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ABSTRACT

Despite several improvements in Super-Resolution deep learning techniques, these
proposed methods tend to fail in many real-world scenarios since their models are usually
trained using a pre-defined degradation process from high-resolution (HR) ground truth
images to low-resolution (LR) ones. In this work, we propose a supervised Generative
Adversarial Network (GAN) model for Image Super-Resolution which has as the first
stage to estimate blur kernels and noise estimation from real-world images to generate LR
images for the training phase. Furthermore, the proposal includes implementing a novel
U-Net-based discriminator, to consider an input image’s global and local context, and it
allows employing a CutMix data augmentation for consistency regularization in the two-
dimensional output space of the decoder. The proposed model was applied to three main
datasets that are ordinarily used in super-resolution official competitions. The commonly-
used evaluation metrics for image restoration were used for this evaluation: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM), Learned Perceptual Image Patch
Similarity (LPIPS) and Natural Image Quality Evaluator (NIQE). After implementing
this new architecture, three other prominent models in the state-of-the-art GAN proposals
for super-resolution were trained with the same parameters and databases to perform a
global comparison between all of them. Finally, the results of the experimentation in
training and evaluation tasks between all the models suggest an improvement in the
performance of the presented work compared to the other architectures based on the
established metrics.

Keywords: image super-resolution; deep learning; loss functions; degradation modelling.



RESUMO

Apesar de várias melhorias nas técnicas de aprendizado profundo de super-resolução,
esses métodos propostos tendem a falhar em muitos cenários do mundo real, pois seus
modelos geralmente são treinados usando um processo de degradação predefinido de im-
agens de verdade de alta resolução - High Resolution (HR) para baixa resolução - Low
Resolution (LR). Neste trabalho, propomos um modelo supervisionado de Generative Ad-
versarial Network (GAN) para Super-Resolução de Imagem que tem como primeira etapa
estimar kernels de borramento e estimativa de ruído de imagens do mundo real para gerar
imagens LR para a fase de treinamento. Além disso, a proposta inclui a implementação
de um novo discriminador baseado em U-Net, para considerar o contexto global e local
de uma imagem de entrada, e permite empregar um aumento de dados CutMix para reg-
ularização de consistência no espaço de saída bidimensional do decodificador. O modelo
proposto foi aplicado a três conjuntos de dados principais que são normalmente usados
em competições oficiais de super-resolução. As métricas de avaliação comumente usadas
para restauração de imagem foram usadas para esta avaliação: Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity (SSIM), Learned Perceptual Image Patch Similarity
(LPIPS) e Natural Image Quality Evaluator (NIQE). Após a implementação desta nova
arquitetura, três outros modelos de destaque nas propostas GAN de super-resolução de
última geração foram treinados com os mesmos parâmetros e bancos de dados para re-
alizar uma comparação global entre todos eles. Por fim, os resultados da experimentação
em tarefas de treinamento e avaliação entre todos os modelos sugerem uma melhora no
desempenho do trabalho apresentado em relação às demais arquiteturas baseadas nas
métricas estabelecidas.

Palavras-chaves: super-resolução de imagem; deep learning; funções de perda; mode-
lagem de degradação.
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1 INTRODUCTION

1.1 INTRODUCTION TO SINGLE-IMAGE SUPER-RESOLUTION

In most digital imaging applications, HR images or videos are usually desired for later im-
age processing and analysis. The inclination for HR stems from two principal application
areas: enhancement of pictorial information for human interpretation and helping rep-
resentation for automatic machine perception (EL-SAMIE; HADHOUD; EL-KHAMY, 2019).
Image resolution describes the details contained in an image. The higher the resolution,
the more image details. The resolution of a digital image can be classified in several ways:
pixel resolution, spatial resolution, spectral resolution, temporal resolution, and radiomet-
ric resolution. In the scope of this project, it will only be considered the spatial resolution
type. Regarding digital images, spatial resolution concerns the number of small picture
elements called pixels utilized in constructing the image. In other words, spatial resolu-
tion refers to the pixel density in an image and measures in pixels per unit area. Figure 1
exhibits a classic test target used in optical engineering laboratory work to analyze and
validate imaging systems such as microscopes, cameras, and image scanners. Its purpose
was to determine the spatial resolution of an imaging system.

Figure 1 – The 1951 USAF resolution test chart, is a classic test target used to identify the spatial
resolution of imaging sensors and imaging systems.
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Traditionally, conventional image vidicon and orthicon cameras have been the only
available image acquisition devices. These cameras are analog. Since the 1970s, Charge
Coupled Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS) image
sensors have been widely used to capture digital images. These sensors are typically ar-
ranged in a two-dimensional array to capture two-dimensional image signals. The sensor
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size or, equivalently, the number of sensor elements per unit area in the first place de-
termines the spatial resolution of the image to capture (MILANFAR, 2009). The higher
density of the sensors, the higher the spatial resolution possible of the imaging system.
An imaging system with inadequate detectors will generate LR images with blocky effects
due to the aliasing from low spatial sampling frequency.

To increase the spatial resolution of an imaging system, one straightforward way is
to increase the sensor density by reducing the sensor size. Nevertheless, as the sensor
size decreases, the light incident on each sensor also decreases, causing the so-called shot
noise. Also, the hardware cost of a sensor increases with the increase of sensor density or
corresponding image pixel density. Therefore, the hardware limitation on the sensor size
restricts the spatial resolution of an image that can be captured. While the image sensors
limit the spatial resolution of the image, the image details (high-frequency bands) are
also limited by the optics due to lens blurs, lens aberration effects, aperture diffractions,
and optical blurring due to motion. Constructing imaging chips and optical components
to capture very HR images is prohibitively expensive and impractical in most real appli-
cations, e.g., widely used surveillance cameras and cell phone built-in cameras. Besides
the cost, the resolution of a surveillance camera is also limited by the camera speed and
hardware storage.

The most feasible solution to this problem is integrating hardware and software capa-
bilities to obtain the required HR level. Using as high an HR level as possible from the
hardware can carry part of this task. The rest of the task is performed using the software.
This is the new trend in the most up-to-date image-capturing devices. Image processing
algorithms can effectively obtain HR images. Using a single LR image to obtain an HR
image is known as image interpolation. On the other hand, when multiple degraded ob-
servations of the same scene are used to generate a single HR image, the process is known
as Image Super Resolution (ISR), can be carried out using some a priori information
about the degradations in the available LR images, such as information about blurring,
registration shifts, and noise. With this information available, the solution to the SR re-
construction problem can be carried out easily. However, if no information is available,
the problem is more complex, and it is known as Blind Image Super Resolution (BISR).

1.1.1 Image Interpolation

Image interpolation is the process by which a single HR image is obtained from a single
LR image. Interpolation works by using known data to estimate values at unknown points
and can be classified as polynomial interpolation and interpolation as an inverse problem.
Figure 2 illustrates how resizing and enlargement work:
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Figure 2 – Image interpolation for resizing or enlargement works in two directions and tries to achieve the
best approximation of a pixel’s color and intensity based on the values of surrounding pixels.

Source: The author (2022)

This method is the most widely used upsampling method. The current mainstream in-
terpolation methods are Nearest-neighbor Interpolation, Bilinear Interpolation, and Bicu-
bic Interpolation. Because these are highly interpretable and easy to implement, these
methods are still widely used today.

• Nearest-neighbor Interpolation is a simple and intuitive algorithm that selects the
nearest pixel value for each position to be interpolated, which has fast execution
time but has difficulty producing high-quality results.

• Bilinear Interpolation sequentially performs linear interpolation operations on the
two axes of the image. This method can obtain better results than nearest-neighbor
interpolation while maintaining a relatively fast speed.

• Bicubic Interpolation performs cubic interpolation on each of the two axes. Com-
pared with Bilinear, the results of Bicubic are smoother with fewer artifacts but
slower than other interpolation methods.

Interpolation is also the mainstream method for constructing (Single Image Super
Resolution (SISR)) paired datasets and is widely used in the data pre-processing of Con-
volutional Neural Network (CNN)-based (SISR) models.

1.1.2 Image Super-resolution

ISR is the process of obtaining HR images from LR images. It is an important class of
image processing techniques in computer vision and image processing. It enjoys a wide
range of real-world applications, such as medical imaging, satellite imaging, surveillance
and security, and astronomical imaging, amongst others. ISR techniques can be classified
into SISR and Multi Image Super Resolution (MISR) according to the number of the input
LR images. In particular, MISR has gradually developed into Video Super Resolution
(VSR). Compared with MISR/VSR, SISR is much more challenging since MISR/VSR
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has extra information for reference while SISR only has information of a single input
image for the missing image features reconstruction.

With the advancement in deep learning techniques in recent years, deep learning-
based SR models have been actively explored and often achieve State-of-the-art (SOTA)
performance on various benchmarks of SR. A variety of deep learning methods have been
applied to solve SR tasks, ranging from the early CNN based method to recent promising
Generative Adversarial Nets based SR approaches. (WANG; CHEN; HOI, 2020) provide a
comprehensive survey on recent advances in ISR using deep learning approaches. Figure
3 shows the taxonomy of image SR that this survey covers in a hierarchically-structured
way. This chapter will only include the most popular ones and, finally, provide more details
about GAN methods that are the base architecture and more relevant for this thesis.

Figure 3 – Hierarchically-structured taxonomy of SR survey.

Source: (WANG; CHEN; HOI, 2020)

1.1.2.1 Pre-upsampling Super Resolution

This approach uses traditional techniques–like bicubic interpolation and deep learning–to
refine an upsampled image. For example, Super Resolution Convolutional Neural Network
(SRCNN) is a simple CNN architecture consisting of three layers: one for patch extraction,
non-linear mapping, and reconstruction. The patch extraction layer is used to extract
dense patches from the input and to represent them using convolutional filters. The non-
linear mapping layer consists of 1 × 1 convolutional filters used to change the number
of channels and add non-linearity. The final reconstruction layer returns the HR image
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(DONG et al., 2015). Later on, Very Deep Super Resolution (VDSR) is an improvement on
SRCNN, in which a deep network with small 3 × 3 convolutional filters is used instead of
a smaller network with large convolutional filters (based on the Visual Geometry Group
(VVG) architecture). This network tries to learn the residual of the output image and the
interpolated input rather than learning the direct mapping (KIM; LEE; LEE, 2016a).

1.1.2.2 Post-upsampling Super-resolution

Since the feature extraction process in pre-upsampling SR occurs in the HR space, the
computational power required is also on the higher end. Post-upsampling SR tries to solve
this by doing feature extraction in the lower resolution space, then doing upsampling only
at the end, therefore significantly reducing computation. Some techniques following this
structure are the Fast Super-Resolution Convolutional Neural Networks (FSRCNN), a
compact hourglass-shape CNN structure for fast image SR. With the collaboration of
a set of deconvolution filters, the network can learn an end-to-end mapping between
the original LR and HR images with no pre-processing. Their experiments show that it
achieves a speed-up of more than 40× while still keeping its optimal performance (DONG;

LOY; TANG, 2016) and Efficient Sub-Pixel Convolutional Neural Network (ESPCN), a
CNN architecture with an efficient sub-pixel convolution layer which learns an array of
upscaling filters to upscale the final LR feature maps into the HR output. As a result, the
handcrafted bicubic filter is replaced in the SR pipeline with more complex upscaling filters
trained explicitly for each feature map while also reducing the computational complexity
of the overall SR operation (SHI et al., 2016).

1.1.2.3 Residual Networks

The EDSR architecture and its extension MDSR, with multiple input and output modules
that give corresponding resolution outputs at 2×, 3×, and 4×. A large kernel is used for
the pre-processing layers to keep the network shallow while still achieving a high receptive
field and pre-processing modules are the shared residual blocks, which is a standard block
for data of all resolutions (LIM et al., 2017). Coming next, CARN is presented, a cascading
mechanism at both the local and global level to incorporate features from multiple layers
and give the network the ability to receive more information. These cascading modules
effectively boost performance via multi-level representation and multiple shortcut connec-
tions. This work also proceeds to the CARN-M proposal for efficient SR by combining
the efficient residual block and the recursive network scheme (AHN; KANG; SOHN, 2018).

1.1.2.4 Recursive Networks

Recursive networks employ shared network parameters in convolutional layers to reduce
their memory footprints such as Deep Recursive Convolutional Networks (DRCN), this
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strategy repeatedly applies the same convolutional layer as often as desired. The number
of parameters does not increase while more recursions are performed and improving the
simple recursive network in two ways: recursive supervision and skip connection. In addi-
tion, it has a receptive field of 41 by 41, and this is relatively large compared to SRCNN
(KIM; LEE; LEE, 2016c), and Deep Recursive Residual Network (DRRN), an improvement
over DRCN by having residual blocks in the network over superficial convolutional layers.
Specifically, residual learning is adopted, both in global and local manners, to mitigate
the difficulty of training very deep networks; recursive learning is used to control the
model parameters while increasing the depth. Their benchmark evaluation shows that
DRRN significantly outperforms previous SOTA methods in SISR like VDSR, DRCN,
and RED30, while utilizing far fewer parameters (TAI; YANG; LIU, 2017).

1.1.2.5 Attention-based Networks

The networks discussed so far give equal importance to all spatial locations and channels.
In general, giving selective attention to different regions in an image can give much bet-
ter results. Some architectures that help achieve this are SelNet, a 22-layered deep CNN
structure, which can reconstruct HR images of higher quality with a slightly increased
complexity, compared to the baseline only with ReLU. This solution was ranked in the
5th place in the NTIRE2017 Challenge, with much lower testing time compared to the
top-4 entries. SelNet can separate hat strings, where other SR methods have difficulty
(CHOI; KIM, 2017), and Residual Channel Attention Networks (RCAN), which feature
extraction outcome is sent to the final layer with a long skip connection. Each residual
group contains some blocks with short skip connections to carry the low-frequency sig-
nals from the LR image. At the same time, the leading network focuses on capturing
high-frequency information. Furthermore, it includes a channel attention mechanism to
adaptively rescale channel-wise features by considering interdependencies among channels
(ZHANG et al., 2018).

1.1.2.6 Generative Models

The networks discussed so far optimize the pixel difference between predicted and output
HR images. Even though this metric has satisfactory results, it is not ideal; human eyes
cannot distinguish images by pixel difference but rather by perceptual quality. Generative
Adversal Networks (or GANs) try to optimize the perceptual quality to produce images
that are pleasant to observe. The most recognized GAN-related architectures are Super
Resolution Generative Adversarial Network (SRGAN) which uses a GAN-based architec-
ture to generate visually pleasing images. It uses the SRResnet network architecture as a
backend and employs a multi-task loss to refine the results. Its loss is composed of Mean
Square Error (MSE) loss, Perceptual similarity loss, and Adversarial loss (loss functions
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that will be reviewed deeper in the following chapter) (LEDIG et al., 2017). Subsequently,
Enhanced Super Resolution Generative Adversarial Network (ESRGAN) is presented. a
scheme improves on top of SRGAN by adding a relativistic discriminator. The advantage
is that the network is trained not only to tell which image is true or fake but also to
make real images look less real compared to the generated images, thus helping to fool
the discriminator. Batch normalization in SRGAN is also removed, and Dense Blocks (in-
spired by DenseNet) are used for better information flow. These Dense Blocks are called
Residual in Residual Dense Block (RRDB). (WANG et al., 2018b).

1.2 MOTIVATION

In recent years, SISR deep learning techniques have achieved remarkable improvements in
recovering a HR image from an observed LR input. Nevertheless, these proposed methods
adopt a pre-defined degradation process (e.g., bicubic downsampling) from an HR image to
an LR one and fail in many real-world scenarios since their models are usually trained using
a pre-defined degradation process from HR ground truth images to LR ones. To address
this issue, new architectures have been proposed focusing on adopting more complicated
degradation models to emulate real-world degradations achieving prominent performance
but still limited to certain kinds of inputs and dropping considerably in other cases.
The reason for this is that they still make some assumptions about the degradation types
related to the input LR and inevitably produce much less pleasing results for input images
with unknown degradations.

This is how new optimized deep learning models have been presented to tackle Blind
Super Resolution (BSR) in recent years. Nevertheless, these proposed methods tend to fail
in many real-world scenarios, their performance is usually limited to specific inputs and
drops considerably in other cases. The main reason is that they still make some assump-
tions about the degradation types related to the input LR. “While research on model-based
blind single image super-resolution SISR has achieved tremendous success recently, most
do not consider image degradation sufficiently. They assume image noise obeys an in-
dependent and identically distributed Gaussian or Laplacian distribution, which largely
underestimates the complexity of real noise. Previous commonly-used kernel priors (e.g.,
normalization, sparsity) are not effective enough to guarantee a rational kernel solution
and thus degenerates the performance of subsequent SISR task.” (YUE et al., 2022). That is
why it is important to continue researching new strategies or algorithms that give signif-
icant solutions to the BSR problem. However, the tuning process is more empirical than
theoretical; thus, most new proposals are essential modifications to previous SOTA mod-
els that work reasonably well against BSR. Some of these modifications consist of adding,
or reducing the number of layers, convolutional blocks, optimizing parameters, hyperpa-
rameters, or loss functions. Consequently, considerable research has achieved significant
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progress in this field, such as kernel estimation, representation learning, zero-shot learn-
ing, meta-learning, optimization method, real-world dataset, and unsupervised methods
(ZHANG et al., 2022). Despite all these efforts, down-sampling with blur degradation is still
an overly simple simulation considering there exist many other degradation types in the
real world.

Recently a new approach has emerged, presenting the implementation of U-Nets as
components in GANs. Several proposals have been adopting this idea obtaining signif-
icant improvements in different computer vision solutions. Therefore, this project aims
to contribute to the SOTA SISR focused on solving LR images that come from the real
world since these have an unknown kernel distribution. To achieve this, it is presented
a UR-SRGAN structure for BSR tasks, applying a technique that has not been widely
employed in SISR: a U-Net architecture as a discriminator of the GAN network. Adding
this structural change will encourage the discriminator to focus more on semantic and
structural changes between real and fake images and to attend less to domain-preserving
perturbations. In addition, the loss function of the generator was modified by adding the
LPIPS loss function for the perceptual loss and a per-pixel consistency regularization
technique based on the CutMix data augmentation. The proposed model will be trained
using the different SR datasets employing a degradation framework for real-world images
by estimating blur kernels and actual noise distributions to obtain more realistic LR sam-
ples. After all these modifications, it is figured to obtain a model that surpasses other
more recent SOTA GAN models in the area of BSR. This will be confirmed and evaluated
by performing a benchmark comparing all the metrics on a test dataset. The commonly-
used evaluation metrics for image restoration, PSNR, SSIM, LPIPS, and NIQE, will be
used for this evaluation.

1.3 OBJECTIVE

The overall objective of this work is to model and implement a GAN proposal oriented to
SR for real-world images, namely UR-SRGAN (U-Net Real Super Resolution GAN). To
achieve this, three important modifications will be made. The first consists of implement-
ing a U-Net structure discriminator together to consider the global and local context of
an input image. Furthermore, the addition of LPIPS and Feature Matching loss functions
is proposed to obtain improvements in the perception of the image, and a pre-processing
stage will be performed to retrieve low-resolution images that simulate an image with
unknown degradation using kernel estimation and noise injection. Subsequently, training
this UR-SRGAN architecture and comparing the results with other SOTA SRGAN mod-
els focused on restoring LR images with unknown and complex degradations at x4 scale
and verifying the performance according to the PSNR, SSIM, LPIPS, and NIQE metrics.
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1.4 THESIS STRUCTURE

In addition to the Introduction chapter, this thesis is divided into five supplementary
chapters:

• Chapter 2: In this chapter, the topic of SISR will be developed. BISR and the rele-
vant category for this work is Explicit Degradations Modeling. Later, more details
will be given about the metrics that will be used to evaluate the results of the ex-
periments of this work: PSNR, SSIM, LPIPS, and NIQE. Finally, a more detailed
explanation of the U-Net network is presented and how it has been applied in other
GAN models as a generator or discriminator, presenting important improvements
in the results of these models recently related to computer vision.

• Chapter 3: This chapter describes a brief introduction to the GAN architecture and
how it is composed by the generator and discriminator modules. Following, how
it has been included into SR tasks and lastly, presenting the three most relevant
SRGAN architectures so far focused on Real World Super Resolution (RWSR) tasks.
This will help to understand how these solutions tackle the BSR problem and how
was their implementation, datasets, training, and validation methods.

• Chapter 4: This chapter will be dedicated to further explaining the architecture of
UR-SRGAN. Also, it describes the U-Net discriminator strategy and how it focuses
more on semantic and structural changes between real and fake images. Furthermore,
the justification for using this approach in the original ESRGAN architecture as a
discriminator module. Later on, the second part will be to review the literature on a
loss function proposal using LPIPS instead of the traditional perceptual loss based
on VVG base architecture.

• Chapter 5: In this chapter, experiments will be carried out to confirm the effective-
ness of the new UR-SRGAN architecture. First of all, this model will be trained
together with the other three SOTA models (RealSR, Real-ESRGAN, A-ESRGAN)
to verify that it satisfies the aim of generating HR images with a scale four times
greater than the input image LR and achieving similar or better results than the
counterpart models. All the models will be trained using the three previously men-
tioned image datasets (DIVerse 2K resolution high quality images (DIV2K), DF2K,
DF2K+Outdoor Scenes (OST)) to see how the models behave with a greater num-
ber of images or with different types and characteristics. Finally, when obtaining the
weights of all the trained models, an evaluation will be made in two phases. First,
in the DIV2K validation dataset, which is used more frequently in competitions and
recent research in the field of super-resolution, and later in the DPED validation
dataset, which has real-world images obtained through different types of data. of
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phones and cameras. In the end, a global comparison will be made between all the
models using the PSNR, SSIM, and LPIPS metrics as references for the images
that have a GT reference and the NIQE metric for those that do not have said GT
reference (real-world images).

• Chapter 6: In this chapter, the conclusions of the thesis will be detailed, including
the limitations and experience during the experiments and future works into SISR
concerning BISR.
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2 BACKGROUND

2.1 INTRODUCTION TO SINGLE IMAGE SUPER-RESOLUTION

SISR aims to recover HR images from their LR counterparts. SISR is a fundamental
problem in the community of computer vision and can be applied in many image analysis
tasks, including surveillance and satellite images, as it was previously mentioned. SR is
a widely known ill-posed problem since each LR input may have multiple HR solutions.
With the development of deep learning, several deep SISR methods have been proposed
and have largely boosted the performance of SR (MA et al., 2021).

In this section, it is introduced a more elaborate explanation of the mathematical
formulations of the SISR schema. In particular (LIU et al., 2022) explains how SISR refers
to the labor of reconstructing an HR image from a given LR input, especially the high-
frequency contents in HR. The underlying degradation process from HR to LR can be
generally expressed with Equation 2.1:

𝑦 = 𝑓(𝑥; 𝑠), (2.1)

where 𝑥 and 𝑦 denote HR image and LR image respectively, 𝑓 is the degradation
function with a scale factor of 𝑠. Thus, the SR problem is comparable with modeling and
solving the inverse function 𝑓−1. In the instance of non-blind SR, 𝑓 is usually presumed
to be bicubic downsampling, as shown in Equation 2.2:

𝑦 = 𝑥 ↓𝑏𝑖𝑐
𝑠 , (2.2)

Alternatively, it can also be considered as the combination of downsampling and a
fixed Gaussian blur with kernel 𝑘𝑔, as shown in Equation 2.3:

𝑦 = (𝑥 ⊗ 𝑘𝑔) ↓𝑠, (2.3)

where ⊗ indicates a convolutional operation. Under this premise, the SR model is only
capable of handling LR inputs with this specific type of degradation. For other LR images
with different degradation kinds, the inconsistency between the SR model and intrinsic
degradation of inputs might produce various artifacts in SR results.

Consequently, the topic of BSR for unknown degradation is proposed to bridge this
gap. So far, two different ways of modeling the degradation process for BSR: explicit
modeling based on an extension of Equation 2.3, and implicit modeling through inherent
distribution within the external dataset. To be specific, explicit modeling usually employs
a so-called classical degradation model, which is a more general form of Equation 2.4:
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𝑦 = (𝑥 ⊗ 𝑘) ↓𝑠 +𝑛, (2.4)

where the SR blur kernel 𝑘 and additive noise n are two main factors involved in the
degradation process, and parameters related to these two factors will be unknown for an
arbitrary LR input.

2.2 BLIND SINGLE-IMAGE SUPER-RESOLUTION

SISR has long been a fundamental problem in low-level vision, focusing on the recovery
of a HR image from an observed LR input. In recent years, the community has performed
remarkable progress in this field, especially with the prosperous deep learning techniques.
However, most existing methods assume a pre-defined degradation process from an HR
image to an LR one, which can hardly hold for real-world images with complex degradation
types. In the direction of filling this gap, more attention has been paid in recent years
to approaches for unknown degradations in real-world applications, namely BSR (LIU et

al., 2022). Despite several impressive improvements, these proposed solutions fail in many
real-world scenarios, as their performance is usually limited to certain kinds of inputs
and will drop considerably in other cases. The main reason is that they still make some
assumptions about the degradation types related to the input LR.

The ways of degradation modeling in BISR can be simply divided into two cate-
gories: explicit degradation modeling methods and implicit degradation modeling meth-
ods. Among them, explicit degradation modeling methods can be further divided into two
categories according to whether they use kernel estimation technology.

2.2.1 Explicit Degradation Modeling

This section covers recently proposed BSR methods with explicit modeling of the degra-
dation process, usually based on the classical degradation model shown by Equation
2.4. Besides, these approaches can be further classified into two sub-classes according to
whether they employ an external dataset or rely on a single input image to solve the SR
problem.

2.2.1.1 Classical Degradation Model with an External Dataset

This kind of approach utilizes an external dataset to train an SR model well adapted to
variant SR blur kernels 𝑘 and noises 𝑛. Typically, the SR model is parameterized with a
convolutional neural network CNN, and an estimation on 𝑘 or 𝑛 for 𝑎 specific LR image
is used as conditional input to the SR model for feature adaptation purposes. After the
training, the model can produce satisfactory results for LR inputs with degradation types
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covered in the training dataset. According to whether a certain approach includes degra-
dation estimation in its proposed framework, in this category, there are two approaches
to take into consideration:

• Image-specific adaptation without kernel estimation: Receives estimated degrada-
tion information as additional inputs and is focused on how to utilize the estimation
input for image-specific adaptation.

• Image-specific adaptation with kernel estimation: Provides special attention to ker-
nel estimation along with the SR process.

2.2.1.1.1 Image-specific Adaptation without Kernel Estimation

In this section, it will be denoted some relevant approaches for SR methods that per-
form without kernel estimation. For instance, SR for Super Resolution for Multiple Degra-
dations (SRMD) proposes to directly concatenate an LR input image with its degradation
map as a unified input to the SR model, thus allowing feature adaptation according to the
specific degradation and covering multiple degradation types in a single model (ZHANG;

ZUO; ZHANG, 2018). This strategy can be easily extended to non-uniform maps for spa-
tially variant degradations. The SR reconstruction network of SRMD is similar to those
commonly adopted in non-blind SR.

Following SRMD, more architectures were labored like Unified Dynamic Convolutional
Network for Variational Degradations (UDVD), which uses the degradation map as an
additional input for SR reconstruction. It makes one step forward by employing per-pixel
dynamic convolution to more effectively deal with variational degradations across images
(XU et al., 2020). Afterward, Deep Plug-and-play Super Resolution (DPSR) incorporates
an SR network into a MAP-based iterative optimization scheme and proposes a princi-
pled formulation and framework by extending bicubic degradation-based deep SISR with
the help of a plug-and-play framework to handle LR images with arbitrary blur kernels
(ZHANG; ZUO; ZHANG, 2019).

USRNet also adopts the MAP framework but is based on the original degradation
model in Equation 2.4 which super-resolves an LR image blurred by kernel 𝑘 and denoises
an glshr image with a virtual noise level 𝜇 (ZHANG; GOOL; TIMOFTE, 2020). It enhances
the solution framework by unfolding the iterative optimization process of DPSR into an
end-to-end trainable network with the iterative scheme. Some examples of SR frameworks
without kernel estimation were presented to be more familiar with this concept. Never-
theless, as (LIU et al., 2022) mentioned, these architectures have limitations. They all rely
on an additional input of degradation estimation, especially the SR kernel 𝑘. However,
estimating the correct kernel from an arbitrary LR image is not an easy task, and an
inaccurate estimation input will cause kernel mismatch and greatly compromise the SR
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performance. In this manner, the next part will introduce another kind of approach, which
incorporate kernel estimation into the SR framework for more robust performance and on
which this work focuses more since the main architecture, its modifications, and experi-
ments are within this category. Therefore more emphasis will be given to explaining more
examples and details about these solutions for SR.

2.2.1.1.2 Image-specific Adaptation with Kernel Estimation

In this segment, SR architectures based on kernel estimation will be further devel-
oped. Primarily, it is essential to denote the Iterative Kernel Correction (IKC) whose
main objective is to correct the kernel estimate iteratively to approach a suitable result
progressively. What stands out much more about this method is taking advantage of in-
termediate SR results since artifacts into an SR image caused by kernel mismatch tend to
have regular patterns (GU et al., 2019). Another example is the Deep Alternate Network
(DAN) (HUANG et al., 2020b). This strategy improves the IKC framework much more. It
unifies the corrector and the SR network into one trainable end-to-end instead of training
each subnet separately, as is the case with IKC. This joint formation proposal can make
the two networks more compatible. In addition, the corrector manipulates the original LR
input for kernel calculation depending on an intermediate SR result, which is favorable
for more stable kernel estimation performance. (LUO et al., 2020). The approach of making
use of SR artifacts for kernel estimation is also employed in variant BISR (VBSR), which
trains a kernel discriminator to estimate the error map of an SR output instead of the
kernel itself. and finds the optimal kernel by minimizing the output error SR during the
inference stage. However, an iterative scheme like this consumes more inference time and
requires human intervention to select the optimal number of iterations (CORNILLèRE et

al., 2019).
To address this issue, some recent works propose non-iterative frameworks by introduc-

ing more accurate degradation estimation or more efficient feature adaptation strategies.
Unsupervised degradation representation learning for BSR (DRL-DASR) aims to esti-
mate the degradation details with a trainable encoder in the latent feature space, and the
degradation encoder is trained in an unsupervised manner (WANG et al., 2021a). Kernel-
oriented local adaptive tuning (KOALAnet) also uses a similar dynamic kernel strategy
that adapts the SR network to specific degradation. Further, it extends the non-iterative
framework to spatially variable impairment with a reduction network sampling for local
kernel estimation (KIM; SIM; KIM, 2021). Eventually, the adaptive modulation network
with reinforcement learning (AMNet-RL) proposes a modified version of the adaptive in-
stance norm, known as AdaIN, to add the kernel estimation in the SR network. It was also
a very advanced proposal in optimizing the BSR model with indistinguishable perceptual
metrics under reinforcement learning framework (HUI et al., 2021).
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However, there are also other approaches proposing to learn a BSR model by merely
covering more degradations in the training dataset, especially more realistic kernels esti-
mated from real images, which will be of more interest to describe for this project. For
instance, Kernel Modeling Super Resolution (KMSR) constructs a large kernel pool with
data distribution learning based on some realistic SR kernels estimated from real LR im-
ages. Kernels from this pool are then used to synthesize HR-LR training pairs according
to the classical degradation model, and the training process just follows a non-blind set-
ting with supervised learning. (ZHOU; SüSSTRUNK, 2019). In other words, the SR model
will be implicitly granted more capacity for kernel estimation in the training process, thus
avoiding explicit kernel estimation in the framework. However, such a direct way may not
lead to top performance. That is why a homogeneous strategy is employed in RealSR (JI

et al., 2020a), and Real-ESRGAN (REN et al., 2020). Its variation uses an attention module
into de U-Net discriminator A-ESRGAN (WEI et al., 2021a) to build a more generic train-
ing dataset with more realistic kernels. These last three architectures will be the base to
perform the experiments to compare both author’s results and the modifications that are
proposed in the current thesis and verify whether this project shows a better performance
than the original ones according to SR metrics.

2.3 IMAGE QUALITY ASSESSMENT

Image quality is the characteristic of an image that measures the perceived image degra-
dation (typically compared to an ideal or perfect image). In general, Image Quality As-
sessment (IQA) methods include subjective methods based on human perceptions. For
example, how realistic the image looks or objective computational methods. The outcome
is more aligned with our needs but is often time-consuming and expensive. Thus the
latter is currently the mainstream. Nonetheless, these methods are not necessarily consis-
tent with each other because objective methods are often unable to capture precisely the
human visual perception, which might lead to a large difference in IQA results.

Furthermore, the objective IQA methods are further categorized into three types:
full-reference methods performing assessment using reference images, reduced-reference
methods based on comparisons of extracted features, and no-reference methods without
any reference images. The most commonly used IQA methods will be introduced, covering
both subjective and objective methods (WANG; CHEN; HOI, 2020).

2.3.1 Peak Signal-to-noise Ratio

The PSNR is one of the most popular reconstruction quality measurements of lossy trans-
formation. For ISR, PSNR is defined via the maximum pixel value denoted as 𝐿 and the
mean squared error (MSE) between images. Given the GT image 𝐼 with 𝑁 pixels and the
reconstruction 𝐼, the PSNR between 𝐼 and 𝐼 are defined as follows in Equation 2.5:
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𝑃𝑆𝑁𝑅 = 10 · log10(
𝐿2

1
𝑁

∑︀𝑁
𝑖=1(𝐼(𝑖) − 𝐼(𝑖))2

), (2.5)

where 𝐿 equals 255 in general cases using 8-bit representations. Because the PSNR
is only related to the pixel-level MSE only cares about the differences between corre-
sponding pixels instead of visual perception, it frequently leads to low performance in
representing the reconstruction quality in natural scenes, where usually human percep-
tion is more valued. However, due to the necessity to compare with literary works and
the lack of entirely accurate perceptual metrics, PSNR is still currently the most widely
used evaluation criteria for SR models.

2.3.2 Structural Similarity

Considering that the human visual system is highly adapted to extract image structures,
the SSIM metric is proposed for measuring the structural similarity between images based
on independent comparisons in terms of luminance, contrast, and structures (WANG et al.,
2004). For an image 𝐼 with 𝑁 pixels, the luminance 𝜇𝐼 and contrast 𝜎𝐼 are estimated
as the mean and standard 𝑃 deviation of 𝑁1 the image intensity, respectively, as it is
illustrated at this point: 𝜇𝐼 = 1

𝑁

∑︀𝑁
𝑖−1 𝐼(𝑖) and 𝜎𝐼 = ( 1

𝑁−1
∑︀𝑁

𝑖−1(𝐼(𝑖) − 𝜇𝐼)2) 1
2 , where 𝐼(𝑖)

represents the intensity of the 𝑖𝑡ℎ pixel of the image 𝐼. And the comparisons on luminance
and contrast, denoted as 𝐶𝑙(𝐼, 𝐼) and 𝐶𝑐(𝐼, 𝐼) respectively, are given by Equations 2.6 and
2.7 :

𝐶𝑙(𝐼, 𝐼) = 2𝜇𝐼𝜇𝐼 + 𝐶1

𝜇2
𝐼 + 𝜇2

𝐼
+ 𝐶1

, (2.6)

𝐶𝑐(𝐼, 𝐼) = 2𝜎𝐼𝜎𝐼 + 𝐶2

𝜎2
𝐼 + 𝜎2

𝐼
+ 𝐶2

, (2.7)

where 𝐶1 = (𝑘1𝐿)2 and 𝐶2 = (𝑘2𝐿)2 are constants for avoiding instability, 𝑘1 ≪ 1
and 𝑘2 ≪ 1. In addition, the image structure is represented by the normalized pixel
values: (𝐼 −𝜇𝐼)/𝜎𝐼 , whose correlations measure the structural similarity, equivalent to the
correlation coefficient between 𝐼 and 𝐼. Thus structure comparison function 𝐶𝑠(𝐼, 𝐼) is
defined as follows by Equations 2.8 and 2.9:

𝜎𝐼,𝐼 = 1
𝑁 − 1

𝑁∑︁
𝑖=1

(𝐼(𝑖) − 𝜇𝐼)(𝐼(𝑖) − 𝜇𝐼), (2.8)

𝐶𝑠 =
𝜎𝐼,𝐼 + 𝐶3

𝜎𝐼𝜎𝐼 + 𝐶3
, (2.9)

where 𝜎𝐼,𝐼 is the covariance between 𝐼 and 𝐼 , and 𝐶3 is a constant for stability. At
last, the SSIM is given by Equation 2.10:
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𝑆𝑆𝐼𝑀𝐼,𝐼 = [𝐶𝑙(𝐼, 𝐼)]𝛼[𝐶𝑙(𝐼, 𝐼)]𝛽[𝐶𝑙(𝐼, 𝐼)]𝛾, (2.10)

where 𝛼, 𝛽, 𝛾 are control parameters for adjusting the relative importance. Since the
SSIM evaluates the reconstruction quality from the perspective of the human visual sys-
tem, it better finds the requirements of perceptual assessment and is also widely used.

2.3.3 Learning-based Perceptual Quality

To better assess the image perceptual quality while reducing manual intervention, re-
searchers try to assess the perceptual quality by learning on large datasets. (MA et al.,
2017) and (TALEBI; MILANFAR, 2018) propose no-reference Mult Adds (MA) and Neural
Image Assessment (NIMA), respectively, which are learned from visual perceptual scores
and directly predict the quality scores without GT images. In contrast, (KIM; LEE, 2017)
proposes DeepQA, which predicts the visual similarity of images by training on triplets
of distorted images, objective error maps, and subjective scores. And (ZHANG et al., 2018)
collect a large-scale perceptual similarity dataset, evaluate the LPIPS according to the dif-
ference in deep features by trained deep networks, and show that the deep features learned
by CNN model perceptual similarity much better than measures without CNN. Although
these methods exhibit better performance in capturing human visual perception, the ob-
jective IQA methods such as PSNR and SSIM are still the mainstream currently. The
last-mentioned LPIPS will be considered a perception metric in the experiments executed
for the changes proposed in this hypothesis.

2.3.4 Natural Image Quality Evaluator

Proposed in (MITTAL; SOUNDARARAJAN; BOVIK, 2012), NIQE (Natural Image Quality
Evaluator) is the first proposed OU-DU-NR-IQA (Image Quality Assessment) metric.
OU stands for Opinion-Unaware, as opposed to Opinion-aware IQA; it does not require
the human subjective opinion score. DU stands for Distortion-unaware, as opposed to
Distortion-aware IQA, DU does not require prior knowledge of how an image is down-
scaled. NR stands for no-reference, which means the evaluation is based on the evaluated
image alone, without referring to the ground truth pairing image.

NIQE uses the measurable evictions from statistical regularities observed in natural
images. First of all, it computes a spatial domain NSS (Natural scene statistic) model by
computing the local mean removal and divisive normalization, as shown in Equation 2.11
:

𝐼(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) − 𝜇(𝑖, 𝑗)
𝜎(𝑖, 𝑗) + 1 (2.11)

Where 𝜇(𝑖, 𝑗) and 𝜎(𝑖, 𝑗) are local mean and contrast at location (𝑖, 𝑗), computed with
a 2D circularly-symmetric Gaussian weighting function with deviation equal to three. It
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is observed that for natural images, the coefficients of NSS features obtained from the
equation above can fit well into a Gaussian distribution. In contrast, the distorted images
fail to do so. Thus, a multivariate Gaussian (MVG) fit of the NSS features extracted from
the natural image corpus is computed. Finally, NIQE is computed as the distance between
the MVG fit of the test image and the MVG fit of the natural image corpus. The distance,
𝜐1, 𝜐2, Σ1, Σ2 stands for the mean and variance matrices of the natural MVG model and
the distorted images MVG model, better explained as follows by Equation 2.12:

𝐷(𝜐1, 𝜐2, Σ1, Σ2) =
√︃

((𝜐1 − 𝜐2)𝑇 (Σ1 + Σ2

2 )−1(𝜐1 − 𝜐2)) (2.12)

As shown in 2.12, NIQE can predict the image quality with little prior knowledge of
the GT image or its distortions. And is claimed by authors of NIQE through experiment
comparisons to perform equally or better than other IQA such as SSIM.

2.4 DATASETS FOR SUPER-RESOLUTION

There are a large diversity of datasets available for image SR, which considerably dif-
fer in image amounts, quality, resolution, and diversity. Some of them provide LR-HR
image pairs. In contrast, others only provide HR images, which case the LR images are
generally obtained by bicubic interpolation with anti-aliasing. In Table 1 it is listed sev-
eral image datasets commonly used by the SR community and in official competitions.
It indicates their amounts of HR images, average resolution, average numbers of pixels,
image formats, and category keywords (WANG; CHEN; HOI, 2020). Furthermore, combin-
ing multiple datasets for training is also popular. For example, (KIM; LEE; LEE, 2016b) a
model that exploits contextual information over large image regions in an efficient way
by cascading small filters many times in a deep network structure, and (LAI et al., 2017)
the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct
the sub-band residuals of high-resolution images. Both of these models combine T91 and
BSDS300 datasets for training. It is also frequently seen in the combination of DIV2K
(TIMOFTE et al., 2017) and Flickr2K (AGUSTSSON; TIMOFTE, 2017), better known as the
DF2K dataset, which will be further detailed and also employed during all the experi-
ments, including also the OST dataset. In addition, some image datasets are acquired by
common devices such as cell phones or cameras that are available for this type of image
enhancement and glssr tasks. In the present work, the DPED dataset will be used to
evaluate the generation of synthetic images from the UR-SRGAN architecture. Table 1,
displays more information about the datasets that are most frequently used in the SR
research area. In each column, we can see much more details about the number of images
that each dataset has, the average of their resolutions, what is their format, and keywords
that indicate the classes of images that each source includes.
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Table 1 – List of public image datasets for SR benchmarks.

Dataset Amount Avg. Resolution Avg. Pixels Format Category Keywords

BSDS300 300 (435, 367) 154, 401 JPG animal, building, food, land-
scape, people, plant, etc.

BSDS500 500 (432, 370) 154, 401 JPG animal, building, food, land-
scape, people, plant, etc.

DIV2K 1000 (1972, 1437) 2, 793, 250 PNG environment, flora, fauna, hand-
made object, people, scenery, etc.

General-100 100 (435, 381) 181, 108 BMP animal, daily necessity, food,
people, plant, texture, etc.

L20 20 (3843, 2870) 11, 577, 492 PNG animal, building, landscape, peo-
ple, plant, etc.

Manga109 109 (826, 1169) 966, 011 PNG manga volume

OutdoorScene 10624 (553, 440) 249, 593 PNG animal, building, grass, moun-
tain, plant, sky, water

PIRM 200 (617, 482) 292, 021 PNG environments, flora, natural
scenery, objects, people, etc.

Set5 5 (313, 336) 113, 491 PNG baby, bird, butterfly, head,
woman

Set14 14 (492, 446) 230, 203 PNG humans, animals, insects, flow-
ers, vegetables, comic, slides, etc.

T91 91 (264, 204) 58, 853 PNG car, flower, fruit, human face,
etc.

Urban100 100 (984, 797) 774, 314 PNG architecture, city, structure, ur-
ban, etc.

Source: (WANG; CHEN; HOI, 2020)

2.5 U-NET GENERATIVE ADVERSARIAL NETWORK

2.5.1 U-Net Convolutional Neural Network

Convolutional neural network (CNN), particularly the U-Net, is a powerful method for
medical image segmentation. By this time, U-Net has demonstrated SOTA performance
not only in many complex medical image segmentation tasks but also in numerous vari-
ations. As U-Net’s potential is still increasing, these variations developments have been
developed further, approaching several areas of computer vision. Therefore, it is presented
how this U-Net architecture started being designed for medical segmentation and even-
tually gained more popularity in other most recent proposals, including GAN solutions,
which present substantial improvements to its previous implementation and demonstrate
that it might also have notable results in the proposal to apply SR to images with unknown
degradation of the real world.
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(RONNEBERGER; FISCHER; BROX, 2015) presented U-Net fully connected neural net-
work in 2015 and applied it to medical image segmentation. Due to the problem of small
medical image data samples, U-Net adopts a symmetrical U-shaped structure to extract
the feature information in the image samples. The network structure is divided into the
downsampling shrinking process and the upsampling expansion process. There are four
downsampling operations, each doubles the number of feature channels of the image by
increasing the number of convolution kernels. After convolution, global average pooling
(GAP) is used to reduce the size of the feature map to reduce the difficulty of network
training. This incremental increase in the number of feature channels by layer-by-layer
convolution not only reduces the burden of training a fully convolutional network but also
can fully extract the beneficial part of the image information.

Upsampling is achieved by deconvolution. During the upsampling expansion of the
feature map, the number of convolution kernels is halved layer by layer, and the feature
map size is recovered layer by layer using deconvolution. In the U-shaped network, the
feature information of systolic and dilated paths in the same layer are fused by skip con-
nection before feature extraction through the convolution layer. The location information
extracted from the contraction path in the U-shaped structure is combined with the high-
level feature information extracted from the expansion path, which provides attention to
the network to a certain extent. In addition, the image details lost in the downsampling
process can also be compensated accordingly through the symmetric network structure,
reducing the loss of image information in continuous convolution.

Many U-Net-based models have been proposed; for instance, (KERFOOT et al., 2018)
used a U-Net convolutional neural network architecture built from residual units to seg-
ment the left ventricle. UNet++, proposed by (ZHOU et al., 2018), introduced nested and
dense skip connections to reduce the semantic gap between the encoder and decoder.
Although reasonable performance can be achieved, the nested network structure is too
complex and cannot examine enough information from the full scale. (WENG et al., 2019)
proposed NAS-UNet, using three types of primitive operation sets and search space to
automatically find two cell architectures, DownSC and UpSC, for medical image segmen-
tation, which attains better performance and uses much fewer parameters than standard
U-Net. (HUANG et al., 2020a) uses comprehensive skip connections to aggregate feature
maps of all scales at each feature fusion, using full-scale feature information. Reasonable
results can be obtained using UNet 3+ but with fewer parameters than U-Net. (LOU;

GUAN; LOEW, 2021) analyzed the classical U-Net and the recent MultiResUNet (IBTE-

HAZ; RAHMAN, 2020) architecture and then designed the Dual-Channel CNN block to
provide more effective features with fewer parameters. However, U-Net has not only been
used in the mentioned approaches but has also been implemented recently in GANs, as
shown in the next topic.
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2.5.2 U-Net Into GAN-based Architectures

Since its introduction in 2014, generative adversarial network (GAN) has achieved re-
markable success in generative image modeling and has shown outstanding performances
in numerous applications. The architecture of the generative adversarial network inte-
grates two competing networks, a generative network, and a discriminative network, into
one framework. The generator is to map given data to synthetic samples, and the dis-
criminator is to differentiate the generated synthetic samples from the real samples. The
two networks are trained sequentially and iteratively in a competing manner to boost the
performance of the other. The final goal is to generate synthetic samples that cannot be
differentiated from real samples.

The employment of the U-Net architecture in the GAN strategy is a novel proposal
taken by several investigations and top-notch deep learning solutions for computer vision.
In particular, the addition of a U-Net in GAN models can be used to act as a genera-
tor for an end-to-end network and introduce extra judgment with the discriminator to
help the generator find the optimal solutions. It can also act as a discriminator, U-Net
discriminators focus more on semantic and structural changes between real and fake,
whereas, in GAN, two neural networks compete with each other to become more accurate
in their predictions by creating their training data and automatically discovering and
learning regularities to generate new samples that plausibly could have been drawn from
the original dataset by framing the problem as a supervised learning problem with two
sub-models. The generator generates new examples, and the discriminator tries to classify
these examples as either real (from the domain) or fake (generated).

(COLLIER et al., 2018) evaluate the efficacy of progressive training of a generative ad-
versarial network (GAN) for rooftop segmentation using multi-spectral satellite images.
This GAN network consists of a generator and a discriminator linked through an adver-
sarial training algorithm. The generator learns to generate mappings from input to target,
and the discriminator learns to evaluate them. Feedback from the discriminator enables
the generator to produce highly realistic outputs. The U-Net architecture, composed of
a convolutional neural network consisting of an encoder-decoder, was employed as the
generator. Mirrored layers in U-Net contain skip connections that allow structural infor-
mation to be preserved when decoding from the learned latent encoding. Also, progressive
growth of the generator and discriminator was applied. Therefore, in this transfer learning
process, deep networks are trained to learn increasingly complex features (YOSINSKI et al.,
2014). The accuracy of rooftop classification is assessed, and results are compared with
those of a traditionally trained generative model and a non-generative U-Net. Figure 4
shows the generator loss and accuracy over training epochs for a single U-Net network,
GAN, and Progressive GAN. The progressive GAN converge to a better performance
with each progressive step until some ceiling is reached and improves the definition of
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individual buildings compared to their counterparts. Consequently, this demonstrates an
improvement in semantic segmentation performance by GANs using progressive growing
using a U-Net architecture embedded as the GAN generator.

Figure 4 – Generator loss and accuracy over training epochs for U-Net, GAN, and Progressive GAN.
For our proposed model, the progressive GAN, generator accuracy, and loss converge to an
increasingly better performance with each progressive step until some ceiling is reached. The
increasing resolution does not result in learning finer features.

Source: (COLLIER et al., 2018)

(RAMWALA; PAUNWALA; PAUNWALA, 2019) seeks to leverage the generative modeling
capabilities of Generative Adversarial Networks by utilizing particular architectures for
the generator and discriminator. The generator network is a Fully Convolutional U-Net
architecture, and the discriminator is a standard binary cross-entropy classifier intended
to classify whether the predicted de-rained image of the generator matches the real high-
resolution image or not. The generator network has a U-Net architecture (WANG et al.,
2018) divided into three segments; a contracting or downsampling path, a bottleneck part,
and an expanding or upsampling path. This U-Net generator has a symmetric architecture.
The upsampling and the downsampling segments have skip connections between them
that utilize a concatenation operator, which gives local details to the global data during
upsampling. Due to its symmetry, it has many feature maps in the expanding path, which
provide information transfer. Metrics used for quantitative comparison include PSNR
(Peak Signal to Noise Ratio), SSIM (Structural Similarity Index Measure), UQI (Universal
image Quality Index), and VIF (Variance Inflation Factor). Their proposed architecture
was trained for 30 epochs, which indicates reduced computational complexity as compared
to novel approaches. Figure 5 displays the results of the single U-Net architecture and the
output of the U-Net-based GAN for the given input rainy image.
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Figure 5 – a) Rain-Degraded Image b) U-Net c) Proposed U-Net based GAN method.

Source: (RAMWALA; PAUNWALA; PAUNWALA, 2019)

(DONG et al., 2019) propose an adversarial training strategy to train deep neural net-
works for segmenting multiple organs on thoracic CT images. The proposed design of
adversarial networks, called U-Net-generative adversarial network (U-Net-GAN), jointly
trains a set of U-Nets as generators and fully convolutional networks (FCNs) as discrim-
inators. Specifically, the generator, composed of U-Net, produces an image segmentation
map of multiple organs by an end-to-end mapping learned from CT images to multiorgan-
segmented OARs (ECABERT et al., 2008). The discriminator, structured as an FCN (Fully
Convolutional Network), discriminates between the ground truth and segmented OARs
produced by the generator. The generator and discriminator compete against each other
in an adversarial learning process to produce the optimal segmentation map of multiple or-
gans. This segmentation technique was applied to delineate the left and right lungs, spinal
cord, esophagus, and heart using 35 patients’ chest CTs. Their novel deep learning-based
approach with a GAN strategy to segment multiple OARs in the thorax using chest CT
images demonstrated its feasibility and reliability, becoming a potentially valuable method
for improving the efficiency of chest radiotherapy treatment planning. Figure 6 shows the
2D segmentation results on one patient using the proposed U-Net-GAN method. The pro-
posed method segments bilateral lungs, heart, and spinal cord and successfully delineates
the esophagus. The OARs obtained with their method show a great resemblance to the
ground truth contours.

(HUANG et al., 2021) proposes a novel method to regularize better the Low-dose com-
puted tomography (LDCT) denoising model in medical imaging, termed DUGAN, which
leverages U-Net-based discriminators in the GANs framework not only to learn both
global and local differences between the denoised and normal-dose images in both image
and gradient domains but also focus on the global structure. This helped to alleviate the
artifacts caused by photon starvation and enhance the edge of the denoised CT images
in the image gradient domain. Their experiments demonstrated the effectiveness of their
proposed method through visual comparison and quantitative comparison. The datasets
were a simulated LDCT, and a real-world dataset from (YI; BABYN, 2018) that included
850 CT scans of a deceased piglet obtained by a GE scanner. In the generated images,
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Figure 6 – (a) Three transverse computed tomography slices on one patient and the corresponding organ-
at-risk contours obtained from (b) manual contouring (ground truth) and (c) the proposed
method.

Source: (DONG et al., 2019)

the small structures’ boundaries are consistently preserved with clear visual fidelity. This
benefits from the added U-Net-based discriminator, which can provide feedback on global
structures and local details to the generator, compared to the traditional classification
discriminator used in WGAN-VGG and CPCE-2D with only structure information. Be-
sides, the gradient domain branch can also encourage the denoising model to preserve edge
information better. Figure 7 presents a table with the results of different methods. First,
RED-CNN and Q-AE are MSE-based denoising methods as they are directly trained with
solely MSE loss. Although they achieve better PSNR and RMSE results, the visual results
in Figure 8 confirm that MSE-based methods produce over-smoothed results compared to
the NDCT images, leading to loss of structural information and the over-smoothed denois-
ing results lead to a lower SSIM score. Second, WGAN-VGG, CPCE-2D, and DU-GAN
are GAN-based methods. Consequently, the results of DU-GAN preserve more structural
details important for diagnosis, at the cost of compromising the quantitative metrics such
as PSNR and RMSE.
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Figure 7 – Quantitative comparisons of different methods on the testing sets of two simulated datasets
and one real-world dataset. The best results among MSE and GAN based methods are marked
in bold.

Source: (HUANG et al., 2021)

Figure 8 – Transverse neck CT images from the Mayo-10%: (a) LDCT; (b) NDCT; (c) RED-CNN; (d)
WGAN-VGG; (e) CPCE-2D; (f) Q-AE; (g) CNCL; and (h) DU-GAN. Zoomed ROI of the red
rectangle is shown in the second row. The red arrow indicates the bone area, while the green
arrow indicates a small structure.

Source: (HUANG et al., 2021)

As demonstrated, the implementation of U-Net in GAN networks has significantly
improved the different deep-learning solutions applied to image segmentation, enhance-
ment, and de-raining. However, not much has been done in the field of super-resolution.
These contributions inspire the current work to use the effective U-Net architecture in a
GAN model, in this case, designing the discriminator into a U-shaped structure, which
can provide per-pixel feedback to the generator and promote the generator to generate a
more realistic high-resolution image. In the next chapter, these technologies and methods
will be developed in more detail and applied to the problem in the context of obtaining
high-resolution images through the proposal UR-SRGAN model of this work.
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3 GENERATIVE ADVERSARIAL NETWORK ARCHITECTURE FOR REAL-
WORLD SUPER RESOLUTION

3.1 INTRODUCTION

In this chapter, a brief introduction to the concept of Generative Adversarial Networks will
be given and how the generator and discriminator strategy works. This will be essential to
continue to the next part, where the application of GAN schemes in SR will be developed.
Subsequently, the most recent techniques will be mentioned. The best results presented
in official ISR publications and competitions, which are based on a GANs architecture,
were employed as reference and inspiration to give way to the implementation of the new
proposed architecture for this work and which will also be a guide to compare the results
obtained in the experiments of this work concerning the models already presented in this
section.

3.2 GENERATIVE ADVERSARIAL NETWORKS

GAN are a developing technique for both semi-supervised and unsupervised learning.
They offer a way to learn deep representations without broadly annotated training data.
They accomplish this by deriving backpropagation signals during a competitive process
involving a pair of networks. The representations that GANs can learn may be used
in various applications, including image synthesis, classification, style transfer, semantic
image editing, and ISR.

GANs are an optimal way of training a generative model by framing the problem as a
supervised learning problem with two sub-models: the generator model, 𝒢, which is trained
to generate new image samples, and the discriminator model that tries to classify these
generated images as either real (from the domain) or fake (generated). The two models
are trained together in a zero-sum game, adversarial, until the discriminator model, 𝒟, is
deluded about half the time, meaning the generator model generates reasonable output
images. Figure 9 shows how both generator and discriminator are trained simultaneously,
and in competition with each other.

Essentially, the generator has no direct access to real images. The only way it can learn
is through its interaction with the discriminator. The discriminator has access to both the
synthetic samples and those extracted from the set of real images. The error signal to the
discriminator is supplied through the simple ground truth of whether the image originates
from the actual set or the generator. The same error signal, through the discriminator,
can be used to train the generator, leading it to produce better-quality fakes.

The discriminator is a classifier whose main objective is to obtain the conditional
probability 𝑃 (𝑦|𝑥). It discovers how to model the probability that an example is true or
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Figure 9 – The two models which are learned during the training process for a GAN are the discriminator
(𝒟) and the generator (𝒢).

Source: The author (2022)

false given that set of input features. The output probabilities of the discriminator are
classification labels. The goal of discriminative models is to detect false generated data,
so the discriminative neural network is trained to minimize the final classification error.
It learns to highlight the different classes by looking at real and fake samples created by
the generator and tries to tell which ones are real and which ones are fake (GOODFELLOW

et al., 2014).
Networks symbolizing the generator and discriminator are generally applied across

multilayer networks consisting of convolutional and/or fully connected layers. The gen-
erating and discriminating networks must be distinguishable, even if they need not be
directly invertible. Suppose one determines the generating network as a mapping from
some representation space, called the latent space, to the data space (images will be the
primary objective). In that case, one can denote this more formally as 𝒢 : 𝒢(𝑧) → ℛ|𝑥|,
where 𝑧 ∈ ℛ|𝑧| is a sample from the latent space, 𝑥 ∈ ℛ|𝑥| is an image and | · | denotes
the number of dimensions (CRESWELL et al., 2018).

3.3 GENERATIVE ADVERSARIAL NETWORKS FOR SUPER RESOLUTION

In this topic, some examples of how GAN models were applied for SR tasks will be
described. SRGAN applies a deep network in combination with an adversary network
to produce higher-resolution images. To obtain a better and more efficient SR model,
a variety of deep learning methods were applied to a large-scale image dataset to solve
the ISR tasks. For example, (LEDIG et al., 2017) features a super-resolution convolutional
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neural network (SRCNN)-based pixel mapping that simply had three layers for greater
learning power than other popular SR machine learning methods. of pictures. Although
the SRCNN had an excellent SR effect, it still had issues with shallow architecture and
high complexity. SRGAN uses the perpetual loss function, which is the weighted sum of
two loss components: content loss and adversary loss. This loss is very important for the
performance of the generator architecture.

In designing novel generators and discriminators, progressively growing generative ad-
versarial networks, such as PGGANs or ProGANs, used convolutional layers to gradually
deepen LR images to improve image qualities for image recognition. An ESRGAN uses
residual dense blocks in a generator without batch normalization to extract more detailed
information for ISR. To suppress the effects of checkerboard artifacts and unpleasant high
frequency, multi-discriminators were proposed for the ISR (LEE; SHIN; KIM, 2019). This
means that a perspective discriminator was implemented to overcome the grid artifacts,
and a gradient perspective was used to address the high-frequency unpleasant questions
in the SR image (WANG et al., 2018c). This architecture is the basis for many other SOTA
proposals in SR. Below are three structures that will be the basis for the work of this
thesis.

3.3.1 Real-world Super-resolution via Kernel Estimation and Noise Injection

This project proposes an innovative, realistic degradation framework for SR, including
kernel estimation and noise injection to preserve the original domain attributes. On the
one hand, the authors first use the existing kernel estimation method to generate more
realistic LR images. On the other hand, they propose a simple and effective method to
directly collect noise from the original image and add it to the reduced image. In addition,
the patch discriminator for RealSR is introduced to avoid generated artifacts (JI et al.,
2020b).

The RealSR model is trained on paired data constructed 𝐼𝐿𝑅, 𝐼𝐻𝑅, ∈ 𝑋, 𝑌 . Moreover,
the generator also acquires an RRDB structure based on ESRGAN, an improvement of the
SRGAN network structure by introducing the Residual-in-Residual Dense Block RRDB,
which is of higher capacity and easier to train (WANG et al., 2018c). The resolution of the
generated image is enlarged x4 times. Various losses are applied to training, including
pixel loss, perceptual loss, and adversarial loss (JOHNSON; ALAHI; FEI-FEI, 2016).

However, the authors noted that the ESRGAN discriminator could introduce many
artifacts, unlike the default setting of ESRGAN. This is why they use a patch discrimina-
tor instead of VVG-128 (SIMONYAN; ZISSERMAN, 2014) due to two conveniences: Firstly,
VVG-128 limits the size of the generated image at 128, doing multiscale training is in-
convenient, and later, VVG-128 contains a deeper network and its fully connected fixed
layers make the discriminator pay more attention to global features and ignore local fea-
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tures. This proposal achieved first place in the NTIRE 2020 SR competition (LUGMAYR;

DANELLJAN; TIMOFTE, 2020).

3.3.2 Real-ESRGAN: Training Real-world Blind Super-resolution with Pure Syn-
thetic Data

The Real-ESRGAN aims to improve the robust ESRGAN architecture to restore real-
world general LR images by synthesizing training pairs with a more pragmatic degrada-
tion procedure. Real complex degradations usually come from complicated combinations
of different processes and types of degradation, such as camera imaging systems, image
editing, and internet streaming. For example, a photo taken with a cell phone may have
different degradations, such as camera blur, sensor noise, sharpness artifacts, and Joint
Photographic Experts Group (JPEG) compression. In addition, they are edited and up-
loaded to a social media application, which adds higher compression and unpredictable
noise. Therefore, the above process becomes more complicated when the image is shared
multiple times on the Internet (WANG et al., 2021b).

This prompts the purpose of this project to extend the classical first-order degradation
model to a higher-order type of degradation model for real-world applied degradations,
i.e. the degradations are modeled with various other processes. replicated degradation
processes, each process being the classical degradation. model. Through a series of exper-
iments, the authors adopt a second-order degradation process for a good balance between
simplicity and efficiency. (ZHANG et al., 2021) also proposes a random shuffling strategy
to synthesize more practical impairments. However, it still involves a specific number of
degradation processes, and it is not sure whether all the shuffled degradations are useful
or not. In contrast, higher-order degradation modeling is more flexible and attempts to
match the actual degradation generation process. Additionally, it includes sync filters in
the synthesis procedure to mimic familiar ringing and overshoot artifacts.

Because the degradation space is much larger than ESRGAN, the training also becomes
demanding. Specifically, the discriminator requires a higher force capability to discrimi-
nate the reality of complex training outcomes, while the discriminator’s gradient feedback
needs to be more accurate to improve local detail. Therefore, the authors’ research con-
siderably improves the VVG-style discriminator in ESRGAN to a U-Net design. After
this, the U-Net structure and complicated degradations also increase the instability of the
training. Consequently, spectral normalization (SN) regularization, a widely-used tech-
nique for improving the stability and sample quality of Generative Adversarial Networks
(GANs), is used to stabilize the training dynamics (SCHONFELD; SCHIELE; KHOREVA,
2020). Equipped with the dedicated enhancements, they finally trained the Real-ESRGAN
and achieved a good balance of local detail enhancement and artifact suppression.
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3.3.3 A-ESRGAN: Training Real-world Blind Super-resolution With Attention U-
Net Discriminators

In this frame of reference, the authors of the architecture A-ESRGAN establish a new
discriminator network structure, a multiscale care U-Net discriminator, and add it with
the existing RRDB-based generator to build their deep learning network. (WEI et al.,
2021b). This model maintains that superior results are obtained over the last generation
Real-ESRGAN model in sharpness and detail. This result is due to the conjunction of
the attention mechanism. U-Net Structure in its proposed discriminator, similar to the
previous proposal Real-ESRGAN, The U-Net structure in the discriminator can provide
feedback per pixel to the generator (SCHONFELD; SCHIELE; KHOREVA, 2020), which can
help the generator produce higher relief and detail features, such as texture or brush
strokes. At the same time, the spotlight layer can not only distinguish the outline of the
image area to preserve overall coherence but also strengthen the lines and edges of the
image to prevent blurring. Therefore, the combination of U-Net and Attention is a very
encouraging scheme. Furthermore, to increase the perceptual field of this discriminator,
two attention U-Net discriminators have an identical network structure. Still, they op-
erate at different image scales than the final discriminator, which is called a multiscale
discriminator. Extensive experiments show that the present model outperforms most ex-
isting GAN models in both quantitative NIQE (MITTAL; SOUNDARARAJAN; BOVIK, 2012)
performance metrics and qualitative image perception sensations.
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4 ARCHITECTURE

4.1 INTRODUCTION

In this work, the main pipeline is divided into three parts. First of all, inspired by the
work of RealSR architecture with a novel degradation framework design for real-world im-
ages by estimating various blur kernels, as well as real noise distributions, it was applied
a realistic degradation process to extract the noise from real-world images so they are
injected into the process of generating LR images to make them more realistic as they are
presented into RWSR tasks (JI et al., 2020b). Secondly, the following stage of this project
is to implement the SR model based on GAN architecture with the previously constructed
data. Therefore, the base of this project will be the previously mentioned GAN architec-
ture which is ESRGAN. Furthermore, several experiments were performed adding a new
LPIPS perceptual loss (ZHANG et al., 2018) to the original arrangement of loss functions
in the generator module because this loss function reflects more appropriately the hu-
man perception preferences than the VGG perceptual loss and encourages natural and
perceptually pleasing results (JO; YANG; KIM, 2020). Finally, and the most remarkable
section of this work will be to perform a modification in the main GAN architecture,
adding a U-Net structure discriminator (SCHONFELD; SCHIELE; KHOREVA, 2020) to con-
sider both the global and local context of an input image including a CutMix process for
data augmentation during training.

4.2 DATA PRE-PROCESSING

First, the source domain 𝑋 will be defined as the original real images and the clean
HR images as the target domain 𝑌 . Blur kernels with different degrees directly affect the
blur of the downsampled images. Bicubic can be considered an ideal way of downsampling
because it retains the information from 𝑋 as much as possible. Nonetheless, the frequency
of these downsampled images has changed to another domain 𝑋. When training on {𝑋,
𝑌 }, the model will try to recover all the details due to all information being essential in the
domain 𝑋. Usually, a SR model works well on LR images but usually fails on 𝐼𝑠𝑟𝑐 ∈ 𝑋,
which is an unprocessed real image. Another problem is the downsampled image has
almost no noise, while real-world images in 𝑋 usually have a lot. Mere estimation of the
blurry kernel cannot accurately model the degradation process. Therefore, in the pre-
processing stage, UR-SRGAN and the other SOTA SR models models will be using three
different datasets for training: DF2K, DIV2K, and DF2K+OST. These datasets will be
referenced as the target 𝑌 because it counts on a complete set of LR images, each of them
with their respective HR image. In addition, the DPED dataset is introduced (IGNATOV et
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al., 2017), a large-scale dataset that consists of photos taken synchronously in the wild by
three smartphones and one DSLR camera. This set will be considered the source dataset
𝑋 since different camera devices took all these images in real-world situations. These
image datasets will be used to work under kernel estimation and noise injection to create
a new set of LR and HR training images and will be better explained in the next section.

4.2.1 Realistic Degradation for Super-resolution

This part will focus on explaining the implementation of a proficient real image degrada-
tion based on kernel estimation and noise injection. As mentioned in the previous chapter,
the LR image is obtained by the following degradation method 2.4. To estimate the degra-
dation method more precisely, the kernel and noise are estimated from the image. After
getting the estimated kernel and noise patch, a degradation pool is created, which is used
to degrade clean HR images into blurry and noisy images, thus generating image pairs for
training SR models. To achieve this process, first of all, a kernel and noise estimation will
be initiated onto the real-world images dataset specified as the source 𝑋 to obtain a pool
collection from these two elements from the images. Subsequently, a bicubic interpolation
will be performed in the HR images provided by the target 𝑌 dataset to retrieve LR clean
images. Once both LR and HR is created from the target, the pre-processing phase is
complete to start the training stage. During this phase, the kernels and noises collected
previously will be added to the LR generated images to simulate real-world images. To
describe the realistic degradation method concisely, it is better described as an algorithm
shown in Algorithm 1.

Algorithm 1 Data-constructing pipeline
Require: Real images set 𝑋 , 𝐻𝑅 images set 𝑌 , downsampling scale factor 𝑠
Ensure: Realistic paired images {𝐼𝐿𝑅, 𝐼𝐻𝑅}

1: Initialize kernel pool 𝐾 = 0
2: Initialize noise pool 𝑁 = 0
3: for all 𝐼𝑠𝑟𝑐 such that 𝐼𝑠𝑟𝑐 ∈ 𝑋 do
4: Estimate 𝑘 from 𝐼𝑠𝑟𝑐 by solving Equation: 4.1
5: Add 𝑘 to 𝐾
6: Crop 𝑛 from 𝐼𝑠𝑟𝑐

7: if 𝑛 meets Equation: 4.4 then
8: Add 𝑛 to 𝑁
9: end if

10: end for
11: for all 𝐼𝐻𝑅 such that 𝐼𝐻𝑅 ∈ 𝑌 do
12: Randomly select 𝑘𝑖 ∈ 𝐾, 𝑛𝑗 ∈ 𝑁
13: Generate 𝐼𝐿𝑅 with 𝑘𝑖 and 𝑛𝑗

14: end for
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4.2.2 Kernel Estimation and Downsampling

To perform the task of estimating the adequate kernel from a real image (taking into con-
sideration that this use case is a BSR problem), it is required a kernel estimation algorithm
to estimate kernels from real images explicitly. That is why the KernelGAN proposal was
adopted to use its performance for the kernel estimation method and set appropriate pa-
rameters based on real images. Its generator is trained to produce a downscaled version
of the LR test image, such that its discriminator is not capable of distinguishing between
the patch distribution of the downscaled image and the patch distribution of the original
LR image (BELL-KLIGLER; SHOCHER; IRANI, 2019). The estimated kernel needs to meet
the following constraints shown in Equation 4.1:

argmin𝑘 ‖ (𝐼𝑠𝑟𝑐 * 𝑘) ↓𝑠 −𝐼𝑠𝑟𝑐 ↓𝑠‖1 + | 1 − Σ𝑘𝑖,𝑗 | + | Σ𝑘𝑖,𝑗 · 𝑚𝑖,𝑗 | + | 1 − 𝐷((𝐼𝑠𝑟𝑐 * 𝑘) ↓𝑠) |,
(4.1)

Where (𝐼𝑠𝑟𝑐 * 𝑘) ↓𝑠 is downsampled LR image with kernel 𝑘, and 𝐼𝑠𝑟𝑐 ↓𝑠 is down-
sampled image with the ideal kernel, therefore to minimize this error is to encourage the
downsampled image to preserve important low-frequency information of the source image.
Furthermore, the second term of the above formula is to constrain 𝑘 to sum to 1, and the
third term is to penalty boundaries of 𝑘. Eventually, the discriminator 𝐷(·), in this case,
implemented as a U-Net discriminator, is to ensure the consistency of the source domain.

4.2.3 Cleaning-up

To get more HR images, it is required to generate noise-free images from 𝑋. Specifically,
it is adopted a bicubic downsampling strategy on the real image in the source domain to
remove noise and make the image sharper. Let 𝐼𝑠𝑟𝑐 ∈ 𝑋 be an image from real source
images set, and 𝑘𝑏𝑖𝑐 be the ideal bicubic kernel. Then the image is downsampled with a
clean-up scale factor 𝑠𝑐. This can be seen in Equation 4.2

𝐼𝐻𝑅 = (𝐼𝑠𝑟𝑐 * 𝑘𝑏𝑖𝑐) ↓𝑠𝑐 . (4.2)

4.2.4 Degradation with Blur Kernels

Images after resolution reduction are processed as clean HR images. These HR images
are then degraded by randomly selecting a defocus core from the degraded pool. The
downsampling process consists of cross-correlation operations followed by stride sampling,
which can be formulated as shown in Equation 4.3:

𝐼𝐷 = (𝐼𝐻𝑅 * 𝑘𝑖) ↓𝑠, 𝑖 ∈ {1, 2...𝑚}, (4.3)
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where 𝐼𝐷 denotes the downsampled image, and 𝑘𝑖 refers to the selected specific blur
kernel from {𝑘1, 𝑘2...𝑘𝑚}.

4.2.5 Noise Injection

For noisy images, it will be explicitly injected noise into the downsampled images to
generate realistic LR images. Since the high-frequency information is lost during the
downsampling process, the degraded noise distribution is modified at the same time.
Thus, to make the degraded image have a similar noise distribution to the source image,
there is a process to collect noise patches from the source dataset 𝑋. Here, it is seen that
patches with strong content have a more considerable variance. It was implemented a
filtering rule to collect patches with their variance in a particular range inspired by the
work of (CHEN et al., 2018); a novel two-step framework with a Generative Adversarial
Network GAN to estimate the noise distribution over the input noisy images and the
noise patches to construct a paired training dataset, and (ZHOU; SUSSTRUNK, 2019); a
kernel modeling super-resolution network (KMSR) that incorporates a pool of realistic
blur-kernels with a generative adversarial network GAN to train a SR network with HR
and corresponding LR images constructed with the generated kernels. Consequently, noise
and content from the images are detached by the following rule shown in Equation 4.4:

𝜎(𝑛𝑖) < 𝜐, (4.4)

where 𝜎(·) denotes the function to calculate variance, and 𝜐 is the max value of vari-
ance.

4.2.6 Degradation with Noise Injection

Assuming that a series of noise patches 𝑛1, 𝑛2...𝑛𝑙 are collected and added to the degra-
dation pool. The noise injection process is performed by randomly cropping patches from
the noise pool. This process is expressed as in Equation 4.5:

𝐼𝐿𝑅 = 𝐼𝐷 + 𝑛𝑖, 𝑖 ∈ {1, 2...𝑙}, (4.5)

where 𝑛𝑖 is a cropped noise patch from the noise pool consisting of 𝑘1, 𝑘2...𝑘𝑙. In detail,
it is assumed a connected noise injection method that the content and the noise are
combined during the training phase. This makes the noise more diverse and regularizes
the SR model to distinguish content with noise. After the degradation with blur kernels
and injecting noise, Thus, it is obtained 𝐼𝐿𝑅 ∈ 𝑋.
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4.3 ARCHITECTURE

4.3.1 Generator

As previously mentioned, the architecture is based on a GAN architecture that counts with
the generator. The new proposal that will be further expanded in this part is the U-Net
Discriminator. For the generator network, it is used the same structure used on ESRGAN
proposal for this SR model and later on, trained on constructed paired data {𝐼𝐿𝑅, 𝐼𝐻𝑅} ∈
{𝑋, 𝑌 }. The generator has an RRDB structure, and the resolution of the output image
by the generator will be four times larger. ESRGAN removes batch normalization layers
from SRGAN to avoid unpleasant artifacts and replaces the original residual block with
the RRDB to boost performance (WANG et al., 2018b). Formally, the generator will return
×4 super-resolved output image 𝐼𝐺𝑒𝑛 from an input image 𝐼𝐼𝑛 , as shown in Equation 4.6:

𝐼𝐺𝑒𝑛 = 𝐺(𝐼𝐼𝑛) (4.6)

One part that is very relevant in this proposal about the generator is the employment
of multiple losses that are applied to the training process. Concisely, the losses imple-
mented for the generator, usually by other SRGAN methods, are pixel loss, perceptual
loss, and adversarial loss. The pixel loss 𝐿1 uses 𝐿1 distance. Perceptual loss 𝐿𝑝𝑒𝑟 uses the
inactive features of VVG-19, which will help to improve the visual effect of low-frequency
features such as edges (SIMONYAN; ZISSERMAN, 2014). Adversarial loss 𝐿𝑎𝑑𝑣 has the task
of enhancing the texture details of the generated image to make it look more realistic.
However, this adversarial function will be adapted to implementing the U-Net discrimi-
nator and will be explained in the next section. A 𝜆 value is added to each loss function
due to the coefficient controlling how much the regularization term contributes to the
total loss function. Therefore, the total loss function would be the weighted sum of all the
previous losses, shown in Equation 4.7:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1 · 𝐿1 + 𝜆𝑝𝑒𝑟 · 𝐿𝑝𝑒𝑟 + 𝜆𝑎𝑑𝑣 · 𝐿𝑎𝑑𝑣 (4.7)

Nonetheless, as several related works are mostly based on the GAN with the VVG
perceptual loss, there were few considerations about the loss functions. Therefore, a new
strategy is to experiment with the LPIPS loss functions for perceptual extreme SR and
instead of replacing the VVG perceptual loss with the LPIPS perceptual loss, Thus, it
was added to 4.7 to see if the enhancement of LPIPS is considerable respect to other real-
world metric evaluations (LUGMAYR; DANELLJAN; TIMOFTE, 2020). To this end, LPIPS
is used for the perceptual loss, shown in Equation 4.8:

𝐿𝑙𝑝𝑖𝑝𝑠 =
∑︁

𝑘

𝜏 𝑘(𝜑𝑘(𝐼𝐺𝑒𝑛) − 𝜑𝑘(𝐼𝐺𝑇 )), (4.8)
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where 𝜑 is a feature extractor, 𝜏 transforms deep embedding to scalar LPIPS score, and
the score is computed and averaged from 𝑘 layers. To explain further, there is a reference
image, then the image is transformed in two different ways small translation and blurring.
Traditional image quality metrics like PSNR and SSIM prefer blurred images, but humans
are more likely to prefer translated ones (ZHANG et al., 2018). LPIPS is trained with a
dataset of human perceptual similarity judgments and more appropriately reflects the
human perception preferences than the VVG perceptual loss as appreciated in Figure 10.

Figure 10 – LPIPS is computed from deep feature embeddings.

Source: The author (2022)

In addition, it is added the discriminator’s feature matching loss 𝐿𝑓𝑚, as shown in
Equation 4.9, to alleviate the undesirable noise from the adversarial loss where 𝐷𝑙 denotes
the activations from the 𝑙 − 𝑡ℎ layer of the discriminator 𝐷, and 𝐻 is the Huber loss, or
smooth 𝐿1 loss, that is a loss function used in robust regression, that is less sensitive to
outliers in data than the squared error loss. (JO; YANG; KIM, 2020):

𝐿𝑓𝑚 =
∑︁

𝑙

H(𝐷𝑙(𝐼𝐺𝑒𝑛), 𝐷𝑙(𝐼𝐺𝑇 )), (4.9)

As a result, the final generator loss function is shown in Equation 4.10:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1 · 𝐿1 + 𝜆𝑝𝑒𝑟 · 𝐿𝑝𝑒𝑟 + 𝜆𝑎𝑑𝑣 · 𝐿𝑎𝑑𝑣

+ 𝜆𝑓𝑚 · 𝐿𝑓𝑚 + 𝜆𝑙𝑝𝑖𝑝𝑠 · 𝐿𝑙𝑝𝑖𝑝𝑠 (4.10)

4.3.2 Discriminator

Broadly, many GAN-based SR methods have implemented an encoder structure as dis-
criminators. Since it is simply a classifier, it tries to distinguish real data from the data
created by the generator. Thus, this component might use any other network architecture
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appropriate to the type of data it’s classifying. For instance, in RealSR (JI et al., 2020a),
they use a Patch Discriminator, which focuses on each N×N patch of the image, and
determines if it is real or fake, only penalizing the structure at the scale of local image
patches (ISOLA et al., 2017), instead of VVG-128 (SIMONYAN; ZISSERMAN, 2014) because
it limits the size of the generated image to 128. Also, it makes the discriminator pay more
attention to global features and ignore local features. Even if this approach has optimal
performance, the main objective of this project is to implement a new scheme with a
U-Net structure discriminator because, according to recent research in this area, it would
achieve better perceptual feature extraction considering both the global and local context
and giving effective feedback to the generator during the training.

4.3.2.1 U-Net GAN Model

A usual GAN architecture consists of two networks: a generator G and a discriminator
D, trained by minimizing the following competing objectives in an alternating manner, as
shown in Equations 4.11 and 4.12:

ℒ𝐷 = −E𝑥[log 𝐷(𝑥)] − E[log(1 − 𝐷(𝐺(𝑧)))], (4.11)

ℒ𝐺 = −E𝑧[log 𝐷(𝐺(𝑧))], (4.12)

𝐺 proposes to map a latent variable 𝑧 ∼ 𝑝(𝑧) sampled from a prior distribution to
a realistic-looking image, whereas 𝐷 aims to distinguish between real 𝑥 and generated
𝐺(𝑧) images. Generally, 𝐺 and 𝐷 are modeled as a decoder and an encoder convolutional
network, respectively.

Although there are many variations of the GAN objective function and network ar-
chitectures that were implemented in SR models, the main objective of this document is
to improve the discriminator network. Based on the approach of (SCHONFELD; SCHIELE;

KHOREVA, 2020), this module will explain the details of the new modification proposed to
replace architecture 𝐷 from a standard classification network to a U-Net encoder-decoder
network in a SR oriented GAN model. This modification will be made only in the dis-
criminator module, leaving intact the underlying basic architecture, the generating part
that is the encoder. The proposed discriminator allows for maintaining the representation
of global and local data, providing more informative feedback to the generator.

With the advantage of the local feedback per pixel of the new proposed U-Net decoder
module, a consistency regularization technique will be applied, penalizing the inconsistent
predictions per pixel of the discriminator by means of the CutMix transformations of
images (real and fake). This technique helps to improve the localization quality of the U-
Net discriminator and induces it to pay more attention to semantic and structural changes
between real and fake samples. Another advantage of this method, as mentioned above,
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is that it is compatible with most GAN models since it does not modify the generator in
any way and leaves the original GAN target intact (YUN et al., 2019).

4.3.2.2 U-Net-based Discriminator

Encoder-decoder networks constitute an effective method for dense prediction. U-Nets,
in particular, have shown very high performance on many complex image segmentation
tasks. In these methods, similar to image classification networks, the encoder progressively
downsamples the input, capturing the context of the big picture. The decoder progressively
oversamples, matching the output resolution to the input resolution, thereby achieving
precise localization. Skip connection routes data between the matching resolutions of the
two modules, further enhancing the network’s ability to segment fine detail accurately.
This is how it is proposed to extend a discriminator to form a U-Net, reusing the essential
components of the original discriminator classification network as part of the encoder
and the components of the generator network as part of the decoder (RONNEBERGER;

FISCHER; BROX, 2015).
On top of the standard encoder structure 𝐷𝑒𝑛𝑐, they successively attached a decoder

structure 𝐷𝑑𝑒𝑐 for providing per-pixel feedback to the generator. while maintaining global
context as shown in Figure 11. In other words, the discriminator now consists of the
original downsampling network and a new upsampling network. The two modules are
connected through bottleneck and jump connections that copy and concatenate the en-
coder and decoder feature map modules.

Figure 11 – To provide per-pixel feedback to the generator, U-Net discriminator structure is adopted.
There are 6 downsampling and 6 upsampling stages, with skip-connections between them.

Source: The author (2022)

While the original 𝐷(𝑥) classifies the input image x into being real and fake, the
U-Net discriminator 𝐷𝑈(𝑥) additionally performs this classification on a per-pixel basis,
segmenting image 𝑥 into real and fake regions, along with the original image classification
of 𝑥 from the encoder, Please, refer to Figure 13 to observe this more precisely. This
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enables the discriminator to learn both global and local differences between real and fake
images.

The U-Net discriminator encoder network acts as the feature extractor and learns an
abstract representation of the input image through a sequence of the encoder blocks. Each
encoder block consists of an extraction of [64, 128, 192, 256, 320, 384] feature channels
applying skip connections and the input is a 3-channel image. Consequently, the U-Net
discriminator decoder network is used to take the abstract representation and generate a
semantic segmentation mask. The decoder block consists of [384, 320, 256, 192, 128, 64]
feature channels. To review the code implementation of the U-Net Discriminator, please
refer to A.1 for more detailed information.
Figure 12 – U-Net GAN. The proposed U-Net discriminator classifies the input images on a global and

local per-pixel level. Due to the skip connections between the encoder and the decoder (dashed
line), the channels in the output layer contain both high- and low-level information. Brighter
colors in the decoder output correspond to the discriminator confidence of the pixel being
real (and darker of being fake).

Source: The author (2022)

4.3.2.3 Consistency Regularization

In this section, the consistency regularization technique for the U-Net-based discrimina-
tor presented in the previous section will be further developed. The per-pixel decision
of the correctly trained 𝐷𝑈 discriminator has to be equivalent under any kind of image
transformation that alters the class domain. However, this characteristic is not expressly
guaranteed. To be enabled, the discriminator must be regularized to focus more on se-
mantic and structural changes between the real and false samples and pay less attention
to arbitrary perturbations that preserve class dominance.

Consequently, applying the consistency regularization technique of the 𝐷𝑈 discrimi-
nator is proposed, encouraging the 𝐷𝑈 decoder module to generate equivalent predictions
under the CutMix transformations (YUN et al., 2019) of real and false samples. CutMix
augmentation generates synthetic images by cutting and pasting image patches of differ-
ent classes. This strategy is the most optimal choice for this work, rather than employing



56

previous alternatives such as MixUp or CutOut, which focus on penalizing the classifi-
cation network sensitivity to samples generated images. (ZHANG et al., 2017), because it
does not alter the real and fake image patches used to perform the mix, preserving its
original class domain, and it provides a wide variety of possible outputs. The CutMix
augmentation strategy and 𝐷𝑈 predictions are described better in Figure 13.

Figure 13 – Visualization of the CutMix augmentation and the predictions of the U-Net discriminator on
CutMix images. 1st row: real and fake samples. 2nd and 3rd rows: sampled real/fake CutMix
ratio 𝑟 and corresponding binary masks 𝑀 (color code: white for real, black for fake). 4th row:
generated CutMix images from real and fake samples. 5th and 6th row: the corresponding
real/fake segmentation maps of 𝐷𝑈 with its predicted classification scores.

Source: (YUN et al., 2019)

Following, it is synthesized a new training sample 𝑥̃ for the discriminator 𝐷𝑈 by mixing
𝑥 and 𝐺(𝑧) ∈ R𝑊 ×𝐻×𝐶 with the mask M, as shown in Equation 4.13:

𝑥̃ = 𝑚𝑖𝑥(𝑥, 𝐺(𝑧), 𝑀),

𝑚𝑖𝑥(𝑥, 𝐺(𝑧), 𝑀) = 𝑀 ⊙ 𝑥 + (1 − 𝑀) ⊙ 𝐺(𝑧),
(4.13)

where 𝑀 ∈ {0, 1}𝑊 ×𝐻 is the binary mask that indicates if the pixel (i, j) comes from
the real image (𝑀𝑖,𝑗 = 1) or false (𝑀𝑖,𝑗 = 0), 1 is a binary mask filled with ones and is
multiplication by elements. The class label 𝑐 ∈ {0, 1} for the new CutMix image 𝑥̃ is set to
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false, i.e. 𝑐 = 0. Globally, the mixed synthetic image should be recognized as false by the
𝐷𝑈

𝑒𝑛𝑐 encoder; otherwise, the generator can learn to introduce CutMix augmentation into
the generated samples, causing unwanted artifacts. The synthetic samples 𝑥̃, 𝑐 = 0, and
𝑀 are the ground truth for the encoder and decoder modules of the 𝐷𝑈 discriminator,
respectively.

Using the CutMix operation in 4.13, the discriminator is trained to provide consis-
tent per-pixel predictions, i.e. 𝐷𝑈

𝑑𝑒𝑐(𝑚𝑖𝑥(𝑥, 𝐺(𝑧), 𝑀)) ≈ 𝑚𝑖𝑥(𝐷𝑈
𝑑𝑒𝑐(𝑥), 𝐷𝑈

𝑑𝑒𝑐(𝐺(𝑧)), 𝑀), by
establishing the consistency regularization loss term in the discriminator purpose, shown
in Equation 4.14:

ℒ𝑐𝑜𝑛𝑠
𝐷𝑈

𝑑𝑒𝑐
=‖ 𝐷𝑈

𝑑𝑒𝑐

(︁
𝑚𝑖𝑥(𝑥, 𝐺(𝑧), 𝑀)

)︁
−

(︁
𝑚𝑖𝑥(𝐷𝑈

𝑑𝑒𝑐(𝑥), 𝐷𝑈
𝑑𝑒𝑐(𝐺(𝑧)), 𝑀)

)︁
‖2 (4.14)

where the notation for the 𝐿2 norm is ‖ · ‖. This consistency loss is obtained between
the per-pixel output of 𝐷𝑈

𝑑𝑒𝑐 on the CutMix image and the CutMix between outputs of
the 𝐷𝑈

𝑑𝑒𝑐 on real and fake images, penalizing the discriminator for inaccurate prediction.

4.3.2.4 U-Net Discriminator Loss Functions

About the U-Net discriminator loss functions, Above the normal encoder structure 𝐷𝑒𝑛𝑐

there is a decoder structure 𝐷𝑑𝑒𝑐 for providing per-pixel feedback to the generator while
preserving global context. The discriminator loss 𝐿𝐷 is computed at both the encoder
head 𝐿𝐷𝑒𝑛𝑐 and the decoder head 𝐿𝐷𝑑𝑒𝑐

. The formulation for the discriminator loss as
hinge loss that was applied is shown in Equations 4.15 and 4.16:

𝐿𝐷𝑒𝑛𝑐 = −E

⎡⎣∑︁
𝑖,𝑗

𝑚𝑖𝑛
(︂

0, −1 +
[︁
𝐷𝑒𝑛𝑐(𝐼𝐺𝑇 )

]︁
𝑖,𝑗

)︂⎤⎦
− E

⎡⎣∑︁
𝑖,𝑗

𝑚𝑖𝑛
(︂

0, −1 −
[︁
𝐷𝑒𝑛𝑐(𝐼𝐺𝑒𝑛)

]︁
𝑖,𝑗

)︂⎤⎦ (4.15)

𝐿𝐷𝑑𝑒𝑐
= −E

⎡⎣∑︁
𝑖,𝑗

𝑚𝑖𝑛
(︂

0, −1 +
[︁
𝐷𝑑𝑒𝑐(𝐼𝐺𝑇 )

]︁
𝑖,𝑗

)︂⎤⎦
− E
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𝑖,𝑗

𝑚𝑖𝑛
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0, −1 −
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𝐷𝑑𝑒𝑐(𝐼𝐺𝑒𝑛)

]︁
𝑖,𝑗

)︂⎤⎦ (4.16)

where 𝐼𝐺𝑇 is the ground truth image, and [𝐷(𝐼)]𝑖,𝑗 is the discriminator decision at
pixel (𝑖, 𝑗). Besides, the adversarial loss for the generator is shown in Equation 4.17:

𝐿𝑎𝑑𝑣 = −E

⎡⎣∑︁
𝑖,𝑗

[︁
𝐷𝑒𝑛𝑐(𝐼𝐺𝑇 )

]︁
𝑖,𝑗

+
∑︁
𝑖,𝑗

[︁
𝐷𝑑𝑒𝑐(𝐼𝐺𝑒𝑛)

]︁
𝑖,𝑗

⎤⎦ (4.17)
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Additionally, the consistency regularization loss function was applied to the discrim-
inator in order to synthesize the training samples by using CutMix transformation and
minimizing the loss 𝐿𝐷𝑐𝑜𝑛𝑠 (YUN et al., 2019). Finally, the total discriminator loss is shown
in Equation 4.18:

𝐿𝐷 = 𝐿𝐷𝑒𝑛𝑐 + 𝐿𝐷𝑑𝑒𝑐
+ 𝐿𝐷𝑐𝑜𝑛𝑠 (4.18)

In Figure 14, the global architecture of UR-SRGAN is shown, identifying the training
and testing phase. In addition, having a better perception of the pre-processing by gen-
erating LR images, the loss functions, and the implementation of the U-Net block as a
discriminator.

Figure 14 – The framework of the UR-SRGAN architecture. The degradation pool provides diverse blur
kernels and noise distributions for constructing realistic LR images. During the training
phase, the SR model is optimized to reconstruct HR images.

Source: The author (2022)
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5 OVERALL EXPERIMENTS AND HYPOTHESIS VERIFICATION

5.1 INTRODUCTION

To test the proposed hypothesis of adding additional loss functions in the generator and
implementing a U-Net architecture as a discriminator, a series of experiments were carried
out to verify the effectiveness of this proposal with respect to other proposals that are in
the SOTA when performing tasks of SR in single-images.

For this, three primary databases were used (DIV2K, DF2K, and DF2K+OST) that
will be described in more detail in this chapter. In addition, the characteristics of the
computer in which the experiments were executed and the technologies, libraries, and
versions that were required for the model to be trained will be described. For training,
the hyperparameters, the number of epochs required, and the number of parameters used
by the UR-SRGAN model and the other three models are taken into account to compare
the results obtained by the proposal of this work.

This chapter will be divided into four sections. In the first section, all the details of how
the experiments of the architecture proposed in this work (UR-SRGAN) were developed
will be specified, and it will be shown if this managed to achieve the initial objectives that,
are to obtain better metrics than other solutions in the SOTA for SR of single-images.
Subsequently, the other three sections describe how the other three reference models were
trained with the same image databases but with the parameters, hyperparameters, and
configuration that they originally have in order to have a fair comparison between all the
proposals.

5.2 DATASETS

For the training phase of the four models to be executed, that is the proposal of this
project UR-SRGAN and the other references (RealSR, Real-ESRGAN, and A-ESRGAN)
will be trained using the three different image databases and for the test phase, the test
data from DIV2K dataset, consisting of 100 LR images are available, each of them with
a ground-truth to evaluate the results. These datasets are detailed below:

• DIV2K 1: A large dataset of RGB images with a large diversity of contents. The
DIV2K dataset is divided into:

– Train data: starting from 800 high definition HR images we obtain correspond-
ing LR images and provide both HR and LR images for 2, 3, and 4 downscaling
factors. All experiments will explicitly use only 4 scale factors.

1 Available at <https://data.vision.ee.ethz.ch/cvl/DIV2K/>, 2022.
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– Validation data: 100 high definition HR images are used for generating LR
corresponding images.

– Test data: 100 diverse images are used to generate LR corresponding images.

• DF2K 2: The DF2K dataset merges the DIV2K (TIMOFTE et al., 2017) and Flickr2K
(AGUSTSSON; TIMOFTE, 2017) datasets, and contains a total of 3450 images. These
images are artificially added with Gaussian noise to simulate sensor noise. The
validation set contains the same 100 images from DIV2K with corresponding ground
truth, therefore the metrics based on reference can be calculated.

• DF2K+OST 3: A Kaggle dataset that contains the previous DF2K dataset with
an extra of about 9000 smaller obtained from the OST dataset. Having a total
of 12434 images. The validation set contains the same 100 images from DIV2K
with corresponding ground truth, therefore the metrics based on reference can be
calculated.

• DPED 4: The DPED (IGNATOV et al., 2017) dataset contains 5614 images taken
by the iPhone3 camera. The images in this dataset are unprocessed real images,
which are more challenging containing noise, blur, dark light, and other low-quality
problems. The 100 images in the validation set are cropped from original real images.
Since there is no corresponding ground truth, it will only be provided an evaluation
based on the NIQE (MITTAL; SOUNDARARAJAN; BOVIK, 2012) metrics and visual
comparison.

5.3 EXPERIMENTS FOR UR-SRGAN

5.3.1 Training Details

This architecture was implemented in PyTorch 1.7.1 and trained on a single NVIDIA
GeForce RTX 2080 Ti (12G). Furthermore, the generator was trained for about 60K
iterations with a mini-batch size of 16. As (JI et al., 2020b) was a main reference for
this implementation, the values for lambda values: 𝜆1 = 1𝐸−2, 𝜆𝑝𝑒𝑟 = 1, 𝜆𝑎𝑑𝑣 = 1𝐸−3,
𝜆𝑙𝑝𝑖𝑝𝑠 = 1𝐸−3, and 𝜆𝑓𝑚 = 1 were applied empirically. Adam optimizer was selected for
this work and the learning rate is set to 0.0001 for training both the generator and
the discriminator networks. Three training experiments were developed on the referred
datasets (DIV2K, DF2K, DF2K + OST).

This proposal was to add new loss functions for the generator and replace the discrim-
inator with a U-Net discriminator. That is why it was performed in three main phases
during the UR-SRGAN workflow. Initially, the model was trained only with the appended
2 Available at <https://competitions.codalab.org/competitions/22220>, 2022.
3 Available at <https://www.kaggle.com/datasets/thaihoa1476050/df2k-ost>, 2022.
4 Available at <https://people.ee.ethz.ch/ ihnatova/>, 2022.
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LPIPS and Feature Matching losses without modifying the base discriminator that ES-
RGAN presents. Later on, the U-Net discriminator is added and run in another training
phase. Lastly, the last training phase is executed with the combination of both the new
losses for the generator and the U-Net discriminator. Only during this last experiment,
it could achieve important improvement with respect to the other metrics obtained by
the other reference models. Table 2 shows the datasets, training time, parameters for
generator and discriminator for the training of the UR-SRGAN model.

Table 2 – Training time consumed and parameters quantity for UR-SRGAN model.

Dataset Training time (hh:mm:ss) Parameters G Parameters D
DIV2K 08:31:36 16,697,987 12,823,810
DF2K 10:03:38 16,697,987 12,823,810

DF2K + OST 08:18:04 16,697,987 12,823,810

Source: The author (2022)

5.3.2 Testing Phase

After training the UR-SRGAN model, the generator and parameters are already trained
with the weights ready for the inference process. Thus, it is used to generate 100 new
SR images using the test set, with the corresponding ground truth images, from the
DIV2K dataset, Consequently, the metrics (PSNR, SSIM, and LPIPS) are calculated. The
experiments demonstrated that this new architecture and modifications have a significant
improvement from the other three SR methods that were selected to compare its metrics.
Especially, reaching better LPIPS performance, denoting our results are much closer to the
ground truth relating to visual characteristics. Table 3 shows the datasets, and the metrics
for the trained UR-SRGAN model, including the mean score value for each evaluation.

Table 3 – UR-SRGAN Inference Results on the 100 test images in DIV2K dataset. Quantitative results
for the UR-SRGAN model compared with the three selected datasets in which training was
carried out.↑ and ↓ mean higher or lower is desired.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓ Mean Score (sec)
DIV2K 26.24 0.734 0.228 159.1
DF2K 26.15 0.723 0.221 152.7

DF2K + OST 26.04 0.726 0.225 159.8

Source: The author (2022)
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5.4 EXPERIMENTS FOR REAL-SR

5.4.1 Training Details

This proposal was implemented in PyTorch 1.7.1 and trained on a single NVIDIA GeForce
RTX 2080 Ti (12G). In the same way as UR-SRGAN, the generator was trained for about
60K iterations with a mini-batch size of 16. Finally, the same hyperparameters selected
by (JI et al., 2020b) were used in order to achieve the same results as the authors for the
three different datasets in order to get the same results to perform a fairly comparison
between all the outcome metrics.

For this phase, the (JI et al., 2020b) the model was trained with the three image
databases previously mentioned: (DIV2K, DF2K and DF2K+OST). Furthermore, the
same original hyperparameters and settings were used to achieve the same metrics that
the authors published training on the original dataset DF2K. The empirical values of
lambda selected by the authors for the loss functions were: 𝜆1 = 1𝐸−2, 𝜆𝑝𝑒𝑟 = 1, and
𝜆𝑎𝑑𝑣 = 1𝐸−3. Adam optimizer was selected for this work and the learning rate is set to
0.0001 for training both the generator and the discriminator networks. Table 4 shows the
datasets, training time, parameters for generator and discriminator for the training of the
RealSR model.

Table 4 – Training time consumed and parameters quantity for RealSR model.

Dataset Training time (hh:mm:ss) Parameters G Parameters D
DIV2K 08:10:05 16,697,987 14,499,401
DF2K 09:21:56 16,697,987 14,499,401

DF2K + OST 08:08:41 16,697,987 14,499,401

Source: The author (2022)

5.4.2 Testing Phase

After training the RealSR model, the generator and parameters are already trained with
the weights ready for the inference process. Thus, it is used to generate 100 new SR images
using the test set, with the corresponding ground truth images, from the DIV2K dataset,
Consequently, the metrics (PSNR, SSIM, and LPIPS) are calculated. The new experiments
with the new databases gave quite good results, even with different databases. Checking
the efficiency of kernel estimation and noise collection of real-world images. Table 5 shows
the datasets, and the metrics for the trained RealSR model, including the mean score
value for each evaluation.
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Table 5 – RealSR Inference Results on the 100 test images in DIV2K dataset. Quantitative results for the
RealSR model compared with the three selected datasets in which training was carried out.↑
and ↓ mean higher or lower is desired.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓ Mean Score (sec)
DIV2K 25.08 0.701 0.237 151.1
DF2K 24.83 0.672 0.227 138.7

DF2K + OST 24.63 0.687 0.244 143.0

Source: The author (2022)

5.5 EXPERIMENTS FOR REAL-ESRGAN

5.5.1 Training Details

This architecture was implemented in PyTorch 1.7.1 and trained on a single NVIDIA
GeForce RTX 2080 Ti (12G). Similar to ESRGAN, the authors adopt DF2K and OST
dataset. In this work, also the three datasets (DIV2K, DF2K, and DF2K+OST) were used
for the training phase. This model was trained with the same conditions as the original
implementation. The training HR patch size is set to 256. Originally, the total batch size
to train this network was 48. However, due to computation limits, it had to be reduced
to 8. Also, it was used the Adam optimizer.

Moreover, Real-ESRNet is finetuned from ESRGAN for faster convergence. In ad-
dition, Real-ESRNet was trained for 1000K iterations with a learning rate 2𝐸−4 while
training Real-ESRGAN for 400𝐾 iterations with a learning rate 1𝐸−4. It adopted an
exponential moving average (EMA) for more stable training and better performance.
RealESRGAN is trained with a combination of 𝐿1 loss, perceptual loss, and GAN loss,
with weights {1, 1, 0.1}, respectively. Also it has the {𝑐𝑜𝑛𝑣1, ...𝑐𝑜𝑛𝑣5} feature maps (with
weights {0.1, 0.1, 1, 1, 1}) before activation in the pre-trained VVG-19 network as the
perceptual loss. The implementation was also based originally on the BasicSR, an open-
source image and video restoration toolbox based on PyTorch, such as super-resolution,
denoise, deblurring, and JPEG artifacts removal (WANG et al., 2018a). Table 6 shows the
datasets, training time, parameters for generator and discriminator for the training of the
Real-ESRGAN model.

5.5.2 Testing Phase

After training the Real-ESRGAN model, the generator and parameters are already trained
with the weights ready for the inference process. Thus, it is used to generate 100 new SR
images using the test set, with the corresponding ground truth images, from the DIV2K
dataset, Consequently, the metrics (PSNR, SSIM, and LPIPS) are calculated. Table 7
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Table 6 – Training time consumed and parameters quantity for Real-ESRGAN model.

Dataset Training time (hh:mm:ss) Parameters G Parameters D
DIV2K 1 day, 12:02:58 16,697,987 4,376,897
DF2K 1 day, 10:20:49 16,697,987 4,376,897

DF2K + OST 1 day, 09:13:33 16,697,987 4,376,897

Source: The author (2022)

shows the datasets, and the metrics for the trained Real-ESRGAN model, including the
mean score value for each evaluation.

Table 7 – Real-ESRGAN Inference Results on the 100 test images in DIV2K dataset. Quantitative results
for the Real-ESRGAN model compared with the three selected datasets in which training was
carried out.↑ and ↓ mean higher or lower is desired.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓ Mean Score (sec)
DIV2K 23.04 0.636 0.321 163.4
DF2K 23.41 0.645 0.291 133.9

DF2K + OST 23.08 0.633 0.311 144.4

Source: The author (2022)

5.6 EXPERIMENTS FOR REAL-A-ESRGAN

5.6.1 Training Details

In this work, the A-ESRGAN was trained on the three datasets (DIV2K, DF2K and
DF2K+OST). For better comparison with Real-ESRGAN, the authors followed the setting
of training Real-ESRGAN and load the pre-trained Real-ESRNET to the generator of A-
ESRGAN-Single. The training HR patch size is 256. The hyperparameters are a total
batch size of 48 by using the Adam optimizer. Also for this case, the batch size was
reduced from 48 to 8 due to computational limitations. The A-ESRGAN-Single is trained
with a single attention U-Net discriminator for 400𝐾 iterations under 10𝐸−4 rate. For the
A-ESRGAN-Single, the weight for 𝐿1 loss, perceptual loss, and GAN loss are {1, 1, 0.1}.
The weight for GAN loss of 𝐷𝑛𝑜𝑟𝑚𝑎𝑙 and 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is 1, 1. This implementation, as the
previous Real-ESRGAN model, was also based on BasicSR open-source toolbox. Table
8 shows the datasets, training time, parameters for generator and discriminator for the
training of the A-ESRGAN model.
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Table 8 – Training time consumed and parameters quantity for A-ESRGAN model.

Dataset Training time (hh:mm:ss) Parameters G Parameters D
DIV2K 1 day, 18:32:01 16,697,987 5,399,044
DF2K 1 day, 16:49:27 16,697,987 5,399,044

DF2K + OST 1 day, 15:43:10 16,697,987 5,399,044

Source: The author (2022)

5.6.2 Testing Phase

After training the A-ESRGAN model, the generator and parameters are already trained
with the weights ready for the inference process. Thus, it is used to generate 100 new SR
images using the test set, with the corresponding ground truth images, from the DIV2K
dataset, Consequently, the metrics (PSNR, SSIM, and LPIPS) are calculated. Table 9
shows the datasets, and the metrics for the trained A-ESRGAN model, including the
mean score value for each evaluation.

Table 9 – A-ESRGAN Inference Results on the 100 test images in DIV2K dataset. Quantitative results
for the A-ESRGAN model compared with the three selected datasets in which training was
carried out.↑ and ↓ mean higher or lower is desired.

Dataset PSNR ↑ SSIM ↑ LPIPS ↓ Mean Score (sec)
DIV2K 23,71 0,659 0,309 154.8
DF2K 23,08 0,633 0,311 150.8

DF2K + OST 22,78 0,633 0,318 142.4

Source: The author (2022)

5.7 COMPARISON BETWEEN ALL EXPERIMENTS

Once all the experiments have been carried out, it is possible to create a global ma-
trix where all the results obtained and interpreted using the respective metrics for the
evaluation of the SR image-generating methods are shown. In all the results obtained,
UR-SRGAN is the model with the best evaluation regarding the most representative met-
rics and is also the most used in competitions and the field of SR research. The objective
of the experiments is to observe if the LPIPS metric can be improved in UR-SRGAN
concerning the other three models used as a reference. In the experiments, it can be seen
that the modification in the architecture of the GAN network discriminator and the ad-
dition of extra loss functions in the generator managed to reach the expectations of the
proposed hypothesis.
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Consequently, Table 10 displays the PSNR, SSIM, and LPIPS metrics that are cal-
culated from results generated by the different methods proposed for the experiments.
In this global comparison between all the trained models, it is seen that the model that
achieved the best evaluation in the metrics was UR-SRGAN, having an average improve-
ment compared to the other models in the PSNR, SSIM, and LPIPS metrics of 2.188,
0.0649. and 0.055, respectively. These results demonstrate that the implementation of U-
net as a discriminator added to the other improvements at the level of data augmentation
with CutMix and the estimation of images LR, gives superior results to the most recent
models of SOTA in SR related to the BSR problem.

Table 10 – Global Inference Results among all trained SR models and datasets. Each value is the mean
percentage of the sum of the 100 images tested under each model and dataset respectively.

SR MODEL DIV2K DF2K DF2K+OST
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

UR-SRGAN 26.24 0.734 0.228 26.13 0.721 0.219 26.04 0.726 0.225
RealSR 25.08 0.701 0.237 24.83 0.672 0.227 24.63 0.687 0.244
Real-ESRGAN 23.04 0.636 0.321 23.41 0.645 0.291 24.65 0.693 0.253
A-ESRGAN 23.71 0.659 0.309 23.08 0.633 0.311 22.78 0.633 0.318

Source: The author (2022)

Once all the experiments of the models of this work have been carried out: UR-SRGAN,
of the comparative models in the three main datasets of images. A boxplot graph can be
performed to see if UR-SRGAN truly shows an improvement in the metric selected after
performing 100 experiments for each of the datasets of images and respective models. It
can be seen that in the Figure 15 three analyzes are presented for each of the PSNR,
SSIM and LPIPS metrics. Where the line inside the colored boxes represents the median
of the 100 experiments carried out in each model and in the different datasets.

Since most of the distributions are symmetric (only some show a positively skewed
distribution) and a minimal quantity of values exist out of the distribution that would be
identified as outliers, it can be concluded that most of the result values were close to the
median value. Therefore, if the model that its median is closer to the ideal value that is
intended to be achieved with the experiments, this model will be the one that achieved
the best results during the entire testing phase. In the graphic, it is clearly seen that
UR-SRGAN outperforms the other counterpart models.

• SSIM metric: On the X axis (datasets) it represents the different image databases
that were used in each one and the models in which they were executed are repre-
sented by 4 different colors. The Y axis (values) represents the distribution of the
values obtained during the 100 evaluations in each of the validation images under
the SSIM metric criterion in the interval [0 to 1], and value 1 is only reachable
in the case of two identical sets of data and therefore indicates perfect structural
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similarity. Therefore, the median of the model that is closest to 1 will be the model
that performed the best on the 100 test images.

• PSNR metric: On the X axis (datasets) it represents the different image databases
that were used in each one and the models in which they were executed are repre-
sented by 4 different colors. The Y axis (values) represents the distribution of the
values obtained during the 100 evaluations in each of the validation images under
the PSNR metric criterion in the interval [0 to ∞], where the two compared images
are identical, and thus the MSE is zero. In this case, the PSNR is ∞. Therefore, the
median of the model that is closer to ∞ will be the model that performed the best
on the 100 test images.

• LPIPS metric: On the X axis (datasets) it represents the different image databases
that were used in each one and the models in which they were executed are repre-
sented by 4 different colors. The Y axis (values) represents the distribution of the
values obtained during the 100 evaluations in each of the validation images under
the LPIPS metric criterion where the closer the value is to zero, the better correlate
to perceptual judgments. Therefore, the median of the model that is closest to 0
will be the model that performed the best on the 100 test images.

Figure 15 – Representative image of the four models making inference in 100 experiments (images) in
three different databases.

Source: The author (2022)

Next, some samples of the images generated by all the models after the experiments
are presented. These images were generated in the following way: In the test dataset
provided by DF2K and which has 100 images in LR and each of these has its respective
GT image, an inference will be made of the four models that are used during this work. In
the case of UR-SRGAN, the model that was trained in DF2K has been selected as the best
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option since it has better results according to the average of the three established metrics
under the three dataset experiments. In the case of the counterpart models (RealSR,
Real-ESRGAN, and A-ESRGAN) the trained model and the weights available by their
respective authors are used, to compare the original version proposed and the present
work in UR-SRGAN.

In each sample, the top image is the GT image and the bottom four images are a patch
of the synthetic image generated by all the aforementioned models. The results that there
exist important improvements with respect to other SOTA architectures, especially in the
areas where there is greater detail of structures or lines, as seen in Figures 16, 17, and 21.
There is also an improvement in details such as faces or body parts, as seen in Figures
22, and 20. Skin textures of animals, as seen in Figure 19, and symbols or characters, as
seen in Figure 18. This model is much better suited to real-world images as other models
generally have over-exposure artifacts to give better detail perception and look more real.
It is important to emphasize that, in some cases, the models that are compared with
UR-SRGAN can present images with a greater effect on image processing or eliminate
possible artifacts. For example, in the sample 18 - the second row, in more recent models
such as Real-ESRGAN and A-ESRGAN the details of the original design are completely
lost. If there was no ground-truth image to compare the final result, it would be very well
accepted since it is perceptibly correct.

Figure 16 – Input 804 (size: 510 × 300) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)
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Figure 17 – Input 814 (size: 510 × 339) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)

Figure 18 – Input 826 (size: 510 × 384) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)
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Figure 19 – Input 859 (size: 510 × 339) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)

Figure 20 – Input 860 (size: 510 × 384) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)
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Figure 21 – Input 879 (size: 510 × 468) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)

Figure 22 – Input 813 (size: 510 × 366) from the DF2K LR dataset and its GT reference. Corresponding
PSNR, SSIM, and LPIPS are shown in brackets. [4× upscaling].

Source: The author (2022)
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5.8 EVALUATION ON REAL-WORLD IMAGES

To better evaluate the new proposed architecture of UR-SRGAN, a test was performed
on the 100 LR images found in the DPED dataset. For this, the UR-SRGAN model that
obtained the best average results was used, which was the experiment executed on the
DF2K dataset. The rest of the models used the weights trained originally by the authors
to perform a better comparison. Since there is no Ground-truth image with which to
compare the metrics PSNR, SSIM, LPIPS, the NIQE metric will be used, which is a
completely blind image quality analyzer that only makes use of measurable deviations
from statistical regularities observed in natural images, without training on human-rated
distorted images, and, indeed, without any exposure to distorted images.

A lower NIQE value indicates better perceptual quality. During the 100 new experi-
ments, it can be seen in Table 11 that UR-SRGAN obtains good results with respect to
the DPED dataset, however, lower values are recorded for the results of A-ESRGAN. Nev-
ertheless, UR-SRGAN achieves the second-best qualification, taking into account that, as
will be appreciated in the example images, the architecture proposed in this work presents
better perceptual results and look natural.

Table 11 – Inference Results using DPED validation dataset over all SR trained models. NIQE Mean
score value after 100 experiments over DPED dataset real-world images. ↓ means lower is
desired.

A-ESRGAN Real-ESRGAN RealSR UR-SRGAN
NIQE ↓ 4.152 5.082 4.835 4.672

Source: The author (2022)

The A-ESRGAN model presents satisfactory results in relation to the NIQE metrics,
however many of the synthetic images that this model returns contain noticeable artifacts
that disturb the entire image even when other regions of the image are presented with
higher details. It is possible to see some examples in the Figure 23 below:



73

Figure 23 – Some generated images where the artifacts of the A-ESRGAN model are notorious with
respect to the same synthetic HR images retrieved from the UR-SRGAN model.

Source: The author (2022)

In context, it might be preferable to have a model that generates an image that
presents a complete global result and highlights local details more moderately than images
generated with discontinuous and speckled local structures or images with inconsistent
geometric and structural patterns.

Finally, to have a visualization of all the models, additional samples will be shown on
the DPED real-world validation images to see the quality of these results and even be able
to perceive that UR-SRGAN maintains its consistency in generating images with details
better adapted to images of unknown degradation or obtained from different sources.
devices or cameras. In Figures 24,25 can be appreciated the improvement in details for
sharper lines and less noisy images for UR-SRGAN results. In Figures, 25, and 27, the
resulting images are more realistic than the other generated images.
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Figure 24 – Input 00017 (size: 512 × 256) from the DPED LR dataset without GT reference. Correspond-
ing NIQE is shown in brackets. [4× upscaling].

Source: The author (2022)

Figure 25 – Input 00029 (size: 512 × 256) from the DPED LR dataset without GT reference. Correspond-
ing NIQE is shown in brackets. [4× upscaling].)

Source: The author (2022)
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Figure 26 – Input 00049 (size: 512 × 256) from the DPED LR dataset without GT reference. Correspond-
ing NIQE is shown in brackets. [4× upscaling].

Source: The author (2022)

Figure 27 – Input 00093 (size: 512 × 256) from the DPED LR dataset without GT reference. Correspond-
ing NIQE is shown in brackets. [4× upscaling].

Source: The author (2022)
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6 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY OF RESULTS

In this work, a novel UR-SRGAN for high-resolution image generation from low-resolution
images with unknown degradation (BSR) was proposed. The U-Net architecture has be-
come a common generator structure in many domains of GAN. It is for these reasons,
along with its popularity, that it was chosen to use the U-Net architecture in the UR-
SRGAN framework as well. The introduced U-Net-based discriminator is not only capable
of providing per-pixel feedback to the denoising network but also focuses on the global
structure. The main objective of this scheme was to add a U-Net-based discriminator,
which can enhance the edge information and alleviate generated images with discon-
tinued and mottled local structures or images with incoherent geometric and structural
patterns.

At the pre-processing stage, an estimation of the degradation and noise extraction
presented by real-world images was implemented to create a pool of kernels and noises.
Once these kernels and noises had been obtained, the next step was to downsample the
images of the training dataset with a bicubic process so that the noise that could exist
is eliminated. In addition, by having LR images, the kernels and noise obtained from the
real images were applied randomly so that the model could train more adequately and
manage other images of the real world that it has never seen. In addition, it was also
examined that the CutMix technique can boost the training of the discriminator with
data augmentation. The employment of these CutMix images is included for consistency
regularization, penalizing per-pixel inconsistent predictions of the discriminator under the
CutMix transformations. To give more focus to the perceptual results, two new loss func-
tions related to LPIPS and Feature Matching were added to the GAN network generator
module.

Several experiments were performed to analyze the U-Net-based GAN structure that
would improve at generating high-resolution images from low-resolution with unknown
degradations. First, the UR-SRGAN was trained with the same datasets and hyperpa-
rameters that the other three SOTA models used as the baseline for comparison; RealSR,
Real-ESRGAN, and A-ESRGAN SR models. These datasets were the DIV2K, DF2K,
and DF2K + OST, and for the testing phase, two datasets were used; DF2K and DPED.
Following the experimental phase, each of these architectures had to be trained on the
three selected datasets to compare the metrics of the results at a more exact level. All
models were trained with the same hyperparameters originally used by the authors to
make a fairer comparison and evidence if UR-SRGAN equaled or improved the metrics
acquired for the high-resolution images. All these models varied in time difference when
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being trained due to the variations in parameters that each one presents. Only one model
had to be modified in batch size, which was for the Real-ESRGAN models due to the
limitation of the computer on which it was trained.

At the testing phase, all models in the two datasets were evaluated with the metrics
PSNR, SSIM, LPIPS and NIQE. The number of images that both datasets have is 100
images. After running the inference on the four super-resolution models, including UR-
SRGAN, an analysis of the results at a quantitative and qualitative level was possible.
About the metrics, it was observed that there is a significant improvement in the mean
acquired between the metrics PSNR, SSIM, LPIPS of 2.188, 0.0649 and 0.055, respectively.
This improvement is important if we consider that the UR-SRGAN model was compared
with the most relevant models in GAN architectures currently focused on super-resolution
for images with complex degradation. In addition, when comparing the images visually,
you can see the improvement in the context of the image and in focused details such
as greater detail of structures such as the scales or fur of animals, buildings with more
natural characteristics and less geometric incoherence, sharper lines and people’s faces
without many distortions, getting closer to the GT images. It is important to mention
that in the second DPED dataset of images taken by an iPhone 3GS, the UR-SRGAN
model got second place concerning the other models in the metric NIQE. However, at a
qualitative level, it outperforms the model that has the best score in this metric since
the opposite model generates some distorted images with noise that disturb the global
context of the image.

Finally, the UR-SRGAN demonstrated that including a U-Net discriminator had a
notable improvement in providing both global and local feedback to the GAN generator. In
addition, three other factors were relevant to obtain higher metric evaluations; the CutMix
data augmentation, adding the LPIPS and Feature Match loss functions and adding a pre-
processing method to generate LR images for the training using kernel estimation and
noise injection strategies. After several experiments, the HR images generated by UR-
SRGAN outperform the most recent SOTA SRGAN models. Therefore, this architecture
is an important contribution to investigating the BSR problem for generating satisfactory
images from LR real-world images in which source and distributions are unknown.

6.2 LIMITATIONS

It is assumed that there are some images that are generated by UR-SRGAN that are
outperformed by other models. For example, Real-ESRGAN has a better performance
when carrying out a face enhancement because it has a GFPGAN module incorporated,
however, when carrying out this improvement, many times the model hallucinates artifacts
placed on any object in the image that has the form of a face, although, in reality, it is
not the case. On the other hand, this proposal is based on adding a U-Net architecture
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as a discriminator, however after this work began, other models appeared with similar
proposals in GAN.

For this reason, a comparison is made with the main ones to compare the results
between UR-SRGAN and the other proposals. Finally, alternatively to GAN networks,
there are other proposals for SR based on auto-encoders that may be much superior to
GAN networks in the future, however, just because something is old does not mean it is
inferior. The GAN proposals in SR, as the present work exposes UR-SRGAN, give good
results to obtain HR images with an adequate and accessible computational cost for their
training.

Finally, in the experiments, only images [x4] times larger than the input image were
generated. It is required to work on the architecture to add modules that allow higher
resolution e.g., [x8, x16]. It is an essential requirement to evaluate the resulting image at
a quality level.

6.3 FUTURE WORK

First, an interesting contribution in the area of SISR is to bring the UR-SRGAN model to
mobile devices or edge devices. A reference work is (CAI et al., 2022) that designs a real-time
ISR model for mobile devices able to deal with a wide range of degradations in real-world
scenarios. It is implied that several constraints prevent CNN deployment on mobile de-
vices: a restricted amount of RAM, many common CNN operators not supported, limited
FLOPs, and power consumption requirements for mobile devices. Therefore, they utilize
an entire 8-bit QAT strategy and design neural architecture using hardware friendly op-
erations, their whole architecture is shown in Figure 28 setting portable meta-operators
and time-consuming meta-operators.

Figure 28 – An illustration in color of the proposed InnoPeak mobileSR for mobile devices.

Source: (CAI et al., 2022)

Another ideal approach to follow is (AYAZOGLU, 2021) that proposes a hardware
(Synaptics Dolphin NPU) limitation-aware, extremely lightweight quantization robust
real-time SR network (XLSR). They applied root modules to the SISR problem using
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Clipped ReLU at the last layer of the network to make the model uint8 quantization ro-
bust, achieving a better balance between reconstruction quality and runtime. In addition,
their proposal won the Mobile AI 2021 Real-Time SISR Challenge.

Based on these previous works, the UR-SRGAN can follow a similar structure adapted
for mobile devices. The primary operations would be divided into four categories: tensor
operator nodes (Concatenation and Summation), convolution nodes (Convolution and
Transposed Convolution), activation nodes (ReLU), and resize nodes (Convolution, Trans-
posed Convolution, depth to space and space to depth) which would mainly consist of
four parts: Shallow feature extraction part, which transfers the LR image to feature space.
Deep feature extraction part, which learns high-level information and restores details such
as edges, and textures. Skips connection part, and the reconstruction part, which maps
feature space to HR image.
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APPENDIX A – U-NET DISCRIMINATOR IMPLEMENTATION

Listing A.1 – Programming language code Python with Pytorch Framework: U-Net Discriminator Imple-
mentation, source: The author (2022)

1
### U-Net Discriminator ###

3 # Residual block for the discriminator

class DiscriminatorBlock(nn.Module):

5 def __init__(self , in_channels , out_channels , which_conv=nn.Conv2d , which_bn=nn.

BatchNorm2d , wide=True ,

preactivation=True , activation=nn.LeakyReLU (0.1, inplace=False),

downsample=nn.AvgPool2d(2, stride =2)):

7 super(DiscriminatorBlock , self).__init__ ()

self.in_channels , self.out_channels = in_channels , out_channels

9 self.hidden_channels = self.out_channels if wide else self.in_channels

self.which_conv , self.which_bn = which_conv , which_bn

11 self.preactivation = preactivation

self.activation = activation

13 self.downsample = downsample

# Conv layers

15 self.conv1 = self.which_conv(self.in_channels , self.hidden_channels ,

kernel_size =3, padding =1)

self.conv2 = self.which_conv(self.hidden_channels , self.out_channels ,

kernel_size =3, padding =1)

17 self.learnable_sc = True if (in_channels != out_channels) or downsample else

False

if self.learnable_sc:

19 self.conv_sc = self.which_conv(in_channels , out_channels ,

kernel_size =1, padding =0)

21 self.bn1 = self.which_bn(self.hidden_channels)

self.bn2 = self.which_bn(out_channels)

23
def forward(self , x):

25 if self.preactivation:

h = self.activation(x)

27 else:

h = x

29 h = self.bn1(self.conv1(h))

if self.downsample:

31 h = self.downsample(h)

return h

33
class GeneratorBlock(nn.Module):

35 def __init__(self , in_channels , out_channels ,

which_conv=nn.Conv2d , which_bn=nn.BatchNorm2d , activation=nn.

LeakyReLU (0.1, inplace=False),

37 upsample=nn.Upsample(scale_factor =2, mode='nearest ')):

super(GeneratorBlock , self).__init__ ()

39 self.in_channels , self.out_channels = in_channels , out_channels

self.which_conv , self.which_bn = which_conv , which_bn

41 self.activation = activation

self.upsample = upsample

43 # Conv layers
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self.conv1 = self.which_conv(self.in_channels , self.out_channels ,

kernel_size =3, padding =1)

45 self.conv2 = self.which_conv(self.out_channels , self.out_channels ,

kernel_size =3, padding =1)

self.learnable_sc = in_channels != out_channels or upsample

47 if self.learnable_sc:

self.conv_sc = self.which_conv(in_channels , out_channels ,

49 kernel_size =1, padding =0)

# Batchnorm layers

51 self.bn1 = self.which_bn(out_channels)

self.bn2 = self.which_bn(out_channels)

53 # upsample layers

self.upsample = upsample

55
def forward(self , x):

57 h = self.activation(x)

if self.upsample:

59 h = self.upsample(h)

h = self.bn1(self.conv1(h))

61 return h

63 class UnetDiscriminator(torch.nn.Module):

def __init__(self):

65 super(UnetDiscriminator , self).__init__ ()

67 self.enc_b1 = DiscriminatorBlock (3, 64, preactivation=False)

self.enc_b2 = DiscriminatorBlock (64, 128)

69 self.enc_b3 = DiscriminatorBlock (128, 192)

self.enc_b4 = DiscriminatorBlock (192, 256)

71 self.enc_b5 = DiscriminatorBlock (256, 320)

self.enc_b6 = DiscriminatorBlock (320, 384)

73
self.enc_out = nn.Conv2d (384, 1, kernel_size =1, padding =0)

75
self.dec_b1 = GeneratorBlock (384, 320)

77 self.dec_b2 = GeneratorBlock (320*2 , 256)

self.dec_b3 = GeneratorBlock (256*2 , 192)

79 self.dec_b4 = GeneratorBlock (192*2 , 128)

self.dec_b5 = GeneratorBlock (128*2 , 64)

81 self.dec_b6 = GeneratorBlock (64*2, 32)

83 self.dec_out = nn.Conv2d (32, 1, kernel_size =1, padding =0)

85 # Init weights

for m in self.modules ():

87 classname = m.__class__.__name__

if classname.lower().find('conv') != -1:

89 nn.init.kaiming_normal(m.weight)

nn.init.constant(m.bias , 0)

91 elif classname.find('bn') != -1:

m.weight.data.normal_ (1.0, 0.02)

93 m.bias.data.fill_ (0)

95 def forward(self , x):

e1 = self.enc_b1(x)

97 e2 = self.enc_b2(e1)
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e3 = self.enc_b3(e2)

99 e4 = self.enc_b4(e3)

e5 = self.enc_b5(e4)

101 e6 = self.enc_b6(e5)

103 e_out = self.enc_out(F.leaky_relu(e6, 0.1))

105 d1 = self.dec_b1(e6)

d2 = self.dec_b2(torch.cat([d1 , e5], 1))

107 d3 = self.dec_b3(torch.cat([d2 , e4], 1))

d4 = self.dec_b4(torch.cat([d3 , e3], 1))

109 d5 = self.dec_b5(torch.cat([d4 , e2], 1))

d6 = self.dec_b6(torch.cat([d5 , e1], 1))

111
d_out = self.dec_out(F.leaky_relu(d6, 0.1))

113
return e_out , d_out , [e1,e2,e3,e4,e5,e6], [d1,d2,d3,d4,d5,d6]
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