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ABSTRACT

This dissertation investigates a cosmological model that explains the observational

data on the matter content of the Universe using Padmanabhan’s theory of emergent cos-

mology and insights from fractional quantum gravity applied to the Schwarzschild black

hole. Two main directions lead to this model. On the one hand, we start with the Hamil-

tonian formalism of general relativity and the canonical quantization of the theory leading

to the Wheeler-DeWitt equation. A spherically symmetric spacetime then simplifies the

application of the Wheeler-DeWitt equation and we can investigate the quantization of the

Schwarzschild black hole, its mass spectrum, and thermodynamics, in the semi-classical

limit. The study of fractals and the use of the Riesz fractional derivative via fractional

quantum gravity show that the surface area of the event horizon of the Schwarzschild black

hole has a random fractal structure, whose description is possible by fractional quanti-

ties. On the other hand, we show that the apparent cosmological horizon provides both

a Hawking temperature associated with the horizon of an FLRW spacetime and is the

most suitable horizon for obtaining the Friedmann equations with Padmanabhan’s theory

in which cosmic space and its expansion emerge due to the tendency to satisfy the holo-

graphic principle. Finally, due to the results indicated by fractional quantum cosmology,

we argue the following proposition: the cosmological apparent horizon of the Universe has

the same structure of a random fractal as the event horizon of the Schwarzschild black

hole. This leads to modified Friedmann equations that reveal an effect of fractal geometry

that amplifies the content of baryonic matter already existing in the Universe and thus

simulates the additional content of matter that we currently call dark matter.

Keywords: emergent cosmology; fractional quantum gravity; Schwarzschild black hole;

dark matter.



RESUMO

Esta dissertação investiga um modelo cosmológico que explica os dados observacionais

sobre o conteúdo de matéria do Universo usando a teoria de Padmanabhan da cosmolo-

gia emergente e insights da gravidade quântica fracionária aplicada ao buraco negro de

Schwarzschild. Duas direções principais levam a este modelo. Por um lado, começamos

com o formalismo Hamiltoniano da relatividade geral e a quantização canônica da teo-

ria que leva à equação de Wheeler-DeWitt. Um espaço-tempo esfericamente simétrico

simplifica então a aplicação da equação de Wheeler-DeWitt e podemos investigar a quan-

tização do buraco negro de Schwarzschild, seu espectro de massa, e sua termodinâmica,

no limite semi-clássico. O estudo de fractais e o uso da derivada fracionária de Riesz

através da gravidade quântica fracionária mostram que a área da superfície do horizonte

de eventos do buraco negro de Schwarzschild tem a estrutura de um fractal aleatório,

cuja descrição é possível por quantidades fracionárias. Por outro lado, mostramos que

o horizonte aparente cosmológico fornece tanto uma temperatura Hawking associada ao

horizonte de um espaço-tempo FLRW, como é o mais adequado horizonte para obtermos

as equações de Friedmann com a teoria de Padmanabhan em que o espaço cósmico e

sua expansão emergem devido à tendência de satisfazer o princípio holográfico. Final-

mente, devido aos resultados indicados pela cosmologia quântica fracionária, defendemos

a seguinte proposição: o horizonte aparente cosmológico do Universo tem a mesma estru-

tura de um fractal aleatório que o horizonte de eventos do buraco negro de Schwarzschild.

Isto leva a equações de Friedmann modificadas que revelam um efeito de geometria fractal

que amplifica o conteúdo de matéria bariônica já existente no Universo e assim simula o

conteúdo adicional de matéria que atualmente chamamos de matéria escura.

Palavras-chave: cosmologia emergente; gravidade quântica fracionária; buraco negro de

Schwarzschild; matéria escura.
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1 INTRODUCTION

Remember what the dormouse said: feed your head.

Jefferson Airplane - White Rabbit

In the book Conceptions of Cosmos [2], H. Kragh emphasizes that although modern

cosmology has its roots in philosophical investigations aimed at a presumed order and

intelligible rationality of the functioning of the Universe (referred to as the whole, nature

in its entirety) according to Greek natural philosophy, this science was not well struc-

tured until the development of general relativity (GR) in the 20th century. Cosmology

as a current solid scientific discipline can be traced back to the 1917 paper Cosmological

Considerations in the General Theory of Relativity [3] by A. Einstein. After that, names

like W. de Sitter, K. Schwarzschild, and A. Friedmann, built up a body of ideas that

obtained the most important observational corroborations in astronomy and astrophysics

in the last years. Major examples of this rapid advance include the observational confir-

mations of the cosmic microwave background (CMB) radiation, black holes, gravitational

waves, the formation and evolution of the large-scale structures of the Universe, and many

others.

Despite the advances made in modern cosmology, mysteries persist that cannot be

immediately explained by our current model of the Universe, which means that we are

unaware around 95% of the content of the Universe today. This unknown portion is

divided into two parts which, in honor of our ignorance, are referred to as “dark matter”

and “dark energy”. Dark energy is generally attributed to the cosmological term called the

cosmological constant, Λ, which provides for the accelerated expansion of the Universe,

as confirmed by the distant type Ia supernovae in the 1990s. In turn, dark matter is

responsible for the anomalous gravitational effects of gravitational lenses and for the

observation of galaxy rotation curves that diverge from what is theoretically expected. If

GR is correct on these scales, it is therefore suggested that there is more matter in the

Universe than we can observe in galaxies and galaxy clusters.

In this sense, both these gaps in our current knowledge are often interpreted as re-

minders of the absence of a consistent theory of quantum gravity. In other words, dark

energy and dark matter may be as yet ununderstood manifestations of a solid interface
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between gravitation and quantum mechanics [4]. With familiar proposals to deal with

this issue such as string theory, loop quantum gravity, and asymptotically safe quantum

gravity, the problem of quantum gravity has recently been explored from the pragmatic

but non-fundamental point of view of fractional quantum cosmology (FQC) [5]. In this

approach, Lévy processes are used to parameterize the trajectories of quantum particles

in the formalism of path integrals according to Laskin’s fractional quantum mechanics

(FQM) [6], where fractional calculus is introduced using the Riesz fractional derivative.

FQC occurs when we extend FQM to the context of canonical quantum gravity (CQG)

theory and the canonical quantization on the cosmological minisuperspace perspective,

hence obtaining the fractional generalization of the Wheeler-DeWitt (WDW) equation.

By transcending the cosmological scenario and applying it to the vacuum solution of

a spacetime with a spherical symmetry, namely, the well-known Schwarzschild solution

of GR, the FQC paradigm produces the fractional version of the WDW equation for the

Schwarzschild black hole (SBH), and when we start dealing with practical results of this

method in gravity we call it fractional quantum gravity (FQG). Using FQG, the authors

of a recent work [7] showed that the surface area of an SBH has the structure of a random

fractal which leads to correspondents fractional changes in the thermodynamic quantities

of the black hole. Such effects of quantum gravity origin, now in fractional form, change

the temperature and entropy of the black hole from the conventional Hawking temperature

and Bekenstein-Hawking entropy in the semi-classical limit, respectively. Specifically, the

entropy of the black hole becomes

Sfractal “ Sd{2
B-H, (1.1)

with SB-H the Bekenstein-Hawking entropy of the SBH and d the fractal dimension asso-

ciated with the surface area of the black hole.

Extending the connection already under investigation between the laws of thermo-

dynamics and GR [8–10], Padmanabhan [11] proposed that both cosmic space and its

expansion behave as an emergent phenomenon stemming from the tendency of the Uni-

verse to satisfy a form of the holographic principle1, which had been called holographic

equipartition. Since is suggested by the observations, our Universe is asymptotically a de
1As Susskind suggests as a definition [12]: the physical information of a higher order spacetime is

contained in a lower order spacetime (in the boundary of the first one).
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Sitter spacetime, and the idea is that at this stage there is equality between the degrees

of freedom of the surface of the cosmological horizon, Nsur, and the cosmic volume, Nbulk,

contained by this horizon. The Universe then emerges and expands due to the difference

between these degrees of freedom according to the equation

dV

dt
“ L2

PpNsur ´ Nbulkq, (1.2)

where LP :“ G´1{2 is the Planck length (the natural units that ℏ “ c “ kB “ 1 will be

used through this dissertation), V and t the cosmic volume and cosmic time (measured

by a comoving observer), respectively. Using as degrees of freedom, Nsur, a measure of the

entropy of the cosmological horizon and for the degrees of freedom, Nbulk, a form of energy

equipartition law in gravity from the Komar energy and the temperature associated with

the cosmological horizon, equation (1.2) returns the Friedmann equations.

Therefore, by providing a method that leads directly to the Friedmann equations from

the holographic principle and the thermodynamics of cosmological horizons, equation (1.2)

opens a natural window of theoretical approaches that describe alternative cosmological

models from modifications in the cosmological horizons. Taking into account the FQC,

the authors of another recent work [13] showed that the effective area of the cosmological

apparent horizon of the de Sitter spacetime has the same random fractal structure as

the equation (1.1), obtained from the surface geometry of the fractional SBH. Being the

cosmological apparent horizon the horizon that effectively possesses a thermodynamics for

the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime and adequately reflects

the laws of thermodynamics from equation (1.2) [14], this dissertation has the following

main objective: choosing the cosmological apparent horizon as the holographic screen,

inspired by the SBH geometry given in equation (1.1), we use the modification to a

horizon whose structure is of a random fractal and we apply the thermodynamic quantities

resulting in equation (1.2) to obtain the modified Friedmann equations and study the

consequences in the standard Lambda-Cold Dark Matter (ΛCDM) model.

This dissertation follows closely the reference [15], and has two auxiliary objectives:

(i) lead to a detail that helps in the reading and assimilation of ideas present in [15],

guiding the reader who wants more information on each of the topics addressed and (ii)

while various ideas and contents are connected in the model proposed in [15] we intend

to explore certain topics in slightly alternative ways to strengthen the understanding of



17

some key points. Thus, this dissertation can be understood, but not limited to, as a guide

to reference [15].

The rest of the dissertation is organized as follows:

Chapter 2: The theoretical foundations of CQG theory are revised by beginning with

the Hamiltonian formalism of GR. Canonical quantization is then applied to the appro-

priate collection of variables and the WDW equation is obtained and discussed;

Chapter 3: The results of chapter 2 are applied to the Schwarzschild solution of GR,

where the maximal analytic extension of this solution is considered and the SBH is quan-

tized. The WDW equation for the SBH is analyzed in the semi-classical limit and the

thermodynamics of the SBH is discussed;

Chapter 4: The general concept of fractals, their main characteristics, common prop-

erties in nature, and their particular occurrence as Brownian motion trajectories are

presented. Then, the connection with fractional calculus and its interpretation in the

context of FQM and FQC for the SBH is established. The event horizon of the SBH is

shown to have a surface area of random fractal geometry;

Chapter 5: Horizons in GR and cosmology are studied with emphasis on the apparent

horizon, which is shown to be the horizon in which a Hawking temperature can be as-

sociated with an FLRW spacetime. After that, emergent cosmology and its relation to

the thermodynamics of cosmological horizons is discussed. The ΛCDM model is briefly

reviewed;

Chapter 6: It is proposed to combine the results reached in the previous chapters: the

fractal geometry of the SBH, and the use of emergent cosmology equipped with the ther-

modynamics of cosmological horizons to describe a cosmological model. As a result, a

fractal structure is proposed for the apparent horizon of the Universe, and the modified

Friedmann equations are obtained. Initial consequences to the ΛCDM model are investi-

gated;

Chapter 7: The conclusions are presented in retrospect, and it is emphasized that
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in the model proposed in this dissertation dark matter is not necessary to justify the

measurements of the cosmological parameters currently observed for the content of cold

matter in the Universe.
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2 CANONICAL QUANTUM GRAVITY

Saiba que ainda estão rolando os dados, porque o tempo, o tempo não para.

Cazuza - O Tempo Não Para

2.1 Prologue

The spotlight of this first chapter is to review and discuss some results of CQG theory.

To do that is important to assume a dynamical description for the gravitational field

in a Hamiltonian formalism of GR. This can be done by extracting the time coordinate

with a splitting of the spacetime manifold in a manifold composed by a set Σ of 3-

dimensional spacelike hypersurfaces Σt, joined with a time parameter t in an open subset

of R. The Arnowitt, Deser, and Misner (ADM) canonical variables are then naturally

implemented for the canonical quantization [16]. After that, canonical quantization is

performed and the resulting Hamiltonian constraints are studied, before and after the

quantization. Finally, the WDW equation is identified and briefly analyzed.

2.2 Hamiltonian formalism and the ADM variables

The spacetime is modeled by a 4-dimensional Lorentzian manifold pM ,gq with local

coordinates xµ in the Minkowski spacetime M4 such that elevates space and time at

the same physical level. The metric tensor gµν signature adopted is p´,`,`,`q. This

scenario provides a way to write the laws of physics in a covariant form, which reflects

no privileged coordinate system in nature. In GR, Einstein field equations describe the

spacetime geometry due to the mass and energy distribution in a region of spacetime.

But these equations do not have a “time” evolution in the gravitational field, which is

contained by the metric tensor, gµν . Considering a certain mass and energy distribution

in a region of spacetime, gµν describes the correspondent geometry by field equations, but

these equations alone do not prescribe how this curvature evolves over an inherent time

flow. In this fashion, spacetime is said to be frozen, which means that a time dynamics of

the spacetime geometry is not determined solely by the distribution of mass and energy

(as described by the stress-energy tensor) and the field equations.
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The Hamiltonian formalism of GR starts with a foliation (3+1 decomposition) of

the spacetime manifold pM ,gq in a family of 3-dimensional spacelike hypersurfaces, pa-

rameterized by a single, real, parameter that acts as time coordinate. Considering the

spacetime manifold pM ,gq, a foliation F of M is a map F : M Ñ Σ ˆ I ĂR, where I is a

open subset of R and Σ is the set of all spacelike hypersurfaces which cover pM ,gq. That

is, a foliation can be thought as a family Σ “ tΣtu of embedded 3-dimensional spacelike

hypersurfaces Σt covering M , where t is a real parameter which labels the hypersurfaces,

interpreted as an instant of time, t “ constant. Since GR disagrees with a privileged

notion of time, this process seems to be problematic given the principle of general covari-

ance. However, it is not, if we assume the spacelike hypersurfaces to be Cauchy surfaces

[17]. A Cauchy surface is a spacelike hypersurface that intersects every timelike curve

exactly once [18]. In other words, the physical future1 of every event in spacetime can

be uniquely specified by the event projection in a Cauchy surface. A spacetime pM ,gq is

said to be globally hyperbolic if it admits a Cauchy surface [18]. And, by assuming there

exists a global “time function” t such that we can take a foliation with Cauchy surfaces as

the spacelike hypersurfaces Σt with t “ constant, as proved possible by Hawking and Ellis

[19], one can shown that F is a diffeomorphism and GR has a diffeomorphism invariance

by the foliation in this sense; i.e., M – Σ ˆ I [17, 20].

2.2.1 3+1 decomposition

One starts with the Einstein-Hilbert action, whose stationary condition generates the

field equations and it is a functional of the spacetime metric tensor gµν , with c “ 1

SE-H “ SE-Hrgµνs “

ż

M

d4xLE-H “
1

16πG

ż

M

d4x
?

´g R. (2.1)

Henceforth, the natural system of units will be used: c “ ℏ “ kB “ 1. An additional

assumption through the foliation F of the spacetime manifold is that pM ,gq (henceforth,

just M ) to be a spatially closed manifold2, since, in general, FLRW cosmological models

are covered by this description [17]. The goal hereafter is to rewrite the Einstein-Hilbert

action in the context of spacetime foliation. Defining the set of the spacelike hypersurfaces

Σt such that each of which is parametrized by a value of t, the foliation F can be formally
1Formally, the causal future. Please, see section 5.1.3 for a reminder.
2A compact manifold without boundary [18].
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implemented by splitting M as the set

Σt :“ tuµ
pxi, tqu, (2.2)

with uµ arbitrary spacetime coordinates given by parametric functions for each t which

preserve diffeomorphism invariance, then being properly invertible, continuous, and dif-

ferentiable. One can consider a set of vectors teµu which form vector basis (each one

associated with the coordinates uµ, t “ constant) over M . A vector basis vi of tangent

spacelike vectors to a generic hypersurface Σt, can be identified by a change of basis

vi “
`

Biu
µ
˘

eµ :“ vµ
i eµ. (2.3)

A vector field of unit normal timelike vectors n “ nµeµ to this hypersurface naturally

satisfies the condition vi ¨ n “ 0. Being n timelike, nµnµ “ ´1. Then, sets as tn,viu in

each Σt can be taken as a complete vector basis over Σt. Being a vector t “ tµeµ in M

viewed as connecting a point pxi, tq on such a hypersurface Σt to a point pxi, t` dtq on a

neighboring hypersurface Σt`dt (please, see figure 1), we have by equation (2.3)

t “ tµeµ “Nn ` N ivi

“Npnµeµq ` N i
pvµ

i eµq

“pNnµ
` N ivµ

i q eµ,

(2.4)

where N and N i are called lapse function and shift vector, respectively. The metric tensor

gµν can be written in the new basis tt,viu over M . At the hypersurface, the spatial metric

tensor given the spatial part of the metric tensor gµν

gij “ hij “ vi ¨ vj. (2.5)

The other components of the metric tensor are given by

g0i “ t ¨ vi “ pNn ` Nkvkq ¨ vi “ Nkhki, (2.6)

and

g00 “ t ¨ t “ pNn ` N iviq ¨ pNn ` N jvjq “ ´N2
` N iN jhij, (2.7)
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Figure 1: Two neighboring spacelike hypersurfaces, in representation of the time flow defined

by a timelike displacement vector t decomposed into its normal and tangent components on the

hypersurface Σt.

Source: The author (2024).

where the condition vi ¨ n “ 0 was used. The general line element (henceforth, metric)

after F now can be expressed by N , N i and hij [17] as

ds2
“ gµνdx

µdxν
“ g00dx

0dx0
` 2g0idx

0dxi
` gijdx

idxj

“
`

´ N2
` N iN jhij

˘

dx0dx0
` 2Nkhkidx

0dxi
` hijdx

idxj

“ ´N2dt2 ` hijpdxi
` N idtqpdxj

` N jdtq,

(2.8)

with dx0 “ dt. Noting the equation (2.8), we can interpret physically the lapse function

and the shift vector. On the timelike curve along n, that is N i “ N j “ 0, the rate of

variation of the proper time τ is modulated by the lapse function N . Evaluated the flow

rate of the proper time τ under these conditions, the rate of change in the local spatial

coordinates from Σt to Σt`dt is given by the shift vector N i, which thus describes how

spacetime points move from one hypersurface to the next as time evolves. It is clear that

all three quantities, N , N i, and hij, are functions of the collection of coordinates pxk, tq.

To use equation (2.1) one needs the determinant of metric tensor, detpgq :“ g, in terms

of equation (2.8). Writing the metric with the diagonalized form of hij, the determinant

can be easily identified if a new collection of coordinates pzk, tq is employed

´N2dt2 ` hiidz
idzi

“ g00dt
2

` giidx
idxi, (2.9)
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then,

g “ detpgq “ ´N2detphq “ ´N2h, (2.10)

such that dzk “ dxk ` Nkdt. To account for the change of coordinates performed it is

necessary to obtain the Jacobian determinant J of the transformation pxk, tq Ñ pzk, tq. To

explicitly denote the coordinate transformation in 4-dimensional spacetime, we introduce

the variables χα and ζβ such that dχ0 “ dζ0 “ dt and dζk “ dχk `Nkdt. The components

of the Jacobian matrix are Jα,β “ Bζβ{Bχα, then

J “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

N1 1 0 0

N2 0 1 0

N3 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

, (2.11)

and the Jacobian determinant is J “ 1. We can then write equation (2.10) in the coordi-

nates pxk, tq without a correction

?
´g “ N

?
h. (2.12)

To go further, equation (2.1) also asks us to express the Ricci scalar R in terms of

quantities related to the hypersurface. For that, one defines projection tensor qµν as

qµν :“ gµν ´ ϵ nµnν , (2.13)

with ϵ carries information about the signature of the metric tensor since ϵ “ nµn
µ “ ´1.

This qµν tensor acts, for example, by projecting a generic vector V µ in M onto the

hypersurface Σt, i.e., with nν orthogonal to Σt we have qµνV
µnν “ 0. In fact,

qµνV
µnν

“ pgµν ´ ϵ nµnνqV µnν

“ gµνV
µnν

´ ϵ nµnνV
µnν

“V µnµ ´ ϵ2 V µnµ “ 0.

(2.14)

Next, we need to address a different notion of curvature to M , from the one given

by the intrinsic curvature carried by the Riemann tensor. Such a notion arises for the

existence of curvature in M that is not evaluated locally, but globally. A simplified
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illustration is a 2-dimensional cylindrical surface, where a cylinder can be thought of as a

developable surface, meaning it can be flattened without stretching or distorting its shape.

When you flatten a cylinder, it becomes a flat surface, which has zero intrinsic curvature.

However, the cylindrical surface looks curved when is embedded in a high-dimensional

flat space, as the 3-dimensional Euclidean space. This perception of curvature is called

extrinsic curvature. In our case, the embedded space is the hypersurface, and the high-

dimensional space is M . The extrinsic curvature tensor is then a tensor defined as

Kµν :“ qρ
µq

σ
ν ∇ρnσ. (2.15)

The tensor Kµν gives the curvature of Σt from the visualization of the spacetime

manifold, M , and measure the change in the direction of n projected onto Σt. Physically,

the extrinsic curvature will tell how the spatial part of spacetime bends along the evolution

of time. Using the so-called fundamental theorem of submanifolds [17], we are allowed to

express the 4-dimensional Ricci scalar R in terms of the 3-dimensional Ricci scalar R̄ on

Σt, the extrinsic curvature tensor Kµν , and the components of n, and then write

R “ R̄ ` KµνK
µν

´ K2
´ 2∇µpnν∇νn

µ
´ nµKq, (2.16)

where K is the contraction of Kν
µ. Equation (2.16) is called the Gauss-Codazzi equation

[17]. We can express the extrinsic curvature of a particular hypersurface by writing the

4-dimensional Kµν tensor in terms of 3-dimensional indices

Kµν “ vi
µv

j
νKij, (2.17)

with vi
µ :“ Bxi{Buµ. Since tviu form a vector basis on Σt, the full contraction of its

components vµ
i is vµ

i v
j
ν “ δj

i δ
µ
ν , and then KµνK

µν “ KijK
ij. The equation (2.16) becomes

R “ R̄ ` KijK
ij

´ K2
´ 2∇µpnν∇νn

µ
´ nµKq. (2.18)

We can then rewrite the Einstein-Hilbert Lagrangian density in the action (2.1) by

substituting equations (2.12) and (2.18)

LE-H “
1

16πG N
?
h

“

R̄ ` KijK
ij

´ K2
´ 2∇µpnν∇νn

µ
´ nµKq

‰

. (2.19)



25

To evaluate the action with this Lagrangian density we must redefine the integration

domain of equation (2.1) according to the foliation F of spacetime, thus delimiting the

integral on the hypersurfaces Σ between two time instants t1 and t2, which gives

SE-H “
1

16πG

ż t2

t1

dt

ż

Σ
d3xN

?
h

“

R̄ ` KijK
ij

´ K2
´ 2∇µpnν∇νn

µ
´ nµKq

‰

. (2.20)

Defining the brackets of the last term in the integral as ηµ :“ nν∇νn
µ ´ nµK, we can

rewrite equation (2.20) in terms of the covariant divergent

SE-H “
1

16πG

ż t2

t1

dt

ż

Σ
d3xN

?
h

“

R̄ ` KijK
ij

´ K2
´ 2∇µη

µ
‰

. (2.21)

The divergence theorem says that the term with the covariant divergent in (2.21) gives

rise to a boundary contribution in the action integral, SBM , and from what was previously

said we will not consider boundary terms for physical reasons3. The remaining action we

will refer to as the ADM action, which is expressed in the configuration variables called

ADM (in honor of R. Arnowitt, S. Deser and C. Misner [16]), namely, N , N i, hij. It is

possible to verify the explicit dependency of Kij with N i by4

Kij “
1

2N
`

´ 2DpiNjq ` Bthij

˘

, (2.22)

where Di is the 3-dimensional covariant derivative. Thus, the ADM Lagrangian density

LADM is:

LADM “
1

16πGN
?
h

`

R̄ ` KijK
ij

´ K2˘

, (2.23)

such that, at first, LADM “ LADM rN,N i, hij, BtN, BtN
i, Bthijs. Lowering the index of the

extrinsic curvature tensor, the symmetrization of the spatial metric tensor hij gives us

LADM “
1

16πGN
?
h

“

R̄ `
1
2

`

hikhjl
` hilhjk

´ 2hijhkl
˘

KijKkl

‰

, (2.24)

with the identification

G ijkl :“
?
h

2
`

hikhjl
` hilhjk

´ 2hijhkl
˘

, (2.25)

3For the reader interested in the unfolding of boundary terms to obtain a well-posed variational

principle of the Einstein-Hilbert action, we recommend reading section 4.3 of [21].
4The deduction of the analytical dependence can be seen in section 3.2 of [17].
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called the DeWitt metric tensor [17]. Thus, equation (2.23) becomes

LADM “
1

16πGN
?
h

`

R̄ `
1

?
h
G ijklKijKkl

˘

. (2.26)

2.2.2 Constraints

To proceed to the construction of the Hamiltonian density in the ADM variables, we

need to calculate the conjugate momenta to these variables. For N , and N i, we have,

ΠN “
BLADM

B
`

BtN
˘ “ 0, (2.27a)

Πi “
BLADM

B
`

BtN i
˘ “ 0, (2.27b)

that is, the canonical momenta associated with N and N i are constrained to be zero,

indicating that N and N i have not a particular dynamics. Thus, more degrees of freedom

than the actual physical degrees are considered. In the canonical quantization, we will

carry the Poisson brackets of the variables, which generate the equations of motion, in the

usual quantum commutators. Thus, the implementation of the conditions (2.27) should

be performed only afterwards the calculation of the Poisson brackets. Such conditions

then denote the so-called weak equality of Dirac [17], and for the conjugate momenta

ΠN « 0, (2.28a)

Πi « 0. (2.28b)

The above expressions are the so-called primary constraints of the Hamiltonian for-

malism of GR. With the conjugate momentum of hij given by

Πij
“

BLADM

B
`

Bthij

˘ “
1

16πGG ijklKkl, (2.29)

where it was used that hkl “ δi
kδ

j
l hij and (2.22). The ADM Hamiltonian density will be

a functional, HADM “ HADM rN,N i, hij,ΠN ,Πi,Πijs, and then, as usual, we will have to

express our configuration variables in terms of the conjugate momenta. By defining the

inverse of the DeWitt metric tensor as
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Gijkl :“ 1
2
?
h

`

hikhjl ` hilhjk ´ 2hijhkl

˘

, (2.30)

the equation (2.29) is easily inverted

Kij “ 16πG GijklΠkl, (2.31)

and then the second term of the right-hand side of the equation (2.26) becomes

G ijklKijKkl “ G ijkl
`

16πG GijklΠkl
˘`

16πG GklijΠij
˘

“ p16πGq
2 G ijklGklijGijklΠijΠkl

“ p16πGq
2 GijklΠijΠkl.

(2.32)

where we use the condition that G ijklGklrs “ δi
prδ

j
sq

, which naturally follows from the

contraction of the product of the metric tensors hij. The time derivative of hij can also

be rewritten by inverting equation (2.22) and using equation (2.31) as

Bthij “ 32πGN GijklΠkl
` 2DpiNjq. (2.33)

The ADM action can now be rewritten defining the ADM Hamiltonian density

SADM “

ż t2

t1

dt

ż

Σ
d3xLADM

“
1

16πG

ż t2

t1

dt

ż

Σ
d3xN

?
h

˜

R̄ `
1

?
h
G ijklKijKkl

¸

“

ż t2

t1

dt

ż

Σ
d3x

” 1
16πG N

?
hR̄ ` 16πGN GijklΠijΠkl

ı

“

ż t2

t1

dt

ż

Σ
d3x

“`

BtyaΠa
˘

ADM ´ λNΠN ´ λiΠi ´ HADM
‰

,

(2.34)

where tBtyau and tΠau are the set of ADM variables derived in time and the set of

corresponding conjugate momenta, respectively. The Lagrange multipliers λN and λi are

introduced as new independent variables to preserve the primary constraints, equations

(2.28), so that the stationary condition of the action for variations in the multipliers

immediately recovers the constraints. Hence, using equation (2.33)

SADM “

ż t2

t1

dt

ż

Σ
d3x

“

Πij
Bthij ´ λNΠN ´ λiΠi ´ HADM

‰

“

ż t2

t1

dt

ż

Σ
d3x

“

32πGN GijklΠijΠkl
` 2ΠijDiNj ´ λNΠN ´ λiΠi ´ HADM

‰

.

(2.35)
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Working only with the second term in the integral of equation (2.35) we have

ż

Σ
d3xΠijDiNj “ ´

ż

Σ
d3xNjDiΠij

`

ż

Σ
d3xDi

`

NjΠij
˘

, (2.36)

and defining χi :“ NjΠij, the divergence theorem assures us that the second term in the

right-hand side of equation (2.36) gives rise to a boundary contribution and then vanishes.

Equation (2.35) then becomes

SADM “

ż t2

t1

dt

ż

Σ
d3x

“

32πGN GijklΠijΠkl
´ 2NjDiΠij

´ λNΠN ´ λiΠi ´ HADM
‰

. (2.37)

By substituting in the equation (2.34) the ADM Hamiltonian density is identified as

HADM “ λNΠN ` λiΠi ` N
´

16πGGijklΠijΠkl
´

?
hR̄

16πG

¯

` N i
´

´ 2hijDkΠkj
¯

, (2.38)

and to the above objects under parentheses, we give special definitions

H :“ 16πGGijklΠijΠkl
´

?
hR̄

16πG, (2.39a)

Hi :“ ´2hijDkΠkj, (2.39b)

which are the so-called super-Hamiltonian and supermomentum, respectively. Thus, we

can write the primary Hamiltonian H of the theory as

H “

ż

Σ
d3xHADM

“

ż

Σ
d3x

´

λNΠN ` λiΠi ` N iHi ` NH
¯

.

(2.40)

To evaluate the situation of the primary constraints in this Hamiltonian formalism,

we can investigate the equations of motion for ΠN and Πi by calculating the respective

Poisson brackets, tΠN ,HADMu and tΠi,HADMu. To do this we write the fundamental

Poisson brackets at equal-time in the phase space of the ADM variables [17], then

tNpx, tq,ΠN px1, tqu “ δpx ´ x1
q, (2.41a)

tN i
px, tq,Πjpx1, tqu “ δi

jδpx ´ x1
q, (2.41b)

thijpx, tq,Πkl
px1, tqu “ δ

pk
i δ

lq
j δpx ´ x1

q (2.41c)
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and the other Poisson brackets vanish, as usual in the Hamiltonian formalism of a general

classical field theory [22]. Hence, first, we note that the equations of motion for N and

N i are clearly, using the Poisson brackets of the variables (2.41), and equation (2.40)

BtN “ tN,HADMu “ λN , (2.42a)

BtN
i

“ tN i,HADMu “ λi, (2.42b)

and, as expected, N and N i have arbitrary dynamics. Next, the equations of motion of

the conjugate momenta, again with (2.41) and (2.40) are

BtΠN “ tΠN ,HADMu “ H, (2.43a)

BtΠi “ tΠi,HADMu “ Hi, (2.43b)

Note that the equations (2.43) do not respect the primary constraints, equations (2.28),

and then for consistency, we are asked to establish the so-called secondary constraints of

the theory, that is

H« 0, (2.44a)

Hi « 0. (2.44b)

From equation (2.40), we write explicitly the ADM Hamiltonian density HADM

HADM “ λNΠN ` λiΠi ` N iHi ` NH, (2.45)

and realized that it is a linear combination of the primary and secondary constraints, thus

HADM itself weakly vanish

HADM « 0. (2.46)
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The Poisson brackets of the set H and Hi, forms the so-called Dirac algebra and are

linear combinations of H and Hi [17]. This can be used to show that the equations of

motion for H and Hi, that is, tH,HADMu and tHi,HADMu, weakly vanishes and then do

not justify the introduction of additional constraints in the theory5.

2.2.3 Discussion on the constraints

As we saw, the identification of the four constraints, equations (2.28) and (2.44), in

the Hamiltonian formalism of GR allows us to observe that there are degrees of freedom

that are not physically relevant. The primary constraints (2.28) do not participate in the

actual construction of the physical degrees of freedom of the theory, which only delimits

our phase space to a reduced phase space of the canonical coordinates phij,Πklq [21].

Therefore, we should concentrate on dealing with the secondary constraints (2.44), which

will apply on each hypersurface6 represented by the phase space of the canonical variables

phij,Πklq.

Looking at the true degrees of freedom from the secondary constraints, we first look at

the phase space and notice that we have six independent components in the spatial metric

tensor hij, which varies for each point in the correspondent hypersurface (remember that

here time is frozen, and a priori we are dealing with a given hypersurface), which we usually

represent as the number of degrees of freedom in the phase space of 6 ˆ 83. In addition,

the conjugate momenta Πkl also have six independent components for each point in the

hypersurface, then 6 ˆ 83 degrees of freedom in the phase space. Thus, the total degrees

of freedom in the phase space is 12 ˆ 83. In components of the supermomentum, the

secondary constraints, equations (2.44), with equations (2.39) that express dependency

relationships among the variables, give rise to four constraints and make a reduction in the

number of independent components at each point on the hypersurface to 12´4 “ 8, hence

8 ˆ 83 degrees of freedom. Furthermore, being Ck « 0 constraints (first-class constraints;

see [17] and [20]) with k “ 0, 1, ..., n, when calculating the equations of motion of any

dynamical variable of interest A, we have 9A “ tA,HADMu ` λktA,Cku and then the

equation of motion of A is not uniquely determined due to gauge freedom caused by the
5The interested reader is invited to refer to section 4.1 of [17] for a little more detail and calculations.
6So far, all steps have implicitly assumed that the constraints apply to every possible hypersurface

Σt of the foliation considered; this can be proved by tracing the ADM Hamiltonian formalism of GR as

an initial value problem [18].
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k Lagrange multipliers7 [20].

In our case, there are four secondary constraints to be considered, then the hypersur-

face is restricted to having a loss in the number of degrees of freedom in phase space of the

order of 4, and this redundancy is often called the gauge-invariance condition of GR [17].

Thus, the final number of degrees of freedom in the phase space is 4 ˆ 83. The configura-

tion space, in turn, must have half the number of degrees of freedom of the phase space,

which is in agreement if we note that the six independent components of the metric tensor

per point on the hypersurface are reduced by the same four secondary constraints, that

is, 2 ˆ 83 degrees of freedom in the configuration space. Now, the interpretation of the

specific constraints (2.44) is that they represent the manifestation of the diffeomorphism-

invariance in the realized spacetime foliation. In the phase space, the supermomentum

constraint, equation (2.44b), denotes this invariance at each hypersurface, which is just

the freedom of choice for any coordinate system [21]. In turn, the super-Hamiltonian con-

straint, equation (2.44a), denotes the diffeomorphism-invariance in the normal direction

at each hypersurface in the phase space; that is, there is consistent freedom for the choice

of the time parameter in the foliation using a reparameterization transformation of the

hypersurfaces, tÑ τ [20].

It is important to say that how the diffeomorphism-invariance of GR will manifest

itself, through the constraints (2.44), when the canonical quantization takes place is a

matter of deep attention. The supermomentum constraint can be trivially satisfied and

interpreted by the quantization process, while the super-Hamiltonian constraint will give

rise to profound physical implications (namely, the WDW equation), as will be seen in

what follows.

2.3 Canonical quantization

The Hamiltonian formalism of GR from a foliation F process of spacetime M in a

way that the diffeomorphism-invariance of the theory is preserved was obtained in the last

section. The canonical variables used N,N i, hij,ΠN ,Πi,Πij were obtained from the so-

called ADM variables N,N i, hij. It is worth noting that there is another set of variables
7The natural condition to be imposed is the gauge-invariance of the dynamical variable, imposing

then that tA, Cku « 0. In GR, this leads to the notion of observable, which is to date still an open issue

[17, 23].
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notably used to construct an alternative Hamiltonian formalism of GR, which are the

so-called loop variables and with which the well-known loop quantum gravity theory is

generated [20, 24]. Following the formalism according to the ADM variables, the classical

field theory produced is a constrained theory, where we have two primary (2.28) and two

secondary (2.44) constraints.

2.3.1 Dirac method, superspace and minisuperspace

To realize the canonical quantization, in addition to the Poisson brackets of the classi-

cal variables simply reflecting the quantum commutators of the corresponding operators,

it is also necessary to choose which method to use for the resolution, or application,

of the constraints of the theory at the quantum level. That is, the constraints can be

treated before quantization and thus at the classical level (ADM reduction method), or

only after quantization (Dirac quantization method). In the first method, the constraints

are applied classically and then the phase space of the theory is modified to a reduced

physical phase space and quantized. In the second method the constraints are applied

as quantum operators after quantization and then directly constrain the quantum state

of some Hilbert space (we will be interested in its projection onto the space of the ADM

variables, i.e., the corresponding space of functionals Ψ “ ΨrN,N i, hijs) of the obtained

theory [17].

Despite the ADM reduction method being able to describe analogues of a Schrödinger

equation with time dependency in, for example, cosmological models using this method,

such an equation describing the evolution of the wave function proves analytically in-

tractable in its general form [21]. The Dirac quantization method, on the other hand, can

describe the dynamics for the wave function as a direct consequence of the application of

the super-Hamiltonian constraint (2.44a), although such dynamics needs to be carefully

interpreted due to the so-called time problem. The quantization according to the Dirac

method will be preferred in the CQG program.

A last procedure that needs to be defined refers to the composition of the space of the

ADM variables that will be adopted for the quantization to generate the corresponding

Hilbert space. Recall that spacetime M has been split by a foliation F into spacelike

hypersurfaces Σt , the set of which we denote by Σ. The configuration space formed

by all possible Riemannian geometries in Σ, namely, all possible 3-dimensional metric
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tensors, hijpxk, tq, with txiu P Σt Ă M , is denoted by RiempΣq. However, the collection

of all possible diffeomorphisms over Σ, denoted by DiffpΣq, naturally leads to redundant

geometries and the physical configuration space that remains, denoted by SpΣq, is given

by the quotient space of RiempΣq, that is, SpΣq “ RiempΣq{DiffpΣq. The configuration

space SpΣq is called superspace [17] and is the space that canonical quantization in its

general form is realized, being an infinite-dimensional space because we are considering

all points of spacetime without any kind of symmetry or equivalence.

Another possible approach is to construct a configuration space, based on the su-

perspace, that takes into account symmetries in spacetime resulting then in a reduced,

finite-dimensional, space. This is particularly interesting in the context of cosmological

models and black holes. This type of configuration space is called minisuperspace. Al-

though the quantization in minisuperspace is in fact what we will deal with in the main

application of CQG, presented in the next chapter of this work, the quantization in the

superspace will be made below for a general obtaining and discussion of the properties of

the WDW equation.

2.3.2 Dirac quantization

Canonical quantization according to Dirac [25] follows at the superspace. A classical

constraint C « 0 becomes an quantum operator Ĉ that directly constrains the functional

describing the quantum state Ψ “ ΨrN,N i, hijs that will be constructed

C « 0 Ñ Ĉ Ψ “ 0. (2.47)

A conventional sequence of steps to perform during the program of such a canonical

quantization can be retrieved from [17]. Here we will follow a more pragmatic approach.

Initially the ADM variables as functions Npxq, N ipxq and hijpxq, of spacetime points x,

and their associated momenta are raised to quantum operators

Npxq Ñ N̂pxq :“ Npxq, ΠN pxq Ñ Π̂N pxq :“ ´iℏ
δ

δNpxq
, (2.48a)

N i
pxq Ñ N̂ i

pxq :“ N i
pxq, Πipxq Ñ Π̂ipxq :“ ´iℏ

δ

δN ipxq
, (2.48b)

hijpxq Ñ ĥijpxq :“ hijpxq, Πij
pxq Ñ Π̂ijpxq :“ ´iℏ

δ

δhijpxq
, (2.48c)
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which act on functionals Ψ “ ΨrN,N i, hijs that it is natural to call wave functionals, and

which in general do not inhabit a well-defined Hilbert space, endowed with an inner prod-

uct between the objects Ψ. In equations (2.48) the “δs” compose what we call functional

derivatives, i.e., given a functional, if we want to find the rate of change of the functional

with respect to an infinitesimally small change in the function, we take its functional

derivative. The operators need not yet be self-adjoint. Only with the application of the

constraints the quantum states are defined physically and a usual Hilbert space can be

generated [21]. Then, for the first constraints (2.28), one obtains

Π̂NΨrN,N i, hijs “ ´iℏ
δ

δN
ΨrN,N i, hijs “ 0, (2.49a)

Π̂iΨrN,N i, hijs “ ´iℏ
δ

δN i
ΨrN,N i, hijs “ 0. (2.49b)

These conditions are satisfied if the wave functional does not depend on N and N i,

then Ψ “ Ψrhijs, and the chosen foliation does not change quantum state, which is

consistent with the classical first constraints (2.28) in which N and N i do not change the

dynamics of the system. The supermomentum constraint (2.44b), with equation (2.39b),

becomes

ĤiΨrhijs “ 0 ùñ Dk

˜

δ

δhkj

Ψ
¸

“ 0, (2.50)

and then changes of the metric tensor hijpxq by the points of the spacetime do not alter

Ψ. In other words, the functional Ψ is invariant under coordinate transformations of hij,

which is consistent with the classical supermomentum constraint (2.44a) that translates

the spatial diffeomorphism-invariance of GR. In turn, the super-Hamiltonian constraint

(2.44a), with equation (2.39a), becomes

ĤΨrhijs “ 0 ùñ

˜

16πGGijkl
δ

δhij

δ

δhkl

´
1

16πG
?
hR̄

¸

Ψ “ 0, (2.51)

which indeed seems to describe a dynamic behavior for Ψ, but with ĤΨ “ 0. While

a natural interpretation in terms of the diffeomorphism-invariance of GR like ĤiΨ “ 0

in (2.50) is not trivial, equation (2.51) is a Schrödinger-like equation for Ψ but without
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a time evolution. Note that the implementation of ĤΨ “ 0 is not unambiguous and

depends on the choice of operator ordering in the equation after quantization. A natural

choice for this operator ordering, which is justified by the construction of the theory itself,

is that which preserves the Dirac algebra [17], responsible for ensuring that the theory is

closed concerning the constraints already presented and has no tertiary constraints [26]; a

more detailed explanation of this can be found in [21]. The equation (2.51) is the so-called

WDW equation.

2.4 The Wheeler-DeWitt equation

As we have seen, the WDW equation (2.51) is the application of the super-Hamiltonian

constraint (2.44a) of the Hamiltonian formalism of GR to canonical quantization via the

Dirac quantization method: first quantize and then constrain. We rewrite equation (2.51)

below

˜

16πGGijkl
δ

δhij

δ

δhkl

´
1

16πG
?
hR̄

¸

Ψ “ 0. (2.52)

A few technical comments are needed on this equation:

(I) The wave functional Ψrhijs space

Since the WDW equation (2.52) is a non-linear equation, due to the functional

derivatives it contains, the definition of a basis as in a usual vector space (presumably

here a kind of Hilbert space) becomes non-trivial. In addition, we would need

to provide a notion of inner product between the elements of the space; DeWitt

proposed an attempt [27], but it is not shown to be positive-defined [21], thus

negative probability problems must arise. So far, a well-defined notion of inner

product (and Hilbert space) for Ψrhijs is still under discussion [28].

(II) The matter coupling

To account for inflationary Universe models, a minimally coupled scalar field Φ with

self-interacting potential V pΦq is usually introduced into the 3+1 decomposition of

the previously developed Hamiltonian formalism of GR, leading to new constraints

that produce the WDW equation for gravity-scalar field systems [17] (a detailed and

self-contained description of this case can be found at [17]).
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(III) The problem of regularization

The presence of functional second derivatives in the WDW equation (2.52) refers

to the presence of 3-dimensional Dirac deltas δ3px ´ yq at the points in space [20].

For the limit of short distances, xÑ y, this will naturally lead to infinities δ3p0q.

This difficulty indicates the domain of validity of the WDW equation in its (2.52)

form (superspace form), which refers to a corresponding effective theory rather than

a fundamental one. Thus, at the fundamental level, a regularization of the δ3p0q

terms is necessary. An example of regularization is that of DeWitt: δ3p0q “ 0 [27].

(IV) The problem of time

The natural interpretation of the absence of an explicit time evolution term of

Ψrhijs in the WDW equation (2.52), when compared to the Schrödinger equation,

is that we are mixing two different notions of time [29]. In GR time is a coordinate,

and it is a quantity intrinsic to the theory in the sense that different observers

measure different times depending on their dynamics and the gravitational field. In

quantum mechanics, time is absolute, and an external parameter to the theory. It is

not observable, but it is fundamental for the probabilistic interpretation [20]. Also,

realize that the implementation of the constraints, (2.50) and (2.51), is equivalent

to applying the ADM Hamiltonian density operator Ĥ Ψ to the wave functional,

then that it annihilates the quantum state and motivates us to visualize the result

as a time-independent Schrödinger equation. The question of which of these two

forms of time (or another) is consistent with CQG is called the time problem [20].

The conventional classification for its solution comes from Kuchař [30] and Isham

[31]: i) the notion of time must come before quantization, ii) after quantization, or

iii) is possibly absent at the most fundamental level. The first two methods revealed

a succession of shortcomings [20], which seems to indicate iii) the right choice. One

option is to divide the Hamiltonian density of the system into two parts

Ĥ “ ĤG ` ĤN, (2.53)

where ĤG carries the gravitational degrees of freedom of the theory, and ĤN car-

ries the non-gravitational ones. Next, a semi-classical WKB-like approximation is

performed on the portion contained in ĤG, while the portion ĤN remains entirely
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at the quantum level. In this way, it is possible to show that a (time-dependent)

Schrödinger equation emerges for Ψrhijs (see [20] for more details).
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3 SCHWARZSCHILD BLACK HOLE

A lua, tal qual a dona do bordel, pedia a cada estrela fria um brilho de aluguel.

Elis Regina - O bêbado e a equilibrista

3.1 Schwarzschild solution

The initial aim of this chapter is to apply the QCG results of sections 2.2 and 2.3

in the SBH. This results in the minisuperspace WDW equation for the SBH. We begin

by reviewing the fundamental features of the Schwarzschild solution. The Schwarzschild

solution of the vacuum field equations deals with a spherically symmetric and static

spacetime1, whose metric is [33]

ds2
“ ´

˜

1 ´
2Gm
r

¸

dt2 `

˜

1 ´
2Gm
r

¸´1

dr2
` r2dΩ2, (3.1)

as that which applies to the exterior of a spherical, non-rotating, massive object. In

equation (3.1), m is identified as the mass of the object, and dΩ2 “ dθ2
` sin2θ dϕ2 is

the metric of a unit 2-sphere. The set pt, r, θ, ϕq are called the Schwarzschild coordinates.

This coordinate system describes, in addition to the true singularity at r “ 0, an ap-

parent singularity (or coordinate singularity) at r “ 2Gm. Despite this limitation of

the Schwarzschild coordinates, we can use them to analyze the corresponding spacetime

diagram, as in figure 2.

The slope of the light cones in these coordinates are given by the radial lightlike curves,

setting θ and ϕ as constants, and ds2 “ 0 in equation (3.1)

dt

dr
“ ˘

˜

1 ´
2Gm
r

¸´1

. (3.2)

From equation (3.2) we note that with rÑ 8, dt{drÑ ˘1, and the light cones of Minkowski

spacetime appears. As a light signal (or timelike observer) approaches rÑ 2Gm (the so-

called Schwarzschild radius, that is, r “ 2Gm), the light cone squeezes until its shape

diverges as dt{drÑ ˘8; i.e., in the Schwarzschild time coordinate it takes a infinite time
1Actually, the Birkhoff’s theorem guarantees that a vacuum solution of the field equations with

spherical symmetry is necessarily a static spacetime [32].
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Figure 2: Schwarzschild spacetime diagram in Schwarzschild coordinates showing the ingoing

causal curves.

Source: The author (2024).

∆t for something to cross the surface r “ 2Gm from region I, 2Gm ă r ă 8, to region

II, 0 ă r ă 2Gm.

Finally, in region II, looking at the ingoing lightlike, or timelike, curves (causal curves2)

in the diagram 2, we see that with r ă 2Gm then dt{dr ă |1|. Thus in region II, the

Schwarzschild coordinates t and r reverse their character, t becomes spacelike, r becomes

timelike, and the light cones axis rotate π{2 counterclockwise. Inverting equation (3.2) to

obtain the velocity of the radial lightlike curves, we see that with r ă 2Gm the outgoing

causal curves have negative velocity. That is, only future-directed causal curves can cross

the surface r ă 2Gm and an observer in region II cannot stay at rest but is forced to

move in towards the singularity at r “ 0. Hence, no event in region II can be accessed

by an external observer in region I and the surface r “ 2Gm is called the event horizon3

[33]. Objects which are described by the Schwarzschild solution and whose size is close to

their Schwarzschild radius are called SBH.
2A differentiable curve λpuq in spacetime, with u a time parameter, that for each event p on λpuq,

the tangent vector at p, tµ, is either timelike or lightlike [18].
3This concept will be addressed more rigorously in section 5.1 and 5.2.
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3.1.1 The Kruskal extension

To make the Schwarzschild metric regular on the event horizon and naturally note

that an observer who crosses it does not take infinite time to do so in his proper time,

we use the Kruskal-Szekres coordinates, namely pt1, x1, θ, ϕq. The Schwarzschild metric in

the Kruskal-Szekres coordinate is [33]

ds2
“

32G3m3

r
e´r{2Gm

p´dt1
2

` dx12
q ` r2dΩ2, (3.3)

where t1 is the timelike coordinate and x1 is the spacelike non-angular coordinate, and r

relates to such coordinates as [33]

t1
2

´ x12
“

˜

1 ´
r

2Gm

¸

er{2Gm. (3.4)

Clearly from (3.3) the radial lightlike curves give the new slope of the light cones at these

coordinates, as

dt1

dx1
“ ˘1, (3.5)

which are equal to the light cones of Minkowski spacetime. The spacetime diagram in

Kruskal-Szekres coordinates is shown in figure 3, in which two new regions, III and IV, are

revealed. Region I and II are the same as those obtained by the Schwarzschild coordinates,

but since the Kruskal-Szekres coordinates allow us to cover the entire ´8 ă t1 ă 8

interval so that the metric is regular, region IV extends the causal curves to tÑ ´ 8 and

these curves now cross a r “ 2Gm surface in region IV only in the past-directed direction

[33]. In this sense, region IV looks like a time reversal of region II and is called a white

hole, since no causal curve can follow towards the singularity. The straight line r “ 2Gm

and the singularity r “ 0 in region IV are called the past event horizon and the past

singularity, respectively. Equivalently, we rename r “ 2Gm and r “ 0 in region II as the

future event horizon and the future singularity, respectively. The extension of spacelike

curves (t1 “ constant) to the ´8 ă x1 ă 8 interval encompasses region III, which is

asymptotically flat as region I, acting as a mirror of the latter.
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Figure 3: Schwarzschild spacetime diagram in Kruskal-Szekres coordinates.

Source: The author (2024).

3.1.2 The Einstein-Rosen bridge

In this scenario, something interesting can be seen when we analyze the geometry of

the spacetime manifold covered by the Kruskal-Szekres coordinates with the hypersurfaces

t1 “ constant. With equation (3.4), three cases can be examined: t1 “ 0, t1 “ ˘1, and

t1 ă 1 or t1 ą 1. For t1 “ 0, we have

$

’

’

’

’

’

&

’

’

’

’

’

%

x1 Ñ `8 ñ rÑ `8;

x1 Ñ 0 ñ rÑ 2Gm;

x1 Ñ ´8 ñ rÑ `8.

(3.6)

For t1 “ ˘1

$

’

’

’

’

’

&

’

’

’

’

’

%

x1 Ñ `8 ñ rÑ `8;

x1 Ñ 0 ñ rÑ 0;

x1 Ñ ´8 ñ rÑ `8.

(3.7)

For t1 ă 1 or t1 ą 1, besides x1 Ñ ˘8 ñ rÑ `8, when x1 Ñ 0, r does not converge to any

value. Remembering that the interval ´8 ă x1 ă 0 describes region III, and the interval
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Figure 4: The Einstein-Rosen bridge, where t1 “ 0, and the “throat” of the wormhole has a

radius r “ 2Gm.

Source: The author (2024).

0 ă x1 ă `8 describes region I, by (3.6) and (3.7), we can conceive of the following. For

almost the entire time interval measured by t1, the asymptotically flat regions I and III are

disconnected and have, completely independently, an event horizon that delimits a black

hole and white hole region, respectively. Then, in a short interval of time symmetrical

to the origin t1 “ 0, both regions share the same point in spacetime, given by r “ 0,

and then they also share the same surface at r “ 2Gm. The process then reverses, these

regions intersect again at r “ 0 and finally disconnect once more.

A view from the equatorial plane θ “ π{2 of the structure formed in this process,

called a wormhole, or Einstein-Rosen bridge [33], can be seen in figure 4 at the moment

t1 “ 0, of greatest connection between regions I and III. It is important to note that

this construction of extending Schwarzschild solution to cover a maximal manifold, called

maximal analytic extension, although mathematically consistent, lacks a definitive answer

as to whether it has physical reality [34]. For black holes formed by gravitational collapse,

the Kruskal diagram must have a cut-off at a timelike boundary that represents the surface

of the collapsed body, and then regions III and IV disappear.

3.2 Canonical quantization of the SBH

The canonical quantization of the SBH now follows, so that the condition of a spher-

ically symmetric and static spacetime M must now be translated to the set of hyper-

surfaces, Σ. Then the metric must be rewritten through the foliation that selects the

corresponding ADM variables for such conditions. Of course, the quantization will be
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done in a reduced configuration space, which represents a minisuperspace. According

to Kuchař [35], the metric for a spherical symmetric and static hypersurface Σt, in the

coordinates xi “ pr, θ, ϕq, is

ds2
Σt “ Λprq2dr2

` Rprq2dΩ2, (3.8)

where Λprq ą 0, Rprq ą 0, and again dΩ2 is the metric of a unit 2-sphere. By equation

(2.8), the spherical symmetric ADM metric is

ds2
“ ´Npr, tq2dt2 ` hrrpr, tqpdr ` N r

pr, tqdtq2
` hθθpr, tqdθ2

` hϕϕpr, tqdϕ2, (3.9)

due to spherical symmetry: N “ Npr, tq, N i “ N ipr, tq, and hij “ hijpr, tq, with N i “

pN r, 0, 0q. Noting that the spatial metric tensor hij in matrix notation

hij 9“

¨

˚

˚

˚

˝

Λprq2 0 0

0 Rprq2 0

0 0 Rprq2sin2θ

˛

‹

‹

‹

‚

, (3.10)

and using the metric for Σt (3.8) in (3.9), we have

ds2
“ ´Npr, tq2dt2 ` Λpr, tq2

pdr ` N r
pr, tqdtq2

` Rpr, tq2dΩ2. (3.11)

To correctly describe the whole Schwarzschild spacetime, we need to adopt two extra

conditions: i) the coordinates used must vary in such a way as to cover the entire Kruskal’s

maximal analytic extension of the Schwarzschild spacetime, i.e., the Kruskal diagram

(figure 3), and ii) that the spacetime after the foliation remains asymptotically flat. The

first condition can be guaranteed if we take ´8 ă r ă 8 and ´8 ă t ă 8 [35], as well

as the second condition if the functions Λ, R, N , and N r (and the conjugated momenta

to Λ and R) admit certain fall-off conditions [35]. The ADM lagrangian density of this

spacetime, namely, in terms of Λ, R, N , and N r, is [35]

LADM “
1

4πG sin θN
«

´ λ´1R B
2
rR ` Λ´2R BrR BrΛ ´

1
2Λ´1

pBrRq
2

`
1
2Λ

ff

´
1

4πG
sin θ
N

«

R pBrpΛN r
q ´ BtΛqpBrR N r

´ BtRq `
1
2Λ pBtR ´ BrR N r

q
2

ff

,

(3.12)
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and then the ADM action reads

SADM “

ż 8

´8

dt

ż 2π

0
dϕ

ż π

0
dθ

ż 8

´8

drLADM

“

ż 8

´8

dt

ż 8

´8

dr
1
G

#

N

«

´ λ´1R B
2
rR ` Λ´2R BrR BrΛ ´

1
2Λ´1

pBrRq
2

`
1
2Λ

ff

´
1
N

«

R pBrpΛN r
q ´ BtΛqpBrR N r

´ BtRq `
1
2Λ pBtR ´ BrR N r

q
2

ff+

.

(3.13)

The conjugated momenta to Λ and R are, respectively

ΠΛ “
δSADM

δpBtΛq
“ ´M2

P
R

N

`

BtR ´ BrR N r
˘

, (3.14a)

ΠR “
δSADM

δpBtRq
“ ´M2

P
1
N

“

R pBtΛ ´ BrpΛN r
qq ` ΛpBtR ´ BrR N r

q
‰

, (3.14b)

with MP :“ G´1{2 the Planck mass. As we already know, from equations (2.27), the

conjugated momenta to N and N r weakly vanish. Before going any further, we must

assess the existence of boundary terms in the ADM action (3.13). Unlike the general

ADM action (2.21) that we constructed earlier, here we need to preserve the fall-off

conditions of the ADM variables of interest in the regions of right and left spatial infinity

(respectively relative to regions I and III in the Kruskal diagram 3). In other words, we

need to specify the boundary of the Schwarzschild spacetime in the ADM action (3.13)

in such a way as to guarantee that this spacetime is consistently asymptotically flat [35,

36]. Then we consider the following boundary term action [17, 35]

SBM “ ´

ż 8

´8

dtpN`ptqM`ptq ` N´ptqM´ptqq, (3.15)

where N˘ptqM˘ptq is the product of the lapse function and the SBH mass evaluated at

the right (denoted by `) and left (denoted by ´) spatial infinity, that is

M˘ptq :“ lim
r Ñ ˘8

Mpr, tq, (3.16a)

N˘ptq :“ lim
r Ñ ˘8

Npr, tq. (3.16b)
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The total action, denoted SM , in terms of the Hamiltonian density is the ADM action

SADM given by p3.13q, as in equation (2.35), with the boundary term action SBM at (3.15)

SM “

ż 8

´8

dt

ż 8

´8

dr
“

ΠΛBtΛ ` ΠR BtR´N rHr ´NH
‰

´

ż 8

´8

dtpN`M` `N´M´q, (3.17)

where equation (2.40) was used. By comparing equations (3.13) and (3.17), the supermo-

mentum and the super-Hamiltonian, Hr and H, can be identified as

Hr “
1
M2

P
pΠR BrR ´ Λ BrΠΛq, (3.18a)

H “ ´
1

RM4
P

ΠR ΠΛ `
1

2R2M2
P

ΠΛ
2

` R B
2
rR ´

R

Λ2 BrR BrΛ ´
1

2ΛpBrRq
2

´
Λ
2 . (3.18b)

In order to prescribe canonical transformations on the variables Λ and R that simplify

the study of the boundary term action (3.15), we make the following pair of canonical

transformations [35], first pΛ,ΠΛq to pM,ΠM q

M “
1

2RM4
P

ΠΛ
2

´
R

2Λ2 pBrRq
2

`
R

2 , (3.19a)

ΠM “
Λ
M2

P
ΠΛ

«

´

BrR

Λ

¯2
´

1
M4

P

´ΠΛ

R

¯2
ff´1

, (3.19b)

with M the SBH mass, and second pR,ΠRq to pR,ΠRq

R “ R, (3.20a)

ΠR “

˜

H
RM2

P
ΠΛ `

Hr

Λ2 BrR

¸«

´

BrR

Λ

¯2
´

1
M4

P

´ΠΛ

R

¯2
ff´1

. (3.20b)

The new supermomentum and super-Hamiltonian become

Hr “
1
M2

P
pΠM BrM ` ΠR BrRq, (3.21a)

H “ ´

´

1 ´ 2M
R M2

P

¯´1
BrM BrR ` M´4

P

´

1 ´ 2M
R M2

P

¯

ΠM ΠR

”´

1 ´ 2M
R M2

P

¯´1
BrR2

´ M´4
P

´

1 ´ 2M
R M2

P

¯

ΠM
2

ff1{2 . (3.21b)
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The second constraints (2.44), from equations (3.21), are clearly manifested as

BrM « 0, (3.22a)

ΠR « 0. (3.22b)

The total action (3.17) can be rewritten as a consequence of the constraint given by

(3.22a); i.e., M “ Mptq, and defining a new conjugated momentum to M which

P ptq :“
ż 8

´8

drΠM , (3.23)

then

SM “

ż 8

´8

dt

ż 8

´8

dr
“

ΠM BtM ` ΠR BtR ´ N rHr ´ NH
‰

´

ż 8

´8

dtpN`M` ` N´M´q

“

ż 8

´8

dt

«

P BtM ´ pN` ` N´qM

ff

,

(3.24)

such that, from equation (3.22a), M˘ “ Mptq. Furthermore, to avoid the non-physical

solution in which Mptq “ 0, the lapse function at infinities must have a fixed value [35].

A consistent choice of values is such that an observer at rest in the right spatial infinity

(our region I of the Kruskal diagram 3) measures his proper time as measured by the time

coordinate of the Minkowski spacetime, then N` “ 1 and N´ “ 0 [37]. Then, the total

action becomes

SM “

ż 8

´8

dtpP BtM ´ Mq. (3.25)

From the equation above we can recognize the action in its canonical form and then

identify the Hamiltonian as H “ M . Note that from Hamilton-Jacobi equations in the

action (3.25), the equations of motion are M “ constant and P “ ´t. Since we are

admitting the maximal analytic extension represented by the Kruskal diagram in the

construction of the action, then coordinates for the wormhole solution can parameterize

the SBH solution. To do this, the canonical transformation introduced by Louko and

Mäkelä [37], where pM,P q goes to px, pq, is used
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|P px, pq| “

ż 2GM

x

dy

˜

2GM
y

´ 1
¸´1{2

, (3.26a)

Mpx, pq “
p2

2M2
Px

`
M2

Px

2 , (3.26b)

where x ě 0 is interpretead as the wormhole throat and ´8 ă p ă 8 is just its conjugate

momentum. Naturally, the SBH Hamiltonian becomes

Hpx, pq “
p2

2M2
Px

`
M2

Px

2 . (3.27)

As seen previously, applying the Hamiltonian density operator to the wave functional

leads to the quantization of the constraints and hence to the WDW equation. In the case

of the SBH, classically, the spherical symmetry leads to the constraints (3.22) that allow us

to identify the canonical reduced action (3.25) without the spatial integral over r. Thus,

at the canonical quantization level, the Hamiltonian operator (3.27) is equivalent to the

Hamiltonian density operator that leads to the WDW equation (2.52). This consistently

reflects quantization in minisuperspace where the number of degrees of freedom is reduced

due to a spacetime symmetry. Proceeding with canonical quantization, in the coordinate

representation taken with x, we have xÑ x̂ :“ x and pÑ p̂ :“ ´iℏ pd{dxq. The WDW

equation is then

Ĥ
´

x,´iℏ
d

dx

¯

ψpxq “ Mψpxq, (3.28)

and by substituting equation (3.27)

´
1

2M2
P

d2

dx2ψpxq `
M2

P
2 x2 ψpxq “ Mx ψpxq. (3.29)

Completing the square and factoring M3
P{2 in the second term of the left-hand side of the

equation (3.29), we have

´
1

2MP

d2

dx2ψpxq `
MP ωP

2

2

˜

x ´
M

M2
P

¸2

ψpxq “
M2

2MP
ψpxq, (3.30)

where ωP :“ 1{tP is the Planck angular frequency, and the Planck time is tP “ 1{MP.

Equation (3.30) is a Schrödinger-like equation for a harmonic oscillator and represents the
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WDW equation of the quantized SBH, which is mathematically simpler than the general

WDW equation (2.52) in superspace.

3.3 Thermodynamics of the quantized SBH

The suggestion that black holes should have a discrete mass spectrum due to quantum

effects goes back to Bekenstein [38]. Analysis of the solutions of the WDW equation for

the SBH4, equation (3.30), shows that for a massive black hole, M{MP " 1, the semi-

classical limit n" 1, with the quantum states levels n, provides the mass spectrum given

by [37]

Mpnq “ MP
?

2n ` 1, n" 1. (3.31)

We can try to articulate this result with the mechanism of black hole mass loss through

the creation of particle-antiparticle pairs on the surface of this black hole event horizon,

called Hawking radiation [39, 40]. The direction will then be to obtain the temperature

associated with the event horizon, an idea first proposed by Bekenstein [41]. Hawking

radiation takes the form of black-body radiation, whose well-known emission temperature

for an SBH is [33]

TH “
1

8π
M2

P
M

. (3.32)

In agreement with Mukhanov [42] and Xiang [43], we will assume that for the condi-

tions henceforth assumed of a massive black hole, M{MP"1, in the semi-classical limit,

n" 1, the emission frequency ω0 of the thermal radiation from the transition n` 1 to n of

the quantum states (due to the Hawking radiation) is given by the mass loss of the black

hole between these states. Then,

ω0 :“Mpn ` 1q ´ Mpnq

“MP
?

2n ` 3 ´ MP
?

2n ` 1

“MP
?

2n
˜

c

1 `
3

2n ´

c

1 `
1

2n

¸

,

(3.33)

4A full discussion of these solutions is beyond the scope of this text and, given the above, we ask the

interested reader to follow the details in reference [17].
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where equation (3.31) was used, and with the polynomial approximation p1 ` |x|qα « 1 `

α|x|, for |x| ! 1, we have

ω0 “
MP
?

2n
. (3.34)

Solving equation (3.31) for n returns

n “
1
2

«˜

MP

M

¸2

´ 1
ff

, (3.35)

and then substituting in equation (3.34)

ω0 «
M2

P
M

«

1 `
1
2

˜

MP

M

¸2ff

, (3.36)

again with the polynomial approximation. The characteristic time τn for the quantized

SBH in state n ` 1 to decay into state n is defined as [43]

τ´1
n :“

9M

ω0
« 9M

M

M2
P

«

1 ´
1
2

˜

MP

M

¸2ff

, (3.37)

with equation (3.36), and 9M ” dM{dt being the mass loss rate of the transition. In turn,

following Mukhanov [42], the width Wn between the quantum states of the quantized

SBH is proportional to the mass loss between the consecutive states

Wn “ βpMpn ` 1q ´ Mpnqq “ β ω0, (3.38)

with β ! 1 a dimensionless constant. In the case of a quantum system such as the SBH,

in which the mass difference between consecutive states ∆M varies with n´1{2, it can be

seen that

lim
nÑN

∆M
M

“ 0, N " 1. (3.39)

Therefore, since τn “ ω0{ 9M , and with equation (3.34), it is reasonable to assume

that τn must decrease when n increases and, therefore, the frequency of the radiation ω0

emitted by the black hole must also decrease. However, the width between the quantum

states Wn coming from the transition during the radiation emitted by the black hole

and the values of the characteristic time in which this transition takes place τn must

not be simultaneously arbitrary small quantities. Otherwise, the energy (equivalently,
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the mass) of the transition between arbitrarily close states cannot be properly evaluated

during a characteristic time that is also arbitrarily small. Such a situation would mimic

a continuum of states. To avoid this, we set an uncertainty ratio between τn and Wn

τnWn « 1. (3.40)

One can think of this relationship as a kind of boundary condition for the transitions

between the quantum states of the black hole. Hence, joining equation (3.36) with τn “

ω0{ 9M , we have

9M “ β ω0
2

“ β
M4

P
M2

«

1 `
1
2

˜

MP

M

¸2ff2

« β
M4

P
M2

«

1 `

˜

MP

M

¸2ff

.

(3.41)

Considering the Hawking radiation from the black hole as a black-body radiation

(remembering the assumed semi-classical limit, n" 1), we can associate 9M with the tem-

perature of the black hole event horizon T by the Stefan-Boltzmann law [44]

9M “ σSAT
4, (3.42)

where σS “ π2{60 is the Stefan-Boltzmann constant. By using the area of the SBH event

horizon A “ 16πM2{M4
P in equation (3.42), and joining with equation (3.41), the desired

temperature is obtained

T «

˜

β

16πσS

¸1{4
M2

P
M

«

1 `
1
4

˜

MP

M

¸2ff

, (3.43)

where the polynomial approximation was used once again. Realize that this temperature

agrees with the Hawking temperature for the SBH, equation (3.32), by choosing the

constant β “ 1{15360π, in a first approximation. One way of obtaining the associated

entropy is to verify that the horizon area of black holes is an adiabatic invariant and

then according to the Bohr-Sommerfeld quantization rule has an associated quantum

spectrum [38]. We can use the following adiabatic invariant Iadia as the black hole entropy,

corresponding to the Bekenstein-Hawking entropy [40], SB-H, for the SBH [45]

Iadia :“ 2π
ż H

0

dH 1

κ
, (3.44)
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where H is the SBH Hamiltonian, and κ is the SBH surface gravity (for a specialized

discussion of this topic, see section 5.1.4). Substituting these quantities for the SBH,

H “ M and κ “ M2
P{4M “ ω0{4 with equation (3.36), we have

8π
ż M

0

dM 1

ω0
“ 4πGM2

”

˜

AS

4G

¸

“ pSB-Hq SBH, (3.45)

with AS “ 4πr2
S in equation (3.45) the area of the SBH, and rS “ 2GM the Schwarzschild

radius.
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4 FRACTALS AND FRACTIONAL QUANTUM GRAVITY

No, I don’t think life is quite that simple.

Utada Hikaru - Simple and Clean

4.1 Fractal geometry

Fractal geometry describes the shape and structure of objects with a non-simple ge-

ometry whose associated dimension (fractal dimension) is usually a non-integer number,

which we call fractals. Often, fractals have their fractal dimension greater than the topo-

logical dimension [46]. This was one of the first definitions given in Mandelbrot’s seminal

book [46]. Another common property for defining fractals is self-similarity; that is, the

parts of a fractal are exactly or approximately similar to a part of itself on various scales

[47]. However, a precise and general definition for a fractal is difficult to obtain [47], so

this section will focus on properties and motivating the physics of these objects.

Many physical phenomena have properties that define a fractal system, such as the flow

of fluids and the study of turbulence, the use of high-frequency radio antennas, trajectories

of Brownian motion, and various systems whose temporal evolution refers to fractals,

phenomena called fractal growth [47]. For our discussion, it is sufficient to present an

overview of the subject from the perspective of the anomalous (non-topological) dimension

that these objects possess. Before that, we will give some motivation by constructing the

fractal dimension of a famous fractal: the Koch curve [48].

4.1.1 A motivation: the Koch curve

The Koch curve is our archetype of a fractal [48]. Consider a line segment of unit

length. The Koch curve now goes through an iteration procedure: divide the segment into

three equal line segments, the middle segment of which is transformed into an equilateral

triangle. The second iteration repeats the same protocol for each line segment previously

generated. The Koch curve is the limit to infinity of these successive iterations on the

original line segment [47]. The representation of the iterations that build the Koch curve

can be seen in figure 5.
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Figure 5: Schematic view of the iterations leading to the Koch curve.

Source: The author (2024).

As a way of studying the geometry of the Koch curve about the geometry of simpler

objects, one can ask what is the dimension of the Koch curve. To answer this question,

we need to establish a formal definition of dimension, consistent with the intuitive value

of topological dimension for objects in ordinary geometry.

An initial simple idea is to use the notion of measure1 (Hausdorff measure [47]) m of

a subset of Rn, as follows: when we scale an interval I :“ ra, bs ĂR by a factor K ą 0,

the measure of I which was initially equal to the length of I, mpIq “ b ´ a, becomes
1A measure can be summarized as a non-negative function of a set, whose value for a countable union

of disjoint sets is given by the sum of the values in each set [49]; the measure generalizes the common

notions of length on the line, area on the plane, and volume in space, to other subsets of Rn.
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given by mpKpIqq “ Kpb ´ aq “ KmpIq [49], where KpIq is the scaled interval. If

we start with a rectangle R :“ ra, bs ˆ rc, ds ĂR2 and scaling by K, the measure goes

from mpRq “ pb ´ aqpd ´ cq, to mpKpRqq “ K2mpRq. In turn, taking a parallelepiped

P :“ ra, bs ˆ rc, ds ˆ re, f s ĂR3 and scaling by K, the measure goes from mpP q “ pb ´

aqpd´cqpf´eq, tompKpP qq “ K3mpP q. This suggests that our intuitive idea of dimension

for objects in Rn can be obtained from this procedure. More generally, the Hausdorff

measure satisfies the so-called scaling property [47], that is

mpKpAqq “ KdmpAq, (4.1)

where AĂRn, K is a scale factor, and d is initially a non-rigorous notion of dimension for

A. The scaling property holds for fractals [47] and can be used to first motivate a fractal

dimension concept that extends the topological dimension.

Looking at the Koch curve (K) (please, do not confuse it with the previous scale

factor), we can split it into four parts (K/4) of equal measure, as shown in figure ??. Of

course, in terms of the set, K = 4(K/4), and the measure of K is given by the sum of the

measures of the parts that compose it, so

mpKq “ 4mpK{4q. (4.2)

Using equation (4.1), and looking at figure 6 once again, we can see that for K we have

mpKq “ 3dmpK{4q, (4.3)

and the measure of K is obtained by scaling the one-quarter of K by a factor of 3. Now,

joining equations (4.2) and (4.3)

4 “ 3d, (4.4)

such that K is an object with a generalized dimension, or fractal dimension dfractal, given

by

dfractal “
log 4
log 3 « 1.26. (4.5)

The scaling property is an important condition for defining fractals [47], and a precise
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Figure 6: Schematic splitting of the Koch curve into four parts of equal measure.

Source: The author (2024).

notion of dimension, the Hausdorff dimension2, dH, can be taken as the fractal dimension,

dfractal. Before we discuss the notion of dimension we will use to define fractals, comments

on equation (4.5) and the Koch curve itself are necessary. Note that the fractal dimension

(Hausdorff dimension) of K is greater than 1 and less than 2, which is greater than the

topological dimension, D, of this set, D “ 1. Self-similarity, although not commented on,

is masked in the scaling property: the object maintains its appearance on various scales

by a relationship such as (4.1).

Next, we will analyze a more operational and physical definition of fractal dimen-

sion, the box-counting dimension, or Minkowski–Bouligand dimension, dM-B, which con-

veniently is often equivalent to the Hausdorff dimension [47] (we will assume that both

coincide).

4.1.2 Fractal dimension

A visual and practical approach to recognizing fractals is by observing the area-to-

volume quotient of candidate objects (formally, the quotient formed by the measure of the

area by the measure of the volume, of the set that constitutes the object). It is easy to

see that for simple macroscopic objects such as a parallelepiped or a sphere, this quantity
2Using the formal definition of the Hausdorff dimension is beyond the scope of this work (see, for

example, [47]), and equation 4.1 can be used as a method of calculating Hausdorff dimension for fractals.
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Figure 7: A set A that forms a cube of linear size L covered by boxes of linear size l.

Source: The author (2024).

is inversely proportional to a characteristic linear size of the object. Also, such quotient

is generally small in that case. Fractals in turn often have a high area-to-volume ratio,

which indicates their intricate and complex geometric structure [46]. With this addition

to the common properties of fractals, a notion of fractal dimension can be intuited. For

visual simplicity, we will be dealing with sets in R3, so the extension to Rn is immediate.

Consider a set A that forms a cube of linear size L and is contained in a grid of cubes

(often referred to as boxes) of linear size l, as shown in figure 7.

The relative volume between the cube and the boxes that cover it is ΩpLq{Ωplq “ 64.

From figure 7, the number Npl, Lq of boxes needed to completely cover the cube is also 64,

and by defining ε :“ l{L we have that Npl, Lq “ p1{εqD, with D equals to the (topological)

dimension of the cube, D “ 3.

Is expected that for the case of a simple object like a cube, regardless of ε, i.e. the

number of boxes to cover the set, the dimension of the cube should not change: repeat-

ing the previous exercise with a much larger number of boxes should not capture any

additional detail of the cube, being an object with unlimited smooth boundaries.

Now, this simple construction allows us to precisely define a generalized form of di-

mension to include fractals. Consider a set that forms an object of more complicated

geometry, again associated with a linear size L, and repeat the method of covering it

with boxes of linear size l. See the representation in figure 8. Should make the num-

ber of boxes smaller (with a linear size l1 ! l), suggested by capturing more detail of the

geometry, change the value of D?
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Figure 8: An object with a more complicated geometry (a cat), which suggests a greater

number of boxes to capture the details of the structure.

Source: The author (2024).

We can treat the problem rigorously and then take the limit of εÑ 0 in the expression3

Npl, Lq “ Npεq “ Cp1{εqD, with D replaced by the fractal dimension dM-B, defining the

Minkowski-Bouligand dimension, or box-counting dimension [47], as

dM-B :“ C lim
ε Ñ 0

log pNpεqq

log p1{εq
. (4.6)

The interpretation is that an increase in the complexity of the geometry of an object,

such as porous, hairy, or crooked one, suggests more information when we increase the

number of boxes. In practice, as the box count is physically limited by the atomic scale,

the limit on (4.6) is such that ε must decrease until the dimension dM-B no longer changes.

Fractals change their dimension as more boxes are added and more detail is captured of

their structure. Once we reach the ε! 1 regime, at the available observational limit

(this is the situation where the area-to-volume ratio is large), fractals tend to have their

dimension, dM-B, well defined. As a consequence of this behavior, fractals generally have

a non-integer dimension.

Note that in the expression

Npεq “ Cp1{εqdM-B , (4.7)
3The constant dependent on the object, and independent of the resolution, is added so that different

objects can characteristically vary their fractal dimension.
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we must take ε! 1 to operationally work with the limit of equation (4.6). If dM-B does

not change with ε! 1 then we can only say that l{L is simply a macroscopic quantity n

of parts that split the linear size of the set equally and the number of boxes is N “ nD,

with D the topological dimension. By consequence, nD “ εdM-B , and we have ordinary

geometry, D “ dM-B. Otherwise, as the linear size of the boxes cannot be greater than

the linear size of the set, l ď L, then the fractal dimension is necessarily dM-B ěD. The

self-similarity property of fractals can be included in equation (4.7) by scaling the set by

a factor K ą 0, to obtain

NpKεq “ CK´dM-Bp1{εqdM-B “ K´dM-BNpεq. (4.8)

,

4.1.3 Random fractals

There is a class of fractals in which random or probabilistic realization rules are used in

its construction. They are called random fractals [47]. On the one hand, the Koch curve is

a so-called deterministic fractal, and the realization steps that construct it are iterations

that carry self-similarity. On the other hand, random fractals are characterized by ran-

domness, and trajectories of Brownian motion are an example. In quantum mechanics,

the paths of massive free particles are non-differentiable curves with self-similarity [50,

51]. It has been proven that we can associate a fractal dimension (Hausdorff dimension)

dH “ 2 to these curves [50–52], i.e. a fractal curve that carries the geometric information

of a more complicated object [51].

In 2020, inspired by the complex geometrical structure of the surface of the COVID-

19 virus, and influenced by the Wheeler [53] proposal of a quantum modification in the

smoothness of spacetime in very small scales4, Barrow [55] proposed that the very surface

of the black hole should have the characteristics of a fractal on the quantum scale. With

this effect of quantum gravity on the black hole as a premise, Barrow constructed the

SBH surface as a kind of Koch snowflake5, i.e. as a deterministic fractal.
4Very brief quantum fluctuations on the Planck scale that should alter the smooth geometry of

spacetime and are called spacetime foam [54].
5Instead of starting with a line segment, start with an equilateral triangle and apply the Koch curve

algorithm. In the limit of the iterations going to infinity, you get the Koch snowflake.
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However, due to Barrow’s [55] premise that the fractal effect comes from the spacetime

foam, which is generated by quantum fluctuations of spacetime on very small scales [54],

driven by the fractal randomness of the particle paths [51], it is argued here that the

surface of the black hole must be a random fractal and not a deterministic one. With

this, we will analyze the physics of the SBH as a random fractal, and investigate the use

of fractional calculus in quantum mechanics and quantum cosmology to describe such a

black hole structure.

4.2 Fractional quantum gravity

Quantum gravity, nowadays, is the great puzzle of theoretical physics. It is hoped

that the experiments currently possible, or in the future, will lead to insights and clues

about the convergence between quantum physics and gravitational interaction. So far,

several theories of quantum gravity have been proposed, and are under continuous refine-

ment and investigation, as examples: string theory [56], loop quantum gravity [57], and

asymptotically safe quantum gravity [58]. A difficult task for self-consistent analyses of a

quantum gravity theory is to obtain non-divergent predictions of the theory for both the

infrared (IR) (lower energy effects) and ultraviolet (UV) (high energy effects) limits when

transiting from the gravitational scale to the Planck scale. A useful and often desirable

approach is to study the quantum UV corrections to the gravitational scale arising from

an effective field theory, even if one does not know the underlying fundamental theory of

quantum gravity [59] (i.e., an operationally semi-classical analysis of the physics involved).

It should be mentioned that there are numerous cases in gravity theories where frac-

tional calculus and fractal models has been employed, showing the wide and significant

applications of these mathematical areas. For example, fractional calculus finds appli-

cation in the study of fractional generalization of field equations based on the Riemann-

Liouville derivative [60, 61], fractional gravity for spacetimes with non–integer dimensions

and the Caputo derivative in fractional manifolds [62, 63], modified Newtonian dynamics

(MOND)6 from a fractional version of Newton’s theory based on the fractional Poisson

equation [65], model of gravity based on the theory of D-dimension metric spaces and its
6At low accelerations, MOND proposes that the gravitational force should deviate from the standard

1{r2 law to a relation as 1{r. This modification was introduced by Milgrom [64] to account for the

observed discrepancies in the dynamics of galaxies and galaxy clusters without invoking dark matter.
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applications to Newtonian gravity [66–70], its relativistic extension [71], the gravitational

potential associated to dark matter as determined by a modified Poisson equation in-

cluding fractional derivatives [72–74], perturbative theories of quantum gravity based on

fractional operators [75], modified field equations from generalized fractional Bekenstein-

Hawking entropy [76], and to justify that fractional corrections in gravity is generated

by quantum stochastic fluctuations of spacetime [77]. Also, fractal models are used to

investigate a power-counting renormalizable field theory living in a fractal spacetime [78,

79], a multi-fractional scenario inspired by multi-fractal geometry, where the spacetime

dimension changes with the scale [75, 80], models of higher derivative quantum gravity to

associate a fractal dimension to spacetime at very small distances [81], using Caputo frac-

tional derivative to determine the spacetime geometry of a fractional cosmic string [82],

the fractal structure of spacetime in loop quantum gravity [83], and in asymptotically safe

quantum gravity [84].

In cosmology, fractional calculus is also often found in proposals of a generalization

of the Friedman equation with a fractional time derivative based in Riemann-Liouville

derivative [85], cosmological models derived from the Einstein-Hilbert action of fractional

order [86–90], modified Friedmann equations with Caputo’s fractional derivative to explain

a late cosmic acceleration without introducing a dark energy component [91], and to

study the Hubble tension [92]. Because of the applications of fractals as a model of

the distribution of galaxies and galaxies clusters in the Universe [93, 94], fractals are also

used in cosmology to study the cosmological principle [95], and models of a inhomogeneous

Universe [96].

As suggested by almost all the dozens of references above, several quantum gravity

scenarios predict that spacetime has a fractal behavior at a very small scale, or an apparent

fractional (non-integer) order regime in derivatives and operators, often implying that the

dimension of spacetime changes in different scales [97]. The following objective is to take

the consequences of fractional calculus in quantum mechanics, namely FQM [6, 98, 99],

and mainly in quantum cosmology, namely FQC [5, 7, 13, 15, 17, 100–102], as an effect of

quantum gravity into the fractal SBH. Such a framework, clearly not fundamental7, but

at the level of an effective theory composes which we call FQG. First, we separate the
7It is important to emphasize that, as with its root in FQC [5], this does not prescribe a fundamental

theory, but rather a heuristic methodology in the quantum effective setting of GR solutions.
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concepts and weave the relationships between fractional calculus and fractals.

4.2.1 Fractional calculus and fractals

It is generally assumed that the origin of the concept of fractional derivative follows

from a question from L’Hôpital to Leibniz about the meaning of a half-order derivative;

i.e. something like d1{2y{dx1{2. Since then, the problem has undergone various treat-

ments and proposals for a general formulation of the calculus for non-integer orders of

derivative, in particular, it has received attention from names such as Liouville, Riemann,

Caputo, Riesz, Grünwald, Letnikov, and others [103]. Over time, fractional calculus has

gone from being a theoretical extension of ordinary calculus to having the potential to

adequately describe various phenomena in nature, such as rheology, quantitative biol-

ogy, electrochemistry, scattering theory, diffusion and transport theory in complex media,

probability, potential theory, elasticity [103], many other applications in physics [104],

and as we shall see later, particularly in gravitation and cosmology.

A crucial point to the applicability of a fractional derivative of a function is that its

definition often includes an integral of a certain order, such as a fractional order, which

requires information about the function over a range of values. Let us elaborate and

then consider a single-valued analytic function f : RÑR where its indefinite integral is

represented by an operator aI such that [104]

paIfqpxq :“
ż x

a

fpξqdξ. (4.9)

Since it is natural to define fractional integrals via Cauchy’s formula of repeated inte-

gration [104], one can realize that the integration of a function can be considered as the

inverse operation of differentiation, and then

˜

d

dx

¸

paIfqpxq “ fpxq. (4.10)

This means that the route to a fractional derivative is not only by reversing the

integration operation for a fractional integral but also that the derivative calculation will

be just as challenging as the integration [104]. In other words, the value of the fractional

derivative at a particular point depends on the behavior of the function over a whole

interval, making it non-local in this sense [104] (as a well-known example, of a non-

local operator there is the Fourier transform [104]). Taking the description of anomalous
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diffusion as an application example, the non-locality of fractional operators allows for an

adequate description of the spatial and temporal evolution of diffusion processes which

have broad spatial jump and waiting time probability distributions [105] (also called

memory effect). Furthermore, the concept of non-locality and the memory effects provided

by non-local operators has a long historical tradition in physics [104].

As we discussed in section 4.1, fractals are objects of non-simple geometry, with a com-

plex structure at different scales, often endowed with self-similarity and whose associated

(non-integer) fractal dimension differs from the topological dimension. In turn, fractional

calculus, with its non-local nature and ability to capture long-range dependencies, such

as big jumps and memory [105], provides a mathematical framework to represent and

analyze fractal phenomena. In physical terms, it is not a new idea that the evolution of

fractal systems has fractional derivatives, and fractional equations of motion, as a natural

tool to be described [106, 107], or that fractional calculus can be used to change the fractal

dimension of any random or deterministic fractal [108]. Indeed, it will be seen below that

the fractal structure of the SBH emerges from fractional calculus when justifying its use

in quantum mechanics and quantum cosmology.

4.2.2 Fractional quantum mechanics

Before we can discuss the FQC developed by Jalalzadeh and Moniz [5], we must clarify

the motivation and scenario behind the FQM created by Laskin [6]. As mentioned in the

previous paragraphs, it was realized by Feynman and Hibbs [50] that the paths of a mas-

sive quantum particle are non-differentiable curves with self-similarity, i.e. zigzag curves

of similar shape at different scales [51]. Furthermore, these paths bear a great resem-

blance to the paths of Brownian motion, since both have a fractal dimension (Hausdorff)

dH “ 2 [52], and the Brownian motion diffusion equation can be heuristically mapped

onto the Schrödinger equation for a massive quantum particle [109]. Using these facts

and in the search for a formulation via path integrals for (non-relativistic) quantum me-

chanics, Feynman’s formulation was proposed [50], so that the integrals are constructed

from the Wiener process, i.e. a stochastic process that models Brownian motion, and

whose trajectory increments (steps realizations through the trajectory) follow a Gaussian

distribution in their direction [5, 6].

The conventional form of the quantum Hamiltonian for a particle with mass m
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Ĥ “
p̂2

2m ` V̂ pr̂q, (4.11)

with p̂ and r̂ the momentum and position operators, respectively, and V̂ pr̂q the potential

operator, Feynman’s formulation was used by Laskin [6] to answer the following ques-

tion: are there non-quadratic orders of exponent in the kinetic term of the Hamiltonian

(4.11), without violating the laws of physics? To answer this question, Laskin [6] gen-

eralized the formulation of path integrals by using Lévy’s process instead of integrals

built on Wiener’s process. Lévy’s processes are stochastic processes that generalize the

description of Brownian motion to non-continuous trajectories, endowed with jumps and

a non-Gaussian distribution for the direction of the increments [99]. Another property of

these processes is that they indeed generalize Brownian motion (Wiener process) in the

sense that a quantity α, 1 ă α ď 2, called Lévy’s index, emerges to denote the fractal

dimension of the trajectory, generally, dfractal “ α [99].

With this, FQM was inaugurated and Laskin was able to generalize Feynman’s for-

mulation of path integrals, in which the quantum Hamiltonian (4.11) becomes [6]

Ĥα “ Dα|p̂|
α

` V̂ pr̂q, 1 ă α ď 2, (4.12)

with Dα a generalized coefficient with (cgs) dimension rDαs “ erg1´α¨ cmα¨ sec´α [6].

Note that when α “ 2 and Dα “ 1{2m equation (4.12) recover the Hamiltonian (4.11).

Furthermore, this can be implemented to produce Laskin’s version of the time-dependent

Schrödinger equation with conventional choice for the space representation of operators

(r̂ :“ r. p̂ :“ ´i∇, with ∇ ” B{Br)8 as [98]

i
BΨpr, tq

Bt
“ Dα

`

´ ∆
˘α{2Ψpr, tq ` V̂ pr, tqΨpr, tq, 1 ă α ď 2, (4.13)

where ∆ :“ ∇2 the Laplacian operator, and the operator p´∆
˘α{2 is introduced as the

3-dimensional generalization of the Riesz fractional derivative9, following Laskin [98] (the

variation range of α, 1 ă α ď 2, is henceforth implied)
8Remember that we are using the units which ℏ “ 1.
9An in-depth investigation into the possible representations found in the literature of Riesz’s fractional

derivative can be found at [110].
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p´∆
˘α{2Ψpr, tq “

`

F ´1
|p̂|

αF
˘

Ψpr, tq

“
1

p2πq3

ż

d3p exptipp̂ ¨ rqu|p̂|
α

ż

d3r1 expt´ipp̂ ¨ r1
quΨpr1, tq,

(4.14)

where F denotes the Fourier transform of Ψpr, tq.

Note that when α “ 2 we have the full recovery of the usual results of quantum me-

chanics, and more than that we recover Feynman’s formulation of path integrals [99]. On

the other hand, with α‰ 2 there must be a new physics. Equation (4.14), by introduc-

ing a generalization of Riesz’s fractional derivative, embeds the fractional calculus in the

Schrödinger equation and Lévy’s index becomes the indicator of the fractional derivative

order (for this reason, α it will henceforth be called Lévy’s fractional parameter). Equa-

tion (4.13) is the so-called fractional Schrödinger equation (FSE) [98]. Before going any

further, a few comments on the FQM are necessary.

Despite the years that have passed since its inception and the inherent difficulty in its

experimental verification due to the need to find a quantum regime known to be endowed

with a Lévy process, FQM has only recently been explored and tested via experimental

and simulation analyses [111]. Successfully, FQM has been used to model optical media

with properties governed by the Lévy fractional parameter [111], in systems with elec-

trical screening effects [112], and to study the role of disorder in the vibration spectra

of molecules and atoms in solids [113]. Also, given the random and unpredictable na-

ture of the paths of quantum particles [50], a generalization of path integrals based on

Lévy processes that admit big jumps and discontinuity in the trajectory has a reasonable

physical justification. Given the context of quantum gravity, the natural question now

would be: does the conjecture that extends quantum particle paths (and then the very

quantum mechanics) to Lévy processes have consequences on the scale of quantum effects

in spacetime?

4.2.3 Fractional SBH

As mentioned in chapter 2 and demonstrated in chapter 3, running the CQG program

from spacetime symmetries considerations which limit the degrees of freedom considered

in the quantization, and thus simplify the study of the WDW equation produced, is

called a quantization in minisuperspace. The quantized SBH is the archetype of this

scenario, as we see by comparing the general WDW equation (2.52) in superspace (with
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functional derivatives that return divergence problems) and that in minisuperspace (3.30)

for the SBH (with ordinary derivatives and no divergence). Halliwell [114] showed that

obtaining the WDW equation in configuration spaces of a minisuperspace from a quantum

formulation of path integrals is possible. Given the generalization of the notion of path

integrals in quantum mechanics to the fractional case via Lévy processes following Laskin

[6], Jalalzadeh and Moniz [5] proposed that the same reasoning should be extended to

quantum cosmology (i.e., minisuperspace models in CQG) and then to the very WDW

equation. This approach to quantum cosmology is the so-called FQC [17].

On the one hand, instead of repeating Laskin [6] and then working on the difficulties

shown by Halliwell [114] in obtaining the general WDW equation in superspace at the

level of path integrals modified by the inclusion of Lévy processes, Jalalzadeh and Moniz

[5] were motivated by the form of the FSE (4.13) to heuristically obtain a fractional

extension of the WDW equation, focusing on minisuperspace models which quantum

cosmology takes place. The method is then to induce the modification to fractional

differential operators directly in the WDW equation for the minisuperspace models [5].

On the other hand, considering FQM [6, 98, 99] and the non-smooth structure of the

spacetime foam suggested on the quantum scale [53, 54], it is to be expected that the

virtual particles of the quantum fluctuations that produce the spacetime foam have their

paths influenced by the admission of Lévy processes [7]. In other words, the alteration

of the quantum paths described by the FSE (4.13) must produce quantum gravity effects

on a certain scale. Furthermore, the intrinsic non-locality of fractional calculus operators

via FQC suggests new quantum gravity effects with a non-local behaviour in spacetime

on certain scales [101].

Details about the implementation of the fractional operator in the WDW equation

for an arbitrary minisuperspace (which was not discussed in this work), that is the

d’Alembertian operator in its fractional version, can be found in the original works by

Jalalzadeh and Moniz [5, 17]. Our particular interest at this point is to analyze the frac-

tional extension of the WDW equation of the SBH (3.30), and then investigate the fractal

nature of the SBH. We define a new coordinate z in the minisuperspace of the quantized

SBH (please, see equation (3.30)) as [7]

z :“ x ´
M

M2
P
, (4.15)
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and, inspired by the FSE (4.13), the quantum Riesz fractional derivative operator (1-

dimensional) becomes [7]

˜

´
d2

dz2

¸

Ñ
1

Mα´2
P

˜

´
d2

dz2

¸α{2

. (4.16)

The fractional WDW equation of the SBH is then

1
2M

1´α
P

`

´ ∆
˘α{2

ψpzq `
1
2MP ωP

2z2 ψpzq “
M2

2MP
ψpzq. (4.17)

Since this equation does not have a trivial solution [7], to study the thermodynamics

of the fractional SBH, the approach is to use a semi-classical analysis and obtain the

emission frequency. Therefore, we recover |p̂|α (1-dimensional) from the quantum Riesz

fractional derivative operator
`

´ ∆
˘α{2 in equation (4.17) as constructed in equation

(4.12), then

1
2M

1´α
P |p̂|

α
`

1
2MP ωP

2z2
“

M2

2MP
. (4.18)

Note that the equation above is the fractional extension of the equation (3.27), with

the change of coordinate shown in equation (4.15) and applied canonical quantization

pzÑ ẑ :“ z, pÑ p̂q. Before canonical quantization, we then have the fractional Hamilto-

nian equation for the SBH as

1
2M

1´α
P |p|

α
`

1
2MP ωP

2z2
“

M2

2MP
, (4.19)

and now solving for |p|, we obtain

|p| “
M2{α

M
2{α´1
P

˜

1 ´
M4

P
M2 z

2

¸1{α

. (4.20)

Looking at the phase space of the system, we have orbits in which the turning points

are given by |p| “ 0 in equation (4.19), and then z “ ˘M{M2
P. We now invoke the

Bohr-Sommerfeld quantization rule to find out the emission frequency of the black hole

from the mass spectrum; note that in the minisuperspace considered, p is the conjugate

momentum to z, and we have a dynamics like the harmonic oscillator in equation (4.20).

Hence, the Bohr-Sommerfeld quantization rule reads [7]

2π
´

n `
1
2

¯

“

¿

pdz. (4.21)
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Using equation (4.20), we have

2π
´

n `
1
2

¯

“
M2{α

M
2{α´1
P

¿

dz

˜

1 ´
M4

P
M2 z

2

¸1{α

. (4.22)

The function in the integral is an even function, so the limits can be evaluated by

symmetry resulting in

2π
´

n `
1
2

¯

“ 4 M2{α

M
2{α´1
P

ż M{M2
P

0
dz

˜

1 ´
M4

P
M2 z

2

¸1{α

, (4.23)

for a complete orbit in the phase space. Moreover, we define a suitable variable for

integration y :“ pM4
P{M2q1{2z, such that y2 “ pM4

P{M2qz2. Equation (4.23) now becomes

2π
´

n `
1
2

¯

“ 4
˜

M

MP

¸2{α`1
ż 1

0
dy

`

1 ´ y2˘1{α
, (4.24)

where dz “ pM{M2
Pqdy, and z “ M{M2

P implies y “ 1. The integral in equation (4.24)

can be identified as the definition of the beta function [115],

Bpz1, z2q “

ż 1

0
tz1´1

p1 ´ tqz2´1dt, (4.25)

with z1, z2 complex numbers. Comparing with the integral in (4.24) we find that t “ y2

and dt “ 2ydy, as well as, z1 “ 1{2 and z2 “ 1{α ` 1. Then, we write

ż 1

0
dy

`

1 ´ y2˘1{α
“

1
2B

˜

1
2 ,

1
α

` 1
¸

. (4.26)

The beta function relates to the gamma function as [115]

Bpz1, z2q “
Γpz1qΓpz2q

Γpz1 ` z2q
, (4.27)

and then

B

˜

1
2 ,

1
α

` 1
¸

“
Γp1

2qΓp 1
α

` 1q

Γp 1
α

` 3
2q

“
?
π

Γp 1
α

` 1q

Γp 1
α

` 3
2q
. (4.28)

Now, a suggested fractal dimension d is defined in terms of the Lévy parameter α, as

follows [7]

d “
2
α

` 1, 2 ď d ă 3, (4.29)
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so the validity of this definition as a fractal dimension will be checked below. Substituting

equations (4.26), 4.28), and (4.29), in equation (4.24), one gets

π
´

n `
1
2

¯

“
?
π

˜

M

MP

¸d
Γpd`1

2 q

Γpd`2
2 q

. (4.30)

It is well known that the volume Vd of a d-dimensional unit sphere is given by

Vd “
πd{2

Γpd`2
2 q

, (4.31)

and with the introduction of d as a fractal dimension, we can write the gamma function

in equation (4.30) concerning the volume Vd, that is

π
´

n `
1
2

¯

“
Vd

Vd´1

˜

M

MP

¸d

, (4.32)

or

M “ MP

«

π
´

n `
1
2

¯Vd´1

Vd

ff1{d

. (4.33)

Note that, when d “ 2 (α “ 2) equation (4.33) becomes equation (3.31), which

validates the semi-classical analysis (implicitly considering the limit n" 1) via the Bohr-

Sommerfeld quantization rule. With the mass spectrum (4.33), we can follow the same

steps used in equation (3.36) to obtain ω0, and calculate its fractional version, ω0pdq, as

ω0pdq “ Mpn ` 1q ´ Mpnq “MP

«

π
´

n `
3
2

¯Vd´1

Vd

ff1{d

´ MP

«

π
´

n `
1
2

¯Vd´1

Vd

ff1{d

“MP

˜

π
Vd´1

Vd

¸1{d«

´

n `
3
2

¯1{d

´

´

n `
1
2

¯1{d

ff

“MP

˜

nπ
Vd´1

Vd

¸1{d«

´

1 `
3

2n

¯1{d

´

´

1 `
1

2n

¯1{d

ff

.

(4.34)

Using the polynomial approximation as in equation (3.33), we have

ω0pdq “MP

˜

nπ
Vd´1

Vd

¸1{d«

´

1 `
1
d

3
2n

¯1{d

´

´

1 `
1
d

1
2n

¯1{d

ff

“
MP

nd

˜

nπ
Vd´1

Vd

¸1{d

.

(4.35)
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We will be interested only in the first approximation of the emission frequency (please,

see equation (3.36), so we solve for n in equation (4.32) such that

n “
1
π

Vd

Vd´1

˜

M

MP

¸d

. (4.36)

Substituting the equation above in equation (4.35), we obtain

ω0pdq “
π

d

Vd´1

Vd

˜

M

MP

¸1´d

MP. (4.37)

The next step is to generalize the adiabatic invariant used to obtain the entropy of

the fractional SBH, according to the equation (3.45), as follows

8π
ż M

0

dM 1

ω0pdq
“ 8 dM´d

P
Vd

Vd´1

ż M

0
dM 1M 1d´1

“ 8 Vd

Vd´1

˜

M

MP

¸d

. (4.38)

Looking at the Bekenstein-Hawking entropy SB-H of ordinary SBH in equation (3.45), one

finds (remember, G “ M´2
P )

8π
ż M

0

dM 1

ω0pdq
“ 8 Vd

Vd´1

1
p4πqd{2 p4πGM2

q
d{2

“ 8 Vd

Vd´1

1
p4πqd{2 S

d{2
B-H.

(4.39)

The fractional entropy of the fractional SBH is then defined in terms of the Bekenstein-

Hawking entropy of the SBH [7]

Sfractional “ Sd{2
B-H. (4.40)

Using such a definition, to obtain the correspondent fractional temperature of the

fractional SBH the equation (4.39) is taken in the differential form

dM “
ω0pdq

π

Vd

Vd´1

1
p4πqd{2 dSfractional, (4.41)

and by the first law of black hole thermodynamics [18] with dM “ dE we write

dM “ T dSfractional, (4.42)

the fractional temperature can, finally, be identified as
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Tfractional “
ω0pdq

π

Vd

Vd´1

1
p4πqd{2 “

1
dp4πqd{2

˜

M

MP

¸1´d

MP, (4.43)

where Vd{Vd´1 “ π{2 and equation (4.37) was used. Once again, when d “ 2 the first

approximation of the temperature in the equation (3.43) can be recovered from (4.43).

4.3 Fractional-fractal SBH

As we have seen, non-locality effects are supported by using fractional operators [104]

and fractional calculus is a tool for modeling fractal geometry systems [106–108]. On

the one hand, in section 4.1 we constructed the reasoning that the SBH must have an

area whose surface has the geometry of a random fractal. On the other hand, in the

previous section 4.2 we saw that the application of the FQC arising from the fractional

generalization of quantum effects with the inclusion of a dynamics of Lévy processes,

leads to the description of a fractional SBH [7], in particular, provided with a temperature

(4.43) and a fractional entropy (4.40). We have now demonstrated that the fractional SBH

produced by FQC does capture the fractal structure of the SBH as a random fractal. The

fractional entropy of the fractional SBH, by equation (4.40), is

Sfractional “ Sd{2
B-H “

˜

AS

AP

¸d{2

. (4.44)

In equation (4.44), AS “ 4πr2
S “ 16πG2M2 is the area of the SBH, and AP “ 4L2

P “ 4G

is the Planck area. Following the equation (4.44), we define the fractional area of the SBH

by

Sfractional :“
˜

Afractional

AP

¸

. (4.45)

Considering equations (4.44) and (4.45) together, we can express Afractional as

Afractional “ AP

˜

AS

AP

¸d{2

“ 4L2
P

˜

4πr2
S

4L2
P

¸d{2

“ 4πd{2

˜

rS

LP

¸d

L2
P. (4.46)

Revisiting equation (4.7), we have a description of the number Npεq of boxes that

cover the set of fractal geometry. Considering the case of the fractional SBH, Npεq is

defined by the quotient between the fractional area of the SBH and a fundamental unit
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of area, which we take to be the Planck area. Hence, by equations (4.44) and (4.45), we

can write for the SBH

Npεq :“
˜

Afractional

AP

¸

“

˜

AS

AP

¸d{2

“

˜

4πr2
S

4L2
P

¸d{2

“ πd{2

˜

rS

LP

¸d

. (4.47)

Two important points: notice that the number of boxes to cover the area of the

fractional SBH is equal to the fractional entropy given in equation (4.44). Furthermore,

equation (4.7) shows that the structure of fractal geometry for the area of the SBH

emerges from the fractional SBH (the suggested fractal dimension d coincides with the

fractal Minkowski-Bouligand dimension dM-B in equation (4.7)), where ε “ LP{rS and

C “ πd{2 given equation (4.7).

Therefore, the SBH can be identified as a system of fractal geometry, described by

fractional calculus from the perspective of FQC, which has a fractal dimension 2 ď d ă 3

and henceforth we will call fractional-fractal SBH. From this result, we draw consequences

for the effective quantities that describe the thermodynamics of the fractional-fractal SBH,

where the fractional label will be replaced by a fractal to emphasize the physical nature of

the fractal geometry of the SBH. We start by defining the effective Schwarzschild radius

reff with equation (4.46) such that

Afractal “ 4πr2
eff “ 4πd{2

˜

rS

LP

¸d

L2
P, (4.48)

and solving for reff

reff “ πpd´2q{4

˜

rS

LP

¸d{2

LP. (4.49)

From equation (4.49) and equation (4.45), we have

Sfractal “
Afractal

4G “
π

G
r2

eff. (4.50)

The effective mass of the fractional-fractal SBH is

Meff “
reff

2G “
reff

2L2
P

“ 2pd{2q´1πpd´2q{4

˜

M

MP

¸d{2

MP. (4.51)

With the first law of black hole thermodynamics, equation (4.42), we obtain the effec-

tive temperature of the fractional-fractal SBH using equations (4.50) and (4.51)
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Teff “
1

4πreff
. (4.52)

It is worth noting that when d “ 2, the fractional-fractal will be reduced to their

ordinary values. Our next step is to explore possible developments in thermodynamics of

horizons with the advent of fractional-fractal SBH in cosmology. The link between these

ideas will be provided by Padmanabhan’s theory [11] of the emergence of cosmic space.

To do this, we begin by studying the general notions of horizons.
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5 HORIZONS AND COSMOLOGY

With so many light-years to go, and things to be found [...]

Europe - The Final Countdown

5.1 General horizons

The event horizon (EH), as presented in chapter 3, is the boundary of a region of

spacetime M which is characteristic of black holes. In this chapter, we will discuss this

concept a little more formally, as well as define other types of horizons in GR, so that

we can broaden this discussion in section 5.2 to the cosmological horizons. In section

5.3, we will apply this discussion to Padmanabhan’s theory of emergent cosmology [11]

to produce the Friedmann equations and analyze the ΛCDM model in section 5.4.

As will be explained below, operationally we prioritize the study of quasi-local horizons

in GR, i.e., horizons as regions of spacetime that can be identified via the measurements

of an observer in a finite-time experiment [116, 117]. The quasi-local horizon usually

taken in GR is the apparent horizon (AH), which can be well defined by the behavior of

the congruences of radial lightlike geodesics ingoing and outgoing through the horizon.

The dynamics of these congruences on the horizon are given by the sign of the so-called

expansion parameter [32], or just expansion [116].

5.1.1 Lightlike geodesic congruences and expansion

Consider first the equation of a lightlike geodesic that admits an affine parameter t, as

lν∇ν l
µ

“ 0, (5.1)

where lµlµ “ 0. Furthermore, we know that a well-behaved vector field in a submanifold

O of the spacetime M generates a local1 congruence of curves so that the tangent vectors

to the curves are the vector field itself
1A local congruence of curves is a set of curves such that, locally, through every point of O passes

one and only one curve of the set [118].
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lµ “
dxµ

dt
. (5.2)

Any parameter can be used to parameterize a congruence of curves. We then choose

another parameter s so that now every point in the region O that admits the congruence

will be parameterized by xµ “ xµpt, sq. This defines a 2-surface in O. If we choose to

define the geodesic deviation vector ηµ, by

ηµ :“ dxµ

ds
, (5.3)

with ηµlµ “ 0, then such a condition will not guarantee that ηµ is transversal to lµ. Since

lµ is lightlike, a choice as ηµ “ c lµ identically leads to ηµlµ “ c lµlµ “ 0, with c a constant.

This suggests that we won’t be able to decompose the spacetime metric tensor gµν of O

into its longitudinal part, given by ´lµlν , and transverse part, given by hµν , as usual:

gµν “ hµν ´ lµlν . Indeed, hµν is not transverse to lµ, because hµνl
ν “ gµνl

ν ` lµlνl
ν “ lµ

do not vanish [32]. The strategy then is to make a non-univocal choice of an auxiliary

lightlike vector field, nµ such that we adopt the normalization lµnµ “ ´1 without loss of

generality, as we shall see. So the following metric tensor

h1
µν :“ gµν ` lµnν ` nµlν , (5.4)

is properly transverse to lµ, since

h1
µνl

ν
“ gµνl

ν
` lµnνl

ν
` nµlνl

ν

“ lµ ` gµνl
νnνg

νµlµ

“ lµ ` p´1qgµνg
νµlµ

“ 0,

(5.5)

and,

h1
µνn

ν
“ gµνn

ν
` lµnνn

ν
` nµlνn

ν

“nµ ` nµgµνl
µgνµnµ

“nµ ` p´1qgµνg
νµnµ

“ 0,

(5.6)
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as well as, h1µ
µ “ 2 and h1µ

σh
1σ
ν “ h1µ

ν [32]. Now using the partial derivative, we recover

that lµ “ Bxµ{Bt and ηµ “ Bxµ{Bs, then

Blµ

Bs
“

Bηµ

Bt
. (5.7)

Recall that the Lie derivative of a contravariant vector field vµ in the direction of the

curves given by the contravariant vector field uµ, denoted Luv
µ, is [118]

Luv
µ

“uν
Bνv

µ
´ vν

Bνu
µ

“uν∇νv
µ

´ vν∇νu
µ.

(5.8)

Using equation (5.7) we obtain Lηl
µ “ Ll η

µ, or

ην∇νl
µ

“ lν∇νη
µ. (5.9)

Introducing the tensor field [32, 116]

Bµν :“ ∇νlµ, (5.10)

and with the equation (5.9), we obtain

lν∇νη
µ

“ ην∇νl
µ

“ ηνh1µσ∇νlσ

“ ηνh1µσ
Bσν “ ηνBµ

ν “ Bµ
ν η

ν .
(5.11)

Hence Bµ
ν can be seen as a measure of the difference from ηµ for a parallel transported

vector of the lightlike geodesics given by lµ. Moreover, the following quantity can be

defined [116]

θ :“ gµνBµν

“ gνµ∇νlµ “ ∇αl
α,

(5.12)

where equation (5.10) was used, and θ is called the expansion parameter [32], or just

expansion [116]. Realize that this quantity measures the covariant divergence of the vector

field lµ and does not depend on the choice of the auxiliary vector field nµ. An evaluation

of the behavior of θ along the affine parameter t of the lightlike geodesics given by lµ can

determine the behavior of the covariant divergence along the geodesics. The equation that
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describes the evolution of θ in relation to t, dθ{dt, is the famous Raychaudhuri equation

for expansion [116]

dθ

dt
“ ´

θ2

2 ´ σ2
` ω2

´ Rµνl
µlν . (5.13)

In Raychaudhuri equation above, Rµν is the Ricci tensor, and the quantities σ2 :“

σµνσ
µν , called the shear scalar, and ω2 :“ ωµνω

µν , called the vorticity scalar, are respec-

tively defined by the so-called shear, σµν , and vorticity, ωµν , tensors2. Note that both

these tensors and the Raychaudhuri equation itself do not depend on the choice of the

auxiliary vector field nµ. In turn, if dθ{dt ă 0 the lightlike geodesics are focused3, and if

dθ{dt ą 0 are defocused [116].

5.1.2 Trapped and marginal surfaces

The most general case for lightlike geodesics that do not admit an affine parameter

has the geodesic equation as

lν∇ν l
µ

“ κlµ, (5.14)

where we will see later that the quantity κ can be interpreted as a definition of surface

gravity in spacetimes that admit a Killing horizon (KH). To define horizons in GR we

must also give a better interpretation to the 2-surface characterized by the metric tensor

h1
µν which is simultaneously transversal to lµ and nµ. We will then assume that such a

2-surface, denoted henceforth by Σ, is compact (it is a compact set), and orientable [116].

From here we already have the suggestion of two natural orthogonal directions to Σ, i.e.

outgoing and incoming through Σ. Next, the lightlike vector field nµ can be defined as

lightlike geodesics, which generally do not admit an affine parameter either, and thus

naturally define the two possible orientations of Σ together with lµ.

In chapter 3 we have already seen that the EH for the SBH is a spherical surface (2-

surface) given by R “ 2GM . It is common to define horizons in GR as having spherical

symmetry, so we assume that Σ has spherical symmetry and lightlike geodesics can now

be seen as radial lightlike geodesics. By convention, the direction of the ingoing radial
2The shear and vorticity tensors are also formally defined solely from the tensor field Bµν [116].
3The focusing theorem ensures us that, for vanishing vorticity lightlike geodesics congruence, we have

dθ{dt ă 0 [32].
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lightlike geodesics (henceforth radial light rays) through Σ is determined by the vector

field nµ, and the direction of the outgoing radial light rays through Σ is determined by the

vector field lµ. Once in the general case of light rays that are non-affine parameterized

geodesics, the expansion of the light rays outgoing, θl, and ingoing, θn, through Σ are

defined by, respectively [117]

θl :“hµν∇µlν ; (5.15a)

θn :“hµν∇µnν . (5.15b)

With that, we can define the three most common classes of 2-surfaces Σ, naturally

closed, which are used to define quasi-local horizons in GR [116]:

Normal surface. θl ą 0 and θn ă 0 through Σ; i.e. refers to the case where outgoing

radial light rays of Σ effectively diverge, and ingoing light rays of Σ effectively converge

(the expected for a 2-sphere in Minkowski spacetime, that is, in absence of gravity);

Trapped surface. θl ă 0 and θn ă 0 through Σ; i.e. refers to the case where outgoing

radial light rays of Σ effectively converge, as well as ingoing light rays of Σ (intuitively,

the expected effect of a strong gravitational field that captures light rays trying to get

out Σ);

Marginal surface. θl “ 0 and θn ă 0 through Σ; i.e. refers to the case where outgoing

radial light rays of Σ transit between converging and diverging regimes, and ingoing light

rays of Σ effectively converge (intuitively, this can be interpreted as the outgoing radial

light rays of Σ reversing its direction).

Horizons such as the EH and the KH are usually not defined by the behavior of the

radial light rays on the horizon, unlike the AH which can be located in this way. We will

now show why we have chosen to use AH as the horizon of interest in general spacetimes.

5.1.3 Event, Killing, and apparent horizons

The general concept of EH, despite its intuitive character presented with the simple

example of the static Schwarzschild spacetime, as described in the chapter 3, becomes

inoperable for non-static spacetimes. This type of horizon is formally defined from the
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causal structure of spacetime. Recalling that the region of spacetime in which all existing

lightlike geodesics have reached their end point, when cosmic (or comoving) time tÑ 8,

is called the future null (lightlike) infinity, denoted J ` [19]. Also, the causal past of

a submanifold S of spacetime M , denoted J´pSq, is defined as the union of all causal

pasts4 of the spacetime points (events) x in S , denoted J´pxq; i.e. J´pSq :“ Y x P S J
´pxq

[19].

Event horizon. The EH is defined as the boundary of the causal past of the future null

infinite [18, 19]: BJ´pJ `q.

The EH then means boundary that delimits how far physical signals can be emitted

to reach the future null infinity, i.e. an infinitely spatially distant observer in the future.

It fits with the intuitive expectations of the EH for the SBH. Looking at it operationally,

for non-static spacetimes this definition proves problematic. To locate the EH, one needs

to know all the light rays in the future null infinity and then trace them back to the

limit position where they could be emitted, which characterizes the EH as a lightlike

hypersurface. In dynamic, or non-static, spacetimes (here, can be a synonym for non-

stationary due to Birkhoff’s theorem [18]), clearly we have a problem due to temporal

evolution, which requires us to know the entire future history of spacetime and thus know

a priori information outside our future light cone [116]. Because its location depends on

knowledge of the future history of spacetime, we call it a global horizon [116].

The KH is a naturally defined horizon for spacetimes that initially admit a timelike

killing vector field, and are then stationary spacetimes [118].

Killing horizon. The KH is a lightlike hypersurface in a spacetime that admits a timelike

Killing vector field, kµ, which is everywhere tangent to it and becomes lightlike over the

hypersurface [116].

Note that generally in static spacetimes, the KH coincides with the EH, if they exist

[119]. One of the biggest interests in KH is the idea of surface gravity which they produce

as mentioned with equation (5.14), but for general, non-stationary spacetimes, KH is no

longer useful. In these cases, as we shall see, we introduce a vector that produces a certain

generalization of the Killing vector, the so-called Kodama vector [120], Kµ.
4The causal past(future) of an event p in spacetime is defined as the set of all events q such that there

exists a past(future)-directed causal curve from q to p(from p to q) [18].
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Finally, the notion of the AH is given in terms of the expansion of the radial light rays

ingoing and outgoing through the horizon.

Apparent horizon. The AH is the closure (union of the interior and boundary of a region)

of a hypersurface which is foliated by marginal 2-surfaces (θl “ 0 and θn ă 0)[116]; or,

the AH is the boundary of a portion of a 2-surface Σ that this region contains trapped

surfaces [32].

Not immediately equivalent, since the first definition conceives a hypersurface while

the second a 2-surface as AH, note that in reality, the true condition implemented to

locate and properly define an AH is only the condition of the expansion of light rays to a

marginal 2-surface: θl “ 0, θn ă 0 [32, 116]. In this sense, although it is more physically

a hypersurface, we only use the definition of a marginal 2-surface to identify an AH. Note

the important point that if we can calculate the expansion of the radial light rays through

the horizon, regardless of whether we know about the causal structure and future history

of spacetime as for the EH, we can apply the condition θl “ 0 and θn ă 0 to thus locate

the AH. This is why we say that the AH has a quasi-local definition [116].

Although the AH and the EH coincide in stationary spacetimes [32], both differ even

in the evolution of the formation of a real black hole by gravitational collapse of a star,

such that the EH forms first and the AH then tends to the EH as the static regime is

achieved [19]. Before extending the concept of horizon to the cosmological scale, in section

5.2, we will briefly discuss the role of surface gravity in the study of black holes and how

this quantity is related to the thermodynamics of these objects.

5.1.4 Surface gravity

In the Newtonian context, surface gravity is simply the gravitational acceleration

that a test particle undergoes on the surface of a massive body due to the gravitational

attraction that this body generates around it. In the relativistic regime, obtaining such

an acceleration for a particle on the surface of a black hole is non-trivial; the particle

acceleration diverges at the limit where it approaches the black hole EH. A regularization

for the surface gravity of a black hole is however possible for static black holes, where the

Newtonian interpretation is recovered [18, 116]. For stationary black holes, the surface

gravity defined is the Killing surface gravity, denoted κKilling, which comes from the study
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of the KH. On the other hand, for dynamical black holes, whose spacetime in general does

not admit a timelike Killing vector field, we deal better with the AH, and a generalization

of κKilling is necessary.

The Killing surface gravity, κKilling, can be defined by [121]

kν∇νk
µ

“ κKilling k
µ, (5.16)

then, κKilling is defined by the fact that the Killing vector is a non-affinely parameterized

geodesic on the Killing horizon5 (where the Killing vector becomes lightlike, kµkµ “ 0). It

can be shown that the quantity κKilling appears in black hole thermodynamics as the analog

of a temperature associated with the black hole EH points, satisfying the so-called zeroth

law for stationary black holes [18, 19]. The general form of the Hawking temperature, TH,

for the black hole thermal radiation supports this verification, because [18]

TH “
κKilling

2π , (5.17)

that is, as shown by Hawking [40], due to quantum fluctuations when studying quantum

field theory in curved spacetimes, particle-antiparticle pairs are created in the neighbor-

hood of the EH of a black hole, resulting in the effective emission of particles by the black

hole. The effect is then black-body thermal radiation, which is emitted at the temperature

given by equation (5.17). The Killing surface gravity then actually works as a measure of

the temperature of the black hole EH points [18].

Now, if the black hole is non-stationary, as we have already seen, a natural horizon

to study is the AH. We can ask if it is possible to extend the idea of surface gravity

and Hawking temperature to these black holes. To solve this question, We introduce the

Kodama vector [120], which is defined only to spherical symmetric spacetimes, as

Kµ :“ ϵµν∇νR, (5.18)

where R “ aptq r is the areal radius of a spherically symmetric metric,

ds2
“ hijdx

idxj
` R2dΩ2, (5.19)

with i, j “ 0, 1, and ϵµν is the inverse of the volume form induced by the metric tensor hµν ,

namely, ϵµν “
a

|h| εµν with εµν the generalized Levi-Civitá symbol [122]. This vector
5A simple proof of equation (5.16) can be consulted [116, 121].



81

has the property that, even in the absence of a Killing vector field, it indicates a locally

conserved vector field Jµ, which ∇µJ
µ “ 0, called the Kodama energy current [116]. It

can be shown that because of the spherical symmetry the Kodama vector mimics the

Killing vector also to characterize a horizon as the KH, so that KµKµ ă 0 outside the

horizon, and KµKµ “ 0 on the horizon [116].

More significantly for what follows, the Kodama vector can be used to generalize the

definition of surface gravity for dynamic black holes. As proposed by Hayward [123],

the surface gravity defined by the Kodama vector, and then called the Kodama-Hayward

surface gravity, denoted κKodama, is given by [123]

κKodama :“ 1
2
?

´h
Bµ

´?
´hhµν

BνR
¯

, (5.20)

where h is the determinant of the metric tensor hij in the 2-space of pt, rq. This definition of

surface gravity recovers the result for the Reissner-Nordström black hole (Killing) surface

gravity [124]. As an additional justification, the Hamilton-Jacobi approach to evaluating

Hawking radiation and Hawking temperature for non-stationary black holes leads to the

same expression (5.20) [125]. The preceding discussions will now be applied to the context

of cosmology.

5.2 Cosmological horizons

As we have seen, stationary black holes have a natural notion of surface gravity through

their KH, which in turn is shown to correspond to the temperature of the black hole

EH due to Hawking radiation [40]. Considering the de Sitter cosmological spacetime,

Gibbons and Hawking [126] showed that the respective cosmological EH is associated

with a Hawking-like temperature: TH, de Sitter “ κKilling{2π. Note that despite being non-

stationary (cosmological spacetime), the de Sitter spacetime has a Killing vector field

revealed in its Schwarzschild-like coordinates [116]. In this sense, the de Sitter spacetime is

an exception, and when we take into account a Universe that is homogeneous and isotropic

on large scale6, we should certainly focus on describing a non-stationary spacetime in the

cosmological context. We will then study a FLRW spacetime, which metric is [33]
6For distances greater than 100 Mpc [127].
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ds2
“ ´dt2 ` a2

ptq

˜

dr2

1 ´ kr2 ` r2dΩ2

¸

, (5.21)

with aptq the scale factor, k the spatial curvature, and in comoving coordinates pt, r, θ, ϕq,

i.e., coordinates such that the spatial portion pr, θ, ϕq is constant for observers moving

following the expansion of the Universe, and t the cosmic time [128]. We can study which

horizon concepts are available for an FLRW spacetime and therefore ask: can any horizon

of this dynamic spacetime be consistently associated with a Hawking temperature, with

an adequate notion of surface gravity? It will be shown that a horizon easy to work in

FLRW spacetimes, as well as for general black holes, is the cosmological AH, which indeed

has a Hawking temperature associated with it.

5.2.1 Event, Hubble and apparent horizons

Consider a comoving observer in r “ 0 between the instants of cosmic time t (measured

by a clock following the expansion of the Universe) t “ t0 and tÑ 8. The radial comoving

distance which delimits the causally accessible region to the observer in r “ 0 by a signal

emitted in t “ t0 when a cosmic time interval that tends to infinite has elapsed is given

by the integral [116]

ż 8

t0

dt1

apt1q
. (5.22)

If this integral converges, the boundary of the spacetime region delimited by the

comoving distance specified by the integral is called the cosmological EH, then equation

(5.22) is denoted by rEH, and events beyond rEH will never be communicated to the

observer in r “ 0. If the integral (5.22) diverges, it does not define an EH, and any events

occurring at t “ t0 can be accessed to the observer at r “ 0 when enough time is expected.

The comoving distance is related to the proper distance, dP , by [129]

dP “ aptq r, (5.23)

then, for rEH the proper distance, dP, EH, which characterize the cosmological EH is [116]

dP, EH “ aptq

ż 8

t0

dt1

apt1q
. (5.24)
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Note that the cosmological EH has the same nature of needing to know the entire

future history of spacetime to locate it, as the EH for black holes. Particularly important

is the fact that this horizon is not generally defined for FLRW spacetimes, except in the

case where, modeling the source of matter by a perfect fluid of equation of state P “ ωρ

[33], we have P ă ´ρ{3 [116], with ω a constant, P and ρ respectively the pressure and

density of the matter source. This condition produces the de Sitter spacetime, and we

conclude that only in this regime does an FLRW spacetime admit a cosmological EH.

In the cosmological context, another type of horizon often defined is the so-called

Hubble horizon (HH) [130]. Due to Hubble’s law, which expresses the recessional velocity

recession vr between galaxies as a function of their proper distance dP , we have

vr “ Hptq dP , (5.25)

with Hptq :“ 9aptq{aptq the Hubble parameter7. At the limit of vr Ñ c, the recessional

velocity will define a region delimited by the corresponding proper distance in which

galaxies (and other astronomical objects) will begin to move away from each other faster

than light [130]. This distance is called the Hubble radius, rH, which defines the HH as

(remember that c “ 1) [116]

rH “
1

Hptq
. (5.26)

As with black holes, there is also a notion of AH in cosmology, and this will be the

horizon of interest for a dynamic FLRW spacetime, to associate a temperature with the

horizon. To construct the intuitive idea of a cosmological AH, we consider the radial

lightlike geodesics ingoing and outgoing through a boundary (usually a hypersurface) of

a certain region of spacetime, and their respective expansion parameters, θn and θl. Now,

to try to define the boundary of this region as a cosmological horizon that limits the

causal accessibility between two portions of spacetime, we must expect that inside the

horizon: θn ă 0 and θl ą 0; as well as, outside the horizon: θn ą 0 and θl ą 0. Thus, the

cosmological horizon in question must be defined by the condition: θn “ 0 and θl ą 0.

This is precisely the definition of the cosmological AH [116]. One can easily calculate

the tangent vectors, lµ and nµ, that define the radial lightlike geodesics for an FLRW
7Henceforth, as usual in cosmology, a dot upwards the quantity will refer to the derivative concerning

time (cosmic time).
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spacetime

lµ “

˜

1,`
?

1 ´ kr2

aptq
, 0, 0

¸

; (5.27a)

nµ
“

˜

1,´
?

1 ´ kr2

aptq
, 0, 0

¸

, (5.27b)

since ds2 “ dθ “ dϕ “ 0 in equation (5.22) produces directly the two radial vector

directions dr{dt “ ˘
?

1 ´ kr2{aptq [116]. With some calculations, substituting equations

(5.27) in equations (5.15) give us [116]

θl “ 2
˜

Hptq `
1
R

d

1 ´
kR2

a2ptq

¸

; (5.28a)

θn “ 2
˜

Hptq ´
1
R

d

1 `
kR2

a2ptq

¸

, (5.28b)

where R is the areal radius. Applying the condition θn “ 0 and θl ą 0 to obtain the

cosmological AH location, from equation (5.28b)

˜

9aptq

aptq

¸2

“
1
R2

˜

1 ´
kR2

a2ptq

¸

, (5.29)

and, solving for R,

R ” rAH “
1

a

H2ptq ` k{a2ptq
, (5.30)

with rAH as the definition of the cosmological AH radius. Equation (5.30) shows that for a

closed (k ą 0), open (k ă 0), and flat (k “ 0) Universe, the radius of the cosmological AH

is respectively smaller, larger, and equal to the Hubble radius, rH. Unlike the cosmological

EH, the cosmological AH exists for all regimes of an FLRW spacetime [116], and has the

advantage common to the case of black holes of being quasi-local, not depending on the

causal structure of spacetime.

5.2.2 Temperature of the apparent horizon

We are now in a position to better answer the question posed at the beginning of this

section. In fact, Cai et al. [131] showed that the cosmological horizon that contains an
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associated notion of Hawking temperature in FLRW spacetime is the cosmological AH.

Furthermore, the surface gravity that appears in the expression for this Hawking tem-

perature is the Kodama-Hayward surface gravity (5.20) [131]. To obtain the expression

for the Hawking temperature of the cosmological AH, first the Kodama-Hayward surface

gravity, κKodama, for a FLRW spacetime must be obtained from equation (5.20) and equa-

tion (5.21) decomposed in the form of (5.19). The 2-space metric tensor has determinant

´a2ptq{1 ´ kr2, then

κKodama “
1
2

?
1 ´ kr2

aptq
Bµ

«

aptq
?

1 ´ kr2

˜

hµ0
B0R ` hµ1

B1R

¸ff

“
1
2

?
1 ´ kr2

aptq
Bµ

«

aptq
?

1 ´ kr2

˜

hµ0 9aptq r ` hµ1aptq

¸ff

“
1
2

?
1 ´ kr2

aptq
Bµ

«

aptq
?

1 ´ kr2

˜

´ 9aptq rδµ0
`

1 ´ kr2

a2ptq
δµ1

¸ff

“
1
2

?
1 ´ kr2

aptq

«

´ B0

˜

aptq 9aptq r
?

1 ´ kr2

¸

` B1
`
?

1 ´ kr2
˘

ff

“ ´
1
2 raptq

«˜

9a2ptq

a2ptq
`

:aptq

aptq

¸

`
k

a2ptq

ff

“ ´
1
2R

˜

2H2
ptq ` 9Hptq `

k

a2ptq

¸

,

(5.31)

where in the last line we used R “ aptq r and Hptq “ 9aptq{aptq. The calculated surface

gravity can be adequately expressed in terms of the cosmological AH radius, rAH, if we

calculate the rate of change in cosmic time of this quantity from equation (5.30), which is

9rAH “
d

dt

˜

H2
ptq `

k

a2ptq

¸´1{2

“ ´

´

Hptq 9Hptq ´ k 9aptq{a3ptq
¯

´

H2ptq ` k{a2ptq
¯3{2

“ ´
Hptq

´

9Hptq ´ k{a2ptq
¯

´

H2ptq ` k{a2ptq
¯3{2 “ Hptq r3

AH

˜

k

a2ptq
´ 9Hptq

¸

,

(5.32)

where equation (5.30) was used once again. Finally, using equation (5.32) to eliminate
9Hptq in equation (5.31), and setting R” rAH, we have



86

κKodama “ ´
1
2 rAH

˜

2H2
ptq `

k

a2ptq
´

9rAH

Hptq r3
AH

`
k

a2ptq

¸

“ ´
1
2 rAH

«

2
˜

H2
ptq `

k

a2ptq

¸

´
9rAH

Hptq r3
AH

ff

“ ´
1
2 rAH

˜

2
r2

AH
´

9rAH

Hptq r3
AH

¸

“ ´
1
rAH

˜

1 ´
9rAH

2Hptq rAH

¸

.

(5.33)

Then, the Hawking temperature of the cosmological AH in an FLRW spacetime will

be TH “ κKodama{2π. where the Kodama-Hayward surface gravity is given by equation

(5.33). However, to obtain a physically reasonable result, we should write [14]

TH “
|κKodama|

2π “ ˘
1

2π rAH

˜

1 ´
9rAH

2Hptq rAH

¸

, (5.34)

since we selected the positive sign to ensure that the heat capacity of the Universe is

positive, maintaining its thermodynamic stability [132]. A final comment on why we

chose the cosmological AH and its associated Hawking temperature in cosmology is due

to the suitability of this scenario with Padmanabhan’s proposal for the emergence of

cosmic space [11]. Padmanabhan’s theory [11] is our next stop.

5.3 Emergent cosmic space

Recently, the quantum gravity paradigm has given way to the idea that gravitational

interaction is just an emergent phenomenon from a more fundamental microstructure

that arises from compliance with the laws of thermodynamics [8–10, 133]. In particular,

the gravitational field equations can be seen as equations of state for spacetime as a

thermodynamic system [8]. Also, nowadays is common to approach the gravitational field

as the thermodynamic (macroscopic) limit of the microscopic structure of spacetime [9,

10, 133]. In this work, we endorse and reaffirm this perspective and adopt it as the basis

for what follows. More than that, Padmanabhan [11] proposed that spacetime itself is

in some sense an emergent phenomenon from some fundamental microscopic structure.

Using a version of the holographic principle, Padmanabhan [11] was able to derive the

Friedmann equations, that govern the dynamics of spacetime on a large scale.
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We will then use Padmanabhan’s theory [11] as a bridge between the study of cosmo-

logical horizons, seen in section 5.2, and the description of cosmological dynamics given

by the Friedmann equations. In other words, a suitable analysis of the cosmological hori-

zons considered will produce associated Friedmann equations. We begin by presenting the

basis for understanding the emergence of cosmic space according to Padmanabhan [11]

given the so-called holographic principle [12], and then justify the use of the cosmological

apparent horizon.

5.3.1 Holographic principle

The holographic principle was inspired by the thermodynamics of black holes, in which

the entropy of the black hole is dependent on the surface area of the black hole, as we have

already seen in chapters 3 and 4, according to Bekenstein [41]. We know that the entropy

of a physical system is often associated with the information content of that system, in the

sense, for example, of the Von Neumann entropy [134]. The information content (entropy)

of objects falling into the black hole would be given by the entropy of the black hole itself

and then contained in the surface area of the EH. Using this concept, ’t Hooft [135] and

Susskind [12] developed what we now call the holographic principle, which we can define

in the present context as [12]: the physical information of a D-dimensional spacetime is

contained in the pD ´ 1q-dimensional boundary of that spacetime8.

The holographic principle is often cited as manifested in the so-called AdS/CFT corre-

spondence9, as well as having a great potential impact on several open problems in current

physics [138]. Furthermore, Consistently applied to black holes, the holographic principle

offers a possible solution to the black hole information paradox, where a few features such

as mass, charge, and angular momentum characterize the black hole, regardless of their

history and particular interactions with objects that cross the EH. Hence, the particular

information content of the black hole is apparently deleted. The holographic principle

then holds that the information of the bulk is entirely contained within the surface of the
8Any formal detail on this topic is beyond the scope of this work, and we suggest that the interested

reader turns to the review literature [136].
9Suggested by Maldacena [137], AdS/CFT establishes a duality between a theory of gravity in a

higher-dimensional Anti-de Sitter (AdS) space and a conformal field theory (CFT) that lives on the

boundary of that space. In other words, the physics inside the bulk (the AdS space) could be equivalently

described by the physics on the boundary.
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black hole [139]. This idea can give rise to a more fundamental physical background, from

which the very cosmic space and its expansion emerge.

5.3.2 Holographic equipartition

Padmanabhan [11] investigated the possibility of the very spacetime being an emer-

gent structure from something more fundamental. Around finite gravitational systems,

such as the Earth or the Milky Way, the conclusion is that it is difficult to conceive of

the emergence of spacetime since physical observation does not point in this direction.

Furthermore, in a covariant treatment where time does not play a special role, according

to Padmanabhan [11], it is difficult to see time emerging from a more fundamental mecha-

nism. Padmanabhan’s insight was that both these difficulties do not remain for spacetime

on a large scale, i.e., in the cosmological scenario [11]. For cosmology, the expansion of

the Universe and the cosmological principle can be adequately established for an observer

measuring the cosmic time (or comoving time) as a natural parameter in describing the

evolution of cosmological dynamics (the Friedmann equations).

The holographic principle arises when we realize that our Universe obeys a de Sitter

spacetime asymptotically. At this stage, the holographic principle is represented when we

fix the equality between the degrees of freedom of the bulk Nbulk and the surface Nsur of

the EH of the de Sitter spacetime (characterizing what we call the holographic screen) by

maximizing the entropy of the EH [11, 136]. In other words, when the Universe reaches

de Sitter spacetime, we will have [11]

Nsur “ Nbulk, (5.35)

where degrees of freedom mean the count of information content in the associated portion

of space (cosmic time serves as a parameter). While in field theories we generally associate

degrees of freedom with the components of the fields at each point in spacetime, in the

present context the understanding of degrees of freedom is not so clear because it must

take into account the smallest distances of the order of the Planck scale and thus effects

attributed to quantum gravity [12]; in other words, the rules of quantum mechanics applied

to the fundamental structure of spacetime. A complete overview of this fundamental

structure is, of course, only possible with the advent of the very theory of quantum

gravity [133]. A suitable guess is to take the degrees of freedom in the holographic screen
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as proportional to the ratio between the surface area of the screen, Ascreen, and the Planck

area AP, as suggested by the Bekenstein-Hawking entropy for black holes [40, 41], that is

Nsur 9

˜

Ascreen

AP

¸

. (5.36)

In addition, Padmanabhan proved that the number of degrees of freedom of the bulk

for static spacetimes takes the form of an equipartition law in the form of [140]

Nbulk “ 2 |EKomar|

T
, (5.37)

with E the gravitational energy of the bulk in the form of Komar energy [141], and T the

Hawking temperature of a general horizon (for details, see [142]). Once more, emphasizing

that regardless of whether one knows the fundamental structure of spacetime at the

smallest scales, spacetime has complete agreement with the laws of thermodynamics.

To extend these ideas to a cosmological spacetime, using Nsur “ 4pAscreen{APq, with

Ascreen the area of the holographic screen (horizon), and the Hubble horizon as the holo-

graphic screen, Padmanabhan was able to justify that space (not spacetime) in large scale

(namely, cosmic space) does indeed emerge over the passage of cosmic time in the form of

the expansion of the Universe. In other words, due to the tendency of the condition (5.36),

called holographic equipartition [11], to be achieved, in the limit of an asymptotically de

Sitter spacetime, the cosmic space and its expansion emerges. The law proposed to rule

this dynamic is [11]

dV

dt
“ L2

PpNsur ´ Nbulkq, (5.38)

where V “ 4πr3
H{3 is the Hubble volume and t denotes the cosmic time. In this per-

spective, the expansion of the Universe is conceptually equivalent to the emergence of

cosmic space, as represented in figure 9. Now, using d{dt denoted by a superscript dot,

Nsur “ 4πr2
H{L2

P, T “ 1{2πrH, and

|EKomar| “ ϵpρ ` 3pqV, ϵ “

$

’

&

’

%

`1, if pρ ` 3pq ă 0 pΛ ´ dominatedq

´1, if pρ ` 3pq ą 0 pmatter/radiation-dominatedq,

(5.39)
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Figure 9: Degrees of freedom that have already emerged in the cosmic bulk and degrees of

freedom that have not yet emerged on the surface of the cosmic bulk.

Source: The author (2024).

being p and ρ the pressure and energy density, respectively, for the cosmological perfect

fluid obeying the equation of state p “ ωρ, and equations (5.36), (5.37), and (5.39), in

equation (5.38) we have

dV

dt
“ 4πr2

H 9rH “L2
P

˜

4πr2
H

L2
P

`
pρ ` 3pq

T

16π
3 r3

H

¸

“

˜

4πr2
H `

16π2

3 L2
Ppρ ` 3pqr4

H

¸

.

(5.40)

Solving for rH

r´2
H 9rH ´ r´2

H “
4π
3 L2

Ppρ ` 3pq. (5.41)

Using that H “ r´1
H “ 9aptq{a, with aptq the scale factor, we obtain

9H ` H2
“

:aptq

aptq
“ ´

4π
3 L2

Ppρ ` 3pq, (5.42)

so, the second Friedmann equation (or Raychaudhuri equation). Although it does not

explicitly contain a cosmological constant term (and consequently not in equation (5.42)),
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as Padmanabhan pointed out, equation (5.38) presupposes a dark energy component in the

Universe to achieve holographic equipartition [11]; i.e. without a dark energy component

is not expected to reach holographic equipartition. This premise is embedded in the

definition (5.39). To obtain the first Friedmann equation we need to use the so-called

continuity equation [33], which can be obtained from the Misner-Sharp-Hernandez mass10

[144]

MMSH “ ρ VP, (5.43)

with VP “ 4πR3{3 the proper volume defined by the proper Hubble radius R “ rH aptq,

in the following relation

dMMSH

dt
“ ´p

dVP

dt
. (5.44)

Substituting equation (5.43) in equation (5.44), the continuity equation arises

9ρ “ ´3pρ ` pq
9aptq

aptq
. (5.45)

Now, solving the above equation to p, so 3p “ ´3ρ ´ 9ρ{H, and using in equation (5.42)

we have

:aptq

aptq
“

4π
3 L2

P

˜

2ρ `
9ρ

H

¸

“
4π
3 L2

P

˜

2ρ ` aptq
9ρ

9aptq

¸

, (5.46)

and multiplying the whole equation by aptq 9aptq

:aptq 9aptq “
4π
3 L2

Pp2ρ aptq 9aptq ` a2
ptq 9ρq, (5.47)

equivalently

d

dt

˜

9a2ptq

2

¸

“
4π
3 L2

P
d

dt
pa2

ptqρq, (5.48)

or

9a2ptq

a2ptq
“ H2

“
8π
3 L2

Pρ. (5.49)

10A quantity used to study symmetrically spherical spacetimes [116, 143].
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Equation (5.49) is the first Friedmann equation. We can now explore the cosmological

implications of equation (5.49) through cosmological horizons in FLRW spacetimes and

their thermodynamics, particularly for the cosmological AH.

5.3.3 The apparent horizon

As seen in section 5.2, the cosmological AH has the condition of being the horizon de-

fined for non-stationary spacetimes, which is quasi-local and thus does not depend on the

causal structure of spacetime, and is available for all regimes of a FLRW spacetime,

endowed with an associated Hawking temperature whose surface gravity is Kodama-

Hayward surface gravity, as in equation (5.34). In other words, this suggests that the

cosmological AH is the most suitable horizon for cosmological scenarios, and for Pad-

manabhan’s theory, which uses a Hawking temperature associated with the cosmological

horizon. In fact, according to Hashemi et al. [14] the cosmological AH appears as a holo-

graphic screen that rewrites equation (5.38) only in terms of well-defined thermodynamic

quantities, and the associated Hawking temperature is exact up to the second term of

equation (5.34). Therefore, we justify the use of the cosmological AH as a holographic

screen for the application of Padmanabhan’s theory [11], according to [14].

5.4 Lambda-Cold Dark Matter model

In this section, we will review basic aspects of the ΛCDM model, the standard model

of relativistic, cosmology to apply them to the modifications made in chapter 6. Data

from TT, TE, EE+lowE+lensing CMB of the Planck 2018 collaboration [145] was used to

constrain the cosmological parameters. This section follows the reference [15]. Roughly

speaking, the ΛCDM assumes the scenario of three components in our Universe, namely,

radiation, cold baryonic matter and cold dark matter (CDM) (which together are called

cold matter), and a cosmological constant (attributed to the origin of dark energy and then

the accelerated expansion of the Universe). The model then uses the GR field equations

applied to the cosmological solution of FLRW (Friedmann equations) to parameterize the

observations of the Big Bang theory and data, for example, from the cosmic microwave

background (CMB) [118]. The Friedmann equation (5.49) for a spatially flat Universe (k “

0) with the three components: radiation, “rad”, cold matter, “cm”, and the cosmological

constant, “Λ”, can be written by



93

H2
“ H2

0
8πL2

P
3H2

0

«

ρpradq
ptq ` ρpcmq

ptq ` ρpΛq
ptq

ff

“ H2
0

«

Ωpradq

0

´ a0

aptq

¯4
` Ωpcmq

0

´ a0

aptq

¯3
` ΩΛ

0

ff

,

(5.50)

with H0 the Hubble parameter at the present epoch,

H0 “ 100h Km sec´1 Mpc´1
“ 2.1332h ˆ 10´42 GeV, (5.51)

where h represents the uncertainty on the value H0, and the observations of the Planck

2018 collaboration [145] constrain this value to be h “ 0.674 ˘ 0.005. In equation (5.49),

Ωpiq
0 is the energy density parameter (or just density parameter) of the ith component of

the Universe at the present epoch, defined as

Ωpiq
0 :“ 8πL2

P
3H2

0
ρ

piq
0 , (5.52)

and, using the continuity equation (5.45), for radiation ω “ 1{3, for cold matter ω “ 0,

and for the cosmological constant ω “ ´1, in the state equation p “ ωρ, we obtained

ρpradq
ptq “ ρ

pradq

0

˜

aptq

a0

¸´4

; (5.53a)

ρpcmq
ptq “ ρ

pcmq

0

˜

aptq

a0

¸´3

; (5.53b)

ρpΛq
ptq “ ρ

pΛq

0 . (5.53c)

Also, in equation (5.50) a0 ” apt0q is the scale factor at the present time, t “ t0. The

current dark energy density parameter is [145]

ΩpΛq

0 “ 0.685 ˘ 0.007. (5.54)

The density parameter of the cold matter is Ω(cm)
0 “ Ω(CDM)

0 ` Ω(b)
0 . where Ω(b)

0 is the

density parameter of the cold baryonic matter, and Ω(CDM)
0 is the density parameter of

CDM. Their current values are given by [145]

Ω(b)
0 h2

“ 0.02237 ˘ 0.00015,

Ω(CDM)
0 h2

“ 0.1200 ˘ 0.0012.
(5.55)



94

Using h “ 0.674, we have Ω(b)
0 “ 0.04924319, and Ω(CDM)

0 “ 0.2641566, for the central

value. Hence, the density parameter of the cold matter is

Ω(cm)
0 “ 0.315. (5.56)

The Planck 2018 collaboration [145] for TT,TE,EE+lowE+lensing+BAO data in-

dicates that our Universe is virtually spatially flat with a curvature density Ωpkq

0 “

0.0007 ˘ 0.0019. The Friedmann equation (5.50) can be used to calculate the age of

the Universe by the density parameters, writing H “ 9aptq{aptq, and so

t0 “

ż t0

0
dt “

1
H0

ż pa“a0 Ñ x“1q

0

dx

x
”

Ω(rad)
0 x´4 ` Ω(cm)

0 x´3 ` ΩpΛq

ı
1
2
, (5.57)

where x “ a{a0. The current density parameter of radiation is of the order of 10´5 ´10´4,

then radiation becomes important only for extremely high redshifts, as z» 1000. We

therefore ignore the contribution of radiation and substitute the values of (5.54) and

(5.56) in the integral (5.57), the age of the Universe is calculated to be t0 “ 13.797 ˘

0.023 Gyr [145]. Finally, the deceleration parameter q, which measures the acceleration

(deceleration) of the expansion of the Universe can be expressed by [118] q “ ´ΩpΛq `

Ω(cm)
0 {2, again neglecting the density parameter of radiation.

In the next chapter, we will combine the ideas presented in the previous chapters to

devise an alternative cosmological model to ΛCDM.
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6 EMERGENCE OF FRACTAL COSMIC SPACE

There is no dark side in the moon, really, matter of fact, it’s all dark.

Gerry O’Driscoll in Pink Floyd - Eclipse

6.1 Fractal cosmological apparent horizon

This final chapter follows closely the reference [15] and aims to justify the connection

between the results presented in the previous chapters of this dissertation.

On the one hand, the CQG applied to the SBH, together with the semi-classical

analysis of its mass spectrum, has allowed a preliminary study of the thermodynamics of

the SBH, where we obtain the Hawking temperature and the Bekenstein-Hawking entropy

associated with its EH, given respectively by equations (3.43) and (3.45), as shown in

chapter 3. Chapter 4 also introduces the concept of fractals for physical systems and

their relationship with fractional calculus, thus motivating the hypothesis that the SBH

has a surface whose geometry is that of a random fractal. In the same chapter, FQC [5]

and its developments in gravity, namely FQG [7], are applied to the WDW equation of the

SBH according to equation (4.17). With FQG, the fractional version of the semi-classical

mass spectrum of the SBH is analyzed (quantum corrections to the spectrum are again

disregarded, ℏÑ 0, but we keep the fractional-fractal feature carried by d), and we realize

that the fractal strucute of the SBH can be obtained from FQG. Also, the fractional-

fractal generalization of the quantities that describe the thermodynamics of the SBH,

such as temperature (4.52) and entropy (4.44), can be obtained.

On the other hand, the study of cosmological horizons in the chapter 5 revealed that

the cosmological AH is the natural choice for associating a Hawking temperature, in

equation (5.34), in the cosmology scenario produced by a FLRW spacetime, such that

the surface gravity in question must be that of Kodama-Hayward (5.20), consistent with

non-stationary spacetimes. Padmanabhan’s theory [11] of the emergence of cosmic space

and its expansion has opened a new door to investigating the dynamics of the Universe

by deriving the Friedmann equations, (5.42) and (5.49), from the thermodynamics of

cosmological horizons (in particular, the cosmological AH) and a question of holographic
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equipartition, given in equation (5.35). Following [15], the hypothesis driven by this work

is that the cosmological AH, used as a holographic screen, has a random fractal geometry

on its surface similar to the surface of the EH of the SBH.

In turn, the quantities that describe the thermodynamics of the cosmological AH can

be extended to the fractional-fractal case equal to the SBH, according to section 4.3. This

approach finds support in the work of Jalalzadeh et al. [13], that the cosmological AH of

the de Sitter spacetime has the structure of a random fractal mimicking the fractional-

fractal SBH. Therefore, we extend this idea forward to the spatially flat (k “ 0) FLRW

spacetime with Padmanabhan theory [11], obtaining the modified Friedmann equations

in section 6.2, and revealing the consequences for the ΛCDM model in section 6.3.

6.2 Fractional-fractal Friedmann equations

Inspired by Hashemi et al. [14] we adopt an equation for the emergent dynamics that

rewrites equation (5.38) for the cosmological AH as the holographic screen and in terms

of well-defined thermodynamic quantities only, that is

dVAH

dt
“

1
T 2

P

TAH

TH
pNsur ´ Nbulkq, (6.1)

with VAH “ 4πr3
AH{3 the volume contained in the cosmological AH, TAH and TH the Hawk-

ing radiation respectively associated with the cosmological AH, given equation (5.34), and

the HH, as TH “ 1{2πr2
AHH. In equation (6.1), TP “ 1{LP is the Planck temperature. For

a spatially flat spacetime (k “ 0), using equation (5.30) that expresses the relation be-

tween the cosmological AH radius and the Hubble radius, equation (6.1) recovers equation

(5.38). To move on to the premise of the fractal nature of the surface of the cosmological

AH, we rewrite equation (6.1) in a more appropriate form

dVAH

dt
“ L2

P rAHHpNsur ´ Nbulkq. (6.2)

Now, we modify the above equation for the proposed scenario in which the cosmological

AH is better described as a spacetime region of fractional-fractal properties just like the

SBH considered in section 4.3, and therefore

dVeff

dt
“
d

2L
2
P reffHpNsur ´ Nbulkq, (6.3)
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where d, 2 ď d ă 3, is the fractal dimension of the surface of the cosmological AH, Veff “

4πr3
eff{3, and reff the effective cosmological AH radius. In practical terms, the condition

(k “ 0) and the expressions developed in section 4.3 lead to express reff in terms of the

Hubble radius rH, as

reff “ πpd´2q{4

˜

rH

LP

¸d{2

LP. (6.4)

The quantities required to obtain the modified Friedmann equations from equation

(6.3) are then given their fractional-fractal extension, according to equation (6.4), by

Nsur “
4πr2

eff
L2

P
; (6.5a)

Nbulk “ 2 |EKomar|

T
“

2ϵ
ř

ipρi ` 3piqVeff

Teff
; (6.5b)

Teff “
1

2πreff
, (6.5c)

considering the mixture of perfect fluids with state equations pi “ ωiρi for the components

of the Universe. Substituting equations (6.5) in equation (6.3) gives us

r2
eff 9reff “

d

2r
3
effH `

2π
3 dL2

P r
5
effH

ÿ

i

pρi ` 3piq, (6.6)

or

3 9reff

reff
“ 3d2H ` 2πdL2

P r
2
effH

ÿ

i

pρi ` 3piq. (6.7)

Using equation (6.4) in the left-hand side of equation (6.7), and with rH “ H´1, leads to

3d
2

˜

9rH

rH
´ H

¸

“ ´
3d
2

˜

9H

H
` H

¸

“ 2πdL2
P r

2
effH

ÿ

i

pρi ` 3piq, (6.8)

and in a more familiar form

9H ` H2
“ ´

4π
3 L2

P

ÿ

i

pρi ` 3piq r
2
effH

2. (6.9)

This is the fractional-fractal Raychaudhuri equation, which recovers the ordinary Ray-

chaudhuri equation (5.42) when d “ 2 and then reff “ rH. The fractional-fractal version
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of the continuity equation can be obtained from the fractional-fractal modification of the

Misner-Sharp-Hernandez mass, which is

MMSH,eff “ ρ VP,eff. (6.10)

where VP,eff “ 4πR3
eff{3, with Reff the effective Hubble radius in the sense of equation (6.4).

For each considered component of the Universe, a relation similar to (5.44) produces a

continuity equation for ρi, where the time derivative produces an additional d{2 factor

and then

9ρi “ ´
3d
2 pρi ` piqH, (6.11)

is the ith component fractional-fractal continuity equation. Using this equation, the

following relation is established

´
2
d

1
adptq

d

dt
pad

ptqρiq “ ´
2
d

9ρi ´ 2ρi
9aptq

aptq

“ ´ 3pρi ` piq
9aptq

aptq
´ 2ρi

9aptq

aptq

“ pρi ` 3piq
9aptq

aptq
.

(6.12)

The modified Friedmann equation can now be found. Using expression (6.12) in equation

(6.8) we have

´
3d
2

˜

9H

H
` H

¸

“ 2πdL2
P r

2
eff

ÿ

i

«

´
2
d

1
adptq

d

dt
pad

ptqρiq

ff

, (6.13)

and can be rewritten as

3d
2

˜

9H

H
` H

¸

ad
ptq “ 4πL2

P r
2
eff
d

dt

ÿ

i

pad
ptqρiq. (6.14)

Now, substituting equation (6.4) in the equation above

d

˜

9H

H
` H

¸

ad
ptqHd

“
8
3π

d{2L4´d
P

d

dt

ÿ

i

pad
ptqρiq, (6.15)

solving the left-hand side to identify a time derivative

d

˜

9H

H
` H

¸

ad
ptqHd

“ dHd´1 9Had
ptq ` dad´1 9aptqHd

“
d

dt
pad

ptqHd
q, (6.16)
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we obtain

d

dt
pad

ptqHd
q “

8
3π

d{2L4´d
P

d

dt

ÿ

i

pad
ptqρiq, (6.17)

or, equivalently

Hd
“

8
3π

d{2L4´d
P

ÿ

i

ρi. (6.18)

This is the fractional-fractal extension of the Friedmann equation. Equation (6.18) can

be expressed in a form suitable for comparison with the equation (5.49), as

H2
“

8
3πL

2
P

ÿ

i

ρi

˜

8
3

1
ρP

ÿ

j

ρj

¸2{d´1

, (6.19)

where ρP “ 1{L4
P is the Planck energy density. Note that equation (6.19) reduces to the

ordinary case when d “ 2, and differs from equation (5.49) only by a fractional-fractal

factor which, as we shall see, has significant cosmological consequences when we examine

modifications to the ΛCDM model.

6.3 Lambda-Cold Baryonic Matter model

We will see how the ΛCDM model responds to the fractional-fractal modifications

of the Friedmann equations, i.e. in a similar fashion to section 5.4, one will investigate

possible modifications to the standard cosmological model due to equation (6.19). Again,

we consider a spatially flat (k “ 0) Universe composed of three constituents for the

energy density: radiation, cold matter, and the cosmological constant. The cosmological

parameters are constrained with the data from TT, TE, EE+lowE+lensing CMB of the

Planck 2018 collaboration [145] as in the section 5.4.

First, the continuity equation (6.11), for radiation ω “ 1{3, for cold matter ω “ 0,

and for the cosmological constant ω “ ´1, in the state equation p “ ωρ, generates the

solutions
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ρpradq
ptq “ ρ

pradq

0

˜

aptq

a0

¸´2d

; (6.20a)

ρpcmq
ptq “ ρ

pcmq

0

˜

aptq

a0

¸´3d{2

; (6.20b)

ρpΛq
ptq “ ρ

pΛq

0 . (6.20c)

where again ρ0 and a0 stands for the present epoch of the energy density and the scale

factor, respectively; “rad”, “cm”, and Λ denote radiation, cold matter, and the cosmo-

logical constant, respectively. Similarly to equation (5.50), these modifications applied to

the fractional-fractal Friedmann equation (6.18) lead to

H2
“ H2

0

«

Ωprad,fractalq
0

´ a0

aptq

¯2d

` Ωpcm,fractalq
0

´ a0

aptq

¯3d{2
` ΩΛ,fractal

0

ff
2
d

, (6.21)

with H0 the Hubble parameter at the present epoch as in expression (5.51), and Ωpi,fractalq
0

is the fractal density parameter of the ith component of the Universe at the present epoch,

which can be identified from equation (6.18) as

Ωpi,fractalq
0 :“ 8πL2

P
3H2

0
ρ

piq
0

˜

LP H0
?
π

¸2´d

, (6.22)

and in terms of the ordinary density parameter Ωpiq
0 defined in (5.51), we have

Ωpi,fractalq
0 “ Ωpiq

0

˜

LP H0
?
π

¸2´d

. (6.23)

Note that the fractal density parameters grow rapidly with small increases in the

values of the fractal dimension d such that d ą 2, compared to the value of the ordinary

density parameter. Also, equation (6.21) can be used to calculate the correspondent age

of the Universe by the density parameters

t0 “
1
H0

ż 1

0

dx

x
”

Ω(rad,fractal)
0 x´2d ` Ω(cm,fractal)

0 x´3d{2 ` ΩpΛ,fractalq
ı

1
d

, (6.24)
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Table 1: The age of Universe, t0, and the density parameter of cold matter for various values

of fractal dimension d. Here we consider h “ 0.674 and the Hubble time tH “ 1{H0 “ 14.508

Gyr.

d t0 (Gyr) Ω(cm)
0

2 13.797 0.315

2.01321 13.776 0.049

2.1 13.648 2.2 ˆ 10´7

2.5 13.147 5.7 ˆ 10´32

2.7 12.941 2.9 ˆ 10´44

2.99 12.684 1.5 ˆ 10´62

Source: The author (2024).

where x “ a{a0 and we consider a spatially flat Universe; i.e. Ωpkq

0 « 0. Again, we neglect

the contribution of radiation to calculate t0, and we will make the following assump-

tion: the cold matter energy density content of the Universe that we measure is fractal,

Ω(cm,fractal)
0 “ 0.315 (data from the reference [145]). The meaning of this will become clear

below. Table 1 shows the age of the Universe for various values of the fractal dimension

d in the range 2 ď d ă 3.

It is worth noting that the age of the Universe varies from 12.684 Gyr to 13.797 Gyr,

and the latter value holds for d “ 2 in which ΛCDM stands. Furthermore, the variation in

fractal dimension causes the effective value of the density parameter of cold matter to vary

enormously, and when d goes from two to three, Ω(cm)
0 goes from 0.315 to 10´62; see table

1. When d “ 2.01321 the age of the Universe becomes 13.776 Gyr and the actual density

parameter of the cold matter is Ω(cm)
0 “ 0.049, which is equal to the density parameter

of baryonic matter Ω(b)
0 . Therefore, if we conceive of the value of Ω(cm,fractal)

0 as just an

amplification of the value of the cold matter density parameter of the Universe due to a

small change in the fractal dimension d, then Ω(cm)
0 “ Ω(b)

0 can alone be responsible for

the matter content of the Universe, which is only baryonic, and does not need a CDM

constituent to validate the cosmological observations. In other words, by changing the

value of d, the need for CDM no longer exists, the density parameter of the cold matter

becomes only of baryonic matter origin and the ΛCDM model can be viewed as just a

Lambda-Cold Baryonic Matter (ΛCBM) model.
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Two final comments are necessary. Firstly, it must be emphasized that the above

arguments are applied only in the cosmological context, i.e., on the scale of objects and

structures such that the Universe obeys the cosmological principle, and obviously this is

not an approach that studies CDM on galactic scales, in terms of the rotation curves or

gravitational lenses of observational samples with data compared to the proposed model.

However, there are several recent studies that link the absence of CDM on these scales to

galaxies and galaxy clusters, using fractional modifications to the dynamics of rotation

curves or the gravitational Poisson equation [146–148].

Secondly, of course, the fractal factor expressed by the equation (6.23) that relates the

fractal and ordinary density parameters also applies to the other energy components of the

Universe when considering the ΛCDM model. From relevant consequences applied to the

radiation-dominated era, the recombination period, matter-radiation equality, to the late

Universe dominated by Λ, equation (6.23) must be examined carefully in the face of current

observational data. In particular, by modifying the effective radiation density parameter

in the young Universe, we speculate that there will be important consequences for a non-

trivial change in the dynamics of structure formation at this stage of the Universe, such

as the formation rate of galaxies and primordial black holes. Further studies should be

conducted to verify this possibility.
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7 CONCLUSION

This dissertation considered a semi-classical analysis of the thermodynamics of the

SBH in chapter 3, which had been quantized via CQG in its general results in chapter 2,

where the WDW equation is the fundamental result. The SBH was found to satisfy the

conditions for an object with random fractal geometry, and that FQG leads to a fractional

semi-classical description of its mass spectrum and thermodynamics, as presented in chap-

ter 4. Indications were given of the application of horizon thermodynamics to the study

of cosmological models through emergent cosmology in chapter 5, and the cosmological

AH in the de Sitter Universe was shown to be similar to the EH of the SBH in terms of

fractal structure [13]. This conclusion led us to extend the fractional-fractal description

of the SBH to the cosmological AH of the FLRW Universe in chapter 6. As a result, we

obtained the modified Friedmann equations. We were able to analyze the implications

of the fractional-fractal picture constructed in the ΛCDM model in section 6.3. In par-

ticular, the constitution of the density parameters of the cold matter component of the

Universe and the necessity of CDM for the ΛCDM model were investigated.

The ΛCBM model presented in this work, which follows close to the reference [15], gives

an alternate view of the cosmological paradigm of the CDM, suggesting that fractional-

fractal features may have had an impact on the measurable characteristics of the matter

content of the Universe, by modifying the density parameter of cold matter. That is,

by changing the value of the fractal dimension d of the model, the need for CDM no

longer exists, and the density parameter of cold matter becomes only of baryonic matter

origin. This may justify previous results that show fractal and fractional modifications

to spacetime geometry which avoid the assumption of CDM at various scales, namely, in

galaxies and galaxy clusters [146–148].
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