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ABSTRACT

Discrete transforms play an important role in the context of signal processing. They are pivotal

tools because they allow us to analyze and interpret data in the domain of transforms, which often

reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the

Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant

transforms in the context of signal and image processing. Although the relevance of using these

transforms has been widely corroborated in several studies, the computational costs required for

their implementations can become prohibitive in contexts where we have large amounts of data

and/or demand for low-complexity devices. In this context, fast algorithms can be a solution

for the reduction of arithmetic operations necessary for computing the transforms. However,

it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity

transform approximations have been developed, as a low-cost alternative for computing these

transforms. This thesis is divided into two parts. In the first part, we propose several classes

of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate

their usability in the context of image processing. In the second part of the thesis, we present

approximation classes for the DFT and their applicability in problems of statistical inference,

as in the context of signal detection. From the results obtained, we can conclude that the low

complexity approximations for the transforms can be considered excellent alternatives in contexts

where there is a massive amount of data to be processed or in the case of implementation in

low-consumption hardware.

Keywords: discrete transforms; low-complexity discrete transforms; image compression; low-

complexity parameter estimation.



RESUMO

Transformadas discretas desempenham um papel importante no contexto de processamento de

sinais. Elas são ferramentas pivotais pois permitem analisar e interpretar dados no domínio

das transformadas, que frequentemente revelam padrões úteis. Em particular, podemos citar a

transformada discreta de Fourier (DFT), a transformada de Karhunen-Loève (KLT) e a trans-

formada discreta do cosseno (DCT) como as transformadas mais relevantes no contexto de

processamento de sinais e imagens. Embora a relevância do uso dessas transformadas tenha

sido amplamente corroborado em diversos estudos, os custos computacionais necessários para

suas implementações podem se tornar proibitivos em contextos em que há grande quantidade de

dados e/ou a demanda por dispositivos de baixa complexidade. Nesse sentido, algoritmos rápidos

podem ser uma solução para a redução das operações aritméticas necessárias para a computação

das transformadas. Porém, ainda é preciso lidar com a aritmética de ponto flutuante. Dessa

forma, diversas aproximações matriciais de baixa complexidade vêm sendo propostas, como

sendo uma alternativa de baixo custo para o cômputo destas transformadas. A presente tese está

dividida em duas partes. Na primeira parte, propomos diversas classes de aproximações de baixa

complexidade para a KLT e para a DCT, algoritmos rápidos, e demonstramos sua usabilidade

no contexto de processamento de imagens. Na segunda parte da tese, apresentamos classes de

aproximação para a DFT e sua aplicabilidade em problemas de inferência estatística, como no

contexto de detecção de sinais. Dos resultados obtidos, podemos concluir que as aproximações

de baixa complexidade para as transformadas podem ser consideradas excelentes alternativas

em contextos em que há uma quantidade massiva de dados a ser processada ou no caso de

implementação em hardware de baixo consumo.

Palavras-chave: transformadas discretas; transformadas aproximadas de baixa complexidade;

compressão de imagens; estimação de parâmetros de baixa complexidade.
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1 INTRODUCTION

In this chapter, we provide motivation and context for the research topics investigated in

this thesis. Additionally, we detail the main goals and the document structure.

1.1 MOTIVATION

With the advent of digital computation, a huge amount of data is generated every day at

an unprecedented rate from the most different sources, including science, engineering, health,

government, and social networks [1, 2]. The development of Big Data techniques to handle

a large amount of information has become increasingly relevant in the past few years [3, 4],

even more with technological trends such as the Internet of Things (IoT) [5, 6] and Artificial

Intelligence (AI) [2, 7–9]. Statistical tools have been developed to analyze this type of data, such

as machine learning and data mining. However, there are few advances in the development of

inferential procedures at a low computational cost [10]. With the increasing demand for analyzing

large masses of data in real-time, the development of efficient, low-power, and low-complexity

methods for statistical tools becomes more necessary every day.

In the context of digital signal processing, many important discrete transforms have

become useful tools for signal coding and data decorrelation [11–16] such as the DFT [17],

the Discrete Hartley Transform (DHT) [18], the Walsh-Hadamard Transform (WHT) [19], the

Discrete Tchebichef Transform (DTT) [20], the KLT [21, 22], the DCT [13], among others.

These transforms play an important role in the context of signal processing because they are

suitable in applications to real and complex data when using digital computers, which are only

capable of numerical and finite calculations [23]. By applying the discrete transforms to the

data, we are capable of analyzing the data from the transform domain, which can give us more

information about them [11, 13, 24]. In this thesis, emphasis will be given to three discrete

transforms: the KLT, the DCT, and the DFT.

The KLT is the optimal linear transform capable of minimizing the mean square error in

data compression and concentrating higher energy in a few coefficients of the output signal [13].

Indeed, the KLT completely decorrelates the signal in the transform domain, being the optimal

discrete transform in terms of data decorrelation and dimensionality reduction [21, 22, 25].

Because of its excellent performance for data compression, the KLT can be applied in several

image and video compression patterns, such as Joint Photographic Experts Group (JPEG) [26],

Moving Picture Experts Group (MPEG) [27], and HEVC [28].
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Even with such good properties, the use of the KLT can be limited because its definition

depends on the variance and covariance matrix of the input data, which can be a problem in

contexts with low processing power. The DCT is the asymptotic approximation to the KLT when

the input signal correlation tends to unity [13] and when the signal is a first-order Markovian

process. The mathematical definition of the DCT is independent of the input signal, which allows

the development of computationally efficient fast algorithms.

As much as the KLT and the DCT, the DFT is a very useful tool in the digital signal

processing context [17, 29]. The transform decomposes a signal into the frequency of its

components, enabling us to analyze, manipulate, and synthesize signals. It is used in the

most different contexts, such as solving differential equations [30], image processing [31],

beamforming [32, 33], analysis of radar signals [34], voice processing [35], time series [36],

spectral estimation [37], among others [38]. In this thesis, we will be giving emphasis on the

context where the DFT is used for the detection problem, where we aim to determine whether a

radar system is detecting a signal or not [39, 40].

Although the relevance of the use of the discrete transforms has been corroborated in

many works in this research field [11, 13, 14, 17, 38], their computational cost can be considered

high in contexts where there is a severe shortage of energy resources. One alternative for reducing

the computational cost of the transform can be the use of fast algorithms. An algorithm can be

defined as a finite sequence of rules, which given a set of inputs, returns an output [23]. Fast

algorithms are computational procedures or methods that are specifically designed to process

inputs quickly and efficiently. Their primary objective is to solve tasks or problems using the

minimum number of necessary calculations. In the past decades, many works were developed

for proposing efficient fast algorithms for the KLT [25, 41–44], the DCT [45–63], and the

DFT [64–70]. The fast algorithms proposed for the DFT are collectively called as Fast Fourier

Transforms (FFT).

Despite the fact that fast algorithms can highly reduce the computational cost of the

transforms, their use is still prohibited in contexts where we have a huge amount of data and/or a

demand for low-complexity devices. This is because the transforms, in their exact form, require

multiplications by irrationals numbers, which are usually approximated by rounding or truncating

in rational form and implemented in floating-point arithmetic or fixed-point arithmetic with large

integers [13, 23]. Methods of integer approximations to the transforms have been proposed to

eliminate the floating-point operations required for implementing the exact transforms. The low-

complexity approximations have proven to be excellent alternatives to their exact counterparts
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due to their ability to provide transform matrices with similar mathematical behavior while

significantly reducing the arithmetic cost involved. [14].

Particularly, we can cite the low-complexity approximations proposed for the DCT, such

as the Signed Discrete Cosine Transform (SDCT) [71], the Rounded Discrete Cosine Transform

(RDCT) [72], the DCT approximations based on integer functions [73], the Bouguezel–Ahmad–

Swamy (BAS) series of DCT approximations [74–79], and the DCT approximation based on

angle similarity [80], among others [81–93]. Considering the KLT, we can also find low-

complexity approximations in the literature [94–99]. However, these methods still suffer the

problem of data-dependency. For the DFT, we can cite multiplierless approximations, such

as the ones proposed by Ariyarathna et al. [100], Kulasekera et al. [101], Suarez et al. [102],

Coutinho et al. [103], Madanayake et al. [33], and more [104–107].

Approximate transforms can be useful in contexts where there is a massive amount of

data to be processed or in the case of implementation on low-power hardware. For example,

unless we have the high computational power and a small amount of data – where the use of

approximations is not necessary, in all other cases might be convenient to use approximate

transforms. Figure 1 illustrates this situation.

Figure 1 – Contexts where the applicability of approximate transforms is justified.
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1.2 MAIN GOALS

Given the previous discussion of the relevance of low-complexity transforms in the

context of signal processing the main goal of the proposed research in this thesis is to develop

low-complexity methods for statistical tools. Specifically, we aim at:

1. proposing low-complexity KLT approximations based on integer functions;

2. proposing low-complexity approximations for the DCT for larger blocklengths based on

angle similarity;

3. developing fast algorithms for the proposed approximations;

4. assessing the performance of the proposed approximations considering specific figures of

merit;

5. assessing the quality of the proposed approximations on image compression experiments;

6. proposing low-complexity approximations for the DFT;

7. proposing a low-complexity detector for signal detection based on the DFT approximation;

8. assessing the performance of the low-complexity detector by numeric simulations.

1.3 ORGANIZATION OF THE THESIS

This doctorate thesis contains five self-contained chapters, each with its own notation

and terminology. Each chapter corresponds to the research progress obtained by the candidate as

of the writing of the thesis. The chapters referring to the KLT and DCT approximations have

been more developed, and some of them are already published in the literature.

In Chapter 2, we present a class of data-independent low-complexity KLT approximations

based on the signum function. We proposed 4-, 8-, 16-, and 32-point approximations because

of the relevance of these lengths for image and video coding. We also proposed total figures

of merit for the selection of the optimal transforms and fast algorithms for the approximations

were derived. Finally, to show the applicability of the proposed approximations, experiments

on image and video coding were conducted and demonstrated their good performance at a very

low cost. The video coding experiments presented in Section 2.4.2 was executed by Dr. Thiago

L. T. da Silveira.

In Chapter 3, we present another class of low-complexity KLT approximations based

on the rounding-off function. The proposed KLT approximations cover the entire correlation

scenario. That is, depending on the correlation coefficient of the input signal, we will have a

specific low-complexity transform. We assessed the proposed transforms according to classical
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figures of merit and showed that the performance is similar to the exact KLT at a greatly reduced

computational cost. Image compression experiments were conducted and also showed the good

performance of the proposed approximations when compared to the exact KLT.

In Chapter 4, we considered a wider range of rounding functions for searching for new

KLT approximations. Since this search returned a large number of candidate matrices (78)

we had to set an optimization problem to select the optimal approximations. The solution

for the optimization problem comprises six new transforms. The proposed transforms were

also assessed by coding and similarity measures, and experiments on image compression were

carried out affirming their good performance. The 8-point low-complexity approximations

were implemented on a field programmable gate array (FPGA), showing a trade-off between

performance and resource usage. The hardware implementation section, presented in 4.7, was

developed by Dr. Diego F. G. Coelho.

In Chapter 5, we presented new DCT approximations for larger blocklength based on

minimal angle similarity. We considered an approach that is already known in the literature to

propose 16-, 32-, and 64-point approximations for the DCT and showed that the approximations

outperformed well-known low-complexity approximations according to some figures of merit.

The proposed approximations were assessed in terms of image compression experiments, where

we were, one more time, able to show that they outperformed approximations already known in

the literature. Fast algorithms for the proposed DCT approximations were also developed. The

approach used to derive the new approximations were already presented in a paper authored by

Ms. Raiza S. Oliveira and others [80], and the fast algorithms presented in Section 5.5.4 were

developed by Ms. Luan Portella.

In Chapter 6, we present the signal detection problem as in the context of a statistical

hypothesis test. In this context, the usual statistical test can be defined in terms of the DFT,

which can be an issue in scenarios where agility in detection is needed. Considering the problem

of detecting a simple sinusoidal tone, we proposed a low-complexity statistical test based on an

approximation for the DFT. We showed that the proposed test performs similarly to the exact

test, at a lower cost. Simulated experiments were carried out to show the applicability of the test.

Finally, in Chapter 7 we present some conclusions and ideas for further work.
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1.4 COMPUTATIONAL SUPPORT

The simulation results we presented in this thesis were obtained using R [108] and

Python [109] software. The plots and images generated from Chapters 2, 3, 4, and 5 were

produced using the R language. In Chapter 6, the Python language was considered to generate

the plots.
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2 DATA-INDEPENDENT LOW-COMPLEXITY KLT APPROXIMATIONS FOR IM-

AGE AND VIDEO CODING

2.1 INTRODUCTION

The Karhunen-Loève transform (KLT) [13] is a commonly used tool for data decorrelation

and dimensionality reduction [110,111]. It consists of a linear transformation that maps correlated

variables into uncorrelated ones, sometimes referred to as principal components [112]. Usually,

only the first coefficients of the transformed data are sufficient to represent the signal. The KLT

capability for energy compaction is paramount for data compression, since most information can

be preserved even reducing the dimensionality of the data [113]. In fact, considering first-order

Markov processes, the KLT is an optimal linear transform capable of minimizing the mean

square error in data compression and concentrating energy in few coefficients of the output

signal [13]. Although it is a well-established optimal transform in terms of energy compaction

and decorrelation [14], the KLT is not widely applied because its computation depends on the

covariance matrix of the input data. Indeed, such data-dependent requirements can hinder the

development of fast algorithms for an efficient implementation of the transform.

However, if the input data is a first-order Markov process with known correlation coeffi-

cient ρ , then it was shown in [114] that we can derive an analytical solution for the elements

of the KLT matrix. Nevertheless, even with the transform matrix known, the computational

complexity of its implementation can be infeasible for practical data compression scenarios. In

this context, several fast approximations for the KLT have been proposed [25, 41–44, 94–98]

aiming at reducing the computational costs. Although such methods generate fast approximations

for the KLT, their scope is relatively limited because the data-dependence is still present; in

some cases either depending on the covariance matrix of the input data [41, 43, 94–98] or on the

correlation coefficient in case of first-order Markovian signals [25].

When considering first-order Markovian random signals, [115] and [116] have shown that

the Discrete Cosine Transform (DCT-II) and the Discrete Sine Transform (DST) are asymptotic

approximations for the KLT, with the correlation coefficient of the input signal tending to unity

and to zero, respectively. Both the DCT and the DST are independent of the input signal, allowing

the development of computationally efficient fast algorithms. The DCT is widely adopted in

image and video compression standards such as JPEG [26] and high efficiency video coding

(HEVC) [28], just to name a few. However, the use of this transform can still be prohibitive in

contexts under severe restrictions on processing power or energy autonomy [74, 81, 117, 118]. In



29

fact, DCT realizations that require multiplications implemented in floating-point arithmetic-based

hardware [82] demand significant circuitry complexity and energy consumption [13]. In this

sense, several multiplication-free approximations for the DCT have been proposed [72, 74, 80,

81, 84–86, 90, 119–123], including the SDCT [71]. The SDCT is derived by applying the signum

function to the elements of the DCT matrix, thus resulting in a matrix of trivial multiplicands

{−1,+1}. Therefore, the transform computation requires only additions. Such reduction in the

arithmetic cost implies in a lower computational cost, favoring applications in real-time and in

low-consumption devices [13].

The present work employs the signum function as a means to obtain computationally

efficient alternatives to the KLT for first-order Markov processes. We follow an entirely different

approach when compared with the fast KLT approximations already known in the literature. Here,

we focus on the proposition of deterministically defined multiplierless low-complexity approxi-

mations for the KLT that does not depend on the input signal and is capable of coping with a wide

range of correlation coefficients. Our analysis are devoted to the blocklengths N ∈ {4,8,16,32}

because of their relevance in image and video standards as JPEG [26] and HEVC [28]. In order

to find the best-performing low-cost approximations, we propose a constrained optimization

approach according to suitable figures of merit for the KLT analysis. The considered approxi-

mation method is specifically tailored to furnish low-complexity transformations appropriate

for dedicated highly-efficient circuitry design. The resulting KLT approximations are sought to

be numerically evaluated according to coding performance [124, 125], and similarity/proximity

metrics [13, 72] with respect to the exact KLT. The obtained transforms are then embedded

into (i) a JPEG-like image compression scheme, and (ii) an HEVC reference software for video

coding assessment.

To the best of our knowledge, the literature lacks KLT approximations that combine the

following properties:

1. deterministic definition;

2. suitability for fast algorithm design;

3. data-independence; and

4. capability of processing data at a wide range correlation.

We aim, therefore, at a proposition of a new class of KLT approximations that addresses these

gaps. The main goal of this thesis chapter is to propose low-complexity approximate

transforms for the KLT considering different values of the correlation coefficient ρ , so

low and mid-correlated signals could be properly treated as well. Since, to the best of our
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knowledge, the literature lacks efficient KLT-based methods considering lowly correlated data,

there is no competing method for a fair comparison.

This chapter is structured as follows. In Section 2.2, we revise the mathematical formu-

lation of the KLT for first-order Markovian signals and define the general framework for the

proposed SKLT. Section 2.3 describes the computational approach for obtaining new transforms

and presents these transforms for different lengths attaining optimality according to the proposed

figures of merit based on classical metrics. Section 2.3 also presents fast algorithms for the

proposed transforms. In Section 2.4, we assess the proposed 4-, 8-, 16-, and 32-point SKLT in

image and video coding. Section 2.5 concludes the chapter.

2.2 SIGNED KLT

2.2.1 Karhunen-Loève Transform for the First-order Markov Process

The KLT is a linear transformation represented by an orthogonal matrix K(ρ)
N which

decorrelates an input signal

x =
[
x0 x1 . . . xN−1

]⊤
(2.1)

resulting in an uncorrelated signal

y =
[
y0 y1 . . . yN−1

]⊤
. (2.2)

The (i, j)th elements of the transform matrix K(ρ)
N , for an arbitrary value of ρ ∈ [0,1], are given

by [13]

ki j =

√
2

N +λ j
sin
[

ω j

(
i− N−1

2

)
+

( j+1)π
2

]
,

i, j = 0,1, . . . ,N−1,

(2.3)

where the eigenvalues of the transformed signal y covariance matrix are obtained by

λ j =
1−ρ2

1+ρ2−2ρ cosω j
, j = 0,1, . . . ,N−1, (2.4)

and ω1,ω2, . . . ,ωN are the N solutions of the non-linear equation

tan(Nω) =
−(1−ρ2)sinω

(1+ρ2)cosω−2ρ
. (2.5)

It is a well-known fact that adjacent pixels from natural images are highly correlated [24],

being ρ = 0.95 a widely adopted assumption [13]. When the correlation of the input signal tends

to the unity, ρ → 1, the KLT converges to the DCT [115].
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For instance, if N = 8 and ρ = 0.95, then the KLT matrix is given by

K(0.95)
8 =


0.338 0.351 0.360 0.364 0.364 0.360 0.351 0.338
0.481 0.420 0.286 0.101 −0.101 −0.286 −0.420 −0.481
0.467 0.207 −0.179 −0.456 −0.456 −0.179 0.207 0.467
0.423 −0.085 −0.487 −0.278 0.278 0.487 0.085 −0.423
0.360 −0.347 −0.356 0.351 0.351 −0.356 −0.347 0.360
0.283 −0.488 0.094 0.415 −0.415 −0.094 0.488 −0.283
0.195 −0.462 0.460 −0.190 −0.190 0.460 −0.462 0.195
0.100 −0.279 0.416 −0.490 0.490 −0.416 0.279 −0.100

 . (2.6)

2.2.2 KLT Approximations

Our approach is based on the technique used in [71] for proposing the classical SDCT.

The proposed transform, as well as the SDCT, is motivated by the reduction of the total number of

arithmetic operations required for the computation of the transform at the cost of some accuracy

loss [71]. The technique considers the signum function to generate a matrix approximation for

the KLT. Thus, we propose the following approximate transformation matrix:

T̂(ρ)
N ≜

1√
N

sign
(

K(ρ)
N

)
, (2.7)

where

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

(2.8)

and K(ρ)
N is the KLT matrix of order N with a predefined correlation coefficient ρ , the entries of

which are given by (2.3). When applied to a matrix, the signum function operates element-wise.

In other words, we map a given KLT matrix into a low-complexity matrix close to it.

Note that, if ρ = 0, then the Equation (2.7) degenerates into the null matrix. Also if ρ = 1, then

K(1)
N is the DCT and the resulting approximation is the signed DCT (SDCT) [71]. Therefore, in

practice, our analysis is constrained to 0 < ρ < 1. Note that because of the non-linearity and

discrete nature of the signum function, different KLT matrices might be mapped to the same

approximate matrix. For instance, considering ρ1 = 0.7 and ρ2 = 0.9, we obtain that

T̂(ρ1)
8 = T̂(ρ2)

8 =
1√
8


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1

 . (2.9)

Exhaustively computing all KLT matrices in the range ρ ∈ [10−3,1−10−3] in steps of

10−3 returns 999 matrices. However, the number of approximations is lower due to the fact

that many matrices can collapse into the same approximation. Therefore, we have : 1, 2, 9,
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and 37 different approximations for N = 4, 8, 16, and 32, respectively. In view of the above, a

methodology for selecting best-performing approximations is necessary, which is the topic of

the next section.

Although the KLT is an orthogonal matrix, the proposed transforms are not constrained

to be, therefore, given the proposed transform T̂(ρ)
N , the transformed signal is given by

y = T̂(ρ)
N ·x, (2.10)

and the inverse transformation can be written as

y = (T̂(ρ)
N )−1 ·x. (2.11)

2.3 OPTIMAL SKLT

In this section, we describe an optimization problem, aiming at the identification of the

best-performing SKLT matrices, according to the figures of merit detailed next.

2.3.1 Figures of Merit for Approximate Transforms

Approximate transform methods [71, 72, 74, 81, 117] are usually assessed in terms of

(i) coding metrics such as the coding gain [124] and transform efficiency [125], which measure

the power of decorrelation and energy compression; and (ii) proximity metrics with respect to the

exact transform, such as the mean-square error [13] and total error energy [72], which measure

similarities or dissimilarities between approximate and exact transforms. In the following, let

T̂N be a candidate matrix to be assessed.

2.3.1.1 Unified Coding Gain

The unified coding gain of a transform T̂N is given by [126]

Cg(T̂N) = 10· log10

{
N

∏
k=1

1
N
√

Ak ·Bk

}
, (2.12)

where Ak = su
{
(h⊤k ·hk)⊙Rx

}
, hk is the kth row vector from T̂N , the function su( ·) returns the

sum of the elements of its matrix argument, ⊙ is the Hadamard matrix product operator [127],

Rx is the autocorrelation matrix of the considered first-order Markovian signal, Bk = ∥gk∥2 and

gk is the kth row vector from T̂−1
N , and ∥ ·∥ is the Frobenius norm [127].
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2.3.1.2 Transform Efficiency

Another coding related figure of merit is the transform efficiency, given by [125]

η(T̂N) = 100
∑

N
i=1 |ri,i|

∑
N
i=1 ∑

N
j=1 |ri, j|

, (2.13)

where ri, j is the (i, j)th element from T̂N ·Rx · T̂⊤N .

2.3.1.3 Mean-Square Error

The mean-square error (MSE) relative to the KLT is given by [13]:

MSE(T̂N) =
1
N

· tr
{
(K(ρ)

N − T̂N) ·Rx ·(K(ρ)
N − T̂N)

⊤
}
, (2.14)

where tr( ·) is the trace function [128].

2.3.1.4 Total Error Energy

The total error energy of an approximation relative to the KLT is computed by [72]:

ε(T̂N) = π · ||K(ρ)
N − T̂N ||2. (2.15)

2.3.1.5 Proposed Figures of Merit

Because the above discussed figures of merit are defined for a fixed value of ρ , we

propose the following total metrics which take into account the performance for all values of

0 < ρ < 1:

CgT (T̂N) =
∫ 1

0
|Cg(K(ρ)

N )−Cg(T̂N)|dρ, (2.16)

ηT (T̂N) =
∫ 1

0
|η(K(ρ)

N )−η(T̂N)|dρ, (2.17)

MSET (T̂N) =
∫ 1

0
MSE(T̂N)dρ, (2.18)

εT (T̂N) =
∫ 1

0
ε(T̂N)dρ. (2.19)

2.3.2 Optimization Problem

In order to identify the overall best-performing approximations, we propose the following

optimization problem:

T̂∗N = arg min
0<ρ<1

error(T̂(ρ)
N ), (2.20)
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where error( ·) is one of the proposed measures, CgT ( ·), ηT ( ·), MSET ( ·), εT ( ·), presented in

the previous subsection. Note that, for a fixed transform length N, up to four optimal SKLT can

be obtained, each one optimizing a total metric. Hereafter we denote the optimal transforms of

length N ∈ {4,8,16,32} as T̂N,i, which are indexed by the subscript i = 1,2, . . . ,J, where J is

the number of approximate transforms for the blocklength N.

Table 1 summarizes the results for the optimal SKLT with different transform lengths N

and for the intervals of ρ that each transform is defined. DCT, DST, and the SDCT results are

included only for comparison purposes. It is important to emphasize that this comparison is not

completely fair since the proposed transforms cover different intervals of ρ while the DCT and

DST are defined for ρ tending merely to one and zero, respectively. All metrics are computed

with respect to the exact KLT. The values in bold are the best measurements for each transform

length N. The transforms T̂4,1, T̂8,2, and T̂16,3 are already known in the literature, and coincide

with the SDCT. The remaining transforms are, to the best of our knowledge, new ones.

2.3.3 Fast Algorithms

The direct implementation of the proposed transforms requires N(N−1) additions and

no multiplications. Besides searching for multiplication-free transforms, the development of fast

algorithms capable of reducing the arithmetic cost of computing the transforms is important.

Using sparse matrix factorization [23], such as butterfly-based structures, we can derive the

factorization for the optimal proposed transforms. In order to assess the complexity of the

proposed fast algorithms we considered the number of arithmetic operations needed for its

implementation. The arithmetic complexity does not depend on the available architecture or

technology, an issue that may occur when considering measures such as computation time [23,

129, 130]. The derived matrix factorization for N = 4 and 8 are presented in the following, and

for N = 16 and 32, the respective matrix factorization are detailed in Appendix A.

2.3.3.1 Matrix Factorization for N = 4

For N = 4, we can factorize T̂4,1 [71] as follows:

T̂4,1 =
1
2

·P4 ·A4,2 ·A4,1, (2.21)
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Table 1 – Comparison of proposed transforms with KLT

Transform ρ CgT (T̂N) ηT (T̂N) MSET (T̂N) εT (T̂N)

N = 4

T̂4,1 [71] (0,1) 0.162 10.862 0.039 0.764
DCT ρ → 1 0.025 7.071 0.014 0.167
DST ρ → 0 0.317 11.859 0.016 0.167

N = 8

T̂8,1 (0,0.619] 2.726 32.907 0.110 3.670
T̂8,2 [71] (0.619,1) 2.170 37.192 0.129 3.950
DCT ρ → 1 0.031 12.173 0.042 0.888
DST ρ → 0 0.362 18.940 0.032 0.778

N = 16

T̂16,1 (0.540,0.550] 2.825 56.924 0.157 8.499
T̂16,2 (0.550,0.700] 2.748 54.668 0.153 8.538
T̂16,3 [71] [0.9,1) 2.227 48.588 0.169 9.532
DCT ρ → 1 0.024 15.709 0.078 2.945
DST ρ → 0 0.307 22.772 0.044 2.283

N = 32

T̂32,1 (0.139,0.162] 2.352 66.355 0.195 21.143
T̂32,2 (0.487,0.490] 2.442 65.047 0.184 19.806
T̂32,3 (0.490,0.528] 2.477 65.475 0.185 19.779
T̂32,4 (0.956,0.977] 2.450 61.930 0.244 24.288
SDCT ρ → 1 2.491 62.550 0.256 24.856
DCT ρ → 1 0.015 18.005 0.116 7.891
DST ρ → 0 0.227 24.673 0.052 5.531

Source: Author (2023).

where

P4 =


1

1

1

1

 , A4,2 =


1 1

1 −1

1 1

−1 1

 , (2.22)

and

A4,1 =

I2 Ī2

Ī2 −I2

 , (2.23)

where I2 and Ī2 are, respectively, the identity and counter-identity matrices of order 2. The blank

spaces represents zeroes.



36

2.3.3.2 Matrix Factorization for N = 8

For N = 8, we have:

T̂8,1 =
1√
8

·P8 ·A′8,3 ·A8,2 ·A8,1, (2.24)

T̂8,2 =
1√
8

·P8 ·A′′8,3 ·A8,2 ·A8,1 [71], (2.25)

where

P8 =



1

1

1

1

1

1

1

1



, A′8,3 =



1 1

1 −1

1 1

−1 1

1 1

−1 −1

1 1

1 −1



, (2.26)

A8,2 =

A4,1

A4,1

 , A8,1 =

I4 Ī4

Ī4 −I4

 , (2.27)

and

A′′8,3 =



1 1

1 −1

1 1

1 −1

1 1

−1 −1

1 1

1 −1



. (2.28)

Table 2 presents the arithmetic cost of the proposed fast algorithms for the approximate

transforms compared with the arithmetic cost of the direct implementation of the exact N-

point KLT. Since the proposed transforms are, to the best of our knowledge, the first class of

approximations for the KLT following this approach, there is nothing to compare with. However,
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Table 2 – Computational cost comparison for 4-, 8-, 16-, and 32-point transforms

Transform Additions Multiplications Bit-Shifting Addition reduction (%)

T̂4,1 [71] 4 0 0 66%
K4 12 16 0 -

T̂8,1 24 0 0 57%
T̂8,2 [71] 24 0 0 57%
K8 56 64 0 -

T̂16,1 80 0 0 67%
T̂16,2 75 0 0 69%
T̂16,3 [71] 72 0 0 70%
K16 240 256 0 -

T̂32,1 288 0 0 71%
T̂32,2 288 0 0 71%
T̂32,3 288 0 0 71%
T̂32,4 232 0 0 77%
K32 992 1024 0 -

Source: Author (2023).

to show that the performance of the proposed transforms is competitive, we introduced in Table 3

the arithmetic cost of some transforms in general that are already known in the literature. Thus,

Table 3 presents the arithmetical cost of: the fast algorithms proposed by [45] and [60] for the 8-

and 16-point DCT, respectively; and approximations for the DCT already known in the literature

proposed in [71–74, 76, 77, 83–85, 119, 120, 131, 132]. We can note that the introduced fast

algorithms are multiplierless and offer substantial reductions in the additive complexity when

compared with the exact KLT and lower or similar arithmetic cost compared with the DCT

approximations.

For a better visualization of the results presented in Tables 1 and 2, we have combined

graphically the number of additions and the proposed figures of merit of each proposed transform,

for N = 4, 8, 16, and 32, as presented in Figures 2, 3, 4, 5, respectively. Note that both DCT and

DST also require multiplications when implemented, differently of the proposed transforms that

are multiplierless.

2.4 IMAGE AND VIDEO CODING

We applied the proposed transforms to two distinct contexts that are commonly explored

in the field of approximation: (i) still image compression according to a JPEG-like algorithm [72,
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Table 3 – Computational cost comparison for 8-, 16-, and 32-point DCT approximation transforms

Transform Additions Multiplications Bit-Shifting

DCT8 [45] 29 11 0
DST8 [133] 29 12 0
T8,LO [120] 24 0 2
T8,RDCT [72] 22 0 0
T8,MRDCT [83] 14 0 0
T8,BAS-2008a [74] 18 0 2
T8,BAS-2008b [74] 21 0 2
T8,BAS-2009 [77] 18 0 0
T8,BAS-2011 [76] 16 0 0
T8,BAS-2012 [119] 24 0 0
T′8,1 [73] 18 0 0
T8,4 [73] 24 0 0
T8,5 [73] 24 0 4
T8,6 [73] 24 0 6

DCT16 [60] 74 44 0
DST16 [133] 81 32 0
T16,BAS-2012 [119] 64 0 0
T16,BCEM [131] 72 0 0
T16,SBCKMK [132] 60 0 0
T16,SOBCM [85] 44 0 0
T16,JAM [84] 60 0 0

DCT32 [60] 194 116 0
DST32 [133] 209 80 0
T32,BAS-2012 [119] 160 0 0
T32,JAM [84] 152 0 0

Source: Author (2023).

74, 81], and (ii) video encoding as defined in the HEVC reference software [134]. In this section,

we compared the proposed transforms with the exact KLT for ρ = 0.1, 0.6 and 0.9 (K(0.1), K(0.6)

and K(0.9)), and with the exact DCT. The transforms K(0.1), K(0.6), and K(0.9) were selected

because they are suitable for decorrelation of lowly, moderately, and highly correlated data,

respectively. Currently literature is restricted to the high correlation scenario, which is mainly

addressed by the DCT and its related approximations.

2.4.1 Image Compression

In this section, we evaluated the performance of the proposed transforms in image

compression, similarly to [72, 74, 81]. If A is a two-dimensional (2D) image, then the direct and
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Figure 2 – Additive complexity versus the proposed figures of merit for each transform for N = 4.

Source: Author (2023).

inverse transformations induced by the SKLT are computed, respectively, by

B j = T̂(ρ)
N ·A j ·(T̂(ρ)

N )−1, (2.29)

A j = (T̂(ρ)
N )−1 ·B j · T̂(ρ)

N . (2.30)

The adopted experiment scheme is described as follows [16]: (i) the image is divided into disjoint

sub-blocks A j of size N ×N; (ii) each sub-block is submitted to a selected transform T̂(ρ)
N

according to (2.29); (iii) using the standard zig-zag sequence [16], only the initial r coefficients

in each sub-block B j are retained and the remaining N2− r coefficients are zeroed, resulting

in sub-block B̄ j; (iv) the two-dimensional inverse transform is applied according (2.30), and

(v) the reconstructed sub-blocks Ā j are adequately rearranged. The final reconstructed image

Ā is compared with the original image A for assessing the performance of T̂N . We adopted

N ∈ {4,8,16,32} and used the PSNR [135], and the MSSIM [136] as figures of merit for

image quality evaluation. The results were taken individually for 45 512×512 8-bit greyscale

images obtained from [137] and averaged. For each transform length, we considered two

approaches: (i) a qualitative analysis, based on the compressed Lena image with approximately
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Figure 3 – Additive complexity versus the proposed figures of merit for each transform for N = 8.

Source: Author (2023).

85% compression and (ii) a quantitative one, varying the value of r for compression, considering

the average MSSIM and PSNR values of the compressed images.

Figure 6 shows the original Lena image. The reconstructed images using the proposed

transforms, DCT, and DST for N = 4, 8, 16, and 32 are presented, respectively, in Figures 7,

8, 9, and 10. The corresponding compression ratio (CR) was CR = 81.25%, 84.38%, 84.38%,

84.86%, respectively. Visually, the reconstructed images after compression exhibit quality

comparable with the original image.

Figure 11 presents the average image quality measurements for different values of N

considering different levels of compression, comparing with the exact KLT for ρ = 0.1, 0.6, and

0.9 and the DCT. Figure 11b shows that the average MSSIM of T̂4,1 is very close to the results

from the KLT and DCT. Figure 11a also shows that the values of the average PSNR of T̂4,1

are close to the values obtained by KLT and DCT. We can also notice that the approximation

T̂4,1 presents average MSSIM values better than KLT itself when we retain fewer coefficients,

r ranging from zero to six. For N = 8, one can see that T̂8,1 and T̂8,2 behave in a similar way

according to the image quality measures. For N = 16, the T̂16,3 transform has considerably closer

values to the DCT and KLT than the other approximations. This may be related to the fact that
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Figure 4 – Additive complexity versus the proposed figures of merit for each transform for N = 16.

Source: Author (2023).

T̂16,3 is the obtained transform with a higher value of ρ (ρ ≥ 0.9). One can see that, for r < 10,

the approximation T̂16,3 presents better average MSSIM values than KLT itself. Figures 11g and

11h present the image quality measurements for N = 32, that poses T̂32,4 as the best-performing

approximate KLT for compression.

2.4.2 Video coding

In order to demonstrate the suitability of the introduced SKLTs in the video coding

context, we embed the proposed approximations into a public available HEVC reference soft-

ware [134]. The HEVC employs an IDCT of lengths 4, 8, 16, and 32 [138], unlike its predeces-

sors [139–142]. According to [28], the larger transforms generally work better for smooth image

regions, whereas the textured areas are better handled by the small sized transforms.

For our experiment, we substituted the original set of IDCTs natively defined in the HEVC

standard by our proposed KLT approximations. The original integer DST-VI [143] of length 4,

responsible for residual coding in HEVC, is kept unchanged in the reference software. The main

reason is that the optimal SKLT for length 4 is unique for all ρ values (confer Table 1), and it
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Figure 5 – Additive complexity versus the proposed figures of merit for each transform for N = 32.

Source: Author (2023).

Figure 6 – Original Lena image.

Source: SIPI [137].

approaches the coding capabilities of the DCT [71]. We separated four suits of approximations,

relating to the optimality in Equation (2.20):

(i) T̂4,1, T̂8,1, T̂16,2, and T̂32,2 (Group I);

(ii) T̂4,1, T̂8,1, T̂16,1, and T̂32,3 (Group II);

(iii) T̂4,1, T̂8,2, T̂16,3, and T̂32,1 (Group III); and

(iv) T̂4,1, T̂8,1, T̂16,3, and T̂32,4 (Group IV).

Namely, Groups I, II, III, and IV are optimal regarding total MSE, total error energy, total
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Figure 7 – Compressed Lena images for N = 4 and r = 3.
(a) T̂4,1 [71] , PSNR = 30.758dB,

MSSIM = 0.846
(b) DCT4(ρ → 1), PSNR =

32.001dB, MSSIM = 0.871
(c) DST4(ρ → 0) , PSNR =

15.491dB, MSSIM = 0.127

Source: Author (2023).

unified coding gain, and total transform efficiency, respectively. Therefore, we substituted the

original IDCT by each SKLT Group I–IV in the HEVC reference software.

In our experiments, we encoded the first 100 frames of one video sequence of each

A to F class in accordance with the Common Test Conditions (CTC) document [144]. The

considered 8-bit standard video sequences were: PeopleOnStreet (2560×1600 at 30 fps),

BasketballDrive (1920×1080 at 50 fps), RaceHorses (832×480 at 30 fps), BlowingBubbles

(416×240 at 50 fps), KristenAndSara (1280×720 at 60 fps), and BasketbalDrillText

(832×480 at 50 fps). We further considered the Foreman (352×288 at 30 fps) [145], a standard

8-bit CIF video sequence adopted in related works like [85, 120]. As done in [84], we set all

the test parameters in accordance with the CTC documentation. Also, we considered the four

standard 8-bit coding configurations in the Main profile: All Intra (AI), Random Access

(RA) and Low-Delay B and P (LD-B and LD-P). We selected the frame-wise PSNR for each

YUV color channel [138] as figure of merit. Then, for each video sequence, we computed the

rate distortion (RD) curve considering quantization parameter (QP) values equal to 22, 27, 32,

and 37 [144].

Moreover, we measured the Bjøntegaard’s delta PSNR (BD-PSNR) [146, 147] for the

modified versions of the HEVC software. The average results per video for all the transform

groups and coding configurations are presented in Table 4. One can note from Table 4 that the

Group IV performed better than the Group III on average. The metrics used for selecting both

SKLT Groups III and IV maximize the coding efficiency of the transforms. From the table,

Group IV outperformed Groups I and II in most of the cases regardless the configuration mode.

This information can be confirmed in Figures 12, 13, 14, and 15, which show the RD curves for
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Figure 8 – Compressed Lena images for N = 8 and r = 10.
(a) T̂8,1, PSNR = 27.876dB,

MSSIM = 0.854
(b) T̂8,2 [71] , PSNR = 27.896dB,

MSSIM = 0.861

(c) DCT8(ρ → 1), PSNR =
32.081dB, MSSIM = 0.913

(d) DST8(ρ → 0) , PSNR =
18.297dB, MSSIM = 0.272

Source: Author (2023).

the four groups of transforms in AI, RA, LD-B, and LD-P configurations.

One can notice that the group of transforms that optimize the total transform efficiency

metric (Group IV) tended to outperform the other three groups (Groups I, II, and III). The results

in video coding corroborate those of the still-image experiments presented in Section 2.4.1.

As a qualitative example, we present in Figure 16 the tenth frame of the KristenAndSara

video encoded according to the default HEVC IDCT and the transforms in Groups I–IV in AI

configuration. The presented metrics are a representation from the performance obtained by

the proposed transforms on the other video sequences as well. Here, QP value was set to 32.

Blocking artifacts are not easily perceptible, highlighting the applicability of the proposed SKLT.

2.5 CONCLUSIONS

Based on the signum function, we proposed a class of low-complexity KLT approxima-

tions, which are suitable for data decorrelation. These transforms are deterministically defined

for processing data at a wide range correlation, which differs from the fast approximations for
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Figure 9 – Compressed Lena images for N = 16 and r = 40.
(a) T̂16,1, PSNR = 25.717dB,

MSSIM = 0.862
(b) T̂16,2, PSNR = 25.887dB,

MSSIM = 0.866
(c) T̂16,3 [71] , PSNR = 27.200dB,

MSSIM = 0.892

(d) DCT16(ρ → 1), PSNR =
32.494dB, MSSIM = 0.945

(e) DST16(ρ → 0) , PSNR =
22.639dB, MSSIM = 0.532

Source: Author (2023).

the KLT already known in the literature. Since the proposed transforms are the first approxima-

tions for the KLT following this approach, there is nothing to compare with. In principle, any

approximation derived from this method is a novelty. In particular, we explicitly derived

new transforms of length 4, 8, 16, and 32 and submitted them to a comprehensive assessment in

the context of image and video coding. Total figures of merit were proposed for the selection

of optimal transforms. The proposed approximations were tailored to decorrelate Markovian

first-order data, at a very low arithmetic complexity and multiplierless operation. Besides the

lower complexity, we also derived fast algorithms for the proposed transforms that were capable

of reducing, even more, the arithmetic cost of its implementation. The proposed SKLT showed

good compaction energy properties at a very low cost. Still image and video experiments

demonstrate the suitability of the proposed approximations for image/video encoding, being

capable of generating high quality images according to coding and similarity metrics. For

future works, we wish to consider larger blocklenghts transforms and other applications for fully

exploring the potential of the proposed transforms, such as the Versatile Video Coding (VVC)
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Figure 10 – Compressed Lena images for N = 32 and r = 155.
(a) T̂32,1, PSNR = 17.519dB,

MSSIM = 0.473
(b) T̂32,2, PSNR = 17.573dB,

MSSIM = 0.476
(c) T̂32,3, PSNR = 20.632dB,

MSSIM = 0.600

(d) T̂32,4, PSNR = 25.997dB,
MSSIM = 0.911

(e) DCT32(ρ → 1), PSNR =
32.996dB, MSSIM = 0.969

(f) DST32(ρ → 0) , PSNR =
26.089dB, MSSIM = 0.781

Source: Author (2023).

standard [148–150], for example.
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Table 4 – Average BD-PSNR of the modified HEVC reference software for tested video sequences

Configuration Video sequence
Transforms

Group I Group II Group III Group IV

AI

PeopleOnStreet −0.6074 −0.6127 −0.5696 −0.5774
BasketballDrive −0.6194 −0.6434 −0.4549 −0.4452

RaceHorses −0.8221 −0.8219 −0.8280 −0.8290
KristenAndSara −0.3446 −0.3464 −0.3142 −0.3361
BlowingBubbles −0.7275 −0.7425 −0.5495 −0.5391

BasketballDrillText −0.3163 −0.3217 −0.2680 −0.2844
Foreman −0.3030 −0.3075 −0.2636 −0.2794

RA

PeopleOnStreet −0.3995 −0.4030 −0.3748 −0.3797
BasketballDrive −0.4855 −0.5054 −0.3629 −0.3423

RaceHorses −1.2096 −1.2150 −1.1687 −1.1435
BlowingBubbles −0.2784 −0.2849 −0.2440 −0.2525

BasketballDrillText −0.4108 −0.4095 −0.3184 −0.3241
Foreman −0.2532 −0.2561 −0.2127 −0.2290

LD-B

BasketballDrive −0.4900 −0.5089 −0.3548 −0.3117
RaceHorses −1.1279 −1.1342 −1.1324 −1.1028

BlowingBubbles −0.2978 −0.3150 −0.2519 −0.2610
KristenAndSara −0.4069 −0.4245 −0.2958 −0.2740

BasketballDrillText −0.4609 −0.4629 −0.3616 −0.3528
Foreman −0.3147 −0.2988 −0.2421 −0.2436

LD-P

BasketballDrive −0.4932 −0.5139 −0.3542 −0.3153
RaceHorses −1.0903 −1.0940 −1.0929 −1.0637

BlowingBubbles −0.2905 −0.2958 −0.2438 −0.2404
KristenAndSara −0.3889 −0.4062 −0.2791 −0.2544

BasketballDrillText −0.4317 −0.4369 −0.3400 −0.3361
Foreman −0.2828 −0.2927 −0.2308 −0.2381

Source: Author (2023).
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Figure 11 – Image quality measurements for different levels of compression.
(a) Average PSNR (N = 4) (b) Average MSSIM(N = 4)

(c) Average PSNR (N = 8) (d) Average MSSIM (N = 8)

(e) Average PSNR (N = 16) (f) Average MSSIM (N = 16)

(g) Average PSNR (N = 32) (h) Average MSSIM (N = 32)

Source: Author (2023).
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Figure 12 – RD curves of the modified HEVC versions for test sequences in Main profile and AI
configuration: (a) PeopleOnStreet, (b) BasketballDrive, (c) RaceHorses,

(d) BlowingBubbles, (e) KristenAndSara, (f) BasketbalDrillText, and (g) Foreman.
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Figure 13 – RD curves of the modified HEVC versions for test sequences in Main profile and RA
configuration: (a) PeopleOnStreet, (b) BasketballDrive, (c) RaceHorses,

(d) BlowingBubbles, (e) BasketbalDrillText, and (f) Foreman.
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Figure 14 – RD curves of the modified HEVC versions for test sequences in Main profile and LD-B
configuration: (a) BasketballDrive, (b) RaceHorses, (c) BlowingBubbles,

(d) KristenAndSara, (e) BasketbalDrillText, and (f) Foreman.
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Figure 15 – RD curves of the modified HEVC versions for test sequences in Main profile and LD-P
configuration: (a) BasketballDrive, (b) RaceHorses, (c) BlowingBubbles,

(d) KristenAndSara, (e) BasketbalDrillText, and (f) Foreman.
(a)

5000 10000 15000 20000

Bitrate (kbps)

34

35

36

37

38

39

40

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

(b)

1000 2000 3000 4000 5000 6000

Bitrate (kbps)

28

30

32

34

36

38

40

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

(c)

500 1000 1500 2000

Bitrate (kbps)

30

32

34

36

38

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

(d)

500 1000 1500 2000

Bitrate (kbps)

38

40

42

44

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

(e)

1000 2000 3000 4000

Bitrate (kbps)

34

36

38

40

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

(f)

100 200 300 400 500 600

Bitrate (kbps)

34

36

38

40

Y
U
V
-P

S
N
R

(d
B
)

IDCT

Group I

Group II

Group III

Group IV

Source: Author (2023).



53

Figure 16 – Compression of the tenth frame of KristenAndSara using the default and modified
versions of the HEVC software in configured to the AI mode and QP = 32. Results for the

IDCT are shown in (a), and for the SKLT Groups I to IV in (b) to (e), respectively.
(a) PSNR-Y = 39.4857dB,

PSNR-U = 43.5883dB and
PSNR-V = 44.4961dB

(b) PSNR-Y = 39.0457dB,
PSNR-U = 43.0431dB and

PSNR-V = 43.9074dB

(c) PSNR-Y = 39.0571dB,
PSNR-U = 43.0027dB and

PSNR-V = 43.8623dB

(d) PSNR-Y = 39.1155dB,
PSNR-U = 43.1140dB and

PSNR-V = 44.0624dB

(e) PSNR-Y = 39.1320dB,
PSNR-U = 43.1120dB and

PSNR-V = 44.0912dB

Source: Author (2023).
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3 LOW-COMPLEXITY ROUNDED KLT APPROXIMATION FOR IMAGE COMPRES-

SION

3.1 INTRODUCTION

We are living in the era where colossal amounts of data are generated every day, the

Big Data era [3]. With increasing computational demands for analyzing large masses of data

in real-time, the development of low-complexity signal processing methods became an area of

great interest [151]. In this context, data compression techniques are useful tools for reducing

data dimensionality, a necessary requisite for efficient data transmission and storage. There are

several methods for data compression [110, 152] and they are all based on the same principle

of reducing or removing redundancy from the input data [153]. In particular, transform-based

compression methods generally map the input data into smaller output data [16].

Among several transforms found in the literature, the Karhunen-Loève transform (KLT) [13,

21, 22] has the distinction of being capable of completely decorrelate the input signal in the

transform domain [13, 14]. In fact, the KLT is the optimal linear transform that minimizes the

mean squared error in data compression for maximum energy concentration in a few coeffi-

cients of the output signal. Although mathematically optimal, the KLT has limited applicability,

because its derivation depends on the covariance matrix of the input data, thus precluding or

hindering the development of fast algorithms for its computation. However, if the input data is a

first-order Markov process with known correlation coefficient ρ , then the associate covariance

matrix is known and fast algorithms are possible [114]. Nonetheless, even when a fast algorithm

is possible, it requires multiplications by a significant amount of irrational numbers, increasing

the computational cost of the algorithm. To the best of our knowledge, literature is scarce in

methods devoted to the efficient implementation of the KLT [25, 154, 155]. Our approach differs

from the literature mainly because we consider first-order Markov signals for different values

of ρ . In this way, depending on the correlation coefficient of the input signal, we will have a

low-complexity transform.

The KLT is mathematically linked to the DCT [13, 115]. In fact, the DCT is itself an

asymptotic approximation for the KLT when (i) the input data is first-order Markovian and

(ii) the correlation coefficient of the input signal tends to the unity [115]. In contrast to the KLT,

the definition of the DCT does not depend on the input signal, which allows the development

of fast algorithms computationally efficient. Thus, the DCT became widely adopted in image

and video compression standards such as JPEG [26], MPEG [27], and HEVC [28], for example.
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However, even considering state-of-the-art algorithms, the computational cost of the DCT can

still be prohibitive in scenarios of very low processing power or severe restrictions of energy

autonomy [74, 81]. In this context, several multiplierless approximations for the DCT have been

proposed [71,72,74,80–91,93]. In particular, a widely used approach is to derive approximations

based on integer functions [81], such as the signum and rounding functions. Such methodology

is employed to derive the signed DCT (SDCT) [71] and the rounded DCT (RDCT) [72]. In this

thesis chapter, we adopt and expand the round-off-based approximation methodology to the KLT

case. We aim, therefore, at the proposition of a new class of KLT approximations. Since the

transforms are defined deterministically for values of ρ in a predetermined range, our approach

addresses the base exchange problem of the KLT.

This chapter is structured as follows. In Section 3.2, we present the mathematical

formulation of the KLT for first-order Markov data, the approximation theory, and the design

methodology for the proposed approximations. In Section 3.3, the proposed transforms are

presented, as well as its assessment measurements. In Subsection 3.3.2, the fast algorithms of the

proposed transforms are displayed. Section 3.4 presents the experiments on image compression

and Section 3.5 concludes the chapter.

3.2 KLT AND APPROXIMATE TRANSFORMS

3.2.1 KLT for First-Order Markov Signal

Let x = [x0 x1 . . . xN−1]
⊤ be an N-point random vector. The KLT can be described

as an N ×N matrix denoted by K(ρ)
N that maps x into the N-point uncorrelated vector y =

[y0 y1 . . . yN−1]
⊤ given by

y = K(ρ)
N ·x. (3.1)

If x is a first-order Markov signal, then it was shown in [25] that the (i, j)th entry of the KLT

matrix for a given value of the correlation coefficient ρ ∈ [0,1] is [13]:

ki, j =

√
2

N +λi
sin
[

ωi

(
i− N−1

2

)
+

( j+1)π
2

]
, (3.2)

where i, j = 0,1, . . . ,N−1,

λi =
1−ρ2

1+ρ2−2ρ cosωi
, (3.3)
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and ω1,ω2, . . . ,ωN are the solutions to

tan(Nω) =
−(1−ρ2)sinω

(1+ρ2)cosω−2ρ
. (3.4)

Since the implementation of the KLT requires floating-point arithmetic, its use has

become impractical in real-time applications. In this context, low-complexity approximations

for the KLT are viable solutions to circumvent this problem, since its elements generally require

only trivial multiplications and bit-shifting operations.

3.2.2 Approximation Theory

Generally, an approximation is a transform T̂ that behaves similarly to the exact transform

according to some specified figure of merit. The design of approximate transforms often requires

the approximations to be orthogonal [13]. Indeed, if a matrix is orthogonal, then its inverse is

equal to its transpose, and its inverse is ensured to possess low complexity. However, finding

orthogonal low-complexity matrices is not always an easy task. In [81], it was shown that if T

is a low-complexity matrix, we can obtain T̂ through the polar decomposition [156]. Thus, we

have that T̂ = S ·T , where

S =


√

(T ·T⊤)−1, if T is orthogonal,√
[diag(T ·T⊤)]−1, if T is non-orthogonal,

(3.5)

and
√

· represents the matrix square root operator [156]. Because S is a diagonal matrix, the

computational complexity of T̂ is the same as that of T, except for the multipliers contained in S.

However, the complexity of S can be absorbed into other sections of a larger procedure, such as

the quantization step in the context of image and video compression [72, 74, 76, 83, 120, 131].

In such cases, S does not contribute to the computational cost [13, 23]. In the Appendix B,

we provide a brief derivation showing how the matrix S can be absorbed into the quantization

matrix.

3.2.3 Design Methodology

In a similar fashion as introduced in [72], the low-complexity matrix associated with the

RKLT is proposed according to the following expression:

T ≜ round(α ·K(ρ)
N ), (3.6)
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where α is an expansion factor [13], and K(ρ)
N is the N-point KLT matrix for a first-order Markov

signal with a given correlation coefficient 0 < ρ < 1. The rounding function is given by:

round(x) = ⌊x+0.5⌋, (3.7)

where

⌊x⌋= max{m ∈ Z|m≤ x}. (3.8)

When applied to a matrix, the round function operates elementwise. To ensure the low-complexity

of T, we restrict its entries to the set {0,±1}. Therefore, α must satisfy the inequality

0≤ round(α ·γ)≤ 1, (3.9)

where γ is the absolute value of the largest element of the matrix K(ρ)
N . Thus, we have α ∈

[0,3/2γ] .

3.3 PROPOSED APPROXIMATIONS

To numerically derive the proposed RKLT transforms, we adopted the procedure pre-

sented in Algorithm 1.

Algorithm 1: Pseudocode for deriving low-complexity matrices.
Input: N, α , step
Output: Set C of low-complexity matrices

C = {}, T = 0N×N ;
for ρ = step : step : (1− step) do

T′ := round(α ·K(ρ)
N );

if T′ ̸= T then
C := C ∪{T′};
T := T′;

end if
end for
return C

The extreme values ρ = 0 and ρ = 1 were not considered, because they result, respectively,

in a degenerate covariance matrix and in the exact DCT matrix, whose approximation theory is

covered in [13]. Such methodology is capable of finding approximations for any blocklength

N. In this chapter, we focus on the case N = 8 due to its wide significance in the image and

video coding. In this case, the range of α is approximately [0,3.07]. Thus, we adopted α = 2,
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agreeing with the methodology [73] employed to derive the RDCT [72]. Exact KLT matrices

were obtained for values of ρ ∈ [0.1,0.9] with steps of 10−1. Table 5 presents the obtained

transforms and their respective diagonals S, as well as the intervals of ρ . Matrix T4 coincides

with the transformation shown in [72].

Table 5 – RKLT approximations

Transform ρ Matrix S

T1 (0,0.4)


0 1 1 1 1 1 1 0
1 1 1 0 0 −1 −1 −1
1 1 0 −1 −1 0 1 1
1 0 −1 −1 1 1 0 −1
1 0 −1 1 1 −1 0 1
1 −1 0 1 −1 0 1 −1
1 −1 1 0 0 1 −1 1
0 −1 1 −1 1 −1 1 0

 diag
(

1√
6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6

)

T2 [0.4,0.7)


0 1 1 1 1 1 1 0
1 1 1 0 0 −1 −1 −1
1 1 0 −1 −1 0 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0

 diag
(

1√
6
, 1√

6
, 1√

6
, 1√

6
, 1

2
√

2
, 1√

6
, 1

2 ,
1√
6

)

T3 [0.7,0.8)


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 0 −1 −1 0 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0

 diag
(

1
2
√

2
, 1√

6
, 1√

6
, 1√

6
, 1

2
√

2
, 1√

6
, 1

2 ,
1√
6

)

T4 [72] [0.8,1)


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0

 diag
(

1
2
√

2
, 1√

6
, 1

2 ,
1√
6
, 1

2
√

2
, 1√

6
, 1

2 ,
1√
6

)

Source: Author (2023).

3.3.1 Assessment Metrics

To evaluate the performance of the proposed transforms, we considered two types of

figures of merit: (i) coding measures, such as the unified coding gain [126] and transform

efficiency [125], which measure decorrelation and energy compaction; and (ii) proximity mea-

sures, such as the mean square error [13] and total error energy [72], which measure similarities

between approximate and exact matrices in a Euclidean distance sense. We detailed each of

these measures below.
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3.3.1.1 Unified Coding Gain

The unified coding gain quantifies the energy compaction capability of the transform T̂

and is given by [126]

Cg(T̂) = 10· log10

{
N

∏
k=1

1
N
√

Ak ·Bk

}
, (3.10)

where Ak = su
{
(h⊤k ·hk)⊙Rx

}
, hk is the kth row vector from T̂, the function su( ·) returns the

sum of the elements of its matrix argument, ⊙ is the Hadamard matrix product operator [127],

Rx is the autocorrelation matrix of the considered first-order Markov signal, Bk = ∥gk∥2, gk is

the kth row vector from T̂−1, and ∥ ·∥ is the Frobenius norm [127].

3.3.1.2 Transform Efficiency

The transform efficiency is another coding related figure of merit, and is given by [125]

η(T̂) = 100·
∑

N
i=1 |ri,i|

∑
N
i=1 ∑

N
j=1 |ri, j|

, (3.11)

where ri, j is the (i, j)th element from T̂ ·Rx · T̂⊤.

3.3.1.3 Mean Square Error

The mean square error (MSE) relative to the exact KLT is given by [13]

MSE(T̂) =
1
N

· tr
{
(K(ρ)

N − T̂) ·Rx ·(K(ρ)
N − T̂)⊤

}
, (3.12)

where tr( ·) is the trace function [128].

3.3.1.4 Total Error Energy

Another error measure is the total error energy, which is given by [72]

ε(T̂) = π ·∥K(ρ)
N − T̂∥2. (3.13)

Strictly there is no competing method in the literature that could allow us to make a

fair comparison. Thus, we compared the proposed approximation only with the exact KLT for

ρ = 0.3, 0.4, 0.7, and 0.8. We considered the exact same values of ρ for computing the unified

coding gain and the transform efficiency, which depends on the autocorrelation matrix Rx of the

considered first-order Markov input signal. Thus, we assessed T̂1 compared to the K(0.3) for the
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Table 6 – Coding and similarity measures

ρ Cg(T̂) η(T̂) ε(K(ρ), T̂) MSE(K(ρ), T̂)

K(0.3) 0.3 0.3584 100 0 0
T̂1 (0,0.4) 0.2829 80.7088 1.6751 0.0659

K(0.4) 0.4 0.6626 100 0 0
T̂2 [0.4,0.7) 0.5616 70.2996 1.7011 0.0660

K(0.7) 0.7 2.5588 100 0 0
T̂3 [0.7,0.8) 2.1398 65.8777 1.4716 0.0523

K(0.8) 0.8 3.8824 100 0 0
T̂4 [72] [0.8,1) 3.4058 74.4747 1.7715 0.0362

Source: Author (2023).

value of ρ = 0.3, T̂2 compared to the K(0.4) for the value of ρ = 0.4, T̂3 compared to the K(0.7)

for the value of ρ = 0.7, and T̂4 compared to the K(0.8) for the value of ρ = 0.8.

To the best of our knowledge, the literature lacks efficient KLT-based methods for lowly

correlated data. We aim at contributing to filling this gap.

Table 6 presents the coding and similarity measurements. As reference values, the total

error energy and mean square error for the RDCT [72] compared to the DCT (for ρ = 0.95) are,

respectively, 1.7945 and 0.0098. Note that for the proximity measures (mean square error and

total error energy), the proposed transforms perform well, even better than the performance of

the RDCT compared to the DCT considering the total error energy. In this case, the smaller the

measurement is, the more similar the approximate transform is to the exact one. Considering

the coding measures (unified coding gain and transform efficiency), the proposed transforms

assert their good performances when compared with the measurements from the exact KLT

for each value of ρ . The exact KLT coding measurements have been used as a benchmark to

evaluate the performance of other transforms since it is the unitary optimal transform in terms of

energy compaction and decorrelation [13, 14]. It is notable that the performance of the proposed

approximations are similar to the exact KLT and have a greatly reduced computational cost, as

detailed in the following.

3.3.2 Fast Algorithm and Computational Complexity

Fast algorithms for the approximate transforms can be derived based on the sparse

factorization of the transform matrices and butterfly matrix structures [23]. The factorizations of
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the proposed transform are given by

Ti = Pi ·A2,i ·A1 for i = 1,2,3,4, (3.14)

where

A1 =

I4 Ī4

Ī4 −I4

 , A2,i =

B2,i

B2

 , (3.15)

B2 =


−1 −1 0 1

−1 1 −1 0

1 0 −1 1

0 1 1 1

 , (3.16)

and I4 and Ī4 are, respectively, the identity and counter-identity matrices of order 4. Matrices

B2,i are given by

B2,1 =


1 1 0 −1

1 −1 1 0

1 0 −1 1

0 1 1 1

 , B2,2 =


1 1 0 −1

1 −1 −1 1

0 −1 1 0

0 1 1 1

 , (3.17)

B2,3 =


1 1 1 0

1 −1 −1 0

0 −1 1 0

0 1 0 1

×


1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 −1

 , (3.18)

B2,4 =


1 1 0 0

1 −1 0 0

0 0 −1 0

0 0 0 1

×


1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

 . (3.19)
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The permutation matrices Pi are

P1 =



0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0



, P2 =



0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0



, (3.20)

and

P3 = P4 =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0



. (3.21)

Fig. 17 and 18 show the SFG of the fast algorithms. The dashed arrows represent multiplication

by −1.

Figure 17 – SFG of the proposed transforms. Block B2,i is different for each transform and it is presented
in Fig. 18.
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Source: Author (2023).
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Figure 18 – Block B2,i of each proposed transform.
(a) B2,1 (b) B2,2

(c) B2,3 (d) B2,4

Source: Author (2023).

The direct implementation of the exact KLT requires 56 additions and 64 multiplications.

The proposed transforms are designed to be multiplierless but still require 56 additions in its

direct implementation. Considering the fast algorithms proposed for the transforms, we have

a reduction in the addition operations relative to the direct implementation. Matrices T1, T2,

and T3 require only 24 additions, causing a reduction of 57.17% in the number of addition

operations, and matrix T4 requires 22 additions, with a reduction of 60.71%.

3.4 IMAGE COMPRESSION

In this section, the performance of the proposed transforms is assessed in the context of

image compression [12] as suggested in [71, 72, 74, 80, 81, 84, 85].

3.4.1 JPEG-like Compression

The following compression scheme [16] was applied to standardized images obtained

from the public image bank available in [137]. Input images were divided into disjoint sub-
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blocks of size 8×8. The 2D direct and inverse transformations induced by Kρ

N are computed,

respectively, by [53]

B = Kρ

N ·A ·(Kρ

N)
−1, (3.22)

A = (Kρ

N)
−1 ·B ·Kρ

N , (3.23)

where A and B are square matrices of size N. Each sub-block was submitted to the 2D transform

computation and the resulting transform domain coefficients were reordered using the standard

zig-zag sequence [16]. Only the initial r coefficients in each sub-block were retained and the

remaining coefficients were zeroed. The 2D inverse transform was applied and the reconstructed

sub-blocks were adequately rearranged. Original and compressed images were then evaluated

considering traditional quality assessment measures. The considered figures of merit for image

quality evaluation were: (i) the Mean Structural Similarity Index (MSSIM) [136]; (ii) the

MSE [13]; (iii) and the Peak Signal-to-Noise Ratio (PSNR) [135]. Even though the PSNR and

MSE are very popular figures of merit, it was shown in [157] that they might offer limited results

as image quality assessment tools for it poorly correlates with human perception. On the other

hand, the MSSIM is capable of closely capturing the image quality as understood by the human

visual system model [136].

The image compression experiments were divided into two analysis: (i) a qualitative one,

based on compressed Lena, Baboon, and Moon images with approximately 77% of compression

rate; (ii) and a quantitative analysis, based on the average measures of 45 standardized 8-bit

compressed images [137] for a wide range of retained coefficients (r). The results are presented

below.

3.4.2 Results

For the qualitative analysis, we considered three known public images available on [137].

The original grayscale images are presented in Fig. 19.

Figs. 20, 21, and 22 illustrate qualitatively the reconstruction of the Lena, Baboon, and

Moon images, after the application of the compression scheme for r = 15 (compression rate of

approximately 77%) using the proposed RKLT, the exact KLT for ρ = 0.3, 0.4, 0.7, 0.8, and

the exact DCT. The assessment metrics from each compressed image are presented in Table 7.

We highlighted the results from the proposed transforms which performed better than the exact

KLT for the value of ρ associated with the interval of which the approximate transform was

derived. Approximations T̂2 and T̂3 outperformed the exact KLT, K(0.4) and K(0.7) respectively,
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Figure 19 – Original images.
(a) Lena (b) Baboon (c) Moon

Source: SIPI [137].

Table 7 – Quality image assessment measurements for Lena, Baboon, and Moon compressed images

Image Lena Baboon Moon

Transform MSE PSNR MSSIM MSE PSNR MSSIM MSE PSNR MSSIM

T̂1 3198.18 13.082 0.154 3505.908 12.683 0.220 3114.159 13.197 0.096
K(0.3) 95.674 28.323 0.660 322.113 23.051 0.685 112.060 27.636 0.598

T̂2 48.729 31.253 0.913 313.852 23.164 0.761 57.287 30.550 0.781
K(0.4) 70.215 29.666 0.720 296.260 23.414 0.716 87.816 28.695 0.653

T̂3 49.071 31.222 0.913 313.788 23.164 0.761 57.276 30.551 0.781
K(0.7) 30.464 33.293 0.884 257.115 24.030 0.783 50.058 31.136 0.776

T̂4 [72] 44.593 31.638 0.917 286.597 23.558 0.766 52.478 30.931 0.789
K(0.8) 25.907 33.997 0.916 253.406 24.093 0.793 45.705 31.531 0.796
DCT 23.867 34.353 0.938 254.233 24.078 0.796 43.543 31.742 0.807

Source: Author (2023).

according to the values of MSE, PSNR, and MSSIM. The approximations may outperform the

exact KLT because we measure the overall performance of the entire image compression system,

which includes particular nonlinearities that are better suited for the approximate computation.

For the quantitative analysis, we considered the average image quality measurements

of 45 compressed standardized images [137] considering different levels of compression (r ∈

(0,45)). Fig. 23 presents the average image quality measurements from the compressed images

considering the approximate transforms and the exact KLT for values of ρ = 0.3, 0.4, 0.7, and

0.8. The approximate transforms perform similarly to the exact KLT, mainly when we retain

more than r = 15 retained coefficients, except for T̂1. Approximation T̂4 outperformed the exact

KLT (ρ = 0.8) for r ∈ [1,11] considering PSNR values and for r ∈ [1,14] considering the MSSIM

values. Considering the performance in JPEG-like compression the proposed approximations

exhibited relevant results, showing a good balance between performance and computational cost.
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Figure 20 – Compressed Lena images.
(a) T̂1 (b) T̂2 (c) T̂3

(d) T̂4 [72] (e) K(0.3) (f) K(0.4)

(g) K(0.7) (h) K(0.8) (i) DCT

Source: Author (2023).

3.5 CONCLUSIONS

In this chapter, we introduced a methodology based on the rounding-off function to design

low-complexity approximations for the Karhunen-Loève transform (KLT). Due to its relevance

in practical image coding systems, the special case N = 8 was comprehensively examined.

According to qualitative and quantitative computational experiments, the proposed transforms

were shown to be good approximations for the KLT as measured by the adopted quality measures:

MSE, PSNR, and MSSIM. The low-complexity matrices are natural candidates for the design
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Figure 21 – Compressed Baboon images.
(a) T̂1 (b) T̂2 (c) T̂3

(d) T̂4 [72] (e) K(0.3) (f) K(0.4)

(g) K(0.7) (h) K(0.8) (i) DCT

Source: Author (2023).

of efficient hardware implementation capable of operating at low power consumption and high

performance.
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Figure 22 – Compressed Moon images.
(a) T̂1 (b) T̂2 (c) T̂3

(d) T̂4 [72] (e) K(0.3) (f) K(0.4)

(g) K(0.7) (h) K(0.8) (i) DCT

Source: Author (2023).
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Figure 23 – Image quality measurements for different levels of compression.
(a)

(b)

Source: Author (2023).



70

4 FAST DATA-INDEPENDENT KLT APPROXIMATIONS BASED ON INTEGER

FUNCTIONS

4.1 INTRODUCTION

Among the discrete tranforms, the Karhunen-Loève transform (KLT) is an optimal linear

tool for data decorrelation, being capable of concentrating the signal energy in few transform-

domain coefficients [14]. Because the KLT minimizes the mean square error of compressed

data, it can greatly reduce data dimensionality and can be regarded as the ideal transform

for image compression [13, 14]. Despite such good properties, the KLT finds few practical

applications [25, 154, 158–161], mainly due to the fact that the definition of the KLT matrix

relies on the covariance matrix of the input signal. Therefore, in general, two different input

signals would effect two different transformation matrices, thus, precluding the design of efficient

approaches for computing the transformed signal. Moreover, because of the data dependency,

generally, the KLT suffers from the dictionary exchange problem [14,94], i.e., the transformation

basis is not known a priori by the decoder.

For specific classes of signals, such as first-order Markovian processes with known

correlation coefficient ρ , the KLT matrix can be expressed simply in terms of ρ [114]. Nev-

ertheless, the complexity of the resulting transformation matrix remains in O(N2), where N

is the signal length [14] and, in general, there are no efficient fast algorithms available for its

computation [23, 25, 95, 162, 163]. . In this context, several KLT approximations [94–99] and

fast algorithms for the KLT [25, 41–44] have been proposed so they have a lower computational

cost. However, these methods still suffer the problem of data-dependency.

For the particular—but very relevant—case where ρ→ 1, the KLT assumes the mathemat-

ical definition of the DCT [115]. In other words, the DCT is the KLT for highly autocorrelated

first-order Markovian data [13, 14, 164]. Such model fairly captures the structure of natural

images, which is typically assumed to admit ρ = 0.95 [12]. Being fully independent of the

data [13, 14], efficient methods for computing the DCT can be derived [45, 60], such as the

Loeffler algorithm and the Chen algorithm, turning it into a central tool for image and video

coding [26–28]. However, even at the reduced computational cost offered by fast algorithms,

the residual complexity of the DCT might still be sufficiently large to preclude its application in

contexts where severe restrictions on computational processing power and/or energy autonomy

are present, such as in wireless and satellite communication systems and in portable computing

applications [13]. This reality opened the path for the design of extremely low-complexity



71

methods for the DCT estimation based on approximate integer transforms. Hence, several

approximations for the DCT have been proposed, generally being multiplierless transforms that

require addition and bit-shifting operations only [71, 72, 74, 80–93]. In particular, we cite the

following approximations for the DCT based on integer functions: the signed DCT (SDCT) [71],

the rounded DCT (RDCT) [72], and the collection of integer DCT approximations detailed

in [81]. Despite the very low computational requirements, such approximations can still offer

good coding performance and constitute realistic alternatives to the exact DCT.

Considering the above discussion and taking into account the following major aspects:

• the current literature lacks specific methodologies for the low-complexity computation

of the KLT, mainly when considering low-complexity approximation transforms for mid-

and low-correlated signals;

• the methods for the KLT evaluation [25,41–44,94–98,154,155,165] exhibit data-dependency

which entail severe difficulties in designing fast algorithms based on matrix factorization;

• the dictionary exchange problem presented in the KLT and its approximations [13, 14];

• the proven success of matrix approximation theory for deriving low-complexity DCT

methods found in the literature;

• and the fact that the KLT is the optimal linear transform in terms of decorrelation of

first-order Markovian signals;

we aim at proposing matrix approximations for the KLT with the following properties: (i) data

independence and closed-form expression; (ii) symmetrical structure that leads to sparse ma-

trix factorizations and fast algorithms, and (iii) suitability for first-order Markovian processes

at a wide range of correlation coefficient. To the best of our knowledge, there are no ap-

proximations for the KLT in the literature that fill these gaps. To obtain the sought KLT

approximations, we consider integer-based approximation methods as shown in [71–73, 81].

This chapter is structured as follows. In Section 4.2, we present the mathematical

formulation of the KLT for first-order Markovian data, a brief review of approximation theory for

discrete transforms, and the assessment metrics used for the evaluation of approximate transforms.

Section 4.3 introduces the optimization problem, search space, objective function, and the

methodology used to obtain the proposed transforms. The proposed transforms are presented

in Section 4.4 and the fast algorithms and their computational complexities are displayed in

Section 4.5. Section 4.6 presents the experiments on image compression. In Section 4.7 a FPGA

design is proposed and compared with competing methods. Finally, Section 4.8 concludes the

chapter.
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4.2 KLT AND APPROXIMATE TRANSFORMS

4.2.1 KLT for First-Order Markovian Signal

The KLT maps an N-point input signal

x =
[
x0 x1 . . . xN−1

]⊤
(4.1)

into an N-point uncorrelated signal

y =
[
y0 y1 . . . yN−1

]⊤
(4.2)

according to

y = K ·x, (4.3)

where K is the KLT matrix [21, 22]. If x is a first-order Markovian signal, then its covariance

matrix is given by [13]

Rx =


1 ρ ρ2 . . . ρN−1

ρ 1 ρ . . . ρN−2

... . . . . . . . . . ...

ρN−1 ρN−2 . . . ρ 1

 , (4.4)

where 0 ≤ ρ ≤ 1 is the autocorrelation parameter of the Markovian process. Therefore, the

(i, j)th entry of the KLT matrix is [13]

ki, j =

√
2

N +λi
sin
[

ωi

(
i− N−1

2

)
+

( j+1)π
2

]
, (4.5)

where i, j = 0,1, . . . ,N−1,

λi =
1−ρ2

1+ρ2−2ρ cosωi
, (4.6)

and ω1,ω2, . . . ,ωN are the solutions to [13]

tan(Nω) =
−(1−ρ2)sinω

(1+ρ2)cosω−2ρ
. (4.7)

4.2.2 Approximation Theory

Generally, an approximation K̂ is based on a low-complexity matrix T, such that [80, 81,

123, 166]

K̂ = S ·T, (4.8)
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and

S =


√

(T ·T⊤)−1, if T is orthogonal,√
[diag(T ·T⊤)]−1, if T is non-orthogonal,

(4.9)

where diag( ·) is the diagonal matrix generated by its arguments.

Thus, we focus our search on matrix T. The low-complexity matrix T can be obtained by

restricting its elements over sets whose entries possess very low multiplicative complexity, such

as {0,±1,±2, . . .}, {0,±1/2,±1,±2, . . .}, {0,±1,±2,±3, . . .}, among others. As a matter of

fact, multiplications by powers of two require only bit-shifting operations and a multiplication

by 3 can be implemented by means of one addition and one bit-shifting operation. One possible

way of restricting the entries of matrix T is applying integer functions to the elements of the

exact transform, as described in [71, 72, 81].

Common integer functions employed to derive new transform approximations are the

floor, ceiling, truncation (round towards zero), and round-away-from-zero functions, defined

respectively as

floor(x) = ⌊x⌋= max{m ∈ Z|m≤ x}, (4.10)

ceil(x) = ⌈x⌉= min{n ∈ Z|n≥ x}, (4.11)

trunc(x) = sign(x) ·⌊|x|⌋, (4.12)

roundAFZ(x) = sign(x) ·⌈|x|⌉, (4.13)

where | · | is the absolute value of its argument. Besides the above integer functions, we also

consider the variants of the round-off function as defined next [167]:



74

roundHU(x) =
⌊

x+
1
2

⌋
, (4.14)

roundHD(x) =
⌈

x− 1
2

⌉
, (4.15)

roundHAFZ(x) = sign(x) ·
⌊
|x|+ 1

2

⌋
, (4.16)

roundHTZ(x) = sign(x) ·
⌈
|x|− 1

2

⌉
, (4.17)

roundEVEN(x) =


⌊
x− 1

2

⌋
, if 2x−1

4 ∈ Z,⌊
x+ 1

2

⌋
, otherwise,

(4.18)

roundODD(x) =


⌊
x+ 1

2

⌋
, if 2x−1

4 ∈ Z,⌊
x− 1

2

⌋
, otherwise.

(4.19)

Hereafter we denote this group of rounding functions as roundNI.

4.2.3 Assessment Metrics

The performance measures usually employed for assessing approximate transforms

can be categorized in two types: (i) coding measures, such as the coding gain [126] and

transform efficiency [125], which measure the power of energy decorrelation and compaction;

and (ii) proximity measures relative to the exact transform, such as mean square error [13] and

total energy error [72], which quantify similarities between the approximate matrices and the

exact transform in a Euclidean distance sense. Such figures of merit are presented next.

4.2.3.1 Unified Coding Gain

The unified coding gain measures the energy compaction capacity and is given by [126]:

Cg(K̂) = 10· log10

{
N

∏
k=1

1
N
√

Ak ·Bk

}
, (4.20)

where Ak = su
{
(h⊤k ·hk)⊙Rx

}
, hk is the kth row vector from K̂, function su( ·) gives the sum

of the elements of its matrix argument, ⊙ is the Hadamard matrix product [127], Rx is the

autocorrelation matrix from a first-order Markovian signal, Bk = ∥gk∥2
F, gk is the kth row vector

from K̂−1, and ∥ ·∥F is the Frobenius norm [127].
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4.2.3.2 Transform Efficiency

The transform efficiency is given by [125]:

η(K̂) = 100
∑

N
i=1 |ri,i|

∑
N
i=1 ∑

N
j=1 |ri, j|

, (4.21)

where ri, j is the (i, j)th element from K̂ ·Rx ·K̂⊤.

4.2.3.3 Mean square Error

The mean square error between the exact and approximate transforms is defined as [13]:

MSE(K,K̂) =
1
N

· tr
{
(K− K̂) ·Rx ·(K− K̂)⊤

}
, (4.22)

where tr( ·) is the trace function [128].

4.2.3.4 Total Error Energy

The total error energy measures the similarity between the approximate and the exact

transform matrix, according to [72]:

ε(K,K̂) = π ·∥K− K̂∥2
F. (4.23)

4.3 OPTIMAL PROPOSED TRANSFORMS

In this section, we detail a systematic computational procedure to obtain the sought

approximations. The methodology consists of solving optimization problems according to the

measures discussed in the previous section.

4.3.1 Search Space

For the computational search, we set the elements of the matrices to be in the set of

low-complexity entries C = {0,±1,±2,±3}, because multiplying these elements only requires

addition and bit-shifting operations. For the blocklength we considered N = 8, due to its

importance in image compression. Thus, we have 78 = 5764801 candidate matrices to be

considered in the optimization problem for each value of ρ of the KLT matrix.

The transform search space can be formally defined as follows. Let

K̂ =
√
[diag(T ·T⊤)]−1 ·T, (4.24)
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where T∈MC (8) and MC (8) is the 8×8 matrix space with elements in the set C = {0,±1,±2,±3}.

We propose to search a subset of MC (8)

Eα = {T ∈MC (8) : T = int(α ·K(ρ))}, (4.25)

where

int ∈ {floor,ceil, trunc, roundAFZ, roundNI}, (4.26)

and α is the expansion factor [13, 81, 168]. The ranges of α must satisfy the inequality

0≤ int(α ·γ)≤ 3, (4.27)

where γ is the absolute value of the largest element of the matrix K(ρ). Considering the integer

functions floor, ceil, trunc, roundAFZ, roundNI, the ranges of α (A ) are given, respectively, by

(1/γ,4/γ), (0,3/γ), (1/γ,4/γ), (0,3/γ), and (0,3/γ). Therefore, the search space is

E =
⋃

α∈A
Eα . (4.28)

4.3.2 Objective Function

In order to search for the optimal transforms according to the considered metrics, the

following optimization problem was proposed:

K̂∗ = arg opt
K̂

f (K̂), (4.29)

where K̂ is a candidate matrix for solving the problem, and

f ∈ {Cg( ·),η( ·),MSE(K(ρ), ·),ε(K(ρ), ·)}, (4.30)

which are the figures of merit to be optimized. For Cg( ·) and η( ·), the optimization problem is

of the maximization type; whereas, for the MSE( ·) and ε( ·), it is of the minimization type.

4.3.3 Methodology

Once the optimization problem, restrictions, search space, and the objective function are

established, we exhaustively compute (4.29) for the specific values of α within the intervals

defined by each integer function, with steps of 10−2. To compute the exact KLT matrix, K(ρ),

we considered 0 < ρ < 1 with steps of 10−1. The pseudo-code for the adopted procedure is

presented in Algorithm 2.
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Algorithm 2: Pseudocode for deriving low-complexity matrices.
Input: ρ-step, α-step, int
Output: Set C of low-complexity matrices

C = {}, A (range of α), K̂ = 0N×N , M = 04×N ;
for ρ ∈ (0,1), ρ-step do

for α ∈A , α-step do
T′ := int(α ·K(ρ));

K̂′ =
√
[diag(T′ ·T′⊤)]−1 ·T′;

M = [Cg(K̂′),η(K̂′),MSE(K(ρ),K̂′),ε(K(ρ),K̂′)];
end for
if K̂ = arg optK̂′(M) then

C := C ∪ K̂′;
end if

end for
return C

This search results in 144 matrices. Here, we are considering the discussed four figures

of merit and evaluating each one separately, so we can have up to four optimal transforms for

each fixed interval of ρ and integer function. Among the 144 obtained matrices, it is expected

that several of them show similar performance. Therefore, we aim now at refining the set of 144

matrices so we could identify a reduced set of matrices that are representative over the range

ρ ∈ (0,1).

In this sense, we propose a two-step procedure. In the first step, we only consider, among

the 144 transforms, those that obtained the best performance, for the values of ρ ∈ (0,1) with

steps of 10−1, according to each figure of merit. This procedure caused a reduction of 86.11% in

the number of transforms. Table 8 presents the 20 optimal transforms found in the first stage of

refinement. The similarity measurements were obtained considering the exact KLT for the value

of ρ of the upper limit of each interval for which the approximation was derived, i.e., K̂1 were

compared to the exact KLT for ρ = 0.1.

In the second stage of the refinement, we aim to group intervals of ρ in which the

transforms exhibit similar performance according to the unified coding gain, since this metric

presents information about the coding capacity of the orthogonal transformation for applications

of data compression. These groups can be obtained according to a clustering procedure, such as

the k-means [169]. Using a clustering method can result in a reduced number of groups in which

only one matrix can be chosen as representative of the group.

Hence, applying the k-means clustering method considering the values of the unified

coding gain of each transform, we obtained two distinct groups, C1 and C2. The first group
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Table 8 – Coding and similarity measures from the obtained optimal transforms

Transform Function ρ interval Cg(K̂) η(K̂) ε(K(ρ),K̂) MSE(K(ρ),K̂)

K̂1 roundAFZ (0,0.1] 0.0308 93.4298 1.5331 0.0608
K̂2 roundAFZ (0,0.1] 0.1325 79.5971 0.3173 0.0128
K̂3 trunc (0,0.1] 0.0588 88.3104 0.093 0.0036
K̂4 trunc (0.1,0.2] 0.1754 83.7756 0.2265 0.0094
K̂5 trunc (0.2,0.3] 0.3461 80.8238 0.2999 0.0132
K̂6 roundAFZ (0.3,0.4] 0.6725 83.0728 0.3104 0.0095
K̂7 trunc (0.3,0.4] 0.7618 63.712 2.1348 0.0785
K̂8 trunc (0.3,0.4] 0.6532 83.3729 0.2823 0.0115
K̂9 roundAFZ (0.4,0.5] 1.1063 87.2737 0.3487 0.0094
K̂10 trunc (0.4,0.5] 1.153 77.5984 0.6439 0.0163
K̂11 roundAFZ (0.5,0.6] 1.7572 82.7462 0.9273 0.0197
K̂12 roundAFZ (0.5,0.6] 1.6743 86.4929 0.275 0.0089
K̂13 roundAFZ (0.6,0.7] 2.5736 84.7636 0.7505 0.0153
K̂14 roundAFZ (0.6,0.7] 2.5308 89.7579 0.2299 0.0065
K̂15 roundAFZ (0.7,0.8] 3.8534 84.1782 0.6043 0.0087
K̂16 roundAFZ (0.7,0.8] 3.8484 87.7103 0.2418 0.0043
K̂17 roundAFZ (0.7,0.8] 3.8146 86.6308 0.1884 0.0049
K̂18 roundAFZ (0.8,1) 6.2462 88.1734 0.6746 0.0102
K̂19 roundAFZ (0.8,1) 6.1727 85.8301 0.1948 0.0055
K̂20 roundAFZ (0.8,1) 6.2335 86.827 0.4439 0.005

Source: Author (2023).

presented transforms for the values of ρ ranging from (0,0.7] and the second group transforms

for values of ρ ∈ (0.7,1). In each group, we considered the transforms which presented the best

values of the discussed figures of merit. The optimal transforms chosen are presented in the next

section.

4.4 PROPOSED APPROXIMATE KLT AND EVALUATION

For the group C1, which represents the transforms obtained for values of ρ ∈ (0,0.7],

the optimal transforms are K̂1, K̂3, and K̂13. For C2, the transforms K̂16, K̂17, and K̂18 were

the ones which performed better considering the values of ρ ∈ (0.7,1). Table 9 presents the

low-complexity matrices that generate the respective transforms.

The proposed transforms are not necessarily orthogonal, but we can quantify the deviation

from orthogonality, which measures how close a matrix is from its diagonal. This measure is
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Table 9 – Low-complexity matrices of the KLT Approximations

Transform Matrix

T1



0 1 1 1 1 1 1 0
1 1 1 0 0 −1 −1 −1
1 1 0 −1 −1 0 1 1
1 0 −1 −1 1 1 0 −1
1 0 −1 1 1 −1 0 1
1 −1 0 1 −1 0 1 −1
1 −1 1 0 0 1 −1 1
0 −1 1 −1 1 −1 1 0



T3



1 2 3 3 3 3 2 1
2 3 3 1 −1 −3 −3 −2
3 3 0 −3 −3 0 3 3
3 1 −3 −2 2 3 −1 −3
3 −1 −3 2 2 −3 −1 3
3 −3 0 3 −3 0 3 −3
2 −3 3 −1 −1 3 −3 2
1 −2 3 −3 3 −3 2 −1



T13



1 1 1 2 2 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 0 −2 −2 0 1 2
2 0 −2 −1 1 2 0 −2
1 −1 −1 1 1 −1 −1 1
1 −2 0 2 −2 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0



T16



2 2 2 2 2 2 2 2
3 3 2 1 −1 −2 −3 −3
3 2 −1 −3 −3 −1 2 3
3 0 −3 −2 2 3 0 −3
2 −2 −2 2 2 −2 −2 2
2 −3 1 2 −2 −1 3 −2
1 −3 3 −1 −1 3 −3 1
1 −2 3 −3 3 −3 2 −1



T17



2 2 2 2 2 2 2 2
3 3 2 1 −1 −2 −3 −3
3 2 −1 −3 −3 −1 2 3
3 0 −3 −2 2 3 0 −3
2 −2 −2 2 2 −2 −2 2
2 −3 1 3 −3 −1 3 −2
1 −3 3 −1 −1 3 −3 1
1 −2 3 −3 3 −3 2 −1



T18



1 1 1 2 2 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
2 0 −2 −1 1 2 0 −2
1 −1 −1 1 1 −1 −1 1
1 −2 0 2 −2 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0


Source: Author (2023).
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given by [170]

δ (A) = 1− ||diag(A)||F
||A||F

, (4.31)

where A is a square matrix. Table 10 presents each matrix, its diagonal matrix S, and the deviation

from diagonality measurement. In this case, only T1 is orthogonal. The remaining matrices have

low diagonal deviation. As a reference value we used the deviation from diagonality from the

SDCT [71], which is

δSDCT = 1− 2√
5
≈ 0.1056. (4.32)

All derived matrices have deviation smaller than δSDCT, thus regarded as quasi-orthogonal.

Table 10 – Proposed transforms and their respective diagonals

Matrix Orthogonal? S δ (K ·K⊤)

T1 Yes diag
(

1√
6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6

)
-

T3 No diag
(

1√
46
, 1√

46
, 1√

54
, 1√

46
, 1√

46
, 1√

54
, 1√

46
, 1√

46

)
0.0056

T13 No diag
(

1√
14
, 1√

18
, 1√

18
, 1√

18
, 1√

8
, 1√

18
, 1√

20
, 1√

18

)
0.0395

T16 No diag
(

1√
32
, 1√

46
, 1√

46
, 1√

44
, 1√

32
, 1√

36
, 1√

40
, 1√

46

)
0.0133

T17 No diag
(

1√
32
, 1√

46
, 1√

46
, 1√

44
, 1√

32
, 1√

46
, 1√

40
, 1√

46

)
0.0094

T18 No diag
(

1√
14
, 1√

18
, 1√

20
, 1√

18
, 1√

8
, 1√

18
, 1√

20
, 1√

18

)
0.0360

Source: Author (2023).

Table 11 presents the coding and similarities measurements of the exact KLT for a given

value of ρ and the proposed approximate transforms. Since, to the best of our knowledge,

the literature lacks efficient KLT-based methods considering lowly correlated data, there is no

competing method for a fair comparison. In this case, we only compare the proposed transforms

to the exact KLT for specific values of ρ . We divided Table 11 into the two groups, C1 and C2,

and compared the approximate transforms from group C1 to the exact KLT for ρ = 0.2 (K(0.2)
8 ),

and the approximate transforms from group C2 to the exact KLT for ρ = 0.8 (K(0.8)
8 ).

4.5 FAST ALGORITHMS AND COMPUTATIONAL COMPLEXITY

In this section, we introduce fast algorithms for the proposed approximations.
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Table 11 – Comparison of coding and similarity measures between the exact KLT and the proposed
approximate transforms

Transform Cg(K̂) η(K̂) ε(K(ρ),K̂) MSE(K(ρ),K̂)

K(0.2)
8 0.1551 100 0 0

K̂1 0.0308 93.4298 1.5331 0.0608
K̂3 0.0588 88.3104 0.093 0.0036
K̂13 2.5736 84.7636 0.7505 0.0153

K(0.8)
8 3.8824 100 0 0

K̂16 3.8484 87.7103 0.2418 0.0043
K̂17 3.8146 86.6308 0.1884 0.0049
K̂18 6.2462 88.1734 0.6746 0.0102

Source: Author (2023).

4.5.1 Proposed Fast Algorithms

By factoring the matrices of the proposed optimal transforms, T1, T3, T13, T16, T17, and

T18 into sparse matrices, considering butterfly-based structures [23], we obtain the following

decomposition:

Ti =P ·M ·A1, i = 1,3,13, (4.33)

T j =P ·M ·A′2 ·A1, j = 16,17, (4.34)

T18 =P ·M ·A′′2 ·A1, (4.35)

where P is a permutation matrix, A1, A′2, and A′′2 are additive matrices, and M is a multiplicative

matrix. For the factorization of T1, T3, and T13, we have

P =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1



, (4.36)
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A1 =



1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 −1 0 0 0

0 0 1 0 0 −1 0 0

0 1 0 0 0 0 −1 0

1 0 0 0 0 0 0 −1



. (4.37)

The multiplicative matrix M can be written as

M =

M1

M2

 , (4.38)

where

M1 = M2 =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 , (4.39)

and the constants mk, k = 0,1, . . . ,15, depend on the choice of the matrix T and are presented in

Table 12. For the factorization of T16 and T17 we have

A′2 =



1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, (4.40)
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and, for th T18 factorization,

A′′2 =



1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (4.41)

Table 12 – Constants required for the fast algorithm for blocks M1 and M2

Constants
T1 T3 T13 T16 T17 T18

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

m0 0 0 1 1 1 0 2 1 2 1 1 0
m1 1 1 2 3 1 1 2 2 2 2 1 1
m2 1 1 3 3 1 2 2 3 2 3 0 2
m3 1 1 3 2 2 2 0 3 0 3 2 2
m4 1 −1 3 −2 2 −1 0 −2 0 −2 2 −1
m5 1 −1 3 −3 1 −2 2 −3 2 −3 0 −2
m6 0 0 0 1 0 0 −1 0 −1 0 1 0
m7 −1 1 −3 3 −2 2 3 3 3 3 −2 2
m8 1 1 3 3 1 2 2 2 2 3 1 2
m9 0 0 −1 0 −1 0 −2 1 −2 1 −1 0
m10 −1 −1 −3 −3 −1 −2 −2 −3 −2 −3 0 −2
m11 1 1 2 3 1 1 0 2 0 2 1 1
m12 1 −1 2 −3 1 −2 0 −3 0 −3 1 −2
m13 −1 1 −3 3 −2 2 −3 3 −3 3 0 2
m14 1 −1 3 −2 2 −1 3 −2 3 −2 −2 −1
m15 0 0 −1 1 −1 0 1 1 1 1 −1 0

Source: Author (2023).

Figs. 24, 25, and 26 present the signal flow graphs of the fast algorithms. Diagrams relate

the input data xn, n = 0,1, . . . ,7, to the output data yk, k = 0,1, . . . ,7, resulting in y = T ·x. Here,

dashed arrows represent multiplications by −1. When two or more arrows meet, their values are

added [23]. Blocks M1 and M2 share the same structure in all diagrams except for the value of

the constants presented in Table 12 and are displayed in Fig. 27.
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Figure 24 – Signal flow graph for T1, T3, and T13.

Source: Author (2023).

Figure 25 – Signal flow graph for T16 and T17.

Source: Author (2023).

4.5.2 Computational Complexity

The computational complexity of the proposed transforms can be estimated by the arith-

metic complexity, given by the number of multiplications, additions and bit-shifting operations

required for its implementation. Table 13 presents the arithmetic complexity of the discussed fast

algorithms. We also present the cost of direct computation of the 8-point KLT and the 8-point

DCT considering the fast algorithms proposed by Loeffler [45]. The proposed transforms have a
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Figure 26 – Signal flow graph for T18.

Source: Author (2023).

Figure 27 – Blocks M1 and M2 from the signal flow graphs.

Source: Author (2023).

much lower cost when compared with the KLT and DCT. From the proposed transforms, we

can highlight T1, T13, and T18 as the ones that have the lower arithmetic cost. These transforms

perform well when compared with the fast algorithms for classical 8-point low-complexity

approximations such as the SDCT [71], which requires only 24 addition operations for its

implementation.
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Table 13 – Comparison of the arithmetic complexity of the 8-point transforms

Transform Additions Multiplications Bit-shifts

KLT 56 64 0
DCT [45] 29 11 0

T1 24 0 0
T3 48 0 24
T13 26 0 13
T16 38 0 22
T17 38 0 22
T18 26 0 12

Source: Author (2023).

4.6 EXPERIMENTS ON IMAGE COMPRESSION

4.6.1 JPEG-like Compression

The compression performance of the proposed transforms can be evaluated when applied

to image coding experiments, as well as in [72, 74, 81]. For simplicity, but without loss of

generality, 8-bit images in gray scale were considered. The JPEG-like compression methodology

used in this experiment is presented as follows [16]. The input image was divided into disjoint

8×8 sub-blocks. Let A be a sub-block. The direct two-dimensional (2D) transform was applied

to each sub-block, resulting in [53]

B = K̂ ·A ·K̂⊤. (4.42)

Considering the zig-zag pattern [16], the initial r coefficients from B were retained, resulting in

truncated sub-blocks B̄. The 2D inverse transform was applied to each sub-block B̄, resulting in

Ā = K̂−1 · B̄ ·(K̂−1)⊤. (4.43)

The compressed sub-blocks Ā were recomposed in the place of the originals sub-blocks A.

Finally, the compressed image was compared to the original image to evaluate the loss of quality

imposed by compression using transform K̂.

For assessing the quality of compressed images, we used as figures of merit the peak

signal-to-noise ratio (PSNR) [135] and the mean structural similarity index (MSSIM) [136].

Even though it is a very popular metric, it was shown in [157] that the PSNR is not the best

measure when it comes to predict the human perception of image quality [136,157]. Nevertheless,

we considered this figure of merit for comparison purposes. On the other hand, the MSSIM was
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shown to be capable of closely capturing the image quality as understood by the human visual

system model [136].

4.6.2 Results and Discussion

Fig. 28 presents the original Lena, Grass, and Moon images [137] used in the qualitative

analysis. In this step, each image was submitted to a compression rate (CR) of 85%, r = 10.

Fig. 29, 30, and 31 present the compressed images using the proposed transforms and the exact

KLT for ρ = 0.2 and 0.8.

Figure 28 – Original Images.
(a) Lena (b) Grass (c) Moon

Source: SIPI [137].

Figure 29 – Compressed Lena Images.
(a) K̂1 (b) K̂3 (c) K̂13 (d) K(0.2)

(e) K̂16 (f) K̂17 (g) K̂18 (h) K(0.8)

Source: Author (2023).
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Figure 30 – Compressed Grass Images.
(a) K̂1 (b) K̂3 (c) K̂13 (d) K(0.2)

(e) K̂16 (f) K̂17 (g) K̂18 (h) K(0.8)

Source: Author (2023).

Figure 31 – Compressed Moon Images.
(a) K̂1 (b) K̂3 (c) K̂13 (d) K(0.2)

(e) K̂16 (f) K̂17 (g) K̂18 (h) K(0.8)

Source: Author (2023).

Table 14 presents the PSNR and MSSIM values for the compressed images. The proposed

transforms perform well, and in some cases even better than the exact KLT, for a given value

of ρ within the interval of each group of transforms. We highlighted the values of the best

measurements for each group of the approximate transforms. The proposed transforms K̂1,
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K̂3, and K̂13 were derived considering low values of ρ . As the pixels of a natural image are

highly correlated [24], image compression using these transforms does not show the best results,

as expected. However, considering the other proposed transforms, and even K̂13, we can see

that, qualitatively, there is no visually perceptible differences between the compressed images

considering the approximate transforms and the exact KLT.

Table 14 – Image quality measures

Image Lena Grass Moon

Transform PSNR MSSIM PSNR MSSIM PSNR MSSIM

K̂1 10.7230 0.1086 10.2617 0.3440 10.837 0.062
K̂3 18.2075 0.2698 16.1770 0.6216 18.238 0.186
K̂13 30.5265 0.8093 19.6360 0.7797 29.374 0.687
K(0.2) 20.14173 0.3302 17.3274 0.6759 20.112 0.240

K̂16 31.8353 0.8942 19.9568 0.7884 30.388 0.744
K̂17 31.7447 0.8934 19.9213 0.7874 30.355 0.743
K̂18 31.6908 0.9091 19.59472 0.7776 30.364 0.748
K(0.8) 29.9278 0.7584 19.8954 0.7861 28.896 0.653

K(0.95) 31.9935 0.9019 19.9384 0.7864 30.473 0.748
DCT 32.0814 0.9136 19.893 0.7839 30.566 0.754

Source: Author (2023).

We extended the experiment to a group of 45 512×512 8-bit greyscale images, obtained

from [137], considering different rates of compression (1≤ r ≤ 45). The PSNR and MSSIM

measures were computed for each compressed image, and the average of these values were taken.

Fig. 32 presents the plots of the average values of these measures. There are two graphs for each

figure of merit, one for each group of the approximate transforms, C1 and C2. In order to compare

the approximate transforms we also calculated this measurements for the exact KLT considering

the values of ρ = 0.2 and 0.8. The proposed transforms demonstrate satisfactory performance

when compared to the exact KLT and the transforms from group C2 even outperformed the exact

KLT for 0 < r < 15 approximately.

4.7 HARDWARE IMPLEMENTATION

The 8-point low-complexity transforms outlined in Table 9 were implemented on an

FPGA. The platform adopted for the hardware implementation was the Xilinx Artix-7 XC7A35T-

1CPG236C. Notice we do not implement the diagonal elements in Table 10. This is because
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Figure 32 – Quality measures of the considered approximations for several values of r according to the
figures of merit.

(a) Average PSNR considering C1 group approximate
transforms

(b) Average PSNR considering C2 group approximate
transforms

(c) Average MSSIM considering C1 group approximate
transforms

(d) Average MSSIM considering C2 group approximate
transforms

Source: Author (2023).

they can be easily incorporated into the quantization step in image and video compression

schemes [26].

The designs were implemented using a pipelined systolic architecture for each of the

transforms [171, 172]. Each transform implementation is split in different sub-blocks. Each

sub-block implements a different matrix in its corresponding fast algorithm as in (4.33), (4.34),

and (4.35) and is displayed in Figs. 24, Fig. 25, and Fig. 26, respectively. Each sub-block that

requires an arithmetic operation expands the wordlength in one bit in order to avoid overflow. The

sub-block implementing the permutation matrix P in (4.36) contains only combinational logic

as it only requires re-routing of the transform coefficients and does not possess any arithmetic

operation. The kernel M of all the transforms in (4.38) are implemented with two clock cycles

of latency. This is because each row of each of the transform kernel possesses at least three

nonzero entries (cf. Table 12). The intermediary matrices A1, A′2, and A′′2 in the factorizations

in (4.33), (4.34), and (4.34), respectively, require at most an addition of two elements per row,

so that only one clock cycle is enough to implement each one.
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The designs were implemented and tested according to the scheme shown in Fig. 33,

along with a state-machine serving as controller and connected to a Universal Asynchronous

Receiver-Transmitter (UART) block. The UART core interfaces with the controller through an

ARM Advanced Microcontroller Bus Architecture Advanced eXtensible Interface 4 (AMBA

AXI-4) protocol.

Figure 33 – Testbed architecture for testing the implemented designs.

PCUART
Design Under

Test (UUT)
Controller

State Machine

tx

rx

Source: Author (2023).

The Personal Computer (PC) communicates with the controller through the UART by

sending a set of eight 8-bit coefficients, which corresponds to an input for the transform block

under test. The values of the 8-bit coefficients are drawn from a uniform distribution in the

interval [−10,10]. The set of the eight coefficients are then sent to the design and processed.

After processed, the controller sends the eight output coefficients back to the PC, which is

compared with the output of a software model used to ensure the hardware design is accurately

implemented.

Table 15 shows the hardware resources utilization and metrics for the transforms in

Table 9. The considered figures of merit are the number of occupied slices, number of Look-Up

Tables (LUT), Flip-Flop (FF) count, wordlength increase (∆ #bits), latency (L) in terms of

clock cycles, critical path delay (Tcpd), maximum operating frequency Fmax = T−1
cpd , and dynamic

power (Dp) normalized by Fmax.

Table 15 – FPGA measures of the implemented architectures new and competing transforms

Transform
Metrics

Slices LUT FF
∆ L Tcpd Fmax Dp

#bits (cycles) (ns) (MHz) (µW/MHz)

T1 75 217 279 3 3 3.691 270.929 33.219
T3 150 471 370 5 3 4.961 201.572 54.571
T13 93 277 334 4 3 4.203 237.925 37.827
T16 143 406 444 6 4 4.926 203.004 54.186
T17 148 426 444 6 4 5.072 197.161 55.792
T18 110 287 401 5 4 4.580 218.341 41.220

Source: Author (2023).

Among the considered transforms, T1 is the one requiring the least amount of resources

such as FFs, LUT, and, consequently, slices. This is due to two factors: (i) the latency L, and
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(ii) wordlength increase ∆ #bits. Smaller latency means less registers are needed for storing

information, directly reducing the need for FFs and LUTs. Also, with reduced wordlength

increase ∆ #bits, less routing resources are needed inside the device to attain the desired compu-

tation.

The latency is a direct consequence of the fast algorithm that is found for the considered

transforms, as outlined in (4.33), (4.34), and (4.35). The transform T1 is factorized with the

simplest of the fast algorithms, involving only three matrices — in fact only two that requires

arithmetic operations — as compared to the other algorithms that requires one more matrix — in

fact only three that requires arithmetic operations. An inspection of Table 12 along with (4.38)

also shows that the transform kernel M for T1 requires only additions of at most three elements

per row. It does not require any constant multiplication by two (a bit-shifting operation) or by

three (a bit-shifting plus addition) like the other transforms in Table 9 (cf. Table 12), which

then renders a transform requiring a smaller bit increment when compared to other proposed

transforms. Because of the reduced amount of resources when compared to the other transforms

in Table 15, T1 is also the transform with the least critical path delay, and therefore the highest

maximum operating frequency and normalized dynamic power.

The transform T13 is the second most economical in terms of hardware resources con-

sidering FFs, LUTs, and slices. It shares in common with T1 its fast algorithm, however, the

T13 kernel requires multiplications by constants as shown in Table 12, demanding a higher

wordlength increment and therefore more resources than T1. The transform T17 is the one that

requires the most amount of resources and possessing the highest critical path delay, resulting in

the lowest maximum operating frequency and normalized dynamic power in comparison to the

other transforms in Table 15.

4.8 CONCLUSIONS

In this chapter, we proposed a new class of data-independent low-complexity KLT ap-

proximations. The obtained approximations were derived applying a set of rounding functions to

the elements of the exact KLT, varying the value of the correlation coefficient ρ . An optimization

problem was solved aiming at the proposition of optimal transforms according to defined figures

of merit. The k-means clustering method was used to classify the optimal transforms into groups

to certain ρ values intervals. Fast algorithms were derived for the optimal approximations

proposed by factorizing the transforms into sparse matrices. Only addition and bit-shifting
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operations were necessary for the implementation of the proposed transforms. To the best of

our knowledge, there is no low-complexity approximation transforms in the literature that

covers the whole correlation scenario (0 < ρ < 1) as proposed in this thesis. Thus, there is

no competing method to do a fair comparison with the proposed transforms. The applicability

of the proposed approximation in the context of image compression was demonstrated. Our

experiments showed that the proposed transforms performed very well when compared to the

exact KLT and, in the cases of K̂16, K̂17, and K̂18, even outperformed the exact KLT and DCT.

We also provided FPGA hardware implementation, showing a trade-off between performance

and resource usage, where the T1 requires the least amount of resources and the transform T17

higher amounts of FFs and LUTs.



94

5 EXTENSIONS ON LOW-COMPLEXITY DCT APPROXIMATIONS FOR LARGER

BLOCKLENGTHS BASED ON MINIMAL ANGLE SIMILARITY

5.1 INTRODUCTION

Current technological trends suggest an ever-increasing demand for efficient, low-power,

low-complexity digital signal processing methods [173–176]. In this context, many important

discrete transforms have become useful tools for signal coding and data decorrelation [12–14,16,

177] such as the discrete Fourier transform (DFT), the discrete Hartley transform (DHT), the

Walsh-Hadamard transform (WHT), the discrete Tchebichef transform (DTT), the discrete cosine

transform (DCT), among others. Data compression techniques [110, 152, 178, 179] address the

problem of removing redundancy from data [16, pg. 2]. Such removal can be accomplished by

using the Karhunen-Loève transform (KLT) [13,14], which is the optimal tool in terms of energy

compaction. Indeed, the KLT packs the energy of the input signal in few transform domain

coefficients and diagonalizes the covariance or correlation matrix of the data, resulting in a

completely decorrelated signal [14, pg. 10]. In practice, the KLT is not widely adopted because it

is a data-dependent transformation, which severely precludes the development of fast algorithms.

Fast algorithms can significantly reduce the arithmetic cost of the transform by searching for a

computationally efficient implementation method [23, pg. 2].

However, if the input signal is a first-order Markovian process, then the KLT matrix

depends only on the correlation coefficient ρ of the process. Natural images constitute a

representative class of such kind of data, which often present high values of ρ . When ρ → 1, the

KLT becomes the type-II DCT which is independent of the input data or any other parameter [13,

pg. 56]. Although natural images do not necessarily present ρ = 1, their correlation coefficient is

sufficiently high [12] to make the DCT extremely efficient and popular in image and video coding,

such as JPEG [26], MPEG [27], and HEVC [28]. Since its introduction in [115], the DCT has

been shown to be a superior tool when compared to the other transforms known in the literature

in this context of image and video coding. This fact was confirmed in a number of independent

works such as [12–14, 24, 26, 116, 153, 164, 178, 180]. The fact that the DCT is data-independent

allows the development of low-complexity fast algorithms for its calculation [23].

Nevertheless, under scenarios of severe restrictions on processing power or energy

autonomy [81, 118], the arithmetic cost of computing the DCT by traditional algorithms might

still be a hindrance. Thus, several multiplierless low-complexity DCT approximations have

been developed as detailed in [46, 71, 72, 74, 78, 80, 81, 83, 181, 182]. Particularly, we separate
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the method presented in [80], where a DCT approximation is derived by minimizing the angle

between each corresponding rows of the exact and approximate transforms. The resulting 8-point

DCT approximation introduced in [80] outperforms well-known DCT approximations in the

literature according to classical figures of merit as the mean squared error, total energy error,

coding gain, and transform efficiency. Furthermore, the associated fast algorithm requires only

24 additions and 6 bit-shifting operations.

The search for 8-point DCT approximations is a relatively mature area of research since

the 8-point DCT is a key block in many image and video processing applications. However,

with the advancement of image and video encoding technology, there is a demand for larger

blocklengths that could be employed in modern codecs [183]. For instance, there is a new video

standard coding, the Versatile Video Coding (VVC) [184], that requires 64-point transforms. In

this chapter, we extended the method proposed in [80] for larger blocklengths, i.e., for N = 16, 32,

and 64. To the best of our knowledge, the current literature archives only a few works [78,85,131]

addressing low-complexity approximations for the DCT of the above-mentioned sizes. We aim

at proposing high-performing low-complexity DCT approximations for such blocklengths.

This chapter is structured as follows. In Section 5.2, we present a brief review of the

relevance of the DCT and approximations in the context of hardware implementation and

its applications. In Section 5.3, we review the formulation of the DCT and low-complexity

approximations. Section 5.4 presents the methodology for deriving the proposed transforms.

In Section 5.5, the introduced DCT approximations are presented along with performance

assessment and fast algorithms derivation. Section 5.6 presents computational experiments in

image compression that demonstrate the suitability of the suggested tools. Section 5.7 concludes

the chapter.

5.2 HARDWARE REVIEW

The energy packing and high decorrelation properties for signals modeled after highly-

correlated first-order Markovian process makes the DCT a widely employed method for image

and video coding [164]. In this context, the DCT is the main tool [80, 86, 91, 122, 148, 185–188],

finding implementations in JPEG [87], motion JPEG [189], MPEG [190], and HEVC [191–

193]. Such efficient encoders can provide a significant reduction in computational complexity,

enabling the development of high-speed computing architectures [194]. Popular architectures

that benefited from transform-based encoding include HD and UHD videos [195, 196], smart
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antenna applications [197, 198], secure image processing [199, 200], image fusion [201] and

defusion [202], biomedical signal processing [203, 204], to cite but a few.

Therefore, the design of DCT-based Very Large-Scale Integration (VLSI) structures has

been an essential task for decreasing chip area, power, and time consumption [205–208]. Thus,

resource-constrained platforms which require hardware designs capable of larger autonomy,

increased storage capacity, extended battery life, and data transmission are prime beneficiaries

of low-complexity methods. This is illustrated in the case of low-powered devices in real-time

applications [209] and nanotechnologies [210], which require ultralow power consumption.

In addition, sensor architectures that present stringent limitations on memory and processing

speed [88, 211, 212] and sub-branches like approximate memory, which focus on the trade off

between perfect data fidelity and storage density [213], received technical contributions from

DCT approximations. The requirements for low-cost computation can be easily noticed in the

context of Internet of Things (IoT) [214–217] or 5G technologies [218, 219], for example.

The assumption that approximate methods lead to hardware implementations of low

resource consumption was corroborated in a detailed comprehensive study [87].

Motivated by this increasing demand, we focus our work on further reducing the arith-

metic complexity of the DCT computation, which directly affects hardware-oriented measures

such as chip area, dynamic power consumption, critical path delay, gate-count, area-time, and

maximum clock frequency (throughput) [33, 101, 186, 220–223].

5.3 EXACT AND APPROXIMATE DCT

The N-point DCT is represented by an N×N matrix CN the elements of which are given

by [13, pg. 61]

ci, j =

√
2
N

ui cos
{

i(2 j+1)π
2N

}
, i, j = 0,1, . . . ,N−1, (5.1)

where the quantities ui are defined as

ui =


1√
2
, if i = 0,

1, if i ̸= 0.
(5.2)

Let

x =
[
x0 x1 . . . xN−1

]⊤
(5.3)
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be an N-point input vector. The DCT transformation of x is the output vector

X =
[
X0 X1 . . . XN−1

]⊤
, (5.4)

given by

X = CN ·x. (5.5)

Since the DCT matrix is orthogonal, its inverse transformation can be written as [13, pg. 41]

x = C⊤N ·X. (5.6)

Generally, DCT approximations are transformations ĈN that behave similarly to the

exact DCT according to a relevant criterion depending on the context at hand. An approximate

transform is usually based on a low-complexity transform TN , i.e., a transformation matrix whose

entries possess lower multiplicative complexity [13, 23]. Typical examples of low-complexity

multipliers are: {0,±1,±2,±4, . . .}, {0,±1
2 ,±1,±2,±3}, and {0,±1

4 ,±
1
2 ,±1}; in all these

cases, the multiplication of a given number by any set element requires no or a few additions and

bit-shifting operations. Once a low-complexity matrix is obtained, we can derive the associate

approximate transform according to the next formalism [81, 156]:

ĈN = SN ·TN , (5.7)

where

SN =
√

[diag(TN ·T⊤N )]−1, (5.8)

being diag( ·) the diagonal matrix generated by its arguments and
√

· the matrix square root

operator [156]. If TN is almost orthogonal [81], then the matrix ĈN can represent a meaningful

approximation for CN . The concept of almost orthogonality stems from almost diagonality

property as defined in [81, 170].

Notice that if TN presents the property of diagonality, i.e.,

TN ·T⊤N = [diagonal matrix] , (5.9)

than (5.7) provides an orthogonal approximation ĈN . In addition, if TN is orthogonal then SN

results in the identity matrix IN and ĈN = TN .

However, finding a good low-complexity matrix TN can be a hard task, because of the

large search space. For instance, the matrix space of 16×16 low-complexity matrices defined
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over the set {−1,0,+1} possesses 3162 ≈ 1.39×10122 candidate matrices. An exhaustive search

over this space would take approximately 4.41×10105 years of computation assuming that each

matrix could be generated and assessed in 1 nanosecond.

Therefore, a crucial step in deriving approximations is the reduction of the search space

by restricting the search to potentially good matrices only. Literature describes several methods

to accomplish such reduction: (i) matrix quantization [16]; (ii) matrix parametrization [76, 120];

(iii) algorithm parametrization [62, 181]; and (iv) visual inspection [74, 75, 77, 78, 83, 121,

224]. Depending on the particular search space reduction approach, the number of candidate

approximations can be as small as just one matrix (e.g., SDCT [71] and RDCT [72]) or as large

as classes of various matrices, as shown in [80–82, 181] for the 8-point case.

5.4 DCT APPROXIMATIONS WITH MINIMAL ANGULAR ERROR

In [80], a search space reduction based on the vector direction analysis [225, 226] of the

transformation basis vectors was proposed. In the following, we summarize the method.

The exact DCT matrix CN can be understood as a stack of row vectors

c⊤k , k = 0,1, . . . ,N−1. (5.10)

The goal of the method is to find a low-complexity matrix TN , whose rows are denoted

by

t⊤k , k = 0,1, . . . ,N−1, (5.11)

such that a prescribed error measure between the corresponding rows of the exact DCT and the

approximation is minimized. The entries of t⊤k are selected from

D = {d0,d1, . . . ,dD−1}, (5.12)

where di, i = 0,1, . . . ,D−1, are low-complexity (trivial [23]) multipliers. Departing from the

usual measures in the approximate transform literature, such as Euclidean distance, in [80], the

angle between vectors is adopted as the error function. Thus, the following optimization problem

is defined [80]:

tk = argmin
p∈DN

angle(p,ck), k = 0,1, . . . ,N−1, (5.13)

where p⊤ is a candidate row defined over the N-dimensional discrete space

DN = D×D×·· ·×D , (5.14)
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the angle between two vectors, p and ck, is given by

angle(p,ck) = arccos
(
⟨p,ck⟩
||p|| · ||ck||

)
, (5.15)

the symbol ⟨ · , ·⟩ denotes the usual inner product, and || · || is the norm induced by the inner

product [227]. The resulting low-complexity matrix TN from the above optimization problem is

said to have minimal angular error relative to the exact DCT.

The search space implied by the above-described procedure contains DN rows. Therefore,

the computation described in (5.13) requires N ·DN angle evaluations at most. In [80], it was

adopted D = {−1,0,1} (D = 3) and N = 8, implying in only 38 = 6561 candidate rows. For

larger values of N, the number of candidate rows are presented in Table 16, also considering

D = {−1,0,1}. Notice that any other discrete space with three elements will generate the same

number of candidate rows. Hereafter the collection of all possible rows is called P .

Table 16 – The relation between matrix size and the number of candidate rows, considering a discrete
space of three elements (e.g. D = {−1,0,1}).

N
Number of

candidate rows

8 6561
16 43046721
32 ≈ 1.85×1015

64 ≈ 3.43×1030

Source: Author (2023).

The above procedure does not ensure the orthogonality of the resulting matrix. Although

orthogonality is not strictly a necessary condition for the derivation of good DCT approximations

(e.g., SDCT [71]), it is often a desirable design feature. To address such specific need, the

optimization problem in (5.13) can be extended by the inclusion of an orthogonality constraint

such that each new candidate row is compared against the previously obtained rows ensuring that

their inner products are null [127]. However, the orthogonality constraint increases significantly

the search time, since this restriction is sensitive to the order in which the rows are approximated,

being feasible for small blocklengths only, as successfully demonstrated in [80] for N = 8.

Algorithm 3 presents the pseudocode that contains the unconstrained procedure.

5.5 PROPOSED DCT APPROXIMATIONS

In this section, we report and assess the proposed approximations obtained from the

approach based on the minimal angle error, presented in the Algorithm 3, for N ∈ {16,32,64}.
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Algorithm 3: Pseudocode for the unconstrained angle based method.
Input: CN ,P
Output: TN

for k← 0,1, . . . ,N−1 do
θmin← 2π;
for i← 0,1, . . . ,DN−1 do

p←Pi;
θ ← angle(p,ck);
if (θ < θmin) then

θmin← θ ;
tk← p;

end if
end for
TN(k, :)← tk;

end for
return TN ;

For this search, we have used a machine with the following specifications: hexa-core 4.5 GHz

Intel(R) Core(R) I7-9750H, with 32 GB RAM running Ubuntu 20.04 LTS 64-bit and GPU

GeForce RTX 2060. In parallel, we also used a virtual machine from Google Cloud Platform

with the following specifications: 8 cores 3.8 GHz Intel(Cascade Lake) with 32 GB RAM

running Ubuntu 20.04 LTS 64-bit. Besides the approximations obtained from this approach,

we have also scaled the best transforms according to the Jridi-Alfalou-Meher (JAM) scaling

method [84] and derived fast algorithms for the best performing approximations.

Next, we present the considered design parameters to obtain the new approximate

transforms, their performance assessment and the proposed fast algorithms. To the best of our

knowledge, all of the obtained transforms are new in the literature.

5.5.1 Low-complexity matrices for 16-, 32-, and 64-point DCT approximations

We solved the optimization problem described in (5.13) considering the following pa-

rameters: (i) N ∈ {16,32,64} and (ii) the following sets of low-complexity multipliers:

D1 = {0,±1}, (5.16)

D2 = {0,±1
2 ,±1}, (5.17)

D3 = {0,±1,±2}, (5.18)

D4 = {0,±1
4 ,±

1
2 ,±1}, (5.19)

D5 = {0,±1
2 ,±1,±2}, (5.20)

D6 = {0,±1
4 ,±

1
2 ,±1,±2}. (5.21)



101

Such sets were separated because of the low-complexity nature of their elements. In fact,

multiplications by such elements require only bit-shifting operations.

The mapping from TN to ĈN shown in (5.7) is not one-to-one, i.e., distinct low-complexity

matrices might result in the same approximation. For instance, the following 16-point low-

complexity matrices, T′16 and T′′16, lead to a single approximation,

T′16 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 1 −1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 −1 1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 1 1 −1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−1 1 1 −1 −1 1 1 −1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1


, (5.22)

T′′16 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 −2 −2 −2 −2 −2 −2
1 1 −1 −1 −1 −1 −1 −1 1 1 1
2 2 −2 −2 −2 −2 2 2 2 −2 −2
2 2 −2 −2 −2 −2 2 2 2 2 −2 −2 −2 −2 2
2 −2 −2 2 2 −2 −2 −2 2 2 −2
2 −2 −2 2 −2 −2 2 2 −2 −2 2
1 −1 −1 1 −1 −1 1 1 −1 1 −1
1
2 −

1
2 −

1
2

1
2

1
2 −

1
2 −

1
2

1
2

1
2 −

1
2 −

1
2

1
2 − 1

2 −
1
2

1
2

2 −2 2 −2 2 −2 −2 2 −2 2 −2
−2 2 −2 2 −2 −2 2 −2 2 −2 2
−2 2 −2 2 −2 2 −2 2 −2 2 −2

2 −2 2 −2 −2 2 −2 2 2 −2 2 −2 −2 2 −2
− 1

2
1
2 −

1
2 − 1

2
1
2 −

1
2

1
2 − 1

2
1
2 −

1
2

1
2

−2 2 −2 2 −2 2 −2 2 −2 2 −2
−2 2 −2 2 −2 2 −2 2 −2 2 −2


, (5.23)

since (√
[diag(T′16 ·T′16

⊤)]−1
)

·T′16 =

(√
[diag(T′′16 ·T′′16

⊤)]−1
)

·T′′16. (5.24)

Such matrices are referred to as equivalent [127] and can be grouped into equivalent classes.

Table 17 summarizes the number of matrices, equivalence classes obtained for 16-, 32-,

and 64-point low-complexity matrices, and the sets considered for each blocklength. We do not

consider all sets for the 32- and 64-point because of the computation time. The 16-, 32-, and

Table 17 – Total matrices and classes of equivalence obtained for the 16-, 32-, and 64-point DCT

Sets
considered N

Number of matrices
obtained

Number of classes
of equivalence

D1, D2, D3, D4, D5, D6 16 156 5
D1, D2, D3 32 3 2

D1 64 1 1
Source: Author (2023).
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64-point low-complexity matrices obtained are denoted here as TN,i, where i and N refers to the

equivalence class and the length of the low-complexity matrix, respectively. For the case N =

16, we have five new approximations obtained directly from the proposed method; for N = 32,

two new matrices; and, considering N = 64, we have only one new matrix. The best performing

matrices (as discussed in Section 5.5.3) are numerically shown in Appendix C.

Due to the size of the search space for some settings, we had to reduce the number of

matrices according to the following procedure:

1. Split the exact DCT into two matrices as follows:

CN = abs(CN)◦ sign(CN), (5.25)

where abs( ·) [228, pg. 10] returns the absolute value of its input, sign( ·) is the entry-wise

signum function [13, pg. 286], and ◦ represents the elementwise multiplication [127,

pg. 251];

2. Select D and remove its negative elements, e.g.: D+
3 = {0,1,2};

3. Rewrite (5.13) replacing ck and D with abs(ck) and D+, respectively, as follows:

t∗k = argmin
p∈(D+)N

angle(p,abs(ck)), k = 0,1, . . . ,N−1; (5.26)

4. Use (5.26) to approximate the rows of abs(CN) individually and obtain the low-complexity

matrix T∗N ;

5. Obtain the low-complexity TN by

TN = T∗N ◦ sign(CN). (5.27)

To further reduce the search space, the symmetries of abs(CN) were used. Notice that

the jth and the (N − j− 1)th column of abs(CN) are equals. Thus, we only need to find

approximations for half of the values in each row. Using this property in (5.26), the computation

requires N ·(D+)
N
2 angle evaluations at most. This search space reduction was only adopted for

N = 32 considering D2 and D3; and for N = 64 considering D1.

5.5.2 JAM scaling method

In addition to the obtained matrices, we also derive scaled approximations according

to the JAM scaling method described in [84]. A scaled approximation derived from the JAM

method consists of a 2N-point transformation based on an N-point approximation related as
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follows:

T2N =
[
P1 P2

]
·

TN

TN

 ·

IN ĪN

ĪN IN

 , (5.28)

where TN is an N-point approximation, IN and ĪN are, respectively, the N-point identity and

counter-identity matrices. Matrices P1 and P2 are permutations of 2N×N dimension. Matrix

P1 contains ones in positions (2i, i), i = 0, . . . ,N−1, and zeros elsewhere; whereas P2 presents

ones in positions (2i+1, i), i = 0, . . . ,N−1, and zeros elsewhere.

Thus, we scaled the low-complexity matrices that generate the best performing transforms

for N =16 and 32, according to the assessment measurements displayed in Table 18, through the

JAM method. The scaling method is a function f defined according to:

f : RN×N 7−→ R2N×2N (5.29)

TN 7−→ T2N = f (TN). (5.30)

We denote T( j)
N as the 2 j ·N×2 j ·N matrix based on TN ,

T( j)
N ≜ f ( f (. . . f (TN))), (5.31)

where the function f is applied j times.

The proposed method in [84] has a term of 1√
2

that multiplies (5.28) which was previously

omitted in the scaling to be integrated in the final quantization. Thus, the approximation Ĉ( j)
N is

obtained by

Ĉ( j)
N =

(
1√
2

) j

·S∗N ·T( j)
N , (5.32)

where S∗N is computed from T( j)
N as detailed in (5.8). For instance, Ĉ(2)

16 is the result of two JAM

applications in a 16-point matrix, resulting in a 64-point matrix.

5.5.3 Performance assessment

We evaluated the proposed approximations according to similarity measures and coding

measures. For similarity measures, we considered the mean square error (MSE) [13, 14] and the

total energy error (ε) [72]; whereas for coding measures, we adopted the unified coding gain

(Cg) [229] and the transform efficiency (η) [13]. Based on the deviation from diagonality [170],

we can also quantify the deviation from orthogonality (δ ( ·)) of the discussed approximations;
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this measure informs how close to orthogonality a matrix is and is given by

δ (A) = 1− ||diag(A)||F
||A||F

, (5.33)

where A is a square matrix and || · ||F is the Frobenius norm for matrices [127].

For comparison purposes, we considered a comprehensive set of approximations archived

in literature. For N = 16, the following approximations were separated: (i) the approximation

proposed by Haweel (Ĉ16,SDCT) [71] (ii) the approximation proposed by Jridi, Alfalou, and

Meher (Ĉ16,JAM) [84]; (iii) the approximation proposed by Bouguezel, Ahmad, and Swamy,

(Ĉ16,BAS), in [78]; (iv) the approximation proposed in [131], (Ĉ16,BCEM); (v) the approximation

introduced in [85], (Ĉ16,SOBCM), and (vi) the scaled approximation proposed in [80] (T(16)),

(Ĉ16,OCBSML).

For N = 32, we considered the following methods: (i) the approximation proposed by

Haweel (Ĉ32,SDCT) [71]; (ii) the approximation proposed by Jridi, Alfalou, and Meher (Ĉ32,JAM) [84];

(iii) the approximation proposed by Bouguezel, Ahmad, and Swamy, (Ĉ32,BAS), in [78]; (vi) the

scaled approximation proposed in [80] (T(32)), (Ĉ32,OCBSML).

For N = 64, we considered the following approximations: (i) the approximation proposed

by Haweel (Ĉ64,SDCT) [71]; (ii) the scaled version of the approximation proposed in [80],

(Ĉ64,OCBSML).

Table 18 displays the results for the performance measures of the proposed approxima-

tions along with the competing approximations and the exact N-point DCT (CN). For each value

of N, we highlighted the best measurements of each metric. We identify Ĉ16,5, Ĉ32,2, Ĉ(1)
16,5,

Ĉ64,1, and Ĉ(2)
16,5 as the best transforms for N = 16, 32, and 64, respectively. Approximations

Ĉ16,5, Ĉ32,2, and Ĉ64,1 are the low-complexity matrices obtained from the fifth, second, and first

class of equivalence for N = 16, 32, and 64, respectively. The approximations Ĉ(1)
16,5 and Ĉ(2)

16,5

are the scaled approximations based on Ĉ16,5. These proposed approximations outperformed the

DCT approximations already known in the literature.

5.5.4 Fast algorithms

To reduce the arithmetic cost of implementing the proposed transforms, we factorized the

optimal transforms into sparse matrices using common decimation-based techniques [23, pg. 74].

The factorization for the proposed transforms was developed using butterfly-based structures,

such as in [55, 72, 81, 164, 230]. The complexity of the fast algorithms was evaluated in terms

of the number of arithmetic operations. The arithmetic complexity does not depend on the
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Table 18 – Performance measures for the DCT approximations in literature and the new approximations
proposed

Approximation ε(Ĉ) MSE(Ĉ) Cg(Ĉ) η(Ĉ) δ (Ĉ)

N = 16

C16 0 0 9.4555 88.4518 0
Ĉ16,1 3.7043 0.0172 7.7474 70.5034 0.0828
Ĉ16,2 3.7043 0.0172 8.2190 70.6902 0.0270
Ĉ16,3 1.0227 0.0054 8.9653 78.4016 0.0472
Ĉ16,4 0.6337 0.0035 9.0922 80.1145 0.0234
Ĉ16,5 0.5748 0.0031 9.1268 80.4401 0.0118
Ĉ16,SDCT 8.2537 0.0429 6.0297 64.9653 0.2
Ĉ16,JAM 14.7402 0.0506 8.4285 72.2296 0
Ĉ16,BAS 16.4071 0.0564 8.5208 73.6345 0
Ĉ16,BCEM 8.0806 0.0465 7.8401 65.2789 0
Ĉ16,SOBCM 40.9996 0.0947 7.8573 67.6078 0
Ĉ16,OCBSML 13.7032 0.0474 8.8787 76.8108 0

N = 32

C32 0 0 9.7736 81.6962 0
Ĉ32,1 7.6403 0.0287 7.4624 52.5455 0.1138
Ĉ32,2 2.3525 0.0100 9.0983 64.9265 0.0376
Ĉ(1)

16,5 30.0539 0.0829 9.1939 64.9983 0.0118
Ĉ32,SDCT 18.2386 0.0748 5.5623 41.6653 0.2727
Ĉ32,JAM 48.0956 0.1124 8.5010 56.9700 0
Ĉ32,BAS 57.1260 0.1171 8.4971 58.1727 0
Ĉ32,OCBSML 46.2658 0.1104 8.9505 61.0272 0

N = 64

C64 0 0 9.9366 75.55406 0
Ĉ64,1 15.5707 0.0434 7.2436 36.4275 0.1152
Ĉ(2)

16,5 103.2435 0.1833 9.2144 51.6925 0.0118

Ĉ(1)
32,2 66.8310 0.1355 9.1164 51.2582 0.0376

Ĉ64,SDCT 38.2630 0.1141 5.2192 27.9725 0.2809
Ĉ64,OCBSML 125.2247 0.2015 8.9748 48.4443 0

Source: Author (2023).

available technology, an issue that occurs in measures such as computation time [130, 231].

Table 19 presents the arithmetic complexity of the proposed transforms before and after the

matrix factorization and also the percentage of complexity reduction.

Although the matrices T16,OCBSML,T32,OCBSML, and T64,OCBSML [80] are more benefited

by factorization, with a few more operations, the proposed approximations can be used, providing

better performance. According to Table 18 and 19, when comparing T16,OCBSML and T16,5,
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Table 19 – The arithmetic complexity of the proposed transforms before and after the matrix
factorization.

Before factorization After factorization Reduction (%)
Matrix Mult Adds Bit-shifting Adds Bit-shifting Adds Bit-shifting

N = 16

C16 256 240 0 - - - -
T16,1 0 184 0 82 0 55.44 0
T16,2 0 192 0 80 0 58.33 0
T16,3 0 208 80 88 30 57.69 62.50
T16,4 0 224 96 92 34 58.93 73.44
T16,5 0 240 160 100 62 58.33 64.77

T16,OCBSML 0 208 96 64 12 69.23 79.17

N = 32

C32 1024 992 0 - - - -
T32,1 0 752 0 287 0 61.83 0
T32,2 0 864 320 328 110 62.04 65.62
T(1)

16,5 0 992 640 232 124 76.61 80.62
T32,OCBSML 0 864 384 160 24 81.48 89.58

N = 64

C64 4096 4032 0 - - - -
T64,1 0 3040 0 1087 0 64.24 0
T(2)

16,5 0 4032 2560 528 248 86.90 90.31

T(1)
32,2 0 3520 1280 720 220 79.54 82.81

T64,OCBSML 0 3520 1536 384 48 89.09 94.79
Source: Author (2023).

the proposed approximation requires only 36 more additions but it presents a reduction of

approximately 96% and 93% in terms of energy error and MSE, respectively; and a gain of

approximately 2.8% in coding gain and 4.7% in transform efficiency.

Considering N = 32, the proposed approximation T32,1 needs 127 extra additions than

T32,OCBSML and it presents a reduction of approximately 95% and 93% of energy error and MSE,

respectively; and a improvement of 1.6% in coding gain and 6.4% in transform efficiency. In

addition, the proposed approximation T(1)
16,5 requires 72 more additions than T32,OCBSML and

it presents a reduction of 54% and 33% of energy error and MSE, respectively; and a gain of

approximately 2.7% in coding gain and 6.5% in transform efficiency. Approximations for N = 64

(except the SDCT) were first presented in this chapter.

For better understanding and reproducibility, each sparse matrix used to obtain low-

complexity matrices associated with the optimal transforms T16,5, T32,2, and T64,1 are detailed

in the Appendix C.
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5.6 IMAGE COMPRESSION EXPERIMENTS

To evaluate the performance of the proposed 16-, 32-, and 64-point DCT approximations

we performed JPEG-like image compression experiments, as in [72, 81, 219]. We considered

45 8-bit images of 512× 512 obtained from [137]. All images were subdivided into N×N

sub-blocks and were submitted to the following 2D transformation. Let A be an N×N sub-block.

The direct and inverse transformation induced by ĈN are given, respectively, by [53, 72, 81]

B = ĈN ·A · Ĉ−1
N and A = Ĉ−1

N ·B · ĈN , (5.34)

where A and B are matrices of size N×N. To evaluate the exact DCT, the transformation matrix

ĈN and Ĉ−1
N are replaced by CN and C−1

N , respectively. Considering the zig-zag pattern [16,

p. 30], we retained the initial r coefficients from each sub-block B. Finally, we applied the

inverse 2D transform in each sub-block, and then the compressed images are obtained.

Original and compressed images were evaluated considering usual quality assessment

measures: (i) the mean square error (MSE) [13], (ii) the peak signal-to-noise ratio (PSNR) [16],

and (iii) the mean structural similarity index (MSSIM) [136]. Notice that the MSE measures are

computed considering the original and the compressed images; not to be confused with the MSE

calculation described in Section 5.5.3. Although the MSE and PSNR measures are popular in

the context of image compression, it was shown in [157] that they might offer limited results as

image quality tools. On the other hand, the MSSIM was shown to be a better measure when it

comes to capturing the image quality as understood by the human visual system model [136,157].

The image compression experiments were divided into two steps: (i) a qualitative analysis

where we considered the compressed Peppers image with a compression rate of approximately

80%; (ii) and a quantitative analysis, where we considered the average measurements from 45

standardized images. Both analysis are presented next.

5.6.1 Qualitative analysis

For the qualitative analysis, we considered the compressed Peppers image [137], with a

compression rate (CR) of approximately 80%. The compression rate is defined by

CR = 1− r
N2 . (5.35)

Figs. 34, 35, and 36 display the compressed Peppers images with the DCT and approximations,

for N = 16, 32, and 64, respectively. Visually, the reconstructed images after the compression
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with the proposed transforms exhibit quality comparable to the ones compressed using the exact

DCT and known approximations. For a better representation, we present the MSE, PSNR, and

MSSIM of these images in Table 20. The best results for each sample image and measure

are highlighted. The proposed approximations for the 16-, 32-, and 64-point DCT show

better results than the approximations in literature. To the best of our knowledge, there is no

64-point DCT approximation in the literature for comparison, except for the Ĉ64,SDCT [71].

Figure 34 – Compressed Peppers image for N = 16 considering r = 50.
(a) C16 (b) Ĉ16,SDCT (c) Ĉ16,BAS

(d) Ĉ16,JAM (e) Ĉ16,OCBSML (f) Ĉ16,5

Source: Author (2023).

5.6.2 Quantitative analysis

In this analysis, we considered the measurements of the selected 45 8-bit images obtained

from a public image bank [137]. Each image was compressed considering the initial r coeffi-

cients (matrix elements ordered according to the zig-zag pattern [16, pg. 30]), r ∈
{

0,1, . . .N2},

and assessed by the quality measures.

Fig. 37, 38, and 39 show the average curves from the 45 images for the MSE, PSNR, and

MSSIM, respectively. For better visualization, we adopted the Absolute Percentage Error (APE)
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Figure 35 – Compressed Peppers image for N = 32 considering r = 205.
(a) C32 (b) Ĉ32,SDCT (c) Ĉ32,BAS

(d) Ĉ32,JAM (e) Ĉ32,OCBSML (f) Ĉ32,2

(g) Ĉ(1)
16,5

Source: Author (2023).

relative to the DCT:

APE(µ) =

∣∣∣∣∣µ(CN)−µ(ĈN)

µ(CN)

∣∣∣∣∣ , µ ∈ {MSE,PSNR,MSSIM}, (5.36)

where µ(CN) and µ(ĈN) indicate the measurements according to the exact and approximate

N-point DCT, respectively. For this evaluation, we considered the optimal proposed transforms

Ĉ16,5, Ĉ32,2, Ĉ(1)
16,5, Ĉ64,1, Ĉ(2)

16,5, and Ĉ(1)
32,2 and compared with the exact DCT (CN) and the three

best approximations according to Table 18: ĈN,BAS, ĈN,JAM, and ĈN,OCBSML. The proposed

approximations are the ones with the best results when contrasted with competing DCT

approximations for N = 16, 32, and 64.
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Figure 36 – Compressed Peppers image for N = 64 considering r = 820.
(a) C64 (b) Ĉ64,SDCT (c) Ĉ64,OCBSML

(d) Ĉ64,1 (e) Ĉ(2)
16,5 (f) Ĉ(1)

32,2

Source: Author (2023).

5.7 CONCLUSIONS

This chapter introduces low-complexity approximations for the DCT of lengths 16, 32,

and 64, based on the method proposed in [80], which approximates the rows of the exact and the

approximate matrix transform according to the angle between them. The proposed transforms

were assessed according to classical figures of merit and showed a better performance when

compared to the DCT approximations already archived in the literature. Fast algorithms were also

derived for the best transforms of each blocklength, which further reduced their arithmetic costs.

Only additions and bit-shifting operations are necessary for their computation. Furthermore, the

transforms were evaluated in the context of image compression. The experiments demonstrated

that the proposed transforms outperformed all the considered DCT approximations already

known in the literature for N = 16, 32, and 64.
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Table 20 – Image quality measures of compressed Peppers image for N = 16(r = 50), 32(r = 205), and
64(r = 820).

N Approximation MSE PSNR MSSIM

16 C16 32.3449 33.0328 0.9416
Ĉ16,1 75.0342 29.3782 0.9154
Ĉ16,2 70.1802 29.6687 0.9184
Ĉ16,3 43.2034 31.7756 0.9355
Ĉ16,4 39.0721 32.2121 0.9378
Ĉ16,5 38.8975 32.2316 0.9378
Ĉ16,SDCT 135.8288 26.8009 0.8905
Ĉ16,JAM 59.6891 30.3718 0.9242
Ĉ16,BAS 58.1761 30.4834 0.9248
Ĉ16,BCEM 93.1786 28.4376 0.9064
Ĉ16,SOBCM 115.2820 27.5132 0.8897
Ĉ16,OCBSML 49.3669 31.1964 0.9303

32 C32 29.2562 33.4686 0.9690
Ĉ32,1 87.8409 28.6938 0.9443
Ĉ32,2 43.5848 31.7375 0.9634
Ĉ(1)

16,5 37.8366 32.3517 0.9652
Ĉ32,SDCT 189.2796 25.3598 0.9122
Ĉ32,JAM 58.4496 30.4630 0.9554
Ĉ32,BAS 61.6647 30.2304 0.9524
Ĉ32,OCBSML 47.9872 31.3196 0.9591

64 C64 28.1330 33.6386 0.9880
Ĉ64,1 118.8871 27.3795 0.9641
Ĉ(2)

16,5 37.3748 32.4050 0.9851
Ĉ(1)

32,2 42.8390 31.8124 0.9836
Ĉ64,SDCT 273.3575 23.7635 0.9294
Ĉ64,OCBSML 54.2638 30.7857 0.9794

Source: Author (2023).
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Figure 37 – Average curves for the MSE, PSNR, and MSSIM for the 16-point DCT and approximations.

Source: Author (2023).
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Figure 38 – Average curves for the MSE, PSNR, and MSSIM for the 32-point DCT and approximations.

Source: Author (2023).
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Figure 39 – Average curves for the MSE, PSNR, and MSSIM for the 64-point DCT and approximations.

Source: Author (2023).
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6 LOW-COMPLEXITY METHODS FOR SIGNAL DETECTION

6.1 INTRODUCTION

The use of the discrete Fourier transform (DFT) finds applications in the most different

fields of the digital signal processing context [17, 232], because its relevance as a design and

analysis tool [233], and also because of the existence of several efficient algorithms for its

computation [23, 231]. A useful application of the DFT is the signal detection theory, which

describes the capacity of a receptor to recognize a signal [232]. This process of detection

can be defined as a statistical hypothesis test, where the null hypothesis (H0) is that only

noise is present while the alternative hypothesis (H1) is the presence of signal+noise [232].

Signal detection is a fundamental tool to the design of efficient signal processing systems for

decision making [234] and its widely used in the most different scenarios, such as radar [235,

236], communications [237, 238], speech [239, 240], sonar [241], image processing [242, 243],

biomedicine [244, 245], seismology [246, 247], among others [232].

The detection problem can be linked to the Discrete Fourier Transform because the

calculation of a statistical test, which is used to determine whether to accept or reject the null

hypothesis, can be based on the computation of the DFT [40, 248]. Even though the use of a fast

Fourier transform (FFT) can be an efficient alternative, the computation of the statistical test can

still be an issue in scenarios where agility in the detection is needed.

In the past decades, many works were developed in order to make the computational

realization of the DFT even more efficient [64, 101, 102, 249, 250]. Although the search for

efficient fast algorithms for computing the DFT is a quite mature area, there is still room for

improvement. For instance, considering signals of length 2N , the well-known algorithms for the

FFT [23] reduce the computational cost of the DFT from O(N2) to O(N · log2 N) [231], but they

still require multiplications for their implementation. To the best of our knowledge, the literature

is scarce in methods devoted to the computation of a multiplierless DFT [102,103,106,107,251].

Thus, we aim to propose multiplierless approximations for the DFT based on integer functions,

on a similar way to what has been proposed for other discrete transforms, such as approximations

for the discrete cosine transform (DCT) [71, 72, 81] and for the Karhunen-Loève transform

(KLT) [252,253]. In this sense, the contributions of this thesis chapter are: (i) to propose low-

complexity multiplierless approximations for the DFT and (ii) to propose a low-complexity

detector based on the DFT approximations.
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The chapter is structured as follows. In Section 6.2, we present the detection problem

as a statistical hypothesis test, as well as the types of errors the statistical test are subject to. In

Section 6.3, we present the mathematical formulation of the DFT, its computational complexity

and the approximation theory. In Section 6.4, we describe the proposed approximate detector.

Section 6.5 presents the simulated experiments for the proposed approximate test. Section 6.6

concludes the chapter.

6.2 STATISTICAL BACKGROUND

In many contexts of signal processing, there is an interest in designing electronic systems

for decision-making and information extraction [232]. The main goal of the detection theory is

to be able to decide whether an event of interest occurs or not. In statistical jargon, the detection

theory is also called hypothesis testing.

6.2.1 Detection Problem

In detection theory, one usual problem is to decide whether a signal is present or not [232].

Generally, the signal is embedded in noise. Thus, the system must detect whether there is signal

and noise, or if only noise is present. One example of this problem is detecting an aircraft

based on a radar return. The radar transmits a signal that bounces off the target and receives

information from the emitting object. If the signal is reflected by a moving object, it will indicate

the presence of an aircraft [232, 254]. Figure 40, which is an adaptation from [232, pg. 3],

illustrates the decision-making process.

This type of problem is called binary hypothesis testing, once we aim to decide between

two possible hypotheses. Let x[n] be a sequence in time that contains the information collected

by the radar. Under the null hypothesis H0, the received sequence corresponds to noise only,

i.e., there is no information about the presence of an object (aircraft). Under the alternative

hypothesis H1, the sequence is a signal, i.e., there is information about the presence of an object

together with noise. Thus, this decision can be statistical defined as a hypothesis test, whereH0 : x[n]∼ noise

H1 : x[n]∼ signal + noise
. (6.1)

There are different approaches considered in the context of statistical signal processing

for the detection problem [255–258]. The periodogram of a sequence provides the spectral
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Figure 40 – Decision-making process of detecting an aircraft by radar pulse emission.

Source: Author (2023).

analysis of the signal and is a useful tool as detector [255]. Hereafter, the focus of this chapter

will be on scenarios where the input signal is a simple sinusoidal tone because this is a basic

problem in signal detection theory [39, 40]. We aim to determine whether a radar system is

detecting a signal or not.

Let the signal x be

x[n] = Asin(2πn f +φ)+q[n], (6.2)

where A ∈ R is the amplitude, f ∈ (0,1) is the signal frequency, φ ∈ (0,2π) is the phase, and

q[n]∼ N(0,σ2), n = 0,1, . . .N−1, (6.3)

is the Gaussian white noise. Thus, the hypothesis test is defined byH0 : x[n] = q[n],

H1 : x[n] = Asin(2πn f +φ)+q[n]
. (6.4)

Note that:

(i) under H0, x is an independent random sample normally distributed;

(ii) under H1, x is a simple sinusoidal tone with additive Gaussian noise.

The usual statistical test considered to reject or not the null hypothesis is given by [40]

T = 2·
max(S( fk))

σ2 , (6.5)

where S( fk) is the periodogram which is defined by:

S( fk) =
1
N

∣∣∣∣∣N−1

∑
n=0

x[n]exp(− j2πn fk)

∣∣∣∣∣
2

, k = 0,1, . . .N/2−1, (6.6)
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fk = k/N is the frequency and σ2 is the power of q[n] [259]. Note that computing the periodogram

is the same as computing the DFT of the sequence x[n]. Thus, efficient algorithms for the DFT

can be used for obtaining efficient detectors. Under H0, the statistical test T has chi-square

distribution with two degrees of freedom [40], T ∼ χ2
(2). If T > χ2

(τ,2), where

τ = (1−α)
N−2

2 , (6.7)

then we reject H0 and assume that a sinusoidal signal is presented. In the case where the power

of the signal σ2 is unknown we can substitute it by the Maximum Likelihood Estimator (MLE).

In this case, the distribution for T is asymptotically a chi-square distribution with two degrees of

freedom, since the MLE is a consistent estimator.

6.2.1.1 Type I and Type II error

When we perform a hypothesis test, we are subject to making mistakes. The type I error

occurs when we reject the null hypothesis H0 when it is true. That is,

P(Type I error) = PH0(Reject H0) = α, (6.8)

where α is called the significance level of the test. The values of α = 0.05 or α = 0.1 are

commonly used in practice.

The type II error occurs when we do not reject H0 when it is false,

P(Type II error) = PH1(Do not reject H0) = β . (6.9)

Thus, the power of the detector can be defined as

Power = PH1(Reject H0) = 1−β . (6.10)

Table 21 summarizes this information.

Table 21 – Types of error in hypothesis testing

Decision H0 is true H0 is false

Do not reject H0 Correct decision Type II error
Reject H0 Type I error Correct decision

Source: Author (2023).
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6.3 DISCRETE FOURIER TRANSFORM COMPUTATION

The DFT is an alternative Fourier representation for finite duration sequences [231]. The

DFT of an input signal x[n] can be defined by [17]

X [k] =
N−1

∑
n=0

x[n]exp(− j2πnk/N), k = 0,1, . . . ,N−1, (6.11)

and the inverse discrete Fourier transform is given by

x[n] =
1
N

N−1

∑
k=0

X [k]exp( j2πnk/N), n = 0,1, . . . ,N−1. (6.12)

The DFT can also be represented by the following N×N matrix:

FN =



1 1 1 · · · 1

1 ωN ω2
N · · · ω

N−1
N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

... . . . ...

1 ω
N−1
N ω

2(N−1)
N · · · ω

(N−1)2

N


, (6.13)

where

ωn,k ≜ ω
nk
N = exp(− j2πnk/N), (6.14)

with n,k = 0,1, . . . ,N−1. Thus, the computation of the DFT of a sequence x[n] is given by

X = FNx, (6.15)

where

x =
[
x0 x1 . . . xN−1

]⊤
(6.16)

is the corresponding vector from x[n] and

X =
[
X0 X1 . . . XN−1

]⊤
. (6.17)

is the DFT from x[n]. Since the DFT matrix is orthogonal, we have that

F−1
N = F∗N , (6.18)

where F∗N is the FN conjugate [227]. If we multiply FN by 1/
√

N we have that |det(FN)|= 1,

where det( ·) is the determinant of a matrix [227].
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6.3.1 Computational Complexity

The computational complexity of discrete transforms depends on many different factors,

from purely mathematical aspects to details of their physical realization in hardware or software

implementation. Combining many of these aspects to reduce the computational cost can be

considered a very hard task because there are many factors that are difficult to quantify or

control [17, 130]. However, there is one factor that we can control, which is the arithmetic

complexity of the transform. The arithmetic complexity can be defined as a function that relates

the additive, multiplicative, and bit shift operations. Among these operations, the multiplicative

complexity is the one with the most costly operations [23, 260].

Multiplicative operations can be defined in two different ways: trivial and non-trivial mul-

tiplications. Trivial multiplications can be performed without using a numerical multiplication

algorithm, such as, for example, multiplications by the elements over the set {0,±1/2,±1,±2}.

Multiplications by power-of-two can easily be performed by simple bit shifts in a binary com-

putational architecture. Therefore, only non-trivial multiplications increase the multiplicative

complexity.

The direct implementation of the DFT can be defined as

X [k] =
N−1

∑
n=0

(ℜ{x[n]}ℜ{ωnk
N }−ℑ{x[n]}ℑ{ωnk

N })

± j(ℜ{x[n]}ℑ{ωnk
N }+ℑ{x[k]ℜ{ωnk

N }}),
(6.19)

k = 0,1, . . . ,N−1, (6.20)

where ℜ{ ·} is the real part and ℑ{ ·} is the imaginary part of a complex number. This operation

requires N2 complex multiplications and N(N−1) complex additions. Each complex multiplica-

tion requires four real multiplications and two real additions and each complex addition requires

two real additions. Thus, the direct implementation of the DFT requires 4N2 real multiplications

and N(4N− 2) real additions operations. The computational complexity of the DFT can be

reduced using fast algorithms, such as the Cooley-Tukey [261], the Rader-Brenner [66], and the

Winograd algorithm [65], to name but a few.

6.3.2 Approximation Theory

Besides using fast algorithms to compute the DFT, there are other alternatives that can

reduce the computational complexity for the computation of the transform, such as proposing low-

complexity approximations. Several discrete transforms approximations have been proposed and
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shown to be efficient alternatives for computing transforms such as the DCT [71, 72, 74, 80–93],

the KLT [94–99, 252, 253], the discrete Tchebichef transform [166], and the DFT [102, 103, 106,

107, 251].

In a similar way to what was proposed for the rounded approximations RDCT [72] and

RKLT [253], we aim to propose an efficient method for estimating the periodogram S( fk) based

on a low-complexity rounded DFT approximation. Following this approach, the obtention of

multiplierless DFT approximations can be done by using round-off functions in the elements of

the exact matrix. By applying the round-off functions to elements of the matrix we eliminate

the multiplications by rational numbers, once the approximate matrix contains only integers

elements. The round-off functions considered are defined as

round(x) = ⌊ℜ(x)+0.5⌋+ j ·⌊ℑ(x)+0.5⌋, (6.21)

roundHD(x) = ⌈ℜ(x)−0.5⌉+ j · ⌈ℑ(x)−0.5⌉ , (6.22)

roundHAFZ(x) = sign(ℜ(x)) · ⌊ℜ(x)+0.5⌋+ j · sign(ℑ(x)) · ⌊ℑ(x)+0.5⌋ , (6.23)

roundHTZ(x) = sign(ℜ(x)) · ⌈ℜ(x)−0.5⌉+ j · sign(ℑ(x)) · ⌈ℑ(x)−0.5⌉ , (6.24)

with ⌊x⌋= max{m ∈ Z|m≤ x}, ⌈x⌉= min{n ∈ Z|n≥ x}, and the function sign is defined as

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

(6.25)

6.4 LOW-COMPLEXITY DFT-BASED INFERENCE

In light of the problem presented in Section 6.2.1 of detecting a simple sinusoidal tone

and considering the transforms approximation theory discussed in Section 6.3.2, we aim at

proposing a low-complexity detector based on approximations for the DFT.

6.4.1 Proposed detector

Thus, consider the following hypothesis:H0 : x[n] = q[n]

H1 : x[n] = Asin(2πn f +φ)+q[n],
(6.26)
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where A ∈ R, f ∈ (0,1), φ ∈ (0,2π), and q[n] ∼ N(0,σ2); we can propose the following

statistical test:

T̂ = 2·
max(Ŝ( fk))

σ̂2 . (6.27)

The approximate periodogram is defined as

Ŝ∗( fk) =
1

N ·(int(γ))2

(
A2

σ2
A
+

B2

σ2
B

)
, (6.28)

where

A =
N−1

∑
n=0

q[n] int(γ{cos(2πn fk)}), B =
N−1

∑
n=0

q[n] int(γ{sin(2πn fk)}), (6.29)

σ
2
A = σ

2
N−1

∑
n=0

(int(γ{cos(2πn fk)}))2 , σ
2
B = σ

2
N−1

∑
n=0

(int(γ{sin(2πn fk)}))2 , (6.30)

with int( ·) one of the round-off functions, and γ is a defined expansion factor [13].

Corollary 6.4.0.1. The approximate periodogram Ŝ∗( fk) is asymptotically distributed by a

chi-square with two degrees of freedom, Ŝ∗( fk)
a∼ χ2

(2).

Proof. Under H0 we have that x[n] = q[n], where q[n]∼ N(0,σ2). Let

Ŝ( fk) =
1

N ·(int(γ))2

∣∣∣∣∣N−1

∑
n=0

q[n] int(γ · exp(− j2πn fk))

∣∣∣∣∣
2

, (6.31)

k = 0,1, . . .N/2−1. (6.32)

We can rewrite Ŝ( fk) by

Ŝ( fk) =
1

N ·(int(γ))2

∣∣∣∣∣N−1

∑
n=0

q[n] int(γ{cos(2πn fk)− j sin(2πn fk)})

∣∣∣∣∣
2

(6.33)

=
1

N ·(int(γ))2

(N−1

∑
n=0

q[n] int(γ{cos(2πn fk)})

)2

+

(
N−1

∑
n=0

q[n] int(γ{sin(2πn fk)})

)2
 (6.34)

=
1

N ·(int(γ))2

(
A2 +B2)(6.35)

Note that A and B are normally distributed with

E(A) = E

(
N−1

∑
n=0

q[n] int(γ{cos(2πn fk)})

)
(6.36)

=
N−1

∑
n=0

E(q[n]) int(γ{cos(2πn fk)}) = 0, (6.37)
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and

E(B) = E

(
N−1

∑
n=0

q[n] int(γ{sin(2πn fk)})

)
(6.38)

=
N−1

∑
n=0

E(q[n]) int(γ{sin(2πn fk)}) = 0, (6.39)

since E(q[n]) = 0. The variances of A and B are computed respectively by

VAR(A) = VAR

(
N−1

∑
n=0

q[n] int(γ{cos(2πn fk)})

)
(6.40)

=
N−1

∑
n=0

VAR(q[n])(int(γ{cos(2πn fk)}))2 (6.41)

= σ
2

N−1

∑
n=0

(int(γ{cos(2πn fk)}))2 = σ
2
A (6.42)

and

VAR(B) = VAR

(
N−1

∑
n=0

q[n] int(γ{sin(2πn fk)})

)
(6.43)

=
N−1

∑
n=0

VAR(q[n])(int(γ{sin(2πn fk)}))2 (6.44)

= σ
2

N−1

∑
n=0

(int(γ{sin(2πn fk)}))2 = σ
2
B. (6.45)

Thus, since the sum of two squared standard normally distributed independent random variables

is a chi-square distributed random variable [259], we have that

1
N ·(int(γ))2

(
A2

σ2
A
+

B2

σ2
B

)
∼ χ2

2. (6.46)

The computation of (6.46) requires the unknown parameter σ2. If we consider σ̂2 the maxi-

mum likelihood estimator (MLE) of σ2, which is a consistent estimator, we have that Ŝ( fk) is

asymptotically distributed by a chi-square distribution when N→ ∞,

Ŝ∗( fk) =
1

N ·(int(γ))2

(
A2

σ2
A
+

B2

σ2
B

)
a∼ χ2

2. (6.47)

Corollary 6.4.0.2. The approximate statistical test T̂ is asymptotically distributed by a chi-

square with two degrees of freedom, T̂ a∼ χ2
(2), and has the asymptotic probability distribution

function given by

P(T̂ < t) =
[
1− exp

(
−tσ̂2)]N

2−1
. (6.48)
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Proof. The approximate statistical test T̂ is given by

T̂ = 2·
max(Ŝ∗( fk))

σ̂2 . (6.49)

Under the null hypothesis H0, we have that Ŝ∗( fk)
a∼ χ2

2. Thus, the asymptotic probability density

function is given by [259]

pŜ∗(s) =
1
2

exp
(
− s

2

)
, (6.50)

and the distribution function is

P(Ŝ∗ < t) =
∫ t

0
pŜ∗(s)ds (6.51)

=
∫ t

0

1
2

exp
(
− s

2

)
ds = 1− exp

(
− t

2

)
. (6.52)

Therefore, the probability distribution function of T̂ is given by

P(T̂ < t) = P

(
2·

max(Ŝ∗( fk))

σ̂2 < t

)
(6.53)

= P
(

max(Ŝ∗( fk))<
tσ̂2

2

)
, (6.54)

for σ̂2 the MLE of σ2 and k = 0,1, . . . ,N/2−1,

P(T̂ < t) = P
(

max(Ŝ∗( fk))<
tσ̂2

2

)
(6.55)

= P
(
(Ŝ∗( f0), Ŝ∗( f1), . . . , Ŝ∗( fN/2−1))<

tσ̂2

2

)
(6.56)

=
N/2−1

∏
k=0

P
(

Ŝ∗( fk)<
tσ̂2

2

)
(6.57)

= P
(

Ŝ∗( fk)<
tσ̂2

2

)N
2−1

(6.58)

=
[
1− exp

(
−tσ̂2)]N

2−1
. (6.59)

6.5 NUMERICAL EXPERIMENTS

In order to assess the hypothesis test, we carry out the following experiment. Let x[n] beH0 : x[n] = q[n]

H1 : x[n] = Asin(2πn f +φ)+q[n],
(6.60)
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where A ∈ R, f ∈ (0,1), φ ∈ (0,2π), and q[n]∼ N(0,σ2). For instance, we generated N = 256

random observations of x with A= 2, f = 0.01, φ = π , q[n]∼N(0,σ2), and σ2 = 1. In Figure 41,

we present one signal realization under the null hypothesis, i.e., only the white noise, and under

H1.

In order to perform the hypothesis test, we need to estimate the periodogram, once the

statistical test is based on it. Figure 42 presents the exact periodogram S( fk) of the signals

generated under H0 and H1. For this case, considering the signal under the null hypothesis, i.e,

the signal is only the white noise, the statistical test is

T = 2·
max(S( fk))

σ̂2 = 7.6325, (6.61)

and the threshold based on the quantile of the chi-square distribution is χ2
(τ,2) = 15.6291, with τ

defined in Equation (6.7) with α = 0.05. Here, T < χ2
(τ,2), what gives us no evidence to reject H0,

that is the signal is only the white noise. Still, considering x[n] under the alternative hypothesis,

we have T = 86.9917. Since T > χ2
(τ,2), we can now reject H0 and assume the presence of a

sinusoidal signal. By this simple experiment realization, we can note that the test has a correct

performance.

6.5.1 Approximate test evaluation

Simulation studies can be used to evaluate the performance of the test in terms of the

probabilities of the type I and type II errors. Considering this particular case where we want

to detect a simple sinusoidal tone, we proceeded with the following approach to compute the

statistical test, T̂ .

First, we evaluate the test in terms of the type I error. The pseudocode for computing the

type I error is presented in Algorithm 4.

This evaluation was implemented considering the following values: N = 8, 16, 32, 64,

128, and 256; α = 0.05; R = 1000; σ2 = 1; the round-off functions (int( ·)) presented in (6.21);

and the expansion factor 0 < γ < 3 with steps of 10−2. For each length N we evaluated α̂ in

order to be closest to α = 0.05, that is,

T̂ ∗ = arg min
γ,int

error(α̂−α). (6.62)

Table 22 presents the best results for each length N. The round-off function that had the best

performance for all values of N was the round( ·) function. We can note that as far as N increases,

the probability of type I error of the approximate test becomes closer to the expected value,
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Figure 41 – Generated signals.
(a) Generated signal under H0
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Source: Author (2023).

α = 0.05. Thus, considering these results, the proposed approximate test is computed as

T̂ = 2·
max(Ŝ∗( fk))

σ̂2 , (6.63)
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Figure 42 – Periodogram of the generated signals.
(a) Periodogram of the signal under H0
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(b) Periodogram of the signal under H1
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Source: Author (2023).

where

Ŝ∗( fk) =
1

4N

∣∣∣∣∣N−1

∑
n=0

x[n] round(γ · exp(− j2πn fk))

∣∣∣∣∣
2

, (6.64)
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Algorithm 4: Pseudocode for computing the type I error.
Input: N, α , R, χ2

(τ,2),σ
2,int( ·), γ

Output: Type I error (α̂)
for j in (0 : R) do

Generate x[n] under H0;
Compute S( fk) and then T ;
if T > χ2

(τ,2) then
i← i+1;

end if
end for
return α̂ = i/R

Table 22 – Values of γ and α̂ from the best approximate test for each lenght N

N γ α̂

8 1.68 0.120
16 1.65 0.064
32 1.79 0.050
64 1.74 0.049
128 1.85 0.051
256 1.82 0.051

Source: Author (2023).

with the values of γ presented in Table 22 for each length N.

For instance, considering one realization of a signal with N = 256, f = 0.01, A = 2,

φ = π , and σ2 = 1, we have the following results. Figures 43 and 44 present the approximate

and exact periodograms for the signal considering both scenarios, under the null hypothesis H0

and under the alternative hypothesis H1. It is worth to emphasize here that the periodogram

estimated with the approximate DFT is very similar to the exact one, at a lower cost.

Besides computing the probability of the type I error, we can also compute the probability

of the type II error and the power of the test. The procedure for computing numerically the

probability is presented in Algorithm 5. Figures 45, 46, 47, and 48 present the power of the

test for the statistics computed using the exact and approximate DFT, considering N = 8, 16,

32, 64, 128, and 256, and different values of the frequency f = 0.01,0.10, 0.25, and 0.375. We

can note that for larger values of N (N > 32) when the signal amplitude (A) is close to zero, the

power of the tests tend to α = 0.05 as expected, since under H0 we have that A = 0. We can also

emphasize that the proposed low-complexity test has a performance very similar to the exact one,

requiring a lower implementation cost. The arithmetic cost of the proposed test approximation is

detailed next.
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Figure 43 – Exact and approximate periodogram (S( fk)) under H0.
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Figure 44 – Exact and approximate periodogram (S( fk)) under H1.
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Algorithm 5: Pseudocode for computing the power of the test.
Input: N, α , R, χ2

(τ,2)
Output: Power of the test (1−β )

for j in (0 : R) do
Generate x[n] under H1;
Compute S( fk) and then T ;
if T > χ2

(τ,2) then
i← i+1;

end if
end for
return i/R

Figure 45 – Power of the test for different lengths of the signal for f = 0.01.
(a) N = 32
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(b) N = 64

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Amplitude

0.0

0.2

0.4

0.6

0.8

1.0
Po

we
r

Approximate
Exact DFT
α= 0.05

(c) N = 128
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(d) N = 256
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6.5.2 Fast algorithms

The proposed DFT approximations for computing the statistical test were derived in

order to be low-complexity transforms. Given the fact that the approximate transforms are

multiplierless, they have already a gain when compared to the exact DFT or FFTs. Table 23

presents the arithmetic complexity of the DFT computed by the Radix-2 algorithm [262] and the
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Figure 46 – Power of the test for different lengths of the signal for f = 0.10.
(a) N = 32
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(b) N = 64
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(c) N = 128
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(d) N = 256
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proposed approximations. Notice that the proposed approximations only require real additions.

Still, we can reduce the arithmetic cost of the proposed transforms by factorizing them into

Table 23 – Arithmetic complexity of the DFT computed by the Radix-2 algorithm the and proposed
transforms

FFT (Radix-2 Algorithm) [262] Approximate DFT
N Complex Multiplications Complex Adds Multiplications Adds

8 12 24 0 66
16 32 64 0 354
32 80 160 0 1538
64 192 384 0 6530
128 448 896 0 26626
256 1024 2048 0 107010

Source: Author (2023).

sparce matrices [23]. We derived the fast algorithms for the approximate DFTs for N = 8, 16,

32, and 64. The fast algorithms are presented in Appendix D. The arithmetic complexity of the

proposed approximations with and without the factorization are presented in Table 24.
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Figure 47 – Power of the test for different lengths of the signal for f = 0.25.
(a) N = 32
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(b) N = 64
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(c) N = 128
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(d) N = 256
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Table 24 – Arithmetic complexity of the proposed transforms
before and after the factorization

Before factorization After factorization Reduction (%)
N Adds Bit-shifts Adds Bit-shifts Adds Bit-shifts

8 66 48 20 6 69.7 87.5
16 354 192 58 12 83.6 93.7
32 1538 704 152 26 90.1 96.3
64 6530 2816 422 88 93.5 96.8

Source: Author (2023).

6.6 CONCLUSIONS

In this chapter, we present a review of the problem of detection theory in the context of

statistical inference. The signal detection can be related to a hypothesis test and the statistical

test can be defined through the DFT of the sequence of the signal. We proposed an approximate

test based on low-complexity approximations for the DFT. The proposed approximations are

multiplierless and require fewer additions and bit-shift operations than the direct implementation

of the DFT. Considering the problem of detecting a simple sinusoidal tone, we have shown with
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Figure 48 – Power of the test for different lengths of the signal for f = 0.375.
(a) N = 32
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(b) N = 64
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(c) N = 128
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(d) N = 256
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computational experiments that the proposed low-complexity test performs similarly to the exact

test, at a lower cost.
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7 CONCLUSIONS

In this final chapter, we present the concluding remarks, contributions, and future works

of the thesis.

7.1 CONCLUDING REMARKS

In this thesis, we presented the relevance of discrete transforms in the context of signal

processing systems. Emphasis was given to the Karhunen-Loève transform, the discrete cosine

transform, and the discrete Fourier transform, as well as how approximations of these transforms

can be useful in contexts where there is a severe shortage of energy resources. In each chapter,

we introduced new classes of approximations for the transforms, along with fast algorithms and

applications where these approximations can be considered.

In Chapter 2, we presented a new class of KLT approximations based on the signum

function, the signed KLT (SKLT). The proposed approximate transforms are data-independent

which differs from the fast approximations for the KLT that were already known in the literature.

Total figures of merit were proposed for the selection of optimal transforms. The 4-, 8-, 16-, and

32-point transforms were submitted to a comprehensive assessment in the context of image and

video coding. We also derived fast algorithms for the proposed transforms which were capable

of reducing the arithmetic cost of their implementation. The experiments on image and video

coding demonstrated the suitability of the proposed approximations, generating high-quality

images according to coding and similarity metrics.

In Chapter 3, analogously to the approach used for deriving the SKLT, we presented a new

class of low-complexity transforms that are obtained through the application of the rounding-off

function to the elements of the KLT matrix, the rounded KLT (RKLT). The proposed transforms

were evaluated considering figures of merit that measure the coding power and distance of

the proposed approximations to the exact KLT and were also explored in image compression

experiments. Fast algorithms were introduced for the proposed approximate transforms. Due to

its relevance in practical image coding systems, the special case N = 8 was comprehensively

examined, but the methodology presented in that chapter is capable of finding an approximation

for any blocklength N. It was shown that the proposed transforms perform well in image

compression and require a low implementation cost.

In Chapter 4, a design methodology was introduced to obtain optimal KLT approxi-

mations. The collection of the proposed new approximations was generated based on integer
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functions and an optimization problem was solved aiming at the proposition of optimal trans-

forms according to defined figures of merit. Fast algorithms were also derived for the optimal

approximations proposed by factorizing the transforms into sparse matrices. The applicability

of the proposed approximation in the context of image compression was demonstrated, and an

FPGA hardware implementation was provided, showing the trade-off between performance and

resource usage.

In Chapter 5, we presented new approximations for larger blocklengths for the DCT based

on minimal angle similarity. We considered an approach already known in the literature used for

proposing 8-point DCT approximations to propose 16-, 32-, and 64-point approximations. We

showed that the proposed approximations outperformed approximations for the DCT already

known in the literature according to some figures of merit. We also derived fast algorithms for the

low-complexity transforms. The proposed approximations were assessed for image compression

experiments, where their applicability and performance were highly satisfactory.

In Chapter 6, we reviewed the signal detection problem as in the context of a statistical

hypothesis test. We also presented a low-complexity alternative for computing the statistical test

based on an approximation of the DFT. We have shown that the proposed approximation test

performs very similarly to the statistical test considering the exact DFT when assessed under the

power and size of the test (type I and type II errors).

7.2 CONTRIBUTIONS

Some of the contributions of the thesis are already published in the literature. The work

from Chapters 2, 3, and 5 are published in international journals. The paper from Chapter 3,

“Low-complexity rounded KLT approximation for image compression” has 3 citations. The

paper from Chapter 4 is submitted and under review, and the manuscript from Chapter 6 is in

preparation for publication.

The contributions of the thesis are listed below:

1. Chapter 2: RADÜNZ, A. et al. Data-independent low-complexity KLT approximations

for image and video coding. Signal Processing: Image Communication, 2021,

https://doi.org/10.1016/j.image.2021.116585

2. Chapter 3: RADÜNZ, A. P.; BAYER, F. M.; CINTRA, R. J. Low-complexity rounded

KLT approximation for image compression. Journal of Real-Time Image Processing,

p. 1–11, 2021, https://doi.org/10.1007/s11554-021-01173-0.

https://doi.org/10.1016/j.image.2021.116585
https://doi.org/10.1007/s11554-021-01173-0
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3. Chapter 4: RADÜNZ, A. P.; COELHO, D. F. G.; BAYER, F. M.; CINTRA, R. J. Fast Data-

independent KLT Approximations Based on Integer Functions submitted to Multimedia

Tools and Applications, under review.

4. Chapter 5: RADÜNZ, A. P.; PORTELLA, L.; OLIVEIRA, R. S.; BAYER, F. M.; CIN-

TRA, R. J. Extensions on low-complexity DCT approximations for larger blocklengths

based on minimal angle similarity. Journal of Signal Processing Systems, 2023,

https://doi.org/10.1007/s11265-023-01848-w

5. Chapter 6: Manuscript in development: RADÜNZ, A. P.; BAYER, F. M.; CINTRA, R. J.

Low-complexity methods for statistical signal processing.

7.3 FUTURE WORK

As a suggestion for future work based on this work, the following lines of research

stand out: to find new applications for the approximate discrete transforms, to expand the

approximation approach to the multidimensional case, and to derive approximations of larger

blocklengths. The suggestions for future work research are detailed next:

1. Studying other applications for the KLT approximations: we have shown the applicability

of the KLT when assessed to image and video compression, but there is still room for

improvement in scenarios where we have signals with low correlation.

2. Proposing new approximations for larger blocklengths: with the advancement of image

and video encoding technology, there is a demand for larger blocklengths that could be

employed in modern codecs. For instance, there is a new video standard coding, Versatile

Video Coding (VVC), that requires 64-point transforms.

3. Expanding the approximation approach to the multidimensional case: the multidimensional

transform can be applied for filtering multispectral images, for example. This type of

image can be seen as a three-dimensional cuboid, in which the third dimension is the

wavelength. It is widely used and with great current importance in geoscience and remote

sensing contexts.

4. Studying other contexts where the DFT is used as a tool: the bispectrum estimation. The

bispectrum is the discrete Fourier transform of the third-order cumulant sequence and is a

very useful tool in the context of signal processing. Since the bispectrum estimation de-

pends on the DFT computation, low-complexity approximations can be a good alternative

in contexts of lower processing power or severe restrictions of energy autonomy.

https://doi.org/10.1007/s11265-023-01848-w
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5. Applying the developed methods in the most different real applications in signal and image

processing.
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n. 1, p. 1–13, 2020.

https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/


148

159 GEETHA, V. et al. Hybrid optimal algorithm-based 2D discrete wavelet transform for
image compression using fractional KCA. Multimedia Systems, Springer, v. 26, n. 6, p. 687–702,
2020.

160 ZHANG, X.; KWONG, S.; KUO, C.-C. J. Data-driven transform based compressed image
quality assessment. IEEE Transactions on Circuits and Systems for Video Technology, 2020.

161 YANG, C. et al. Blind image quality assessment based on multi-scale KLT. IEEE Trans-
actions on Multimedia, 2020.

162 CHEN, H.; ZENG, B. New transforms tightly bounded by DCT and KLT. IEEE Signal
Processing Letters, v. 19, n. 6, p. 344–347, 2012.

163 THOMAKOS, D. Smoothing non-stationary time series using the discrete cosine transform.
Journal of Systems Science and Complexity, Springer, v. 29, n. 2, p. 382–404, 2016.

164 RAO, K. R.; YIP, P. C. Discrete Cosine Transform, Algorithm, Advantage and Appli-
cations. San Diego, CA: [s.n.], 1990.

165 BISWAS, M.; PICKERING, M. R.; FRATER, M. R. Improved H.264-based video coding
using an adaptive transform. In: IEEE. 2010 IEEE International Conference on Image
Processing. Hong Kong, 2010. p. 165–168.

166 OLIVEIRA, P. A. et al. A discrete Tchebichef transform approximation for image and
video coding. IEEE Signal Processing Letters, v. 22, n. 8, p. 1137–1141, 2015.

167 OLDHAM, K. B.; MYLAND, J.; SPANIER, J. An atlas of functions: with equator, the
atlas function calculator. New York, NY: Springer Science & Business Media, 2010.

168 PLONKA, G. A global method for invertible integer DCT and integer wavelet algorithms.
Applied and Computational Harmonic Analysis, Academic Press, v. 16, n. 2, p. 90–110, 2004.

169 HARTIGAN, J. A.; WONG, M. A. Algorithm AS 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), Wiley Online Library,
v. 28, n. 1, p. 100–108, 1979.

170 FLURY, B. N.; GAUTSCHI, W. An algorithm for simultaneous orthogonal transformation
of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on
Scientific and Statistical Computing, v. 7, n. 1, p. 169–184, 1986.

171 BAGHAIE, R.; DIMITROV, V. Computing Haar transform using algebraic integers. Con-
ference Record of Thirty-Fourth Asilomar Conference on Signal, Systems and Computers,
v. 1, p. 438–442, 2000.

172 SAFIRI, H. et al. Design and FPGA implementation of systolic FIR filters using the Fermat
number ALU. In: Asilomar Conference on Signals, Systems and Computers. [S.l.: s.n.], 1996.
v. 2, p. 1052–1056.

173 PERRE, L. Van der; LIU, L.; LARSSON, E. G. Efficient DSP and circuit architectures for
massive MIMO: State of the art and future directions. IEEE Transactions on Signal Processing,
v. 66, n. 18, p. 4717–4736, 2018.

174 DOMOUCHTSIDIS, S. et al. Symbol-level precoding for low complexity transmitter
architectures in large-scale antenna array systems. IEEE Transactions on Wireless Communi-
cations, v. 18, n. 2, p. 852–863, 2019.



149

175 IBHAZE, A. E.; ORUKPE, P. E.; EDEKO, F. O. High capacity data rate system: Review
of visible light communications technology. Journal of Electronic Science and Technology,
v. 18, n. 3, p. 100055, 2020.

176 ZHANG, L. et al. Using layered division multiplexing for wireless in-band distribution
links in next generation broadcast systems. IEEE Transactions on Broadcasting, v. 67, n. 1, p.
68–82, 2021.

177 POULARIKAS, A. D. Transforms and applications handbook. Boca Raton: CRC press,
2010.

178 JAIN, A. K. Image data compression: A review. Proceedings of the IEEE, v. 69, n. 3, p.
349–389, 1981.

179 WELCH, T. A. A technique for high-performance data compression. Computer, n. 6, p.
8–19, 1984.

180 CLARKE, R. Application of sine transform in image processing. Electronics Letters, IET,
v. 19, n. 13, p. 490–491, 1983.

181 TABLADA, C.; BAYER, F. M.; CINTRA, R. J. A class of DCT approximations based on
the Feig–Winograd algorithm. Signal Processing, Elsevier, v. 113, p. 38–51, 2015.

182 COUTINHO, V. A. et al. A multiplierless pruned DCT-like transformation for image and
video compression that requires ten additions only. Journal of Real-Time Image Processing,
Springer, p. 1–9, 2015.

183 SHI, Y. Q.; SUN, H. Image and video compression for multimedia engineering: Fun-
damentals, algorithms, and standards. Boca Raton: CRC press, 1999.

184 ZHAO, X. et al. Transform coding in the VVC standard. IEEE Transactions on Circuits
and Systems for Video Technology, v. 31, n. 10, p. 3878–3890, 2021.

185 COELHO, D. F.; CINTRA, R. J.; DIMITROV, V. S. Efficient computation of the 8-point
DCT via summation by parts. Journal of Signal Processing Systems, Springer, v. 90, n. 4, p.
505–514, 2018.

186 SUN, H. et al. Approximate DCT design for video encoding based on novel truncation
scheme. IEEE Transactions on Circuits and Systems I: Regular Papers, v. 66, n. 4, p.
1517–1530, 2019.

187 LIANG, W.-D.; LIU, X.-D. Comparison of approximate DCT and approximate DTT for
image compression. In: 2021 IEEE 2nd International Conference on Big Data, Artificial
Intelligence and Internet of Things Engineering. Nanchang, China: [s.n.], 2021. p. 337–341.

188 PAIM, G. et al. Power efficient 2-D rounded cosine transform with adder compressors for
image compression. In: 2015 IEEE International Conference on Electronics, Circuits, and
Systems (ICECS). Cairo, Egypt: IEEE, 2015. p. 348–351.

189 BELYAEV, E.; BIE, L.; KORHONEN, J. Motion JPEG decoding via iterative thresholding
and motion-compensated deflickering. In: 2020 IEEE 22nd International Workshop on
Multimedia Signal Processing (MMSP). Fully Virtual: IEEE, 2020. p. 1–6.



150

190 BUSSON, A. J. et al. Video quality enhancement using deep learning-based prediction
models for quantized DCT coefficients in MPEG I-frames. In: IEEE. 2020 IEEE International
Symposium on Multimedia (ISM). Naples, Italy, 2020. p. 29–32.

191 SINGHADIA, A.; MAMILLAPALLI, M.; CHAKRABARTI, I. Hardware-efficient 2D-
DCT/IDCT architecture for portable HEVC-compliant devices. IEEE Transactions on Con-
sumer Electronics, v. 66, n. 3, p. 203–212, 2020.

192 MASERA, M.; MASERA, G.; MARTINA, M. An area-efficient variable-size fixed-point
DCT architecture for HEVC encoding. IEEE Transactions on Circuits and Systems for Video
Technology, v. 30, n. 1, p. 232–242, 2020.

193 MAHER, J.; MEHER, P. K. Scalable approximate DCT architectures for efficient HEVC-
compliant video coding. IEEE Transactions on Circuits and Systems for Video Technology,
v. 27, n. 8, p. 1815–1825, 2017.

194 SURESH, H.; HEGDE, S.; SARTORI, J. Approximate compression: enhancing compress-
ibility through data approximation. In: IEEE. Proceedings of the 15th IEEE/ACM Symposium
on Embedded Systems for Real-Time Multimedia. Seoul, Republic of Korea, 2017. p. 41–50.

195 SIDATY, N. et al. Compression performance of the versatile video coding: HD and UHD
visual quality monitoring. In: IEEE. 2019 Picture Coding Symposium (PCS). Ningbo, China,
2019. p. 1–5.

196 DONG, J. et al. 2-D order-16 integer transforms for HD video coding. IEEE Transactions
on Circuits and Systems for Video Technology, v. 19, n. 10, p. 1462–1474, 2009.

197 THIRIPURASUNDARI, C.; SUMATHY, V.; THIRUVENGADAM, C. An FPGA imple-
mentation of novel smart antenna algorithm in tracking systems for smart cities. Computers &
Electrical Engineering, Elsevier, v. 65, p. 59–66, 2018.

198 MADANAYAKE, A. et al. Low-power VLSI architectures for DCT\DWT: Precision vs
approximation for HD video, biomedical, and smart antenna applications. IEEE Circuits and
Systems Magazine, v. 15, n. 1, p. 25–47, 2015.

199 RAJAPAKSHA, N. et al. Asynchronous realization of algebraic integer-based 2D DCT
using Achronix Speedster SPD60 FPGA. Journal of Electrical and Computer Engineering,
v. 2013, p. 1–9, 2013.

200 MADISHETTY, S. K. et al. VLSI architectures for the 4-tap and 6-tap 2-D Daubechies
wavelet filters using algebraic integers. IEEE Transactions on Circuits and Systems I: Regular
Papers, v. 60, n. 6, p. 1455–1468, 2012.

201 HAGHIGHAT, M. B. A.; AGHAGOLZADEH, A.; SEYEDARABI, H. Multi-focus image
fusion for visual sensor networks in DCT domain. Computers & Electrical Engineering,
Elsevier, v. 37, n. 5, p. 789–797, 2011.

202 LIANG, Y. et al. Image encryption combining multiple generating sequences controlled
fractional DCT with dependent scrambling and diffusion. Journal of Modern Optics, Taylor &
Francis, v. 62, n. 4, p. 251–264, 2015.

203 WAHID, K.; KO, S.-B.; TENG, D. Efficient hardware implementation of an image com-
pressor for wireless capsule endoscopy applications. In: IEEE. 2008 IEEE International Joint
Conference on Neural Networks. Hong Kong, China, 2008. p. 2761–2765.



151

204 WAHID, K. A.; ISLAM, M. A.; KO, S.-B. Lossless implementation of Daubechies 8-tap
wavelet transform. In: IEEE. 2011 IEEE International Symposium of Circuits and Systems.
Rio de Janeiro, Brazil, 2011. p. 2157–2160.

205 CHIPER, D. F.; COTOROBAI, L. T. A novel VLSI algorithm for a low complexity
VLSI implementation of DCT based on pseudo circular correlation structures. In: IEEE. 2020
International Symposium on Electronics and Telecommunications. Timisoara, 2020. p. 1–4.

206 CHUNG, R.-L. et al. VLSI implementation of a cost-efficient Loeffler DCT algorithm with
recursive CORDIC for DCT-based encoder. Electronics, Multidisciplinary Digital Publishing
Institute, v. 10, n. 7, p. 862, 2021.

207 HSIAO, S.-F. et al. Efficient VLSI implementations of fast multiplierless approximated
DCT using parameterized hardware modules for silicon intellectual property design. IEEE
Transactions on Circuits and Systems I: Regular Papers, v. 52, n. 8, p. 1568–1579, 2005.

208 SENTHILPARI, C. et al. Design a low voltage amp; low power multiplier-free pipelined
DCT architecture using hybrid full adder. In: IEEE. 2018 IEEE 5th International Conference
on Engineering Technologies and Applied Sciences (ICETAS). Bangkok, Thailand, 2018. p.
1–6.

209 SAPONARA, S. Real-time and low-power processing of 3D direct/inverse discrete cosine
transform for low-complexity video codec. Journal of Real-Time Image Processing, Springer,
v. 7, n. 1, p. 43–53, 2012.

210 BAHAR, A. N.; WAHID, K. A. Design and implementation of approximate DCT architec-
ture in quantum-dot cellular automata. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, v. 28, n. 12, p. 2530–2539, 2020.

211 LEE, D.-U. et al. Energy-efficient image compression for resource-constrained platforms.
IEEE Transactions on Image Processing, v. 18, n. 9, p. 2100–2113, 2009.

212 MECHOUEK, K. et al. Low complexity DCT approximation for image compression
in wireless image sensor networks. Journal of Circuits, Systems and Computers, World
Scientific, v. 25, n. 08, p. 1650088, 2016.

213 MA, S.; AMPADU, P. Approximate memory with approximate DCT. In: Proceedings of
the 2019 on Great Lakes Symposium on VLSI. Tysons Corner, VA: ACM, 2019. p. 355–358.

214 CAMPOBELLO, G. et al. RAKE: A simple and efficient lossless compression algorithm
for the internet of things. In: 2017 25th European Signal Processing Conference (EUSIPCO).
Kos island, Greece: [s.n.], 2017. p. 2581–2585.

215 HAMZA, R.; HASSAN, A.; PATIL, A. S. A lightweight secure IoT surveillance framework
based on DCT-DFRT algorithms. In: SPRINGER. International Conference on Machine
Learning for Cyber Security. Xian, China, 2019. p. 271–278.

216 MA, Z. et al. A detection and relative direction estimation method for UAV in sense-and-
avoid. In: IEEE. 2015 IEEE International Conference on Information and Automation.
Yunnan, China, 2015. p. 2677–2682.

217 MARGELIS, G. et al. Efficient DCT-based secret key generation for the internet of things.
Ad Hoc Networks, Elsevier, v. 92, p. 101744, 2019.



152

218 KANSAL, L. et al. Efficient and robust image communication techniques for 5G appli-
cations in smart cities. Energies, Multidisciplinary Digital Publishing Institute, v. 14, n. 13,
p. 3986, 2021.

219 POTLURI, U. et al. Multiplier-free DCT approximations for RF multi-beam digital
aperture-array space imaging and directional sensing. Measurement Science and Technol-
ogy, IOP Publishing, v. 23, n. 11, p. 114003, 2012.

220 ZHANG, J. et al. A low-power and high-PSNR unified DCT/IDCT architecture based on
EARC and enhanced scale factor approximation. IEEE Access, v. 7, p. 165684–165691, 2019.

221 JAIN, R.; JAIN, P. FPGA implementation of recursive algorithm of DCT. In: SPRINGER.
Proceedings of International Conference on Artificial Intelligence and Applications. Settat,
Morocco, 2021. p. 203–212.

222 ESCOBAR, R. V. et al. Evaluation and comparison of DCT approximations on FPGA for
hardware reduction. In: 2020 IEEE International Autumn Meeting on Power, Electronics
and Computing. Guerrero, Mexico: [s.n.], 2020. v. 4, p. 1–5.

223 TSOUNIS, I.; PAPADIMITRIOU, A.; PSARAKIS, M. Analyzing the impact of approx-
imate adders on the reliability of FPGA accelerators. In: IEEE. 2021 IEEE European Test
Symposium. Fully Virtual, 2021. p. 1–2.

224 SENAPATI, R. K.; PATI, U. C.; MAHAPATRA, K. K. A low complexity orthogonal
8× 8 transform matrix for fast image compression. Proceeding of the Annual IEEE India
Conference (INDICON), Kolkata, India, p. 1–4, 2010.

225 MARDIA, K.; JUPP, P. Directional Statistics. England: Wiley, 2009. (Wiley Series in
Probability and Statistics). ISBN 9780470317815.

226 JAMMALAMADAKA, S.; SENGUPTA, A. Topics in Circular Statistics. Singapore:
World Scientific, 2001. v. 5. (Series on multivariate analysis, v. 5). ISBN 9789812779267.

227 STRANG, G. Linear algebra and its applications. Belmont, CA: Thomson, Brooks/Cole,
2006.

228 BARTLE, R. G.; SHERBERT, D. R. Introduction to real analysis. New York: Wiley,
2000. v. 2.

229 KATTO, J.; YASUDA, Y. Performance evaluation of subband coding and optimization of
its filter coefficients. Journal of Visual Communication and Image Representation, v. 2, n. 4,
p. 303–313, dez. 1991. ISSN 1047-3203.

230 YIP, P.; RAO, K. The decimation-in-frequency algorithms for a family of discrete sine and
cosine transforms. Circuits, Systems and Signal Processing, Springer, v. 7, n. 1, p. 3–19, 1988.

231 OPPENHEIM, A. V.; SCHAFER, R. W.; BUCK, J. R. Discrete-time signal processing.
2nd. ed. Upper Saddle River, New Jersey: Prentice Hall, 1999.

232 KAY, S. M. Fundamentals of statistical signal processing - Volume II - Detection
theory. Upper Saddle Tiver, NJ: Pearson Education, 1998.

233 HAYES, M. H. Statistical digital signal processing and modeling. United States: John
Wiley & Sons, 1996.



153

234 HELSTROM, C. W. Statistical theory of signal detection: international series of
monographs in electronics and instrumentation. [S.l.]: Elsevier, 2013. v. 9.

235 ZHANG, X.; CUI, C. Signal detection for cognitive radar. Electronics Letters, Wiley
Online Library, v. 49, n. 8, p. 559–560, 2013.

236 MA, J.; LI, H.; GAN, L. Order-statistic based target detection with compressive mea-
surements in single-frequency multistatic passive radar. Signal Processing, Elsevier, v. 203, p.
108785, 2023.

237 RAHMAN, M. H. et al. Deep learning based improved cascaded channel estimation
and signal detection for reconfigurable intelligent surfaces-assisted MU-MISO systems. IEEE
Transactions on Green Communications and Networking, IEEE, 2023.

238 GONG, Y. et al. Viterbinet-based signal detection for OTFS system. IEEE Communica-
tions Letters, 2023.
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APPENDIX A – MATRIX FACTORIZATION SKLT

In the following appendix, we present the matrices factorization of length N = 16 and 32

from Chapter 2.

• For N = 16, we can rewrite T̂16,1, T̂16,2, and T̂16,3 [71] as follows

T̂16,1 =
1
4

·P16 ·A′16,3 ·A16,2 ·A16,1,

T̂16,2 =
1
4

·P16 ·A′16,5 ·A′16,4 ·A′′16,3 ·A16,2 ·A16,1,

T̂16,3 =
1
4

·P16 ·A′′16,5 ·A′′16,4 ·A′′′16,3 ·A16,2 ·A16,1,

where

P16 =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1


,

A16,1 =

I8 Ī8

Ī8 −I8

 , A16,2 =

A8,1

A8,1

 ,

A′16,3 =



1 1 1 1
1 1 − 1
1 − − 1
1 − 1 −

1 1 1 1
1 − − 1

1 1 − 1
− 1 − 1

1 1 1 1
1 1 − 1
1 − 1 1
1 − 1 1

− − − −
− 1 1 −

1 − 1 −
1 − 1 −


,

A′′16,3 =


1 1

1
1 −

1
1

1 1
1

1 −
I8

 , A′16,4 =


1

1
1

1
1

1 1
1 −

I8

 ,
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A′16,5 =



1 1 1
1 1 −
− 1 1

1 − −
1 1

1 − −
1 1
− 1

1 1 1 1
1 1 − 1
1 − 1 1
1 − 1 1

− − − −
− 1 1 −

1 − 1 −
1 − 1 −


,

A′′′16,3 =

A8,2

I8

 , A′′16,4 =


1 1
1 −

1 1
1 −

1
1

1
1

I8

 ,

A′′16,5 =



1
1

1
−

1 1
− −

1 1
1 −

1 1 1 1
1 1 − 1
1 − − 1
1 − 1 1

− − − −
− 1 1 −

1 − 1 −
1 − 1 −


.

• Considering N = 32, we have

T̂32,1 =
1√
32

·P32 ·A′32,3 ·A32,2 ·A32,1,

T̂32,2 =
1√
32

·P32 ·A′′32,3 ·A32,2 ·A32,1,

T̂32,3 =
1√
32

·P32 ·A′′′32,3 ·A32,2 ·A32,1,

T̂32,4 =
1√
32

·P32 ·A′32,6 ·A′32,5 ·A′32,4 ·A′′′′32,3 ·A32,2 ·A32,1,
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where

P32 =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



,

A32,1 =

I16 Ī16

Ī16 −I16

 , A32,2 =

A16,1

A16,1

 ,

A′32,3 =



1 1 1 1 1 1 1 1
1 1 1 − − 1 1 1
1 1 − − − 1 − 1
1 − − 1 − 1 − 1
1 − − 1 1 − − 1
1 − 1 − − 1 − −
1 − 1 − − 1 − 1
1 − 1 − 1 − 1 −

1 1 1 1 1 1 1 1
1 1 − − − − 1 1

1 1 1 − − − 1 1
1 − − − 1 1 − 1

1 1 1 − 1 − − 1
1 − 1 − 1 1 − 1

1 − 1 1 − 1 − 1
− 1 − 1 − 1 − 1

1 1 1 1 1 1 1 1
1 1 1 1 1 − − 1
1 1 1 − − − 1 −
1 1 − − 1 1 − −
1 − 1 − 1 1 − 1
1 1 1 1 − 1 − 1
1 − − 1 − − 1 −
1 − 1 − 1 1 − 1

− − − − − − − −
1 1 1 1 − − − −

− 1 − − 1 1 − −
1 1 − − 1 1 − −

− − 1 − 1 − 1 −
1 1 − 1 1 − 1 −
− 1 − − 1 − 1 −

1 − 1 − 1 − 1 −



,
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A′′32,3 =



1 1 1 1 1 1 1 1
1 1 1 − − 1 1 1
1 1 − − − 1 − 1
1 − − 1 1 − 1 1
1 − − 1 1 − − 1
1 − 1 − − 1 − −
1 − 1 − − 1 − 1
1 − 1 − 1 − 1 −

1 1 1 1 1 1 1 1
1 1 − − − − 1 1

1 1 1 − − − 1 1
1 − − − 1 1 − 1

1 1 1 − 1 − − 1
1 − 1 − 1 1 − 1

1 − 1 1 − 1 − 1
− 1 − 1 − 1 − 1

1 1 1 1 1 1 1 1
1 1 1 1 1 − − 1
1 1 1 − − − 1 −
1 1 − − 1 1 − −
1 − 1 − 1 1 − 1
1 1 1 1 − 1 − 1
1 − − 1 − − 1 −
1 − 1 − 1 1 − 1

− − − − − − − −
1 1 1 1 − − − −

− 1 − − 1 1 − −
− 1 1 − − 1 1 −
− − 1 − 1 − 1 −

1 1 − 1 1 − 1 −
− 1 − − 1 − 1 −

1 − 1 − 1 − 1 −



,

A′′′32,3 =



1 1 1 1 1 1 1 1
1 1 1 − − 1 1 1
1 1 − − − 1 − 1
1 − − 1 1 1 − 1
1 − − 1 1 − − 1
1 − 1 1 − − 1 −
1 − 1 − − 1 − 1
1 − 1 − 1 − 1 −

1 1 1 1 1 1 1 1
1 1 − − − − 1 1

1 1 1 − − − 1 1
− − − 1 1 − − 1

1 1 1 − 1 − − 1
− 1 1 − 1 1 − 1
1 − 1 1 − 1 − 1
− 1 − 1 − 1 − 1

1 1 1 1 1 1 1 1
1 1 1 1 − − 1 1
1 1 − − − 1 − 1
1 1 − − 1 − 1 −
1 − 1 − 1 1 − 1
1 1 1 1 − 1 − 1
1 − − 1 − − 1 −
1 − 1 − 1 1 − 1

− − − − − − − −
− 1 1 1 1 − − −

− 1 − − 1 1 − −
− 1 − 1 1 − 1 −
− − 1 − 1 − 1 −

1 1 − 1 1 − 1 −
− 1 − − 1 − 1 −

1 − 1 − 1 − 1 −



,

A′′′′32,3 =

A16,2

I16

 , A′32,4 =

A′′′16,3

I16

 , A′32,5 =

A′′16,4

I16

 ,
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and

A′32,6 =



1
1 1

1
− −

1
1 1

−
1 −

1 1 1 1
− − − −

1 1 − 1
− 1 1 −

1 − − 1
1 − 1 −

1 − 1 1
1 − 1 −

1 1 1 1 1 1 1 1
1 1 1 − − 1 1 1
1 1 − 1 − − 1 1
1 − − 1 − 1 − 1
1 − 1 − − 1 − 1
1 1 1 1 − 1 − 1
1 − 1 − − − 1 −
1 − 1 − 1 1 − 1

− − − − − − − −
− − − 1 1 1 − −

− − 1 1 − − 1 −
− 1 − 1 1 − 1 −
− − 1 − 1 − 1 −

1 − 1 − 1 1 1 −
− 1 − − 1 − 1 −

1 − 1 − 1 − 1 −



.
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APPENDIX B – 2D TRANSFORMATION AND QUANTIZATION STEP

In the present appendix, the 2D transformation and quantization step from the image

compression scheme cited in Chapter 3 is detailed.

Let A be an 8×8 sub-block from an image. The 2D transformation from A induced by

an approximation T̂ is given by

B =

T̂ ·A · T̂⊤, if T is orthogonal,

T̂ ·A · T̂−1, if T is non-orthogonal,

=

(u ·u⊤)⊙ (T ·A ·T⊤), if T is orthogonal,

(u ·v⊤)⊙ (T ·A ·T−1), if T is non-orthogonal,

= R⊙ B̂, (B.1)

where u = diag(S) and v is given by the inverse elements from u. In the context of JPEG-like

compression [26], the quantized coefficient matrix B̂ is given by

B̄ = round(B÷Q), (B.2)

where Q is a quantization matrix and ÷ denotes the element-wise matrix division.

By applying Equation (B.1) into (B.2), we obtain

B̄ = round(R⊙ B̂÷Q) = round(B̂÷ Q̃),

where Q̃ = Q÷R. Note that R can be absorbed in the quantization step, thus, the complexity of

matrix S can be dismissed in the image compression applications [12, 16, 153].
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APPENDIX C – MATRIX FACTORIZATION DCT BASED ON ANGLE SIMILARITY

The matrices used in the Chapter 5 are detailed here. First, consider the following

butterfly-structure:

BN =

 I N
2

Ī N
2

−Ī N
2

I N
2

 .
For the sake of brevity, cycle notation [263–265] is used to present the permutation

matrices. The resulting permutation matrix is obtained by permuting the columns of the identity

matrix following the zero indexed cycle mapping.

• The low-complexity matrix T16,5 can be represented as

T16,5 = P16 ·M16 ·

 B2

I14

 ·

 B4

I12

 ·

 B8

I8

 ·B16

where

P16 = (1 8)(2 4)(3 12 9)(5 6 10)(7 14 13 11),

M16 =



1
−1
−1 −2

2 −1
− 1

2 −1 −2 −2

1 2 1
2 −2

−2 − 1
2 2 −1

2 −2 1 − 1
2
− 1

4 −
1
2 −1 −1 −2 −2 −2 −2

1
2 2 2 2 1 − 1

4 −1 −2

−1 −2 −1 1
2 2 2 − 1

4 −2

1 2 − 1
2 −2 − 1

4 2 1 −2

−2 −1 2 1
4 −2 1

2 2 −1

2 − 1
4 −2 2 − 1

2 −1 2 −1

−2 1 − 1
4 −1 2 −2 2 − 1

2
2 −2 2 −2 1 −1 1

2 −
1
4


.

• The low-complexity matrix T32,2 can be represented as

T32,2 = P32 ·

 L1

L2

 ·

 B2

I30

 ·

 B4

I28

 ·

 B8

I24


·

 B16

I16

 ·B32

where

P32 = (1 16 5 20 13 26 25 23 19 11 18 9 10 14 30)(2 8 6 28 29 31 3 24 21 15)(4 12 22 17 7),
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L1 =



1
−1
− 1

2 −1

1 − 1
2

1
2 1 −1

−1 1 − 1
2

1 −1 1
2

− 1
2 −1 −1

1
2 1 1 1 1

2 − 1
2 −1

− 1
2 −1 − 1

2
1
2 1 1 −1

1
2 1 − 1

2 −1 1 1
2 −1

−1 − 1
2 1 −1 1

2 1 − 1
2

1 −1 1 − 1
2 −

1
2 1 − 1

2
−1 1

2 − 1
2 1 −1 1 − 1

2
1 −1 1 −1 1

2 −
1
2

1
2

− 1
2 −

1
2 −

1
2 −1 −1 −1 −1



,

L2 =



− 1
2 −1 −1 −1 −1 − 1

2
1
2 1 1 1 1

2 − 1
2 −1 −1

1
2 1 1 1 − 1

2 −1 −1 − 1
2

1
2 1 1 1 − 1

2 −1

− 1
2 −1 −1 1 1 1

2 −
1
2 −1 −1 1 1 1

2 −
1
2 −1

1
2 1 1

2 −
1
2 −1 − 1

2 1 1 1
2 −1 −1 1 1 −1

− 1
2 −1 1 1

2 −1 −1 1 1
2 −1 −1 1

2 1 1
2 −1

1 1 − 1
2 −1 1

2 1 −1 1 1
2 −1 − 1

2 1 1
2 −1

−1 − 1
2 1 1

2 −1 − 1
2 1 −1 1 − 1

2 −1 1
2 1 −1

1 1
2 −1 1

2 1 −1 − 1
2 1 −1 1 1

2 −1 1 − 1
2

−1 1 −1 1 −1 − 1
2 1 −1 − 1

2 1 − 1
2 −

1
2 1 − 1

2
1 − 1

2 −
1
2 1 −1 1 −1 1

2
1
2 −1 1 −1 1 − 1

2
−1 1

2 −1 1 −1 1
2

1
2 −1 1 − 1

2 1 −1 1 − 1
2

1 −1 1
2 − 1

2 1 −1 1 − 1
2

1
2 −1 1 −1 1 − 1

2
−1 1 −1 1

2 −
1
2

1
2 −

1
2 1 −1 1 −1 1 −1 1

2
1 −1 1 −1 1 −1 1 −1 1 − 1

2
1
2 −

1
2

1
2 −

1
2

− 1
2 −

1
2 −

1
2 −

1
2 −

1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1

1
2 1 1 1 1 1 1 1

2
1
2 − 1

2 −
1
2 −1 −1 −1



.

• The low-complexity matrix T64,1 can be represented as

T64,1 = P64 ·


Z1

Z2

Z3

 ·

 B2

I62

 ·

 B4

I60

 ·

 B8

I56



·

 B16

I48

 ·

 B32

I32

 ·B64

where

P64 =(1 32 17 22 42 37 27 62 5 40 33 19 30 14 4 24 50 53 59 9 28 2 16 18 26 58 7 8 20 34 21 38 29 6 56)

(3 48 49 51 55 63 13 60 11 44 41 35 23 46 45 43 39 31 10 36 25 54 61 15 12 52 57),

Z1 =



1
−1
−1 −1

1
1 1 −1
−1 1 −1

1 −1 1
−1 −1 −1

−1 −1 −1 1 1 −1
1 1 −1 1 1 −1
−1 −1 1 −1 1 −1

1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1


,
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Z2 =



−1 −1 −1 1 1 1 −1 −1 1 1 1 −1
1 1 1 −1 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 −1 1 −1

1 1 −1 −1 1 −1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1 −1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1

1 −1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 1 1 1 −1 −1
−1 −1 −1 −1 −1 1 1 1 1 1 −1 −1


, Z3 =

[
Q1 Q2

Q3 Q4

]
,

and

Q1 =



−1 −1 −1 1 1 1 −1 −1 −1 1 1 1
1 1 1 −1 −1 1 1 1 −1 −1 1 1
−1 −1 −1 1 1 1 −1 −1 −1 1 1 −1 −1

1 1 −1 −1 1 1 −1 −1 1 1 1 −1 −1
−1 −1 1 1 −1 −1 1 1 −1 1 1

1 1 −1 1 1 −1 −1 1 1 −1 −1 1
−1 −1 1 1 −1 1 1 −1 −1 1 1 −1

1 1 −1 −1 1 1 −1 −1 1 −1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 1 −1 1

1 1 −1 1 −1 1 −1 −1 1 1 −1 1
−1 −1 1 −1 1 1 −1 1 −1 1 1 −1

1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
−1 1 −1 1 −1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1


,

Q2 =



−1 −1 1 1 1 −1 −1 −1 1 1 1 −1
−1 −1 −1 1 1 −1 −1 −1 1 1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 1 1 −1 −1 1 1 −1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 1 −1 −1 1 1 −1

−1 1 −1 1 −1 1 1 −1 −1 1 1 −1
−1 1 −1 −1 1 1 −1 1 −1 1 1 −1

1 −1 1 1 −1 1 −1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 1 −1 1 −1

−1 1 1 −1 1 1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1


,

Q3 =



−1 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1 −1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 1 1 1 1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1
1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 1 1

−1 −1 −1 1 1 1 −1 −1 −1 −1 1


,

Q4 =



−1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 1 −1 1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1
1 1 −1 1 −1 1 1 −1 1 −1 1
−1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
−1 1 1 1 1 1 1 1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1

1 −1 −1 −1 −1 −1 1 1 1 1 −1 −1
−1 1 1 1 −1 −1 −1 1 1 1 −1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1


.
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APPENDIX D – MATRIX FACTORIZATION FROM THE DFT APPROXIMATIONS

In this appendix, we present the matrices factorizations from the DFT approximations

from Chapter 6. Similarly to the factorization from Chapter 5, we consider the following

butterfly-structure:

BN =

 I N
2

Ī N
2

−Ī N
2

I N
2

 ,
where I is the identity matrix and Ī is the counter-identity matrix.

• For N = 8, the approximations T8 can be represented as

T8 = A5 ·M1 ·A4 ·A3 ·A2 ·A1,

where

A1=

 1

B7

, A2 =


B5

1

B3

 , A3 =



B3

1 j

1 j

−1 1

−1 1

1


,

A4=


B2

1 j

I4

−1 j

, A5=



1

1 −1

1

1 −1

1

1 1

1

1 1



,
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M1 =



2

2

2

−2

−2

−1

−2

−1



.

• For N = 16, the approximation T16 can be represented as

T16 = A6 ·A7 ·M1 ·A5 ·A4 ·A3 ·A2 ·A1,

where

A1=

 1

B15

, A2 =

 B9

B7

 , A3 =


B5

I4 j ·I4

−I4 j ·I4

B3

 ,

A4=



B3

I2 j ·I2

I8

−I2 j ·I2

1


, A5=


B2

1 j

I12

−1 j

,

A6=



1

I3 −I3

1

I3 −I3

1

I3 I3

1

I3 I3



, A7=



1

1 −1

1

1 −1

1

1 1

1

1 1

I8



,
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M1 =



2

2

2

−2

2

−1

−2

−1

−2

−1 −2

−1

−2 1

−2

−2 1

−1

−1 −2



.

• For N = 32, the approximation T32 can be represented as

T16 = A7 ·A8 ·A9 ·M1 ·A6 ·A5 ·A4 ·A3 ·A2 ·A1,

where

A1=

 1

B31

, A2 =

 B17

B15

 , A3 =


B9

I8 j ·I8

−I8 j ·I8

B7

 ,

A4=



B5

I4 j ·I4

I16

−I4 j ·I4

B3


, A5=



B3

I2 j ·I2

I24

−I2 j ·I2

1


,
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A6=


B2

1 j

I28

−1 j

, A7=



1

I7 −I7

1

I7 −I7

1

I7 I7

1

I7 I7



,

A8=



1

I3 −I3

1

I3 −I3

1

I3 I3

1

I3 I3

I16



, A9=



1

1 −1

1

1 −1

1

1 1

1

1 1

I24



,

• For N = 64, the approximation T64 can be represented as

T64 = A8 ·A9 ·A10 ·A11 ·M1 ·A7 ·A6 ·A5 ·A4 ·A3 ·A2 ·A1,

where

A1=

 1

B63

, A2 =

 B33

B31

 , A3 =


B17

I16 j ·I16

−I16 j ·I16

B15

 ,

A4=



B9

I8 j ·I8

I32

−I8 j ·I8

B7


, A5=



B5

I4 j ·I4

I48

−I4 j ·I4

B3


,
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M
1
=

                                                           2
2

2
−

2
2

−
1

−
2

−
1

2
−

1
−

2
−

1
−

2
1

−
2

−
2

1
−

1
−

1
−

2
−

2
−

1
−

1
−

2
−

1
−

2
−

1
−

2
1

−
1

−
1

2
−

1
−

2
1

−
2

1
−

1
−

2
−

2
1

−
1

−
2

1
−

1
2

−
1

−
1

−
1

−
2

1
−

1
−

2
−

1
−

1
−

2

                                                           .
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A6=



B3

I2 j ·I2

I28

−I2 j ·I2

1


, A7=


B2

1 j

I60

−1 j

,

A8=



1

I15 −I15

1

I15 −I15

1

I15 I15

1

I15 I15

I15



, A9=



1

I7 −I7

1

I7 −I7

1

I7 I7

1

I7 I7

I32



,

A10=



1

I3 −I3

1

I3 −I3

1

I3 I3

1

I3 I3

I48



, A11=



1

1 −1

1

1 −1

1

1 1

1

1 1

I56



,

M1=

 N1 N2

N3 N4

,
being
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N
1
=

                                                           2

−
2

−
1

−
2

1
−

2

−
1

−
1

−
2

−
1

−
2

1

−
2

1
−

2
1

−
1

−
2

−
1

2
−

1
−

1

−
1

−
2

−
1

−
1

−
2

                                                           ,
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N
2
=

                                                           

2
2

−
2

2
−

1

2
−

1
−

2
−

1

−
2

1

2
−

1
−

1
−

2
−

1
−

2

−
1

−
1

2
−

1

−
2

1
−

1
−

2
1

−
1

−
2

1

                                                           ,
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N
3
=

                                                           

−
2

−
1

−
1

−
2

−
2

−
1

1
2

−
1

−
2

1
−

1
−

2
1

2
−

2
−

1
1

−
2

1
−

2
1

1
−

2
1

−
2

1

−
2

1
−

1
−

2
2

−
2

1
−

1
1

−
1

−
2

−
2

1
−

1
2

−
2

1
−

1

−
1

2
−

1
−

1
−

1
2

−
2

1
2

−
1

−
1

−
1

−
2

−
1

1
2

1
−

2
−

1
−

2

−
1

−
1

−
2

−
1

−
1

−
1

−
1

−
2

−
2

−
2

                                                           ,
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N
4
=

                                                           

−
1

−
1

−
1

−
1

−
2

−
2

−
2

−
1

−
1

−
2

−
1

−
2

−
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−
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−
1

1
2
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−
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−
1

−
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−
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−

2
1

2
−

1
−

1
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−
1

−
2

1
−

1
2

−
2

1
−

1

−
2
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−

2
1

−
1

1
−

1
−

2
1

−
1

−
2

1
−

2
1

−
2

1
1

−
2

1

−
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−
2

1
2

−
2

−
1

1
−

1
−

2
1

−
1

−
1

−
2

−
2

−
1

1
2

                                                           .


	Title page
	Acknowledgements
	Abstract
	Resumo
	List of symbols
	Sumário
	Introduction
	Motivation
	Main Goals
	Organization of the thesis
	Computational support

	Signed KLT Approximations
	Introduction
	Signed KLT
	Karhunen-Loève Transform for the First-order Markov Process
	KLT Approximations

	Optimal SKLT
	Figures of Merit for Approximate Transforms
	Unified Coding Gain
	Transform Efficiency
	Mean-Square Error
	Total Error Energy
	Proposed Figures of Merit

	Optimization Problem
	Fast Algorithms
	Matrix Factorization for N=4
	Matrix Factorization for N=8


	Image and Video Coding
	Image Compression
	Video coding

	Conclusions

	Rounded KLT Approximations
	Introduction
	KLT and Approximate Transforms
	KLT for First-Order Markov Signal
	Approximation Theory
	Design Methodology

	Proposed Approximations
	Assessment Metrics
	Unified Coding Gain
	Transform Efficiency
	Mean Square Error
	Total Error Energy

	Fast Algorithm and Computational Complexity

	Image Compression
	JPEG-like Compression
	Results

	Conclusions

	Integer KLT Approximations
	Introduction
	KLT and Approximate Transforms
	KLT for First-Order Markovian Signal
	Approximation Theory
	Assessment Metrics
	Unified Coding Gain
	Transform Efficiency
	Mean square Error
	Total Error Energy


	Optimal Proposed Transforms
	Search Space
	Objective Function
	Methodology

	Proposed Approximate KLT and Evaluation
	Fast Algorithms and Computational Complexity
	Proposed Fast Algorithms
	Computational Complexity

	Experiments on Image Compression
	JPEG-like Compression
	Results and Discussion

	Hardware Implementation
	Conclusions

	Angle-based DCT
	Introduction
	Hardware review
	Exact and approximate DCT
	DCT Approximations with minimal angular error
	Proposed DCT approximations
	Low-complexity matrices for 16-, 32-, and 64-point DCT approximations
	JAM scaling method
	Performance assessment
	Fast algorithms

	Image compression experiments
	Qualitative analysis
	Quantitative analysis

	Conclusions

	Low-complexity methods for signal detection
	Introduction
	Statistical background
	Detection Problem
	Type I and Type II error


	Discrete Fourier transform computation
	Computational Complexity
	Approximation Theory

	Low-complexity DFT-based inference
	Proposed detector

	Numerical experiments
	Approximate test evaluation
	Fast algorithms

	Conclusions

	Conclusions
	Concluding remarks
	Contributions
	Future work

	REFERENCES
	Matrix factorization SKLT
	2D transformation and quantization step
	Matrix factorization DCT based on angle similarity
	Matrix factorization from the DFT approximations

