
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA - CAMPUS DE RECIFE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FRANCISCO WILSON RODRIGUES JÚNIOR

A RoboTool plug-in for RoboWorld

Recife
2023

FRANCISCO WILSON RODRIGUES JÚNIOR

A RoboTool plug-in for RoboWorld

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Pernam-
buco como requisito parcial para obtenção do grau
de Mestre em Ciência da Computação.

Área de Concentração: Engenharia de Software e
Linguagens de Programação

Orientador: Gustavo Henrique Porto de Carvalho

Recife
2023

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

R696r Rodrigues Júnior, Francisco Wilson

 A robotool plug-in for roboworld / Francisco Wilson Rodrigues Júnior. –
2023.

 90 f.: il., fig.

 Orientador: Gustavo Henrique Porto de Carvalho.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2023.
 Inclui referências.

 1. Engenharia de software. 2. Robótica. 3. Linguagem natural controlada.

I. Carvalho, Gustavo Henrique Porto de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2023-172

 Francisco Wilson Rodrigues Júnior

“A RoboTool plug-in for RoboWorld”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação. Área de Concentração:
Engenharia de Software e Linguagens de
Programação.

Aprovado em: 21 de setembro de 2023.

BANCA EXAMINADORA

__
Prof. Dr. Juliano Manabu Iyoda
Centro de Informática/UFPE

Prof. Dr. Sidney de Carvalho Nogueira
Departamento de Computação / UFRPE

Prof.Dr. Gustavo Henrique Porto de Carvalho

Centro de Informática / UFPE
(Orientador)

ACKNOWLEDGEMENTS

I am very grateful to God for giving me inspiration and strength to build this work in the
last years and to be essential in my journey. Also, I am grateful to my wife, my brother and
my grandmother who helped me by providing good energies, motivation and being my basis,
providing strength as well. Also, I would like to thank my parents who always helped me the
whole way and I know that they will be present in all moments of my life. I am also grateful
to my supervisor for all the support and patient necessary to produce this work.

ABSTRACT

Developing robotic systems is a challenging task due to the inherently underlying complexity.
Additionally, the lack of customised techniques and tools means that the current practice of
software engineering for robotics is outdated. Therefore, model-driven software engineering,
as opposed to simulation- and code-centric approaches, has been advocated for robotics.
Considering this, the RoboStar framework, via its associated tool (RoboTool), provides a
collection of domain-specific languages tailored for different aspects of the development of
robotic systems. One of these languages is RoboWorld: a controlled natural language (CNL)
for specifying operational requirements. In this work, we develop a RoboTool plug-in dealing
with RoboWorld. This plug-in has a graphical user interface that enables the customisation of
project-specific dictionaries. Moreover, it provides surface and structural editors of RoboWorld
documents. Integration with underlying natural-language processing techniques and tools is
transparent, and, thus, hidden from the end user. From an intermediate representation of
RoboWorld documents, which is derived automatically, the plug-in also has automatic support
for checking well-formedness conditions, and generating a formal CyPhyCircus semantics. The
RoboTool plug-in for RoboWorld was validated considering three case studies: a rescue drone,
a ranger robot, and a foraging robot.

Keywords: robotics; controlled natural language; grammatical framework; robostar; cyphycir-
cus; tool.

RESUMO

O desenvolvimento de sistemas robóticos é uma tarefa desafiadora devido à complexidade as-
sociada. Além disso, a falta de técnicas e ferramentas específicas faz com que a prática atual
de Engenharia de Software para robótica esteja desatualizada. Portanto, aplicar técnicas de
desenvolvimento baseado em modelos, em oposição às abordagens centradas em simulação
e código, tem sido defendido pela Engenharia de Software. Considerando isto, o framework
RoboStar, através de sua ferramenta (RoboTool), fornece uma coleção de linguagens específi-
cas de domínio adaptadas para diferentes aspectos do desenvolvimento de sistemas robóticos.
Uma dessas linguagens é RoboWorld: uma linguagem natural controlada (CNL) para especi-
ficar requisitos operacionais. Neste trabalho, desenvolveu-se um plug-in de RoboTool para
lidar com RoboWorld. Este plug-in possui uma interface gráfica que permite a manutenção de
dicionários específicos de cada projeto. Além disso, fornece editores de superfície e estruturais
para documentos RoboWorld. A integração com técnicas e ferramentas de processamento de
linguagem natural é transparente e, portanto, escondida do usuário final. A partir de uma
representação intermediária de documentos RoboWorld, que é derivada automaticamente, o
plug-in também verifica automaticamente condições de boa formação e gera uma semântica
formal em CyPhyCircus. O plug-in de RoboTool para RoboWorld foi validado considerando
três estudos de caso: um drone de resgate, um robô andarilho e um robô coletor de recursos.

Palavras-chaves: robótica; linguagem natural controlada; grammatical framework, robostar;
cyphycircus; ferramenta.

LIST OF FIGURES

Figure 1 – Robotic Systems Classification. 12
Figure 2 – Screenshot of the RoboTool Plug-in for RoboWorld. 18

Figure 3 – RoboStar Ecosystem. 21
Figure 4 – RoboChart Module of the Rescue Drone. 23
Figure 5 – Z Specification of a File System. 27
Figure 6 – Circus Syntax. 30
Figure 7 – Circus Process - Fibonacci generator. 31

Figure 8 – Architecture of RoboWorld syntax in GF. 36
Figure 9 – Fragment of RoboWorld Intermediate Representation. 43
Figure 10 – RoboWorld Document Semantics. 46
Figure 11 – ArenaProperty for the Rescue Drone. 47
Figure 12 – Properties Constraining the Target Region. 48
Figure 13 – The RoboWorld Document Semantics for Rescue Drone Example. 48
Figure 14 – Semantics to EnvironmentState and EnvironmentStateInit. 49
Figure 15 – Semantics of Robot Movement. 49
Figure 16 – Semantics of Input Event found. 50
Figure 17 – Semantics of Output Event takeoff. 50

Figure 18 – The MVC Architecture. 52
Figure 19 – RoboWorld Tool: Model Layer. 52
Figure 20 – RoboWorld Tool: View Layer. 53
Figure 21 – RoboWorld Tool: Controller Layer. 53
Figure 22 – RoboWorld Tool: Dictionary Tab. 54
Figure 23 – RoboWorld Tool: RoboWorld Document Tab. 56
Figure 24 – Add New Sentence Dialog. 57
Figure 25 – Possibilities of Writing a Statement. 57
Figure 26 – CyPhyCircus Model. 62

Figure 27 – Ranger RoboChart Model. 66
Figure 28 – Ranger Semantics: Input Event obstacle. 70
Figure 29 – Ranger Semantics: Buffers. 70

Figure 30 – Ranger Semantics: Mapping Process. 70
Figure 31 – Foraging RoboChart Model. 71
Figure 32 – Foraging Semantics: Global Constants. 77
Figure 33 – Foraging Semantics: Environment State. 77

Figure 34 – Graphical DSL of the Robot Mesh Studio IDE. 84
Figure 35 – Writing Requirements in FRET. 84
Figure 36 – Using Templates in FRET. 85

LIST OF CODE

Source Code 2.1 – Abstract Grammar of ToyRoboWorld. 24
Source Code 2.2 – Concrete Grammar of ToyRoboWorld. 25
Source Code 2.3 – CSP Specification of the Dining Philosophers Problem. 29

Source Code 3.1 – Excerpts of the RoboWorld lexicon. 37
Source Code 3.2 – Excerpts of the grammar: BasicItem and CompoundItem. 38
Source Code 3.3 – Linearisation of mkCompoundItem AdverbCI from adjective. . 39
Source Code 3.4 – Excerpts of the grammar: Statement. 40
Source Code 3.5 – Abstract definition of assumptions. 41
Source Code 3.6 – Abstract definition of mapping information. 42

Source Code 4.1 – Generation of IR. 58
Source Code 4.2 – Mapping Arena Information. 59
Source Code 4.3 – Finding Arena Dimensionality Information. 59
Source Code 4.4 – Checking for violations of RW2. 60
Source Code 4.5 – Checking for violations of RW6. 61
Source Code 4.6 – Checking for violations of RW10. 61
Source Code 4.7 – Generation of CyPhyCircus Semantics. 62
Source Code 4.8 – Generation of Composition. 63
Source Code 4.9 – Generation of getSet channels of Composition. 63
Source Code 4.10 – Generation of getSet channels of Composition. 64

Source Code 5.1 – Ranger intermediate representation. 69
Source Code 5.2 – Foraging intermediate representation. 76

CONTENTS

1 INTRODUCTION . 12

1.1 OPERATIONAL REQUIREMENTS . 13
1.2 RESEARCH PROBLEM . 15
1.3 OVERVIEW OF SOLUTION . 16
1.4 SUMMARY OF MAIN CONTRIBUTIONS 18
1.5 STRUCTURE . 18
2 BACKGROUND . 20

2.1 THE ROBOSTAR FRAMEWORK . 20
2.2 THE GRAMMATICAL FRAMEWORK . 23
2.3 CYPHYCIRCUS . 26
3 ROBOWORLD . 33

3.1 ROBOWORLD DOCUMENT OF THE RESCUE DRONE 33
3.2 THE SYNTAX OF ROBOWORLD DOCUMENTS 35
3.2.1 RoboWorld lexicon . 37

3.2.2 Building blocks: ItemPhrases . 38

3.2.3 Statements in RoboWorld . 39

3.2.4 Arena, robot, and elements assumptions 40

3.2.5 Mapping information . 41

3.3 INTERMEDIATE REPRESENTATION . 42
3.4 WELL-FORMEDNESS CONDITIONS . 44
3.5 ROBOWORLD SEMANTICS . 45
3.5.1 Semantics overview . 45

3.5.2 Semantics of the rescue drone . 47

4 ROBOWORLD PLUG-IN . 51

4.1 TOOL ARCHITECTURE . 51
4.2 EDITING ROBOWORLD DOCUMENTS 54
4.2.1 Dictionary view . 54

4.2.2 RoboWorld document view . 55

4.3 DERIVING THE INTERMEDIATE REPRESENTATION 58
4.4 CHECKING WELL-FORMEDNESS CONDITIONS 60

4.5 GENERATING THE CYPHYCIRCUS SEMANTICS 62
5 CASE STUDIES . 65

5.1 RANGER ROBOT . 65
5.1.1 RoboWorld document . 66

5.1.2 Intermediate representation . 67

5.1.3 CyPhyCircus semantics . 68

5.2 FORAGING ROBOT . 71
5.2.1 RoboWorld document . 72

5.2.2 Intermediate representation . 75

5.2.3 CyPhyCircus semantics . 75

6 CONCLUSION . 79

6.1 RELATED WORK . 79
6.1.1 Software system environments . 79

6.1.2 Controlled natural languages . 81

6.1.3 Tool support . 83

6.2 FUTURE WORK . 85
REFERENCES . 87

12

1 INTRODUCTION

Robotic systems are real-time systems able to make decisions and actions based on per-
ception and information obtained from the environment in a bounded time interval (MONTHE;

NANA; KOUAMOU, 2022). This information is collected by sensors and provided to the control
software, which makes the robot interact with its environment via actuators. Robotic systems
are, therefore, composed by physical elements (e.g., sensors, actuators), but also by an im-
material part, which contains the knowledge (software) that controls the robot. This control
enables the robot to operate in a complex, dynamic and unstructured environment.

The difference between robotic systems and simple automation is around the following
question: how complex are their actions? Generally speaking, simple automation is not flexible,
while robotic systems are more flexible and dynamic (BEN-ARI; MONDADA, 2018). Robotic
systems can be classified in some categories according to the context they are inserted. Figure 1
presents an overview of such a classification.

Figure 1 – Robotic Systems Classification.

Source: (BEN-ARI; MONDADA, 2018)

The main distinction is concerned with the robot being mobile or fixed. Fixed robots work
in a specific context, like the industry, and it performs repetitive tasks. In contrast, mobile
robots are more flexible. They perform tasks in larger, ill-defined and unknown environments.
Mobile robots can be further classified as aquatic, terrestrial and airbone. However, this is not
a general categorisation, since it is also possible to have amphibious robots. Terrestrial robots
can have legs or wheels, while aerial robots can be characterised as fixed- or rotary-wing.

Another important classification is related to how autonomous the robot is. For instance,
there are mobile robots that can inspect remote places and recover objects under the control
of an operator. These robots cannot be considered as autonomous. Some of these robots
can be semi-autonomous, being able to realise some activities automatically (e.g., stabilise

13

the flight assuming that the human pilot have provided the appropriate flight path) (BEN-ARI;

MONDADA, 2018). Some robots can be regarded as fully autonomous. For instance, robotic
vacuum cleaners are widely available and used because they are able to navigate autonomously
an indoor environment that contains many obstacles.

Developing robotic systems is a challenging task due to the inherently underlying complexity
of the requirements. Additionally, the lack of customised techniques and tools means that the
current practice of software engineering for robotics is outdated (CAVALCANTI et al., 2021).
Therefore, model-driven software engineering, as opposed to simulation- and code-centric
approaches, has been advocated for robotics (CAVALCANTI et al., 2021). Moreover, as robotics
systems are being increasingly applied to critical domains, such as healthcare, establishing the
trustworthiness of such systems also pose a key challenge for design and assurance.

In light of the aforementioned challenges (i.e., moving to a model-driven development ap-
proach and reaching high trustworthiness levels), the RoboStar group (a centre of excellence
in software engineering for robotics) has proposed a framework for rigorous modelling, verifi-
cation, simulation and testing of mobile and autonomous robots (CAVALCANTI et al., 2021).

The RoboStar framework comprises a collection of domain-specific languages tailored for
different aspects of the development of robotic systems. For instance, RoboChart (MIYAZAWA

et al., 2019) is an event-based and diagrammatic notation similar to the Unified Modelling
Language (UML) for the design of robotic systems, RoboSim (CAVALCANTI et al., 2019) is a
cycle-based notation (also UML-like) for simulation, and RoboWorld (CAVALCANTI; BAXTER;

CARVALHO, 2021) is a controlled natural language (CNL) for specifying operational require-
ments. In what follows, we focus on RoboWorld, which is the language closely related to this
work.

1.1 OPERATIONAL REQUIREMENTS

Robots affect and are affected by their surrounding environment. As a consequence, it is
typical to have in mind restrictions that must be satisfied for the robots to operate well; for
example, one may have made assumptions about the weather, the weight of the robot, and the
layout of rooms. Rarely, however, these restrictions are recorded precisely or at all. The usual
code-centric approach adopted in software development for robotics often leads to tests that
take these restrictions into account, but no record beyond the test base, if any, is normally
produced.

14

In using models in testing and proof, however, we often need to have a record of assump-
tions about the environment. For example, tests generated from a model that does not cater
for environment assumptions may characterise invalid scenarios and may be, therefore, useless.
In addition, properties of the system may depend fundamentally on assumptions of the envi-
ronment. For instance, a robot that starts too close to an obstacle may not be able to avoid
it in time. An account of operational requirements is, therefore, an important design artefact.

RoboWorld, part of the RoboStar framework, is a controlled natural language for writing
these additional documents that describe operational requirements of a robotic system for
use in simulation, test generation, and proof. As a controlled natural language, RoboWorld
provides an accessible notation to describe operational requirements, and to communicate
them to stakeholders who must ensure they are met (such as end users). On the other hand,
RoboWorld’s formal semantics enables its use in rigorous verification techniques, with auto-
matic generation insulating roboticists from the need to deal with the mathematical notations
used to describe the semantics when generating tests or even carrying out proofs.

Natural language processing techniques can be statistical or symbolic (RANTA, 2011).
Statistical approaches assume that a large dataset of (raw) text is available, from which
techniques such as machine learning extract processing rules by creating models. Differently,
symbolic approaches rely on grammars to define rules for analysing and producing valid text;
these rules define a controlled natural language. While statistical approaches are more general,
since they can process unrestricted text, inferring the correct interpretation of the text is a
challenge due to the huge variety of possible writing styles. The control imposed by symbolic
approaches can make this inference process easier, since we restrict ourselves to a controlled
subset of styles. The challenge is to achieve a compromise between naturalness, expressiveness,
and control.

RoboWorld is devised as a controlled natural language for the following two reasons. First,
as mentioned, operational requirements of robotic systems are frequently left implicit and,
thus, we do not have large datasets to develop statistical models. Second, the structure im-
posed by a symbolic approach enables us to provide automatically a formal semantics for such
requirements. Nevertheless, RoboWorld is a natural, expressive and extensible language, even
if controlled.

Providing tool support for RoboWorld is an essential task, since the ultimate goal is to
provide roboticists with a natural-language notation, yet controlled, for describing operational
requirements from which a formal semantics is derived automatically.

15

1.2 RESEARCH PROBLEM

The main research problem of this work is posed as follows: how can we provide appropriate
tool support for RoboWorld, such that a formal semantics can be derived automatically from
controlled natural-language specifications of operational requirements? Answering this research
question unfolds into meeting the following research goals:

• Goal 1 (G1): provide means for editing RoboWorld documents;

• Goal 2 (G2): check well-formedness conditions of RoboWorld documents;

• Goal 3 (G3): translate RoboWorld documents into an intermediate representation;

• Goal 4 (G4): generate formal semantics of RoboWorld documents.

According to (LUTEBERGET, 2019), there are two predominant paradigms when writing
sentences to adhere to a CNL: structural and surface editing. In structural editing, the user
mostly follows a structural approach (for instance, clicking on predefined possibilities) that
prevents the writing of invalid sentences according to the grammar of the CNL. In surface
editing, the user inputs texts with varying degrees of guidance from the editor. In such an
approach, it is possible to write sentences that are invalid. Therefore, the validity of the
sentences needs to be checked afterwards. Goal G1 is associated with providing the user with
a combination of these two editing styles.

In addition to checking adherence to defined CNL, it is necessary to analyse whether some
well-formedness conditions are met. For example, the specification should be consistent with
respect to the dimensionality of the environment; if the robot is going to operate on a 2D
environment (i.e., the z-axis is not relevant for the specific application), the RoboWorld doc-
ument should only refer to two dimensions (i.e., x- and y-axes). Goal G2 aims at mechanising
such verifications.

The semantics of a RoboWorld document should be defined in terms of an intermediate
representation (IR) of that document. With this representation, we can insulate the semantics
generation from some evolutions of the RoboWorld language. Goal G3 concerns the automatic
translation of RoboWorld documents into the corresponding intermediate representations.

The semantics of RoboWorld documents is provided using CyPhyCircus (FOSTER et al.,
2020; MUNIVE; STRUTH; FOSTER, 2020), a state-rich and hybrid version of a process algebra

16

for refinement cast in the Unifying Theories of Programming (UTP) of Hoare and He (HOARE;

JIFENG, 1998), and formalised in the theorem prover Isabelle (FOSTER et al., 2018). Goal G4
implies in mechanising the generation of such a semantics.

1.3 OVERVIEW OF SOLUTION

The four aforementioned goals are achieved in this work by developing a RoboTool1 plug-
in for RoboWorld. In this section, we provide an overview of such a solution. To illustrate it,
we rely on a running example: a rescue drone. It is a robot able to fly and search within an
environment with aims to reach objects there.

In this application, the arena (that it, the area in which the robot is expected to work) must
be three-dimensional, since the robot can move in three different coordinates. In the arena,
there are two particular regions of interest: the origin, where the robot is positioned initially,
and the target, the place the drone should reach. Additionally, the control software is designed
considering that the robot is initially orientated towards the target region. These assumptions
about the arena and the robot are recorded by the following RoboWorld sentences.

ARENA ASSUMPTIONS

The arena is three-dimensional.

The arena has an origin region.

The arena has a target region.

ROBOT ASSUMPTIONS

The robot is initially at the origin.

The robot is initially orientated towards the target.

Another important assumption is that the target region is far apart from the origin; in
practical terms, it would not be reasonable to employ a rescue drone to search for something
that is already in the origin region. Without this assumption, the RoboStar framework could
consider a test where the drone takes off, and immediately finds the target. This scenario is
valid from the control software perspective, but not realistic. Assumptions about the origin
and the target regions are recorded as follows.
1 Default tool of the RoboStar framework: <https://robostar.cs.york.ac.uk/robotool/>.

https://robostar.cs.york.ac.uk/robotool/

17

ELEMENT ASSUMPTIONS

The origin has an x-width of 1 m and a y-width of 1 m.

The target has an x-width of 1 m and a y-width of 1 m.

The distance from the target to the origin is greater than 1 m.

RoboWorld documents also record information about how the environment is affected and
affects the control software. For instance, the events found and origin are input events
provided from the robotic platform to the control software to indicate that the robot is within
the target and origin regions, respectively. These assumptions are recorded as follows.

MAPPING OF INPUT EVENTS

The event found occurs when the robot is inside the target.

The event origin occurs when the robot is inside the origin.

The syntax of RoboWorld is defined using the Grammatical Framework (GF) (RANTA,
2011), which provides support for inflection paradigms (for example, singular and plural forms),
as well as agreement between elements of a sentence (for instance, the subject-verb number
agreement), for more than 35 languages.

The RoboTool plug-in for RoboWorld developed in this work integrates with GF in order to
support surface and structural editing of RoboWorld documents. Figure 2 presents a screenshot
of this plug-in. It also allows the user to edit a project-specific dictionary; for instance, the
nouns target and origin are specific to the rescue drone example. When the dictionary is
edited, the tool dynamically rebuilds the RoboWorld grammar.

The developed plug-in also checks a number of well-formedness conditions (e.g., the dimen-
sionality consistency, as explained before) that are required in order to generate the associated
intermediate representation (IR). The IR is an intermediate representation of the RoboWorld
document in terms of an object-oriented model. It is the basis for deriving the corresponding
CyPhyCircus semantics. To facilitate the inspection of the semantics, the plug-in produces a
LaTeX-based representation.

The derived RoboWorld semantics has many applications. By combining it with the se-
mantics of the control software (given by its RoboChart model), the assumptions on the
environment can be taken into account in simulation, formal verification, and testing. How-
ever, using the semantics of RoboWorld documents in order to exploit formal verification,
simulation and testing of robotic systems is not within the scope of this work.

18

Figure 2 – Screenshot of the RoboTool Plug-in for RoboWorld.

Source: Current Author

1.4 SUMMARY OF MAIN CONTRIBUTIONS

In summary, the main contributions of this work are the following ones. In (BAXTER et al.,
2023), we give a concise account of the developed RoboTool plug-in for RoboWorld.

• A GUI for editing project-specific dictionaries;

• A GUI for surface and structural editing of RoboWorld documents;

• Tool support for checking well-formedness conditions of RoboWorld documents;

• Tool support for generating an intermediate representation of RoboWorld documents;

• Tool support for deriving a CyPhyCircus semantics;

• Validation of the RoboWorld plug-in in the context of a number of case studies.

1.5 STRUCTURE

This document is structured as follows. Chapter 2 discusses the necessary background
information: the RoboStar framework, the Grammatical Framework, and the language Cy-
PhyCircus. Chapter 3 covers aspects of RoboWorld documents: the underlying syntax, the
intermediate representation, and its formal semantics. Chapter 4 details the RoboTool plug-in
for RoboWorld, and Chapter 5 presents its use in the context of two case studies: a ranger

19

and a foraging robot. Finally, Chapter 6 concludes this document by addressing related and
future work.

20

2 BACKGROUND

In this chapter, we present the main concepts and theories that are necessary to better un-
derstand the present work. In Section 2.1, we discuss the RoboStar framework that enables the
development of safe robotic systems. Afterwards, in Section 2.2, we present the Grammatical
Framework (GF), which is used in this work to support the writing of operational requirements
according to the grammar of a controlled natural language. Finally, in Section 2.3, we present
the fundamentals of the language CyPhyCircus, which is used to give formal semantics to
RoboWorld documents.

2.1 THE ROBOSTAR FRAMEWORK

RoboStar emerged as a framework for leveraging software engineering for robotics. It has
a strong focus on formal modelling and verification, aiming at situations where high trust-
worthiness levels are required, and therefore supports a variety of analytical technologies to
model checking, theorem proving and testing (YE; FOSTER; WOODCOCK, 2022). Tool support
is provided by RoboTool, an Eclipse-based application.

As mentioned before, the RoboStar framework comprises a collection of domain-specific
languages. These languages provide a solid foundation for software engineering for robotics.
Figure 3 shows an overview of the RoboStar framework and how it integrates into the devel-
opment of robotic systems.

RoboChart is a profile of the Unified Modelling Language (UML) for the modelling of
robotic applications. A RoboChart module is composed by a control software, described in
terms of state machines, that interacts with the robotic platform interface. This abstract
design is refined in terms of RoboSim models.

As indicated in Figure 3, RoboSim targets the simulation level. It includes a notation for
describing control software (d-models), physical models (p-models), and simulation scenarios
(s-models). At this level, the control software operates in a cycle fashion: during each cycle,
sensors are read, input data is provided to the control software, and output data is produced to
actuators. The relation between these three notations is established by means of platform and
environment mappings. RoboWorld relates to RoboChart and RoboSim models by providing
a controlled natural language for documenting operational requirements. These requirements

21

Figure 3 – RoboStar Ecosystem.

Source: (CAVALCANTI; BAXTER; CARVALHO, 2021)

refer to RoboChart definitions (further refined by d-models) that must be satisfied by RoboSim
p-models and s-models (CAVALCANTI; BAXTER; CARVALHO, 2021).

RoboChart and RoboSim d-models have a discrete process algebraic semantics based on
CSP (HOARE, 2022). The semantics of other notations (e.g., p-models and RoboWorld doc-
uments) need to account for both discrete and continuous behaviour. So, a state-rich and
hybrid extension of CSP, called CyPhyCircus, is considered in such situations.

Another important aspect of the RoboStar framework highlighted in Figure 3 is that the
modularity obtained from RoboSim d-models, p-models and s-models, which are defined sep-
arately and connected by mappings, is transported to simulation code (CAVALCANTI; BAXTER;

CARVALHO, 2021). From RoboSim models, it is possible to generate C++ simulation code. In
Figure 3, SDF refers to the Simulation Description Format 1: an XML notation that describes
objects and environments for robot simulators. The simulation code will ultimately guide the
development of the deployed code, which interacts with the actual robot API.

In what follows, we provide more details on the RoboChart notation that are necessary
to understand RoboWorld documents. In this work, it is not necessary to cover the cyclic
nature of d-models, neither the details of p-models and s-models. This knowledge would
1 SDF website: <http://sdformat.org/>.

http://sdformat.org/

22

be necessary when assessing whether the specified operational requirements are satisfied by
RoboSim models. However, this is not part of the scope of this work.

RoboChart is a diagrammatic modelling language that offers elements suitable for describ-
ing robotic applications, in addition to primitives to capture timeouts and deadlines. A key
element of a RoboChart model is the block that specifies the services of a robotic platform,
abstracting how these services are realised by the actual robot. In other words, this block
records the assumptions related to the features and functionalities required of the physical
robot (MIYAZAWA et al., 2019).

A robotic platform may have variables (information made available by the platform to the
control software), events (atomic interactions between the robot and the environment), and
operations (functionalities provided by the physical robot); thus, abstracting sensors, actuators
and embedded software. The robotic platform interacts with controllers, which describe the
behaviour of the control software in terms of state machines. A module refers to the robotic
platform and associated controllers in order to define the boundaries of the robotic application
being modelled.

Figure 4 shows the module definition of our running example. In this module, Drone is the
robotic platform, whereas Finder is a controller. The behaviour of the controller is specified
in terms of the state machine FinderM, which is not presented in this figure. The platform
provides the interface Moving, which is required by the controller. This interface specifies the
operations move and turnBack; the former moves the robot horizontally according to the
linear velocity lv, and the latter rotates the robot 180 degrees.

Two other interfaces are also part of this module: Camera and Flying. The Camera inter-
face defines two input events (information that is sent from the platform to the controller):
found and origin. The first event occurs when the robot is within the target region, whereas
the second occurs when the robot is within the origin region. The Flying interface defines
two output events (information that is sent from the controller to the platform): takeoff and
land. These events signal to the platform that the robot should take off and land, respectively.

For a more comprehensive explanation of RoboChart, we refer the reader to Miyazawa et
al. (2019). A complete account of RoboChart is available online in its reference manual2.

2 RoboChart reference manual: <https://robostar.cs.york.ac.uk/notations/>.

https://robostar.cs.york.ac.uk/notations/

23

Figure 4 – RoboChart Module of the Rescue Drone.

Source: (CAVALCANTI; BAXTER; CARVALHO, 2021)

2.2 THE GRAMMATICAL FRAMEWORK

The Grammatical Framework (GF) is a open-source programming language for developing
multilingual grammar applications. It was created in 1998 at Xerox Research Centre Europe,
Grenoble, and can be used for developing applications such as translation systems, natural-
language interfaces, spoken dialog systems and software localisation, for example (RANTA,
2011).

In GF, although it is possible to define a grammar using EBNF notation, grammars are
normally defined using functions to cater for context-sensitive languages. Since RoboWorld is
defined using functions, we focus on this presentation style. We illustrate the main features
of GF using a toy version of RoboWorld (called ToyRoboWorld). In this toy language, we can
write clauses about robots and wheels, using exclusively the verb “to have”. The following
clauses are valid in ToyRoboWorld: “the robot has a wheel”, “the robot has wheels”,
“the robots have wheels”.

In Source Code 2.1, we define the abstract grammar of ToyRoboWorld. The starting symbol
(category) of the language is Clause (see Line 2). The terminals and non-terminals (called
categories) are defined on Lines 4–6. The lexicon comprises determiners (in singular and plural
forms), two nouns and one verb (see Lines 8–11). To finish, on Lines 13-16, we define how
clauses can be created from the other categories using functions. The function mkNounPhrase

makes a noun phrase from a determiner and a noun; mkVerbPhrase makes a verb phrase from

24

Source Code 2.1 – Abstract Grammar of ToyRoboWorld.

1 abstract ToyRoboWorld = {
2 flags startcat = Clause ;
3 ---
4 cat -- categories
5 Determiner ; Noun ; Verb ;
6 NounPhrase ; VerbPhrase ; Clause ;
7 ---
8 fun -- lexicon
9 a_SgDeterminer : Determiner ; a_PlDeterminer : Determiner ;

10 the_SgDeterminer : Determiner ; the_PlDeterminer : Determiner ;
11 robot_Noun : Noun ; wheel_Noun : Noun ; have_Verb : Verb ;
12 ---
13 fun -- functions
14 mkNounPhrase : Determiner -> Noun -> NounPhrase ;
15 mkVerbPhrase : Verb -> NounPhrase -> VerbPhrase ;
16 mkClause : NounPhrase -> VerbPhrase -> Clause ;
17 }

Source: Current Author

a verb and a noun phrase, and mkClause defines that a clause encompasses a noun phrase
and a verb phrase.

The concrete grammar of ToyRoboWorld, called ToyRoboWorldEng, defines how to im-
plement the aforementioned abstract concepts in English, covering expected spellings and
grammatical rules (see Source Code 2.2). To do this, we define two parameter types (Number
and VerbForm) to capture simplified notions of number and verb forms in English (Lines 3–5).
These two parameter types define the concepts (constructors) Sg, Pl, and VPresent, allowing
them to be used in the following definitions.

In GF, the implementations of abstract definitions are called linearisations. On Lines 7–
13, we provide linearisations for the categories of ToyRoboWorld. A Determiner and a
NounPhrase are implemented as records with two fields, s and n, storing the spelling (as
a string, that is, a value of the GF type Str) and the number information. A Noun is a record
with a single field s, defined as a table from Numbers to Strings. Similarly, Verbs are records
in which the field s is a table from VerbForms to Strings. Tables are similar to functions,
but their arguments must be of a parameter type (param). A VerbPhrase is also a record
combining a verb (v) and a noun phrase (np).

On Lines 15–22, we define the linearisation of the lexicon of ToyRoboWorldEng. This is
the place where we provide their English spelling. These definitions take into account the
inflections. For instance, we provide the singular and plural forms of nouns (Lines 20 and 21)
and verbs (Line 22).

25

Source Code 2.2 – Concrete Grammar of ToyRoboWorld.

1 concrete ToyRoboWorldEng of ToyRoboWorld = {
2 ---
3 -- parameters
4 param Number = Sg | Pl ;
5 param VerbForm = VPresent Number ;
6 ---
7 lincat -- categories
8 Determiner = {s : Str ; n : Number} ;
9 Noun = {s : Number => Str} ;

10 Verb = {s : VerbForm => Str } ;
11 NounPhrase = {s : Str ; n : Number} ;
12 VerbPhrase = {v : Verb ; np : NounPhrase} ;
13 Clause = Str ;
14 ---
15 lin -- lexicon
16 a_SgDeterminer = {s = "a" ; n = Sg} ;
17 a_PlDeterminer = {s = "" ; n = Pl} ;
18 the_SgDeterminer = {s = "the" ; n = Sg} ;
19 the_PlDeterminer = {s = "the" ; n = Pl} ;
20 robot_Noun = {s = table {Sg => "robot" ; Pl => "robots"}} ;
21 wheel_Noun = {s = table {Sg => "wheel" ; Pl => "wheels"}} ;
22 have_Verb = {s = table {VPresent Sg => "has" ; VPresent Pl => "have"}} ;
23 ---
24 lin -- functions
25 mkNounPhrase det noun = {s = det.s ++ (noun.s ! det.n) ; n = det.n} ;
26 mkVerbPhrase v np = {v = v ; np = np} ;
27 mkClause np vp = np.s ++ (vp.v.s ! (VPresent np.n)) ++ vp.np.s ;
28 }

Source: Current Author

Lines 24–27 give the linearisations for the other functions. When creating a noun phrase
(Line 25), its number information is inherited from the associated determiner (n = det.n).
Moreover, the string representation of the noun phrase enforces agreement between the de-
terminer and the noun. This string is created by concatenating (++) the determiner with the
inflection form of the noun that shares the same number of the determiner; noun.s ! det.n

yields a string containing the inflection form of the noun whose number information is given
by det.n. We recall that noun.s is a table, a construct similar to a function; the symbol !
denotes table (function) application in GF.

In ToyRoboWorld, the following NounPhrase is not valid: “a wheels”. In this example, the
number information of the determiner “a” is n = Sg (see Line 16 in Source Code 2.2), and
“wheels” is the inflection form associated with number Pl (see Line 21 in Source Code 2.2).
According to the function mkNounPhrase, when creating noun phrases, the noun should be
linearised with the inflection form that matches the number of the determiner (noun.s !

det.n). Therefore, in such a situation, we should read instead “a wheel”, since wheel is the

26

inflection form associated with Sg.
For a verb phrase, on Line 26, we just collect the verb and the noun in a record. Finally,

when creating clauses, we enforce agreement between the noun phrase and the verb (Line 27).
The clause is the String obtained from the concatenation of three strings: (1) np.s – the
representation of the noun phrase, (2) vp.v.s ! (VPresent np.n) – the representation of
the inflection form of the verb (vp.v.s) that is in the VPresent tense and that shares the
same number of np, (3) vp.np.s – the representation of the noun phrase embedded in the
verb phrase.

To facilitate the application of grammatical rules, such as the agreement situations pre-
sented before, as well as to deal with the particularities of different natural languages, GF offers
the Resource Grammar Library (RGL); it covers a morphological and grammatical structure
that is far from trivial, catering currently for more than 30 languages.

RGL defines basic categories such as adjectives (A), adverbs (Adv), determiners (Det), and
so on. When a category has a number appended to its name (for instance, V3), that number
denotes the amount of expected arguments (places). For example, a two-place verb (that is,
a member of V2) expects the verb and one complement: in “the robot has an odometer”, the
verb “to have” is classified as a two-place verb. The verb here is “has” and the complement
is “an odometer”. One-place categories do not have numbers attached to their names.

The basic categories are used to create more elaborate grammatical constructions, offering
support for great variety. To provide some figures, there are at least 15, 25, 20, and 30 different
ways (functions) to create common nouns, noun phrases, verb phrases, and declarative clauses
alone. In addition, when creating sentences, we can also consider different tenses and polarities.
RoboWorld is built on RGL, inheriting its flexibility and expressiveness.

2.3 CYPHYCIRCUS

The semantics of RoboWorld documents is given in CyPhyCircus (FOSTER et al., 2020).
This is a hybrid extension of Circus (WOODCOCK; CAVALCANTI, 2001) that provides facilities to
specify and reason about discrete and continuous behaviour. Circus itself combines two well-
established formal specification languages, Z (WOODCOCK; DAVIES, 1996) and CSP (HOARE,
2022), in order to support the specification of both data and behaviour aspects of concurrent
systems. In what follows, we provide an overview of these languages.

27

The Z Notation

The language Z is based upon set theory and a first-order predicate calculus. The considered
set theory includes standard set operators, set comprehensions, Cartesian products, and power
sets (WOODCOCK; DAVIES, 1996). A characteristic feature of Z is the use of types, where every
object in the language is represented by a specific and unique type.

A Z specification is structured according to paragraphs. There are several kinds of Z
paragraphs, for instance: definition of basic types, axiomatic descriptions, constraints, and
schemas, among others. A key element of Z is the use of schemas to describe the state of the
system, and how it evolves. Figure 5 shows a Z specification for modelling a file system. Key
and Data are given sets; we known that they exist (i.e., they denote valid types), but defining
their internal structure is not necessary for the purpose of this modelling exercise. File is a
schema that specifies what a file is made of. A file has contents, which is modelled as a partial
function (↦→) from Key to Data.

Figure 5 – Z Specification of a File System.

Source: (WOODCOCK; DAVIES, 1996)

The schema Read0 defines the read operation. Since reading a file does not change its
state, Read0 includes the schema File such that the contents of a file are not changed during
the operation; this is indicated by the symbol Ξ. This operation receives an input (a key d?)
and yields an output (some data d!); the symbol ? denotes inputs, whereas ! denotes outputs.
This operation has two constraints: (1) the key k? must be valid (i.e., it should belong to the

28

domain of contents, formalised as k? ∈ dom contents), and (2) the yielded output should be
the data associated with the provided key (formalised as d! = contents k?).

The write operation is defined by the schema Write0. Differently from Read0, this operation
possibly changes the state of a file. This is indicated by using the symbol ∆ when including the
schema File; contents and contents′ denote the contents of a file before and after executing
the operation, respectively. The write operation receives two inputs: a valid key k? and the data
d? to be written to the file indexed by k?. The predicate contents′ = contents ⊕ {k? ↦→ d?}

states that contents is updated (⊕) such that k? now maps to (↦→) the data provided (d?)
to the write operation.

For a more comprehensive explanation of the Z notation, we refer the reader to Woodcock
and Davies (1996). Z is not intended for modelling concurrent behaviour, which is the focus
of the language Communicating Sequential Processes (CSP).

Communicating Sequential Processes (CSP)

CSP is a specification language for reasoning about concurrent behaviour. A central concept
of CSP is the definition of processes. A process defines a behaviour by means of communication
with its external environment. Communication is represented by the occurrence of events. The
two most basic processes are STOP and SKIP; the former represents a deadlock situation,
where no communication is possible, whereas the latter denotes successful termination by
communicating the event ✓.

We consider the classical dining philosophers problem (see Source Code 2.3) to cover
the basics of CSP. This code uses a machine-readable version of CSP called CSPM, which
combines CSP with a functional language. The dining philosophers problem is characterised
by N philosophers around a circular table. There are also N forks in the table. The philosophers
and forks are indexed by numbers ranging from 0 to N-1; the sets PHILNAMES and FORKNAMES

comprise this interval.
The behaviour of the i-th philosopher is described by the process PHIL(i). The communi-

cations that occur within this process are the ones defined by the channels on Lines 6–7. The
channels thinks, sits, eats, and getsup communicate a value in PHILNAMES (e.g., the event
thinks.0 denotes the 0-th philosopher thinking). The channels picks and putsdown com-
municate two values in PHILNAMES and FORKNAMES, respectively (e.g., the event picks.0.1

denotes the 0-th philosopher picking the 1st fork).

29

Source Code 2.3 – CSP Specification of the Dining Philosophers Problem.

1 N = 5
2
3 PHILNAMES = {0..N-1}
4 FORKNAMES = {0..N-1}
5
6 channel thinks, sits, eats, getsup : PHILNAMES
7 channel picks, putsdown : PHILNAMES.FORKNAMES
8
9 PHIL(i) = thinks.i -> sits.i -> picks!i!i -> picks!i!((i+1)%N) ->

10 eats.i -> putsdown!i!((i+1)%N) -> putsdown!i!i -> getsup.i -> PHIL(i)
11
12 FORK(i) = picks!i!i -> putsdown!i!i -> FORK(i)
13 [] picks!((i-1)%N)!i -> putsdown!((i-1)%N)!i -> FORK(i)
14
15 PHILS = ||| i : PHILNAMES @ PHIL(i)
16 FORKS = ||| i : FORKNAMES @ FORK(i)
17
18 SYSTEM = PHILS [| {|picks, putsdown|} |] FORKS

Source: (ROSCOE, 2010)

The behaviour of a philosopher is as follows. First, the i-th philosopher thinks (thinks.i).
Then, the philosopher sits (sits.i). To eat, a philosopher needs to have two forks. After
eating (eats.i), the philosopher puts down the forks in reverse picking order. Finally, the
philosopher gets up (getsup.i) and starts to think again (represented by the recursive call to
PHIL(i)). In PHIL(i), the operator -> is used to define a sequential occurrence of events.

FORK(i) specifies the behaviour of the i-th fork. Since a fork is shared by two philosophers,
the behaviour of the i-th fork is characterised by the choice ([]) of being picked by the i-th
or the (i-1)%N-th philosophers. After being picked by a philosopher, the fork only returns to
the table after being put down by the same philosopher. The operator [] is called external
choice, where the choice is performed by an external process (e.g., the philosopher decides
upon which fork is being picked). Differently, an internal choice (|∼|) consists of a choice
internal to the involved process.

PHILS combines all philosophers in parallel using the indexed version (i : ... @ ...)
of the interleaving (|||) operator. In such a situation, there is no synchronisation between
the processes describing philosophers; they operate independently. Similarly, FORKS defines
the interleaving of fork processes. The SYSTEM is characterised by a synchronous parallel
combination ([| ... |]) of processes. Here, the processes PHILS and FORKS must synchronise
on all events associated with the channels picks and putsdown; the operator {|C|} expands
C to all events that can be communicated via this channel. In other words, a philosopher can

30

only pick a fork if, and only if, this fork is ready to be picked by this philosopher (e.g., this
fork cannot be in the hands of other philosopher or far away from this philosopher).

Although CSPM incorporates a functional language, it offers limited to support to define
and manipulate complex data structures. Circus (WOODCOCK; CAVALCANTI, 2001) is a language
that combines Z and CSP to support the specification of both data and behaviour aspects of
concurrent systems.

Circus

Circus combines communications (events), parallelism, and choices from CSP with data
types from Z. In this language, a specification is formed by a (possibly empty) sequence of
CircusParagraphs, where each one can be a Z paragraph (Paragraph), a channel definition
(ChannelDefinition), a channel set definition (ChanSetDefinition) or a process definition
(ProcessDefinition). Figure 6 presents a fragment of the BNF description of the syntax
of Circus. N+ is used to denote a non-empty comma-separated list of identifiers; the same
rationale applies to Expression+. The categories Paragraph, Schema-Exp, and Expression

are taken from the Z notation language.

Figure 6 – Circus Syntax.

Source: (WOODCOCK; CAVALCANTI, 2001)

The Circus support to channels is very similar to the one offered by CSP. A difference is a
dedicated keyword (chanset) to define sets of previously defined channels. A Circus process

31

can resemble like a pure CSP process (i.e., be defined in terms of operators such as interleaving
|||, external choice [], among others), but also consist of a sequence of process paragraphs
(PParagraph), followed by a nameless action, delimited by begin and end. To give a concrete
example, let us consider the process shown in Figure 7.

Figure 7 – Circus Process - Fibonacci generator.

Source: (WOODCOCK; CAVALCANTI, 2001)

The process Fib generates the Fibonacci sequence, sending its values via the channel
out. We have five process paragraphs associated with Fib: FibState, InitFibState, InitFib,
OutFibState, and OutFib. The behaviour of Fib is defined by the action InitFib ; OutFib,
which composes sequentially (;) the actions InitFib and OutFib. InitFib produces the first
two numbers of the Fibonacci sequence, and then it behaves as InitFibState. This action
initialises the schema FibState, which is used to describe the internal state of the process.
FibState declares two variables x and y of type N to keep track of the last two produced
numbers; initially, both variables store the value 1.

The action OutFib describes a recursive (𝜇X) behaviour as follows: first, it performs
OutFibState, which changes the state of the process by updating y to x +y (i.e., y ′ = x +y)
and assigning to x the old value of y (i.e., x ′ = y). Additionally, a local variable next is
declared and the new value of y is assigned to it (i.e., next! = y ′). Finally, the process outputs
the value of next (i.e., out!next) and recurses. For a more detailed presentation of Circus, we
refer the reader to Woodcock and Cavalcanti (2001).

CyPhyCircus

For RoboWorld, due to the continuous nature of the arena and of the associated move-
ments, it is necessary to describe discrete and continuous behaviours (CAVALCANTI; BAXTER;

CARVALHO, 2021). In this case, an extension of Circus, called CyPhyCircus (FOSTER et al.,

32

2020), is more appropriate. The main goal of CyPhyCircus is to leverage Circus to model hy-
brid (a combination of discrete and continuous) systems; this is achieved by allowing the use of
differential equations to specify the evolution of the system state. Concrete examples of spec-
ifications using CyPhyCircus are discussed later, when describing the semantics of RoboWorld
documents.

33

3 ROBOWORLD

In this chapter, we present the core aspects of RoboWorld, which is a controlled natural
language (part of the RoboStar framework) for documenting operational requirements of a
robotic systems to be used in simulation, proof and test generation. This chapter is structured
as follows. In Section 3.1, we briefly discuss the RoboWorld document of our running example
(a rescue drone). In Section 3.2, we cover the syntax of RoboWorld documents, which are
automatically translated into an intermediate representation (as explained in Section 3.3). A
well-formed RoboWorld document should comply to with a set of well-formedness conditions,
which are discussed in Section 3.4. In Section 3.5 we explain the formal CyPhyCircus semantics
of RoboWorld documents.

3.1 ROBOWORLD DOCUMENT OF THE RESCUE DRONE

A RoboWorld document is structured according to seven sections. First, it describes as-
sumptions about the arena (ARENA ASSUMPTIONS) and its constituent components (ROBOT and
ELEMENT ASSUMPTIONS). In what follows, we present the assumptions of the rescue drone.

ARENA ASSUMPTIONS

The arena is three-dimensional.

The arena has an origin region.

The arena has a target region.

ROBOT ASSUMPTIONS

The robot is initially at the origin.

The robot is initially orientated towards the target.

The robot is a point mass.

ELEMENT ASSUMPTIONS

The origin has an x-width of 1 m and a y-width of 1 m.

The gradient of the ground under the origin is the value 0.

The origin is on the ground.

The target has an x-width of 1 m and a y-width of 1 m.

34

The gradient of the ground under the target is the value 0.

The target is on the ground.

The distance from the target to the origin is greater than 1 m.

As it can be seen, the arena is three-dimensional and it has two special regions, named
origin and target. These are the assumptions made about the arena. Initially, the robot is at
the origin, and its orientation is towards the target region. Additionally, the shape of the robot
is abstracted (i.e., it is treated as a point mass). These are the robot assumptions. Element
assumptions record relevant information about the origin and target regions (i.e., their size,
their location, and separation distance). There is also information about the gradient of the
ground, which refers to its slope change; in this case, as it is defined to be 0, it means that
the ground under the origin and the target is flat.

A RoboWorld document also provides mapping information, which describes how the con-
trol software is affected and affects the environment. This information should precisely match
the (output/input) events, operations, and variables of the (possibly) associated RoboChart
diagram. Mapping information of the rescue drone example is recorded as follows.

MAPPING OF OUTPUT EVENTS

When the event takeoff occurs, the velocity of the robot is set to 1 m/s upward.

When the event land occurs, the velocity of the robot is set to 1 m/s downward.

MAPPING OF INPUT EVENTS

The event found occurs when the robot is inside the target.

The event origin occurs when the robot is inside the origin.

MAPPING OF OPERATIONS

When the operation move() is called, the velocity of the robot is set to 1 m/s

towards the orientation of the robot.

The operation turnBack() is defined by a diagram where one time unit is 1 s.

MAPPING OF VARIABLES

The output events (i.e., information sent from the control software to the robotic platform)
affect the environment by changing the velocity of robot, which is part of it. The defined input

35

events (i.e., information sent from the robotic platform to the control software) occur when
the robot is inside the two aforementioned regions.

The operation move also affects the robot velocity. The mapping information for turnBack
shows that, when the information becomes too complicated to be described in English, one
can also rely on RoboStar diagrams to specify such information. Finally, since this example
has no variables, this section is left empty.

When deriving the formal semantics of a RoboWorld document, the document as a whole is
considered to generate a consistent formalisation. For instance, regarding the operation move,
although it is not explicitly said in the associated sentence (see MAPPING OF OPERATIONS),
a three-dimensional orientation is considered, since another sentence states that the arena is
three-dimensional (see ARENA ASSUMPTIONS).

3.2 THE SYNTAX OF ROBOWORLD DOCUMENTS

Figure 8 shows the structure of RoboWorld in GF. Our approach, which defines an abstract
and a concrete syntax, along with the support provided by RGL, means that we have a general
mechanisation of RoboWorld that is language independent. Using this structure, we can provide
concrete implementations for RoboWorld considering other languages, such as Portuguese,
French, and others. RGL takes into account more than 30 languages. Here, we restrict ourselves
to English.

In Figure 8, a module is represented as a box, and a collection of RGL modules as a dashed
box. The RoboWorld abstract syntax is realised by the abstract grammar RoboWorld. The
concrete grammar RoboWorldEng describes how sentences in English correspond to elements
of the abstract syntax.

The collections of RGL modules used in our realisation of RoboWorld are shown on the left
and on the right in Figure 8. RGL is concerned with morphology and syntax rules of languages.
The RGL abstract grammars that we use, shown on the left in Figure 8, cover terms such as
noun phrases and clauses, for instance, which are common to many languages. On the right,
Figure 8 shows RGL modules that implement the abstract modules in the English language.

In the middle box in Figure 8, we show the grammars that we have defined specifi-
cally for RoboWorld. RoboWorldEng implements the grammar RoboWorld, and they both
extend a lexicon (RoboWorldLexicon in the case of the abstract RoboWorld grammar, and
RoboWorldLexiconEng for the concrete RoboWorldEng). The grammars RoboWorldLexicon

36

Figure 8 – Architecture of RoboWorld syntax in GF.

Source: Current Author

and RoboWorldLexiconEng define the RoboWorld lexicon, that is, its vocabulary. All these
grammars use RGL grammars to cater for general concepts.

The RoboWorld lexicon contains words that are common to the specification of robotic
systems, such as arena, robot, orientation, velocity, three-dimensional, among others.
Currently, the RoboWorld lexicon comprises more than 100 words. The abstract version of the
lexicon (RoboWorldLexicon) defines the grammatical classes of these words (for instance,
robot is a noun, one-dimensional is an adjective), but it does not give their spelling.

The concrete lexicon of RoboWorld (RoboWorldLexiconEng) implements the abstract
one considering the English language, and its particularities, by extending the RGL support
for English. For instance, Modern English largely does not have grammatical gender, which
would require all nouns to have masculine, feminine, and neutral inflections. Therefore, when
defining a noun in RoboWorldLexiconEng, it suffices to provide the spellings of the singular
and plural inflections.

The RoboWorld grammar extends the RoboWorld lexicon, and defines the abstract struc-
ture of sentences (for example, sentences in the passive or active voice, or in the present or
past tense, and so on) that we can write to specify assumptions and mappings. The concrete
grammar RoboWorldEng implements RoboWorld observing the rules that apply to the writing
of sentences in English.

37

Source Code 3.1 – Excerpts of the RoboWorld lexicon.

1 abstract RoboWorldLexicon = Cat ** {
2 ...
3 fun a_Det : Det;
4 ...
5 fun box_N : N;
6 ...
7 fun take_V2 : V2;
8 ...
9 }

10
11 concrete RoboWorldLexiconEng of RoboWorldLexicon = CatEng **
12 open MorphoEng, ResEng, ParadigmsEng, IrregEng, Prelude in {
13 ...
14 lin a_Det = mkDeterminer singular "a" | mkDeterminer singular "an";
15 ...
16 lin box_N = mkN "box" "boxes";
17 ...
18 lin take_V2 = mkV2 (mkV "take" "takes" "took" "taken" "taking");
19 ...
20 }

Source: Current Author

3.2.1 RoboWorld lexicon

Source Code 3.1 presents excerpts of the abstract and concrete grammars of the RoboWorld
lexicon, that is, RoboWorldLexicon and RoboWorldLexiconEng. There Cat is a core abstract
grammar of the RGL, declaring categories for nouns (N) and clauses (Cl), for example, among
many others. CatEng is its implementation for English. On Line 1 of Source Code 3.1 we
declare RoboWorldLexicon as an abstract grammar that extends Cat. On Lines 3, 5, and 7,
for illustration, we show the definitions that a determiner (a Det), a noun (box N), and a
verb (take V2) are part of the RoboWorld lexicon.

RoboWorldLexiconEng extends CatEng and opens resource modules (e.g., MorphoEng and
IrregEng) to deal with morphology rules and irregular inflections (Lines 11–12). It specifies
spelling and inflection forms in English for the abstract definitions of RoboWorldLexicon. For
example, a Det is a singular determiner with two linearisation forms: “a” and “an” (Line 14).
The symbol | is used to enumerate variations. Regarding box N, RoboWorldLexiconEng

defines its singular and plural forms (Line 16). Finally, for take V2, we define the inflec-
tions for the present tense (plural and singular forms), past tense, past participle tense, and
gerund (Line 18). The RGL functions mkDeterminer, mkN and mkV2 create determiners, nouns
and two-place verbs.

38

Source Code 3.2 – Excerpts of the grammar: BasicItem and CompoundItem.

1 ...
2 mkBasicItem_single_noun : Cat.N -> BasicItem ;
3 ...
4 mkBasicItem_Unit : Unit -> BasicItem ;
5 ...
6 mkCompoundItem_AdverbCI : Item -> Adv -> CompoundItem ;
7 mkCompoundItem_AdverbCI_from_adjective : Item -> A -> CompoundItem ;
8 ...

Source: Current Author

It is possible to extend the RoboWorld lexicon to cover application-specific vocabulary. We
use “dictionary” to refer to the words in the RoboWorld pre-defined and application-specific
lexicons. To enrich the dictionary, we need to create new abstract and concrete grammars that
extend RoboWorld and RoboWorldEng. Our tool makes this transparent: to add a word, we
just need to provide it, its category, and inflections, as later explained.

3.2.2 Building blocks: ItemPhrases

Sentences in RoboWorld relate ItemPhrases by means of verbs. An ItemPhrase may refer
to pronouns (PronounIP), determined ItemPhrases (DeterminedIP), quantified ItemPhrases
(QuantifiedIP), Items (BasicItem, CompoundItem), and literals (e.g., FloatLiteralIP).
In the concrete level, BasicItems, CompoundItems, and Items are defined as common nouns
(CatEng.CN); ItemPhrases are defined as noun phrases (CatEng.NP). So, the functions in
our grammar identify the expected forms of common nouns and noun phrases. For instance,
in Source Code 3.2, we define that a BasicItem can be created from a noun (Line 2) or a
Unit (Line 4), a type that we define to include the SI base units, among others.

We use RGL to make RoboWorld more flexible and expressive. For example, an AdverbCI

is a CompoundItem that modifies an Item by an adverb. In the GF-realisation, we expect both
adverbs (Adv) and adjectives (A) – see Source Code 3.2, Lines 6 and 7. In the second case,
we use an RGL function to create an adverb from a given adjective (see Source Code 3.3). In
the linearisation of mkCompoundItem AdverbCI from adjective, after extracting the string
embedded in the adjective (using lin A adj), the adverb is constructed by the RGL function
SyntaxEng.mkAdv, turning, for example, “initial” into “initially”. The function mkCN is
also from RGL and creates a common noun given another common noun (item) and an adverb
(adv). So, if we apply it to “objects” and “initially”, we get the common noun “objects

39

Source Code 3.3 – Linearisation of mkCompoundItem AdverbCI from adjective.

1 mkCompoundItem_AdverbCI_from_adjective item adj =
2 let adv : CatEng.Adv = SyntaxEng.mkAdv (lin A adj)
3 in mkCN item adv ;

Source: Current Author

initially” used, for instance, in “The source contains 5 objects initially.” – a
sentence that appears in an another case study considered by this work.

The realisation of ItemPhrases in GF, using functions such as mkItemPhrase PronounIP

and mkItemPhrase QuantifiedIP with digits, considers eight different types of quan-
tifiers to add expressiveness. We can write, for instance, “one m”, “1 m”, “0.5 m”, “no
obstacles” and “this obstacle”. For a comprehensive explanation of ItemPhrases, we refer to
the RoboWorld reference manual1.

3.2.3 Statements in RoboWorld

Assumptions and mapping information are defined in terms of Statements, which are
sentences that relate ItemPhrases by means of verbs. In terms of RGL definitions, a statement
is a sentence (CatEng.S). The category Statements comprises multiple statements linked by
the conjunctions “and” or (exclusive) “or”. The RoboWorld language is quite flexible in terms
of writing structures with respect to Statements; for instance, it allows writing statements in
passive and active voices, in present and past tenses, and in positive and negative polarities.
Intransitive, transitive, and modal verbs are also supported. Source Code 3.4 shows some
examples.

The name of the functions is quite intuitive, and describes the writing structure supported
by its definition. For example, mkStatement PassiveVoice IntransitiveVerb accepts a
statement in the passive voice that is written using an intransitive verb. It is worth noting that
the linearisations of these functions rely on RGL built-in functions to adhere to grammatical
rules. To give a concrete example, in the context of the passive voice, the function passiveVP

yields the past participle inflection of a verb, accompanied by the verb to be, enforcing number-
agreement rules. Therefore, “the odometer of the robot is reset” would be accepted,
whereas “the odometer of the robot are reset” would not. Another interesting example
is the function mkS : Pol -> Cl -> S, which creates a sentence (S) from a given polarity
1 RoboWorld reference manual: <https://robostar.cs.york.ac.uk/roboworld/>

https://robostar.cs.york.ac.uk/roboworld/

40

Source Code 3.4 – Excerpts of the grammar: Statement.

1 fun -- Statement
2 -- the odometer of the robot is reset
3 mkStatement_PassiveVoice_IntransitiveVerb :
4 ItemPhrase -> V -> Statement ;
5 ...
6 -- the operation takeOff was called in 20 minutes before
7 mkStatement_PastTense_PassiveVoice_TransitiveVerb_Preposition_ItemPhrase :
8 ItemPhrase -> V -> Prep -> ItemPhrase -> Statement ;
9 ...

10 -- the arena is three-dimensional
11 mkStatement_ActiveVoice_ToBe_Adjective :
12 ItemPhrase -> A -> Statement ;
13 ...
14 -- the gradient of the ground is 0.0
15 mkStatement_ActiveVoce_ToBe_ItemPhrase :
16 ItemPhrase -> ItemPhrase -> Statement ;
17 ...
18 -- the robot may carry 1 object
19 mkStatement_ActiveVoice_Modal_TransitiveVerb_DirectObject :
20 ItemPhrase -> VV -> V2 -> ItemPhrase -> Statement ;
21 ...
22 -- the robot is carrying an object
23 mkStatement_ActiveVoice_Positive_Progressive_TransitiveVerb_DirectObject :
24 ItemPhrase -> V2 -> ItemPhrase -> Statement ;
25 ...
26 -- the robot is not carrying an object
27 mkStatement_ActiveVoice_Negative_Progressive_TransitiveVerb_DirectObject :
28 ItemPhrase -> V2 -> ItemPhrase -> Statement ;

Source: Current Author

(Pol) and clause (Cl). It suffices to call “mkS UncNeg cl” to change a clause cl to a negative
polarity. More information about the supported writing structures is available in the RoboWorld
reference manual.

3.2.4 Arena, robot, and elements assumptions

A RoboWorld document is structured into sections. The first three sections cover as-
sumptions about the arena (ARENA ASSUMPTIONS), the robot (ROBOT ASSUMPTIONS), and
other elements (ELEMENT ASSUMPTIONS) of the arena. Source Code 3.5 presents the ab-
stract definitions of the associated categories (ArenaAssumption, RobotAssumption, and
ElementAssumption, respectively), as well as the functions that create instances of these
categories.

In concrete terms, these three categories are defined as sentences (i.e., CatEng.S), and
an instance is built directly from the provided statement. As a consequence, the linearisation

41

Source Code 3.5 – Abstract definition of assumptions.

1 --
2 cat -- ArenaAssumption
3 ArenaAssumption ;
4 --
5 fun -- ArenaAssumption
6 -- some locations of the arena except the source and the nest contain 1 obstacle
7 mkArenaAssumption_Statement : Statement -> ArenaAssumption ;
8 --
9 cat -- RobotAssumption

10 RobotAssumption ;
11 --
12 fun -- RobotAssumption
13 -- the robot is a point mass
14 mkRobotAssumption_RobotStatement : Statement -> RobotAssumption ;
15 --
16 cat -- ElementAssumption
17 ElementAssumption ;
18 --
19 fun -- ElementAssumption
20 -- the source has an x-width of 0.25 m and a y-width of 0.25 m
21 mkElementAssumption_Statement : Statement -> ElementAssumption ;

Source: Current Author

of all functions shown in Source Code 3.5 concerns an identity function. In other words, any
valid statement can be used to record an assumption about the arena, the robot, and other
elements of the arena.

3.2.5 Mapping information

The last four sections of a RoboWorld document provide mapping information about input
and output events (InputEventMapping and OutputEventMapping, respectively), operations
(OperationMapping), and variables (VariableMapping); this describes how the control soft-
ware affects and is affected by the environment. Similar to the assumptions, these categories
are also defined in the concrete level as sentences (CatEng.S). However, differently from as-
sumptions, their construction is not defined in terms of identify functions. Source Code 3.6
shows some ways of recording mapping information. For a complete reference, we refer to the
RoboWorld reference manual.

Given the name of an event (String) and the associated conditions (Conditions), the
function mkInputEventMapping InputSometimes yields an InputEventMapping. An instance
of Conditions is created from a Subjunction (e.g., “when”) and Statements. In the sentence
“The event obstacle occurs when the distance from the robot to an obstacle is less than 1

42

Source Code 3.6 – Abstract definition of mapping information.

1 --
2 fun
3 -- the event obstacle occurs
4 -- when the distance from the robot to an obstacle is less than 1 m
5 mkInputEventMapping_InputSometimes : String -> Conditions -> InputEventMapping ;
6 ...
7 -- the output event spray is defined by a diagram where one time unit is 1 s
8 mkOutputEventMapping_DiagramaticOutput : String -> Float -> Unit -> OutputEventMapping ;
9 ...

10 -- when the operation Store() is called
11 -- as soon as the distance from the robot to the source is less than 1 m
12 -- the robot places an object in the nest
13 mkOperationMapping_OutputSometimes_WithConditions :
14 String -> Conditions -> Statements -> OperationMapping ;
15 ...

Source: Current Author

m.”, the event name is “obstacle”, and the associated condition is “when the distance from

the robot to an obstacle is less than 1 m”.¨
The function mkOutputEventMapping DiagramaticOutput shows that RoboStar dia-

grams can be used to record mapping information, when it becomes too complicated to be
described in English (i.e., when it is not straightforward to describe the mapping information
with one sentence). The last function shown in Source Code 3.6 illustrates that mapping infor-
mation can combine conditions and statements. In “When the operation Store() is called, as

soon as the distance from the robot to the source is less than 1 m, the robot places an object

in the nest.”, the sentence documents the effect of invoking the operation “Store”, which is
“the robot places an object in the nest”. However, this effect only occurs when the following
condition holds: “as soon as the distance from the robot to the source is less than 1 m”.

3.3 INTERMEDIATE REPRESENTATION

The semantics of a RoboWorld document is defined in terms of an intermediate represen-
tation (IR) of that document. With this representation, we insulate the semantics specification
from some evolutions of RoboWorld. For example, further case studies are likely to suggest
different phrasings for the same meanings, which we may be able to support by extension of
the RoboWorld dictionary or of its concrete grammar. With the IR, such extensions, which are
important to make the language more flexible, do not affect the semantics definition. Further-
more, in the IR, information about the arena, the robot, and the other elements is grouped,

43

and structured, which simplifies the automatic generation of the semantics.
In this section, we provide an overview of RoboWorld’s IR, whose metamodel is partially

depicted in Figure 9. Given a valid RoboWorld document, its intermediate representation is
characterised by an instance of the class RWIntermediateRepresentation. This object has
one Arena, one Robot, and possibly multiple Entities. Arena is a subclass of Region and,
thus, the object arena has a dimension, its floor has a gradient, it can be closed or open,
and other properties must be established by means of Statements (see Section 3.2.3). Ad-
ditionally, the arena may have named regions, such as the target and origin regions from
our running example. Note that, although information about the arena may be defined in
a RoboWorld document across multiple sentences (see Section 3.1), in terms of the meta-
model, this information is grouped within the object arena, facilitating the generation of the
semantics.

Figure 9 – Fragment of RoboWorld Intermediate Representation.

Source: (BAXTER et al., 2023)

The object robot groups all properties about the robot, which can be given in terms of
Statements or by a p-model (PModel – see Section 2.1). Similarly, the properties of other
elements of the arena are grouped in instances of Entity. Although not presented in Figure 9,
the IR also comprises specific classes to capture mapping information in a structured way.
In this document, more information about the IR is presented on demand. The complete
metamodel of RoboWorld’s IR is described in its reference manual.

44

3.4 WELL-FORMEDNESS CONDITIONS

Besides the expected restrictions of the English grammar (enforced by GF), and the struc-
ture imposed by the RoboWorld grammar, there are some general well-formedness conditions
(WFCs) that need to be enforced. For example, the use of measurement units must be con-
sistent with the relevant physical quantity. For instance, length (distance, x-width, y-width,
z-width, width, depth, or height) must be measured in meters or its prefixes. Time must be
measured in units derived from seconds, and so on. Another example concerns consistency with
the informed arena dimension. For instance, if the arena is two-dimensional, no sentence should
refer to the z-width. These general restrictions are a form of well-typedness rules, and can be
naturally enforced using the intermediate representation described in the previous section.

Therefore, before providing a formal semantics to a RoboWorld document, it is necessary
to check whether some well-formedness conditions are met. In this section, we concentrate
on explaining some well-formedness conditions, as presented in what follows. Other WFCs are
documented in the RoboWorld reference manual.

• RW1: The dimension of the arena must not be null.

• RW2: The gradient of the arena must not be a negative number.

• RW3: The x/y/z-width of the arena must be consistent with the arena dimension.

• RW4: The arena properties must refer to existing definitions.

• RW5: The dimension of all named regions must not be null.

• RW6: The gradient of all named regions must not be a negative number.

• RW7: The x/y/z-width of all named regions must be consistent with its dimension.

• RW8: The properties of all named regions must refer to existing definitions.

• RW9: The definite article “the” must always be used when referring to the robot.

• RW10: The output events must refer to existing robot components or entities.

RW1–RW4 are related to the arena. Its dimension must not be null (RW1); we assume
that the arena is one-dimensional, if no information about its dimensionality is provided in the
RoboWorld document (see Figure 9). The gradient of the floor must not be a negative number

45

(RW2). Additionally, whenever referring to the x/y/z-width of the arena, it is necessary to be
consistent with the declared arena dimension (RW3), as explained in the beginning of this
section. Finally, all arena properties must refer to existing entities (RW4); for example, we
cannot say that “the height of the arena is greater than the height of the building” if there is
no building in the arena. RW5–RW8 are related to named regions; they specify well-formedness
conditions analogous to the ones just explained.

RW9 states that the definite article “the” must always be used when referring to the robot,
since, at this moment, the RoboWorld semantics considers that there is a single robot in the
arena. RW10 are analogous to RW4 and RW8, but within the context of mapping information
of output events. We emphasise that the well-formedness conditions presented above is a
subset of the existing ones.

3.5 ROBOWORLD SEMANTICS

Here, we first present an overview of the formal semantics of RoboWorld documents (Sec-
tion 3.5.1). Afterwards, considering the running example (a rescue drone), we discuss the
CyPhyCircus characterisation of the semantics (Section 3.5.2).

3.5.1 Semantics overview

The RoboWorld semantics is a hybrid (discrete and continuous) model based on the con-
tinuous nature of the arena and of the robot’s movement. The formal specification of the
semantics uses CyPhyCircus, where processes share information with others by communicat-
ing events. The overall structure of the RoboWorld semantics and how it connects with the
semantics of RoboChart is indicated in Figure 10. The semantics of RoboWorld documents
may be possibly connected with that of RoboSim models too. However, this perspective is yet
to be analysed in details. Therefore, Figure 10 refers only to the connection with RoboChart
models.

The semantics of a RoboWorld document (box 2 in Figure 10) is defined by two parallel
processes: the environment process (box 3 in Figure 10), which represents the objects inside
the arena and handles the triggering of events, and a mapping process (box 4 in Figure 10),
which contains the semantics for the mapping of output events and operations. To analyse
the resulting semantics of the control software (box 1 in Figure 10) in conjunction with the

46

Figure 10 – RoboWorld Document Semantics.

(1) RoboChart module process

(2) RoboWorld Document process

service events

(7) robot
movement

(8) collision detection
or

sample time

(3) Environment process

(4) Mapping process

output events operations

get/set/happened channels

;
(9) sample time & Comm

otherwise & handle collision

|| (6)
Event
buÿers

(5) Environment loop

Source: (BAXTER et al., 2023)

associated assumptions and mapping information, these two processes (represented by boxes
1 and 2) should be composed in parallel.

The environment process is defined by the parallelism of two actions (boxes 5 and 6),
indicated by parallel bars in Figure 10. The first one (environment loop) is composed by a
continuous loop related to evolving the state, communicating with the mapping process via
get and set channels, and buffering information about inputs. The evolution of the robot
movement can be interrupted by collision detection or by the time reaching a sample time. In
Figure 10, the symbols ∆ , #, and @ denote process interruption, sequential composition, and
external choice, respectively.

When an interruption occurs due to collision, the robot is stopped (its velocity and accel-
eration are set to zero), and the loop action starts again. Otherwise, in case of interruption by
reaching the sample time, the loop action verifies the conditions for the input events, shares
this information with the parallel action (event buffers), and then communicates with the
mapping process to get and set the values of the associated variables.

The action event buffers defines a set of buffers for input and output events. The input
event buffers store information about detected events in the time step, and provides this
to the RoboChart process. The output buffers store the time when an output/operation last
happened, obtaining this information from the mapping process by the happened channel. The

47

mapping process (box 4 in Figure 10) is defined as the interleaving of processes that accept
output events and operations. These processes capture the mapping definitions provided in the
RoboWorld document and share information with the environment process. In what follows, we
present a more detailed account of the semantics of RoboWorld documents in CyPhyCircus.

3.5.2 Semantics of the rescue drone

Based on the IR derived from the RoboWorld document, Z schemas and global definitions
are used to characterise the arena and its (static) constituent elements. For instance, regarding
the rescue drone, in Figure 11, we see the schema ArenaProperty, which formalises properties
of the arena. It has an xwidth, an ywidth, and a zwdith, which are real values. The locations of
the arena comprise the continuous coordinates ranging from (0,0,0) to (xwidth,ywdith,zwidth).
Properties of the ground are defined by another schema (GroundProperty); its xwidth and
ywidth are equal to those of the arena. Properties of the origin and target regions are defined
by the schemas OriginProperty and TargetProperty, respectively.

Figure 11 – ArenaProperty for the Rescue Drone.

Source: Current Author

A global definition arena : ArenaProperty declares an instance of the schema ArenaProp-

erty, which is further constrained by the assumptions made about the environment. For in-
stance, in Figure 12, we can see that the size of the target region is constrained according to
the sentence “The target has an x-width of 1 m and a y-width of 1 m.” (see Section 3.1).
Additionally, we have two predicates to enforce that all locations of this region are on the
ground and within the arena.

The semantics of the dynamic aspects of the RoboWorld document is given by the process
RoboWorldDocument. Regarding the rescue drone, Figure 13 presents the associated CyPhy-
Circus semantics. The sets getSetChannels and eventHappenedChannels indicate the events

48

Figure 12 – Properties Constraining the Target Region.

Source: Current Author

that will be used to establish the communication between the environment and mapping pro-
cesses. The RoboWorldDocument is defined by the parallel composition ([...]) of processes
Environment and Mapping. The union of the sets getSetChannels, eventHappenedChannels

and proceed indicates that a synchronisation is required between Environment and Mapping

on these channels; proceed is a channel used by Mapping to indicate to the Environment

process that it can continue with the loop. After the parallel composition, these events are
hidden by the operator ∖ to prevent undesired synchronisation from external processes.

Figure 13 – The RoboWorld Document Semantics for Rescue Drone Example.

Source: Current Author

The state of the Environment process is defined by the schema EnvironmentState (see
Figure 14). The robot is part of the environment. Its initial position should be within the
arena, and it is marked as visible, so that the behaviour of the environment is characterised
by the evolution of the value of this component over time. Environment also encapsulate some
time-related components: time represents a global clock, stepTimer is used to measure the
duration of the present execution cycle (timeStep, not shown here, is a global constant that
defines the size of the execution cycle), and EventTimes records the occurrence of events and
operations.

The robot movement is defined using a special kind of schema (RobotMovement – see

49

Figure 14 – Semantics to EnvironmentState and EnvironmentStateInit.

Source: Current Author

Figure 15), that is specifically available in CyPhyCircus (but not in Z or Circus). Such schemas
are indicated by a Λ declaration of the state to specify evolution according to a set of given
differential equations. The body of RobotMovement has, for instance, differential equations
describing the movement of the robot and the evolution of timers. As shown in Figure 15, the
robot’s position evolves with a derivative equal to its velocity. The time-related components
of the state (time and stepTimer) evolve with a derivative of 1, so that they keep track of
the time in the environment. Every component in EnvironmentState not mentioned in the
equations of RobotMovement remains the same throughout the evolution.

Figure 15 – Semantics of Robot Movement.

Source: Current Author

The core action of Environment is defined as the parallel composition of the action Environ-

mentLoop and the action EventBuffers, as presented in Figure 10. The CyPhyCircus definition
of these two actions mimics the behaviour described in the previous section. Here, considering
the input event found of the rescue drone, we illustrate how the mapping information on input
events (i.e., information sent to the control software) is formalised.

The RoboWorld document states that “The event found occurs when the robot is inside

the target.”. Therefore, as it can be seen in Figure 16, this information is translated to a

50

predicate that checks whether the robot position is within the locations of the target region.
If this is the case, this information is sent to the respective input buffer via the communica-
tion foundTriggered !True, which performs the event found.in that is captured by the control
software (this part is not shown here).

Figure 16 – Semantics of Input Event found.

Source: Current Author

The mapping information on output events and operations is formalised by the definition of
the Mapping process. For instance, the following sentence “When the event takeoff occurs, the

velocity of the robot is set to 1 m/s upward.” is captured by the definition shown in Figure 17.
After synchronisation on the event takeoff.out, performed by the control software, the velocity
of the robot (a component of the state of the environment, as previously explained) is updated
accordingly.

Figure 17 – Semantics of Output Event takeoff.

Source: Current Author

We refer the reader to (BAXTER et al., 2023) for a full account of how CyPhyCircus is used
to formalise the semantics of RoboWorld documents. Here, other aspects of the semantics are
explained on demand in the following chapters.

51

4 ROBOWORLD PLUG-IN

The main goal of the RoboTool plug-in for RoboWorld is to facilitate the edition and use
of RoboWorld documents. This plug-in provides means for maintaining a project-specific dic-
tionary, authoring RoboWorld sentences, checking well-formedness conditions, and generating
a formal semantics. It is implement in Java, as an Eclipse plug-in.

First (Section 4.1), we present the plug-in architecture. Afterwards, we show the support
provided to edit RoboWorld documents (Section 4.2). Then, considering the derived inter-
mediate representation (Section 4.3), we cover the verification of well-formedness conditions
(Section 4.4), and the generation of the CyPhyCircus semantics (Section 4.5).

4.1 TOOL ARCHITECTURE

The architecture of the RoboWorld plug-in is based on the Model-View-Controller architec-
ture (MVC), whose main purpose is to provide a bridge between how information is represented
internally and how information is presented to the user. Figure 18 presents a general overview
of the MVC architecture, containing its three layers: the Model, the View and the Controller.
To illustrate the role of each layer, consider a scenario where the user is trying to access
some data stored by the application. First, following an interaction between the user and the
View, an event is triggered from the View to the Controller containing the user request. In the
next step, the Controller sends the request to the Model layer, which will process it and send
the associated data back to the Controller. To finish this interaction scenario, the Controller
sends the received data to the View, which will present the requested information in an ap-
propriate way. Concerning the RoboWorld plug-in, its implementation, adhering to the MVC
architecture, has about twelve thousand (12,000) lines of code.

The Model layer is responsible for managing the data associated with the application in
a way that is appropriate for computational means. Figure 19 shows the Model layer of the
RoboWorld plug-in (tool), which comprises sixty four (64) classes. The entities are grouped
into four blocks: Dictionary Model, RoboWorld Document Model, IR Model, and CyPhyCircus
Model. The upper-left one contains the entities associated with the model of the dictionary
(i.e., data related to adjectives, adverbs, verbs, etc.). The upper-right one contains the enti-
ties associated with the model of a RoboWorld document (i.e., data related to assumptions

52

Figure 18 – The MVC Architecture.

Source: Current Author

about the arena, the robot, and other elements. Besides mapping information of output/input
events, operations and variables). The lower-left one contains the entities associated with the
intermediate representation of RoboWorld documents, whereas the lower-right block comprises
entities associated with the CyPhyCircus semantics of RoboWorld documents.

Figure 19 – RoboWorld Tool: Model Layer.

Source: Current Author

The View layer is responsible for showing the graphical user interface (i.e., forms, buttons,
and other graphical elements), and controlling the way data is displayed to the user. Figure 20
shows the View layer of the RoboWorld tool, which comprises four (4) classes. The RoboWorld

53

Editor controls the edition of RoboWorld documents, and it contains a RoboWorld Tab View.
The latter comprises two specific tabs: one for managing the project-specific dictionary (Data
Dictionary View), and other for editing assumptions and mapping information (Edit Assump-
tions View). Each component uses resources and graphical components provided by the Eclipse
Standard Widget Toolkit (Eclipse SWT) to display data and manage user interaction.

Figure 20 – RoboWorld Tool: View Layer.

Source: Current Author

The Controller layer is responsible for handling events sent by the View layer (originated
from user interaction with graphical components). It manages the relationship between the
View and the Model layers. Figure 21 shows an abstract representation of the entities within
the Controller layer of the RoboWorld tool; there are actually five (5) classes within this layer.

Figure 21 – RoboWorld Tool: Controller Layer.

Source: Current Author

The Converters transform entities of the Dictionary model into GF definitions, while the
Grammar Support is responsible for invoking GF, which compiles the underlying grammar and
parses RoboWorld sentences. The other two entities (WFC Checker and Semantics Genera-

54

tor) are responsible for checking well-formedness conditions, and generating the CyPhyCircus
semantics, respectively.

4.2 EDITING ROBOWORLD DOCUMENTS

The RoboWorld plug-in is activated when the user opens a .env file. As it can be seen
in Figure 22, it is organized in two tabs: Dictionary and RoboWorld Document. In the first
one, the user can edit the project-specific dictionary. In the second one, the user can write
sentences recording assumptions about the environment and mapping information. The next
sections (Section 4.2.1 and Section 4.2.2) provide more information about these two tabs.

4.2.1 Dictionary view

Figure 22 shows the Dictionary tab. It is possible to create, edit or delete word definitions.
By doing this, the RoboWorld base lexicon is extended considering project-specific words.
In this tab, for each word, we have three columns: Word (the word spelling), Category (the
associated GF category), and Inflections (the variations of this word according to its category).

Figure 22 – RoboWorld Tool: Dictionary Tab.

Source: Current Author

In Figure 22, we have four entries in the project-specific dictionary: house, of, do, and
always, whose categories are noun (N), preposition (Prep), verb (V), and adverb directly

55

attached to a verb (AdV). In GF, a verb-phrase modifying adverb is classified differenty, as
an instance of Adv (instead of AdV – note the capital “V”). For each word, the appropriate
inflections are informed; for instance, regarding the noun house, we have its singular and plural
forms.

When adding a new word, the user needs to first inform the base form of the new word and
its category. After doing this, the RoboWorld plug-in searches automatically whether this word
is already defined in an English dictionary provided by the RGL, which contains more than 60
thousand definitions. If this is the case, the user does not need to provide the inflection forms
of this word, since this information is retrieved from the RGL dictionary. The project-specific
dictionary is saved in a .gf file, which is stored within the open project.

As the dictionary evolves, the tool recompiles all files related to the RoboWorld grammar.
This is necessary to be able to recognise sentences referring to the newly added words. When
compiled, a GF grammar is translated into a portable format (PGF). In the RoboWorld plug-in,
we use a PGF interpreter in Java, which is provided by the Grammatical Framework.

As mentioned before, we emphasise that the user only needs to define words that are
specific to the current project, since general terms of robotics (e.g., arena, robot, velocity,
among others) are defined as part of the RoboWorld lexicon, which itself can also evolve as
required. As a consequence, the dictionary of a project tends to be quite concise.

4.2.2 RoboWorld document view

Figure 23 shows the RoboWorld Document tab. It is possible to manage sentences, which
shall adhere to the underlying RoboWorld grammar, describing environment assumptions (i.e.,
arena assumptions, robot assumptions, and element assumptions) and mapping information
(input events mapping, output events mapping, operations mapping, and variables mapping).

Additionally, in this tab, by clicking on Generate IR, the user can derive the intermedi-
ate representation, whose textual representation is saved in the file ir.txt within the open
project. After generating the IR, well-formedness conditions are checked. By clicking on Gen-

erate Semantics, the tool generates the CyPhyCircus semantics, which is saved in the file
semantics.tex within the open project. This file describes the semantics using the LaTeX style
developed for creating CyPhyCircus specifications. We provide later more information on the
IR and semantics generation.

In the RoboWorld Document tab, when the user selects the desired sentence type, the GUI

56

Figure 23 – RoboWorld Tool: RoboWorld Document Tab.

Source: Currrent Author

filters the RoboWorld document and shows only the sentences of the selected type. It is also
possible to filter the RoboWorld document by words and phrase fragments. The button Clear

clears the applied filter. Filtering is also available in the Dictionary tab (see Figure 22). By
clicking on the up and down buttons (right-side of Figure 23), the user can reorder how the
sentences are displayed. The sentences of a RoboWorld document are stored in a .env file.

Whenever a new sentence is added, or an old one is edited, the tool parses it, and any
errors are indicated to the user. Parsing is performed by GF, and it is also supported by the
provided PGF interpreter in Java. To facilitate the process of writing sentences adhering to
the RoboWorld grammar, the RoboWorld plug-in provides the user with a combination of
structural and surface editing. In structural editing, the user follows a structural approach by
clicking on predefined writing possibilities, which prevents the writing of invalid sentences. In
surface editing, the user inputs texts freely.

To illustrate the provided combination of structural and surface editing, consider the sce-
nario described in what follows. Suppose that a user selects the sentence type Robot Assump-
tion, and then clicks on the add button (see Figure 23). Figure 24 shows the dialog that is
displayed. The text within brackets (i.e., “[Statement]”) indicates that a robot assumption is
created from a Statement (see Source Code 3.5 in Section 3.2.4). If the user is familiar with
the RoboWorld grammar, she can delete the string that is shown in the dialog and write the
desired statement freely (i.e., surface editing).

However, if the user is not familiar with the RoboWorld grammar, she can select the string
“Statement” and click on the help button. By doing this, the tool displays the dialog that

57

Figure 24 – Add New Sentence Dialog.

Source: Current Author

is shown in Figure 25. The tool dynamically retrieves all possibilities of writing a statement
according to the RoboWorld grammar (i.e., structural editing).

Figure 25 – Possibilities of Writing a Statement.

Source: Current Author

When the user selects one of the available possibilities, the dialog shown in Figure 24 is
updated to reflect the required arguments for creating the selected type of statement. Now,
the user can select other categories than Statement to get help on how to write them. This

58

process of structural editing can continue until the level of words in the dictionary. However,
the user can also write directly any text fragment whenever he fills confident enough.

4.3 DERIVING THE INTERMEDIATE REPRESENTATION

The IR generation produces an instance of the class RwIntermediateRepresentation

shown in Figure 9. The syntax trees obtained after parsing the RoboWorld document are stored
in an object called rwDoc, whose type is RWDocument. These trees are grouped according to
the associated sentence type (i.e., arena assumption, robot assumption, etc.).

Source Code 4.1 presents the top-level pseudocode that produces an IR from a given
RoboWorld document. After creating a default IR (line 2), its attributes are derived from the
corresponding sentences; for example, information about the arena (rwIR.arena) is obtained
from the arena assumptions (rwDoc.arenaAssumptions).

Source Code 4.1 – Generation of IR.

1 mapRWDoc(rwDoc : RWDocument) : RWIntermediateRepresentation =
2 rwIR = new RWIntermediateRepresentation();
3 rwIR.arena = mapArena(rwDoc.arenaAssumptions);
4 rwIR.robot = mapRobot(rwDoc.robotAssumptions);
5 rwIR.entities = mapEntities(rwDoc);
6 rwIR.inputEventMappings = mapInputEvents(rwDoc.inputEventMappings);
7 rwIR.outputEventMappings = mapOutputEvents(rwDoc.outputEventMappings);
8 rwIR.operationMappings = mapOperations(rwDoc.operationMappings);
9 rwIR.variableMappings = mapVariables(rwDoc.variableMappings);

10 return rwIR;

Source: Current Author

To identify entities and their properties, it is necessary to traverse different sentences of
a RoboWorld document (line 5), and, thus, the entire document is provided as argument.
Typically, there will be an arena assumption saying that a given entity may appear in the
arena, and an element assumption will define expected properties of this particular entity.

For illustration, we present here the definition of mapArena in Source Code 4.2. First (line
2), it creates a default arena object. Then, the code iterates over each arena assumption (line
3) updating the arena object accordingly. To do this, this code relies on auxiliary definitions
that check, for instance, whether the given assumption contains information about the arena
dimensionality.

The declaration of the aforementioned auxiliary definitions relies on the control imposed
by the RoboWorld grammar, which enables the automatic generation of the intermediate

59

Source Code 4.2 – Mapping Arena Information.

1 mapArena(assumptions : List(ArenaAssumption)) : Arena =
2 arena = new Arena();
3 foreach (assumption : assumptions)
4 {
5 if (findArenaDimensionInfo(assumption))
6 {
7 arena.dimension = getArenaDimensionInfo(assumption);
8 }
9 else if (findArenaClosedInfo(assumption))

10 {
11 arena.closed = getArenaClosedInfo(assumption);
12 }
13 ...
14 }
15 return arena;

Source: Current Author

representation. To illustrate this, consider Source Code 4.3, which checks whether a given
assumption has information about the arena dimensionality.

Source Code 4.3 – Finding Arena Dimensionality Information.

1 findArenaDimensionInfo(assumption : ArenaAssumption) : boolean =
2 if (refersToArena(assumption.statement.itemPhrase)
3 && assumption.statement instanceof mkStatement_ActiveVoice_ToBe_Adjective
4 && isPositiveSentence(assumption.statement))
5 {
6 adj = ((mkStatement_ActiveVoice_ToBe_Adjective) assumption.statement).a;
7 return isDimensionAdjective(adj);
8 }
9 ...

10 else { return false; }

Source: Current Author

First, note that all RoboWorld statements have a leading ItemPhrase (see Source Code 3.4).
Therefore, in Source Code 4.3, we check whether the leading ItemPhrase refers to the arena
(line 2). Additionally, considering the RoboWorld writing possibilities, dimensionality informa-
tion can be given as a statement in the active voice using the verb to be and an adjective (see
Source Code 3.4, lines 10–12). This expectation is translated to the verification performed on
line 3). We also check that the statement is positive (line 4). If these conditions are met, we
extract the adjective embedded in the statement (line 6), and check whether it is an adjective
associated with dimensionality information (e.g., three-dimensional). If this is the case, this
function yields true (line 7); otherwise, it yields false (line 8). Sentences with other structures
may also say something about the arena dimensionality, and additional checks are performed,

60

as indicated on line 10.
Regarding other parts of a RoboWorld document (i.e., assumptions about the robot and

other elements, as well as mapping information), the mapping process from statements to
objects of the IR follows the general ideas presented before: the provided statements are
traversed and analysed considering the structure of the RoboWorld grammar.

Since RoboWorld is a flexible natural-language notation, yet controlled, it is possible that
one can write sentences adhering to its grammar, but whose information cannot be automati-
cally mapped to the derived IR. In such a situation, an incomplete IR is obtained, representing
the RoboWorld document partially. It would be necessary to update the code that gener-
ates the IR to be able to extract the missing information. However, it is important to say
that the present code is capable of producing successfully the IR of different types of robotic
applications, as discussed in Chapter 5.

4.4 CHECKING WELL-FORMEDNESS CONDITIONS

After generating the IR, we check for violations of well-formedness conditions (WFCs). This
is done by traversing the derived rwIR object (see Section 4.3). In this section, we illustrate
the verification of some WFCs, namely: RW2, RW6, and RW10 (see Section 3.4). RW2 states
that the gradient of the arena must not be a negative number. As it can be seen in Source
Code 4.4, this verification is straightforward: we check the value of the attribute gradient of
the arena object (line 2). If its value is not as expected, an exception is raised (line 4).

Source Code 4.4 – Checking for violations of RW2.

1 checkWFC_RW2(rwIR : RWIntermediateRepresentation) : void =
2 if (rwIR.arena.gradient < 0.0)
3 {
4 throw new WFCException("The gradient of the arena must not be a negative number.");
5 }

Source: Current Author

The verification of RW6, which states that the gradient of all named regions must not be
a negative number, is also straightforward (see Source Code 4.5). It suffices to iterate over
each named region (line 2), and check whether the gradient is a negative number (line 4). In
such a situation, an exception is also raised (lines 6–7).

Verifying RW10 is more interesting. This WFC states that the output events must refer to

61

Source Code 4.5 – Checking for violations of RW6.

1 checkWFC_RW6(rwIR : RWIntermediateRepresentation) : void =
2 foreach (region : rwIR.arena.regions)
3 {
4 if (region.gradient < 0.0)
5 {
6 throw new WFCException("The gradient of the " + region.name
7 + " must not be a negative number.");
8 }
9 }

Source: Current Author

existing robot components or entities. In Source Code 4.6, we iterate over each output event
(line 2), and get the referred entities (line 4). Afterwards, for each referred entity (line 5), we
first check whether it is a robot component. If this is not the case (line 7), it should be an
entity of the IR. Therefore, on line 9 we provide the referred entity as an argument to the
operation findEntity. If no corresponding entity is found (line 10), an exception is raised
(lines 12–14).

Source Code 4.6 – Checking for violations of RW10.

1 checkWFC_RW10(rwIR : RWIntermediateRepresentation) : void =
2 foreach (outputEventMapping : rwIR.outputEventMappings)
3 {
4 refEntities = getReferredEntities(outputEventMapping);
5 foreach (refEntity : refEntities)
6 {
7 if (!rwIR.robot.isRobotComponent(refEntity))
8 {
9 entity = rwIR.findEntity(refEntity);

10 if (entity == null)
11 {
12 throw new WFCException("The " + outputEventMapping.name + " output event must"
13 + " refer to existing robot components or entities (reference not found: "
14 + refEntity.name + ").");
15 }
16 }
17 }

Source: Current Author

The verification of other WFCs follows the same general idea as presented above: we
traverse the rwIR object and check for violations.

62

4.5 GENERATING THE CYPHYCIRCUS SEMANTICS

In this section, we describe how the CyPhyCircus semantics of RoboWorld documents are
generated. This is done by traversing the rwIR object (see Section 4.3). As a result, it is created
an instance of CyPhyCircusModel; Figure 26 shows the top-level classes of our CyPhyCircus
model. Finally, the tool generates a textual representation (in LaTeX) of this object.

Figure 26 – CyPhyCircus Model.

Source: Current Author

In Source Code 4.7, we show the creation of the semantics object from the given interme-
diate representation. The class Types concerns the definition of general types associated to the
robot (e.g., Position, Velocity, Acceleration), but also schemas for describing properties
of the ground, the arena, the named regions, and the robot. For example, the definition of
ArenaProperty, which is presented in Figure 11, is part of a Types object.

Source Code 4.7 – Generation of CyPhyCircus Semantics.

1 mapSemanticsl(rwIR : RWIntermediateRepresentation) : CyPhyCircusModel =
2 semantics = new CyPhyCircusModel();
3 semantics.types = mapTypes(rwIR);
4 semantics.channels = mapChannels(rwIR);
5 semantics.globalConstants = mapGlobalConstants(rwIR);
6 semantics.environment = mapEnvironment(rwIR);
7 semantics.mapping = mapMapping(rwIR);
8 semantics.composition = mapComposition(rwIR);
9 return semantics;

Source: Current Author

Channels concerns get/set channels, channels associated with input/output events, among
others. These channels are used to send and receive information across the multiple parts of
the semantics specification. In GlobalConstants, we have the definition of global variables,
such as the arena, along with the associated constraints (e.g., the one presented in Figure 12).

In Environment, we have the definitions related to box 2 of Figure 10; that is, information
about the environment state (see Figure 14), the robot movement (see Figure 15), the collision

63

detection procedure, and communication with input and output buffers (see Figure 16). The
semantics of mapping information on output events and operations are stored in Mapping (see
Figure 17). Finally, in Composition, we have the parallel composition of the semantics of
Environment and Mapping (see Figure 13). In what follows, we illustrate the generation of
fragments of the CyPhyCircus semantics.

Source Code 4.8 presents the creation of the Composition object. As it can be seen in Fig-
ure 13, the process RoboWorldDocument is defined as the parallel composition of Environment
and Mapping via the synchronisation on getSetChannels and eventHappenedChannels. The
definition of RoboWorldDocument is standard, but the definition of the synchronisation chan-
nels depends on the specific robotic system being considered. Therefore, in Source Code 4.8,
we call auxiliary functions to create the specific channels from a given IR (lines 3–4).

Source Code 4.8 – Generation of Composition.

1 mapComposition(rwIR : RWIntermediateRepresentation) : Composition =
2 composition = new Composition();
3 composition.getSetChannels = createCompGetSetChannels(rwIR);
4 composition.eventHappened = createCompEventHappened(rwIR);
5 return composition;

Source: Current Author

In Source Code 4.9, first, we consider default communication channels (line 3), such as
getRobotPosition, setRobotPosition, among others. Then, if the arena may have obsta-
cles, we define specific channels to deal with this information (lines 4–7). Similarly, if the robot
is equipped with an odometer, additional channels are created (lines 8–11).

Source Code 4.9 – Generation of getSet channels of Composition.

1 createCompGetSetChannels(rwIR : RWIntermediateRepresentation) : List<Channel> =
2 channels = new List<Channel>();
3 channels.append(createCommonChannels());
4 if (rwIR.hasObstacle())
5 {
6 channels.append(createObstacleChannels());
7 }
8 if (rwIR.robot.hasOdometer())
9 {

10 channels.append(createOdometerChannels());
11 }
12 return channels;

Source: Current Author

A Happened channel is created for each output event and operation. Therefore, in Source

64

Code 4.10, we iterate over the list of output events and operations to define the necessary
Happened channels.

Source Code 4.10 – Generation of getSet channels of Composition.

1 createCompEventHappened(rwIR : RWIntermediateRepresentation) : List<Channel> =
2 channels = new List<Channel>();
3 foreach (outputEvent : rwIR.outputEventMappings)
4 {
5 channels.append(createHappenedChannelName(outputEvent.name));
6 }
7 foreach (operation : rwIR.operationMappings)
8 {
9 channels.append(createHappenedChannelName(operation.name));

10 }
11 return channels;

Source: Current Author

The generation of other parts of the semantics (e.g., Types, Channels, etc.) is performed
by the corresponding map operation (see Source Code 4.7). To obtain the textual representa-
tion of the semantics, one should invoke the operation toString on the semantics object. As
mentioned before, the output is saved in the file semantics.tex within the open project. This
file describes the semantics using the LaTeX style developed for creating CyPhyCircus speci-
fications. Similarly to when generating an IR from a RoboWorld document, it is possible that
a complete semantics cannot be automatically derived from a given IR. In such a situation,
the semantics generation algorithms should be updated accordingly. It is important to say that
the present algorithms are capable of generating successfully the semantics of different types
of robotic applications, as discussed in Chapter 5.

As we comment in Section 6.2, the integration of the semantics of RoboWorld documents
and RoboChart models, in order to exploit formal verification, simulation and testing of robotic
systems is left as future work.

65

5 CASE STUDIES

The plug-in for RoboWorld was validated considering three case studies. Besides the run-
ning example (a rescue drone), we considered a ranger (Section 5.1) and a foraging (Sec-
tion 5.2) robot. The plug-in, as well as all files related to the three case studies, are publicly
available online1. We consider the validation as successful, since we managed to create the
required RoboWorld documents, to check its well-formedness conditions, and to generate the
expected CyPhyCircus semantics. In the following sections, we provide more details about these
two additional case studies; for each one, we present the RoboChart model, the RoboWorld
document, and fragments of the derived semantics.

5.1 RANGER ROBOT

The ranger robot moves in the arena avoiding obstacles. Figure 27 shows the RoboChart
model of the ranger. In the module Ranger, we have the composition of the robotic platform
(RangerRP) with the control software, which refers to Movement. The robotic platforms de-
clares two interfaces: MovementI and ObstacleI; the former is a provided interface, whereas
the latter is a defined one. Operations (in this case, move) are declared in provided interfaces.
Events (in this case, obstacle) are declared in defined interfaces. The operation move is re-
sponsible for moving the robot according to the provided linear velocity lv and angular velocity
av. The input event obstacle signals the detection of an obstacle.

The controller Movement is defined in terms of an instance (stm ref0) of the state machine
SMovement. Note that the interface MovementI is required by the control software in order
to operate correctly. The state machine SMovement has three constants (lv, av, and PI),
and a clock (MBC), in addition to requiring the interface MovementI and considering the
interface ObstacleI. The initial state is Moving. It invokes the operation move when reached.
After waiting one time unit, the machine starts to monitor the occurrence of the input event
obstacle. When it occurs, the clock MBC is reset, and the machine goes to the Turning state.
As an entry action, it performs the operation move to turn the robot in order to avoid the
obstacle. After waiting at least PI/av time units, the machine returns to the state Moving. In
what follows, we present the RoboWorld document of this case study (Section 5.1.1), besides
fragments of the intermediate representation (Section 5.1.2) and semantics (Section 5.1.3).
1 Link: <https://cin.ufpe.br/~ghpc/msc_fwrj_dataset.zip>.

https://cin.ufpe.br/~ghpc/msc_fwrj_dataset.zip

66

Figure 27 – Ranger RoboChart Model.

Source: (CAVALCANTI; BAXTER; CARVALHO, 2021)

5.1.1 RoboWorld document

In what follows, we have the RoboWorld document for the ranger robot. The document has
seven sections, divided among assumptions (the first three sections) and mapping information
(the last four sections). In the first section (Arena Assumptions), we have assumptions to
state that the arena is two-dimensional (i.e., the z-dimension is not relevant for this robotic
application), the gradient of the ground is 0.0 (i.e., the floor is flat), and there are obstacles in
the arena. Regarding the robot (Robot Assumptions), its body is not relevant for modelling
purposes, and, thus, it is treated as a point mass. In Element Assumptions, we have the
information that one quarter of the arena contains obstacles.

ARENA ASSUMPTIONS

The arena is two-dimensional.

The gradient of the ground is 0.0.

The arena has obstacles.

ROBOT ASSUMPTIONS

The robot is a point mass.

67

ELEMENT ASSUMPTIONS

One quarter of the arena contains obstacles.

MAPPING OF INPUT EVENTS

The event obstacle occurs when

the distance from the robot to an obstacle is less than 0.5 m.

MAPPING OF OUTPUT EVENTS

MAPPING OF OPERATIONS

When the operation move(lv,av) is called,

the linear velocity of the robot is set to lv m/s

towards the orientation of the robot,

and the angular velocity of the robot is set to av rad/s.

MAPPING OF VARIABLES

As shown in Figure 27, the robotic platform of the ranger provides one operation (move),
and defines one input event (obstacle). In the RoboWorld document, we have the information
that this input event occurs when the distance from the robot to an obstacle is less than 0.5 m
(Mapping of Input Events). Concerning the move operation, it affects the environment,
particularly, the robot, by changing its linear and angular velocity according to the received
arguments lv and av, respectively. Since this robotic application has no output events or
variables, we have no mapping information associated with these two sections. To recognise
all sentences presented above, it was necessary to add just two words (lv and av) to the
project-specific dictionary.

5.1.2 Intermediate representation

Source Code 5.1 shows a textual representation of the IR derived from the RoboWorld
document presented in the previous section. RWIntermediaryRepresentation is the object
that contains the attributes of the IR. The first attribute (arena; lines 2–11) records assump-
tions about the arena: its dimensionality, and the gradient of the floor. Since no restrictions

68

were imposed to its size, the attributes xwidth, ywidth, and zwidth are null. Unless otherwise
stated, all arenas are assumed to be open environments. As no named regions were informed in
the RoboWorld document, the attribute regions is an empty list. The attribute properties

is also an empty list.
The information that the arena has obstacles is used to identify such an entity (lines 14–

17). The assumption that one quarter of the arena contains obstacles is recorded as a property
of the entity named “obstacle” (line 16). The attribute robot has the assumption that the
robot is abstracted as a point mass.

Each mapping information relates to a specific object. The mapping information about
the input event obstacle relates to the object of type InputEventMappingIR. The condition
necessary to trigger the event obstacle is recorded as a property of an InputSometimesIR

object. Similarly, the assumption about move is kept in an instance of OperationMappingIR.
Since this robotic application has no output events, nor variables, the corresponding lists are
empty.

5.1.3 CyPhyCircus semantics

The CyPhyCircus semantics generated from the IR follows the structure discussed in Sec-
tion 3.5. Here, we show fragments of the semantics, with a focus on the input event obstacle
and on the operation move.

Figure 28 shows the formalisation of the input event obstacle. We test whether there is at
least one obstacle (obstacle1), such that it has a location (loc) whose distance to the robot
position is less than 0.5 m. If such a condition is met, the event obstacleTriggered!True

is performed. Otherwise, False is communicated over obstacleTriggered.
In parallel, we have the buffer obstacle Buffer, which synchronises on communications

over the channel obstacleTriggered. Every time an information is sent over this channel,
the buffer saves it in the variable obstacleTrig. When this variable becomes True, the event
obstacle.in is performed, signalling to the control software that the input event obstacle

has occurred.
Figure 30 shows the formalisation of the operation move. Since this robotic application has

no output events, and move is the only operation available, the process Mapping is defined as
the mapping of move OperationMapping. The latter is defined as the parallel synchronisation
of the move semantics (move Semantics) and its monitor (move Monitor).

69

Source Code 5.1 – Ranger intermediate representation.

1 RWIntermediaryRepresentation {
2 arena = Arena {
3 dimension = 2D,
4 gradient = 0.0,
5 xwidth = null,
6 ywidth = null,
7 zwidth = null,
8 closed = false,
9 properties = [],

10 regions = []
11 }
12
13 entities = [
14 Entity {
15 name = "obstacle",
16 properties = ["one quarter of the arena contains obstacles"]
17 }
18]
19
20 robot = RobotBody {
21 properties = ["the robot is a point mass"],
22 components = []
23 }
24
25 inputEventMappings = [
26 InputEventMappingIR {
27 name = "obstacle",
28 conditionalInput = InputSometimesIR {
29 properties = ["the distance from the robot to an obstacle is less than 0.5 m"]
30 communications = null
31 }
32 }
33]
34
35 outputEventMappings = []
36
37 operationMappings = [
38 OperationMappingIR {
39 signature = Signature (name = "move", parameters = ["lv", "av"])
40 output = OutputAlways {
41 statements = ["the linear velocity of the robot is set to lv m/s"
42 + "towards the orientation of the robot",
43 "the angular velocity of the robot is set to av rad/s"]
44 }
45 }
46]
47
48 variableMappings = []
49 }

Source: Current Author

When the controller calls the move operation (moveCall?lv?av), the provided arguments
(lv and av) are received from the channel moveCall. Then, the environment is affected by the

70

Figure 28 – Ranger Semantics: Input Event obstacle.

Source: Current Author

Figure 29 – Ranger Semantics: Buffers.

Source: Current Author

Figure 30 – Ranger Semantics: Mapping Process.

Source: Current Author

call as defined in the RoboWorld document: the linear velocity of the robot is set to lv towards
its current orientation, and the angular velocity of the robot is set to av. The controller call

71

(moveCall) is also captured by the move monitor, which performs the event moveHappened.
This event synchronises with a buffer of the environment (see Figure 10), which records the
time this operation was called by the controller. This part of the semantics is not shown here.

5.2 FORAGING ROBOT

The foraging robot explores the arena, collecting objects, and bringing them back to the
nest. Among the considered case studies, the foraging robot is the most complex one. Figure 31
presents the top-level definitions. The module Foraging is composed by a robotic platform
(ForagingRP) and two controllers (ObstacleAvoidance and ForagingC), which operate in
parallel and are responsible for avoiding collision and collecting resources, respectively.

Figure 31 – Foraging RoboChart Model.

Source: <https://robostar.cs.york.ac.uk/case_studies/>

We have seven input events: obstacle indicates the presence of an obstacle, collected
indicates that a resource has been collected, stored indicates that the collected resource has
been stored in the nest, transferred indicates that a resource has been transferred between
robots. The other three events (dist, angularSpeed, and linearSpeed) are always available
and serve to communicate the value of the robot’s odometer, the angular speed of the robot,
and the linear speed of the robot, respectively. There is just one output event (resetDist),
which is used by the control software to reset the value of the odometer.

https://robostar.cs.york.ac.uk/case_studies/

72

A number of operations are provided by the platform: Explore makes the robot explore the
arena, ExploreNeighborhood makes the robot explore the vicinity of a source of resources,
Transfer makes the robot transfer resources to another robot (if more than one robot is
deployed), Store makes the robot store a resource in the nest, Grasp makes the robot col-
lect a resource, and move makes the robot move. The controllers are defined by referring
to state machines that describe how the robot avoids obstacles, how the robot’s position is
estimated, and how resources are collected, transferred, and stored. Here, we do not provide
further details on these state machines. The given overview is sufficient to understand the
validation of RoboWorld that is described in the next sections. In what follows, we present the
RoboWorld document of this case study (Section 5.2.1), besides fragments of the intermediate
representation (Section 5.2.2) and semantics (Section 5.2.3).

5.2.1 RoboWorld document

In what follows, we have the RoboWorld document for the foraging robot. The first three
sections describe the assumptions about the environment. The arena is two-dimensional, and
it has obstacles and objects. Differently from the other case studies, the arena is closed; that
is, we assume that is enclosed by colliding walls. Additionally, there are two named regions
in the arena: the nest, and the source. Similarly to the other case studies, we abstract the
body of the robot, and it is treated as a point mass. Here, the robot may carry one object.
The other assumptions state that the nest and the source do not have obstacles inside, but
both of them block movement. We also have assumptions about the size of these two regions,
and they are at least 1.0 m apart. The RoboWorld document also informs that the source

contains five objects initially, and the nest may contain up to five objects.

ARENA ASSUMPTIONS

The arena is two-dimensional.

The arena has obstacles.

The arena has objects.

The arena is closed.

The arena has a nest region.

The arena has a source region.

73

ROBOT ASSUMPTIONS

The robot is a point mass.

The robot has an odometer.

The robot may carry 1 object.

ELEMENT ASSUMPTIONS

The nest has no obstacles.

The source has no obstacles.

The nest has an x-width of 0.25 m and a y-width of 0.25 m.

The source has an x-width of 0.25 m and a y-width of 0.25 m.

The nest region blocks movement.

The source region blocks movement.

The distance from the nest to the source is greater than 1.0 m.

The source contains 5 objects initially.

The nest may contain up to 5 objects.

Concerning the input events, the event obstacle occurs when the robot is close enough to
an obstacle; its distance to the obstacle is less than 1.0 m. The events collected occurs when
the robot is close enough to the source, and it has already collected the object. Similarly,
the event stored occurs when the robot is close enough to the nest, and it has already
delivered the object. Although the control software has been designed considering the presence
of multiple robots, and objects being transferred between them, the RoboWorld document has
an assumption stating that the event transferred will never happens. In other words, it
considers a simpler application scenario where objects are not transferred between robots.
At this moment, the RoboWorld semantics can only cater for a single robot. The last three
sentences of Mapping of Input Events describe the value that is communicated by the
events dist, angularSpeed, and linearSpeed, which are always available.

MAPPING OF INPUT EVENTS

The event obstacle occurs

when the distance from the robot to an obstacle is less than 1.0 m.

The event collected occurs

when the distance from the robot to the source is less than 1.0 m,

and the robot is carrying an object.

74

The event stored occurs

when the distance from the robot to the nest is less than 1.0 m,

and the robot is not carrying an object.

The event transferred never happens.

The event dist is always available,

and it communicates the value of the odometer.

The event angularSpeed is always available,

and it communicates the angular velocity of the robot.

The event linearSpeed is always available,

and it communicates the magnitude of the velocity of the robot.

MAPPING OF OUTPUT EVENTS

When the event resetDist occurs the odometer is reset.

MAPPING OF OPERATIONS

The operation Explore()

is defined by a diagram where one time unit is 1.0 s.

The operation ExploreNeighbourhood()

is defined by a diagram where one time unit is 1.0 s.

When the operation Transfer() is called, nothing happens.

When the operation Store() is called,

as soon as the distance from the robot to the source is less than 1.0 m,

the robot places an object in the nest.

When the operation Grasp() is called,

as soon as the distance from the robot to the nest is less than 1.0 m,

the robot takes an object from the source.

When the operation move(lv,av) is called,

the linear velocity of the robot is set to lv m/s

towards the orientation of the robot,

and the angular velocity of the robot is set to av rad/s.

MAPPING OF VARIABLES

75

As mentioned before, when the output event resetDist is performed by the control soft-
ware, it affects the robot by resetting its odometer. This is also recorded as part of the
RoboWorld document. The effect on the environment of calling the operations Explore and
ExploreNeighbourhood are described by diagrams, which are not presented here. When the
operation Transfer is called, nothing happens due to the simplification explained before. The
RoboWorld document also records how the operations Store and Grasp affect the environ-
ment: the former makes the robot make an object in the nest, whereas the latter makes the
robot take an object from the source. When the operation move is called, the linear and an-
gular velocities of the robot are updated accordingly. This robotic application does not have
variables. To recognise all sentences presented above, it was necessary to add just five words
(nest, source, object, lv and av) to the project-specific dictionary.

5.2.2 Intermediate representation

Source Code 5.2 shows an excerpt from the IR associated with this case study. Here,
we highlight the definition of named regions, and different types of input event mappings.
As defined in the RoboWorld document (see Section 5.2.1), the arena comprises two named
regions: the nest (lines 5–16) and the source (lines 17–27). As it can be seen, the objects
of type NamedRegion group the information related to these regions: their dimensions (lines
9–10, 21–22), and additional properties (lines 13–15, lines 25–26). Additionally, these regions
are considered closed (lines 12 and 24), since they block movement. As explained before,
grouping this information facilitates the generation of the semantics.

Regarding mapping information of input events, we highlight two situations. Since the
event transferred never happens, in the IR (lines 33–36), its conditionalInput is of type
InputNever. The event dist (lines 37–42), which is always available, illustrates the use of
the attribute communications, which records the value that is communicated by the event.

5.2.3 CyPhyCircus semantics

The CyPhyCircus semantics generated from the IR follows the structure discussed in Sec-
tion 3.5. Here, we show fragments of the semantics, with a focus on how assumptions about
named regions and the robot are formalised. Figure 32 shows the global definitions generated
for the foraging semantics. Besides the arena, we have obstacles. The assumption that the

76

Source Code 5.2 – Foraging intermediate representation.

1 RWIntermediaryRepresentation {
2 arena = Arena {
3 ...
4 regions = [
5 NamedRegion = {
6 name = "nest region",
7 dimension = 2D,
8 gradient = 0.0,
9 xwidth = RDimension{value = 0.25},

10 ywidth = RDimension{value = 0.25},
11 zwidth = RDimension{value = 0.0},
12 closed = true,
13 properties = ["the nest has no obstacles",
14 "the distance from the nest to the source is greater than 1.0 m",
15 "the nest may contain up to 5.0 objects"],
16 },
17 NamedRegion = {
18 name = "source region",
19 dimension = 2D,
20 gradient = 0.0,
21 xwidth = RDimension{value = 0.25},
22 ywidth = RDimension{value = 0.25},
23 zwidth = RDimension{value = 0.0},
24 closed = true,
25 properties = ["the source has no obstacles",
26 "the source contains 5.0 objects initially"],
27 }
28]
29 }
30 ...
31 inputEventMappings = [
32 ...
33 InputEventMappingIR {
34 name = "transferred",
35 conditionalInput = InputNever {}
36 }
37 InputEventMappingIR {
38 name = "dist",
39 conditionalInput = InputAlways {
40 communications = ["the value of the odometer"]
41 }
42 }
43 ...
44]
45 ...
46 }

Source: Current Author

nest and the source have no obstacles is formalised by two predicates, one for each region:
for each obstacle in the arena, its position cannot be within the nest (source). Information
about the size of the regions is also captured by the semantics. Moreover, we have a predicate
to formalise the assumption about the separation of these two regions: for each location loc1

77

of the nest, and for each location loc2 of the source, the distance between loc1 and loc2

needs to be greater than 1.0 m.

Figure 32 – Foraging Semantics: Global Constants.

Source: Current Author

Figure 33 shows the schema EnvironmentState, which defines the dynamic aspects of
the environment; in this case study, in addition to the robot, we have objects that may be
carried around the arena.

Figure 33 – Foraging Semantics: Environment State.

Source: Current Author

The assumption that the robot can only carry one object at a time is formalised using set
comprehension. The first predicate of the schema EnvironmentState creates a set with all

78

objects that are being carried), then, it states that the size of this set is less than or equal
to one. Moreover, since objects are carried by the robot, we have a universal quantification
(fourth predicate of EnvironmentState) stating that if an object is being carried, its position
is always equal to the position of the robot.

In the RoboWorld document, we have the assumption that the nest may contain up
to five objects. This information is also formalised using set comprehension (third predicate
of EnvironmentState): the number of objects whose position is within the nest is less
than or equal to five. Regarding the source, it is assumed that it has five objects initially.
This is captured by the schema EnvironmentStateInit, which initialises the variables of the
environment state. The first predicate of this schema defines that the number of objects whose
position is within the source is equal to five. We remember that the developed RoboWorld
plug-in, as well as all files related to the three case studies, are publicly available (see the link
provided at the beginning of this chapter).

79

6 CONCLUSION

In this work, we have developed a RoboTool plug-in for RoboWorld, expanding, as a result,
the tool support of the RoboStar framework. In (BAXTER et al., 2023), we give a concise
account of the developed plug-in. This plug-in has a graphical user interface that enables
the customisation of project-specific dictionaries. Moreover, it provides surface and structural
editors of RoboWorld documents. Integration with underlying natural-language processing
techniques and tools is transparent, and, thus, hidden from the end user.

From an intermediate representation of RoboWorld documents, which is derived automat-
ically, the plug-in also has automatic support for checking well-formedness conditions, and
generating a formal CyPhyCircus semantics. The RoboTool plug-in for RoboWorld was vali-
dated considering three case studies: a rescue drone (our running example), a ranger robot,
and a foraging robot. These features enable the rigorous modelling, verification, simulation and
testing of mobile and autonomous robots in conjunction with their surrounding environment.
Therefore, we claim that we have reached the research goals defined in Section 1.2.

6.1 RELATED WORK

Here, we first position RoboWorld with respect to the literature on approaches to consider
the environment when developing software systems in general, including control software for
robotic systems (Section 6.1.1). Afterwards, we discuss the adoption of controlled natural
languages, especially, when used in robotics or with a formal semantics (Section 6.1.2). Finally,
we cover tool support for processing controlled natural languages (Section 6.1.3).

6.1.1 Software system environments

Taking a view of environment as the context in which a software operates, we can say
that a software system always affects and is affected by its surrounding environment. Taking
into account the environment is, therefore, fundamental during specification, design, devel-
opment, and verification tasks. For example, in (TKACHUK; DWYER; PASAREANU, 2003), the
authors describe an approach for generating environments of Java program fragments from
formally specified assumptions and abstractions. Here, the environment is a group of classes.

80

When specifying concurrent systems using a process algebra, such as CSP for example, as
mentioned in the very beginning (Chapter 1) of (ROSCOE, 2010), we set up and reason about
processes that interact with their environments. Those environments are mechanisms that can
be (potentially) represented by other processes. Since the focus of RoboStar is on robotics,
RoboWorld is tailored to address physical environments of cyber-physical systems.

In (FURIA; ROSSI; MANDRIOLI, 2007), the authors argue that the modelling activity in the
development of software systems should formalise as much as possible of the environment,
since analysing the correctness of the system relies on an accurate model of the environment,
of the software, and of their interaction. RT-Tester is a tool for automatic test generation,
execution, and real-time evaluation (PELESKA et al., 2011) that follows this point of view. The
expected software behaviour is modelled as state machines, which are also used to describe the
system environment. When generating test cases, for instance, the models of the software and
the environment are considered together to focus on valid scenarios, where realistic operational
requirements are assumed.

In (LARSEN; MIKUCIONIS; NIELSEN, 2005), a timed input/output conformance relation
(s rtiocoe t) is proposed to relate correct implementations s of a specification t, under the
environmental constraints expressed by e. The models of s and t, and even of the environment
assumptions e, are all given as timed automata.

Closer to RoboWorld is the work reported in (SANTOS; CARVALHO; SAMPAIO, 2018), where
environment restrictions are specified according to a controlled natural language. That work is
for cyber-physical systems in general, and the language is inspired on concepts of LTL (linear
temporal logic). The semantics is given in CSP and used as part of a test-generation technique.

None of the above notations is tailored for robotics. In contrast, RoboWorld includes
domain-specific concepts such as a mobile robotic platform, including its services and their
definitions, and arenas. In this way, RoboWorld facilitates the specification, since concepts of
the robotics domain have a pre-defined semantics, which does not need to be specified for
each application.

When modelling robotic systems, some works consider the environment to avoid unrealistic
designs. For instance, in (DESAI et al., 2017; QUOTTRUP; BAK; IZADI-ZAMANABADI, 2004),
implicit assumptions of the environment are to some extent captured by 3D and 2D grid
maps. They describe a specific scenario where the designed robots are assumed to work, as
opposed to general assumptions that might identify a collections of maps.

In (ASKARPOUR et al., 2021), a UML profile is used for designing human-robot collaborative

81

systems. This profile has specific stereotypes to model entities from a scenario that interact
with the robot in class and component diagrams. The RoboWorld notion of arena corresponds
to that of a layout in (ASKARPOUR et al., 2021), but layouts are discrete spaces divided in
sections that can be obstructed. In a component diagram, each section is a component, with
connections representing adjacency. The component diagram is, therefore, a sort of map.
Mathematical models for verification automatically generated use a temporal logic with a
notion of discrete time. Differently, RoboWorld has a hybrid semantics, which accounts for the
continuous nature of space and movement, for example.

In (MAOZ; RINGERT, 2015), the MontiArcAutomaton language (RINGERT; RUMPE; WORT-

MANN, 2015) is used for modelling components of robotic systems. In this approach, environ-
ment assumptions are specified as LTL properties, using AspectLTL (MAOZ; SAAR, 2011), a
language whose syntax is similar to that of the SMV model checker. In RoboWorld, at the
user discretion, properties of the environment are described in a more natural way, considering
a controlled natural language, or referring to diagrams. Therefore, RoboWorld distinguishes
itself by its flexibility on specifying general assumptions of the environments where a robot
can work.

In (LESTINGI et al., 2023), the authors acknowledge the importance of modelling the envi-
ronment of robotic applications; this is done using Stochastic Hybrid Automata (SHA). For-
mal analyses are performed using statistical model checking (SMC) and the UPPAAL model
checker (BEHRMANN et al., 2006) to assess how likely the missions of the robotic system are
to end in success.

Explicitly employing semi-formal or formal notations to describe the environment may
hinder practical application, since the stakeholders typically aware of environment assumptions
are not familiar with such notations. So, considering the use of (controlled) natural language
to hide formal models is a promising alternative. This is addressed in the next section.

6.1.2 Controlled natural languages

As discussed in Section 1.1, techniques designed to process natural language specifications
are commonly based on statistical approaches (that is, model-driven artificial intelligence tech-
niques), where it is assumed that a large dataset of raw text is available to extract processing
rules. This is not the reality of the development of robotic systems, where operational re-
quirements are frequently left implicit. Employing statistical approaches trained with text not

82

related to the robotics field would impose challenges to the automatic generation of a formal
semantics. Therefore, RoboWorld is devised as a natural language, controlled, yet flexible,
whose underlying structure favours automation. In the following paragraphs, we comment on
other CNLs, mostly with formal semantics.

In (NOGUEIRA; SAMPAIO; MOTA, 2014), use cases are used as source for the generation
of a CSP specification. The devised CNL is tailored for mobile applications. In (SCHWITTER,
2002), PENG is proposed as a restricted computer-processable CNL for writing unambiguous
and precise requirements. The specifications written in PENG can be translated into first-order
predicate logic. In (ESSER; STRUSS, 2007), requirements are written in a limited standardised
format according to a strict if-then sentence template. This enables the translation of require-
ments into the Formal Requirement Language (FRL) proposed by the authors. In (SCHNELTE,
2009), assuming that the system specification is manually represented conforming to a set
of templates, developed for automotive systems, a Temporal Qualified Expression (TQE) is
derived.

More recently, in (LUTEBERGET et al., 2017), the authors propose RailCNL: a CNL for the
railway domain that was designed as a middle ground between informal regulations and Datalog
code. As RoboWorld, this CNL is also implemented using GF. In (GIANNAKOPOULOU et al.,
2021), the authors use a structured natural language (FRETISH) that incorporates previous
knowledge from NASA applications and has a Real-Time Graphical Interval Logic (RTGIL)
semantics. The proposed CNL was used to capture and analyse requirements for a Lockheed
Martin Cyber–Physical System challenge.

CNLs are also employed by the Behaviour Driven Development (BDDl) approach that
allows the tester or business analyst to create test cases in a simple text language (English).
This language helps even non-technical team members to understand what is going on in the
software project. For instance, Cucumber1 is a tool for BDD whose language (Gherkin) uses
a set of special keywords to give structure and meaning to executable specifications. For a
comprehensive survey of English-based CNLs, we refer to (KUHN, 2014), where 100 languages,
covering the literature since 1930, are described.

In the robotics domain, previous works have also investigated the use of (controlled) natural
languages. In (LINCOLN; VERES, 2013), the authors present a form of natural language called
system-English (sEnglish) tailored for programming complex robotic systems. In (DRAGULE et

al., 2021), besides presenting a survey of domain-specific languages for robot mission specifica-
1 https://cucumber.io/

83

tion, the authors propose PROMISE, a textual and graphical domain specific language (DSL)
for describing complex multi-robot missions. To the best of our knowledge, there are no CNLs
tailored to the description of assumptions about the environment of a robotic application.
So, the effort to specify such assumptions using an existing CNL would involve defining from
scratch the semantics of concepts specific to the robotics domain, which are pre-defined in
RoboWorld.

RoboWorld is realised using GF, which has been previously used to define CNLs with
formal semantics. In addition to (LUTEBERGET et al., 2017), a language for deontic-based
specifications for normative systems is presented in (CAMILLERI; PAGANELLI; SCHNEIDER, 2014).
In that work, a semi-automatic way is provided to extract a description using the CNL from
free-form texts. The language has a timed-automata semantics suitable for use of UPPAAL for
verification (CAMILLERI; HAGHSHENAS; SCHNEIDER, 2018). Like we do here, the semantics is
defined using a translation into an intermediate XML-like language. Like in our work, syntactic
queries to check simple validity constraints can use the intermediate language, while more
complex semantic queries use UPPAAL.

In (CAVALCANTI; BAXTER; CARVALHO, 2021), it is provided an overview of the RoboWorld
syntax, semantics, and tool support using a couple of examples. As a general discussion of
RoboWorld, this previous publication does not present the metamodel of RoboWorld, nei-
ther details its realisation using GF. The intermediate representation, as well as how it is
derived from RoboWorld documents, and the RoboWorld semantics generation are also not
addressed. In (BAXTER et al., 2023), these topics are properly covered, providing, therefore,
a comprehensive definition of RoboWorld: metamodel, grammar, well-formedness conditions,
formal semantics, and the RoboTool mechanisation. The latter, is the main contribution of
this work.

6.1.3 Tool support

The tool support for editing text adhering to a controlled natural language ranges from
basic surface (structural) editors to elaborate combinations of both editing approaches. In this
section, we briefly comment on some of these tools.

The Robot Mesh Studio IDE2 provides a graphical DSL for specifying missions of robotic
systems. Although this language has fragments of a controlled natural language, the user de-
2 Link: <http://docs.robotmesh.com/ide-project-page>

http://docs.robotmesh.com/ide-project-page

84

fines missions using a Blockly-based3 interface (see Figure 34). Considering the many different
writing possibilities enabled by RoboWorld, this Blockly-based approach is not suitable for edit-
ing RoboWorld documents; RoboWorld sentences do not adhere to limited writing templates
where only some slots can be edited.

Figure 34 – Graphical DSL of the Robot Mesh Studio IDE.

Source: <https://docs.robotmesh.com/v5p-1-vex-v5-education-guide-introduction>

The editing style adopted by the RoboWorld plug-in resembles the one supported by FRET:
a Formal Requirements Elicitation Tool (GIANNAKOPOULOU et al., 2021). Experienced users,
can write requirements directly in a surface editor, which provides syntax highlight and au-
tocomplete (see Figure 35). In the Roboworld plug-in, this is similar to using the dialog for
adding new sentences (see Figure 24).

Figure 35 – Writing Requirements in FRET.

Source: <https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/
user-interface/writingReqs.md>

As the RoboWorld plug-in (see Figure 25), FRET also combines its surface editor with a
structural one, where the user can write sentences by following flexible writing templates (see
Figure 36).

Some features available in FRET, such as autocomplete, can be implemented in the
RoboWorld plug-in to improve its support for editing RoboWorld documents.
3 Link: <https://developers.google.com/blockly>

https://docs.robotmesh.com/v5p-1-vex-v5-education-guide-introduction
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/user-interface/writingReqs.md
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/user-interface/writingReqs.md
https://developers.google.com/blockly

85

Figure 36 – Using Templates in FRET.

Source: <https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/
user-interface/writingReqs.md>

6.2 FUTURE WORK

In future work, we plan to mainly address to the following topics.

• Improve the support for writing RoboWorld sentences. Although surface and struc-
tural editors are available, some additional features should be developed to improve the
support provided for writing RoboWorld sentences. The surface editor can be enhanced
with an autocomplete feature. Regarding the structural editor, in addition to listing the
writing possibilities (see Figure 25), it should show concrete examples (i.e., valid text)
for each supported structure.

• Update the RoboWorld tool support. The present version of the RoboTool plug-in
for RoboWorld is not updated with respect to the newest version of RoboWorld. As
reported in (BAXTER et al., 2023), a more challenging case study (a firefighting UAV)
has been recently considered. As a consequence, the RoboWorld language, along with its
intermediate representation and formal semantics, have evolved to capture new types of
assumptions and mapping information. Therefore, it is necessary to update the developed
plug-in to support these newest extensions.

• Exploit RoboWorld for verification, simulation and testing. As mentioned before,

https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/user-interface/writingReqs.md
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/user-interface/writingReqs.md

86

RoboWorld enables the rigorous modelling, verification, simulation and testing of mobile
and autonomous robots in conjunction with their surrounding environment. A preliminary
application on test generation is reported in (BAXTER et al., 2023). Nevertheless, there
are still many possibilities to investigate. For instance, a RoboWorld document can be
used to analyse whether a robotic system can be employed in a particular scenario. In
other words, checking whether this scenario meets the assumptions made.

• Consider additional case studies. To further validate RoboWorld and its tool sup-
port, it is necessary to consider more case studies, with varying types of assumptions and
mapping information. Additionally, although RoboWorld is being developed with feed-
back from roboticists, it is important to carry out controlled studies with practitioners
to evaluate the benefits and limitations of adopting RoboWorld.

87

REFERENCES

ASKARPOUR, M.; LESTINGI, L.; LONGONI, S.; IANNACCI, N.; ROSSI, M.; VICENTINI,
F. Formally-based model-driven development of collaborative robotic applications. Journal of
Intelligent & Robotic Systems, v. 102, n. 3, p. 59, 2021.

BAXTER, J.; CARVALHO, G.; CAVALCANTI, A.; JÚNIOR, F. R. RoboWorld: Verification
of Robotic Systems with Environment in the Loop. Form. Asp. Comput., Association for
Computing Machinery, New York, NY, USA, 2023. ISSN 0934-5043.

BEHRMANN, G.; DAVID, A.; LARSEN, K. G.; HAKANSSON, J.; PETTERSON, P.; YI,
W.; HENDRIKS, M. UPPAAL 4.0. In: 3rd International Conference on the Quantitative
Evaluation of Systems. [S.l.]: IEEE Computer Society, 2006. p. 125–126.

BEN-ARI, M.; MONDADA, F. Robots and their applications. In: . [S.l.: s.n.], 2018. p.
1–20. ISBN 978-3-319-62532-4.

CAMILLERI, J. J.; HAGHSHENAS, M. R.; SCHNEIDER, G. A Web-Based Tool for Analysing
Normative Documents in English. In: 33rd Annual ACM Symposium on Applied Computing.
[S.l.]: Association for Computing Machinery, 2018. p. 1865–1872.

CAMILLERI, J. J.; PAGANELLI, G.; SCHNEIDER, G. A CNL for Contract-Oriented
Diagrams. In: DAVIS, B.; KALJURAND, K.; KUHN, T. (Ed.). Controlled Natural Language.
[S.l.]: Springer International Publishing, 2014. p. 135–146.

CAVALCANTI, A.; BARNETT, W.; BAXTER, J.; CARVALHO, G.; FILHO, M. C.;
MIYAZAWA, A.; RIBEIRO, P.; SAMPAIO, A. RoboStar Technology: A Roboticist’s Toolbox
for Combined Proof, Simulation, and Testing. In: . Software Engineering for Robotics.
Cham: Springer International Publishing, 2021. p. 249–293. ISBN 978-3-030-66494-7.

CAVALCANTI, A.; BAXTER, J.; CARVALHO, G. RoboWorld: Where Can My Robot
Work? In: CALINESCU, R.; PASAREANU, C. S. (Ed.). Software Engineering and Formal
Methods - 19th International Conference, SEFM 2021, Virtual Event, December 6-10, 2021,
Proceedings. Springer, 2021. (Lecture Notes in Computer Science, v. 13085), p. 3–22. ISBN
978-3-030-92124-8. Available at: <https://doi.org/10.1007/978-3-030-92124-8_1>.

CAVALCANTI, A.; DONGOL, B.; HIERONS, R.; TIMMIS, J.; WOODCOCK, J. Software
Engineering for Robotics. Springer International Publishing, 2021. ISBN 9783030664947.
Available at: <https://books.google.com.br/books?id=Two3EAAAQBAJ>.

CAVALCANTI, A.; SAMPAIO, A.; MIYAZAWA, A.; RIBEIRO, P.; Conserva Filho, M.;
DIDIER, A.; LI, W.; TIMMIS, J. Verified simulation for robotics. Science of Computer
Programming, v. 174, p. 1–37, 2019. ISSN 0167-6423.

DESAI, A.; SAHA, I.; YANG, J.; QADEER, S.; SESHIA, S. DRONA: A Framework for Safe
Distributed Mobile Robotics. In: 8th International Conference on Cyber-Physical Systems.
[S.l.]: IEEE, 2017. p. 239–248.

DRAGULE, S.; GONZALO, S. G.; BERGER, T.; PELLICCIONE, P. Languages for specifying
missions of robotic applications. In: . Software Engineering for Robotics. Cham:
Springer International Publishing, 2021. p. 377–411. ISBN 978-3-030-66494-7.

https://doi.org/10.1007/978-3-030-92124-8_1
https://books.google.com.br/books?id=Two3EAAAQBAJ

88

ESSER, M.; STRUSS, P. Obtaining Models for Test Generation from Natural-Language like
Functional Specifications. In: International Workshop on Principles of Diagnosis. [S.l.: s.n.],
2007. p. 75–82.

FOSTER, S.; BAXTER, J.; CAVALCANTI, A. L. C.; MIYAZAWA, A.; WOODCOCK, J. C. P.
Automating Verification of State Machines with Reactive Designs and Isabelle/UTP. In:
BAE, K.; ÖLVECZKY, P. C. (Ed.). Formal Aspects of Component Software. Cham: Springer,
2018. p. 137–155. Available at: <papers/FBCMW18.pdf>.

FOSTER, S.; CAVALCANTI, A. L. C.; CANHAM, S.; WOODCOCK, J. C. P.; ZEYDA, F.
Unifying theories of reactive design contracts. Theoretical Computer Science, v. 802, p. 105
– 140, 2020. Available at: <papers/FCCWZ20.pdf>.

FURIA, C. A.; ROSSI, M.; MANDRIOLI, D. Modeling the environment in software-intensive
systems. In: International Workshop on Modeling in Software Engineering (MISE’07: ICSE
Workshop 2007). [S.l.: s.n.], 2007. p. 11–11.

GIANNAKOPOULOU, D.; PRESSBURGER, T.; MAVRIDOU, A.; SCHUMANN, J.
Automated formalization of structured natural language requirements. Information
and Software Technology, v. 137, p. 106590, 2021. ISSN 0950-5849. Available at:
<https://www.sciencedirect.com/science/article/pii/S0950584921000707>.

HOARE, C. Communicating Sequencial Processes. 2022. Available at: <http://www.
usingcsp.com/cspbook.pdf>. Accessed on: 05 feb. 2023.

HOARE, C. A. R.; JIFENG, H. Unifying Theories of Programming. [S.l.]: Prentice-Hall, 1998.

KUHN, T. A survey and classification of controlled natural languages. Comput. Linguist.,
MIT Press, Cambridge, MA, USA, v. 40, n. 1, p. 121?170, mar 2014. ISSN 0891-2017.
Available at: <https://doi.org/10.1162/COLI_a_00168>.

LARSEN, K.; MIKUCIONIS, M.; NIELSEN, B. Online Testing of Real-time Systems Using
UPPAAL. In: GRABOWSKI, J.; NIELSEN, B. (Ed.). Formal Approaches to Software Testing.
[S.l.]: Springer Berlin Heidelberg, 2005. p. 79–94.

LESTINGI, L.; ZERLA, D.; BERSANI, M. M.; ROSSI, M. Specification, stochastic modeling
and analysis of interactive service robotic applications. Robotics and Autonomous Systems,
v. 163, p. 104387, 2023. ISSN 0921-8890.

LINCOLN, N.; VERES, S. M. Natural Language Programming of Complex Robotic BDI
Agents. Journal Intelligent Robotics Systems, Kluwer Academic Publishers, v. 71, n. 2, p.
211–230, 2013.

LUTEBERGET, B. Automated Reasoning for Planning Railway Infrastructure. Phd Thesis
(PhD Thesis), 2019.

LUTEBERGET, B.; CAMILLERI, J. J.; JOHANSEN, C.; SCHNEIDER, G. Participatory
Verification of Railway Infrastructure by Representing Regulations in RailCNL. In: CIMATTI,
A.; SIRJANI, M. (Ed.). Software Engineering and Formal Methods. [S.l.]: Springer
International Publishing, 2017. p. 87–103.

MAOZ, S.; RINGERT, J. Synthesizing a Lego Forklift Controller in GR(1): A Case Study.
In: CERNÝ, P.; KUNCAK, V.; MADHUSUDAN, P. (Ed.). 4th Workshop on Synthesis. [S.l.:
s.n.], 2015. (EPTCS, v. 202), p. 58–72.

papers/FBCMW18.pdf
papers/FCCWZ20.pdf
https://www.sciencedirect.com/science/article/pii/S0950584921000707
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
https://doi.org/10.1162/COLI_a_00168

89

MAOZ, S.; SAAR, Y. AspectLTL: An Aspect Language for LTL Specifications. In: 10th
International Conference on Aspect-Oriented Software Development. [S.l.]: Association for
Computing Machinery, 2011. p. 19–30.

MIYAZAWA, A.; RIBEIRO, P.; LI, W.; CAVALCANTI, A.; TIMMIS, J.; WOODCOCK, J.
RoboChart: modelling and verification of the functional behaviour of robotic applications.
Software & Systems Modeling, v. 18, p. 1–53, 10 2019.

MONTHE, V.; NANA, L.; KOUAMOU, G. A model-based approach for common
representation and description of robotics software architectures. Applied Sciences, v. 12,
p. 2982, 03 2022.

MUNIVE, J. H. Y.; STRUTH, G.; FOSTER, S. Differential Hoare logics and refinement
calculi for hybrid systems with Isabelle/HOL. In: 18th International Conference on Relational
and Algebraic Methods in Computer Science. [S.l.]: Springer, 2020. (Lecture Notes in
Computer Science, v. 12062), p. 169–186.

NOGUEIRA, S.; SAMPAIO, A. C. A.; MOTA, A. C. Test generation from state based use
case models. Formal Aspects of Computing, v. 26, n. 3, p. 441–490, 2014.

PELESKA, J.; VOROBEV, E.; LAPSCHIES, F.; ZAHLTEN, C. Automated Model-Based
Testing with RT-Tester. [S.l.], 2011.

QUOTTRUP, M.; BAK, T.; IZADI-ZAMANABADI, R. Multi-robot planning: a timed
automata approach. In: IEEE International Conference on Robotics and Automation. [S.l.:
s.n.], 2004. v. 5, p. 4417–4422.

RANTA, A. Grammatical Framework: Programming with Multilingual Grammars. Stanford:
CSLI Publications, 2011. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

RINGERT, J.; RUMPE, B.; WORTMANN, A. Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. CoRR, abs/1509.04505, 2015. Available
at: <http://arxiv.org/abs/1509.04505>.

ROSCOE, A. W. Understanding Concurrent Systems. Springer, 2010. (Texts in
Computer Science). ISBN 978-1-84882-257-3. Available at: <https://doi.org/10.1007/
978-1-84882-258-0>.

SANTOS, T.; CARVALHO, G.; SAMPAIO, A. Formal modelling of environment restrictions
from natural-language requirements. In: MASSONI, T.; MOUSAVI, M. (Ed.). Formal
Methods: Foundations and Applications. [S.l.]: Springer International Publishing, 2018. p.
252–270.

SCHNELTE, M. Generating Test Cases for Timed Systems from Controlled Natural Language
Specifications. In: Proceedings of International Conference on System Integration and
Reliability Improvements. USA: [s.n.], 2009. p. 348–353.

SCHWITTER, R. English as a Formal Specification Language. In: Proceedings of The
International Workshop on Database and Expert Systems Applications. France: [s.n.], 2002.

TKACHUK, O.; DWYER, M.; PASAREANU, C. Automated environment generation for
software model checking. In: 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. [S.l.: s.n.], 2003. p. 116–127.

http://arxiv.org/abs/1509.04505
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-1-84882-258-0

90

WOODCOCK, J.; CAVALCANTI, A. A concurrent language for refinement. In: . [S.l.: s.n.],
2001.

WOODCOCK, J.; DAVIES, J. Using Z. 1996. Available at: <https://www.cs.cmu.edu/
~15819/zedbook.pdf>. Accessed on: 03 feb. 2023.

YE, K.; FOSTER, S.; WOODCOCK, J. Formally Verified Animation for RoboChart using
Interaction Trees. Formal Methods and Software Engineering - 23rd International Conference
on Formal Engineering Methods, ICFEM 2022, v. 69, 10 2022.

https://www.cs.cmu.edu/~15819/zedbook.pdf
https://www.cs.cmu.edu/~15819/zedbook.pdf

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	Contents
	Introduction
	Operational Requirements
	Research Problem
	Overview of Solution
	Summary of Main Contributions
	Structure

	Background
	The RoboStar Framework
	The Grammatical Framework
	CyPhyCircus

	RoboWorld
	RoboWorld document of the rescue drone
	The syntax of RoboWorld documents
	RoboWorld lexicon
	Building blocks: ItemPhrases
	Statements in RoboWorld
	Arena, robot, and elements assumptions
	Mapping information

	Intermediate representation
	Well-Formedness Conditions
	RoboWorld Semantics
	Semantics overview
	Semantics of the rescue drone

	RoboWorld plug-in
	Tool architecture
	Editing RoboWorld documents
	Dictionary view
	RoboWorld document view

	Deriving the intermediate representation
	Checking well-formedness conditions
	Generating the CyPhyCircus semantics

	Case Studies
	Ranger robot
	RoboWorld document
	Intermediate representation
	CyPhyCircus semantics

	Foraging robot
	RoboWorld document
	Intermediate representation
	CyPhyCircus semantics

	Conclusion
	Related Work
	Software system environments
	Controlled natural languages
	Tool support

	Future Work

	References

