
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA

CÉSAR LEONARDO BARBOSA DA SILVA

A STUDY ON THE FRACTIONAL BILINEAR TRANSFORMATION AND THE
THEORY OF NEW DISTRIBUTIONS

Recife
2023



CÉSAR LEONARDO BARBOSA DA SILVA

A STUDY ON THE FRACTIONAL BILINEAR TRANSFORMATION AND THE
THEORY OF NEW DISTRIBUTIONS

Tese apresentada ao Programa de Pós-Graduação
em Estatística do Centro de Ciências Exatas e da
Natureza na Universidade de Federal de Pernam-
buco, para a obtenção de Título de Doutor em Ci-
ências, na Área de Estatística.

Área de Concentração: Estatística Aplicada.

Orientadora: Profa. Maria do Carmo Soares de
Lima.

Recife
2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217               
  

  
S586s Silva, César Leonardo Barbosa da 

 A study on the fractional bilinear transformation and the theory of new 
distributions / César Leonardo Barbosa da Silva. – 2023. 

  165 f.: il., fig, tab. 
 
  Orientadora: Maria do Carmo Soares de Lima. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CCEN, 

Estatística, Recife, 2023. 
                       Inclui referências e apêndices. 
 

  1. Estatística aplicada. 2. Probabilidade. 3. Epidemiologia. I. Lima,  Maria 

do Carmo Soares de (orientadora).  II. Título. 
 
      310                     CDD (23. ed.)                          UFPE - CCEN 2023-72                              
       

 

 



��������	
���	�����	�������
���

��������	
����������
	
����
�

�������
��	����
	
��
���������	���	��
��

�
���
���
	
�

���� ��������	�
��������
�����
������
���
����� � �� � ��	�	��	��� � 
�
��������
�
� � ��
���� � 
� � �����������
������������	�������������������	������
�
	�	����
�� ��	���
�������	�	��	���!�

"�����
����#�$%�
��&�������
��$'$%!

����������	��
���

����������(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
������������������������)�����
��*�����+������
��,������-�����	�
���.��������
��	���

����

���������(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
�������������/0!� �!�1�������������
������-��	������2	����.������3

�����������
((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
��������������/!� �!�)�������3���
��
������	
��
�����������������45

���������(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
���/!� �!�����6�+���	�����-��	������2	����.�����4��

���������(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
���/!� �!�*������*������3��	����-��	������2	����.��7���



I dedicate this work to my parents, wife and friends, as well as the ones who wants to enter
in the wide range of mathematics and its applications.



ACKNOWLEDGEMENTS

First of all, i thank to The Creator Power, without which, nothing who is, would be, for,
far off is true existence, and very deep; who may have knowledge of it?

I thank to my parents, José Roberto and Ana Maria to help me since the beginning of my
first steps to now, and then, when they shall live completely in my heart. Through the faith
the fight echoes in the unseen worlds. My two sisters, Roberta and Bethânia, for the love and
care.

I also thank to my lovely wife, for the support, when the path came with much stones.
Without her, the journey would be harder. I still thank for the patience in leading with the
absence and the periods of loneliness that i imposed to myself, reflecting on her.

I thank to my honorable adviser, Dra. Maria do Carmo, who reached out me the hand
when i was alone in the battle. If i could make a choice, into the set of eligibles, i certainly
would select her to be by my side in battlefield for, surely, his spirit is not the one who left
behind. Thank you very much.

Worth of saying are the mentions to friends, old and new ones. I’ve count with veterans,
Carlos Eduardo, Igor and Krishnamurti, who helped me, while in conversations about technica-
lities from Statistics and interactions with Physics. Lucas Miranda, Darlisson Jesus, José Jairo,
Lucas Davi -Curaçá-, Daniel Matos and Saul, colleagues of classes and discussions. Thank you.
The professors whose knowledge and dedication served to inspire me into the theory of Pro-
bability, branch of mathematics of wonderful applications. Finally, i recognise and thank the
financial support given by CAPES during the process of research.



ABSTRACT

This work, in the area of Probability and Mathematical Statistics, has its nucleus based
on the Theory of New Distributions, its properties and applications. A sequence of facts
is established, ranging from a brief introductory summary, dealing with the need for new
distributions, to the proposition of a class of transformations, among which, the well-known
Marshal-Olkin, whose expression can be derived. This class, then, is applied according to
the aforementioned transformation, to known distributions such as, for example, Exponential,
Weibull, among others. Some properties are studied following the ideas behind a odd log-
logistic geometric family, as well as a geometric emphasis associated with the classification of
the risk function on the distributions under analysis and making references to regions where
their curves - of the risk functions -, are immersed, according to a criterion developed by
Qian, (QIAN, 2012). Before, however, the actual applications, some mathematical properties
related to moment calculations are presented making reference to canonical methods, as well
as methods under development, using non-canonical techniques and the use of the special
Spence functions, (SPENCE, 1809) when solving a particular case, while integrating a function
for getting expected value. The applications, an essential part of the work, are interdisciplinary
in nature, moving between epidemiological data from the current global sanitary crisis, due
to COVID-19, passing through physical systems that demand statistical treatment as, for
example, the problem of turbulence, as well as the astrophysics problem concerning sunspots.
Times of transitions from hydrodynamic regimes to turbulence are analyzed. These studies
play an important role in theoretical science and applications ranging from the construction
of airplanes and ships, to biological processes involving the dynamics of blood in the heart.

Keywords: epidemiology; hydrodynamics; sunspots; probability distributions; risk functions;
Spence function.



RESUMO

Este trabalho, na área de Probabilidade e Estatística Matemática, tem seu núcleo baseado
na Teoria de Novas Distribuições, suas propriedades e aplicações. É estabelecida uma sequência
de fatos que vão, desde um breve resumo introdutório, tratando da necessidade de novas
distribuições, até à proposição de uma classe de transformações, dentre as quais, a conhecida
Marshal-Olkin, cuja expressão pode ser derivada. Essa classe, então, é aplicada segundo à
referida transformação, a distribuições conhecidas como, por exemplo, Exponencial, Weibull,
entre outras. Algumas propriedades são estudadas seguindo as ideias relacionadas a uma família
geométrica log-logística, bem como uma ênfase geométrica associada à classificação da função
de risco, das distribuições em análise, segundo as regiões nas quais suas curvas- das funções de
risco-, estão imersas, em referência a um critério desenvolvido por Qian, (QIAN, 2012). Antes,
porém, das aplicações propriamente ditas, algumas propriedades matemáticas relacionadas aos
cálculos de momentos são apresentadas, fazendo-se referência a métodos canônicos, bem como
métodos em desenvolvimento, usando técnicas não-canônicas, e uso de funções especiais de
Spence, (SPENCE, 1809) para se resolver um caso especial de integração com o intuito de se
obter o valor esperado. As aplicações, parte essencial do trabalho, têm caráter interdisciplinar,
transitando entre dados epidemiológicos oriundos da atual crise sanitária mundial, devido à
COVID-19, passando por aplicações em sistemas físicos que demandam tratamento estatístico
como, por exemplo, o problema da turbulência, bem como o problema de astrofísica sobre
manchas solares. Tempos de transições de regimes hidrodinâmicos para a turbulência são
analisados. Esses estudos desempenham importante papel na ciência teórica e aplicações que
vão desde a construção de aviões e navios, até processos biológicos envolvendo a dinâmica do
sangue no coração.

Palavras-chaves: distribuições de probabilidade; epidemiologia; funções de risco; função de
Spence; hidrodinâmica; manchas solares.
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1 INTRODUCTION

In the field of probability distribution functions, the search for new distributions is a trend
while trying to understand the behaviour of data describing a broad range of phenomena,
typically of physical origins, but not always, (KOUKOULOPOULOS, 2020), when random com-
ponents are present on such phenomena. Over many years, different probability distributions
have been studied in terms of their structures of probability density (or mass) and cumulative
distribution functions (ALZAATREH CARL LEE, 2013), as well as to their various applications in
science, technology, medicine and social affairs, in order to gain insight about the underlying
reality carried by the data, found in these fields. Alongside, computational advances have be-
come even more important, both from a scientific point of view, and in the perspective of the
need imposed by society to find solutions for different types of problems. Furthermore, data are
arriving in ever-increasing volume, speed and variety. One calls this "phenomenon"Big Data.

Along the last decade, the vehement work in the field of developing new models has
unleashed, indeed, new classes of distributions, leading to a wide growth in this branch of
mathematics. The process of generating new distributions, itself, is simple under some few
reasonable assumptions, and will be considered later on the text. The main ideas behind
the process include the conception of a distribution generator, which give rise to a family

of distribution. Then, starting with a given known distribution, henceforth termed baseline

distribution, the process of developing new distributions is initiated. Of course the properties
inherent from probability theory, in his initial conception, must be verified.

Additionally, the ideas carried by the transformation theory applied to ordinary functions are
extended to functions of random variables, whereas its effects are then, studied. In this spirit,
some transformations are imposed over distribution functions and, over data, in an attempt
to turn them more readable, in some sense, (OSBORNE, 2005). The primordial questions that
arise is the impact of these transformations, as can be seen, for example, in the Jansen
inequality, (BILLINGSLEY, 1995). Then, once the class of transformations has been defined, the
development of the class of new distributions that emerges from these, are studied. For this
purpose, the ordinary strategy performed by the experts in this field, follows the path:

• A family of known distributions is selected to be used, or a new one is proposed;

• A baseline is designated to be immersed into the family previously chosen;
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• The mathematical properties of the proposed distribution are verified in its consistency
with the underlying theory and all the calculational consequences, such as generating
functions, moments, etc, are expected to be exactly solved, when possible, or have their
terms given by series expansions, when appropriate;

• The estimation process is performed by the method of maximum likelihood, Rohatgi
(2003), for example;

• The asymptotic properties of estimators, through the inferential method chosen, is ve-
rified by simulation studies;

• When real data are applied to the distribution at hand, in order to test the flexibility of
the proposed model, natural comparisons are made to other models in the literature.

It is possible to list several types of data sets, and current works, that have been used in
the context of new distributions. Some examples follow,

• Survival analysis is one of the most active branch of Statistics in the field of new dis-
tributions theory -, (REIS; CORDEIRO; LIMA, 2022); (KUMAR et al., 2022); In this branch,
real data are achieved from medical and biological sciences, among others. Some pro-
blems like time-to-effect in drugs administration, lifetime after a general surgery, survival
statistics of cancer patients, (DEVI, 2015) and (RICHARD, 1974) are common arena for
applications.

• Engineering, or applied sciences, make uses of pure science to implement devices and
stuffs for enhancing the experience of human activity. On their diverse applicabilities, da-
mage analysis and crack propagation make uses of fatigue analysis in materials, leading
to estimate of its lifetime. This implicate, directly, in security of the systems under inves-
tigation, (VASSILOPOULOS; KELLER, 2011), (DAVIES, 1999), (BALAKRISHNAN N.; KUNDU,
2018).

• Physics. The idea and uses of time in Physics is fundamental. The processes and way
where it enters in the description of the Laws of Nature, as Laws of Physics, (MITTELS-

TAEDT, 2005), depend on the branch of the latter, with which one is dealing with. In
the case where the tools of Mathematical Statistics are, indeed, applied to Physics, a
field called Statistical Mechanics emerge. The objective of the latter is to predict the
macroscopic properties of systems, by using a minimal set of reasonable assumptions
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concerning the microscopic compositions of the system under analysis. As examples, one
can be lead to consider the time necessary for reaching equilibrium, in physical systems
like hydrodynamical one, (FALKOVICH GREGORY; SREENIVASAN, 2006b) and governed by
Fermi-Pasta-Ulam theory, (FERMI et al., 1955), (KIMMOUN, 2016). As a motivation for
the transformation theory in physics, the symmetry concept leads to amazing results
concerning conservation of some properties which can be seen, when possible, as inva-

riance of those, (WEINBERG C. N. YANG, 1991). The idea, therefore, is to induce these
transformations to Statistics and study the consequences of them. For example, what
means to the distribution a process of inversion? What is the reflection of the latter on
the mean and variance of the given distribution?

Hence, as one is introduced to the study of Probability and Statistics, the necessity for
treating known probability distributions of a given set of random variables is a matter of fact.
By supposing that the experiments are made such that the conditions can closely lead to
approximate a known distribution 𝐹 = 𝐹 (𝑥; 𝜉; 𝜏 ), the problem is reduced to estimate 𝜉; 𝜏 -
the parameter vectors of the model-, from the data by using some test, (LEHMANN, 2005),
to verify the agreement with mathematical model and the data. However, in general, it is not
possible to know prior information about 𝐹 (𝑥; 𝜉; 𝜏 ) once, in general, the conditions describing
a physical experiment are complex enough, (LORENZ, 1963). In that case one tries to estimate
the underlying distribution function or density function, (FRANK, 2009).

One reasonable question that could arise is concerned to the necessity of investing some
effort in developing new distributions. In few words, one could defend the position, just by
invoking, as a matter of fact, that the manifold of natural and experimental phenomena cannot
be, in all of their magnitude, described by known distributions, remaining to the scientist the
continuous search for new distributions, that can improve the results one is dealing with. An
example of such an event was the problem encountered by Einstein, and described in the
introduction of (COHEN, 2003), when criticizing the probabilistic nature of Boltzmann theory,
concerning the entropic dynamics of thermodynamic systems. After all, once one is dealing
with models, and that ones are simplifications of reality, the attempt to fit the data describing
the observable phenomena is a key problem in the majority of applied sciences. In terms of
statistical description, one says that the phenomena are fitted by the model. Hence, on inverse
terms, the distribution that a random variable (rv) follows, determines what kind of problem
it can fit.
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There are cases of discrete rv’s and which are suitable for situations where the observati-
ons/data belong to the set of integers. The observations belonging to the set of real numbers
have the continuous rv’s for their description. One still have cases in which one manages
to compose discrete rv’s with continuous ones, where, for example, one convex-composes
continuous known distributions, 𝑊1,𝑊2, with a discrete, such as, Bernstein’s,

𝑌 = 𝑋𝑊1 + (1 −𝑋)𝑊2

𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝).

In this sense, the proposition of new distributions has been a way to describe, besides its
ordinary duty, that is to say, construct the path and pave it, in order to realize the random
phenomena one encounters in Nature, and in other branches where humanity is immersed in,
to describe a greater amount of database types generated from these environments. This need
also comes from the fact that the scientists are increasingly interested in studying databases
with a large number of observations and that portray solutions in the most diverse areas of
knowledge. In Brazil, for example, the publicly traded company that operates in the energy
sector, called Petrobrás, has been investing in the creation of projects and programs that can
help on its innovation. Such projects incorporate, for example, digital technologies (Big Data,
Machine Learning and Artificial Intelligence) in the search for solutions that make them keep
up with the constantly growing development of the business.

It is important to mention certain methods and examples of how to generate new distribu-
tions, in order to give tools for the framework in which the current work will be developed. As
a starting point, it is possible to present new distributions by proposing generalizations such
as the one made on standard exponential distribution, leading to a new class of the later with
general properties and applications, (GUPTA; GUPTA; GUPTA, 1998). In this process the modifi-
cation was performed by exponentiating the aforementioned distribution leading to interesting
mathematical properties, (KUNDU, 2001), giving rise to alternative possibilities because of the
similarity they acquire to gamma family, for example. In (CORDEIRO; ORTEGA; CUNHA, 2013)
is presented a class that extends this type of distribution leading, among other things, to trac-
table properties that are, indeed, desirable when simulating, specially, when treating quantile
functions construction. Note that, in these constructions the parameter set is increased by the
composition induced by the process and this, by itself, constitutes a new method, (MARSHALL;

OLKIN, 1997). It’s well known but, worth of saying, that exponential distributions play a cen-
tral role in processes that time of duration of events or, stuffs, are the kernel of research. For
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applications in theoretical Physics and Financial Physics, the use of superposition of Gaussian
distributions, (JIZBA; KLEINERT, 2008) is a technique endorsing the simplification of equations
in this field of study. In a general way, a method of convex compose distributions has profound
mathematical meaning linking concepts from the topology of spaces, where the distributions
are immersed, with properties derived thereof.

From those there are calculational implications in the probability density functions and
quantile functions, as well as in the conceptual meaning of independence of events, (JIZBA;

KLEINERT, 2008), (COZMAN, 2012). A class of problems where superpositions of statistics are
applied are termed superstatistics, (COHEN, 2003), (BECK, 2009).

1.1 GOALS

Following the ideas just described, the main goals of this text are to develop a class
of distributions by mean of a general transformation, over the Real numbers, R, leading to
interesting results with some interdisciplinary applications. For some values of parameters, a
well known transformation emerges as a particular case and the classical features are extracted
when applied to current new distributions over canonical baselines such, Exponential, Weibull,
etc. Some properties like moments are presented in a new approach and, for some cases, in
terms of analytical known special functions. In some cases, particular solutions are presented
and his generalizations are proposed, without demonstration, leading it for future work. A new
method for computing moments is presented, although the formal mathematical bases are
under development.

Along the the research some knowledge were brought from different branches of sciences,
such as Physics and Astrophysics. In the former case, when treating the phenomena of turbu-
lence and, in the latter one, when analysing and describing the natural processes of sunspot
and its associated solar blasts, as well as its potential consequences. Another issue addressed
in this text will be the current pandemic. When treating the COVID-19 virus spreading, the
analysis followed a specific line, say, the information captured by data disposed by State Go-
vernment of Santa Catarina, even though some other approaches and techniques would have
been applied during the period of pandemic by other researchers.

As an example, an interesting study in the field of distribution theory applied to the
efforts related to tracking and modeling of COVID-19 spreading, is made, among many others,
by Hawryluk (HAWRYLUK, 2020). The authors have shown, among other things, that the
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Gamma distribution exhibited a better adjustment to the time until death, when compared to
Weibull and log-normal distributions, among others, to in-patients affected by COVID-19. The
data base used in the research came from the Brazilian Sistema de Informação de Vigilância
Epidemiológica da Gripe. Additionally, when the investigation focused on the time until the

in-patients, the authors have shown that there were strong indications that the generalized
log-normal distribution would be the best among the ones under consideration.

In the same spirit, but through another approach, some models were produced by using
nonlinear differential equations of the type-like SIR models for disease spreading, (FRANCO;

DUTRA, 2021), (MOEIN et al., 2021); the last one pointing up to an inadequacy for the approach
at hand. In any case, what matter is the endeavor of several scientists and mathematicians in
order to provide relevant information for decision-makers.

Concerning the turbulence investigation two physical phenomena are simulated: the Taylor-
Green and Rayleigh-Taylor processes. The simulations follow the governing equations and the
data are provided and statistically analysed in order to gain insight of the underlying phenomena
for potential technological applications. For Astrophysics case, the data are processed, applied
to the developed distributions, as well as the other ones above in the respective cases, so that
forecasts processes can be made, for future works.

The developed distributions are submitted to comparison tests with canonical ones, and
recent known distributions in order to identify best adequacy to data. It is worth of saying that,
as the amount of experiments in all branches of sciences increases, a huge amount of complex
data is available for analysis, since elementary to advanced one. One recent example comes
from LHC, The Large Hadron Collider, (Are you up for the TrackML challenge?, 2018), where a
huge amount of data, (CHALLENGE, 2018), is provided.

1.2 COMPUTING PLATFORM

Throughout this text the computational platforms have been balanced between Anaconda
Navigator, (ANACONDA. . . , 2022), through Python 3, (ROSSUM; DRAKE, 2009), on platform
Spyder 5.0.5, (RAYBAUT, 2009), and RStudio environment through R software version 1.3.959,
(R Core Team, 2020). The graphs of the function appearing along the pages are performed with
Python graphical libraries such as matplotlib and seaborn, as well as R software graphical
tools. The code implementing the hydrodynamical systems solutions are made on Python
language by using the traditional libraries associated to it, with modifications on the Python
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modulus pysph, (RAMACHANDRAN et al., 2021). Additional details follows at corresponding
chapter addressing the simulation.

1.3 TEXT ORGANIZATION

The whole text is divided into seven main chapters and some appendices, when necessary.
The second operational chapter, say, is concerned with general tools and properties associated
to the family generator, by a given transformation, and some of its consequences. To be
more emphatic, a class of transformations with real parameters is introduced by means of a
known bilinear fractional operator, defined in R. The parameters do assume determined values
whose impacts, on probability distributions, are investigated. The results arise as reflexes on
the calculus of expected values and can be extended in order to obtain higher order moments,
without the need of integration process, canonical method for this end.

The third chapter deals with the family studied in this thesis work, addressing some of its
main mathematical properties. It extends the family proposed by (LIMA et al., 2019) and is ge-
nerated by a method which is not the same as the one addressed there. Albeit some similarities
can emerge, these are indeed coincidence driven by the choices one made for the parameter
values of the transformation. Different choices of parameter values would lead to different and
more general types of distributions. The reason by which these values was selected was just
because of the benchmark allowed by the similitude induced by the former, and to induce the
nested nature of the transformation, making reference to Marshal-Olkin. Furthermore, despite
of the structure between the family here pondered and the one proposed by Lima et. al (2019)
bear, however, some resemblance, the reader will perceive that the additional parameter, enti-
tled here as 𝜃, in fact differs structurally, from the one addressed in the cited article: (1 − 𝑝),
i.e. there’s a parametric interpretation and, also, in the way on the family was built up. Some
important properties are obtained, as well as the power series expansion of the probability
density and cumulative distribution functions. Parameter estimation was performed using the
maximum likelihood method. Some geometric properties arising from the hazard function are
obtained and disposed as quadrants driving the behaviour of the data, as expressed through
the mentioned function. The quantile function and moment generating function are given and
some methods are discussed. The general method of estimation is presented and particularized
for the concrete case, as the baselines are chosen.

The fourth chapter brings two new models using Exponential and Weibull distributions as



25

baselines. The Birnbaum-Saunders and Burr-XII models were used as baselines in the next
two chapters, totaling four studied models of the family in question. The maximum likelihood
method was used in all chapters in order to estimate the parameters involved. Additionally,
simulation studies were carried out to verify the asymptotic properties of the maximum like-
lihood estimators for the proposed models. Finally, applications in different areas, including
physics and epidemiology- for COVID-19 spreading -, were carried out to show the performance
of the proposed models when compared with others existing in the literature.

A final chapter, summarizing the objects figuring in the text, as well as making reference
to future works, is included. A mathematical assertive is presented with the aim of fill the
potential lack of measure-preserving structure due to the wide window of possibilities for the
parameter set, 𝜛 of 𝑀 , which, in counterpart, would increase the accuracy of values for the
moments calculated along the text, via the transform method. Unfortunately, it is not possible
to developed all the formal mathematics concerning it, due to question of time.

Some particular applications related to the astrophysics of Sun-Earth system is encouraged
as well as the the understanding of the relation of control and turbulence, via statistical times
involved in the fluid flow, specially, the hypersonic one.

It is worth mentioning that, each chapter was built up in an independent way and the
results here presented are of own authorship, at least out of obvious trivialities.
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2 FRACTIONAL BILINEAR TRANSFORMATION

2.1 INTRODUCTION

The uses of transformations in mathematics have important consequences in solving se-
veral, formal and applied problems, (GZYL, 1983), (WESTRöM, 1971), (HUNTSVILLE., 2021).
Much of them are related to geometry, for example, when one treats congruence preserva-
tion, or isometry. In some cases, the uses of transformations lead to reduction in problem
dimensions which turn the problem at hand, more tractable. When dealing with coordinate
transformations, canonical transformations in physics, for example, the idea is to turn the
operations relatively easier, preserving structures, as always as possible. In Statistics the idea
follows the same purpose and is one of the keys of these writings. When one performs a
transformation, say, of logarithm type, this one is intended, among other things, to facilitate
relationship between data and the functional form at hand, since the logarithmic scales reduce
wide-ranging quantities to smaller scopes. Examples can be given in Chemistry when defining
pH of a solution and the measure of decibels, in acoustics. However, for the probability theory,
one is interested in transformations that, beside the reduction of difficult that can rise from
the complexity of functional relation, it leads to new classes of distributions. In what follows a
class of transformations is presented and their consequences in applications to probability and
statistics, are studied.

2.2 DEFINITIONS, PROPERTIES AND PARTICULAR CASES

When one treats multiparametric transformations of one given type, they are referred to
as a class of transformations, once, depending on the parameter values, one has a particular
transformation at hand, as will be seen forward. One such example are canonical transformati-

ons appearing in dynamics and in the theory of differential equations, (R., 1987), (ALZAATREH

CARL LEE, 2013). In a general way, one can use the well-known concept from linear algebra,
for formal definition. In this sense, one has a

Definition 1 Let M: R → R be a function such that,

𝑀 (𝑦;𝜛) = 𝑎𝑦 + 𝑏

𝑐𝑦 + 𝑑
(2.1)
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with 𝑎, 𝑏, 𝑐 and 𝑑 the components of 𝜛, the parameter space of the transformation with

elements in R and 𝑎𝑑− 𝑏𝑐 ̸= 0. It’s worth of saying that, in the case where the latter vanish,

that is to say, 𝑎𝑑− 𝑏𝑐 = 0, an uninteresting constant mapping erupts sending ∀𝑦 ∈ R to the

same image 𝑎
𝑐
, which is an exceptional trivial case called, singular, in counterpart to the former

case, where it is termed no-singular. Furthermore, by the R-linear isomorphism between R2

and C, one can identify, with 𝑦 ↔ 𝑧, 𝑎𝑑 − 𝑏𝑐 as the determinant of the 𝑀 representation

matrix, 𝑀2𝑥2.

Proposition 1 If M is given by 2.1 above, then

𝑀(∞; ·) = 𝑎

𝑐
∈ R,

𝑀(0; ·) = 𝑏

𝑑
∈ R.

More generally, this mapping defines a bijection of the extended complex plane onto itself,

from what follows that,

𝑀(R∞; ·) = R∞ = 𝑀(∞; ·).

Note that, as a consequence of the latter,

𝑀−1(∞; ·) = −𝑑

𝑐
, (2.2)

where 𝑀−1 stands for the inverse of 𝑀 . In what follows, a restricted map is defined for the
case where some values of the parameters 𝑎, 𝑏, 𝑐 or 𝑑, can vanish. For the case where 𝑐 = 0,
the relation (2.2) implies

𝑀−1
𝑐=0(0; ·) = 𝑀−1(0; ·).

This is called Alexandroff extension, in R. When extended to complex spaces, 𝑀 has many
beautiful properties with varied applications, despite their apparent simplicity, one of which,
connected with Einstein’s Theory of Relativity, (COXETER, 1967).

Theorem 1 Let M: R → R be a smooth function. Let ℱ(𝑥; 𝜉; 𝜏 ) be a real valued distribution

function with parameter vector 𝜉, and 𝒢(𝑥; 𝜏 ) the baseline distribution with parameter vector

𝜏 , such that the following properties hold:

𝒢(𝑥; 𝜏 ) = 𝜇((−∞, 𝑥]; 𝜏 ) = 𝑃 [𝑋 ≤ 𝑥] ,

𝒢(𝑥−; 𝜏 ) = 𝜇((−∞, 𝑥); 𝜏 ) = 𝑃 [𝑋 < 𝑥] ,
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with

𝒢(𝑥; 𝜏 ) − 𝒢(𝑥−; 𝜏 ) = 𝜇 {𝑥} = 𝑃 [𝑋 = 𝑥] ,

where 𝜇 is a measure on a field F , leading to

lim
𝑥 ↦→−∞

𝒢(𝑥; 𝜏 ) = 0,

lim
𝑥↦→∞

𝒢(𝑥; 𝜏 ) = 1.

By using (LIMA et al., 2019) extended distribution function with additional parameters 𝑚𝑖 ∈

(0, 1), 𝑖 = 1, · · · , 𝑛,

ℱ(𝑥; 𝜉, 𝜏 ) = 𝒢𝛼(𝑥; 𝜏 )
𝒢𝛼(𝑥; 𝜏 ) +∏︀𝑛

𝑖=1(1 −𝑚𝑖) [1 − 𝒢(𝑥; 𝜏 )]𝛼 . (2.3)

If the action of 𝑀 over ℱ reads

𝑀(𝑦;𝜛) ∘ ℱ(𝑥; 𝜉, 𝜏 ) = 𝑀(ℱ(𝑥; 𝜉, 𝜏 );𝜛) = 𝐹 (𝑥; 𝜉, 𝜏 ),

with 𝒢(𝑥; 𝜏 ) 𝑀−→ 𝐺(𝑥; 𝜉, 𝜏 ) then,

𝐹 (𝑥; 𝜉, 𝜏 ) =
(︃
𝑎+ 𝑏

𝑐+ 𝑑

)︃
𝐺𝛼(𝑥; 𝜏 ) + 𝑏

𝑎+𝑏

∏︀𝑛
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

𝐺𝛼(𝑥; 𝜏 ) + 𝑑
𝑐+𝑑

∏︀𝑛
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

(2.4)

is the distribution induced by 𝑀 , with 𝜛 absorbed by 𝜉.

Dem. 1 It’s enough to use the definition and a straightforward algebra. □

The transformation 𝑀 induces a 𝜛-parametric invariance class under a suitable choice of the
elements of 𝜛, whose properties are shown in the corollary below:

Corollary 1 For suitable choices of the parameter vector 𝜛, one obtains,

1. Translation for 𝑎 = 1, 𝑐 = 0 and 𝑑 = 1. The parameter 𝑏 is free and stands for magnitude

of translation;

2. Rotation/Homothety for 𝑏 = 𝑐 = 0, 𝑑 = 1,

3. Inversion/Reflection for 𝑎 = 0, 𝑏 = 1, 𝑐 = 1 and 𝑑 = 0.

Dem. 2 1. 𝜛 = (1, 𝑏, 0, 1) ⇒

𝐹 (𝑥; 𝜉, 𝜏 ) = (1 + 𝑏)
{︃

(1 + 𝑏)𝐺𝛼(𝑥; 𝜏 ) + 𝑏
∏︀𝑛

𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

(1 + 𝑏) [𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑛
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼]

}︃
,

= 𝐺𝛼(𝑥; 𝜏 ) + 𝑏 {𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑛
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼}

𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑛
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼 ,

=
𝐺𝛼(𝑥; 𝜏 ) + 𝑏 𝐺𝛼(𝑥;𝜏 )

ℱ(𝑥;𝜉,𝜏 )
𝐺𝛼(𝑥;𝜏 )
ℱ(𝑥;𝜉,𝜏 )

,

= ℱ(𝑥; 𝜉, 𝜏 ) + 𝑏; □
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The same follows for the other statements,

2. 𝜛 = (𝑎, 0, 0, 1) ⇒ |𝑎|ℱ(𝑥; 𝜉, 𝜏 );

3. 𝜛 = (0, 1, 1, 0) ⇒ 1
ℱ(𝑥;𝜉,𝜏 ) .

Remark 1 It’s worth of saying that, if 𝑀 : C → C and 𝜛 ∈ C, then,

1. |𝑎| = 1 implies in pure rotations,

2. |𝑎| > 1 implies in homothety.

Figure 1 – Example under the 𝑇𝑀𝑂𝐸 model, which will be defined on (4.2) and 𝑀𝑋 transform for general
values of parameter set {𝑎, 𝑏, 𝑐, 𝑑}, as a consequence of (1).
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Source: the own author.

The figures appearing at (1) are of qualitative appeals, i.e., unless the translation case,
the others are not referred to, for example, in the rotation case, to the angle. For a more
quantitative analysis, it is developed, through complexification, a method to describe it.
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Theorem 2 Let 1 ≤ 𝑖 ≤ 𝑘, 𝑘 ∈ N. Let

𝐺(𝑥; 𝜏 ) = 𝜇((−∞, 𝑥]; 𝜏 ) = 𝑃 [𝑋 ≤ 𝑥] ,

𝐺(𝑥−; 𝜏 ) = 𝜇((−∞, 𝑥); 𝜏 ) = 𝑃 [𝑋 < 𝑥] ,

with

𝐺(𝑥; 𝜏 ) −𝐺(𝑥−; 𝜏 ) = 𝜇 {𝑥} = 𝑃 [𝑋 = 𝑥] ,

where 𝜇 is a measure on a field F and such that

lim
𝑥↦→−∞

𝐺(𝑥; 𝜏 ) = 0,

lim
𝑥 ↦→∞

𝐺(𝑥; 𝜏 ) = 1.

There exists 𝑛 ∈ N such that,

𝐹 (𝐹 (𝐹 (· · · )))⏟  ⏞  
n times

= (𝑛+ 1)𝐺𝛼(𝑥; 𝜏 ) + 𝑛
∏︀𝑘

𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑘
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

Dem. 3 Indeed, it’s enough to take 𝑎 = 1, 𝑏 = 𝑛 (and so, it proves the existence part, on

the assertion), 𝑐 = 0 and 𝑑 = 1, in Equation (2.4). □

In particular, for finite 𝑛, the statement of the previous theorem asserts that finite iterations
leads to nondecreasing 𝐹 (𝑥; 𝜉, 𝜏 ) what is expected for cumulative distribution functions.

Corollary 2 Note that,

lim𝑛↦→0
(𝑛+ 1)𝐺𝛼(𝑥; 𝜏 ) + 𝑛

∏︀𝑘
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑘
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

=

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑘

𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

Moreover, corroborating with the commentary in (1), above, in matrix terms one conceives,

𝐹 𝑛 =

⎛⎜⎜⎝1 𝑛

0 1

⎞⎟⎟⎠ = 𝑀

⎛⎜⎜⎝ℱ

⎛⎜⎜⎝1 𝑛

0 1

⎞⎟⎟⎠ ; ·

⎞⎟⎟⎠ (2.5)

=

⎛⎜⎜⎝1 0

0 1

⎞⎟⎟⎠ = 𝑀

⎛⎜⎜⎝ℱ

⎛⎜⎜⎝1 0

0 1

⎞⎟⎟⎠ ; ·

⎞⎟⎟⎠
which shows that, by starting from

𝑀

⎛⎜⎜⎝ℱ

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ; ·

⎞⎟⎟⎠ = 2𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑘
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑘
𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

(2.6)
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leading to a periodic system in the integers mod 𝑛, that is to say, in the Ring Z/𝑛Z. Note,

however that, in the

lim
𝑚1 ↦→1

𝑀

⎛⎜⎜⎝ℱ

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ; ·

⎞⎟⎟⎠ (2.7)

the system must be normalized to

lim
𝑚1 ↦→1

1
2𝑀

⎛⎜⎜⎝ℱ

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ; ·

⎞⎟⎟⎠ 1 ≤ 𝑖 ≤ 𝑘 ∈ N, (2.8)

in order to the properties of 𝐺 to be satisfied.

Remark 2 As is done above, in 3, 𝜛 is chosen to be (1, 𝑛, 0, 1). On the other hand, the

definition that asserts the validity of 2.5 is, indeed, 𝑀(𝑦;𝜛) ∘ ℱ(𝑥, 𝜉, 𝜏 ) = 𝐹 (𝑥, 𝜉, 𝜏 ). When

one sees 𝑀 as a representation matrix corresponding to the transformation, in the canonical

basis, the result is straightforward.

With the results of theorem (2) and corollary (2), one obtains a kind of periodic homography for
the class of transformations appearing in theorem (1) which indicates that the transformations
one may implement, under a given ℱ , is such that the results are homothety. In the case where
there exist a dilation, this will be, indeed, the normalized factor calculated above, for the case
at hand. As a consequence of these results, a finite number of composition, or generation of
new distribution function, is allowed. All the one that may follow are representations of the
class and periodicity conditions.

2.2.1 Particular Cases

Among many possibilities, two cases are presented and one is under investigation,

1. 𝜛 = (1, 0, 𝑝, 1 − 𝑝);

2. 𝜛 = (𝑟, 1 − 𝑟, 𝑝, 1 − 𝑝).

In the first case, one reads

𝑀𝑝(𝑦; ·) = 𝑦

𝑝𝑦 + (1 − 𝑝) = 𝑦

1 − 𝑝(1 − 𝑦) (2.9)
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and, in the second one,

𝑀𝑝,𝑟(𝑦; ·) = 𝑟𝑦 + (1 − 𝑟)
𝑝𝑦 + (1 − 𝑝) = 𝑦

1 − 𝑝(1 − 𝑦) = 𝑀𝑝,1(𝑦.·). (2.10)

Note that, for 𝑟 = 1, 𝑀𝑝,𝑟(𝑦; ·) ≡ 𝑀𝑝(𝑦; ·). The transformation given at (2.9) will be recog-
nized later, on Chapter 3. In 2.9 and 2.10, the indices {𝑝} and {𝑟, 𝑝} do refer to the choices
made in the first and second cases above, 2.2.1, respectively.

Proposition 2 Let M: R ↦→ R be as given by (2.9). Let

ℱ(𝑥; 𝜉, 𝜏 ) = 𝒢𝛼(𝑥; 𝜉, 𝜏 )
𝒢𝛼(𝑥; 𝜉, 𝜏 ) + (1 −𝑚) [1 − 𝒢(𝑥; 𝜉, 𝜏 )]𝛼 .

Applying 𝑀𝑝 onto ℱ(𝑥; 𝜉, 𝜏 ), one has

𝑀𝑝(𝑦; ·) ∘ ℱ(𝑥; 𝜉, 𝜏 ) = 𝑀𝑝(ℱ(𝑥; 𝜉, 𝜏 ); ·)

= 𝐹 (𝑥; 𝜉, 𝜏 ) (2.11)

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 − 𝑝)(1 −𝑚) [1 −𝐺(𝑥; 𝜏 )]𝛼 .

Remark 3 Note that, in the context of general theory of functions, there is only one re-

quirement under the equation 2.11: the denominator must be nonzero for it to make sense.

However, in the context of probability distributions, note that the equation characterizes an

accumulated distribution function (cdf). By checking the conditions under 𝐺, 2, then exten-

ding them to 𝐹 , one verifies that the latter is, indeed, a distribution function. In fact, 𝐹 has

the mentioned inherited properties for all 𝐺, since the composition of continuous functions is

continuous.

Notwithstanding, a situation worth of attention is as follow: the image of a given random
variable 𝑥 ∈ R by 𝐹 , must be unique in order to represent a function, at first. Then, the values
assumed for (1 − 𝑝)(1 −𝑚) must ensure this condition. But this is not always the case.

To avoid situations like that, one denotes (1 − 𝑝)(1 − 𝑚) = 𝜃, for example, where 𝜃 is a
new parameter, in principal, belonging to R. This condition allows different settings of (𝛼, 𝜃, 𝜏)

to result in different distributions, avoiding an identifiability problem.

2.2.1.1 Properties

In addition to the inherent properties concerning the distribution functions, some hid-
den characteristics may emerge suggesting interesting consequences relative to the underlying
symmetry carried by the parameter set, from both, 𝑀 and ℱ .
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From the concept of functions, it is read that, some points in the domain may not to be
mapped to all points in the range, occasion where it is said that the relation is a injection,
that is not bijection. When this relation is one-to-one, it is said that there exist a bijection.

It is possible for a function to have the same image for different points in the domain. When
it happens, it is onto but not a bijection. One trivial example of such function is 𝑓(𝑥) = 𝑥2.
For 𝑥 ∈ {−1, 1}, the same 𝑦 = 𝑓(𝑥) is obtained. In group theory, (ARMSTRONG, 1988), some
class of symmetry is discussed as well as some of its consequences. In Nature, when a system
exhibits some symmetry, hidden or not, a conservation of some physical dynamical quantity,
or property, is observed, (NOETHER, 1971), (NEUENSCHWANDER, 2011).

2.2.1.2 Symmetry

The term symmetry occurs in both, Mathematics and Physics, meaning that one shape,
in the former case, is identical to the other shape when it is translated, rotated, or flipped.
In the latter case, some physical quantity, for example, like angular momentum, is conserved,
when dynamical variables are at stake. In both cases, the theme is related to geometry.

There exist four basic types of symmetry, that is to say:

1. Translational symmetry;

2. Rotational symmetry;

3. Reflexive symmetry and

4. Glide symmetry.

The last one is a composition of a translation and a reflection. It is possible, however,
that a transformation lead to a break of symmetry, when evolving. This is the case when, for
example, a contraction is present. In what follows some cases are described.

2.2.1.3 Invariance for (p, m)-parametric permutation

Theorem 3 Let 𝑀 be according to the proposition (2). With

ℱ(𝑥; 𝜉, 𝜏 ) = 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) +∏︀𝑛

𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼 ,
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and

𝑀𝑝(𝑦; ·) ∘ ℱ(𝑥; 𝜉, 𝜏 ) = 𝑀𝑝(ℱ(𝑥; 𝜉, 𝜏 ); ·)

= 𝐹 (𝑥; 𝜉, 𝜏 )

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 − 𝑝)∏︀𝑛

𝑖=1(1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼 ,

then, the distribution induced by 𝑀 is (𝑝,𝑚𝑖)-parametric invariant under an even permutation,

for 𝑖 = 1, . . . , 𝑛.

Dem. 4 In effect, just keep 𝑝 fixed and, for each 𝑖, 𝑖 = 1, . . . , 𝑛, the assumptions in the

proposition (3), follows. Then, the theorem is valid for 𝑛 = 1. Suppose it is, rather, valid for

𝑛 = 𝑘 and let one show that it is valid for 𝑛 = 𝑘 + 1. It follows

𝑛 = 𝑘 + 1 ⇒ 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 − 𝑝)∏︀𝑛=𝑘+1

𝑖=1 (1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 − 𝑝)(1 −𝑚)∏︀𝑛=𝑘

𝑖=1 (1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 −𝑚− 𝑝+ 𝑝𝑚)⏟  ⏞  

𝑝

∏︀𝑛=𝑘
𝑖=1 (1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼

= 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 − 𝑝)∏︀𝑛=𝑘

𝑖=1 (1 −𝑚𝑖) [1 −𝐺(𝑥; 𝜏 )]𝛼
⇐ 𝑛 = 𝑘,

It was shown that the principle is valid for 𝑛 = 1. Supposed to be true for 𝑛 = 𝑘, and, in

virtue of the Principle of Finite Induction, that it is also true for 𝑛 = 𝑘 + 1. □

Proposition 3 Let 𝑝,𝑚 ∈ R and consider (2.11). It’s not hard to see that, under permutation

on 𝑝 and 𝑚, 𝑀 preserves structure.

Indeed, 𝑝 and 𝑚 are dummy parameters, i.e, they can be changed for, say, 𝑙 and 𝑞 and the
image of 𝑀 will be invariant. Take, for example, 𝑝 = 1/2 and 𝑚 = 2. One reads,

𝑀(ℱ ; 1/2, 2) = 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) − 1

2 [1 −𝐺(𝑥; 𝜏 )]𝛼

= 𝑀(ℱ ; 2, 1/2).

Remark 4 Here, the term dummy is the one encountered in matrix and tensor analysis,

(MCCONNELL, 1957). Not to be confused with dummy variables in Statistics.
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Definition 2 One says that the transformation induced by M leads to an invariance for the

image of the distribution, if it preserves structure. Moreover, that the distribution has a (p,

m)-parametric reflexive symmetry if interchanging 𝑝 and 𝑚, the distribution maintains its

characteristics.

Conjecture 1 Once that behind a symmetry of a dynamical variable there exist a conserved

quantity, it is conjectured that, for the case of the reflexive symmetry seen above, some

mathematical property related to the distribution function- endowed with a time parameter-,

is hidden and is eligible to come to surface. It could be a result related to mean, variance, or

other statistical property. The idea can be extended to involve the other symmetries.

2.2.1.4 Contraction

In what follows a case is exhibited where the action of 𝑀 does preserve structure, leading
to interesting results.

Proposition 4 Let 𝜛 = (𝑎, 𝑏, 𝑐, 𝑑) with 𝑎, 𝑏 ∈ R|(0,1), where the symbol | means restriction

to. If 𝑎 ↦→ 𝛼𝑝+ 𝛽, with 𝛼, 𝛽, 𝑝 such that 0 < 𝛼𝑝+ 𝛽 < 1, then,

𝐹𝜛𝛼𝑝+𝛽
= 𝛼𝑝+ 𝛽

(1 + 𝑏)2𝐹𝜛,

where,

𝐹𝜛𝛼𝑝+𝛽
= 𝑀 (𝑦;𝜛𝛼𝑝+𝛽) ∘ ℱ(𝑥; 𝜉, 𝜏 ) = 𝑀 (ℱ(𝑥; 𝜉, 𝜏 );𝜛𝛼𝑝+𝛽) , (2.12)

𝐹𝜛 = 𝑀 (𝑦;𝜛) ∘ ℱ(𝑥; 𝜉, 𝜏 ) = 𝑀 (ℱ(𝑥; 𝜉, 𝜏 );𝜛) .

Dem. 5 By applying 𝑀 to 2.11 and considering the notation given by 2.12 one has,

(1 + 𝑏)(𝑐+ 𝑑)
𝛼𝑝+ 𝛽

𝐹𝜛𝛼𝑝+𝛽
=

{︃
𝐺𝛼 + 𝑏

1+𝑏
𝜃 [1 −𝐺]𝛼

𝐺𝛼 + 𝑑
𝑐+𝑑

𝜃 [1 −𝐺]𝛼
}︃
, (2.13)

(𝑐+ 𝑑)
(𝑎+ 𝑏)𝐹𝜛 =

{︃
𝐺𝛼 + 𝑏

𝑎+𝑏
𝜃 [1 −𝐺]𝛼

𝐺𝛼 + 𝑑
𝑐+𝑑

𝜃 [1 −𝐺]𝛼
}︃
. (2.14)
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Dividing 2.13 by 2.14 and taking the limit,

lim
𝑎→1

⎡⎣ (1+𝑏)(𝑐+𝑑)
𝛼𝑝+𝛽

𝐹𝜛𝛼𝑝+𝛽

(𝑐+𝑑)
(𝑎+𝑏)𝐹𝜛

⎤⎦ = lim
𝑎→1

⎡⎢⎢⎣
{︂

𝐺𝛼+ 𝑏
1+𝑏

𝜃[1−𝐺]𝛼

𝐺𝛼+ 𝑑
𝑐+𝑑

𝜃[1−𝐺]𝛼

}︂
{︂

𝐺𝛼+ 𝑏
𝑎+𝑏

𝜃[1−𝐺]𝛼

𝐺𝛼+ 𝑑
𝑐+𝑑

𝜃[1−𝐺]𝛼

}︂
⎤⎥⎥⎦ ,

(1+𝑏)(𝑐+𝑑)
𝛼𝑝+𝛽

𝐹𝜛𝛼𝑝+𝛽

(𝑐+𝑑)
(1+𝑏)𝐹𝜛

= 1.

such that,

𝐹𝜛𝛼𝑝+𝛽
= 𝛼𝑝+ 𝛽

(1 + 𝑏)2𝐹𝜛. □

Corollary 3

lim
𝑏→0

𝐹𝜛𝛼𝑝+𝛽

𝐹𝜛
= 𝛼𝑝+ 𝛽.

In particular, corollary 3 implies that the quotient of both distributions, 𝐹𝜛𝛼𝑝+𝛽
and 𝐹𝜛 is

a well defined nondecreasing distribution function, since 0 < 𝛼𝑝+ 𝛽 < 1, by hypothesis.

2.3 RESULTS

In what follows some results are presented as consequences of the theory described above.
The idea is to apply the concepts in statistics as well as to develop tools in this branch of
mathematics.

Definition 3 Let 𝑀𝑋(𝑥) a smooth function as given by (1) and ℱ(𝑥) a distribution function.

Once 𝑀𝑋(𝑥) ∘ ℱ(𝑥) is smooth, one defines

𝑇 (𝑀𝑋(𝑥) ∘ ℱ(𝑥)) (𝑥) = {𝑀𝑋ℱ , 𝑥} ,

= 𝜖𝑋(𝑥),

the generating function for the probability distribution function.

Definition 4 On the Definition (3), the operator 𝑇 is such that

𝑇 (·) = 𝐷3

𝐷
−
(︂3

2

)︂(︃
𝐷2

𝐷

)︃2

, (2.15)

where 𝐷 is the canonical differential operator and the exponents, akin to 𝐷, are the order of

the derivative.



37

Proposition 5 Let 𝑀𝑋 : R ↦→ R as given on (3) and consider the Schwartz derivative of

𝑀𝑋 ∘ ℱ(𝑥) relative to 𝑥, 𝑇 (𝑀𝑋ℱ(𝑥)) (𝑥)= {𝑀𝑋ℱ , 𝑥} = 𝜖𝑋(𝑥), as defined by (3), and

𝑀𝑋 ∘ ℱ𝑋2(𝑥) = {𝑀𝑋ℱ𝑋2 , 𝑥} = 𝜖𝑋2(𝑥). If

𝑀𝑋(ℱ(𝑥; 𝜉, 𝜏 )) = 𝐹𝑒𝑥𝑝(𝑥; ·;𝜆)

𝑀𝑋(ℱ𝑋2(𝑥; 𝜉, 𝜏 )) = 𝐹 2
𝑒𝑥𝑝(𝑥; ·;𝜆)

where 𝐹𝑒𝑥𝑝 is the 𝑀 -transformed exponential distribution, then,

𝐸(𝑋) = lim
𝑥→∞

1√︁
−2𝜖𝑋(𝑥)

= 1
𝜆

(2.16)

𝐸(𝑋2) = lim
𝑥→∞

1
−𝜖𝑋2(𝑥) (2.17)

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2, (2.18)

where

𝑇 (𝑀𝑋ℱ𝑋2) (𝑥) = 𝑇 (𝐹 2(𝑥))

= 𝜖𝑋2(𝑥)

Indeed, with ℱ(𝑥) = 1 − 𝑒−𝜆𝑥, one has

𝑀𝑋ℱ𝑋 =
𝑎
(︁
1 − 𝑒−𝜆𝑥

)︁
+ 𝑏

𝑐 (1 − 𝑒−𝜆𝑥) + 𝑑
,

𝑇 (𝑀𝑋ℱ𝑋) = −𝜆2

2 ,

so that,

lim
𝑥→∞

1√︁
−2𝜖𝑋(𝑥)

= lim
𝑥→∞

1√︂
−2

(︁
−𝜆2

2

)︁
= lim

𝑥→∞

1√
𝜆2

= 1
𝜆

For the variance, 𝑉 𝑎𝑟(𝑋), one has,

𝑉 𝑎𝑟𝑋(𝑥) = 𝐸(𝑋2) − 𝐸2(𝑋)

= lim
𝑥→∞

1
−𝜖𝑋2(𝑥) − 1

𝜆2

= 2
𝜆2 − 1

𝜆2

= 1
𝜆2
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Proposition 6 Let 𝑀𝑋 : R ↦→ R as given on proposition (5) with ℱ𝑋 the 𝑇𝑀𝑂𝐸 model

distribution, that is to say,

ℱ𝑋 =

(︁
1 − 𝑒−𝜆𝑥

)︁𝛼

(1 − 𝑒−𝜆𝑥)𝛼 + 𝜃𝑒−𝛼𝜆𝑥

then,

𝑇 (𝑀𝑋ℱ𝑋(𝑥; 𝜉, 𝜏 )) (𝑥) = 1
2

2𝑒𝜆𝑥 − 𝛼2𝑒2𝜆𝑥 − 1
𝑒2𝜆𝑥 − 2𝑒𝜆𝑥 + 1

= 𝜖𝑋(𝑥)

so that,

𝐸(𝑋) = lim
𝑥→∞

1√︁
−2𝜖𝑋(𝑥)

= 0.707106781186548
√

2
𝛼𝜆

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 𝐸2(𝑋) = 𝐸(𝑋2) − (0.707106781186548
√

2
𝛼𝜆

)2

2.4 CONCLUSIONS

In this chapter, the concept of fractional bilinear transformation was applied and some
concepts and properties were introduced inside the branch of probability theory. Despite the
extension lacks up-dated formal mathematical sources- for it is under development-, the ideas
and methods are worth of studying. The tools presented are interesting and show potential
applications in several fields of, pure and applied, mathematics. In data science, for example,
some enquire can be made about the applicability of the symmetry behind the theory, in similar
tools as that of 𝑃𝐶𝐴, principal component analysis, (JOLLIFFE, 2010).
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3 GENERAL PROPERTIES OF Mp: THE MARSHALL-OLKIN TRANSFORMA-

TION

3.1 INTRODUCTION

Here, the class of transformations seen at Chapter 2 is applied and a family of distribution is
studied. At first, a general approach is considered in order to establish the theory and prepare
the ground for the concrete distributions, that is to say, when considering the baselines at
hand. Based on the ideas of the last chapter, a special case of the proposed transformation
will be used, from now on, 𝑀𝑝-transform given by (2.9).

The idea is to present a family of distributions as well as to emphasize the root character
of the transformation that, in particular, can be a source for the well known, although little
used in the field of new distributions, Marshall-Olkin transformation, which emerged from 𝑀𝑝.

The junction of the latter with (LIMA et al., 2019) will result on a new family with a higher
degree of flexibility, in terms of the failure rate function, as one will see later.

Additionally, the resulting cumulative distribution function and probability density function
have their simple forms, that is to say, they do not involve complicated mathematical functions,
as in the families given by beta-G (EUGENE; LEE; FAMOYE, 2002) and gamma-G (ZOGRAFOS

K.; BALAKRISHNAN, 2009), for example.
The Marshall-Olkin transformation can be used, among other things, as mechanism of

skewing as disposed in (RUBIO; STEEL, 2012). On this case its use is for modelling data
presenting departures from symmetry, which is ordinary in data analysis. As the application
of the transformation takes place, a number of parameter is introduced as seen at Chapter 2,
whose mathematical meaning is to allow the fractioning for the values assuming in the global
parameter 𝜃 = (1 − 𝑝1) · (1 − 𝑝2) · · · (1 − 𝑝𝑘), 𝑘 ∈ N, as structured in last chapter. However,
when this is done, it dawns that, for different values of 𝑝𝑖, 𝑝𝑘, 𝑖 ̸= 𝑗 ∈ N, the same scenario
emerges. This is why one is using a global parameter 𝜃, but related to the 𝑘’s, in order to
avoid ambiguity for the image of the distribution. Finally, given the current distribution, after
transformation, general expressions are derived conceiving the ordinary functions figuring in
statistical theory, such the probability density function, hazard function, quantile functions and
so on.
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3.2 CONSTRUCTING THE FAMILIES

Here, one is addressed to a particular case where the combinations of the parameter
vector (𝑎, 𝑏, 𝑐, 𝑑), of 𝜛, leads to Marshall-Olkin transformation. The distribution function and
probability density function are given, along with some ordinary properties associated to them,
such as the shapes these functions can exhibit through the hazard function, as well as the
quantile function developed to be applied in the simulations later performed. The moment
generating function is introduced and a series expansion is addressed intended to give an
alternative method when exact solutions cannot be calculated. The process of estimation is
presented through maximum likelihood.

3.2.1 M-Transform and the Marshall-Olkin Transformation

As was described in Chapter 2, a class of transformations was presented in terms of the
M-transform, for different values of his intrinsic parameters, i.e., 𝑎, 𝑏, 𝑐 and 𝑑. There, it was
pointed out that for the particular values of those parameters, say, 𝑎 = 1, 𝑏 = 0, 𝑐 = 𝑝 and
𝑑 = 1 − 𝑝, the Marshall-Olkin transformation was derived. In this text, a natural extension
of Odd Log-Logistic Geometric family, (OLLG-G for short), (LIMA et al., 2019), is proposed by
using that transformation, as well as the ones corresponding to changes in the vector parameter
set, according to properties inherited by the transformation. As was seen, it is defined by

𝑀(𝑦; 𝑝) = 𝑦

1 − 𝑝 (1 − 𝑦) , (3.1)

with 𝑦 ∈ R|(0,1) and 𝑝 ∈ (0, 1) is an additional tuning parameter. Henceforth,

𝜉 = (𝛼,𝑚, 𝑝) = (𝛼, 𝜃), if 𝐹 holds, (3.2)

will represent the general parameter vector sets for the model and 𝜏 will designate the vector
parameter set for the baselines for the given 𝐹 . Here, one should keep in mind that the notation
given at (3.2) was that way structured in order to address the identifiability problem discussed
in the former chapter. Note that, since 𝑦 ∈ R|(0,1), one may choose a cumulative distribution
function (𝑐𝑑𝑓) from some random variables, or family of distributions, and substitute them in
(3.1). Here it is chosen the family of distribution known as OLLG-G Family (LIMA et al., 2019)
which has the probability density function (pdf) expressed by
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𝑓 (𝑥;𝛼,𝑚, 𝜏 ) = 𝛼(1 −𝑚)𝑔(𝑥; 𝜏 )𝐺(𝑥; 𝜏 )[1 −𝐺(𝑥; 𝜏 )]𝛼−1

{𝐺𝛼(𝑥; 𝜏 ) + (1 −𝑚)[1 −𝐺(𝑥; 𝜏 )]𝛼}2 , (3.3)

where 𝐺(𝑥; 𝜏 ) and 𝑔(𝑥; 𝜏 ) are the cumulative distribution function and probability density
function, respectively.

Consequently, the associated cdf is given by

𝐹 (𝑥;𝛼,𝑚, 𝜏 ) = 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + (1 −𝑚) [1 −𝐺(𝑥; 𝜏 )]𝛼 , (3.4)

where the parameter 𝛼 represents the quotient of the log odds ration for the generated and
baseline distributions, given by,

𝛼 =
log

[︂
𝐹 (𝑥;𝜉,𝜏 )
𝐹 (𝑥;𝜉,𝜏 )

]︂
log

[︂
𝐺(𝑥;𝜏 )
𝐺(𝑥;𝜏 )

]︂ ,
as can be seen in the last reference above. With respect to the parameter 𝑚, let 𝑇 be a
geometric random variable with probability mass function given by 𝑃 (𝑇 = 𝑡) = (1 −𝑚)𝑚𝑡−1

for 𝑡 ∈ N and 𝑚 ∈ (0, 1). Thus, if 𝑌 has density given by (3.3), we write 𝑌 ∼OLLG-
G(𝛼,𝑚, 𝜏 ),

This family is very flexible and depends on the baseline chosen. Besides that, when 𝛼 = 1,
we obtain the geometric-G family with (𝑘 + 𝑛) parameters (𝑚, 𝜏), where 𝑛 stands for the
dimension of the parameter vector 𝜏 and 𝑘 the number of parameters carried out by the
model. Note that, by the very concept of dimension, these numbers must be positive ones.

By applying (3.4) in (3.1), one finds, after some algebra, the following proposition.

Proposition 7 Let F be defined in such a way that (3.4) is satisfied. Then one has,

𝐹 (𝑥; 𝜉, 𝜏 ) = 𝐺𝛼(𝑥; 𝜏 )
𝐺𝛼(𝑥; 𝜏 ) + 𝜃 [1 −𝐺(𝑥; 𝜏 )]𝛼 , (3.5)

where 𝜃 ≡ (1 − 𝑝) (1 −𝑚) and 𝜉 = (𝛼, 𝜃, 𝜏 ) is the parameter vector for this model. Here, the

details are the same as one sees on Remark (3).

As was observed in (3.2), the parameter vector 𝜉 has dimension 2. Note, indeed that, since
the baseline parameter range depends on the general 𝐺(𝑥; 𝜏 ), previously chosen, the nature
and proper range of it will depend only on the concrete 𝐺.

Corollary 4 As direct consequence of (3.5), the pdf reads

𝑓(𝑥; 𝜉), 𝜏 ) = 𝛼𝜃𝑔(𝑥; 𝜏 )𝐺𝛼−1 (𝑥; 𝜏 ) [1 −𝐺 (𝑥; 𝜏 )]𝛼−1

{𝐺𝛼 (𝑥; 𝜏 ) + 𝜃 [1 −𝐺 (𝑥; 𝜏 )]𝛼}2 . (3.6)
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Hence, if 𝑋 has density given by (3.6), one says that it follows the Transformed Marshall-
Olkin G family, (TMO-G, for short), with additional parameters 𝛼 and 𝜃. It is important
to emphasise that 𝜃 does involve a combination of parameters. 𝑚 for the probability of a
geometric random variable- described right after (3.4)-, and 𝑝, which is the parameter of the
transformation given in (3.1).

Remark 5 Note that, when 𝛼 = 𝜃 = 1, the new model devolves on the baseline.

Remark 6 It is allowed for the parameter 𝜃 to vary into R. The response to this choice could

leads to lack of probability significance to what concerns to variability of P in (0, 1) but,

which can be rescued by the process of normalization, in the case of right extrapolation of the

later interval, or suitability in the case of negative probability. The later can be addressed to

phase space formulation of quantum mechanics, quantum correlations, wave-particle dualism,

among others, (BREUER, 2002), (BLASS; GUREVICH, 2020). Inasmuch as one desire to provide

a meaning of proportion to 𝜃, it is advised to let them vary inside (0, 1) interval. Here is worth

of saying that there exist an essential difference between proportion and probability. While the

former is well defined and known- the results of realizations are known-, the latter, besides

being, yet, well defined, their results are unknown until the total exhaustion of the event.

3.2.2 The Shapes of Distributions

When discussing probability distributions one is often lead to the question on what the
shapes of the curves, at hand, have to do to statistical meaning.

The question that could arise is, are there relations between central tendency measures and
the aforementioned shapes of distributions? The answer is a ’yes’. Once a distribution may be
described by a number of maximum points it exhibits, known as its modality, it is possible to
visualize an association with the mode, for example. If the density assumes the greatest value
at some point, then the value is the mode. Nevertheless, it is not hard to find a distribution
described as bimodal or multimodal whenever there are more than one pronounced humps in
the curves corresponding to their distributions, even though there is only one distinct mode
(HAYS; WINKLER, 1970).

Summarizing, as the distributions are described by functional relations, it is expected that
the former may have no modes, as can be seen at the first figure in 2, and unimodal, as
pictured out in the second one, according to 𝑇𝑀𝑂𝐸 model detailed in Chapter 4.
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Figure 2 – The first graph shows no mode. The second one a graph of an unimodal distribution. The graph
do represent univariate distributions plotted for different continuous values of their parameters, for
example.

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0 2.0
2.5

3.0
3.5

4.0
4.5

5.0
5.5

6.0

M
TE

xp

0.04

0.02

0.00

0.02

0.04

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0 2.0
2.5

3.0
3.5

4.0
4.5

5.0
5.5

6.0

M
TE

xp

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Source: the own author.

This is important when the geometric properties of new distributions are analysed, whether
by shape methods developed by Qian, (QIAN, 2012), or by direct plot visualization. By this
last condition, once a probability distribution function indicates the likelihood of an event or
an outcome, if 𝑋 is a random variable, then the 𝑥-axis does represent the possible outcomes
of the experiment, while the 𝑦-axis does the probability of each outcome. The way each other
do relate is addressed to the law, or distribution function the random variable follow. In this
sense, the shape of this function gives mathematical meaning to measure likelihood in a visual
way, giving rise, quite instantaneously, to useful interpretations.

3.2.3 Hazard Function

In terms of applications for the developed theory here presented, there is a branch of
applied statistics, known as Survival Analysis, that these tools can be addressed to. The uses
of the method is, by no mean, exhausted in this area, as will be verified in the examples and
applications that follows the text. In survival analysis, the outcome variable of interest is the
time until the occurrence of an event. The physical entity, time, has its natural meaning as
understood in Physics and corresponding dimension, say, years, month, seconds. By the term
event, one understands some phenomenon, or experiment, that takes place at some location
in space and time, to what some control and knowledge is desirable. Inside this theory, survival
analysis, s.a. for short, some concepts and properties are developed leading to results that can
provide useful tools for the understanding of several branches of knowledge, (GAO; HE, 2020),
(SHEN, 2021), (SINGH; MUKHOPADHYAY, 2011). The main characteristic of s.a. is embedded
in a mathematical expression, known as hazard function, ℎ(𝑥; 𝜉, 𝜏 ), or hazard rate function



44

(hrf) whose mathematical meaning is to give the instantaneous potential, per unit time, for
the aforementioned event to occur, given that the phenomenon has last, up to time 𝑥. If, for
example, the phenomenon is the clinical condition of an individual, one think of the individual
has survived up to time 𝑥, (KLEINBAUM, 2005). Here, without loss of generality, it is used the
general independent variable 𝑥 for denoting time, contrary almost all literature that uses 𝑡,
for time. It’s just a notational question. In some occasion the 𝑡-notation, for time, is indeed
recovered.

Then, given the distribution function 𝐹 (𝑥; 𝜉, 𝜏 ), the general expression for the hrf family
model, is

ℎ(𝑥; 𝜉, 𝜏 ) = 𝛼𝑔(𝑥; 𝜏 )𝐺𝛼−1(𝑥, 𝜏 )
{𝐺𝛼 (𝑥; 𝜏 ) + 𝜃 [1 −𝐺 (𝑥; 𝜏 )]𝛼} [1 −𝐺 (𝑥; 𝜏 )] , (3.7)

with the functions and symbols well understood from text above.

3.2.4 Some properties of the hazard function

As was conceived in (QIAN, 2012), the quotient between 𝑓 and 1−𝐹 , termed hazard func-
tion, allows one to have insight about the nature of distribution through the shape it exhibits.
Meanwhile, (MUDHOLKAR; SRIVASTAVA; FREIMER, 1995) suggests the dependence, out of the
natural logarithmic one by construction itself for the hazard function, on the monotonicity
induced by the parameters of the generating distribution. In the cited case, giving rise to
regions of interest from where qualitative analysis may be performed to establish domain on
the parameters and their influence on the nature of distributions. Then, consider the following
proposition,

Proposition 8 Let 𝑇 (𝑧) be defined by

𝑇 (𝑧) = (1 − 𝑧) [𝑧𝛼 + 𝜃(1 − 𝑧)𝛼] [𝑧𝑔′(𝑧; 𝜏 )(1 − 𝑧) + (𝛼− 1)𝑔(𝑥; 𝜏 )(1 − 𝑧) − 𝑧𝑔(𝑧; 𝜏 )]

− 𝑔(𝑧; 𝜏 )(1 − 𝑧) [𝑧𝛼(1 − 𝑧) + 𝜃𝑧(1 − 𝑧)𝛼] .

It follows that the sign of the variation of the hazard function ℎ(𝑥) is the same as that of 𝑇 .

Dem. 6 Let 𝑧 be the restriction of a convex function to its interval, where it is strictly

increasing. This is important for, if 𝑧 = 𝑎𝑥, it would be strictly increasing only if 𝑎 > 1. Then,

without loss of generality let 𝐺(𝑥; 𝜏 ) = 𝑒𝑥 = 𝑧. In that case, such a restriction implies 𝑧 > 1,
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if 𝑥 > 0. It follows that, 𝑥 = log 𝑧 and,

𝑟(𝑧) = 𝛼𝑔(𝑥; 𝜏 )𝑧𝛼−1

[𝑧𝛼 + 𝜃(1 − 𝑧)𝛼] (1 − 𝑧) .

By taking logarithm on both sides of the equation and deriving it, one obtains, after some

algebra,

𝑟′(𝑧)
𝑟(𝑧) = 𝑇 (𝑧)

𝑧𝑔(𝜏 )(1 − 𝑧)2 [𝑧𝛼 + 𝜃(1 − 𝑧)𝛼] . (3.8)

Here, 𝑇 (𝑧) as given by proposition (8). Once, 𝑔(𝑧, 𝜏 ) ≥ 0, 𝑧 > 1, by hypothesis, the deno-
minator is a positive function. It follows that the sign of 𝑟′(𝑧) and 𝑇 (𝑧) are the same under
variation. Note that in the figure, (3), there is signal preservation.

Figure 3 – Graph showing the variation of 𝑇 to enforce the same sign preservation property, as compared to
𝑟′(𝑧). The red curve is the denominator of Equation (3.8).

Source: the own author.

When dealing with the baseline at hand, the Factor function 𝑇 will play an interesting role
in terms of the shape inherited by the hazard function and, according to this, it will be defined
regions on which a parameter domain will take place to characterize the theory.

3.2.5 Limiting Cases

It is interesting to investigate to where Equation (3.5) tends to converge when the para-
meter, 𝜃, is bound to approximate to some limit values. Then we have,

lim
𝜃→0+

𝐹 (𝑥; 𝜉; 𝜏 ) = lim
𝜃→0+

1
1 + 𝜃

[︁
1−𝐺(𝑥;𝜏 )

𝐺(𝑥;𝜏 )

]︁𝛼
= 1
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and

lim
𝜃→1

𝐹 (𝑥; 𝜉; 𝜏 ) = lim
𝜃→1

𝐺𝛼 (𝑥; 𝜏 )
𝐺𝛼 (𝑥; 𝜏 ) + 𝜃 [1 −𝐺 (𝑥; 𝜏 )]𝛼

= 𝐺𝛼 (𝑥; 𝜏 )
𝐺𝛼 (𝑥; 𝜏 ) + [1 −𝐺 (𝑥; 𝜏 )]𝛼

which is the family given by (3.4) proposed by (LIMA et al., 2019), if 𝜃 assumes values such
that 𝜃 = (1 − 𝑝), with 𝑝 ∈ (0, 1). Note, however, that the former equation, above, shows that
the parameter range for 𝜃 does not need to be constrained to the interval (0, 1) since there are
no essential singularities presented inside or outside these interval, including the boundaries of
it, while the later is just a formality for addressing the nested nature of the model and the one
that this was generated from, if one chose to decompose 𝜃 in a granular form, such as,

𝜃 = (1 − 𝑝1) (1 − 𝑝2) · · · (1 − 𝑝𝑛) ∈ N

as was pointed out in chapter one. It is yet, worth of saying that, on selecting this decomposition
for 𝜃, it is possible to have equal values received for 𝐹 , for different values of the 𝑝𝑖, 𝑖 =

1, · · · , 𝑛, leading to inconsistency, known as incompatibility conditions. Meanwhile, as one is
allowed to select values for 𝜃 outside the (0, 1) interval, it is possible to encounter troubles while
defining the quantile function. Inasmuch as the later is charged with probabilistic meaning, in
selecting values leading to violations of the probability rules, one is incurring in future errors.

3.3 QUANTILE FUNCTION

Given a probability distribution function. The quantile function has many uses in theory
and applications of Probability because, once the later is known, it may be used to construct
a random variable 𝑋 that satisfies the former. The practical importance of the knowledge of
it is based on the fact that it can provide a method of simulating samplings from arbitrary
distribution, given a generator, (PARZEN, 1979), (ALJARRAH; LEE; FAMOYE, 2014). Then, one
has the following

Definition 5 Let X be a random variable and 𝐹𝑋(𝑥) the associated cumulative distribution

function. The quantile function, 𝑄𝑋(𝑢) : (0, 1) −→ R is the inverse of the cdf, when the

inverse does exist.

It follows from the definition that

𝑄(𝑢) = 𝑖𝑛𝑓 {𝑥 : 𝐹 (𝑥) ≥ 𝑢} ,∀𝑢 ∈ (0, 1) , (3.9)
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that is to say, the quantile function Q(u), for a given quantile 𝑢 ∈ (0, 1) returns the smallest
𝑥 for which 𝐹𝑋(𝑥) = 𝑢.

Proposition 9 Since the distribution function given, by (3.5), is a strictly monotonically

increasing function of the continuous random variable X, the quantile function is given by the

inverse of 𝐹𝑋 (𝑥) ≡ 𝐹 (𝑥; 𝜉) and reads

𝑄(𝑢) = 𝑄𝐺

⎛⎜⎝ 1

1 +
[︁

1−𝑢
𝜃𝑢

]︁1/𝛼

⎞⎟⎠ , (3.10)

where 𝑄𝐺 is a reference that 𝑄(𝑢) does depend on 𝐺(𝑥; 𝜏 ). Furthermore, 𝑢 = 𝐹−1(𝑥, 𝜉, 𝜏 ),

the pre-image of 𝑥 by 𝐹 . Calculational details can be seen at (3.3.1).

3.3.1 Quantile Function Details

First of all it is desirable to show that 𝐹 is a monotonically increasing function of 𝑥. Indeed,
starting from the definition (3.5), we must show that the derivative

𝜕𝐹 (𝑥; 𝜉; 𝜏 )
𝜕𝑥

> 0.

Operating on the derivative it follows that, after some algebra,
𝜕𝐹 (𝑥; 𝜉; 𝜏 )

𝜕𝑥
= 𝛿𝐺𝛼−1(𝑥; 𝜏 )𝜕𝐺(𝑥; 𝜏 )

𝜕𝑥

{︃
[1 − 𝐹 (𝑥; 𝜉; 𝜏 )]𝛼 + [1 − 𝐹 (𝑥; 𝜉; 𝜏 )]𝛼

[1 − 𝐹 (𝑥; 𝜉; 𝜏 )]

}︃

where 𝛿 = 𝛼𝜃 > 0, by hypothesis. Since 0 ≤ 𝐺(𝑥; 𝜏 ) ≤ 1 it verifies that
𝜕𝐹 (𝑥; 𝜉; 𝜏 )

𝜕𝑥
> 0

which shows that 𝐹 is a strictly increasing function of 𝑥. Keep in mind that 𝐹 : R −→ [0, 1]

and the 𝑖𝑛𝑓 (𝐹 = 0). It is worth of saying that, once 𝐹 was generated by the transformation
(3.1), the proof could be done on it. It is important to do it since neither all transformations
preserve structure, as can be seen from Jensen Inequality (BILLINGSLEY, 1995).

3.4 MOMENT GENERATING FUNCTION AND MOMENTS

Here, some special functions are defined with the role of generating moments and probabi-
lity functions. Their primary role is to simplify calculational tasks of the induced distributions
under investigation. When one has the closed form of this function, say, the integrand is
integrable, it is possible to calculate moments from it, if ℳ𝑋(𝑠) is smooth.
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3.4.1 Moment Generating Function

Let 𝑋 be a random variable of the continuous type with density function 𝑓(𝑥; 𝜉, 𝜏 ) such
that 𝐸(𝑒𝑠𝑥) ≡ ℳ𝑋(𝑠). Thus, if 𝑋 ∼TMO-G(𝜉, 𝜏 ), one has

ℳ𝑋(𝑠) =
+∞∫︁

−∞

𝑒𝑠𝑥𝑓(𝑥; 𝜉, 𝜏 )𝑑𝑥 (3.11)

= 𝛼𝜃

+∞∫︁
−∞

𝑒𝑠𝑥 𝑔(𝑥; 𝜏 )𝐺𝛼−1 (𝑥; 𝜏 ) [1 −𝐺 (𝑥; 𝜏 )]𝛼−1

{𝐺𝛼 (𝑥; 𝜏 ) + 𝜃 [1 −𝐺 (𝑥; 𝜏 )]𝛼}2 𝑑𝑥.

For the case where the baseline is the exponential distribution, for example, one has,

ℳ𝑋(𝑠) = 𝛼𝜃𝜆

+∞∫︁
0

𝑒(𝑠−𝛼𝜆)𝑥
(︁
1 − 𝑒−𝜆𝑥

)︁𝛼−1

{(1 − 𝑒−𝜆𝑥)𝛼 + 𝜃𝑒−𝛼𝜆𝑥}2𝑑𝑥,

which already, is not straightforward to solve. Hence, in most cases the improper integrals of
the type given by (3.11) are not easy to solve, or even, expressed in terms of a finite number
of elementary known functions, reason by which, another technique must be applied, when
possible. Sometimes, even this approach seems to be inefficient.

To contour this problem, some power series techniques are applied, when minimal conditi-
ons are fulfilled by the involved functions. When this is the case, one may have the following
theorem.

Theorem 4 The cdf given by (3.5) has power series expansion,

𝐹 (𝑥; 𝜉; 𝜏 ) =
∞∑︁

𝑟=0
𝑑𝑟𝐻𝑟 (𝑥; 𝜉; 𝜏 ) , (3.12)

where,

𝑑0 = 𝑠0

𝑐0
and,

𝑑𝑟 = 𝑐−1
0

(︃
𝑠𝑟 −

𝑟∑︁
𝑡=1

𝑐𝑡𝑠𝑟−𝑡

)︃
,

for 𝑟 ≥ 1. Furthermore, 𝐻𝑟(.) denotes the exponentiated-G distribution, with additional para-

meter 𝑟.

Dem. 7 By using the Ansatz,

(1 − 𝑧)𝑏 =
∞∑︁

𝑘=0
(−1)𝑘

(︃
𝑏

𝑘

)︃
𝑧𝑘
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for 𝑏 > 0 and |𝑧| < 1. Therefore, from (3.5), it follows that

𝐹 (𝑥; 𝜉, 𝜏 ) = 𝐺𝛼(𝑥; 𝜉, 𝜏 )
𝐺𝛼(𝑥; 𝜉, 𝜏 ) +∑︀∞

𝑘=0 𝑏𝑘𝐺𝛼(𝑥; 𝜉, 𝜏 ) , (3.13)

where

𝑏𝑘 = 𝑏𝑘(𝛼, 𝜃) ≡ (−1)𝑘𝜃

(︃
𝑏

𝑘

)︃
.

Furthermore, for 𝑧 ∈ (0, 1) and 0 ≤ 𝛼 ≤ ∞, consider the series,

𝑧𝛼 =
∞∑︁

𝑟=0
𝑆𝑟(𝛼)𝑧𝑟, (3.14)

where,

𝑆𝑟(𝛼) = 𝑆𝑟 =
∞∑︁

𝑙=𝑟

(−1)𝑙+𝑟

(︃
𝛼

𝑙

)︃(︃
𝑙

𝑟

)︃
.

Therefore, by using (3.14) and (3.13), it follows that,

𝐹 (𝑥; 𝜉, 𝜏 ) =
∑︀∞

𝑟=0 𝑆𝑟(𝛼)𝐺𝑟(𝑥; 𝜉, 𝜏 )∑︀∞
𝑖=0 𝑆𝑖(𝛼)𝐺𝑖(𝑥; 𝜉, 𝜏 ) +∑︀∞

𝑘=0 𝑏𝑘𝐺𝑘(𝑥; 𝜉, 𝜏 )

=
∑︀∞

𝑟=0 𝑆𝑟(𝛼)𝐺𝑟(𝑥; 𝜉, 𝜏 )∑︀∞
𝑖=0 𝑐𝑖(𝛼, 𝜃)𝐺𝑖(𝑥; 𝜉, 𝜏 ) ,

where,

𝑐𝑖(𝛼, 𝜃) = 𝑆𝑖(𝛼) + 𝑏𝑖(𝛼, 𝜃).

Finally, using a known result concerning the quotient of two power series, Fikhtengol’Ts (1970),

one has the result of the theorem. □

Corollary 5 As a consequence of the theorem above it follows that

𝑓 (𝑥; 𝜉; 𝜏 ) =
∞∑︁

𝑟=0
𝑑𝑟+1ℎ𝑟+1 (𝑥; 𝜉; 𝜏 ) (3.15)

where ℎ𝑟+1 (𝑥; 𝜉; 𝜏 ) is the pdf of Exp-G family with additional parameter 𝑟 + 1

However, the theory developed in Chapter 2, seems to be promising in the sense that, offering
an alternative way to calculate moments without having to calculate integrals, turn the pro-
cedures more attractive, because of the avoiding such integration processes and infinity series
approaches.

Remark 7 A functional series is intimately related to its coefficients which, in counterparts,

may be real or complex numbers. An ordinary example comes from the geometric series, or
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ideas derived from it, which, in the domain of its radius of convergence, endowed with some

more additional hypothesis, can be integrated term-to-term, (FIKHTENGOL’TS, 1970).

The integrated series guards some relations to the former by the similitude, albeit unequal,

coefficients, even if the final functions differ significantly: 1
1+𝑥

and log (1 + 𝑥), for example.

Additionally, the results obtained in Theorem 4 and, consequently, in the Corollary 5, are similar

to those found in the work of Lima et. al (2019), but worth of noting that the weights therein

are different.

3.4.2 Moments

Given a distribution function, there are numerical characteristics, say it classical for, they
appears as mandatory for the distribution theory, such as the expected values and variance,
central tools for the inference process. A physical way to understand the meaning of the
expected values, seen as the mean of a given distribution is the occasion you must sustain a
long rod. If you are an adult, the experience tells you to choose the center of gravity of the
rod. If you are a child in process of learning, you’ll use trial and error to find that point that
will be the experience firstly spoken.

If it is desired to construct a method where one uses the concept of moment generating

function, just described above, a hierarchical tool arises, with the mean and variance as the
first and second moments, respectively. The term hierarchical, here, refers to the fact that
the process is a concatenated one, with the mean, seen as an expected value, in the kernel of
the process. Thus, if a random variable 𝑋 has absolutely continuous distribution, such as the
conditions exposed just above, with a 𝑝𝑑𝑓 𝑓(𝑥), then the moments about zero and the central
moments, have the following expressions:

𝜇𝑛 = 𝐸𝑋𝑛 ≡ 𝐸(𝑋𝑛) =
∞∫︁

−∞

𝑥𝑛𝑓(𝑥)𝑑𝑥

𝜇̃𝑛 = 𝐸 (𝑋 − 𝐸(𝑋))𝑛 =
∞∫︁

−∞

(𝑥− 𝐸(𝑋))𝑛 𝑓(𝑥)𝑑𝑥

Again, one says that the moments do exist if,
∞∫︁

−∞

|𝑥|𝑛𝑓(𝑥)𝑑𝑥 < ∞.

It’s not hard to see that for all classes of functions, this is not an easy task, once the total
process involves an improper integration procedure. One should be convinced by choosing, at
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(3.11), 𝛼 = 1, leading to exact solution, but in terms of special function, and 𝛼 = 2, an open
problem in this text.

In the spirit of the Chapter 2, the expected value and variance are given by:

𝐸(𝑋) =
√︃

− 1
2 {𝑀,𝑥}

and 𝑉 𝑎𝑟(𝑋) = − 1
2 {𝑀,𝑥}

, (3.16)

where the notation {·} indicates the derivative of the operator 𝑀 in relation to 𝑥.

3.5 ESTIMATION

Once the distributions are known, the natural path to proceed is the process of statistical
inference and decision. The purpose of dealing with sample statistics is to produce information,
here seen as worked data, or better saying, noncrude data. However, the process of generalizing
from the sample to population is the duty of statistical inference, the ultimate tool through
which the information, as a decision-making process, is applied. In the next chapters some
datasets are given. Some, like the one related to COVID-19, are real-time data acquired in
official government channels, due to the exception period the world is living in. Other are
simulated data generated by physical model, in particular, for hydrodynamical systems.

During the process of statistical model construction, the problem of knowing the values
of parameters that enter into the functions, that best fit the data under analysis, comes. In
what follows, the method of Maximum Likelihood is used, as a criterion, to solve estimation
problems in direction of existence of that best estimate.

Suppose that X is a vector whose coordinates are real random variables, i.e., X =

{𝑥1, · · · , 𝑥𝑛}. Then, with 𝜉, 𝜏 the parameter vectors (for the family here studied and the
baseline, respectively), and 𝑓(𝑥𝑖; 𝜉; 𝜏 ) given by 3.6,

𝑙 (𝑥𝑖; 𝜉, 𝜏 ) = 𝑛 log [𝛼𝜃] +
𝑛∑︁

𝑖=1
log [𝑔 (𝑥𝑖; 𝜏 )] + (𝛼− 1)

𝑛∑︁
𝑖=1

log [𝐺 (𝑥𝑖; 𝜏 )]

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log [1 −𝐺(𝑥𝑖; 𝜏 )]

− 2
𝑛∑︁

𝑖=1
log {𝐺𝛼 (𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼}. (3.17)

Once it is established the likelihood function, the next step is proceeding to calculate the
score functions and their consequent meaning. For the general expression (3.17) it reads

𝜕{𝜉,𝜏}𝑙 (𝑥𝑖; 𝜉, 𝜏 ) ,
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which is an additive function. Of course when one is dealing with the baselines this vector set
is allowed to increase. Meanwhile,

𝜕{𝜉,𝜏}𝑙 (𝑥𝑖; 𝜉, 𝜏 ) =
[︃
𝜕𝑙 (𝑥; 𝜉; 𝜏 )

𝜕𝛼
,
𝜕𝑙 (𝑥; 𝜉; 𝜏 )

𝜕𝜃
,
𝜕𝑙 (𝑥; 𝜉; 𝜏 )

𝜕𝜏𝑘

]︃𝑇

, (3.18)

where, 𝜏𝑘 is the 𝑘𝑡ℎ component of parameter vector 𝜏 . Once the baseline depends on the 𝜏
that, in its turn, does not depends on 𝛼 and 𝜃, the derivatives read,

𝜕𝑙 (𝑥; 𝜉, 𝜏 )
𝜕𝛼

= 𝑛

𝛼
+

𝑛∑︁
𝑖=1

log {𝐺(𝑥𝑖; 𝜏 ) [1 −𝐺(𝑥𝑖; 𝜏 )]}

− 2
𝑛∑︁

𝑖=1

{𝐺(𝑥𝑖, 𝜏 ) log𝐺(𝑥𝑖, 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖, 𝜏 )]𝛼 log [1 −𝐺(𝑥𝑖, 𝜏 )]}
𝐺𝛼(𝑥𝑖, 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖, 𝜏 )] ,

𝜕𝑙 (𝑥; 𝜉, 𝜏 )
𝜕𝜃

= 𝑛

𝜃
− 2

𝑛∑︁
𝑖=1

1 −𝐺𝛼(𝑥𝑖; 𝜏 )
𝐺𝛼(𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼 .

if 𝐺(𝑥𝑖; 𝜏 ) does not depend on 𝜃.
For the derivative in relation to parameter vector 𝜏 , the componentwise relation reads,
𝜕𝑙(𝑥; 𝜉, 𝜏 )

𝜕𝜏𝑘

=
𝑛∑︁

𝑖=1

1
𝑔(𝑥𝑖; 𝜏𝑘)

𝜕𝑔(𝑥𝑖; 𝜏𝑘)
𝜕𝜏𝑘

+ (𝛼− 1)
𝑛∑︁

𝑖=1

{︃
1 − 2𝐺 (𝑥𝑖; 𝜏𝑘)

𝐺 (𝑥𝑖; 𝜏𝑘)𝐺(𝑥𝑖; 𝜏𝑘)

}︃
𝜕𝑥𝑖,𝜏𝑘

− 2𝛼
𝑛∑︁

𝑖=1

{︃
𝐺𝛼−1(𝑥𝑖; 𝜏𝑘) − 𝜃𝐺(𝑥𝑖; 𝜏𝑘)𝛼−1

𝐺𝛼(𝑥𝑖; 𝜏𝑘) + 𝜃𝐺(𝑥𝑖; 𝜏𝑘)𝛼

}︃
𝜕𝑥𝑖,𝜏𝑘

.

where

𝐺(𝑥𝑖; 𝜏𝑘) = [1 −𝐺 (𝑥𝑖; 𝜏𝑘)]

𝜕𝑥𝑖,𝜏𝑘
= 𝜕𝐺 (𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

Now, for calculation of estimators, the vector given by (3.18) is set to zero, that is to say,

𝜕{𝜉,𝜏}𝑙 (𝑥𝑖; 𝜉, 𝜏 ) = [0, 0, 0, 0]𝑇 , (3.19)

leading to the system of nonlinear equations whose simultaneous solution leads to the set of
estimator

𝑙̂
(︁
𝑥𝑖; 𝜉, 𝜏

)︁
=
(︁
𝛼̂, 𝜃, 𝜏𝑘

)︁
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = 𝑛
𝛼̂

+∑︀𝑛
𝑖=1 log {𝐺(𝑥𝑖; 𝜏 ) [1 −𝐺(𝑥𝑖; 𝜏 )]}

− 2∑︀𝑛
𝑖=1

{𝐺(𝑥𝑖,𝜏 ) log 𝐺(𝑥𝑖,𝜏 )+𝜃[1−𝐺(𝑥𝑖,𝜏 )]𝛼̂ log [1−𝐺(𝑥𝑖,𝜏 )]}
𝐺𝛼̂(𝑥𝑖,𝜏 )+𝜃[1−𝐺(𝑥𝑖,𝜏 )] ,

0 = 𝑛
𝜃

− 2∑︀𝑛
𝑖=1

1−𝐺𝛼(𝑥𝑖;𝜏 )
𝐺𝛼̂(𝑥𝑖;𝜏 )+𝜃[1−𝐺(𝑥𝑖;𝜏 )]𝛼̂ ,

0 = ∑︀𝑛
𝑖=1

1
𝑔(𝑥𝑖;𝜏𝑘)

𝜕𝑔(𝑥𝑖;𝜏𝑘)
𝜕𝜏𝑘

+ (𝛼̂− 1)∑︀𝑛
𝑖=1

{︁
1−2𝐺(𝑥𝑖;𝜏𝑘)

𝐺(𝑥𝑖;𝜏𝑘)[1−𝐺(𝑥𝑖;𝜏𝑘)]

}︁
𝜕𝐺(𝑥𝑖;𝜏𝑘)

𝜕𝜏𝑘

− 2𝛼̂∑︀𝑛
𝑖=1

{︂
𝐺𝛼̂−1(𝑥𝑖;𝜏𝑘)−𝜃[1−𝐺(𝑥𝑖;𝜏𝑘)]𝛼̂−1

𝐺𝛼̂(𝑥𝑖;𝜏𝑘)+𝜃[1−𝐺(𝑥𝑖;𝜏𝑘)]𝛼̂

}︂
𝜕𝐺(𝑥𝑖;𝜏𝑘)

𝜕𝜏𝑘
.
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The asymptotic distribution of (𝜉−𝜉) is 𝑁𝑘+2(0, 𝐽(𝜉)−1) under standard regularity condi-
tions, where 𝐽(𝜉) is total observed information matrix. Based on this family, one can construct
approximate confidence intervals for the individual parameters. Additionally, one can compute
the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio
(LR) statistics for testing some sub-models of the TMO-G distribution. Considering 𝜃 ∈ (0, 1),
it is adopted the following reparametrization for 𝜃 = exp(𝜃*

1+𝑒𝑥𝑝(𝜃*) , where 𝜃* ∈ R. This procedure
is about to be used in all simulations encountered on next chapters of this work.

It is desired to know the exact value of the parameter vectors, {𝜉, 𝜏} ∈ R𝑛, when dealing
with the observed data. However it is not possible once, in practice, the information is not
available. The general way to escape from this trap is to infer the parameter values from data.

Since it is given the random variable 𝑋, the functional law, 𝑓 , that relates the vector
parameter and the potential outcomes 𝑥 of 𝑋, allows one to establish a positive semi-definite
symmetric matrix of dimension in accordance with the dimension of the vector parameters,
whose entrances depend on the score function given above. The second derivatives expressed
as 𝑙 gives rise to

𝐼𝑋 ({𝜉, 𝜏}) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑙(𝑥;𝜉;𝜏 )
𝜕𝛼2

𝜕2𝑙(𝑥;𝜉;𝜏 )
𝜕𝛼𝜕𝜃

· · · 𝜕2𝑙(𝑥;𝜉;𝜏 )
𝜕𝛼𝜏𝑘

𝜕2𝑙(𝑥;𝜉;𝜏 )
𝜕𝜃𝜕𝛼

𝜕2𝑙(𝑥;𝜉;𝜏 )
𝜕𝜃2 · · · 𝜕2𝑙(𝑥;𝜉;𝜏 )

𝜕𝑝𝜕𝜏𝑘

... ... ... ...
𝜕2𝑙(𝑥;𝜉;𝜏 )

𝜕𝜏𝑘𝜕𝛼
𝜕2𝑙(𝑥;𝜉;𝜏 )

𝜕𝜏𝑘𝜕𝜃
· · · 𝜕2𝑙(𝑥;𝜉;𝜏 )

𝜕𝜏2
𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.20)

whose expressions are given below at (3.6)

3.5.1 Optimization

As described on starting this section, the process of model construction as well as the seek
for the parameter values best fitting the data are canonical procedure in a statistical analysis.

Once one is dealing with functions, in general, of several variables, as seen of having
several parameters, as multiparameter distributions, Jacobians and Hessians, the operationality
is frequently unamenable, due to the proper nature of the functions and relevant procedure.
For example, at Chapter 4, the particle approximation is of second order nature. This implies
numerical consequences for the results on the simulations performed during the analysis. Do
remember that, first-order optimization algorithms use only gradients and, the information
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about curvature, that one is probably encountering through the process, turn the later to a
state where loss of information takes place, leading to erroneous results.

The solution for this apparent problem is to consider second-order optimization methods.
This is, indeed, a requirement when dealing with Hessians for example so, constituting no
novelty. The second-order method, in contrast to the former do consider the curvature of
descent process and improve the velocity of convergence, (MURPHY, 2021).

The classic second-order method is Newton’s method. This consists of updates of the form,

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡H−1g𝑡

where,
H−1 =Δ ∇2ℒ(𝜃)|𝜃𝑡 = ∇2ℒ(𝜃𝑡) = 𝐻(𝜃𝑡)

is assumed to be positive-definite ensuring the update process well-defined. Along the ap-
plications some methods are used, 𝐵𝐹𝐺𝑆 being such a one. There are methods known as
quasi-Newton sometimes called variable metric methods, iteratively build up an approximation
to the Hessian using information gleaned from the gradient vector at each step, (MURPHY,
2021). The most common being BFGS. For more details one is addressed to the last reference
as well as (NOCEDAL, 2006). Other methods are indeed available among which, the Nelder-
Mead who is a numerical method used to find the minimum or maximum of an objective
function in a multidimensional space. It is a derivative-free optimization method based on
coordinate and pattern-search algorithm that, at any stage of that algorithmic process, only
track of 𝑛 + 1 points of interest, say, in R𝑛, are kept, whose convex hull forms a simplex,
(NOCEDAL, 2006).

Setting the derivatives of the log-likelihood function for all parameters to zero, the respec-
tive MLEs are obtained by numerical method. The approximate variances and the Confidence
Intervals(CIs) of the parameters are obtained by inverting the observed Fisher matrix.

The 100(1 − 𝛾)% symmetric approximate normal CIs of parameters are constructed by

𝜃 − 𝑧𝛾/2

√︁
Var(𝜃), 𝜃 + 𝑧𝛾/2

√︁
Var(𝜃),

where 𝑧𝛾/2 is the upper 𝛾/2 point of standard normal distribution, and 𝜃 can be any parameters.
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3.6 GENERAL RESULTS FOR ESTIMATION

As posted above, the derivative of 𝑙(𝜉; 𝜏 ;𝑥𝑖) in relation to the parameter vector compo-
nents, reads

𝜕{𝜉,𝜏}𝑙 (𝑥𝑖; 𝜉, 𝜏 ) =
[︃
𝜕𝑙 (𝑥𝑖; 𝜉, 𝜏 )

𝜕𝛼
,
𝜕𝑙 (𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜃
,
𝜕𝑙 (𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜏𝑘

]︃𝑇

, (3.21)

where, 𝜏𝑘 is the 𝑘𝑡ℎ component of parameter vector 𝜏 . Then, the score functions read,

𝜕𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼

= 𝑛

𝛼
+

𝑛∑︁
𝑖=1

1
𝑔(𝑥𝑖; 𝜏 )

𝜕𝑔(𝑥𝑖; 𝜏 )
𝜕𝛼

+
𝑛∑︁

𝑖=1
log {𝐺(𝑥𝑖; 𝜏 ) [1 −𝐺(𝑥𝑖; 𝜏 )]}

+ (𝛼− 1)
𝑛∑︁

𝑖=1

[︃
1 − 2𝐺(𝑥𝑖; 𝜏 )

𝐺(𝑥𝑖; 𝜏 ) [1 −𝐺(𝑥𝑖; 𝜏 )]

]︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼

− 2𝛼
𝑛∑︁

𝑖=1

𝐺𝛼−1(𝑥𝑖; 𝜏 ) − 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼−1

𝐺𝛼(𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼
,

𝜕𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃

= 𝑛

𝜃
− 2𝛼

𝑛∑︁
𝑖=1

𝐺𝛼−1(𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼−1

𝐺𝛼(𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝜃

− 2
𝑛∑︁

𝑖=1

1 −𝐺𝛼(𝑥𝑖; 𝜏 )
𝐺𝛼(𝑥𝑖; 𝜏 ) + 𝜃 (1 −𝐺(𝑥𝑖; 𝜏 ))𝛼 .

For the derivative in relation to parameter vector 𝜏 , the componentwise relation reads,

𝜕𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜏𝑘

=
𝑛∑︁

𝑖=1

1
𝑔(𝑥𝑖; 𝜏𝑘)

𝜕𝑔(𝑥𝑖; 𝜏𝑘)
𝜕𝜏𝑘

+ (𝛼− 1)
𝑛∑︁

𝑖=1

{︃
1 − 2𝐺 (𝑥𝑖; 𝜏𝑘)

𝐺 (𝑥𝑖; 𝜏𝑘)𝐺(𝑥𝑖; 𝜏𝑘)

}︃
𝜕𝐺 (𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

− 2𝛼
𝑛∑︁

𝑖=1

{︃
𝐺𝛼−1(𝑥𝑖; 𝜏𝑘) − 𝜃𝐺(𝑥𝑖; 𝜏𝑘)𝛼−1

𝐺𝛼(𝑥𝑖; 𝜏𝑘) + 𝜃𝐺(𝑥𝑖; 𝜏𝑘)𝛼

}︃
𝜕𝐺 (𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

,

where
𝐺(𝑥𝑖; 𝜏𝑘) = [1 −𝐺 (𝑥𝑖; 𝜏𝑘)] .
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The Hessian elements are given by

𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼2 = − 𝑛

𝛼2 −
𝑛∑︁

𝑖=1

{︃
1

𝑔(𝑥𝑖; 𝜏 )2

[︃
𝜕𝑔(𝑥𝑖; 𝜏 )

𝜕𝛼

]︃
+ 1
𝑔(𝑥𝑖; 𝜏 )

𝜕2𝑔(𝑥𝑖; 𝜏 )
𝜕𝛼

}︃

+
𝑛∑︁

𝑖=1

1 − 2𝐺(𝑥𝑖; 𝜏 )
𝐺(𝑥𝑖; 𝜏 )𝐺(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏 )
𝜕𝛼

+
𝑛∑︁

𝑖=1

1
𝐺(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏 )
𝜕𝛼

+ (𝛼− 1)
𝑛∑︁

𝑖=1

⎧⎨⎩ 1
𝐺(𝑥𝑖; 𝜏 )

𝜕2𝐺(𝑥𝑖; 𝜏 )
𝜕𝛼2 − 1

𝐺2(𝑥𝑖; 𝜏 )

(︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼

)︃2
⎫⎬⎭

+ (1 − 𝛼)
𝑛∑︁

𝑖=1

1
1 −𝐺2(𝑥𝑖; 𝜏 )

(︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼

)︃2

−
𝑛∑︁

𝑖=1

1
1 −𝐺(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏)
𝜕𝛼

+ (2 − 𝛼)
𝑛∑︁

𝑖=1

1
1 −𝐺(𝑥𝑖; 𝜏 )

𝜕2𝐺(𝑥𝑖; 𝜏 )
𝜕𝛼2

− 2
𝑛∑︁

𝑖=1

1
𝐿2

{︃(︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼

)︃
𝐿′′𝐿

𝛼
− 𝐿′2

𝛼2

}︃

+

⎧⎨⎩ 1
𝛼

(︃
𝐿′

𝐿

)︃(︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼

)︃−1
⎫⎬⎭ 𝜕2𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼2 ,

𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃2 = − 𝑛

𝜃2 + 2𝛼
𝑛∑︁

𝑖=1

𝐺
𝛼(𝑥; 𝜏𝑘)𝐿′

𝐿2
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼
,
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𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜏 2

𝑘

=
𝑛∑︁

𝑖=1

⎧⎨⎩ 1
𝑔(𝑥𝑖; 𝜏𝑘)

𝜕2𝑔(𝑥𝑖; 𝜏𝑘)
𝜕𝜏 2

𝑘

−
[︃

1
𝑔

𝜕𝑔(𝑥𝑖; 𝜏𝑘)
𝜕𝜏𝑘

]︃2
⎫⎬⎭

− 𝛼1

𝑛∑︁
𝑖=1

⎧⎨⎩ 𝐴

𝐺2(𝑥𝑖; 𝜏𝑘)𝐺(𝑥; 𝜏𝑘)

(︃
𝜕𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

)︃2
⎫⎬⎭

− 𝛼1

𝑛∑︁
𝑖=1

{︃
1 − 2𝐺(𝑥𝑖; 𝜏)

𝐺(𝑥𝑖; 𝜏𝑘)𝐺(𝑥; 𝜏𝑘)
𝜕2𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏 2
𝑘

}︃

− 𝛼2

𝑛∑︁
𝑖=1

𝑄1

𝑄2

(︃
𝜕𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

)︃2

+ 2𝛼2
𝑛∑︁

𝑖=1

𝐺𝛼−1(𝑥𝑖; 𝜏𝑘) − 𝜃𝐺(𝑥; 𝜏𝑘)𝛼−1{︁
𝐺𝛼(𝑥𝑖; 𝜏𝑘) + 𝜃𝐺(𝑥; 𝜏𝑘)𝛼

}︁2

(︃
𝜕𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

)︃2

− 2𝛼
𝑛∑︁

𝑖=1

𝐺𝛼−1(𝑥𝑖; 𝜏𝑘) − 𝜃𝐺(𝑥; 𝜏𝑘)𝛼−1

𝐺𝛼(𝑥𝑖; 𝜏𝑘) + 𝜃𝐺(𝑥; 𝜏𝑘)𝛼

𝜕2𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝜏 2

𝑘

,

𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜃

= −
𝑛∑︁

𝑖=1

𝐺
𝛼(𝑥𝑖; 𝜏 )
𝐿

{︃
1

𝐺(𝑥𝑖; 𝜏 )
+ 𝐿′

𝐿

}︃
𝜕𝐺(𝑥𝑖; 𝜏 )

𝜕𝛼
= 𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜃𝜕𝛼
,

𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝜏𝑘

= 2𝛼
𝑛∑︁

𝑖=1

𝐺
𝛼(𝑥𝑖; 𝜏𝑘)
𝐿

{︃
1

𝐺(𝑥𝑖; 𝜏 )
+ 𝐿′

𝐿2

}︃
𝜕𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

= 𝜕2𝑙 (𝑥; 𝜉; 𝜏 )
𝜕𝜏𝑘𝜕𝜃

,

𝜕2𝑙 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜏𝑘𝜕𝛼

=
𝑛∑︁

𝑖=1

{︃
1

𝑔(𝑥𝑖; 𝜏 )
𝜕2𝑔(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘𝜕𝛼

− 𝜕𝑔(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘

𝜕𝑔(𝑥𝑖; 𝜏 )
𝜕𝛼

}︃

+
𝑛∑︁

𝑖=1

1
𝐺(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘

−
𝑛∑︁

𝑖=1

1
𝐺(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘

− 2(𝛼− 1)
𝑛∑︁

𝑖=1

1
𝐺(𝑥𝑖; 𝜏 )𝐺(𝑥𝑖; 𝜏)

𝜕𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝜏𝑘

𝜕𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝛼

− (𝛼− 1)
𝑛∑︁

𝑖=1

1
𝐺2(𝑥𝑖; 𝜏 )

𝜕𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝜏𝑘

𝜕𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝛼

+ (𝛼− 1)
𝑛∑︁

𝑖=1

[︃
1 − 2𝐺(𝑥𝑖; 𝜏 )
𝐺(𝑥𝑖; 𝜏 )𝐺(𝑥𝑖; 𝜏 )

]︃
𝜕2𝐺(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘𝜕𝛼

− −2𝛼
𝑛∑︁

𝑖=1

{︃[︃
𝐿′′

𝐿
− 𝛼

𝐿′2

𝐿2

]︃
𝜕𝐺(𝑥𝑖; 𝜏𝑘)

𝜕𝜏𝑘

𝜕𝐺(𝑥𝑖; 𝜏𝑘)
𝜕𝛼

− 𝐿′

𝐿

𝜕2𝐺(𝑥𝑖; 𝜏 )
𝜕𝜏𝑘𝜕𝛼

}︃

= 𝜕2𝐺(𝑥𝑖; 𝜏 )
𝜕𝛼𝜕𝜏𝑘

,

where,
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𝐺(𝑥; 𝜏𝑘) = [1 −𝐺(𝑥𝑖; 𝜏 )] ,

𝐴(𝑥𝑖; 𝜏𝑘) = 4𝐺2(𝑥𝑖; 𝜏𝑘) − 2𝐺(𝑥𝑖; 𝜏𝑘) + 1,

𝛼1 = (𝛼− 1),

𝛼2 = 2𝛼(𝛼− 1),

𝐿 = 𝐺𝛼 + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼 ,

𝐿′ = 𝐺𝛼−1(𝑥𝑖; 𝜏 ) − 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼−1 ,

𝐿′′ = 𝐺𝛼−2(𝑥𝑖; 𝜏 ) + 𝜃 [1 −𝐺(𝑥𝑖; 𝜏 )]𝛼−2 ,

𝑄1 = 𝐺2(𝛼−1)(𝑥𝑖; 𝜏𝑘) + 𝜃𝐺𝛼−2(𝑥𝑖; 𝜏𝑘)𝐺𝛼(𝑥; 𝜏𝑘) + 𝜃2𝐺
2(𝛼−1)(𝑥; 𝜏𝑘),

𝑄2 = 𝐺2𝛼(𝑥𝑖; 𝜏𝑘) + 2𝜃𝐺𝛼(𝑥𝑖; 𝜏𝑘)𝐺𝛼(𝑥; 𝜏𝑘) + 𝜃2𝐺
2𝛼(𝑥; 𝜏𝑘).

Once the components above are determined, the Fisher Information Matrix can be defined.

3.7 CONCLUSIONS

In this chapter, the Marshall-Olkin G family of distributions was seen to emerge from the
class of transformations, by this time, seen as a generator, as depicted in early chapters. It was
enough to select particular values, as shown at 2.2.1. Despite the majority of distributions and
applications one encounter along this text do refer to the specific aforementioned distribution,
there exist a wide number of possible distributions one can acquire.

Furthermore, along the chapter was developed properties of the studied family in the direc-
tion of construction of a general approach, such as: cumulative distribution functions, density
functions and hazard rate functions, as well as a deeper study of the latter one concerning
its shape. As was observed, a closed-form expression was developed for the quantile function
and some methods applied to the study of moments was presented. In this sense, moments
and moment generating functions was discussed by using an expansion of the density func-
tion in power series, once general properties involving, simple functions, such exponential as
baseline, cannot be expressed in closed forms for the majority of cases one encounters, due
to complexity of functional relationship. Finally, the estimations of parameters was developed
by using the method of maximum likelihood. It is hoped, however, that this family come to
further contribute to the range of families already existing in the theory of new distributions
and its wide field of applications.
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4 TRANSFORMED MARSHALL-OLKIN G FAMILY WITH EXPONENTIAL

AND WEIBULL DISTRIBUTIONS AS BASELINE

4.1 INTRODUCTION

The general form developed on the last chapter is the fundamental arena where the pro-
posed models, hereafter, will play their roles by realizing themselves in terms of the chosen
baselines, which are, in this chapter, exponential and Weibull distributions.

As was mentioned before, the use of exponential distributions is vast, once, many phe-
nomena in nature suggest that the behavior of their events, or dynamics, is particularly well
described by this kind of relation. One example is that they characterize the probability dis-
tribution for waiting times between consecutive Poisson processes. To be more convincing
in the mathematical point of view, the exponential function is a special function with inte-
resting properties arising from the fact that it is an analytic function. From the property of
being a convex function, several constructions and applications can arise in many branches
of mathematics, (BREZIS, 2010), physics where, for example, Boltzmann-Gibbs distribution is
defined as a statistical model in Mechanics, (NAUDTS, 2010), (DRAGULESCU A.; YAKOVENKO,
2001), and other areas of knowledge, such as Economics, (SAMPATH; LALITHA, 2016), (AFIFY;

GEMEAY; IBRAHIM, 2020). It occurs, however, that function composition of distributions is
allowed, giving rise to new classes of distributions which may model several kinds of pheno-
mena, (NADARAJAH; JAYAKUMAR; RISTIć, 2013). However, in the words of Deming, (DEMING,
1964), all the developed constructions should be seen as a "figure that can be used for a given

purpose, for action".
During the last few decades, many extensions of exponential scattering have been proposed.

We can name a few: Beta Exponential (KOTZ, 2006), Exponentiated Exponential (NADARAJAH,
2011), Transmuted Exponential (OWOLOKO; OGUNTUNDE; ADEJUMO, 2015), Exponentiated
Transmuted Exponential (AL-KADIM; MAHDI, 2018), Topp–Leone odd log-logistic exponential
distribution, (AFIFY; AL-MOFLEH; DEY, 2021). The applications used in the contexts of the
works mentioned above vary a lot, among which ones can cite data on: fatigue, survival time
and reliability. The second distribution used as baseline, the Weibull, was detailed by the
author, although Fréchet who first identified it, (FRÉCHET, 1927).

Applications go through size particles distribution, to interdisciplinary lifetime distributions,
say, in engineering and medical sciences, (LAI, 2014), (ROSIN P. ;RAMMLER, 1934), (VESILIND,
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1980), (HALLINAN, 1993). The amount of models that was generated through Weibull distri-
butions and his generalizations advice one to keep focus on new applications, through new
families proposition having the former as baseline, in attempt to describe vast classes of natural
phenomena.

4.2 TRANSFORMED MARSHALL-OLKIN EXPONENTIAL DISTRIBUTION

In the first chapter, the 𝑀 -transform was defined and some particular cases was explicitly
described. Among them, the case where the well known transformation carried by Marshall
and Olkin was derived. In this chapter, a special case of the Transmuted Marshall-Olkin G
family is developed. Here, the exponential model is chosen, just for the simplicity and wide
application already existing in the literature of extended exponentials.

Let 𝑋 be a random variable following the exponential distribution, i.e,

𝑔(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝜆e−𝜆𝑥 , 𝑥 ≥ 0,

0 , 𝑥 < 0 and

𝐺(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 − e−𝜆𝑥 , 𝑥 ≥ 0,

0 , 𝑥 < 0.
(4.1)

In Figure 4 the plot of exponential distribution and his corresponding probability density
function are shown. As can be seen, the exponential pdf is a strictly decreasing function with
unique mode at 𝑦 = 0, where 𝑓 assumes the value 𝜆. As an analytical function the consequent
structures derived from it are tractable and well defined, as can be seen, for example, in the
quantile function determination.

Thus, considering the exponential model and the TMOG family, presented in last chapter,
one obtains the Transformed Marshall-Olkin Exponential distribution (TMOE, for short). So,
by inserting the expressions given in (4.1) in the equations of the cdf and pdf of the proposed
family, one reads, respectively,

𝐹 (𝑥;𝛼, 𝜃, 𝜆) =

(︁
1 − e−𝜆𝑥

)︁𝛼

(1 − e−𝜆𝑥)𝛼 + 𝜃e−𝛼𝜆𝑥
, (4.2)

and

𝑓 (𝑥;𝛼, 𝜃, 𝜆) =
𝜆𝛼𝜃

(︁
1 − e−𝜆𝑥

)︁𝛼−1
e−𝛼𝜆𝑥

{(1 − e−𝜆𝑥)𝛼 + 𝜃e−𝛼𝜆𝑥}2 . (4.3)
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Figure 4 – Cumulative distribution function and probability density function for exponential distribution, with
𝜆 = 1.5. The analytical properties of that distribution allows one to treat mathematical manipula-
tions in a relatively ease way, including transformations.

Source: the own author.

Thus, 𝑋 ∼TMOE(𝛼, 𝜃, 𝜆), where 𝛼 and 𝜃 are the additional parameters and 𝜆 is the one
brought by the baseline.

Note that, as long as the parameter 𝛼 increases, as seen at the description frame of the
figure, the shape of the cumulative distribution function and its correspondent pdf varies, as
can be easily observed from the curves in the Figure 5. It is well known that distribution
functions, unless their canonical properties, are nondecreasing functions. However, the way
of 𝐹 increases is of particular interest, once the processes of modeling tend to account the
diversity of natural phenomena and their forms of variations. In this sense, as wider the the
way a function varies, better will be the fidedignity of the model in approximate the reality one
is proposed to explain. When observing the right Figure on 5, one can see different properties
which characterize and differentiate the model while the parameter brought by the distribution,
changes. While varying the 𝛼 parameter, one tends to recognize a change in the shape of the
curve while, changing the parameter 𝜃, one observes a change in the function similar the one
obtains when varying the argument of a function. Then, theses parameters can be characterized
as shape and scale parameters, respectively.

Despite the fact that the TMOE model is modified by the induction of parameters inhe-
rited from the transformation, it can be seen that the images of the functions given by the
distributions have their shapes modified by weight of their tails. Of course this analysis just
make sense only for the same scenery where the same set of parameters figures. It follows that,
comparing the blue curve with the red one, it is possible to observe that, from the way that
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the processes take place, ones are extremely fast in the first case, and slowly in the second one.
This leads to conclusions that relates to the fat nature of the tails influenced by the induced
parameters.

As the random variable varies the distribution function given by (4.3), gives rise to the
surface generated while varying 𝛼, which can be seen in the Figure 6.

Figure 5 – Cumulative distribution function and probability density function for the model (4.2) and 4.3 and
exponential distribution as baseline.

Source: the own author.

Figure 6 – Surface generated while varying 𝛼.

Source: the own author.
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4.3 PROPERTIES

In this section, some properties of the TMOE model, such as mean, variance, hazard
function and quantile function, are developed. The log-likelihood function is defined and some
of its consequences are developed.

4.3.1 TMOE Hazard rate function

A brief commentary concerning the concept of hazard function was made in Chapter
3. However, some essential properties and mathematical meaning behind this construction
depends on the concrete functions one is dealing with, not general expressions as seen in
the general construction of that chapter. There, was mentioned a shape variation property,
coming from the monotonicity of the hazard function which is, in counterpart, subjected to
the parameter figuring in the function, itself, (MUDHOLKAR; SRIVASTAVA; FREIMER, 1995). The
hazard function for the TMOE model is given and the log-derivative, as well as the function
factor 𝑇 (𝑥), is defined. The importance of the latter will turn clearer below and the former is
a mean for the construction of 𝑇 . The hazard function (hrf) for the new family distribution,
according to 3.7, is

ℎ𝑒𝑥𝑝(𝑥;𝛼, 𝜃, 𝜆) =
𝛼𝜆

(︁
1 − e−𝜆𝑥

)︁𝛼−1

(1 − e−𝜆𝑥)𝛼 + 𝜃e−𝛼𝜆𝑥
. (4.4)

One can see that, due to the increasing character of parameter setting, the hrf, ℎ(𝑥; 𝜉, 𝜏 ),
changes his variation from smooth to fast increments, that is to say, the shape of variation
accompanies in the same fashion. This is not a general result, once, there are several prac-
tical situations wherein these functions exhibit non-monotone behaviour, (NAIR; SANKARAN;

BALAKRISHNAN, 2018), (DAVIS, 1952). As examples, systems with bathtub distributions and
periodical character are sources of data with such a property, (PARANJPE; RAJARSHI, 1986).
Now, some procedures are made in order to derive a formal attempt to describe the relation
between the density at hand and the shape exhibited by the hrf, ℎ(𝑥; 𝜉, 𝜏 ). If 𝑔(𝑥; 𝜏 ) and
𝐺(𝑥; 𝜏 ) are the pdf and cdf of exponential distribution, respectively, it follows that, according
to Proposition (8) in Chapter 3,

𝑇 (𝑧) = 𝜃(2𝑧 − 1) + (2𝑧 − 1)(𝑧 − 1)𝛼 − 𝛼(𝑧 − 1)𝛼, (4.5)
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such that
𝑟′(𝑧)
𝑟(𝑧) = 𝑇 (𝑧)

𝑧(𝑧 − 1) [𝜃 + (𝑧 − 1)𝛼] . (4.6)

.

Figure 7 – On the left frame, the hazard function shapes is shown. On the right, the graph shows the variation
of 𝑇 to enforce the same sign preservation property, as compared to 𝑟′(𝑧). The red curve is the
denominator of the right side of (4.6).

Source: the own author.

On the left of the Figure 7, the hazard function ℎ(𝑥) is shown for fixed value of the baseline
parameter 𝜆, while the parameter set (𝛼, 𝜃) varies as shown in figures. Note that it is possible
to obtain different forms for the failure rate function: increasing, decreasing, unimodal and
inverted bathtub (restricting the parametric space).

The reason of the log-derivative of the hazard function was turned clear on Chapter 1.
What should be clarified is the importance of the definition of the 𝑇 factor function.

In both cases of Figure 8, one represents the factor function 𝑇 for some different values
of the parameter 𝛼, with 𝜃 and 𝜆 kept fixed. The first Figure on 8 expresses the curves for
0 < 𝛼 < 2. It is seen on the figures that one can define a separation region, say, Region I, whose
curves defined by 𝑇 (𝑧) take positive values implying that the hazard function is monotonically
increasing. Here there’s a point worth of mention. By nearer looking the function 𝑇 , one
observes that, as 𝛼 assumes the value 1, the term containing the factor (𝛼 − 1) vanishes,
resulting in a balance among positive and negative values, leading to portions of the graph
where the function is monotonically decreasing.

However, it constitutes no problem for what is studied here, once it is possible to define
restriction of the function to the desired interval of interest, without loss of generality for
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Figure 8 – Factor 𝑇 (𝑧) for the separation regions.

Source: the own author.

practical purposes. The red curve of the first figure, on 8, shows this restriction. Of course
that, depending on the problem at hand, some additional hypothesis must be included in
order to gain stronger results, where it fits. By observing the right figure, one notes that, for
3.8 < 𝛼 < 5.5, there’s a restriction of 𝑇 where the portions of the curves are entirely on the
negative branch of the plane. It implies a separation region, Region II, leading to monotone
decreasing character of the hazard function. In a nonrestrictive sense, it is possible to define
more two regions, say, Region III and Region IV, for where the behavior of the curves are more
flexible. For example, in interval where 𝑇 (𝑧) takes initially positive values, then changing for
negative ones, indicates an unimodal character of the hazard function. For the fourth region,
𝑇 (𝑧) takes initially negative values, then positive ones. This is indicative of bathtube shaped
hazard function.

These results have interesting mathematical meaning, with important statistical interpre-
tations. In the mathematical point of view there exist a separation in regions, according to
parameter values, in consequence of the monotonicity property of the hazard function and its
convexity. On the other hand, this separation region gives rise to suppositions on the class of
shapes for the given distribution function under analysis. For example, shapes such as unimo-
dal, bathtub and strictly increasing or decreasing behavior, for the distributions, can occur.
As was pointed out in (QIAN, 2012), the hazard function and the 𝑇 factor function share the
same sign variation.



66

4.3.2 TMOE Quantile Function

Once the definition of quantile function was introduced on (3.7), the concept is applied to
the exponential cdf, leading to

𝑄𝑒𝑥𝑝 (𝑢) =

⎧⎪⎪⎨⎪⎪⎩
−∞ if 𝑢 = 0

− 1
𝜆

log (1 − 𝑢) if 𝑢 > 0

corroborating, when applied to the current model, to

𝑄𝑡𝑚𝑜𝑒 (𝑢) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∞ if 𝑢 = 0

− 1
𝜆

log
⎛⎝ [ 1

𝜃
(1−𝑢)

𝑢 ]
1
𝛼

1+[ 1
𝜃

(1−𝑢)
𝑢 ]

1
𝛼

⎞⎠ if 𝑢 > 0.
(4.7)

It is important to provide the quantile function of a distribution, since one of the most
commonly used methods in the simulation study involves the use of this function. Such a
method is known as the inverse method, since the quantile function is the inverse function
of the cdf. Figure 9 shows that, for this combination of parameters, the value of the quantile
function grows.

Figure 9 – Quantile function for the TMOE model.

Source: the own author.

4.3.3 Moments

It is known that a proper mathematical treatment of probability distributions must intro-
duce not only the concept of mean and variance, but also some others summary characteristics.
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These characteristics, including mean and variance, are called moments of a given distribution
whose meaning refers to the expectations of different powers of the given random variables.

It is also known the mathematical meaning of first and second moment, describing the
location of the distribution on the 𝑋-axis and its dispersion, respectively. Following this reaso-
ning the higher order process, or higher moments reflect other features of the distribution one
are dealing with. For example, the third moment about the mean is used in certain measures
of degree of skewness leading to a symmetric distribution in the case of vanishing that third
moment. It will be negative for skewness to the left, positive for skewness to the right. The
fourth moment indicates the degree of peakedness, or kurtosis, and so on.

As is known in elementary courses of probability theory, that the calculational framework
concerning expectation values is given in terms of sums, discrete or continuous, or in terms
of the so called moment generating functions. Among the tools at hand, one is allowed to
consider the theory of infinite series or the set of techniques related to integration theory. If
it was possible to include all the integrals in a bag and take, at random, one of them, the
probability of it to be analytically calculated would tends to zero. This, indeed, constitutes a
problem when dealing with expectation values, once one is treating with integrals, frequently
improper, describing some classes of random variables. One could say that the problem is
solved thanks to numerical recipes perpetrated by powerful computers. But this is not always
the case once there exist functions whose the integrals under analysis do not converge.

In what follows some techniques are presented in order to express the moments of some
distributions under consideration. Let consider the following Theorem.

Theorem 5 Let 𝛼 = 1 and consider (3.4.1), in Chapter 3, with

𝐺(𝑥; 𝜏 ) = 1 − e−𝜆𝑥

𝑔(𝑥; 𝜏 ) = 𝜆e−𝜆𝑥.

Then, the moment generating function is given by

ℳ𝑋(𝑠)|𝛼=1 = 𝜃𝜆 𝑓(𝑠;𝜆, 𝜃) (4.8)

if, and only if, ∃ 𝒯 (𝑥, 𝑠, 𝜆, 𝜃) ≡ 0, where

𝑓(𝑠;𝜆, 𝜃) = 𝜆

𝜆− 𝑠
− (1 − 𝜆) ln 𝜃 − 1

𝜃
+ 1. (4.9)
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Dem. 8 Applying the fgm given in the mentioned chapter, one finds,

ℳ𝑋(𝑠; 𝜃, 𝜆)|𝛼=1 = 𝜃𝜆

∞∫︁
0

e−(𝜆−𝑠)𝑥

(𝜃 − 𝜆𝑥)2𝑑𝑥

Integration by parts leads to

ℳ𝑋(𝑠; 𝜃, 𝜆)|𝛼=1 = 𝜃𝜆𝑓(𝑠;𝜆, 𝜃) + 𝜃𝜆𝑔(𝑠;𝜆) · 𝒯 (𝑥, 𝑠;𝜆, 𝜃),

where,

𝑓(𝑠;𝜆, 𝜃) = 𝜆

𝜆− 𝑠
− (1 − 𝜆) ln 𝜃 + 1

𝜃
+ 1,

𝑔(𝑠;𝜆) = (𝜆− 𝑠)2

𝜆
− (𝜆− 𝑠),

𝒯 (𝑥, 𝑠, 𝜆, 𝜃) =
∞∫︁

0

e−(𝜆−𝑠)𝑥 ln
[︁
1 − (1 − 𝜃)e−𝜆𝑥

]︁
𝑑𝑥

Note, however, if 𝒯 (𝑥, 𝑠;𝜆, 𝜃) ≡ 0, the requirement is, indeed, satisfied. Now, it must be

shown that 𝒯 (𝑥, 𝑠;𝜆, 𝜃), indeed, vanishes. In effect, integration by parts, again, leads to

𝒯 (𝑥, 𝑠;𝜆, 𝑎) = 𝑒−(𝜆−𝑠)𝑥

𝜆

∫︁ ln𝑤
1 − 𝑤

𝑑𝑤|∞0 + 𝜆− 𝑠

𝜆

∞∫︁
0

𝑒−(𝜆−𝑠)𝑥
(︃∫︁ ln𝑤

1 − 𝑤
𝑑𝑤

)︃
𝑑𝑥

= 1
𝜆
𝐿𝑖2(0) − (𝜆− 𝑠)

𝜆

∞∫︁
0

𝑒−(𝜆−𝑠)𝐿𝑖2(𝑥)𝑑𝑥,

where 𝐿𝑖𝑘(𝑥) is identified as the Spence’ special function, (CARTIER et al., 2007). It is not hard

to show that the last integral vanishes and 𝐿𝑖2(0) ≡ 0, so that 𝒯 (𝑥, 𝑠;𝜆, 𝑎) = 0. □

By using Theorem 5, above, one finds,
𝜕ℳ𝑋(𝑠)

𝜕𝑠
|𝑠=0;𝛼=1 = 𝜃𝜆

𝜕𝑓(𝑠;𝜆, 𝑎)
𝜕𝑠

= 𝜃 and (4.10)
𝜕2ℳ𝑋(𝑠)

𝜕𝑠2 |𝑠=0;𝛼=1 = 𝜃𝜆
𝜕2𝑓(𝑠;𝜆, 𝑎)

𝜕𝑠2 = 2𝜃
𝜆
. (4.11)

Whose numerical values are, for 𝜃 = 0.1875 and 𝜆 = 1.500,

𝐸(𝑋)𝑓𝑔𝑚 = 0.1875 and (4.12)

𝑉 𝑎𝑟(𝑋)𝑓𝑔𝑚 = 0.2500. (4.13)

The integral numerical solutions, for (3.4.1) in the same conditions, are,

𝐸(𝑋)𝑛𝑢𝑚 = 0.2575 and (4.14)

𝑉 𝑎𝑟(𝑋)𝑛𝑢𝑚 = 0.2257. (4.15)
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One is referred to the proximities of values encountered in 4.12 through 4.14, showing the
effectiveness of the method which, in principle, can be enhanced by introducing some corrector
functions, as is proposed in future works. The same is applied to the values encountered in
4.16 through 4.18.

Following the general theory developed on both Chapters 2 and 3, one is addressed to two
canonical procedures, that is to say, integration and 𝑀 -transform method. The former may not
have analytical developments, leading to numerical implementations, to reach the solutions.
The later is a new method, still under formal development, but with ad hoc applications whose
results are interesting.

For the first and second moments, with (𝛼, 𝜃, 𝜆) = (1.200, 1.188, 1.500) in both cases,
one finds,

𝐸(𝑋)𝑛𝑢𝑚 = 0.2616 and (4.16)

𝑉 𝑎𝑟(𝑋)𝑛𝑢𝑚 = 0.1838, (4.17)

and

𝐸(𝑋)ℳ = 0.2713 and (4.18)

𝑉 𝑎𝑟(𝑋)ℳ = 0.1529, (4.19)

where the subscripts num and ℳ do refer to numerical and 𝑀 -transform, respectively. The
definition leads to the curve described in Figure 10.

Figure 10 – The mean is expressed as a limit process as indicated on chapter 2.

Source: the own author.
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4.3.4 Estimation

As was done in (3.17), for the general case where the log-likelihood function 𝑙(𝑥; 𝜉, 𝜏 )

was established, one may check that, in the case of the TMOE, the general expression leads to
the function 𝑙𝑒𝑥𝑝(𝑥; 𝜉, 𝜏 ), where 𝜉 = (𝛼, 𝜃) and, in this case, 𝜏 = 𝜆. So, let 𝑥𝑖, 𝑖 = 1, · · · , 𝑛,
be an 𝑛-size random sample, of the TMOE distribution. Then one has,

𝑙𝑒𝑥𝑝(𝑥𝑖; 𝜉, 𝜏 ) = 𝑛 log(𝛼𝜆𝜃) + (𝛼− 1)
𝑛∑︁

𝑖=1
log

(︁
1 − e−𝜆𝑥𝑖

)︁
− 𝛼𝜆

𝑛∑︁
𝑖=1

𝑥𝑖 − 2
𝑛∑︁

𝑖=1
log

{︁(︁
1 − e−𝜆𝑥𝑖

)︁𝛼
+ 𝜃e−𝛼𝜆𝑥𝑖

}︁
.

In this way, the elements of the corresponding score vector are given as follows

𝜕𝑙𝑒𝑥𝑝 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜆

= 𝑛

𝜆
+ (𝛼− 1)

𝑛∑︁
𝑖=1

𝑥𝑖e−𝜆𝑥𝑖

1 − e−𝜆𝑥𝑖
− 𝛼

𝑛∑︁
𝑖=1

𝑥𝑖

− 2𝛼
𝑛∑︁

𝑖=1

⎡⎢⎣e−𝜆𝑥𝑖

(︁
1 − e−𝜆𝑥𝑖

)︁𝛼−1
− 𝜃e−𝛼𝜆𝑥𝑖

(1 − e−𝜆𝑥𝑖)𝛼 + 𝜃e−𝛼𝜆𝑥𝑖
𝑥𝑖

⎤⎥⎦ .

So, it has

𝜕𝑙𝑒𝑥𝑝 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼

= 𝑛

𝛼
+

𝑛∑︁
𝑖=1

log
[︁
1 − e−𝜆𝑥𝑖

]︁
− 𝜆

𝑛∑︁
𝑖=1

𝑥𝑖

− 2𝜆𝜃
𝑛∑︁

𝑖=0

[︃
𝑥𝑖e−𝛼𝜆𝑥𝑖

(1 − e−𝜆𝑥𝑖)𝛼 + 𝜃e−𝛼𝜆𝑥𝑖

]︃

− 2
𝑛∑︁

𝑖=1

(︁
1 − e−𝜆𝑥𝑖

)︁𝛼
log

(︁
1 − e−𝜆𝑥𝑖

)︁
(1 − e−𝜆𝑥𝑖)𝛼 + 𝜃e−𝛼𝜆𝑥𝑖

,

,

𝜕𝑙𝑒𝑥𝑝 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃

= 𝑛

𝜃
− 2

𝑛∑︁
𝑖=1

[︃
e−𝛼𝜆𝑥𝑖

(1 − e−𝜆𝑥𝑖)𝛼 + 𝜃e−𝛼𝜆𝑥𝑖

]︃
.

The second derivatives read as the entrance of the symmetric positive-definite information
matrix,

𝐼𝑒𝑥𝑝
𝑋 ({𝜉, 𝜏}) = −𝐸

(︃
𝜕2𝑙(𝑥;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
= −

(︃
𝜕2𝑙(𝑥;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
, (4.20)

where 𝜃 stands for the vector class (𝜉, 𝜏 ). Note that the left hand side of (4.20) is evolved
to an expression on which the expected value is avoided for the calculation (GOVAERTS M.

NORBERT HOUNKONNOU, 2006). For the components of the Hessian see appendix A.
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4.4 TRANSFORMED MARSHALL-OLKIN WEIBULL DISTRIBUTION

In this section, we provide a distribution that generalizes the TMOE model. Here, this
proposed distribution is called Transformed Marshakk-olkin Weibull (TMOW, for short).

If 𝑋 ∼ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥; 𝑎, 𝑏) it follows that the cdf and pdf of TMOW distribution is given,
respectively, by

𝐹 (𝑥;𝛼, 𝜃, 𝑎, 𝑏) =

[︂
1 − e−(𝑥

𝑏 )𝑎
]︂𝛼

[︂
1 − e−(𝑥

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥
𝑏 )𝑎 and

𝑓 (𝑥;𝛼, 𝜃, 𝑎, 𝑏) =
𝛼𝑎𝜃

(︁
𝑥
𝑏

)︁𝑎−1
e−𝛼(𝑥

𝑏 )𝑎
[︂
1 − e−(𝑥

𝑏 )𝑎
]︂𝛼−1

𝑏
{︂[︂

1 − e−(𝑥
𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥
𝑏 )𝑎
}︂2 .

Figure 12 plots the cdf and pdf, respectively, for the TMOW, under different parameter settings.

Figure 11 – Cumulative and probability distribution functions for the Weibull distribution.

Source: the own author.

Note that there exist certain flexibility of the proposed model, when compared to the
baseline, once the Weibull distribution only shows unimodal shape for the density.
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Figure 12 – Cumulative and probability distribution functions for the model and Weibull distribution as ba-
seline. The parameter set is shown in the frame of the current figures.

Source: the own author.

4.5 SOME PROPERTIES

4.5.1 TMOW Hazard Rate Function

Following the results for the TMOE, the hazard rate function for the TMOW model reads,

ℎ(𝑥; 𝜉, 𝜏 ) = 𝛼𝑎

𝑏

(︂
𝑥

𝑏

)︂𝑎−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︂
1 − e−(𝑥

𝑏 )𝑎
]︂𝛼−1

[︂
1 − e−(𝑥

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥
𝑏 )𝑎

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Figure 13 – Hazard function ℎ𝑤(𝑥; 𝜉; 𝜏 ) for the 𝑇𝑀𝑂𝑊 Model.

Source: the own author.
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The 𝑇 (𝑧) factor function , according to (8) in Chapter 3, is given by

𝑇 (𝑧) = [(𝑧 − 1)𝛼 + 𝜃] [(𝑎− 1)(𝑧 − 1) + 𝑎(𝑧 − 1) + 𝑎(𝑧 − 1) log 𝑧 − 𝑎𝑧 log 𝑧]

+ 𝑎𝛼𝜃 log 𝑧 (4.21)

such that
𝑟′(𝑧)
𝑟(𝑧) = 𝑇 (𝑧)

𝑎𝑧(𝑧 − 1) [(𝑧 − 1)𝛼 + 𝜃] log 𝑧 .

Figure 14 – Factor function 𝑇 (𝑥; 𝜉; 𝜏 ) for the Model.

Source: the own author.

The graphs on Figure 14 are plotted for different values of the TMOW model parameter
set. The first graph on the left, the 𝛼 parameter varies inside the range indicated on the frame
of the figure, while 𝜃 and 𝛼 are kept fixed with values, 0.0094 and 1.5, respectively. For the
second graph on the right, the parameter 𝛼 is taken inside the interval described but, now,
the parameter 𝜃 = 0.0075 and 0.10 ≤ 𝑎 < 0.63. Last, the third graph is such that 𝛼 takes
the same values as before but, 𝑎 takes values in the interval 0.63 ≤ 𝑎 < 0.74. The 𝑎 values
used to plot the graph being 0.63, 0.65 and 0.68. Each range exhibited defines a separation
region for which statistical meaning are addressed. For example, in the case where 𝑇 (𝑧) takes
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purely positive values, the region in question is termed region I, leading to monotone increasing
hazard function. When this is not the case and 𝑇 (𝑧) takes, instead, purely negative values,
the hazard function exhibit a monotone decreasing character and the region II is established.
When it first takes positive values, then dropping to negative ones, the separation region,
region III, is considered leading to unimodal characterized hazard function. The counterpart,
that is to say, when negative values figures first, followed by positive ones, the hazard function
does exhibit bathtube characteristics. When this is the case, the region is termed region IV.

4.5.2 Weibull Quantile Function

Analogously to the development for the exponential case, the Weibull quantile function is
given by

𝑄𝑤 (𝑢) =

⎧⎪⎪⎨⎪⎪⎩
+∞ if 𝑢 = 0

𝑏
[︁
log

(︁
1

1−𝑢

)︁]︁ 1
𝛼 if 𝑢 > 0

so that the quantile function for the TMOW model reads

𝑄𝑡𝑚𝑜𝑤(𝑢) = −𝑏

⎧⎪⎪⎨⎪⎪⎩log

[︁
1
𝜃

(1−𝑢)
𝑢

]︁ 1
𝛼

1 +
[︁

1
𝜃

(1−𝑢)
𝑢

]︁ 1
𝛼

⎫⎪⎪⎬⎪⎪⎭
1
𝑎

Figure 15 – Quantile function for the 𝑇𝑀𝑂𝑊 model for values of parameter set as described in the frame
of figure.

Source: the own author.
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4.5.3 Estimation

Again, from the general expression (3.17), if 𝑥𝑖, 𝑖 = 1, · · · , 𝑛, is a sequence of an 𝑛-size
random sample, the log-likelihood function 𝑙𝑤(𝑥, 𝜉; 𝜏 ) reads,

𝑙𝑤(𝑥𝑖, 𝜉, 𝜏 ) = 𝑛 log 𝑎𝛼𝜃 + (𝑎− 1)
𝑛∑︁

𝑖=1
log 𝑥𝑖 − 𝑎

𝑛∑︁
𝑖=1

log 𝑏− 𝛼
𝑛∑︁

𝑖=1

(︂
𝑥𝑖

𝑏

)︂

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂

− 2
𝑛∑︁

𝑖=1
log

{︂[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

}︂
,

whose derivatives read,

𝜕𝑙𝑤 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼

= 𝑛

𝛼
+

𝑛∑︁
𝑖=1

log
[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂

−
𝑛∑︁

𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

+ 2𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2
𝑛∑︁

𝑖=1

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

log
[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎 ,

𝜕𝑙𝑤 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃

= 𝑛

𝜃
− 2

𝑛∑︁
𝑖=1

e−𝛼(𝑥𝑖
𝑏 )𝑎[︂

1 − e−(𝑥𝑖
𝑏 )𝑎

]︂𝛼

+ 𝜃e−𝛼(𝑥1
𝑏 )𝑎 ,

𝜕𝑙𝑤 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝑎

= 𝑛

𝑎
+

𝑛∑︁
𝑖=1

log
(︂
𝑥𝑖

𝑏

)︂
− 𝛼

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

log
(︂
𝑥𝑖

𝑏

)︂

+ (𝛼− 1)
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
1 − e−(𝑥𝑖

𝑏 )𝑎

− 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁ [︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼−1

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

+ 2𝛼𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎
log (𝑥𝑖

𝑏 )𝑎

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎 ,
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𝜕𝑙𝑤 (𝑥𝑖; 𝜉, 𝜏 )
𝜕𝑏

= −𝑎

𝑏
+
(︂
𝛼𝑎

𝑏

)︂ 𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

− 𝑎 (𝛼− 1)
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

1 − e−(𝑥𝑖
𝑏 )𝑎

+ 2𝛼𝑎
𝑏

𝑛∑︁
𝑖=1]

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎
[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼−1

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝑎𝛼𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

[︂
1 − e−(𝑥𝑖

𝑏 )𝑎
]︂𝛼

+ 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎 .

Following the the results of (3.5), the second derivatives, as expressed thereof, give rise to

𝐼𝑤𝑒𝑖
𝑋 ({𝜉, 𝜏}) = −𝐸

(︃
𝜕2𝑙(𝑥𝑖;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
= −

(︃
𝜕2𝑙(𝑥𝑖;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
,

whose expressions are explicitly given at Appendix B. The same remarks concerning in the
TMOE case, for the expectation in the information matrix, sets, indeed, here.

4.6 SIMULATION STUDY

According to the Quantile function given by 4.7, when it is running through the data set,
as seen as a function in parameter space, the results are shown at tables below.

Throughout this section a number of simulations are carried out in order to test the quality
of adjusting of the parameter inference process in comparison to the real ones, i.e., the set
of parameters given at the beginning of the process. For such a task, a number of Monte
Carlo replications are constructed, given the dimension of the sample space, and the deviation
is given as a measure through mean squared error as well as the biases of the corresponding
processes.

Here, a simulation for the TMOE model is considered. The task, as was said above, is
to compare the values found through simulation and how they differ from the true values at
hand. The analysis of the process will be of great value for the understanding of the underlying
behavior of data as seen of manifestation through the model in appreciation.

The measurement of error for an estimate 𝑇 , for the parameter vector 𝜉 and the process
under analysis, is given in terms of mean square error, denoted by MSE(𝜉). Smaller MSE(𝜉)

means greater precision, such that, in comparing two estimate, say, 𝑇1 and 𝑇2 of 𝜉, the one
with smaller measure is the chosen one.
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Table 1 – AEs, Bias, MSE and lower and upper bounds of 95% (HPD) CIs of the parameter - first scenario

n True AE Bias MSE Lower Upp
50 0.5 0.5037 0.0037 0.0053 0.3594 0.6480

0.3 0.3468 0.0468 0.0266 0.1082 0.6544
0.8 0.9667 0.1667 0.2606 0.1371 1.7964

100 0.5 0.5011 0.0011 0.0026 0.4000 0.6022
0.3 0.3239 0.0239 0.0118 0.1536 0.5486
0.8 0.8794 0.0794 0.0897 0.3248 1.4339

150 0.5 0.4999 -0.00005 0.0018 0.4178 0.5820
0.3 0.3153 0.0153 0.0070 0.1745 0.4972
0.8 0.8607 0.0607 0.0580 0.4144 1.3071

300 0.5 0.5002 0.0002 0.0008 0.4422 0.5582
0.3 0.3069 0.0069 0.0032 0.2041 0.4324
0.8 0.8288 0.0288 0.0261 0.5210 1.1366

Table 2 – AEs, Bias, MSE and lower and upper bounds of 95% (HPD) CIs of the parameter - second scenario

n True AE Bias MSE Lower Upp
50 0.8 0.8334 0.0334 0.0196 0.5598 1.1071

0.7 0.7011 0.0011 0.0800 0.0225 0.9522
1.5 1.5083 0.0083 0.2714 0.3814 2.6352

100 0.8 0.8133 0.0133 0.0097 0.6170 1.0095
0.7 0.7083 0.0083 0.0530 0.0670 0.9356
1.5 1.5190 0.0190 0.1645 0.6541 2.3840

150 0.8 0.8049 0.0049 0.0067 0.6430 0.9669
0.7 0.7186 0.0186 0.0425 0.1067 0.9276
1.5 1.5421 0.0421 0.1285 0.8002 2.2840

300 0.8 0.8014 0.0014 0.0032 0.6845 0.9183
0.7 0.7162 0.0162 0.0265 0.2143 0.9063
1.5 1.5303 0.0303 0.0732 0.9804 2.0801

To do this, Monte Carlo realizations with 1000 replicas and sample length 𝑛 in {50, 100, 150, 300}

was considered. To be more emphatic, a test for the 𝛼 is carried out. For the first scena-
rio, the parameter vector (𝛼, 𝜃, 𝜆) = (0.5, 0.3, 0.8) is considered and, for the second one,
(𝛼, 𝜃, 𝜆) = (0.8, 0.7, 1.5).

By looking the Tables 1 and 2 one sees that, as long as the sample length increases, the
associated values for the MSEs and bias decrease, as expected. Besides that, mean estimates
for the configurations considered are within their respective confidence intervals.
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4.7 APPLICATIONS

In this section, the main goal is to provide the potential of the TMO-G family of distri-
butions, in the context of applications to real data. To do this, we choose some models to
compare the TMOE and TMOW distributions to them:

• Exponential distribution (EXP), (KONSUK; AKTAS, 2013);

• Exponentiated Exponential distribution (EXP-EXP), (NADARAJAH, 2011);

• Kumaraswamy Exponential distribution (KW-EXP), (MOHAN RAKHI; CHACKO, 2020);

• Lindley Exponential distribution (L-EXP), (BHATI; MALIK; VAMAN, 2015);

• Weibull distribution (W), (DASH; NANDI; SETT, 2016);

• Exponentiated Weibull distribution (EXP-W), (MUDHOLKAR; SRIVASTAVA; FREIMER, 1995);

• Kumaraswamy Weibull distribution (KW-W), (NADARAJAH, 2010);

• Beta Weibull distribution (B-W), (NEKOUKHOU; BIDRAM; ROOZEGAR, 2017);

• Gamma distribution (Ga), (RADICE, 2022);

• Gamma Frechet distribution (Ga-FE), (SILVA et al., 2013).

Here, two data sets are studied in order to evaluate the flexibility of the proposed model.
Their descriptions and developments are as follow.

4.7.1 Epidemiology

The first data set (Cov-SC) - It is referred to the amount of confirmed COVID-19 cases
in Santa Catarina, a south Brazilian State, as was publicized by the state government, on
December, 31/2020. The data can be found at (SAúDE. . . , 2021). For the current study, the
observations was taken as the number of cases in each 1000 inhabitants. In addition, only the
80 first listed municipalities, namely: Abdon Batista, Abelardo Luz, Agrolândia, Agronômica,
Água Doce, Águas de Chapecó, Águas Frias, Águas Mornas, Alfredo Wagner, Alto Bela Vista,
Anchieta, Angelina, Anita Garibaldi, Anitápolis, Antônio Carlos, Apiúna, Arabutã, Araquari,
Araranguá, Armazém, Arroio Trinta, Arvoredo, Ascurra, Atalanta, Aurora, Balneário Arroio
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do Silva, Balneário Barra do Sul, Balneário Camboriú, Balneário Gaivota, Balneário Piçarras,
Balneário Rincão, Bandeirante, Barra Bonita, Barra Velha, Bela Vista do Toldo, Belmonte,
Benedito Novo, Biguaçu, Blumenau, Bocaina do Sul, Bom Jardim da Serra, Bom Jesus, Bom
Jesus do Oeste, Bom Retiro, Bombinhas, Botuverá, Braço do Norte, Braço do Trombudo,
Brunópolis, Brusque, Caçador, Caibi, Calmon, Camboriú, Campo Alegre, Campo Belo do Sul,
Campo Erê, Campos Novos, Canelinha, Canoinhas, Capão Alto, Capinzal, Capivari de Baixo,
Catanduvas, Caxambu do Sul, Celso Ramos, Cerro Negro, Chapadão do Lageado, Chapecó,
Cocal do Sul, Concórdia, Cordilheira Alta, Coronel Freitas, Coronel Martins, Correia Pinto,
Corupá, Criciúma, Cunha Porã, Cunhataí e Curitibanos, was performed in the process of
analysis.

4.7.2 Taylor-Green Numerical Instability

The second data set is referred to a hydrodynamic problem where a process of numerical
instability, in fluids, dawning from the sph numerical method, is studied. Below some theoretical
rudiments on the theme are presented in order to clarify the ideas.

First of all, it is described the physical process by which the instability of the numeri-
cal solution for the Taylor-Green vortices arises, from the smoothed particle hydrodynamics
approach.

4.7.3 Smoothing Operators

Here and in Chapter 6, one is addressed to hydrodynamical systems from which data are
generated. It is briefly described the mathematical process involved in treating the governing
equations for the process. The simulations are coded in Python, (ROSSUM; DRAKE, 2009),
through Anaconda environment, (ANACONDA. . . , 2022).

4.7.4 Formulation

The formulation of smoothing process, or sph formulation, (LIU, 2003) can be introdu-
ced by two steps. The first one is introduced by using an integral representation, or kernel
approximation for the field functions one is handling. The second step is referred to an idea,
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came from physics, that approximate a value of a given operator by particles. Indeed, the
integral approximation of the operator, or function, can be made by summing up the values
of the nearest neighbor particles, leading to the desired approximation of the operator, at a
discrete point, or, as the system under analysis is a hydrodynamical one, a particle. Let 𝑓 be
a continuous function of the three dimensional position vector 𝑥. Then, one has

𝑓(𝑥) =
∫︁
Ω

𝑓(𝑥′)𝛿(𝑥− 𝑥′)𝑑𝑥′ (4.22)

where 𝛿(𝑥− 𝑥′) is the Dirac delta function, given by,

𝛿(𝑥− 𝑥′) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 = 𝑥′

0 if 𝑥 ̸= 𝑥′

where, Ω appearing in (4.22) is the volume of the integral containing 𝑥. The mathematical
meaning of (4.22) establishes that a given function can be represented in integral form, with
some hypothesis such as the requirement that 𝑓(𝑥) is defined and continuous in Ω.

If the delta function 𝛿(𝑥−𝑥′) is replaced by a smoothing function given by 𝑊 (𝑥−𝑥′, ℎ),
the integral in (4.22) is rewritten as

𝑓(𝑥) =
∫︁
Ω

𝑓(𝑥′)𝑊 (𝑥− 𝑥′, ℎ)𝑑𝑥′, (4.23)

where 𝑊 (𝑥−𝑥′, ℎ) is termed kernel of the integral equation. The function ℎ is the smoothing
function related to length and defines the influence region of the smoothing function 𝑊 .

Through this process, once 𝑊 differs significantly from the delta function, the integral
representation figuring in (4.23) is an approximation called, approximation operator, and is
defined by the function under angle brackets,

< 𝑓(𝑥) >=
∫︁
Ω

𝑓(𝑥′)𝑊 (𝑥− 𝑥′, ℎ)𝑑𝑥′. (4.24)

The smoothing function W is usually chosen to be an even function, satisfying some conditions,
say,

1. Resolution of identity. Over its support domain,∫︁
Ω

𝑊 (𝑥− 𝑥′, ℎ)𝑑𝑥′ = 1;



81

2. 𝑊 must have compact support, i.e.,

𝑊 (𝑥− 𝑥′, ℎ) = 0 for

|𝑥− 𝑥′| > 𝜅ℎ, (4.25)

where 𝜅 is a control parameter for adjusting the smoothing length ℎ;

3. Positivity, i.e.,
𝑊 (𝑥− 𝑥′, ℎ) ≥ 0 ∀𝑥′ ∈ Ω;

4. Decaying property. The value of the smoothing function must be monotonically decre-
asing as the distance from a given interest particle increases;

5. 𝑊 must satisfy the Dirac delta function condition as the smoothing length approaches
to zero, i.e.,

lim
ℎ→0

𝑊 (𝑥− 𝑥′, ℎ) = 𝛿(𝑥− 𝑥′);

6. 𝑊 should be an even function. This property is related to symmetry;

7. 𝑊 must be sufficiently smooth.

In (4.25), 𝜅 determines the spread of the specified smoothing function. Examples of such
smoothing functions are

𝑊1(𝑥− 𝑥′, ℎ) = 𝑊1(𝑅, ℎ) = 𝛼𝑑

⎧⎪⎪⎨⎪⎪⎩
(1 + 3𝑅) (1 −𝑅)3 if 𝑅 ≤ 1

0 if 𝑅 > 1
and

𝑊2 = 𝑊2(𝑅, ℎ) = 𝛼𝑑e−𝑅2
,

where 𝛼𝑑 is a constant that depends on the underlying dimension where the systems is immer-
sed in. Of course that the resolution to identity leads to a specific value of that constant. For
example, in the 𝑊1 case, one finds 𝛼𝑑 = 5/4ℎ, 5/𝜋ℎ2 and 105/16𝜋ℎ3, for one, two and three
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dimensional problems, respectively. In the equations above, 𝑅 is the relative distance between
two point-particles at points 𝑥 and 𝑥′,

𝑅 = 𝑟

ℎ
= |𝑥− 𝑥′|

ℎ

𝑟 being the distance between the two points.

Figure 16 – Smoothing functions for 𝑊1 and 𝑊2, respectively, as well as their derivatives.

Source: the own author.

Using the compactness condition, the integration over the whole region where the problem
is defined is seen as integration over the support domain of the smoothing function. The
kernel approximation has, when some conditions are fulfilled, second order accuracy, as can be
verified with a little algebra, by using Taylor’ series expansion. However, this is not the case
when the smoothing function is not, indeed, an even function. Following the same path, it is
possible to express the spatial derivative of the function, represented by ∇ · 𝑓(𝑥), and given
by,

< ∇ · 𝑓(𝑥) >= −
∫︁
Ω

𝑓(𝑥′) · ∇𝑊 (𝑥− 𝑥′, ℎ) 𝑑𝑥′. (4.26)

One should note that, once the derivative sign acts on the function 𝑓(𝑥), it induces the
derivative on the kernel 𝑊 . This is a very important property because it leads the operation
in a smooth, by hypothesis, function, which is known a priory. The negative sign under the
integration is due to the fact that the differential operator acts on 𝑥′.

4.7.5 Point-Particle Approximation

In the method just described above, the whole system is represented by a finite number of
point-particles, (LIU, 2003), each one carrying an individual mass and occupying an individual
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space. Hence, the integral appearing at (4.24) and (4.26) can be converted to discretized
forms of summation over all the particles on the supported domain, as shown in figure (17)

Figure 17 – Point-particle approximations in terms of particles within the support domain of 𝑊 , for particle
𝑖. The support domain is circular with a radius 𝜅ℎ.

Source: (PENG et al., 2019), and (LIU, 2003).

The approximations are given by,

< 𝑓(𝑥𝑖) > =
𝑁∑︁

𝑗=1

𝑚𝑗

𝜌𝑗

𝑓(𝑥𝑗)𝑊𝑖𝑗

< ∇𝑓(𝑥𝑖) > =
𝑁∑︁

𝑗=1

𝑚𝑗

𝜌𝑗

𝑓(𝑥𝑗)∇𝑖𝑊𝑖𝑗

𝑊𝑖𝑗 = 𝑊 (𝑥𝑖 − 𝑥𝑗.ℎ)

∇𝑖𝑊𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗

These are the essential tools to be used in the hydrodynamic simulations used in Taylor-
Green problem, below, and in Chapter 6, from where the data are extracted for posterior
statistical analysis.

In that approach the extension of fluid is described by particles on which values of positions,
velocities, forces and pressures are addressed by means of a process of smoothing through
convolution with a given kernel function, (LIU, 2003), obeying the governing equations. The
Navier Stokes equations, for a two dimensional time-dependent system of incompressible fluid,
is solved. The process is done by using the stream function 𝜓 and vorticity, 𝜔, having the
physical plane as arena. Then, one has,

𝜕2𝜓

𝜕𝑥2 + 𝜕2𝜓

𝜕𝑦2 = −𝜔,

𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦
= 1

𝑅𝑒

(︃
𝜕2𝜔

𝜕𝑥2 + 𝜕2𝜔

𝜕𝑦2

)︃
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From Hydrodynamics theory, it is known that the stream function and the velocity are
related by

𝑣 = ∇ ×𝜓

with 𝜓 = (0, 0, 𝜓)𝑡, while the equation for the vorticity |𝜔| = 𝜔 is such that,

𝜔 = ∇ × 𝑣

The velocity vector components, in terms of the stream function, are given by

𝑢 = 𝜕𝜓

𝜕𝑦

𝑣 = −𝜕𝜓

𝜕𝑥

As a partial differential equation, boundary conditions must be given in order to establish
solutions. For the 2D problem in question, it is solved in a periodic domain such that,

0 ≤ 𝑥 ≤ 1

0 ≤ 𝑦 ≤ 1

with initial conditions,

𝜓(𝑥, 𝑦, 0) = 1
2𝜋 cos 2𝜋𝑥 cos 2𝜋𝑦

𝜔(𝑥, 𝑦, 0) = 4𝜋 cos 2𝜋𝑥 cos 2𝜋𝑦

giving rise to the solutions,

𝜓(𝑥, 𝑦, 𝑡) = e− 8𝜋2
𝑅𝑒

𝑡

2𝜋 cos 2𝜋𝑥 cos 2𝜋𝑦 (4.27)

𝜔(𝑥, 𝑦, 𝑡) = 4𝜋e− 8𝜋2
𝑅𝑒

𝑡 cos 2𝜋𝑥 cos 2𝜋𝑦

which is the analytical solution for the problem. It is well known that, in spite of the apparent
equilibrium solution given by 4.27, it is not the case, once that it is not numerically stable
due to disturbance referred to numerical reasons. The figure 18 shows this assertive, as re-
flecting on the decay of the maximum velocity, in time, of the process. The discrepancy is
due to the approach used, that is to say, traditional sph, without improvements on boundary
conditions, for example. This problem is considerably enhanced by using other strategies like,
(RAMACHANDRAN; PURI, 2019).
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Figure 18 – Here, exact and numerical solutions, for decay of the maximum velocity in time.

Source: the own author.

4.7.6 Computational Platform

In this section, we will describe some of the functions, packages and estimation methods
that have been used on the simulations and graphing processes. The software used to create
the graphs, obtain the estimators and verify the flexibility of the model, in terms of fit, was
R, (R Core Team, 2013) through RStudio environment, (RStudio Team, 2020).

Regarding the estimation method, the maximum likelihood method was used to obtain the
estimators for the parameters of each given model. Here, the CG method is considered and
was chosen once the results on using this method were better than those obtained on using
the BFGS method.

Most of the initial guesses were obtained through heuristic method by using the GenSA
and MASS R packages. When the initial guesses from this method provided unsatisfactory
results, or when there was a problem of convergence, the guesses were chosen randomly.

Furthermore, the statistics of Anderson Darling (A*) and Cramer Von Mises (W*) were
used to verify the performance of the proposed models when compared to those mentioned
above.
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4.7.7 Descriptive Statistics

Here, the data set presented will be analyzed from a descriptive perspective, in order to
improve the visualization potentialized in the data. As far as the first data is concerned, that
is to say, COVID-19 in SC, the descriptive measures can be seen at Table 22, below. The
lowest values are related to the municipalities of Calmon, Cunhataí and Balneário Piçarras.
(Abelardo Luz, Antônio Carlos e Balneário Piçarras), with the minimum value addressed to
the Municipality of Calmon, 14 occurrences.

In order to understand the possible causes for these numbers, some investigation must be
done. Issues like political ideology, option for preventive treatment, overall sanitation, obser-
vation to social distancing, mask mandates, as well as, influx of tourists in early days of the
virus spreading, are key points to the understanding of those numbers. For example, Blumenal
was the municipality with the major number of confirmed cases: 26324. What are the par-
ticularities involved of considering this number, in comparison to places around, with similar
characteristics? What happens if compared to Capitals in all the Brazilian country, sharing
similar characteristics? These analysis can be brought to surface by a method called Spatial

Autocorrelation, which is related to the similarity, in values, occurring in observations of a data
set when compared to locations of such observations as well as their surroundings. Unfortuna-
tely this method won’t be applied here and is left for future works. However, some issues can
be discussed while considering features, crossing with the data, in order to create a bridge for
understanding, or at least questioning, the causes behind the results.

The plots in Figure 19 are addressed for the lowest and largest number of cases, as seen
at the data set, respectively, occurring in the state of Santa Catarina, for the unique day of
31/12/2020. As one notes, the data are taken from a more general data set but, as a snapshot
of the day just spoken, for a question of economy of time while simulating. In statistics it
is known as cross-section, (HAYS; WINKLER, 1970). What indeed happens here is that one is
representing, only for the simulation, the cases in all state of Santa Catarina, as the punctual
occurrence of cases spread along the municipalities of that state, in that very given day.

In trying to understand the roots of such behavior, some simple features was included as
a possible candidate for explanation, always keeping in mind that correlation does not implies
cause, in principle. The data set was endowed with the features,

• altitude;
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Figure 19 – Evolution of the case numbers in municipalities with the lowest and highest incidence of infections.
Despite the principal data used in the applications do refer to a specific day, the evolutions of
these particular occasions on both municipalities is of interest to gain insight over the dynamics
of the process of virus spreading.
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• density pkm2;

• idh municipality ;

• mean temp;

• mean hum;

• mean press;

• gov;
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Figure 20 – Autocorrelation lag graphic for the data under analysis, on the bottom, followed by the correlations
with selected features, on the top. In the former, the observation is correlated with 𝑛 time steps
apart while, the latter, the influence of the selected attribute is subjected to analysis.
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• dist to cap km;

• neighbors.



89

Figure 21 – Evolution of new cases for the three municipalities with the lowest number of cases, during the
period of the first semester of 2022.
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Figure 22 – Evolution of new cases for the three municipalities with the highest number of cases, during the
period of the first semester of 2022.
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The idea of bringing features like altitude, mean temperature and humidity, was based on
the factors under which the viruses systems diffuse themselves through environment, directly
influenced by the physical properties of the mean surrounding the phenomenon, (S. PRETT-

NER K., 2021), (BOUVIER, 2012). Of course these are only parts to be taken as plausibles, once
the spreading itself, depends on another factors, like contact with vectors and infective rate,
properly. Yet, in the case of gov attribute, related to the government, the idea is associated
with data acquisition, as well as, management of them. This is a very important information
to be put on the table, once the intelligence through which data can dispose, will serve to
decision making that will impact all the society, as was seen in the period of lockdown and
his drastic break of constitutional order, by nonsense impositions, and anti-scientific measures.
In this sense, the acquisition and treatment of data are crucial, as can be seen at (ROHATGI;

ROHATGI; BOWONDER, 1979), when it says "[· · · ] using them could do more damage than
using no forecasts at all [· · · ]".

The attribute related to geometry, that is to say, distances and neighbors are interesting. In
spite of the absence of much details and results on this direction, the mention is worth of saying.
However the question that arises, and is important to know is, what factors do contribute to
the results for the low and large cases, as described above. The Figure 20 represents two kinds
of graphs. The first one on the left, is related to the concept of Lag. When modeling time
series one can assume a relationship between an observation and the previous one. The latter,
in a time series, is called lag. With this in mind, one can quantify the strength and type of
relationship between observations and the corresponding lags. In statistical point of view, the
process is called correlation and, while calculated against lag values of the series at hand, it is
called autocorrelation, (HAYS; WINKLER, 1970).

The second one plots the Pearson correlation heatmap frequently used to see correlation
of independent variable with the proposed output variable, cases. It serves as a selection
filtering for features that have considerable influence on the interest variable, say, cases feature.
As its value varies between -1 to 1, a value in the neighborhood of zero implies a weaker
correlation while, being exactly zero, implying no correlation. In that sense, a value close to
1 implies stronger positive correlation and, close to -1, the contrary. Addressing the values on
the heatmap, one sees that the attributes referred to population density and mean humidity
are worth of analysis, being the former, the one intuitively acceptable once the density of
population measures how near are the inhabitants of a given municipality. Starting from the
hypothesis that the interaction between individuals is a necessary- but not sufficient-, condition
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to virus transmission, the larger the density, larger will be the transmission in large scale, leading
to high number of cases.

However, when considering city like Cerro Negro, for example, with 55 cases and a po-
pulation density of 7.5 people in K𝑚2, plausible values to indicate lower number of cases,
if compared to Cunhataí, it does not exhibit the expected tendency. This shows, or at least
could show, that the essence of these results are not available in these state of granular data,
that is to say, one would need to refine, to increment the data set with more information,
avoiding discontinuities, gaps of information. Note further, that the distance between mini-
mum and maximum is quite significant. It is interesting how municipalities inside the same
state are capable to present such a huge difference. The cause of these discrepancies, in data,
is not properly easy to qualify because of issues described above. Consider, for example, the
Municipality of Antônio Carlos. It is possible to consider, when compared to the whole state,
to be in the vicinity of Florianópolis. When the former adds 734 cases, the later does 42079.
Can one speculate that is just because of the population density? tourist qualifications? The
three plots on Figure 21 show the number of cases along the year of 2022, since July, for the
municipalities with relatively few cases. On the plots in Figure 22 the same situation but, now,
for the municipalities with a relatively high number of cases. In both situations, the evolution
of case numbers follows the trend, as expected, if compared to the early values of 2020.

Table 3 – Descriptive statistics for the first data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0140 0.1475 0.4325 1.9217 1.3137 26.3240

From Figure 23 it is possible to note the existence of several outliers. The outliers ob-
servations are: 5.571, 14.706, 5.980, 26.324, 4.337, 12.992, 6.563, 13.657, 5.288 e 18.976.
Each one of them, referring itself to the municipalities of Araranguá, Bauneário Camboriú,
Biguaçu, Blumenau, Braço do Norte, Brusque, Camboriú, Chapecó, Concórdia and Criciúma,
respectively. Besides that, it can be seen that this data is right-skewed.

The Table 4 shows the statistical descriptions referring to the second data set.

Table 4 – Descriptive statistics for the second data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01930 0.05178 0.13891 0.25079 0.37277 1.00000
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Figure 23 – Box-plot for the first data
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Source: the own author.

Figure 24 shows the Box-plot for the second data. It is possible to see the existence
of 5 atypical observations, namely: 1, 0.9647469, 0.9307366, 0.8979253 e 0.8662707. Such
observations do represent outliers figuring in the data. It would be interesting to know its
sources in order to gain a better explanatory capacity for the data. For example, did rain in
the specific day? How were the temperature? Besides that, it can be seen that this data is
right-skewed.

As one can see, some distributions was chosen in order to make comparisons with the
proposed models, i.e., TMOE and TMOW. One important feature, besides the ones addressed
before, when discussing the exponential distribution, was the fact of it be a one parameter
distribution. This works as an initial condition on the study. A natural idea to enhance the
model is to introduce, as the competitors, sets of distribution functions with two or more
parameters, (GEMEAY et al., 2023).

After a wide revision on the literature, the set of distributions given at 4.7 was selected
due to their applicability on the case studies, and generalities they present, if not directly,
or, by the use as baselines in other models. Examples follow, (ELBATAL, 2021), (ALMAZAH et

al., 2022), among others. For the gamma distribution one can see, for example, (DUCHESNE;
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Figure 24 – Box-plot for the second data
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COUBARD, 2022), which makes a study considering the first wave pandemic process.
For the second data set, by considering the nature of the processes, better saying, the

decaying nature of the physical process at hand, distributions whose nucleus are decreasing
exponentials, were chosen. Here, the term nucleus must be understood as essential part,
characterizing rapid decreasing nature. Of course the gamma function was marked for a diverse
reason, that is to say, for his wide applicability.
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Table 5 – Estimation results for the first data set

Model 𝛼̂ 𝜃 𝑝 𝜆̂ 𝛽 𝑊 * 𝐴*

TMOE 0.7920 0.1388 - 0.1813 - 0.1288 0.8565
(0.0004) (0.0004) (-) (0.0004) (-)

TMOW 14.3479 544.7290 - 8196.8400 0.0066 0.0584 0.4048
(<0.0001) (<0.0001) (-) (<0.0001) (<0.0001)

EXP - - - 0.5203 - 0.5811 3.4804
(-) (-) (-) (0.0581) (-)

EXP-EXP 0.6601 - - 0.7679 - 0.7476 4.3922
(0.0797) (-) (-) (0.0740) (-)

KW-EXP - 0.5285 6.1727 0.0214 - 0.3715 2.2945
(-) (0.0493) (1.6926) (0.0092) (-)

L-EXP 0.3370 - - 0.3929 - 0.8637 5.0016
(0.0459) (-) (-) (0.0625) (-)

W - - 0.3370 0.3929 - 0.8637 5.0016
(-) (-) (0.0459) (0.0625) (-)

EXP-W 6.0491 0.2824 - 0.0270 - 0.1660 1.0761
(0.7336) (0.0139) (-) (0.0001) (-)

KW-W 18.8518 0.2820 0.3143 0.0019 - 0.1483 0.9664
(0.9201) (0.3230) (0.0783) (0.0599) (-)

B-W 454.7197 360.2270 0.0284 31.3816 - 0.4433 2.7220
(0.0093) (0.00006) (0.0011) (0.1118) (-)

Ga 0.4381 - - 0.2280 - 0.5543 3.3311
(0.0565) (-) (-) (0.0484) (-)

Ga-FE 0.1405 0.2654 3926.2150 120.0207 - 0.2038 1.2853
(0.0154) (0.0000001) (16.6785) (0.00067) (-)
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Table 6 – Estimation results for the second data set

Model 𝛼̂ 𝜃 𝑝 𝜆̂ 𝛽 𝑊 * 𝐴*

TMOE(𝛼, 𝜃, 𝜆) 0.0103 23.9233 1.0427 1.5061 - 0.1488 1.0959
(4×10−7) (5×10−7) (3×10−7) (5×10−7) (-)

TMOW(𝛼, 𝜃, 𝜆, 𝛽) 0.0043 0.9842 - 0.4191 1.9492 0.1586 1.1430
(0.0001) (0.0004) (-) (0.0004) (0.0005)

EXP(𝜆) - - - 3.9873 - 0.2649 1.7986
(-) (-) (-) (0.3784) (-)

EXP-EXP(𝛼, 𝜆) 1.4860 - - 7.0735 - 0.2703 1.8325
(0.1665) (-) (-) (0.5443) (-)

KW-EXP(𝑚, 𝑝, 𝜆) - 1.2634 0.1931 21.4660 - 0.3837 2.4052
(-) (0.0046) (0.0183) (0.0042) (-)

L-EXP(𝛼, 𝜆) 0.9603 - - 4.5795 - 0.2731 1.8451
(0.1208) (-) (-) (0.5091) (-)

W(𝑝, 𝜆) - - 0.9591 4.5725 - 0.2730 1.8449
(-) (-) (0.0459) (0.0625) (-)

EXP-W(𝛼, 𝑝, 𝜆) 18.2965 - 0.2990 0.0025 - 0.2410 1.6609
(2.5294) (0.0120) (-) (0.0002) (-)

KW-W(𝛼, 𝑚, 𝑝, 𝜆) 16.3539 518307.9 0.0799 167.7748 - 0.2440 1.6774
(0.0005) (0.1369) (0.0013) (5.4165) (-)

B-W(𝛼, 𝑚, 𝑝, 𝜆) 0.3369 165342.6 2.0759 201.3981 - 0.2754 2.0125
(0.0301) (23.7266) (0.0001) (0.0004) (-)

Ga(𝛼, 𝜆) 0.9794 - - 3.9052 - 0.2648 1.7978
(0.1155) (-) (-) (0.5937) (-)
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4.8 CONCLUSIONS

This is, effectively, the first application developed in the thesis due to the constructions
made in the last chapters. Strategically, the first baseline used for 𝐺(𝑥; 𝜉, 𝜏 ), in the new
models, is the exponential distribution, followed by the Weibull distribution, which, indeed, is
an extension of the former.

Here, two data sets are used as source for applications of the distributions under analysis
and comparisons are made with the models firstly chosen. The first one does refer to data
collected, in the pandemic, in virtue of the COVID-19 virus spreading. As one could see
above the data were collected in the state of Santa Catarina, Brazil and were subjected to
descriptive statistical analysis. The second one are artificial data generated by a physical model
with specific approach, which leads to instabilities on the dynamics under investigation. In the
first case, some conclusions were achieved when evaluated according to the results encountered
on Table 5. It is worth of saying that the model proposed is submitted to techniques, such
as Anderson-Darling (𝐴*), Cramer Mises (𝑊 *) and Kolmogorov-Smirnov (𝐾𝑆*), as well as
TTPlot, in order to select the best models, when compared to canonical ones in the literature.

For a method of selection, the lower the values of these indicators, more specified will be
the model. By observing the table 5, one sees that the two proposed models have superior
performance, if comparable to those of its competitors. Specially, the TMOW model have the
highest performance. The same as before happens for the second data set, as observed in
Table 6.
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5 TRANSFORMED MARSHALL-OLKIN BIRNBAUM-SAUNDERS DISTRIBU-

TION

5.1 INTRODUCTION

As was pointed out at the general introduction of this text, the problem of stress concen-
tration must be seriously considered in order to avoid losses in practical everyday systems, as
well as dangerous fails leading to crack propagation, reasons for accidents and their harmful
consequences. As it is obtained through a monotonic transformation on the standard normal, it
is not hard to think of the wide range of applicability of the latter (BALAKRISHNAN N.; KUNDU,
2018), in a variate class of systems which exhibit a large number of entities, like, particles,
for example, or Big data systems. As seen at (BIRNBAUM; SAUNDERS, 1969), Birnbaum and
Saunders have brought to the surface these properties in a more clearer way, in the statistical
point of view, through application into fatigue modeling with certain conditions, say, periodic
stress.

However, this is not exhaustive. Its field of application is beyond fatigue problems in
materials and reliability analysis. The Birnbaum-Saunders distribution can model tension con-
centration in systems where quantifiable characteristics are about to exceed a critical threshold
leading to yield process.

Some examples, in many branches of knowledge are

• Migration of metallic flaws in nano-circuits due to heat in a computer chip.

• Accumulation of deleterious substances in the lungs from air pollution.

• Ingestion by humans of toxic chemicals from industrial waste.

• Occurrence of chronic cardiac diseases and different types of cancer due to cumulative
damage caused by several risk factors, which produce degradation and conduct to a
fatigue process.

• Air quality due to an accumulation of pollutants in the atmosphere over time.

• Generation of action potentials in neural activity.

• Late human mortality due to how the risk of death occurs at a late stage of human life.

• Occurrence of natural disasters such as earthquakes and tsunamis.
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as described in (LEIVA, 2016). As was pointed out in the very last reference, the empirical
fitting property is a reasonable argument for justifying the modeling process of the data under
analysis through Birnbaum-Saunders distribution.

Let 𝑋 be a random variable and (𝜆, 𝛽) be nonvanishing positive vector parameter. Let Φ

represents the cdf of the canonical Normal distribution with (𝜇, 𝜎) ≡ (0, 1). The transformation
performed by Birnbaum and Saunders, over the normal distribution, is given by,

𝐺 (𝑥;𝜆, 𝛽) = Φ
⎡⎣1
𝜆

⎧⎨⎩
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2
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2
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and the corresponding density,
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Along the chapter this canonical form of the Birnbaum-Saunders distribution will be used
to be the baseline of the enquired family, as will be clear in the next sections.

5.2 TRANSFORMED MARSHALL-OLKIN BIRNBAUM-SAUNDERS DISTRIBUTION

Again, inserting Equation (5.1) into (3.5), by considering (3.6), it leads to
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or, after a few algebra,

𝐹 (𝑥;𝛼, 𝜃, 𝜆, 𝛽) = e−𝛼𝐴(𝑥,𝛽)

e−𝛼𝐴(𝑥,𝛽) + 𝜃
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.
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Figure 25 – Distribution Function and Probability Density Function for the Transformed Marshall-Okin
Birnbaum-Saunders Model.

Source: the own author.

In Figure 25, the parameter set 𝜉 = (𝛼, 𝜃) is allowed to vary while the baseline parameter
set 𝜏 = (𝜆, 𝛽) is kept constant.

Figure 26 – Surface parameter defined by the parameter variation 𝛼 and 𝜃.

Source: the own author.

As long as the parameter 𝛼 ranges in the interval 1 < 𝛼 < 3 and 𝜃 is kept fixed, the
surface for the distribution function for different values of 𝑥 is graphed at figure 35. This
figure together with the left graph on figure 25 describe how the variations on the values of
𝛼 change the forms of the distribution. These variations allows one to see how the model can
be applied to a variety of real data, due to his flexibility subjecting the model to a wide range
of parameter values, in a given interval.
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5.2.1 TMOBS Hazard Rate Function

By following (3.7), the hazard function for the TMOBS model reads,

ℎ (𝑥;𝛼, 𝜃, 𝜆, 𝛽) = 𝛼
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𝛽
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, (5.2)

where,
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Then, for the 𝑇 factor function, one reads,

𝑇+(𝑧) = Φ′
+(𝑧) (2Φ+(𝑧) − 1)

(︁
2𝜃𝜂𝛼−1(𝑧) − 1

)︁
(𝜃𝜂𝛼(𝑧) + 1) + (5.3)

+
√

2𝜋𝜃Φ+(𝑧)(1 − Φ+(𝑧)) [𝒫2(𝑧, 𝛼) + 𝒫1(𝑧, 𝛼)] ,

where,

Φ+(𝑧) = 𝜆2 log 𝑧 +
(︁
1 + 𝜆2 log 𝑧

)︁2
+ 2𝜆

√︁
log 𝑧

(︁
1 + 𝜆2 log 𝑧

)︁
,

Φ′
+(𝑧) = 𝜆2

𝑧

[︃
1 + 2

(︁
1 + 𝜆2 log 𝑧

)︁
+ (1 + 𝜆2 log 𝑧)

𝜆
√

log 𝑧
+ 2𝜆

√︁
log 𝑧

]︃
,

and the polynomials, 𝒫2 and 𝒫1 are given by

𝒫2(𝑧;𝛼, 𝜃) = −2𝜃𝜂2(𝛼−1)(𝑧) and
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where 𝜂(𝑧) =
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2𝜋𝑧 − 1. According to the last lines, one reads,
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For the second case, where one defines the 𝑇−(𝑧), one has
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Figure 27 – Sign variation of 𝑇+(𝑧) and 𝑇−(𝑧), as compared to the denominator of (5.4), or (5.6).

Source: the own author.

Figure 28 – 𝑇−(𝑧) according to the regions they are immersed.

Source: the own author.

and

𝑟′
−(𝑧)
𝑟−(𝑧) = 𝑇−(𝑧)

Φ−(𝑧) [1 − Φ−(𝑧)] [2𝜃𝜂𝛼−1(𝑧) − 1] [𝜃𝜂𝛼(𝑧) + 1] , (5.6)

𝒫𝑖, 𝑖 = 1, 2 and 𝜂(𝑧) as given above.

Proposition 10 If the hazard rate function is given by (5.2), there exist two classes of sepa-

ration regions, 𝑇+(𝑧) and 𝑇−(𝑧), one of which preserving probabilistic meaning, that is to say,
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the hazard rate function associated is a nondecreasing function of 𝑧.

Dem. 9 As was shown in 5.3 and 5.5, theses two functions was derived from 5.2. Each of

them are given in terms of
{︁
Φ+(𝑧),Φ′

+(𝑧)
}︁

and
{︁
Φ−(𝑧),Φ′
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,
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−

)︁
. (5.7)

Given 𝜆 > 0, 𝑧1, 𝑧2 ∈ R, 𝑧1, 𝑧2 > 1 and 𝑧2 > 𝑧1. Then one has,

𝑇+(𝑧2) = 𝜆2 log 𝑧2 +
(︁
1 + 𝜆2 log 𝑧2

)︁ [︂(︁
1 + 𝜆2 log 𝑧2

)︁
+ 2𝜆

√︁
log 𝑧2

]︂
+ 𝜁(Φ′

+(𝑧2)),

𝑇+(𝑧1) = 𝜆2 log 𝑧1 +
(︁
1 + 𝜆2 log 𝑧1

)︁ [︂(︁
1 + 𝜆2 log 𝑧1

)︁
+ 2𝜆

√︁
log 𝑧1

]︂
+ 𝜁(Φ′

+(𝑧1)),

where 𝜁(Φ′
+(𝑧𝑖)), 𝑖 = 1, 2 are functions of Φ′

+, in order to justify (5.7), above. However, by

hypothesis,

𝑧2 > 𝑧1 →

⎧⎪⎪⎨⎪⎪⎩
𝑧2 − 𝑧1 > 0,

𝑧2
𝑧1
> 1 > 0.

(5.8)

It follows that,

𝑇+(𝑧2) − 𝑇+(𝑧1) = 3𝜆2 log 𝑧2
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log 𝑧2 − log 𝑧1

√︁
log 𝑧1.

Algebraic analysis considering (5.8) leads to

𝑇+(𝑧2) − 𝑇+(𝑧1) < 0 ⇒ 𝑇+(𝑧2) < 𝑇+(𝑧1), (5.9)

which shows the decreasing nature of 𝑇+, in particular, showing the break of structure-

preserving for the hazard rate function characteristics.

For the second case, one has,

𝑇−(𝑧2) − 𝑇−(𝑧1) = 3𝜆2 log 𝑧2

𝑧1
+ 𝜆4

(︁
log2 𝑧2 − log2 𝑧1

)︁
− 2𝜆

[︁
𝛿1 + 𝜆2𝛿2

]︁
+ (𝜁(Φ′

−(𝑧2)) − 𝜁(Φ′
−(𝑧1))),

where 𝜁(Φ′
−(𝑧𝑖)), 𝑖 = 1, 2 are functions of Φ′

−, in order to justify (5.7), above, and 𝛿1 and 𝛿2

as given above. Again, algebraic analysis considering (5.8) leads to,

𝑇−(𝑧2) − 𝑇−(𝑧1) > 0 ⇒ 𝑇−(𝑧2) > 𝑇−(𝑧1), (5.10)



104

which shows the non-decreasing nature of 𝑇−. In particular, it shows the structure-preserving

for the hazard rate function characteristics corroborating what one sees in the Figure 27, on

the left. □

Note, however that, for values of 𝛼 greater than 2.20, the shape of the last figure in 28
addresses the meaning of the one which precedes it, that is to say, the separation region is
induced by the process of crossing axis, changing sign. As was pointed out at corresponding
Chapter 3, it indicates that the hazard function exhibits unimodal property.

5.2.2 TMOBS Quantile Function

In this section, a closed form expression is developed for the TMOBS quantile function.
Then, let consider the following Proposition.

Proposition 11 Let 𝑝 : R|(0,1) → R|Ξ where 𝑢 ↦→ 𝑝(𝑢) is such that

𝑝(𝑢) = 1 − 𝜆2 log

⎛⎜⎜⎝
√

2𝜋

1 +
[︁

1
𝜃

(︁
1−𝑢

𝑢

)︁]︁ 1
𝛼

⎞⎟⎟⎠
and Ξ is the interval where the restriction of 𝐹−1, for the 𝑇𝑀𝑂𝐵𝑆 model, has image in (0, 1)

in accordance with 3.9.

𝑄𝑇 𝑀𝑂𝐵𝑆(𝑢) = 𝛽
(︂
𝑝(𝑢) −

√︁
𝑝(𝑢)2 − 1

)︂
(5.11)

Figure 29 – Quantile function for the Transformed Marshall-Okin Birnbaum-Saunders Model.

Source: the own author.
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𝛼 𝜃 𝜆 𝛽 𝑄(𝑢 = 1/2)
1.00 0.90 1.10 0.10 0.2486
2.00 0.40 1.50 0.50 1.9737
2.50 0.125 1.70 1.00 5.5808
3.00 0.004 2.00 1.50 17.9529

Table 7 – Quantile function for 𝑢 = 1/2 and increasing different values of 𝛼, 𝜆 and 𝛽 and decreasing the 𝜃
value.

Note that, in Table 7 the values of 𝑄(𝑢 = 1/2) are increasing ones, as the parameter 𝜃
increases. This is a direct consequence of the nature of the considered functions in terms of
the variable in question.

Figure 30 – Graph of 𝑄(𝑢 = 1/2) and continuous values of 𝛼 and 𝜃, for the Transformed Marshall-Olkin
Birnbaum-Saunders Model.

Source: the own author.

The plots in Figures 30 and 31 express the values of the median as the 𝛼 and 𝛽 parameters
vary, respectively, in the former case, and jointly with 𝜃, 𝜆 and 𝛽, in the latter case. The figures
show the velocity of the decreasing character in each case.
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Figure 31 – Graph of 𝑄(𝑢 = 1/2) and continuous values of 𝑚, 𝜆 and 𝛽 for the Transformed Marshall-Olkin
Birnbaum-Saunders Model.

Source: the own author.

5.3 ESTIMATION

Here, again, one makes the use of (3.18) in order to express the log-likelihood function,
𝑙, for the TMOBS model which reads, if 𝑥𝑖, 𝑖 = 1, · · · , 𝑛, is a sequence of an 𝑛-size random
sample,

𝑙𝑡𝑚𝑜𝑏𝑠(𝜉,𝜂;𝑥) = 𝑛 log
(︃
𝛼𝜃𝜈𝛼

2𝛽𝜆2

)︃
+

𝑛∑︁
𝑖=1

log
⎡⎣(︃ 𝛽

𝑥𝑖

)︃2

− 1
⎤⎦

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
− 𝛼

𝑛∑︁
𝑖=1

𝜔(𝑥𝑖, 𝜆, 𝛽)

− 2
𝑛∑︁

𝑖=1
log

{︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼}︁
.

In order to proceed for the determination of the score vectors, the following derivatives are
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calculated,

𝜕𝑙𝑏𝑠(𝜉, 𝜏 ;𝑥𝑖)
𝜕𝛼

= 𝑛 (𝛼 log 𝜈 + 1)
𝛼

−
𝑛∑︁

𝑖=1
𝜔(𝑥𝑖𝜆, 𝛽) +

𝑛∑︁
𝑖=1

log
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁

− 1
𝜆2

𝑛∑︁
𝑖=1

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)
{︁
2𝜆2 log 𝜈 − ϒ̃2(𝑥𝑖, 𝛽)

}︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

− 2𝜃
𝑛∑︁

𝑖=1

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
log

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼 ,

𝜕𝑙𝑏𝑠(𝜉, 𝜏 ;𝑥)
𝜕𝜃

= 𝑛

𝜃
− 2

𝑛∑︁
𝑖=1

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼 ,

𝜕𝑙𝑏𝑠(𝜉, 𝜏 ;𝑥)
𝜕𝜆

= 𝛼

𝜆3

𝑛∑︁
𝑖=1

ϒ̃2(𝑥𝑖, 𝛽) − 2𝑛
𝜆

− 𝛼

𝜈𝜆3

𝑛∑︁
𝑖=1

e−𝜔(𝑥𝑖,𝜆,𝛽)ϒ̃2(𝑥𝑖, 𝛽)
[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

− 2𝛼
𝜈𝜆3

e−𝜔(𝑥𝑖,𝜆,𝛽)
{︂
𝜈𝛼+1e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
}︂

ϒ̃2(𝑥𝑖, 𝛽)

𝜈e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼 ,

𝜕𝑙𝑏𝑠(𝜉, 𝜏 ;𝑥)
𝜕𝛽

= 2𝛽
𝑛∑︁

𝑖=1

1
𝑥2

𝑖 ϒ(𝑥𝑖, 𝛽) + 𝛼

2𝜆2

𝑛∑︁
𝑖=1

ϒ(𝑥𝑖, 𝛽)
𝑥𝑖

− (𝛼− 1)𝜈
2

ϒ(𝑥𝑖, 𝛽)
𝑥𝑖 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

+ 𝛼

𝜆2

𝑛∑︁
𝑖=1

ϒ(𝑥𝑖, 𝛽)
𝑥𝑖

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝜈
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽)

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼 − 𝑛

𝛽
,

where

ϒ(𝑥𝑖, 𝛽) =
⎡⎣(︃𝑥𝑖

𝛽

)︃2

− 1
⎤⎦ ,

ϒ̃(𝑥𝑖, 𝛽) =
⎡⎣(︃𝑥𝑖

𝛽

)︃ 1
2

−
(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦ .

Given the log likelihood, above, and the Hessian, as given in Chapter 3, the information
matrix reads

𝐼𝑏𝑠
𝑋 ({𝜉, 𝜏}) = −𝐸

(︃
𝜕2𝑙(𝑥;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
= −

(︃
𝜕2𝑙(𝑥;𝜃)
𝜕𝜃𝑟𝜕𝜃𝑠

)︃
,

where the elements of the Hessian is on the Appendix C.

5.3.1 MLEs

Setting the derivatives of the log-likelihood function for (𝛼, 𝜃, 𝜆, 𝛽) to zero, the MLEs
(𝛼̂, 𝜃, 𝜆̂ 𝛽) are obtained by numerical method. The approximate variances and the CIs of the
parameters are obtained by inverting the observed Fisher matrix.
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The 100 · (1 − 𝛾)% symmetric approximate normal CIs of (𝛼, 𝜃, 𝜆, 𝛽) are constructed by
(︂
𝜑− 𝑧𝛾/2

√︁
Var(𝜑), 𝜑+ 𝑧𝛾/2

√︁
Var(𝜑)

)︂

where 𝑧𝛾/2 is the upper 𝛾/2 point of standard normal distribution and 𝜑 can be 𝛼, 𝜃, 𝜆 and
𝛽.

5.4 SIMULATIONS

In this section a simulation study is provided in order to verify the asymptotic properties
of the parameters. To do this, an inverse method is considered and, thus, Equation (5.11) is
used. The simulation algorithm below was used:

• Generate values from a distribution X∼U(0, 1), where 𝑈 refers to Uniform distribution;

• The inverse method is used and, therefore, the quantile function given in (5.11);

• Simulated TMOBS distributed data of 𝑛 ∈ {50, 100, 150, 300} are obtained by means
of the above two items and 1,000 replicas of Monte Carlo were considered;

• Two scenarios are considered:

1. (𝛼, 𝜃, 𝜆, 𝛽) = (0.5, 0.5, 0.8, 0.8),

2. (𝛼, 𝜃, 𝜆, 𝛽) = (0.8, 0.5, 0.8, 0.8).

• Generated data is submitted to maximum likelihood estimation to obtain MSE’s.

Tables 8 and 9 gives the MSEs for (𝛼, 𝜃, 𝜆, 𝛽) for both scenarios. Bias and MSE values
decrease as the sample size increases as expected. Further, smaller values of the MSE at a
specified pair are associated to the smaller parameter values. Besides that, mean estimates for
the configurations considered are within their respective confidence intervals.

It can also be noted that the increase in the value of 𝛼 causes an increase in the value of
the bias in 𝑛 = 100, but soon after the expected behavior occurs. The same oscillation occurs
in the 𝜆 parameter for the same sample size value. This may indicate a certain influence of
the 𝛼 parameter on the 𝜆 parameter.
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Table 8 – AEs, Bias and lower and upper bounds of 95% (HPD) CIs of the parameter - first scenario

n True AE Bias MSE Lower Upp
50 0.5 0.5240 0.0240 0.3797 -0.5328 1.5810

0.5 0.5536 0.0536 0.0415 0.1459 0.8296
0.8 0.8083 0.0083 0.5770 -0.4549 2.0716
0.8 0.8038 0.0038 0.0376 0.4406 1.1670

100 0.5 0.5110 0.0110 0.0633 0.0094 1.0126
0.5 0.5313 0.0313 0.0226 0.2357 0.7665
0.8 0.8024 0.0024 0.0847 0.2171 1.3877
0.8 0.7981 -0.0018 0.0170 0.5406 1.0556

150 0.5 0.4962 -0.0037 0.0360 0.1172 0.8753
0.5 0.5186 0.0186 0.0132 0.2891 0.7237
0.8 0.7876 -0.0123 0.0529 0.3462 1.2290
0.8 0.7955 -0.0044 0.0106 0.5898 1.0012

300 0.5 0.4997 -0.0002 0.0171 0.2361 0.7633
0.5 0.5092 0.0092 0.0060 0.3504 0.6626
0.8 0.7960 -0.0039 0.0236 0.4895 1.1026
0.8 0.7974 -0.0025 0.0051 0.6522 0.9426

Table 9 – AEs, Bias and lower and upper bounds of 95% (HPD) CIs of the parameter - second scenario

n True AE Bias MSE Lower Upp
50 0.8 0.7743 -0.0256 0.9044 -1.3025 2.8513

0.5 0.5917 0.0917 0.0697 0.0822 0.8835
0.8 0.7632 -0.0367 0.5513 -0.9230 2.4495
0.8 0.8054 0.0054 0.0512 0.3638 1.2470

100 0.8 0.8437 0.0437 0.4865 -0.7319 2.4195
0.5 0.5565 0.0565 0.0450 0.1429 0.8360
0.8 0.8313 0.0313 0.3404 -0.4843 2.1471
0.8 0.8032 0.0032 0.0284 0.4660 1.1403

150 0.8 0.7872 -0.0127 0.1717 -0.0069 1.5814
0.5 0.5396 0.0396 0.0285 0.1994 0.7983
0.8 0.7841 -0.0158 0.1238 0.1331 1.4351
0.8 0.7971 -0.0028 0.0173 0.5337 1.0606

300 0.8 0.7789 -0.0210 0.0960 0.2895 1.2683
0.5 0.5205 0.0205 0.0135 0.2855 0.7300
0.8 0.7754 -0.0245 0.0791 0.3768 1.1740
0.8 0.7975 -0.0024 0.0080 0.6141 0.9808
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5.5 APPLICATIONS

In this section, we provide applications to real data set in order to provide the overfit of the
TMOBS model. To do this, some well-known models are considered as a comparative models:

• Birnbaum-Saunders (BS), (REYES et al., 2021);

• Marshall-Olkin Birnbaum-Saunders (MOBS), (BIRNBAUM; SAUNDERS, 1969);

• Odd Log-Logistic Birnbaum-Saunders (OLLBS), (CORDEIRO et al., 2018);

• Odd Log-Logistic Birnbaum-Saunders Poisson (OLLBSP), (CORDEIRO et al., 2018);

• Kumaraswamy Birnbaum-Saunders (KWBS), (SAULO; LEãO; BOURGUIGNON, 2012);

• Gamma Birnbaum-Saunders (GBS), (CORDEIRO et al., 2016);

Based on the fact that applications in the area of sunspots were not found in the literature of
New Distributions Theory, it was selected such competing models because they are extensions
of the baseline and the baseline itself. The aim here is, therefore, to investigate the behavior
of the family, in terms of goodness of fit, when compared with other families with the same
baseline.

5.5.1 Sunspots

"Galileo was the first to study dark spots on the Sun which we call "sunspots". They

typically measure about 10,000 kilometers across, which makes them on the order of the size

of the Earth. They often occur in groups, and come and go. At some times the Sun has

hundreds of sunspots, while at other times it may have almost none. Individual spots may last

from 1 to 100 days. A large group of spots typically lasts 50 days," (SUNSPOT. . . , 2022a).
Recently, the information that the Earth is being under exposition of strong solar flare, as

part of a natural cycle of events, has come to dawn, (SOLAR. . . , 2022). Despite this is not a
new discovery, once the phenomena is studied yet a long time, the natural process interests
the scientific community and the humanity, in general.

Here, two random sample parts of the dataset are presented and analysed for the statistical
point of view. The proposed distributions are employed and some simulations are carried out.
The two sets are shown at Tables 10 and 11 and have their significance explained below.
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Month Sunspot Month Sunspot Month Sunspot
1 8.2 1 7.5 1 4.7
2 10.7 2 5.3 2 5.1
3 8.6 3 4.8 3 4.9
4 6.9 4 8.2 4 3.5
5 7.5 5 8.6 5 4.7
6 7.7 6 6.3 6 2.0
7 7.4 7 5.7 7 3.8
8 7.6 8 5.2 8 4.5
9 8.7 9 6.4 9 3.8
10 6.9 10 5.4 10 3.1
11 8.5 11 5.2 11 2.6
12 7.4 12 5.4 12 2.4

Table 10 – Sample for the first dataset. It begins on December, 2013 and ends on April 2022. The complete
data set is hosted at, (SUNSPOT. . . , 2022b), under source project: WDC-SILSO, Royal Observatory
of Belgium, Brussels.

Month Sunspot Month Sunspot Month Sunspot
1 96.70 1 122.2 1 116.7
2 104.3 2 126.5 2 72.50
3 116.7 3 148.7 3 75.50
4 92.80 4 147.2 4 94.00
5 141.7 5 150.0 5 101.2
6 139.2 6 166.7 6 84.50
7 158.0 7 142.3 7 110.5
8 110.5 8 171.7 8 99.70
9 126.5 9 152.0 9 39.20
10 125.8 10 109.5 10 38.70
11 264.3 11 105.5 11 47.50
12 142.0 12 125.7 12 73.30

Table 11 – Sample for the second data set. It begins on January, 1749 and ends on October 2022, in the
complete dataset, (SUNSPOT. . . , 2022b), under source project: WDC-SILSO, Royal Observatory of
Belgium, Brussels.

For the first data set, the sequence of data are disposed, since 2013 to 2022, as a monthly
sequence of events, i.e, sunspots. These values are monthly mean standard deviation of the
input sunspot numbers as given at the reference above. The purpose of this sequence of data
is to test the flexibility of the proposed model, as the parameter set changes, as well as the
best fitting property, as compared with canonical and other distributions available for analysis.
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The second set of data is a small modification of the original one. It relates the time to
the first maximum of sunspot, for each year, since 1749 to nowadays. It must be understood
as follow: for the first year, that is to say, 1749, the highest spot happens to be on November
with value 264.3; for the second year, 1750, the highest spot happens to be on August with
value 171.7, and so on.

However, the time in question must be read such that, in the first time, that is, Novem-
ber, which is equivalent to the fraction 11/12 of a year, or better, 0,916666667 year, is the
used format. Thus, the time sequence for consideration is the one obtained by this process
under the column on months appearing at Table 11, from the original dataset, 0.916666667,
0.666666667, 0.083333333, 0.583333333, and so on.

The importance of knowing this phenomenon is beyond the mere passion for explaining
things. In spite of emergence point of view, that is to say, the point of view that an emergent

phenomenon, as life, thought, or computation about which there are comprehensible facts

or explanations that are not simply deducible from lower-level theories, but which may be

explicable or predictable by higher-level theories referring directly to that phenomenon, there
exist the instrumentalist point of view, from where the purpose of scientific theory is to predict

outcomes of experiments, (DEUTSCH, 1997). This is, in some sense, the practical of statistics.
Again, in this sense, the comprehension of the phenomena may be useful, in this specific

case of sunspot, to predicting various interference processes that happen on the ionosphere,
(JAIN et al., 2022), for example, when the interaction of the ejected particles and electromag-
netic waves, coming from the Sun, reach the ionosphere causing destructive interference in the
communication systems, since the occurrence of solar flares, which is burst of light, occurring
in the chromosphere near a sunspot, (DAVIES, 1961), (MCINTOSH et al., 2020).

This fact, indeed, is a worrying one once almost all technological systems and processes of
the present-day are linked by communication systems like mobile networks, satellites and all
paraphernalia that depends on that.

"Why should not a gosling say thus: All the parts of the Universe regard me; the earth

serves me for walking, the sun to give me light, the stars to inspire one with their influences. I

have this use of the winds, that of the waters; there is nothing which this vault so favourably

regards as me; I am the darling of nature. Does not man look after, lodge, and serve me? It

is for me he sows and grinds: if he eat me, so does he his fellow-man as well; and so do I the

worms that kill and eat him...", (WHEELER, 1986)
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5.5.2 Computational Platform

In this section, we will describe some of the functions, packages and estimation methods
that have been used on the simulations and graphing processes. The software used to create
the graphs, obtain the estimators and verify the flexibility of the model, in terms of fit, was
R, (R Core Team, 2013) through RStudio environment, (RStudio Team, 2020).

Regarding the estimation method, the maximum likelihood method was used to obtain the
estimators for the parameters of each given model. Here, the BFGS method is considered for
the first data and, for the second one, the SANN method was chosen. Both methods, however,
being selected in virtue of the best results obtained by them.

Most of the initial guesses were obtained through heuristic method by using the GenSA
and MASS R packages. When the initial guesses from this method provided unsatisfactory
results, or when there was a problem of convergence, the guesses were chosen randomly.

Furthermore, the statistics of Anderson Darling (A*) and Cramer Von Mises (W*) were
used to verify the performance of the proposed models when compared to those mentioned
above.

5.5.3 Descriptive statistics and results

In this section, we provide a brief comments about some descriptive statistics for both
data. Besides that, an analysis will be made about the flexibility of the proposed model, in
terms of goodness of fit, when compared to the chosen competing models.

Table 12 shows some descriptive statistics of the first data.

Table 12 – Descriptive statistics for the first data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 1.000 4.100 4.463 7.000 15.600

Figures 32 and 33 represent the Box-plot for both data. Note that they have no outliers.
Tables 12 and 14 show descriptive statistics for the first and second data sets. In the former,

the measures summarize the data and give insights for understanding the whole behavior of the
underlying phenomenon, in particular, the object of analysis concerning the maximum sunspot
reached out by the event and its consequences. For the latter, beyond the facts discussed
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Figure 32 – Box-plot for the first data

0
5

10
15

Source: the own author.

Table 13 – Estimation results for the first data set

Model 𝛼̂ 𝜃 𝑝 𝜆̂ 𝛽 𝑊 * 𝐴*

TMOBS 1.8084 1.6364 - 19.2597 0.4174 0.2375 1.4092
(0.0005) (0.0005) (-) (0.0008) (0.0005)

MOBS 0.2619 - - 12.9569 215.7538 2.1034 12.1990
(0.0459) (-) (-) (0.8949) (8.9888)

BS - - - 1.6483 1.7137 0.5884 3.8312
(-) (-) (-) (0.1173) (0.2073)

OLLBS 537.3262 - - 76.9884 2.6746 0.6302 3.8952
(4 × 10−7) (-) (-) (0.00002) (2 × 10−6)

OLLBSP 536.4979 0.8640 - 76.1452 3.0846 0.5233 3.0724
(8 × 10−8) (2 × 10−6) (-) (0.00004) (7 × 10−6)

BBS 74.7289 88.2912 - 85.4821 123.3944 1.8757 11.0707
(1.9321) (0.000005) (-) (0.00001) (5.9795)

GBS 0.3867 - - 2.7438 19.0941 1.3151 8.0507
(0.0358) (-) (-) (0.000003) (0.0479)

above, the description does refer to the time such event takes to happen, as discussed in this
section.

Table 14 – Descriptive statistics for the second data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.08333 0.2500 0.5000 0.53133 0.81250 1.00000

As can be seen in the Tables 13 and 15, the proposed model produced a better fit to the
data sets considered when compared to the shrunken competitors in each case.
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Figure 33 – Box-plot for the second data

Source: the own author.

Table 15 – Estimation results for the second data set

Model 𝛼̂ 𝜃 𝑝 𝜆̂ 𝛽 𝑊 * 𝐴*

TMOBS 4.3295 0.0315 - 57.8971 738.3755 2.0235 13.2512
(0.00009) (0.00007) (-) (0.0001) (0.0005)

MOBS 11.9860 - - 134.0471 0.0649 3.28125 20.3993
(0.0029) (-) (-) (0.0005) (0.0026)

OLLBS 0.2669 - - 0.3295 0.2056 4.2891 25.9210
(0.00000009) (-) (-) (0.0010) (0.000005)

OLLBSP 320.0840 0.0014 - 41.4460 5.7016 2.6542 16.7972
(1.8167) (0.0003) (-) (5.3956) (0.3571)

BBS 80.1466 112.2476 - 68.7853 97.7474 2.9601 18.8079
(0.0147) (0.9854) (-) (0.6413) (0.000001)

GBS 13.4080 - - 997.8837 0.0887 2.5279 16.3726
(0.0004) (-) (-) (0.0004) (0.0053)

For the first data considered, the OLLBSP model presented the second best fit. Note that
this is a model with three parameters and, depending on the chosen ones, presents bimodality.
So, this result was expected. For more details, see (CORDEIRO et al., 2018).

About the second data, we can observe that the model that obtained the second best fit was
the GBS. Despite presenting some complexity in computational terms and being very robust
in mathematical terms, the models derived from the G-gamma family have some flexibility, as
shown in the work of (CORDEIRO et al., 2016), among others.

Thus, we can state that the proposed model proved to be quite competitive with other
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existing in the literature, considering the analyzed data.

5.6 CONCLUSIONS

In this chapter the model Transformed Marshall-Olkin Birnbaum-Saunders was proposed
and some of its mathematical properties was stablished. A deeper enquiring of the hazard
rate function was made such that a particular study, in the field of survival analysis, can be
performed. Once the Birnbaum-Saunders model has wide applications in several fields of kno-
wledge, with emphasis on fatigue data, it was decided to extrapolate the range of applicability
of the model to more general phenomena, such as that of the sunspot, in astrophysics, here
dealt with. The results have shown that the model under study exhibited higher performance
when compared to other models disposed in the literature which, in turn, are extensions of the
Birnbaum-Saunders.

Two real data sets are under analysis. For the first one the tables 8 and 9 give the MSE errors
for the distribution, TMOB. The values were obtained by the BFGS method, from Monte Carlo
simulation which shows a systematic decreasing on its values, for each parametric estimate
made for the proposed model. The importance of inquiry like this one is on the necessity to
know the sunspots occurrence distribution and the successive times of each of them. As was
pointed out on the text, always next to sunspot there exist solar blasts ejecting interfering
agents. From the information about these time distributions, once the best models have been
chosen, forecasts can be done in order to mitigate possible damages to the systems guided by
communication signals. An analysis on table 13, one sees that the TMOBS model has best
performance. Furthermore, for the flexibility tests on the proposed models, the second data
set treats the distribution of the modified data, as said above. The results can be read on
table 15, which shows a better performance of the proposed model.
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6 TRANSFORMED MARSHALL-OLKIN BURR XII DISTRIBUTION

6.1 INTRODUCTION

Along the years the seek for flexible distributions, as seen as having ability of fitting real
data, has been getting intense and intense, particularly in the Big Data age, as said earlier.
Hence, some distributions have been earned prominence in the branch of the theory of new
distributions, for exhibiting great flexibility on adjusting a wide number of different kinds of
datasets. One example of such distributions is the Burr-XII, also known as Singh-Maddala dis-
tribution. It has several distributions as particular cases: normal, log-normal, gamma, logistic,
type-one extreme value, among others. These are some of the reasons why such a model well
suits to different types of sets.

During the last decades, therefore, many other distributions have been proposed, in the
literature, heading the Burr-II as baseline. The Beta Burr-II and Kumaraswamy Burr-XII, for
example, were introduced in the thesis of Paranaíba (2012). These distributions were build by
using the Beta-G generators (proposed by Eugene, Famoye and Lee, 2009) and Kumaraswamy-
G, (CORDEIRO GAUSS M.; DE CASTRO, 2011).

Another distributions have been proposed through other methods. The geometric Burr-XII
model, for example, was obtained by the mixing method between, geometric and Burr-XII,
distributions. Such a model was proposed in the PhD thesis of Lanjoni, (LANJONI, 2013) and,
in this work, the author has presented some mathematical properties, proposed the regression
models, geometric type-one log-Burr-XII and geometric type-two log-Burr-XII.

Some interesting studies also have been used the Burr-XII as a candidate for modeling.
Peralta, (MAZUCHELI et al., 2018), (PERALTA et al., 2017), have used, among other distributions,
the Burr-XII to verify its adequacy to describe the behavior of the age, as measured in days,
to the first quail posture (event) from yellow, blue and red lineage and subjected to two levels
of feeding diet. After some analysis, the authors verified that the Burr-XII distribution turned
out to be the most indicated in the majority of studied groups.

Another Burr-XII interesting application was presented for Oliveira et. al (2017). In the
work the authors mention the importance of the probability density function in the parametric
Monte Carlo technique to model the percentage relative frequency profile, of a real given bones
samples, (OLIVEIRA et al., 2017). It was observed that the density function has shown right
asymmetry and, therefore, one proposes the utilization of the three-parameter Burr-XII, for
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the manufacturing of trabecular synthetic bones.

6.2 TRANSFORMED MARSHALL-OLKIN BURR XII DISTRIBUTION

In this section it is introduced the proposed model, named Transformed Marshall-Olkin
Burr-XII. It is said that a random variable follows the Burr-XII distribution, if its probability
density function is expressed by

𝑔(𝑥) = 𝜌𝜅
(︂
𝑥

𝜎

)︂𝜌−1 [︂
1 +

(︂
𝑥

𝜎

)︂𝜌]︂−𝜅−1
, (6.1)

where the parameters 𝜌, 𝜎, 𝜅 > 0 and 𝑥 > 0. Consequently, its cumulative distribution function
is given by

𝐺(𝑥) = 1 −
[︂
1 +

(︂
𝑥

𝜎

)︂𝜌]︂−𝜅

. (6.2)

Following the trends of the last sections, the transformed Marshall-Olkin Burr XII distri-
bution, and the corresponding density, are given, respectively, by

𝐹 (𝑥; 𝜉, 𝜏 ) =

{︂
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[︁
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𝑥
𝜎
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𝜎
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,

and

𝑓 (𝑥; 𝜉, 𝜏 ) =
(︃
𝛼𝜅𝜌𝜃

𝜎𝜌

)︃ 𝑥𝜌−1
{︂[︁

1 −
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)︁𝜌]︁−𝜅
− 1

}︂𝛼−1 [︁
1 +

(︁
𝑥
𝜎
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{︁
𝜃 +

{︁[︁
1 +

(︁
𝑥
𝜎

)︁𝜌]︁𝜅
− 1

}︁𝛼}︁2 .

As shown in Figure 34, for the graphs of the distribution function and his corresponding density
function.

The Figure 35 describe the surface generated when the vector parameter 𝜉 = (𝛼, 𝜃) varies.
For different interval of variations of these parameters, different classes of shapes can occur
which, in counterpart, may be useful to select properties of data tied by these conditions.

6.2.1 TMOBXII Hazard Rate Function

By following (3.7), the hazard function for the TMOBXII model reads,

ℎ(𝑥; 𝜉, 𝜏 ) =
(︂
𝛼𝜅𝜌

𝜎𝜌

)︂
𝑥𝜌−1𝜁𝜅(𝛼+1)−1

𝜁𝛼 − 1

[︃
(1 − 𝜁−𝜅)𝛼

𝜃 + 𝜁𝛼𝜅 (1 − 𝜁−𝜅)𝛼

]︃
,
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Figure 34 – Cumulative distribution function and probability density function for Burr XII. The parameter
set not explicitly occurring in figure frame is {𝛼 = (0.25, 0.75, 1.00) , 𝜃 = (0.900, 0.675, 0.225)},
respectively for the blue, red and black curves.

Source: the own author.

Figure 35 – Surface parameter defined by the parameter variation 𝛼 and 𝜃, for the model.

Source: the own author.

where 𝜁 =
[︁
1 +

(︁
𝑥
𝜎

)︁𝜌]︁
.

With the parameter set given by, 𝜉 = (𝛼, 𝜃) and 𝜏 = (𝜌, 𝜅, 𝜎), the graph of the hazard
rate function is given by Figure 36.

Then, for the 𝑇 factor function, one reads,

𝑇 (𝑧) = (𝜅− 1)(𝑧 − 1)(𝑧𝜅 − 1) [(𝑧𝜅 − 1)𝛼 + 𝜃] + 𝑧(𝑧𝜅 − 1) [(𝑧𝜅 − 1)𝛼 + 𝜃]

+ (𝛼− 1)𝜅𝑧𝜅−1𝑧(𝑧 − 1) [(𝑧𝜅 − 1)𝛼 + 𝜃]

− 𝛼𝜅𝑧𝜅−1(𝑧𝜅 − 1)𝛼−1𝑧(𝑧 − 1)(𝑧𝜅 − 1),

and, for 𝑧 ≡ 1 +
(︁

𝑥
𝜎

)︁
> 1, 𝑥 > 0,

𝑟′(𝑧)
𝑟(𝑧) = 𝑇 (𝑧)

𝑧(𝑧 − 1)(𝑧𝜅 − 1) [(𝑧𝜅 − 1)𝛼 + 𝜃] .
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Figure 36 – The parameter set not explicitly occurring in figure frame is 𝛼 = (0.50, 1.00, 1.20) and 𝜃 =
(0.038, 0.125, 0.900), respectively for the blue, red and black curves.

Source: the own author.

Now, as customary, one will proceed to the designation of the separation regions induced
by the 𝑇 factor function, as addressed by the graphs below.

Figure 37 – The parameter 𝜃 is kept fixed at 0.047. The bottom right graph returns the values near the ones
next above, even for different values of 𝛼. The 𝜅 parameter receives values 0.5, 1.0 and 1.5, for
all situations.

Source: the own author.
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As was pointed out in last chapters, the shape of the distribution, through hazard function,
can be pictured by mean of Qian technique (QIAN, 2012). This is what is observed in Figure
37 and similar commentaries made above, in corresponding chapters.

6.2.2 TMOBXII Quantile Function

Let 𝑋 a random variable following TMOBXII distribution. Then, the quantile function of
𝑥 ∈ 𝑋 is given by

𝑄TMOBXII(𝑢) = 𝜎

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣1 +

(︁
1−𝑢
𝜃𝑢

)︁ 1
𝛼

(︁
1−𝑢
𝜃𝑢

)︁ 1
𝛼

⎤⎥⎥⎦
1
𝜅

− 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
𝜌

, (6.3)

where 𝑢 = 𝐹−1(𝑥, 𝜉, 𝜏 ), the pre-image of 𝑥 by 𝐹 .

6.2.3 Moments

As was developed in the last chapters the expressions and values of the mean and variance
is allowable to be calculated with the methods described on the proper section of the referred
chapters. It happens that, as the natural complexity of the functions describing the distributions
tends to increase, as is seen on the long expressions read in the text, some operational calculus
may be hard to implement, even if numerical approaches are in use, due to problems of
convergence, or nonintegrability, as was pointed out earlier.

6.2.4 Estimation

Let 𝑥𝑖, 𝑖 = 1, · · · , 𝑛, be a sequence of an 𝑛-size random sample. The log-likelihood for
the TMOBXII reads,

𝑙(𝑥𝑖, 𝜉, 𝜏 ) = 𝑛 log 𝛼𝜅𝜌𝜃
𝜎𝜌

+ (𝜌− 1)
𝑛∑︁

𝑖=1
log 𝑥𝑖 + (𝛼− 1)

𝑛∑︁
𝑖=1

log (𝜁𝜅 − 1)

+ (𝜅− 1)
𝑛∑︁

𝑖=1
log 𝜁 − 2

𝑛∑︁
𝑖=1

log {𝜃 + (𝜁𝜅 − 1)𝛼},

where,

𝜁𝑖 = 1 +
(︂
𝑥𝑖

𝜎

)︂𝜌

. (6.4)
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Following the ideas developed in the chapters above, one calculates the derivatives of
𝑙(𝑥𝑖, 𝜉, 𝜏 ) in order to proceed in deriving the MLEs, through score vectors and consequent
Hessian. They read,

𝜕𝑙(𝑥𝑖, 𝜉, 𝜏 )
𝜕𝛼

= 𝑛

𝛼
+

𝑛∑︁
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log (𝜁𝜅 − 1) − 2
𝑛∑︁

𝑖=1

(𝜁𝜅 − 1)𝛼 log (𝜁𝜅 − 1)
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6.2.5 MLEs

Setting the derivatives of the log-likelihood function for (𝛼, 𝜃, 𝜌, 𝜅, 𝜎) to zero, the MLEs
(𝛼̂, 𝜃, 𝜌, 𝜅̂, 𝜎̂) are obtained by numerical method. The approximate variances and the CIs of
the parameters are obtained by inverting the observed Fisher matrix.

The 100 · (1 − 𝛾)% symmetric approximate normal CIs of (𝛼, 𝜃, 𝜌, 𝜅, 𝜎) are constructed
by (︂

𝜑− 𝑧𝛾/2

√︁
Var(𝜑), 𝜑+ 𝑧𝛾/2

√︁
Var(𝜑)

)︂
where 𝑧𝛾/2 is the upper 𝛾/2 point of standard normal distribution and 𝜑 can be 𝛼, 𝜃, 𝜌, 𝜅 and
𝜎.

6.3 SIMULATIONS

In this section a simulation study is provided in order to verify the asymptotic properties
for the maximum likelihood estimators. To do this, an inverse method is considered and, thus,
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Equation (6.3) is used. The simulation algorithm below was used:

• Generate values from a distribution X∼U(0, 1), where 𝑈 is the uniform distribution in
(0, 1);

• The inverse method is used and, therefore, the quantile function given in Equation (6.3);

• Simulated TMOBXII distributed data of 𝑛 ∈ {50, 100, 150, 300} are obtained by means
of the above two items and 1000 replicas of Monte Carlo were considered;

• Two scenarios are considered:

1. (𝛼, 𝜃, 𝜌, 𝑘, 𝜎) = (0.5, .0.2, 1.6, 0.7, 1.4).

• Generated data is submitted to ML estimation to obtain MSE’s.

Table 16 gives the means, bias and MSEs for (𝛼, 𝜃, 𝜌, 𝜅, 𝜎). The MSE values decrease as
the sample size increases as expected. Further, smaller values of the MSE at a specified pair
are associated to the smaller parameter values.
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Table 16 – AEs, Bias and lower and upper bounds of 95% (HPD) CIs of the parameter - first scenario

n True AE Bias MSE 95% Lower Upp
50 0.5 0.5514 0.0514 1.4197 46.7 -2.6741 3.777

0.2 0.5909 0.3909 0.2656 88.4 0.04439 0.8325
1.6 1.1817 -0.4182 9.2492 14.9 -1.1906 3.5541
0.7 1.1826 0.4826 2.5314 67.4 -0.3101 2.6754
1.4 1.3651 -0.0348 5.9228 38.7 -0.5532 3.2836

100 0.5 1.0378 0.5378 1.2918 54.1 -2.4381 4.5139
0.2 0.5228 0.3228 0.2121 82.9 0.0555 0.7978
1.6 1.2580 -0.3419 6.0797 21.8 -2.4687 4.9848
0.7 0.6908 -0.0091 0.3075 75.9 -0.0282 1.4100
1.4 1.8656 0.4656 2.1534 36.9 0.3070 3.4243

150 0.5 0.4959 -0.0040 1.0587 43.6 -1.8131 2.8049
0.2 0.4868 0.2868 0.1998 76.5 0.0718 0.7289
1.6 1.5717 -0.0282 10.5427 22.2 -1.4356 4.5790
0.7 0.9272 0.2272 0.5000 72.1 0.2112 1.6432
1.4 1.2510 -0.1489 3.5165 28.9 -0.2179 2.7201

300 0.5 1.0856 0.5856 1.4327 67.4 -2.5475 4.7188
0.2 0.4102 0.2102 0.1382 83.4 0.0585 0.7808
1.6 1.2007 -0.3992 3.7037 35.8 -2.3525 4.7540
0.7 0.6462 -0.0537 0.0666 88.6 0.0733 1.2191
1.4 1.2740 -0.1259 1.3649 45.6 -0.4279 2.9760

6.4 APPLICATIONS

In this section, one is provided with applications considering a real data set and a simulated
one in order to provide the overfit of the TMOBXII model, as well as to show the flexibility of
the new model. To do this, some well-known models are considered as a comparative models:

• Weibull distribution (W), (DASH; NANDI; SETT, 2016);

• EXP-W, (BEL GOLAN; ASHKENAZY, 2013);

• KW-W, (NADARAJAH, 2010);

• Gumbel, (LIU; LIU, 2018);

• Logistic, (ZANG et al., 2019);

• BXII, (SáNCHEZ, 2019);
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• EXP-BXII, (TSAI et al., 2021);

• KW-BXII, (AFIFY; MEAD, 2017);

• B-BXII, (PARANAÍBA et al., 2011).

As was done in the cases before, a wide search was performed in order to select the above
distributions, always keeping in mind the nucleus of of the baseline distribution, i.e., the Burr
XII, its characteristics and performance while adjusting different types of data, for several kinds
of phenomena.

6.4.1 Computational Platform

In this section, we will describe some of the functions, packages and estimation methods
that have been used on the simulations and graphing processes. The software used to create
the graphs, obtain the estimators and verify the flexibility of the model, in terms of fit, was
R, (R Core Team, 2013) through RStudio environment, (RStudio Team, 2020).

Regarding the estimation method, the maximum likelihood method was used to obtain the
estimators for the parameters of each given model. Here, the CG method is considered for the
first application and, for the second one, the SANN method was chosen. These choices were
made because their respective results were more satisfactory, in terms of goodness of fit, when
compared to those obtained using another method.

Most of the initial guesses were obtained through heuristic method by using the GenSA
and MASS R packages. When the initial guesses from this method provided unsatisfactory
results, or when there was a problem of convergence, the guesses were chosen randomly.

Furthermore, the statistics of Anderson Darling (A*) and Cramer Von Mises (W*) were
used to verify the performance of the proposed models when compared to those mentioned
above.

6.4.2 Maternal mortality

The first data set does refer to death of women at fertile age (10 to 49 years) divided by
1.000 in the five brazilian regions, along the years 2016 to 2020, summing up 25 observations.
They represent maternal mortality and late maternal mortality and have its origins in Sistema
de Informações sobre Mortalidade (SIM)- System of Information about Mortality-. The data
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set is described below and is post in decreasing order, with the year, and according to the five
brazilian regions, that is to say, counted with periodicity 5. The order of regions is as follows:
North, Northeast, Southwest, South and Midwest, (WOMEN, 2020). The original data are:

6844, 21002, 31333, 9109, 5777, 5741, 17963, 27082, 8520, 4952, 5762, 17968, 26430,
8508, 5025, 5679, 18394, 26658, 8762, 4873, 5502, 18917, 28218, 9216, 5294.

The data, as seen in set above, leads to the following descriptive statistics (see Table 17).
Note that the amplitude here is reasonably large, showing a sharp discrepancy among regions.
The minimum refers to the number of deaths in the Midwest in 2017, while the maximum
does the Southeast in 2020. Note, however, that both regions suffered a significant increasing
in deaths of women, when one compares the years 2017 and 2020.

Table 17 – Descriptive statistics for the first data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.873 5.741 8.762 13.341 18.917 31.333

The Table 18 shows the results of the parameters estimation process, through maximum
likelihood. Additionally, it also show statistical results concerned by 𝑊 * and 𝐴*. Note that the
smallest values were obtained by the TMOBXII, followed by EXP-W.

Table 18 – Estimation results for the first data set

Model 𝛼̂ 𝜃 𝜎̂ 𝜌 𝜅̂ 𝑊 * 𝐴*

TMOBXII 0.0020 0.9946 86.000 1.1000 0.0156 0.2118 1.3156
(0.00008) (0.0001) (0.0002) (0.0002) (0.0001)

W - - 12.0946 1.4248 - 0.2686 1.5645
(-) (-) (1.7387) (0.2361) (-)

EXP-W 91.4869 - 0.3667 0.1352 - 0.2416 1.4421
(18.3693) (-) ( 0.0006) (0.0012) (-)

KW-W 0.0478 1.0000 19.7906 30.7049 - 0.2816 1.6220
(0.0120) (0.2526) (0.0030) (0.0030) (-)

Gumbel 9.30108 6.3021 - - - 0.2812 1.6362
(1.3199) (1.0915) (-) (-) (-)

Logistic 12.3012 5.2949 - - - 0.3286 1.8891
(1.9015) (0.8643) (-) (-) (-)
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6.5 RAYLEIGH-TAYLOR

A second application is addressed to time, when a Rayleigh-Taylor hydrodynamic system
is allowed to evolve and a particular situation is studied: the time for the system to achieve
a given state of turbulence. The Rayleigh-Taylor problem is briefly describe below. However,
the Table 21, whose columns are the referred times, noise and noisy smooth length, for the
simulation, one can study the series of times in order to gain statistical insight about the
problem of evolution of turbulence.

6.5.1 A Few Notes on Turbulence

The word turbulence, from Late Latin turbulentia "trouble, disquiet". At not too late times,
it is a reference to atmospheric eddies that affect airplanes, by 1918, (SCHMITT, 2017). Nowa-
days, in technical terms, it is referred to as an important branch of physics called Hydrody-
namics, with interfaces on condensed matter physics and nonlinear dynamics, for example,
(SAGDEEV D. A. USIKOV, 1992), (BENISTON, 1998). As direct references one includes negative
temperatures, anomalous diffusion and the concept of power-law scaling in many-body pro-
blems. In general, the turbulence is related to no-unique solutions or that depend sensitively on
initial conditions, leading to the problem of predictability and his study. With wide applications
on Engineering, geophysics, biology, astrophysics, cosmology and, recently, on financial mar-
kets, (MANTEGNA ROSARIO N.; STANLEY, 1996), (FALKOVICH GREGORY; SREENIVASAN, 2006a),
(UTHAMACUMARAN, 2020), (BARDINA; COAKLEY; MARVIN, 1992).

6.5.2 Waves and Instabilities: Rayleigh-Taylor

Before entering the Rayleigh-Taylor phenomenon, (RAYLEIGH; STRUTT, 2011), properly,
some elements of the explanation for the roots of instability are provided. The common sense
is allowed to believe that the intuitive knowledge of instability is just related to the concept
of waves. But waves are a very general feature of fluids. Several types of waves occur in
incompressible fluids, indeed, almost always taking place at surfaces. But not always. The
presence of an interface between two dissimilar fluids allows vorticity to be generated across
the surface layer, leading to wave propagation along the given interface. That one then forming
a tangential discontinuity allowing only the normal component of the velocity to be continuous.



128

In some cases, the amplitude of the wave fades due to damping but, when this is not the case,
it is possible for the amplitude of the wave to grow up exponentially. For more details on the
theme, the reader is addressed to several good textbooks on hydrodynamics, with emphasis
on statistical mechanics, such as (MONIN A. M. YAGLOM, 2007).

Backing to the interface phenomena consider two liquids exhibiting different values for their
respective density. Under the influence of gravity a heavy fluid with density 𝜌+ is supported
by a lighter one, say, with 𝜌−, leading to an unstable situation, known as Rayleigh-Taylor

instability.

Figure 38 – . As the difference in density leads to instability, the heavier fluid interpenetrates the lighter one,
as if the former was pushed by the later in a battle for occupying spaces.

Fonte: Chiel van Heerwaarden. http://github.com/microhh

It is possible for the interfacial perturbations to be composed of one wavelength, say 𝜆,
or to be made of a spectrum, that is to say, comprised of a superposition of many waves.
In the first case, the wavelength will grow exponentially with time before saturating to a
constant terminal velocity, at late time. When the lighter fluid penetrates the heavy one, the
phenomenon is called bubbles while the emerging fingers generated by the later is termed
spikes.

When dealing with a spectrum of waves, the interaction of the resulting modes, with each
other, is the cause of turbulent flow, who is characterized by a high degree of mixing between
the fluids under analysis. For the simulation one is treating here, two fluids with different
densities are concerned and with a specified initial condition such that, at 𝑡 = 𝑡0, the system
undergoes a process in accordance with the Law of Nature. The Figure 39 below shows this
condition. The process is modeled in stages. In first stage a small amplitude perturbation is
observed, if compared to the initial wavelength of the process. By this hypothesis, the equations
of motion can be linearized such that an exponential instability growth is deduced, as pointed
out above. At early times, in the vicinity of 𝑡 = 𝑡0, the sinusoidal pattern, given by Figure 39,
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Figure 39 – Initial condition for the Rayleigh-Taylor process physical simulation. The red as blue fluids are of
different densities and are contained in a rectangular region.

Source: the own author.

is preserved until the time that the system enters into another stage, when nonlinear effects
come to light, leading to spikes and bubbles.

In a second stage, the structures of pattern that emerge can be modeled by equations
describing buoyancy drag of the portions appearing in the mixing processes, leading to an
approximately constant growth rate, in time.

6.5.3 Physical Simulation

In this section a brief description about the method and simulation process is presented,
as well as the statistical procedure with the acquired data.

Back in the Section 4.7.5 from Chapter 4, the Figure 17 shows how particles enter into
account in the process of suavization through smoothing length ℎ. There, the general process
keeps this function constant along the simulation. However, here, a random initial condition
is established by allowing the aforementioned smoothing length to receive values according to
uniformly distributed random numbers, 𝜖(𝑧), inside the interval (0, 1), namely,

ℎ(𝑧; 𝜂0) = 1 + 𝜂0𝜖(𝑧)|(0,1)

where 𝜂0 = 1.2.
The immediate consequence of this choice for the initial condition is the effect of, observed

and expected, process of evolution of turbulence. This is of wide practical applications in control
theory of engineering processes, (HIGH-SPEED. . . , 2019), (YIBO et al., 2022).

Some domain and reference values for the physical model is given in the Table 19, below.
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Table 19 – Domain and reference values for the simulation process.

𝐿𝑥 𝐿𝑦 𝜌+ 𝜌− 𝑅𝑒 𝑡𝑠

1.0 𝑚 2.0 𝑚 1.8𝐾𝑔/𝑚3 1.0 𝐾𝑔/𝑚3 4200 100.0 s

where 𝐿𝑥, 𝐿𝑦 stand for the simulated physical environment where the fluids evolve its
dynamics, as seen at Figure 40; 𝜌± refer to heavier and lighter densities of involved fluids and,
𝑅𝑒, is the nondimensional Reynolds number. The process lasts 𝑡𝑠 time units. For each random
initial condition on the smoothing length, the time for the computer simulation was about 3
to 5 hours, as was described in Table, 20.

Order Time Order Time Order Time
1 11198.33 21 10627.03 41 10939.56
2 10251.22 22 12037.93 42 14444.74
3 13284.47 23 10226.31 43 11875.98
4 13284.47 24 13351.18 44 12467.77
5 13401.75 25 10969.26 45 13110.37
6 13117.33 26 13135.60 46 13221.97
7 10982.38 27 14857.80 47 15055.44
8 13899.09 28 11894.26 48 13254.20
9 11650.80 29 13189.25 49 15299.19
10 12041.82 30 11558.30 50 15102.00
11 10544.57 31 12665.61 51 14575.16
12 10219.57 32 12307.52 52 14378.32
13 9958.000 33 10662.70 53 9940.42
14 13501.97 34 10766.21 54 13611.19
15 13230.37 35 11555.70 55 12224.28
16 11658.38 36 14066.94 56 14128.68
17 13227.27 37 10300.74 57 9962.76
18 12473.52 38 13155.11 58 14597.73
19 10922.39 39 13869.11 59 15023.49
20 13505.65 40 10485.89 60 13185.11

Table 20 – Computer time for the simulation, since the beginning, for each random initial condition in the
smoothing length, in seconds.

On generating the plots in Figure 40, the simulation was carried out by pysph python
modulo with modified stochastic initial conditions.

At Table 22, the Min and Max times do refer to the minimum and maximum times that
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Figure 40 – Snapshots of the Rayleigh-Taylor process as evolved in smoothed particle approach.

Source: the own author.

the system access a given state of turbulence. As is shown in the same table, the mean time
is an important result in order to gain insight and propose models for controlling turbulence,
if possible, or its effects.

The Table 23 shows the results for the parameter estimation in concern. Furthermore, the
results exhibited by the statistics described reinforce the claim of satisfactory results.
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Observation Time Noise Noisy hdx Observation Time Noise Noisy hdx
1 9.99728 0.0446 1.0535 31 9.99201 0.1517 1.1820
2 9.98711 0.6569 1.7883 32 9.98598 0.1511 1.1813
3 9.98141 0.3124 1.3749 33 9.99501 0.3749 1.4499
4 9.98800 0.7463 1.8956 34 9.98260 0.8429 2.0115
5 9.99422 0.7226 1.8671 35 9.99362 0.0760 1.0912
6 9.98038 0.7259 1.8711 36 9.97962 0.7440 1.8928
7 9.98437 0.2688 1.3226 37 9.98241 0.8141 1.9769
8 9.98124 0.8261 1.9913 38 9.99802 0.1122 1.1346
9 9.99584 0.3860 1.4632 39 9.98891 0.2622 1.3146
10 9.99333 0.4291 1.5149 40 9.97624 0.9297 2.1156
11 9.99388 0.0110 1.0132 41 9.98472 0.4003 1.4804
12 9.98654 0.0061 1.0073 42 9.98940 0.5310 1.6372
13 9.99795 0.6303 1.7564 43 9.99627 0.6999 1.8399
14 9.99874 0.6489 1.7787 44 9.99574 0.6172 1.7406
15 9.99424 0.3597 1.4316 45 9.97441 0.9434 2.1321
16 9.99311 0.7126 1.8551 46 9.98390 0.5701 1.6841
17 9.98746 0.5860 1.7032 47 9.99007 0.9426 2.1311
18 9.99151 0.2435 1.2922 48 9.99145 0.9278 2.1134
19 9.99569 0.7410 1.8892 49 9.98014 0.9587 2.1504
20 9.98375 0.1923 1.2308 50 9.98695 0.8953 2.0744
21 9.99255 0.4697 1.5636 51 9.99472 0.0441 1.0529
22 9.98530 0.0739 1.0887 52 9.99358 0.6822 1.8186
23 9.99698 0.6297 1.7556 53 9.98304 0.4821 1.5785
24 9.98556 0.2390 1.2868 54 9.99199 0.8036 1.9643
25 9.99963 0.7289 1.8747 55 9.98986 0.0346 1.0415
26 9.97339 0.9866 2.1839 56 9.98392 0.8557 2.0268
27 9.99570 0.4371 1.5245 57 9.98385 0.9884 2.1861
28 9.99208 0.3811 1.4573 58 9.97660 0.9773 2.1728
29 9.99874 0.5295 1.6354 59 0.98705 0.6005 1.7206
30 9.99545 0.4786 1.5743 60 9.99519 0.7806 1.9367

Table 21 – The sequence of times to a given state of the system of Rayleigh-Taylor process with initial noise
condition and corresponding noisy random smooth length.

Table 22 – Descriptive statistics for the Rayleigh-Taylor time data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
9.97339 9.98392 9.98963 9.98898 9.99436 9.99963
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Table 23 – Estimation results for the second data set

Model 𝛼̂ 𝜃 𝜎̂ 𝜌 𝜅̂ 𝑊 * 𝐴*

TMOBXII 0.2995 316.7073 11.8366 32.7800 3.4107 0.1137 0.6944
(0.0004) (0.0135) (0.0004) (0.0004) (0.0007)

BXII - - - 21.4266 0.0202 0.1170 0.7241
(-) (-) (-) (3.9633) (0.0015)

EXP-BXII 5273.4310 - - 140.1278 269.5379 0.1171 0.7247
(1020.5350) (-) (-) (3.8121) (0.0001)

KW-BXII 2508.6100 2070.3900 - 9.1557 0.2744 0.1168 0.7221
(0.0001) (0.0016) (-) (0.0001) (0.0001)

B-BXII 39.6149 9.3204 - 6.3603 0.1155 0.1179 0.7310
(<0.0001) (<0.0001) (-) (1.3210) (0.0132)

B-W 205.8366 1037.3340 107.4710 - 10.1493 0.1183 0.7345
(0.0014) (1.8759) (0.1216) (-) (0.0009)

EXP-W 21.8136 - 484.7488 9.9633 - 0.1475 0.9673
(4.0464) (-) (22.8358) (<0.00001) (-)

KW-W 59.4386 146.0447 133.4699 9.9227 - 0.1170 0.7237
(0× 1042) (16.6398) (13.0851) (0.0067) (-)

6.6 CONCLUSIONS

In this chapter a new model, called Transformed Marshall-Olkin Burr-XII was developed and
studied. Some inherent mathematical properties in the model were studied through the text.
Furthermore, a simulation study was performed in order to confirm the asymptotic properties
of the parameters of the model. Finally, two sets of real data were worked with the aim to
show the performance of the proposed distribution. It was verified that the model at hand has
shown higher performance when compared with others considered in both data set.

The first one gives the amount of women deaths at fertile age. It is a real data set and, as
so, has important consequences in the attempts of implementing countermeasures in order to
reduce these numbers. The second data set was obtained by simulating a physical system in
such a way that the times of occurrence of a desired scenery, was reached. The importance of
understanding processes like that had its importance discussed on the text.
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7 GENERAL CONCLUSIONS AND FUTURE WORKS

7.1 METHODS

In this work a class of transformation was proposed in order to generate new probability
distributions. Along the development, new techniques was provided to overcome the natural
difficulties arising as the process develops. As was indicated in the text, inasmuch as proposition
of new distributions increases, indeed do the complexity of functional relations describing them.
Properties like moments calculation turns out to be hard or even resulting in divergence. Hence,
even though the tools provided by computers and techniques of approximations, it is possible
to one find results which is not satisfactory or even ill estimated, whatever the causes and, in
reference to the latter, due to failing in express qualitative hypotheses in quantitative form,
(GOOD, 2008).

A new method was presented that avoid the use of integrals for calculating moments, as
was pointed out in Chapter 2. For example, the integral for the expected value of the 𝑇𝑀𝑂𝐸

model, even for 𝛼 = 1, as given by Equation (3.11), is not as ease to calculate as its source
baseline.

Instead of the traditional ∫︁
Ω

𝑥𝑓(𝑥)𝑑𝑥,

where Ω stands for the domain under consideration, one can use 𝑇 (𝑀𝑋 ∘ ℱ), 𝑇 the dif-
ferential operator given by Equation (2.15). Of course, for 𝐹,ℱ ,𝒢, · · · , sufficiently smooth,
differentiable, the task reduces to algebraic calculations. For the TMOE case, one obtains the
table,

Model Mean (𝛼 = 1.2) Var (𝛼 = 1.2) Mean (𝛼 = 1.0) Var (𝛼 = 1.0)

Num_TMOE 0.2616 0.1838 0.2575 0.2257

MT_TMOE 0.2713 0.1529 0.2778 0.1543

fgm_TMOE - - 0.1875 0.2500

The scheme above illustrates, for the TMOE model, the results for mean and variance
through the methods developed and applied along the text. As was emphasized there, as long
as the mathematical expressions increase in its forms, so do the complexity of solving them and
express simple results derived from them. One source of this behavior is the use of integrals
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which, in the generality, are not even solvable. This must be understood in the sense that, if
one could put all functions into a bag and select one from within, the probability of it being
analytically integrable, or even numerically integrable, is indeed short. Our propose suggest a
process that is not integral-directed, instead, algebraic inspired. The resources required being
differentiation of algebraic continuous and differentiable functions. The formal mathematics
are under construction and must be worked hardly for generalizations. As one can see in the
scheme above, the results differ according to the methods used, but are better related with
the increasing of the value of the parameter 𝛼. A correcting expression is on the way in order
to better correct theses values. Basically, it is given by,

𝑓𝑐𝑜𝑟𝑟 =
(︃
𝑐+ 𝑑

𝑎+ 𝑏

)︃
det (𝑀)𝐺𝛼(𝑥; 𝜉, 𝜏 )

det (𝑀) +𝐺𝛼(𝑥; 𝜉, 𝜏 ) [1 −𝐺(𝑥; 𝜉, 𝜏 )]𝛼

where det(𝑀) is the determinant of M, given at Chapter 2. The final expression, then, reads,

𝑀 ∘ ℱ(𝑥) = 𝑓𝑐𝑜𝑟𝑟𝐹 (𝑥, 𝜉, 𝜏 ).

On the table, above, the trace − refers to lack of result following the approach of analytical
integration due to the complexity of the integrand. This, however, does not imply absence of
this kind of solution.

7.2 SIMULATIONS

The parameters of the worked distributions was estimated by means of the maximum

likelihood method. In this sense, 𝑥𝑖, 𝑖 = 1, · · · , 𝑛, was a random 𝑛-sample size of the 𝑇𝑀𝑂-
model distribution, with vector parameters (𝜉, 𝜏 ), as explained in Chapter 3. There, the log-
likelihood function, as seen at Equation 3.17, lead to the calculation of the score vector by
means of the Equation 3.18. These, together with the Hessian 3.20, was the ingredients for
the process of estimation.

As was emphasized along the text some simulations was performed in order to verify the
asymptotic character of the estimators. The finite sample performance of the MLEs is assessed
for the given distributions appearing along the text.

The processes was done by varying the true parameters and the samples size, 𝑛, at hand,
as well as by employing a Monte Carlo simulation with a 1000 replications. The procedure
was performed in order to quantify some asymptotic properties of the MLEs for the model
parameters. In these realizations the 𝑅 software was used.
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7.3 APPLICATIONS

Once the distributions has been set, some applications- general and physical ones-, was
performed in order to gain insight of the underlying processes while described by those:

1. Epidemiology. Data related to COVID-19 cases;

2. Hydrodynamics. Data of Taylor-Green process, for a given approach, leading to instability
in the numerical solutions;

3. Astrophysics. Sunspots;

4. Women death at fertile age;

5. Hydrodynamics. Rayleigh-Taylor process.

At (1), as was depicted in Chapter 4, some data was collected doing reference to the
number of cases, at a given day, of COVID-19 incidence in the whole State of Santa Catarina.
The idea, among others, was to gain insight of the virus spreading while considering the
proposed models as well as the potential influences driving the diffusion among the population.
Features like mean temperature, humidity, population density, was enquired as forces increasing
the diffusibility, among others. As can be seen at Figure 20, the number of cases correlates
with population density, as one expect. However, a stronger correlation was expected once
the spreading of virus is intuitively proportional to the number of entities , in this case, the
number of individuals porting it, contained in a given compartment, better saying, region,
State, Municipality. These measure results, we believe, is so in virtue of the choice of data
acquisition, i.e., the snapshot of a day, performed for the data analysis. As a future work, it
is possible to include, besides a wide range of data taken with intervals as instantaneously as
it can be produced, for a wider period of time, an approach of dynamic probabilistic systems.
(HOWARD, 1971), in which is constructed a master equation, (BREUER, 2002), from the best
model developed, among the ones above. On this approach it is possible to include fields in
order to measure the effectiveness of mask mandates as well as social distancing, for example.

At (3), the sunspots data are used in Chapter 5 as source in the application for the
model developed there. As a developing work, some probabilities are being calculated in order
to forecast some scenarios involving the Earth magnetic field as well as the consequences
of interactions of that with the ejecting coronal mass coming from the sun in its maximal
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activity. The importance of the application was briefly discussed in the referred chapter, as
well as consequences for the environment in general. It is worth of saying that the data
under analysis are disposed under CC BY-NC 4.0 licence terms, which can be accessed at
<https://www.sidc.be/silso/infossntotmonthly>, whose data police is managed by (SILSO
data/image, Royal Observatory of Belgium, Brussels) such that images and data can be freely
downloaded as public data.

Additionally is under construction, for the near future, an application following (5.5.1), and
considering the data as seen at Table 24, below. taking into account the Sun-Earth system,

Month Max sunspot
11 264.3
8 171.7
1 116.7
7 130.7
3 76.2
6 44.5
10 39.5
11 28.3
4 120.5
9 128.7
8 126
5 178.7

Table 24 – Sample for maximum sunspots dataset. Similar to what was done above and referred in the same
sources over there considered.

as well as the interaction with the magnetic field anomalies that are being observed recently,
as one can verify, for example, at (HARTMANN; PACCA, 2009), (PAVÓN-CARRASCO; SANTIS,
2016), (AMIT et al., 2021), (MARTUCCI et al., 2022). The idea is to select the models proposed
on the thesis to promote forecasts and produce results for decision-making, when appropriate.

At (5), the second hydrodynamic applications, the emphasis was given to time to state
of turbulence. This knowledge is very important in science and technology and, specially, in
new developments and control of hypersonic flights objects, be them air-air or hybrid, water-
air, air-water systems. As the world enters in age of hypersonic dynamics, the stability of
the underlying processes depends on the sensitive knowledge of that phenomenon. Through
Control Theory, a branch of engineering, the enquire of the time to turbulence, in a given
process, is crucial for the stability of the initial condition in the interface of both media, during

https://www.sidc.be/silso/infossntotmonthly
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the evolution of motion. As the number of entities, better saying, particles is sufficiently high,
the better the statistical description is, the best will be the results concerning control.
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APPENDIX A – HESSIAN FOR THE TMOE MODEL
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APPENDIX B – HESSIAN FOR THE TMOW MODEL

Let Φ𝑥𝑎𝑏 = 1 − e−(𝑥𝑖
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𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2

Φ𝑥𝑎𝑏

− 2𝛼2
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−2(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2
Φ𝛼−2

𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝛼2𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2
Φ𝛼−1

𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−2(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2
Φ𝛼−2

𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝛼𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁2
Φ𝛼−1

𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝛼2
𝑛∑︁

𝑖=1

Θ2
1(𝛼, 𝑎, 𝑏) − Θ2

2(𝛼, 𝑎, 𝑏){︂
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

}︂2 ,
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𝜕𝑙2𝑤(𝑥; 𝜉; 𝜏 )
𝜕𝑏2 = 𝑛𝑎

𝑏2 − 𝑎2𝛼

𝑏2

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

− 𝑎2(𝛼− 1)
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝑥𝑎𝑏

− 𝑎(𝛼− 1)
𝑏2

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

+ 𝑎(𝛼− 1)
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝑥𝑎𝑏

+ 2𝑎2𝛼

𝑏2

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂2𝑎

Φ𝛼−1
𝑥𝑎𝑏 e−(𝑥𝑖

𝑏 )𝑎

− 𝑎2(𝛼− 1)
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ2
𝑥𝑎𝑏

− 𝑎𝛼

𝑏2

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

+ 𝑎2(𝛼− 1)
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝑥𝑎𝑏

− 2𝑎2𝛼2𝜃

𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝑎2𝛼𝜃

𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎 − 2𝑎2𝛼

𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝑎2𝛼2

𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−2(𝑥𝑖

𝑏 )𝑎

Φ𝛼−2
𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎 + 2𝑎𝛼𝜃
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝑎2𝛼2

𝑏2

𝑛∑︁
𝑖=1

(Θ1 − Θ2)2{︂
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

}︂2
log2

(︁
𝑥𝑖

𝑏

)︁

− 2𝑎𝛼
𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎 + 2𝑎2𝛼

𝑏2

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−2(𝑥𝑖

𝑏 )𝑎

Φ𝛼−2
𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

where

Θ2
1(𝛼, 𝑎, 𝑏) = 𝜃

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

e−(𝑥𝑖
𝑏 )𝑎

log
(︂
𝑥𝑖

𝑏

)︂

Θ2
2(𝛼, 𝑎, 𝑏) =

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏 log

(︂
𝑥𝑖

𝑏

)︂
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𝜕2𝑙𝑤 (𝑥; 𝜉; 𝜏 )
𝜕𝜃𝜕𝛼

= 2
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−2𝛼(𝑥𝑖

𝑏 )𝑎

[︂
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

]︂2

+ 2
𝑛∑︁

𝑖=1

Φ𝛼
𝑥𝑎𝑏e−𝛼(𝑥𝑖

𝑏 )𝑎

log Φ𝑥𝑎𝑏[︂
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

]︂2 = 𝜕2𝑙𝑤 (𝑥; 𝜉; 𝜏 )
𝜕𝛼𝜕𝜃

,

𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝛼𝜕𝑎

= −
𝑛∑︁

𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

log
(︂
𝑥𝑖

𝑏

)︂
+

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝑥𝑎𝑏

− 2𝛼𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎 − 2𝜃

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

+ 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
log Φ𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝛼

⎧⎪⎨⎪⎩
𝑛∑︁

𝑖=1

𝜃
(︁

𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

− Φ𝛼
𝑥𝑎𝑏 log Φ𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

⎫⎪⎬⎪⎭
×

⎧⎪⎨⎪⎩
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁𝑎
− 𝜃

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

⎫⎪⎬⎪⎭
= 𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )

𝜕𝑎𝜕𝛼
,
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𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝛼𝜕𝑏

= 𝑎

𝑏

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

− 𝑎

𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝑥𝑎𝑏

− 2𝑎𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑏

+ 2𝑎𝛼𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏 log Φ𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝑎
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝛼𝑎
𝑏

⎧⎪⎨⎪⎩
𝑛∑︁

𝑖=1

𝜃
(︁

𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

− Φ𝛼
𝑥𝑎𝑏 log Φ𝑥𝑎𝑏

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

⎫⎪⎬⎪⎭
×

⎧⎪⎨⎪⎩
𝑛∑︁

𝑖=1

𝜃
(︁

𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

−
(︁

𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

⎫⎪⎬⎪⎭
= 𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )

𝜕𝑏𝜕𝛼
,

𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝜃𝜕𝑎

= −2𝛼𝜃
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−2𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
{︂

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎
}︂2

+ 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

+ 2𝛼
𝑛∑︁

𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏 log

(︁
𝑥𝑖

𝑏

)︁
{︂

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎
}︂2 = 𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )

𝜕𝑎𝜕𝜃

𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝜃𝜕𝑏

= 2𝑎𝛼𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−2𝛼(𝑥𝑖

𝑏 )𝑎

{︂
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

}︂2

− 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼−1
𝑥𝑎𝑏{︂

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎
}︂2 = 𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )

𝜕𝑏𝜕𝜃

,
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𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝑎𝜕𝑏

= −𝑛

𝑏
− (𝛼− 1)

𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

Φ𝑥𝑎𝑏

+ 𝑎𝛼

𝑏

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

log
(︂
𝑥𝑖

𝑏

)︂

+ 𝑎(𝛼− 1)
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝑥𝑎𝑏

+ 𝑎(𝛼− 1)
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−2(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ2

𝑥𝑎𝑏

− 𝑎(𝛼− 1)
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝑥𝑎𝑏

+ 𝛼

𝑏

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝑏

)︂𝑎

+ 2𝑎𝛼2𝜃

𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

+ 2𝑎𝛼2

𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
Φ𝛼−2

𝑥𝑎𝑏 e−2(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁2𝑎
Φ𝛼−2

𝑥𝑎𝑏 e−2(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝑎𝛼𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

+ 2𝑎𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

log
(︁

𝑥𝑖

𝑏

)︁
Φ𝛼

𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖
𝑏 )𝑎

− 2𝛼𝜃
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

+ 2𝛼
𝑏

𝑛∑︁
𝑖=1

(︁
𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

− 2𝑎𝛼2
𝑛∑︁

𝑖=1
log

(︂
𝑥𝑖

𝑏

)︂⎧⎪⎨⎪⎩
𝑛∑︁

𝑖=1

𝜃
(︁

𝑥𝑖

𝑏

)︁𝑎
e−𝛼(𝑥𝑖

𝑏 )𝑎

−
(︁

𝑥𝑖

𝑏

)︁𝑎
Φ𝛼−1

𝑥𝑎𝑏 e−(𝑥𝑖
𝑏 )𝑎

Φ𝛼
𝑥𝑎𝑏 + 𝜃e−𝛼(𝑥𝑖

𝑏 )𝑎

⎫⎪⎬⎪⎭
2

= 𝜕2𝑙𝑤 (𝑥𝑖; 𝜉; 𝜏 )
𝜕𝑏𝜕𝑎
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APPENDIX C – HESSIAN FOR THE TMOBS MODEL

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼2 = 𝑛 log 𝜈

𝛼
− 𝑛 (𝛼 log 𝜈 + 1)

𝛼2

− 2𝜈𝛼
𝑛∑︁

𝑖=1

e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) log 𝜈2 + 2𝜃𝛺𝛼 log𝛺2

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

+ 2
𝜆2

𝑛∑︁
𝑖=1

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) log 𝜈
[︂(︁

𝑥𝑖

𝛽

)︁ 1
2 −

(︁
𝛽
𝑥𝑖

)︁ 1
2
]︂2

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

− 1
2𝜆2

𝑛∑︁
𝑖=1

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)
[︂(︁

𝑥𝑖

𝛽

)︁ 1
2 −

(︁
𝛽
𝑥𝑖

)︁ 1
2
]︂4

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

+ 2
𝑛∑︁

𝑖=1

Θ2
𝛼𝜆𝛽(𝑥𝑖) − Ψ2

𝛼𝑚𝑝𝜆𝛽(𝑥𝑖)
{𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼}2 ,

where

Θ𝛼𝜆𝛽(𝑥𝑖) = 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) log 𝜈,

Ψ𝛼𝑚𝑝𝜆𝛽(𝑥𝑖) = 𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
log

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
− 1

2𝜆2𝜈
𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

⎡⎣(︃𝑥𝑖

𝛽

)︃ 1
2

−
(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦2

− 1
2𝜆2𝜈

𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

⎡⎣(︃𝑥𝑖

𝛽

)︃ 1
2

−
(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦2

.
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𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃2 = − 𝑛

𝜃2 + 2
𝑛∑︁

𝑖=1

𝛺2𝛼

{𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼}2 ,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜆2 = 6𝛼

𝜆4

𝑛∑︁
𝑖=1

3𝜈𝜍2(𝑥𝑖, 𝛽)
{︁
𝜃𝛺𝛼−1e−𝜔(𝑥𝑖,𝜆,𝛽) − 𝜈e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

}︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

+ 𝛼

2𝜋𝜆6

𝑛∑︁
𝑖=1

𝜍4(𝑥𝑖, 𝛽)
{︁
2𝜋𝛼𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼−2e−𝜔(𝑥𝑖,𝜆,𝛽)

}︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

− 𝛼𝜃

𝜆6

𝑛∑︁
𝑖=1

e−𝜔(𝑥𝑖,𝜆,𝛽)𝜍4(𝑥𝑖, 𝛽) {𝜈𝛺𝛼−1 −𝛺𝛼−2}
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

+ 2𝑛
𝜆2 − 3𝛼

𝜆4

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽) + 3𝜈(𝛼− 1)
𝜆4

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

𝛺

+ (𝛼− 1)
2𝜋𝜆6

𝜍4(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖.𝜆,𝛽) {1 − 2𝜋𝛺}
𝛺2

+ 2
𝜆6

𝛺

{𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼}2 ,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛽2 = −2𝛽2

2∑︁
𝑖=1

1
𝑥4

𝑖 ϒ2(𝑥𝑖, 𝛽) − 2
2∑︁

𝑖=1

𝐸(𝑥𝑖, 𝛼,𝑚, 𝑝, 𝜆, 𝛽)
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

+ 1
2𝜆2

𝑛∑︁
𝑖=1

𝜛2
3 −𝜛2

4

{𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼}2 + 2
𝑛∑︁

𝑖=1

1
𝑥2

𝑖 ϒ(𝑥𝑖, 𝛽) + 𝑛

𝛽2

− 𝛼

2𝜆2

2∑︁
𝑖=1

𝜄(𝑥𝑖, 𝛽)𝜍(𝑥𝑖, 𝛽) + 𝛼

2𝜆2

𝑛∑︁
𝑖=1

𝜄1(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)

+ (𝛼− 1)
2𝜆2

𝑛∑︁
𝑖=1

𝜄3(𝑥𝑖, 𝛽)𝜍(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

𝛺

− (𝛼− 1)
2𝜆2

𝑛∑︁
𝑖=1

𝜄1(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

𝛺

− (𝛼− 1)
4𝜆2

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)
{︃
𝜈𝜄22(𝑥𝑖, 𝛽)
𝜆2𝛺

− 𝜄22(𝑥𝑖, 𝛽)
2𝛺2

}︃
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝛼

= 𝜈𝛼

2𝜆2

𝑛∑︁
𝑖=1

𝑒−𝛼𝜔(𝑥𝑖,𝜆,𝛽)𝛺𝛼

{︂
2𝜆2 log 𝜈 −

[︂(︁
𝑥𝑖

𝛽

)︁ 1
2 −

(︁
𝛽
𝑥𝑖

)︁ 1
2
]︂}︂

{𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼}2

− 2
𝑛∑︁

𝑖=1

𝛺𝛼 log𝛺
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃𝛺𝛼

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜃

,



159

where

𝛺 =
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
,

𝜛1 = 𝛼𝜃𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)𝜍2(𝑥𝑖, 𝛽)
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
,

𝜛2 = 𝛼𝜈𝛼𝜍2(𝑥𝑖, 𝛽)e−𝛼𝜔(𝑥𝑖,𝜆,𝛽),

𝜛3 = 𝛼𝜈𝜍(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝛼𝜔(𝑥𝑖,𝜆,𝛽),

𝜛4 = 𝛼𝜈𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
𝜍(𝑥𝑖, 𝛽)𝜄(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝛽),

𝜄1 =
⎡⎣ 1

2𝛽

(︃
𝑥𝑖

𝛽

)︃ 1
2

+ 1
2𝛽

(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦ ,

𝜄2 =
⎡⎣− 1

𝛽

(︃
𝑥𝑖

𝛽

)︃ 1
2

− 1
𝛽

(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦ ,

𝜄3 =
⎡⎣ 3

2𝛽2

(︃
𝑥𝑖

𝛽

)︃ 1
2

+ 1
2𝛽2

(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦ ,

𝜍(𝑥𝑖, 𝛽) =
⎡⎣(︃𝑥𝑖

𝛽

)︃ 1
2

−
(︃
𝛽

𝑥𝑖

)︃ 1
2
⎤⎦ ,

𝐸(𝑥𝑖, 𝛼, 𝜃, 𝜆, 𝛽) = 𝛼𝜈

2𝜆2

{︃
Δ1 [𝜄1(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽) − 𝜍(𝑥𝑖, 𝛽)𝜄3(𝑥𝑖)]
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

}︃

+ 𝜈

2𝜆2
𝜄2(𝑥𝑖, 𝛽)𝜍3(𝑥𝑖, 𝛽)

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼 ×

×

⎧⎪⎨⎪⎩1
2e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) +

𝛼𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−2
𝜄(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

4𝜋𝜆2 − Δ2

⎫⎪⎬⎪⎭ ,
Δ1 =

[︂
e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝛽)

]︂
,

Δ2 =
𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
𝜄(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

2𝜆2 ,
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𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜆

= 2
𝜆3

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽)𝐷(𝑥𝑖;𝛼,𝑚, 𝑝, 𝜆, 𝛽)
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

+ 𝛼𝜈

𝜆5

𝑛∑︁
𝑖=1

𝜍4(𝑥𝑖, 𝛽)e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

+ 1
𝜆3

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽) − 𝜈

𝜆3
𝜍2(𝑥𝑖, 𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

− 𝜈

𝜆3

𝑛∑︁
𝑖=1

e−𝜔(𝑥𝑖,𝜆,𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

− −2𝛼
𝜆3

𝑛∑︁
𝑖=1

𝜍2(𝑥𝑖, 𝛽)𝐹 (𝑥𝑖, 𝜉, 𝜏 )
{︂
𝜈𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽)

}︂
{︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

}︁2

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜆𝜕𝛼

,

where

𝐷(𝑥𝑖; 𝜉, 𝜏 ) = 𝛼𝜃𝜈
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽) log

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
− 𝛼𝜈𝛼 log 𝜈e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

− 𝜃𝜈
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽),

𝐹 (𝑥𝑖, 𝜉, 𝜏 ) = 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)
(︃

log 𝜈 + 𝜍2(𝑥𝑖, 𝛽)
2𝜆2

)︃
+ 𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
log

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
,

𝜍(𝑥𝑖, 𝛽) and 𝜔(𝑥𝑖, 𝜆, 𝛽) as given above.

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜆𝜕𝜃

= −2𝛼𝜈
𝑛∑︁

𝑖=1

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
𝐻1(𝑥𝑖, 𝜉, 𝜏 ){︁

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼
}︁2

− 2𝛼𝜈
𝑛∑︁

𝑖=1

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
𝐻2(𝑥𝑖, 𝜉, 𝜏 ){︁

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼
}︁2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜃𝜕𝜆
,

where,

𝐻1(𝑥𝑖, 𝜉, 𝜏 ) = e−𝜔(𝑥𝑖,𝜆,𝛽)
[︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃

(︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

)︁𝛼]︁ 𝜕𝜔(𝑥𝑖;𝜆, 𝛽)
𝜕𝜆

,

𝐻2(𝑥𝑖, 𝜉, 𝜏 ) = e−𝜔(𝑥𝑖,𝜆,𝛽)
[︂
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝜃

(︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

)︁𝛼−1
]︂
𝜕𝜔(𝑥𝑖;𝜆, 𝛽)

𝜕𝜆
,
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𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝛽

= − 1
𝜆2

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄(𝑥𝑖, 𝛽)𝐽1(𝑥𝑖, 𝜉, 𝜏 )
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

− 1
𝜆2

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄(𝑥𝑖, 𝛽)𝜈𝛼𝐽2(𝑥𝑖, 𝜉, 𝜏 ){︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

}︁2

− 1
2𝜆2

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄1(𝑥𝑖, 𝛽) + 𝜈

2𝜆2

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛽𝜕𝛼

,

where,

𝐽1(𝑥𝑖, 𝜉, 𝜏 ) = 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)
(︃
𝛼𝜍2(𝑥𝑖, 𝛽)

2 − 𝛼 log 𝜈 − 1
)︃

+ 𝜈𝜃𝛺𝛼−1e−𝜔(𝑥𝑖,𝜆,𝛽) (𝛼 log𝛺 + 1) ,

𝐽2(𝑥𝑖, 𝜉, 𝜏 ) =
[︁
𝛼𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝜈𝜃𝛺𝛼−1e−𝜔(𝑥𝑖,𝛽)

]︁
×

×
[︁
e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) log 𝜈 + 𝜃𝛺𝛼 log𝛺 − 𝜅(𝑥𝑖, 𝜉, 𝜏 )

]︁
,

where,

𝜅(𝑥𝑖, 𝜉, 𝜏 ) = e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)𝜍2(𝑥𝑖, 𝛽)
2𝜆2 ,

𝛺 =
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
.

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝛽

= 𝛼𝜈

𝜆2

𝑛∑︁
𝑖=1

ϒ(𝑥𝑖, 𝛽)
𝑥𝑖

e−𝜔(𝑥𝑖,𝜆,𝛽)
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

− 𝛼

𝜆2

𝑛∑︁
𝑖=1

ϒ(𝑥𝑖, 𝛽)
𝑥𝑖

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼
𝑀(𝑥𝑖, 𝜉, 𝜏 ){︁

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼
}︁2

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛽𝜕𝜃

,

where
𝑀(𝑥𝑖, 𝜉, 𝜏 ) =

[︂
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜈𝜃

(︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

)︁𝛼−1
]︂

e−𝜔(𝑥𝑖,𝜆,𝛽),
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𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛽𝜕𝜆

= 2
𝜆3

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄(𝑥𝑖, 𝛽)
[︁∑︀3

𝑘=1 𝑁𝑘(𝑥𝑖, 𝜉, 𝜏 )
]︁

𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

− 𝛼2

𝜆5

𝑛∑︁
𝑖=1

𝜍3(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)𝑃 (𝑥𝑖, 𝜉, 𝜏 ){︁
𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) + 𝜃 [1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]𝛼

}︁2

− 𝛼

𝜆3

𝑛∑︁
𝑖=1

𝜍(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)

− 𝜈(𝛼− 1)
𝜆3

𝜍(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

+ 𝜈(𝛼− 1)
2𝜆3

𝜍3(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]

+ 𝛼− 1
4𝜋𝜆5

𝜍3(𝑥𝑖, 𝛽)𝜄2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

[1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)]2
= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜆𝜕𝛽
,

where,

𝑁1(𝑥𝑖, 𝜉, 𝜏 ) = 𝛼2𝜈𝛼𝜍2(𝑥𝑖,𝛽)e−𝛼𝜔(𝑥𝑖,𝜆,𝛽) − 𝛼𝜈e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

+ 𝜈𝛼𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽),

𝑁2(𝑥𝑖, 𝜉, 𝜏 ) =
𝛼2𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−2
𝜍2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

4𝜋𝜆2

−
𝜈𝛼𝜃

[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
𝜍2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

2𝜆2 ,

𝑁3(𝑥𝑖, 𝜉, 𝜏 ) = −
𝛼𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−2
𝜍2(𝑥𝑖, 𝛽)e−𝜔(𝑥𝑖,𝜆,𝛽)

4𝜋𝜆2 ,

𝑃 (𝑥𝑖, 𝜉, 𝜏 ) =
{︂
𝜈𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁𝛼−1
e−𝜔(𝑥𝑖,𝜆,𝛽) − 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

}︂
×

×
{︁
𝜈𝜃
[︁
1 − 𝜈e−𝜔(𝑥𝑖,𝜆,𝛽)

]︁
e−𝜔(𝑥𝑖,𝜆,𝛽) − 𝜈𝛼e−𝛼𝜔(𝑥𝑖,𝜆,𝛽)

}︁
,
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APPENDIX D – HESSIAN FOR THE TMOBXII MODEL

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼2 = − 𝑛

𝛼2 − 2
𝑛∑︁

𝑖=1

(𝜁𝜅 − 1)𝛼 log (𝜁𝜅 − 1)2

𝜃 + (𝜁𝜅 − 1)𝛼 + 2
𝑛∑︁

𝑖=1

(𝜁𝜅 − 1)2𝛼 log (𝜁𝜅 − 1)2

[𝜃 + (𝜁𝜅 − 1)𝛼]2
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃2 = − 𝑛

𝜃2 + 2
𝑛∑︁

𝑖=1

1
[𝜃 + (𝜁𝜅 − 1)𝛼]2

,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜌2 = ℋ1(𝑥𝑥; 𝜉, 𝜏 )

𝜌2𝑅2(𝑥𝑖, 𝜉,𝜂)𝜁15𝑄10(𝑥𝑖, 𝜉,𝜂) ,

where,

ℋ1(𝑥𝑖; 𝜉, 𝜏 ) = 2 (𝛼𝜅𝜌𝑃 )2 𝜁2𝜅+13𝑄2𝛼+8𝑆 + 2𝛼(1 − 𝛼) (𝜅𝜌𝑃 )2 𝑅𝜁2𝜅+13𝑄𝛼+8𝑆

+ 2𝛼𝜅(1 − 𝜅)𝜌2𝑃 2𝜁𝜅+13𝑄𝛼+9𝑆 − 2𝛼𝜅𝜌2𝑃𝑅𝜁𝜅+14𝑄𝛼+9𝑆

+ (1 − 𝛼) (𝜅𝜌𝑃𝑅)2 𝜁2𝜅+13𝑄8𝑆 + 𝜅(𝛼− 1)(𝜅− 1) (𝜌𝑃𝑅)2 𝜁𝜅+13𝑄9𝑆

+ 𝜅(𝛼− 1)𝜌2𝑃𝑅2𝜁𝜅+14𝑄9𝑆 − 𝑛𝜌𝑅2𝜁15𝑄10 log 𝜎 + 𝑛𝑅2 (𝜌 log 𝜎 − 1) 𝜁15𝑄10

+ (1 − 𝜅) (𝜌𝑃𝑅)2 𝜁13𝑄10𝑆 + (𝜅− 1)𝑃 (𝜌𝑅)2 𝜁14𝑄10𝑆,

and

𝑃 = 𝑃 (𝑥𝑖, 𝜉,𝜂) =
(︂
𝑥𝑖

𝜎

)︂𝜌

,

𝑄 = 𝑄(𝑥𝑖, 𝜉,𝜂) = (𝜁𝜅 − 1) ,

𝑅 = 𝑅(𝑥𝑖, 𝜉,𝜂) = [𝜃 +𝑄𝛼(𝑥𝑖, 𝜉,𝜂)] ,

𝑆 = 𝑆(𝑥𝑖, 𝜉,𝜂) = log
(︂
𝑥𝑖

𝜎

)︂2
,

with,

𝜁 = 1 +
(︂
𝑥𝑖

𝜎

)︂𝜌

= 1 + 𝑃 (𝑥𝑖, 𝜉,𝜂).

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜅2 = − 𝑛

𝜅2 − 2𝛼2
𝑛∑︁

𝑖=1

𝜁2𝜅𝑄𝛼−2 log (𝜁)2

𝑅
+ 2𝛼2

𝑛∑︁
𝑖=1

𝜁2𝜅𝑄2(𝛼−1) log (𝜁)2

𝑅2

+ 2𝛼
𝑛∑︁

𝑖=1

𝜁2𝜅𝑄𝛼−2 log (𝜁2)
𝑅

− 2𝛼
𝑛∑︁

𝑖=1

𝜁𝜅𝑄𝛼−1 log (𝜁2)
𝑅

− (𝛼− 1)
𝑛∑︁

𝑖=1

𝜁2𝜅 log (𝜁2)
𝑄2 + (𝛼− 1)

𝑛∑︁
𝑖=1

𝜁𝜅 log (𝜁2)
𝑄

,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜎2 = ℋ2(𝑥𝑥; 𝜉, 𝜏 )

𝜎2𝑅2(𝑥𝑖, 𝜉,𝜂)𝜁15𝑄10(𝑥𝑖, 𝜉,𝜂) ,
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where,

ℋ2(𝑥𝑖; 𝜉, 𝜏 ) = 2 (𝛼𝜅𝜌𝑃 )2 𝜁2𝜅+13𝑄2𝛼+8𝑆 + 2𝛼(1 − 𝛼) (𝜅𝜌𝑃 )2 𝑅𝜁2𝜅+13𝑄𝛼+8

+ 2𝛼𝜅(1 − 𝜅)𝜌2𝑃 2𝜁𝜅+13𝑄𝛼+9 − 2𝛼𝜅𝜌(𝜌+ 1)𝑃𝑅𝜁𝜅+14𝑄𝛼+9

+ (1 − 𝛼) (𝜅𝜌𝑃𝑅)2 𝜁2𝜅+13𝑄8 + 𝜅(𝛼− 1)(𝜅− 1) (𝜌𝑃𝑅)2 𝜁𝜅+13𝑄9

+ 𝜅𝜌(𝛼− 1)(𝜌+ 1)𝑃𝑅2𝜁𝜅+14𝑄9 + 𝑛𝜌𝑅2𝜁15𝑄10 + (1 − 𝜅) (𝜌𝑃𝑅)2 𝜁13𝑄10

− 𝜌(1 − 𝜅)(𝜌+ 1)𝑃𝑅2𝜁14𝑄10.

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜃

= 2
𝑛∑︁

𝑖=1

𝑄𝛼 log𝑄
𝑅2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜃𝜕𝛼
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜌

= 𝜅
𝑛∑︁

𝑖=1

𝑃𝜁𝜅−1

𝑅2

{︁
2𝛼𝑄2𝛼−1 log𝑄− 2𝛼𝑄𝛼−1 log (𝑄+ 1)𝑅 +𝑅2𝑄−1

}︁√
𝑆

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜌𝜕𝛼

,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜅

= −2𝛼
𝑛∑︁

𝑖=1

𝜁𝜅𝑄𝛼−1 log 𝜁 log𝑄
𝑅

+ 2𝛼
𝑛∑︁

𝑖=1

𝜁𝜅𝑄2𝛼−1 log 𝜁 log𝑄
𝑅2

+
𝑛∑︁

𝑖=1

𝜁𝜅 log 𝜁
𝑄

− 2
𝑛∑︁

𝑖=1

𝜁𝜅𝑄𝛼−1 log 𝜁
𝑅

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜅𝜕𝛼

,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝛼𝜕𝜎

= 2𝛼𝜅𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄2𝛼−1 log𝑄
𝑅

− 2𝛼𝜅𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1 log𝑄
𝑅2

− 𝜅𝜌

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1

𝑄
+ 2𝜅𝜌

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1

𝑅
= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜎𝜕𝛼
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝜌

= 2𝛼𝜅
𝜌

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1 log𝑃
𝑅2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜌𝜕𝜃
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝜅

= 2𝛼
𝑛∑︁

𝑖=1

𝜁𝜅𝑄𝛼−1 log 𝜁
𝑅2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜅𝜕𝜃
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜃𝜕𝜎

= −2𝛼𝜅𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1

𝑅2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜎𝜕𝜃

,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜌𝜕𝜅

= 1
𝜌

𝑛∑︁
𝑖=1

𝑃 log𝑃
𝜁

− 2𝛼𝜅
𝜌

𝑛∑︁
𝑖=1

𝜁2𝜅−1𝑄𝛼−2 log𝑃 log 𝜁
𝑅

+ (𝛼− 1)
𝜌

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1 log𝑃
𝑄

+ 𝑛

𝜅
(1 − log 𝜎) + 𝜅(𝛼− 1)

𝜌

𝑛∑︁
𝑖=1

𝑃 log𝑃 log 𝜁
[︃
𝜁𝜅−1

𝑄

(︃
1 − 𝜁𝜅

𝑄

)︃]︃

− 2𝛼
𝜌

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1 log𝑃
𝑅

− 2𝛼𝜅
𝜌

𝑛∑︁
𝑖=1

𝑃 log𝑃 log 𝜁 [𝜁𝜅−1𝑄𝛼−1]
𝑅

+ 2𝛼𝜅
𝜌

𝑛∑︁
𝑖=1

𝜁2𝜅−1𝑄𝛼−2𝑃 log𝑃 log 𝜁
𝑅

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜅𝜕𝜌

,
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𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜌𝜕𝜎

= 2𝛼2𝜅2𝜌2

𝜎

𝑛∑︁
𝑖=1

(𝑃𝜁𝜅−1)2
𝑄𝛼−2 log𝑃
𝑅

− 2𝛼2𝜅2𝜌2

𝜎

𝑛∑︁
𝑖=1

[𝑃𝜁𝜅−1𝑄𝛼−1]2 log𝑃
𝑅2

− 2𝛼𝜅2𝜌2

𝜎

𝑛∑︁
𝑖=1

(𝑃𝜁𝜅−1)2
𝑄𝛼−2 log𝑃
𝑅

+ 2𝛼𝜅2𝜌

𝜎

𝑛∑︁
𝑖=1

𝑃 2𝜁𝜅−2𝑄𝛼−1 log𝑃
𝑅

− 2𝛼𝜅𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃 2𝜁𝜅−2𝑄𝛼−1 log𝑃
𝑅

+ 2𝛼𝜅𝜌2

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1 log𝑃
𝑅

+ 2𝛼𝜅
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1

𝑅
+ 𝜅2𝜌2(𝛼− 1)

𝜎

𝑛∑︁
𝑖=1

𝑃 2 (𝜁𝜅−1)2 log𝑃
𝑄2

− 𝜅2𝜌2(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃 2𝜁𝜅−2 log𝑃
𝑄

+ 𝜅𝜌2(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃 2𝜁𝜅−2 log𝑃
𝑄

− 𝜅𝜌2(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1 log𝑃
𝑄

− 𝜅(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1

𝑄

− 𝜌2(𝜅− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃

𝜁
log𝑃 + 𝑛

𝜎

𝑛∑︁
𝑖=1

(1 − 𝜌 log 𝜎) + 𝑛

𝜎

𝑛∑︁
𝑖=1

(𝜌 log 𝜎 − 2)

+ 𝜅− 1
𝜎

𝑛∑︁
𝑖=1

𝑃

𝜁
+ 𝜌2(𝜅− 1)

𝜎

𝑛∑︁
𝑖=1

𝑃 2 log𝑃
𝜁2 = 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )

𝜕𝜎𝜕𝜌
,

𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜅𝜕𝜎

= 2𝛼2𝜅𝜌

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁2𝜅−1𝑄𝛼−1 log 𝜁
𝑅2 − 2𝛼2𝜅𝜌

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁2𝜅−1𝑄2𝛼−2 log 𝜁
𝑅2

− 2𝛼𝜅𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁2𝜅−1𝑄2𝛼−2 log 𝜁
𝑅

+ 2𝛼𝜌
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1𝑄𝛼−1

𝑅

+ 𝜅𝜌(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁2𝜅−1 log 𝜁
𝑄2 − 𝜅𝜌(𝛼− 1)

𝜎

𝑛∑︁
𝑖=1

𝑃𝜁2𝜅−1 log 𝜁
𝑄

− 𝜌(𝛼− 1)
𝜎

𝑛∑︁
𝑖=1

𝑃𝜁𝜅−1

𝑄
− 𝜌(𝛼− 1)

𝜎

𝑛∑︁
𝑖=1

𝑃

𝑄

= 𝜕2𝑙(𝑥𝑖; 𝜉, 𝜏 )
𝜕𝜎𝜕𝜅

.
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