e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Caio Augusto Pereira Burgardt

Malware detection in macOS using supervised learning

Recife
2022

Caio Augusto Pereira Burgardt

Malware detection in macOS using supervised learning

Dissertacao de Mestrado apresentada ao Programa
de Pés-Graduacdo em Ciéncia da Computacdo da
Universidade Federal de Pernambuco, como requi-
sito parcial para a obtencao do titulo de Mestre em
Ciéncia da Computacdo em 25 de fevereiro de 2022.

Area de Concentracdo: Redes de Computadores
e Sistemas Distribuidos

Orientador: Divanilson Rodrigo de Sousa Campelo

Recife
2022

Catalogacéao na fonte
Bibliotecéria Monick Raquel Silvestre da S. Portes, CRB4-1217

B954m Burgardt, Caio Augusto Pereira

Malware detection in macOS using supervised learning / Caio Augusto
Pereira Burgardt. — 2022.
51 f.:il., fig., tab.

Orientador: Divanilson Rodrigo de Sousa Campelo.
Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacao, Recife, 2022.

Inclui referéncias.

1. Redes de Computadores. 2. Aprendizagem de maquina. I. Campelo,
Divanilson Rodrigo de Sousa (orientador). Il. Titulo.

004.6 CDD (23. ed.) UFPE - CCEN 2022-117

Caio Augusto Pereira Burgardt

“Malware detection in macOS using supervised learning”

Dissertagdo de Mestrado apresentada ao
Programa de Pés-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Mestre em Ciéncia da
Computacio. Area de Concentragio: Redes
de Computadores e Sistemas Distribuidos.

Aprovado em: 25/02/2022.

BANCA EXAMINADORA

Prof. Dr. Daniel Carvalho da Cunha
Centro de Informatica / UFPE

Prof. Dr. Rafael Timoteo de Sousa Junior
Departamento de EngenhariaElétrica / UnB

Prof. Dr. Divanilson Rodrigo de Sousa Campelo
Centro de Informatica / UFPE
(Orientador)

This thesis is dedicated to my parents, Cristiane and Otavio, for their unconditional love
and support throughout my life. I'd also like to thank my brother Victor and my girlfriend

Mariana for helping me manage my stress and always being there.

ACKNOWLEDGEMENTS

Firstly, I'd like to thank my Master’s advisor Prof. Divanilson Rodrigo Campelo, for his
patience, his insight and his friendship in the last 5 years. | would simply not be where | am
were it not for him. It's an honor to be part of his team.

Second of all, I'd like to thank his research team, in particular Paulo Freitas Araujo for his
help and insights on machine learning. His advice has been very important to this research.

I'd also like to thank the Centro de Informatica of UFPE for the opportunity of learning

from the best while giving the tools needed to perform the best despite the current dark times.

ABSTRACT

The development of macOS malware has grown significantly in recent years. Attackers
have become more sophisticated and more targeted with the emergence of new dangerous
malware families for macOS. However, since the malware detection problem is very dependent
on the platform, solutions previously proposed for other operating systems cannot be directly
used in macOS. Malware detection is one of the main pillars of endpoint security. Unfortunately,
there are very few works on macOS endpoint security, which is considered a largely unexplored
territory. Currently, the only malware detection mechanism in macQOS is a signature-based
system with less than 200 rules as of 2021, called XProtect. Recent works that attempted to
improve the detection of malwares in macOS have methodology limitations, such as the lack of
a large macOS malware dataset and issues that arise with imbalanced datasets. In this work, we
bring the malware detection issue to the macOS operating system and evaluate how supervised
machine learning algorithms can be used to improve endpoint security in the macOS ecosystem.
We create a new and larger dataset of 631 malware and 10,141 benign software using public
sources and extracting information from the Mach-O format. We evaluate the performance of
seven different machine learning algorithms, two sampling strategies and four feature reduction
techniques in the detection of malwares in macOS. As a result, we present models that are
better than macOS native protections, with detection rates larger than 90% while maintaining
a false alarm rate of less than 1%. The presented models successfully demonstrate that macOS
security can be improved by using static characteristics of native executables in combination

with common machine learning algorithms.

Keywords: malware; machine learning; macos.

RESUMO

O desenvolvimento de malware para macOS cresceu significativamente nos dltimos anos.
Os invasores se tornaram mais sofisticados e mais direcionados com o surgimento de novas
familias de malware perigosas para o macOS. No entanto, como o problema de deteccdo de
malware é muito dependente da plataforma, as solucdes propostas para outros sistemas opera-
cionais ndo podem ser usadas diretamente no macOS. A deteccao de malware é um dos prin-
cipais pilares da seguranca de endpoints. Infelizmente, existem muito poucos trabalhos sobre a
seguranca de endpoint do macOS, que é considerada territério pouco investigado.Atualmente,
0 Unico mecanismo de deteccdo de malware no macOS é um sistema baseado em assinat-
uras com menos de 200 regras em 2021, conhecido como XProtect. Trabalhos recentes que
tentaram melhorar a deteccao de malwares no macOS tém limitacdes de metodologia, como
a falta de um grande conjunto de dados de malware do macOS e problemas que surgem
com conjuntos de dados em classes desequilibradas.Nessa dissertacdo, trazemos o problema
de deteccdo de malware para o sistema operacional macOS e avaliamos como algoritmos de
aprendizado de maquina supervisionados podem ser usados para melhorar a seguranca de end-
point do ecossistema macOS. Criamos um novo dataset extraindo informacdes do formato
Mach-O de 631 malwares e 10.141 softwares benignos de fontes publicas. Avaliamos o desem-
penho de sete algoritmos de aprendizagem de maquina em conjunto com duas estratégias de
amostragem e quatro técnicas de reducdo de features para a deteccdo de malwares no macOS.
Como resultado, apresentamos modelos melhores que as protecées nativas do macOS, com
taxas de deteccdo superiores a 90% e taxas de alarmes falsos inferiores a 1%. Os modelos ap-
resentados demonstram com sucesso que a seguranca do macOS pode ser aprimorada usando
caracteristicas estaticas de executaveis nativos em combinacdo com algoritmos populares de

aprendizagem de maquina.

Palavras-chaves: malware; aprendizagem de maquina; macos.

LIST OF FIGURES

[Figure 1 MacOS malware development ratio over the years until March 2021 15
[Figure 2 Gatekeeper execution warning| 21
[Figure 3 The Mach-O format.| 28
[Figure 4 Homebrew analytics showing top Casks in 90 days.| 30
[Figure 5 Diagram of the methodology used.|. 38
[Figure 6 F1-score of decision tree, random forest, SVM and MLP with the under- [
| sampling of the majority class to achieve a specific malware to benign ratio.| 41
[Figure 7 F1-score of decision tree, random forest, SVM and MLP with the oversam- |

pling of the minority class to achieve a specific malware to benign ratio.| . . 42

LIST OF SOURCE CODES

[Source Code 1 — YARA Rule Examples from XProtect.yara|

[Source Code 2 — SMOTE original algorithm|

LIST OF TABLES

[Table 1 — Table showing features extracted from the Mach-O File.|. 29
[Table 2 — Table showing the origin of Mach-O files used in the dataset.| 31
[Table 3 — Machine Learning parameters| 40

[Table 4 — Average scores of b-Fold repeated 10 times cross validation of different |

| algorithms with an unchanged dataset| 40

[Table 5 — F1-Score of Random Forest, SVM and Multi-Layer perceptron with reduced [

| number of features) 43
[Table 6 — Best performance models and their detection rate, false alarm rate and F1- |
I SCOrEl e 44

LIST OF ABBREVIATIONS AND ACRONYMS

ANOVA Analysis of Variance

AUC Area Under Curve

CA Certificate Authority

DR Detection rate

ELF Executable and Linkable Format

FAR False Alarm Rate

FN False Negative

FP False Positive

LIEF Library to Instrument Executable Formats
MLP Multilayer Perceptron

MRT Malware Removal Tool

PCA Principal Component Analysis

PE Portable Executable

PUPs Potentially Unwanted Programs

ROC Receiver Operating Characteristic

SIP System Integrity Protection

SMOTE Synthetic Minority Oversampling Technique
SVM Support Vector Machine

TCC Transparency, Consent and Control framework
TN True Negative

TP True Positive

CONTENTS

1 INTRODUCTION 14
......................... 16
.......................... 16
1.3 GENERATED WORKS| o 17
1.4 THESIS OVERVIEW AND [AYOUT 17
2 BACKGROUND 18
21 MALWAREl 18
2.1.1 Malware types and their behavior| 18
(2.1.2 MacOS asatarget| 19
..................... 19
2.2.1 First layer: AppStore and Notarization| 20
(2.2.2 Second Layer: Gatekeeper and XProtect, 21
2.2.3 Third Layer: Malware Removal Tool 22
2.2.4 Further Protection: Containing damage| 23
[2.2.4.1 App Sandbox 23
12.2.4.2 Transparency, Consent, and Control (TCC) 23
[2.2.4.3 System Integrity Protection (SIP)| 23
23 REILATED WORKI 24
2.3.1 Static malware detection| 24
2.3.2 MacOS/OSX malware detection| 25
3 DATASETI o e e e e e e e e e e e e e 27
31 FEATURE EXTRACTION AND THE MACH-O FORMAT 27
32 OBTAINING MACH-O SAMPLES 29
(3.2.1 Acquiring Benign Samples|. 000 29
(3.2.2 Acquiring Malicious Samples| 0. 30
4 METHODOLOGY] e e e e e e e e e e e 32
41 MAIWARE DETECTION METRICS 32
42 — MACHINE LEARNING MODELS 33
4.2.1 Naive Bayes| 33

4.2.2 Tree-based algorithms| 33

4.2.3 K-nearest neighbors| 0000 34

4.2.4 Logistic Regression| 34
4.2.5 Support Vector Machine| 0L 34
4.2.6 Multilayer Perceptron| 35

43 SAMPLING AND FEATURE REDUCTION]

14

1 INTRODUCTION

Malware is software that performs malicious actions, such as stealing passwords, obtaining
confidential files, and getting remote access to a device (SIKORSKI; HONIG, 2012). As an attack
technique, malwares can be very versatile and may cause damage to end-users and corporations
alike. Even though protection against malwares is a well-discussed subject in the literature,
especially for Windows and Android ecosystems, a change in end user’s technology results in
an adaptation by the attacker.

Recently, the macOS operating system has become a more popular target among attackers.
The Apple's environment, which used to be claimed in advertisements as a “no viruses”
operating system (CLULEY, 2012)), has witnessed a major increase in malicious software attacks.
As shown in (MCAFFEE, [2017), the detection of malware for macOS skyrocketed in the 2015-
2016 period, with a 744% increase. According to (G., 2021), macOS malware development
outpaced that of Windows in 2020, with a surge of over 1000% new malwares since 2019, as
shown in Figure [T]

As with any modern operating system, macOS has its own embedded security features that
create difficulty barriers for attackers. The main malware protection system of the macOS
environment is the Gatekeeper mechanism. Its main focus is to prevent the execution of
malware by verifying the code signature of the executable. The code signature proves that
an executable was compiled by an identified developer, therefore more trustworthy (APPLE,
2016b).

Apple has been making it harder for malware developers by creating strict requirements for
the OS to run software not distributed by the App Store. In order to allow default execution
of applications, the software must not only be signed but also notarized by Apple, which is a
process where the app is submitted to Apple so they perform security checks. As of 2021, the
actual notarization process is not disclosed to the public. Without notarization, a user that
attempts to run an executable downloaded through the Web will be met with a Gatekeeper
warning that will prevent the execution unless the user manually changes settings in the macOS
System Preferences (APPLE, 2021c).

Previously, the macOS platform had a separate anti-malware mechanism called XProtect,

which has been recently integrated into the Gatekeeper system. XProtect is a simple static

15

Figure 1 — MacOS malware development ratio over the years until March 2021

Development of macOS malware 2012-2021 YTD

l In 2020, cybercriminals focused more of their
attention towards macOS and created an
@ average of 1,847 threats every day.

800,000

674,273

700,000
600,000
500,000
400,000 .
300,000
200,000

100,000

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 :

Source: www.av-test.org atlas

Source: AtlasVPN and av-test.org

signature-based malware detection system that uses a small list of YARAH rules and a deny list
of developer IDs to try and match malicious software before executing them. In the case an

attacker can execute malware in the macOS system, there are still different mechanisms that

attempt to mitigate damage, such as the|System Integrity Protection (SIP), which makes some

system files not writable, and the[Transparency, Consent and Control framework (TCC), which

requires the apps to explicitly ask permission from the user in order to perform actions such
as turning on the camera, or using the microphone. However, even with all these mechanisms,

malware and adware sometimes are mistakenly notarized by Apple and distributed as benign

software, as shown in the 2020 state of malware report from MalwareBytes (MALWAREBYTES,
2020).

These weaknesses can be attributed to the lack of diversity in detection techniques em-

bedded in the operating system. While researchers have investigated different techniques to

1A popular tool used to identify and classify malware via pattern-matching.

16

detect malware, such as behavior-based and machine learning-based approaches, malware de-
tection in the macQOS itself is only signature-based, which is incapable of detecting unknown
malware and is generally trivial to bypass (GANDOTRA; BANSAL; SOFAT, [2016)). Furthermore, it
seems that signatures are not frequently updated, since we tested current XProtect signatures

against a dataset of publicly known malware and got a detection rate lower than 10%.

1.1 OBJECTIVES AND GOALS

In this master’s thesis, we investigate the usage of supervised machine learning algorithms
as detection techniques to classify whether Mach-O binaries are malicious. We built a dataset
out of the two most popular software repositories for macOS users and two public available
free malware repositories for research. Subsequently, with common machine learning algorithms
and only static features, we show that the malware detection rate in macOS can be increased

to over 90% with false alarm rates lower than 1%.

1.2 MAIN CONTRIBUTIONS

The primary contributions of this Master's thesis are as follows:

= We highlight the methodology limitations regarding current macOS detection research,
mostly related to the use of a small and unbalanced dataset and bad performance metrics.
To overcome these limitations, we have built a macOS malware detection dataset from
public sources, resulting in the largest public macOS malware detection dataset up to

date.

» We have evaluated different algorithms, sampling strategies and feature reduction tech-
niques to mitigate the issues from the dataset, namely the class imbalance and number

of malicious samples.

= We have compared the presented models with current macOS signature-based detection
and shown how the usage of machine learning in static malware detection for macOS
can be a powerful endpoint security ally thanks to the very small false alarm rate in the

some models.

17

1.3 GENERATED WORKS

The results of this thesis generated the paper “Orange Among Apples: Refining static
malware detection in macOS"” with the authors Caio A. P. Burgardt, Victor A. P. Burgardt,
and Divanilson R. Campelo, which is currently being finalized to be submitted to a journal.

We also successfully published a paper not directly related to this thesis during my Master's
work in the Computer Communications journal. Its title is “ldentifying loT devices and events
based on packet length from encrypted traffic”, from the authors Antonio J. Pinheiro, Jeandro

de M. Bezerra, Caio A.P. Burgardt and Divanilson R. Campelo (PINHEIRO et al., |2019).

1.4 THESIS OVERVIEW AND LAYOUT

The rest of this thesis is described as follows. In Chapter [2] we take a brief look at the
malware problem, in specific for the macOS/OS X environment. We also investigate related
works on the issue of static malware detection. In Chapter [3| we describe the process of
building the database of malware and benign software from where we extracted the static
features. Chapter |4| presents the metrics and the machine learning algorithms used in our
methodology. In Chapter 5] we present the evaluation of the different machine learning models
and refine the models. Finally, we conclude the thesis by discussing the results and pointing

to future works and research opportunities in Chapter [6]

18

2 BACKGROUND

As previously mentioned, malware is an old attack vector, so there has been plenty of
research done into both creating protections and evading those protections. In this chapter,

we present an introduction to the challenge of the fight against malware.

2.1 MALWARE

According to (SIKORSKI; HONIG, 2012), malware is malicious software that plays a part in
most computer intrusion and security incidents. Any software that does something that causes
harm to a user, computer, or network can be considered malware, including viruses, trojan

horses, worms, rootkits, scareware, and spyware.

2.1.1 Malware types and their behavior

Malware can be as diverse as an average benign software. They can be targeted at a
different public, with different objectives and techniques. Predicting malicious behavior is a
very difficult ordeal since maliciousness can be very subjective. In order to better facilitate an
understanding of malicious behavior in software, we may attempt to classify malware according
to its general objective. Unfortunately, there is no academic consensus on which classification
scheme we should rely on.

There are many different attempts at classifying malware, generally with each class pointing
to a specific action. Because of increasing malware complexity, often malware ends up belonging
to multiple different categories. Some malware are pretty straightforward and focus on getting
remote access to the attacker while some may be more subtle and focus on spying on the user
by logging keystrokes. Some malware may be developed for mass infection and self replicate
while some others are designed to run only once and make investigation harder. Malware may
have many of these characteristics or none of them.

Because of the subjectivity of defining malicious behavior, there are also types of software

with malware-like actions, such as [Potentially Unwanted Programs (PUPs)| Examples of such

applications are toolbars, popups, browser extensions, or other types of Adware with the pur-

pose of aggressively serving advertisements to the victim. With the advent of cryptocurrency,

19

some "malware" has the objective of borrowing some of the victim's computing power to mine

their chosen cryptocurrency.

2.1.2 MacOS as a target

Apple's ecosystem was marketed as a "PC virus-free" system until 2012, implying that
the OS X system is more secure because it does not have to deal with the malware issue
plaguing Windows-based systems (CLULEY, [2012). While it is true that Windows malware do
not generally work in macOS systems, Apple has its own history with malware, spamming long
enough that it reaches the 80's (CLULEY| 2011)).

In macOS, malware mostly takes the form of and Adware, as shown by the state
of malware report 2021 from MalwareBytes (MALWAREBYTES, 2020), accounted for
76% of the infections, Adware for 22% and other more malicious forms of software only by
1.5%. However there still is dangerous malware in macOS. In the same year, ThiefQuest was
discovered, what seemed to be the first macOS ransomware since 2017. Further analysis of
ThiefQuest showed that the ransomware functionality is a disguise for its actual objective:
mass file exfiltration (STOKES, 2020b)).

In 2021, macOS malware has taken some alarming directions, while Adware and are
still the most common type of malware seen. Most new malware families that emerged in 2021
focused on espionage and data theft. Attacks have been getting creative and more specific,
such as XCodeSpy, which is a malicious XCode iOS project with a run script that drops a
Mach-O executable that is a shell able to steal information from the victim's microphone and

camera (STOKES, 2021)).

2.2 MACOS DEFENSE MECHANISMS

The macOS system has its own embedded security mechanisms. Apple has built the macOS

endpoint security in three layers (APPLE, [2021€):

1. Prevent launch or execution of malware.
2. Block malware from running on customer systems.

3. Remediate malware that has executed.

20

The first layer is focused on the prevention of the malware from ever launching. In this
layer, Apple has implemented a restrictive policy of distribution of software in their platform
as an attempt to gate keep malicious software out of the end user's reach.

The second layer's objective is to detect and block already downloaded malware. It is
composed of different mechanisms that identify the malware quickly and work as a traditional
anti-virus software.

The third layer kicks in when the other two failed and the malware achieved execution. Its

purpose is to remediate and mitigate damage caused from the malicious execution.

2.2.1 First layer: AppStore and Notarization

The spread of malware is highly related to the users’ difficulty to decide if they can trust
the origins of the file they're executing. To overcome this issue, one may use code signing,
which is the process of cryptographically signing executables with an author’s private key so
that the user may verify the binary’s integrity using the author’s public key (APPLE, 2016a)).

Code signatures give the user the mechanism to authenticate the origin of the executable,

but they require a trusted [Certificate Authority (CA)|to vouch for the certificates sent with the

executable. Apple has chosen to centralize the trust. To achieve that, developers for the Apple
ecosystems require an Apple Developer ID with a membership in the payed Apple Developer
Program. With this Developer ID, developers may request for code signing certificates.

With these code signing certificates, applications are linked to their developers and their
Developer ID. In case of attackers distributing malware, certificates are revoked and the at-
tackers lose their Developer ID. By default, applications are not executable without a valid
Developer ID code signature (APPLE, 2016a)).

The main distribution mechanism, the App Store, has several publishing requirements to
maintain app quality, including security ones (APPLE, 2021a)). In case a piece of software is not
delivered by the App Store, it has to pass the notarization process, in which Apple performs a
series of security checks. The notarization process itself is a secret and not publicly known. It
is advertised as an automated scan for malicious components (APPLE, 2021d)).

As of February of 2020, non Mac App Store apps must pass the app notarization process
to be executable by default (APPLE, [2019b). Apps that are not notarized can still be executed

by users, although it requires a bypass or disable of the Gatekeeper security mechanism.

21

2.2.2 Second Layer: Gatekeeper and XProtect

The main endpoint security mechanism on the macOS system is the Gatekeeper. When
a user downloads a file from the internet, the files are marked with a quarantine extended
attribute. This attribute tells the Gatekeeper that the file needs to be checked for trustwor-
thiness. A user that executes the marked executable will trigger a warning prompt like the one
shown in Figure [2|

The Gatekeeper is responsible for verifying the Developer ID, code signature and if the
software has been notarized by Apple (APPLE, 2021b). Gatekeeper can be configured to be
more permissive or completely disabled.

In macOS 10.15, the macOS native malware detection mechanism, XProtect, has been
integrated with Gatekeeper. XProtect is a signature-based malware detection system based on

YARA signatures that triggers in the following scenarios (APPLE, 2021€)):

1. Every time a software is first executed.
2. Every time a software is altered or tampered.

3. Every time XProtect's signatures are updated.

Figure 2 — Gatekeeper execution warning

"UXProtect” is an app downloaded from the Internet.
d Are you sure you want to open it?

digitasecurity.com

? Cancel Show Web Page

Source: The author (2022)

YARA is a tool to help malware researchers to identify and classify malware samples
(ALVAREZ, [2021)). It gives researchers a language to write rules that define patterns which the
YARA engine tries to locate in files. In XProtect, the YARA rules are found in the resources

of the XProtect app bundle. A snippet of the file can be seen in Source Code [T}

22

Source Code 1 — YARA Rule Examples from XProtect.yara

1 rule BundloreA

{
3 meta:
description = "0SX.Bundlore.A"
5 strings:
$a = {5F 5F 6D 6D 5F 67 65 74 49 6E 6A 65 63 74 65 64 50 61 72 61 6D 73}
7 $b = {5F 5F 6D 6D 5F 72 75 6E 53 68 65 6C 6C 53 63 72 69 70 74 41 73 52 6
F 6F 74}
condition:
9 Macho and ($a and $b)
}
11
rule GenieoE
13 {
meta:
15 description = "0SX.Genieo.E"
strings:
17 $a = {47 4E 53 69 6E 67 6C 65 74 6F 6E 47 6C 6F 62 61 6C 43 61 6C 63 75 6
C 61 74 6F 723%
$b = {47 4E 46 61 6C 6C 62 61 63 6B 52 65 70 6F 72 74 48 61 6E 64 6C 65
72}
19 condition:
Macho and ($%$a and $b)
21}

Source: The Author (2022).

In Code [T}, we see rules for the malware "OSX.Bundlore.A" and "OSX.Genieo.E". In both
rules, the researcher defined strings of bytes that when they are all in the binary, the detection
condition becomes true. The condition also requires the binary to be a Mach-O file.

XProtect not only uses YARA signatures, but also holds databases of blacklisted Team IDs
and Safari Extensions (STOKES, [2020a)).

2.2.3 Third Layer: Malware Removal Tool

While XProtect detects the malware, the [Malware Removal Tool (MRT)| removes it. The

inner workings of the are not published by Apple, but researchers have analysed its
behavior (OAKLEY] [2020)). is triggered whenever it is updated and it uses a rule file to

find and remove different malware families.

23

2.2.4 Further Protection: Containing damage

When all the layers fail, macOS has mechanisms to mitigate damage as much as possible.

2.2.4.1 App Sandbox

App Sandbox restricts access to system resources and user data in macOS apps to contain
damage if an app becomes compromised (APPLE, 2022a). As of 2022, apps must have the

sandbox enabled in order to be distributed in the App Store (APPLE, 2022a)).

2.2.4.2 Transparency, Consent, and Control (TCC)

[TCQ offers granular control of privacy by asking whether or not applications may perform
privacy-sensitive actions, such as accessing the microphone, camera and reading user files
(IFERT-MILLER, 2019)). The database which controls the TCC can be found in /Users/ <USER>
/Library/Application Support/com.apple. TCC/TCC.db .

2.2.4.3 System Integrity Protection (SIP)

The[SIP]is a security system introduced in OS X 10.11 that stops the root user from writing
to specific system directories (APPLE, 2019a)). The idea is to limit the impact of malicious code

by protecting the critical parts of the system, such as the following:

/System
- Jusr
= /bin
= /sbin
= Jvar

= Directories of Apps that are pre-installed with the system.

24

In order to write to these locations, apps must be signed by Apple and have specific
entitlements. Users may also disable the [SIP| entirely if they wish by rebooting the system in

Recovery mode and typing specific commands in the terminal (APPLE, |2022b)).

2.3 RELATED WORK

2.3.1 Static malware detection

There has been significant progress in the fight against malware. While some of the recent
focus turned towards dynamic detection, static detection is constantly revisited by researchers
as these techniques allow for malware detection before it actually runs, preventing any damage.

Many researchers have been using supervised learning approaches to tackle the malware

detection challenge. Most of them focused on Windows and its native executable format, the

Windows |Portable Executable (PE)| format. Among the first works on the subject, (SCHULTZ

et al}, 2000) used a Multi-Naive Bayes method using headers, strings and byte sequences to
create a detection model with accuracy of 97.76%. The authors in (KOLTER; MALOOF, 2004)

extracted over 255 million distinct n-grams of benign and malicious software and, by using

a boosted decision tree, they achieved 0.996 area under |[Receiver Operating Characteristic|

(ROC)| curve. These results indicated that it is possible to detect unseen Windows malware

through machine learning with a high detection rate.

The authors in (BALDANGOMBO; JAMBALJAV; HORNG, [2013) have used data mining meth-
ods to create static malware detection from [PEl header values and API functions called. The
authors used information gain and Principal Component Analysis (PCA) to reduce the di-
mension of the problem and achieved a detection rate of 99.6% and a false positive rate of
2.7%.

The authors in (LO; PABLO; CARLOS, [2016)) achieved an accuracy of 99.60% using only

9 chosen features, static and dynamic, against a Windows malware dataset of 14,902 total

samples using a combination of Random Forest, [Support Vector Machine (SVM)| and Neural

Networks. More recently, researchers in (MANAVI; HAMZEH, 2021) used deep learning tech-
niques such as Long Short-Term Memory (LSTM) to detect ransomware samples from only
header information with a 93.5% accuracy.

Windows has not been the only platform investigated in the literature, as many other

authors have also visited the mobile Android platform. In (MILOSEVIC; DEHGHANTANHA; CHOO,

25

2017)), the authors performed two static feature analyses, a source code-based analysis and
a permission-based analysis. Both approaches were tackled with ensemble learning models
with an F-measure of 95.1% and 89%, respectively, showing that static features can be very

effective determinants of maliciousness in Android systems.

2.3.2 Mac0OS/0OSX malware detection

With the recent surge of macOS malware appearances, some researchers investigated the
endpoint security issues in macOS. In forensics investigation, the research in (CASE; I1l, 2015))
proposed new methodologies to detect rootkit malware in OS X systems. From the perspective
of malware analysis environments, the authors in (PHAM; VU; MASSACCI, [2019) developed a
virtualizing OS X platform to help the investigation of macOS malware by extracting static
and dynamic features of malware more efficiently than current solutions at the time.

Regarding research with malware detection as the main investigation point, the author
in (MIEGHEM, 2016)) built a heuristic-based approach to detect malware. The author studied
the imported libraries by 21 macOS malware and came up with four patterns that achieved a
detection rate of 100%, which as shown in their work, could result in a high false alarm rate
of 25%.

The authors in (PAJOUH et al., |2018)) attempted a static malware detection approach using
machine learning with a smaller dataset composed of only 152 malware and 450 benign soft-
ware. With the preliminary dataset, the authors achieved a 91% accuracy with a false alarm

rate of 3.9%. In light of the size of the dataset, the authors synthetically created samples

via [Synthetic Minority Oversampling Technique (SMOTE)| to make the dataset five times the

original size and got a 96% accuracy on the synthetic dataset with a minor hit to false alarm
rate reaching 4%. While the metrics may seem positive, the work has some methodology limi-
tations: the usage of accuracy as a performance metric when evaluating results from a dataset
with a high degree of class imbalance and using oversampling techniques before the train-test
split, effectively detecting malware that do not exist.

In (SAHOO; DHAWAN, [2022)), authors handled the same dataset as (PAJOUH et al,, 2018),
executing SMOTE] to completely balance the dataset to a 1:1 benign-malicious ratio and
extracting libraries calling in the DYLIB sections via TF-ID based text processing. The authors’
model used Logistic Regression and achieved a 96% accuracy and 2.14% false alarm rate. This

work has the same methodological limitations as (PAJOUH et al., |2018)) regarding the generation

26

of synthetic samples to fix class imbalance before the train-test split.

Other methods were tested in (GHARGHASHEH; HADAYEGHPARAST, 2022), handling the
same dataset as the previously mentioned articles, but with no sampling techniques to deal
with the low number of malicious samples. They used Chi-square feature selection to halve the
number of features and achieve a 94.7% accuracy using the Subspace KNN ensemble method.
A methodological limitation is the usage of accuracy as their main metric for performance,
which is not appropriate for dataset with imbalanced classes.

Regarding a contribution from the industry, the authors in (HSIEH; LIU, 2017)) used static
features with supervised machine learning in order to classify macOS malware using a dataset
of over 600 thousand samples from VirusTotal (VIRUSTOTAL, 2021)) and 4,000 known malicious
samples. The result was not very optimistic, since the best-performed algorithm was a decision

tree that achieved a 60% recall score.

27

3 DATASET

Different operating systems have different native executable binary formats: Linux systems

use the [Executable and Linkable Format (ELF)| Windows uses the [PE|format and macOS uses

the Mach-O format. Even though these file formats may be similar in the fact that they all
are executable code with separate memory segments, their loading, linking, and metadata are
different. These differences make static malware detection techniques, such as the previously
mentioned, very platform-dependent and, as such, models for malware detection in Windows
or Android are incompatible with the macOS environment.

In order to properly translate and evaluate known techniques, we need to adapt them to
the macOS ecosystem. To the best of our knowledge, as of 2021, there is no public dataset
for the macOS malware detection problem. We approached this issue by building a dataset
of our own by acquiring malicious and benign Mach-O files and collecting features from the
Mach-O format similar to the way features were extracted in previous Windows and Android

malware works (ORANGES. ..} |2021).

3.1 FEATURE EXTRACTION AND THE MACH-O FORMAT

In previously mentioned works, the focus is mostly on Windows malware. Therefore, their
feature extraction step takes into account the [PE|format. Since we tackle the macOS environ-
ment, we are forced to work with the Mach-O format and thus with different static features.

For files (MICROSOFT, [2021)), the static features commonly used are the ones found in
the DOS header, the File and Optional headers, the addresses and sizes in the data directory,
the resource entries, the DLL imported, the APl used and information of important sections.
While Mach-O format does not hold the exact type of information, there are some similarities
in every executable format, such as separated segments for code and data, and imported
libraries (MACH-O. ..} [2014)).

Extracting header information is pretty straightforward in both [PE] and Mach-O formats.
However, the [PE| format has more metadata on its headers. In fact, it has three different
headers: the DOS header, the File header, and the Optional header, which hold data like
information about its sections, required Windows version, memory space required, processor

architecture, and much more. The Mach-O format starts with the Mach-O header as illustrated

28

in Fig.[3l The Mach-O Header is only 32 bytes long and holds only the magic number for the
Mach-O file, the type of Mach-O executable, architecture, executable feature flags, and the
number of load commands.

In the PE|file, the Optional Header holds the data directories, which include meta-information
about exports and imports, among other things. Right after that, we find the section table
holding headers that pertain to the different sections and how each of them should be loaded
into the memory.

The Mach-O format does not handle sections, imports, or exports that way. Right after
the Mach-O header, there are a number of load commands (specified in the Mach-O header),
followed by raw data, as illustrated by Fig. [3] Load commands pose a similar function to the
section headers and the [PE| data directories by pointing to specific chunks in the raw content
and how they should be loaded into memory.

There is a variety of load commands for different cases: Special load commands for loading

code, data, how libraries should be linked, and even a load command for the code signature.

Figure 3 — The Mach-O format.

Mach-O Header

Load Commands
Load _TEXT Segment T
Load _DATA Segment
Load ...

_TEXT Segment <

Section _text

Section _stub

Section ...
_DATA Segment

A

Section _data

Section _symbol_ptr

Section ...

Source: Author (2022)

29

In order to retrieve these features in Mach-O files, we used an open-source project named

[Library to Instrument Executable Formats (LIEF)| (ROMAIN| [2021)), which provides an efficient

way of playing around with executable formats and extracting interesting information such as

the Mach-O header, load commands, section names, exported and imported functions.

Table 1 — Table showing features extracted from the Mach-O File.

Binary resource Features extracted
Mach-0 header Target CPU information, Type of file, Number of load com-
mands, size of all load commands, binary flags
Load Segment Commands Segment name, size of segment, offset, number of sections
in segment, flags
Sections Name, Entropy, Size, Flags
Symbol Command Number of Symbols, Size of the size string table

Dynamic Symbol Command Number and index of local and external symbols

Libraries List of Libraries imported

Source: The author (2022)

3.2 OBTAINING MACH-O SAMPLES

With a proper method of extracting relevant features from Mach-O files, a database of
malicious and benign software is required, preferably a database already properly labeled as
malicious or not. While there are some public datasets for Windows, unfortunately, the dis-
cussion around the detection of macOS malware has not reached the same level of popularity.

Therefore it is up to us to build a proper dataset for our tests.

3.2.1 Acquiring Benign Samples

Apple’s go-to mechanism for the distribution of applications is its AppStore (APP. ..} 2021)).
However, as of 2021, Apple's App Store provides no API for downloading apps automatically,
nor does it provide a list of all the applications on it. These barriers greatly complicate a
systematic approach to choosing benign software.

In order to build the dataset for our experiments, we manually downloaded the top free apps
shown in the AppStore on April 7th and April 15th of 2021, resulting in a total of 215 different

applications. Because of the low number of applications downloaded through this method, we

30

went after a different popular source, a third-party repository for macOS applications known
as Homebrew (HOMEBREW, 2021)).

Homebrew is widely regarded as the missing macOS package manager (HOMEBREW, 2021)),
and it provides a repository for Mac applications and Unix tools. Homebrew gives their packages
in two different ways: Formulae and Casks. Formulae are mostly open-source software for
command-line applications, while Casks are mostly GUI applications, some of them closed
source. The Homebrew project also provides analytics of downloads so we can infer the most
popular applications (HOMEBREW, 2021)), as seen in Figure @ With that in mind, we created a
script to download all the Casks with over a thousand downloads in the last 90 days as of April
14th, 2021, summing up to a total of 246 different applications. After downloading all the
applications, we extracted the Mach-O files from those applications and removed duplicates,

resulting in 10,141 unique files.

Figure 4 — Homebrew analytics showing top Casks in 90 days.

- m]

Lom =" @ » =

\
B
Homebrew Formulae

Search Homebrew Formulae

Cask Install Events (90 days)

Cask Events
10

FrRE i
5 EES

I
&

adoptopenjdk8

Source: Author (2022)

3.2.2 Acquiring Malicious Samples

Searching for an extensive free database of macOS malware has proven to be a challenge.
The highest-profile macOS malware database is the malware collection of Objective-See, an
initiative to research and publish security-related macOS knowledge. As of April of 2021, the

collection holds samples for 130 different malware families (MAC. .., [2021)). The Objective-see

31

blog not only offers malware samples but also information on how they classify each malware
family according to the malware behavior.

Another source was the GitHub repository “Macos-Malware-Samples”, which belongs to
VirusSamples (MALWARESAMPLES, 2021)). The repository provides almost 500 malware samples
for use. Unfortunately, there is not much information on their origin, name, or behavior,
however, if needed, one can use virus scanners like VirusTotal to try and discover some of this
information.

After aggregating all the malwares from these two databases, and filtering out malformed
and non-Mach-O samples, we got 178 samples from the Objective-See database and 453
samples from VirusSamples, summing up to a total of 631 malware samples.

Our dataset has a couple of issues we need to take note of when modeling solutions. It
currently holds a total of 10,772 Mach-O samples with only 631 being malicious ones, which
presents a high-class imbalance, as seen in Table 2, Another possible issue is mislabeling
malicious software as benign. We tried to address this issue by using the popularity of the

software as a heuristic for what seems to be more trustworthy among macOS users.

Table 2 — Table showing the origin of Mach-O files used in the dataset.

Source Type Quantity
AppStore Benign 4,331
HomeBrewCasks Benign 5,810
ObjectiveSee Malicious 178
VirusSamples Malicious 453

Source: The author (2022)

32

4 METHODOLOGY

In this chapter, we introduce our methodology by exploring some definitions regarding
metrics and the machine learning models used in this thesis. Such models have the objective
to classify a given set of features as belonging to malware or benign software. To evaluate the

performance of the models, we must choose the best metrics for the scenario.

4.1 MALWARE DETECTION METRICS

The confusion matrix allows us to extract values on how often the model output matched
the ground truth. The following metrics can be derived from the output from the confusion

matrix:

[True Positive (TP)|: The number of correctly classified malware.

= [True Negative (TN)|: The number of correctly classified benign software.

[False Positive (FP)|: The number of benign software misclassified as malware.

= [False Negative (FN)|: The number of malware misclassified as benign software.

= [TP| Rate : The rate of correctly classified malware in the test dataset, also known as

[Detection rate (DR)|and recall.

Rate: The rate of benign software misclassified as malware, also called |[False Alarm
Rate (FAR)

Accuracy is another simple commonly used metric, and it represents how often the model

gives correct predictions, as shown in Eq. 4.1}

TP+TN
TP+TN+FP+FN'

Accuracy = (4.1)

Even though accuracy may seem like a good metric to use, it fails to account for dataset
imbalances and conveys little information. The [ROC] curve is another commonly used metric,

a chart where the [TP] rate and the [FP| rate are plotted for every classification threshold. The

[Area Under Curve (AUC)| is often pointed to as a single metric for evaluation on the [RO(

curve, where 0.5 would be as good as a random classifier and 1.0 would be a perfect classifier.

33

In cases of highly imbalanced data, we can use the Fl-score, which is the harmonic mean
of the precision (shown in Eq. and recall, simplified to Eq. :

TP
Precision — _ 4.2
recision = s (4.2)

precision - recall TP
precision +recall TP+ 3(FP+ FN)’

We may also plot the graph of the Precision-Recall curve, which shows the precision and recall

F1=2 (4.3)

of the model in different classification thresholds. As with the [ROC] curve, we can take the

area under the curve to simplify the curve into a single numeric metric.

4.2 MACHINE LEARNING MODELS

In this work, our experiments take a supervised learning approach to attempt to classify
whether a given software is a malware. Supervised machine learning algorithms learn from
labeled training datasets that provide examples of what samples in given classifications are
like. Samples are represented as combinations of features extracted from instances of objects

of classification, in our case, Mach-O binaries.

4.2.1 Naive Bayes

One of the most simple supervised machine learning algorithms is the Naive Bayes algo-
rithm, which uses the Bayes conditional probability equation to classify samples based on how
likely it is that a given feature belongs to a class (RUSSELL; NORVIG| [2002)). With the naive

condition that every feature is independent of each other, we get Eq.

g = argmazx p(C) Hp(l'i|0k), (4.4)
ked{l,...,K} i=1

where ¢ is the decision, K is the number of classes, n is the number of features and Cj, is the

kth class label.

4.2.2 Tree-based algorithms

Another simple algorithm is the decision tree, which classifies samples via a flowchart-like

system where every node in the tree is a rule on a specific feature. The result of the comparison

34

dictates which node is the next to be tested until the algorithm reaches the leaves of the tree,
which hold the final decision of which classification the sample fits in.

Decision trees are very prone to overfitting due to their own nature, that is, corresponding
too closely to the training data and providing an unreliable generalization of the problem
(RUSSELL; NORVIG, 2002). Random Forest is a way of mitigating this fact through the creation
of an ensemble of different decision trees where a sample is tested against all the trees and

the output is the result given by the majority of trees (HASTIE et al., 2009).

4.2.3 K-nearest neighbors

We also experiment with the k-nearest neighbors algorithm, a popular instance-based
method that represents samples as vectors in a multidimensional space. The algorithm classi-
fies new samples according to the k nearest samples, whichever class is predominant among

these samples is the result of the classification (RUSSELL; NORVIG, 2002).

4.2.4 Logistic Regression

Logistic regression is a statistical analysis method used to predict an event based on prior
observations of the dataset. In the logistic regression, we try to fit the logistic function to
determine the probability of a feature value belonging to a specific class — in this paper,
whether a feature set is more likely to belong to a malware or benign software (RUSSELL;

NORVIG, 2002).

4.2.5 Support Vector Machine

SVM is a binary non-probabilistic linear classifier that receives multidimensional data as
input and identifies patterns to separate different classes with hyperplanes, which work as
decision boundaries that focus on maximizing the distance between the nearest instances in

relation to each class (CORTES; VAPNIK, (1995)).

35

4.2.6 Multilayer Perceptron

Perceptron is a learning model inspired by neurons. It is a neural network with only one layer

and a linear classifier. When organized in a multilayer feedforward architecture, it is known as

a [Multilayer Perceptron (MLP)|

The perceptrons in [MLP] are trained via the backpropagation learning algorithm, which
uses samples from the data to tune their parameters according to the output. Its organization
and learning allows for the classification of non-linear data, an upgrade from the single-layer

perceptron (RUSSELL; NORVIG, 2002).

4.3 SAMPLING AND FEATURE REDUCTION

The generated dataset in Chapter [3[has two major issues that might generate problem
in the classification results provided by the model: high dimensionality and highly imbalanced

classes. In the following, we discuss ways to mitigate these problems in the dataset.

4.3.1 Undersampling and Oversampling

Imbalanced classes in the dataset negatively affect the training of the models. Two main
approaches can be used to mitigate this: undersampling the majority class or oversampling the
minority class. There are many different ways of going about these two approaches, however,
for the sake of simplicity, in this work, we chose to use the random undersampling and SMOTE]

The random undersampling technique is simple like the name suggests, an undersampling
tactic that chooses random samples from the majority class on a smaller scale than usual. The
algorithm generates synthetic samples based on the current samples in the minority
class. It does so by selecting samples that are near the feature space, drawing lines between
those, and choosing points in these lines to represent the synthetic data (CHAWLA et al., 2002).
The SMOTE pseudo-code algorithm is described in Source Code [2]

Source Code 2 — SMOTE original algorithm

1 Algorithm SMOTE (T, N, k)
Input: Number of minority class samples T ; Amount of SMOTE N percentage; Number
of nearest
3 neighbors k
Output: (N/10@)* T synthetic minority class samples

36

11

13

15

17

19

21

23

25

27

29

31

33

(x If N is less than 100%, randomize the minority class samples as only a random
percent of them will be SMOTEd. x*)
if N < 100:
Randomize the T minority class samples
T = (N/100) % T
N = 100

N = (int)(N/100) # The amount of SMOTE is assumed to be in integral multiples of

k = Number of nearest neighbors

numattrs = Number of attributes

Sample[1[1: array for original minority class samples

newindex: keeps a count of number of synthetic samples generated, initialized to
0

Synthetic[1[1: array for synthetic samples

#Compute k nearest neighbors for each minority class sample only.

for i in 1 to T
Compute k nearest neighbors for i, and save the indices in the nnarray
Populate(N , i, nnarray)

endfor

Populate(N, i, nnarray) # Function to generate the synthetic samples.
while not N == 0:

Choose a random number between 1 and k, call it nn. This step chooses one
of the k nearest neighbors of i.

for attr in 1 to numattrs:
Compute: dif = Samplel[nnarray[nn]][attr] - Samplel[il[attr]
Compute: gap = random number between @ and 1
Synthetic[newindex][attr] = Sample[il[attr] + gap * dif

newindex++

N=N-1

return # End of Populate.

Source: Adapted from [CHAWLA et al/| (2002))

4.3.2 Feature selection

When dealing with high dimensionality, one either uses feature selection or feature projec-

tion techniques. In feature selection, we drop features from the dataset that may not be as

helpful in the classification as others. In feature projection, one uses algorithms to transform the

values of the current dataset into a representation of lower dimension (PUDIL; NOVOVICOVA,

1998).

Three common feature selection techniques are through |Analysis of Variance (ANOVA)|

37

with F-test, the Chi-Squared test, and the information gain. F-test is a statistical test that
checks whether a given feature variance impacts different classifications (LOMAX; HAHS-VAUGHN,
2013)). The F value is calculated as shown in Eq. 4.5

variance between classes
F value =

45
variance within class (4.5)

The Chi-squared test checks the independence between two different events (COCHRAN,
1952)). With this test, we can measure which features have more dependence on the classifica-
tion (malware or benign), allowing us to select features with higher dependence for our model
and discard less dependent ones. The Chi-squared value is calculated from Eq. [4.6] where we
divide all observations between n cells that represent all possible configurations between two
variables to test their independence. In the equation O is the count of observed values and E
is the count of expected values:

n 2
¢y Ot (46)

i=1

Another way of discarding less useful features is through the information gain. The infor-
mation gain is a way to measure how much entropy is lost when a given feature is known
(KULLBACK; LEIBLER, [1951)). A feature with high information gain suggests that it holds more

information for the classification than others.

4.3.3 Principal Component Analysis

IPrincipal Component Analysis (PCA)|is a tool for exploratory data analysis. It can be used

to reveal the internal structure of data by analyzing data patterns in datasets of high dimen-
sionality. As an unsupervised feature reduction algorithm, it finds the directions of maximum
variance in high dimensional data and maps them into a space with fewer dimensions (WOLD;

ESBENSEN; GELADI, (1987)).

4.4 EXPERIMENT METHODOLOGY

Our methodology is best illustrated by Figure 5] Our first step was to build a dataset

with benign and malicious Mach-O files from four different public sources. With the down-

38

loaded files, we extract interesting features using [LIEF| to generate the dataset used for the
experiments.

After the feature extraction, we use a stratified 5-fold cross-validation technique dividing
the data into a train and test dataset. We then apply a dimensionality reduction algorithm
to the training dataset, followed by a sampling strategy before feeding the data into one of
the machine learning models. Once the model is trained, we use the test dataset to retrieve
the performance metrics for the detection model. We repeat the stratified cross-validation ten

times to avoid noise and retrieve more reliable metrics.

Figure 5 — Diagram of the methodology used.

AppStore ObjectiveSee

VirusSamples

HomeBrew
Casks

———]
———]
;Me———
Mach-O
Database
{ \
> - P Feature
o Extraction
. J

|
Train Dataset

_____ \ S

i 1

1 Dimensionality

1 Reduction 1

Test Dataset -----!____;
r---------,

1

_==| Evaluation
—@ Results

: Sampling Strategy X

I————v————d

Train
Algorithm

Test Model

Source: The author (2022)

39

5 EVALUATION

In this chapter we go into details on the experiment’'s execution. We explain the pre-
processing stage and evaluate the impacts of different sampling strategies and feature reduction
techniques on the detection models. We present and discuss results when combining the

techniques into fully working macOS malware detection mechanisms.

5.1 PRE-PROCESSING

In the pre-processing stage, we evaluate how we are going to feed the features into the
model. The raw dataset built using the tool holds plenty of different meta-information
on the binaries, however, some of this information might not be as useful or as easy to work
with, such as addresses and offsets. This information can be difficult to represent categorically
or numerically, and in general, neither are a good indicator of malicious activity.

The dataset has some missing values due to the fact that some sections and load commands
are not present in every binary, therefore, no features can be extracted from these parts on
some binaries. Firstly, we completely removed the features with zero variance and those missing
20 percent or more of the available binaries in the dataset.

Some features are represented by string values. In such cases, we used dummy encoding to
transform these features into binary-valued columns. Most features were encoded this way, such
as load command names, segment and section names, section flags, Mach-O header flags, and
imported libraries. After encoding all categorical features, we got a dataset of 10,772 samples

with 3,260 features.

5.2 INITIAL EVALUATION

Firstly, we evaluate the performance of the algorithms using 5-fold cross-validation repeated
10 times directly on our dataset. We normalize the input of numerical columns and performed
the classification with Decision Tree, Random Forest, [SVM] Logistic Regression, K-nearest
neighbors, and [MLP| Our implementation uses the popular machine learning library sci-kit-
learn in Python 3 scripts run in a Windows 10 64-bit system, with 16 GB of RAM and a Ryzen 7

1700 processor. In Table[3] we can see the used parameters for each algorithm implementation.

40

The parameters were tuned manually from default values to provide better results while not

being too time-consuming.

Table 3 — Machine Learning parameters

Algorithm Parameters
Decision Tree Gini impurity, no max_depth, default parameters
Naive Bayes GaussianNB
Random Forest n_estimators=150, max_depth=25, random_state=0

K-Neareast Neighbors n_neighbors=3
Logistic Regression max__iter=2000,
SVM max__iter=20000

Multi Layer Perceptron hidden_layer_sizes=(100,), random_state =1, max_iter=1000

Source: The author (2022)

Table 4 — Average scores of 5-Fold repeated 10 times cross validation of different algorithms with an unchanged

dataset

Algorithm Accuracy ROC AUC PR AUC F1
Decision Tree 0.9804 0.9133 0.7058 0.8339
Naive Bayes 0.6171 0.7809 0.1270 0.2282
Random Forest 0.9858 0.9974 0.9685 0.8652
K-Neareast Neighbors 0.9831 0.9541 0.8514 0.8484
Logistic Regression 0.9829 0.9920 0.9291 0.8468
Support Vector Machine 0.9850 0.9893 0.9245 0.8728
Multi Layer Perceptron 0.9868 0.9922 0.9351 0.8869

Source: The author (2022)

In Table , we show the results obtained using the metrics F1-score, accuracy, area under

the ROC curve, and the area under the Precision-Recall curve. We can see how accuracy as

a metric may lead to a false sense of good performance as almost all algorithms exhibited

an accuracy over 98%. This is mainly due to the high-class imbalance in the dataset. In this

initial evaluation with the raw dataset, the MLP, SVM, and Random Forest classifiers appear

to have the best performance when looking at the F1 score.

It’s important to note the subpar performance of the Naive Bayes. Its simple algorithm

assumes independence among all features which is an unreasonable expectation in this high

dimensionality dataset.

41

5.3 MITIGATING ISSUES WITH DATASET

Given the highly imbalanced classes and the high dimensionality of the problem caused by a
large number of features in contrast to the small number of malicious samples, we must adjust
the model accordingly to mitigate the problems caused by those undesired characteristics of

our dataset.

5.3.1 Sampling strategy

We chose to tackle the imbalance of classes by evaluating the performance with two
different sampling strategies to address the low malicious to benign sample ratio in the dataset.
The original dataset has a malware to benign software ratio of approximately 1 to 16. We
altered this ratio with random undersampling from the majority class and generating synthetic

malware observations with SMOTE.

Figure 6 — Fl-score of decision tree, random forest, SVM and MLP with the undersampling of the majority
class to achieve a specific malware to benign ratio.

mm DT
0.8 s SVM
. mmm RF
s MLP
0.6
2
e}
o
@
L 04
0.2
0.0
Original 1:10 1:4 1:2 1:1

Re;tio
Source: The author (2022)
Fig. [6] shows the effect of undersampling the benign software observations on the F1 score.

As seen in Figure [6] by changing the malware ratio to 1:10 via random undersampling, the

F1-score exhibits little change; in fact, it provides a slight improvement in the Random Forest

42

Figure 7 — Fl-score of decision tree, random forest, SVM and MLP with the oversampling of the minority
class to achieve a specific malware to benign ratio.

0.
0.
0.0
1:4 1:2 1:1

Original 1:10

F1-Score
o
(=] o

o
S

N

Ratio

Source: The author (2022)

algorithm. However, further undersampling appears to decrease the F1 score of every algorithm.
As shown in Fig. [7] oversampling using SMOTE appears to not result in many impacts, with
minor changes as the ratio increases.

The F1 score has shown to be more sensitive to undersampling tactics as the malicious to
benign ratio increases. However, the SMOTE technique has been demonstrated to be more

promising since it maintained a relatively constant F1 score regardless of the increasing ratio.

5.3.2 Dimension reduction

In order to deal with the high dimensionality issue, we tried out the dataset with feature
selection techniques like Chi-squared, analysis of variation, and information gain, to reduce
the number of features. We also used [PCA| to transform the dataset into a dataset of lower
dimension.

Table 5| shows the Fl-score for a decreasing number of features using the different di-
mension reduction techniques. As observed, feature reduction seems to improve the models
in comparison to our initial evaluation. As seen in the table, [PCA| appears to generate the

best results with [MLP| demonstrated by the Fl-score kept relatively stable throughout the

43

Table 5 — F1-Score of Random Forest, SVM and Multi-Layer perceptron with reduced number of features.

| 1000 | 500 | 250 | 100 | 50 | 25

ANOVA

RF 0.8749 0.8811 0.8346 0.8855 0.8725 0.8586

SVM | 0.8723 0.8664 0.8509 0.7964 0.7592 0.6931

MLP | 0.9001 0.9059 0.8957 0.8853 0.8485 0.7752

CHI-2

RF 0.8760 0.8834 0.8814 0.8833 0.8173 0.5237

SVM | 0.8713 0.8622 0.8252 0.7845 0.6895 0.3955

MLP | 0.8998 0.9040 0.8995 0.8786 0.7660 0.5255

Information Gain

RF 0.8691 0.8706 0.8724 0.8752 0.8533 0.8055

SVM | 0.8515 0.8374 0.8108 0.7850 0.6790 0.4184

MLP | 0.8926 0.8902 0.8852 0.8722 0.7927 0.5825

Principal Component Analysis

RF 0.7745 0.7840 0.8016 0.8174 0.8262 0.8042

SVM | 0.8713 0.8642 0.8436 0.7856 0.7518 0.4895

MLP | 0.9017 0.9057 0.9008 0.9039 0.8911 0.8614

Source: The author (2022)

dimension reducing tests down to only 50 features. The Random Forest models appear to
improve with Chi-squared and [ANOVA|] with only 100 features. The performance shown by
the SVM model did not improve with any of the tested dimension reduction techniques. The
information gain feature reduction method also underperformed in comparison to the other

techniques.

5.4 RESULTS AND DISCUSSION

After diving into the strategies to mitigate the dataset issues, we can combine them into
experiment models. Table [6] shows the models with the best average performances using a
repeated stratified 5-fold cross-validation technique.

As seen in Table [f] by evaluating the F1 score the best performances were and
Random Forest. Different configurations of sampling and feature reduction techniques provided
us with a myriad of statistics of similar performance. While the detection rate was not extremely
high, the false alarm rate was extremely low. Both undersampling and oversampling have been

shown to be useful tactics, but we must be wary of extreme undersampling. In Table [6, we

44

Table 6 — Best performance models and their detection rate, false alarm rate and F1-score

Models DR FAR | F1
MLP 4 PCA 500 + SMOTE 1:4 90.6% | 0.5% | 0.9068
MLP + PCA 250 + SMOTE 1:4 90.1% | 0.5% | 0.9023

MLP 4+ PCA100 + SMOTE 1:10 89.4% | 0.5% | 0.9004
MLP + PCA100 + Undersamp. 1:10 | 90.6% | 0.7% | 0.8944
MLP + ANOVA 250 + SMOTE 1:10 | 88.6% | 0.5% | 0.8973
MLP 4+ CHI2 500 + SMOTE 1:10 89.2% | 0.4% | 0.9049
RF + ANOVA 250 + SMOTE 1:10 83.6% | 0.2% | 0.8905
RF + CHI2 250 + Undersamp. 1:10 | 85.7% | 0.4% | 0.8893
MLP + PCA100 + Undersamp. 1:2 | 95.0% | 2.9% | 0.7827

Source: The author (2022)

can see a scenario of extreme undersampling increasing the perceived detection rate while
maintaining a false alarm ratio at acceptable levels, but as indicated by the F1l-score, such a
result is not reliable because of the low number of malware in the dataset.

A fair direct comparison with other detection approaches is difficult since the used dataset
was not the same. In Table , we revisit the limitation of recent works on the subject. In
this work, we created a large dataset for malware detection, and applied sampling and feature
reduction techniques, while addressing the class imbalance of the dataset throughout the

experiment to achieve a low false alarm rate and over 90% detection rate.

Table 7 — MacOS malware research limitations

Research Limitation
(MIEGHEM, [2016)) 21 malwares only, high FAR
(PAJOUH et al/ 2018)) SMOTE before train-test split
(SAHOO; DHAWAN, 2022) SMOTE before train-test split
(GHARGHASHEH; HADAYEGHPARAST, Imbalance of class in dataset not addressed

2022)

Source: The author (2022)

5.4.1 MacOS embedded detection

As previously mentioned, XProtect is a simple signature-based detection system that re-
cently became a component of the now larger and more powerful Gatekeeper on macQOS. As

of macOS 12, there are no other native malware detection capabilities.

45

Most signatures either try to match the hash of the malware file to a specifically known
hash or verify if the file has a specific byte string inside it. As of September of 2021, the
XProtect signature file has only 160 rules, of which managed to match only 58 malwares out
of the 631 in our database, exhibiting a less than 10% detection rate with no false alarms.

While having no false alarms is great in a malware detection system, that fact is generally a
common feature among signature-based detection mechanisms with well-written rules. The low
detection rate, however, is a serious concern considering there is no other malware detection
mechanism in the macOS. In signature-based detection systems, one may increase its detection
rate by adding more rules regularly as new malware appears, but that seems not to be the

case of XProtect as its database holds a very small number of signatures.

46

6 CONCLUSION

This work addresses the malware detection challenge in the macOS environment. We built
a database from samples of malware and benign software publicly available on the internet.
We then extracted static features from the Mach-O file, resulting in the largest public dataset
for malware detection in macOS to the best of our knowledgel] We trained different machine
learning models, investigated the impact of sampling tactics and dimension reduction tech-
niques, and in the end achieved a detection model that had its performance compared to other
approaches on Windows and Android platforms. The models are also shown to be better than
current macOS detection mechanisms, pointing to the fact that Apple may greatly benefit
from minor machine learning approaches to endpoint security.

Practically speaking, the shown detection mechanisms can be integrated into either the
macOS operating system or into app distribution chains. Thanks to the simplicity of extracting
static features from the binary, the machine learning models can be easily embedded into
the working Gatekeeper system as an extra check before the software's first execution. And
even though the AppStore’s app admission process and the notarization process are currently
unknown to the public, it is not unreasonable to assert that these detection models could

become a part of such processes.

6.1 FUTURE WORK

We investigated and experimented with the use of static features present in the Mach-O
format to tackle the malware detection problem in a macOS environment, which opens plenty
of new research possibilities. Future works will explore other ignored static features in the code
segment to identify malicious patterns in the assembly code. Detection research should also
investigate dynamic features. The EndpointSecurity framework available since macOS Catalina
gives us new opportunities to detect malicious behavior during execution by gathering data
from system events originating from processes. The main challenge for such work would be the
virtualization of macOS/iOS environments to create experiment testbeds to retrieve dynamic
features in large scale.

Regardless of the type of endpoint security technique investigated, further work should

consider expanding the dataset to include more malware samples for a better representation

1 Available at https://github.com/CBurgardt/orange_vs_apples

47

of the current macOS malware landscape.

48

REFERENCES

ALVAREZ, V. M. YARA in a nutshell. 2021. Accessed: 2021-11-09. Available at:
<https:/ /virustotal.github.io/yara/>.

APP Store. 2021. <https://www.apple.com/br/app-store/>. Accessed: 2021-11-20.

APPLE. Code Signing Tasks. 2016. Accessed: 2021-11-09. Available at: |<https:
//developer.apple.com /news/?id=12232019a>.

APPLE. macOS Code Signing In Depth - Documentation. 2016. <https://developer.apple.
com/library/archive /technotes/tn2206/>|. Accessed: 2021-11-09.

APPLE. About System Integrity Protection on your Mac. 2019. Accessed: 2021-11-09.
Available at: | <https://support.apple.com/en-us/HT204899>.

APPLE. Update to Notarization Prerequisites. 2019. Accessed: 2021-11-09. Available at:
<https://developer.apple.com/news/?id=12232019a>.

APPLE. App Store Review Guidelines. 2021. Accessed: 2021-11-09. Available at:
<https://developer.apple.com/app-store/review/guidelines/>.

APPLE. Gatekeeper and runtime protection in macOS. 2021. Accessed:
2021-11-09. Available at: |<https://support.apple.com/guide/security/
gatekeeper-and-runtime-protection-sec5599b66df/web> .

APPLE. Notarizing macOS Software Before Distribution. 2021. |<https://developer.apple.

com/documentation /security /notarizing_macos_software__before_ distribution>. Accessed:
2021-11-05.

APPLE. Notarizing macOS Software Before Distribution. 2021. Accessed: 2021-11-09.
Available at: |<https://developer.apple.com/documentation/security/notarizing_macos_
software__before_distribution/>.

APPLE. Protecting against malware in macos. 2021. Accessed: 2021-11-09. Available at:
<https://support.apple.com/guide/security / protecting-against-malware-sec469d47bd8/
web>|

APPLE. App Sandbox. 2022. Accessed: 2021-11-09. Available at: |<https://developer.apple.
com/documentation /security /app_sandbox>.

APPLE. Disabling and Enabling System Integrity Protection. 2022. Accessed: 2021-11-009.
Available at: <https://developer.apple.com/documentation/security/disabling_and_
enabling__system__integrity__protection>.

BALDANGOMBO, U.; JAMBALJAV, N.; HORNG, S.-J. A static malware detection system
using data mining methods. arXiv preprint arXiv:1308.2831, 2013.

CASE, A.; lll, G. G. R. Advancing macOS X rootkit detection. Digital Investigation, Elsevier,
v. 14, p. 525-533, 2015.

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, v. 16, p. 321-357,
2002.

https://virustotal.github.io/yara/
https://www.apple.com/br/app-store/
https://developer.apple.com/news/?id=12232019a
https://developer.apple.com/news/?id=12232019a
https://developer.apple.com/library/archive/technotes/tn2206/
https://developer.apple.com/library/archive/technotes/tn2206/
https://support.apple.com/en-us/HT204899
https://developer.apple.com/news/?id=12232019a
https://developer.apple.com/app-store/review/guidelines/
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/web
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/web
https://developer.apple.com/documentation/security/notarizing _macos_software_before_distribution
https://developer.apple.com/documentation/security/notarizing _macos_software_before_distribution
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution/
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution/
https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web
https://support.apple.com/guide/security/protecting-against-malware-sec469d47bd8/web
https://developer.apple.com/documentation/security/app_sandbox
https://developer.apple.com/documentation/security/app_sandbox
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection

49

CLULEY, G. History of Mac malware: 1982 — 2011. 2011. <https://nakedsecurity.sophos.
com/2011/10/03/mac-malware-history/>. Accessed: 2021-11-09.

CLULEY, G. Macs and malware — See how Apple has changed its marketing message. 2012.
<https://nakedsecurity.sophos.com /2012 /06 /14 /mac-malware-apple-marketing-message />
Accessed: 2021-11-09.

COCHRAN, W. G. The x2 test of goodness of fit. The Annals of mathematical statistics,
JSTOR, p. 315-345, 1952.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3,
p. 273-297, 1995.

G., E. macOS malware development surged by over 1,000% in 2020. 2021. <https:
//atlasvpn.com /blog/macos-malware-development-surged-by-over-1-000-in-2020>.
Accessed: 2021-11-09.

GANDOTRA, E.; BANSAL, D.; SOFAT, S. Zero-day malware detection. In: IEEE. 2016 Sixth
international symposium on embedded computing and system design (ISED). [S.l.], 2016. p.
171-175.

GHARGHASHEH, S. E.: HADAYEGHPARAST, S. Mac os x malware detection with
supervised machine learning algorithms. In: Handbook of Big Data Analytics and Forensics.
[S..]: Springer, 2022. p. 193-208.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. H.: FRIEDMAN, J. H. The elements of
statistical learning: data mining, inference, and prediction. [S.l.]: Springer, 2009.

HOMEBREW. 2021. <https://brew.sh/>. Accessed: 2021-11-20.

HOMEBREW. Homebrew Analytics Data. 2021. Accessed: 2021-04-04. Available at:
<https://formulae.brew.sh /analytics>.

HSIEH, S.; LIU, H. Automatic classifying of macOS X samples. In: . [S.].: s.n.], 2017.

IFERT-MILLER, F. macOS Catalina osquery. 2019. Accessed: 2021-11-09. Available at:
<https://blog.kolide.com /macos-catalina-osquery-a6753dc3c35c>.

KOLTER, J. Z.; MALOOF, M. A. Learning to detect malicious executables in the wild. In:
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining. [S.l.: s.n.], 2004. p. 470-478.

KULLBACK, S.; LEIBLER, R. A. On information and sufficiency. The annals of mathematical
statistics, JSTOR, v. 22, n. 1, p. 79-86, 1951.

LO, C. T. D.; PABLO, O.; CARLOS, C. M. Towards an effective and efficient malware
detection system. In: IEEE. 2016 IEEE International Conference on Big Data (Big Data).
[S.l.], 2016. p. 3648-3655.

LOMAX, R. G.; HAHS-VAUGHN, D. L. Statistical Concepts-A Second Course. [S.l.]:
Routledge, 2013.

MAC Malware Collection. 2021. Accessed: 2021-06-04. Available at: <https://objective-see.
com/malware.html>|

https://nakedsecurity.sophos.com/2011/10/03/mac-malware-history/
https://nakedsecurity.sophos.com/2011/10/03/mac-malware-history/
https://nakedsecurity.sophos.com/2012/06/14/mac-malware-apple-marketing-message/
https://atlasvpn.com/blog/macos-malware-development-surged-by-over-1-000-in-2020
https://atlasvpn.com/blog/macos-malware-development-surged-by-over-1-000-in-2020
https://brew.sh/
https://formulae.brew.sh/analytics
https://blog.kolide.com/macos-catalina-osquery-a6753dc3c35c
https://objective-see.com/malware.html
https://objective-see.com/malware.html

50

MACH-O Format Overview. 2014. <https://developer.apple.com/library/archive/
documentation /Performance/Conceptual /CodeFootprint /Articles/MachOOverview.html>.
Accessed: 2021-11-00.

MALWAREBYTES. 2020 State of Malware Report. 2020. <https://www.malwarebytes.com/
resources/files/2020/02 /2020_state-of-malware-report.pdf>. Accessed: 2021-11-09.

MALWARESAMPLES. MacOS Malware Samples. 2021. <https://github.com/
MalwareSamples/Macos-Malware-Samples>. Accessed: 2021-06-04.

MANAVI, F.; HAMZEH, A. Static detection of ransomware using LSTM network and PE
header. In: 2021 26th International Computer Conference, Computer Society of Iran (CSICC).
[S.l.: s.n.], 2021. p. 1-5.

MCAFFEE. McAfee Labs Threats Report. 2017. Https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-quarterly-threats-mar-2017.pdf.

MICROSOFT. PE Format - Microsoft Docs. 2021. <https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format>. Accessed: 2021-11-09.

MIEGHEM, V. Detecting malicious behaviour using system calls. Phd Thesis (PhD Thesis)
— Master thesis, TU Delft, 2016.

MILOSEVIC, N.; DEHGHANTANHA, A.; CHOO, K.-K. R. Machine learning aided Android
malware classification. Computers & Electrical Engineering, Elsevier, v. 61, p. 266-274, 2017.

OAKLEY, H. MRT: what do we know about it? . 2020. Accessed: 2021-11-09. Available at:
<https://eclecticlight.co/2020/10/23 /mrt-what-do-we-know-about-it />

ORANGES vs Apples. 2021. <https://github.com/CBurgardt/orange_vs_apples>.
Accessed: 2022-01-01.

PAJOUH, H. H.; DEHGHANTANHA, A.; KHAYAMI, R.; CHOO, K.-K. R. Intelligent OS x
malware threat detection with code inspection. Journal of Computer Virology and Hacking
Techniques, Springer, v. 14, n. 3, p. 213-223, 2018.

PHAM, D.-P.; VU, D.-L.; MASSACCI, F. Mac-a-mal: macOS malware analysis framework
resistant to anti evasion techniques. Journal of Computer Virology and Hacking Techniques,
Springer, v. 15, n. 4, p. 249-257, 2019.

PINHEIRO, A. J.; BEZERRA, J. d. M.; BURGARDT, C. A.; CAMPELOQO, D. R. Identifying iot
devices and events based on packet length from encrypted traffic. Computer Communications,
Elsevier, v. 144, p. 8-17, 2019.

PUDIL, P.; NOVOVICOVA, J. Novel methods for feature subset selection with respect to
problem knowledge. In: Feature extraction, construction and selection. [S.l.]: Springer, 1998.
p. 101-116.

ROMAIN, T. LIEF: Library to Instrument Executable Formats. 2021. <https://lief-project.
github.io/>. Accessed: 2021-04-05.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 2002.

https://developer.apple.com/library/ archive/documentation/Performance/Conceptual/CodeFootprint/Articles /MachOOver view.html
https://developer.apple.com/library/ archive/documentation/Performance/Conceptual/CodeFootprint/Articles /MachOOver view.html
https://www.malwarebytes.com/resources/files/2020/02/2020_ state-of-malware-report.pdf
https://www.malwarebytes.com/resources/files/2020/02/2020_ state-of-malware-report.pdf
https://github.com/MalwareSamples/Macos-Malware-Samples
https://github.com/MalwareSamples/Macos-Malware-Samples
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://eclecticlight.co/2020/10/23/mrt-what-do-we-know-about-it/
https://github.com/CBurgardt/orange_vs_apples
https://lief-project.github.io/
https://lief-project.github.io/

51

SAHOO, D.; DHAWAN, Y. Evaluation of supervised and unsupervised machine learning
classifiers for mac os malware detection. In: Handbook of Big Data Analytics and Forensics.
[S.l.]: Springer, 2022. p. 159-175.

SCHULTZ, M. G.; ESKIN, E.; ZADOK, F.; STOLFO, S. J. Data mining methods for
detection of new malicious executables. In: IEEE. Proceedings 2001 IEEE Symposium on
Security and Privacy. S&P 2001. [S.1.], 2000. p. 38—49.

SIKORSKI, M.; HONIG, A. Practical malware analysis: the hands-on guide to dissecting
malicious software. [S.l.]: no starch press, 2012.

STOKES, P. macOS Security Updates Part 3. 2020. Accessed:
2021-11-09. Available at: <https://www.sentinelone.com/blog/
macos-security-updates-part-3-apples-whitelists-blacklists-and-yara-rules /> .

STOKES, P. “EvilQuest” Rolls Ransomware, Spyware Data

Theft Into One. 2020. <https://www.sentinelone.com/blog/
evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data- theft-into-one />
Accessed: 2021-11-09.

STOKES, P. Top 10 macOS Malware Discoveries in 2021 | A Guide

To Prevention Detection. 2021. <https://www.sentinelone.com/blog/
top-10-macos-malware-discoveries-in-2021- a-guide-to- prevention-detection />. Accessed:
2021-11-09.

VIRUSTOTAL. VirusTotal. 2021. Accessed: 2022-01-05. Available at: <https://www.
virustotal.com>.

WOLD, S.; ESBENSEN, K.; GELADI, P. Principal component analysis. Chemometrics and
intelligent laboratory systems, Elsevier, v. 2, n. 1-3, p. 37-52, 1987.

https://www.sentinelone.com/blog/macos-security-updates-part-3-apples-whitelists-blacklists-and-yara-rules/
https://www.sentinelone.com/blog/macos-security-updates-part-3-apples-whitelists-blacklists-and-yara-rules/
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://www.sentinelone.com/blog/top-10-macos-malware-discoveries-in-2021-a-guide-to-prevention-detection/
https://www.sentinelone.com/blog/top-10-macos-malware-discoveries-in-2021-a-guide-to-prevention-detection/
https://www.virustotal.com
https://www.virustotal.com

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	Lista de quadros
	List of Tables
	Contents
	Introduction
	Objectives and Goals
	Main Contributions
	Generated Works
	Thesis overview and layout

	Background
	Malware
	Malware types and their behavior
	MacOS as a target

	MacOS defense mechanisms
	First layer: AppStore and Notarization
	Second Layer: Gatekeeper and XProtect
	Third Layer: Malware Removal Tool
	Further Protection: Containing damage
	App Sandbox
	Transparency, Consent, and Control (TCC)
	System Integrity Protection (SIP)

	Related Work
	Static malware detection
	MacOS/OSX malware detection

	Dataset
	Feature extraction and the Mach-O format
	Obtaining Mach-O Samples
	Acquiring Benign Samples
	Acquiring Malicious Samples

	Methodology
	Malware detection metrics
	Machine learning models
	Naive Bayes
	Tree-based algorithms
	K-nearest neighbors
	Logistic Regression
	Support Vector Machine
	Multilayer Perceptron

	Sampling and Feature Reduction
	Undersampling and Oversampling
	Feature selection
	Principal Component Analysis

	Experiment Methodology

	EVALUATION
	Pre-processing
	Initial Evaluation
	Mitigating issues with dataset
	Sampling strategy
	Dimension reduction

	Results and Discussion
	MacOS embedded detection

	Conclusion
	Future Work

	References

