
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MICHAEL OLIVEIRA DA CRUZ

Applying Language Modeling to Detect Anomalies in Bus Trajectories

Recife
2022

MICHAEL OLIVEIRA DA CRUZ

Applying Language Modeling to Detect Anomalies in Bus Trajectories

Tese apresentada ao Programa de Pós-graduação
em Ciência da Computação do Centro de Infor-
mática da Universidade Federal de Pernambuco,
como requisito para obtenção do título de Doutor
em Ciência da Computação.

Área de Concentração: Inteligência Computa-
cional
Orientador: Luciano de Andrade Barbosa

Recife
2022

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

C957a Cruz, Michael Oliveira da

 Applying language modeling to detect anomalies in bus trajectories / Michael
Oliveira da Cruz. – 2022.

 99 f.: il., fig., tab.

 Orientador: Luciano de Andrade Barbosa.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2022.

 Inclui referências.

 1. Inteligência artificial. 2. Modelos de linguagem. I. Barbosa, Luciano de
Andrade (orientador). II. Título.

 006.31 CDD (23. ed.) UFPE - CCEN 2022-124

Michael Oliveira da Cruz

“Applying Language Modeling to Detect Anomalies in Bus Trajectories”

Tese de Doutorado apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal
de Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação. Área de Concentração: Banco de
Dados

Aprovado em: 01/07/2022.

Orientador: Prof. Dr. Luciano de Andrade Barbosa

BANCA EXAMINADORA

__
Prof. Dr. Kiev Santos da Gama
Centro de Informática/UFPE

__
Prof. Dr. Paulo Salgado Gomes de Mattos Neto

Centro de Informática/UFPE

__
Prof. Dr. Cláudio de Souza Baptista

Centro de Engenharia Elétrica e Informática, Sistemas e Computação /UFCG

__
Prof. Dr. Clodoveu Augusto Davis Junior

Departamento de Ciência da Computação /UFMG

Prof. Dr. José Antônio Fernandes de Macedo

Departamento de Computação/UFC

To my family for all support and love.

ACKNOWLEDGEMENTS

First of all, I would like to thank my mother, Avanete Oliveira, who always supports me
in all moments and reminds me that education is the most valuable treasure. Every day
I learn more with her strength, love, and faith. Thank you for everything.

I sincerely thank my advisor, Prof. Luciano de Andrade Barbosa, for providing guid-
ance and valuable insights into this research and for having patience in motivating and
helping me to see beyond. Thank you for the opportunity to work with you.

My most enormous thanks to my family, primarily brothers and sisters, for supporting
and advising me to continue pursuing my goals.

Thank you to Karla Mirella for supporting me and putting up with my stresses and
complaints and for valuable advice and encouragement. Thank you for your patience.

Thank the Lab colleagues for all the conversations and insights and for making those
years easier and more enjoyable.

And to many others who have been a part of this journey.

ABSTRACT

Discovering anomalous bus trajectories in urban traffic can help transportation agen-
cies to improve their services by providing a better plan to deal with unexpected events
such as weather phenomena, detours, or accidents. To help identifying the potential
anomaly cause, we can detect anomalous trajectories and also pinpoint where the anomaly
is located. However, a big challenge to performing this task is the lack of labeled anomalous
trajectory data. The lack of labeled data hinders model evaluation, and the construction
of inductive learning approaches. Additionally, previous approaches heavily rely on pre-
processing tasks to segment trajectories before detecting the anomaly. This strategy is
not only costly but also may lose important information because segments are analyzed
individually without considering the relationship between segments. Lastly, only a few
strategies in the literature propose online solutions, which restricts their real-time contri-
bution. On this basis, this thesis aims to propose an online approach based on inductive
learning to detect anomalous bus trajectories and pinpoint the anomalous segments. To do
that, we initially observed that bus trajectories are pre-defined and well-formed, and they
include route labels. Based on that, we supposed that a supervised approach could learn
to classify those bus trajectories according to the routes and indirectly detect which ones
are anomalous. Thus, we propose a multi-class classifier called Spatial-Temporal Outlier
Detection as our first solution to detect anomalous trajectories. We use the uncertainty of
the classification by applying the entropy function over the class distribution. Although
extensive experiments have shown promising results, our first solution cannot pinpoint
where the anomalous segments occur. To overcome that restriction, our intuition is that
trajectories can be represented as a sequence of tokens similar to word sentences allowing
us to apply a language model. Consequently, we propose using a deep generative encoder-
decoder Transformer to learn the relationship between sequential trajectory points based
on the self-attention mechanism. Our final solution does not require any manual feature
extraction and can be easily adapted to other types of trajectories (e.g., car, people, and
vessels). We have performed an extensive experimental evaluation that shows: (1) our
approach is effective for both trajectory and sub-trajectory anomaly detection; and (2) it
outperforms the baselines in some scenarios and statistically achieves comparable results
in the others.

Keywords: anomaly score; anomalous segments; representation learning; language model;
transformer; gps trajectory.

RESUMO

A descoberta de trajetórias anômalas de ônibus no tráfego urbano pode ajudar as
agências de transporte a melhorar seus serviços, fornecendo um melhor planejamento para
lidar com eventos inesperados, como fenômenos climáticos, desvios ou acidentes. Para aju-
dar a identificar a causa potencial da anomalia, podemos detectar trajetórias anômalas
e também identificar onde a anomalia está localizada. No entanto, um grande desafio
para realizar esta tarefa é a falta de datasets de trajetórias publicamente disponíveis. A
falta desses dados rotulados para trajetórias anômalas também dificulta a avaliação de
modelos e a construção de abordagens de aprendizagem indutivas. Além disso, as abor-
dagens anteriores dependem fortemente de tarefas de pré-processamento para segmentar
trajetórias antes de detectar a anomalia. Essa estratégia não é apenas cara, mas tam-
bém pode perder informações importantes porque os segmentos são analisados individ-
ualmente sem considerar o relacionamento entre os segmentos. Por fim, poucas estratégias
na literatura propõem soluções online, o que restringe sua contribuição em tempo real.
Com base nisso, esta tese tem como objetivo propor uma abordagem online baseada em
aprendizado indutivo para detectar trajetórias anômalas de ônibus e identificar os seg-
mentos anômalos. Para isso, inicialmente observamos que as trajetórias de ônibus são
pré-definidas e bem formadas, e incluem a informação de rotas. Com base nisso, supomos
que uma abordagem supervisionada poderia aprender a classificar essas trajetórias de
ônibus de acordo com as rotas e detectar indiretamente quais delas são anômalas. Assim,
propomos um classificador multiclasse chamado Spatial-Temporal Outlier Detection como
nossa primeira solução para detectar trajetórias anômalas. Usamos a incerteza da classi-
ficação aplicando a função de entropia sobre a distribuição de classes para gerar um score
de anomalia. Embora experimentos extensivos tenham mostrado resultados promissores,
nossa primeira solução não pode identificar onde ocorrem os segmentos anômalos. Para
superar essa restrição, nossa intuição é que as trajetórias podem ser representadas como
uma sequência de tokens semelhantes a frases de palavras que nos permitem aplicar um
modelo de linguagem. Consequentemente, propomos usar uma abordagem baseada na ar-
quitetura generativa de redes neuronais profundas chamada encoder-decoder Transformer
para aprender a relação entre pontos de trajetória sequenciais com base no mecanismo
de autoatenção. Nossa solução final não requer nenhuma extração manual de recursos e
pode ser facilmente adaptada a outros tipos de trajetórias (por exemplo, carro, pessoas
e embarcações). Realizamos uma extensa avaliação experimental que mostra: (1) nossa
abordagem é eficaz para detecção de anomalias de trajetória e subtrajetória; e (2) su-
pera os métodos usados para comparação em alguns cenários e alcança estatisticamente
resultados comparáveis em outros cenários.

Palavras-chaves: score de anomalia; segmentos anômalos; representação de aprendizado;
modelos de linguagem; transformer ; trajetórias de gps.

LIST OF FIGURES

Figure 1 – Trajectory data mining context . 17
Figure 2 – Segmentation approaches . 26
Figure 3 – Outlier detection approaches . 27
Figure 4 – Unrolled Recurrent Neural Network . 28
Figure 5 – Encoder-Decoder architecture . 29
Figure 6 – Self-Attention matrix correlation . 30
Figure 7 – Overview of our anomaly score approach 45
Figure 8 – PAC model . 46
Figure 9 – Geo embedding pipeline . 49
Figure 10 – Visualization of PAC embeddings using T-SNE 55
Figure 11 – Example of spatial anomaly . 59
Figure 12 – Results of spatial anomaly . 59
Figure 13 – Example of temporal anomaly type I 60
Figure 14 – Results of temporal anomaly type I . 61
Figure 15 – Example of temporal anomaly type II 61
Figure 16 – Results of temporal anomaly type II 62
Figure 17 – The trajectory anomaly detection solution proposed in this work 65
Figure 18 – Hamming distance . 69
Figure 19 – Example of synthetic anomaly . 70
Figure 20 – PR-AUC of the approaches for route 1 on the Dublin dataset and route

54 on the Recife dataset . 74
Figure 21 – Detection on real-world trajectories . 76
Figure 22 – MobApp Architecture . 77
Figure 23 – WebApp Exploratory Data Analysis 78
Figure 24 – WebApp Anomaly Scores . 79
Figure 25 – Precision-Recall curve of different anomaly detection strategies in a

given route . 80
Figure 26 – Detection on real-world trajectories . 81
Figure 27 – MobApp Architeture Deployment Diagram 81
Figure 28 – Metadata end-point . 82
Figure 29 – Trajectory end-point . 82
Figure 30 – AE examples . 88
Figure 31 – Latent space for 68 routes of bus trajectories for Recife Dataset 89
Figure 32 – VAE examples . 89

Figure 33 – Anomalous trajectory prediction using DeepAnt approach. The orange
trajectory is the prediction and the blue trajectory is the input anoma-
lous trajectory . 90

LIST OF TABLES

Table 1 – Stay point detection solutions . 33
Table 2 – Trajectory Outlier detection solutions 42
Table 3 – Values of hyperparameters of PAC approach 51
Table 4 – Values of hyperparameters of STOD . 53
Table 5 – Values of hyperparameters of RioBusData 53
Table 6 – Results of PAC classification using the original features and PAC em-

beddings . 54
Table 7 – Results of PAC and CRF models for stay point classification 55
Table 8 – Average of results of our outlier model and RioBusData 56
Table 9 – Entropy Distribution of STOD on the Test Set 56
Table 10 – Results of STOD embeddings . 58
Table 11 – Number of unique points before and after the Grid Mapping 70
Table 12 – Values of hyper-parameters of Transformer 71
Table 13 – Results of anomaly trajectory detection on the Dublin dataset 72
Table 14 – Results of anomaly trajectory detection on the Recife dataset 73
Table 15 – Results for the region anomaly detection models 74
Table 16 – Hypothesis test for F1 on the Dublin dataset 75
Table 17 – Hypothesis test for F1 on the Recife dataset 75

LIST OF ABBREVIATIONS AND ACRONYMS

AE Autoencoder

ANNS Artificial Neural Network

BCE Binary Cross-Entropy

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

CRF Conditional Random Field

D-T Displacement Time

D-S Displacement Spatial

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DBTOD Density-Based Outlier Trajectory Detection

ED Edit Distance

GM-VSAE Gaussian Mixture Variational Sequence AutoEncoder

GPS Global Positioning System

GRU Gated Recurrent Unit

GTFS General Transit Feed Specification

HTTPS Hypertext Transfer Protocol Secure

iBAT Isolation-Based Anomalous Trajectory

iBOAT Isolation-based Online Anomalous Trajectory Detection

IBTOD Isolation-Based Method To Detect Outliers

iFOREST Isolation Forest

JSON JavaScript Object Notation

KNN K-Nearest Neighbors

LM Language Model

LOTAD Long-Term Traffic Anomaly Detection

LRP Layer-Wise Relevance Propagation

LRT Likelihood Ratio Test

LSTM Long Short-Term Memory

MEX Minimal Examination

MSE Mean Squared Error

MSN Statical Method for Stop, Move and Noise

NLP Natural Language Processing

OC-NN One Class Neural Networks

OC-SVM One Class SVM

OPTICS Ordering Points To Identify the Clustering Structure

ORM Object Relational Mapper

PAC Point Activity Classification

POIs Point of Interest

RNN Recurrent Neural Network

S-D Source and Destination

SMoT Stops and Moves of Trajectories

STOD Spatial-Temporal Outlier Detection

STR Spatial-Temporal Relations

TF-IDF Term Frequency-Inverse Document Frequency

TPRO Time-dependent Popular Routes Based Trajectory Outlier Detection

TPRRO
Time-dependent Popular Routes Based Real-Time Trajectory Outlier
Detection

TRDM Trend-Residual Dual Modeling

TTG Time-Dependent Transfer Graph

TTI Time-Dependent Transfer Index

UT Universal Transformer

UT-ATD Universal Transformer for Anomalous Trajectory Detection

VAE Variational Autoencoder

CONTENTS

1 INTRODUCTION . 15
1.1 CONTEXTUALIZATION . 15
1.2 MOTIVATION . 17
1.3 OBJECTIVE . 20
1.4 LIST OF PUBLICATIONS . 21
1.5 STRUCTURE OVERVIEW OF THE PROPOSAL 21

2 BACKGROUND . 23
2.1 TRAJECTORY DEFINITION . 23
2.2 ANOMALY DETECTION . 24
2.2.1 Anomaly detection on trajectory . 25
2.3 DEEP LEARNING BACKGROUND . 28
2.4 CONCLUSION . 31

3 LITERATURE REVIEW . 32
3.1 STAY-POINT DETECTION . 32
3.2 ANOMALOUS BUS TRAJECTORIES . 33
3.2.1 Rule-based Detection . 34
3.2.2 Unsupervised Detection . 37
3.2.3 Supervised Detection . 39
3.2.4 Comparative Analysis . 40
3.3 CONCLUSION . 43

4 LEARNING GPS POINT REPRESENTATION TO DETECT ANOMA-
LOUS BUS TRAJECTORIES . 44

4.1 PROBLEM DEFINITION . 44
4.2 METHODOLOGY . 44
4.2.1 Point Activity Classification . 45
4.2.2 Anomaly Trajectory Detection . 48
4.2.3 Training . 49
4.3 DATA DESCRIPTION AND SETUP . 50
4.3.1 Experimental Setup . 50
4.3.2 Evaluation Metrics . 53
4.4 RESULT AND DISCUSSION . 54
4.4.1 PAC Evaluation . 54
4.4.2 Route ID Classifier Evaluation . 55

4.4.3 Outlier Detection Assessment . 57
4.5 CONCLUSION . 62

5 APPLYING A TRANSFORMER LANGUAGE MODEL FOR ANOMALY
DETECTION IN BUS TRAJECTORIES 64

5.1 PROBLEM FORMULATION . 64
5.2 METHOD . 64
5.2.1 Grid Mapping . 65
5.2.2 Transformer Encoder . 66
5.2.3 Transformer Decoder . 67
5.2.4 Training . 68
5.2.5 Anomaly Detector . 68
5.3 DATA DESCRIPTION AND SETUP . 69
5.3.1 Experimental Setup . 69
5.4 RESULTS AND DISCUSSION . 72
5.4.1 Trajectory Anomaly Detection . 73
5.4.2 Region Anomaly Detection . 74
5.5 CONCLUSION . 76

6 MOBAPP: A DATA VISUALIZATION TOOL FOR TRAJECTORY
ANALYSIS . 77

6.1 MOBAPP ARCHITECTURE . 78
6.1.1 WebApp . 78
6.1.2 REST API . 80
6.2 USE CASES . 83
6.3 CONCLUSIONS . 84

7 CONCLUSIONS AND FUTURE WORK 85
7.1 THESIS CONTRIBUTIONS . 86
7.2 FAILED ATTEMPTS . 87
7.3 FUTURE WORK . 90

REFERENCES . 91

15

1 INTRODUCTION

1.1 CONTEXTUALIZATION

Anomaly detection is a multidisciplinary field. According to Chandola, Banerjee and Ku-
mar (2009), the study of anomaly techniques starts in the Statistics community in the
mid-19th century and extends to other research areas such as, cyber-security (YOUSEFI-

AZAR et al., 2017), medical domain (IAKOVIDIS et al., 2018), military surveillance (BROTH-

ERTON; JOHNSON, 2001), and intelligent transportation systems (LIU; PI; JIANG, 2013).
Furthermore, the field presents solutions using largely consolidated techniques such as clas-
sification (BESSA et al., 2015), clustering (YING; XU; YIN, 2009), and semi-supervised (WU;

PRASAD, 2017).
The literature introduces anomaly in different ways. For instance, (CHALAPATHY;

CHAWLA, 2019) defines it as instances that stand out as dissimilar to all others. Another
definition considers it as a pattern in data that is different from normal behavior (ZHENG,
2015). In the context of this work, we consider anomalous points the ones located fur-
ther away from most of the data according to aspects such as spatial, temporal, spatio-
temporal, and directional aspects. For example, spatial anomalies are related to points
that spatially diverge from regular ones, such as bus deviation from regular routes 1 (CRUZ;

BARBOSA, 2020). Temporal anomaly is related to the unusual changes in temporal conti-
nuity of the data, such as bus delays and flash crashes in financial markets (GUPTA et al.,
2013).

Anomalies can reveal interesting insights since they can be induced for various reasons.
For example, anomalous driving behavior from taxi GPS traces can be intentional to
overcharge tourists by taking a longer path (LV et al., 2017; ZHANG et al., 2011; CHEN et al.,
2013). Another example is credit/debit card fraud detection, which can reveal whether
an incoming transaction fits well with the user’s previous profile or behavior(KALID et al.,
2020). Similarly, an outlier detection method can expose a hacking attack by discovering
an unusual traffic pattern in a network(AHMED; MAHMOOD; HU, 2016).

Many aspects influence the behavior of public transportation vehicles in a city. In reg-
ular conditions, factors such as the day of the week, the hour of the day, and the current
location of the buses in their pre-assigned route are good indicators of their behavior (KO-

RMÁKSSON et al., 2014). On the other hand, due to unexpected situations (e.g., weather
conditions, detours, accidents, celebrations, disasters, or other events), buses can present
unusual spatial or temporal behavior. Finding such anomalies 2 may help transportation
agencies improving its services, for example, by releasing more buses according to demand,
1 A route can be defined as a set of road segments (LIU et al., 2017), whereby journeys in this route

generate trajectories on different period of time
2 In this work, we use the terms outlier, anomaly, and abnormality mutually.

16

redefining routes due to accident or notifying bus drivers about detours.
Detecting bus anomalous trajectories is our main focus on this thesis. However, anomaly

detection is not an isolated task because it depends on data quality, and Global Position-
ing System (GPS) trajectory datasets are traditionally noisy and voluminous which make
this a challenging task. Additionally, algorithms that deal with trajectories have their
performance hurt when the input trajectories are sparse (LI et al., 2013). Therefore, the
literature suggests preprocessing data to improve data quality, as shown in Figure 1 that
summarizes the trajectory data mining field and its tasks. The first activities are related to
the preprocessing tasks such as noise filtering, segmentation, map-matching, compression,
and stay-point detection (ZHENG, 2015). Among those tasks, we focus on segmentation
(orage rectangle) and stay-point detection (blue rectangle) for some reasons. First, the
segmentation task splits trajectories into segments to reduce computational complexity
and enables mining sub-trajectories patterns. Second, the stay-point detection discovers
points where objects or individuals stayed for a while in a trajectory. Those points are
important because they can describe Point of Interest (POIs) (LIU et al., 2013), and they
together can show, for example, individuals’ daily moving activities, such as going from a
workplace to a restaurant or from a hotel to an airport. In brief, the stay-point detection
not only allows adding semantic meaning to raw trajectories but also reduces redundant
points because one stay-point replaces a set of neighboring points in a raw trajectory.

After the preprocessing step, as shown in Figure 1, we focus our attention on the
Trajectory Outlier Detection (dark blue rectangle), which is a core activity/task in the
data mining field. There are some specific challenges in performing this task. The lack
of labeled datasets limits the development of methods for learning such assumptions and
thresholds by training with labels (i.e., supervised learning). In addition, the validation
of outlier detection methods is complex due to the lack of labels. Fourth, little attention
has been paid to finding anomalous regions in an online way (ZHANG et al., 2021).

Previous works in this area consider methods that make assumptions or restrictions
about the data. For example, statistical-based and distance-based techniques rely on
thresholds that are hard to estimate because require profound knowledge about the do-
main (GE et al., 2010; PANG et al., 2011). We intend to explore those gaps in the trajectory
data mining context, particularly in GPS trajectories.

Overall, Figure 1 presents other auxiliary and core tasks that are not our focus but
are relevant to the field. For example, along with the previous preprocessing and tra-
jectory outlier detection tasks, other relevant research topics include trajectory indexing
and retrieval, trajectory representations (matrix, tensors, and graph), trajectory pattern
mining, etc. In brief, as trajectory data mining is a large domain, our research focuses
only on the preprocessing steps and trajectory outlier detection.

This thesis hence provides a research contribution in both scenarios: preprocessing
and trajectory anomaly detection. For that, we propose a novel point activity representa-

17

tion for bus trajectories, a supervised and a semi-supervised approach for bus trajectory
anomaly detection.

Figure 1 – Trajectory data mining context

Source: Adapted from ZHENG (2015)

1.2 MOTIVATION

With the advances in GPS devices and in smart city infrastructure, more and more mobil-
ity data has been generated (JI et al., 2020; ZHENG, 2015). Vehicles, smartwatches, traffic
signals, and mobile phones, only to name a few, generate a massive volume of trajectory
data. These data offer an unprecedented opportunity to discover rich information about
traffic behavior, people mobility, and weather impact(ZHAO et al., 2020; BOURITSAS et al.,
2019). Particularly in the traffic context, which is easily influenced by external factors
(e.g., accidents, detours, events, and weather conditions), trajectory anomaly detection
is crucial to understanding the traffic behavior and support better decision-making by
transit authorities.

The goal of trajectory outlier detection is to determine which instances stand out as
dissimilar to all others (CHALAPATHY; CHAWLA, 2019). Effective methods find anomalous
instances in a data-driven fashion and open the opportunity to understanding the cause
of abnormal trajectories. As an illustration, (PAN et al., 2013) use an approach to detect
anomalous segments along with mining relevant terms on social media to describe the
traffic anomaly. In the same direction, (WANG et al., 2018) propose a hierarchical cluster
method to discover abnormal trajectories and analyze the cause of anomalies in the taxi
context. In summary, detecting outlier trajectories along with the anomalous segments
(region) can provide useful information for transportation agencies to improve their ser-
vices and other real applications as follows:

18

Example 1: A car ridesharing company might store thousands of daily trajectories to
suggest the best routes to its riders and drivers. Therefore, finding anomalous trajecto-
ries is an essential feature since it can be helpful to recommend alternative paths, free
of anomalies such as traffic congestions, and alert riders or penalize drivers when the
recommended paths by its app are not followed.
Example 2: Public transportation agencies face traffic problems such as congestion,
accident, and poor weather conditions in large cities worldwide. At the same time, these
agencies need to serve the population by making real-time decisions to deal with these
issues, such as proposing alternative routes or releasing more buses. Given that, an online
trajectory anomaly detection approach can identify problematic bus trips to allow transit
authorities to intervene as quickly as possible.

In this work, we focus on detecting anomalies in bus trajectories. Buses follow a pre-
defined route, and changes in traffic can affect it. For example, a fallen tree on the road
can cause traffic congestion, and buses can rarely detour their paths. Furthermore, rainy
weather conditions slow traffic flow. Conversely, taxis can drive away from traffic problems
by getting alternative routes. In summary, a chain of events can modify traffic behavior,
and bus routes do not usually change according to the driver’s preferences (KONG et al.,
2018).

In the literature, many solutions to detect anomalous trajectories have been proposed
in unsupervised or supervised ways (KONG et al., 2018; WANG et al., 2018; CHEN et al.,
2016). Unsupervised strategies are largely adopted, since they do not rely on data labeling
to learn how to group similar points and separate the dissimilar ones. On the other
hand, there are fewer supervised approaches to solve this problem because of the lack of
available labeled data. Additionally, even with labeled data, supervised anomaly detectors
have sub-optimal results because of the class imbalance problem (CHALAPATHY; CHAWLA,
2019). Even though it is a challenge to use a supervised approach, it can simplify the
process of feature extraction and reduce some data assumptions. For instance, Bessa et al.
(2015) and Raymond and Imamichi (2016) propose supervised approaches without using
feature extraction or data distribution restrictions. In contrast, most methods that do not
use a learning strategy depend on some constraints (e.g., distance threshold, probability
distribution of data, etc.) (LEE; HAN; LI, 2008; HU et al., 2018; PANG et al., 2011).

As aforementioned, bus trajectories are predefined routes, and detecting anomalous
trajectories can help to understand the outlier’s causes. In the literature (CHEN et al.,
2016; BESSA et al., 2015), most of the approaches to detect anomalies report their result
using a score or classes (e.g., normal or anomalous). Typically, methods output a score
when datasets have no labels, whereas binary approaches rely on labeled data. To the
best of our knowledge, since labeled datasets are rare, supervised methods also use a
score to report their results in the trajectory outlier detection task. For example, Bessa
et al. (2015) and Raymond and Imamichi (2016) consider a hard score that is easy to

19

understand because they define a fixed threshold. However, it can hide result details since
outliers are dynamic and evolve along time (GE et al., 2010). On the other hand, rule-based
methods and unsupervised approaches require much effort in preprocessing tasks and rely
on domain experts to make parameter assumptions and thresholds. Therefore, given a
GPS bus trajectory dataset and the route labels, our first research question RQ1 is: how
can we propose a supervised bus trajectory outlier detection method using classification
confidence as an anomaly score?

Answering the above question depends on other tasks. As we have mentioned, prepro-
cessing trajectories is necessary to get useful information. Redundant points are a common
issue on trajectory data since they represent similar locations, but with slightly different
latitudes and longitudes. Also, sparseness or low-sample-rate is a data issue since it hin-
ders analyzing trajectories. Therefore, preprocessing tasks are crucial in most works in the
trajectory data mining field. For example, Zhang et al. (2011) convert raw trajectories to
regions based on grid cells to decrease the complexity of dealing with redundant points.
Likewise, Ouyang et al. (2018) also use a grid, but they replace latitude and longitude by
cell id.

These aforementioned solutions regard trajectory points equally (i.e., points do not
have a semantic meaning). In contrast, Zheng (2015) claims that trajectory’s points are
not equally important because some of them denote different locations (i.e., stay-points).
Similarly, some works (YUAN et al., 2012; ZHANG et al., 2015) take advantage of representing
trajectories using stay-points to decrease the redundancy of data as well as to facilitate
the modeling problem by considering the semantics of those points instead of all points.
In fact, representing trajectories using meaningful places is a way to characterize them.
For example, buses as a public transportation service follow a predefined route with
well-established stay-points (e.g., bus stops and traffic lights), then differentiating bus
trajectories by stay-point representation seems simpler than dealing with raw data (i.e.,
latitude and longitude). Based on these observations, we believe that stay-points can
facilitate the task of outlier detection, and we formulate our second research question
RQ2 as: are there any advantages to representing trajectories by stay points for the outlier
detection task?

Identifying anomalous trajectories is useful for traffic understanding; detecting abnor-
mal segments can help even more since they can limit a local where the outlier occurs.
Lee, Han and Li (2008) tackle the anomaly segment problem by implementing a method
to identify the anomalous segment partitioning trajectories before the detection while (LIU

et al., 2011) builds a tree of anomaly links to discover the anomalous cause. From this,
we formulate another research question RQ3: how can we detect an anomalous trajectory
segment without using anomalous labels? This question is complementary to RQ1 since
locating anomaly segments can be seen as a step further from trajectory outlier detection.

Although there are approaches to detect anomalous trajectories, practical solutions

20

also request online detection, mainly in the traffic context that demands real-time deci-
sions. However, online approaches suffer two drawbacks. For example, approaches that
only detect whether the whole trajectory is anomalous but do not pinpoint the anoma-
lous segment or the ill-formed points(LIU et al., 2020). Trajectories can have thousands of
points, and highlighting the erroneous points can improve their analysis. Another draw-
back is the necessity of searching mechanisms for recovering similar historical trajectories
based on Source and Destination (S-D) pairs before detecting anomaly trajectories(CHEN

et al., 2013). Those search mechanisms can hurt online detection performance in a massive
volume of historical data. Conversely, our solution considers detecting whether the whole
trajectory is anomalous and pinpointing the anomalous trajectory segment, both online
and offline, without grouping trajectories using a search mechanism.

In the next section of this chapter we will present the objectives of this thesis.

1.3 OBJECTIVE

This thesis’s main objective is to provide an end-to-end approach to: (i) detect anomalous
trajectories in bus trajectory and (ii) pinpoint the abnormal points in these trajectories.
In order to do that, we first investigate how to take advantage of supervised approaches
to detect anomalous trajectories. For this purpose, we present Spatial-Temporal Out-
lier Detection (STOD), a method to detect bus trajectories outliers using flexible score
values. STOD explores the preprocessing tasks to represent trajectories by meaningful
points instead of raw data and uses multiclass classification to learn trajectories patterns.
Furthermore, we propose detecting anomalies based on a flexible score measuring the
classifier confidence. That is, STOD calculates the anomaly confidence score based on the
entropy of the probability output of the classifier. The confidence score can be used to
rank trajectories with respect their anomaly degree.

Secondly, we propose an end-to-end language model, commonly used in Natural Lan-
guage Processing, for pinpointing the abnormal points in bus trajectories. The approach
learns the pattern of well-formed trajectories and then identifies erroneous (ill-formed)
trajectories, along with the trajectory points where the errors occur. In addition, our so-
lution can be performed offline or online, i.e., as the buses move along their route, and
it can also be adapted to other types of trajectories (e.g., car, people, and vessels), since
our approach does not use any specific aspect from the bus domain (e.g., bus stops), and
the input trajectory is the label.

Thus, in order to achieve the main objective of this thesis and answer our research
questions, we had to investigate the following specific objectives:

1. Propose a Point Activity Classification (PAC) method to represent trajectory points
into three types of stay point and moving point;

21

2. Define a Geo Embedding approach to capture spatial relationship between neigh-
boring points of trajectories;

3. Propose a Spatial-Temporal Outlier Detection method composed by a multi-class
classification method that learns to classify trajectories into their route lines and an
anomaly detection module that outputs a soft anomaly score

1.4 LIST OF PUBLICATIONS

This section lists all the references published and submitted papers produced in the curse
of the Ph.D. program. The list of papers is organized according to the status: published
and submitted.

1. Published papers:

• Learning GPS Point Representations to Detect Anomalous Bus Tra-
jectories. Michael Cruz, Luciano Barbosa. IEEE Access, 2020.

• Análise do Impacto de Chuvas na Velocidade Média do Transporte
Público Coletivo de Ônibus em Recife. Alexandre Viana, Michael Cruz,
Luciano Barbosa, Kiev Gama. In: WORKSHOP BRASILEIRO DE CIDADES
INTELIGENTES (WBCI), 2018, Natal. I Workshop Brasileiro de Cidades In-
teligentes, 2018

2. Submitted papers:

• Applying A Transformer Language Model for Anomaly Detection
in Bus Trajectories. Michael Cruz, Luciano Barbosa. Submitted to IEEE
International Conference on Data Engineering 2023.

• MobApp: A Data Visualization Tool for Trajectory Analysis. Michael
Cruz, Fernando Neto, Luciano Barbosa. Submitted to 30th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Sys-
tems 2022.

1.5 STRUCTURE OVERVIEW OF THE PROPOSAL

The rest of this document is organized as follows:

1. Chapter 2 will present the basic concepts of our proposal. The concepts will cover
definitions of trajectory, point, spatial and temporal anomalies. Also, this chapter
presents concepts of traffic anomaly, pre-processing techniques and outlier detection
approaches.

22

2. Chapter 3 presents an overview of related work. Here we present the works that
lead this thesis on trajectory outlier detection and detecting anomalous trajectory
segments. We also discuss methods to detect stay-points and summarize the works
using comparative tables.

3. Chapter 4 introduces the approach of learning GPS point representation to de-
tect anomalous bus trajectories. Here, we propose a PAC to generate stay-point
embeddings to feed a multi-class classifier called STOD. This chapter also proposes
to detect anomalous bus trajectories indirectly by using the entropy function to
measure the uncertainty of the classifier.

4. Chapter 5 introduces the second research contribution of this thesis, a transformer
language model for anomaly detection in bus trajectory. This model pinpoints the
abnormal points and allows to perform this task offline or online. Lastly, this chapter
discusses and presents an extensive experimental evaluation.

5. Chapter 6 introduces the MobApp application as a data visualization tool for
trajectory analysis. The chapter describes in detail the application architecture and
presents a use case to illustrate how the MobApp can be used for each feature that
the system provides.

6. Chapter 7 closes this thesis by providing a summary of the contributions and
presenting some failed attempts that were part of our research. Lastly, we suggest
possible future research directions exploiting our results.

23

2 BACKGROUND

This chapter presents background concepts related to this thesis. Section 2.1 defines the
concept of GPS trajectory. Section 2.2 discusses the key roles of detecting anomalous
trajectories, while Section 2.3 presents deep learning architectures that are the basis of
our solutions to answer our research questions. Finally, Section 2.4 concludes this chapter.

2.1 TRAJECTORY DEFINITION

Trajectories are traces that moving objects produce in a sequentially and chronological
way (ZHENG, 2015). They allow researchers to understand more about traffic behavior
due to the unprecedented advances in location-aware devices such as GPS, Wi-Fi, etc.
Through those devices, more data is available allowing more knowledge about traffic
problems. For example, detection of fraud in taxi drive behavior, the trajectory anomaly
detection of animals, buses, and typhoons. Trajectories are continuous traces, but because
of limitations on tracking devices, literature uses a sequence of points in discrete-time
instances (MENG et al., 2019).

Literature has defined trajectories in a variety of ways. Here, we define a trajectory 𝑇𝑙 as
a sequence of consecutive GPS points collected from a trip, denoted as 𝑇𝑙 = {𝑝1, 𝑝2, ..., 𝑝𝑛},
where each 𝑙 indicate the line id 1 i.e., each trajectory has a pre-defined itinerary (route).
Each point 𝑝𝑖 = {𝑙𝑎𝑡𝑖, 𝑙𝑛𝑔𝑖, 𝑡𝑠𝑝𝑖} is composed of latitude (𝑙𝑎𝑡𝑖), longitude (𝑙𝑛𝑔𝑖) and times-
tamp (𝑡𝑠𝑝𝑖) ordered by the points’ timestamp, i.e., 𝑡𝑠𝑝𝑖 < 𝑡𝑠𝑝𝑖+1. Overall, point trajectories
can have more or less attributes than latitude, longitude and timestamp. Conveniently,
we assume those three features exist.

Since the scope of this thesis is to detect bus anomalous trajectories, and there are
several types of anomalies in the literature, we only focus on the spatial and temporal
anomalies in this research. Therefore, the first definition is that a spatially anomalous
trajectory 𝑇 ′

𝑙 contains points that diverge from regular trajectories of the assigned bus
line 𝑙 of 𝑇 ′

𝑙 . On the other hand, we observe that a temporal anomaly trajectory 𝑇 ′′
𝑙 has

a temporal behavior that deviates from regular trajectories of the line 𝑙 (route id) in
two ways. First, trajectories with the Temporal Anomaly Type I have buses running
slower than the regular behavior of trajectories of 𝑙 (more congestion than usual). Second,
trajectories with the Temporal Anomaly Type II have vehicles moving faster than the
regular behavior of trajectories of 𝑙 (less congestion than usual).
1 we use the terms route id and line id interchangeably

24

2.2 ANOMALY DETECTION

An anomaly is an instance that has an unexpected behavior compared to historical data.
However, the notion of anomaly is not equal among the research areas because the per-
ception about it depends on the data domain. For example, a few fluctuations on wireless
devices may not be an anomaly, but the same level of deviations on ECG exams can
be considered to be anomalous. Therefore, most of the works in the anomaly detection
field are not orthogonal. Nonetheless, anomaly detection solutions have much in common
because they require some decisions about the nature of data, types of anomalies, ap-
proaches to follow (e.g., machine learning, distance-based, etc), and how to represent an
anomaly detection.

The nature of data can determine the applicability of anomaly detection because there
are methods that do not work well with some types of attributes or with multivariate data.
For example, some approaches (LEE; HAN; LI, 2008; LV et al., 2017) use Euclidean distance,
which works better with numerical data instead of categorical. Also, the dimensionality
is another concern since the performance of traditional machine learning methods deteri-
orates when they use high-dimensional data. Last, the relationship among data instances
is another aspect to take into account before choosing which anomaly detection approach
to use. Therefore, Chalapathy and Chawla (2019) classifies instances data as sequential
and non-sequential. For example, text, time-series, spatio-temporal, music, protein se-
quence are sequential data because there are dependencies between previous and current
instances. On the other hand, images are one example of non-sequential data. Overall,
the data’s nature and context domain can indicate which methods are more suitable to
apply in the anomaly detection task.

Another requirement to consider before building an anomaly detection solution is
the type of anomaly. Although the anomaly concept has a well-defined definitions in
the literature, its semantics varies across domain areas. Chandola, Banerjee and Kumar
(2009) classify outliers in some categories: (i) point anomaly, (ii) context anomaly, and
(iii) grouped anomalies. The first considers problems in which a single instance can have
anomalous behavior. For instance, suspicious network packets in network intrusion context
and credit card transaction fraud. The second category of outlier fits the problem in this
thesis. Here, data can have contextual outliers that rely on contextual and behavioral
features of data. Contextual features determine the context of instances (e.g. latitude and
longitude) while behavioral ones add information to the context of data, such as bus speed
or the amount of rainfall. Last but not least, collective anomalies occur when two or more
instances are an anomaly, but alone, they are not abnormal. Our proposal also accounts
for grouped anomalies and we consider a single point as an anomaly as well.

Paying attention to the availability of labeled data also can steer which anomaly detec-
tion strategy to use. As discussed in previous sections, the lack of labels can limit the pos-
sibility of solutions. On this basis, Chalapathy and Chawla (2019) present an extensive set

25

of solutions based on supervised, semi-supervised, unsupervised, and hybrid approaches.
On supervised anomaly detection, methods consider training models using normal and
anomalous instances as a binary classification problem. In turn, semi-supervised detec-
tion methods train models considering only normal instances and test them using normal
and abnormal examples. The unsupervised detection methods, on the other hand, do not
rely on labels since they only depend on data properties. Also, they work on automatic
labeling as well (PATTERSON; GIBSON, 2017). Lastly, hybrid techniques combine diverse
approaches. For example, deep neural networks that are well-known as feature extractors
can work along with traditional models such as One Class SVM (OC-SVM) or SVDD and
One Class Neural Networks (OC-NN) (CHALAPATHY; MENON; CHAWLA, 2018; RUFF et

al., 2018).
Another important aspect to consider is the way of outputting anomaly detection

results. There are two traditional categories of outputs in literature: score, and binary. A
score represents the level of an anomaly, in other words, instances can have more or fewer
anomalous characteristics. This type of output is more flexible than a binary approach
because outliers have different meanings and levels. On the other hand, binary results give
a strict classification that can be more interpretative, but less informative. The decision
of using one of those representations in most cases depends on the availability of labeled
data.

Overall, anomaly detection has a rich plethora of definitions as well as a large appli-
cation domain as detailed. However, in data mining trajectory domain, the detection of
anomaly is not yet well-explored.

2.2.1 Anomaly detection on trajectory

Trajectory anomaly detection has gained attention since more data about traffic objects
has become available. Knorr, Ng and Tucakov (2000) were among of the first to propose
an approach based on distance and multivariate data. Before (KNORR; NG; TUCAKOV,
2000), most of the solutions relied on univariate data and probability distribution as-
sumptions (i.e., data has normal or 𝑋2 distribution). They address anomalies only based
on individual trajectories. That is, the approach looks at sub-trajectories or segments that
are different from others considering the same historical trajectories. On the other hand,
the trajectory data mining area also presents another concept named traffic anomalies for
which the traffic flow behavior is important (e.g., traffic congestion caused by a car acci-
dent). Both previous concepts are different, but some works find traffic anomalies based
on trajectory outliers (ZHENG, 2015). Overall, our focus is on trajectory outlier detection
and, according to Meng et al. (2019) most of the works follow three steps to get a solution:
preprocessing, transformation, and detection.

The preprocessing phase is well-known in the trajectory data mining domain. Among
the techniques, the map-matching task, that is the process of aligning a sequence of ob-

26

served GPS positions into a road network (LOU et al., 2009), has some challenges because
there are parallel roads, overpasses, and GPS device failure. According to Zheng (2015),
there are four types of techniques based on additional information (i.e., road segments
and maps). First, the geometric approaches that consider the shape of trajectories to
match a point (GREENFELD, 2002). Second, probabilistic approaches calculate the tran-
sition probabilities between points, and they deal well with low-sampling rates. Third,
topological algorithms that try to keep on the connectivity of the road network; they
look for candidate road segments that fit well previous GPS sequences. Finally, advanced
methods that combine previous approaches (YUAN et al., 2010).

A well-known pre-processing technique is segmentation. It is useful to decrease the
complexity of analyzing the whole trajectory, reducing computational costs. For exam-
ple, (LEE; HAN; LI, 2008; LV et al., 2017) discover anomalous segments by applying segmen-
tation. Figure 2 summarizes the most common segmentation approaches in the literature.
For example, Figure 2 (a) presents time interval-based approaches that split trajectories
into parts according to the level of difference between two consecutive points. Similarly,
Figure 2 (b) shows the turning point method that uses the level of heading direction be-
tween consecutive points to split trajectories. On the other hand, the key shape approach
splits trajectories based on points that maintain a trajectory’s shape as shown in Figure 2
(c). Lastly, looking at Figure 2 (d), the semantic meaning segmentation approach splits
trajectories according to the stay-points. These methods are the most common in the
literature but this is not an exhaustive list.

Figure 2 – Segmentation approaches

Source: ZHENG; XIE (2011)

The second step to perform trajectory outlier detection is the transformation task.
This activity aims to prepare data to feed a detection method since trajectories are com-
plex data, and traditional algorithms, such as distance methods, cannot be applied di-
rectly (MENG et al., 2019). In the literature, grid discretization is a recurrent way to
transform trajectories and facilitate the use of traditional methods. Some existing tools
to create grids are: google-S2 2 and the H3 3 libraries. Both of them map trajectories into
2 https://s2geometry.io/
3 https://eng.uber.com/h3/

27

a collection of discrete cells (KULKARNI et al., 2018). As an illustration, (GE et al., 2010;
PANG et al., 2011) split a city map into small regular grid-cells and map each trajectory
point into them before detecting outliers. Lastly, it is worth mentioning that transforma-
tion is not a mandatory step. For example, (BESSA et al., 2015) uses raw trajectory data
only applying a normalization.

Similar to other application domains in anomaly detection, literature also presents
well-established methods to trajectory anomaly detection. (ZHENG, 2015; MENG et al.,
2019) categorizes those methods as following: (i) distance-based, (ii) density-based, (iii)
feature-based, (iv) sub-trajectory-based, and (v) activity-based. The first approach is
based on distance functions (e.g., Hausdorff distance, Dynamic Time Warping, Longest
Common Sub-Sequence, etc) to find close trajectories considering a distance threshold.
For example, Figure 3 shows that TR1 is an outlier since it is far away from the other
trajectories. The density methods looks at the density of trajectory neighbors instead
of a global distance but also needs a threshold value. As an example, Figure 3 shows
that TR6 and TR7 are anomalous trajectories compared to 𝑇𝑅1, ..., 𝑇𝑅5. The third type
of methods look at the feature of trajectory. TR2 is an example of a feature outlier
because it is going in the opposite direction of 𝑇𝑅3, ..., 𝑇𝑅5. The fourth approach does
not look the trajectory as a whole; it splits them into sub-trajectories and then detects
anomalous segments. For example, the bold segment of TR4 is an outlier. Last, activity
methods that learn patterns about past activities of moving objects to discover divergent
motion patterns representing anomalous activities. As an illustration, sudden changes in
the moving trend of trajectories can be considered an anomaly (BASHARAT; GRITAI; SHAH,
2008).

Figure 3 – Outlier detection approaches

Source: MENG et al. (2019)

Finally, trajectory outlier detection also has real applications in some scenarios. For
example, (LEE; HAN; LI, 2008) introduces an approach to find abnormal storms and ty-
phoons trajectories. Also, (CHEN et al., 2011) proposes a detection outlier to discover taxi
frauds, while (RAYMOND; IMAMICHI, 2016) suggests a bus trajectory outlier detection.

28

In brief, there are some works on trajectory outlier detection, but still, there are gaps,
particularly in the traffic context.

2.3 DEEP LEARNING BACKGROUND

Here, we explore a few essential deep learning concepts to understand our solutions. First,
we briefly overview deep learning contributions in a few research areas, including in the
anomaly detection field. Second, we present the main reasoning about rnn architecture
and the Attention mechanism. Lastly, we introduce the Encoder-Decoder architecture and
Self-Attention mechanism.

Deep Learning has been around for some time now. It is a subfield of machine learning
inspired by Artificial Neural Network (ANNS) where successive layers can learn increas-
ingly meaningful representations(CHOLLET, 2021). The deep learning approaches have
been a breakthrough in some research areas such as Natural Language Processing (NLP)
and Image Processing. Tasks such as translation, question answering (QA), and speech
recognition, to name a few, have unprecedented results using deep learning approaches.
In the same direction, deep learning methods have contributed to improving results in
image processing tasks in such a way that overcomes humans. In recent years, deep learn-
ing has also been applied for anomaly detection in diverse tasks such as Illegal Traffic
Flow detection (XIE et al., 2017), Retinal Damage detection (SCHLEGL et al., 2017), and
Cyber-Network Intrusion detection (JAVAID et al., 2016).

In the trajectory anomaly detection field, deep learning-based anomaly detection algo-
rithms have a few works in recent years. For example, the RioBusData method applies a
Convolutional Neural Network (CNN) to learn a classification task and indirectly detects
anomalous trajectories (BESSA et al., 2015). The GMVSAE approach uses a Variational
AutoEncoder based on Long Short-Term Memory (LSTM) to detect anomalous trajec-
tories (LIU et al., 2020). The Universal Transformer for Anomalous Trajectory Detection
(UT-ATD) uses a universal Transformer to learn embeddings and feed them to a binary
classifier that predicts if trajectories are anomalous or not (ZHANG et al., 2021).

Figure 4 – Unrolled Recurrent Neural Network

Source: Created by author (2022)

29

For this thesis, as trajectories are naturally sequential data, we first apply a well-known
recurrent network called Gated Recurrent Unit (GRU) to answer our RQ1 and RQ2. The
GRU is part of a family of Recurrent Neural Network (RNN), which is specialized for
processing sequential data 𝑥1, ..., 𝑥𝑛. Overall, the recurrent neural network predicts the
future from a past sequence of events, where the network learns to capture historical
information through the hidden state ℎ to make predictions. For this, the network learns
from the past using a mechanism called Backpropagation Through Time (BPTT) to
calculate the network’s loss and to infer the parameters from the followed equation:

ℎ(𝑡) = 𝑓(ℎ(𝑡−1), 𝑥(𝑡); 𝜃) (2.1)

where 𝑥 is the current sequence value, and 𝜃 is the network parameters. Figure 4 shows
an example of BPTT in a time-unfolded computational graph representing a vanilla RNN.
Observe that the loss are calculated by partial derivative in a recursive way such that 𝜕ℎ𝑡+1

𝜕ℎ𝑡

relies on 𝜕ℎ𝑡+2
𝜕ℎ𝑡+1

. Although the BPTT is used to calculate the loss, the vanilla RNN has
the problems called vanishing and exploding gradient(). Those problems occur when the
partial derivatives, in the backpropagation process, generate small values and approach
zero, or the values are larger, which causes the gradient descent to diverge. Given that,
we explore the use of GRU that employ mechanisms for updating and resetting state ℎ,
which allows the network better control over the gradient.

Figure 5 – Encoder-Decoder architecture

Source: Created by author (2022)

Although GRU and LSTM have remarkable results and have been firmly established
in sequence modeling, their sequential nature restricts parallelization, which is critical
for longer sequences (VASWANI et al., 2017). Also, those models represent all sequence
information into a fixed-length vector (last hidden state), which can be a problem in
coping with long sequences. To cope with those problems, most recurrence models adopt

30

the Attention mechanism (BAHDANAU; CHO; BENGIO, 2014) to help the recurrent models
focus on different parts of the input sequence instead of static information compressed in a
single vector. Overall, the Attention approach decides which parts of the sequence are more
important than others, which is more helpful than a fixed representation. In recent years,
Attention mechanisms have been used in conjunction with recurrent networks in almost
all cases. For example, in neural machine translation, a well-known standard architecture
called Encoder-Decoder can be built using attention and recurrent networks (ZHANG et

al., 2020).
An Encoder-Decoder, the basis of our solution in Section 5 , is a machine learning

model composed of two neural networks, as shown in Figure 5. The key idea behind that
standard modeling paradigm is that the Encoder (first neural network) encodes a sequence
to a new vector representation called latent space. Next, the second neural network, the
Decoder, receives the latent space to map it to a new variable-length sequence. Although
there are few ways to build Encode-Decoder, i.e., using CNN and RNN, we opt to use the
Transformer approach instead of attention and RNN due to the constraint of sequential
computation in recurrent models (VASWANI et al., 2017).

Figure 6 – Self-Attention matrix correlation

Source: ADALOGLOU (2021)

Lastly, as part of our solution Encoder-Decoder, we present a few concepts about
the state-of-the-art deep learning model called Transformer. The Transformer is an ar-
chitecture that uses only self-attention mechanisms to avoid the recurrence restriction.
The core idea of Transformer is the self-attention mechanism, which is an approach to
finding the correlation among each sequence element concerning all others. For example,
Figure 6 shows an example of a correlation matrix calculated by a self-attention layer in a
sequence of words. Note that the word "love" is more related to the words "I" and "you"
than the word "Hello". Based on this correlation matrix, a self-attention mechanism is

31

responsible for weighting each word, which helps the Encoder-Decoder to focus on parts of
the sequence instead of looking for the entire sequence as occurs in traditional recurrence
networks, for instance. Last but not least, it is worth mentioning that the translation task
inspires our second solution in Section 5. However, our solution is slightly different be-
cause we use Encoder-Decoder to generate the same input, i.e., we apply an AutoEncoder,
a particular type of Encoder-Decoder.

2.4 CONCLUSION

This chapter presented the theoretical basis for understanding this thesis, in which con-
cepts and characteristics related to trajectory anomaly detection and data mining were
described. For example, we defined trajectory and the concept of spatial and temporal
anomalies. Also, we explained that anomaly detection solutions rely on a few require-
ments, such as the nature of data, type of anomalies, and anomaly detection outputs.
Next, we presented a pipeline of tasks to get a trajectory anomaly detection solution and
described the main techniques. Lastly, we described a few deep learning concepts that
guide our solutions.

The following chapter presents the results of the most recent approaches that address
the problem of trajectory outlier detection. Also, we present and discuss rule-based and
machine-learning approaches.

32

3 LITERATURE REVIEW

In this chapter, we discuss some works that have similar goals with this thesis. In Sec-
tion 3.1, we highlight some methods to detect stay point. Section 3.2 discusses in detail
approaches to detect anomalous trajectories. Section 3.3 concludes this chapter.

3.1 STAY-POINT DETECTION

Among the preprocessing methods, stay-point detection is a method that proposes to
identify trajectory points that indicate where moving objects or individuals stay for a
while. It is important to detect stay points because they can inform snapshots of daily
activities such as work in the office, restaurants, gas stations, etc. That is, stay points add
semantic meaning to trajectories.

In the literature, Li et al. (2008) propose a stay-point detection method to find ge-
ographic regions. They use stay points to discover an individual’s location history by
measuring the similarity between users. The method uses distance and time to detect
stay points based on rules, for example, if a user spends more than a threshold time
within a distance threshold, the region is classified as a stay point. According to the au-
thors, one of the reasons to use stay points is the computational cost since they use a
clustering method to calculate similarity based on user locations.

Yuan et al. (2011) propose a recommendation system to support taxi. Before the
recommendation task, the authors apply a stay-point method to find parking places (i.e.,
places where taxis frequently wait for passengers). The approach also relies on time and
distance metrics. According to the authors, the algorithm keeps checking the distance
between the current and earlier points. Thus, if the distance measure is smaller than a
distance threshold, and the time interval between the points is superior to a time threshold,
they are parking candidates. However, as the proposal considers individual trajectories,
different parking places may be the same, then the authors apply the well-known density
cluster approach named Ordering Points To Identify the Clustering Structure (OPTICS)
algorithm (ANKERST et al., 1999) to discover which points represent the same parking
places.

Nogueira et al. (2018) present the Statical Method for Stop, Move and Noise (MSN)
method to detect stay points. For this purpose, the authors assume that stay points
have slow speed and long duration. Differently from most works, the approach analyses
trajectories individually as a three decomposed time-series based on duration, distance,
and turning angle respectively.

Alvares et al. (2007), in turn, use stay-point detection to enrich raw trajectories with
semantic information to facilitate queries. For example, the authors present an approach

33

named Stops and Moves of Trajectories (SMoT) that verifies which trajectory points
intersect candidate stops (i.e., polygons previously chosen representing stops in a city).
Then, considering the duration of those intersections, SMoT classifies the points as a
stop. In a similar way, Moreno et al. (2014) propose the SMoT+, an extension of the
SMoT method. The new approach allows discovering stops in nested regions according to
different hierarchy levels instead of only considering disjoint spatial regions.

Hwang, Evans and Hanke (2017) propose to detect stay points to segment individ-
ual trajectories. The approach uses the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (ESTER et al., 1996) algorithm adapted to temporal criteria to
find Spatio-temporal clusters. However, as trajectory datasets have problems (e.g., low-
sample-rate, devices issues), the authors claim that gaps can hide important stay points
such as restaurants and malls. Therefore, they use the linear interpolation technique to
treat the trajectories gaps before applying the extended DBSCAN. According to the au-
thors, clusters alone with high density suggest a stay-point, however, without a duration
threshold it is hard to find real stay points.

The most common criteria for stay point detection considers stop or moving points (HWANG;

EVANS; HANKE, 2017). In this thesis, differently from the mentioned works that rely on
empirically-based rules (e.g., distribution, distance threshold, duration, etc), we propose
a sequential supervised method to detect stay points for some reasons. First, because a
supervised method can discover the previous rules automatically, therefore, making a solu-
tion less dependent on domain experts. Second, GPS trajectory is a sequential data, then
considering long-range dependencies can be more appropriate likewise occurs in NLP or
in time-series field. In brief, Table 1 categorize the works highlighting the approach used
as well as if there are thresholds and parameter dependencies to settup the approaches.

Table 1 – Stay point detection solutions

Method Used Threshold dependency Parameters dependency References
Distance-based True False (LI et al., 2008)

True True (YUAN et al., 2011)
Intersection-based True False (ALVARES et al., 2007)

True False (MORENO et al., 2014)
Statistic-based True True (NOGUEIRA et al., 2018)
Deep learning based (PAC) False False (CRUZ; BARBOSA, 2020)

Source: Created by author (2022)

3.2 ANOMALOUS BUS TRAJECTORIES

Here, we split the literature approaches into some categories to give more granularity
about the techniques used. The first category will describe works that apply distance-
based and statistics-based methods that we name as rule-based methods. The second and
third categories will show solutions that use unsupervised and supervised approaches.

34

3.2.1 Rule-based Detection

One of the first works applying distance-based methods to detect outliers is the partition-
and-detect framework (LEE; HAN; LI, 2008). First, the authors partition trajectories, as a
preprocessing, because segments can show unusual behavior and using summary informa-
tion to compare the whole trajectories can smooth the differences in the parts of them.
Next, they present the detection phase using a distance-based and density-based approach
to find outliers. The process to find anomalies first considers the comparison among tra-
jectories applying perpendicular, parallel, and angle distance. Second, as the closeness of
trajectories can be affected by the density data instead of the sparseness ones, the authors
suggest an adjustment coefficient based on computing the density of trajectory segments.
In general, the framework presented is based on rules and depends on domain experts to
determine if the results of the approach are meaningful and to set the distance thresholds.

Ge et al. (2010) develop the TOP-EYE method that focuses on generating an evolving
outlier score. According to the authors, outliers evolve with time, then an evolving score to
capture the outlying trajectories is necessary. That said, the TOP-EYE method proposed
to detect directional and density outliers. The approach first maps trajectories into a grid
and defines eight possible directions in each cell. Also, the authors calculate the visitation
frequency that measures the frequency of a moving object in the grid cells. Then, through
those values (i.e., direction frequency and pass frequency), the approach calculates the
outlying score. However, to avoid the bias of historical outliers and finding a balance
among past and current anomalies, the TOP-EYE approach suggests a cumulative decay
function to give more attention to recent anomalies instead of past ones. The authors
also claim that it is critical to keep the outlier measure updated in an accumulating
way because outliers evolve. This approach is also distance-based, and it depends on a
threshold to distinguish between abnormal and normal trajectories.

Zhang et al. (2011) introduce the Isolation-Based Anomalous Trajectory (iBAT) method
to discover anomalous driving patterns from taxi GPS traces. The authors assume that
outliers are few and different based on the isolation theory (LIU; TING; ZHOU, 2008).
Based on that, to find the anomalies, the authors first extract taxi rides, split the city
map into grid-cells, group all the taxi rides crossing the same source-destination cell-pair,
and represent each trajectory as a sequence of cell symbols. Afterward, the iBAT that is an
improvement of iForest (LIU; TING; ZHOU, 2008) isolates trajectories by randomly selecting
grid-cells and removing trajectories that do not pass by the selected cells. Then trajec-
tories with shorter paths (i.e., grid-cells) or with different paths are anomalies. However,
differently from iForest, iBat focuses on test trajectories. That is, the isolation mechanism
selects cells from the test trajectories instead of all trajectories, and then based on the
number of cells used to isolate a trajectory the authors define an anomaly score.

In (PANG et al., 2011), the authors propose a Spatio-temporal method based on the
Likelihood Ratio Test (LRT) statistic approach. The authors first split a city into a grid

35

and then estimate the count of the number of taxis in the grid cells given a time. The
core idea is to identify a contiguous set of cells and time intervals which is statistically
significantly different from expected behavior. Based on that, the approach uses the LRT
method to separate the anomalous regions (i.e., regions here is a set of cells) from normal
ones. To reach the aim, the authors claim that in regular conditions, the LRT follows a 𝜒2

critical value. Therefore, when the approach finds regions where the LRT score is above
or below the 𝜒2 critical value, it considers the region as anomalous. It is worth mentioning
that a Monte Carlo simulation should be used when the 𝜒2 is not applicable.

Pan et al. (2013) implement a method to detect traffic anomalies according to the rout-
ing behavior. The approach is based on topological variation in traffic flow between two
points, and it is composed of three steps: offline mining, anomaly detection, and anomaly
analysis. First, the offline task preprocesses data by creating an index to associate road
segments to trajectories. Second, the authors implement an anomaly detection technique
to find a set of sub-graphs (i.e., graphs of segments) of a road network where vehicles
routing behavior is different from a pattern. Last, in the anomaly analysis, the authors
use the location of anomalous sub-graphs and the time information to recover historical
and current tweets. Based on that, they use the well-known Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) technique to filter the most common terms and rank them to
analyze the possible anomalous causes.

Chen et al. (2013) introduce the Isolation-based Online Anomalous Trajectory Detec-
tion (iBOAT) method using the idea of isolating abnormal trajectories likewise (ZHANG

et al., 2011). However, differently from iBAT, the iBOAT can discover the anomalous seg-
ment. To reach this aim, the authors first map trajectories into grid cells and create an
index generation to simplify the retrieval of trajectory-position pairs for each possible
grid cell. Next, they use an adaptative working window (i.e., a set of the latest incom-
ing GPS points) to compare the ongoing trajectory with historical ones using similarity
values based on a support function. iBOAT does real-time anomaly detection, then each
new point receives a value of the support function. Overall, the approach uses a threshold
to compare with the support function values to decide if a trajectory’s new point is an
anomaly or not. Yet, as the iBOAT also aims to rank trajectories according to the length
of abnormal sub-trajectories, the authors implement a score function based on the sigmoid
function.

Zhu et al. (2017) present the Time-dependent Popular Routes Based Real-Time Tra-
jectory Outlier Detection (TPRRO) approach that extends the Time-dependent Popular
Routes Based Trajectory Outlier Detection (TPRO) method proposed by (ZHU et al.,
2015). According to the authors, TPRO can detect trajectory outliers, but not in real-
time. TPRO method works detecting anomalies in historical data following some steps.
First of all, the approach creates groups of trajectories with the same departure and des-
tination. Second, it finds out the most popular routes through a graph structure called

36

Time-Dependent Transfer Graph (TTG). Finally, TPRO compares trajectories with pop-
ular routes (they represent the most used routes in the dataset) using a time-dependent
edit distance method. As a result, if distances are greater than a threshold, TPRO finds
out anomalous trajectories. The TPRRO method extends TPRO putting forward a Time-
Dependent Transfer Index (TTI) to record which trajectories have passed through which
location at which time. TTI index allows real-time outlier detection. Besides that, the
novel approach further extends the TTG graph to work as a cache to boost the method.
Note that TPRRO is an extension of TPRO that focuses on efficiency to answer in real-
time.

Yu et al. (2017) introduce Minimal Examination (MEX) method to detect anomalous
moving objects. The approach considers the idea of close neighbors to classify a trajec-
tory as an outlier or not. That is, in a trajectory stream, if a test trajectory does not
have enough close neighbors, the method classifies it as an anomaly. Before detecting
outliers, the authors define three levels of anomaly detection: point-neighbors, trajectory-
neighbors, and synchronized-neighbors. According to the authors, the levels of anomaly
allow exploring higher granularity. For example, the point-neighbors measure how many
neighbors are close looking at points while the trajectory-neighbor calculates how many
trajectories are close within a time window. On the other hand, synchronized-neighbors is
a time restriction over the previous two levels of anomaly detection. Overall, the anomaly
task takes into account a time window and a distance measure to verify which points or
trajectories are neighbors. For example, the approach computes an Euclidean distance
between points of different trajectories in the same timebin to verify the neighbor points.
They also use temporal windows to compare and calculate distances (i.e., a point 𝑝𝑗

1 ∈ 𝑇1,
and a point 𝑝𝑗

2 ∈ 𝑇2 are within the same time window). Then, based on the levels of out-
liers, the time windows, and a distance measure, the MEX method builds data structures
composed by a list of neighbors’ timebins and a neighbor table. At last, as the authors
keep those structures (i.e., timebins list and neighbor tables) for each trajectory, they can
use query operations to get anomalous trajectories.

Hu et al. (2018) introduce the Isolation-Based Method To Detect Outliers (IBTOD)
method based on the isolation concept (ZHANG et al., 2011). The authors define the ap-
proach following three steps: trajectory partitioning, feature extraction, and outlier de-
tection. First, the partitioning splits trajectories into spatial and temporal levels using
points with rapid spatial or velocity changes. Second, the feature extraction step also
utilizes spatial and temporal features. The spatial attributes are three distances, as pro-
posed by Lee et al. (LEE; HAN; LI, 2008) that produce the perpendicular distance, angular
distance, and parallel distance. In turn, temporal features take into account the average
velocity, the minimum, and the maximum velocity of sub-trajectories. Then, after fea-
ture extraction, the IBTOD adopts the isolation mechanism to detect outliers using the
Isolation Forest (iFOREST) method to get abnormal sub-trajectories. However, as the

37

iForest only informs which sub-trajectories are anomalous, the authors propose a score
function to give more flexibility in outlier detection. The approach also needs a threshold
to distinguish between noises and outliers.

Zhao et al. (2020) propose an approach based on trajectory similarity measure and
sparse subgraph to detect anomalous trajectory. According to the authors, using a simi-
larity model that includes a semantic feature of position, time feature of trajectory, and
velocity feature of object motion can reveal anomalous trajectory more effectively than
using only one feature. To use that features efficiently, the authors propose three kernel
functions for each mentioned feature and assign a weight for one of them. Also, they use a
linear combination for feature fusion of the kernel results to generate a high-dimensional
vector for trajectory. Then, with a new representation for each trajectory, the authors
create a feature graph where the vertices are the trajectories, and the edges are the sim-
ilarity between them (using fused features values). Thus, given a feature graph where
the vertices are the trajectories and the edges the similarity between them (using fused
features values), the approach discovers anomalous trajectories by searching the sparse
subgraphs whose weight coefficient is less than a threshold. Overall, the approach presents
promising results, but it only detects whether the whole trajectory is anomalous and does
not clarify whether it works online.

3.2.2 Unsupervised Detection

Similar to (ZHANG et al., 2011), Liu, Ni and Krishnan (2013) propose a trajectory outlier
detection on taxi’s context. However, the authors use a cluster approach based on speed to
calculate a fraud function. First, the method finds active areas where many taxis passed
through and splits them into two clusters based on the average speed task. Each task
has information about the average speed of an occupied (status) taxi trajectory. Hence,
looking at the average speed, the authors divide taxi trajectories into two groups. One
has taxis with speed above the average value, whereas the other includes taxis with speed
below. Based on that, the anomaly detection relies on a suspicion function that describes
the possibility of a taxi’s average speed being an outlier in a specific active area because its
speed is below the average. Also, the authors implement a fraud detection function that
takes into account all suspicious functions from a complete trajectory to give a probability
of fraudulent taxi behavior.

Lv et al. (2017) propose a method called Density-Based Outlier Trajectory Detection
(DBTOD) to detect trajectory outliers. The authors approach the problem first building
a road network (i.e., directed graph) to simplify the use of trajectories. Next, the work
defines two functions: route distance function and Min Core Distance. The route function
works similar to the Edit Distance, and it outputs a similarity value between two routes
while the second function gives an outlier score. However, before applying the Min Core
Distance, the authors use the DBSCAN method to discover clusters on a historical dataset.

38

After finding the groups, they select the core trajectories as representatives and use them
to calculate a min core distance (i.e., outlier score) with a test trajectory. Hence, if the
lowest similarity score is above a specific threshold outlier, the test trajectory will be an
outlier. According to the authors, it is necessary to split routes into different groups (i.e.,
same origin and destination pairs) in advance to turn the result of clusters meaningful.

Wang et al. (2018) propose a method that combines the Edit Distance (ED) function
with a hierarchy cluster technique as a solution to detect trajectory outliers. To achieve
this objective, the authors first use an extended Edit Distance to calculate a similarity
matrix among trajectories. Second, they implement an iterative process where they first
consider each trajectory as an initial group, and when the distance between routes is
minimal, a clustering method (i.e., hierarchical cluster) merges those previous groups. The
process keeps on combining the trajectories until the number of groups reaches a threshold.
Lastly, groups with occasional samples represent abnormal samples, while groups with
more than one route are normal. Note that, according to the authors, the Edit Distance
extension aims to avoid giving different weights to low-sampling-rate trajectories because
long-trajectories have higher edit distance values than short-sequences. Also, the approach
proposes four behavior patterns based on the trajectory’s length and time to analyze
causes of anomalies in the taxi context.

(KONG et al., 2018) propose Long-Term Traffic Anomaly Detection (LOTAD) to de-
tect anomalous trajectory segments and abnormal regions in the bus context. Toward
this end, the approach first extracts sub-trajectory named TS-Segment (Temporal-Spatial
Segments) from two consecutive stop stations. Second, the authors use the TS-Segments
from bus trajectory data to create a segment matrix where each element is a TS-segment
composed of average speed and average stop time. Each bus line has a segment matrix
that is treated as input data to find the anomalous segments. In this part, the LoTAD
approach uses a Gaussian kernel function (KUMAR; MANGATHAYARU; NARSIMHA, 2016)
to calculate segments’ density and to get their relative distances (i.e., based on the fea-
tures). On this basis, the authors use the well-known K-means to look for four groups:
perfect segments that have higher density and three anomalies groups with the lowest
density. Each anomaly group has a semantic meaning, for instance, points with higher
stop time and lower average speed mean bigger demands on the stop stations and road
congestion, while higher average speed and lower stop time mean the travel demand is
high. After finding the groups, the authors remove the group with the highest density
and explore only the anomalous segments. Last but not least, the approach proposes to
discover abnormal regions. For this purpose, the authors split the trajectory’s city into
small areas according to the placement of bus stations. Next, looking at the regions, they
generate a region’s anomaly index based on anomalous segments to discover which areas
have problematic traffic conditions.

39

3.2.3 Supervised Detection

Bessa et al. (2015) propose a multi-class Convolutional Neural Network to classify tra-
jectories according to their route IDs. The main assumption is that a multi-class classifier
can detect anomalous trajectories when a misclassification occurs or the classifier output
probability is below a certain threshold. The classifier achieved a high accuracy value for
the route id classification but no results were presented to evaluate the outlier detection
method. As we show in our experimental evaluation, STOD outperforms their approach
for the bus route classification task on both datasets.

Raymond and Imamichi (2016) introduce a bus route classification approach that
the authors claim that can be used to detect spatial and temporal outliers as (BESSA et

al., 2015) but no specific method was presented. The classification is performed in two
steps: First, it transforms the input GPS sequence into a sequence of road IDs based on
OpenStreetMap 1 road network (map-matching). Next, a bag-of-roads method, similar to
bag-of-words, generates vectors of the buses and vectors of the predefined routes, which are
used by a K-Nearest Neighbors (KNN) model to perform bus route classification. Our ap-
proach detects candidate anomalous trajectories similar to (BESSA et al., 2015; RAYMOND;

IMAMICHI, 2016) in the sense that the models are learning the spatial and temporal fea-
tures of trajectories. However, our work differs from them in some aspects. We represent
trajectories by two distinct types of information: activity information points embedding,
and geo embedding. In addition, we propose a specific method for anomaly detection
based on the classifier confidence and evaluate it on spatial and temporal anomalies.

Chen et al. (2016) propose the Trend-Residual Dual Modeling (TRDM) method.
The approach detects abnormal points using a regressor method named Cubic Smooth
Spline along with the ARMA algorithm. According to the authors, the Cubic approach
models trajectory trends where trajectories are represented by (timestamps, latitude) and
(timestamp, longitude). Looking at the trends, the TRDM uses the ARMA method to
model the residuals since outliers stay into the residual data. Last, the TRDM implements
an outlier score as output to compare with a critical value (i.e., threshold) to decide if a
trajectory is anomalous or not.

In Gaussian Mixture Variational Sequence AutoEncoder (GM-VSAE), Liu et al. (2020)
propose a deep learning encoder-decoder approach to detect whether the trajectory is
anomalous or not. The approach uses an LSTM architecture to encode and decode tra-
jectories. Overall, the approach uses the encoder to model trajectories by a gaussian
distribution mixture. Then, the proposed method uses each distribution as the decoder’s
input information to calculate the probability of an ongoing trajectory belonging to one
of the distributions. The trajectory is anomalous if the probability is below a certain
threshold.
1 https://www.openstreetmap.org

40

Zhang et al. (2021) introduce a supervised approach UT-ATD. The solution has three
main components: preprocessing, Universal Transformer (UT), and MLP blocks. The
first block pre-trains an embedding method. The second one uses a universal encoder
transformer to learn the previous pre-trained embedding output and a mapped trajectories
representation. Finally, to train the model and find the anomalies, the approach feeds the
encoder output to the MLP block and applies the Binary Cross-Entropy (BCE) function
to train the UT and MLP together. Although the results of UT-ATD are promising, the
method is not an end-to-end solution because it has to pre-train the Word2Vec 2 approach
to feed the UT component. Also, the approach needs labeled datasets that are not easy
to find in our context.

Qian et al. (2021) propose an online Spatial-Temporal Relations (STR) method to
detect abnormal taxi trajectory. The basic idea of the approach is to verify if the dis-
placement (distance between 𝑝1 and 𝑝𝑖) increases continually along with the drive dis-
tance (distance between consecutive segments) and the drive time (delta time between
consecutive segments). For that, the authors formulate two regression models to learn
historical drive distance Displacement Spatial (D-S) and drive time Displacement Time
(D-T). Once those models are learned, a test trajectory can be evaluated, and the STR
method outputs an anomaly probability for each point. Next, an anomaly score is gener-
ated based on the sum of the anomaly probability for each point. Lastly, the trajectory is
considered anomalous whether the anomaly score is greater than a threshold. Although
the results of the experiments show greater precision by reducing false positives, likewise
(CHEN et al., 2013) method, STR needs an inverted index to recover historical trajectories
with the same S-D pairs. Also, the approach needs to train D-S and D-T every time a
new trajectory arrives to be analyzed when a cache mechanism does not already contain
fitted models.

3.2.4 Comparative Analysis

Table 2 summarizes the trajectory outlier detection solutions described in the previous
sections. For each one of them, we highlight the type of the approach, its method, and
the type of anomalies that it deals with. For example, the rule-based works described
here mostly rely on distance functions, density, and statistics (LEE; HAN; LI, 2008; GE et

al., 2010). On the other hand, unsupervised methods show that probably density-based
solutions are more suitable than others (e.g., partitioning and hierarchical). Moreover, the
anomaly type describes that spatial and temporal are the major concern in the works, and
the localization characteristic reveals which solutions can discover anomalous segments
since they are important to understanding anomalous causes. Those characteristics give us
a notion of how robust the works are and how dependent they are from expert domains.
2 https://radimrehurek.com/gensim/apiref.html

41

Lastly, we highlight which solutions work online since they are most suitable for real
applications and highlight which works provide code implementation.

This thesis has the same interests as the above works. However, differently from the
previous works, we propose to apply a language model for anomaly detection in bus
trajectory. Overall, our proposal intends to detect only spatial bus trajectories anomalies
and localize where the outlier occurs (i.e., anomalous sub-trajectories). Particularly, our
method uses an approach commonly used in Natural Language Processing and allows the
task to be performed offline and online. Lastly, it is worth mentioning that our solution
does not require any manual feature extraction and can be adapted to other types of GPS
trajectories.

42

Ta
bl

e
2

–
Tr

aj
ec

to
ry

O
ut

lie
r

de
te

ct
io

n
so

lu
ti

on
s

A
pp

ro
ac

h
M

et
ho

ds
A

no
m

al
y

ty
pe

Lo
ca

liz
at

io
n

O
nl

in
e

C
od

e
R

ef
er

en
ce

s
Ru

le
-b

as
ed

di
st

an
ce

,d
en

sit
y

sp
at

ia
l

Ye
s

N
o

N
o

(L
EE

;H
A

N
;L

I,
20

08
)

st
at

ist
ic

-b
as

ed
(fr

eq
ue

nc
y)

di
re

ct
io

na
l,

de
ns

ity
N

o
Ye

s
N

o
(G

E
et

al
.,

20
10

)
st

at
ist

ic
s-

ba
se

d
sp

at
ia

l,
te

m
po

ra
l

Ye
s

N
o

N
o

(P
A

N
G

et
al

.,
20

11
)

sim
ila

rit
y-

ba
se

d
sp

ee
d

N
o

N
o

N
o

(L
IU

;N
I;

K
R

IS
H

N
A

N
,2

01
3)

di
st

an
ce

-b
as

ed
sp

at
ia

l,
te

m
po

ra
l

Ye
s

Ye
s

N
o

(P
A

N
et

al
.,

20
13

)
fre

qu
en

cy
-b

as
ed

sp
at

ia
l

Ye
s

Ye
s

N
o

(C
H

EN
et

al
.,

20
13

)
di

st
an

ce
-b

as
ed

sp
at

ia
l,

te
m

po
ra

l
N

o
Ye

s
N

o
(Z

H
U

et
al

.,
20

17
)

di
st

an
ce

-b
as

ed
sp

at
ia

l
Ye

s
Ye

s
N

o
(Y

U
et

al
.,

20
17

)
di

st
an

ce
-b

as
ed

sp
at

ia
l,

te
m

po
ra

l
Ye

s
N

o
N

o
(H

U
et

al
.,

20
18

)
sim

ila
rit

y-
ba

se
d

sp
at

ia
l,

te
m

po
ra

l
N

o
N

o
N

o
(Z

H
A

O
et

al
.,

20
20

)
U

ns
up

er
vi

se
d

fre
qu

en
cy

(la
zy

-le
ar

ni
ng

ce
lls

)
sp

at
ia

l
N

o
N

o
N

o
(Z

H
A

N
G

et
al

.,
20

11
)

de
ns

ity
-b

as
ed

sp
at

ia
l

N
o

N
o

N
o

(L
V

et
al

.,
20

17
)

di
st

an
ce

-b
as

ed
sp

at
ia

l
N

o
N

o
N

o
(W

A
N

G
et

al
.,

20
18

)
di

st
an

ce
-b

as
ed

sp
at

ia
l

Ye
s

N
o

N
o

(K
O

N
G

et
al

.,
20

18
)

Su
pe

rv
ise

d
C

N
N

sp
at

ia
l,

te
m

po
ra

l
N

o
N

o
N

o
(B

ES
SA

et
al

.,
20

15
)

K
N

N
sp

at
ia

l,
te

m
po

ra
l

N
o

N
o

N
o

(R
AY

M
O

N
D

;I
M

A
M

IC
H

I,
20

16
)

A
R

M
A

sp
at

ia
l

Ye
s

N
o

N
o

(C
H

EN
et

al
.,

20
16

)
En

co
de

r-
D

ec
od

er
LS

T
M

sp
at

ia
l

N
o

Ye
s

Ye
s

(L
IU

et
al

.,
20

20
)

BI
G

RU
+

A
tt

en
tio

n
(S

T
O

D
)

sp
at

ia
l,

te
m

po
ra

l
N

o
N

o
Ye

s
(C

R
U

Z;
B

A
R

B
O

SA
,2

02
0)

R
eg

re
ss

io
n

sp
at

ia
l,

te
m

po
ra

l
Ye

s
Ye

s
Tr

ue
(Q

IA
N

et
al

.,
20

21
)

Tr
an

sfo
rm

er
En

co
de

r
sp

at
ia

l
N

o
N

o
N

o
(Z

H
A

N
G

et
al

.,
20

21
)

So
ur

ce
:C

re
at

ed
by

au
th

or
(2

02
2)

43

3.3 CONCLUSION

In this chapter, we have reviewed several works that are relevant and have common
purposes with the objectives of this thesis.

We first described and discussed stay point detection methods. According to the lit-
erature, most works are rule-based, such as distance and time interval between points.
Also, some works apply density cluster methods to find such stay points. In addition, we
saw that stay-points are used for some reasons, such as enriching raw trajectories with
semantic information, segmenting trajectories, and reducing computational costs.

The second half of this chapter presented and discussed state-of-art trajectory anomaly
detection approaches. We split the works based on the strategy/approach adopted, such as
rule-based, unsupervised, semi-supervised, and supervised, to facilitate the understanding.
Note that most of the works are rule-based, but more recently, methods based on learning
have shown to be competitive. Furthermore, it is worth mentioning that the lack of labeled
datasets also restricts supervised approaches. Table 2 summarizes the methods according
to a few features that might be important to other researchers. For example, the feature
method describes which type of strategy the solution implements more specifically. Also,
the anomaly type and localization describe which type of anomalies the solutions can
detect and if they can localize the anomalous segments/regions in trajectories. Lastly, we
highlight the solutions that work online and which ones make the implementation code
available.

The following chapters will present our solutions to detect bus anomalies trajectories.
Our first solution is a supervised approach that focuses on spatial-temporal anomalies.
However, it only works in a batch way and can not pinpoint the abnormal segments.
On the other hand, the Chapter 5 will present our online model language approach that
focuses on detecting spatial anomalies and can localize anomalous segments. Last but not
least, the Chapter 6 will present our demo tool for visualizing and analyzing trajectories.

44

4 LEARNING GPS POINT REPRESENTATION TO DETECT ANOMALOUS
BUS TRAJECTORIES

In this section, we aim to answer the two first research questions RQ1 and RQ2: how can
we propose a bus supervised trajectory outlier detection using classification confidence as
an anomaly score? and Are there any advantages to representing trajectories by stay points
on the outlier detection task? For the first goal, we propose a multi-class classifier that
learns the typical behavior of buses but, instead of performing a hard detection decision
as previous approaches (BESSA et al., 2015; RAYMOND; IMAMICHI, 2016), our solution
calculates an anomaly score based on the uncertainty of the classifier. More specifically,
our classifier, which we call Spatial-Temporal Outlier Detector (STOD), predicts the route
line of a given bus trajectory. Our main assumption is that when the classifier is uncertain
about the bus route of a given trajectory, there is a high chance that this trajectory is
anomalous. To reach our second goal, we propose the Point Activity Classifier (PAC) which
is a stacked deep-learning model that learns a vector representation (PAC embedding)
for each point in a given trajectory by classifying it into a set of activity points (in route,
bus stop, traffic signal, and other stops) based on temporal and spatial features of the
point and its neighboring points in the trajectory. Overall, we feed the PAC embedding
into the STOD method. In the remainder of this chapter, we describe in details these two
strategies.

4.1 PROBLEM DEFINITION

Definition 1. [Problem Statement]. Given a bus trajectory 𝑇𝑙, we aim to calculate
the spatial-temporal anomaly score function 𝑓 : 𝑇𝑙 → R, such that 𝑓(𝑇𝑙) ∈ [0, 1].

4.2 METHODOLOGY

This work proposes a spatial-temporal outlier scoring method for bus trajectories data.
Similar to previous approaches (BESSA et al., 2015; BONTEMPS et al., 2016; LI et al., 2007),
we calculate the score based on a classification task. More specifically, we build a multi-
class classifier that learns spatio-temporal patterns of regular bus trajectories in 𝑘 bus
lines (CHANDOLA; BANERJEE; KUMAR, 2009). The anomaly score of a trajectory 𝑇 is
based on the confidence degree of the classifier in predicting the class of 𝑇 . We measure
this confidence by calculating the entropy of the output probability distribution of 𝑇

belonging to each one of 𝑘 classes.
To perform the route classification, instead of representing each trajectory point 𝑝𝑖 with

its raw features (𝑙𝑎𝑡𝑖, 𝑙𝑛𝑔𝑖, 𝑡𝑠𝑝𝑖), 𝑝𝑖 is represented by a concatenation of vectors learned
from two different tasks. In the first one, we use a neural network (Point Activity Clas-

45

Figure 7 – Overview of our anomaly score approach

Source: CRUZ; BARBOSA (2020)

sifier) as a feature extractor to learn a vector representation for 𝑝𝑖 (PAC embedding) by
predicting whether 𝑝𝑖 is moving or is one of the 3 different types of stay points: bus stop,
traffic light or other type of stay point. The second strategy uses a word embedding algo-
rithm (MIKOLOV et al., 2013) to produce a vector representation (Geo embedding) for each
point in a new space, which captures the spatial relationship between neighboring points.
The points of 𝑇 , represented by the concatenation of their PAC and Geo embedding, are
fed into a deep learning model, called STOD (Spatial-Temporal Outlier Detection), to
predict the probability distribution of 𝑇 belonging to the 𝑘 classes. Finally, this distri-
bution is passed to the Anomaly Detector to calculate the anomaly score of 𝑇 based on
entropy, as mentioned before. An overview of the whole solution is presented in Figure 7.
In the remainder of this section, we provide further details about the whole solution.

4.2.1 Point Activity Classification

As mentioned before, the point activity classifier (PAC) learns representations of trajec-
tory points that embed information of the point itself and its neighboring points using
a supervised learning strategy. For that, we devised a deep learning model that predicts
whether a given GPS point 𝑝𝑖 in 𝑇 is in one of the 4 distinct states: in route, bus stop,
traffic light or another kind of stop. Alongside the prediction, the model works as a fea-
ture extractor by producing a vector representation of 𝑝𝑖 (PAC Embedding) as shown in
Figure 8. The main goal of PAC is therefore to create a vector to represent any point in a
trajectory. That is the reason we included the “in route” class as one of the PAC output
classes, even though it is straightforward to identify points in this class based on speed.

Point activity classification is very related to the task of stay point prediction that
identifies the semantic of stops in trajectories (MOHANADAS, 2018), which helps to un-
derstand how vehicles are being utilized. For example, buses of a given route normally
follow the same path which has the same number of bus stops and traffic signals, but they
can present different behaviors due to factors as period of the day, weather conditions
and city dynamics. Discovering the meaning of each stop opens the opportunity to under-
stand anomalous spatial-temporal behavior in trajectories. Stay point prediction can be
considered as a sub-task of point activity classification, since 3 out of 4 classes predicted
by PAC are related to stay points. As presented in Figure 8, to predict the class of a

46

Figure 8 – PAC model

Source: CRUZ; BARBOSA (2020)

given point 𝑝𝑖, the PAC network receives as input 𝑝𝑖 and the 𝑘 consecutive points before
[𝑝𝑖−𝑘 : 𝑝𝑖−1] and after it [𝑝𝑖+1 : 𝑝𝑖+𝑘], which we call left and right windows.

Since the bus behavior is heavily influenced by the day of week and hour of the
day, those data are used as features, extracted from the timestamp of the point. Similar
to (WANG et al., 2018), instead of using their raw representation, PAC considers them
as categorical values and applies Entity embeddings (GUO; BERKHAHN, 2016) for each
feature set to map sparse one-hot encoded inputs of the categories to a dense and lower
dimensionality.

PAC also uses the numerical features: latitude, longitude and timestamp of the point;
acceleration and point-wise distance, which are calculated between consecutive points,
since buses in stay points can have different behavior regarding these features. We utilize
Vincenty’s formula (VINCENTY, 1975) to compute the geographical distance between two
points. Another feature, travel distance, is the geographic distance between the initial
point of the trip and the current point. It tries to capture events in specific locations of
the trajectory. The final feature is the bearing rate (DABIRI; HEASLIP, 2018), which is the
absolute difference of the bearing of (𝑝𝑗−1,𝑝𝑗) minus the bearing of (𝑝𝑗,𝑝𝑗+1). The level of
changing of direction of a bus in a point calculated by the bearing rate might indicate the
type of stay point. For instance, buses usually change slightly their directions when they
stop at a bus stop as opposed to at a traffic light. The bearing of two consecutive points

47

𝑝′ and 𝑝′′ is calculated as:

𝑦 = sin (𝑙𝑛𝑔𝑝′′ − 𝑙𝑛𝑔𝑝′). cos (𝑙𝑎𝑡𝑝′′) (4.1)

𝑥 = cos (𝑙𝑎𝑡𝑝′). sin (𝑙𝑎𝑡𝑝′′) (4.2)

𝑧 = sin (𝑙𝑎𝑡𝑝′). cos (𝑙𝑎𝑡𝑝′′). cos (𝑙𝑛𝑔𝑝′′ − 𝑙𝑛𝑔𝑝′) (4.3)

𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑝′ = arctan(𝑦, (𝑥 − 𝑧)) (4.4)

where sin, cos, and arctan are the respectively trigonometric functions: sine, cosine and
arctangent. Latitude (lat) and longitude (lng) are passed in radians.

In each batch, the network applies batch normalization (IOFFE; SZEGEDY, 2015) on
the values of these features to normalize them in order to give numerical stability to the
model:

𝑥̄𝑖 = 𝑥𝑖 − 𝜇𝐵√︁
𝜎2

𝐵 + 𝜖
(4.5)

𝑧𝑖 = 𝛾.𝑥̄ + 𝛽 (4.6)

where 𝜇𝐵 and 𝜎2 are respectively the batch mean and standard deviation, 𝜖 is a stability
factor added to variance to avoid a division by zero, 𝛾 and 𝛽 are learning parameters, and
𝑧𝑖 is the normalized value of 𝑥𝑖.

After the batch normalization layer, we use two GRUs to capture the context before
and after of 𝑝𝑖: the points in the left window [𝑝𝑖−𝑘 : 𝑝𝑖−1] are passed to a forward GRU ,
and the points in the right window [𝑝𝑖+1 : 𝑝𝑖+𝑘] to a backward GRU.

Next, the network applies the attention mechanism to learn which points before and
after 𝑝𝑖 are more relevant to classify it. More specifically, the hidden states of the forward
GRU and the normalized features of 𝑝𝑖 are fed into an attention layer, which weights the
GRU hidden states according to 𝑝𝑖, creating an attention vector. Similarly, the hidden
states of the backward GRU and 𝑝𝑖 are used by an attention layer to produce an attention
vector with respect to the right window. The attention vector 𝑣𝑎𝑡𝑡 is calculated as follows:

𝑒𝑗 = 𝑓(𝑝𝑖, 𝑣𝑗) (4.7)

𝛼𝑗 = 𝑒𝑥𝑝(𝑒𝑗)∑︀ℎ
𝑘=1 𝑒𝑘

(4.8)

𝑣𝑎𝑡𝑡 =
ℎ∑︁

𝑗=1
𝛼𝑗𝑣𝑗 (4.9)

48

where 𝑝𝑖 is the input point, 𝑣𝑗 is one of the GRU’s hidden state, 𝑓 is the hyperbolic
tangent activation function in our implementation, and ℎ is the number of output hidden
states of the GRUs.

In addition to obtain the attention vectors from the left and right windows, the network
also extracts statistics about points in both windows using a sliding window strategy,
similar to (DABIRI; HEASLIP, 2018). Concretely, for each n consecutive points in [𝑝𝑖−𝑘 :
𝑝𝑖−1] and [𝑝𝑖+1 : 𝑝𝑖+𝑘], the model computes the mean, standard deviation, min, max, and
median of the features: velocity, acceleration, distance, bearing and travel distance.

Lastly, the statistics from the left and right windows, their attention vectors and the
features of 𝑝𝑖 are passed to an MLP network with 3 fully-connected layers (a dropout layer
is placed after the first full connected one). On top of the network, a softmax function
predicts the probability of 𝑝𝑖 belonging to each one of the 4 states (in route, bus stop,
traffic light and other kind of stop). The output of the last hidden layer is the vector
representation of 𝑝𝑖 (PAC Embedding).

4.2.2 Anomaly Trajectory Detection

As we mentioned before, our solution predicts the anomaly score of bus trajectories based
on a classification task. For that, our classifier predicts the probability of a trajectory 𝑇

belonging to n possible route ids, and uses the classification’s degree of confidence as the
anomaly score. We calculate this confidence by measuring the entropy of the probability
distribution of the n classes predicted by the classifier for 𝑇 . We normalize the entropy to
have values between 0 and 1: a value closer to 0 means the classifier has high confidence
of predicting the class of 𝑇 whereas values closer to 1 indicates the classifier is uncertain
about the prediction. The anomaly score of 𝑇 is therefore the normalized entropy 𝐸(𝑇):

𝐸(𝑇) =
𝑛∑︁

𝑖=1
−𝑃 (𝑇)𝑖 log𝑛 𝑃 (𝑇)𝑖 (4.10)

where 𝑃 (𝑇)𝑖 is the probability of the trajectory 𝑇 being in class 𝑖, and 𝑛 is the number
of classes being predicted by the classifier. The normalization is performed by setting the
log base equals to 𝑛, since the maximum entropy value is 𝑙𝑜𝑔𝑛(𝑛) = 1.

To perform the route id classification, the model represents each point of the trajectory
using two vectors: PAC embedding, which is learned by the PAC model as explained in
Section 4.2.1; and Geo embedding that represents a point based on its geo location and its
neighbors. Similar to (GAO et al., 2017), to create Geo embedding, as shown in Figure 9,
first the Spatial Grid Mapping maps the points of trajectories to a grid of hexagons using
the H3 technique1.

Each point is assigned to its corresponding cell (hexagon), represented by an id. A
trajectory is then transformed into a sequence of cell ids in which its points lay on the
1 <https: //eng.uber.com/h3/>

49

Figure 9 – Geo embedding pipeline

Source: CRUZ; BARBOSA (2020)

grid. These grid cell id sequences are then used as input to the Word Encoder (Word2Vec
(MIKOLOV et al., 2013) in our implementation) that outputs for each cell in the grid a
dense vector (Geo embedding) that captures the spatial relationship between neighboring
cells. At execution time, each point of a trajectory is mapped to its respective grid cell id
to retrieve its geo embedding.

As depicted in Figure 7, the classification model, which we call Spatial-Temporal
Outlier Detection (STOD), receives as input the points of the trajectory, in which each
point is represented by the concatenation of its PAC and geo embeddings, feeding a
forward GRU model. Next, the hidden states of this GRU are passed to an MLP with
1 fully connected layer2. On top of the network, a softmax layer predicts the probability
distribution of 𝑇 belonging to the 𝑘 routes, which is used to calculate the anomaly score
𝐸(𝑇). Alongside the classfication, STOD produces an embedding (STOD embedding) that
is the input vector to the softmax layer and encodes relevant aspects regarding temporal
and spatial behavior of buses as our experimental evaluation in Section 4.4 shows.

4.2.3 Training

To train both models (PAC and STOD), we use the focal loss (LIN et al., 2017) function
that deals with highly unbalanced data, which is the case of our input data as we show
in Section 4.4, leading to better performance than traditional multi-class loss functions.
The focal loss is described as:

𝐹𝐿(𝑝) =
𝑛∑︁

𝑡=1
𝛼𝑡(1 − 𝑝𝑡)𝛾𝑡 .𝑙𝑜𝑔(𝑝𝑡) (4.11)

where 𝑛 is the number of classes; 𝑝𝑡 is the probability for the class 𝑡; 𝛼𝑡 is a hyper-
parameter that balances the importance of the classes; and the 𝛾𝑡 ≥ 0 is the tunable
focusing parameter for each class that is used to down-weight easy examples and pay
more attention on hard classes, i.e., few instances in the training data.
2 Even though it is more common passing only the last hidden state, experimentally we did not find

any significant difference in the performance of the model using this strategy.

50

4.3 DATA DESCRIPTION AND SETUP

4.3.1 Experimental Setup

Bus Trajectory Datasets. We used datasets of two different cities in our evaluation:

• Recife3 (Brazil): The Recife dataset comprises 82 bus routes and has GPS points
collected every 30 seconds from 18 days between October and November 2017. Each
data point contains longitude, latitude, timestamp, route id, vehicle id, instanta-
neous velocity, and travel distance. The dataset comprises 27,897 trajectories com-
posed of 2,675,468 points from 238 buses. The trajectories cover an average distance
of 10 kilometers and have an average of 70 GPS points.

• Dublin4 (Ireland): The Dublin dataset contains 66 routes, 17,701 trajectories with
a total of 1,699,022 points collected from 3 days on January 2013. The average size
of a trajectory is 11 kilometers and each trajectory has 190 points on average. We
used the following information of the GPS points: timestamp, line id (our route id),
longitude, latitude, vehicle journey id or travel id, and vehicle id. As opposed to the
Recife dataset, the timestamp frequency on the Dublin dataset’s GPS points does
not have a regular pattern, the average time interval between consecutive points is
22 seconds.

To help building anomaly trajectories, used in our experiments in Section 4.4, we
collected General Transit Feed Specification (GTFS)5 files for both cities. GTFS is a
standard format used for agencies to publish transit data. It is composed of files that
define, for instance, the location of bus stops, pre-assigned routes for bus lines etc. For
this evaluation, we used the shape.txt file containing the latitude and longitude of each
point in the pre-assigned routes for each bus line. Furthermore, for the point activity
classification task, we obtain the labels traffic light and bus stop for Dublin and the bus
stop for Recife from OpenStreetMap6, and traffic light for Recife from the city’s open data
website7. The label “in route” is defined by points with speed greater than 5Km/h, and
the label “other stop” is set to any stop not labeled as bus stop or traffic signals.
Pre-processing. We performed the following pre-processing tasks over the raw data to
feed the models: cleaning, trajectory segmentation and feature extraction. The cleaning
step removes points with missing attributes: points without latitude, longitude or times-
tamp. Next, we perform the trajectory segmentation by considering as a single trajectory
3 We obtained the Recife dataset from a collaboration with the local government.
4 https://data.gov.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
5 https://developers.google.com/transit/gtfs
6 https://www.openstreetmap.org/
7 http://dados.recife.pe.gov.br/dataset/localizacao-dos-semaforos/resource/ab6343e9-c3f2-4d62-9554-

5778f9f33738

51

Table 3 – Values of hyperparameters of PAC approach

Best Values
Hyper-parameters Values Recife Dublin
Dropout 5 * 10−2, 15 * 10−2, 10−1 10−2 10−2

Dense1 32, 64, 128 32 32
Dense2 32, 64, 128 64 64
Learning rate 7 * 10−4, 10−2, 10−1 10−2 10−2

Optimizers adam, rmsprop, adagrad adagrad adagrad
Batch 32, 64, 128 64 64

Source: CRUZ; BARBOSA (2020)

consecutive points with time difference lower than 5 minutes. Finally, the feature extrac-
tion generates the set of features for each point mentioned in Section 4.2.
Point Activity Approaches. We assess the quality of the PAC embeddings by com-
paring traditional classification models using as features PAC embeddings versus PAC’s
original features. The PAC model was trained with the left and right windows equal to
16. We also evaluate PAC on the stay point prediction task by training and evaluating
the PAC model with only the 3 stay-point classes (bus stop, traffic light and another kind
of stop). We compare this approach with Conditional Random Field (CRF) (LAFFERTY;

MCCALLUM; PEREIRA, 2001), a widely used probabilistic sequence-based model. In this
experiment, we used the CRF implementation CRFSuite8. For all experiments, we split
the datasets in 64% for training, 16% for validation and 20% for testing. We trained all
approaches based on searching for the best hyperparameters. For CRF, we selected the
best values for the L1 and L2 regularization coefficients among 4 values generated by a
exponential continuous random variable for each coefficient. To choose the best values of
the hyper-parameters for the PAC network, we used the hyper-parameter optimization
framework Hyperas, which is a wrapper of hyperopt (BERGSTRA; YAMINS; COX, 2013).
The hyper-parameters, the values that we used to search and the best values for each
dataset based on the validation set are shown in Table 3. We executed the search for both
tasks but the same values were selected.
Classifiers. We apply the following traditional classification models in this evaluation:

• Random Forest (random forest): it is an ensemble of decision tree classifiers that
are trained with the bagging method (HO, 1995). The hyperparameters n-estimators
and max-depth were optimized in a range of values [2-50] and [1-32].

• Gaussian Naive Bayes (gaussian nb): it is a classifier based on Bayes’ theorem, and
features independence (RUSSELL; NORVIG, 2002). No hyperparameter search was
performed.

8 https://sklearn-crfsuite.readthedocs.io/

52

• Support Vector Machine (svm): svm is a non-probabilistic classifier characterized by
finding hyperplanes (support vectors) that maximize the margin between classes (CORTES;

VAPNIK, 1995). We used a linear kernel with the regularization hyperparameter C
ranging between [1𝑒−10 − 1𝑒10].

• Light Gradient Boost (lgbm): lgbm is an improved Gradient Boosting which is based
on an ensemble of decision trees and a boosting method (KE et al., 2017). We varied
the values of hyperparameters n-estimators [gbdt,dart,goss], number of leaves [10-
150], learning rate [1𝑒−5 − 1] and feature fraction [0-1].

• K-Nearest Neighbors (knn): it is a lazy and non-parametric method that classifies
examples based on a similarity measure (DUDA; HART; STORK, 2012). We varied the
number of neighbors in the range [1-30] and the KNN’s algorithm [auto, ball_tree,
kd_tree, brute].

In order to choose the values of the hyper-parameters, we used the hyperparameter
optimization framework Optuna (AKIBA et al., 2019).
Route Classification Approaches. We executed the following bus route classification
strategies:

• Riobusdata (BESSA et al., 2015) uses a Convolutional Neural Network (CNN) fed
by raw bus trajectories where each point is composed of latitude, longitude, and
timestamp.

• STOD(geo,pac) is our solution that uses as input the geo and PAC embeddings.
To generate the geo embeddings, the Spatial Grid Mapping is implemented using
UBER’s H3 (BRODSKY, 2018) and the Word Encoder is Word2Vec with the window
size set to 5. We set the output size of attention layer in 128. We also executed
a variation of our classifier that uses the point’s timestamp instead of its PAC
embedding STOD(geo,time).

For all approaches, the input trajectory has 100 points on average, and they were
implemented using Keras9. We trained them for 100 epochs and selected the best models
by early-stopping accuracy validation to avoid overfitting. For these experiments, we split
the datasets in 64% for training, 16% for validation and 20% for test. We used Hyperas10

to tune the some of the models’ hyper-parameters. Table 4 and Table 5 show the tuning
and best values used for STOD and Riobusdata respectively.
9 https://keras.io/
10 https://github.com/maxpumperla/hyperas

53

Table 4 – Values of hyperparameters of STOD

Best Values
Hyper-parameters Values Recife Dublin
GRU nodes 32, 64, 128 128 64
Full connected nodes 32, 500, 1000, 2000 1000 2000
Learning rates 10−3, 10−2, 10−1 0.1 0.1
Optmizers adam, rmsprop, adagrad rmsprop rmsprop
Batch size 32,64,128 64 128

Source: CRUZ; BARBOSA (2020)

Table 5 – Values of hyperparameters of RioBusData

Best Values
Hyper-parameters Values Recife Dublin
Conv1 32, 64, 128 128 32
Conv2 32, 64, 128 64 128
Conv3 32, 64, 128 64 64
Conv4 64, 128, 256 128 128
Conv5 64, 128, 256 128 64
Conv6 64, 128, 256 128 256
Dense1 500, 1000, 2000 500 1000
Dense2 500, 1000, 2000 500 500
Learning rate 10−3, 10−2, 10−1 10−2 10−1

Optimizers rmsprop, adam, adagrad adam adam
Batch 32,64,128 128 128

Source: CRUZ; BARBOSA (2020)

4.3.2 Evaluation Metrics

We used weighted Precision (WP), weighted Recall (WR), and weighted F1 (WF1) for
this evaluation due to the unbalanced nature of our datasets:

𝑊𝐹1 =
∑︀𝑛

𝑖=1 𝑤𝑖.𝐹1𝑖∑︀𝑛
𝑖=1 𝑤𝑖

(4.12)

𝑊𝑅 =
∑︀𝑛

𝑖=1 𝑤𝑖.𝑅𝑒𝑐𝑎𝑙𝑙𝑖∑︀𝑛
𝑖=1 𝑤𝑖

(4.13)

𝑊𝑃 =
∑︀𝑛

𝑖=1 𝑤𝑖.𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∑︀𝑛
𝑖=1 𝑤𝑖

(4.14)

where 𝑤𝑖 is the proportion of true instances of class 𝑖 over all true instances and 𝑛 is the
number of classes.

54

Table 6 – Results of PAC classification using the original features and PAC embeddings

Recife Dublin
Model Features WP WR WF1 WP WR WF1
gaussian original 0.619 0.586 0.586 0.565 0.627 0.580
nb PAC emb 0.922 0.918 0.919 0.911 0.839 0.847
knn original 0.733 0.755 0.731 0.602 0.698 0.623

PAC emb 0.925 0.927 0.925 0.886 0.890 0.886
random original 0.727 0.761 0.721 0.607 0.705 0.619
forest PAC emb 0.927 0.927 0.927 0.888 0.892 0.888
svm original 0.727 0.744 0.706 0.507 0.478 0.556

PAC emb 0.927 0.927 0.926 0.891 0.893 0.888
lgbm original 0.757 0.783 0.757 0.573 0.702 0.579

PAC emb. 0.925 0.926 0.925 0.889 0.892 0.889
pac original 0.924 0.924 0.923 0.890 0.894 0.889

Source: CRUZ; BARBOSA (2020)

4.4 RESULT AND DISCUSSION

In this section, we evaluate real bus trajectory datasets our proposed approaches: the Point
Acitivity Classifier, the Route ID Classifier and the anomaly trajectory score method.

4.4.1 PAC Evaluation

We evaluate the quality of the embeddings created by the PAC model by comparing differ-
ent classification algorithms trained using the PAC’s original features and the embeddings
created by our PAC model . The results in Table 6 show that the PAC embeddings im-
proved the performance of all evaluated models. For instance, the WF1 value of Gaussian
Naive Bayes (gaussian nb) increased from 0.586, using the original features, to 0.919 using
the PAC embeddings on the Recife dataset, and from 0.58 to 0.847 on the Dublin dataset.
The results also show that the performance of the sofmax classifier (pac in Table 6) used
in the PAC model is similar to the other classifiers using the PAC embeddings. The supe-
rior results of the classifiers using the PAC embedding confirm that the PAC network is
indeed able to learn relevant information from the original features by embedding them
in a single vector, working as an end-to-end encoder for this task.

In order to get a visual interpretation about the discriminative power of the PAC
embeddings we present in Figures 10 (a) and Figures 10 (b) the 2D projection of learned
PAC embeddings using T-SNE (MAATEN; HINTON, 2008) on the two datasets. They il-
lustrate desirable properties of good representations according to Bengio et al. (BENGIO;

COURVILLE; VINCENT, 2013): natural clustering, since the points with similar labels are
clustered in the space, maintaining a spatial coherence between similar points (e.g., stay
points are closer to each other than to in route points).
PAC as a Stay Point Classifier. We also evaluated the PAC model as a stay point
classifier by training it only considering the stay point classes: bus stop, traffic light and
another kind of stop. We compare its results with a CRF model. Due to performance

55

Table 7 – Results of PAC and CRF models for stay point classification

Recife Dublin
Model Label WP WR WF1 WP WR WF1
pac bus_stop 0.608 0.547 0.576 0.770 0.832 0.799

other_stop 0.649 0.713 0.680 0.805 0.779 0.792
traffic_signal 0.349 0.294 0.319 0.545 0.439 0.486

Average 0.535 0.518 0.525 0.762 0.766 0.763
crf bus_stop 0.583 0.615 0.599 0.580 0.732 0.648

other_stop 0.666 0.647 0.656 0.485 0.414 0.447
traffic_signal 0.050 0.010 0.016 0.256 0.086 0.129

Average 0.433 0.424 0.424 0.505 0.538 0.511

Source: CRUZ; BARBOSA (2020)

limitations in training CRF, we limited the training data used by both approaches in
5,000 points that represent 104 trajectories. Table 7 shows that the average values of
WP, WR and WF1 for the PAC model are higher than the CRF for both datasets. On
WF1, for instance, PAC achieved 0.525 and CRF 0.424 for Recife and 0.763 versus 0.511
for Dublin. Looking at individual labels, PAC outperforms CRF on 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑠𝑖𝑔𝑛𝑎𝑙 for
both datasets for all three metrics. For 𝑏𝑢𝑠_𝑠𝑡𝑜𝑝, PAC achieved the best result on the
Dublin dataset: WF1 value of 0.799 for PAC and 0.648 for CRF, whereas in the Recife
dataset CRF obtained a slightly better WF1 than PAC: 0.599 and 0.576 respectively.
These results show that our PAC model is also effective for the stay point classification
task.

4.4.2 Route ID Classifier Evaluation

We assess in this section our proposed solution for the task of classifying bus trajectories
in their assigned routes and compare it with a previous approach (RioBusData). The
numbers in Table 8 show that STOD(geo,pac) and STOD(geo,time) obtain high values
and outperform RioBusData in all evaluation metrics. Looking at the WF1 measure on
the Recife dataset, for instance, STOD(geo,pac) obtained the best WF1 result (0.956),

Figure 10 – Visualization of PAC embeddings using T-SNE

(a) Embeddings from Recife. (b) Embeddings from Dublin.

Source: CRUZ; BARBOSA (2020)

56

Table 8 – Average of results of our outlier model and RioBusData

Recife Dublin
Model WP WR WF1 WP WR WF1
STOD(geo,pac) 0.957 0.956 0.956 0.964 0.964 0.964
STOD(geo,time) 0.953 0.952 0.952 0.970 0.970 0.970
RioBusData 0.930 0.927 0.927 0.952 0.949 0.949

Source: CRUZ; BARBOSA (2020)

slightly higher than RioBusData (0.927). On the Dublin dataset, on the other hand,
STOD(geo,time) outperformed the other approaches with WF1 equals to 0.97 followed
by STOD(geo,pac) with WF1 equals to 0.964.

We applied Mann Whitney statistical test (MANN; WHITNEY, 1947) to verify whether
there is a statistical difference between the pair of models STOD(geo,pac), STOD(geo,
time), and STOD(geo,pac), RioBusData. We set the significance level to 𝛼 = 5% and our
null hypothesis ℎ0 considers each of the pairs models generates WF1 results which have
the same median and ℎ1 considers that the median of the results of the first model is
greater than the second one. We ran each model 30 times for this evaluation. The results
confirm that there is a statistical difference between STOD(geo,pac) and RioBusData on
Recife (p-value=1.50𝑒−11) and Dublin (p-value = 4.63𝑒−9), confirming that our route id
classifier has superior performance than RioBusData. We can also note that STOD(geo,
time) achieved close performance to STOD(geo, pac) on Recife (WF1 = 0.956, WF1 =
0.952) and Dublin (WF1 = 0.970, WF1 = 0.964). The statistical test shows evidence
to reject the null hypothesis on Recife (p-value=2.04𝑒−5), but not on Dublin (p-value =
0.99). A possible reason for the better performance of STOD(geo,time) in comparison to
STOD(geo,pac) on the Dublin dataset is that it contains trajectories from only 3 days.
As a result, the features of the PAC network that capture seasonality (day of the week
and hour of the day) did not have much impact.

Table 9 – Entropy Distribution of STOD on the Test Set

Recife Dublin
Entropy %Trajectories WP WR WF1 %Trajectories WP WR WF1
0.0 - 0.1 95.2 0.97 0.97 0.97 96.4 0.98 0.98 0.98
0.1 - 0.2 3.2 0.63 0.52 0.53 . 2.2 0.51 0.45 0.47
0.2 - 0.3 1 0.40 0.42 0.39 0.8 0.58 0.45 0.49
0.3 - 0.4 0.2 0.59 0.45 0.48 0.2 0.37 0.37 0.37
0.4 - 0.5 0.08 0.0 0.0 0.0 0.1 0.0 0.0 0.0
0.5 - 0.6 0.02 1.0 1.0 1.0 0.06 0.0 0.0 0.0

Source: CRUZ; BARBOSA (2020)

57

Since our anomaly detection score is based on the entropy of the output class distri-
bution of STOD, we verified the performance of STOD(geo,pac) on different ranges of
entropy on the trajectories of the test set. The results in Table 9 show a clear degradation
in the performance of STOD as the entropy of the classification probability output in-
creases. The WF1 metric dropped from 0.97 to 0.53 from the entropy interval [0.0 - 0.1] to
[0.1 - 0.2] on the Recife dataset and from 0.98 to 0.47 on the Dublin dataset. Furthermore,
the percentage of trajectories classified in these entropy intervals decreased from 95.2% to
3.2% on the Recife dataset and from 96.4% to 2.2% on the Dublin dataset. These results
confirm the high quality of our proposed classifier (STOD) since it classified with high
confidence and correctly a very high percentage of the trajectories on both datasets. In
addition, there is a clear correlation between the entropy value and the performance of
the classifier: the higher the entropy (or the lower the confidence of the classifier), the
lower its performance. This might also indicate that trajectories with high entropy values
are anomalous, which is the main assumption behind our trajectory anomaly detector.
STOD as a Trajectory Encoder. We also evaluated the STOD(geo,pac) model as
a trajectory encoder that receives as input a raw trajectory and uses the intermediate
mappings and non-linearities performed in the network to produce a dense vector repre-
sentation of the trajectory (STOD embedding). This vector is the input of the final layer
of the STOD network (see Figure 7). In this experiment, in particular, this trajectory
encoder transforms a trajectory with 100 points and 50 features per point into an embed-
ding of 1000 dimensions on Recife dataset, and 2000 on Dublin dataset. To further reduce
the dimensionality of the vectors and ease the training process, we apply PCA (Princi-
pal Component Analysis) (JOLLIFFE; CADIMA, 2016), decreasing the STOD vectors to
32 dimensions. Table 10 presents the results of classifiers for the route id classification
task using this dimensionality reduction strategy. The KNN approach outperformed all
the evaluated classifiers on both datasets: WF1=0.954 (Recife) and WF1=0.968 (Dublin).
This result indicates that our trajectory encoder in fact can capture the complexities as-
sociated with the features of the trajectory allowing a simple model such as KNN, which
relies heavily on the representation of the instances to perform the classification, to achieve
superior performance than more sophisticated algorithms such as Random Forest, SVM
and LightGBM. This result might indicate as well that our sentence encoder can also be
used in the task of trajectory similarity (ZHANG et al., 2019), which we leave as a future
work.

4.4.3 Outlier Detection Assessment

We also evaluate our approach for detecting spatio-temporal anomalous trajectories. Con-
cretely, we assess whether the confidence of the classifier measured by the entropy of the
output probability distribution of the classes is a good indicator for trajectory anomaly
detection. Since our datasets do not contain any trajectories labeled as outliers, we had

58

Table 10 – Results of STOD embeddings

Recife Dublin
Model WP WR WF1 WP WR WF1
gaussian_nb 0.943 0.934 0.936 0.958 0.953 0.954
knn 0.955 0.953 0.954 0.968 0.968 0.968
random forest 0.948 0.947 0.946 0.963 0.965 0.964
svm 0.948 0.946 0.946 0.967 0.968 0.967
lgbm 0.941 0.939 0.939 0.963 0.964 0.963

Source: CRUZ; BARBOSA (2020)

to synthetically generate spatially and temporally anomalous trajectories. Based on the
STOD’s entropy results in Table 9, we assumed that the trajectories with the smallest
chance of having anomalies are the ones that STOD correctly classified with high confi-
dence, i.e., entropy between 0 and 0.1. On the Recife test set, there are 3,530 trajectories in
this entropy range and 2,805 on the Dublin test set. We consider them as non-anomalous
trajectories (𝑁𝐴𝑇) and created from them anomalous ones (𝐴𝑇). For evaluation, we ex-
ecute STOD(geo,pac) on both datasets and calculate our entropy-based anomaly score
(see Equation 4.10) of all trajectories in 𝑁𝐴𝑇 and 𝐴𝑇 . Then, we measure the relative
change of the distribution of the anomaly scores of 𝑁𝐴𝑇 regarding 𝐴𝑇 , which we call
relative entropy, at different percentiles. More formally, the relative entropy is:

𝑓𝑒𝑛𝑡(𝐴𝑇) − 𝑓𝑒𝑛𝑡(𝑁𝐴𝑇)
𝑓𝑒𝑛𝑡(𝑁𝐴𝑇) (4.15)

where 𝑓𝑒𝑛𝑡 is the entropy value at a specific percentile. We used the 25th, 50th (median)
and 75th percentiles in our evaluation. A positive value of relative entropy means that the
anomaly score is higher in the anomalous trajectories than in the non-anomalous ones at
a certain percentile, and a negative value means otherwise.
Spatial Anomaly. We consider as spatially anomalous the trajectories whose points are
(totally or partially) spatially away from their respective pre-assigned bus route line. We
synthetically generate them by randomly picking 𝑘 consecutive points in the trajectory,
and adding noise to their latitude and longitude. To calculate the noise, we use the
geo-py 11 library, in which we pass the current point 𝑘𝑖, a distance in kilometers which
represents the distance between 𝑘𝑖 and its respective noisy one, and a bearing value, which
is the angle between the trajectory from 𝑘𝑖 and the location where the noisy point is placed.
We vary the distances to simulate points getting away from the original trajectory and
returning to it. For example, for 𝑘 = 5 we define 5 distances [0.1, 0.2, 0.3, 0.2, 0.1], then
the 5 noisy points are placed at those distances from the original points. We varied the
number of points 𝑘 in 10 (noise_10), 20 (noise_20) and 30 (noise_30). Figure 21 (a)
11 https://pypi.org/project/geo-py/

59

Figure 11 – Example of spatial anomaly

(a) Anomalous trajectory. (b) Raw trajectory.

Source: CRUZ; BARBOSA (2020)

Figure 12 – Results of spatial anomaly

(a) Recife. (b) Dublin.

Source: CRUZ; BARBOSA (2020)

shows an example of a synthetic trajectory and Figure 21 (b) the original one. The noisy
points are at the bottom of Figure 21 (a) which shows points moving away, and returning
to the original shape of trajectory.

Figure 12 (a) and Figure 12 (b) show the relative entropy of the STOD classifier on
the synthetic spatial anomaly on the Recife and Dublin datasets respectively. On both
datasets, the results show that: (1) the entropy of the anomaly trajectories are higher
than the non-anomalous ones (positive relative entropy); and (2) the higher the noise
level, the higher the relative entropy. For example, on the Recife dataset, the median
relative entropy for noise_10 is 1,959, for noise_20 is 13,550, and noise_30 is 18,868.
These numbers confirm that the entropy of the probability distribution of the predicted
classes provided by STOD is an effective approach to score trajectories in order to identify
spatial anomaly.
Temporal Anomaly. We also evaluate our approach for detecting temporal anomaly

60

Figure 13 – Example of temporal anomaly type I

(a) Anomalous trajectory. (b) Raw trajectory.

Source: CRUZ; BARBOSA (2020)

trajectories on the two types described in Section 2.1: Temporal Anomaly Type I (more
congestion than usual) and Temporal Anomaly Type II (less congestion than usual). We
simulate the Temporal Anomaly Type I as follows. First, given a non-anomalous trajectory
𝑇 and the its assigned route line 𝑙 in the GTFS shape file, we randomly pick 𝑘 consecutive
points from 𝑙, find the closest point to each one of them in 𝑇 using the Vincenty’s distance,
and then add these 𝑘 consecutive points to 𝑇 . Figure 13 (a) depicts a noisy trajectory
where points were added at the beginning of the original trajectory (top of the figure),
simulating a congestion, and Figure 13 (b) the original bus trajectory without noise.

Figure 14 (a) and Figure 14 (b) show the relative entropy for Temporal Anomaly
Type I. On the Recife dataset, the results follow a similar trend of spatial anomaly: the
entropy values are higher for the noisy trajectories than the regular ones, and there is a
relation between the level of noise and the entropy value. For instance, the median of the
relative entropy for noise_10 is 19.50, 20.41 for noise_20 and 64.75 for noise_30. On the
Dublin dataset, also the increase of noise led to higher values of relative entropy, but as
opposed to the Recife dataset, the relative entropy was not positive for all scenarios. In
the noisiest scenario, noise_30, though the relative entropy was positive for 25th, 50th
and 75th percentiles. These results confirm that our anomaly score strategy can also be
used to detect Temporal Anomaly Type I.

For generating the Temporal Anomaly Type II, we remove 10, 20, and 30 points of
non-anomalous trajectories to simulate less traffic than usual. To avoid having unrealistic
scenarios, for example, bus speeds above 200 km/h, we only remove a GPS point 𝑘𝑖 if
the speed between points 𝑘𝑖−1 and 𝑘𝑖+1 is less than the trajectory maximum speed and
two standard deviations from the mean. Figure 15 (a) presents an example of Temporal
Anomaly Type II, and the original trajectory in Figure 15 (b). As one can see there are
sparse points mostly at the bottom of Figure 15 (a) simulating less congestion.

Figure 16 (a) and Figure 16 (b) present the relative entropy of Temporal Anomaly
Type II for both cities. The results are similar to the other anomaly types: on the Recife

61

Figure 14 – Results of temporal anomaly type I

(a) Recife (b) Dublin.

Source: CRUZ; BARBOSA (2020)

Figure 15 – Example of temporal anomaly type II

(a) Anomalous trajectory. (b) Raw trajectory.

Source: CRUZ; BARBOSA (2020)

dataset, the relative entropy is positive for the 25th, 50th and 75th percentiles; and on
the Dublin dataset, the positive relative entropy occurs on the 50th and 75h percentiles.
Looking at the median at noise_30, for instance, the relative entropy for Recife is almost
60 times higher than the non-anomalous trajectories and for Dublin, 4 times higher.
The anomaly score calculated by the entropy of the probability class distribution of the
trajectories provided by STOD is in fact effective to identify trajectories with Temporal
Anomaly Type II.

62

Figure 16 – Results of temporal anomaly type II

(a) Recife (b) Dublin.

Source: CRUZ; BARBOSA (2020)

4.5 CONCLUSION

In this chapter, we proposed a solution for detecting anomalous spatial-temporal bus tra-
jectories. The solution relies on a deep learning multi-class classification model (STOD),
where the anomaly score is based on the classifier’s confidence, which is calculated by a
normalized entropy. This classifier receives as inputs trajectories in which each point is a
concatenation of the PAC embedding, which captures behavior and time information, and
Geo embedding, which catches spatial relationships among points. The PAC embedding is
created by a deep-learning network that predicts the type of activity of GPS points. The
Geo embedding, in turn, is generated by mapping the GPS points to grid cells and ap-
plying a word encoder algorithm in the trajectories, in which each point is represented by
its grid cell id. The experimental results indicate that PAC produces high-quality embed-
ding vectors and is effective for the task of stay point classification. Furthermore, STOD
outperforms a baseline for bus route id classification, and its generated trajectory encoder
used in different classifiers also performs well for this task. Finally, the evaluation of the
anomaly score showed that, generally, the distribution of anomaly score of trajectories
with spatial or temporal anomalies is higher than in non-anomalous trajectories. Accord-
ing to the results, we realized that PAC embeddings do not contribute to improving the
STOD method, but the STOD has exciting results. So then, we finally answer our RQ1
(STOD) and RQ2 (PAC).

Although the STOD has competitive results, it can not perform the anomaly detection
task online, which limits its use to work as a filter in batch processing. Also, the method
does not highlight which are anomalous points/regions. Both restrictions are essential to
help domain experts (transit authorities) to make real-time decisions. Then, in the next
Section 5, we propose a method that not only detects if the whole trajectory is anomalous
but also pinpoints which are the anomalous points. However, the approach only detects

63

spatial anomalies since we did not have enough time to implement the temporal feature.

64

5 APPLYING A TRANSFORMER LANGUAGE MODEL FOR ANOMALY DE-
TECTION IN BUS TRAJECTORIES

In this section, we aim to answer the third request question RQ3: Using an end-to-end
solution, how can we detect spatially anomalous trajectory segments without anomalous
labels?. For this, we propose an approach that uses language modeling, commonly used in
Natural Language Processing tasks, to: (1) detect anomalous trajectories in bus trajecto-
ries, and (2) pinpoint the abnormal points in these trajectories (sub-trajectory anomaly
detection). Our solution allows these tasks to be performed either offline or online, i.e.,
as the buses are moving along their route. In addition, it can be adapted to other types
of trajectories (e.g., car, people, and vessels), since our model does not use any specific
aspect from the bus domain (e.g., bus stops).

The key idea of our model is to learn the language of well-formed trajectories, and
then identify erroneous (ill-formed) trajectory and also the trajectories’ points where the
errors occur. For that, given an input trajectory 𝑇 mapped by our solution to a sequence
of tokens, our language model (𝐿𝑀) generates 𝑇 , the most likely (common) sequence of
points for 𝑇 , which represents 𝑇 supposedly without anomalies. Our assumption is there-
fore that, since anomalous points are typically few and different from the others (CHEN et

al., 2013), there is a small chance that abnormal points are present in 𝑇 . Based on that,
our solution produces an anomaly score for 𝑇 and pinpoints anomalous regions in 𝑇 by
comparing 𝑇 with 𝑇 .

The rest of this chapter is organized as follows. In Section 5.1, we present the problem
formulation. Section 5.2 delineates our model, and Section 5.3 describes the datasets and
the setup experimentation. We compare our results with the state-of-the-art algorithms
and previous research in Section 5.4. Finally, the conclusion and future work are drawn
in Section 5.5.

5.1 PROBLEM FORMULATION

In this section, we provide some background concepts and state the problem that we deal
with in this work.

Definition 2. [Problem Statement]. Given a bus trajectory 𝑇 , calculate the spatial
anomaly score of 𝑇 and detect the anomalous points of 𝑇 .

5.2 METHOD

In this section, we introduce our approach to discover abnormal trajectories and localize
anomaly regions in trajectories. As Figure 17 shows, our solution is composed of three
main components: Grid Mapping, Transformer Language Model and Anomaly Detector.

65

Figure 17 – The trajectory anomaly detection solution proposed in this work

Self−Attention

Self−AttentionSelf−Attention

Self−Attention

Self−AttentionSelf−Attention

Self−Attention

Self−AttentionSelf−Attention

head_1

head_1head_1

head_2

head_2head_2

head_8

head_8head_8

Multi−head!
Attention

Feed
Forward
Network

Embeddings
256!dim

Positional!
Encoding

+
+

+

+

=

=

=

=

Normalization Normalization

256

15000256

512!

512!

T !={(lat ,!lng),...,(lat ,!lng)}1 1 1 n n

Grid!Mapping

.

.

.

.

.

.

.

.

.

+

+

+

+
Z=(K,V)

Anomaly
Detector

4!X!Encoder!Layer

4!X!Decoder!Layer

\

True
or

False

Source: Created by author (2022)

They work as follows. Given the input bus trajectory, the Grid Mapping discretizes it by
mapping each of its points to a geographical grid cell, represented by a token, generating
a sequence of grid cell tokens. This sequence is passed to a language model, a deep gen-
erative encoder-decoder Transformer, that produces a series of predicted grid cell tokens.
Finally, the Anomaly Detector compares the original token sequence with the predicted
one to calculate the trajectory’s anomaly score and to identify anomalous points, if they
exist. In the remaining of this section, we provide further details about each one of these
components.

5.2.1 Grid Mapping

The first step of our approach, Grid Mapping, maps the trajectories, which are a mul-
tivariate time series, into a univariate sequence of tokens. For this purpose, we use the
H3 (Hexagonal Hierarchical Geospatial Indexing System)1 library to create a grid system
based on hexagonal cells and a hierarchical index. More specifically, given a raw trajec-
tory 𝑇 = (𝑝1, 𝑝2, .., 𝑝𝑛), where 𝑝𝑖 is each trajectory point, represented by its latitude and
longitude (𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔), and a grid cell 𝐺, we use the geoToH3 function in the H3 library to
map points of trajectories into grid cell locations 𝑐𝑖, generating 𝑇 ′ = (𝑐𝑖, 𝑐2, ..., 𝑐𝑛). As a
result, every point that falls into the same cell has the same identifier (token). Therefore,
this mapping reduces the complexity of dealing with a multi-dimensional domain to a
uni-dimensional one, which language models can properly process.
1 https://eng.uber.com/h3/

66

5.2.2 Transformer Encoder

The first component of our language model is the Transformer Encoder that maps the
sequence of trajectory tokens 𝑇 ′ into a set of vectors that feeds the Transformer Decoder.
For that, it encodes the tokens in 𝑇 ′ based on the other tokens (points) in 𝑇 ′ by applying
the self-attention strategy.

More concretely, as Figure 17 depicts, the encoder first generates a sequence of em-
beddings from the trajectory tokens. An embedding is a vector representation of a token
in an n-dimension space2. Next, a positional encoding adds position information to the
embeddings. Similar to (VASWANI et al., 2017), our position encoder is calculated as:

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) (5.1)

𝑃𝐸(𝑝𝑜𝑠, 2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/10002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) (5.2)

where sin and cos are the trigonometric functions sine and cosine respectively, 𝑝𝑜𝑠 is the
position of the point in the trajectory, and 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimension in the embedding vector.
To create the final embedding representation for each input token, the model performs
an element-wise addition of the token embedding with the positional encoding vector.

These embeddings are then passed to the Transformer block with four identical encoder
layers, which experimentally worked well. The model uses the so-called multi-head self-
attention to allow the network to attend different input sequence positions and learn which
points in the sequence are relevant to the current one. Multiple heads create multiple
representation subspaces to learn a set of queries 𝑄 and keys 𝐾 of dimension 𝑑𝑘, and
values 𝑉 dimension 𝑑𝑣 weight matrices. Each head computes the attention weights with
respect to a given token embedding 𝑗 (𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑗) as follows:

𝑄𝑖,𝑗 = 𝑊 𝑄
𝑖 .𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑗 (5.3)

𝐾𝑖,𝑗 = 𝑊 𝐾
𝑖 .𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑗 (5.4)

𝑉𝑖,𝑗 = 𝑊 𝑉
𝑖 .𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑗 (5.5)

𝐻𝑒𝑎𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖𝐾𝑖√
𝑑𝑘

)𝑉𝑖 (5.6)

with parameters matrices 𝑊 𝑄 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙𝑋𝑑𝑘 , 𝑊 𝐾 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙𝑋𝑑𝑘 , and 𝑊 𝑉 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙𝑋𝑑𝑣 .
The multi-head attention combines the individual heads as follows:

𝑀𝑢𝑙𝑡𝑖_𝐻𝑒𝑎𝑑 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐻𝑒𝑎𝑑1, 𝐻𝑒𝑎𝑑2, ..., 𝐻𝑒𝑎𝑑𝑛)𝑊 𝑂 (5.7)
2 We use embeddings of 256 dimensions in our solution as default.

67

where 𝑊 𝑂 ∈ Rℎ𝑑𝑣𝑋𝑑𝑣 is a weight matrix learned during training.
On top of the multi-head attention, there are two skip connections, two normalization

layers interspersed with fully connected feed-forward networks. The residual connection
helps the encoder to combine features from different layers, merging different levels of
representations (HUANG et al., 2017). The normalization layers standardize the residual
connection and the feed-forward outputs, giving numerical stability to the model. They
are calculated as follows:

𝑥̄𝑖 = 𝑥𝑖 − 𝜇𝐵√︁
𝜎2

𝐵 + 𝜖
(5.8)

𝑧𝑖 = 𝛾.𝑥̄ + 𝛽 (5.9)

where 𝜇𝐵 and 𝜎2 are respectively the batch mean and standard deviation, 𝜖 is a stability
factor added to variance to avoid a division by zero, 𝛾 and 𝛽 are learning parameters, and
𝑧𝑖 is the normalized value of 𝑥𝑖. Note that 𝑥𝑖 is the concatenation between 𝑀𝑢𝑙𝑡𝑖_ℎ𝑒𝑎𝑑

vector and positional Embeddings (skip connection) and the normalization vector along
with feed-forward output as shown in Figure 17.

Lastly, the feed-forward network has two layers on the top of the encoder. Their goal
is to project the normalization of the multi-head attention to another dimension space
and add non-linearities between them.

The encoder’s final output is the matrix 𝑍 = (𝐾, 𝑉), where 𝐾 are key vectors and 𝑉

value vectors of the tokens in the input sentence. This matrix is used by the decoder to
focus on appropriate tokens in the input sentence to generate the predicted sequence.

5.2.3 Transformer Decoder

The Transformer Decoder is the second component of our language model. Its goal is to
produce a grid cell token sequence from the input sentence encoded by the Transformer
Encoder. For that, it uses the auto-regressive method, i.e., it predicts each token in the
sequence based on the previous ones produced by the model.

Similar to the encoder, the decoder is also composed of Transformer blocks. The
decoder self-attention works, however, in a slightly different way. While the self-attention
in the encoder considers all tokens from the trajectory to generate the attention weights,
the decoder only considers tokens preceding the current one to predict the next. For that,
Transformers mask future positions by using the look-ahead mask approach (VASWANI et

al., 2017).
In addition, the first decoder multi-head attention layer learns a query matrix 𝑄𝑑𝑒𝑐

from the previously predicted tokens. For that, first the decoder receives the output from
the previous layer (embeddings). Then, similar to the encoder, the decoder augments it
with a positional embedding layer and feeds it to multi-head attention to generate 𝑄𝑑𝑒𝑐.

68

After, the query vector and the residual connection feed a normalization layer similar to
the decoder. Next, a second multi-head attention layer receives the learned decoder 𝑄𝑑𝑒𝑐

and the matrix 𝑍 = (𝐾, 𝑉) from the encoder output to guide the query/search process.
This second multi-head layer allows the decoder to focus on which trajectory points from
the encoder are relevant to predict the next token/point. After the second multi-head layer
generates the encoder-decoder attention vector, the decoder passes it to a feed-forward
layer, followed by another normalization to add non-linearities and stability to the values.

Finally, the last layer implements a feed-forward neural network that projects the
decoder vectors in a large dimension to represent the logit vector3. Each logit represents
a token/cell score, which is turned into a probability by the softmax function. In our
decoding strategy, the model outputs the highest probability token for each position,
generating the predicted sequence 𝑇 .

5.2.4 Training

To train our model, we use the sparse categorical cross-entropy loss 4 since the labels are
integers. The loss is described as:

𝐿(𝑦, 𝑦) = −
𝑀∑︁

𝑗=0

𝑁∑︁
𝑖=0

(𝑦𝑖𝑗.𝑙𝑜𝑔(𝑦𝑖𝑗)) (5.10)

where 𝑦𝑖𝑗 is the target, and 𝑦𝑖𝑗 represents the prediction. To train the model, we use the
Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.9, and 𝜖 = 1𝑒−9) with a flexible learning rate that
increases at the beginning of training and decreases slowly in the remaining training steps
conform (VASWANI et al., 2017). We also apply residual dropout with a rate of 0.1 for each
layer in the encoder and decoder.

It is worth mentioning that our approach learns to generate the input trajectory,
then input and targets are the same for training. In addition, during training, we use
the teacher-forcing, i.e., we pass the true output to each successive step in the decoder.
Finally, in the inference step, we provide the input to the encoder and a starting token
to the decoder that outputs prediction one token at a time.

5.2.5 Anomaly Detector

Given the encoder’s input token sequence and the decoder’s output, as aforementioned,
our solution produces two outputs for a given bus trajectory: its anomaly score and
the regions where the anomaly occurs in the trajectory. Our main assumption is that our
trained language model predicts the correct sequence, and any token in the input sequence
(trajectory) that diverges from the predicted ones are considered anomaly.
3 The logit vector dimension is the total number of grid cell tokens (vocabulary).
4 https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy

69

Figure 18 – Hamming distance

Source: Created by author (2022)

Thus, to calculate the trajectory’s anomaly score, the detector compares the sentence
predicted by the decoder with the encoder’s input sentence by aligning them and com-
puting their Hamming distance (LUU et al., 2020), as follows:

𝑠𝑐𝑜𝑟𝑒 = 1 − 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑇, 𝑇)
𝑛

, (5.11)

where 𝑇 is the decoder’s predicted sequence, 𝑇 is the language model input sequence, and
𝑛 represents their size. Figure18 shows how Hamming distance works using words.

We consider the anomalous regions in the input sequence 𝑇 the trajectory points
represented by the unmatched tokens between 𝑇 and 𝑇 .

5.3 DATA DESCRIPTION AND SETUP

5.3.1 Experimental Setup

In this section, we provide details about the setup of our experimental evaluation.
Datasets. We conducted our experiments in two real-world bus trajectory datasets. The
first dataset is from Recife, Brazil. It comprises 19,290 trajectories (100 points on average)
from 82 bus lines generated by 238 buses from October 2017 to November 2017. Each bus
reports points at intervals of 30 seconds, and each point contains longitude, latitude,
timestamp, route id, vehicle id, instantaneous velocity, and travel distance (from the
beginning of the trip). The second dataset is from Dublin5, Ireland. It contains 60,084
trajectories (206 points on average) and 68 bus lines. Each trajectory point is reported
between 20 and 50 seconds. In total, 12,497.472 points were collected during Jan 01 2013
to Jan 04 2013. Each point contains the attributes: latitude, longitude, timestamp, line
id, journey id, and vehicle id.
Pre-processing. As mentioned in Section 5.2.1, we map the trajectories into a geograph-
ical grid. Table 11 presents the statistics of trajectories before and after the grid-mapping
transformation using the H3 parameter resolution 10 6 (16 is the maximum resolution),
5 https://data.gov.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
6 https://h3geo.org/docs/core-library/restable/

70

Table 11 – Number of unique points before and after the Grid Mapping

Recife Dublin
Unique Points Unique Points

Before Mapping 1,929,000 12,497,472
After Mapping 2,416 6,401

Source: Created by author (2022)

Figure 19 – Example of synthetic anomaly

Source: Created by author (2022)

which was chosen by experimentation7. As can be seen, this transformation provides a
great reduction of the dimensionality on both datasets.
Ground Truth. Since there is no label available in our datasets, one can try manually
label anomalies as (ZHANG et al., 2011; WANG et al., 2020) or generate artificial ones as
(ZHENG et al., 2017; LIU; NI; KRISHNAN, 2013; LI et al., 2018). We chose to generate synthetic
anomalies, as manual labels are time-consuming, by adding some perturbation in the real
trajectories. We do so by randomly choosing the first point in a real trajectory 𝑡 and
shifting it along with the next 𝑛 points in 𝑡 sequentially. Figure 19 presents an example of
a synthetic anomalous trajectory created by this method. In the experiments, we use two
parameters to create different types of anomaly trajectories from real ones: 𝑑 (the distance
in kilometers from the real points) and 𝑝 (the percentage of shifted points). For example,
using 𝑑 = 0.5 and 𝑝 = 0.1, 10% of trajectory points is moved 500 meters from the real
point. We generate anomalous trajectories for our experiments considering the values of
𝑝 = [0.1, 0.2, 03] and 𝑑 = 1.0. Note that we generate synthetic anomalies different from
those shown in Chapter 4, where we applied unrealistic synthetic spatial anomalies since
the anomalous points are spread without a well-defined route shape.
7 The resolution allows the library to increase or decrease the size of grid cells. Thus, the higher reso-

lution, the smaller the cell areas.

71

Table 12 – Values of hyper-parameters of Transformer

Hyper-parameters Values
Num Heads 8
Embedding 250
Num Layers 4

Beta_1 0.9
Beta_2 0.98
Epsilon 1e-9

Optimizer Adam
Dropout 0.1

Source: Created by author (2022)

Baselines. We evaluate the following anomaly detection methods in our experiments:

• RioBusData (BESSA et al., 2015). This is a supervised method to detect bus anoma-
lous trajectories by classifying them in bus routes. It uses a Convolutional Neural
Network (CNN) fed by raw bus trajectories. On the top of CNN, a softmax function
outputs a vector of probability where each value is the probability of class mem-
bership for each route/label. A trajectory is considered abnormal if its highest class
probability is below a threshold.

• STOD (CRUZ; BARBOSA, 2020). This is also a supervised method that detects bus
anomalous trajectories. It learns to classify bus trajectories in their routes using a
deep-learning network. The model outputs the routes’ class distribution of a given
trajectory. From this distribution, it calculates the uncertainty of the classifier using
entropy as a measure of anomaly degree. The higher the classifier uncertainty, the
higher the entropy. A trajectory is then considered anomalous if the entropy of the
classifier’s probability distribution output for it is higher than a threshold.

• GM-VSAE (LIU et al., 2020). This approach uses an encoder-decoder strategy to
detect anomalous trajectories. To perform that, firstly, the encoder infers a disentan-
gled latent space to discover the distribution of each trajectory based on this space.
This distribution is then fed to the decoder that generates a trajectory. The method
calculates a score comparing the generated trajectory with the input trajectory. A
high score ≈ 1.0 means that the input trajectory has a high probability of being an
anomaly.

• iBOAT (CHEN et al., 2013). This method is based on the isolation mechanism (LIU;

TING; ZHOU, 2012) and an adaptive windows approach. It performs the detection
of both trajectory and sub-trajectory anomaly detection. Overall, the iBOAT cal-
culates the frequency of points mapped into a grid cell to isolate "few and different"
points. Based on that, trajectories that visit cells with low frequency get small
scores, meaning that those points are highly likely to be an anomaly. Conversely

72

Table 13 – Results of anomaly trajectory detection on the Dublin dataset

p=0.1 p=0.2 p=0.3
F1 Rec Prec F1 Rec Prec F1 Rec Prec

STOD 0.636 0.595 0.683 0.696 0.635 0.772 0.724 0.638 0.838
RioBusData 0.651 0.738 0.605 0.660 0.749 0.612 0.673 0.753 0.631
GMVSAE 0.682 0.624 0.758 0.708 0.628 0.827 0.713 0.611 0.876

iBOAT 0.668 0.566 0.833 0.673 0.557 0.871 0.684 0.563 0.889
Transformer 0.840 0.776 0.930 0.853 0.768 0.972 0.854 0.763 0.979

Source: Created by author (2022)

trajectories with high-frequent visited cells have high scores of non-anomaly. Similar
to the previous methods, iBOAT also needs a threshold to detect anomalies.

• Transformer. This is our proposed approach. We train our model on both datasets
with the hyper-parameter values shown in Table 12. The source code of our method
is available on Github8.

It is worth pointing out that all those methods identify anomalous trajectories, but only
our approach (Transformer) and iBOAT detect anomalous sub-trajectories. We randomly
selected 8,200 trajectories from the Recife dataset and 6,800 from Dublin to evaluate the
approaches. Based on a data analysis, we defined the maximum number of points 100 for
the Recife dataset and 208 for Dublin. To train and test the models, we use 80% and
20% of the trajectories, respectively. We implemented the neural-based approaches on
Tensorflow 2.1.0 9.
Evaluation Metrics. We use F1-measure, Precision, Recall, and PR-AUC as evaluation
metrics, since they are usually applied to evaluate outlier detection methods(BELHADI

et al., 2020; LIU et al., 2020). To verify whether the F1-measure values of our model are
statistically different than the baselines, we execute the Wilcoxon statistical test (SIEGEL,
1956). The test verifies whether two paired samples (F1-measure values of our solution
vs a baseline) come from the same distribution. Given that, we set the significance level
𝛼 = 5%. In our context, the null hypothesis ℎ0 considers that the median difference
between the F1 values of a pair of models is zero. This statistical test is performed on the
instances in the test set.

5.4 RESULTS AND DISCUSSION

In this section, we first present the evaluation of the trajectory outlier identification and,
subsequently, the region anomaly detection.
8 https://github.com/michaeloc/its_research
9 https://www.tensorflow.org/

73

Table 14 – Results of anomaly trajectory detection on the Recife dataset

p=0.1 p=0.2 p=0.3
F1 Rec Prec F1 Rec Prec F1 Rec Prec

STOD 0.589 0.552 0.634 0.630 0.576 0.703 0.660 0.590 0.760
RioBusData 0.533 0.549 0.524 0.537 0.551 0.529 0.545 0.555 0.544
GMVSAE 0.654 0.590 0.748 0.673 0.594 0.797 0.682 0.597 0.819

iBOAT 0.668 0.533 0.915 0.668 0.528 0.928 0.673 0.534 0.932
Transformer 0.665 0.520 0.948 0.669 0.518 0.967 0.670 0.518 0.970

Source: Created by author (2022)

5.4.1 Trajectory Anomaly Detection

Table 13 presents the results for the trajectory anomaly detection task on the Dublin
dataset. Transformer outperforms the baselines in all scenarios and metrics. For exam-
ple, considering the best results on F1, our approach is at least 17% better than all
baselines. To confirm this, Table 16 depicts the p-values for the results of each baseline
in comparison to Transformer on the Dublin dataset. All the p-values are smaller than
the significance level (0.05), which supports that our Transformer network has in fact a
superior performance than the baselines on this dataset.

Regarding the results on the Recife dataset, presented in Table 14, our method ob-
tains better F1-measure values than STOD and RioBusData, and comparable ones with
GMVSAE and iBOAT. In fact, the p-values of the hypothesis tests on this dataset for
F1-measure, Table 17, confirm this: the p-values of GMVSAE and iBOAT versus Trans-
former in all scenarios are higher than the significance level of 0.05, meaning there is
no statistical difference in terms of F1-measure between our approach and them. With
respect to RioBusData and STOD, however, the p-values are lower than 0.05 in two out
of the three anomaly cases. Looking at precision values, Transformer achieved the best
overall results, but lower recall than GMVSAE and iBOAT. In practice, having better
precision can be an advantage, since an anomaly detection model can be thought of a
filter that identifies possibly few anomalous trajectories in a large set of trajectories. The
more precise this filter is, the few false negative anomalies need to be inspected.

Overall, the methods built to directly detect anomalies (Transformer, GMVSAE and
iBOAT) outperformed in almost all scenarios the ones that try to do this in an indirect
way (STOD and RioBusData), i.e., learning to classify routes instead of anomalies. For
example, for 𝑝 = 0.1, RioBusData obtained the lowest F1 (0.651) on Dublin and Recife
(0.533). However, on the Dublin dataset, STOD shows better F1 results than iBOAT for
𝑝 = 0.2 (0.69 vs 0.673 respectively), and for 𝑝 = 0.3 obtained the F1 second best value
(0.724) only behind Transformer (0.854). We also observed that STOD is more sensible
than our method over the percentage outlier variation 𝑝. For example, for 𝑝 = 0.1, and
𝑝 = 0.3, the F1-measure is 0.58 and 0.66 on Recife (difference of 0.8), respectively. In
contrast, our method is more stable regarding the outlier level. For instance, for 𝑝 = 0.1
and 𝑝 = 0.3, the F1-measure is respectively 0.84 and 0.85 on Dublin and 0.66 and 0.67

74

Figure 20 – PR-AUC of the approaches for route 1 on the Dublin dataset and route 54 on the Recife dataset

Source: Created by author (2022)

on Recife, i.e., there is not much difference.

Table 15 – Results for the region anomaly detection models

Recife
p=0.1 p=0.2 p=0.3

F1 Prec Rec p-value
F1 F1 Prec Rec p-value

F1 F1 Prec Rec p-value
F1

iBOAT 0.911 0.845 0.990 7.70e-10 0.905 0.841 0.980 2.13e-8 0.901 0.839 0.973 1.91e-7
Transformer 0.989 0.988 0.992 0.983 0.975 0.992 0.975 0.961 0.991

Dublin
iBOAT 0.978 0.969 0.988 0.12 0.970 0.966 0.976 0.65 0.963 0.964 0.963 0.10

Transformer 0.986 0.979 0.995 0.975 0.957 0.995 0.962 0.932 0.994

Source: Created by author (2022)

To provide a detailed analysis of the approaches on individual routes, Figure 20 shows
the PR-AUC curves of all methods on both datasets in two different routes, one from
each dataset with 𝑝 = 0.3. In route 54 from Recife, our approach has the highest area
under curve ≈ 0.98, outperforming both the unsupervised methods (GMVSAE ≈ 0.94
and iBOAT ≈ 0.77) and the supervised ones (STOD ≈ 0.54 and RioBusData ≈ 0.67).
Looking at route 1 from Dublin, we observe that the encoder-decoder methods have almost
the perfect curve AUC ≈ 0.99, i.e., the models can adequately distinguish anomalous
trajectories from non-anomalous ones. Conversely, the RioBusData has the worst PR-
AUC curve ≈ 0.70. Finally, we can see that the precision of iBOAT degrades with a recall
close to 1.

5.4.2 Region Anomaly Detection

Table 15 shows the results between Transformer and iBOAT on region anomaly de-
tection. We observe that Transformer outperforms iBOAT on the Recife dataset in all
scenarios. This occurs mainly because our model achieved the high values of precision

75

Table 16 – Hypothesis test for F1 on the Dublin dataset

Transformer
p=0.1 p=0.2 p=0.3
p-value p-value p-value

STOD 4.05e-12 1.77e-12 1.09e-12
RioBusData 1.48e-12 1.04e-12 8.73e-13
GMVSAE 4.472e-12 4.05e-12 3.26e-12

iBOAT 1.22e-12 7.98e-13 1.13e-12

Source: Created by author (2022)

Table 17 – Hypothesis test for F1 on the Recife dataset

Transformer
p=0.1 p=0.2 p=0.3
p-value p-value p-value

STOD 0.38 2.11e-4 4.26e-9
RioBusData 1.13e-11 5.61e-13 8.12e-14
GMVSAE 0.21 0.68 0.46

iBOAT 0.73 0.80 0.73

Source: Created by author (2022)

(0.988, 0.975, 0.961). The methods, however, are similar regarding recall for 𝑝 = 0.1, for
instance, Transformer’s recall is 0.992, and iBoat 0.990. On the Dublin dataset, the meth-
ods are qualitatively similar. Note that the most difference between the models occurs for
𝑝 = 0.1: Transformer’s F1 is 0.986 and iBOAT’s F1 is 0.978.

We applied the Wilcoxon test to verify whether there is a statistical difference between
the F1-measure values of the methods on this task. On the Recife dataset the models are
statistically different with p-value lower than our significance level of 0.05 for all scenarios.
On the Dublin dataset, however, there is no statistical evidence to reject the ℎ0, since the
p-values are higher than 0.05 and, therefore, both models are statistically equivalent in
terms of F-1 measure.

To present concrete examples of the detection of region anomalies on real trajectories
by our model, Figure 21a shows the expected trajectories of Dublin route 1, and Figure 21b
depicts the anomalous regions identified (represented by the red dots) by Transformer.
One can clearly see by these plots that our approach identifies very precisely the anomalous
regions in this trajectory.

76

Figure 21 – Detection on real-world trajectories

(a) Expected trajectory. (b) Anomalous regions (represented by the red dots) de-
tected by our model.

Source: Created by author (2022)

5.5 CONCLUSION

In this chapter, we propose a solution that applies a encoder-decoder transformer language
model in bus trajectory data to solve two problems: trajectory and sub-trajectory anomaly
detection. For that, our solution transforms a trajectory into a discrete token sequence by
mapping its points to tokens that represent geographical grid cells. This sequence is then
passed to the Transformer language model that outputs a predicted sequence, supposedly
without anomalies. Also, our solution calculates the trajectory’s anomaly score by apply-
ing the hamming distance between the two sequences, and identifies the anomalous regions
by looking at the unmatched tokens between them. Experiments in two real-world bus
trajectory datasets demonstrate that our approach is effective for anomalous trajectory
detection and anomalous region detection tasks.

In the next Chapter 6 we present a demo application called MobApp. It is a data-driven
open-source web application developed to help domain analysts and practitioners/scien-
tists to analyze real-world trajectories. The application is not a thesis contribution with
a respective request question. However, we developed it because of two main motivations.
First, we must have implemented a few baseline methods since we did not find literature
code implementation, which limited our solution comparison. Second, we provided a sim-
ulation of our methods in a real application, i.e., in production. Therefore, the MobApp
have born to allow other researchers to add their anomaly detection results and datasets
to help the research community compare their methods to others and save implementation
time.

77

6 MOBAPP: A DATA VISUALIZATION TOOL FOR TRAJECTORY ANALYSIS

In this section, we present MobApp1 (NETO, 2021) as part of this thesis. Here, we focus on
describing the application features fed by datasets and experimentation results generated
by previous Chapters 4, 5. MobApp supports three different visual analyses. The first one
allows analysts to visualize trajectories on a map in a specific period along with plots
showing information about the trajectory points (e.g., speed and acceleration). In the
second analysis, the user can observe anomalous trajectories and also the region where
the anomaly occurs, detected by an anomaly detection algorithm. The last one allows
users to visually compare on the map the output of different anomaly detection models
on the same trajectory. Different users might be interested in such functions. For instance,
data scientists might use MobApp to inspect trajectories, looking for issues in the data or
the result of anomaly detection models, which is helpful for model diagnostics(BUJA et al.,
2009). Likewise, transit authorities can use MobApp to automatically identify anomalous
bus trajectories, indicating traffic congestion or driver misconduct.

Figure 22 – MobApp Architecture

Source: Created by author (2022)

The MobApp application uses a dataset from the city of Dublin2 with 1,699.022 points
collected from Jan 01, 2013, to Jan 07, 2013. In this Chapter, we show the following use
cases:

• An exploratory data analysis based upon speed and days of the week;

• Insights from the results of the anomaly detection visualization;

• A visual comparison of different anomaly detection models.
1 https://github.com/Mobapp-Dashboard
2 https://data.gov.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project

78

The remainder of this Chapter is organized as follows. Section 6.1 presents the MobApp
architecture: WebApp and API. In Section 6.2, we provide three user cases that demon-
strate how MobApp can be used. Finally, the conclusion and future work are drawn in
Section 6.3.

Figure 23 – WebApp Exploratory Data Analysis

(a) Sider-bar filter.
(b) Trajectories map.

(c) Dispersion graph.
(d) Basics statistics.

Source: Created by author (2022)

6.1 MOBAPP ARCHITECTURE

Figure 22 shows a high-level architecture of MobApp. The application comprises two
modules: (i) WebApp and (ii) REST API. The first module, the WebApp, is the system’s
user interface (UI), which interacts with the REST API to provide end-user functionalities.
The second module, the API, receives client requests and returns the selected analysis
results.

6.1.1 WebApp

Our WebApp module is the application’s front-end. It was developed using the library
Dash3, which is a Web-based Python UI framework for data science apps. The MobApp
presents three screens: (i) Exploratory Data Analysis (EDA), (ii) Anomaly Trajectory
Filter, and (iii) Model Evaluation.
3 https://plotly.com/dash/

79

Exploratory Data Analysis (EDA). The EDA screen shows general analyses of the
trajectories. Using this functionality, users can: (1) apply filters to select trajectories in
the sidebar to select trajectories based on period of time (Figure 23a); (2) visualize on a
map the chosen trajectories (Figure 23b), a cumulative scatter plot (Figure 23c), and a
summarization table (Figure 23d) with statistics about speed, acceleration, distance and
time between consecutive points.

Figure 24 – WebApp Anomaly Scores

(a) Top-5 anomaly trajectories (b) Anomaly region

Source: Created by author (2022)

Anomaly Trajectory Filter. This screen allows users to visualize anomalous trajectories
for a given route 4. As shown in Figure 24, it returns the top-k anomalous trajectories (id
trajectory and score) according to a pre-defined anomaly detection model (Figure 24a).
Note that the application allows users to choose a route and click on each returned
trajectory to analyze its behavior. For that, MobApp shows the anomaly region (red
points in Figure 24b) on the map, also detected by an anomaly detection model, which
helps users to visually localize where the anomaly likely occurred. In addition, the tool also
shows the expected trajectory of the bus (yellow dots in Figure 24b), if this information
is provided.
Model Evaluation. This screen provides visual comparison between anomaly detection
models. It is divided into two parts: route and trajectory. The route screen allows users
to compare the performance of anomaly detection models on trajectories in the same
route. For this purpose, the application provides a drop-down component for users to
select routes and visualize precision and recall curves, a well-known plot for evaluating
unbalanced classification problems as outlier detection. Figure 25 shows this screen and
the four available state-of-art algorithms used in the MobApp application: GMVSAE (LIU

et al., 2020), Transformer 5, RioBusData (BESSA et al., 2015) and iBOAT (CHEN et al.,
2013). GMVSAE is an autoencoder method to detect spatial anomaly trajectories by
4 A route can be defined as a set of road segments (LIU et al., 2017), whereby journeys in this route

generate trajectories on different periods of time.
5 https://github.com/michaeloc/its_research

80

Figure 25 – Precision-Recall curve of different anomaly detection strategies in a given route

Source: Created by author (2022)

disentangling latent space to discover each trajectory’s distribution and recreating the
input trajectory. In the same direction, the Transformer is an encoder-decoder language
model that applies the self-attention mechanism to encoder trajectories and decoder them.
Similar to GMVSAE, the Transformer learns to recreate the input trajectories without
anomalies. The RioBusData approach, in turn, is a supervised method that learns to
classify trajectories in their routes and detects anomalous trajectories by comparing the
highest class probability value and a given threshold. On the other hand, the iBOAT
is a method based on the isolation mechanism(LIU; TING; ZHOU, 2012) and an adaptive
window approach. Shortly, it calculates the frequency of points in a grid cell to isolate
"few and different" trajectories.

The other screen in this module allows users to inspect a particular trajectory based on
an anomaly detection algorithm and a given anomaly score threshold. Figure 26 depicts
a map with a selected trajectory and a summary table composed of the anomaly score of
this trajectory according to the model, a defined threshold, the precision and recall values
of the route which the trajectory belongs to, and an indication whether the trajectory is
anomalous or not, regarding the chosen threshold.

6.1.2 REST API

MobApp’s backend has a REST API that provides endpoints for the analysis. It is imple-
mented using the Python FastAPI framework 6. The API’s data is stored in a Postgres 7

6 https://fastapi.tiangolo.com/
7 https://www.postgresql.org/

81

Figure 26 – Detection on real-world trajectories

(a) Trajectory and Model selection.
(b) Summary of model results.

Source: Created by author (2022)

Figure 27 – MobApp Architeture Deployment Diagram

Source: Created by author (2022)

SGBD due to its support for spatial and geographic objects, i.e., geo-based queries and
spatial index. Furthermore, the API makes the endpoints available in JavaScript Object
Notation (JSON) format, allowing clients to consume the provided trajectory analyses.
Specifically, as shown in Figure 27, the MobApp API implements the endpoints using
a router component to answer the WebApp requests. For this, the router imports a few
classes (Metadata.py and Trajectory.py) that can handle the Hypertext Transfer Protocol
Secure (HTTPS) requests. Since the router uses those classes, it calls the model component

82

Figure 28 – Metadata end-point

Source: Created by author (2022)

Figure 29 – Trajectory end-point

Source: Created by author (2022)

to query the request information using the SQLAlchemy 8 component. The SQLAlchemy
is a Object Relational Mapper (ORM) responsible for communicating with the Database
Server by TPC/IP protocol and returning the model queries. Therefore, when the router
has the retrieved information, it makes available a JSON to the WebApp, which handles
the information retrieved by one of the classes (EDA.py, Filter.py, or Evaluation.py).

Currently, the API presents four endpoints. The first one is the Trajectory Metadata
that returns trajectories’ ids, given a start and end date as shown in Figure 28. This end-
point is essential to choose proper trajectories when users select a range of data on the
Exploratory Data Analysis screen, as shown in Figure 23a. The second, the GPS endpoint,
returns trajectories for a given route9, date interval, and selected features on the side-bar
(e.g., period of the day and speed), as shown in Figure 23. The returned information of
this endpoint is used on the EDA screen, where users can observe basic statistics from
8 https://www.sqlalchemy.org/
9 A route can be defined as a set of road segments (LIU et al., 2017), whereby journeys in this route

generate trajectories on different periods of time.

83

trajectories behavior. To illustrate, Figure 29 shows a request and the payload returning
a list of trajectories and their attributes, respectively, such as timestamp, speed, accel-
eration, delta distance, delta time (time difference between two consecutive points), and
cumulative distance. The third endpoint, the anomaly detection one, returns the top-k
anomalous trajectories of a given route, according to a anomaly detection model, along
with their respective scores and trajectories ids. It allows users to filter anomalous trajec-
tories in descending order of scores. This endpoint is used by the WebApp in the Anomaly
Trajectory Filter. Lastly, the model evaluation endpoint requests a route and the name
of a anomaly detection method to return evaluation metrics namely recall, precision.

6.2 USE CASES

Here, we will be able to see how MobApp can be used from three use cases, one for each
analysis the system provides.
Exploratory Analysis. Visualizing general statistics of the data is the first step to
understanding its characteristics and distribution. Using MobApp, users can explore tra-
jectory data to discover, for instance, which period of the day vehicles run slower than
usual, the impact of known events (e.g., heavy rain) in the traffic flow, etc. To illustrate
a real scenario, a user using the EDA screen selects the data period between 2013-01-01
and 2013-04-01 on the sider-bar, as shown in Figure 23a. Next, she chooses the morning
option as a period of the day and the route 007D1001 along with the velocity filter. Based
on these selections, the MobApp presents on the map the speed distribution of the points
along the selected trajectories, as shown in Figure 23b. In addition, the application shows
a dispersion graph that might indicate a traffic jam between 10k and 16k of trajectories’
cumulative distance since their points have low speed, as shown in Figure 23c. Overall,
the EDA functionalities can help MobApp users understand traffic behavior and provide
information for better decision-making.
Bus Anomaly Trajectories. Identifying anomalous vehicle trajectories is essential for
public transportation agencies to monitor and understand traffic behavior in order to
implement better policies in a city. For example, consider an analyst from a department
of public transportation who needs to analyze thousands of daily trajectories (trips) to
identify anomaly trajectories to support decisions such as releasing or retaining buses re-
garding detected anomalies. Unfortunately, it is unfeasible to manually inspect a massive
volume of trajectories, since they are multivariate temporal series with hundreds of points
per trip. Considering this context, the analyst can use MobApp to rank anomalies trajec-
tories by their anomaly level provided by a pre-built model. To do that, the user can use
the Anomaly Detection screen and select which route she wants (by the selection input
component) to filter the top-5 anomalous trajectories and analyze each one by the map
on the right side. Figure 24a shows an example in which a user/analyst selected route
1, and the MobApp returned the most anomalous trajectories on the map, along with

84

the trajectory regions where the anomaly occurs (red points). Additionally, Figure 24b
depicts the expected trajectory (yellow points) for that particular bus to help the analyst
to get some insight by comparing with the actual trajectory.
Model Comparison. Comparison between anomaly detection models is essential in
quantitative research. In this direction, a data scientist looking to compare trajectory
anomaly detection models can use the MobApp application. For that, users can access
the Model Evaluation screen and compare models based on a selected route through the
Precision-Recall curve. In addition, on the same screen on the bottom, users can analyze a
particular trajectory from the selected route using the models individually. For example,
an analyst browses the Evaluation screen and selects route 35. MobApp application, in
turn, returns the Precision-Recall curve of the approaches for this route, as shown in
Figure 25. Observing these particular results, the analyst identifies that Transformer and
GMVSAE methods have similar performance and outperform the other methods. On the
other hand, RioBusData has the worst recall and precision values for trajectories in the
chosen route. Second, at the bottom of the same screen, the user selects trajectory 68
along with the Transformer method to analyze results individual trajectories, Figure 26a
and 26b show the results of this interaction.

6.3 CONCLUSIONS

In this chapter, we developed a visualization tool for three analyses: Exploratory Data
Analysis, Anomaly Trajectory Filter, and Model Evaluation. The MobApp is a demo ap-
plication that allows researchers and practitioners to analyze trajectories and compare
literature model results. Overall, the tool is a possibility to allow users to save implemen-
tation time to compare their trajectory anomaly detection methods with others.

85

7 CONCLUSIONS AND FUTURE WORK

Anomaly detection task consists of detecting instances that stand out as dissimilar to all
others. Finding anomaly patterns impacts several research areas, such as cyber-security,
medical domain, and military surveillance. In Intelligent Transportation Systems, partic-
ularly in trajectory data mining, many works in literature propose solutions to detect
anomalous trajectories. In this context, approaches in the literature can be split based on
the operation mode and based on the type of output. For example, methods can oper-
ate offline as a batch method or work online, receiving input data almost real-time and
outputting the results simultaneously. Also, some methods detect the whole trajectory as
anomalous only and exist those that also pinpoint the anomalous region. This research
thesis contributes on both fronts: we propose a supervised outlier detection using classi-
fication confidence as an anomaly score and an online end-to-end transformer language
model for detecting anomalous trajectories and pinpointing the abnormal points.

In Chapter 4, we presented STOD as a supervised anomaly detection approach that
generates an anomaly score based on classification confidence. Most of the methods in
the literature are typically rule-based or unsupervised approaches, and they require much
effort in preprocessing tasks and rely on domain experts to make parameter assumptions.
Supervised approaches also exist, but they output a rigid anomaly score. Then, we pro-
pose the STOD, a multi-class supervised method to generate a flexible anomaly score
to indicate if the whole trajectory is an anomaly or not. Our approach is particular to
bus trajectories data since it learns to classify trajectories among route ids and uses the
classification probability distribution to measure a level of confidence. Therefore, based
on that confidence level, the whole trajectory can be classified as anomalous. Also, in
this chapter, we tried to validate our assumption that the segmentation process based on
bus stay points could improve anomaly detection methods. For that, we propose the PAC
method to generate embeddings from bus stop activity labels. The embedding presented a
visible group separability, but experiment results have shown that they did not contribute
to the STOD results. Thus, in this chapter, our solutions answered the following research
questions: RQ1 how can we propose a supervised bus trajectory outlier detection method
using classification confidence as an anomaly score?, and RQ2 Are there any advantages
to representing trajectories by stay points on the outlier detection task?. Although the
STOD presented promising results and contributed to this thesis, it is very restricted to
bus trajectories or pre-defined trajectories.

Chapter 5, in turn, presented a language model for anomaly detection in bus trajecto-
ries. We applied a well-known encoder-decoder Transformer method to learn well-formed
trajectories, detect the ill-formed trajectories, and pinpoint which points are anomalous.
Also, our solution can perform the anomaly detection task either online or offline. The

86

Language Model (LM) approach was validated on the bus trajectories, but it does not
rely on trajectories route ids. Furthermore, our encoder-decoder method can be adapted
to other types of trajectories since only raw trajectories are necessary to train the model.
Note that feeding a trajectory T to our LM model, it generates 𝑇 as the most likely
(common) sequence of points for T, which represents T supposedly without anomalies.
Lastly, our method generates an anomaly score and finds the abnormal points using the
hamming distance between T and 𝑇 . Extensive experimentation show that our method
outperformed a few state-of-art methods in some scenarios and had competitive results in
others. Given that, we answered the following research question RQ3: Using an end-to-end
solution, how we can detect an anomalous trajectory segment without anomalous labels?

Lastly, our Chapter 6 presented the MobApp: a data visualization tool for trajectory
analysis. This tool was built with two goals: to facilitate comparison among trajectory
outlier detection methods from literature and to show a real scenario to use those meth-
ods. First, providing implemented literature methods and public datasets to help other
researchers to save time and focus on their solutions. Second, the tool has shown a real
application scenario where outlier methods can be used to assist, for instance, public
transport agencies’ authorities.

The remaining sections of this chapter are organized as follows. Section 7.1 summarizes
the main contribution of this thesis. Section 7.2, in turn, describes our failed attempts
before reaching a solution for this thesis. Lastly, Section 7.3 discusses possible directions
for future research.

7.1 THESIS CONTRIBUTIONS

In the following, we consider the main contribution of this thesis to be:

• A novel supervised approach called STOD to detect anomalous bus trajectories
using classification confidence to generate an anomaly score. This classifier shows
to be competitive with other baselines methods.

• A supervised approach called PAC to predict the type of activity GPS points in bus
trajectory (bus stop, traffic light, and another kind of stop). The experimental results
indicate that PAC produces high-quality embedding vectors, and it is effective for
the task of stay point classification. However, experiments indicated that the PAC
embeddings did not improve the STOD results.

• A language model encoder-decoder approach to detect anomalous bus trajectories
and pinpoint the respective anomalous region. The approach can be applied offline
and online and does not rely on hand-crafted features. The approach presented
competitive results in the Recife dataset, and it surpassed the baselines in Dublin

87

dataset. Lastly, the results also indicate that the problem of trajectory anomaly
detection can be well-modeled as a model language problem.

7.2 FAILED ATTEMPTS

Throughout this thesis’s development, we attempted several neural network approaches
to build an efficient spatial anomaly detection model, and most of them were met with
failure. Thus, this section describes these failures to help researchers/practitioners facing
similar that work in this topic.

The first failed attempt to highlight was using explainability techniques such as the
guided-backpropagation or Layer-Wise Relevance Propagation (LRP) technique (HOLZINGER

et al., 2022; GU; YANG; TRESP, 2018) to detect anomalous segments in trajectories since
those techniques have great results in detecting objects in images data. Then, we ex-
pected those techniques to be an efficient way to discover which part of an anomalous
trajectory decreases the STOD confidence in classifying the anomalous trajectory among
the route labels. Unfortunately, although the technique works pretty well in the image
localization task, we failed to apply those technique to detect anomalous trajectory seg-
ments. We did not discover the semantic meaning of the results after applying LRP or
Guided-backpropagation in the STOD.

We also attempted approaches based on unsupervised Autoencoder (AE) to detect
anomaly trajectories and pinpoint the anomalous segments. Our assumption to test AE
architecture was based on its capacity to denoising images (XIE; XU; CHEN, 2012). The
key idea behind that architecture is that the input and output are the same. The network
receives a trajectory and compresses it into a lower-dimension code, then reconstructs
the output from this representation. Then, we initially considered testing AE to reduce
trajectory anomalies. For that, we fed raw trajectories to a convolutional AE (Conv1D)
that outputs the reconstructed trajectory and the reconstruction error that is calculated
using the Mean Squared Error (MSE) between the input trajectory and the reconstructed
trajectory. The first results were promising since the reconstruction error in the training
and validation seemed to converge. However, although the AE approach reconstructed
the trajectories very well, we realized that the approach also reconstructed the anomalous
points. For example, Figure 30a shows two trajectories, blue and red, where the blue is
the original, and the red trajectory is the original added by a small synthetic anomalous
segment. Observe that, Figure 30b shows a black trajectory which is the reconstructed
trajectory, while the red trajectory is the input. Here, note that the black trajectory is a
smoothed version of the red trajectory, and, unfortunately, the anomalous segment is also
reconstructed.

Another attempt was to use a Variational Autoencoder (VAE) architecture to im-
prove the AE results. Although VAE is an AE in its essence, VAE allows regularizing
the latent space to a well-known normal distribution. The regularization might solve the

88

Figure 30 – AE examples

(a) Original image (b) Reconstruction

Source: Created by author (2022)

possible overfit noted in the AE results. In addition, it organizes the latent space retain-
ing relevant features to improve the generative process (decoder). Overall, the variational
encoder codifies the input trajectories as a normal distribution 𝑁(𝑢, 𝜎), and the decoder
learns to reconstruct the input from a normal distribution. Unlike AE, VAE adds a reg-
ularization in the loss to organize the latent space using the Kulback-Leibler divergence
||𝑥 − 𝑥*|| + 𝐾𝐿[𝑁(𝑢𝑥, 𝜎𝑥), 𝑁(0, 1)]. Note that the slight difference to the AE method is
the regularization term. As shown in Figure 31, the modification (regularization term)
allows the Variational Autoencoder approach grouping trajectories according to their
routes (shapes), even without the route information. We realized that the VAE approach
reconstructed the trajectories and discovered similar trajectories information through the
latent space, which is useful for other tasks. For example, in taxi trajectories that do not
have route information, VAE can work to group similar trajectories. However, this solu-
tion also failed to reconstruct the anomalies trajectories similarly to the AE approach,
as shown in Figure 32b. Even with the regularization term (Kulback-Leibler divergence),
the network continues to reconstruct the anomalous segments. In other words, we note
that the VAE approach almost learns an identity function causing overfitting. Note that
the reconstructed red trajectory follows the anomalous segment on the orange trajectory.
Although Figure 32b shows a visible distance between the trajectories, we failed to use
that reconstructed error to localize the anomalous segment. The main reason was that the
regularization might decrease the overfit or the identity function effect in several segments
in trajectory, as shown in Figure 32b, but, particularly, in the anomalous segment, the
overfit continues.

Following the Auto-Encoder architecture, we also attempted other methods such as
Adversarial Auto-Encoder using CNN (Convolutional Neural Network) and LSTM (Long-
Short Term Memory) and Conditional Adversarial Auto-Encoder. Unfortunately, they did

89

Figure 31 – Latent space for 68 routes of bus trajectories for Recife Dataset

Source: Created by author (2022)

Figure 32 – VAE examples

(a) Blue trajectory is without anomaly and
Orange has synthetic anomaly.

(b) Red trajectory reconstructed from or-
ange anomaly trajectory.

Source: Created by author (2022)

not show good results.
Finally, we considered modeling our problem as an anomaly detection task in time

series. The idea was to use a deep learning approach as a regression approach to predict
the next element 𝑝*

𝑡+1 for a given time series 𝑝0, 𝑝1, ..., 𝑝𝑡. Given that, we attempted the
DeepAnt approach (MUNIR et al., 2018), which is a convolutional regression method to
detect anomalous points in time series. The method generates a score for each point using
the euclidean distance between the predicted point and the real point |𝑝 − 𝑝 * |. Then,
based on a threshold, anomaly points are detected. According to our experiments, as
shown in Figure 33, DeepAnt failed to detect anomalous trajectory because it reproduces
the anomalous points similar to AE approaches.

90

Figure 33 – Anomalous trajectory prediction using DeepAnt approach. The orange trajectory is the prediction and the blue
trajectory is the input anomalous trajectory

Source: Created by author (2022)

7.3 FUTURE WORK

As possible improvements and extensions of this thesis, we suggest the following:

• Extending our LM model for temporal anomaly detection. Resulting in Spatial-
Temporal Anomaly detection.

• Analyzing the encoder-decoder solution in other datasets, such as taxi and human
trajectories datasets.

• Pre-training the encoder-decoder in multiple trajectory datasets to verify whether
it can learn general trajectory patterns (deep representation). Once our approach
learns those patterns, we want to exploit other tasks such as trajectory similarity
and trajectory classification using transfer learning.

• Connecting the selected trajectories across screens as an end-to-end analysis in the
MobApp Web App. For example, one can select a specific route on the EDA screen
and use their trajectories on the other screens to get a complete analysis.

• Developing an end-point to store other datasets following a default pattern to be
generic enough to feed the anomalies detection approaches.

• Developing another end-point to receive other approach results and evolving the
user interface (UI).

91

REFERENCES

ADALOGLOU, N. Transformers in computer vision. https://theaisummer.com/, 2021.

AHMED, M.; MAHMOOD, A. N.; HU, J. A survey of network anomaly detection
techniques. Journal of Network and Computer Applications, Elsevier, v. 60, p. 19–31,
2016.

AKIBA, T.; SANO, S.; YANASE, T.; OHTA, T.; KOYAMA, M. Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. [S.l.: s.n.],
2019. p. 2623–2631.

ALVARES, L. O.; BOGORNY, V.; KUIJPERS, B.; MACEDO, J. A. F. de; MOELANS,
B.; VAISMAN, A. A model for enriching trajectories with semantic geographical
information. In: Proceedings of the 15th annual ACM international symposium on
Advances in geographic information systems. [S.l.: s.n.], 2007. p. 1–8.

ANKERST, M.; BREUNIG, M. M.; KRIEGEL, H.-P.; SANDER, J. Optics: ordering
points to identify the clustering structure. ACM Sigmod record, ACM New York, NY,
USA, v. 28, n. 2, p. 49–60, 1999.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

BASHARAT, A.; GRITAI, A.; SHAH, M. Learning object motion patterns for anomaly
detection and improved object detection. In: IEEE. 2008 IEEE Conference on Computer
Vision and Pattern Recognition. [S.l.], 2008. p. 1–8.

BELHADI, A.; DJENOURI, Y.; LIN, J. C.-W.; CANO, A. Trajectory outlier detection:
Algorithms, taxonomies, evaluation, and open challenges. ACM Transactions on
Management Information Systems (TMIS), ACM New York, NY, USA, v. 11, n. 3, p.
1–29, 2020.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 35, n. 8, p. 1798–1828, 8 2013. ISSN 0162-8828.

BERGSTRA, J.; YAMINS, D.; COX, D. D. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. Jmlr,
2013.

BESSA, A.; SILVA, F.; NOGUEIRA, R.; BERTINI, E.; FREIRE, J. Riobusdata: Outlier
detection in bus routes of rio de janeiro. In: Proceedings of Symposium on Visualization
in Data Science (VDS). [S.l.: s.n.], 2015.

BONTEMPS, L.; MCDERMOTT, J.; LE-KHAC, N.-A. et al. Collective anomaly
detection based on long short-term memory recurrent neural networks. In: SPRINGER.
International Conference on Future Data and Security Engineering. [S.l.], 2016. p.
141–152.

92

BOURITSAS, G.; DAVEAS, S.; DANELAKIS, A.; THOMOPOULOS, S. C. Automated
real-time anomaly detection in human trajectories using sequence to sequence networks.
In: IEEE. 2019 16th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS). [S.l.], 2019. p. 1–8.

BRODSKY, I. H3: Uber’s Hexagonal Hierarchical Spatial Index. 2018.

BROTHERTON, T.; JOHNSON, T. Anomaly detection for advanced military aircraft
using neural networks. In: IEEE. 2001 IEEE Aerospace Conference Proceedings (Cat.
No. 01TH8542). [S.l.], 2001. v. 6, p. 3113–3123.

BUJA, A.; COOK, D.; HOFMANN, H.; LAWRENCE, M.; LEE, E.-K.; SWAYNE,
D. F.; WICKHAM, H. Statistical inference for exploratory data analysis and model
diagnostics. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, The Royal Society Publishing, v. 367, n. 1906, p. 4361–4383,
2009.

CHALAPATHY, R.; CHAWLA, S. Deep learning for anomaly detection: A survey. arXiv
preprint arXiv:1901.03407, 2019.

CHALAPATHY, R.; MENON, A. K.; CHAWLA, S. Anomaly detection using one-class
neural networks. arXiv preprint arXiv:1802.06360, 2018.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM
computing surveys (CSUR), ACM New York, NY, USA, v. 41, n. 3, p. 1–58, 2009.

CHEN, C.; ZHANG, D.; CASTRO, P. S.; LI, N.; SUN, L.; LI, S. Real-time detection of
anomalous taxi trajectories from gps traces. In: SPRINGER. International Conference
on Mobile and Ubiquitous Systems: Computing, Networking, and Services. [S.l.], 2011. p.
63–74.

CHEN, C.; ZHANG, D.; CASTRO, P. S.; LI, N.; SUN, L.; LI, S.; WANG, Z. iboat:
Isolation-based online anomalous trajectory detection. IEEE Transactions on Intelligent
Transportation Systems, IEEE, v. 14, n. 2, p. 806–818, 2013.

CHEN, X.; CUI, T.; FU, J.; PENG, J.; SHAN, J. Trend-residual dual modeling for
detection of outliers in low-cost gps trajectories. Sensors, Multidisciplinary Digital
Publishing Institute, v. 16, n. 12, p. 2036, 2016.

CHOLLET, F. Deep learning with Python. [S.l.]: Simon and Schuster, 2021.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20,
n. 3, p. 273–297, 1995.

CRUZ, M.; BARBOSA, L. Learning gps point representations to detect anomalous bus
trajectories. IEEE Access, IEEE, v. 8, p. 229006–229017, 2020.

DABIRI, S.; HEASLIP, K. Inferring transportation modes from gps trajectories using
a convolutional neural network. Transportation research part C: emerging technologies,
Elsevier, v. 86, p. 360–371, 2018.

DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern classification. [S.l.]: John Wiley &
Sons, 2012.

93

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; XU, X. et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Kdd. [S.l.: s.n.], 1996.
v. 96, n. 34, p. 226–231.

GAO, Q.; ZHOU, F.; ZHANG, K.; TRAJCEVSKI, G.; LUO, X.; ZHANG, F. Identifying
human mobility via trajectory embeddings. In: IJCAI. [S.l.: s.n.], 2017. v. 17, p.
1689–1695.

GE, Y.; XIONG, H.; ZHOU, Z.-h.; OZDEMIR, H.; YU, J.; LEE, K. C. Top-eye: Top-k
evolving trajectory outlier detection. In: Proceedings of the 19th ACM international
conference on Information and knowledge management. [S.l.: s.n.], 2010. p. 1733–1736.

GREENFELD, J. S. Matching gps observations to locations on a digital map. In:
WASHINGTON, DC. 81th annual meeting of the transportation research board. [S.l.],
2002. v. 1, n. 3, p. 164–173.

GU, J.; YANG, Y.; TRESP, V. Understanding individual decisions of cnns via contrastive
backpropagation. In: SPRINGER. Asian Conference on Computer Vision. [S.l.], 2018. p.
119–134.

GUO, C.; BERKHAHN, F. Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737, 2016.

GUPTA, M.; GAO, J.; AGGARWAL, C. C.; HAN, J. Outlier detection for temporal
data: A survey. IEEE Transactions on Knowledge and data Engineering, IEEE, v. 26,
n. 9, p. 2250–2267, 2013.

HO, T. K. Random decision forests. In: IEEE. Proceedings of 3rd international conference
on document analysis and recognition. [S.l.], 1995. v. 1, p. 278–282.

HOLZINGER, A.; SARANTI, A.; MOLNAR, C.; BIECEK, P.; SAMEK, W. Explainable
ai methods-a brief overview. In: SPRINGER. International Workshop on Extending
Explainable AI Beyond Deep Models and Classifiers. [S.l.], 2022. p. 13–38.

HU, K.; DUAN, P.; HU, B.; DUAN, Q. Ibtod: An isolation-based method to detect
outlying sub-trajectories on multi-factors. In: IEEE. 2018 2nd IEEE Advanced
Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC). [S.l.], 2018. p. 1–1918.

HUANG, G.; LIU, Z.; MAATEN, L. V. D.; WEINBERGER, K. Q. Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2017. p. 4700–4708.

HWANG, S.; EVANS, C.; HANKE, T. Detecting stop episodes from gps trajectories
with gaps. In: Seeing Cities Through Big Data. [S.l.]: Springer, 2017. p. 427–439.

IAKOVIDIS, D. K.; GEORGAKOPOULOS, S. V.; VASILAKAKIS, M.;
KOULAOUZIDIS, A.; PLAGIANAKOS, V. P. Detecting and locating gastroin-
testinal anomalies using deep learning and iterative cluster unification. IEEE
transactions on medical imaging, IEEE, v. 37, n. 10, p. 2196–2210, 2018.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

94

JAVAID, A.; NIYAZ, Q.; SUN, W.; ALAM, M. A deep learning approach for network
intrusion detection system. Eai Endorsed Transactions on Security and Safety, v. 3, n. 9,
p. e2, 2016.

JI, Y.; WANG, L.; WU, W.; SHAO, H.; FENG, Y. A method for lstm-based trajectory
modeling and abnormal trajectory detection. IEEE Access, IEEE, v. 8, p. 104063–104073,
2020.

JOLLIFFE, I. T.; CADIMA, J. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, The Royal Society Publishing, v. 374, n. 2065, p. 20150202,
2016.

KALID, S. N.; NG, K.-H.; TONG, G.-K.; KHOR, K.-C. A multiple classifiers system for
anomaly detection in credit card data with unbalanced and overlapped classes. IEEE
Access, IEEE, v. 8, p. 28210–28221, 2020.

KE, G.; MENG, Q.; FINLEY, T.; WANG, T.; CHEN, W.; MA, W.; YE, Q.; LIU, T.-Y.
Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in neural
information processing systems. [S.l.: s.n.], 2017. p. 3146–3154.

KNORR, E. M.; NG, R. T.; TUCAKOV, V. Distance-based outliers: algorithms and
applications. The VLDB Journal, Springer, v. 8, n. 3-4, p. 237–253, 2000.

KONG, X.; SONG, X.; XIA, F.; GUO, H.; WANG, J.; TOLBA, A. Lotad: Long-term
traffic anomaly detection based on crowdsourced bus trajectory data. World Wide Web,
Springer, v. 21, n. 3, p. 825–847, 2018.

KORMÁKSSON, M.; BARBOSA, L.; VIEIRA, M. R.; ZADROZNY, B. Bus travel time
predictions using additive models. In: IEEE. 2014 IEEE International Conference on
Data Mining. [S.l.], 2014. p. 875–880.

KULKARNI, V.; TAGASOVSKA, N.; VATTER, T.; GARBINATO, B. Generative
models for simulating mobility trajectories. arXiv preprint arXiv:1811.12801, 2018.

KUMAR, G. R.; MANGATHAYARU, N.; NARSIMHA, G. An approach for intrusion
detection using novel gaussian based kernel function. J. UCS, v. 22, n. 4, p. 589–604,
2016.

LAFFERTY, J.; MCCALLUM, A.; PEREIRA, F. C. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001.

LEE, J.-G.; HAN, J.; LI, X. Trajectory outlier detection: A partition-and-detect
framework. In: IEEE. 2008 IEEE 24th International Conference on Data Engineering.
[S.l.], 2008. p. 140–149.

LI, Q.; ZHENG, Y.; XIE, X.; CHEN, Y.; LIU, W.; MA, W.-Y. Mining user similarity
based on location history. In: ACM. Proceedings of the 16th ACM SIGSPATIAL
international conference on Advances in geographic information systems. [S.l.], 2008.
p. 34.

LI, X.; ZHAO, K.; CONG, G.; JENSEN, C. S.; WEI, W. Deep representation learning
for trajectory similarity computation. In: IEEE. 2018 IEEE 34th international conference
on data engineering (ICDE). [S.l.], 2018. p. 617–628.

95

LI, Y.; FANG, B.; GUO, L.; CHEN, Y. Network anomaly detection based on tcm-knn
algorithm. In: Proceedings of the 2nd ACM symposium on Information, computer and
communications security. [S.l.: s.n.], 2007. p. 13–19.

LI, Y.; HUANG, Q.; KERBER, M.; ZHANG, L.; GUIBAS, L. Large-scale joint map
matching of gps traces. In: Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. [S.l.: s.n.], 2013. p. 214–223.

LIN, T.-Y.; GOYAL, P.; GIRSHICK, R.; HE, K.; DOLLÁR, P. Focal loss for dense
object detection. In: Proceedings of the IEEE international conference on computer
vision. [S.l.: s.n.], 2017. p. 2980–2988.

LIU, B.; FU, Y.; YAO, Z.; XIONG, H. Learning geographical preferences for point-
of-interest recommendation. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. [S.l.: s.n.], 2013. p. 1043–1051.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: IEEE. 2008 Eighth IEEE
International Conference on Data Mining. [S.l.], 2008. p. 413–422.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), Acm New York, NY, USA,
v. 6, n. 1, p. 1–39, 2012.

LIU, K.; GAO, S.; QIU, P.; LIU, X.; YAN, B.; LU, F. Road2vec: Measuring traffic
interactions in urban road system from massive travel routes. ISPRS International
Journal of Geo-Information, Multidisciplinary Digital Publishing Institute, v. 6, n. 11,
p. 321, 2017.

LIU, S.; NI, L. M.; KRISHNAN, R. Fraud detection from taxis’ driving behaviors. IEEE
Transactions on Vehicular Technology, IEEE, v. 63, n. 1, p. 464–472, 2013.

LIU, W.; ZHENG, Y.; CHAWLA, S.; YUAN, J.; XING, X. Discovering spatio-temporal
causal interactions in traffic data streams. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. [S.l.: s.n.], 2011. p.
1010–1018.

LIU, Y.; ZHAO, K.; CONG, G.; BAO, Z. Online anomalous trajectory detection with
deep generative sequence modeling. In: IEEE. 2020 IEEE 36th International Conference
on Data Engineering (ICDE). [S.l.], 2020. p. 949–960.

LIU, Z.; PI, D.; JIANG, J. Density-based trajectory outlier detection algorithm. Journal
of Systems Engineering and Electronics, BIAI, v. 24, n. 2, p. 335–340, 2013.

LOU, Y.; ZHANG, C.; ZHENG, Y.; XIE, X.; WANG, W.; HUANG, Y. Map-matching
for low-sampling-rate gps trajectories. In: Proceedings of the 17th ACM SIGSPATIAL
international conference on advances in geographic information systems. [S.l.: s.n.], 2009.
p. 352–361.

LUU, V.-T.; FORESTIER, G.; WEBER, J.; BOURGEOIS, P.; DJELIL, F.; MULLER,
P.-A. A review of alignment based similarity measures for web usage mining. Artificial
Intelligence Review, Springer, v. 53, n. 3, p. 1529–1551, 2020.

96

LV, Z.; XU, J.; ZHAO, P.; LIU, G.; ZHAO, L.; ZHOU, X. Outlier trajectory detection:
A trajectory analytics based approach. In: SPRINGER. International Conference on
Database Systems for Advanced Applications. [S.l.], 2017. p. 231–246.

MAATEN, L. van der; HINTON, G. Visualizing data using t-SNE. Journal
of Machine Learning Research, v. 9, p. 2579–2605, 2008. Available at: <http:
//www.jmlr.org/papers/v9/vandermaaten08a.html>.

MANN, H. B.; WHITNEY, D. R. On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, JSTOR, p.
50–60, 1947.

MENG, F.; YUAN, G.; LV, S.; WANG, Z.; XIA, S. An overview on trajectory outlier
detection. Artificial Intelligence Review, Springer, v. 52, n. 4, p. 2437–2456, 2019.

MIKOLOV, T.; CHEN, K.; CORRADO, G.; DEAN, J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

MOHANADAS, R. Discerning truck stop semantics through latent space clustering. 2018.

MORENO, F. J.; PINEDA, A. F.; FILETO, R.; BOGORNY, V. Smot+: Extending the
smot algorithm for discovering stops in nested sites. Computing and Informatics, v. 33,
n. 2, p. 327–342, 2014.

MUNIR, M.; SIDDIQUI, S. A.; DENGEL, A.; AHMED, S. Deepant: A deep learning
approach for unsupervised anomaly detection in time series. Ieee Access, IEEE, v. 7, p.
1991–2005, 2018.

NETO, F. d. B. W. Mobapp-dashboard para visualização de trajetórias de ônibus. 2021.

NOGUEIRA, T. P.; CELES, C. S.; MARTIN, H.; LOUREIRO, A. A.; ANDRADE,
R. M. A statistical method for detecting move, stop, and noise: A case study with bus
trajectories. Journal of Information and Data Management, v. 9, n. 3, p. 214–214, 2018.

OUYANG, K.; SHOKRI, R.; ROSENBLUM, D. S.; YANG, W. A non-parametric
generative model for human trajectories. In: IJCAI. [S.l.: s.n.], 2018. p. 3812–3817.

PAN, B.; ZHENG, Y.; WILKIE, D.; SHAHABI, C. Crowd sensing of traffic anomalies
based on human mobility and social media. In: Proceedings of the 21st ACM
SIGSPATIAL international conference on advances in geographic information systems.
[S.l.: s.n.], 2013. p. 344–353.

PANG, L. X.; CHAWLA, S.; LIU, W.; ZHENG, Y. On mining anomalous patterns in
road traffic streams. In: SPRINGER. International conference on advanced data mining
and applications. [S.l.], 2011. p. 237–251.

PATTERSON, J.; GIBSON, A. Deep learning: A practitioner’s approach. [S.l.]: " O’Reilly
Media, Inc.", 2017.

QIAN, S.; CHENG, B.; CAO, J.; XUE, G.; ZHU, Y.; YU, J.; LI, M.; ZHANG, T.
Detecting taxi trajectory anomaly based on spatio-temporal relations. IEEE Transactions
on Intelligent Transportation Systems, IEEE, 2021.

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

97

RAYMOND, R.; IMAMICHI, T. Bus trajectory identification by map-matching. In:
IEEE. 2016 23rd International Conference on Pattern Recognition (ICPR). [S.l.], 2016.
p. 1618–1623.

RUFF, L.; VANDERMEULEN, R.; GOERNITZ, N.; DEECKE, L.; SIDDIQUI, S. A.;
BINDER, A.; MÜLLER, E.; KLOFT, M. Deep one-class classification. In: International
conference on machine learning. [S.l.: s.n.], 2018. p. 4393–4402.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 2002.

SCHLEGL, T.; SEEBÖCK, P.; WALDSTEIN, S. M.; SCHMIDT-ERFURTH, U.;
LANGS, G. Unsupervised anomaly detection with generative adversarial networks
to guide marker discovery. In: SPRINGER. International conference on information
processing in medical imaging. [S.l.], 2017. p. 146–157.

SIEGEL, S. Nonparametric statistics for the behavioral sciences. McGraw-hill, 1956.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, Ł.; POLOSUKHIN, I. Attention is all you need. In: Advances in neural
information processing systems. [S.l.: s.n.], 2017. p. 5998–6008.

VINCENTY, T. Direct and inverse solutions of geodesics on the ellipsoid with application
of nested equations. Survey review, Taylor & Francis, v. 23, n. 176, p. 88–93, 1975.

WANG, D.; ZHANG, J.; CAO, W.; LI, J.; ZHENG, Y. When will you arrive? estimating
travel time based on deep neural networks. In: Thirty-Second AAAI Conference on
Artificial Intelligence. [S.l.: s.n.], 2018.

WANG, J.; YUAN, Y.; NI, T.; MA, Y.; LIU, M.; XU, G.; SHEN, W. Anomalous
trajectory detection and classification based on difference and intersection set distance.
IEEE Transactions on Vehicular Technology, IEEE, v. 69, n. 3, p. 2487–2500, 2020.

WANG, Y.; QIN, K.; CHEN, Y.; ZHAO, P. Detecting anomalous trajectories and
behavior patterns using hierarchical clustering from taxi gps data. ISPRS International
Journal of Geo-Information, Multidisciplinary Digital Publishing Institute, v. 7, n. 1,
p. 25, 2018.

WU, H.; PRASAD, S. Semi-supervised deep learning using pseudo labels for
hyperspectral image classification. IEEE Transactions on Image Processing, IEEE, v. 27,
n. 3, p. 1259–1270, 2017.

XIE, J.; XU, L.; CHEN, E. Image denoising and inpainting with deep neural networks.
Advances in neural information processing systems, v. 25, 2012.

XIE, X.; WANG, C.; CHEN, S.; SHI, G.; ZHAO, Z. Real-time illegal parking detection
system based on deep learning. In: Proceedings of the 2017 International Conference on
Deep Learning Technologies. [S.l.: s.n.], 2017. p. 23–27.

YING, X.; XU, Z.; YIN, W. G. Cluster-based congestion outlier detection method on
trajectory data. In: IEEE. 2009 Sixth International Conference on Fuzzy Systems and
Knowledge Discovery. [S.l.], 2009. v. 5, p. 243–247.

98

YOUSEFI-AZAR, M.; VARADHARAJAN, V.; HAMEY, L.; TUPAKULA, U.
Autoencoder-based feature learning for cyber security applications. In: IEEE. 2017
International joint conference on neural networks (IJCNN). [S.l.], 2017. p. 3854–3861.

YU, Y.; CAO, L.; RUNDENSTEINER, E. A.; WANG, Q. Outlier detection over
massive-scale trajectory streams. ACM Transactions on Database Systems (TODS),
ACM New York, NY, USA, v. 42, n. 2, p. 1–33, 2017.

YUAN, J.; ZHENG, Y.; ZHANG, C.; XIE, X.; SUN, G.-Z. An interactive-voting based
map matching algorithm. In: IEEE. 2010 Eleventh international conference on mobile
data management. [S.l.], 2010. p. 43–52.

YUAN, J.; ZHENG, Y.; ZHANG, L.; XIE, X.; SUN, G. Where to find my next passenger.
In: ACM. Proceedings of the 13th international conference on Ubiquitous computing.
[S.l.], 2011. p. 109–118.

YUAN, N. J.; ZHENG, Y.; ZHANG, L.; XIE, X. T-finder: A recommender system
for finding passengers and vacant taxis. IEEE Transactions on knowledge and data
engineering, IEEE, v. 25, n. 10, p. 2390–2403, 2012.

ZHANG, A.; LIPTON, Z. C.; LI, M.; SMOLA, A. J. Dive into Deep Learning. [S.l.: s.n.],
2020. <https://d2l.ai>.

ZHANG, D.; LI, N.; ZHOU, Z.-H.; CHEN, C.; SUN, L.; LI, S. ibat: detecting anomalous
taxi trajectories from gps traces. In: ACM. Proceedings of the 13th international
conference on Ubiquitous computing. [S.l.], 2011. p. 99–108.

ZHANG, F.; YUAN, N. J.; WILKIE, D.; ZHENG, Y.; XIE, X. Sensing the pulse of urban
refueling behavior: A perspective from taxi mobility. ACM Transactions on Intelligent
Systems and Technology (TIST), ACM, v. 6, n. 3, p. 37, 2015.

ZHANG, Y.; LIU, A.; LIU, G.; LI, Z.; LI, Q. Deep representation learning of activity
trajectory similarity computation. In: IEEE. 2019 IEEE International Conference on
Web Services (ICWS). [S.l.], 2019. p. 312–319.

ZHANG, Y.; NING, N.; ZHOU, P.; WU, B. Ut-atd: Universal transformer for anomalous
trajectory detection by embedding trajectory information. Proceedings of the 27th
International Conference on Distributed Multimedia Systems, 2021.

ZHAO, X.; RAO, Y.; CAI, J.; MA, W. Abnormal trajectory detection based on a sparse
subgraph. IEEE Access, IEEE, v. 8, p. 29987–30000, 2020.

ZHENG, G.; BRANTLEY, S. L.; LAUVAUX, T.; LI, Z. Contextual spatial outlier
detection with metric learning. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. [S.l.: s.n.], 2017. p. 2161–2170.

ZHENG, Y. Trajectory data mining: an overview. ACM Transactions on Intelligent
Systems and Technology (TIST), ACM, v. 6, n. 3, p. 29, 2015.

ZHENG, Y.; XIE, X. Learning travel recommendations from user-generated gps traces.
ACM Transactions on Intelligent Systems and Technology (TIST), ACM, v. 2, n. 1, p. 2,
2011.

https://d2l.ai

99

ZHU, J.; JIANG, W.; LIU, A.; LIU, G.; ZHAO, L. Time-dependent popular routes
based trajectory outlier detection. In: SPRINGER. International Conference on Web
Information Systems Engineering. [S.l.], 2015. p. 16–30.

ZHU, J.; JIANG, W.; LIU, A.; LIU, G.; ZHAO, L. Effective and efficient trajectory
outlier detection based on time-dependent popular route. World Wide Web, Springer,
v. 20, n. 1, p. 111–134, 2017.

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Contextualization
	Motivation
	Objective
	List of publications
	Structure Overview of the Proposal

	Background
	Trajectory definition
	Anomaly detection
	Anomaly detection on trajectory

	Deep learning background
	Conclusion

	Literature Review
	Stay-Point Detection
	Anomalous Bus Trajectories
	Rule-based Detection
	Unsupervised Detection
	Supervised Detection
	Comparative Analysis

	Conclusion

	Learning GPS Point Representation to Detect Anomalous Bus Trajectories
	Problem Definition
	Methodology
	Point Activity Classification
	Anomaly Trajectory Detection
	Training

	Data Description and Setup
	Experimental Setup
	Evaluation Metrics

	Result and Discussion
	PAC Evaluation
	Route ID Classifier Evaluation
	Outlier Detection Assessment

	Conclusion

	Applying A Transformer Language Model for Anomaly Detection in Bus Trajectories
	Problem Formulation
	Method
	Grid Mapping
	Transformer Encoder
	Transformer Decoder
	Training
	Anomaly Detector

	Data Description and Setup
	Experimental Setup

	Results and Discussion
	Trajectory Anomaly Detection
	Region Anomaly Detection

	Conclusion

	MobApp: A Data Visualization Tool for Trajectory Analysis
	MobApp Architecture
	WebApp
	REST API

	Use Cases
	Conclusions

	Conclusions and Future Work
	Thesis Contributions
	Failed Attempts
	Future Work

	References

