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ABSTRACT

Lévy processes, either flights or walks, have attracted a great deal of attention from

diverse fields. They have been successfully applied to model anomalous transport phenomena

in superconductors, turbulence, sunlight scattering in clouds, spectroscopy and random lasers.

In ecology, there are numerous evidence that living organism often forage "non-gaussianly",

a behaviour that, in theory, results in more efficient searches. Short-term deviations from

normality have also been observed in financial assets prices and Lévy processes have been

applied to analyse market microstructure and market friction. We address the problem of

one-dimensional symmetric Lévy flights that take place in a finite interval with absorbing

endpoints, i.e. the target sites. Pure Lévy flights are by no means easy to tackle analitically,

hence the jump step length is sampled from a power-law (Pareto I) distribution with shape

parameter 0 < 𝛼 < 2 thus resembling the asymptotic heavy-tailed behaviour of the Lévy

𝛼-stable distribution. For such simplified system, closed-form expressions have been reported

in the literature for the absorption probability at a specific target, the mean number of steps

and the mean path length before a target is encountered, of which the last two quantities

are of special interest since they are related to the mean first-passage time of Lévy flyers

and walkers respectively. Those approximate closed-form expressions have been obtained by

means of inversion formulae related to fractional integro-differential equations and perform

reasonably well provided that the departure site is not too close to the targets and away from

the Gaussian regime. This work not only intends to revisit the aforementioned approach but

also to explore alternative methods, such as the spectral relationship method using classical

Jacobi polynomials. This method allows the inclusion of correction terms that are difficult

to handle with inversion formulae. The obtained solutions predict the simulated results more

accurately and in broader ranges of the stability index and the departure site location than

their inversion formulae counterparts. As a drawback, one must resort to numerical methods

and regularization techniques to deal with the instability arising for the ill-conditioned nature

of problem.

Keywords: random searches; Lévy 𝛼-stable distribution; classical Jacobi polynomials.



RESUMO

Os processos de Lévy, sejam voos ou caminhadas, têm atraído muita atenção de diversos

campos. Eles foram aplicados com sucesso para modelar fenômenos de transporte anômalo

em supercondutores, turbulência, dispersão da luz solar em nuvens, espectroscopia e lasers

aleatórios. Em ecologia, existem inúmeras evidências de que organismos vivos costumam for-

ragear "não gaussianamente", um comportamento que, em teoria, resulta em buscas mais

eficientes. Desvios de curto prazo da normalidade também foram observados nos preços dos

ativos financeiros e os processos de Lévy foram aplicados para analisar a microestrutura e o

atrito do mercado. Abordamos o problema de voos de Lévy simétricos unidimensionais que

ocorrem em um intervalo finito com extremidades absorventes, ou seja, os locais de destino. Os

vôos Lévy puros não são fáceis de lidar analiticamente, portanto, o comprimento do passo do

salto é amostrado a partir de uma distribuição de lei de potência (Pareto I) com parâmetro de

forma 0 < 𝛼 < 2, assemelhando-se assim ao comportamento assintótico de cauda pesada do

Lévy Distribuição 𝛼-estável. Para tal sistema simplificado, expressões de forma fechada foram

relatadas na literatura para a probabilidade de absorção em um alvo específico, o número mé-

dio de etapas e o comprimento médio do caminho antes de um alvo ser encontrado, dos quais

as duas últimas quantidades são de interesse especial uma vez que estão relacionados com o

tempo médio de primeira passagem dos voadores e caminhantes de Lévy, respectivamente. Es-

sas expressões aproximadas de forma fechada foram obtidas por meio de fórmulas de inversão

relacionadas a equações integrais-diferenciais fracionárias e funcionam razoavelmente bem,

desde que o local de partida não esteja muito próximo dos alvos e longe do regime gaussiano.

Este trabalho pretende não só revisitar a abordagem acima mencionada, mas também explorar

métodos alternativos, como o método de relações espectrais usando polinômios clássicos de

Jacobi. Este último permite a inclusão de termos de correção que são difíceis de lidar com

fórmulas de inversão. As soluções obtidas prevêem os resultados simulados com mais precisão

e em intervalos mais amplos do índice de estabilidade e da localização do local de partida

do que suas contrapartes de fórmulas de inversão. Como desvantagem, deve-se recorrer a

métodos numéricos e técnicas de regularização para lidar com a instabilidade decorrente da

natureza mal condicionada do problema.

Palavras-chave: buscas aleatórias; distribuição 𝛼-estável de Lévy; polinômios de Jacobi.
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1 INTRODUCTION

Consider the problem addressed in (BULDYREV et al., 2001b) and (BULDYREV et al., 2001a):

a Lévy random flyer or walker in a finite interval [0, 𝐿] with absorbing boundaries, i.e. the

process terminates whenever the flyer/walker reaches an endpoint of the interval for the

first time. The key result of the aforementioned works is to derive closed-form approximate

expressions for the absorption probability at a given endpoint, the mean number of steps 𝑁(𝑥0)

and the mean path length 𝑆(𝑥0) traversed by an asymptotic Lévy flyer before absorption given

that flight departs from 𝑥0 - to see this, recall (2.34). 𝑁(𝑥0) and 𝑆(𝑥0) are relevant because

they correspond to the mean first-passage time of Lévy flights and walks, respectively. Those

expressions are presented below

𝑁(𝑥0) =
sin 𝜋𝛼

2
𝜋𝛼
2

[︃
(𝐿− 𝑥0)𝑥0

𝑙20

]︃𝛼
2

(1.1)

and

𝑆(𝑥0) = 𝑙0
sin 𝜋𝛼

2
𝜋𝛼−1

2

[︃
(𝐿− 𝑥0)𝑥0

𝑙20

]︃𝛼
2

+ 𝐿(2− 𝛼)
2(1− 𝛼)

⎡⎣1− 4
𝜓𝛼
(︁
𝑥0
𝐿

)︁
+ 𝜓𝛼

(︁
1− 𝑥0

𝐿

)︁
𝛼(𝛼 + 2)B

(︁
𝛼
2 ,

𝛼
2

)︁
⎤⎦ , (1.2)

where B(𝑥, 𝑦) stands for Euler Beta function and the function 𝜓𝛼(𝑧) can be expressed in

terms of the Gaussian hypergeometric function as 𝜓𝛼(𝑧) = 2𝐹1(2− 𝛼
2 ,

𝛼
2 ; 𝛼2 + 2; 𝑧)𝑧

𝛼
2 +1.

Despite the good agreement of (1.1) and (1.2) with numerical solutions and simulations,

the authors disclosed that those approximate expressions fail in the vicinity of the boundaries

and approaching normality 𝛼 → 2. This work is intended to elaborate further on this issue:

its origin and how to tackle it.

The manuscript is organised as follows. Chapter 2 presents the core ideas regarding random

walk models are introduced using the Weierstrass random walk as "specimen". This "patho-

logical" specimen will make way to the Generalised Central Limit Theorem (GCLT for short),

which in this context concerns the asymptotic distribution of the position of the random

walker, followed by a brief review of the main features of Lévy 𝛼-stable distribution. Finally,

a brief review of (truncated) Lévy random flights and the results in (BULDYREV et al., 2001a)

and (BULDYREV et al., 2001b) regarding the mean first passage time of Lévy flights/walks that

motivate this work.

Chapter 3 is devoted to the mathematical tools on which the work relies. Among the

topics discussed there, the characterisation of the classical Jacobi polynomials, the spectral
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relationships method for solving fractional integral equations and the proof of relevant spectral

relations involving Jacobi polynomials stand out. In addition, a section is devoted to the closed-

form solution of the generalized Abel integral equation by means of some results of the theory

of singular integral equations.

It will be shown in Chapter 4 that a general class of observables recorded along the flight

path are the solution of a Fredholm integral equation of the second kind. For a power law

single step length distribution, such integral equation is proved to take the approximate form

of a generalised Abel integral equation. With the aid of the closed-form inversion formulae

introduced in Chapter 3, the latter integral equation is solved for quantities such as the

the absorption probability at a boundary site and the mean number of steps taken before

absorption.

Perhaps the most important results of the work are presented in Chapter 5, where the

spectral relationship method is applied to the solution of the generalized Abel equation in-

cluding first-order corrections that cannot be easily accounted for in closed-form inversion

formulae approaches such as (BULDYREV et al., 2001b) and (BULDYREV et al., 2001a). In that

sense, the solutions obtained by means of spectral relationship method perform better than

closed-form solutions, at the expense of resorting to numerical methods and regularization

techniques.
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2 LÉVY RANDOM FLIGHTS/WALKS: CONCEPTUAL FRAMEWORK

2.1 WHY TO LÉVY FLY/WALK RANDOMLY?

One of the astonishing facts about random walk models is that they are so simple in their

essence that one can model a vast range of systems with them. For instance, Lévy flight

statistics have been observed in diverse context such as spectroscopy, where spectral random

flights occur in energy space (ZUMOFEN; KLAFTER, 1994); optics, where intensity fluctuations

observed in random lasers follow an 𝛼-stable distribution (GOMES et al., 2016); atmospheric

sciences, where evidence of Lévy-like transport of solar photons in (fractal) clouds has been

observed (PFEILSTICKER, 1999); mathematical finance, where stock price indexes exhibit non-

normal temporal scaling behaviour (MANTEGNA; STANLEY, 1995).

A very interesting application of Lévy flights in ecology is the Lévy flight foraging hypothe-

sis (VISWANATHAN; RAPOSO; LUZ, 2008). Let us suppose that a forager searches for randomly

located target sites (for instance, food sources). A search strategy can be regarded as optimal

if it minimizes the length of the flight paths taken by the forager between two encounters:

the shorter the path, the lesser the "fuel" consumption (neglect jammed junctions for the

sake of discussion) and it can be assign a stability index 0 < 𝛼𝑜𝑝𝑡 ≤ 2, whose value depends

roughly on the recovery time of a foraged site and the abundance of sites. For instance, in

a regime of sparse (diluted) sites and non-destructive foraging conditions allowing to quick

site regeneration, the optimal strategy is attained for 𝛼𝑜𝑝𝑡 ≈ 1. However, if food sources are

widely available, there is no need to take unusual long jumps since there is no efficiency gain

compared to a Brownian strategy. The Levy flight foraging hypothesis states that, if Lévy

flight searches turn out to be optimal, living organisms might have learned to exploit those

advantages. Although some issues have been raised regarding methodological shortcomings

that may lead to false positives, there is empirical evidence in favor of the Lévy flight foraging

hypothesis arising from data collected from species of diverse degree of complexity: dinoflag-

ellates (BARTUMEUS et al., 2003), flies (COLE, 1995), albatrosses (HUMPHRIES et al., 2012),

even extinct 50 My-old sea urchins (SIMS et al., 2014).

On the other hand, Lévy walks solve a particular shortcoming of Lévy flights that will

be disclosed at the end of the introduction. In so doing, they have been applied to relevant

problems in physics such as turbulent flow and chaotic dynamics observed in superconducting

devices (SHLESINGER; KLAFTER; J. West, 1986), as well as in chaotic Hamiltonian systems
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(SHLESINGER; ZASLAVSKY; KLAFTER, 1993) (ZASLAVSKY, 2005). In the context of biological

physics, Lévy walks have recently been applied to study the anomalous diffusive behaviour of

Plasmodium -the parasite that causes malaria- in the search for intravasation hotspots in the

inner layers of the skin (FORMAGLIO et al., 2023).

2.2 WEIERSTRASS RANDOM WALK

This section is intended to present some fundamental ideas regarding random walks using

the one-dimensional Weierstrass discrete random walk (REICHL, 1998) as example.

Let us consider a flyer initially located at 0 that takes instantaneous jumps of length

|Δ𝑋𝑖| = 𝜆𝑏𝐽𝑖 , (2.1)

where 𝐽𝑖 are independent identically distributed random variables sampled with probability

mass function given by

𝑝𝐽(𝑗) =
(︂

1− 1
𝑎

)︂(︂1
𝑎

)︂𝑗
. (2.2)

Each jump is directed either to the left or to the right with equal probability and remaining

still is not an option. The real constants 𝑎, 𝑏 are greater than 1, the length scale parameter

𝜆 is strictly positive and successive jumps occur at a regular time span denoted by 𝜏 . The

position of walker after 𝑛 jumps, 𝑋𝑛, is equivalent to the sum of the 𝑛 iid random variables

Δ𝑋𝑖.

Let us set 𝑎 = 2 and take 𝑏 from {1.10, 1.30, 1.62, 2.00, 3.00}. A single sample of a

flight trajectory for each value of 𝑏 is presented in Figure 1. Note that the sample paths for

𝑏 ∈ {1.62, 2.00} (Exhibit b) consist of clusters of "localized" motion connected by unusual

large jumps, a behaviour that is not evident for 𝑏 ∈ {1.10, 1.30} (Exhibit a).
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Figure 1 – Sample path of a Weierstrass random walks with parameters 𝑎 = 2 and 𝑏 ∈ {1.10, 1.30, 1.62, 2.00}.
In contrast to 𝑏 ∈ {1.10, 1.30} (Exhibit a), the sample paths for 𝑏 ∈ {1.62, 2.00} show localized
motion (clusters) connected by infrequently large jumps (Exhibit b).

(a)

(b)

Source: The author (2023)

As for the asymptotic distribution of the position of the random walker, a sample of

25000 paths was simulated for each pair of parameters (𝑎, 𝑏) and the quantile-quantile plot

(hereafter, QQ plot) of the empirical distribution of the position after 10000 jumps, 𝑋10000,

against the standard normal is depicted in Figure 2. The normality of 𝑋10000 is evident for the
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chosen value of 𝑎 and 𝑏 ∈ {1.10, 1.30} (Exhibit a). Nevertheless, it is also evident that the

distribution of 𝑋10000 strongly deviates from normal behaviour (Exhibit b). In that case, the

shape of the QQ plot clearly points at a heavy-tailed distribution.

Figure 2 – Quantile-quantile plot of the distribution of the position of the random walker after 10000 jumps,
𝑋10000, for 𝑎 = 2 and 𝑏 ∈ {1.10, 1.30, 1.62, 2.00} versus the standard normal distribution. The
QQ plots in (a) supports the normality of 𝑋10000 for 𝑏 ∈ {1.10, 1.30}. Nevertheless, this is not the
case for 𝑏 ∈ {1.62, 2.00}, for which the QQ plots in (b) reveal heavy-tailed limiting distributions.
A sample of 25.000 paths was generated for each pair of parameters.

(a)

(b)

Source: The author (2023)
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For the time being, let us leave the "abnormal" cases in Figure 2 (b) aside. The character-

istic function 𝜙Δ𝑋(𝑘) of the single jump r.v. Δ𝑋, defined as 𝜙Δ𝑋(𝑘) ≡ ℱ [𝑓Δ𝑋 ] = E[𝑒𝑖𝑘𝑋 ],

is given by

𝜙Δ𝑋(𝑘) = ℱ
⎡⎣1

2

(︂
1− 1

𝑎

)︂∑︁
𝑗≥0

(︂1
𝑎

)︂𝑗 (︁
𝛿(𝑥− 𝜆𝑏𝑗) + 𝛿(𝑥+ 𝜆𝑏𝑗)

)︁⎤⎦ (2.3)

=
(︂

1− 1
𝑎

)︂∑︁
𝑗≥0

(︂1
𝑎

)︂𝑗
cos
(︁
𝑘𝜆𝑏𝑗

)︁
=
(︁
1− 𝑏−𝛼

)︁∑︁
𝑗≥0

𝑏−𝛼𝑗 cos
(︁
𝑘𝜆𝑏𝑗

)︁
, (2.4)

with 𝛼 such that 𝑏𝛼 ≡ 𝑎. It is known as Weierstrass function and has very special features.

If 0 < 𝛼 < 1, i.e. 𝑏 > 𝑎, then 𝜙Δ𝑋(𝑘) is uniformly continuous everywhere, yet nowhere

differentiable. In addition, it exhibits self-similarity (REICHL, 1998). Indeed, it follows from

(2.4) that

𝜙Δ𝑋(𝑏𝑘) = 𝑏−𝛼𝜙Δ𝑋(𝑘) + (1− 𝑏−𝛼) cos𝜆𝑘, (2.5)

i.e. the magnified 𝜙Δ𝑋(𝑏𝑘) corresponds to the rescaled 𝜙Δ𝑋(𝑘) up to an additive "level" term.

The reason to deal with the characteristic function is that the iterated convolution of 𝑛

distributions in Euclidean space translates into a very convenient product of characteristic

functions in Fourier space, hence the characteristic function of the position 𝑋𝑛 after 𝑛 idd

jumps Δ𝑋 corresponds to (𝜙Δ𝑋(𝑘))𝑛. For small positive 𝜆, one has by retaining the first two

terms from the cosine power series expansion in (2.4) that

𝜙Δ𝑋(𝑘) = (1− 𝑏−𝛼)
∞∑︁
𝑗=0

(︂
𝑏−𝛼𝑗 − 1

2𝑘
2𝜆2𝑏(2−𝛼)𝑗 +𝑂(𝜆4)

)︂
. (2.6)

If 𝛼 > 2, which is equivalent to 𝑏 <
√
𝑎, then the geometric series arising from the second

term is convergent and one has that

log𝜙Δ𝑋(𝑘) ≈ log
[︃
(1− 𝑏−𝛼)

(︃
1

1− 𝑏−𝛼 −
1
2

𝜆2

1− 𝑏2−𝛼𝑘
2
)︃]︃

(2.7)

≈ log
[︃
1− 1

2
𝜆2

𝑏2
𝑏𝛼 − 1
𝑏𝛼−2 − 1𝑘

2
]︃

(2.8)

≈ −1
2
𝜆2

𝑏2
𝑏𝛼 − 1
𝑏𝛼−2 − 1𝑘

2. (2.9)

This means that the characteristic function of 𝑋𝑛 is 𝜙𝑋𝑛(𝑘) ≈ exp
(︃
−1

2
𝑛𝜆2

𝑏2
𝑏𝛼 − 1
𝑏𝛼−2 − 1𝑘

2
)︃

,

hence the limiting distribution is normal with mean 0 and variance 𝑛𝜆2

𝑏2
𝑏𝛼 − 1
𝑏𝛼−2 − 1 . This is a

particular case of a more general result: the Central Limit Theorem (hereafter CLT). Observe

that 𝜎 ∼
√
𝑛 roughly corresponds to the relation

√︁
⟨𝑥2⟩ ∼

√
𝑡 valid for Brownian motion

(EINSTEIN, 1905).
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Now let us include a time scale parameter 𝜏 such that the 𝑛-th jump taking place in the

instant 𝑡 = 𝑛𝜏 and take the asymptotic 𝑛→∞ continuous time limit in which both the time

span between successive jumps 𝜏 → 0 and the scale parameter of a single jump 𝜆→ 0, while

keeping both 𝜆2

𝜏𝑏2
𝑏𝛼 − 1
𝑏𝛼−2 − 1 → 𝐷𝛼 and 𝑡 finite. For that purpose, consider

lim
𝜏→0

lim
𝜆→0

𝜙𝑋𝑛+1 − 𝜙𝑋𝑛

𝜏
= lim

𝜏→0
lim
𝜆→0

𝜙Δ𝑋 − 1
𝜏

𝜙𝑋𝑛 . (2.10)

The left hand side of (2.10) corresponds to 𝜕𝜙𝑋(𝑘,𝑡)
𝜕𝑡

, while the right hand side is equivalent

to −𝐷𝛼𝑘
2𝜙𝑋𝑛 = 𝐷𝛼ℱ

[︁
𝜕2𝑓𝑋(𝑥,𝑡)

𝜕𝑥2

]︁
, where 𝑓𝑋 is the probability density function corresponding

to 𝜙𝑋 , in virtue of (2.8) and the Fourier transform property ℱ
[︁

d2𝑓
d𝑥2

]︁
(𝑘) = −𝑘2𝐹 [𝑓 ] (𝑘).

Therefore, one has in Euclidean space that

𝜕𝑓𝑋 (𝑥, 𝑡)
𝜕𝑡

= 𝐷𝛼
𝜕2𝑓𝑋 (𝑥, 𝑡)

𝜕𝑥2 . (2.11)

This is an extremely important result: a discrete random walk subject to the CLT corresponds,

in the continuous limit, to a diffusion process.

2.3 GENERALIZED CENTRAL LIMIT THEOREM

If the position of the Weierstrass walker in Figure 2 does not converge to a normal distri-

bution according to the CLT, what is the asymptotic distribution then? As mentioned earlier,

the answer to this question lies in the Generalised Central Limit Theorem (GCLT for short).

More than a formal proof of the GCLT, a compelling argument from Renormalisation

Group theory, originally published by (CALVO et al., 2010), is presented below. Before that, let

us define what a (strictly) stable distribution is.

Definition 2.1. Let 𝑋1, 𝑋2 be independent identically-distributed (iid) random variables such

that 𝑋𝑖 is distributed according to 𝐹 , i.e. 𝑋𝑖 ∼ 𝐹 . The distribution 𝐹 is said stable iff for

any pair of positive constants 𝑐1 and 𝑐2, there are constants 𝑐 and 𝑑 such that 𝑐𝑋 + 𝑑
𝑑=

𝑐1𝑋1 + 𝑐2𝑋2 ∼ 𝐹 . If 𝑑 = 0 for all choices of 𝑐1 and 𝑐2, i.e. there is no constant shift, the

distribution 𝐹 is said strictly stable.

Hereafter, the discussion will be restricted to strictly stable distributions, for which a

"classical" example is the normal distribution 𝑁(0, 𝜎2). To see that the normal distribution is

strictly stable, let𝑋𝑖 ∼ 𝑁(0, 𝜎2) and 𝑐1 and 𝑐2 be arbitrary positive constants. The distribution

of the random variable 𝑌𝑖 = 𝑐𝑖𝑋𝑖 follows a normal distribution 𝑁(0, 𝑐2
𝑖𝜎

2) and the sum of
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two iid random variables 𝑌1 and 𝑌2 follows the distribution 𝑁 (0, (𝑐2
1 + 𝑐2

2)𝜎2). The latter

assertion can be easily seen in Fourier space as the product of the characteristic functions of

each r.v. is exp
(︁
−1

2𝑐
2
1𝜎

2𝑘2
)︁

exp
(︁
−1

2𝑐
2
2𝜎

2𝑘2
)︁

= exp
(︁
−1

2 (𝑐2
1 + 𝑐2

2)𝜎2𝑘2
)︁
. Thus, one has that

𝑐𝑋 = 𝑐1𝑋1 + 𝑐2𝑋2 with 𝑋 ∼ 𝑁(0, 𝜎2) and 𝑐 =
√︁
𝑐2

1 + 𝑐2
2.

Let 𝑓𝑋(𝑥) be any probability density function on R and 𝑇𝑎 the RG transformation defined

as

𝑇𝑎𝑓𝑋(𝑥) = |𝑎| · (𝑓𝑋 * 𝑓𝑋) (𝑎𝑥) = |𝑎|
ˆ ∞

−∞
d𝑠 𝑓𝑋(𝑠)𝑓𝑋(𝑎𝑥− 𝑠), (2.12)

with scalar 𝑎.

Take into account that the distribution of the sum of two random variables can be expressed

as the convolution of their distributions (REICHL, 1998). In addition, recall that for 𝑍 = 𝑔(𝑌 )

with invertible function 𝑔(𝑥), the preservation of measure d𝐹𝑍 = d𝐹 𝑌 implies that 𝑓𝑍(𝑧) =

|𝑔′ [𝑔−1(𝑧)]|−1𝑓𝑌 [𝑔−1(𝑧)]. Therefore, 𝑇𝑎 is an operator acting on probability measures that

represents aggregation and scaling in the sense that two iid random variables are aggregated

into another r.v. 𝑌 = 𝑋1 + 𝑋2, which is rescaled into 𝑍 = 1
𝑎
𝑌 in a similar fashion to

Kadanoff’s spin block and rescaling. For the present work, let us focus on proper dilations,

that is 𝑎 ∈ R+.

The fact that a convolution is involved in (2.12) is a strong indication to have it mapped

into Fourier space in terms of the characteristic function 𝜙𝑋(𝑘) ≡ ℱ [𝑓𝑋 ](𝑘) as

̃︀𝑇𝑎𝜙𝑋(𝑘) =
[︁
𝜙𝑋

(︁
𝑘
𝑎

)︁]︁2
. (2.13)

The characteristic function has certain properties arising from Kolmogorov axioms, in partic-

ular that the pdf is real-valued, non-negative and normalised to the unity: 𝜙𝑋(0) = 1 and

𝜙𝑋(−𝑘) = 𝜙*
𝑋(𝑘). Therefore, 𝜙𝑋(𝑘) takes the general form 𝜙𝑋(𝑘) = exp [𝑔(𝑘)] with 𝑔(𝑘) a

complex-valued function such that 𝑔(0) = 0 and 𝑔(−𝑘) = 𝑔*(𝑘).

Let us determine the fixed points of ̃︀𝑇𝑎𝜙𝑋(𝑘), that is functions 𝜙(0)
𝑋 (𝑘) for which ̃︀𝑇𝑎𝜙(0)

𝑋 (𝑘) =

𝜙
(0)
𝑋 (𝑘) and thus one has that

[︁
𝜙

(0)
𝑋

(︁
𝑘
𝑎

)︁]︁2
= 𝜙

(0)
𝑋 (𝑘). In terms of 𝑔(𝑘), the latter implies that

𝑔(0)
(︁
𝑘
𝑎

)︁
= 1

2𝑔
(0)(𝑘). (2.14)

The simplest form of 𝑔(0)(𝑘) that satisfies (2.14) is

𝑔(0)(𝑘) = 0 (2.15)

for all 𝑘. In this case, the characteristic function is 𝜙(0)
𝑋 (𝑘) = 1, whose corresponding dis-

tribution is a Dirac delta 𝑓 (0)
𝑋 (𝑥) = ℱ−1[1](𝑥) = 𝛿(𝑥). Furthermore, suppose that 𝑔(0)(𝑘) is
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a homogeneous function of degree 𝛼 that does not depend on the phase of the argument,

i.e. 𝑔(0)(𝑡𝑘) = 𝑔(0)(|𝑡𝑘|) = 𝑡𝛼𝑔(0)(|𝑘|) for any (real) scalar 𝑡. Therefore, (2.14) implies that

𝑎𝛼 = 2 which in turn leads to

𝛼 = log 2
log 𝑎 · (2.16)

Observe that the aforementioned requirements on 𝑔(0)(𝑘), in order to have a proper charac-

teristic function, are satisfied by the assumption

𝑔(0)(𝑘) = 𝐴|𝑘|𝛼1(0,∞)(𝑘) + 𝐴*|𝑘|𝛼1(0,∞)(−𝑘), (2.17)

with 𝐴 ∈ C and assuming certain restrictions on the phase that are too specific to be described

here.

At this point, note that the stable points of the RG flow (2.15) and (2.17) correspond to

stable distributions in the sense of Definition 2.1.

Regarding the stability of the RG flow in the vicinity of the fixed points 𝜙(0)
𝑋 corresponding

to (2.15) and (2.17), let us consider the linearised flow in Fourier space around them as

𝛿
[︁ ̃︀𝑇 (0)

𝑎 𝜙𝑋
]︁
≡ ̃︀𝑇𝑎𝜙𝑋 − 𝜙(0)

𝑋 ≈
𝛿 ̃︀𝑇𝑎
𝛿𝜙𝑋

⃒⃒⃒⃒
⃒
𝜙

(0)
𝑋

𝛿𝜙𝑋 (2.18)

𝛿
[︁ ̃︀𝑇 (0)

𝑎 𝜙𝑋
]︁
≈ (̃︂𝐷𝑇 𝑎)𝜙(0)

𝑋

𝛿𝜙𝑋 . (2.19)

With regard to (̃︂𝐷𝑇 𝑎)𝜙(0)
𝑋

, whose effect on 𝜁 is given by (̃︂𝐷𝑇 𝑎)𝜙(0)
𝑋

𝜁(𝑘) = 2𝜙(0)
𝑋

(︁
𝑘
𝑎

)︁
𝜁
(︁
𝑘
𝑎

)︁
as

a result of (2.13), let us consider the eigenvalue problem given by

2 exp
[︁
𝑔
(︁
𝑘
𝑎

)︁]︁
𝜁𝑠
(︁
𝑘
𝑎

)︁
= 𝜆𝑠𝜁𝑠(𝑘), (2.20)

with eigenfunction 𝜁𝑠(𝑘) and the corresponding eigenvalue 𝜆𝑠.

The following proposition regarding the point spectrum of (̃︂𝐷𝑇 𝑎)𝜙(0)
𝑋

holds. It is stated

without proof for the sake of brevity but the reader can find further details in (CALVO et al.,

2010).

Proposition 2.1. Let 𝜎𝑝 be the point spectrum of (̃︂𝐷𝑇 𝑎)𝜙(0)
𝑋

and 𝜙
(0)
𝑋 = exp(𝑔(𝑘)) with

𝑔(𝑘) in (2.17).

1. If Re(𝐴) > 0 , then 𝜎𝑝 = {𝜆𝑠 : 0 < |𝜆𝑠| ≤ 2}.

2. If Re(𝐴) = 0 or 𝐴 = 0, then 𝜎𝑝 = {2}.
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Assume that 𝜁𝑠(𝑘) = exp 𝑔(𝑘) · 𝜉𝑠(𝑘). Recall that 𝜙𝑋(𝑘) being a fixed point of 𝑇𝑎 implies

that (2.14) holds, so the exponential functions on both sides of (2.20) cancel out, leading to

2𝜉𝑠
(︁
𝑘
𝑎

)︁
= 𝜆𝑠𝜉𝑠(𝑘). (2.21)

Let us suppose that 𝜉𝑠(𝑘) is a homogeneous function of degree 𝑠, that is 𝜉𝑠(𝑡𝑘) = 𝑡𝑠𝜉𝑠(𝑘)

for any real 𝑡, (2.21) leads to 2𝑎−𝑠 = 𝜆𝑠. Recalling that 𝑎 = 2 1
𝛼 , one has that

𝜆𝑠 = 21− 𝑠
𝛼 . (2.22)

Observe that 𝑠 > 𝛼 corresponds to |𝜆𝑠| < 1, i.e. the fixed point 𝜙(0)
𝑋 is stable in the

directions determined by 𝜁𝑠. Conversely, if 𝑠 < 𝛼, then 1 < |𝜆𝑠| < 2 and 𝜙(0)
𝑋 is unstable in

the directions 𝜁𝑠, which is the case for 𝑓𝑋(𝑥) = 𝛿(𝑥) as a result of item 2 in Proposition 2.1.

Now comes the statement of the GCLT. In few words, it means that if the asymptotic

distribution of the sum of iid random variables exists, it has to be a stable distribution with

characteristic function 𝜙𝑋(𝑘) = exp [𝑔(𝑘)] corresponding to (2.17) or (trivially) (2.15).

Theorem 2.1. [B. Gnedenko P. Lévy] (METZLER; KLAFTER, 2000) Let 𝑋𝑖 be iid random

variables and 𝑌𝑛 = ∑︀𝑛
𝑖=1 𝑋𝑖. If 𝑌𝑛 converges in distribution to 𝑌 , i.e. 𝐹𝑌𝑛(𝑦) 𝑛→∞−→ 𝐹𝑌 (𝑦) for

all 𝑦, then 𝐹𝑌 is stable.

Given a parameter 𝑎 = 2 1
𝛼 > 1 (i.e. 𝛼 > 0) and an initial pdf 𝑓𝑋 , let us apply 𝑇∞

𝑎

iteratively and consider the asymptotic distribution 𝑇∞
𝑎 𝑓𝑋 = lim𝑛→∞ 𝑇 𝑛𝑎 𝑓𝑋 . In general, the

characteristic function 𝜙𝑋(𝑘) corresponding to 𝑓𝑋 admits the following expansion

𝜙𝑋(𝑘) = 1 +𝐵|𝑘|𝜈1(0,∞)(𝑘) +𝐵*|𝑘|𝜈1(0,∞)(−𝑘) + 𝑜(|𝑘|𝜈), (2.23)

with 0 < 𝜈 ≤ 2. Moreover, taking into account that ℱ [𝑓 *𝑘
𝑋 ] = (𝜙𝑋)𝑘 with 𝑘 ∈ Z+, (2.13)

can be directly generalised to 𝑛 iterations as

̃︀𝑇 𝑛𝑎 𝜙𝑋(𝑘) =
[︁
𝜙𝑋

(︁
𝑘
𝑎

)︁]︁2𝑛

(2.24)

=
[︁
1− 𝑎−𝜈𝑛

(︁
𝐵|𝑘|𝜈1(0,∞)(𝑘) +𝐵*|𝑘|𝜈1(0,∞)(−𝑘)

)︁
+ 𝑜(𝑎−𝜈𝑛|𝑘|𝜈)

]︁2𝑛

≈
[︁
1− (2𝑛)− 𝜈

𝛼

(︁
𝐵|𝑘|𝜈1(0,∞)(𝑘) +𝐵*|𝑘|𝜈1(0,∞)(−𝑘)

)︁]︁2𝑛

. (2.25)

Let us consider the case 𝜈 = 𝛼. As exp(𝑥) = lim𝑛→∞
(︁
1 + 𝑥

𝑛

)︁𝑛
by virtue of the binomial

theorem, one has that

̃︀𝑇∞
𝑎 𝜙𝑋(𝑘) ≈ exp

[︁
−𝐵|𝑘|𝛼1(0,∞)(𝑘)−𝐵*|𝑘|𝛼1(0,∞)(−𝑘)

]︁
(2.26)
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and the asymptotic distribution corresponds to (2.17), hence it is a stable distribution with

stability index 𝛼. It should be noted that pointwise convergence of a sequence of characteristic

functions 𝜙(𝑛) → 𝜙 implies convergence in distribution 𝐹𝑛 → 𝐹 as a result of Lévy continuity

theorem (FRISTEDT; LAWRENCE, 1996).

On the other hand, if 𝜈 > 𝛼, then ̃︀𝑇∞
𝑎 𝜙𝑋(𝑘) ≈ 1 − (2𝑛)(1− 𝜈

𝛼) = 1 and the limiting

distribution corresponds to (2.15), i.e. to 𝛿(𝑥).

2.3.1 Lévy 𝛼-stable distribution

In general, the Lévy 𝛼-stable distribution family admits the parameterisation 𝑆(𝛼, 𝛽, 𝜆, 𝛿)

with the stability index or characteristic exponent 𝛼 ∈ (0, 2], skewness parameter 𝛽 ∈ [−1, 1],

scale parameter 𝜆 > 0 and location parameter 𝛿 and the characteristic function given by

𝜙𝑍(𝑘) = exp (𝑖𝛿𝑘 − 𝜆𝛼|𝑘|𝛼 [1 + 𝑖𝛽 sgn(𝑘)Φ]) (2.27)

with

Φ = 2
𝜋

log(𝜆|𝑘|)1{1}(𝛼) +
(︁
|𝜆𝑘|1−𝛼 − 1

)︁
tan 𝜋𝛼

2 1(0,1)∪(1,2](𝛼). (2.28)

Hereafter, we will only be interested in symmetric distribution, i.e. 𝛽 = 0, located at

𝛿 = 0. In such case, one has that

𝜙𝑍(𝑘) = exp (−𝜆𝛼|𝑘|𝛼) . (2.29)

Note that, as 𝜙′
𝑍(𝑘)

⃒⃒⃒
𝑘=0
∼ −𝜆𝛼|𝑘|𝛼−1, the expectation value of 𝑍 given (2.29) is finite

iff 𝛼 > 1. With regard to the variance of 𝑍, it is not finite in the parameter region of interest

as 𝜙′′
𝑍(𝑘)

⃒⃒⃒
𝑘=0
∼ −𝜆𝛼|𝑘|𝛼−2.

As for the probability density function 𝑓𝑍(𝛼, 𝛽, 𝜆, 𝛿; 𝑧), closed-forms expressions in terms of

standard functions are not always possible. Notable exceptions are the Gaussian distribution

𝑓𝑍(2, 0, 𝜆, 0; 𝑧) = (2𝜋𝜆2)− 1
2 exp

[︂
−1

2

(︁
𝑧
𝜆

)︁2
]︂
; the Cauchy-Lorentz distribution corresponding

to 𝛼 = 1, for which one has that 𝑓𝑍(1, 0, 𝜆, 0; 𝑧) =
[︂
𝜋𝜆

(︂
1 +

(︁
𝑧
𝜆

)︁2
)︂]︂−1

; and the Lévy

distribution 𝑓𝑍( 1
2 , 1, 𝜆, 0; 𝑧) = (2𝜋𝜆2)− 1

2 exp
[︁
− 𝜆

2𝑧

]︁ (︁
𝑧
𝜆

)︁− 3
2 .

Nevertheless, 𝑓𝑍(𝛼, 𝛽, 𝜆, 𝛿; 𝑧) admits representations in terms of Fox H-functions (SCHNEI-

DER, 1986) (RATHIE; OZELIM; OTINIANO, 2016), defined as

𝐻𝑚,𝑛
𝑝,𝑞

[︃
(𝑎1, 𝐴1) · · · (𝑎𝑝, 𝐴𝑝)
(𝑏1, 𝐵1) · · · (𝑏𝑞, 𝐵𝑞)

; 𝑧
]︃

= 1
2𝜋𝑖

ˆ

𝐿

d𝑠 𝑧−𝑠 Ξ𝑚,𝑛
𝑝,𝑞 (𝑠) (2.30)
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with

Ξ𝑚,𝑛
𝑝,𝑞 (𝑠) =

∏︀𝑚
𝑖=1 Γ (𝑏𝑖 +𝐵𝑖𝑠)∏︀𝑝

𝑗=𝑛+1 Γ (𝑎𝑗 + 𝐴𝑗𝑠)

∏︀𝑛
𝑗=1 Γ (1− 𝑎𝑗 − 𝐴𝑗𝑠)∏︀𝑞
𝑖=𝑚+1 Γ (1− 𝑏𝑖 −𝐵𝑖𝑠)

(2.31)

and the integration path 𝐿 on the complex plane is such that it separates the poles of

Γ (𝑏𝑖 +𝐵𝑖𝑠) with 1 ≤ 𝑖 ≤ 𝑚 from the poles of Γ (1− 𝑎𝑗 + 𝐴𝑗𝑠) with 1 ≤ 𝑗 ≤ 𝑛.

In the case of our interest, one has that the representation of 𝑓𝑍(𝛼, 0, 𝜆, 0; 𝑧) in terms of

H-functions for 0 < 𝛼 < 2 and 𝛼 ̸= 1 is

𝑓𝑍(𝛼, 0, 𝜆, 0; 𝑧) = 1
𝛼𝜆

𝐻1,1
2,2

⎡⎣
(︁
1− 1

𝛼
, 1
𝛼

)︁
,
(︁

1
2 ,

1
2

)︁
(0, 1),

(︁
1
2 ,

1
2

)︁ ; 𝑧
𝜆

⎤⎦ , (2.32)

for which one needs to consider the contour integral of Ξ1,1
2,2(𝑠) =

Γ (𝑠) Γ
(︁

1
𝛼

(1− 𝑠)
)︁

Γ
(︁

1
2 (1 + 𝑠)

)︁
Γ
(︁

1
2 (1− 𝑠)

)︁ .

Since the poles of Γ(𝑠) are located at 𝑠−(𝑘) = −𝑘 and the poles of Γ
(︁

1
𝛼

(1− 𝑠)
)︁

are located

at 𝑠+(𝑘) = 1+𝛼𝑘, for any non-negative integer 𝑘, let the integration path 𝐿 be any line with

Re{𝑠} = 𝑐 with 0 < 𝑐 < 1, as depicted in Figure 3.

Figure 3 – Poles of the Fox function 𝐻1,1
2,2 in the Lévy 𝛼-stable pdf (2.32) for 𝛼 = 1.2. The integration path

𝐿 encloses the poles 𝑠+ where the residues are computed.

C

𝑠−(0)𝑠−(1)𝑠−(2)𝑠−(3)𝑠−(4) 𝑠+(0) 𝑠+(1) 𝑠+(2) 𝑠+(3)

𝐿

Source: The author (2023)

The choice of the path 𝐿 separates 𝑠− from 𝑠+, and enclose 𝑠+ such that the contribution

of the arc at 𝑠 → +∞ is negligible. The residue of Γ
(︁

1
𝛼

(1− 𝑠)
)︁

at each 𝑠+ is (−1)𝑘

𝑘! and,

by the residue theorem, one has for 𝑥 ≥ 0 that

𝑓𝑍(𝛼, 0, 𝜆, 0; 𝑧) = 1
𝛼𝜆

∞∑︁
𝑘=0

(−1)𝑘

𝑘!
Γ (1 + 𝛼𝑘)

Γ
(︁
1 + 𝛼

2𝑘
)︁

Γ
(︁
−𝛼

2𝑘
)︁ (︂𝑥

𝜆

)︂−(1+𝛼𝑘)

= 1
𝜋𝛼𝜆

∞∑︁
𝑘=1

(−1)𝑘−1

𝑘! Γ (1 + 𝛼𝑘) sin 𝛼𝜋𝑘
2

(︂
𝑥

𝜆

)︂−(1+𝛼𝑘)
, (2.33)
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where the last step follows from the reflection formulae (3.4) and (3.6). In the asymptotic

limit 𝑥→∞, the leading term is clearly

𝑓𝑍(𝛼, 0, 𝜆, 0; 𝑧) ∼ 1
𝜋𝛼𝜆

Γ (1 + 𝛼) sin 𝛼𝜋
2

(︁
𝜆
𝑥

)︁1+𝛼
(2.34)

2.4 REVISITING WEIERSTRASS RANDOM WALKS

With regard to the asymptotic distribution of the Weiertrass random walk when 𝑏 >
√
𝑎,

let us briefly introduce a new tool: the Generalised Hurst Exponent 𝐻(𝑞). It was originally

proposed by (BARABÁSI; VICSEK, 1991) for the characterisation of multifractality of self-affine

fractals as an extension of the ordinary Hurst exponent 𝐻 such that ⟨(𝑋𝑡+𝜏 −𝑋𝑡)2⟩ ∼ 𝜏 2𝐻 ,

with 𝐻 = 1
2 in the realm of the CLT. The driving idea is that a single scaling exponent 𝐻,

instead of a "spectrum" of 𝐻’s, does not provide enough information if, for instance, small and

large fluctuations scale differently, different parts of data exhibit different scaling behaviour

or fractals subsets are interlocked (KANTELHARDT et al., 2002). It was shown in (BARABÁSI;

VICSEK, 1991) that, for a certain class of self-affine functions, the 𝑞th-order height-height

correlation function with "lag" 𝜏 , namely 𝑘𝑞(𝜏) = 𝐸 [ |𝑋𝑡+𝜏 −𝑋𝑡|𝑞 ], scales with 𝜏 as

𝑘𝑞(𝜏) ∼ 𝜏 𝑞𝐻(𝑞). (2.35)

The non-linear dependence of 𝑞𝐻(𝑞) on 𝑞 points at a multi-affine structure of the increments

𝑋𝑡+𝜏 − 𝑋𝑡. For the purpose of this section, it suffices to say that, although general Lévy

processes exhibit multiscaling, by neglecting the Brownian component and considering a stable

process, one has that 𝐻(𝑞) = 1
𝛼

for 𝑞 < 𝛼 with 𝛼 being the stability index (NAKAO, 2000)

(JAFFARD, 1999).

Let us analyse the spectrum of 𝐻(𝑞) for the Weierstrass random walks considered in

Section 2.2. Figure 4 was obtained from a single sample path simulated for each pair of

parameters 𝑎, 𝑏. Figure 4(a) supports that (2.35) holds for the Weierstrass random walks con-

sidered. However, it is Figure 4(b) and (c) what clearly exhibit the signature of an asymptotic

Lévy 𝛼-stable distribution: for each pair 𝑎, 𝑏, there is a threshold value 𝑞* such that 𝐻(𝑞) is

a constant 𝐻 for 𝑞 < 𝑞* and 𝐻(𝑞) decays as a power of 𝑞, for 𝑞 > 𝑞*. Also note that 𝑞* ≈ 𝛼

and that 𝐻 ≈ 𝛼−1 for 𝛼 < 2.
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Figure 4 – Generalized Hurst exponent 𝐻(𝑞) for the position of the Weierstrass random walker with 𝑎 = 2
and 𝑏 ∈ {1.1, 1.3, 1.62, 2, 3}, i.e. 𝛼 ∈ {7.27, 2.64, 1.44, 1.00, 0.63} respectively.(a) Sample of a
log-log plot of 𝑘0.5(𝜏) against 𝜏 that support the power-law relation (2.35). (b) For the pairs of
parameters 𝑎, 𝑏 with 𝑏 >

√
𝑎 (0 < 𝛼 < 2) for which departures from normality were observed

earlier, 𝑞𝐻(𝑞) is linear up to a threshold 𝑞*. From 𝑞* on, the curve flattens to 𝑞𝐻(𝑞) ≈ 1. (c) The
plot of 𝐻(𝑞) vs. 𝑞 suggests that 𝐻(𝑞) = 1

𝛼 for 𝑞 smaller than 𝑞* ≈ 𝛼, which is a signature of a
Lévy 𝛼-stable distribution.

(a)

(b)

(c)

Source: The author (2023)
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Having provided some empirical evidence, some analytical results regarding the asymptotic

𝛼-stable distribution of the Weierstrass random walk when 𝑏 >
√
𝑎 comes next. Let us express

cos (𝑘𝜆𝑏𝑗) in terms of Mellin transforms (ZASLAVSKY, 2005), that is

cos
(︁
𝑘𝜆𝑏𝑗

)︁
=ℳ−1{ℳ{cos

(︁
𝑘𝜆𝑏𝑗

)︁
}}, (2.36)

where the direct Mellin transform ℳ is defined as

ℳ{𝑓(𝑘)}(𝑠) ≡
ˆ ∞

0
d𝑘 𝑓(𝑘)𝑘𝑠−1 (2.37)

and the inverse transform ℳ−1 as

ℳ−1{𝜑(𝑠)}(𝑘) ≡ 1
2𝜋𝑖

ˆ 𝑐+𝑖∞

𝑐−𝑖∞
d𝑠 𝜑(𝑠)𝑘−𝑠 (2.38)

with real 𝑐 in the fundamental strip of 𝜑(𝑠). It can be proved thatℳ{cos 𝑘}(𝑠) = Γ(𝑠) cos 𝜋𝑠
2

in the fundamental strip 0 < Re{𝑠} < 1, hence ℳ{cos (𝑘𝜆𝑏𝑗)}(𝑠) = (𝜆𝑏𝑗)−𝑠 Γ(𝑠) cos 𝜋𝑠
2 .

Therefore, 𝜙Δ𝑋(𝑘) in (2.4) admits the representation

𝜙Δ𝑋(𝑘) =
(︁
1− 𝑏−𝛼

)︁∑︁
𝑗≥0

𝑏−𝛼𝑗
ˆ 𝑐+𝑖∞

𝑐−𝑖∞
d𝑠
(︁
𝜆𝑏𝑗

)︁−𝑠
Γ(𝑠) cos 𝜋𝑠

2 𝑘
−𝑠 (2.39)

= 1
2𝜋𝑖

(︁
1− 𝑏−𝛼

)︁ ˆ 𝑐+𝑖∞

𝑐−𝑖∞
d𝑠Γ(𝑠) cos 𝜋𝑠

2 (𝜆|𝑘|)−𝑠∑︁
𝑗≥0

𝑏−(𝛼+𝑠)𝑗. (2.40)

The geometric series converges for |𝑏−(𝛼+𝑠)| < 1, which is valid for 0 < 𝛼 < 2 and 𝑠 in

the region Re{𝑠} > −𝛼, leading to

𝜙Δ𝑋(𝑘) = 1
2𝜋𝑖

(︁
1− 𝑏−𝛼

)︁ˆ 𝑐+𝑖∞

𝑐−𝑖∞
d𝑠Γ(𝑠) cos 𝜋𝑠

2 (𝜆|𝑘|)−𝑠 1
1− 𝑏−(𝛼+𝑠) . (2.41)

The function Γ(𝑠) cos 𝜋𝑠
2 has poles at 𝑠1(𝑗) = −2𝑗 with residue (−1)𝑗

(2𝑗)! for any non-negative

integer 𝑗, whereas
(︁
1− 𝑏−(𝛼+𝑠)

)︁−1
has poles at 𝑏𝑠2 = 𝑏−𝛼𝑒𝑖2𝜋𝑙 for any integer 𝑙 with residue

1
log 𝑏 , which corresponds to 𝑠2(𝑙) = −𝛼 + 𝑖2𝜋𝑙

log 𝑏 , as seen in Figure 5.
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Figure 5 – Poles of the Mellin transform of the characteristic function of the Weierstrass random walk with
parameters 𝑎 = 2 and 𝛼 = 0.22. The integration path 𝐿′ encloses the region that contains every
pole (shaded area).

C

𝑠1(0)𝑠1(1)𝑠1(2)

𝑠2(−1)

𝑠2(0)

𝑠2(1)

𝐿′

Source: The author (2023)

Enclosing the poles in the halfplane Re{𝑠} < 0 with the countour 𝐿′ in Figure 5 and

applying the residue formula lead to

𝜙Δ𝑋(𝑘) = 1 +
(︁
1− 𝑏−𝛼

)︁ ∞∑︁
𝑗=1

(−1)𝑗

(2𝑗)!
(𝜆|𝑘|)2𝛼𝑗

1− 𝑏−𝛼𝑏2𝑗

+ 𝜆𝛼|𝑘|𝛼 (1− 𝑏−𝛼)
log 𝑏

∞∑︁
𝑙=−∞

Γ (𝑠2(𝑙)) cos 𝜋𝑠2(𝑙)
2 exp

(︃
−𝑖2𝜋𝑙 log (𝜆|𝑘|)

log 𝑏

)︃
, (2.42)

where the first term corresponds to 𝑠(1)
𝑘 and the third term come from 𝑠

(2)
𝑙 . For the asymptotic

distribution, the leading terms of log𝜙𝑋𝑛(𝑘) corresponds to 𝑘 = 0 and 𝑙 = 0, namely

log𝜙𝑋𝑛(𝑘) ≈ log
(︃

1 + 𝜆𝛼|𝑘|𝛼 (1− 𝑏−𝛼)
log 𝑏 Γ (−𝛼) cos 𝜋𝛼2

)︃

≈ 1− 𝜆𝛼|𝑘|𝛼 (1− 𝑏−𝛼)
log 𝑏

⃒⃒⃒
Γ (−𝛼) cos 𝜋𝛼2

⃒⃒⃒
. (2.43)

In this way, we have found that the asymptotic distribution corresponds to an 𝛼-stable

Lévy distribution with stability index 𝛼. Observe that in the region of interest 0 < 𝛼 < 2,

Γ (−𝛼) cos 𝜋𝛼
2 < 0 because cos 𝜋𝛼

2 < 0 for 1 < 𝛼 < 2 and Γ (−𝛼) < 0 for 0 < 𝛼 < 1.

With regard to the continuous time and space limit 𝜏 → 0 and the scale parameter of a

single jump 𝜆→ 0, while keeping finite 𝜆𝛼

𝜏
→ 𝛿 and 𝑡 ≡ 𝑛𝜏 , one can prove for the right hand

side of (2.10) that (REICHL, 1998) (MONTROLL; WEST, 1979)

lim
𝜏→0

lim
𝜆→0

𝜙Δ𝑋 − 1
𝜏

= −𝛼𝛿 |Γ (−𝛼) cos 𝜋𝛼
2 | |𝑘|

𝛼. (2.44)
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One can see that from (2.43), where the factor (1− 𝑏−𝛼)
log 𝑏 in (2.43) admits the following

expansion with respect to 𝑏 around 1

(1− 𝑏−𝛼)
log 𝑏 = 𝛼− 1

2(𝑏− 1)𝛼2 + 1
12(𝑏− 1)2𝛼2(2𝛼 + 3) +𝑂

(︁
(𝑏− 1)3

)︁
. (2.45)

Hence, for 𝑏 = 1 + 𝜖 with small 𝜖 > 0, (2.44) corresponds to (2.44).

One has from (2.44), with 𝐷𝛼 ≡ 𝛼𝛿 |Γ (−𝛼) cos 𝜋𝛼
2 |, that (2.10) becomes

𝜕𝜙𝑋 (𝑘, 𝑡)
𝜕𝑡

= −𝐷𝛼|𝑘|𝛼𝜙𝑋(𝑘, 𝑡). (2.46)

The left-hand side of (2.46) is proportional to the Riesz derivative of the probability density

function in the space coordinate, defined as 𝜕𝛼𝑓𝑋(𝑥, 𝑡)
𝜕𝑥𝛼

≡ ℱ−1 [−|𝑘|𝛼𝜙𝑋(𝑘, 𝑡)]. Therefore,

(2.46) corresponds to the one-dimensional fractional diffusion equation with Riesz derivative

of order 𝛼
𝜕𝑓𝑋(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝛼

𝜕𝛼𝑓𝑋(𝑥, 𝑡)
𝜕𝑥𝛼

. (2.47)

In this way, a bridge is established between continuous-time random walks (CTRWs)

subject to the GCLT and anomalous diffusion. It is relevant to disclose that anomalous diffusion

and, in general, anomalous transport are clearly much more rich and complex subject than

the previous result. For instance, CTRWs not only allow for a step length distribution but

also for a distribution of the time elapsed between successive jumps (the waiting time) and

both distributions determine the diffusion regime (METZLER; KLAFTER, 2000). For example, a

heavy-tailed waiting time distribution with non-finite expectation value such as the probability

density function 𝑓𝑇 (𝑡) ∼ 𝑡−(𝜉+1) with 𝜉 < 1 and a step-length distribution with finite variance

(a sort of "procrastinating" walker) result in a sub-diffusive regime in which ⟨𝑥2⟩ ∼ 𝑡𝜉 ,

i.e. the mean squared displacement grows sub-linearly with time (METZLER; KLAFTER, 2000).

Nevertheless, the present work is not focused on dynamical aspects, so the simplified example

presented above fits our purpose here.

Although the work is focused on one-dimensional random walks, it is worth mentioning

that Pólya (PóLYA, 1921) proved that, provided that the variance of the jump distribution is

finite, random walkers in 1D and 2D are persistent, that is the probability of returning to the

origin is equal to 1. However, that is not the case in 3D, let alone higher dimensions, where

random walkers are transient, i.e. there is a finite probability that they will never return to

the starting point, a result that has been humorously stated as "a drunk man will find his

way home, but a drunk bird may get lost forever" 1. On the other hand, if the variance of
1 Quote attributed to Shizuo Kakutani
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the jump distribution is not finite, as in isotropic Rayleigh-Pearson random walks in 2D and

3D with Weierstrass step length distribution (2.3), the random walk is transient if 0 < 𝛼 < 2

(HUGHES; SHLESINGER; MONTROLL, 1981) and exhibits clustering in all scales above 𝜆.

2.5 LÉVY FLIGHTS

One can argue that Lévy flights have already been introduced in the previous section,

without being called as such. Let us consider the case in which a one-dimensional random

"flyer" takes instantaneous jumps with step length sampled from a Lévy 𝛼-stable distribution

with stability index 0 < 𝛼 < 2, that is individual jumps with non-finite variance. As done in

the previous sections, let us leave aside the waiting time distribution by considering 𝛿(𝑡− 𝜏),

i.e. jumps take place at regular time 𝜏 . This finite (null) waiting time distribution implies that

the stochastic process is a Markov process (CHECHKIN et al., 2008), that is the conditional

probability of a path 𝑃 (𝑥1, · · · 𝑥𝑛−1|𝑥𝑛) given the current state 𝑥𝑛 depends solely on the

state 𝑥𝑛−1 𝑃 (𝑥1, · · ·𝑥𝑛−1|𝑥𝑛) = 𝑃 (𝑥𝑛−1|𝑥𝑛) (REICHL, 1998) or, in informal terms, the system

has no memory beyond the previous state. If one considered the "procrastinating" walker

mentioned before, Markovian property would no longer be valid as procrastination induces

long-range time correlations (the walker is "trapped" in the same state).

The instantaneous nature of jumps in Lévy flights is problematic for physical objects. In

contrast, Lévy walks are physically feasible as time and space are coupled by means of the

finite velocity of the walker, although the time evolution and the analytical treatment become

more difficult. In any case, Lévy walks are not the main subject of this work and the closest

contact with them will be when dealing with the mean path length traversed by a flyer before

absorption, as it corresponds to the mean first passage time of a walker.

In either case, flight or walk, there is a major caveat regarding pure Lévy processes: the

non-finite single jump variable conflicts with the finite size of systems. Therefore, real world

feasible models must take into account the fact that the size of the system imposes an upper

cut-off to the jump length. An alternative is to consider truncated jumps whose pdf is given

by

𝑓
(𝑇𝑆)
Δ𝑋 = 𝑐 𝑓Δ𝑋(𝛼, 0, 𝜆, 0;𝑥)1(− 𝐿

2 ,−
𝐿
2 )(𝑥), (2.48)

where 𝐿 is the size of the system and 𝑐 is a normalising constant (MANTEGNA; STANLEY,

1994). It is clear that such cut-off implies finite variance, which in turn bring us back to the
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realm of CLT. Interestingly enough, the rate of convergence of 𝑋𝑛 to a normal distribution

can be "ultralow", depending on the stability index 𝛼 and 𝐿, so a truncated flight would not

be distinguishable from the pure flight provided that the number of jumps 𝑛 (i.e. the time

frame), yet large, was less than a crossover 𝑛𝑥 ∼ 𝐿𝛼 above which the CLT regime becomes

apparent. In other words, if the duration of the process is shorter than the crossover time, one

cannot tell the difference between a pure and a truncated process.
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3 MATHEMATICAL BACKGROUND

This chapter is intended to provide a brief presentation of the mathematical tools and

results that constitute the foundations of this dissertation.

3.1 SPECIAL FUNCTIONS

3.1.1 Gamma function

The Gamma function is generally defined by the integral (3.1)

Γ(𝑧) =
ˆ ∞

0
d𝑠 𝑠𝑧−1𝑒−𝑠, (3.1)

which is convergent for any 𝑧 ∈ C,Re(𝑧) > 0. Note that, for 𝑧 = 𝑛 with 𝑛 ∈ N, the iterated

partial integration (𝑛− 1 times) with d𝑣 = 𝑒−𝑠d𝑠 and 𝑢1 = 𝑠𝑧−1, 𝑢2 = 𝑠𝑧−2 up to 𝑢𝑛−1 = 𝑠

respectively leads to

Γ(𝑛) = (𝑛− 1)! . (3.2)

Moreover, it can be proved by partial integration with 𝑢 = 𝑠𝑧 and d𝑣 = 𝑒−𝑠 d𝑠 that, in the

domain of convergence of (3.1),

Γ(𝑧 + 1) = 𝑧Γ(𝑧). (3.3)

Despite the restrictions for the convergence of (3.1), Γ(𝑧) can be extended to the com-

plex half plane Re(𝑧) < 0 excluding non-positive integer 𝑧, by means of analytic (rather

meromorphic) continuation (LANG, 1999) through the iterative application of (3.3). For

that purpose, consider the connected sequence [(𝑓0, 𝐷0) , (𝑓1, 𝐷1) , · · · (𝑓𝑛, 𝐷𝑛) , · · · ] with

𝑓𝑘 = [(𝑧)𝑘]
−1 ´ ∞

0 d𝑠 𝑠𝑧+𝑘−1𝑒−𝑠 and 𝐷𝑘 = {𝑧 ∈ C, (Re(𝑧) > −𝑘) ∧ (−Re(𝑧) /∈ Z+)}.

The symbol (𝑎)𝑛 denotes the Pochhammer symbol (or rising factorial) defined as (𝑎)𝑛 =

𝑎(𝑎+ 1) · · · (𝑎+ 𝑛− 1) with (𝑎)0 = 1.

Another remarkable property of Γ(𝑧) is Euler’s reflection formula

Γ (𝑧) Γ (1− 𝑧) = 𝜋

sin 𝜋𝑧 , (3.4)

which is valid for any non-integer 𝑧 ∈ C.

Here follows a sketch of a proof of (3.4). Let us take
´ ∞

0

´ ∞
0 d𝑠 d𝑡 𝑡𝑧−1𝑒−𝑠(𝑡+1) as the

starting point. Changing 𝑡 by 𝑢 ≡ 𝑠𝑡 and integrating in 𝑢 leads to
´ ∞

0 d𝑠Γ(𝑧)𝑠−𝑧𝑒−𝑠. Provided
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that Re(𝑧) < 1, one has that the latter expression is equivalent to Γ(𝑧)Γ(1−𝑧). On the other

hand, let us integrate with respect to 𝑠 first, leading to
´ ∞

0 d𝑡 𝑡𝑧−1 (𝑡 + 1)−1
[︁
−𝑒−𝑠(𝑡+1)

]︁ ⃒⃒⃒∞
0

.

By integrating with respect to 𝑡, one has that
´ ∞

0 d𝑡 𝑡𝑧−1 (𝑡 + 1)−1 = 𝜋 csc 𝜋𝑧. The latter

follows, for instance, from the Mellin transform of the function (𝑡+1)−1 (ERDÉLYI et al., 1954).

Taking into account that sin(𝜋𝑧) = (−1)𝑛−1 sin(−𝜋𝑧 + 𝑛𝜋) for any 𝑛 ∈ N, one has from

(3.4) that

Γ(𝑧)Γ(1− 𝑧) = (−1)𝑛−1 𝜋

sin 𝜋(𝑛− 𝑧) = (−1)𝑛−1Γ(𝑛− 𝑧)Γ(𝑛+ 1− 𝑧), (3.5)

which can be cast into the form

Γ (𝑧 − 𝑛)
Γ (1 + 𝑧) = (−1)𝑛−1 Γ (−𝑧)

Γ (𝑛+ 1− 𝑧) . (3.6)

Finally, as Γ(𝑧) generalises the factorial for non-integer arguments by virtue of (3.3), the

binomial coefficient can be extended to complex arguments 𝑧, 𝑤 as follows (DAVIS, 1972)(︃
𝑧

𝑤

)︃
= Γ(𝑧 + 1)

Γ(𝑤 + 1)Γ(𝑧 − 𝑤 + 1) . (3.7)

3.1.2 Euler Beta function

The incomplete Beta function is defined in (3.8) where 𝑢 ∈ [0, 1]. The integral is conver-

gent provided that 𝑤, 𝑧 are complex numbers with strictly positive real part

B(𝑤, 𝑧;𝑢) =
ˆ 𝑢

0
d𝑠 𝑠𝑤−1(1− 𝑠)𝑧−1. (3.8)

Moreover, the incomplete Beta function admits the representation (3.9) in terms of the

Gaussian hypergeometric function 2𝐹1 (see 3.1.3)

B(𝑤, 𝑧;𝑢) = 𝑢𝑤

𝑤
2𝐹1(𝑤, 1− 𝑧; 𝑧 + 1;𝑢). (3.9)

The Euler Beta function B(𝑤, 𝑧) is a particular case of (3.8) with 𝑢 = 1. Despite the

conditions for the convergence of (3.8), namely that Re(𝑤) > 0 and Re(𝑧) > 0, B(𝑤, 𝑧)

admits continuation by means of

B(𝑤, 𝑧) = Γ(𝑤)Γ(𝑧)
Γ(𝑤 + 𝑧) (3.10)

and following a similar procedure as in 3.1.1. To proof (3.10), one can begin with Γ(𝑧)Γ(𝑤) =´ ∞
0 d𝑡

´ ∞
0 d𝑞 𝑒−(𝑡+𝑞)𝑡𝑤−1𝑞𝑧−1. The change of variables 𝑦 = 𝑡+𝑞 and 𝑟 = 𝑞

𝑡
leads to Γ(𝑧)Γ(𝑤) =
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´ ∞
0 d𝑦

´ ∞
0 d𝑟 𝑦

(𝑟+1)2 𝑒
−𝑦𝑦𝑤+𝑧−2

(︁
1
𝑟+1

)︁𝑤−1 (︁
𝑟
𝑟+1

)︁𝑧−1
. With the substitution 𝑠 = 1

𝑟+1 one has

that d𝑠 = − 1
(𝑟+1)2 d𝑟, hence Γ(𝑧)Γ(𝑤) =

´ ∞
0 d𝑦 𝑒−𝑦𝑦𝑤+𝑧−1 ´ 1

0 d𝑠 𝑠𝑤−1 (1− 𝑠)𝑧−1. The latter

expression clearly corresponds to Γ(𝑤 + 𝑧)B(𝑤, 𝑧).

Among the many relations that follow from (3.10) and (3.15), one has that both B(𝑥, 𝑦)

and b(𝑥, 𝑦) is symmetric under the exchange of parameters

B(𝑤, 𝑧) = B(𝑧, 𝑤) (3.11)

and the following recursion holds

B(𝑤 + 1, 𝑧) = B(𝑤, 𝑧) 𝑤

𝑤 + 𝑧
. (3.12)

Let b(𝑤, 𝑧) denote the reciprocal Beta function defined as

b(𝑤, 𝑧) = [B(𝑤, 𝑧)]−1 = Γ(𝑤 + 𝑧)
Γ(𝑤)Γ(𝑧) . (3.13)

With such definition, the generalisation of the binomial coefficients to any pair of complex

numbers 𝑤 and 𝑧 is given by (︃
𝑤

𝑧

)︃
= b(𝑧 + 1, 𝑤 − 𝑧 + 1)

𝑤 + 1 . (3.14)

For example, if one of the parameters, say 𝑧, belongs to N, one has the following repre-

sentation in terms of the Pochhammer symbol

b(𝑤, 𝑛) = (𝑤)𝑛
(𝑛− 1)! . (3.15)

3.1.3 Gaussian hypergeometric function

The hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐;𝑤) can be defined in terms of Gauss hypergeo-

metric series (3.16) (OBERHETTINGER, 1972)

2𝐹1(𝑎, 𝑏; 𝑐;𝑤) =
∞∑︁
𝜈=0

(𝑎)𝑛(𝑏)𝑛
(𝑐)𝑛

𝑤𝜈

𝜈! = Γ(𝑐)
Γ(𝑎)Γ(𝑏)

∞∑︁
𝜈=0

Γ(𝑎+ 𝑛)Γ(𝑏+ 𝑛)
Γ(𝑐+ 𝑛)

𝑤𝜈

𝜈! . (3.16)

Recall from 3.1.1 that (𝑎)𝑛 ≡ Γ(𝑎+𝑛)
Γ(𝑎) .

The series (3.16) is absolutely convergent when Re{𝑐− 𝑎− 𝑏} > 0, conditionally conver-

gent when −1 < Re{𝑐− 𝑎− 𝑏} ≤ 0 and divergent elsewhere. What is more important for

the present work is that it becomes a finite sum whenever 𝑎 or 𝑏 is equal to a negative inte-

ger. Moreover, it is known that 2𝐹1(𝑎, 𝑏; 𝑐;𝑤) is a particular solution to the hypergeometric
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differential equation (3.17) (OBERHETTINGER, 1972)[︃
𝑤(1− 𝑤) d2

d𝑤2 + [𝑐− (𝑎+ 𝑏+ 1)𝑤] d
d𝑤 − 𝑎𝑏

]︃
𝑓(𝑤) = 0. (3.17)

Among the myriad of properties and identities involving 2𝐹1(𝑎, 𝑏; 𝑐;𝑤), a particular linear

transformation formula will be of use later on. It states that

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = Γ(𝑐)Γ(𝑎− 𝑏)
Γ(𝑎)Γ(𝑐− 𝑏)(−𝑧)−𝑏

2𝐹1(𝑏, 1− 𝑐+ 𝑏; 1− 𝑎+ 𝑏; 𝑧−1)

+ Γ(𝑐)Γ(𝑏− 𝑎)
Γ(𝑏)Γ(𝑐− 𝑎)(−𝑧)−𝑎

2𝐹1(𝑎, 1− 𝑐+ 𝑎; 1− 𝑏+ 𝑎; 𝑧−1) (3.18)

with |arg(−𝑧)| < 𝜋 (ERDÉLYI et al., 1953) (OBERHETTINGER, 1972). This comes from the

integral representation

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = Γ(𝑐)
2𝜋𝑖Γ(𝑎)Γ(𝑏)

ˆ 𝑖∞

−𝑖∞
d𝑠 Γ(𝑎+ 𝑠)Γ(𝑏+ 𝑠)Γ(−𝑠)

Γ(𝑐+ 𝑠) (−𝑧)𝑠. (3.19)

3.2 A GENERAL OVERVIEW ON INTEGRAL EQUATIONS

3.2.1 Weighted 𝐿2 spaces

Let 𝜌(𝑥) be a non-negative function on the interval Ω = (𝑎, 𝑏), i.e.
´ 𝑏
𝑎

d𝑥 𝜌(𝑥) > 0, and

define the inner product between two real-valued functions 𝑓(𝑥) and 𝑔(𝑥) on Ω with the

weight function 𝜌(𝑥) as

⟨𝑓 |𝑔⟩𝜌 =
ˆ 𝑏

𝑎

d𝑡 𝑓(𝑡)𝜌(𝑡)𝑔(𝑡). (3.20)

Let us consider the space 𝐿2
𝜌[𝑎, 𝑏] of equivalence classes 𝑓 of real functions with (finite)

norm induced by (3.20), namely

|𝑓 |𝜌 = ⟨𝑓 |𝑓⟩
1
2
𝜌 <∞. (3.21)

It is clear that the usual 𝐿2 space is a particular case of 𝐿2
𝜌[𝑎, 𝑏] with uniform weight

𝜌 = 1. 𝐿2
𝜌[𝑎, 𝑏] are no more special than 𝐿2 in the sense that 𝑓 ∈ 𝐿2

𝜌[𝑎, 𝑏] if and only if
√
𝜌𝑓 ∈ 𝐿2[𝑎, 𝑏].

A very important fact about 𝐿2
𝜌[𝑎, 𝑏] is that every Cauchy sequence, i.e. a sequence of

arbitrarily close elements such that for any 𝜖 > 0, there exists 𝑁 ∈ N such that ‖𝑓𝑛−𝑓𝑚‖ < 𝜖

for every natural 𝑚,𝑛 > 𝑁 , has a limit in 𝐿2
𝜌[𝑎, 𝑏]. Hence, it is a complete normed space,

i.e. a Banach space. Since it is also a vector space endowed with an inner product, it is also

a Hilbert space. Paraphrasing (COSTIN, 2011), in 𝐿2
𝜌[𝑎, 𝑏] one can do linear algebra (it is a
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vector space), geometry (one has lengths and angles) and calculus (it is complete): "and they

are all combined when we write series expansions".

3.2.2 Sturm Liouville theory

The central idea of the theory of real second-order linear differential equations, the so

called Sturm-Liouville theory, is synthesised in Theorem 3.1. For the present work, the key

statement in Theorem 3.1 is that the sequence of eigenfunctions of the SL problem (3.22)

and (3.23) forms an orthogonal basis of the space of functions 𝐿2
𝜌(𝑎, 𝑏).

Theorem 3.1. Assuming 𝑝′, 𝑟, 𝜌 ∈ 𝐶([𝑎, 𝑏]), and 𝑝, 𝜌 > 0 on [𝑎, 𝑏], the Sturm-Liouville

eigenvalue problem

𝐿̂𝑢+ 𝜆𝜌𝑢 = d
d𝑥

[︃
𝑝

d
d𝑥

]︃
𝑢+ 𝑟𝑢+ 𝜆𝜌𝑢 = 0 (3.22)

with boundary conditions

𝛼1𝑢(𝑎) + 𝛼2𝑢
′(𝑎) = 0, |𝛼1|+ |𝛼2| > 0

𝛽1𝑢(𝑏) + 𝛽2𝑢
′(𝑏) = 0, |𝛽1|+ |𝛽2| > 0

(3.23)

has an infinite sequence of real eigenvalues 𝜆0 < 𝜆1 < 𝜆2 < · · · such that 𝜆𝑛 →∞.

To each eigenvalue 𝜆𝑘 corresponds a single eigenfunction 𝜑𝑘, and the sequence of eigen-

functions (𝜑𝑘 : 𝑛 ∈ N0) forms an orthogonal basis of 𝐿2
𝜌(𝑎, 𝑏).

For further reference, see (ARFKEN; WEBER; HARRIS, 2013) or (AL-GWAIZ, 2008).

3.2.3 Fredholm integral equation theory

Given the functions 𝑓(𝑥) on [𝑎, 𝑏] and 𝑘(𝑥, 𝑥′) on [𝑎, 𝑏]2, the integral equation of the form

𝜑(𝑥) = 𝑓(𝑥) + 𝜆

ˆ 𝑏

𝑎

d𝑥′ 𝑘(𝑥, 𝑥′)𝜑(𝑥′) (3.24)

with unknown function 𝜑(𝑥) and scalar 𝜆 is called the Fredholm integral equation of the

second kind with kernel 𝑘(𝑥, 𝑥′). If the upper limit of the integral is the variable 𝑥 itself,

the resulting equation is called a Volterra equation of the second kind. It is arguably the

most astonishing fact around (3.24) that every linear second-order ordinary differential with

some boundary (initial) conditions can be cast into the form of a Fredholm (Volterra) integral

equation of the second kind, whose kernel is the corresponding Green function of the prob-

lem (ARFKEN; WEBER; HARRIS, 2013). Nevertheless, the converse is not true since differential
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operators are essentially local whereas integral equations allow for non-local relations. There-

fore, integral equations allow to tackle a broader range of problems, including diffusion and

transport phenomena.

Let us cast (3.24) into a general form in terms of the linear operator 𝐾̂ as follows

𝑇𝜑(𝑥) = 𝜑(𝑥)− 𝜆𝐾̂𝜑(𝑥) = 𝑓(𝑥). (3.25)

3.2.3.1 Preliminary definitions

Let 𝑋 and 𝑌 be Banach spaces and let 𝐴 : 𝑋 → 𝑌 be a linear operator mapping 𝑋 into

𝑌 . 𝐴 is bounded if there is a constant 𝐶 > 0 such that the norm of 𝐴𝑥 in 𝑌 is not greater

than the norm of 𝑥 amplified by 𝐶 for any 𝑥 ∈ 𝑋, i.e. |𝐴𝑥| ≤ 𝐶|𝑥| . Provided boundness,

one can define the norm of 𝐴 as

‖𝐴‖ ≡ sup
𝑥 ̸=0

|𝐴𝑥|
|𝑥|
≤ 𝐶. (3.26)

Let us consider for instance 𝑋 = 𝐿2 [Ω] and integral operators of the form

𝐾̂ [𝑓 ] =
ˆ

Ω

d𝜏 𝑘(𝜏, 𝑡)𝑓(𝜏) (3.27)

with 𝑘(𝜏, 𝑡) in 𝐿2 [Ω2]. Such operators are clearly linear and it follows from Cauchy-Schwarz

inequality that |𝐾̂𝑓 | ≤ |𝑓 ||𝑘|, hence ‖𝐾̂‖ ≤ |𝑘| and 𝐾̂ is bounded (EIDELMAN; MILMAN;

TSOLOMITIS, 2004). In fact, 𝐾̂ is bounded even if the kernel is weakly polar, i.e. 𝑘(𝜏, 𝑡) = 𝑀(𝜏,𝑡)
|𝜏−𝑡|𝛼

with 0 < 𝛼 < 1 and 𝑀(𝜏, 𝑡) a continuous function on Ω2 (VLADIMIROV, 1984).

3.2.3.2 Neumann series

The Neumann series solution is the earliest successful approach to solving (3.25) in the

context of potential theory, acknowledged by Fredholm himself (FREDHOLM, 1903). It is the

result of successive approximations given by 𝜑𝑛+1 = 𝑓 + 𝜆𝐾̂𝜑𝑛 as 𝑛 → ∞, starting from

𝜑0 = 𝑓 (KANWAL, 2013). The following theorem from (YOSHIDA, 1980) provides conditions

under which 𝑇 is invertible.

Theorem 3.2. [C. Neumann] Let 𝑇 be a bounded linear operator on a Banach space 𝑋

(complete normed linear space) into 𝑋. Suppose that 𝜆𝐾̂ ≡ 1 − 𝑇 is such that ‖𝜆𝐾̂‖< 1.

Then, 𝑇 has a unique bounded linear inverse 𝑇−1 which is given by the Neumann series (3.28)
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𝑇−1𝑥 =
[︃

lim
𝑛→∞

𝑛∑︁
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘]︃
𝑥. (3.28)

Proof: For any non-zero 𝑥 ∈ 𝑋, one has that⃒⃒⃒⃒ [︃ 𝑛∑︁
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘]︃
𝑥
⃒⃒⃒⃒
≤

𝑛∑︁
𝑘=0

⃒⃒⃒ (︁
𝜆𝐾̂

)︁𝑘
𝑥
⃒⃒⃒
≤

𝑛∑︁
𝑘=0

⃦⃦⃦ (︁
𝜆𝐾̂

)︁𝑘 ⃦⃦⃦⃒⃒⃒
𝑥
⃒⃒⃒
≤

𝑛∑︁
𝑘=0

⃦⃦⃦
𝜆𝐾̂

⃦⃦⃦𝑘 ⃒⃒⃒
𝑥
⃒⃒⃒
, (3.29)

where the definition (3.26) of the norm of 𝐾̂ was used.

Observe that ∑︀𝑛
𝑘=0

⃦⃦⃦
𝜆𝐾̂

⃦⃦⃦𝑘 ⃒⃒⃒
𝑥
⃒⃒⃒
≤ ∑︀∞

𝑘=0

⃦⃦⃦
𝜆𝐾̂

⃦⃦⃦𝑘 ⃒⃒⃒
𝑥
⃒⃒⃒

for any 𝑛 ∈ N and that the series∑︀∞
𝑘=0

⃦⃦⃦
𝜆𝐾̂

⃦⃦⃦𝑘
is convergent as

⃦⃦⃦
𝜆𝐾̂

⃦⃦⃦
< 1 since it is a geometric series.

Because 𝑋 is complete, every Cauchy sequence has limit in 𝑋. Hence, the operator

lim𝑛→∞
∑︀𝑛
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘
is well-defined and bounded. If one applies lim𝑛→∞

∑︀𝑛
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘
to

𝑇𝑥, one gets that
[︃

lim
𝑛→∞

𝑛∑︁
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘]︃ [︁
1 + (𝑇 − 1)

]︁
𝑥 =

[︃
lim
𝑛→∞

(︃
𝑛∑︁
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘)︃(︁
1− 𝜆𝐾̂

)︁]︃
𝑥

=
[︂

lim
𝑛→∞

(︂
1−

(︁
𝜆𝐾̂

)︁𝑛+1
)︂]︂
𝑥 = 1𝑥. (3.30)

Note that the last step follows from the "shrinkage" of
(︁
𝜆𝐾̂

)︁𝑛+1
in the limit 𝑛 → ∞.

Therefore, ∑︀∞
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘
is the left inverse of 𝑇 .

A similar procedure with 𝑇 applied to ∑︀∞
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘
proves that the former is the left

inverse of the latter.

Hence 𝑇−1 = ∑︀∞
𝑘=0 𝜆𝐾̂ and the solution of (3.25) is

𝜑(𝑥) = 𝑇−1𝑓(𝑥) =
[︃ ∞∑︁
𝑘=0

(︁
𝜆𝐾̂

)︁𝑘]︃
𝑓(𝑥) (3.31)

Let us define the resolvent operator 𝑅̂(𝜆) corresponding to 𝐾̂ as

𝑅̂𝜆 ≡
(︃ ∞∑︁
𝑘=1

(︁
𝜆𝐾̂

)︁𝑘)︃
, (3.32)

so that one can reformulate the solution (3.31) in terms of 𝑅̂𝜆 as

𝜑(𝑥) = 𝑓(𝑥) + 𝑅̂𝜆 [𝑓 ] (𝑥). (3.33)

It is worth to briefly discuss the contribution of Fredholm (FREDHOLM, 1903). Although

Neumann series were already known before Fredholm, the radius of convergence is determined

by the restriction ‖𝜆𝐾̂‖< 1. Fredholm not only lifted such restriction, but also proved seminal

theorems that are summarized below.
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1. If 𝜆 is not an eigenvalue of (3.25), i.e. for such value the homogeneous problem (3.25)

(𝑓(𝑥) = 0) has no other solution than the trivial , then the non-homogeneous equation

is soluble for any 𝑓(𝑥). The general solution is given by

𝜑(𝑥) = 𝑓(𝑥) +
ˆ 𝑏

𝑎

d𝑥′ 𝑅𝜆(𝑥, 𝑥′)𝑓(𝑥′), (3.34)

which corresponds to (3.33).

2. There is a bijection between the eigenvalues of the homogeneous equation (3.25) and

the eigenvalues of the adjoint equation

𝜓(𝑥) = 𝜆*
ˆ 𝑏

𝑎

d𝑥′ 𝑘*(𝑥′, 𝑥)𝜓(𝑥′). (3.35)

Moreover, both equations have the same (finite) number of eigenfunctions belonging to

a given eigenvalue 𝜆𝑘.

3. If 𝜆 = 𝜆𝑘 is an eigenvalue of (3.25), i.e. the homogeneous problem is soluble, then the

non-homogeneous problem is, in general, insoluble. It is soluble if and only if the free

term 𝑓(𝑥) satisfies the condition
ˆ

d𝑥′ 𝑓(𝑥′)𝜓𝑘(𝑥′) = 0 (3.36)

for all 𝑘. The set {𝜓𝑘} is the set of eigenfunctions of the adjoint equation.

4. The spectrum of a Fredholm integral equation is a discrete set.

It is relevant to mention that if the kernel of (3.25) is weakly singular, for instance if it

has the form 𝑀(𝑥,𝑥′)
|𝑥−𝑥′|𝛼 with 0 ≤ 𝛼 < 1 and continuous function 𝑀(𝑥, 𝑥′), then (3.25) exhibits

all the properties of a Fredholm equation (GAKHOV, 1966). However, does it also apply to

strongly singular kernels? Regardless of the answer, we will come across a kernel of that sort

in Chapter 4.

3.3 INVERSION FORMULAE METHOD

As mentioned above, the main objective of this dissertation is to explore the application

of the spectral relationship method to one dimensional random flights with heavy-tailed step

distribution. In that regard, closed-form expressions for the mean number of steps and mean

flight path length under a 1D Riesz potential were derived in (BULDYREV et al., 2001b) by
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means of Sonin inversion formula. Despite the reference to (POPOV, 1982), such formula is

not widely documented in the literature. Hence, for the sake of completeness and curiosity,

the purpose of this section is to make an attempt to prove it.

Let us consider the following integral equation of the first kind on the finite interval (0, 𝐿)
 𝐿

0
d𝑥 (𝑐1 sgn(𝑥0 − 𝑥) + 𝑐2)𝜈

2|𝑥− 𝑥0|𝛼
𝜑(𝑥) = ℎ(𝑥0), (3.37)

where the symbol
ffl

denotes the Cauchy Principal Value of the integral.

According to (BULDYREV et al., 2001b), (3.37) has a solution of the form

𝜑𝛽(𝑦) = 𝐾 (𝛼, 𝛽) 𝑦𝛽−1 d
d𝑦

ˆ 𝐿

𝑦

d𝑠 𝑠1−𝛼(𝑠− 𝑦)𝛼−𝛽 d
d𝑠

ˆ 𝑠

0
d𝑡 𝑡𝛼−𝛽(𝑠− 𝑡)𝛽−1ℎ(𝑡), (3.38)

where

𝐾 (𝛼, 𝛽) = − 2
𝜋

sin 𝜋𝛽 Γ (𝛼)
Γ (𝛽) Γ (1− 𝛽 + 𝛼)(𝑐1 + 𝑐2)−𝜈 (3.39)

and the admissible values of the parameter 𝛽 fulfill the condition

sin 𝜋(𝛽 − 𝛼) =
(︂
𝑐2 − 𝑐1

𝑐2 + 𝑐1

)︂𝜈
sin 𝜋𝛽. (3.40)

Eq. (3.38) is referred as Sonin inversion formula and an attempt to derive alternative inversion

formulae is presented below.

3.3.1 Abel integral equation

Let us begin with Abel integral equation
ˆ 𝑠

𝑎

d𝜏 𝜑(𝜏)
(𝑠− 𝜏)𝛼 ≡ ℐ

1−𝛼
𝑎+ 𝜑(𝑠) = 𝑓(𝑠) (3.41)

with absolutely continuous 𝑓(𝑥) in [𝑎, 𝑏], 0 < 𝛼 < 1 and 𝑥 > 𝑎. Under those conditions

(SAMKO; KILBAS; MARICHEV, 1993), (3.41) admits a unique solution in 𝐿1(𝑎, 𝑏) of the form

𝜑(𝑠) = 1
B(𝛼, 1− 𝛼)

d
d𝑠

ˆ 𝑠

𝑎

d𝑡 (𝑠− 𝑡)𝛼−1𝑓(𝑡). (3.42)

Note the similarity between (3.42) and the innermost integral in (3.38). A proof of (3.42)

involves substituting 𝑠 by 𝑡 in (3.41), multiply both sides with the function (𝑠 − 𝑡)𝛼−1 and

integrate with respect to 𝑡 on [𝑎, 𝑠] (SAMKO; KILBAS; MARICHEV, 1993). After a suitable

transformation of the domain of the double integral on the left hand side, one has that´ 𝑠
𝑎

d𝜏 𝜑(𝜏)
´ 𝑠
𝜏

d𝑡 (𝑠 − 𝑡)𝛼−1(𝑡 − 𝜏)−𝛼 =
´ 𝑠
𝑎

d𝑡 (𝑠 − 𝑡)𝛼−1𝑓(𝑡). The integral with respect to
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𝑡 in the left hand side can be cast into the form (3.8) by means of the change of variable

𝑢 = 𝑡− 𝜏
𝑠− 𝜏

, leading to the factor B(𝛼, 1 − 𝛼). The last step is to take derivatives on both

sides with respect to 𝑠.

With the definition

𝒟1−𝛼
𝑎+ [𝑓 ] ≡ 1

B(𝛼, 1− 𝛼)
d
d𝑠

ˆ 𝑠

𝑎

d𝑡 𝑓(𝑡)
(𝑠− 𝑡)1−𝛼 , (3.43)

one can summarise (3.41) and (3.42) into

𝒟1−𝛼
𝑎+

[︁
ℐ1−𝛼
𝑎+ 𝜑

]︁
= 𝜑, (3.44)

which means that 𝒟1−𝛼
𝑎+ is the left inverse of ℐ1−𝛼

𝑎+ . The operator ℐ1−𝛼
𝑎+ corresponds to the

left fractional integral up to a factor [Γ(1− 𝛼)]−1), while 𝒟1−𝛼
𝑎+ is the left Riemann-Liouville

fractional derivative, up to a factor Γ(1 − 𝛼). Both operators ℐ1−𝛼
𝑎+ and 𝒟1−𝛼

𝑎+ are of order

1− 𝛼 with 0 < 𝛼 < 1.

The upper limit of the integral in (3.41) can be held fixed instead of the lower limit.

In such case, one has that ℐ1−𝛼
𝑏− 𝜑(𝑠) =

´ 𝑏
𝑠

d𝜏 𝜑(𝜏)
(𝜏−𝑠)𝛼 = 𝑓(𝑠), whose solution is given by

𝜑(𝑠) = − 1
B(𝛼,1−𝛼)

d
d𝑠

´ 𝑏
𝑠

d𝑡 (𝑡 − 𝑠)𝛼−1𝑓(𝑡) ≡ 𝒟1−𝛼
𝑏− . The operators ℐ1−𝛼

𝑏− and 𝒟1−𝛼
𝑏− are the

right fractional integral and right Riemann-Liouville fractional derivative of order 1− 𝛼 with

0 < 𝛼 < 1, respectively.

3.3.2 Singular integral equation

Eq (3.37) can be cast into the form

ℐ1−𝛼
𝑎+ [𝑢𝜑] + ℐ1−𝛼

𝑏− [𝑣𝜑] =
ˆ 𝑥0

𝑎

d𝑥 𝑢(𝑥)𝜑(𝑥)
(𝑥0 − 𝑥)𝛼 +

ˆ 𝑏

𝑥0

d𝑥 𝑣(𝑥)𝜑(𝑥)
(𝑥− 𝑥0)𝛼

= ℎ(𝑥0) (3.45)

with constant coefficients 𝑢 = 1
2(𝑐2 +𝑐1)𝜈 and 𝑣 = 1

2(𝑐2−𝑐1)𝜈 . Nevertheless, the more general

case 𝑢(𝑥) and 𝑣(𝑥) will be kept for the sake of generality.

A remarkable fact regarding the operators 𝐼1−𝛼
𝑎+ and 𝐼1−𝛼

𝑏− is that the following relation

among them holds provided that 0 < 𝛼 < 1 (SAMKO; KILBAS; MARICHEV, 1993)

ℐ1−𝛼
𝑏− 𝜑 = ℐ1−𝛼

𝑎+

[︁
cos𝜋(1− 𝛼)𝜑+ sin 𝜋(1− 𝛼) 𝑟𝛼−1

𝑎 𝑆
[︁
𝑟1−𝛼
𝑎 𝜑

]︁]︁
, (3.46)

where 𝑆 stands for the singular operator with Cauchy kernel

𝑆𝜙 = 1
𝜋

 𝑏

𝑎

d𝑡 𝜙(𝑡)
𝑡− 𝑥

. (3.47)
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and the function 𝑟𝑎(𝑥) represents the position in Ω relative to the lower endpoint 𝑎, i.e.

𝑟𝑎(𝑥) = 𝑥 − 𝑎. As a consequence of (3.46), (3.45) can be transformed into Abel equation

(3.41) with an embedded singular integral equation, namely

ℐ1−𝛼
𝑎+

[︁
𝑟𝛼−1
𝑎

(︁
(𝑢− 𝑣 cos 𝜋𝛼)𝑟1−𝛼

𝑎 𝜑+ 𝑆
[︁
𝑣 sin 𝜋𝛼 𝑟1−𝛼

𝑎 𝜑
]︁)︁]︁

= ℎ(𝑥0). (3.48)

Indeed, by inverting ℐ1−𝛼
𝑎+ in (3.48) with the aid of (3.44) and defining 𝜓(𝑥) = 𝑟1−𝛼

𝑎 (𝑥)𝜑(𝑥),

one arrives at the singular integral equation

𝑎1(𝑠)𝜓(𝑠) + 1
𝜋

ˆ 𝑏

𝑎

d𝑡 𝑎2(𝑡)𝜓(𝑡)
𝑡− 𝑠

= 𝑟1−𝛼
𝑎 (𝑠)𝒟1−𝛼

𝑎+ [ℎ(𝑡)] , (3.49)

where 𝑎1(𝑥) = 𝑢(𝑥)− 𝑣(𝑥) cos𝜋𝛼 and 𝑎2(𝑥) = 𝑣(𝑥) sin 𝜋𝛼.

Observe that eq (3.49) is already in the form of an adjoint to the dominant singular

integral equation

𝐾𝑜′𝜓(𝑠) = 𝑎(𝑠)𝜓(𝑠)− 1
𝑖𝜋

ˆ

𝐿

d𝑡 𝑏(𝑡)𝜓(𝑡)
𝑡− 𝑠

= 𝑓(𝑠), (3.50)

where 𝐿 denotes a given arc on the complex plane, 𝑎(𝑠) = 𝑎1(𝑠) and 𝑏(𝑡) = −𝑖𝑎2(𝑡).

The solution of (3.50) is closely related to the Riemann boundary value problem in complex

analysis: to find a sectionally holomorphic function Ω(𝑧), i.e. Ω+(𝑧) and Ω−(𝑧) are analytic

in the respective regions 𝑆+ and 𝑆− of the complex plane separated by the arc 𝐿 that satisfy

a non-trivial linear boundary condition on 𝐿, namely

Ω+(𝑡) = 1
𝐺(𝑡)Ω−(𝑡) + ̃︀𝑔(𝑡) (3.51)

with 𝐺(𝑡) = 𝑎(𝑡)− 𝑏(𝑡)
𝑎(𝑡) + 𝑏(𝑡) and ̃︀𝑔(𝑡) = 𝑏(𝑡)𝑓(𝑡)

𝑎(𝑡)− 𝑏(𝑡) , among other conditions such as the order

of the pole of Ω(𝑧) at infinity (if any) (MUSKHELISHVILI, 2013).

Having solved the boundary value problem (3.51), one can find 𝜓(𝑡) on the boundary 𝐿

by means of Plemelj-Sokhotski relation

𝑏(𝑡)𝜓(𝑡) = Ω+(𝑡)− Ω−(𝑡). (3.52)

The details of the solution will not be discussed here. It suffices to say that the general

solution of (3.50) is (GAKHOV, 1966)(MUSKHELISHVILI, 2013)

𝜓(𝑠) = 𝑎(𝑠)𝑓(𝑠) + 1
𝜋𝑖𝑍(𝑠)

ˆ

𝐿

d𝑡 𝑍(𝑡)𝑏(𝑡)𝑓(𝑡)
𝑡− 𝑠

+ 1
𝑍(𝑠)𝑃−κ−1(𝑠), (3.53)

where 𝑍(𝑠) = (𝑠 − 𝑏)−κ exp Γ(𝑠) with Γ(𝑠) given by Γ(𝑠) = 1
2𝜋𝑖

ˆ

𝐿

d𝑡 log𝐺(𝑡)
𝑡− 𝑠

and 𝑃−κ−1

is a polynomial of degree −κ − 1.
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The index κ of the dominant equation and it is closely related to the behaviour of phase

of 𝐺(𝑠) along the contour 𝐿 and determines the solvability of the adjoint equation (3.50):

when −κ ≥ 0, the latter is solvable. Conversely, when −κ < 0, the problem is solvable on

condition that
´
𝐿

d𝑡 𝑍(𝑡)𝑏(𝑡)𝑓(𝑡)𝑡𝑗−1 = 0 for all integer 𝑗 ∈ {1, 2, · · · ,κ}.

In addition, −κ also represents the number of linearly independent solutions of the bound-

ary value problem (3.51) with ̃︀𝑔(𝑡) = 0, i.e. the homogeneous problem, which in turn cor-

responds to the homogeneous version of (3.50). In fact, by setting 𝑓(𝑠) = 0 in (3.53), one

can see that the homogeneous solutions of (3.50) correspond to the term 1
𝑍(𝑠)𝑃−κ−1(𝑠). If

−κ ≤ 0, the homogeneous solutions of (3.50) are trivially zero (𝑃−κ−1(𝑠) ≡ 0).

Back to (3.49), one has that

𝐺(𝑡)−1 = 𝑎(𝑡) + 𝑏(𝑡)
𝑎(𝑡)− 𝑏(𝑡) = 𝑢(𝑡)− 𝑣(𝑡)𝑒𝑖𝜋𝛼

𝑢(𝑡)− 𝑣(𝑡)𝑒−𝑖𝜋𝛼 = 𝑟𝑒𝑖𝜃. (3.54)

It is clear that the norm of the numerator and the denominator in (3.54) are the same,

hence 𝑟 = 1. In consequence, one has that 𝑢(1−𝑒𝑖𝜃) = 𝑣(𝑒𝑖𝜋𝛼−𝑒𝑖(𝜃−𝜋𝛼)), which is equivalent

to

𝑢

𝑣
=

(︂
𝑒𝑖(

𝜃
2 −𝜋𝛼) − 𝑒−𝑖( 𝜃

2 −𝜋𝛼)
)︂
𝑒𝑖

𝜃
2(︁

𝑒𝑖
𝜃
2 − 𝑒−𝑖 𝜃

2
)︁
𝑒𝑖

𝜃
2

=
sin 𝜋

(︁
𝜃

2𝜋 − 𝛼
)︁

sin 𝜃
2

. (3.55)

Recalling that for the problem at hand 𝑢 = 1
2(𝑐2 + 𝑐1)𝜈 , 𝑣 = 1

2(𝑐2 − 𝑐1)𝜈 and setting

𝛽′ ≡ 𝜃
2𝜋 , one has that

sin 𝜋 (𝛽′ − 𝛼) =
(︂
𝑐2 + 𝑐1

𝑐2 − 𝑐1

)︂𝜈
sin 𝜋𝛽′, (3.56)

which bears resemblance to the condition (3.40) on the admissible values of the parameter

𝛽, up to the sign of 𝑐1. Also recall that the open contour 𝐿 is the segment on the real line

from 𝑎 to 𝑏. Therefore, with regard to Γ(𝑠) on (𝑎, 𝑏) one has that

Γ(𝑠) = 1
2𝜋𝑖

ˆ

𝐿

d𝑡 − log ̃︀𝐺(𝑡)
𝑡− 𝑠

= − 𝑖𝜃

2𝜋𝑖

 𝑏

𝑎

d𝑡 1
𝑡− 𝑠

= − 𝜃

2𝜋 log
(︃
𝑏− 𝑠
𝑠− 𝑎

)︃
, (3.57)

which in turn leads to the canonical function of the problem 𝑍(𝑠) given by

𝑍(𝑠) = (𝑠− 𝑏)−κ exp Γ(𝑠) = (−1)κ(𝑏− 𝑠)−κ
(︂
𝑠− 𝑎
𝑏− 𝑠

)︂𝛽′

= (−1)κ 𝑟𝛽
′
𝑎 (𝑠)

𝑟𝛽
′+κ
𝑏 (𝑠)

, (3.58)

where 𝑟𝑏(𝑠) ≡ 𝑏 − 𝑠 and 𝑟𝑎(𝑠) ≡ 𝑠 − 𝑎. Therefore, by inserting (3.58) into (3.53), one has

that

𝜓(𝑠) = (𝑢− 𝑣 cos𝜋𝛼)𝑓(𝑠)− 𝑣 sin 𝜋𝛼
𝜋

𝑟𝛽
′+κ
𝑏 (𝑠)
𝑟𝛽

′
𝑎 (𝑠)

 𝑏

𝑎

d𝑡 𝑟𝛽
′
𝑎 (𝑡)

𝑟𝛽
′+κ
𝑏 (𝑡)

𝑓(𝑡)
𝑡− 𝑠

+ 𝑟𝛽
′+κ
𝑏 (𝑠)
𝑟𝛽

′
𝑎 (𝑠)

𝑃−κ−1(𝑠). (3.59)
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Taking into account that 𝑓(𝑠) = 𝑟1−𝛼
𝑎 (𝑠)𝒟1−𝛼

𝑎+ [ℎ] and 𝜑(𝑠) = 𝑟𝛼−1
𝑎 (𝑠)𝜓(𝑠) that the solution

𝜑(𝑠) in (3.49), one has that

𝜑(𝑠) = (𝑢− 𝑣 cos 𝜋𝛼)𝒟1−𝛼
𝑎+ [ℎ]− 𝑣 sin 𝜋𝛼

𝜋

𝑟𝛽
′+κ
𝑏 (𝑠)

𝑟𝛽
′−𝛼+1
𝑎 (𝑠)

 𝑏

𝑎

d𝑡 𝑟
𝛽′−𝛼+1
𝑎 (𝑡)
𝑟𝛽

′+κ
𝑏 (𝑡)

𝒟1−𝛼
𝑎+ [ℎ]
𝑡− 𝑠

+ 𝑟𝛽
′+κ
𝑏 (𝑠)

𝑟𝛽
′−𝛼+1
𝑎 (𝑠)

𝑃−κ−1(𝑠). (3.60)

An attempt to apply (3.60) to asymptotic Lévy flights is left to Chapter 4.

3.4 CLASSICAL JACOBI POLYNOMIALS

Although applications of Jacobi polynomials are scarce in Physics, standard orthogonal

polynomials widely used in the field are special cases of Jacobi polynomials. For instance,

Legendre polynomials, the azimuthally symmetric eigenfunctions of the Laplace operator on

the 2-sphere correspond to Jacobi polynomials with parameters (𝛾, 𝛿) = (0, 0). In fact, the

Newton-Coulomb potential in Rn admit expansion in ultraspherical polynomials that are also

particular cases of Jacobi polynomials.

A brief introduction of classical Jacobi polynomials and the most relevant properties is

presented below.

3.4.1 Definition

Let us state the relations and properties concerning the Jacobi polynomials 𝑃 (𝛾,𝛿)
𝑚 that will

be used throughout this report. Hereafter, we will be only interested in real 𝛾, 𝛿 > −1, i.e.

the classical (orthogonal) Jacobi polynomials defined in the interval [−1, 1]. For abbreviation,

𝑃 (𝛾)
𝑚 stands for 𝑃 (𝛾,𝛾)

𝑚 .

Let us define 𝑃 (𝛾,𝛿)
𝑛 (𝑡) on [−1, 1] as a particular solution to the following second-order

linear homogeneous ordinary differential equation (SZEGŐ, 1939){︃
(1− 𝑡2) d2

d𝑡2 − [𝛾 − 𝛿 + (𝛾 + 𝛿 + 2)𝑡] d
d𝑡 + 𝑛(𝑛+ 𝛾 + 𝛿 + 1)

}︃
𝑃 (𝛾,𝛿)
𝑛 = 0, (3.61)

which is equivalent to the Sturm-Liouville form

d
d𝑡

[︃
(1− 𝑡)𝛾+1(1 + 𝑡)𝛿+1 d

d𝑡

]︃
𝑃 (𝛾,𝛿)
𝑛 + 𝑛(𝑛+ 𝛾 + 𝛿 + 1)(1− 𝑡)𝛾(1 + 𝑡)𝛿𝑃 (𝛾,𝛿)

𝑛 = 0. (3.62)

Note, by comparing (3.62) to (3.22), that its eigenvalues are 𝜆𝑛 = 𝑛(𝑛+ 𝛾 + 𝛿 + 1) and

the weight function 𝜌 is given by 𝜌(𝛾,𝛿) ≡ (1− 𝑡)𝛾(1 + 𝑡)𝛿.
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Let also define ̃︀𝑃 (𝛾,𝛿)
𝑛 ≡ (1− 𝑡)𝛾(1 + 𝑡)𝛿𝑃 (𝛾,𝛿)

𝑛 . Taking into account that

(1− 𝑡2) d
d𝑡
̃︀𝑃 (𝛾,𝛿)
𝑛 = (1− 𝑡)𝛾+1(1 + 𝑡)𝛿+1 d

d𝑡𝑃
(𝛾,𝛿)
𝑛 − [𝛾 − 𝛿 + (𝛾 + 𝛿)𝑡] ̃︀𝑃 (𝛾,𝛿)

𝑛 , (3.63)

one has from (3.61) that ̃︀𝑃 (𝛾,𝛿)
𝑛 is a solution to the second-order linear differential equation{︃

(1− 𝑡2) d2

d𝑡2 + [𝛾 − 𝛿 + (𝛾 + 𝛿 − 2)𝑡] d
d𝑡 + (𝑛+ 1)(𝑛+ 𝛾 + 𝛿)

}︃ ̃︀𝑃 (𝛾,𝛿)
𝑛 = 0, (3.64)

equivalent to the SL form

d
d𝑡

[︃
(1− 𝑡2)

(1− 𝑡)𝛾(1 + 𝑡)𝛿
d
d𝑡

]︃ ̃︀𝑃 (𝛾,𝛿)
𝑛 + (𝑛+ 1)(𝑛+ 𝛾 + 𝛿) 1

(1− 𝑡)𝛾(1 + 𝑡)𝛿
̃︀𝑃 (𝛾,𝛿)
𝑛 = 0. (3.65)

The comparison of (3.65) and (3.22) indicates that the eigenvalues of the former are

𝜆𝑛 = (𝑛+ 1)(𝑛+ 𝛾 + 𝛿) and the weight function ̃︀𝜌 is the reciprocal of 𝜌.

Figure 6 shows how the value of 𝛾 and 𝛿 modulate the behaviour of ̃︀𝑃 (𝛾,𝛿)
𝑛 in the vicinity of

the right an left boundary, respectively. Negative values produce a singularity at the boundary,

whereas positive values produce a node.

The most important result follows from Theorem 3.1. It implies that {𝑃 (𝛾,𝛿)
𝑛 , 𝑛 ∈ N0}

and { ̃︀𝑃 (𝛾,𝛿)
𝑛 , 𝑛 ∈ N0} are orthogonal bases that span 𝐿2

𝜌 [−1, 1] and 𝐿2̃︀𝜌 [−1, 1] respectively,

provided that 𝛾, 𝛿 > −1. This restriction ensures that the weight function is integrable.

For {𝑃 (𝛾,𝛿)
𝑛 , 𝑛 ∈ N0}, the orthogonality relation is given by (3.66) (HOCHSTRASSER,

1972)(SZEGŐ, 1939).⟨
𝑃 (𝛾,𝛿)
𝑚

⃒⃒⃒
𝑃 (𝛾,𝛿)
𝑛

⟩
𝜌

=
ˆ 1

−1
d𝑡 𝑃 (𝛾,𝛿)

𝑚 (𝑡)𝜌(𝛾,𝛿)(𝑡)𝑃 (𝛾,𝛿)
𝑛 (𝑡) = ℎ(𝛾,𝛿)

𝑛 𝛿𝑚,𝑛 (3.66)

with the factor ℎ(𝛾,𝛿)
𝑛 defined as

ℎ(𝛾,𝛿)
𝑛 ≡ 2𝛾+𝛿+1

2𝑛+ 𝛾 + 𝛿 + 1
Γ(𝑛+ 𝛾 + 1)Γ(𝑛+ 𝛿 + 1)

𝑛! Γ(𝑛+ 𝛾 + 𝛿 + 1) . (3.67)

3.4.2 Recursion relations

It is known that orthogonal polynomials obey Rodrigues-type formulae provided certain

conditions on the weight function of the related Sturm-Liouville problem, namely that the

weight function 𝜌 satisfies Pearson differential equation [𝜎(𝑥)𝜌(𝑥)]′ = 𝜏(𝑥)𝜌(𝑥) with polyno-

mials 𝜎(𝑥) and 𝜏(𝑥) of degree 2 at most and exactly 1 and boundary conditions 𝜎(𝑥)𝜌(𝑥)|𝜕 = 0

(NODARSE, 2006), which are only satisfied by classical polynomials, i.e. Hermite, Laguerre,

Bessel and Jacobi families. For the latter, one has that

(1− 𝑡)𝛾(1 + 𝑡)𝛿𝑃 (𝛾,𝛿)
𝑛 (𝑡) = (−1)𝑛

𝑛! 2𝑛
d𝑛

d𝑡𝑛
[︁
(1− 𝑡)𝑛+𝛾(1 + 𝑡)𝑛+𝛿

]︁
, (3.68)
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which is valid for arbitrary 𝛾 and 𝛿 (SZEGŐ, 1939). From (3.68), one can prove the following

property

𝑃 (𝛾,𝛿)
𝑛 (−𝑡) = (−1)𝑛𝑃 (𝛿,𝛾)

𝑛 (𝑡). (3.69)

It also follows from (3.68) that the application of first-order differential operator on any

weighted Jacobi polynomial ̃︀𝑃 (𝛾,𝛿)
𝑛 (𝑡) shifts its index up and its parameters down both by one,

that is
d
d𝑡
̃︀𝑃 (𝛾,𝛿)
𝑛 (𝑡) = −2(𝑛+ 1) ̃︀𝑃 (𝛾−1,𝛿−1)

𝑛+1 (𝑡). (3.70)

At the same time, while acting on any Jacobi polynomial ̃︀𝑃 (𝛾,𝛿)
𝑛 (𝑡), it produces the opposite

effect: the index is shifted down by one while the parameters are shifted up by one, explicitly
d
d𝑡𝑃

(𝛾,𝛿)
𝑛 (𝑡) = 1

2 (𝑛+ 𝛾 + 𝛿 + 1)𝑃 (𝛾+1,𝛿+1)
𝑛−1 (𝑡). (3.71)

Note that (3.71) follows from (3.68) by Leibniz product rule.

3.4.3 Notable identities

For 𝜇 > 0 and 𝑥 > −1, one has the following result from (ASKEY; FITCH, 1969)ˆ 1

𝑥

d𝑡 (1− 𝑡)𝛾 𝑃 (𝛾,𝛿)
𝑛 (𝑡) (𝑡− 𝑥)𝜇−1 = Γ (𝛾 + 1) Γ (𝜇)

Γ (𝛾 + 𝜇+ 1)
𝑃 (𝛾,𝛿)
𝑛 (1)

𝑃
(𝛾+𝜇,𝛿−𝜇)
𝑛 (1)

(1− 𝑥)𝛾+𝜇 𝑃 (𝛾+𝜇,𝛿−𝜇)
𝑛 (𝑥).

(3.72)

By taking 𝑥→ −1 and 𝜇 = 𝛿 + 𝜂 + 1, provided that 𝜂 > −𝛿 − 1, (3.72) leads to⟨
𝑃 (𝛾,𝛿)
𝑛

⃒⃒⃒
(1 + 𝑡)𝜂

⟩
= (−1)𝑛2𝛾+𝛿+𝜂+1

𝑛!
Γ (𝛾 + 𝑛+ 1) Γ (𝛿 + 𝜂 + 1) Γ (𝑛− 𝜂)

Γ (𝛾 + 𝛿 + 𝜂 + 𝑛+ 2) Γ (−𝜂) (3.73)

= 2𝛾+𝛿+𝜂+1

𝑛!
Γ (𝛾 + 𝑛+ 1) Γ (𝛿 + 𝜂 + 1) Γ (𝜂 + 1)
Γ (𝛾 + 𝛿 + 𝜂 + 𝑛+ 2) Γ (𝜂 − 𝑛+ 1) , (3.74)

where (3.73) follows from the Gamma function reflection formula (3.6).

3.4.4 Explicit formulae

Let us perform the change of variable 1−𝑡
2 ≡ 𝑤 in eq. (3.61). Thus one has that{︃

𝑤(1− 𝑤) d2

d𝑤2 + [𝛾 + 1− (𝛾 + 𝛿 + 2)𝑤] d
d𝑤 + 𝑛(𝑛+ 𝛾 + 𝛿 + 1)

}︃
𝑃 (𝛾,𝛿)
𝑛 (1− 2𝑤) = 0,

(3.75)

which is a particular case of the Gaussian hypergeometric equation (3.17) with parameters

𝑎 = −𝑛, 𝑏 = 𝑛+ 𝛾 + 𝛿 + 1 and 𝑐 = 𝛾 + 1. Therefore, the representation

𝑃 (𝛾,𝛿)
𝑛 (𝑡) = Γ(𝑛+ 𝛾 + 1)

Γ(𝑛+ 1)Γ(𝛾 + 1) 2𝐹1

(︂
−𝑛, 𝑛+ 𝛾 + 𝛿 + 1; 𝛾 + 1; 1− 𝑡

2

)︂
(3.76)
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is valid. The identity 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) = (1−𝑧)−𝑎
2𝐹1

(︁
𝑎, 𝑐− 𝑏; 𝑐; 𝑧

𝑧−1

)︁
(OBERHETTINGER, 1972)

leads to

𝑃 (𝛾,𝛿)
𝑛 (𝑡) =

(︂1 + 𝑡

2

)︂𝑛 Γ(𝑛+ 𝛾 + 1)
Γ(𝑛+ 1)Γ(𝛾 + 1) 2𝐹1

(︂
−𝑛,−𝑛− 𝛿; 𝛾 + 1; 𝑡− 1

𝑡+ 1

)︂
, (3.77)

which takes the explicit form

𝑃 (𝛾,𝛿)
𝑛 (𝑡) = 1

2𝑛
𝑛∑︁
𝜈=0

(︃
𝑛+ 𝛾

𝑛− 𝜈

)︃(︃
𝑛+ 𝛿

𝜈

)︃
(𝑡− 1)𝜈(𝑡+ 1)𝑛−𝜈 (3.78)

= 1
2𝑛

𝑛∑︁
𝜈=0

b(𝑛− 𝜈 + 1, 𝜈 + 𝛾 + 1)
𝑛+ 𝛾 + 1

b(𝜈 + 1, 𝑛− 𝜈 + 𝛿 + 1)
𝑛+ 𝛿 + 1 (𝑡− 1)𝜈(𝑡+ 1)𝑛−𝜈 ,

(3.79)

where the latter follows from (3.7). Also observe that

𝑃 (𝛾,𝛿)
𝑛 (1) = b(𝑛+ 1, 𝛾 + 1)

𝑛+ 𝛾 + 1 = Γ(𝑛+ 𝛾 + 1)
Γ(𝑛+ 1)Γ(𝛾 + 1) = 1

𝑛! (𝛾 + 1)𝑛 . (3.80)

For illustration purposes, the explicit formulae for the Jacobi polynomials of the lowest

order are presented below and the corresponding plots of 𝑃 (𝛾)
𝑛 and ̃︀𝑃 (𝛾)

𝑛 are presented in

Figure 6 for selected values of the parameter 𝛾. Further details, representations and interesting

properties, albeit beyond the scope of this dissertation, can be found in (SZEGŐ, 1939).

𝑃
(𝛾,𝛿)
0 (𝑡) = 1 (3.81)

𝑃
(𝛾,𝛿)
1 (𝑡) = 1

21 [(𝛾 − 𝛿) + (𝛾 + 𝛿 + 2)𝑡] (3.82)

𝑃
(𝛾,𝛿)
2 (𝑡) = 1

22

[︂ 1
2!
(︁
(𝛾 − 𝛿)2 − (𝛾 + 𝛿 + 2)− 2

)︁
+(𝛾 − 𝛿)(𝛾 + 𝛿 + 3) 𝑡+ 1

2!(𝛾 + 𝛿 + 3)2 𝑡
2
]︂ (3.83)

𝑃
(𝛾,𝛿)
3 (𝑡) = 1

23

[︂ 1
3!(𝛾 − 𝛿)

(︁
(𝛾 − 𝛿)2 − 3(𝛾 + 𝛿 + 4)− 4)

)︁
+ 1

2!
(︁
(𝛾 − 𝛿)2 − (𝛾 + 𝛿 + 3)− 3

)︁
(𝛾 + 𝛿 + 4) 𝑡

+ 1
2!(𝛾 − 𝛿)(𝛾 + 𝛿 + 4)2 𝑡

2 + 1
3!(𝛾 + 𝛿 + 4)3 𝑡

3
]︂

(3.84)
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Figure 6 – Plots of Jacobi polynomials and weighted Jacobi polynomials. (a) Jacobi polynomials (JPs) of
order 1, 2, 3 and 4 for selected values of 𝛾 ∈ {−0.75,−0.25, 0.25, 0.75} with 𝛾 = 𝛿 and (b)
corresponding weighted Jacobi polynomials (wJPs). For wJPs, the parameters 𝛾 and 𝛿 modulate
the weight assigned to the right and left boundary respectively with negative values resulting in
large amplitude close to the boundaries. Due to the restriction on the parameters, JP and wJP
of odd (even) order exhibit odd (even) parity. The number of zeroes, excluding the boundaries,
equals the order of the function.

(a) (b)

Source: The author (2023)
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3.5 SPECTRAL RELATIONS

The method of orthogonal polynomials is an approach developed in (POPOV, 1963) to

solve integral equations of the first kind 𝐾̂ [𝐺] (𝑡) ≡
´

[𝑎,𝑏] d𝜏 𝐾(𝑡, 𝜏)𝐺(𝜏) = 𝑔(𝑡) i.e., given

the function 𝑔(𝑡) on [𝑎, 𝑏] and the kernel 𝐾(𝑡, 𝜏) = 𝐾0(𝑡, 𝜏) + 𝐾1(𝑡, 𝜏), provided that a

suitable spectral relationship exists for, let us say, 𝐾̂0 and 𝐾̂1 is regular (PODLUBNY, 1999).

A spectral relationship exists for 𝐾0(𝑡, 𝜏) if there are two families of orthogonal polynomials,

{𝑝𝑚(𝑡)} and {𝜋𝑚(𝑡)}, and scalars {𝜆𝑚} such that

𝐾0[𝜑 𝑝𝑚] = 𝜆𝑚𝜓 𝜋𝑚, (3.85)

with functions 𝜑 and 𝜓 such that the weight function 𝜌 under which any pair of distinct

elements in {𝑝𝑚(𝑡)} are orthogonal, is given by 𝜌 = 𝜑 ̃︀𝜓. Likewise, one has functions ̃︀𝜑 and 𝜓

such that ̃︀𝜌 = ̃︀𝜑𝜓, where ̃︀𝜌 is the weight function under which any pair of distinct elements

in {𝜋𝑚(𝑡)} are orthogonal, that is

⟨𝑝𝑛|𝑝𝑚⟩𝜑̃︀𝜓 =
ˆ

[𝑎,𝑏]

d𝑡 𝑝𝑛(𝑡) ̃︀𝜓(𝑡)𝜑(𝑡) 𝑝𝑚(𝑡) = 𝛿𝑛𝑚 and (3.86)

⟨𝜋𝑛|𝜋𝑚⟩̃︀𝜑𝜓 =
ˆ

[𝑎,𝑏]

d𝑡 𝜋𝑛(𝑡) ̃︀𝜑(𝑡)𝜓(𝑡) 𝜋𝑚(𝑡) = 𝛿𝑛𝑚. (3.87)

Let 𝐺(𝑡) = 𝜑(𝑡)∑︀𝑚>0 𝐺̄𝑚 𝑝𝑚(𝑡) be the solution ansatz. Plugging it into the integral equation

along with the spectral relation (3.85) and taking the inner product with 𝜋𝑛 ̃︀𝜑 on both sides

leads to a system of linear algebraic equations (3.88) to be solved for 𝐺̄𝑚

𝐾̂[𝐺](𝑡) = 𝑔(𝑡)∑︁
𝑚>0

𝐺̄𝑚

{︁ ⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝐾0[𝜑 𝑝𝑚]

⟩
+
⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝐾1[𝜑 𝑝𝑚]

⟩ }︁
=
⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝑔⟩

∑︁
𝑚>0

𝐺̄𝑚

{︁
𝜆𝑚 ⟨𝜋𝑛|𝜋𝑚⟩̃︀𝜑𝜓 +

⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝐾1[𝜑 𝑝𝑚]

⟩ }︁
=
⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝑔⟩

∑︁
𝑚>0

(𝜆𝑚𝛿𝑛𝑚 + 𝜅𝑛𝑚) 𝐺̄𝑚 =
⟨
𝜋𝑛 ̃︀𝜑⃒⃒⃒𝑔⟩

𝐾𝑛𝑚𝐺̄𝑚 = ̃︀𝑔𝑛. (3.88)

If 𝐾̂ = 𝐾̂0, then 𝐾𝑛𝑚 would have no off-diagonal terms and the solution to (3.88) would

simply be 𝐺̄𝑛 = 𝜆−1
𝑛 ̃︀𝑔𝑛.
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3.5.1 Riesz potential

For the present work, the key spectral relation involving the Riesz potential and the classical

Jacobi polynomials is proven below using an approach similar to the one used in (ARUTIU-

NIAN, 1959) to find the solution of the plane contact problem in nonlinear creep theory, i.e.

the distribution of the pressure intensity along the contact between compressed bodies as a

function of time. Nevertheless, the result in (ARUTIUNIAN, 1959) is restricted to the integral
 𝑎

−𝑎
d𝑠 sin 𝜋𝜇

2
(𝑎2 − 𝑠2)− 𝜇

2

𝜋|𝑠− 𝑥|1−𝜇 = 1 (3.89)

with 0 < 𝜇 < 1. The proof presented below is original, as far as the author is aware.

Theorem 3.3. If 0 < 𝜂 < 1 and 𝑘 ∈ N, then for 𝜏 ∈ (−1, 1) it holds that
 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 −1)

𝑘 (𝑡) = − 𝜋

2 𝑘! sin 𝜂𝜋
2

Γ(𝑘 + 𝜂)
Γ(𝜂) 𝑃

( 𝜂
2 )

𝑘−1 (𝜏). (3.90)

Proof. Let us consider the function 𝑓𝑘, 𝜂
2 −1(𝑧) defined on the extended complex plane as

𝑓𝑘, 𝜂
2 −1(𝑧) = (𝑧 − 1)

𝜂
2 −1(𝑧 + 1)

𝜂
2 −1

(𝑧 − 𝜏)𝜂 𝑃
( 𝜂

2 −1)
𝑘 (𝑧) (3.91)

with branch cut along [−1, 1] and the contour Γ depicted in Figure 7 around the branch cut.

Figure 7 – Contour Γ around the branch cut [−1, 1] of 𝑓𝑘, 𝜂
2 −1(𝑧).

C

−1 𝜏 1

Γ (1) (2) (3) (4) (5)

(6)(7)(8)

Source: The author (2023)

Let us consider the integral of 𝑓𝑘, 𝜂
2 −1(𝑧) along Γ,

´
Γ
𝑓𝑘, 𝜂

2 −1(𝑧) d𝑧. The arcs (1) and (5).

For instance, let us take (1): by having 𝑧 + 1 = 𝜖𝑒𝑖𝜃,
´

(1) d𝑧 𝑓𝑘, 𝜂
2 −1(𝑧) ∼

´
(1) d𝑧 (𝑧 + 1) 𝜂

2 −1 =

−𝑖𝜖 𝜂
2
´ 2𝜋

0 d𝜃 𝑒𝑖𝜃( 𝜂
2 −1) 𝜖→0−→ 0. The arcs (3) and (7) do not contribute to the contour integral

either. Take (3), for example, with 𝑧 − 𝜏 = 𝜖𝑒𝑖𝜃:
´

(3) d𝑧 𝑓𝑘, 𝜂
2 −1(𝑧) ∼

´
(3) d𝑧 (𝑧 − 𝜏)−𝜂 =

−𝑖𝜖1−𝜂 ´ 𝜋
0 d𝜃 𝑒−𝑖𝜃𝜂 𝜖→0−→ 0, provided that 0 < 𝜂 < 1.
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As for the remaining paths, note that winding counterclockwise around the branch cut

produces a phase shift in 𝑓𝑘, 𝜂
2 −1(𝑧) equal to 𝜋𝜂 for −1 < Re{𝑧} < 𝜏 , i.e. sweeping from

segment (2) towards (8) in Figure 7, and equal to −𝜋𝜂 for 𝜏 < Re{𝑧} < 1, i.e. from segment

(4) towards (6). Henceˆ

Γ

𝑓𝑘, 𝜂
2 −1(𝑧) d𝑧 = lim

𝜖→0+
[
ˆ

(2)

d𝑡 (1− 𝑒𝑖𝜋𝜂)𝑓(𝑡+ 𝑖𝜖) +
ˆ

(4)

d𝑡 (1− 𝑒−𝑖𝜋𝜂)𝑓(𝑡+ 𝑖𝜖) ] , (3.92)

which in turn leads toˆ

Γ

𝑓𝑘, 𝜂
2 −1(𝑧) d𝑧 = 2𝑖 sin

(︁
𝜋 𝜂2

)︁  1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 −1)

𝑘 (𝑡) (3.93)

On the other hand, note that Γ encloses the singularity of 𝑓(𝑧) at the point at infinity.

Therefore, by Cauchy’s residue theorem one has thatˆ

Γ

𝑓𝑘, 𝜂
2 −1(𝑧) d𝑧 = 2𝜋𝑖Res

[︁
𝑓𝑘, 𝜂

2 −1(𝑧);∞
]︁

= −2𝜋𝑖Res
[︂ 1
𝑧2𝑓𝑘,

𝜂
2 −1

(︁
1
𝑧

)︁
; 0
]︂
. (3.94)

In virtue of (3.93) and (3.94), the value of the left hand side of (3.90) is given by 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 −1)

𝑘 (𝑡) = − 𝜋

sin 𝜂𝜋
2

Res
[︂ 1
𝑧2𝑓𝑘,

𝜂
2 −1

(︁
1
𝑧

)︁
; 0
]︂
, (3.95)

where the function whose residue at 0 is sought has the form

1
𝑧2𝑓𝑘,

𝜂
2 −1

(︁
1
𝑧

)︁
= (1− 𝑧2)

𝜂
2 −1

(1− 𝑧𝜏)𝜂 𝑃
( 𝜂

2 −1)
𝑘

(︁
1
𝑧

)︁
. (3.96)

At this point, the proof of the theorem relies on proving that

Res
⎡⎣(1− 𝑧2)

𝜂
2 −1

(1− 𝑧𝜏)𝜂 𝑃
( 𝜂

2 −1)
𝑘

(︁
1
𝑧

)︁
; 0
⎤⎦ = (𝜂)𝑘

2 𝑘! 𝑃
( 𝜂

2 )
𝑘−1 (𝜏). (3.97)

For that purpose, let us expand every factor in (3.96) into power series around 𝑧 = 0 as

(1− 𝑧2)
𝜂
2 −1 =

∑︁
𝑗=0

𝑎2𝑗𝑧
2𝑗 with 𝑎2𝑗 ≡

(1− 𝜂
2)𝑗

𝑗! (3.98)

and

(1− 𝑧𝜏)−𝜂 =
∑︁
𝑗=0

𝑏𝑗(𝜏𝑧)𝑗 with 𝑏𝑗 ≡
(𝜂)𝑗
𝑗! , (3.99)

respectively. Recall the definition of the Pochhammer symbol (𝑎)𝑛 ≡ Γ(𝑎+𝑛)
Γ(𝑎) .

The product of (3.98) and (3.99) yields

(1−𝑧2)
𝜂
2 −1(1−𝑧𝜏)−𝜂 = 𝑎0𝑏0+𝑎0𝑏1𝜏𝑧+(𝑎2𝑏1𝜏+𝑎0𝑏3𝜏

3)𝑧3+(𝑎4𝑏1𝜏+𝑎2𝑏3𝜏
3+𝑎0𝑏5𝜏

5)𝑧5+· · ·

+ (𝑎2 + 𝑎0𝑏2𝜏
2)𝑧2 + (𝑎4 + 𝑎2𝑏2𝜏

2 + 𝑎0𝑏4𝜏
4)𝑧4 + (𝑎6 + 𝑎4𝑏2𝜏

2 + 𝑎2𝑏4𝜏
4 + 𝑎0𝑏6𝜏

6)𝑧6 + · · · .

(3.100)
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Note that the coefficient of the term proportional to 𝑧𝑗 with odd (even) 𝑗 is a polynomial

involving odd (even) powers of 𝜏 up to 𝑗. Moreover, the coefficients of those polynomials in

𝜏 are combinations of the coefficients 𝑎𝑟 and 𝑏𝑠 such that 𝑟 + 𝑠 = 𝑗.

With the definition of the polynomials 𝜎(𝑒)
2ℎ (𝜏) = ∑︀ℎ

ℎ′=0 𝑎2(ℎ−ℎ′)𝑏2ℎ′𝜏 2ℎ′ and 𝜎
(𝑜)
2ℎ+1(𝜏) =∑︀ℎ

ℎ′=0 𝑎2(ℎ−ℎ′)𝑏2ℎ′+1𝜏
2ℎ′+1, one has that (3.100) corresponds to

(1− 𝑧2)
𝜂
2 −1(1− 𝑧𝜏)−𝜂 =

∞∑︁
ℎ=0

(︁
𝜎

(𝑒)
2ℎ (𝜏)𝑧2ℎ + 𝜎

(𝑜)
2ℎ+1(𝜏)𝑧2ℎ+1

)︁
. (3.101)

As for the Jacobi polynomial in (3.96), let us begin with the 𝑗-th order derivative of the

Jacobi polynomial of order 𝑘 given by

d𝑗

d𝑤𝑗𝑃
( 𝜂

2 −1)
𝑘 (𝑤) = 1

2𝑗 (𝜂 + 𝑘 − 1)𝑗 𝑃
( 𝜂

2 −1+𝑗)
𝑘−𝑗 (𝑤), (3.102)

which is a direct result of the iterative application of (3.71) 𝑗 times.

With that in mind, 𝑃 ( 𝜂
2 −1)

𝑘

(︁
1
𝑧

)︁
admits the expansion given by

𝑃
( 𝜂

2 −1)
𝑘

(︁
1
𝑧

)︁
=

𝑘∑︁
𝑗=0

(︂1
𝑧

)︂𝑗 [︃ 1
𝑗!

d𝑗

d𝑤𝑗𝑃
( 𝜂

2 −1)
𝑘 (𝑤)

⃒⃒⃒⃒
𝑤=0

]︃

=
𝑘∑︁
𝑗=0

(︂1
𝑧

)︂𝑗 [︃ 1
𝑗! 2𝑗 (𝜂 + 𝑘 − 1)𝑗 𝑃

( 𝜂
2 −1+𝑗)

𝑘−𝑗 (0)
]︃
. (3.103)

Observe that if 𝑘 is even, then only terms with even 𝑗 contribute. To see this, recall that

the parity property (3.69) for 𝛾 = 𝛿 implies that 𝑃 ( 𝜂
2 −1+𝑗)

𝑘−𝑗 (0) = 0 for odd 𝑘 − 𝑗, i.e. odd 𝑗.

Conversely, if 𝑘 is odd, then only terms with odd 𝑗 contribute.

The same expansion procedure applied to 𝑃 ( 𝜂
2 )

𝑘−1 (𝜏) leads to

𝑃
( 𝜂

2 )
𝑘−1 (𝜏) =

𝑘−1∑︁
𝑗=0

(𝜏)𝑗
[︃

1
𝑗! 2𝑗 (𝜂 + 𝑘)𝑗 𝑃

( 𝜂
2 +𝑗)

𝑘−1−𝑗 (0)
]︃
. (3.104)

Let us consider (3.102) with odd index 𝑘, i.e. 𝑘 = 2𝑙+ 1 with 𝑙 ∈ N0. By considering odd

values of 𝑗 equal to 2ℎ+ 1 with ℎ ∈ N0 in (3.103), one has that

𝑃
( 𝜂

2 −1)
2𝑙+1

(︁
1
𝑧

)︁
=

𝑙∑︁
ℎ′=0

(︂1
𝑧

)︂2ℎ′+1 [︃ (𝜂 + 2𝑙)2ℎ′+1
(2ℎ′ + 1)! 22ℎ′+1𝑃

( 𝜂
2 +2ℎ′)

2(𝑙−ℎ′) (0)
]︃
. (3.105)

It follows from (3.105) and (3.101) that the statement in (3.97), namely

Res
[︂ 1
𝑧2𝑓2𝑙+1, 𝜂

2 −1

(︁
1
𝑧

)︁
; 0
]︂

=
(𝜂)2𝑙+1

2 (2𝑙 + 1)!𝑃
( 𝜂

2 )
2𝑙 (𝜏), (3.106)

is equivalent to
𝑙∑︁

ℎ′=0

(𝜂 + 2𝑙)2ℎ′+1
(2ℎ′ + 1)! 22ℎ′+1𝑃

( 𝜂
2 +2ℎ′)

2(𝑙−ℎ′) (0)𝜎(𝑒)
2ℎ′(𝜏)−

(𝜂)2𝑙+1
2 (2𝑙 + 1)!𝑃

( 𝜂
2 )

2𝑙 (𝜏) = 0. (3.107)
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To prove (3.107), let us consider the explicit polynomial forms of 𝜎(𝑒)
2ℎ′(𝜏) and 𝑃

( 𝜂
2 )

2𝑙 (𝜏) and

group terms with common power in 𝜏 . Then, one needs to show that the coefficient of

each term equals zero. In general, the coefficient corresponding to the power 𝜏 2(𝑙−𝑙′), with

0 ≤ 𝑙′ ≤ 𝑙, is given by

𝑐2(𝑙−𝑙′) =

𝑏2(𝑙−𝑙′)⏞  ⏟  
(𝜂)2(𝑙−𝑙′)

[2(𝑙 − 𝑙′)]!

𝑙′∑︁
ℎ=0

𝑎2ℎ⏞  ⏟  (︁
1− 𝜂

2

)︁
ℎ

ℎ!
(𝜂 + 2𝑙)2(𝑙−𝑙′)+2ℎ+1

(2(𝑙 − 𝑙′) + 2ℎ+ 1)! 22(𝑙−𝑙′)+2ℎ+1𝑃
( 𝜂

2 +2(𝑙−𝑙′)+2ℎ))
2(𝑙′−ℎ) (0)

−
(𝜂)2𝑙+1

2 (2𝑙 + 1)!
(𝜂 + 2𝑙 + 1)2(𝑙−𝑙′)

[2(𝑙 − 𝑙′)]! 22(𝑙−𝑙′)𝑃
( 𝜂

2 +2(𝑙−𝑙′))
2𝑙′ (0). (3.108)

In order to simplify (3.108), one has that (𝜂)2𝑙+1 = (𝜂)2(𝑙−𝑙′) (𝜂 + 2(𝑙 − 𝑙′))2𝑙′ (𝜂+ 2𝑙) and

also that (𝜂 + 2𝑙)2(𝑙−𝑙′)+2ℎ+1 = (𝜂 + 2𝑙) (𝜂 + 2𝑙 + 1)2(𝑙−𝑙′) (𝜂 + 2𝑙 + 1 + 2(𝑙 − 𝑙′))2ℎ. There-

fore, it follows that

𝑐2(𝑙−𝑙′) = (𝜂)2(𝑙−𝑙′)(𝜂 + 2𝑙 + 1)2(𝑙−𝑙′)(𝜂 + 2𝑙)
[2(𝑙 − 𝑙′)]! 22(𝑙−𝑙′)+1 ·

·

⎛⎝ 𝑙′∑︁
ℎ=0

(︁
1− 𝜂

2

)︁
ℎ

ℎ!
(𝜂 + 2𝑙 + 1 + 2(𝑙 − 𝑙′))2ℎ

(2(𝑙 − 𝑙′) + 2ℎ+ 1)! 22ℎ 𝑃
( 𝜂

2 +2(𝑙−𝑙′)+2ℎ))
2(𝑙′−ℎ) (0)

−(𝜂 + 2(𝑙 − 𝑙′))2𝑙′

(2𝑙 + 1)! 𝑃
( 𝜂

2 +2(𝑙−𝑙′))
2𝑙′ (0)

)︃
. (3.109)

One can also relate every 𝑃 ( 𝜂
2 +2(𝑙−𝑙′)+2ℎ))

2(𝑙′−ℎ) (0) to 𝑃 ( 𝜂
2 +2(𝑙−𝑙′))

2𝑙′ (0) by means of

𝑃
( 𝜂

2 +2(𝑙−𝑙′)+2ℎ)
2(𝑙′−ℎ) (0) = (−1)ℎ 22ℎ (𝑙′ − ℎ+ 1)ℎ(︁

𝜂
2 + 2𝑙 − 𝑙′ + 1

)︁
ℎ

𝑃
( 𝜂

2 +2(𝑙−𝑙′))
2𝑙′ (0). (3.110)

A proof of (3.110) can be achieved from the following identities involving ultraspherical poly-

nomials 𝐶(𝛾′)
2𝑚 (HOCHSTRASSER, 1972)

𝐶
(𝛾′)
2𝑚 (0) = (−1)𝑚 (𝛾′)𝑚

𝑚! , 𝛾′ > −1
2 , 𝛾

′ ̸= 0 (3.111)

𝑃
(𝛾′− 1

2)
2𝑚 (0) =

(︁
𝛾′ + 1

2

)︁
2𝑚

(2𝛾′)2𝑚
𝐶

(𝛾′)
2𝑚 (0), (3.112)

both of which lead to

𝑃
(𝛾)
2𝑚 (0) = (−1)𝑚

𝑚! 22𝑚
(𝛾 + 1)2𝑚

(𝛾 + 1)𝑚
= (−1)𝑚

𝑚! 22𝑚 (𝛾 + 1 +𝑚)𝑚 (3.113)

for 𝛾 > −1. Also note that in order to have (3.113) one can make use of the relation

(2𝛾′)2𝑚 = 22𝑚 (𝛾′)𝑚
(︁
𝛾′ + 1

2

)︁
𝑚
, (3.114)
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which can be easily verified from the ratio (2𝛾′)2𝑚/(𝛾′)𝑚 and the definition of the Pochhammer

symbol (𝑎)𝑛 = 𝑎(𝑎+ 1) · · · (𝑎+ 𝑛− 1).

By having (3.113) for 𝑃 (𝛾)
2𝑚 (0) and 𝑃

(𝛾+2ℎ)
2𝑚−2ℎ (0) separately and then calculating the ratio,

one gets to

𝑃
(𝛾+2ℎ)
2(𝑚−ℎ)(0) = (−1)ℎ 𝑚! 22ℎ

(𝑚− ℎ)!
(𝛾 +𝑚+ ℎ+ 1)𝑚−ℎ

(𝛾 +𝑚+ 1)𝑚
𝑃

(𝛾)
2𝑚 (0)

= (−1)ℎ 22ℎ (𝑚− ℎ+ 1)ℎ
(𝛾 +𝑚+ 1)ℎ

𝑃
(𝛾)
2𝑚 (0), (3.115)

from which (3.110) follows.

Inserting (3.110) into (3.109) leads to

𝑐2(𝑙−𝑙′) = (𝜂)2(𝑙−𝑙′)(𝜂 + 2𝑙 + 1)2(𝑙−𝑙′)(𝜂 + 2𝑙)
[2(𝑙 − 𝑙′)]! 22(𝑙−𝑙′)+1 𝑃

( 𝜂
2 +2(𝑙−𝑙′))

2𝑙′ (0)·

·

⎛⎝ 𝑙′∑︁
ℎ=0

(︁
1− 𝜂

2

)︁
ℎ

ℎ!
(𝜂 + 4𝑙 − 2𝑙′ + 1)2ℎ

(2(𝑙 − 𝑙′) + 2ℎ+ 1)!
(−1)ℎ (𝑙′ − ℎ+ 1)ℎ(︁
𝜂
2 + 2𝑙 − 𝑙′ + 1

)︁
ℎ

−(𝜂 + 2(𝑙 − 𝑙′))2𝑙′

(2𝑙 + 1)!

)︃
. (3.116)

By means of (3.114) and the fact that (2𝑙+1)! = (2(𝑙−𝑙′)+2ℎ+1)! (2(𝑙 − 𝑙′ + ℎ+ 1))2(𝑙′−ℎ),

one can simplify (3.116) into the form

𝑐2(𝑙−𝑙′) = (𝜂)2(𝑙−𝑙′)(𝜂 + 2𝑙 + 1)2(𝑙−𝑙′)(𝜂 + 2𝑙)
[2(𝑙 − 𝑙′)]! 22(𝑙−𝑙′)+1 (2𝑙 + 1)! 𝑃

( 𝜂
2 +2(𝑙−𝑙′))

2𝑙′ (0)
⎛⎝ 𝑙′∑︁
ℎ=0

(−1)ℎ (𝑙′ − ℎ+ 1)ℎ
ℎ! ·

·22ℎ (2(𝑙 − 𝑙′ + ℎ+ 1))2(𝑙′−ℎ)

(︁
𝜂
2 + 2𝑙 − 𝑙′ + 1

2

)︁
ℎ

(︁
1− 𝜂

2

)︁
ℎ
− (𝜂 + 2(𝑙 − 𝑙′))2𝑙′

)︁
. (3.117)

Eq. (3.117) admits further simplification by applying (3.114) in the last two terms, leading

to

𝑐2(𝑙−𝑙′) = (𝜂)2(𝑙−𝑙′)(𝜂 + 2𝑙 + 1)2(𝑙−𝑙′)(𝜂 + 2𝑙)
[2(𝑙 − 𝑙′)]! 22(𝑙−𝑙′)+1 (2𝑙 + 1)! 𝑃

( 𝜂
2 +2(𝑙−𝑙′))

2𝑙′ (0) 2𝑙′·

·

⎛⎝ 𝑙′∑︁
ℎ=0

(−1)ℎ (𝑙′ − ℎ+ 1)ℎ
ℎ! (𝑙 − 𝑙′ + ℎ+ 1)𝑙′−ℎ

(︁
𝑙 − 𝑙′ + ℎ+ 3

2

)︁
𝑙′−ℎ
·

·
(︁
𝜂
2 + 2𝑙 − 𝑙′ + 1

2

)︁
ℎ

(︁
1− 𝜂

2

)︁
ℎ
−
(︁
𝜂
2 + 𝑙 − 𝑙′

)︁
𝑙′

(︁
𝜂
2 + 𝑙 − 𝑙′ + 1

2

)︁
𝑙′

)︁
. (3.118)

Therefore, in order to prove that the coefficients 𝑐2(𝑙−𝑙′) equal zero for any 𝑙 and 𝑙′, provided

that 0 ≤ 𝑙′ ≤ 𝑙, one needs to show that

𝑐̊(𝑙, 𝑙′) =
(︁
𝜂
2 + 𝑙 − 𝑙′

)︁
𝑙′

(︁
𝜂
2 + 𝑙 − 𝑙′ + 1

2

)︁
𝑙′
, (3.119)
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where 𝑐̊(𝑙, 𝑙′) is defined as

𝑐̊(𝑙, 𝑙′) =
𝑙′∑︁
ℎ=0

(𝑙′ − ℎ+ 1)ℎ
ℎ! (𝑙 − (𝑙′ − 1) + ℎ)𝑙′−ℎ

(︁
𝑙 − (𝑙′ − 1) + ℎ+ 1

2

)︁
𝑙′−ℎ
·

·
(︁
𝜂
2 + 𝑙 − (𝑙′ − 1) + 𝑙 − 1

2

)︁
ℎ

(︁
𝜂
2 − ℎ

)︁
ℎ
. (3.120)

The statement (3.119) was verified with the aid of symbolic computations carried out in

the Mathematica (WOLFRAM RESEARCH INC., 2022) and the code is included in Appendix A.

Nevertheless, a sketch of a possible proof is presented below.

The case 𝑙′ = 0 is trivial as 𝑐̊(𝑙, 0) = 1 in (3.119) and so is the only term in the right hand

side of (3.120). For 𝑙′ = 1, one has that

𝑐̊(𝑙, 1) = (𝑙)1

(︁
𝑙 + 1

2

)︁
1
−
(︁
𝜂
2 + 𝑙 − 1 + 𝑙 + 1

2

)︁ (︁
1− 𝜂

2

)︁
=
(︁
𝑙 + 1

2

)︁ (︁
𝑙 + 𝜂

2 − 1
)︁

+
(︁
𝜂
2 + 𝑙 − 1

)︁ (︁
𝜂
2 − 1

)︁
=
(︁
𝜂
2 + 𝑙 − 1

)︁ (︁
𝜂
2 + 𝑙 − 1 + 1

2

)︁
.

Having proved (3.119) for 𝑙′ = 1, let us assume as induction hypothesis that

𝑐̊(𝑙, 𝑙′) =
(︁
𝜂
2 + 𝑙 − 𝑙′

)︁
𝑙′

(︁
𝜂
2 + 𝑙 − 𝑙′ + 1

2

)︁
𝑙′

(3.121)

holds for any 1 < 𝑙′ < 𝑙. Multiplying both sides of (3.121) by 𝜂
2 + 𝑙− 𝑙′−1 and 𝜂

2 + 𝑙− 𝑙′−1+ 1
2

leads to

(︁
𝜂
2 + 𝑙 − 𝑙′ − 1

)︁ (︁
𝜂
2 + 𝑙 − 𝑙′ − 1 + 1

2

)︁
𝑐̊(𝑙, 𝑙′)

=
(︁
𝜂
2 + 𝑙 − (𝑙′ + 1)

)︁
𝑙′+1

(︁
𝜂
2 + 𝑙 − (𝑙′ + 1) + 1

2

)︁
𝑙′+1

. (3.122)

The right-hand side of (3.122) is already in the form of the right-hand side of the induction

hypothesis (3.122) for 𝑙′ + 1. With regard to the left-hand side of (3.122), one can start with

the ℎ = 0 term
(︁
𝑙 − 𝑙′ + 𝜂

2 − 1
)︁ (︁
𝑙 − 𝑙′ + 1

2 + 𝜂
2 − 1

)︁
(𝑙 − (𝑙′ − 1))𝑙′

(︁
𝑙 − (𝑙′ − 1) + 1

2

)︁
𝑙′

= (𝑙 − 𝑙′)𝑙′+1

(︁
𝑙 − 𝑙′ + 1

2

)︁
𝑙′+1

+(︁
𝜂
2 − 1

)︁ (︁
𝜂
2 − 1 + 2𝑙 − 2𝑙′ + 1

2

)︁
(𝑙 − (𝑙′ − 1))𝑙′

(︁
𝑙 − (𝑙′ − 1) + 1

2

)︁
𝑙′
.

(3.123)

The first term of (3.123) corresponds to the term of 𝑐̊(𝑙, 𝑙′ + 1) with ℎ = 0. The second

term of (3.123) is recombined with the term of 𝑐̊(𝑙, 𝑙′) with ℎ = 1. This process of forward

propagation is carried out 𝑙′ + 1 times and eventually the ℎ = 𝑙′ + 1 term of 𝑐̊(𝑙, 𝑙′ + 1) comes

up.
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Finally, the proof of (3.102) with even index 𝑘 follows an analogous, if not identical,

approach to the one just presented for odd 𝑘. For that reason, it will not be included here.

The spectral relation (3.90) is a particular case of the following general result reported in

(PODLUBNY, 1999) concerning the Riesz potential:

Theorem 3.4. [I. Podlubny] If 𝛾, 𝛿 > −1, 0 < 𝜂 < 1 and 𝜃 is an arbitrary real number, then

for −1 < 𝜏 < 1 the following holds
 1

−1
d𝑡
(︃

sgn(𝜏 − 𝑡) + tan 𝜋𝜃
tan 𝜂𝜋

2

)︃ ̃︀𝑃 (𝛾,𝛿)
𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

=
Φ1(𝜏) sin 𝜋

(︁
𝜃 − 𝜂

2

)︁
+ Φ2(𝜏) sin 𝜋

(︁
𝜃 + 𝜂

2 − 𝛿
)︁

Γ(𝜂) sin 𝜂𝜋
2 cos 𝜃𝜋 ,

(3.124)

where

Φ1(𝜏) = (−1)𝑘Γ(𝑘 + 𝛾 + 1)Γ(𝑘 + 𝜂)Γ(𝛿 − 𝜂 + 1)
2−𝛾−𝛿+𝜂−1Γ(𝑘 + 𝛾 + 𝛿 − 𝜂 + 2) 𝑘! 2𝐹1(𝑘+𝜂, 𝜂−𝑘−𝛾−𝛿−1;−𝛿+𝜂; 1 + 𝜏

2 )

(3.125)

and

Φ2(𝜏) = (−1)𝑘+1Γ(𝑘 + 𝛿 + 1)Γ(𝜂 − 𝛿 − 1)
2−𝛾(1 + 𝜏)𝜂−𝛿−1 2𝐹1(𝑘+𝛿+1,−𝑘−𝛾; 𝛿−𝜂+2; 1 + 𝜏

2 ). (3.126)

Proof. Here follows the proof sketched in (PODLUBNY, 1999) thoroughly "decompressed".

Consider the function 𝑟(𝜔) given by

𝑟(𝑠) = exp(𝑖𝜋𝜃)
ˆ ∞

0
d𝜔 𝜔𝜂−1 exp(𝑖𝑠𝜔) = exp(𝑖𝜋𝜃)ℱ [𝜔𝜂−1

1(0,∞)(𝜔)], (3.127)

where ℱ is the Fourier transform operator.

Taking into account that the application of the Fourier operator twice produces a reflection

of the original function, i.e. ℱ2[𝑓(𝑡)] = 𝑓(−𝑡) and that

ℱ
[︁
(𝑖𝑡)−𝜂

]︁
= 1

Γ(𝜂)𝜔
𝜂−1
1(0,∞)(𝜔) (3.128)

holds for 0 < 𝜂 < 1, one has that 𝑟(𝑠) = exp(𝑖𝜋𝜃)Γ(𝜂) [−𝑖𝑠]−𝜂 which is equivalent to

𝑟(𝑠) = exp(𝑖𝜋𝜃)Γ(𝜂) [−𝑖 sgn(𝑠)|𝑠|]−𝜂. The phase factor (−𝑖 sgn(𝑠))−𝜂 can be reformulate as

exp
(︁
−𝑖𝜋 𝜂2 sgn(𝑠)

)︁
, leading in the end to

𝑟(𝑠) = exp(𝑖𝜋𝜃)Γ(𝜂) [−𝑖𝑠]−𝜂 = Γ(𝜂)|𝑠|−𝜂 exp
[︂
𝑖𝜋
(︂
𝜃 + 𝜂

2 sgn(𝑠)
)︂]︂
. (3.129)

Let 𝐽(𝜏) be the function defined as

𝐽(𝜏) =
ˆ 1

−1
d𝑡 𝑟(𝜏 − 𝑡) ̃︀𝑃 (𝛾,𝛿)

𝑘 (𝑡). (3.130)
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On the one hand, the insertion of (3.129) into (3.130) leads to

𝐽(𝜏) = Γ(𝜂)
ˆ 1

−1
d𝑡 |𝜏 − 𝑡|−𝜂 exp

[︂
𝑖𝜋
(︂
𝜃 + 𝜂

2 sgn(𝜏 − 𝑡)
)︂]︂ ̃︀𝑃 (𝛾,𝛿)

𝑘 (𝑡). (3.131)

On the other hand, let us plug (3.127) into (3.131) and swap the integration order

𝐽(𝜏) = exp(𝑖𝜋𝜃)
ˆ 1

−1
d𝑡
ˆ ∞

0
d𝜔 𝜔𝜂−1 exp [𝑖(𝜏 − 𝑡)𝜔] ̃︀𝑃 (𝛾,𝛿)

𝑘 (𝑡)

= exp(𝑖𝜋𝜃)
ˆ ∞

0
d𝜔 𝜔𝜂−1 exp (𝑖𝜏𝜔)

ˆ 1

−1
d𝑡 exp (−𝑖𝑡𝜔) ̃︀𝑃 (𝛾,𝛿)

𝑘 (𝑡). (3.132)

It follows from Rodrigues’ formula (3.68) that ̃︀𝑃 (𝛾,𝛿)
𝑘 (𝑡) = (−1)𝑘

𝑘! 2𝑘
d𝑘

d𝑡𝑘
[︁
(1− 𝑡)𝑘+𝛾(1 + 𝑡)𝑘+𝛿

]︁
,

hence

𝐽(𝜏) = (−1)𝑘

𝑘! 2𝑘 exp(𝑖𝜋𝜃)
ˆ ∞

0
d𝜔 𝜔𝜂−1 exp (𝑖𝜏𝜔) ·

·
ˆ 1

−1
d𝑡 exp (−𝑖𝑡𝜔) d𝑘

d𝑡𝑘
[︁
(1− 𝑡)𝑘+𝛾(1 + 𝑡)𝑘+𝛿

]︁
. (3.133)

Regarding the inner integral, let us change variables 𝑠 ≡ 1
2(1 + 𝑡) and perform iterated

partial integration 𝑘 times starting with 𝑣 = exp(−𝑖2𝜔𝑠), hence d𝑣 = −𝑖2𝜔𝑣 d𝑠, and d𝑢 =
d𝑘

d𝑠𝑘

[︁
(1− 𝑠)𝑘+𝛾𝑠𝑘+𝛿

]︁
. As for the boundary terms, note that they vanish in virtue of (3.68), at

least for positive values for the parameters 𝛾 and 𝛿. With that in hand, one has that
ˆ 1

−1
d𝑡 exp (−𝑖𝑡𝜔) d𝑘

d𝑡𝑘
[︁
(1− 𝑡)𝑘+𝛾(1 + 𝑡)𝑘+𝛿

]︁
= exp (𝑖𝜔)

ˆ 1

0
2 d𝑠 exp (−𝑖2𝜔𝑠) 2−𝑘 d𝑘

d𝑠𝑘
[︁
22𝑘+𝛾+𝛿(1− 𝑠)𝑘+𝛾𝑠𝑘+𝛿

]︁
= exp (𝑖𝜔) 2𝑘+𝛾+𝛿+1

ˆ 1

0
d𝑠 exp (−𝑖2𝜔𝑠) d𝑘

d𝑠𝑘
[︁
(1− 𝑠)𝑘+𝛾𝑠𝑘+𝛿

]︁
= exp (𝑖𝜔) 2𝑘+𝛾+𝛿+1(−1)𝑘(−𝑖2𝜔)𝑘

ˆ 1

0
d𝑠 exp (−2𝑖𝜔𝑠) 𝑠𝑘+𝛿(1− 𝑠)𝑘+𝛾. (3.134)

The confluent hypergeometric function 1𝐹1(𝑎; 𝑏; 𝑧) or Kummer function, also denoted by

𝑀(𝑎, 𝑏, 𝑧), admits the integral representation given by (SLATER, 1972)

Γ(𝑎)Γ(𝑏− 𝑎)
Γ(𝑏) 1𝐹1(𝑎; 𝑏; 𝑧) =

ˆ 1

0
exp(𝑧𝑡)𝑡𝑎−1(1− 𝑡)𝑏−𝑎−1. (3.135)

By considering that Γ(𝑎)Γ(𝑏−𝑎)
Γ(𝑏) = B(𝑎, 𝑏 − 𝑎) and by taking 𝑎 = 𝑘 + 𝛿 + 1 and 𝑏 =

2𝑘 + 𝛾 + 𝛿 + 2, (3.134) becomes
ˆ 1

−1
d𝑡 exp (−𝑖𝑡𝜔) d𝑘

d𝑡𝑘
[︁
(1− 𝑡)𝑘+𝛾(1 + 𝑡)𝑘+𝛿

]︁
= exp (𝑖𝜔) 2𝑘+𝛾+𝛿+1(−𝑖2𝜔)𝑘·

· B(𝑘 + 𝛿 + 1, 𝑘 + 𝛾 + 1)1𝐹1(𝑘 + 𝛿 + 1; 2𝑘 + 𝛾 + 𝛿 + 2;−2𝑖𝜔), (3.136)
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which in turn leads from (3.133) to

𝐽(𝜏) = (−𝑖)𝑘

𝑘! exp(𝑖𝜋𝜃)2𝑘+𝛾+𝛿+1B(𝑘 + 𝛿 + 1, 𝑘 + 𝛾 + 1)ˆ ∞

0
d𝜔 exp [𝑖(𝜏 + 1)𝜔]𝜔𝑘+𝜂−1

1𝐹1 (𝑘 + 𝛿 + 1; 2𝑘 + 𝛾 + 𝛿 + 2;−2𝑖𝜔) . (3.137)

The Laplace transform ℒ{𝑓(𝑥)}(𝑧) ≡
´ ∞

0 d𝑥 𝑒−𝑧𝑥𝑓(𝑥) of the function 𝑓(𝑥) = 𝑥𝑠−1
1𝐹1(𝑎; 𝑏;𝜆𝑥)

is given by

ℒ{𝑥𝑠−1
1𝐹1(𝑎; 𝑏;𝜆𝑥)}(𝑧) = Γ(𝑠)𝑧−𝑠

2𝐹1(𝑎, 𝑠; 𝑏;𝜆𝑧−1), (3.138)

provided that Re 𝑠 > 0 and Re 𝑧 > max (0,Re𝜆) (ERDÉLYI et al., 1953). To see this, one

can expand the Kummer function in the power series 1𝐹1(𝑎; 𝑏;𝜆𝑥) = ∑︀∞
𝑛=0

(𝑎)𝑛

(𝑏)𝑛

1
𝑛!(𝜆𝑥)𝑛 and

perform the Laplace transform term by term ℒ{𝑥𝑞1(0,+∞)(𝑥)} = Γ(𝑞+1)𝑧−(𝑞+1) with Re 𝑞 >

−1 and Re 𝑠 > 0. Thus one arrives at Γ(𝑠)𝑧−𝑠∑︀∞
𝑛=0

(𝑎)𝑛(𝑠)𝑛

(𝑏)𝑛

1
𝑛! (𝜆𝑧−1)𝑛, which is equivalent

to the right hand side of (3.138) in virtue of (3.16).

By comparing (3.138) to (3.137), one can identify 𝑠 = 𝑘 + 𝜂 > 0, 𝑎 = 𝑘 + 𝛿 + 1 and

𝑏 = 2𝑘 + 𝛾 + 𝛿 + 2. Even though 𝑧 = −𝑖(𝜏 + 1) and 𝜆 = −2𝑖 are purely imaginary, one can

take 𝑧 + 𝜖 and check that the Laplace integral converges in the limit 𝜖→ 0.

Inserting (3.138) into (3.137) and performing some simplifications to the phase factor

arising from the powers of 𝑖 involved lead to

𝐽(𝜏) = 1
𝑘! exp(𝑖𝜋𝜃) 2𝑘+𝛾+𝛿+1 Γ(𝑘 + 𝜂)(−1)−𝜂 exp

(︁
−𝑖𝜋𝜂2

)︁
(𝜏 + 1)−𝑘−𝜂

B(𝑘 + 𝛿 + 1, 𝑘 + 𝛾 + 1) 2𝐹1
(︁
𝑘 + 𝛿 + 1, 𝑘 + 𝜂; 2𝑘 + 𝛾 + 𝛿 + 2; 2

1+𝜏

)︁
. (3.139)

The linear transformation formula (3.18) with 𝑎 = 𝑘+𝛿+1, 𝑏 = 𝑘+𝜂 and 𝑐 = 2𝑘+𝛾+𝛿+2,

allows to invert the argument of 2𝐹1 in (3.139). In so doing, two terms 𝐴1 and 𝐴2 arise that

will be treated separately, namely

B(𝑘 + 𝛿 + 1, 𝑘 + 𝛾 + 1)2𝐹1(𝑘 + 𝛿 + 1, 𝑘 + 𝜂; 2𝑘 + 𝛾 + 𝛿 + 2; 2
1+𝜏 ) = 𝐴1 + 𝐴2 (3.140)

with

𝐴1 = Γ(𝑘 + 𝛾 + 1)Γ(−𝜂 + 𝛿 + 1)
Γ(−𝜂 + 𝑘 + 𝛾 + 𝛿 + 2)

(︁
−1+𝜏

2

)︁𝑘+𝜂
2𝐹1

(︁
𝑘 + 𝜂, 𝜂 − 𝑘 − 𝛾 − 𝛿 − 1; 𝜂 − 𝛿; 1+𝜏

2

)︁
(3.141)

and

𝐴2 = Γ(𝑘 + 𝛿 + 1)Γ(𝜂 − 𝛿 − 1)
Γ(𝑘 + 𝜂)

(︁
−1+𝜏

2

)︁𝑘+𝛿+1
2𝐹1

(︁
𝑘 + 𝛿 + 1,−𝑘 − 𝛾;−𝜂 + 𝛿 + 2; 1+𝜏

2

)︁
.

(3.142)
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Let us split 𝐽(𝜏) accordingly. For the term 𝐽1(𝜏) corresponding to 𝐴1 one has that

𝐽1(𝜏) = 1
𝑘! exp(𝑖𝜋𝜃) 2𝑘+𝛾+𝛿+1 Γ(𝑘 + 𝜂)(−1)−𝜂 exp

(︁
−𝑖𝜋𝜂2

)︁
(𝜏 + 1)−𝑘−𝜂·

· Γ(𝑘 + 𝛾 + 1)Γ(−𝜂 + 𝛿 + 1)
Γ(−𝜂 + 𝑘 + 𝛾 + 𝛿 + 2)

(︁
−1+𝜏

2

)︁𝑘+𝜂
2𝐹1

(︁
𝑘 + 𝜂, 𝜂 − 𝑘 − 𝛾 − 𝛿 − 1; 𝜂 − 𝛿; 1+𝜏

2

)︁
= exp(𝑖𝜋𝜃) exp

(︁
−𝑖𝜋𝜂2

)︁ (−1)𝑘

2−𝛾−𝛿+𝜂−1
Γ(𝑘 + 𝛾 + 1)Γ(𝑘 + 𝜂)Γ(𝛿 − 𝜂 + 1)

𝑘! Γ(𝑘 + 𝛾 + 𝛿 − 𝜂 + 2) ·

· 2𝐹1
(︁
𝑘 + 𝜂, 𝜂 − 𝑘 − 𝛾 − 𝛿 − 1; 𝜂 − 𝛿; 1+𝜏

2

)︁
= exp

(︁
𝑖𝜋
(︁
𝜃 − 𝜂

2

)︁)︁
Φ1(𝜏), (3.143)

while 𝐴2 leads to the term 𝐽2(𝜏) given by

𝐽2(𝜏) = 1
𝑘! exp(𝑖𝜋𝜃) 2𝑘+𝛾+𝛿+1 Γ(𝑘 + 𝜂)(−1)−𝜂 exp

(︁
−𝑖𝜋𝜂2

)︁
(𝜏 + 1)−𝑘−𝜂·

· Γ(𝑘 + 𝛿 + 1)Γ(𝜂 − 𝛿 − 1)
Γ(𝑘 + 𝜂)

(︁
−1+𝜏

2

)︁𝑘+𝛿+1
2𝐹1

(︁
𝑘 + 𝛿 + 1,−𝑘 − 𝛾;−𝜂 + 𝛿 + 2; 1+𝜏

2

)︁
.

= exp(𝑖𝜋𝜃) exp (𝑖𝜋𝜂) exp
(︁
−𝑖𝜋𝜂2

)︁
exp (−𝑖𝜋𝛿) (−1)𝑘+1

2−𝛾
Γ(𝑘 + 𝛿 + 1)Γ(𝜂 − 𝛿 − 1)

𝑘!(𝜏 + 1)𝜂−𝛿−1 ·

· 2𝐹1
(︁
𝑘 + 𝛿 + 1,−𝑘 − 𝛾;−𝜂 + 𝛿 + 2; 1+𝜏

2

)︁
= exp

(︁
𝑖𝜋
(︁
𝜃 + 𝜂

2 − 𝛿
)︁)︁

Φ2(𝜏). (3.144)

It follows from (3.143) and (3.144) that

𝐽(𝜏) = Φ1(𝜏) exp
[︁
𝑖𝜋
(︁
𝜃 − 𝜂

2

)︁]︁
+ Φ2(𝜏) exp

[︁
𝑖𝜋
(︁
𝜃 + 𝜂

2 − 𝛿
)︁]︁
. (3.145)

Let us calculate the imaginary part of 𝐽(𝜏). On the one hand, (3.131) leads to

Im{𝐽(𝜏)} = Γ(𝜂)
ˆ 1

−1
d𝑡 sin 𝜋

(︁
𝜃 + 𝜂

2 sgn(𝜏 − 𝑡)
)︁ ̃︀𝑃 (𝛾,𝛿)

𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

= Γ(𝜂)
ˆ 1

−1
d𝑡
[︁
sin 𝜋𝜃 cos 𝜋𝜂

2 + sgn(𝜏 − 𝑡) cos𝜋𝜃 sin 𝜋𝜂
2

]︁ ̃︀𝑃 (𝛾,𝛿)
𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

= Γ(𝜂) sin 𝜋𝜂
2 cos 𝜋𝜃

ˆ 1

−1
d𝑡
[︃

tan 𝜋𝜃
tan 𝜋𝜂

2
+ sgn(𝜏 − 𝑡)

]︃ ̃︀𝑃 (𝛾,𝛿)
𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

. (3.146)

On the other hand, one has from (3.145) that

Im{𝐽(𝜏)} = Φ1(𝜏) sin 𝜋
(︁
𝜃 − 𝜂

2

)︁
+ Φ2(𝜏) sin 𝜋

(︁
𝜃 + 𝜂

2 − 𝛿
)︁
. (3.147)

The statement of the theorem (3.124) follows from the equivalence of (3.146) and (3.147).

Let us find the restrictions on the parameters that produce a polynomial in the right-hand

side of (3.124). First of all, if 𝛿− 𝜃− 𝜂
2 = 𝑟 with 𝑟 ∈ Z, the term proportional to Φ2 vanishes
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due to the phase of the sine function. Note that Φ2 has a factor (1 + 𝜏)−(𝜂−𝛿−1) that forbids

the goal of getting a polynomial. On the other hand, the power series of the hypergeometric

function in Φ1 becomes a finite sum if either 𝑘+ 𝜂 or 𝜂− 𝑘− 𝛾− 𝛿− 1 is a negative integer.

Considering the latter, one has that 𝜂 − 𝑘 − 𝛾 − 𝛿 − 1 = −𝑙 with 𝑙 ∈ Z+.

The two restrictions above imply that 𝛿 = 𝜂
2 +𝜃+𝑟 and 𝛾 = 𝜂

2−𝜃+(𝑙−𝑘−𝑟−1) = 𝜂
2−𝜃+𝑠

with 𝑠 ∈ Z such that 𝑙 = 𝑘 + 𝑟 + 𝑠+ 1. So far, one has that (3.124) turns into

 1

−1
d𝑡
(︁
sgn(𝜏 − 𝑡) cos𝜋𝜃 sin 𝜂𝜋

2 + sin 𝜋𝜃 cos 𝜂𝜋
2

)︁ ̃︀𝑃 ( 𝜂
2 −𝜃+𝑠, 𝜂

2 +𝜃+𝑟)
𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

=
sin 𝜋

(︁
𝜃 − 𝜂

2

)︁
Γ(𝜂)

(−1)𝑘Γ(𝑘 + 𝛾 + 1)Γ(𝑘 + 𝜂)Γ(𝛿 − 𝜂 + 1)
2−𝛾−𝛿+𝜂−1Γ(𝑘 + 𝛾 + 𝛿 − 𝜂 + 2) 𝑘! ·

· 2𝐹1(𝑘 + 𝜂, 𝜂 − 𝑘 − 𝛾 − 𝛿 − 1;−𝛿 + 𝜂; 1 + 𝜏

2 )⏟  ⏞  
(𝐹 )

. (3.148)

It follows from (3.76) and (3.69) that

2𝐹1

(︂
−𝑛′, 𝑛′ + 𝛾′ + 𝛿′ + 1; 𝛾′ + 1; 1 + 𝑡

2

)︂
= Γ(𝑛′ + 1)Γ(𝛾′ + 1)

Γ(𝑛′ + 𝛾′ + 1) (−1)𝑛′
𝑃

(𝛿′,𝛾′)
𝑛′ (𝑡). (3.149)

By comparing the left-hand side of (3.149) with (𝐹 ), one is able to identify 𝑛′ = 𝑘+𝑟+𝑠+1,

𝛾′ = 𝜂
2 − 𝜃 − 𝑟 − 1 and 𝛿′ = 𝜂

2 + 𝜃 − 𝑠− 1, leading to

(𝐹 ) =
Γ(𝑘 + 𝑟 + 𝑠+ 2)Γ(𝜂2 − 𝜃 − 𝑟)

Γ(𝑘 + 𝑠+ 𝜂
2 − 𝜃 + 1) (−1)𝑘+𝑟+𝑠+1𝑃

( 𝜂
2 +𝜃−𝑠−1, 𝜂

2 −𝜃−𝑟−1)
𝑘+𝑟+𝑠+1 (𝜏). (3.150)

Taking into account that 𝑘+ 𝛾 + 𝛿− 𝜂+ 2 = 𝑘+ 𝑟+ 𝑠+ 2, 𝛿− 𝜂+ 1 = 1− (𝜂2 − 𝜃− 𝑟)

and 𝑘 + 𝛾 + 1 = 𝑘 + 𝑠 + 𝜂
2 − 𝜃 + 1 as well the reflection formula for the Gamma function

(3.4), one has that (3.148) becomes

 1

−1
d𝑡
(︁
sgn(𝜏 − 𝑡) cos𝜋𝜃 sin 𝜂𝜋

2 + sin 𝜋𝜃 cos 𝜂𝜋
2

)︁ ̃︀𝑃 ( 𝜂
2 −𝜃+𝑠, 𝜂

2 +𝜃+𝑟)
𝑘 (𝑡)
|𝜏 − 𝑡|𝜂

=
sin 𝜋

(︁
𝜃 − 𝜂

2

)︁
𝑘! Γ(𝜂)

(−1)2𝑘+𝑟+𝑠+1Γ(𝑘 + 𝜂)
2−𝛾−𝛿+𝜂−1

𝜋

sin 𝜋
(︁
𝜂
2 − 𝜃 − 𝑟

)︁𝑃 ( 𝜂
2 +𝜃−𝑠−1, 𝜂

2 −𝜃−𝑟−1)
𝑘+𝑟+𝑠+1 (𝜏)

=
(−1)𝑟+𝑠+12𝑟+𝑠+1 𝜋 Γ(𝑘 + 𝜂) sin 𝜋

(︁
𝜃 − 𝜂

2

)︁
𝑘! Γ(𝜂) sin 𝜋

(︁
𝜂
2 − 𝜃 − 𝑟

)︁ 𝑃
( 𝜂

2 +𝜃−𝑠−1, 𝜂
2 −𝜃−𝑟−1)

𝑘+𝑟+𝑠+1 (𝜏). (3.151)

Observe that, in order to restrict the spectral relations to classical Jacobi polynomials, the

following conditions 𝑘 + 𝑟 + 𝑠+ 1 ≥ 0, 𝑠 > 𝜃 − 𝜂
2 − 1 and 𝑟 > −𝜃 − 𝜂

2 − 1 must be fulfilled.
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Taking 𝜃 = 0 in (3.151) yields
 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 +𝑠, 𝜂

2 +𝑟)
𝑘 (𝑡)

= (−1)𝑟+𝑠+12𝑟+𝑠+1 𝜋 Γ(𝑘 + 𝜂)
𝑘! sin 𝜂𝜋

2 Γ(𝜂)
sin 𝜋

(︁
−𝜂

2

)︁
sin 𝜋

(︁
𝜂
2 − 𝑟

)︁𝑃 ( 𝜂
2 −𝑠−1, 𝜂

2 −𝑟−1)
𝑘+𝑟+𝑠+1 (𝜏). (3.152)

The Jacobi polynomials involved in the right-hand side of (3.152) have parameters greater

than −1 if 𝑠, 𝑟 > −𝜂
2 − 1, i.e. 𝑠, 𝑟 ≥ −1 for all 𝜂 ∈ (0, 1) . Meanwhile, the left-hand side

polynomial requires that 𝑠, 𝑟 < 𝜂
2 , i.e. 𝑠, 𝑟 ≤ 0 for 𝜂 ∈ (0, 1). These restrictions produce the

four combinations shown below.

1. 𝑟, 𝑠 = −1 with 𝑘 ∈ N. This case corresponds to (3.90): 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 −1)

𝑘 (𝑡) = − 𝜋

2 𝑘! sin 𝜂𝜋
2

Γ(𝑘 + 𝜂)
Γ(𝜂) 𝑃

( 𝜂
2 )

𝑘−1 (𝜏); (3.153)

2. 𝑟 = −1 and 𝑠 = 0 with 𝑘 ∈ N0: 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 −1, 𝜂

2 )
𝑘 (𝑡) = − 𝜋

𝑘! sin 𝜂𝜋
2

Γ(𝑘 + 𝜂)
Γ(𝜂) 𝑃

( 𝜂
2 ,

𝜂
2 −1)

𝑘 (𝜏); (3.154)

3. 𝑟 = 0 and 𝑠 = −1. This case corresponds to (3.154) after swapping the parameters of

the Jacobi polynomials 𝜂
2 ←→

𝜂
2 − 1;

4. 𝑟 = 0 and 𝑠 = 0 with 𝑘 ∈ N0: 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂
2 ,

𝜂
2 )

𝑘 (𝑡) = 2𝜋 Γ(𝑘 + 𝜂)
𝑘! sin 𝜂𝜋

2 Γ(𝜂)𝑃
( 𝜂

2 −1, 𝜂
2 −1)

𝑘+1 (𝜏). (3.155)

Now consider (3.151) in the case 𝜃 = 1
2 ,

 1

−1
d𝑡 1
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂−1
2 +𝑠, 𝜂+1

2 +𝑟)
𝑘 (𝑡)

=
(−1)𝑟+𝑠+12𝑟+𝑠+1 𝜋 Γ(𝑘 + 𝜂) sin 𝜋

(︁
−𝜂−1

2

)︁
𝑘! Γ(𝜂) cos 𝜂𝜋

2 sin 𝜋
(︁
𝜂−1

2 − 𝑟
)︁ 𝑃

( 𝜂+1
2 −𝑠−1, 𝜂−1

2 −𝑟−1)
𝑘+𝑟+𝑠+1 (𝜏), (3.156)

for which 𝑠 > −𝜂+1
2 and 𝑟 > −𝜂+3

2 , i.e. 𝑠 > −1
2 and 𝑟 > −3

2 for all 𝜂 ∈ (0, 1). Nevertheless,

the parameters of the polynomial in the right-hand side of (3.156) impose the restriction

𝑠 < 𝜂+1
2 and 𝑟 < 𝜂−1

2 , i.e. 𝑠 < 1
2 and 𝑟 < 0 for all 𝜂 ∈ (0, 1). Hence 𝑠 = 0 and 𝑟 = −1, which

lead to (3.157)  1

−1
d𝑡 1
|𝜏 − 𝑡|𝜂

̃︀𝑃 ( 𝜂−1
2 )

𝑘 (𝑡) = 𝜋

𝑘! cos 𝜂𝜋
2

Γ(𝑘 + 𝜂)
Γ(𝜂) 𝑃

( 𝜂−1
2 )

𝑘 (𝜏) (3.157)

with 𝑘 ∈ N0. One can also observe that (3.89) in (ARUTIUNIAN, 1959) is a particular case of

(3.157) with 𝑘 = 0.
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3.5.2 Extension to 𝛼 ∈ [0, 2)

Let us consider the equation 1

−1
d𝑡 1
|𝜏 − 𝑡|𝜂

𝑓(𝑡) = lim
𝜖→0+

ˆ 𝜏−𝜖

−1
d𝑡 1

(𝜏 − 𝑡)𝜂 𝑓(𝑡) +
ˆ 1

𝜏+𝜖
d𝑡 1

(𝑡− 𝜏)𝜂 𝑓(𝑡) = ℎ(𝜏) (3.158)

with functions 𝑓(𝜏) and ℎ(𝜏) belonging to 𝐶1[−1, 1] and 0 < 𝜂 < 1. Due to the (weak)

singularity, the integral is understood in the sense of Cauchy principal value.

Taking the derivative with respect to 𝜏 on both sides and applying the rule for differenti-

ation under the integral operator (so called Leibniz integral rule) yields

ℎ′(𝜏) = lim
𝜖→0+

[︃
𝑓(𝜏 − 𝜖)

(𝜏 − (𝜏 − 𝜖))𝜂 − 𝜂
ˆ 𝜏−𝜖

−1
d𝑡 1

(𝜏 − 𝑡)𝜂+1𝑓(𝑡) (3.159)

− 𝑓(𝜏 + 𝜖)
((𝜏 + 𝜖)− 𝜏)𝜂 + 𝜂

ˆ 1

𝜏+𝜖
d𝑡 1

(𝑡− 𝜏)𝜂+1𝑓(𝑡)
]︃

= lim
𝜖→0+

[︃
−𝜂

(︃ˆ 𝜏−𝜖

−1
d𝑡 1

(𝜏 − 𝑡)𝜂+1𝑓(𝑡) +
ˆ 1

𝜏+𝜖
d𝑡 −1

(𝑡− 𝜏)𝜂+1𝑓(𝑡)
)︃

(3.160)

−𝑓(𝜏 + 𝜖)− 𝑓(𝜏 − 𝜖)
𝜖𝜂

]︃
. (3.161)

As any 𝑓(𝜏) in 𝐶1[−1, 1] is also Lipschitz continuous in the vicinity of any interior 𝜏 , i.e.

|𝑓(𝜏 + 𝜖) − 𝑓(𝜏 − 𝜖)| ≤ 𝑀𝜖, the third term in the left-hand side of (3.161) is proportional

to 𝜖1−𝜂, namely −2𝜖1−𝜂𝑓 ′(𝜏), which vanishes in the limit 𝜖 → 0+. The non-vanishing terms

correspond to  1

−1
d𝑡 sgn (𝜏 − 𝑡)
|𝜏 − 𝑡|𝜂+1 𝑓(𝑡) = −1

𝜂
ℎ′(𝜏). (3.162)

Let us define 𝛼 ≡ 𝜂 + 1 and take 𝑓(𝑡) and ℎ(𝜏) from (3.157), namely

𝑓(𝑡) = ̃︀𝑃 ( 𝜂−1
2 )

𝑘 (𝑡) = ̃︀𝑃 (𝛼
2 −1)

𝑘 (𝑡) (3.163)

ℎ(𝜏) = 𝜋

𝑘! cos 𝜂𝜋
2

Γ(𝑘 + 𝜂)
Γ(𝜂) 𝑃

( 𝜂−1
2 )

𝑘 (𝜏) = 𝜋

𝑘! cos (𝛼−1)𝜋
2

Γ(𝑘 + 𝛼− 1)
Γ(𝛼− 1) 𝑃

(𝛼
2 −1)

𝑘 (𝜏). (3.164)

Eqs. (3.71), (3.164) and the Gamma function recursion relation lead to

ℎ′(𝜏) = 𝜋

𝑘! sin 𝛼𝜋
2

Γ(𝑘 + 𝛼− 1)
Γ(𝛼− 1)

d
d𝑡𝑃

(𝛼
2 −1)

𝑘 (𝜏)

= 𝜋

2 𝑘! sin 𝛼𝜋
2

(𝛼− 1)(𝑘 + 𝛼− 1)Γ(𝑘 + 𝛼− 1)
(𝛼− 1)Γ(𝛼− 1) 𝑃

(𝛼
2 )

𝑘−1 (𝜏)

= (𝛼− 1)𝜋
2 𝑘! sin 𝛼𝜋

2

Γ(𝑘 + 𝛼)
Γ(𝛼) 𝑃

(𝛼
2 )

𝑘−1 (𝜏). (3.165)

Eqs. (3.165) and (3.162) lead to (3.166) which is an extension of (3.90) to 1 < 𝛼 < 2. 1

−1
d𝑡 sgn(𝜏 − 𝑡)
|𝜏 − 𝑡|𝛼

̃︀𝑃 (𝛼
2 −1)

𝑘 (𝑡) = − 𝜋

2 𝑘! sin 𝛼𝜋
2

Γ(𝑘 + 𝛼)
Γ(𝛼) 𝑃

(𝛼
2 )

𝑘−1 (𝜏), 𝑘 ∈ N. (3.166)
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4 APPLICATION TO RANDOM SEARCHES IN 1D

4.1 OVERVIEW

This chapter presents a proof that the expectation value of flight observables in the

presence of absorbing boundaries satisfy a Fredholm integral equation of the second kind

under certain assumptions. Furthermore, an approximate solution of this integral equation

is obtained with the aid of the properties of Jacobi polynomials for observables such as the

absorption probability at one boundary, the mean number of steps and the mean flight path

length before absorption, under a power law step length distribution. The rationale behind this

choice of distribution is that, even though the scale parameter imposes a threshold that forbids

any step shorter and the central part is by no means similar to the 𝛼-stable Levy distribution,

the Pareto Type I provides a suitable proxy for mimicking the heavy-tailed behaviour of the

latter, which is tractable by analytic methods at the same time.

Hereafter, the random flyer is restricted to a bounded interval of R denoted by Ω. For

convenience and without loss of generality, Ω is centered at 0 and its length is denoted by 𝐿,

hence Ω =
(︁
−𝐿

2 ,
𝐿
2

)︁
. Conversely, Ω𝑐 denotes the complement of Ω in R. Whenever a landing

in Ω𝑐 occurs, the target is hit, the flight ends and the flyer is said to be absorbed.

4.2 EXPECTATION VALUE OF ADDITIVE OBSERVABLES

The purpose of this section is to prove that the expectation value of any observable

is the solution to an integral equation, provided certain conditions. Therefore, closed-form

expressions for the expectation value of certain observables can be obtained from integral

equations with known solutions, such as the spectral relations introduced in section 3.5.

Let 𝒬(𝑥𝑗−1, 𝑥𝑗) represent any observable measured during the 𝑗-th step departing from

position 𝑥𝑗−1 and landing in any point 𝑥𝑗. If 𝑥𝑗 lies in Ω𝑐, the flyer is absorbed at 𝜕Ω.

Otherwise, the flyer remains unabsorbed and can take the (𝑗 + 1)-th step. Let also state

that 𝒬 is additive in the sense that the value assigned to any flight path with vertex se-

quence (𝑥0, 𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛) is the sum of 𝒬(𝑥𝑗−1, 𝑥𝑗) of each independent step 𝑗, i.e.

𝒬(𝑥0, 𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛) = ∑︀𝑛−1
𝑖=0 𝒬(𝑥𝑖, 𝑥𝑖+1).

Let 𝐾̂ denote the operator that maps a function 𝑓(𝑥) defined on Ω into 𝐾̂[𝑓 ](𝑥′), also
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defined on Ω, by means of the step distribution 𝑝(𝑥′, 𝑥), i.e.

𝐾̂[𝑓 ](𝑥′) ≡
ˆ

Ω

d𝑥 𝑝(𝑥′, 𝑥)𝑓(𝑥). (4.1)

Considering that the kernel of 𝐾̂ is a transition probability between states 𝑥 and 𝑥′, 𝐾̂[𝑓 ](𝑥′)

can be interpreted as the single step expectation value of 𝑓 given the initial state 𝑥′ and that

the flyer lands inside the search interval or the expectation value of 𝑓 given any initial state

𝑥 in the search space and landing in 𝑥′.

Let us consider the 𝑘-th step of a flight (𝑥0, 𝑥1, · · · , 𝑥𝑛−1, 𝑥𝑛) and define the single-step

expectation value of 𝒬, regardless of whether absorption occurs or not as 𝑞(𝑥𝑘−1), namely

𝑞(𝑥𝑘−1) =
ˆ

R

d𝑥𝑘 𝑝(𝑥𝑘−1, 𝑥𝑘)𝒬(𝑥𝑘−1, 𝑥𝑘)
𝑠ℎ.=

ˆ

𝑘

𝑘−1𝑝𝑘 · 𝑘−1𝒬𝑘, (4.2)

where 𝑠ℎ.= stands for shorthand.

Let 𝑞*(𝑥𝑘−1) represent the single-step expectation value of 𝒬 given absorption during the

𝑘-th step, that is

𝑞*(𝑥𝑘−1) =
ˆ

Ω𝑐

d𝑥𝑘 𝑝(𝑥𝑘−1, 𝑥𝑘)𝒬(𝑥𝑘−1, 𝑥𝑘)
𝑠ℎ.=

ˆ

𝑘*

𝑘−1𝑝𝑘 · 𝑘−1𝒬𝑘. (4.3)

Conversely, let 𝑞𝑜(𝑥𝑘−1) in (4.3) represents the single-step expectation value of 𝒬 given

that the flyer is not absorbed during the step 𝑘, that is

𝑞𝑜(𝑥𝑘−1) =
ˆ

Ω

d𝑥𝑘 𝑝(𝑥𝑘−1, 𝑥𝑘)𝒬(𝑥𝑘−1, 𝑥𝑘)
𝑠ℎ.=

ˆ

𝑘

𝑘−1𝑝𝑘 · 𝑘−1𝒬𝑘. (4.4)

It is clear from these definitions that 𝑞(𝑥) = 𝑞𝑜(𝑥) + 𝑞*(𝑥) for any 𝑥 ∈ Ω.

For the sake of generality, let 𝑃0(𝑥0) be the pdf of the departure site location of the flyer.

If 𝑃0(𝑥0) = 𝛿(𝑥0 − 𝑥), i.e. a flyer localized in 𝑥 at 𝑡 = 0.

Let ⟨𝑄|𝑃0⟩ denote the expectation value of 𝒬 before absorption. Considering the partition

of flights according to the index 𝑘 of the step in which the flyer is absorbed and defining

⟨𝑄𝑘|𝑃0⟩ =
´
Ω

d𝑥0 𝑃0(𝑥0)𝑄𝑘(𝑥0) as the conditional expectation value of 𝒬 given absorption

during the 𝑘-th step, it holds that

⟨𝑄|𝑃0⟩ = lim
𝑛→∞

𝑛∑︁
𝑘=1
⟨𝑄𝑘|𝑃0⟩ . (4.5)

For illustration, let us consider the smallest values of 𝑘. For 𝑘 = 1, it is clear that

⟨𝑄1|𝑃0⟩ = ⟨𝑞*|𝑃0⟩.
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For 𝑘 = 2, one has that

⟨𝑄2|𝑃0⟩ =
ˆ

Ω2

d𝑥0 d𝑥1

ˆ

Ω𝑐

d𝑥2 𝑃0(𝑥0)𝑝(𝑥0, 𝑥1)𝑝(𝑥1, 𝑥2) [𝑄(𝑥0, 𝑥1) +𝑄(𝑥1, 𝑥2)]

𝑠ℎ.=
ˆ

0,1,2*

𝑃0 · 0𝑝1 · 1𝑝2 · (0𝒬1 + 1𝒬2)

𝑠ℎ.=
ˆ

0,1,2̄

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2 −
ˆ

0,1,2

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2 +
ˆ

0,1,2*

𝑃0 · 0𝑝1 · 1𝑝2 · 1𝒬2

𝑠ℎ.=
ˆ

0,1

𝑃0 · 0𝑝1 · 0𝒬1 +
ˆ

0,1,2*

𝑃0 · 0𝑝1 · 1𝑝2 · 1𝒬2 −
ˆ

0,1,2

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2

= ⟨𝑞𝑜|𝑃0⟩+
⟨
𝐾̂𝑞*

⃒⃒⃒
𝑃0
⟩
−

ˆ

0,1,2

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2. (4.6)

For 𝑘 = 3, setting aside the term corresponding to the absorption step (2𝒬3) and perform-

ing the integration over the final position in Ω𝑐 (3*) for the remaining terms as the difference

between the integrals over R (3̄) and Ω (3) lead to

⟨𝑄3|𝑃0⟩
𝑠ℎ.=

ˆ

0,1,2,3*

𝑃0 · 0𝑝1 · 1𝑝2 · 2𝑝3 · (0𝒬1 + 1𝒬2 + 2𝒬3)

𝑠ℎ.=
ˆ

0,1,2

𝑃0 · 0𝑝1 · 1𝑝2 · 1𝒬2 +
ˆ

0,1,2,3*

𝑃0 · 0𝑝1 · 1𝑝2 · 2𝑝3 · 2𝒬3

+
ˆ

0,1,2

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2 −
ˆ

0,1,2,3

𝑃0 · 0𝑝1 · [0𝒬1 · 1𝑝2 · 2𝑝3 + 1𝑝2 · 1𝒬2 · 2𝑝3]

=
⟨
𝐾̂𝑞𝑜

⃒⃒⃒
𝑃0
⟩

+
⟨
𝐾̂2𝑞*

⃒⃒⃒
𝑃0
⟩

+
ˆ

0,1,2

𝑃0 · 0𝑝1 · 0𝒬1 · 1𝑝2

−
ˆ

0,1,2,3

𝑃0 · 0𝑝1 · [0𝒬1 · 1𝑝2 · 2𝑝3 + 1𝑝2 · 1𝒬2 · 2𝑝3] .
(4.7)

The same procedure that led to (4.6) and (4.7) can be generalized to any 𝑘 as follows

⟨𝑄𝑘|𝑃0⟩ =
⟨
𝐾̂𝑘−1𝑞𝑜

⃒⃒⃒
𝑃0
⟩

+
⟨
𝐾̂𝑘𝑞*

⃒⃒⃒
𝑃0
⟩

+𝑅𝑘−1 −𝑅𝑘. (4.8)

The "remainder" 𝑅𝑘 is defined as 𝑅𝑘 ≡
´

0,1,··· ,𝑘
𝑃0 ·

∏︀𝑘−1
𝑖=0 𝑖𝑝𝑖+1 ·

∑︀𝑘−2
𝑗=0 𝑗𝒬𝑗+1 with the particular

case 𝑅1 = 0.

Inserting (4.8) back into (4.5) leads to

⟨𝑄|𝑃0⟩ = ⟨𝑞*|𝑃0⟩+ lim
𝑛→∞

[︃
𝑛∑︁
𝑘=1

(︁⟨
𝐾̂𝑘−1𝑞𝑜

⃒⃒⃒
𝑃0
⟩

+
⟨
𝐾̂𝑘𝑞*

⃒⃒⃒
𝑃0
⟩)︁
−𝑅𝑛

]︃
. (4.9)

The remainder𝑅𝑛 goes to zero as 𝑛→∞. The underlying intuition is that
´

Ω d𝑥 𝑝(𝑥, 𝑥′) <

1 for every 𝑥′ ∈ Ω due to the probability leaked into Ω𝑐 at the (absorbing) boundary. Therefore,
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with the aid of the identity 𝑞(𝑥) = 𝑞𝑜(𝑥) + 𝑞*(𝑥), (4.9) becomes

⟨𝑄|𝑃0⟩ =
∞∑︁
𝑘=0

⟨
𝐾̂𝑘𝑞

⃒⃒⃒
𝑃0
⟩
. (4.10)

Let us consider hereafter the case of an initially localized flyer 𝑃0 = 𝛿(𝑥0 − 𝑥) in (4.10),

namely

𝑄(𝑥) =
∞∑︁
𝑘=0

𝐾̂𝑘𝑞(𝑥). (4.11)

As the premises of Theorem 3.2 are fulfilled, it is safe to say that 𝑇 ≡ 1 − 𝐾̂ is the inverse

of the operator 𝑇−1 formally defined as 𝑇−1 ≡ ∑︀∞
𝑘=0 𝐾̂

𝑘. Applying 𝑇 on both sides of (4.11)

leads to the Fredholm equation of the second kind (1− 𝐾̂)𝑄(𝑥) = 𝑞(𝑥), which is equivalent

to (4.12).

𝐷̂𝑄(𝑥) ≡ (𝐾̂ − 1)𝑄(𝑥) = −𝑞(𝑥) (4.12)

4.3 POWER LAW SINGLE-STEP LENGTH DISTRIBUTION

In virtue of the asymptotic power law behaviour of the Lévy 𝛼-stable distribution in the

form of (2.34), a way to circumvent the predicament of dealing with an 𝛼-stable distribution

in Euclidean space is to consider a Pareto type I step length distribution, which corresponds

to an inverse power pdf with a lower cutoff length 𝑙0 in order to ensure it is an integrable

function.

Based on that reasoning, let us consider the power law kernel given by (4.13), with 0 <

𝛼 < 2 and normalisation constant 𝛼𝑙𝛼0
2 , ensuring that

´
Ω

d𝑥′ 𝛿(𝑥′ − 𝑥0)
´
R

d𝑥 𝑝(𝑥′, 𝑥) = 1 for

any starting point 𝑥0.

𝑝(𝑥′, 𝑥) = 𝛼𝑙𝛼0
2
1(0,∞)(|𝑥− 𝑥′| − 𝑙0)
|𝑥− 𝑥′|𝛼+1 , (4.13)

where 1(0,∞)(𝑠) stands for the Heaviside step function in the notation of an indicator function,

i.e. 1(0,∞)(𝑠) = 1 whenever 𝑠 ∈ (0,∞); otherwise it takes null value.

The integral operator 𝐾̂ with the kernel (4.13) acting on 𝑄(𝑥) is given by

𝐾̂𝑄(𝑥0) = 𝛼𝑙𝛼0
2

ˆ

Ω

d𝑥′ 𝛿(𝑥′ − 𝑥0)
ˆ

Ω

d𝑥 |𝑥− 𝑥′|−(𝛼+1)⏟  ⏞  
d𝑣

1(0,∞)(|𝑥− 𝑥′| − 𝑙0)𝑄(𝑥)⏟  ⏞  
𝑢

. (4.14)
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The equation above can be cast into the form

𝐾̂𝑄(𝑥0) = 𝑙𝛼0
2

ˆ

Ω

d𝑥′ 𝛿(𝑥′ − 𝑥0)

⎡⎢⎣ˆ
Ω

d𝑥 sgn(𝑥− 𝑥′)1(0,∞)(|𝑥− 𝑥′| − 𝑙0)
|𝑥− 𝑥′|𝛼

d
d𝑥𝑄(𝑥)

−
𝑄
(︁
−𝐿

2

)︁
(︁
𝐿
2 + 𝑥′

)︁𝛼1(0,∞)(𝑥′ − (−𝐿
2 + 𝑙0))−

𝑄
(︁
𝐿
2

)︁
(︁
𝐿
2 − 𝑥′

)︁𝛼1(0,∞)(𝐿2 − 𝑙0 − 𝑥
′)

+𝑙−𝛼0 [𝑄(𝑥′ + 𝑙0) +𝑄(𝑥′ − 𝑙0)]
]︁

(4.15)

by performing the following partial integration in 𝑥

𝐾̂𝑄(𝑥0) = 𝛼𝑙𝛼0
2

ˆ

Ω

d𝑥′ 𝛿(𝑥′ − 𝑥0)

⎡⎢⎣−ˆ
Ω

d𝑥 d𝑢
d𝑥𝑣(𝑥) + 𝑢𝑣

⃒⃒⃒⃒
⃒
𝜕Ω

⎤⎥⎦ (4.16)

with 𝑢′(𝑥) and 𝑣(𝑥) given by

d𝑢
d𝑥 = [𝛿(𝑥− (𝑥′ + 𝑙0))− 𝛿(𝑥′ − 𝑙0 − 𝑥)]𝑄(𝑥) + 1(0,∞)(|𝑥− 𝑥′| − 𝑙0)

d
d𝑥𝑄(𝑥) (4.17)

𝑣 = − 1
𝛼

sgn(𝑥− 𝑥′)|𝑥− 𝑥′|−𝛼, (4.18)

respectively. For the former, recall that d
d𝑠1(0,∞)(𝑠) = 𝛿(𝑠) and that 1(0,∞)(|𝑥− 𝑥′| − 𝑙0) can

be split into two terms 1(0,∞)(𝑥− (𝑥′ + 𝑙0)) + 1(0,∞)(𝑥′ − 𝑙0 − 𝑥).

On the other hand, it follows from (4.12) that the expectation value 𝑄(𝑥0) is the solution

of the equation

𝐷𝛼𝑄(𝑥0) = −𝑙−𝛼0 𝑞(𝑥0), (4.19)

where the operator 𝐷̂𝛼 is defined as 𝐷̂𝛼𝑄(𝑥0) ≡ 𝑙−𝛼0 (𝐾̂ − 1)𝑄(𝑥0).

After carrying out the integration with respect to 𝑥′ in (4.15), the operator 𝐷̂𝛼 takes the

form

𝐷̂𝛼𝑄(𝑥0) = 1
2

[︂  

Ω

d𝑥 sgn(𝑥− 𝑥0)
|𝑥− 𝑥0|𝛼

d
d𝑥𝑄(𝑥)−

 

𝐵(𝑥0,𝑙0)

d𝑥 sgn(𝑥− 𝑥0)
|𝑥− 𝑥0|𝛼

d
d𝑥𝑄(𝑥)

⏟  ⏞  
(𝐴)

−
𝑄
(︁
−𝐿

2

)︁
(︁
𝐿
2 + 𝑥0

)︁𝛼1(0,∞)(𝐿2 − 𝑙0 + 𝑥0)−
𝑄
(︁
𝐿
2

)︁
(︁
𝐿
2 − 𝑥0

)︁𝛼1(0,∞)(𝐿2 − 𝑙0 − 𝑥0)

+ 𝑙−𝛼0 [𝑄(𝑥0 + 𝑙0)− 2𝑄(𝑥0) +𝑄(𝑥0 − 𝑙0)]⏟  ⏞  
(𝐵)

]︂
. (4.20)

Note that the integral term on Ω−𝐵(𝑥0, 𝑙0) is split in two integrals defined on Ω and 𝐵(𝑥0, 𝑙0)

respectively. Due to the singular kernel, these two integrals are understood in the principal

value sense.
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The term (𝐴) in (4.20) removes the contribution of the jumps within the interval (𝑥0 −

𝑙0, 𝑥0 + 𝑙0) which do not take place due to the cutoff 𝑙0 implicit in the power law step length

distribution. Provided 𝑙0 small enough, one has the lowest-order approximation

𝑄′(𝑥) ≈ 𝑄′(𝑥0) +𝑄′′(𝑥0)(𝑥− 𝑥0) (4.21)

in (𝑥0 − 𝑙0, 𝑥0 + 𝑙0). The constant term does not contribute to the result due to the odd-

parity integrand around 𝑥0, whereas the first term equals 𝑙2−𝛼
0

2
2−𝛼𝑄

′′(𝑥0). As for (𝐵), the

leading term of the series around 𝑥0 with small 𝑙0 equals 𝑙2−𝛼
0 𝑄′′(𝑥0). Hence, the aggregate

contribution of the leading terms of (𝐴) and (𝐵) equals −𝑙2−𝛼
0

𝛼
2−𝛼𝑄

′′(𝑥0) and 𝐷̂𝛼𝑄(𝑥0) takes

the approximate form

𝐷̂𝛼𝑄(𝑥0) ≈
1
2

[︂  

Ω

d𝑥 sgn(𝑥− 𝑥0)
|𝑥− 𝑥0|𝛼

d
d𝑥𝑄(𝑥)−

𝑄
(︁
−𝐿

2

)︁
(︁
𝐿
2 + 𝑥0

)︁𝛼 − 𝑄
(︁
𝐿
2

)︁
(︁
𝐿
2 − 𝑥0

)︁𝛼
⏟  ⏞  

𝐷̂
(0)
𝛼

− 𝑙2−𝛼
0

𝛼

2− 𝛼
d2

d𝑥2𝑄(𝑥)
⃒⃒⃒⃒
⃒
𝑥=𝑥0

]︃
. (4.22)

The remainder of this chapter will be restricted to the solution of the equation

𝐷̂(0)
𝛼 𝑄(𝑥0) = −𝑙−𝛼0 𝑞(𝑥0) (4.23)

by means of the "benchmark to beat", i.e. Sonin inversion formula, for some relevant quantities

such as the average number of steps before absorption and the absorption probability at a

specific boundary site. The Jacobi Polynomials spectral relations approach will be the matter

of Chapter 5.

4.4 INVERSION FORMULA APPROACH

Eq (4.23) corresponds to the case 𝑐1 = −1, 𝑐2 = 0 and 𝜈 = 1 in (3.37), provided that

the boundary terms implicit in 𝐷̂(0)
𝛼 vanish. With those parameters, (3.56) becomes

tan 𝜋𝛽′ = sin 𝜋𝛼
1 + cos 𝜋𝛼 = tan 𝜋𝛼

2 . (4.24)

Hence, 𝛽′ = 𝛼
2 + 𝑘′ with 𝑘′ ∈ Z.

Let us take 𝑘′ = 0, for which 0 < 𝛽′ < 𝛼, which leads to unbounded solutions 𝜓(𝑠) of

(3.49) at 𝑎. In addition, taking −κ = 1 leads to unbounded 𝜓(𝑠) at 𝑏. This choice allows

the widest class of solutions and, since the function we seek in (4.22) is not 𝑄(𝑥), but d𝑄
d𝑥 ,
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for which there is no a priori restriction on whether it should be bounded at the endpoints or

not. With those choices of 𝛽′ and κ, one has that (3.60) becomes

𝜑(𝑠) = −(1 + cos 𝜋𝛼)
2 𝒟1−𝛼

𝑎+ [ℎ]− sin 𝜋𝛼
2𝜋

𝑟
𝛼
2 −1
𝑏 (𝑠)

𝑟
𝛼
2 −𝛼+1
𝑎 (𝑠)

 𝑏

𝑎

d𝑡 𝑟
𝛼
2 −𝛼+1
𝑎 (𝑡)
𝑟

𝛼
2 −1
𝑏 (𝑡)

𝒟1−𝛼
𝑎+ [ℎ]
𝑡− 𝑠

+ 𝑟
𝛼
2 −1
𝑏 (𝑠)

𝑟
𝛼
2 −𝛼+1
𝑎 (𝑠)

𝑃0(𝑠). (4.25)

Now we proceed to find the solution 𝑄(𝑥) to (4.23) for the absorption probability at a

given absorbing endpoint and the mean number of steps, by obtaining d𝑄
d𝑥 from (3.60) and

then integrating to obtain a solution that satisfies the boundary conditions.

4.4.1 Absorption probability

Let us consider the absorption probability 𝑃+(𝑥0) at the boundary 𝑥 = 𝑏 for a flyer initially

located at 𝑥0. . The single step expectation value function 𝑞(𝑥0) denoted in this case by 𝑝+(𝑥0)

is given by

𝑝+(𝑥0) =
ˆ

Ω

d𝑥 𝑝(𝑥0, 𝑥)1[ 𝐿
2 ,∞)(𝑥)

= 𝛼𝑙𝛼0
2

ˆ

[𝑏,∞)

d𝑥 1(0,∞)(𝑥− 𝑥0 − 𝑙0)
(𝑥− 𝑥0)𝛼+1

= 𝑙𝛼0
2

1
(𝑏− 𝑥0)𝛼

1(𝑎,𝑏−𝑙0](𝑥0) + 1
21(𝑏−𝑙0,𝑏)(𝑥0). (4.26)

The boundary conditions for the current problem are 𝑃+ (𝑎) = 0 and 𝑃+ (𝑏) = 1. As long

as 𝑥0 ∈ (𝑎, 𝑏− 𝑙0], the boundary term implicit in 𝐷
(0)
𝛼 corresponding to 𝑏 in (4.20) cancels

out the first term in (4.26), leading to the homogeneous equation

𝐷̂(0)
𝛼 𝑃+(𝑥0) =

 

Ω

d𝑥 sgn(𝑥− 𝑥0)
|𝑥− 𝑥0|𝛼

d
d𝑥𝑃+(𝑥) = 0. (4.27)

In such case, the inversion formula (3.60) leads to a solution of the form

𝜑𝐻(𝑠) = 𝑟
𝛼
2 −1
𝑏 (𝑠)
𝑟

1− 𝛼
2

𝑎 (𝑠)
𝑃0(𝑠) = 𝐶−1 (𝑠− 𝑎)

𝛼
2 −1 (𝑏− 𝑠)

𝛼
2 −1 . (4.28)

Note the correspondence between (4.28) and the spectral relation (3.90) with 𝑘 = 0.

With the result (4.28) in hand, one has that the solution to (4.27) is given by

𝑃+(𝑥0) =
ˆ 𝑥0

𝑎

d𝑠 𝜑𝐻(𝑠), (4.29)
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where the constant 𝐶 must be chosen consistently with the boundary condition 𝑃+(𝑏) = 1.

Note that the boundary condition 𝑃+(𝑎) = 0 is already satisfied by (4.29). Therefore, one

has that ˆ 𝑏

𝑎

d𝑠 𝜑𝐻(𝑠) = 𝐶−1𝐿𝛼−1B
(︁
𝛼
2 ,

𝛼
2

)︁
= 1. (4.30)

On the other hand, it follows from (3.8), after a suitable change of variables, that
ˆ 𝑥0

𝑎

d𝑠 (𝑠− 𝑎)
𝛼
2 −1 (𝑏− 𝑠)

𝛼
2 −1 = (𝑏− 𝑎)𝛼−1 B

(︁
𝛼
2 ,

𝛼
2 ; 𝑥0−𝑎

𝑏−𝑎

)︁
. (4.31)

Also recall that the incomplete Beta function is related to the Gaussian hypergeometric func-

tion 2𝐹1 through (3.9). Therefore, one has that the absorption probability at the upper bound-

ary for a flyer starting at 𝑥0 is given by

𝑃+(𝑥0) =
(︂
𝑥0 − 𝑎
𝑏− 𝑎

)︂𝛼
2 2𝐹1

(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1, 𝑥0−𝑎

𝑏−𝑎

)︁
𝛼
2 B

(︁
𝛼
2 ,

𝛼
2

)︁ , (4.32)

in agreement with the results reported in (BULDYREV et al., 2001a) and (BULDYREV et al.,

2001b).

4.4.2 Mean number of steps

Let 𝑁(𝑥0) denote the mean number of steps before absorption taken by a random flyer

with state transitions given by (4.13) whose initial state is 𝑥0. It is clear that the absorbing

boundary conditions imply that 𝑁 |𝜕Ω= 0 as an absorbed flyer cannot take further steps and

that the single-step expectation value 𝑛(𝑥0) is given by 𝑛(𝑥0) = 1(𝑎,𝑏)(𝑥0), i.e. 𝑛(𝑥0) takes

the value 1 whenever 𝑥0 is in the interior of the search interval [𝑎, 𝑏].

Back to (4.25), one has that ℎ(𝜏) = 1. It follows from the definition of 𝒟𝑎+ (3.43) that

𝒟1−𝛼
𝑎+ [ℎ] = 1

Γ(𝛼)Γ(1− 𝛼)(𝑡− 𝑎)𝛼−1 = 1
Γ(𝛼)Γ(1− 𝛼)𝑟

𝛼−1
𝑎 (𝑡), (4.33)

which leads to

𝜑(𝑠) = − (1 + cos 𝜋𝛼)
2Γ(𝛼)Γ(1− 𝛼)𝑟

𝛼−1
𝑎 (𝑠)

− sin 𝜋𝛼
2𝜋Γ(𝛼)Γ(1− 𝛼)

1
𝑟

1− 𝛼
2

𝑎 (𝑠) 𝑟1− 𝛼
2

𝑏 (𝑠)

 𝑏

𝑎

d𝑡 𝑟
𝛼
2
𝑎 (𝑡) 𝑟1− 𝛼

2
𝑏 (𝑡)

𝑡− 𝑠

+ 1
𝑟

1− 𝛼
2

𝑎 (𝑠) 𝑟1− 𝛼
2

𝑏 (𝑠)
𝑃0(𝑠). (4.34)
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The second term in (4.34) seems daunting, as it involves an integral in the principal value

sense of a singular integrand. However, it is known that (SAMKO; KILBAS; MARICHEV, 1993)
 𝑏

𝑎

d𝑡 𝑟
𝛼
2
𝑎 (𝑡) 𝑟1− 𝛼

2
𝑏 (𝑡)

𝑡− 𝑠
= −𝜋

(︂
𝑟

𝛼
2
𝑎 (𝑠)𝑟1− 𝛼

2
𝑏 (𝑠) cot 𝜋𝛼2 − 𝑟𝑏(𝑠) csc 𝜋𝛼

2 + 𝐿𝛼
2 csc 𝜋𝛼

2

)︂
, (4.35)

hence (4.34) becomes

𝜑(𝑠) = − (1 + cos 𝜋𝛼)
2Γ(𝛼)Γ(1− 𝛼)𝑟

𝛼−1
𝑎 (𝑠) + sin 𝜋𝛼

2Γ(𝛼)Γ(1− 𝛼)
[︁
𝑟𝛼−1
𝑎 (𝑠) cot 𝜋𝛼2 −

𝑟
𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2
𝑏 (𝑠) csc 𝜋𝛼

2 + 𝐿𝛼
2 𝑟

𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2 −1
𝑏 (𝑠) csc 𝜋𝛼

2

]︂
+ 𝑟

𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2 −1
𝑏 (𝑠)𝑃0(𝑠). (4.36)

Since sin 𝜋𝛼 cot 𝜋𝛼2 = 1+cos 𝜋𝛼, the first two terms in (4.36) cancel out. In addition, the

fourth and fifth terms correspond to the homogeneous solution (4.28) and can be grouped

together, leading to

𝜑(𝑠) = −
cos 𝜋𝛼

2
Γ(𝛼)Γ(1− 𝛼)

[︂
𝑟

𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2
𝑏 (𝑠)− 𝐶𝑟

𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2 −1
𝑏 (𝑠)

]︂
, (4.37)

where the constant 𝐶 stands for the factor 𝐿𝛼
2 +𝑃0(𝑠) of the homogeneous solution term that

needs to be calibrated according to the boundary condition 𝑁 (𝑏) = 0. Some simplifications

were also carried out by means of the identity sin 𝜋𝛼 csc 𝜋𝛼
2 = 2 cos 𝜋𝛼

2 .

The constant 𝐶 is such that
ˆ 𝑏

𝑎

d𝑠 𝜑(𝑠) ∼ (𝑏− 𝑎)𝛼
[︁
B
(︁
𝛼
2 ,

𝛼
2 + 1

)︁
− 𝐶 (𝑏− 𝑎)−1B

(︁
𝛼
2 ,

𝛼
2

)︁]︁
= 0. (4.38)

Having in mind (3.12), one has that

𝐶 = 𝑏− 𝑎
B
(︁
𝛼
2 ,

𝛼
2

)︁B
(︁
𝛼
2 ,

𝛼
2 + 1

)︁
= 𝑏− 𝑎

B
(︁
𝛼
2 ,

𝛼
2

)︁B
(︁
𝛼
2 ,

𝛼
2

)︁ 𝛼
2
𝛼

= 𝑏− 𝑎
2 , (4.39)

i.e. 𝐶 is half the length of the search interval.

Finally, one has that

𝑁(𝑥0) ∼
ˆ 𝑥0

𝑎

d𝑠 𝑟
𝛼
2 −1
𝑎 (𝑠) 𝑟

𝛼
2 −1
𝑏 (𝑠)

[︁
𝑟𝑏(𝑠)− 𝑏−𝑎

2

]︁
∼ 1

2

ˆ 𝑥0

𝑎

d𝑠 [(𝑠− 𝑎)(𝑏− 𝑠)]
𝛼
2 −1 [−2𝑠+ (𝑏+ 𝑎)]

∼ 1
𝛼

[(𝑥0 − 𝑎)(𝑏− 𝑥0)]
𝛼
2 . (4.40)

Taking into account the factor −𝑙𝛼0 in (4.23) and the factor in (4.37), one has that

𝑁𝛼(𝑥) =
sin 𝜋𝛼2 cos2 𝜋𝛼2

𝜋𝛼2

[︃(︂
𝑥0 − 𝑎
𝑙0

)︂(︃
𝑏− 𝑥
𝑙0

)︃]︃𝛼
2
. (4.41)
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Observe that (4.41) differs from (1.1) in (BULDYREV et al., 2001a) and (BULDYREV et al.,

2001b) by a factor cos2 𝜋𝛼2 , a situation that clearly requires double-checking. Nevertheless, it

is worth recalling that the main result of this work concerns the solution of the problem by

means of Jacobi polynomials spectral relations, which is the subject of Chapter 5.
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5 JACOBI POLYNOMIALS APPROACH

5.1 OVERVIEW

In this chapter, the solution of (4.23) with homogeneous Dirichlet (fixed) boundary for an

asymptotic Lévy flyer is obtained by means of spectral relations valid for Jacobi polynomials.

Besides reproducing the results from the previous chapter, this approach allows the inclusion

of correction terms that were neglected in order to permit the use of closed-form inversion

formulae. In so doing, the fit of the simulated date is significantly improved.

We will show that, by means of spectral relations of the Jacobi polynomials, the solution

to the absorption probability is straightforward compared to the inversion formulae. Next, a

general method for solving (4.23) with homogeneous Dirichlet (fixed) boundary conditions is

presented in subsection 5.2.2 along with the applications to the mean number of steps and

the mean flight path length.

Finally, the neglected term proportional to 𝑄′′(𝑥) resulting from the finite 𝑙0 correction

will be treated numerically in section 5.3.

5.2 FIRST-ORDER APPROXIMATION REVISITED

5.2.1 Absorption probability

Hereafter, without loss of generality, we will take the convenient choice of a search interval

of length 𝐿 centered at 0, that is the lower endpoint previously denoted as 𝑎 corresponds to

−𝐿
2 , while the upper endpoint 𝑏 corresponds to 𝐿

2 .

In Chapter 4 we concluded that the absorption probability at the right boundary 𝑃+(𝑥0)

is the solution of (4.27), namely

𝐷̂(0)
𝛼 𝑃+(𝑥0) =

 

Ω

d𝑥 sgn(𝑥− 𝑥0)
|𝑥− 𝑥0|𝛼

d
d𝑥𝑃+(𝑥) = 0. (4.27’)

Due to the symmetry of the system centered at 0 under 𝑥↔ −𝑥, the absorption probability

𝑃− at 𝑥 = −𝐿
2 is related to 𝑃+ through 𝑃−(𝑥0) = 𝑃+(−𝑥0).

Note that (4.27) is identical to the JP spectral relation (3.166) with 𝑛 = 0. Recalling

(3.68) and also that 𝑃 ( 𝛼
2 )

𝑛−1 is proportional to d
d𝑡𝑃

( 𝛼
2 −1)

𝑛 in (3.71), the right hand side of (3.166)
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vanishes for 𝑛 = 0, that is
 1

−1
d𝑡 sgn (𝑡− 𝜏)
|𝑡− 𝜏 |𝛼

̃︀𝑃 (𝛼
2 −1)

0 (𝑡) = 0. (5.1)

For the time being, assume that 𝐿 = 2 in order to spare us the scale transformation from

Ω into the JP domain [−1, 1]. The solution for (5.1) is given by

𝑃+(𝜏) = 𝐶

ˆ 𝜏

−1
d𝑡 ̃︀𝑃 (𝛼

2 −1)
0 (𝑡), (5.2)

which already satisfies the boundary condition 𝑃+(−1) = 0

The value of 𝐶 is determined by the boundary condition 𝑃+(1) = 1. By means of the

variable change 𝑠 = 1
2(1 + 𝑡), it follows from the definition of the incomplete Beta function

(3.8) that 𝐶 =
[︁
𝜅B

(︁
1; 𝛼2 ,

𝛼
2

)︁]︁−1
. The constant factor 𝜅 that arises from the aforementioned

variable change turns out to be irrelevant in this case as it also comes out of the integral in

(5.2) after performing the same variable change from 𝑡 to 𝑠. Therefore, for Ω = [0, 1], the

solution to 𝑃+ and 𝑃− are given by

𝑃+(̃︀𝑥0) =
B
(︁
𝛼
2 ,

𝛼
2 ; ̃︀𝑥0

)︁
B
(︁
𝛼
2 ,

𝛼
2 ; 1

)︁ = ̃︀𝑥𝛼20 2𝐹1
(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; ̃︀𝑥0

)︁
2𝐹1

(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; 1

)︁ (5.3)

and

𝑃−(̃︀𝑥0) =
B
(︁
𝛼
2 ,

𝛼
2 ; 1− ̃︀𝑥0

)︁
B
(︁
𝛼
2 ,

𝛼
2 ; 1

)︁ = (1− ̃︀𝑥0)
𝛼
2

2𝐹1
(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; 1− ̃︀𝑥0

)︁
2𝐹1

(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; 1

)︁ , (5.4)

respectively.

The solution for any 𝐿 can be obtained from (5.3) and (5.4) by means of the substitution

̃︀𝑥0 = 1
2 + 𝑥0

𝐿
, leading to

𝑃±(𝑥0) =
B
(︁
𝛼
2 ,

𝛼
2 ; 1

2 ±
𝑥0
𝐿

)︁
B
(︁
𝛼
2 ,

𝛼
2 ; 1

)︁ =
(︂1

2 ±
𝑥0

𝐿

)︂𝛼
2 2𝐹1

(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; 1

2 ±
𝑥0
𝐿

)︁
2𝐹1

(︁
𝛼
2 , 1−

𝛼
2 ; 𝛼2 + 1; 1

)︁ . (5.5)

Observe that (5.5) agrees with (4.32) and with the expressions reported in (BULDYREV et al.,

2001a) and (BULDYREV et al., 2001b) obtained from Sonine inversion formula.

The comparison between 𝑃+ and 𝑃− given by (5.5) and the results from Monte Carlo

simulations are presented in Figure 8 for 𝐿 = 1 and 𝑀 = 800, so that the single-step

distribution scale parameter 𝑙0 = 1
800 . As for the simulation results, the average was calculated

over 50 000 MC flight samples and the 95% confidence intervals were obtained by means of

bootstrap with 999 replicates. Unless otherwise stated, these are the same parameters used

to produce the results presented hereafter.
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Figure 8 – Absorption probability 𝑃+ at boundary 𝐿
2 (a) and 𝑃− at −𝐿

2 (b) as functions of the dimensionless
initial position ̃︀𝑥0 = 𝑥0

𝐿 + 1
2 for several values of 𝛼 in (0, 2). There is no need to plot the range

0 ≤ ̃︀𝑥0 ≤ 0.5 due to 𝑃−(𝑥0) = 𝑃+(−𝑥0). The continuous approximation deviates from the results
of the simulations for 𝛼 ≥ 1.5. The parameters of the system are 𝐿 = 1 and 𝑀 = 800 so the
step length distribution scale parameter 𝑙0 equals 1

800 . Dots depict the average over 50 000 MC
flight samples with error bars representing the 95% confidence intervals from bootstrap with 999
replicates.

(a)

(b)

Source: The author (2023)

Observe in Figure 8 that as one approaches the Gaussian 𝛼 = 2 regime, 𝑃+ and 𝑃−

become straight lines connecting 0.5 to 1 or 0, respectively. However, as 𝛼 becomes smaller,
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both curves approach the constant line 𝑃* = 0.5 for ̃︀𝑥0 in the middle of the interval. This is

consistent with the fact that events where the flyer reaches the initially distal target site in a

single jump or very few jumps, albeit rare, become more frequent with smaller 𝛼.

Figure 9 – Absorption probability 𝑃+ as a function of 𝛼 for selected values of ̃︀𝑥0 located "far" from the
absorbing boundary (a) and in its vicinity (b). Overall, good fit is attained for 𝛼 ⪅ 1.5, provided
that 0.05 ⪅ ̃︀𝑥0 ⪅ 0.95. Nevertheless, as one approaches the boundary, the continuous solution
overestimates the absorption probability from the simulations to such an extent that, for ̃︀𝑥0 = 1− 1

8 ,
lack of fit is evident from 𝛼 ≈ 0.5 on.

(a)

(b)

Source: The author (2023)
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Figure 9 better depicts the deviations of the continuous solution from the simulations that

are already noticeable in Figure 8. In general, the closed-form continuous solution fits the

simulations well whenever 𝛼 ⪅ 1.5 and 0.05 ⪅ ̃︀𝑥0 ⪅ 0.95. Nevertheless, as one approaches

the absorbing sites, the continuous solution overestimates the absorption probability to such

an extent that for ̃︀𝑥0 = 1− 1
800 , extremely good fit is restricted to 𝛼 ⪅ 0.5.

5.2.2 General solution to 𝑄(𝑥0) with homogeneous fixed boundary conditions

Let us consider any observable 𝑄(𝑥0) for which the assumptions that led to (4.12) and

the boundary conditions 𝑄
(︁
−𝐿

2

)︁
= 0 and 𝑄

(︁
𝐿
2

)︁
= 0 hold. As a consequence of Theorem

3.1, a suitable solution ansatz to (4.23) in terms of the basis conformed by { ̃︀𝑃 (𝛼
2 )

𝑘 , 𝑘 ∈ N0}

is given by

𝑄(𝑥) =
∑︁
𝑚≥0

𝑄̄𝑚

[︂(︂
𝐿

2 − 𝑥
)︂(︂

𝐿

2 + 𝑥
)︂]︂𝛼

2

⏟  ⏞  
𝜌
(𝛼

2 )
Ω

𝑃
(𝛼

2 )
2𝑚

(︁
2𝑥
𝐿

)︁
=
(︂
𝐿

2

)︂𝛼 ∑︁
𝑚≥0

𝑄̄𝑚
̃︀𝑃 (𝛼

2 )
2𝑚

(︁
2𝑥
𝐿

)︁
. (5.6)

Both the omission of the functions of odd order 2𝑚+ 1 and the restriction 𝛾 = 𝛿 imposed on

the parameters of ̃︀𝑃 (𝛾,𝛿)
𝑘 arise from (3.69) and the 𝑥↔ −𝑥 symmetry expected from 𝑄(𝑥).

As for the parameter 𝛼
2 , it is a convenient choice due to the fact that the operator

𝐷̂(0)
𝛼 is a one -to-one correspondence between the bases { ̃︀𝑃 (𝛼

2 )
𝑘 , 𝑘 ∈ N0} and {𝑃 (𝛼

2 )
𝑘 , 𝑘 ∈

N0}. Indeed, (3.70) means that differentiation maps ̃︀𝑃 (𝛼
2 )

𝑘 into ̃︀𝑃 (𝛼
2 −1)

𝑘+1 , while the operatorffl 1
−1 d𝑡 sgn (𝑡− 𝜏)|𝑡 − 𝜏 |−𝛼𝜓(𝑡) maps ̃︀𝑃 (𝛼

2 −1)
𝑘+1 into 𝑃 (𝛼

2 )
𝑘 , as implied by the spectral relation

(3.166). Therefore, by assuming (5.6) and taking the inner product with 𝑃 (𝛼
2 )

2𝑛 on both sides

of (4.23), the solution of the Fredholm equation reduces to a set of uncoupled algebraic linear

equations ⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝐷̂(0)
𝛼 𝑄

⟩
𝜌Ω

= −𝑙−𝛼0

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑞
⟩
𝜌Ω

⇕ (5.7)

𝐷(0)
𝑛𝑚𝑄̄𝑚 = −𝑙−𝛼0 𝑞𝑛,

where 𝐷(0)
𝑚𝑛 is given by

𝐷(0)
𝑛𝑚 = −1

2

(︂
𝐿

2

)︂𝛼+1 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁
Γ (𝛼)

2𝛼+1

4𝑛+ 𝛼 + 1

⎡⎣Γ
(︁
2𝑛+ 𝛼

2 + 1
)︁

(2𝑛)!

⎤⎦2

𝛿𝑛𝑚 (5.8)

which is clearly a diagonal matrix.



Chapter 5. Jacobi polynomials approach 78

The proof of (5.7) and (5.8) relies on the spectral relation (3.166) and the orthogonality

relation (3.66) satisfied by the classical Jacobi polynomials as shown below.

Let us apply 𝐷̂(0)
𝛼 onto 𝑄(𝑥). First of all, (5.9) follows from (3.70) applied to (5.6)

d
d𝑥𝑄(𝑥) = −

(︂
𝐿

2

)︂𝛼−1 ∑︁
𝑚≥0

2(2𝑚+ 1) ̃︀𝑃 (𝛼
2 −1)

2𝑚+1

(︁
2𝑥
𝐿

)︁
𝑄̄𝑚, (5.9)

hence

𝐷̂(0)
𝛼 𝑄 = −

(︂
𝐿

2

)︂𝛼−1 ∑︁
𝑚≥0

(2𝑚+ 1)
 

Ω

d𝑥 sgn(𝑥0 − 𝑥)
|𝑥0 − 𝑥|𝛼

̃︀𝑃 (𝛼
2 −1)

2𝑚+1

(︁
2𝑥
𝐿

)︁
𝑄̄𝑚. (5.10)

Let us rescale from Ω to [−1, 1] by means of the substitutions 𝑥 ↔ 𝐿
2 𝑡 and 𝑥0 ↔ 𝐿

2 𝜏 .

The spectral relation (3.166) leads to

𝐷̂(0)
𝛼 𝑄 =

(︂
𝐿

2

)︂𝛼−1 ∑︁
𝑚≥0

(2𝑚+ 1)
(︂
𝐿

2

)︂1−𝛼  1

−1
d𝑡 sgn(𝑡− 𝜏)
|𝜏 − 𝑡|𝛼

̃︀𝑃 (𝛼
2 −1)

2𝑚+1 (𝑡)𝑄̄𝑚

= −1
2

Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁
Γ (𝛼)

∑︁
𝑚≥0

(2𝑚+ 1)Γ (2𝑚+ 𝛼 + 1)
(2𝑚+ 1)! 𝑃

(𝛼
2 )

2𝑚 (𝜏)𝑄̄𝑚. (5.11)

Note that the substitutions under the integral render 𝐷̂(0)
𝛼 𝑄 independent of the size of Ω.

Let us find the inner product between 𝐷̂(0)
𝛼 𝑄 and 𝑃 (𝛼

2 )
2𝑛 (𝑥0) under the weight 𝜌(

𝛼
2 )

Ω on Ω,

by means of the application of the orthogonality relation (3.66), namely
⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝐷̂(0)
𝛼 𝑄

⟩
𝜌Ω

= −1
2

Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁
Γ (𝛼)

∑︁
𝑚≥0

Γ (2𝑚+ 𝛼 + 1)
(2𝑚)!

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑃

(𝛼
2 )

2𝑚

⟩
𝜌Ω

𝑄̄𝑚

= −1
2

(︂
𝐿

2

)︂𝛼+1 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁
Γ (𝛼)

Γ (2𝑛+ 𝛼 + 1)
(2𝑛)! ℎ

(𝛼
2 )

2𝑛 𝛿𝑛𝑚 𝑄̄𝑚

= −1
2

(︂
𝐿

2

)︂𝛼+1 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁
Γ (𝛼)

2𝛼+1

4𝑛+ 𝛼 + 1

⎡⎣Γ
(︁
2𝑛+ 𝛼

2 + 1
)︁

(2𝑛)!

⎤⎦2

𝛿𝑛𝑚 𝑄̄𝑚.

(5.12)

Observe that factor
(︁
𝐿
2

)︁𝛼+1
in (5.12) emerges while scaling from Ω to [−1, 1].

The next subsections are devoted to the expansion coefficient 𝑞𝑛 of the single step function

𝑞(𝑥0) corresponding to ̃︀𝑃 (𝛼
2 )

2𝑛 and, in so doing, to finding expressions for 𝑄̄𝑛 regarding the

mean number of steps 𝑁(𝑥0) and the mean flight path length 𝑆(𝑥0).

5.2.3 Mean number of steps

In this particular case, it is clear that the single-step expectation value 𝑛(𝑥0) is given by

𝑛(𝑥0) = 1(− 𝐿
2 ,

𝐿
2 )(𝑥0). Therefore, it follows directly from the orthogonality relation (3.66)
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applied to the Jacobi polynomial of degree zero (3.81) that

−𝑙−𝛼0 𝑛̄𝑛 = −𝑙−𝛼0

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑃

(𝛼
2 )

0

⟩
= −𝑙−𝛼0

(︂
𝐿

2

)︂𝛼+1
ℎ

(𝛼
2 )

2𝑛 𝛿0,𝑛. (5.13)

Thus, (5.8) and (5.13) imply that the only non-vanishing coefficient is 𝑁̄0 given by (5.14)

𝑁̄0 = 𝑙−𝛼0
𝛼
2 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁ . (5.14)

In conclusion, the continuous approximate solution to the average number of steps before

absorption is given by

𝑁(𝑥0) = 𝑙−𝛼0
𝛼
2 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁ [︂(︂𝐿
2 + 𝑥0

)︂(︂
𝐿

2 − 𝑥0

)︂]︂𝛼
2

= 𝑀𝛼

𝛼
2 Γ
(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁ [̃︀𝑥0(1− ̃︀𝑥0)]
𝛼
2 ,

(5.15)

where 𝑀 ≡ 𝐿
𝑙0

and ̃︀𝑥0 ≡ 𝑥0
𝐿

+ 1
2 . Bearing in mind (3.4), one can see that (5.15) is equivalent

to (1.1) from (BULDYREV et al., 2001b) and (BULDYREV et al., 2001a).

Plots of 𝑁(𝑥0) are presented in Figure 10 as a function of ̃︀𝑥0 for several values of 𝛼 in the

interval of interest and as a function of 𝛼 for departure sites located from the center of the

interval (̃︀𝑥0 = 0.5) up to the upper boundary (̃︀𝑥0 = 0.95). Similar to the absorption probability,

the continuous approximate solution fits well in that interval of departure sites provided that

𝛼 ⪅ 1.5. Nevertheless, as seen in Figure 11, the approximation strongly deviates from the

simulations in the vicinity of the absorbing site.
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Figure 10 – Slice plots of the mean number of steps 𝑁(𝑥0) as a function of the dimensionless initial position ̃︀𝑥0
for selected values of 𝛼. The continuous solution fits well except for 𝛼 = 1.7 (crimson solid line).
Deviations close to the upper boundary are noticeable for 𝛼 = 1.2 The plot range is restricted to
0.5 ≤ ̃︀𝑥0 ≤ 1 from which the other half can be inferred due to the 𝑥0 ↔ −𝑥0 symmetry.

Source: The author (2023)



Chapter 5. Jacobi polynomials approach 81

Figure 11 – Mean number of steps 𝑁(𝑥0) versus 𝛼 for selected values of ̃︀𝑥0 in semi logarithmic scale. (a) The
departure site is "far" from the absorption sites, from the center of the interval ̃︀𝑥0 = 0.5 (blue)
to ̃︀𝑥0 = 0.95 (crimson). Note the lack of fit for 𝛼 ⪆ 1.5. (b).The departure site is close to the
boundary ranging from ̃︀𝑥0 = 1 − 20

800 (blue) to ̃︀𝑥0 = 1 − 1
800 (crimson). For the latter, no fit is

observed beyond 𝛼 ≈ 0.5. Both plots are in semilogarithmic scale.

(a)

(b)

Source: The author (2023)
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5.2.4 Mean flight path length

Provided that 𝑥0 ∈ (−𝐿
2 + 𝑙0,

𝐿
2 − 𝑙0) and 𝛼 ̸= 1, the expectavion value of the single-step

length 𝑠(𝑥0) is given by

𝑠(𝑥0) =
ˆ

Ω

d𝑥 𝑝(𝑥0, 𝑥)|𝑥− 𝑥0|

+
ˆ

Ω𝑐

d𝑥 𝑝(𝑥0, 𝑥)
⎡⎣(︁𝐿

2 − 𝑥0
)︁
1(︁𝐿

2 ,∞
)︁(𝑥) +

(︁
𝐿
2 + 𝑥0

)︁
1(︁

−∞,−𝐿
2

)︁(𝑥)
⎤⎦

= 𝛼𝑙𝛼0
2 (1− 𝛼)

[︃(︂
𝐿

2 − 𝑥0

)︂1−𝛼
+
(︂
𝐿

2 + 𝑥0

)︂1−𝛼
− 2𝑙1−𝛼

0

+1− 𝛼
𝛼

(︃(︂
𝐿

2 − 𝑥0

)︂1−𝛼
+
(︂
𝐿

2 + 𝑥0

)︂1−𝛼)︃]︃

= 𝑙𝛼0
2 (1− 𝛼)

[︃(︂
𝐿

2 − 𝑥0

)︂1−𝛼
+
(︂
𝐿

2 + 𝑥0

)︂1−𝛼
− 2𝛼𝑙1−𝛼

0

]︃
. (5.16)

In this case, one has that the right-hand side of (5.7) takes the form

−𝑙−𝛼0 𝑠𝑛 = −𝑙−𝛼0

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑠
⟩

= 1
2 (1− 𝛼)

[︂
2𝛼𝑙1−𝛼

0

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑃

(𝛼
2 )

0

⟩

−
(︂
𝐿

2

)︂2 (︂⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
(1− 𝜏)1−𝛼

⟩
+
⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
(1 + 𝜏)1−𝛼

⟩)︂
⏟  ⏞  

(*)

⎤⎥⎥⎥⎥⎦ .
(5.17)

The first term of the right hand side of (5.17) is a particular case of the orthogonality

relation (3.66). The second term in (*) is a straightforward application of (3.74). The first

term in (*) is also obtained from (3.74) by means of a substitution 𝑡 ↔ −𝑡 that produces a

(−1)2𝑛 factor. These considerations lead to

−𝑙−𝛼0

⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑠
⟩

= 1
2 (1− 𝛼)

[︃
2𝛼𝑙1−𝛼

0

(︂
𝐿

2

)︂𝛼+1
ℎ

(𝛼
2 )

2𝑛 𝛿2𝑛,0

− (2− 𝛼)𝐿2 Γ
(︁
1− 𝛼

2

)︁
Γ (2− 𝛼) Γ

(︁
𝛼
2 + 2𝑛+ 1

)︁
(2𝑛)! (2𝑛+ 2)!Γ (2− 𝛼− 2𝑛)

⎤⎦ . (5.18)

By matching (5.12) and (5.18) term by term, one has that the expansion coefficients 𝑆𝑛 of

𝑆(𝑥0) are given by

𝑆𝑛 = 2
(𝛼− 1) Γ

(︁
𝛼
2

)︁
Γ
(︁
1− 𝛼

2

)︁ 𝑙1−𝛼
0 𝛿0 2𝑛+

(2− 𝛼) (4𝑛+ 𝛼 + 1)
(1− 𝛼) (2𝑛+ 2)

(︁
2𝑛+ 𝛼

2

)︁
(2𝑛+ 1)

Γ (𝛼) Γ (2− 𝛼)
Γ
(︁
𝛼
2

)︁
Γ
(︁
𝛼
2 + 2𝑛

)︁
Γ (2− 𝛼− 2𝑛)

𝐿1−𝛼. (5.19)
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For the sake of completeness, let us consider the case 𝛼 = 1. For that purpose, one has

that (𝛼− 1)𝑆0 admits the Taylor expansion around 𝛼 = 1 given by

(𝛼− 1)𝑆0 = (𝛼− 1)
(︂ 2
𝜋

)︂(︂
ln
(︂
𝐿

𝑙0

)︂
+ 3

2 − 2 ln(2)
)︂

+𝑂
(︁
(𝛼− 1)2

)︁
, (5.20)

which leads to the following approximate expression

𝑆(𝑥0) ≈
(︂2𝐿
𝜋

)︂ [︂
ln
(︂
𝐿

𝑙0

)︂
+ 3

2 − 2 ln(2)
]︂

[̃︀𝑥0(1− ̃︀𝑥0)]
1
2 . (5.21)

Back to the general case 0 < 𝛼 < 2, plots of 𝑆(𝑥0) are presented in Figure 12 in a fashion

analogous to the mean number of steps: as a function of ̃︀𝑥0 for selected values of 𝛼 and

as a function of 𝛼 for departure sites located from ̃︀𝑥0 = 0.5 up to ̃︀𝑥0 = 0.95. This plots

reveal that, identically to the mean number of steps, the continuous approximate solution fits

well whenever the departure site is in the aforementioned range and 𝛼 ⪅ 1.5, but notoriously

fails otherwise as depicted in Figure 13. For the sake of comparison, the solution (1.2) from

(BULDYREV et al., 2001b) is also plotted (dotted grey line) and the difference between the

approximate JP solution with four modes and (1.2) is found to be negligible.

Figure 12 – Slice plots of the mean flight path length 𝑆(𝑥0) versus ̃︀𝑥0 and 𝛼. Similar to 𝑁(𝑥0), the continuous
solution fits well except for 𝛼 = 1.7 (crimson solid line). The cause of the deviation will become
clearer in Section 5.3.

Source: The author (2023)
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Figure 13 – Effect of additional modes upon the accuracy of 𝑆(𝑥0) for (a) departure sites "far" from the
boundary and (b) in the vicinity of the upper absorbing site with ̃︀𝑥0 ranging from 1 − 20

800 to
1− 1

800 . For comparison, the solution (1.2) from (BULDYREV et al., 2001b) is plotted in gray dotted
lines hereafter. As for the JP solutions, the approximation to 𝑆(𝑥0) with the single mode 𝑚 = 0
(dashed line) also exhibits noticeable deviations from the simulations for 𝛼 ≤ 1. For small values
of 𝛼 and closer to the boundary, the zero mode tends to overestimate the simulated results. The
lack of fit in the region 𝛼 ≤ 0.5 significantly improves with the inclusion of additional modes as
conveyed by the approximation to 𝑆(𝑥0) with four even modes with 𝑚 ∈ {0, 1, 2, 3} (solid line).
Observe also that the differences between the JP approximation with four modes and (1.2) are
negligible.

(a)

(b)

Source: The author (2023)
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With regard to Figure 13, where the single (zero) mode approximation 𝑚 = 0 (dashed line)

is compared to the approximation with the first four non-vanishing modes 𝑚 ∈ {0, 1, 2, 3}

(solid line), it is worth noting that the contribution of the first term in (5.19), which is

proportional to 𝑙1−𝛼
0 , is negligible when 𝛼 < 1. Nevertheless, it becomes the leading term for

𝛼 > 1. Conversely, the remaining terms are proportional to 𝐿1−𝛼 and thus become meaningful

only when 𝛼 < 1. This is the reason why increasing the number of modes in the expansion in

(5.6) only improves the accuracy of the approximation for small values of 𝛼 ⪅ 0.5.

5.3 FINITE SIZE CORRECTION: NUMERICAL RESULTS

It was concluded in the previous section that the approximate continuous solution obtained

by neglecting the second-order derivative in (4.22) proved to work very well provided that

𝛼 ⪅ 1.5 and the departure site is "far" from the absorbing boundary, a conclusion that applies

for the three quantities considered: absorption probability at a given site, mean number of

steps and mean flight-path length. Nevertheless, this section deals with the inclusion of the

neglected term using a numerical approach. For that purpose, the evaluation of the expansion

coefficients 𝑑𝑛𝑚 of the second-order derivative in terms of Jacobi polynomials was carried

out. Afterwards, the corrected expansion coefficients 𝑄̄𝑚 of 𝑄(𝑥) are obtained by solving the

system of linear (algebraic) equations

[︁
𝐷0
𝑛𝑚 + 𝑑𝑛𝑚

]︁
𝑄̄𝑚 = −𝑙−𝛼0 𝑞𝑛 (5.22)

where the diagonal "unperturbed" 𝐷0
𝑛𝑚 is given by (5.8) and the amplitude 𝑞𝑛 of the 2𝑛-th

mode of the single-step observable is given by (5.13) and (5.17) for the mean number of steps

and the mean flight path length respectively. The off-diagonal elements 𝑑𝑛𝑚 are the subject

of the upcoming subsection.

Perhaps it is worth to clarify at this point that 𝑛,𝑚 are indices over the even modes, so

𝑛,𝑚 ∈ {0, 1, 2, 3, ..., 𝑁 − 1} with 𝑁 the size of the linear equation system (5.22). In that

sense, the 𝑛-th mode corresponds to the Jacobi polynomial of degree 2𝑛.
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5.3.1 Second-order derivative in terms of Jacobi polynomials

Let us find the representation of the second-order derivative operator in the basis of

functions ̃︀𝑃 (𝛼
2 )

𝑛 . The expansion coefficients are obtained through⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑄′′
⟩
𝜌

=
(︂
𝐿

2

)︂𝛼 ˆ
Ω

d𝑥 ̃︀𝑃 (𝛼
2 )

2𝑛

(︁
2𝑥
𝐿

)︁ d2𝑄(𝑥)
d𝑥2

=
(︂
𝐿

2

)︂𝛼 ⎡⎢⎣ ̃︀𝑃 (𝛼
2 )

2𝑛
d𝑄
d𝑥

⃒⃒⃒⃒
𝜕Ω

+ 2(2𝑛+ 1)
(︂ 2
𝐿

)︂ˆ
Ω

d𝑥 ̃︀𝑃 (𝛼
2 −1)

2𝑛+1
d𝑄
d𝑥

⎤⎥⎦ ,
(5.23)

where the last steps arises from partial integration with 𝑢 ≡ ̃︀𝑃 (𝛼
2 )

2𝑛 and 𝑣 ≡ d𝑄
d𝑥 along with the

application of the identity (3.70). Inserting the ansatz (5.6) into (5.23) and recalling (5.9)

yield⟨
𝑃

(𝛼
2 )

2𝑛

⃒⃒⃒⃒
𝑄′′
⟩
𝜌

= −
(︂
𝐿

2

)︂2𝛼−1 ∑︁
𝑚≥0

[︂
2(2𝑚+ 1) ̃︀𝑃 (𝛼

2 )
2𝑛

(︁
2𝑥
𝐿

)︁ ̃︀𝑃 (𝛼
2 −1)

2𝑚+1

(︁
2𝑥
𝐿

)︁⃒⃒⃒⃒
𝜕Ω

+ 4(2𝑛+ 1)(2𝑚+ 1)
ˆ 1

−1
d𝑡 ̃︀𝑃 (𝛼

2 −1)
2𝑛+1 (𝑡) ̃︀𝑃 (𝛼

2 −1)
2𝑚+1 (𝑡)⏟  ⏞  

𝐼
(1)
𝑚,𝑛

]︂
𝑄̄𝑚, (5.24)

Let us consider the case when 1 < 𝛼 < 2. In such case, the boundary term in (5.24) vanishes

due to the weight function 𝜌(𝛼−1)|𝜕Ω = 0. Concerning the integral term in (5.24), the weight

function 𝜌(𝛼−2)(𝑡) is even under 𝑡↔ −𝑡 as well as the product of any two Jacobi polynomials

of odd order, hence 𝐼(1)
𝑚,𝑛 is different from zero for any pair (𝑚,𝑛) ∈ N2

0. Moreover, due

to (3.79), 𝐼(1)
𝑚,𝑛 can be expressed as a finite sum of integrals of the form (5.25) , where

𝐽 ≡ 2𝑚+2𝑛+2 ≥ 2, 0 ≤ 𝜇 ≤ 2𝑚+1, 0 ≤ 𝜈 ≤ 2𝑛+1, and 𝑗 ≡ 𝜇+𝜈 such that 0 ≤ 𝑗 ≤ 𝐽 .ˆ 1

−1
d𝑡 (𝑡− 1)𝑗(𝑡+ 1)𝐽−𝑗

[(1− 𝑡)(1 + 𝑡)]2−𝛼 = (−1)𝑗 22𝛼+𝐽−3B(𝛼 + 𝑗 − 1, 𝛼+ 𝐽 − 𝑗 − 1) (5.25)

Note that the integral (5.25) is convergent provided that 𝛼+ 𝑗 > 1 and 𝛼+ 𝐽 > 𝑗 + 1, both

of which are true for the case at hand, i.e. 1 < 𝛼 < 2.

In general,

𝐼(1)
𝑚,𝑛 = 22𝛼−3

2𝑚+1∑︁
𝜇=0

2𝑛+1∑︁
𝜈=0

(−1)𝜇+𝜈𝑊 (2𝑚+ 1, 𝛼2 − 1, 𝜇)𝑊 (2𝑛+ 1, 𝛼2 − 1, 𝜈)·

· B(𝛼 + 𝜇+ 𝜈 − 1, 𝛼+ 2𝑚+ 1− 𝜇+ 2𝑛+ 1− 𝜈 − 1)
(5.26)

where

𝑊 (𝑘, 𝛾, 𝜅) = b(𝑘 − 𝜅+ 1, 𝜅+ 𝛾 + 1)
𝑘 + 𝛾 + 1

b(𝜅+ 1, 𝑘 − 𝜅+ 𝛾 + 1)
𝑘 + 𝛾 + 1 1{0<𝜅<𝑘, 𝜅∈N}(𝜅)

+ b (𝑘 + 1, 𝛾 + 1)
𝑘 + 𝛾 + 1 1{0,𝑘}(𝜅)

(5.27)
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For illustrative purposes, the explicit value of 𝐼(1)
𝑚,𝑛 is presented below for the smallest 𝑛

and 𝑚.

𝐼
(1)
0,0 = 22𝛼−3

[︁
𝑊
(︁
1, 𝛼2 − 1, 0

)︁]︁2
[B(𝛼− 1, 𝛼+ 1)− 2B(𝛼, 𝛼) + B(𝛼 + 1, 𝛼− 1)]

= 22𝛼−2
(︂
𝛼

2

)︂2
[B(𝛼− 1, 𝛼+ 1)− B(𝛼, 𝛼)]

(5.28)

𝐼
(1)
0,1 = 22𝛼−3𝑊

(︁
1, 𝛼2 − 1, 0

)︁ (︁
2𝑊

(︁
3, 𝛼2 − 1, 0

)︁
[B(𝛼− 1, 𝛼+ 3)− B(𝛼, 𝛼 + 2)]

+2𝑊
(︁
3, 𝛼2 − 1, 1

)︁
[B(𝛼 + 1, 𝛼+ 1)− B(𝛼 + 2, 𝛼)]

)︁
= 22𝛼−2

(︂
𝛼

2

)︂⎡⎣
(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
𝛼
2

)︁
3! [B(𝛼− 1, 𝛼+ 3)− B(𝛼, 𝛼 + 2)]

+

(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
2 + 𝛼

2

)︁
2 [B(𝛼 + 1, 𝛼+ 1)− B(𝛼 + 2, 𝛼)]

⎤⎦
(5.29)

𝐼
(1)
1,1 = 22𝛼−3

[︂(︁
𝑊
(︁
3, 𝛼2 − 1, 0

)︁)︁2
[B(𝛼− 1, 𝛼+ 5)− B(𝛼 + 2, 𝛼+ 2)]

−2𝑊
(︁
3, 𝛼2 − 1, 0

)︁
𝑊
(︁
3, 𝛼2 − 1, 1

)︁
[B(𝛼, 𝛼 + 4)− B(𝛼 + 1, 𝛼+ 3)]

+
(︁
𝑊
(︁
3, 𝛼2 − 1, 1

)︁)︁2
[B(𝛼 + 1, 𝛼+ 3)− B(𝛼 + 2, 𝛼+ 2)]

]︂

= 22𝛼−2

⎡⎢⎣
⎛⎝
(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
𝛼
2

)︁
3!

⎞⎠2

[B(𝛼− 1, 𝛼+ 5)− B(𝛼 + 2, 𝛼+ 2)]

−2

(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
𝛼
2

)︁
3!

(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
2 + 𝛼

2

)︁
2 [B(𝛼, 𝛼 + 4)− B(𝛼 + 1, 𝛼+ 3)]

+
⎛⎝
(︁
2 + 𝛼

2

)︁ (︁
1 + 𝛼

2

)︁ (︁
2 + 𝛼

2

)︁
2

⎞⎠2

[B(𝛼 + 1, 𝛼+ 3)− B(𝛼 + 2, 𝛼+ 2)]

⎤⎥⎦
(5.30)

The approximate solutions to the mean number of steps 𝑁(𝑥0) and the mean flight

path length 𝑆(𝑥0), including the aforementioned corrections, are presented in Figure 14 and

15 respectively. The depicted solutions were obtained by solving systems of linear equations

(5.22) of sizes 𝑁 = 1 and 𝑁 = 4. The mere inclusion of the correction term proportional to

𝐼
(1)
0,0 represents a significant improvement in the fit to the results of the simulations for ̃︀𝑥0 up

to 0.95. Although retaining additional modes improves the fit of the corrected approximate

solution for values of 𝛼 closer to 2, regardless of the departure site, a "jittery" behaviour

around 𝛼 = 1 also becomes apparent. Note also that every 𝐼(1)
𝑚,𝑛 includes a term proportional

to B(𝛼−1, 𝛼+2𝑚+2𝑛+1) which is troublesome for 𝛼 close to 1, approaching from both sides.

Indeed, it follows from (3.12) that B(𝛼−1, 𝛼+2𝑚+2𝑛+1) = 2(𝛼+𝑚+𝑛)
𝛼−1 B(𝛼, 𝛼+2𝑚+2𝑛+1).
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Figure 14 – Mean number of steps 𝑁(𝑥0) with first-order corrections. Approximate forms of 𝑁(𝑥0) obtained
from the solutions to the system (5.22) 𝑁 = 4 (solid line). For comparison, the uncorrected
approximate solution with 𝑁 = 1 (dashed line) and the graph of(1.1) (dotted line) are also
included.. Recall that 0 ≤ 𝑛, 𝑚 < 𝑁 . (a) When the departure site ̃︀𝑥0 is between 0.5 and 0.95,
good fit is achieved with just four modes of the lowest even order. Note that the approximation
with the zero mode is also fair enough. (b) For departure sites close to the boundary, from̃︀𝑥0 = 1 − 20

800 (dark blue) to ̃︀𝑥0 = 1 − 1
800 (light blue), the numerical solution still exhibits

increasingly strong deviations from the random flight simulations, although the fit improves in
the vicinity of 𝛼 ≈ 2 compared to the uncorrected solution. It is also noticeable the discontinuity
at 𝛼 = 1 and the sign flip of the correction across that value.

(a)

(b)

Source: The author (2023)
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Figure 15 – Mean flight path length 𝑆(𝑥0) with first-order corrections. Approximate forms of 𝑆(𝑥0) were
obtained from the solutions to the system (5.22) of size 𝑁 = 4 (solid line). For comparison,
the uncorrected approximate solution with 𝑁 = 1 (dashed line) and the solution (1.2) (dotted
line) are also included. Recall that 0 ≤ 𝑛, 𝑚 < 𝑁 . (a) When the departure site ̃︀𝑥0 is between
0.5 and 0.95, good fit is achieved with just four modes of the lowest even order. Note that
the approximation with the zero mode is also fair enough. (b) For departure sites close to the
boundary, from ̃︀𝑥0 = 1 − 20

800 (dark blue) to ̃︀𝑥0 = 1 − 1
800 (light blue), the numerical solution

still exhibits increasingly strong deviations from the random flight simulations, although the fit
improves in the vicinity of 𝛼 ≈ 2 compared to the uncorrected solution. It is also noticeable the
discontinuity at 𝛼 = 1 and the sign flip of the correction across that value.

(a)

(b)

Source: The author (2023)
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Regarding the regime 0 < 𝛼 < 1, the right-hand side of (5.24) has no divergent terms

for 1 < 𝛼 < 2, as mentioned earlier, but is highly problematic elsewhere. Nevertheless, an

attempt was made to assign a finite value to the integral (5.25) for 𝛼 < 1 by extending the

beta function to negative arguments through (3.10). Also, the boundary term in (5.24), which

diverges due to 𝜌(𝛼−2)(𝑡→ 1), was discarded. The plots presented in Figure 14 and 15 suggest

that such an arbitrary attempt was not successful.

It is worth bearing in mind that, for the mean number of steps, the expansion of the

single-step expectation value 𝑛(𝑥0) in terms of the modes ̃︀𝑃 (𝛼
2 )

2𝑚 given by (5.13) is exact,

which is not the case for the mean flight path length expansion in (5.16) due to the particular

form that 𝑠(𝑥0) take in (−𝐿
2 ,−𝐿

2 + 𝑙0) and (𝐿
2 − 𝑙0, 𝐿

2 ), hence the emphasis on the former.

5.3.2 Numerical stability

As shown in Figure 16, the linear equation system (5.22) is ill-conditioned particularly in

the vicinity of 𝛼 = 1. The reciprocal condition number 𝜅−1, defined as the quotient between

the minimum and the maximum singular values of 𝐷(𝛼)
𝑛𝑚, approaches zero as the system size

increases, which indicates that the equation system is highly unstable and considering modes

of higher orders does not improve overall convergence, but adds noise.
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Figure 16 – Reciprocal condition number of 𝐷
(𝛼)
𝑛𝑚 versus 𝛼 for several number of modes. A reciprocal condition

number 𝜅−1 approaching zero indicates an ill-conditioned linear equation system for which small
variations in the input produce large changes in the solution. 𝑁 denotes the number of modes
considered, i.e. the size of (5.22). (a) For small 𝑁 , it is interesting to note a fix tip at 𝛼 = 1
and a tip moving to the right with increasing number of modes. (b) For 𝑁 = 24, 𝜅−1 reaches an
order of magnitude of −10 in the entire region 0 < 𝛼 < 2, for which regularization methods are
required.
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Source: The author (2023)

In order to get an approximate noise-free solution to (5.22), the truncated Singular Value

Decomposition (tSVD) regularization technique was applied (NEUMAIER, 1998). The key idea

is to rid 𝐷𝑚𝑛 of the high-frequency noise by suppressing the singular values 𝜎𝑘 of rank 𝑘 > 𝐾̄
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without compromising the accuracy of the solution itself.

Figure 17 – Non-regularised and regularised numerical solutions to 𝑁(𝑥0) as a function of ̃︀𝑥0 for the upper
half of the search interval (a) and for a small neighbourhood around the absorbing site (b). The
non-regularised approximation to 𝑁(𝑥0) with 𝑁 = 32 (dashed lines) exhibits some high-frequency
artifacts ("ripples") that become larger near the boundary. Those artifacts are successfully removed
by tSVD with cutoff rank 𝐾̄ = 26, albeit the regularised solution (solid lines) still deviates from
the the simulations in the vicinity of the absorbing site for 𝑁(𝑥0).
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The non-regularized and regularized solutions for 𝑁(𝑥) are depicted in Figure 17 for

𝛼 ∈ {0.85, 1.01, 1.15} for 𝑁 = 32 and cutoff rank 𝐾̄ = 26 (solid line) compared with

the oscillating non-regularized solution (dashed line). Even though the tSVD irons out the

"ripples", the regularised solution still misses the behaviour of the simulations in the vicinity

of the boundary. As mentioned earlier, the reason for presenting 𝑁(𝑥0) is to leave aside the

approximations made while computing the coefficients 𝑠𝑛 required for solving 𝑆(𝑥0).

Figure 18 and 19 compare the unregularised solutions of 𝑁(𝑥0) and 𝑆(𝑥0) considering

32 JP modes and the tSVD regularisation obtained by retaining 26 modes, with ̃︀𝑥0 in the

vicinity of the target site. Despite the evident noise reduction and overall good fit for ̃︀𝑥0 ∈

{1− 20
800 , 1−

10
800}, even for 𝛼 ≈ 1 and the improvement in the near Gaussian regime compared

to (1.1) and (1.2), the regularised solution deviates from the data for ̃︀𝑥0 ∈ {1− 3
800 , 1−

1
800}

and 𝛼 ≈ 1. In that regime, expressions (1.1) and (1.2) outperform the regularised solutions

of (5.22) with correction terms.
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Figure 18 – Non-regularised and regularised numerical solutions 𝑁(𝑥0) as a function of 𝛼 in the vicinity of
the upper absorbing site. (a) Non-regularised 𝑁(𝑥0) with 𝑁 = 32. (b) tSVD-regularised 𝑁(𝑥0)
with cutoff rank 𝐾̄ = 26. Despite the lack of fit around 𝛼 = 1 increases as one approaches the
boundary, both solutions gets closer to the simulation results as 𝛼 approaches 2.

(a)

(b)

Source: The author (2023)
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Figure 19 – Non-regularised and regularised numerical solutions 𝑆(𝑥0) as a function of 𝛼 in the vicinity of the
upper absorbing site. (a) Non-regularised approximate 𝑆(𝑥0) with 𝑁 = 32. (b) tSVD-regularised
𝑆(𝑥0) with cutoff rank 𝐾̄ = 26. Despite the lack of fit around 𝛼 = 1 increases as one approaches
the boundary, both solutions gets closer to the simulation results as 𝛼 approaches 2.

(a)

(b)

Source: The author (2023)
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6 CLOSING REMARKS AND OUTLOOK

The initial motivation of this project was to delve into the solution of the integral equa-

tion (4.22) and find strategies to fix the lack of fit of the known closed-form approxi-

mate solutions close to the boundary and approaching the diffusive regime (BULDYREV et

al., 2001a)(BULDYREV et al., 2001b).

In order to solve the singular integral equation, alternative approaches to the Sonine inver-

sion formula were explored. The first approach involves the solution to Abel integral equation,

Riemann-Liouville fractional integrals and derivatives and the application of boundary value

problem theory. This tour de force has some drawbacks. First of all, it is restricted to weakly

singular kernels such as the Riesz potential with 0 < 𝛼 < 1, which leaves out half of the range

of interest. Second, the decision of inverting Abel equation with the aid of (3.46) before solv-

ing the Cauchy-type singular integral equation prevents the inclusion of additional terms. One

could also solve the singular integral equation before inverting Abel equation, which is the

approach for which explicit formulae are reported in the reviewed literature (SAMKO; KILBAS;

MARICHEV, 1993) (GAKHOV, 1966). However, the attempts made indicate that the application

of the latter is no less challenging than the former. In either case, one has to deal with the

operator 𝒟1−𝛼
𝑎+ [ℎ] and with integrals with a kernel (𝜏−𝑡)−1 for which the principal value needs

to be sought.

The second approach explored in this project is the spectral relationship method with

Jacobi polynomials. It turns out that Jacobi polynomials have some special bond with the

Riesz potential stated in 3.3 and 3.4. Although the former is a particular case of the latter,

there are some interesting intermediate results such as (3.97), which nicely depicts the link

between (weighted) Jacobi polynomials and Riesz potential in the form of a residue formula.

It is worth recalling that the key JP spectral relation (3.90), valid for 0 < 𝛼 < 1 at first, was

extended to 1 < 𝛼 < 2.

The foundations underlying the spectral relationship method and the JPs spectral relations

are by no means trivial, yet they are not as inscrutable as inversion formulae. Furthermore, the

former allows for the inclusion of certain correction terms that greatly improve the accuracy

of the solution, which is a game changer. Although no explicit closed-form expressions were

obtained for the corrected mean number of steps and mean flight path length, the relatively

fast convergence with the number of JP modes observed in Figure 14 and 15 could be exploited
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to obtain approximate closed form expressions. In any case, converting an integral equation

of the first kind such as (4.19) into a linear equation system for the amplitudes of the JPs

modes is advantageous from the computational (numerical) point of view, even tough the

ill-conditioned nature of the problem comes from (4.19) itself.

Regarding plausible future steps, it is mandatory to tackle the instability problem of the

numerical solution in the vicinity of 𝛼 ≈ 1 as one approaches the target sites, which might

entail taking into account higher order corrections, such as considering non-vanishing con-

tributions from additional terms in (4.21) (e.g. fourth-order term). At first, it seems that

computing the matrix elements arising from those terms is by no means a trivial task.

With regard to the absorption probability and the mean flight path length, the particular

behaviour of 𝑝+ (4.26) and 𝑠(𝑥) (5.16) in the 𝑙0- neighbourhood around the endpoint was

neglected. Some preliminary calculations indicate those adjustment do not improve overall

fitness with respect to the simulations for the parameters 𝑙0 and 𝐿 of the system considered.

The key might be in the expansion of the regularising term (𝐴) in (4.20).

It would also be interesting to refine the calculation of the absorption probability by

including correction terms. This calculation differs from the mean number of steps and the

mean path length as the boundary conditions are not fixed to zero in both ends, hence the

ansatz (5.6) no longer works.

There is also an open problem, as far as the author is aware, regarding the solution of the

fractional diffusion equation (2.47). The solution in free space is a Lévy 𝛼-stable distribution.

Nevertheless, attempts to find the solution in a finite interval with absorbing endpoints have

not been successful (CHECHKIN et al., 2003). Perhaps Jacobi polynomials may shed some light

on that problem.
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In[62]:= f[η_, L_, l_, h_] := (Pochhammer[l - h + 1, h] / Factorial[h]) *

Pochhammer[L - (l - 1) + h, l - h] * Pochhammer[L - (l - 1) + h + 1 / 2, l - h] *

Pochhammer[η / 2 + L - (l - 1) + L - 1 / 2, h] * Pochhammer[η / 2 - h, h];

f1[η_, L_, l_] := Sum[ f[η, L, l, h] , {h, 0, l}]

Expand[f1[η, L, l ]]

FullSimplify[ %  Pochhammer[η / 2 + L - l, l] * Pochhammer[η / 2 + L - l + 1 / 2, l],

Assumptions  Element[η, Reals] && 0 < η < 2 &&

Element[L, Integers] && Element[l, Integers] && 0 ≤ l && l ≤ L]

Out[64]=

2-2 l (2 l - 2 L - η)!

(-2 L - η)!

Out[65]=

True

Printed by Wolfram Mathematica Student Edition
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APPENDIX A – SYMBOLIC CHECK
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