑦) ≥ 𝑡𝑅}
3: 𝑛𝑒𝑤𝐷 ← 𝐵𝑖𝑛𝑠𝑅

4: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑁 do
5: 𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠← random sample of 𝑢× |𝐵| elements from 𝐵
6: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠

7: end for
8: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑅 do ◁ over-sampling procedure
9: 𝑛𝑔 ← 𝑜× |𝐵| ◁ number of synthetic examples for each case in B

10: for each 𝑐𝑎𝑠𝑒 ∈ 𝐵 do ◁ generate synthetic examples
11: for 𝑖← 1 to 𝑛𝑔 do
12: for each 𝑎 ∈ 𝐴𝑡𝑡𝑟𝑠

⋃︀
𝑌 do

13: if 𝑎 is nominal then
14: 𝑝𝑟𝑜𝑏𝑠← frequency of possible values of 𝑎
15: 𝑛𝑒𝑤[𝑎]← sample a value from the values of 𝑎 with weights = 𝑝𝑟𝑜𝑏𝑠
16: else
17: 𝑛𝑒𝑤[𝑎]← multiply 𝑐𝑎𝑠𝑒[𝑎] with a random sample from
18: 𝑁(0, 𝛿 · 𝑠𝑑(𝑎))
19: end if
20: end for
21: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀{𝑛𝑒𝑤} ◁ add synthetic case to newD
22: end for
23: end for
24: end for
25: return 𝑛𝑒𝑤𝐷

3.3.5 SmoteR with Gaussian Noise

The SmoteR with Gaussian Noise (SMOGN - SG) (BRANCO; TORGO; RIBEIRO, 2017) (Algo-
rithm 8) combines the Random under-sampling strategy (lines 6 to 9) with two over-sampling
strategies: SmoteR and Introduction of Gaussian Noise. The goal is to limit the potential risks
to the SmoteR of generating bad examples when the seed and its selected neighbor are not
close enough by using the more conservative strategy of just introducing Gaussian noise to
generate new cases. These bad examples may not represent of the underlying data distribution
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and can introduce several issues like noise, bias, or inconsistencies into the dataset. More-
over, the technique aims to allow for an increase in diversity when generating examples, which
is not feasible by using only the Introduction of Gaussian Noise method (BRANCO; TORGO;

RIBEIRO, 2017). Increasing diversity means producing a comprehensive range of examples cov-
ering different data distribution aspects. The generated examples should not be overly similar
or redundant. Instead, they should capture different patterns, variations, or scenarios present
in the data to represent the data distribution comprehensively. Thus, SMOGN addresses the
main drawbacks of SmoteR and the introduction of Gaussian noise techniques.

Line 11 determines the number of synthetic cases 𝑛𝑔 that will be generated according to
the percentage of the over-sampling hyperparameter 𝑜 and the number of existing cases in
the corresponding bin 𝐵. Then, for each seed case in 𝐵, its K-Nearest Neighbors and the
maximum allowed distance to generate new cases with SmoteR are computed (lines 13 to 15).
When the seed case and the selected neighbor are “sufficiently near" (i.e., distance below the
computed threshold 𝑚𝑎𝑥𝐷), the SMOGN generates new synthetic examples with the SmoteR
(lines 17 and 18) technique. Otherwise, it uses the Introduction of Gaussian Noise method
when the distance between the two examples is higher than the estimated threshold (lines 20
and 21). The generated data points are then added to the new dataset, 𝑛𝑒𝑤𝐷.



53

Algorithm 8 SMOGN
Input:

𝐷 - original dataset
𝑡𝑅 - relevance threshold
𝑢 - percentage of under-sampling
𝑜 - percentage of over-sampling
𝑘 - number of nearest neighbors
𝑑𝑖𝑠𝑡 - distance metric

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝑂𝑟𝑑𝐷 ← 𝐷 order 𝐷 by ascending value of 𝑌
2: 𝜑()← relevance function
3: 𝐵𝑖𝑛𝑠𝑁 ← partitions of consecutive examples ⟨𝑥𝑖, 𝑦𝑖⟩ ∈ 𝑂𝑟𝑑𝐷, such that 𝜑(𝑦𝑖) < 𝑡𝑅

4: 𝐵𝑖𝑛𝑠𝑅 ← partitions of consecutive examples ⟨𝑥𝑖, 𝑦𝑖⟩ ∈ 𝑂𝑟𝑑𝐷, such that 𝜑(𝑦𝑖) ≥ 𝑡𝑅

5: 𝑛𝑒𝑤𝐷 ← 𝐵𝑖𝑛𝑠𝑅

6: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑁 do ◁ under-sampling procedure
7: 𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠← randomly sample 𝑢× |𝐵| cases from 𝐵
8: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑠𝑒𝑙𝑁𝑜𝑟𝑚𝐶𝑎𝑠𝑒𝑠

9: end for
10: for each 𝐵 ∈ 𝐵𝑖𝑛𝑠𝑅 do ◁ over-sampling procedure
11: 𝑛𝑔 ← 𝑜× |𝐵| ◁ number of synthetic examples for each case in B
12: for each 𝑐𝑎𝑠𝑒 ∈ 𝐵 do ◁ generate synthetic examples
13: 𝑛𝑛𝑠← 𝑘𝑁𝑁(𝑘, 𝑐𝑎𝑠𝑒, 𝑑𝑖𝑠𝑡) ◁ K-Nearest Neighbors of case
14: 𝐷𝑖𝑠𝑡𝑀 ← distances between the case and the examples in 𝐵
15: 𝑚𝑎𝑥𝐷 ← 𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑖𝑠𝑡𝑀)/2
16: for 𝑖← 1 to 𝑛𝑔 do 𝑥← randomly choose one of the 𝑛𝑛𝑠
17: if 𝐷𝑖𝑠𝑡𝑀(𝑥) < 𝑚𝑎𝑥𝐷 then ◁ safe kNN selected
18: 𝑛𝑒𝑤 ← use SmoteR to interpolate 𝑥 and 𝑐𝑎𝑠𝑒
19: else ◁ non-safe kNN selected
20: 𝑝𝑒𝑟𝑡← 𝑚𝑖𝑛(𝑚𝑎𝑥𝐷, 0.02)
21: 𝑛𝑒𝑤 ← introduce Gaussian Noise in 𝑐𝑎𝑠𝑒 with a perturbation 𝑝𝑒𝑟𝑡
22: end if
23: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑛𝑒𝑤 ◁ add synthetic case to newD

24: end for
25: end for
26: end for
27: return 𝑛𝑒𝑤𝐷

3.3.6 WEighted Relevance based Combination Strategy

The WEighted Relevance-based Combination Strategy (WERCS) strategy (BRANCO; TORGO;

RIBEIRO, 2019) combines biased versions of the under- and over-sampling strategies which
depend exclusively on the relevance function provided to the dataset without requiring estab-
lishing a relevance threshold. Under the WERCS, the relevance function and a modification
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of the relevance are used to attribute weights that are used as inclusion and removal criteria
for the examples. Algorithm 9 details this resampling strategy. The over-sampling and under-
sampling on lines 4 and 7, respectively, are performed considering weights obtained on lines 3
and 6. These weights are calculated based on the relevance function. The weights associated
with over-sampling 𝑊𝑂𝑣𝑒𝑟 are proportional to the relevance function (line 3). Therefore, the
higher the relevance of a case, the higher its probability of being selected for generating new
cases. Conversely, the weights associated with under-sampling 𝑊𝑈𝑛𝑑 are inversely propor-
tional to the relevance value (line 6). Thus, normal examples, which are usually associated
with lower relevance values, have a higher probability of being removed rather than used in
the generation process. The number of generated and removed samples is defined based on
the percentage of over-sampling 𝑜 and under-sampling 𝑢, respectively.

Therefore, the main advantage of this technique is that as a relevance threshold is not
set a priori, each example can participate in both processes. Thus, both under-sampling and
over-sampling strategies are applied over the entire dataset. Also, the technique eliminates the
dependency on the relevance threshold 𝑡𝑅 that was a key component necessary for applying
all other resampling strategies reviewed in this work.

Algorithm 9 WEighted Relevance-based Combination Strategy (WERCS)
Input:

𝐷 - original dataset
𝑢 - percentage of under-sampling
𝑜 - percentage of over-sampling

Output:
𝑛𝑒𝑤𝐷 - a new modified dataset

1: 𝜑()← relevance function
2: 𝑛𝑒𝑤𝐷 ← 𝐷
3: 𝑊𝑂𝑣𝑒𝑟 ← {𝜑(𝑦𝑖) | 𝑦𝑖 ∈ 𝑌 }
4: 𝑂𝑣𝑒𝑟 ← sample 𝑜× |𝐷| cases from 𝐷 with 𝑊𝑂𝑣𝑒𝑟 weights ◁ over-sampling procedure
5: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷

⋃︀
𝑂𝑣𝑒𝑟

6: 𝑊𝑈𝑛𝑑← {1− 𝜑(𝑦𝑖) | 𝑦𝑖 ∈ 𝑌 }
7: 𝑈𝑛𝑑← sample 𝑢× |𝐷| cases from 𝐷 with 𝑊𝑈𝑛𝑑 weights
8: 𝑛𝑒𝑤𝐷 ← 𝑛𝑒𝑤𝐷∖𝑈𝑛𝑑 ◁ under-sampling procedure
9: return 𝑛𝑒𝑤𝐷

3.3.7 Advantages and Disadvantages of Strategies

The strategies to resample data can have both advantages and disadvantages. Therefore,
it is crucial to understand the behavior of each strategy. While these strategies can potentially
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enhance learning, they can also impede the learning process of the models. Figure 17 introduces
the result of applying the resampling strategies to the FuelCons dataset. The following values
were attributed to the algorithm’s parameter: 𝑢/𝑜 = balance and 𝑡𝑅 = 0.8 (except for the
WERCS, since it does not require establishing the threshold). The standard values were adopted
for the remaining parameters. For the visualization, the target values (Y) and the attribute
(X30) were considered.

Despite selecting the nearest examples to generate new cases, SmoteR still involves the risk
of the example being too far and of generating an example that does not correspond to the seed
very well. This phenomenon is shown in the lower left side of Figure 18(a), where the generated
examples are far from the original examples. In the RO strategy, high percentages of over-
sampling may cause an overfitting (BRANCO; TORGO; RIBEIRO, 2019) problem. Even though
the technique increases the representation of rare cases considerably, the generated dataset
does not present a high points diversity. The generation process consists in just duplicating
existing samples without covering the feature space well.

Figure 18(b) shows the rare data points in darker shade, given that the RO only makes
copies of the examples. This can therefore lead to learning algorithms overfitting such rare
examples. In addition, if the replication rate is too high, many duplicate data points are added
to the dataset which can significantly increase the training time. In contrast to the RO, in
the RU strategy some meaningful information may be lost due to the removal of training data
(Figure 18(e)), which may hamper the learning of the model. Figure 18(c) shows the result
after using the GN strategy, which promotes over-sampling by adding normally distributed
noise. Once again, in contrast to the RO strategy, examples different from the originals ones
are generated, and this diversity can help to mitigate overfitting. For the SG strategy, even
though one of its goals is to reduce the risks seen in SmoteR by creating different examples from
the original, Figure 18(d) shows that there is still a similarity with the SmoteR distribution.
However, when compared to GN, it is evident that the diversity of generated examples is higher
in SG. In the WERCS strategy (Figure 18(f)), it can be seen that the green data points are
divided into two groups after the under-sampling, and this result can complicate the learning
process. The WERCS over-sampling strategy performs similarly to RO, where the generated
data are copies of the originals; such as, no new information is added to the training set.

The advantages and disadvantages of each resampling strategy are quite evident, as is
the fact that there is no perfect strategy. We hypothesize that other variables, such as the
regression model and the dataset under investigation, are required to determine the best data
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Figure 6 – Distribution of the examples of the FuelCons dataset after applying the resampling strategies,
considering 𝑡𝑅=0.8.

(a) Original (b) SmoteR

(c) RO (d) RU

(e) GN (f) SG

(g) WERCS
Source: Prepared by the author.
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resampling strategy. Thus, our research allows to understand the behaviors of these strategies
with different regression models and problems, which in turn allows to establish directions for
combinations of the three variables, namely, the resampling strategy, the regression model,
and the dataset.

3.4 RESEARCH METHODOLOGY

3.4.1 Datasets

Experiments were performed using 30 imbalanced regression datasets chosen to match the
frequency generally used in studies looking at imbalanced regression. The levels of imbalance
in these datasets are defined from the relevance function (Section 3.2.1). A study conducted
by Branco, Torgo e Ribeiro (2019) involved varying the relevance threshold from 0.5 to 1. Nev-
ertheless, the findings showed a complex relationship between the number of rare cases, the
learning algorithm, and the applied pre-processing strategy. Therefore, our experiments consid-
ered a commonly used threshold (𝑡𝑅) of 0.8, as used in Branco, Torgo e Ribeiro (2017), Branco,
Torgo e Ribeiro (2019) and Branco, Torgo e Ribeiro (2018). Thus, we obtained datasets with
different percentages of rare cases (imbalanced levels), varying between 5.1% and 23.4%. The
main features of these sets are presented in Table 4. Datasets are presented in descending order
in terms of the percentage of rare cases (%Rare). It is important to clarify that counting rare
cases is conducted across the entire dataset, as commonly practiced in the literature. Counting
rare cases on the entire dataset is crucial for comprehensively understanding their rarity within
the data context. This approach allows us to analyze the model’s behavior within the original
context of the dataset. However, resampling strategies are applied only to the training set to
prevent data leakage during cross-validation. The nominal attributes were codified, transform-
ing the vector of categories into whole values between 0 and the number of categories−1. As
for the ordinal attributes, a pre-defined order was established (e.g., small : 1, medium: 2, large:
3).

For each dataset, the results were calculated by applying two 10-fold cross-validation rep-
etitions (i.e., 2 × 10 cross-validation) in order to obtain the mean and standard deviation of
the results. Nested cross-validation with 2-fold was employed to optimize the hyperparame-
ters of the resampling strategies, specifically utilizing the SERA metric for optimization. The
SERA metric was chosen to optimize the hyperparameters because it was specifically created
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for imbalanced regression. This metric evaluates models’ performance in predicting extreme
values, penalizing model biases without requiring a threshold, and conducting a global as-
sessment (RIBEIRO; MONIZ, 2020). Unlike the F1-score, which conducts a local assessment by
considering only rare examples, SERA evaluates all examples.

3.4.2 Algorithms

The experiments were performed with the following learning algorithms: Bagging (BG),
Regression Tree (RT), Multilayer Perceptron (MLP), Random Forest (RF), Support Vector
Regressor (SVR), and XGBoost (XG). Default hyperparameters were applied for these models.
For details and descriptions of default hyperparameters and used packages, refer to Appendix
A.

As resample techniques, we considered the following strategies: SmoteR (SMT), Randon
Over-sampling (RO), Randon Under-sampling (RU), Introduction of Gaussian Noise (GN),
SMOGN (SG), and WEighted Relevance-based Combination Strategy (WERCS). Details about
hyperparameters and packages can be found in Table 5.

3.4.3 Model Evaluation

In imbalanced tasks, choosing the appropriate metrics for model evaluation is essential.
This work uses the F1-score and SERA metrics to evaluate regression models, allowing the
evaluation of different perspectives of the model performance. While the F1-score metric is
based on the concept of utility-based evaluation and performs a local assessment according
to the definition of a relevance threshold, the SERA metric evaluates the effectiveness of
models in predicting extreme values while penalizing several model biases without the need
for a threshold, and performing a global assessment (RIBEIRO; MONIZ, 2020). The results for
the RMSE and MAE metrics can be consulted in the supplementary material (Appendix B)
for benchmarking purposes.

https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20A.pdf
https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20A.pdf
https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20B.pdf
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Table 4 – Characteristics of the 30 datasets used in the experiments. N: number of cases; p.total: number
of attributes; p.nom: number of nominal attributes; p.num: number of numeric attributes; nRare:
number of rare cases; Imbalance ratio (IR): |𝐷𝑅|

|𝐷𝑁 | ; %Rare: 100 × 𝑛𝑅𝑎𝑟𝑒/𝑁 . Datasets are arranged
in descending order regarding the percentage of rare cases (%Rare).

Datasets N p.total p.nom p.num nRare IR %Rare
wine-quality 6497 11 0 11 1523 0.306 23.4
analcat-apnea3 450 11 0 11 103 0.297 22.9
meta 528 65 0 65 108 0.257 20.5
cocomo-numeric 60 56 0 56 10 0.200 16.7
Abalone 4177 8 1 7 679 0.194 16.3
a3 198 11 3 8 32 0.193 16.2
forestFires 517 12 0 12 79 0.180 15.3
a1 198 11 3 8 28 0.165 14.1
a7 198 11 3 8 27 0.158 13.6
boston 506 13 0 13 65 0.147 12.8
pdgfr 79 320 0 320 10 0.145 12.7
sensory 576 11 0 11 69 0.136 12.0
a2 198 11 3 8 22 0.125 11.1
kdd-coil-1 316 18 0 18 34 0.121 10.8
triazines 186 60 0 60 20 0.120 10.8
airfoild 1503 5 0 5 161 0.120 10.7
treasury 1049 15 0 15 109 0.116 10.4
mortgage 1049 15 0 15 106 0.112 10.1
debutanizer 2394 7 0 7 240 0.111 10.0
fuelCons 1764 37 12 25 164 0.103 9.3
heat 7400 11 3 8 664 0.099 9.0
california 20640 8 0 8 1821 0.097 8.8
AvailPwr 1802 15 7 8 157 0.095 8.7
compactiv 8192 21 0 21 713 0.095 8.7
cpuSm 8192 12 0 12 713 0.095 8.7
maxTorq 1802 32 13 19 129 0.077 7.2
lungcancer-shedden 442 24 0 24 25 0.060 5.7
space-ga 3107 6 0 6 173 0.059 5.6
ConcrStr 1030 8 0 8 55 0.056 5.3
Accel 1732 14 3 11 89 0.054 5.1

Source: Prepared by the author.
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Table 5 – Resampling strategies, hyperparameters, and packages used

Algorithms Hyperparameters Packages
SMT u/o = {balance, extreme}, k = {3, 5, 7} ImbalancedLearningRegression
RO o = {balance, extreme} ImbalancedLearningRegression
RU u = {balance, extreme} ImbalancedLearningRegression

GN u/o = {balance, extreme},
𝛿 = {0.00,0.05,0.10,. . . ,0.95,1.00}

ImbalancedLearningRegression

SG u/o = {balance, extreme}, k = {3, 5, 7},
𝛿 = {0.00,0.05,0.10,. . . ,0.95,1.00}

smogn

WERCS u, o = {0.3, 0.5, 0.7, 0.9} resreg
Source: Prepared by the author.

<https://pypi.org/project/ImbalancedLearningRegression/> - Version 0.0.1
<https://pypi.org/project/smogn/> - Version 0.1.2
<https://pypi.org/project/resreg/> - Version 0.2

https://pypi.org/project/ImbalancedLearningRegression/
https://pypi.org/project/smogn/
https://pypi.org/project/resreg/
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3.5 RESULTS

The experiments aimed at answering the following research questions:

1. Is it worth using resampling strategies?

2. Which resampling strategies influence the predictive performance the most?

3. Does the choice of best strategy depend on the problem, the learning model, and the
metrics used?

4. Does the number of training examples resulting from each strategy influence the results?

5. Do the features of the data (percentage of rare cases, number of rare cases, dataset
size, number of attribues and imbalance ratio) impact the predictive performance of the
models?

Tables 6 and 7 show how many times each algorithm obtains the highest value for the
F1-score and SERA metrics, respectively. Where there is a tie, each of the 𝑛 tied strategies
receives 1/𝑛 point. Each row in this table must add up to 30, the number of datasets assessed.
For both metrics used, we found that the larger number of wins occurs when using some of the
resampling strategies, which points to an advantage of using such strategies, and highlighting
the RO and GN considering the F1-score, and the GN and WERCS, according to SERA.
Another point observed is that the choice of best strategy possibly depends on the regression
model used. As for the metrics, both agree regarding the GN strategy. By observing the
score by rows, also in Tables 6 and 7, it is clear that there is no general agreement between
the datasets for a resampling strategy since each point is a dataset, and all of them are
distributed in different strategies. The results per learning algorithm, including mean and
standard deviation, can be accessed in the supplementary material. –Appendix B..

To identify the best way to preprocess each dataset, Tables 8 and 9 introduce the best
and worst results for the F1-score and SERA metrics, respectively. The results show that
most datasets have distinct preferences in terms of combining the best learning model and
the resampling strategy. This distinction is also found for the metrics used. As for the worst
results, the SVR and MLP, without preprocessing, are the worst combinations for both metrics.
Thus, balancing the dataset before applying these models is crucial to reaching more promising
results. It is also crucial to note the significant difference between the best and worst results

https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20B.pdf


62

Table 6 – Number of times each algorithm and resampling strategy achieved the best result according to the
F1-score metric.

None SMT RO RU GN SG WERCS
BG 3 3 13 2 6 3 0
RT 6 5 8 3 6 2 0

MLP 3 4 12 1 3 6 1
RF 2 4 9 6 3 3 3

SVR 1 5 13 1 2 6 2
XG 4.7 1 7 5 5.2 3.2 4

Total 19.7 22 62 18 25.2 23.2 10
Source: Prepared by the author.

Table 7 – Number of times each algorithm and resampling strategy reached the best result according to the
SERA metric.

None SMT RO RU GN SG WERCS
BG 4 3 3 5 4 1 10
RT 4 2 7 6 5 2 4

MLP 2 4 9 1 4 7 3
RF 2 1 4 7 6 2 8

SVR 0 5 1 3 12 5 4
XG 3 1 2 5 8.5 3.5 7

Total 15 16 26 27 39.5 20.5 36
Source: Prepared by the author.

per problem. So, obtaining good results depends on the correct choice of resampling strategy
and learning model. Unfortunately, the SG strategy failed to perform on the california, heat,
and wine-quality datasets. These are large datasets, highlighting the potential challenges in
optimizing hyperparameters, rendering the use of this model impractical.

We applied the Friedman test to better measure the advantage of using resampling strate-
gies (𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.05). The Friedman statistical test was chosen since it can compare multiple
techniques over several datasets (DEMŠAR, 2006). For this measurement, ranking sequences
are compared. Tables 10 and 11 present the mean ranking of the means of the algorithms
with a combination of each resampling strategy, considering the F1-score and SERA metrics.
The lower the ranking, the better the algorithm performance. The algorithms used present
significant differences. In general, the best average rank of each algorithm was obtained by
using some of the resampling strategies evaluated in this work.
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Table 8 – Best and worst results for each dataset based on the F1-score metric

Datasets Best result Worst result

wine-quality 0.738 RF.RO 0.000 SG*

analcat-apnea3 0.233 MLP.NONE 2.00e-5 SVR.NONE
meta 0.435 BG.GN 2.00e-5 SVR.NONE
cocomo-numeric 0.371 RF.RU 1.60e-5 SVR.NONE
Abalone 0.702 RF.RU 1.79e-1 SVR.NONE
a3 0.506 RF.RU 1.95e-5 SVR.NONE
forestFires 0.403 SVR.SMT 2.00e-5 SVR.NONE
a1 0.723 RF.SG 2.00e-5 SVR.NONE
a7 0.411 SVR.RO 2.00e-5 SVR.NONE
boston 0.893 RF.RO 2.00e-5 SVR.NONE
pdgfr 0.229 RF.GN 1.60e-5 RF.SG
sensory 0.672 XG.GN 2.00e-5 SVR.NONE
a2 0.580 RF.RU 2.00e-5 SVR.NONE
kdd-coil-1 0.677 RF.RU 1.90e-5 SVR.NONE
triazines 0.226 RF.WERCS 0.028 RF.NONE
airfoild 0.951 BG.RO 2.00e-5 SVR.WERCS
treasury 0.980 RF.GN 0.777 SVR.NONE
mortgage 0.985 RF.RO 0.834 SVR.NONE
debutanizer 0.901 RF.SMT 0.646 MLP.GN
fuelCons 0.942 XG.GN 0.094 MLP.RU
heat 0.989 XG.RO 0.000 SG*

california 0.902 XG.NONE 0.000 SG*

AvailPwr 0.977 XG.NONE 0.725 SVR.NONE
compactiv 0.528 RF.SG 0.109 MLP.RO
cpuSm 0.526 RF.SMT 0.105 MLP.RO
maxTorq 0.988 XG.WERCS 2.00e-5 SVR.NONE
lungcancer-shedden 0.665 MLP.SG 2.00e-5 SVR.NONE
space-ga 0.802 XG.GN 2.00e-5 SVR.NONE
ConcrStr 0.966 XG.GN 2.00e-5 SVR.RU
Accel 0.961 XG.RO 2.00e-5 SVR.GN

* Not completed in a reasonable timeframe
Source: Prepared by the author.

To verify which approaches are statistically different, we applied the Nemenyi post-hoc
test. Figure 7 (a-f) illustrates the critical difference diagrams (DEMŠAR, 2006) for each of
the learning models, considering the F1-score metric. The horizontal line demonstrates the
significance of the difference between the models. Models that are not connected present a
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Table 9 – Best and worst results for each dataset based on the SERA metric

Datasets Best result Worst result

wine-quality 1.43e+2 RF.WERCS 0.000 SG*

analcat-apnea3 3.93e+7 RF.GN 4.80e+8 SVR.NONE
meta 2.79e+7 MLP.GN 3.83e+7 RT.SG
cocomo-numeric 4.16e+5 XG.SMT 2.91e+6 SVR.NONE
Abalone 1.17e+3 RF.WERCS 2.59e+3 SVR.NONE
a3 3.30e+2 SVR.GN 2.48e+7 MLP.RU
forestFires 1.88e+5 MLP.SG 3.02e+5 RT.GN
a1 1.63e+3 SVR.SG 1.76e+6 MLP.NONE
a7 2.58e+2 XG.RU 2.62e+7 MLP.RU
boston 2.30e+2 BG.WERCS 2.51e+8 MLP.RU
pdgfr 3.86e-2 RF.GN 2.40e-1 RT.WERCS
sensory 1.39e+1 RF.RU 1.16e+2 MLP.SMT
a2 6.91e+2 SVR.GN 2.28e+7 MLP.RU
kdd-coil-1 2.43e+3 SVR.RU 9.09e+3 SVR.NONE
triazines 6.99e-2 RF.RU 3.54e-1 MLP.NONE
airfoild 6.78e+7 XG.RO 2.05e+11 SVR.NONE
treasury 3.08e+0 RF.GN 1.78e+3 MLP.RU
mortgage 1.30e+0 XG.RO 1.70e+2 RT.SG
debutanizer 3.23e-1 RF.SG 2.52e+0 MLP.NONE
fuelCons 1.52e+1 XG.GN 1.32e+7 MLP.RU
heat 6.42e+2 XG.GN 0.000 SG*

california 1.87e+12 RF.RU 0.000 SG*

AvailPwr 4.72e+3 XG.NONE 1.77e+5 MLP.RU
compactiv 1.61e+3 RF.WERCS 6.26e+7 MLP.NONE
cpuSm 2.11e+3 RF.WERCS 5.25e+7 MLP.RO
maxTorq 4.63e+3 XG.GN 1.17e+6 SVR.NONE
lungcancer-shedden 5.75e+1 SVR.GN 2.16e+2 SVR.NONE
space-ga 1.78e+0 XG.WERCS 4.16e+10 MLP.RO
ConcrStr 5.64e+2 XG.WERCS 9.27e+3 SVR.GN
Accel 2.34e+1 XG.GN 7.41e+5 MLP.RU

* Not completed in a reasonable timeframe
Source: Prepared by the author.

significant difference (𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.05) in relation to the others. This test once again confirms
that, globally, resampling strategies can significantly improve the regressors’ performance. The
Nemenyi test reveals that the RO obtained the best results and the most significant differences
in relation to None (data without any preprocessing) for the metric F1-score. In most cases,
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the SMT, SG, RU techniques achieve the worst results. Figure 8 (a-f) considers the SERA
metric; in such a scenario, most of the best results are obtained using the GN strategy, followed
by WERCS, given the number of times where the best results were achieved in the critical
difference chart.

Figure 7 – Critical difference diagrams for each learning algorithm considering the F1-score metric.

(a) Results of the F1-score metric for the BG
algorithm

(b) Results of the F1-score metric for the RT
algorithm

(c) Results of the F1-score metric for the MLP
algorithm

(d) Results of the F1-score metric for the RF
algorithm

(e) Results of the F1-score metric for the SVR
algorithm

(f) Results of the F1-score metric for the XG
algorithm

Source: Prepared by the author.

Another interesting fact is how different learning algorithms perform when no resampling
strategy is applied. In both metrics, the RT model achieved better results with the original data
sets. Additionally, an interesting aspect involves the ensemble models, Random Forest (RF)
and XGBoost (XG) obtained better results than single models, corroborating the analysis
conducted in Moniz, Branco e Torgo (2017), which says that ensemble methods provide a
better result than single models. Conversely, the SVR and MLP algorithms obtained the worst
results, especially when no preprocessing techniques were employed. Thus, it can be concluded
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Figure 8 – Critical difference diagrams for each learning algorithm considering the SERA metric.

(a) Results of the SERA metric for the BG
algorithm

(b) Results of the SERA metric for the RT
algorithm

(c) Results of the SERA metric for the MLP
algorithm

(d) Results of the SERA metric for the RF
algorithm

(e) Results of the SERA metric for the SVR
algorithm

(f) Results of the SERA metric for the XG
algorithm

Source: Prepared by the author.

that these algorithms are the most affected by having an imbalanced target distribution and
require special attention when applied in the imbalanced regression context.

As described in Section 3.3, each resampling algorithm uses different heuristics to balance
the dataset. Figure 9 illustrates the percentage of increase/decrease in the training examples
for each strategy. It was previously concluded that the best results were achieved using the
RO, GN, and WERCS strategies. The GN and WERCS strategies present a small percentage
of 1.28% and 2.83%, respectively. Conversely, the RO presents an increased percentage of
1421.1%. Therefore, the influence of the number of examples on the results is unclear since the
strategies with different percentages of increase/decrease obtained good results. Nonetheless,
it may be disadvantageous (from a training time point of view) to use a strategy, such as the
RO, that considerably increases the training set. Other strategies also deliver satisfactory results



67

without excessively increasing the training set. More details about the number of instances
after the application of the resampling strategies can be found in the supplementary material
– Appendix C.

Figure 9 – Percentage of increase/decrease in the training set for each resampling strategy.

Source: Prepared by the author.

Figures 10, 11, 12, 13 and 14 present the F1-score results arranged according to some
dataset characteristics in a bid to assess their impact on the performance of the models. The
following characteristics were assessed: percentage of rare cases, number of rare cases, dataset
size, number of attributes, and imbalance ratio. The imbalance ratio is calculated as the ratio
between the number of rare cases (𝐷𝑅) and the number of normal cases (𝐷𝑁), i.e., |𝐷𝑅|

|𝐷𝑁 | .
Each box represents a regression model (BG, RT, MLP, RF, SVR and XG), and each point
represents a specific set of data, and each line represents a resampling strategy (None, SMT,
RO, RU, GN, SG and WERCS).

The results presented in Figure 10 correspond to the same ordering provided in Table 4,
where the datasets are arranged in decreasing order of the percentage of rare cases. In such
conditions, it is not possible to find any pattern. Therefore, it is unclear how this aspect
relates to the model’s performance. Figures 11 and 12 are arranged according to the number
of rare cases and the dataset size, respectively. These circumstances reveal that the smaller
datasets with a lower number of rare cases represent the hardest tasks, as observed in Branco,
Torgo e Ribeiro (2019). Figure 13 illustrates the evolution of F1 considering the number
of attributes in each dataset. In some instances, it is noticeable that datasets with fewer
features exhibit superior performance. Finally, in Figure 14, the datasets are sorted according

https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20C.pdf
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to their respective imbalance ratios. The regression models with all resampling strategies face
more significant challenges when dealing with datasets exhibiting higher imbalance ratios.
This difficulty arises because higher imbalance ratios mean the rare cases are significantly
underrepresented compared to the normal cases. As a result, the model may struggle to learn
the underlying patterns and become biased toward the normal cases.

For all the evaluated dataset characteristics, the behavior of the resampling strategies is
quite similar, resulting in an overlap of the graph’s line. For better clarity, another analysis is
conducted considering the best F1-score for each dataset. The figures in Appendix D present
the best F1-score for each dataset, considering the dataset characteristics. With this, we can
visualize how the data characteristics affect the performance of the top models. The percentage
of rare cases does not exhibit a clear pattern. Thus, concluding whether this characteristic
affects the model’s performance is challenging. Regarding the number of rare cases and the
dataset size, models achieve better performance when there are more rare cases and a larger
dataset. When we consider the number of attributes, we observe that a higher number leads
to better model performance. As for the imbalance ratio, the higher the imbalance ratio, the
worse the model’s performance.

Figure 10 – Evolution of the F1-score with datasets sorted by percentage of rare cases.

Source: Prepared by the author.

https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20D.pdf
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Figure 11 – Evolution of the F1-score with datasets sorted by number of rare cases.

Source: Prepared by the author.

Figure 12 – Evolution of the F1-score with datasets sorted by size.

Source: Prepared by the author.
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Figure 13 – Evolution of the F1-score with datasets sorted by number of attributes.

Source: Prepared by the author.

Figure 14 – Evolution of the F1-score with datasets sorted by imbalance ratio.

Source: Prepared by the author.
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Table 10 – Average ranking (F1-score).

Algorithm Average

RF.RO 10.0
RF.GN 11.8
RF.RU 11.9
XG.RU 12.0
BG.RO 12.2
RF.WERCS 12.4
XG.WERCS 12.8
XG.GN 13.3
BG.RU 13.6
XG.RO 14.6
BG.WERCS 15.5
XG.NONE 15.6
BG.GN 16.0
RF.NONE 17.3
RF.SMT 17.8
XG.SMT 18.4
XG.SG 18.5
BG.NONE 18.8
BG.SMT 18.8
RT.RO 19.3
RF.SG 20.3
RT.NONE 20.4
BG.SG 20.5
RT.RU 20.9
RT.GN 21.0
RT.WERCS 21.1
RT.SMT 22.9
RT.SG 25.1
SVR.RO 26.5
SVR.SMT 26.7
MLP.RO 26.8
SVR.GN 27.6
SVR.SG 28.4
MLP.SMT 29.8
MLP.GN 30.8
SVR.WERCS 31.3
MLP.WERCS 31.7
MLP.SG 31.7
MLP.NONE 32.5
MLP.RU 33.3
SVR.RU 33.8
SVR.NONE 39.6

Source: Prepared by the author.

Table 11 – Average rank-
ing (SERA).

Algorithm Average

RF.RU 8.7
RF.GN 10.0
RF.WERCS 10.9
RF.RO 11.3
XG.GN 11.5
XG.WERCS 12.4
XG.RU 12.5
BG.WERCS 13.4
RF.NONE 13.6
XG.SG 13.6
XG.NONE 13.9
BG.RU 14.2
RF.SG 14.3
BG.GN 14.7
XG.RO 14.8
BG.RO 15.4
RF.SMT 15.8
XG.SMT 17.8
BG.NONE 18.3
BG.SG 18.7
BG.SMT 19.6
SVR.SG 23.9
SVR.GN 23.9
RT.GN 26.8
RT.NONE 26.9
SVR.RO 27.1
RT.RU 27.2
RT.RO 27.3
RT.SG 27.4
SVR.RU 27.5
MLP.SG 27.8
SVR.SMT 28.0
RT.WERCS 28.6
MLP.RO 28.7
SVR.WERCS 28.9
MLP.GN 29.4
MLP.SMT 30.4
MLP.WERCS 30.7
RT.SMT 31.4
MLP.NONE 33.9
MLP.RU 35.1
SVR.NONE 36.6
Source: Prepared by the au-
thor.
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3.6 LESSONS LEARNED

Different approaches have been proposed in a bid to solve the imbalanced problem in the
context of regression, including resampling strategies. Our research introduced a review and an
experimental study of the main resampling strategies for dealing with imbalanced regression
problems. In this section, the research questions are revisited and answered succinctly.

1. Is it worth using resampling strategies?

We answer this question by accounting for the number of times that each strategy won
(Tables 6 and 7). For both metrics, four of the resampling strategies used won more
times than when no resampling strategy was used. Furthermore, the Nemenyi post-
hoc statistical tests performed (Figures 7 and 8) demonstrate that many resampling
strategies are statistically better as compared to the absence of a strategy. Therefore, it
is advantageous to use (some) resampling strategies.

2. Which resampling strategies influence the predictive performance the most?

Considering the F1-score metric, the RO and GN strategies positively influenced the re-
sults of the learning algorithms. As for the SERA metric, the GN and WERCS techniques
are the best strategies. Statistically, in general, the GN, RO, and WERCS strategies held
the best results (Figures 7 and 8). Conversely, in terms of predictive performance, the
SMT, SG, RU techniques achieve the worst results.

3. Does the choice of best strategy depend on the dataset, the learning model,

and the metrics used?

Most of the datasets used have distinct preferences regarding the combination of the best
regression model and resampling strategy (Tables 8 and 9). For the regression models,
different resampling strategies can reach better results. As for the metrics, both agree
that the GN is a good resampling strategy. Nonetheless, there are cases of disagreement
between them.

4. Does the number of training examples resulting from each strategy influence

the results?
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Given that the best results were obtained using the GN, RO, and WERCS strategies,
which have different percentages (1.28%, 1421.1%, 2.83%, respectively) of increase/de-
crease in the training examples (Figure 9), the influence of the number of examples on
the results is not clear. Nonetheless, it may not be advantageous (from a training time
point of view) to use a strategy like the RO, which considerably increases the training
set, as other strategies also deliver equivalent results without this excessive increase.

5. Do the features of the data (percentage of rare cases, number of rare cases,

dataset size, number of attribues and imbalance ratio) impact the predictive

performance of the models?

In the studies performed, the percentage of rare cases did not have a clear impact on the
results. On the other hand, considering the dataset size and number of rare cases, it could
be seen that the smaller datasets with fewer rare cases correspond to the most difficult
tasks. Models demonstrate superior performance in datasets with fewer features. Lastly,
concerning the imbalance ratio, regression models encounter more significant challenges
with a higher imbalance ratio. The results for this question are shown in Figures 10, 11,
12, 13 and 14. Appendix D presents the evolution of the best F1-score for each dataset
characteristic, providing a clearer view of the impact of these dataset characteristics on
model performance.

3.7 CONCLUSION

This work reviews and performs a comparative study of data resampling strategies for han-
dling imbalanced regression problems. We reviewed six state-of-the-art resampling strategies
for regression based on three approaches: i) under-sampling, ii) oversampling, and iii) a mix
of undersampling and oversampling, while discussing the advantages and drawbacks of each
existing technique.

Then, we performed an extensive experimental analysis comprised of 6 regression algo-
rithms and 7 scenarios (6 resampling strategies and not using resampling) that can guide the
development of new strategies to solve the imbalanced regression problem. Our experimental
results demonstrate that it is important to use a resampling technique for most models as
resampling techniques lead to statistically better results. The experimental study also shows

https://github.com/JusciAvelino/imbalancedRegression/blob/main/appendices/Appendix%20D.pdf
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that no resampling technique outperforms all others. Furthermore, choosing the best resam-
pling technique depends on three main factors: the learning algorithm, the dataset, and the
performance metric used to assess the model’s performance.

Further studies should address the recommendation of combining resampling strategies with
a regression model for each specific dataset. Another element worth addressing is the dataset
characteristics, which should be investigated through data complexity measures (LORENA et

al., 2018) in order to assess the adverse effects of these features on prediction performance.
Moreover, an essential point to address involves proposing a new relevance function since
currently, only one definition exists. This proposal aims to conduct studies and comparisons
regarding the definition of an imbalanced regression dataset.



75

4 IMBALANCED REGRESSION PIPELINE RECOMMENDATION

AUTHORS

Juscimara G. Avelino Universidade Federal de Pernambuco, Recife, Brazil

George D. C. Cavalcanti Universidade Federal de Pernambuco, Recife, Brazil

Rafael M. O. Cruz École de technologie supérieure, Montreal, Canada

ABSTRACT

Imbalanced problems are prevalent in various real-world scenarios and are extensively ex-
plored in classification tasks. However, they also present challenges for regression tasks due
to the rarity of certain target values. A common alternative is to employ balancing algorithms
in pre-processing to address dataset imbalance. However, due to the variety of resampling
methods and learning models, determining the optimal solution requires testing many com-
binations. Furthermore, the learning model, dataset, and evaluation metric affect the best
strategies. This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) frame-
work, which diverges from existing literature by training meta-classifiers to recommend the
best pipeline composed of the resampling strategy and learning model per task in a zero-shot
fashion. The meta-classifiers are trained using a set of meta-features to learn how to map the
meta-features to the classes indicating the best pipeline. We propose two formulations: Inde-
pendent and Chained. Independent trains the meta-classifiers to separately indicate the best
learning algorithm and resampling strategy. Chained involves a sequential procedure where the
output of one meta-classifier is used as input for another to model intrinsic relationship fac-
tors. The Chained scenario showed superior performance, suggesting a relationship between the
learning algorithm and the resampling strategy per task. Compared with AutoML frameworks,
Meta-IR obtained better results. Moreover, compared with baselines of six learning algorithms
and six resampling algorithms plus no resampling, totaling 42 (6 × 7) configurations, Meta-IR
outperformed all of them. The code, data, and further information of the experiments can be
found on GitHub: <https://github.com/JusciAvelino/Meta-IR>.

https://github.com/JusciAvelino/Meta-IR
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4.1 INTRODUCTION

Imbalanced problems are characterized by the low representation of some target values.
In classification tasks, an imbalanced dataset is determined by the presence of a class with
low representation (minority class) compared to another (majority class) (GANGANWAR, 2012;
HAIXIANG et al., 2017). However, in regression problems, the target value is continuous, repre-
senting a complex definition. In this context, Ribeiro (2011) proposes the concept of relevance
function that determines the relevance of continuous target values to define which examples
are rare and normal. Such classification allows verifying the imbalance between the instances
called rare and normal. Figure 15 represents the distribution and frequency of examples from
an imbalanced dataset (FuelCons). The values on the edges of the graph have low frequency
and are considered rare examples.

Figure 15 – Distribution and frequency of the target value Y from the FuelCons dataset. Stronger colors
indicate less represented examples (rare examples), while lighter colors indicate more represented
examples (normal examples).
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Source: Prepared by the author.

In many cases, low-represented values hold significant importance, both to users and pre-
diction processes. For instance, in software engineering, prediction mistakes in large projects
are associated with higher development costs (RATHORE; KUMAR, 2017a; RATHORE; KUMAR,
2017b). Similarly, forecasting errors become significantly more costly in meteorological appli-
cations when dealing with extreme conditions such as extremely high temperatures (RIBEIRO;

MONIZ, 2020). Learning algorithms often struggle with these scenarios, prioritizing frequent
target ranges while neglecting rare cases. This limitation can lead to suboptimal predictions
for these specific instances.

Few studies explore solutions for handling imbalanced regression problems. Commonly, such
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solutions employ resampling strategies such as the Synthetic Minority Oversampling TEchnique
for Regression (SmoteR) (TORGO et al., 2013) and WEighted Relevance-based Combination
Strategy (WERCS) (BRANCO; TORGO; RIBEIRO, 2019) to balance the training data distributions
prior to the training process. Although there is limited research exploring solutions for handling
imbalanced regression problems, there are various resampling strategies available to choose
from (WU; KUNZ; BRANCO, 2022). Moreover, in a study conducted in Avelino, Cavalcanti e
Cruz (2024), it was observed that the selection of resampling strategies can significantly impact
regression performance, and the choice of the best resampling strategy depends on the specific
imbalanced regression task distribution as well as the regression algorithm used for prediction.

Analyzing this study, we can see that the best learning model changes in nearly 50% of
the datasets after applying the resampling algorithm. Thus, an approach that initially selects
and optimizes only the best model per dataset, not considering pre-processing algorithms like
Naive AutoML (MOHR; WEVER, 2023), may perform poorly. It may overlook the significant
impact of resampling techniques on model performance, missing potentially more effective
models during the initial selection. Thus, identifying the optimal pipeline is crucial for accu-
rate imbalanced regression results. In a landscape with numerous resampling strategies and
regression algorithms, identifying the most fitting pipeline requires potentially evaluating all
or a significant subset, thereby leading to a resource-intensive endeavor.

To enhance optimal solution selection, meta-learning (MtL) (VANSCHOREN, 2019; KHAN

et al., 2020) models prove effective. These models are based on meta-features, i.e., problem
characteristics extracted from data, to learn new tasks more quickly. These meta-features
— such as number of examples, number of attributes, number of rare cases, percentage of
rare cases and data complexity measures (LORENA et al., 2019) — enable a meta-classifier to
correlate them with algorithm performance (target attribute). Once trained, the meta-learning
model works in a zero-shot fashion, suggesting algorithms and techniques that best fit the
new task’s meta-features.

In light of this, we propose a meta-learning-based model — Meta-learning for Imbalanced
Regression (Meta-IR)— as an alternative solution for imbalanced regression problems. Meta-
IR, illustrated in Figure 16(a), is designed to suggest optimal learning models and resampling
strategies based on problem meta-features. The meta-classifier recommends resampling strat-
egy and learning algorithm — a pipeline — customized to the new problem’s meta-features.
For example, it could recommend the Random Over-sampling strategy with the Decision Tree
learning model for a given dataset. Alternatively, for a different dataset, it might be more
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appropriate to use the WEighted Relevance-based Combination strategy with the Random
Forest regression model, demonstrating the need to adjust the strategy and model according
to the specific characteristics of the dataset. We propose two ways to train the meta-models:
Independent and Chained. The Independent approach involves training the meta-classifiers to
indicate the best learning model and resample strategy separately. In contrast, the Chained
model is proposed based on the hypothesis that a dependency exists between the resampling
algorithm and the regressor. In this way, Chained performs a sequential procedure where the
output of one meta-classifier is used as input for another. In other words, the information of
the best resampling algorithm is fed into the meta-classifier that predicts the best regressor,
and vice versa.
Figure 16 – Comparison between our proposed meta-learning-based model Meta-IR and traditional AutoML.

Meta
dataset

Search space focused on
imbalanced data

Multi-label
Meta-learning

Independent/Chained
recommendation

recommendation

offline

online zero-shot 
prediction

Search space NOT focused
on imbalanced data

online

recommendation

(b) Tradicional optimization-based AutoML methods. (a) Proposed Meta-IR. 

Feature engineering

Model selection

Data preprocessing

op
tim

iz
at

io
n 

lo
op

Source: Prepared by the author.

On the other hand, traditional methods lack specific approaches to handle imbalanced
regression problems in the search space. In contrast, our method addresses imbalanced regres-
sion problems within the search space. When dealing with a new dataset, traditional methods
conduct an online search for the optimal pipeline, resulting in delayed system response. In con-
trast, our method can recommend the pipeline in a zero-shot prediction. Thus, our method is
suitable for imbalanced regression problems and has a significantly lower computational cost.
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The experimental analysis, including 218 datasets, six learning models, six resampling
strategies, and no resampling, resulting in a total of 42 possible configurations, showed that
Meta-IR outperforms the Random recommendation and Majority (always recommends the
technique that appears most frequently in the meta-dataset) at the meta-level. At the base-
level, comparing the performance achieved by the recommended learning models and resam-
pling strategies, Meta-IR recommendations were better than Random, Majority, and AutoML
frameworks — such as Auto-sklearn (FEURER et al., 2015), H2O (LEDELL; POIRIER, 2020), and
TPOT (OLSON et al., 2016) — for F1-score for Regression (F1-scoreR). Furthermore, statistical
analysis revealed that the proposed method produces statistically better significant results at
the base-level. In conclusion, the Meta-IR approach demonstrated an advantage in terms of
time efficiency, as it was approximately 50 times faster than the AutoML frameworks. In the
analysis of meta-feature importance, it was observed that certain characteristics significantly
influenced the recommendation of resampling strategies and learning models. We conducted
an interpretation and identified the most important features for these meta-learning tasks,
providing insights into which factors are most influential in the recommendation process.

The main contributions of this work are:

• We propose a meta-learning method for recommending pipelines for imbalanced regres-
sion problems.

• We introduce two meta-learning recommendation approaches: Independent and Chained.
The Independent approach trains meta-classifiers separately to recommend the resam-
pling strategy and regression model, while the Chained approach uses the output of one
meta-classifier as input for the next, aiming to enhance overall performance.

• Extensive experiments on 218 imbalanced regression datasets show Meta-IR outper-
forms state-of-the-art AutoML approaches, established baselines such as Majority and
Random selection, and all combinations of evaluated algorithms. Additionally, Meta-IR
is significantly faster than other model selection approaches.

• An analysis of meta-feature importance reveals key meta-features crucial for the meta-
model’s predictive ability in recommending learning models and resampling strategies for
imbalanced regression problems.

This work is organized as follows: Section 4.2 presents an overview of the areas of im-
balanced regression, automated machine learning and meta-learning. The proposed model is
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presented in detail in Section 4.3. Section 4.4 presents the experimental methodology, describ-
ing the metadata, meta-features, meta-targets, meta-classifier, and evaluation methodology.
In Sections 4.5 and 4.6, we discuss the results and conclude this research.

4.2 BACKGROUND

Imbalanced Regression and AutoML are the two areas of research that have been combined
in the proposed method in this work. Therefore, this section provides a global overview of these
two areas of research.

4.2.1 Imbalanced Regression

4.2.1.1 Relevance Function

The simultaneous occurrence of two factors characterizes the imbalance problem: i) the
disproportionate user preference in the target variable domain; and ii) the insufficient represen-
tation, in the available data, of the most relevant cases for the user (BRANCO; TORGO; RIBEIRO,
2017). There is a greater difficulty when the problem occurs in regression tasks, compared to
classification tasks, since the continuous target value can have an infinite number of values
and the determination of rare cases is not trivial (BRANCO; TORGO; RIBEIRO, 2017). To address
this, Ribeiro (2011) proposed the notion of a relevance function (𝜑 : 𝑌 → [0, 1]). For each
dataset, the relevance function maps the target value (𝑌 ) into a [0,1] scale of relevance, where
0 and 1 represent the minimum and maximum relevance, respectively.

The relevance function automatically set the significance of data points using the Piecewise
Cubic Hermite Interpolating Polynomials (pchip) (DOUGHERTY; EDELMAN; HYMAN, 1989) over
a set of control points. These control points can be defined either through domain knowledge
or provided by an automated method. Defining control points using an automatic function
is preferable since knowledge can often be unavailable (RIBEIRO; MONIZ, 2020). In Ribeiro
(2011) the control points are based on Tukey’s bloxpot (TUKEY, 1970). The interval proposed
by Tukey is based on the adjacent limits [𝑎𝑑𝑗𝐿 = 𝑄1−1.5 · 𝐼𝑄𝑅 and 𝑎𝑑𝑗𝐻 = 𝑄3 + 1.5 · 𝐼𝑄𝑅]
where 𝑄1 and 𝑄3 are the first and third quartile, respectively, and 𝐼𝑄𝑅 = 𝑄3−𝑄1. In turn,
the control points are defined by the adjacent limits (𝑎𝑑𝑗𝐿 and 𝑎𝑑𝑗𝐻) and the median value
(𝑌 ).
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Given a dataset 𝐷, two sets containing rare (𝐷𝑅) and normal (𝐷𝑁) instances are defined
considering the relevance threshold (𝑡𝑅) defined by the user as follows: 𝐷𝑅 = {⟨x, 𝑦⟩ ∈ 𝐷 :

𝜑(𝑦) ≥ 𝑡𝑅} and 𝐷𝑁 = {⟨x, 𝑦⟩ ∈ 𝐷 : 𝜑(𝑦) < 𝑡𝑅}. Full details about the relevant functions
can be found in Ribeiro (2011), Avelino, Cavalcanti e Cruz (2024).

4.2.1.2 Resampling Strategies

Strategies for Imbalanced Regression can be categorized into three main groups (AVELINO;

CAVALCANTI; CRUZ, 2024): i) Regression models, ii) Learning Process Modification, and iii) Eval-
uate Metrics. The first group consists of regression models, including both single models and
ensembles. The second group highlights additional strategies aimed at refining the learning
process to better handle imbalanced target, such as resampling strategies. Finally, the third
group focuses on evaluation metrics proposed specific for imbalanced regression. Among these
strategies, the most common way to deal with imbalanced data sets is to use resampling
strategies, changing the data distribution to balance the targets (MONIZ; BRANCO; TORGO,
2017).

Resampling strategies or balancing algorithms, precede the learning process by altering the
distribution of examples through resampling the training data. This method removes samples
of normal cases (i.e., under-sampling) or generates synthetic samples for rare cases (i.e.,
over-sampling). Different resampling strategies have been proposed to deal with imbalanced
regression problems. Most of these techniques are based on existing resampling strategies
proposed for classification problems (AVELINO; CAVALCANTI; CRUZ, 2024).

The SmoteR algorithm, which is a variant of Smote (CHAWLA et al., 2002), in which adap-
tations were made to fit the regression problem, the main ones being: i) definition of rare
cases; ii) creation of synthetic examples; and iii) definition of target values for new exam-
ples. Also on the basis of the Smote algorithm, Camacho, Douzas e Bacao (2022) proposed
Geometric SMOTE, which generates synthetic data points along the line connecting two ex-
isting data points. Other strategies adapted from the imbalanced classification are: Random
Under-sampling (TORGO et al., 2013) which was based on the idea in Kubat, Matwin et al.
(1997), Random Over-sampling (BRANCO; TORGO; RIBEIRO, 2019) proposed for classification
in Batista, Prati e Monard (2004), and Introduction of Gaussian Noise (BRANCO; RIBEIRO;

TORGO, 2016) adapted from Lee (1999), Lee (2000). In turn, the SmoteR with Gaussian
Noise (SMOGN) (BRANCO; TORGO; RIBEIRO, 2017) and WEighted Relevance-based Combina-
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tion Strategy (WERCS) (BRANCO; TORGO; RIBEIRO, 2019) strategies were originally proposed
for the imbalanced regression problem. Furthermore, Song, Dao e Branco (2022) introduced a
distributed version of the SMOGN called DistSMOGN. The method uses a weighted sampling
technique to generate synthetic samples for rare cases, in addition to considering the data
distribution in each node of the distributed system. For the imbalanced data streams in re-
gression models context, Aminian, Ribeiro e Gama (2021) introduced two sampling strategies
(ChebyUS, ChebyOS) based on the Chebyshev inequality to improve the performance of exist-
ing regression methods on imbalanced data streams. The approaches use a weighted learning
strategy that assigns higher weights to rare cases in order to balance the training process.

Each strategy resamples the data differently. Figure 17 shows this difference, applying the
resampling strategies SmoteR, Random Over-sampling, Random Under-sampling, Gaussian
Noise Introduction, SMOGN and WERCS to the FuelCons dataset. The 𝑡𝑅 parameter value
was set to 0.8, except for the WERCS, as it operates without a threshold. Standard values
were utilized for the other parameters. In the visualization, the Y-axis represented the target
values, and the X-axis represented the attribute. In contrast to SmoteR 18(a), which generates
synthetic data through oversampling, the Random Over-sampling strategy 18(b) increases data
by simply replicating rare cases (data points in darker shade). Another way of over-sampling is
through the Introduction of Gaussian Noise, as shown in Figure 18(c), where the generated data
differs from the originals, creating more diversity than Random Over-sampling. Similarly, the
SMOGN strategy 18(d) combines the Introduction of Gaussian Noise and SmoteR, maintaining
a similarity with the SMOTER distribution. However, compared to the Introduction of Gaussian
Noise, it becomes evident that the diversity of generated examples is higher in SMOGN. On
the other hand, Random Under-sampling 18(e) removes normal data randomly. Furthermore,
the WERCS strategy 18(f) combines Random Over-sampling and Random Under-sampling
and is the only strategy that does not require a threshold.

Despite the difference, resampling strategies are based on the same principles: decrease
normal examples and/or increase rare examples. Under-sampling, which reduces normal ex-
amples, is the basis of the Random Under-sampling strategy. On the contrary, over-sampling,
which increases rare examples, can be performed simply as in Random Over-sampling or by
generating synthetic cases as in the SmoteR Algorithm and Introduction of Gaussian Noise.
Other strategies are based on the models already described, such as the SmoteR with Gaussian
Noise (SMOGN), which combines the Random Under-sampling strategy and the over-sampling
strategies SmoteR and Introduction of Gaussian Noise. And the WEighted Relevance-based
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Figure 17 – Distribution of the examples of the FuelCons dataset after applying the resampling strategies,
considering 𝑡𝑅=0.8.
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Source: Prepared by the author.

Combination Strategy (WERCS) which combines the Random Under-sampling and Random
Over-sampling strategies, using weights for resampling. More details about these strategies
can be found in Branco, Torgo e Ribeiro (2019), Torgo et al. (2013), Avelino, Cavalcanti e
Cruz (2024).

Resampling strategies have the advantage of allowing the use of any learning algorithm
without affecting the model’s explainability (BRANCO; TORGO; RIBEIRO, 2019). However, apply-
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ing and validating these strategies require effort due to the vast space of solutions. Furthermore,
selecting the optimal strategy depends on the dataset, the regression model employed, and the
metrics used to assess system performance (AVELINO; CAVALCANTI; CRUZ, 2024). Therefore,
given the variety of problems and the increasing interest in this field, there is a need to ad-
vance the studies and address the problem of imbalanced regression from another perspective.
One way to address the problem is through a recommendation model based on meta-learning.
Thus, we propose a model to automate the choice of solutions, i.e., to recommend a pipeline
for the problem, with decisions based on data meta-features. It is important to highlight that
we are the first to approach this problem from this perspective.

4.2.2 Meta-Learning

The concept of meta-learning (MtL) can be defined as the process of acquiring knowledge
through experiences (GIRAUD-CARRIER; VILALTA; BRAZDIL, 2004). Unlike traditional machine
learning tasks, in MtL, multiple datasets are used to accumulate experience. In meta-learning,
there are three main components (KHAN et al., 2020): meta-features, which represent data
characteristics; the meta-learner, which is tasked with inducing knowledge; and the meta-
target, which is the learning target.

Meta-features are characteristics extracted from data to describe its properties (RIVOLLI

et al., 2022). For each dataset, meta-features are extracted, becoming a meta-example
of the meta-dataset. The meta-features are used as input for meta-learner algorithms
to select the most appropriate model. There are different ways to extract features from
the data (BRAZDIL et al., 2008). Simple and statistical, complexity-based, model-based
and landmarkers are commonly used meta-features.

– Simple and Statistical: These characteristics are directly extracted from datasets (REIF

et al., 2014) and are similar to those used in classification problems, except for those
involving the target variable, which needs to be adapted to consider the continuous
target value. Simple meta-features include measures such as the number of exam-
ples, the number of attributes, the proportion of discrete attributes, the proportion
of missing values, and the proportion of outliers. Statistical measures may include,
for example, calculations of kurtosis, correlation, and covariance of instances.
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– Data Complexity: Various studies have used data complexity measures as meta-
features. For classification problems, this category is investigated in Cavalcanti, Ren
e Vale (2012), Leyva, González e Perez (2014), Garcia, Carvalho e Lorena (2016),
Morán-Fernández, Bolón-Canedo e Alonso-Betanzos (2017), Garcia et al. (2018),
and for regression in Lorena et al. (2018). Complexity measures have also been
adapted for imbalanced classification problems (BARELLA et al., 2018; BARELLA;

GARCIA; CARVALHO, 2020; BARELLA et al., 2021). In Lorena et al. (2018), the com-
plexity measures are divided into Feature correlation measures, Linearity measures,
Smoothness measures and Geometry, topology and density measures.

– Model-based: This measure provides information obtained from learning models.
Measures such as mean absolute value and residual variation of a linear regressor
were described in Lorena et al. (2018) as complexity-based measures, but because
they are derived from models, they can also be considered model-based measures.

– Landmarking: These measures are derived from the performance of baseline mod-
els on specific datasets (PFAHRINGER; BENSUSAN; GIRAUD-CARRIER, 2000). These
measures offer valuable insights into problem difficulty and data characteristics.
Their simplicity and computational efficiency make them a quick and informative
tool for assessing dataset challenges before engaging in more complex tasks like
model selection or hyperparameter optimization. However, while landmarking mea-
sures provide a rapid overview, they may not fully capture dataset complexity or
accurately evaluate the performance of more advanced models.

Meta-learner is the main component of the meta-learning framework. Meta-learner
is the algorithm that models the relationship between dataset characteristics (meta-
features) and candidate algorithms (meta-target). The meta-learner receives meta-features
as input and recommends appropriate algorithms (KHAN et al., 2020). The most com-
mon classifiers used as meta-models are instance-based (BRAZDIL; SOARES; COSTA,
2003; BRAZDIL; SOARES, 2000; GAROUANI et al., 2023) and decision tree-based mod-
els (BRAZDIL; SOARES, 2000; AGUIAR et al., 2022; AMORIM; CAVALCANTI; CRUZ, 2024;
SOUSA et al., 2016). Instance-based models offer flexibility in adapting and are extensible
for new data without need for re-learning (BRAZDIL; SOARES; COSTA, 2003). On the
other hand, decision tree-based models provide interpretability, implicitly select impor-
tant features.
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Meta-target there are three meta-target types: Best Algorithm, Ranked List, and Mul-
tiple Algorithms (KHAN et al., 2020). 1) Best Algorithm: aims to determine the most
appropriate algorithm that achieves the highest performance on a specific task or dataset
based on a given metric (e.g., F1-measure); 2) Ranked List: involves evaluating and rank-
ing multiple algorithms based on their performance, permitting practitioners to choose
from a list of top-performing options. This method presents a more comprehensive view
by considering multiple candidates rather than a singular winner; 3) Multiple Algorithms:
provide a set of algorithms that indicate equivalent predicted performance in the given
task, indicating no significant difference in their performance. In such a scenario, the
user can choose any recommended algorithm.

As far as we know, no meta-learning-based models have been applied to pipeline recom-
mendations for imbalanced regression problems. Therefore, we explored related works that
use meta-learning for pipeline recommendation to set our method apart regarding the meta-
learning level. Table 12 summarizes these methods. In Moniz e Cerqueira (2021) meta-learning
was used for imbalanced classification problems, where a single meta-model is induced to pre-
dict the performance of workflow configurations. Their method deals with a particular case
of the full model selection formulation (ESCALANTE; MONTES; SUCAR, 2009) and a variant of
the popular CASH problem (THORNTON et al., 2013), which involves both workflow selection
and hyperparameter optimization combined. In Zagatti et al. (2021), the MetaPrep MtL sys-
tem is introduced to recommend data preprocessing pipelines, with a focus on four key tasks:
imputation, transformation of categorical data to numerical, scaling, and class balancing.

Meta-learning has also been used to suggest algorithms for data that change over time (ROSSI

et al., 2014; ROSSI et al., 2021), using one meta-model for each set of examples and one meta-
model for each dataset, respectively. Additionally, meta-learning is employed in Amorim, Cav-
alcanti e Cruz (2024) to build meta-models to automatically select the best Scaling Techniques
for a given dataset and classification algorithm. In Aguiar et al. (2022), meta-learning is used in
multi-target regression problems to recommend transformation methods and regression mod-
els, addressing three types of recommendations: i) both algorithms independently, ii) first the
learning model then the transformation method, and iii) first the transformation method then
the regression model.

While meta-learning techniques have been explored in various domains, our method – Meta-
learning for Imbalance Regression (Meta-IR) – stands out as the only approach specifically
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Table 12 – Meta-learning related works

Method Recommends Meta-model type
MetaStream

(ROSSI et al., 2014)
Learning algorithm One for each set of examples

ATOMIC
(MONIZ; CERQUEIRA, 2021)

Learning algorithm
and Resampling strategy

Single

Micro-MetaStream
(ROSSI et al., 2021)

Learning algorithm One for each example

MetaPrep
(ZAGATTI et al., 2021)

Imputation, scaling,
categorical-numerical transformation

and class balancing

Multiple, depends on
dataset constraints

Multi-target
(AGUIAR et al., 2022)

Multi-target method
and base-learner

Two models, one for each label

Meta-Scaler
(AMORIM; CAVALCANTI; CRUZ, 2024)

Scaling technique Multiple, one for each base model

Meta-IR Learning algorithm
and Resampling strategy

Two models, one for each label

Source: Prepared by the author.

tailored to address the challenge of imbalanced regression tasks by incorporating specialized
mechanisms to handle imbalanced data distributions. Meta-IR employs meta-learning to build
two models to select the best learning model and resampling strategy automatically in a zero-
shot fashion. Regarding the meta-learning level, (AGUIAR et al., 2022) is similar to our proposal.
In the same way, we induce two meta-models addressing two recommendation types that we
named Independent and Chained.

4.2.3 Automated Machine Learning

Automated Machine Learning (AutoML) is a paradigm that automates the process of
constructing and selecting the best machine learning models for a given task, aiming to re-
duce the effort required to build machine learning models, while also being applicable for
parameter optimization (YAO et al., 2018; ZÖLLER; HUBER, 2021; HE; ZHAO; CHU, 2021). There
are several search methods strategies employed by the AutoML models, such as Bayesian
optimization (HUTTER; HOOS; LEYTON-BROWN, 2011; SNOEK; LAROCHELLE; ADAMS, 2012;
GARNETT, 2023), Evolutionary algorithms (BÄCK; FOGEL; MICHALEWICZ, 1997; SIMON, 2013),
Gradient-based optimization (BENGIO, 2000), Random search (BERGSTRA; BENGIO, 2012), and
Meta-Learning (BRAZDIL et al., 2022b). Table 13 describes some AutoML frameworks that use
different forms of optimization.
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Table 13 – Related works.

Framework Imb MtL Task Search Space Regression Metrics
Auto-sklearn × Both DP, MS, FE, HO MedAE, MAE, MSE, R2
TPOT × × Both DP, MS, FE, HO MedAE, MAE, MSE, R2
LightAutoML × × Both DP, MS, HO MSE, RMSE, MAE, R2

H2O × × Both MS, HO MSE, RMSE, RMSLE,
MAE, R2

FLAML × × Both MS, HO MAE, MSE, R2, MAPE
Naive AutoML × × Both DP, MS, FE, HO ×
ATOMIC Classification MS, RS, HO ×
Meta-IR Regression MS, RS SERA, F1-scoreR

Source: Prepared by the author.

Auto-sklearn (FEURER et al., 2015) facilitates the exploration of potential solutions by lever-
aging meta-learning to warm start the Bayesian optimization. The Bayesian optimization deter-
mine the optimal pipeline configuration. TPOT (Tree-based Pipeline Optimization Tool) (OL-

SON et al., 2016) utilizes genetic programming to optimize machine learning pipelines. Each
pipeline represents a sequence of pre-processing steps, feature transformations, and machine
learning models. However, the method’s primary limitation is the substantial computational
resources needed for the optimization process, making it impractical for large datasets or lim-
ited computing environments. H2O AutoML (LEDELL; POIRIER, 2020) use a blend of quick
random search and stacked ensembles to produce highly competitive outcomes.

The Fast and Lightweight AutoML Library (FLAML) (WANG et al., 2021) uses Estimated
cost for improvement (ECI) to learner choices and adopted a randomized direct search method (WU;

WANG; HUANG, 2021) to perform cost-effective optimization for cost-related hyperparame-
ters. In LightAutoML framework (VAKHRUSHEV et al., 2021) Tree-structured Parzen Estima-
tors (BERGSTRA et al., 2011) are employed for model fine-tuning. Additionally, warm-starting
and early stopping techniques are utilized for optimizing linear models through grid search.

Naive AutoML (MOHR; WEVER, 2023) aims to offer a basic method that acts as a starting
point for comparing with more complicated ones. Unlike other approaches that view process
steps as interconnected, Naive AutoML simplifies the optimization of each step through random
search. It then selects the best algorithm to construct the final process for each step. This
method reduces the amount of searching needed, making it faster and more efficient. In
terms of execution time, when compared to Meta-IR, Naive AutoML follows a more iterative
approach, exploring different components and hyperparameters for each pipeline step. This
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process can be time-consuming, necessitating multiple iterations to optimize the model. For
example, with 6 learning models, this method first searches for the best model among the
6 before optimizing. Conversely, Meta-IR takes a zero-shot method, recommending both a
learning model and a resampling strategy based on the problem’s characteristics.

Finally, the Automated Imbalanced Classification method (ATOMIC) (MONIZ; CERQUEIRA,
2021) is the work closest to our proposal, the method uses meta-learning to anticipating the
score of the loss criteria, but deal only with imbalance classification tasks. ATOMIC combine
the concepts of Complete Model Selection (ESCALANTE; MONTES; SUCAR, 2009) and Combined
Algorithm Selection and Hyperparameter optimization (CASH) (THORNTON et al., 2013). In
contrast, the Meta-IR utilizes only meta-learning as a recommendation strategy, performing
recommendation in zero-shot and thus requiring less computational power, while also featuring
an adaptive recommendation phase.

Regarding the search space, Auto-sklearn, TPOT, Naive AutoML address the entire pipeline,
recommending Data pre-processing (DP), Model Selection (MS), Feature Engineering (FE),
and Hyperparameter Optimization (HO). The LightAutoML recommends nearly the entire
pipeline except for Feature Engineering. In contrast, H2O and FLAML specifically concentrate
on Model Selection and Hyperparameter Optimization. In the context of imbalanced classifi-
cation, ATOMIC beyond Model Selection and Hyperparameter Optimization also recommends
the Resampling strategy (RS). It is worth noting that none of these methods include resampling
strategies for regression in their search space. Conversely, Meta-IR recommends the learning
model and resampling strategy for imbalanced regression problems.

Another critical aspect to consider is that the approaches described focus on defining
pipelines without considering the imbalance problem, except ATOMIC, which was proposed
for the imbalanced classification scenario. As a result, these frameworks do not incorporate
specific metrics for imbalanced regression. They employ standard metrics like MedAE, MSE,
MAE and R2 as evaluation metrics. These metrics have limitations when used for evaluation in
imbalanced regression problems, as they can deceive the user when the focus is on the accuracy
of rare values (MONIZ; TORGO; RODRIGUES, 2014), as they do not consider the relevance of each
example. Thus, we hypothesize that employing specialized metrics and methods for imbalanced
regression is crucial for improving the performance and reliability of machine learning models
in these scenarios. By addressing the relevance of each example and focusing on the accuracy
of predictions for rare values, it is possible to achieve a more accurate and fair assessment of
model performance.
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In this way, our proposal – Meta-IR – differs from previous work in multiple perspectives: (1)
As the first framework to deal with imbalanced regression, we recommend learning models and
resampling strategies; (2) It is different in how to evaluate the pipelines, using specific metrics
for imbalanced regression; (3) Our method is a zero-shot method based on meta-learning,
enabling an efficient and adaptive recommendation phase; (4) We employ two different ways
in training phase (Independent and Chained).

4.3 PROPOSED METHOD

This section presents a recommendation system that suggests a pipeline (learning mod-
els and resampling strategies) for imbalanced regression using meta-learning. Section 4.3.1
introduces the problem and Section 4.3.2 describes all phases of the proposed method.

4.3.1 Problem Definition

The performance of learning models in imbalanced problems can be improved by using
strategies that balance the datasets. Therefore, the problem of defining a pipeline is addressed
in this work through a meta-learning perspective. The meta-features of the data are used as
a criterion for making recommendations. Given a set of datasets D = {D1, D2, D3, . . . , D𝑚},
a set of learning algorithms L = {𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝑠} and a set of resampling strategies R =

{𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑛}, the task is defined as follows:

• Meta-problem: the task is to predict the best learning algorithm (𝑙 ∈ L) and the best
resampling strategy (𝑟 ∈ R) for an imbalanced regression dataset D𝑖, 𝑖 = {1, 2, . . . , 𝑚},
based on its meta-features (fD𝑖

).
• Meta-feature: each dataset (D𝑖) is represented by a meta-feature vector fD𝑖

= {𝑓 𝑖
1, 𝑓 𝑖

2, . . . , 𝑓 𝑖
𝑘}

composed of 𝑘 features.
• Meta-targets: the meta-targets per dataset D𝑖 are [𝑙𝑖, 𝑟𝑖], where 𝑙𝑖 ∈ L is the learning

algorithm and 𝑟𝑖 ∈ R is the resampling algorithm that are the best fit for D𝑖.
• Meta-dataset: the meta-dataset M stores the meta-features and the meta-targets of

each dataset D𝑖. M has 𝑚 tuples (fD𝑖
, 𝑙𝑖, 𝑟𝑖), where fD𝑖

is the meta-feature vector, and
𝑙𝑖 and 𝑟𝑖 are the meta-targets that represent the learning and the resampling algorithms
respectively. Thus, M has 𝑚 rows and (𝑘 + 2) columns; 𝑚 datasets, 𝑘 features, and
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two meta-targets.
• Meta-classifiers: two meta-classifier (𝜆𝐿 and 𝜆𝑅) are trained using the meta-dataset

M. The meta-classifier 𝜆𝐿 predicts the best learning algorithm 𝑙 ∈ L, while the meta-
classifier 𝜆𝑅 predicts the best resampling algorithm 𝑟 ∈ R per dataset.

4.3.2 Meta-learning for Imbalanced Regression (Meta-IR)

The Meta-IR method is a meta-learning-based solution to deal with imbalanced regression
problems. The main objective of Meta-IR is to facilitate the choice of the learning model and
pre-processing strategy for the datasets, given that the conventional workflow for making this
choice is extensive.

Meta-IR is divided into three phases: (I) Meta-dataset construction, (II) Meta-classifiers
training, and (III) Recommendation, as shown in Figure 18. In the first phase (Meta-dataset
construction), the meta-dataset M is constructed by extracting meta-features and defining
the meta-target through pipeline evaluation. Then, the meta-models 𝜆𝐿 and 𝜆𝑅 are trained in
the Meta-classifiers training phase to recommend the learning model and resampling strategy,
respectively. Finally, in the Recommendation Phase, given an imbalanced regression dataset
(G), its meta-features are extracted, and the meta-classifiers generated in the previous phase
perform the prediction, recommending a learning model and resampling strategy that are
supposedly the best for that dataset. The following sections detail each phase.

4.3.2.1 Meta-dataset construction phase

This phase has two modules: Meta-feature extraction and meta-target definition. In the
Meta-features extraction, each D𝑖 ∈ D is represented by a vector fD𝑖 = {𝑓 𝑖

1, 𝑓 𝑖
2, . . . , 𝑓 𝑖

𝑘} with
𝑘 meta-features. We employ simple and complexity-based meta-features (refer to Appendix B,
Table 21, for details), aiming to capture different aspects of the datasets.

In parallel, the Meta-target definition module selects the best learning algorithms (𝑙𝑖 ∈ L)
and sampling techniques (𝑟𝑖 ∈ R) per D𝑖, given a performance metric. A total of |L| × |R|
pairs of learning algorithms and sampling techniques are evaluated, and the D𝑖 meta-targets
are defined as the pair (𝑙𝑖, 𝑟𝑖).

The outputs of these two modules are concatenated to compose the meta-dataset M.
Thus, M is composed of 𝑚 tuples (fD𝑖, 𝑙𝑖, 𝑟𝑖), one for each D𝑖.
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Figure 18 – The proposed Meta-IR framework. (I) Meta-dataset construction: the meta-features (f) are
extracted, and the pipelines are evaluated to construct the meta-dataset M. (II) Meta-classifiers
training: the two meta-classifiers (𝜆𝐿 and 𝜆𝑅) are trained. (III) Recommendation: Given the
meta-features (fG) of an imbalanced regression dataset G, this phase recommends a learning
model (𝑙* ∈ L) and a resampling strategy (𝑟* ∈ R).

Meta-features
extraction

Meta-target
definition

(I)

Meta-classifiers
training

Meta-features
extraction Prediction

(III)

(II)

set of datasets

Source: Prepared by the author.

4.3.2.2 Meta-classifiers training phase

In this phase, two meta-classifiers are trained: 𝜆𝐿 that recommends a learning model
(𝑙𝑖 ∈ L) and 𝜆𝑅 to indicate the resampling strategy (𝑟𝑖 ∈ R) for an imbalanced regression
dataset (D𝑖). We proposed two training strategies: Independent and Chained.

Independent. Let 𝜆𝐿 and 𝜆𝑅 be learning models that recommend which learning algo-
rithm and resampling strategy should be used for D𝑖. The 𝜆𝐿 and 𝜆𝑅 models are trained using
M to predict D𝑖’s best learning algorithm and best resampling strategy. Thus, the final recom-
mendation combines the learning algorithm recommended by 𝜆𝐿 and the resampling strategy
recommended by 𝜆𝑅. The assumption is that the choice of the resampling strategy and learn-
ing model is independent and can be performed separately; the best resampling strategy can
be chosen independently of the chosen learning model and vice versa. Figure 19(a) illustrates
this training strategy.

Chained. There are two alternatives for the chaining order: Model first (Figure 19(b)),
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and Strategy first (Figure 19(c)). In the Model First approach, 𝜆𝐿 is trained using M, and the
model’s recommendation 𝑙 ∈ L is added to the meta-dataset as a meta-feature, generating
M′. After, the model 𝜆𝑅 is trained using M′ to recommend the resampling strategy. The
assumption is that the choice of the learning model helps to select the resampling strategy. In
the Strategy First approach, 𝜆𝑅 is trained using M, and the model’s recommendation 𝑟 ∈ R

is added to the meta-dataset as a meta-feature, generating M′. The 𝜆𝐿 model is then trained
to recommend the learning model using M′. The assumption is that the choice of resampling
strategy helps to select the learning model.

Figure 19 – Training of the meta-classifiers 𝜆𝐿 and 𝜆𝑅.

(a) Independet

(b) Model first

(c) Strategy first
Source: Prepared by the author.

4.3.2.3 Recommendation Phase

Given an imbalanced regression dataset G, this phase recommends a learning model (𝑙* ∈

L) and a resampling strategy (𝑟* ∈ R). The “Meta-features extraction” module (Phase III in
Figure 18) represents G as a vector of meta-features fG. After, fG is used as input to the
meta-classifiers 𝜆𝐿 and 𝜆𝑅 that return the learning model 𝑙* and the resampling strategy 𝑟*.
The type of recommendation is the best algorithm, where only the model and strategy with
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the highest performance are recommended.

4.4 EXPERIMENTAL METHODOLOGY

4.4.1 Datasets

The datasets were taken from the OpenML repository (VANSCHOREN et al., 2014). After
searching only for regression problems on OpenML, a total of 660 datasets was returned.
Subsequently, the datasets having less than 2.0% of rare cases were removed, resulting in 200
datasets. Additionally, we included 18 datasets from Moniz, Branco e Torgo (2017).

Thus, the evaluation study is performed on |D| = 218 datasets. An important aspect
of these datasets is their diversity in terms of number of examples varying between 27 and
20.640, the number of features ranging from 5 to 1024, and percentage of rare examples
varying from 2.0% to 39.6%. This diversity is crucial in the meta-learning process, as it allows
for the generalization of the model, making it more flexible and capable of dealing with a
greater variety of datasets (refer to Appendix A, Table 5.1, for more details).

4.4.2 Meta-features

Each dataset D𝑖 in the meta-dataset is represented by a vector of meta-features fD𝑖.
Forty-three meta-features were considered, with measures from different categories: simple
information about the dataset and complexity measures proposed in Lorena et al. (2018).
The simple category includes the number of examples, the number of attributes, the number
of rare cases, and the percentage of rare cases. Regarding complexity measures, data set
distribution, correlation between attributes and targets, performance metrics related to linear
regression, and data smoothness are considered (refer to Appendix B for details). The ECoL
package (LORENA et al., 2018; LORENA et al., 2019) was used to extract complexity measures.

4.4.3 Learning Algorithms

The learning algorithms set L is composed of six models from different families (single
and ensemble): Bagging (BG), Decision Tree (DT), Multilayer Perceptron (MLP), Random
Forest (RF), Support Vector Machine (SVM), and XGBoost (XG). These models were previ-
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ously employed in Avelino, Cavalcanti e Cruz (2024), where their sensitivity to the selection
of resampling strategies was demonstrated.

4.4.4 Resampling strategies

The resample strategies set R comprises six strategies plus no resampling (NONE). The
strategies, previously described in Section 4.2.1.2, are SmoteR (SMT), Random Over-sampling (RO),
Random Under-sampling (RU), Introduction of Gaussian Noise (GN), SMOGN (SG) and
WEighted Relevance-based Combination Strategy (WERCS).

4.4.5 Meta-Models

We select classification algorithms for the meta-models, focusing on models based on Deci-
sion Trees. These algorithms are renowned for their interpretability, widespread adoption in clas-
sification tasks, and consistently strong performance across diverse problem domains (HASTIE

et al., 2009). Besides, Decision Trees requires no scaling data transformation (de Amorim; CAVAL-

CANTI; CRUZ, 2023). Our chosen models include Random Forest (RF)1 (BREIMAN, 2001), Extra
trees (ET)1 (GEURTS; ERNST; WEHENKEL, 2006), Bagging (BG)1 (BREIMAN, 1996), k-Nearest
Oracles-Eliminate (Knora-E)2 (KO; SABOURIN; JR, 2008), k-Nearest Oracles-Union (Knora-
U)2 (KO; SABOURIN; JR, 2008), XGBoost (XG)3 (CHEN; GUESTRIN, 2016) e DES-MI2 (GARCÍA

et al., 2018).
These classification models have also been used in other meta-learning tasks (AGUIAR et

al., 2019; AMORIM; CAVALCANTI; CRUZ, 2024; SOUSA et al., 2016). We employed the default
configurations for all models. After comparing these models, we found that Random Forest
(RF) outperformed the others, achieving superior results (refer to Appendix C, Tables 22 and
23, for detailed comparisons). As a result, we selected this model for the Meta-IR analyses.

4.4.6 Evaluation Methodology

The Meta-IR is evaluated using the leave-one-dataset-out method. This cross-validation
technique involves using each dataset as the test set in an iteration, and the other datasets
1 scikit-learn - V. 1.2.2
2 deslib - V. 0.3.7
3 xgboost - V. 1.0.2
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are used to compose the meta-dataset (VANSCHOREN, 2019). Since we have 218 datasets, for
each iteration, the meta-dataset is constructed using |D| = 217 datasets, while the test G

has only one dataset.
The proposal is evaluated at the meta-level and base-level. The meta-level focuses on

evaluating the meta-classifiers for recommending the resampling strategy and regressor, with
the two proposed meta-classifier strategies, Independent and Chained, also being evaluated.
The evaluation at this level utilizes the F1-macro (classification) metric. At the base-level,
performance is evaluated on the recommendations of the meta-classifiers from the meta-
level, using the F1-scoreR (TORGO; RIBEIRO, 2009) and Squared error-relevance area (SERA)
metric (RIBEIRO; MONIZ, 2020). These metrics were chosen because they aim to effectively
evaluate model performance for extreme value predictions while being robust to model bias.
Furthermore, we also analyze the proposed method’s execution time and compare it to the
state-of-the-art AutoML methods.

The proposed method is compared at the meta-level with two baseline methods: Random
and Majority. The Random model randomly selects a class label from the available labels.
Let L and R, where L contains the learning models and R the resampling algorithms. For
each instance of the meta-dataset, the random recommendation model randomly chooses one
instance from L and one from R. The Majority model selects the class that appears most
frequently. In other words, this model chooses the class label most frequently in L and R. For
the F1-scoreR metric, the resampling strategy most represented is WERCS, and the learning
model is DT. For SERA is WERCS and RF (refer to Appendix D, Figure 27, for details).
These baselines are commonly employed to emphasize the necessity of a recommendation
system (BRAZDIL et al., 2008).

At the meta-level, Meta-IR is evaluated from three perspectives: i) Comparison with each
pipeline; ii) Comparison with AutoML frameworks such as Auto-sklearn, H2O, TPOT, FLAML,
LightAutoML, NaiveAutoML and the baselines Random and Majority; iii) Meta-IR as a pre-
processing step for AutoML frameworks.

The comparison of each pipeline demonstrates that no single combination is capable of
achieving more wins than Meta-IR. This indicates that there is no one-size-fits-all solution for
all datasets. This highlights the importance of our method, which determines the pipeline ac-
cording to the characteristics of the problem. On the other hand, the comparison with AutoML
frameworks aims to demonstrate that Meta-IR achieves better results than these methods in
imbalanced regression scenarios. Finally, by using Meta-IR output as a pre-processing step
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for AutoML frameworks, we highlight the importance of incorporating resampling strategy
recommendation into AutoML methods to address imbalanced problems.

4.5 RESULTS AND DISCUSSION

The evaluation of Meta-IR is divided into three perspectives: Meta-Level Analysis, Base-
level Analysis and Execution time analysis. In the Meta-Level Analysis (Section 4.5.1), the
meta-models performance is evaluated and compared with two baseline approaches: Random
and Majority. In Section 4.5.2, we present the Base-level Analysis, where we evaluate the
recommended learning models and resampling strategies. In this analysis, at the base-level, we
compare the recommendation of Meta-IR with Random, Majority, and the AutoML frameworks
Auto-sklearn, H2O, TPOT, FLAML, LightAutoML and NaiveAutoML. Furthermore, in this
section, we evaluate the Meta-IR as a pre-processing step for AutoML frameworks. The third
analysis presented in Section 4.5.3, where we consider the execution time of Meta-IR and each
AutoML framework. Finally, in Section 4.5.4, an analysis of the meta-features is conducted.

4.5.1 Meta-level analysis

The meta-level refers to evaluating the meta-model performance, that is, the effectiveness
exhibited by the meta-model in predicting the meta-target for the datasets. The Meta-IR
performance is compared with the performance of Random and Majority models, considering
the F1-macro metric. These results are illustrated in Figure 20 (a-b), considering F1-scoreR
and SERA metrics as optimization functions. The optimization function refers to a specific
metric used to guide the optimization process. It defines the objective that the model aims
to maximize (F1-scoreR) or minimize (SERA) during the learning process. The F1-scoreR and
SERA metrics were chosen as optimization functions because they are well-suited for capturing
the performance of models in the imbalanced regression problem.

The results are presented for each recommendation procedure. Meta-IR obtained better
results recommending the learning model and resampling strategy than Random and Majority
for all types of training in both optimization functions.

Another analysis we can extract from Figure 20 is about the training strategy. It is ob-
served that the order in which the model and resampling strategy are recommended affects
the recommendation. For the F1-scoreR, the Independent model achieved a lower F1-macro
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Figure 20 – Meta-IR performance for each type of training (Independent, Model First, and Strategy First)
compared with the baselines Random and Majority.

(a) F1-scoreR

(b) SERA
Source: Prepared by the author.

score compared to the Chained-trained model. Specifically, the Independent model attained
an F1-macro score of 0.33 for recommending the learning model, while the Chained model
(Strategy first) achieved 0.36, indicating that recommending the resampling strategy first led
to an increase in the F1-macro score for recommending the learning model. Regarding the
recommendation of the resampling strategy, the Independent model scored 0.14, while the
Chained model (Model first) scored 0.16, showing that recommending the learning model first
led to an increase in the F1-macro score for recommending the resampling strategy.
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On the other hand, when we evaluate considering the SERA metric, the behavior is different.
The use of the Chained model for training has a negative impact on the recommendation of
the learning model and resampling strategy. The Independent model attained an F1-macro
score of 0.31 for recommending the learning model, while the Chained model (Strategy first)
achieved 0.21. Regarding the recommendation of the resampling strategy, the Independent
model scored 0.21, while the Chained model (Model first) scored 0.20.

In conclusion, the analysis emphasizes the importance of the training strategy on the
performance of the Meta-IR meta-model, especially in how the order of recommendations
affects the outcomes. The Chained approach (Strategy first and Model first) improved the
F1-macro score for recommending the learning model and the resampling strategy, but it was
less effective when evaluated using the SERA metric. These findings highlight the importance
of selecting an appropriate training strategy based on the evaluation metric used, as it can
significantly impact the effectiveness of model and resampling strategy recommendations for
addressing imbalanced regression problems.

4.5.2 Base-level analysis

The Base-level Analysis assesses the learning models and resampling strategies recom-
mended by Meta-IR. We conducted the following analysis: (1) Meta-IR compared to each
combination of sampling strategy and learning model (Section 4.5.2.1); 2) Meta-IR compared
to Random, Majority and the AutoML frameworks: Auto-sklearn, H2O, TPOT, FLAML, Ligh-
tAutoML and NaiveAutoML (Section 4.5.2.2).

4.5.2.1 Comparison with each pipeline

Figure 21 shows how many times each model achieved the best result among all evaluated
combinations of resampling strategies and learning algorithms. These results represent the
oracle, showcasing the best possible outcomes for each dataset. The number of wins summation
per figure is equal to 218, which is the number of datasets in the used corpus. The results
indicate that Meta-IR outperformed all other strategies for both metrics, indicating that no
single combination consistently achieves a significant number of wins compared to Meta-IR.
Therefore, these outcomes highlight the potential of the Meta-IR model and the importance
of integrating Meta-IR into the pipeline recommendation process for imbalanced regression
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problems.

Figure 21 – Number of wins over all datasets: Meta-IR versus each pipeline (resampling strategy and regressor).

(a) F1-scoreR

(b) SERA
Source: Prepared by the author.

Tables 14 and 15 show the p-values of the Wilcoxon signed rank test, illustrating the
significance of performance discrepancies between Meta-IR and each specific combination.
There are 42 combinations in total (6 learning algorithms × 7 resampling strategies). For
the F1-scoreR, Meta-IR achieved statistically significantly better results, except for DT.GN
and DT.RO. It is crucial to highlight that the Decision Tree Regressor (DT) was the model
that appears more frequently as the best one, and it was defined as the Majority model
as described in Section 4.4.6. Meta-IR consistently performed significantly better regarding
the SERA metric, with p-values < 0.001. These findings suggest that Meta-IR consistently
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outperforms all combinations.

Table 14 – Pairwise comparison between the performances of the Meta-IR versus each pipeline (resampling
strategy and regressor) over all datasets. The values represent the p-value of the Wilcoxon signed-
rank test using the F1-scoreR metric. All results with 𝛼 < 0.05 are in bold.

Resampl Strat NONE GN RO RU SG SMT WERCS
p-value

BG 5.65e-24 7.06e-13 3.79e-13 5.08e-26 1.73e-18 4.98e-16 2.95e-11
DT 2.04e-5 0.323 0.177 9.65e-8 0.009 0.012 0.049

MLP 4.13e-17 3.18e-8 1.86e-11 5.73e-15 3.48e-10 9.44e-13 1.06e-8
RF 8.07e-18 9.26e-10 5.94e-14 3.54e-16 8.22e-16 8.18e-15 4.86e-8

SVR 1.53e-16 1.78e-6 3.32e-13 1.20e-17 9.85e-11 1.20e-7 3.35e-10
XG 7.99e-18 4.46e-11 2.34e-16 4.02e-16 2.91e-15 9.66e-17 5.15e-13

Source: Prepared by the author.

Table 15 – Pairwise comparison between the performances of the Meta-IR versus each pipeline (resampling
strategy and regressor) over all datasets. The values represent the p-value of the Wilcoxon signed-
rank test using the SERA metric. All results with 𝛼 < 0.05 are in bold.

Resampl Strat NONE GN RO RU SG SMT WERCS
p-value

BG 3.81e-15 5.77e-15 6.50e-16 4.45e-19 1.52e-18 1.11e-16 2.24e-14
DT 9.81e-21 1.75e-15 3.24e-18 7.57e-23 1.02e-21 1.03e-20 4.32e-23

MLP 1.68e-25 1.01e-28 2.16e-25 1.16e-27 3.28e-29 1.35e-25 1.96e-23
RF 3.19e-7 4.70e-7 1.17e-3 2.81e-12 9.16e-10 4.84e-7 2.88e-6

SVR 5.60e-14 8.58e-13 2.67e-14 4.21e-18 6.38e-16 2.22e-16 6.14e-15
XG 1.11e-29 1.42e-26 1.07e-29 1.30e-28 1.02e-28 7.87e-30 4.44e-29

Source: Prepared by the author.

4.5.2.2 Comparison with AutoML frameworks

The comparison of Meta-IR and various AutoML frameworks such as Auto-sklearn, H2O,
TPOT, FLAML, LightAutoML and NaiveAutoML, as well as the baselines Random and Major-
ity based on two metrics: F1-scoreR and SERA, is presented in Figure 22(a-b). To verify which
results are statistically different, the post-hoc Nemenyi test was applied. The presented Critical
Difference diagrams (DEMŠAR, 2006) for each model consider both metrics. The horizontal
line demonstrates the significance of the difference between the models. Models that are not
connected present a significant difference (p-value < 0.05) compared to the other methods.

For both the F1-ScoreR and SERA metrics, Meta-IR demonstrates the best results. How-
ever, for the SERA metric, there is no significant difference when compared to the Majority,
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H2O, FLAML and TPOT methods. Despite this, Meta-IR stands out when compared to other
methods. Therefore, we can conclude that there are benefits to using an MtL-based model for
recommending learning models and resampling strategies.

Figure 22 – Critical Difference diagrams obtained from the recommendations given by the models.
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(b) SERA
Source: Prepared by the author.

To better understand the behavior of the proposed model compared to the AutoML frame-
works concerning the SERA metric, we evaluated it across different percentages of rare cases.
By utilizing percentiles, we segmented the data into three categories of rare rare cases: low,
medium, and high. The low level consists of 45 datasets with rare case percentages below 8.2,
while the medium level consists of 78 datasets with percentages above 8.3 and below 15.2.
Lastly, the high level consists of 95 datasets with percentages exceeding 15.2. We performed
a pairwise comparison of the performance of the Meta-IR model and AutoML frameworks
for each category (Table 16). At the high level of rare cases, Meta-IR outperformed all other
AutoML frameworks, with p-values below the significance threshold (𝛼 < 0.05). However, at
the medium and low rare case levels, there were no statistically significant differences between
the performance of Meta-IR and the AutoML frameworks, as indicated by p-values above 0.05.
These findings suggest that while Meta-IR excels, particularly in scenarios with high rare cases,
its performance is comparable to other AutoML frameworks in datasets with lower levels of
rarity.

For the F1-scoreR metric, the Meta-IR consistently outperforms all other AutoML frame-
works when using the F1-scoreR metric. This demonstrates the Meta-IR’s effectiveness in
handling rare instances. Moreover, when considering a smooth function that weights each ex-
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Table 16 – Pairwise comparison between the performances of the Meta-IR versus AutoML frameworks at each
level of percentage of rare cases (High, Medium and Low). The values represent the p-value of the
Wilcoxon signed-rank test using the SERA metric. All results with 𝛼 < 0.05 are in bold.

Auto-sklearn H2O TPOT FLAML LightAutoML NaiveAutoML

High 5.070e-6 1.829e-4 7.714e-5 0.001 1.502e-7 3.185e-16
Medium 0.387 0.558 0.638 0.167 0.775 3.879e-8
Low 0.376 0.474 0.947 0.991 0.308 6.655e-8

Source: Prepared by the author.

ample based on a relevance function without explicitly distinguishing between rare and normal
cases (SERA metric), the advantages of Meta-IR become more apparent, particularly in scenar-
ios with higher percentages of rare cases. This suggests that the Meta-IR’s ability to weigh the
importance of rare cases effectively makes it advantageous in situations where rare instances
significantly impact the overall performance. Therefore, Meta-IR is an effective solution for
tasks where addressing rare cases is essential.

Another comparison between Meta-IR and AutoML frameworks is made in terms of wins,
ties, and losses. The results, which are presented in Table 17, show that Meta-IR consistently
outperformed the AutoML frameworks across various datasets, achieving a minimum victory
percentage of 57.80% and a maximum of 75.69%. These percentages underscore Meta-IR’s
superiority over AutoML approaches for handling imbalanced regression, highlighting its effec-
tiveness across diverse datasets and reinforcing its potential as a robust solution for imbalanced
regression tasks.

Table 17 – Win/tie/loss of the Meta-IR versus AutoML frameworks.

Auto-sklearn H2O TPOT FLAML LightAutoML NaiveAutoML

F1-scoreR 143/0/75 143/0/75 147/2/69 145/0/73 165/4/49 132/4/82
SERA 135/0/83 128/0/90 129/0/89 126/0/92 142/0/76 199/0/19

Source: Prepared by the author.

Those findings are promising and showcase the potential of Meta-IR as a competitive
alternative in automated machine learning, specifically in imbalanced regression problems.
Furthermore, one notable disadvantage of AutoML frameworks is their lack of specific metrics
for imbalanced regression as an optimization function. Traditional regression metrics may
not adequately capture the model’s performance. Unlike Meta-IR, which explicitly addresses
imbalanced regression, AutoML frameworks have limited optimization functions, and the lack
of resampling strategies can be a limiting aspect when dealing with imbalanced data.
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4.5.2.3 Meta-IR as a pre-processing step for AutoML frameworks

This section explores the advantages of using the Meta-IR method in conjunction with Au-
toML frameworks for imbalanced regression tasks. While previous sections have demonstrated
the effectiveness of Meta-IR, here we focus on its role as a pre-processing step to enhance
the performance of AutoML frameworks. We used the recommendations from the resampling
strategies provided by the Independent Meta-IR model and applied the recommendation as
pre-processing before the AutoML models.

Table 18 compares different AutoML frameworks based on their F1-scoreR and SERA mean
performance before and after the Meta-IR pre-processing step. The column Δ shows the per-
centage improvement from using Meta-IR. Regarding the F1-scoreR, all AutoML frameworks
improve with Meta-IR. LightAutoML shows the highest improvement of 16.50%, followed
by FLAML with 8.64%. However, the SERA metric results vary. Auto-sklearn and TPOT
have significantly increased SERA values (1008.41% and 42.84%, respectively), while H2O,
NaiveAutoML, and LightAutoML have substantially decreased SERA values, indicating im-
proved performance, with reductions of -82.87%, -28.37% and -10.00%, respectively.

Table 18 – Meta-IR as a pre-processing step and Comparison with Baseline

Baseline Meta-IR Δ (%) Baseline Meta-IR Δ (%)

↑ F1-scoreR ↓ SERA

Auto-sklearn 0.246 0.258 4.88 1.485e+10 1.645e+11 1008.41
H2O 0.248 0.259 4.44 2.219e+11 3.801e+10 -82.87
TPOT 0.244 0.258 5.74 2.116e+10 3.022e+10 42.84
FLAML 0.243 0.264 8.64 1.875e+10 2.355e+10 25.60
LightAutoML 0.206 0.240 16.50 3.132e+10 2.819e+10 -10.00
Naive AutoML 0.264 0.277 4.92 6.388e+10 4.575e+10 -28.37

Source: Prepared by the author.

In Figure 23, critical difference diagrams illustrate the performance of the F1-scoreR and
SERA metrics. Regarding F1-scoreR, the results reveal significant insights into the performance
improvements the Meta-IR approach brings when combined with various AutoML methods.
Notably, combinations like FLAML + Meta-IR, H2O + Meta-IR, and Auto-sklearn + Meta-
IR consistently rank higher than their baseline. This suggests that the Meta-IR technique
effectively enhances the predictive capabilities and overall F1-scoreR performance of these
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AutoML frameworks. On the other hand, considering the SERA metric, the combination of
LightAutoML with Meta-IR achieves the highest performance, significantly outperforming other
methods, including its baseline.

Figure 23 – Critical Difference diagrams obtained from the recommendations given by the models.
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Source: Prepared by the author.

In summary, the analysis of Meta-IR as a pre-processing step shows its potential to im-
prove the performance of various AutoML frameworks significantly. There were noticeable
enhancements in F1-scoreR for all tested methods, especially for LightAutoML and FLAML.
These results suggest that Meta-IR effectively enhances the predictive capabilities of these
frameworks. However, evaluating the SERA metric provides a different perspective, revealing
substantial improvements with Meta-IR for LightAutoML, H2O and NaiveAutoML, while other
methods yield mixed results. This indicates that the impact of Meta-IR on SERA varies by
method, necessitating further exploration to understand the relationship. Overall, the positive
improvements in F1-scoreR underscore the value of Meta-IR in enhancing model performance.
Nonetheless, carefully considering its effects on different metrics is crucial to maximize its
benefits in practical applications.
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4.5.3 Execution time analysis

This section evaluates the execution time of Meta-IR against AutoML frameworks. The
Meta-IR process involves extracting meta-features and recommending a pipeline and for all
AutoML frameworks was given a maximum budget of 1 hour. However, it is important to
emphasize that AutoML models can produce output before the 1-hour mark. A comparison was
made using ten datasets (see Table 19) to determine whether Meta-IR offers a time-efficient
option compared to AutoML frameworks. This assessment aims to highlight the scalability and
potential time-saving benefits of the proposed approach.

Table 19 – Data sets used to calculate time.

Dataset n.samples n.attributes n.rare p.rare

cpu-act 209 36 33 15.8
a1 198 11 28 14.1
auto93 93 57 11 11.8
QSAR-TID-10929 154 1024 18 11.7
heat 7400 11 664 9.0
fri-c4-1000-10 1000 10 89 8.9
compactiv 8192 21 713 8.7
sleuth-case2002 147 6 12 8.2
space-ga 3107 6 173 5.6
wind 6574 14 283 4.3

Source: Prepared by the author.

Figure 24 illustrates the relationship between time and performance for each of the models
considered. Meta-IR outperforms all the AutoML frameworks in terms of processing speed. This
finding suggests that the proposed method is efficient and scalable. However, it is essential
to remember that execution times can vary considerably based on characteristics such as the
input data size and the number of parameters evaluated for each model and strategy.

4.5.4 Meta-features analysis

This analysis explored the importance of meta-features for the Meta-IR meta-model. We
determined their importance using the feature_importance attribute of the Random Forest
model, which measures the relative influence of each meta-feature on the model’s predictive
ability. The feature importance is determined based on Gini impurity (BREIMAN, 2017), pro-
viding a measure of how much each meta-feature contributes to the overall performance of
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Figure 24 – Time and performance of each model.
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the model.
In Figures 25 and 26, we plot the feature importance (x-axis) of all meta-features (y-axis)

for the meta-models trained for both metrics (F1-scoreR and SERA) as optimization function.
The plot displays the features importance with a gradient color scheme, where lighter shades
indicate lower importance and darker shades indicate higher importance.

In analyzing both metrics, it became evident that the percentage of rare cases (p.rare) is a
crucial factor in determining the recommended resampling strategy, due to its direct correlation
with data imbalance. Additionally, the measures C3.min, C4.mean, and S1.mean also play a
significant role in this determination. When considering model recommendation, S1.sd emerges
as a key factor for the F1-scoreR, while T3 and C2.mean are notable for the SERA metric.
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Generally, the minimum values of the measures (.min) have the least influence, indicating
that, in the context of an imbalanced regression problem, these minimum values might not
be significantly important in recommending learning models and resampling strategies. This
suggests that focusing on other aspects or statistical properties, such as maximum values,
average values, or variance, as well as simple statistics including the number of examples and
the number of rare cases can be more beneficial in making informed decisions.

Upon analyzing the most important meta-features, we have observed that three (C2.mean,
C3.min, and C4.mean) measure the relationship between features and the output. This indi-
cates that the relationship between features and the target is crucial in representing imbalanced
datasets. The other two meta-features (S1.mean and S1.sd) are related to the output distribu-
tion, a fundamental characteristic for addressing the imbalance. The target distribution may be
directly linked to selecting the best resampling strategies and learning models. Understanding
the target distribution is essential for choosing the pipeline.

It is essential to recognize a limitation related to the meta-features used in this study.
Integrating additional high-quality features relevant to the problem could significantly enhance
the model’s effectiveness. This improvement would positively impact the outcomes of the meta-
models and refine the base-level analysis. This recognition highlights the potential for future
enhancements that could lead to more robust and accurate results, extending the applicability
and effectiveness of the models proposed in this work.
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Figure 25 – Feature Importance for recommending the Learning model (a-c) and the Resampling Strategy
(d-f), considering F1-scoreR metric as optimization function.

(a) Independent (b) ModelFirst (c) StrategyFirst

(d) Independent (e) ModelFirst (f) StrategyFirst
Source: Prepared by the author.
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Figure 26 – Feature Importance for recommending the Learning model (a-c) and the Resampling Strategy
(d-f), considering SERA metric as optimization function.

.
(a) Independent (b) ModelFirst (c) StrategyFirst

(d) Independent (e) ModelFirst (f) StrategyFirst
Source: Prepared by the author.
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4.6 CONCLUSIONS

This work introduced Meta-IR, a meta-learning framework for recommending pipelines for
imbalanced regression. Recommendations are made in two ways: Independent and Chained. We
conducted an extensive experimental study consisting of 218 imbalanced regression datasets
and taking into account 6 resampling techniques and 6 regression models. The meta-level
analysis showed Meta-IR outperforms Majority and Random baselines in F1-scoreR and SERA
metrics, highlighting the advantage of a meta-learning approach. The base-level assessment
revealed that Meta-IR recommendations significantly surpassed Majority and Random. Fur-
thermore, the results showed that Meta-IR consistently outperforms all AutoML frameworks
when using the F1-scoreR metric, and when considering the SERA metric, Meta-IR has advan-
tages, particularly in scenarios with a high percentage of rare cases. In terms of time-efficiency,
Meta-IR is superior to AutoML frameworks.

The analysis also considered the impact of Meta-IR as a pre-processing step on the per-
formance of various AutoML frameworks. It found that using Meta-IR significantly improved
the F1-scoreR for all AutoML frameworks. However, its impact on the SERA metric varied
depending on the AutoML method used. While it improved SERA for LightAutoML, H2O and
NaiveAutoML, other methods showed deteriorated results. This indicates that the effect of
Meta-IR on SERA depends on the AutoML method and needs more investigation.

One limitation of this work is the lack of hyperparameter optimization. We chose not to
perform hyperparameter optimization in this study in order to manage computational com-
plexity and to emphasize the primary contribution of the research. We have shown that the
recommended models perform consistently well across various problems without requiring fine-
tuning, thus underscoring the generality and applicability of our approach. While including hy-
perparameter optimization in future work could potentially further improve results, its absence
does not compromise the validity of the main conclusions of this study. Our future work will
also enhance the chained algorithm recommendations by assessing multilabel strategies and
investigating another meta-feature set.
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5 GENERAL CONCLUSION

The imbalanced regression problem has unique challenges because of the data distribution,
where certain value ranges are underrepresented. One way to address these challenges is by
using resampling strategies. Our thorough evaluation has revealed that the effectiveness of
these strategies is highly contingent on several factors, including the problem, the learning
model, and the performance metrics used. Despite the variety of resampling techniques avail-
able in the literature, there is no approach to recommend specific resampling strategies for
every problem or to establish a relationship between the learning model and the resampling
strategy. Therefore, choosing an appropriate resampling method is crucial for addressing this
specific task.

To address this issue, we propose Meta-IR, a meta-learning-based model designed explicitly
for imbalanced regression problems. Meta-IR aims to recommend optimal learning models and
resampling strategies based on the meta-features of the problem. It customizes a pipeline by
suggesting the most suitable resampling strategy and learning algorithm for the new problem’s
meta-features. It offers two approaches: Independent, which trains meta-classifiers separately
for the best learning model and resampling strategy, and Chained, which integrates these
decisions sequentially.

Overall, Meta-IR proves to be a promising approach for addressing imbalanced regression
problems. Our extensive experimental study on 218 imbalanced datasets has demonstrated
that Meta-IR significantly improves performance over Majority and Random baselines and
consistently outperforms all AutoML frameworks when using the F1-scoreR metric. When
considering the SERA metric, Meta-IR has advantages, particularly in scenarios with a high
percentage of rare cases. In terms of time efficiency, Meta-IR is superior to AutoML frameworks.

The analysis also considered the impact of Meta-IR as a pre-processing step on the per-
formance of various AutoML frameworks. It found that using Meta-IR significantly improved
the F1-scoreR for all AutoML frameworks. However, its impact on the SERA metric varied
depending on the AutoML method. While it improved SERA for LightAutoML, H2O, and
NaiveAutoML, other methods showed deteriorated results. This indicates that the effect of
Meta-IR on SERA depends on the AutoML method and needs more investigation.

In conclusion, by tailoring the resampling strategy and learning model to the specific char-
acteristics of each dataset, Meta-IR achieves notable enhancements in predictive accuracy.
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This approach meets the primary goals of our work, offering a solution for the challenges of
imbalanced regression.

5.1 LIMITATIONS AND FUTURE WORK

While Meta-IR presents a promising approach for tackling imbalanced regression problems,
there are limitations and areas for future improvement.

Firstly, hyperparameter optimization has not been explored in this framework. The cur-
rent implementation of Meta-IR does not tune hyperparameters for the learning models and
resampling strategies it recommends. Future work should focus on integrating comprehensive
hyperparameter optimization to enhance the performance and robustness of the recommended
pipelines. This could involve techniques such as grid search, random search, or more advanced
methods like Bayesian optimization to explore the hyperparameter space and identify optimal
settings systematically.

Secondly, the quality and relevance of the meta-features used by Meta-IR could also be im-
proved. While the current meta-features provide a basis for recommending appropriate models
and strategies, there is potential to enhance their effectiveness by incorporating additional or
more sophisticated features. Future research could explore the inclusion of new meta-features
that capture more profound insights into the data characteristics and problem specifics. This
might involve developing new methods for feature extraction to create more informative meta-
features.

Addressing these limitations by optimizing hyperparameters and refining meta-features
will be essential for advancing the Meta-IR framework. These improvements are expected to
enhance the performance of Meta-IR further and expand its applicability to a more expansive
range of imbalanced regression scenarios.
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APPENDIX A - DATASET DESCRIPTION

Table 20 – Datasets ordered by the percentage of rare cases. (n.examples: Number of examples; n.attributes:
Number of attributes; n.rare: Number of rare cases; p.rare: 100× 𝑛.𝑟𝑎𝑟𝑜/𝑛.𝑒𝑥𝑒𝑚𝑝𝑙𝑜𝑠

Dataset n.samples n.attributes n.rare p.rare

QSAR-TID-20137 101 1024 40 39,6

QSAR-TID-11569 120 1024 44 36,7

QSAR-TID-11637 96 1024 34 35,4

QSAR-TID-10426 27 1024 9 33,3

QSAR-TID-12847 215 1024 68 31,6

QSAR-TID-101612 91 1024 28 30,8

QSAR-TID-101332 106 1024 32 30,2

QSAR-TID-12263 47 1024 13 27,7

QSAR-TID-101602 79 1024 21 26,6

QSAR-TID-12959 72 1024 19 26,4

QSAR-TID-10778 82 1024 21 25,6

rabe-265 51 6 13 25,5

QSAR-TID-30050 80 1024 20 25,0

QSAR-TID-30005 81 1024 20 24,7

QSAR-TID-103453 73 1024 18 24,7

QSAR-TID-101333 168 1024 41 24,4

QSAR-TID-101226 79 1024 19 24,1

QSAR-TID-11843 84 1024 20 23,8

QSAR-TID-101553 80 1024 19 23,8

QSAR-TID-10939 81 1024 19 23,5

wine-quality 6497 11 1523 23,4

analcat-apnea3 450 11 103 22,9
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Dataset n.samples n.attributes n.rare p.rare

QSAR-TID-101231 79 1024 18 22,8

analcat-ncaa 120 19 27 22,5

QSAR-TID-19607 143 1024 32 22,4

QSAR-TID-101317 99 1024 22 22,2

QSAR-TID-10478 86 1024 19 22,1

analcat-apnea1 475 11 104 21,9

QSAR-TID-100833 83 1024 18 21,7

QSAR-TID-30024 84 1024 18 21,4

QSAR-TID-100975 75 1024 16 21,3

analcat-apnea2 475 11 101 21,3

QSAR-TID-101448 80 1024 17 21,3

QSAR-TID-101340 86 1024 18 20,9

analcat-supreme 4052 7 835 20,6

meta 528 65 108 20,5

QSAR-TID-100918 88 1024 18 20,5

QSAR-TID-101048 74 1024 15 20,3

QSAR-TID-101191 74 1024 15 20,3

QSAR-TID-100925 79 1024 16 20,3

QSAR-TID-10621 99 1024 20 20,2

QSAR-TID-10618 134 1024 27 20,1

kc1-numeric 145 94 29 20,0

QSAR-TID-101399 75 1024 15 20,0

QSAR-TID-101433 81 1024 16 19,8

QSAR-TID-30009 102 1024 20 19,6

QSAR-TID-100063 149 1024 29 19,5
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Dataset n.samples n.attributes n.rare p.rare

QSAR-TID-30027 83 1024 16 19,3

QSAR-TID-20162 156 1024 30 19,2

QSAR-TID-101278 79 1024 15 19,0

QSAR-TID-101584 74 1024 14 18,9

QSAR-TID-11281 43 1024 8 18,6

QSAR-TID-100951 81 1024 15 18,5

QSAR-TID-11784 65 1024 12 18,5

QSAR-TID-11873 115 1024 21 18,3

analcat-chlamydia 100 17 18 18,0

QSAR-TID-30034 162 1024 29 17,9

socmob 1156 39 206 17,8

QSAR-TID-101130 79 1024 14 17,7

QSAR-TID-101239 80 1024 14 17,5

QSAR-TID-12780 121 1024 21 17,4

QSAR-TID-101055 81 1024 14 17,3

QSAR-TID-30022 81 1024 14 17,3

QSAR-TID-30041 81 1024 14 17,3

QSAR-TID-30015 116 1024 20 17,2

analcat-wildcat 163 5 28 17,2

QSAR-TID-11056 41 1024 7 17,1

QSAR-TID-30010 82 1024 14 17,1

QSAR-TID-10844 166 1024 28 16,9

QSAR-TID-30020 89 1024 15 16,9

a6 198 11 33 16,7

cocomo-numeric 60 56 10 16,7
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Dataset n.samples n.attributes n.rare p.rare

QSAR-TID-30004 84 1024 14 16,7

kdd-coil-6 316 18 52 16,5

QSAR-TID-100906 79 1024 13 16,5

QSAR-TID-101324 79 1024 13 16,5

QSAR-TID-101309 73 1024 12 16,4

QSAR-TID-12718 134 1024 22 16,4

QSAR-TID-100416 122 1024 20 16,4

machineCPU 209 6 34 16,3

abalone 4177 8 679 16,3

a3 198 11 32 16,2

nasa-numeric 93 90 15 16,1

QSAR-TID-102669 180 1024 29 16,1

QSAR-TID-30042 81 1024 13 16,0

QSAR-TID-101204 75 1024 12 16,0

QSAR-TID-10983 119 1024 19 16,0

QSAR-TID-30032 107 1024 17 15,9

cpu-act 209 36 33 15,8

QSAR-TID-30000 83 1024 13 15,7

a4 198 11 31 15,7

QSAR-TID-30016 97 1024 15 15,5

QSAR-TID-17121 182 1024 28 15,4

QSAR-TID-11692 98 1024 15 15,3

forestFires 517 12 79 15,3

kdd-coil-3 316 18 48 15,2

QSAR-TID-101503 79 1024 12 15,2
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Dataset n.samples n.attributes n.rare p.rare

QSAR-TID-11361 79 1024 12 15,2

QSAR-TID-101610 145 1024 22 15,2

analcat-olympic2000 66 11 10 15,2

QSAR-TID-12407 66 1024 10 15,2

sleuth-case1202 93 6 14 15,1

QSAR-TID-101312 80 1024 12 15,0

QSAR-TID-10782 116 1024 17 14,7

QSAR-TID-10143 62 1024 9 14,5

QSAR-TID-11639 201 1024 29 14,4

a1 198 11 28 14,1

QSAR-TID-11107 85 1024 12 14,1

QSAR-TID-10466 78 1024 11 14,1

fri-c2-100-5 100 5 14 14,0

fri-c4-250-10 250 10 35 14,0

kdd-coil-4 316 18 44 13,9

QSAR-TID-101506 79 1024 11 13,9

a7 198 11 27 13,6

QSAR-TID-100931 110 1024 15 13,6

kdd-coil-2 316 18 43 13,6

fri-c3-250-5 250 5 34 13,6

QSAR-TID-100835 125 1024 17 13,6

QSAR-TID-20025 89 1024 12 13,5

analcat-election2000 67 14 9 13,4

humans-numeric 75 14 10 13,3

QSAR-TID-103800 91 1024 12 13,2
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Dataset n.samples n.attributes n.rare p.rare

kidney 76 10 10 13,2

veteran 137 13 18 13,1

kdd-coil-7 316 18 41 13,0

analcat-seropositive 132 5 17 12,9

boston 506 13 65 12,8

QSAR-TID-11113 94 1024 12 12,8

pdgfr 79 320 10 12,7

fri-c3-500-5 500 5 63 12,6

QSAR-TID-10187 64 1024 8 12,5

QSAR-TID-11094 192 1024 24 12,5

QSAR-TID-100424 97 1024 12 12,4

QSAR-TID-102667 106 1024 13 12,3

kdd-coil-5 316 18 38 12,0

sensory 576 11 69 12,0

auto93 93 57 11 11,8

QSAR-TID-11299 68 1024 8 11,8

QSAR-TID-10929 154 1024 18 11,7

delta-elevators 9517 6 1109 11,7

QSAR-TID-10012 224 1024 26 11,6

a2 198 11 22 11,1

QSAR-TID-101504 99 1024 11 11,1

fri-c3-100-50 100 50 11 11,0

QSAR-TID-20128 100 1024 11 11,0

QSAR-TID-17086 74 1024 8 10,8

kdd-coil-1 316 18 34 10,8
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Dataset n.samples n.attributes n.rare p.rare

triazines 186 60 20 10,8

airfoild 1503 5 161 10,7

a5 198 11 21 10,6

QSAR-TID-101301 151 1024 16 10,6

treasury 1049 15 109 10,4

pharynx 195 10 20 10,3

mortgage 1049 15 106 10,1

debutanizer 2394 7 240 10,0

QSAR-TID-100790 170 1024 17 10,0

QSAR-TID-103071 150 1024 15 10,0

fri-c4-1000-25 1000 25 99 9,9

QSAR-TID-30046 81 1024 8 9,9

QSAR-TID-10407 176 1024 17 9,7

QSAR-TID-11209 95 1024 9 9,5

QSAR-TID-101033 75 1024 7 9,3

fuel-consumption-country 1764 37 164 9,3

QSAR-TID-12131 111 1024 10 9,0

fri-c2-500-25 500 25 45 9,0

heat 7400 11 664 9,0

QSAR-TID-100127 101 1024 9 8,9

QSAR-TID-10967 101 1024 9 8,9

fri-c4-1000-10 1000 10 89 8,9

california 20640 8 1821 8,8

available-power 1802 15 157 8,7

compactiv 8192 21 713 8,7
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Dataset n.samples n.attributes n.rare p.rare

cpu 8192 21 713 8,7

fishcatch 158 7 13 8,2

fri-c3-1000-10 1000 10 82 8,2

fri-c3-1000-5 1000 5 82 8,2

autoPrice 159 15 13 8,2

sleuth-case2002 147 6 12 8,2

QSAR-TID-103062 74 1024 6 8,1

cps-85-wages 534 23 43 8,1

chscase-census2 400 7 32 8,0

QSAR-TID-11567 76 1024 6 7,9

chatfield-4 235 12 18 7,7

places 329 8 25 7,6

QSAR-TID-12536 202 1024 15 7,4

plasma-retinol 315 18 23 7,3

QSAR-TID-100155 138 1024 10 7,2

maximal 1802 32 129 7,2

QSAR-TID-12635 85 1024 6 7,1

QSAR-TID-10113 131 1024 9 6,9

QSAR-TID-12887 117 1024 8 6,8

QSAR-TID-102988 88 1024 6 6,8

chscase-census3 400 7 27 6,8

QSAR-TID-10856 121 1024 8 6,6

cloud 108 9 7 6,5

Moneyball 1232 53 79 6,4

fri-c0-250-10 250 10 16 6,4
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Dataset n.samples n.attributes n.rare p.rare

bank8FM 8192 8 524 6,4

QSAR-TID-10728 172 1024 11 6,4

QSAR-TID-19689 157 1024 10 6,4

no2 500 7 31 6,2

QSAR-TID-12173 114 1024 7 6,1

QSAR-TID-12013 200 1024 12 6,0

QSAR-TID-12587 157 1024 9 5,7

lungcancer-shedden 442 24 25 5,7

cholesterol 303 13 17 5,6

space-ga 3107 6 173 5,6

liver-disorders 345 5 19 5,5

chscase-census6 400 6 22 5,5

concreteStrength 1030 8 55 5,3

acceleration 1732 14 89 5,1

pwLinear 200 10 10 5,0

wind 6574 14 283 4,3

pm10 500 7 21 4,2

chscase-census5 400 7 13 3,3

fri-c0-1000-50 1000 50 27 2,7

fri-c3-1000-50 1000 50 25 2,5

fri-c4-1000-50 1000 50 20 2,0

Source: Prepared by the author.
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APPENDIX B - META-FEATURES DESCRIPTION

Maximum feature correlation to the output (𝐶1):

The absolute value of Spearman’s correlation (𝜌) is calculated between each attribute (𝑥)
and the outputs (𝑦). 𝐶1 is the maximum value obtained among all attributes, as represented
in Equation 1. A higher value of this measure indicates a simpler problem.

𝐶1 = max
𝑗=1,...,𝑑

|𝜌(𝑥𝑗, 𝑦)| (1)

Average feature correlation to the output (𝐶2):

In this measure, the average of the correlations of all features with the output is calculated,
as shown in Equation 2. Similarly to 𝐶1, higher values indicate simpler problems.

𝐶2 =
𝑑∑︁

𝑗=1

|𝜌(𝑥𝑗, 𝑦)|
𝑑

(2)

Individual feature efficiency (𝐶3):

For each attribute, the number of examples that need to be removed from the dataset
to achieve a high correlation with the output is calculated. Then, the number of removed
examples (𝑛𝑗) is divided by the total number of examples (𝑛) for each attribute, and the
minimum of these values is returned, as shown in Equation 3.

𝐶3 =
𝑑

min
𝑗=1

𝑛𝑗

𝑛
(3)

Collective feature efficiency (𝐶4):

Initially, the attribute with the highest correlation with the output is identified. Then, all
examples with |𝜖𝑖| < 0.1 are excluded. Subsequently, the most correlated attribute with the
remaining points is found, and the process is repeated until all attributes have been analyzed.
Finally, the proportion of examples where |𝜖𝑖| > 0.1 is returned, as described in Equation 4.
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𝐶4 = #{𝑋𝑖||𝜖𝑖| > 0.1}𝑇𝑙

𝑛
(4)

Where 𝑛 is the number of examples remaining in the dataset. 𝑇𝑙 is the dataset from which
this number is calculated, and 𝑙 is the number of iterations performed by the algorithm.

Mean absolute error (𝐿1):

In 𝐿1 (Equation 5), the average of the absolute values of the residuals from a multiple
linear regressor is calculated. Lower values indicate simpler problems.

𝐿1 =
𝑛∑︁

𝑖=1

|𝜀𝑖|
𝑛

(5)

Residual variance (𝐿2):

In 𝐿2, the average of the squared residuals from a multiple linear regressor is calculated.
Lower values indicate simpler problems, as described in Equation 6.

𝐿2 =
𝑛∑︁

𝑖=1

𝜀2
𝑖

𝑛
(6)

Output distribution (𝑆1):

Initially, a Minimum Spanning Tree (MST) is generated from the input data. Each data
item corresponds to a vertex in the graph, while edges are weighted according to the Euclidean
distance between examples in the input space. The MST connects the closest examples to each
other. Finally, 𝑆1 monitors whether the examples joined in the MST have similar output values.
Lower values indicate simpler problems. This measure is expressed in Equation 7.

𝑆1 = 1
𝑛

∑︁
𝑖:𝑗∈𝑀𝑆𝑇

|𝑦𝑖 − 𝑦𝑗| (7)

Where the sum is taken over all vertices 𝑖 and 𝑗 that are adjacent in the MST. 𝑆1 calculates
the average of the outputs of the points connected in the MST.
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Input distribution (𝑆2):

In this measure, the Euclidean distance between pairs of neighboring examples is calculated.
To achieve this, the data points are initially sorted according to their output values. 𝑆2 is
presented in Equation 8.

𝑆2 = 1
𝑛

𝑛∑︁
𝑖=1
||𝑥𝑖 − 𝑥𝑖−1||2 (8)

Error of a nearest neighbor regressor (𝑆3):

In 𝑆3, the closeness of examples is measured. For this purpose, a 1-NN regressor looks for
the training example (𝑥𝑖) most similar to the new example and assigns it the same output
(𝑦𝑖), as shown in Equation 9.

𝑆3 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑁𝑁(𝑥𝑖)− 𝑦𝑖)2 (9)

Non-linearity of a linear regressor (𝐿3):

Given a dataset, pairs of examples with similar outputs are initially selected, and a new test
point is created by performing random interpolation. The original data is then used to train a
linear regressor, and the new points are used to measure the mean squared error (MSE).

𝐿3 = 1
𝑙

𝑙∑︁
𝑖=1

(𝑓(𝑥′
𝑖)− 𝑦′

𝑖)2 (10)

Where 𝑙 is the number of interpolated examples, 𝑥′
𝑖 are the generated points, and 𝑦′

𝑖 are
their labels. Lower values indicate simpler problems.

Non-linearity of nearest neighbor regressor (𝑆4):

This measure employs the same steps described for 𝐿3, but uses a nearest neighbor regressor
for predictions. 𝑆4 is defined in Equation 11.
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𝑆4 = 1
𝑙

𝑙∑︁
𝑖=1

(𝑁𝑁(𝑥′
𝑖)− 𝑦′

𝑖)2 (11)

Average number of examples per dimension (𝑇2):

It is defined as the average number of examples (𝑛) per dimension (𝑑), as presented in
Equation 14. Lower values indicate more complex datasets.

𝑇2 = 𝑛

𝑑
(12)

Average number of PCA dimensions per data point (𝑇3):

The metric 𝑇3 uses Principal Component Analysis (PCA) to assess dataset characteristics.
Unlike 𝑇2, which relies on the raw dimensionality of the feature vector, 𝑇3 employs the num-
ber of PCA components required to capture 95% of data variability (denoted as 𝑚′) as the
foundation for evaluating data sparsity.

𝑇3 = 𝑚′

𝑛
(13)

Ratio of PCA dimensions to the original dimensions (𝑇4):

This measure estimates the proportion of relevant dimensions within the dataset. The
concept of relevance is evaluated based on the PCA criterion, which aims to transform features
into uncorrelated linear functions that effectively describe the majority of data variability.

𝑇4 = 𝑚′

𝑚
(14)
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Table 21 – Characteristic, acronym, aggregation functions and description of meta-features.

Characteristic Acronym Aggregation Functions Description

Simple

n.examples - Number of examples
n.attributes - Number of attributes

n.rare - Number of rare cases (𝜑 > 0.8)
p.rare - Percentage of rare cases

Dataset
Distribution

T2 - Average number of examples per dimension
T3 - Average intrinsic dimension per number of examples
T4 - Proportion of intrinsic dimensionality

Correlation between
Attributes and Targets

C2 {avg, max, min, sd} Average feature correlation to the output
C3 {avg, max, min, sd} Individual feature efficiency
C4 {avg} Collective feature efficiency

Linear Regression-
Related Performance Metrics

L1 {avg, max, min, sd} Mean absolute error
L2 {avg, max, min} Residual variance
L3 {avg, max, min, sd} Non-linearity of a linear regressor

Data Smoothness

S1 {avg, max, min, sd} Output distribution
S2 {avg, max, min, sd} Input distribution
S3 {avg, max, min, sd} Error of a nearest neighbor regressor
S4 {avg, max, min, sd} Non-linearity of nearest neighbor regressor

Prediction ** Model - Predicted learning model
Strategy - Predicted resampling strategy

** Used only in Model First and Strategy First recommendation procedures.

Source: Prepared by the author.
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APPENDIX C - META-MODELS EVALUATION

Table 22 – Performances (Accuracy) achieved by the meta-models for each type of training. Best results are
in bold.

Approach Label DESMI KNORAU KNORAE ET BG RF XGB

Independent 𝑟 0.376 0.385 0.376 0.417 0.408 0.417 0.431
Independent 𝑙 0.376 0.394 0.417 0.477 0.440 0.500 0.431
Model_first 𝑟 0.353 0.390 0.289 0.417 0.408 0.454 0.436
Model_first 𝑙 0.372 0.385 0.367 0.482 0.454 0.491 0.431
Strategy_first 𝑟 0.339 0.427 0.335 0.390 0.394 0.417 0.431
Strategy_first 𝑙 0.408 0.422 0.390 0.468 0.450 0.459 0.431

Source: Prepared by the author.

Table 23 – Performances (Accuracy) achieved by the meta-models for each type of training. Best results are
in bold.

Approach Label DESMI KNORAU KNORAE ET BG RF XGB

Independent 𝑟 0.330 0.339 0.303 0.353 0.317 0.362 0.335
Independent 𝑙 0.367 0.404 0.427 0.440 0.440 0.472 0.394
Model_first 𝑟 0.257 0.321 0.307 0.376 0.326 0.376 0.339
Model_first 𝑙 0.404 0.381 0.394 0.459 0.417 0.454 0.394
Strategy_first 𝑟 0.330 0.330 0.289 0.362 0.358 0.362 0.335
Strategy_first 𝑙 0.376 0.413 0.344 0.436 0.427 0.468 0.408

Source: Prepared by the author.
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APPENDIX D - META-TARGET DISTRIBUTION

Figure 27 – Frequency of resampling strategies and learning models used as meta-target.
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