
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Rafael da Camara Figueredo

Tailoring agile practices in distributed large-scale contexts: TARGET Framework

Recife
2023

Rafael da Camara Figueredo

Tailoring agile practices in distributed large-scale contexts: TARGET Framework

The master thesis presented to the academic mas-
ter program of Computer Science from the Federal
University of Pernambuco as a partial requirement
to obtain the Master’s title.

Concentration area: Software Engineering and
Programming Languagues

Supervisor (a): Hermano Perrelli de Moura

Co-supervisor (a): Marcelo Luiz Monteiro Marinho

Recife
2023

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

F475t Figueredo, Rafael da Camara

 Tailoring agile practices in distributed large-scale contexts: TARGET
framework / Rafael da Camara Figueredo. – 2023.

 255 f.: il., fig., tab.

 Orientador: Hermano Perrelli de Moura.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2023.
 Inclui referências e apêndice.

 1. Engenharia de software. 2. Desenvolvimento de software. 3. Agilidade. I.

Moura, Hermano Perrelli de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2023-149

Rafael da Camara Figueredo

“Tailoring agile practices in distributed large-scale contexts: TARGET
Framework”

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação. Área de Concentração

Engenharia de software e Linguagens de

Programação.

Aprovado em: 19/06/2023

BANCA EXAMINADORA

Profa. Dra. Simone Cristiane dos Santos Lima

Centro de Informática / UFPE

Prof. Dr. Gleison dos Santos Souza
Departamento de Informática Aplicada/UNIRIO

__

Prof. Dr. Hermano Perrelli de Moura

Centro de Informática / UFPE

(Orientador)

To my family, my wife, and my professors that supported me in this entire journey . . .

ACKNOWLEDGEMENTS

First, I would like to thank all my family, who believed in me since the beginning and
supported and encouraged me in everything I have been doing. I want to thank my mother,
brother, brother-in-law, and wife for all the support and help I needed before and during the
master’s course. Also, I would like to thank my dad, who passed away in 2009 but had never
forgotten to dedicate all his life to his children and wife.

I am grateful for my brother, who is truly an inspiration for me to start my master’s
program. He is the person that most supported and encouraged me to follow my dreams,
which indirectly proved to me that we could achieve whatever we want.

I am also thankful for my wife, Larissa, that is with me since the beginning of the course.
Without her, this journey would be much more challenging. Thus having a person by my side
is extremely important to make me achieve my goals. I want to thank her for putting up with
me during weekends and extended work nights, giving me all the support I needed. I promise
to make up for everything during our life.

Also, I would like to thank the most inspiring professors I have had during college and
who continued with me during the master’s course, Marcelo and Suzana, who supported me
through this research. Without their support, I would never achieve the results of this project.

To Professors Marcelo and Hermano, my advisors. I want to thank both for being extremely
committed to everything related to this research. Also, I would like to thank them for being
true inspirations in the research field, teaching me, and constantly elevating me to become a
better researcher.

I am also thankful for all the professors of the computer center department of the Federal
University of Pernambuco that had contributed to my master’s. Specifically, I would like to
thank Ivaldir, who was closer to me at the beginning of the research, driving me with Marcelo
and Hermano to the correct research path.

To all my friends, the ones I have made during my time at the University, the ones from
the graduation who joined the master’s with me, and the ones who accompanied my journey,
Amanda, Rafael, Paulo, Felipe, Thiago, Samantha, Fábio, Felipe, Nycolas, Bastos, and Luiz-
inho. I want to thank all of them for being present with me in the good and bad moments
and in many disciplines. Surviving in both universities was much easier surrounded by them.

Finally, I thank everyone who somehow helped accomplish my master’s course.

.

“Persistence is the path to success.”

(CHAPLIN, 1960).”

ABSTRACT

With the increasing adoption of agile methodologies in distributed software development teams,
there is a need to adapt these practices for large-scale environments. However, the lack of
specific guidance can make this process difficult. This study evaluates how large-scale agile
distributed teams are tailoring their practices to accommodate the needs of their context.
A Systematic Literature Review Systematic Literature Review (SLR) was conducted on the
adaptation of agile in large-scale DSD projects, which identified 95 adapted practices from five
agile frameworks used by various case studies between 2007 and 2021. Most studies adapted
Scrum with 32 customized practices for their distributed realities in a large-scale context,
followed by Scaled Agile Framework Scaled Agile Framework (SAFe) with 24 practices, Large
Scale Scrum Large Scale Scrum (LeSS) with 17, the Spotify model with 13, and Disciplined
Agile Delivery Disciplined Agile Delivery (DAD) with nine practices. Based on the content of
the SLR, it was possible to generate the Tailoring lARge-scale aGilE pracTices Framework
(TARGET) framework, which serves as a guide specializing in adapting agile practices to
the specific context of various organizations from 17 business domains across different scale
dimensions and using different agile and scaling agile frameworks. Finally, a case study was
conducted on a distributed agile team from a software consultancy in Brazil to analyze the
adherence of the TARGET framework to the reality of a real market case, with positive results.

Keywords: agile; distributed Software development; large-scale; tailoring agile; scaling agile
frameworks; agile frameworks.

RESUMO

Com o aumento da adoção de metodologias ágeis em equipes distribuídas de desenvolvimento
de software (DSD), surge a necessidade de adaptar essas práticas para ambientes de grande
escala. No entanto, a falta de orientações específicas pode dificultar esse processo. Este estudo
avalia como as equipes distribuídas ágeis de grande escala estão adaptando suas práticas para
acomodar as necessidades do seu contexto. Foi realizada uma Revisão Sistemática da Literatura
RSL (RSL) sobre a adaptação do ágil em projetos DSD de grande escala, que identificou 95
práticas adaptadas a partir de cinco frameworks ágeis usados por vários estudos de caso de
2007 até 2021. A maioria dos estudos adaptou o Scrum com 32 práticas customizadas para suas
realidades distribuídas em um contexto de larga escala, seguido pelo SAFe com 24 práticas,
LeSS com 17, o modelo Spotify com 13 e o DAD com nove práticas. Com base no conteúdo
da RSL, foi possível gerar o TARGET, que serve como um guia especializado na adaptação das
práticas ágeis para o contexto específico de várias organizações de 17 domínios de negócios,
sobre diferentes dimensões de tamanho e usando diferentes frameworks ágeis e escalonáveis.
Por fim, foi realizado um estudo de caso em uma equipe ágil distribuída de uma consultoria de
Software do Brasil para analisar a aderência do framework TARGET à realidade de um caso
real de mercado, com resultados positivos.

Palavras-chave: agilidade; desenvolvimento de software distribuído; larga-escala; adaptação
do ágil; frameworks de escalonamento ágil; frameworks ágeis.

LIST OF FIGURES

Figure 1 – Research Methodology Phases . 46
Figure 2 – TARGET Framework structure example. 54
Figure 3 – Code Freeze abscence . 61
Figure 4 – Research approaches from the studies. 63
Figure 5 – Research type facets over time. 64
Figure 6 – Contribution type facets over time. 64
Figure 7 – Research methods over time. 65
Figure 8 – Rigor and Relevance of the studies. 66
Figure 9 – Average rigor and relevance over time. 67
Figure 10 – IT Service Provider visual Framework guide. 154
Figure 11 – Telecommunication Framework visual guide. 156
Figure 12 – General Industry visual Framework visual guide. 157
Figure 13 – Software Service Provider Framework visual guide. 159
Figure 14 – Financial Framework visual guide. 161
Figure 15 – Process and Industry Automation Framework visual guide. 162
Figure 16 – Internet Framework visual guide. 163
Figure 17 – Oil and Energy Framework visual guide. 165
Figure 18 – Enterprise CRM Framework visual guide. 166
Figure 19 – Automotive Industry Framework visual guide. 168
Figure 20 – Healthcare Framework visual guide. 169
Figure 21 – Optical Industry Framework visual guide. 171
Figure 22 – Science and Research Framework visual guide. 172
Figure 23 – BI and Big Data Framework visual guide. 174
Figure 24 – Logistics Framework visual guide. 175
Figure 25 – Mission-Critical Software Framework visual guide. 176
Figure 26 – Broadcasting Framework visual guide. 177

LIST OF TABLES

Table 1 – Related Works Summary. 45
Table 2 – Main Search String. 48
Table 3 – Studies by engines. 49
Table 4 – Demographic data of respondents. 58
Table 5 – Quality Assesment. 67
Table 6 – Studies Map. 151
Table 7 – Tailored practices from the It Service Providers sector. 153
Table 8 – Tailored practices from the Telecommunication sector. 155
Table 9 – Tailored practices from the General Industry sector. 157
Table 10 – Tailored practices from the Software Service Provider sector. 158
Table 11 – Financial Framework visual guide. 160
Table 12 – Tailored practices from the Process and Industry Automation sector. 161
Table 13 – Tailored practices from the Internet sector. 163
Table 14 – Tailored practices from the Oil and Energy sector. 164
Table 15 – Tailored practices from the Enterprise CRM sector. 166
Table 16 – Tailored practices from the Automotive Industry sector. 167
Table 17 – Tailored practices from the Healthcare sector. 169
Table 18 – Tailored practices from the Optical Industry sector. 170
Table 19 – Tailored practices from the Science and Research sector. 172
Table 20 – Tailored practices from the BI and Big Data sector. 173
Table 21 – Tailored practices from the Logistics sector. 174
Table 22 – Tailored practices from the Mission-Critical Software sector. 176
Table 23 – Tailored practices from the Broadcasting sector. 177
Table 24 – Agile Tailored practices usage . 228

LIST OF ABBREVIATIONS AND ACRONYMS

ADSD Agile Distributed Software Development

AGSD Agile Global Software Development

APB Area Product Backlog

APO Area Product Owner

ART Agile Release Train

ASD Agile Software Development

BDD Behavior Driven Development

CD Continuous Delivery

CI Continuous Integration

CoP Community of Practice

DA Disciplined Agile

DAD Disciplined Agile Delivery

DoD Definition of Done

DoE Definition of Entry

DoR Definition of Ready

DSD Distributed Software Development

GSD Global Software Development

KPI Key Performance Indicator

LeSS Large Scale Scrum

MVP Minimum Viable Product

OKR Objectives and Key Results

PB Product Backlog

PI Program Increment

PL Product-line

PO Product Owner

PoC Proof of Concept

PPM Program and Portfolio Management

PPO Proxy Product Owner

RA Requirement Area

RSL RSL

RTE Release Train Engineer

RUP Rational Unified Process

SAFe Scaled Agile Framework

SLR Systematic Literature Review

SM Scrum Master

SoS Scrum of Scrums

TAR Technical Area Responsible

TARGET Tailoring lARge-scale aGilE pracTices Framework

XP eXtreme Programming

XSBD eXtreme Scenario-based design

CONTENTS

1 INTRODUCTION . 19

1.1 OBJECTIVES . 24
2 BACKGROUND . 25

2.1 AGILE SOFTWARE DEVELOPMENT (ASD) 25
2.2 DISTRIBUTED SOFTWARE DEVELOPMENT (DSD) 26
2.3 AGILE GLOBAL/DISTRIBUTED SOFTWARE DEVELOPMENT (AGSD/ADSD) 27
2.4 LARGE-SCALE AGILE PROJECTS . 28
2.5 SCALING AGILE . 30
2.6 AGILE TAILORING . 34
2.7 RELATED WORKS . 37
3 METHODOLOGY . 46

3.1 SYSTEMATIC LITERATURE REVIEW 46
3.1.1 Document selection . 47

3.1.1.1 Inclusion/Exclusion criteria . 48

3.1.2 Study Quality . 50

3.1.3 Study Evaluation . 50

3.1.4 Data Extraction . 51

3.2 FRAMEWORK . 52
3.2.1 Framework Mapping . 52

3.2.2 Framework Structure . 53

3.2.3 Framework Evaluation . 54

3.3 CASE STUDY . 55
3.3.1 Case Study Context . 56

3.3.2 Identification of Unit Analysis . 57

3.3.3 Data Collection . 58

3.3.4 Data Analysis . 59

4 RESULTS . 62

4.1 SYSTEMATIC LITERATURE REVIEW 62
4.2 OVERVIEW OF THE STUDIES . 63
4.3 SPOTIFY TAILORING PRACTICES . 67

4.3.1 Estimation Techniques (2) . 67

4.3.2 Limited Blast Radius Technique (1) 68

4.3.3 Support/Maintenance Squads (2) . 69

4.3.4 Roadmap (2) . 69

4.3.5 Establish a clear vision (2) . 70

4.3.6 Definition of Done (DoD) (1) . 70

4.3.7 Postmortem Documentation Process (1) 71

4.3.8 Measurement Indicators (KPIs) (1) 71

4.3.9 Architectural Decision Process (1) . 72

4.3.10 Knowledge Sharing Process (1) . 72

4.3.11 Squad-of-Squads Meeting (1) . 73

4.3.12 Product Owners weekly meeting (1) 73

4.3.13 Transparency (1) . 74

4.4 SAFE TAILORING PRACTICES . 74
4.4.1 PI Planning (3) . 74

4.4.2 External Coaches and Consultants (3) 75

4.4.3 Content readiness (2) . 76

4.4.4 Staff Members for POs’ activities (2) 77

4.4.5 SAFe adoption at Medium Enterprises (1) 78

4.4.6 Project increment workshop (1) . 78

4.4.7 Weekly meeting (1) . 79

4.4.8 Definition of Done (DoD) (1) . 79

4.4.9 Program and Team Boards (1) . 79

4.4.10 Scrum of Scrums (SoS) (1) . 80

4.4.11 Automated tests (1) . 80

4.4.12 Feature team (1) . 81

4.4.13 Single product backlog (1) . 81

4.4.14 Measurement Indicators (KPIs) (1) 82

4.4.15 Keep stakeholders close (1) . 82

4.4.16 Instructor-led training (1) . 83

4.4.17 Strategic Themes (1) . 83

4.4.18 Epic Stories (1) . 84

4.4.19 Sprints (1) . 84

4.4.20 Retrospectives (1) . 85

4.4.21 User stories (1) . 85

4.4.22 ART for Business Lines (1) . 86

4.4.23 Change Agent (1) . 86

4.4.24 Release Train Engineer (1) . 87

4.5 DAD TAILORING PRACTICES . 87
4.5.1 Risk Mitigation (1) . 87

4.5.2 Spikes (1) . 88

4.5.3 Definition of Done (DoD) (1) . 89

4.5.4 Daily Tactical Huddle (1) . 89

4.5.5 User Stories (1) . 90

4.5.6 Integration and Unit Testing (1) . 91

4.5.7 T-skilled Individuals (1) . 92

4.5.8 Product, Program, and Portfolio Planning (1) 92

4.5.9 DAD Training (1) . 93

4.6 LESS TAILORING PRACTICES . 93
4.6.1 Community of Practice (CoP) (2) . 93

4.6.2 Requirement Area (2) . 94

4.6.3 Area Product Backlog (2) . 95

4.6.4 LeSS Huge (1) . 95

4.6.5 Single-Specialist Teams (1) . 96

4.6.6 Inspect and Adapt (1) . 97

4.6.7 Design And Requirement Workshops (1) 97

4.6.8 Retrospective Meeting (1) . 98

4.6.9 Definition of Done (DoD) (1) . 99

4.6.10 Demo Presentation (1) . 100

4.6.11 Scrum of Scrums (SoS) (1) . 100

4.6.12 Teams Representatives (1) . 101

4.6.13 Sprint Planning (1) . 101

4.6.14 Release Planning (1) . 102

4.6.15 Area Product Owner (APO) (1) . 103

4.6.16 System and Solution Architects (1) 103

4.6.17 Domain PO (1) . 104

4.7 SCRUM TAILORING PRACTICES . 105
4.7.1 Daily Scrum Meeting (25) . 105

4.7.2 Scrum of Scrums (SoS) (14) . 107

4.7.3 Retrospective Meeting (10) . 109

4.7.4 Status Dashboard (10) . 111

4.7.5 Planning meeting (9) . 113

4.7.6 Multiple Communication Modes (9) 116

4.7.7 Product/Project Manager in Scrum (8) 117

4.7.8 Demo presentation (7) . 119

4.7.9 Wiki as Communication Tool (7) . 120

4.7.10 Proxy Product Owner (PPO) (6) . 122

4.7.11 First collocated Sprint (6) . 123

4.7.12 Tools for monitoring progress, quality and knowledge (5) 125

4.7.13 Weekly status meeting (5) . 126

4.7.14 Definition of Done (DoD) (5) . 127

4.7.15 Component Teams x Generalized teams (5) 129

4.7.16 Product Ownership (4) . 130

4.7.17 Requirement Workshops (4) . 131

4.7.18 Developers as Scrum Masters and Product Owners (4) 132

4.7.19 Technical Debt Awareness (4) . 134

4.7.20 Review meeting (4) . 136

4.7.21 Maintenance Team (3) . 138

4.7.22 Technical Area Responsible (TAR) (3) 139

4.7.23 Estimation Contracts (3) . 140

4.7.24 Code freeze (3) . 141

4.7.25 Community of Practice (CoP) (3) . 142

4.7.26 Scrum training (3) . 143

4.7.27 Area Product Owner (2) . 144

4.7.28 Behavior Driven Development (BDD) (2) 145

4.7.29 Design Pipeline (2) . 146

4.7.30 Futurospective (1) . 147

4.7.31 Story Owners (1) . 148

4.7.32 Limited blast radius technique (1) . 149

4.8 TARGET FRAMEWORK - TAILORING LARGE-SCALE AGILE PRACTICES
FRAMEWORK . 149

4.8.1 IT Service Providers . 152

4.8.2 Telecommunication . 154

4.8.3 General Industry . 156

4.8.4 Software Service Provider . 158

4.8.5 Financial . 159

4.8.6 Process & Industry Automation . 161

4.8.7 Internet . 162

4.8.8 Oil and Energy . 163

4.8.9 Enterprise CRM . 165

4.8.10 Automotive Industry . 166

4.8.11 Healthcare . 168

4.8.12 Optical Industry . 169

4.8.13 Smaller Market Sectors . 171

4.8.13.1 Science and Research . 171

4.8.13.2 BI and Big Data . 173

4.8.13.3 Logistics . 174

4.8.13.4 Mission-Critical Software . 175

4.8.13.5 Broadcasting . 176

4.9 CASE STUDY RESULTS . 178
4.9.1 Case study demographics . 178

4.9.2 Very large-scale Scrum tailored practices 179

4.9.2.1 Daily Meeting . 180

4.9.2.2 Scrum of Scrums (SoS) . 185

4.9.2.3 Retrospective meeting . 187

4.9.2.4 Demo presentation . 191

4.9.2.5 Proxy Product Owner . 193

4.9.2.6 Code freeze . 195

4.9.2.7 Product/Project manager in Scrum . 198

4.9.2.8 Product Ownership . 200

4.9.2.9 Multiple Communication Modes . 203

4.9.2.10 Status dashboard . 204

4.9.2.11 Developers as Scrum Master and Product Owners 207

4.9.2.12 Estimation contracts . 209

4.9.2.13 Design pipeline . 210

4.9.2.14 Story owners . 212

4.9.2.15 First collocated sprint . 213

4.9.3 General Agile tailored practices . 214

4.9.3.1 Planning meeting . 215

4.9.3.2 Requirement workshop . 216

4.9.3.3 Behavior Driven Development . 218

4.9.3.4 Review Meeting . 218

4.9.3.5 Definition of Done . 220

4.9.3.6 Technical Debt Awareness . 222

4.9.4 Case study considerations . 223

5 DISCUSSION . 229

5.1 FINDINGS DISCUSSION . 229
5.2 THREATS TO VALIDITY . 236
5.2.1 Construct Validity . 236

5.2.2 External validity . 237

5.2.3 Conclusion Validity . 237

5.2.4 Internal Validity . 238

6 CONCLUSION . 239

6.1 FUTURE WORK . 240
REFERENCES . 242

APPENDIX A – SYTEMATIC LITERATURE REVIEW SHEET . . 255

19

1 INTRODUCTION

Since before the pandemic of COVID-19, companies have been strongly pursuing Dis-
tributed Software Development (Distributed Software Development (DSD)) (PAASIVAARA;

LASSENIUS, 2016; GUPTA; JAIN; SINGH, 2018), among other things, to achieve lower production
costs and increase the pool of available, talented individuals (RAZZAK et al., 2018). Meanwhile,
after the COVID-19 pandemic, most software industries felt forced to work in a distributed
way (CAMARA et al., 2020). This made different organizations look forward to understanding
how to manage their software solutions’ development across geographically dispersed teams.

As well as DSD has been shaping the form of developing software nowadays, organizations
have been looking around to manage the challenges from distributed software development by
using agile methodologies that had become the mainstream process for software development,
including the distributed (HANSSEN; ŠMITE; MOE, 2011; CAMARA et al., 2020). According to
the 16th Annual State of Agile Report, the survey by Digital.Ai, 80% of the respondents say
their organizations are working with Agile Software Development (ASD) teams distributed
geographically (Digital.Ai, Inc., 2023).

Even with such a presence of agile in the DSD environment, which literature calls Agile
Distributed Software Development (ADSD) (PAASIVAARA; LASSENIUS, 2014) or Agile Global
Software Development (AGSD) (CAMARA et al., 2020), combining those norms gathers chal-
lenges. DSD challenges permeate coordination, communication, and collaboration issues due
to the team members’ physical distance and time zone differences (MARINHO; NOLL; BEECHAM,
2018; CARMEL; AGARWAL, 2001; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008). Meanwhile,
agile methods were originally developed for co-located teams (BECK et al., 2001), which require
adaptations for distributed scenarios. However, agile methods appear viable for implementing
DSD since it is increasingly used in software development worldwide to achieve faster time to
market, quality assurance, and continuous delivery (RAMESH et al., 2006; RAZZAK et al., 2017;
MARINHO et al., 2019; PAASIVAARA; LASSENIUS, 2010; GUPTA; VENKATACHALAPATHY; JEBERLA,
2019).

The usage of agile in DSD can not limitate itself to the purest use of agile practices. Orga-
nizations with distributed agile teams are usually involved in large-scale projects (DINGSØYR;

FÆGRI; ITKONEN, 2014), which require the tailoring and scaling of agile methods to handle
the dynamic environment (CAMPANELLI; PARREIRAS, 2015; FITZGERALD et al., 2013a). Accord-

20

ing to Digital.Ai 16th report, while 80% of the respondents use agile in the development
process, 50% of them are gathering agile, traditional, and other iterative approaches, while
35% of them are using a combination of agile frameworks to handle the dynamic scenario of
large-scale distributed projects.

The scaling agile frameworks have emerged in response to the difficulty of carrying standard
agile methods into large-scale projects (DYBÅ; DINGSØYR, 2008), and their use was intensi-
fied since the COVID-19 pandemic has led many teams to work remotely (MAREK; WIŃSKA;

DĄBROWSKI, 2021). The agile frameworks promise to cover the gap that agile methods are
for co-located teams by guiding companies in applying agile in large-scale and distributed
contexts. The most common frameworks, according to Digital.Ai’s last Agile report (Digital.Ai,

Inc., 2023), are SAFe (Leffingwell, Dean, 2023) with 53% of respondents using it, followed by
Scrum@Scale and Scrum of Scrums with 28% (Sutherland, Jeff and Brown, Alex, 2021), Spotify
model with 7%, LeSS with 6%, and DA and Nexus with 3%. Moreover, a third of the respon-
dents using a combination of those frameworks say the combinations are not working well,
without satisfying the needs of the teams and organizations (Digital.Ai, Inc., 2023).

Most of the dissatisfaction with agile methods and agile frameworks in distributed large-
scale environments is related to the fact that those approaches can not be used straight-
forwardly (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; EWUSI-MENSAH, 2003). Instead, to
fully appreciate its benefits, agile practices must be modified and tailored to accommodate the
specific context needs of individuals, teams, and organizations (PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2009b), i.e., the general agile ceremonies that usually occur through face-to-face
events need to be held through teleconference tools (BASS, 2012; PAASIVAARA; LASSENIUS,
2016; GUPTA; MANIKREDDY; ARYA, 2017; NYRUD; STRAY, 2017), since the team members are
not present in the same physical space.

The agile adoption and adaption process is complex and will require effort from every
sphere, from the individual to the organization and teams (CAMPANELLI; PARREIRAS, 2015),
especially in distributed large-scale companies (ULUDAG et al., 2019; ROLLAND; MIKKELSEN;

NÆSS, 2016; EDISON; WANG; CONBOY, 2022). Several authors have already expressed that the
one-size-fits-all agile approach may not work since each large-scale project has its particularities
and needs (TENDEDEZ; FERRARIO; WHITTLE, 2018; LINES; AMBLER, 2019). Method tailoring
must be considered to facilitate the software development process and better suit the con-
text differences among development teams (CAMPANELLI; PARREIRAS, 2015). Agile distributed
teams and organizations must consider their unique needs and constraints when selecting and

21

implementing agile practices.
Agile tailoring in software development can be described as adapting agile practices, meth-

ods, principles, and values to the organization’s aspects, culture, objectives, environment, and
context to fit its needs (SALAMEH; BASS, 2020; CAMPANELLI; PARREIRAS, 2015). An agile tai-
lored approach can enhance project value, minimize risks and uncertainties associated with the
project’s context, and improve team performance and adaptability.

Since organizations have different contexts, necessities, and cultures, what works for one
project may not apply to others. Based on it, some authors strongly criticize agile and scaling
agile frameworks that summarize best practices, events, and ceremonies while avoiding context
understanding and the uniqueness of the organizations and teams (AMBLER; LINES, 2012;
LINES; AMBLER, 2019). Such an approach hinders the potential of individuals, teams, and
organizations to tailor their practices by narrowing their vision to a set of suggested techniques
that do not consider context on its applicability. However, in the literature, it is possible
to see few organizations that go beyond collecting techniques from those agile frameworks
and look forward to tailoring their agile practices to better suit their day-to-day challenges,
issues, and obstacles on large-scale environments with distributed teams (ULUDAG et al., 2019;
PAASIVAARA, 2017; RAZZAK et al., 2018; SALAMEH; BASS, 2019; SALAMEH; BASS, 2020; LAL;

CLEAR, 2018; GUPTA; MANIKREDDY; ARYA, 2017).
Despite few studies describing agile tailoring through agile and scaling agile frameworks

involving distributed teams in large-scale environments, the research field still needs more
academic attention. The literature still lacks a deeper and more structured overview of how
those ADSD teams tailor the agile practices from those different agile frameworks to handle
large-scale settings.

Such discussion regarding the agile tailoring through agile frameworks by DSD teams in
large-scale settings launch our study to the following research questions: “What agile practices
do the DSD teams that apply agile and scaling agile frameworks in large-scale settings are
tailoring?”, and “How do DSD teams that apply agile and scaling agile frameworks tailor its
agile practices in large-scale settings?”. To do so, the present study was divided into three
major steps to gather the necessary information to generate a solid, tailored agile strategy
framework that could help practitioners and researchers.

First, a Systematic Literature Review (SLR) (KITCHENHAM; CHARTERS, 2007) was con-
ducted to collect sufficient information about the tailoring of agile practices by distributed
teams in large-scale contexts that uses agile and scaling agile frameworks to be the most rep-

22

resentative study regarding the adaptation of agile practices. Considering studies from 2001 to
2021, a total of 74 studies were selected covering studies that tailored agile while using five of
the most popular agile frameworks, Spotify (HENRIK; ANDERS, 2012), SAFe (Leffingwell, Dean,
2023), DAD and DA (AMBLER; LINES, 2012; LINES; AMBLER, 2019), LeSS (LARMAN; VODDE,
2016a), and Scrum and its varieties (SCHWABER; SUTHERLAND, 2020; Sutherland, Jeff and Brown,

Alex, 2021; Schwaber, Ken and Sutherland, Jeff, 2022). A total of 95 agile practices from those five
frameworks were computed, and the several tailored techniques adopted by the organizations
among those practices were described. In general, each practice was described following the
structure: I) Name - Title of the practice; II) Goal - The aiming of the practice; III) Who
- Which roles are supposed to tailor and apply the practice; IV) How - Description of how
the teams tailored the practice; V) Context - How studies from different contexts tailored the
practice. This structure helps organize the state of the art regarding agile tailoring.

Second, as the main contribution of this study, the TARGET framework - Tailoring lARge-
scale aGilE pracTices Framework - was developed. Based on the information gathered from
the SLR, it was possible to generate a framework to serve as a guideline for practitioners and
researchers to understand better how various organizations with different business domains
have tailored agile practices using different agile and scaling agile frameworks already known.
Within the extracted information regarding the tailored agile practices from the SLR, it was
possible to categorize the findings by classifying the market sectors of the studies fully read,
their scale dimensions, and the agile framework in use (DINGSØYR; FÆGRI; ITKONEN, 2014).
By categorizing it, a visual structure representing the TARGET framework was developed with
17 market sectors covering different scale dimensions and agile frameworks that gather several
tailored agile practices which anyone can consult with a similar dimension or market sector
from the organizations assessed.

Third, an evaluation step was also established. A case study was settled in an agile dis-
tributed team from an IT service provider company in Brazil with more than one thousand
employees to evaluate the TARGET Framework better. By assessing an agile distributed team
with eight members spread across four out of the five regions of Brazil and a quality tech leader
working on a very large-scale project with more than twenty distributed agile teams. The case
study consisted of a single assessment of a sample of employees from the same context but
that work on different modules of the same very large-scale solution. The case study aims to
evaluate the presence of tailored agile practices identified in the literature by assessing an agile
remote distributed team from an IT service provider company. By doing it, we hope to iden-

23

tify similarities among the tailored practices from one of the market sectors of the TARGET
framework used by the members in the case and their different tailored approaches in adapting
agile practices.

This study presents results regarding agile tailoring in distributed teams using agile and
scaling agile frameworks from large-scale settings. Based on the analysis, this study contributes
through the development of a reference framework that benefits the academy and industry
through a complete overview of how several organizations from 17 different market sectors and
different scale dimensions using different agile frameworks are tailoring their agile practices to
continue the development and continuous delivery of value. Also, by summarizing the agile
practices tailored by organizations from different domains and describing how different contexts
had tailored those practices. Further, organizing the information in a structured view through
the TARGET framework and contributing to the agile tailoring research by evaluating the
developed framework in a real industry case in an IT company from Brazil, an under-researched
region in the agile tailoring field. Finally, in further sections, it will be possible to see some
small-scale studies that became part of the TARGET Framework since it describes challenges
and environments from DSD and large-scale projects (DINGSØYR; FÆGRI; ITKONEN, 2014).

Towards the findings from the literature, we hope to provide the TARGET framework as a
collection of techniques to improve the agile practices used by organizations among distributed
development teams. Similar to the strategy proposed by Ambler and Lines in choosing your
way of working (LINES; AMBLER, 2019), we hope to provide a context-specific guide to help
companies during the agile tailoring process according to their uniqueness. Finally, despite
the evaluation in a specific market sector, IT service companies, the framework covers the
organization’s needs from distinct market sectors.

The remainder of this study is organized as follows: In chapter 2, we introduce the back-
ground regarding the research subjects that explains the research problem. Chapter 3 describes
the proposed methodologies and the research questions. Chapter 4 present the results and im-
plications from the SLR, the TARGET framework, and the case study. Then, chapter 5 has
the purpose of discussing the findings and limitations. Finally, in Chapter 6, we state some
concluding remarks and areas of future research directions.

24

1.1 OBJECTIVES

The specific goals of this study are twofold. First, we aim to develop the TARGET frame-
work to help organizations tailor agile practices in distributed large-scale projects. Second, we
aim to evaluate the adherence to this framework in practice by evaluating it in a real-world
case study. By achieving these goals, we hope to contribute to the growing body of knowledge
on agile, DSD, and large-scale development and provide practical guidance for organizations
seeking to adopt agile practices at scale.

On the other side, The specific goals of this study are:

• Provide a comprehensive overview of the state of the art of agile tailoring in distributed
teams on large-scale projects through an SLR.

• Based on the review findings, develop the TARGET framework, which will summarize a
collection of tailored agile practices and ways to implement it for large-scale distributed
projects, organized by market sectors, scale dimensions, and agile frameworks used.

• Evaluate the adherence of the TARGET framework in a real-world case study within one
of the market sectors described in the framework.

With these goals in mind, this study will provide valuable insights into the potential of
the TARGET framework to help agile implementation in large-scale settings with distributed
teams.

25

2 BACKGROUND

This chapter aims to present a brief theoretical foundation about the subjects related to
this project. Also, It intends to give the reader an understanding of the research areas. Based
on it, the following sections will cover the research areas of ASD, DSD, AGSD, large-scale
agile projects, agile tailoring, and related works.

2.1 AGILE SOFTWARE DEVELOPMENT (ASD)

The concept of agile software development emerged in the 1990s (AOYAMA, 1998). How-
ever, it gained widespread popularity following the publication of the agile manifesto in 2001
(BECK et al., 2001). The increasing business need for fast creation of the internet and mo-
bile applications was a key driver for introducing these lightweight and nimble development
processes (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011). The agile ideas promised that higher
customer satisfaction can be achieved by addressing such uncertainty aspects and delivering
working software frequently with shorter timescale (WAHYUDIN et al., 2008).

The ideas of agile software development have gained acceptance in the mainstream soft-
ware development community. Surveys pointed out that agile teams are often more successful
than traditional ones. According to the agile manifesto (BECK et al., 2001), ASD emphasizes
individuals and interactions over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation, and responding to change
over following a plan.

The most widely used methodologies based on agile principles are Scrum and eXtreme
Programming (XP) (Jalali; Wohlin, 2010). However, other methods such as Dynamic Systems
Development Method, Adaptive Software Development, and the Crystal Family stress upon
short time goals and incremental delivery, dividing the entire projects into sprints and every
sprint governed by a complete software development life cycle (Sriram; Mathew, 2012).

The success of ASD depends significantly on team interaction (DORAIRAJ; NOBLE; MALIK,
2012). Agile methods have enabled software project teams to meet the challenges of an even
more turbulent business environment through enhanced flexibility and emergent customer
needs (MARUPING, 2010).

Kruchten (KRUCHTEN, 2013) defines agility as “the ability of an organization to react

26

to changes in its environment faster than the rate of those changes”. This definition uses the
ultimate goal of being agile for business rather than defining agility by a set of labeled practices
(for example, you are agile when running XP (BECK; GAMMA, 2000), Scrum (Schwaber, Ken and

Sutherland, Jeff, 2022), or Lean (POPPENDIECK; POPPENDIECK, 2007)) or by a set of properties
defined as opposed to another set - the agile manifesto (BECK et al., 2001). This definition is
not far from Conboy’s, which is addressed in his research on the literature on agile process
development (CONBOY et al., 2011).

2.2 DISTRIBUTED SOFTWARE DEVELOPMENT (DSD)

Distributed Software Development (DSD) is the name to designate software projects devel-
oped by teams spread beyond the company’s boundaries and in different geographical locations
(MARINHO et al., 2019). Such boundaries could be national, which describes DSD, or inter-
national, which refers to Global Software Development (GSD) (MARINHO; NOLL; BEECHAM,
2018). From a global perspective, teams are distributed across different countries or con-
tinents while working as virtual teams, together online from different locations (MARINHO;

NOLL; BEECHAM, 2018).
Globalization has made this software development approach more popular in the last decade

since it has become possible to have members worldwide working through remote tools. It also
enables organizations to access highly skilled talents from around the globe, reducing costs,
seeking a 24-hour development cycle due to different time zones, and accessing low labor costs
(ZAHEDI; SHAHIN; Ali Babar, 2016; MARINHO et al., 2019).

Despite the benefits of developing software in a distributed manner, those benefits do
not come for free. Most organizations must deal with several challenges related to inadequate
communication, cultural differences, team coordination, timezone differences, and coordination
difficulties (MARINHO; NOLL; BEECHAM, 2018).

Most DSD challenges can be categorized into three significant distances that impact those
teams. The geographical, cultural, and temporal distance (CARMEL; AGARWAL, 2001).

• Geographical distance: as the name implies, the geographical distance is related to
the physical separation among the members of a distributed software team. It can cause
communication delays and travel costs and is also can be the origin of the next distance;

• Temporal distance: due to the physical dispersion of the development teams, the

27

temporal distance can be felt based on different timezones. Such distance will depend
on the degree to which the team members work synchronously or asynchronously, which
can be minimized by defining a common overlap work hour among the members;

• Cultural distance: it can manifest as organizational and national cultures. The organi-
zation’s culture relies on norms, values, principles, and rules varying from small to large
companies. Meanwhile, the national distance relies on the different languages, ethnic
groups, customs, and beliefs of the team members. Such distance can cause communi-
cation barriers and misunderstandings affecting collaboration.

To address the challenges from distributed development and handle the issues that emerge
from the three major distances of distribution’s nature. The teams and companies must be
aware to provide an environment that foments effective communication, collaboration, and
the necessary practices to achieve the project’s success (CAMARA et al., 2020). To achieve
this, many organizations are adopting agile methods to manage the obstacles the distribution
settings can cause (CAMARA et al., 2020).

2.3 AGILE GLOBAL/DISTRIBUTED SOFTWARE DEVELOPMENT (AGSD/ADSD)

The origins of ADSD can be traced back to the early 2000s (JALALI; WOHLIN, 2012), just
a few years after the introduction of the Agile Manifesto (BECK et al., 2001). “Agile Global
Software Development” (AGSD) or “Agile Distributed Software Development” (ADSD) refers
to the application of agile practices, methodologies, and techniques on globally distributed
projects (PAASIVAARA; LASSENIUS, 2014).

Since then, studies have shown that using agile practices is directly related to the success
of DSD projects (TENDEDEZ; FERRARIO; WHITTLE, 2018; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). Paasivaara et al. (PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2008) reported that large and distributed software development
projects that face challenges related to technologies and requirements could benefit from us-
ing agile practices to improve organization and management.

However, achieving success in a DSD project is a challenging task, which requires effective
planning, organization, leadership, control, coordination, and project management (CAMARA et

al., 2020). These practices aim to mitigate the challenges of geographic, temporal, and socio-
cultural distances (CARMEL; AGARWAL, 2001). While agile practices were initially developed to

28

help co-located teams (VALLON et al., 2017), numerous studies demonstrate that agile meth-
ods can help mitigate DSD problems (TENDEDEZ; FERRARIO; WHITTLE, 2018; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). Therefore,
agile methods appear to be a viable option for implementing DSD as it is increasingly used in
software development globally.

To adapt to the challenges of DSD, practices such as daily meetings, planning, and pair
programming are tailored (CARMEL; AGARWAL, 2001; BASS, 2012). For instance, face-to-face
meetings and pair programming cannot be implemented the same way as for co-located teams
since team members are in different locations and possibly in different time zones (RAJPAL,
2018; HODA et al., 2010). Thus, teams must choose asynchronous and synchronous communica-
tion tools to implement these practices, such as video conferencing, instant messaging, emails,
and other collaboration tools (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; LEE; JUDGE; MC-

CRICKARD, 2011; HOSSAIN; BABAR; VERNER, 2009).
In the context of AGSD and ADSD, Scrum is the most widely used framework, followed by

Kanban (MARINHO et al., 2019). It is common to observe traditional DSD projects transitioning
to agile approaches to reduce the complexities of a distributed context (GUPTA; JAIN; SINGH,
2018) and improve collaboration and organization of the development process.

In summary, AGSD and ADSD are software development approaches that combine Agile
practices and principles with distributed software development challenges. Many companies
use DSD on large-scale settings to access global talent, reduce expenses, gain economic ad-
vantages, achieve faster delivery, and enable a 24-hour software development cycle due to
different time zones (RIZVI; BAGHERI; GASEVIC, 2015). However, while adopting distributed
development has increased in companies, having team members in different locations can re-
sult in communication, coordination, and control problems in the development process (BASS,
2012), which relies upon the teams to tailor their process.

2.4 LARGE-SCALE AGILE PROJECTS

Large companies constantly looking to distribute their development are often handling
large-scale projects. Sometimes, those large-scale projects are complex and belong to critical
sectors (CHO, 2007). A large-scale project also requires development methodologies to scale
and fit the environment settings (DINGSØYR; FÆGRI; ITKONEN, 2014). This is necessary due
to the involvement of multiple teams working together on a single product, module, or project

29

in a large-scale setting.
There are discussions over the exact meaning of “large-scale agile”, with Dikert et al.

(DIKERT; PAASIVAARA; LASSENIUS, 2016) noting that “what is seen as large-scale depends very
much on the context and the person defining it”. On the other hand, the number of teams
is also a metric to determine the project’s scale. Due to it, this study follows the taxonomy
presented by Dingsoyr et al. (DINGSØYR; FÆGRI; ITKONEN, 2014), which defines the scale of
agile software development projects based on the number of teams involved and classifies it
into three levels of scale.

• Small-scale: those projects usually have only one team, and the coordination may
require the use of regular agile practices without any proper tailoring approach.

• Large-scale: those projects can have 2 to 9 teams, and the coordination will need
scaling approaches, such as Scrum of Scrums.

• Very large-scale: whether the project has ten or more teams, it can be considered a very
large-scale project. For such projects, the use of a scaling framework is recommended.

Adopting agile methodologies in large-scale agile projects has gained popularity recently to
improve collaboration, communication, and innovation while delivering high-quality software
products on time and within budget, (PAASIVAARA, 2017; GUPTA; VENKATACHALAPATHY; JE-

BERLA, 2019; PAASIVAARA et al., 2014). Moreover, it also encourages companies to work with
multiple teams while being able to adapt faster to changing requirements and market condi-
tions (DANEVA et al., 2013).

Implementing agile methodologies in large-scale agile projects can also present challenges.
For example, the larger the team, the more difficult it can be to coordinate and synchronize
efforts, and the more complex the project management becomes (LARMAN; VODDE, 2016b).
Furthermore, the cultural and organizational changes required to adopt agile methodologies can
be significant, requiring a commitment from all stakeholders, senior management, directors,
and sometimes the board and a willingness to embrace new ways of working by every interested
part (MATTHIESEN; BJØRN, 2017; PAASIVAARA et al., 2014; DORAIRAJ; NOBLE; ALLAN, 2013).
To achieve such a level of commitment during agile adoption, many companies rely on adopting
scaling frameworks (PAASIVAARA, 2017; SALAMEH; BASS, 2019; PANDYA; MANI; PATTANAYAK,
2020).

30

2.5 SCALING AGILE

Scaling agile applies agile methodologies to large and complex environments involving mul-
tiple teams, departments, and stakeholders (Denning, Steve, 2021). The most common approach
to scaling agile is to use a framework that provides guidelines and best practices for coordi-
nating the work of multiple teams. Several frameworks can be used to scale agile, each with
its strengths and weaknesses.

Initially designed for small co-located teams, traditional agile methods struggle to work
in these large-scale environments. The need for coordination, collaboration, and alignment
across multiple teams, departments, and stakeholders can become a significant challenge that
traditional agile methods can not handle (DYBÅ; DINGSØYR, 2008; FITZGERALD et al., 2013b).

To address this challenge, several scaling agile frameworks have emerged (HENRIK; ANDERS,
2012; Leffingwell, Dean, 2023; AMBLER; LINES, 2012; LARMAN; VODDE, 2016a; Sutherland, Jeff and

Brown, Alex, 2021; Schwaber, Ken and Sutherland, Jeff, 2022). These frameworks provide guidelines
and best practices for coordinating the work of multiple teams, improving communication and
collaboration, and ensuring alignment with business goals.

According to Scott Ambler (AMBLER; LINES, 2013), scaling agile can be interpreted in
three ways. Firstly, scaling agile through the organization involves scaling agile across teams,
requiring a high level of collaboration and understanding of business value among teams.
Secondly, scaling agile for other projects consists of scaling the project’s size, which can be
challenging due to the need to find specialized people for the project. Thirdly, scaling agile to
the entire value stream of an organization involves scaling and maximizing the development
of business value without focusing solely on agile teams and coordination.

Founder of Agile For All, Hartman (Denning, Steve, 2021) proposes two concepts for scaling
agile - Horizontal and Vertical. Horizontal scaling involves applying agility concepts in other
organization sectors to make all the processes agile, while vertical scaling agile aims to impact
the director board by coordinating all sectors, corporate governance, and shareholders’ repre-
sentations. According to Hartman, the goal of an organization looking to scale agile should
impact both horizontal and vertical ways to achieve a fully agile organization. However, this
continuously evolves and cannot be achieved overnight.

The most recent State of Agile Report survey (Digital.Ai, Inc., 2023) indicates that the Scaled
Agile Framework (SAFe) (Leffingwell, Dean, 2023) remains the most popular scaling framework,
with adaptations of Scrum (Schwaber, Ken and Sutherland, Jeff, 2022) for large-scale settings, such

31

as Scrum@Scale (Sutherland, Jeff and Brown, Alex, 2021) and Scrum of Scrums, following closely
behind. Although less prevalent, other scaling frameworks, such as Disciplined Agile Delivery
(DAD) (AMBLER; LINES, 2012), Large-Scale Scrum (LeSS) (LARMAN; VODDE, 2016a), and the
Spotify model (HENRIK; ANDERS, 2012), are also being used.

On the road to facilitating agile insertion in globally distributed teams, many companies
choose those frameworks to scale agile practices. In the following lines, we will briefly describe
five of the most common scaling agile frameworks (ALQUDAH; RAZALI, 2016). From those five
frameworks, we will consider Scrum and its adaptations of large-scale settings as one of them.

Scaled Agile Framework (SAFe) - The SAFe (Leffingwell, Dean, 2023) was developed by
Dean Leffingwell in 2012, and it focuses on scaling agile on large enterprises. The framework is
a documented and proven approach to scaling agile practices, strategies, and benefits in large
enterprise environments. Currently, the SAFe is in its 6.0 version (Leffingwell, Dean, 2023) and
was developed to help companies manage, control and organize the development process in a
context with many teams and people (RAZZAK et al., 2018; PAASIVAARA, 2017).

SAFe 6.0 framework is a solid structure that covers all organization levels. Its four core
values alignment, built-in quality, transparency, and program execution (Leffingwell, Dean, 2023)
is associated with values and principles from Scrum (Schwaber, Ken and Sutherland, Jeff, 2022),
eXtreme programming (BECK; GAMMA, 2000), Lean Software Development (POPPENDIECK;

POPPENDIECK, 2003) and the Agile Manifesto (BECK et al., 2001). Recently, SAFe 6.0 was
launched (Leffingwell, Dean, 2023). This new release aims to cover all enterprise levels and
enable the digital business needed since the pandemic of COVID-19 forced. Furthermore, the
latest version brings six primary themes into evidence: I) Strengthening the Foundation for
Business Agility; II) Empowering Teams and Clarifying Responsibilities; III) Accelerating Value
Flow. IV) Enhancing Business Agility with SAFe across the business; V) Building the Future
with AI, Big Data, and Cloud; VI) Delivering Better Outcomes with Measure and Grow and
OKRs.

Large-Scale Scrum (LeSS) - The Large-Scale Scrum (LeSS) (LARMAN; VODDE, 2016a) is
a framework developed by Larman and Vodde. It has two approaches: (i) The LeSS framework
is designed for medium companies, around 70 people within five teams and two different sites;
and (ii) LeSS huge designed for large companies with more than eight teams, that may work as
a scaled LeSS for several smaller fewer applications. In essence, LeSS is Scrum fitted for larger
and more complex projects without losing its principles, combining Lean and XP practices
(LARMAN; VODDE, 2016a).

32

The framework is based on transparency, inspection, and adaptation principles since it is
based on Lean and encourages teams to work together to develop the best possible product.
One of the critical features of LeSS is that it emphasizes simplicity and avoids unnecessary
complexity, which can lead to confusion and reduce the framework’s effectiveness (LARMAN;

VODDE, 2016a). Less is also designed to be flexible and adaptable to the needs of different
organizations, and it provides guidance on how to customize the framework based on its
boundaries to meet the specific needs of a particular project or organization (LARMAN; VODDE,
2016a).

Disciplined Agile Delivery (DAD) - Disciplined Agile Delivery (AMBLER; LINES, 2012)
is a toolkit developed by Ambler and Lines. The framework extends Scrum practices and
combines them with other agile methods, such as XP, Lean, and Kanban. The framework
covers approaches from the beginning of a team formation until delivery and production support
(AMBLER; LINES, 2012). The DAD is designed for enterprise-level projects, which may need to
organize multiple teams and their efforts and work through a structured governance framework.

DAD has a robust governance structure that defines roles and responsibilities, provides
guidance on decision-making, and ensures compliance with organizational standards and poli-
cies (AMBLER; LINES, 2012). DAD’s process comprises three phases: Inception, Construction,
and Transition, each with activities, artifacts, and guidelines. The Inception phase defines the
project start-up by starting requirements modeling, initial architecture modeling, scope, team
formation, and stakeholders identification, and develops an initial plan for development and
release. The Construction phase involves iterative development and testing of the software to
build the deliverables of the solution. Meanwhile, the Transition phase focuses on deploying
the solution and ensuring it meets the stakeholders’ needs (AMBLER; LINES, 2012).

DAD has evolved, and the DA toolkit has become an evolution of the original model. The
new DA toolkit expands on DAD’s original principles and practices by incorporating context-
sensitive guidance rather than being a collection of best practices from agile methodologies
(LINES; AMBLER, 2019). DA allows teams to tailor their approach to their specific needs, se-
lecting the most appropriate process and practices that will work best in their context, which
will describe their way of working (LINES; AMBLER, 2019). In addition, DA recognizes that
teams must work within their organization’s way of working and can adopt and adapt differ-
ent frameworks and practices, including Scrum, Kanban, Lean, SAFe, and others, depending
on what works best for them (LINES; AMBLER, 2019). For the authors, DA emphasizes a
pragmatic, context-based, and enterprise-aware approach to agile and lean delivery (LINES;

33

AMBLER, 2019). Different from regular agile frameworks that avoid context understanding
and commonly provide a narrowly set of best practices without considering the uniqueness of
individuals, teams, and organizations.

Spotify - The Spotify model (HENRIK; ANDERS, 2012) was developed by Henrik and An-
ders while they were working on the Spotify company. The Spotify model is based on the
agile principles of cross-functional teams, autonomy, and continuous improvement (HENRIK;

ANDERS, 2012). The model is designed to enable organizations to adopt agile practices and
principles and scale them to a larger organization. The Spotify model is not a prescriptive
framework with a collection of processes, tools, and best practices but rather a set of princi-
ples and concepts that an organization can customize and adapt to suit its needs. It organizes
the organization’s developments into the model’s key features, the squads, tribes, chapters,
and guilds. Each squad uses its preferred agile practices, which could be a combination of
Scrum, Kanban, Lean, or other agile methodologies.

A squad is a self-organized and multi-disciplinary agile team with 6-12 members respon-
sible for developing a product or a module of it (HENRIK; ANDERS, 2012). Moreover, squads
are organized into tribes, representing a group of squads working on related areas (HENRIK;

ANDERS, 2012). Chapters are cross-functional communities of practice that allow individuals in
similar roles across squads to share knowledge and expertise (HENRIK; ANDERS, 2012). Guilds
are communities of interest that enable individuals to come together and share knowledge and
expertise across tribes and chapters (HENRIK; ANDERS, 2012).

Numerous organizations have adopted the Spotify model, but some found it challenging
to implement due to the high degree of autonomy demanded by the teams. Due to it, it
is necessary to adapt the model according to the context of the organization (SALAMEH;

BASS, 2019). Regularly, the Spotify model would fit better for companies with similar business
models of the Spotify company. However, it is essential to point out that the known model is
a “screenshot” of how Spotify worked in 2012. Nowadays, the company may apply a different
approach.

Scrum - The Scrum methodology was originally developed for co-located teams working
in the same physical space. Ken Schwaber and Jeff Sutherland, in the 1990s, introduced it.
It has since gained popularity at the beginning of the century due to its simplicity, flexibility,
and focus on delivering aggregate value to customers (Schwaber, Ken and Sutherland, Jeff, 2022).
Scrum is based on the principles of transparency, inspection, and adaptation. Scrum defends
the building of cross-functional teams within 7-9 team members working together to deliver

34

a potentially shippable product increment at the end of each iteration, described as sprint
(Schwaber, Ken and Sutherland, Jeff, 2022).

In its pure way, Scrum is not a scaling framework. But, by being the most popular Agile
methodologies according to Version 16th survey state of agile (Digital.Ai, Inc., 2023). We will
consider its adaptions, and tailored approaches for large-scale scenarios, such as Scrum@Scale
(Sutherland, Jeff and Brown, Alex, 2021) and Scrum of Scrums (PAASIVAARA; LASSENIUS; HEIKKILä,
2012).

Scrum@Scale and Scrum of Scrums (SoS) are two Scrum framework adaptations aiming
to scale agile practices in large settings. The Scrum@Scale (Sutherland, Jeff and Brown, Alex,
2021) is a framework that aims to provide scalable and flexible ways for organizations to
manage multiple teams. The framework is based on several practices, artifacts, and agile
events tailored for the scaled environments of large organizations. By default, the framework
has three components: I) The Scrum Master (SM) Cycle: Coordinating the “How”; II) The
Scrum Product Owner (PO) Cycle: Coordinating the “What” and; III) Connecting the PO and
SM Cycles.

Moreover, Scrum of Scrums is a technique to coordinate multiple Scrum teams working
in the same value stream. The SoS is also a tailored practice to adapt daily meetings across
several Scrum teams (PAASIVAARA; LASSENIUS; HEIKKILä, 2012). The SoS meeting gathers the
Scrum Master of each Scrum team for a daily of Scrum Masters. Each Scrum Master has the
duty of o discuss the status of each team’s work, dependencies, and issues that might impact
the overall project progress (PAASIVAARA; LASSENIUS; HEIKKILä, 2012). The meeting aims to
facilitate team communication and coordination to ensure they work towards a common goal.

2.6 AGILE TAILORING

Agile methods were developed for small, co-located teams working in physical spaces (BECK

et al., 2001). However, agile practices have been adapted to different contexts since their emer-
gence, from small to large companies and regulated industries to software factories worldwide
(DYBÅ; DINGSØYR, 2008).

It was assumed that general software development methods could be applied in any devel-
opment project and application (CESARE et al., 2008). However, many software project failures
have been attributed to the absence of evaluations of development methodologies (EWUSI-

MENSAH, 2003). A one-size-fits-all approach could lead organizations to lack flexibility, have

35

inadequate communication, and limited skills to adapt to changes (TENDEDEZ; FERRARIO;

WHITTLE, 2018). Due to this, the research community has started to discuss method tailoring
to facilitate the software development process and better suit the context differences among
development teams (CAMPANELLI; PARREIRAS, 2015).

Research in agile tailoring will likely continue as it enhances team performance, adaptability,
and delivery by accommodating practices according to context. Meanwhile, to tailor effectively,
organizations may consider several factors, including project complexity, team composition,
customer requirements, and organizational culture (HOSSAIN; BANNERMAN; JEFFERY, 2011).

Agile tailoring in the software development process can be classified as the ability to
tailor agile practices, principles, and values to create an approach that fits the needs of a
project, team, or organization. This tailored approach enhances project value, minimizes risks
and uncertainties associated with the project’s context, and improves team performance and
adaptability. Furthermore, in the literature, Conboy and Fitzgerald defined two classifications
for method tailoring (CONBOY; FITZGERALD, 2010; FITZGERALD; RUSSO; O’KANE, 2000): con-
tingency factors and method engineering.

The contingency factors approach for method tailoring considers that the best way to tailor
the software development process is by combining the principles, values, and practices of mul-
tiple available methods and selecting those that best suit the organization’s and teams’ needs
regarding structure, context, application type, project formalization, and personal preferences
(FITZGERALD; RUSSO; O’KANE, 2000). This approach assumes that no formatted framework or
methodology can meet the organization’s needs, and only a combination of different methods
can help them overcome their challenges.

To properly adopt the contingency factors strategy, the company must define a portfolio
of frameworks and methodologies so that teams can select the best practices (FITZGERALD;

RUSSO; O’KANE, 2000). Additionally, companies must define tailoring criteria for the selection
process, and the development context must be considered since it will drive the tailoring
process (CAMPANELLI; PARREIRAS, 2015).

The challenging parts of the contingency factors approach are related to combining multiple
methods. A set of procedures may not address all contingencies. Applying such an approach
also requires a good level of knowledge from the team members regarding many methods,
which can demand a lot of training and courses in an environment where changes occur
quickly (KUMAR; WELKE, 1992).

On the other hand, the method engineering approach bases itself on building a new method

36

extended from existing method fragments (CONBOY; FITZGERALD, 2010). Software develop-
ment methods will be created based on the organization’s and the teams’ specific context,
but not by adopting regular practices from several methodologies presented in the commu-
nity (CAMPANELLI; PARREIRAS, 2015). The main point of method engineering is to tailor the
practices adopted to respond directly to the challenges faced by real projects with specific
contexts.

The adaptations made by team members allow the teams to be the creators of their method,
easing their way of work and bringing the challenge of controlling it among the organization
(HENDERSON-SELLERS; RALYTE, 2010).

The process of developing a method using method engineering can be long. It would
require a fragment repository and an owner, the method engineer, responsible for configuring
the method based on the environment’s specific needs (FITZGERALD; RUSSO; O’KANE, 2000).
In the process, a continuous cycling and improvement approach must be taken considering
the project environment and characteristics, the fragment selection and building, the project
performance, the constant evaluation of the practices being applied, and its adaptations to
achieve better results (CAMPANELLI; PARREIRAS, 2015).

The method engineering approach also requires a high degree of expertise and knowledge in
software development methodologies and practices and significant time and resources to build
and maintain the repository of method fragments. Additionally, the success of the method
engineering approach depends on the method engineer’s ability to understand the specific
needs of the project and the team, which can be challenging in complex or rapidly changing
environments.

In conclusion, the contingency factors and method engineering approaches have advan-
tages and disadvantages through the agile method tailoring. While the contingency factors
approach allows for more flexibility and adaptability by combining multiple methodologies, im-
plementing it can be challenging and requires significant knowledge and expertise (CAMPAN-

ELLI; PARREIRAS, 2015). Meanwhile, the method engineering approach can be more tailored
to the specific needs of the project and team. Still, building and maintaining the reposi-
tory of method fragments requires considerable time and resources and relies heavily on the
method engineer’s expertise and knowledge regarding the organization domain (CAMPANELLI;

PARREIRAS, 2015). Finally, organizations must consider their specific needs and contexts when
choosing an agile tailoring approach that best fits their needs.

37

2.7 RELATED WORKS

Hoda et al. (HODA et al., 2010) conducted a very large case study in 16 organizations
across India and New Zealand, corroborated with four other case studies. The authors aimed
to better understand how agile software development teams from those organizations dealt
with agility in their project contexts. Since agile methods were defined for small co-located
teams in projects with variable scopes, the paper aimed to identify how agility was perceived
in contexts different from traditional agile projects. Through 40 interviews with diverse people
from different roles, the authors applied a rich ground theory process to categorize the contexts
of agility and its adaptation strategies. First, the context of the lack of customer involvement
was addressed through story owners, customer proxy members, and simulation. Second, the
context of fixed-bid contracts was addressed by providing options as contracts for a batch of
sprints and buffering development time. Design/Architecture Intensive was the third context,
which was adapted through a design pipeline, information architecture, and walking skeleton.
Then, Documentation intensive was adapted through a project dictionary in web projects,
but with comprehensive docs in a project with regulated environments. The fifth was the
slow rate of change that was tailored through working from requirements, which consists of
making iterations through a stable project scope. The last context was about distributed teams
that usually adapt communication and collaboration through video and audio conferences or
instant chat messages. Further, the authors discuss context-independent practices that teams
used from agile methods, followed by the book. Besides it, context-dependent methods that
required a level of tailoring were also discussed, such as release planning, backlog refinement,
and user story writing. Finally, the study from Hoda et al. (HODA et al., 2010) highlights the
importance of context during agile adoption and tailoring and how it can impact the team’s
routine. Since the study was conducted more than ten years ago, we reinforce the need to
evaluate new contexts through our SLR to understand how agile is tailored.

Hossain and Bannerman conducted a multi-case study (HOSSAIN; BANNERMAN; JEFFERY,
2011) on four different GSD projects to evaluate the tailoring of regular agile Scrum practices.
The authors also assessed contextual factors of GSD projects that may limit the use and
tailoring of agile methods. The authors chose seven primary practices of Scrum and described
how it was tailored by each one of the four case studies. The agile practices chosen were
entirely derived from Scrum, and they were: sprint, sprint planning, daily Scrum, Scrum of
Scrums (SoS), sprint review, sprint retrospective, and backlog. Finally, the authors summarize

38

the factors that lead each phase to tailor each agile practice. They also describe in full detail
what each factor impacted and the consequence of it. The factors are project size, collaboration
modes, number of distributed sites, project domain, budget team size, and others. Despite the
focus given to case studies using Scrum, it was perceived that there is no specific way to tailor
Scrum in a GSD environment. Probably other agile methodologies and frameworks, too, since
different market sectors would have various contextual factors that would imply the tailored
approaches used. Based on it, we reinforce the present study’s importance in investigating the
literature to aggregate the different tailored strategies used by different agile distributed teams
in large-scale settings using different agile methodologies and frameworks in various market
sectors.

Bass, in his studies (BASS, 2014; BASS, 2013; BASS, 2015), conducted a series of interviews
with 46 practitioners from 8 large-scale international companies. During a grounded theory
process, he evaluated the tailoring of the Scrum Master (BASS, 2014) and Product Owner roles
(BASS, 2013; BASS, 2015) in those large-scale contexts to understand better how the practi-
tioners describe the enhancement and expansion of such a role. The study was conducted with
the same companies with offices across the UK, India, Germany, the USA, Malaysia, and New
Zealand. Such companies provide services on the Internet, industrial, enterprise, and regular
software factories. Various interview members were selected, including developers, QA ana-
lysts, Product owners, managers, and even Chief technology officers. The Scrum Master study
(BASS, 2014) organizes the data collected in six scrum master activities and how such activ-
ities were conducted in those companies. Such activities are: I) Process anchor; II) Stand-up
facilitator; III) Impediment remover; IV) Sprinter planner; V) Scrum of Scrums facilitator; IV)
Integration Anchor. Conversely, the Product Owner studies (BASS, 2013; BASS, 2015) catego-
rize the data collected in nine product owner functions tailored to scale agile in large projects.
Such roles are: I) The groom; II) The prioritizer; III) The release master; IV) The Technical
architect; V) The Governors; VI) The communicator; VII) Travelers; VIII) The intermediary;
IX) The risk assessor. The author also classifies those POs’ roles into two different classes,
the client-side POs’ more concerned with client-related tasks, and the production-side POs’
that would work closer to the technical and legal aspects of the solutions (BASS, 2013; BASS,
2015).

Both studies from Bass (BASS, 2014; BASS, 2013; BASS, 2015) describe in rich detail how
two vital roles from Scrum are being tailored in large-scale environments from companies of
different market sectors. However, by presenting various activities and functions of the PO and

39

SM role, the studies are limited to those roles without giving further information on how the
agile practices are tailored during the applicability of those different functions. Due to it, we
are looking forward to expanding Bass’s findings by providing a more extensive overview, not
focused on agile roles but on tailored practices in general at large-scale settings.

Campanelli and Parreiras (CAMPANELLI; PARREIRAS, 2015) conducted an SLR study to
systematically review the existing literature on agile methods tailoring and summarize and
understand how the research on agile tailoring is undertaken. Also, identify the technical
aspects and the research community’s view of agile methods tailoring, and identify trends
and gaps in the existing research. The study presented the concepts of contingency factors
and method engineering theory, showing the studies that used each approach. More than
that, the analysis demonstrated some criteria that led the reviewed studies to tailor agile
methods, such as project type 46.4%; Business goals 42.9%; Complexity 26.8%; Team size
25.0%; Technology knowledge 23.2%; User availability 16.1%; Requirements stability 16.1%;
Organization size 16.1%; Culture 16.1%; Team distribution 14.3%; Management support 8.9%;
Degree of innovation 7.1%; Previous projects 7.1%; Maturity level 7.1%; Domain knowledge
5.4%; Project budget 5.4%; Communication 5.4%; Type of contract 3.6%. Despite the cover
of the study regarding the tailoring approaches of several empirical studies, the analysis does
not focus on distributed agile teams in large-scale environments but on agile teams in general.
Such a gap highlights the importance of further investigation of agile tailoring in large-scale
distributed environments and the criteria related to those settings.

Rizvi et .al (RIZVI; BAGHERI; GASEVIC, 2015) conducted an SLR to identify why companies
adopt AGSD, which are the most critical risks and threats in AGSD, and which agile method-
ologies lead AGSD projects to success. The paper selected 63 AGSD studies from 2007 to
2012 that applied practices from all agile methods. The article’s primary goal is to understand
the reasons for adopting agile in GSD and synthesize the most present risks and threats of
distributed projects and, consequently, the best solutions to mitigate them. Also, it aims to
relate the agile methodology used with risks faced by the projects and the mitigation strategies
used. Unlike our goal, which aims to describe how the AGSD teams from large-scale projects
applied agile practices, Rizvi’s studies do not explain how those practices were tailored in the
studies. Besides, it covered a small range of years of research studies. Finally, it does not
consider scaling agile practices to better deal with the risks and threats of large-scale AGSD
projects.

Rolland et al. (ROLLAND et al., 2016) present a study that examines the underlying assump-

40

tions in existing studies of large-scale software development. The authors used the problemati-
zation methodology from Alvesson and Sandberg to develop an alternative set of assumptions
better suited to the characteristics of large-scale agile software development. The authors also
conducted a case study of a large-scale agile project that involved 120 participants in a large
company from Norway. As an output of the study, the authors offer a new set of assumptions
for "Agile in the large" since how knowledge can be transferred, how inter-team coordina-
tion needs to be addressed, and how replacement assumptions are not silver bullets for more
traditional teams. Moreover, the study provides critical questions and suggests new avenues
for research to help overcome the various barriers that practitioners might face in this area.
Based on the author’s suggestions and assumptions presented, it was possible to evaluate how
agile in the large can assume different shapes according to the organizational context, which is
aligned with our beliefs that agile requires specific tailoring techniques according to the teams’
context and needs.

In one of his studies, Bass uses grounded theory to explore the process of agile tailoring by
investigating artifact inventories, using empirical data collected from industry practitioners at
all levels representing nine international companies involved in large-scale offshore software de-
velopment scenarios from several different market sectors (BASS, 2016a). The study described
artifacts related to program governance, product artifacts, release artifacts, Sprint artifacts,
and future artifacts categories. During the investigation, it became clear that agile artifacts
were enriched and tailored with plan-based approaches to handle the companies’ compliance,
risk, and quality management, which could not be covered with agile in its pure form. More-
over, the paper focused on the artifacts aspect of the teams and not the agile practices tailored
to those large-scale settings, which reinforces the need for further research on this theme.

The study from Alqudah and Razali focused on revising six scaling agile methods/frame-
works (ALQUDAH; RAZALI, 2016), comprehending their roles and practices, and identifying their
differences and similarities. The frameworks chosen were DAD, SAFe, LeSS, LeSS Huge, Spo-
tify, Nexus, and RAGE. Each framework was compared in five criteria, the team size, training
and certificate on, methods and practice adopted, technical practices required, and organiza-
tion type. However, the study mainly focused on investigating the agile frameworks based on
their pure use and not on the literature of case studies tailoring them. Due to it, the authors
could not evaluate the applicability of the tailoring practices from those frameworks since
comparing them was the primary goal. Meanwhile, it reinforces the need for further research
in those frameworks to understand better how each one works and how their practices vary

41

according to the agile team use and the market context of the companies.
Dikert et al. (DIKERT; PAASIVAARA; LASSENIUS, 2016) conducted an SLR to review how

large-scale agile transformations occurred in the industry and described how agile methods and
lean software development were adopted and adapted at scale. The study identified challenges
and success factors during the agile transformation of large-scale and distributed scenarios.
The article points out that 90% of the selected studies for the SLR were experience reports,
indicating that academic research is necessary. However, since the focus was mainly on the
challenges and success factors of scaling agile, specific agile practices and how they were
implemented in GSD settings were not considered. Additionally, the study does not relate the
agile practices covered in success factors to the practices of scaling agile frameworks. However,
it points to the need to understand better how scaled frameworks are adapted, their challenges
and benefits, and how their practices are tailored. Such points indicate the need for further
research in large-scale agile distributed environments tailoring agile.

Lous et al. (LOUS et al., 2018) presented a case study conducted during one year at Debitoor.
This small Danish company develops a single software product with 40 employees distributed
across Denmark, Ukraine, and Lithuania. The authors presented a customized process adopted
by the company, which emerges from the agile philosophy but embraces the characteristics of
distributed development. The study also shows a virtual work environment between two teams
in the organization and how the agile practices and tools were carefully selected to support
the distributed agile development teams. The paper summarizes a set of practices tailored by
the teams since the retrospective was conducted on a 3-weekly cadence, one-on-one through
face-to-face walks, growth hacks meetings, and others. Besides the set of tools used by the
team to support the development was also presented. Moreover, the collection of tools was
assessed through communication, coordination, collaboration, and awareness dimensions; and
the communication network among team members was described. The teams’ practices were
tailored according to the challenges addressed in another study by Lous, which showed 45
challenges in using Scrum in GSD. Ultimately, as pointed out by the authors, they present
a prototype for organizing and running distributed projects in a small-scale company in a
particular context, which can not be generalized for other contexts. Based on it, we hope to
go further and provide a framework that could cover several contexts to describe how to run
and organize agile distributed teams with agile tailored practices in different scale dimensions.

Ambler and Lines had updated their original version of the Disciplined Agile Delivery (DAD)
toolkit published in 2012 (AMBLER; LINES, 2012). In 2020, the authors released its new version

42

through the book “Choose Your WoW: A Disciplined Agile Delivery Handbook for Optimizing
Your Way of Working (WoW)” (LINES; AMBLER, 2019). The DAD became only Disciplined
Agile (DA), and the authors focused on fully describing a toolkit allowing the organization
to choose its own way of working (WoW) based on a guide that would help individuals and
teams make better decisions and tailor their process according to their purpose (LINES; AMBLER,
2019). DA emphasizes a pragmatic, context-based, and enterprise-aware approach to agile and
lean delivery (LINES; AMBLER, 2019).

Developing agile software has become popular but is also becoming increasingly complex,
involving several individuals and teams from different cultures and organizations with different
sizes and processes. In the meantime, some organizations understand that one-size-fits-all so-
lutions may not work for their specific context (TENDEDEZ; FERRARIO; WHITTLE, 2018). Based
on such a challenge, Ambler and Lines developed DA beyond the choose your WoW approach
(LINES; AMBLER, 2019), which foment, in some way, the agile tailoring approach. In the au-
thors’ opinion, regular frameworks, like SAFe (Leffingwell, Dean, 2023), and Scrum (Schwaber, Ken

and Sutherland, Jeff, 2022), describe what the individuals, teams, and organizations should do
by narrowing the options with a set of best practices, ceremonies, roles, and events. By doing
this, the structured frameworks do not respect the context by avoiding the understanding that
each individual, team, and company are unique (LINES; AMBLER, 2019). As the authors say,
it does not mean that regular agile frameworks do not work, but it may limit the potential
of your teams since they solve a problem with some practices but do not foment continuous
improvement (LINES; AMBLER, 2019).

Ambler and Lines, in their book, present the DA as a toolkit that provides guided contin-
uous improvement through an agile agnostic tool with explicit options of agile techniques and
practices, which allows individuals and teams to experiment and tailor a variety of techniques
that will help them choose their fit-for-purpose WoW (LINES; AMBLER, 2019). Through a
three-step strategy, the authors suggest that organizations and teams: I) align and start where
they are independent of the issues; II) improve their process by trying different techniques fol-
lowing a fit-for-purpose strategy; III) thrive by becoming a learning organization that improves
its process continuously by assessing the problems, then applying techniques to solve them,
assessing effectiveness, and adopting if it works or abandon it fast (LINES; AMBLER, 2019).

Similar to our goal of developing a framework to describe how and what different mar-
ket sectors are tailoring agile practices using agile frameworks. Ambler and Lines WoW book
presents DA as a guide since it summarizes several agile techniques and practices without

43

reinventing the wheel and encourages organizations to use and tailor them to fit their pur-
poses (LINES; AMBLER, 2019). DA foment guided continuous improvement through a set of
techniques from each software engineering discipline, from enterprise architecture to release
management, finance, sales, data management, and others (LINES; AMBLER, 2019). Mean-
while, the authors also described in the DA how each technique could be applied, and through
a ranking structure of effectiveness, the teams and individuals can assess how effective such a
technique is (LINES; AMBLER, 2019). Such effectiveness ranking of the techniques also allows
teams, departments, and the whole organization to assess where they are according to the DA
guidance (LINES; AMBLER, 2019).

The authors emphasize that there is no one-size-fits-all approach to agile and that teams
must carefully consider their unique needs and constraints when selecting and implementing
agile practices. By embracing the uniqueness and complexity and providing clear choices with
agnostic advice, the book provides guidance on assessing your team’s context and offers a
range of options for tailoring your WoW based on factors such as team size, organizational
structure, and regulatory requirements (LINES; AMBLER, 2019).

The emphasis on choosing your WoW (LINES; AMBLER, 2019) is relevant to our agile
tailoring research work since we also consider that the context and specificities of the teams
and organizations drive the agile tailoring practices selection process. By studying the DA
and the guidance provided in the book, we can better understand how teams and individuals
can better customize their work to fit its context. The whole book helped us during the
development of the TARGET framework by providing clearance on how organizations can use
different techniques and assess their effectiveness. In our goal, agile distributed teams working
on large-scale settings could select and tailor agile practices according to their needs and
context without being restricted to a set of practices from a single framework.

Edison et al. (EDISON; WANG; CONBOY, 2022) conducted a systematic literature review
to compare the main scaled agile frameworks and methods. The study focuses on the scaled
frameworks SAFe, LeSS, Scrum-at-Scale, DAD, and Spotify model, and also custom-built
scaled methods developed by companies to address their needs. The study presented an
overview of the research area of large-scale agile methods, presenting the findings of pre-
vious systematic reviews and the research gaps left by those studies. Furthermore, the authors
compared the scaled agile methods by showing their principles, practices, tools, and metrics.
It also shows the original method specifications and the extensions and modifications identi-
fied in the empirical papers selected. Finally, challenges and success factors the teams face

44

while scaling agile on a large scale are presented in an organized view divided by each scaled
agile method, including the main and custom-built ones. The results of the study point to
the different ways of adopting and adapting the practices of several scaling agile frameworks
presented in the literature, but it does not consider the relationships among the market sectors
of the case studies evaluated and practices modified. Our study aims to structure a framework
allowing practitioners and researchers to understand how different market sectors tailor agile
practices.

Over the years, the agile tailoring research theme is receiving more attention. In different
directions and perspectives, several authors have contributed to this body of knowledge by
presenting studies related to tailoring agile roles, adaptation to regular agile methodologies,
SLRs related to factors and criteria that led teams to tailor agile, or even reviews of the
scaling agile frameworks. However, the set of studies does not focus on agile tailoring within
agile distributed teams at large-scale settings, which is the focus of this study. Moreover, the
following table describes a summary of the related works 2.7.

45

Table 1 – Related Works Summary.

Study Year Description

(HODA et al., 2010) 2010
Highlights the importance of context during agile adoption and tailoring and how it can impact

the team’s routine. Since the study was conducted more than ten years ago, we reinforce
the need to evaluate new contexts through our SLR to understand how agile is tailored.

(HOSSAIN; BANNERMAN; JEFFERY, 2011) 2011 Hossain and Bannerman conducted a multi-case study on four different GSD projects to evaluate
the tailoring of regular agile Scrum practices. However, other agile frameworks were not evaluated.

(BASS, 2013; BASS, 2014; BASS, 2015) 2013
Bass, in his studies, conducted a series of interviews with 46 practitioners from 8 large-scale international

companies. During a grounded theory process, he evaluated the tailoring of the Scrum Master and Product
Owner roles in those large-scale contexts but without focusing on the agile practices.

(CAMPANELLI; PARREIRAS, 2015) 2014
Campanelli and Parreiras conducted an SLR study to systematically review the existing literature

on agile methods tailoring. But the analysis does not focus on distributed agile teams in
large-scale environments but on agile teams in general.

(RIZVI; BAGHERI; GASEVIC, 2015) 2015
Rizvi conducted an SLR to identify why companies adopt AGSD, which are the most
critical risks and threats in AGSD, and which agile methodologies lead AGSD projects

to success. But, the study did not considered scaling agile frameworks.

(ROLLAND et al., 2016) 2015 Rolland present a study that examines the underlying assumptions in existing
studies of large-scale software development.

(BASS, 2016a) 2016
The study described tailoring techniques on artifacts related to program governance,
product artifacts, release artifacts, Sprint artifacts, and future artifacts categories.

However, proper attention was not given to agile practices.

(ALQUDAH; RAZALI, 2016) 2016

The study from Alqudah and Razali focused on revising six scaling agile methods/frameworks,
comprehending their roles and practices, and identifying their differences and similarities.

However, the authors could not evaluate the applicability of the tailoring practices
from those frameworks since comparing them was the primary goal.

(DIKERT; PAASIVAARA; LASSENIUS, 2016) 2016

The authors conducted an SLR to review how large-scale agile transformations occurred
in the industry and described how agile methods and lean software development were

adopted and adapted at scale. But, the study does not relate the agile practices covered in
success factors to the practices of scaling agile frameworks.

(LOUS et al., 2018) 2018

The authors presented a customized process adopted by a Danish company, which emerges
from the agile philosophy but embraces the characteristics of distributed development.
However, they present a prototype for organizing and running distributed projects in a

small-scale company in a particular context, which can not be generalized for other contexts.

(LINES; AMBLER, 2019) 2019 Ambler and Lines, in their book, present the DA as a toolkit that provides guided continuous
improvement through an agile agnostic tool with explicit options of agile techniques and practices.

(EDISON; WANG; CONBOY, 2022) 2022
The authors conducted a systematic literature review to compare the main scaled agile

frameworks and methods. But, it does not consider the relationships among the
market sectors of the case studies evaluated and practices modified.

Source: The author (2023)

46

3 METHODOLOGY

This chapter will explain and describe the methodology used during the three stages of
the whole study. First, the Systematic Literature Review (SLR) gathered the literature data
that guided the present study. Then, the TARGET framework emerged from the structured
data extracted from the SLR. And finally, a case study of a very large-scale project from an
IT service provider company to evaluate part of the framework design.

In the following Figure 3, it is possible to see how the three stages have been conducted
sequentially in a visual representation. With the input of the SLR studies, we could access a set
of agile tailored practices from the literature and then structure it in the TARGET framework
for evaluate through a case study.

Figure 1 – Research Methodology Phases

Source: The author (2023)

3.1 SYSTEMATIC LITERATURE REVIEW

A Systematic Literature Review following the guidelines of Kitchenham and Stuart (KITCHEN-

HAM; CHARTERS, 2007) was conducted in this study to evaluate most of the relevant literature
regarding agile tailoring practices in large-scale environments used by distributed teams that
use agile frameworks. Our goal was not to uncover all recorded tailoring approaches regarding
agile practices from every agile and scaling agile framework presented in the software engi-
neering area but to focus on five of the most used in the literature. However, we aim to collect
sufficient information about the tailoring of agile practices by distributed teams in large-scale
contexts that uses agile and scaling agile frameworks to be the most representative study
regarding the adaptation of agile practices.

By doing this SLR, we aim to reveal how the current literature tailors agile practices and

47

methods using different frameworks in large-scale settings. By the end of the SLR, we look
forward to being able to answer the following research questions: “What agile practices do the
DSD teams that apply agile frameworks in large-scale settings are tailoring?”, and “How do
DSD teams that apply agile frameworks tailor its agile practices in large-scale settings?”.

Three researchers conducted the SLR, the first author and the advisors. During the SLR’s
phases, the author and the advisor developed the research protocol, and the author executed
the search string in the bibliography databases. The search results were exported as BibTeX
files, then organized into the StArt software (ZAMBONI et al., 2010), an open-source support
tool for SLR research, and then all the articles were evaluated until the full read phase.

Moreover, by building a set of data enough to answer both of those questions during the
SLR, we aim to have sufficient information regarding the state of the art of agile tailoring.
Within it, it will be possible to develop the basis of a framework to be the leading guide of
agile tailoring on large and distributed scenarios involving teams spread in different locations
to help practitioners and researchers.

3.1.1 Document selection

We applied automatic search in five large bibliographic databases to identify a set of rel-
evant studies that the research goals should match. The search string aimed to gather the
keywords of each research theme by combining the keywords of “distributed software devel-
opment”, “scaling agile”, “agile method tailoring”, and “large-scale”. Based on this structure,
the search string can be accessed in the research protocol (See in <https://bit.ly/3EkIpMy>)
or in the table 3.1.1. We used this string to search the metadata relating to journals and
conference proceedings in IEEE Xplore, ACM Digital Library, SpringerLink, Scopus, and Wiley
bibliographic databases.

The search produced 1520 references from 2001 to 2021 (IEEE = 31; ACM = 836;
Springer= 191; Wiley = 58; Scopus = 404). The references were limited from 2001 onwards
since the Agile Manifesto was published this year. The selection process had three phases:
(i) an initial selection of research results that could reasonably satisfy the selection criteria
(outlined next) based on a reading of the studies’ titles and abstracts; followed by (ii) a selec-
tion against these criteria from the initially selected list of studies based on a reading of their
introductions and conclusions; (iii) and finally, the studies were fully read and the ones related
to the tailoring of agile practices by distributed teams in large-scale contexts that uses agile

https://bit.ly/3EkIpMy

48

Table 2 – Main Search String.

Main Search String
("distributed software development" OR "distributed software engineering" GSE OR GSD OR "distributed teams" OR

"global software development" OR "global software engineering" OR "global team" OR "dispersed team" OR
"spread team" OR "virtual team" OR "offshore" OR "outsource" OR "DSD" OR "DSE")

AND
("scaling agile" OR "scaled agile framework" OR SAFe OR Spotify OR Scrum@Scale OR Scrum OR Kanban OR

Lean OR Nexus OR "large Scale Scrum" OR LeSS OR "agile programme management OR AgilePgM OR
XP OR "Extreme Programming" OR "feature driven development" OR fdd)

AND
("agile tailoring" OR "agile software development" OR "agile method tailoring" OR "agile practices tailoring" OR

"agile practice tailoring" OR "agile adaptation" OR "agile method adaptation" OR "agile practices adaptation" OR
"adapting agile" OR "adapting agile methods" OR "adapting agile practices" OR Agile OR "Agile practice" OR

"Agile method")
AND

(large OR scale OR large-scale OR "large-scale development" OR "large-scale agile development" OR "large-scale settings" OR
"large-scale environment" OR "large enterprise" OR "large project" OR "large organization" OR "large company")

Source: The author (2023)

framework were selected.

3.1.1.1 Inclusion/Exclusion criteria

The following criteria guided the selection of studies. We included :

• (IC1) complete, peer-reviewed, published studies;

• (IC2) studies directly related to the research question and its subjects, such as agile
tailoring in large-scale distributed settings;

• (IC3) the study is available via the university library services accessible to the authors
during the time of the research;

• (IC4) keywords of the research string appear on abstract or author keywords;

We excluded :

• (EC1) texts not published in English;

• (EC2) technical content, e.g: editorials, tutorials, keynote speeches, white studies, thesis,
dissertations, technical reports, books; and

• (EC3) short studies (<=4 pages);

• (EC4) studies not related to agile tailoring in large-scale distributed settings;

• (EC5) studies related to education matters;

49

• (EC6) studies that present personal viewpoints or specialists’ opinions;

• (EC7) Studies that do not clarify the research area as distributed software development,
scaling agile, tailoring agile methods, and large-scale software development.

Each study was checked to ensure there was no duplication or replication. For example, if
a given study were published in two different journals with a different order of primary authors,
only one study would be included; this would usually be the most comprehensive or recent
study. By doing this, it was possible to identify 90 duplicated studies and two replication. After
excluding the duplicated ones, the selection phase was executed, and we identified 247 studies
for phase 1. During phase 1, the introduction and conclusion of each study were read, and 91
studies were selected for the full read. In phase 2, the total read removed 17 studies. During
this phase, studies related to other subjects, such as outsourcing in distributed large-scale
settings or general GSD, were removed (CAMARA et al., 2022a), and the final set consisted of
74 studies. Of those 74 studies, each one was evaluated regarding the agile tailoring practices
used by the distributed teams. For a better view of the number of studies during each phase
and the distribution on the bibliographic databases, see table 3.1.1.1

Table 3 – Studies by engines.

Engine Selection Phase 1 Phase 2
IEEE 31 26 15
ACM 836 69 21
Springer 191 61 22
Wiley 58 9 2
Scopus 404 82 14
Total 1520 247 74

Source: The author (2023)

During the selection phase, the author read the title and abstract of all studies, and then
the result dataset was discussed with the advisors. Whether two or all the researchers approved
an article, it was included in the next phase. However, if a study received only one vote for
approval, such a study would be discussed by all the researchers until they reached a consensus.
In phase 1, each study of the 247 was accessed and evaluated by the author, and after the
evaluation, the selected ones were assessed following the same rules of the selection phase.

In phase 2, 74 studies were fully read by the author. The data were extracted by the
researchers in the form of quotes, all the researchers evaluated the dataset of quotes, and any
disagreements were discussed until a consensus was reached.

50

3.1.2 Study Quality

Our study’s quality assessment criteria are based on principles and good practices es-
tablished for driving empirical research in software engineering (DYBA; DINGSOYR; HANSSEN,
2007), briefly summarised as follows. We answered the following questions using: Yes, No,

Partially (i) is there a clear definition of the study objectives?; (ii) Is there a clear definition of
the justifications of the study?; (iii) Is there a theoretical background about the topics of the
study?; (iv) Is there a clear definition of the research question (RQ) or the study’s hypothesis?;
(v) Is there an adequate description of the context in which the research was carried out?; (vi)
Is there an adequate description of the data collection methods?; (vii) Is there an adequate
description of the sample used and the methods for identifying and recruiting the sample?;
(viii) Is there an adequate description of the methods used to analyze data and appropriate
methods for ensuring the data analysis was grounded in the data?; (ix) Does the study provide
clear answers or justifications about RQ/hypothesis?; (x) Does the study provide clearly stated
findings with credible results?; (xi) Does the study provide justified conclusions?; and (xii) does
the study discuss validity threats?

3.1.3 Study Evaluation

The evaluation assessment used in the study is based on the method of rigor and industrial
relevance evaluation proposed by Ivarsson and Gorschek (IVARSSON; GORSCHEK, 2011). The
authors describe an evaluation model of rigor and industrial relevance of technology evaluations
in software engineering. The rigor aspects are evaluated in three dimensions: the extent to
which (i) context, (ii) study design, and (iii) threats to validity are described. Each aspect
is classified on a scale that helps measure and quantify a paper’s rigor score. The scale is
composed of three possible values: 0 (“weak”), 0.5 (“medium”), and 1 (“high”). The maximum
value for rigor is 3.

Conversely, the model considers relevance as a study’s potential impact on academia and
industry. However, it is also important to consider relevant research topics and real industrial
settings to achieve relevancy. Differently from rigor, industrial relevance is evaluated in four
aspects that only accept a binary score, 1 for present and 0 for not present. The aspects are (i)
the subjects of the study that are described as the people involved in the case, e.g., industry
professionals; (ii) the context in which the study was conducted, e.g., industrial settings; (iii)

51

the scale of the applications used in the study, e.g., realistic industrial applications; and (iv)
the research method used, some methods like a case study, survey, and action research are
supposed to provide real evidence leading to more industrial relevance instead of methods like
laboratories experiments, conceptual analysis. The maximum value of relevance is 4.

3.1.4 Data Extraction

Each selected study was fully read to extract information regarding agile tailoring practices
of distributed teams that worked in large-scale environments and used agile and scaling agile
frameworks.

Data extraction refers to recording all relevant information from the studies required to
answer the RQ (WOHLIN et al., 2012). To synthesize the data and ease the management, we
conducted some recommended steps by (CRUZES; DYBA, 2011).

We synthesized the data by identifying each tailoring agile practice and how distributed
teams apply it in large-scale environments. As we gave each occurrence the same weight, the
frequencies presented after the practice title reflect how many papers mention a given practice;
frequencies, therefore, reflect the prevalence of a practice and not its potential importance.

Moreover, to have a structured data extraction process and to facilitate the management
of the extracted data, we decided to use the strategy of categorizing studies into research
type and contribution type facets, as suggested by Petersen et al. (PETERSEN et al., 2008) and
Wieringa et al. (WIERINGA et al., 2006).

The following research types facet derived from Wieringa et al. (WIERINGA et al., 2006)
were considered for evaluation.

• Solution: Proposal solution to a problem can be an improvement or a new technique’s
proposal. The proposed solution must be argued and, when possible, tested and vali-
dated;

• Philosophical: Proposes a new way of thinking/looking at things. It can be a new
conceptual framework, a taxonomy, and a secondary study, such as SLR or SMS;

• Evaluation: Evaluation of a problem in practice, or evaluations of a technique imple-
mented in practice, e.g., case studies;

52

• Experience: It describes personal experiences. It can be personal experiences from the
authors or industrial experience reports.

Also, all the reviewed studies were classified through the contribution type facets derived
from Petersen et al. (PETERSEN et al., 2008).

• Model: Representation of an observed reality through concepts;

• Framework: A set of practices, methods, and recommendations to be applied;

• Guideline: A set of advice, best practices, and success factors grounded in empirical
evidence;

• Lessons learned: A set of outcomes from case studies findings and results;

• Advice: A set of recommendations usually from the author’s opinion and not grounded
in empirical evidence;

• Theory: A construct of cause-effect relationships.

A spreadsheet was used to record the extracted data. Quotes from each study that answered
the research question were recorded on separate results forms. We also synthesized the quotes
data by identifying themes from the findings reported in each accepted paper following an
open-coding process and a constant comparison among the codes (GLASER, 1992). The open-
coding activity was executed in the MAXQDA Software 1. During the synthesis, the codes
were grouped into categories, and most of the categories emerged based on the different
agile frameworks used by distributed teams in large-scale environments. Categories related to
other themes, such as outsourcing of distributed teams in large-scale environments, generated
another study (CAMARA et al., 2022a).

3.2 FRAMEWORK

3.2.1 Framework Mapping

The development of the TARGET started during the data extraction of the studies in
the second phase of the SLR (see table 3.1.1.1), in which the studies were fully read for a
1 www.maxqda.com

53

better understanding of how distributed teams from large-scale environments are using agile
and scaling agile frameworks and tailoring the agile practices from those frameworks.

Beyond the extraction of the tailored practices from the studies, its contribution and
research types (PETERSEN et al., 2008; WIERINGA et al., 2006), and its rigor and relevance
score (IVARSSON; GORSCHEK, 2011). Information regarding the study’s characteristics was also
extracted to compose the development of the TARGET framework. First, the studies were
separated according to their market sector. Second, the taxonomy presented by Dingsoyr et al.

(DINGSØYR; FÆGRI; ITKONEN, 2014) was used to classify each study regarding the definition
of agile scaling according to the number of teams involved, which could be small-scale, large-
scale, and very large-scale. Third, each agile framework or methodology used in the studies
was registered to help build the framework. Finally, the last level of the framework is formed
by tailored agile practices.

Within the information extracted from the final set of studies, it was possible to organize
95 tailored practices and their different use approaches. According to the contexts of the
organizations in the cases, we could categorize organizations by their market sectors, scales,
agile frameworks, and practices tailored to them. By doing this, the TARGET Framework
could become a guide playbook for tailoring agile methods according to the organizations’
agile framework, scale size, and, most importantly, its business domain.

3.2.2 Framework Structure

The TARGET Framework structure aims to provide an overview of how and what different
market sectors from the SLR studies with different scaling agile dimensions using different
agile frameworks are tailoring agile practices. It is essential to point out that a single study can
appear in different domains or scaling terminologies since the sample contains multiple-case
studies involving various organizations and studies conducted in different years in the same
organization. Moreover, the framework structure must serve as a guide for understanding and
inspiring practitioners and researchers by describing how several market sectors with distributed
teams in large-scale contexts are developing software.

A specific structure was built for the 17 market sectors identified during the framework
construction. Based on the three possible scaling dimensions when identified for the market
sector and the agile frameworks used by the studies. Separating the frameworks into 17 in-
dividual collections would help researchers and practitioners better understand the tailored

54

practices and asses specific context demands that lead the organization to adapt agile.
The following image describes an example of structure of a market sector in the TAR-

GET Framework (See image TARGET Framework structure example 3.2.2). The framework
structure can be viewed as a summary of the tailored agile practices identified in the SLR.
Moreover, the description of each of those practices could be consulted in the results of the
SLR.

Figure 2 – TARGET Framework structure example.

Source: The author (2023)

3.2.3 Framework Evaluation

The framework was built based on state-of-the-art regarding 3.1 agile tailoring with dis-
tributed teams in large-scale environments using agile frameworks. Due to it, we believe the
evaluation process of the framework must rely on evaluating the tailored practices gathered
from the literature on its respective market sectors, scale dimensions covered, and the agile
frameworks used. However, it is not feasible to cover the evaluation of the 17 individual col-
lections of the TARGET Framework with real industry cases in this study due to availability,
time, and capacity constraints.

Nonetheless, to avoid the absence of an evaluation in the TARGET Framework and com-
promise the main contribution of this study with such a significant threat to validity. With

55

more studies from the SLR, the market sector of IT service provider companies was evaluated
through a real industry case in a Brazilian IT service provider organization. The case study
aims to evaluate the presence of the tailored practices identified in the literature by assessing
an agile remote distributed team from an IT service provider company that is developing a
very large-scale solution for one of its clients. Further, evaluate the similarities of the agile dis-
tributed team related to the tailored practices presented in the TARGET Framework regarding
IT service provider companies from the literature.

Even though this evaluation step could not generalize the evaluation applicability of the
TARGET Framework, we aim, based on the resources of time, capacity, and availability, to
cover the most representative market sector from our analysis. In order to reduce the threat
to the validity of building a framework without evaluating it in a real industry case scenario.

3.3 CASE STUDY

Case studies are present in areas that aim to study the social and political aspects of
individuals, groups, and organizations, such as psychology, sociology, political science, social
work, business, and community planning (YIN, 2003). Software engineering is not different.
Since individuals, teams, and organizations develop software, the social and political aspects
have particular importance in those contexts (RUNESON; HöST, 2009).

The present case study aims to understand the interaction between the studied object, an
agile distributed team from an IT Service Provider company, and the tailored practices used
by the team in their environment. During the study, the guidelines from Runeson and Höst
were followed (RUNESON; HöST, 2009). The study strictly addressed the five major steps from
Runeson and Höst (RUNESON; HöST, 2009), which are:

• Case study design - objectives are defined, and the case study is planned.

• Preparation for data collection - procedures and protocols for data collection are defined.

• Collecting evidence - execution with data collection on the studied case.

• Analysis of collected data.

• Reporting.

56

Each described step was covered to provide enough credibility and quality for the research
case study.

During the SLR, various tailored practices from different scaling agile frameworks were
categorized (See section 3.1). Moreover, those practices were organized and helped to build
the Tailoring lARge-scale aGilE pracTices Framework - TARGET (See section 3.2), which con-
tained those practices according to the market sector of the companies, its scaling taxonomy,
and the agile and scaling framework used by them. After it, it was possible to identify that
several IT service provider organizations were seen using diverse tailored practices. Due to
it, this case study aims to evaluate the presence of those tailored practices identified in the
literature by assessing an agile remote distributed team from an IT service provider company
that is developing a very large-scale solution for one of its clients.

Moreover, evaluate the developed framework from the SLR in practice to better understand
whether the practices from the most popular sector, IT service providers, are used similarly
in an agile distributed team from Brazil working to develop a very large-scale solution. Also,
investigate which other practices the teams operate and how different tailoring approaches not
seen in the SLR were applied.

Finally, this case study seeks to answer the following research questions: “Which practices
from the TARGET framework the agile distributed team from a very large-scale project in
an IT service company are using?”, and also “How the agile distributed team from a very
large-scale project from an IT service company are tailoring agile practices?”. By answering
such questions, we aim to understand how a real industry case team tailors agile to its context.
We also evaluated which approaches presented in the TARGET framework are used by such a
team.

3.3.1 Case Study Context

The case study was held in an agile distributed team from an IT service provider company
from Brazil with more than 25 years of technology experience and expertise in the different
disciplines of Software Engineering. The consultancy firm has headquarters in São Paulo. It
provides services on software development, quality, design, software tests, performance tests,
observability, security information, LGPD compliance, and others for the entire country and
even international clients.

For the case study, an agile distributed team with eight members spread across four out of

57

the five regions of Brazil was selected. The furthest member from the company is separated
by 3500 kilometers of distance, and the members never meet each other. Moreover, the Tech
leader of a distributed quality team from the same consultancy firm and the client was selected.
The tech lead works with more than ten quality analysts across Brazil.

The agile distributed team and the Teach lead from the quality team that represents the
unit of analysis are allocated to developing a very large-scale solution for one of the largest
educational groups from Brazil and LATAM. The project involves more than twenty teams,
600+ hundred people, and other IT service provider enterprises developing different solution
modules. The selected agile distributed team develops one of the modules responsible for
the sales control, lead management, and conversion of new candidates in students. In the
meantime, the Tech leader is responsible for managing and guiding the quality assurance
process of the whole solution by executing functional and developing automated tests for the
different systems that compose the very large-scale education solution.

3.3.2 Identification of Unit Analysis

The study happened through teleconferences tools available in the IT service provider
company due to the distribution of the team members. The specific agile distributed team
chosen to be the unit of analysis is one of the few from the company that works on a very
large-scale project involving more than ten teams, several other third-party suppliers, and more
than 600+ hundred professionals.

In this very large-scale project, the clients claim to use SAFe Framework (Leffingwell, Dean,
2023) for the development of the solution. However, the teams can work with the agile frame-
work or methodology they want. The specified agile distributed team defines itself as a Scrum
(SCHWABER; SUTHERLAND, 2020) team working remotely in solution development.

Based on the self-definition, the case study aims to identify which practices from the IT
service provider sector from the TARGET framework the agile distributed team uses and how
the team tailors the practices already mapped by the framework. Moreover, which practices
not presented in the framework are tailored and used by the agile distributed team. By using
this team as a unit of analysis, it is possible to evaluate the tailored practices beyond Scrum
(SCHWABER; SUTHERLAND, 2020) as the team specificities itself, but also from SAFe framework
(Leffingwell, Dean, 2023) as the client specifies itself.

58

3.3.3 Data Collection

In this case study, the primary data source was extracted from interviews with members
of the agile distributed team. Those interviews were held and recorded through teleconference
meetings. However, to ensure a data triangulation process (RUNESON; HöST, 2009), observation
of the teams’ activities was taken into account by participating in team events, such as dailies,
retrospectives, reviews, and similar meetings. Finally, data from the project documentation was
also evaluated, such as sprint backlogs, architecture references, and business definitions. Most
data extraction methods approach the first degree of data collection techniques as presented
by Runeson and Höst in their study (RUNESON; HöST, 2009).

In the interviews, most team members were selected to achieve maximum representation
and variation among the unit of analysis. A total of six out of eight people from the agile
distributed teams were interviewed. The sample is represented by people with various roles,
from quality analysts to frontend and backend developers, a Scrum Master, and a Tech Leader
for Quality Assurance. In addition, respondents had experience in the technology area ranging
from one and a half years to more than seven years. Finally, all respondents had a degree in
technology-related areas, and some had a postgraduate degree. Table 3.3.3 presents the demo-
graphic data of the interviewees. To maintain the interviewees’ anonymity, they are referenced
through codes from P0 to P5.

Table 4 – Demographic data of respondents.

ID Role Years of Experience Time in the project Age
P0 Quality Analyst 7 years of experience 6,5 months 26
P1 Scrum Master 5 years of experience 2 months 37
P2 Developer 1,7 years of experience 6 months 21
P3 Developer 10 years of experience 6 months 30
P4 Developer 8 years of experience 8 months 30
P5 Tech Leader 10 years of experience 6 months 27

Source: The author (2023)

The interview with the six collaborators followed a semi-structured model that allowed
us to gather information about the tailored agile practices used by the team based on the
TARGET Framework. Each interview lasted from 1 hour to 1 hour and a half. Of the six
interviews, one of them was a pilot. From the pilot interview, it was possible to evaluate
the script, make the necessary changes, and go on to the next interviews of the study. It’s

59

important to note that the pilot’s results were included in the overall study results. Finally,
before each interview, consent was previously required, and members were warned about data
usage from the recording interview.

The interview script was organized on four topics that can be accessed on <https://bit.
ly/3YduQIo>. First, we had the goal to understand the practitioners’ context better, then the
perception of the team regarding being agile or not, followed by the presentation of the agile-
tailored practices that match the context of the team members, and finally, the agile-tailored
practices outside the context of the team members. Since the case study members could not
have entire knowledge regarding the agile, tailored practices presented to them, each of the
practices was previously explained to the interviewees before asking if they were using it or
not.

During the observation process, the members did not interact with the researcher. All the
meetings were played as usual, with or without the client’s presence. This part aimed to better
understand the teams in their particular environment and apply data triangulation to verify
the identified tailored agile practices. Similarly, the documentation analysis seeks to evaluate
the presence of practices in the living documents of the project.

3.3.4 Data Analysis

For the data analysis process, it was used some of the phases present in the Grounded
Theory guide from Glaser and Strauss (GLASER; STRAUSS, 2009). However, it is essential to
point out that this case study does not cover all the steps necessary to be considered a grounded
theory research, only the data analysis steps from a grounded theory were considered.

During this phase, data analysis was started using the open coding technique and the
constant comparison method through the transcript data from the interviewees. We sought
to synthesize interview data by identifying patterns in the transcripts. During the process, the
open coding technique allowed us to look for patterns in the data, while the coding helped
define the concepts and descriptions (GLASER, 1992). During the analysis, it was possible to
capture several key points of the study and the maximum of tailored practices used by the
agile distributed team from the IT service provider.

The main focus of this step was to identify the similarities and differences between the
interviewees’ speeches and consequently seek meaning in the data extracted from them (MER-

RIAM, 2009). Then, the consolidated information regarding the tailored agile practices used by

https://bit.ly/3YduQIo
https://bit.ly/3YduQIo

60

the teams was compared to the tailored practices identified in the TARGET Framework. For
the entire analysis and coding process, the MaxQDA 2020 software was used and the advisors
were responsible for reviewing the coding results.

The open coding process started by selecting transcription texts representing some concept
or description of the studied factor. Each new code was compared with existing codes during
this stage, whether from the interview itself or others. From then on, every emerging code was
constantly compared with the other codes, which allowed the grouping of related codes into
categories that imply new agile tailored practices from the team or the already mapped in the
TARGET Framework, but with a different approach of use. As the analysis progressed, it was
possible to establish relationships between the different categories constructed through the
axial coding technique(GLASER; STRAUSS, 2009). However, to better exemplify the described
procedures, the category coding process is presented: code freeze.

First, the paragraphs of the transcripts are analyzed, from which it is possible to extract
some key points. Such points have a code corresponding to them, where this code represents
the key point in a synthesized way, and in addition, a key point can have more than one code.
As can be seen below:

Transcript part: ”We are planning to use the code freeze technique before regular project
releases. We don’t use it now, and the developers can publish new code anytime from the
delivery pipeline. The client does not care much about the DevOps culture and is trying to
grow in it.”.

Key Points: “We are planning to use the code freeze technique before regular project
releases” and “We don’t use it right now, and the developers can publish new code anytime
from the delivery pipeline.”.

Code 1 (First part of key point): Code freeze planning.
Code 2 (Second part of key point): Developers with full access to the delivery pipelines.
In the example above, two codes were extracted from P0’s interview transcript. Constant

comparison with other related emerged codes made it possible to group such codes at a higher
level of abstraction. Thus generating the category of code freeze absence (See Figure 3.3.4).

61

Figure 3 – Code Freeze abscence

Source: The author (2023)

62

4 RESULTS

This chapter aims to present the findings of the present study through each of its phases.
First, the SLR findings regarding the agile tailored practices used by distributed teams in large-
scale environments using agile and scaling agile framework through the analysis of 74 studies
from the literature. Then, the TARGET framework breakdown is based on the market sectors
from the SLR studies, the agile frameworks used, the scale dimensions, and the adapted agile
practices. Finally, the case study results through evaluating the TARGET framework among
the most popular market sector.

The findings present in this section will answer the main research questions of this study:
“What agile practices do the DSD teams that apply agile and scaling agile frameworks in
large-scale settings are tailoring?”, and “How do DSD teams that apply agile and scaling agile
frameworks tailor its agile practices in large-scale settings?”

4.1 SYSTEMATIC LITERATURE REVIEW

In this section, we present an overview of the studies from the SLR, covering the research
and contributions facets of the studies, the research approach adopted, its quality, and the
rigor and industrial relevance assessment.

Besides the overview of the studies, the tailoring practices of distributed teams that worked
in large-scale environments are presented categorically on its scaling framework or methodology
in use.

Since five frameworks and methodologies originated the tailoring practices extracted from
the 74 studies evaluated in this study, there are five sessions for each framework grouping the
tailoring practices found by teams using them.

The remainder of this chapt is organized as follows: In section 4.2, we present the overview
of the studies from the SLR, describing its methodologies, facets, and other information.
Section 4.3 describes the agile tailored practices identified in studies using Spotify. Section 4.4
describes the agile tailored practices identified in studies using SAFe. Section 4.5 describes the
agile tailored practices identified in studies using DAD. Section 4.6 describes the agile tailored
practices identified in studies using LeSS. Section 4.7 describes the agile tailored practices
identified in studies using Scrum. Section 4.8 presents the TARGET Framework structure.

63

Finally, in section 6, we state some concluding remarks and areas of future research directions.

4.2 OVERVIEW OF THE STUDIES

Of the 74 studies, the majority used a qualitative approach (61 studies), followed by studies
that adopted a mixed approach, combining qualitative and quantitative strategies, i.e., a survey
instrument combined with interviews (10 studies). Finally, only three studies opted for fully
quantitative approaches (See figure 4.2).

Figure 4 – Research approaches from the studies.

Source: The author (2023)

The 74 studies were also evaluated according to their research type facets. Figure 4.2 shows
those facets throughout the years’ interval of the studies, from 2007 to 2021. The research
type facets are derived from Wieringa et al. (WIERINGA et al., 2006), and it aims to classify
the papers regarding the research types. At the beginning of the 2000s, no studies about agile
tailoring practices in distributed teams at large-scale environments were found. Since agile
was born at the beginning of the century, from 2007-2021, the number of studies started to
emerge and rise. Most of them were from the evaluation (55 studies), representing 74,32%,
experience (13 studies), philosophy (3 studies), and solutions (3 studies). Later, in 2013-2019,
we can see more studies, specifically philosophical and solution studies, that indicate a certain
maturity of the research field. However, experience and evaluation studies continued to be
reported, showing that the research field receives attention from the academy, which regularly
researches the area.

64

Figure 5 – Research type facets over time.

Source: The author (2023)

The distribution of contribution type facets of the reviewed studies derived from Petersen
et al. (PETERSEN et al., 2008) and is presented in Figure 4.2. Those facets classify the studies
regarding their contribution to the literature. As we can see, the most common contribution
types were lessons learned (57 studies), representing 77% of all the studies. Then, the frame-
work (7 studies), followed by the model (4 studies), guideline (3 studies), theory (2 studies),
and finally, the advice contribution facet with only one study.

Figure 6 – Contribution type facets over time.

Source: The author (2023)

Most of the research methods used by 74 studies evaluated through this SLR gather case
studies and multiple case studies. Beforehand, some studies used more than one methodology,
so the number of methods does not correspond to the number of articles. As can be seen in

65

figure 4.2, most studies were classified as case studies (46 studies) and multiple case studies
(9 studies), which covers at least one case study in each year from 2007 to 2021. Moreover,
grounded theory was also very present in the studies set (11 studies), followed by experience
reports (9 studies). Finally, several other research methods were seen, including surveys (4
studies), literature reviews (3 studies), and exploratory research (3 studies) combined with
other research methods. The less presented research methods were action research, theory,
and ethnography, with two studies each.

Figure 7 – Research methods over time.

Source: The author (2023)

Regarding the evaluation of the studies, each one was assessed on their aspects regarding
rigor and industrial relevance (IVARSSON; GORSCHEK, 2011) (See Section 3.1.3). As shown in
Figure 4.2, 20 out of 74 selected studies were classified with the highest score on rigor and
relevance, 3 and 4 consecutively, representing almost a quarter of the entire studies, 27%,
which indicates a good level of rigor. None of the selected studies reached a 0 on rigor since
we look forward to minimally well-structured studies. But, three of them almost got this value,
with 0,5 on rigor.

66

Figure 8 – Rigor and Relevance of the studies.

Source: The author (2023)

Conversely, a unique study scored 0 on relevance, which can be considered disappointing
from the industrial perspective, but not without proper contribution to academia. However,
most papers received quite good scores on rigor and relevance. 71 out of 74 studies were
considered with the highest value for industry relevance. Moreover, nine studies show 2.5 on
rigor and 4 on relevance, 15 of them 2 on rigor and 4 on relevance, and 17 studies with 3
on rigor and 4 on relevance. Finally, three studies pointed only to 3, 1, and 0 on industry
relevance. Three others scored 4 on relevance but only 0.5 in rigor.

Furthermore, the average of rigor and relevance is presented over time in Figure 4.2.
Since the selected studies were published between 2007 and 2021, it is possible to see a
slight reduction in the number of papers in 2015, which was recovered in the following years.
However, the average score of industrial relevance remained stable over the decades, with a
slight drop only in 2011, but it also recovered. Conversely, the lowest average rigor score has
been seen at the beginning of the first studies published and in recent years of 2019 and 2020,
although it improved with the papers published in 2023. Finally, it is important to highlight
the growth of studies on tailoring agile in distributed settings at the beginning of the 2010s.

67

Figure 9 – Average rigor and relevance over time.

Source: The author (2023)

Each study was assessed independently, according to twelve possible quality criteria (see
Section 3.1.2). The studies were evaluated on the following scales: <20%, poor; 20%-40%,
fair; 40%-60%, average; 60%-80%, good; and >80%, excellent; these are listed in Table 4.2.

Table 5 – Quality Assesment.

Poor (20%) Fair (20%-40%) Average (40%-60%) Good (60%-80%) Excellent (80%)
Number of Studies 0 1 10 22 41
Percentage of Papers 0 1,35% 13,51% 29,73% 55,41%

Source: The author (2023)

The quality assessment grades for each criterion (DYBA; DINGSOYR; HANSSEN, 2007) can
be accessed in the Analysis sheet in the appendix A.

The following sections present the agile, tailored practices identified in each scaling frame-
work. There is a number next to the title of each subsection. It indicates the frequency of
studies that used and adapted the agile practice.

4.3 SPOTIFY TAILORING PRACTICES

4.3.1 Estimation Techniques (2)

Name: estimation techniques.Goal: estimation techniques are commonly used by teams to
estimate their effort for developing tasks of an iteration. Furthermore, the estimation provides
predictability information for companies since it describes when teams will finish their work.
Some teams used a scrum technique of story points (SALAMEH; BASS, 2020). Who: team

68

members, PO, SM. How: Bass and Salameh presented two studies (SALAMEH; BASS, 2019;
SALAMEH; BASS, 2020) on a fintech organization that had squads with different missions,
going from maintenance, Product-line (PL), and innovation to Proof of Concept (PoC)’s and
mini-projects. Due to the different nature of those squads, different estimation techniques
were used. The predictability for PL squads, which had low uncertainty in their tasks, was
considered beneficial since the product increments could be well planned and estimated. Based
on it, the PL teams usually used Lean and Scrumban techniques, such as bucket size and
average lead/cycle time (SALAMEH; BASS, 2019; SALAMEH; BASS, 2020). However, squads
responsible for the development of new and complex features were dealing with a high degree
of uncertainty. Due to this, they combined Lean Startup and Kanban processes to handle
the estimation and development (SALAMEH; BASS, 2020). Finally, squads that were working
with mini-projects and PoCs were dealing with more uncertainty than any other team. Due
to it, those squads employed a tailored scrum process, in which they sometimes used story
points to estimate their tasks or even used nothing by just reporting the spent time on each
task (SALAMEH; BASS, 2020). According to the authors, those squads considered estimation
techniques as a waste activity for innovation teams. Therefore, sacrificing predictability was
seen as more important for the sake of innovation and customer value (SALAMEH; BASS, 2020).
Context: The study conducted by Salameh and Bass (SALAMEH; BASS, 2020) was taken in
a fintech organization that used Spotify in 6 different teams with a lot of heterogeneity since
they chose different tailored approaches.

4.3.2 Limited Blast Radius Technique (1)

Name: limited blast radius technique.Goal: this practice consists of releasing new features
of a product to a small portion of the customers instead of the whole users (SALAMEH; BASS,
2019). The technique aims to reduce the risks of incidents by tracking the behavior of the new
features with a small group and then rolling it out to others. Who: team members. How: the
study that reports the use of the limited blast radius technique was looking to release software
increment on an experimental basis to avoid incidents across the whole user base (SALAMEH;

BASS, 2019). Based on it, software was continuously released to a specified number of end-
users. Whether it had no problem, the squad may decide to roll out the increment to more
end-users until it covers all users (SALAMEH; BASS, 2019). However, when an incident occurred,
the squad could roll back the changes and stabilize the environment (SALAMEH; BASS, 2019).

69

Context: The study conducted by Salameh and Bass (SALAMEH; BASS, 2019) was held in a
financial company with mission-critical services for the market. Based on it, the practice was
chosen due to critical aspects of the solution that was developed (SALAMEH; BASS, 2019) and
to avoid big issues in the whole user chain.

4.3.3 Support/Maintenance Squads (2)

Name: support/maintenance Squads.Goal: the purpose of having a support or mainte-
nance squad is to keep specific team members focused on the support of the existing features
that could suffer from bugs (SALAMEH; BASS, 2019; SALAMEH; BASS, 2020).Who: managers,
team members.How: in one of the studies conducted by Bass and Salameh (SALAMEH; BASS,
2020), a maintenance squad was built to support the already existed features, although due
to the complexity of the software, the squad opted to use Kanban to manage their work.
Since Kanban was used, the user stories regarding maintenance were distributed according to
the available capacity of resources (SALAMEH; BASS, 2020). Furthermore, the support squad
also represented the second level of contact with the customer, helping them with issues in-
vestigation and service configuration (SALAMEH; BASS, 2019). Context: both studies with
support and maintenance squads were held in financial organizations (SALAMEH; BASS, 2019;
SALAMEH; BASS, 2020), which require a certain level of support for the customers and stability
of the released versions since the tolerance for bugs is low.

4.3.4 Roadmap (2)

Name: Roadmap. Goal: the development of a roadmap aims to describe a collection of
actions, which will be applied to accomplish both the organization’s long- and short- terms
goals (SALAMEH; BASS, 2020). Who: chapters, team members, managers, PO, and SM. How:
as presented by Salameh and Bass (SALAMEH; BASS, 2019; SALAMEH; BASS, 2020), the squads
had enough autonomy to be aware of what was expected from them, and due to it, the POs’ of
the squads were responsible for creating the short-term goals that would serve long-term goals
of the roadmap. By doing this, the POs’ provided the milestones the squads should achieve
and a list of actions to fulfill the roadmap (SALAMEH; BASS, 2019; SALAMEH; BASS, 2020).
Context: in those studies, the roadmap was needed to provide vision and long-term directions
for all squads and also organize their job into the desired direction of the organization. Since

70

the squads were dealing with their own tailored practices, the roadmap could combine the
milestones of each one in the development of the solutions (SALAMEH; BASS, 2019; SALAMEH;

BASS, 2020).

4.3.5 Establish a clear vision (2)

Name: establish a clear vision. Goal: establish a clear vision of the solution in develop-
ment aims to define a scope and a set of specifications, also provide customers, the squads,
and stakeholders the direction the solution must take to avoid issues (SALAMEH; BASS, 2019).
Who: POs and key account managers (KAM). How: due to the market volatility, the so-
lution vision should be visited frequently and communicated to everybody involved in the
project (SALAMEH; BASS, 2019). The development of a common vision easily creates long- and
short-term goals for the squads (SALAMEH; BASS, 2020). POs’ and KAMs’ should constantly
communicate the project vision through regular meetings for the teams to achieve the solution
strategy (SALAMEH; BASS, 2019). Despite the customer’s intention, the vendor must be aware,
guaranteeing that the product development does not deviate from their vision (SALAMEH;

BASS, 2020). Context: due to the outsourcing nature presented in the studies of Salameh and
Bass (SALAMEH; BASS, 2019; SALAMEH; BASS, 2020), the need to report a clear vision of the
solution became an important point to ensure the squads into the right direction.

4.3.6 Definition of Done (DoD) (1)

Name: Definition of Done (DoD). Goal: the definition of done aims to specify the com-
pleteness of a task in a team or squad. It also ensures that a task accomplishes the customer
and business needs. Who: team, customer, PO, Key Account Manager (KAM). How: due
to the cross-pollination culture presented in the squads of the case study (SALAMEH; BASS,
2019). The members usually discuss the workflow process together, which leads them to de-
fine a standardized definition of done. All squads agreed on the tasks’ completeness concept
that rules the process flow and satisfies the customers’ needs. Context: The study conducted
by Salameh and Bass (SALAMEH; BASS, 2019) was handled in a financial company that used
Spotify to develop a B2B solution for a large-scale mission-critical project.

71

4.3.7 Postmortem Documentation Process (1)

Name: postmortem document process.Goal: postmortem meetings are usually held after a
production incident. By involving all team members related to the incident, it aims to produce
a list of remediations that need to be taken to prevent the incident from happening again 1.
In one of the studies, the postmortem meeting was tailored to be a postmortem documen-
tation process (SALAMEH; BASS, 2019). Who: managers, team members. How: Due to the
fail-friendly culture introduced by the Spotify framework (LINDERS, 2016), a study reported
how they managed the risks that could harm the solution development. To mitigate the fu-
ture risks of new projects, the organization tailored the postmortem meeting to a postmortem
documentation process, in which the team was responsible for listing what was successful or
unsuccessful at the end of each project (SALAMEH; BASS, 2019). The postmortem documen-
tation was also filled with customer feedback that was used to improve the product and the
development process (SALAMEH; BASS, 2019). Context: due to the business domain of the
study (SALAMEH; BASS, 2019), a financial organization with B2B mission-critical solutions,
the postmortem documentation process was more adequate in the study scenario since it
could serve as a documentation reference for a product regulated by the bank sector, and also
because this sector does not tolerate failures on the companies reputation.

4.3.8 Measurement Indicators (KPIs) (1)

Name: measurement indicators.Goal: measurement indicators are constantly used in the
teams to track the progress, code quality, productivity, and performance of the members
and/or the whole group (SALAMEH; BASS, 2020). Who: managers, team members, PO, and
SM using tools.How: in one study, the squads were free to tailor their agile process according
to their needs (SALAMEH; BASS, 2020). However, the heterogeneity produced by the autonomy
harms the measurement of those teams. Since each squad had its own key indicators, different
squads could not be compared regarding their quality, velocity, success, and even capacity
(SALAMEH; BASS, 2020). After it, the organization realized that they were not able to track
the squad’s indicators, and must be careful about allowing them to tailor every aspect of their
work. Context: the study presented by Bass and Salameh (SALAMEH; BASS, 2020) evaluates
the heterogeneity of agile tailoring in six different squads. The use of specific indicators in
1 engineering.atspotify.com/2013/06/incident-management-at-spotify/

72

each squad has shown the damage caused in the monitoring process of the squads.

4.3.9 Architectural Decision Process (1)

Name: architectural decision process. Goal: a large-scale agile project with distributed
teams interacting with each other can lead to several architectural decisions every day (SALAMEH;

BASS, 2020). However, who should make these decisions? The architectural decision process
aims to establish a decision process among the architectural aspects of the solution and elect
a architect to be responsible for the design decisions on it. Who: architect role. How: in the
study where six squads constantly interacted during the development of fintech services, the
authors reported that the teams lack a process to manage and align architectural decisions
among the squads (SALAMEH; BASS, 2020). According to the authors, the absence of such a
process impacts the quality of the solution in development. However, its presence may im-
pact the squads’ autonomy (SALAMEH; BASS, 2020). However, the architect’s role was created
to avoid quality problems and the project’s complexity. Such a person was responsible for
discussing new features with the developers and deciding with the team which architectural
change should be made to accommodate the new features (SALAMEH; BASS, 2020). Context:
in the study presented by Bass and Salameh (SALAMEH; BASS, 2020), the architect’s role was
required since the chapter leaders were not handling the architectural decisions. Further, the
squads were not reaching a consensus.

4.3.10 Knowledge Sharing Process (1)

Name: knowledge sharing process. Goal: the knowledge sharing process aims to engage
team members in exchanging knowledge regarding common subjects of the project (SALAMEH;

BASS, 2020). Who: PO, SM, and team members. How: the knowledge sharing process in the
Spotify framework mainly occurs through guilds formed by people from different tribes, which
is called “community of interest” (HENRIK; ANDERS, 2012). However, since the study published
by Salameh and Bass (SALAMEH; BASS, 2020) does not have enough scale to have tribes and
guilds, on-demand knowledge sharing meetings were arranged to allow squad members to
share informal information regarding technical subjects or project domains. Those meetings
were arranged through emails and Slack, and anyone interested in the subject could enter
(SALAMEH; BASS, 2020). Context: at this case, the organization was concerned with the fact

73

the tribes and guilds were inapplicable due to the size of the development program, with less
than 100 members (SALAMEH; BASS, 2020). However, despite the regular frequent meetings of
communities of interest provided by guilds, the on-demand knowledge sharing meetings were
enough to handle the squads’ demands without harming their autonomy.

4.3.11 Squad-of-Squads Meeting (1)

Name: Squad-of-Squads meeting. Goal: this meeting aims to align all the squads of the
project regarding their progress, issues, opportunities, and priorities through a shared Kanban
board (SALAMEH; BASS, 2019). Who: key stakeholders, key members of the squads. How:
according to the Spotify Framework, the Scrum of Scrums meeting is usually used for teams
to discuss dependencies among their tasks (HENRIK; ANDERS, 2012). However, Spotify squads
should not usually hold such meetings since squads are quite independent and don’t require this
level of synchronization (HENRIK; ANDERS, 2012). Independently of the framework concern, in
one case study, the organization considered the Squad-of-Squads meeting necessary to align all
squads regarding issues about the behavior of new features released (SALAMEH; BASS, 2019).
Therefore, in those meetings, key players of both customer and vendor squads meet up to
discuss the progress, identify potential opportunities, and align priorities Context: the study
conducted by Salameh and Bass describes the development of mission-critical financial services
for a B2B market (SALAMEH; BASS, 2019). Since the financial sector requires a high degree
of stability in the services, those weekly meetings were a way for the squads from clients and
vendors to stay aligned.

4.3.12 Product Owners weekly meeting (1)

Name: Product Owners weekly meeting. Goal: weekly meetings with the POs of all squads
were held to maintain a shared vision and specifications regarding the solution in development
(SALAMEH; BASS, 2019). Who: POs’. How: the POs’ conducted the weekly meeting to align
themselves and their squads with the product strategy and the overall roadmap of the orga-
nization, reinforce the sense of ownership, and prevent the deviation of the product’s main
purpose (SALAMEH; BASS, 2019). Context: since the study consists of solutions for the finan-
cial sector, a wide range of customers can benefit from the introduction of new features, and
due to it, those features must always be usable.

74

4.3.13 Transparency (1)

Name: transparency. Goal: build a corporate culture of transparency and mutual respect
with the customer. Who: the organization. How: in the study published by Salameh and
Bass, the organization introduced a corporate culture that promotes transparency and mutual
respect with the customer (SALAMEH; BASS, 2019). Since the relationship was based on the
contract of an outsourced service, the vendor established constant communication regarding
what capabilities, time, and resources they could provide to the customer. Context: in an
outsourcing environment, being transparent to the customer can open new opportunities in
future projects (CAMARA et al., 2022b). In this case, vendor transparency and respect fostered
the relationship with the client.

4.4 SAFE TAILORING PRACTICES

4.4.1 PI Planning (3)

Name: Program Increment (PI) Planning. Goal: PI planning is a regular event from SAFe,
in which every team on the Agile Release Train (ART) is aligned to a shared mission and vi-
sion (Leffingwell, Dean, 2023). As an output of the PI planning, the teams are committed to
the PI objectives, the teams map the dependencies across them, and new features’ delivery
dates are defined (NOLL et al., 2016). Who: every team, Release Train Engineer (RTE). How:
in the case study presented by Razzak et al. (RAZZAK et al., 2018) the program level was
more mature than the PPM one, although not enough to conduct the PI planning properly.
As mentioned by one of the directors, the project manager supports the PI planning outputs
without the participation of any other team (RAZZAK et al., 2018). More than that, practices
related to the PI planning, such as the Inspect and Adapt event, were not held. From the case
study of Paasivaara (PAASIVAARA, 2017), the teams conducted the with great property. The PI
planning event covered two days of schedule. On day one, product managers present business
presentations and architecture plans (PAASIVAARA, 2017). On the second day, team-specific
planning with some SoS meetings was held, and the teams also had site-specific retrospective
meetings regarding the previous PI planning and the current one (PAASIVAARA, 2017). Due to
the global distribution of the team, the planning events take place in the main location while
real-time Skype voice and video calls are established among the sites (PAASIVAARA, 2017).

75

Gupta et al. (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019) presented an experience report
that tailored the PI planning event to a PI Planning workshop. Similar to the approach from
the Paasivaara study (PAASIVAARA, 2017), the workshop takes two days. On the first day,
the teams focus on refining the backlog current increments aiming to refine the stories to
a level that developers and ops find enough information to start the development (GUPTA;

VENKATACHALAPATHY; JEBERLA, 2019). After it, the teams discuss the backlog risks for the
next two version increments (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019). Context: the
lack of some important events and ceremonies of SAFecan harm the process. As mentioned
by the proper Authors of the framework, the lack of PI planning event configures as a non-
application of the SAFe framework (Leffingwell, Dean, 2023). In the study of Razzak et al.

(RAZZAK et al., 2018), the authors mentioned using some elements of the PI. However, impor-
tant points were missing, like stakeholders rarely participating in the meetings, not all members
attending, and even improvement stories not being properly discussed during the planning. In
the Paasivaara case study (PAASIVAARA, 2017), the teams were more committed to regularly
adopting the SAFe program level practices. Due to it, both business lines got involved in the
PI planning events and could reap good results. In the experience report from Gupta et al.

(GUPTA; VENKATACHALAPATHY; JEBERLA, 2019), the case takes place in a healthcare project
that aims to establish a DevOps approach to support a continuous delivery chain. The authors
summarized that the PI planning event was helpful for the projects because since it started,
the team released all planned version increments on time and with high customer satisfaction
(GUPTA; VENKATACHALAPATHY; JEBERLA, 2019).

4.4.2 External Coaches and Consultants (3)

Name: external coaches and consultants. Goal: SAFe is a framework with particular events,
roles, and functions. Due to it, the framework recommends a consultant to help the organiza-
tion during the adoption (PAASIVAARA, 2017). Who: coaches and consultants. How: in one
of the cases from the study of Paasivaara (PAASIVAARA, 2017), a consultant supported the
adoption of SAFe through training, workshops for the teams with feedback, and also coaching
the RTE in planning activities and arranging the first PI Planning. The team appreciated the
consultant since he helped in the managers’ coaching and made the teams exercise what they
needed to improve (PAASIVAARA, 2017). The other case of the same study had access to an
external coach after six months from the beginning of the adoption (PAASIVAARA, 2017). Due

76

to it, the teams faced more problems, and only after some workshops could the team real-
ize which points they needed to improve. This case, in particular, started the SAFe adoption
without proper training. Only after facing some problems during the first increments were the
product managers, POs, and team members sent to SAFe training (PAASIVAARA, 2017). Fur-
ther, Pandya et al. (PANDYA; MANI; PATTANAYAK, 2020) presented an experience report that a
consultant also helped the teams, but especially in fostering the dynamic of Scrum teams that
was transitioning to SAFe and considering the current practices, roles, and functions. In Padya
et al. (PANDYA; MANI; PATTANAYAK, 2020) case, the team member received SAFe training
before the ART launch to prepare them better. Lautert et al. (LAUTERT; NETO; KOZIEVITCH,
2019) presented a survey study at a large company that uses SAFe. The study aims to un-
derstand the preferred type of communication experienced members in agile methodologies
would prefer. During the survey, the authors asked whether the team members had taken
training on agile and SAFe. The results helped provide training courses to the members that
had never received training in the framework (LAUTERT; NETO; KOZIEVITCH, 2019). Context:
in the Paasivaara case study (PAASIVAARA, 2017), the second case took more advantage of a
consultant since the first case just used them six months later. Despite it, the role played an
essential role in helping the teams improve the framework practices.Further, in the Pandya et

al. (PANDYA; MANI; PATTANAYAK, 2020) study, the organization was transitioning from Scrum
to SAFe. The transformation took four years, and the presence of a consultant was indispens-
able since the teams needed to align the SAFe practices from the program level to the team
level Scrum practices. Finally, practices regarding estimation, the definition of done, cadence,
and synchronization of iterations required the consultants to help to a smoother transition
(PANDYA; MANI; PATTANAYAK, 2020). Lautert et al. (LAUTERT; NETO; KOZIEVITCH, 2019) has
surveyed the company to understand if there is a correlation between years of experience with
agile software development teams and prioritized types of communication. However, despite
no correlation, the survey helped find which team members required training in the SAFe
framework.

4.4.3 Content readiness (2)

Name: content readiness. Goal: in SAFe, content readiness is important to ensure clear
vision and context for every person in the PI Planning (Leffingwell, Dean, 2023). Who: team
members responsible for the backlog writing. How: to achieve a good level of content readi-

77

ness before a PI Planning, the teams must involve themselves in a sufficient preparation of
the product and architectural backlog (PANDYA; MANI; PATTANAYAK, 2020). In another study
(GUPTA; VENKATACHALAPATHY; JEBERLA, 2019), the project manager was responsible for chas-
ing content readiness at the beginning of the project version, which helped team members to
understand their common goal. Context: in both studies of Pandya et al. (PANDYA; MANI;

PATTANAYAK, 2020) and Gupta et al. (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019), the
organizations aim to achieve the content readiness of their backlog to set the teams in the
right focus, to avoid unclear expectations from the customer, and also to keep the teams with
a vision of the roadmap.

4.4.4 Staff Members for POs’ activities (2)

Name: staff members for PO’s activities. Goal: due to the busy routine POs’ were having
in such large-scale distributed agile projects. Organizations started to hire additional staff
members to execute their regular activities (RAZZAK et al., 2018; BASS, 2015; BEECHAM et al.,
2021). Who: staff members. How: in a case study presented by Razzak et al. (RAZZAK et al.,
2018) and Beecham et al. (BEECHAM et al., 2021) at a small to medium enterprise, the product
owners had many responsibilities in their day-to-day routine. The overwhelmed schedule was
composed of stakeholder negotiation and prioritization of stories, product management, and
acceptance criteria scenarios. Indeed, to reduce the POs’ responsibilities and to avoid any
deviation from the product roadmap, the company hired staff members to let POs mainly focus
on product ownership and the long-term product vision (RAZZAK et al., 2018; BEECHAM et al.,
2021). In another study, Bass and Beecham (BASS, 2015) showed how the PO role functions
lacked standardization, which led some staff members to hold various job titles and activities.
In those cases, the PO teams had onshore staff members to conduct client discussions and
offshore staff members to communicate with development teams (BASS, 2015). Context: in
the case study of Razzak et al. (RAZZAK et al., 2018), the authors investigated through surveys
the adoption of SAFe in a software company that produces solutions for the optical industry.
The authors evaluated the SAFe adoption on three levels, the portfolio, program, and team
one, and due to the teams’ maturity, some PO functions were still in definitions. In another
study, Bass (BASS, 2015) interviewed practitioners from 8 different companies to map how
the PO were scaling agile in those large distributed agile projects. Due to the high number of
people involved, staff members were necessary to keep things working.

78

4.4.5 SAFe adoption at Medium Enterprises (1)

Name: SAFe adoption at medium enterprises. Goal: medium enterprises can have large-
scale distributed projects, although they have to consider which practices, roles, and levels of
SAFe adoption is necessary to their environment (RAZZAK et al., 2018). Who: the company.
How: in the case study published by Razzak et al. (RAZZAK et al., 2018), the three levels of
SAFe: portfolio, program, and team were evaluated regarding the maturity of adoption. During
the process, the authors realized that medium enterprises should evaluate which ceremonies,
practices, and roles they need while adopting SAFe (RAZZAK et al., 2018). Not everything will
be needed, so the results of the self-assessment surveys may help the organizations in this
journey.Context: in the Razzak et al. (RAZZAK et al., 2018) study, the self-assessment survey
results were used to specify which practices, roles, and ceremonies would be tailored to fit the
medium enterprise company needs.

4.4.6 Project increment workshop (1)

Name: project increment workshop. Goal: gather all team members to refine the backlog,
and review the processes and metrics of the teams. In other agile methodologies, it is kind of a
combination of retrospectives and refinement backlog meetings. Who: team members includ-
ing quality manager, regulatory expert, and operation/back office team. How: according to the
experience report published by Gupta et al. (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019),
the teams were conducting project increment workshops which are not well defined in SAFe
(Leffingwell, Dean, 2023). As presented in the study, the activity was held for two days rotating
the location among the teams’ sites: India, USA, and Germany. Independently of the chosen
location, members from quality, ops, and development would travel to the destiny. During the
workshop, the backlog would be adjusted based on the feedback of a team member from an-
other location, also the quality manager was responsible for helping the teams in refining their
process and metrics and enabling a short release cycle with quality (GUPTA; VENKATACHALAP-

ATHY; JEBERLA, 2019). During those workshops, redundant or relevant metrics, checklists, or
activities were removed from the process. Finally, the presence of the operation/back office
team helped them build knowledge about the development issues and also plan themselves
better for the day-to-day activities (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019). Context:
Gupta et al. (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019) presented an experience report

79

at a healthcare project spread across three countries that successfully established a DevOps
approach with continuous delivery and short release cycles using agile scrum and SAFe.

4.4.7 Weekly meeting (1)

Name: weekly status meeting. Goal: report the project status to the executive man-
agement. Who: project managers. How: in the experience report presented by Pandya et

al. (PANDYA; MANI; PATTANAYAK, 2020), the project managers were responsible for reporting
their status to the executive management and also deciding internal milestones with them.
Also, those project managers needed to present a data-driven report with accurate information
capable of anticipating potential questions from the executives and helping to make better
decisions. Context: the Pandya study et al. (PANDYA; MANI; PATTANAYAK, 2020) consisted of
an experience report regarding four years of transformation from a Scrum-based organization
to the SAFe framework (Leffingwell, Dean, 2023). Those kinds of practices were required to
better achieve the business demands during the transformation.

4.4.8 Definition of Done (DoD) (1)

Name: Definition of Done (DoD). Goal: define a common definition of done to the teams,
and projects aim to establish the completeness of user stories regarding the business value
and quality of its delivery. Who: managers, team members. How: Pandya et al. (PANDYA;

MANI; PATTANAYAK, 2020) presented a study in which an organization was transitioning from
Scrum to SAFe. During the alignment of the program level practices, the organization required
changes and adaptation. Therefore, the teams needed to work with a common definition of
done with the help of an external consultant. Context: since the Pandya study et al. describes
the transformation from a Scrum-based organization to the SAFe framework (Leffingwell, Dean,
2023), the need to tailor some practices from the Scrum team level brings the attention of the
program level presented in SAFe.

4.4.9 Program and Team Boards (1)

Name: Program and Team Boards. Goal: use kanban boards to track the PI execution
progress during the time, and also the project progress into the teams. Who: team members,

80

SM and POs. How: according to the experience report published by Pandya et al. (PANDYA;

MANI; PATTANAYAK, 2020) the digital boards were used during the remote PI planning events
and also to track the progress of the execution. After some PIs, the dashboards helped the
organization to understand the teams’ predictability and throughput. Further, similar project
metrics were used in those digital program boards. Finally, some teams used physical dash-
boards to track their progress in a PI. Context: due to the nature of using Scrum and tran-
sitioning to SAFe in a distributed environment, led the teams to adopt kanban boards during
remote events and combine the use with physical dashboards (PANDYA; MANI; PATTANAYAK,
2020).

4.4.10 Scrum of Scrums (SoS) (1)

Name: Scrum of Scrums (SoS). Goal: according to SAFe (Leffingwell, Dean, 2023), the SoS
aims to coordinate dependencies across different scrum teams providing visibility through the
progress and impediments of the ART. Who: RTE, teams. How: the case study published
by Paasivaara (PAASIVAARA, 2017) at Comptel presented how a business line applied the SoS
meetings. First, the SoS meetings were part of the 2-day PI planning event. In the first moment,
the teams discussed architecture plans and business vision. Then, one or two SoS meetings to
check the status and coordinate the planning were held (PAASIVAARA, 2017). The RTE was the
person responsible for coordinating and arranging regular SoS meetings. Context: Paasivaara,
in this study, presents a case study at Comptel (PAASIVAARA, 2017). The study evaluated
the SAFe adoption difference between the two business lines. Despite the comparison, both
business lines establish this kind of SoS meeting as part of the PI planning.

4.4.11 Automated tests (1)

Name: automated tests. Goal: test automation can be used with continuous delivery to
provide quick releases while guaranteeing the quality of components, integrations, interfaces,
and acceptance tests (Leffingwell, Dean, 2023). Who: quality analysts. How: in a multiple case
study presented by Beecham et al. (BEECHAM et al., 2021), a very large-scale project used
automated tests to shorten its release cycle (BEECHAM et al., 2021). The test automation
reduced the regressive tests from 6 weeks to 2 weeks, preventing the team from spending
great efforts on environment configuration and manual testing. Further, the test automation

81

tasks were the full responsibility of QAs, achieving almost 100% cover. Context: Beecham et

al. (BEECHAM et al., 2021) presented a study to evaluate to what degree scaling frameworks
address global software development risks. In one case, the authors evaluated whether SAFe
practices could eliminate or mitigate most GSD risks of a large-scale project at an optical
industry company.

4.4.12 Feature team (1)

Name: Feature Team. Goal: according to (Leffingwell, Dean, 2023), a feature team is orga-
nized around user-centered functionalities, in which the main focus is to maintain and enhance
the core product. Who: team members. How: in one of the cases presented by Beecham et

al. (BEECHAM et al., 2021), the feature team was not able to work on the improvement of
the solution. However, they were putting more effort into bug fixes and issues raised by the
customer. Due to it, the product roadmap was not followed, which caused delays in important
features that needed to be released. Context: in this case of Beecham et al. (BEECHAM et

al., 2021), the deviation of the feature teams to a support team occurred due to the lack of
communication of emerging requirements to the product owners that were responsible for the
product vision and roadmap. With proper communication, the product owners would be able
to drive the solution to a balanced number of fixes, and new features during the interactions
(BEECHAM et al., 2021). Further, the company, in this case, moved part-time product owners
to full-time personnel that was able to focus solely on the PO role to reduce the impact of
emerging requirements.

4.4.13 Single product backlog (1)

Name: single product backlog. Goal: in SAFe, teams mainly work with program and
solution backlog, which respectively deal with upcoming features that deliver business value,
and upcoming capabilities and enablers to build the architectural runaway (Leffingwell, Dean,
2023). However, a single product backlog comprises features, capabilities, and enablers in the
experience report by Pandya et al. (PANDYA; MANI; PATTANAYAK, 2020). Who: team members,
product owner. How: to achieve predictability through a high throughput of a product backlog
that concentrates new features, bug fixes, and other items, the team organized themselves
through upfront planning and prioritization based on a single product backlog for all the

82

teams (PANDYA; MANI; PATTANAYAK, 2020). By doing it, the teams achieved a yearly release
schedule, which helped acquire high predictability. Context: Pandya et al. (PANDYA; MANI;

PATTANAYAK, 2020) presented a experience report on software development team in Idia.
The report covers four years of transformation from a Scrum-based organization to the SAFe
framework.

4.4.14 Measurement Indicators (KPIs) (1)

Name: measurement indicators. Goal: keeping track of the solution requires measurement
indicators (Leffingwell, Dean, 2023) that also help to track how the value stream is performing
against its forecasted outcomes. Who: team members, Agile Train Engineer, managers, and
others. How: in the study published by Pandya et al. (PANDYA; MANI; PATTANAYAK, 2020),
Key Performance Indicator (KPI)’s were used to measure different aspects of the solution,
such as the project releases, product quality, and team performance. In the field of releases,
KPIs were used to track the scope progress, schedule, and cost through release and team
burndown, features throughput, project milestones, and cost variance. Regarding the solution
quality, the number of defects at the team level, the feature “done-mess”, static code analysis,
and non-functional requirements trend were the KPIs used. Finally, the organization used the
team’s predictability, velocity, cycle lead time, and defect fix rate to measure performance.
Context: the experience report presented by Pandya et al. (PANDYA; MANI; PATTANAYAK,
2020) describes a four-year transformation of a Scrum-based organization to SAFe. The nature
of the journey required plenty of KPIs to keep track of the changes and to provide visibility
that the company is going in the right direction.

4.4.15 Keep stakeholders close (1)

Name: keep stakeholders close. Goal: keeping track of key stakeholders’ expectations is
vital to the success of the solution (PANDYA; MANI; PATTANAYAK, 2020). Teams must meet reg-
ularly with stakeholders to better understand their views and to acquire feedback. Who: team
members. How: in an experience report, teams seeking feedback from key stakeholders estab-
lish regular meetings with them to identify gaps and gain trust (PANDYA; MANI; PATTANAYAK,
2020). However, only the onshore team had access to it. Further, the teams worked on a
stakeholder map by identifying the level of influence and interest of each one and established

83

an engagement plan based on it (PANDYA; MANI; PATTANAYAK, 2020). Each key stakeholder
was interviewed and mapped to a four-quadrant structure that considered their attitude and
expectations (PANDYA; MANI; PATTANAYAK, 2020). Context: in this study (PANDYA; MANI;

PATTANAYAK, 2020), the stakeholders played an important role in the solution roadmap. De-
pending on the project phase, new interviewers were required to deal with those stakeholders’
changed expectations. Due to it, keeping track of them was a matter of driving the solution
to success.

4.4.16 Instructor-led training (1)

Name: instructor-led training. Goal: training team members in technical skills, process,
and tools operation during the development process (PANDYA; MANI; PATTANAYAK, 2020).
Who: mentor. How: in the study presented by Pandya et al. (PANDYA; MANI; PATTANAYAK,
2020), the training sessions were made face-to-face on-site by a mentor. The travel costs
were budgeted in the project, and the impact of the training during the ongoing projects was
carefully addressed in the planning meetings (PANDYA; MANI; PATTANAYAK, 2020) through the
reduction of available effort. Context: in this experience report (PANDYA; MANI; PATTANAYAK,
2020), offshore teams were working with onshore teams. Keeping both teams in the same
process, skills, and tools perspective required face-to-face training sessions by a mentor.

4.4.17 Strategic Themes (1)

Name: strategic themes. Goal: strategic themes play an important role in the portfolio
decision-making process (Leffingwell, Dean, 2023). It provides a business context that helps
connect the portfolio to the enterprise’s strategy (Leffingwell, Dean, 2023). Who: Program and
Portfolio Management (PPM), directors, board. How: according to SAFe, Objectives and
Key Results (OKR)s are used during the development of strategic themes or even sentences
that can influence everyone in the solution development (Leffingwell, Dean, 2023). However,
in the Razzak et al. (RAZZAK et al., 2018) study, the director of development reported that
the organization often used strategic themes to connect the Portfolio vision to the business
strategy in an informal way. The PPM team was known as a team that did not foster estimation
techniques and planning, even when one of the strategic themes aimed to embrace agile in the
organization (RAZZAK et al., 2018). Context: in the study (RAZZAK et al., 2018), the assessment

84

at the portfolio level has shown that the company needed to improve the applicability of some
practices regarding strategy, investments, funding, value streams, and budget. This result is
mostly due to how the PPM team led the activities.

4.4.18 Epic Stories (1)

Name: epic stories. Goal: an epic in SAFe is defined as a substantial package of information
that requires analysis, using a definition of an Minimum Viable Product (MVP), also describes
a significant initiative of development that covers different values streams, program increments
and financial approval before implementation (Leffingwell, Dean, 2023). Who: PPM team. How:
the CTO from the company studied at Razzak et al. (RAZZAK et al., 2018) has stated the
PPM team members were not working with an epic-based at the portfolio level. The PPM
area worked as a regular team, focusing on projects, deliverables, and contracts that generated
epics used inside the team’s environment (RAZZAK et al., 2018). Context: in the study (RAZZAK

et al., 2018), the PPM maturity level was low, which caused the lack of important practices
such as epics in the portfolio management area.

4.4.19 Sprints (1)

Name: sprints. Goal: sprints are cycle time iterations in which teams compromise them-
selves to deliver specific software increments for the solution of an ART (Leffingwell, Dean,
2023). Who: teams. How: in the same case study presented by Razzak et al. (RAZZAK et al.,
2018), the teams did not respect some pre-activities and rules. One of the teams reported
that managers added almost all open tickets to the sprint during planning. Due to it, the
team put the tickets without a proper estimation, which hindered the team from achieving
the goal of the iteration (RAZZAK et al., 2018). One of the teams reported missing information
during estimation and a lack of time. A developer reported that managers introduced critical
tasks into current sprints instead of respecting the rule of adding them in the next iteration.
Context: in general, the case study of Razzak et al. (RAZZAK et al., 2018) has shown some
maturity in the sprint activities. However, some specific rules and points of sprints still need
to be covered to avoid problems regarding sprint health.

85

4.4.20 Retrospectives (1)

Name: retrospectives. Goal: a retrospective is an event where team members discuss the
results of the previous interaction, review their practices, identify ways to improve, and define
some actions for the next iterations (Leffingwell, Dean, 2023). Who: team members. How:
according to SAFe (Leffingwell, Dean, 2023), the retrospective must be conducted after the end
of each iteration and must be time-boxed for an hour or less. However, the teams rarely hold
retrospectives after each sprint at the team level of the case study conducted by Razzak et

al. (RAZZAK et al., 2018). One of the developers reported that only one retrospective during
the last two years was done after a release and not a simple iteration (RAZZAK et al., 2018).
Context: the lack of such an important ceremony in a single agile team can greatly impact
their performance. The absence of a retrospective can reduce the improvement capacity of the
team since the members do not discuss ways to improve or avoid negative behaviors. Razzak
et al. (RAZZAK et al., 2018) did not discuss further implications regarding retrospectives.

4.4.21 User stories (1)

Name: user stories. Goal: similar to SCRUM (Schwaber, Ken and Sutherland, Jeff, 2022),
stories in SAFe are short descriptions of a feature that needs to be implemented (Leffingwell,

Dean, 2023). It also may describe the functionality in the user’s language. Who: product owner.
How: the case study presented by Razzak et al. (RAZZAK et al., 2018) has shown a different
scenario of development due to its nature. A developer reported that the project has little
development of user stories since they often work with prioritization and negotiation directly
with the client (RAZZAK et al., 2018). To better understand what they need to develop, they
need to understand the big documents and specifications of the client. At the same time, the
PO was responsible for prioritization and negotiation with the customer (RAZZAK et al., 2018).
Due to it, the PO job consisted of conversations to translate the specifications to the team
without focusing on user story development. Context: one of the study’s project managers of
the study (RAZZAK et al., 2018) stated that the nature of the contract with the customer was
why the teams don’t work with user stories. Indeed, the optical industry customer had specific
deliverables that were part of the contract, which did not require refinement for user stories.

86

4.4.22 ART for Business Lines (1)

Name: ART for business lines. Goal: The Agile Release Train ART is a combination of
agile teams that works together with stakeholders to develop, deliver incrementally, and also
can operate one or more solutions in a value stream (Leffingwell, Dean, 2023). Who: teams,
stakeholders. How: Passiavaara, in her case study (PAASIVAARA, 2017) has shown how a
company has divided two different business lines in ARTs. Each business line had one agile
release train, although two platform teams were serving both business lines (PAASIVAARA,
2017). Due to it, the teams participated in both PI planning events since they compromised
themselves in delivering functionalities for both business lines. Context: in the case study,
Paassivaara (PAASIVAARA, 2017) was evaluating the adoption of SAFe in two different business
lines of Comptel, a huge telecommunication company with employees around the world. In this
case, each business line had its ART. However, different teams have been working for different
business lines, which led them to participate in different PIs and to get involved with many
sectors of the organization.

4.4.23 Change Agent (1)

Name: change agents. Goal: change agent is a definition of a role responsible for support-
ing the teams during the change and transition to the SAFe framework (EBERT; PAASIVAARA,
2017). They are also responsible for giving training and workshops and contributing to tailoring
the practices. Those change agents can be the RTE, coaches, and managers. Who: change
agents. How: in Paasivaara’s et al. (EBERT; PAASIVAARA, 2017; PAASIVAARA, 2017) studies,
the authors had presented the function of change agents. In the first case of (PAASIVAARA,
2017), the change agent was the RTE that worked part-time. This approach led the RTE not
to give proper attention as he would like to for the role that deserved more visible personnel.
However, in the second case (PAASIVAARA, 2017) and in the other study (EBERT; PAASIVAARA,
2017) with the output from the first transition, the change agents were R&D, coaches, and
RTE. They were working on pushing the change through workshops, training, and exercises
through a full-time journey to achieve continuous improvement(EBERT; PAASIVAARA, 2017;
PAASIVAARA, 2017). Context: as we have seen, in the Paasivaara et al. (EBERT; PAASIVAARA,
2017; PAASIVAARA, 2017) studies, the second case took more advantage by having all the in-
formation regarding the adoption of the first case. Due to it, the second case better addressed

87

the issues while involving change agents to achieve success.

4.4.24 Release Train Engineer (1)

Name: Release Train Engineer (RTE). Goal: according to SAFe, the RTE is responsible
for facilitating the major events of the ART (Leffingwell, Dean, 2023). They are also responsible
for assisting the process and coaching the team to deliver value (Leffingwell, Dean, 2023). Who:
release train engineer. How: SAFe does not specify the work time of an RTE, although due to
its responsibilities, it may be a full-time role (Leffingwell, Dean, 2023). However, in the first case
from Paasivaara’s study (PAASIVAARA, 2017), the organization chose to work with a part-time
RTE. As a part-time in the role, he put some efforts that were appreciated by the teams,
although it was not enough for the demand (PAASIVAARA, 2017). The teams realized that
the RTE could not push the recognized improvement items forward, and the feeling was that
nobody was systematically leading the improvements. However, the second case learned from
it, and the RTE worked full-time, which was considered one of the success factors of the SAFe
adoption (PAASIVAARA, 2017). Moreover, he was responsible for leading the PI Planning,
the SoS meetings, and taking care of the improvement items continuously (PAASIVAARA,
2017). The PI planning in the first case was chaotic due to a lack of preparation from the
RTE, although in the second case, the teams prepared themself better (PAASIVAARA, 2017).
Context: the second case from Paasiavaara’s study (PAASIVAARA, 2017) bet on the full-time
participation of an RTE, which led to benefits. Since the company was passing through SAFe
adoption, the RTE was not supposed to work on a part-time model, and the choice from case
1 was able to show the issues it caused. Finally, the first adoption also served as a driver of
how to do things correctly in the second case.

4.5 DAD TAILORING PRACTICES

4.5.1 Risk Mitigation (1)

Name: risk mitigation. Goal: Disciplined Agile Delivery (DAD) adopts an approach called
risk-value driven lifecycle (AMBLER; LINES, 2012). In this approach, the risk-related features
are considered high-priority items, not high-value ones. By doing this, the DAD framework
addresses the risks related to delivery as soon as possible by using practices that ensure

88

potentially consumable solutions every iteration (AMBLER; LINES, 2012). Who: the teams and
the organizations. How: Beecham et al. (BEECHAM et al., 2021) study has evaluated how two
large organizations that use DAD (AMBLER; LINES, 2012) and SAFe (Leffingwell, Dean, 2023)
frameworks practices addressed the GSD risks catalog developed by the authors. According
to the study, the original DAD practices addressed the GSD risks identified in the literature
(BEECHAM et al., 2021). However, only half of the risks from the catalog were observed at the
company using DAD. At the same time, almost all the practices identified were implemented
except for five that could address the risks from the GSD risk catalog. Context: in Beecham
et al. (BEECHAM et al., 2021) study, the case company was using DAD for the last five years
while developing asset management software with ten teams spread across Australia, the USA,
and India. The DAD application was so mature that the organization could address every GSD
risk identified by the authors just by using the already known risk- and value-driven approach.

4.5.2 Spikes (1)

Name: spike. Goal: spikes validate one or more technical approaches before deciding on one
design over the others (AMBLER; LINES, 2012). It is more specifically related to architecture, and
the team uses it to explore architectural choices before committing to an inaccurate approach
(AMBLER; LINES, 2012). Who: developers, architectures, and development team members.
How: in Beecham et al. (BEECHAM et al., 2021) study, the company case that used DAD
reported the use of spikes to mitigate some risks. First, the teams were developing automated
tests in part of their components while unfamiliar with this. Due to it, the use of spikes
was helpful to prototype an architecture model that could support the automation and also
to develop an early understanding of the technical aspects during the development lifecycle
(BEECHAM et al., 2021).Further, conflict requirements were standard during the inception phase.
Due to it, the team started to analyze risks and develop a spike on those requirement conflicts
before the user stories were set to verify the best technical approach to be adopted (BEECHAM

et al., 2021). Context: the use of DAD in this company case represents a very mature level of
implementation of its practices (BEECHAM et al., 2021). The use of Spikes was taken beyond
architectural prototyping, establishing the development of stories and keeping the business
goals.

89

4.5.3 Definition of Done (DoD) (1)

Name: definition of done (DoD). Goal: DAD framework does not specify a unique defini-
tion of the done concept. However, it discusses the definition of done from the lean community,
which describes that the work item is only done when it has been delivered into the user’s
hands, and they like it (AMBLER; LINES, 2012). In the DAD vision, the DoD can mean that
the solution is only done when the users successfully consume it. However, according to the
framework, the concept may evolve during the agile adoption (AMBLER; LINES, 2012). Who:
the team. How: Lal and Clear presented a large case study (LAL; CLEAR, 2018) from a company
transitioning to DAD. During the process, the very large-scale environment required ten teams
to work on different pieces of the solution and to deliver it with high quality. In this case, the
DoD practice aimed to ensure zero bug interaction in the short cycle for high quality by being
a governance practice combined with unit and acceptance tests, continuous delivery, and pair
programming (LAL; CLEAR, 2018). In the study, the DoD focuses on ensuring the quality of
the deliverables, but not specifically the consumption of them by the end users. Context:
Lal and Clear conducted a long case study for more than 15 years in a major Australia-based
multisite global software vendor (LAL; CLEAR, 2018). The study consists of a large transition
of 10 global distributed teams spread across the USA, Australia, and India from a structured
development process, Rational Unified Process (RUP), through a Hybrid-Agile method, and
finally to a Scaled Agile approach using Disciplined Agile delivery. By the time the study was
presented, the authors had evaluated how the practices, roles, and responsibilities changed in
each phase due to the dynamics of a more agile approach (LAL; CLEAR, 2018). Using DAD,
the company started to include DoD and other agile practices.

4.5.4 Daily Tactical Huddle (1)

Name: daily tactical huddle. Goal: the dailies from DAD do not differ much from regu-
lar dailies of Scrum (Schwaber, Ken and Sutherland, Jeff, 2022). However, the DAD has a daily
coordination meeting, in which team members organize themselves to decide what they will
do in the present work day (AMBLER; LINES, 2012). DAD suggests adopters start with a daily
coordination meeting similar to Scrum and then evolve to a Kaban-like coordination meeting,
focusing on the work itself instead of the individual (AMBLER; LINES, 2012). Who: the team.
How: Beecham et al. (BEECHAM et al., 2021) has shown that the case using DAD implement

90

what they called a daily tactical huddle. The tactical huddle included only the leadership roles,
which included the architect, tech lead, and PO, like a daily coordination meeting of leaders.
Such daily was required since the organization worked in the program and project division.
The regular dailies were concerned with local teams at the project level and were conducted
in a co-located manner. On the other side, daily tactical huddles concentrated the leadership
to discuss the program’s progress on a global level (BEECHAM et al., 2021). Context: the case
company using DAD on Beecham et al. (BEECHAM et al., 2021) works with several projects
that together deliver the program. Due to it, the program activities were held globally with
leadership with a more accurate holistic view of the projects. Meanwhile, every co-located team
across Australia, the USA, and India was concerned with their regular Scrum daily discussing
day-to-day work items.

4.5.5 User Stories (1)

Name: user stories. Goal: similar to other agile methodologies and frameworks, in DAD,
the user stories are work items that describe a requirement that describes a valuable function-
ality that needs to be implemented (AMBLER; LINES, 2012). However, DAD does not prescribe
specifically the user stories. It just recommends a usage-driven approach with a requirement
artifact focused on usage, like user stories, usage scenarios, or even use cases (AMBLER; LINES,
2012). Who: the team, PO, and analysts. How: Beecham et al. (BEECHAM et al., 2021) study
does not focus on how user stories were developed in both cases. However, one of the team
members from the company that used DAD has stated that the continuous focus of the or-
ganization in developing user stories was the underline problem of conflict requirements and
unclarified requirements (BEECHAM et al., 2021). In his concern, the user stories are important
to keep the workflow, although the most interesting insights happen in the day-to-day adjust-
ments (BEECHAM et al., 2021). Finally, he suggests adopting a more lively cycle of adjustments
rather than focusing on just design stories for design’s sake. Context: the case company using
DAD on Beecham et al. (BEECHAM et al., 2021) study develops asset management software
for enterprise demands. The focus on requirement stability is understandable, although the
customers’ needs are fluid. Due to it, it is important to consider spending some effort on good
requirements elicitation to avoid further issues.

91

4.5.6 Integration and Unit Testing (1)

Name: integration and unit testing. Goal: DAD frameworks encourage the use of integra-
tion and unit testing (AMBLER; LINES, 2012). Unit testing is part of the TDD approach that
development teams must adopt to write just enough unit tests to pass the functionality and
validate the expected results (AMBLER; LINES, 2012). DAD also suggests having a suite of unit
tests that can be run automatically during the regression test phase, focusing on having 80%
code coverage (AMBLER; LINES, 2012). Conversely, integration tests on large and distributed
teams may be complex, and DAD suggests having an independent test team for this (AMBLER;

LINES, 2012). The integration tests focus on verifying the potential defects that have fallen
through regular unit testing (AMBLER; LINES, 2012). It also aims to execute preproduction
testing to ensure quality before a release (AMBLER; LINES, 2012). Who: development team,
testers, and independent test team. How: Brown et al. (BROWN; AMBLER; ROYCE, 2013) study
presented a set of practical recommendations for achieving improved agility in large-scale soft-
ware delivery using DAD. Regularly, integration and unit testing occur in parallel, but the
authors suggest that integration tests run first. According to the author’s suggestion, running
integration tests first will demonstrate the architectural challenges and consequently help in
resolving the big uncertainties earlier (BROWN; AMBLER; ROYCE, 2013). By putting the eco-
nomic perspective in the front, resolving unit tests is easier but does not provide economic
leverage compared to resolving integration issues first. Since integration tasks are uncertain,
if the teams postpone them, they will decrease the probability of success (BROWN; AMBLER;

ROYCE, 2013). Context: Brown et al. (BROWN; AMBLER; ROYCE, 2013) proposed a framework
that presents practical recommendations for achieving improvements in agility at large-scale
software delivery enterprises. The study is based on three foundational principles that can en-
able success in achieving agility at an enterprise scale: I) Economic governance; II) Measured
Improvement; III) Disciplined agile delivery. Based on these principles, the authors define a
framework to prioritize agile practice areas. Finally, focusing on economic advantages, the
authors believe that executing integration tests first must reduce uncertainties and provide
economic leverage.

92

4.5.7 T-skilled Individuals (1)

Name: T-skilled individuals. Goal: in DAD, T-skilled people are called “generalizing spe-
cialists”, which are cross-functional people with sufficient skills to get the job done (AMBLER;

LINES, 2012). Generalizing specialists have one or more specialties, like programming and
testing, and they also have a general knowledge of the overall solution delivery process and
domain (AMBLER; LINES, 2012). Who: cross-functional team members. How: Lal and Clear
(LAL; CLEAR, 2018) presented in their study how a large organization with more than ten
teams spread across Australia, the USA, and India has evolved their team members to become
T-skilled individuals. Initially, the roles were defined as more structured and highly specialized
people, which the authors already called generalizing specialists (LAL; CLEAR, 2018). Further,
it evolves towards T-skilled individuals who gain in-depth knowledge of the technology and
business domain. Context: since the study of Lal and Clear described 15 years of transforma-
tion of a traditional agile company to a hybrid approach and then to DAD, it was possible to
observe the evolution of the roles and the individuals involved during the whole process until
they become T skilled individuals.

4.5.8 Product, Program, and Portfolio Planning (1)

Name: product, program, portfolio planning. Goal: DAD framework describes several levels
of scope plans, which are portfolio plan, program/product plan, release plan, iteration plan, and
daily plan (AMBLER; LINES, 2012). The portfolio planning identifies potential new projects and
evaluates the dependencies between the ongoing ones, but more details are beyond the scope
of the framework (AMBLER; LINES, 2012). It also happens to program/product plans, which
look forwards to two or three releases and business goals that it will accomplish (AMBLER;

LINES, 2012). Neither of those plans is the focus of DAD (AMBLER; LINES, 2012). Who: the
organization, leadership. How: in Lal and Clear (LAL; CLEAR, 2018) study, the organization
chose to combine the product, program, and portfolio planning practices with multi-stakeholder
input and a collaborative approach from the business area and the software engineering sector.
Independently whether DAD covers it or not, the company could identify long-term goals,
discuss reliable and achievable ideas for development, and focus on product management and
market needs (AMBLER; LINES, 2012). Finally, the responsibilities shared between the Sales
and engineering sectors encouraged a better link between the necessary development skills and

93

collaborative management (LAL; CLEAR, 2018). Context: the study of Lal and Clear (LAL;

CLEAR, 2018) described how the regular planning activities of a large organization could be
used to strict the relationship between the operational teams and the sales area. Due to it,
the teams became closer, and the organization drove the solution to a common vision and
roadmap.

4.5.9 DAD Training (1)

Name: DAD training. Goal: during the transition to a new framework, it is indispensable
to provide training for the team members in the process, practices, and roles of the framework.
DAD framework suggests the organization conduct training in several disciplines of software
engineering. Who: the organization. How: in Lal and Clear (LAL; CLEAR, 2018) study, the
company has hired the proper founder of the DAD framework to active coaching the teams
and facilitate the scaled agile transition. Due to it, the team members reported that the
transition went smoothly. Finally, they also reported that the training played an important role
in leading the teams to success since they needed guidance from the real world (LAL; CLEAR,
2018). Context: the study of Lal and Clear (LAL; CLEAR, 2018) covers a huge company capable
of affording training and coaching sessions with the proper founder of the DAD framework.
However, since this is not affordable for everyone, many companies must rely on alternative
approaches to achieve a similar transition level.

4.6 LESS TAILORING PRACTICES

4.6.1 Community of Practice (CoP) (2)

Name: Community of Practice (CoP). Goal: CoPs are not originated from LeSS. However,
the framework encourages the concept presented by Wenger et al. (WENGER; MCDERMOTT;

SNYDER, 2002). CoPs are groups of people who share a concern, hobby, or passion regarding
a topic or technology and interact to share and improve their knowledge and expertise in
the topic (WENGER; MCDERMOTT; SNYDER, 2002). Organizations must not set CoPs but
encourage them and form them by the members due to their needs, and the participation must
be voluntary (LARMAN; VODDE, 2016a). Who: team members. How: in the Paasivaaraand
Lassenius (PAASIVAARA; LASSENIUS, 2016) case study at Nokia, the CoPs were not seen. The

94

authors justify it due to the previous waterfall mindset culture that the teams dealt with
(PAASIVAARA; LASSENIUS, 2016) and the lack of self-organization. However, in Uludag et al.

(ULUDAG et al., 2019) multiple-case study, the four products evaluated organized the CoPs
for collaboration and information exchange involving technical and business subjects. In the
study, the principal CoP was an architectural CoP established by architects and stakeholders
to discuss architecture-related topics, make decisions, and discuss design guidelines that affect
and influence the feature teams (ULUDAG et al., 2019). Further, the teams created additional
CoPs for POs, SMs, and even testers (ULUDAG et al., 2019). Finally, the PO CoPs helped
them to coordinate and find a common direction on the enterprise level (ULUDAG et al., 2019),
similar to a Portfolio level discussion from SAfe (Leffingwell, Dean, 2023). Context: both studies,
from Uludag textitet al. (ULUDAG et al., 2019) and Paasivaara and Lassenius (PAASIVAARA;

LASSENIUS, 2016), describes complex product being developed by several teams spread across
the globe. However, the first study saw the opportunity to form CoPs and build them since
the team members could self-organize around the hot topics of their day-to-day activities
(ULUDAG et al., 2019). In the second study, the previous traditional mindset prevented the
teams from needing to discuss the related topics of their activities to improve on that or gain
more knowledge (PAASIVAARA; LASSENIUS, 2016).

4.6.2 Requirement Area (2)

Name: Requirement Area (RA). Goal: requirement area is a structure required in LeSS
huge and organized around customer-centric requirements (LARMAN; VODDE, 2016a). Each
requirement area may be divided based on the product boundaries, and it must have an Area
Product Owner (APO) with 4-10 feature teams working in the same backlog (LARMAN; VODDE,
2016a; ULUDAG et al., 2019; PAASIVAARA; LASSENIUS, 2016). Who: the organization, teams,
and APOs. How: in the case study of Uludag et al. (ULUDAG et al., 2019), the RAs as just
described, similar to the LeSS Huge framework (LARMAN; VODDE, 2016a), and it followed the
same sprint cadence and the whole areas focused in integrating the entire product through
Continuous Integration (CI)/Continuous Delivery (CD) chain. Further, one APO was respon-
sible for each RA and an Area Product Backlog (APB). On the other side, in the case study
at Nokia, the 20 teams required requirement areas and APOs responsible for their sprint plan-
ning, sprint reviews, and retrospectives (PAASIVAARA; LASSENIUS, 2016). However, the idea of
having one APO for each requirement area was not possible in the project since the organi-

95

zation found it difficult to divide the product into different areas (PAASIVAARA; LASSENIUS,
2016). Due to it, several features started to cross several areas, which broke the concept of
the LeSS Huge framework (PAASIVAARA; LASSENIUS, 2016).Context: the complexity of the
project at Nokia and the lack of experience of the organization led them not to apply the
requirement area in practice (PAASIVAARA; LASSENIUS, 2016). However, the main consequence
of it was related to the fact that several teams were working on the same features, which led
to a chaotic atmosphere. Due to the tight schedule, the APOs have given several stories for
different feature teams during the same iteration, which led Architect APOs responsible for
more than eight teams designing tasks (PAASIVAARA; LASSENIUS, 2016).

4.6.3 Area Product Backlog (2)

Name: area product backlog (APB). Goal: APBs are specific product backlog artifacts
from requirement areas that the APO maintains (LARMAN; VODDE, 2016a). Each Product
Backlog (PB) belongs to one Area Backlog, and vice versa (LARMAN; VODDE, 2016a). Who:
APOs. How: in the study of Uludag et al. (ULUDAG et al., 2019), the APO maintains the
area product backlog, similar to what the framework says. Further, one of the four products
studied had one common backlog and six specific backlogs supported by different area product
backlogs (ULUDAG et al., 2019). However, the other three products focused on working on only
one product backlog. On the other side, in Nokia’s case study (PAASIVAARA; LASSENIUS, 2016),
20 teams were working in a common backlog in an Excel sheet (PAASIVAARA; LASSENIUS, 2016).
Further, the solution architect of the APO was responsible for the items in his area and the
prioritization suggestion. Context: in the study of Uludag et al. (ULUDAG et al., 2019), the
different nature of the four products evaluated led one of them to establish six specific backlogs
due to its complexity. Moreover, in the case of Nokia (PAASIVAARA; LASSENIUS, 2016), with
teams spread across four countries, a common backlog was more suitable for their process in
the beginning. By the time the project grew, the need for RAs and APB started to appear,
and the teams organized through it (PAASIVAARA; LASSENIUS, 2016).

4.6.4 LeSS Huge (1)

Name: LeSS Huge. Goal: LeSS provides two different large-scale Scrum frameworks (LAR-

MAN; VODDE, 2016a). Firstly, the LeSS suits one to eight teams with eight people each. Second,

96

the LeSS Huge supports a few thousand people at one product and many teams (LARMAN;

VODDE, 2016a). Who: the organization. How: Uludag et al. (ULUDAG et al., 2019) presented
a case study of a large company that adopted LeSS in four different products. However, one
of the products has 15 feature teams, and they decided to use multiple implementations of
LeSS on those teams instead of the LeSS Huge (ULUDAG et al., 2019). The teams’ justification
was that the subordinate products do not have an overarching product character that would
require a LeSS Huge implementation (ULUDAG et al., 2019). From another product perspective,
the use of LeSS Huge was more suitable, and the team was having issues with dual leadership
by having a PO for the business and another for the IT structure (ULUDAG et al., 2019). To
solve this, the organization developed an Area Product Owner (APO) with six product owners
responsible for subareas as suggested by LeSS Huge1. Context: Uludag et al. (ULUDAG et al.,
2019) conducted a case study on an automobile manufacturer company to evaluate and re-
port the adoption of LeSS in four products. Even though the study was conducted in the same
company, the products were so different that the adoptions generated very different insights
regarding the tailoring of practices, roles, and processes.

4.6.5 Single-Specialist Teams (1)

Name: single-specialist teams. Goal: in LeSS, the scrum teams are supposed to be cross-
competence teams with multi-disciplinary skills (LARMAN; VODDE, 2016a). It also explicitly
states that single-specialist teams may not exist since the team should have all the necessary
competencies (LARMAN; VODDE, 2016a). However, in the literature, we saw specialist teams
aiming to work on very specific parts of the solution and on specific phases of the develop-
ment lifecycle (PAASIVAARA; LASSENIUS, 2016). Who: the organization. How: in Paasivaara
and Lassenius (PAASIVAARA; LASSENIUS, 2016) study, 20 teams with more than 170 members
spread across India, and Europe were trying to scale agile by adopting the LeSS framework.
However, single-specialist teams were required despite the regular scrum teams with 6-10 peo-
ple being multi-disciplinary. First, a CI team was settled in Finland to handle the delivery
pipeline, testing environments, and test runs (PAASIVAARA; LASSENIUS, 2016). Further, the
company established verifications teams in Germany and Greece to deal with network checks
and performance testing (PAASIVAARA; LASSENIUS, 2016). Moreover, the authors reported the
presence of a software architecture team with nine specialists responsible for supporting the
teams in architecture planning (PAASIVAARA; LASSENIUS, 2016). Finally, a maintenance team

97

composed of two managers and 1-2 members from each team is built. This team aims to take
care of trouble reports from external customers and internal platforms (PAASIVAARA; LASSE-

NIUS, 2016). Context: despite the recommendations of LeSS Framework (LARMAN; VODDE,
2016a). The complexity of the case study of Paasivaara and Lassenius (PAASIVAARA; LASSE-

NIUS, 2016) required the organization to build multi-disciplinary scrum teams and also work
with single-specialist teams. The study was conducted at Nokia, involving people from India,
Germany, Finland, and Greece, developing many different products for the telecommunica-
tion industry. The complexity of some parts of the solution required single-specialist teams
(PAASIVAARA; LASSENIUS, 2016).

4.6.6 Inspect and Adapt (1)

Name: inspect and adapt. Goal: inspect and adapt are particularly a practice of SAFe (Leff-

ingwell, Dean, 2023), and according to it, inspect and adapt meetings must focus on evaluating
the current status of the product in development and discuss future adaptations for the solu-
tion. Who: team members, POs. How: in the case study presented by Uludag et al. (ULUDAG

et al., 2019), two of four products that were adopting LeSS conducted regularly inspect and
adapt meetings. However, both products choose to adopt the practice with a different purpose,
checking where they were in the adoption process, how they could improve this process, and
how to tailor their behavior during the adoption (ULUDAG et al., 2019). Those products did
not use the practice to check their solution, but two improved the general adoption of LeSS.
Context: the two out of four products that applied the inspect and adapt practice in Uludag
et al. (ULUDAG et al., 2019) sutdy, were using LeSS with SAFe (Leffingwell, Dean, 2023) and LeSS
with DevOps (EBERT et al., 2016). Due to the combination of LeSS and other frameworks and
the lack of previous knowledge in agile methodologies, the teams have seen the inspect and
adapt meeting as an opportunity to check whether they were going in the right direction and
what they needed to change to keep the adoption going.

4.6.7 Design And Requirement Workshops (1)

Name: design and requirement workshop. Goal: design and requirement workshops are
helpful to clarify story aspects for the teams (LARMAN; VODDE, 2016a). During the activity,
the team members must discuss the inconsistencies the system should support and describe

98

the story through workflow visualizations and abstract descriptions (LARMAN; VODDE, 2016a).
Who: APO’s and team members. How: during the case at Nokia from the study of Paassi-
vaara and Lassenius (PAASIVAARA; LASSENIUS, 2016), the design and requirement workshops
were arranged by the system and software architects APOs on each user story before the PI
Planning, as needed. Moreover, the ideal requirement workshop would discuss the requirement
in detail and how the System and Software Architects had decided to implement them at a
high-level (PAASIVAARA; LASSENIUS, 2016). On the other side, during the design workshop,
the team would plan with the help of architects how to implement the story and deal with its
dependencies (PAASIVAARA; LASSENIUS, 2016). However, in reality, the user stories were so big
that were requiring those workshops always and took three sprints to be implemented (PAASI-

VAARA; LASSENIUS, 2016). After fixing this, small stories were gathered into one collaborative
design and requirement workshop that could deal with them at once. Context: the teams at
Nokia had reported that those workshops were helpful since they improved the communication
between the APO and them (PAASIVAARA; LASSENIUS, 2016). The teams also said the APO
could hear their opinions regarding the design. However, in a rush to release new features,
some of them were misplanned in the workshops, which caused issues while implementing, like
new requirements or forgetting of planning details (PAASIVAARA; LASSENIUS, 2016).

4.6.8 Retrospective Meeting (1)

Name: retrospective meeting. Goal: in LeSS (LARMAN; VODDE, 2016a), the retrospective
meetings are supposed to be held as individual meetings on each team, similar to a one-
team Scrum retrospective. Further, the team must discuss their issues and large obstacles
impeding all the teams (LARMAN; VODDE, 2016a). LeSS also has overall retrospectives with
team representatives, scrum master, POs, and managers to discuss general actions and issues
(PAASIVAARA; LASSENIUS, 2016). Who: team members, POs, SMs, POs, managers. How: the
Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2016) study at Nokia has shown several
applications of retrospective meetings. In the beginning, each team had their retrospective
meeting and needed to describe three issues that were big enough for they (PAASIVAARA;

LASSENIUS, 2016). During the joint retrospective meeting, a discussion would occur based on
three issues reported by the teams. However, the problems were too big to be solved in one
iteration, and the solution implementation did not follow up (PAASIVAARA; LASSENIUS, 2016).
Due to it, the organization tried implementing a different common sprint retrospective with an

99

internal coach to avoid past mistakes. In this new away, the team members must brainstorm
the most important impediments, choose the most important one, search for root causes,
brainstorm solutions, choose one, and draft implementation of it (PAASIVAARA; LASSENIUS,
2016). Despite the two different approaches, the members’ participation was voluntary, and
the team members lost interest during the meeting with only a few participants. Context:
the case study at Nokia involved 170 members spread across four countries and 20 teams
(PAASIVAARA; LASSENIUS, 2016). Due to the complexity of solving and fixing the general
issues, the teams quickly lost interest in the common meetings, like the retrospective one. The
teams also saw the common retrospective meeting as a waste of time since it did not give a
big picture of the solution and did not help with coordination issues.

4.6.9 Definition of Done (DoD) (1)

Name: definition of done (DoD). Goal: similar to other frameworks, the DoD in LeSS
describes the necessary list of criteria that the software needs to meet for each product backlog
item (LARMAN; VODDE, 2016a). The DoD must be applied for every product backlog item,
and teams must define it in the first Sprint and refine it during the next ones (ULUDAG et

al., 2019). Who: teams. How: in Uludag et al. (ULUDAG et al., 2019) case study, each of the
four products evaluated establishes a DoD, although not all of them followed the required
steps. Only one product finished the DoD specification and followed it during the development
(ULUDAG et al., 2019). Two other products defined the first version of their DoD but left it
in the corner without proper use by the teams, which was problematic (ULUDAG et al., 2019).
Moreover, the case study has shown other definition techniques, such as the Definition of
Entry (DoE) and the Definition of Ready (DoR). The DoE describes rough requirements into
individual stories, while DoR describes the last step before implementation that represents user
stories ready for implementation (ULUDAG et al., 2019). Context: Uludag et al. (ULUDAG et

al., 2019) study present different products with different level of maturity regarding process
practices. The rush of day-to-day activities led the teams to ignore the use of DoD during
the development, and the organization failed to require it. However, it also led the teams to
develop tailored definitions to represent readiness and entries (ULUDAG et al., 2019).

100

4.6.10 Demo Presentation (1)

Name: demo presentations. Goal: demonstration presentations aim to show stakeholders,
POs, and APOs the current status of the solution through the execution of some test cases
(LARMAN; VODDE, 2016a). Who: team members, POs, APOs, stakeholders, and other inter-
ested people. How: the study of Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2016)
has described the evolution of a simple demo presentation activity. In the beginning, a com-
mon demo meeting of two hours took the place of a common sprint review (PAASIVAARA;

LASSENIUS, 2016). Firstly, the teams were gathered in an auditorium, and the representative
of each team would share a short slide presentation of the team’s achievements. Later, the
teams presented real test cases and test results for ten minutes (PAASIVAARA; LASSENIUS,
2016). However, the teams criticized this approach since it would not show the real status of
the software and did not encourage discussions or feedback. Further, the organization started
to conduct individual demo presentations at each team involving the program manager and
PO (PAASIVAARA; LASSENIUS, 2016). Context: the case study at Nokia from Paasivaaraand
Lassenius has shown how the numbers of teams lead the teams to tailor the demo presentation
practice (PAASIVAARA; LASSENIUS, 2016). Since the number of teams evolved, the common
meeting became impossible to be held in two hours, and the individual one seemed more
efficient.

4.6.11 Scrum of Scrums (SoS) (1)

Name: Scrum of Scrums (SoS). Goal: Scrum of Scrums is a meeting usually held by
teams at the requirement area level to coordinate their activities (LARMAN; VODDE, 2016a).
Commonly, each team sends a representative to discuss and explore cross-team topics, depen-
dencies, and issues on a cadence that can be daily or two to three times a week (LARMAN;

VODDE, 2016a). Who: team’s representatives, scrum masters. How: Paasivaara and Lassenius
(PAASIVAARA; LASSENIUS, 2016) have presented how the teams at Nokia established a Scrum
of Scrums meeting. After their regular daily, one team representative may participate in the
daily SoS that would take 5-15 minutes (PAASIVAARA; LASSENIUS, 2016). At the beginning of
the project, a common SoS was held in the main site, Finland, although with new teams from
India, the main teams tried to include them through teleconference. Since this approach did
not go well, the organization split the SoS meeting into two meetings, the first main meet-

101

ing in Finland and a Global SoS teleconference meeting with teams from all four countries
(PAASIVAARA; LASSENIUS, 2016). The project manager was the facilitator, although, during
that time, many teams reported nothing in the SoS meetings, and later some representatives
started to miss the meetings (PAASIVAARA; LASSENIUS, 2016). Context: the case study at
Nokia (PAASIVAARA; LASSENIUS, 2016) had 20 teams with 170 members spread across India,
Finland, Germany, and Greece (PAASIVAARA; LASSENIUS, 2016). In the beginning, a common
SoS meeting seemed enough, although, by the time the teams have grown, some alternatives
may take place to handle the dynamic of many people. Further, the company had to deal with
the challenge of engaging those people in reporting their problems and issues and keeping their
interest in the meeting (PAASIVAARA; LASSENIUS, 2016).

4.6.12 Teams Representatives (1)

Name: teams representatives. Goal: many meetings from LeSS are usually held in common
with the different teams (LARMAN; VODDE, 2016a). Further, not all members must attend these
meetings, and representatives are elected to participate (LARMAN; VODDE, 2016a). Who:
team’s representatives. How: in the case study of Paasivaara and Lassenius at Nokia, the
(PAASIVAARA; LASSENIUS, 2016) the rotation of teams representatives had two approaches.
First, a fixed team representative approach, in which one member of the team or the scrum
master is sent to the common meetings (PAASIVAARA; LASSENIUS, 2016). Second, a rotating
system was implemented where each team member could participate in the week’s common
meetings. Context: the approach of having common meetings led the 20 teams from Nokia to
combine different strategies to have at least one member representing the team at those events
(PAASIVAARA; LASSENIUS, 2016). Further, some representatives started to miss the common
meetings, which indicates that fixed team representatives can be seen as a burden for some
members (PAASIVAARA; LASSENIUS, 2016).

4.6.13 Sprint Planning (1)

Name: sprint planning. Goal: LeSS framework defines sprint planning as two-part event
(LARMAN; VODDE, 2016a). In the first stage, all teams or representatives organize a common
sprint planning. Further, the first stage focuses on selecting ready items presented by the PO,
and the teams decide which items they will work on (LARMAN; VODDE, 2016a). In the second

102

phase, each team conducts its sprint planning, in which they create their plan to get the
items done during the sprint (LARMAN; VODDE, 2016a). Who: PO, SM, and all teams.How:
Paasivaara and Lassenius’s study at Nokia (PAASIVAARA; LASSENIUS, 2016) has shown some
adaptions to the sprint planning event. Similar to LeSS (LARMAN; VODDE, 2016a), the company
split the event into two parts. First, a common sprint planning for all teams is settled, in
which each team sends a representative for a one-hour teleconference meeting (PAASIVAARA;

LASSENIUS, 2016). In this meeting, the PO would discuss the market situation and present
and assign the user stories for the teams. After it, the sprint planning continues in each
team space for detailed planning (PAASIVAARA; LASSENIUS, 2016). Finally, in the evening,
each team sent an email with the committed items to the PO and program manager, who
updated the backlog (PAASIVAARA; LASSENIUS, 2016). Context: the common sprint planning
was conducted at Nokia due to a large number of teams involved (PAASIVAARA; LASSENIUS,
2016). However, the team perception has varied. Some saw the meeting as a waste of time,
while others enjoyed it since it gave them visibility regarding other teams’ work.

4.6.14 Release Planning (1)

Name: release planning. Goal: since the LeSS framework is based on Scrum (LARMAN;

VODDE, 2016a), the releases must be planned during the product backlog refinement of each
iteration. Further, the releases must occur during each iteration.Who: the teams, PO, and
APOs. How: in the study of Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2016) at
Nokia, the releases suffered a transformation until they arrived at an agile approach. In the
first and second years of development, the customers received few versions for test usage
(PAASIVAARA; LASSENIUS, 2016). After it, the company established two major software releases
per year and six maintenance releases with no new functionality or bug fixing. Meanwhile, the
project became more mature and releases once per month for the main customers (PAASIVAARA;

LASSENIUS, 2016). Context: in this study at Nokia (PAASIVAARA; LASSENIUS, 2016), we must
consider the nature of telecommunication projects. Since it’s a more legacy industry, the
releases used to happen every two or three years. However, the current market perspective
expects to access new products and software at a quicker frequency. Due to the project’s
complexity in the study (PAASIVAARA; LASSENIUS, 2016), the first releases passed through a
more traditional approach. However, by the time the project started to mature, the teams and
the organization had more courage to establish a shorter release cycle, which the customers

103

received well.

4.6.15 Area Product Owner (APO) (1)

Name: area product owner (APO). Goal: according to the LeSS framework (LARMAN;

VODDE, 2016a), an Area Product Owner focuses on a customer-centric area and acts as PO
concerning the teams of that area. Further, the APO works similarly to the PO but with a
more limited perspective since it focuses on a customer-centric area (LARMAN; VODDE, 2016a).
APOs can extend to a team of POs or APOs. In those teams, the APO and the PO form a
team that makes product-wide prioritization decisions (LARMAN; VODDE, 2016a). Who: POs,
APOs. How: in the Nokia case study presented by Paasivaara and Lassenius (PAASIVAARA;

LASSENIUS, 2016), the project had 9-10 APOs responsible for ten different product areas.
Further, those APOs were filled by two roles: the solution architect and the system architect
(PAASIVAARA; LASSENIUS, 2016). The System architect belongs to the R&D organization sector
and is responsible for the technical demands and architectural plans (PAASIVAARA; LASSENIUS,
2016). Meanwhile, the solution architect belongs to the product management sector, which can
have a business and technical background (PAASIVAARA; LASSENIUS, 2016). In the same study,
the APOs formed a team of APOs, each with those two distinct roles representing an APO.
The APO is responsible only for the features of its area and works with the teams to develop
them (PAASIVAARA; LASSENIUS, 2016). The APO would have a couple of development teams,
and each team would be responsible for developing a feature (PAASIVAARA; LASSENIUS, 2016).
However, the issues while establishing requirement areas blocked it 4.6.2. Context: the use of
Less Huge in the study of Paasivaara and Lassenius at Nokia (PAASIVAARA; LASSENIUS, 2016)
involving 20 teams required the presence of APOs as suggested by the framework (LARMAN;

VODDE, 2016a). However, the complexity of the project domain required a bit of adaptation,
adding two different roles to focus on business and technical demands to represent the original
APO role from LeSS (PAASIVAARA; LASSENIUS, 2016).

4.6.16 System and Solution Architects (1)

Name: system and solution architects. Goal: originally, LeSS (LARMAN; VODDE, 2016a)
does not define the system and solution architects’ role, although one article combined both to
represent APOs. In LeSS, an APO focus on customer-centric requirement areas as a PO for the

104

teams of those areas (LARMAN; VODDE, 2016a). One study Who: APO. How: in the Paasivaara
and Lassenius (PAASIVAARA; LASSENIUS, 2016) case study at Nokia, the APO role was filled
by two different persons, the system architect, and the solution architect. Both were working
with features from a requirement area and the teams from it. The solution architects worked
separately from the team, using another building since they belong to the product management
sector (PAASIVAARA; LASSENIUS, 2016). They were responsible for interacting with customers
and market area representatives. Finally, requirements are always passed through solution
architects, since one feature may touch several product areas, the organization requires some
adaptions on the APO regular model (PAASIVAARA; LASSENIUS, 2016). On the other side,
system architects also dealt with features that cross several areas. They were closer to the
teams in the building, and their day-to-day activities (PAASIVAARA; LASSENIUS, 2016). The
system architect was responsible for updating the backlog based on the teams’ progress,
arranging requirements and design workshops 4.6.7 (PAASIVAARA; LASSENIUS, 2016). Context:
the number of requirement areas in the project and the variety of product areas and teams
responsible for it lead the organization to tailor the regular APO model suggested by the LeSS
framework (PAASIVAARA; LASSENIUS, 2016). Since a feature may cover different areas, just a
PO with experience in the business domain would not be enough to handle the technical issues
those features may arise. Due to it, the company saw the need to split the APO role into two
different roles combining professionals with technical and business skills to evaluate better the
cross areas’ features (PAASIVAARA; LASSENIUS, 2016).

4.6.17 Domain PO (1)

Name: domain PO. Goal: originally, LeSS (LARMAN; VODDE, 2016a) does not specify
a domain PO role. However, In LeSS, a PO works similarly to the Scrum role, working as
a connector between the customer needs and the teams (LARMAN; VODDE, 2016a). Who:
PO. How: in the four products evaluated in Uludag et al. (ULUDAG et al., 2019) study, all
of them implemented the domain PO role. The role has project management functions, like
synchronizing the feature teams and planning their budget and capacities (ULUDAG et al., 2019).
Further, they also have responsibility regarding products at the portfolio level. Context: the
large-scale environment of the products evaluated at the Uludag et al. study (ULUDAG et

al., 2019) required a specific professional to handle project management activities regarding
budget and capacity tracking. Due to it, a spin from the PO role called Domain PO was

105

born specifically to deal with those subjects preventing the POs from handling one more
responsibility (ULUDAG et al., 2019).

4.7 SCRUM TAILORING PRACTICES

4.7.1 Daily Scrum Meeting (25)

Name: daily scrum meeting. Goal: in the original Scrum guide, the daily scrum meet-
ing is normally a 15-minute meeting for the team members to inspect progress toward the
sprint goal, adapt the Sprint Backlog, and plan for the next day of work (SCHWABER; SUTHER-

LAND, 2020). It should be held at the same time and place every working day of the Sprint.
Also, POs and SMs must participate whether they are actively working on backlog items as
team members (SCHWABER; SUTHERLAND, 2020). Who: team members, SMs. How: due to
the distribution of the large projects presented in the sample of this study, most of them
implemented the daily meetings through phone and video conferences and sometimes used
screen sharing (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; BASS, 2016b; NYRUD; STRAY,
2017; HOSSAIN; BANNERMAN; JEFFERY, 2011; LEE; JUDGE; MCCRICKARD, 2011; MATTHIESEN;

BJØRN, 2017; GARBAJOSA; YAGÜE; GONZALEZ, 2014; PAASIVAARA; LASSENIUS, 2010; VALLON

et al., 2013; BASS, 2015; LEE; YONG, 2010; WILDT; PRIKLADNICKI, 2010; KUSSMAUL, 2010;
HOLE; MOE, 2008; VÄLIMÄKI; KÄÄRIÄINEN, 2008; DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009a; VALLON. et al., 2013; RALPH; SHPORTUN, 2013; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b; KORKALA; ABRAHAMSSON, 2007). Moreover, the distribu-
tion of those teams led to some timezone issues for the companies, which tried different
strategies to involve the entire team in the daily meetings. Some authors have shown the
presence of daily meetings during the overlap hours of the team (PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2008; LEE; YONG, 2010; DORAIRAJ; NOBLE; MALIK, 2012). In one case, the daily
meetings were held in one month in the morning to accommodate European teams better, and
in another month at night to better suit the Indian team (DORAIRAJ; NOBLE; MALIK, 2012).
In other studies, the international teams were so big that the organization held two dailies on
the same day, first at 8 a.m with the occident teams, then at 6 p.m with the orient teams,
(LEE; YONG, 2010). Further, some projects with several teams established daily meetings for
each team or each site at consecutive times to allow managers and SMs to participate in more
than one (BASS, 2014; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; NYRUD; STRAY, 2017;

106

HOSSAIN; BANNERMAN; JEFFERY, 2011; VALLON et al., 2013; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). Studies that involved onshore
and offshore teams applied different strategies involving or not those teams (BASS, 2016b;
NYRUD; STRAY, 2017; KUSSMAUL, 2010; NOORDELOOS; MANTELI; VLIET, 2012; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b). In one case, a 30-minute daily was divided into 15 minutes
for the onshore team and the last 15 minutes for the offshore team (NYRUD; STRAY, 2017).
From another view, one study showed dailies only with the offshore team since the onshore
team focused on generating and maintaining project specifications (KUSSMAUL, 2010). Some
studies also reported the conduction of daily meetings through instant messages at chats
or email (PAASIVAARA; LASSENIUS, 2010; KUSSMAUL, 2010; HOLE; MOE, 2008; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b; KORKALA; ABRAHAMSSON, 2007) due to language problems
(HOLE; MOE, 2008). In an exciting strategy, two case studies reported the presence of daily
meetings specifically for testers and only to discuss test results (VALLON et al., 2013; VALLON. et

al., 2013). Other studies reported different frequencies for the daily meetings, and one case re-
ported a scrum meeting twice a week focused on risk and exploratory testing findings (GUPTA;

MANIKREDDY; ARYA, 2017). The presence of two dailies was also common due to timezone
differences in combining Indian, American, and European teams (BASS, 2014), or the number
of people involved (HOSSAIN; BANNERMAN; JEFFERY, 2011). Also, two studies reported the
presence of dailies every two days at least in one of their projects (HOSSAIN; BANNERMAN; JEF-

FERY, 2011; RALPH; SHPORTUN, 2013). Moreover, some papers reported the benefits of daily
meetings on large-scale projects. First, it encouraged communication among the onshore and
offshore teams (PAASIVAARA; LASSENIUS, 2010; DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009a)and helped them to communicate better and resolve issues
faster (NOORDELOOS; MANTELI; VLIET, 2012). Finally, some studies reported the daily meet-
ings as excessive or not required since some teams were too small for it and worked very close
every day (VALLON et al., 2014; HOSSAIN; BANNERMAN; JEFFERY, 2011), or teams involved
in generating and maintaining project specifications (HOSSAIN; BANNERMAN; JEFFERY, 2011).
Context: in the 24 studies that were found adaptations to the daily meeting activity, most of
them, due to the distributed context, required the use of digital channels to hold the meeting
(LEE; JUDGE; MCCRICKARD, 2011; MATTHIESEN; BJØRN, 2017; GARBAJOSA; YAGÜE; GONZALEZ,
2014; BASS, 2015; WILDT; PRIKLADNICKI, 2010; VÄLIMÄKI; KÄÄRIÄINEN, 2008). However, very
large-scale projects, such as the study presented by Lee and Yong (LEE; YONG, 2010) at Yahoo,
with different big timezones from three continents, required more than one daily to accom-

107

modate teams spread around twelve countries. Moreover, studies involving three continents
or more also required tailoring through the meetings schedule due to the timezone differences
or the number of people involved (BASS, 2014; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008;
HOSSAIN; BANNERMAN; JEFFERY, 2011; DORAIRAJ; NOBLE; MALIK, 2012). Further, projects
involving onshore and offshore teams have shown that depending on the company’s maturity
level, the daily could involve or not all the teams (BASS, 2016b; NYRUD; STRAY, 2017; HOS-

SAIN; BANNERMAN; JEFFERY, 2011; KUSSMAUL, 2010; NOORDELOOS; MANTELI; VLIET, 2012;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). Projects that involved the offshore teams in
the daily have presented fewer issues regarding this activity (NYRUD; STRAY, 2017). Also,
distributed teams that were small or working closer justified the execution of dailies through
chat messages (KUSSMAUL, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). However,
the daily meetings through chat messages were mostly used in studies involving teams with
very different cultures and many language barriers to avoid misunderstandings (PAASIVAARA;

LASSENIUS, 2010; KUSSMAUL, 2010; HOLE; MOE, 2008; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2009b; KORKALA; ABRAHAMSSON, 2007). It’s also essential to notice that small teams,
even working distributed, feel that due to the proximity of the members, the daily meeting
frequency could be reduced to 2-3 times a week or even be passed to status meeting through
chat depending on the team’s focus (VALLON et al., 2014; HOSSAIN; BANNERMAN; JEFFERY,
2011).

4.7.2 Scrum of Scrums (SoS) (14)

Name: Scrum of Scrums (SoS). Goal: Scrum of Scrums is the purest way of scaling Scrums
among multiple teams. However, it is not a practice described in the original framework, but
in most of the scaling ones (HENRIK; ANDERS, 2012; Leffingwell, Dean, 2023; LARMAN; VODDE,
2016a). It works as a synchronizing meeting for team representatives to collaborate among
themselves. Who: team members, Scrum Master, managers, stakeholders, Product Owners,
Proxy Product Owners. How: most of the studies that reported the use of SoS were using it
similar to a daily meeting, but sometimes at a different frequency, through audio and video
conferences answering what the team has done since the last meet, what the teams are plan-
ning to work on, and their impediments (BASS, 2014; BASS, 2013; PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2008; PAASIVAARA; LASSENIUS, 2010; LEE; YONG, 2010; VÄLIMÄKI; KÄÄRIÄINEN,
2008; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; VALLON. et al., 2013). The team repre-

108

sentatives must also align their teams’ impediments generated for other teams or if they plan
to do it (BASS, 2014; BASS, 2013; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA;

LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). The team’s representatives
could be in a fixed role or a rotation function. Other studies had reported the conduction of SoS
meetings only with Scrum Masters reporting the iteration progress status (BASS, 2014; BASS,
2013; JHA; VILARDELL; NARAYAN, 2016; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASI-

VAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b), sometimes related
to impediment metrics, weekly defects, overall sprint plan (JHA; VILARDELL; NARAYAN, 2016),
and with the POs presence (BASS, 2014). In one study from Gupta et al. cite169, the authors
presented an experience report on an organization conducting an agile transformation that im-
plemented three SoS meetings. First, a daily SoS meeting with a Scrum Master Part Product
Owner managing it, then a weekly SoS meeting conducted by the Chief Scrum Master, and
finally a bi-weekly SoS meeting held by the Chief Product Owner (GUPTA; MANIKREDDY; ARYA,
2017). Each meeting had its goals based on the audience, although the common three ques-
tions of Scrum were answered (GUPTA; MANIKREDDY; ARYA, 2017). One study has reported
a different use of the SoS meeting. First, it involves the leadership team, and the project
manager manages it (GUPTA; JAIN; SINGH, 2018). It was also held in an open space focusing
on discussions regarding technical topics rather than dealing with impediments (GUPTA; JAIN;

SINGH, 2018). However, this approach did not go well during the time since the meeting lost
its effectiveness and became a finger-pointing meeting (GUPTA; JAIN; SINGH, 2018). Rolland et

al. (ROLLAND et al., 2016) conducted a case study of a large-scale agile project that involved
120 participants that used the SoS meetings as an Architecture meeting discussing even alarm
build results. Further, in a study involving two different suppliers, only the main supplier had
the SoS meetings, while the additional one was not involved (VALLON et al., 2013; VALLON. et

al., 2013). Context: in the evaluated studies, very different contexts led the teams to apply
and tailor the SoS practice. In Gupta et al. (GUPTA; MANIKREDDY; ARYA, 2017) study, the
software development factory with teams spread across India, Germany, and the USA applied
different SoS meetings due to the tailored roles of the company. Further, companies from
more traditional fields, such as industry, manufacturing, and oil and energy, were more inclined
to conduct one-way SoS meetings involving only SMs reporting regular metrics (BASS, 2014;
BASS, 2013; JHA; VILARDELL; NARAYAN, 2016; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008;
PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). IT Service
companies involved with different suppliers suffered similar challenges, although both studies

109

only showed minimal tailoring passing the meetings to a digital channel (VALLON et al., 2013;
VALLON. et al., 2013). In studies of sectors using more traditional approaches, Gupta et al.

(GUPTA; JAIN; SINGH, 2018) has shown a healthcare project that used the SoS meeting as a
technical discussion forum can lead the team to deviate from its purpose. Rolland et al. (ROL-

LAND et al., 2016) has shown an SoS meeting focused on Architecture discussions since the
teams were looking to improve knowledge transfer and inter-team coordination process. Finally,
very large-scale mature companies with distributed teams just tailored the SoS meeting to the
digital channels with video and voice conference (LEE; YONG, 2010; VÄLIMÄKI; KÄÄRIÄINEN,
2008).

4.7.3 Retrospective Meeting (10)

Name: retrospective meeting. Goal: according to the Scrum guide, the retrospective meet-
ing aims to plan ways to increase quality and effectiveness (SCHWABER; SUTHERLAND, 2020).
The team must inspect how the last sprint went regarding individuals, processes, deliverables,
tools, and DoD. By identifying things to improve, the team must work on those improve-
ments in the next iteration and evaluate the implemented actions in the next retrospective
(SCHWABER; SUTHERLAND, 2020). Who: Scrum Team, PO, and SM. How: many ways were
chosen by the teams and organization to conduct retrospective meetings, including regular ret-
rospective (BASS, 2014; VALLON et al., 2014; HODA; NOBLE, 2017), common retrospectives with
all the team (TENDEDEZ; FERRARIO; WHITTLE, 2018; PAASIVAARA; LASSENIUS, 2010; VALLON

et al., 2013; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; VALLON. et al., 2013; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b), retrospectives every second (HOSSAIN; BANNERMAN; JEF-

FERY, 2011; VALLON et al., 2013; VALLON. et al., 2013) or third sprint (LOUS et al., 2018), and
even the absence of the practice (HOSSAIN; BANNERMAN; JEFFERY, 2011). In Bass’s case study
(BASS, 2014), the teams just conducted a regular Scrum Retrospective by the end of each
sprint to understand what had been wrong, what was good, and what could be improved.
In one of Vallon et al. (VALLON et al., 2014) studies with a single Scrum team, the meeting
was seen as an invaluable tool. It made the team, in high-stress times, keep improving their
process and reduced the frustration level by letting them speak and propose solutions. He-
lena et al. (TENDEDEZ; FERRARIO; WHITTLE, 2018) study on BBC has presented how closed
retrospective meetings were helpful for the crews. It promoted flexibility since the team had
dedicated time to gather themselves and honestly reflect on their process and culture. Also,

110

the meeting served for the crews to discuss how their work could contribute to the organi-
zation’s shared goals (TENDEDEZ; FERRARIO; WHITTLE, 2018). In Hossain et al. (HOSSAIN;

BANNERMAN; JEFFERY, 2011), multiple case studies implemented different approaches to the
retrospective practice. One of the cases started the 5-6 sprints holding retrospective meetings,
but the practice was discontinued since the Scrum was working well, and the issues were re-
solved through the other meetings (HOSSAIN; BANNERMAN; JEFFERY, 2011). Also, the lack of
feedback from both sites discouraged the continuity of the retrospective meeting. However, in
another case of the same study, each team held a common retrospective meeting at the end of
the sprint, and the results were posted on the project wiki (HOSSAIN; BANNERMAN; JEFFERY,
2011). Then, those retrospectives started to be every second sprint when the operation began
to run smoothly (HOSSAIN; BANNERMAN; JEFFERY, 2011). With a similar result, Lous et al.

(LOUS et al., 2018) has shown a case in which the retrospective meetings were held every
third retrospective week. In Hoda et al. (HODA; NOBLE, 2017) study with 31 practitioners,
it was perceived that few new teams performed retrospective meetings, but the experienced
teams regularly conducted retrospectives to drive continuous improvement. At Paasivaara et

al. (PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b) multiple
case studies, a common retrospective meeting was held after sprint demos involving all the
team through teleconference meetings. In another, the onsite team just arranged a unique
retrospective meeting, which was perceived as positive. However, later the onsite and offsite
scrum masters conducted the retrospectives between them, discussing possible improvement
without the team participation (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). Finally, in
Vallon et al. (VALLON et al., 2013; VALLON. et al., 2013) involving the same case, the common
retrospectives meetings with all the teams were held monthly after two sprints. The meeting
had six steps, it included an individual evaluation of the last two sprints and the impact of
measures taken. Then, new remarks (positive or negative) were presented, and the remarks
were clustered into topics and weighed by team members who had three points to vote on
different topics. The top three issues were picked up, and the measures were discussed for im-
provement (VALLON et al., 2013; VALLON. et al., 2013). Context: only one case study reported
a fully completed retrospective meeting with the script of what to do and how to improve for
the next iterations.Interestingly, the studies of Vallon et al. (VALLON et al., 2013; VALLON. et

al., 2013) reported some issues regarding the relationship between the main supplier and an
additional supplier. Still, the retrospective meeting sounds like a practice well implemented
with the involvement of the additional supplier representative in an industrial project. Some

111

distributed projects led the retrospective meetings to be conducted after two sprints, and most
of it may occur due to the time required to apply and feel the improvements in a large-scale
distributed project (HOSSAIN; BANNERMAN; JEFFERY, 2011; LOUS et al., 2018; VALLON et al.,
2013; VALLON. et al., 2013). However, independently of the frequency, without the teams’ en-
gagement, the practice can be discontinued very quickly or segregated involving only SMs,
and POs (HOSSAIN; BANNERMAN; JEFFERY, 2011). The team’s maturity is also a criteria to
consider in implementing the retrospective meeting. In Hoda et al. (HODA; NOBLE, 2017),
few new teams conducted retrospective meetings, while more mature ones used it regularly.
Also, independent from the context, some distributed projects had reported huge benefits of
retrospective meetings that could empower the teams and also made them improve (VALLON

et al., 2014; TENDEDEZ; FERRARIO; WHITTLE, 2018).

4.7.4 Status Dashboard (10)

Name: Status Dashboard. Goal: Scrum Guide does not present a specific model for
progress tracking through a dashboard, like Kanban (SCHWABER; SUTHERLAND, 2020). How-
ever, the large-scale distributed projects saw the need to provide the progress and status of the
projects in a broader view to all the teams, the management, and even the stakeholders and
customers(TENDEDEZ; FERRARIO; WHITTLE, 2018; GUPTA; MANIKREDDY; ARYA, 2017; HODA

et al., 2010; GUPTA; JAIN; SINGH, 2018; GODOY et al., 2019; GUPTA; VENKATACHALAPATHY;

JEBERLA, 2019; LEE; JUDGE; MCCRICKARD, 2011; VALLON et al., 2013; RAHY; BASS, 2019; VAL-

LON. et al., 2013). Who: Scrum Team, POs, SMs. How: Many studies using Scrum slipped
to Kanban to obtain a dashboard model to provide progress information to stakeholders and
teams (TENDEDEZ; FERRARIO; WHITTLE, 2018; GODOY et al., 2019; RAHY; BASS, 2019). Most
of them used a digital kanban dashboard which helped the organization to reflect on the
teams’ overall project status and be up-to-date with the stories’ progress without disturbing
the workflow (GODOY et al., 2019; RAHY; BASS, 2019). In Helena et al. (TENDEDEZ; FERRARIO;

WHITTLE, 2018) case study, the organization did not obligate a standard kanban board among
the teams. Due to it, teams used physical and digital dashboards simultaneously. Such an
approach raised issues since the boards were not synchronized in the same level of richness,
and the digital dashboards became a board just for quick progress (TENDEDEZ; FERRARIO;

WHITTLE, 2018). On the other side, many studies developed a Scrum Board, similar to some
Kanban boards, but with different purposes. Gupta et al. (GUPTA; MANIKREDDY; ARYA, 2017)

112

presented a study with two teams spread across Germany and India using a physical dash-
board called Wagon Wheel that concentrated the whole progress status of the project on one
page. The dashboard was shared during teleconference meetings by the PO and SM (GUPTA;

MANIKREDDY; ARYA, 2017). Hoda et al. (HODA et al., 2010) multiple-case study has shown
that some teams used electronic dashboards, which helped track user stories and tasks. The
electronic board enabled collaboration among distributed agile teams since it encouraged to
release, iteration planning, and daily stand-ups (HODA et al., 2010). Other studies have used
tools in a broader way to embrace another level of information tracking. Similar to an APM so-
lution, in Gupta et al. (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019) study, the teams used a
tool for monitoring the health and status of the production code. The dashboard is automated
and generated from operation scripts. Gupta et al. (GUPTA; JAIN; SINGH, 2018) case study,
the company used a specific tool called Obeya Wall that concentrated digital and physical
dashboards regarding the whole production chain. The tool helped establish communication
among the leadership team, product team, distributed stakeholders, and management. Later,
the tool gathered performance information, technical debts, pain areas, feedback, customer
requests, and quality status (GUPTA; JAIN; SINGH, 2018). In very different applicability, Lee et

al. (LEE; JUDGE; MCCRICKARD, 2011) study has shown an online discussion board that was
used to track the project’s issues. It was a central location where the issues could be asyn-
chronously identified, tracked, and addressed. It was percevid as an improvement over emails
since the issues could be lost there (LEE; JUDGE; MCCRICKARD, 2011). Finally, in Vallon et al.

(VALLON et al., 2013; VALLON. et al., 2013) case studies with main and additional suppliers,
the additional supplier applied a common virtual dashboard for all three Scrum teams since
they were separated from the main supplier. Context: it is a consensus that the distributed
nature of the studies empowered the organizations to use digital dashboards to provide a big
picture of the project progress for interesting parts. However, companies with products that
have minimal resistance to issues, like the asset performance management product from Lee
et al. (LEE; JUDGE; MCCRICKARD, 2011) study, apply a specific board just for issues tracking
to map it and solve the issue quickly. In a similar environment, Gupta et al. (GUPTA; JAIN;

SINGH, 2018; GUPTA; VENKATACHALAPATHY; JEBERLA, 2019) studies involving healthcare so-
lutions opted for the use of potential APM solutions to provide information not only regarding
progress status but performance, the health and quality of the production code, technical
debts, and customer requests. Such an approach describes the solution’s maturity, and the
organization’s concern with maintaining it (GUPTA; JAIN; SINGH, 2018; GUPTA; VENKATACHA-

113

LAPATHY; JEBERLA, 2019). The studies that opted for virtual Kanban or Scrum boards just
relied on an easier approach to provide visibility for all the teams that compose software fac-
tory, and IT service providers company (HODA et al., 2010; GODOY et al., 2019; RAHY; BASS,
2019). The studies that used physical dashboards had the privilege of having collocated teams
among the distributed environment of their projects (TENDEDEZ; FERRARIO; WHITTLE, 2018;
GUPTA; MANIKREDDY; ARYA, 2017). However, this approach led the teams to share the dash-
board through videoconference with remote teams (GUPTA; MANIKREDDY; ARYA, 2017) or to
deal with issues in synchronizing physical and digital boards (TENDEDEZ; FERRARIO; WHITTLE,
2018). Further, the suppliers’ relationship from et al. (VALLON et al., 2013; VALLON. et al., 2013)
studies have presented the results of working in an environment with the feeling of “us and
them”.

4.7.5 Planning meeting (9)

Name: planning meeting. Goal: the planning meeting can be considered the starting point
of what will be developed in a sprint (SCHWABER; SUTHERLAND, 2020). The Product Owner is
responsible for presenting the backlog items to the attendees and discussing them. The most
important attendees are the Scrum team, which can invite others to attend looking for advice
(SCHWABER; SUTHERLAND, 2020). The event focus on the PO proposing how the product
could increase its value. After that, the Scrum team must select items from the product
backlog to include in the current sprint. Then, for each item, the Scrum team should plan the
necessary effort and work to develop the increment according to the DOD defined in the team
(SCHWABER; SUTHERLAND, 2020). Who: Scrum team, PO, SM, stakeholders. How: several
approaches were used to tailor the planning meeting. Most of the studies observed chose
to split the meeting into two or three parts by first presenting the backlog items supposed
to be implemented in the sprint, then planning in each site or each team, and finally, a final
alignment among the teams (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS,
2010; VALLON et al., 2013; HOLE; MOE, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a;
VALLON. et al., 2013; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). In their multiple-case
study, Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) presented a daily among onshore
and offshore teams divided into three parts. First is a teleconference meeting with the PO to
review and prioritize the backlog items (HOSSAIN; BANNERMAN; JEFFERY, 2011). Second, due
to the timezone, the planning would continue with the offshore team members detailing the

114

tasks. Finally, on the next day, they would present the results to the onshore team, responsible
for verifying the plan, estimation, and providing feedback (HOSSAIN; BANNERMAN; JEFFERY,
2011). In another case from the same study, a pre-planning meeting was held involving the
PO and SM responsible for prioritizing, assigning, and pre-estimating the items for the teams
(HOSSAIN; BANNERMAN; JEFFERY, 2011). In Paasivaara et al. (PAASIVAARA; LASSENIUS, 2010;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b) cases, the teams split the planning into three
parts, but with some differences. For maximum effectiveness, the onsite and offsite teams
used their three hours overlap in a distributed meeting with the PO for questions and doubts
resolution (PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b).
After that, a local meeting would occur onsite due to the timezone, and the onsite team
would focus on the initial estimation and assignment. Then, the next day, a local meeting
at the offsite teams would take place to review the onsite plan (PAASIVAARA; LASSENIUS,
2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). From another perspective, in Vallon
et al. (VALLON et al., 2013; VALLON. et al., 2013) involving a client, the main supplier, and
an additional supplier, the planning was divided into two events and considered tasks for the
next two sprints. First, the main supplier and two representatives from the additional supplier
took the planning on the main site. At this time, they prioritized the items and pre-estimated
it (VALLON et al., 2013; VALLON. et al., 2013). Then, the additional supplier representatives
would gather the information and present it to their teams, allowing them to assign the tasks
themselves, adjust the estimation without many changes, and then present it back to the
main supplier (VALLON et al., 2013; VALLON. et al., 2013). In a simpler approach, Hole and Moe
(HOLE; MOE, 2008) presented a multiple case study on three GSD projects. In one of them, the
local plans took place first to estimate and assign tasks for the remote team. Then, the remote
team would receive the results, break them into sub-task, re-estimate and validate it with the
local teams (HOLE; MOE, 2008). During that time, the planning began to be seen as time-
consuming, and the POs started to create a principal work plan and document the backlog
items in there (HOLE; MOE, 2008). Moreover, a case study in a company from a traditional
sector was presented by Using scrum in a globally distributed project: a case study Paasivaara
et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a) with a planning meeting split into two
parts too. First, a distributed meeting with the PO for backlog explanation, then various site-
specific arrangements for estimation without needing review by other teams or all the teams,
and manager (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). In a very different approach,
Kussmaul (KUSSMAUL, 2010) described an experience report involving a customer, an onshore

115

consultancy company, and an offshore team that worked based on a planning team presented
in the consultancy company. The planning team controlled the dynamic by developing and
signing a formal proposal regarding the major milestones of the projects through a feature
list with a price range. When the supplier and the offshore team implemented the features,
they would define the price based on the effort and scope developed (KUSSMAUL, 2010).
Finally, in Scheerer and Kude’s case study (SCHEERER; SCHIMMER; KUDE, 2014), the planning
suffered a top-down approach. A central coordination team was responsible for redefining
and reprioritizing the individual teams via a new plan. Context:in the cases involving many
onshore and offshore teams, we could visualize a kind of a pattern regarding the planning
meeting despiting the company domain. The companies with many teams spread around several
countries were dividing their planning according to the overlap hours of the teams to solve
common questions. Then, they allowed the teams to plan on their own according to their
timezone, review their estimations and make the necessary adjustments before the sprint
begins (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010; VALLON et

al., 2013; HOLE; MOE, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; VALLON. et al.,
2013; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). In some of the studies, those types
of meetings split into several appointments helped the teams establish a regular discussion
forum, cohesion, and identification among them (PAASIVAARA; LASSENIUS, 2010; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b). Sometimes the meeting was even collocated, especially
in the first planning 4.7.11, but just for the teams relatively close (PAASIVAARA; LASSENIUS,
2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). In cases where the supplier played an
important role in a software product company, the presence of a planning team was helpful for
the cost management of deliverables to avoid any bad surprises (KUSSMAUL, 2010). However,
in cases where the remote or the offshore team was seen as less skilled related to the onshore
team, the remote team didn’t have much power to discuss estimation and assignments, which
can harm the agile development process (HOLE; MOE, 2008). Finally, more established sectors,
such as the one presented by Paasivaara et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a)
from an oil and energy company, have shown more maturity in leaving the teams to conduct
their specific planning alone after the distributed meeting with the PO.

116

4.7.6 Multiple Communication Modes (9)

Name: multiple communication modes. Goal: since Scrum was designed for collocated
teams, the most common type of communication for regular scrum teams is face-to-face
communication (SCHWABER; SUTHERLAND, 2020). However, distributed teams in large-scale
scenarios require some adaptation, introducing multiple communication modes to handle the
distance among the work colleagues. Who: team members. How: nine studies reported us-
ing multiple communication modes to accommodate their different needs of communication
better. In general, a wide range of tools and channels are used to support multiple commu-
nication modes and substitute face-to-face contact, including phone, web camera, teleconfer-
ence, video conference, web conference, net meeting, email, shared mailing lists, chats, wiki,
ad hoc conversations, and desktop sharing (BASS, 2012; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2008; NYRUD; STRAY, 2017; LEE; JUDGE; MCCRICKARD, 2011; PAASIVAARA; LASSENIUS,
2010; KORKALA; PIKKARAINEN; CONBOY, 2009; HOSSAIN; BABAR; VERNER, 2009; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b; KORKALA; ABRAHAMSSON, 2007). In Lee et al. (LEE; JUDGE;

MCCRICKARD, 2011) study, the company encouraged the use of asynchronous tools between
development and usability teams since their work schedule did not overlap. In the search
for effectiveness, the usability engineer becomes available to answer doubts regarding mock-
ups through email and instant chats for the development team (LEE; JUDGE; MCCRICKARD,
2011). Paasivaara et al. (PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2009b) studies had reported using different communication tools based on the need,
such as chat messages used for short questions or checking the availability of a colleague for
a phone conference. Further, Hossain et al. (HOSSAIN; BABAR; VERNER, 2009) presented the
project manager as responsible for providing enough communication and collaborative tools
for the teams. Context: despite the different business domains of those nine studies that used
multiple communication modes, all of them have one thing in common, the teams were spread
around the globe, and due to it, they required the use of multiple communication modes to
handle the teams day to day activities better (BASS, 2012; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2008; NYRUD; STRAY, 2017; LEE; JUDGE; MCCRICKARD, 2011; PAASIVAARA; LASSENIUS,
2010; KORKALA; PIKKARAINEN; CONBOY, 2009; HOSSAIN; BABAR; VERNER, 2009; PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2009b; KORKALA; ABRAHAMSSON, 2007). Only two studies reported
the presence of small-scale case projects, although the team members’ distribution required
the use of asynchronous tools (PAASIVAARA; LASSENIUS, 2010; KORKALA; ABRAHAMSSON,

117

2007). Further, the large-scale studies involved two to seven teams working around Europe,
America, India, and Asia, with very different languages and few overlapping hours. Due to it,
the teams required many collaborative tools, such as emails, chat messages, desktop sharing,
and others (BASS, 2012; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; NYRUD; STRAY, 2017;
LEE; JUDGE; MCCRICKARD, 2011; KORKALA; PIKKARAINEN; CONBOY, 2009; HOSSAIN; BABAR;

VERNER, 2009; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b).

4.7.7 Product/Project Manager in Scrum (8)

Name: Product/Project Manager in Scrum. Goal: product and project managers are not
common roles of scrum teams. However, the presence of those professionals was inevitable
in some of the reviewed studies. In Gupta et al. (GUPTA; JAIN; SINGH, 2018) study, each role
had serious responsibilities and goals. First, the project manager was responsible for overall
project delivery, interacting with external stakeholders and the Scrum Masters. Second, the
product manager was responsible for the product and its business success. Who: Product/Pro-
ject Manager. How: most studies combined product or project manager roles to accomplish
a better management level in large-scale distributed scrum teams (BASS, 2013; GUPTA; JAIN;

SINGH, 2018; HOSSAIN; BABAR; VERNER, 2009; HOLE; MOE, 2008; KORHONEN, 2009; CHO,
2007). Bass (BASS, 2013) presented the presence of a project manager responsible for collect-
ing and prioritizing requirements from different areas of the company to develop and discuss a
six-month roadmap. The project manager was also perceived as a client for the development
team since he acted as a channel between them and the market (BASS, 2013). From another
study perspective, Gupta et al. (GUPTA; JAIN; SINGH, 2018) presents different functions for
the product and project management professional. First, the project manager would work on
defining the overall project plan and quarterly scope, supporting teams’ activities as CoPs,
removing blockers, and listening to the teams’ problems (GUPTA; JAIN; SINGH, 2018). Sec-
ond, the product manager would focus on feeding business and market requirements to the
product, designing business plans with stakeholders and end customers, and interacting with
POs without getting involved in day-to-day activities (GUPTA; JAIN; SINGH, 2018). Hossain et

al. (HOSSAIN; BABAR; VERNER, 2009) reported in the study a project manager with particu-
lar responsibilities, such as maintaining policies for GSD teams, ensuring project plans, hiring
and forming experienced and effective teams, providing the necessary infrastructure for the
team, and following the defined process. Far from what the scrum guide states (SCHWABER;

118

SUTHERLAND, 2020), Hole and Moe (HOLE; MOE, 2008) reported a project manager responsi-
ble for assigning tasks to the team development team. Meanwhile, Cho (CHO, 2007) reported
a project manager working on backlog refinement, breaking tasks that were constantly not
completed. Moreover, in Korhonen case study (KORHONEN, 2009), three organizations have
shown the presence of a project manager as the overall responsibility of the project, including
having enough information regarding the project’s defects. In Usman et al. (USMAN et al., 2018)
present a case study conducted in Ericsson, in which the project manager was present in each
product. Those project managers had regular traditional responsibilities, such as managing
development teams across different sites through planning, scheduling, and coordinating the
tasks of product customizations (USMAN et al., 2018). Finally, Martini et al. (MARTINI; PARETO;

BOSCH, 2013) conducted a multiple-case study that also described the presence of a project
manager in Scrum projects. The managers were responsible for the performance of the Scrum
teams, either at a project or a product level. Context: different contexts have shown the pres-
ence of a product or a project manager role, passing from less traditional IT service provider
companies (BASS, 2013; HOSSAIN; BABAR; VERNER, 2009; HOLE; MOE, 2008) to the healthcare
sector (GUPTA; JAIN; SINGH, 2018), and telecommunication sector (KORHONEN, 2009) until
mission-critical software organization (CHO, 2007). In Gupta et al. (GUPTA; JAIN; SINGH, 2018)
and Bass (BASS, 2013) studies, the product manager was similarly perceived as a customer
or a representative of it and also the most interested in the product’s success. Moreover, the
role of a project manager in the Gupta et al. (GUPTA; JAIN; SINGH, 2018) study sounds like
an operational manager, worried about delivery, scope, team impediments, and reporting the
progress of the business areas. However, in Hossain et al. (HOSSAIN; BABAR; VERNER, 2009),
the project manager has been perceived as a governance professional, worried about the over-
all process and some human resource management activities. Further, Hole and Moe (HOLE;

MOE, 2008) multiple-case study with teams using Scrum for the first time since the use of
traditional approaches justifies the assignment of tasks to the group by the project manager.
The mission-critical scenario from Cho (CHO, 2007) study also explains the responsibility of
a project manager to break down the tasks for the team, even without achieving success in
this activity. In Korhonen case study (KORHONEN, 2009), Usman et al. (USMAN et al., 2018)
study, and Martini et al. (MARTINI; PARETO; BOSCH, 2013) study, the project manager had the
most traditional approach seen in the agile studies selected since they were responsible for the
whole project activities defect management approach, and also team coordination.

119

4.7.8 Demo presentation (7)

Name: demo presentation. Goal: demo presentation commonly occurs during sprint re-
views in Scrum when the team presents the results of their work to key stakeholders (SCHWABER;

SUTHERLAND, 2020). The PO and the stakeholders may review what was accomplished and
give feedback to the team (SCHWABER; SUTHERLAND, 2020). Despite the distribution environ-
ment of the studies in this work, demo presentations were still necessary and, due to it, were
tailored. Who: team members, PO, SM, project managers. How: every study that reported the
presence of the demo presentation practice used it to look for feedback from the stakeholders
or managers, progress reporting, and validation of the deliverables (BASS, 2014; PAASIVAARA;

HEIKKILä; LASSENIUS, 2012; TENDEDEZ; FERRARIO; WHITTLE, 2018; NYRUD; STRAY, 2017; ROL-

LAND, 2016; HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010). Further,
due to the distributed environment, the demos were commonly held through video, and phone
conferences using screen sharing (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSE-

NIUS, 2010). Bass (BASS, 2014), in his study, report a customer demo without many adapta-
tions at the end of each sprint to refine the product based on the client’s feedback. Paasivaara
et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) described the evolution of the demo from
some practitioners. First, the demo occurred every other week in the team spaces in a suc-
cessively manner to allow the PPOs, stakeholders from the management, and other teams to
participate (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). Then, the demo was specifically held
with the system architect, a member of the APO role responsible for engaging with the team
(PAASIVAARA; HEIKKILä; LASSENIUS, 2012). In Helena et al. (TENDEDEZ; FERRARIO; WHITTLE,
2018) at BBC, the company provided a standard process for demos through a single platform
for every team. By doing this, the demos provided visibility and coordination while motivating
the teams across the large-scale structure (TENDEDEZ; FERRARIO; WHITTLE, 2018). In another
study by Nyrud and Stray (NYRUD; STRAY, 2017), the demo involved different areas, such as
technical domain experts, test leaders, and business representatives. Moreover, in Hossain et

al. (HOSSAIN; BANNERMAN; JEFFERY, 2011), the demos with the customer involved only the
management team, the PO, SM, and project management through live meetings to check the
sprint completeness, identify problems and provide feedback. Finally, Paasivaara and Lassenius
(PAASIVAARA; LASSENIUS, 2010) study has shown in one of the cases demo involving both
onsite and offsite personnel. The demos used screen sharing, which occurred as a face-to-face
event during visits. Context: studies with teams spread across several continents, including

120

Asia, Europe, and America, rely on the execution of demos through communication tools, live
meetings, and video and phone conferences (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASI-

VAARA; LASSENIUS, 2010). By the time the visits were possible, the demos were adapted to be
held in the team spaces (PAASIVAARA; LASSENIUS, 2010). Nyrud and Stray (NYRUD; STRAY,
2017) study was carried out in a company involved in the banking, insurance, and even pen-
sion sector, which are strongly regulated. Due to it, the whole areas interested in the product
were involved in the demo, from technical experts to business representatives (NYRUD; STRAY,
2017). In regular software development organizations, whether consulting or product compa-
nies, the demo presentation and the people involved would vary from managers to customers
and stakeholders from other areas interested in the outcome. However, they all have a similar
purpose, to provide feedback, evaluate the deliverable, and encourage the teams’ collaboration
(BASS, 2014; PAASIVAARA; HEIKKILä; LASSENIUS, 2012; TENDEDEZ; FERRARIO; WHITTLE, 2018;
ROLLAND, 2016).

4.7.9 Wiki as Communication Tool (7)

Name: Wiki as Communication Tool. Goal: wikis are commonly used for teams to store in-
formation regarding the project or technical specification of the systems (KORKALA; PIKKARAINEN;

CONBOY, 2009). Scrum does not specify the use of wikis since the teams are collocated in the
same physical space (SCHWABER; SUTHERLAND, 2020), and the team members can present
all the information. However, in distributed and large-scale scenarios, team members may
not know each other or make contact due to timezone differences (KORKALA; PIKKARAINEN;

CONBOY, 2009; LEE; YONG, 2010; WILDT; PRIKLADNICKI, 2010; KUSSMAUL, 2010; DORAIRAJ;

NOBLE; MALIK, 2012; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b; CHO, 2007).Who: Scrum
Team How: many studies used a wiki as a communication tool and not just a place to con-
centrate knowledge regarding the project, systems, and solutions. Korkala et al. (KORKALA;

PIKKARAINEN; CONBOY, 2009) conducted a case study in which the wikis were perceived as
the most useful communication tool during the project’s implementation phase. The wiki con-
centrated on technical content, and due to its distributed nature, it helped the teams during
software development (KORKALA; PIKKARAINEN; CONBOY, 2009). In Prikladnicki and Wildt
(WILDT; PRIKLADNICKI, 2010) study at a multinational company, the wiki helped the teams
to control the activities planned for each interaction and the product backlog. It also helped
them keep discipline and share the status with teams in different timezones (WILDT; PRIKLAD-

121

NICKI, 2010). For a similar purpose, one of the companies from (PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2009b) used their backlog as a wiki, allowing everyone to access it and follow the
project’s progress. In the Cho (CHO, 2007) study, the wiki served the developers as a guide-
line, gathering all the good and bad practices that developers could perform in the company’s
software. This approach mitigated common mistakes committed to the project in the past and
improved the relationship between the two sites (CHO, 2007). One study reported using a wiki
through a mailing list, in which the teams were reporting their status at the end of a working
day, describing big changes, current issues, and questions for other teams (KUSSMAUL, 2010).
Further, in Dorairaj et al. (DORAIRAJ; NOBLE; MALIK, 2012) study, the wiki was used to im-
prove team interaction and foment team presence. The wiki gathered pictures from the team
members and personnel moments, which helped them improve their relationship beyond their
professional interaction (DORAIRAJ; NOBLE; MALIK, 2012). Finally, Lee and Yong presented an
experience report on Yahoo (LEE; YONG, 2010) that used the wiki to manage different back-
logs from the teams and products. They also used images to emphasize the human element
(LEE; YONG, 2010). Context: in general, the wikis were used to support information sharing
across the large distributed teams that were working together. The studies that presented the
use of wikis as backlogs have shown a certain level of maturity in the companies since they
were international companies with extensive experience in developing solutions across teams
spread in more than two continents (LEE; YONG, 2010; WILDT; PRIKLADNICKI, 2010; PAASI-

VAARA; DURASIEWICZ; LASSENIUS, 2009b). In a similar context, the study of Dorairaj et al.

(DORAIRAJ; NOBLE; MALIK, 2012) used the wiki to reduce the distance among members by
encouraging them to put photos of them in the wiki since colocating the teams was not an
option. Teams that used wikis for technical purposes focused on solving tech issues or guiding
the teams to avoid coding design problems in the future. This approach can be beneficial, es-
pecially in organizations with many systems that need to stay stable (KORKALA; PIKKARAINEN;

CONBOY, 2009; CHO, 2007). Finally, the organization that uses a mailing list as a wiki must
know it is easy to lose control of email threads when many teams report on it. However,
in Kussmaul (KUSSMAUL, 2010) study, along with the project development, the frequency of
emails was reduced, and the teams could control the mailing list.

122

4.7.10 Proxy Product Owner (PPO) (6)

Name: Proxy Product Owner (PPO). Goal: according to the Scrum guide (SCHWABER;

SUTHERLAND, 2020), the product owner role is responsible for maximizing the product’s value
by developing, creating, and ensuring the product backlog items for the Scrum team. He also
needs to represent the needs of the stakeholders and end users. However, the proxy prod-
uct owner is a concept inserted through tailored approaches from large-scale agile distributed
projects (BASS, 2014; BASS, 2013; PAASIVAARA; HEIKKILä; LASSENIUS, 2012; HOSSAIN; BAN-

NERMAN; JEFFERY, 2011; BASS, 2015; LEHTINEN et al., 2015). Due to the tailored nature, the
role received different functions. A PPO should focus on representing a development team
on the client’s side and also bring the client’s perspective to the team (BASS, 2014). Who:
team members. How: in one of the Bass studies (BASS, 2014), a team’s onshore and offshore
relationship required the presence of a PPO at the onshore client site to represent the offshore
team. He interacts with the client’s project team and even the client PO (BASS, 2014). In an-
other study, Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) has shown a different
presence of PPO role that works with other PPOs and POs by managing big features with
other pairs or a couple of small features alone. Those PPOs also have a technical background,
and teams demand architectural guidance from them. Still, they arranged backlog grooming
and sprint planning and were responsible for validating teams’ demos (PAASIVAARA; HEIKKILä;

LASSENIUS, 2012). Moreover, similar to a Scrum PO and a PPO, Hossain et al. (HOSSAIN;

BANNERMAN; JEFFERY, 2011) presented a proxy customer professional that checked the sprint
progress and provided feedback to the team. In a similar perspective, but with a different
purpose, Lehtinen et al. (LEHTINEN et al., 2015) presented a case study on a large produc-
tion company with teams spread across three European countries. In this case, the PO did
not belong to the Scrum team but were isolated customer representatives who occasionally
participated in sprint planning and review meetings (LEHTINEN et al., 2015). As an isolated cus-
tomer representative, the POs did not participate in the regular Scrum events (LEHTINEN et al.,
2015). Finally, Bass studies (BASS, 2013; BASS, 2015) involving the PO functions and teams
describe the PPO as the role responsible for staying on the client’s site during the beginning
of a project to become familiar with any special features of the client’s requirement. They
are also seen as intermediary roles responsible for mitigating domain complexity. They have
extensive experience in the system business domain, acting as an interface to senior executives
driving large-scale programs, and disseminating domain knowledge to the teams. Context:

123

the context of Bass studies are very similar (BASS, 2014; BASS, 2013; BASS, 2015). The author
evaluated the tailored approaches used to accommodate the Scrum Master (BASS, 2014) and
the Product Owner team (BASS, 2013; BASS, 2015) on large-scale distributed enterprises. The
regular roles were classified into new categories, but the PPO had the most presence in other
studies. Similar to Bass, Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) multiple-
case study also focused on understanding the scaling of the PO role, the first case shows how
the role was adapted to an Area Product Owner (APO) 4.6.15, and the second case to the
PPO model. Further, Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) multiple-case
study looked for the tailoring of regular scrum agile practices and discovered a team using the
proxy customer role similar to a PPO. Finally, being a customer representative without proper
connection with the Scrum teams, as seen in Lehtinen et al. (LEHTINEN et al., 2015) study,
could not be the best approach. In the study, the PO expectations failed since they were not
seen as part of the Scrum teams, and the developers did not know which PO was responsible
for which requirements (LEHTINEN et al., 2015).

4.7.11 First collocated Sprint (6)

Name: first collocated Sprint. Goal: in the regular Scrum, a sprint is an interval of time
representing a team iteration that should be committed to a goal (SCHWABER; SUTHERLAND,
2020). At the end of a sprint, it is expected for the team to accomplish the goal in the form of
a software deliverable. Since Scrum was built for small and collocated teams, every sprint must
occur in the physical space. However, in large-scale distributed projects, the sprints may occur
remotely among the teams, but some companies choose to make the first sprint with the
members collocated (PAASIVAARA; LASSENIUS, 2010; BASS, 2015; KOMMEREN; PARVIAINEN,
2007; DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; DO-

RAIRAJ; NOBLE; ALLAN, 2013). Who: team members, SMs, POs, stakeholders. How: despite
the distributed nature of all studies evaluated in this work. Some demonstrate the importance
of providing little face-to-face time for their teams and the importance of it in team build-
ing (PAASIVAARA; LASSENIUS, 2010; BASS, 2015; KOMMEREN; PARVIAINEN, 2007; DORAIRAJ;

NOBLE; MALIK, 2012; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; DORAIRAJ; NOBLE; AL-

LAN, 2013). In Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2010) multiple-case study,
one study reported the importance of being collocated for the first and second sprints. The
members can learn and develop working habits together during the collocated period, which

124

also helped them later when they needed to work in different sites (PAASIVAARA; LASSENIUS,
2010). In Bass (BASS, 2015) study, one participant reported how offshore members went to the
onshore site to work with another team and to have the opportunity to work closely with the
product owner and business analysts. In the same line of reasoning, Dorairaj et al. (DORAIRAJ;

NOBLE; MALIK, 2012) study suggested gathering the entire team with the customer to be col-
located for the first few weeks of the project to help them build trust and relationships. After
it, it would be natural to emerge the bonding between the entire team and the customer (DO-

RAIRAJ; NOBLE; MALIK, 2012). In Kommeren and Parviainen (KOMMEREN; PARVIAINEN, 2007)
experience report on Philips, the organization percevid the importance of gathering the teams
physically, improving inter-team coordination performance. Moreover, Paasivaara et al. (PAA-

SIVAARA; DURASIEWICZ; LASSENIUS, 2009a) study suggested collocating the teams not only in
the initial iterations but during critical phases of the project, such as major releases iterations.
Finally, despite the importance of gathering customers and teams, Dorairaj et al. (DORAIRAJ;

NOBLE; ALLAN, 2013) presented the concern of a practitioner of sending newly formed teams
to travel to other locations to work collocated for a short time before thoroughly distributing
them. Context: it’s unquestionable the benefits of providing face-to-face interaction among
the teams, although it is essential to point out that the studies that conducted collocated
iterations could afford it during the project, which is not possible for every organization (PAA-

SIVAARA; LASSENIUS, 2010; BASS, 2015; KOMMEREN; PARVIAINEN, 2007; DORAIRAJ; NOBLE;

MALIK, 2012; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a; DORAIRAJ; NOBLE; ALLAN, 2013).
In Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2010) study, the authors also informed
that the collocated time must not be a short trip but an extended stay to allow the teams
to work together in enough time. Only one study reported the importance of staying together
during critical phases, which could be more important depending on the business domain, in
this case, oil and energy (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). Further, the multi-
ple case studies that suggest collocated sprints dealt with customer-vendor relationships and
onshore and offshore teams, which require face-to-face time to develop trust and a collabora-
tive environment (BASS, 2015; DORAIRAJ; NOBLE; ALLAN, 2013). Finally, in teams specialized
in the development of electronic products, such as in the case of In Kommeren and Parviainen
(KOMMEREN; PARVIAINEN, 2007), gathering members from Asia and Europe helped them in
the inter-team coordination activities of hardware products.

125

4.7.12 Tools for monitoring progress, quality and knowledge (5)

Name: tools for monitoring progress, quality, and knowledge. Goal: Scrum does not specify
tools to handle progress monitoring, quality, and test coverage, or even for a knowledge base.
However, the Scrum Team should evaluate how the last sprint went concerning individuals,
process, DoD, interactions, and even tools (SCHWABER; SUTHERLAND, 2020). Who: Scrum
team, PO, SM, management. How: regarding the distributed nature of the projects in this
study, some tools were necessary for coordination activities, test coverage monitoring, and
even knowledge sharing. Fitzgerald et al. (FITZGERALD et al., 2013b) conducted a case study
at a regulated company that needed those tools to accomplish its goals. The organization
monitored the codebase every four hours, and if any code changes arose, the Bamboo 2 tool
would start a new automated build. On this pipeline, the teams were using Ncover 3 to establish
test code coverage beyond 80% since anything below it would block the build (FITZGERALD et

al., 2013b). This approach ensured the quality of the code and monitored its progress without
allowing quality loss. In Nyrud and Stray (NYRUD; STRAY, 2017) study, the authors evaluated
inter-coordination mechanisms. The case used Jira 4 as a project management tool for team
coordination. The Jira dashboards supported daily events since the onsite teams could navigate
through the tasks in progress from the remote teams (NYRUD; STRAY, 2017). In another use of
Jira, Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2010) have shown that small projects
preferred using Wikis for coordinating their work. In contrast, large projects picked Jira due
to the visibility provided for all teams. Further, Välimäki and Kääriäinen presented a case
study (VÄLIMÄKI; KÄÄRIÄINEN, 2008) in which the organization opted for the use of an ALM
solution since they did not know the status of the project. Through the tool, the managers and
teams started using burn-down charts, bug trends, tasks, and test cases, which helped them
better communicate the sprint status across the organization. Finally, Cho presented a case
study (CHO, 2007) that used Digital.Ai for project management around both sites. Through
the tool, developers could see how each project was divided, their progress, the status of
each project, who is working on each one, and when they are supposed to be completed
(CHO, 2007). Context: different scenarios led the teams to use tools for various purposes.
However, the large-scale distributed nature of those studies made almost everyone use team
2 www.atlassian.com/software/bamboo
3 www.ncover.com
4 www.atlassian.com/software/jira

126

coordination and management tool. In the cases of Paasivaara and Lassenius (PAASIVAARA;

LASSENIUS, 2010) and Nyrud and Stray (NYRUD; STRAY, 2017), the organizations selected
Jira to handle the activities of teams spread across Europe, India, and Asia. It would be
impossible for companies to handle the dynamics without Jira or a similar tool. However, in a
regulated environment like the one presented by Fitzgerald et al. (FITZGERALD et al., 2013b),
the company working with biological technology would always want to ensure quality and
test coverage, and Bamboo with NCover provided it. In a similar perspective, Välimäki and
Kääriäinen (VÄLIMÄKI; KÄÄRIÄINEN, 2008) study on the automation industry relied on a more
robust tool that could cover each phase of the application lifecycle, such as ALM. Finally, in
a mission-critical development environment, such as the one presented by Cho (CHO, 2007),
a more traditional tool such as Digital.Ai is more suitable.

4.7.13 Weekly status meeting (5)

Name: weekly status meeting. Goal: weekly status meeting is not described as a practice
in the Scrum Guide (SCHWABER; SUTHERLAND, 2020). However, large-scale projects needed
to resolve issues, cross dependencies, and alignment gaps (JHA; VILARDELL; NARAYAN, 2016;
HOSSAIN; BANNERMAN; JEFFERY, 2011; GUPTA; MANIKREDDY; ARYA, 2017; WILDT; PRIKLAD-

NICKI, 2010; HOSSAIN, 2019). Who: team members, PO, SM, managers, domain experts.
How: different weekly meetings were perceived in the studies, but the differences were min-
imal regarding the meeting subject and the personnel involved. Jha et al. (JHA; VILARDELL;

NARAYAN, 2016) presented an experience report in which the weekly status meeting was re-
garding test management to discuss related progress, dependency, and issue resolution. The
same study has also presented a global leadership meeting weekly focusing on reviewing overall
program progress and key impediments (JHA; VILARDELL; NARAYAN, 2016). In this meeting,
the status of the scope, schedule, cost, and quality were reported to the senior management,
which used this data to drive their decisions (JHA; VILARDELL; NARAYAN, 2016). In an onshore
and offshore relationship, Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) has shown
weekly meetings among the team to stay on track, update the offshore team with any changes,
and resolve cross-site issues and dependencies. The weekly meeting also served as a proxy for
the SoS meeting 4.7.2. Gupta et al. cite169 presented an experience report in which the
weekly meeting involved team leads, product managers, and subject matter experts but not
the development team. Due to it, the organization suffered communication gaps between the

127

dev teams and domain experts, resulting in rework, schedule slippage, poor code quality due to
last-minute changes, and customer complaints (GUPTA; MANIKREDDY; ARYA, 2017). Further,
in the Prikladnicki and Wildt (WILDT; PRIKLADNICKI, 2010) experience report, the weekly sta-
tus meeting served as an integration weekly status meeting. As a 1-hour meeting on Monday
to ensure the teams were looking at the correct priority list, to update their progress, and push
the next integration task from the backlog. Finally, Hossain et al. (HOSSAIN, 2019) presented
a typical weekly meeting from a practitioner that took long periods to easier the resolution of
challenges like communication gaps, team awareness, and morality issues..Context: Jha et al.

(JHA; VILARDELL; NARAYAN, 2016) study was held at Siemens that used a hybrid development
model combining traditional and agile practices. Due to it, the presence of weekly meetings
regarding specific disciplines, such as tests, were common, and weekly meetings to discuss over-
all progress, plan, scope, cost, and quality reinforced some traditional areas from the regular
project management discipline (JHA; VILARDELL; NARAYAN, 2016). The onshore and offshore
relationship seen in Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) study required the
weekly meeting to accommodate the needs of the sites that required synchronization during
the development. Gupta et al. (GUPTA; MANIKREDDY; ARYA, 2017) experience report has paid
the price of not involving the development team in the weekly status meeting, which led to
customer complaints. The biggest reason for not involving the dev team seems to be the past
custom of the company of working with traditional manners and not viewing the benefits of
including the dev team in the activity (GUPTA; MANIKREDDY; ARYA, 2017). Still, in line with
traditional approaches, the Prikladnicki and Wildt (WILDT; PRIKLADNICKI, 2010) experience
report at a global multinational company has shown the practice of weekly status meetings
focused on integration status, which seems to be a remnant from the traditional activities con-
ducted in the past. Finally, similar to the distributed teams, Hossain et al. (HOSSAIN, 2019)
used the weekly meeting to solve regular communication gaps and tech issues.

4.7.14 Definition of Done (DoD) (5)

Name: Definition of Done (DoD). Goal: the definition of done is a formal description of
the state of an increment regarding quality measures that define its born (SCHWABER; SUTHER-

LAND, 2020). The DoD is useful for establishing a pattern and transparency among the teams’
work regarding the completeness of their stories. Whether something does not accomplish the
criteria of DoD, it cannot be released or presented in the Sprint Review and must come back

128

to the backlog (SCHWABER; SUTHERLAND, 2020). Who: Scrum Team. How: Gupta et al.

cite169 presented an experience report involving teams from India, the USA, and Germany,
and the organization established a DoD for all Scrum teams. In the DoD checklist, every story
must ensure that it has no static analysis error, no memory leak, and no degradation perfor-
mance, and must be reviewed by experts (GUPTA; MANIKREDDY; ARYA, 2017). Similar to that
checklist, Paasivaara et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b) study has shown a
DoD checklist consisting of integration tests completed, version reports made, and user guides
updated. From another study, Fitzgerald et al. (FITZGERALD et al., 2013b) case in a regulated
environment described a DoD concept including regulatory compliance, which must represent
the satisfaction of the two customers, the end-users, and the regulatory bodies. Matthiesen
and Bjorn conducted a case study (MATTHIESEN; BJØRN, 2017) on a large IT company that
suffered issues regarding what “done” means since the government customer did not consider
some work of the teams as completed. Due to it, the team realized their interpretation of what
was done was equivocal and developed a checklist. The checklist consisted of business analysis,
design documentation, unit tests, functional test case, code review, no defects, system test,
dependencies check, and acceptance tests approval (MATTHIESEN; BJØRN, 2017). Finally, in
Badampudi et al. (BADAMPUDI; FRICKER; MORENO, 2013) study on an FDA regulated environ-
ment, the DoD perception differs from the developers and product managers due to the quality
of the requirements. What the developers considered done was not completed by the product
managers. Context: two out of four studies that implemented the DoD dealt with projects
in highly regulated environments. The adaptions made to the Scrum framework used by the
company from Fitzgerald et al. (FITZGERALD et al., 2013b) study originated a tailored model
called R-Scrum (Regulated Scrum), which included a DoD checklist with regulatory items.
Meanwhile, Matthiesen and Bjorn conducted a case study (MATTHIESEN; BJØRN, 2017) in a
company that developed software for the Danish government. The type of contract between
the company and the government pressed the organization to create a stable DoD checklist to
avoid misunderstandings and blocking payments (MATTHIESEN; BJØRN, 2017). Meanwhile, the
FDA-regulated environment from Badampudi et al. (BADAMPUDI; FRICKER; MORENO, 2013)
study did not encourage the teams to build a DoD checklist. Instead, they had issues defining
the completeness of a task since the product could not be tested, due to FDA regulations,
until it was completed. Further, in cases involving regular IT service companies, the DoD
checklist aimed to fix code release issues, establish the teams in a standard pattern for com-
pleteness, and avoid problems with end-users and customers (GUPTA; MANIKREDDY; ARYA,

129

2017; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b).

4.7.15 Component Teams x Generalized teams (5)

Name: component teams x generalized teams. Goal: scrum teams are supposed to be
cross-functional, which gathers all the necessary skills to create value constantly during sprints
and achieve the product’s goals (SCHWABER; SUTHERLAND, 2020). They also should be self-
managing teams and able to decide who implements what, when, and how (SCHWABER;

SUTHERLAND, 2020). Meanwhile, component or generalized teams are tailored approaches
used by large-scale distributed projects to handle the complexity of products and solutions
developed across the globe (PAASIVAARA; HEIKKILä; LASSENIUS, 2012; MARTINI; BOSCH, 2016;
KOCH et al., 2014; HOLE; MOE, 2008; SABLIS; SMITE; MOE, 2021). A component team is usu-
ally responsible for a component or part of the full product, having ownership over it and
also controlling the development of new features on it (PAASIVAARA; HEIKKILä; LASSENIUS,
2012; KOCH et al., 2014; HOLE; MOE, 2008; SABLIS; SMITE; MOE, 2021). Meanwhile, general-
ized teams look for the whole product with the same ownership, not for only a part of it, and
any member could develop and commit new features to the solution (MARTINI; BOSCH, 2016).
Who: Scrum Team. How: Martini and Bosch (MARTINI; BOSCH, 2016) conducted a large
multiple-case study that has solely reported the presence of generalized teams. Two out of five
companies from the survey that have shifted to agile approaches have changed their compo-
nent teams to generalized teams (MARTINI; BOSCH, 2016). It meant that anyone in the project
could change any part of the code since a feature needed to be implemented. In Paasivaara et

al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) study, the authors have seen component teams
divided based on the system architecture. Those teams had more technical requirements to
implement. Consequently, the POs required more technical background (HOLE; MOE, 2008).
Further, Hole and Moe (HOLE; MOE, 2008) presented a multiple-case study in which two of the
projects were handled across Norway and India. In India, the company had some remote teams
for development. Those teams were separated based on the project’s responsibilities. Some
members focused specifically on the project GUI (HOLE; MOE, 2008). Sables et al. (SABLIS;

SMITE; MOE, 2021) conducted a multiple case study in two large-scale projects involving a
company from Sweden with teams spread across Asia. The authors percevid that component
teams had shown a lower coordination work compared to feature teams, and they considered
it due to the lower task interdependence (SABLIS; SMITE; MOE, 2021). Finally, Koch et al.

130

(KOCH et al., 2014) presented two cases in small and large Danish companies. In one of the
companies, the teams were grouped based on the areas of Java Development. Beginning with
reports development, integration services, ERP maintenance, and monitoring (KOCH et al.,
2014). Context: Martini and Bosch’s (MARTINI; BOSCH, 2016) conducted a large multiple-
case study, mostly involving companies developing embedded software solutions on specific
hardware. During the agile adoption, one manufacturer company from the telecommunication
sector migrated to generalized teams and suffered from a lack of expertise in the teams re-
garding the solution components (MARTINI; BOSCH, 2016). As expected from a generalized
team, by the time the teams become responsible for the whole solution, they also lack proper
knowledge of specific components that form the company portfolio (MARTINI; BOSCH, 2016).
Meanwhile, in component teams, it’s essential to be careful of some characteristics. Compo-
nent teams may require more technical POs when grouped based on the solution architecture,
as shown by Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). However, experi-
enced component teams have shown lower coordination work while having higher expertise
in coordinating activities than feature teams since they have a superficial knowledge of the
project components (SABLIS; SMITE; MOE, 2021). Further, when developing specific products
from a market, having component teams helps to evolve the product in particular directions
with specialized staff and a vision of progress from each part (KOCH et al., 2014; HOLE; MOE,
2008).

4.7.16 Product Ownership (4)

Name: product ownership. Goal: product ownership is not a concept originally described
in Scrum, but from XP (BECK; GAMMA, 2000). In XP, product ownership is usually held by
the on-site customer, a client representative available for the team on a full-time basis (BECK;

GAMMA, 2000). However, the goals of Scrum are basically around a Scrum team, PO, and SM
that must have product ownership to deliver constant aggregated value to the customer by
incorporating the values of commitment, focus, openness, respect, and courage (SCHWABER;

SUTHERLAND, 2020). Meanwhile, product ownership can be described as a state in which every
Scrum team must chase to achieve. It means feeling like one of the owners of the product
that understand the solution and its domain while having a shared responsibility among the
members for constantly chasing the product’s success. Who: Scrum Team, management, PO,
and SMs. How: in Bass study (BASS, 2016b) involving 50 practitioners from 9 companies, the

131

author percevid different configurations of which site the product ownership stayed. Sometimes
the product ownership stayed offshore, but it’s more common in the onshore site. The author
explains that product ownership is closely aligned to the application business domain and
domain knowledge, which is more common with the customer onshore (BASS, 2016b). Even
when the development management stays offshore, the product ownership usually stays onshore
(BASS, 2016b). Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) study considered
it difficult to implement shared responsibility through Product Ownership since the Proxy
Product Owners 4.7.10 had specific products areas to work without getting involved in the
whole product. Finally, Bass studies (BASS, 2013; BASS, 2015) that evaluated the role of
PO in large-scale distributed projects have shown a limited perspective of product ownership
since the case involved local product owners responsible for specific product areas. Context:
it´s possible to see a pattern in the studies that had shown product owners responsible for
specific areas of the product, or product parts (BASS, 2013; PAASIVAARA; HEIKKILä; LASSENIUS,
2012; BASS, 2015). Since this role works closer to the customer, it´s expected for them to
show more product ownership through the development process. However, while they worked
on slices of the product, they did not build enough responsibility to present ownership to the
whole product (BASS, 2013; PAASIVAARA; HEIKKILä; LASSENIUS, 2012; BASS, 2015). Meanwhile,
Bass’s study (BASS, 2016b) shows different approaches to having product ownership onshore
or offshore depending on customer knowledge, the companies sector, and even the maturity
of management.

4.7.17 Requirement Workshops (4)

Name: requirement workshop. Goal: design and requirement workshops are original from
LeSS framework (LARMAN; VODDE, 2016a) and aim to help and clarify story aspects for the
teams (LARMAN; VODDE, 2016a). It was possible to identify some Scrum studies with the
same purpose (PAASIVAARA; HEIKKILä; LASSENIUS, 2012; NOORDELOOS; MANTELI; VLIET, 2012;
DANEVA et al., 2013). The requirement workshops aim to foment discussion regarding tech-
nical dependencies, issues from requirements, and architecture design. Who: Scrum team,
PO, architect. How: Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) conducted
a study that has shown the presence of requirement workshops conducted by architects for
each new user story from the backlog. The architect must explain at a general level what
the customer needs and what the teams must develop, providing a preliminary architecture

132

for the feature (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). Whether needed, the requirement
workshop could evolve into a design workshop for more detailed planning with the team re-
sponsible for the development (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). In Noordeloos et

al. (NOORDELOOS; MANTELI; VLIET, 2012) study, after the adoption of Scrum, the offshore
team, including developers and testers, participated in requirement workshops to share ideas
and solutions with everyone. Daneva et al. (DANEVA et al., 2013) multiple-case study has also
described the presence of requirement workshops for the user and delivery stories. Such an
approach helped the vendor to build trust with the clients through workshops combining face-
to-face meetings followed by video and telephone conferencing (DANEVA et al., 2013). Finally,
similar to the requirement workshop, Gupta et al. (GUPTA; JAIN; SINGH, 2018) experience re-
port has shown that PO and architects conducted idea workshops that gathered the teams
for brainstorming and shaping new ideas that could benefit the customer. In such a moment,
the organization separated a one-day event for the teams’ collaboration and knowledge shar-
ing from each other (GUPTA; JAIN; SINGH, 2018). Context: the studies of Noordeloos et al.

(NOORDELOOS; MANTELI; VLIET, 2012) and Daneva et al. (DANEVA et al., 2013) had similar
environments involving outsourcing software development, consultancy companies, and client-
vendor relationship. The requirement workshop practice helped those scenarios to reduce the
misunderstandings from customer requests and to ensure that features were going to be de-
veloped with fewer risks regarding the business domain and architecture design (DANEVA et

al., 2013; NOORDELOOS; MANTELI; VLIET, 2012). In Paasivaara et al. (PAASIVAARA; HEIKKILä;

LASSENIUS, 2012), the case that implemented requirement and design workshop used it as a
communication technique for formal communication with the Scrum teams, which improved
the collaboration among members and knowledge sharing. In a similar perception, the Gupta
et al. (GUPTA; JAIN; SINGH, 2018) study has developed the one-day event for ideas workshop
especially to foment team coordination among the members and to decompress the teams
from the day-to-day activities.

4.7.18 Developers as Scrum Masters and Product Owners (4)

Name: developers as Scrum Master and Product Owner. Goal: according to the scrum
guide, developers must be the people from the Scrum Team committed to creating any aspect
of a usable increment each sprint (SCHWABER; SUTHERLAND, 2020). More than this, they must
plan for the sprint, establish and apply the DoD definition, and stick themselves to the sprint

133

goal by adjusting their plan according to the necessary (SCHWABER; SUTHERLAND, 2020). Any
other functions, according to Scrum, related to the product, backlog, prioritization of backlog
items, removal of impediments, ensuring the Scrum events, and coaching team members are
responsibilities for the PO and SM. However, a tailored approach was seen for those functions
due to distributed nature and the large-scale context. Who: developers. How: in Vallon et al.

(VALLON et al., 2013; VALLON. et al., 2013), the authors described how two developers from an
additional supplier incorporated the role of unofficial SMs and even POs. The main supplier
consultancy company and an additional supplier held three projects. However, only POs and
SMs were present at the main supplier site, while the additional supplier had no support for
those functions (VALLON et al., 2013; VALLON. et al., 2013). Due to it, the additional supplier
suffered with alignments, process implementation, and even stories discussion. Based on it,
two developers emerged from the additional supplier with more coordination skills than their
colleagues to solve it. They take on Scrum roles and travel to the Main supplier site as SMs
and POs to attend meetings and discuss user stories (VALLON et al., 2013; VALLON. et al.,
2013). They became the unofficial Scrum master-like roles and improved the project’s flow of
information by taking care of the process implementation and impediments discussion. In Hole
and Moe’s multiple case studies, (HOLE; MOE, 2008), one of the GSD projects split the project
into modules, each with a Scrum Master. On the remote teams’ side, the team members
became responsible for the specific modules (HOLE; MOE, 2008). However, a scrum master
reported that discussions between sub-teams took too much time due to the distribution
barrier. Due to it, the SM appointed one of the remote developers as a local SM, and the
distributed SM mostly communicated with this person (HOLE; MOE, 2008). The approach
reduced the long-time discussions and also defined a focal point on the team for discussions and
process clarification. Hoda et al. (HODA et al., 2010) conducted a large case study that presented
a important scenario. In cases where the customer lacks involvement, the development teams
saw the need to act as proxy product owners 4.7.10 to understand the customer needs better,
and the development team did it (HODA et al., 2010). The devs with better communication
skills were chosen as the PPO and started to be present with the customer to understand better
the project flow (HODA et al., 2010). Context: the Vallon et al. (VALLON et al., 2013; VALLON.

et al., 2013) studies presented a very interesting scenario of suppliers’ relationships through the
development of large-scale distributed projects. Despite the additional team’s skill, they will
need support during their implementation process and an understanding of the business needs
across the user stories. Whether this support is available or not, the necessity will initially

134

show the issues of lacking a PO and SM in a team. The proactivity of members with more
communication skills can solve those gaps (VALLON et al., 2013; VALLON. et al., 2013). However,
the team can have performance issues while standing out as PO and SMs and avoid working
as developers. A similar context showed the presence of a local SM at Hole and Moe case
(HOLE; MOE, 2008). Since an SM was having a lot of discussions with the team members,
the developer with the most communication skills must emerge as an SM (HOLE; MOE, 2008).
Finally, in typical relationships of consultancy firms with customers, some customers do not
play an active role during the project (HODA et al., 2010). Due to it, in Hoda et al. (HODA et

al., 2010), developers must understand the customer domain and process on their own, or the
project can suffer without progress.

4.7.19 Technical Debt Awareness (4)

Name: technical debt awareness. Goal: technical debts can be described as issues devel-
oped in the solution during the development process due to specific conditions that teams
passed. Those conditions can be related to environmental aspects, fast-fix releases, missed
predictions of the architecture evolution, production errors, and team lack of experience (CHO,
2007). Despite the origin, technical debts must be addressed and resolved along with the
sprint (SCHWABER; SUTHERLAND, 2020) by Scrum. Even without delivering proper value to
the customer, it would avoid future problems with scaling, quality, and architecture. Who:
Scrum Team, and SMs. How: Daneva et al. (DANEVA et al., 2013), in his multiple-case study,
had shown that technical debts were related to the situation when the team considered it
safe to start the development without focusing on the architecture design. Based on it, the
author refers to technical debts as the amount of architecture redesign work that accumu-
lates over time during development (DANEVA et al., 2013). Consequently, new requirements
may require architecture redesign to continue the development, which implicitly brings tech-
nical debt awareness to the table (DANEVA et al., 2013). Further, in the Gupta et al. (GUPTA;

MANIKREDDY; ARYA, 2017) study, technical debt awareness was established through regular
knowledge sharing sessions for findings. The teams used it to update and improve their skills
and resolve issues while providing relevant training in technical debt solving with the scrum
teams (GUPTA; MANIKREDDY; ARYA, 2017). In this case study, the technical debts were consid-
ered stories, which may accomplish the criteria from the DoD 4.7.14, pass through code review,
validate that the solution did not produce another technical debt, and prevent issues in the

135

other areas of the solution(GUPTA; MANIKREDDY; ARYA, 2017). Validation of technical debts
occurred through the automation tests from the workflows. Also, in this case, the organiza-
tion built a dedicated multi-functional team focused on resolving technical debt stories, called
TD team (GUPTA; MANIKREDDY; ARYA, 2017). The TD team gathered architects, functional
experts, testers, and a dedicated PO. They had synchronized sprints with the other teams
for three weeks, and after the consumption of the debts backlog, the team was dissolved,
and the members regrouped with other Scrum teams (GUPTA; MANIKREDDY; ARYA, 2017).
Further, in another Gupta et al. (GUPTA; JAIN; SINGH, 2018) study, the technical debts were
discussed in a one-day event. In this event, the discussion followed technical topics related to
usability improvement, development pain areas like project building effectiveness, static code
errors, redundant test cases, and architecture decoupling (GUPTA; JAIN; SINGH, 2018). Finally,
Sekitoleko et al. (SEKITOLEKO et al., 2014) conducted a case study on Ericsson focusing on the
challenges related to technical dependencies. At Ericsson, the organization defined two types
of technical debts, the planned technical dependencies, and the unplanned technical depen-
dencies (SEKITOLEKO et al., 2014). The managers, program officers, and the PO (SEKITOLEKO

et al., 2014) identified the planned ones during the planning phase. Meanwhile, the unplanned
would emerge during the development of improper requirements (SEKITOLEKO et al., 2014).
Context: Daneva et al. (DANEVA et al., 2013) presented a multiple case study carried out
in a large and mature CMM-5 Asian company widely recognized for its excellence and its
engagement in outsourced software development. The authors investigated the requirement
engineering process in large-scale contexts (DANEVA et al., 2013). During the process, it was
possible to identify that outsourcing projects required a domain owner to transfer knowledge
from the client to the teams. Even with those professionals, it is impossible to predict architec-
tural impacts for future features, and due to it, the current features can constantly impact the
solution (DANEVA et al., 2013). In Gupta et al. (GUPTA; MANIKREDDY; ARYA, 2017) study, at
an IT service company, the idea of considering any story as delivery stories helped the teams
in the technical debt awareness. By doing this, technical debts had no different treatment.
They received an estimation and were mapped to workflows, which helped PO and testers to
convince managers to include the debts in the iterations. Also, in test case development and
automation (GUPTA; MANIKREDDY; ARYA, 2017). Further, the technical debts were so crucial
for the teams that their progress and validation results were presented to the stakeholders. In
another study from Gupta et al., (GUPTA; JAIN; SINGH, 2018), in the healthcare sector, the
event day for technical debts focused specifically on the team pain areas that consequently

136

would improve the product quality. Further, the case of Sekitoleko et al. (SEKITOLEKO et al.,
2014) in a telecommunication company has shown how a more mature company dealt with
technical debts that generated technical dependencies across teams. Also, how to plan those
dependencies to avoid their impact in the iterations (SEKITOLEKO et al., 2014).

4.7.20 Review meeting (4)

Name: review meeting. Goal: during the sprint review meeting, the Scrum team must
present the sprint results and their progress to key stakeholders and Product Owner (SCHWABER;

SUTHERLAND, 2020). The stakeholder and the PO will inspect the outcome of the Sprint and
determine future adaptations (SCHWABER; SUTHERLAND, 2020). The Product Backlog may
also be adjusted according to the progress achieved (SCHWABER; SUTHERLAND, 2020). In the
distributed large-scale projects studied, the review had similar goals, but due to environmental
conditions, the practice needed to be tailored by the teams or the organization (PAASIVAARA;

HEIKKILä; LASSENIUS, 2012; HOSSAIN; BANNERMAN; JEFFERY, 2011; VALLON et al., 2013; VAL-

LON. et al., 2013). Who: Scrum team, Product Owner, Scrum Master, stakeholders, customers.
How: in Vallon et al. (VALLON et al., 2013; VALLON. et al., 2013) case studies, the suppliers’
relationship established a different approach for the sprint review meeting. The meeting is held
after each Sprint. However, the event is held at the main supplier site due to the relationship
between the main and the additional supplier. The additional supplier accesses it through video
conference (VALLON et al., 2013; VALLON. et al., 2013). Additionally, one of the SMs from the
additional supplier is present at the main site while the rest of the team observes the meeting
(VALLON et al., 2013; VALLON. et al., 2013). During the review, the teams should demonstrate
developed features and discuss the current product increments (VALLON et al., 2013; VALLON.

et al., 2013). In Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) case study, a com-
mon sprint review for all the teams is held, in which a representative of each team would
briefly describe what the represented team had accomplished in the previous iteration. Fi-
nally, in Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) multiple-case study with four
companies has presented different ways of implementing the review meeting event. A regular
sprint review is conducted in the oil and energy sector case company. In this case, at the end
of a sprint, the offshore team presented what they developed to the onshore team through
video conference tools (HOSSAIN; BANNERMAN; JEFFERY, 2011). In another company from the
telecommunication sector, a joint sprint review is held at the end of each Sprint. However,

137

during the demo for the customers, only the management team participated, PO, SM, and
project manager, instead of the whole Scrum team (HOSSAIN; BANNERMAN; JEFFERY, 2011).
In another case from the same study at an IT service provider company, the Sprint review was
tailored to a code review process due to the nature of the product in development (HOSSAIN;

BANNERMAN; JEFFERY, 2011). Each sub-team had its code reviewed by other sub-team. At
the end of the Sprint, the increment version of the solution was passed to the onshore QA
team for review (HOSSAIN; BANNERMAN; JEFFERY, 2011). Finally, in the industry case, instead
of a formal review meeting, the developed code based was released to the onshore test engi-
neer for acceptance testing (HOSSAIN; BANNERMAN; JEFFERY, 2011). Context: Vallon et al.

(VALLON et al., 2013; VALLON. et al., 2013) studies involving different suppliers had a review
meeting that contributed to the presence of another tailored practice, the Developers as Scrum
Masters 4.7.18. Since the main supplier would conduct the review on their site without any
representatives from the additional supplier, the developers emerged as SMs to participate and
also guarantee the presence of their teams just for observation (VALLON et al., 2013; VALLON.

et al., 2013). In Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012), the practitioners
described the presence of a review meeting as a regular activity that foments the demonstra-
tion of the features accomplished. In Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011)
study, the presence of different companies has presented a variety of tailoring approaches for
the review meeting practice. Only the most traditional sector, the oil and energy market, has
shown the execution of the sprint review event regularly involving both teams by demonstrating
the developed features through a video conference tool due to the globally distributed envi-
ronment. Moreover, in the telecommunication sector, which seems to be less traditional, the
review meeting demo process involved only the management team, disconsidering the impor-
tance of involving all members from the Scrum team (HOSSAIN; BANNERMAN; JEFFERY, 2011).
By the way, the perception of the team and the consequence of not involving them were not
described by the authors. Finally, two companies used the review meeting practice to establish
a code review process among the teams and conduct a functional test battery involving QA
teams or a QA member (HOSSAIN; BANNERMAN; JEFFERY, 2011). However, those companies
are an IT service provider, and an industry, which represents different sectors that used the
review meeting as an activity of the quality team (HOSSAIN; BANNERMAN; JEFFERY, 2011).

138

4.7.21 Maintenance Team (3)

Name: maintenance team. Goal: Scrum guide does not describe specific functions for
a Scrum team. However, the Scrum team is responsible for all product-related activities, in-
cluding the maintenance of the product (SCHWABER; SUTHERLAND, 2020). Based on a similar
purpose, some studies established a maintenance team to handle all the requests regarding
the product operation (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; LASSENIUS,
2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). Who: Scrum Team. How: Paasivaara
et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2009a) present two case studies on a large-scale oil and energy company that had a mainte-
nance team. In this case, the maintenance team did not have a separate PO, but all of the five
POs involved in the project could give them tasks regarding their products. However, the main-
tenance team had SM that worked as a PO by coordinating the maintenance requests from
the other teams (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2009a). All customers could add new issues to the maintenance backlog through
Jira. However, the organization checked the issue initially, they would pass it to the specific
product, and the PO would contact the maintenance team after a quick verification of the
issue (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2009a).The maintenance team was the only team that followed a different sprint cycle. While
the regular teams developed through a 4-week sprint cycle, the maintenance team worked
through a 2-week sprint cycle since the hotfixes were released every two weeks (PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). They also
had sprint planning sessions for issue selection, in which they left a buffer of 20% of the capacity
for handling fast-track issues from the customers. The most experienced members formed this
maintenance team since they needed to know the whole product and constantly impacted cus-
tomer satisfaction (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ;

LASSENIUS, 2009a). In Paasivaara and Lassenius (PAASIVAARA; LASSENIUS, 2010) case study,
a minimum description of the maintenance team was presented. They had a 2-week sprint
cycle synchronized with the 4-week sprint cycle from other teams to be able to release fixes to
the customers in a faster approach.Context: when a product is in production serving many
end users, mainly from critical sectors, a maintenance team seems to be a requirement for
product health. Large-scale products usually require constant development of distributed and
large teams. However, the production version also needs those teams’ attention to better split

139

the demands of the business units. The customer, the maintenance team, stands outs as a
suitable option. In both studies from Paasivaara et al. (PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2008; PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a),
the maintenance team emerged as a support for the operation in production and to keep
customer satisfaction high by solving the issues in short cycles showing care for the product
quality.

4.7.22 Technical Area Responsible (TAR) (3)

Name: Technical Area Responsible (TAR). Goal: Scrum does not describe a specific area
responsible for the technical subjects of the team (SCHWABER; SUTHERLAND, 2020). However,
the complexity and the degree of innovation of large-scale projects may require technical
references to support the team members during the development. Who: tech leader. How:
Moe et al. (MOE et al., 2014) conducted a case study on Ericsson within a project that applied
a TAR. The TAR was formed by most of the skilled and senior developers of the projects, who
know more about the project and technologies used in the project (MOE et al., 2014). The TARs
were seen as essential for the cross-functional teams to work, ensuring the quality and safe
evolution of the system. TARs supported teams by answering technical questions regarding
their subsystems, they also helped them with design activities and code structure acting as
a mentor for less experienced teams (MOE et al., 2014). At Ericsson, the TARs had more
responsibilities, like code review, identification of quality issues or improvements for the POs,
rejection of design proposals, development of guidelines, and prioritization of trouble reports
(MOE et al., 2014). Nyrud and Stray (NYRUD; STRAY, 2017) study has shown the presence
of a role with similar responsibilities of a TAR, but the organization called it Tech Liaison.
The Tech Liaison is responsible for posses technical insights into the entire product portfolio
and serves as a link between the different teams (NYRUD; STRAY, 2017). The role promoted
inter-team coordination by facilitating large-scale development. The company created the role
to maintain consistency across teams and the technical platform all teams were working on
(NYRUD; STRAY, 2017). Finally, Helena et al. (TENDEDEZ; FERRARIO; WHITTLE, 2018) has
described the presence of specific technical leads for the testers and the developers. Different
technical leaders managed each group. Context: Moe et al. (MOE et al., 2014) conducted a
case study on Ericsson in a very large-scale distributed project spread across Sweden, China,
and Korea with 17 teams around a variety of subsystems related to the project in development.

140

The TAR was needed to accommodate many of the technical issues that could arise from those
17 teams and put them on track with the design patterns, and quality level of the company
development (MOE et al., 2014). Nyrud and Stray (NYRUD; STRAY, 2017) study occurred at
a financial company with different services for the market that was trying to improve inter-
team coordination mechanisms. The Tech Liaison role suits the environment needed to ensure
consistency among the systems and the teams, which helped the organization (NYRUD; STRAY,
2017). Finally, Helena et al. (TENDEDEZ; FERRARIO; WHITTLE, 2018) conducted a case study
on BBC that had very defined borders in the software engineering disciplines. Due to this, each
tech leader had specific members to take care of according to their skills.

4.7.23 Estimation Contracts (3)

Name: Estimation Contracts. Goal: Scrum does not describe any guidance regarding con-
tracts between customers and suppliers. However, in large-scale projects, late changes can
generate more costs for the client or more effort for the suppliers, which can harm the project
budget. To solve that kind of issue, some companies started to work with buffered fixed-
bid contracts (HODA et al., 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a) or iteration
contracts (BATRA; VANDERMEER; DUTTA, 2011). Who: the organization, management. How:
Hoda et al. (HODA et al., 2010) conducted an extensive case study involving practitioners from
16 organizations and four independent case studies, which dealt with fixed-bid contracts and
interaction contracts. Fixed-bid contracts can harm suppliers whether their estimation is not
precise or if the customer requests later changes. To avoid such problems, the organization in
the study used a buffering technique in which the teams added a 20% buffer to the estimated
time taken to develop the project or the feature (HODA et al., 2010). Based on it, the contract
is drawn on the estimate considering the buffer for a fixed price and scope (HODA et al., 2010).
This approach is used mostly to handle the fixes asked by the customer, and the fast-track
issues, as seen in the case study of Paasivaara et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS,
2009a). From another view, some practitioners reported the strategy of selling a few iterations
to the customer to begin instead of signing for a large project up front (HODA et al., 2010). By
doing this, the organizations were selling an agile trial basis for the customers, which helped
them in building confidence with the customer and reducing risk (HODA et al., 2010). By the
time the customer may use a few iterations, they are offered to buy more and more iterations
of features as needed. Further, another approach used by the practitioners was allowing the

141

customer to swap features since they would not need them anymore and could replace them
with new ones with equivalent effort but with more value to them (HODA et al., 2010). Finally,
Batra et al. (BATRA; VANDERMEER; DUTTA, 2011) presented a study in which the authors de-
veloped a complex framework for large-scale agile distributed projects. The authors suggested
curbing opportunistic behavior and accounting for cost escalations. A large organization must
involve a detailed contract agreement with process-heavy change management to minimize
late-change requests from the customer (BATRA; VANDERMEER; DUTTA, 2011). Context: The
tailoring strategy of fixed-bid contracts from Hoda et al. (HODA et al., 2010) study focused
on solving one issue from their client-vendor relationship: agile methodologies will not ask you
how much time you will need to complete the project, but your customer will. Due to it, the
organization must map agile practice into customer practices (HODA et al., 2010). Based on the
customer orders, the organization used the agile data to estimate it, like team size, velocity,
burndown chart, and members turnover (HODA et al., 2010). From another approach, some
practitioners interviewed by Hoda et al. (HODA et al., 2010) the study chose to involve their
clients in the agile philosophy first by introducing them through small contracts of iterations
and then encouraging them to buy more iterations whether the results of the beginning itera-
tions were truly valuable (HODA et al., 2010). Further, allowing the customer to swap features
shows them that the supplier can change according to the Agile manifesto (BECK et al., 2001).
Still, without losing control of the estimated effort, (HODA et al., 2010). In the Paasivaara et al.

(PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a) study at an oil and energy industry company,
the buffered technique allowed to forecast, at some level, the work. Finally, the suggestions
offered by Batra et al. (BATRA; VANDERMEER; DUTTA, 2011) consist of a theoretical framework
developed based on the literature. Still, real experience is much more advantageous in those
cases regarding contracts and costs.

4.7.24 Code freeze (3)

Name: code freeze. Goal: code freeze is not a technique specified in the Scrum guide
(SCHWABER; SUTHERLAND, 2020), but it was seen as essential to handle several distributed
teams working on developing a solution. The practice is also used to ensure the quality of a
system during customer tests and to avoid fast changes without proper quality review (BASS,
2014; BASS, 2012; LAUKKANEN et al., 2016). Who: Scrum Team, management. How: to avoid
any new updates ahead of customers’ demonstrations, one of the practitioners on Bass study

142

(BASS, 2014) reported the use of code freeze. At the code freeze time, the teams must use the
moment to handle merge issues, while the branches would be blocked, and no team members
would be allowed to check in any code. In another Bass study (BASS, 2012), one practitioner
reported using code freeze before the start of regression tests. Due to it, during three days,
cycles of code freezing, regression testing, and bug fixing were common before adding new
code to the solution through the continuous deployment pipeline (BASS, 2012). However, this
process was handled by a release department, not the particular teams (BASS, 2012). Finally,
Laukkanen et al. (LAUKKANEN et al., 2016) conducted a case study on Nokia and described
how the code freeze practice was not applied correctly in the organization. When a content
package was ready by a team, the teams must freeze the source code and could develop only
critical bug fixes afterward, but in practice, the code freeze was not respected (LAUKKANEN et

al., 2016). In practice, the customer started his trials when the content packages were ready.
However, silent bugs that had passed through the gate requirements were being fixed during
customer trials (LAUKKANEN et al., 2016). By doing this, customer requests were also urgently
fixed during and after the code freeze time to get things done without waiting for the long
planning process. Context: In Bass’s study, (BASS, 2014), the practitioner that reported the
presence of code freeze was involved in developing an airline customer service product related
to flight booking. In a product development scenario from a critical sector, such as aviation,
code freeze, and branch blocking were necessary to ensure quality for the end-user of systems
with minimal failure tolerance. In the other Bass study, (BASS, 2012), the product company
that reported the three days code freeze combined with regression tests and bug fixing was
maintaining a CRM solution. The solution was big enough to require a release department
focused on ensuring the release of the CRM product with quality. Finally, the Laukkanen et

al. (LAUKKANEN et al., 2016) study at Nokia involved four sites spread across three countries.
The code freeze was necessary, but the pressure to release new packages to end users were
big enough for the teams to ignore the practice rule.

4.7.25 Community of Practice (CoP) (3)

Name: Community of Practice (CoP). Goal: the community of practice (CoP) is very
common in other agile frameworks (HENRIK; ANDERS, 2012; LARMAN; VODDE, 2016a). How-
ever, it is not originally described on Scrum (SCHWABER; SUTHERLAND, 2020). Most of the
organizations that use CoPs in their environment are looking to engage and promote team

143

building in their distributed teams through specific forums, mostly technical and separated by
discipline, to discuss issues, news of program languages, frameworks, and architectural design
(MOE et al., 2014; GUPTA; MANIKREDDY; ARYA, 2017; GUPTA; JAIN; SINGH, 2018). Who: Scrum
Team, project manager. How: Moe et al. (MOE et al., 2014) case study at Ericsson involv-
ing Swedish and Chinese teams applied tech forums, similar to CoPs. Those CoPs included
test, integration, development, and SMs forums (MOE et al., 2014). In Gupta et al. (GUPTA;

MANIKREDDY; ARYA, 2017) experience report, the testers from all Scrum teams were deal-
ing with many responsibilities, from test automation to developer support. Beyond it, they
were responsible for conducting test CoPs among the members (GUPTA; MANIKREDDY; ARYA,
2017). Finally, in another experience report from Gupta et al., (GUPTA; JAIN; SINGH, 2018), the
organization of CoPs relied on the project managers. In their many responsibilities, they should
also keep the entire project teams together, creating consistency among them and helping in
the establishment and support of CoPS (GUPTA; JAIN; SINGH, 2018). Context: Gupta et al.

(GUPTA; JAIN; SINGH, 2018) experience report from a healthcare company has present a more
traditional approach in the project. Due to it, the project manager was the most responsible
for the operation, working together with the Scum Master (GUPTA; JAIN; SINGH, 2018). Com-
bining it with the traditional health sector, the managers were responsible for the CoPs, while
in most IT service companies, the Scrum Team and its tech leaders were responsible (ULUDAG

et al., 2019; PAASIVAARA; LASSENIUS, 2016). In Ericsson’s case study from Moe et al., (MOE et

al., 2014), the self-organized distributed teams started to conduct CoPs by themselves since
they had the autonomy to do that. However, the Chinese teams assumed that they rarely
participated in the CoPs, which resulted in fewer interactions between them and the Swedish
team and harmed their team-building (MOE et al., 2014). Finally, the other experience report
from Gupta et al. (GUPTA; MANIKREDDY; ARYA, 2017) at an IT service company experienced
in software development in which the roles from the Scrum team, testers, and developers, were
responsible for participating in the CoPs, while the managers may only facilitate the CoP.

4.7.26 Scrum training (3)

Name: Scrum training. Goal: Scrum suggests that the Scrum Master is responsible for
coaching the team members in self-management and cross-functionality (SCHWABER; SUTHER-

LAND, 2020). More than it, they are also responsible for leading, training, and coaching the
organization in its Scrum adoption (SCHWABER; SUTHERLAND, 2020). In large-scale distributed

144

projects, the need in agile coaching is still required for more adoption of Scrum (KOCH et al.,
2014; LEE; YONG, 2010; HOBBS; PETIT, 2017). Who: Scrum Team, SM, PO, external con-
sultant. How: in one of the cases from Koch et al. (KOCH et al., 2014), the management
team decided to receive training during the Scrum implementation on internal and external
delivery processes. The team encouraged five project managers to obtain SM certification by
doing this. In Hennel and Dobmeier (HOBBS; PETIT, 2017) single case study, the training,
and coaching regarding agile methods were perceived as important factors. Chasing the most
positive impact, continuous coaching, and improvement become a rule (HOBBS; PETIT, 2017)
in the project. Finally, Lee and Yong presented an experience report on Yahoo (LEE; YONG,
2010) has shown that global product teams and international teams received early coaching
and training from the corporate Agile group. However, the international ones were unfamiliar
initially (LEE; YONG, 2010). Context: Lee and Yong presented an experience report on Yahoo
(LEE; YONG, 2010) involving multiple teams spread across three continents and more than
twelve countries. The company had enough power to empower the teams through a specific
corporate agile group sector from the company. Further, Hennel and Dobmeier (HOBBS; PETIT,
2017) presented a single case study on a telecommunication company evaluating the critical
success factors of agile management in large-scale distributed projects. Coaching and train-
ing are one of those essential factors of success. (HOBBS; PETIT, 2017). Finally, in Koch et

al. (KOCH et al., 2014) case studies, the companies started by coaching managers in Scrum.
However, the adoption of Scrum failed due to barriers at both companies while translating
and externalizing tacit knowledge along the development process with the suppliers. Moreover,
the authors pointed out that the suppliers were not specialists in agile software development
(KOCH et al., 2014).

4.7.27 Area Product Owner (2)

Name: Area Product Owner (APO). Goal: an APO is not described in any Scrum docu-
ments or the Scrum Guide (SCHWABER; SUTHERLAND, 2020). However, it is a common practice
from the fewer framework (LARMAN; VODDE, 2016a), in which an Area Product Owner fo-
cuses on a customer-centric area and acts as PO concerning the teams of that area 4.6.15.
Even though it is an original practice from another framework, it was perceived in two studies
using Scrum. Who: PO. How: Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012)
conducted a study to evaluate how the product owner role has been scaled in large-scale

145

distributed Scrum projects. Through the study, the authors percevid a Scrum case similar to
the LeSS approach. The Scrum teams were grouped into customer areas, and each area was
headed by an APO (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). Like LeSS (LARMAN; VODDE,
2016a), the APO manages an area-specific backlog, and together with the PO, they formed
the PO teams (PAASIVAARA; HEIKKILä; LASSENIUS, 2012). The APO is supposed to work with
2-3 teams developing and managing features of one specific product (PAASIVAARA; HEIKKILä;

LASSENIUS, 2012). In another study from Moe et al. (MOE et al., 2014), the author focused on
understanding the role of knowledge networks at Ericsson. During the process, he describes
the presence of an APO as a person responsible for a subsystem. The APOs must work closely
with Operative Product Owners through a defined hierarchy, in which the APO is responsible
for defining what to implement in a broader view. At the same time, the OPO is an essential
part of the teams’ social networks (MOE et al., 2014). Context: Moe et al. (MOE et al., 2014)
study was conducted in a very traditional company with an extensive experience in the develop-
ment of new technologies and with more than ten thousand employees. Hierarchy is necessary
for those scenarios, the complexity of the systems in development requires subsystems to be
formed and, consequently, a division on the PO role to support the teams (MOE et al., 2014).
Further, in Paasivaara et al. (PAASIVAARA; HEIKKILä; LASSENIUS, 2012) study, one of the cases
chose to work with the APO to scale the PO role into large-scale projects as suggested by
Larman and Vodde (LARMAN; VODDE, 2008). Due to the project’s needs, the role of APO
was divided between two persons: a system architect and a solution architect (PAASIVAARA;

HEIKKILä; LASSENIUS, 2012).

4.7.28 Behavior Driven Development (BDD) (2)

Name: Behavior Driven Development (BDD). Goal: BDD is a not a original Scrum prac-
tice (SCHWABER; SUTHERLAND, 2020). However, it’s an XP practice that focuses on developing
user stories and test scenarios based on the behavior expected by the software. The acceptance
criteria will serve as the base for the BDD, which needs to be understandable by the customer
and executable by the testers (VALLON et al., 2013; VALLON. et al., 2013). The BDD helps every
role by being a common language and reference point for stakeholders, business analysts, de-
velopers, and testers. Who: Scrum Team. How: Vallon et al. (VALLON et al., 2013; VALLON. et

al., 2013) studies describe an agile approach of Scrum on a real industry project involving the
main supplier and an additional supplier. Both suppliers were developing the solution in the

146

same code base using BDD. Both suppliers aim to have an executable human-readable specifi-
cation in terms of different scenarios for each story, which could help the testers run functional
tests or even develop automation. Also, the stakeholders do understand the behavior (VALLON

et al., 2013; VALLON. et al., 2013). However, the use of BDD introduced a lot of overhead to
the teams since it was underestimated, resulted in broken case tests, and consequently, bad
code quality (VALLON et al., 2013; VALLON. et al., 2013). Moreover, testers constantly struggled
to finish the automation of BDD scenarios within the sprints, which resulted in issues during
delivery (VALLON et al., 2013; VALLON. et al., 2013). Context: Vallon et al. (VALLON et al., 2013;
VALLON. et al., 2013) studies described in rich detail the dynamics of suppliers working in the
development of a project for the customer. With good purpose, the teams tried to establish
the use of BDD in the development and planning of stories, although it sounds like the teams
lacked experience in the applicability of the practice. Most of the issues were related to the
underestimation of the scenarios, the lousy quality of the code produced, and the overhead of
the testers that did not have enough throughput in automating the tests cases that had the
stories developed (VALLON et al., 2013; VALLON. et al., 2013). Finally, it sounds like the team
must have a certain level of maturity before adopting a practice such as BDD, which requires
enough skill from all roles of the Scrum Team.

4.7.29 Design Pipeline (2)

Name: design pipeline. Goal: design pipeline is a specific practice seen in studies with
large-scale distributed projects using Scrum. However, it’s not a standard practice from Scrum
(SCHWABER; SUTHERLAND, 2020) or even any other agile framework. The design pipeline aims
to establish a design sprint ahead of the development sprint (HODA et al., 2010; LEE; JUDGE;

MCCRICKARD, 2011). The practice’s main goal is to reduce developers’ overhead by giving
them interfaces already built just for their implementation. Who: Scrum Team, designers.
How: in Lee et al. (LEE; JUDGE; MCCRICKARD, 2011) case study,a usability engineer work
ahead of the development team to develop the design and delivery it for developers to start
implementing those designs in the following iterations. This approach helped the team to
optimize their velocity and predictability while developing a system that would meet high-
level design goals. In similar applicability, Hoda et al. (HODA et al., 2010) study involving 40
practitioners from 16 large-scale organizations also reported the presence of a design pipeline.
One team adapted the agile practices to fit the context of a front-end design-intensive project.

147

Due to it, the design activities were running ahead of the development by one sprint (HODA

et al., 2010). The main focus of the design pipeline was to support the design tasks in driving
the backend functionalities. For each iteration, the designers must have their duties ready by
the beginning of the next iteration for the development team (HODA et al., 2010). Further, the
design pipeline must handle the zeroth iteration, including only design activities. At the same
time, the development team must proceed with their tasks following the front-end designs
by one iteration (HODA et al., 2010). Context: Lee et al. (LEE; JUDGE; MCCRICKARD, 2011)
conducted a study at Meridium company with teams across India and USA to evaluate how
the custom eXtreme Scenario-based design (XSBD) approach, developed by Virginia Tech
for usability centered projects, could be used in a distributed environment using Scrum. The
strategy aims to ensure that the interfaces built by the teams agree with the project’s high-level
goals and the prototypes of the dedicated usability engineer. Due to it, the usability engineer
works one iteration ahead of the development teams. While the development team implements
a new interface, the usability engineer develops the designs for the next iteration. Meanwhile,
in Hoda et al. (HODA et al., 2010) study, a designer saw the design pipeline as an adaption for
ensuring that developers did not waste substantial effort on technical matters before getting
the front-end design. Especially in a project whose context was skewed towards being front-end
design-intensive. Finally, looking at both studies that implemented the design pipeline practice,
it is possible to conclude that projects with a heavy need for front-end interface development
may require a design team focused on developing interfaces ahead of the development team.
All of it reduces the developers’ overhead and avoids letting them develop interfaces far from
the business value expected by the customers and end users.

4.7.30 Futurospective (1)

Name: futurospective meeting. Goal: futurospective is not even near being an original
practice from Scrum (SCHWABER; SUTHERLAND, 2020). However, it was a workshop event
conducted by agile coaches, and a few managers created a vision of where the organization
would be in a couple of years (PAASIVAARA et al., 2014). It is a kind of roadmap and vision
presentation regarding the organization and its product. Who: agile coaches, managers. How:
the focus of the futurospective meeting is to answer the following question: “What made this
product such a huge success?”. According to Paasivaara et al., (PAASIVAARA et al., 2014),
based on the question, the coaches and managers started to write a "showcase" (PAASIVAARA

148

et al., 2014). The “showcase” concentrated on a vision of how the organization would look
in two years and how the work would be done for the whole organization to create a highly
successful product. Based on the “showcase”, the organization’s values were created. Context:
Paasivaara et al. (PAASIVAARA et al., 2014) conducted a case study at Ericsson to describe how
a new organization acquired by Ericsson used “Value Workshop” the different sites and teams
that transitioning from plan-driven to lean and agile on a large-scale distributed context. The
teams were involved in developing a new product, consisting of three teams spread across two
countries in Europe and one in Asia. For better suitability with the Ericsson environment, the
teams worked on common values that were originated by their interpretation and behavioral
implications as a team from the workshops, and futurospective meetings (PAASIVAARA et al.,
2014).

4.7.31 Story Owners (1)

Name: story owner. Goal: in Scrum, the PO role has responsibilities regarding the devel-
opment and communication of the product goal, building and management of product backlog
items, order of product backlog items, and ensuring the backlog is transparent, visible, and
understood (SCHWABER; SUTHERLAND, 2020). The PO also needs to be the face and voice of
the product since the role represents the need of the customer, stakeholders, and end-users
(SCHWABER; SUTHERLAND, 2020). However, story owner is a tailored practice to substitute
the regular PO role from Scrum (HODA et al., 2010). Instead of being responsible for the whole
product, they are responsible for particular stories of less than a week long (HODA et al., 2010).
Who: story owners. How: the concept of story owner was seen in the cases from Hoda et al.

(HODA et al., 2010). The story owner is responsible for particular stories, so each story from
the product backlog has an owner. The idea of working with it had a specific purpose. Even
when a single customer representative may be required for a regular project, it’s impossible
to expect continuous availability from them (HODA et al., 2010). Due to it, the story owners
could play this role for a specific time and particular stories, avoiding issues regarding infor-
mation necessity from the customer (HODA et al., 2010). Such a role becomes more present
when customer involvement is not enough for the project, and the supplier or team members
cannot change this nature (HODA et al., 2010). The approach also allowed the teams to plan
new stories based on the current story being developed together with the story owner. It also
allowed the customer representatives to create a sense of ownership among the stories they

149

were responsible for (HODA et al., 2010). Context: Hoda et al. (HODA et al., 2010) conducted
an extensive case study in 16 organizations across India and New Zealand, corroborated with
four other case studies. In those cases, the story owner practice proved successful for the
practitioners when the teams needed more customer collaboration (HODA et al., 2010). The
practice was suitable, especially for projects involving clients and suppliers, where the suppliers
require proper customer attention and participation for the project to succeed.

4.7.32 Limited blast radius technique (1)

Name: limited blast radius technique.Goal: this practice originates itself in some studies
that used the Spotify framework (SALAMEH; BASS, 2019). However, with the same goal of
releasing a new version of the solution to a small portion of end-users (BASS, 2012) to avoid
high risks of incidents in the whole base of customers. Who: team members. How: with a
similar purpose to the studies that used Spotify Framework (HENRIK; ANDERS, 2012), one
of the companies from Bass study (BASS, 2012) reported the use of the limited blast radius
technique during the releases of new software increment to selected market to avoid incidents
across the whole users (BASS, 2012). Based on it, software was continuously released to a
specified number of end-users. However, when an incident occurred, the squad could roll back
the changes and stabilize the environment (BASS, 2012) without harming the entire customer
community. Context: in the case study presented by Bass with seven international companies
(BASS, 2012), one company that had business on the internet chose to apply the limited blast
radius technique due to the difficulty of getting feedback from their customers, which was
facilitated due to release in selected markets on an experimental basis.

4.8 TARGET FRAMEWORK - TAILORING LARGE-SCALE AGILE PRACTICES FRAME-
WORK

This section will present the developed TARGET framework based on the tailored prac-
tices reported by the large-scale distributed project studies. For this framework, the whole
95 tailored practices identified from the studies using Spotify, SAFe, DAD, LeSS, and Scrum
(HENRIK; ANDERS, 2012; Leffingwell, Dean, 2023; AMBLER; LINES, 2012; LARMAN; VODDE, 2016a;
SCHWABER; SUTHERLAND, 2020) were organized based on the market sector of the companies
studied. In total, 17 different business domains are identified in the selected studies.

150

Each identified market sector is grouped based on the scale dimension of the teams’ and the
agile scaling framework used. The main idea of the built framework is to serve as a guideline
for practitioners and researchers to understand better how a variety of companies with different
business domains have tailored agile practices using different agile and scaling agile frameworks
already known in the market.

The company domains and their scale were extracted and grouped while evaluating the
studies and developing the tailored practices. A single study can appear in different domains
or scaling terminologies since the sample contains multiple-case studies involving various or-
ganizations and studies conducted in different years in the same organization.

Finally, the business domains that compose the frameworks are telecommunication, oil
and energy, automotive industry, process & industry automation, healthcare, optical indus-
try, financial, science and research, broadcasting, BI and Big Data, Logistic, Mission-critical
software, enterprise CRM, general industry, Internet, software service provider, and IT service
provider. The following subsections will present each business domain in the framework struc-
ture, describing the organizations’ scale, the agile scaling framework used, the studies from
this domain, and the mapped tailored practices identified. The market sectors within a small
number of tailored practices were combined in a specific subsection.

To better understand each sector, the practices presented on it, and the studies which
originated them, it was developed a studies map table 4.8 in which each study was classified
with an acronym from S1 to S74.

151

Table 6 – Studies Map.
Name Study
S1 (ULUDAG et al., 2019)
S2 (EBERT; PAASIVAARA, 2017)
S3 (BASS, 2014)
S4 (PAASIVAARA, 2017)
S5 (BASS, 2013)
S6 (RAZZAK et al., 2018)
S7 (JHA; VILARDELL; NARAYAN, 2016)
S8 (BASS, 2012)
S9 (PAASIVAARA; HEIKKILä; LASSENIUS, 2012)
S10 (PAASIVAARA; LASSENIUS, 2016)
S11 (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008)
S12 (VALLON et al., 2014)
S13 (SALAMEH; BASS, 2019)
S14 (FITZGERALD et al., 2013b)
S15 (MARTINI; BOSCH, 2016)
S16 (BASS, 2016b)
S17 (MARTINI; PARETO; BOSCH, 2013)
S18 (TENDEDEZ; FERRARIO; WHITTLE, 2018)
S19 (NYRUD; STRAY, 2017)
S20 (ROLLAND, 2016)
S21 (MOE et al., 2014)
S22 (SALAMEH; BASS, 2020)
S23 (HOSSAIN; BANNERMAN; JEFFERY, 2011)
S24 (PANDYA; MANI; PATTANAYAK, 2020)
S25 (LOUS et al., 2018)
S26 (LAL; CLEAR, 2018)
S27 (GUPTA; MANIKREDDY; ARYA, 2017)
S28 (BROWN; AMBLER; ROYCE, 2013)
S29 (HODA et al., 2010)
S30 (HODA; NOBLE, 2017)
S31 (GUPTA; JAIN; SINGH, 2018)
S32 (GODOY et al., 2019)
S33 (GUPTA; VENKATACHALAPATHY; JEBERLA, 2019)
S34 (LEE; JUDGE; MCCRICKARD, 2011)
S35 (MATTHIESEN; BJØRN, 2017)
S36 (LAUKKANEN et al., 2016)
S37 (GARBAJOSA; YAGÜE; GONZALEZ, 2014)
S38 (PAASIVAARA; LASSENIUS, 2010)
S39 (VALLON et al., 2013)
S40 (RAHY; BASS, 2019)
S41 (BASS, 2015)
S42 (KOMMEREN; PARVIAINEN, 2007)
S43 (KORKALA; PIKKARAINEN; CONBOY, 2009)
S44 (KOCH et al., 2014)
S45 (BADAMPUDI; FRICKER; MORENO, 2013)
S46 (SEKITOLEKO et al., 2014)
S47 (LEE; YONG, 2010)
S48 (WILDT; PRIKLADNICKI, 2010)
S49 (HOSSAIN, 2019)
S50 (LAUTERT; NETO; KOZIEVITCH, 2019)
S51 (KUSSMAUL, 2010)
S52 (KORHONEN, 2009)
S53 (HOSSAIN; BABAR; VERNER, 2009)
S54 (HOLE; MOE, 2008)
S55 (VÄLIMÄKI; KÄÄRIÄINEN, 2008)
S56 (DORAIRAJ; NOBLE; MALIK, 2012)
S57 (LEHTINEN et al., 2015)
S58 (PAASIVAARA et al., 2014)
S59 (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a)
S60 (SABLIS; SMITE; MOE, 2021)
S61 (BEECHAM et al., 2021)
S62 (HOBBS; PETIT, 2017)
S63 (USMAN et al., 2018)
S64 (ROLLAND et al., 2016)
S65 (SCHEERER; SCHIMMER; KUDE, 2014)
S66 (VALLON. et al., 2013)
S67 (DANEVA et al., 2013)
S68 (DORAIRAJ; NOBLE; ALLAN, 2013)
S69 (RALPH; SHPORTUN, 2013)
S70 (NOORDELOOS; MANTELI; VLIET, 2012)
S71 (BATRA; VANDERMEER; DUTTA, 2011)
S72 (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b)
S73 (CHO, 2007)
S74 (KORKALA; ABRAHAMSSON, 2007)

Source: The author (2023)

152

4.8.1 IT Service Providers

IT service providers are the most common sector in our study. All the studies conducted
on consultancy firms, software factories, and IT outsourcing companies were grouped in this
category. 27 studies representing more than a third of the total selected papers for the SLR are
part of this sector, also involving three different frameworks, Scrum (SCHWABER; SUTHERLAND,
2020), SAFe (Leffingwell, Dean, 2023), and DAD (AMBLER; LINES, 2012), and with the three
scale dimensions, small, large and very large-scale (See table 4.8.1). Most IT service provider
companies concentrate on large-scale projects using Scrum. Still, two studies that used SAFe
and DAD significantly represented the practices mapped on both frameworks. See figure 4.8.1
for a more visible view of the IT service provider sector framework. The unique study from a
small-scale dimension was a case study from Vallon et al. (VALLON et al., 2014) that described
action research from a single Scrum team through 27 sprints when transitioning to a distributed
environment and required the tailoring and scaling of agile practices.

A total of 25 studies from IT service providers used tailored Scrum practices. Those studies
used 26 out of 32 practices from Scrum, and only six tailored practices were not present in
this sector. The IT service providers’ study sample is responsible for almost the whole tailored
mapped practices from Scrum. Moreover, Pandya et al. (PANDYA; MANI; PATTANAYAK, 2020)
experience report described the transition from Scrum to SAFe in large-scale development
teams in India, which implemented 9 out of 24 tailored practices from SAFe (Leffingwell, Dean,
2023). Of those nine practices, seven were only present in the Pandya et al. (PANDYA; MANI;

PATTANAYAK, 2020) study. Finally, Lal and Clear conducted a long case study over more than
15 years regarding the transition from Rational Unified Process (RUP), through a Hybrid-Agile
method, to a Scaled Agile approach using Disciplined Agile delivery (AMBLER; LINES, 2012)
involving ten teams in a very large-scale context (LAL; CLEAR, 2018). The study has four out
of nine practices from DAD, representing almost half of the tailored practices mapped in the
framework.

153

Table 7 – Tailored practices from the It Service Providers sector.

Market sector Scale Frameworks Studies Practices

IT
Service Provider

Small-scale Scrum S12 • Daily Scrum Meeting (S12) 4.7.1;
• Retrospective Meeting (S12) 4.7.3.

Large-scale SAFe S24

• External Coaches and Consultants (S24) 4.4.2;
• Content readiness (S24) 4.4.3;
• Weekly meeting (S24)4.4.7;
• Definition of Done (DoD) (S24) 4.4.8;
• Program and Team Boards (S24) 4.4.9;
• Single product backlog (S24) 4.4.13;
• Measurement Indicators (KPIs) (S24) 4.4.14;
• Keep stakeholders close (S24) 4.4.15;
• Instructor-led training (S24) 4.4.16.

Scrum

S20, S23, S27, S30,
S32, S35, S38, S39,
S40, S43, S45, S49,
S53, S54, S56, S66,
S70, S72

• Demo presentation (S20, S38) 4.7.8;
• Daily Scrum Meeting (S23, S27, S35, S38, S39, S54, S56, S66, S70, S72) 4.7.1;
• Retrospective Meeting (S23, S30, S38, S39, S66, S72) 4.7.3;
• Planning meeting (S23, S30, S38, S39, S54, S66, S72) 4.7.5;
• Weekly status meeting (S23, S27, S49) 4.7.13;
• Review Meeting (S23, S39, S66) 4.7.20;
• Scrum of Scrums (S27, S38, S39, S66, S72) 4.7.2;
• Status Dashboard (S27, S32, S39, S40, S66) 4.7.4;
• Definition of Done (DoD) (S27, S35, S45, S72) 4.7.14;
• Community of Practice (CoP) (S27) 4.7.25;
• Technical Debt Awareness (S27) 4.7.19;
• Multiple Communication Modes (S38, , S53, S72) 4.7.6;
• First collocated Sprint (S38, S56) 4.7.11;
• Tools for monitoring progress, quality and knowledge (S38) 4.7.12;
• Maintenance Team (S38) 4.7.21;
• Developers as Scrum Masters and Product Owners (S39, S54, S66) 4.7.18;
• Behavior Driven Development (BDD) (S39, S66) 4.7.28;
• Wiki as Communication Tool (S43, S56, S72) 4.7.9;
• Product/Project Manager in Scrum (S53, S54) 4.7.7;
• Component Teams x Generalized teams (S54) 4.7.15;
• Requirement Workshops (S70) 4.7.17.

Very large-scale DAD S26

• Definition of Done (DoD) (S26) 4.5.3;
• T-skilled Individuals (S26) 4.5.7;
• Product, Program, and Portfolio Planning (S26) 4.5.8;
• DAD Training (S26) 4.5.9.

Scrum S3, S5, S8, S16,
S29, S41

• Daily Scrum Meeting (S3, S16, S41) 4.7.1;
• Scrum of Scrums (S3, S5) 4.7.2;
• Retrospective Meeting (S3) 4.7.3;
• Demo presentation (S3) 4.7.8;
• Proxy Product Owner (S3, S5, S41) 4.7.10;
• Code freeze (S3, S8) 4.7.24;
• Product/Project Manager in Scrum (S5) 4.7.7;
• Product Ownership (S5, S16, S41) 4.7.16;
• Multiple Communication Modes (S8) 4.7.6;
• Status Dashboard (S29) 4.7.4;
• Developers as Scrum Masters and Product Owners (S29) 4.7.18;
• Estimation Contracts (S29) 4.7.23;
• Design Pipeline (S29) 4.7.29;
• Story Owners (S29) 4.7.31;
• First collocated Sprint (S41) 4.7.11.

Source: The author (2023)

154

Figure 10 – IT Service Provider visual Framework guide.

Source: The author (2023)

4.8.2 Telecommunication

A total of 13 studies were held in telecommunication organizations representing the second
sector with more studies involving three different frameworks, Scrum (SCHWABER; SUTHER-

LAND, 2020), SAFe (Leffingwell, Dean, 2023), and LeSS (LARMAN; VODDE, 2016a) (See table
4.8.2 and figure 4.8.2). The sector had no studies involving small-scale teams or projects;
since telecommunication organizations seem to be large companies, the selected studies in-
volved large-scale and very large-scale distributed projects.

The telecommunication sector concentrates 38 of the whole 95 practices, which represents
more than a third of all practices. Most telecommunication studies used Scrum in large-scale
and very large-scale distributed environments, with a total of 10 studies using 15 out of 32
Scrum practices, almost half of them. Moreover, the SAFe studies from the telecommunication
sector represent eight practices from a total of 24. Finally, the Paasivaara and Lassenius
(PAASIVAARA; LASSENIUS, 2016) case study at Nokia that used LeSS framework (LARMAN;

VODDE, 2016a) represents the case study with more tailored practices regarding the LeSS
framework (LARMAN; VODDE, 2016a), with a total of 14 practices out of 17 practices mapped
during the study.

155

Table 8 – Tailored practices from the Telecommunication sector.

Market sector Scale Frameworks Studies Practices

Telecommunication

Small-scale N/A N/A N/A

Large-scale SaFe S2 Change agent (S2) 4.4.23;

Scrum S15, S17, S23, S36,
S52, S58, S62

Component Teams x Generalized teams (S15) 4.7.15;
Product/Project Manager in Scrum (S17) 4.7.7;
Daily Scrum Meeting (S23) 4.7.1;
Retrospective Meeting (S23) 4.7.3;
Planning Meeting (S23) 4.7.5;
Demo presentation (S23) 4.7.8;
Weekly status meeting (S23) 4.7.13;
Review Meeting (S23) 4.7.20;
Code freeze (S36) 4.7.24;
Product/Project Manager in Scrum (S52) 4.7.7;
Futurospective (S58) 4.7.30;
Scrum training (S62) 4.7.26.

Very large-scale
SAFe S4

Scrum of Scrums (S4) 4.4.10;
PI Planning (S4) 4.4.1;
ART for Business Lines (S4) 4.4.22;
External Coaches and Consultants (S4) 4.4.2;
Change agent (S4) 4.4.23;
Release Train Engineer (S4) 4.4.24.

LeSS S10

Community of Practice (CoP) (S10) 4.6.1;
Requirement Area (S10) 4.6.2;
Area Product Backlog (S10) 4.6.15;
Single-Specialist Teams (S10) 4.6.5;
Design And Requirement Workshops (S10) 4.6.7;
Retrospective Meeting (S10) 4.6.8;
Definition of Done (S10) 4.6.9;
Demo Presentation (S10) 4.6.10;
Scrum of Scrums (SoS) (S10) 4.6.11;
Teams Representatives (S10) 4.6.12;
Sprint Planning (S10) 4.6.13;
Release Planning (S10) 4.6.14;
Area Product Owner (S10) 4.6.15;
System and Solution Architects (S10) 4.6.16.

Scrum S21, S46, S63

Technical Area Responsible (TAR) (S21) 4.7.22;
Community of Practice (CoP) (S21) 4.7.25;
Area Product Owner (S21) 4.7.27;
Technical Debt Awareness (S46) 4.7.19;
Product/Project Manager in Scrum (S63) 4.7.7.

Source: The author (2023)

156

Figure 11 – Telecommunication Framework visual guide.

Source: The author (2023)

4.8.3 General Industry

Many selected studies from the SLR were conducted in industrial environments. Since a
study did not describe the type of industry, it was classified in the general industry sector of
the framework. A total of 12 studies represent the general industry sector, all of them us-
ing and tailoring Scrum practices in the three different dimensions of agile scaling, one with
a small-scale project (WILDT; PRIKLADNICKI, 2010), seven with large-scale projects (JHA; VI-

LARDELL; NARAYAN, 2016; MARTINI; BOSCH, 2016; MARTINI; PARETO; BOSCH, 2013; HOSSAIN;

BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010; WILDT; PRIKLADNICKI, 2010;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b), and five with very large-scale projects (BASS,
2014; BASS, 2013; BASS, 2012; BASS, 2015; KOMMEREN; PARVIAINEN, 2007) (See table 4.8.3
and see figure 4.8.3). The small-scale project was considered in our results due to the distribu-
tion of the team between the USA and Brazil, which led them to tailor agile practices due to
their distributed nature and the size of the company involved (WILDT; PRIKLADNICKI, 2010).

The industrial sector studies had tailored half of the Scrum practices mapped in the SLR.
16 out of 32 practices from Scrum are present in those studies. The Daily Scrum Meeting
4.7.1 in the most tailored practice in industries (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASI-

VAARA; LASSENIUS, 2010; WILDT; PRIKLADNICKI, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS,

157

2009b), followed by the Planning 4.7.5 and Retrospective Meetings 4.7.3 (HOSSAIN; BANNER-

MAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2009b).

Table 9 – Tailored practices from the General Industry sector.

Market sector Scale Frameworks Studies Practices

General Industry
Small-scale Scrum S48 Daily Scrum Meeting (S48) 4.7.1;

Weekly status meeting (S48) 4.7.13.

Large-scale Scrum S7, S15, S17, S23,
S38, S48, S72

Scrum of Scrums (S7, S38) 4.7.2;
Weekly status meeting (S7, S23) 4.7.13;
Component Teams x Generalized teams (S15) 4.7.15;
Product/Project Manager in Scrum (S17) 4.7.7;
Daily Scrum Meeting (S23, S38, S48, S72) 4.7.1;
Retrospective Meeting (S23, S38, S72) 4.7.3;
Planning Meeting (S23, S38, S72) 4.7.5;
Review Meeting (S23) 4.7.20;
Multiple Communication Modes (S38) 4.7.6;
Demo presentation (S38) 4.7.8;
First collocated Sprint (S38) 4.7.11;
Tools for monitoring progress, quality and knowledge (S38) 4.7.12;
Maintenance Team (S38) 4.7.21;
Definition of Done (DoD) (S38) 4.7.14;
Wiki as Communication Tool (S48) 4.7.9.

Very large-scale Scrum S3, S5, S8, S41,
S42

Daily Scrum Meeting (S3) 4.7.1;
Code freeze (S8) 4.7.24;
Multiple Communication Modes (S8) 4.7.6;
Daily Scrum Meeting (S41) 4.7.1;
Scrum of Scrums (S5) 4.7.2;
First collocated Sprint (S42) 4.7.11.

Source: The author (2023)

Figure 12 – General Industry visual Framework visual guide.

Source: The author (2023)

158

4.8.4 Software Service Provider

Software service providers configure companies that develop one or more solutions for the
market, have their income prevenient from those solutions, and are responsible for maintaining
and distributing the software products for the clients. This sector, together with the general
industry, is the second sector with more studies in our framework, with a total of 12 studies on it
using two different frameworks, Scrum (SCHWABER; SUTHERLAND, 2020) and DAD (AMBLER;

LINES, 2012) (See table 4.8.4 and see figure 4.8.4).
Most of the studies from software service providers used Scrum in small, large, and very

large-scale projects. Further, only the study from Brown et al. (BROWN; AMBLER; ROYCE,
2013) using DAD suggested the use of the Integration and Unit Testing 4.5.6 practice in their
framework. Moreover, less than half of the Scrum practices were used in this sector, precisely
14 out of 32 practices from Scrum. Finally, the small-scale project presented in this sector
is part of a more extensive study involving large companies in Denmark (KOCH et al., 2014).
Further, despite the project’s small scale, the members worked in a distributed manner since
they were in different countries.

Table 10 – Tailored practices from the Software Service Provider sector.

Market sector Scale Frameworks Studies Practices

Software
Service Provider

Small-scale Scrum S44 Component Teams x Generalized teams (S44) 4.7.15;
Scrum training (S44) 4.7.26.

Large-scale Scrum S15, S51, S57

Component Teams x Generalized teams (S15) 4.7.15;
Daily Scrum Meeting (S51) 4.7.1;
Planning meeting (S51);
Wiki as Communication Tool (S51) 4.7.9;
Proxy Product Owner (PPO) (S57) 4.7.10.

Very large-scale DAD S28 Integration and Unit Testing (S28) 4.5.6.

Scrum S3, S5, S8, S9,
S41, S47, S74

Daily Scrum Meeting (S3, S41, S47, S74) 4.7.1;
Scrum of Scrums (S3, S47) 4.7.2;
Product/Project Manager in Scrum (S5) 4.7.7;
Product Ownership (S5, S9, S41) 4.7.16;
Code freeze (S8) 4.7.24;
Demo presentation (S9) 4.7.8;
Review Meeting (S9) 4.7.20;
Proxy Product Owner (PPO) (S9) 4.7.10;
Component Teams x Generalized teams (S9) 4.7.15;
Requirement Workshops (S9) 4.7.17;
Area Product Owner (S9) 4.7.27;
Proxy Product Owner (S41) 4.7.10;
Wiki as Communication Tool (S47) 4.7.9;
Scrum training (S47) 4.7.26;
Multiple Communication Modes (S8, S74) 4.7.6.

Source: The author (2023)

159

Figure 13 – Software Service Provider Framework visual guide.

Source: The author (2023)

4.8.5 Financial

Seven studies represent the financial sector involving large-scale and very large-scale projects
(See table 4.8.5). The financial sector had studies involving four out of the five scaling agile
frameworks present in the SLR, which are Spotify (HENRIK; ANDERS, 2012), SAFe (Leffing-

well, Dean, 2023), DAD (AMBLER; LINES, 2012), LeSS (LARMAN; VODDE, 2016a), and Scrum
(SCHWABER; SUTHERLAND, 2020) (See figure 4.8.5). As an exciting finding, the 13 tailored
practices mapped from Spotify originated from two studies of the financial sector (SALAMEH;

BASS, 2019; SALAMEH; BASS, 2020). Salameh and Bass (SALAMEH; BASS, 2019) conducted
an embedded case study to evaluate the Spotify Model’s applicability and agile tailoring on
a large-scale B2B project of a financial company. Moreover, the same authors conducted a
similar study on a Fintech company that uses the Spotify mode to discover how practitioners
achieve agile tailoring using the Spotify model framework (SALAMEH; BASS, 2020).

Moreover, four studies from the financial sector used Scrum (SCHWABER; SUTHERLAND,
2020), all of them in large-scale projects (NYRUD; STRAY, 2017; LOUS et al., 2018; LEE;

JUDGE; MCCRICKARD, 2011; DORAIRAJ; NOBLE; ALLAN, 2013) concentrating nine out of 32

160

tailored practices. Two studies on very large-scale projects were using SAFe (LAUTERT; NETO;

KOZIEVITCH, 2019) and DAD (BEECHAM et al., 2021). Beecham et al. (BEECHAM et al., 2021)
presented a study to evaluate to what degree scaling frameworks, like DAD (AMBLER; LINES,
2012), address global software development risks. Four out of nine tailored practices from
DAD were built during the study evaluation. Finally, Neto and Kozievitch (LAUTERT; NETO;

KOZIEVITCH, 2019) presented a survey study in which one SAFe practice was identified, the
external coaches and consultants 4.4.2.

Table 11 – Financial Framework visual guide.

Market sector Scale Frameworks Studies Practices

Financial

Small-scale N/A N/A N/A

Large-scale Spotify S13, S22

Estimation Techniques (S13, S22) 4.3.1;
Limited Blast Radius Technique (S13) 4.7.32;
Support/Maintenance Squads (S13, S22) 4.3.3;
Roadmap (S13, S22) 4.3.4;
Establish a clear vision (S13, S22) 4.3.5;
Definition of Done (DoD) (S13) 4.3.6;
Postmorten Documentation Process (S13) 4.3.7;
Squad-of-Squads Meeting (S13) 4.3.11;
Product Owners weekly meeting (S13) 4.3.12;
Transparency (S13) 4.3.13;
Measurement Indicators (S22) 4.3.8;
Architectural Decision Process (S22) 4.3.9;
Knowledge Sharing Process (S22) 4.3.10.

Scrum S19, S25, S34, S68

Daily Scrum Meeting (S19, S34) 4.7.1;
Multiple Communication Modes (S19, S34) 4.9.2.9;
Demo presentation (S19) 4.7.8;
Tools for monitoring progress, quality and knowledge (S19) 4.7.12;
Technical Area Responsible (TAR) (S19) 4.7.22;
Retrospective Meeting (S25) 4.7.3;
Status Dashboard (S34) 4.7.4;
Design Pipeline (S34) 4.7.29;
First collocated Sprint (S68) 4.7.11.

Very large-scale DAD S61

Risk Mitigation (S61) 4.5.1;
Spikes (S61) 4.5.2;
Daily Tactital Huddle (S61) 4.5.4;
User stories (S61) 4.5.5.

SAFe S50 External Coaches and Consultants (S50) 4.4.2.
Source: The author (2023)

161

Figure 14 – Financial Framework visual guide.

Source: The author (2023)

4.8.6 Process & Industry Automation

Four studies using Scrum represent the Process and Industry Automation sector. Most of
them involve large-scale projects (BASS, 2015; VÄLIMÄKI; KÄÄRIÄINEN, 2008; SABLIS; SMITE;

MOE, 2021), and only one from a very large-scale scenario (DANEVA et al., 2013) (See table
4.8.6). Only the daily Scrum meeting 4.7.1 is presented in two of the studies (BASS, 2015;
VÄLIMÄKI; KÄÄRIÄINEN, 2008). Meanwhile, the other practices from the sector are presented
only in one study per time (See figure 4.8.6).

The four studies conducted the company’s projects in two continents: Europe and Asia.

Table 12 – Tailored practices from the Process and Industry Automation sector.

Market sector Scale Frameworks Studies Practices
Process &
Industry
Automation

Small-scale N/A N/A N/A

Large-scale Scrum S41, S55, S60

Daily Scrum Meeting (S41, S55) 4.7.1;
Scrum of Scrums (S55) 4.7.2;
Tools for monitoring progress, quality and knowledge (S55) 4.7.12;
Component Teams x Generalized teams (S60) 4.7.15.

Very large-scale Scrum S67 Requirement Workshops (S67) 4.7.17;
Technical Debt Awareness (S67) 4.7.19.

Source: The author (2023)

162

Figure 15 – Process and Industry Automation Framework visual guide.

Source: The author (2023)

4.8.7 Internet

Similar to the Enterprise CRM sector, the Internet sector originates itself through the
studies of Bass (BASS, 2014; BASS, 2013; BASS, 2012; BASS, 2015) that evaluated the Scrum
Master activities at large enterprise projects (BASS, 2014), product owner functions and teams
in distributed projects (BASS, 2013; BASS, 2015), and also the influences on agile tailoring
at enterprise software development (BASS, 2012). In all of the studies, the same company
was evaluated, and it involved the development of products on the internet related to mail,
calendar, and options.

The company in the multiple-case studies had projects spread across India and USA, with
many teams configuring very large-scale projects. The Internet company used tailored Scrum
in all studies, with 9 out of 32 practices mapped from Scrum (See table 4.8.7 and see figure
4.8.7).

163

Table 13 – Tailored practices from the Internet sector.

Market sector Scale Frameworks Studies Practices

Internet
Small-scale N/A N/A N/A
Large-scale N/A N/A N/A

Very large-scale Scrum S3, S5, S8, S41

Daily Scrum Meeting (S3, S41) 4.7.1;
Scrum of Scrums (S3, S5) 4.7.2;
Retrospective Meeting (S3) 4.7.3;
Planning meeting (S3, S41) 4.7.5;
Product/Project Manager in Scrum (S5) 4.7.7;
Product Ownership (S5, S41) 4.7.16.
Code freeze (S8) 4.7.24;
Multiple Communication Modes (S8) 4.7.6;
Limited Blast Radius Technique (S8) 4.7.32.

Source: The author (2023)

Figure 16 – Internet Framework visual guide.

Source: The author (2023)

4.8.8 Oil and Energy

Three studies represent the Oil and Energy sector. All of them are related to devel-
oping and maintaining products to control power, energy, and oil refinery systems (PAASI-

VAARA; DURASIEWICZ; LASSENIUS, 2008; HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA;

164

DURASIEWICZ; LASSENIUS, 2009a) (See table 4.8.8). Both Paasivaara et al. (PAASIVAARA;

DURASIEWICZ; LASSENIUS, 2008; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a) studies and
Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011) case describe the implementation of
Scrum tailored practices in large-scale projects from the oil and energy sector (See figure
4.8.8).

The three studies are classified as large-scale projects. Paasivara’s et al. studies involved
seven teams spread across Norway and Malaysia (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a), while Hossain et al. study involved two teams
spread across Finland and an offshore country (HOSSAIN; BANNERMAN; JEFFERY, 2011). A
total of nine out of 32 Scrum practices are presented in the three studies. Meanwhile, only the
Daily Scrum meeting practice 4.7.1 was applied in both studies.

Table 14 – Tailored practices from the Oil and Energy sector.

Market sector Scale Frameworks Studies Practices

Oil and Energy
Small-scale N/A N/A N/A

Large-scale Scrum S11, S23, S59

Daily Scrum Meeting (S11, S23, S59) 4.7.1;
Scrum of Scrums (S11, S59) 4.7.2;
Multiple Communication Modes (S11) 4.7.6;
Maintenance Team (S11, S59) 4.7.21;
Retrospective Meeting (S23, S59) 4.7.3;
Planning Meeting (S23, S59) 4.7.5;
Proxy Product Owner (PPO) (S23) 4.7.10;
First collocated Sprint (S59) 4.7.11;
Estimation Contracts (S59) 4.7.23.

Very large-scale N/A N/A N/A
Source: The author (2023)

165

Figure 17 – Oil and Energy Framework visual guide.

Source: The author (2023)

4.8.9 Enterprise CRM

The enterprise CRM studies concentrate on the companies presented in several studies
from Bass (BASS, 2013; BASS, 2012; BASS, 2015). In those studies, Bass investigated several
questions regarding product owner functions and teams (BASS, 2013; BASS, 2015), and also
the influences on agile tailoring at enterprise software development (BASS, 2012). During the
multiple-case studies, three companies specialized in CRM were evaluated. Those companies
developed enterprise CRMs for several domains, such as insurance, banking, healthcare, credit
card, financial services, and core business (BASS, 2013; BASS, 2012; BASS, 2015).

All of those case studies involved CRM companies tailoring Scrum in large-scale environ-
ments (See table 4.8.9 and see figure 4.8.9). Moreover, the companies used six out of 32
practices from Scrum.

166

Table 15 – Tailored practices from the Enterprise CRM sector.

Market sector Scale Frameworks Studies Practices

Enterprise CRM
Small-scale N/A N/A N/A
Large-scale N/A N/A N/A

Very large-scale Scrum S5, S8, S41

Product/Project Manager in Scrum (S5) 4.7.7;
Product Ownership (S5, S41) 4.7.16;
Code freeze (S8) 4.7.24;
Multiple Communication Modes (S8) 4.7.6;
Daily Scrum Meeting (S41) 4.7.1;
First collocated Sprint (S41) 4.7.11.

Source: The author (2023)

Figure 18 – Enterprise CRM Framework visual guide.

Source: The author (2023)

4.8.10 Automotive Industry

Only two studies represent the automotive industry. However, one of them presents an
exciting environment of a very large-scale automotive industry company that was adopting
LeSS in four different products (ULUDAG et al., 2019) (See table 4.8.10 and see figure 4.8.10).
The four products are software systems that are part of the chain of the automotive company,
and together, the products involve more than 800 employees spread across five countries
(ULUDAG et al., 2019). In the study, the authors presented how the different products adopted,
applied, and tailored the LeSS framework in different scenarios. Seven out of 17 practices

167

from LeSS are present in the study from Uludag et al. (ULUDAG et al., 2019). Of those seven
practices, four of them are just present in the study, which are Less Huge 4.6.4, inspect and
adapt 4.6.6, Definition of Done (DoD) 4.6.9, and domain PO 4.6.17.

On the other side, only one Scrum practice, Product/Project manager in Scrum 4.7.7, was
seen from Martini et al. (MARTINI; PARETO; BOSCH, 2013) multiple case studies involving an
automotive company in a large-scale project.

Table 16 – Tailored practices from the Automotive Industry sector.

Market sector Scale Frameworks Studies Practices

Automotive Industry
Small-scale N/A N/A N/A
Large-scale Scrum S17 Product/Project Manager in Scrum (S17) 4.7.7.

Very large-scale LeSS S1

Community of Practice (CoP) (S1) 4.6.1;
Requirement Area (S1) 4.6.2;
Area Product Backlog (S1) 4.6.3;
LeSS Huge (S1) 4.6.4;
Inspect and Adapt (S1) 4.6.6;
Definition of Done (DoD) (S1) 4.6.9;
Domain PO (S1) 4.6.17.

Source: The author (2023)

168

Figure 19 – Automotive Industry Framework visual guide.

Source: The author (2023)

4.8.11 Healthcare

In the healthcare sector, one study from Gupta et al. (GUPTA; VENKATACHALAPATHY;

JEBERLA, 2019) has shown the use of tailoring practices from both SAFe and Scrum in the same
project while implementing the DevOps approach. In this study, three out of 24 practices from
SAFe were used, and only project increment workshop 4.4.6 was present in the study(GUPTA;

VENKATACHALAPATHY; JEBERLA, 2019) (See figure 4.8.11). Meanwhile, from Scrum, the study
just presented the status dashboard practice 4.7.4.

In another study from Gupta in a similar healthcare case, the case involved a very large-
scale project using Scrum in a legacy project (GUPTA; JAIN; SINGH, 2018). In the project, the
authors reported the presence of six out of 32 Scrum practices (See table 4.8.11).

169

Table 17 – Tailored practices from the Healthcare sector.

Market sector Scale Frameworks Studies Practices

Healthcare

Small-scale N/A N/A N/A

Large-scale SAFe S33
PI Planning (S33) 4.4.1;
Content readiness (S33) 4.4.3;
Project increment workshop (S33) 4.4.6.

Scrum S33 Status Dashboard (S33) 4.7.4.

Very large-scale Scrum S31

Scrum of Scrums (S31) 4.7.2;
Status Dashboard (S31) 4.7.4;
Product/Project Manager in Scrum (S31) 4.7.7;
Community of Practice (CoP) (S31) 4.7.25;
Technical Debt Awareness (S31) 4.7.19;
Requirement Workshops (S31) 4.7.17.

Source: The author (2023)

Figure 20 – Healthcare Framework visual guide.

Source: The author (2023)

4.8.12 Optical Industry

Only two studies were held in the optical Industry sector, specifically in the same company
with headquarters in Dublin but with teams across North America (See table 4.8.12). However,
in the study from Razzak et al. (RAZZAK et al., 2018) in 2018, the company was classified as

170

large-scale since it presented less than ten teams. Meanwhile, in Beecham et al. (BEECHAM

et al., 2021) case study in 2021, the case had more than ten teams in the same countries,
configuring it as very large-scale.

Different practices are mapped from the studies since they have different purposes. In
Razzak et al. (RAZZAK et al., 2018), the authors aim to identify, measure, and evaluate the
adoption of SAFe recommended practices across the organization, which resulted in the de-
scription of some tailoring approaches. Meanwhile, Beecham et al. (BEECHAM et al., 2021)
presented a study to evaluate to what degree scaling frameworks, like SAFe, address global
software development risks. Finally, only the Staff Members for POs’ activities 4.4.4 practice
was present in both studies, and a total of ten out of 24 SAFe practices are currently in the
optical industry sector, which nine of them are only present in those two studies (RAZZAK et

al., 2018; BEECHAM et al., 2021) (See figure 4.8.12).

Table 18 – Tailored practices from the Optical Industry sector.

Market sector Scale Frameworks Studies Practices

Optical Industry
Small-scale N/A N/A N/A

Large-scale SAFe S6

PI Planning (S6) 4.4.1;
Staff Members for POs’ activities (S6) 4.4.4;
SAFe adoption at Medium Enterprises (S6) 4.4.5;
Strategic Themes (S6) 4.4.17;
Epic Stories (S6) 4.4.18;
Sprints (S6) 4.4.19;
Retrospectives (S6) 4.4.20;
User stories (S6) 4.4.21.

Very Large-scale SAFe S61
Staff Members for POs’ activities (S61) 4.4.4;
Automated tests (S61) 4.4.11;
Feature team (S61) 4.4.12.

Source: The author (2023)

171

Figure 21 – Optical Industry Framework visual guide.

Source: The author (2023)

4.8.13 Smaller Market Sectors

The market sectors within less than four practices can not be considered well representative,
although it provides some relevant information regarding agile tailoring. Due to it, the following
sections will describe five of those market sectors within a small portion of agile tailored
practices.

4.8.13.1 Science and Research

Two studies make a part of the science and research sector. The studies were conducted in
companies with teams spread in Europe and North America involving large-scale projects using
Scrum (FITZGERALD et al., 2013b; GARBAJOSA; YAGÜE; GONZALEZ, 2014) (See table 4.8.13.1

172

and see figure 4.8.13.1). Both papers used only three practices from the 32 practices from
Scrum.

Fitzgerald et al. (FITZGERALD et al., 2013b) conducted the case study to identify how agile
methods could be scaled to regulated environments. However, only the DoD 4.7.14 and Tools
for monitoring progress, quality, and knowledge 4.7.12 practice were extracted. Meanwhile,
Garbajosa et al. (GARBAJOSA; YAGÜE; GONZALEZ, 2014) conducted multiple case studies on
projects from a research facility laboratory spread across Finland and Spain to evaluate the
impact of infrastructure on the communication of agile global software development teams.
During the study and only the daily scrum meeting practice was tailored 4.7.1.

Table 19 – Tailored practices from the Science and Research sector.

Market sector Scale Frameworks Studies Practices

Science and
Research

Small-scale N/A N/A N/A

Large-scale Scrum S14, S37
Tools for monitoring progress, quality and knowledge (S14) 4.7.12;
Definition of Done (DoD) (S14) 4.7.14;
Daily Scrum Meeting (S37) 4.7.1.

Very large-scale N/A N/A N/A
Source: The author (2023)

Figure 22 – Science and Research Framework visual guide.

Source: The author (2023)

173

4.8.13.2 BI and Big Data

The BI and Big data sector were represented by two studies that only applied two of
the most common practices from Scrum, the Daily Scrum Meeting 4.7.1 (RALPH; SHPORTUN,
2013) and the Scrum of Scrums (SoS) 4.7.2 (ROLLAND et al., 2016) (See table 4.8.13.2 and see
figure 4.8.13.2). As one of the only studies in a small-scale environment, Ralph and Shportun
(RALPH; SHPORTUN, 2013) presented a revelatory case study with only one Scrum team spread
across two offices from America and Russia. The study investigates the Scrum abandonment
of the team during the transition and the associated factors of scrum abandonment. Despite
the fact that our study focused primarily on large-scale projects, such a small-scale project
had one team spread between the USA and Russia, within a big timezone difference that led
to similar consequences and challenges of the large-scale projects (RALPH; SHPORTUN, 2013).

In the other study, Rolland et al. (ROLLAND et al., 2016) conducted a case study of a
large-scale agile project that involved 120 participants in a large company from Norway. As an
output of the study, the authors offer a new set of assumptions for “Agile in the large”.

Table 20 – Tailored practices from the BI and Big Data sector.

Market sector Scale Frameworks Studies Practices

BI and Big Data
Small-scale Scrum S64 Scrum of Scrums (S64) 4.7.2.
Large-scale Scrum S69 Daily Scrum Meeting (S69) 4.7.1.
Very large-scale N/A N/A N/A

Source: The author (2023)

174

Figure 23 – BI and Big Data Framework visual guide.

Source: The author (2023)

4.8.13.3 Logistics

Only one study represents the logistics sector in a very large-scale scenario using only the
Planning meeting practice from 4.7.5 Scrum (SCHEERER; SCHIMMER; KUDE, 2014) (See table
4.8.13.3 and see figure 4.8.13.3).

Scheerer and Kude’s case study (SCHEERER; SCHIMMER; KUDE, 2014) investigated data
from 125 teams that were involved in the development of a logistic management solution.

Table 21 – Tailored practices from the Logistics sector.

Market sector Scale Frameworks Studies Practices

Logistic
Small-scale N/A N/A N/A
Large-scale N/A N/A N/A
Very large-scale Scrum S65 Planning meeting (S65) 4.7.5.

Source: The author (2023)

175

Figure 24 – Logistics Framework visual guide.

Source: The author (2023)

4.8.13.4 Mission-Critical Software

Cho (CHO, 2007) presented the unique case study from our review on a distributed software
development company that develops mission-critical and large-scale projects in the United
States (See figure 4.8.13.4). The study had interviewees, observations, and a survey with 30
members of a large project to examine how communication, coordination, and control issues
were managed and what technologies were used to mitigate the difficulties from distributed
settings.

A mission-critical specialized company like the one presented by Cho (CHO, 2007) may
require more traditional approaches due to the development solutions’ complexity. Based on
it, it was possible to see that in the Scrum practices applied, such as Product/Project Manager
in Scrum 4.7.7 (CHO, 2007) (See table 4.8.13.4).

176

Table 22 – Tailored practices from the Mission-Critical Software sector.

Market sector Scale Frameworks Studies Practices

Mission-Critical
software

Small-scale N/A N/A N/A

Large-scale Scrum S73
Product/Project Manager in Scrum (S73) 4.7.7;
Wiki as Communication Tool (S73) 4.7.9;
Tools for monitoring progress, quality and knowledge (S73) 4.7.12.

Very large-scale N/A N/A N/A
Source: The author (2023)

Figure 25 – Mission-Critical Software Framework visual guide.

Source: The author (2023)

4.8.13.5 Broadcasting

The broadcasting sector is represented by just one study at one of the biggest broadcast-
ing companies in the world involving a very large-scale project (See table 4.8.13.5 and see
figure 4.8.13.5). To be more specific, Helena et al. (TENDEDEZ; FERRARIO; WHITTLE, 2018)
conducted a case study on BBC to explore the tensions between standardization and flexi-
bility in a very large-scale agile software development environment. The study highlights how
standardization impacts flexibility in a large-scale agile environment through an ethnographic
process of 17 semi-structured interviews and 54 hours of direct observations with different
team members from 16 teams of the television and mobile platform BBC.

177

The case study involved 160 teams with around 6 to 10 members per team that used
four out of 32 Scrum practices. The authors also described the use of some Kanban practices,
which helped in the flexibility of teams, but also caused some problems since the customizations
didn’t allow the management to track all the teams with a similar approach.

Table 23 – Tailored practices from the Broadcasting sector.

Market sector Scale Frameworks Studies Practices

Broadcasting
Small-scale N/A N/A N/A
Large-scale N/A N/A N/A

Very large-scale Scrum S18

Retrospective Meeting (S18) 4.7.3;
Status Dashboard (S18) 4.7.4;
Demo presentation (S18) 4.7.8;
Technical Area Responsible (TAR) (S18) 4.7.22.

Source: The author (2023)

Figure 26 – Broadcasting Framework visual guide.

Source: The author (2023)

178

4.9 CASE STUDY RESULTS

This section will describe the results identified during the execution of the case study. The
primary source of data was the transcripts from the interviews. Each of the six individuals
interviewed was questioned through teleconference meetings using Microsoft Teams 5. For
data triangulation, the team members were observed during the execution of agile events
through teleconference meetings. Finally, data from the project regarding product backlog,
status dashboard, and development documentation were also evaluated for the case study.

During the interviews, the tailored agile practices presented in the TARGET Framework
used by IT service providers from very large-scale contexts using Scrum were primarily evaluated
by the team members aiming to understand whether the practices were used or not and how
they were tailored. Moreover, practices from the same market sector, IT service providers but
from different scale dimensions, were presented to the participants to better understand what
other practices ´´outside” of their context according to the TARGET framework were also in
use and how.

The results of this case study are organized as follows: a subsection to describe the team
members characteristics 4.9.1, then the agile tailored practices from very large-scale Scrum IT
service providers companies used by the team members 4.9.2, followed by the practices from
other agile frameworks and scales dimensions from the IT Service Provider sector used by the
team members 4.9.3. Finally, the considerations regarding the case study findings 4.9.4.

4.9.1 Case study demographics

The present case study gathers six interviewees. Five of them, from P0 to P4, work together
in the same agile distributed team, developing a system focusing on the lead management of
new students. Moreover, the P6 interviewee is the Tech leader responsible for ensuring the
quality of the whole solution with a distributed team of quality. Besides developing, automating,
and executing test cases of the agile distributed team from the lead management solution, the
Tech leader also has to deal with the others more 20+ systems and technologies that compose
the very large-scale education solution.

All of the members of this case study work in the same consultancy firm providing those
development and quality services to the same client but interacting with different areas, man-
5 www.microsoft.com/microsoft-teams

179

agers, leaders, and sectors.
The project in development by the client was delayed by more than two years, and the

quality team managed by the Tech leader was hired to accelerate the release ensuring the
minimal quality of the deliverables. The releases should be made by gathering a bunch of
features representing a moment in the users’ journey. The Tech leader and the QAs must
ensure the quality of those moments in the release schedule. Moreover, the agile distributed
team working on the lead management solution has already released the solution to production.
However, the development of new features has not stopped, and team members must divide
themselves between maintaining the released solution and developing a backlog of new features.

Most of the professionals from the consultancy firm working on the very large-scale solution
are young, ranging from 21 to 37 years. Besides, most of them have worked for little time on
the project, whereas the oldest has worked on the solution for only eight months. Regarding
the interviewees’ gender, two are women, and four are men.

Regarding the experience level of the interviewees, people ranged from 1,7 years to 10
years of experience. Along with it, most of the selected members have a bachelor’s degree
in a computing course, except P1, which comes from marketing and transitions its career.
However, P0 and P5 are coursing post-graduation in software engineering.

Finally, the variety of the members selected covers most of the roles present in the project.
P0 acts as a quality analyst, focusing on keeping the quality assurance philosophy alive in the
project by ensuring the process is followed and not only executing functional tests. Meanwhile,
P1 is the Scrum Master in the project but has been acting as a Product Owner in the last five
years in other projects and is facing her first experience as an SM. P2 is the only developer
specialized in the Power Automate solution from Microsoft, and consequently, Javascript due to
the needed scripts to be developed. Moreover, P3 specializes in developing Microsoft Dynamics
solutions that are closer to a low-code platform. P4 is the backend developer with skills in
.Net, responsible for developing microservices in the project. Finally, P5 is the Tech leader of
the quality team responsible for managing the team activities and the client relationship.

4.9.2 Very large-scale Scrum tailored practices

This subsection will describe the most important points that emerged from the open coding
technique and the constant comparison method during the transcripts reviews regarding the
tailored agile practices used by the members. A total of 15 practices from the IT Service

180

provider sector used in very large-scale contexts using Scrum were presented to the interviewees
to evaluate their practices and how. The team members used not every practice, but the
majority of them. The practices are Daily Scrum meeting; Scrum of Scrums; Retrospective
meeting; Demo presentation; Proxy Product Owner; Code freeze; Product/Project manager
in Scrum; Product Ownership; Multiple Communication Modes; Status dashboard; Developers
as Scrum Master and Product Owners; Estimation contracts; Design pipeline; Story owners;
First collocated sprint.

4.9.2.1 Daily Meeting

Similar to the results seen in the Systematic Literature Review 4.1, the daily meeting was
the most discussed practice among the case study practitioners. The agile distributed teams
formed by P0 to P4 regularly apply a daily meeting through a teleconference solution due to
the distribution of the members in the Microsoft Teams 6. The daily usually takes 15 minutes
and follows a regular template from a Scrum daily as described by a developer:

“The daily is held through Teams from 9:15 AM until 9:30 AM. Each member

regularly passes the story they are developing to report the past progress, the

planned activities for today, and any impediments.”. P3, Developer.

During the dailies, the whole dev team from the supplier is present, including the Scrum
Master. On the client’s side, the project coordinator is the only one always presented in the
dailies according to the team (P0, P1, P2, P3, P4). Sometimes the client’s Product Owner
enters the meeting and the project manager just for a quick understanding of the progress
since they are more worried about the entire delivery cycle of the sprint.

The daily duration of 15 minutes seems to be more a desire of the Scrum Master than
the team’s reality. Despite the effort of P1, it usually lasts more than 30 minutes, and the
team members have a lot of perceptions of it. According to P1, the Scrum Master, since the
daily meeting is the day’s first meeting at 9:15 AM, people get in late and are unwilling for
the meeting. From another perspective, P4 seems the daily had been used as a vent meeting.
Since the product has passed from one supplier to the current distributed team, it inherited
some problems from development that were only shown during the production release. Those
problems are sometimes very specific to one developer and not to another, which can cause
6 https://www.microsoft.com/microsoft-teams

181

the perception of a waste of time since some developers can not be involved in the discussion.
Moreover, P4 has described the execution of dailies lasting 45 minutes:

“Even though I have more time in the project, and I’ve been the only one who

interacted with the last supplier, the current team is kind of new to the project.

Moreover, the project lived as a development project for a long time, but now

it has development and maintainability tasks. Due to it, the members seem to

suggest a lot of things to improve the process and reduce the impact of sprint

delays, which leads to problems explanations and leads the daily meeting to take

40 to 50 minutes sometimes.” P4, Developer

Despite the duration problem of the daily, every member has reported a similar script
followed by the Scrum Master during the daily execution. First, the daily is entirely conducted
through the screen sharing of the Scrum Master computer presenting the status dashboard
with the tasks in development at JIRA 7. Each task in the columns is checked with the SM
and the respective member responsible for it:

“During the daily, my goal is to cover each of the stories in the current sprint

and present them on JIRA. For it, I share my screen with the team, and I start

discussing the stories closer to completion by reading each card and asking if

the responsible member requires any help, if it is stopped or not, if it has an

impediment, and when this member is planning to finish it. During this process, I

wrote all the points emphasized by the team to use later.” P1, Scrum Master.

An important point of the daily script that the Scrum Master emphasized is that the script
is strictly followed to avoid interruptions from the client during the meeting. While the client
is mostly worried about tasks with the highest priority and may want to discuss them in the
15 minutes, the SM ensures the daily script to discuss the whole sprint in the 15 minutes and
doesn’t deviate for the client only purposes:

“The project coordinator usually asks the team to stop what they are doing to

focus on a specific story or a production bug. Due to it, I try to avoid those

behaviors from him following the script and consequently minimizing the impacts

on the delivery.” P1, Scrum Master.
7 www.atlassian.com/software/jira

182

Independently of the issues encountered by the team, the daily meeting is never missed
(P0, P2), even when some of the members cannot join due to internet issues:

“Whether a person can not join the daily due to external issues, we would ask

them to report the progress, impediment, and planning for the day through chat.

By the way, every day, the daily is held through teleconferences.” P2, Developer.

The team members were also asked about their perception of the daily meeting and the
people’s participation. The SM saw that a person from the client’s commercial team was
introduced to the meeting invite. Still, the SM preferred that this person not join the call since
this person could not understand the agile development process and impact the team asking
for features outside the sprint. From another very different perspective, P3 has reported that
it seems the daily meetings on Monday are a waste of time since people are lazy on Monday
morning. They don’t even remember what they worked on before the weekend:

“When you come from a weekend that you tried to forget everything about your

work, it is very difficult to remember what you did on Friday while you are in a

meeting at 9:15 AM on Monday. Moreover, you usually don’t have any problems

to report since you didn’t work on the weekend. Maybe the dailies on Monday

could be later because I feel we are just showing that we have started the week

working.” P3, Developer.

Beyond the execution of the regular daily at 9:15 AM involving the members P0, P1,
P2, P3, and P4. Two other dailies emerged from the regular dailies’ issues since the team
had little time to present their progress and activities. In the regular dailies, impediments
may not be discussed but just announced. In a similar process, blocker impediments that
require refinement with other teams or the PO of the client also should be announced but not
discussed. By doing this, the P1, SM, has established two new dailies: the blocker refinement
daily and the impediments daily (P1).

Since a member reports a problem that may require the PO explanation or a discussion
with another team from the client, another daily is called right after the regular daily at 9:30
AM. On this blocker refinement daily, the SM gathers the project coordinator and the PO from
the client and also the developer involved in the problem to raise the information necessary to
handle and fix such blocker:

183

“In the blocker refinement daily, I need the presence of the PO to inform about

the problem and to ask him to look for a meeting with other teams to clarify

the issue. I have created this process to push the PO to be more involved in the

daily discussions since he does not frequently participate in the regular daily.” P1,

Scrum Master.

The P1 saw the daily blockers refinement as an opportunity to engage the PO in the
development process since the team does not see his presence frequently. By doing this, the
Scrum Master saw the need for another daily, but more likely, status check meeting called
daily for impediments. The meeting is held at 2:00 PM, representing the closure of the blocker
identified in the regular daily, refined at the blockers refinement daily. At the meeting, the
SM asked the PO about the resolutions steps they had defined early during the impediment
refinement if the PO had discussed with the other teams if is a dependency or if he had
scheduled a meeting:

“The daily for impediments works as a Follow-up meeting that I use to ask the

PO about the dependencies fix, impediments solution, or business clarification

that my team needs. Both extra dailies are not always needed, but only when an

impediment arises, which is quite common since the project is new and is related

to many other solutions.” P1, Scrum Master.

As described by the SM, extra dailies are common, but sometimes it does not occur. It
depends directly on when the impediments appear.

Looking forward to a different perspective, P5, the tech leader for Quality assurance of
the whole ecosystem, participates in different dailies since his focus is on quality. The day
of the quality team starts with a similar daily at 8:30 AM involving the client through a
teleconference call on Microsoft Teams. However, at this call, only some members from the
supplier are presented, the tech leader, manager, and operational manager. On the client’s side,
the managers and coordination of the product teams are presented. The daily usually takes 30
minutes, but sometimes can take more depending on the status and issues encountered during
the presentation:

“The QA daily with the client starts with presenting the status dashboard regarding

the test cases. The test cases are planned every day, and at the beginning of the

daily, we show the progress of the past day. It is more a status report than a daily

184

meeting, but we also present the planned test cases to be executed on the current

day. Any big issues or bugs involving the systems that can compromise the releases

are presented to the client.” P5, QA Tech Leader.

After this daily, P5 has described the execution of the other two internal QA dailies. Unlike
the development team, those two dailies are needed since the team works on shifts. The project
was delayed, and the client asked the consultancy firm for a 12-hour working shift to get back
to the chronogram. To accomplish it, the consultancy firm divided the team into two shifts,
one that starts at the beginning of the morning and finishes in the afternoon. In contrast, the
other shift begins later in the morning and ends in the evening. To accommodate both shifts
and to transfer the progress from one to another, P5 has established two internal QA dailies:

“After the daily with the client, we start the first internal QA daily involving all

the quality analysts. At this meeting, I describe the past progress from the last

shift and the test cases that must be executed in the current day according to

their priority. By doing this, the team organizes itself for the execution. During the

execution, the team discovers which test cases are truly released for execution and

which are not. By doing this, in 15 to 20 minutes, the first shift can start their

work.” P5, QA Tech leader

After the first dailies, there are a few hours on the day that both shifts overlap. During
this time, another daily with all the members are handled for knowledge transfer regarding the
test cases execution. At this moment, P5 is responsible for synchronizing the work from the
first-shift members with the members from the second shift:

“The members from the second shift already know what the team from the first

shift are doing when they start their day. However, we must synchronize what the

first shift members had left unfinished for the second shift members to continue.

The meeting also takes 15 to 20 minutes focus on knowledge transfer. This kind

of dailies was the best alternative to avoid people working a 12-hour shift every

day while keeping them synchronized. ” P5, QA Tech leader

As pointed out by P5, the two internal QA dailies were needed to accommodate the shifts
and provide the client’s priority for the team. P5 believes that those dailies are required due to
the complexity of the ecosystem, the current delay for the release, and to avoid communication

185

issues among team members. Since most of the systems from the ecosystems are not ready
and released, the Quality team requires constant communication and status checks off what
test cases can be performed or not:

“The two dailies are needed anyway since we are working with test cases from

systems that don’t have all the features released and that constantly need to com-

municate among them. Due to it, we often find bugs or not implemented features

during the test case execution. By finding it that way, we need to communicate

with the teams, discuss the issues, clarify the problems to the managers, and also

discuss internally what is ready or not.” P5, QA Tech leader.

Finally, independently of the issues in the project, P5 judges the daily with the client a
micromanagement event required by the managers from the client side. Since the client likes to
have control and command to understand what the consultants firm Quality team is working
on, the dailies with them serve as status report dailies:

“They want a constant notion of what we are testing, and I understand it, but at

the same time, it takes a lot of time from my day. They want to see constantly

what is working or not, which team has failed in a test case scenario, which features

were not implemented, and why. Due to it, our manager, that does not have a

quality background, can not describe in full detail the technical aspects of those

issues, and I need to be present to clarify it every day with them.” P5, QA Tech

leader.

4.9.2.2 Scrum of Scrums (SoS)

Scrum of Scrums (SoS) was not present in the members’ day-to-day activities (P0, P1,
P2, P3, P4), although some of the members, after being presented to the practice, understand
that it could be helpful in their context. Since their project is part of a large ecosystem with
many other teams, the client could benefit from an SoS meeting to discuss dependencies across
teams, blockers, and synchronized features:

“We don’t execute a meeting with this proper objective involving the other teams

from the client or other suppliers. But, in parallel, I need to discuss with other

186

people from the project to obtain more information about the ecosystem and gain

experience.” P1, Scrum Master.

Some developers considered the possible existence of such a meeting involving the client
and other managers, but not specifically their agile team:

“From what I know, I never participated in a meeting similar to an SoS event. But

I don’t know for sure whether the client executes it or not. Maybe they can handle

it, but outside our team.” P2, Developer.

From a different perspective, P3 has seen some similarities from the daily for impediments
4.9.2.1 with the SoS meeting, especially when conducted by the Scrum Master with the PO
involving other teams:

“The Scrum Master usually met with the client to discuss general impediments

and issues. But maybe, it can not be classified as an SoS meeting since mostly

our SM is the only SM present in the meeting, and the others are managers,

coordinators, and team members.” P3, Developer.

Despite the members’ considerations in having or not the SoS meeting, most of them have
seen the event as a possibly helpful event to their context (P0, P1, P2, P3, P4). By developing
a solution with a shared development environment with another supplier from the client, the
SoS meeting could help the agile team avoid long bugs investigations and help synchronize
the backlog tasks with the other supplier. By doing this, the relationship between both teams
could evolve, and issues would be resolved faster:

“Currently, we use a shared environment of the client with a team from another

consultancy firm that develops another project module in the same platform. Con-

stantly, we find bugs that were not introduced by our team but by the other supplier

team, and such a meeting like the SoS could reduce the time spent during those

investigations.” P2, Developer.

“I think the SoS meeting in our context makes total sense because we know there

are a lot of legacy systems, other areas developing their projects, and we are

developing ours. So, not only regarding impediments, but the SoS meeting could

be helpful to understand what other teams are developing at the moment to avoid

187

impacts on it and us. Since the system is shared between different teams, we could

reduce the investigations of problems caused by others, and a meeting could help.”

P3, Developer.

P2 and P3 have a strong opinions on how SoS meetings could reduce misunderstand-
ings and put the teams on the same page, reducing the waste of effort spent on constantly
investigating bugs.

On the other side, P5, the Quality Tech leader, has described the regular daily with the
client as a daily SoS meeting. Since the managers and stakeholders from all the teams are
present on a regular daily to understand the progress, impact, and dependencies of the test
cases execution, in order to synchronize their work and thus release the necessary features to
continue the tests:

“The description of an SoS meeting from the literature sounds very similar to

what I do with the client’s presence in our regular daily meeting. Basically, we

share the status of the test cases with all the managers. Then, they discuss that

information among themselves and organize themselves to implement what the

quality team needs to continue the execution of the test cases. So, it is a kind of

synchronization daily meeting” P5, QA Tech leader.

4.9.2.3 Retrospective meeting

The retrospective meeting is a practice the teams aim to apply at the end of each Sprint.
The SM has some clear goals with the retrospective meeting, to improve the development
process, listen to the team members to understand their feelings and elaborate an action plan
about the things that need improvement. However, the SM does not see the whole team with
the same willingness:

“I understand that the retro goal is to improve the things you failed during the

current interaction, so it is a continuous evaluation and improvement process.

However, for it to happen, everybody must see its importance, and I feel that

some members participate to participate.” P1, Scrum Master.

Although, despite this. The SM executes the retro strictly following a basic template of
three columns with what went well, what did not go well, and what can be improved. The

188

whole process of writing things on those columns is made collaboratively through Miro boards
8. First, the SM separates a time for the members to write things on the columns. Then,
the members should vote on the more pertinent items in the columns. After voting, the SM
will discuss the most voted items, initiating with what went well since it concentrates on
compliments. Then, most of the time is reserved for discussions regarding what did not go
well and the actions that should be taken to avoid the same problems:

“I like to split the retrospective meeting into timeboxes for the teams to describe

each of the items, then vote on them, and finally discuss the actions that should

be taken. Similar written items are combined to form just one item, and outliers

are sometimes discussed.” P1, Scrum Master.

Using Miro for collaborative writing of the retrospectives sounded good for the Scrum
Master. But, P3 had reported a time when the team used a tool that did not present the
member’s name writing an item. The retrospective was more valuable for the team since the
members could anonymously insert items in the columns without worrying about writing about
a colleague’s attitude:

“I think the other platform used by the Scrum Master was better since we can

type things about the interaction without anyone knowing who is writing that.

The platform helps avoid conflicts among team members when we need to reveal

some attitude of a member without revealing who we are.” P3, Developer.

An important characteristic of the retrospective meeting of the agile team (P0, P1, P2,
P3, P4) is that it is conducted right after the sprint review in the same afternoon:

“First, we execute the review with the client, and then we go into the retrospective

only with the team. I tried this way to ensure the maximum participation of the

team.” P1, Scrum Master.

Despite the SM’s strategy to ensure the whole team’s participation in the retrospective
meetings, P1 has said they rarely made a retrospective involving all the members. Most of it
occurs due to the need of team members to participate in other agendas with the client or
work on some production bugs:
8 www.miro.com

189

“It is difficult to gather all members even conducting the retro after the review.

Whether I did a retrospective with all members, it was just once and never more.

The client can constantly trigger the members for other purposes during the retro

time.” P1, Scrum Master.

An interesting thing was seen during the interviews. Each member of the agile distributed
team had described a different timebox for the retrospective meeting varying from one hour
to three hours (P0, P1, P2, P3, P4). P0 has said it takes from one to three hours, P1 one
and half hours to two hours, P2 only 40 minutes, P3 two hours, and P4 one and a half hours.
Such discrepancy reveals the absence of the members during most of the reviews. However,
looking at the invite made by the SM on Microsoft Teams, the meeting should take one and
a half hours but sometimes goes with two hours.

The retrospective not only suffers from not having all members sometimes, but it sometimes
does not occurs. Specifically when the client’s company is passing through big events or big
releases:

“We didn’t conduct a retrospective in the last Sprint since the big event drowned

us, and many production bugs need to be fixed in the meantime. Due to it, we

skipped it in the previous interaction.” P3, Developer.

When asked about the client’s perception regarding the outputs of the retrospective, the
SM said the client’s manager was not very concerned with the points discussed in the ret-
rospective meeting. The manager asked the SM to send them the outputs of the meetings,
and when he saw something interesting, he would point for discussion. However, the manager
never did it until the interview:

“I talked to the manager to regularly discuss with him the results of the retro-

spectives, but he asked me to send the results so that he would point out whether

finding something interesting. So, he ignores the content, but I keep sending it.”

P1, Scrum Master.

Some members believed that the team implemented half of the actions described and
defined during the retrospectives in the next iterations (P2, P3, P4). P3 and P4 believe the
whole teams need to focus and be willing to implement those actions:

190

“The things discussed should not stay only in discussion. We need to execute them

to see things improving. We, the team, are responsible for 90

“The team lacks focus after the retrospective to implement the actions previously

discussed. Most of the time, the action plan is forgotten over time.” P4, Developer.

In the quality team of P5, the retrospective is conducted more simply and is very different
from the Scrum agile retrospective. The client organizes it, involves all the managers, directors,
even VPs, and takes four hours, and is performed every 15 days. However, the QA Tech leader
participates only for the first 30 minutes. During this time, the Tech leader is supposed to
present the general evaluation from the quality team regarding the solutions test. After it, the
client discusses their points internally for improvement, and the QA Tech leader leaves the
meeting :

“The client’s retrospective occurs every 15 days. We have a small participation in

it. I should present everything we have done in the last couple of weeks and then

leave it for them to discuss. I also present some of the KPIs of the tests, and the

client managers discuss them based on what I have presented. But, I left before

the discussion started.” P5, QA Tech leader.

Despite the client’s retrospective involving P5, he also makes some not scheduled sessions
to discuss internally with the team ways of improving the solution ecosystem’s quality assurance
process. During those sessions, the quality analysts are asked what they think can improve the
process. An example of it was the introduction of new internal dailies to transfer the knowledge
between the first to the second shift:

“We do some internal discussions to understand what we can improve to easier

our day-to-day test executions. The second internal daily meeting was born from

a discussion of the analysts that felt they were losing important information due

to their lack of communication. ” P5, QA Tech leader.

Finally, P5 views the internal session for process improvement as necessary with the an-
alysts. However, he thinks the retrospective with the client’s managers, directors, and VPs a
waste of time since the meeting content is constantly discussed with the managers during the
regular dailies. Moreover, the retrospective sounds more like a review of the work done by the

191

directors and VPs that would discuss with their managers the progress, independently of the
supplier performance.

4.9.2.4 Demo presentation

Demo presentations are commonly held during the sprint reviews of the team. For it, the
status dashboard on JIRA is presented, the sprint mission is clarified, and each developed story
is presented:

“The stories presented are already validated by the QA Analyst and the PO from

the client. Based on it, each story is reviewed during the sprint review and pre-

sented to the PO and the necessary stakeholders through screen sharing on a

teleconference meeting on Microsoft Teams.” P1, Scrum Master.

The Scrum Master reinforced that the demo should be conducted independently of the
environment available, but it is constantly shown in the homologation servers:

“For me, the major goal of the demo presentation is to show the product operating

perfectly as expected. And, for it, I don’t care which environment it was published

since it is developed and working is what we are looking for.” P1, Scrum Master.

For the demo presentation, P0, the QA analyst, is responsible for conducting most of the
workflows. Since the QA analyst is responsible for testing and ensuring the correct operation
of the features, he emerges as the member who most understands the stories developed in
a Sprint because he tested almost everything during the iteration. However, more technical
stories that require coding presentation are most of the time made by the current developer
that built it:

“I’m the one responsible for presenting the stories workflow to the client. The

team does not demonstrate the developed stories except for something more tech-

nical involving source code, performance, and integration fixes. In those cases, the

developer responsible for the story complements the technical aspects.” P0, QA

analyst.

P4, the backend developer, reinforces that it constantly needs to complement the P0 demos
to add some information regarding the source code that does not concern the QA analyst job.

192

An interesting characteristic of the agile team formed by P0, P1, P2, P3, and P4 is that
the demo presentation only occurs in the sprint review with the stories already validated by the
QA analyst, the Scrum Master, and the client’s PO. This means the client’s PO already saw,
tested, and validated the stories presented during the demo. The PO has a specific column
on the status dashboard team, and the story can only be considered done when he validates
it. Based on it, the demo presentation meeting serves more as an overview of the completed
stories, but not specifically for the PO since he already validated the deliverables:

“For sure, the demo presentation will gather only the stories validated by the PO

during the sprint course. Only, and always only before his test, I can consider

the story as completed. The test is made in the homologation environment.” P1,

Scrum Master.

P2 was the only developer that reported how the maintainability tasks could impact the
process of demo presentation. Since the team must support the production environment, many
bug fixes and investigations are required to avoid impacts on the production level. However,
those tasks harm the entire development process of the sprint and also the demo presentation
since the team could suffer in developing the compromised stories of the sprint:

“Bugs that emerge on production need to be quickly investigated and fixed by

us, but most of the time, it takes the whole team’s attention. Doing this, we

constantly compromise the stories’ development and demo presentation of them.”

P2, Developer.

Finally, P5 and the quality team do not execute a proper demo presentation similar to the
one in the agile development team. Instead of it, P5 and his team daily run assisted test cases
with different teams and managers of the ecosystem solutions. During those daily sessions, the
different scenarios of the test cases are executed while the teams watch the execution through
screen sharing. The main goal of those “demo assisted test execution” is to provide enough
information to the teams on how the test from their systems are being conducted and how
they can replicate it independently if it fails or succeeds:

“We execute daily assisted test execution with teams to resolve pendencies involv-

ing a specific team and more than one depending on the test case integrations.

Those executions reduce time, teaching the teams how to use the data and cover

193

the scenarios. Moreover, it also accelerated the process of investigating possible

issues since everybody is watching the execution, not only the QA team.” P5, QA

Tech Lead.

4.9.2.5 Proxy Product Owner

There is no role of the Proxy Product Owner in the agile distributed team (P0, P1, P2,
P3, P4). Most of the time and during the planning activities, the team relies exclusively on
the client’s PO for a better understanding of the business rules, and the acceptance criteria:

“The client’s PO is responsible for the team’s business matters; he brings the

new features for developers, and we relied on him to understand what we should

implement. He also clarifies the doubts regarding the business domain by describing

the acceptance criteria.” P0, QA Analyst.

However, despite the job executed by the client’s PO. Most of the team members have
seen the applicability of the PPO role on the SM, P1. The team believes that the SM naturally
assumed the PPO role since the SM already played the Product Owner role in the last five
years of his career (P0, P1, P2, P3, P4). By having a previous experience as a PO, the SM
started pushing the team’s perspective to the client’s PO and manager to understand better
the business domain and the technical aspects of the solution discussed by the members. Over
time on the project, P1 started to gain more knowledge regarding the business domain. It
helped in constant discussions with the clients about new features, bug fixes, or even the
prioritization of specific stories:

“Before the presence of the SM, it was difficult for us from the team to understand

and discuss constantly with the client since we barely had time to implement and

test the features. However, after the SM’s arrival, the discussion with the client

becomes more frequent, and the SM is constantly trying to understand what the

client wants, to question them, and then pass it to the team with clearance.” P0,

QA Analyst.

“I do not know how the SM can do this, but she can talk informally with the client

and, in the meantime, extract the information we need in a much more interesting

way for the implementation.” P0, QA Analyst.

194

During the interviewers, the members also talked about how the SM was negotiating the
sprint backlog with the client’s PO, not only to defend the team’s interests but to gather the
most valuable deliverable stories for the sprint and defend it with the client’s PO.

“I can not consider myself a total Scrum Master because I am always worried

about the product’s features, whether it suits the users or not. I’m also worried

about ensuring the right appliance of Scrum, but I can not forget to keep pushing

the team to cover all the acceptance criteria. Since we don’t have a specific PO

from our side, I see a need to put myself in place similar to the PPO role.” P1,

Scrum Master.

Moreover, P2 has reported that the team members did not have the initiative to discuss
their pain with the client, although the SM started to this represent the team, and it helped
the process:

“P1 had discussed some of our pains with the client during our day-to-day ac-

tivities. The development team does not always explicitly what we are passing to

since we are constantly busy developing new things or fixing others. So, having a

person do this is great. One time, we did not understand the explanation of the

client’s PO about a feature, and P1 realized it during the call and asked us after

it. By doing this, we had another meeting to clarify the doubts.” P2, Developer.

Despite the SM acting as PPO, P1 is the most recent individual playing the SM role in
the team. At least the SM has been working for only two months in the team. In the past,
the team members usually acted as part-time PPOs to handle the client’s request (P0, P2,
P3, P4). P3 has discussed with people from the commercial team in the client organization
to understand and define specific stories involving them:

“The project coordinator from the client has asked me to discuss the team’s

issues and blockers with him to find better technical solutions for the problems.

Meanwhile, I have also discussed with the commercial manager some specific

stories that would impact her job.” P3, Developer.

In general, some team members seems the PPO role as a need and a good solution for
the problems faced in the project (P3, P4). Since the volumetry of tasks is big, a specific role

195

in handling the team’s interests and discussing technically and negotiably the project would
facilitate our day-to-day work:

“I think it is valid to have a PPO in the team. We are constantly busy implementing

new things, and a PPO could help our teammates that require more explanation

about the features or even to discuss more clearly with the client about the whole

solution we are building here.” P3, Developer.

The QA Tech leader has understood that he and some of the most experienced QA analysts
from the team are constantly playing the PPO role. Since they execute and develop test cases
involving every solution of the ecosystem, they already have a full understanding of the whole
operation and integration of the systems. Due to it, P5 and the QA analysts are constantly
playing the PPO role in explaining to the client their own solutions:

“Sometimes, we found problems and bugs during the test case execution. For

example, a document sent by one system is not arriving in the other one that

should receive it through an asynchronous queue. By knowing it, we can discuss

the technical and business aspects with the teams from both systems to solve the

issue. We basically direct them to where the error occurs, how it can be fixed, and

why it is a bug of a specific system and not another.” P5, QA Tech leader.

Doing those kinds of clarifications with the client’s team daily, P5 seems the PPO role
is mandatory in the quality area. Since the documentation of the project does not clarify
the whole points, the quality team is the one that most known about the operational and
integration of the solutions:

“If the project had proper documentation and teams were more organized, the PPO

role might not be needed. However, we don’t have it, and plenty of knowledge

about the proper operation of the features is on the QA team. Therefore, we must

constantly act as PPOs and even POs of the development teams.” P5, QA Tech

leader.

4.9.2.6 Code freeze

The code freeze practice promoted good insights with the members of the agile distributed
team (P0, P1, P2, P3, P4). The team does not apply a standard code freeze policy during

196

their development sprint. However, they managed to deal with some code freeze orders from
the client that regularly established code freezes on the production server before significant
events. To avoid any bugs coming from quick changes, the production server is totally frozen
until the event happens:

“We had a big event in the last couple of weeks, and we avoided pushing new

codes for the production base for three weeks. ” P3, Developer.

When asked about the frequency of those big events that would create the need for code
freezing, the SM said:

“The client has four to six big events during the year that would require significant

intervals of code freeze. However, you can see a code freeze in some repositories

twice a month. ” P1, Scrum Master.

P0, the QA analyst, informed us that he handled the code freeze in the sprint by freezing
the homologation environment with all the workflow he needed to test. However, it is a
“gentleman” agreement between him and the other team members because any developer
could break it and push code to the homologation server.

Regarding not respecting code freezes, P2 described an episode when the code freeze was
not respected by one of the other teams, and it caused a significant impact on the production
server. The commits were supposed to be made by 3 PM on a regular Friday, but another
team member pushed new code to the production platform, which contained some bugs. Due
to it, the team (P0, P1, P2, P3, P4) needed to work on a war room to find and fix the bug
until late in the night, and it also impacted the next sprints that had a lot of fixes to work on:

“There was a week that the other consultancy firm team and we agreed on not

pushing new code until 3 PM of Friday. We just agreed to avoid problems on the

weekend, since we wanted to continue the work only on Monday. However, one of

the guys did not know about it and pushed a lot of broken code to the platform’s

frontend. Our plans died, and we needed to work until late to investigate and fix

the issues in the system. ” P2, Developer.

After this episode, the team members and the proper client started to value a clearer code
freeze policy to avoid it from happening again. They started to plan it but are still in the
ideation phase:

197

“After the huge problem in production, the code freeze is exactly what we need

here. I am starting to discuss this with the SM, the other devs, and the project

coordinator. We need a due date for new code pushes in the repositories. So, we

have in our roadmap a task to plan those previous deployment activities and code

freeze policies to follow. ” P3, Developer.

P4, the backend developer, does not believe that a code freeze would exist for the projects
he works on, and he never saw anything near it on his day. Moreover, he thinks that the
DevOps culture introduced by the client in the backend services, which allows pushing code
at any time during the day, would be used to avoid the code freeze policies. P4 believes that
the business area will not like to wait to see their features in production due to a code freeze
policy applied by the IT area:

“When the business area requires a new feature or asks for a fix in their environment

(production), they want to see it quickly available in the environment. However,

code freeze policies may conflict with it and with the DevOps mindset of the

organization, which defends the continuous deployment and constant deploy of

new code.” P4, Developer.

Meanwhile, in the quality team of P5. The code freeze seems to be a necessity. The
QA Tech leader has reported the problems he and his teams had during the data generation
process. Since the test cases pass through many systems, they must build some data mass to
test the features. Still, with the team constantly updating the environment, developing a data
sample that worked was pretty impossible. Due to it, the code freeze started to be needed,
and P5 has asked the manager of the teams:

“In our test cases, we need to build data samples for more than 20 systems to

cover a lot of the scenarios presented on it. However, if I have a test case that

covers three systems, and those three systems has 6 teams in total, I am talking

about 6 teams pushing new pieces of the code hourly. Due to it, we needed to ask

for a code freeze because the data mass generation was barely impossible to do

and test.” P5, QA Tech leader.

Despite the need for P5, the client’s organization could not accomplish a code freeze
interval for all the systems due to the data sample development. However, the most important

198

part of the ecosystem, the integration backend, which covers most of the data transactions
among the systems, started to do a code freeze to help the quality team:

“To reduce our issues with data mass, we convince the team and the client to

establish a calendar of releases in the integration backend and a code freeze policy.

Since it covers most of the integrations among the solution, having a code freeze

on it, we have at least a stability moment among the systems.” P5, QA Tech

leader.

4.9.2.7 Product/Project manager in Scrum

The agile distributed team working on developing the client’s solution has to deal with
the supplier’s operational managers, the client’s project manager, and his project coordinator.
They also considered the client’s PO as a type of product manager since he knows a lot
about the product, decides the new functionalities roadmap, defines them, and also validates
it through the review:

“Besides me and the SM from the team, the client’s PO is the person who masters

the business domain. He also manages the expectations of the commercial areas

during the features prioritization and definitions.” P0, QA Analyst.

Alongside the PO, who sometimes acts with a more traditional approach to handle the
solution backlog, there is the project coordinator from the client. This one seems like a more
traditional person since he constantly asks the team members to document everything they
are working on:

“The client’s project coordinator constantly interacts with us, although he is more

centered on traditional processes. Everything must be documented for him, from

a simple bug fix to a large feature. Once, the QA analyst found a bug related to

the browser version, and the coordinator made him document the whole process,

which led the QA analyst to find the issue. I don’t think this is necessary, since he

could work on another thing in the meantime, while a simple note of the version

could be registered on JIRA.” P1, Scrum Master.

Beyond the project coordinator, there is the project manager figure, who is responsible for
a business unit that covers the project the development team is working on (P0, P1, P2, P3,

199

P4). However, such a manager does not frequently appear now. He works more outside the
team strategically with other managers, but sometimes he enters the dailies or the reviews. P4
had to work closely with the project manager since he had more time and was the first person
on the project. Due to it, the project manager is also a technical reference for him since they
pair programs at the beginning of the project:

“He is the type of manager who will be closer to the operation team when he

has time. He was there to develop with us when more hands programming was

needed. Despite the traditional or agile thing, I appreciate this type of attitude in

a manager. I had a lot of other managers in life, but the regular ones that don’t

get too involved in the process.” P4, Developer.

The team’s perception regarding the management varied in this case. The SM does not
have a good view of the project coordinator since he constantly stops the team from working on
tasks that he judges as important, deviating from the sprint goals. Also, P1 sees the coordinator
project as a person who is not much flexible that will defend his points independently of the
teams’ opinion:

“Once, I tried to convince the project coordinator to work with me to develop an

updated project roadmap to present to the team. However, after 30 minutes, he

said I would not convince him independently because he did not see any value in

presenting it to the development team. That kind of behavior is closer to tradi-

tional approaches and does not please me. I think the team must participate and

understand” P1, Scrum Master.

From another perspective, P3 believes more traditional management is required since the
client’s organization is huge, with many sectors, teams, and business units. For P3, the high
demand presented in the client’s company needs a traditional process to work. Not everything
could be agile in place with many users and employees to manage:

“The client is huge, and the agile rituals may not solve all the company’s daily

problems. Stop an entire sector from a business unit to participate with an agile

team in the planning could be complicated. Thinking about it, I have been wonder-

ing if some traditional aspects could fit better here by providing more organization.

” P3, Developer.

200

P5 from the quality team described that there is no role of a project manager acting in
the quality process. However, it may be supposed to have from the supplier side, but it does
not. Due to it, the Tech leader frequently plays and acts as a manager to organize the team’s
deliverables and the test process with the client. In the P5 view, he can manage it well, and
for the current time, a new person for this role can not be affordable:

“Most of the time, I try to organize things with the team independently. So,

sometimes we test something, and if it does not go well, we fix it during the

course, and that is how I deal with the absence of a real project manager. ” P5,

Tech leader.

4.9.2.8 Product Ownership

Product Ownership was the type of practice in which the members had different perspec-
tives about whether they had it or not if the whole could be considered as a team with product
ownership or only some members from some roles. P0, for example, reported that seems to
be much more product ownership from the client’s professionals. However, he agrees that P1,
the SM, also shows some product ownership while discussing with the client:

“I see this feeling more present in the client’s PO. But, I could say that our

Scrum Master also has it, especially when discussing with the client’s PO, project

manager, and project coordinator.” P0, QA Analyst.

However, some other members, specifically the developers P2, P3, and P4. The members
have different views of product ownership. All of them described themselves as members with
much product ownership. Since they constantly go beyond their typical workday by working
late to fix issues, finish the development of a feature, or even investigate and fix bugs in
production. Meanwhile, both developers (P2, P3, P4) agree that not everybody in the team
seems to have product ownership. Still, everyone has an example of when they showed product
ownership for the project:

“I think me and the other two developers have it. We constantly stay up late at

night working on our development tasks. Sometimes we clock in and then go back

to fix things and continue developing. I also think having and showing product

ownership can motivate the people around us to have it too. However, having it

201

also led us to understand some aspects of the solution that may not concern us,

i.e., financial aspects.” P2, Developer.

“I know some people see the clock at 6 PM and basically go away. However, me

and some other partners stay here until we fix what we are working on. I also think

most of the people on the team have it. I think we should be proactive, not wait

for things to happen, and do it frequently. One day, we found a bug before a big

event, and we stayed in a war room until 10 PM to fix it.” P3, Developer.

“I would say I have a lot of product ownership. Since I am the only one working

with the .Net microservices here. However, despite product ownership of those

services, I don’t see the team having it for the other things. Maybe two or three

other persons have product ownership. I think we should improve our own feeling

about the solution. During some episodes, it was late in the night, 9 PM to 10

PM, but the clients asked us to come in to see some bugs, and I saw other people

going without being willing or not being proactive.” P4, Developer.

While P2, P3, and P4 describe their feelings of product ownership by staying late the night
working on the project, although P2 has pointed out how it could impact their life quality
when it becomes a routine. Making the team stay awake most of the night just for a specific
deployment or a bug fix can hinder product ownership and start to demotivate the team:

“Once, the client needed an important deployment of a bunch of features in

production involving payment methods. We kindly suffer some pressure for them

to develop and deploy it quickly. However, it was not good, but we were constantly

charged about the deployment that we only started at 10 PM on a Friday, and

we only finished it at 5:00 AM the other day. We suffer a lot with it, and I don’t

think the team should feel it.” P2, Developer.

Alongside the perspectives of the agile team members (P0, P2, P3, P4). P1, the SM, has
some particularities about the product ownership concept in the team. Despite the perspectives
of P0 describing how P1 has product ownership, the SM itself does not see such product
ownership in her. P1 recognizes herself and the team as an essential part of the process that
compromises itself to aggregate value to the solution. But, it can not categorize as product
ownership since the client’s PO is the only one capable of changing the direction of the solution.

202

By the way, the SM recognizes the team’s product ownership regarding the development of
the features and the commitment to fix things until it is ready:

“I don’t see myself or my role in a position of having product ownership. We, the

team, are part of the development, and I am committed to frequently delivering

value to it, but I don’t have space for product ownership. The client’s PO is the

one in control. Think about it. I could have an idea that could fit the concept

of promoting product ownership, but it is just an idea, and I could not interfere

in any of the decisions of the product. The final word will always come from the

client. I don’t know if I could barely influence it if the decision is already made.”

P1, Scrum Master.

Even with the team members recognizing the SM as PPO during the discussions with
the client, the SM could not see itself as a person with product ownership. Maybe, for her,
product ownership is more related to making decisions and not only showing commitment to
the solution and its business goals.

The Tech lead perceived product ownership on the quality team as an implicit thing pre-
sented in the whole team since it is vital for the type of project. The whole seems to be very
questioning about the business rules of the systems and even how they manage to communi-
cate among them. It is common to see QA analysts asking and challenging the client’s teams
about how they implemented the workflows. P5 believes that behavior is vital because business
rules and usability aspects would impact the testing strategies:

“I see many people in our team not needing my presence to question the client

about a feature. I think it became very natural for the team to challenge the way

the systems are presented to us, we didn’t even realize it, and we had already

asked the developers and managers from the client. Once, we were evaluating a

test case workflow involving payments, and I did not see any feedback for the user

when the client payment succeeded. I just asked the client’s team about it in front

of the managers and directors, and all of them realized that it was issued. For me,

having product ownership in this project shows those who hired us that we are

not here just to execute tests and check contracts of APIs. We are here to ensure

the quality of the whole ecosystem, and it also involves asking the teams about

usability, experience, and other stuff.” P5, QA Tech lead.

203

4.9.2.9 Multiple Communication Modes

Each member presented in this case study has reported using several technologies for
asynchronous and synchronous communication (P0, P1, P2, P3, P4, P5). However, a few
characteristics must be pointed out due to the context of the project.

Most of the time, the development and quality team members communicate among them-
selves and the client through the Microsoft Teams 9 (P0, P1, P2, P3, P4, P5). On the tool, they
usually held meetings through audio and video conferences, sometimes using screen-sharing
technology. Outside the sessions, every discussion is made through instant chat messages
privately or in groups involving the client:

“I think we use Microsoft Teams 90% of our time. Since everybody is there, the

communication became easier.” P1, Scrum Master.

“We use Microsoft Teams 24/7, it is fast, and the clients always contact us through

it, so it is every time needed.” P5, QA Tech leader.

Besides Microsoft Teams, the development team reported the communication among JIRA
10 through the comments and descriptions of the development tasks present there:

“JIRA is also a communication tool here. Any issues, impediments, or problems

are reported and described there. So, if we need to understand the status of a task

without asking the responsible for it, we need to open the JIRA and look at the

task.” P1, Scrum Master.

Outside those two solutions, every interviewee reported their lack of use of the email tool
(P0, P1, P2, P3, P4, P5). In both the quality and development teams, email is used more by
the client and supplier management team but not directly involving the team members. Due
to it, the team members commonly read the emails but do not interact in the threads since
they prefer the chat of Microsoft Teams.

“I would say that I have never sent an email in my six months here. We just use

it to read, and sometimes I forget to open it.” P2, Developer.
9 www.microsoft.com/microsoft-teams
10 www.atlassian.com/software/jira

204

“It is very rare for us to use email. I was the only one who sometimes used it to

report some of the project’s artifacts to the client. By the way, the client teams

use it a lot.” P5, QA Tech leader.

Finally, the members reported the informal use of Whatsapp 11 for quick messages about
work and everything. The Whatsapp groups also serve as a general warning regarding meetings,
delivery dates, clock-in issues, and client messages. Only the team members are present in those
groups, without the involvement of anyone from the management team of both supplier and
client.

“The groups are primarily there just for us to report some important things of

the schedule if someone forgets about it. Sometimes we also talk among ourselves

regarding things outside the job too.” P3, Developer.

“We try to use Whatsapp in the last case, but sometimes during the weekend, we

need to check things in the systems and make contact through it. However, only

a few people have the contact number of other people.” P5, QA Tech leader.

4.9.2.10 Status dashboard

The agile distributed team uses a digital status dashboard at JIRA 12 to manage the tasks
in development, testing, and finishing (P0, P1, P2, P3, P4). Every team member has access
to the digital dashboard, and the client’s company purchases the JIRA licenses since every
team uses Jira for development. The development dashboard represents the progress of the
team in the sprint and its measurement indicators:

“At JIRA, we can see all the tasks the team is working on and which tasks my

colleagues are finishing or having trouble with. Moreover, we also can see some

KPIs of our team, such as the burndown chart.” P3, Developer.

P4 also reported another dashboard for the team: the product backlog maintained in JIRA.
The client’s PO is responsible for updating it, but the team is free to add any suggestion stories
to it:
11 www.whatsapp.com
12 www.atlassian.com/software/jira

205

“There is a backlog dashboard maintained at JIRA. We can add some stories there,

but the client’s PO is responsible for it.” P4, Developer.

The development status dashboard used by the team has nine different lanes. The dash-
board contains the tasks of a sprint for 15 days. By the time the sprint ends, the cards are
archived, and when the sprint starts, the cards are moved from the backlog dashboard. The
first four lanes are more critical to the developers since it represents: not started, in-progress,
blocked, and developed:

“At the beginning of the sprint, every story is positioned on the not started lane.

When the developers start their tasks, they are moved to the in-progress lane.

Whether any block occurs, the task should be moved to the blocked lane, and

the issue must be described on the card. Moreover, when the developer finishes a

task, it should be moved to the developed lane. Finally, the card must follow the

QA and deploy lanes in the developed lane.” P4, Developer

At the end of the lanes, more related to the development. The QA process start. P0, the
QA analyst, is responsible for testing each task the team developed in the QA lane. When a bug
occurs, he reports it to the developer and moves the task back to the developer. Meanwhile,
whether a task is ok, it must follow the other lanes: QA, PO’s validation, deployment at
Homologation, PO’s validation at Homologation, and done:

“When the task is developed, I bring it to the QA lane and start testing it. I would

validate the tasks following the acceptance criteria defined by the client’s PO. I will

add evidence independently it succeeds or fails. Everything is ok, I will manage it

to the PO’s validation lane. The PO is supposed to make the same tests I did just

to double check. Doing it, we move the story to the homologation server. Now,

the developers are supposed to deploy in the homologation server. By finishing it,

we start the last validation. When the PO validates the story again, but in the

homologation server, whether it works on it, we move the story to the done lane.

This means the developers must consider deploying it in the production server by

the end of the sprint” P0, QA Analyst.

There are a lot of steps for the development and testing of the stories during the develop-
ment, although we could confirm this process with the others. Meanwhile, P4 defended that

206

the lanes of the development dashboard and its process could be simplified. He thinks that
deploy lanes could be excluded, and the quality ones could be merged:

“I think the lanes could be simplified. Since we have lanes for deployment and

quality twice, I feel that we move the cards a lot, but without doing much or

going in the right direction.” P4, Developer

Despite the lanes and the overview of the status dashboard. The members reported the
type of stories used in the project. The familiar stories and bugs represent new features or issues
related to a developed feature in the past that are having problems in production, respectively.
Moreover, the team also works with spikes, representing a small investigation task to validate
the applicability of a new feature and how it could be developed:

“During backlog refinement or planning, we could discuss new features requiring

a spike. The spikes are used when the team does not know or does not feel

comfortable implementing a feature. Due to it, the team uses the spikes to study

a new story implementation. We hope the team investigates it and adds the story

in the next iteration.” P1, Scrum Master

Alongside the spikes, the SM has reported the use of technical debts by the client’s PO,
although with a different purpose. According to the SM, when stories are not designed well,
and consequently, the team implements it, the client’s PO calls it technical debt when the end
users ask for change. However, for the SM, the debt must be considered a business debt since
the team did not originate it, and it is not technical:

“Sometimes, the stories were poorly designed, but the client’s PO asked the team

to develop them anyway. After the development, the end users asked for adjust-

ments, and the client’s PO considered it a technical debt. However, the team

clarified that the design of the stories was not clear, and the issues pointed out

by the end users do not relate to any technical aspects but to the business rules

of the solution. By doing this, the PO continues the story without opening a new

one.” P1, Scrum Master.

Despite the issues related to the story type definitions. P3 had reported that JIRA could
be more explored since the tasks are not integrated into the continuous delivery pipeline,

207

managers and developers do not notify other teams through comments in the cards, and the
members do not fully report what they did in the card:

“We are still learning to use JIRA, but we need to go deeper. I know we could

use the tool to call and reference other teams, notify a specific member regarding

an impediment, or even use it as a knowledge base and integrate with the CI/CD

solution of the client.” P3, Developer.

Finally, the QA Tech leader (P5) has reported a different status dashboard. Since they do
not use JIRA for the test cases management, the teams use a proper tool from the supplier
specifically for test management. On this tool, the concept of lanes is translated to the business
units, the workflows of the solutions tested, and the risk evaluation of those workflows. In the
tool, the client is supposed to follow the quality of the solutions based on its workflows, from
what is more critical to less critical:

“First, we report the test cases through our solution for quality management, but

the client has asked for new integrated views of the dashboard, and we asked the

product team to work on it. During this time, we also used Excel sheets with the

progress of the test cases according to the release schedule.” P5, QA Tech leader.

The Excel sheets 13 were used while the product team from the supplier company was
developing the integrated dashboard views asked by the client.

4.9.2.11 Developers as Scrum Master and Product Owners

The developers of the team and the QA analyst reported that their roles are well-defined
for now (P0, P2, P3, P4). However, such a thing was not always true during the whole project.
The developers had described some episodes when they needed to act as SMs or POs due to
the absence of those roles in the team. The beginning of the project was chaotic due to the
change of supplier in the project, with the team members being the new ones:

“In the beginning, the client was trying to manage our arrival and the coordination

from our company (supplier), but it was confusing, and we tried to manage our

job and tasks together.” P3, Developer.
13 www.microsoft.com/microsoft-365/excel

208

P4 also described that he thinks a developer could not be simplified as a person who codes
but must look forward to helping the team in other areas, such as agility, planning, and even
validations with the client. P4 is the only one responsible for the .Net services of the team.
Due to it, he had to act constantly as PO and SM to discuss with other teams regarding
integrations, issues, and dependencies:

“I am the reference of .Net on the team and the oldest squad member. Based

on it, I needed to investigate and look for other teams in the client environment

from the beginning to solve my implementation issues. More than this, I needed to

discuss with some other managers regarding dependencies, and I negotiated with

them some implementations.” P4, Developer.

Moreover, P2 understands that everybody played other roles, such as SM and PO, for a
while. Especially when P1, the SM, was not in the project :

“I think everybody gathered to help each other understand the stories properly,

discuss whether it was needed for the solution, or if the priority was right. Once,

we discussed with the PO about the priority of a story to the business, but we

were not heard properly.” P2, Developer.

P2 was the only member who reported that the clients were not considering what the
members were discussing outside their regular activities.

The SM also pointed out that some of her activities seem to be a help for the client’s PO,
but it could not configure the role of a PO:

“I could see myself as a helper when I act with the client’s PO. However, I don’t

have the power to add new stories to the backlog or change the priorities, but I am

constantly discussing conflicts among the stories with him and the other teams.

By doing this, I can not assume that I act as the PO sometimes. It would be too

much.” P1, Scrum Master.

Despite the SM considerations. One member percevid her presence as a relief since he and
the other developers do not need to act constantly in solving dependencies and conflicts and
asking the client’s PO for clarification or issues related to integrations:

209

“I saw P1 aware when we don’t understand a story and ask the PO to clarify it.

Also, we do not need to struggle to solve conflicts since the SM can contact the

other teams first and discuss the issues with us.” P2, Developer.

In the quality team, the situation is a little bit different. The QA Tech leader perceives
that the QA analysts must act as PO and SM due to the project’s complexity and the absence
of the roles in the client. P5 also described how he prepared three members of the team to
assume the protagonism of those roles:

“I needed to raise some of those roles aspects in the QA analysts since I could not

be present in every meeting call of the project. When I arrived, I did not perceive

it on the team. Currently, I could say I have three members on the team able

to discuss with the client regarding the business goals, suggest prioritization of

test cases, and even question the other teams about the implementation of the

features.” P5, QA Tech leader.

P5 believes that it is a matter of necessity to coach those members to play the SM and
PO role. The project could not depend on him to manage all the stuff:

“It is impossible for me to be present 24/7 in the project, in its discussions and

meetings. I realize that it will not be the same because most of those QA analysts

have little experience in management. However, I do what I can with the resources

I have. In our case, we do not even split the functions. The other analysts and I

must be the PO or the SM when needed.” P5, QA Tech leader.

4.9.2.12 Estimation contracts

The agile distributed team did not implement the estimation contract (P0, P1, P2, P3,
P4). Instead of working with estimation contracts based on the sprint estimates of effort and
time, the team is billed through a timesheet. It means that the supplier had hired the team
members for its company and then allocated the professional to the client project. During the
day, the members are supposed to clock in at the beginning of the day, at lunch, and when
they finish the workday. At the end of the month, a sheet gathering the time spent by the
members working on the client is shared with the client.

210

By doing this, the client pays for the team members’ work hours each month. The benefits
of it, whether the client asks for the change of an individual, all the taxes and costs of the
replacement will be held by the supplier.

In the meantime, the quality team represented by P5 is the one who works with an esti-
mation contract. But, the team does not have a sprint, and each sprint has an estimation and
a contract, as seen in some studies in the literature 4.7.23. In this case study, the estimation
contract is represented by a large scope of test cases grouped at different moments following a
release schedule. During the project’s lifetime, the release plan changed and was delayed, some
systems were not finished, and the scope of the test cases was not even ready for the teams to
test. Due to it, renegotiating the scope will be necessary to accommodate the project’s costs
and avoid impacts on the supplier and client.

4.9.2.13 Design pipeline

The design pipeline was not present in the agile distributed team (P0, P1, P2, P3, P4).
However, the members recognized the practice and had used it in past experiences (P0, P4).
Due to the project technologies, all the members agreed that the design pipeline would not
be necessary for the context since the project is developed based on Microsoft Dynamics 365
14, which is a low-code platform that already has pre-defined design screen views:

“We don’t need to have the design pipeline. Dynamics 365 delivers everything

practically done. We just need to build the new forms by adding pre-defined fields

to the form interface, the design of the solution follows the Microsoft design, and

we do not need to change it. Being like that makes us not require a design team

to build the prototypes of the forms. We can do it already by ourselves, and the

design pipeline does not make sense.” P3, Developer.

P3 also describes that the developers only want to know the fields necessary to develop a
new form during the planning. The presence of a prototype is irrelevant for P3, although P3
reported that the lack of a full description of the fields could impact the understatement of
the story:
14 dynamics.microsoft.com

211

“I constantly ask the PO about new forms’ fields and a story’s documentation.

If I don’t know the details of a form, I cannot implement it. But I don’t need its

design, just the description.” P3, Developer.

Despite the possible need for a design pipeline in the agile development teams. A quality
assurance team would not need it by default, but P5 has described what he called the BDD
pipeline. Since the systems are still in development, many test cases are still being built based
on the release schedule. The quality team conducted the assisted journey meetings with the
development teams. At those meetings, the quality team browser through the workflows of
the solutions in the role of a user. Some analysts are supposed to build the BDD during
the teleconference meetings with the client teams’ describing the system’s expected behavior
during the journey execution. Such meeting occurs with new features being ready or primarily
ready. Meanwhile, the assisted test meetings with other analysts used those BDDs to execute
the test cases:

“We do what I can call a BDD pipeline. The QA analysts must absorb the full

knowledge during the assisted journeys meetings with the client and the teams. The

upcoming features are previously evaluated in those meetings, and the evaluation

consists of building the BDD of the test cases. Further, other analysts are supposed

to review those BDDs and test the cases when the features are truly done and

published in the right environment.” P5, QA Tech leader.

The main goal of P5 was to allow every quality team member to participate in the assisted
journey meetings with the client. It would allow everyone to know enough about the solutions
and how they were implemented. However, it is not possible since the team is split for the
development of BDDs and the execution of test cases:

“I want to make everybody pass the process of building the BDDs and executing

the test cases. However, I can not do that because we need to parallelize the BDD

development and the test executions. Doing that way, the QA analysts constantly

need to watch recorded meetings to get along with the business rules of the new

features.” P5, QA Tech leader.

Through the BDD pipeline, P5 could accelerate the quality process, but since the members
that build the BDDs and execute the test cases are from the same role, they will need to

212

synchronize through recordings to understand the workflows. Several BDDs could be more
challenging to understand than a prototype workflow.

4.9.2.14 Story owners

Until the moment of the interviews, the agile members do not see themselves or anyone
on the project as story owners, but they have their justifications for it (P0, P1, P2, P3, P4).
P3 reinforced that the team has many contacts with the PO regarding the stories, but in the
past couple of months, P3 is crossing the PO barrier and talking with some of the users and
stakeholders:

“Our primary contact with the client is the PO. We constantly discuss the stories

with him. However, I’m starting to cross him and go to other sides of the client

to have contact with other areas related to the solution. For now, we start to do

it that could make us story owners in the future.” P3, Developer.

P2 corroborates with part of the P3 speech by justifying the few time the project team
has to become the story owners. Since the members only have six months on average, they
are still gaining confidence with the business domain, the client, and the process. This means
the team lacks the necessary knowledge to be story owners:

“I think becoming a story owner would allow us to understand the pain of the

users and the client. It would also help separate the stories’ owners and help the

members consult each other. However, we are a young team with six months of

the project, and we still need more knowledge to become it.” P2, Developer.

Beyond the necessary knowledge for it, the other members also see the story owners as a
good opportunity to mature the team members as real owners of the project (P4):

“I think this practice is pretty cool to mature the team members and to allow

them to get more involved with the project by giving more responsibility through

stories. The developers or anyone as story owners can assume more protagonism

by defining and defending a story.” P4, Developer.

Meanwhile, the QA described the team members as bug owners. Since a bug appears on
production or even during the sprint, the team member responsible for the technology where

213

the bug happened or the one who investigated will be responsible for explaining it to the
others:

“For bugs, we do not rely on the client’s PO. Even when he warns us about one,

the team is responsible for understanding and fixing it. Maybe it is because we

may create it, but not every time.” P0, QA Analyst.

At the quality team, the QA Tech lead sees the story owners as the test case owners.
Moreover, he also describes the QA analysts as owners of the business line of the solution.
When the Tech leader arrived at the beginning of the project, one of the QA analysts stood
out as the member with more knowledge regarding the client process. Meanwhile, with the
project evolution, P5 has described that some members specialized in areas involving different
systems such as billing, payment, leads, and others:

“During the whole project, one analyst or another stood out as the reference of

the project, of specific workflows, and areas. It is a natural thing. In the beginning,

we relied on one QA analyst who talked with almost every client. For now, he is

focused on automating tests, while other analysts became references on test cases

from sectors such as finance, billing, leads, and marketing.” P5, QA Tech lead.

4.9.2.15 First collocated sprint

First collocated sprints or even an in-person meeting never happened with the whole team.
However, the members already discussed it (P0, P1, P2, P3, P4), meeting each other in the
client headquarters or with the supplier officer. Meanwhile, the budget has been an issue in
financing flights and accommodation for the members to gather:

“We have members in the South to the North of Brazil, and our client stays in Sao

Paulo. I think it is not affordable for the supplier to provide and is not a priority

for the client.” P2 Developer.

The members also reported that past discussions for gathering at least the individuals from
Sao Paulo had happened, but nothing went beyond:

214

“We have raised this type of encounter in the past. Knowing each other in person

could improve our day-to-day relationship. It also formed the team spirit, which

could help during development but never goes forward.” P4, Developer.

“I have tried to organize an in-person planning meeting with the client and the

members from Sao Paulo, but the team is spread, and the clients have specific

days to go to the office. Due to it, it never went forward.” P1, Scrum Master.

For P3, in-person meetings or collocated work days may not be necessary anymore. Since
gathering everybody would be impossible, the team is now working together for more than
six months, and the major release of go-live is already published. P3 is the only member who
does not see any more value in gathering the team at this moment:

“We already talk to each other every day. We kind of have some intimacy and

have built a relationship. We did all of this without any formal meeting or artifact.

So, we became united during the problem-solving, the deployments, and I think

any in-person event now would not change our relationships for better or worse.”

P3, Developer.

Finally, P5 had never met any of the other members of his team since he is one of the few
members living outside Sao Paulo. However, on his own, P5 reported that he would come to
Sao Paulo to meet the client, his company, and work colleagues:

“I am going to visit São Paulo the next month. My idea is to meet our client

stakeholders and gather everybody in our office to work at least one day together.

We will be able to meet each other and build a bond.” P5, QA Tech leader.

4.9.3 General Agile tailored practices

In this subsection, the other practices from the TARGET framework of the IT Service
provider sector were presented for the interviewees to understand which general agile practices
the members were tailoring in their context despite the scale dimension and the framework
in use. Based on it, it was possible to describe how the team members used the practices of
Planning meetings; Requirement workshops; Behavior Driven Development; Review meetings;
Definition of Done; Technical Debt Awareness.

215

4.9.3.1 Planning meeting

The planning meeting was a tailored practice presented in the agile distributed team. (P0,
P1, P2, P3, P4). During the planning, the team interacts with the PO to understand the
development of new stories. The meeting is supposed to occur in one teleconference involving
the team, the client’s PO, and stakeholders. During the meeting, the stories are presented by
the PO, and the team is supposed to estimate the necessary effort using story points:

“We do a regular planning meeting similar to what Scrum says, but it is made

through Microsoft Teams. In the meeting, the PO is supposed to present the stories

on his views and clarify any doubts from the team. Moreover, we will estimate the

stories using story points after his presentation.” P0, QA Analyst.

It is important to point out that the team already refines the stories presented by the
client’s PO in previous sessions. Due to it, the PO presented the new stories and clarified the
remaining doubts of the members:

“During the planning, we will only select the refined stories for the sprint backlog.

By doing this, the PO can summarize the card, and we can estimate it.” P2,

Developer.

P3 reported that the planning meeting is conducted alongside several other agile events.
On the last day of the sprint, the planning of the next sprint is conducted, followed by the
review and retrospective meeting:

“The planning meeting usually occurs on Fridays and is followed by the review and

retrospective meeting.” P2, Developer.

The planning meeting had a better consensus regarding the duration of the event. Almost
every member agreed it takes two and a half hours to conclude. The SM is the one responsible
for sending the invitation and managing it:

“The planning meeting is supposed to take two and a half hours, and we are

constantly achieving it.” P1, Scrum Master.

216

P4 reported that the client had executed some PI Planning events with the internal teams
and some suppliers’ professionals. However, the members of the agile distributed team were
not invited:

“The client had a PI planning, but we did not participate. I think it would be good

for us to participate. I want to be there. Maybe the budget was a problem.” P4,

Developer.

In the quality team, the planning meeting perception is quite different. The QA Tech lead
reported the project requires a daily planning meeting to manage the different test executions
throughout the day. Since the test cases are developed every day, and each day most of them
are executed by the team in two different shifts, the project requires frequent planning to avoid
misunderstandings and waste of test executions. For him and the team, the dailies serve as
daily planning meetings:

“We have a daily planning meeting during our regular dailies. It can not be weekly

because we need constant synchronization regarding the new BDDs to be devel-

oped and the new test cases to be tested or re-tested. I think our dailies serve the

purpose of being a planning meeting.” P5, QA Tech leader.

4.9.3.2 Requirement workshop

The requirement workshop occurs before the planning meeting, and the team conducts it to
refine the new features for upcoming development previously. During the meeting, the members
should break down the stories into small tasks, beginning the regular planning activities (P0,
P1, P2, P3, P4). During those meetings, the whole team is present, including the client’s PO
and the project coordinator:

“The team is supposed to break and refine the necessary tasks to accomplish

the stories during the requirement workshop. Such activity is done after the PO

presents the upcoming features. The projector coordinator is also present to un-

derstand what will be done.” P1, Scrum Master.

“The requirement workshop usually occurs in the middle of the sprint, one week

before the next planning meeting.” P2, Developer.

217

The requirement workshop did not always exist. In the beginning, the team did not have
it. Without it, most of the doubts and refinement activities were supposed to happen during
the planning meetings, which took a long time. But not only it, the members constantly
started new sprints without fully understanding the stories. This approach harmed the sprint
deliverables and also made the team members continuously contact the PO for clarifications
in the middle of the iteration:

“In the beginning, we were working in a madness loop. We did not execute re-

finements in the stories, and the sprints were started without a good overview of

the business rules. Only after catching a story could we go forward to understand

what it means to be implemented. At this time, the contracts of the sprints were

never respected. But when our SM arrived, things got better.” P2, Developer.

P1 was responsible for organizing team events to avoid delivery problems. For this, P1
focused on giving the team the necessary information to execute the job correctly.

Meanwhile, two requirement workshops meetings are handled during a sprint when needed:

“Sometimes, one or two days before the end of the sprint, we make a small re-

quirement workshop to catch up with the refinement stories and update everything

that is needed.” P2, Developer.

The stories’ refinement and clarification also require the team members’ expertise. P4
reported that during the requirement workshop meetings, the PO is supposed to do the func-
tional refinement and explain the expected behavior of a feature. Meanwhile, P4 is responsible
for describing technical aspects regarding the feature implementation:

“During the workshop meetings, since we do not have a tech leader in the project,

I am kind of doing this by describing how specific features could be implemented

technically.” P4, Developer.

Finally, P5 and the quality team do not work with the requirement workshops. However,
every day they are refining their test cases.

218

4.9.3.3 Behavior Driven Development

The Behavior Driven Development (BDD) relies especially on the QA analysts of the agile
team (P0). He is responsible for gathering the information from the PO, stakeholders, and
end-users to build the BDDs. By doing this, the QA analyst gets a full overview of the stories
being developed by the other members:

“Everything related to the quality assurance process is handled by P0. The BDD

is one of those things .” P1, Scrum Master

“Right after the planning meeting, when the sprint backlog is defined, I start the

development of the BDDs of the stories. Based on the acceptance criteria of each

story, I could start the development of the BDDs.” P0, QA Analyst.

For P0, the acceptance criteria is the critical information needed to develop the BDDs,
most of which came from the client’s PO.

On the other side, at P5 quality team works with BDD every day, almost every hour of
their day. The team also created what they called the BDD pipeline (See subsection 4.9.2.13).

P5 and his team use the BDDs to follow up on the expected behavior of the systems during
the test case execution. During the execution, when something goes differently from the BDD
or the BDD is missing some important steps, evidence is registered, and the QA analyst is
supposed to fix it by discussing it with the teams:

“Everyone in our team must know how to develop a BDD, and I know everybody

can do it. However, sometimes the BDD does not follow the expected behavior.

For this, as a normal procedure, we need to register pieces of evidence of the test

execution and check later with the team that implemented the story to under-

stand what happened. Sometimes we forget a step or the story changes due to

restrictions. It is pretty normal in the quality area.” P5, QA Tech leader.

4.9.3.4 Review Meeting

As presented above, sprint reviews frequently occur on the agile distributed team (P0, P1,
P2, P3, P4) at the end of the sprint right before the sprint retrospective 4.9.2.3. The sprint
review also gathers the demo presentation activity that occurs on it 4.9.2.4.

219

During the reviews, the team, mostly the QA analyst, is supposed to present what they
accomplished and failed to deliver. They also need to clarify the impediments faced and how
they managed them:

“The QA analyst shares the screen to present everything working. But we also

need to present what was not delivered and why we failed. Which impediment we

faced, problems we encountered and how we manage it to deliver the most value.”

P1, Scrum Master.

The client’s PO gives feedback regarding the presentation instantly. Sometimes, more
technical aspects regarding source codes need to be clarified by the developers:

“By the time the stories are presented to the PO, he gives feedback on whether

it is ok according to the acceptance criteria defined during the planning and re-

quirement workshops. Sometimes, we also need to discuss more technical aspects.

For example, I must present the source code and explain the operation when a

feature is practically developed on the backend. The QA analyst can not do it.”

P4, Developer.

The sprint usually takes two hours. According to P1, everybody participating in the sprint
should be presented there, and the PO, project coordinator, and sometimes the project man-
ager. Similar to other meetings, everything is presented through teleconference meetings:

“The review meeting is made through Microsoft Teams, and everybody presented

in the sprint planning must be there. On the client’s side, we will have the PO,

project coordinator, and sometimes the project manager.” P1, Scrum Master.

Further, the SM reinforces the importance of the sprint review meetings and how the
QA analyst, P0, is critical for it to happen. The reviews are commonly used to provide new
insights regarding the user’s workflows, and past implemented features. Moreover, the QA
analyst presentation reduces the distance between the end-user and the client. When the
developers usually lead the meeting, a more technical perspective of their job is presented,
which is not always please the client:

“Whether I ask a developer to present a story, they will naturally explain to me

what their source code, queries, and specific services are doing with the payloads.

220

But we do not need to hear it during the reviews. I enjoy having the QA analyst

present it because he can have a broader view of the business and communicate

it to the client.” P1, Scrum Master.

Finally, similar to what P5 has been doing with the planning meetings 4.9.3.1, the review
meetings of the quality are simply occurring every day. It’s a daily review meeting. At the end
of the day, P5 has a status report meeting, similar to a review meeting with the client. At this
event, he is supposed to present the number of test cases conducted, the bugs encountered,
the impediments faced, and what failed. Since the test backlog changes daily, and bug appear
every day, the review and the planning meeting needs to occur on a daily frequency:

“We have a review meeting daily. We present the bugs we encountered during the

day, which test cases have passed, and the next steps. Since we have new test

cases and bugs every day, we need to review the delivery daily. Whether something

blocks a workflow, the review needs to point it.” P5, QA Tech leader.

4.9.3.5 Definition of Done

The Definition of Done (DoD) from the agile distributed team was defined in a document
developed by P1, the Scrum Master. The DoD did not imitate itself to describe a general
definition of the done concept. They are specific rules for a card to be considered based on
which lane of the status dashboard it is presented. For example, stories in development by
the developers need to have unit tests, pass through the acceptance criteria, be available
in the QA environment, all tasks developed, and evidence of the developed feature at JIRA.
Meanwhile, the QA lanes and the validation from the PO also have a proper DoD concept that
involves evidence of test execution and passing the acceptance criteria. Finally, deploying lanes
of production and homologation also required a set of rules that related to log and contract
validation, integration tests running, and the absence of conflict with past features:

“When I built the definition of done, I structured it based on the lanes of our

status dashboard. I want to give the team a clear view of how a story or bug is

done based on its progress lanes. By doing it, we can see how an ’in development’

task needs to be classified as done, what a QA validation lane requires to classify

221

a story as done, and what the stories need to be completed and published to

production or homologation environment.” P1, Scrum Master.

Beyond the DoD, the SM also worked on the documentation of the Definition of Ready
(DoR), which focuses on describing what a story or bug requires to have before it is included
in a sprint. It is a checklist of items based on the type of stories describing each of them that
needed to be started. For example, when required, stories must be refined with built acceptance
criteria, a complete story description, a prototype, and proper documentation. For spikes, it
needs to have a description and a clear goal of the investigation, and it can not impact the
other tasks. Finally, bugs have some rules regarding the developer responsible for investigating
it, whether it comes from a ticket or not, it needs to be presented at JIRA, a description of
how to reproduce it, evidence of its existence, and evaluation of the impact into the business:

“The Definition of Ready documented next to the DoD was a way out that I used

to avoid poorly stories with few descriptions to be inserted in the sprint. The DoR

checklist guarantees that our team will only accept stories from the client when

it fulfills all the necessary items. Moreover, it also serves when the members are

going to create a spike story, and they will need to have a clear goal to accomplish

and a good description of the study task. It also helps to organize the process

of investigating bugs. Bugs from the support team can only be investigated with

a valid ticket opened and a previous investigation from the support team.” P1,

Scrum Master.

The members realize that DoD differed depending on their role, and they appreciate it. P0
is focused specifically on the acceptance criteria of the stories. Meanwhile, the developers also
use the acceptance criteria, but they seem more worried about the tasks needed to accomplish
a story:

“My goal is to fulfill the acceptance criteria during the tests. The whole story is

classified as not done if one or many criteria do not succeed.” P0, QA Analyst.

“I base myself on the tasks necessary to develop the story I am working on. By

the time I end it, I would test it by myself to ensure it is ready for the QA.” P2,

Developer.

222

The quality team of P5 has no formal validation for the DoD definition. However, there is
a simple rule used by the QA Tech leader. The test cases require the client’s formal approval
to be considered done. Despite the execution succeeding, the client must approve it, and for
it, the BDD is used:

“For me, my tests are done when the solution is ready to be delivered to the

end-users. However, the client needs to approve the test cases we have already

tested and succeeded in. So, it will only be done after this client’s approval.” P5,

QA Tech leader.

4.9.3.6 Technical Debt Awareness

The team argued that technical debt awareness is intrinsic to the team. Since the team
received the project with many debts from the other suppliers, technical debts were presented
in the project. Many times, the team worked exclusively on the refactoring of some of the past
implementations. Due to it, the constant awareness of the members needs to be always on for
the project:

“I think we have a good sense of technical debts. We arrived at the project with

many issues from the previous supplier, and we needed to work on those debts to

put the project in good shape. Due to it, I would say we stay aware all the time

of new debts.” P2, Developer.

P4 reported that some technical debts are inevitable due to the fast rhythm of the project.
The team needs to divide itself into support tasks and the development of new features. Due
to it, some good practices stay behind, and technical debts may surge:

“We need to work at a very fast pace developing new features, fixing bugs, and

receiving new stories from sustainability. Sometimes, the good practices and design

patterns stay behind, and we need to check it as technical debt for future fixes.”

P4, Developer.

The team also pointed out that there is no buffer in the sprint for technical debts. Proper
debts need to become new cards and should be planned and included in the sprint backlog as
any other story:

223

“We can push the technical debts during the planning meeting, but they will count

as a story. We do not have a specific buffer for technical debts.” P2, Developer.

Conversely, P5 and his quality team do not work properly with technical debts. However,
the test case executions reveal the technical debts of the systems. Most of the time, when
an integration does not work, it is because it is not implemented or the contract between the
services was not strictly followed. P5, during the interviews, described how the quality work
of his team is helping the organization teams to resolve those technical debts and align the
release of the features according to the primary release schedule.

4.9.4 Case study considerations

Our case study findings showed positive results regarding the adherence to the TARGET
framework tailored practices from the IT service provider sector within the team members
of a genuine industry case scenario. Meanwhile, as expected, several different development
and quality team particularities led the members to tailor agile practices differently, not even
presented in the TARGET framework.

In general, the daily meeting of distributed teams usually needs to be held through tele-
conference meetings to accommodate the physical distribution of the team members 4.9.2.1
similar to what we see in TARGET studies 4.7.1. Even though the whole teams from the case
were working in the same timezone, dailies involving all members were not a problem. But,
since the members of the quality team of P5 worked in shifts, they used a similar approach to
cases with teams spread over different continents (DORAIRAJ; NOBLE; MALIK, 2012) by con-
ducting the dailies in the overlap hours of the members from different shifts to gather them in a
single meeting. Moreover, unlike the literature that usually held dailies through chat messages
due to language issues (PAASIVAARA; LASSENIUS, 2010; HOLE; MOE, 2008), the members did
it only when they were facing connection issues.

The presence of separated dailies for the quality teams to discuss test execution results was
present in the case and in the studies of IT Service providers (VALLON et al., 2013; VALLON. et

al., 2013). Further, the frequency of more than one daily in a day was only seen in the literature
due to the distribution of team members in big timezones (HOSSAIN; BANNERMAN; JEFFERY,
2011; DORAIRAJ; NOBLE; MALIK, 2012). Still, in our case study, the development sometimes
required three dailies in a day due to blockers, and the quality team always conducted three

224

dailies due to the client demand and different work shifts. Such particularity was not seen in
the literature due to the development of the TARGET framework, but it sounded necessary
for the teams and was tailored to accommodate their process. Finally, the lack of interest of
P4 in the daily meetings usually led to specific long problems discussions that had similarities
with teams from the literature that opted for reducing the frequency of the daily meetings
(VALLON et al., 2014; HOSSAIN; BANNERMAN; JEFFERY, 2011).

The SoS meetings were not formally presented to the development team of P0, P1, P2,
P3, and P4. However, the team saw the sometimes dailies for blocker discussion and refine-
ments as possible as SoS meetings. But it sounds closer to an alignment meeting with other
team members to discuss impediments. Nonetheless, the regular remote daily meeting of P5
involving only managers of the client side is much closer to an SoS meeting seen in the TAR-
GET framework (BASS, 2014; BASS, 2013; VALLON et al., 2013; VALLON. et al., 2013) since it
involves the managers and stakeholders from all the team to follow the tests progress, results,
impediments, impact, and dependencies.

The retrospective meeting from the development team of the case has not been perceived
as a well-structured ceremony since the members answered different information regarding its
execution. Regardless, not all members were present at the event, and the client was not very
concerned about it, which had some similarities with the literature when the lack of feedback
from the interested parties discouraged the execution of retrospective meetings (HOSSAIN; BAN-

NERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSE-

NIUS, 2009b). Further, the P5 internal and informal sessions to seek improvement with the
QA analysts sound much better for a retrospective meeting approach rather than a generic
meeting with high executives to report progress without discussing improvements.

The demo presentation of the development team (P0, P1, P2, P3, P4) followed a regular
and common agile approach seen in other studies (ROLLAND, 2016; HOSSAIN; BANNERMAN;

JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010) right after the sprint review. Although, most
of the references from the TARGET framework used the demo presentation and sprint review
as a feedback session after the deliverables presentation. In the meantime, the event in the
case study looks like it was conducted just for the sake of it. Since the PO already evaluated
the deliverables during the sprint, there is no meaning in presenting it again to him during a
review meeting unless other stakeholders would evaluate it. However, it serves for the PO to
give general feedback on the team’s progress regarding the stories that failed or not.

The SM from the development team has been recognized as the PPO of the team. Most of

225

this acknowledgment comes from the fact that P1 has worked as a PO in the past years of its
career, and the concern with product development had always been part of P1’s job. Due to it,
P1 has applied some of the functions seen in PPOs of the TARGET framework studies (BASS,
2013; HOSSAIN; BANNERMAN; JEFFERY, 2011; BASS, 2015) being presented in the client’s
side discussing the features, reporting the progress of the team, and being intermediary roles
responsible for mitigating domain complexity for the team members that constantly were in
doubt about business domains specifications. Further, the absence of a PPO role in the quality
team led P5 and other seniors QA to embrace the function of handling business and technical
aspects of the solutions to correctly execute their job.

Both the development nor quality teams do not apply a solid policy of code freeze, but all
the case members see the importance of it. At this point, a consult in the TARGET Framework
could help the members by accessing studies (BASS, 2014; BASS, 2012) that applied the code
freeze in very large-scale scenarios that needed to handle merge issues, data mass generation,
regression tests during the development of solutions similarly big to the case study.

The presence of product and project managers in the case study’s development team aligns
with the TARGET framework results (BASS, 2013). The project manager from the case has
similar responsibilities to the one presented in the Bass study (BASS, 2013). Within more
strategic themes, the project manager was concerned with the project roadmap, involving
business and technical demands for the team. Moreover, the absence of such a role from the
It service company obligates P5 from the QA team to act in the management activities of the
team.

The product ownership awareness of the development team was not precise. Some develop-
ers related the concept of product ownership to working long hours at night fixing issues while
not staying as a lack of product ownership of other members. In contrast, the SM believed
it was impossible to have product ownership whether the person could not influence or make
decisions about the product. On the other side, P5 and the QAs had an adherence concept of
product ownership to the TARGET framework since they could question the teams regarding
business definitions and workflows. Even without a proper manager person, the development
has a lot to learn from the quality team in the product ownership field.

Using multiple communication nodes in the case study highlights an interesting finding
related to the email tool. While several studies have shown the prevalent presence of the email
(PAASIVAARA; LASSENIUS, 2010; KORKALA; PIKKARAINEN; CONBOY, 2009; HOSSAIN; BABAR;

VERNER, 2009; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b) in day-to-day activities, the

226

case study members were not using it since the client was more responsible for it. This scenario
may characterize a team without good influence to participate in the formal decision process
of the team.

The digital status dashboard of the development team represents a tailored kanban board
with several lanes that accommodate the team’s development process, as seen in the liter-
ature (GUPTA; MANIKREDDY; ARYA, 2017; HODA et al., 2010). The digital board also helped
the company see the teams’ progress. Conversely, the quality team using a specific quality
management tool to report the test cases, their results, and progress was not seen in the IT
sector studies but only in other sectors.

Acting as SM and PO has been seen to be a constant necessity of the QA team since the
absence of the roles had pushed the QAs to absorb the complexity of the domain. Similar to
the case studies from the TARGET framework (HODA et al., 2010; VALLON et al., 2013; HOLE;

MOE, 2008; VALLON. et al., 2013), the tech leader P5 needed to coach the other QA members
to be proactive enough to handle the activities of other roles not presented in the team.

At the design pipeline practice, we can realize how the uniqueness of the team would imply
the applicability of the tailored practice. In Hoda’s study (HODA et al., 2010), the front-end
design-intensive characteristic of the project kind of pushed the teams to establish a design
pipeline to accelerate the throughput of the prototypes without overheating the developers.
However, in our case study, using a low-code solution eliminates the need for such a practice
since the design is pre-defined in the proper platform.

The story owner practice was not applied in the development team since the teams had
little domain regarding the entire solution. However, the QA team from P5 has brought a
different applicability of story owner from the quality team, the test case owner. The QAs
have a holistic view of the workflows since they have worked in end-to-end tests, and due to
it, those QAs constantly explain to the teams the correct behavior the solutions are supposed
to have based on the test cases. By doing this, the QAs could influence teams’ development
process and propose fixes.

Finally, regarding the agile practices from the TARGET framework, the first collocated
sprints were a practice bumped due to budget issues from both clients and the supplier side.

In the practices not mapped in the TARGET framework to the very large-scale projects
of the IT service providers sector, it is essential to highlight the tailored approach used by
the development team in the planning meeting and the requirement workshop. Since the
development team started to refine the backlog through sprints, the planning was calmer,

227

but in the past complex stories could arise from the PO side, harming the planning event to
explain its full details. Despite the improvement, the teams continue not to participate in the
PI planning event of the client, such absence of team member harm their knowledge regarding
the product vision and roadmap and even compromise the estimations made but business area
in the PI planning without their concern.

On the other side, the different tailored approach was exposed by the QA leader P5.
According to him, the regular daily with the client can be considered a daily planning meeting
because the planning of the test cases needed to be daily and not based on iterations. Such an
approach was not seen in the literature for regular development and not even for QA teams.

The quality team also applied a particular practice called the BDD pipeline. Since their
goal is to test the entire end-to-end workflow of systems still in development, the QAs started
a process of assisted test journey meetings to gain knowledge about the business flows and
develop the BDD test cases before the project release. Different from the problems perceived
with BDD and the overhead with automation in the literature (VALLON et al., 2013; VALLON. et

al., 2013), the QA members from the case were not automating it but developing a knowledge
base of test cases about the solutions before the project went to production. Such a tailored
approach was essential for the QAs members. By doing the BDD pipeline, the whole team and
the client could access a living database of test cases that described the entire workflow and
the expected behaviors of each of them.

Regarding the definitions of done and ready, the team usually uses the DoR technique to
establish what a bug or story should have before being included in the sprint. A similar practice
was seen only in Uludag et al. (ULUDAG et al., 2019) study with cases using LeSS. Further, the
use of DoD followed a similar purpose to the studies from the TARGET framework. Considering
the project’s specifications, a checklist of items was developed to confirm whether a card was
done.

The presented case study effectively covered several practices from the TARGET framework
and reinforced the model’s alignment with the industry case. Although, the most important
findings rely on the newly tailored techniques described by the case’s members, which give a
broader view of a different context and improve the TARGET frameworks findings, and also its
structure. Moreover, based on the case study results, we also evaluated the findings regarding
which agile, tailored practices the team members were entirely using, partially using, and not
using at all. The summary of such evaluation can be seen in the following table 4.9.4.

We believe that whether the case team has used the TARGET framework since the begin-

228

Table 24 – Agile Tailored practices usage

Usage Practices

Practices fully tailored by the team members

Daily Meeting;
Retrospective Meeting;

Demo Presentation;
Proxy Product Owner (PPO);

Produc/Project Manager in Scrum
Multiple Communication modes;

Status Dashboard;
Developers as Scrum Master and Product Owners.

Practices partially tailored by the members
Scrum of Scrums;

Product Ownership;
Story Owners.

Practices not even used by the team members

Code Freeze
Estimation Contracts;

Design Pipeline;
First Collocated Sprints.

Source: The author (2023)

ning of the project, several issues faced by the members could be addressed. But, we reinforce
that for it to be well applied, the team would need a manager role more present in the project
since the beginning because they entered the project in the middle of it.

229

5 DISCUSSION

In this chapter, we aim to discuss the findings of our study. Discuss the motivation for
developing the TARGET framework for the industry and academia, the best ways for the
companies to use it, and how the TARGET frameworks can favor the process of agile tailoring.
Finally, the threats to the validity of our study.

5.1 FINDINGS DISCUSSION

Many organizations have been transitioning their development to distributed large-scale
settings. Meanwhile, transitioning from small-scale collocated agile teams to large-scale dis-
tributed teams led those organizations to have people in different locations, which led to many
problems related to communication, coordination, and control of the development process
(FITZGERALD et al., 2013b). Furthermore, some studies showed that 40 percent of global soft-
ware development projects have failed (Betz; Makio; Stephan, 2007) because of those problems.

Agile practices emerged as the way out for development coordination since they became
mainstream in the industry and for distributed large-scale projects (TENDEDEZ; FERRARIO;

WHITTLE, 2018; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009a). However, the need for ag-
ile practices in distributed large-scale projects must be accompanied by the awareness that
tailoring the practices can not be simplified to using remote tools to mitigate the absence
of physical contact. Rather, the teams’ and organizations’ specific context aspects must be
considered. The teams’ size, distribution, timezone differences, regulatory compliance, domain
and technical complexity, company’s distribution, history and discipline, and agile methodology
in use may interfere with the agile tailoring journey of the teams (BROWN; AMBLER; ROYCE,
2013; CAMPANELLI; PARREIRAS, 2015). Due to it, the present study proposes the TARGET
Framework as a collection of techniques and contexts description involving those aspects and
being capable of easier the journey of agile teams through tailoring agile practices in various
domains.

Practitioners and researchers must consider that different teams in different contexts will
have unique needs and wills to tailor agile to their environment. Seen as a possible way to
address the needs of the distributed teams using agile in large-scale settings, the organizations
started to use agile and scaling agile frameworks to solve their issues regarding agile at scale.

230

The agile and scaling agile frameworks are capable of covering the gaps from agile methods
for large-scale settings involving distributed teams or guiding companies in applying agile at
scale through a set of best roles, practices, ceremonies, and workflow templates.

Undeniably, those frameworks have helped several distributed teams adopt agile practices
in large-scale settings to achieve the project goals (ULUDAG et al., 2019; PAASIVAARA, 2017;
RAZZAK et al., 2018; SALAMEH; BASS, 2019; SALAMEH; BASS, 2020; BROWN; AMBLER; ROYCE,
2013; HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b)
in the middle of the barriers caused by the distributed environment and the large-scale dimen-
sion. Despite some success reports, most of those studies required a minimal tailoring approach
in the frameworks, practices, roles, and concepts to accommodate the teams’ needs. For exam-
ple, Pandya et al. (PANDYA; MANI; PATTANAYAK, 2020) experience report describes a four-year
SAFe transformation with specific tailoring techniques to accommodate the changes in the
context of a consultancy firm. Meanwhile, Paasivaara presents a case study at an industry
company to evaluate the adoption of SAFe on two business lines of the company (PAASI-

VAARA, 2017). In both contexts, teams from an industry organization and an IT consultancy
firm required different tailoring approaches, i.e., the Release Train Engineer (RTE) in Paasi-
vaara’s cases (PAASIVAARA, 2017) involved an RTE working part-time and other full-time with
different activities. At the same time, in the Pandya report, the RTE had closer responsibilities
to what SAFe defines.

Each case study had specific context aspects related to distribution, culture, complexity,
timezone, and business domain, leading them to different tailored approaches using the SAFe
framework practices. Based on this, we reinforce the belief of Ambler and Lines that most of
the several frameworks (HENRIK; ANDERS, 2012; Leffingwell, Dean, 2023; AMBLER; LINES, 2012;
LARMAN; VODDE, 2016a; Sutherland, Jeff and Brown, Alex, 2021; Schwaber, Ken and Sutherland, Jeff,
2022) summarize best practices, events, and ceremonies while avoiding context understanding
and the uniqueness of the organizations and teams. Without tailoring the set of practices
defined by those frameworks, the teams can suffer from accessing a set of suggested techniques.

Based on such a scenario, researchers and practitioners looking forward to a better-
structured manner to tailor agile in distributed teams on large-scale settings without depending
entirely on the agile and scaling framework can access this study that presents the TARGET
framework. Through the TARGET framework, we hope to provide a context-specific guide to
help organizations according to their uniqueness during the agile tailoring process. Considering
the context aspects of the teams and their business domain, scale dimension, and agile frame-

231

work in use, the TARGET framework provides a collection of practices and different ways of
applying it based on real industry cases from the literature.

In our study, the framework concept used to develop the TARGET comes from the descrip-
tions and definitions of Petersen et al. (PETERSEN et al., 2008) and Wieringa et al. (WIERINGA

et al., 2006). Frameworks are commonly used to structure the world investigated during a study
(WIERINGA et al., 2006), gathering goals, objects, processes, and methods. Further, frameworks
are also used to classify a set of identified practices from a set of empirical studies (PETERSEN

et al., 2008). Based on it, we believe the TARGET framework aligns well with the framework
concept from the literature.

The agile tailoring studies identified from the SLR can be considered quite mature. Most
of them use empirical research methods within a high degree of rigor presented, 4.2. Such
a fact reinforces the claims and findings of those studies, but some are based on experience
reports with results not settled on empirical evidence. Moreover, the evaluation research type
was the predominant research facet of the studies. Those results show a widespread number of
studies investigating techniques in practice. However, most practices come from unstructured
sources evaluated only by experts or surveys. A model such as the TARGET framework can
elevate the maturity of those studies to assess the agile method tailoring techniques adopted
by organizations in a more structured approach.

Our biggest motivation for the TARGET framework construction is to provide a handbook
guide with similar purposes to the DA (LINES; AMBLER, 2019). But it specifically focuses on a
research field that constantly requires more attention to address the challenges of agile tailor-
ing in distributed large-scale projects. By covering 17 market sectors, three scale dimensions,
five agile frameworks, and several context aspects that led teams to tailor an agile practice, the
TARGET framework does not present only different techniques to address software develop-
ment tasks. It offers several ways to apply the same agile practice according to the uniqueness
and aspects of different teams, organizations, and studies. TARGET covers several possible
paths which researchers and practitioners can consider to accommodate their needs.

The TARGET framework is based on the state-of-the-art of agile tailoring in distributed
large-scale settings using agile frameworks. Through 74 studies from 17 market sectors and
different scale dimensions, practitioners can consult the framework to get an overview of how
different contexts applied some specific agile practices.

A manager can start the usage of the TARGET framework by organizations and teams,
SM, PO, or even a regular team member that perceives the need for agile tailoring. Whether

232

one of those roles wants to implement or consult an agile practice, the TARGET framework
will serve as a handbook, i.e., if an SM from an industrial organization adapting the Scrum to a
large and distributed context is in doubt on how to conduct a retrospective meeting. They can
consult the TARGET framework structure for the general industry section and visualize three
different studies from the same market sector, also in a large-scale dimension using Scrum,
that had adapted it (HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS, 2010;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b). By doing this, the SM can consult the agile
practice details in the SLR results to evaluate which of the tailored approaches most adheres
to its contexts and test the technique on his environment.

For example, some cases choose to conduct a common retrospective meeting for all the
teams (PAASIVAARA; LASSENIUS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b) in a
common conference call. Still, the same study of Paasivaara et al. (PAASIVAARA; LASSENIUS,
2010) had reported over time that the SMs opted to conduct a separate retrospective meeting
without the teams’ members. On the other side, another study reported that the teams were
supposed to execute a retrospective meeting for each of them at the end of the sprints and
then report the results in the wiki (HOSSAIN; BANNERMAN; JEFFERY, 2011). But, over time, as
the operation ran smoother, the teams perceived the need to conduct the retrospective after
two iterations (HOSSAIN; BANNERMAN; JEFFERY, 2011). By accessing that information, the
SM can judge which approach suits its context better and try it within the team. Whether it
fits the organization’s environment, minimal adjustments can be necessary to address specific
needs not covered by the studies and contexts of our results. Moreover, a practitioner can
also access the TARGET framework to better understand what aspects led those cases to
constantly tailor the retrospective meeting over time.

The TARGET framework can also be used to evaluate the applicability of some agile
tailored practices in other scale dimensions. For example, the same SM from a general industry
can consult how several industrial companies had been tailoring the daily Scrum meetings in
three different scale dimensions, from small-scale agile distributed teams to large-scale and
very large-scale teams. By doing it, he can access the approaches closer to his context and
other scale dimensions that can help him and his team. Industrial cases had applied several
techniques for daily meetings beyond their scale dimensions but based on their needs and the
teams’ relationship, from dailies through teleconference tools to dailies twice a week, through
chat messages, in consecutive schedules to allow managers participation, and even the absence
of dailies events (BASS, 2014; HOSSAIN; BANNERMAN; JEFFERY, 2011; PAASIVAARA; LASSENIUS,

233

2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2009b).
Moreover, the TARGET framework can also be used to evaluate whether a tailored ap-

proach from a team or area is beneficial regarding the literature results from the SLR. For
example, whether a large-scale financial organization using the Spotify model within several
distributed teams is looking forward to evaluating its approach regarding KPIs in a distributed
large-scale setting. The managers can consult the TARGET framework to access other financial
companies that have applied it. In this case, only the study by Bass and Salameh (SALAMEH;

BASS, 2020) applied measurement indicators in agile distributed teams from a financial com-
pany using the Spotify model. However, the authors describe how the freedom to tailor KPIs
damaged the monitoring of the teams’ performance by the managers. Since the teams can
choose their KPIs, comparing them with different data collected was impossible. Based on this
result, practitioners from financial organizations using Spotify can realize that letting several
teams free to choose their KPIs can harm the monitoring process, and based on the previous
experience presented in the literature, a better approach may rely on defining a set of common
KPIs for the teams, and then letting them defining their owns.

In a similar perspective, practitioners from the optical industry sector can access some
tailored SAFe practices from Razzak et al. (RAZZAK et al., 2018) study covering a large-scale
team that was not mature enough for some of the practices from the portfolio and teams
levels. I.e., the PPPM team was not mature enough to work with strategic themes since they
treated it informally without proper techniques for estimation and planning and were not using
epic stories since the PPM team was used to acting as a regular team, focusing on projects and
deliverables. Moreover, sprint contracts at the team level were not respected, with the manager
introducing stories during the iteration and the teams rarely conducting retrospective meetings.
Seen it, optical industry organizations can consult the TARGET framework to understand and
learn how a low-mature team can impact the SAFe portfolio and program level implementation.

The TARGET framework benefits practitioners and researchers through beneficial ways of
tailoring agile to handle the dynamic environment of different market sectors with distributed
agile teams. Also, informing and describing how some tailored approaches among the agile
frameworks studied can impact and harm the day-to-day activities. Due to it, researchers and
practitioners can access the TARGET frameworks with the advantages of understanding good
or not very good manners to tailor agile according to the needs and contexts of the studies.
Similar to the strategy used by Ambler and Lines in the choose your way of working book
(LINES; AMBLER, 2019), we aim to present a guided handbook framework that could be used

234

to assess the reality of agile tailoring approaches gathering all types of manners and impacts
of using agile techniques in distributed large-scale settings.

Regardless of the TARGET Framework’s benefits, it is essential to highlight some limita-
tions. The Spotify set of tailored approaches composed of 13 practices was extracted from
only two studies, but the main limitation is that both studies are from the financial sector.
Due to it, the coverage of our framework regarding agile distributed teams from large-scale
settings tailoring the Spotify framework limits the financial industry within two case studies,
reducing the practices’ applicability to other sectors. Moreover, the DAD framework set of
nine tailored practices is composed of a group of studies from three different market sectors: It
service providers 4.8.1, software service providers 4.8.4, and financial 4.8.5. However, the case
studies from those three market sectors are from very large-scale projects. Hence, the TAR-
GET framework limits itself to tailored agile practices from distributed teams using DAD for
very large-scale projects, lacking further investigation of DAD projects in small and large-scale
dimensions. However, as we have seen in our case study, different scale dimensions and agile
frameworks do not limit practitioners and researchers to evaluating tailored approaches from
other sizes and trying them in their contexts.

An exciting fact identified while mapping the tailored agile practices is that daily meetings,
usually common in any agile project despite the framework in use, were only seen in several
studies using Scrum and in one study using DAD (BEECHAM et al., 2021). The point here
is that Spotify (HENRIK; ANDERS, 2012), SAFe (Leffingwell, Dean, 2023), and LeSS (LARMAN;

VODDE, 2016a) had a daily sync event similar to Scrum in its essence, but none of the studies
from those scaling agile frameworks had described the use of it. This result does not limit the
TARGET framework for those agile frameworks. Instead, organizations using them can look
forward to the applications of Scrum and DAD to better understand how to implement the
daily meeting.

The postmortem documentation process 4.3.7 seen in the literature and the BDD pipeline
adaption seen in the case study 4.9.2.13 highlights that some practices are adapted as a
replacement of the original practices due to the teams need. Since a meeting could not be
held for the postmortem process, the team started documenting the postmortem activity. On
the other side, since a design pipeline is unnecessary for a quality team, the QAs used their
idea to make a pipeline of BDD.

From 95 tailored practices extracted from 74 studies that used five agile frameworks, only
one practice was presented in every framework used by the studies, the Definition of Done

235

(DoD). The most exciting point of it, independently of the framework in use, at least one
study had to tailor its checklist regarding the definition of done of its cards. The DoD of
Spotify 4.3.6 comes to standardize the completeness process among the squads. For a similar
purpose, the SAFe adoption of DoD seeks it in the teams of a program level 4.4.8. On DAD,
the DoD concept focused on ensuring the quality of the deliverables. Still, it did not specify
that a deliverable was ready to be consumed by the end users 4.5.3. Moreover, in LeSS, we
could see the addition of the DoD definition, including the DoE and the DoR 4.6.9. The DoE
describes the criteria for rough requirements to be broken into individual stories. In contrast,
DoR describes the criteria the user stories must have to be considered ready for implementation.
Finally, the DoD from Scrum gathers the highest number of studies for the practice, which
DoD definition that goes from standard industries to highly regulated organizations 4.7.14.

Another popular tailored practice that was almost present in every framework was the
Scrum of Scrums (SoS). Except for the DAD framework, we could not map a tailored technique
for it. On Spotify, the term has changed to Squad-of-Squads meeting 4.3.11, but with similar
purposes to the regular SoS meeting, to align all squads regarding issues about the behavior
of new features released, progress, opportunities, and priorities. The questionable point is that
Spotify squads seem independent, but the meeting was needed to accommodate customer and
vendor relationship needs. On the other side, the other frameworks presented specific needs for
tailoring the SoS meetings according to the context of the cases. The studies described tailoring
approaches of the SoS meeting to handle better the customer-vendor relationships, suppliers
coordination, and teams with significant timezone differences (See SAFe section 4.4.10, Less
section 4.6.11, and Scrum 4.7.2).

It is also important to point out that the selected studies from our SLR began in 2007,
six years later than the release of the agile manifesto. While other SLR studies regarding agile
tailoring have shown studies since 2002 about the theme (CAMPANELLI; PARREIRAS, 2015).
However, since our scope limits the agile tailoring to distributed teams on large-scale settings
using agile frameworks, the year 2007 seems reasonable for the technological advances to be
able to handle the needs of teams spread across the globe working remotely. Further, the
following years of the 2010s elevated the number of studies on the research theme due to the
emergence of the agile and scaling agile frameworks.

The TARGET framework, in contrast to the common agile frameworks in the market,
can be used beyond the limits and borders of those structures. Whether there is no reference
regarding adapting an agile practice in a specific market sector of interest, the researcher or

236

practitioner can look forward to using these practices in a similar sector. I.e., sectors like auto-
motive, optical, and oil and energy industries can benefit themselves by looking for practices
not mapped to their sectors in the general industry sector of the TARGET framework and
vice-versa. Since both sectors compose industrial and manufacturing needs, they can benefit
from each other. It can also be seen on the internet and in telecommunication organizations,
in which similar contexts can provide insights into tailored practices from different frameworks
and scale dimensions. Such contrast of the TARGET framework goes beyond the borders of
the market sectors. Organizations from different scales and using different agile frameworks
could not limit themselves without consulting the practices of others companies.

Using the TARGET framework at the enterprise level can give enough autonomy for the
organizations’ teams and employees the power to choose, experiment, evaluate, test the re-
sults, and change their development process. It influences companies’ culture and performance
directly by letting them constantly try the best agile techniques that can accommodate their
specific needs. The TARGET framework positions itself as the first structured framework ar-
tifact capable of providing enough inputs for distributed agile teams from large-scale settings
requiring agile method tailoring in their daily routine.

5.2 THREATS TO VALIDITY

Several were the analysis and actions to mitigate the threats regarding the validity of
the SLR, the TARGET framework, and the case study. As presented in this section, these
perspective analyses and actions covered four types of validity threats (WOHLIN et al., 2012;
AMPATZOGLOU et al., 2019). In this section, we discuss the following validity threats associated
with the different activities of this study.

5.2.1 Construct Validity

Defines in what degree the operational measures that are studied represent what the
researchers intended to look for and what is investigated according to the research question
(WOHLIN et al., 2012). To reduce this, the SLR studies evaluations were conducted in a peer
review approach through the data extraction process regarding the tailored agile practices.
The advisors were involved during the agile tailored practices selection and description, and if
any of them disagreed with the practice, they would discuss it to reach a consensus. Besides,

237

during the case study, several data sources were used to reduce measurement bias through
interviews with the team members, observation of the team’s activities, and evaluation of
the project documentation. Finally, we recognize that evaluating the TARGET framework in
a single case involving one market sector from the 17 presented in the framework can cause
mono-operation bias, but choosing the sector representing a third of the studies from the SLR
may reduce such a threat.

5.2.2 External validity

It is related to what extent it is possible to generalize the findings and to what extent they
have value to practitioners and researchers (WOHLIN et al., 2012). The SLR was conducted
through a research protocol developed and validated by the author and the advisors. Also, we
selected the most renowned databases for agile and distributed development research, such as
ACM, IEEE Xplore, Springer, Scopus, and Wiley. The search string used in pre-defined biblio-
graphic databases, which are references in agile development, ensures certain generalism of the
findings since most studies in the area are published on those databases. Furthermore, another
point that provides our external validity is that the research findings have interested practi-
tioners and researchers since the middle of the 2000s (CHO, 2007). However, it is important
to point out that the absence of the snowballing technique (STREETON; COOKE; CAMPBELL,
2004) in the SLR may increase the external validity threat. Finally, despite evaluating the
TARGET framework through a single case study in the IT service provider sector, we reduce
external validity by conducting the case in a real industry case involving employees among
different roles, from developers to PO and quality analysts, working for an IT service provider
company.

5.2.3 Conclusion Validity

It is concerned with to what extent the data and the analysis are consistent (WOHLIN et

al., 2012). Also, it aims to ensure that the study assumptions and outcomes are not biased
by the author’s perspectives. Our study used fewer bibliographic databases, which may have
made the research lose relative papers. However, to ensure conclusion validity, we selected the
most renowned databases for agile research, such as ACM, IEEE, Springer, Scopus, and Wiley.
Besides, the advisors revised the interview instrument and the project documentation to avoid

238

searching for specific results regarding agile tailoring in the case study, similar to the findings
in the literature. However, replicating the process of the SLR, the framework development and
the case study can lead to different results due to the difference in individual decisions and
evaluation of the linked practices among researchers.

5.2.4 Internal Validity

It is concerned with the effects of the treatments on the variables due to uncontrolled factors
in the environment (WOHLIN et al., 2012). Following the research protocol, we aimed to mitigate
this threat by analyzing the studies by the author and the advisors, analysis of the results, and
redundancy. Besides, every study was chosen, and the involved researchers discussed the agile
tailored practices extracted from them, and when one disagreed with a choice, all of them
discussed it to reach a common agreement. Moreover, repeating the research protocol using
the same search engines can ease the study reproduction. Finally, to reduce internal validity in
the case study, the instruments used to extract data from the participants were reviewed by
the advisors.

Despite the common validation threats that the study has. It is essential to point out
some of the threats and mitigation actions taken based on the analysis of Ampatzoglu et al.

(AMPATZOGLOU et al., 2019). Regarding the SLR, the study mapped bias, which can be caused
due to conflicting inclusion/exclusion criteria, was mitigated by adding antonyms criteria.
Besides, we did constant review cycles to validate and refine the agile tailored practices results
to overcome the threat mentioned by Ampatzoglu et al. that may occur during the synthesis of
the results. The same review cycles were constantly present while evaluating the agile practices
used by the members from the case study.

239

6 CONCLUSION

The agile tailoring approach has proven popular in distributed agile teams of large-scale
organizations. More and more organizations are adapting their teams’ work to an agile flow
that supports their dynamic and complex processes. Therefore, the one-size-fits-all agile ap-
proach, which is most common in agile and scaling agile frameworks, may not work since each
organization, project, and team has its particularities and needs. Due to it, agile distributed
teams and organizations must consider their unique needs and constraints when selecting and
implementing agile practices to fit their context.

Based on it, this study contributes to the agile tailoring research theme by achieving its
general and specific goals within an SLR summarization on five different bibliographic databases
that started with 1520 studies in the first results of the research string. Then, it ended with 74
studies regarding the agile tailoring practices of distributed agile teams in large-scale contexts.
The selected studies analyzed and extracted provided enough information about the state of
the art of agile tailoring practices in DSD and large-scale environments. Five different agile
and scaling agile frameworks were seen in those studies, and 95 tailored practices were mapped
based on the literature. In addition, the present study has also shown how the 95 customized
practices were tailored and implemented in several different contexts.

In our study, the contribution went beyond the SLR. Its results helped provide a systematic,
methodological, and structured model, the TARGET framework. TARGET gathers the different
market sectors, scale dimensions, agile and scaling agile frameworks, and the tailored practices
used and extracted from the SLR studies. Putting it together, our study through TARGET
provides a context-specific guide framework to help organizations during the agile tailoring
process according to their uniqueness.

Moreover, to avoid staying in the field of theory, a case study was conducted in an agile
distributed team from an IT service provider company in Brazil with more than one thousand
employees to evaluate the TARGET Framework better. During the case, it was possible to
perceive the similarities of the tailored practices from the case members within the TARGET
framework part regarding the IT service provider sector with similar contexts. However, the
particularities of the members and the project in the case have shown how different aspects
of the context required tailored approaches not presented in the TARGET framework. This
reinforces how different contexts will always require different tailored approaches.

240

As a contribution to academia and industry, this study provides a comprehensive overview
of results regarding agile tailoring in distributed teams using agile and scaling agile frameworks
from large-scale settings considering the uniqueness of those teams. Moreover, researchers
and practitioners can access the adapted techniques presented here to understand better how
different conditions can lead to different tailor techniques.

Despite the contributions of its study, it is important to explicit its limitations. We hope to
evaluate the TARGET Framework in other industry cases, although it was impossible due to
time and availability. Moreover, the SLR methodology can lead to the loss of many important
studies since we did it through a single search string and did not perform snowballing. Finally,
the TARGET framework was built based on market sectors, but some offered few tailored
practices, which can harm the tailoring process of those companies.

Meanwhile, we believe the results and findings of this study will also enable researchers
and practitioners that use agile and scaling agile frameworks to conduct further research and
provide more dedicated solutions for the challenges in tailoring agile within the DSD context
while using them.

6.1 FUTURE WORK

During the execution of this research, it is possible to point out some possibilities for future
research that we intend to execute based on the results presented. During our work, we believe
that we have accomplished a challenge related to tailoring agile practices in relation to the
market sectors of the organization. By doing this, we hope other researchers and ourselves to
explore the following possibility for future works are:

1. Evaluate the TARGET framework by executing other case studies to cover the other 16
market sectors presented on it and also in other real industry scenarios with other scale
dimensions and agile frameworks;

2. Continue the SLR in the next years to expand the findings to cover other market sectors,
practices, and particularities of organizations;

3. Execute a survey with distributed agile teams to verify whether the tailored practices of
TARGET are being used.

241

4. Develop a more structured and visual representation of the TARGET framework to help
practitioners and researchers visualize its practices and the contexts that applied it.

5. Examine the challenges faced by the projects as described in the literature, then evaluate
how well the TARGET Framework can address those challenges.

6. Evaluate whether agile tailored techniques from one context can be well used in another
domain.

We hope to accomplish a complete and mature overview of the TARGET Framework by
conducting future works in the following years. Finally, to achieve a version of it that can serve
as a guide for the industry and academia.

242

REFERENCES

ALQUDAH, M.; RAZALI, R. A review of scaling agile methods in large software development.
International Journal on Advanced Science, Engineering and Information Technology, v. 6, p.
828–837, 2016.

AMBLER, S. W.; LINES, M. Disciplined Agile Delivery: A Practitioner’s Guide to Agile
Software Delivery in the Enterprise. 1st. ed. [S.l.]: IBM Press, 2012. ISBN 0132810131.

AMBLER, S. W.; LINES, M. Going beyond scrum: disciplined agile delivery. Disciplined Agile
Consortium. White Paper Series, p. 1–16, 2013.

AMPATZOGLOU, A.; BIBI, S.; AVGERIOU, P.; VERBEEK, M.; CHATZIGEORGIOU, A.
Identifying, categorizing and mitigating threats to validity in software engineering secondary
studies. Information and Software Technology, v. 106, p. 201–230, 2019. ISSN 0950-5849.
Available at: <https://www.sciencedirect.com/science/article/pii/S0950584918302106>.

AOYAMA, M. Agile software process and its experience. In: Proceedings of the 20th
International Conference on Software Engineering. [S.l.: s.n.], 1998. p. 3–12.

BADAMPUDI, D.; FRICKER, S. A.; MORENO, A. M. Perspectives on productivity and
delays in large-scale agile projects. In: BAUMEISTER, H.; WEBER, B. (Ed.). Agile Processes
in Software Engineering and Extreme Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 180–194. ISBN 978-3-642-38314-4.

BASS, J. M. Influences on agile practice tailoring in enterprise software development. In:
2012 Agile India. [S.l.: s.n.], 2012. p. 1–9.

BASS, J. M. Agile method tailoring in distributed enterprises: Product owner teams. In:
2013 IEEE 8th International Conference on Global Software Engineering. [S.l.: s.n.], 2013. p.
154–163.

BASS, J. M. Scrum master activities: Process tailoring in large enterprise projects. In: 2014
IEEE 9th International Conference on Global Software Engineering. [S.l.: s.n.], 2014. p. 6–15.

BASS, J. M. How product owner teams scale agile methods to large distributed enterprises.
Empirical Softw. Engg., Kluwer Academic Publishers, USA, v. 20, n. 6, p. 1525–1557, dec
2015. ISSN 1382-3256. Available at: <https://doi.org/10.1007/s10664-014-9322-z>.

BASS, J. M. Artefacts and agile method tailoring in large-scale offshore software development
programmes. Information and Software Technology, v. 75, p. 1–16, 2016. ISSN 0950-5849.
Available at: <https://www.sciencedirect.com/science/article/pii/S0950584916300350>.

BASS, J. M. Large-scale offshore agile tailoring: Exploring product and service organisations.
In: Proceedings of the Scientific Workshop Proceedings of XP2016. New York, NY, USA:
Association for Computing Machinery, 2016. (XP ’16 Workshops). ISBN 9781450341349.
Available at: <https://doi.org/10.1145/2962695.2962703>.

BATRA, D.; VANDERMEER, D.; DUTTA, K. Extending agile principles to larger,
dynamic software projects: A theoretical assessment. J. Database Manage., IGI
Global, USA, v. 22, n. 4, p. 73–92, oct 2011. ISSN 1063-8016. Available at:
<https://doi.org/10.4018/jdm.2011100104>.

https://www.sciencedirect.com/science/article/pii/S0950584918302106
https://doi.org/10.1007/s10664-014-9322-z
https://www.sciencedirect.com/science/article/pii/S0950584916300350
https://doi.org/10.1145/2962695.2962703
https://doi.org/10.4018/jdm.2011100104

243

BECK, K.; BEEDLE, M.; BENNEKUM, A. van; COCKBURN, A.; CUNNINGHAM, W.;
FOWLER, M.; GRENNING, J.; HIGHSMITH, J.; HUNT, A.; JEFFRIES, R.; KERN,
J.; MARICK, B.; MARTIN, R. C.; MELLOR, S.; SCHWABER, K.; SUTHERLAND,
J.; THOMAS, D. Manifesto for Agile Software Development. 2001. Available at:
<http://www.agilemanifesto.org/>.

BECK, K.; GAMMA, E. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000. (An Alan R. Apt Book Series). ISBN 9780201616415. Available at:
<https://books.google.com.br/books?id=G8EL4H4vf7UC>.

BEECHAM, S.; CLEAR, T.; LAL, R.; NOLL, J. Do scaling agile frameworks address global
software development risks? an empirical study. Journal of Systems and Software, v. 171,
p. 110823, 2021. ISSN 0164-1212. Available at: <https://www.sciencedirect.com/science/
article/pii/S0164121220302181>.

Betz, S.; Makio, J.; Stephan, R. Offshoring of software development - methods and tools
for risk management. In: International Conference on Global Software Engineering (ICGSE
2007). Munich, Germany: IEEE, 2007. p. 280–281.

BROWN, A. W.; AMBLER, S.; ROYCE, W. Agility at scale: Economic governance,
measured improvement, and disciplined delivery. In: Proceedings of the 2013 International
Conference on Software Engineering. [S.l.]: IEEE Press, 2013. (ICSE ’13), p. 873–881. ISBN
9781467330763.

CAMARA, R.; ALVES, A.; MONTE, I.; MARINHO, M. Agile global software development: A
systematic literature review. In: Proceedings of the XXXIV Brazilian Symposium on Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2020. (SBES ’20),
p. 31–40. ISBN 9781450387538. Available at: <https://doi.org/10.1145/3422392.3422411>.

CAMARA, R.; MARINHO, M.; SAMPAIO, S.; HONóRIO, I.; MOURA, H. Outsourcing with
distributed teams in large-scale environments. In: Anais do XXV Congresso Ibero-Americano
em Engenharia de Software. Porto Alegre, RS, Brasil: SBC, 2022. p. 218–232. ISSN
0000-0000. Available at: <https://sol.sbc.org.br/index.php/cibse/article/view/20974>.

CAMARA, R.; MARINHO, M.; SAMPAIO, S.; HONóRIO, I.; MOURA, H. Outsourcing with
distributed teams in large-scale environments. In: Anais do XXV Congresso Ibero-Americano
em Engenharia de Software. Porto Alegre, RS, Brasil: SBC, 2022. p. 218–232. ISSN
0000-0000. Available at: <https://sol.sbc.org.br/index.php/cibse/article/view/20974>.

CAMARA, R.; MARINHO, M. L.; SAMPAIO, S.; CADETE, S. How do agile software startups
deal with uncertainties by covid-19 pandemic? International Journal of Software Engineering
& Applications, v. 11, p. 15–34, 07 2020.

CAMPANELLI, A. S.; PARREIRAS, F. S. Agile methods tailoring – a systematic literature
review. Journal of Systems and Software, v. 110, p. 85–100, 2015. ISSN 0164-1212. Available
at: <https://www.sciencedirect.com/science/article/pii/S0164121215001843>.

CARMEL, E.; AGARWAL, R. Tactical approaches for alleviating distance in global software
development. IEEE Software, v. 18, n. 2, p. 22–29, 2001.

CESARE, S. de; IACOVELLI, N.; MERICO, A.; PATEL, C.; LYCETT, M. Tailoring software
development methodologies in practice: A case study. CIT, v. 16, p. 157–168, 01 2008.

http://www.agilemanifesto.org/
https://books.google.com.br/books?id=G8EL4H4vf7UC
https://www.sciencedirect.com/science/article/pii/S0164121220302181
https://www.sciencedirect.com/science/article/pii/S0164121220302181
https://doi.org/10.1145/3422392.3422411
https://sol.sbc.org.br/index.php/cibse/article/view/20974
https://sol.sbc.org.br/index.php/cibse/article/view/20974
https://www.sciencedirect.com/science/article/pii/S0164121215001843

244

CHAPLIN. 1960. <https://www.charliechaplin.com/en/quotes>. [Online; accessed
15-March-2023].

CHO, J. Distributed scrum for large-scale and mission-critical projects. In: . [S.l.: s.n.], 2007.
v. 1, p. 235.

CONBOY, K.; COYLE, S.; WANG, X.; PIKKARAINEN, M. People over process: key people
challenges in agile development. 2011.

CONBOY, K.; FITZGERALD, B. Method and developer characteristics for effective agile
method tailoring: A study of xp expert opinion. ACM Trans. Softw. Eng. Methodol.,
Association for Computing Machinery, New York, NY, USA, v. 20, n. 1, jul 2010. ISSN
1049-331X. Available at: <https://doi.org/10.1145/1767751.1767753>.

CRUZES, D. S.; DYBA, T. Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering and
Measurement. [S.l.: s.n.], 2011. p. 275–284.

DANEVA, M.; van der Veen, E.; AMRIT, C.; GHAISAS, S.; SIKKEL, K.; KUMAR, R.;
AJMERI, N.; RAMTEERTHKAR, U.; WIERINGA, R. Agile requirements prioritization
in large-scale outsourced system projects: An empirical study. Journal of Systems
and Software, v. 86, n. 5, p. 1333–1353, 2013. ISSN 0164-1212. Available at:
<https://www.sciencedirect.com/science/article/pii/S0164121212003536>.

Denning, Steve. What Does It Mean To Scale Agile? 2021. <https://www.forbes.com/sites/
stevedenning/2016/04/15/what-does-it-mean-to-scale-agile/?sh=53d099c778b9>. [Online;
accessed 18-January-2021].

Digital.Ai, Inc. 16th Annual State of Agile Development Survey. 2023. <https://info.digital.
ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf>. [Online;
accessed 15-March-2023].

DIKERT, K.; PAASIVAARA, M.; LASSENIUS, C. Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal of
Systems and Software, v. 119, p. 87–108, 2016. ISSN 0164-1212. Available at:
<https://www.sciencedirect.com/science/article/pii/S0164121216300826>.

DINGSØYR, T.; FÆGRI, T. E.; ITKONEN, J. What is large in large-scale? a taxonomy of
scale for agile software development. In: PROFES. [S.l.: s.n.], 2014.

DORAIRAJ, S.; NOBLE, J.; ALLAN, G. Agile software development with distributed teams:
Senior management support. In: 2013 IEEE 8th International Conference on Global Software
Engineering. [S.l.: s.n.], 2013. p. 197–205.

DORAIRAJ, S.; NOBLE, J.; MALIK, P. Understanding team dynamics in distributed agile
software development. In: WOHLIN, C. (Ed.). Agile Processes in Software Engineering and
Extreme Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 47–61. ISBN
978-3-642-30350-0.

DYBÅ, T.; DINGSØYR, T. Empirical studies of agile software development: A systematic
review. Information and software technology, Elsevier, v. 50, n. 9-10, p. 833–859, 2008.

https://www.charliechaplin.com/en/quotes
https://doi.org/10.1145/1767751.1767753
https://www.sciencedirect.com/science/article/pii/S0164121212003536
https://www.forbes.com/sites/stevedenning/2016/04/15/what-does-it-mean-to-scale-agile/?sh=53d099c778b9
https://www.forbes.com/sites/stevedenning/2016/04/15/what-does-it-mean-to-scale-agile/?sh=53d099c778b9
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216300826

245

DYBA, T.; DINGSOYR, T.; HANSSEN, G. K. Applying systematic reviews to diverse study
types: An experience report. In: 1st Int’l Conference on Empirical Software Engineering and
Measurement (ESEM) 2007. Madrid, Spain: IEEE, 2007. p. 225–234.

EBERT, C.; GALLARDO, G.; HERNANTES, J.; SERRANO, N. Devops. IEEE Software,
v. 33, n. 3, p. 94–100, 2016.

EBERT, C.; PAASIVAARA, M. Scaling agile. IEEE Software, v. 34, n. 6, p. 98–103, 2017.

EDISON, H.; WANG, X.; CONBOY, K. Comparing methods for large-scale agile software
development: A systematic literature review. IEEE Transactions on Software Engineering,
v. 48, n. 8, p. 2709–2731, 2022.

EWUSI-MENSAH, K. Software development failures : anatomy of abandoned projects. In: .
[S.l.: s.n.], 2003.

FITZGERALD, B.; RUSSO, N. L.; O’KANE, T. An empirical study of system development
method tailoring in practice. In: European Conference on Information Systems (ECIS). [s.n.],
2000. p. 187–194. Available at: <https://api.semanticscholar.org/CorpusID:7540031>.

FITZGERALD, B.; STOL, K.-J.; O’SULLIVAN, R.; O’BRIEN, D. Scaling agile methods to
regulated environments: An industry case study. In: IEEE. 2013 35th International Conference
on Software Engineering (ICSE). [S.l.], 2013. p. 863–872.

FITZGERALD, B.; STOL, K.-J.; O’SULLIVAN, R.; O’BRIEN, D. Scaling agile methods to
regulated environments: An industry case study. In: 2013 35th International Conference on
Software Engineering (ICSE). [S.l.: s.n.], 2013. p. 863–872.

GARBAJOSA, J.; YAGÜE, A.; GONZALEZ, E. Communication in agile global software
development: An exploratory study. In: MEERSMAN, R.; PANETTO, H.; MISHRA, A.;
VALENCIA-GARCÍA, R.; SOARES, A. L.; CIUCIU, I.; FERRI, F.; WEICHHART, G.; MOSER,
T.; BEZZI, M.; CHAN, H. (Ed.). On the Move to Meaningful Internet Systems: OTM
2014 Workshops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. p. 408–417. ISBN
978-3-662-45550-0.

GLASER, B. Emergence Vs Forcing: Basics of Grounded Theory Analysis. Sociology
Press, 1992. (Emergence vs. forcing). ISBN 9781884156007. Available at: <https:
//books.google.com.br/books?id=1ZJiQgAACAAJ>.

GLASER, B.; STRAUSS, A. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Transaction, 2009. (Observations (Chicago, Ill.)). ISBN 9780202363370.
Available at: <https://books.google.com.br/books?id=rtiNK68Xt08C>.

GODOY, C. P.; SANTOS, L. M.; CRUZ, A. F.; ZERBINI, R. S.; SILVA, E. P.; PAHINS, C.
A. L. Blueprint model: A new approach to scrum agile methodology. In: Proceedings of the
14th International Conference on Global Software Engineering. IEEE Press, 2019. (ICGSE
’19), p. 85–89. Available at: <https://doi.org/10.1109/ICGSE.2019.00014>.

GUPTA, R. K.; JAIN, S.; SINGH, B. Challenges in scaling up a globally distributed legacy
product: A case study of a matrix organization. In: 2018 IEEE/ACM 13th International
Conference on Global Software Engineering (ICGSE). New York, NY, USA: Association for
Computing Machinery, 2018. (ICGSE ’18), p. 77–81. ISBN 9781450357173. Available at:
<https://doi.org/10.1145/3196369.3196389>.

https://api.semanticscholar.org/CorpusID:7540031
https://books.google.com.br/books?id=1ZJiQgAACAAJ
https://books.google.com.br/books?id=1ZJiQgAACAAJ
https://books.google.com.br/books?id=rtiNK68Xt08C
https://doi.org/10.1109/ICGSE.2019.00014
https://doi.org/10.1145/3196369.3196389

246

GUPTA, R. K.; MANIKREDDY, P.; ARYA, K. C. Pragmatic scrum transformation: Challenges,
practices & impacts during the journey a case study in a multi-location legacy software
product development team. In: Proceedings of the 10th Innovations in Software Engineering
Conference. New York, NY, USA: Association for Computing Machinery, 2017. (ISEC ’17), p.
147–156. ISBN 9781450348560. Available at: <https://doi.org/10.1145/3021460.3021478>.

GUPTA, R. K.; VENKATACHALAPATHY, M.; JEBERLA, F. K. Challenges in adopting
continuous delivery and devops in a globally distributed product team: A case study of
a healthcare organization. In: 2019 ACM/IEEE 14th International Conference on Global
Software Engineering (ICGSE). [S.l.: s.n.], 2019. p. 30–34.

HANSSEN, G. K.; ŠMITE, D.; MOE, N. B. Signs of agile trends in global software engineering
research: A tertiary study. In: IEEE. 2011 IEEE Sixth International Conference on Global
Software Engineering Workshop. [S.l.], 2011. p. 17–23.

HENDERSON-SELLERS, B.; RALYTE, J. Situational method engineering: State-of-the-art
review. J. UCS, v. 16, p. 424–478, 06 2010.

HENRIK, K.; ANDERS, I. Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds.
2012.

HILLEGERSBERG, J. van; LIGTENBERG, G.; AYDIN, M. N. Getting agile methods to
work for cordys global software product development. In: KOTLARSKY, J.; WILLCOCKS,
L. P.; OSHRI, I. (Ed.). New Studies in Global IT and Business Service Outsourcing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. p. 133–152. ISBN 978-3-642-24815-3.

HOBBS, B.; PETIT, Y. Agile methods on large projects in large organizations. Project
Management Journal, v. 48, p. 3–19, 06 2017.

HODA, R.; KRUCHTEN, P.; NOBLE, J.; MARSHALL, S. Agility in context. SIGPLAN Not.,
Association for Computing Machinery, New York, NY, USA, v. 45, n. 10, p. 74–88, oct 2010.
ISSN 0362-1340. Available at: <https://doi.org/10.1145/1932682.1869467>.

HODA, R.; NOBLE, J. Becoming agile: A grounded theory of agile transitions in
practice. In: Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, 2017. (ICSE ’17), p. 141–151. ISBN 9781538638682. Available at:
<https://doi.org/10.1109/ICSE.2017.21>.

HOLE, S.; MOE, N. B. A case study of coordination in distributed agile software development.
In: O’CONNOR, R. V.; BADDOO, N.; SMOLANDER, K.; MESSNARZ, R. (Ed.). Software
Process Improvement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 189–200. ISBN
978-3-540-85936-9.

HOSSAIN, E.; BABAR, M. A.; VERNER, J. Towards a framework for using agile approaches in
global software development. In: BOMARIUS, F.; OIVO, M.; JARING, P.; ABRAHAMSSON,
P. (Ed.). Product-Focused Software Process Improvement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. p. 126–140. ISBN 978-3-642-02152-7.

HOSSAIN, E.; BANNERMAN, P. L.; JEFFERY, R. Towards an understanding of tailoring
scrum in global software development: A multi-case study. In: Proceedings of the 2011
International Conference on Software and Systems Process. New York, NY, USA: Association
for Computing Machinery, 2011. (ICSSP ’11), p. 110–119. ISBN 9781450307307. Available
at: <https://doi.org/10.1145/1987875.1987894>.

https://doi.org/10.1145/3021460.3021478
https://doi.org/10.1145/1932682.1869467
https://doi.org/10.1109/ICSE.2017.21
https://doi.org/10.1145/1987875.1987894

247

HOSSAIN, S. S. Challenges and mitigation strategies in reusing requirements in large-scale
distributed agile software development: A survey result. In: ARAI, K.; BHATIA, R.; KAPOOR,
S. (Ed.). Intelligent Computing. Cham: Springer International Publishing, 2019. p. 920–935.
ISBN 978-3-030-22868-2.

IVARSSON, M.; GORSCHEK, T. A method for evaluating rigor and industrial relevance of
technology evaluations. Empirical Software Engineering, v. 16, p. 365–395, 06 2011.

Jalali, S.; Wohlin, C. Agile practices in global software engineering - a systematic map. In:
2010 5th IEEE International Conference on Global Software Engineering. Princeton, NJ,
USA: IEEE, 2010. p. 45–54.

JALALI, S.; WOHLIN, C. Global software engineering and agile practices: A systematic
review. Journal of Software: Evolution and Process, v. 24, 10 2012.

JHA, M. M.; VILARDELL, R. M. F.; NARAYAN, J. Scaling agile scrum software development:
Providing agility and quality to platform development by reducing time to market. In: 2016
IEEE 11th International Conference on Global Software Engineering (ICGSE). [S.l.: s.n.],
2016. p. 84–88.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic literature reviews
in software engineering. [S.l.], 2007.

KOCH, C.; JØRGENSEN, C.; OLSEN, M.; TAMBO, T. We all know how, don’t we? on
the role of scrum in it-offshoring. In: BERGVALL-KÅREBORN, B.; NIELSEN, P. A. (Ed.).
Creating Value for All Through IT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. p.
96–112. ISBN 978-3-662-43459-8.

KOMMEREN, R.; PARVIAINEN, P. Philips experiences in global distributed software
development. Empirical Softw. Engg., Kluwer Academic Publishers, USA, v. 12, n. 6,
p. 647–660, dec 2007. ISSN 1382-3256. Available at: <https://doi.org/10.1007/
s10664-007-9047-3>.

KORHONEN, K. Migrating defect management from waterfall to agile software development
in a large-scale multi-site organization: A case study. In: ABRAHAMSSON, P.; MARCHESI,
M.; MAURER, F. (Ed.). Agile Processes in Software Engineering and Extreme Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 73–82. ISBN 978-3-642-01853-4.

KORKALA, M.; ABRAHAMSSON, P. Communication in distributed agile development:
A case study. In: 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO 2007). [S.l.: s.n.], 2007. p. 203–210.

KORKALA, M.; PIKKARAINEN, M.; CONBOY, K. Distributed agile development: A case
study of customer communication challenges. In: ABRAHAMSSON, P.; MARCHESI, M.;
MAURER, F. (Ed.). Agile Processes in Software Engineering and Extreme Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 161–167. ISBN 978-3-642-01853-4.

KRUCHTEN, P. Contextualizing agile software development. Journal of software: Evolution
and Process, Wiley Online Library, v. 25, n. 4, p. 351–361, 2013.

KUMAR, K.; WELKE, R. J. Methodology engineeringr: A proposal for situation-specific
methodology construction. In: . Challenges and Strategies for Research in Systems
Development. USA: John Wiley &; Sons, Inc., 1992. p. 257–269. ISBN 0471931756.

https://doi.org/10.1007/s10664-007-9047-3
https://doi.org/10.1007/s10664-007-9047-3

248

KUSSMAUL, C. Onshore and offshore outsourcing with agility: Lessons learned. In: .
Agility Across Time and Space: Implementing Agile Methods in Global Software Projects.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 91–106. ISBN 978-3-642-12442-6.
Available at: <https://doi.org/10.1007/978-3-642-12442-6_6>.

LAL, R.; CLEAR, T. Enhancing product and service capability through scaling agility
in a global software vendor environment. In: Proceedings of the 13th International
Conference on Global Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2018. (ICGSE ’18), p. 59–68. ISBN 9781450357173. Available at:
<https://doi.org/10.1145/3196369.3196378>.

LARMAN, C.; VODDE, B. Scaling lean & agile development: Thinking and organizational
tools for large-scale scrum. In: . [S.l.: s.n.], 2008.

LARMAN, C.; VODDE, B. Large-scale Scrum: More with LeSS. Addison-Wesley,
2016. (A Mike Cohn signature book). ISBN 9780321985712. Available at: <https:
//books.google.com.br/books?id=oZ_vngEACAAJ>.

LARMAN, C.; VODDE, B. Large-scale scrum: More with LeSS. [S.l.]: Addison-Wesley
Professional, 2016.

LAUKKANEN, E.; LEHTINEN, T. O.; ITKONEN, J.; PAASIVAARA, M.; LASSENIUS,
C. Bottom-up adoption of continuous delivery in a stage-gate managed software
organization. In: Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. New York, NY, USA: Association
for Computing Machinery, 2016. (ESEM ’16). ISBN 9781450344272. Available at:
<https://doi.org/10.1145/2961111.2962608>.

LAUTERT, T.; NETO, A.; KOZIEVITCH, N. A survey on agile practices and challenges
of a global software development team. In: . [S.l.: s.n.], 2019. p. 128–143. ISBN
978-3-030-36700-8.

LEE, J. C.; JUDGE, T. K.; MCCRICKARD, D. S. Evaluating extreme scenario-based design
in a distributed agile team. In: CHI ’11 Extended Abstracts on Human Factors in Computing
Systems. New York, NY, USA: Association for Computing Machinery, 2011. (CHI EA ’11), p.
863–877. ISBN 9781450302685. Available at: <https://doi.org/10.1145/1979742.1979681>.

LEE, S.; YONG, H.-S. Distributed agile: Project management in a global environment.
Empirical Software Engineering, v. 15, p. 204–217, 04 2010.

Leffingwell, Dean. Scaled Agile Framework 6.0. 2023. https://scaledagileframework.com.
[Online; accessed 15-March-2023].

LEHTINEN, T. O.; VIRTANEN, R.; HEIKKILÄ, V. T.; ITKONEN, J. Why the development
outcome does not meet the product owners’ expectations? In: LASSENIUS, C.;
DINGSØYR, T.; PAASIVAARA, M. (Ed.). Agile Processes in Software Engineering and
Extreme Programming. Cham: Springer International Publishing, 2015. p. 93–104. ISBN
978-3-319-18612-2.

LINDERS, B. Don’t copy the spotify model. 2016. <https://www.infoq.com/news/2016/
10/no-spotify-model/>. [Online; accessed 19-June-2022].

https://doi.org/10.1007/978-3-642-12442-6_6
https://doi.org/10.1145/3196369.3196378
https://books.google.com.br/books?id=oZ_vngEACAAJ
https://books.google.com.br/books?id=oZ_vngEACAAJ
https://doi.org/10.1145/2961111.2962608
https://doi.org/10.1145/1979742.1979681
https://www.infoq.com/news/2016/10/no-spotify-model/
https://www.infoq.com/news/2016/10/no-spotify-model/

249

LINES, M.; AMBLER, S. Choose Your WoW!: A Disciplined Agile Delivery Handbook for
Optimizing Your Way of Working (WoW). Independently Published, 2019. (Choose Your
WoW Series). ISBN 9781790447848. Available at: <https://books.google.com.br/books?
id=gTd4wAEACAAJ>.

LOUS, P.; TELL, P.; MICHELSEN, C. B.; DITTRICH, Y.; KUHRMANN, M.; EBDRUP, A.
Virtual by design: How a work environment can support agile distributed software development.
In: Proceedings of the 13th International Conference on Global Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2018. (ICGSE ’18), p. 102–111. ISBN
9781450357173. Available at: <https://doi.org/10.1145/3196369.3196374>.

MAREK, K.; WIŃSKA, E.; DĄBROWSKI, W. The state of agile software development teams
during the covid-19 pandemic. In: PRZYBYŁEK, A.; MILER, J.; POTH, A.; RIEL, A. (Ed.).
Lean and Agile Software Development. Cham: Springer International Publishing, 2021. p.
24–39. ISBN 978-3-030-67084-9.

MARINHO, M.; NOLL, J.; BEECHAM, S. Uncertainty management for global software
development teams. In: 11th International Conference on the Quality of Information and
Communications Technology. Coimbra, Portugal: IEEE, 2018. p. 238–246.

MARINHO, M.; NOLL, J.; RICHARDSON, I.; BEECHAM, S. Plan-driven approaches are
alive and kicking in agile global software development. In: International Symposium on
Empirical Software Engineering and Measurement (ESEM). Porto de Galinhas, Brazil: IEEE,
2019. p. 1–11.

MARTINI, A.; BOSCH, J. A multiple case study of continuous architecting in large agile
companies: Current gaps and the caffea framework. In: 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA). [S.l.: s.n.], 2016. p. 1–10.

MARTINI, A.; PARETO, L.; BOSCH, J. Communication factors for speed and reuse
in large-scale agile software development. In: Proceedings of the 17th International
Software Product Line Conference. New York, NY, USA: Association for Computing
Machinery, 2013. (SPLC ’13), p. 42–51. ISBN 9781450319683. Available at: <https:
//doi.org/10.1145/2491627.2491642>.

MARUPING, L. M. Implementing extreme programming in distributed software
project teams: Strategies and challenges. In: . Agility Across Time and Space:
Implementing Agile Methods in Global Software Projects. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. p. 11–30. ISBN 978-3-642-12442-6. Available at: <https:
//doi.org/10.1007/978-3-642-12442-6_2>.

MATTHIESEN, S.; BJØRN, P. When distribution of tasks and skills are fundamentally
problematic: A failure story from global software outsourcing. Proc. ACM Hum.-Comput.
Interact., Association for Computing Machinery, New York, NY, USA, v. 1, n. CSCW, dec
2017. Available at: <https://doi.org/10.1145/3139336>.

MERRIAM, S. Qualitative Research: A Guide to Design and Implementation. John Wiley
& Sons, 2009. (Higher and adult education series). ISBN 9780470283547. Available at:
<https://books.google.com.br/books?id=tvFICrgcuSIC>.

MOE, N. B.; ŠMITE, D.; ŠUNDEFINEDBLIS, A.; BöRJESSON, A.-L.; ANDRéASSON, P.
Networking in a large-scale distributed agile project. In: Proceedings of the 8th ACM/IEEE

https://books.google.com.br/books?id=gTd4wAEACAAJ
https://books.google.com.br/books?id=gTd4wAEACAAJ
https://doi.org/10.1145/3196369.3196374
https://doi.org/10.1145/2491627.2491642
https://doi.org/10.1145/2491627.2491642
https://doi.org/10.1007/978-3-642-12442-6_2
https://doi.org/10.1007/978-3-642-12442-6_2
https://doi.org/10.1145/3139336
https://books.google.com.br/books?id=tvFICrgcuSIC

250

International Symposium on Empirical Software Engineering and Measurement. New York,
NY, USA: Association for Computing Machinery, 2014. (ESEM ’14). ISBN 9781450327749.
Available at: <https://doi.org/10.1145/2652524.2652584>.

NOLL, J.; RAZZAK, A.; RICHARDSON, I.; BEECHAM, S. Agile practices for the global
teaming model. In: 2016 IEEE 11th International Conference on Global Software Engineering
Workshops (ICGSEW). [S.l.: s.n.], 2016. p. 13–18.

NOORDELOOS, R.; MANTELI, C.; VLIET, H. V. From rup to scrum in global software
development: A case study. In: 2012 IEEE Seventh International Conference on Global
Software Engineering. [S.l.: s.n.], 2012. p. 31–40.

NYRUD, H.; STRAY, V. Inter-team coordination mechanisms in large-scale agile. In:
Proceedings of the XP2017 Scientific Workshops. New York, NY, USA: Association
for Computing Machinery, 2017. (XP ’17). ISBN 9781450352642. Available at:
<https://doi.org/10.1145/3120459.3120476>.

PAASIVAARA, M. Adopting safe to scale agile in a globally distributed organization. In: 2017
IEEE 12th International Conference on Global Software Engineering (ICGSE). [S.l.: s.n.],
2017. p. 36–40.

PAASIVAARA, M.; DURASIEWICZ, S.; LASSENIUS, C. Distributed agile development:
Using scrum in a large project. In: 2008 IEEE International Conference on Global Software
Engineering. [S.l.: s.n.], 2008. p. 87–95.

PAASIVAARA, M.; DURASIEWICZ, S.; LASSENIUS, C. Using scrum in distributed agile
development: A multiple case study. In: 2009 Fourth IEEE International Conference on Global
Software Engineering. [S.l.: s.n.], 2009. p. 195–204.

PAASIVAARA, M.; DURASIEWICZ, S.; LASSENIUS, C. Using scrum in distributed agile
development: A multiple case study. In: 2009 Fourth IEEE International Conference on Global
Software Engineering. [S.l.: s.n.], 2009. p. 195–204.

PAASIVAARA, M.; HEIKKILä, V. T.; LASSENIUS, C. Experiences in scaling the product
owner role in large-scale globally distributed scrum. In: 2012 IEEE Seventh International
Conference on Global Software Engineering. [S.l.: s.n.], 2012. p. 174–178.

PAASIVAARA, M.; LASSENIUS, C. Using scrum practices in gsd projects. In: .
Agility Across Time and Space: Implementing Agile Methods in Global Software
Projects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 259–278. Available at:
<https://doi.org/10.1007/978-3-642-12442-6_17>.

PAASIVAARA, M.; LASSENIUS, C. Communities of practice in a large distributed agile
software development organization-case ericsson. Information and Software Technology,
v. 56, n. 12, p. 1556 – 1577, 2014. ISSN 0950-5849. Special issue: Human Factors in
Software Development. Available at: <http://www.sciencedirect.com/science/article/pii/
S0950584914001475>.

PAASIVAARA, M.; LASSENIUS, C. Scaling scrum in a large globally distributed organization:
A case study. In: 2016 IEEE 11th International Conference on Global Software Engineering
(ICGSE). [S.l.: s.n.], 2016. p. 74–83.

https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1145/3120459.3120476
https://doi.org/10.1007/978-3-642-12442-6_17
http://www.sciencedirect.com/science/article/pii/S0950584914001475
http://www.sciencedirect.com/science/article/pii/S0950584914001475

251

PAASIVAARA, M.; LASSENIUS, C.; HEIKKILä, V. T. Inter-team coordination in large-scale
globally distributed scrum: Do scrum-of-scrums really work? In: Proceedings of the 2012
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement.
[S.l.: s.n.], 2012. p. 235–238.

PAASIVAARA, M.; VÄÄTTÄNEN, O.; HALLIKAINEN, M.; LASSENIUS, C. Supporting a
large-scale lean and agile transformation by defining common values. In: DINGSØYR, T.;
MOE, N. B.; TONELLI, R.; COUNSELL, S.; GENCEL, C.; PETERSEN, K. (Ed.). Agile
Methods. Large-Scale Development, Refactoring, Testing, and Estimation. Cham: Springer
International Publishing, 2014. p. 73–82. ISBN 978-3-319-14358-3.

PANDYA, A.; MANI, V. S.; PATTANAYAK, A. Expanding the responsibility of an offshore
team and sustainably increasing business value using safe. In: Proceedings of the 15th
International Conference on Global Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2020. (ICGSE ’20), p. 1–5. ISBN 9781450370936. Available at:
<https://doi.org/10.1145/3372787.3390441>.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies
in software engineering. In: Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering. Swindon, GBR: BCS Learning & Development Ltd.,
2008. (EASE’08), p. 68–77.

POPPENDIECK, M.; POPPENDIECK, T. Lean software development: An agile toolkit.
ACM, Addison-Wesley, 2003.

POPPENDIECK, M.; POPPENDIECK, T. Implementing lean software development: From
concept to cash. [S.l.]: Pearson Education, 2007.

RAHY, S.; BASS, J. Information flows at inter-team boundaries in agile information
systems development. In: THEMISTOCLEOUS, M.; CUNHA, P. Rupino da (Ed.).
Information Systems. Cham: Springer International Publishing, 2019. p. 489–502. ISBN
978-3-030-11395-7.

RAJPAL, M. Effective distributed pair programming. In: Proceedings of the 13th International
Conference on Global Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2018. (ICGSE 18), p. 6–10. ISBN 9781450357173. Available at:
<https://doi.org/10.1145/3196369.3196388>.

RALPH, P.; SHPORTUN, P. Scrum abandonment in distributed teams: A revelatory case. In:
. [S.l.: s.n.], 2013. ISBN 9788995217016.

RAMESH, B.; CAO, L.; MOHAN, K.; XU, P. Can distributed software development be agile?
Commun. ACM, Association for Computing Machinery, New York, NY, USA, v. 49, n. 10, p.
41–46, Oct. 2006. ISSN 0001-0782.

RAZZAK, M. A.; NOLL, J.; RICHARDSON, I.; CANNA, C. N.; BEECHAM, S. Transition
from plan driven to safe: Periodic team self-assessment. In: Product-Focused Software
Process Improvement. [S.l.: s.n.], 2017. p. 573–585. ISBN 978-3-319-69926-4.

RAZZAK, M. A.; RICHARDSON, I.; NOLL, J.; CANNA, C. N.; BEECHAM, S. Scaling agile
across the global organization: An early stage industrial safe self-assessment. In: Proceedings
of the 13th International Conference on Global Software Engineering. New York, NY, USA:

https://doi.org/10.1145/3372787.3390441
https://doi.org/10.1145/3196369.3196388

252

Association for Computing Machinery, 2018. (ICGSE ’18), p. 121–130. ISBN 9781450357173.
Available at: <https://doi.org/10.1145/3196369.3196373>.

RIZVI, B.; BAGHERI, E.; GASEVIC, D. A systematic review of distributed agile software
engineering. J. Softw. Evol. Process, John Wiley & Sons, Inc., USA, v. 27, n. 10, p. 723–762,
oct 2015. ISSN 2047-7473. Available at: <https://doi.org/10.1002/smr.1718>.

ROLLAND, K. H. Scaling across knowledge boundaries: A case study of a large-scale agile
software development project. In: Proceedings of the Scientific Workshop Proceedings
of XP2016. New York, NY, USA: Association for Computing Machinery, 2016. (XP ’16
Workshops). ISBN 9781450341349. Available at: <https://doi.org/10.1145/2962695.
2962700>.

ROLLAND, K. H.; FITZGERALD, B.; DINGSØYR, T.; STOL, K.-J. Problematizing agile
in the large: Alternative assumptions for large-scale agile development. In: ICIS. [S.l.: s.n.],
2016.

ROLLAND, K. H.; MIKKELSEN, V.; NÆSS, A. Tailoring agile in the large: Experience and
reflections from a large-scale agile software development project. In: SHARP, H.; HALL, T.
(Ed.). Agile Processes, in Software Engineering, and Extreme Programming. Cham: Springer
International Publishing, 2016. p. 244–251. ISBN 978-3-319-33515-5.

RUNESON, P.; HöST, M. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engg., Kluwer Academic Publishers,
USA, v. 14, n. 2, p. 131–164, apr 2009. ISSN 1382-3256. Available at: <https:
//doi.org/10.1007/s10664-008-9102-8>.

SABLIS, A.; SMITE, D.; MOE, N. Team-external coordination in large-scale software
development projects. J. Softw. Evol. Process, John Wiley & Sons, Inc., USA, v. 33, n. 3,
mar 2021. ISSN 2047-7473. Available at: <https://doi.org/10.1002/smr.2297>.

SALAMEH, A.; BASS, J. Spotify tailoring for b2b product development. In: 2019 45th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA). [S.l.:
s.n.], 2019. p. 61–65.

SALAMEH, A.; BASS, J. M. Heterogeneous tailoring approach using the spotify model. In:
Proceedings of the Evaluation and Assessment in Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2020. (EASE ’20), p. 293–298. ISBN 9781450377317.
Available at: <https://doi.org/10.1145/3383219.3383251>.

SCHEERER, A.; SCHIMMER, T.; KUDE, T. Coordination in large-scale agile software
development: A multiteam systems perspective. 47th Hawaii International Conference on
System Sciences (HICSS), 01 2014.

SCHWABER, K.; SUTHERLAND, J. The scrum guide: The definitive guide to scrum: The
rules of the game. In: . [S.l.: s.n.], 2020.

Schwaber, Ken and Sutherland, Jeff. The Scrum Guide. 2022.
https://www.scrum.org/resources/scrum-guide. [Online; accessed 06-August-2022].

SEKITOLEKO, N.; EVBOTA, F.; KNAUSS, E.; SANDBERG, A.; CHAUDRON, M.;
OLSSON, H. H. Technical dependency challenges in large-scale agile software development.
In: CANTONE, G.; MARCHESI, M. (Ed.). Agile Processes in Software Engineering and

https://doi.org/10.1145/3196369.3196373
https://doi.org/10.1002/smr.1718
https://doi.org/10.1145/2962695.2962700
https://doi.org/10.1145/2962695.2962700
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1002/smr.2297
https://doi.org/10.1145/3383219.3383251

253

Extreme Programming. Cham: Springer International Publishing, 2014. p. 46–61. ISBN
978-3-319-06862-6.

Sriram, R.; Mathew, S. K. Global software development using agile methodologies: A
review of literature. In: 2012 IEEE International Conference on Management of Innovation
Technology (ICMIT). Sanur Bali, Indonesia: IEEE, 2012. p. 389–393.

STREETON, R.; COOKE, M.; CAMPBELL, J. Researching the researchers: Using a
snowballing technique. Nurse researcher, v. 12, p. 35–46, 02 2004.

Sutherland, Jeff and Brown, Alex. Scrum@Scale. 2021. <https://www.scrumatscale.com/
scrum-at-scale-guide/>. [Online; accessed 16-July-2022].

TENDEDEZ, H.; FERRARIO, M. A. M.; WHITTLE, J. Software development and cscw:
Standardization and flexibility in large-scale agile development. Proc. ACM Hum. Comput.
Interact., Association for Computing Machinery, New York, NY, USA, v. 2, n. CSCW, nov
2018. Available at: <https://doi.org/10.1145/3274440>.

ULUDAG, O.; KLEEHAUS, M.; DREYMANN, N.; KABELIN, C.; MATTHES, F. Investigating
the adoption and application of large-scale scrum at a german automobile manufacturer. In:
2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE).
[S.l.: s.n.], 2019. p. 22–29.

USMAN, M.; BRITTO, R.; DAMM, L.-O.; BöRSTLER, J. Effort estimation in large-scale
software development: An industrial case study. Information and Software Technology, v. 99,
p. 21–40, 2018. ISSN 0950-5849. Available at: <https://www.sciencedirect.com/science/
article/pii/S0950584918300326>.

VÄLIMÄKI, A.; KÄÄRIÄINEN, J. Patterns for distributed scrum — a case study. In:
MERTINS, K.; RUGGABER, R.; POPPLEWELL, K.; XU, X. (Ed.). Enterprise Interoperability
III. London: Springer London, 2008. p. 85–97. ISBN 978-1-84800-221-0.

VALLON., R.; BAYRHAMMER., K.; STROBL., S.; BERNHART., M.; GRECHENIG.,
T. Identifying critical areas for improvement in agile multi-site co-development. In:
INSTICC. Proceedings of the 8th International Conference on Evaluation of Novel
Approaches to Software Engineering - ENASE,. [S.l.]: SciTePress, 2013. p. 165–172. ISBN
978-989-8565-62-4. ISSN 2184-4895.

VALLON, R.; DRäGER, C.; ZAPLETAL, A.; GRECHENIG, T. Adapting to changes in a
project’s dna: A descriptive case study on the effects of transforming agile single-site to
distributed software development. In: 2014 Agile Conference. [S.l.: s.n.], 2014. p. 52–60.

VALLON, R.; ESTÁCIO, B.; PRIKLADNICKI, R.; GRECHENIG, T. Systematic literature
review on agile practices in global software development. Information and Software
Technology, v. 96, 12 2017.

VALLON, R.; STROBL, S.; BERNHART, M.; GRECHENIG, T. Inter-organizational
co-development with scrum: Experiences and lessons learned from a distributed corporate
development environment. In: BAUMEISTER, H.; WEBER, B. (Ed.). Agile Processes
in Software Engineering and Extreme Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 150–164.

https://www.scrumatscale.com/scrum-at-scale-guide/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://doi.org/10.1145/3274440
https://www.sciencedirect.com/science/article/pii/S0950584918300326
https://www.sciencedirect.com/science/article/pii/S0950584918300326

254

WAHYUDIN, D.; HEINDL, M.; ECKHARD, B.; SCHATTEN, A.; BIFFL, S. In-time
role-specific notification as formal means to balance agile practices in global software
development settings. In: MEYER, B.; NAWROCKI, J. R.; WALTER, B. (Ed.). Balancing
Agility and Formalism in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. p. 208–222. ISBN 978-3-540-85279-7.

WENGER, E.; MCDERMOTT, R.; SNYDER, W. Cultivating Communities of Practice: A
Guide to Managing Knowledge. Harvard Business School Press, 2002. (NetLibrary Inc). ISBN
9781578513307. Available at: <https://books.google.com.br/books?id=m1xZuNq9RygC>.

WIERINGA, R.; MAIDEN, N.; MEAD, N.; ROLLAND, C. Requirements engineering paper
classification and evaluation criteria: A proposal and a discussion. Requir. Eng., v. 11, p.
102–107, 03 2006.

WILDT, D.; PRIKLADNICKI, R. Transitioning from distributed and traditional to
distributed and agile: An experience report. In: . Agility Across Time and
Space: Implementing Agile Methods in Global Software Projects. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. p. 31–46. ISBN 978-3-642-12442-6. Available at:
<https://doi.org/10.1007/978-3-642-12442-6_3>.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B.; WESSLÉN, A.
Experimentation in software engineering. In: . [S.l.]: Springer, 2012. p. 123–151. ISBN
978-3-642-29043-5.

YIN, R. Case Study Research: Design and Methods. SAGE Publications, 2003.
(Applied Social Research Methods). ISBN 9780761925521. Available at: <https:
//books.google.com.br/books?id=BWea_9ZGQMwC>.

ZAHEDI, M.; SHAHIN, M.; Ali Babar, M. A systematic review of knowledge sharing
challenges and practices in global software development. International Journal of Information
Management, v. 36, n. 6, Part A, p. 995–1019, 2016. ISSN 0268-4012. Available at:
<https://www.sciencedirect.com/science/article/pii/S026840121630384X>.

ZAMBONI, A. B.; THOMMAZO, A. D.; HERNANDES, E. C. M.; FABBRI, S. C. P. F. Start
uma ferramenta computacional de apoio à revisão sistemática. 2010.

https://books.google.com.br/books?id=m1xZuNq9RygC
https://doi.org/10.1007/978-3-642-12442-6_3
https://books.google.com.br/books?id=BWea_9ZGQMwC
https://books.google.com.br/books?id=BWea_9ZGQMwC
https://www.sciencedirect.com/science/article/pii/S026840121630384X

255

APPENDIX A – SYTEMATIC LITERATURE REVIEW SHEET

The full details of the data analysis process and the results of the categorization process
of the studies can be accessed through . The Google sheet concentrates on the studies infor-
mation, the quality assessment grades for each criterion (DYBA; DINGSOYR; HANSSEN, 2007),
the studies categorization among research and contribution facets (PETERSEN et al., 2008;
WIERINGA et al., 2006), its type, and also the study method and data collection methods used.
Moreover, the Google sheet also describes essential information regarding the studies, such as
the number of people involved, the organization’s size, scaling agile framework used, countries
involved, company domain, type of distribution, and scaling dimension (DINGSØYR; FÆGRI;

ITKONEN, 2014). Finally, the rigor and relevance evaluation followed by the extracted quotes
are also presented in the Google sheet.

http://bit.ly/3rLO8rY

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	Introduction
	Objectives

	Background
	Agile Software Development (ASD)
	Distributed Software Development (DSD)
	Agile Global/Distributed Software Development (AGSD/ADSD)
	Large-scale Agile projects
	Scaling Agile
	Agile tailoring
	Related works

	Methodology
	Systematic Literature Review
	Document selection
	Inclusion/Exclusion criteria

	Study Quality
	Study Evaluation
	Data Extraction

	Framework
	Framework Mapping
	Framework Structure
	Framework Evaluation

	Case Study
	Case Study Context
	Identification of Unit Analysis
	Data Collection
	Data Analysis

	Results
	Systematic Literature Review
	Overview of the studies
	Spotify Tailoring Practices
	Estimation Techniques (2)
	Limited Blast Radius Technique (1)
	Support/Maintenance Squads (2)
	Roadmap (2)
	Establish a clear vision (2)
	Definition of Done (DoD) (1)
	Postmortem Documentation Process (1)
	Measurement Indicators (KPIs) (1)
	Architectural Decision Process (1)
	Knowledge Sharing Process (1)
	Squad-of-Squads Meeting (1)
	Product Owners weekly meeting (1)
	Transparency (1)

	SAFe Tailoring Practices
	PI Planning (3)
	External Coaches and Consultants (3)
	Content readiness (2)
	Staff Members for POs' activities (2)
	SAFe adoption at Medium Enterprises (1)
	Project increment workshop (1)
	Weekly meeting (1)
	Definition of Done (DoD) (1)
	Program and Team Boards (1)
	Scrum of Scrums (SoS) (1)
	Automated tests (1)
	Feature team (1)
	Single product backlog (1)
	Measurement Indicators (KPIs) (1)
	Keep stakeholders close (1)
	Instructor-led training (1)
	Strategic Themes (1)
	Epic Stories (1)
	Sprints (1)
	Retrospectives (1)
	User stories (1)
	ART for Business Lines (1)
	Change Agent (1)
	Release Train Engineer (1)

	DAD Tailoring Practices
	Risk Mitigation (1)
	Spikes (1)
	Definition of Done (DoD) (1)
	Daily Tactical Huddle (1)
	User Stories (1)
	Integration and Unit Testing (1)
	T-skilled Individuals (1)
	Product, Program, and Portfolio Planning (1)
	DAD Training (1)

	LeSS Tailoring Practices
	Community of Practice (CoP) (2)
	Requirement Area (2)
	Area Product Backlog (2)
	LeSS Huge (1)
	Single-Specialist Teams (1)
	Inspect and Adapt (1)
	Design And Requirement Workshops (1)
	Retrospective Meeting (1)
	Definition of Done (DoD) (1)
	Demo Presentation (1)
	Scrum of Scrums (SoS) (1)
	Teams Representatives (1)
	Sprint Planning (1)
	Release Planning (1)
	Area Product Owner (APO) (1)
	System and Solution Architects (1)
	Domain PO (1)

	Scrum Tailoring Practices
	Daily Scrum Meeting (25)
	Scrum of Scrums (SoS) (14)
	Retrospective Meeting (10)
	Status Dashboard (10)
	Planning meeting (9)
	Multiple Communication Modes (9)
	Product/Project Manager in Scrum (8)
	Demo presentation (7)
	Wiki as Communication Tool (7)
	Proxy Product Owner (PPO) (6)
	First collocated Sprint (6)
	Tools for monitoring progress, quality and knowledge (5)
	Weekly status meeting (5)
	Definition of Done (DoD) (5)
	Component Teams x Generalized teams (5)
	Product Ownership (4)
	Requirement Workshops (4)
	Developers as Scrum Masters and Product Owners (4)
	Technical Debt Awareness (4)
	Review meeting (4)
	Maintenance Team (3)
	Technical Area Responsible (TAR) (3)
	Estimation Contracts (3)
	Code freeze (3)
	Community of Practice (CoP) (3)
	Scrum training (3)
	Area Product Owner (2)
	Behavior Driven Development (BDD) (2)
	Design Pipeline (2)
	Futurospective (1)
	Story Owners (1)
	Limited blast radius technique (1)

	TARGET Framework - Tailoring lARge-scale aGilE pracTices Framework
	IT Service Providers
	Telecommunication
	General Industry
	Software Service Provider
	Financial
	Process & Industry Automation
	Internet
	Oil and Energy
	Enterprise CRM
	Automotive Industry
	Healthcare
	Optical Industry
	Smaller Market Sectors
	Science and Research
	BI and Big Data
	Logistics
	Mission-Critical Software
	Broadcasting

	Case Study Results
	Case study demographics
	Very large-scale Scrum tailored practices
	Daily Meeting
	Scrum of Scrums (SoS)
	Retrospective meeting
	Demo presentation
	Proxy Product Owner
	Code freeze
	Product/Project manager in Scrum
	Product Ownership
	Multiple Communication Modes
	Status dashboard
	Developers as Scrum Master and Product Owners
	Estimation contracts
	Design pipeline
	Story owners
	First collocated sprint

	General Agile tailored practices
	Planning meeting
	Requirement workshop
	Behavior Driven Development
	Review Meeting
	Definition of Done
	Technical Debt Awareness

	Case study considerations

	Discussion
	Findings Discussion
	Threats to Validity
	Construct Validity
	External validity
	Conclusion Validity
	Internal Validity

	Conclusion
	Future work

	References
	Sytematic Literature Review sheet

