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ABSTRACT

In this thesis, Y2O3 (yttria) nanoparticles (NPs) doped with rare-earth ions, namely Nd3+ and
Er3+,Yb3+ are investigated as temperature sensors for whispering-gallery-mode (WGM) res-
onators. The ions were chosen to match the available pump lasers for WGM coupling in a silica
microsphere, so that multiple sensing parameters can be achieved with a single excitation wave-
length. The silica microspheres and the NPs used for this thesis have diameters of about 100 µm
and 150 nm respectively. The much smaller size of the NPs with respect to the microspheres
ensures that the thermal equilibrium remains undisturbed in the medium of interest (i. e., the
microsphere) during the temperature measurements. In order to understand the effects of the
lattice vibrations of host materials like yttria on the spectroscopic properties of the active ions, the
concept of phonon by quantization of lattice vibration is introduced and the widths and positions
of spectral lines of Nd3+ in Y2O3 are discussed as an example of the ion-phonon interactions
following a Debye model. Moreover, the theoretical basis of WGMs coupling is derived from the
modal equation for a microsphere and some simulations are performed for the system of interest.
This system is then considered for temperature sensing applications and the effects of a near-field
probe such as a nanoparticle close to the microsphere’s surface are calculated using Rayleigh
scattering. Some control experiments were also performed in order to optimize the experimental
setup for WGM coupling using the microsphere-prism coupling geometry. A nanothermometer
based on single Nd3+:Y2O3 NPs which relies on the ratio of the intensities of the light emitted due
to transitions coming from thermally coupled energy levels is presented, followed by another yttria
based system, Er3+,Yb3+:Y2O3. Both systems were characterized by exciting single nanoparticles
with low power, continuous-wave lasers and the results were described by a rate equation model
considering multiphonon interactions. The system presented a relative sensitivity up to 1.36%
at 300 K and accuracy of 0.1 K, thus being suited for temperature sensing applications. Finally,
some future experiments are proposed for the Nd3+:Y2O3 system, which showed promising
results for temperature sensing for microresonators, taking into consideration the theoretical and
experimental aspects for both the WGM and luminescence spectroscopy.

Keywords: yttrium oxide, rare-earth ions, nanothermometry, whispering-gallery-modes.



RESUMO

Nesta tese, nanopartículas (NPs) de Y2O3 (ítria) dopadas com íons terra-rara, mais especifica-
mente Nd3+ e Er3+,Yb3+ são analisadas como sensores de temperatura para ressonadores de
modos de galeria de sussurro (MGS). Os íons foram escolhidos de maneira a coincidir com
os comprimentos de onda disponíveis para acoplamento de MGS em uma microesfera de sí-
lica, de modo que múltiplos parâmetros de sensibilidade pudessem ser obtidos com um mesmo
comprimento de onda de excitação. As microesferas de sílica e as NPs usadas nesta tese têm
diâmetros de cerca de 100 µm e 150 nm respectivamente. A dimensão muito menor das NPs
quando comparadas às microesferas garante que o equilíbrio térmico não seja perturbado no
meio de interesse (i. e., as microesferas) durante as medidas de temperatura. Para entender os
efeitos das vibrações na rede de materiais como a ítria nas propriedades espectroscópicas dos
íons ativos, o conceito de fônon é introduzido por meio da quantização das vibrações da rede e as
larguras e posições das linhas espectrais do Nd3+ em Y2O3 são discutidas como um exemplo das
interações íon-fônon seguindo o modelo de Debye. Além disso, as bases teóricas do acoplamento
de MGS são derivadas a partir da equação modal para uma microesfera e algumas simulações são
realizadas para o sistema de interesse. Esse sistema é então considerado para aplicações de sensor
de temperatura e os efeitos de uma ponteira de campo próximo como uma nanopartícula próxima
à superfície da microesfera são calculados usando o espalhamento Rayleigh. Alguns experimentos
de controle foram realizados para otimizar o aparato experimental para acoplamento de MGS
usando a configuração de acoplamento microesfera-prisma. Um nanotermômetro baseado em
NPs individuais de Nd3+:Y2O3 fundamentado na razão de intensidades da luz emitida devido
às transições que surgem de níveis de energia termicamente acoplados é apresentado, seguido
por outro sistema baseado em ítria, Er3+,Yb3+:Y2O3. Ambos os sistemas são caracterizados pela
excitação de nanopartículas individuais com baixa potência e laser contínuo e os resultados foram
descritos por um modelo de equações de taxa que considera as interações multifônon. O sistema
apresentou uma sensitividade relativa máxima de 1.36% em 300 K e precisão de 0.1 K, sendo
portanto adequado para aplicações como sensor de temperatura. Por fim, experimentos futuros
são propostos para o sistema de Nd3+:Y2O3, que apresentou resultados promissores como sensor
de temperatura para micro ressonadores, considerando os aspectos teóricos e experimentais dos
MGS e espectroscopia de luminescência.

Palavras-chave: óxido de ítrio, íons terras-raras, nanotermometria, modos de galeria de sussurro.
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1 INTRODUCTION

Saint Paul’s Cathedral in London is a famous example of the so called whispering-gallery
phenomenon. The gallery gained its name due to a feature in the architecture so that one can
whisper on one side of the dome and be heard by someone on the opposite side. Moreover, if
one speaks facing one direction along the wall, the sound will return from behind. According to
Lord Rayleigh, the sonorous vibrations have a tendency to cling to a concave surface, thus being
trapped along the circular path. A small obstacle, however, held close to the surface is enough to
intercept most of the effect [1].

Analogously to the acoustical whispering-gallery phenomenon, light can also be confined
in spherical and cylindrical geometries and propagate in the form of a Whispering-Gallery-Mode
(WGM). The possibility of WGM microresonators to confine light in a small volume for a
considerably long period of time, which is given by the quality factor of the resonances supported
by such microresonators, significantly enhances light-matter interactions and thus allows for a
greater power density within the mode volume of the WGM [2, 3]. During the last few years,
numerous applications for WGMs have been reported, such as label-free detection of single virus
and nanoparticles [4–6], 3D strain measurements [7] in vivo sensing with microlasers [8–11]
and optical vacuum sensors [12].

WGMs microresonators can also be utilized for temperature sensing applications, due
to its sensitive response to the surrounding media’s temperature. In a WGM-based temperature
sensor, the resonance frequency is affected by the refraction index and the cavity’s size, which vary
with the temperature due to the thermo-optical and expansion effects, respectively [13]. Thermal
sensing has been demonstrated, for instance, using silica- and silicon-based devices [14–16]. On
the other hand, materials with larger thermal expansion coefficients, such as silk, can outperform
the silica devices in terms of sensitivity [17].

A common issue with WGM-based temperature sensor is the difficulty of generating
an absolute temperature reading. In other words, the most common sensing mechanisms are
based on relative temperature increments [18]. For that reason, the WGM can be paired with
another mechanism for temperature sensing, such as the luminescence of nanoparticles (NPs).
WGMs microresonators are often combined with trivalent rare-earth ions due to their numerous
fluorescence emission bands from the ultraviolet to the mid infrared range of the spectrum [19],
so that the luminescence properties of the active ions can also play a role in the temperature
sensing techniques.

In this thesis, Y2O3 (yttria) NPs doped with rare-earth ions, namely Nd3+ and Er3+,Yb3+

are investigated as temperature sensors. The ions were chosen to match the available pump lasers
for WGM coupling in a silica microsphere, so that multiple sensing parameters can be achieved
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with a single excitation wavelength. To the best of our knowledge, this approach has not net been
explored for single NPs.

Silica was used as the cavity material since it enables the manufacture of microspheres
using the carbon dioxide laser melting technique, where a CO2 laser is focused at on one end of a
silica fiber tip which absorbs the energy and heats up to the melting point [20]. Under the the
surface tension, the heated end of the fiber is melted into a microsphere resonator [21,22]. By
carefully controlling the laser power and fiber position, microspheres with different diameters
can be produced. The silica microspheres and the NPs used for this thesis have diameters of
about 100 µm and 150 nm respectively. The much smaller size of the NPs with respect to the
microspheres ensures that the thermal equilibrium remains undisturbed in the medium of interest
(i. e.,, the microsphere) during the temperature measurements [23]. However, it adds an additional
complication for defining a local temperature at length scales smaller than one wavelength. It’s
thus important to address the question about whether the temperature can be meaningfully defined
on nanometric length scales [24].

Local physical properties may have different behaviors depending on whether or not the
local state is thermalized. Therefore, there may be a limit for the spatial resolution on which a
temperature profile can be determined [25]. In a spherical particle, increasing its diameter, the
volume grows faster than its surface and effective interactions between the interior and exterior
regions, provided that they are short ranged, are less relevant [26, 27]. This scaling behavior
ensures that the thermodynamic limit is valid, since the correlations between a given region and
its surroundings becomes negligible in the large region size limit [28].

The scaling of interactions between the parts of a system compared to the local energy
thus gives a minimal length scale above which the correlations are still small enough to generate
a local temperature, which exists if the considered part of the system is in a canonical state. This
minimum length scale is fundamental for applications such as intracellular nanothermometry, as
demonstrated by the so-called “105 gap issue”, which is still an open problem [29]. This issue
arises from discrepancies between measured temperature increments and their corresponding
theoretical calculations from experimental parameters. The calculated values can be orders of
magnitude smaller than the values obtained from direct measurements. Reliable temperature
variations over 1 K among cellular compartments were demonstrated in unstimulated cells using
different luminescence thermometry techniques [30–36]. Moreover, temperature increments in
the same order of magnitude were also detected using non-luminescent thermal probes [37–39].
The issue triggered a discussion among researchers in the field about the possibility of single cell
raise its temperature by endogenous thermogenesis [40–44].

The “105 gap issue” suggests that the size limits for the existence of a local temperature
should be carefully determined, otherwise any temperature increment detected at the nanoscale
could be attributed to some artifact which arose from the non-equilibrium state. It was demon-
strated that in most cases, the concept of temperature is valid even on a scale of 10 nm [29].
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Additionally, the microscopic limit for local temperature was also calculated for yttria crystals
considering an one dimensional harmonic chain model, which gave a theoretical value of 1.5 µm
for minimum length required for the existence of local temperature. The details for this calculation
can be found in the Appendix A.

From the nanothermometry measurements performed in this thesis, it was shown that the
thermal equilibrium was reached for NPs with diameter of 110 nm. Therefore, the actual limit for
local temperature should be in the range of 10 nm to 100 nm, and the 1.5 µm value can be under-
stood as an overestimation given the limits of the simple harmonic chain model. That being said,
the yttria NPs are thus potential candidates for noncontact thermal sensing for microresonators,
since other methods such as thermocouples and thermistors are inappropriate at such scales,
granted that the required thermal connection with the sample disturbs the measurements [45].

The core of this thesis is structured in five chapters, which are summarized as follows:

Chapter 2 presents some of the effects of the lattice vibrations of host materials on the
spectroscopic properties of the active ions. The concept of phonon by quantization of lattice
vibration is introduced and the widths and positions of spectral lines of Nd3+ in Y2O3 are discussed
as an example of the ion-phonon interactions following a Debye model.

Chapter 3 gives the theoretical basis of WGMs coupling. The modal equation for a
spherical microsphere is derived and some simulations are performed for our system of interest.
This system is then considered for temperature sensing applications and the effects of bringing a
near-field probe close to the microsphere’s surface are calculated using Rayleigh scattering.

Chapter 4 describes the experimental setup for WGM spectroscopy. Several control
experiments were performed in order to optimize the setup as well as to calibrate the instruments.
The microsphere-prism coupling geometry was taken into consideration in order to position the
focusing lens while the scanning frequency was monitored using a Fabry-Perot interferometer.

Chapter 5 shows a nanothermometer based on single Nd3+:Y2O3 NPs. The nanoth-
ermometer relies on the ratio of thermally coupled Nd3+ emission lines accessible by either
continuous-wave upconversion under 880 nm or downconversion under 532 nm excitation wave-
lengths. Both processes are modeled through rate equation systems based on multiphonon
interactions between excited luminescent states.

Chapter 6 considers another yttria based nanothermometer, Er3+, Yb3+:Y2O3 NPs. The
nanothermometer characterization was performed by exciting the single nanoparticles with a low
power, continuous-wave laser emitting at 980 nm. The results were described by a rate equation
analysis using a dual effective phonon model.

Chapter 7 brings conclusions and perspectives about the best suited candidate for tem-
perature sensing for microresonators, taking into consideration the theoretical and experimental
aspects for both the WGM and luminescence spectroscopy. To conclude this thesis, some future
experiments are proposed for the Nd3+:Y2O3 system.
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2 PHONON EFFECTS IN RARE-EARTH DOPED CRYSTALS

This chapter presents some of the effects of the lattice vibrations of host materials on the
spectroscopic properties of the active ions. Using the concept of phonon as a quantization of
lattice vibrations, the widths and positions of spectral lines of Nd3+ in Y2O3 are discussed as an
example of the ion-phonon interactions following a Debye model [46–49].

The starting point for studying lattice vibrations is to solve the Schrödinger’s equation.
For the hydrogen atom, the electron is about 1/1840th as heavy as the the nucleus. Therefore,
from a classical point of view, the ionic movement is much slower than the electronic’s. For
that reason, the so-called adiabatic approximation can be applied, which consists on solving
the problem of the lattice vibrations for an average electronic field [50]. It can be shown that
the quantum mechanical treatment of vibrations in a crystal lattice yields quanta of elementary
excitation called phonons, which can be treated as Bosons. Moreover, the Hamiltonian of such
system is analogous to the one of a system of Harmonic Oscillators. The total energy in a certain
state is thus given by:

𝐸 (𝑛1, 𝑛2, 𝑛3, … 𝑛3𝑁𝑟) =
3𝑁𝑟

∑
𝑖=1

(𝑛𝑖 + 1
2) ℏ𝜔𝑖, (2.1)

where 𝑁 is the number of unit cells, 𝑟 the number of atoms in each cell, which account for 3𝑁𝑟
normal vibration modes and ℏ is the reduced Planck constant.The harmonic oscillator is labeled
by the index 𝑖 with frequency 𝜔𝑖 and the summation is over all the 3𝑁𝑟 harmonic oscillators.

When there are two kinds of ions in each cell (𝑟 = 2), the lattice system has three acoustic
and three optical modes [51]. In general, there are three acoustic modes and 3𝑟–3 optical modes.
For the acoustic modes, the two kinds of ions vibrate in the same direction, while for the optical
mode, the vibrations of the two ions with opposite charge are opposite. The optical modes are of
particular interest since they will produce a net electric dipole moment and so can interact with
electromagnetic fields.

The probability of finding the system in a state with energy 𝐸 is proportional to the
Boltzmann’s factor in the thermal equilibrium. Therefore, The average phonon number of certain
mode can be written as:

̄𝑛𝑖 =
∑𝑛𝑖

𝑛𝑖 exp (−𝐸𝑖/𝑘𝐵𝑇)
∑𝑛𝑖

exp (−𝐸𝑖/𝑘𝐵𝑇)
=

∑𝑛𝑖
𝑛𝑖 exp (−𝑛𝑖ℏ𝜔𝑖/𝑘𝐵𝑇)

∑𝑛𝑖
exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)

, (2.2)

where 𝑘𝐵 is the Boltzmann constant. Since 𝐸𝑖 = (𝑛𝑖 + 1
2
) ℏ𝜔𝑖, the [exp (−ℏ𝜔𝑖/2𝑘𝐵𝑇)] factor

cancels out. The summation thus runs over the phonon number of a certain mode. Since:
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∑
𝑛𝑖

exp (−𝑛𝑖ℏ𝜔𝑖/𝑘𝐵𝑇) = 1
[1 − exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)]

, (2.3)

and:

∑
𝑛

𝑛𝑖 exp (−ℏ𝜔𝑖𝑛𝑖/𝑘𝐵𝑇) = exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)
𝑑 ∑𝑛𝑖

exp (−ℏ𝜔𝑖𝑛𝑖/𝑘𝐵𝑇)

𝑑 [exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)]

= exp (−ℏ𝜔𝑖/𝑘𝑇)
𝑑 { 1

[1−exp(−ℏ𝜔𝑖/𝑘𝐵𝑇)]
}

𝑑 [exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)]

=
exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)

[1 − exp (−ℏ𝜔𝑖/𝑘𝐵𝑇)]2 , (2.4)

one gets:

̄𝑛𝑖 = 1
exp (ℏ𝜔𝑖/𝑘𝐵𝑇) − 1

, (2.5)

which is often used to discuss the spectroscopic problem related to lattice vibrations, particularly
for multiphonon processes.

Some phonon effects on the fluorescence lines of Nd3+ ions in yttria can then be considered
[52,53]. For the sake of simplicity, only the spectral lines corresponding to the transitions from
R1 of the 4F3/2 energy level to Z3 of 4I9/2 will be treated, as shown in Figure 1. That transition
translates to a peak around 915 nm. Yttria was chosen as an example since it’s the host matrix for
the doped nanoparticles (NPs) which were used in the experiments for this thesis. The R1 → Z3

was chosen among the available transitions because it is a well resolved peak of the 4F3/2→4I9/2

transition for the yttria matrix as will be seen in Chapter 5.

The total broadening of fluorescence lines can be written as [52]:

Δ𝐸𝑖 = Δ𝐸strain
𝑖 + Δ𝐸M

𝑖 + Δ𝐸D
𝑖 + Δ𝐸R

𝑖 , (2.6)

where Δ𝐸strain
𝑖 is the broadening introduced by the crystal strain inhomogeneity, Δ𝐸M

𝑖 is due
to multiphonon emission processes, Δ𝐸D

𝑖 is due to direct one-phonon processes between the
𝑖th energy level and other levels nearby. Finally, Δ𝐸R

𝑖 is the broadening introduced by phonon
Raman scattering. The one-phonon emission and absorption processes can be written explicitly
in Δ𝐸D

𝑖 as:

Δ𝐸D
𝑖 = ∑

𝑗<𝑖

̄𝛽𝑖𝑗 ( 1
eΔ𝐸𝑖𝑗/𝑘𝑇 − 1

+ 1) + ∑
𝑗>𝑖

̄𝛽𝑖𝑗
1

eΔ𝐸𝑗𝑖/𝑘𝑇 − 1
(2.7)

and for Δ𝐸R
𝑖 :
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R1
R24F3/2

Y1
Y2
Y3
Y4
Y5
Y6

4I11/2

Z5Z4Z3Z2Z1

4I9/2

Figure 1 – Energy levels of Nd3+ in Y2O3: Nd3+. R𝑖, Y𝑖 and Z𝑖 are Stark sublevels of the 4F3/2,
4I11/2 and 4I9/2 transitions respectively [53]. The red arrow indicates the R1 → Z3
transition which generates an emission peak around around 915 nm.

Δ𝐸R
𝑖 = 𝛼𝑖 ( 𝑇

𝑇D
)

7
∫

𝑇D/𝑇

0

𝑥6e𝑥

(e𝑥 − 1)2 d𝑥, (2.8)

where 𝛼𝑖 and ̄𝛽𝑖𝑗 are the coupling coefficients for the ion-phonon interaction. 𝑇𝐷 is the effective
Debye temperature of the phonon distribution . While Δ𝐸strain

𝑖 gives rise to an inhomogeneous
broadening and thus produces a Gaussian line shape, the broadenings due to Δ𝐸M

𝑖 , Δ𝐸D
𝑖 and

Δ𝐸R
𝑖 are homogeneous and give Lorentzian line shapes.

A shape composed of a homogeneous part and inhomogeneous contributions can be
represented by a Voigt profile so that the width can be resolved into each contributions using
Posener tables [54]. It’s useful to rewrite Δ𝐸D

𝑖 as a sum of a temperature independent and a
temperature dependent term as:

Δ𝐸D
𝑖 = ∑

𝑗<𝑖

̄𝛽𝑖𝑗 + Δ𝐸DT
𝑖 , (2.9)

where:

Δ𝐸DT
𝑖 ≡ ∑

𝑗<𝑖

̄𝛽𝑖𝑗
1

eΔ𝐸𝑖𝑗/𝑘𝑇 − 1
+ ∑

𝑗>𝑖

̄𝛽𝑖𝑗
1

eΔ𝐸𝑗𝑖/𝑘𝑇 − 1
. (2.10)

For rare earth ions, the energy separation among Stark levels can reach up to 100 cm-1,
thus ∑𝑗<𝑖

̄𝛽𝑖𝑗 can produce an observable broadening even at low temperatures [47]. Equation 2.6
can thus be written as:

Δ𝐸𝑖 = Δ𝐸strain
𝑖 + Δ𝐸M

𝑖 + ∑
𝑗<𝑖

̄𝛽𝑖𝑗 + Δ𝐸DT
𝑖 + Δ𝐸R

𝑖 (2.11)
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When T=0 K, one gets:

Δ𝐸𝑖 = Δ𝐸strain
𝑖 + Δ𝐸M

𝑖 + ∑
𝑗<𝑖

̄𝛽𝑖𝑗 ≡ Δ𝐸𝑖0, (2.12)

where Δ𝐸𝑖0 is called the residual width of the 𝑖th level. For yttria, the Raman scattering dominates
the temperature dependent processes [53]. Therefore, for the R1 → Z3 emission line, the spectral
line thermal broadening can be expressed as [53]:

Δ𝐸 = Δ𝐸0 + 𝛼̄ ( 𝑇
𝑇D

)
7

∫
𝑇D/𝑇

0

𝑥6e𝑥

(e𝑥 − 1)2 d𝑥. (2.13)

Apart from the spectral line broadening the electron–phonon interaction also plays an im-
portant role as a major mechanism for the thermal shifting of the spectral lines. Using perturbation
theory, the shift can be written as [52]:

𝛿𝐸𝑖 = 𝛿𝐸R
𝑖 + 𝛿𝐸D

𝑖 (2.14)

where:

𝛿𝐸R
𝑖 =𝛼𝑖 ( 𝑇

𝑇D
)

4
∫

𝑇D/T

0

𝑥3

e𝑥 − 1 d𝑥

𝛿𝐸D
𝑖 = ∑

𝑗≠𝑖
𝑇𝑖𝑗𝛽𝑖𝑗 ( 𝑇

𝑇𝑖𝑗
)

2

P ∫
𝑇D/𝑇

0

𝑥3

e𝑥 − 1
d𝑥

(𝑇𝑖𝑗/𝑇2) − 𝑥2

(2.15)

and 𝛼𝑖 and 𝛽𝑖𝑗 are the coupling coefficients, 𝑇𝑖𝑗 = (𝐸𝑖 − 𝐸𝑗) /𝑘 is in the range of ±ℏ𝜔D and P is
the principal value of the integral [49]. It’s worth noticing that 𝛿𝐸R

𝑖 has the same expression as
the energy of a phonon gas, which can be derived from Equation 2.5:

𝐸(𝑇) = 9𝑁𝑘𝑇 ( 𝑇
𝑇𝐷

)
3

∫
𝑇𝐷/𝑇

0

𝑥3

𝑒𝑥 − 1𝑑𝑥 (2.16)

The 𝛿𝐸D
𝑖 term was found to be negligible when compared to the 𝛿𝐸R

𝑖 for determining
the spectral shift [55–57]. Therefore, the thermal shift of the line position is given by:

𝛿𝐸 ≈ 𝛿𝐸R = 𝛼 ( 𝑇
𝑇D

)
4

∫
𝑇D/𝑇

0

𝑥3

e𝑥 − 1 d𝑥 (2.17)

where 𝛼 and 𝑇D are adjustable parameters, which are shown in Table 1 for the R1 → Z3 emission
line for bulk yttria. The magnitude of the shift becomes greater the smaller is the particle’s
dimension, which could be attributed to the increasingly role played by the surface ions [53].

Figure 2 shows the theoretical curves for Equations 2.13 and 2.17, considering the
parameters of Table 1. The line positions are thus red shifted with increasing temperature. This
technique allows for an indirect measurement of Debye’s temperature, which for the yttria crystal
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Parameter Value

𝛼 22 cm-1

𝛼̄ 95 cm-1

𝑇D 440 K for Equation 2.13 and 429 K for Equation 2.17
Δ𝐸0 2.46 cm-1

Table 1 – Fitting parameters for the linewidth (Equation 2.13) and lineshift (Equation 2.17) for
the R1 → Z3 emission line [53].

is expected to be around 435 K and should be close to the value obtained by heat capacity
measurements. Figure 2 also shows that 𝛿𝐸 around 300 K presents a nearly linear behavior
with the temperature, which by itself could be used as thermometric parameter [58]. It’s worth
commenting that for a range of 150 K to 700 K, a lineshift of only 8 cm-1 is found. That can limit
the applicability of this technique for sensing temperature increments of tens of Kelvin above
room temperature, which would be barely detectable by most spectrometers.
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Figure 2 – Theoretical results of thermal broadening and shifting of emission spectral lines for
the R1 → Z3 emission line.

The thermal line broadening and shifting have the same orders of magnitude for the same
rare earth ion in different host matrices or for different rare earth ions in the same material [55–57].
On the other hand, different values for 𝑇D can be found for the broadening and shifting due to the
contribution of single phonon absorption and emission not being taken into account, as was the
case for yttria. Moreover, the broadenings and shiftings are different for different pairs of Stark
sublevels in the same ion [59, 60].

In conclusion, the lattice vibrations are capable of introducing thermal effects in the
observable emission spectrum. On the other hand, as will be shown in the following chapters,
phonons can also generate thermal effects which are more sensitive to smaller temperature
increments if, for instance, they have enough energy to allow for phonon-assisted luminescence
processes. Moving forward with the theoretical background for this thesis, Chapter 3 presents the
fundamentals of Whispering-Gallery-Modes in silica microspheres, which also possess promising
thermal sensing capabilities.
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3 WGMs IN SPHERICAL OPTICAL MICRORESONATORS

In this chapter, the theoretical basis of WGMs and the coupling of light to them are
presented following the method developed by Balac [61]. The modal equation for a perfect
microsphere is derived and some simulations are performed for our system of interest. This
system is then considered for temperature sensing applications and the effects of bringing a
near-field probe close to the microsphere’s surface are calculated using Rayleigh scattering
theory.

3.1 Expression of WGM in a spherical microresonator

The harmonic solutions for Maxwell’s equations for a spherical dielectric cavity can be
written as:

E(r, 𝑡) = Re[E(r) exp(i𝜔𝑡)], B(r, 𝑡) = Re[B(r) exp(i𝜔𝑡)] (3.1)

where E and B are respectively the electric field and magnetic induction of the mode and
𝜔 is the resonance frequency. The underlying bars in E(r) and B(r) represent the complex
valued amplitudes. Following Hansen’s method [62], it is found that there are two kinds of
electromagnetic fields with different polarizations: TE (transverse electric) and TM (transverse
magnetic) defined in spherical coordinates. For TE modes the electric field is parallel to the
microsphere’s surface while for TM modes, the magnetic induction is parallel to the microsphere’s
surface. For TE modes, the mode field is given by:

E(𝑟, 𝜃, 𝜑) =
⎧{{
⎨{{⎩

𝜓ℓ(𝑘𝑟)
𝑘𝑟

Xℓ𝑚(𝜃, 𝜑) if 𝑟 ≤ 𝑅
𝑘0

𝑘
𝜓ℓ(𝑘𝑅)
𝜁ℓ(𝑘0𝑅)

𝜁ℓ(𝑘0𝑟)
𝑘0𝑟

Xℓ𝑚(𝜃, 𝜑) if 𝑟 > 𝑅
(3.2)

and:

B(𝑟, 𝜃, 𝜑) =

⎧{{{{{{
⎨{{{{{{⎩

i𝑘
𝜔

(ℓ(ℓ + 1)𝜓ℓ(𝑘𝑟)
𝑘2𝑟2

Zℓ𝑚(𝜃, 𝜑)

+𝜓′
ℓ(𝑘𝑟)
𝑘𝑟

Yℓ𝑚(𝜃, 𝜑)) if 𝑟 ≤ 𝑅
i𝑘2

0

𝑘𝜔
𝜓ℓ(𝑘𝑅)
𝜁ℓ(𝑘0𝑅)

(ℓ(ℓ + 1)𝜁ℓ(𝑘0𝑟)
𝑘2

0𝑟2
Zℓ𝑚(𝜃, 𝜑)

+𝜁′
ℓ(𝑘0𝑟)
𝑘0𝑟

Yℓ𝑚(𝜃, 𝜑)) if 𝑟 > 𝑅

(3.3)

where 𝑘0 = 𝜔/𝑐 and 𝑘 = 𝑘0𝑁. 𝑁 the optical index of the dielectric cavity and 𝑅 its radius.
Moreover, ℓ,𝑚 are integers such that −ℓ ≤ 𝑚 ≤ ℓ, ℓ ∈ ℕ, Xℓ𝑚, Yℓ𝑚 and Zℓ𝑚 are the Vector
Spherical Harmonics defined from the Scalar Spherical Harmonics 𝑌𝑚

ℓ as:

Zℓ𝑚 = 𝑌𝑚
ℓ er, Yℓ𝑚 = 𝑟∇𝑌𝑚

ℓ , Xℓ𝑚 = ∇𝑌𝑚
ℓ ∧ r (3.4)
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where er is the radial unit vector and 𝜓ℓ and 𝜁ℓ are respectively the Riccati-Bessel functions of
first and third kinds. They are related to the Bessel and Hankel function as [63, 64]:

𝜓ℓ(𝑥) = √𝜋𝑥
2 𝐽ℓ+ 1

2
(𝑥), 𝜁ℓ(𝑥) = √𝜋𝑥

2 𝐻(2)
ℓ+ 1

2

(𝑥) (3.5)

The Spherical Surface Harmonics of degree ℓ and order 𝑚 are defined as [65]:

𝑌𝑚
ℓ (𝜃, 𝜑) = 𝐶ℓ𝑚𝑃𝑚

ℓ (cos(𝜃))ei𝑚𝜑 (3.6)

and the normalization constant 𝐶ℓ𝑚 is given by:

𝐶ℓ𝑚 = √(2ℓ + 1)
4𝜋

(ℓ − 𝑚)!
(ℓ + 𝑚)! (3.7)

For TM modes, one gets:

E(𝑟, 𝜃, 𝜑) =

⎧{{{{
⎨{{{{⎩

ℓ(ℓ + 1)𝜓ℓ(𝑘𝑟)
𝑘2𝑟2

Zℓ𝑚(𝜃, 𝜑) + 𝜓′
ℓ(𝑘𝑟)
𝑘𝑟

Yℓ𝑚(𝜃, 𝜑) if 𝑟 < 𝑅
𝜓ℓ(𝑘𝑅)
𝜁ℓ(𝑘0𝑅)

(ℓ(ℓ + 1)𝜁ℓ(𝑘0𝑟)
𝑘2

0𝑟2
Zℓ𝑚(𝜃, 𝜑)

+𝜁′
ℓ(𝑘0𝑟)
𝑘0𝑟

Yℓ𝑚(𝜃, 𝜑)) if 𝑟 > 𝑅

(3.8)

and:

B(𝑟, 𝜃, 𝜑) =
⎧{{
⎨{{⎩

i𝑘
𝜔

𝜓ℓ(𝑘𝑟)
𝑘𝑟

Xℓ𝑚(𝜃, 𝜑) if 𝑟 ≤ 𝑅
i𝑘0

𝜔
𝜓ℓ(𝑘𝑅)
𝜁ℓ(𝑘0𝑅)

𝜁ℓ(𝑘0𝑟)
𝑘0𝑟

Xℓ𝑚(𝜃, 𝜑) if 𝑟 > 𝑅
(3.9)

The mode fields on both sides of the microsphere’s surface follow the boundary conditions:

[E(𝑟, 𝜃, 𝜑) ∧ er] = 0,

[B(𝑟, 𝜃, 𝜑) ⋅ er] = 0,

[𝜀E(𝑟, 𝜃, 𝜑) ⋅ er] = 0,

[B(𝑟, 𝜃, 𝜑) ∧ er] = 0.

(3.10)

The resonance frequencies 𝜔 are then found by solving the so-called modal equation
[66, 67]:

𝑃
𝜓′

ℓ(𝑘𝑅)
𝜓ℓ(𝑘𝑅) =

𝜁′
ℓ (𝑘0𝑅)

𝜁ℓ (𝑘0𝑅)
(3.11)

where 𝑃 = 𝑁 for TE modes and 𝑃 = 1/𝑁 for TM modes. Therefore, a mode is defined in terms
of three integers: ℓ involved in the modal Equation 3.11, 𝑛 used to label the modal equation’s
solutions for a given ℓ value and 𝑚 involved in the expression of the mode field. The 𝑃 constant
accounts for the different solutions for each polarization mode.

As a result from this analysis, there is a mode degeneracy since there are (2ℓ + 1) modes
with the same values of ℓ and 𝑛, and therefore with the same resonance frequency. On the
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other hand, they differ with respect to the 𝑚 value and thus have different expressions for the
electromagnetic field. The index 𝑚 is called the azimuthal mode number and can take (2ℓ + 1)
values from −ℓ to ℓ. Negative values of 𝑚 have the physical meaning of counter-propagating
modes. Furthermore, the polar mode number ℓ is the number of wavelengths that can fit around
the sphere, while the radial mode number 𝑛 is equal to the number of maxima of intensities in the
radial direction and (ℓ − |𝑚| + 1) is the number of maxima of intensities in the polar direction.

Geometric optics can be used to illustrate the concept of WGM in a simple way [68].
Considering a sphere with radius 𝑅 and refractive index 𝑁, a ray of light with wavelength 𝜆 can
propagate inside, hitting the surface above the critical angle, so light is totally reflected. Because
of the spherical symmetry, all subsequent reflections occur at the same angle 𝑥𝑖, so light gets
trapped as shown in Figure 3.

(a) 𝑥𝑖 = 58∘ (b) 𝑥𝑖 = 60∘ (c) 𝑥𝑖 = 62∘

Figure 3 – Light ray trajectories along a sphere great circle. a) 45 reflections and 8 round trips. b)
Light ray is trapped self consistently after 6 reflections. c) 45 reflections and 7 round
trips.

For each reflection, the beam moves along the arc the distance of 𝜋 − 2𝑥𝑖, assuming a
sphere with unit radius. For 𝑥𝑖 = 58∘ and 𝑥𝑖 = 62∘ light returns to the starting point after 45
reflections. However, the former case has one round trip more than the latter. For large values
of 𝑥𝑖, close to 90∘, the number of reflections grows to 180 for only one round trip, as shown in
Figure 4. The reason for the large number of reflections for 𝑥𝑖 = 83∘ is that every reflection at
that angle will move the ray 14∘ along the arc, so that the least common multiplier of 14 and 360
degrees is 2520 thus generating 180 reflections and 7 round trips.

Billiards correspond to the classical (short wavelength) limit of wave equations for light
in a homogeneous cavity, so that the classical dynamics is analogous to the geometrical optics
approximation [69]. As discussed previously, for large spheres (𝜆 ≪ 𝑅), the ray propagates close
to the sphere’s surface. The resonance condition is fulfilled if a round trip equals an integer
number ℓ of wavelengths leading to constructive interference. In other words, the phase needs
to match after one round trip. For these modes, known as the WGMs, light is strongly confined
close to the sphere’s surface. A resonance condition can thus be written as:
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Figure 4 – Number of reflections (circles) and round trips (squares) as a function of the angle of
incidence 𝑥𝑖.

ℓ ≈ 2𝜋𝑅𝑁
𝜆 , (3.12)

where ℓ (the polar mode number) is the number of wavelengths fitting along the spheres’ circum-
ference.

The goal for efficient WGM coupling is keeping 𝑛 = 1, which corresponds to the best
confined modes in the radial direction and 𝑚 = ℓ, which gives the best confinement in the polar
direction. The mode satisfying those conditions and corresponding to the highest value of ℓ for
which Equation 3.11 has a solution, is known as the fundamental mode. It is worth noticing that
the 𝜔 solutions for Equation 3.11 are complex-valued. It is usual in the study of WGM in optical
micro-resonators to introduce a radiative quality factor as:

Q = Re(𝜔)
Im(𝜔) (3.13)

The smaller the radiation losses are, the smaller Im(𝜔) is and therefore the higher is
the radiative quality factor. Since the experimentally measured quality factor (Q-factor) of a
microresonator also takes into account other losses, it is likely to happen that its value differs
from the radiative quality factor. One of those losses mechanisms is the surface scattering, which
will be the topic of the next sections of this chapter.

In most practical cases, the value of ℓ is often in the hundreds for the visible part of the
spectrum, which correspond to a small radiative leakage outside the sphere. As a result, one can
approximate the analytical solutions considering asymptotic expansions of Bessel’s functions
for large order ℓ, so that 𝜁ℓ(𝑧) ≈ i𝜒ℓ(𝑧), where 𝜒ℓ(𝑧) denotes the Riccati-Bessel function of the
second kind with order ℓ related to the Bessel function by:

𝜒ℓ(𝑥) = −√𝜋𝑥
2 𝑌ℓ+ 1

2
(𝑥) (3.14)

from this approximation, Equation 3.11 can be rewritten as:
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𝑃
𝜓′

ℓ(𝑘𝑅)
𝜓ℓ(𝑘𝑅) =

𝜒′
ℓ (𝑘0𝑅)

𝜒ℓ (𝑘0𝑅)
(3.15)

again 𝑃 = 𝑁 for TE modes and 𝑃 = 1/𝑁 for TM modes. Equation 3.15 thus admits a real 𝑘0

solution. For the main purposes of this thesis, we are interested into finding the positions of the
WGM for a given pump wavelength. For numerical purposes it is more convenient to express
Equation 3.15 in terms of Bessel functions of first and second kinds:

𝑌ℓ− 1
2

(𝑘0𝑅)

𝑌ℓ+ 1
2

(𝑘0𝑅)
− 𝑃

𝐽ℓ− 1
2
(𝑘𝑅)

𝐽ℓ+ 1
2
(𝑘𝑅) = ℓ ( 1

𝑘0𝑅 − 𝑃
𝑘𝑅) (3.16)

For a given mode number ℓ, the wavelengths 𝜆 for which resonance occurs are obtained
by looking for the zeros of the modal function. For a given 𝜆, the mode numbers ℓ corresponding
to solutions to the modal equation are bound to:

2𝜋 (𝑅 + 𝛿𝑃)
𝜆 < ℓ + 1

2 < 𝑁
2𝜋 (𝑅 + 𝛿𝑃)

𝜆 (3.17)

where 𝛿𝑃 ≈ 𝜆
2𝜋𝑁

𝑃
√𝑁2−1

. There is no solution ℓ to the modal equation greater than the upper
bound value in Equation 3.17. Alternatively, there are some solutions lower than the lower bound
value, but they do not correspond to WGM. In other words, for a fixed value of ℓ the resonance
wavelengths 𝜆 are bound to:

2𝜋𝑅
ℓ + 1

2
− 𝛼

< 𝜆 < 2𝜋𝑅𝑁
ℓ + 1

2
− 𝛼𝑁

(3.18)

where 𝛼 = 𝑃/ (𝑁√𝑁2 − 1). With the aid of the Matlab toolbox WGMode developed by Balac [61],
WGM were determined for a silica microsphere of radius 50 µm excited with a laser source
of 685 nm. At room temperature, the refractive index for fused silica (material with which
the microspheres used in this work are made) within the range of 0.21 µm to 3.71 µm can be
determined from [70]:

𝑁2 − 1 = 0.6961663𝜆2

𝜆2 − (0.0684043)2 + 0.4079426𝜆2

𝜆2 − (0.1162414)2 + 0.8974794𝜆2

𝜆2 − (9.896161)2 (3.19)

Thus, for 685 nm, the refractive index is 1.4556. From those considerations, one can cal-
culate the WGM spectrum of such microsphere for a range of frequencies around that wavelength.
Figure 5 shows the results given by the modal equation for the aforementioned parameters. A
microsphere of diameter 100 µm was considered since its larger size allows for a denser WGM
spectrum. Considering a range of 1 THz, which is typical for such microsphere size, the modes
were calculated up to the third order of 𝑛 for both the TE and the TM modes. The frequency
difference between a mode ℓ and its neighboring mode ℓ + 1 is the Free Spectral Range (FSR) of
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the microresonator. A FSR of 662 GHz was verified for separation between successive TE or TM
modes.

0 200 400 600 800
Detuning (GHz)

TE651,1
TE638,2

TE650,1
TE628,3 TM650,1

TM637,2

TM649,1
TM627,3

Figure 5 – WGM spectrum for a microsphere with diameter of 100 µm pumped with a tunable
laser source of central wavelength 685 nm. The x-axis is the detuning frequency with
respect to the TM649,1 mode. The TM/TEℓ,𝑛 modes are shown up to 𝑛 = 3.

As shown in Figure 5, the TM modes lead the TE counterparts in terms of frequency.
For instance, the TM650,1 is located 472 GHz ahead of the mode TE650,1. On the other hand, the
TE651,1 is 190 GHz ahead of the mode TM650,1. That can be understood as a result of the total
internal reflection, which leads to a frequency shift between the TE and TM spectra, since the
TE and TM modes experience different phase shifts along one round trip [71].

The knowledge of the relative positions between the TE and TM modes is helpful to define
not only the FSR but also for better tuning the pump laser. As will be discussed in Chapter 4, the
tunable diode laser can scan for only tens of GHz around a set wavelength, so if a fundamental
mode lies outside that range, the set wavelength needs to be adjusted so that the mode can be
excited. Moreover, the TE/TM modes can be selectively pumped using a half-wave plate to rotate
the incident beam’s polarization.

A common approximation for the FSR in WGM is given by [68]:

𝐹𝑆𝑅 ≈ 𝑐
2𝜋𝑅𝑁 (3.20)

which gives 656 GHz for the previous example, about 1% smaller than the result given from the
modal equation. This small difference can be attributed to the approximations considered for the
modal equation.

Since a perfect sphere is assumed, the modal equation cannot be used to calculate the
positions of modes differing in 𝑚. The problem of determining the position of modes differing
in 𝑚 is shown in [72] by means of precessing modes in a slightly deformed microsphere. An
arbitrary spherical function can be modeled by the precession of an inclined fundamental mode.
The frequency shift can thus be interpreted as a change in the perimeter of the inclined ellipse of
eccentricity 𝜖. A first order approximation gives:

Δ𝜔
𝜔 = ±

𝜖2 (ℓ2 − 𝑚2)
4ℓ2 (3.21)

where Δ𝜔 is the frequency shift of a mode with certain 𝑚 to the fundamental mode of the same
family (same 𝑛 and ℓ). The lift in degeneracy can lead to a red or blueshift depending on the
shape of the microsphere. The positive sign in Equation 3.21 applies for oblate spheroid, while
the negative sign is for a prolate one.
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The knowledge of the electric field distribution of a mode allows one to calculate its
volume. Due to the cumbersome form of the vector spherical harmonics, one approximation can
be used [73, 74]:

𝑉mode ≈
(∫ E(r, 𝑡)2𝑑3𝑟)2

∫ E(r, 𝑡)2E(r, 𝑡)2𝑑3𝑟
≈ 3.4𝜋3/2(𝜆/2𝜋𝑁)3ℓ11/6√ℓ − 𝑚 + 1 (3.22)

which is valid for modes with 𝑛 = 1. As an example, for 𝜆=685 nm, 𝑁=1.4556 and ℓ = 𝑚 = 650,
the resulting mode volume is 1142 µm3 for a sphere with diameter 100 µm while its total volume
is 523 599 µm3. Therefore, the mode volume occupies about 0.2% of the sphere’s total volume,
thus once the ideal conditions for light coupling are met, the mode is well confined within the
sphere and concentrates around its equator. Another way to quantify the mode coupling efficiency
is from the resonator’s Quality factor, which is the topic of the next section.

3.2 Quality factor of a resonance

One of the most important characteristics of a silica microsphere resonator is the extremely
high quality factor (Q-factor) presented by the WGM it supports. The Q-factor of a resonance
measures its losses and is defined as 2𝜋 times the stored energy divided by the energy losses per
cycle. The Q-factor can thus be written as:

𝑄 = 𝜔0
Stored energy

Power loss (3.23)

where 𝜔0 is the resonance frequency. It is possible to obtain a differential equation for the stored
energy [68]:

𝑑𝑈
𝑑𝑡 = −

𝜔0
𝑄 𝑈 (3.24)

with solution given by 𝑈(𝑡) = 𝑈0𝑒−𝜔0𝑡/𝑄. Therefore, the initial energy 𝑈0 decays exponentially
with decay factor 1/𝑄. The oscillations in the field inside the cavity can be written as:

𝐸(𝑡) = 𝐸0𝑒−𝜔0𝑡/2𝑄𝑒−𝑖(𝜔0+Δ𝜔)𝑡 (3.25)

where Δ𝜔 is a positive shift of the resonance frequency. A damped oscillation consists of a
superposition of frequencies around 𝜔 = 𝜔0 + Δ𝜔. Thus:

𝐸(𝑡) = 1
2𝜋 ∫

∞

0
𝐸(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔 (3.26)

where:
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𝐸(𝜔) = 1
2𝜋 ∫

∞

−∞
𝐸0𝑒−𝜔0𝑡/2𝑄𝑒𝑖(𝜔−𝜔0−Δ𝜔)𝑡𝑑𝑡 (3.27)

Evaluating Equation 3.27 gives an expression for the frequency distribution of the energy
in the cavity:

|𝐸(𝜔)|2 ∝ 1
(𝜔 − 𝜔𝑜 − Δ𝜔)2 + (𝜔0/2𝑄)2 (3.28)

The resonance is given by a Lorentzian with a full width at half maximum equal to 𝜔0/𝑄.
The Q-factor of the cavity can then be written as:

𝑄 =
𝜔0
𝛿𝜔 = 𝜔0𝜏 (3.29)

where 𝜏 is the lifetime of the resonance, which is associated with its linewidth by 𝜏 = 1
𝛿𝜔

. In
real cavities the Q-factor of the resonances is determined by several loss mechanisms, such as
absorption, scattering on surface defects, defects inside the glass, diffraction losses and coupling
losses [68]. For that reason, the linewidth will be given by the sum of all contributions:

1
𝑄 = ∑ 1

𝑄𝑖
(3.30)

where 𝑄𝑖 are the Q-factors associated with the various loss mechanisms. For silica microsphres,
Q-factors of up to 8×109 at 633 nm have been reported [75]. The variety of mechanisms than can
affect the Q-factor as well as the resonance frequencies for a microsphere grants to this system
potential sensor applications, since it becomes very sensitive to the surrounding media conditions.
One of these applications is for temperature sensing at the microscale.

3.3 WGMs as temperature sensors

A parameter on optical temperature sensors is the sensitivity (S), which can be defined as
the variation of the measured parameter (MP) with the temperature:

𝑆 = 1
𝑀𝑃

𝑑𝑀𝑃
𝑑𝑇 (3.31)

Using this definition one can obtain the relative sensitivity of the WGM displacement as
follows [76]:

𝑆𝑊𝐺𝑀 = 𝛿𝜆
𝜆𝛿𝑇 = ( 1

𝑁
𝛿𝑁
𝛿𝑇 + 1

𝑅
𝛿𝑅
𝛿𝑇) (3.32)

For fused silica, 𝛿𝑁/𝛿𝑇 = 1.28 × 10−5/K and 𝛿𝑅/𝛿𝑇 = 5.5 × 10−7/K [77]. Since both
coefficients are positive, the peak resonances will experience a redshift in the spectrum if a
temperature increase takes place. Taking those values into consideration, it is possible to calculate
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the displacement a resonance around 685 nm due to the silica’s thermal properties. Figure 6 shows
a redshift of approximately 743 GHz or 1.2 nm, for a temperature increment of 50 K around room
temperature.
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Figure 6 – WGM resonance shift of the 685 nm resonance as a function of temperature for
a microsphere of diameter 100 µm. The blue line represents the displacement in
gigahertz, while the red one represents the displacement in nanommeters.

The WGM resonance shift can then be greater than the microsphere’s FSR (662 GHz),
thus another key factor for efficient WGM coupling is keeping the microsphere’s temperature
stable, since temperature fluctuations are capable of shifting the resonance positions. If one recalls
the results from Figure 2, while in that case the thermal effect could be barely detectable for
temperature increments of 50 K, in this case, the effect can be overwhelming, and the resonance
peak can just be shifted away from the tunable laser source range.

This technique for temperature sensing has some disadvantages. First of all, since it
relies on tracking a single mode, it limits the temperature range, which is constrained by the
light source that has to be tuned to follow the given mode. Secondly, one cannot determine
the actual temperature from the spectrum but rather a relative temperature change. In order to
overcome those limitations, one could combine the single mode technique with other techniques
for absolute temperature sensing, such as “Fluorescence Intensity Ratio”, which could be achieved,
for instance, with rare earth-doped micropsheres [76, 77]. If two resonances were tracked at the
same time, their spectral separation could be considered as a MP, however, one or both resonances
could still lie outside the range of the tunable light source even for temperature increments in the
order of tens of Kelvin.

Recently, a barcode-based sensing technique was developed to measure the temperature
directly from the WGM spectrum by means of collective multimode information [18]. The trans-
mission spectrum of a WGM resonator has distinct spectral features at different temperatures, such
as resonant wavelengths, mode spacing and linewidths. Therefore, the temperature determines the
overall aspect of the spectrum and this collective picture could determine the local temperature
with high accuracy and range.

In this thesis, different systems for temperature sensing for optical microresonators will
be evaluated so that the best candidate can be pointed out for our particular experimental setup.
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The systems are based on rare earth-doped yttria nanoparticles which were chosen to match
tunable laser sources available for WGM coupling.

Considering the reduced volume of typical microsphere resonators (1 × 104 µm3 to
1 × 106 µm3), measuring the surface’s temperature accurately without disturbing the mode
coupling can be a challenge. A nanoparticle can thus be used to scan the microsphere while its
temperature is monitored preferably by means of a contactless technique. For that reason, the
influence of bringing a near-field probe close to a microsphere on its Q-factor needs to be taken
into consideration.

3.4 Influence of bringing a near-field probe to the WGM

The ideal configuration for scanning the microsphere’s surface with a nanometric probe
would be placing the NP directly at the intensity maximum of the WGM around its equator, which
can be achieved by attaching the NP to the end of a near-field probe [78,79]. The temperature
could be measured at any given point of the microsphere’s surface, since the thermal equilibrium is
assumed. However, the equator where the WGMs has an intensity maximum gives the opportunity
to assess the temperature from the fluorescence of a doped nanoprobe. Unfortunately, the fiber
holding the NP also couples to the WGM and thus introduces an additional loss mechanism,
which can be written as [80]:

1/𝑄𝑡𝑜𝑡𝑎𝑙(𝑧) = 1/𝑄0 + 1/𝑄𝑡𝑖𝑝(𝑧) (3.33)

where 𝑧 is the distance fom the tip to the sphere’s surface and 𝑄𝑡𝑖𝑝(𝑧) is the induced loss mech-
anism, which can be assumed to be exponentially decreasing along 𝑧, due to the nature of the
evanescent field outside the microsphere [80]. Moreover, the Q-factor reduction due to the
presence of a fiber probe is expected to be less pronounced if the initial Q-factor, 𝑄0, is smaller.

In order to get a qualitative understanding on the effects of the interaction between the
near-field probe and the microsphere, one can consider the Rayleigh scattering applied to a
sphere of radius 𝑟 (not to be confused with the microsphere’s radius 𝑅) which is small when
compared to the mode wavelength. Additionally, the mode field will be assumed to be as a plane
monochromatic wave, while in the real experiment the tip is placed in an evanescent field. For
the Rayleigh approximation the extinction cross section 𝜎 can be written as [81]:

𝜎 = 8𝜋
3 (2𝜋𝑛med

𝜆0
)

4

𝑟6 ∣𝜖
2 − 1

𝜖2 + 2
∣
2

(3.34)

where 𝜆0 is the vacuum wavelength, 𝜖 is the dielectric constant and 𝑁med is the refractive index of
the surrounding medium. The Rayleigh extinction cross section is clearly proportional to 𝜆−4

0 and
there’s is a strong dependency on the radius of the scattering particle (𝑟6). The term (2𝜋𝑁med

𝜆0
)

can be written as the wavenumber 𝑘 so that Equation 3.34 can be rewritten as [68]:
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𝜎 = 8𝜋
3 𝑘4𝑟6 ∣𝜖 − 1

𝜖 + 2∣
2

(3.35)

Assuming a fundamental mode of volume 𝑉mode in a silica microsphere of radius 𝑅, light
propagates in a circle around the sphere’s equator losing energy in every round trip when reaching
the scatterer. The loss is given by the ratio of areas:

Δ𝐸
𝐸0

=
𝜎 𝐼(𝑑)

𝐼0

𝐴mode
, (3.36)

where 𝐸0 is the energy stored in the resonator and 𝐴mode is the cross section through the mode
volume, 𝐴mode = 𝑉mode

2𝜋𝑎
. 𝐼(𝑑) is the radial intensity distribution which can be calculated from

the radial field distribution and 𝑑 is the distance to the microsphere’s surface. 𝐼(𝑑)
𝐼0

is thus the
normalized intensity distribution, which takes into account the fact that the losses will be lower
in regions where the intensity is lower. As the scatterer lies outside the microsphere, 𝐼(𝑑) is given
by the exponentially decaying evanescent field:

𝐼(𝑑) = |E(𝑑)|2 ∝ 𝑒−2𝑑/𝑟∗ (3.37)

where:
𝑟∗ ≈ 𝜆/2𝜋 × (√𝑁2 − 1) (3.38)

𝑟∗ is the decay length of the evanescent field. After one round trip, the energy will be
decreased to a value 𝐸𝑟𝑡 = 𝐸0 − Δ𝐸. Combining Equations 3.36 and 3.37, one gets:

𝐸𝑟𝑡
𝐸0

= 1 − Δ𝐸
𝐸0

= 1 − 𝜎
𝐴mode

𝑒−2𝑑/𝑟∗ (3.39)

The energy inside the resonator 𝐸(𝑡)∗ will be proportional to the square of the field inside
the cavity. The temporal evolution can be found by inserting Equation 3.29 into Equation 3.25,
which gives:

𝐸(𝑡)∗ = 𝐸0𝑒−𝑡/𝜏 (3.40)

while the decay time is given by:

1
𝜏 = 1

𝜏0
+ 1

𝜏𝑠𝑐𝑡
(3.41)

since 𝜏 ∝ 𝑄. 𝜏0 is the decay time of the cavity in the absence of the scatterer and 𝜏𝑠𝑐𝑡 is the
decay time due to the losses introduced by the scatterer. The time spent for one round trip is given
by:
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𝑡𝑟𝑡 = 2𝜋𝑅𝑁
𝑐 (3.42)

Therefore, the left hand side of Equation 3.39 can be rewritten as:

𝐸𝑟𝑡
𝐸0

= 𝑒−𝑡𝑟𝑡/𝜏0𝑒−𝑡𝑟𝑡/𝜏𝑠𝑐𝑡 (3.43)

thus:

𝑒−𝑡𝑟𝑡/𝜏0𝑒−𝑡𝑟𝑡/𝜏𝑠𝑐𝑡 = 1 − 𝜎
𝐴mode

𝑒−2𝑑/𝑟∗ (3.44)

For a high Q-factor microsphere, 𝑡𝑟𝑡 ≪ 𝜏0, thus the decay constant can be determined as:

𝜏𝑠𝑐𝑡 = 𝑡𝑟𝑡

− ln (1 − 𝜎
𝐴mode

𝑒−2𝑑/𝑟∗)
(3.45)

one can calculate the Q-factor using Equation 3.30:

1
𝑄total

= 1
𝑄0

+ 1
𝑄𝑠𝑐𝑡

(3.46)

with 𝑄𝑠𝑐𝑡 = 𝜔0𝜏𝑠𝑐𝑡. The total Q-factor is then given by:

𝑄total = 1

1
𝑄0

−
ln(1− 𝜎

𝐴mode
𝑒−2𝑑/𝑟∗)

𝑡𝑟𝑡𝜔0

(3.47)

Setting the distance from the probe to the microsphere’s surface equal to zero, it can be
shown that for a probe radius of 50 nm, the Q-factor degrades by a factor of about 30%. This could
be an overestimation considering the model’s limitations. However, it gives a starting point for
considering the effects of placing a near-field probe close to microsphere’s surface. Considering
the high Q-factors that can be reached with silica microspheres, such degradation can still be
considered as a trade-off for the benefits of avoiding the single mode tracking technique.

The next chapter will discuss in more detail the instrumental aspects for WGM coupling
and for Scanning Near-Field Optical Microscopy. The system was optimized for both the optical
microresonators and for the fluorescence microscopy required for temperature sensing using rare
earth-doped yttria nanoparticles.
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4 INSTRUMENTATION FOR WGMs EXCITATION

In this chapter, some preliminary aspects of the experimental setup for WGMs spec-
troscopy will be described. Several control experiments were performed in order to optimize
the setup as well as to calibrate the instruments. The microsphere-prism coupling geometry was
taken into consideration in order to position the focusing lens while the scanning frequency was
monitored using a Fabry-Perot interferometer. Using those procedures, pairs of TE/TM modes
were observed, thus giving a starting point for efficient light coupling.

4.1 Phase matching condition for microsphere-prism coupling

In order to achieve phase matching conditions for light coupling in a microsphere, it is
necessary that the light emerges from the evanescent spot in such an angle that the transmitted
wave reaches the sphere’s surface tangentially. That can be done by adjusting the incidence angle
𝛾 with respect to the prism surface. The incident wave in the coupling prism can be approximated
as a finite-width Gaussian beam and the complete calculation of the evanescent intensity for
that geometry is well-known [82]. The evanescent intensity profile can be approximated by an
asymmetric Gaussian shape for most practical situations and the evanescent penetration depth
does not vary appreciably at the 𝑥𝑦 plane. The widths of the profile can thus be adjusted by
changing the incidence angle and/or the ratio of the focal length of the lens to the incident beam’s
waist.

𝑀𝐿
𝛾

Figure 7 – Prism coupling geometry. 𝐿 is the distance between the prism’s surface and the lens’
focal point if the refraction inside the prism is neglected. 𝑀 is the actual focal distance
after the light propagates inside the prism and is directed to sphere’s surface (not
shown in the diagram). The z-axis points outwards from the page.

Figure 7 shows the parameters describing a laser beam of vacuum wavelength 𝜆0 and
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of Gaussian intensity profile which is focused by a lens inside a triangular prism and then is
internally reflected. The original direction of propagation of the beam and the optical axis of
the lens are colinear and make an angle 𝛾 with the normal to the air/prism interface and the
angle 𝜇 defines the exit pupil of the lens. The refractive indices of the air and prism are 𝑛𝑎 and
𝑛𝑝 respectively. The center of the focused beam in the absence of the prism does not lie on the
prism/sphere interface. The distance between the air/prism interface and this central focal point
is defined as 𝐿 and is determined by the focal length of the lens. The angle 𝜃 refers to the change
in direction after refraction at the air/prism interface, and is given by:

𝜃 = 𝛾 − sin−1 [𝑛𝑎
sin (𝛾)

𝑛𝑝
] (4.1)

Following Snell’s law and assuming 𝑛𝑎 = 1, for an equilateral triangle prism, one gets:

sin−1 (
sin (𝛾)

𝑛𝑝
) + sin−1 ( 𝑛𝑠

𝑛𝑝
) = 𝜋

3 , (4.2)

where 𝑛𝑝 and 𝑛𝑠 are the refractive indexes of the prism and microsphere respectively. The angle
𝛾 is expected to be small, so Equation 4.2 can be approximated up to the first order to isolate 𝛾:

𝛾 ≈ 𝑛𝑝 (𝜋
3 − sin−1 ( 𝑛𝑠

𝑛𝑝
)) (4.3)

For typical values for 𝑛𝑝,𝑠, values of 𝛾 of about 2 degrees are found, so a perpendicular
incidence at the prism’s surface can be used as a starting point to find optimal coupling conditions.
Once this condition is roughly satisfied, the evanescent focusing spot might become visible once
a microsphere or a scanning probe is brought close to it. In either situation, such devices need to
be brought close to the prism in a controlled manner, so a 3D piezoelectric stage can be used to
control their position with nanometric precision. On the other hand, the piezo stages need to be
properly calibrated, so the displacements can be accurately determined by the supply voltage in
each axis. In order to do so, a Michelson interferometer was used to calibrate the piezo stages, as
will be described in the next section.

4.2 Calibrating a 3D piezo stage with a Michelson interferometer

Apart from controlling the position of a microsphere, a 3D piezo stage can also be used
for scanning its surface for spatial mode distribution. Therefore, a proper calibration is necessary
in order to avoid distortions in the images as well as to monitor the actual position of the scanning
probe. Calibration for the stage took place by means of a Michelson Interferometer (MI) built in
such a way that each one of the three axis of the piezo stage coincided with a movable mirror.

The MI splits a single beam of light into two paths, one of which is directed to a fixed
mirror (M2) and the other goes to a movable mirror (M1), as shown in Figure 8. Both beams are
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M2

M1

Figure 8 – Michelson interferometer. M1: movable mirror, M2: fixed mirror. After being splitted,
the light beams are focused at a photodiode.

recombined at a photodetector so the light intensity profile can be recorded as a function of the
movable mirror’s position. Since the beams travel over two different paths to a detector, the field
at the detector will be determined by the optical path difference:

Δ𝑥 = 2(𝑥1 − 𝑥2) = 𝛿 (4.4)

Δ𝜙𝛿 = 2𝑘(𝑥1 − 𝑥2) (4.5)

where 𝑥1 and 𝑥2 are the positions of (M1) and M2, respectively. Changing 𝑥1 changes the phase
shifts between destructive and constructive interference. For a given fringe order 𝑚 ∈ ℤ, construc-
tive interference happens when the waves are in phase (Δ𝜙 = 2𝑚𝜋), and destructive interference
happens when the waves are opposite in phase (Δ𝜙 = (2𝑚 + 1) 𝜋). If 𝑀1 moves a distance 𝜆

2
then the incident ray of light has to travel an extra distance 𝜆

2
to reach the mirror and then the

reflected ray of light has to move an extra 𝜆
2

, thus a total extra distance of 𝜆. If the path length
changes by one wavelength then there is a movement of one fringe.

In order to calibrate the piezo stage a HeNe laser (632.8 nm) was used as a light source
and a small mirror was mounted on each one of the piezo’s axis. An increasing voltage ramp
was supplied to the piezo while the photodectector signal was recorded by an oscilloscope. the
voltage ramp is also sent to the oscilloscope for reference. The peaks at the photodetector are
correlated to the corresponding voltage reading so the 𝑀1 displacement can be calculated as a
function of the supplied voltage, as shown in Figure 9.
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Figure 9 – 3D piezo stage calibration. From left to right, the x, y and z-axis. The solid lines
represent the best linear fit.
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Following the MI method, a calibration factor of approximately 30 µm/100 V was observed
for all three axes, which matches the manufacturer’s specifications. This factor is then incorporated
into the control software, taking into account the gain introduced by the amplification circuitry.
Once the piezo unit is properly calibrated, it can be used to control a Scanning Near-Field Optical
Microscopy (SNOM) probe. The probe can then be brought within a few nanometers of surfaces
such as the microsphere or the prism 𝑥𝑦 plane.

The SNOM probe’s distance from a given surface can be set by means of shear force
feedback mode. In that configuration, a tuning fork is mounted alongside the tip and made to
oscillate at its resonance frequency. The amplitude is related to the tip-surface distance, and thus
used electronically as a feedback mechanism, as will be described in the next section.

4.3 Determining the resonance frequency of a quartz tuning fork

SNOM probes were made by gluing a fine silica tip on top of a quartz tuning fork (WTL
International Limited with resonance frequency of 75 kHz). The tips were obtained by controlled
heat and pulling of an optical fiber. Once the tips are glued with instant glue to the top tine at the
tuning fork, additional epoxy glue is added at the base of the tuning fork for stability, as shown in
Figure 10.

Figure 10 – SNOM probe composed of a fiber tip on top of a quartz tuning fork.

Quartz crystal tuning forks (QTF) consist of two tines connected at one end and capable
of maintaining a selected resonance frequency in a wide temperature range. Since quartz is a
piezoelectric material, a mechanical stress can be converted to an electric signal and vice versa.
Their resonance frequencies are determined by the elastic properties of quartz as well as their
shapes and sizes [83].

The mode shape and resonance frequency of a QTF can be found by considering one tine
of the fork as a cantilever beam vibrating in flexure [84, 85]. In the fundamental flexural mode of
oscillation, the tines move in opposite directions and the centre of mass remains stationary [86].
The flexural dynamics of a vibrating beam can be seen for example in [84] and a brief review
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follows below.A body acted on by an external force will experience a deformation that can be
described by two types of strain tensors. The first one describes the relative elongation 𝛿 of a bar
of length 𝑙 and is defined by1:

𝜖 = 𝛿
𝑙 (4.6)

where the strain 𝜖 is in the same direction as the stress. As long as the deformed body is in its
elastic regime, there will be a linear relationship between the stress 𝜎 and the strain at any given
point in the body:

𝜎 = 𝐸𝜖 (4.7)

where 𝐸 is the Young’s modulus. The second kind of strain, 𝛾, is the relative deformation in a
direction perpendicular to the direction of the stress, given by:

𝜏 = 𝐺𝛾 (4.8)

where 𝐺 is the shear modulus of elasticity. The constants 𝐸 and 𝐺, therefore, describe the resistance
of the lever to bending. For the first kind of strain tensor, it can be shown that:

𝛿 = 𝑙𝐹
𝐴𝐸 (4.9)

Which relates the external force to the elongation of a spring.

Consider a bent beam with its associated parameters as shown in Figure 11. The bending
gives rise to a compression above a line passing through the center of the beam and a dilation
below that line. This line, along which there is no compression or dilation, is called the neutral
axis.

Figure 11 – Neutral axis in a bent body. zy is the plane of the page while x points outwards.

If the beam’s cross section is symmetric, isotropic and not curved before bending, the
neutral axis is at the geometric centroid. The angle of bending, 𝑑𝜙, is related to the distance 𝑑𝑠
1 Tensorial notation was omitted for simplicity
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by 𝑅 = 𝑑𝑠
𝑑𝜙

, where 𝑅 is the bending radius. Similarly, the deformation of a section of the beam at
a distance 𝑧 to the neutral axis is 𝑑𝑦 = 𝑧𝑑𝜙, which yelds the strain:

𝜖 = −𝑑𝑦
𝑑𝑠 = −𝑧

𝑅 ⇒ 𝜎 = −𝐸𝑧
𝑅 (4.10)

Therefore, both the stress and strain are proportional to the distance 𝑧 to the neutral axis.
At equilibrium, the external moment 𝑀 will equal the internal moments generated by the stress
that are distributed throughout any given cross section 𝐴. The area moment of inertia is given by:

𝐼 = ∫
𝐴

𝑧2𝑑𝐴 (4.11)

and the external moment is give by:

𝑀 = ∫
𝐴

𝑧𝜎𝑑𝐴 (4.12)

Therefore, it can be showed that:
𝑅 = 𝐸𝐼

𝑀 (4.13)

From the curvature of a plane curve:

1
𝑅 =

𝑑2𝑧
𝑑𝑦2

[1 + ( 𝑑𝑧
𝑑𝑦

)
2
]

3
2

(4.14)

And defining a shear force 𝑉 by:
𝑉 = 𝜕𝑀

𝜕𝑦 (4.15)

and then equating 𝑑𝑉 acting on an element of mass 𝜌𝐴𝑑𝑦 with the acceleration, one gets:

𝑑𝑉 = −𝜌𝐴𝑑𝑦𝜕2𝑧
𝜕𝑡2

(4.16)

However, if the slope of 𝑧 is small compared to the unit, Equations 4.13 and 4.13 can be used to
state that:

𝜕2𝑧
𝜕𝑦2 = 𝑀

𝐸𝐼 (4.17)

Therefore, the motion equation for the lever is:

𝐸𝐼𝜕4𝑧
𝜕𝑦4 + 𝜌𝐴𝜕2𝑧

𝜕𝑡2
= 0 (4.18)

whose solution is:
𝑧 (𝑦, 𝑡) = 𝑧 (𝑦) [cos (𝜔𝑗𝑡 + 𝜃)] , (4.19)

where 𝑗 is the order of the mode. Equation 4.18 can be written as:

𝑑4𝑧 (𝑦)
𝑑𝑦4 = 𝜅4𝑧 (𝑦) (4.20)
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where:

𝜅4 =
𝜔2

𝑗 𝜌𝐴
𝐸𝐼 (4.21)

The solution for Equation 4.20 is:

𝑧 (𝑦) = 𝐴1 sin 𝜅𝑦 + 𝐴2 cos 𝜅𝑦 + 𝐴3 sinh 𝜅𝑦 + 𝐴4 cosh 𝜅𝑦 (4.22)

The present work is interested in vibrating lever attached at a fixed point. Considering
the fixed point at 𝑧 = 0, the deflection and slope can be written as:

𝑧 (0) =
𝜕𝑧 (𝑦)

𝜕𝑦 ∣𝑦=0 = 0 (4.23)

Meanwhile, the moment and shear force at the lever’s vibrating end shall be null, implying
the following boundary conditions:

𝜕2𝑧 (𝑦)
𝜕𝑦2 ∣𝑦=𝑙 =

𝜕3𝑧 (𝑦)
𝜕𝑦3 ∣𝑦=𝑙 = 0 (4.24)

Therefore, the equation for the modes is:

cos (𝜅𝑙) cosh (𝜅𝑙) + 1 = 0 (4.25)

For a rectangular lever, 𝐼 = 𝑤𝑡3

12
, where 𝑤 is the width and 𝑡 is the thickness of the lever, which are

perpendicular and parallel to the direction of the bending, respectively. The resonance frequencies
are given by:

𝜔𝑗 =
𝜅2

𝑗 𝑡
√12

√𝐸
𝜌 ⇒ 𝑓0 = 0.162𝑡

𝑙2
√𝐸

𝜌 (4.26)

with the relevant constants given by Table 2. Using the values from Table 2, Equation 4.26
yields a fundamental resonance frequency of approximately 72 kHz, close to the manufacturer’s
specifications.

QTF dimensions E 𝜌 𝜅𝑙 Resonance Frequency

length thickness 78.7 GPa 2650 kg/m3 𝑗=0 𝑗=1 Calculated Measured
4.0 mm 1.3 mm 1.875 4.694 72 kHz 75 kHz

Table 2 – QTF parameters [87,88]. The measured resonance frequency matched the manufac-
turer’s specifications, while the calculated one turned out to be 4% smaller.

The resonance frequency and quality factor of the both the bare QTF and the SNOM
probe were measured using a sinusoidal signal from a function generator to drive the tuning forks
at a variable frequency and constant amplitude. The signal goes to a preamplifier to compensate
for the parasitic capacitance of the tuning fork, then it is amplified by a factor of 50 and detected
by a lock-in amplifier. The variable frequency of the function generator also acts as a reference for
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the lock-in. The Q factor is determined by a Lorentzian fit around the resonance. The Q factors of
a QTF were found to be around 5000, while the ones for a SNOM probe were found to be around
2500, as shown in Figure 12.

Compared to the bare QTF, the SNOM probes showed lower Q factors, which is desired
for SNOM applications and higher resonance frequencies, around 77 kHz. The reason for the
lower Q factors can be attributed to the damping introduced by the tip and glue [89]. On the other
hand, the blueshift in resonance frequency suggests an increased stiffness of the system [88]. It is
worthwhile to mention that the cantilever-based model for QTF has lead to discrepancies in the
literature for the calculation of the spring constant and resonance frequency so other approaches
such as the finite element analysis were developed [90].
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Figure 12 – Resonance of a quartz tuning fork (a) and of a SNOM probe after the fiber tip is glued
(b). The Q factors are respectively 4839 and 2460, while the resonance frequencies
are 75 kHz and 76.8 kHz. The lower x-axis is a time scale, during which the frequency
sweeps 1 kHz in 5 s. The red curves are Lorentzian fits around the resonance peaks.
The peaks around the resonance are caused by the frequency generator when the
sweep starts or stops.

One of the possible applications for a SNOM probe is to develop a homemade surface
probe for topological measurements with nanometric accuracy. For our analysis, it can be useful
to determine the radius of a given microsphere without disturbing the system, so the SNOM
probe can be a good candidate for such task. In the next section, an algorithm for fitting a 3D set
of points to a surface will be described so it can be applied to a system similar to the one in use
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in this work.

4.4 Measuring a microsphere’s radius using a SNOM probe

The microsphere’s radius is a crucial factor to calculate the WGM resonances and FSR.
A SNOM probe can be used to determinate such quantities in a non-destructive manner, since
it can scan over a surface very close (typically less than 100 nm) to the microsphere’s and with
small fluctuations (about 10 nm). Once the spatial positions of the probe are known, the spherical
surface can be fitted using least squares method [91]. The procedure is described as follows:

Given a set of points:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.27)

those points are obtained by the 3D movement of the SNOM probe, using the calibration factor
measured with the MI apparatus. From those points, the goal is to find the best fit to a sphere of
equation:

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2 = 𝑟2, (4.28)

where (𝑎, 𝑏, 𝑐) is the sphere’s center and 𝑟 is the radius. Assuming that not all points are coplanar,
one has to minimize the function:

𝐹 (𝑎, 𝑏, 𝑐, 𝑟) =
𝑛

∑
𝑖=1

(𝑟𝑖 − 𝑟)2 , (4.29)

where:
𝑟𝑖 = √(𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2 + (𝑧𝑖 − 𝑐)2 (4.30)

Taking the partial derivative of 𝐹 with respect to 𝑟 on Equation 4.29:

𝜕𝐹
𝜕𝑟 = −2

𝑛

∑
𝑖=1

(𝑟𝑖 − 𝑟) (4.31)

and making it equal to zero:

𝑟 = 1
𝑛

𝑛

∑
𝑖=1

𝑟𝑖 (4.32)
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Similarly, taking the other partial derivatives and making them equal to zero:

𝑎 = 1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖 + 𝑟
𝑛

𝑛

∑
𝑖=1

𝜕𝑟𝑖
𝜕𝑎

𝑏 = 1
𝑛

𝑛

∑
𝑖=1

𝑦𝑖 + 𝑟
𝑛

𝑛

∑
𝑖=1

𝜕𝑟𝑖
𝜕𝑏

𝑐 = 1
𝑛

𝑚

∑
𝑖=1

𝑧𝑖 + 𝑟
𝑛

𝑛

∑
𝑖=1

𝜕𝑟𝑖
𝜕𝑐

(4.33)

From Equation 4.30:

𝜕𝑟𝑖
𝜕𝑎 =

(𝑎 − 𝑥𝑖)
𝑟𝑖

𝜕𝑟𝑖
𝜕𝑏 =

(𝑏 − 𝑦𝑖)
𝑟𝑖

𝜕𝑟𝑖
𝜕𝑐 =

(𝑐 − 𝑧𝑖)
𝑟𝑖

(4.34)

Combining Equations 4.32, 4.33 and 4.34, one gets:

𝑎 = 1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖 + 1
𝑛2

𝑛

∑
𝑖=1

𝑟𝑖

𝑛

∑
𝑖=1

(𝑎 − 𝑥𝑖)
𝑟𝑖

𝑏 = 1
𝑛

𝑛

∑
𝑖=1

𝑦𝑖 + 1
𝑛2

𝑛

∑
𝑖=1

𝑟𝑖

𝑛

∑
𝑖=1

(𝑏 − 𝑦𝑖)
𝑟𝑖

𝑐 = 1
𝑛

𝑛

∑
𝑖=1

𝑧𝑖 + 1
𝑛2

𝑛

∑
𝑖=1

𝑟𝑖

𝑛

∑
𝑖=1

(𝑐 − 𝑧𝑖)
𝑟𝑖

(4.35)

The center of the sphere is given by the solution of Equation 4.35 while the radius is given
by Equation 4.32. However, finding analytical solutions is cumbersome due to the dependency
of 𝑟𝑖 on (𝑎, 𝑏, 𝑐). In order to overcome this problem, one could try an iterative solution. That
approach required a large amount of iterations and thus a long machine time. An alternative is to
modify Equation 4.29 as:

𝐺 (𝑎, 𝑏, 𝑐, 𝑟2) =
𝑛

∑
𝑖=1

(𝑟2
𝑖 − 𝑟2)2 (4.36)

which is also a reasonable guess for an optimization function. Then, Equation 4.32 becomes:

𝑟2 = 1
𝑛

𝑛

∑
𝑖=1

𝑟2
𝑖 (4.37)

The squared radius becomes the average of the squared distances from the sample points
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to the center (𝑎, 𝑏, 𝑐). Now, taking the partial derivative of 𝐺 with respect to the other parameters:

𝜕𝐺
𝜕𝑎 = 4

𝑛

∑
𝑖=1

(𝑟2
𝑖 − 𝑟2) (𝑎 − 𝑥𝑖) = 0

𝜕𝐺
𝜕𝑏 = 4

𝑛

∑
𝑖=1

(𝑟2
𝑖 − 𝑟2) (𝑏 − 𝑦𝑖) = 0

𝜕𝐺
𝜕𝑐 = 4

𝑛

∑
𝑖=1

(𝑟2
𝑖 − 𝑟2) (𝑐 − 𝑧𝑖) = 0

(4.38)

It is convenient to introduce a vector notation. Let:

𝐂 ≡ (𝑎, 𝑏, 𝑐) (4.39)

𝐗𝐢 ≡ (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (4.40)

𝚫𝐢 ≡ 𝐂 − 𝐗𝐢 (4.41)

𝐀 ≡ 1
𝑛

𝑛

∑
𝑖=1

𝐗𝐢 (4.42)

𝐁𝐢 ≡ 𝐗𝐢 − 𝐀 (4.43)

Equation 4.38 can be written as:
𝑛

∑
𝑖=1

(𝚫𝐓
𝐢 𝚫𝐢 − 𝑟2) 𝚫𝐢 = 0 (4.44)

And for Equation 4.37:

𝑟2 = 1
𝑛

𝑛

∑
𝑖=1

𝚫𝐓
𝐢 𝚫𝐢 (4.45)

Some algebraic manipulation leads to:

𝚫𝐓
𝐢 𝚫𝐢 = |𝐂|2 − 2𝐂𝐓𝐗𝐢 + ∣𝐗𝐢∣

2 (4.46)

𝑟2 = |𝐂|2 − 2𝐂𝐓𝐀 + 1
𝑛

𝑛

∑
𝑖=1

∣𝐗𝐢∣
2 (4.47)

Thus:

𝚫𝐓
𝐢 𝚫𝐢 − 𝑟2 = 2𝐂𝐓 (𝐀 − 𝐗𝐢) + ∣𝐗𝐢∣

2 − 1
𝑛

𝑛

∑
𝑖=1

∣𝐗𝐢∣
2 (4.48)

Now, one can go back and solve Equation 4.44. After some more algebra:

2 ⎛⎜
⎝

𝑛

∑
𝑖=1

𝐁𝐢𝐁𝐓
𝐢
⎞⎟
⎠

(𝐂 − 𝐀) =
𝑛

∑
𝑖=1

(𝐁𝐓
𝐢 𝐁𝐢) 𝐁𝐢 (4.49)

It’s more convenient to write the previous equation in the form of a linear system of
equations:

2 ⎡⎢
⎣

𝑛

∑
𝑖=1

(𝐗𝐢 − 𝐀) 𝐗𝐢⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

D

𝐂 =
𝑛

∑
𝑖=1

(𝐗𝐢 − 𝐀) ∣𝐗𝐢∣
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
E

(4.50)
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Then:

𝐃 = 2
⎡⎢⎢⎢
⎣

∑𝑛
𝑖=1 𝑥𝑖 (𝑥𝑖 − ̄𝑥) ∑𝑛

𝑖=1 𝑥𝑖 (𝑦𝑖 − ̄𝑦) ∑𝑛
𝑖=1 𝑥𝑖 (𝑧𝑖 − ̄𝑧)

∑𝑛
𝑖=1 𝑦𝑖 (𝑥𝑖 − ̄𝑥) ∑𝑛

𝑖=1 𝑦𝑖 (𝑦𝑖 − ̄𝑦) ∑𝑛
𝑖=1 𝑦𝑖 (𝑧𝑖 − ̄𝑧)

∑𝑛
𝑖=1 𝑧𝑖 (𝑥𝑖 − ̄𝑥) ∑𝑛

𝑖=1 𝑧𝑖 (𝑦𝑖 − ̄𝑦) ∑𝑛
𝑖=1 𝑧𝑖 (𝑧𝑖 − ̄𝑧)

⎤⎥⎥⎥
⎦

(4.51)

𝐄 =
⎡⎢⎢⎢
⎣

∑𝑛
𝑖=1 (𝑥2

𝑖 + 𝑦2
𝑖 + 𝑧2

𝑖 ) (𝑥𝑖 − ̄𝑥)
∑𝑛

𝑖=1 (𝑥2
𝑖 + 𝑦2

𝑖 + 𝑧2
𝑖 ) (𝑦𝑖 − ̄𝑦)

∑𝑛
𝑖=1 (𝑥2

𝑖 + 𝑦2
𝑖 + 𝑧2

𝑖 ) (𝑧𝑖 − ̄𝑧)

⎤⎥⎥⎥
⎦

(4.52)

Equation 4.50 can be solved by the operation:

𝐂 =
⎡⎢⎢⎢
⎣

𝑎
𝑏
𝑐

⎤⎥⎥⎥
⎦

= 𝐃−1𝐄 (4.53)

Equation 4.53 is much simpler to be applied to a set of points than Equation 4.35. It
also has the advantage of being a non-iterative solution. As before, the microsphere’s radius
is given by Equation 4.37. Figure 13 shows a simulation of this optimization procedure. Here,
some data was generated for a SNOM probe scanning right above a 50 µm radius sphere in 50
steps of 100 nm each. A random fluctuation of 10 nm was added to each 𝑧 coordinate. The probe
advanced about 125 nm along the 𝑧-axis with respect to its maximum position (𝑧=0 at 𝑥, 𝑦=0).
That translates to a radius of 49.5 µm fitted by the algorithm, close to the actual radius.

z-value (µm)

-0.125

-0.100

-0.075

-0.050

-0.025

0

Figure 13 – SNOM probe imaging at a 5 µm by 5 µm area (red) on top of a microsphere (gray).
All units in micrometers.

The center of the sphere is measured at a reference frame given by the SNOM tip, say the
center of the 𝑥𝑦 scan. Therefore, it is possible to measure the radius even if a pole of the sphere is
not perfectly centered during the scan. The relative coordinates can be used to correct this offset.
Unfortunately, shortly after the SNOM apparatus was optimized for topological measurements,
two of the three available 3-axis piezo units showed malfunctions and required a complete
refurbishment. The process of sending the units all the way to the manufacturer’s headquarters in
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Germany and getting them back took over one year so no further tests could be performed with
the SNOM apparatus.

Moving forward with the control experiments, it’s also necessary to calibrate the spectral
displacement of the pump laser for whisper galley modes coupling. That was achieved by means
of a spherical mirror Fabry-Perot interferometer, which will be the topic of the next section.

4.5 The spherical mirror Fabry-Perot interferometer

The Fabry-Perot spherical interferometer (FPS) is composed of two identical spherical
mirrors separated by a distance very close to their common radius of curvature [92]. Light
entering the etalon undergoes multiple reflections and the interference causes a modulation in
the transmitted and reflected beams. The FPS can thus be used to measure a detuning in the light
frequency while the laser is scanned in real time.

If the axial mirror spacing is 𝑟 + 𝜖, with |𝜖| ≤ 𝜆, the light path after two round trips is
smaller than the paraxial path 4𝑟 by an amount [93]:

Δ (𝜌) ≈ 𝜌4

𝑟3 + 4𝜖𝜌2

𝑟2 (4.54)

where 𝜌 is the height at which an entering ray crosses the central plane of the FPS for a small
distant source close to the interferometer’s axis. A change of 𝜆

4
in the mirror separation scans

through a free spectral range of:

𝐹𝑆𝑅 = 𝑐
4 (𝑟 + 𝜖) (4.55)

In Figure 14, for each entering ray there are two sets of transmitted rays: those which have
been reflected 4𝑚 times, emerging from point 𝑃1 and those which have been reflected (4𝑚 + 2)
times, emerging from point 𝑃2, where 𝑚 is an integer.

𝑃1

𝑃2

𝑟 + 𝜖

Figure 14 – General ray path in a FPS. 𝑟: radius; 𝜖: perturbation from the confocal configuration

The condition for bright fringes in the central plane of the interferometer is obtained
making Equation 4.54 equal to 𝑚𝜆. Fringes thus have radii given by [93]:
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𝜌𝑚 = [−2𝜖𝑟 ± (4𝜖2𝑟2 + 𝑚𝜆𝑟3)
1
2 ]

1
2

(4.56)

Figure 15 shows the fringe pattern in cross section. From Equation 4.56, if 𝜖 > 0, 𝜌𝑚 is
single-valued and 𝑚 > 0. If 𝜖 < 0, 𝜌𝑚 is two-valued for 𝑚 ≤ 0 and single-valued for 𝑚 > 0. From
the same equation, it can be shown that the radial dispersion in the fringe pattern is nonlinear near
the axis when the FPS is precisely confocal. This provides the basis for the high étendue2 which
is characteristic of this instrument. At constant finesse, as resolving power increases, so does
the étendue. By contrast, in a flat-plate interferometer as resolving power increases the étendue
decreases, therefore an increase in light intensity decreases resolution.
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0

1

2

3

4

5

ϵ (mm)

ρ
(m
m
)
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Figure 15 – Near confocal FPS fringe patterns. At each value of 𝜖, the solid curves give the radii
of the circular interference fringes for a monochromatic light source and a bright
fringe on the axis. In this simulation, 𝜆=685 nm and 𝑟=25 mm. The numbers on the
curves indicate the fringe order.

From Figure 15, in order to operate at the zeroth order fringe, 𝜌𝑚 must be around 500 µm,
which is easily attainable with regular focusing lens. Therefore, the alignment for the FPS is
of paramount importance for a proper calibration. This can be further explored introducing the
spectral resolving power (R) of a spectroscopic instrument, which can be defined as:

R = 𝜈
Δ𝜈𝑚

= 𝜆
Δ𝜆𝑚

(4.57)

where Δ𝜈𝑚 is the minimum resolvable frequency increment in the vicinity of a frequency 𝜈.

The ratio of the FSR and the instrumental width gives the finesse F of the interferometer,
which is a measure for how narrow the resonances are with respect to their frequency distance.

F = 𝐹𝑆𝑅
Δ𝜈𝑚

(4.58)

From Equations 4.55, 4.57 and 4.58, the resolving power can be written in terms of F as:
2 Étendue is defined as the radiation from a source within a solid angle, Ω, subtended by an aperture with area 𝐴.
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R = 4 (𝑟 + 𝜖)F
𝜆 (4.59)

which in turn quantifies the capability of an interferometer to resolve two close wavelengths. An
experimentally measured finesse has a number of contributions, particularly the mirror reflective
losses and the correction for spherical aberration. An expression for the total finesse can be
written as:

F𝑡 = ⎡⎢
⎣
( 1
F𝑟

)
2

+ ( 1
F𝑎

)
2
⎤⎥
⎦

− 1
2

(4.60)

where F𝑟 accounts for the reflection losses and F𝑎 for the spherical aberration. For mirrors with
reflectivity close to unit, we have [94]:

F𝑟 = 𝜋𝑅
1 − 𝑅2 , (4.61)

where 𝑅 is the reflectivity. F𝑎 has the effect of reducing the resolution as the input beam is offset.

To quantify the effects of the path length on F𝑎, consider a monochromatic input, a delta
function in frequency entering the FPS coaxial to the optic axis and having a beam radius 𝑎. The
light entering the interferometer at 𝜌 = 𝑎 will cause a shift in the transmitted output spectrum,
since the optical path length of the cavity will be smaller by a factor of Δ(𝑎)

4
as given by Equation

4.54. The transmitted spectrum will be broadened due to the shifts in the optical path length. As
a result, the wavelength input delta function will produce an output peak with a Δ𝜈𝑚 = Δ(𝑎)

4
.

Moreover, a change of 𝜆
4

is responsible for a change from one longitudinal mode to the next. We
then get:

F𝑎 = 𝜆𝑟3

𝜌4 + 4𝜖𝜌2𝑟
(4.62)

Substituting Equations 4.61 and 4.62 into 4.60, with 𝜖 = 0, one gets:

F𝑡 = ⎡⎢
⎣
(1 − 𝑅2

𝜋𝑅 )
2

+ ( 𝜌4

𝜆𝑟3 )
2
⎤⎥
⎦

− 1
2

(4.63)

Equation 4.63 can be plotted using the same parameters as in Figure 15, as shown in
Figure 16. From Equation 4.63, one can see that a maximum value for F𝑡 is ≈ 𝜋

2(1−𝑅)
, typically

about 300 considering only reflection losses. The F𝑎 contribution is only significant for 𝜌 larger

than 4

√
2𝑟3𝜆(1−𝑅)

𝜋
or ≈400 µm, above which the finesse quickly degrades and Δ𝜈𝑚 ∝ 𝜌4. Since

the coupling lens at the entrance mirror on the FPS can produce a spot of less than 50 µm, it
is expected that reflection losses and the overall alignment will be the critical factors for the
interferometer’s performance.
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Figure 16 – Resolution in a confocal (𝜖 = 0) FPS. F𝑡 (blue) and Δ𝜈𝑚 (red). In this simulation,
𝜆=685 nm and 𝑟=25 mm, which are identical to the conditions of the performed
experiments.

Looking at the minimum resolvable frequency Δ𝜈𝑚, it is then theoretically possible to
resolve up to ≈ 𝑐(1−𝑅)

2𝜋𝑟
or ≈10 MHz in the interval for which the total finesse is around 300. From

the results shown in Figures 15 and 16, keeping the FPS at the correct focal position helps to
achieve a high finesse and operation at the zeroth order fringe.

Parameter Value

Operating wavelength (𝜆) 685 nm
Cavity length and curvature radii (𝑟) 25 mm

FSR 3 GHz
Reflectivity (𝑅) 99.5%

Resonance linewidth 35 MHz
Resolving power (R) 8 × 10−8

Finesse (F ) 86

Table 3 – Experimental parameters for the FPS.

Once the FPS was aligned, it was used to calibrate the laser source for WGMs coupling
taking into account the parameters summarized in Table 3. The FPS can be used in two basic
configurations: i) scanning the cavity length by means of an attached piezo translator or ii) keeping
the cavity at a constant length and scanning the light source frequency. The latter approach was
used to calibrate our Tunable Diode Laser (TDL), since its wavelength can be modulated with an
external electric signal, as will be described in the next section.

4.6 Calibrating a tunable diode laser

The “workhorse” laser for spectral characterization of WGM in our experiments is the
New Focus 6300 series external-cavity TDL. It is a stable, narrow-linewidth source of tunable
light. The working principle of such lasers is as shown in Figure 17. The laser cavity is formed
by a high-reflection coating on one end of the laser diode and a high-reflecting tuning mirror
on the other end. Starting from the diode, the beam passes through a collimating lens and then
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strikes a diffraction grating at near grazing incidence. The beam is diffracted towards the tuning
mirror which reflects the light ray back on itself. Part of the light from the diode is reflected by
the grating, which forms the output beam.

DG

Diode

Lens

DC Motor

Tuning Mirror

Temp. Control
Current Control

PZT

HR

AR

Power Monitor

Output

Control Input

Figure 17 – New Focus TDL. AR: anti-reflection coating; DG: diffraction grating; HR: high-
reflection coating.

The grating functions as a narrow spectral filter, only a few gigahertz wide. The high
wavelength selectivity results because many lines of the grating are illuminated by the grazing-
incidence beam and because the beam is diffracted by the grating twice in each round trip through
the cavity. The grating spectral filter is narrow enough to force the laser to operate in a single
longitudinal mode. Different wavelengths diffract off the grating at different angles. However,
only one wavelength leaves the grating in a direction that is exactly perpendicular to the surface
of the tuning mirror. This is the lasing wavelength, because it’s the only one where photons will
survive for many cavity round trips. It follows then, that one can tune the laser by changing the
angle of the tuning mirror.

In order to avoid mode hops as we tune the laser, the number of waves in the cavity must
be kept constant (even though the wavelength of the light in the cavity is changing). The number
of waves in the cavity is maintained by having the tuning mirror rotate around a specific pivot
point. The pivot point creates a relationship between the cavity length and the laser wavelength.
The laser wavelength is set by the standard law for diffraction of light off a grating as follows:

𝜆 = Λ (sin 𝜃𝑖 + sin 𝜃𝑑) (4.64)

where Λ is the spacing between grooves in the grating and 𝜃𝑖 and 𝜃𝑑 are the incident and diffracted
angles. If 𝐿 is the distance from the pivot point to the place where the beam strikes the grating, it
can be shown that:
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𝑙1 = 𝐿 sin 𝜃𝑖 (4.65)

𝑙2 = 𝐿 sin 𝜃𝑑 (4.66)

The total length of the cavity is given by:

𝐷 = 𝑙1 + 𝑙2 = 𝐿 (sin 𝜃𝑖 + sin 𝜃𝑑) (4.67)

Dividing Equation 4.67 by Equation 4.64, one gets:

𝐷
𝜆 = 𝐿

Λ (4.68)

Therefore, since 𝜃𝑖 and 𝜃𝑑 are constants, the total number of waves in the cavity is 𝐿
Λ

which is a constant (no mode hops). The TDL has a frequency modulation (FM) input for external
analog control of the wavelength through the voltage applied to PZT on the tuning arm. Increasing
voltage at the FM corresponds to a decrease in piezo voltage and an increase in laser frequency.
In Figure 18 (left), the FM is swept from -1V to +1V while the TDL is directed to a wavemeter. A
LabVIEW program collects the frequency values while the laser scans across the voltage range.
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Figure 18 – (Left) FM at the TDL as measured by the wavemeter; (Right) Optical spectrum
scanned with a FPS. The upper axis on the right graph represents the peaks’ positions
and thus the FSR spacing.

Figure 18 shows some hysteresis, which is typical for piezo driven systems. A calibration
factor of (7.74 ± 0.10) GHz/V was observed for the red TDL scanning around 685 nm. With this
calibration factor in mind, the laser was sent to a confocal Fabry-Perot interferometer as described
in the previous section (cavity length 25 mm) so that a FSR of 3 GHz was expected (see Table 3).

Figure 18 (right) also shows the optical spectrum taking into account the calibration
factor from Figure 18. No spurious peaks within the cavity FSR were observed, evidencing
single longitudinal modes. Both calibration methods are then consistent, however, the calibration
factor was smaller than the one given by the manufacturer (11.66 GHz/V). That can be a result
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of communication issues between the DAQ board and the TDL driver. Nevertheless, since the
FPS can act as a reference, the actual frequency range can always be monitored as the TDL is
scanned, whithout the need of a wavemeter. After completing all the aforementioned control and
calibration experiments, the TDL can finally be used to couple light into a glass microsphere.

4.7 Coupling light into a microsphere: selecting TE and TM modes

One of the first stages to identify resonances in a microsphere is to make sure that either
the TE or the TM modes are being excited. The TE/TM polarization corresponds to the electric
field perpendicular/parallel to the WGM plane [95]. In order to do so, a silica microsphere of
diameter 100 µm was brought very close to the surface of the coupling prism. The relatively
larger size was chosen in order to decrease the FSR so that a mode excitation is more likely. The
focusing lens shown in Figure 7 was adjusted with a five-axis micropositioner (MDE277 - Elliot
Scientific) in order to maximize the coupling efficiency.
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Figure 19 – Left: intensity of each resonance peak recorded as a function of the incident polar-
ization angle. Outer ring: 18 spectra of the same pair of resonances recorded at 20°
intervals, including a scan reversal. Red (blue) dots: Intensity of the first (second)
peak. On the right graph, a single frequency scan in shown (including the scan
reversal) for the spectrum shown at the position 0°.

Using a TDL set at 685 nm, WGMs of Q-factor of 106 were detected with a photomultiplier
while a half-wave plate was set before the coupling fiber. Once a pair of resonances was found, a
rotation of 180 degrees was given to the wave plate in increments of 10 degrees, thus introducing a
complete revolution for the incident polarization. For each increment, the spectrum was recorded
as well as that the intensity of each resonance peak. A fiber polarization controller was used to
increase the extinction between the TE and TM modes.
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As shown in Figure 19, the peaks’ relative intensities are correlated. Once the first peak
(represented by the red dots) reaches a maximum, the second peak is minimum. Both sets of
points can be fitted as:

𝐼 = 𝐴 sin2 (𝜙 + 𝑡) , (4.69)

where 𝐼 is the intensity and 𝑡 the polar angle. 𝐴 and 𝜙 are fitting coefficients. As given by Table
4, setting the wave plate to 17° maximizes the first peak, while setting it to 62° maximizes the
second and the peaks are out of phase by a factor of 𝜋

2
, as expected for TE/TM modes.

𝐴 (a. u.) 𝜙 (rad) WP pos. (deg)

Peak 1 0.53±0.01 0.58±0.02 17±1
Peak 2 0.47±0.01 2.17±0.02 62±1

Table 4 – Fitting coefficients for a pair of TE/TM modes.

As for the 𝐴 coefficient in Equation 4.69, the peak shown in red has a better coupling
efficiency than the one in blue. This might be a result of coupling modes of different 𝑙, 𝑛 numbers,
so that within the same frequency range, the total energy is distributed unevenly. The next steps
would be further optimizing the light coupling using a SNOM probe to scan the microsphere’s
surface for the spatial modes distribution. However, the overall coupling process for such micro-
spheres turned out to be much more complicated than originally anticipated. Therefore, the light
coupling procedure was limited to the basic TE/TM modes shown in Figure 19.

One of the main problems to achieve an efficient light coupling was controlling the
focusing lens shown in Figure 7. The original positioner was made in a lathe machine in our
mechanical workshop, however, it was not precise or mechanically stable enough to handle the
fine tuning adjustments needed for efficient light coupling. The commercial piece had to be
made-to-order and imported during the current COVID-19 pandemic, which significantly delayed
the experiments. The lack of a working SNOM probe also contributed to a less than ideal coupling
efficiency, since spatial modes distribution could not be optimized. Therefore, in order to proceed
with the experimental results required for this work, the WGMs had to be put on hold so that the
fluorescence spectroscopy experiments could be carried out. Those experiments will be the topic
of the next chapters.

Considering the available TDL with a pump wavelength around 685 nm, a suited can-
didate for fluorescence spectroscopy are the Neodymium (Nd3+) ions. In the next chapter, a
nanothermometer based on single Nd3+-doped Y2O3 nanoparticles is reported, followed by a
similar system based on Erbium & Ytterbium co-doped yttria matrix, which is more adequate for
infrared excitation.
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5 NANOTHERMOMETRY WITH Nd3+:Y2O3 NPs

A thermometer based on single Nd3+:Y2O3 nanoparticles (NPs) is reported1. The nan-
othermometer relies on the ratio of the intensities of the light emitted due to transitions coming
from thermally coupled energy levels accessible by either continuous-wave upconversion under
880 nm or downconversion under 532 nm excitation wavelengths. Both processes are modeled
through rate equation systems based on multiphonon interactions between excited luminescent
states, which led to excellent agreement with the experimental data. Moreover, the Nd3+:Y2O3

effective phonon mode energy was determined, showing the appropriateness of the theoretical
approach used. The system presented a relative sensitivity up to 1.36% at 300 K while working
within the first biological window, thus particularly useful for biological sensing applications.

5.1 Rare-earth doped nanoparticles for temperature sensing

Rare-earth (RE) ions possess several characteristics that make them suitable for tem-
perature sensing applications, such as the presence of thermally coupled emitting levels, high
quantum yield, sharp emission lines and the possibility for energy down- and up-conversion [97].
Particularly for Nd3+, it’s possible to work within the first biological window, for both the excita-
tion and fluorescence signals [98–101]. Moreover, the spectral separation between energy levels
of Nd3+ is responsible for high thermal sensitivity (SR>1% K-1 as defined below) at physiological
temperatures, which meets the requirements for in vivo nanothermometry [102]. Once combined
with a low maximum phonon energy matrix, such as yttria (dominant phonon mode energy:
380 cm-1 [103]) upconversion (UC) processes are particularly efficient [104,105]. Apart from
the low phonon energy, Y2O3 has an excellent chemical stability and high solubility for the
RE ions [106], making it suited for sensing in catalytic environments [107]. A large number of
synthesis methodologies of nano and microstructured Y2O3 particles have been reported, which
show diverse parameters to control the particle’s structure, size and morphology [108–110].

Several temperature dependent luminescence parameters can be used to measure local
temperature, such as: emission intensity (or band shape), spectral line position, bandwidth,
lifetime and polarization [58, 111, 112]. The Fluorescence Intensity Ratio (FIR) is a temperature
determination technique based on the change in the relative intensities of two radiative transitions,
generally from rare earth doped materials [113]. It has practical advantages over alternative
thermometry techniques like fluorescence lifetime measurements, since, among other reasons, it is
immune to pump light fluctuations and it can be done with continuous-wave (CW) excitation [114].

Particularly for single NPs, any temperature sensing technique sensitive to pump fluc-
tuations becomes challenging from the experimental point of view. Normally, such NPs are
1 Published in [96].
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illuminated under tight focusing conditions and even a slight spatial deviation can affect the
fluorescence signal. In this chapter, a nanothermometer based on single Nd3+:Y2O3 NPs was char-
acterized exploiting an UC as well as a downconversion (DC) excitation routes. The thermometer
works due to the presence of thermally coupled states of Nd3+ accessible by a ladder-level phonon
assisted process. The results were modeled following rate equation systems based on multiphonon
interactions between luminescent states for each excitation routes investigated.

5.2 Nanoparticles synthesis and characterization

The synthesis was performed at the Chemistry Department of São Paulo state University
(Universidade de São Paulo) by the reseach group lead by Professor Rogéria Rocha Gonçalves.
For the sake of completeness, the route is described as follows. Nd3+:Y2O3 NPs were prepared
using homogeneous precipitation method followed by thermal annealing [115,116]. Neodymium-
doped Y(OH)CO3.nH2O particles were firstly prepared as precursor via urea thermolysis by
using Y(NO3)3·6H2O (99.8% purity, Sigma-Aldrich) and urea (99–100% purity, Cinética). An
aqueous solution of Y(NO3)3 and another of urea were mixed at room temperature so that the final
concentrations were 0.01 and 2.00 mol L-1 respectively. The Nd3+ was introduced as ethanolic
neodymium chloride solution, which was prepared from the respective oxide (99% purity, Sigma-
Aldrich) by dissolution in aqueous hydrochloric acid solution, followed by careful drying at 80 °C
with subsequent addition of anhydrous ethanol, to prepare the 0.10 mol L-1 concentration stock
solution. The Nd3+ ions concentration was set to 1 mol% in relation to yttrium concentration. An
increase in doping concentration increases the number of luminescence centers, however there’s
also a higher probability of energy transfers between Nd3+ ions, enhancing nonradiative processes.
Therefore, the concentration was chosen in accordance to the optimum value reported in the
literature [117]. The final solution was placed in an isothermal bath and maintained at 80 °C for
2 h in a closed flask. After a complete reaction, the precipitates were isolated by centrifugation,
washed with distilled water and dried at 70 °C. Spherical Nd3+:Y2O3 NPs were obtained after
thermal annealing of [Y(OH)CO3.nH2O] under air during 2 h at 900 °C. This temperature was
reached starting from room temperature and using a heating rate of 1 °C min-1. This is important
for eliminating carbonates and hydroxyls, minimizing residues in the final product.

Raman spectroscopy (LabRAM HR Horiba at 632.8 nm) was performed at the Chemistry
Department of São Paulo state University (Universidade de São Paulo) in order to complement
the structural analysis as well as to identify any secondary crystalline phases other than the cubic.
As shown in Figure 20, scattering by phonons with a wavenumber of 377 cm-1 predominates.
The assigned peaks shown in Table 5 are well-known in the literature for the cubic phase of
Y2O3. Since it is difficult to perform absorption experiments in single NPs, a powder sample was
used for performing diffuse reflectance measurements. The results show manifolds with partially
resolved Stark levels, characteristic of crystalline samples, related to transitions from the Nd3+

ground state 4I9/2 to excited states. Those results will be presented alongside the fluorescence
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spectra.
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Figure 20 – Raman spectrum of of cubic Y2O3. The various symbols mark the positions of the
Raman peaks, shown in detail in Table 5.

Mode Wavenumber (cm-1)

This work [118] [119] [120]

⚫ 130 130 130 130
◼ 162 162 162 163
⬥ 194 194 192 195
▴ 316 318 317 318
▾ 330 330 328 331
◂ 377 377 377 379
▸ 430 430 429 432
★ 469 † 469 471
✠ 593 591 591 595

Table 5 – Phonon modes of cubic Y2O3. †: value not reported.

Transmission Electron Microscopy (TEM) images of the Nd3+-doped Y2O3 polycrys-
talline NPs are illustrated in Figure 21 (a,b). Spherical monodisperse NPs were observed hap-
pening often as agglomerates and exhibiting a narrow size distribution, with a diameter of about
170 nm, which indicates the formation of polycrystalline NPs with average grain diameter about
30 nm. A preparation protocol was developed in order to separate those aggregates. An iso-
propanol suspension was put under an ultrasonic probe and a 10 µL aliquot was spin coated on a
glass coverslip. Scanning Electron Microscopy (SEM) images for a typical sample can are shown
in Figure 21 (c,d). In various areas on the coverslip, single NPs can be seen, all having similar
sizes of about 170 nm laying on the coverslip micrometers away from each other. The sample
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preparation protocol thus guarantees that there is a high probability that the NPs investigated
under the microscope are indeed individual.

a) b) c) d)

Figure 21 – a) and b): TEM characterization of samples. c) and d): SEM after spin coating.
The white bars represent a length of 150 nm. Images a) and b) were done at the
Chemistry Department of São Paulo state University (Universidade de São Paulo)
while images c) and d) were done at the Physics Department of the Federal University
of Pernambuco (Universidade Federal de Pernambuco).

5.3 Experimental setup

With confidence that the sample preparation protocol leads to the occurrence of single
NPs within an area larger than the detectable spot under tight focusing conditions, it’s possible to
proceed with the optical spectroscopy characterization of such particles. The multiple thermally
coupled Nd3+ levels are reached by both UC and DC processes observed with the aid of an
inverted scanning optical microscope. A raster scan procedure was used to locate individual
NPs while the focal spot of the excitation light is kept at a constant position. The single NPs
temperature for both UC and DC nanothermometry approaches (sections 3.1 and 3.2, below) was
set by a heating mantle embracing the microscope objective, ranging from 298 K to 347 K as
measured at the sample’s position by an IR camera (FLIR Systems-i5). During the pump power
dependency tests, the NPs temperature was set to 298 K, while for the FIR measurements, a local
temperature within the mentioned range was assigned to each fluorescence spectrum.

5.3.1 Upconversion

UC is a light-matter interaction phenomenon in which a longer wavelength light (typically
in the infrared spectrum) is converted into radiation with a shorter wavelength through some
atomic, ionic or molecular interaction. A multitude of UC processes has already been demonstrated
in different matrices, involving one [121] or more [122] Nd3+ ions, using CW and pulsed excitation
schemes [123].

For studying nanothermometry exploiting an UC excitation scheme, the experimental
setup shown in Figure 22 was built. A CW Ti:Sapphire laser tuned to 880 nm was sent to
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Figure 22 – Experimental setup for UC detection (left) and energy diagram for Y2O3:Nd3+ (right).
BP: bandpass filter; ND: neutral density filters; M: mirror; BS: beamsplitter; O:
objective; S: sample; SP: shortpass filter; FM: flip mirror; APD: avalanche photodiode.
Blue arrows indicate the annihilation of phonons.

an inverted microscope by means of an optical fiber. In order to eliminate any spurious light
generated along the fiber (e.g., Stokes or anti-Stokes scattering), a “bandpass” filter composed of
a shortpass (Thorlabs FESH0900) and a longpass (Thorlabs FEL0850) filters was mounted after
the decoupling fiber objective. The laser is then directed to the microscope objective (NA=1.25),
which focuses the excitation light at a diffraction limited spot at the sample, so that when a single
NP is placed right at the focal point by a 3-axis piezo stage; the emitted fluorescence can be
collected by the same objective and directed to either a spectrometer or an avalanche photodiode
using a flip mirror. A shortpass spectral filter (Thorlabs FESH0850) is used to filter out residual
pump laser light from the UC fluorescence. The beamsplitter BS could incorporate the shortpass
function if replaced by a dichroic mirror, but that would make the apparatus less versatile in
terms of pump laser wavelength as well as the collected signal. Therefore, in order to find a good
compromise between losses and versatility, a beamsplitter and a good shortpass is a suitable
option.

The energy diagram for the UC processes is also shown in Figure 22. By means of phonon
annihilation in the lattice, electrons can be promoted from the 4F3/2 to the 4F5/2 state, distant
about 900 cm-1. An additional phonon-assisted promotion can happen from 4F5/2 to 4F7/2, further
1200 cm-1 away [124]. Once the APD detected the UC signal from a NP, the Ti:Sapphire laser
was fine tuned around 880 nm in order to optimize the counts coming from both UC processes.
Then, fluorescence spectra were recorded for a range of pump powers.

For the first UC process, shown in Figure 23(a,b), a signal intensity linearly dependent
on the pump power (exponent (1.0 ± 0.1) ) was observed for all the five major peaks within
the transition and for the total counts (integrated from 800 nm to 850 nm), meaning that only
one photon of the pump laser was needed to produce a photon of the UC light and these are
phonon-assisted UC emission lines. For the experiments in this chapter, all pump power values
reported were measured right after the objective 𝑂 as shown in Figure 22. The fluorescence
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spectrum on Figure 4(a) matches the dips at the diffuse reflectance [125] shown in the same graph,
indicating that those are indeed sub-levels for the 4F5/2→4I9/2 transition. The slight discrepancy
between those spectra can be attributed to different calibration factors between the equipment.
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Figure 23 – Fluorescence (black lines) and diffuse reflectance spectra (red lines) for 4F5/2→4I9/2
(a) and 4F7/2→4I9/2 (c) transitions. b) and d): respective linear dependencies on pump
power. The total counts for each transition is represented by a ⋆. The horizontal bar
on b) [d)] represents the percent contribution of each Stark sublevel of the 4F5/2
(4F7/2) manifold on the total counts. On b) and d), the solid blue line has an apparent
slope of (1.0 ± 0.1) while the dashed one on d) has a slope of (0.7 ± 0.1).

By increasing the pump power to a range of hundreds of microwatts up to 2 mW, the
second UC process 4F7/2→4I9/2 becomes detectable. Again, the fluorescence spectrum matched
the features seen in diffuse reflectance measurements. The higher pump power required is due
to the larger energy separation between the two upper detected levels, so that a second phonon-
assisted promotion requires a higher population at the 4F5/2 state. As shown in Figure 23(d), the
pump power dependence of the fluorescence resulting from the decay 4F7/2→4I9/2 is no longer
linear. Instead, a sublinear (approximately 0.7) power dependence is observed for a pump power
above 500 µW which goes to the unity for lower pump powers. Such sublinear power dependence
is not relevant for the present nanothermometry experiments, since these are carried out at a
constant low power in the range of tens of µW.

A disadvantage of this UC excitation scheme is that the 4F3/2→4I9/2 transition becomes
inaccessible since it coincides with the pump wavelength. In order to study this transition, one
can exploit a DC route. Here the versatility of the inverted microscope plays an important role
and the experimental setup can be easily adapted for this new configuration.
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5.3.2 Downconversion

DC is an energy conversion process inverse from UC. Here, light of a shorter wavelength
is converted into radiation with a longer wavelength. Using the same basic setup as in the previous
experiment, a 532 nm CW laser was sent through the inverted microscope, as shown in Figure
24. This time, however, the spectral filter (LP) was chosen as a combination of a FEL0550
(Thorlabs) and a notch filter. From that configuration, it is possible to observe a DC signal from
the 4F5/2→4I9/2 transition as well as 4F3/2→4I9/2.
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Figure 24 – Experimental setup for DC detection (left) and energy diagram for Y2O3:Nd3+ (right).
ND: neutral density filters; M: mirror; BS: beamsplitter; O: objective; S: sample; LP:
longpass filter; FM: flip mirror; APD: avalanche photodiode. Blue arrows indicate
the annihilation of phonons. Black arrows indicate non-radiative decays.

For the 4F3/2→4I9/2 transition, that was used in the previous experiment as excitation
path, the fluorescence spectrum and power dependence are shown in Figure 25(a,b). In this case,
there are peaks resolved for that transition that are not present in the diffuse reflectance, since
they lie outside of the spectrophotometer’s range 360 nm to 740 nm (Minolta CM2600-D). That
can be understood as a result of the 4F3/2→4I9/2 manifolds [126,127].

Again, a linear power dependence of (1.0 ± 0.1) was observed for all sublevels as well
as for the entire transition (integrating from 870 nm to 940 nm). For the 4F5/2→4I9/2 transition,
a similar behaviour was observed, as shown in Figure 25(c,d). That transition shows the same
features as the one in Figure 23(a), although it is reached by a distinct single-photon process.

Now that three important transitions for the Nd3+ have been characterized, two pairs
of transitions can be studied for their thermometric capabilities. The first pair comes from the
UC experiment, 4F5/2→4I9/2 and 4F7/2→4I9/2 while the second pair comes from the DC one,
4F3/2→4I9/2 and 4F5/2→4I9/2. The best suited nanothermometry technique for both cases is the so
called Fluoresce Intensity Ratio (FIR).
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Figure 25 – Fluorescence (black lines) and diffuse reflectance (red lines) spectra for 4F3/2→4I9/2
(a) and 4F5/2→4I9/2 (c) transitions. b) and d): respective linear dependencies on pump
power. The total counts for each transition is represented by a ⋆. The horizontal bar
on b) [d)] represents the percent contribution of each Stark sublevel of the 4F3/2
(4F5/2) manifold on the total counts. On b) and d) the solid blue lines represent the
best apparent linear fit, with a slope of (1.0 ± 0.1).

5.4 FIR thermometry

Starting from the DC experiment, the proximity between the electronic levels 4F3/2 (E1)
and 4F5/2 (E2) allows the upper level to be populated from the lower by thermal redistribution.
The relative population between the two emitting levels, 𝑅, follows a Boltzmann-type population
distribution given by [77]:

𝑅 =
𝐼20
𝐼10

=
𝛾20𝑔2ℎ𝜈2
𝛾10𝑔1ℎ𝜈1

exp (−𝐸21
𝑘𝐵𝑇 ) = 𝐴 exp (−𝐸21

𝑘𝑇 ) (5.1)

where 𝑘𝐵 is the Boltzmann’s constant, 𝐸21 is the energy gap between these two excited levels, 𝑔2

and 𝑔1 are the degeneracies (2𝐽 + 1) of the levels and 𝛾20 and 𝛾10 are the spontaneous emission
rates of the 𝐸2 and 𝐸1 levels to the 𝐸0 level, respectively. Equation 5.1 can be written as:

ln (𝑅) = 𝛽 − 𝛼
𝑇 (5.2)

where 𝛽 = ln (𝐴) and 𝛼 = (𝐸21

𝑘
). 𝛽 is an adimensional parameter that takes into account the ratios

between the lifetimes and energies of each coupled levels, while 𝛼 has dimension of temperature
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and gives the apparent or effective energy separation measured for the FIR. For a FIR-based
sensor, the sensitivity is the rate of change of the intensity ratio with the temperature [128]:

𝑆 = 𝑑𝑅
𝑑𝑇 = 𝑅 𝛼

𝑇2 (5.3)

However, a relative sensitivity 𝑆𝑅 is often used in order to analyze the sensing performance
of various host materials [77]:

𝑆𝑅 = 𝑆
𝑅 = 𝛼

𝑇2 (5.4)

Since the FIR technique only takes into account the relative intensities of two thermally
coupled transitions, systematic fluctuations in intensity should not affect the data acquisition and
the accuracy of the experimental results. For instance, single NPs are prone to migrate from the
focal position, particularly once the substrate is heated, thus affecting the absolute counts at a
given time. However, as long as the temperature is kept constant and both transitions are recorded
simultaneously, the relative ratio can still be used as a reliable measurement strategy for such
thermometer.

Thus, plotting the logarithm of the relative intensities between the 4F3/2 and 4F5/2 transi-
tions versus the inverse of the temperature at which the emission spectra were taken, one should
obtain a straight line, as given by Equation 5.2. FIR measurements under 532 nm pump were
taken from the ratio between each one of the five most intense peaks in Figure 25(c) and the first
peak shown in Figure 25(a), around 880 nm.

Due to the spectrometer’s diffraction grating used, only about 90 nm can be recorded in
a single snapshot. One finds that the first sublevel of 4F3/2→4I9/2, represented by a ⚫ in Figure
25(a), accounts for about 16% of the whole transition luminescence. Figure 26(b) shows a linear
behavior as expected. Taking the 4F5/2→4I9/2 transition as a whole, one finds 𝛽 = (2.53 ± 0.08)
and 𝛼 = (1134 ± 25) K, thus 𝑆𝑅 = (1.26 ± 0.03) % at 300 K. It’s possible to apply the same
procedure to the UC process, as shown in Figure 26(c,d). This time, however, the first peak of
the 4F5/2→4I9/2 transition, represented by a ⚫ in Figure 23(a) only accounts for 11% of the total
counts. One finds 𝛽 = (2.41 ± 0.23) and 𝛼 = (1228 ± 75) K, thus 𝑆𝑅 = (1.36 ± 0.08) % at
300 K. This higher sensitivity is to be expected, since for the FIR measurements using an UC
excitation scheme the energy separation between the thermally coupled levels is larger than the
one for the DC process.

The host matrix, Y2O3, is known for being able to resolve the fine Stark structure of Nd3+

transitions. That allows the so called single-band nanothermometry, where FIR measurements
are made within the manifolds of a single energy level [129]. However, that often generates small
sensitivities (SR<1% K-1). For instance, [97] reported a maximum of SR=0.34% for single-band
nanothermometry between 4F3/2(2)→4I9/2(2) and 4F3/2(1)→4I9/2(5) transitions, while [58] reported
up to SR=1.51% for a FIR between 4F5/2→4I9/2 and 4F3/2→4I9/2 transitions. Both papers work
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Figure 26 – FIR measurements in the DC (a,b) and UC (c,d) excitation schemes. The blue dashed
(red solid) spectra were taken at 298 K (347 K). The inset in a)(c)) shows a closer
view of the 4F5/2(4F7/2) sublevels increasing in intensity as the temperature rises. On
b)[d)], the ratio of the total counts for the transition 4F5/2(4F7/2) is represented by a
★.

with Y2O3 nanopowders, albeit not in the single NP level. The highest value for SR found in
the literature is 1.59% between 4F5/2→4I9/2 and 4F3/2→4I9/2 transitions reported by [130]. Such
high sensitivity implies a value for Δ𝐸𝑒𝑓 𝑓 (given by the FIR measurements) very close to or even
higher than Δ𝐸𝑟𝑒𝑎𝑙 (given by the actual spectral separation between the energy levels), as is also
the case for Yb3+/Er3+ codoped yttria NPs [131–133]. Equation 5.21 also admits those solutions
for certain values of 𝑞𝑖 and ℏ𝜔, so one possible explanation for higher sensitivities are different
contributions for the lower energy phonons in the density of states. Further experiments with
Yb3+/Er3+ codoped yttria NPs can be performed in order to investigate such possibility.

Besides 𝑆𝑅, temperature accuracy 𝛿𝑇 is another parameter to characterize the optical
thermometer. It gives the uncertainty of a temperature measurement as a result of the smallest
area increment that can be measured by FIR. 𝛿𝑇 is given by [134]:

𝛿𝑇 = 𝛿𝑅
𝑆𝑅𝑅, (5.5)

where 𝛿𝑅
𝑅

is the relative error of 𝑅, whose value is 0.14%. The value of 𝛿𝐹𝐼𝑅/𝐹𝐼𝑅 was determined
by sampling the data at different rates and then comparing the integrals to estimate the error.
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Therefore, 𝛿𝑇 ≈ 0.1 K for both configurations, which is typical for Nd3+-based sensors [77, 135].
The two FIR measurements show different behaviors in what concerns temperature changes.
The DC shows an anticorrelation between the thermally coupled levels due to the thermal
redistribution from the lower to the upper state. On the other hand, on the UC process, both
thermally coupled transitions increase in counts, since they are both phonon populated from a
lower energy level. However, since there is still thermal redistribution, the relative intensities
allow a FIR measurement with good agreement with Boltzmann’s distribution for that range of
temperatures. The anticorrelation is not a prerequisite for a high sensitivity as the latter is more
dependent on the effective energy gap between the coupled levels, as will be demonstrated in
the modeling section, which consists of a rate equation analysis of the UC experiment, since it
involves all the four relevant energy levels, including the ground state.

5.5 Rate equation analysis

We are interested in finding the population densities for two thermally coupled states of
Nd3+ accessible by a ladder-level assisted thermal coupling process [136]. Henceforth, for the
sake of simplicity, the population densities (𝑛𝑖; i=0,1,2,3) are associated to the states |0⟩ (4I9/2), |1⟩
(4F3/2), |2⟩ (4F5/2), |3⟩ (4F7/2). A rate equation system for the population densities can be written
as [137,138]:

𝑑𝑛0
𝑑𝑡 = −𝜎0Φ𝑛0 + 𝛾1 (𝑇) 𝑛1 + 𝛾2 (𝑇) 𝑛2 + 𝛾3 (𝑇) 𝑛3 (5.6)

𝑑𝑛1
𝑑𝑡 = 𝜎0Φ𝑛0 − [Λ12 (𝑇) + 𝛾1 (𝑇)] 𝑛1 (5.7)

𝑑𝑛2
𝑑𝑡 = Λ12 (𝑇) 𝑛1 − [Λ23 (𝑇) + 𝛾2 (𝑇)] 𝑛2 (5.8)

𝑑𝑛3
𝑑𝑡 = Λ23 (𝑇) 𝑛2 − 𝛾3 (𝑇) 𝑛3 (5.9)

where Φ is the photon flux and 𝜎0 is the absorption cross section corresponding to the |0⟩→|1⟩
transition. The multiphonon excitation rates are given by Λ𝑖𝑗 = 𝐶𝑒𝑝

𝑖𝑗 𝑃𝑖𝑗 (𝑇), where 𝐶𝑒𝑝
𝑖𝑗 is a

parameter proportional to the electron–phonon coupling strength and 𝑃𝑖𝑗 (𝑇) are the phonon
occupancy numbers given by [137,139]:

𝑃𝑖𝑗 (𝑇) = [exp (ℏ𝜔
𝑘𝑇 ) − 1]

−𝑞𝑖𝑗

(5.10)

where 𝑞𝑖𝑗 is the number of effective phonons with energy ℏ𝜔 involved in the multiphonon
excitation from level 𝑖 to level 𝑗, 𝑘 is the Boltzmann’s constant, and 𝑇 is sample’s absolute
temperature. The population relaxation rates are given by [140]:

𝛾𝑖 (𝑇) = 𝛾𝑟𝑎𝑑
𝑖 + 𝑊𝑁𝑅

𝑖 (𝑇) (5.11)
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with (𝛾𝑟𝑎𝑑
𝑖 )−1

being the radiative decay time. 𝑊𝑁𝑅
𝑖 (𝑇) is the nonradiative relaxation rate from

level 𝑖 due to multiphonon relaxation processes. Choosing a reference temperature 𝑇0, 𝑊𝑁𝑅
𝑖 (𝑇)

can be written as [138,141]:

𝑊𝑁𝑅
𝑖 (𝑇) = 𝑊𝑁𝑅

𝑖 (𝑇0)
⎡⎢⎢⎢
⎣

1 − exp (−ℏ𝜔
𝑘𝑇

)

1 − exp (− ℏ𝜔
𝑘𝑇0

)

⎤⎥⎥⎥
⎦

−𝑞𝑖

, (5.12)

where 𝑞𝑖 represents the number of effective phonons involved in the relaxation of level 𝑖 to the
closest low energy level. The steady-state populations for levels 𝑖 = 1, 2, 3 are given by:

𝑛1 (𝑇) =
𝜎0Φ𝑛0

Λ12 (𝑇) + 𝛾1 (𝑇) (5.13)

𝑛2 (𝑇) =
Λ12 (𝑇) 𝜎0Φ𝑛0

[Λ12 (𝑇) + 𝛾1 (𝑇)] [Λ23 (𝑇) + 𝛾2 (𝑇)]
(5.14)

𝑛3 (𝑇) =
Λ23 (𝑇) Λ12 (𝑇) 𝜎0Φ𝑛0

𝛾3 (𝑇) [Λ12 (𝑇) + 𝛾1 (𝑇)] [Λ23 (𝑇) + 𝛾2 (𝑇)]
(5.15)

From either Equations 5.6–5.9 or 5.13–5.15, one gets:

𝑛3
𝑛2

=
𝐶𝑒𝑝

23 [exp (ℏ𝜔
𝑘𝑇

) − 1]
−𝑞23

𝛾𝑟𝑎𝑑
3 + 𝑊𝑁𝑅

3 (𝑇0) ⎡
⎢
⎣

1−exp(− ℏ𝜔
𝑘𝑇

)

1−exp(− ℏ𝜔
𝑘𝑇0

)

⎤
⎥
⎦

−𝑞3
≈

𝐶𝑒𝑝
23 [exp (ℏ𝜔

𝑘𝑇
) − 1]

−𝑞23

𝑊𝑁𝑅
3 (𝑇0) ⎡

⎢
⎣

1−exp(− ℏ𝜔
𝑘𝑇

)

1−exp(− ℏ𝜔
𝑘𝑇0

)

⎤
⎥
⎦

−𝑞3
, (5.16)

since the typical values for 𝑊𝑁𝑅
𝑖 (𝑇0) are about 103 larger than 𝛾𝑟𝑎𝑑

𝑖 for the relevant Nd3+ levels,
determined through the energy-gap law [142, 143]. This offers a good approximation for a small
temperature variation, which is the case of the present work. Similarly:

𝑛2
𝑛1

≈
𝐶𝑒𝑝

12 [exp (ℏ𝜔
𝑘𝑇

) − 1]
−𝑞12

𝐶𝑒𝑝
23 [exp (ℏ𝜔

𝑘𝑇
) − 1]

−𝑞23
+ 𝑊𝑁𝑅

2 (𝑇0) ⎡
⎢
⎣

1−exp(− ℏ𝜔
𝑘𝑇

)

1−exp(− ℏ𝜔
𝑘𝑇0

)

⎤
⎥
⎦

−𝑞2

≈
𝐶𝑒𝑝

12 [exp (ℏ𝜔
𝑘𝑇

) − 1]
−𝑞12

𝑊𝑁𝑅
2 (𝑇0) ⎡

⎢
⎣

1−exp(− ℏ𝜔
𝑘𝑇

)

1−exp(− ℏ𝜔
𝑘𝑇0

)

⎤
⎥
⎦

−𝑞2
, (5.17)

since at a low pump power regime (below 500 µW), one could assume that the nonradiative
emission rate contribution is much larger than the electron–phonon coupling strength to |3⟩,
which is reasonable for oxide hosts [144]. Taking a natural logarithm on both sides of Equations
5.16 and 5.17 and after a series expansion up to the first order around 𝑇 = 𝑇0, one gets:
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ln (
𝐼𝑗

𝐼𝑖
) ≈ 𝛽 −

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓

𝑘𝑇 , (5.18)

where:

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 = ℏ𝜔

⎡⎢⎢⎢
⎣

exp ( ℏ𝜔
𝑘𝑇0

) 𝑞𝑖𝑗 − 𝑞𝑖

exp ( ℏ𝜔
𝑘𝑇0

) − 1

⎤⎥⎥⎥
⎦

(5.19)

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 represents the effective energy separation of the emission levels as a result of the multi-

phonon processes [145]. Equation 5.19 relates Δ𝐸𝑖𝑗
𝑒𝑓 𝑓, as given by the FIR measurements and

three other relevant parameters: the effective phonon energy (ℏ𝜔) and the number of phonons
associated with excitation (𝑞𝑖𝑗) and relaxation for the lower energy level (𝑞𝑖). Assuming that the
real energy separation between |𝑖⟩ and |𝑗⟩ is given by:

Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙 = 𝑞𝑖𝑗ℏ𝜔 (5.20)

Equation 5.19 can be written as:

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 =

⎡⎢⎢⎢
⎣

exp ( ℏ𝜔
𝑘𝑇0

) Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙 − 𝑞𝑖ℏ𝜔

exp ( ℏ𝜔
𝑘𝑇0

) − 1

⎤⎥⎥⎥
⎦

(5.21)

Taking into account the constraint that ℏ𝜔 has the same value for both UC and DC
excitation schemes, Equation 5.21 can be solved for both processes. The solution will be a set of
(𝑞1, 𝑞2) points associated with a number of phonons of energy ℏ𝜔, as shown in Figure 27. Both
processes can thus be used in conjunction to obtain the best fitting parameters, which consist
of the first real solution of Equation 5.21. Also shown in Figure 27 is the fitting of the FIR
measurements with the rate equation model. A good agreement between a least squares fit for the
FIR and the solution of Equation 5.21 was found, particularly for the DC process. Following the
same equation, it’s expected that Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 to be smaller than Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙, as it’s often the case for FIR

measurements. From the theoretical model, this is primarily a result of phonons involved in the
relaxation rates, as given by Equation 5.12.

Table 6 – Fitting parameters for both phonon-assisted processes. Kets |𝑖⟩ and |𝑗⟩ are coupled
energy levels for each MP process. Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 was calculated from Equation 5.21 using the
best fitting parameters.

Process Pump 𝜆 (nm) |𝑖⟩,|𝑗⟩ Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙 (cm-1) Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 (cm-1) 𝑞𝑖𝑗 𝑞𝑖 ℏ𝜔 (cm-1)

DC 532 4F3/2, 4F5/2 880 808 3 4 300
UC 880 4F5/2, 4F7/2 1141 924 4 7 300

As shown in Table 6, the most energetic phonons available in the matrix do not dominate
the multiphonon absorption processes, since ℏ𝜔 was found to be smaller than the cut-off value
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Figure 27 – Rate equation modeling for both DC and UC processes. On the left, the pairs of
(𝑞1, 𝑞2) points and their corresponding ℏ𝜔 values. On the right, the green (black)
curve shows the fitting for the DC (UC) process. The solid line is the the rate equation
model while the dashed one is a least squares fit for the FIR.

(380 cm-1). This corroborates results and discussions presented, for example, in [137,138]. That
can be understood as a result of cooperative effects of the multiple (𝑞1, 𝑞2) solutions in the phonon
density of states. For the UC process, a larger number of phonons 𝑞𝑖𝑗 is required to overcome the
energy separation when compared to the DC process. Moreover, the former also shows a larger
value for 𝑞𝑖 than the latter. That can be a result of relaxations between the manifolds of the Stark
components, effectively skewing the phonon distribution density of states. The rate equation
analysis can also be applied to explain the sublinear power dependence shown in Figure 23 [109].
One possibility is to introduce a pump excited-state absorption term in the rate equations. Further
analysis can be done to verify such mechanism so that the model can be corrected for a higher
pump power regime.

In conclusion, a Nd3+-based nanothermometer was characterized by FIR for both UC and
DC configurations. A rate equation model was derived for the multiphonon assisted processes in
good agreement with the experimental results for a low pump power (below 500 µW) and small
temperature range (up to 347 K). Those limits are adequate for biological applications, specially
considering the UC process, which operates entirely within the first biological window. To the
best of our knowledge, this is the first report of such system in the single NP level to provide an
extensive rate equation model for the multiphonon processes. One of the outputs of the model is
the determination of yttria’s effective phonon mode energy, 300 cm-1. This kind of analysis can
be transposed to other pumping wavelengths, thus allowing for other electronic transitions to be
explored for nanothermometry.

Although the experiments were conducted under infrared and green laser pump, a direct
excitation at the 4F9/2 energy level is also possible, which translates to a laser pump of 689 nm
[146]. Therefore, such approach is of special interest for WGMs spectroscopy to be performed in
the setup described in the previous chapter. On the other hand, other pump configurations can
also be explored, such as an Erbium & Ytterbium co-doped yttria matrix, which will be topic of
the next chapter.
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6 NANOTHERMOMETRY WITH Er3+,Yb3+:Y2O3 NPs

In this chapter, Er3+, Yb3+ codoped yttria NPs were characterized for the first time as
a thermometric probe at the single nanocrystal level using the Fluorescence Intensity Ratio
technique1. The nanothermometer characterization was performed by exciting the single nanopar-
ticles with a low power, continuous-wave laser emitting at 980 nm, within one of the biological
windows. The nanothermometer showed a relative sensitivity of 1.31% and an accuracy of 0.1 K
at 300 K. The results were described by a rate equation analysis using a dual effective phonon
model which reproduced the expected phonon energy of the host matrix.

6.1 Er3+,Yb3+ codoped nanoparticles for temperature sensing

As discussed in the previous chapter, UC is a light-matter interaction phenomenon in
which a longer wavelength light (typically in the infrared part of the eletromagnetic spectrum)
is converted into radiation with a shorter wavelength through some atomic, ionic or molecular
interaction. Excitation in the infrared region is particularly advantageous for biological applica-
tions because radiation in this spectral range penetrates deeply in biological structures, induces
weak autoluminescence background and avoids photodegradation [148]. Depending on the nature
of the interaction behind the UC process, both the excitation and the collected signal can lie
within one of the so-called biological windows, thus minimizing losses [149] and heating. FIR
measurements can be made through UC processes [150], which are particularly efficient for RE
ions inside a matrix with a low maximum phonon energy, such as yttria (dominant phonon energy:
380 cm-1) [103–105,151]. Moreover, Y2O3 has excellent chemical stability and high solubility for
the RE ions [106]. A large number of synthesis methodologies of nano and microstructured Y2O3

particles have been reported, which show diverse parameters to control the particle’s structure,
size and morphology [108–110].

Among the dopant ions in RE-based thermometers, erbium ions (Er3+) are a very con-
venient choice due to the possibility of optical excitation in the near infrared [152]. These ions
present two green luminescence bands originating from two thermally coupled electronic energy
levels, 2H11/2 and 4S3/2. That is, the relative intensity of the luminescence originating from these
levels is temperature-dependent. This effect is due to the Boltzmann equilibrium in between the
populations of the excited states and it allows the use of the FIR technique to produce primary
thermometers [153]. Codoping the samples with sensitizer ions presenting a very high absorption
cross section at the chosen excitation wavelength, as it is the case of ytterbium (Yb3+), is an
important strategy for increasing the performance of different luminescent materials [154]. The
relatively high absorption cross-section of Yb3+ ions around 980 nm when compared with the
1 Published in [147].
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Er3+ ions allows for CW excitation, which present lower intensities as compared to the peak
intensities of pulsed lasers [155].

Keeping in mind the potential applications for WGMs spectroscopy, the Er3+/Yb3+:Y2O3

system was also chosen due to the possibility of excitation under 980 nm, which matches one of
the available TDL’s wavelength. Therefore, the results can be compared with the previous system
(based on Nd3+) and the best configuration among the available ions and excitation schemes
can be chosen. This chapter reports the results of individual cubic-phase Y2O3 NPs codoped
with Er3+ and Yb3+ used as nanothermometers at the single particle level. The results are then
modeled by a rate equation analysis which takes into account the multiphonon assisted processes
behind the thermally coupled luminescent energy levels, shedding light into the properties of the
host matrix vibrational normal modes.

6.2 Nanoparticles synthesis and characterization

As was the case for the NPs studied in Chapter 5, the synthesis was carried out at
the Chemistry Department of São Paulo state University (Universidade de São Paulo) and is
reproduced as follows. Undoped Y2O3 and Er3+, Yb3+ codoped Y2O3 NPs were prepared via
homogeneous precipitation synthesis followed by further thermal treatment [156]. Homogeneous
and fully redispersable spherical hydroxycarbonate nanoparticles, [Y(OH)CO3.nH2O], were
firstly obtained by urea thermolysis using urea (99-100% purity, Synth) and yttrium nitrate
(Y(NO3)3.6H2O 99.8% purity, Sigma Aldrich). For the herein studied Er3+/Yb3+ codoped samples,
erbium and ytterbium nitrate solutions were used as dopant precursors and prepared from the
respective oxides (99% purity, Sigma-Aldrich) by their dissolution in 0.10 mol.L-1 nitric acid
aqueous solution. Initially, urea was dissolved in a mixed Ln3+ (Ln3+=Y3+, Er3+, Yb3+) aqueous
nitrate final solution making a total solution volume of 252 mL. The final concentrations of
yttrium and urea were 0.01 and 5.00 mol.L-1, respectively. The concentrations of Er3+ and Yb3+

ions were 0.5 and 1.5 mol% in relation to Y3+ ions, which is adequate to avoid concentration
quenching accordingly to the literature [131].

The final solution was heated at 80 °C for 2 h in a closed flask. After a complete reaction,
the final suspension was then cooled to ambient conditions and the colloidal particles were
isolated by centrifugation. The wet product [Y(OH)CO3.nH2O] was washed five times with
distilled water and dried at 70 °C for 6 h to yield a white powder. The 0.5% Er3+/1.5% Yb3+:Y2O3

(henceforth referred to as Er3+/Yb3+: Y2O3) nanoparticles were obtained after a calcination of
[Y(OH)CO3.nH2O] under air during 2 h at 900 °C, which was reached using a heating rate of
5 °C min-1. Homogeneous and well dispersed spherical Er3+/Yb3+:Y2O3 codoped NPs were
successfully prepared by homogeneous precipitation method followed by post-thermal treatment
[116, 157]. As described in a previous work [125], the adopted reactional and post-reactional
conditions allow the formation of pure body-centered cubic structure of Y2O3, with Ia3 space
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group according to JCPDS card 01-074-0553. No additional peaks related to any impurities
were observed, indicating a high phase purity and homogeneous dispersion of the RE ions into
the Y2O3 crystal lattice. Micro-Raman spectrum was obtained using a Labramer Horiba Jobin
Yvon Micro-Raman spectrometer with a He-Ne laser excitation (𝜆=632.8 nm), in the range of
50–1200 cm-1 with 0.3 cm-1 spectral resolution [125]. The size, dispersion and morphology of
Er3+/Yb3+:Y2O3 NPs were evaluated by transmission electron microscopy (TEM) using a JEOL
JEM-100CX II microscope at an accelerating voltage of 100 kV, as shown in Figure 28a. For
these measurements, the NPs were dispersed into anhydrous ethanol, and a drop placed over
a carbon coated microscope copper grid. The TEM image of a single Er3+/Yb3+:Y2O3 NP is
presented in Figure 28b. The calcinated NPs showed spherical morphology, high dispersity and
an average particle size around 110 nm [125].

For the experiments described in this chapter, the samples were prepared starting from a
powder form. A diluted dispersion was prepared by suspending 0.01 g of Er3+/Yb3+:Y2O3 NPs
in 1 mL of isopropyl alcohol. Sonication for 5 min was done right before spin-coating of 10 µL of
the dispersion on a glass coverslip (Menzel-Gläser #1). Scanning electron microscopy (SEM) was
performed to investigate the NPs’ dispersion on the coverslip, as shown in Figure 28c,d. The SEM
images indicate a full dispersion of the luminescent spherical NPs, distant micrometers away
from each other in several areas on the coverslip. Additionally, the SEM images corroborate the
morphological analysis from TEM micrographs, in which the nanoparticles are monodispersed,
spherical and show an average diameter of 100 nm.

150 nm

a)

150 nm

b) 1.5 μmc) 150 nmd)

Figure 28 – a) TEM image of Er3+/Yb3+:Y2O3 NPs; b) TEM of a single NP; c) SEM after the
spin coating deposition; d) SEM of a single NP deposited on a coverslip. The scale
bars in a), b) and d) represent a length of 150 nm, while the one in c) represents a
length of 1.5 µm. Images a) and b) were made at the Chemistry Department of São
Paulo state University (Universidade de São Paulo) while images c) and d) were done
at the Physics Department of the Federal University of Pernambuco (Universidade
Federal de Pernambuco).

6.3 Experimental setup

With confidence that the sample preparation protocol leads very often to the occurrence
of single NPs within an area larger than the detectable spot under tight focusing conditions, it’s
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possible to proceed with the optical spectroscopy characterization. The Er3+ luminescence is
generated by an UC process and observed with the aid of a home-made inverted sample scanning
optical microscope. A raster scan procedure was used to locate individual NPs while the focal
spot of the excitation light is kept at a fixed position. The raster scan imaging process is able to
discriminate single NPs from agglomerates containing more particles: due to the monodispersivity
of the samples size distribution, a dimer will appear twice as bright as single NPs, which by the
way occur far more frequently due to the employed sample preparation protocol. The sample’s
local temperature was set and controlled by a heating mantle embracing the microscope objective,
ranging from 298 K to 347 K as measured at the sample’s position using a carefully calibrated IR
camera (FLIR Systems-i5). During the pump power dependency tests, the NPs temperature was
set to 298 K, while for the FIR measurements a local temperature within the mentioned range
was assigned to each fluorescence spectrum.
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Figure 29 – Experimental setup for UC detection (left) and energy diagram for Er3+/Yb3+:Y2O3
(right). ND: variable combination of neutral density filters; M: mirror; BS: beamsplit-
ter; O: objective; S: sample; SP: shortpass filter; FM: flip mirror; APD: avalanche
photodiode. In the energy diagram, the curly blue (purple) arrow indicates the mul-
tiphonon process responsible for the 2H11/2→4I15/2 (4F9/2→4I15/2) transition of the
Er3+ ions. The black arrows represent nonradiative decays to lower energy levels.

For studying nanothermometry exploiting an UC excitation scheme, the experimental
setup shown in Figure 29 was built. A tunable narrow-bandwidth diode laser (New Focus TLD
6900) tuned to 980 nm was sent to the inverted microscope. This laser was chosen due to its fine
tuning capabilities, which allowed an optimal pump wavelength for the maximum UC signal, so
that the integration time for each spectrum could be limited to 10 s. The laser is then directed to
the microscope objective (100×, NA=1.25), which focuses the excitation light at a diffraction
limited spot at the sample, so that when a single NP is placed right at the focal point by a 3-axis
piezo stage; the emitted fluorescence can be collected by the same objective and directed to
either a spectrometer or an avalanche photodiode using a flip mirror. Shortpass filters (Thorlabs
FES0750 and Semrock FF01-842-sp-25) were used to block the pump laser light, letting the
upconverted fluorescence pass through. The beamsplitter BS (Thorlabs BS1) could incorporate
the shortpass function if replaced by a dichroic mirror, but that would make the apparatus less
versatile in terms of pump laser wavelength as well as the collected signal. Therefore, in order to
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find a good compromise between losses and versatility, a beamsplitter and a good shortpass is a
suitable option.

Several well-established mechanisms have been proposed to describe the UC signal
generated by Er3+/Yb3+ codoped systems. Energy Transfer Upconversion (ETU), Excited-State
Absorption (ESA), and Ground-State Absorption (GSA) can be responsible for generating the
visible luminescence [158]. Among these excitation processes, the ETU mechanisms are the most
expressive in systems like the one studied in the present work, since the absorption cross-section
around 980 nm for Yb3+ ions is much greater than for Er3+ ions [159]. Different two-photon
processes using light at 980 nm can take the Er3+ ions to the 4F7/2 excited state, and then the
thermally coupled levels 4S3/2 and 2H11/2 of Er3+ ions are populated via nonradiative decay
processes [160]. The first possibility is a successive promotion from 4H11/2 to 4F7/2; the second
one being through the presence of the 4I11/2 metastable halfway 4I15/2 and 4F7/2, which enhances
the probability of ETU processes due to the similar energy gap among them [161]. Nonradiative
decays from higher-lying to 4F7/2 level were also reported [162]. The result is the emission of
light at a few bands in the visible, the strongest ones being in the green (around 525 nm and 550
nm) and in the red (around 664 nm).

Concerning the red emission, several pathways have been proposed in the literature
involving different excitation mechanisms considering a two-photon process. [163–167]. In
one of them, it is possible to occur nonradiative transitions from 4I11/2 to 4I13/2, then ETU
and/or ESA to 4F9/2, although the energy difference between 4I13/2 and 4F9/2 does not match the
energy supplied by ETU/ESA. Nevertheless, it’s yet another multiphonon-assisted non-resonant
excitation, in which phonons are provided to the host matrix [167, 168]. In another pathway, the
population of 4F9/2 comes from a nonradiative decay from 4S3/2.

As will be demonstrated in the Rate Equation Analysis section, for the system in question
and under relatively low pump power excitation around 980 nm, the 4F9/2 manifold provides an
indirect depletion for the 2H11/2 state. Such depopulation channel will be considered as the sole
responsible for the red emission for our model. Therefore, the simplified energy diagram presented
in Figure 29 shows only the relevant energy levels for the Er3+ ions under those assumptions. Given
the advantages of the FIR method for defining a local temperature, this analysis will concentrate
the discussion on the energy levels originating the green emission lines, which are thermally
coupled. The red line around 664 nm will be used as a way to obtain the depletion channel for
4S3/2 and thus the relevant fitting parameters. The luminescence spectra for the three transitions
are shown in Figure 30 a), c), assigned with their barycenters. The spectra were collected for a
single NP at the spectrometer branch shown in the experimental setup in Figure 29. In order to
assess the appropriate pump power conditions as well as to characterize the luminescent lines
as two-photon processes within a nonsaturated regime, a pump power dependency study was
conducted as depicted in Figure 30 b), d), The photoluminescence intensity (𝐼) was measured as
a function of the excitation power (𝑃) measured right after the microscope’s objective. Due to the
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Figure 30 – Fluorescence spectra for a single Er3+/Yb3+:Y2O3 NP. On a), the wavelength intervals
are given by: 𝜆1=518 nm, 𝜆2=530 nm, 𝜆3=545 nm, 𝜆4=560 nm and 𝜆5=570 nm.
The green vertical lines are the barycenters of 2H11/2→4I15/2 (ranging from 𝜆1 to
𝜆3) and 4S3/2→4I15/2 (ranging from 𝜆3 to 𝜆5) transitions whose values are 528 nm
and 559 nm respectively. On b) the dependency of the emission intensity of the two
green lines combined on the pump power, presenting slopes ranging from 2.0±0.1 to
1.4±0.1 as the pump power increases (see text for discussion). On c), the luminescence
spectrum of the 4F9/2→4I15/2 transition and the corresponding barycenter (664 nm).
On d) the dependency of the emission intensity on the pump power for the red line,
presenting a slope of 1.8 ± 0.1 (see text for discussion).

power dependence relationship 𝐼 ∝ 𝑃𝛾, the slope of 𝐼 versus 𝑃 in a logarithmic scale represents
the number of photons (𝛾) involved in the process.

At low power (below 100 µW), the green lines combined showed a value of 𝛾 of 2.0 ±0.1.
The reason why the power dependency was determined by combining the two green lines is
the fact that the 2H11/2→4I15/2 transition is much less intense than the 4S3/2→4I15/2 at room
temperature, so a power dependence for the former is difficult to be determined by itself at
low pump powers. As the power increases to above 100 µW, saturation effects start to become
significant and both green lines show a value of 𝛾 equal to 1.4 ± 0.1. Therefore, in order to avoid
the saturation regimen, the pump power was limited to 100 µW. As will be demonstrated in the
next section, the thermal effects measured by the FIR technique increase the relative intensity of
the 2H11/2→4I15/2 transition, thus overcoming its low intensity at the low pump power limit as
the temperature rises.
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For the red line, which was used to determine the spectral position of the 4F9/2 energy
level, a value of 1.8 ± 0.1 was found for 𝛾. From the spectral position of the three luminescent
lines, it’s possible to calculate the real energy separation between the green lines (Δ𝐸𝑟𝑒𝑎𝑙) as
107 ( 1

528
− 1

559
) or 1050 cm-1. This information will be relevant for the next sections, which

deal with the redistribution in the populations of the thermally coupled energy levels.

6.4 FIR nanothermometry

Following the same formalism derived in Chapter 4, the relative population between the
two thermally coupled emitting levels, 𝑅, follows a Boltzmann-type population distribution given
by [77]:

𝐹𝐼𝑅 =
𝐼20
𝐼10

= 𝐴 exp (−𝐸21
𝑘𝑇 ) (6.1)

where 𝑘 is Boltzmann’s constant, 𝐸21 is the energy gap between these two excited levels and
𝐴 is a constant that incorporates their spontaneous emission rates. As pointed out by Suta
et al. [169], in order to define a proper ratiometric quantity as given by Equation 6.1, it is
paramount that the Boltzmann behavior settles in just above room temperature. At high dopant
concentrations, there are additional cross-relaxation pathways between neighboring rare earth
ions, which competes with the non-radiative absorption rate and thus shifts the usable sensing
range to higher temperatures. As will become clear in this section, such behavior was not observed
and a Boltzmann-like thermometry was obtained.

As shown in Figure 31, four main regions can be identified in the green luminescence
spectrum of the NPs. The matrix in question is known for being able to resolve the structure of Stark
sublevels even at room temperature, thus allowing for the so-called single-band nanothermometry
[129]. On the other hand, such closely separated Stark sublevels often generate a small thermal
sensitivity [170]. That being said, since the second peak region in Figure 31 (labelled with a
◼) lies in an intermediate position between the other three, one could mistakenly assume it is
a result of the 4S3/2→4I15/2 transition. In order to solve such ambiguity, a correlation analysis
was performed for the four regions. This analysis gives the Pearson correlation coefficient, which
is the covariance of two variables divided by the product of their standard deviations, so that
the result has a value between −1 and 1. The Pearson’s correlation coefficient when applied to a
sample is given by:

𝑟 =
∑𝑛

𝑖=1 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)2
(6.2)

where 𝑛 is sample size, 𝑥𝑖, 𝑦𝑖 are the individual sample points and ̄𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 is the sample

mean (analogously for ̄𝑦). As shown in the inset of Figure 31, the first two peaks have a correlation
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value of one, just like the last two. Therefore, they are linearly associated as the temperature
rises and one can place the second peak into the 2H11/2→4I15/2 transition, as reported by [112].
This correlation analysis can be applied in single band nanothermometry in order to determine
which pairs of Stark sublevels are the most promising for higher 𝑆𝑅, since it gives a quantitative
measure of the degree of correlation between the transitions as the temperature changes.
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Figure 31 – FIR measurement for a single Er3+/Yb3+:Y2O3 NP. On the left graph, the as-
signed peaks lie within the wavelength intervals given by: 𝜆1=518 nm, 𝜆2=530 nm,
𝜆3=545 nm, 𝜆4=560 nm and 𝜆5=570 nm. The green vertical lines are the barycen-
ters of 2H11/2→4I15/2 (ranging from 𝜆1 to 𝜆3) and 4S3/2→4I15/2 (ranging from 𝜆3 to
𝜆5) transitions. The inset shows the correlation values for the four regions. The blue
dashed and red solid spectra were taken at 298 and 347 K, respectively. On the right
graph, the corresponding FIR values as a function of the inverse of the temperature.
The red solid line is a linear fit of the experimental data with the 𝛼 and 𝛽 parameters.

Because FIR is immune to pump power fluctuations, this technique is more accurate to
study nanometric structures, which can be prone to spatial fluctuations while being illuminated.
Following the FIR procedure described in Section 5.4, one finds 𝛽 = (2.84 ± 0.10) and 𝛼 =
(1179 ± 30) K, thus 𝑆𝑅 = (1.31 ± 0.03) % at 300 K. Taking advantage of the attained spectral
resolution, it would be possible to define a FIR between the first peak shown in Figure 31
(⚫) and the last one (▴), since they are the furthest apart. Following that procedure, one finds
𝑆𝑅 = (1.41 ± 0.03) % at 300 K. Although the second case yields a higher sensitivity, for the sake
of simplicity, the rate equation analysis will follow the first case, since it won’t be necessary to
consider inter-band phonon-assisted transitions. For the first case, there are only two thermally
coupled energy levels (4S3/2 and 2H11/2), which are represented by the two barycenters shown in
Figure 31. In order to consider the interband transitions, a second pair of energy levels would be
necessary, which leads to a more intrincate rate equation analysis so that the effective phonon
energy would be more complicated to define.

As shown in Figure 32 the values of 𝑆𝑅 are temperature dependent. When evaluating the
potential of a system as a nanothermometer it is important to characterize and explicitly show the
behavior of the relative sensitivity with T, since if the sensitivity for a given temperature reduces
to a point where it impairs the nanothermometry, it effectively shortens the range of temperatures
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for which the thermometer can be used, evidently one valuable information [171–175]. In this
experiment, values from 1.33% to 0.98% were obtained, thus the 𝑆𝑅 value was found to be > 1%
for a temperature range of 45 K.
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Figure 32 – 𝑆𝑅 as a function of 𝑇 for the range of temperatures investigated considered for the
FIR measurements.

Besides 𝑆𝑅, the temperature accuracy 𝛿𝑇 is another parameter to characterize the optical
thermometer. It gives the uncertainty of a temperature measurement as a result of the smallest
integrated area increment in the emission spectrum that can be measured by FIR. 𝛿𝑇 is given
by [134]:

𝛿𝑇 = 𝛿(𝐹𝐼𝑅)
𝑆𝑅(𝐹𝐼𝑅) (6.3)

where 𝛿(𝐹𝐼𝑅)/𝐹𝐼𝑅 is the relative error of 𝐹𝐼𝑅, which value in the present case is 0.14%. There-
fore, the 𝛿𝑇 value can be as low as 0.1 K at 300 K, which is typical for rare-earth-doped NPs
temperature sensors [135, 176]. That measurement gives the smallest increment in temperature
that can be determined around 300 K, within the range for biological applications. In order to
obtain a temperature resolution closer to 0.01 K, one could improve upon the 𝛿(𝐹𝐼𝑅)/𝐹𝐼𝑅 which
is limited by the detection apparatus efficiency and resolution.

The values for 𝑆𝑅 and 𝛿𝑇 found in this experiment are very promising when comparing
to the ones found in the literature. For instance, for the same yttria matrix, values respectively of
0.6% and 0.7 K at 273 K were reported [107]. A higher sensitivity of 1.52% at 300 K was also
reported [177] as well as similar value of 1.32% [132], albeit none of these works deals with
individual nanoparticles.

From the value of 𝛼 one can calculate the apparent or effective energy separation between
the coupled energy levels as 813 cm-1. This value is approximately 23% smaller than the value of
Δ𝐸𝑟𝑒𝑎𝑙 given by the luminescence spectra, as will be addressed in the next section. The phonon-
assisted processes can now be modeled by a rate equation analysis of all the four relevant energy
levels, including the ground state.
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6.5 Rate equation analysis

Here, since the intensity of the emitted luminescence is proportional to the population
of the upper energy level involved in the electronic transition, one is interested in finding the
population densities for the two thermally coupled states of Er3+, (4S3/2 and 2H11/2). Henceforth,
for the sake of simplicity, the population density of the i-th energy level (𝑛𝑖; i=0,1,2,3,4,5,6,7)
are associated to the states |0⟩ (4I15/2), |1⟩ (4I13/2), |2⟩ (4I9/2), |3⟩ (4F9/2), |4⟩ (4S3/2), |5⟩ (2H11/2),
|6⟩ (4F7/2) and |7⟩ (2H9/2). Although several excitation mechanisms act to populate |6⟩, due to the
fact that the transient population dynamics is not of interest here (in fact, the thermal equilibrium
populations are the important parameters for the present study), in the steady-state regime these
processes can be congregated into an effective term. This single term takes into account ETU,
ESA and possible cross-relaxation processes between Er3+-Er3+, although the latter case is less
probable given the low ion concentration. In order to further simplify the analysis, the problem can
be treated as if a single photon excites directly the |4⟩ level. This approach generates an equivalent
4-level system from the original problem, thus reducing the amount of terms to be determined and
allowing an analytical solution. It’s worth mentioning that such simplification does not assume a
resonant excitation on the |4⟩ level, although it could be achieved with alternative laser sources.
Therefore, a system of rate equations can be written as [137,138]:

𝑑𝑛0
𝑑𝑡 = −𝜎0Φ𝑒𝑓 𝑓𝑛0 + 𝛾4 (𝑇) 𝑛4 + 𝛾5 (𝑇) 𝑛5 (6.4)

𝑑𝑛4
𝑑𝑡 = 𝜎0Φ𝑒𝑓 𝑓𝑛0 − [Λ45 (𝑇) + 𝛾4 (𝑇)] 𝑛4 (6.5)

𝑑𝑛5
𝑑𝑡 = Λ45 (𝑇) 𝑛4 − [Λ56 (𝑇) + 𝛾5 (𝑇)] 𝑛5 (6.6)

where Φ𝑒𝑓 𝑓 is the effective photon flux and 𝜎0 is the effective absorption cross section correspond-
ing to the |0⟩→|4⟩ transition. The multiphonon excitation rates are given by Λ𝑖𝑗 = 𝐶𝑒𝑝

𝑖𝑗 𝑃𝑖𝑗 (𝑇),
where 𝐶𝑒𝑝

𝑖𝑗 is a parameter proportional to the electron–phonon coupling and 𝑃𝑖𝑗 (𝑇) are the phonon
occupancy numbers given by [139]:

𝑃𝑖𝑗 (𝑇) = [exp (ℏ𝜔
𝑘𝑇 ) − 1]

−𝑞𝑖𝑗

(6.7)

where 𝑞𝑖𝑗 is the number of effective phonons with energy ℏ𝜔 involved in the multiphonon excita-
tion from level 𝑖 to level 𝑗, 𝑘 is the Boltzmann constant, and 𝑇 is sample’s absolute temperature.
The population relaxation rates are given by:

𝛾𝑖 (𝑇) = 𝛾𝑟𝑎𝑑
𝑖 + 𝑊𝑁𝑅

𝑖 (𝑇) (6.8)

with (𝛾𝑟𝑎𝑑
𝑖 )−1

being the radiative decay time. 𝑊𝑁𝑅
𝑖 (𝑇) is the nonradiative relaxation rate from

level 𝑖 due to multiphonon relaxation processes. Choosing a reference temperature 𝑇0, for which
the nonradiative decay rate in the host matrix is known, 𝑊𝑁𝑅

𝑖 (𝑇) can be written as [141]:
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𝑊𝑁𝑅
𝑖 (𝑇) = 𝑊𝑁𝑅

𝑖 (𝑇0)
⎡⎢⎢⎢
⎣

1 − exp (−ℏ𝜔
𝑘𝑇

)

1 − exp (− ℏ𝜔
𝑘𝑇0

)

⎤⎥⎥⎥
⎦

−𝑞𝑖

(6.9)

where 𝑞𝑖 represents the number of effective phonons involved in the relaxation of level 𝑖 to the
closest low energy level. 𝑊𝑁𝑅

𝑖 (𝑇0) is the nonradiative relaxation rate at a set temperature, e. g.,
room temperature or 300 K. The ratio between the populations in the coupled energy levels can
be obtained from the steady state condition and setting the derivatives equal to zero, which gives:

𝑛4
𝑛5

≈
𝐶𝑒𝑝

45 [exp (ℏ𝜔
𝑘𝑇

) − 1]
−𝑞45

𝑊𝑁𝑅
5 (𝑇0) ⎡

⎢
⎣

1−exp(− ℏ𝜔
𝑘𝑇

)

1−exp(− ℏ𝜔
𝑘𝑇0

)

⎤
⎥
⎦

−𝑞5
(6.10)

Given the populations ratio, one can calculate the FIR parameters applying Boltzmann’s
factor:

ln (
𝐼𝑗

𝐼𝑖
) ≈ 𝛽 −

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓

𝑘𝑇 , (6.11)

where Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 was derived for Nd3+:Y2O3 NPs as [96]:

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 =

⎡⎢⎢⎢
⎣

exp ( ℏ𝜔
𝑘𝑇0

) Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙 − 𝑞𝑖ℏ𝜔

exp ( ℏ𝜔
𝑘𝑇0

) − 1

⎤⎥⎥⎥
⎦

(6.12)

Equation 6.12 can be solved for ℏ𝜔 in units of 𝑘𝑇0:

ℏ𝜔 =
Δ𝐸𝑖𝑗

𝑒𝑓 𝑓

𝑞𝑖
−W

⎡
⎢⎢⎢⎢
⎣

(Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 − Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙) exp (
Δ𝐸𝑖𝑗

𝑒𝑓 𝑓

𝑞𝑖
)

𝑞𝑖

⎤
⎥⎥⎥⎥
⎦

, (6.13)

whereW (𝑥) is the Lambert W function [178]. It’s defined as:

W (𝑥) exp [W (𝑥)] = 𝑥 (6.14)

If 𝑥 is real, then for −1/𝑒 ≤ 𝑥 < 0 there are two possible real values ofW (𝑥). The branch
satisfying −1 ≤W (𝑥) is denoted byW0 (𝑥) and the branch satisfyingW (𝑥) ≤ −1 isW−1 (𝑥).
W0 (𝑥) is referred to as the principal branch of theW function. Equation 6.13 admits solutions
for three basic situations: i) Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 > Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙; ii) Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 = Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙 and iii) Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 < Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙. For

the first case, 𝑥 > 0 in the argument ofW , thus only one solution is obtained for (ℏ𝜔, 𝑞𝑖). For
the second case, one gets:
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ℏ𝜔 =
Δ𝐸𝑖𝑗

𝑒𝑓 𝑓

𝑞𝑖
−W [0] =

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓

𝑞𝑖
=

Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙

𝑞𝑖
=

ℏ𝜔𝑞𝑖𝑗

𝑞𝑖
(6.15)

Thus, 𝑞𝑖𝑗 = 𝑞𝑖 and the process follows a simple Boltzmann distribution and can be
understood as if the same number of phonons is responsible for both the thermal redistribution
and the depopulation of the lower energy level. For the third case, 𝑥 < 0 in the argument ofW ,
however, theW−1 (𝑥) branch can generate values for ℏ𝜔 well above the typical phonon cut-off
frequencies.

Let’s now study the first case (Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 > Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙), as it often happens with Er3+/Yb3+-
codoped NPs, for which the measured relative sensitivity is larger than the predicted by the
energy separation alone. As proposed by [148], this is a result of a nonradiative decay from 4S3/2

to 4F9/2. In order to demonstrate that hypothesis analytically, one can set 𝑞𝑖 to zero. However,
Equation 6.13 becomes indeterminate in such limit. The expression can be modified assuming
that a depopulation of the lower energy level requires a different value for ℏ𝜔:

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 =

⎡⎢⎢⎢
⎣

exp (ℏ𝜔𝑖𝑗

𝑘𝑇0
) Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙

exp (ℏ𝜔𝑖𝑗

𝑘𝑇0
) − 1

⎤⎥⎥⎥
⎦

−
⎡⎢⎢⎢
⎣

𝑞𝑖ℏ𝜔𝑖

exp (ℏ𝜔𝑖

𝑘𝑇0
) − 1

⎤⎥⎥⎥
⎦

, (6.16)

where ℏ𝜔𝑖𝑗 is the energy required for each phonon to overcome the energy separation while ℏ𝜔𝑖

is the one associated with the nonradiative decay to a lower energy level (4F9/2). The occurrence
of phonon modes with distinct energies is possible for a crystalline matrix, which often presents
multiple clearly resolved phonon lines. The resonance in the electronic transitions can select
specific phonon modes among the ones available in the matrix. Equation 6.13 is now given by
(in units of 𝑘𝑇0):

ℏ𝜔𝑖𝑗 = ln
⎧{
⎨{⎩

ℏ𝜔𝑖𝑞𝑖 + Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 [exp (ℏ𝜔𝑖) − 1]

ℏ𝜔𝑖𝑞𝑖 + (Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 − Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙) [exp (ℏ𝜔𝑖) − 1]

⎫}
⎬}⎭

(6.17)

taking 𝑞𝑖 = 0 in Equation 6.17, one gets:

ℏ𝜔𝑖𝑗
0 = ln ⎛⎜⎜⎜

⎝

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓

Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 − Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙

⎞⎟⎟⎟
⎠

, (6.18)

which gives a simple expression for the phonon energy in the absence of nonradiative decays
for Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 > Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙. In order to verify the appropriateness of Equation 6.18, one can apply it to

another host matrix for which the thermometric parameters are known, such as NaYF4. Using
the results obtained from Gonçalves et al. [148], one finds 366 cm-1 for the phonon energy ℏ𝜔𝑖𝑗

0 ,
which matches one of the dominant phonon modes (370 cm-1) in NaYF4 [160, 179]. As the
nonradiative decay to lower energy levels is introduced, the effective phonon energy decreases as
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given by Equation 6.17. By setting the ℏ𝜔𝑖𝑞𝑖 energy equal to the separation between 4S3/2 and
4F9/2 energy levels (Δ𝐸𝑖𝑗

𝑁𝑅), Equation 6.17 becomes:

ℏ𝜔𝑖𝑗 = ln

⎧{{
⎨{{⎩

Δ𝐸𝑖𝑗
𝑁𝑅 + Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 [exp (Δ𝐸𝑖𝑗
𝑁𝑅

𝑞𝑖
) − 1]

Δ𝐸𝑖𝑗
𝑁𝑅 + (Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 − Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙) [exp (Δ𝐸𝑖𝑗

𝑁𝑅

𝑞𝑖
) − 1]

⎫}}
⎬}}⎭

(6.19)

Table 7 – Multiphonon parameters for Er3+/Yb3+:Y2O3 single NPs

ℏ𝜔𝑖𝑗 (cm-1) ℏ𝜔𝑖 (cm-1) Δ𝐸𝑖𝑗
𝑒𝑓 𝑓 (cm-1) Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙 (cm-1) Δ𝐸𝑖𝑗
𝑁𝑅 (cm-1)

355 404 813 1050 2829

Equation 6.19 can be solved in order to find the best combination (i. e., the one which
fits the measured energy values with the least amount of whole phonon numbers) of (ℏ𝜔𝑖𝑗, 𝑞𝑖)
values, as shown in Table 7. For our experiments, it was found that Δ𝐸𝑖𝑗

𝑒𝑓 𝑓 < Δ𝐸𝑖𝑗
𝑟𝑒𝑎𝑙, which

corresponds to the Case iii) of Equation 6.13. That could be a result of a specific matching
between the Y2O3 phonon lines and the value of Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙. In order to calculate the phonon energies
involved in the process, Equation 6.19 was used rather than Equation 6.13. This choice was
motivated by the debate around the definition of the mediating or effective frequency pointed out
by Auzel [139]. When the highest phonon frequency arises from internal vibration of a molecular
radical such as (WO4)-2 in calcium tungstate, (≈900 cm-1), it’s more difficult to define a single
mediating mode. Englman and Jortner [180] proposed that the effective frequency should be
the cut-off frequency in weak coupling (where the relative horizontal displacement of the two
potential energy surfaces is small) and an average frequency for strong coupling (when there is
substantial horizontal displacement of the potential energy surfaces of the electronic states). The
FIR measurements performed in this chapter were repeated for three individual NPs and the valued
of 𝑆𝑅 fluctuated within the statistical error. That corroborates the effectiveness of the synthetic
route into producing uniformly doped NPs. That being said, for one of the aforementioned NPs,
the calculated parameters for Equation 6.19 are summarized in Table 7. The value of ℏ𝜔𝑖 is
calculated from Equation 6.17.

More recently, as previously pointed out by Eldridge [112], Kennedy [181] showed
that a dual effective phonon model for multiphonon relaxation could account for a wide range
of temperatures from high to low ℏ𝜔𝑒𝑓 𝑓. The theoretical model developed in this chapter also
introduces the effects of the more energetic phonons in the multiphonon relaxation process. Given
the value for Δ𝐸𝑖𝑗

𝑁𝑅 (2829 cm-1 between 4S3/2 and 4F9/2), phonons of energy beyond 377 cm-1

could be involved in the process, effectively skewing the phonon density of states. On the other
hand, from the Raman spectrum shown in Figure 33c, it’s expected that the calculated effective
phonon frequencies should be close to the most dominant phonon line (◂), as confirmed by
the experimental results from Chapter 5, since it deals with the same host matrix. As shown
in Figure 33, three phonons of energy 355 cm-1 are responsible for populating the 2H11/2 level,
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Figure 33 – Visual representation of the multiphonon assisted UC process. a): simplified version
of the energy diagram for Er3+; b): zoomed in section of the thermally coupled 2H11/2
and 4S3/2 energy levels as well as the 4F9/2, which acts depleting the population of
the latter. The number of phonons acting in each process is represented by three
blue arrows of energy 355 cm-1 and seven of energy 404 cm-1. c): calculated values
of ℏ𝜔𝑖𝑗 (blue) and ℏ𝜔𝑖 (purple) compared to the Raman spectrum; d): comparison
between the predictions of the theoretical model and the FIR experimental data. The
green solid line is the rate equation model while the red dashed one is a least squares
fit for the FIR.

while seven phonons of energy 404 cm-1 are responsible for the nonradiative decay of 4S3/2 to
4F9/2. This process will make the 4F9/2→4I15/2 temperature dependent, so for this process alone,
it’s expected that the transition should increase its luminescence as the temperature rises. From
the rate equation analysis, ℏ𝜔𝑖𝑗 was found to be smaller than the dominant phonon line (377
cm-1). Moreover, the presence of higher energy phonons depleting the population of |4⟩ acts in
this case to shorten the energy separation between the coupled energy levels. One could define
average values for ℏ𝜔 as follows:

ℏ𝜔 = ℏ𝜔𝑖𝑗 + ℏ𝜔𝑖

2 ≈ 380 cm-1 (6.20)

⟨ℏ𝜔⟩ =
𝑞𝑖𝑗ℏ𝜔𝑖𝑗 + 𝑞𝑖ℏ𝜔𝑖

𝑞𝑖𝑗 + 𝑞𝑖
≈ 390 cm-1 (6.21)

The average phonon energy (ℏ𝜔) is thus very close to the dominant Raman line shown in
Figure 33c (◂). The ⟨ℏ𝜔⟩ value on the other hand is slightly larger, thus indicating the influence
of the higher energy phonons in the density of states. In Figure 33 d), a value of 2.92 was found
for 𝛽, 3% bigger than the one obtained from direct FIR measurements. For 𝛼, which is the more
critical parameter, the difference is 2%. The value for ℏ𝜔𝑖𝑗 is close to the one calculated for
Nd3+:Y2O3 NPs [96], thus confirming the appropriateness of the model in finding the best fitting
parameters. From the calculated parameters for Equation 6.1, one can assign an uncertainty of
about 20 cm-1 to the value of Δ𝐸𝑖𝑗

𝑟𝑒𝑎𝑙, which corresponds to an uncertainty of 30 cm-1 to the value
of ℏ𝜔𝑖𝑗. That is the main source of errors in the model, since the other parameters are limited by
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the spectrometer’s resolution, which is only 3 cm-1 around 532 nm. That being said, one finds
the uncertainty of ℏ𝜔 and ⟨ℏ𝜔⟩ as 15 cm-1 and 10 cm-1 respectively. Therefore, the values of
ℏ𝜔 and ⟨ℏ𝜔⟩ are equivalent within the statistical error and are well represented by the dominant
Raman mode.

In conclusion, a Er3+/Yb3-based nanothermometer was characterized by FIR in an UC
configuration, with NPs excitation being performed by a CW laser emitting at 980 nm, within
one important biological window. The experimental results showed a sensitivity of 1.31% and
an accuracy of 0.1 K at 300 K. A rate equation model was derived for the multiphonon assisted
processes in good agreement with the experimental results for a low pump power (below 100 µW)
and small temperature range (up to 347 K). To the best of our knowledge, this is the first report
of such system in the single NP level to provide a rate equation model for the multiphonon
processes. A dual effective phonon model was proposed in order the determine the yttria’s
effective phonon energy, whose average value met the most energetic Raman mode, 377 cm-1. In
this model, phonons of energy both smaller (355 cm-1) and larger (404 cm-1) than the commonly
known cut-off frequency (380 cm-1) are responsible for the thermal redistribution. The former act
populating the upper coupled energy level while the latter act as an indirect depletion of the lower.
This kind of analysis can be transposed to other pumping wavelengths, thus allowing for other
electronic transitions to be explored for nanothermometry. Moreover, the behavior of NPs-based
nanothermometers in different media of biological interest is also important for a more concrete
evaluation of the usefulness of such systems.

To conclude this work, the results from both the Er3+/Yb3 and the Nd3+:Y2O3 NPs will
be compared so that the best system can be chosen for WGM spectroscopy applications. This
analysis takes into account not only the relative sensitivity and accuracy values but also the
excitation and emission wavelengths that can be achieved with the available tunable diode lasers
and that can be easily detected with our setup. One of the key elements for efficient WGM
coupling is keeping the cavity’s temperature stable, since temperature fluctuations will shift
and distort the resonances. Therefore, a nanometric probe can be designed to monitor the local
temperature without significant distortions in the thermal equilibrium. The same laser can be used
for both the WGM spectroscopy and for the nanothermometry measurements, thus simplifying
the experimental setup.
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7 CONCLUSIONS AND PERSPECTIVES

In this thesis, two systems were tested for nanothermometry measurements with individual
yttria NPs: one doped with Nd3+ ions (Chapter 5) and another codoped with Er3+, Yb3+ ions
(Chapter 6). Additionally, in Chapter 3, the WGMs in silica microspheres were calculated around
a pump wavelength of 685 nm, which is one of the available tunable diode lasers for WGM
coupling. The other one being the 980 nm infrared laser used for the experiments in Section
6.3. Since the 685 nm pump wavelength lies in the visible range of the spectrum, it helps with
the WGM coupling and overall alignment of the system. That being said, one can combine that
pump wavelength with one of the two luminescent systems tested in previous chapters. The
4I9/2→4F9/2 absorption band of Nd3+ lies within the range of 680 nm to 690 nm and is thus a
suitable candidate [182, 183]. In addition, Er3+-doped yttria NPs could be characterized as a
temperature sensor under 660 nm excitation [184], however such wavelength lies outside the
tunable diode laser’s range.

In order to test whether or not the Nd3+ emission could be achieved with the visible
tunable diode laser’s wavelength, a length of 1 m of a Nd3+-doped single-mode silica optical
fiber (INO Nd100) was pumped with the 685 nm laser in a configuration similar to the one
shown in Section 5.3.2, so that the fluorescence spectra from the 4F5/2→4I9/2 transition as well
as 4F3/2→4I9/2 could be observed. The fiber emission was collected using a Red Tide USB650
Fiber Optic Spectrometer. Figure 34 shows the emission spectrum for the 4F3/2→4I9/2 centered
around 901 nm and a linear pump power dependency as expected for this single photon process.
The 4F5/2→4I9/2 transition could not be observed due to its lower intensity, particularly at room
temperature. The 685 nm tunable diode laser offers a smooth pump power control, which can
reach up to 10 mW, which is adequate to excite WGMs in a silica microsphere.
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Figure 34 – a) Emission spectrum for the 4F3/2→4I9/2 transition under 685 nm excitation for a
Nd3+ doped fiber. The vertical line is the barycenter around 901 nm. b) log-log plot
of integrated total counts for the transition as a function of the incident pump power.
The red line represents the best apparent linear fit with a slope of (1.0 ± 0.1)
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Taking into account the results from Figure 34, the next stage would be to reproduce
the results from Chapter 5 with the 685 nm pump laser. One could also make a doped Nd3+

microsphere and follow the methodology of Chapter 4 in order to achieve WGM coupling while
the emission spectra is recorded at different temperatures. Finally, the last stage would be to
combine a single Nd3+ doped Y2O3 NPs and an undoped silica microsphere in order to compare
the silica and the yttria performances as a host matrix. Figure 35 represents the experimental
setup for WGMs coupling in a Nd3+-doped microsphere.
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Figure 35 – Experimental setup diagram (left) and energy levels for a Nd3+ doped silica micro-
sphere under 685 nm pump excitation. The blue arrow represents the multiphonon
processes.

In this configuration, several temperature sensing parameters can be assessed at the
same time, such as the resonance line shift, line width and luminescence intensity ratio with the
advantage of a single pump wavelength being used. Those experiments were intended for the
following chapters of this thesis. However, this research suffered greatly from the restrictions
imposed by the coronavirus outbreak of 2020. Since this thesis relies heavily on the access of
laboratory facilities, the extended period of time during which the University was closed had
a negative impact on the experimental results. Moreover, in order to improve the effectiveness
of the WGMs coupling, a five-axis micropositioner (MDE277 Elliot Scientific) was ordered to
control the position of the coupling lens and this purchase was also delayed during that time
frame.

That being said, this research had to be finished prematurely taking into account the
program’s time limit. The experiments regarding the Nd3+-doped microspheres and the downcon-
version in single yttria NPs under 685 nm excitation will thus be treated in future works, since this
particular configuration, to the best of our knowledge, was not yet considered for WGMs-based
sensing applications.
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APPENDIX A – SIZE LIMITS FOR THE EXISTENCE OF LOCAL TEMPERATURE

To determine on which length scales it’s possible to define a local temperature, one can
investigate how small the considered parts can be while still allowing for a description with local
thermalized states. Since modular structures such as a crystal lattice are typical in the description
of solid-state systems, one can consider a system composed of elementary units with short range
interactions. Considering a homogeneous chain of elementary quantum subsystems with nearest
neighbor interactions, the Hamiltonian can be written as [185]:

𝐻 = ∑
𝑖

𝐻𝑖 + 𝐼𝑖,𝑖+1 (A.1)

where 𝑖 labels the elementary subsystems. 𝐻𝑖 is the 𝑖-th subsystem’s Hamiltonian and 𝐼𝑖,𝑖+1

the interaction between the 𝑖-th and (𝑖 + 1)-th subsystems. Periodic boundary conditions were
assumed. It’s possible to form 𝑁𝐺 groups of 𝑛 subsystems each and split the Hamiltonian into
two terms:

𝐻 = 𝐻0 + 𝐼 (A.2)

where 𝐻0 is the sum of the Hamiltonians of the isolated groups through of the operation:

( index 𝑖 → (𝜇 − 1)𝑛 + 𝑗; 𝜇 = 1, … , 𝑁𝐺; 𝑗 = 1, … , 𝑛) (A.3)

Thus:

𝐻0 =
𝑁𝐺

∑
𝜇=1
H𝜇 with

H𝜇 =
𝑛

∑
𝑗=1

𝐻𝑛(𝜇−1)+𝑗 + 𝐼𝑛(𝜇−1)+𝑗,𝑛(𝜇−1)+𝑗+1

(A.4)

and 𝐼 contains the interaction terms of each group with its neighbor group:

𝐼 =
𝑁𝐺

∑
𝜇=1

𝐼𝜇𝑛,𝜇𝑛+1 (A.5)

The eigenstates of 𝐻0, 𝐻0|𝑎⟩ = 𝐸𝑎|𝑎⟩, are given by the direct product of the individual
group eigenstates:

|𝑎⟩ =
𝑁𝐺

∏
𝜇=1

⊗ ∣𝑎𝜇⟩ with (H𝜇 − 𝐼𝜇𝑛,𝜇𝑛+1) ∣𝑎𝜇⟩ = 𝐸𝜇 ∣𝑎𝜇⟩ (A.6)
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where 𝐸𝜇 is the energy a single subgroup and 𝐸𝑎 = ∑𝑁𝐺
𝜇=1 𝐸𝜇. The system can be considered in

thermal equilibrium with the density matrix:

̂𝜌 = 𝑒−𝛽𝐻

𝑍 (A.7)

where 𝑍 is the partition sum and 𝛽 = (𝑘B𝑇)−1 is the inverse temperature with Boltzmann’s
constant 𝑘B and temperature 𝑇. Therefore, to verify if a part 𝐻𝜇0

is in a thermal state, one needs
to calculate the reduced density matrix and compare it to a local canonical state. In order to
perform the necessary trace over all the other parts (𝜇 ≠ 𝜇0), one needs to represent the global
equilibrium state in the basis of the product states |𝑎⟩. Its diagonal elements are:

⟨𝑎| ̂𝜌|𝑎⟩ = ⟨𝑎 ∣e
−𝛽𝐻

𝑍 ∣ 𝑎⟩ = ∫
𝐸1

𝐸0

𝑤𝑎(𝐸)e−𝛽𝐸

𝑍 𝑑𝐸 (A.8)

where 𝐸0 is the energy of the ground state and 𝐸1 the upper limit. 𝑤𝑎(𝐸) is the probability of
obtaining an energy value between 𝐸 and 𝐸 + Δ𝐸 for the total energy of a system in the |𝑎⟩ state,
which can be shown to be a Gaussian [186,187]:

lim
𝑁𝐺→∞

𝑤𝑎(𝐸) = 1
√2𝜋Δ𝑎

exp ⎛⎜⎜⎜
⎝

−
(𝐸 − ̄𝐸𝑎)2

2Δ2𝑎

⎞⎟⎟⎟
⎠

(A.9)

where ̄𝐸𝑎 is the expectation value of 𝐻 in the |𝑎⟩ state and Δ2
𝑎 its variance:

̄𝐸𝑎 = ⟨𝑎|𝐻|𝑎⟩ and

Δ2
𝑎 = ⟨𝑎 ∣𝐻2∣ 𝑎⟩ − ⟨𝑎|𝐻|𝑎⟩2

(A.10)

Since ̄𝐸𝑎 is the sum of the energy eigenvalue of the isolated groups 𝐸𝑎 and a term that
contains the interactions:

̄𝐸𝑎 = 𝐸𝑎 + 𝜀𝑎 (A.11)

𝜀𝑎 and Δ2
𝑎 can be expressed in terms of the interaction:

𝜀𝑎 = ⟨𝑎|𝐼|𝑎⟩ and

Δ2
𝑎 = ⟨𝑎 ∣𝐼2∣ 𝑎⟩ − ⟨𝑎|𝐼|𝑎⟩2

(A.12)

Therefore 𝜀𝑎 is the expectation value and Δ2
𝑎 the squared width of the interactions in the

state |𝑎⟩. Using Equation A.9 to calculate the integral in Equation A.8, one gets:

⟨𝑎|𝜌|𝑎⟩ =1
𝑍 exp (−𝛽 (𝐸𝑎 + 𝜀𝑎) + 𝛽2Δ2

𝑎
2 )

× 1
2

⎡⎢
⎣
erfc ⎛⎜

⎝

𝐸0 − 𝐸𝑎 − 𝜀𝑎 − 𝛽Δ2
𝑎

√2Δ𝑎

⎞⎟
⎠

− erfc ⎛⎜
⎝

𝐸1 − 𝐸𝑎 − 𝜀𝑎 + 𝛽Δ2
𝑎

√2Δ𝑎

⎞⎟
⎠

⎤⎥
⎦

(A.13)
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where erfc(𝑥) is the Gaussian error function:

erfc(𝑥) = 2
√𝜋 ∫

∞

𝑥
e−𝑠2𝑑𝑠 (A.14)

the second error function appears only if the energy has an upper limit. Since that the arguments
of the error function grow as √𝑁G or faster, an asymptotic expansion [64] can be used for 𝑁G ≫ 1:

erfc(𝑥) ≈
⎧{{
⎨{{⎩

exp(−𝑥2)
√𝜋𝑥

for 𝑥 → ∞

2 + exp(−𝑥2)
√𝜋𝑥

for 𝑥 → −∞
(A.15)

Inserting this approximation into Equation A.13, it follows that the second conjugate error function,
which contains the upper bound of the energy spectrum, can be neglected when compared to the
first one, which contains the ground state. For the same reason, the normalization constant in
Equation A.9 is valid even if the energy range doesn’t extend over the entire real values.

Equation A.13 thus reads:

⟨𝑎| ̂𝜌|𝑎⟩ =

⎧{{{{
⎨{{{{⎩

1
𝑍

exp [−𝛽 (𝐸𝑎 + 𝜀𝑎 − 𝛽Δ2
𝑎

2
)] for 𝐸0−𝐸𝑎−𝜀𝑎+𝛽Δ2

𝑎

√2𝑁𝐺Δ𝑎
< 0

exp(−𝛽𝐸0− (𝐸𝑎+𝜀𝑎−𝐸0)2

2Δ2𝑎
)

√2𝜋𝑍 𝐸0−𝐸𝑎−𝜀𝑎+𝛽Δ2𝑎
Δ𝑎

for 𝐸0−𝐸𝑎−𝜀𝑎+𝛽Δ2
𝑎

√2𝑁𝐺Δ𝑎
> 0

(A.16)

The off-diagonal elements ⟨𝑎| ̂𝜌|𝑏⟩ vanish for ∣𝐸𝑎 − 𝐸𝑏∣ > Δ𝑎 + Δ𝑏 because the overlap
of the two Gaussian distributions is negligible. For ∣𝐸𝑎 − 𝐸𝑏∣ < Δ𝑎 + Δ𝑏, the transformation
involves an integral over frequencies and thus these terms are also negligible when compared to
the diagonal ones. It’s now necessary to test under what conditions the density matrix ̂𝜌 can be
approximated by a product of canonical density matrices with temperature 𝛽loc for each subgroup.
One needs to verify whether the logarithm of Equation A.16 is a linear function of the energy:

ln(⟨𝑎| ̂𝜌|𝑎⟩) ≈ −𝛽loc𝐸𝑎 + 𝑐 (A.17)

where 𝛽loc and 𝑐 are constants. It’s worth commenting that Equation A.17 does not imply that
the occupation probability of an eigenstate |𝜑⟩ with energy 𝐸𝜑 and a product state |𝑎⟩ with the
same energy 𝐸𝑎 ≈ 𝐸𝜑 are equal. For (𝛽loc > 0), Equation A.17 is only valid for:

𝐸𝑎 + 𝜀𝑎 − 𝐸0

√𝑁𝐺Δ𝑎
> 𝛽 Δ2

𝑎

√𝑁𝐺Δ𝑎
(A.18)

and:
−𝜀𝑎 + 𝛽

2 Δ2
𝑎 ≈ 𝑐1𝐸𝑎 + 𝑐2 (A.19)

where 𝑐1 and 𝑐2 are constants. Temperature thus becomes intensive if the constant 𝑐1 becomes
negligible. Otherwise, temperature would not be intensive, although it might exist locally. To
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ensure that the density matrix of each subgroup is approximately canonical, Equation A.19 must
be valid for each subgroup:

−
𝜀𝜇−1 + 𝜀𝜇

2 + 𝛽
4 (Δ2

𝜇−1 + Δ2
𝜇) + 𝛽

6 Δ̃2
𝜇 ≈ 𝑐1𝐸𝜇 + 𝑐2 (A.20)

where 𝜀𝜇 = ⟨𝑎 ∣𝐼𝜇𝑛,𝜇𝑛+1∣ 𝑎⟩ with 𝜀𝑎 = ∑𝑁𝐺
𝜇=1 𝜀𝜇 and:

Δ2
𝜇 = ⟨𝑎 ∣H 2

𝜇∣ 𝑎⟩ − ⟨𝑎 ∣H𝜇∣ 𝑎⟩
2

and

Δ̃2
𝜇 =

𝜇+1

∑
𝜈=𝜇−1

⟨𝑎 ∣H𝜈−1H𝜈 +H𝜈H𝜈−1∣ 𝑎⟩ − 2 ⟨𝑎 ∣H𝜈−1∣ 𝑎⟩ ⟨𝑎 ∣H𝜈∣ 𝑎⟩
(A.21)

It is thus sufficient to satisfy Equations A.18 and A.20 for an energy range 𝐸min ≤ 𝐸𝜇 ≤
𝐸max. The density of states for a large many body system is typically a rapidly growing function of
the energy. On the other hand, if the system is in thermal equilibrium, the occupation probabilities
decay exponentially with the energy. The product of these two functions thus gives a peak at the
expectation value of the energy ( ̄𝐸). Therefore, a suitable energy range should be centered at this
peak and large enough to sufficiently cover it. On the other hand it must not be larger than the
range of values 𝐸𝜇 can take on. A suitable choice for 𝐸min and 𝐸max is thus:

𝐸min = max ([𝐸𝜇]
min

, 1
𝛼

̄𝐸
𝑁𝐺

+
𝐸0
𝑁𝐺

)

𝐸max = min ([𝐸𝜇]
max

, 𝛼
̄𝐸

𝑁𝐺
+

𝐸0
𝑁𝐺

)
(A.22)

where 𝛼 ≫ 1 is a scaling parameter for the energy range and ̄𝐸 will depend on the global
temperature. [𝐸𝜇]

min
and [𝐸𝜇]

max
are the minimal and maximal values 𝐸𝜇 can take on.

Now that the basic requirements for the existence of a local temperature were outlined,
it’s possible to apply this theory to simple systems, such as a harmonic chain. For a chain of
𝑁𝐺 ⋅ 𝑛 particles of mass 𝑚 and spring constant √𝑚𝜔0, the Hamiltonian in Equation A.1 reads:

𝐻𝑖 = 𝑚
2 𝑝2

𝑖 + 𝑚
2 𝜔2

0𝑞2
𝑖

𝐼𝑖,𝑖+1 = −𝑚𝜔2
0𝑞𝑖𝑞𝑖+1

(A.23)

where 𝑝𝑖 is the momentum of the particle at site 𝑖 and 𝑞𝑖 the displacement from its equilibrium
position 𝑖 ⋅ 𝑎0 with 𝑎0 being the distance between neighboring particles at equilibrium.

The Hamiltonian of each group can be diagonalized by a Fourier transform:

𝐸𝑎 =
𝑁G

∑
𝜇=1

𝐸𝜇 with 𝐸𝜇 = ∑
𝑘

𝜔𝑘 (𝑛𝑎
𝑘(𝜇) + 1

2) (A.24)

where 𝑘 = 𝜋𝑙/ (𝑎0(𝑛 + 1)) (𝑙 = 1, 2, … , 𝑛) and the frequencies 𝜔𝑘 are given by:
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𝜔2
𝑘 = 4𝜔2

0 sin2 (𝑘𝑎0
2 ) (A.25)

𝑛𝑎
𝑘(𝜇) is the occupation number of mode 𝑘 of group 𝜇 in the state |𝑎⟩. Units of ℏ = 1 were chosen

for simplicity.

The expectation values of the group interactions are null (𝜀𝜇 = 0), while the widths
Δ2

𝜇 depend on the occupation numbers 𝑛𝑘 and on the energies 𝐸𝜇. In order to apply Equations
A.18 and A.20, it’s possible to use the Debye approximation [188]. The approximation requires
that 𝑛 ≫ 1, 𝑎0 ≪ 𝑙, where 𝑙 = 𝑛𝑎0 and the length of the chain to be finite. Following this
approximation, one gets 𝜔𝑘 = 𝑣𝑘 with the velocity of sound 𝑣 = 𝜔0𝑎0 and cos (𝑘𝑎0/2) ≈ 1. The
width of the group interaction is thus:

Δ2
𝜇 = 4

𝑛2 𝐸𝜇𝐸𝜇+1 (A.26)

where the approximation 𝑛 + 1 ≈ 𝑛 was used. The relevant energy scale arises from the thermal
expectation value of the entire chain:

̄𝐸 = 𝑁𝐺𝑛𝑘𝐵Θ ( 𝑇
Θ)

2
∫

Θ/𝑇

0

𝑥
e𝑥 − 1𝑑𝑥 (A.27)

and the ground state energy is given by:

𝐸0 = 𝑁𝐺𝑛𝑘𝐵Θ ( 𝑇
Θ)

2
∫

Θ/𝑇

0

𝑥
2𝑑𝑥 =

𝑁𝐺𝑛𝑘𝐵Θ
4 (A.28)

and Θ is the Debye temperature [188]. For the first criterion, Equation A.18, for a given 𝐸𝑎 =
∑𝜇 𝐸𝜇, Δ2

𝜇 is largest if ̃𝐸 ≡ 𝐸𝜇∀𝜇. Therefore, Equation A.18 becomes:

̃𝐸 −
𝐸0
𝑁𝐺

− 4𝛽
𝑛2

̃𝐸2 > 0 (A.29)

which sets a lower limit on 𝑛. For temperatures where ̄𝐸 < 𝐸0, this bound is strongest for low
energies ̃𝐸 and for ̄𝐸 > 𝐸0, it is strongest for high energies ̃𝐸. Since Equation A.20 gives a more
strict criterion than Equation A.18 for ̄𝐸 > 𝐸0, only Equation A.29 is considered for ̄𝐸 < 𝐸0.
In this range, Equation A.29 is hardest to satisfy for low energies ( ̃𝐸 = ( ̄𝐸/𝛼𝑁𝐺) + (𝐸0/𝑁𝐺)).
Therefore, the lower limit for 𝑛 is given by:

𝑛 > Θ
𝑇

𝛼
4 ̄𝑒 (4 ̄𝑒

𝛼 + 1)
2

(A.30)

where ̄𝑒 = ̄𝐸/ (𝑛𝑁𝐺𝑘𝐵Θ). To test the condition of Equation A.20, taking the derivative with
respect to 𝐸𝜇 on both sides, one gets:

𝛽
𝑛2 (𝐸𝜇−1 + 𝐸𝜇+1 − 2

𝐸0
𝑁𝐺

) + 2𝛽
𝑛2

𝐸0
𝑁𝐺

≈ 𝑐1 (A.31)
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Since the energy dependent term must be much smaller than one:

𝛽
𝑛2 (𝐸𝜇−1 + 𝐸𝜇+1 − 2

𝐸0
𝑁𝐺

) ≤ 𝛿 ≪ 1 (A.32)

which is hardest to fulfill for high energies 𝐸𝜇−1 and 𝐸𝜇+1. Thus, taking 𝐸𝜇−1 and 𝐸𝜇+1 equal
to the upper bound of the range in Equation A.22:

𝑛 > 2𝛼
𝛿

Θ
𝑇 ̄𝑒 (A.33)

where the accuracy parameter 𝛿 ≪ 1 quantifies the value of the energy dependent part. Since the
constant part in the left hand-side of Equation A.32 satisfies:

2𝛽
𝑛2

𝐸0
𝑁𝐺

<
√𝛿
𝛼

⎛⎜
⎝

1
√2

−
√𝛿
𝛼

⎞⎟
⎠

≪ 1 (A.34)

and from Equation A.19, the temperature becomes intensive if the constant 𝑐1 vanishes:

∣𝑐1∣ ≪ 1 ⇒ 𝛽loc = 𝛽 (A.35)

the temperature is thus intensive. Inserting Equation A.27 into Equation A.30 and Equation A.33,
one can now calculate the minimal 𝑛 for a given 𝛿, 𝛼, Θ and 𝑇. Typical values for the accuracy
parameters 𝛼 and 𝛿 are 10 and 1/100 respectively [189, 190]. Since 𝑛min ∝ 𝛼, the larger one
chooses the energy range, the larger has to be the number of particles per group. Moreover,
for high temperatures only, 𝑛min ∝ 𝛿−1, which means that one needs more particles per group
to obtain a canonical state with greater accuracy. Finally, the minimal length scale on which
intensive temperatures exist in solids is thus given by:

𝑙min = 𝑛min𝑎0 (A.36)

where 𝑎0 is the lattice constant.

Since 𝑛min was calculated for a one dimensional model, the results should be valid for
one dimensional or at least quasi one dimensional structures of the respective materials. For
yttria, a lattice constant of 1.059 nm was reported for nanotubes [191] and similar values were
reported for other geometries [192–194]. Moreover, its Debye temperature is about 435 K, as
will be discussed in Chapter 2. Equations A.30 and A.33 can thus be solved for such parameters.

From Figure 36, one gets for 𝑙min a value of 1.5 µm, which is about 10 times larger than
the average sizes for the NPs used in this thesis. This value comes from the large lattice parameter,
which requires a larger number of particles per group in order to reach a thermal state. On the
other hand, the nanothermometry measurements performed in Chapters 5 and 6 showed that
those systems were capable of reaching a thermal equilibrium for NPs as small as 110 nm in
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Figure 36 – Log-log-plot of 𝑙𝑚𝑖𝑛 from Equation A.30 (dashed line) and from Equation A.33
(solid line) for 𝛼=10 and 𝛿=0.01 for Y2O3 as a function of the temperature. Local
temperature exists in the shaded area.

diameter. Therefore, the larger 𝑙min result can be understood as an overestimation given by the
limitations of the simple harmonic chain model.
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