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ABSTRACT

The aim of this thesis is to deal, of the point of view of viscosity solutions, with a
discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where
the discontinuity is located on an hyperplane. The typical questions that arise this directions
are concern the existence and uniqueness of solutions, and of course the definition itself of
solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex
Hamiltonians, we can also associate the problem to a control problem with specific cost
and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz
continuous but potentially unbounded, as well as the control spaces. Using Bellman's approach
we construct two value functions which turn out to be the minimal and maximal solutions in
the sense of Ishii. Moreover, we also build a whole family of value functions, which are still
solutions in the sense of Ishii and connect continuously the minimal solution to the maximal

one.

Keywords: optimal control; discontinuous dynamic; Hamilton-Jacobi-Bellman equation; vis-

cosity solutions; Ishii problem.



RESUMO

O objetivo desta tese ¢é lidar, do ponto de vista de solucdes viscosas, com descontinuidades
da equacdo de Hamilton-Jacobi no espaco euclidiano de dimens3o N, onde a descontinuidade
esta localizada em um hiperplano. As tipicas questoes que surgem neste sentido est3o relaci-
onadas com a existéncia e unicidade de solucoes, e naturalmente sobre a prépria definicao de
solucdo. Nés consideramos solucoes de viscosidade no sentido de Ishii. Desde que nés consi-
deramos Hamiltonianos convexos, podemos associar o problema a um problema de controle
com custo e dinamica especificos dados em cada lado do hiperplano. Assumimos que esses
sao Lipschitz, mas potencialmente ilimitados, assim como os espacos de controle. Usando a
abordagem de Bellman, construimos duas funcoes de valor que se tornam as solucées minima
e maxima no sentido de Ishii. Além disso, também construimos toda uma familia de funcdes
valores, que ainda s3o solucdes no sentido de Ishii e conectam continuamente a solucao minima

a maxima.

Palavras-chaves: controle 6timo; dinamica descontinua; equacdo de Hamilton-Jacobi-Bellma;

solucdes viscosas; problema de Ishii.
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1 INTRODUCTION

This thesis focuses deeply on the concept of viscosity solution for Hamilton-Jacobi equa-
tions, investigating some non-uniqueness features that arise in presence of discontinuities.

This chapter is divided in three sections. In the first one, we give a quick overview of the
theory of viscosity solutions, presenting the basic concepts and results. The second section

presents the discontinuous specific we deal with and in the last section we present our results.

1.1  VISCOSITY SOLUTIONS

In 1981, M.G. Crandall and P.-L. Lions introduced the notion of a viscosity solution to
address difficulties found in the study of Hamilton-Jacobi equations. The classical analysis, via
the method of characteristics, only provides local results due to the crossing of characteris-
tic curves. On the other hand, viscosity solutions allow to consider global solutions, and get
uniqueness and stability results for many problems that arise in various applications ((CRAN-
DALL; LIONS, |1983))). The initial notion of viscosity solution requires very little regularity of
the function (only continuity) and was even extended later to discontinuous functions and
Hamiltonians, as we explain below.

Due to its wide reach, this concept has aroused the interest of many important researchers
such as G. Barles, L.C. Evans, M.G. Crandall, I. Ishii, P.-L. Lions, and viscosity analysis has
become a very fertile field that has come a long way in the last 40 years (CRANDALL; EVANS;
LIONS, (1984).

Initially the concept of viscosity solution was established for continuous Hamiltonians on
Q x R x RN, where Q is open set of RY. For example, we have the classical mechanics
Hamiltonian

H(r,p) = ol + V()

where £ |p|* denote the kinetic energy and V(z) the potential energy.

However later this concept was extended to Hamiltonians which are only locally bounded.
We started with the definition of the continuous viscosity solution of the first-order stationary
Hamilton-Jacobi equation for continuous Hamiltonians as presented in (CRANDALL; EVANS;
LIONS, 1984).
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Definition 1.1.1 We say that u € C(f2) is a viscosity subsolution of H in § open set of RY

if given ¢ € C*(Q) and xy € Q local maximum point of u — ¢, then
H (g, u(xg), Do (x0)) < 0. (1.1.1)

We say that u € C(2) is a viscosity supersolution of H in ) open set of RY if given ¢ € C*(Q)

and xg € €2 local minimum point of u — ¢, then
H(zg,u(xg), Do (z0)) > 0. (1.1.2)
We say that u is a viscosity solution of H if u is simultaneously subsolution and supersolution.

Functions ¢ above are called test functions. It is very convenient to use definition to
prove that the value function is a solution of the Hamilton-Jacobi-Bellman equation. This
definition also plays an important role in technique of "doubling of variables".

The notion of viscosity solution is well-defined for any ) open set of R . Yet to get specific
results we can add hypotheses on the boundary of €. For example, Barles (BARLES, 1994, p.
111) works with boundary W2 In (BLANC, 2001) it is required that the distance function
to boundary be C11.

An equivalent definition can be given, using sub and superdifferentials. While this approach
may simplify some aspects of the theory, Barles (BARLES| 1994, p. 20) notes that it would be

more technical to prove stability results using sub/super differentials.

Definition 1.1.2 The subdifferential the v in point = is

07v(x) == {p € RV |lim in vly) = ”ﬂz)__:ﬁ A
The Superdifferential of v in point x is
Ot v(x) := {p € RY| limsup vly) = vlr) =p- (y =) <0}
y—x |y — .flfl

With these elements, the equivalent definition is the following:

Definition 1.1.3 (Continuous Hamiltonians) We say that w € C(Q2) is a subsolution of
H in Q open set of RV if

H(xg,u(xg),p) <0 Vpe dtu(xg). (1.1.3)
We say that u € C(Q) is a supersolution of H in in Q) open set of RV if
H(zo,u(xg),p) >0, YV ped u(x). (1.1.4)

We say that u is a viscosity solution of H if u is simultaneously subsolution and supersolution.
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We see clearly by definition that classical solutions are also viscosity solutions, since if
v is differentiable at x, then 0~ (x) = Duv(x) = 0T (x). Moreover, this definition gives us
regularity of the viscosity subsolutions of Coercive Hamiltonians, see Lemma 2.5 page 20 of

(BARLES, [1994)).

In many problems, classical solutions may not be unique or even exist. That is the case for
the eikonal equation, |Vu(z)|—1 = 0in (—1,1) with boundary condition u(—1) = u(1) = 0.
Thanks to Mean Value Theorem this problem does not have classical solution in C*(—1,1).
On the other hand, it has infinitely many weak solutions. For each n consider u,(—1) = 0 and
Vu,(z) = (—1) on (=14 L, -1+ L) for j =0, -+ ,4n—1 and u,(—1) = u,(1) = 0.

Hence, we do not have uniqueness for weak solution and that is a challenge in application

problems, because of the need to identify the right solution.

Viscosity solution on the contrary are at the same time more flexible (they give existence
easily) and allow to prove uniqueness results. For example, it can be proved that u(z) = 1—|z|

is a unique viscosity solution of the eikonal problem above.

1.2 STABILITY

Another deficiency of the notion of weak solution is that uniform convergence of solutions
does not necessarily yield a solution: in the eikonal problem above, (u,) converges uniformly
to 0 when n goes infinity, but 0 is not a weak solution of |Vu(z)| —1 = 0 anywhere. However

the uniform limit of viscosity solutions is still a viscosity solution as the following theorem shows.

Theorem 1.2.1 Let ¢ > 0, and let H*(y,r,p) be a family of continuous functions such
that He(y, r,p) converges uniformly on compact subsets of ) x R x R to some continuous
function H(y,r,p), as e goes to 0. And let us assume that the u® is subsolution (supersolution)
of H¢ converge uniformly on compact subsets of §) to some u € C(2). Then u is a viscosity

subsolution (supersolution) of H(y,r,p) in .

See Theorem 1.2 of (CRANDALL; EVANS; LIONS, 1984).
The name viscosity refers to the vanishing viscosity method, a kind of stability used in the

existence results, and was chosen for want of a better idea’, (CRANDALL; LIONS, [1983) page
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2. Indeed, realize that if u is viscosity solution of |Vu(z)| = 1 then it is also viscosity solution

of |[Vu(x)|> = 1. Considering the approximate problem
—eAus(z) + |Vuf (2)|* = 1 with u*(—1) = u*(1) = 0, (1.2.1)

we see that it has a unique classical solution u.. When passing to the limit, one can prove

that lim. u.(z) = 1 — |z|. More generally, the following result holds:

Theorem 1.2.2 (Vanishing viscosity Method) Let ¢ > 0, and let H*(y,r,p) be a family
of continuous functions such that H¢(y,r,p) converges uniformly on compact subsets of
Q x R x RN to some function H(y,r,p), as € goes to 0. Finally, suppose u¢ € C*(Q) is a
solution of

—eAut(z) + H* (z,u’(x)Du(x)) =0 in Q

and let us assume that the u® converge uniformly on compact subsets of €} to some u € C(£2).

Then u is a viscosity solution of H(x,u, Du) =0 in .

See Theorem 3.1 of(CRANDALL; EVANS; LIONS, 1984)).

1.3 BOUNDARY CONDITIONS

The theory of viscosity solutions also allows to treat boundary conditions. Consider €2 C

R, an open bounded set and

H(z,u(x),Vu(xz)) =0 in Q
u(z) = g(x) on 0N
This problem has no solution in general as we already saw in the eikonal case.
In particular,
IVu(z)|—1=0 in Q
u(z) =0 on 0N
not have classical solution, yet has infinitely many Lipschitz continuous functions which sa-
tisfy the boundary condition and whose modulus of gradient is equal to 1 almost everywhere.
However there is unique viscosity solution, u(z) = d(z,0). In general, we can get viscosity

solutions of boundary problems by requiring almost no regularity on g, see (BLANC, 1997),
(BLANC, [2001).
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But the boundary data has to be understood in a relaxed sense: for the subsolution con-

dition, if ¢ is a test-function for v at x € 02, we require that

min { H (z, u(x), Vo(x)) , u(z) — g(x)} <0,

max {H(x, u(z), Vo(x)), u(r) — g(:z:)} >0.
In other words, either the equation holds, or the boundary condition. This relaxed boundary
condition was introduced by I. Ishii (ISHII, [1985) in order to be compatible with the stability
property of viscosity solutions. Indeed, when passing to the limit in , the maximum (or
minimum) points of u — ¢ can either come from the inside, or the boundary. So, when passing
to the limit, on the boundary we get either the sub/supersolution condition, or the boundary

condition, hence the formulation with min and max.

1.4 RELATION WITH OPTIMAL CONTROL

There exist a link between viscosity solutions and Optimal Deterministic Control: given the

dynamical controlled system,
'(t) = b(x(t), a(t))
where «a(-) is the control variable with a(-) € A admissible control space, we define a cost

functions J, associated to the running cost function f and discount factor A

I(z,a(-) = /Oool(x(t),a(t))e“dt.

The purpose the Optimal control Theory is to optimize the functional cost for some optimal
admissible control. This theory has several applications. For example, in economics or industry
the cost functional can be the cost of production of some product that we want to minimize.

In this context, the value function is defined as
o0

u(x) :ireli ; I(x(t), a(t))e Mdt.

The Classical Bellman approach consists in noticing that if u is differentiable, then this value

function is a classical solution of the Bellman equation

sup(—b(z, a) - Vu(z) — l(z, o) + u(z)) =0 € RY.

aEA

That is consequence of the infinitesimal version of the Dynamic Programming Principle:

acA

u(z) = inf (/OT Ix(t), at))e”Mdt + e’\Tu(:c(T))> , VT >0. (1.4.1)
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This equation is itself an integral version of the Principle of Optimality: "An optimal policy
has the property that what ever the initial state and initial decision are, the remaining de-
cisions must constitute an optimal policy with regard to the state resulting from the first
decision."where, "a policy is any rule for making decisions which yields an allowable sequence
of decisions; and an optimal policy is a policy which maximizes a preassigned function of the

final state variables", see page 82,83 of (BELLMAN, 2010).

Now we return to our heuristic consideration. Assume that in addition to the differentiability

of u there is also an optimal control o, that is,for which infinity is reached
u(z) = /0 U (1), ot (b))t
Using the Dynamic Programming Principle (DPP) we get
g(s) = /Os I(z*(t), a*(t))e Mdt + u(z*(s))e ™ = u(z) Vs> 0.
Note that g is constant if only if x*(t), a*(t) is optimal, if only if ¢’(s) = 0 which yields
Au(a™(s)) = b(x*(s), a*(s)) - Vu(z™(s)) — 1(z*(s),a™(s)) = 0.
Since wu is a classical solution of Bellman equation, then o is optimal if and only if
H(a"(s), u(z*(s)), Vu(z™(s))) = Au(z*(s)) — b(z*(s),a"(s)) - Vu("(s)) = I(z"(s), 2" (s))-

Now, suppose there is a map
S:RN — A
with S(z) € argmax(—b(z, a) - Vu(z) — l(z,a) + Au(z)). We call such S a feedback map.

Through this feedback, we may in turn find an optimal trajectory by solving:

b(x(t), S(xz(t))), ift>0
2 (t) =
x, if t =0.

The conclusion is that solving the Hamilton-Jacobi-Bellman equation H(z,u, Du) = 0 is

closely related to finding optimal controls and trajectories.

1.5 DISCONTINUITIES IN HAMILTON-JACOBI EQUATIONS

Initially, viscosity solutions were defined in the context of continuous Hamiltonians and

functions. However, as we saw above for boundary conditions, . Ishii extended the concept of
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viscosity solutions to discontinuous Hamiltonians in 1985, (ISHII, 1985).

Now, as we saw above, the stability property of viscosity solutions requires some local
uniform convergence of both the Hamiltonian and the solution. However, in many problems,

such uniform convergence of the solutions is not easy to obtain.

1.6 DISCONTINUOUS VISCOSITY SOLUTIONS

In 1987, G. Barles and B. Perthame (BARLES; PERTHAME, [1987)) introduced the concept of

discontinuous viscosity solutions by using the upper and lower semicontinuous envelopes:

Definition 1.6.1 Let g locally bounded, we define the lower semicontinuous envelope
and upper semicontinuous envelope as g.(z) = liminf, ., g(y), g*(z) = limsup,_,, g(y),

respectively.

This definition allows more flexibility to treat a priori discontinuous solutions, provided
they are locally bounded (which is sufficient to define the semi-continuous envelopes). If the

Hamiltonian is also discontinuous, we have to use its envelopes too and the definition becomes

Definition 1.6.2 (Discontinuous Hamiltonians) We say that u locally bounded is a vis-
cosity subsolution of H in ) open set of R™ if given ¢ € C*(Q) and xy € Q maximum point
of u* — ¢, then

H.(xg,u"(x0), Do (z0)) < 0. (1.6.1)

We say that u locally bounded is a viscosity supersolution of H in ) open set of R" if given

¢ € CY(Q) and xy € Q minimum point of u, — ¢, then
H* (g, us(xq), Do (x0)) > 0. (1.6.2)
We say that u is a viscosity solution of H if u is simultaneously subsolution and supersolution.

If we consider a sequence of equations H,(z, u,, Du,) = 0 where H,, converges to some
Hamiltonian H, the advantage of the discontinuous approach is that we may consider the
limits of the (u,) with only local uniform bounds. Hence, introducing the half-relaxed limits

w() = i, @) o) = Jigpl ualy)
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it turns out that u* is a subsolution of the limit equation H(x,u, Du) = 0 while u, is a super-
solution of it. If the limit Hamiltonian enjoys a comparison property, we deduce that u* < u,,
so that in the end u* = u, and we get a solution. But of course, if H is discontinuous in z,
the comparison principle may fail and recovering a stability result for discontinuous solutions

requires a deeper analysis, part of which is done in this Thesis.

In the last two decades, many researchers have been interested in studying Hamilton-Jacobi
equation with discontinuities, for example: Barles (BARLES, [1990), Blanc (BLANC, |1997)), 2001.

In (GIGA; HAMAMUKI, 2013) the following problem was studied

O+ H(z, Du(z)) =0, ift>0in RN x (0,7T)

u(0, ) = ug(x), ift=0 in RY

where ug € BUC(RY) and H(z,p) = —|p| — cl(x)

0 (z#0)
That is, H has discontinuous at = = 0. In (GIGA; G6RKA; RYBKA, [2011)), Giga et al. consider
the singular problem

d+ H(t,z,d,d,) =0 in (0,7)x R

—o(t,r*(t),u)m(p) |r| < rolt
Mty [T @M ) 1] <o)
o(t,z,u)m(p) |z| = ro(t)
with ¢ € C' ry, r* € Co([0,T]) and r*(t) > ro(t) for all ¢ € [0,T]. Moreover the set

{(t,ro(t)) : t € [0,T]} is a Lipschitz curve.

1.7 THE ISHII PROBLEM

More recently, in (BARLES; BRIANI; CHASSEIGNE, 2013) Guy Barles, Ariela Briani and
Emmanuel Chasseigne study an infinite horizon control problems with discontinuities. They
consider the Hamilton-Jacobi-Bellmam problem in RY with discontinuity on the hyperplane

H = RM"! x {0}.
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In order to give a quick overview of their results and introduce some notations and
concepts that we use throughout this thesis, let us decompose the space into three parts
RN = Q0 UHUQ,, where QO = {z € RN | 2y > 0} and Qy = {z € RN | 2y < 0}. We
will take A, Ay C R? to be the sets of controls. Each domain ; has associated a dynamic
function b; : Q; x A; — R" and a control function ; : Q; x A; — R. Finally, let H be the

intersection of Q; and 2y, so that H = {z € RN | zy = 0}.

The Ishii problem consists in solving the set of (in)equations

H, (z,u(z), Du(x)) =0 in {4

Hy (2, u(z), Du(z)) =0, in 2 (1.7.1)

min{ H; (z,u(zx), Du(x)), Hy (x,u(x), Du(z))} <0 inH

max{H; (z,u(x), Du(x)), Hs (z,u(x), Du(x))} >0 in H

where

Hi(z,u,q) = sup (=b(z,w) - ¢ — li(z, w) + Au) .
weA;

In order to describe the particularities on H, let us introduce the extended control set as

follows:

Definition 1.7.1 Given A;, A, as above, we set A := A; x Ay x [0, 1] and we consider the

control set formed by bounded measurable functions A := L>(0, 00; A).

Notice that if z ¢ H, only a; € A; or g € Ay is used. Then on H the authors introduce the
dynamic by : H x A — RY given by a convex combination of b; and b, and a cost function
ly : H x A — R given by a convex combination of /; and ls. More precisely, they define by
and [y as

b’H('I7O[) = ,LLbl(l',Oé1> + (1 - :u’)bQ(xon)? YIS Hu & = (0417052,M) S A7

lH(xv O'/) = lj’ll(xa al) + (]' - M)ZQ(x7 a2)a YIS Ha Q= (alv O‘27l’[’) €A
Given some control (aq, as, p) € A := L>(0,00; A), the authors solve the ode

Xo (8) = b (Xo (1), 01 (1) Lixaenny + b2 (Xa (), 02 (1)) Lix, (ens)

+ by (Xx (Zf) , Q0 (t)) 1{Xz(t)€Q,H} forae. teRT

(1.7.2)

and denote by 74(x) the set of such trajectories starting from x.
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The precise analysis of the situation shows that at least two specific value functions can

be built, the "natural"one being defined by

Us(x) = inf < /0 U, a(t))e—*tdt) . (17.3)

Ta(z
As one can expect, it turns out that U}, is an Ishii solution of the problem. But moreo-
ver, this special solution satisfies a complemented (N — 1)-dimensional inequation on H:
Hr(x,u, Du) < 0, where the tangential Hamiltonian is defined by
HT($,¢(x),DH¢) = sup _ZH(anéhOQyN)"‘)‘a (x)_b’]'l ('I7O[17a27:u’>'(D7‘l¢ <I>70) .
(al,ag,,u)GAo(m)

(1.7.4)

Here, Ao(z) is the set of controls that allow the trajectory to remain on H, that is, the controls

such that by(z,a) =0 and

) ]
R

But the authors also build a second solution in the sense of Ishii by introducing the regular

dynamics on H as follows:
Definition 1.7.2 We say that by, (y, a1, e, 1) is regular if
bu(y, a1, a0, 1) € H, bi(y, 1) -eny <0 and by(y,az)-eny > 0.

In some sense, these dynamics are maintaining the trajectory on H by "pushing"from either
side of the hyperplane, contrary to singular dynamics which corresponds to an equilibrium

obtained by "pulling"from both sides.

This allows to construct a second value function:

Ul(2) = inf (/0 ool(XAt),a(t))e‘”dt), (17.5)

Ta (z)
and it is shown in (BARLES; BRIANI; CHASSEIGNE, 2013) that while U, is minimal solution
of the Ishii problem, U} is the maximal one. However, only U, enjoys the complementary

property with Hrp.

In (BARLES; BRIANI; CHASSEIGNE, 2014) the authors extend the results in three directions:
they consider general domains; finite horizon control problems and weaken the controlability
assumptions. An even more global approach is performed in (BARLES; CHASSEIGNE, 2018)) but

the authors always consider bounded control sets, bounded dynamics and costs functions.
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1.8 OUR RESULTS

As we said, in (BARLES; BRIANI; CHASSEIGNE, 2013; IBARLES; BRIANI; CHASSEIGNE, [2014;
BARLES; CHASSEIGNE, [2018)) the Ishii problem was treated with compact control space
and bounded data. In this thesis one of the main objectives is to verify which results of (BARLES;
BRIANI; CHASSEIGNE, 2013), (BARLES; BRIANI; CHASSEIGNE, |2014)) are still valid when dealing
with non-compact controls space and unbounded data.

The motivation for considering non-compact controls space is that some Hamiltonians can

only be approached in this context. For example,
Hi(z,u,p) = u+ |p|* — fi(2).

Moreover, several researchers have worked on the context of dynamics and costs unboun-
ded with controls space non-compact, for example see (BARLES, [1990)), (MISZTELA| 2020),

(MOTTA, [2004) (SORAVIA, 1999).

1.8.1 One Central Idea

In this thesis we consider an unbounded set of controls such as R but we assume some
growth conditions for the dynamic and cost that allows us to reduce, at least locally to the

case of compact control sets. The central hypothesis that allows us to do that is the following:

lim iy, 0) = 00, locally uniformly with respect to . (1.8.1)
il =o0 1 4 [bi(y, @)
The key idea here is that the cost associated to large dynamics should be so big that such
strategies are not optimal, which allows to recover some compactness of the trajectories and
the associated controls.
We then approach the unbound control space by a sequence of compact sets; solve the

problem for each compact in the sequence and pass the limit using the Half-Relaxed Limit

Method ?? or some other argument.
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1.8.2 Construction of U, and U}

In Chapter 1 we describe the Ishii problem, we fix the set of trajectories with which we
work and build the value functions U and U, in the unbounded setting. We verify that
they satisfy the Dynamic programming Principle and are locally Lipschitz. Furthermore, using
[1.8.1) we show that the supremum defining H; is locally achieved in a compact set of controls.
Consequently our Hamiltonians H; are well defined and are continuous functions. Moreover
taking a compact sequence (A,,),, and considering U%.., U .. we prove that both are solutions
of an approximate Ishii problem. Thus, due to Half relaxed limit method sending m to infinity,

we obtain that U} and U} are viscosity solutions of the initial Ishii problem.

1.8.3 Comparison Results

In Chapter 2 we provide growth conditions that allow us to obtain comparison and unique-
ness results. We first obtain a local comparison result assuming the complemented condition

Hy for the subsolution, in the form:

max (u —v)" < max (u—v)*.
BR(x) aBR(x)

Notice that the Hp-subsolution condition is mandatory since there are counter-examples
showing that in general U~ # U™. Global uniqueness results, in general are obtained from

global comparison results, that is,
u(z) <wv(z), VoeRY.

Here also, u is a locally bounded Ishii subsolutions satisfying Hr < 0 while v is just a
locally bounded supersolution in the sense of Ishii. However, our global comparison results are
dependent on the growth of the dynamic and cost functions, as well as of the desired growth
for the solutions. Therefore, we will present different versions of these results depending on

the growth adopted. For instance, in order that global comparison result we add to hypothesis

(1.8.1)) the following growth condition
b;(y, )| < Cly|® +C and Ii(y,a) < Cly|” +C, Vy e RY and a € 4; (1.8.2)

in the set of solutions with growth |z|7, where 3, 3*,~ are related.
One of the great difficulties of dealing with growth condition ([1.8.2)) is that we have some

restriction not only in the control variable, but also in the spatial variable.
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Another approach we take is to consider the hypothesis

= 00, uniformly with respect to y € RY.

(1.8.3)

. . ll<y7 Oé)
lim |b;(y,)] =00 and lim ———————
|ovi|—00 ’ (y )‘ |ovi| =00 1 + ’bi(y7 Oé)|

combined with the following condition: let K be compact contained in A;, then there exists

Ck(b) and Ck(l) so that
1bi(y, )| < Ce(b) and Ui(y, ;) < Cr(l), Yy € RY, o, € K. (1.8.4)

With hypotheses and ([1.8.4)), the growth depends only on the control variable and this
allows us to obtain desired results more easily.

Furthermore, under suitable growth conditions, we are able to prove that UZ, U, are
respectively the maximal subsolution and minimal supersolution of Ishii problem. Finally, we

prove that under some suitable hypothesis, Filippov approximations converge to U~.

1.8.4 The family of solutions U"

In Chapter 3 we work with value functions U". We have already commented that problems
with discontinuities, in general, do not have uniqueness. In fact, Ut and U~ are viscosity
solutions of the Ishii problem, but they are not the only ones. We build a family of solutions
U", locally Lipschitz Ishii solutions. Under appropriate assumptions we obtain that the limit
them when 1) goes to zero is U} and when 7 goes to infinite is U . Hence, this family can be
seen as a continuous path between U, and U} .

Such solutions are built on the relaxed regular trajectories

Pa) = {(Xa(), ) € Ta() | for ae. t € Sy, ba(Xalt), alt))en > —n, bi(X,(t), alt))ex <}
(1.8.5)

These n—trajectories may not be regular, but they are almost regular if 7 is close to 0. On the

contrary, if 7 is close to co, we recover most of the trajectories. The n-value function is then

defined as one can expect:

U(x) = inf ( /O XL, a(t))e‘”dt) . (1.8.6)

Ti(@)
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1.8.5 Open problems and appendix

Finally, in Chapter 4, we have included some ideas that we intend to address in future work.
An appendix collects some fundamental results used in this thesis. We discuss in particular the

mechanism of the relaxed controls, the process of the Half relaxed limit method.
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2 VALUE FUNCTIONS U* AND U~

In this chapter we want to find solutions of the Hamilton-Jacobi-Bellmam problem in RN

with discontinuity on a hyperplane. Let us set the problem, defining first the
RN =0y UH UQy,

where
0 ={zeRN|zy>0}

Qy ={xe RV |zy<0}
H ={reRN|zy=0}
We assume that each set §2; has an associated unbounded control set A; C R%. We define

the control set as follows.
Definition 2.0.1 Let A;, Ay be complete separable metric spaces,
A:=A; x Ay x [0,1].
Then we consider the control set formed by bounded measurable functions A := L>(0, 00; A).

We consider that each domain ; has a dynamic function associated b; : ; x A; — R and
a cost function /; : €; x A; — R. Let us state the main hypotheses on the dynamic and cost

functions associated to €2; that will be used to prove our results.
(HA) [;: RN x A; — R and b; : RN x A; — R satisfy
li (yv Oé)
im —————— =o0 and lim |b;(y, )| = o0
laj—oo 1 4 |b;(y, @)| |a|—>oo’ (y. )
uniformly in compact sets of RY with respect to y € R".

(HB) [; is continuous and b; is Lipschitz continuous.

(HC) For any = € RN, the set {(bi(z,q;),l;(z,;))| o € A} is a closed and convex set.

Moreover, there exists 6 > 0 such that
Bs(0) € BY(z), where BY(2) := {bi(z,a)|a € AT}

where A™ is compact sequence which union equal a RY.
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Observe that  is the intersection of €; and s, then there exists a dynamic function
by : H x A — RN associated to H given by a convex combination of b; and by, and a cost
function 1y : H X A — R given by a convex combination of [; and 5. In particular, we define
them as follows,

bu(x, a) = pbi(z,00) + (1 — p)ba(z,2), x € H, = (ar,az, u) € 4,

ly(x, ) = ply(z, 1) + (1 — p)la(z,00), x€H, a=(ay,as,pn) € A.

2.1 ISHII PROBLEM

We are interested in finding solutions of the Ishii problem given by

Hy (z,u(z), Du(x)) =0 in Q,
Hy (z,u(z), Du(x)) =0 in Q, (2.11)
min{ H; (z,u(x), Du(z)), Hy (z,u(z), Du(z))} <0 in H,

max{H; (x,u(x), Du(z)), Hs (z,u(x), Du(z))} >0 in H.

where

Hi (l’,u, Q) = sup (_b2<x7 ai) tq — lz(xa ai) + )\U)
OLL'EA,L'

with (z,u,q) € Q; x R x RY and A € R is a discount factor.
Since there is no uniqueness of solution of the Ishii problem ([2.1.1]), we define tangential
Hamiltonians. To do this, we consider the control sets defined by
Ao(z) = {(a,a2,pn) € A | by(x,01,9) - ex = 0}.
Ay (x) ={(a1,as, 1) € Ag(x) | by (a1, g, ) is regular}.

Then we can define the tangential Hamiltonians, for (x,u,q) € H x R x RN™!

HT(ZE,U7Q) - sup —ZH($7Q17QQ,M)+)\U—bH (ZE,OéhO[g?/,L) ' (q70) (212)
(au1,2,u)E Ao ()
and
ngg(x’u7q) = sup _ZH(waalaa%M) +>‘u_b7'l ('r?al?aZ?/’[/) ’ <q70) (213)

(a1,a2,n) €AY (2)
Since there exists a link between the viscosity solutions of (2.1.1]) and Optimal Deterministic
Control, we need to define the set of trajectories with associated dynamic and cost functions.

Let us introduce some definitions that will be needed.
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Definition 2.1.1 Let x € RN and a € A, o; € A; fori = 1,2. We define the cost function
as

Iz, ) :=l1(x,00)1q,(z) + lo(z, )1, (z) + Iy (x, @)1y (), (2.1.4)

where 1, and 14, are the characteristic functions of €); and H respectively.

Definition 2.1.2 Let x €¢ RN and o € A, o; € A; for i = 1,2. We define the dynamic

function as
b(x, ) == by (x,a)lg, () + ba(z, o)1, (z) + by(z, a)1y(z). (2.1.5)

Definition 2.1.3 We say that X,(-) is a trajectory if it is a Lipschitz continuous function

that satisfies the following differential inclusion

X/ (t) € B(X,(t)) fora.e. t € (0,00); X, (0) =« (2.1.6)
where
Bi(x) ifzy >0
co(By(x) U By(x)) ifxy =0.

with B;(z) = {bi(z, a)|a € A;} and ©o(-) the convex hull.

A key hypothesis that we will consider throughout this work is hypothesis (HC), thanks
to it, we can construct a solution of the differential inclusion (2.1.6]), so we do not need to
worry about the existence of a solution for differential inclusions. For example, for v such
that |v| < §, we can always choose a control « such that b; (X (¢), ) = v and consider the

trajectory X (t) = tw.

Let us introduce some measure results that will be used below to characterize the trajec-

tories in Definition 2.1.3

Theorem 2.1.1 (Measurable Selection Theorem) Let X be a complete separable metric
space, Z a measurable space and F' a measurable set-valued map from Z to closed non empty

subsets of X . Then there exist a measurable selection of I'.

See (AUBIN; FRANKOWSKA, (1990, Th 8.1.3).
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Definition 2.1.4 Let X be a topological space, Y a metrizable and separable space and Z a
measurable space. A mapping g : Z x X — Y will be called a Carathéodory mapping if g(-, )
is measurable with respect to the first variable for fixed v € X and g(z,-) is continuous with

respect to the second variable for fixed z € Z, (cf. (EKELAND; VALADIER, |1971))).

The following theorem provides us a relation between a differential inclusion equation and

an a differential equation, cf. (AUBIN; FRANKOWSKA|, 1990)).

Theorem 2.1.2 (Filippov) Let (Z,%,v) be a complete o-finite measure space, X,Y be
complete separable metric spaces, let ' : ZZ — X be a measurable set-valued map with closed
nonempty images, and let g : Z x X — Y be a Carathéodory map, then for every measurable
map h : Z —'Y satisfying

h(z) € g(z, F(2) ae z€Z

there exists a measurable function f : Q@ — X with f(z) € F(z) such that
h(z) =g(z, f(2)) ae. z€Z.

See (AUBIN; FRANKOWSKA|, 1990, p. 314).
In the result below we apply Filippov's Theorem to provide a relation between the
trajectories in Definition 2.1.3] and a control in A, to obtain a differential equation almost

everywhere.

Theorem 2.1.3 For each solution X, (-) of the differential inclusion (2.1.6)), there exists a
control o (+) = (ay(+), aa(+), u(+)) € A such that

X, (1) = by (Xo (1), 01 (1) Lix,eny + 02 (Xo (1) 22 (1)) 1ix,t)es)

(2.1.8)
+ by (Xm (t) , QU (t)) ]_{Xx(t)eQ,H} forae. teRT.
Moreover, if ey = (0,...,0,1), then
by (X, (t)) -exn =0 on {t: (X,(t))y =0} forae teR". (2.1.9)

Fix € RY. We will prove the existence of the control o applying Filippov's Theorem
2.1.2 We consider X := A which is complete and separable; Z := (0, 00) with associated
Lebesgue measure. Let h(-) := X.(-), let F'(t) := A for all t € (0,00). Thus, F has a non

empty closed image. F' is measurable since F~(O) = Z for every open set O of X, because
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Ft)NO=AN0O =0. Let Y = RY. We define the map g : R* x A — R as follows

bi (X, (), 0q) if Xp(t)y >0

gta) =1 by (X, (1), a) if X, (t)y <0

by (Xu (8),0) if X, () = 0.

We claim that g is a Caratheodory map. Indeed, it is clear that, for fixed ¢, the function g(t, -)
is continuous. To check that ¢ is measurable with respect to t. We fix @ € A, and an open

set O C RV, then

9" (0)={g" (0) N {t : Xo(t)w >0} U2 (O) N {t : Xa(t)w =0} fU{ g2 (O) N {t: X(t)n <0} }

Since g(, «) is continuous the first and third components are opened. In the second component
{t: X,(t)y =0} is closed and g.' (O) is open, then the intersection is measurable. We also
have that h(-) = X/(-) is measurable since X, is Lipschitz, and Z has Lebesgue measure.

Finally the differential inclusion and definition of g(-) implies that
h(t) = X,(t) € B(Xa(t)) = g(t, A) = g(t, F(1)).
Thus, by Theorem there exist a(t) = f(t) measurable function
a:Z — A

such that
X, (£) = h(t)
=g(t, f(t))
=g(t, a(t))
=01 (Xz (8) ;01 () Lix, ey +b2 (Ko (1), 02 (1)) Lix (netay 03 (Xa (), a0 () Lix, s
Let us prove now, the second part of the result. Let v be a Lebesgue measure. Consider
E := X 1(0)y, then we have F is closed, therefore E,, := EN (0, m) is Lebesgue measurable.
Thanks to Stampacchia’s Theorem (cf. (BORWEIN; MOORS; WANG, [1997))) and since X, (:)n
is Lipschitz, v(X,(En)n) = v({0}) =0, X, y(t) = 0 for a.e. t € E,,, then X y(t) = 0 for
ae. te k.

Below we define the the set of trajectories that will be considered throughout this work.

Ta(z) == {(X,("),a(-)) € Lip(R"; R") x A such that(2.1.8) is fulfilled and X, (0) = z}
(2.1.10)
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Let us introduce the following notation for the sets of times where the trajectories are in €);

or H,
E =1t X, (t) e W}, & :={t: X,(t) € W}, & ={t: X.(t) e H}.

Definition 2.1.5 Let (y,a) = (y, a1, a2, ) € Lip(RT; R") x A, we say that the dynamic

by (y, a1, o, 1) is regular if
bi(y,a1) -en <0 and by(y,as)-ex >0 and by(y,aq,as, ) € H.
We define the set of regular trajectories as

T3 (x) = {(X.(0), (")) € Ta(z), forae te &y and by(X.(t),alt)) is regular}.

(2.1.11)
Finally we define the value functions
Us(a) = inf ( / ” l(Xx(t),a(t))eMdt) . (2.1.12)
TA(T 0
Ui(e) = inf ( [T, a(t))e‘”dt) . (2.1.13)
7, (z 0

In this chapter our aim is to prove that the value functions are solutions of the Ishii problem
and to prove their regularity. In particular, we will prove that the value functions are locally
bounded and locally Lipschitz. Since the control set A in unbounded in this work, to be able
to prove the results for the Value Functions, we need to consider compact control sets for
which we will prove the results, and we will take limits to recover our initial value functions
defined in an unbounded control set.

Let us introduce the sequence of compact sets such that A} C A2 C --- C A™ and

A= U AT
meN

and denote

A™ = AT x AT x [0,1] C A,

then A'c A2C ---C A™ and
A= |J 4™

meN
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Then we can consider the Ishii problem associated to the compact control sets A™, defined

as
H™ (z,u(x), Du(x)) =0 in
HY (x,u(x), Du(z)) =0 in €2
3" (z,u(z), Du(z)) 2 (2110
min{ H" (z,u(z), Du(x)) , HY" (z,u(z), Du(x))} <0 on H
max{ H7" (x, u(x), Du(x)) , Hy' (a,u(x), Du(z))} <0 on H
where
H™(x,u,q) = sup {—b;j(x,a) q—l;(z,a)} + M.
acA™
We consider the control sets defined by
AR (z) = {(a1, a2, 1) € A™ | byy(z, 1, 2) - en = O}
AN (x) = {(o1, a0, 1) € AF | by(aq, ag, i) is regular}.
Then we can define the tangential Hamiltonians
HYT:L(:QU(I)vDHu) = sup —ZH(%%,O%M)JF)\Q(@—I?H (IE,al,Ojg,M)‘(DHU(ZE),O)
(041,042,;,6)6146”(1:)
(2.1.15)
and
Hflr?vreg(xvu(m)vDHu) = sup —ZH<1'7041,0¢27M)+)\M(55)_[)H (:C7a170527:u)'<DHu (CC),O)
(a1,00,u)€AF"" (z)
(2.1.16)

To describe the value functions, which we will prove that are solutions of the Ishii problem
(2.1.14)), we need to introduce the trajectories that will be considered associated to the com-

pact control sets A™,

Tam () := {(X,(-), a(:)) € Lip(R"; R") x A™ such that(2.1.8) is fulfilled and X, (0) = =}
(2.1.17)

and

T (x) = {(X.(-),a(")) € Tam(x), forae.t €&y and by(X.(t),a(t)) is regular}.

(2.1.18)
Then the value functions associated to A™ are defined as
Usn(@) = _inf ( / 1), a(t))e‘”dt) . (2.1.19)
TAMm (T 0
Ujn(@) = jnf ( / U0, a(t))e‘”dt) . (2.1.20)
TA,,gL x 0
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2.2 DYNAMIC PROGRAMMING PRINCIPLE

Let us prove the following theorem where we prove the Dynamic Programming Principle
which will be very useful to prove that the value functions are subsolutions and supersolutions

of the Ishii problem ([2.1.1)).

Theorem 2.2.1 (Dynamic Programming Principle)

Uy(x) = TiAr%ﬁ) (/OTZ(X(t), at))e Mdt + Uy (X (T)) e)‘T> . (2.2.1)
Ui(z) = TTif;'lfx) (/T X (), aft))e Mdt + U (X (T)) e_AT) : (2.2.2)

Let us prove this result for U . We denote the right hand side of (2.2.1)) as U. We prove
first that U, < U. Consider (X,(-),v) € Ta(z) and and let z = X, (T'). By definition of U},

there exists a sequence (X<(+),v(+)) € Ta(2) with X£(0) = 2 such that

Us(2) +e> /0 T, (1) e Mt

Let us consider

v(t)  t<T,
(t) ==
vei(t—=T) t>T.
Analogously,
_ Xo(t) t<T,
X(t) =
X(t-T) t>T.

Since X, (t) and X¢ are Lipschitz then we have (Y(t),ﬁ(t)) € Ta(x). Thus, by definition of

U, and by the change of variables s =t — T", we obtain
Up(z) < / % —”dt

/ ) e Mdt + / V(t=T)) e Mdt

= ) e Mdt + e_)‘T/ 1(X<(s),v5(s)) e ™ds

0

< JeMdt+ e (U (2) +¢).

Taking limits as € goes to 0, we obtain that for any trajectory (X, (t),v(t)) € Ta(x) we

have
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/ e Mdt + e (U (Xa(T))) - (2.2.3)
Therefore we have U, < U.

Now, let us prove that U < U . Consider a sequence (X¢, 1) € Ta(z) such that
Uz () +e 2/ XS, 5 (1)) et
_/ LXE), v () e+ [ (X0, (0) et

_ / LX), v (8)) e Mdt + e’AT/ L(XE(s+T),05(s + T)) e ds.
0
(2.2.4)
Define Xx<()(s) := Xi(s+7T) and v(s) := v*(s+T), then second integral on the right hand

side can be rewritten as

/0 TUXE (s T), v (s + T)) e ds = /O T (Xxg i (s), v(s)) e ¥ds. (2.2.5)
we have (XXE( (), v(-)) € Ta(XE(T)) and then Uy (X(T)) < J5* 1 (Xagry(5), v(s)) e Nds.

Thanks to and (2.2.5), we have

Ux (e) +e2 [ N ), v () eMdt + U (XATY) e > T (x). (2.2.6)
Taking limits as e goes to 0, we obtain

Uy (z) 2 U (2).
The proof for U} is analogous.
Remark 2.2.2 Consider a sequence (X, ) € Tam(x) such that
U () + € > /0 TUXE(), V(1)) e Mt

Since Uy (x) = U (x) due to the inequality we obtain

Uy (x) :lim<

e—0

/ UL, () e Mt + U (XE(T)) eAT> ~T(2).

0

reg

Analogously, if a sequence (X¢,v°) € T, (x) satisfies that
Uk (2) + € > / TUXE(), V(1)) e Mt
0
then

Ut (z) = lim </0Tl (XE(t), ve(t)) e Mdt + US (XE(T)) e)‘T> : (2.2.7)

e—0
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The lemma below, gives a bound of the trajectories, that will be very useful to consider

that the trajectories are in bounded sets.
Lemma 2.2.3 Assume that there exists C' such that
bi(z, ;)| < C(1+ |ay| + |z|) for all z € RN and a; € A"

Then, given x € RN and T > 0 there exist R > 0 such that for any (X, a™) € Tam(z),

we have

X' (t) € Brm(z) forall t € [0,T].
Since (X', a™) € Tam(x), we have
Xz ()] < Jel + [ DO s), ()l
< |1 +C(1+aseli‘%|a|)t—|—/0tC]X;”(s)|ds
Thanks to Gronwall inequality
[ X7(1)] < Cpet Vit e[0,T]

where C7' := |z| + C(1 + sup |a|)T
acAT
Then,
|X7(t) — 2| < |o|+ Cpe®t vV t € [0,T).

Thus, we take R? := |z| + Ce“T. We need to introduce the lemma below to prove the

following result.
Lemma 2.2.4 Assume that
1. fo = fin L>(0,T; RN).

2. There exists a measurable set map s — K (s) C RN defined on [0, T| such that for any
n€ N, ands € (0,T), fu(s) € K(s) a.e.

Then for any s € (0,T), the weak* limit also satisfies f(s) € K(s) a.e..
Let £ = L>=(0,T; RY) and consider f € E. We define the functional G by
T
a(f) = / dist(f(s), K(s))ds € R, U {oo}. (2.2.8)
0

Observe that G has the following properties,



33

(a) G : E — R is convex. Indeed, the distance function is convex (this follows from the

triangle inequality and positive homogeneity).

(b) G': E — R is continuous for the strong topology. Indeed, if f,, — f strongly in E, then
|dist(fn, K) — dist(f, K)| < |fn— f| = 0in L>®(0,T). Then, G(f.) — G(f).

(c) Since G is convex and continuous it is lower semi-continuous with respect to the weak*
topology.
Since f,, = f in L>=(0,T; RY), thanks to Proposition 7?7
G(f) < liminf G(f,).

n— oo

But since f,.(s) € K(s) a.e., then G(f,) = 0 for any n € N. We deduce that G(f) = 0,
which implies that f(s) € K(s) a.e. on (0,7"). The following result will be used to prove

comparison results related to U

Lemma 2.2.5 Under the hypotheses of Lemma and hypothesis (HC). Consider a se-

quence (X£,v°) € Tym () such that
Ut () + ¢ > / TUXE(), V(1)) e Mt
0

reg

Then given T' > 0 there exists (XI, a™) € 75 (x) satisfying
/ XT (1), 0" (1) M dt + U (X7 (5)) e = lim ( i UXE(), af(t))eMdE + U (XE (s)) eAs)
0 € 0

for any s < T. Moreover
/ T (1), T () Mt + U (XE () €™ = Ufula) Vs<T.
0

We define

and consider the trajectories
(X5, Y9 :(0,T) — RNH!

Due to Lemma there exists R such that | X1<(t) — x| < R for any t € (0,71,

then we have

b (@), ()] < N1bllLoe(Bay yxam), [HXZ(@), (@) < U]z (B, ) xam).
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Thus, the curves (X¢,Y*) are equicontinuous and uniformly bounded in [0, 7. Thus, thanks
to Ascoli Arzela's Theorem, we can extract a subsequence (X, Y¢) which converges uniformly
in [0,7] to (XX, YT). Moreover, thanks to Banach—Alaoglu Theorem we can extract a sub-
sequence of (X, Y ) that converges weakly* in L®(0, 7, RN*1) to (X7, YT). Indeed, given

¢ € C°(RYN), by definition of weak derivative

/0 "X V) (5)0(s)ds — /0 Y (XE, V) (5)V(s)ds. (2.2.9)

Let g be a weak® limit of (X¢,Y)(s) then taking limits on the left hand side of ([2.2.9) as ¢

(X, V) (s)p(s)ds —
I J, ot

Thanks to uniform limit of (X¢,Y©), then taking limits on the right hand side of (2.2.9) as ¢

goes to 0, we obtain

goes to 0, we obtain

T
/ (XS, Y)(5)Ve(s)ds — / (X, Y)(s)Vo(s)ds
0
Therefore,
T T
/0 9(s)o(s)ds = /0 (X.,Y)(s)V(s)ds Yo € C(RY). (2.2.10)
Thus, g is the weak derivative of (X1 YT).
We define the set of dynamic and cost functions,
BL(Z") = {(bi(X; , 00), 1] (X7, )]s € A}
and
BL\(Z) if Zy >0
BL(Z) = BLy(Z) if Zy <0 (2.2.11)

@0(BL1(Z) U BLy(Z)) if Zy =0,

where Zy is the N-th coordinate of Z. Thanks to the uniform convergence of Z,. and since [
and b are Lipschitz. Given v > 0, then for € small enough Z, := (X, Y*) is solution of the

differential inclusion
Ze(t) = (0(Ze(t), (1)), 1 Ze(t), ce(t)) € BL(Z(t)) € BL(Z™ (1)) +vB1(0)

Let Z7 = (XZ,YT). Applying Lemma[2.2.4|to K (s) = BL(Z"(s)) + vB1(0), we have

7" (s) € BL(Z(s)) +vB1(0) a.e.
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Taking limits as v goes to 0, we obtain
77(s) € BL(ZT(s)) a.e.
Since BL(ZT(s)) is closed, then
Z7(s) € BL(Z(s)) a.e.
We use Filippov's Theorem [2.1.2| with
F(t)=A, h(t)=2(t), Q=0T  g(t,a)= O (1)), (X (t),q),
we obtain that there exists a measurable control a®(-) such that
(X2 (1), YT (1) = (b(X; (), 0" (), X, (1), a" (1))
Therefore for s < T, we have [(X5(+), a“(+)) converges weakly* in L>([0, s]; R) to [(XZ(t), aT(t)).

Moreover, since e * € L1([0, s]; R) and thanks to (2.2.7)), we obtain that

€E—00

Utn(z) = lim ( /O TUXED), af (8))e Mdt + U (X (T))e“)
_ /O X (1), QT () Mt + U (XT (5)) .

Moreover, thanks to (BARLES; CHASSEIGNE, 2018, Lemma 6.3.1, p. 115), we have (X1 (-), a”(-)))
is regular in [0, 7], that is, the limit of regular trajectory is also a regular trajectory. Thanks
to hypothesis (HC) there exists a control o} € A; with b;(XT(T),a}) = 0 then we can define
XT(t) .= XI(T) and o (t) := af for any t > T. Thus, (XZ,al) € 74%(x). We have a
slightly weaker version of the previous Lemma without assuming the growing hypothesis
on the dynamic function. To do this we consider the following result, where we state a bound

of the trajectories in Tm ().

Lemma 2.2.6 Let m € N and let b; : Q; x A™ — RN be continuous. Given r > 0 and

x € RY, there exist t > 0 such that for any trajectory (X,,a) € Tam(z), we obtain
| Xo(s) — x| <r, Vs<Ht.

Since

X5 (1) = b1 (Xo (t) a1 (1) Lxuyenny + b2 (Xa (1), 02 (1)) 1ix, (neam)

+ by (Xx (t) , O (t)) 1{X1(t)€Q,H} forae. teRT.
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Integrating the expression above, we can consider ¢ < to obtain the result. Below

___rr
10l By () x am

we state the weaker version of Lemma without assuming the growing hypothesis on the
dynamic function. This result will be useful to prove comparison results related to the value

function U

Lemma 2.2.7 Under hypotheses in Lemma and hypothesis (HC). Consider a sequence

(XS, v°) € Ty (x) such that
Ut (2) + € > / L(XE(), v (1)) e,
0
Then for T > 0 there exists a trajectory (XTI, a”) € 7i3(z) such that

/0 X (1), QT () Mt + U (X (s)) €™ =lim ( /0 TUXE(), af(8))e Mdt + U (XE () e_)‘s)

e—0

for any s < T. Moreover,
/ T, QT () Mt + U (XT () €™ = Ufula), Vs € [0,7].
0

We just replace Lemma by Lemma [2.2.6] in the proof of lemma [2.2.5]

2.3 REGULARITY OF VALUE FUNCTIONS
Let us recall the main hypotheses on the dynamic and cost functions associated to (2; that

will be used to prove the results in this section.

(HA) I; : RN x A; — R and b; : RY x A; — R satisfy

ll(yv Oé) :
im —————— =00 and lim |b;(y,a)| =0
|at|] =00 1+ |bz<y, Oé>| |a] =00 | (y )‘
uniformly in compact sets of R with respect to y € RV .

(HB) ; is continuous and b; is Lipschitz continuous.

(HC) For any = € RN, the set {(bi(z,q;),l;(z,;))] o € A"} is a closed and convex set.

Moreover, there exists § > 0 such that
Bs(0) € B (x), where BY(x) := {bi(z,a)|a € AT}
where A" is compact sequence which union equal a RY.

In the following theorem we prove the regularity of the value functions.



37

Proposition 2.3.1 Under hypotheses (HA), (HB) and (HC), then the value functions U,

and U} are locally bounded and locally Lipschitz continuous functions.

We prove the result for U}, the proof for U} is analogous. Initially we prove that Uj
is locally bounded. Consider a convex compact set V' C R™. Thanks to hypothesis (HA)
there exists R > 0 such that if |b;(z, ;)| < 8, for some x € V, then a; € Bi'(0) , where
By (0) := {ni € Al [lnll < RY.

If 2 € Q; NV, thanks to (HC) we can choose a} € By’ (0) such that b;(x, ) = 0. Thus,
we can associate the trajectory X, (t) = x with the control, a;(t) = «f, for all ¢, since we
have

X0(t) = bi(Xa(t), aui(t)) = bi(x, ) = 0.
In this particular case (X, (), a(-)) € 749 (x). Using the definition of U}, hypotheses (HA)
and (HC), we have

Uite) < |

0

o0 T, o) < Hli”VxBj;i(o)

AT A
for all x € V. Then we have proved that U} is bounded for x € Q; U V.

L(Xa(1), as(t))eNdt = / i, at)e—ar — 1L
0

Now, let x € H NV, thanks to hypothesis (HC), we can choose o} € A; and o} € A
such that by(z,af) = 0 = by(z,ad). Considering X, (t) = x and «(t) = (af, b, 1), with
4 € [0, 1], then

Xo(t) = by (Xa(t), a(t)) = bu(z, (af, a3, 1)) = 0.

Since (X,(+),a(+)) € 74 (x),

Ut(z) < /O T (X (1), at))e Nt

_ ZH(‘ra (O./T,Oé;,,u))
A

:< A >ll(a:,a1)+)\l2(x,oz2)

1 —
< —Fllly i + 5l paig
||l1||VXBgi(O) + Hl2HvX32i(0)
< \ .
Therefore, we have proved that UX is locally bounded.

Now will prove that U} is locally Lipschitz. Let 2,z € V and consider the unitary vector

w = ===, Let us define the trajectory

lz—z]"

z+tow if 0 <t < o
X.(t) == (2.3.1)

. |x—2z]
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which satisfies the differential inclusion X/ (t) € B(X,(t)). Below we build regular controls for
the trajectory X,.
We divide this part of the proof in two cases: {z,x} C H and {z,2} ¢ H.

Case 1: {z,2} C H. In this case w and X (t) are in H for all t. By hypothesis (HC) there

exists a;(t) € A; such that
bl(XZ(t>, Oél(t)> = dw and bg(XZ(t)7 Oég(t)) =0

Moreover by (X, (t),a1(t)) - ey = dw - ey = 0 and ba(X.(t), aa(t)) = 0 . Furthermore,
thanks to Filippov's Theorem we can choose the control «(t) := (ay(t), as(t), 1) mea-
surable. Hence (X, (+),a(")) € ,9(2).

Thanks to the construction of the trajectory X,(¢), (2.3.1), we have X,(t) € V and
b;(X.(t),5(t))| < & a.e then by hypothesis (HA), there exists R such that o;(t) € By (0)
for a.e. t. Consequently |I(X,(t), «;(t))| < C for a.e. t.

Case 2: {y,z}H. Thanks to Theorem there exist a measurable control, «f(-), for
which we can express X (-) as in (2.1.8). Since {y, z}# then there exist at most one point
of the trajectory X.(-) that belongs to H. Due hypothesis (HA), we have o;(t) € Bz (0) for

ae. t< % and thanks to hypothesis (HC), we can keep the trajectory at x = XZ(‘IEZ‘) for
all t > % and therefore we can assume that (X, (-),a(:)) € 7,7(2).
Since X (t) € V for all t and a a;(t) € B (0) for a.e. t, we have |I(X.(t), a;(t))| < C

for a.e. t.

Now, we us prove that U (+) is locally Lipschitz. Let 0 < M < oo be a constant such that

maX{HliHLoo(vXBQi(o))u HUX”L"C(V)} < M.

Let T := |"”gz|. we have X, (0) = z and X, (T) = «. Since (X.(-),a(-)) € 7,(2), and

thanks to the Dynamic Programming Principle Theorem [2.2.1] we have

Ui () < [ YL, o) eMdt + eTUE ().
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Thus, since a;(t) € Bx'(0), for a.e t, and T = % then by Mean Value Theorem, we obtain

Ui(z) = Ui(z) < /DT LX), a(t) edt + (7 = 1)U (2)
< MT + ’1 — e‘AT‘ Ui(x)

< MT + MAT
M M
= (54—5) |z —z| = Cl|z — 2|
Therefore, we have proved that U} is a locally Lipschitz continuous function.
Remark 2.3.2 In the previous Proposition[2.3.1] if we add the hypothesis
(i) Let K be a compact subset of A;, then there exists Ck(b) and Ck(l) such that

bi(y, )| < Ck(b) and Li(y,a) < Ck(l), VyeRY, ac K. (2.3.2)

we obtain that Ut and U~ are globally bounded and Lipschitz continuous functions.
In the following result we prove that for (z,u,q) € €; x R x RY, the Hamiltonian

Hi(x,u,q) = sup{—b;(z,a) - ¢ — li(z,a) + Au}

a€A;
is well defined, continuous and locally coercive with respect to the third variable, that is, it

grows to infinity on the extremes where it is defined.

Lemma 2.3.3 Under hypotheses (HA), (HB) and (HC). Given (z,u,q) € ; x R x RY then

(a) Hi(x,u,q) is well-define and is continuous with respect to all the variables. H; attains

its supremum locally in a compact set of A;.
(b) Hi(x,u,q) is locally coercive.
Consider g, : A; x ; x R x RV — R defined as
gi(a,z,u,q) == —bi(x, @) - ¢ — li(z, @) + M.

Note that g; is a continuous function. Let V; x U x D C €; x R x RY be compacts sets.
Thanks to hypothesis (HA), {a € A; | bi(z,a) =0} C Bpi(0) Yz € Vi. Let z € V;, af € A,
with b;(x, af) = 0 then

sup{—bz-(x, a) g ll<x7 Oé)} > _bi(xv O‘f) g lZ(ZL‘, O‘f) 2 _||liHL<>o(V,><BAi(0))‘
OzGAi ® R
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We consider M; such that,

M; > max {%ﬁ%{ ’q,7 HliHLoo(Vingi(O))} ’

Thanks to hypothesis (HA), there exists I'y;, > 0 such that if || > T'y, then
Li(z,a) > M;(1+ |bi(z,)|]) Vz eV

That is,

Thus for |a| > 'y, we have

_li(x>@)_bi(xva)'q < —li(l',Oé)—Hbi(.T, CY)HQ’ < _ll(l.a&)_'_Ml’bl(x?Oé)‘ <—M; < _HliHLoo(vingi(o))‘

Hence,

—li(z, ) = bi(z,a) - g+ M < —li(x, o) + M;|bi(x, )| + Au

< Nl e ey + A

S HZ(.Z’,U,Q)

Therefore, if (x,u,q) € V; x U x D

Hi(xz,u,q) = sup{—=bi(z,a) q—l;i(x,)} + \u
acA;
= sup {-bi(z,a) -q—li(z,a)} + I

A
a€Bry, (0)

= Sup gi(aax>an)-
a€BY (0)

Therefore, H; is a continuous function because is the supremum of a continuous function over
a compact set.
Now let us prove that H; is locally coercive. Let V be a compact set of €);. Given z € V

and ¢ € RY, there exists 7 > 0 and «; € B(0) such that
|bi(z, a;)| = 6, and —bi(z,05) - q = 5|C]|-
Moreover, we consider u in a compact set such that |u| < R. Thus,

Hi(z,u,q) > =bi(x, ;) - q — li(z, 05) + Au > dlq| — || 14]] — AR

Vx B (0)



41

Hence,

lim H;(z,u,q) = oco.
lgl—o00

Thus, H; is locally coercive.
Remark 2.3.4 [f the previous Lemma|2.3.3, if we add the hypothesis

(i) Let K be compact contained in A;, then there exists C'k(b) and C(l) such that

bi(y, )] < Ck(b) and li(y,a) < Ck(l), Yye RY, a € K. (2.3.3)

then for (z,v,q) € Q; x U x D, where U x D C R x RN are compact, we obtain

Hi(xvan) = sup{—bi(x,oz) g — lz(lL‘,Oé)} + Av = sup {_bi(xva) g — lz(‘raa)} + Av

A, :
o acBi (0)
7

That is, the compact where the supremum is reached depends only on the modulus of the

third variable.

2.4 VALUE FUNCTIONS ARE SOLUTIONS OF THE ISHII PROBLEM

The aim o this section is to prove the that the value functions U™ and U~ are solutions
of the Ishii problem (2.1.1). To do this we will prove first that the value functions in compact
control set are solutions of the auxiliar Ishii problem associated to compact control sets, and

finally we pass to the limit.

The following theorem is an auxiliar result which proves that the value functions associated
to compact control sets are locally bounded and locally Lipschitz continuous functions, and

they are solutions of the Ishii problem associated to compact control sets.

Theorem 2.4.1 Under hypotheses (HA), (HB) and (HC). Then U},. and U .. are viscosity
solutions of the Ishii problem ([2.1.14)) associated to compact control sets.

Furthermore,

(i) U is subsolution of of the tangential Hamiltonian HY, (2.1.15)), that is, forz € RN 71,

then & — U 4w (Z,0) satisfies

H7 (z,u, D) < 0.
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(i) Uj. is subsolution of the tangential Hamiltonian Hy""*, (2.1.16)). That is, for T €

RN™Y, then T — U} (%,0) satisfies

Thanks to Proposition we have U{.. and U ;. are locally bounded and locally Lipschitz
functions. Since the control sets A™ are compact, we can apply Theorem 2.5 in (BARLES;
BRIANI; CHASSEIGNE, [2013), to obtain that U}, and Uj. are subsolutions of (2.1.14). Let
us prove that U} and Uj. are supersolutions. We will denote U}, and Uy by U for the
simplicity of the notation. Let ¢ be a test function, consider x a local minimum of U — ¢
and assume U(z) = ¢(x) without lost of generality. Then there exists » > 0 such that
U > ¢ in B.(x). Thanks to Lemma m there exist ¢ > 0 such that for any trajectory
(X4, ) € Tam(x), we have | X, (s) — x| <7, s <t. Then the trajectories are in a bounded
subset, and we can apply Theorem 2.5 in (BARLES; BRIANI; CHASSEIGNE, [2013)).

The theorem below is the principal result of this section. It states that the value functions

are solution of the Ishii problem ([2.1.1]).

Theorem 2.4.2 Under hypotheses (HA), (HB) and (HC). Then the value functions U,
U} are viscosity solutions of the Hamilton-Jacobi-Bellman problem (2.1.1]). Moreover U} is
a subsolution of the tangential Hamiltonian Hr, and Uj{ is a subsolution of the tangential

Hamiltonian Hz™.

We will follow the ideas in (BARLES, 1990) to prove that Uj and U, are supersolutions.
Consider a sequence of compacts A™ C A;. Recall that if m < m/, then A C A", and

thanks to the definition of UJ,. and Uy, we have

UXm/ (:B) S U/J’]_m ($)7 U;m/(x) S UZ’” (ﬂj)

This implies together with Proposition[2.3.1} that Uy, and U, are uniformly locally bounded.

Moreover, since the sequences Uy and Uj.. are decreasing we have
inf Uin(z) = Uj(x), inf Uy () = Uy (7).

Thanks to Proposition and Theorem ([2.4.1), U, Uy, Ui Uy are continuous, then
due Lemma 7?7
liminf Ui.(y) = (i%f Ujm> (v) =Uf(x)

(m,y)—(o0,z)

liminf Uyn(y) = (ipnf U;m)* () = Uy (x),

(m,y)—(o0,z)

(2.4.1)
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where (-), is the envelope of |.s.c functions.

Consider the discontinuous Hamiltonians H™ and H given by

Hin (I,U,,p) in Ql

H™ (2, u,p) := HI'" (z,u,p) in Q9 (2.4.2)

max{H" (z,u,p), H (z,u,p)} on H

and
H,y (x7u7p) in

H (z,u,p) = H; (x,u,p) in (2.4.3)

maX{Hl (x7u7p>7 H2 (CC,'LL,p)} on H

Let (y,v,q) and (z,u,p) in RN x R x RY, then
( lir)ns(up(Hf(y,v,q)) = lim sup{H"(y,v,9) | (y,v,q) € Byjm(z,u,p) \ {(z,u,p)}}
m,y,v,q)—(00,T,u,p

= limsup H(y,v,q)

(y,0,a) = (2,u,p)
= H*(z,u,p)
= H(z,u,p),
(2.4.4)
where (-)* is the envelope of u.s.c functions.

Thanks to Theorem [2.4.1] we know that U}, and U,, are supersolutions of H™, and thanks
to Proposition and Lemma we have U}, U, and H™ are locally bounded. From
(2.4.1) and (2.4.4), and thanks to the Half-Relaxed Limit Method Theorem ??, we obtain
that U, and U} are supersolutions of Ishii problem (2.1.1]).

The proof that U and U}, are subsolutions of H; in €; is classical, cf. (BARLES, 1994)). We
prove below that U}, Uy are subsolutions of min{H;, H,} and that U}, Uy are subsolutions
of the tangential Hamiltonians H7* and Hy respectively. We prove the result for U}, the proof
for U, is analogous. Let x € H be a local maximum of U} — ¢, with ¢ € C'(RY). We assume
that this maximum is zero for simplicity. Thus, there exist r > 0 with U (y) — ¢(y) < 0 for
all y € B.(x) C RN and Uj (z) = ¢(z).

Initially we will show that U} is subsolution of min{H;, Hy}. Thanks to Lemma ,

since H; attains its supremum in a bounded control set, then there exist (ay, a2) € Ay X Ay
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such that

Hy(z,¢(x),Vo(x)) =—li(z,a1) + Ao (z) — by (z,01) - Vo ()
Hy (z,¢ (x), Vo () = —la(, a2) + AP (2) — b2 (7, 02) - Vo ().

In order to prove that U} is subsolution of min{ H;, Hy}, we use specific trajectories that we
build using the constant controls a;; and «s. To do this we divide the proof in cases for the

different combinations of signs of b;(x, ;) - ey.

Case 1

Let (ay, ) such that

(by(x,0q) — ba(z,a0)) - ey < 0.

reg

We construct regular trajectories, (X, (-), a(-)) € 7,7(x) which stay on H, at least for a while.
We emphasize that it is essential to consider regular trajectories in order to be able to use the
Dynamic Programming Principle for U;{. We divide Case 1 in three sub-cases:

1A by (x,0q) ey <0and by (z,02) - ey > 0.

1B by (xz,0q) ey =0and by (z,0a3) - eny > 0.

1.C by (z,0q)-eny <0and by (x,9) - ey = 0.

Case L.A. Let § > 0, y € H N Bs(x). We define

L —ba(y, ) - en
uly) = (b1(y, a1) — ba(y, a2)) - en

(2.4.5)

Note that since (by (-, a1) —ba(-, a2))-en is continuous then (by(+, 1) —ba(+, 2))-eny < 0 on
a neighbourhood of z, therefore p is well defined in this neighbourhood and b, (-, ) -en < 0,

—bg(',OZQ) -eny < 0. SO,
1

(b1 (y,21))-en
b2 (y,a2)-en

in such neighbourhood. Now, consider the local trajectory that satisfies

0 < ply) = <1

X (1) = (X (£)br (X (), ) + (1= p(X(O)b (X (1)), X (0) =z, (24.6)

Since by, by and p are continuous functions, then (2.4.6]) has a local solution. Substituting in
(2.4.0), (X (t)) by its expression ([2.4.5)), we get

(=ba(X (1), a2) - en)b1 (X (1), 1) + (01(X (1), 1) - en)b2(X (1), Oéz)'

X(t) = (b1 (X (1), 1) — ba(X (), a2)) - e
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Thus, the trajectory satisfies locally X’ (¢) - ex = 0. Thus, since x € H then X () stays on
‘H for a while.
Since 0 < u(X(0)) = p(z) < 1, thanks to the continuity of u(X(-)), there exist ' > 0

such that
0< /L(X(t)) < 1, bl(X(t),az) -eny <0, bg(X(t),Oég) ey >0 for 0<t<T.
Let us define the following trajectory

X(), ifo<t<T
X.(t) = (2.4.7)
X(T), ift>T.

Furthermore, thanks to the continuity of b; and the trajectory, there exists a constant C'r such

that
X' (t) = p(X )by (X (£) ) + (1 — (X (8)b2 (X () ,2) < Cp, VELT.

Hence X, (+) is Lipschitz. Thanks to hypothesis (HC), there exists o € A; such that b;( X, (T), ) =

Pt}

0, then we consider the control

o(t) = (o1, a0, (X (t))) if0<t<T, (248)
(o, a5, 1) ift >T.

Hence (X, (-),a(+)) € 7,7.
Recall Ua(y) — ¢(y) < 0 for all y € B.(z) and Ua(z) = ¢(z). Since X, is Lipschitz,
then there exists 7" > 0 such that X, (t) € B,(z) for all t < 7" < T. By the Dynamic

Programming Principle we have
60) < [ BalXale) n, 0z, (X))t + 6 (X, () T
By the Fundamental Calculus Theorem, we obtain
02 [ (X0, o, 00, OE0)) 30 (X (0) = b (X0, a1, 03, 1K) - V6 (0]
Dividing by 7" and taking limits as 7" goes to 0 yields

0> —ly(z, ar, a0, () + AP (z) — by (2, a1, g, p(x)) - Vo (2)

= p(@)(=h(z,a1) + A (2) = by (2, 00) - VO (2)) + (1 = p(2))(=la(2; a2) + A () = by (2, 02) - V (:
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Thus,

0 >min{—li(z,01) + A (z) — by (z, 1) - V@ (2), —la(x, 20) + A (1) — by (7, 02) - Vb ()}
= min{H (z,¢ (), Ve (2)), Ha (2,9 (z), Vo (2))}.

Case 1.B Let (o, ag, i) € Ap(x) such that
b1 (ZL‘,Oq) ey =0 and bg (ZE,O&Q) -eny > 0.

Thanks to hypothesis (HC), there exist af € A; such that b (x,af) = —dey, and for

0 < v <1, by convexity, there exists o} satisfying

by (z,0) = vb (:L‘, af) + (1 —v)by (z,001)
I (z,af) = vl (:U, ocf) + (1 =v)ly (z,0q) .

Therefore, by (z, ) -eny = —vd < 0 and we argue as in case 1.A with control (o, aq, i (x))

in Ay™(x) where
—b2($, 042) *EN
(b (x, %) — bo(z, 02)) - en

p(x) =

We obtain that

0> _lH(x7 O/ljv 042,,“”(1')) + )\(25 (:C) - b?—l (l‘, Oélljv 0527:uy(x)) ’ V(b (:C>

Hence,

0= p"(2)(=h(z, 0))+A (2)=by (x, 7)YV (2))+(1—p"(2))(=l2(z, a2) +A () =ba (z, a2)-V (z)).
(2.4.9)
By construction, (by (z,a%), {1 (x, oY), u”(x)) converges to (by (z, 1), 11 (x, 1), 1) as v goes
to 0. Therefore taking limits as v go to 0 in (2.4.9)), we have
0 > —ly(x, 01, 00,1) + Ap () — by (x, 1, 00, 1) - Vo ()
= (=l(z,a1) + Ao (x) — by (z, 1) - Vo (2))
= Hy(z,¢(x)), Vo(x)).

Case 1.C We proceed analogously to case 1.B. There exists i € Aj such that b, (x, oc;) =

dey. Let 0 < v < 1. We can find o € A, satisfying

by (x,08) = vby (:c, aj) + (1 = v)by (2, ap)

Iy (x,08) = vy (m, a;) + (1 =v)ly (z,0a2) .
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By construction, (by (x,a4), 1 (x,ad), pu’(x)) goes to (by (x, ), ls (z,02),1) as v goes to

0. Thus,

02> (=l(7,a2) + Ad () — b (7, 9) - V& (7)) = Ha(x, ¢(), Vo(z)).

reg

Case 2 We construct regular trajectories, (X, (+), a(-)) € 7, (x), which stay in ; at least
for a while. We divide this case in the following subcases.

2A bi(z,a1) ey >0and by (z,00) - eny <0

2B by (z,a1) ey =0and by (z,a5) ey <0

2C by (z,a1)-ey >0and by (z,03) ey =0.

2D by (x,0q) ey >0 and by (z,05) - eny > 0.

2E by (z,0q) ey <0 and by (z,00) - ey < 0.

In all theses cases we can build trajectories that stay in €; for all s €]0, 7 for some T" > 0
. So,

0= (—li(z,00) + Ad (2) = bi (2, 04) - V@ () = Hy(w, ¢ (x), Vo (2)).

In the cases 2.A, 2.B and 2.C we can also build trajectories that stay on H for a while and

such that
0> —ly(x,ay, g, p) + Ao (z) — by (x, a1, a9, 1) - Vo ().

Case 3 Let (ay,a0) € Ay x Ay such that
by (z,0q)-exy =0 and by (z,00) - exy = 0.

From hypothesis (HC), there exist controls a; € A; and a3 € Aj such that b, (1;, ocf) =
—den and by (x, og) = dey. For 0 < v,/ < 1, thanks to the convexity, we can find of € A;
and o' € A, such that

by (z, ) = vb (:c, af) + (1 —=v)by (x, 1)
I (z,0f) == vl (x, al_) + (1 =)l (z,01)

and
ba(, 0F) = /by (2,05) + (1= v/)be (2, )

lh(z,ad) ==V, (a:, af) + (1 =)l (x,a0).
Therefore, by (z,04) - ey = —v§ < 0 and by (3:,045/) ~ey = /0 > 0. Arguing as in case 1.A,

we obtain (X,(-), (o, oy, (X, (}))) € 74 (x) satisfying

0> (v, ") (~ (. o406 () —br (,08)- V6 (2))+(1—pu(w, /) (~la(, 0 140 () by (. 0 ) T (.
(2.4.10)
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where u(v,v') = u(X,(0)) = yiu and a = (¥, ', u(v, V")) € Ay(x). By construction, we

have the following convergences
by (z,af) — by (z,01), lLi(z,0f) — i (z,01) as v—0
bo(z,a') — by (z,00), s (x,agl) — lh(x,a9) as v —0
Given 0 < p < 1, we can consider the sequences (v,),, (v),), that converge to 0 and such
/

that 2> = 1_7“ then (v, v),) converges to p. Taking limits in (2.4.10]) as v and v/ go to 0

n

we have
0 = p(=h(z,on) + A (z) = by (z, 1) - Vo () + (1 — p)(—la(z, a2) + A¢ (x) — b2 (7, a2) - Vo ()
> min{Hl (l'a Qb (il?) ) VQS (I)) ) H2 (ZL’, ¢ (l’) ) ng (1’))}
Therefore, we have proved that in all the cases, U} is subsolution of min{ Hy, Hy} on H.
Now, let us show that U is subsolution of Hy. We consider ¢ € C*(RY™!) and z =
(2',0) € H such that 2’ — U, (2',0) — ¢(2’) has a local maximum at z{,. We assume that
this maximum is equal to 0 for simplicity. We extend the test function defining a new function
as follows ¢
a(x/wTN) = ¢([E/),

then ¢ € C'(R") and ¢ is independent of the N-th coordinate. Notice that
Do(x) = (Dno(2'),0).

Consider (a1, ag, 1) € Ag(z), then (ay, aw) is in some of the following cases: case 1, case 2.A,

case 2.B, case 2.C or case 3. Then have that

—ly(z, a1, g, 1) + Ao () — by (1, 01, o, 1) - Ve (z) < 0.

Thus, taking supremum in Ag(x) we obtain that

HT(‘ra ¢<x)7DH) = ( Su)pA ( )_Z'H(xaaha%;u)_‘_)‘a ([E)—b';.[ (Qf,a17a2,u)‘(DH¢ (ZL') 70) S 0.
a1,000,4)EAQ(T

Analogously we prove that U} is subsolution of H7. Given a control (ay, an, 1) € Ag™(z),

we have (aq,ap) is in case 1 or case 3. Then

—ly (2, o, g, 1) + A (2) — by (2, a1, g, 1) - Ve () < 0.

Thus, taking supremum in A{*(z), we have

Hy?(z, ¢(x), Dng) = sup Ly, 01, gy ) AAG (1) —byy (2, vz, 1) (D (), 0) < 0.

(o1,02,1)€AL (2)
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3 COMPARISON AND UNIQUENESS RESULTS

In this chapter, we prove comparison results under suitable growing conditions on the dy-
namic and cost functions. This way, we are able to prove uniqueness of solution of the Ishii
problem. Initially we prove the results locally and use the fact that under suitable conditions
we have a relation between the local and global comparison results, cf. (BARLES; CHASSEIGNE,
2018). We also present specific examples of unbounded dynamic and cost functions with non-

compact controls space and consider Filippov approximations.

Let us recall the definition of the Ishii problem

Hy (z,u(x), Du(x)) =0 in Q,
Hy (z,u(z), Du(z)) =0 in Q,
(3.0.1)
win{H, (z, u(x), Du(z)) , H (z, u(x), Du(z))} <0 in H,
max{H; (x,u(x), Du(z)), Hy (z,u(x), Du(z))} <0 in H.
where
H; (z,u,q) = sup (—bi(z, ;) - q — l;i(z, ;) + Mu).
Ch;GAi
with (z,u,q) € ; x R x RY and A € R is a discount factor.
Let us recall the definition of the control sets
Ao(z)  ={(a1,a0,p) € A | by(z,a1,00) - ey = 0}.
Ay?(x) = {(a1,a2,n) € Ao | bu(an, oz, ) is regular}.
Then we define the tangential Hamiltonians, for (x,u,q) € H x R x RV~!
HT('I’U7Q) = sup _ZH(:L‘705170527M) +)\u_ b'H (ZE,OéhOZQ,H) ' (qvo) (302)
(a1,02,1)€Ao (2)
and
H'}eg(x7 u, q) = sup _Z'H(xv ay, Qg, /~L> + Au — bH (J}, aq, g, M) ’ (q’ O) : (303)
(04170427;1)6/}869(1')
We consider also the Ishii problem associated to the compact control sets A™,
H™ (z,u(z), Du(z)) =0 in
HY" (z,u(x), Du(x)) =0 in
? (3.0.4)

min{ H" (z,u(z), Du(x)) , HY (z,u(z), Du(z))} <0 on H

max{H" (z,u(z), Du(x)), H" (z,u(z), Du(x))} <0 on H
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where

Hzm<x7u7Q) = Sup {—bl(Q?,Oé) “q— lz(xva)} + Au.

acAT
We consider the associated control sets defined by
Ag'(z) = {(a1, a2, 1) € A™ | by(2, 1, 2) - ey = 0}
A" (@) = {(a1, a2, 1) € AT | b(on, a2, 1) is regular}.

Then we can define the tangential Hamiltonians for z € H

HP (z,u(zx), Dyu) = ( s%pA ( )—ZH(JZ, aq, gy ) +AT () —byy (2, ap, g, p)- (D (), 0)
a1,02,1)€E 6” T
(3.0.5)
where 1(z', zy) = u(z’), with 2 € RN~ and
H;z’Teg(x)u(I)’DHu) - sup —ly.[(l',OZl,CYQ,,LL)‘f‘)\U (x)_b'H (l’,Ofl,OzQ,,u)‘(D’HU (.T) 70)
(a17a27u)€A(7)n’reg(x)
(3.0.6)

3.1 COMPARISON RESULTS WITH COMPACT CONTROL SETS

In the following result we prove that if we have a supersolution of the Ishii problem, then
it is also a supersolution of the Ishii problem associated to compact control sets on compact

subsets of RV.

Proposition 3.1.1 Assume hypotheses (HA), (HB) and (HC). Let V. C RN be compact. If
v is a locally bounded Isc supersolution of (3.0.1)), then there exists m € N such that v is

supersolution of (3.0.4)) on V.

Due to hypotheses (HA) and (HC) there exists a control set A% C A; such that given
w € Bs(0) and z € V there exists o; € A% with b;(z, ;) = w. Thanks to hypothesis (HA)
we have A? is bounded, then there exists m big enough such that A9 C A™.

Let ¢ € C1(V) and = € V be a local minimum point of v — ¢. We divide the proof
. "lHLoo(VXAt?)"’)‘HUHLOO(V)
in two cases for ¢ such that |Vo(z)| > L and ¢ such that |Vo¢(z)| <

I‘lHLOO(VXAf)'i_/\HvHLOO(V)

é
el oo (v a8y TAIYI Lo (v)

Case 1: |Vo(z)| > 5

Since v is supersolutionSince exist «; € A; such that —b;(z, ;) - Vo(z) = 0|Veé(z)l|, and

then a; € A9, and since A° C A we have for v € V

H(z,0(2), V() Z =bilw, i) V() —=li(w, 0a) +- X0 = 6|V ()| = |[Lil| 1o (v a8y = Al[v] [ 2y 2 0.



51

1l o0 (v a3y FA oo (v
2

Case 2: |Vo(z)| < 5
Since |V¢(z)| is bounded, v is supersolution of (2.1.1)), and thanks to Lemma [2.3.3] there

exists m, > 0 such that
Hi™ (2, 0(2), Vo(x)) = Hi(z,v(x), Vo(x)) = 0.
Choosing m > max{m, m, },
Hi"(z,v(x), Vo(z)) = 0.

Therefore, v is supersolution of H".

In the particular case in which z € V NH then
max{H(z,v(z), Vo(x)), Hz(z, v(z), V(z))} = 0.

Consequently there exists i € {1,2} with H;(x,v(x), Vé(x)) > 0. From the prove above, we
know that there exists m; € N big enough such that H" (z,v(z), V¢(x)) > 0. So, taking

m > m;, we have
max{H{"(z,v(z), Vo(z)), Hy" (z, v(z), Vé(x))} = 0.

In the result below we add and extra hypothesis to obtain a better version of the previous

result. In particular it states that if v(x) is a supersolution of (3.0.1]) then v(x) is a supersolution
of (3.0.4)) for m big enough and for any z € R".

Proposition 3.1.2 Under hypotheses (HA), (HB) and (HC). Let AT* C A; be compact, then

there exists C,,(b) and C,,,(l) such that
bi(y, a)| < Co(b) and li(y,a) < Cp(l), Yy € RN, and VYo € AT (3.1.1)

Let v be a bounded Isc supersolutions of (3.0.1)), then there exists m € N such that v is
supersolution of ((3.0.4).

The proof is analogous to the proof in Proposition [3.1.1] where we just need to substitute

the norm L>(V') by the norm L>°(RY).

Remark 3.1.3 Thanks to hypothesis (3.1.1)) in the previous Proposition we have U}
and U} are bounded and hence they are supersolutions of for some m € N.
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Below we state some results for which under hypotheses in Proposition we obtain
that the supersolutions are supersolutions of the Ishii problem associated to a compact control
set and then we can apply the results in (BARLES; BRIANI; CHASSEIGNE, 2013), obtaining some

comparison results.

The following results gives a comparison result under hypothesis (3.1.1). If we have a

bounded subsolution and a bounded supersolution, then they are ordered.

Corollary 3.1.3.1 Under hypotheses of Proposition [3.1.2. Given u bounded subsolution of
Ishii problem of ({3.0.1)), (3.0.2) and and v a bounded supersolution of ({3.0.1) then

u <.

Due to Proposition|3.1.2}, we have v is supersolution of (2.1.14]) for some m. Applying Corollary
4.4 in (BARLES; BRIANI; CHASSEIGNE, [2013), we obtain that u < v.

The following result we prove that under assumption (3.1.1)), we have U} is a minimal
supersolution of (3.0.1)), U} is a maximal subsolution of the Ishii problem and the value
function U is actually equal to the value function U.. associated to a compact control set

A™.

Corollary 3.1.3.2 Under hypotheses in Proposition [3.1.2
(a) The value function U, is a minimal supersolution of the Ishii problem (3.0.1]).
(b) The value function U} is a bounded maximal subsolution of ([3.0.1]).

(c) There exists m € N such that Uy = U jm.

(a) Thanks to Theorem [2.4.2, we have U is subsolution and supersolution of (3.0.1]). Given
v a bounded supersolution of (3.0.1]), thanks to Corollary [3.1.3.1, we obtain that U, < v.

(b) Thanks to the definition of A™. Given u subsolution of (3.0.1) then w is subsolution
of (3.0.4) for all m. Applying Corollary 4.4 in (BARLES; BRIANI; CHASSEIGNE, 2013), we obtain

that v < U:{m for all m € N. Then,

uw <infU}, = UjJ.
m
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(c) Thanks to Proposition [3.1.2, we have U} is a supersolution of (2.1.14)) for some m € N,
then applying Corollary 4.4 in (BARLES; BRIANI; CHASSEIGNE, [2013), we have U . < Uy, but

by definition U, < Ujn. Thus, the result.

3.2 LOCAL COMPARISON RESULTS

The Proposition [3.1.1] allows us to obtain a Local Comparison Result. To do this we need
to define below the local version of the Ishii problem (3.0.1)), and as well as of
(3:0.4), (3.0.5) and (3.0.6).

Let € RY and R > 0. We denote

QF .= Br(z)NQ;  and  H®:= Bg(z) NH.

]

We consider the local version of the Ishii problem ({3.0.1]), given by

Hy (z,u(x), Du(x)) =0 in Qf
Hy (x,u(x), Du(z)) =0 in QF
2 (2, u(x), Du(z)) 2 (3.21)
max{H; (z,u(x), Du(z)), Hy (z,u(z), Du(x))} >0 on HE
min{H, (z,u(x), Du(x)), Hy (x,u(x), Du(z))} <0 on HE.
We consider also the local version of the tangential Hamiltonians
Hr(x, ¢(z), Dud) :( Su)pA (—)lﬂ(x,al,ag,u)—l—)@ (z)—by (z, a1, g, p1)-(Dy ¢ (),0) on HE.
@1,002,4)EAQ(T
(3.2.2)
H;EQ(x7¢(x>,DH¢> - S?p _l’H(‘ra 0517052)/“0—’_)\5(‘7;)_[)7‘[ (I’,O{l,OéQ’M)'(DH¢ (ZE),O) on HR‘
(a1,00,m)€AN ()
(3.2.3)

Let us describe below the local version of the Ishii problem associated to compact control sets,

(3:04), given by

H™ (x,u(z), Du(z)) =0 in Qf

T, ulx ulr)) = in
HY (z,u(x), Du(z)) =0 L (3.2.4)

max{H" (z,u(z), Du(z)), HY (z,u(x), Du(z))} >0 on HE

min{ " (z,u(x), Du(x)), HY (z,u(z), Du(z))} <0 on HE.



54

We consider the operator H2" locally defined on H% as follows

HYT?("E7 ¢($)’ DH¢) :( Sl';pA (_)Z'H(I7 aq, Qig, M)_‘_)\a ('I)_bH (:Ev an, Qg M)(D'HQS (l’), 0) on HR‘
a1,02,u) EAT (z
(3.2.5)
H’?eg,m(x7 ¢($), D’H¢) :( ?up _l(H)(xJ aq, (g, /’L)+)\$ (l’)—bq.[ (.I'7 ag, Oy, /“L)(DHQS (.T), O) on %R'
a1,02,0 EAgeg’m T
(3.2.6)

The following result is a result from (BLANC, [2001) which will be used in this section to
prove some comparison results.

In what follows, we assume that Y is a trajectory that satisfies
Yi(s) = by(Yi(s),u(s)) for s>0, and Y(0)=uz.

x

Theorem 3.2.1 Let D; C §; be a bounded open domain with C'-boundary, let x € D;. If v
is a locally bounded Isc supersolutions of (3.2.4)), then

tAG; . .
v(x) > ()H}ctf , (/ Li(YE(s), as))e M ds + v(Yi(t A 9))€_>\(M9)> (3.2.7)
a()eA,0; \Jo
On the other the hand, if u is a locally bounded subsolutions of ({3.2.4)) and (3.2.5)
tAO; ) )
u@) < if / L(Yi(s), a(s))e ™ 5ds + (Y2t A 6;))e N0 (3.2.8)
a()eAT™,0; Jo

where t A 0; = min{t, 0;}, 0; is an stopping time such that Y(0;) € 0D; and 7; < 0; < 7,
where 7; is the exit time of the trajectory Y, from D; and T; is the exit time from D;. Moreover,

the infimum is reached for some control o € A" and 6, € [r;, T;].

Observe that if v satisfies , then it is a supersolution of

wy(t, x) + H™(x,w(t, z), Dw(t,z)) =0 in D; x (0,00),

w(z,0) = v(z) on Dj, (3.2.9)
w(z,t) = v(x) on 9D; x (0, 00).

Besides that, the right hand side of (3.2.7)) is the minimal supersolution of ([3.2.9).
Observe also that if u satisfies ([3.2.8)), then it is a supersolution of

wy(t,x) + H™(x,w(t,x), Dw(t,z)) =0 in D; x (0, 00),

w(z,0) = u(z) on D, (3.2.10)

w(z,t) = u(x) on dD; x (0, 00).
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Moreover, the right hand side of ((3.2.8) is the maximal subsolution of (3.2.10).

For the local problem in a ball of radius R centered in x, we have a Local Comparison
Result. Indeed, fixed m € N, we have the following local comparison result for the local Ishii

problem associated to the compact control set A™.

Theorem 3.2.2 Assume hypotheses (HB) and (HC). Let x € RY, R > 0, let u be a bounded
subsolutions of (3.2.4) and (3.2.5)), v be a bounded Isc supersolution of (3.2.4)) in Br(z),
we obtain

max (u —v)" < max (u—v)*.
BR(m) 8BR(93)

Before presenting the proof of Theorem [3.2.2, let us see its fundamental consequence, which
is the local comparison result for the local version of the Ishii problem associated to the

unbounded control set A.

Theorem 3.2.3 Assume (HA), (HB) and (HC). Let x € RN, R > 0, let u be a locally
bounded subsolution of (3.2.1)) and (3.2.2)), let v be a locally bounded Isc supersolutions of

B21). Then

max (u —v)" < max (u—v)*.
Br(z) 9Bg(z)

Thanks to the definition of A™, since u is a locally bounded subsolution of and
(3-2.2), then u is a subsolution of and (3.2.5). Furthermore, thanks to Proposition
B.1.1] we have v is a supersolution of for some m € N. Thus, u and v satisfy the
hypotheses of Theorem [3.2.2] and the proof is complete.

To prove Theorem we need some previous results. The next Theorem plays a fun-
damental role. It gives an alternative for the supersolutions, or they consider trajectories that
stay on the hyperplane for a while or the supersolutions satisfy that the tangential Hamiltonian

is greater or equal to zero.

Theorem 3.2.4 Assume hypotheses (HB) and (HC). Let v be locally bounded Isc supersolu-
tion of (3.2.4). Let vy = (x,0) € H. Fix R > R > 0. Let D; C §; be a bounded open domain
with C*-boundary such that Bp(xo) N Q; C D; C Bgr(xo) N Q;. Consider ¢ € C*(D; N'H)
such that ' — v(2’,0) — ¢(2’) has a local minimum at x{,. Then, either

A) there exists n > 0, and a sequence x;, € D; that converges to xy = (x,0) as k goes

to 0o, such that v(xy) converges to v(xy) as k goes to 0o, and, for each k, there exists a
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control of (-) € AJ" such that the corresponding trajectory Y, (s) € D; for all s € [0,n] and

o) = [0 (Y5, (5). k() s + u(Y ()e ™

or

B) H}' (xg,v (xg) , Dyd(xg)) > 0.

We are going to prove that, if A does not hold, then we have B. To do so, we first claim
that (z{,0) is an strict local minimum of v(2’,0) — ¢(2') + |2’ — x}|* in B,.(x}) € RV~ for 0 <
r < R. Then we define the function ¢(2', xy) = ¢(2') and we have D¢ (x) = (Dy¢(a'),0).

For € > 0 and fixed 6 € R, consider

2
L2, zn) = v, 2n) — o(2/, 2n) + |2 — 20]* — 0z + %V (3.2.11)

Since (2, ) is Isc and B,(z9) C RY is compact, then T, achieves its minimum in B, ()
in z., and

[e(ze) < Te(mg) = v(xp,0) — @(x0") = C.

We are going show that z. — z¢ when ¢ — 0. Since I'.(z.) < C, (v — ¢) is bounded in

B,.(zo) and by ([3.2.11)), there exists a constant C" satisfying

2
0< <x;)N <O+ 8(we)w — |re — wo]* < C"+ 8(z)w.

Thus

(z)y < C'€ + 5(z ).

Since z. € B,.(x¢) and ¢ is fixed, then lim. ,o(z.)y = 0 and hence x. — (y,0) for some
y € RN~1. Then, either v(x},0) — ¢(xo') < v(w) — d(2!) + |z — |? for € small enough or
either there exists a subsequence satisfying v(z.) — () + |z — zo|? < v(zf,0) — P(z0').

Case a) if v(x),0) — ¢(z0’) < v(z.) — @(2) + |z — T0|? for € small enough, then

v(25,0) — d(zo”) — d(ze)w +

€
Thus,
(xe)%\f . (Ie)%\f B
= <d(x )y = lg% S 0.
Therefore, —@:—2)?\’ +0(x)n converges to 0 and for € small enough and there exists a constant

Cr such that |[I'.(z.)| < Cr.
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So there exists a convergent subsequence (I'.(x.)). and we have the convergence as ¢ goes

to zero of

' (xf)?\/
U(l’e) - ¢(xe) = FE(IE) - + 5(IE)N~
Since v is Isc, thanks to (3.2.12)) and lim. ¢ z. = (y,0), we have
/ _ / :
o(z.0) ~ Glag) >l ()

= lim (v(xg) — ¢(x!) + |re — m0)? — 52 )N + (iﬁv)

= lim (v(we) = d(at, () + [z = 2of?) (3.2.13)
= lim (v(2) = 8(y,0) + (3 0) — o]

Zv(yv ) &( 0)+|(ya )—ZE0|2-

Since 1z}, is strict local minimum of v(z’,0) — ¢(z/,0) + |2’ — x{|?, then

v(z4,0) — ¢(x4,0) = v(y,0) — ¢(y,0), and (y,0) = xo. (3.2.14)

Thhanks to (3.2.13) and (3.2.14)), we have the result

11_1)?% v(xe) = v(xg) 11_1)% T = Tp.

Case b) If v(zl, (z)n) — o(zl, () n) + |ze — 20|* < v(),0) — d(xo'). Since v is Isc,

taking limits in the inequality, we have

v(y,0) — (y,0) + [(y,0) — (25,0)[* < limeo(v(al, (ze)n) — @l (T)n) + [z — 20]?)
< (g, 0) — @(x0").

Since z, is strict local minimum of v(z’,0) — ¢(2/,0) + |2’ — z{|?, then

(:EO? ) 5('1'07 ) U(y,O)—g(y,()),

and (y,0) = zo. Moreover

11_{% v(ze) = v(xg).

Thus, we have proved that lim,_.g z. = xg.

Let us consider the test function

2
- T
V(2 xy) = ¢(2',xn) + 0N — E—IZV — |z — 20|

Case 1: Assume that the sequence (z.). that converges to xy, satisfies that z. € H, V6 €

R. In this case, we will prove that B) occurs.
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Thus, the sequence is given by x. = (z.,0). By definition, x. is the local minimum point
of v(a’,0) — ¢(2') + |x — z0|* at B,(x}). Since x}, is a strict minimum point, we have 7’ = .
Since v is a supersolution of ([3.2.4)), considering the minimum point z. = xj, of v — ¢, =T,

then

f(0) = max{H;(zo, v(x0), (Dud(20),9)), Ha(o, v(20), (D d(20),0))} > 0

we have f is coercive and convex, since it is the maximum of H; and H, which are convex
and coercive functions. In fact, f(s) := H;(xo, v(z0), (Dyp(x0),s)) for i = 1 or i = 2, and

there exists a; € A7 such that

F(1 = 1)31 + 162) = =bilwo, i) - (Dyd(ah), (1 — j1)s + 16) — Lo, @) + Ao(o)
= (1 1) (~bileo, @) - (Dadlah), 81) — Lo, @) + Ao(ay))
1 (i, @0) - (Dad(h), 82) — l(wo, o) + Av(ao))
< (1= W) f(8) + uf (5.

Thus, f has a global minimum point at J, and we have
0e 0 f(5).
Let a € A" U AT* and consider a new function

fa(0) := =b(xg, ) - (Dyd(xy),d) — U(z0, ) + Av(xo)

where (b,1) = (b;,1;), when o € A", Then we have

f(6)=sup [fa(0)
a€AT'UAT
Since f,, is differentiable and 0~ f, () = b(zo, @) - ey, by classical result of Convex Analysis
0™ f(6) = co( U 0™ fa(0)) = co( U b(xg, ) -en).  (3.2.15)
QEATUAL fa(8)=F(5) aEK, fa()=1(6)
Since 0 € 0~ f(9), by (3-2.15)) there exist 71, -+ ,r; > 0 with %, 7; = 1 such that
k k1 k2
0= (Z r:b(o, an-)) ey = [ Yo rubi(zo, ony,) + Y r2iba(wo, iy, ) | - e,
i=1 i=1 j=1
with ki + ko = k. Let p:=> 2 ryand 1 —p = Zfil r95. By convexity of B;(x), there exist
af € AT, o € AD with (af, o, 1) € Ao(xg), such that

ko

r 1 r * *
0= (MZ —by (0, 00y,) + (1= ) Y ] 2 ubz(on,Ofrzg)) ey = (pbi(zo, ) + (1 — p)ba(wo, a3))-en.

j=1=
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Moreover, thanks to ([3.2.15)), we have forall i =1,... kyand j =1,... ko

f(0) = =bi(wo, ) - (D((),0) — Lo, ay,) + Ao (o)
f(0) = =ba(o, ;) - (Dpp(5),0) — la(0, vy, ) + A0 (o)

Since (o, o, 1) € Ag(x), then by(xo, i, a3, 1) - (den) = 0. Thus

0 < f(0) =i, f(O)r:

= (=SB rubi (0, an)) - (Dud(g), 8) = (Siky i (w0, a,,) ) + ((SE rido (o))
(= 282 rasba(o, o)) - (Da(ah),8) — (S82 7oy (w0, sy ) ) + (82 725 M0(o))
= —pby (w0, }) - (Dyud(7),8) — pli (w0, @F) + pdv(o)
— (1= m)ba(wo, a3) - (Dudb(f),8) — (1 = )l (w0, a3) + (1 = p)Av(o)
= —by(0, af, 05, 1) - (Du(af), 0) — (o, @f, 3, 1) + Ao (o)

< Hy (o, v(20), Dy o(x())

+

Thus, we are on case B).

The arguments in Case 1 work whenever f(§) > 0 even if z. is not in H.

Case 2: Let f(6) < 0 and z. € Bp(xg) \ H for € small enough, then . € D;. Thanks to

Theorem [3.2.1] in the domain D; we have

tAOe

v(xz.) > inf LY (), a%(s))e ™ ds + (Y, (t A 6,))e M), (3.2.16)

ae(')ﬁé 0
Assume that the infimum in ((3.2.16)) is reached for (a(-),6.) which exists due to the

convex hypothesis (HC), then
tAbe ) )
o) = [ L ()% (s)e s + o(VE (A B))e N0,
0
Since we are assuming that A) does not hold, we have lim. 0. = 0. Then for ¢ small

enough

Te

v(xe) > /096 LY (s),a(s)e o ds + v(Y] (0c))e . (3.2.17)

We claim that for ¢ small enough Y} (6.) ¢ OD; \ H. This follows from the fact that
there exists M > 0 such that HbiHLoo(ExA;ﬂ) < M, lim.,oz. = x9, lim.,00. = 0 and
Bg(wo) N C D;. Whence Y/ (6.) € HNOD;.

Now we subtract ¢ (z.) in and we assume that v(z.) — 9. (z.) = 0 then

0= ()~ elw) > [ LV (s),a(s))e s + o(VE ()0 — i) (32.18)
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Since . is the where the minimum of v — 1), is attained, then

0= —’U(,CL’€) + M(»ﬂ) > _U(YZE (96)) + ¢€(Yxl€ (06))

Thus adding —v(Y,. (0c))+(Y, (6.)) to (3.2.18)), and by the Fundamental Calculus Theorem,

we obtain
0> [ L (5), 0% (s))e s + oY (B) (e — 1) + (VA (6) — ()
- / (V7 (5),0%(9)e s+ o(Vi (1) e = 1)+ [ [DubV (5)) + en] - (Y (5), a(5))ds
=2 +<x;3N
(Y, (

D NC )N > 0, because (Y (0))n = 0. Then,

Since —

o
IA

[ ) a%(sDe™ = bV (5).a%(5) - [Duo (Y2, (5) + Bew] ds — (Y2 (0™ — 1)

< /096 sup (—Li(Y (5),a)e ™ = (Y] (s),0) - [Dye(Yi (5)) + O)en] ) ds

ace AT

—o(YZ(6)) (e — 1),
(3.2.19)

For s < 0, there exists M > 0 such that [[b]| 57, am) < M. Thus,
Y, (5) = ol < |xo — | + [V, (5) — x| < |wg — 2| + MO,
Denote 7. = |xg — x| + M0.. Since AT is compact, then the function

Cly,t) = sup [=li(y, ai)e™ = bily, @) - [Duoly) + den]]

OL»L'EA;m
is continuous. Moreover, since s < 0, then (Y (s),s) — (2o,0) when € goes to 0, ans thanks

to the continuity of the function (, there exists R, > 0, such that

C(Yz(5),8) = C(w0,0)] < Re, C(Y;.(5),5) < ((0,0) + R

and
lim R, = 0.
e—0
Rewriting (3.2.19)), we have
0 < / s)ds — (Y (0.)) (e — 1)
/ (20, 0) + Ro)ds — oY, (00)) (e — 1) (3.2.20)

= (C(20,0) + Re) O — v(Y, () (e = 1)
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We recall that lim._,¢ v(z¢) = v(xo) and lim,_,o 0. = 0. Taking limits as € goes to 0 in (3.2.17)),
we have v(z) > lime o v(Y} (6.)). Moreover since v is Isc then lime_,ov(Y} (6.)) > v(zo).
Thus lim, v(Y} (0)) = v(zp). Dividing (3.2.20)) by 6. and taking limits as € goes to 0, we
obtain

0 < ((0,0) + M(zo) = H; (z0, v(x0), Dyyp(y) + den) .

Therefore, f(&) > 0 which is a contradiction. Thus, the proof is complete.
To prove the Theorem we will also need to regularize the subsolution, we will do this

via convolution. Let
V =Bg(0) and V.:={zeV|dist(x,0V) > 2¢}.

In the following result we will consider the convolution of u with a C° (RN 1) function. We will
denote this convolution by u,. In particular, we can define it as follows. Let p € CF(RN1),

with [rv—1 p(y)dy = 1 and supp(p) C B1(0). We define

Pe(y) = ENl_lp(z)-

For any x € V., we define

ue(x) = /RM1 u(@' =y, 2n)pe(y)dy.

We will need the following lemma which states that any convex combination of subsolutions

is a subsolution, under suitable convex hypotheses on the operator that defines the equation.

Lemma 3.2.5 Let V be an open set of RN x R x RY. Assume that G :V — R is |.s.c. and

G is convex in the last two variables, that is, for piy + s = 1

G(z, pary + para, pupr + pope) < Gz, r1, p1) + G (z, r2, p2).

Then any convex combination of Lipschitz continuous subsolutions of G = 0 in'V is a subso-

lution of G =0 in V.

We only have to prove the result for a convex combination of two subsolutions w; and wy of
G =0, given by

W = fwy + fowe,
with g1 + po = 1. The general case involving n subsolutions for n > 2 derives immediately

by iteration of the result. We assume without loss of generality that p; and ps are strictly

positive.
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Let ¢ be a smooth test-function and & € B,.(T) be a local strict maximum point of w — ¢

in Bx(Z) C B,.(T). We use a tripling of variables by considering in Bz(Z) x B:(Z) x B(Z) the

function

|21 — xf? _ M2|5172 —af?

(1, 9, 7) 1= pawi (1) + paws(z2) — d(z) — 1 - -

Let (xf, 25, z¢) be a local maximum point of . we have (z5, x5, x¢) converges to (Z,Z, %) as
e goes to 0. Thus, z{ is local maximum point of

o — 2t ey — 2P
I — fle————

piws (1) + powa(z5) — d(z°) — € €

Hence, x{ is local maximum point of

e x_x62 x,e_l.eQ
W1($1)+&W2<CC§)_¢< )_| 1 ‘ _&| 2 ]

M1 M1 € 1 €
Then Vw; is given by
€ __ €]2 € _ .€|2 9 €
v (_M?M(I;) " B(xc) n |z — x| +&L@"2 x| ) _ (x1— ) (3.2.21)
M1 M1 € 1 € €
Since wy is a subsolution of G = 0, and thanks to ([3.2.21]), we have
2 _ €
G (xi,wl(ari), M) <0. (3.2.22)
€
Analogously, we obtain that
2 €
G (fcé,wz(xé), M) <0. (3.2.23)
€
Finally z¢ is a local maximum point of
€ — 2 € — 1 2
o (25) + () — o) — T8, [P
Whence,
2(x§ — x¢ 2(x§ — z¢
Vo) = - )¢ 2t - ) (3.2.24)

Since w; is Lipschitz continuous due to (BARLES| 1994, Th. 2.2 p. 17), |M| < (;, where

C; is the Lipschitz constant of w;. Extracting if necessary a subsequence, we can assume that
the gradient |M| converges to a function that we denote by P; as ¢ goes to 0.

Taking limits as € goes to 0 in (3.2.22]) and , and since G is lower semi-continuous,
we obtain that

G(7,w1(7), 1) <0 and G(&,ws(7), P2) < 0. (3.2.25)
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Because of the continuity of V¢, taking limits as e goes to 0 in (3.2.24]), we obtain
Vo(T) = Py + paPs.
So, thanks to (3.2.25)) and the convexity of GG, we finally get

G(Z,w(T), Vo(I)) = G(T, pawr(Z) + powa(T), Py + p2P)
< G (Z,wi(Z), Pr) + poG(Z,ws(T), P)
<0,
which proves that w is a viscosity subsolution of G = 0.

In the following result we proof that the Hamiltonians associated to compact control sets,

H" and H7', are convex, continuous and we give some bounds of these Hamiltonians.

Lemma 3.2.6 Under hypotheses (HB) and (HC). H!™ is continuous, convex in the last vari-

able and satisfies that there exists M > 0 such that

|H"™ (z,u,p) — H"(x1,u,p)| < M|z — x1||p| forz,zy € Q; and (u,p) € R x RN,
(3.2.26)

Moreover, H7' is continuous, convex in the last variable and satisfies
\H (2,0, q) — HMNZ,u,q)| < M|z—Z||lq| forz,Z€ H and (u,q) € Rx RN~'. (3.2.27)

Let & = (a1, aw, it) € Aj'(Z) such that

Hi(Z,q) = —by(z,a) - ¢ — ly(z,@).
We will show that there exist & € Ag(z) such that

b (2,@) = by (2,0) + (|2 — 2|) (3.2.28)

b (2,0) = by (2,0) + (|7 = 2])

with ¢ and 7 going to 0 when |z — z| goes to 0. We will prove this approach for by, the

proof for [ is analogous. First, let us define
Gi(|z = 2[) := bi(z, ) — bi(z, ).

Since b; is Lipschitz, then |6;(|z — Z|)| < Cy,|z — Z|, where Cy, is the Lipschitz constant of b;.

Consider 3 := min{ 57|&1§Z*5)|, 57"?2;%2)'} and define

oillz — 2)) == (1 — B)(bi(z, &) + &:(]2 — 2])). (3.2.29)
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Note that
loi(lz = 2| < (1 = B)(|bill oo (v e amy + |Gi(] 2 — 2])]).

Thus, 0;(]z—2]) is going to 0 when |z —Z| goes to 0, because 1 — 8 = max{ |&1(f{2>|, ‘&2(?2)‘}.

Now, we proof that there exists &; € A]" satisfying

Indeed, by definition of &;(|z — z|), we have ]%ZB_ZD\ < 9, and there exists &; € A" such

that
Bbi(z,a;) = B(bi(z,a4) + 64|z — 2))
= Bbi(z, @) + (1 — p) 272D (3.2.30)
= bi(z, a;).
Thanks to and ([3.2.30]), we obtain
bi(z,c;) = Bbi(z, ;) + (1 — B)bi(z, i)
= bi(z, ) + (1 = B)(bi(z, @) + 63(]z — )
=bi(z, ;) + 0,(|]z — 2|).

Furthermore, we have

[b1(z, 1) + (1 = [1)ba(2, @2)] - eny = Babi(z, an1) + (1 — [1)ba(2, a2)] - ey = 0.

Hence, & = (a1, do, 1) € Aj'(z) and

where 0 = jioq + (1 — ji)os. Therefore,

H%”(E, Q) = —by (270—5) q — ly (57 5‘)
= —bu(z,&)-q—o(|z—2]) g —ly(z,&) — (]2 — 2])
< Hp(z,q) —o(]z = z2]) g — (|7 — 2]).

Symmetrically,

Hi(z,q) < HP(Z,q9) — (]2 — 2]) - ¢ — 7(|z — 2])

with & and 7 going to 0 when |z — z| goes to 0.

[H7 (2,0)—H7' (2, 9)| < max{(|a(1Z — 2])lg| + [7(1Z = 2D]), (o(|Z = 2Dllgl + |v(1Z = 2D}
(3.2.31)
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We denote by m(|z — z|) the right hand side of the inequality (3.2.31]). we have m goes to 0
when |z — z| goes to 0. Thus,

Hy'(2,q) < Hi'(Z,q) + m(|z = 2)),  Hy'(Z,q) < Hf' (2,9) +m(|Z - 2).

In the following result we prove that if u is a subsolution of the Ishii problem associated
to a compact control set locally, in a ball of radius R, then the convolution u, minus an term
that goes to zero as € goes to zero, is also a subsolution of the Ishii problem in a ball with a

slightly smaller radius.

Lemma 3.2.7 We assume hypotheses (HB) and (HC). Let u be a locally Lipschitz subsolution
of (3.2.4), in the ball of radius R. Let € > 0. There exists a function { : Rt — R*
with sli%l ((s) = 0 such that the function u. — ((€) is a viscosity subsolution of ([3.2.4),
in the ball of radius R with R = R — 2e¢.

In this proof, we denote H7' and H™ by G. we have u.(z) := [prv-1 u(z’ —y, xn)pe(y)dy
is smooth in the first N — 1 variables. Let us approximate u.(z) by Riemann sums
ug (z) =

Viu(a' —ej,an)pele;) =D pju(a’ —ej,xy)
i =

1
where e; € B.(0), and p; := V,p.(e;) and V; is the volume of the j-th block of the partition.
Thus,

it T v-e.:/ ()dy = 1.
nggoj;u; ngglo; ipele) = [, o pew)dy

We exchange p,, by 7, such that 7, + 7' u; = 1. Clearly 11, — 11, goes to 0 when n goes
to oo. The function
a; (2 xy) = u(2’ —ej, xpN)

approximates well a subsolution. Indeed, consider the test function ¢ and (z(,z%/) a local

maximum point of
aj(l’/, :EN) - gb(l‘/v xN)
Consider ¢(2', xy) := ¢(a’ + ¢j, xx), then Vo(2', xn) = V(' + ¢, ). Thus, (2}, 2%) is

a local maximum point of

(2, an) — o2’ —ejan) = u(a’ —ej,an) — ¢(a' — ¢j, ).

Hence, (2, — e;, %) is local maximum point of u — ¢. Since u is a subsolution of G then

G(($6 - €j>$?v)7u($/c> - ej?*%?\f)’ V(;Ccé) — €5, x?\f)) <0



66

where Vo((z) — e, 2%)) = Vé(xh, 2%). Thus,
Since e; € B.(0) and thanks to Lemma [3.2.6 we have

|G (w5, %), G5 (wg, 2y ), V(ag, ay)) — G(wg — e5,2y), wlxp, ), V(g 23))] < nfe).

(3.2.33)

where 7)(€) goes to 0 when € goes to 0. From ([3.2.32)) and (3.2.33)), we obtain,

G ((wg, 7)), (2, 2), V(. 2%)) — n(e) < 0.

That is, @; is subsolution of G—n(€). Thanks to Lemma(3.2.5] the convex combination defined
by uy = 2?2—11 Ui + [, Uy, is subsolution of G —n(e€). Taking limits as n goes to infinity, we
have

lim w (2, zy) = ue(2’, 2y) = lim ud (2, zy).

Moreover note that u,; and w; are equi-Lipschitz equi-bounded and consequently the conver-
gence is uniform. By stability, (BARLES, 1994, Th 2.3 p.21 ), u, is a subsolution of G — 7(e).

. e
So, we can take ((¢) := 1.

Let us prove below the main local comparison result of this section.

Proof of Theorem [3.2.2| Let V, := {x € Bg(x)| dist(x,0Bgr(z)) > 2¢}, and define

Ue = Ue — C(E)a

where ( is the function in Lemma[3.2.7] Let
M. := sup(u, — v).
Ve
Since . — v is usc then the supreme is achieved on the compact V. Thus, there exists Z. € V.
such that M, = u.(T.) — v(T.). If M. < 0 we have the result. So let us assume that M, > 0.
Casel: 7, € O, NV,

There exists > 0 such that B,(z.) C §; N V. Consider the usc function

E5(e,y) = @) —vly) - LIz o,

Let (z5,y5) be the maximum point of {3 in B,(T.) x B,.(Z.) and denote

_ 75 —ys*
M{ = €5(w5,5) = e(w5) — v(ys) — ﬂT — [Te — z4/” (3.2.34)
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Thus

) — [Ze—Zel®> _ =
2

S

A

=
||

ae(fe) - U(fe
_ 2
< iie(wg) — v(ys) — 5 — |7 — )
<20 — il |z, — g2
where C' > max{||tc||ze(v,), ||v]|c(v,) }. Consequently,

25 — ys|?
/82

That is why, limg_,g xp = z = limg_,¢ yg. Moreover from ([3.2.34)), we have

+ 7 — 2p)? < 2C = |75 —ys| < V203 (3.2.35)

M.

I
=

B
€

IN

tc(rg) —v(yg) — |Te — 25/

Taking limits as 3 goes to 0 and since —v is usc and u, is differentiable, we obtain
M, < éir% MP =i (2) —v(2) — [T — 2|* < () — v(2).
—
Since T, is an strict maximum of u.(z) — v(z) — |Z. — x|* in V, then z = T, and

lim M? = M.. (3.2.36)

B—0

Thus, taking limits as 3 goes to 0 in ([3.2.34)), we have

g —yel®
lim =0, (3.2.37)

lz—yg|?
2

B
in B,(z) and ys is a minimum point of v(y) — (ﬂg(m/g) — ly_ﬁ#F — |z — x5|2) in B.(7). By

We prove below that x5 is the maximum point of u.(z) — (U(yg) + + |z — x5|2)
definition, W;%P + |T. — 25| + MP = u.(z5) — v(ys). Since limg_,o MP = M, > 0, then
MP > 0 for 3 small enough then i (z5) — v(yz) > 0.

Since u,, v are respectively subsolution and supersolution of H;, and b; and [; are Lipchitz,
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we obtain
0 < (58l 4z, — wp + MY
= Mue(zp) = v(yp))
= H; (25, 0c(wg), 252 ) — H, (w5, 0(ys), 2742)
< Hi (yp,0(ys), 25220) — H; (w5, v(yp), 22720

S _bi(y57 CYy) ’ Z(x%;yﬁ) + li(yﬁa Oéy) - <_bi(xf57 Oéy) M +l (xﬁa Oéy))

< Clag — ysl (22222 + 1)

= O (5525 + s — )

where o, € A7" is the control for which the supremum of H, (yﬁ, (ys), M) is attained.
_ 2

Since limg o M = M,, limg_o 22220 = 0, lims_q |25 — ys| = 0 and lims_q |25 — 7| = 0,

taking the limit as § goes to 0, we obtain a contradiction.

Case 2: T, €e HNV,
Recall that for r small enough, B,(xz.) N Q; C V.. Since u. is a subsolution and it is

differentiable with respect to the first NV — 1 variables, we have
HT(Tea ﬂe(fe)’ DHQE(TE)) S 0.

Now we consider a set D; as in Theorem [3.2.4] We apply this Theorem for zy =7, 0 <7 <r
such that Bx(Z.) N $; C D; C B.(T.) N ;.
Either we are in case B) Hy(Z.,v(T.), Dy (Tc)) > 0. Therefore,

Mue(Ze) — v(Ze)) = Hr(Te, uc(Te), Dytie(Z.)) — Hr(Te, v(Te), Dyt (z,)) < 0.

Thus, M, <0, what leads to contradiction.
Or either we are in case A). Then there exists a sequence x; — T, and v(x) — v(T,)

such that
" i k i -
o) = [ (Y (9),0k(0) + (Y, () (3.2.38)
with Y/ (s) € D; for s € [0,7)]. Consequently the exit time from D; of this trajectory is greater
than 7). Since . is subsolution of (3.2.4)), and thanks to Theorem [3.2.1 we know that

felan) < [ (Vi (), 0b(0) + 0 (Y ()™, (3:2.39)
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Subtracting inequalities (3.2.38)) and ([3.2.39)), we obtain

te(ze) = v(ze) < @Yy, (1) = v(Yy (0))e™ < Mee™. (3.2.40)

Taking limits in ([3.2.40]) as k goes to infinity, we have
M, < M.
which is a contradiction. Thus, if M, = u.(Z.) — v(Z.) > 0 then T, € IV, that is

max(u, —v)" < max(a, —v)*

€ 1} €

Since u, is continuous then letting € go to 0 , we obtain

5o +t < oo +
m‘z}x(u V)" < né%x(u v)".

3.3 GLOBAL COMPARISON RESULTS

To obtain global comparison result in RV, we need two extra hypotheses that we denote
by LOC 1 and LOC 2. Let C, be a set of subsolutions with certain growing hypotheses and
let C* a set of supersolutions with certain growing hypotheses, which will be specified in the
examples in section [3.5]

LOC 1: Given a subsolution u € C, and supersolution v € C* then there exists a sequence
of subsolutions (ug)s such that for all x € RY,

|xl\1l>noo(u6 —v)(z) =—00 and %12% ug(x) = u(z).

LOC 2: Let z € RY, r > 0, and consider ug of LOC 1. There exists a sequence (ug- ), of
subsolutions such that

ugy(z) —ug(z) > ugy(y) —up(y) +d(y) forall yedB, () with d(vy)>0.

Moreover, ug,(2) = ug(z) as v — 0 for any z € B,(z).
The following result states that if we have local comparison results as in Theorem [3.2.3]

then we have also global comparison results for the problem (3.0.1)).
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Theorem 3.3.1 Under the hypotheses LOC 1 and LOC 2, Local Comparison Result implies

Global Comparison Result, that is
u(z) <wv(x) Vo e RY.
Thanks to LOC 1 there exists 73 € R" such that

Mjs := max(ug — v) = up(zs) — v(zp).

Assume by contradiction that Mz > 0. Thanks to LOC2, there exists a sequence of subsolu-
tions (ug,), that is an approximation of ug. We will use Local Comparison Results with ug.,
and v on Bgr(xzg), that is

+ +
max (ug, —v)" < max (ug, —v)".
BR(l“ﬁ)( By ) = BBR(xB)( By )

We divide the proof in two cases:

Case 1 maxg - ~(ugy —v) <0.

Since Mz > 0, and thanks to LOC 2, we have lim,_, ug,(x3) = ug(zs), then for  small
enough we have a contradiction with maxwxﬁ)(uﬁ7 —v) <0.

Case 2 maXWm)(ug7 —v) > 0. Thanks to the Local Comparison Result and hypothesis

LOC2, we have

uﬂv(xﬁ) —v(rg) < maX@BR(xﬁ)(uﬁv —v)
< MaXppy(ey) (Up — V) + MaXopy(ay) (Usy — Ug)
< Mg + (ugy(zp) — uplzp)) —d(v)-

Consequently,

Mp = ug(ws) — v(wg) < Mg — d(7),

which is a contradiction. Therefore, Mz < 0 and ug(z) < v(z) for any x € RY. Taking limits

as /3 goes to 0, we obtain that u(z) < v(x) for any x € RV,

3.4 U, MINIMAL SUPERSOLUTION AND U MAXIMAL SUBSOLUTION OF ISHII PRO-
BLEM

In the result below we prove that U} is a minimal supersolution of the Ishii problem.
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Proposition 3.4.1 Under the hypotheses (HA), (HB), (HC), LOC 1 and LOC 2, U, is a

minimal locally bounded Isc supersolution of the Ishii problem (|3.0.1]).

Uy is subsolution of (3.0.1) and (3.0.2)), then given a l.s.c supersolution v of (3.0.1).
Due to Theorem [3.2.3] we obtain Local Comparison and Theorem provide us the Global

Comparison Result, that is U, (z) < v(z) for all z € RY.

Now, we will introduce several results that will be used to prove that U;{ is @ maximal
subsolution of the Ishii problem.

The result below can be found in (BARLES; BRIANI; CHASSEIGNE, 2013). It states that any

subsolution of the Ishii problem is a subsolution of the regular tangential Hamiltonian.

Theorem 3.4.2 Let u be a subsolution locally bounded of (3.0.1) then w is subsolution of
3.03).

See (BARLES; BRIANI; CHASSEIGNE, 2013, Th. 3.1).

The following theorem is similar to Theorem . It gives an alternative for U}, or it
considers trajectories that stay on the hyperplane for a while or it satisfies that the regular
tangential Hamiltonian is greater or equal to zero. The difference here is that it considers the

regular tangential Hamiltonian, and the result is only valid for the supersolution Uf,..

Theorem 3.4.3 Assume hypothesis (HC). Let o = (x},0) € H. Fix R > R > 0. Let
D; C Q; be an open bounded domain with C'-boundary and such that D; N ‘H # (), and
By(z0) NQ; C D; C Bgr(xo) N ;. Consider ¢ € C(D; N'H) such that ¥’ — Ujn(2',0) —
¢(2") has a local minimum at . Then, either

A) there exists n > 0, and a control «;(-) € A" such that the corresponding trajectory
Y} (s) € D; for all s € (0,n] and

Uin(ao) > |16 (Y3, (5). a(s) eds + U (V3 ()™

or

B) (Hy')"™ (IoaUXm (@o) »DH¢<$O)) > 0.
By Lemma there exists 7" and (X ,a”) € 7% (x0) such that for s <T
Uin(z0) = /0 UXE (), " (t)e Mdt + Ufm (X:ETO (s)) e,

If case A) does not hold then there exists sequence t; that goes to 0 as k goes to oo

such that X/ (t;) € 9D;. However, for k large enough X (t) ¢ 0D; \ H. This follows from



72

the fact that there exists M > 0 such that ||bs|[ 5y am) < M, d(xo,0D; \ H) > R and
(Bg(wo) N€Y) C D;. Whence X (tx) € H N dD;. Consequently,

tk
U (0) = /0 UXL (), 0 (8)e ™ Mdt + Uf (X7, (t)) e

We assume without lost of generality that the minimum Ujf..(z},0) — ¢(x}) is equal to 0,

then
3(rh) > [ UKD 1), 0T (0))e Nt + 6 (X, (1)) e

Let us define
Algl(s) == X (s) - VO(XT (5)) + Ao(X ] (5)) — U(XT (5), 0" (s)).

Then
/ " Alg](s)ds > 0. (3.4.1)

Now, assume by contradiction that
Hi™* (20, U () , Dyy(o) ) < 0. (3.4.2)

Define ef := {s € (0,t)) : X1 (s) € (Br(zo) N )} and %, = {s € (0,t) : X1 (s) €
(Br(xo) N'H)}. Since X is regular and thanks to Lemma m HZ7""Y is continuous, then
by (3.4.2)), for k large enough, we obtain

/ " AG](3)1.s (s)ds < / P (XD (5), Uk (X2 (5)) , Du(XE (5))) ds < 0. (3.4.3)

On the other the hand, since 5f is an open set then

i
L™

& = U (Cﬁjvdﬁj)

Jj=1

with X7 (), XT (dF,) € H and XL = b;(XZ, ) on (cf;, d¥;). Consider d(z) := x, then

zg) 2,77 1,]
k.
0= d(X;(dﬁj)) - d(XZO(cﬁj)) = /c].“ .’ bi(XmTo(s), a(s)) - ends. (3.4.4)
Furthermore,
K dr . dr
/k "hi(XT (), a(s))ds = /k T bi(XT (), a(s)) — bi(wo, a(s))ds + /k 7 bi(20, ufs))ds.
Since
dk .
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Therefore,
k

/d bi(X7 (5), als))ds = / d bi(wo, a(s))ds + O(k) (3.4.5)

(%) 2%

with @ - Otk )k 5 — 0 when k — co. Now we calculate the Riemann integral fk” b; (3: a(s))ds.
.5

k
For each k. We partition (df; — c}';) in n equal parts, I1,--- , I, of Iength . For each

z < n, we choose s* € .. By convexity of B;(z,) there exists a""* € A such that

n dk o n
3 2= iy, (7)) = DI

z=1

(20, a(s%)) = (df; — e )bi(o, i)

3\'—‘

Since B;(xy) is a closed set, taking limits as n goes to infinity, we find o/“* € A" such that

dk .
/czc " bilwo, als))ds = (di; = ¢y )bixo, a7) (3.4.6)
By (3.4.6), (3.4.4) and taking the inner product in (3.4.5)) with ey, we obtain
O(k) - en
kx X Lk o
bZ}J}N = —bi (‘TO’O‘ ) "N = —m — 0. (3.4.7)

The above definition, plays a key role in approximating a % by regular controls. In fact, let

6 > 0 and define
§ —2|bh* | 6 — 2|5 o]
k. 14,N 24N
Bi = mln{ 5 J , 5 J .

Since b \ goes to 0 when k — oo then 37 — 1 when k — oo.

If 5 =1, then [} y| = 0 = |b5* |- Thus, we can take

5=k, such that bi(zo, ki) - ex = 0.

On the other hand, if 5 # 1. Since for k large enough |3¥] < 1 and |”N‘ < 2, then by

convexity of B;(x), there exists aﬁj* € A" satisfying

b o) o= B o, ol () + (1 — ) (g )
:ﬁf( (.7:0, k*>+buNeN>

Therefore, due to (3.4.7), b;(wo, o)) - ex = 0, then a}5* € Ag™ (o).

k

L7 AWl (s)ds = (df; = k) (o, al"(5)) - Volao) + Ao(o) = biwo, al" () + O(k)

0,3

< (dh; — E ) HP (20, U (0) . Do) + O(k).
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Due to (3.4.2)), for k large enough

k

/ 7 A[g](s)ds < 0. (3.4.8)
From (3.4.3)) and ([3.4.8) we obtain that,
t
/’“ A[g](s)ds < 0
0

which is a contradiction with ([3.4.1]).

In the following result we obtain a local comparison result for Ujm in the ball of radius R,
where we compare U, with any subsolution of the Ishii problem, and not with subsolutions
of the Ishii problem and the tangential Hamiltonian at the same time, as we did in Theorem

3.2.21

Theorem 3.4.4 Assume hypotheses (HB) and (HC). Let u be a locally bounded subsolution
of (3.0.4). Let x € RN, R > 0, we obtain

max (v — Ul.)" < max (u— Ul.)".
BR(x)( Am) _8BR(I)( Am)

The proof is analogous to the one in Theorem [3.2.2]

As before, we regularize u via convolution, obtaining u. in V; := {x € Bgr(z)| dist(z,0Bgr(z)) >
2¢}. Define 4 := u. — ((€), where ( is as in Lemma , and M, := supy_(tic —Ujn). Since
e — Ufn is continuous functions then the supreme is achieved on the compact V.. Thus,
there exists . € V. such that M, = u.(z.) — Utn(x.). Let us assume that M, > 0. We
divide the proof in two cases:

Casel: z, € ; NV, and case 2: z. € HNV,.

The proof is the same as in Theorem for case 1. For case 2, we change HJ}' by
H7"". Thanks to Theorem [3.4.2] since @, is a subsolution of the Ishii problem (3.0.4)), then
we have

H" 9w, uc(xe), Dyuc(ze)) < 0.

Then we apply Theorem [3.4.3] and the rest of the proof is analogous.

The following results states that U] is the maximal subsolution of the Ishii problem.

Corollary 3.4.4.1 Assume hypotheses (HA), (HB), (HC), LOC 1 and LOC 2. Let u be a
locally bounded subsolution of the Ishii problem (3.0.1)). Then U} is maximal subsolution of
(3.0.1)), that is

u(z) <Uf(x) forall x € RY.
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Let u be a locally bounded subsolution of then u is a subsolution of the Ishii problem
associated to the compact control set A™,(3.0.4] for all m € N. Thanks to Theorem and
Theorem [3.3.1} we have u(z) < Uf.(x) for all z € RYN. Taking limits as m goes to infinity

we obtain u(x) < U (z) for all z € RY.

3.5 EXAMPLE OF NONLINEAR HAMILTONIAN WITH UNBOUNDED ASSOCIATED CON-
TROL SET

Let us consider the following nonlinear Hamiltonian which has associated unbounded con-
trol sets
Hi(x,u,p) = Au+ di(z)*|p|* — fi(w).
For this example, we consider the dynamic function

§

(e — e
(3.5.1)

bi(z, ;) := ced(z) || 2, where 0 < d;(z) < |z|” is locally Lipschitz and ¢, =

and the cost function
Li(r, ;) i= fi(z) + |oul® with 0 < fi(x) < Cplz|~° + Cf, with f; continuous in Q.

We consider the constant \ satisfying

> ¢

Observe that b; and [; satisfy hypothesis (HA), (HB) and (HC). Indeed b;(x,0) = 0, and
given v in RY different from zero and x € RY, there exists a control «; such that b;(z, o) = v,

where «; is given by

a; = ( )ET—

ed(z)” [l
This implies that, RY C B;(x) for any z € RY, and hypothesis (HC) is satisfied. Let us verify

lv| (1w

that hypothesis (HA) is satisfied,

li(z, ;) o file) + el
m — = m ——F 7 =
il =00 14 b (2, ;)] il o0 ced()] oy |1

Let m € (0,00), we consider the compact control sets
A™ .= B,,(0) c R",

then we denote

B"(z) := {b;j(x, ;) |a; € Bn(0)}

)
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and

The sets B (x) and L™(z) are convex, but BL™(z) := {(bi(z, ), l;(x, a;))|; € B, (0)}
may not be convex, what is necessary in hypothesis (HC). Indeed, let «;, @; € B,,(0)

(1 - :U“)bl(xv ai) + [Lbl(l',@z) = bl<x> Ckf*)

(1= wli(z, ai) + pli(x, @) = Li(x, of)

where

o

1
=00 = p)leal i + plal @)=
1
o' = (1 = el + plal)s.
Consequently,

o[, o] < mas{ o] &}

* € B,(0) and B™(z) and L™ (z) are convex . To address this problem we

Thus, a*, ol

consider the convex hull of BL*(x) and we work with BL™(z) defined as

co (B (z) x LT (z)) if ey >0

BL™(x) =3 @ (By(z) x L¥(z)) if oy <0 (35.2)

co((By"(z) x L{"(x)) U (Bg'(z) x Lg'(x))) if ey = 0.

To define the value functions and the Hamiltonians associated to BL™(x). We consider first,
T-(A™), the set of all trajectories, denoted by (X, Y"), which are Lipschitz functions, solutions
of the differential inclusion (X, L)(s) € BL™(X (s)) with X (0) = x. Now, we define the value
function

Upn(z) = inf [ L(s)ed
4m () le(rfllm) ; (s)e "*ds

We define the Hamiltonian associated to compact control set as follow
H"(z,u,p) := sup —b-p—1+ \u
BL™(x)
Let us introduce the dynamic and cost functions such that will be considered to define the
tangential Hamiltonians. We recall that by (z, ) = pbi(z,a1) + (1 — p)be(z, az), where

(v, g, 1) € AT x AT x [0, 1],then we consider

BLT () = { (b, Iy, with(b,1) € BL™(x) | by - en = 0},
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then we define the tangential Hamiltonian as
HY (z,u,p) == sup —b-p—1+ \u.
BLT ()
Now, we consider the regular trajectories. We say that by is regular if b;-ey < 0 and by-ey > 0,

then we define

BLI (x) := {(by, ln) € BLE () | by is regular},

then the regular tangential Hamiltonian is defined as
Hy " (w,u,p) = sup —b-p—1+Au
BLI" ()
Finally we define

Ulw(z) = inf ” L(s)e™*ds.

72 7 (A™) Jo
where

7re9(A™) = {(X,Y) € T,(A™) | X(s) is regular for X (s) € H}

Below we give some results related to the convex hull, that will be useful to prove that
the Hamiltonians, H;, that we have defined, with the convex hull of the dynamic and cost

functions, are equal to the Hamiltonians, H;, that we consider without the convex hull.

Let us consider first the definition of a convex hull of a compact set K C RY,
co(K) = {/ Adu(A) : p probability measure on K} .
K

The result below states that the supremum in the convex hull of a compact set is equal to the

supremum in the compact set.
Lemma 3.5.1 Let F': R? — R be a convex function and K C RP compact. Then

sup F(A) = sup F(A).

Acco(K) AeK
For each € > 0, we consider F.(A) := F(A)+¢|A|* which is strictly convex. Notice that co(K)
is compact: it is clearly closed by definition and since K is bounded, any convex combination
of elements of K is also bounded by some fixed constant.
The supremum of F, over ¢o(K) is attained at a point A, € ¢o(K), associated to a
measure .. If 11 is not trivial (i.e. not a Dirac Delta), then we reach a contradiction. From

Jensen’s inequality (for a strictly convex function) we have

sup FL(A) = Fu( [ Adpc(A)) < [ FU(M)duc(n)) < sup Fo(A).
Aeco(K) K K AeK
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So, necessarily the convex combination for A is trivial, in other words p. = 05, and A, € K.
Now,

sup F < sup F. = F(A.) + €A > <sup F + €A ?
co(K) co(K) K

and since K is compact, A, — A, € K at least along a subsequence. So, passing to the limit
as € goes to 0, yields that

sup F' < sup F.
2o(K) K

which gives the result. The other inequality is trivial.

We apply now this lemma to the Hamiltonians associated to compact control sets.

Corollary 3.5.1.1

m m __ m,reg __ T7vTreg
H™=H, Hp=THy, and Hy" =H;"

7 )

Thanks to Lemma [3.5.1} considering F'(b,1) = —b-p—1 and K = BL;(x), K = BLy(x) and
K = BL(x), respectively, we obtain the results.

Since we have proved that hypotheses (HA), (HB) and (HC) are satisfied for the convex
hull of b and [ in the example, then we can obtain the main results in Chapter 1 and Chapter

2. In particular we have

Proposition 3.5.2 U ,..(z) and U . (z) are solutions of the Ishii problem. Moreover, U 1 (z)

is subsolution of HY* and Uzm (x) is subsolution of Hy""

We denote the value functions associated to the unbounded control set, RV, by U;(x),
and U (z). We define them analogously to U ;. (z), and U 4.(z) just changing the control
set A" by RV,

Proposition 3.5.3 U (z), U4 (x) are solutions of Ishii problem (3.0.1]). Moreover, U () is

subsolution of Hy and U §(z) is subsolution of H}.

Proof of Propositions [3.5.2 and [3.5.3} is analogous to the proof of Theorems [2.4.1| and

2.4.2l We do not use the convexity of BL;(x) to prove that the value functions are su-
persolutions of the respective Hamiltonians. But we use the convexity to proof that they are
subsolutions of H = min{H;, Hy}, Hy and HY. We use convexity to approximate a dynamic

b;(x, cv;) such that b;(z,a;) - ey = 0 and

Hi(z,¢(x),Vo(zr)) = (=li(z, ;) + Ao () — b; (2, 05) - V().
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For regular trajectories, we approximate by dynamics b;(z, %) such that b;(z,at**) - ey is

strictly positive or negative with 0 < v < 1. We choose controls a?** and a/* that satisfy

b; (x, ozi”b*) =vb; (x,q;) + (1 — v)b; (z, o)

l; (x, afl*) =vil(x,q;)+ (1 —v)l; (x,q;) .

where b;(x, &;) = (—1)idey. Moreover, we have b, (x a”b*> i (x o/’l*) converges to (b; (7, a2) , ; (z, ;)

as v goes to 0. Arguing as in Theorem [2.4.2| and thanks to Lemma [3.5.1, we obtain

H(z, ¢(x), V(x)) = H(z, ¢(x), Vo(z)) <0

We obtain also a local comparison result for this example.

Theorem 3.5.4 Let u be a locally bounded subsolution of (3.0.1)). Let z € RY, R > 0, then

max (u — U gm)t < max (u—Ugm)t

Br(z) OBR(x)

The proof is similar to the one in Theorem We just modify the part that uses the
convexity of BL;(x). In fact, we only need the convexity of B;(x) and L;(x) this is enough so
we do not need to use relaxed controls in Theorem [3.2.1] Moreover, let ;; with 0 < p; <1

and 37, j1; = 1 then there exists ol*, al* € A" such that
3 5,0, ) = (5,02, ).

Thus, if (a%*,ab*) € BL7"(x) then by definition of H, " (x,u,p) and Lemma [3.5.1} we

obtain

_b’H(x O{I{*,O{g*) "D — l?‘[(x al ,042 ) +Au < H (x7u7p) = H;l’reg(x7u7p)'

To obtain global comparison results we need to verify that for our example, hypotheses LOC
1 and LOC 2 are satisfied. To do this, we assume some growing conditions on the subsolutions
and supersolutions.

Recall that in the example, we consider the dynamic function

§

bi(z, ;) := ced(z) || 2, where 0 < d;(z) < |z|” is locally Lipschitz and ¢, = W,
§—1)%
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with ¢ > 1, and cost function
li(w, ;) i= fi(z) + |oul® with 0 < fi(2) < Cple|™ + Cf, with f; continuous in ;.

We consider the constant \ satisfying

> CC.

Let C be the set of subsolutions of ([3.0.1]),(3.0.2)) and supersolutions of (3.0.1)) with growth
|z|~¢, where C is related with 3 and &, constants that define the dynamic and cost functions.

Then any w € C satisfies
lw(x)| < Culz| ¢+ C, where ¢ > (¢ — 1)+ €. (3.5.3)

We will prove that any function in C satisfies hypotheses LOC 1, LOC 2 and then use

Theorem [3.3.1] to obtain the global comparison result. Moreover since

Ua(@) < Upu(w), T(w) < Ujalz) and Thola), Ugn(z) <

“iC.

the value functions U (), U () are in the set of solutions C for which we will prove global
comparison results.

Let us start computing the Hamiltonian

Hi(z,u,p) = Au— fi(x)+ sup (c§di(x)\ai|§_2ozi p— ]aili) :
A;
Let y = |ay],
celaf ™o - p — |l < =y + cedi()|ply*!
Thus differentiating, we obtain that —y® + c¢d;(z)|p|y*~" reaches its maximum in y = 0

oriny = csdi(x)|p|%. Due to the choice of ¢¢ the maximum is d;(2)*|p|*. So that,

H;(w,u,p) = Au+ d;(z)*[p|* = fi(x).
Fixed ¢ > 1, we want to find a differentiable subsolution with growth ~ |z|°. A good candidate
is
(1 )2~ e
which is differentiable for 2¢ > 1.

Let us compute for which values of ¢ and 3 we have —(1 4+ |z|*)'/? is a subsolution.

we have
|2< 1 | |2¢ 1

W o

V(1 +[af*) %) =
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Therefore,

V(1 + )€ < CSJal €.
Since d;(x) has growth |z|? and X > (¢ then for (¢, ¢, B) satisfying
¢ = (C— 1)+ 58, (35.4)

we obtain that for |z| > 1,

Hi(x, —(1+ [2[*)2, =V (1 + [2*)2) < =ML+ [2) 12 + ¢SS — fi(z)

< —Aalf + ol — fi(2)

IN

0.

For |z| < 1

Hi(w, —(1+ |2)2, =V (1 + [2)12) < =ML+ [2[*)12 + a7 — fi(x)

< =X+ ¢ - filz)

IN

0.

By definition of c¢, we have § > 1.
Fix ¢ > 1. Now, let us focus on finding values for ¢ and 3 such that for which — (14 |z|%)!/2
is subsolution of (3.0.1)) and [3.0.3, and

¢ = (C—1E+ ¢

we have 1 < ¢ < <—§+6 and consequently 5 < 1. Thus, fixed § € [0, 1), we have for any
£e(l =3 -

On the other hand, let us fix &, 3 and seek values of ¢ for which —(1 + |2|*)Y/2 is
subsolution of and [3.0.3] Since £ > 1, then 0 < ( < 5%1(1 — f3). In order to obtain
that —(1 + |2|?)'/2 is differentiable, we need that 5f—l(l — ) > 1, that s,

E+1
b < T
Chosen 3 € (0, %1) we can take any ¢ € (1, 5 (1-7)) .

=
Now since ((, 3, €) satisfies (3.5.4) and A > (%. In particular if y € H then

Hi(y, —(yX +1)2, =V([yX +1)2) <0, and Ha(y, —(|y/* +1)2, =V (|y/* + 1)2) < 0.
(3.5.5)
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Consequently,
min{Hy (y, —(Jy* + 1)2, =V(|y|* + 1)2), Ha(y, —(jy[* +1)%, =V(|y* +1)2)} <0.
Moreover defining
S(yla e 7yN) = (yly" : ayN—lvo) € RN
then |S(y)| < |y| and from (3.5.5]), we obtain
Hrly, —(|y|* +1)2, S(=V(|y|* +1)2))
< Hy(y, —(|y* + 1)2, S(=V(jy|®* + 1)2)) + Ha(y, —(ly** +1)2, S(=V(|y|* + 1)2))

0.

IN

Let u be a subsolution of (3.0.1) in C and let us define,

ug(y) == (1 — Buly) — B(ly[* +1)2

Note that ug is a subsolution of [3.0.1] Let ¢ € C'(R") be a test function and y, be a local

maximum point of us — ¢ = (1 — B)u(y) — (B(|y> + 1)z + ¢(y)). Then yo is local maximum

(Iy\26+1)2+¢>
-8

point of u(y) — ) and thanks to the the convexity of H; in the last two variables,

we obtain

H;(yo, us(y0), Vo(yo))

= ( yus(Yo), V 4 Bl Py _ 6<;yo|2<2y0)
Yo ,B(yO) ¢(y0) (‘y0|2g+1)% (|y0\24+1)%

_ 4 Vo(yo) B¢lyo > ~2yo , 126 1yl 2y
== (yo’ (b0)- %15 +(1—ﬂ)(|yo2<+1>%)+5H’ (yo’ (Iwol™ +1)%, (yo|zc+1>%>

<0.

Now assume that y, € H, arguing as above, we have

min{ 71 (yo, u5(v0), Vé(yo)), Ha(yo, us(yo), Vo(vo))} < 0.

Take ¢ € C*(RN~1) and y a local maximum point of ug(y) — o (y) = (1—B)u(y) — (B(|y|* +

1

B2 +1)2 +(y)
1-3

1)24+¢(y)). Then yq is a local maximum point of u(y)— and from the convexity

of Hr in the last two variables, we have

Hr(yo, us(v0), Vo (o))
2¢ i 2¢ 5
— Hr (o, us(00), Vo) + Dae( L% - Dy (U2
1 1
< (1 — 6>HT (y(), (yo), V{ﬁ(/ygo + D (ﬂ(|y|12g—g12)) + BHT (y(b (‘yOPC + 1>;7DH(W))

<0.



83

Let v be a supersolution of (3.0.1)) in C, then

ug(y) —v(y) = (1 - Buly) — B(ly[* + 1)z —v(y)
< [u(y)] + [o(y)] — BA(YI* +1)3
< (Cu+ Co)lyl + (Cu + C) — Byl +1)3

<yl (Cu + Cy + G2 = Blyl).

Taking limits as |y| goes to infinity, we obtain that ug(y) — v(y) goes to —oo. Thus, the
sequence ug satisfies LOC 1. Therefore, there exist x5 such that Mz := maxpy (ug — v) =

ug(wg) —v(zp).

Now we build a subsequence, ug,, of the sequence ug, satisfying LOC 2. Consider

ugy (7) 1= ug(x) — y(|z — 26> +1)2.

We will show that there exists a neighbourhood of x5 where ug., is subsolution of H;. Let x be a
local maximum point of ug., — ¢ then z is local maximum point of ug(x)— ((v(|z—z2+1)2 +
¢(x)). Due to Lemma2.3.3] there exists A} such that the supremum H;(z, ug,(z), Vo(x)) is

reached in A7" for any x € B,(z3), for r > 0. Thus, given z € B, (xg), there exists af € A"

such that
H _ va—zp) _ Aa—ap) )
45, (2), V() = H (.05, (0). V() + 2ty ala
L (r of bl o). Wa—zs) _ _ yl@—zp)
- lZ(ZE, az ) + /\uﬂv(x) bl(‘rﬂ az ) (v¢(‘r) + (|J:—x/3|2+1)% (x—xﬁ|2+1)%)

= (o, ) dug) =i, o) (Vo) + ) <X = sl + D=, ap) ey

1 1
(le—zp?+1)2 (lz—zp]?+1)2

< H(x v 'MW)_)\ — 2+ 1) + bz, a) - —X@=ms)
< H, (2,u5(a), V(o) + 2220 ) — dg(fo =l + D + b af) - 22

< =\ _ 2—1—11—}-()1- ’?C.M
< (o — ol + D} + (s, a7) - 2y

Let HbiHLoo(BT(xB)XAzm) < B, and let as choose r such that r < %, then |z — 23| < r < %,

and

v(r —2x 1
g et bl s
— 4B

M|z — )+ 1)7 + by(x, 0F) -

Thus, we obtain that
H;(z,ugy(x),Vo(x)) <0, Vre B.(xs).

Assume that 23 € H. Take x € B,(x3). If x € Q; there is nothing to prove. Hence we can

assume that x € H. Arguing as for z € €);, we obtain

min{H,(z, ugy(x), Vo(2)), Ha (2, up, (x), Vo(x))} < 0.
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Therefore ug, is subsolution of the Ishii problem. Now let us prove that g, is subsolution of
Hry. Consider the test function ¢ € RY~! and x = (27, 0) a local maximum point of ug, — ¢.

Given y € B,(z3), we denote by a,«(y) := (pn+, L. (y), @2.(y)) a control that satisfies

et %

Fir(y, V() = - < Il e (5)) = Suly 00 ))) - Voly). (356)

This way,

Augy(z) + Hr(z, Vo (z)) — L

—H ( Vo(a) 4 2l s >_
T\X uﬂ’Y(l‘) ¢(I) (|x_5‘35‘2+1)% (|cc—x,3|2+1)%

S|

< —ZH((L', Oén(fE)) + )\um(as) — S(bH($, an(;ﬁ))) . <V¢(ZE) + yS(z—zp)  yS(z—zp) >

1 1
(le—zpl?+1)2  (lz—zp|>+1)2

= —lu(, an(x)) + Aug(x) — S(bu(x, an(z))) - (w(x) . M)

1
(lz—zp?+1)2

M|z — 252 +1)2 + S(by(z, an . _S@=zp)
Yl = sl + 1)+ (bl (2) - 252

< Hy (x,uﬁ(w), Vo (z) + ”(””))

(Jz—g]2+1

M|z — 22+ 1)2 + S(bpu(w, an(w))) - 220y
(la—os+1)’

where v, is a control in A. Let us prove that S(by(z, ,(2))) is uniformly bounded B, (x3).

Initially note that there exists C,. such that
|Hp(x,Vo(x))| < C,p, ¥V x € B(xp). (3.5.7)
Indeed,

|z (B, @) xas) — el (B, @ xag) < Hr(x, Vé(x)) < Hi(z, Vo(x)) + Ha(z, Vo(z)).

where A} is a compact set such that for each z € R" there exists o; € A} with b(z, a;) = 0.
Now assume by contradiction that D := {S(by(x,a,(x)))|x € B,(xp), n € N} is

unbounded. Then there exists sequence (x,,, o« (x,,)) satisfying

lim S(by(@n, ans(2,))) = oo. (3.5.8)

n— oo
Since by (n, (1)) = piby (@, e (1)) + P02 (T, s (1)), where pl. + p2. = 1.

Let {¢,7} = {1,2}, then we have lim, o . S(bi(xn, ol (x,))) = co. Thanks hypothesis

(HA) we have |a!.(z)| — oo, and

lim Li(n, Qe (xn))
n=00 1 + |b;(xy,, ax ()]

— OQ.
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Given M > 0, there exist ('j; so that for n > C);:

l; (‘Tnv O‘n (xn))

>2M d i* bz ns i* n 17

then
Li(xn, () = 2M + 2M|bi(x,, o ()]

> 2M |bi(2n, 0 ()|
> 2M|S(bi(xn, 0 ()]

which implies that for n > Cy,

pie LTy e () 2 2M 4130 |S (bi (2, e ()|

> M + M b |S(bi(wn, o ()]

Consequently, for M > ||V || (B,(z4)), We have

— e li (g, 0 () + 11 Vb (20) - S(bi(Tn, 0l (20)))
S(bi(wn, af (7))

< — e li(@n, e () + Mg,
< —M.
That is,
i e (1)) + e V() - S(bi(ns 0 (2))) < =M.

Since {i,j} = {1,2}, from (3.5.8)), taking subsequence if necessary, for j we have two pos-
sibilities, either /.S (b;(x,, . (1)) = 00 or il S(b(x,, &l (x))) < oo. In the first case,

arguing as above we have
10+ L3 (s e () + 0,2 V() - S (b (00, 0y () < =M.
Thus, for M > max{||Ve||r= (s, (), Cr + 2}, from (3.5.7)), we obtain
—lyi(wn, an (n)) = S0y (@n, e (20))) - V() < —2M
—2|Hr(wn, V()| — 4

< ]:IT(Im vqb(mn)) - 771*

which is contradiction with ((3.5.6)).

Now, let us assume that pi..S(b; (2, o () < 0o, then there exists C; such that

~ (@, e (20)) + 11,V (20 - S(bj(wn, 00 (20))) < C;
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Hence, taking M > max{|V¢(2)|,(s), Cr + C; + 4}, we obtain

—lu(n, e (20)) = S(0p (2, e (20))) - Vo (2n) < =M +Cj
< —|Hr(zn, Vo(zn))| — 4
< Hp(z,, V() — &
which is again a contradiction with (3.5.6). Therefore, D = {S(by(z, an(2)))|z € B,(z5), n €

N} is bounded. Then, there exists B > 0 such that ||b]] < B for all b € D. Consider r such

that r < %, and x € B,(x3), then

v( — wp)

(|$—$5|2+1)%§ M (Je —zs]"+1)2 + Ay <0.

M (|z — 27 + 1)% + S (by(z, an())) -

Thus, ug, is subsolution of the Ishii problem. Let us prove that ug, satisfies LOC 2. Indeed,
let x € 0B, (xp)

ugy(15) — ug(zs) = —y > —y(r2 + 1)2 = —(|z — 52 + 1)2 = ug, (z) — ug(2).

1
Y(r’+1)2

We can choose d(v) := 5—— > 0. Moreover, ug,(x) — ug(z) as v — 0 for any

x € B.(x3).

Therefore, the set C of subsolutions u of (3.0.1)),(3.0.2)) and supersolutions v of (3.0.1),

satisfying the growth condition ([3.5.3)), satisfy the hypotheses LOC 1 and LOC 2. Hence,

thanks to Theorem (|3.3.1)), we obtain a global comparison result,
u(z) <v(z) VaeRY.

Due to Proposition , we have also that U , is a minimal locally bounded I.s.c supersolution
of the Ishii problem. Moreover, thanks to Theorem , we have U; is a maximal subsolution

of the Ishii problem.

3.6 FILIPPOV APROXIMATIONS

In this section we consider consider Filippov approximations. Let ¢ : R — [0,1] be a

continuous functions satisfying ylgn o(y) =1 and Em ©(y) = 0. Let
) y——00

We extend H, and H, for any z € RY as follows
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H.(x,u,p) := o(xn)Hy(z,u,p) + (1 — p(xn))Ha(z,u,p), Yoec RY (3.6.1)
We assume the hypotheses
(HA) I; : RN x A; — R and b; : RY x A; — R satisfy
: li(y, @) :
im —————— =00 and lim |b;(y, )| =0
la]—oc0 1+ |b;(y, a)| |a|4>oo| (4, @)l
uniformly in compact sets of R with respect to y € R .

(HB) b;, l; are continuous functions and b;, [; are locally Lipschitz in the spacial variable.

(HC) For any x € RY, the set {(b;(z, ), l;(z,;))| o € A} is a closed and convex set.

Moreover, there exists o > 0 such that
Bs(0) c BY" (x), where B (2) := {bi(z,a)|a € A™}.
(HCC) Let A™ C A; be compact, then there exists C,,(b) and C,,(l) such that

bi(y, )| < Cp(b) and Ii(y,a) < Co(l), Yy € RN, o€ A™ (3.6.2)

where A is a chain of compact set which union is equal to RY. Assuming also hypotheses
(HA), (HB), (HC) and (HCC) we are able to prove uniqueness of solution of H., and the
solution converges as € goes to zero to U, . To do this is very important to have hypotheses
(HCC), which assumes that the dynamic and cost functions are bounded when restricted to

compact set.

Theorem 3.6.1 Under Hypotheses (HA), (HB), (HC) and (HCC). There exists a unique
bounded Lipschitz continuous solution u. of ({3.6.1)). Moreover, u. converges to U, as € goes
to 0 locally uniformly in RN .

Fix my € N. Note that H" is coercive, because [, and H, are coercive. Thus, there exists

Cmy > 0 such that

H™ (z,u,p) >0, for |u| < [|Ujmo||ro(rvy + [[Ux||zemyy + 1, @ € RN and [p| > Cppy .
(3.6.3)
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If m{ > my, by definition, we have
HI'(x,u,p) 2 H™ (2, u,p).
By Lemma there exists m > my{, such that
H.(z,u,p) = H"(z,u,p), if |p| < Ch,- (3.6.4)

Thanks to Corollary , let m' be large enough, with m’ > m such that Uy = U ..
Thanks to (BARLES; BRIANI; CHASSEIGNE, 2013, Th 6.1) there exists a unique bounded Lips-
chitz continuous solution u” of H™ such that u™ converges to U, as ¢ goes to 0, locally
uniformly in RY. Therefore lim._,ou™ = Uy locally uniformly in RN. We know that u™ is
supersolution of H.. To conclude we just have to prove that ug”’ is subsolution of H..

Since u™ is Lipschitz continuous subsolution of H™', then
H™ (z,u™ (x), Vu™ (x)) <0, a.e. (3.6.5)

Since u™ converges to U locally uniformly, for  small enough we have [u™ (y)| < |U; (y)|+1
for all y € B,.(x). If u™ is differentiable in o then by (3.6.3)), we have |Vu™ (z)| < Cp,.

Consequently, thanks to (BREZIS; BREZIS, 2011, Remark 7, p. 269), we have

/

u () = uZ ()] < [V || ooy T = Yl < Comg |z — 9.

Thus, ug"’ is uniformly locally Lipschitz with Lipschitz constant C,,,,, for € small enough. Thus,

if p. € 0Tu™ (z) , then |p.| < Cyn,, cf. (BARLES, 1994, Lemma 2.4 p. 31). Thus, by (3.6.4)
and (3.6.5), u™™ is subsolution of H..

Assume that H. has another bounded Lipschitz continuous solution v, # u’g", then since
|[Vv.|| < C,. Thanks to Lemma (2.3.3)), there exist m* > m’ such that v. is solution of H™".
Thanks to (BARLES; BRIANI; CHASSEIGNE, 2013, Th 6.1), H™ has a unique solution, and then
v, = u™ . Since u” is solution of H. then it is also a solution of H™". Thus, u”" = u™" = v,.

Let us focus now on the example of nonlinear Hamiltonian which satisfies only hypotheses
(HA), (HB) and (HC). We will obtain this result of uniqueness of solution for the Filippov
approximated Hamiltonian H., and the convergence to U ,. Recall that the Hamiltonian con-

sidered in the previous section is given by
H;(w,u,p) = M+ d(2)|p|* - fi(z)

with associated dynamic function
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§

(e - D
(3.6.6)

bi(w, ;) = ced(z)|oy|* 2y, where 0 < d;(x) < |z|” is locally Lipschitz and c¢ =

and the cost function
(7, ;) i= fi(z) + |aul® with 0 < fi(2) < Cplz|™ + Cf, with f; continuous in ;.
We consider the constant \ satisfying
A >
where ¢ > 1, £ and [ satisfy
¢ > (¢ —1)&+ B¢

We proved in the previous section that hypotheses (HA), (HB) and (HC) are satisfied. We

also have that

_ . _ _ _ . Cs.
mmsmmmWwSWWMMWWmmmm{%W+%.

These value functions U (z), U () are in the set C of solutions for which we have compa-

rison results.

In the following result we prove that there exists a unique solution of the Filippov aproxi-

mation Hamiltonian, and this solution converges to the value function U .

Theorem 3.6.2 There exists a unique locally Lipschitz continuous solution u. of ([3.6.1)
satisfying

~C(1+ [2)2 ™ = C S uele) < C(L+ o) % 4 C
where C' > max {Cm <y Cf}. Moreover, u. converges to U , as e goes to 0, locally uniformly

TA A
in RN,

First we prove the existence of a solution for (3.6.1)) using the Perron Method, see (BARLES,
1994, p. 52). In order to proof uniqueness, we first need to fix the set where we will prove

comparison result

S. := {u solution of B.6.1)| — C(1 + |z[2)3~¢ — C' < u(z) < C(1 + |z[%)2~% + C for all z € RV},



90

Since H. is continuous, A(u —v) = H.(z,v,p) — H.(z,u,p) and H. are locally coercive
then thanks to (BARLES, |1994, Cor. 2.2, p. 27), we obtain Local Comparison Result.

Moreover we have —(1+ ||2¢)2 is subsolution of (3.6.1)), therefore hypotheses LOC 1 and
LOC 2 are satisfied. We have LOC 1 with

ug(y) = Buly) — (1 — B)(1 + [y[*),

and LOC 2 with

ug(y) = us(y) — Y(ly — zsl* + 1)%.
Finally, thanks to Theorem we obtain global comparison result for H. in S., what proves
the uniqueness.

Now let us prove the existence via Perron’s Method. It is important to note that C(1 +

|2[2€)27% + (' is a differentiable supersolution of (3-6.1). In fact,
(L+[al)7% > (|o*)2 75 = ||
and by choosing C' big enough we have
C(1+ |2[%)2 7% +C > fila).

Consider

S. := {u subsolution of (B.6.1)| — C'(1 + |z[%)3~¢ — C' < u(z) < O(1 + |2%)? % + C Yz € RN}

Note that S. is non-empty because 0, U4 and U, € S.. Indeed, by choosing C
= —— Cy. 1 e
Ux(x),Ua(z) < %MC’& +C,<CO1+ |x]2<)é % 4+ ('

Thus for any x € RY, we define

ue(z) := sup u(x). (3.6.7)

u€eS,
Thanks to (BARLES| 1994, Lemma 2.5, p.33), we have any subsolution w in S, is a Lipschitz
function on compact sets K C R with Lipschitz constant C.

Now the aim is to prove that u. € S.. we have

—CO(1+ |2%)3 = C < ue(z) < O(1 + |22)2 7% + C.
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Let x,y € K

u:(7) —u(y) =supu(r)—supu(y)
S

€ §6

< sup(u(x) — u(y))

—£

Let u,, € S, be a sequence such that lim,,_,,, u, () = u.(x). Then by definition of u., we

have u.(z) — u.(y) < u,(z) — u,(y). Taking limits as n goes to infinity,

us(2) = ue(y) <im0 (u,(7) = w,(y))

< sup (u(z) —u(y))
ues,

< CQE,KW —yl.

Now to prove that u. € S., we just need to show that u. is subsolution of ([3.6.1). To
do this we use the following lemmas that state that the supremum of two subsolutions is also
a subsolution; the supremum of a sequence of subsolutions is also a subsolutions, and the

supremum of a family of subsolutions is also a subsolution.
Lemma 3.6.3 Let u;, u, be subsolutions then u := sup{u,,u,} also is subsolution.
Let x € RYN. There exist three possibilities :

Case 1. u(x) > u;(x)

Case 2. u(x) > uy(x)

Case 3. u(x) = uy(x) = uy(x)

We use the definition of subsolution via superdifferential, see (BARLES, |1994, Th. 2.2 p. 17).
In cases 1 and 2, we have u = u; in a neighborhood of x, hence 0" u;(x) = 0" u(x). In Case
3, let p € Ot u(x). Since u;(y) < u(y)

%@%ﬂﬂ@—m-@—x)S@@%ﬂﬂ@—p%y—@‘

ly — x| ly — x|

Taking lim sup

hm&m@&ﬂ—umﬂ—p~@—x)§hmamu

() —u(@) —p-y—2) _,
Yy—x |y—$| y—x |y—x|

Hence p € 0T u;(x).

Lemma 3.6.4 Let u, be a sequence of elements of S, then u := sup u,, also is subsolution.
n
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Let us define ¥, = supw,. Thanks to Lemma 3.6.3] ¥, is a subsolution. Since u = supv,, by
p<n n

Dini's Theorem, ¥,, converges locally uniformly to u. Therefore, by (BARLES, [1994, Th 2.3 p.

21) w is subsolution of H..

Lemma 3.6.5 Let (u,).cr be a family of elements of S, then u := supu,, also is a subso-
KEF

lution.

Given = € RY there exists sequence k,, such that lim, . u, (z) = u(z). Let y € R, and
consider u*(y) := limu,_(y). Then u*(y) is subsolution by Lemma with u(y) > u*(y)
and u(z) = u*(x). Using the same arguments of lemma [3.6.3| we obtain 9tu*(z) C 9" u(z).

As a consequence of Lemma(3.6.5| considering F = &, we obtain that u. is a subsolution

of G5,

Now let us prove that u. is a supersolution of ([3.6.1]).
Assume by contradiction that u. is not supersolution, then there exists a test function ¢

and z a local minimum point of u. — ¢ on B,(x), with » > 0, such that
H.(z,¢(x), Do(x)) < 0. (3.6.8)

We assume without loss of generality that ¢(x) = u.(x). We assume also that x is a global
minimum point of u. — ¢ . To do this, we consider a bump function, I', with I'(y) = 1 for any

y € Br(z) and I'(y) = 0 for any y outside B, (). We just need to exchange ¢(y) by

C(y)é(y) + (1= T(y)) (~CA +[y*)>* = C) <uly) foranyy e RY.

Let us define
u,(y) = max{uc(y), ¢(y) +v— |y — 2’}

We will prove that for v small enough w, € &, which is a contradiction with
since u,(x) = ¢(z) + v = u(x) + v > u.(zr). Indeed, by definition, u,(y) > wu.(y) >
—C(14|y[%)3=—C. Moreover, u, (y) < C(1+|y[¢)3 "% +C for v small enough. Otherwise,
there exists a sequence (v, y,) such that |y, — z| < v,, v, goes to zero as n goes to infinity,

and such that
C(L+ [ya) 75 + C < uy(yn) = DY) + v — [y — 2>

Taking limits as n goes to infinity, we obtain C'(1 + |x|2<)%_§ + C < ¢(x) = u.(z). Hence,

since u. € S., we have

C(1 + |y*)2 % + C = ¢(x) = u.(x).
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Besides that, since x is global minimum point of u. — ¢ we have
6(y) < ue(y) < C(1+[y[*)2 % + C forall y € RV,

Therefore z is global minimum point of C'(1 + \y]%)%_i + C' — ¢(y) which has null gradient
at x, that is,

€

Vo(x) = V(C(1+ [y[*)2 7% + O).

Since C(1 + |y|%)? ™% + C is a differentiable supersolution and from (3.6.8),

0> H.(z,0(z), Vo(x)) = Ho(z, C(1 + |2|¥)7 "% + O, V(C(1 + |22)27% + C)) > 0

which is a contradiction.

Now just need to prove that w, is a subsolution of (3.6.1). Thanks to (3.6.8) and the
continuity of H. we obtain that ¢(y) + v — |y — z|* is a subsolution of H. for y such that
ly — x|2 < v for v small enough. Therefore, due to Lemma , u, is subsolution of H, for
y such that |y — z|? < v. Moreover, if |y — z|* > v, u, = u., because u,(y) > u.(y) > ¢(y)
for all y € RY. Hence, u, is a subsolution.

Let us take limit of u. when € goes to 0. We will prove that this limit is a viscosity solution
of the Ishii Problem and Hyp. Therefore, by uniqueness we obtain that the limit of u. is
Uy.

By definition, (u.). is locally uniformly bounded. Moreover, by coercivity of H; and Ho,
we get that (u.). is locally uniformly Lipschitz. Thanks to Arzela-Ascoli's Theorem, we can

extract a convergent subsequence which converges to a continuous function u. Therefore,
(liminf),u.(z) = u(z) = (lim sup) u.(x).
Moreover H. also converges uniformly to H; on compact sets K x W x V C Q; x R x RV
lim @ (xn) Hi(2,t,p) + (1 = @=(an)) Ha(x, £, p) = Hi(x,t, p).
Since H, is continuous on €; x R x RY, then
(liminf),H.(x,t,p) = H;(z,t,p) = (limsup)*H.(z,t,p).

For x €¢ H

(liminf),H.(x,t,p) = min{H;(z,t,p), Ha(z,t,p)},

(limsup)*He(x,t,p) = max{H(z,t,p), Ha(z,t,p)}.
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Thanks to Half-Relaxed limit Method, Theorem ?? we obtain that w is solution of Ishii Problem
171

Now let us prove that u is a subsolution of H7 and consequently by Global Comparison
Result Theorem [3.3.1] we obtain u = U}

Let 2’ be strict local maximum point of u(y’,0) — ¢(y’). We need to proof
Hr(z,u(z), Dyp(x)) < 0.

That is,
_lH(‘Tu aq, 0527/'1’> + )\(b (':C) - b% (.’L’, Qaq, o, :u’) ’ (DH¢ (l’) 70) <0
for all (ay, ag, p) € Ao(z). Take (aq, ag, ) € Ag(x), there exists s € R such that p(s) = g,

where ¢ is the function we use to define the Filippov approximation. We define

ue(y) — o(y') — Lo

gl €

2
as egoes to 0

Let 2. be the local maximum point of of u.(y) — ¢(y') — 1

€
1

€

2
y?N—s’ , then

2

TeN
< =0

€

Since u. is locally Lipschitz functions then 0%u.(z) is bounded, ¢ is fixed and z. — x as

e — 0, then for £ small enough Vé(z.) is bounded. Then g. v := 2(%X — s5) < C. Thus,

e2\ ¢

since (o, ag, p) € Ap(x),
lim(by (ze, 1) - en + ba(e; @2) - en)gen = 0 (3.6.9)
As |#X — 5| — 0 and ¢ is continuous function
o (zen) = @(s) + o(1). (3.6.10)
Since wu, is subsolution of H.
Pe(@en) Hi (e, ue(e ), Dy (') + gen) + (1 = e (en)) Ha (e, ue(2), Dyd(2') + gen) < 0.
Thanks to ([3.6.10)
p(s)Hy (e, ue(we), Duep(a2) + gen) + (1 — o(s)) Ha (e, ue(we), Dyd(xl) + genv) < o(1)
Using the expression of H;, we obtain
o(s)(—l(@e; 1) + Aue (2) — by (e, 01) - (Dy (), Ge,v))
+(1 = () (—la(we, 1) + Aue (2) = be (2, 01) - (Dud (), gen)) < o(1).
By , taking limits as € goes to 0, we obtain

—ly(x, ) — by(x,a) - Dyo (x) + Au(z) < 0.
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4 U7 FUNCTIONS

In this chapter we build a whole family of value functions, U", which are locally Lipschitz
Ishii solutions. Under appropriate assumptions we obtain that the limit when 7 goes to zero is
U and when 7 goes to infinite is U, . Hence, this family can be seen as a continuous path

between U and Uj.

Let » > 0. We define the n-trajectories as

TA(x) = {(X. (1), (")) € Ta(x) |for ae. t € Ex, ba(X.(t), a(t))-en > —n, bi(X. (1), at))-eny < n}
(4.0.1)

These n—trajectories may not be regular for small n, but they are almost regular. Moreover

reg

Ty (x) C 74(x) and if ' <1 we have 77 (x) C 7. (x).

Now, we define the associated value function.

Uj(a) = int <jg°°z()(x<t),cy(t))e—kfdt> . (4.0.2)

71 (x
Let n < 7/, as a consequence of the definitions we have the following relations between

them
mgﬁgmgﬁmgm, (4.0.3)
n—

4.1 DYNAMIC PROGRAMMING PRINCIPLE AND REGULARITY OF U" FUNCTIONS

We have also the Dynamic Programming Principle for the value functions.

Theorem 4.1.1 (Dynamic Programming principle) Let K C A be a compact controls

set, then

Ug(x) = inf (/OT X (), at))e Mdt + Ug(z) (X (T)) e_’\T> : (4.1.1)

Ul(x) = irbfc) (/OTI(X(t), at))eMdt + UG (X (T)) e_’\T> : (4.1.2)
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The proof is analogous to Theorem in Chapter 1. We prove that U} has the same
regularity of U and Uy, under the hypotheses in Proposition [2.3.1l Then, U} is locally

bounded and locally Lipschitz.

Theorem 4.1.2 We assume that (HA), (HB) and (HC) then, for n small enough, the value
functions U'}, are locally bounded and locally Lipschitz continuous functions defined from R™

to R.

Since in Proposition we proved the result with trajectories in 7,(x), and we have

72 9(x) C 74(x), then we have the proof is analogous for U}. In the above Theorem prove
regularity of U" only for 1 small enough, but after proving that U" is subsolution the Ishii

Problem, we obtain regularity for all 7.

4.2 U} SOLUTIONS OF THE ISHII PROBLEM

In this section we prove that the value functions U7} are solutions of the Hamilton-Jacobi-

Bellman problem,

H, (z,u(z), Du(x)) =0 in {4
Hy (z,u(z), Du(x)) =0, in €2
2 (2, u(z), Du(x)) 2 (42.1)
min{ H; (z,u(zx), Du(x)), Hy (x,u(x), Du(z))} <0 inH
max{H; (x,u(x), Du(x)), Hy (x,u(x), Du(z))} <0 inH
where
H; (x,u,q) = sup (—b(z,w) - ¢ — l;(z,w) + Au)
wEA;
We define the set of controls
Ag(w) = {(a1, ag, 1) € Ag | bi(x, 01, 02) - en <, ba(x, 1, a2) - ey > —n}.
and the tangential Hamiltonian
Hy(z, ¢(x), Do) = sup —ly (@, a1, a9, 1) + A (2) —by (z, o1, g, p) - (D () , 0)

(al 2 ,M)GAQ (I)

Theorem 4.2.1 Under hypotheses (HA), (HB) e (HC) the values functions U’} are viscosity
solutions of the Hamilton-Jacobi-Bellman problem (4.2.1)). Moreover, U’} is subsolution of H..
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Since we have the Dynamic Programming Principle 4.1.1} the proof of U’} being sub and
supersolutions of ((4.2.1)) is analogous to the proof in Theorem [2.4.2]

Let us prove the second part of the theorem that states that the n-value functions are
subsolutions of the tangential Hamiltonian H.. Let ¢ be a test function, and let 2 be the
point where the local maximum of U] — ¢ is attained, and consider without lost of generality
that the maximum is equal to zero, then U} (z) = ¢(z). Thanks to the proof of Lemma [2.3.3]

we know that there exist (v, ag) € Ay X Ay such that

Hy (2,6 (x), Vo () = =l(z,0n) + Ap (2) = by (2, 1) - Vo ()
Hy (z,¢(x), Vo () = —la(x,a0) + AP (z) — ba (z,0) - V@ (2) .

We construct specific trajectories for these constant controls «; that will help to prove that

U} is subsolution of H7}. Let (aq, aq, u) € Al(x). Let us consider three cases:
Case 1: Let aq, oo be such that

bi(x,0q) ey <n and by(x,aq) - ey > —1n.

Let us consider a trajectory that satisfies the following differential equation locally

(=ba (X (t), a2) - en)bi(Xo(t), 1) + (b1 (Xa(l), 1) - en)ba(Xe(t), a2)
(b1(Xy(t), 1) — ba(Xy(t), 2)) - en

We build an n-trajectory X, (-) that stays in #H for all ¢t € [0,7] and such that

X, (t) = , X.(0) =z
b1<Xx(t)7O[1) ey <1 and bQ(Xm(t), 042) ey > —n for t <T.

we have U} (y) — ¢(y) < 0 for all y € B,.(x) for r small enough, and U (x) = ¢(z). Thanks to
the continuity of the trajectory, there exists 77 > 0 such that X, (¢) € B,(z) fort <T" < T.

By the Dynamic Programming Principle we have

¢ (z) < /0 " L (Xo (1), (o, oo, (X (8)))e™Mdt + ¢ (X, (T7)) e

By the Fundamental Calculus Theorem, we obtain

02 /OT/ [l (X (1), (s zy (X (1)) + Ad (Xo (1)) = b (X (8), (@, a2, pl(Xa(8)))) - VO (X (t))] e

Dividing by 7" and taking limits as 7" goes to 0 yields,

—by(w, ar, a, ) + A (2) = lyy (2, 1, @, 1) - (D () ,0) < 0.
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Thus we have proved that U} is a subsolution of Hj}.

Case 2: Let aq, s be such that

bi(x,a1)-ey =1 and by(z,an) ey = —.
Let &€ > 0, thanks to the controllability hypothesis (HC), there exist controls ; and a3 such
that fore <n <9

by (m,af) = (n—¢)ey and by (:c,a;) = (—n+e¢)en.

Thanks to the convexity hypothesis on the control variable, we have for 0 < v,/ < 1, there
exist controls o and o4 such that

by (z,a) =vbh (m, 041_) + (1 =v)by (z, 1)

L (z,af) =vl (x, af) + (1 =v)l (z,0q)

and
bo(w,a8') = v'by (l'a Oéér) + (1 =v)ba (7, )

lo(z,a) =V, (l’,@;> + (1 =)l (z,02).
Then we have
bi(v,0f)-exn =v(n—e)+(1—-v)y =n—ve <7
by (2,08) -en =V/(—n+e)+(L—)(—n) =—n+ve >

and
0> (v, /) (~ 1, 0476 (@) ~br (2,0)- V6 (@) +(1—p(v, 1)) (Lol @ 1 4A (2) b (05 ) Vo

where fi(v, ') = i(X,(0) = £ and (a%, 0¥, u(v. 1)) € Ap9(a).

We consider sequences v, and v/, that go to 0 as n goes to co, we obtain by construction

the following convergences as n goes to oo

by (z, ") — by (z,000), U (z, ") — 1y (z,0q)
and

bo(z,05") — by (w,0), o (x, 04;") — Iy (z, 0) .

Given 0 < p < 1, we consider sequences v, v;, that converge to 0 and 2 = 1%‘ Then

n

ﬂ(’jna V7/1) — M-
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Since (af™, as™, ji(vp, v,)) is in case 1. Taking limits as n goes to oo we obtain

0> p(=h(z; 0) 20 (2)=by (2, 01)- V¢ (2)) +(1=p) (=la(z, a2) +A¢ (2) =bs (z, a2)-V§ (2)).

Arguing as in case 1 we obtain that U} is a subsolution of H.

Case 3: We divide this case in two cases:

Case 3.1 Let oy, as be such that
bi(x,a1) ey =n and by(z,an) ey > —.

Arguing as in case 2, let ¢ > 0, thanks to hypothesis (HC), there exists a control a; such

that such that
by (:B,al_) =(n—¢e)en.

For 0 < v < 1, we can find a control o such that

by (z,a) =vbh (m, ozl_) + (1 =v)by (z, 1)

L (z,0f) =vl (IL’, af) + (1 =v)l (z,0q)
Thus,

by (z,0f)-en=v(in—e)+ (1 —v)np<n—ve<n.

Taking limits as v goes to 0, we obtain

0> p(—lh(z, 01)+A¢ (2)=by (x,010)-V (2))+(1—p)(—l2(z, 02)+A (2) =b2 (x, 2)-V (x)).

Arguing as in case 1, we obtain that U} is a subsolution of H7}., since H}\(z, ¢, Dy$) < 0.

Case 3.2 Let aq, an be such that
bi(x,0q) ey <n and by(x,as) - ey = —1.

Let &€ > 0, thanks to hypothesis (HC), there exists a control a3 such that fore <n < §

and by (a:,ozj) = (—n+¢)en.
For 0 < v/ < 1, we can find a control 045/ such that
b2($, OélZ/) = ]//b2 (.flf, C¥2+) + (1 - y/)bQ (:C, 052)

lo(z,a8) =Vl (% 04;) + (1 =)l (2, 00)
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Then
by (x,agl) cey=V(-n+e)+ (1 —=V)(-n)=-n+ve>—n.

Taking limits as v/ goes to 0, we obtain
0> i~y (2 1) 426 (2)=by (2, 01)- T (2))+ (1= ) (—la (2, 22)+A6 ()b (&, 23)-¥'6 (1))
Therefore, U7} is a subsolution of H7., since H}.(x, ¢, Dy¢) < 0.

Remark 4.2.2 Observe that in the proof above, in all the three cases, we have that Hj} >

reg
He,

Convergence of U} Our 1 trajectories approximate regular trajectories when 7 goes to zero.
This suggests that the limit of U” when 7 goes to zero is U' . Moreover, when we increase
7 the set of trajectories grow, which indicates that the limit of U" when 7 goes to oo is U~.
In this section we prove the two convergences.

In the two lemmas below we prove some relations between U}, U, and U}.

Lemma 4.2.3 Letn <1/, then
Wgﬁgmg%mgm. (4.2.2)
n
By definition, 7/(z) C 7(z) and U’ (z) < U'l(x) for n < 1. Thus the result.

Lemma 4.2.4 Let$ > 0,
Bs(0) C Bi(x), (4.2.3)

where B (x) := {b;(z,w)|w € A;}. Assume that there exist \,C' and C such that

(HD)
[bi (2, i) < AL+ [of] + []),

li(z, af") < Cla]' =+ Cloyl.
for all x € R™ and " € AT fori=1,2. Let (X,,a™) € 1,(A"). Then,

Tim U (X, (1)e ™ = Jim Uz (Xo(T))e T = Jim Ufu(Xo(T))e T =0
—00

T—oo T—o0
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Denote U, Uym and U by Uam. Thanks to hypothesis (4.2.3), there exists a control af
such that b;(X,(T),a% ) = 0. Thus , we can consider the fixed trajectory at X, ('), then
by definition of Uam, hypothesis (HD) and Lemma we have

< l(Xx(T)a agm(T)) 6_>\T

- A _
< C1X (1) + Cef)\T

Unm (Xa(T))e

A
Cla| + CpeTy—

< T ge*AT
- A A _
CT ) (|gle T+ Cp) = 7 C i
= /\ e + X@
—\T m\l—e Val
_ C(|zle /\+ Cr) e MTe | fexT‘

Hence, lim Ut (X, (T))e M = 0.
—00
The following result proves the convergence of U?.. to U as 7 goes to infinity in compact

control set A™.

Theorem 4.2.5 Under the hypotheses (HA), (HB) (HC) and (HD), we have
lim Ul,.(z) = Ugm (),

n—00

where A™ C A is a compact control set.

Fix 7" > 0. Thanks to the Dynamic Programming Theorem [4.1.1] there exists a sequence
(X2 a™) € Tgm(x) such that
T
lim ( / HXE(t), ™ (t))eMdt + Uy (X2 (T)) e ) = Uy (7).
0

n—oo

We define

and consider the trajectories
(XY™ : (0,T) — RN*L,
Due to the Lemma there exist R} such that | X" (¢t) — x| < R} for any ¢t € (0,7] then
[b(X5 (), ")) < Bl @y xcam, and (X (@), " ()] < W[5, yuam  VEE (0, T].
Arguing as in Lemma [2.2.5] we obtain trajectories (XZ,Y7T)(:) in [0, 7] which satisfy that

XT(s) =b(XT(s),a"(s)) forae sel0,T]
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and

n—oo

Upn(z) = lim ( /OTZ(XS(tm"(t))e”dt 4 U (X (T)) e)‘T>

_ /0 ! UXT(), o (0)eMdt + U (XT (1)) 7.

Due to Lemma 4.2.4 we know that lim Uy (Xf (T)) e = 0. Thus,
00

Upm(z) = lim ' UXT(t), o (t))e Mdt. (4.2.4)

T—0o0 Jo
Thanks to hypothesis (HC) there exists a control a; such that b;(XT(T),a;) = 0. Then

we can define a trajectory such that
XI(#):=XH(T) and of(t):=af forany t>T.

Taking " = max{|[b1||rmxam, |[b2||rmcam, T} then (X, a") € TZ:L(:U) Hence, by definition

of Ul
Upn(z) < Ul () < /OTZ(X:CT(t),aT(t))eAtdt + U, (XIT (T)) e (4.2.5)
Moreover, by definition
Ui (XT(T)) €T < U (XI(T)) e < U (XT(T)) 7.
Thanks to Lemma [4.2.4] we have

lim U4 (X7 (1)) e =0. (4.2.6)

T—o00

Taking limits as 7" goes to oo in (4.2.5) and thanks to (4.2.4)) and (4.2.6]), we obtain

. T
Uum(z) < Tlim Ulm(z) < Tlim l(XxT(t), aT(t))e”\tdt = Ujyn(z).

—00 JO

Therefore,

lim U (2) = Usgn(2).

T—o0
Observe that n > T then lim n? = co.
T—o0
The following result is a consequence of Theorem that states the convergence of U}

to U, as 1 goes to infinity in a general unbounded control set A.

Corollary 4.2.5.1 Under the hypotheses (HA), (HB) (HC) and (HD), we have

lim U} (x) = Uy ().

n—o0
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Thanks to the definition of U,.., we have given j € N there exists m, such that for

m > m; then

_ _ 1
|Us () — Upm| < 5 (4.2.7)
Then there exists 7(j) such that
; 1
oy — U <~ 4.2.8
U, ~ U1 < o (4.28)

From (4.2.7)) and (4.2.8)), we obtain

B . _ B _ . 1
U () = U | < (U3 (2) = Uy | + |Uigm, — UL | < o

Moreover, there exists T > m; such that ]UZE%) (z) — U9 (2)] < 5;- Furthermore,
Ui (2) 2 U (@) 2 Ugn() 2 U (2).

Hence,

U (2) — U9 ()] < Uz (2) — UL ()] <

J

So that,
B . B . . , 1
U () — UL ()| < U5 (2) = U+ U1 — U9 (2)] < -

The following theorem states the convergence of U},. to UL, as 1 goes to zero where A™

is a compact control set.
Theorem 4.2.6 Under the hypotheses (HA), (HB) (HC) and (HD), we have
lig U () = U (),
where A™ C A is a compact control set.
Consider a strictly positive decreasing sequence {7, },>0 such that Jgrglo N, = 0. Since
U (2) > U (x)  for e < €.

We assume that

Ul (x) < Uin(2), (4.2.9)

otherwise, there exists N € N such that U} (z) = Ufn(x) for all n > N and we have
the result. Given 7' > 0, thanks to (4.2.9), and due to the Dynamic Programming Principle
Theorem [4.1.1], there exists (X", a™) € Tim(x) satisfying

Ubn(x) = Ul ()
2

T
/ X (1), o (£))e Nt + U (X7 (T))e T < U () + < Ufn(2).
0

(4.2.10)
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Let us define

Y (s) = /O UX (), o (1)) dt.
Since b;(X",a™) and [;(X, o) are bounded in [0,7] and thanks to Lemma [2.2.3] we
have the curves (X, Y")(-) are equicontinuous and uniformly bounded in [0, 7"]. Therefore,
by Ascoli Azela’'s Theorem, we can extract a subsequence (X!, Y")(-) which converges
uniformly to Z7 := (X, Y7) in [0, 7). Proceeding as in Lemma [2.2.5] we find a measurable

control af(-) such that
(X2 (1), Y1) = (b(X; (8), 0" (1)), UX; (1), a" (1)) VEe[0,T]. (4.2.11)

Thus, ((b(X™(t), a™ (t)), (X" (t),a™(t)))) converges weakly* to (b(XT(t), al'(t), 1(XT (), aT(t)))
in L>°([0, T]; R)2.
Below we want to prove that the limit control a’ is regular. To do this we need to define
for z € H,
K(z) == {bu(z,0) : o € A4y%(2)}.

EX (T):={s€[0,T]: XT(s) € H and dist(by (X (s),a”(s)), K(XX(s))) > T}.

Eaing(T) :={s € [0,T] : X} (s) € H and dist(by (X} (s),a’(s)), K(X(s))) > 0}.

where dist is the euclidian distance in RY.

Note that

szng U szng

JEN

We claim that |E,, (T')| = 0 for any T > 0. Then,

| 91”9 | < | U szng O

JEN
Since I(X"(t),a™(t)) converges weakly* to I[(XT(t),a”(t)) in L>=([0,T]; R) and e~ is in
LY([0,T]; R), we obtain

lim [ LX), ™ (t))e Mdt = /0 ' UXT(t),a”(t))e Mdt.

n—oo 0

Thanks to hypothesis (HC), there exists a control o such that b;(X(T),a}) = 0 then we
can define XT'(t) := XI(T) and ol (t) := o for any t > T. Thus, (XZ(-),a” (")) € 7,5 (x).
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Thanks to Dynamic Programming Theorem [4.1.1} (4.2.10) and (4.2.9), we have

U (2) — U (KT < [T HXT(0), 07 (1))l
= lim TZ(X;’" (t), ™ (t))e Mdt

n—oo

Sﬁ@([ﬂX?wa%@w”ﬁ+U%@?awe”)
Ukn(x) = Ul ()

< lim U} (x) 4+ lim

n—00 n—00 2
< Ujn(z).
(4.2.12)
That is,
=+ I
Uk (2) = U (XT(T))e™T < lim Ul (x) 4+ lim Unl@) = Ui () < Ufn(z)

n—oo n—oo

By Lemma we know that

lim Ut (XT(T))e™™ = 0.
T—o00

Taking limits in (4.2.12)) as T" goes to infinity, we obtain that
Uln(x) — Ul ()
2

Ujn(z) < lim UL (2) + lim

n—o0

< Ujm ()

+ _yUm (g
Thus, Uin(z) = lim U (z) + lim M Therefore,

n—oo n—oo

lim Ul (x) = Ujfn ().

n—oo

Since U () > USn(x) for € < €, we have the convergence as 7 goes to zero, i.e.,

lim U} () = U ().

n—0
To conclude the proof, we need to show that |EY, (T)] = 0 for any T > 0. Assume by
contradiction that there exist T > 0 such that |EY, (T)| > 0. To prove this we need the

following result.

Lemma 4.2.7 Let E C RY and C(R") be the set of all compact, convex subsets of RV .
Let F : E — RN be a measurable function and K : E — C(R") be a continuous set-valued
map. Moreover we assume that there exists T > 0 such that for almost everywhere s € F,

dist(F(s),K(s)) > Y. Then there exists an affine function
We(z) s c(s) - 2+ d(s)

with measurable coefficients ¢, d such that for almost any s € E, W (F(s)) < —1 and
U(z) > 1 for z on K(s).
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For fixed s € E, K(s) is compact and convex, then the projection mi(s) : RY — K(s) is
well-defined. Moreover, s — K(s) is continuous set-valued map. Now, since s — F(s) is
measurable, s — 7,(F'(s)) is also measurable and we denote by P(s) := mi(s)(F(s)) the
projection of F'(s) in KC(s). Thanks to (AUBIN; FRANKOWSKA) 1990, Cor. 8.2.13 p. 317) P'is
measurable.

Let us define by M (s) := (F(s)+ P(s))/2 the middle point of segment [F'(s), P(s)], and

set
. P - F(s)
T IP(s) = F(s)|

so that ey is the unit vector pointing in the direction from F'(s) towards P(s). Then we define

the affine function
U,(2) = 2;8 (2 — M(s)) = e(s) - 2 + d(s)

where ¢(s) := 2 and d(s) := —%= - M(s) . Notice that since P(s) is measurable, then

so is M(s) and es. So, the coefficients ¢(s) and d(s) are indeed measurable.

Let us recall that by assumption, ||F'(s) — P(s)|| > T, then

)
N | =

This first inequality implies immediately that U, (F(s)) = 2e, - (F(s) — M(s)) < —1 and
U, (P(s)) = 2e, - (P(s) — M(s)) > 1. For the second one, notice that since K (s) is convex,
for any w € K (s) there exists v € RY such that w = P(s) + v with e, - v > 0, which implies

by our choice of W that for any w € K(s)
U(w) > Wy(P(s)) > 1

which gives the second property and completes the proof. Now, we apply Lemma with
E = Ef,,(T), F(s) = by(XI(s),a"(s)) and K(s) = K(X](s)). Then, there exists 1,

defined as

Ys(z) = c(s) - 2+ d(s) (4.2.13)

with (¢, d)(+) € L*°([0,T], RN*!) such that fora.e. s € EX

aing(T), that is, we have by (X (s),a”(s))
is not in K (X (s)) and
Vs (b (XX (s),a”(s))) < =1, bs(2) > +1 on K(XZ(s)). (4.2.14)

Observe that the affine function 1), is less or equal than —1 on the times where the trajectory

is singular and v, is greater or equal than 1 where the trajectory is regular.
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Recall that we are assuming by contradiction that there exists Y > 0 such that |[EY (T)| >

sing

Note that X/(-) converges weakly* to XZ'(-) in L>=([0, T]; RY). We define

_/ 77/}5 XXmL )]_ET (T)(S)ds

_/ XX"I'rL(S))]_ET g dS +/ ]-E;rzng S)dS
We will arrive to contradiction proving that /" is strictly negative and positive.
Since X" (-) converges weakly* to XT(-) = by (XX (-),a”(-), ¢ € L*=([0,T],RN) C
L*([0,T],RY), and thanks to (4.2.13)) and (4.2.14)), we obtain

T

lim I™ = lim [ c(s)- (X2 (s Ngr  (1)(s ds+/ 7)(s)ds

n—oo nn‘)O 0 sing szng

:/OTC(S) C(XT(s Nlgr ds+/ $) gt (py(s)ds

sing S'Lng

:/OquS(XT (s))1pr (ry(s)ds

sing

:/OTws(bH(XmT(S),a (5))1pr (1(s)ds

sing

< —|Eung(T)| < 0.

Below we prove that ILm I > (0 what leads to contradiction.
n—oo

Note that
X (s) =b(XI(s),a™(s))
= b1 (X (s), ™ ()1 xmm (s)ensy + 02( X (8), @™ (5)) 1 xm (5)en, ()

+ou (X7 (8), ™ (5)) 1 xmm (5)eny ().

Then

[ —

[ ets >1Egmgm< ) (b (X2 (s), 0™ (5)) 1, (X2 (5))ds + ba(X2(5), @7 (5)) Loy (X2 (5))) ds
b [ el ()X (5), 0 (DX (5))ds + [ () ()i

(4.2.15)

Let us divide I™ in two parts, we denote

I = /0 ' c()1gx, r)(s) ((X7"(s), @™ () 1o, (X7 (s)) + b (X" (), @™ (5)) 10, (X" (5))) ds
(4.2.16)



108

r :/OT c(s)lg EX, (T )(s)bH(Xg"(s),&””(s))lH(XQ"(S))dS+/0Td(5)1Eg§ng(T)(3)d5
(4.2.17)

Observe that

bi( X3l (s), @i (s))Lxpmeqny (s) = /A bi( Xl (s), ai)dii" (s)

where /" (s) is a Borel measure defined on A7 as 9" (s)(V) := dam(s)(V)1ixmen,(s).
Thus,

[ el (5)n (X2 (), 0™ () (X2 (s))ds = [ g €, (DX () )0 ().

sing

Consequently,

/OT/;” bi( X (s), o) dO™ (s) =

/O ' / X (5), ) = BT (5), )i (s + /0 ! /A X (9), )i ()ds

Since X/ converges uniformly to X! and b; is Lipschitz, then

tim [ el o (I (5) o (s =
lim / / oy ($)Bi(XT(5), ) A9 (5)ds.

Let R(A”") be the Radon measures in A7, and assume that ¢/" : [0,7] — R(A") is
convergent, taking subsequence if necessary, with limit ;. Then thanks to Theorem 7?7, we

have

T}LII(}O/ / Ngr ()b (X7 (5), i) dd} (s ds—/ / Igr iy (8)bi( X7 (5), )i (s)ds.

Let us compute [,m bi( XX (s),a;)dd;(s). For each s € [0,T], we have either 9;(s)(A™) =0

or U5(s)(Aj") # 0 and 5 ”9 (S (i 1S 2 Borel probability measure on A7

If 9;(s)(A") # 0, since A" is a separable metric space, then there exists an enumerable
set {al,---,at,---} dense in A™ i.e., there exist coefficients pic(s), - i (s) € [0,1]
¢ .
with 35 pj (s) = 1, such that
="

L 2
Clggoﬂz‘,c(s)(sag + 15 (5)0a2 + - Jﬁ“zg( §)0,¢ = i) (A7)’
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By convexity of B;(X7(s)) there exists as € A™ such that

bi(X3T(5),05) = pic(9)bi( X7 (5), 07) + i ()0 XT (5), 0F) + - + i ()0 XS (5), )

= Jm bi(X; (), ) d (#z‘l,g(s)éa} F HE(8)0g2 + o Mg,g(s)(saé) :

(4.2.18)

Thus, by definition of weak* convergence of Radon measures, we have

. Vi(s)
¢ o 1
Clirgo Am bz(Xg(S)v al)d(ﬂ’zl,g(s)éoczl +/“LZ2,C(S)5OL?+ ’ ‘I‘H%C(S)(S%C) - /;n bZ(XZ<S)7 al)dﬁl(S) (A;n) :
(4.2.19)
From ({4.2.18]) and (4.2.19), we have
_ i(s)
&) = (XT - :
lim b,(X7 (s).a) / LX), @) S (4.2.20)

From (4.2.20]), and since B;(X1(s)) is closed there exists a control @;(s) € A" satisfying

9i(8)(A™Mb(XT (s), @i(s)) = / (X (5), )i (s). (4.2.21)

On the other hand, if ¥;(s)(A") = 0 then for any @;(s) € A"

i) (A7)bi(X, (s),@i(s)) = 0 = /m bi( X (s), 0)ddi(s).

Thus, we arrive to the same expression for the integral of b; in A"
Thanks to the Measurable Selection Theorem we we can choose the control @;(+) €
L>=([0,T]; RN) and thanks to (4.2.21)), we have

T [ ets >1Egmqm< (X2 (5), a7 (5)) Lo, (X2 (3))ds
0 (4.2.22)

= [ o),y (D) AT ), 5)) s

.Mng

Analogously we consider measures 977 : [0,7] — R(A™) such that

[ bl(X2(5), @) (5) = b X2 (5), 07 (5)) Loy (5).

Similarly we can assume that ¥} converges to some ¥, and there exists ay € A™ such that
Tim by (X2 (5), 0™ (5))1 pxczn ey (5) = Ia(s) (A™bye(XD (), an(s)). (4:223)

Consequently,
lim [ els)Lpz, ) (s)b(X2(5), @™ () (X2 (5))ds

- / )z, 1) ()9 (5) (A)bre( XL (), () .

sing

(4.2.24)
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For s € EX

aing(T') and the trajectories on the hyperplane, X[ (s) € H, we claim that
bi(XT(s),@i(s)) - ey = 0.

Indeed, consider the sequence of Lipschitz continuous functions, (X]"y); := max{0, X'y},

T

which converges uniformly to (X v )+ := max{0, X[y} on [0, 7], up to an additional extrac-

tion of subsequence. Thus, we have weak* convergence of the derivative
(X35 = (Xw)s- (4.2.25)
Furthermore,

(X2w)+(8) = (XIW) () xm ey (s) and (X7 y)s = (XZn)()1(x7 cay(s). (4.2:26)

The above derivative is in the sense of distributions. Therefore, we have the weak* convergence

(Xgﬁv)(3)1{X27Neﬂi}(5)1{X£Neﬂ}(5) = (X;ZjN)(S)1{Xf€Q¢,}(5)1{X{€’H}(S)'
Since 1yx7cq,3(5)1{xreny(s) = 0, we have
(XQ,WN)(3)1{X;77Nem}(5)1{X§NEH}(5) = 0.

Since

(ng}v)(5)1{X;?7Neﬂi}(5)1{X§Ney}(5) = bi(X;"(s), " (5)) - enlixr(s)ery

Since the left hand side converges weakly* to zero and the right hand side converges to

ﬁz(s)(A,)b,(XxT(s),@l)(s) . eNl{Xf(s)E’H}v we obtain that

0;(s) (A:)bi(X [ (s), @) (s) - enlixr(s)eny(s) = 0.
Then
bi(XT(5),)(s) - ex = 0 on {X7(s) € M},
Now, we can choose a control in Ag™ such that by (XZ(s),-) is in K(XZ(s)). Thanks to
hypothesis (HC), there exists a’f*(s) such that b; (X[ (s), af*(s)) = 0, then (@i(s), af*(s), 1) €
Ay (X (s)) and

(X7 (), () = biu(XT ()ai(s), 2 (5), 1) € K (X7 (s)).

T T ) g
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Let us focus now on the term in IJ" given by

[ )1, (5) X2 (5), ™ () 1 X2 (5)) s

We proceed as in (BARLES; BRIANI; CHASSEIGNE, 2014, Lemma 5.3). What changes in
our case is that we are not taking the limit of a sequence of regular trajectories but of 7,-

trajectories. We prove that for s in
Ay = (X2 THH) N E g (T),
there exists a regular control a(s) € A{™ (X (s)) satisfying
bu (X" (5), @™ (s)) = bu(X; (5), a(s)) +<"(s) (4.2.27)

with ¢”(-) measurable going uniformly to 0 when n goes to infinity and &(-) € L>®(A,; A™).

We will focus on proving (4.2.27)). To do this, first we will find a regular control a(-) for
the trajectory X" () such that by (X} (s), a™(s)) approaches well by (X (s), a™(s)). After
that, we find a regular control a(-) for trajectory X (-) such that by (X7 (s),a(-)) approaches
well by (X (s),a™(s)).

Let us find the regular controls a™. For the first step, we define below the functions

M () == — max{0, by (X (s), " (s)) - en}

75 (8) := —min{0, by (X" (s), a3"(s)) - en'}-

(4.2.28)
On one hand, if (af"(s),ad"(s), u™(s)) € Ay (X (s)) then v]'(s) = 0 = ~Z(s).
Since X"(s) € H, we have by (X" (s),a™(s)) - ey = 0 almost everywhere on A,,, then
if (" (5), 3" (s), ™ (s)) & Ag™ (X" (s)), we have
by (X (s), 0" (5)) - en + (1 = u™)by (X7 (s), 03" (s)) - ey = 0. (4.2.29)
If ™ (s) € (0,1), we obtain 77*(s) := —b;( XM (s), " (s)) - en and
pm Ay (s)+(L=p") 75 (s) = = (Wb (X" (s), o (5))-en+(1=p" )ba (X" (5), 03" (s))-ex) = 0.

If 1 (s)
If i (s) =

1, v%(s) =0and 1 — u""(s) = 0.
, we have 73 (s) = 0. Then

pmAt(s) + (1 — p™)yg(s) = 0, for a.e. s € A, (4.2.30)
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Moreover since b; and X™ are continuous and «"(+) is measurable, then ! is measurable.

Since |v'(s)| < m, almost everywhere on A,,, then
vt — 0, uniformly as n — oc. (4.2.31)
Moreover,
(b1 (X" (), af"(s)) +77(s)en) -en < 0, (bo( X" (s), 08" (s)) +74(s)en) -ex > 0. (4.2.32)

Now we are going to use 7 to build the regular control o (+). To do so, we define

0 =271 (s)] 6 =215 (s)]
) ’ ) '

F"(s) := min {

Thanks to (4.2.31]), we have 5"(s) — 1 when n — .

We claim that there exists o;""(s) € A; such that
bi(X7"(s), " (5)) = bi(XGI"(s), 0" (5)) + pf' (5), (4.2.33)

where
pi(s) == (1= B"(s)) (bs( X" (s), " (5)) + 77" (s)) = 2 (s).
Note that p}' is measurable and goes uniformly to 0 when n goes to infinity.

Indeed, if 5™(s) =1, then |7]'(s)| = 0 = |7%(s)|. Thus, we can take

" (s) == aj"(s) and pi'(s) = (1 = D(b:(X]"(5), 0" (s)) +0) =0 = 0.

Otherwise, if 3"(s) # 1. For n large enough 0 < 3"(s) < 1 and 1‘1%515()!) < g. Thanks to

hypothesis (HC), there exist a""(s) € A" such that

i

B7(s) (bi( X2 (), 0 () + 7P (s)en) = B (8)bi(Xn(s), 0l (5)) + (1 — B (s)) (- ullen)

= bi(X](s), o™ (5))-
Furthermore, thanks to (4.2.32)
bi(X"(s), a1 (5)) - en = B"(s) (b1 (X" (5), " (5)) + 77 (s)) - en <0

ba(X3" (5), a3 (s)) - en = B"() (02(X3" (5), 03" (5)) + 73 (5)) - ex 2 0
Thanks to (4.2.29)) and (4.2.32)

p (8)b1 (X3 (5), 1 () - e + (1 = p™ (5))ba(X " (5), 057" (s)) - en



113

= ™ (s) 5" (5)b1 (X3 (), af" () - en + (1 — ™ (5)) 5" (5) (b2( X" (), 05" (5))
+6"(s)pu™ 1 (s) + B"(s) (L — pu"™)73(s) =0 a.e on H.
Then, we have (a7 (s)ad™"(s), u™(s)) € Ay (X (s)).

However (af"*(-)agd™*(-), u™(-)) is not necessarily measurable. But we can use Filip-
pov Theorem to obtain measurable controls. We use Filippov in the following way:
h(s) = b;( X (s),a]"(s)) — p(s) on [0,T], F(s) = A; on [0,T], Z = A, and g(s,q;) =
bi(X™(s), a;). Indeed,

bi(X;" (5), 0" (s)) € Bi(X]"(s)).

? )

So, we can find af(-) measurable such that

bi( X" (5), i (s)) — pi'(s) = bi( X" (s), i (s)).

7 it}

Thus, a"(+) := (o (-), a5 (-), u™(+)) € Ay (X (s)) is measurable.

Consequently,
b (X3 (s), @™ (s)) = b (X7 (s), a"(s)) + p"(s)

where p"(s) = u™ (s)pt(s)+(1—p™(s))p5(s). Note that p™ is measurable and goes uniformly
to 0 when n goes to infinity since p' goes to zero as n goes to infinity.
Since (a(s), a5 (s), u™(s)) € Ay (X (s)) and thanks to (BARLES; BRIANI; CHASSEIGNE,

2014, Lemma 5.3) there is a measurable control & € Ay™ (X (s)) satisfying

bu (X (5), a"(s)) = bu(X (s),a(s)) +0"(s). (4.2.34)
with ¢”(-) measurable that goes uniformly to 0 when n goes to infinity. Therefore,
b (X7 (5), @™ (s)) = bu(X (5), a(s)) + 0" (s) +p" ()

and we can choose ¢"(s) := o™(s) + p™(s) in (4.2.27)).

We prove (4.2.34)) as follows. Define,
67'(s) = bi(X](s), 0} (5)) — bi( X (5), 0} (5)).

et} [

Since b;, X™ and X are continuous and «!(-) is measurable, then G7(-) is measurable.

Furthermore, &7(-) converges uniformly to 0 as n goes to infinity, because

57 (s)] = 1b:(X7" (5), 7' (5)) = bi(X7 (5), 07 ()] < Col X (s) — X7 (s))]

K3 3
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and X (-) converges uniformly to XZ(-) . Thus,
bi(X7"(s), i (5)) = bi( X7 (), af (5)) + 7' (5)-
There exist @} (s) € A; and 07(s) such that
bi( X (5), i (s)) = bi( X7 (), 65 (s)) + 07 (s).

with o7 (s) = (15" (5)) (b:( X[ (5), 7'(5)) +57(5)) =67 (5), where 3" (s) = min{ =5, S2EEE),
Thus, o}' is measurable and goes uniformly to 0 when n goes to infinity.

If 8"(s) = 1, then |67(s)] = 0 = |65(s)|. Thus, we can take &f(s) := af(s) and
o7 (s) = (1 = 1)(bi( X" (s), a7’ (5)) +0) =0 = 0.

On the other hand, if 5"(s) # 1, we proceed as follows,

B ()b(X2(s), () = 7(s) (bi(XT(s), ai(s)) + 57 (s))
= ()b XT(5), 02 (s)) + (1 = 57(s)) (G0

Thus,

and

P (8)bu (X7 (5), 61 (s)) - e + (1 = 1™ (s)))ba(X7 (), G5(5)(5)) - e
= ™ (s)B"(s)br (X" (s), 01 (5)) - en + (1 = p™(5)) 3" (5) (b X" (5), a3 (s)) - en
= B"(s)bu(X;(s), " (s)) - en = 0.

Hence (a3 (s), as(s), u™(s)) € Ay (XX (s)), however it is not necessarily measurable. Arguing
as above, thanks to Filippov's Theorem [2.1.2) we obtain measurable controls &, (-), dz(+) such
that

bi( X, (s), Ga(s)) = bi( X7 (s), a7 (5)) = 0}'(s) = bi(X; (s), 4} (s))-
Thus, a(s) = (ay(s), as(s), u™(s)) € A;? (XX (s)) is measurable and

b (X (s),0"(s)) = bu(X; (5),6(5)) + 0" (s),

with o”(s) = p™(s)oi(s) + (1 — u™(s))oy(s). Note that o™ is measurable and go uniformly

to 0 when n goes to infinity.
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Now we consider a, satisfying

c(8)by (XX (s), au(s)) = min c(s)by (XX (s),a). (4.2.35)

{acaf®? : by (XT a)eK(X])}

The minimum on the left hand side exists due to the compactness of K(XZ(s)). We can

assume that o, is measurable by the Measurable Selection Theorem [2.1.1] Also, note that a,

does not depend on 7,. Thanks to (4.2.35)), we have,

[ el e, oy (Wom (X (), 0™ () (X2 (5)) s

= [ el e ()X ), a5 L (X2 () + o,

sing

> [ els) i,y ()X (), 0 (5)) L (X2 () + 0,

szng

Taking limits as n goes to infinity, we obtain thanks to (4.2.24)), that

T [ )Ly (oK (5), ™ () 1 (X2 () s
0 (4.2.36)
> [ els)Lex, o) (8)0n(s) (A™)br (X1 (5), () ds.

szng
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5 OTHER PROBLEMS

5.1 STRATIFICATIONS

In this thesis we work with discontinuities in the hyperplane H, but our set of disconti-
nuities can be much more general. Emmanuel and Guy have done this via Whitney Stratifica-
tion in (BARLES; CHASSEIGNE, 2018). Now, let us present the definition of stratification. Let
MO M, ... MY be disjoint submanifolds of R such that RY = M°U M*U---U MV
where each M" decomposes as M* = U; M}, for k € {0,1,...,N}.

Definition 5.1.1 We say that M = (M*)Y_, is an Admissible Flat Stratification of RY if
the following hypotheses are satisfied
Ifx € M* fork=0,1---,N there exists r = r, such that

» B(x,r)NM* = B(z,r)N (x+V}), where V,, is a k-dimensional linear subspace of RY .
» ifl <k, Blz,r)NM'=)

= For any | > k, then B(x,r) N M' is either empty or has at most a finite number of

connected components;
= Foranyl >k, B(x,r)NM'# 0 if and only if z € OM].
If MF O M # 0 with | > k then MF C M.,
Moreover, we have M* ¢ MU M' U ---U MP.

With this definition we can present a more general notion of stratification.

Definition 5.1.2 We say that M = (M*)}_, is a Regular General Stratification of RY if the

following hypotheses are satisfied
s RN =MUM'U---UMY;

» for any v € RY, there exists r = r(z) > 0 and a C"!' change of coordinates )® :
B(x,r) — R such that ¢°(x) = x and {¢°(M N B(x,r))}_, is the restriction to

Y (B(z,r)) of an admissible flat stratification.
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When the set of discontinuities form an stratification, then the results that we have th-
roughout this Thesis, may be reached with these new discontinuities.

In (BARLES; CHASSEIGNE, 2018) Guy and Emmanuel handle the problem with bounded
data. Our aim is to prove the results under the same settings in this Thesis, with unbounded

cost and dynamic functions, and unbounded control set.

5.2 KPP EQUATION

Reaction-diffusion equation of type KPP appears in different models in Physics, combustion

for example, and Biology. In simple format, the KPP equation is expressed as
1
u = 5Vu = cu(l —u) in RY x (0,00).

The important thing in applications is to understand the behavior of u for long times and large

space. Therefore, we consider the rescaling u‘(z,t) = u(%, %) which solves
uf — eVu' = e teu(l —u) in RN x (0,00).

In (BARLES; CHASSEIGNE, [2018), Emanuel and Guy have studied in the viscosity sense, the
KPP equation with discontinuities. We would like to apply the unbounded framework to deal

with these type of problems.

5.3 OTHER VALUES FUNCTIONS

There exist many family of functions that may be considered, as we did in Chapter 3.

Another family of value functions that we can consider is the following defined below.

TZ(S)(:L‘):: {(Xz("),a(")) € Ta(z)|for a.e. t € Ey, bo(Xu(t),a(t))-en < v, by(Xp(t),a(t))-eny > —v}

(5.3.1)
We define

T

Uls)(@) = inf, ( / UX (1), at))e Mdt + UY s (X (T)) e_’\T> . (5.3.2)
Th(z 0

Of course two questions arise: what is the limit of U4(x) when v goes to zero? And when v

goes to infinity?

A good candidate as a limit of Ul(s) When v goes to zero is

US(z) = inf [ 1(X(2),a(t))e Ndt (5.3.3)

Tf (z) JO
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where,

Tj(x) = {(X.(1), (")) € Ta(x) | for a.e. t € Ex, ba( X (t), aa(t))-eny <0, by(X,(t),a1(t))-en > 0}.
(5.3.4)

And when v goes to infinity we suspect that the limit of Uls) is 0.

5.4 CONTROLS IN L,

We work with controls in L>°(A). But what happens if we work with controls in LP(A)?

The main difficulty of this approach is to obtain comparison and limit results.
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APPENDIX A — DISCONTINUOUS APPROACH

In the discontinuous approach, we work with supersolutions that are lower semicontinuous

Definition 6.3. Let X be a topological space and f : X — (—o00,00]. We say that f is lower
semicontinuous when f(zo) < liminf f(z) .
T—xQ

Equivalently we have the definitions in the proposition below.

Proposition 6.1. Let X a topological space and f : X — (—o0,00]. Then f is lower
semicontinuous iff

(1) f7H((—o0, A]) is closed set for all X € R.
(it) f(zo) <liminf f(z).
T—x0
Thanks to characterization (i) we obtain the following result.

Theorem 6.2. Let X be a normed space and [ strong lower continuous and convez function
then f is lower semicontinuous with respect a weak topology.

Proof. Since f is lower semicontinuous and convex function then the set f~!(—oo, \] is convex
and strong closed set. Thus, thanks to Mazur Theorem (see [13| page 61), f~'(—o0, )] is
convex and weak closed set. Therefore, due Proposition 6.1 f is weak lower semicontinuous.

O

The advantage of the discontinuous approach is that we can cross the limit without
requiring almost anything, just uniform local bound. To do this, we need the following
notion of limit

Given g. a sequence of uniformly locally bounded functions, the half-relaxed limits of
(ge)e is defined by

(liminf),g.(z) = liminf g.(y) :=supinf{g,(y): 0 <y <e,|Jz —y| <e}
e—0

(e, ¥)—=(0, )

(imsup)*g.(z) = limsup g¢.(y) := inf sup{g,(y) : 0 <y < e, |z —y| <e}
(& 9)=(0, 2) =0

This notion of limit allows us to obtain the following result

Theorem 6.3 (Half-Relaxed Limit Method). Given sequences (u.). and (H). uniformly
locally bounded such that u. is supersolution of

Hf(z,v(z), Dv(z)) =0 in RY.

Let
w(z) := (liminf),u.(z) and H(z,u,p) = (imsup)*H.(x,u,q).

Then u is a viscosity supersolution of

H(z,v(z), Dv(z)) =0 in RY.
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Analogously, given sequences (uc). and (H®). uniformly locally bounded such that u. is
subsolution of
He(z,v(x), Du(x)) =0 in RY.

Let
w(z) := (limsup)*u.(z) and H(z,u,p) = (liminf).H.(x,u,q).

Then w is a viscosity subsolution of
H(x,v(x), Dv(z)) =0 in RY.
Proof. See [20, Th A.2, p. 577|, [4, Th 4.1, p. 85] and |7, Th 3.1.3, p. 29]. O
In particular we have the following lemma

Lemma 6.4. Consider u. a sequence of uniformly locally bounded continuous functions. If
Ue 1S non-increasing, then

limsup uc(y) =infuc(xz) and  liminf wu.(y) = (inf ug) (2).
(e,y)—(0,z) € (e,9)—(0,2) 2 x

If u. is non-decreasing, then

liminf w.(y) =supu.(z) and  limsup u.(y) = (sup u5> ().
(e:y)—(0,2) € (e,y)—(0,x) €

where (-)* and (). are the envelope of u.s.c and l.s.c functions respectively.

Proof. See [4, p. 91]. O
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APPENDIX B — RELAXED CONTROL

The relaxed control method plays an important role in the theory of viscosity solutions of
the Bellman-Hamilton-Jacobi equation. In this section we present this method and its main
result.

We denote a Radon measure in a compact set A by R(A) and A" set of Radon probability
measure, A" the set of measurable functions (0, 00) — A” and A’ set of measurable functions
0,7) — A".

Let C(A) be the set of continuous functions of A — R and (C(A))* dual space of C'(A).
we have

(C(A))* = R(A).
Since C'(A) is separable, due to Alaoglu Theorem the unit ball in the dual space (C(A))*
is compact in the weak* topology, (metrizable compact). Thus,
A" — (C(A))*.
Consequently, A" is compact metrizable space, with the weak* topology. Beyond that
A— A"

with a — &, where ¢, is Dirac measure concentrated in a.

So relaxing the controls means extending the control set, A, to a larger compact, A”. Since
we changed the set of controls then we need to change too the cost function and dynamic
function:

b (xz,m) = / b(z,a)dy pe A
A

"(z,m) = / l(z,a)dp pe A
A
Then b, I" satisfy
co(l(z,A) x b(x,A)) =1"(x, A") x V" (x, A")
We define:

e relaxed control: A", the set of measurable functions (0,00) — A".

e Relaxed trajectories:

y(t) -z = / 0 (y(s), u(s))ds.

0

e Relaxed cost function:
T = [T u)ds
0
o Relaxed value function:

V(@) = inf /0 S (y(s), u(s))ds. (6.5)
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The advantage of considering relaxed problem is that it always has an optimal trajec-
tory that is trajectories which reach the infimum (6.5), cf. [2, Cor 1.4 p. 368].

The result below is the main Theorem in this section, this theorem allows us to get the
relaxed controls limit.

Theorem 6.5. [Bunford-Pettis] Consider

V:={v:[0,T] = R(A)| v is measurable and sup ess|v(t)| < oo}
te(0,77]

and

B :={¢:[0,T] x A— R|¢(-, «) is measurable for all « € A, ¢(s,-) is continuous
supy < |o(s, )| < w(s)Vs € [0,T] for some v € L1([0,T]).}

Then there exists an isomorphism ¢ : V — B. Gien v € V, we define A, as

T
AL (0) ::/0 /A¢(s,a)du(s)ds, for ¢ € B and |A,|p=sup ess|v(t)]

t€[0,T]

where {B,| - |g} is isometrically isomorphic to the space L'([0,T];C(A)). Moreover, if
(Un(t)(A))n is uniformly bounded for any t € [0,T],n € N then there exists subsequence
such that A, converges weakly* to A,, that is,

Tim /0 ! /A O, a)dvy(s)ds = /0 ' /A (s, a)dv(s)ds.

Proof. See [24, p. 268] and [2, p. 166]. O

We apply Theorem 6.5 with the sequence of Dirac measures fi,(t) = dq,, ;). We can extract
convergent subsequence of u,, which converges weakly* to p € A”.

Theorem 6.6 (Relaxed Control). Given a sequence of classical controls, a,, € L>(0,00; A).
Let y™ be the trajectory associated with o,,. Then, extract a subsequence , y™ uniformly
convergent to y and there exists p € A" such that

i [ 16576 Vs = [ [ it Vautsyas

n—oo

Proof. Since b is Lipschitz

() — 7 — /0 b(y"(5), un(s))ds — /0 B (), an(s)) — bz, an(s))ds + /0 b(, an(5))ds.

t
y(t) — 2| < C / 1y"(s) — x]ds + tsup [b(x, ).
0 acA
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Taking ¢t < T, thanks to Gronwall inequality y™ is uniformly bounded in [0, 7] and since
the dynamics are bounded, y™ is a sequence of equicontinuous functions. Due to Arzela-Ascoli
Theorem, We can extract a subsequence y™ uniformly convergent to y. Consequently,

yt)—x = hm (y (t) —z) = lim / / a)dpi,ds

n—oo

= lim // a)dpi,ds
n—0o0
// a)duds.

Therefore, y is a relaxed trajectory associated the measure u. Now, take ¢(s, o) = I(y(s), a)e
and use the sequence of Dirac measures ji,(t) = 4, () then

¢ t
lim [ I(y"(s),a"(s))e *ds = lim/ /l(y(s)7 ey ds—// y(s 7)“"d,u(9)d

—As
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