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ABSTRACT

Complex Event Processing (CEP) is a paradigm that enables detecting patterns in
a stream of events, being widely adopted by use cases such as financial fraud detection
and network anomaly detection. Edge computing can extend CEP applications to the
edge of the network to deliver a faster response in critical domains. In this scenario, one
of the challenges is supporting those applications and keeping optimal resource usage
and minimal latency. State-of-the-art solutions have suggested computational offloading
techniques to distribute processing between the edge device and a robust cloud instance,
reaching that optimization. The traditional offloading techniques use a policy-based ap-
proach that compares the device resource usage to predefined thresholds. However, they
are few adaptive to changes over time, depending on domain specialists to configure the
threshold values. As a solution, decision approaches apply Machine Learning (ML) to
learn with the device contextual data to make the best offloading decision. Otherwise,
edge devices are known for their resource limitation compared to the cloud, making it
hard to use traditional ML models. This scenario demands the usage of online learning
algorithms that do not depend on historical data storage and can adapt to changes in
the data distribution, known as concept drifts. Therefore, this research proposes DAOS
(Drift Adaptive Offloading System), which aims to use online learning and concept drift
detection on offloading decisions to optimize the deployment of CEP applications in the
edge. Also, it adopts a fallback mechanism to use policies when the models are not reli-
able. The proposed solution is analyzed through a performance evaluation that compares
DAOS with the traditional policy-based mechanism in isolation, varying the CEP applica-
tion’s complexity and data throughput received. The evaluation results show a statistical
difference between the approaches, making clear that using online learning and concept
drift detection improves CEP offloading decisions and optimizes the resource usage in the

edge.

Keywords: edge computing; computation offloading; complex event processing; online

machine learning; concept drift.



RESUMO

Processamento de Eventos Complexos (CEP) é um paradigma utilizado para identi-
ficar padroes em um fluxo de eventos, viabilizando aplicagoes para deteccao de fraudes fi-
nanceiras ou anomalias em redes de computadores. Além disso, outro paradigma chamado
Computacao na Borda é utilizado para estender o CEP e possibilitar que o mesmo seja
implantado em dispositivos que ficam mais préximos da origem dos eventos. Consequente-
mente, isso viabiliza aplicagoes criticas, onde o tempo de resposta é um fator importante.
Um dos desafios nesse cenario é manter essas aplicagoes sendo executadas na borda com
um uso otimizado de recursos e atendendo aos requisitos de tempo de resposta. Para
resolver isso, solugoes do estado-da-arte sugerem estratégias de transferéncia de dados
computacional para distribuir o processamento entre os dispositivos de borda e uma in-
stdncia mais robusta na cloud. As técnicas tradicionais de transferéncia de dados usam
um mecanismo baseado em politicas, comparando o uso atual de recursos com limites
manualmente especificados. No entanto, essas técnicas sdo pouco adaptaveis & mudancas
ao longo do tempo, exigindo que as politicas sejam constantemente reconfiguradas por
especialistas do dominio. Uma solugao para isso ¢ utilizar aprendizagem de maquina para
aprender com os dados contextuais dos dispositivos e auxiliar o processo de decisao de
maneira inteligente. Contudo, os dispositivos de borda possuem limitagoes de recursos
quando comparado com a cloud, dificultando o uso de modelos tradicionais de apren-
dizagem. Por essa razao, sao escolhidos modelos que aprendem de maneira incremental,
nao dependem de historico de dados e se adaptam a mudancas de conceito. Portanto,
este trabalho propoe a solu¢cao DAOS (Drift Adaptive Offloading System), que tem como
objetivo utilizar aprendizagem online e deteccao de mudancas de conceito no processo de
tomada de decisao de transferéncia de dados, visando otimizar a execucao de aplicacoes
CEP na borda. Além disso, ele adota um mecanismo de troca de estratégia para utilizar
politicas estaticas enquanto os modelos de inteligéncia nao forem confiaveis. Essa proposta
¢é analisada através de uma avaliacdo de performance que compara o DAOS com a abor-
dagem puramente baseada em politicas, variando a complexidade da aplicagao e a taxa de
transferéncia dos dados. A avaliacgdo mostrou que existe uma diferenca estatisticamente
significativa entre as duas abordagens, evidenciando que as técnicas adotadas pelo DAOS

melhoram as decisoes de transferéncia de dados de aplicacbes CEP na borda.

Palavras-chaves: computacao de borda; offloading computacional; processamento de

eventos complexos; aprendizagem de maquina; detec¢ao de concept drifts.
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1 INTRODUCTION

Big Data is causing a huge transformation in many industries, requiring companies to
process a massive amount of data every day. The data handling is now concerned with
an accelerating environment described by the 5Vs of Big Data: volume, velocity, variety,
veracity, and value (LANEY] 2001). In this scenario, one of the most challenging tasks is
how to extract meaningful value from this data, which is vast in terms of volume, type,
and sources (BAKSHI, |2012)). The cloud computing paradigm provides technologies that
can robustly process data. It delivers convenient access to resources that can be quickly
provisioned and released with minimal effort (DILLON; WU; CHANG] 2010). The main cloud
computing features (elasticity, resources pool, on-demand, self-service, and pay-as-you-go)
address the corresponding 5Vs of Big Data (YANG et all, 2017)).

Recent trends such as mobile computing and the [Internet of Things (IoT)| demand a

dispersed computing infrastructure instead of relying upon centralized resources provided
by the cloud. Its main targets are applications that require a critical response time and
the need to avoid the natural latency of processing tasks on the cloud. As a result, it
leads to a new paradigm called edge computing in which computing and storage resources
are closer to mobile devices or sensors (SATYANARAYANAN, 2017). These resources can
be micro data centers, cloudlets, and fog nodes. Most mobile nodes and IoT devices are
constrained in terms of CPU, memory, network, and battery, requiring the processing to
be offloaded to the cloud when they are not able to carry it out (SHI et al., [2016).

The computation offloading is a strategy that increases these devices’ capabilities by
relying on more resourceful computers to execute delegated tasks (FLORES et al., 2015
(KUMAR et al., 2013). It is widely adopted in [Mobile Edge Computing (MEC)|to minimize

latency and reduce the response delay of the service, which improves its|[Quality of Service]
(QoS)| (JIANG et al., 2019). Most of the works try to answer What, When, Where to
offload, and Which offload policy will be adopted. To decide what to offload and when
it is worthy, the existing approaches use multiple parameters such as available memory,
server speed/load, amount of data, and network metrics (ALAM et al, [2019) (YU; WANG;
LANGAR), 2018).

Besides, computation offloading can also optimize the processing of Big Data work-

loads. With the emergence of IoT and Edge Computing, the data arrives in a continuous
stream of events from multiple and distributed sources, hampering its processing. How-

ever, this data processing can be done through information processing techniques such as

|[Complex Event Processing (CEP), which detects complex patterns in a data stream by
matching incoming events with predefined rules (CUGOLA; MARGARA, 2012)). The output

of CEP processing is a set of complex and high-level events. The internal state of CEP is

often represented via[Non-deterministic Finite Automaton (NFA)| which can be extracted
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from the engine along with its buffers and offloaded to a powerful server (AGRAWAL et al.,
2008b).

In the literature, there are approaches that decide when to offload CEP workload
through a policy-based strategy, which transfers the processing when contextual data
of the involved nodes violate resource thresholds (FONSECA; FERRAZ; GAMA| [2018)). In
these solutions, the values need to be manually optimized to reflect the current ofoading
requirements, which is a task that depends on domain specialist availability and may not
achieve a good optimization considering the varying network conditions and constrained
environment.

One alternative is to learn how to decide based on a set of available parameters (e.g.
memory and bandwidth usage) from the device and the network. This learning is done
through machine learning algorithms, which learn on the fly the optimal policy for deciding
when to offload the processing (XU; CHEN; REN, 2017) (YU; WANG; LANGAR, 2018). Works
in the literature use a variety of algorithms, from reinforcement learning to deep learning
(ALAM et al., |2019) (REGO et al., 2017).

Despite having these intelligent techniques for dynamic decisions, edge device limita-
tions demand the usage of memory-efficient algorithms. As the incoming metrics arrive
in a stream fashion, there is an opportunity to use online algorithms that fits well be-
cause they use one instance at a time, avoiding the need for a large historical data storage
(BENCZUR; KOCSIS; PALOVICS, |2019). As a result, the algorithms train incrementally with
the most recent data, making it adaptive to changes in data distribution, which are known
as concept drifts (GAMA et al.,|2014)). Those drifts resulted from changes in the distribution
of the dataset used to train the models. An adaptive algorithm is essential to guarantee
the model’s performance will continue acceptable, avoiding unreliable offloading decisions.

This work proposes the Drift Adaptive Offloading System (DAOS) to decide when to
offload CEP applications in the edge. It uses online learning and concept drift detection to
provide a classifier that can inform when to transfer the processing to cloud. The decision
considers metrics from the monitored device, including network conditions and available
computation resources. In addition, it proposes a fallback mechanism that uses concept
drift occurrences to change the decision approach back to a policy-based strategy, which

is more reliable until the online learning model obtains an acceptable performance again.

1.1 RESEARCH PROBLEM

The literature presents strategies for offloading data in many scenarios, including the in-
teraction between edge and cloud environments. There is a recent trend for using machine
learning models to improve the offloading decision correctness in that context. These mod-
els are trained with the contextual data of edge devices and networking, such as CPU and
bandwidth usage. The works that use computation offloading as the infrastructure for

CEP applications do not use those intelligent approaches yet, relying on resource thresh-
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olds defined by domain specialists. Based on this, the following research questions are

set:

e Q1. How is it possible to use online learning techniques to offload CEP in the edge

in a fast and efficient way?

e Q2. How can the consideration of concept drift occurrences increase the effec-

tiveness and reliability of the ofoading decision process?

1.2 GOALS

Our main goals are to propose and evaluate a mechanism for detecting when to offload
CEP applications’ workload and internal state in the edge. It includes an offloading de-
cision algorithm that uses the output of an online learning model, which is trained with
device and network contextual data. The evaluation will consider different learning tech-
niques and workloads from a public data set.

The proposal can be separated into a list of specific goals:

1. Design and implement DAOS with the usage of online learning predictions;
2. Define the online learning algorithm that DAOS should use;

3. Evaluate DAOS to answer the research questions (Q1 and Q2).

1.3 RESEARCH STRUCTURE
The rest of this research is organized as follows:

o Chapter 2 - Background: Explanation of concepts related to the topics touched
by this work.

o Chapter 3 - Drift Adaptive Offloading System (DAOS): Explanation about

the proposal of DAOS, including the architecture and its implementation.

o Chapter 4 - Experiment: Evaluation of both online learning algorithms and
DAOS.

o Chapter 5 - Related Works: Discussion about the works that have some rela-

tionship with this research.

o Chapter 6 - Conclusion: Discussion about the research results and future works.
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2 BACKGROUND

This chapter explains the main concepts in this work: edge computing, computation of-
floading, complex event processing, online machine learning, and concept drift. Each sec-

tion gives the necessary background for understanding the rest of this research.

2.1 EDGE COMPUTING

Cloud computing became a predominant paradigm in the modern world, providing an

infrastructure that delivers value to organizations at a low-cost (GONG et al., 2010)). Besides

the economy factor, this paradigm enables the services to instantly scale by using data

centers of cloud providers (HASHEM et al., 2015)). In some cases, constrained devices cannot

afford to communicate with cloud services directly. To deal with this problem, a new
paradigm called Edge Computing has emerged in the past years. It decentralizes the
cloud infrastructure, moving computing and storage capabilities to the Internet’s edge in
proximity with those constrained devices or sensors (SATYANARAYANAN, [2017)). Figure

gives an overview of the Edge Computing capabilities.

Figure 1 — Overview of Edge Computing Capabilities

Database
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Source: (SHI; DUSTDAR), 2016))

Edge computing works as an intermediary in the communication between devices

and the cloud. It can perform some computing tasks such as data processing, comput-

ing offload, caching, security protection, and device management (SHI; DUSTDAR, [2016)).

Therefore, instead of relying on the cloud instances directly, the edge devices can receive
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a faster response when the processing is executed on the edge layer. Moreover, a lot of
systems/tools are being proposed to support the Edge requirements (LIU et al|, 2019).
The natural characteristics of Edge Computing lead to an improvement in[QoS|for end-
users. E-commerce platforms can benefit from Edge Computing by offloading shopping-
cart updates to the edge and keeping a cache to reduce latency when a user is buying
something (SHI; DUSTDAR, 2016). In addition, the edge infrastructure can reduce the
impact of cloud outages, performing critical operations during failures. Lastly, there are
environments where access to the cloud is a luxury, which is quite common when fac-
ing a natural disaster or when the country has a poor networking infrastructure. Both
environments can benefit from Edge Computing as well (SATYANARAYANAN, 2017).

2.2 COMPUTATION OFFLOADING

In traditional mobile systems, the execution of computation-intensive tasks is a chal-
lenge due to device limitations and network conditions (FORMAN; ZAHORJAN, [1994). To
overcome this challenge, mobile agents introduced the idea of task migration between
client and server (TCL, 1997). This collaboration is known as computation offloading.
According to (KHAN et al), |2014), computation offloading is a technique for migrating
computing-intensive tasks from constrained devices to resourceful devices, which increases
responsiveness and saves energy. The migration is usually done by detecting computing-
intensive portions of application code and delegating its process to remote cloud servers
(FLORES et al., 2015)).

An important challenge to computation offloading is deciding when the offloading is
worthy (MACH; BECVAR, 2017)). The decision depends on the system’s contextual infor-
mation, composed of the device, network, and application data. Other questions should
be answered before making the decision. According to (JIANG et al 2019)), they are cen-
tered on What to offload, When to offload, Where to offload, and Which policy will

determine the decision strategy. The questions are described below:

o« What: Defines the type of tasks that should be offloaded. It can be a piece of code

or the whole application.

e When: Determines the ideal moment to offload the tasks, which depends on the

overall context involving metrics of the device, network, and the application state.

e Where: Decides the optimal place for executing the offloaded tasks. Will it be in a

nearby edge device, in a cloudlet, in a fog node, or in the cloud?

e Which: Defines the policies that will drive the offloading decision process, being
naturally related to the When question.
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According to (MACH; BECVAR), 2017)), the offloading can be classified into three types:
local execution, full offloading, and partial offloading. This classification depends on the
application characteristics, which can have Offloadable and Non-offloadable parts as
shown in Figure 2 The workload awareness and dependency between the parts are also

important factors to consider in the decision process.

Figure 2 — Relationship between offloadable elements

Q Offloadable part Non-offloadable
part

Source: (MACH; BECVAR), 2017)

The architecture of systems that coordinate the offloading between devices is composed
of three main components: code profiler, system profiler, and decision engine (FLORES et
al., 2015). The code profiler determines the portions of code to offload based on computing-
intensive attributes. On the other hand, the system profiler collects contextual information
about the application surrounding to support the decision. Finally, the decision engine
uses the contextual data to choose the appropriate moment to move the processing to a

resourceful device.

2.2.1 Policy-based Offloading Mechanism

One of the benefits of implementing computation offloading strategies is making the sys-
tem dynamically adaptive. This adaptation turns the system into an auto-managed or
autonomic one. The policy-based systems use the policies as a mechanism to provide such
adaptation, which can indicate how to adjust the system to avoid taking certain states
(AGRAWAL et al) [2008a)). This work follows the architectural recommendation proposed

by the [Internet Engineering Task Force (IETF)| for implementing policy-based applica-

tions, which is illustrated in Figure [3] The main reason for this adoption is reusing widely

adopted concepts and references.

In the above architecture, the|Policy Management Tool (PMT)|is responsible for creat-

ing and managing the policies stored in the [Policy Repository (PR)| The |Policy Decision|
loads the created policies and makes a decision that is finally enforced by
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Figure 3 — Policy Architecture (IETF)
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Source: Author

the [Policy Enforcement Point (PEP)| Generally, the policies are expressed in standard

formats such as [eXtensible Markup Language (XML)| and [JavaScript Object Notation|
(JSON)| As an example, the policy defined in the Listing is written in XML and de-

fines some rules based on the contextual data about the device involved in the offloading

process.

Listing 2.1 — Example of policy that follows the IETF specification

<?xml version="1.0" encoding="UTF-8"7>

<policies>
<policy name="memory"” value="70" type="simple"/>

<policy name="cpu” value="40" type="simple"/>

<policy type="composed">
<rule name="cpu" value="60"/>
<rule name="memory"” value="80"/>
</policy>
</policies>

The policies defined in the Listing [2.1] will be considered violated when the memory
usage is greater than 70%, or the CPU usage is greater than 40%. It also supports com-
posing policies, which are violated when multiple values are greater than a particular

value at the same time.

2.2.2 Machine learning Offloading Mechanism

The when question is one of the most challenging steps in offloading decisions since it
depends on many parameters from the devices and network. Those parameters are com-

pared against threshold values in policy-based mechanisms to decide when the ofoading
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should happen. Before this type of mechanism, mobile systems used simple strategies in-
stead of context-sensitive ones. Those strategies use simple timeouts that help to identify
delaying tasks and complete them on the cloud. However, the contextual data involved in
this decision process usually change over time, being susceptible to many variations out
of the control of whoever configured the policy or timeout values. As a result, a dynamic
decision-making algorithm becomes necessary (GUO; LIU; LV, [2019).

Nowadays, decision algorithms are using Machine Learning (ML) techniques to learn
with new contextual and dynamically adapt to changes. ML algorithms can extract useful
information from randomly uncertain, and time-varying data, which is the case in most
complex scenarios of offloading in (CAO et al,2019). On the other hand, the adoption
of ML techniques can also increase computation costs and latency. There is vast literature
about this adoption, including multiple scenarios and the type of ML algorithms applied
(CARVALHO et al., 2020)). In this context, (REGO et al., 2017)) presented a strategy that uses a
decision tree algorithm to help in the offloading decision process, moving the computation

to the cloud accordingly.

2.3 COMPLEX EVENT PROCESSING

In traditional applications, the data is persistently stored in a database and further used
for processing when requested by a user. However, use cases such as anomaly detection
require sending alerts when relevant data becomes available. It depends on data that
arrives as a timeless information flow, describing the Data Stream Processing Model
(DSPM) (BABCOCK et al., [2002)). In order to implement this model, the system should
expect the data to arrive online from one or more sources, probably out of order and
unbounded in size. The output is usually not persisted unless explicitly specified by the
users and is delivered as a new data stream.

[CEP| comes up as an extension of the DSPM, enabling to process the incoming data
against a set of defined rules to identify patterns and output new complex events (CU-
GOLA; MARGARA, [2012)). The matching process inherits traditional databases’ capabilities,

mainly represented through [Structured Query Language (SQL)| operators such as joins,

aggregations, filters, and others. However, traditional databases do not consider detecting
patterns that involve sequencing and ordering relations. Many use cases can benefit from
CEP capabilities such as fraud detection in financial transactions (ADI et al., 2006) and
network anomaly detection (BUTAKOVA et all 2018)).

The publish-subscribe model is one of the foundation bases of CEP. In this system, the
data flow as messages coming from multiple publishers (sources) and are delivered to the
subscribers (sinks) according to some rules. It introduces a semantic for representing the
parts responsible for producing and consuming the events, which is described in the Figure
(CUGOLA; MARGARA| 2012)). Moreover, the rules for declaring interest in the events can
be content-based or defined through topics. Based on this model, CEP systems enable
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Figure 4 — Overview of CEP Application
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the users to express their interests in composite events, considering the history of received
events and the relationship between them. This relationship can be specified with the
usage of maps and filters (LUCKHAM; FRASCA, [1998)).

The rule managers are responsible for interpreting the external simple events and
process them to identify composite events. In many Data Stream Management Systems
(DSMSs), the rules are defined through a high-level language, allowing users to configure
the processing information flow as transforming rules. Under the hood, a graph represents
this transformation flow, connecting a set of operators. Each operator can receive different
events as input and forward them to other operators or directly to the consumers (sinks)
(CUGOLA; MARGARA, 2012).

Declarative languages such as [SQI] have the benefit of helping the users to express
complex requirements, promoting the reuse of common logic (DAYARATHNA; PERERA/
2018). As a result, the user can also focus on the transformed outputs rather than on the
internal operator’s execution flow. The Listing provides an example of a CEP query
in a declarative language. It calculates the average temperature of ten sensors grouped
by id and priority. Esperﬂ is one of the event processing systems that supports this type
of stream-oriented language to express CEP rules (ETZION; NIBLETT, 2011]).

Listing 2.2 — SQL-like Rule

select avg(temperature) as aTemperature, id, priority

from Sensor.win:length_batch(10) group by id, priority

Alternatively, modern event processing platforms such as Apache Flink can be used to
create CEP applications. Flink is a distributed stream processing engine used to process
data streams at a large scale. It supports unbounded (stream) and bounded (batch) data

sets, delivering real-time analytical insights about them. The applications can be devel-

L http://www.espertech.com/esper/
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oped on top of the DataStream API, which is adapted to understand declarative languages
such as SQL-like queries or expose functions with a pattern-matching semantic. To sup-
port the mentioned capabilities, Apache Flink provides the FlinkCEPﬂ library, which runs
on top of the general-purpose infrastructure. This library solves the challenge of contin-
uously matching events against a set of rules or patterns. The Listing demonstrates

how an application can be implemented with this library.

Listing 2.3 — DDoS Detection Example

val networkSource: DataStream[MgttMessage] = env
.addSource(new MqgttSource(MQTT_BROKER_HOSTNAME,
APPLICATION_DATA_NETWORK_TOPIC))

.name("mgtt: network-events-data-source”)

// DDoS attack pattern (TCP in 1 second > 128)
val start = Pattern.begin[NetworkEvent]("start")

.where(e => {

e.protocol == "tcp”
D
.within(Time.seconds(1))
.times(128)
mainResults

.addSink(new MqgttSink[ResultEvent](MQTT_BROKER_HOSTNAME,
APPLICATION_RESPONSE_TOPIC))

.name("mgtt: network-event-response-sink")

The example above shows three main parts of a CEP application written with Flink-
CEP:

1. A source component to receive MQTT messages from a particular topic.
2. A CEP pattern for identifying 128 TCP packets within a time window of 1 second.

3. A sink component to deliver the match events to an MQTT topic.

2 https://ci.apache.org/projects/flink /flink-docs-release-1.13 /docs/libs /cep/
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2.4 MACHINE LEARNING

Artificial Intelligence (Al) is a technology that can learn with the environment data and
perform tasks such as prediction and classification (HAENLEIN; KAPLAN, [2019)). In this

field, there is a technique called [Machine Learning (ML)l that aims to improve algo-

rithms by using historical data. Hence, it can perform Al tasks without being explicitly
programmed to. It has been used to solve many problems, including image recognition,
e-mail filtering, and offloading decisions. The trained algorithms are represented through
a model.

In some scenarios, the historical data is not enough for training the model, and the
instances arrive almost in real-time. As a solution, online learning algorithms propose to
train the model incrementally by using one instance at a time and discarding it when
used. According to (BENCZUR; KOCSIS; PALOVICS, 2019), some requirements should be

met:

e Online learning updates its model after each data instance without access to all past

data, hence the constraints of the data streaming computational model apply.

o Adaptive machine learning models are needed to handle concept drift, which are

changes in the data distribution of the models.

e Online learning from big data has to be implemented in a distributed stream pro-

cessing architecture.

2.4.1 Decision Tree

Most of the state-of-the-art techniques for classification in data streaming are based on
decision tree algorithms (BIFET et al., 2017). The decision tree is a supervised learning
algorithm that can be used for classification or regression tasks and is widely adopted be-
cause of its intuitive interpretation and ability to perform well in large databases (MYLES
et al., 2004)). The decision tree has different node types: (1) a root node without any in-
coming edges, (2) internal nodes that has one incoming edge and many outgoing edges,
(3) leaves that have one incoming edge and no outgoing edges, also called decision nodes
(DATTATREYA, 2009)). The internal nodes are responsible for splitting the feature space
into two or more sub-spaces.

One challenge when dealing with a huge data set is to select the best internal node
to split in the tree. A common solution is to use Information Gain (IG), which is a
criterion that calculates how much information a feature has about the class. It uses
entropy to measure the impurity or disorder of some examples. This metric indicates the
data variance and is calculated through the formula below, where p; is the probability of

randomly picking an element of class i (ROKACH; MAIMON, 2007):
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e}
E= _Zpi log, p;

Based on entropy measure, IG represents the quality of a split with the formula.
Decision tree algorithms aim to maximize IG and decide what feature will be split or

used in the classification process. It can be obtained with the following formula:

IG = E(T) — E(T|a)

The decision tree algorithms widely used in data mining are ID3, C4.5, and CART.
ID3 is a simple algorithm that uses IG as the splitting factor and stops growing the tree
when IG is not greater than zero, or all the instances are associated with a single class
(ROKACH; MAIMON, 2007). On the other hand, C4.5 is an evolution of ID3 that avoids the
tree growing beyond a defined threshold and adopts pruning techniques for removing nodes
that do not contribute to the classifier performance. Lastly, the CART algorithm inherits
characteristics such as pruning strategies for removing unnecessary leaves. However, the
main difference is that it works with binary trees, limiting the internal nodes to two edges.
Moreover, CART can generate regression trees to make the leaves predict a number instead
of a class (LEWIS, 2000).

2.4.2 Hoeffding Tree (HT)

Decision trees are naturally prepared to perform well in batch settings, where the whole
dataset is available. Nevertheless, the data streaming settings demand adjustments to
enable them to learn incrementally. In this context (DOMINGOS; HULTEN, |2000)) introduced
the|Hoeffding Tree (HT), whose implementation is called [Very Fast Decision Tree (VEDT)|

Hoeffding tree examines only one example at a time and requires memory for storing

only the tree itself. The leaves have the necessary information to allow them to grow. It
guarantees a performance similar to the batch algorithms, generating trees of the same
quality (DOMINGOS; HULTEN, [2000).

As explained in section [2.4.1], the essential step in a decision tree algorithm is finding
the best split possible, directing the examples through different paths. The algorithms
iterate over the training dataset in batch settings and compare the attributes IG, selecting
the node with the highest value. On the other hand, data streaming cannot perform such a
comparison because no training data is available. To overcome this challenge, (DOMINGOS;
HULTEN, 2000) adopted the Hoeffding bound as a way to guarantee the algorithm will
always decide for the best split possible (HOEFFDING), (1963)).

According to the Hoeffding bound, considering a probability of 1—4¢, the true mean of a
random variable will not differ from the estimated mean after n independent observations

by more than:
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In practice, the bound defines a limit for the maximum possible change in the IG
difference between two attributes. Therefore, the difference between them in the future

will always represent positive separation from the best attribute.

2.4.3 Extremely Fast Decision Tree (EFDT)

An evolution of the Hoeffding Tree (HT) is called [Extremely Fast Decision Tree (EFDT)|
and proposes a Hoeffding Anytime Tree (HATT), obtaining a higher prequential accuracy
(MANAPRAGADA; WEBB; SALEHI, 2018). The main difference between both solutions is
that HT decides to split only when it finds the best possible split, avoiding revisiting

the tree. On the other hand, HATT selects a split as soon as it can be useful, revisiting
that decision in the future. Intuitively, HT is more efficient computationally because it
often avoids revising the tree. Otherwise, HATT presents better statistical results and
guarantees the tree will grow without compromising computational resources.

Despite the adoption of the same Hoeffding bound strategy, HATT uses it to calculate
the real advantage of waiting for splitting on the best attribute. In the scenarios where
waiting is not a good option, HATT decides to split when the IG due to the top attribute
being non-zero. After that, the algorithm will compare the IG between the current top
attribute and the split previously decided (MANAPRAGADA; WEBB; SALEHI, |2018). EFDT
was not built primarily for self-adaptation, but it has built-in support for adapting when
concept drift occurs. The experiments executed (MANAPRAGADA; WEBB; SALEHI, 2018])
show EFDT outperforms VFDT on some benchmark datasets. It can be used as an efficient

alternative to state-of-the-art techniques.

2.4.4 Naive Bayes

Naive Bayes is considered a simple classifier because it assumes independence between
the features, which is a poor assumption in general (RISH et al) 2001)). Nonetheless, it
usually presents a competitive performance compared with solutions that are not class
conditionally independent (WEBB| 2016). The Naive Bayes uses the Bayes’s rule for es-
timating the posterior probability P(Y|x) of each class y given the feature set X, whose

formula is described below:

Py)P(X]y)
P(X)
Where P(X) is the same for all classes, being naturally ignored. Moreover, P(X|y) is

P(y|X) =

called class-conditional probability distribution, and P(y) is the prior probability for each

class. Both can be easily calculated with a set of categorized features.
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Some important aspects of Bayesian classifiers are that they follow a linear model, and
the feature array can be incrementally updated. As a result, no special adjustment should
be made to use Naive Bayes in data streaming settings. A lot of application domains use
Naive Bayes as it proved to be accurate and safe (GUMUS et al., 2014)) (SARITAS; YASAR)
2019) (WOOD et al) 2019). In addition, it demands low memory resources and works well
with numerical and nominal values. An explicit drawback is that assuming independence
between the features, they must be trained with many examples in the training phase.

Another possibility with the Naive Bayes classifier is making a functional enhancement
on the leaves of a Hoeffding Tree, refining the classification (GAMA; ROCHA; MEDAS,
2003) (GAMA; MEDAS; ROCHA| [2004)). The approach adopted in traditional decision tree
algorithms C4.5/CART is that instances with unknown labels are associated with the
most frequent class observed during the training. As the leaves maintain the statistics
necessary for running Naive Bayes, it can improve the classification results by calculating
the probability of each attribute compared to the class labels. This enhancement has been
proved to be effective, where the Naive Bayes classification returned a different result from
the majority class (BIFET; KIRKBY], [2009)).

245 KNN

lk-Nearest Neighbours (kNN)|is a supervised and non-parametric technique that assumes

proximity between similar examples (GUO et al., 2003). kNN is usually called lazy because
it has no training phase, requiring all the examples during the classification. The similarity
between the samples is calculated through a distance measure between them in the feature
space. Assuming x is the first point with coordinates (x1, s, ..., z,) and y is the second
point with coordinates (yi1,¥a, ...,yp), the Euclidian distance can be obtained with the

formula below:

p

d(z,y) = Z(fi — ¥i)?

i=1

Having the Euclidian distance in hand, another critical variable to consider is the
number of neighbors (k) that must be considered when voting the class for that particular
example. As a result, the feature space becomes similar to what is illustrated in Figure

Adopting kNN in data streaming scenarios is a challenge because it requires the whole
dataset to operate. Therefore, it is hard to be lazy when historical data is unavailable. A
possible solution would be setting a sample window and grouping the samples with the
closest ones already in memory. Therefore, (LAW; ZANIOLO, 2005) proposed the ANNCAD
nearest neighbor algorithm, which has low update cost and no need for fixing the number

of neighbors prior to the classification work.
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Figure 5 — Close proximity in kNN, considering the distance and the number of neighbors.
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2.5 CONCEPT DRIFT

Due to the dynamic environment of data streaming, the data may present unexpected
changes over time. These changes affect the underlying statistical properties of the target
variable, having a hidden and unforeseen cause, which makes the learning task more
complicated (TSYMBAL, 2004). This behavior is defined as concept drift, and when it
occurs, the model trained with past data may not be relevant to the new incoming data,
leading to poor decisions. It has been proved that concept drift is the root cause of low
effectiveness in many data-driven scenarios (LU et al}, 2019)). An example of concept drift
presence is when performing detection of spam e-mails since the strategies of the spammer

can change in unpredictable ways, causing the lack of model accuracy.

2.5.1 Formal Definition

The supervised learning problem involves predicting a target variable y € R given a set
of input features X € R, forming a pair of (X, y). In the training data, both X and y are
known previously. After being trained, the predictive model is used in a scenario where X
is known but y is not known. Concerning the Bayesian Decision Theory (BERGER, 1985)),
a classification task is defined with the prior probabilities of the categories P(y) and the
conditional probability density function P(X|y) for all categories y = 1,...,n where n is
the number of categories. These probabilities can be used to calculate the posterior ones

of the categories according to the following formula:

P(y)P(X|y)

P(y|X) = PX)

with P(X) being:
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Based on classification formal definition, the concept drift can be described as a dif-

ference between two time points t0 and ¢1:

X pu(X,y) # pa(X,y)

where py stands for the joint distribution at time t;, between the set of examples X
and the target variable 3. The drift happens when there is a change in the components of
the Bayesian equation, which can be the prior probabilities of categories P(y) and class
conditional probabilities P(X]|y).

2.5.2 Drift Types

As shown in Figure[6] there are two types of concept drifts:

1. Real drift: it happens when there is a change in the posterior probabilities P(y|X)

even without a mandatory change in P(X).

2. Virtual drift: it occurs if nothing changes in the posterior probabilities P(y|X), but
there are changes in the data distribution P(X).

Figure 6 — Types of concept drift based on the statistical changes
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Figure [6] shows that when there is a real concept drift, the boundary that determines
the color changes, influencing the classification. On the other hand, the virtual concept

drift does not change the distribution form but the position of the instances.

2.5.3 Drift Detection

Concept drift detection uses techniques and mechanisms that identify changes in the un-
derlying distribution, searching for change points in time. (GAMA et al) [2014) discusses
four different detection strategies: sequential analysis, control charts, differences between
two distributions, and heuristic/contextual based. Firstly, the sequential analysis com-
pares the distribution of two parts of the dataset and assesses the difference through a
hypothesis test. Secondly, the control charts approach uses a standard statistical technique
widely used to control the manufacturing quality. Another detection strategy is compar-

ing two different time windows, one fixed and the other that slides over time to compare
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their distribution. Lastly, the contextual strategy presents a meta-learning technique for
identifying intervals with hidden concepts, refining the current concepts accordingly.

In the context of time window approaches, [ADaptive Sliding WINdow (ADWIN)|is a
change detector that uses a two windows (see Figure [7)) detection strategy for comparing
different data distribution and deciding when a drift occurred (BIFET; GAVALDA| [2007)). Tt

grows the window with new instances until detecting a concept drift so that it can shrink
the window by removing old instances (GRULICH et al., 2018]). One additional characteristic
of this detector is that it does not require the user to define the size of the compared
windows in advance. A change is determined when it rejects the null hypothesis that the
distribution of both windows is equal. In this case, the compares the difference
between the average of the samples in both windows (LIU|, 2018]).

Figure 7 — Two-time window-based detection mechanism
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The algorithm inputs are a confidence value ¢ and a stream of values x1,x2...xy,
which can be the model accuracy measurements after each classification. Let n represents
the length of W, u, the average of the elements in W, and u,, the average of pu, for
t € W (BIFET; GAVALDA| 2007)). As soon as the windows exhibit different averages, it
concludes the corresponding distributions are different and the older window is dropped.
To determine how the algorithm creates the two windows partitions, consider ny and ny
the lengths of W, and Wy, and n the length of W, leading to n = ng + n.
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The main limitations are memory and processing time requirements. [ADWIN| is un-
suitable for detecting gradual concept drift since all the samples in the window have the

same weight. The algorithm of this technique is described in Algorithm [I]

Algorithm 1 ADWIN: ADaptive WINdowing Algorithm

1: Initialize Window W

2: for each t > @ do

3: {X;}UW — W (i.e., add X; to the head of W)
4 repeat

5: Drop elements from the tail of W

6: until |fwo — fiw1| < €eur holds
7.

8

9

for every split of W into W = W, - W,
output [y
: end for

ADWIN]|is an algorithm that represents the error rate-based (also called performance-
based) strategy, which is a category that includes other recent works such as Fuzzy
Windowing Drift Detection Method (FW-DDM), Dynamic Extreme Learning Machine
(DELM), Wilcoxon rank sum test drift detector (WSTD), and Fisher’s exact test (LIU;
ZHANG; LU, |2017)) (XU; WANG|, [2017)) (BARROS; HIDALGO; CABRAL), 2018)) (CABRAL; BAR-
ROS, 2018). In addition, there are also data distribution-based algorithms that use a
metric to quantify the similarity between distributions. Two of them are Local Drift
Degree-based Density Synchronized Drift Adaptation (LDD-DSDA) and Equal Density
Estimation (EDE) (LIU et al., [2017)) (GU et al., 2016).

2.6 SUMMARY

This chapter explained the background concepts related to the research. It gives an
overview of edge computing, CEP, and computational offloading areas. Moreover, other
fundamental concepts to this research were explored, such as policy-based mechanism,
online machine learning and concept drift. This foundation aims to make the research

more understandable.
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3 DRIFT ADAPTIVE OFFLOADING SYSTEM (DAOS)

This chapter describes the [Drift Adaptive Offloading System (DAOS)| Firstly, section
[3.1] explains the high-level requirements and the architecture behind it, including the

strategies for deciding when to offload the CEP application. Lastly, section explains

the implementation and internal mechanisms.

3.1 DESIGN GOALS AND ARCHITECTURE

Most of the offloading systems from the literature are general-purpose or built for a par-
ticular type of application, such as CEP (MURICY; JUNIOR, 2018) (FLORES et al., 2015)
(FONSECA; FERRAZ; GAMA/ 2018). Nevertheless, they usually share the same architec-
tural principles and components. The idea behind DAOS is to reuse the same ideas and
introduce the components that will make it intelligent and adaptive to offload CEP work-
loads. This section discusses the aspects related to those ideas, specifying the reasons and

motivations.

3.1.1 High-Level Requirements

The architecture follows the principle of enabling DAOS to operate on the infrastructure
layer of CEP applications. In this way, it can support different engines and applications,
interacting with them to control the life cycle of the jobs and extract their current state.
For instance, a DAOS instance monitors a fraud detection application based on CEP to
decide whether the processing should be offloaded. The term system refers to the DAOS
instance without considering the CEP applications.

Its decision mechanism uses online machine learning to know when to offload CEP
applications between devices that are remotely connected, extending what was proposed
(FONSECA; FERRAZ; GAMA, 2016)). It concentrates on meeting the requirements to un-
derstand when to offload the processing to a resourceful node. Consequently, the nodes
involved in the processing have to be monitored through profilers, generating contextual
data to train the online learning algorithm. This algorithm gives a binary response (yes
or no) about the advantage of executing the offload at a particular time. The high-level

requirements are described below:

« State Representation: the system should be aware of local and remote node
states, storing the necessary information to take the offloading decision. The state

represents the overall context of the offloading system.
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o Contextual Data: the system should have data about the resource usage of both
edge and cloud environments. It also includes information about the network and
the CEP application.

o Application Control: the system should control the execution of the CEP appli-
cation, enabling it to start, stop and take snapshots from its current state. The state

is transferred to the remote node before the application interruption.

o Intelligent Decision: the system should train a machine learning algorithm that

will take a set of Contextual Data and decide if the offloading is acceptable.

3.1.2 Architecture

In traditional offloading architectures, the main components are a decision engine and
supporting components such as code and system profilers. The decision engine uses the
profiling data to decide which piece of code is costly and to have a notion about device
and network conditions. This architecture is also adapted depending on the application
requirements, in some cases leveraging the decision engine to support offloading prediction
with machine learning techniques (REGO et al), 2017)). Another aspect of state-of-the-art
architecture is not being designed only for code offloading. It can now vary from network

tasks to event processing or any offloadable workloads.

Figure 8 — DAOS Architecture
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DAOS is built on top of the mentioned architectures, supporting the offloading of

CEP applications in edge computing settings. Its architecture has the same components
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mentioned above with an online learning algorithm that classifies the actual context in-
formation to indicate an offloading situation. Additionally, DAOS uses a concept drift
detector to adapt to changes in the distribution of the underlying profiling data. It also
supports the policy-based engine from (FONSECA; FERRAZ; GAMA| 2016)), responsible for
comparing the contextual data with resource limits. This component has the role of help-
ing in the classifier training and acts as a fallback mechanism when the online learning
models are not reliable.

The architecture is illustrated in Figure [§ It shows the interaction between the com-
ponents involved in the offloading decision. Firstly, System Profilers collect metrics from
the CEP Application (1) and the Device (8), sending them to the Online Learning (2)
service to train the model. Secondly, the training occurs with the help of Policy Engine
(3), which is responsible for categorizing the incoming profiling events. Lastly, after ob-
taining a good accuracy, the model sends notifications to the Decision Engine, indicating
the system is demanding an offload (4). The desired accuracy is a configurable parameter
of the Online Learning component, and it is compared with the model accuracy, which is
updated for each instance that arrives.

Otherwise, the Decision Engine will take the notifications from the Policy Engine as
a fallback mechanism for indicating an offload demand (5). This fallback mechanism is
also triggered when the Drift Detector detects a change in data distribution (6). It can
identify those changes and notify the interested components to make adaptations. The
adaptations considered in the architecture design are switching the decision algorithm to
use static policies when the models are unreliable and retraining the model to cover the
new data distribution. Consequently, the decisions are based on hard limits defined by
the policies. In addition, as the current training is only restarted, no additional cost is
added to the system.

After receiving the events indicating an offloading situation (4) (5), the Decision En-
gine initiates the process internally through a state machine. It communicates with the
CEP Application directly to send the incoming application events when the offloading is
not happening (7). On the contrary, it makes a series of requests to the CEP applications
to extract its internal [NFAl state and restore it in a most resourceful node. This commu-
nication to external nodes passes through the Device Infrastructure layer, which manages

all networking capabilities (8).

3.1.3 Components

As shown in Figure [8 the architecture structures the components according to their
relationships in the system. The Decision Engine behaves in the same way in both edge
and cloud environments, receiving all the offloading messages. The difference between each
environment is that the cloud uses profilers as support to accept the offload requested by

the edge node, without using online learning. The components are described below:
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o System Profilers: They collect metrics from device, network, and CEP engine,

which are used in the classification and training processes.

e Online Learning: It uses the trained model to classify the need to offload the

processing to a resourceful node.

o Drift Detector: It receives classification assessment to identify if a concept drift
occurred in any of the models. As a result, it can replace the existing models and
notify the Decision Engine that the existing models are unreliable to drive the

decision process.

« Decision Engine: It is responsible for deciding when to offload the processing to
a resourceful node and managing the life cycle of CEP jobs and operators, which
includes initializing or removing them, taking save points, and restoring them on the
remote node. In order to help in the decision, it uses the classifier output and other
contextual data to decide if the system should execute the offloading. An example of
additional context information is a concept drift occurrence, which can motivate an
adaptation on the decision algorithm to prioritize the static policies when deciding

the need for offloading.

o Policy Engine: It receives the profiler metrics and compares them with resource
thresholds, publishing an event if the policies are violated. For instance, it can send

a violation event when the current CPU consumption is higher than 85%.

3.1.4 Fallback Mechanism

Network systems use fallback mechanisms for switching between connectivity modes ac-
cording to certain situations (WU et al [2020). Based on this mechanism, DAOS enables
switching the strategies to ofload CEP processing between edge and cloud nodes. Figure
@] illustrates how DAOS works when facing a scenario where two applications (DDoS De-
tector and Predictive Maintenance) generate two different data distributions (x and y).
The difference between them can lead to a concept drift, which the Drift Detector can
identify. The online learning model is retrained when drift is detected, and the decision
approach is changed to work with static policies. On the contrary, the Decision Engine
uses the same online learning model.

The fallback mechanism extends the adaptive approach to be secure against changes
in data distribution (drifts). Besides, this primary advantage also enables the offloading
system to be automatically prepared for new applications. This mechanism has the po-
tential of being a permanent layer of general offloading infrastructure, adapting to any

application that has an offloadable workload.
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Figure 9 — Fallback Mechanism
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3.2 IMPLEMENTATION

The implementation of DAOS follow the architectural requirements defined in section

13.1.11 A [Proof of Concept (PoC)|software validates the offloading mechanism proposed

in this work. Despite being designed to support horizontal offloading, the PoC only im-
plements vertical offloading for simplicity. This section describes the implementation and

the tools/libraries used to make it possible.

3.2.1 Decision Engine

Offloading systems are designed to overcome the limitations of mobile devices by using
cloud computing resources (HAGHIGHI; MOAYEDIAN] [2018)). Most of these systems take
into consideration the context of the device, which are usually the network and computa-
tion conditions (ZHOU et al.,|2017)). The implementation presented in this research uses the
device context as the main factor to decide when the offload must happen. It is modeled
through state machines, which are abstractions that represent one state at a given time,
transiting based on external events (WANG; TEPFENHART}, |2019). It can be seen in Figure
LLOL

The state machine has an IDLE state that indicates the engine has received no of-
floading events. After that, when an offloading notification arrives, the state is changed to
OFF_REQ), indicating the remote should allow the offloading when viable. If allowed, it
transits to OFF__ALLOWED, and the engine will extract the local CEP state and send
it to the remote node. Then, after receiving the state’s acknowledgment from the remote
node, the state updated to OFF__IN_PROGRESS, starting the offload. In case of failure
when communicating with the remote node, the state is transited back to IDLE. Despite
failures in this process, there is no data loss since a local buffer stores the events until
fully transiting the states. Moreover, there is no retry mechanism implemented in each

state.
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Figure 10 — State Machine Implemented by the Decision Engine
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Under the hood, the Decision Engine has components for managing its most impor-

tant capabilities: state machine, contextual data, and offloading decisions. These low-level

components can be seen in Figure In practice, the Decision Engine is a service that

receives external events in [Message Queue Telemetry Transport (MQTT)| protocol and

interacts with a [Data Stream Processing Engine (DSPE)| to orchestrate the application

offloading when necessary. The interaction with CEP applications happens through the
Task Interface component, which abstracts the technology used on the other side. As
shown in Figure [TI] this implementation uses the Apache Flink as DSPE, but it could

support other engines such as Esper or Kafka.

Figure 11 — Low-Level Architecture of the Decision Engine
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Figure[I2]represents a sequence diagram of operations related to the offloading process.
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The Analytics package represents both Online Learning and Policy Engine components.
As explained in the state machine illustration, the Decision Engine receives an offloading
alert and then triggers a set of requests to get the CEP application state. The cloud
instance receives the edge state and starts a new application in an Apache Flink cluster.
Moreover, the incoming application data is locally buffered while the cloud does not
confirm the application start.

On the other hand, the Decision Engine can also receive an event indicating the of-
floading is no longer necessary, which means the edge device has enough resources to
resume the processing. In this case, the Decision Engine starts buffering the application
data locally and sends a stop message to the remote node. After receiving the stop con-
firmation, it restarts the application locally and redirects the data to it along with the

temporary buffer.

Figure 12 — Sequence Diagram of Offloading Operations
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3.2.2 Profiler

According to (ABOWD et al., [1999), context-aware systems use context to provide task-
relevant information and services to a user, in which context is any information that

describes the situation of an entity. Offloading mechanisms usually depend on contex-
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tual data to make the correct decision, considering the environmental conditions such as
memory consumption and network latency (MACH; BECVAR, 2017)). In DAOS, the system
profilers generate the context input to the Online Learning and Policy Engine compo-
nents. It serves to train the online learning models to make actual predictions. Besides,
the Policy Engine can compare this input to the resource thresholds to find violations.
The contextual elements are grouped into three categories: device, network, and CEP
application. The first one represents the metrics obtained from the device, such as CPU
and memory. Otherwise, the network category covers metrics related to the bandwidth.
Lastly, the CEP contextual elements are related to the operations inside the CEP engine
as the latency between two or more operators. Table 2| shows the metrics collected by the
profiler. It represents a subset of the possible metrics in this environment, sufficient for

making offloading decisions.

Table 2 — Contextual elements collected by the system profiler

Name Description
CPU CPU average consumption
Memory Memory average consumption

Bandwidth Network bandwidth between the nodes
Latency Latency between CEP operators

Source: Author

In this work, the profiler service is a Go daemon that runs continuously in both edge
and cloud. It uses a wrapper to the well-known psutill] library in order to obtain device
metrics. Moreover, to collect information about network bandwidth, it uses a wrapper to
the iperiﬂ tool. Finally, to gather metrics from the Apache Flink, it was necessary to use
Flink’s REST API and configure the application to enable latency monitoring feature. A
drawback of enabling latency monitoring is that it can decrease application performance

by measuring the time a modified record takes from the source operator to the sink.

3.2.3 Online Learning

DAOS uses online learning algorithms to learn the best decision with the obtained contex-
tual data to make an intelligent offloading decision. This learning step depends on training
the ML algorithms with a dataset of instances depending on the target domain. One dis-
advantage of training ML algorithms with historical data is that it can become outdated
if something changes on data distribution. Another aspect important in edge computing
is that device’s memory is usually constrained, restricting memory-intensive algorithms.

As a solution, some algorithms learn incrementally and are adaptive to changes over time.

https://github.com/shirou/gopsutil

2 https://iperf.fr/iperf-download.php
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Online learning techniques focus on data streaming scenarios and can use one instance
at a time, avoiding previous independent training and huge memory usage. For instance,
online decision tree algorithms can grow without storing the whole tree in memory. This
research uses the scikit—multiﬂowﬂ, which is an open-source library that extends the well-
known scikit—learnﬁ framework with online learning algorithms. It supports algorithms
such as decision trees, neural networks, and has modules for simulating a data stream

and evaluating the classifiers in a stream fashion.

3.2.4 Drift Detector

As mentioned in the previous section, the change in data distribution can make the
models outdated and compromise their performance. These changes are known as concept
drifts and occur when the properties of a target variable change. In the context of CEP
offloading, the target variable is the offloading prediction itself, and the properties are the
contextual data collected from the environment. The concept drift can result from many
situations, including changes in the CEP applications and the subsequent causes in the
processing and network conditions.

DAOS makes use of the[ADWIN]algorithm for detecting concept drifts on the incoming
profiling data, which is available in scikit-multiﬂowﬂ library. Despite having other algo-
rithms that perform better than ADWIN, it was selected for being widely adopted. After
detecting drifts, DAOS retrains the models with the new data and changes the offloading
decision strategy to policy-based until the model becomes reliable again. The fallback
mechanism controls this change by checking if the model performance is acceptable. For
example, it can switch the strategy back to online learning when the accuracy and recall

are greater than 90%.

3.2.5 Policy Engine

The policy-based mechanism is a module that is part of the Online Learning service and
acts primarily during the training and prediction phases of the algorithms. The module
starts by reading the policies defined in an XML file, following the specification explained
in section [2.2.1] Internally, a data structure is filled with those policies, enabling the
underlying service to use them to find policy violations, which comes from matching the
profiling metrics and the policies. The occurrence of policy violations triggers a function
responsible for categorizing the profiling instance in Offloading (1) or No-Offloading (0).
In addition, the service publishes the policy violation results to the Decision Engine

component to be used by the fallback mechanism.

3 https://scikit-multifiow.readthedocs.io/en /stable/
4 https://scikit-learn.org/
5 https://scikit-multifiow.readthedocs.io/en /stable/
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3.2.6 CEP Engine

CEP Engine is a platform that detects patterns in an incoming event stream, comparing
it against a set of rules. To support this capability, Apache Flink provides the FlinkCEPﬁ
library, which runs on top of the general-purpose platform. It extends the already provided
Flink’s DataStream API to increase the expressiveness of the CEP rules. As explained in
section [3.2.1] the interaction between Decision Engine and CEP occurs through a Task
API. It defines an interface with the basic operations to manage CEP jobs, such as start,
stop and get state. Consequently, even with a DSPE that does not have CEP as a first-

class citizen, the support can exist by extending this API.

3.3 SUMMARY

This chapter discussed the architectural proposal of DAOS, a drift adaptive offloading
system that intelligently offloads CEP applications in edge computing environments (sec-
tion . The architecture was designed according to the existing offloading works in
the edge computing literature, reusing some of the main components. The main contri-
bution was adding online learning, drift detection, and a fallback mechanism to protect
the decisions against incorrect predictions. In addition, section presented the internal

implementation of a PoC that aims to validate DAOS through a performance evaluation.

6 https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/libs /cep/



4 EXPERIMENT

This chapter describes the experiment designed to evaluate the offloading system, which
is divided into two sections. Section describes the performance evaluation of the on-

line learning classifiers. Section describes the performance evaluation of the adaptive

offloading system. Figure [13| shows an overview of the experiment steps.

Figure 13 — Experiment Steps
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The separation of both evaluations aims to facilitate the understanding of the results.
It provides a clear path to select the classification algorithm used in DAOS. Moreover, the

online learning evaluation has its methodologies and approaches, which cannot be mixed
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with a traditional performance evaluation.

4.1 EVALUATION OF ONLINE LEARNING CLASSIFIERS

This section describes the experiment that evaluates and chooses the classification model

used in the proposed offloading system. It is organized according to the Table [3]

-
3. Classifiers
Selection
G @ J
4 N
—— 4. Scenario Definition

(S %

[[] Online learning evaluation

[] DAOS evaluation

Table 3 — Sections of the online learning evaluation

Step Sections
Setup 4.1.1
Results 4.1.2
Statistical Significance |4.1.3
Conclusion 4.1.4

Source: Author
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4.1.1 Setup

One of the main capabilities of DAOS is the usage of an online learning classifier to help
in the offloading decision process. It is incrementally trained with a stream of profiling
events, giving a binary result as the output: Offloading or No-Offloading. However, the
evaluation of online classifiers is complex since the data stream is unbounded, making the
traditional evaluation techniques such as cross-validation unsuitable for representing this
stream setting. To solve that, some techniques such as Prequential (predictive sequential)
try to evaluate them in a more controlled way.

Prequential is a method to evaluate any classification algorithms in data streaming
scenarios (GAMA; SEBASTIAO; RODRIGUES, 2013). It uses each instance as it arrives in
the streaming to test the model before training. Prequential guarantees the accuracy
will be incrementally increased and does not require any holdout configuration, using all
the available data. The main disadvantage of this approach is that it makes it hard to
measure training and testing separately (GABER; ZASLAVSKY; KRISHNASWAMY/, [2009).
This experiment uses the default configuration of the evaluation library, which sets the
Basic Window (BW) as the classical implementation for prequential evaluation. In this
variation, the model is built with all processed instances of the stream, providing an
average hit rate model.

The classifiers used in this evaluation are Hoeffding Tree (HT), Extremely Fast De-
cision Tree (EFDT), Naive Bayes (NB), and KNN (K-Nearest Neighbor), which were
selected according to their different properties. Section explains the details of each
classifier.

The evaluation uses metrics from the confusion matrix illustrated by Figure [77] It
compares the target values with the ones predicted by the classifier, which helps to un-
derstand the kind of errors they are making. There are two possible target values in
this experiment: Offloading and No-Offloading. The rows represent the actual values, and
the columns represent the predicted values. True Positive (TP) means both actual and
predicted values were Offloading. True Negative (TN) means both actual and predicted
values were No-Offloading. False Positive (FP) means the actual value was No-Offloading,
but the classifier predicted as Offloading, also named as Type I error. False Negative (FN)
means the actual value was Offloading, but the classifier predicted as No-Offloading, also
named as Type II error.

According to the Confusion Matrix visualization, the following metrics can be obtained

and used for evaluating the model’s performance:

4 B TP +TN @)
Y = TP Y TN+ FP+ FN '
TP
Precision = ————— (4.2)

TP+ FP
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Figure 14 — Confusion Matrix
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TP
Recall = m (43)
2T'P
F1= 4.4
(2TP + FP + FN) (44)
me:?:g (4.5)

where pg is maximum accuracy reached by the classifier and p,. is the agreement level

between the classifications. The metrics are explained below:

e Accuracy: ratio of correct predictions with respect to the total number of predic-

tions.
» Precision: ratio of positive predictions that were done correctly.
» Recall: ratio of actual positive predictions that were done correctly.
e F1: harmonic mean of both precision and recall metrics.

« Kappa: how close are the predictions done with respect to the actual values.

Those metrics give a complete overview of the classifier performance, enabling us to
examine the most relevant aspects of this research. In this case, reducing the Type II error

when predicting Offloading and No-Offloading is desirable. The trade-off between Type I
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and Type II errors relates to the cost of wrong prediction to the system as a whole. Type
I error happens when the prediction is Offloading, but the actual value is No-Offloading,
leading to an earlier offloading. Otherwise, Type II error occurs when the prediction is
No-Offloading, but the actual value is Offloading, preventing the device from offloading
before reaching the maximum capacity. Therefore, Type II error is more critical than
Type I error in this scenario since the device would reach the maximum capacity.

Recall and Fl-score are the metrics that most reflect the influence of Type I and
Type II errors. Consequently, the evaluation and real usage of the classifiers should pay
attention to both values.

Cohen’s Kappa is another important metric that states the performance of a classifier
compared to a random guess based on the frequency of each class (BIFET et all, 2015)). It
is an excellent option to assess the performance when using an imbalanced dataset, which
is the case of this research because the number of No-Offloading instances is greater than

the contrary.

4.1.2 Results

The evaluation was executed with 5.000 instances of the labeled dataset that contains
profiling metrics from the edge devices while running a CEP application for
IDenial of Service (DDoS)| detection. A sample of this dataset is publicly accessible in

GitHubH. Moreover, to guarantee minimum statistical reliability, the evaluation performed
30 repetitions (KWAK; KIM| 2017). Table 4] shows the metric values for each evaluated
model. The number of neighbors (k) considered in the KNN classifier was 5, the default

value in the scikit-multiflow tool.

Table 4 — Results of the online learning evaluation: average values for each metric

Classifier Accuracy Precision Recall F1 Kappa

HT 0.9952 1.0 0.8969 0.8944 0.9456
EFDT 0.9902 0.8964 0.8924 0.8944 0.8892
NB 0.9827 0.9930 0.6323 0.7726 0.7641
KNN 0.9719 0.9151 0.4350 0.5897 0.5770

Source: Author

The results show that the HT model performs better than the others, while the results
are similar to the EFDT classifier. Both algorithms share the same idea of constructing
a tree incrementally and splitting when they find the best split possible. According to
(MANAPRAGADA; WEBB; SALEHI, [2018), HT is more efficient computationally, while the
EDFT is more efficient statistically because it allows splitting the nodes before finding the

L https://gist.github.com /netoax/074bce788a73fe546d4ee39abb0facla
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best option. The EDFT usually outperforms the HT when the data follows a stationary
distribution in particular scenarios.

On the other hand, NB and KNN classifiers presented the worst performance between
the evaluated models. The NB classifier is usually a simple choice because it assumes in-
dependence between the attributes, which is not always true. Despite being outperformed
by decision tree techniques, it works well to solve many classification problems. The ac-
curacy of NB was satisfactory, but the other metrics show it could easily lead to Type I
or Type II errors. Lastly, the KNN is an inefficient type of classifier because of its lazy
characteristics, demanding storing some data in memory. Also, it depends on configuring
a good value for the number of neighbors (k), which was probably the reason behind its
poor performance. For the sake of simplicity, no holdout or folding evaluation was done

to find the best value for ’k’ in this research.

4.1.3 Statistical Significance

Table [4] gives an overview of the performance of each classifier, showing HT and EFDT as
the best performing ones. However, it cannot lead to an accurate conclusion since some
of the values are close. One solution to solving this type of conflict is running a statis-
tical significance test. There are two types of tests: parametric and non-parametric. The
parametric techniques assume that the data distribution is normal. As an alternative, the
non-parametric techniques do not make strong assumptions about the form of the data
distribution, which is an excellent fit when there is a lot of data and no prior knowl-
edge about it. In this context, the evaluation requires a non-parametric technique that is
suitable for comparing whether all the samples have the same distribution or not.

Based on this, the McNemar’s test is a non-parametric technique widely used in data
streaming literature for comparing two classifiers (GAMA; SEBASTIAO; RODRIGUES), |2013))
(LU et al, |2019). It was selected because the easy usage and the fact it was an acceptable
type I error (DIETTERICH, 1998)). This technique considers the number of instances mis-
classified by the first classifier (a) and not by the second (b) and vice-versa, which can be

described by the following equation:

_Ja—b—1]
 a+b
McNemar’s test follows the form of a Chi-Squared X? distribution and rejects the

(4.6)

null hypothesis that classifiers have the same performance when M > 3.84 with 1 degree
of freedom. It was built primarily to compare two classifiers but is adaptable for more
than two by using pairwise comparison. As four classifiers are being evaluated in this
experiment, the test considers their combination. As shown in Table[5] a contingency table
was created for each pair of models, representing the number of misclassified instances for
both.

Considering a confidence level of 95% (alpha = 0.05), the hypothesis are defined below:
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Table 5 — Results of the online learning evaluation: McNemar’s contingency table

(a) HT x EFDT (b) HT x NB (c) HT x KNN
False True False True False True
False 12 1 False 10 3 False 11 2
True 5 4782 True 68 4719 True 212 4575
(d) EFDT x NB (e) EFDT x KNN (f) NB x KNN
False True False True False True
False 9 8 False 11 6 False 37 41
True 69 4714 True 212 4571 True 186 4536

Source: Author

« p > alpha: fail to reject the null hypothesis, when the models have the same

proportion of errors.

o p <= alpha: reject the null hypothesis, when the models have a different proportion

of errors.

The McNemar’s statistics are described in Table [0 It indicates that the comparison

between HT and EFDT classifiers fails to reject the null hypothesis, which means they

have a similar proportion of errors. On the contrary, the other comparisons reject the null

hypothesis, stating they do not have a similar error distribution.

Table 6 — Results of the online learning evaluation: McNemar’s statistics and p-value

Statistics p-value
HT x EFDT 1.500 0.221
HT x NB 57.690 0.000
HT x KNN 204.117 0.000
EFDT x NB 46.753 0.000
EFDT x KNN 192.775 0.000
NB x KNN 91.348 0.000

Source: Author

McNemar’s test has been used in this research as a convenient statistical testing ap-

proach for data streaming settings because it does not require multiple trials. However,

it is known for overestimating the results in many scenarios, resulting in Type I errors
(VINAGRE et al) 2021). This drawback behind McNemar’s test is related to the usage of
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individual instances rather than folds that represent different portions of data (BIFET
et al, 2015). (GAMA; SEBASTIAO; RODRIGUES, 2009)) proposes applying McNemar’s test
over a sliding window to solve part of it. Otherwise, there is also a recommendation for
changing the testing procedure to use folds, such as a combination of k-fold distributed
bootstrap validation and Wilcoxon’s signed-rank test (VINAGRE et al., 2021)).

4.1.4 Conclusion

This section evaluated four online classifiers to select the most appropriate for being used
in DAOS. The classifiers were initially compared in terms of performance metrics, which
indicates the HT classifier has a better performance when compared to the others. In the
sequence, the results were submitted to a statistical significance test called McNemar’s
test, which is a non-parametric test that compares the number of misclassified instances
between two classifiers. As a result, McNemar’s test proved that the decision tree classifiers
outperform the others, indicating that both HT and EFDT could be used in DAOS.
Therefore, for simplicity matter, DAOS will use the HT classifier.

4.2 PERFORMANCE EVALUATION OF OFFLOADING SYSTEM

This section presents the performance evaluation of DAOS, following the guidelines pro-
vided by (JAIN| [1990). It specifies a set of requirements to guarantee control over the
experiment environment. In addition, the evaluation adopts some concepts discussed by
(MORENO), 2001)) on conducting Software Engineering experiments, which helps to improve

the design specification. Table [7] summarize the evaluation steps.

Table 7 — Sections of the DAOS evaluation

Step Sections
Goal 4.2.1
Context 4.2.2
Hypothesis 4.2.3
Variables 4.2.4
Experimental Design [4.2.6
Executions 4.2.7
Validity Threats 4.2.8
Data Analysis 4.2.9

Source: Author
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4.2.1 Goal

The evaluation aims to analyze the performance impact of using online learning and
concept drift detection to support the decision of dynamically offloading CEP in edge

computing. It assumes the best classifier for this problem was selected in section (4.1}

4.2.2 Context

The Internet of Things (IoT) is facing many challenges before being widely adopted in
the market, and one of them is related to protection against Botnet attacks. This kind
of attack compromises machines that are synchronized in the network and act as bots,
launching a series of activities, such as Distributed Denial of Service (DDoS), Phishing,
Spamming, and others (XIAO et al., 2009). In 2016, the malware known as Mirai infected
many loT devices (DVRs, webcams, and routes), causing orchestrated DDoS attacks that
made platforms like Twitter and Netflix unavailable across the world ((Constantinos Kolias
et al., 2017)).

One of the strategies for implementing an Intrusion Detection System (IDS) capable
of identifying DDOS attacks is using CEP (CHEN; CHEN| [2014). The evaluation deploys
DAOS in a hypothetical scenario that uses CEP for detecting DDoS attacks, potentially
caused by infected machines. This application benefits from being deployed in edge de-
vices, enabling them to collect and process network traffic data to find attacking patterns.
As it is hard to collect those data, the evaluation uses the Bot-IoT datasetf as a reliable
and realistic source of networking traffic involving IoT devices (KORONIOTIS et all, 2019).
Figure [19| illustrates the scenario.

Figure 15 — Context of DAOS evaluation: experiment scenario
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The CEP application deployed on both edge and cloud environments identifies DDoS
attack patterns according to the number of TCP packets in a time window. It has two
execution modes: (1) pattern rule for 128 TCP packets in 1 second (ddos-1s), and (2)

2

https://research.unsw.edu.au/projects/bot-iot-dataset
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pattern rule for 128 packets in 10 seconds (ddos-10s). These application modes generate
different datasets regarding the profiling metrics, which heavily depend on the compu-
tation and network data. Consequently, concept drift can be identified in the incoming
metrics as data changes according to each mode, which is appropriate for evaluating the
response of DAOS to these occurrences.

With the Bot-IoT dataset on hands, the experiment simulates a flow of normal and
attack packets towards the edge device. The packets are received through an MQTT
broker and processed by the CEP applications, applying the rules defined in ddos-1s and
ddos-10s application modes. Then, the interested clients receive a notification event when
the application detects a DDoS pattern. When the offloading is necessary, the decision
engine forwards this packet flow to the cloud services, and the response flow goes down
in the same way. Both environments run DAOS in order to coordinate the offloading
workflow.

The workload data is published in a unique stream of events to the experiments’
applications. A test suite was developed to create the event stream and control each
treatment’s event rate. The applications receive the events and process against the CEP
rules, categorized as simple and complex. The difference between them is the time window

size and the number of similar packets in that window for being considered a DDoS attack.

4.2.3 Hypothesis

The statistical hypotheses are constructed to make a statistical decision about the ex-
perimental population (MORENO| 2001). Supposing two alternative solutions are being
compared, it would be possible to formulate a hypothesis that there is no statistical dif-
ference between them, called the null hypothesis (denoted by Hy). The contrary leads to
an alternative hypothesis that assumes the Hj is null, often analyzing other aspects of
the comparison. The following hypotheses are defined for this experiment:

Hy: There is no significant difference in performance when using DAOS compared to

the policy-based mechanism.

. H() : CPUdaos == CPUpolicy
o Hy: Memorydaes = Memorypoicy
o Hy: Bandwidthgq.s = Bandwidthpepicy

(] HO : La/tencydaos - Lat@ncypolicy

Hi: The performance when using DAOS is higher compared to using the policy-based

mechanism.

o H;: CPUdaOS < CPUpolicy
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o Hyi: Memorygaes < Memorypoicy
o Hy: Bandwidthgq..s < Bandwidthpeicy

o Hy: Latencygeos < Latencypolicy

4.2.4 Variables

Response variables describe the effect of different factor levels on the experimental units
(MORENO), [2001). The Goal Question Metric (GQM) is an approach that facilitates the
identification of those variables in a software engineering experiment (BASILI; CALDIERA,
1994)). This technique requires the definition of specific goals and questions related to
them. Consequently, the question is analyzed to define which metrics answer them. The
GQM questions are defined below:

G1. Resource usage optimization

e Q.1.1. How many times have the devices reached maximum capacity?
o Q.1.2. What is the performance impact of adding DAOS to the edge device?

o Q.1.3. Is the overall performance negatively affected by the online learning model?

The GQM process evidenced the high-level goal of this research, creating a relationship
with the target response variable and questions that lead to quantifiable answers. G1
involves the analysis of the efficiency when running DAOS for offloading CEP applications

in the edge. As a result, it defines the following response variables:

« Efficiency in offloading CEP applications in the edge without overloading the devices
(G1).

o Effectiveness in dynamically adapting the decision mechanism based on concept

drift occurrences (G1).

4241 Metrics

As a result of the GQM process, Table [§] describes the metrics responsible for answering

the response variables.

The implementation of DAOS was instrumented accordingly to collect the essential
metrics through the profiling service, as explained in section In addition, other
general variables such as interruptions and the number of offloading would be collected
directly from the experiment logs. The service logs are stored in a text file for further

processing and analysis.
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Table 8 — Metrics of the DAOS evaluation

Metric Description

Memory usage (%) Average of memory the device is using

CPU usage (%) Average of CPU the device is using
Bandwidth (MB/s) Rate of data transfer for a fixed period of time
CEP latency (ms)  Latency between CEP operators

Source: Author

4.2.42 Factors and Levels

According to (MORENO, 2001)), the factors are any aspects intentionally varied in the
experimentation that can affect the response variables. They are associated with a set
of possible alternatives or levels. For instance, supposing the evaluation that compares
networking monitoring tools, the tool would be a factor, and its possible alternatives:

Zabbix, Prometheus, and others.

Table 9 — Factors and alternatives of DAOS evaluation

Factors Levels

Strategy Policy-based, MIL-enhanced, Drift-enhanced (fallback)
Throughput (events/s) 250, 500, 750

Application mode ddos-1s, ddos-10s

Source: Author

Table [9 shows the factors and alternatives used in this experiment. The strategy is
a factor that represents the mechanism under evaluation, which has three alternatives:
policy-based, ML-enhanced, and Drift-enhanced. Also, the throughput is the number of
events per second sent to the mechanisms. Lastly, the application mode describes the
complexity of the DDoS application used in the experiment, which uses different time

windows to increase the processing load.

4243 Parameters

The parameters are properties that do not change during the experimentation (MORENO)
2001). As shown in Table the parameters are mostly related to the software and

hardware capabilities required for running DAOS.
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Table 10 — Parameters of the DAOS evaluation

Type Parameter

CEP Engine Apache Flink (v1.10.0)

Hardware (Edge) Raspberry Pi 3 Model B (Quadcore, 1 GB memory)
Operating System (Edge)  Raspberry Pi OS

Hardware (Cloud) AWS EC2 - al.xlarge (4 vCPU, 8 GB memory)

Operating System (Cloud) Linux Ubuntu 18.04

Source: Author

4.2.5 Workload Characterization

According to (JAIN, 1990), there are two types of test workloads: real and synthetic. The
real workloads represent the system in its everyday operations. Otherwise, the synthetic
ones are suitable for evaluations, demanding more control over the workloads. Usually,
the experiments use synthetic workloads due to the ability to repeat and modify them
based on their needs.

As explained in the section [£.2.2] this experiment uses a workload from a hypothet-
ical scenario of identifying DDoS attacks against IoT devices. The real effectiveness of
this solution depends on other factors, such as the level of hardware security. Therefore,
this experiment is concerned with the overhead aspect of the system when receiving the
malicious packets at different rates. The computation offloading strategies are studied to

guarantee that this detection process works effectively in an acceptable time.

Table 11 — Description of the dataset features used in DAOS evaluation

Column Description

Stime Record start time

Proto Transaction protocol present in network flow
Saddr Source IP address

Sport Source port number

Daddr Destination IP address

Dport Destination port number

Bytes Total number of bytes in transaction

State Transaction state

Source: Author

The experiment uses the Bot-IoT dataset, which is a synthetic workload with network
packets that represent both DDoS attacks and normal [oT flow (KORONIOTIS et al., 2019).
It has 72.000.000 records and throughput of 42.7 events per second. The event publish-
ing rate is controlled for exercising the applications with different load levels. Table
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describes the dataset columns that are useful for building a CEP application that detects

anomalous network traffic.

4.2.6 Design

This experiment does not have blocking variables that can affect the response variables.
It can be performed by combining the alternatives of each factor described in Table [9
The only exception to this combination is when evaluating the Drift-enhanced strategy. It
requires analyzing DAOS under the opposite load levels and different application modes:
(ddos-1s, 250) x (ddos-10s, 750). This adaption makes it feasible to detect concept drifts
in a controlled manner. According to (MORENO, [2001)), this type of experiment is called

Fractional Factorial Design.

4.2.7 Executions

The experiment execution follows the fractional factorial combination explained in section
[4.2.6] It evaluates and compares different strategies for CEP offloading in the edge, using
the variation of throughput, strategy, and application modes. In addition, to facilitate the
understanding of the evaluation, the executions will be separated into three parts: policy-
based, ML-enhanced, and Drift-enhanced. Finally, each execution takes 30 minutes, except
those that evaluate the Drift-enhanced mechanism, which takes 120 minutes to guarantee
the detection of drifts.

4.2.8 Validity Threats

According to (WOHLIN et al., 2012)), software engineering experiments should be concerned

with the validity of their results. In this research, the following threats were identified:

o Construct validity: the experimental design was adapted for reproducing a sce-
nario with concept drift occurrences. Instead of comparing all the factors and levels
with the Drift-enhanced approach, it focuses on the combination that consumes
fewer resources (ddos-1s, 250) and the combination that consumes more resources
(ddos-10s, 750). Hence, the causal relationship between the other combinations and

the improvement with the Drift-enhanced mechanism cannot be assured.

o Internal validity: the experimental instrumentation uses the profiling component
of DAOS to collect the expected metrics. However, it is considered a threat because
profiling is one of the components under evaluation and can negatively affect the
measured performance. One aspect that minimizes this problem is that DAOS uses
widely adopted monitoring tools such as psuti]E] and iPerfiﬂ which are wrappers to

C code that executes the Unix system calls to get the metrics.

3 https://github.com /shirou/gopsutil

4 https://iperf.fr/



54

o External validity: the throughput is an experimental factor that represents the
load directed to the edge devices. In this evaluation, the alternatives are 250, 500,
750 events per second, comprehended as low, medium, and high rates. However,
these values were empirically defined based on Apache Flink’s behaviors without
any previous evaluation. Thus, it can influence the generalization of DAOS for other

scenarios in the edge that would receive a higher rate.

4.2.9 Data Analysis

This section analyses the results of each execution. It presents the statistical data and
charts with resource consumption over time, giving an overview of the data. It drives the

discussion to compare the performance between intelligent approaches (ML-enhanced,

Drift-enhanced) and policy-based. The executions are detailed in sections [4.2.9.1] 4.2.9.2]
and £.2.9.3

4.2.9.1 Policy-based Offloading Mechanism

The policy-based offloading mechanism use thresholds to control when the offloading is
acceptable (e.g. 80% of CPU and 60% of memory). In the face of a violation, the decision
engine starts offloading the CEP application to the cloud. Based on the experimental
factors in Table [9] the evaluation executes the policy-based mechanism by varying the
throughput and application modes. It does not consider any machine learning solution.
The executions take 30 minutes individually, being appropriate for noticing the increase
in resource consumption and the subsequent offloading. Table provides an overview
about the collected statistical measures. In addition, Figure [L6] shows the same results in
a box plot format. The offloading occurrences mostly happen when the system receives a
higher throughput (500, 750).

Table 12 — Results of DAOS evaluation: mean values for the policy-based mechanism in the edge

T = 250 T =500 T =750
ddos-1s ddos-10s ddos-1s ddos-10s ddos-1s ddos-10s
CPU (%) 41.67 40.88 56.27 58.19 57.76 53.79
Memory (%) 37.49 36.55 30.67 32.5 29.89 34.59

Bandwidth (MB/s) 3229 3177 2791  31.03 2661  29.74
Latency (ms)  2318.71 2150.84 6277.98 6679.54 8366.88 6370.72

Source: Author

Figure [I6a] shows the CPU results for the edge device. As expected, there is a con-
siderable difference in the values when the application receives a higher throughput of
events. Due to the increase of data in a smaller time window (1 second), the CEP appli-

cation naturally demands more CPU to complete the processing. It becomes clear when
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comparing the results for both applications, where the consumption is greater with the
application that expects 128 events in 1 second. Moreover, it shows that the CPU has
reached a maximum value of almost 100% in all treatments, making sense with a con-
strained device. No crashes or interruptions were detected despite reaching this value,

probably because the offloading happens in the sequence.

Figure 16 — Results of DAOS evaluation: boxplot for policy-based mechanism (edge)
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Another important metric in CEP application is the memory consumption, described
in Figure It shows that average memory consumption remains quite the same even
with variations in throughput and application modes. Nonetheless, the maximum con-
sumption is reached when running the ddos-10s application with higher throughput (750).
It groups 128 events in a time window of 10 seconds, demanding more memory when com-
pared to the ddos-1s. In the same context, the CEP Latency is a metric that reflects the
internal overhead of the CEP operators. Figure shows that it behaves similarly to the
other metrics when the throughput increases.

The networking aspect of the evaluation considers the bandwidth between the edge
and cloud. Figure shows that bandwidth decreases when the throughput is high.
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What happens is that when the offloading starts, the decision engine redirects the data
flow to the cloud instance. Consequently, the higher the throughput, the more bandwidth

will be used to support that redirection.

Table 13 — Results of DAOS evaluation: mean values for the policy-based mechanism in the
cloud

T = 250 T =500 T =750
ddos-1s ddos-10s ddos-1s ddos-10s ddos-1s ddos-10s
CPU (%) 0.44 0.42 3.32 1.57 4.71 3.29
Memory (%)  28.64 38.15 44.47 42.56 43.38 37.22

Source: Author

With respect to the cloud, Table[I5] presents an overview of the statistic results, which
are also shown as box plots in Figure[I7] This environment is very different from the edge,
considering the available resources. For that reason, the results show that the average CPU
consumption remains low independently of the throughput variation. The skewed data in
the boxplots are probably related to the bootstrap of the Apache Flink cluster and the
other services required by DAOS.

The memory consumption results in the cloud environment are consistent with each
application’s requirement. It starts considerably high for the application ddos-10s and re-
mains at the same level until the end. Otherwise, the ddos-1s application is only impacted

when it receives a higher throughput.

Figure 17 — Results of DAOS evaluation: boxplot for policy-based mechanism (cloud)
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4.2.9.2 ML-enhanced Offloading Mechanism

Unlike the policy-based mechanisms, the ML-enhanced approach can dynamically adapt
to changes in terms of resources and applications. It uses online machine learning for
learning when the offloading should happen, informing the decision engine accordingly.
To implement this approach, DAOS uses the Hoeffding Tree algorithm as the online
learning classifier, selected in section

Table 14 — Results of DAOS evaluation: mean values for the ML-enhanced mechanism in the

edge
T =250 T = 500 T =750
ddos-1s ddos-10s ddos-1s ddos-10s ddos-1s  ddos-10s
CPU (%) 33.39 31.50 43.97 42.50 52.15 52.27
Memory (%) 23.80 31.02 24.28 28.8 25.91 29.45

Bandwidth (MB/s)  35.19 33.44 34.04 32.73 33.40 31.56
Latency (ms) 2524.60 212590 7224.47 6484.69 5412.35 5593.62

Source: Author

The online learning model was initially warmed-up with ten executions to reach a
minimum desired performance and stabilize the system (VOJT™ et all ). The cost of not
running offloading is high compared to the contrary, requiring an acceptable classification
performance. This execution demanded a configuration on the Decision Engine to fall
back the strategy to policy-based while the model is not ready yet. Based on the results
shown in Table [d] it considers the performance values of 95% for accuracy and 80% for
recall.

Table [14] gives an overview about the statistical measures for this ML-enhanced ap-
proach. Moreover, Figure [18| presents the same results box plot charts.

Figure shows the results of CPU consumption for this mechanism on edge. The
mean values are lower when compared to the policy-based mechanism, which is probably a
consequence of executing an offload earlier due to classifier prediction. It happens because
the policies are defined according to hard thresholds and some repetition rules, while
the online learning approach has an improved boundary definition to decide in favor of
offloading. Furthermore, the maximum CPU consumption has not reached 100% in any
of the scenarios.

The ML-enhanced mechanism requires a new service for training and classifying with
the incoming profiling events. However, Figure [I8b] shows it does not negatively impact
memory consumption. On the contrary, the usage of online learning makes the whole
system more efficient, reducing memory compared to the policy-based mechanism results.
In addition, those results make clear that the Hoeffding Tree algorithm used in the system

is computationally efficient, avoiding storing a huge decision tree on memory. The same
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Figure 18 — Results of DAOS evaluation: boxplot for ML-enhanced mechanism (edge)
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line of thought could be applied to analyze the latency results. Figure [18c| indicates the

average latency is lower than with the policy approach.

Table 15 — Results of DAOS evaluation: mean values for the ML-enhanced mechanism in the
cloud

T = 250 T = 500 T =750
ddos-1s ddos-10s ddos-1s ddos-10s ddos-1s ddos-10s
CPU (%) 2.25 6.93 3.12 10.41 4.06 6.25
Memory (%)  40.17 45.52 48.13 44.65 48.42 41.25

Source: Author

Figure exhibits the results for bandwidth consumption between edge and cloud.
Like the other metrics, bandwidth consumption has also improved with the online learning
approach. That is probably related to the improvement in the system’s overall performance

since the network stack of each device no more excessively buffers data. In contrast to the
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Figure 19 — Results of DAOS evaluation: boxplot for ML-enhanced mechanism (cloud)
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policy-based approach, the average bandwidth does not show any special variation when
increased throughput.

Table [L5] provides an overview of the cloud statistic measures. Also, Figure [17] shows
the chart results for both CPU and memory usage on the cloud instance. Compared to
the edge results, the online learning mechanism increases the load on the cloud side. As
the offloading decision becomes more precise on the edge device, it reduces the idle time
of the cloud instances, which is a behavior that makes sense when looking at the results.

To provide a better understanding of the offloading occurrences, Figure shows
the results for each pair of application modes and throughput rates concerning the edge
environment. It represents only one sample from the amount of data collected. As shown in
the charts, the main difference between the policy-based (blue line) and the ML-enhanced
(orange line) is that the ML-enhanced strategy anticipates the offloading decision. For
instance, shows that the ML-enhanced strategy started an offload at the timestamp
12:02:00, while the policy-based strategy took a few minutes to make the same decision.
A consequence of this anticipation is that the edge device consumes fewer resources than
using a policy-based decision. Naturally, the same explanation could be extended to the
other metrics monitored in the evaluation.

The improvements brought by the ML-enhanced strategy are due to the intelligence in
identifying offloading situations. It presents an outstanding boundary definition reached
with the trained model that uses the profiling data collected from this offloading process.
The policy-based strategy has to certify that a set of metrics represent an actual offloading
situation since it could be from a sporadic consumption peak. As explained in section[2.2.1]
it usually uses repetition and composing rules to ensure the offloading occurrence. The
policy-based strategy has methods to reach the offloading anticipation achieved by the

ML-enhanced strategy. However, the main advantage of using the ML-enhanced strategy
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)

Figure 20 — CPU usage over the time of policy-based and ML-enhanced executions. The 'x
marker indicates an offloading occurrence.
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is reducing those manual optimizations, learning from the data generated by the devices.
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4.2.9.3 Drift-enhanced Offloading Mechanism

The online learning model can become outdated with the deployment of a new CEP
application in the edge or any change in the environment that influences profiling data
distribution. Consequently, it would not be feasible to use the ML-enhanced approach
until the new model reaches a minimum performance to guarantee that the offloading
decisions will make sense. For that reason, the third strategy analyzed in this evaluation
considers the addition of concept drift detection to the online learning workflow, using
the drift occurrences as an alarm to retrain the model and fallback the decision approach
to the policy-based mechanism.

The Drift-enhanced mechanism demands starting a Drift Detector component on the
online learning service. Besides, it requires an experimental design adaptation to detect
concept drifts in a controlled time window. The design of other approaches considers
executing them in a window of 30 minutes. However, this time is not enough for detecting
concept drifts in a repeated manner. Consequently, it was necessary to increase it to 120
minutes and run the opposite applications in terms of throughput and complexity to

guarantee a change in data distribution.

Table 16 — Results of DAOS evaluation: mean values for the Drift-enhanced mechanism in the

edge
ddos-1s (T=250) ddos-10s (T=750)
CPU (%) 42.79 65.52
Memory (%) 38.25 36.07
Bandwidth (MB/s) 31.20 29.14
Latency (ms) 3044.89 7717.59

Source: Author

In the same way, Table [16| shows an overview for the edge environment, and Figure
shows the plotted charts. In both applications, the average CPU and memory con-
sumption is higher when compared to the ML-enhanced mechanism, which is probably a
consequence of the difference between the execution time and the additional component
introduced. It is important noticing this difference was intentionally introduced through
the adaption in complexity and loading characteristics to make it easier to detect concept
drifts.

Despite maintaining the same throughput rates as the other mechanisms, the varia-
tion influences the CEP operator’s latency. The engine may have to duplicate the garbage
collector to clear the unused state. Moreover, receiving a larger number of events com-
promises the long-term performance. For that reason, the average latency presented in
Figure is greater when compared to the other mechanisms.

Adding a new component to the systems does not influence the application processing



62

Figure 21 — Results of DAOS evaluation: boxplot for Drift-enhanced mechanism (edge)
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requirements. As a result, the bandwidth statistics presented in Table are pretty
similar to the results for the ML-enhanced mechanism. The small variation is probably
a consequence of the opposite throughput values since the ddos-10s application offloads
more data than the ddos-1s because of its internal state.

Tables [17] and Figure 22] shows the CPU and memory statistics for the cloud envi-
ronment. The throughput variation introduces a natural difference between ddos-1s and
ddos-10s measures that receive fewer events per second, consuming less CPU and memory.

Table 17 — Results of DAOS evaluation: mean values for the Drift-enhanced mechanism in the
cloud

ddos-1s (T=250) ddos-10s (T=750)
CPU (%) 0.41 3.91
Memory (%) 38.71 42.51

Source: Author
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Figure 22 — Results of DAOS evaluation: boxplot for Drift-enhanced mechanism (cloud)
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The main distinction between the Drift-enhanced and the ML-enhanced mechanisms is
related to the ability to adapt to concept drift occurrences, changing the offloading decision
mechanism on the fly. One of the challenges when evaluating it is detecting concept drifts
in a controlled manner. It can be solved by creating a considerable difference between the
profiling measurements, which happens when there is a change in two factors: application
mode and throughput. That said, Figure [23| evidences that difference when comparing the
(ddos-1s, 250) and (ddos-10s, 750). In Figure there is a concept drift occurrence at
the timestamp 12:24:37 and an offloading in the sequence. Despite facing an online model
restarting, the decision fallback to the policy-based strategy and can continue with the
offloading decisions.

Figure 23 — CPU usage over the time of policy-based and Drift-enhanced executions. The 'x’

marker indicates an offloading occurrence.
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As described in the statistical measure tables, the performance of the Drift-enhanced
mechanism is this case is worse than ML-enhanced since the number of offloading is
intentionally increased to provoke drifts. The offloading frequency keeps lower in the
executions that evaluate policy-based and ML-enhanced mechanisms. The main reason
for that is because a timeout protection mechanism avoids excessive offloading when the
device node becomes suitable for processing in a short time since the last offloading. Figure
23b|shows the consequence of minimizing the timeout protection as mentioned above. Even
with this adjustment, the simultaneous offloading occurrences in the comparison show the

Drift-enhanced also reacts a little faster when facing an offloading situation.

4.2.10 Statistical Significance

The statistical test aims to validate whether there is a statistical difference between the
results presented in section [£.2.9] It is responsible for rejecting or not the hypotheses
defined in section [4.2.3] Initially, a Shapiro-Wilk test was executed to state whether the
results are normally distributed (SHAPIRO; WILK, |1965]). This test guides the choice of
the testing approach. In this test, the null hypothesis means the sample follows a normal
distribution, rejected when the p-value is greater than 0.05 with a confidence level of
95%. The obtained results, in general, have a p-value lower than 0.05, rejecting the null
hypothesis, which leads to a non-parametric testing approach.

Mann-Whitney U is a non-parametric test that seems appropriate for this scenario. It
combines the samples and ranks them together to check the formation of opposite values
clusters or to check if the values are randomly mixed (MANN; WHITNEY), 1947). The null
hypothesis states there is no significant difference between the distributions. Its rejection
means the samples are significantly different from each other, which occurs when the p-
value is lower than 0.05 (alpha). It compares the policy-based mechanism against its two

alternatives: ML-enhanced and Drift-enhanced.

e p > alpha: fail to reject the null hypothesis, when there is no significant difference

among the samples.

e p <= alpha: reject the null hypothesis, when there is a significant difference among

the samples.

Table [18] compares both policy-based and ML-enhanced strategies. As it can be seen,
the p-values are mostly lower than 0.05, rejecting the null hypothesis. This result states
that the difference between both strategies is statistically significant. Therefore, as the
performance results for the compared alternatives show that the ML-enhanced strategy
is more performative than its alternative, the null hypothesis rejection means it is statis-

tically better than the policy-based strategy.
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Table 18 — Mann-Whitney U test results for edge device metrics. It compares two offloading
strategies: policy-based and ML-enhanced.

Application Metric Throughput Statistics p-value

250 6283034.500  0.000

CPU 500 5891694.500  0.000
750 5536633.500  0.000

250 8989790.000  0.000

ddos-1s Memory 500 6662005.000  0.000
750 6447125.500  0.000

250 2981075.000  0.000

Bandwidth 500 1672370.500  0.000
750 1631400.500  0.000

250 1517702.500  0.001

Latency 500 721396.000 0.000
750 756136.500 0.013

250 12832236.000  0.000

CPU 500 7905111.000  0.000
750 5187863.500  0.234

250 12008029.500  0.000

ddos-10s Memory 500 6285536.500  0.017
750 5481869.000  0.000

250 4829091.500  0.000

Bandwidth 500 3271659.000  0.000
750 2941375.500  0.000

250 5324416.500  0.000

Latency 500 1009748.500  0.000
750 684672.500 0.000

Source: Author

On the other hand, Table [19| compares the policy-based with the Drift-enhanced ap-
proach. As specified in section [£.2.9.3] this comparison is particularly different because
only the opposite applications in terms of loading were analyzed. The results show that
the p-values are lower than 0.05, which means the approaches are significantly different.
However, as the results indicate, the Drift-enhanced mechanism adds some computational
costs to the edge device. It means the difference between them states the policy-based

mechanism outperformed in this scenario.
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Table 19 — Mann-Whitney U test results for edge device metrics. It compares two offloading
strategies: policy-based and Drift-enhanced.

Application Metric Statistics p-value
CPU 12864248.000  0.000
ddos-10s (750)  Memory  13054339.000  0.000
Bandwidth  4972451.500  0.000
Latency 1370138.500  0.695
CPU 12696392.000  0.000
ddos-1s (250) Memory  16805827.000  0.000
Bandwidth  2019870.000  0.000
Latency 3488019.000  0.000

Source: Author

4.2.11 Conclusion

This section described the performance evaluation of DAOS, responsible for comparing
the intelligence brought by it with a policy-based offloading mechanism. The instance of
DAOS is an experimental software implemented to be evaluated in different environments
(edge, cloud), serving as an infrastructure for executing applications in the context of
Intrusion Detection Systems (IDS). The results demonstrate that DAOS is suitable for
being deployed as an edge infrastructure system that offloads CEP applications to detect
DDosS attacks against IoT devices. As shown in section [£.2.9.2] it presents improvements
in the edge devices’ overall performance compared to the policy-based mechanism.

Despite the attacker sending a higher rate of malicious packets in the DDoS detection
case, the intelligent offloading mechanism would optimize the processing transfer to the
cloud. Consequently, this optimization ends up minimizing the latency and resource usage
of CEP applications in the edge, enabling the network’s security administrator to take
an earlier action when receiving a DDoS attack notification. As a result, this improve-
ment opens a door for using DAOS and CEP to support time-sensitive applications that
run close to the data sources, such as fraud detection, predictive maintenance, and fall
detection systems. Moreover, considering the computation cost of adding DAOS in the
infrastructure layer, it may not be suitable for supporting applications that do not require
a timely response.

The beneficial results for adopting DAOS were statistically compared with the alter-
native approach (policy-based), showing a significant difference. Moreover, the Figures
and 23| visually demonstrated that DAOS effectively starts the offloading even before the
policy-based mechanism take the same action. It also clarifies the trade-off between both
approaches since the policy-based can also be optimized to offload in a better timing but
requires manual intervention. On the other hand, the results show that the adoption of

concept drift detection effectively increases the adaptability of DAOS.
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Figure reveals an unrealistic scenario in which multiple offloading occurred over
time. This behavior was intentionally introduced to vary the underlying profiling data,
leading to concept drift occurrences. Therefore, the main limitation of the Drift-enhanced
evaluation was the absence of a good testbed for reproducing the drifts. Despite this
limitation, the comparison between the Figures and is relevant to indicate the
increase in process from one to another, resulting in the subsequent offloading. Figure
shows a scenario where the fallback mechanism starts using the policy-based strategy
after a concept drift occurrence. The last offloading marked in the chart is the successful
proof of the effectiveness of this mechanism, which does not compromise the offloading

performance even facing a drift.
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5 RELATED WORKS

This chapter discusses the works related to the research, pointing out their contributions
and drawbacks. We present a non-exhaustive list of related work that resulted from an
exploratory literature review. The selection criteria were the number of citations and their

similarity to the explored problem.

5.1 OPERATOR PLACEMENT

In CEP terminology, the operator is a functional computing unit that represents event
processing capabilities such as filtering and aggregation (LUTHRA, 2018). In order to
deliver faster response, the operators must be placed in a way that minimizes factors
such as latency, response time, and energy consumption. The following works proposed
solutions to solve this placement problem:

(CAI et al., | 2018)) proposes a response time aware strategy for operator placement in
edge computing. It presents an approximation-based algorithm that considers the response
time as the most important Quality of Service (QoS) metric for optimizing the placement
decision. Unlike DAOS, it focuses on distributing the operators in the network topology
and uses optimization techniques to solve a NP-hard problem.

TCEP (LUTHRA et al., [2021)) is a transition-capable CEP system that supports
operator placement transitions. It uses a lightweight online genetic algorithm to meet the
QoS requirements and decide the placement of some operators. This solution presents
similarities to DAOS regarding the online learning aspect of the generic algorithm. How-
ever, rather than selecting the operator’s placement, the focus of DAOS is deciding the
best moment to offload a CEP application to the cloud.

Therefore, operator placement solutions generally focus on answering the where of-

floading question, as explained in section [2.2]

5.2 STATIC OFFLOADING

In the computation offloading literature, some solutions identify and migrate computing-
intensive code to meet QoS requirements (FLORES et al., [2015) (CHEN et al) 2019). The
traditional mechanism to enable code offloading are context-aware and use limits or time-
outs to control when the offloading should happen. It can consider any other offloadable
workload as an offloading unit, such as the event streaming in the CEP offloading scenario.

Some approaches that use this type of static offloading decision are listed below:

mCloud (ZHOU et all, |2017) is a code offloading framework that uses a context-

aware decision algorithm to offload mobile applications. The architecture of mCloud is
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similar to DAOS, but it uses a general cost estimation model for helping in offloading
decisions with no ability to learn with the contextual data.

GiTo (FONSECA; FERRAZ; GAMA) 2018) is a distributed CEP coordination sys-
tem that uses a policy-based mechanism to decide when offloading [Web of Things (WoT))|

applications. It distributes the processing between the mist, fog, and cloud layers, where a
set of policies are defined based on resource usage thresholds that head the offload decision
between the layers. On the contrary, DAOS proposes an intelligent mechanism that uses
online learning to decide when offloading CEP applications in the edge. Nevertheless, the
policy-based mechanism of GiTo was adopted by DAOS to be used as a fallback strategy
when the model is not reliable and serves as a baseline when comparing the intelligent

approach to the policy-based one.

5.3 INTELLIGENT OFFLOADING

Recently, as an alternative to the static ofloading mechanisms, some works are using ma-
chine learning to build intelligent decision algorithms that can learn the best policies over
time (CAO et al., [2019)) (SHAKARAMI; SHAHIDINEJAD; GHOBAEI-ARANT, 2020). Moreover,
there are works that apply this adaptive strategies to the context of edge computing,
which approximate them to WoT scenarios (CARVALHO et al., 2020) (HOSSAIN et al., 2020))
(WANG et al., 2021)). Given the limited available resources of edge devices, it can be hard to
train traditional machine learning algorithms. Consequently, there are also works adopting
the online learning models (XU; CHEN; REN 2017) (SUN et al., 2019).

MALMOS (EOM et al., [2015)) is a framework for mobile offloading that uses online
machine learning for making accurate scheduling decisions. It verifies the correctness of
the previous offloading decisions and use it as an input to improve the current model.
Despite their similar architecture, there is a considerable difference between MALMOS
and DAOS regarding the used algorithms and the training strategy. In DAOS, the online
learning algorithm is adapted for a data streaming scenario. Moreover, the training is
continuous, without being scheduled as in MALMOS.

(REGO et al., 2017)) proposes a solution that uses decision trees in the offloading
decision process. The trees are created through the offloading previously performed and
the profiling information, giving a binary output (local or remote), similar to the binary
classification adopted by DAOS. The difference between them is that the decision trees are
created in the cloud and then synchronized with the mobile devices without supporting
online learning. In addition, it aims to minimize energy consumption in the mobile context,
which is different from the scenarios approached by DAOS.

(JUNIOR et al., 2019) proposes the Context-Sensitive Offloading System (CSOS),
which is a solution for improving the accuracy in offloading mobile applications through
the usage of contextual information. It was possible with the application of machine

learning algorithms such as KNN, Decision Tree, Rules, and Naive Bayes. The models
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were previously trained with a dataset of contextual data and then used on the offloading

decision process. It has similarities with DAOS regarding the architecture and the machine

learning usage but focuses on integrating the decision mechanism with [Software-Defined]

[Networking (SDN)| infrastructure and has no support for online learning.

54 SUMMARY

This chapter discussed works that have something in common with DAOS. Firstly, there
are initiatives for CEP operator placement, but the optimization solutions do not nec-
essarily focus on answering the when offloading question. Secondly, some works propose
offloading decision systems that use static indicators to drive the decision, such as resource
thresholds (policy-based) or timeouts. Machine learning algorithms come as a solution for
making this decision more dynamic. However, the constrained environment of edge com-
puting imposes challenges to using memory-consuming algorithms, and most of the works
do not use algorithms for data streaming settings.

The main contribution of DAOS is using online learning and drift detection to decide
when to offload CEP workload in the edge. This research did not find works that use con-
cept drift detection for tasks other than adjusting the machine learning models. It opens
an opportunity for using concept drift alerts to adapt to changes in the profiling data,
considering its influence on the offloading decision. The main advantage of considering
concept drift is that it reflects how resource usage evolves when facing contextual changes.
Therefore, DAOS uses those occurrences to change between the intelligent and the static

approaches via fallback, guaranteeing reliability when the models are not safe.
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6 CONCLUSION

Edge computing has been predominantly leveraging the applications that require low la-
tency in critical scenarios. In a complementary way, the adoption of CEP is fundamental in
a world that handles millions of events per second from those scenarios. Both paradigms
can work together to deliver value to the clients, meeting the QoS requirements. Nev-
ertheless, CEP engines usually require a machine with an excellent capacity to process
multiple data streams, which is not always the case when talking about edge devices. De-
spite this challenge, computation offloading strategies help divide the processing between
multiple devices when the edge becomes overloaded. One of the most crucial questions
that offloading techniques try to answer is: when to offload?

This research presented a drift adaptive offloading system (DAOS) that introduces a
way for adapting offloading systems to changes in the environment. It uses online machine
learning to answer the when question, taking into consideration the occurrence of concept
drifts in the profiling data. In addition, it evaluates DAOS by comparing it to the policy-
based solutions that use static thresholds to answer the when question. The obtained
results show that the difference between them is significant. It has demonstrated that
the improvements introduced by DAOS enhanced the performance of edge devices when
offloading the CEP application responsible for detecting DDoS attacks, responding to the
first research question (Q1) about the feasibility of using online learning techniques in a
fast and efficient way.

Moreover, the experiment reveals that taking offloading decisions with the Drift-
enhanced mechanism and the fallback mechanism does not negatively impact the per-
formance. In the executions involving this approach, the time was increased from 30 to
120 minutes to detect concept drifts on the profiling events more easily. The fallback
mechanism has interchangeably used the policy-based and ML-enhanced strategies. Con-
sequently, even with a reduction in the prediction reliability, the decision mechanism has
successfully fallback to use policies. It naturally prevents the edge device from maintaining
a high resource consumption for a long time, responding to the second research question

(Q2) about the increase in effectiveness and reliability of the offloading process.

6.1 CONTRIBUTIONS

We believe this work brings important evaluations that can support the choice of a more
appropriate offloading approach for different types of time-sensitive Complex Event Pro-

cessing applications. More specifically, the main contributions of this research are:

1. Comparing static and dynamic (i.e. intelligent) offloading decision approaches in
the context of CEP.
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2. Evaluating different online learning algorithms to select the most appropriate for

the offloading problem.

3. Using online learning algorithms suitable for data streaming scenarios to help in the

offloading decision process.

4. Using concept drift detection not only to retrain the online learning models but also

guide the decision algorithm to use policies until the models become reliable again.

The initial results of this research were published as an extended abstract in the

ACM/IEEE Symposium on Edge Computing (NETO; FONSECA; GAMA|, 2020). Moreover,

the source code of DAOS and the experimental scripts are publicly available in GitHuH[l]

6.2 FUTURE WORKS

+ Reinforcement Learning (RL): There is a recent trend in designing offloading

techniques that use RL as an intelligent decision mechanism (WANG et al., |2021))
(SHAKARAMI; SHAHIDINEJAD; GHOBAEI-ARANTI, [2020). According to (KAELBLING;
LITTMAN; MOORE, {1996), RL describes the problem of an agent learning a new
behavior via trial-and-error interactions. Depending on the agent’s decisions, it gets
a reward or a penalty, in which the total reward is the maximization goal. In the
offloading context, the agent is an algorithm trying to learn the best decision by
interacting with the environment (HOSSAIN et al., 2020). For instance, the algorithm
running in an edge device can decide to ofload when the CPU consumption reaches
70%, getting a reward depending on whether the offload improves some metrics,

such as energy consumption and latency.

QoS-driven Offloading: This research focused on evaluating DAOS with a device’s
performance point-of-view. Another aspect that can be explored is the usage of QoS
metrics, such as latency and response time, as a parameter that should be optimized
during the offloading decision. This evaluation would be important for validating
how it affects the experience of applications that depends on the CEP responses. The
usage of QoS metrics can also fit together with Reinforcement Learning algorithms,

being used as an indicator to reward or penalty the algorithm.

Offloading Assessment: The online learning model used in DAOS is assessed
through the output of the policy-based mechanism. However, this can negatively af-
fect the results since the algorithm learns with a static approach that only considers
metrics from the device and the network, which is similar to not using QoS metrics.
Based on this, a future work can be assessing the results with metrics that indicate

whether the offloading done previously improved or not the overall performance.

1

https://github.com/netoax/adaptive-offloading-system



73

Some of these metrics are formulated by (SHAKARAMI; SHAHIDINEJAD; GHOBAEI-
ARANTL, [2020), such as energy consumption, delay, cost of offloading, and provider’s
profit. Moreover, the Hoeffing Tree model and others in data streaming settings can

deal with delayed assessments, where offloading results arrive later.

Extension: The architecture of DAOS is not limited to CEP applications. It was
conceived independently from the CEP engines, being adaptable for other resource-
intensive applications in the edge that also need offloading. Therefore, this extension

of DAOS to different domains can be an opportunity for future works.
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