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ABSTRACT

Signal processing, at its core, is concerned with exploring how different representa-

tions of a signal may provide useful ways of manipulating it. These representations may

arise from a change in the subjacent algebra over which the signal samples are defined, for

example when embedding three- and four-dimensional signals into the quaternion space; or

maybe from a different model of the signal domain, as it happened with the development

of graph signal processing to deal with network-like data; or even by exploring new linear

transforms that map the signal onto a domain in which tasks such as compression, filtering

or feature extraction are easier or more efficient. This thesis traverses exactly through these

paths, aiming at answering the question of how to extend graph signal processing to the

case in which signals and edge weights are quaternion-valued. It proposes a new set of tools

which are a basis for what may be called Quaternion Graph Signal Processing (QGSP) and,

as byproducts of the research journey, it contributes to the field of fractional transforms in

two fronts: by proposing a new approach to the fractionalization of the quaternion discrete

Fourier transform (QDFT), alongside the proposition of its multiparametric version, and

by proposing a new fractional graph shift operator (GSO). Among the main results, we can

mention: (1) the polynomial representation of the fractional GSO for arbitrary graphs was

obtained, and it was shown that its use in filter design of finite impulse response and linear

and shift-invariant (FIR LSI) filters improve the overall filter quality for a given filter length;

(2) the new multiparametric fractional QDFT was used to create a holistic encryption scheme

for color images with opacity layer, which was shown to provide satisfactorily large key space

and key sensitivity; and (3) the main aspects of spectral analysis, filtering and compression in

the context of QGSP were formulated, along with extensive practical examples on real-world

data computed through a custom-made and open-source Python package.

Keywords: quaternions; fractional quaternion discrete Fourier transform; fractional

graph shift operator; quaternion graph signal processing.



RESUMO

A área de Processamento de Sinais, em sua essência, preocupa-se em explorar como

diferentes representações de um sinal podem fornecer maneiras úteis de manipulá-lo. Essas

representações podem surgir, por exemplo, a partir de uma mudança na álgebra subjacente

sobre a qual as amostras do sinal são definidas, como ocorre ao representar sinais de três ou

quatro dimensões como vetores de um espaço vetorial quaterniônico. Outras representações

podem advir de mudanças no domínio do sinal, como ocorreu com o desenvolvimento do

processamento de sinais de grafos, para lidar com sinais estruturados em rede; ou ainda

podem vir da exploração de novas transformadas lineares que mapeiam o sinal em um

domínio em que tarefas como compressão, filtragem ou extração de recursos sejam mais

fáceis ou eficientes. Esta tese desenvolve-se exatamente por esses caminhos, visando res-

ponder à pergunta de como estender o processamento de sinais sobre grafos para o caso

em que os sinais e pesos das arestas são quaterniônicos. Propõe-se um novo conjunto de

ferramentas que são a base do que pode ser chamado de Processamento de Sinais Quater-

niônicos sobre Grafos (QGSP, quaternion graph signal processing) e, como subprodutos da

jornada de pesquisa, contribui-se para o campo das transformadas fracionárias em duas

frentes: propondo uma nova abordagem para a fracionalização da transformada discreta

de Fourier quaterniônica (QDFT, quaternion discrete Fourier transform), juntamente com a

proposta de sua versão multiparamétrica, e propondo um novo operador de deslocamento

sobre grafo fracionário (GSO, graph shift operator). Entre os principais resultados, podemos

mencionar: (1) a representação polinomial do GSO fracionário para grafos arbitrários foi

obtida, e foi demonstrado que seu uso no projeto de filtros de resposta finita de impulso

e lineares e invariantes a deslocamento (FIR LSI, finite impulse response and linear and

shift-invariant) melhora a qualidade geral do filtro para um determinado comprimento de

filtro; (2) a nova QDFT fracionária multiparamétrica foi usada para criar um esquema de

criptografia holística para imagens coloridas com camada de opacidade, que fornece um

espaço de chave satisfatoriamente grande e com grande sensibilidade à mudança de chave; e

(3) os principais aspectos da análise espectral, filtragem e compressão no contexto do QGSP

foram formulados, juntamente com extensos exemplos práticos em dados do mundo real

calculados por meio de um pacote Python personalizado e de código aberto.

Palavras-chave: quatérnios; transformada discreta de Fourier quaterniônica fraci-

onária; operador de deslocamento de grafo fracionário; processamento de sinal de grafo

quaterniônico.
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1 INTRODUCTION

Signal processing often interweaves pure mathematics and engineering. One of

its concerns is the representation of signals (functions) and how different representations

may be explored to better manipulate such signals. The spectral analysis via Fourier and

similar transforms, for instance, aims to project the signal onto a domain in which the

energy support is more compact (compression), or in which some frequencies are easier

to be removed (filtering), or yet in which some relevant features may be created (feature

engineering for machine learning problems), among others (OPPENHEIM, 1999; RABINER;

SCHAFER, 2010; GRAF et al., 2015; VERGIN; O’SHAUGHNESSY; FARHAT, 1999).

One way to explore different signal representations is to alter the algebra over

which its sample values are defined. That is the case with number-theoretic transforms

(LIMA; SOUZA, 2011; BLAHUT, 2010; PEDROUZO-ULLOA; TRONCOSO-PASTORIZA;

PÉREZ-GONZÁLEZ, 2017; CHANDRA; SVALBE, 2014), which deal only with finite algebraic

structures instead of the usual complex (e.g. Fourier transform) or real fields (e.g. cosine

transform). As the underlying algebra is extended, e.g. going from R to C, it is possible

to process signals with more information per sample. Such was the motivation behind

Sangwine’s (SANGWINE, 1996) discrete version of a family of bidimensional transforms over

the quaternions, previously created by Ell (ELL, 1993): to exploit this class of hypercomplex

numbers with four real components to perform holistic color image processing. Upon mapping

each color channel inside a pixel into an imaginary component of a quaternion number,

the color image may be processed as a single 2D signal – instead of three, one per color

channel. The holistic (as opposed to separate) processing of the color signal allows to explore

the correlation and coupling between the channels, and this is generally the advantage

intended when using quaternion signal processing to handle three- or four-dimensional

data (TOOK; MANDIC, 2008). Computationally, the spectral decomposition requires only

two complex discrete Fourier transforms (DFTs), instead of three (one per color channel).

Ever since, quaternion transforms have been employed not only on color image processing

(ELL; SANGWINE, 2007; CHEN et al., 2018b; LI, 2013; EVANS; SANGWINE; ELL, 2000),

but also on other tasks such as bivariate signal analysis (FLAMANT; BIHAN; CHAINAIS,

2017a; FLAMANT; BIHAN; CHAINAIS, 2017b; FLAMANT; CHAINAIS; BIHAN, 2018).

Algebra extensions change the signal representation by looking at the signal samples

but, reminding the signal is nothing more than a function, one may also shift the attention

to the domain. In fact, such a reflection has led to the creation of graph signal processing
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(GSP). This field, which emerged in the last decade, is concerned with extending the concepts

of classical discrete signal processing (DSP) to the case in which the signal samples reside

in graph vertices. It coincides with the classical case of discrete-time domain (for periodic

signals) when using a path or ring graph – depending on the graph shift operator (GSO) at

hand, as will soon be clear – with equally weighted edges. The signal, therefore, is a mapping

from the vertex set to the real (or complex) numbers, and the fixed sampling frequency is

represented as graph edges having the same weights (i. e., as if the samples were at fixed

“distances”, one could say). GSP deals with the consequences of conecting more vertices

in this graph, moving from the queue-shaped domaing into an arbitrary network. Many

definitions from classical digital signal processing (DSP) have already found their way into

GSP, thanks to the contributions of many scholars who proposed ways to implement filtering

(SANDRYHAILA; MOURA, 2013b), linear transforms (SANDRYHAILA; MOURA, 2013c;

SARDELLITTI; BARBAROSSA; LORENZO, 2017), interpolation (SEGARRA et al., 2015),

sampling theorem on graphs (WANG; CHEN; GU, 2015; CHEN et al., 2016; TSITSVERO;

BARBAROSSA; LORENZO, 2016), among others.

The endeavor to experiment with different algebras or domain topologies has primar-

ily theoretical motivations, but often reveal new solutions to real world problems. Taking

GSP for instance, its applications spread from coding (SU et al., 2017) and light field image

super resolution schemes (ROSSI; FROSSARD, 2017), to regulatory genetic networks, in

which graph-based methods have already improved three state-of-the-art network inference

schemes (PIRAYRE et al., 2015; PIRAYRE et al., 2017), also reaching recommender systems,

both collaborative filtering and content-based, using regularization of graph total variation

(BENZI et al., 2016a), semi-supervised learning through adaptive graph filters (CHEN et

al., 2014a), community detection using graph wavelets (TREMBLAY; BORGNAT, 2014),

among others. The latter examples hint at the intersection between GSP and the fields of

data science and machine learning – well established and highly active, both in Academia

and industry –, to the point where we can join Benjamin Ricaud and say that Fourier could

very well be, today, a data scientist (RICAUD et al., 2019).

As it happened to GSP, the study of quaternion-valued signal processing has also

found many applications. Beyond the already mentioned use in manipulating color image

and bivariate signals, the work on adaptive quaternion filters has been useful, for example,

in wind profile prediction (JIANG; LIU; LI, 2014). Or yet the remarkable union of graphs

and quaternions in the work by (ZHANG et al., 2019) – the only one the author is aware of

–, in which quaternion embeddings are used to form a low dimensional representation of
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entities and relations in knowledge graphs.

In this context, this doctoral research tackles the following problem: is it possible

to perform signal processing having quaternion-valued samples residing on graphs with

quaternion-weighted edges? What limitations and new possibilites may arise when exploring

what we may call quaternion graph signal processing (QGSP)? That is the spark which

ignited the studies and results presented in the following chapters.

As it will become clear to the reader, however, the pathway to the basis of QGSP

was not a straight line. Sometimes what seemed to be dead ends emerged, and during

the reflections upon ways to bypass them, other interesting results started to appear. For

example, it was certain from the beginning that the problem of eigendecomposing quaternion

matrices would be at the heart of QGSP, since the very definition of a graph signal spectrum

requires the eigenvalues and eigenvectors of a GSO (e.g. the adjacency matrix), which is a

quaternion matrix. Since it took a while to make progress with general graph matrices, it

seemed promising to investigate the quaternion discrete Fourier transform (QDFT); after

all, ring graphs should have the graph Fourier transform (GFT) and the classical discrete

Fourier transform (DFT) coinciding. By looking at the QDFT matrix, however, a new way to

diagonalize it was found and a new multiparametric fractional QDFT was proposed. When

shifting the focus to the graph domain, revisiting the study of graph shift operators and their

spectral decomposition, interesting results regarding the fractional GSO were discovered.

For instance, this new operator acts as a graph filter, and its polynomial representation was

fully determined, demonstrating that it can be implemented as a linear and shift-invariant

(LSI) graph filter. These unforeseen results are featured in this document, as they paved the

way for the foundations of QGSP.

1.1 ORGANIZATION

This doctoral dissertation is organized as follows. Chapters 2 and 3 bring a diverse

set of concepts and results from the literature, providing the reader with a sufficient un-

derstanding of the quaternion algebra and quaternion Fourier transform (the former), and

signal processing from the perspective of graph signals and fractional-order operators (the

latter). Chapter 4 presents the new fractional graph shift operator, commenting on its

properties and applications. In Chapter 5, a study on the fractionalization of the QDFT is

presented, with a new method being proposed, alongside a multiparametric version of the

fractional-order transform. The foundations of QGSP are finally presented in Chapter 6,
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with discussions and a few applications with both toy and real world datasets. The thesis

closes with concluding remarks and future works in Chapter 7. Appendix A leads the reader

through the demonstration of a relation between systems of quaternion and complex linear

equations, useful for a central theorem presented in Chapter 2. As a final note, the reader

may notice that many concepts in the chapters dedicated to basic literature review are

presented outside formal theorems and propositions. Far from being a conscious decision

from the beginning, it happened as an unconscious stylistic choice, prioritizing a steady flow

of writing to the detriment of mathematical formalism. The citations found along the text

will provide the adequate formal treatment to the interested readers.

1.2 CONTRIBUTIONS

The contributions of this doctorate research, featured in this doctoral dissertation,

are:

• The proposition and discussion of the fractional graph shift and its application on

improving least-squares approximation of linear and shift-invariant ideal filters.

• A theorem which proves that the QDFT and the DFT share symmetric eigenvalues,

and which enables a novel approach to fractionalizing the quaternion discrete Fourier

transform (QDFT).

• The definition of a multiparametric fractional QDFT and its application in a novel

image encryption scheme.

• The proposition of quaternion graph signal processing (QGSP), a new tool designed

for specialized scenarios in which both the signal samples and their quantifiable

relationship may be expressed as quaternions (thus having at most four dimensions or

information sources).

• gspx,1 an open-source Python library with implementation of the core concepts from

QGSP.

1.3 PUBLICATIONS

This work has so far published two papers in international journals, one in a global

conference, and a book. The paper “Eigenstructure and fractionalization of the quaternion

discrete Fourier transform”, published in Optik, contains the results of Chapter 5. The 10th

volume of IEEE Access received the work “On the Fractionalization of the Shift Operator
1 The library is available as an open repository: <https://github.com/gboaviagem/gspx>.

https://github.com/gboaviagem/gspx
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on Graphs”, containing the results of Chapter 4. As the understanding of GSP matured

during the doctorate research, the author contributed with some chapters to the book

“Processamento de Sinais sobre Grafos: Fundamentos e Aplicações”, published in the Notas em

Matemática Aplicada series from the Brazilian society Sociedade Brasileira de Matemática

Aplicada e Computacional (SBMAC).

The paper “The Cosine Number Transform: A Graph Signal Processing Approach”,

presented in the 2019 edition of GlobalSIP, was created during short attempts to further

generalize GSP to other algebraic structures, in particular to graphs with edge weights in

finite fields. However, it has not evolved into more substantial findings and thus, although

it stems from this work, it is not featured in this dissertation. The full references of the

mentioned publications are:

• Ribeiro, Guilherme and Lima, Juliano. “The Cosine Number Transform: A Graph

Signal Processing Approach”. 2019 IEEE Global Conference on Signal and Information

Processing (GlobalSIP). IEEE, 2019. DOI: 10.1109/GlobalSIP45357.2019.8969165

• Ribeiro, Guilherme B., and Lima, Juliano B. “Eigenstructure and fractionalization of

the quaternion discrete Fourier transform”. Optik 208 (2020): 163957. DOI: 10.1016/-

j.ijleo.2019.163957.

• Ribeiro, Guilherme B., José R. De Oliveira Neto, and Lima, Juliano B. “On the Frac-

tionalization of the Shift Operator on Graphs”. IEEE Access 10 (2022): 16468-16478.

DOI: 10.1109/ACCESS.2022.3149755.

• Lima, Juliano, et al. Processamento de Sinais sobre Grafos: Fundamentos e Aplicações.

Notas em Matemática Aplicada, v. 92. Sociedade Brasileira de Matemática Aplicada e

Computacional (SBMAC), 2022.

1.4 NOTATION

The use of symbols is a great way to communicate ideas concisely. However, instead

of improving communication, they may make it cumbersome or even not communicate at all

if the reader is not adequately familiar with them. Let us go through the main notation in

this doctoral dissertation, to avoid confusion instead of clarity.

Simple numbers, either real-, complex- or quaternion-valued, are represented in

italics, as in q. Special treatment is given to unit pure quaternions, represented in bold

italics, e.g. i, ν. Numerical sets (and the related fields or skew-fields) are denoted using

blackboard bold face (such as R). Vectors and matrices are written with bold face: the former

https://doi.org/10.1109/GlobalSIP45357.2019.8969165
https://doi.org/10.1016/j.ijleo.2019.163957
https://doi.org/10.1016/j.ijleo.2019.163957
https://doi.org/10.1109/ACCESS.2022.3149755
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with lower case (e.g. v ∈ Rn), and the latter with upper case (e.g. V ∈ Rn×n).

The function diag(·) has context-dependent meaning: when the argument is a matrix,

it returns the main diagonal as a column vector; whereas when it is a vector, it produces a

diagonal matrix with this vector in its main diagonal. The symbol ∆
= represents equality by

definition.

The symplectic decomposition of a quaternion number q (or, by extension, of a

quaternion-valued vector or matrix) will be usually represented as q = q1 + q2j, with

subscripts 1 and 2 indicating the simplex and perplex components. When there is risk of mis-

taking the subscripts for indices (e.g. in summation), the alternative (more bulky) notation

will employ superscripts (s) and (p), as in q = q(s) + q(p)j.
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2 A REVIEW ON QUATERNION ALGEBRA AND ITS FOURIER TRANSFORM

And here there dawned on me the notion that we must admit, in some sense,
a fourth dimension of space for the purpose of calculating with triples... An
electric circuit seemed to close, and a spark flashed forth. (WAERDEN, 1976,
quoting directly Sir William Hamilton)

In 1833, at the age of 28, Willian Rowan Hamilton presented to the Royal Irish

Academy (RIA) a work in which complex numbers were treated as ordered pairs of real

numbers, given the appropriate definition of operations.1 In the following years, he struggled

to extend the complex field into a normed division algebra over triples, but soon realized

that, as much as his attempts were inventive, the resulting algebra2 was not closed under

multiplication. We can see this through a simple example (SANTOS; FERREIRA, 2011): let

it be the set F = {a+ bi+ cj | (a, b, c) ∈ R3}, with i2 = j2 = −1 and i ̸= j. Since i, j ∈ F, so

there should exist x, y, z ∈ R so that

ij = x+ yi+ zj. (1)

Multiplying by i both sides of the equation,

i2j = ix+ i2y + z(ij), (2)

and using (1) it yields,

−j = ix− y + z(x+ yi+ zj) ⇐⇒ (zx− y) + i(x+ zy) + j(z2 + 1) = 0. (3)

That is: z /∈ R and ij /∈ F, proving that such algebraic structure is not closed under multipli-

cation.

Only a decade later, in 1843, while walking by the roads in Dublin toward the RIA, “an

electric circuit seemed to close, and a spark flashed forth,” as he would say. He had conceived

the four-dimensional structure required to the desired algebra, creating the quaternions.

Moved by excitement, he craved on the stone below Broome Bridge, in Cabra (Dublin), the

equations that define the relations between the canonical basis elements of quaternions.3

This creation, made possible by an insight in 1843, is found accross most of this work.

The following sections lead the reader through the foundations of quaternion algebra and

quaternion signal analysis.
1 The results were published in 1837, in the paper Theory of Conjugate Functions, or Algebraic Couples; with a

Preliminary and Elementary Essay on Algebra as the Science of Pure Time (HAMILTON, 1837).
2 An algebra over a field, or simply algebra, is a vector space over a field with a bilinear multiplication (that is,

the multiplication distributes over the addition and the associativity is valid for multiplication) (SCHAFER,
1955).

3 Close to the original site of the inscriptions, the RIA placed a commemorative plaque in 1958, with the same
writings.
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Figure 1 – Illustration of the multiplication rule between the imaginary units i, j and k.

i

jk

Source: the author (2022).

2.1 INTRODUCTION TO THE QUATERNION ALGEBRA

Quaternions are numbers q ∈ H in the form

q = a+ bi+ cj + dk, (4)

in which a, b, c, d ∈ R, holding true the fundamental relations:

i2 = j2 = k2 = ijk = −1. (5)

The multiplication rules between i, j and k follow directly from (5), resembling those

between orthonormal basis vectors from R3 and the vector product: the product between two

of them yields the third, the sign being determined from the operands order. For instance,

to find the result of ij one may start from (5) and write

ijk = −1

ij kk︸︷︷︸
=−1

= −k

ij = k.

(6)

Similarly, to find ji,
ijk = −1

iijk = −i

−jk = −i

jjk = ji

−k = ji.

(7)

Fig. 1 depicts the order in which the product between any pair in the triplet i, j and k yields

the third one, with positive sign. All three units commute with real numbers. The most

relevant consequence, therefore, of (5), is that the quaternion product is noncommutative. In

fact, it is the first example of noncommutative normed division algebra in history (KLEINER,

2007).
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The exploration of the quaternion multiplication rules gives rise to a useful property,

related to products between complex numbers and elements from the quaternion canonical

basis. In particular, the product between j and any complex number x = a + bi, a, b ∈ R,

satisfies jx = xj, since

jx = j(xr + xii) = xrj + xiji = xrj − xiij

= (xr − xii)j = xj.
(8)

This will come up a couple of times during manipulations in this thesis.

The elements i, j e k may be perceived as orthogonal imaginary units, generating

the 3D space of quaternion imaginary parts,

V (q) = bi+ cj + dk. (9)

The real part of a quaternion q is defined as

S(q) = a. (10)

The imaginary part is usually referred to as vector part, while the real part may also

be called scalar part. A quaternion with null real part is said to be pure — the set of which

is represented by V (H). The product between pure quaternions may be written similarly to

that between R3 vectors, i. e., if v1 = b1i+ c1j + d1k and v2 = b2i+ c2j + d2k, then

v1 × v2 =

∣∣∣∣∣∣∣∣∣
i j k

b1 c1 d1

b2 c2 d2

∣∣∣∣∣∣∣∣∣ . (11)

Based on the similarity between the R3 set, equipped with the cross product, and the

set of pure quaternions, equipped with their quaternion product, it is usual to refer to i, j

and k as axis. The term references the interpretation of theses imaginary units as being

coordinate axis in the 3D space of pure quaternions.

The analogy with the R3 vector operations also extends to the definition of inner

product between pure quaternions v1 = b1i+ c1j + d1k and v2 = b2i+ c2j + d2k:

⟨v1, v2⟩ = b1b2 + c1c2 + d1d2. (12)

The quaternion multiplication distributes over quaternion addition and is also asso-

ciative. That is, if q1 = a1 + b1i+ c1j + d1k and q2 = a2 + b2i+ c2j + d2k, then their sum is

simply

q1 + q2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k, (13)
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whereas their product is

q1q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2)

+ i(b1a2 + a1b2 − d1c2 + c1d2)

+ j(c1a2 + d1b2 + a1c2 − b1d2)

+ k(d1a2 − c1b2 + b1c2 + a1d2).

(14)

Finally, it is possible to write the quaternion product in (14) as a function of the

operands scalar and vector parts,

q1q2 = S(q1)S(q2)− ⟨V (q1),V (q2)⟩

+ S(q1)V (q2) + S(q2)V (q1) + V (q1)× V (q2).
(15)

The lack of commutativity in the cross product is another demonstration of the fact that

quaternion multiplication is noncommutative.

Quaternion conjugation, as defined in the complex numbers, is obtained changing

the sign of the imaginary part: q̄ ∆
= S(q)− V (q). The quaternion norm is defined as ∥q∥ ∆

=

a2 + b2 + c2 + d2 = qq̄ = q̄q, whereas the modulus of q (ELL; BIHAN; SANGWINE, 2014) is

|q| ∆=
√
a2 + b2 + c2 + d2 = ∥q∥1/2. (16)

A closed expression for the product between the conjugate of two quaternions q and p

may be obtained from (15), by changing the sign in the vector part of the operands,

q̄p̄ = S(q)S(p)− ⟨V (q),V (p)⟩ − S(q)V (p)− S(p)V (q) + V (q)× V (p). (17)

Similarly, the conjugate of the product pq may be taken simply by adding a minus sign in

the vector part of the product pq, yielding

pq = S(p)S(q)− ⟨V (p),V (q)⟩ − S(p)V (q)− S(q)V (p)− V (p)× V (q). (18)

Since V (p)× V (q) = −V (q)× V (p), it follows that q̄p̄ = pq. This result allows to prove that

∥pq∥ = ∥p∥∥q∥, since

∥pq∥ = pqpq = q̄p̄pq = q̄∥p∥q = ∥p∥q̄q = ∥p∥∥q∥. (19)

A unit quaternion has, by definition, unit norm, and the norm definition also leads

to the quaternion multiplicative inverse (if q ̸= 0),

q−1 =
q̄

∥q∥ , (20)
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from which follows that a quaternion and its multiplicative inverse have reciprocal moduli,

i. e.

|q−1| = |q̄|
∥q∥ =

|q|
|q|2 =

1

|q| . (21)

From the analogy between pure quaternions and the elements in R3, the idea of

perpendicularity between pure quaternions presents itself naturally. Given µ,ν ∈ V (H),

they are said orthogonal — we write µ ⊥ ν — if and only if

S(µν) = ⟨µ,ν⟩ = 0. (22)

For two orthogonal unit pure quaternions µ and ν, it follows from (15) that µν = µ × ν,

thereforeµν ⊥ µ and µν ⊥ ν. Since (µ,ν,µν) is a triplet of orthogonal unit pure quaternions,

they form a basis for V (H). Hence it is possible to rewrite (4) as

q = a+ b′µ+ c′ν + d′µν, (23)

a, b′, c′, d′ ∈ R, which represents the so called generalized quaternion. The classical Hamilto-

nian quaternions are those written in terms of the canonical basis (1, i, j,k).

Besides the cartesian representation (4), quaternions allow the so called Euler form

(ELL; BIHAN; SANGWINE, 2014), a polar representation commonly expressed as

q = |q|eµθ = |q| cos θ + |q|µ sen θ, (24)

in which µ is a unit pure quaternion, parallel to the vector part of q.

As a remarkable consequence of (24), it follows that every unit pure quaternion is a

square root of −1. For instance, let ν be a unit pure quaternion. From (24),

ν = |ν|eνθ, (25)

but since |ν| = 1, then

ν = eνθ = cos θ + ν sen θ ⇒ θ =
π

2
, (26)

hence,

ν2 =
(
eν

π
2

)2
= eνπ = cosπ + ν senπ = −1. (27)

This property leads to the conclusion that numbers such as a+ µb form an isomor-

phism with the complex numbers. For this reason, the set composed by such numbers is

represented by Cµ
∆
= {a + µb | a, b ∈ R} (and hence Ci can be identified, for all practical

ends, as the usual set of complex numbers, by making the extrapolation that the unit pure

quaternion i equals the complex imaginary unit).
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Another crucial representation of quaternion numbers is called symplectic decompo-

sition. Every quaternion q = a+ bi+ cj + dk ∈ H can be represented as

q = q1 + q2j, q1, q2 ∈ Ci, (28)

in which the complex numbers q1 = a+ bi and q2 = c+ di are commonly named simplex and

perplex parts, respectively. In general, the decomposition does not need to take i as reference

axis. Take for example µ and ν as arbitrary orthogonal unit pure quaternions, hence any

quaternion q may be decomposed as

q = q1 + q2ν, q1, q2 ∈ Cµ. (29)

That is a hugely important tool when it comes to computing the QDFT (see Section 2.3) and

handling quaternion matrices (cf. Chapter 6).

2.1.1 Quaternion similarity and rotation

Two quaternions q and r are said to be similar if it exists a non-zero quaternion

v such that v−1qv = r. In this case, one can write q ∼ r. Similarity between quaternions

constitutes an equivalence relation (ZHANG, 1997), and all elements from a same similarity

class possess the same norm, since, from (19) and (21), |v−1qv| = |v−1| · |q| · |v| = |q|.

It matters to notice that an important property of quaternion similarity transforma-

tions, which justifies its great use in mechanics and graphics computing industry, is that it

performs a rotation on the ijk space. Given v, q ∈ H, v = |v|eµα, the similarity transformation

ϕv(q) = vqv−1 (30)

produces the rotation of the vector part of q along the axis µ (which is parallel to the vector

part of v) through an angle 2α (WARD, 2012), following the right-hand rule. Let us illustrate

this property with an example.

Example 1. Let λ = 3i+ k and

v =

 1 + i

2j + k

 (31)

be, respectively, an eigenvalue and its eigenvector of a matrix A ∈ H2×2. The

eigenvalue problem over the quaternions will be introduced in the next section,
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Figure 2 – Representation of λ = 3i+ k in the ik plane.
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Source: the author (2022).

so let us not consider its details for now. It suffices to know that λ, A and v satisfy

the equation

Av = vλ. (32)

Let us restrict the first column of A to be equal to (1 1)T , so that the the

matrix is now fully determined,

A =

1 −1
5 + 3

5i+ 2j

1 −3i+ j

 . (33)

Given an invertible quaternion q, the equation may be rewritten as

A(vq) = (vq)q−1λq, (34)

which presents the similarity transformation q−1λq. Since similar quaternions

differ only by a rotation of their vector parts, it is clearly possible to find a

quaternion q so that the vector part of q−1λq is parallel to i — that is, q−1λq is a

complex number. Let us go through that process.

Since the vector part of λ belongs to the ik plane, the idea is to use (30) to rotate

λ along the j axis (orthogonal to the rotation plane) by an angle of θ = tan−1 1
3

radians, toward i (see Fig. 2). The required quaternion to enable such rotation is,

therefore,

v = ejα, 2α = θ = tan−1 1

3
, (35)

using the mapping λ 7→ vλv−1 in (30).

Recalling that our desired transformation is written as λ 7→ q−1λq, then

q = v−1 = e−jα = e−j θ
2 . (36)
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As a sanity check, let us find the value of α which results in q−1λq ∈ Ci. Since

v = q−1 = cosα+ j sinα,

q−1λ = (cosα+ j sinα)(3i+ k)

= i(3 cosα+ sinα) + k(cosα− 3 sinα).

q−1λq = [i(3 cosα+ sinα) + k(cosα− 3 sinα)](cosα− j sinα)

= i(3 cos 2α+ sin 2α) + k(cos 2α− 3 sin 2α).

(37)

Therefore, q−1λq ∈ Ci if and only if

cos 2α− 3 sin 2α = 0

⇒ 2α = tan−1 1

3
,

(38)

as determined by (35).

Consequently, it was demonstrated that the unit pure quaternion q = e−jα,

withα = −1/2 tan−1 1/3, produces, through a similarity transformation, the complex-

valued eigenvalue q−1λq ∈ Ci. Since q = cosα− j sinα, (32) can be rewritten as

in (34),

A

 cosα+ i sinα− j sinα− k sinα

2 sinα+ i sinα+ j2 cosα+ k cosα


︸ ︷︷ ︸

=vq

= (vq) · i(3 cos 2α+ sin 2α)︸ ︷︷ ︸
=q−1λq

. (39)

Let us leave a remark for the user, as an anticipation of the upcoming section:

notice how v and vq are the same eigenvector up to a scaling factor, and it

is always possible to make q−1λq into a complex number through a similarity

transformation, given that the vector part of λ has non-zero norm.

2.2 ON THE THEORY OF QUATERNION MATRICES

When analyzing the eigenstructure and subsequent fractionalization of the QDFT

matrix, the eigendecomposition of the DFT and the eigenvector sharing served as a convenient

shortcut. In order to build the results in QGSP, however, it is required to dive into more

general properties of quaternion matrices. The symplectic decomposition, already presented

in (29), plays an important role in that matter, especially for its use in defining the complex

adjoint matrix.
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Definition 1 (Complex adjoint matrix (ZHANG, 1997)). Given A ∈ Hn×n, with symplectic

decomposition A1 +A2j, A1,A2 ∈ Cn×n, its complex adjoint matrix is defined as

χ
A

∆
=

 A1 A2

−A2 A1

 . (40)

In the following theorems, Zhang brings fundamental results for building QGSP.

Theorem 1 (Part of Theorem 4.2 in (ZHANG, 1997) ). Given the quaternion matrices

A,B ∈ Hn×n, the following sentences are equivalent:

• χ
AB = χ

A
χ

B,

• χ
A−1 = χ−1

A , if A−1 exists,

• χ
A is unitary, Hermitian or normal if and only if so is A.

Theorem 2 (Part of Theorem 4.3 in (ZHANG, 1997) ). Given the matrix A ∈ Hn×n, the

following sentences are equivalent:

• A is invertible.

• det(χA) ̸= 0, i. e., χA is invertible.

Differently from other representations of quaternion matrices in C or R, the complex

adjoint allows to establish an important relation between the spectra of χA and A, as will

soon be discussed.

2.2.1 Eigenvalues

Since quaternion multiplication is noncommutative, it is necessary to distinguish

between left and right eigenvalues of a given matrix A ∈ Hn×n,

Av = vλ, (right)

Av = λv. (left)

We will restrict this discussion mostly to right eigenvalues, since they hold a broader

set of results in literature (ZHANG, 1997, Cap. 5) and are, for that matter, a safer point of

support when developing QGSP. When not explicitly mentioned, the right eigenvalues will

simply be referred to as eigenvalues of the quaternion matrix.

It matters to highlight the fact that a quaternion matrix possesses a finite number of

eigenvalues if and only if they are all real-valued. Otherwise, each of them will belong to a
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similarity class, according to the transformation λ1 = q−1λ2q, containing infinite quaternions

which are also eigenvalues of the same matrix (return to Example 1, for instance). Let λ be

an eigenvalue of the matrix A associated with the eigenvector v. That is,

Av = vλ

Avq = vλq = vqq−1λq

A(vq) = (vq)q−1λq,

(41)

so that q−1λq is an eigenvalue associated with the eigenvector vq, with q ∈ H∗.

2.2.2 Diagonalizability

The problem of quaternion matrix diagonalization differs greatly from the case with

complex matrices. In the latter scenario, having no pair of equal eigenvalues is a sufficient

condition for diaginalizability, but the rule does not hold for the quaternio case. See for

instance the counterexample given by Zhang (ZHANG, 1997, Exemplo 7.4), the matrix

A =

i 1

0 j

 . (42)

Although its eigenvalues are distinct – i and j, since they lie on the main diagonal

of an upper triangular matrix –, the respective eigenvectors do not constitute a linearly

independent set. Notice, for example, that an eigenvector associated with i is (1 0)T , whereas

one associated with j is (i+ j 0)T . The reason as to why they form a linearly dependent set is

the fact previously stated that, for each eigenvalue and eigenvector λ and v from a quaternion

matrix, it follows that q−1λq and vq form another eigenvalue-eigenvector pair, with q ∈ H∗.

That is, two similar eigenvalues are always associated with the same eigenvector (up to a

scaling factor). That is why similar quaternions are said to belong to the same eigenclass

(LEO; SCOLARICI, 2000). In order to have a linearly independent set of eigenvectors,

therefore, their eigenvalues must not be similar. Concluding the counterexample, the reader

may show that i and j satisfy the similarity relation j = qiq−1 whenever q belongs to the set

{a− ai− aj + ak | a ∈ R∗}.

Theorem 3 relates the eigendecomposition of a quaternion matrix to that of its

complex adjoint, providing a fundamental principle to the study of quaternions matrices’

eigenstructure.
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Figure 3 – Standard eigenvalues of a quaternion matrix A, indicated as a subset of the eigenvalues
of the complex adjoint matrix.
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Theorem 3 ((ZHANG, 1997)). Every matrix A ∈ Hn×n has exactly n right eigenvalues which

are complex numbers with nonnegative imaginary parts. These are called the standard

eigenvalues of A and are a subset of the 2n eigenvalues of χA.

Proof. As demonstrated in the Appendix A, starting from the quaternion eigenvalue equation

Av = vλ, (43)

in which one can assume without loss of generality that λ ∈ C, it is always possible to arrive

at the equivalent equation  A1 A2

−A2 A1

 v1

−v2

 =

 v1

−v2

λ, (44)

which involves solely complex-valued matrices and vectors, namely: the components of the

symplectic decomposition of A and v. The equivalence between both equations implies that

A and its complex adjoint

χ
A =

 A1 A2

−A2 A1

 (45)

share all their complex-valued eigenvalues (notice that λ remains unchanged as we move

from one equation to its equivalent). As it appears, the eigendecomposition of the complex

adjoint seems a promising method for finding some eigenvalues of the quaternion matrix.
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Is there, however, any possibility of leaving some eigenvalues behind? In other words,

is it possible to exist some eigenvalue of A which does not belong to an eigenclass deter-

mined by a complex eigenvalue of χA? No, it is not, because it is always possible to align a

quaternion’s vector part with the i axis through a single rotation (see Section 2.1.1). In other

words, all (quaternion-valued) eigenvalues of A are similar to a complex number which, as

discussed, must also be an eigenvalue of χA.

Since χA is a 2n× 2n-complex matrix, it has 2n complex-valued eigenvalues (possibly

repeated). The reason why χA share 2n eigenvalues with A, even though A is an n × n

matrix is, once more, due to the existance of eigenclasses.

According to (LEE, 1948, Theorem 5), the complex adjoint eigenvalues appear as n

conjugate pairs (possibly some pairs are real-valued, so they are actually identical). Let us

say that 2m of those eigenvalues are real, leaving 2(n−m) complex eigenvalues. Let q ∈ Ci

belong to the latter group. It can be shown imediately that q ∼ q, since q is obtained through

a 180◦ rotation of the vector part of q around the j axis. This similarity transformation was

already shown in (8), written as jx = xj, or equivalently jx(−j) = x. In the format of (30),

q 7→ vqv−1 = q with v = ej
π
2 = j.

Since two conjugate eigenvalues of χA are always similar, they belong to the same

eigenclass and are therefore associated with the same set of linearly dependent eigenvectors.

For that reason, by convention one can take the eigenvalues of χA and define the standard

eigenvalues of A as being those complex-valued eigenvalues with positive imaginary part

and half those real-valued ones.

The following theorem is another fundamental result relating the eigenstructure of

a quaternions matrix and that of its complex adjoint.

Theorem 4 (Theorem 7.4 in (ZHANG, 1997)). Given the matrices A,B ∈ Hn×n, then A is

similar to B if and only if χA is similar to χB.

Corollary 1. A matrix A ∈ Hn×n is diagonalizable if and only if χA is diagonalizable.

Proof. If A ∈ Hn×n is diagonalizable, then it is similar to a diagonal matrix Λ ∈ Cn×n
i

containing its standard eigenvalues in the main diagonal. From Theorem 4, it follows that
χ

A is similar to

χ
Λ =

Λ 0

0 Λ

 , (46)

which is also a diagonal matrix. Therefore, χA is diagonalizable.
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On the other hand, if χA is diagonalizable, then it is similar to a diagonal matrix

containing its 2n eigenvalues, which appear in n conjugate complex pairs. Therefore, its

eigenvalues matrix may be written as (46), what implies, from Theorem 4, that A is similar

to Λ.

2.3 THE QUATERNION FOURIER TRANSFORM

The field of quaternion signal processing has leveraged many tools to transform

signals with quaternion-valued samples, from the fundamental redefinition of the gradient

operador (JIANG; LIU; LI, 2014) up to algorithms for adaptive filtering (JIANG et al., 2013).

This section focuses on the quaternion Fourier transform (QFT), as it is the basis for spectral

analysis of quaternion signals.

Quaternion Fourier transforms have received quite a few definitions. Some are

one-dimensional (FLAMANT; BIHAN; CHAINAIS, 2017a), while others are intrinsically

two-dimensional (GUANLEI; XIAOTONG; XIAOGANG, 2008); the latter group can yet be

divided into those having kernels oriented toward generic unit pure quaternions, and those

using canonic imaginary units, such as i and j. The 2D-transformed signals may be placed

between the two kernels or beside them. In fact, Ell (ELL; BIHAN; SANGWINE, 2014, sec.

3.2) lists 8 possibilities for the 2D-QFTs. The two dimensional case will not be covered for

now, since the discussion on the 1D case already serves the purpose of introducing the main

ideas and properties of this family of transforms.

Let f be a quaternion-valued function f : R → H and µ ∈ V (H), µ2 = −1. The left

1D QFT can be defined as the family of integral transforms

FL
∓µ[f ](ω) = FL

∓µ(ω)
def
= κ−

∫ ∞

−∞
e∓µωtf(t)dt. (left 1D QFT)

It can be proven that the inverse transform exists and is given by

F−L
±µ [F

L](t) = f(t) = κ+

∫ ∞

−∞
e±µωtFL(ω)dω. (inverse left 1D QFT)

In the expressions above, the unit pure quaternion µ is called the eigenaxis of the

transform kernel. We could say it is the reference imaginary unit. The sign in the exponential

is arbitrary, as long as the direct and inverse transforms use different signs. The real

constants κ− and κ+ satisfy

κ+κ− =
1

2π
, (47)

and when κ− = κ+, the transform is said to be unitary.
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The right QFT may be defined likewise, by simply switching the relative positions of

the kernel and the operand f(t). The reader may notice that, when the eigenaxis is i, the

QFT coincides with the usual continuous-time Fourier transform.

In this work, however, the most relevant version of the QFT is that in which both the

original signal and its transformed representation are defined over discrete domains: the

1D quaternion discrete Fourier Transform (QDFT) with axis µ, as defined in (ELL; BIHAN;

SANGWINE, 2014, sec. 3.3.1). If µ is a unit pure quaternion, the m-th component of the

transformed vector in the left unitary QDFT with axis µ is

v̂m = QDFT{v}m ∆
=

1√
N

N−1∑
n=0

exp

(
−µ2π

N
nm

)
vn ∈ Cµ, (48)

with inverse transform given by

vn = QDFT−1{v̂}n =
1√
N

N−1∑
m=0

exp

(
µ
2π

N
nm

)
v̂m. (49)

The transform analysis and synthesis equations may also be written in matrix form:

v̂ = QDFT{v} = Fv, (50)

v = QDFT−1{v̂} = F−1v̂, (51)

in which F is the unitary transform matrix, with entries {F}n,m =
√
N

−1
exp

(
−µ2π

N nm
)
.

Since exp
(
−µ2π

N

)
is a N -th root of unity, just like exp

(
−i2πN

)
, it follows that F shares many

properties with the usual discrete Fourier transform (DFT) matrix, among which the invert-

ibility, validating the existence of (116) and (118).

As it was done in previous pages, the symplectic decomposition may be applied to each

entry of a quaternion matrix, generating complex-valued simplex and perplex matrices.4

Using this reasoning, Ell e Sangwine (ELL; BIHAN; SANGWINE, 2014) demonstrated

that the QDFT of a signal x = [x0, x1, . . . , xN−1] ∈ HN could be easily computed using two

(complex) DFT, by decomposing each signal sample along the QDFT eigenaxis:

QDFT{x}m =
1√
N

N−1∑
n=0

exp

(
−µ2π

N
nm

)
xn

=
1√
N

N−1∑
n=0

exp

(
−µ2π

N
nm

)
(x(s)n + x(p)n ν)

= DFTµ{x(s)}m + DFTµ{x(p)}mν,

(52)

4 Please note that, in what follows, the usual subscripts 1 and 2 for denoting the simplex and perplex parts
were replaced by the superscripts (s) and (p), as in q = q(s) + q(p)j, to avoid confusion with the summation
indices.
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in which DFTµ indicates the DFT computed with “complex numbers” having µ as imaginary

unit. Although that statement is technicaly incorrect (complex numbers strictly belong to

Ci), from a computational point of view, the DFTµ can be calculated using the very same

algorithms as the usual DFT (since the imaginary unit per se is disregarded in the low-level

calculations).

This brief presentation of the QDFT illustrates that

• although the frequency components are quaternion signals, their frequencies are

real-valued (see the argument in the transform kernel),

• the eigenstructure of the QDFT likens heavily that of the usual DFT, to the point of

allowing the reuse of common DFT algorithms. This resemblance will be exploited

when investigating the fractionalization of the QDFT, in Chapter 5.

For a thorough introduction on quaternions and their application to signal process-

ing, the reader may refer to (GRIGORYAN; AGAIAN, 2018; ZHANG, 1997; ELL; BIHAN;

SANGWINE, 2014; FLAMANT; BIHAN; CHAINAIS, 2017b; JIANG; LIU; LI, 2014).

2.4 SUMMARY

This chapter discussed the main topics concerning the quaternion algebra and its

Fourier transform. Although they have not been addressed with the depth and details a

more curious reader would wish, the discussion was hopefully enough to present a coherent

overview of

• how the quaternions extend the complex numbers, by carrying not 2 but 4 real-valued

components splitted into a scalar and a vector part,

• how the quaternion multiplication rules effect the quaternion similarity classes, with

their rotation property,

• how the symplectic decomposition and the complex adjoint matrices are core concepts

in the eigendecomposition of a quaternion matrix, and

• how to compute the left 1D discrete quaternion Fourier transform by using usual DFT

calculations.
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3 A REVIEW ON FRACTIONAL AND GRAPH FOURIER TRANSFORMS

At the heart of the field of spectral analysis lies the concept of Fourier transforms, all

of which are creatively tailored to map the original signal onto convenient new spaces. This

links directly to the argument presented in the Introduction of this thesis: the power and

flexibility of signal processing stem from the many ways in which one can explore different

signal representations. While the last chapter ended with a brief presentation of the QFT, the

next pages will guide the reader through an overview on two sets of transforms which are also

relevant to understanding the contributions in the thesis: the fractional Fourier transform

(FrFT) and the graph Fourier transform, the latter included in the broader discussion on

fundamentals of graph signal processing.

3.1 THE FRACTIONAL FOURIER TRANSFORM

It is quite common in theoretical investigations to expand the definition of some

well-established operator and consider the consequences of an intermediate (fractional)

application of the underlying operation. Take, for example, the power operation, which makes

sense only for integer exponents (i. e., x3 ∆
= x · x · x), but has great use when considering also

real or complex exponents. Or the derivative of a function f(t), which can be defined to possess

a fractional-order equivalent by setting n to non-integer values in the time differentiation

property of the Fourier transform F {·}:

F
{[

dn

(dt)n
f(t)

]}
= (jω)nF {f(t)} . (53)

Mendlovic and Ozaktas made this observation (MENDLOVIC; OZAKTAS, 1993) and pointed

out that this was the spark behind the creation of the FrFT. However theoretical this endeavor

might have been, even at its origin in the 1980’s paper on the Journal of Applied Mathematics

by the physicist Victor Namias (NAMIAS, 1980), the fractional Fourier transform had already

potential applications, originally in quantum mechanics. After 40 years, the FrFT has been

applied to time-frequency analysis, compression, digital watermarking, filtering, encryption,

let alone its utility in Optics (BULTHEEL; SULBARAN, 2002; LIMA; NETO; FIGUEIREDO,

2018).

The fractional Fourier transform is a generalization of the usual continuous-time

Fourier transform and can be interpreted as a rotation of the signal (operand) in the time-

frequency plane (ALMEIDA, 1994). To understand why, let us consider its definition. The

usual (unitary) Fourier transform, with operator represented by F as in (53), has analysis
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and synthesis equations given by

F {f(t)} = F (iω) =
1√
2π

∫ ∞

−∞
f(t) exp(−iωt)dt, (54)

F−1 {F (iω)} = f(t) =
1√
2π

∫ ∞

−∞
F (iω) exp(iωt)dω. (55)

The eigenfunctions of the F operator are the family of functions exp(−x2

2 )Hn(x) (on

the variable x), where Hn(x) are the Hermite polynomials of order n (NAMIAS, 1980). The

associated eigenvalues have the form exp(−jnπ
2 ); therefore, if we add the notation Fπ

2

∆
= F ,

Fπ
2

{
exp

(−x2
2

)
Hn(x)

}
= exp

(
−jnπ

2

)
exp

(−x2
2

)
Hn(x). (56)

The FrFT is then defined as the operator Fα satisfying the eigenvalue equation

Fα

{
exp

(−x2
2

)
Hn(x)

}
= exp (−jnα) exp

(−x2
2

)
Hn(x), (57)

from which follows that α = 0 yields the identity operator and α = π
2 makes the FrFT

coincide with the usual Fourier transform (by definition). The order of the fractional Fourier

transform is defined by m = 2α
π .

The integral form of the operator Fα is

Fα {f(t)} =
∫ ∞

−∞
f(t)Kα(t, u)dt, (58)

in which the transformation kernel Kα(t, u) is given by

Kα(t, u) =



√
1−j cotα

2π exp
(
j t2+u2

2 cotα− jut cscα
)
, if α is not a multiple of π,

δ(t− u), if α is a multiple of 2π,

δ(t+ u), if α+ π is a multiple of 2π.

(59)

Two successive applications on the signal f(t) of the FrFT with orders m1 =
2α1
π and

m2 =
2α2
π can be written in a single equation as

Fα2 {Fα1 {f(t)}} =
∫ ∞

−∞

(∫ ∞

−∞
f(t)Kα1(t, s)dt

)
Kα2(s, u)ds (60)

=

∫ ∞

−∞
f(t)

(∫ ∞

−∞
Kα1(t, s)Kα2(s, u)ds

)
dt. (61)

After a “rather long derivation”, according to (ALMEIDA, 1994), it has been shown that∫ ∞

−∞
Kα1(t, s)Kα2(s, u)ds = Kα1+α2(t, u), (62)
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Figure 4 – Illustration of the FrFT property of rotation in the time-frequency plane.
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and this implies

Fα2 {Fα1 {f(t)}} =
∫ ∞

−∞
f(t)Kα1+α2(t, u)dt = Fα1+α2 {f(t)} . (63)

In other words, the FrFT has the property of additivity of transform orders. Let us see how

this fits quite nicely with the known behavior of successive applications of the usual unitary

Fourier transform.

It is known that Fourier-transforming twice the same signal yields the operand with

reflected time axis,

F (2) {f(t)} ∆
= F {F {f(t)}} = f(−t), (64)

applying the transform once more yields the signal spectrum with reflected frequency axis,

F {f(−t)} = F (−jω), (65)

and further transforming once more gives back the original signal,

F {F (−jω)} = f(t). (66)

It is as if the Fourier transform moved the signal back and forth in 90o degrees rotations

in the time-frequency plane. From this point of view, the FrFT may be seen as a general

rotation in the time-frequency plane, with Fα rotating the signal axis by α degrees. A 360o

rotation yields

F2π {f(t)} = Fπ
2
+π

2
+π

2
+π

2
{f(t)} = F (4) {f(t)} = f(t), (67)

which in fact goes “back” to the original time axis. See a depiction of the rotation in the

time-frequency plane in Fig. 4.
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Finally, the additivity of orders guarantees that the inverse of the Fα exists and

equals F−α. Since the fractional transform order is a real-valued parameter, it is quite hard

to recover perfectly the original signal from its spectrum if the value of α is unknown. This

favors the use of discrete fractional transforms in specific steps of encryption schemes (TAO;

MENG; WANG, 2010; KANG; MING; TAO, 2018; KANG; TAO, 2018).

3.2 FUNDAMENTALS OF GRAPH SIGNAL PROCESSING

Multivariate data defined over networks are nowadays ubiquitous, being constantly

generated, stored and processed in the most diverse systems in engineering and technol-

ogy. Measurements in a set of IoT sensors and mobile devices (ALAM; SAINI; SADDIK,

2015; GUO et al., 2016; MA; YAO; YAO, 2016; YU et al., 2016), number of citations in a

scientific collaboration network or social media relations (collaboration graph, or social

graph) (CHUNG, 2010) and interactions between individuals in a ecosystem (ecological

networks) (GOLUBSKI et al., 2016) are some examples of situations in which the acquired

data are intimately related to the topology of the network over which they are defined.

Such multivariate network-like systems are not only present in various applications,

but are also systematically growing in number, as sensors become cheaper and smaller and

concepts such as cloud storage/computing and Big Data consolidate, as indicated by the 2011

report from McKinsey Global Institute (MCKINSEY et al., 2011). This document also states

that the information acquired from the adequate processing of such massive networked data

is a fundamental requisite for the companies to thrive from now on.

Still another motivation that feeds the urge to study processing techniques for data

defined over network-like domains, for example, is the growth of research on smart cities,

which takes advantage of the considerable information (that are or are yet to be) generated

in cities to provide (or improve the) solutions for many urban problems (JAIN; MOURA;

KONTOKOSTA, 2014).

All these examples share an important characteristic: the structure over which the

data is defined may be modeled by a graph (MEI; MOURA, 2016), to which vertices are

assigned the variables of interest, as depicted in Fig. 5. That is the context in which the field

of graph signal processing (GSP) was developed in the last decade, a theoretical framework

aiming to generalize the classical signal processing methods and concepts to scenarios in

which the signal is no more defined over a regular domain, but sits on a generally irregular

structure, an arbitrary graph. The research is still very active and numerous contributions
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Figure 5 – Example of signal defined over a graph. The height of the vertical bars indicate the
value of the signal samples, which are indexed by the graph vertices. The graph edges
capture similarity relations between samples. How could one define spectral analysis and
processing techniques in such a signal domain?
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Source: the author (2022).

have been made, but two distinct frameworks consistently grew throughout the years and

have been established as default mindsets when dealing with graph signals. The first one is

based on algebraic signal processing and uses the graph adjacency matrix as elementary

block. This approach imposes no restrictions regarding the graph being directed or undirected,

and the edge weights are allowed to be negative or complex numbers (SANDRYHAILA;

MOURA, 2014a). The second framework draws ideas from spectral graph theory and analyzes

signals defined only over undirected graphs with non-negative real edge weights, using

the graph Laplacian matrix to build a basis for the signal space (SHUMAN et al., 2013).

This section will cover the first branch of GSP, using the adjacency matrix as default shift

operator, since it matches the approach used in the remaining chapters of this thesis.

3.2.1 The challenge of graph-like domains

One of the reasons why GSP has been such a fertile field, allowing the birth of so

many different problems and ideas, is that the definition of a signal over a graph leads to a

series of obstacles when attempting to use even the most fundamental concepts of signal

processing. Let us take the simple but elucidating example given by Shuman et al. (SHUMAN

et al., 2013), and consider the unit shift to the right of a discrete-time signal x[n], which is

done in digital signal processing by the simple variable substitution x[n− 1]. Good enough,

but what does it mean to right-shift the signal in Fig. 5, for example? Obviously the sense of

right and left are meaningless for general graphs. On this problem, Shuman et al. argue that

a naïve choice would be to label the N graph vertices from v0 to vN−1, so that the sample

x[n] is assigned to vertex vn, for doing so would allow to define the shifted signal as the

result of assigning x[n] to vertex v(n−1)modN . Such an option, however, is not adequate, for its

repeatability depends always on the way the vertices are labeled. This example illustrates

how a concept in DSP as simple as signal translation may deserve a cautious study in GSP.
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Figure 6 – Examples of (a) directed and (b) undirected graphs, defined over the same vertex set.
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Source: the author (2022).

3.3 PRINCIPLES AND DEFINITIONS

The field of graph signal processing draws basic concepts from the classical theories of

digital signal processing and graph theory, aiming to provide a cohesive and useful framework

to tackle the aforementioned challenges. In this section, some of the main definitions found

in this field are presented.

3.3.1 Graph theory: a brief terminology

A graph is commonly defined as the ordered pair (V, E), in which the set V contains the

so called graph vertices and the set of edges E is a subset of V2 (FEOFILOFF; KOHAYAKAWA;

WAKABAYASHI, 2011). We will usually indicate by |V| = N1 and |E| = E the number of

vertices and edges of a graph, respectively. For our purposes it is convenient to represent a

graph as the structure G = {V,A}, endowed with the (weighted) adjacency matrix A which

captures the vertex-to-vertex relations: if Ai,j ̸= 0, then there is an edge of weight Ai,j from

the vertex vj to vi. It is denoted by d−i the indegree of vertex vi, consisting of the sum of

weights of all incoming edges to vertex vi. Likewise, the outdegree d+i is the sum of weights

of edges departing from vi.

A graph is called undirected if and only if its adjacency matrix is symmetric, in which

case it is defined the degree of vertex vi as d−i = d+i = di. In this case, a graph is said to

be d-regular whenever all graph vertices have degree d. If A is asymmetric, however, the

respective graph is directed and its pictorial representation depicts the edges as arrows, to

account for the unidirectional relation between adjacent vertices. Examples of directed and

undirected graphs are shown in Fig. 6.

The adjacency matrix is the building block for one of the two main frameworks of GSP,
1 The set operator | · | means the cardinality, or amount of elements, of the set.
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Figure 7 – (a) A graph and (b) the set of vertices N (i, 2) shown in red, with vi being depicted in white.
The edges linking vi to the elements in N (i, 2) are also highlighted in red.
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what will be covered soon, but another matrix of great importance, mainly in the branch of

GSP originated from spectral graph theory, is the Laplacian matrix

L = D−A, (68)

with the degree matrix D being a diagonal matrix with di as the i-th entry of its main

diagonal. Depending on the context, D may be taken as the indegree or outdegree matrix,

although when the Laplacian matrix is used the graphs considered are often undirected.

A path is a set of distinct edges (with the same orientation, if the graph is directed)

linking distinct vertices, so that one could traverse all vertices by walking over the edges

without ever repeat an edge or a vertex. A cycle is like a path, except that it has equal starting

and end vertices, and if a graph has a cycle it is called cyclic (acyclic, otherwise). If the cycle

has only one edge, it is called a loop. One refers to multiple edges whenever a single pair of

vertices is connected by two or more edges. An undirected graph is called simple if it has no

loops nor multiple edges.

A graph is said to be complete if any two of its vertices are adjacent. Graph signal pro-

cessing over such graphs may be extremely cumbersome, for the computational complexity of

many of its techniques depends heavily on the number of graph edges. For most applications,

it is desirable to have a small number of edges while keeping the graph connected, i. e., for

any pair of vertices there exists a path connecting them.

A graph is said to be unweighted if all its edges have unit weight. A subgraph of G is

a graph G′ = (V ′,A′) with edge set E ′, in which V ′ ⊂ V and E ′ ⊂ E . A connected component

of G is a connected subgraph G′ = (V ′,A′) in which any vertex in V ′ is linked exclusively to

another vertex also in V ′. This is illustrated by Fig. 6b, in which the graph has two connected

components.

The neighbourhood of a vertex vi is the setNi of all vertices adjacent to vi. Sometimes
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Figure 8 – Examples of depictions of graph signals over (a) a directed ring graph, (b) an undirected
regular grid graph and (c) a graph of cities from the Brazilian Northeastern region, over
which was defined a signal of temperature measurements from February 1st of 2012,
retrieved from the Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP,
freely translated as Meteorological Database for Teaching and Research), available at:
<http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>.
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it is useful as well to denote by N (i,K) the set of vertices connected to vi through a path of

length K or less. This notion is represented in Fig. 7.

The reader is encouraged to refer to this section whenever necessary. For a broader

glossary with a solid introduction to graph theory, the reader may wish to read (MURTY;

BONDY, 2008; CHUNG, 1997).

3.3.2 Defining a graph signal

A signal s defined over G = {V,A}, with |V| = N , is a discrete-domain function

mapping the graph vertex set to a scalar set, usually the complex or real numbers,

s : V → C | s(vi) = si, i = 0, . . . , N − 1, (69)

so that the graph signal s can be seen as a column vector in CN indexed by the vertices of G.

Once the vertices V = {v1, . . . , vN} are clearly labeled, it is not ambiguous to represent the

signal as the column vector s = (s0 s1 . . . sN−1)
T , si ∈ C, 0 ≤ i ≤ N − 1.

Fig. 8 provides examples of graph signal representations, in which the vertex labeling

is omitted for the sake of simplicity, as it will be assumed that the signal sample si is assigned

to vertex vi. The signal values are indicated in two manners: either by writing down its

numerical value next to the respective vertex, or by using a pseudocolor scale, the latter of

which is the scheme adopted throughout this paper.

It is crucial to stress a certain graph which links GSP to the classical DSP theory: the

directed ring graph, shown in Fig. 8a, which models the finite-length discrete-time domain.

http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
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Figure 9 – The same signal defined over two similar graphs, one of them being (a) the undirected
ring graph. In (b) and (d) are depicted the Fourier spectra of the signals in (a) and (c),
respectively.
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Its directed edges model the causality of time domain, whereas the feedback edge accounts

for the boundary condition of periodicity imposed by the DFT analysis. Other signals that

arise in practical applications have the respective graphs easily identified: the rectangular

lattice in Fig. 8b, for example, models the digital image domain (SANDRYHAILA; MOURA,

2012), and Fig. 8c shows an example of signal defined over a mesh network of sensors,

with the edges weighted using the inverse of the euclidian distance, which arises in many

scenarios such as IoT applications.

The spectral characteristics of a signal depend heavily on the domain over which

it is defined, but one does not need to acknowledge this in the context of DSP, for in this

case the domains are always regular and uniform.2 From the classical theory, the common

understanding states that a signal has mostly low frequencies if adjacent samples have

similar values, and high frequencies otherwise. When dealing with signals defined over

graphs, it is clear that the adjacency relations depend on the graph topology, and therefore

one may foresee that the same signal may present different spectra when defined over different

graphs. This intuition is visually confirmed (and will soon be mathematically proved) in Fig.

9, which depicts a signal and its spectra3 when two different graphs are taken as domain.

The reader may notice that, in Fig. 9c, the samples with highest values are adjacent to the

ones with small values, what causes the highest concentration of energy to be in the highest

frequencies. The opposed behavior is observed in the signal defined over the undirected ring

graph in Fig. 9a.
2 One could argue that, in the theory of nonuniform sampling, the signal is defined over an irregular domain,

since the samples may be randomly spaced. Even in this case, however, the classical techniques still aim to
recover the signal so as to represent it in its usual – and uniform – domain.

3 These spectra were obtained using the Laplacian matrix as a graph shift operator, not the adjacency matrix.
The reader should not bother with the differences for now, it suffices to know that the spectra can be read
as usual: frequencies increase as you move to the right on the frequency axis. In other words, any low-pass
signal will have most of its energy lying on the left-hand side of the spectrum.
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3.3.3 Graph inference

Some contexts in which GSP is applied do not provide clear information on how the

underlying graph is structured. For example, let us suppose the temperature data (or any

other data in fact) of some Brazilian Northeastern cities will be treated using GSP. How is

one supposed to weight the graph edges, and before this, how does one decide which vertices

to connect? Is the graph shown in Fig. 8c the only option? Clearly not. Although generally the

problem of graph inference is complex, this type of geography-based graph has an adequate

method of topology estimation.

The general ideia is that, if there is a clear metric to evaluate the expected similarity

between samples as a function of the available information regarding the respective vertices,

then this metric may be used to generate the edge weight and a threshold is set so that any

weight below this value causes the respective edge to be eliminated. In the case of vertices

which have geographic location, the euclidian distance may be used as the metric because

vertices that are closer together are (usually) expected to have similar signal samples, and

therefore the adjacency matrix of the underlying graph may have entries given by

Aij =


exp

(
−dist2(vi, vj)

2θ2

)
if dist(vi, vj) < T

0 otherwise,
(70)

as used in (SHUMAN et al., 2013). The choice of the parameters T 4 and θ (standard deviation

of the distribution), and of how to use the metric (in this case, inside a Gaussian distribution),

are dictated by the application and by the analyst experience.

However, if there is an isolated vertex, far from the others, the use of (70) may lead

to a compromise between keeping the graph connected and obtaining a sparse adjacency

matrix, since imposing connectivity to the graph in this case implies increasing T , and

therefore having many edges. To deal with this problem and still have a good representation

of the underlying graph, one alternative is to connect a vertex to its K closest neighbours

(setting K to an appropriate value, according to the context) and weight the edges using the

Gaussian distribution in (70).

As previously discussed, these methods require an adequate metric to evaluate the

expected similarity between samples in the graph vertex, but given the diverse areas in
4 T indicates a distance threshold above which we set the edge weight to zero, effectively leaving the ver-

tices unlinked. This means that the distance between them is assumed to be too high for any significant
interdependence to exist.
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which graph signals may arise, estimating the topology of the underlying graph constitutes

a challenge of its own (MEI; MOURA, 2016; SARDELLITTI; BARBAROSSA; LORENZO,

2016).

3.4 FORMULATING GSP BASED ON THE GRAPH ADJACENCY MATRIX

In 2008, Püschel and Moura published their algebraic signal processing (ASP) theory

(PÜSCHEL; MOURA, 2008b; PÜSCHEL; MOURA, 2008a), which expands DSP by looking

at it from an algebraic point of view: each signal processing theory is studied as a triple

(A ,M ,Φ) consisting of an algebra A (a vector space endowed with multiplication between

vectors), an A -module M (a vector space over the same base field as A which admits left-

multiplication by elements of A ) and a linear transformation Φ. A is called the filter space,

M is the signal space and Φ is the Fourier transform (homomorphism over M ) associated

with the structure.

When these authors drew inspiration from ASP to develop their GSP theory, the

starting point was necessarily to find (better, to define) the unit shift operator of graph

signals, the reason being that such an operator in ASP is the building block of the algebra

A (as, for example, the unit delay z−1 is the building block for filters of discrete-time and

finite-length signals A = {∑N−1
ℓ=0 hℓz

−ℓ|hℓ ∈ C}). To do so, the shift of discrete-time signals,

defined over directed ring graphs, was investigated.

By inspection of the adjacency matrix of the directed ring graph (Fig. 8a),

C =


1

1

. . .

1

 , (71)

it was noticed that the unit (circular) shift of discrete-time signals is precisely the left-

multiplication by C, for a given discrete-time signal x = (x0 x1 . . . xN−1)
T ,

Cx =


1

1

. . .

1




x0

x1
...

xN−1

 =


xN−1

x0
...

xN−2


∆
= x⟨1⟩, (72)

and the generalization followed: the graph unit shift was defined as the left-multiplication by

the graph adjacency matrix.
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In other words, for a signal x defined over the graph G = {V,A}, the adjacency matrix

A acts as a filter which “delays” (i. e., translates in the vertex domain) the graph signal x

(represented here as a column vector) by one unit, producing the delayed version represented

hereinafter by x⟨1⟩ = Ax.

3.4.1 Graph filters

Seeing the adjacency matrix as a filter suggested the general definition of graph filter

as any matrix H ∈ CN×N (SANDRYHAILA; MOURA, 2013b), which preserves the necessary

property that the output of a filter (i. e., the matrix-vector product) is a signal (i. e., a column

vector). Such a definition implies that linearity is always valid for graph filters, since the

distributivity of matrix multiplication with respect to matrix addition guarantees that

H(α1x1 + α2x2) = α1Hx1 + α2Hx2. (73)

The next desirable property would be shift invariance, analogous to the classical

time invariance of DSP, and this means that filtering and shifting should commute. In other

words, for a graph filter H to be linear and shift invariant (LSI) it is required that

AHx = HAx, ∀x ∈ CN ⇒ AH = HA. (74)

The following theorem establishes an important property satisfied by every LSI filter (SANDRY-

HAILA; MOURA, 2013a) .

Theorem 5. Let A be the adjacency matrix of a graph. Let us assume that the characteristic

polynomial charA(x) of A coincides with the respective minimal polynomial mA(x). Therefore,

H is an LSI filter if and only if H is a polynomial in A, i. e.

H = h(A) =
L∑

ℓ=0

hℓA
ℓ, (75)

where A0 is the identity matrix and L < deg(mA).

The assumption on charA(x) and mA(x) in Theorem 5 does not hold for all adjacency

matrices A. Nevertheless, the result in the referred theorem can be extended to all matrices

using the concept of equivalent graph filters, as clearly explained in (SANDRYHAILA;

MOURA, 2013b). As a consequence, for any graph G = {A,V}, every LSI filter has polynomial

representation inA. In this sense, Theorem 5 suggests a convenient analogy with the classical

DSP, since every filter for discrete-time signals can be represented as polynomials evaluated

in z−1, the unit delay, via the z-transform of its impulse response.
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3.4.2 Graph Fourier transform

The topic of spectral analysis is key in signal processing. When studying how this

would be implemented in the scope of GSP, the authors started by looking at the classical

Fourier transform as a signal decomposition into a basis of eigenfunctions of the LTI filtering

(OPPENHEIM; WILLSKY; NAWAB, 1997), i. e., the basis of complex time exponentials.

From that point, the generalization to GSP was clear: the graph Fourier transform (GFT) was

defined as the decomposition of a graph signal into a basis of eigenvectors of LSI filtering.5

Let us take the graph G = {V,A}, |V| = N . If A is diagonalizable,6 then one may

write

A = VΛV−1, (76)

in which V contains the N eigenvectors of A in its columns,

V = (v0 v1 . . . vN−1). (77)

Since LSI filters are polynomials in A, and since a matrix and its powers share the

same set of eigenvectors, the columns of V form a basis of vectors invariant to LSI filtering.

Besides, given that the subspaces generated by the linearly independent eigenvectors of

a same eigenvalue of A are irreducible, have null intersection and the dimensions of all

subspaces add to N (SANDRYHAILA; MOURA, 2013c), V provides a basis which is invariant

to LSI filtering for the space of signals defined over G.

Therefore, a signal x may be decomposed into its components with respect to V as

x = x̂0v0 + · · ·+ x̂N−1vN−1

= V(x̂0 x̂1 . . . x̂N−1)
T

= Vx̂
∆
= GFT{x}, (78)

and this is the synthesis equation of the GFT. The analysis equation follows,

x̂ = V−1x
∆
= GFT−1{x}. (79)

It has been emphasized that the directed ring graph is the link between GSP and

DSP, because it models the discrete-time domain. This provides a way of checking how
5 One may wish to distinguish between the different implementations of the GFT regarding the choice of graph

shift operator. Unless clearly stated otherwise, this chapter considers it to be always the graph adjacency
matrix, but other popular option is the graph Laplacian, as already mentioned. In this regard, the reader
even may find the terms GSPA and GSPL in previous publications (RIBEIRO; LIMA, 2018), making the
distinction clear.

6 If not, the reasoning may be replicated using the Jordan decomposition of A and the set of generalized
eigenvectors (DERI; MOURA, 2017).
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Figure 10 – (a) Signal defined over an undirected ring graph and (b) its spectrum. The frequencies
are indicated by the eigenvalues of the adjacency matrix.
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consistent with the classical theory are the proposed GSP tools. When investigating how

the GFT would act upon discrete-time signals, one should first diagonalize the adjacency

matrix C of the directed ring graph, given by (71). Since it is circulant, it is known to be

diagonalized by the DFT matrix F, with entries Fn,k = exp
(
−j 2πN nk

)
, which contains in its

rows the DFT eigenvectors. The calculation of the characteristic polynomial of C,

pC(λ) = det(λI−C) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ

. . . . . .

−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣
= λN − 1, (80)

shows that its eigenvalues are the N complex roots of unity. Setting these eigenvalues as the

entries of a diagonal matrix ΛC, the eigendecomposition of C may be written as

C = F−1ΛCF, (81)

and one can see that, in the case of directed ring graphs, the GFT and the DFT matrices

coincide, since V−1 = F. This equivalence indicates a desirable consistency with the classical

theory.

3.4.3 The frequency domain

The way the GFT was defined naturally suggests the interpretation of the adjacency

matrix eigenvectors vi as “frequency components” associated with the “graph frequencies”

given by the eigenvalues λi, exactly as the Fourier component e−iΩt, in the continuous

time domain t, is associated with the frequency Ω. This subsection aims to provide the

mathematical justification used by Sandryhaila and Moura (SANDRYHAILA; MOURA,

2014b) to support this understanding, along with some authorial comments.
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The reader may have noticed a curious consequence from what was previously stated:

unless the minimal and characteristic polynomials of A are equal, the same frequency may

be associated with two or more linearly independent frequency components, as indeed was

the case in the example of Fig. 10. Furthermore, this figure shows that although the signal

seems to be smooth, its frequency components are mostly associated with eigenvalues of high

magnitude, what is counter-intuitive and provides a motivation to define a clear criterion to

distinguish high and low graph frequencies.

The following mathematical reasoning consists of taking a metric which quantifies

the expected signal smoothness, and use it to propose or confirm a notion of graph frequency.

The metric used by Sandryhaila and Moura was the total variation, taken from classical

real analysis and defined for differentiable functions as (RUDIN, 1987; MALLAT, 1999)

∥f∥V =

∫ ∞

−∞
|f ′(t)|dt. (82)

For discrete domain functions fN [n], the Riemman integral is replaced by first order

differences,

∥fN∥V =
∑
p

|fN [np + 1]− fN [np]|, (83)

which clearly quantifies the dissimilarity between contiguous values of the function fN . With

this in mind, it was natural for Sandryhaila and Moura to use this metric in their attempt

to quantify smoothness in GSP. Taking again the ring graph as a starting point, they looked

at the total variation of a finite-length discrete-time signal x:

TV (x) =
∑
n

|xn − x(n−1) mod N |. (84)

From (72), one can see that (84) may be written in terms of the ℓ1-norm7 as TV (x) =

∥x −Cx∥1, by using the directed ring graph adjacency matrix to perform the cyclic shift.

From that point, the generalization consisted of using this expression and defining the total

variation on graphs of a signal s defined over the graph G = {V,A} as

TVG(s)
∆
= ∥s−Anorms∥1, (85)

with Anorm = |λmax|−1A and λmax being the eigenvalue of A having the highest absolute

value. The normalization of the adjacency matrix aims to avoid the excessive magnification

of the shifted signal (SANDRYHAILA; MOURA, 2014b).
7 Throughout this text, the concepts of ℓ1- and ℓ2-norm will be frequently used. They are particular cases of

the ℓn-norm of a vector x ∈ CN , defined as ∥x∥n
∆
=

(∑N−1
k=0 |xk|n

)1/n

.
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Figure 11 – Frequency ordering of graph signals, from low to high frequencies, in the complex plane.
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Let A be diagonalizable as in (76) with (possibly complex) eigenvalues ordered like so

|λ0| ≤ |λ1| ≤ · · · ≤ |λN−1| ∆= |λmax|, (86)

associated with the eigenvectors (vi)i=0,...,N−1, scaled so that ∥vi∥1 = 1 ∀i. Taking the total

variation (on graphs) of the eigenvector vk, one has

TVG(vk) = ∥vk −Avk∥1 = ∥vk −
1

|λmax|
λkvk∥1

=

∣∣∣∣1− λk

|λmax|

∣∣∣∣ ∥vk∥1 =
∣∣∣λk − |λmax|

∣∣∣ ∥vk∥1
|λmax|

so that, since ∥vk∥1 = 1,∣∣∣λi −|λmax|
∣∣∣≤ ∣∣∣λj −|λmax|

∣∣∣⇐⇒ TVG(vi) ≤ TVG(vj), (87)

i. e., frequency components associated with eigenvalues closer to the real point |λmax| in
the complex plane are smoother (because they have lower total variation), and therefore

are said to be of low frequency. Fig. 11 illustrates this ordering for graph frequencies, what

clarifies the spectrum of the signal in Fig. 10a (notice that since the graph is undirected, its

adjacency matrix is symmetric and the eigenvalues are real-valued).

Let us take the directed graph in Fig. 12a to try to verify the consistency of the

notion of frequency just derived. For this, along with the total variation on graphs, also the

number of zero crossings (i. e., the number of edges connecting vertices with signal samples

of different sign) will be used to quantify frequency. This quantity is also related to frequency

in classical theory: the more a discrete signal has contiguous samples with different sign,

generally the higher are its frequency components. These two functions, the total variation
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Figure 12 – (a) Directed sensor graph, with N = 100 vertices and no loops or multiple edges. (b)
Number of zero crossings and (b) total variation of the eigenvectors (vi)i=0,...,N−1 of the
adjacency matrix A of the graph in (a), ordered so that the respective eigenvalues appear
from the closest to the farthest from the real point |λmax| in the complex plane. That
is, according to (87) and Fig. 11, the eigenvectors are disposed in ascending order of
frequency.
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Source: the author (2022).

on graphs and the number of zero crossings, were calculated for each of the adjacency matrix

eigenvectors, and the result is shown in Fig. 12, in which the eigenvectors vk are ordered in

such a way that the respective eigenvalues λk appear from the closest to the farthest from

the real point |λmax| in the complex plane. Both metrics have similar behaviour, but since

the number of zero crossings is indifferent to graph signal variations which do not change

sign, it was already expected to be less accurate as a figure of merit for frequency. It matters

to highlight, however, how the adopted eigenvector ordering indeed implies an ascending

frequency order, since both functions in Fig. 12b and 12c agree on the tendency of growth.

More than that, TVG(vk) grows monotonically, as it should do according to (87).

It is convenient to conclude this discussion on the graph frequency domain by referring

to the frequency response of graph filters. The definition given in Subsection 3.4.1 considers

the action of a matrix on a signal x in the vertex domain of the graph G = {V,A}. In order

to understand how the filter acts in the GFT domain, hereinafter called frequency domain,

one may use (76) and the polynomial representation of LSI filters. Let us take the filter

H =
∑L

ℓ=0 hℓA
ℓ and its output to the input x given by

Hx =

L∑
ℓ=0

hℓA
ℓx =

L∑
ℓ=0

hℓ
(
VΛV−1

)ℓ
x

= V

(
L∑

ℓ=0

hℓΛ
ℓ

)
V−1x. (88)

Taking the GFT of both sides of the last equation yields

V−1Hx = h(Λ)x̂, (89)
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which indicates that left-multiplication by H (action of the filter in the vertex domain) is

equivalent to the left-multiplication, in the frequency domain, by the matrix h(Λ). In other

words, h(Λ) represents the frequency response of H.

3.5 SUMMARY

This chapter guided the reader through the aspects regarding the fractional Fourier

transform and graph signal processing most relevant to this work, closing the review of

literature needed to have enough context to grasp and critique the chapters of original

contributions that lie ahead. The key points to keep in mind are that

• the fractional Fourier transform performs a real-valued rotation in the time-frequency

plane,

• the graph signal processing framework extends the usual discrete time domain to any

network modeled by a graph, and as a consequence key basic concepts such as a unit

shift must be redefined in terms of a graph matrix, called the graph shift operator,

• the graph Fourier transform is the projection of a graph signal (vector) onto the space

of eigenvectors of the graph shift operator.
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4 THE FRACTIONAL GRAPH SHIFT OPERATOR AND ITS APPLICATIONS

Over the last decade, theory and applications related to graph signal processing have

been widely developed and attracted the attention of several scholars (ORTEGA et al., 2018;

DJURIC; RICHARD, 2018; RIBEIRO; LIMA, 2018). The reader may recall from Chapter

3 that GSP aims to extend concepts and operations of classical digital signal processing

to scenarios in which the signals lie over irregular domains. Such scenarios include, for

instance, sensors arbitrarily positioned in a geographic region and measuring some climato-

logical variable, points of a three-dimensional cloud representing some virtual object and

its attributes, people linked according to their interests and proximity relationships in a

social network and so on (CHEN et al., 2014b; ZHANG; FLORêNCIO; LOOP, 2014; BENZI

et al., 2016b; HUANG; MARQUES; RIBEIRO, 2018; SAAD; BEFERULL-LOZANO, 2018;

JIANG; TIAN; LI, 2021; GAMA et al., 2019; LIU et al., 2019; ZHANG; CUI; DING, 2020;

FERREIRA; LIMA, 2020; ZHANG; TAN; SUH, 2021; XIAO; FANG; WANG, 2021; SUN et

al., 2021).

Among the research fronts active in GSP, the one that investigates alternatives to the

shift operators, employed as building blocks to describe graph signals and systems, deserves

to be highlighted (GIRAULT; GONCALVES; FLEURY, 2015; GAVILI; ZHANG, 2017; FAN;

TEPEDELENLIOGLU; SPANIAS, 2019b; FAN; TEPEDELENLIOGLU; SPANIAS, 2019a;

MOLLAEBRAHIM; BEFERULL-LOZANO, 2021; SHAFIPOUR et al., 2018; SHAFIPOUR

et al., 2019). In fact, when the purpose is to consider linear operators in this context, any

matrix can be chosen to play the role of elementary building block; multiplying a matrix

by a graph signal represented as a vector produces another signal whose samples result

from a linear combination of the samples of the original signal. In this scope, the use of

matrices other than the standard adjacency matrix and the Laplacian for the mentioned

purpose may be more suitable in specific scenarios and to carry out specific (graph) signal

processing tasks. Even when the focus is on designing other graph operators (e.g., the graph

Fourier transform), the decision about which elementary operator to use has an impact on

the expected results.

Regarding the issue discussed in the last paragraph, some relevant works in the GSP

literature can be mentioned. In (GIRAULT; GONCALVES; FLEURY, 2015), for example, the

authors propose an isometric graph translation operator that is described in the spectral do-

main as a phase shifting operator; this operator shares key properties with the time shift and

behaves reasonably in the vertex domain. In (GAVILI; ZHANG, 2017), the authors define an
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energy-preserving shift operator that satisfy many properties similar to their counterparts

in classical signal processing; the GSP framework based on the referred operator enables

the signal analysis along a correlation structure defined by a graph shift manifold. In (FAN;

TEPEDELENLIOGLU; SPANIAS, 2019b) and (FAN; TEPEDELENLIOGLU; SPANIAS,

2019a), the authors employ different features associated with a graph to generate a series of

shift operators and design a graph-filter-based classifier. Although the proposed method pro-

duces better results than those achieved using conventional graph-filter-based classifiers, it

requires dealing with a non-convex optimization problem whose solution involves a relatively

high computational cost. In (MOLLAEBRAHIM; BEFERULL-LOZANO, 2021), motivated

by the typical scenario of asymmetric communications in wireless sensor networks, the

authors study the optimal design of graph shift operators to perform decentralized subspace

projection for asymmetric topologies. Obtaining the referred operators can be performed

either by solving an optimization problem or by employing a decentralized algorithm based

on an Alternating Direction Method of Multipliers (ADMM). In (SHAFIPOUR et al., 2018)

and (SHAFIPOUR et al., 2019), the goal is to construct a graph Fourier transform for di-

rected graphs (digraphs), such that the corresponding orthonormal frequency components

are as spread as possible in the graph spectral domain. The method uses the Laplacian of

an undirected version of the digraph and involves non-convex, orthonormality-constrained

optimization problems.

This chapter brings contributions related to the above mentioned works by discussing

the possibility (and potentially useful consequences) of computing a non-integer power Aa,

a ∈ R, of the adjacency matrix A, which is taken as the (unit) graph shift operator (SANDRY-

HAILA; MOURA, 2014a). As a consequence, the notion of fractional shift (or delay) of signals

on graphs is presented, which, to the best of the author’s knowledge, has not yet been

addressed in the literature. Differently from the referred papers, in which new operators

are created or standard operators are adjusted using strategies potentially expensive from

the computational point of view, a relatively simple generalization is proposed, which fills a

theoretical gap concerning the extension to the GSP framework of a well-established concept

in the classical signal processing.

This chapter contains mostly the content of the paper (RIBEIRO; NETO; LIMA,

2022), published on the IEEE Access journal, and presents the contributions listed below.

• The introduction of the fractional graph shift operator Aa and the discussion of its

several aspects. More specifically, the demonstration that Aa can be computed by using

the theory of matrix functions, considering the Jordan decomposition of A.
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• The demonstration that Aa acts as a graph filter, furthermore giving its frequency

response and discussing issues related to fractionally shifting graph signals containing

descontinuities (Gibbs phenomenon).

• An analogy between the proposed graph fractional operator and that considered in

the classical discrete-time case; suggesting that, when a directed ring graph with N

vertices is considered, the response of the corresponding graph filter related to Aa

converges to that of the classical fractional delay filter as N grows.

• The determination of the polynomial representation of Aa and, with that, the demon-

stration that, for any graph, such an operator can be implemented as a linear and

shift-invariant (LSI) graph filter.

This chapter is organized as follows. In Section 4.1, it is introduced the concept of

fractional shift on graphs and the main contributions are developed: the computation of Aa

in Subsection 4.1.1, discussion of its interpretation in Subsection 4.1.2, demonstration of

its consistency with the ideal fractional delay filter in Subsection 4.1.3 and determination

of its polynomial representation in Subsection 4.1.4. Section 4.2 is devoted to numerical

results related to the developed theory: it is firstly presented a small example regarding

the polynomial representation of Aa in Subsection 4.2.1; then a real-world graph signal

is considered (temperature measured by weather stations) and it is demonstrated that,

using Aa, one can obtain filters that approximate an ideal filter (in the least-squares sense)

better than those designed using A (Subsections 4.2.2 and 4.2.3); finally, this possibility is

illustrated by means of an example involving the noise removal from the same graph signal

(Subsection 4.2.4). The chapter closes with concluding remarks in Section 4.3.

4.1 FRACTIONAL SHIFT ON GRAPHS

Since the unit shift of a graph signal can be defined as the product by the adjacency

matrix of the graph on which it lies, in this work, the proposed definition of a graph fractional

shift as the product by a non-integer power of A. Precisely, the signal x over the graph

G = {A,V}, after being shifted by a ∈ [0, 1], is given by

x̃a = Aax. (90)

The following sections discuss aspects related to the computation of Aa, the interpretation

of its application to a graph signal and the consistency of the proposed operator with the

classical DSP approach (ideal fractional delay filter).
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4.1.1 Computation of Aa

The computation of Aa can be well established by employing results from the theory

of matrix functions (HIGHAM, 2008). In this context, it suffices to evaluate the originally

scalar function f(t) = ta, a ∈ R having A as argument. The most direct way to formally define

a function like this uses the Jordan canonical form. With this purpose, let us reconsider (76),

replacing the diagonalization of A with the most general decomposition

A = VJV−1, (91)

using the Jordan block diagonal matrix J,

J = diag(J1,J2, . . . ,Jp), (92)

and the matrix V of generalized eigenvectors. Each k-th Jordan block Jk is

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk (93)

and m1 +m2 + . . . +mp = N . Denote by λ1, . . . , λs the distinct eigenvalues of A and by ni

the index of λi (the order of the largest Jordan block in which λi appears). The function f is

said to be defined on the spectrum of A if the values

f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , s, (94)

exist, where f (j) denotes the j-th derivative of f .1 That holds true for f(t) = ta. The compu-

tation of f(A) = Aa can then be carried out as follows.

Definition 2. Let f be defined on the spectrum of A ∈ CN×N and let A have the Jordan

decomposition (91). Then

f(A)
∆
= Vf(J)V−1 = V diag(f(Jk)) V

−1, (95)

where

f(Jk)
∆
=


f(λk) f ′(λk) · · · f (mk−1)(λk)

(mk−1)!

f(λk)
. . . ...
. . . f ′(λk)

f(λk)

 (96)

1 As usual, the notation f ′ will be used interchangeably with f (1).
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and diag(·) is intended to represent a block-diagonal matrix constituted using the blocks

f(Jk).

In the present context, the last definition constitutes a practical way to calculate

Aa, because the Jordan form of the adjacency matrix, being necessary for the definition of

the corresponding GFT, may already have been computed and thus be available to be used

in (95) and (96).

4.1.2 Interpreting the graph fractional shift

In order to perform a meaningful interpretation of the graph fractional shift, we

consider (90) and the case in which A is diagonalizable. Using the matrix factorization (76),

the GFT analysis equation (79) and the computation strategy described in the last subsection,

we can write

Aax = VΛaV−1x = V


λa
1

. . .

λa
N

 x̂

= V(ĥa ⊙ x̂) = GFT−1{ĥa ⊙ x̂}, (97)

where ĥa
∆
= (λa

1 . . . λa
N )T and ⊙ represents the point-wise vector product.

Equation (97) shows that Aa is a graph filter with frequency response diag(ĥa);

moreover, if x is an N -point discrete-time signal (case in which the GFT coincides with the

DFT), one observes that the filter in the DFT domain is the vector ĥa itself. In this case,

it has been discussed that the adjacency matrix of the respective graph is diagonalized

according with (81), where ΛC has as entries the N roots of unity. The fact that the matrix

of eigenvectors of C is the Fourier matrix imposes a specific order of the eigenvalues in ΛC,

so that the vector ĥa is

ĥa = (1 W a
N W 2a

N . . .W aR
N W−aR′

N W
a(−R′+1)
N . . .W−a

N ),

where WN = e−j 2π
N and

R = N−1
2 and R′ = R, if N is odd,

R = N
2 − 1 and R′ = R+ 1, if N is even,

(98)

n = 0, 1, . . . , N − 1. It can be shown that the inverse DFT of ĥa has components given by (99).



62

ha[n] =


1

N

sin(π(n− a))

sin
(
π
N (n− a)

) , if N is odd,

1

N
cot
( π

N
(n− a)

)
sin(π(n− a))+

j

N
(−1)n sin(πa), if N is even.

(99)

The product by a fractional power of the adjacency matrix produces the effect illus-

trated in Fig. 13, for a directed ring graph; it can be seen, for example, how the 5th sample of

the signal shifted by a = 0.3 coincides with the value of the continuous-time signal at the

same position. On the other hand, the analysis we can perform by observing the irregular

graph in Fig. 14 is mostly visual; as we vary the fractional parameter from 0 (original signal)

to 1, we see in the intermediate snapshots how the signal gradually spreads out from the

vertices where, originally, there were already non-zero samples. In this scope, although we

employ terms such as delay and shift, which are inherited from classical signal processing,

the process observed in the figure looks more like a kind of (fractional) diffusion. In fact,

diffusion on graphs have been widely studied (ZHANG; HANCOCK, 2008; THANOU et al.,

2017; BENZI; SIMUNEC, 2021); it is usually described in terms of a system of ordinary

differential equations in time, with the Laplacian matrix of the graph as the coefficient

matrix. Fractional diffusion has been used to model certain phenomena that allow long-

range interactions and are non-local in nature (ILIC et al., 2005; RIASCOS; MATEOS, 2014;

Figure 13 – Fractional shift by a = 0.3 of a sample of a signal on a directed ring graph with unit
weights. (a) Original signal on a directed ring graph. (b) Graph in which the 5th sample
delayed by a = 0.3 appears as an interpolated sample between the 4th and the 5th samples
of the original signal. (c) Original discrete signal and the delayed sample.
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Figure 14 – Fractional shift of a signal, (originally) with 10 non-zero samples, defined on a graph
formed by 80 cities of Pernambuco state, Brazil. Note that the shifted signal is similar to
the original signal, if a is close to 0, and similar to the unit-shifted signal, if a is close to
1.
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Figure 15 – Fractional shift for a signal (a) without and (b) with abrupt variations (descontinuities).

(a)

0 2 4 6 8 10 12 14

−3

−2

−1

0

1

2

 

 

continuous

discrete

delayed by 0.3

(b)

0 5 10 15 20 25
0

1

2

3

4

 

 

continuous

discrete

delayed by 0.5

Source: the author (2022).

ESTRADA, 2021; ANTIL; BERRY; HARLIM, 2021).

Finally, it matters to highlight the fact that the signal to be shifted has to be ban-

dlimited (see Fig. 15a). If the signal has abrupt changes in its sample values, this can be

viewed as a kind of descontinuity and represents high frequency components, when com-

pared to the predominantly smooth behavior of the signal (see Fig. 15b). As a consequence,

we can observe considerable fluctuations around the disparate samples when the signal is

fractionally delayed, an effect similar to the Gibbs phenomenon.

4.1.3 Consistency with classical approach: the ideal fractional delay filter

In the classical approach to the problem of fractionally shifting a discrete-time signal,

the continuous-time version of the signal can be reconstructed, shifted and then resampled

with the same sampling period (OPPENHEIM; SCHAFER, 2013; VÄLIMÄKI, 1995). Due

to the Nyquist-Shannon Theorem, this procedure requires that the signal is bandlimited.

In this context, it can be shown that, if a discrete-time signal x is bandlimited, its version
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shifted by a ∈ [0, 1] is

x[n− a] =
∑
k

x[k]sinc(n− k − a),

so that the (ideal low-pass) filter used to perform the referred shift has components

hLPF [n] = sinc(n− a). (100)

The filter hLPF is non-causal and unstable (it is not BIBO – bounded input, bounded

output, because its impulse response has infinite energy) and, therefore, it is not physically

realizable. In this way, fractional delay filter implementations should just approximate hLPF

as much as possible.

In order to evaluate how close to hLPF [n] = sinc(n− a), 0 ≤ a ≤ 1, is ha[n], for odd N

(see the first row of (99)), the point-wise difference between these signals has been computed

for different values of N ∈ [101, 106]. Fig. 16, shows the relative error (ratio between the

energy of the error (ha − hLPF ) and that of hLPF ), in terms of N and a.

The result suggests that, in fact, ha converges in the mean in ℓ2 to hLPF as N grows,

with relative error less than 5% for N ≈ 30. Moreover, the error is greater when a is close to

0.5, being negligible or null when a is an integer. In fact, the error is exactly zero for a = 0

(or a = 1) and n = a, since

lim
n→a

ha[n] = 1⇒ lim
n→a

(
ha[n]− sinc(n− a)

)
= 0. (101)

The same result is obtained for even N , starting from the second row of (99). When

a is non-integer, ha[n] is complex, with imaginary part of constant modulus for a fixed a.

Considering the corresponding real part only, the error was smaller than that taking into

account also the contribution of the imaginary part. Fig. 17 and Fig. 18 show that the errors

with and without the imaginary part equally decay as N grows, but, using the real part only,

the results are significantly better.

4.1.4 Polynomial representation

The fractional shift matrix Aa necessarily commutes with A, because AaA = A1+a =

AAa, so that Aa is an LSI filter for signals on graphs having A as adjacency matrix (see (74)).

Therefore, according to Theorem 5, Aa admits a polynomial representation like the one

given in (75). In what follows, we evaluate such a possibility for directed ring graphs and for

arbitrary graphs.
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Figure 16 – Percent error (normalized by the energy of h
LPF

) of ha related to h
LPF

, for different (odd)
values of N and the fractional shift parameter a.
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Figure 17 – Relative mean error between Re{ha} and h
LPF

for N even, in terms of the fractional
shift parameter a.
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Directed ring graphs. The adjacency matrix C in (71) of the directed ring graph with

unitary weights satisfies charC = mC (due to the fact that the eigenvalues of C are distinct).

Therefore H = Ca can be directly expressed as a polynomial of degree up to (N − 1) in C.

In order to do this, we consider (81) and the fact that F−1 = FH , with H indicating the

conjugate transpose. This allows to show that Ca = FHΛa
CF is a circulant matrix with the

first column given by ha in (99). Moreover, since the left product of a matrix by C produces a

circular down-shift in each column of the matrix, the N powers of C form a basis for the space

of N ×N circulant matrices (note that CN = C0 is the identity matrix). From the above, we

conclude that the coefficients of the polynomial representation of Ca are the entries of ha,
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Figure 18 – Modulus of the relative mean error between ha and h
LPF

for N even, in terms of the
fractional shift parameter a.
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i. e.

H = Ca =

N−1∑
ℓ=0

ha[ℓ]C
ℓ. (102)

Arbitrary graphs. In order to demonstrate how to obtain the polynomial representation of

H = Aa for arbitrary graphs, let us consider another strategy to compute matrix functions.

By definition, the minimal polynomial mA(t) of A is the unique monic polynomial of lowest

degree such that mA(A) = 0. By considering the Jordan canonical form of A, it can be seen

that

mA(t) =

s∏
i=1

(t− λi)
ni . (103)

It follows immediately that mA is zero on the spectrum of A, that is, the values computed

in (94) are all zero for f(t) = mA(t). Given any polynomial p and any matrix A ∈ CN×N , p is

clearly defined on the spectrum of A and p(A) can be defined by substitution. For polynomials

p and q, p(A) = q(A) if and only if p and q take the same values on the spectrum. Thus the

matrix p(A) is completely determined by the values of p on the spectrum of A. The following

definition can then be established.

Definition 3. Let f be defined on the spectrum of A ∈ CN×N . Then f(A)
∆
= p(A), where

p is the unique polynomial of degree less than
∑s

i=1 ni (which is the degree of the minimal

polynomial) that satisfies the interpolation conditions

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s. (104)

The polynomial p above is known as the Hermite interpolating polynomial. In partic-
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ular, if ni = 1, i = 1, . . . , s, p corresponds to the Lagrange interpolating polynomial

p(t) =
s∑

i=1

f(λi)li(t), li(t) =
s∏

j=1,j ̸=i

(
t− λj

λi − λj

)
. (105)

In any case, the results briefly presented above lead us to conclude that Aa can be expressed

as a polynomial in A and, therefore, according to Theorem 5, the fractional shift of a graph

signal can be implemented as an LSI graph filter.

4.2 NUMERICAL RESULTS

The last section discussed the effect of applying a fractional shift to a graph signal and

demonstrated that Aa admits a polynomial representation. In the first part of this section, a

brief numerical example is presented to illustrate how the referred representation can be

obtained. Then, the proposed fractional operator is applied in a context which brings to the

front its practical advantage, namely the design of graph filters. Naturally, the resulting

filter, being a polynomial in Aa, could also be expressed as a polynomial in A and, therefore,

it is a LSI filter.

4.2.1 Example: Polynomial Representation of Aa

The graph considered in this example is shown in Fig. 19 and has adjacency matrix

A =


5 4 2 1

0 1 −1 −1
−1 −1 3 0

1 1 −1 2

 . (106)

The entries of A in (106) were chosen so that the Jordan decomposition of such a matrix had

integer entries only. The referred decomposition is written using matrices

V =


−1 1 1 1

1 −1 0 0

0 9 −1 0

0 1 1 0

 , V−1 =


0 1 1 1

0 0 1 1

0 0 −1 0

1 1 1 0


and

J =


1 0 0 0

0 2 0 0

0 0 4 1

0 0 0 4

 . (107)
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Figure 19 – Directed graph used to illustrate how the corresponding fractional shift operator can be
computed and represented in polynomial form.
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Source: the author (2022).

Considering f(t) = t0.3 and Definition 2, f(A) = A0.3 can be computed according to

A0.3 = V


f(1) 0 0 0

0 f(2) 0 0

0 0 f(4) f ′(4)

0 0 0 f(4)

V−1,

which gives

A0.3 =


1.6294 0.6294 0.3448 0.2311

0 1.0000 −0.2311 −0.2311
−0.1137 −0.1137 1.4020 0

0.1137 0.1137 −0.1709 1.2311

 .

The same result can be achieved by using Definition 3, which gives

p(A) = f(A) = A0.3

= 0.6688I+ 0.3915A− 0.0654A2 + 0.0051A3,

the polynomial representation of A0.3.

4.2.2 Least-square approximation of LSI filters

Before developing a numerical example illustrating the use of Aa to filter graph

signals, let us first review a simple design technique that are least-squares approximations

of ideal LSI filters (SANDRYHAILA; MOURA, 2014b). Such a method consists of defining

the (ideal) filter by specifying the values of h(λi) (filter response in each eigenvalue of the

shift operator), instead of determining the values of hℓ (filter coefficients). Describing the
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frequency response of the filter for each eigenvalue λi yields the linear system of equations

h(λ0) = α0,

h(λ1) = α1,

...

h(λN−1) = αN−1,

(108)

or, since h(·) is a polynomial of degree L,

h0 + h1λ0 + · · ·+ hLλ
L
0 = α0,

h0 + h1λ1 + · · ·+ hLλ
L
1 = α1,

...

h0 + h1λN−1 + · · ·+ hLλ
L
N−1 = αN−1.

(109)

Using a Vandermonde matrix constructed from the eigenvalues λi, the system (109) can be

written in matrix form as
1 λ0 λ2

0 . . . λL
0

1 λ1 λ2
1 . . . λL

1

... ...

1 λN−1 λ2
N−1 . . . λL

N−1




h0

h1
...

hL

 =


α0

α1

...

αN−1

 . (110)

More specifically, if one desires to design a low-pass filter (LPF) whose cutoff frequency is

λicut , one could set

αj =

 1, for j = 0, . . . , icut,

0, for j = icut + 1, . . . , N − 1.
(111)

Since one generally has N ≥ L + 1, the system of equations (110) is overdetermined and

does not have an exact solution. A possible strategy is to find coefficients hℓ, ℓ = 0, . . . , L,

that minimize, in the least-squares sense, the deviation from the ideal filter response. This

corresponds to solve the optimization problem

min
{hℓ}0,...,L

N−1∑
n=0

(h(λn)− αn)
2 . (112)

Proposed application of the fractional shift. The proposed change to the method above,

which includes the fractional shift in the filter design, consists of replacing A with Aa in (75),

representing the LSI filter as

h(Aa) =
L∑

ℓ=0

hℓA
a·ℓ. (113)

If this is performed, the only adjustment needed in the technique described above consists of

replacing the eigenvalues λi with their ath powers λa
i in (109). The effect of such a substitution

is illustrated and evaluated in what follows.



70

Figure 20 – Graph of a network formed by 230 weather stations measuring the temperature across
the United States. The snapshot of all measurements taken on February 1st, 2003 is the
corresponding graph signal.
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Source: the author (2022).

4.2.3 Example: LS Approximation using Aa

In this example, we consider a network formed by 230 weather stations that measure

daily temperature across the United States (NATIONAL. . . , ). Such stations are represented

by the vertices of an undirected graph whose edges have been established by using the

8-nearest neighbor criterion. The edge connecting vertices vn and vm is weighted according

to

An,m =
e−d2n,m√∑

k∈Nn
e−d2n,k

∑
ℓ∈Nm

e−d2n,ℓ

, (114)

where dn,m denotes the geodesical distance between the nth and the mth sensors. The snapshot

of all measurements taken on February 1st, 2003 forms the signal indexed by the referred

graph, which is shown in Fig. 20. From the GFT of the signal, which is plotted in Fig. 21, it

can be seen that its spectral content is concentrated in the low graph frequencies. Note that

such frequencies correspond to the eigenvalues of A, which are marked along the horizontal

axis of the figure; additionally, the referred marking accompanies the fact that low (resp. high)

graph frequencies are associated with higher (resp. lower) eigenvalues (SANDRYHAILA;

MOURA, 2014b).

We then use the strategy explained in Subsection 4.2.2 to design a filter that ap-

proximates an ideal low-pass filter with λicut = 0.2. In this case, icut = 39 so that the 40

lowest graph frequencies are (ideally) preserved after the signal is filtered. We considered

approximations with L ranging from 1 to 19, that is, filters with 2 to 20 coefficients. For

each of these values, we varied the fractional parameter a from 0 to 1 and, in (110), after

replacing λi with λa
i , i = 0, 1, . . . , N − 1, and solving (168),2 we registered the value of a

2 The optimization problem 168 has been solved using the Linear Algebra module linalg for Scipy, a free
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Figure 21 – Magnitude of the graph Fourier transform of the signal in Fig 20. The graph frequencies
correspond to the eigenvalues of A; low (resp. high) graph frequencies are associated
with higher (resp. lower) eigenvalues.
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Source: the author (2022).

Figure 22 – Fractional parameters providing the minimum approximation errors, for different values
of L, between the ideal LPF and the filter designed by using the fractional graph shift
operator Aa.
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Source: the author (2022).

providing the minimum error between the designed filter and the ideal filter. At the end of

this procedure, the plot shown in Fig. 22 was produced. Observing the figure, we verify that,

for any value of L, the best approximation is provided when a ̸= 1. This is enough to conclude

that, for the graph considered in the example, the use of a fractional version Aa, a ̸= 1, of

A always provides a better result than the one obtained with the non-fractional matrix. A

visual comparison between these alternatives can be performed from Fig. 23, where we show

the (minimum) errors we have just referred to together with the errors when the original

(non-fractional) matrix A is employed.

In Fig. 24, we can observe the ideal filter response superimposed on the responses

obtained when A and Aa are used to design a filter with L+ 1 = 10 coefficients. In this case,
and open-source Python library used for scientific and technical computing. In all experiments performed,
the least mean squares algorithm converged and the time required for this was negligible, considering the
addressed application scenario.
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Figure 23 – Minimum approximation (mean squared) errors, for different values of L, between the
ideal LPF and the filters designed by using the fractional graph shift operator Aa and
the non-fractional operator A.
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Source: the author (2022).

Figure 24 – Ideal filter response superimposed on the responses obtained when A and Aa, a = 0.855,
are used to design a filter with L+ 1 = 10 coefficients.
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the fractional parameter providing the minimum error is a = 0.855. In the figure, we notice

that the filter designed with Aa has fluctuations that deviate less from the ideal filter, when

compared to those related to the filter designed using A. This can be observed mainly in the

passband and constitutes a visual result coherent with the obtained approximation errors.

Plots with similar behavior are obtained for other values L.
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4.2.4 Example: noise removal via LSI low-pass filtering

In this example, we start from the same graph signal considered in Subsection 4.2.3.

We add to the samples of the referred signal random uniformly-distributed values whose

amplitude corresponds to a percentage of the range of the signal itself. Such a synthetic

noise addition is intended to simulate what happens in many practical scenarios, in which

measurements performed on a sensor network are subject to different sources of distortion.

The resulting noisy signal is then filtered by the filters shown in Fig. 24, as an attempt to

reduce the influence of the noise and recover the original signal.

During the experiment, the aforementioned percentage was varied from 1% to 50%

and, for each of these values, 100 noisy signals were generated. After low-pass filtering, the

mean squared error between the original and filtered graph signals were computed. The

results show that the filter designed using A0.855 allows to recover the signal with average

reconstruction error always smaller than that with the filter designed using A; see the data

in Fig. 25.

In this context, it is relevant to remark that the (best) fractional parameter a = 0.855

has been found using the strategy described in the second paragraph of Subsection 4.2.3,

which depends on the error between the designed filter and the ideal filter only. Therefore,

the referred choice does not require prior knowledge of the original signal beforehand, which

is usually not available in real-world problems. This illustrates the potential gain that can be

achieved, in this application scenario, when considering the possibility of fractionalization

of the graph shift operator.

Finally, it is also interesting to mention that only one or a few nodes could have had

their measurements corrupted by noise or changed due to other factors; this would represent,

for instance, a scenario in which certain sensors would be malfunctioning. In order to obtain

some preliminary results taking into account the above described assumption, additional

simulations were carried out. The previous tests were repeated, but assuming that only

a number from 1 to 12 nodes had their values nullified or increased by 20 times. We then

performed a low-pass filtering, expecting that the high-frequency component associated with

the referred measurement changes would be attenuated and that the smooth behavior of

the signal would be recovered. In general, the results obtained using the proposed fractional

operator were better or at least equivalent to those obtained with the corresponding ordinary

operator. Future works may address this issue in more detail.
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Figure 25 – Reconstruction (mean squared) errors after a noise removal procedure is performed by
using graph filters with L+ 1 = 10 coefficients and designed from A and Aa, a = 0.855.
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Source: the author (2022).

4.3 CONCLUDING REMARKS

This chapter proposed and discussed the fractional shift operator of graph signals.

The core idea for the contribution was that, in the GSP theory, the unit shift is defined from

the adjacency matrix of a graph. Interpreting the fractional shift as a filtering operation,

it was demonstrated that, for ring graphs, its application produces the expected effect of

approximating the classical ideal interpolating filter, exhibiting satisfactory results for

bandlimited signals. Moreover, it was also shown that the referred fractional operator can

be implemented as an LSI graph filter for arbitrary graphs and real-world examples were

presented, illustrating the benefits of using Aa to design graph filters for noise removal.
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5 THE FRACTIONAL QUATERNION DISCRETE FOURIER TRANSFORM AND

ITS APPLICATIONS

Linear discrete transforms are building blocks for a multitude of techniques in the

field of signal processing, being almost as important as they are diverse. Among the factors

which distinguish one from the others, there is the algebraic structure over which they are

defined, e. g. a finite field and its extensions (such as in number-theoretic (BLAHUT, 2010;

PEDROUZO-ULLOA; TRONCOSO-PASTORIZA; PÉREZ-GONZÁLEZ, 2017; CHANDRA;

SVALBE, 2014; LIMA; SOUZA, 2013) and arithmetic (KNOCKAERT, 1994; RAJAPAKSHA

et al., 2014) transforms), or the real and complex fields (as in the usual discrete Fourier

transform). Let us recall an important point that has already been made: as the algebra

is extended (for instance, from R to C), it is possible to encode more information into each

signal sample. Such was the motivation behind Sangwine’s definition (SANGWINE, 1996)

of discrete two-dimensional quaternion transforms, based on their continuous counterparts

previously defined by Ell (ELL, 1993): to apply these four-dimensional numbers — the

quaternions, an extension of the complex field — to color image processing. Since then,

quaternion transforms have been useful not only to image processing (ELL; SANGWINE,

2007; CHEN et al., 2018b; LI, 2013; EVANS; SANGWINE; ELL, 2000; JR.; LIMA, 2018),

but also to other fields, such as bivariate signal analysis (FLAMANT; BIHAN; CHAINAIS,

2017a; FLAMANT; BIHAN; CHAINAIS, 2017b; FLAMANT; CHAINAIS; BIHAN, 2018).

Fractional transforms are yet another class of tools of great use, the reader may

remember the review presented in Chapter 3. Regarding quaternion transforms, a couple of

competent works have already addressed their fractionalization (GUANLEI; XIAOTONG;

XIAOGANG, 2008; WEI; LI, 2013; ROOPKUMAR, 2016) and some applications have been

proposed (CHEN et al., 2018b). However, the author is not aware of papers approaching

fractional quaternion discrete transforms from an eigenstructure analysis point of view. This

reasoning may unfold new theoretical insights and implementation techniques, and such is

the motivation for this work.

In this chapter, the eigenstructure of the quaternion discrete Fourier transform

(QDFT) matrix is investigated and shown to be closely related to that of the unitary discrete

Fourier transform (DFT). This result offers an approach for defining the fractional version

of the QDFT (referred to as FrQDFT). Following the central goal of defining the transform

through eigendecomposition theory, a generalization is proposed in the form of a multi-

parametric fractional quaternion discrete Fourier transform (MFrQDFT). For illustrative
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purposes, this work proposes and briefly explores an encryption scheme for color images

with opacity layer, fully harnessing the holistic processing of 4-channels 2D signals through

the MFrQDFT.

The proposed method for image encryption fits in the class of schemes that use linear

transforms alongside non-linear blocks (HSUE, 2018), to implement confusion and diffusion.

The currently available methods in the state-of-the-art literature respond to a diverse range

of needs, as fast implementation through parallel computing (WANG; FENG; ZHAO, 2019),

increased safety and robustness by using matrix semi-tensor product (WANG; GAO, 2020)

or one-time keys (LIU; WANG, 2010), just to name a few examples. The main scope of this

chapter is not the encryption scheme per se, but rather the FrQDFT eigenscructure and the

MFrQDFT definition, the latter having the image encryption as a framework to showcase

some of its possibilities. Nevertheless, the proposed encryption algorithm is described and

evaluated to some extent. Although being an illustrative scenario, it stands on tools adopted

currently by the literature. For example, the chosen method for key generation involved

the use of chaotic maps, known to help achieving high bit sensibility and large key space.

It follows works such as the one by Liu and Wang (LIU; WANG, 2011), which proposed

a color image encryption scheme using two chaotic maps and one-time keying, aiming to

achieve large key space and cycle lengths. Another work by Liu and Wang (LIU; WANG et al.,

2012) employed a piecewise linear chaotic map and DNA encoding for ensuring the initial

conditions of the encryption change according to the image, whereas Wang et al. (WANG et

al., 2010) used a Lorentz chaotic map and a perceptron model applied to image encryption.

The proposed scheme uses a chaotic tent map to generate a pseudo-random sequence, from

which the secret parameters are extracted.

This chapter is structured as follows. Section 5.1 presents the usual definition of

the QDFT and proves the central theorem of this work, regarding how the DFT and QDFT

share symmetric eigenvectors; it closes with comments on the quaternion representation of

color images with opacity layer. Section 5.2 discusses the fractionalization of the QDFT from

an eigenstructure point of view and demonstrates some properties purely based on matrix

algebra. Section 5.3 proposes a multiparametric extension of the fractional transform and

presents an application involving encryption of color images with opacity layer. The main

results are summarized in Section 5.4.
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5.1 EIGENSTRUCTURE OF THE QDFT

Let us recall the definition of the 1D left QDFT of axis µ – a unit pure quaternion,

as presented in (ELL; BIHAN; SANGWINE, 2014, Sec. 3.3.1) and in (115). The m-th entry

of the QDFT of vector v is

v̂m=QDFT{v}m ∆
=

1√
N

N−1∑
n=0

exp

(
−µ2π

N
nm

)
vn∈Cµ, (115)

in which Cµ denotes the set of numbers a+ µb, a, b ∈ R, isomorphic to the complex set. It

matters to notice that, due to the lack of commutativity in quaternion multiplication, the

position of the kernel relative to the operand in (115) is relevant and must be kept consistent

along all computations. Hence, the inverse transformation must be computed with the kernel

on the same relative position,

vn = QDFT−1{v̂}n =
1√
N

N−1∑
m=0

exp

(
µ
2π

N
nm

)
v̂m. (116)

The synthesis and analysis equations may be written in matrix form as

v̂ = QDFT{v} = Fv, (117)

v = QDFT−1{v̂} = F−1v̂, (118)

where F is the unitary QDFT matrix, with entries {F}n,m =
√
N

−1
exp

(
−µ2π

N nm
)
. Since

exp
(
−µ2π

N

)
is an N -th root of unity, such as exp

(
−i2πN

)
, it follows that F shares many

properties of the DFT matrix, such as invertibility (simple calculations show that F−1 = FH ),

what guarantees validity of the inversion formulae in (116) and (118).

The two-dimensional QDFT can be defined in a similar fashion, although more

options regarding kernel positioning are available, since for any pure quaternions µ ̸= ν, one

may verify that generally eναeµβ ̸= eνα+µβ. Ell and Sangwine (ELL; BIHAN; SANGWINE,

2014) presented the eight distinct ways of building a 2D-QFT, which translate directly into

options for 2D-QDFT. One of such possibilities is to transform the quaternion-valued matrix

X ∈ HN×M according to the equation

X̂u,k = 2D-QDFT{X}u,k ∆
=

1√
MN

N−1∑
n=0

M−1∑
m=0

exp

(
−µ2π

N
nu

)
Xn,m exp

(
−ν 2π

M
mk

)
. (119)

This formulation of the 2D-QDFT translates into the following matrix equation,

X̂ = F(µ)XF(ν), (120)
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where the Fourier matrices are similar to the one used in (117), except from the pure quater-

nion which serves as transform axis (shown in the parenthesis). This is a consequence of the

separability of the 2D-QDFT, by which this transform may be conceived as the successive

application of two 1D-QDFTs: once in the rows of X, once in the columns. Therefore, some

results and properties derived for the 1D-QDFT may naturally extend to the two-dimensional

case.

The similarities between the QDFT and the DFT matrices hugely aid the investigation

of the eigenstructure of matrix F. As a result of Theorem 6, which is a contribution of this

thesis, one is able to deduce the QDFT eigenstructure out of even and odd DFT eigenvectors,

by using a variation of Pei’s reasoning regarding the 2D-QDFT (PEI; DING; CHANG, 2010).

Theorem 6. Let v be an eigenvector of the unitary DFT with eigenvalue λ.

(a) If v has even symmetry (in which case λ = ±1), then it is also an eigenvector of the

QDFT with eigenvalue λ.

(b) If v has odd symmetry (in which case λ = ±i), then it is also an eigenvector of the QDFT

(of axis, let us say, µ) with eigenvalue −λiµ, i. e., ±µ.

Proof. (a) If v has even symmetry, i. e., vn = vN−n for n = 1, . . . , N − 1, then

N−1∑
n=0

vn sin
2π

N
nm = 0, (121)

therefore,

√
NQDFT{v}m =

N−1∑
n=0

vne
−µ 2π

n
nm

=

N−1∑
n=0

vn

(
cos

2π

n
nm− µ sin

2π

n
nm

)

=

(
N−1∑
n=0

vn cos
2π

n
nm

)
−
(

N−1∑
n=0

vn sin
2π

n
nm

)
︸ ︷︷ ︸

=0

µ

=

(
N−1∑
n=0

vn cos
2π

n
nm

)
−
(

N−1∑
n=0

vn sin
2π

n
nm

)
︸ ︷︷ ︸

=0

i

=
√
NDFT{v}m =

√
Nλvm

⇒ QDFT{v} = λv.
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(b) If v has odd symmetry, i. e., vn = −vN−n for n = 1, . . . , N − 1 and v0 = 0, then
N−1∑
n=0

vn cos
2π

N
nm = 0, (122)

hence,
√
NQDFT{v}m =

N−1∑
n=0

vne
−µ 2π

n nm

=

N−1∑
n=0

vn

(
cos

2π

n
nm− µ sin

2π

n
nm

)

=

(
N−1∑
n=0

vn cos
2π

n
nm

)
︸ ︷︷ ︸

=0

−
(

N−1∑
n=0

vn sin
2π

n
nm

)
µ

= −
(

N−1∑
n=0

vn sin
2π

n
nm

)
µ.

(123)

But, from the odd symmetry assumption,

√
Nλvm =

√
NDFT{v}m =

N−1∑
n=0

vne
−i 2π

n
nm = −

(
N−1∑
n=0

vn sin
2π

n
nm

)
i, (124)

therefore (remember that λ and vm commute)
N−1∑
n=0

vn sin
2π

n
nm =

√
Nvmλi. (125)

From (123) and (125),
√
NQDFT{v}m = −

√
NDFT{v}miµ

= −
√
Nvmλiµ

⇒ QDFT{v} = −λiµv.

(126)

The results of Theorem 6 are summarized in Table 1. This analysis can immediately

be extended to the two-dimensional case if one considers the separability of the 2D-QDFT,

mentioned after (120). If (e(µ), λµ) and (e(ν), λν) are (column-)eigenvector-eigenvalue pairs

of the matrices F(µ) and F(ν), respectively, then the 2D signal e(µ)e(ν)
T is a 2D-QDFT

eigenvector with eigenvalue λµλν (CANDAN, 2011). Therefore, this 2D-QDFT has eight

(possibly) distinct eigenvalues: ±1,±µ,±ν,±µν.

5.1.1 2D-QDFT and color images with opacity layer

The 2D-QDFT has been commonly used to process color images, which are repre-

sented as matrices of pure quaternions (LU et al., 2007; ELL; SANGWINE, 2006; CHEN
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et al., 2018a). In this representation, each color channel of a certain pixel corresponds

to an imaginary component of the pure quaternion. Although this mapping is useful and

adequate, it neglects the quaternion scalar part (always set to zero), causing a difference in

dimensionality between input and output of the 2D-QDFT: while the image is a 2D signal

with three-dimensional components, its spectrum has four-dimensional entries. It surely is

not a problem per se, rather is an inconvenience, also found when processing real signals

with the DFT.

An application free from this inconvenience is the analysis of color images with

opacity (or alpha) layer, as in files in portable network graphics format (PNG). In this case,

each pixel (R,G,B, α) is mapped into q = α+Ri+Gj +Bk, forming the quaternion-valued

matrix X. Let us compute the 2D-QDFT by separately transforming the rows and columns

using (120), with the same transform axis on both sides,

2D-QDFT{X} = FXFT . (127)

One should notice that the transformation in (127) does not consist on the successive

application of the same QDFT to the rows and columns of matrix X. Due to the noncom-

mutative nature of quaternion multiplication, as it was previously mentioned, different

transforms are obtained when choosing between left- or right-multiplications, even though

the transform axis is kept unchanged. The operation in (127) performs a left QDFT on the

columns and a right QDFT on the rows, as it is clear from (119). A 2D-QDFT consisting

of the same transformation applied in both dimensions must use multiplications with the

same orientation, e. g.

F
(
FXT

)T
. (128)

Fig. 26a shows the QDFT – according to (127) – of Fig. 27a, as another PNG image. As

an illustration of the difference in using (127) or (128), caused by the lack of commutativity

in quaternion multiplication, the mean squared error (MSE) between the two spectra was

computed. The result was approximately 1070.

Table 1 – DFT and QDFT eigenvectors.

Eigenvector
symmetry

Eigenvalue
(DFT)

Eigenvalue
(QDFT)

Even ±1 ±1
Odd ±i −(±i)iµ = ±µ
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Figure 26 – (a) 2D-QDFT of the PNG image in Fig. 27a, according to (127), with axis µ = 1√
3
(i+j+k).

(b) 2D-QDFT of the same image, same transform axis, following the approach in (128).
(a) (b)

Source: the author (2022).

5.2 THE FRACTIONAL QUATERNION DISCRETE FOURIER TRANSFORM

The proposed fractionalization method for the QDFT explores the eigenvector sharing

between the DFT and the QDFT: as long as one possesses an orthogonal eigenvector matrix

E for the DFT, it can be used for the QDFT matrix diagonalization and its subsequent

fractionalization. For instance, the eigendecomposition of the DFT matrix allows to find its

fractional counterpart by raising each eigenvalue to a non-integer parameter a, i. e.

Fa
DFT = EΛaET , (129)

where Λ is the diagonal matrix containing the DFT eigenvalues.

Oliveira Neto and Lima (NETO; LIMA, 2017) stress that a FrDFT expressed as in

(129) will numerically approximate its continuous version if and only if the columns of E

approximate samples of continuous Hermite-Gaussian functions. In (NETO; LIMA, 2017),

the authors present two methods to generate such an orthogonal eigenbasis, one of which

(the generating matrix method) is the one adopted in this work.

Once one is able to compute an orthogonal eigenbasis E containing Hermite-Gaussian-

like DFT eigenvectors, for instance by means of the generating matrix method, Theorem 6

assures that matrix E is also an eigenvector matrix for the QDFT. As a consequence, the

transform matrix F may be decomposed and written as

F = EΓET , (130)

in which the diagonal matrix Γ is obtained by replacing i with µ in Λ (Table 1). Therefore,

the fractional quaternion Fourier transform, or simply FrQDFT, is obtained by raising each
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Figure 27 – (a) Test PNG image. Visualization of each layer in the (b) test image and (c) in its FrQDFT
spectrum, computed with transform axis µ = 1√

3
(i+ j + k) and a = 0.3.
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eigenvalue in Γ to a so-called fractional order a ∈ R, so that

FrQDFTa{v}
∆
= Fav, (131)

where

Fa = EΓaET . (132)

The FrQDFT, as defined in (131) and (132), possesses all the classical properties of a

fractional Fourier transform:

• Reduction to the ordinary quaternion transform: if a = 1, then the synthesis equation

in (131) equals (117), coinciding with the QDFT. The proof is imediate.

• Reduction to the identity: if a = 0, the FrQDFT reduces to the identity operator,

represented as I.

Proof. From the orthogonality of the eigenvector matrix E,

F0 = EΓ0ET = EET = I. (133)

• Index addititivy: applying the FrQDFT twice, using a and b as fractional orders, equals

applying a single FrQDFT with fractional order a+ b. Equivalently, FaFb = Fa+b.

Proof.
FaFb = EΓaETEΓbET

= EΓaΓbET ,
(134)
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but, since Γ is a diagonal matrix, ΓaΓb = Γa+b, hence

FaFb = EΓaΓbET = EΓa+bET = Fa+b. (135)

• Unitary matrix: the matrix Fa is unitary, i. e.

Fa(Fa)H = I, (136)

in which (·)H denotes the Hermitian (conjugate transpose) operator.

Proof. Since all FrQDFT eigenvalues γn are fourth roots of unity in the 1-µ plane (i. e.,

γn = ±1,±µ and, therefore, it has unit module), they can be written as γn = expµθ (in

which θ = 0,±π
2 , π). Hence

γan = γn = exp(−aµθ) = γ−a
n , (137)

consequently

(Γa)H = Γ−a. (138)

From (138) and (132),

(Fa)H =
(
(EΓa)ET

)H
= E (EΓa)H = E(Γa)HET = EΓ−aET = F−a, (139)

and, following the index additivity and the reduction to identity properties,

Fa(Fa)H = FaF−a = F0 = I. (140)

Before proceeding, it matters to notice that other approaches have been used to define

fractional transforms especially suited for image encryption. Lima et al. (LIMA; NETO;

FIGUEIREDO, 2018) applied the generating matrix method to obtain eigenvectors — in a

fashion similar to this work — and define multiorder reality-preserving discrete fractional

transforms. Roopkumar (ROOPKUMAR, 2016), on the other hand, defined a continuous

one-dimensional quaternion fractional Fourier transform by using a reasoning similar to the

symplectic decomposition of quaternions: adding together two traditional fractional Fourier

operators with certain imaginary unit, with one of them multiplied by an orthogonal pure

quaternion. None of the approaches, to the best of the author’s knowledge, made use of

eigenstructure analysis to define the FrQDFT and prove some of its properties.
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Figure 28 – Proposed encryption scheme, exploring the 2D-MFrQDFT.

X
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Source: the author (2022).

5.3 THE MULTIPARAMETRIC FRQDFT WITH APPLICATION TO COLOR IMAGE

ENCRYPTION

Frequently, fractional transforms are employed in both grayscale (TAO; MENG;

WANG, 2010) and color image (KANG; MING; TAO, 2018; KANG; TAO, 2018) encryption.

By setting the secret key to be the transform fractional order, alongside the use of multiple

encryption or multiparametric transforms, one is able to create ciphers with sufficiently large

key spaces and highly sensible to small key changes. This section presents an illustrative

application of the FrQDFT, creating a holistic encryption scheme for PNG images based on

the proposition of a multiparametric FrQDFT.

The definition of the multiparametric FrQDFT, referred to as MFrQDFT, consists

of employing a different fractional order for each eigenvalue in Γ. The vector of fractional

orders is represented by a = [a0, a1, . . . , aN−1]. The MFrQDFT of a column vector v is

MFrQDFT{v} = EΓaETv = Fav. (141)

The symbols Γa and Fa in (141) are abuses of notation. One must comprehend Γa

as the diagonal matrix obtained after raising the n-th entry in the diagonal of Γ to the

n-th component in a. On the other hand, Fa indicates the matrix EΓaET . As it was done

in Subsection 5.1.1, the 2D-MFrQDFT of a quaternion matrix X, e. g. representing a PNG

matrix, is written as

2D-MFrQDFT{X} ∆
= X̂ = FaXFaT , (142)

with inverse transform obtained from the properties listed in Section 5.2

2D-MFrQDFT−1{X̂} = (FaH)X̂(Fa). (143)
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Figure 29 – (a) Encrypted image. (b) Image decrypted with the correct key s0. (c) Image decrypted
with the wrong key s̃0 = s0 + ϵ, with ϵ = −1,6 · 10−80.

(a) (b) (c)

Source: the author (2022).

5.3.1 Encryption scheme using MFrQDFT

The chosen implementation for the PNG image encryption algorithm mixed a block

of random-phase modulation (RPM, also called phase mask in (CHEN et al., 2018a) and

(SINGH; SINHA, 2008)) and multiparametric transform. As suggested by (HSUE, 2018), a

non-linear step of random power is also used. Fig. 28 depicts the system building blocks.

The plaintext image is initially converted into a quaternion matrix X, which is input

to a 2-round processing with RPM + 2D-MFrQDFT. The random-phase modulation consists

of element-wise multiplication by a matrix of random unit quaternions. This role is fulfilled

by matrices A and B in Fig. 28. The inverse RPM (in decryption) is achieved using the

conjugate of the matrix used during encryption.

The random-power block (RP) is the final step in the encryption method. It creates

non-linearity by raising randomly selected entries of the matrix X to a random parameter

β ∈ ]0, 1[. This selection is performed by a binary matrix R, so that the output of the RP

block to an input quaternions matrix M is

RP(M)i,j =


(Mi,j)

β if Ri,j = 1,

Mi,j if Ri,j = 0.

(144)

During decryption, one must use the same matrix R and an exponent β−1.

A chaotic map was used to generate a pseudorandom sequence s of numbers between

0 and 1, from which all of the encryption parameters were drawn: the fractional order vectors

a and b of the two 2D-MFrQDFTs, the parameter β and the matrix R1 for the RP block. The

random-phase modulation matrices were produced beforehand and could be left public in
1 For each entry Ri,j , a corresponding element sk of s was taken and Ri,j was set to 1 if and only if sk > 0,5,

Ri,j = 0 otherwise.
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the scheme documentation. The encryption of a 256× 256-pixels image, therefore, requires a

sequence of length 256 + 256 + 2562 + 1. The secret key consists of the seed s0 of the chaotic

map, a floating point variable between 0 and 1. As a consequence, the key space is determined

by the smallest deviation ϵ from s0 so that, using the wrong key s̃0 = s0 ± ϵ in decryption, it

still leads to a noisy image without any detectable trace of original information.

The key space dimension, denoted by [K], is the ratio between the range of all possible

keys and the range of wrong keys which still lead to partial image reconstruction. The latter

is [s0 − ϵ, s0 + ϵ], following the previous definition of ϵ. Since s0 ∈ ]0, 1[,

[K] =
1− 0

s0 + ϵ− (s0 − ϵ)
=

1

2ϵ
. (145)

When testing the encryption scheme, the tent map (SINGH; SINHA, 2008) was

chosen as tool for generating the s sequence; it is recursively defined as

sn+1 =


γsn if 0 ≤ s0 < 0.5,

γ(1− sn) if 0.5 ≤ s0 ≤ 1.

(146)

with 0 < γ ≤ 2.

The tent map parameters were set to s0 = 0.3 and γ = 1.8, for no particular rea-

son other than obeying the range of values for chaotic behavior. The proposed encryption

algorithm was used on the image in Fig. 27a, what yielded the ciphered output in Fig. 29a.

In order to evaluate the key space dimension, the ciphered image was decrypted using

keys s̃0 = s0 ± ϵ for different values of ϵ ∈ [−10× 10−80; 10× 10−80], with the aid of multiple

precision tools provided by the RealField class in the SageMath software. By the end of

each decryption, it was computed the MSE between the supposedly recovered image and the

original one, what is plotted in Fig. 30. The graph does not change smoothly because each

tweak in s0 propagates along the whole sequence s, what affects randomly all the decryption

parameters. This is, of course, consequence of the nature of a chaotic map. As shown in

the graph, the smallest MSE (still using wrong keys, with ϵ ̸= 0) was 39dB, obtained with

ϵ = −1,6× 10−80.

Fig. 29b and 29c show the decrypted images using ϵ = 0 and ϵ = −1,6 × 10−80,

respectively. It can be seen that the wrong key which caused the smallest MSE still produced

a seemingly random PNG image, a desirable property for an encryption scheme. Since the

smallest deviation used in this test was 0,83× 10−80, it follows that the key space dimension

is, at least, equal to

[K] =
1

2× 0,83× 10−80
≈ 6,0× 1079, (147)
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Figure 30 – Mean squared error, in dB, between the original and the decrypted images as function of
the key error ϵ.
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Source: the author (2022).

what means the key length must be

⌈79 log2 10⌉ = 263 bits, (148)

a value greater than 256 bits, assumed to be appropriate for symmetric encryption schemes,

by information security reports such as ECRYPT (SMART et al., 2018). It is also clear from

these computations and Fig. 29c how sensitive the scheme is to small key changes: the

smallest modification within the precision of 10−80 in the seed s0 was enough to provide a

completely noisy decrypted image (cf. Fig. 29c). The high key sensitivity is also indicated by

the sharp dip in the MSE × Error graph in Fig. 30.

Such an encryption scheme would not only be safe against brute-force attacks, given

its key space dimension, but also known-plaintext attack. The reason for this is the non-

linearity provided by the random-power block, as argued intensely by Hsue (HSUE, 2018).

Resistance to chosen-plaintext attacks, however, is not guaranteed, although simple adjust-

ments could be done in future works to address this problem: the vector of fractional orders

a = {a0, a1, . . . , aN−1} could be made dependent on both the plain image and external param-

eters (such as the secret seed s0). Such tweak in the algorithm would block the extraction of

information from comparing chosen plain images with their encrypted counterparts (CHAI

et al., 2019; HU et al., 2017; MURUGAN; GOUNDER, 2016), making the scheme resistant to

chosen-plaintext and chosen-ciphertext attacks (WANG; TENG; QIN, 2012); with resistance

also to the weaker attacks of brute-force and known-plaintext.

Alongside the investigation of key space dimension and sensitivity, histogram analysis
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play an important role in describing the performance of encryption schemes. A practical

cipher should present an output symbol distribution ideally independent from the cleartext,

so that no information is leaked through histogram visualization (ZHANG; WANG, 2014). In

the case of a PNG image, four histograms are drawn, one for each layer. Fig. 31 depicts a test

PNG image split into its color and opacity components and the corresponding histograms,

both prior and after encryption. A group of 13 256× 256-pixels PNG images were encrypted

using the proposed method and the histograms of the ciphered output were collected, what

is shown in Fig. 32. No matter how diverse the input images may be, the histograms present

continuously the same profile, what indicates decoupling of information between plain

and ciphered images. Although a deeper study on the properties and safety standards of

the proposed encryption scheme is needed for full description of its capacity, the analysis

presented fit in the scope of this work and fulfill the goal of presenting the MFrQDFT with a

clear and illustrative application.

Finally, as stated at the beginning of the chapter, there are a multitude of studies on

image encryption, each addressing particular aspects and problems. Therefore, it is adequate

to acknowledge the position of this proposed encryption algorithm in the literature landscape.

Without providing an extensive and complete analysis, for lack of space, some remarks can

be done. The key space dimension in related works vary from circa 1054, around 160 bits, in

a work by Wang et al. with flexible key space (WANG; ZHANG; BAO, 2015), to more than

400 bits, in a paper by Zhang et al. (ZHANG; WANG, 2015), an interval which includes

the 260 bits of the proposed algorithm. Regarding time of encryption, Wang et al. (WANG;

LIU; ZHANG, 2015) used Arnold cat map and dynamic random growth to obtain large

running speed of the encryption and decryption algorithm. This is an aspect our proposed

scheme is not optimized for, although great improvement in processing time can be achieved

if the eigenvector and eigenvalue matrices of the QDFT are stored in-memory, taking the

eigendecomposition out of the encryption process. As a final comment, the main advantages

of the proposed scheme are its modularization, the holistic processing of color images with

opacity layer, the lack of long iterations and the ease to describe, comprehend and implement.

5.4 CONCLUDING REMARKS

This chapter investigated the eigenstructure of the quaternion discrete Fourier

transform. Although quaternion matrix decomposition is a challenging topic, the problem

for the QDFT was solved by proving that this transform and the DFT share symmetric
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Figure 31 – (a) Test image in PNG format, with 256×256 pixels. (b) Color and opacity layers of the
decrypted image (which coincides with the original in (a)). (c) Histograms of each layer of
the decrypted image. (d) Encrypted image, in PNG format. (e) Color and opacity layers of
the encrypted image. (f) Histograms of each layer of the encrypted image.
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Source: all images were generated by the author, except the first in (a), which was taken from the
World Wide Web Consortium website at <https://www.w3.org/Graphics/PNG/Alphatest.html>.

https://www.w3.org/Graphics/PNG/Alphatest.html
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Figure 32 – Set of 13 PNG test images, 256×256 pixels, alongside the histograms of each layer (colors
and opacity) of their encrypted version.
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(The figure continues on the next page).
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Source: plots generated by the author, whereas the test images were taken from the PurePNG online
free database, available at <https://purepng.com/>, under CC0 license.

eigenvectors, what allowed for the construction of an orthogonal eigenbasis of the QDFT,

using Hermite–Gaussian-like DFT eigenvectors (NETO; LIMA, 2017). This result led to the

definition of a fractional QDFT, which was proven to hold properties similar to those of the

FrDFT, its complex-valued counterpart.

The FrQDFT was further generalized by introducing the MFrQDFT, a multiparamet-

ric version. Exploring the 4D nature of quaternions, a holistic encryption scheme for color

images with opacity layer was proposed, as an illustrative application of the 2D-MFrQDFT,

and shown to provide satisfactorily large key space and key sensitivity, resistance to known-

plaintext attack and ease of description and implementation. Future works could possibly

expand this analysis and address whether some hypercomplex image moments, such as

ternary radial harmonic Fourier moments and quaternion polar harmonic (WANG et al.,

https://purepng.com/
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2019; WANG et al., 2018), could be used for image encryption, eventually in specific scenarios

and applications.
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6 QUATERNION GRAPH SIGNAL PROCESSING

Graph signal processing is a highly flexible tool for analysing and transforming

graph-based data. However, as it happens with so many engineering tasks, often it appears

to mix mathematics and art: the experienced GSP user knows that quite a few characteristics

of the underlying graph are open to be determined by the very problem at hand and by the

user’s intuition. That is, whether one must consider real or complex edge weights, directed

or undirected graphs, whether loops or multiple edges shall be allowed, all of these modeling

choices arise from the data and from the way one considers the most appropriate to represent

the relations within. We make hereby the argument that changing the algebra over which

the graph signal samples (and edge weights) are defined, although rarely regarded among

modeling choices, may reveal powerful new tools.

Let us take an example of how the signal algebra may affect the processing possibili-

ties, in the current state of GSP. Undirected graphs with real-valued weights are a common

option for those used to model data defined over geographic spaces, since it is reasonable to

consider the adjacency relations to be non-directional and weighted by positive real numbers

(SHUMAN et al., 2013). However, the same topology would be arguably inappropriate should

one deal with complex-valued signals: a directed graph or a graph with complex-valued

edge weights would be more reasonable options to evaluate, since they would produce graph

Fourier transform matrices with complex entries. Although this scenario may seem to lack

practical purpose, defining a graph signal with samples lying in extensions of the real field

(e.g. complex numbers) would be justified by the increase in the amount of information stored

within each sample (from a single real number, to twice as much in the complex case).

Electrical engineers for many decades have exploited the benefits of handling more

than one real-valued information (e.g. magnitude and phase) encoded in a single signal

sample, and a similar motivation led to Sangwine’s (SANGWINE, 1996) discrete version of

a family of bidimensional transforms over the quaternions (a skew-field which extends the

complex numbers by having four real valued components). As the reader may recall from

Chapter 1, these transforms used this class of hypercomplex numbers to perform holistic

color image processing, handling all three color channels at once. In fact, quaternion signal

processing was created to embed three- or four-dimensional data into one-dimensional signals

(TOOK; MANDIC, 2008). Ever since, quaternion transforms have been employed not only

on color image processing (ELL; SANGWINE, 2007; CHEN et al., 2018b; LI, 2013; EVANS;

SANGWINE; ELL, 2000), but also on other tasks such as bivariate signal analysis (FLA-
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MANT; BIHAN; CHAINAIS, 2017a; FLAMANT; BIHAN; CHAINAIS, 2017b; FLAMANT;

CHAINAIS; BIHAN, 2018).

In Chapter 3 it was presented the motivation and fundamentals of graph signal

processing, while Chapter 4 delved into the exploration of a fractional graph shift. This

chapter attempts to further extend the borders of GSP by pondering the problem of signal

processing on graphs with quaternion-valued edge weights, referred to as quaternion graph

signal processing.

6.1 LAYING THE FOUNDATIONS FOR QGSP

Since QGSP is the development and application of GSP tools to the context of

quaternion-valued signals and graph edge weights, it starts by extending the usual definition

of graph signal in (69), replacing the complex-valued numbers with quaternions. As such,

the quaternion graph signal s, defined over the graph G = {V,A} | A ∈ Hn×n, is defined as

s : V → H | s(vi) = si. (149)

This definition unfolds some challenges: what does it mean to have a smooth quater-

nion graph signal? Does the well known benefit of quaternion signal processing, namely

holistic manipulation of multiple channels of information, transfer to graph signal process-

ing? How is one able to design LSI filters in QGSP?

In order to properly address these questions and establish the foundations of QGSP,

a few milestones were set to be conquered. Firstly, an algorithm to compute the direct

and inverse (quaternion) graph Fourier transforms should be proposed, to allow for basic

spectral analysis. This includes revisiting the definition of frequency ordering, which is well

understood only for real and complex graph signals. Secondly, QGSP should ideally provide

a class of graphs for which the Fourier transform is known to exist (and hopefully easier to

compute than outside this class). The reasoning here is to find a case similar to that of usual

GSP, where it is known that undirected graphs with real-valued edge weights always have

diagonalizable GSOs. Finally, QGSP should ideally provide a method to design graph FIR

filters, tailored to approximate a given frequency response. The Subsection 6.1.1 gives the

first step toward QGSP, properly defining the QGFT and studying the eigendecomposition of

the quaternion graph shift operator (QGSO).
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6.1.1 Eigendecomposing the shift operator

At the very center of vertex-frequency analysis in GSP lies the definition that a basis

of eigenvectors of the chosen graph shift operator act as Fourier components for the space of

graph signals. This can be directly translated to QGSP, after taking into account the results

presented in Chapter 2, regarding diagonalization of quaternion matrices.

Definition 4. Given the graph G = {V,A}, with adjacency matrix A ∈ Hn×n, the quaternion

graph Fourier transform (QGFT) is the projection of a graph signal onto the eigenspace of A.

The first step toward the QGFT is, therefore, the generation of a basis of (possibly

generalized) eigenvectors of the adjacency matrix. This work has dealt only with the case of

diagonalizable graph matrices, but the use of the Jordan canonical form can be investigated

for non-diagonalizable QGSOs (LONGXUAN; RENMIN; LIANGTAO, 1996).

On the one hand, from the Corollary 1 it is known that the diagonalizability of an

adjacency matrix A both implies and requires that of its complex adjoint matrix χA. Let us

write A = VΛV−1. On the other hand, Theorem 3 guarantees that the eigenvalues of the

adjacency matrix can be taken as half the ones of its complex adjoint matrix. More specifically,

they can be taken as the union of the set of eigenvalues with positive imaginary part (recall

that they are complex-valued) and the set of distinct eigenvalues with null imaginary part

(recall that every real-valued eigenvalue appears twice).

However, once the desired eigenvalues from χ
A have been defined, how does one

assemble V out of the eigenvectors of χA? That is answered by Equation (44), which is

rewritten below for convenience: A1 A2

−A2 A1

 v1

−v2

 =

 v1

−v2

λ.

On the left-hand side of the equation, we find χA and one of its eigenvectors, which is written

in terms of the symplectic decomposition of a quaternionic column vector v = v1 + v2j. As

it turns out, v is precisely the eigenvector of A associated with the eigenvalue λ. This is

proven in Appendix A and constitutes a minor contribution of this thesis. The answer to the

question raised a few lines above, to sum up, is that once one has the chosen eigenvalues of
χ

A, it is possible to assemble V ∈ Hn×n out of the respective eigenvectors of χA by simply

spliting these 2n-long eigenvectors into halves: the first half corresponds to v1 (the simplex

part of the eigenvector v), while the second half is −v2 (with v2 being the perplex part of v).
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So far we are able to obtain V from A, bypassing the direct eigendecomposition of a

quaternion matrix by using its complex adjoint. However, the question of how to get V−1, if

it exists, poses itself imediately, after all V corresponds to the inverse of the QGFT. Let us

address this point.

6.1.2 Inversion of the eigenvector matrix and frequency ordering

The inversion of quaternion matrices is certainly a problem tackled by many re-

searchers, but is not featured prominently in literature, at least not as far as the author is

aware. There is, however, an algorithm proposed by (COHEN; LEO, 1999) during studies

on the determinant of quaternion matrices, when they highlighted the utility of Schur

complements on computing the inversion of any matrix M ∈ Rn×n over the ring R. Let us go

quickly through their idea. Given that M is written in block form,

M =

A B

C D

 , (150)

and under the requisite that A ∈ Rk×k is invertible, the Schur complement of A in M is

defined as

As
∆
= D−CA−1B. (151)

Given that As is also invertible, the closed formula for the inverse of M is

M−1 =

Ik −A−1B

0 In−k

A−1 0

0 A−1
s

 Ik 0

−CA−1 In−k

 , (152)

so that the inversion of M is now reduced to inversion of the two smaller matrices A and As.

Although this method proposes a closed formula for quaternion matrix inversion, it

requires an exhaustive search for a submatrix in the upper left corner that, simultaneously,

is invertible and has invertible Schur complement. Probably the idea can be explored in the

future and used to find an efficient way to compute V−1, but in Algorithm 1 we propose a

more reasonable compromise between processing speed, implementation time and broad

applicability.

The reasoning goes as follows. According to Theorem 2, a necessary and sufficient

condition for the invertibility of a matrix V ∈ Hn×n is the existance of χ−1
V . Moreover, from

Theorem 1, if χ−1
V exists and has the form of a complex adjoint matrix, let us say χ−1

V = χ
M ,

then it follows that M = V−1, since the theorem guarantees that

χ
V
χ

M = χ
V
χ−1

V = I2n×2n = χ
In×n ⇒ VM = In×n, (153)
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letting Im×m be the identity matrix of order m.1 That is, once the complex adjoint of V is

computed, one simply needs to compute its inverse, if it exists, and verify if it follows the

format in Definition 1.

Algorithm 1. Compute the inverse of a quaternion-valued matrix, if a sufficient condition

for its existence is met:

Input: V ∈ Hn×n. Output: V−1 or None.

1: χV ← to_complex_adjoint(V)

2: if det(χV ) = 0 then

3: return None

4: else

5: U← inverse(χV )

6: if not has_complex_adjoint_form(U) then

7: return None

8: else

9: V−1 ← from_complex_adjoint(U)

10: return V−1

11: end if

12: end if

These functions were used in the algorithm to improve readability:

• to_complex_adjoint: converts a quaternion matrix to its complex adjoint form.

• from_complex_adjoint: converts a complex adjoint matrix to its quaternion-valued form.

• inverse: computes the inverse of a complex-valued matrix.

• has_complex_adjoint_form: checks if the matrix has the complex adjoint form, i. e., is a

block matrix as the one in Definition 1.

At this point, all steps required to generate the QGFT, assuming the graph adjacency

matrix is diagonalizable, have been addressed. However, the transform still remains of little

use until a clear definition of frequency ordering is presented, otherwise the lack of sense of

low and high frequencies make the signal spectrum meaningless.

Since the quaternions form a normed algebra — and the reader may refer back to

(16) — it is natural to borrow from classical GSP the definition of the graph total variation
1 For simplicity, this notation is slightly loose, representing both a complex- and a quaternion-valued identity

matrix, since in both cases their entries have zero-valued or zero-normed imaginary parts.
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as a metric for frequency. In fact, even the elegant property of frequency ordering in the

complex plane follows from GSP to QGSP. Let us see why.

Let A ∈ Hn×n be diagonalizable, with standard eigenvalues ordered like so

|λ0| ≤ |λ1| ≤ · · · ≤ |λN−1| ∆= |λmax|, (154)

associated with the eigenvectors (vi)i=0,...,n−1. Now, let us notice that the graph total variation,

defined in (85), does not have to use ℓ1-norm for it to quantify the notion of frequency. In

fact, let us use the general ℓp-norm for a moment, with p ≥ 1, represented as ∥v∥p ∆
=(∑n−1

k=0 |vk|p
)1/p

, for v ∈ Hn, and define the graph total variation of the graph signal s as

TVG,p(s)
∆
=

∥∥∥∥s− 1

|λmax|
As

∥∥∥∥
p

. (155)

If we take the important step of scaling the eigenvectors vi so they have unit ℓp-

norm, i. e., making ∥vi∥p = 1, then the associative and distributive properties of quaternion

multiplication allow us to do

TVG,p(vk) =

∥∥∥∥vk −
1

|λmax|
Avk

∥∥∥∥
p

=

∥∥∥∥vk − vk
1

|λmax|
λk

∥∥∥∥
p

=

∥∥∥∥vk

(
1− 1

|λmax|
λk

)∥∥∥∥
p

= ∥vk∥p︸ ︷︷ ︸
=1

∣∣∣∣1− λk

|λmax|

∣∣∣∣ = ∣∣∣λk − |λmax|
∣∣∣ 1

|λmax|
.

(156)

What leads to exactly the same frequency ordering obtained in the classical GSP derivation,∣∣∣λi −|λmax|
∣∣∣≤ ∣∣∣λj −|λmax|

∣∣∣⇐⇒ TVG,p(vi) ≤ TVG,p(vj). (157)

In other words, once the eigenvectors are individually normalized, i. e., scaled to have

unit ℓp-norm, then the farther an eigenvalue lies from the point |λmax| in the real line of the

complex plane, the greater is its eigenvector graph total variation TVG,p. By definition, it

means the greater is the frequency it represents. Besides, notice how the scaling implies

that the value of TVG,p depends solely on the eigenvalues, not on p.

In order to interpret the spectrum domain, the eigenvalues are sorted in ascending

order of their respective eigenvector total variation: this sorts the frequency from lowest to

highest. When not explicitly mentioned, it is assumed a value of p = 1 for all occurrences of

ℓp-norm.
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6.1.3 On the existence of a class of graphs with diagonalizable adjacency matrix

A relevant topic of discussion, when laying the foundations for QGSP, is to ponder the

question on the existence of a class of graphs with diagonalizable QGSOs. It is a reasonable

point of investigation, since in classical GSP one can confidently take advantage of some

classes of graphs to make sure the shift operator is diagonalizable beforehand, which saves

time and effort. Some examples are undirected real-weighted graphs and directed ring

graphs with equal edge weights.

The reader may notice that undirected quaternion graphs do not possess necessarily

a diagonalizable adjacency matrix. Indeed, the fact that A is symmetric has no effect on

proving the diagonalizability of its complex adjoint, A1 A2

−A2 A1

 . (158)

The subjacent reason as to why undirected real-weighted graphs have diagonalizable

adjacency matrices is that these real-valued matrices are symmetric, or more generally

normal, i. e., they commute with (because are equal to) their transpose. In the case of

complex-valued matrices, being normal (i. e., commuting with their Hermitian transpose)

also suffices for proving their diagonalizability. So, in order to find quaternion graphs

analogous to undirected real-weighted graphs, in the sense of having a sufficient condition

for diagonalizable shift operators, their adjacency matrix must possess normal complex

adjoint matrices. Fortunately, Theorem 1 states the condition:χA is normal (χH
A
χ

A = χ
A
χH

A )

or Hermitian (χH
A = χ

A) if and only if so is A.

Zhang claims Theorem 1 is proved by direct verification (ZHANG, 1997), but in what

follows a proof contextualized within the scope of GSP is provided.

Proof. The part of the Theorem about to be verified is: is it true that Hermitian quaternion-

valued matrices have Hermitian complex adjoints? Equivalently,

AH = A, A ∈ Hn×n ⇒ χH
A = χ

A, χA ∈ C2n×2n? (159)

Look at A as a graph adjacency matrix and let Ai,j = a+ bi+ cj + dk be the weight

of the edge going from vj to vi. The hypothesis of a Hermitian quaternion-valued matrix

implies Aj,i = Ai,j , or Aj,i = a− bi− cj − dk. As an example, a pair of connected vertices in

this graph is represented in the left-hand side of Fig. 33, in which one can see the edges in

opposite directions and with conjugate edge weights.
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Figure 33 – Illustration of two connected vertices in a graph with Hermitian adjacency matrix (left-
hand side). In the center and on the right, respectively, are displayed the edges created
by the simplex and perplex parts of the adjacency matrix.

1 12 2

a + bi + cj + dk

a - bi - cj - dk a - bi

a + bi c + di

-c - di

1 2

Source: the author (2022).

At the center and at the right-hand side of Fig. 33, one can see the edges that would

arise separately from the simplex and perplex parts of the edge weights (see the center and

right diagrams). For instance, the edge weight Aj,i = a− bi− cj − dk satisfies2

Aj,i = A
(s)
j,i +A

(p)
j,i j, with


A

(s)
j,i = a− bi

A
(p)
j,i = −c− di

. (160)

This (along with Fig. 33) sheds light on the symplectic decomposition of A: its symplex

part satisfies AT
1 = A1 (complex Hermitian matrix) while its perplex satisfies AT

2 = −A2.

With this in mind, the Hermitian of the complex adjoint yields

χH
A =

AH
1 −AT

2

AH
2 AT

1

 =

 A1 A2

−A2 A1

 , (161)

precisely the matrix χA, as intended to be proved.

6.1.4 Does a Hermitian QGSO have unitary eigenvector matrix?

It is known that every Hermitian complex matrix is diagonalizable by a unitary

matrix and has only real-valued eigenvalues. In other words, if M ∈ Cn×n and M = MH ,

then there exists a complex matrix U and a diagonal real matrix Γ so that M = UΓU−1

and U−1 = UH . However, despite the fact one can guarantee that a Hermitian QGSO has a

Hermitian complex adjoint matrix, one could ponder the question whether this implies its

eigenvector matrix is necessarily unitary. Let us verify this.

Let A be a Hermitian (hence diagonalizable) quaternion adjacency matrix, therefore

AV = VΛ. Since χA is complex-valued and Hermitian, its eigenvector matrix (let us say, Φ)
2 Notice how the notation will mix once more in this thesis the superscripts (s) and (p) along with the subscripts

1 and 2 to indicate the symplectic decomposition parts.



101

is unitary and we may write χA = ΦΓΦH . Each column ϕ in Φ, the reader may recall, is

written is terms of the simplex and perplex parts (which are complex-valued) of the respective

column v in V:

ϕ(n) =

 v
(n)
1

−v(n)
2

 . (162)

Since Φ is unitary,

ϕ(n)Hϕ(n) = 1

(
v
(n)
1

H
− v

(n)
2

T) v
(n)
1

−v(n)
2

 = 1

v
(n)
1

H
v
(n)
1 + v

(n)
2

T
v
(n)
2 = 1.

(163)

Now, does the final equality in (163) imply that v(n)Hv(n) = 1? If so, this would make the

quaternion-valued eigenvector matrix V unitary. Let us drop the superscript n temporarily,

to clean the notation during the following lines. Since v = v1 + v2j,

vHv = (vH
1 − vT

2 j)(v1 + v2j)

= vH
1 v1 + vH

1 v2j − vT
2 jv1︸ ︷︷ ︸
vT
2 v1j

−vT
2 jv2j︸ ︷︷ ︸
−vT

2 v2

= vH
1 v1 + vT

2 v2︸ ︷︷ ︸
=1

+(vH
1 v2 − vT

2 v1)j

= 1 + (vH
1 v2 − vT

2 v1)j.

(164)

Since the eigenvector ϕ(n) =
(
v
(n)
1 −v(n)

2

)T is complex-valued, then it satisfies the additional

constraint v(n)H
1 v(n)

2 − v(n)T
2 v

(n)
1 = 0, because the product v(n)T

2 v
(n)

1 commutes. Therefore,

a Hermitian QGSO does have a unitary eigenvector matrix. As a practical consequence, the

inverse eigenvector matrix can always be computed simply by taking its complex conjugate.

6.1.5 Numerical example: computing the QGFT matrix

Let the graph in Fig. 35 have the following adjacency matrix,

A =


0 0 0 1− 7i− 5j − 1k 6 + 3i+ 7j + 4k

0 0 0 0 6 + 9i+ 2j + 6k

0 0 0 0 7 + 4i+ 3j + 7k

1 + 7i+ 5j + 1k 0 0 0 7 + 2i+ 5j + 4k

6− 3i− 7j − 4k 6− 9i− 2j − 6k 7− 4i− 3j − 7k 7− 2i− 5j − 4k 0

 .
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As expected, since A is Hermitian, so it is its complex adjoint:

χ
A =



0 0 0 1− 7i 6 + 3i 0 0 0 −5− 1i 7 + 4i

0 0 0 0 6 + 9i 0 0 0 0 2 + 6i

0 0 0 0 7 + 4i 0 0 0 0 3 + 7i

1 + 7i 0 0 0 7 + 2i 5 + 1i 0 0 0 5 + 4i

6− 3i 6− 9i 7− 4i 7− 2i 0 −7− 4i −2− 6i −3− 7i −5− 4i 0

0 0 0 5− 1i −7 + 4i 0 0 0 1 + 7i 6− 3i

0 0 0 0 −2 + 6i 0 0 0 0 6− 9i

0 0 0 0 −3 + 7i 0 0 0 0 7− 4i

−5 + 1i 0 0 0 −5 + 4i 1− 7i 0 0 0 7− 2i

7− 4i 2− 6i 3− 7i 5− 4i 0 6 + 3i 6 + 9i 7 + 4i 7 + 2i 0



.

Since the matrix χ
A is complex-valued and Hermitian, it is diagonalizable by a

unitary matrix Φ. The eigenvalues of χA are all real-valued and appear in pairs:

diag(Γ) =



−22.83570384
−22.83570384
−6.34920255
−6.34920255

0

0

6.45799327

6.45799327

22.72691312

22.72691312



.

The next step is to take half the eigenvalues of χA (the ones with positive imaginary part,

plus half the real-valued ones) to obtain the standard eigenvalues of A and the respective

eigenvectors. Since the real-valued eigenvalues appear in pairs, it is important to take

one from each pair, to avoid picking eigenvectors from the same eigenspace. Therefore,

diag(A) = (−22.83570384,−6.34920255, 0, 6.45799327, 22.72691312)T .
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The chosen eigenvalues will determine the eigenvectors of χA used to assemble those from A. The resulting eigenvector matrix (with

rounded decimals, to fit the page) is

V =


−0.24− 0.27j + 0.16k 0.59− 0.02j + 0.04k 0 −0.02− 0.52j − 0.28k −0.040 + 0.38j + 0.03k

−0.17− 0.19i− 0.22j + 0.17k −0.31 + 0.13i+ 0.09j + 0.16k −0.410 + 0.24i+ 0.39j − 0.23k −0.05 + 0.01i− 0.12j + 0.35k −0.010 + 0.05i+ 0.20j + 0.31k

−0.25− 0.12i− 0.11j + 0.13k −0.21 + 0.14i+ 0.20j + 0.09k 0.190− 0.40i− 0.48j + 0.37k −0.1− 0.04i+ 0.01j + 0.31k 0.010− 0.05i+ 0.26j + 0.21k

−0.26 + 0.01i+ 0.04j + 0.25k −0.25− 0.48i− 0.25j − 0.06k 0 0.36− 0.13i+ 0.30j − 0.36k −0.110− 0.03i+ 0.27j + 0.21k

0.31 + 0.18i− 0.25j − 0.52k −0.02− 0.15i− 0.07j − 0.09k 0 0.07− 0.04i+ 0.10j + 0.14k 0.380 + 0.14i+ 0.55j + 0.04k


This matrix passes the inversibility test, since its determinant is det(V) = det(χV ) = 1 ̸= 0. Not only that, the matrix is also unitary,

since the product VVH yields an identity matrix. Therefore, the QGFT matrix is promptly determined.

Fig. 34 closes the example, depicting the graph total variation TVG,p for each normalized eigenvector vi. The values are

TVG,p(vi) ∈ {2, 1.2780384, 1, 0.71719754, 0.00476406}, (165)

and remain the same as p is changed, following the commentary after (157).
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Figure 34 – Graph total variation (pseudocolor scale) of the normalized eigenvectors, as a function of
their respective eigenvalues.
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Source: the author (2022).

Figure 35 – Graph used in the numerical example. The edges are represented by double-headed
arrows to indicate the adjacency matrix is not symmetrical.

Source: the author (2022).

6.2 FILTER DESIGN VIA QLMS OPTIMIZATION

We have seen so far the establishment of the basis of QGSP, borrowing concepts

and tools from GSP and finding the particular consequences of having a quaternion-valued

graph shift operator. The last milestone set in the beginning of the last section was to find a

method for designing finite impulse response (FIR) LSI filters in QGSP and, fortunately, we

can benefit from the large field of adaptive filtering with quaternion signals (ORTOLANI et

al., 2017). In this section, we will go through how the quaternion least mean square (QLMS)

algorithm can be used for FIR LSI filter design in QGSP, mimicking the method applied in

in Subsection 4.2.2.

As the reader may recall, the desired frequency response of the LSI filter with

filter taps {hℓ}ℓ=0,...,L may be defined through a system of linear equations with the format
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h(λi) = αi. Using the matrix and vectors
1 λ0 λ2

0 . . . λL
0

1 λ1 λ2
1 . . . λL

1

... ...

1 λN−1 λ2
N−1 . . . λL

N−1


︸ ︷︷ ︸

∆
=X

,


h0

h1
...

hL


︸ ︷︷ ︸

∆
=h

,


α0

α1

...

αN−1


︸ ︷︷ ︸

∆
=y

(166)

this system of equations can be written in matrix form as

hTXT = yT , (167)

very similar to (110). The odd use of transposition in (167) is justified by the noncommutativity

of quaternion multiplication: the following discussion requires that the filter taps left-

multiply the eigenvalues’ powers, otherwise the QLMS equations would have different

formulations.

Back to the methodology of filter design, after choosing the cutoff frequency (or

frequencies) of the ideal filter one wishes to approximate and setting to 1 the values αi

within the passband (zero otherwise), the intended FIR filter is designed by means of the

QLMS algorithm, which was proposed by Took in 2009 (TOOK; MANDIC, 2008). Although

many different versions have been formulated since then (OGUNFUNMI, 2015; NETO;

NASCIMENTO, 2014; ORTOLANI; UNCINI, 2016), all consist in solving the optimization

problem

min
{h̃ℓ}0,...,L

J(h̃), (168)

with h̃ being an estimation of the desired filter, by means of the LMS-like update rule

h̃(k+1) = h̃(k) + µ∇
h̃(k)J(h̃

(k)). (169)

The core difference between QLMS approaches stem from the subjacent definition of

∇
h̃
J(h̃), the gradient of the real-valued mean squared error cost function J with respect to

the quaternion-valued vector h̃ (which depends on the concept of quaternion derivatives,

a subject matter of many research papers, e.g. (XU et al., 2015; JAHANCHAHI; TOOK;

MANDIC, 2012)). The approach used in this thesis was the original one, from (TOOK;

MANDIC, 2008), which considers the following formulation – adapted to be in matrix form –

for the estimation error and cost function,

e(h̃(k))
∆
= y −

(
h̃(k)TXT

)T
, (170)
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J(h̃(k))
∆
= eTe, (171)

in which the notation e = e(h̃(k)) was used to improve readability. After the gradient

derivation in (TOOK; MANDIC, 2008), one arrives at the gradient expression in matrix form

∇
h̃(k)J(h̃

(k)) = 2
(
eTX

)T −XHe (172)

providing all that is needed to implement the update rule in (169). The reader is encouraged

to refer to (TOOK; MANDIC, 2008) and verify the equivalence between the original equations

and their matrix forms, just presented. Equations (169) to (172) were used exactly as they

were written in the computations in Subsection 6.3.1.

As a last and more practical note, it is important to mention that, because of the

structure of matrix X, it is indispensable to add the extra step of normalizing the columns

of X before running the QLMS, otherwise convergence is slow, if not even prevented. It is

a well known practice for least-mean squares regression and other algorithms based on

gradient descent, which do not work well if the features have highly disproportionate scales.

Let us recall that this is precisely the current case: the columns in X represent variables in

a regression problem (with target given by the ideal frequency response y) and they differ

massively in scale. The normalization here is understood in the sense of bringing the mean

and standard deviation of the feature distribution to 0 and 1, respective. That is, for each

vector xi = (λi
0, λ

i
1, . . . , λ

i
N−1)

T with mean µ and standard deviation σ, the normalization

takes place by replacing it with xi−µ
σ .

6.3 EXAMPLES

This section is devoted to experimenting with QGSP in real-world datasets, tackling

topics such as graph inference, spectral analysis, compression and denoising. All computa-

tions in this chapter were performed using gspx, an open-source Python package dedicated

to implement the core concepts and tools of QGSP. It constitutes a contribution of this thesis

and is available at <https://github.com/gboaviagem/gspx>.

6.3.1 Denoising a quaternion graph signal via QLMS low-pass filtering

Let us walk through an example on spectral analysis and denoising. The graph

signal will be generated using UK towns’ weather data, specifically setting the humidity,

atmospheric pressure, temperature and wind speed data to the 1, i, j and k components

https://github.com/gboaviagem/gspx
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Figure 36 – Graph created using the 145 towns in England and Wales.

Source: the author (2022).

of each signal sample. The data was fetched from the Open Weather Map API,3 in April

20th 2022, at approximately 13:00 GMT, and a sample is shown in Table 2. The latitude and

longitude values of UK towns originate from the LatLong.Net database.4

The graph was created using a nearest-neighbors approach, as in (70), since the

nodes possess a clear relation to geographic location. The edge weights were defined using

the following steps:

• Compute a real-valued nearest-neighbors adjacency matrix based on the latitude and

longitude of UK towns (graph nodes), using the seven closest neighbors to each graph

node. At this point, the real-valued edge weights correspond to the euclidian distances

between nearby towns i and j, represented by d(i, j).

• For each pair of connected nodes from the real-weighted graph in the previous step,

compute the absolute difference in humidity, atmospheric pressure, temperature and

wind speed, represented respectively by h(i, j), p(i, j), t(i, j) and w(i, j). Then, create

the quaternion q(i, j) = h(i, j)+ ip(i, j)+jt(i, j)+kw(i, j) and compute the edge weight

Ai,j = exp−1

(
d(i, j)

θ
· q(i, j)

∥ q(i, j) ∥

)
. (173)

Finally, in order to exploit the diagonalizability of the adjacency matrix, it was made

Hermitian, i. e., Ai,j = Aj,i.

The reasoning behind the choice of (173) is to have edge weights whose magnitude

reflect the expected similarity between adjacent signal samples, as in (70), and whose phase
3 The API is accessible, as of August 2022, at the address <https://home.openweathermap.org/>.
4 Accessible, as of August 2022, at the address <https://www.latlong.net/category/towns-235-55.html>.

https://home.openweathermap.org/
https://www.latlong.net/category/towns-235-55.html
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Table 2 – Sample of the dataset containing UK towns’ weather data.

town latitude longitude humidity (%)
1 St.Asaph 53.257 -3.442 59
2 Welling, Bexley 51.45 0.1056 39
3 Soham, Ely 52.33 0.3375 43
4 Boulmer, Northumberland 55.422 -1.536 79
5 Higham Ferrers, East Northamptonshire 52.303 -0.592841 53

pressure (hPa) temp (K) wind speed (m/s) wind degrees
1 1017 288.49 3.71 99
2 1014 290.09 8.23 80
3 1016 290.07 6.69 60
4 1020 282.77 4.07 115
5 1017 289.78 3.13 53

are aligned with the difference between such samples. The choice of θ for the current graph,

after some experimentation, was θ = 2.

As a way to remove the scale disparity between the quaternion components (the

reader may compare, for instance, pressure and wind speed), each of the 4 columns were

linearly scaled down to be within the range [0, 1]. A way of visualizing the graph signal is to

plot each quaternion dimension separately, as it was done in Fig. 37.

The QGFT of the graph signal is computed, as defined earlier on this chapter, by the

projection of the graph signal on the basis of eigenvectors of the graph adjacency matrix

(which is diagonalizable, since it is Hermitian). The signal spectrum is depicted in Fig. 38,

in which the frequency components are ordered from lowest to highest frequency, using the

total variation rule in (157). After the computation of the total variation for each eigenvector,

in order to perform the frequency ordering, Fig. 40 was generated, demonstrating two

previously discussed facts: the eigenvalues of the adjacency matrix are all real-valued and

the total variation increases monotonically the further the eigenvalue is from the point

|λmax| in the complex plane.

Let us now add a white noise on the graph signal, obtained by adding to the original

spectrum samples from a uniform distribution with amplitude 5. The result is shown in Fig.

39. The goal of this exercise is to recover as perfectly as possible the original signal out of

the noisy one, by using a FIR LSI low-pass filter of length L+ 1 = 7, designed using QLMS.

The ideal low-pass filter was created by setting the passband to have 20% of the

frequency support, i. e., the values αi in h(λi) = αi were set to 0 except for the eigenvalues

corresponding to the 20% eigenvectors with smallest total variation, in which case αi = 1.
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Figure 37 – Quaternion graph signal, visualized in the vertex domain. The panels (a) to (d) depict,
respectively, the real, i, j and k components of each quaternion-valued sample.
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Figure 38 – Spectrum of the quaternion graph signal, defined over the vertices of the graph with
Hermitian adjacency matrix.

0 20 40 60 80 100 120 140

10

0

10

20

Real part

0 20 40 60 80 100 120 140
5

0

5

10

15

20

i-component

0 20 40 60 80 100 120 140

5

0

5

10

15

20

25
j-component

0 20 40 60 80 100 120 140

30

20

10

0

10

20
k-component

Source: the author (2022).



110

Figure 39 – Spectrum of the noisy signal.
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The QLMS algorithm was executed using the following values of step sizes: 0.0001,

0.0005, 0.001 and 0.002, with a maximum of 100 iterations for each step size. To avoid

incurring in computational memory overflow, a “patience” of 3 iterations were considered,

meaning that after 3 iterations of monotonically increasing cost function, the process for that

step size was aborted. Any step size greater than 0.002 was found to diverge quickly. Fig. 41

shows the evolution of the cost function during all 100 iterations for each of the mentioned

step sizes. The optimal vector h̃ was found with µ = 0.002.

The filter taps obtained by the end of the optimization were all real-valued, because

the matrix X, the ideal frequency response y and the vector of initial filter taps (a null vector)

are all real-valued: h̃best = (0.199, 0.241, 0.304,−0.177,−0.088,−0.072, 0.014)T (rounded up to

3 decimal places).

The frequency response of the FIR low-pass filter which best approximated the ideal

one is obtained as in (167),

ybest =
(
h̃T
bestX

T
)T

. (174)

Fig. 42 shows the filter frequency response.

Finally, let us evaluate how well the QLMS filter realizes the denoising in the cor-

rupted signal. As a figure of merit, let us consider the mean squared error between the
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Figure 40 – Total variation of the eigenvectors of the Hermitian graph adjacency matrix, for each
respective eigenvalue.
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Figure 41 – QLMS cost function for each iteration and for each step size.
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Figure 42 – Frequency response of the FIR low-pass filter after running the QLMS.
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original s and filtered sf signals, normalized by the total average energy per sample of the

original signal. This so called normalized MSE (NMSE) can be written as

NMSE{sf} ∆
=
∥ s− sf ∥

N

N

∥ s ∥ =
∥ s− sf ∥
∥ s ∥ . (175)

Trying out firstly the ideal low-pass filter, as a benchmark, we see that it was able to

produce a filtered signal with NMSE{sideal} = 0.166, dropping by 42% the error verified in

the corrupted signal sn, which was NMSE{sn} = 0.28991. The FIR low-pass filter, designed

via QLMS optimization and having only L + 1 = 7 filter taps, performed better, reaching

an error of NMSE{sqlms} = 0.15579, a 46% drop. The reason is justified, since the original

signal was not null outside the passband, so that the FIR filter was able to preserve more of

its energy in that frequency range than the ideal filter.

6.3.2 Comparison between signal smoothness in symmetric and Hermitian graphs

The reader may have risen the question of which differences would have appeared

if, in the Subsection 6.3.1, a symmetric adjacency matrix was used, instead of a Hermitian

one. Although the graph shift operator would lose the guaranteed diagonalizability, the

undirect edges would more naturally represent the context at hand, in which similarity
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Figure 43 – Spectrum of the original signal in the symmetric graph.
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Figure 44 – Total variation of eigenvectors of the symmetric graph adjacency matrix.
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between weather in close towns has no directional preference. Let us go briefly through the

consequences found when switching from Hermitian to symmetric adjacency matrices.

First of all, it was somehow harder to find a value of θ in (173) which led to a low-pass

signal. After some trials, the most satisfactory choice was also θ = 2, but the spectrum profile

did not show an energy concentration on low frequencies as good as with the Hermitian case.

See Fig. 43.



114

Figure 45 – Frequency response of the FIR low-pass filter after running the QLMS in the scenario
with symmetric graph adjacency matrix.
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Another difference was the fact that the symmetric quaternion adjacency matrix

does not have only real-valued eigenvalues. Instead, the standard eigenvalues follow the

rule explained in Subsections 2.2.2 and 6.1.1, being placed either on or above the real line in

the complex plane. See the eigenvalues and the total variation of eigenvectors in Fig. 44.

As a consequence of the eigenvalues being complex-valued, the matrix X was also

complex and the QLMS filter presented a complex frequency response, see Fig. 45. The

QLMS algorithm did not suffer, given that the step sizes were conveniently chosen, and

converged to the filter taps

h̃best =



0.199

0.227− 0.025i

0.148− 0.065i

−0.062 + 0.002i

−0.031 + 0.049i

−0.030 + 0.037i

−0.016 + 0.020i


. (176)

See the cost function versus iterations in Fig. 46.
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Figure 46 – QLMS cost function for each iteration and for each step size, in the scenario with sym-
metric graph adjacency matrix.
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6.3.3 Spectral analysis and compression of quaternion graph signal

For this example, let us move away from the UK graph and consider a problem with

a larger network. Let us select 1000 of the United States (US) counties and create a simple

nearest-neighbors graph out of their geographic coordinates. The resulting undirected graph

is depicted in Fig. 47. It consists of 1000 vertices and 4158 edges. In order to create the

quaternion graph signal, four sociodemographic variables will be used. The full source

dataset5 comprises 188 variables for each of the 3142 US counties, but only the following

indicators were used:

• bachelors_2017: percent of population that earned a bachelor’s degree in 2017.

• median_household_income_2017: median household income as of 2017.

• unemployment_rate_2017: unemployment rate in 2017.

• uninsured_2017: percent of population who were uninsured in 2017.

All variables relate to the financial health of american population.

Fig. 48 displays each quaternion component as a real-valued graph signal. From

the plot (a) to (d), the signals contain the features, respectively: bachelors_2017, median_-

household_income_2017, unemployment_rate_2017 and uninsured_2017.
5 Extracted from OpenIntro, a non-profit organization focused on spreading high-quality open-source publi-

cations, and avaiable at <https://www.openintro.org/data/?data=county_complete>, accessed in October
2022.

https://www.openintro.org/data/?data=county_complete
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Figure 47 – Nearest-neighbors graph of a few of the United States counties.

Source: the author (2022).

Figure 48 – Sociodemographic quaternion-valued graph signal, split into its components: (a) real
part, (b) i, (c) j and (d) k.
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This example is focused on the use of QGSP for compression of multidimensional data.

By keeping only a few frequency components with large fraction of the whole signal energy,

and given that the underlying graph shift operator is known, the signal representation may

be highly condensed. Let us create a Hermitian adjacency matrix, using (173) along with

the four sociodemographic indicators and the geographic location of each of the 1000 US

counties. After the diagonalization of the shift operator the frequency ordering through

the total variation metric (see Fig. 49), the QGFT of the graph signal was computed and is

depicted in Fig. 50.

Before proceeding, however, a few notes regarding the computational challenges of



117

Figure 49 – Total variation for each eigenvector of the (Hermitian) adjacency matrix of the US graph.
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the task must be presented. All calculations were performed (and images were generated)

using our gspx6 Python package, in a Jupyter Notebook inside a Google Colab Pro instance

with 27 GB of RAM. As a representation of the computational cost of computing the QGFT in

this 1000-vertices graph, using the mentioned hardware and custom-made code, the time it

took to eigendecompose the graph shift operator, sort the frequencies based on total variation

and normalize each eigenvector by its L1-norm was roughly around 9 minutes.

Although the signal presents a heavy noise along all the spectrum, it clearly possesses

a prominent low-pass characteristic. Let us measure how well a small fraction of the frequency

components with highest energy are able to convey most of the signal.

To this end, 20 values of compression rate were taken, linearly spaced between 5% and

95% (inclusive). A compression rate of 5%, for example, meant that only 5% of the frequency

components with highest energy were kept, the rest being set to zero. After compressing

the signal, it was inverse-transformed by the QGFT and compared to the original signal, by

means of the same normalized mean squared error used in (175).

Fig. 51 shows how the error changed as a function of the compression rate. Since

very few frequency components concentrate a relevant amount of energy, a compression rate

of 95% (only 50 components preserved) reaches an NMSE of only 15.4%. A drop from 95% to

90% in the compression rate produces a steep decay in the NMSE, which goes to 11.8%, a

result that makes sense for a low-pass signal: with a few more frequency components, a large

chunk of the signal energy is captured. As the compression decreases (i. e., more components
6 The library is available as an open repository: <https://github.com/gboaviagem/gspx>.

https://github.com/gboaviagem/gspx
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Figure 50 – US graph signal spectrum.
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Figure 51 – Normalized mean squared error as a function of the compression rate.
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of the spectrum are kept) the NMSE reduction becomes less and less significant, because

smaller fractions of the energy are added.
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6.4 SUMMARY

We have proposed a new extension of the field of graph signal processing, by pondering

the question of (and proposing) how to perform signal analysis and filtering on quaternion-

valued signals defined on graphs with quaternion-valued edge weights. By sewing together

tools and concepts from quaternion algebra, quaternion adaptive filtering and graph signal

processing, the foundations for handling holistically 4-dimensional graph signals were laid.

Besides presenting the core definitions of frequency ordering and Fourier transform, it was

presented a condition under which a graph’s (quaternion) adjacency matrix is diagonalizable

and has unitary eigenvector matrix. Extensive examples with two real-world datasets also

illustrate spectral analysis, compression and denoising with QLMS low-pass filters.
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7 CONCLUSION

Quaternions came from Hamilton after his really good work had been done;
and, though beautifully ingenious, have been an unmixed evil to those who
have touched them in any way [...]. (ALTMANN, 1989, quoting directly Lord
Kelvin, in letter to Hatward, 1892)

This thesis has tackled the problem of extending the basic tools of graph signal

processing by changing the subjacent algebra in which signals and edge weights were

defined, moving from the complex to the quaternion numbers. The exploration has also led

to contributions on fractional linear operators, specifically proposing the fractional graph

shift and a new way of computing the fractional QDFT, the latter having been used on an

encryption scheme of color images in the form of a multiparametric transform.

The opening quote of this chapter is intended to be read in a light and ironic tone. The

only “evil” the quaternions have bestowed on this thesis – if we can humorously declare this

way – was the struggles with understanding the intricacies of its algebra and application on

signal processing. But instead of causing any harm, the journey has borne fruit. And has

done so in three fronts, let us recall the main contributions in each of them.

In the proposed fractional shift operator, it was demonstrated how it approximates the

classical ideal interpolating filter in the case of ring graphs and how it can be implemented

as an LSI graph filter, even for arbitrary graphs. Also, it was shown how the operator may

be used in filter design to improve the frequency response with the same filter length.

In the study of the fractionalization of the QDFT, it was demonstrated how this

transform share symmetric eigenvectors with the DFT, what allowed for the construction

of an orthogonal eigenbasis of the QDFT and subsequent definition of its fractional (and

even multiparametric) version. Since quaternions possess 4 real-valued components, an

application of the 2D-MFrQDFT was proposed in the form of a holistic encryption scheme

for color images with opacity layer, which was shown to provide satisfactorily large key space

and key sensitivity.

Finally, the proposition of quaternion graph signal processing brought some interest-

ing results. For instance, it was stated that a way to enforce a diagonalizable graph adjacency

matrix is by making it Hermitian, which will provide also real-valued eigenvalues and a

unitary QGFT matrix. During the examples provided, it was shown a method for graph

inference which extracts the phase of the difference in adjacent samples and their geographic

distance to build the edge weights, as well as a way of designing FIR LSI filters using QLMS
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optimization. All computations in the aforementioned examples were performed using a new

open-source Python package, released as a Github repository for peer-review and free reuse.

7.1 CHALLENGES AND FUTURE WORKS

Applying the quaternion algebra into GSP is an endeavor which is far from complete.

The foundations of QGSP have been laid, but there are certainly challenges ahead and future

work opportunities. Starting from the computational cost of QGSP algorithms, there is room

for improvement in the efficiency of certain steps of signal frequency analysis. As mentioned

in Section 6.1.2, the closed formula for quaternion matrix inversion presented in (COHEN;

LEO, 1999) has potential to be used to accelerate the QGFT matrix calculation, specifically

when computing the inverse of the eigenvector matrix when the QGSO is not Hermitian.

Another improvement in QGSP which may be explored is using better versions of

the QLMS algorithm (OGUNFUNMI, 2015) in the design of LSI filters, aiming at faster

convergence or computational efficiency. Similarly, QGSP may benefit from existing adaptive

graph filtering techniques, such as using the Normalized LMS for graph signals (SPELTA;

MARTINS, 2020) to design quaternion graph filters.

The contributions on fractional linear operators also leave space for future works.

Regarding the fractional graph shift, an interesting thread of investigation is to find possible

relationships between the FrGSO and mathematical tools for fractional diffusion in networks,

since fractional diffusion has already been used to model certain phenomena that allow

long-range interactions and are non-local in nature (ILIC et al., 2005; RIASCOS; MATEOS,

2014; ESTRADA, 2021; ANTIL; BERRY; HARLIM, 2021). In the fractional QDFT front,

specifically regarding the use of the MFrQDFT for color image encryption, the interested

cryptography researcher could investigate how to embed this system in real-world scenarios,

or focus on other hypercomplex-based transform to expand our work, for instance using

some hypercomplex image moments, such as ternary radial harmonic Fourier moments and

quaternion polar harmonic moments (WANG et al., 2019; WANG et al., 2018), to perform

color image encryption.
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APPENDIX A – MAPPING A SYSTEM OF LINEAR EQUATIONS FROM H TO C

Theorem 3 requires a step the reader of (ZHANG, 1997) may have missed: demon-

strating the equivalence between

Av = vλ (177)

and  A1 A2

−A2 A1

 v1

−v2

 =

 v1

−v2

λ, (178)

where A ∈ Hn×n, v ∈ Hn, λ ∈ C, and the subscripts (·)1 a (·)2 indicate the usual symplectic

decomposition components, e. g. q = q1 + q2j, q ∈ H, q1, q2 ∈ Ci.

To fully comprehend this equivalence, it suffices to prove that any system of m

quaternion linear equations, expressed in matrix form as

Mx = y, (179)

in which M ∈ Hm×n, x ∈ Hn×1, y ∈ Hm×1, is equivalent, given the symplectic decomposition

of M, x and y, to a system of 2m complex equations M1 M2

−M2 M1

 x1

−x2

 =

 y1

−y2

 . (180)

Following the expansion of the left-hand side in (179), one has

Mx = (M1 +M2j)(x1 + x2j)

= M1x1 +M1x2j +M2jx1 +M2jx2j.
(181)

It is possible to manipulate that expression using (8), i. e. jx = xj ∀ x ∈ C, so (181) equals

Mx = M1x1 + jM1x2 + jM2x1 + jM2x2j

= M1x1 + jM1x2 + jM2x1 + jjM2x2

= (M1x1 −M2x2) + j(M1x2 +M2x1).

(182)

Replacing (182) in (179) and using y = y1 + y2j yields

(M1x1 −M2x2) + j(M1x2 +M2x1) = y1 + y2j

= y1 + jy2,
(183)

what can be written as two systems of m linear complex equations,

M1x1 −M2x2 = y1

M2x1 +M1x2 = y2,
(184)
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or equivalently, M1 M2

M2 −M1

 x1

−x2

 =

y1

y2

 . (185)

Finally, multiplying the second matrix equation in (184) by −1, (185) becomes M1 M2

−M2 M1

 x1

−x2

 =

 y1

−y2

 , (186)

precisely as in (180).
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