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ABSTRACT

The aim of this thesis is to deal, of the point of view of viscosity solutions, with a

discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where

the discontinuity is located on an hyperplane. The typical questions that arise this directions

are concern the existence and uniqueness of solutions, and of course the definition itself of

solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex

Hamiltonians, we can also associate the problem to a control problem with specific cost

and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz

continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach

we construct two value functions which turn out to be the minimal and maximal solutions in

the sense of Ishii. Moreover, we also build a whole family of value functions, which are still

solutions in the sense of Ishii and connect continuously the minimal solution to the maximal

one.

Keywords: optimal control; discontinuous dynamic; Hamilton-Jacobi-Bellman equation; vis-

cosity solutions; Ishii problem.



RESUMO

O objetivo desta tese é lidar, do ponto de vista de soluções viscosas, com descontinuidades

da equação de Hamilton-Jacobi no espaço euclidiano de dimensão N, onde a descontinuidade

está localizada em um hiperplano. As típicas questões que surgem neste sentido estão relaci-

onadas com a existência e unicidade de soluções, e naturalmente sobre a própria definição de

solução. Nós consideramos soluções de viscosidade no sentido de Ishii. Desde que nós consi-

deramos Hamiltonianos convexos, podemos associar o problema a um problema de controle

com custo e dinâmica específicos dados em cada lado do hiperplano. Assumimos que esses

são Lipschitz, mas potencialmente ilimitados, assim como os espaços de controle. Usando a

abordagem de Bellman, construímos duas funções de valor que se tornam as soluções mínima

e máxima no sentido de Ishii. Além disso, também construímos toda uma família de funções

valores, que ainda são soluções no sentido de Ishii e conectam continuamente a solução mínima

à máxima.

Palavras-chaves: controle ótimo; dinâmica descontínua; equação de Hamilton-Jacobi-Bellma;

soluções viscosas; problema de Ishii.
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1 INTRODUCTION

This thesis focuses deeply on the concept of viscosity solution for Hamilton-Jacobi equa-

tions, investigating some non-uniqueness features that arise in presence of discontinuities.

This chapter is divided in three sections. In the first one, we give a quick overview of the

theory of viscosity solutions, presenting the basic concepts and results. The second section

presents the discontinuous specific we deal with and in the last section we present our results.

1.1 VISCOSITY SOLUTIONS

In 1981, M.G. Crandall and P.-L. Lions introduced the notion of a viscosity solution to

address difficulties found in the study of Hamilton-Jacobi equations. The classical analysis, via

the method of characteristics, only provides local results due to the crossing of characteris-

tic curves. On the other hand, viscosity solutions allow to consider global solutions, and get

uniqueness and stability results for many problems that arise in various applications ((CRAN-

DALL; LIONS, 1983)). The initial notion of viscosity solution requires very little regularity of

the function (only continuity) and was even extended later to discontinuous functions and

Hamiltonians, as we explain below.

Due to its wide reach, this concept has aroused the interest of many important researchers

such as G. Barles, L.C. Evans, M.G. Crandall, I. Ishii, P.-L. Lions, and viscosity analysis has

become a very fertile field that has come a long way in the last 40 years (CRANDALL; EVANS;

LIONS, 1984).

Initially the concept of viscosity solution was established for continuous Hamiltonians on

Ω × 𝑅 × 𝑅𝑁 , where Ω is open set of 𝑅𝑁 . For example, we have the classical mechanics

Hamiltonian

𝐻(𝑥, 𝑝) := 1
2 |𝑝|2 + 𝑉 (𝑥)

where 1
2 |𝑝|2 denote the kinetic energy and 𝑉 (𝑥) the potential energy.

However later this concept was extended to Hamiltonians which are only locally bounded.

We started with the definition of the continuous viscosity solution of the first-order stationary

Hamilton-Jacobi equation for continuous Hamiltonians as presented in (CRANDALL; EVANS;

LIONS, 1984).
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Definition 1.1.1 We say that 𝑢 ∈ 𝐶(Ω) is a viscosity subsolution of 𝐻 in Ω open set of 𝑅𝑁

if given 𝜑 ∈ 𝐶1(Ω) and 𝑥0 ∈ Ω local maximum point of 𝑢− 𝜑, then

𝐻(𝑥0, 𝑢(𝑥0), 𝐷𝜑 (𝑥0)) ≤ 0. (1.1.1)

We say that 𝑢 ∈ 𝐶(Ω) is a viscosity supersolution of 𝐻 in Ω open set of 𝑅𝑁 if given 𝜑 ∈ 𝐶1(Ω)

and 𝑥0 ∈ Ω local minimum point of 𝑢− 𝜑, then

𝐻(𝑥0, 𝑢(𝑥0), 𝐷𝜑 (𝑥0)) ≥ 0. (1.1.2)

We say that 𝑢 is a viscosity solution of 𝐻 if u is simultaneously subsolution and supersolution.

Functions 𝜑 above are called test functions. It is very convenient to use definition 1.1.1 to

prove that the value function is a solution of the Hamilton-Jacobi-Bellman equation. This

definition also plays an important role in technique of "doubling of variables".

The notion of viscosity solution is well-defined for any Ω open set of 𝑅𝑁 . Yet to get specific

results we can add hypotheses on the boundary of Ω. For example, Barles (BARLES, 1994, p.

111) works with boundary 𝑊 2,∞. In (BLANC, 2001) it is required that the distance function

to boundary be 𝐶1,1.

An equivalent definition can be given, using sub and superdifferentials. While this approach

may simplify some aspects of the theory, Barles (BARLES, 1994, p. 20) notes that it would be

more technical to prove stability results using sub/super differentials.

Definition 1.1.2 The subdifferential the 𝑣 in point 𝑥 is

𝜕−𝑣(𝑥) := {𝑝 ∈ 𝑅𝑁 | lim inf
𝑦→𝑥

𝑣(𝑦) − 𝑣(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

≥ 0}

The Superdifferential of 𝑣 in point 𝑥 is

𝜕+𝑣(𝑥) := {𝑝 ∈ 𝑅𝑁 | lim sup
𝑦→𝑥

𝑣(𝑦) − 𝑣(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

≤ 0}

With these elements, the equivalent definition is the following:

Definition 1.1.3 (Continuous Hamiltonians) We say that 𝑢 ∈ 𝐶(Ω) is a subsolution of
𝐻 in Ω open set of 𝑅𝑁 if

𝐻(𝑥0, 𝑢(𝑥0), 𝑝) ≤ 0 ∀ 𝑝 ∈ 𝜕+𝑢(𝑥0). (1.1.3)

We say that 𝑢 ∈ 𝐶(Ω) is a supersolution of 𝐻 in in Ω open set of 𝑅𝑁 if

𝐻(𝑥0, 𝑢(𝑥0), 𝑝) ≥ 0, ∀ 𝑝 ∈ 𝜕−𝑢(𝑥0). (1.1.4)

We say that 𝑢 is a viscosity solution of 𝐻 if u is simultaneously subsolution and supersolution.
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We see clearly by definition 1.1.3 that classical solutions are also viscosity solutions, since if

𝑣 is differentiable at 𝑥, then 𝜕−(𝑥) = 𝐷𝑣(𝑥) = 𝜕+(𝑥). Moreover, this definition gives us

regularity of the viscosity subsolutions of Coercive Hamiltonians, see Lemma 2.5 page 20 of

(BARLES, 1994).

In many problems, classical solutions may not be unique or even exist. That is the case for

the eikonal equation, |∇𝑢(𝑥)| − 1 = 0 in (−1, 1) with boundary condition 𝑢(−1) = 𝑢(1) = 0.

Thanks to Mean Value Theorem this problem does not have classical solution in 𝐶1(−1, 1).

On the other hand, it has infinitely many weak solutions. For each 𝑛 consider 𝑢𝑛(−1) = 0 and

∇𝑢𝑛(𝑥) = (−1)𝑗 on (−1 + 𝑗
2𝑛
,−1 + 𝑗+1

2𝑛
)..... for 𝑗 = 0, · · · , 4𝑛− 1 and 𝑢𝑛(−1) = 𝑢𝑛(1) = 0.

Hence, we do not have uniqueness for weak solution and that is a challenge in application

problems, because of the need to identify the right solution.

Viscosity solution on the contrary are at the same time more flexible (they give existence

easily) and allow to prove uniqueness results. For example, it can be proved that 𝑢(𝑥) = 1−|𝑥|

is a unique viscosity solution of the eikonal problem above.

1.2 STABILITY

Another deficiency of the notion of weak solution is that uniform convergence of solutions

does not necessarily yield a solution: in the eikonal problem above, (𝑢𝑛) converges uniformly

to 0 when 𝑛 goes infinity, but 0 is not a weak solution of |∇𝑢(𝑥)| − 1 = 0 anywhere. However

the uniform limit of viscosity solutions is still a viscosity solution as the following theorem shows.

Theorem 1.2.1 Let 𝜀 > 0, and let 𝐻𝜀(𝑦, 𝑟, 𝑝) be a family of continuous functions such
that 𝐻𝜀(𝑦, 𝑟, 𝑝) converges uniformly on compact subsets of Ω ×𝑅×𝑅𝑁 to some continuous
function 𝐻(𝑦, 𝑟, 𝑝), as 𝜀 goes to 0. And let us assume that the 𝑢𝜀 is subsolution (supersolution)
of 𝐻𝜖 converge uniformly on compact subsets of Ω to some 𝑢 ∈ 𝐶(Ω). Then u is a viscosity
subsolution (supersolution) of 𝐻(𝑦, 𝑟, 𝑝) in Ω.

See Theorem 1.2 of (CRANDALL; EVANS; LIONS, 1984).

The name viscosity refers to the vanishing viscosity method, a kind of stability used in the

existence results, and was chosen for want of a better idea’, (CRANDALL; LIONS, 1983) page
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2. Indeed, realize that if 𝑢 is viscosity solution of |∇𝑢(𝑥)| = 1 then it is also viscosity solution

of |∇𝑢(𝑥)|2 = 1. Considering the approximate problem

−𝜀Δ𝑢𝜀(𝑥) + |∇𝑢𝜀(𝑥)|2 = 1 with 𝑢𝜀(−1) = 𝑢𝜀(1) = 0, (1.2.1)

we see that it has a unique classical solution 𝑢𝜀. When passing to the limit, one can prove

that lim𝜀 𝑢𝜀(𝑥) = 1 − |𝑥|. More generally, the following result holds:

Theorem 1.2.2 (Vanishing viscosity Method) Let 𝜀 > 0, and let 𝐻𝜀(𝑦, 𝑟, 𝑝) be a family
of continuous functions such that 𝐻𝜀(𝑦, 𝑟, 𝑝) converges uniformly on compact subsets of
Ω × 𝑅 × 𝑅𝑁 to some function 𝐻(𝑦, 𝑟, 𝑝), as 𝜀 goes to 0. Finally, suppose 𝑢𝜀 ∈ 𝐶2(Ω) is a
solution of

−𝜀Δ𝑢𝜀(𝑥) +𝐻𝜀(𝑥, 𝑢𝜀(𝑥)𝐷𝑢𝜀(𝑥)) = 0 in Ω

and let us assume that the 𝑢𝜀 converge uniformly on compact subsets of Ω to some 𝑢 ∈ 𝐶(Ω).
Then u is a viscosity solution of 𝐻(𝑥, 𝑢,𝐷𝑢) = 0 in Ω.

See Theorem 3.1 of(CRANDALL; EVANS; LIONS, 1984).

1.3 BOUNDARY CONDITIONS

The theory of viscosity solutions also allows to treat boundary conditions. Consider Ω ⊂

𝑅𝑁 , an open bounded set and⎧⎪⎪⎨⎪⎪⎩
𝐻(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) = 0 in Ω

𝑢(𝑥) = 𝑔(𝑥) on 𝜕Ω

This problem has no solution in general as we already saw in the eikonal case.

In particular, ⎧⎪⎪⎨⎪⎪⎩
|∇𝑢(𝑥)| − 1 = 0 in Ω

𝑢(𝑥) = 0 on 𝜕Ω

not have classical solution, yet has infinitely many Lipschitz continuous functions which sa-

tisfy the boundary condition and whose modulus of gradient is equal to 1 almost everywhere.

However there is unique viscosity solution, 𝑢(𝑥) = 𝑑(𝑥, 𝜕Ω). In general, we can get viscosity

solutions of boundary problems by requiring almost no regularity on 𝑔, see (BLANC, 1997),

(BLANC, 2001).
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But the boundary data has to be understood in a relaxed sense: for the subsolution con-

dition, if 𝜑 is a test-function for 𝑢 at 𝑥 ∈ 𝜕Ω, we require that

min
{︁
𝐻(𝑥, 𝑢(𝑥),∇𝜑(𝑥)) , 𝑢(𝑥) − 𝑔(𝑥)

}︁
≤ 0 ,

max
{︁
𝐻(𝑥, 𝑢(𝑥),∇𝜑(𝑥)) , 𝑢(𝑥) − 𝑔(𝑥)

}︁
≥ 0 .

In other words, either the equation holds, or the boundary condition. This relaxed boundary

condition was introduced by I. Ishii (ISHII, 1985) in order to be compatible with the stability

property of viscosity solutions. Indeed, when passing to the limit in Ω, the maximum (or

minimum) points of 𝑢−𝜑 can either come from the inside, or the boundary. So, when passing

to the limit, on the boundary we get either the sub/supersolution condition, or the boundary

condition, hence the formulation with min and max.

1.4 RELATION WITH OPTIMAL CONTROL

There exist a link between viscosity solutions and Optimal Deterministic Control: given the

dynamical controlled system,

𝑥′(𝑡) = 𝑏(𝑥(𝑡), 𝛼(𝑡))

where 𝛼(·) is the control variable with 𝛼(·) ∈ 𝒜 admissible control space, we define a cost

functions 𝐽 , associated to the running cost function 𝑓 and discount factor 𝜆

𝐽(𝑥, 𝛼(·)) =
∫︁ ∞

0
𝑙(𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡 .

The purpose the Optimal control Theory is to optimize the functional cost for some optimal

admissible control. This theory has several applications. For example, in economics or industry

the cost functional can be the cost of production of some product that we want to minimize.

In this context, the value function is defined as

𝑢(𝑥) = inf
𝛼∈𝒜

∫︁ ∞

0
𝑙(𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡.

The Classical Bellman approach consists in noticing that if 𝑢 is differentiable, then this value

function is a classical solution of the Bellman equation

sup
𝛼∈𝐴

(−𝑏(𝑥, 𝛼) · ∇𝑢(𝑥) − 𝑙(𝑥, 𝛼) + 𝜆𝑢(𝑥)) = 0 ∈ 𝑅𝑁 .

That is consequence of the infinitesimal version of the Dynamic Programming Principle:

𝑢(𝑥) = inf
𝛼∈𝒜

(︃∫︁ 𝑇

0
𝑙(𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇𝑢(𝑥(𝑇 ))

)︃
, ∀ 𝑇 > 0. (1.4.1)
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This equation is itself an integral version of the Principle of Optimality: "An optimal policy
has the property that what ever the initial state and initial decision are, the remaining de-
cisions must constitute an optimal policy with regard to the state resulting from the first
decision."where, "a policy is any rule for making decisions which yields an allowable sequence
of decisions; and an optimal policy is a policy which maximizes a preassigned function of the
final state variables", see page 82,83 of (BELLMAN, 2010).

Now we return to our heuristic consideration. Assume that in addition to the differentiability

of 𝑢 there is also an optimal control 𝛼*, that is,for which infinity is reached

𝑢(𝑥) =
∫︁ ∞

0
𝑙(𝑥*(𝑡), 𝛼*(𝑡))𝑒−𝜆𝑡𝑑𝑡.

Using the Dynamic Programming Principle (DPP) we get

𝑔(𝑠) =
∫︁ 𝑠

0
𝑙(𝑥*(𝑡), 𝛼*(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑢(𝑥*(𝑠))𝑒−𝜆𝑠 = 𝑢(𝑥) ∀𝑠 > 0 .

Note that 𝑔 is constant if only if 𝑥*(𝑡), 𝛼*(𝑡) is optimal, if only if 𝑔′(𝑠) = 0 which yields

𝜆𝑢(𝑥*(𝑠)) − 𝑏(𝑥*(𝑠), 𝛼*(𝑠)) · ∇𝑢(𝑥*(𝑠)) − 𝑙(𝑥*(𝑠), 𝛼*(𝑠)) = 0.

Since 𝑢 is a classical solution of Bellman equation, then 𝛼* is optimal if and only if

𝐻(𝑥*(𝑠), 𝑢(𝑥*(𝑠)),∇𝑢(𝑥*(𝑠))) = 𝜆𝑢(𝑥*(𝑠)) − 𝑏(𝑥*(𝑠), 𝛼*(𝑠)) · ∇𝑢(𝑥*(𝑠)) − 𝑙(𝑥*(𝑠), 𝛼*(𝑠)).

Now, suppose there is a map

𝑆 : 𝑅𝑁 → 𝐴

with 𝑆(𝑧) ∈ arg max(−𝑏(𝑧, 𝛼) · ∇𝑢(𝑧) − 𝑙(𝑧, 𝛼) + 𝜆𝑢(𝑧)). We call such 𝑆 a feedback map.

Through this feedback, we may in turn find an optimal trajectory by solving:

𝑥′(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑏(𝑥(𝑡), 𝑆(𝑥(𝑡))), if 𝑡 > 0

𝑥, if 𝑡 = 0.

The conclusion is that solving the Hamilton-Jacobi-Bellman equation 𝐻(𝑥, 𝑢,𝐷𝑢) = 0 is

closely related to finding optimal controls and trajectories.

1.5 DISCONTINUITIES IN HAMILTON-JACOBI EQUATIONS

Initially, viscosity solutions were defined in the context of continuous Hamiltonians and

functions. However, as we saw above for boundary conditions, I. Ishii extended the concept of
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viscosity solutions to discontinuous Hamiltonians in 1985, (ISHII, 1985).

Now, as we saw above, the stability property of viscosity solutions requires some local

uniform convergence of both the Hamiltonian and the solution. However, in many problems,

such uniform convergence of the solutions is not easy to obtain.

1.6 DISCONTINUOUS VISCOSITY SOLUTIONS

In 1987, G. Barles and B. Perthame (BARLES; PERTHAME, 1987) introduced the concept of

discontinuous viscosity solutions by using the upper and lower semicontinuous envelopes:

Definition 1.6.1 Let 𝑔 locally bounded, we define the lower semicontinuous envelope

and upper semicontinuous envelope as 𝑔*(𝑥) = lim inf𝑦→𝑥 𝑔(𝑦), 𝑔*(𝑥) = lim sup𝑦→𝑥 𝑔(𝑦),
respectively.

This definition allows more flexibility to treat a priori discontinuous solutions, provided

they are locally bounded (which is sufficient to define the semi-continuous envelopes). If the

Hamiltonian is also discontinuous, we have to use its envelopes too and the definition becomes

Definition 1.6.2 (Discontinuous Hamiltonians) We say that 𝑢 locally bounded is a vis-
cosity subsolution of 𝐻 in Ω open set of 𝑅𝑁 if given 𝜑 ∈ 𝐶1(Ω) and 𝑥0 ∈ Ω maximum point
of 𝑢* − 𝜑, then

𝐻*(𝑥0, 𝑢
*(𝑥0), 𝐷𝜑 (𝑥0)) ≤ 0. (1.6.1)

We say that 𝑢 locally bounded is a viscosity supersolution of 𝐻 in Ω open set of 𝑅𝑛 if given
𝜑 ∈ 𝐶1(Ω) and 𝑥0 ∈ Ω minimum point of 𝑢* − 𝜑, then

𝐻*(𝑥0, 𝑢*(𝑥0), 𝐷𝜑 (𝑥0)) ≥ 0. (1.6.2)

We say that 𝑢 is a viscosity solution of 𝐻 if u is simultaneously subsolution and supersolution.

If we consider a sequence of equations 𝐻𝑛(𝑥, 𝑢𝑛, 𝐷𝑢𝑛) = 0 where 𝐻𝑛 converges to some

Hamiltonian 𝐻, the advantage of the discontinuous approach is that we may consider the

limits of the (𝑢𝑛) with only local uniform bounds. Hence, introducing the half-relaxed limits

𝑢*(𝑥) := lim sup
𝑛→∞,𝑦→𝑥

𝑢𝑛(𝑦) , 𝑢*(𝑥) := lim inf
𝑛→∞,𝑦→𝑥

𝑢𝑛(𝑦) ,
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it turns out that 𝑢* is a subsolution of the limit equation 𝐻(𝑥, 𝑢,𝐷𝑢) = 0 while 𝑢* is a super-

solution of it. If the limit Hamiltonian enjoys a comparison property, we deduce that 𝑢* ≤ 𝑢*,

so that in the end 𝑢* = 𝑢* and we get a solution. But of course, if 𝐻 is discontinuous in 𝑥,

the comparison principle may fail and recovering a stability result for discontinuous solutions

requires a deeper analysis, part of which is done in this Thesis.

In the last two decades, many researchers have been interested in studying Hamilton-Jacobi

equation with discontinuities, for example: Barles (BARLES, 1990), Blanc (BLANC, 1997), 2001.

In (GIGA; HAMAMUKI, 2013) the following problem was studied⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑢+𝐻(𝑥,𝐷𝑢(𝑥)) = 0, if 𝑡 > 0 in 𝑅𝑁 × (0, 𝑇 )

𝑢(0, 𝑥) = 𝑢0(𝑥), if 𝑡 = 0 in 𝑅𝑁

where 𝑢0 ∈ 𝐵𝑈𝐶(𝑅𝑁) and 𝐻(𝑥, 𝑝) = −|𝑝| − 𝑐𝐼(𝑥)

𝐼(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 (𝑥 = 0)

0 (𝑥 ̸= 0)

That is, 𝐻 has discontinuous at 𝑥 = 0. In (GIGA; GóRKA; RYBKA, 2011), Giga et al. consider

the singular problem

𝑑𝑡 +𝐻(𝑡, 𝑥, 𝑑, 𝑑𝑥) = 0 in (0, 𝑇 ) ×𝑅

𝐻(𝑡, 𝑥, 𝑢, 𝑝) =

⎧⎪⎪⎨⎪⎪⎩
−𝜎(𝑡, 𝑟*(𝑡), 𝑢)𝑚(𝑝) |𝑥| < 𝑟0(𝑡)

𝜎(𝑡, 𝑥, 𝑢)𝑚(𝑝) |𝑥| ≥ 𝑟0(𝑡)

with 𝜎 ∈ 𝐶1 𝑟0, 𝑟
* ∈ 𝐶0([0, 𝑇 ]) and 𝑟*(𝑡) > 𝑟0(𝑡) for all 𝑡 ∈ [0, 𝑇 ]. Moreover the set

{(𝑡, 𝑟0(𝑡)) : 𝑡 ∈ [0, 𝑇 ]} is a Lipschitz curve.

1.7 THE ISHII PROBLEM

More recently, in (BARLES; BRIANI; CHASSEIGNE, 2013) Guy Barles, Ariela Briani and

Emmanuel Chasseigne study an infinite horizon control problems with discontinuities. They

consider the Hamilton-Jacobi-Bellmam problem in 𝑅𝑁 with discontinuity on the hyperplane

ℋ = 𝑅𝑁−1 × {0}.
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In order to give a quick overview of their results and introduce some notations and

concepts that we use throughout this thesis, let us decompose the space into three parts

𝑅𝑁 = Ω1 ∪ ℋ ∪ Ω2, where Ω1 = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 > 0} and Ω2 = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 < 0}. We

will take 𝐴1, 𝐴2 ⊂ 𝑅𝑑 to be the sets of controls. Each domain Ω𝑖 has associated a dynamic

function 𝑏𝑖 : Ω𝑖 × 𝐴𝑖 → 𝑅𝑁 and a control function 𝑙𝑖 : Ω𝑖 × 𝐴𝑖 → 𝑅. Finally, let ℋ be the

intersection of Ω1 and Ω2, so that ℋ = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 = 0}.

The Ishii problem consists in solving the set of (in)equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1

𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0, in Ω2

min{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ

max{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≥ 0 in ℋ

(1.7.1)

where

𝐻𝑖 (𝑥, 𝑢, 𝑞) = sup
𝑤∈𝐴𝑖

(−𝑏(𝑥,𝑤) · 𝑞 − 𝑙𝑖(𝑥,𝑤) + 𝜆𝑢) .

In order to describe the particularities on ℋ, let us introduce the extended control set as

follows:

Definition 1.7.1 Given 𝐴1, 𝐴2 as above, we set 𝐴 := 𝐴1 ×𝐴2 × [0, 1] and we consider the
control set formed by bounded measurable functions 𝒜 := 𝐿∞(0,∞;𝐴).

Notice that if 𝑥 /∈ ℋ, only 𝛼1 ∈ 𝐴1 or 𝛼2 ∈ 𝐴2 is used. Then on ℋ the authors introduce the

dynamic 𝑏ℋ : ℋ × 𝐴 → 𝑅𝑁 given by a convex combination of 𝑏1 and 𝑏2, and a cost function

𝑙ℋ : ℋ × 𝐴 → 𝑅 given by a convex combination of 𝑙1 and 𝑙2. More precisely, they define 𝑏ℋ

and 𝑙ℋ as

𝑏ℋ(𝑥, 𝛼) = 𝜇𝑏1(𝑥, 𝛼1) + (1 − 𝜇)𝑏2(𝑥, 𝛼2), 𝑥 ∈ ℋ, 𝛼 = (𝛼1, 𝛼2, 𝜇) ∈ 𝐴,

𝑙ℋ(𝑥, 𝛼) = 𝜇𝑙1(𝑥, 𝛼1) + (1 − 𝜇)𝑙2(𝑥, 𝛼2), 𝑥 ∈ ℋ, 𝛼 = (𝛼1, 𝛼2, 𝜇) ∈ 𝐴.

Given some control (𝛼1, 𝛼2, 𝜇) ∈ 𝒜 := 𝐿∞(0,∞;𝐴), the authors solve the ode

𝑋 ′
𝑥 (𝑡) = 𝑏1 (𝑋𝑥 (𝑡) , 𝛼1 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω1} + 𝑏2 (𝑋𝑥 (𝑡) , 𝛼2 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω2}

+ 𝑏ℋ (𝑋𝑥 (𝑡) , 𝛼 (𝑡)) 1{𝑋𝑥(𝑡)∈Ωℋ} for a.e. 𝑡 ∈ 𝑅+
(1.7.2)

and denote by 𝜏𝐴(𝑥) the set of such trajectories starting from 𝑥.
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The precise analysis of the situation shows that at least two specific value functions can

be built, the "natural"one being defined by

𝑈−
𝐴 (𝑥) = inf

𝜏𝐴(𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (1.7.3)

As one can expect, it turns out that 𝑈−
𝐴 is an Ishii solution of the problem. But moreo-

ver, this special solution satisfies a complemented (𝑁 − 1)-dimensional inequation on ℋ:

𝐻𝑇 (𝑥, 𝑢,𝐷𝑢) ≤ 0, where the tangential Hamiltonian is defined by

𝐻𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup
(𝛼1,𝛼2,𝜇)∈𝐴0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥) , 0) .

(1.7.4)

Here, 𝐴0(𝑥) is the set of controls that allow the trajectory to remain on ℋ, that is, the controls

such that 𝑏ℋ(𝑥, 𝑎) = 0 and

𝐷ℋ𝜑 (𝑥) =
(︃
𝜕𝜑

𝜕𝑥1
, . . . ,

𝜕𝜑

𝜕𝑥𝑛−1

)︃

But the authors also build a second solution in the sense of Ishii by introducing the regular

dynamics on ℋ as follows:

Definition 1.7.2 We say that 𝑏ℋ(𝑦, 𝛼1, 𝛼2, 𝜇) is regular if

𝑏ℋ(𝑦, 𝛼1, 𝛼2, 𝜇) ∈ ℋ, 𝑏1(𝑦, 𝛼1) · 𝑒𝑁 ≤ 0 and 𝑏2(𝑦, 𝛼2) · 𝑒𝑁 ≥ 0 .

In some sense, these dynamics are maintaining the trajectory on ℋ by "pushing"from either

side of the hyperplane, contrary to singular dynamics which corresponds to an equilibrium

obtained by "pulling"from both sides.

This allows to construct a second value function:

𝑈+
𝐴 (𝑥) = inf

𝜏𝑟𝑒𝑔
𝐴 (𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
, (1.7.5)

and it is shown in (BARLES; BRIANI; CHASSEIGNE, 2013) that while 𝑈−
𝐴 is minimal solution

of the Ishii problem, 𝑈+
𝐴 is the maximal one. However, only 𝑈−

𝐴 enjoys the complementary

property with 𝐻𝑇 .

In (BARLES; BRIANI; CHASSEIGNE, 2014) the authors extend the results in three directions:

they consider general domains; finite horizon control problems and weaken the controlability

assumptions. An even more global approach is performed in (BARLES; CHASSEIGNE, 2018) but

the authors always consider bounded control sets, bounded dynamics and costs functions.
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1.8 OUR RESULTS

As we said, in (BARLES; BRIANI; CHASSEIGNE, 2013; BARLES; BRIANI; CHASSEIGNE, 2014;

BARLES; CHASSEIGNE, 2018) the Ishii problem 1.7.1 was treated with compact control space

and bounded data. In this thesis one of the main objectives is to verify which results of (BARLES;

BRIANI; CHASSEIGNE, 2013), (BARLES; BRIANI; CHASSEIGNE, 2014) are still valid when dealing

with non-compact controls space and unbounded data.

The motivation for considering non-compact controls space is that some Hamiltonians can

only be approached in this context. For example,

𝐻𝑖(𝑥, 𝑢, 𝑝) = 𝜆𝑢+ |𝑝|2 − 𝑓𝑖(𝑥).

Moreover, several researchers have worked on the context of dynamics and costs unboun-

ded with controls space non-compact, for example see (BARLES, 1990), (MISZTELA, 2020),

(MOTTA, 2004) (SORAVIA, 1999).

1.8.1 One Central Idea

In this thesis we consider an unbounded set of controls such as 𝑅𝑁 but we assume some

growth conditions for the dynamic and cost that allows us to reduce, at least locally to the

case of compact control sets. The central hypothesis that allows us to do that is the following:

lim
|𝛼𝑖|→∞

𝑙𝑖(𝑦, 𝛼)
1 + |𝑏𝑖(𝑦, 𝛼)| = ∞, locally uniformly with respect to 𝑦. (1.8.1)

The key idea here is that the cost associated to large dynamics should be so big that such

strategies are not optimal, which allows to recover some compactness of the trajectories and

the associated controls.

We then approach the unbound control space by a sequence of compact sets; solve the

problem for each compact in the sequence and pass the limit using the Half-Relaxed Limit

Method ?? or some other argument.
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1.8.2 Construction of 𝑈−
𝐴 and 𝑈+

𝐴

In Chapter 1 we describe the Ishii problem, we fix the set of trajectories with which we

work and build the value functions 𝑈+
𝐴 and 𝑈−

𝐴 in the unbounded setting. We verify that

they satisfy the Dynamic programming Principle and are locally Lipschitz. Furthermore, using

1.8.1 we show that the supremum defining 𝐻𝑖 is locally achieved in a compact set of controls.

Consequently our Hamiltonians 𝐻𝑖 are well defined and are continuous functions. Moreover

taking a compact sequence (𝐴𝑚)𝑚 and considering 𝑈+
𝐴𝑚 , 𝑈−

𝐴𝑚 we prove that both are solutions

of an approximate Ishii problem. Thus, due to Half relaxed limit method sending 𝑚 to infinity,

we obtain that 𝑈+
𝐴 and 𝑈−

𝐴 are viscosity solutions of the initial Ishii problem.

1.8.3 Comparison Results

In Chapter 2 we provide growth conditions that allow us to obtain comparison and unique-

ness results. We first obtain a local comparison result assuming the complemented condition

𝐻𝑇 for the subsolution, in the form:

max
𝐵𝑅(𝑥)

(𝑢− 𝑣)+ ≤ max
𝜕𝐵𝑅(𝑥)

(𝑢− 𝑣)+.

Notice that the 𝐻𝑇 -subsolution condition is mandatory since there are counter-examples

showing that in general 𝑈− ̸= 𝑈+. Global uniqueness results, in general are obtained from

global comparison results, that is,

𝑢(𝑥) ≤ 𝑣(𝑥), ∀ 𝑥 ∈ 𝑅𝑁 .

Here also, 𝑢 is a locally bounded Ishii subsolutions satisfying 𝐻𝑇 ≤ 0 while 𝑣 is just a

locally bounded supersolution in the sense of Ishii. However, our global comparison results are

dependent on the growth of the dynamic and cost functions, as well as of the desired growth

for the solutions. Therefore, we will present different versions of these results depending on

the growth adopted. For instance, in order that global comparison result we add to hypothesis

(1.8.1) the following growth condition

|𝑏𝑖(𝑦, 𝛼)| ≤ 𝐶|𝑦|𝛽 + 𝐶 and 𝑙𝑖(𝑦, 𝛼) ≤ 𝐶|𝑦|𝛽* + 𝐶, ∀ 𝑦 ∈ 𝑅𝑁 and 𝛼 ∈ 𝐴𝑖 (1.8.2)

in the set of solutions with growth |𝑥|𝛾, where 𝛽, 𝛽*, 𝛾 are related.

One of the great difficulties of dealing with growth condition (1.8.2) is that we have some

restriction not only in the control variable, but also in the spatial variable.
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Another approach we take is to consider the hypothesis

lim
|𝛼𝑖|→∞

|𝑏𝑖(𝑦, 𝛼)| = ∞ and lim
|𝛼𝑖|→∞

𝑙𝑖(𝑦, 𝛼)
1 + |𝑏𝑖(𝑦, 𝛼)| = ∞, uniformly with respect to 𝑦 ∈ 𝑅𝑁 .

(1.8.3)

combined with the following condition: let 𝐾 be compact contained in 𝐴𝑖, then there exists

𝐶𝐾(𝑏) and 𝐶𝐾(𝑙) so that

|𝑏𝑖(𝑦, 𝛼𝑖)| ≤ 𝐶𝐾(𝑏) and 𝑙𝑖(𝑦, 𝛼𝑖) ≤ 𝐶𝐾(𝑙), ∀ 𝑦 ∈ 𝑅𝑁 , 𝛼𝑖 ∈ 𝐾. (1.8.4)

With hypotheses (1.8.3) and (1.8.4), the growth depends only on the control variable and this

allows us to obtain desired results more easily.

Furthermore, under suitable growth conditions, we are able to prove that 𝑈+
𝐴 , 𝑈−

𝐴 are

respectively the maximal subsolution and minimal supersolution of Ishii problem. Finally, we

prove that under some suitable hypothesis, Filippov approximations converge to 𝑈−.

1.8.4 The family of solutions 𝑈𝜂

In Chapter 3 we work with value functions 𝑈𝜂. We have already commented that problems

with discontinuities, in general, do not have uniqueness. In fact, 𝑈+ and 𝑈− are viscosity

solutions of the Ishii problem, but they are not the only ones. We build a family of solutions

𝑈𝜂, locally Lipschitz Ishii solutions. Under appropriate assumptions we obtain that the limit

them when 𝜂 goes to zero is 𝑈+
𝐴 and when 𝜂 goes to infinite is 𝑈−

𝐴 . Hence, this family can be

seen as a continuous path between 𝑈−
𝐴 and 𝑈+

𝐴 .

Such solutions are built on the relaxed regular trajectories

𝜏 𝜂
𝐴(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴(𝑥) | for a.e. 𝑡 ∈ ℰℋ, 𝑏2(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≥ −𝜂, 𝑏1(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≤ 𝜂}

(1.8.5)

These 𝜂−trajectories may not be regular, but they are almost regular if 𝜂 is close to 0. On the

contrary, if 𝜂 is close to ∞, we recover most of the trajectories. The 𝜂-value function is then

defined as one can expect:

𝑈𝜂
𝐴(𝑥) := inf

𝜏𝜂
𝐴(𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (1.8.6)
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1.8.5 Open problems and appendix

Finally, in Chapter 4, we have included some ideas that we intend to address in future work.

An appendix collects some fundamental results used in this thesis. We discuss in particular the

mechanism of the relaxed controls, the process of the Half relaxed limit method.
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2 VALUE FUNCTIONS 𝑈+ AND 𝑈−

In this chapter we want to find solutions of the Hamilton-Jacobi-Bellmam problem in 𝑅𝑁

with discontinuity on a hyperplane. Let us set the problem, defining first the

𝑅𝑁 = Ω1 ∪ ℋ ∪ Ω2,

where
Ω1 = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 > 0}

Ω2 = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 < 0}

ℋ = {𝑥 ∈ 𝑅𝑁 | 𝑥𝑁 = 0}.

We assume that each set Ω𝑖 has an associated unbounded control set 𝐴𝑖 ⊂ 𝑅𝑑. We define

the control set as follows.

Definition 2.0.1 Let 𝐴1, 𝐴2 be complete separable metric spaces,

𝐴 := 𝐴1 × 𝐴2 × [0, 1].

Then we consider the control set formed by bounded measurable functions 𝒜 := 𝐿∞(0,∞;𝐴).

We consider that each domain Ω𝑖 has a dynamic function associated 𝑏𝑖 : Ω𝑖 × 𝐴𝑖 → 𝑅𝑁 and

a cost function 𝑙𝑖 : Ω𝑖 × 𝐴𝑖 → 𝑅. Let us state the main hypotheses on the dynamic and cost

functions associated to Ω𝑖 that will be used to prove our results.

(HA) 𝑙𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 and 𝑏𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 satisfy

lim
|𝛼|→∞

𝑙𝑖(𝑦, 𝛼)
1 + |𝑏𝑖(𝑦, 𝛼)| = ∞ and lim

|𝛼|→∞
|𝑏𝑖(𝑦, 𝛼)| = ∞

uniformly in compact sets of 𝑅𝑁 with respect to 𝑦 ∈ 𝑅𝑁 .

(HB) 𝑙𝑖 is continuous and 𝑏𝑖 is Lipschitz continuous.

(HC) For any 𝑥 ∈ 𝑅𝑁 , the set {(𝑏𝑖(𝑥, 𝛼𝑖), 𝑙𝑖(𝑥, 𝛼𝑖))| 𝛼 ∈ 𝐴𝑚
𝑖 } is a closed and convex set.

Moreover, there exists 𝛿 > 0 such that

𝐵𝛿(0) ⊂ ℬ𝐴𝑖(𝑥), where ℬ𝐴𝑖(𝑥) := {𝑏𝑖(𝑥, 𝛼)|𝛼 ∈ 𝐴𝑚
𝑖 }

where 𝐴𝑚
𝑖 is compact sequence which union equal a 𝑅𝑁 .



24

Observe that ℋ is the intersection of Ω1 and Ω2, then there exists a dynamic function

𝑏ℋ : ℋ × 𝐴 → 𝑅𝑁 associated to ℋ given by a convex combination of 𝑏1 and 𝑏2, and a cost

function 𝑙ℋ : ℋ ×𝐴 → 𝑅 given by a convex combination of 𝑙1 and 𝑙2. In particular, we define

them as follows,

𝑏ℋ(𝑥, 𝛼) = 𝜇𝑏1(𝑥, 𝛼1) + (1 − 𝜇)𝑏2(𝑥, 𝛼2), 𝑥 ∈ ℋ, 𝛼 = (𝛼1, 𝛼2, 𝜇) ∈ 𝐴,

𝑙ℋ(𝑥, 𝛼) = 𝜇𝑙1(𝑥, 𝛼1) + (1 − 𝜇)𝑙2(𝑥, 𝛼2), 𝑥 ∈ ℋ, 𝛼 = (𝛼1, 𝛼2, 𝜇) ∈ 𝐴.

2.1 ISHII PROBLEM

We are interested in finding solutions of the Ishii problem given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1,

𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω2,

min{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ,

max{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≥ 0 in ℋ.

(2.1.1)

where

𝐻𝑖 (𝑥, 𝑢, 𝑞) = sup
𝛼𝑖∈𝐴𝑖

(−𝑏𝑖(𝑥, 𝛼𝑖) · 𝑞 − 𝑙𝑖(𝑥, 𝛼𝑖) + 𝜆𝑢).

with (𝑥, 𝑢, 𝑞) ∈ Ω𝑖 ×𝑅 ×𝑅𝑁 and 𝜆 ∈ 𝑅 is a discount factor.

Since there is no uniqueness of solution of the Ishii problem (2.1.1), we define tangential

Hamiltonians. To do this, we consider the control sets defined by

𝐴0(𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴 | 𝑏ℋ(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 = 0}.

𝐴𝑟𝑒𝑔
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥) | 𝑏ℋ(𝛼1, 𝛼2, 𝜇) is regular}.

Then we can define the tangential Hamiltonians, for (𝑥, 𝑢, 𝑞) ∈ ℋ ×𝑅 ×𝑅𝑁−1

𝐻𝑇 (𝑥, 𝑢, 𝑞) = sup
(𝛼1,𝛼2,𝜇)∈𝐴0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝑢− 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝑞, 0) (2.1.2)

and

𝐻𝑟𝑒𝑔
𝑇 (𝑥, 𝑢, 𝑞) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝑢− 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝑞, 0) . (2.1.3)

Since there exists a link between the viscosity solutions of (2.1.1) and Optimal Deterministic

Control, we need to define the set of trajectories with associated dynamic and cost functions.

Let us introduce some definitions that will be needed.
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Definition 2.1.1 Let 𝑥 ∈ 𝑅𝑁 and 𝛼 ∈ 𝐴, 𝛼𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2. We define the cost function
as

𝑙(𝑥, 𝛼) := 𝑙1(𝑥, 𝛼1)1Ω1(𝑥) + 𝑙2(𝑥, 𝛼2)1Ω2(𝑥) + 𝑙ℋ(𝑥, 𝛼)1ℋ(𝑥), (2.1.4)

where 1Ω𝑖
and 1ℋ are the characteristic functions of Ω𝑖 and ℋ respectively.

Definition 2.1.2 Let 𝑥 ∈ 𝑅𝑁 and 𝛼 ∈ 𝐴, 𝛼𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2. We define the dynamic
function as

𝑏(𝑥, 𝛼) := 𝑏1(𝑥, 𝛼)1Ω1(𝑥) + 𝑏2(𝑥, 𝛼)1Ω2(𝑥) + 𝑏ℋ(𝑥, 𝛼)1ℋ(𝑥). (2.1.5)

Definition 2.1.3 We say that 𝑋𝑥(·) is a trajectory if it is a Lipschitz continuous function
that satisfies the following differential inclusion

𝑋 ′
𝑥(𝑡) ∈ ℬ(𝑋𝑥(𝑡)) for a.e. 𝑡 ∈ (0,∞) ;𝑋𝑥 (0) = 𝑥 (2.1.6)

where

ℬ(𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℬ1(𝑥) if 𝑥𝑁 > 0

ℬ2(𝑥) if 𝑥𝑁 < 0

𝑐𝑜(ℬ1(𝑥) ∪ ℬ2(𝑥)) if 𝑥𝑁 = 0.

(2.1.7)

with ℬ𝑖(𝑥) = {𝑏𝑖(𝑥, 𝛼)|𝛼 ∈ 𝐴𝑖} and 𝑐𝑜(·) the convex hull.

A key hypothesis that we will consider throughout this work is hypothesis (HC), thanks

to it, we can construct a solution of the differential inclusion (2.1.6), so we do not need to

worry about the existence of a solution for differential inclusions. For example, for 𝑣 such

that |𝑣| ≤ 𝛿, we can always choose a control 𝛼 such that 𝑏𝑖 (𝑋(𝑡), 𝛼) = 𝑣 and consider the

trajectory 𝑋(𝑡) = 𝑡𝑣.

Let us introduce some measure results that will be used below to characterize the trajec-

tories in Definition 2.1.3.

Theorem 2.1.1 (Measurable Selection Theorem) Let 𝑋 be a complete separable metric
space, 𝑍 a measurable space and 𝐹 a measurable set-valued map from 𝑍 to closed non empty
subsets of 𝑋 . Then there exist a measurable selection of 𝐹 .

See (AUBIN; FRANKOWSKA, 1990, Th 8.1.3).
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Definition 2.1.4 Let 𝑋 be a topological space, 𝑌 a metrizable and separable space and 𝑍 a
measurable space. A mapping 𝑔 : 𝑍×𝑋 → 𝑌 will be called a Carathéodory mapping if 𝑔(·, 𝑥)

is measurable with respect to the first variable for fixed 𝑥 ∈ 𝑋 and 𝑔(𝑧, ·) is continuous with
respect to the second variable for fixed 𝑧 ∈ 𝑍, (cf. (EKELAND; VALADIER, 1971)).

The following theorem provides us a relation between a differential inclusion equation and

an a differential equation, cf. (AUBIN; FRANKOWSKA, 1990).

Theorem 2.1.2 (Filippov) Let (𝑍,Σ, 𝜈) be a complete 𝜎-finite measure space, 𝑋, 𝑌 be
complete separable metric spaces, let 𝐹 : 𝑍 → 𝑋 be a measurable set-valued map with closed
nonempty images, and let 𝑔 : 𝑍 ×𝑋 → 𝑌 be a Carathéodory map, then for every measurable
map ℎ : 𝑍 → 𝑌 satisfying

ℎ(𝑧) ∈ 𝑔(𝑧, 𝐹 (𝑧)) 𝑎.𝑒. 𝑧 ∈ 𝑍

there exists a measurable function 𝑓 : Ω → 𝑋 with 𝑓(𝑧) ∈ 𝐹 (𝑧) such that

ℎ(𝑧) = 𝑔(𝑧, 𝑓(𝑧)) 𝑎.𝑒. 𝑧 ∈ 𝑍.

See (AUBIN; FRANKOWSKA, 1990, p. 314).

In the result below we apply Filippov’s Theorem 2.1.2 to provide a relation between the

trajectories in Definition 2.1.3 and a control in 𝒜, to obtain a differential equation almost

everywhere.

Theorem 2.1.3 For each solution 𝑋𝑥(·) of the differential inclusion (2.1.6), there exists a
control 𝛼 (·) = (𝛼1(·), 𝛼2(·), 𝜇(·)) ∈ 𝒜 such that

𝑋 ′
𝑥 (𝑡) = 𝑏1 (𝑋𝑥 (𝑡) , 𝛼1 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω1} + 𝑏2 (𝑋𝑥 (𝑡) , 𝛼2 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω2}

+ 𝑏ℋ (𝑋𝑥 (𝑡) , 𝛼 (𝑡)) 1{𝑋𝑥(𝑡)∈Ωℋ} for a.e. 𝑡 ∈ 𝑅+.
(2.1.8)

Moreover, if 𝑒𝑁 = (0, . . . , 0, 1), then

𝑏ℋ(𝑋𝑥(𝑡)) · 𝑒𝑁 = 0 on {𝑡 : (𝑋𝑥(𝑡))𝑁 = 0} 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ 𝑅+. (2.1.9)

Fix 𝑥 ∈ 𝑅𝑁 . We will prove the existence of the control 𝛼 applying Filippov’s Theorem

2.1.2. We consider 𝑋 := 𝐴 which is complete and separable; 𝑍 := (0,∞) with associated

Lebesgue measure. Let ℎ(·) := 𝑋 ′
𝑥(·), let 𝐹 (𝑡) := 𝐴 for all 𝑡 ∈ (0,∞). Thus, 𝐹 has a non

empty closed image. 𝐹 is measurable since 𝐹−1(𝑂) = 𝑍 for every open set 𝑂 of 𝑋, because



27

𝐹 (𝑡) ∩𝑂 = 𝐴 ∩𝑂 = 𝑂. Let 𝑌 = 𝑅𝑁 . We define the map 𝑔 : 𝑅+ × 𝐴 → 𝑅𝑁 as follows

𝑔 (𝑡, 𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑏1 (𝑋𝑥 (𝑡) , 𝛼1) if 𝑋𝑥 (𝑡)𝑁 > 0

𝑏2 (𝑋𝑥 (𝑡) , 𝛼2) if 𝑋𝑥 (𝑡)𝑁 < 0

𝑏ℋ (𝑋𝑥 (𝑡) , 𝛼) if 𝑋𝑥 (𝑡)𝑁 = 0.

We claim that g is a Caratheodory map. Indeed, it is clear that, for fixed 𝑡, the function 𝑔(𝑡, ·)

is continuous. To check that 𝑔 is measurable with respect to 𝑡. We fix 𝛼 ∈ 𝐴, and an open

set 𝑂 ⊂ 𝑅𝑁 , then

𝑔−1
𝛼 (𝑂)=

{︁
𝑔−1

𝛼 (𝑂) ∩ {𝑡 : 𝑋𝑥(𝑡)𝑁 >0}
}︁
∪
{︁
𝑔−1

𝛼 (𝑂) ∩ {𝑡 : 𝑋𝑥(𝑡)𝑁 =0}
}︁
∪
{︁
𝑔−1

𝛼 (𝑂) ∩ {𝑡 : 𝑋𝑥(𝑡)𝑁 <0}
}︁

Since 𝑔(·, 𝛼) is continuous the first and third components are opened. In the second component

{𝑡 : 𝑋𝑥(𝑡)𝑁 = 0} is closed and 𝑔−1
𝛼 (𝑂) is open, then the intersection is measurable. We also

have that ℎ(·) = 𝑋 ′
𝑥(·) is measurable since 𝑋𝑥 is Lipschitz, and 𝑍 has Lebesgue measure.

Finally the differential inclusion and definition of 𝑔(·) implies that

ℎ(𝑡) = 𝑋 ′
𝑥(𝑡) ∈ ℬ(𝑋𝑥(𝑡)) = 𝑔(𝑡, 𝐴) = 𝑔(𝑡, 𝐹 (𝑡)).

Thus, by Theorem 2.1.2 there exist 𝛼(𝑡) = 𝑓(𝑡) measurable function

𝛼 : 𝑍 → 𝐴

such that

𝑋 ′
𝑥(𝑡) =ℎ(𝑡)

= 𝑔(𝑡, 𝑓(𝑡))

= 𝑔(𝑡, 𝛼(𝑡))

= 𝑏1 (𝑋𝑥 (𝑡) , 𝛼1 (𝑡)) 1{𝑋𝑥(𝑡)∈𝑡1}+𝑏2 (𝑋𝑥 (𝑡) , 𝛼2 (𝑡)) 1{𝑋𝑥(𝑡)∈𝑡2}+𝑏ℋ (𝑋𝑥 (𝑡) , 𝛼 (𝑡)) 1{𝑋𝑥(𝑡)∈𝑡ℋ}.

Let us prove now, the second part of the result. Let 𝜈 be a Lebesgue measure. Consider

𝐸 := 𝑋−1
𝑥 (0)𝑁 , then we have 𝐸 is closed, therefore 𝐸𝑚 := 𝐸∩(0,𝑚) is Lebesgue measurable.

Thanks to Stampacchia’s Theorem (cf. (BORWEIN; MOORS; WANG, 1997)) and since 𝑋𝑥(·)𝑁

is Lipschitz, 𝜈(𝑋𝑥(𝐸𝑚)𝑁) = 𝜈({0}) = 0, 𝑋 ′
𝑥,𝑁(𝑡) = 0 for a.e. 𝑡 ∈ 𝐸𝑚, then 𝑋 ′

𝑥,𝑁(𝑡) = 0 for

a.e. 𝑡 ∈ 𝐸.

Below we define the the set of trajectories that will be considered throughout this work.

𝜏𝐴(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝐿𝑖𝑝(𝑅+;𝑅𝑛) × 𝒜 such that(2.1.8) is fulfilled and 𝑋𝑥(0) = 𝑥}

(2.1.10)
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Let us introduce the following notation for the sets of times where the trajectories are in Ω𝑖

or ℋ,

ℰ1 := {𝑡 : 𝑋𝑥(𝑡) ∈ Ω1}, ℰ2 := {𝑡 : 𝑋𝑥(𝑡) ∈ Ω2}, ℰℋ := {𝑡 : 𝑋𝑥(𝑡) ∈ ℋ}.

Definition 2.1.5 Let (𝑦, 𝛼) = (𝑦, 𝛼1, 𝛼2, 𝜇) ∈ 𝐿𝑖𝑝(𝑅+;𝑅𝑛) × 𝒜, we say that the dynamic
𝑏ℋ(𝑦, 𝛼1, 𝛼2, 𝜇) is regular if

𝑏1(𝑦, 𝛼1) · 𝑒𝑁 ≤ 0 and 𝑏2(𝑦, 𝛼2) · 𝑒𝑁 ≥ 0 and 𝑏ℋ(𝑦, 𝛼1, 𝛼2, 𝜇) ∈ ℋ.

We define the set of regular trajectories as

𝜏 𝑟𝑒𝑔
𝐴 (𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴(𝑥), for a.e. 𝑡 ∈ ℰℋ and 𝑏ℋ(𝑋𝑥(𝑡), 𝛼(𝑡)) is regular}.

(2.1.11)

Finally we define the value functions

𝑈−
𝐴 (𝑥) = inf

𝜏𝐴(𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (2.1.12)

𝑈+
𝐴 (𝑥) = inf

𝜏𝑟𝑒𝑔
𝐴 (𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (2.1.13)

In this chapter our aim is to prove that the value functions are solutions of the Ishii problem

and to prove their regularity. In particular, we will prove that the value functions are locally

bounded and locally Lipschitz. Since the control set 𝐴 in unbounded in this work, to be able

to prove the results for the Value Functions, we need to consider compact control sets for

which we will prove the results, and we will take limits to recover our initial value functions

defined in an unbounded control set.

Let us introduce the sequence of compact sets such that 𝐴1
𝑖 ⊂ 𝐴2

𝑖 ⊂ · · · ⊂ 𝐴𝑚
𝑖 and

𝐴𝑖 =
⋃︁

𝑚∈𝑁

𝐴𝑚
𝑖

and denote

𝐴𝑚 := 𝐴𝑚
1 × 𝐴𝑚

2 × [0, 1] ⊂ 𝐴,

then 𝐴1 ⊂ 𝐴2 ⊂ · · · ⊂ 𝐴𝑚 and

𝐴 =
⋃︁

𝑚∈𝑁

𝐴𝑚.
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Then we can consider the Ishii problem associated to the compact control sets 𝐴𝑚, defined

as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1

𝐻𝑚
2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω2

min{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ

max{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ

(2.1.14)

where

𝐻𝑚
𝑖 (𝑥, 𝑢, 𝑞) = sup

𝛼∈𝐴𝑚
𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑢.

We consider the control sets defined by

𝐴𝑚
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑚 | 𝑏ℋ(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 = 0}.

𝐴𝑚,𝑟𝑒𝑔
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑚

0 | 𝑏ℋ(𝛼1, 𝛼2, 𝜇) is regular}.

Then we can define the tangential Hamiltonians

𝐻𝑚
𝑇 (𝑥, 𝑢(𝑥), 𝐷ℋ𝑢) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑚
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝑢 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝑢 (𝑥) , 0)

(2.1.15)

and

𝐻𝑚,𝑟𝑒𝑔
𝑇 (𝑥, 𝑢(𝑥), 𝐷ℋ𝑢) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑚,𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝑢 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝑢 (𝑥) , 0)

(2.1.16)

To describe the value functions, which we will prove that are solutions of the Ishii problem

(2.1.14), we need to introduce the trajectories that will be considered associated to the com-

pact control sets 𝐴𝑚,

𝜏𝐴𝑚(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝐿𝑖𝑝(𝑅+;𝑅𝑛) × 𝒜𝑚 such that(2.1.8) is fulfilled and 𝑋𝑥(0) = 𝑥}

(2.1.17)

and

𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴𝑚(𝑥), for a.e. 𝑡 ∈ ℰℋ and 𝑏ℋ(𝑋𝑥(𝑡), 𝛼(𝑡)) is regular}.

(2.1.18)

Then the value functions associated to 𝐴𝑚 are defined as

𝑈−
𝐴𝑚(𝑥) = inf

𝜏𝐴𝑚 (𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (2.1.19)

𝑈+
𝐴𝑚(𝑥) = inf

𝜏𝑟𝑒𝑔
𝐴𝑚 (𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (2.1.20)
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2.2 DYNAMIC PROGRAMMING PRINCIPLE

Let us prove the following theorem where we prove the Dynamic Programming Principle

which will be very useful to prove that the value functions are subsolutions and supersolutions

of the Ishii problem (2.1.1).

Theorem 2.2.1 (Dynamic Programming Principle)

𝑈−
𝐴 (𝑥) = inf

𝜏𝐴(𝑥)

(︃∫︁ 𝑇

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈−

𝐴 (𝑋 (𝑇 )) 𝑒−𝜆𝑇

)︃
. (2.2.1)

𝑈+
𝐴 (𝑥) = inf

𝜏𝑟𝑒𝑔
𝐴 (𝑥)

(︃∫︁ 𝑇

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+

𝐴 (𝑋 (𝑇 )) 𝑒−𝜆𝑇

)︃
. (2.2.2)

Let us prove this result for 𝑈−
𝐴 . We denote the right hand side of (2.2.1) as 𝑈 . We prove

first that 𝑈−
𝐴 ≤ 𝑈 . Consider (𝑋𝑥(·), 𝜈) ∈ 𝜏𝐴(𝑥) and and let 𝑧 = 𝑋𝑥 (𝑇 ). By definition of 𝑈−

𝐴 ,

there exists a sequence (𝑋𝜖
𝑧(·), 𝜈𝜖(·)) ∈ 𝜏𝐴(𝑧) with 𝑋𝜖

𝑧(0) = 𝑧 such that

𝑈−
𝐴 (𝑧) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑧(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡.

Let us consider

𝜈(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝜈(𝑡) 𝑡 ≤ 𝑇,

𝜈𝜖(𝑡− 𝑇 ) 𝑡 > 𝑇.

Analogously,

𝑋(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑋𝑥(𝑡) 𝑡 ≤ 𝑇,

𝑋𝜖
𝑧(𝑡− 𝑇 ) 𝑡 > 𝑇.

Since 𝑋𝑥(𝑡) and 𝑋𝜖
𝑧 are Lipschitz then we have

(︁
𝑋(𝑡), 𝜈(𝑡)

)︁
∈ 𝜏𝐴(𝑥). Thus, by definition of

𝑈−
𝐴 and by the change of variables 𝑠 = 𝑡− 𝑇 , we obtain

𝑈−
𝐴 (𝑥) ≤

∫︁ ∞

0
𝑙
(︁
𝑋(𝑡), 𝜈(𝑡)

)︁
𝑒−𝜆𝑡𝑑𝑡

=
∫︁ 𝑇

0
𝑙 (𝑋𝑥(𝑡), 𝜈(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+

∫︁ ∞

𝑇
𝑙 (𝑋𝜖

𝑧(𝑡− 𝑇 ), 𝜈𝜖(𝑡− 𝑇 )) 𝑒−𝜆𝑡𝑑𝑡

=
∫︁ 𝑇

0
𝑙 (𝑋𝑥(𝑡), 𝜈(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑧(𝑠), 𝜈𝜖(𝑠)) 𝑒−𝜆𝑠𝑑𝑠

≤
∫︁ 𝑇

0
𝑙 (𝑋𝑥(𝑡), 𝜈(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇

(︁
𝑈−

𝐴 (𝑧) + 𝜖
)︁
.

Taking limits as 𝜖 goes to 0, we obtain that for any trajectory (𝑋𝑥(𝑡), 𝜈(𝑡)) ∈ 𝜏𝐴(𝑥) we

have
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𝑈−
𝐴 (𝑥) ≤

∫︁ 𝑇

0
𝑙 (𝑋𝑥(𝑡), 𝜈(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇

(︁
𝑈−

𝐴 (𝑋𝑥(𝑇 ))
)︁
. (2.2.3)

Therefore we have 𝑈−
𝐴 ≤ 𝑈 .

Now, let us prove that 𝑈 ≤ 𝑈−
𝐴 . Consider a sequence (𝑋𝜖

𝑥, 𝜈
𝜖) ∈ 𝜏𝐴(𝑥) such that

𝑈−
𝐴 (𝑥) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡

=
∫︁ 𝑇

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+
∫︁ ∞

𝑇
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡

=
∫︁ 𝑇

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇
∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑠+ 𝑇 ), 𝜈𝜖(𝑠+ 𝑇 )) 𝑒−𝜆𝑠𝑑𝑠.

(2.2.4)

Define 𝑋𝑋𝜖
𝑥(𝑇 )(𝑠) := 𝑋𝜖

𝑥(𝑠+𝑇 ) and 𝜈(𝑠) := 𝜈𝜖(𝑠+𝑇 ), then second integral on the right hand

side can be rewritten as

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑠+ 𝑇 ), 𝜈𝜖(𝑠+ 𝑇 )) 𝑒−𝜆𝑠𝑑𝑠 =
∫︁ ∞

0
𝑙
(︁
𝑋𝑋𝜖

𝑥(𝑇 )(𝑠), 𝜈(𝑠)
)︁
𝑒−𝜆𝑠𝑑𝑠. (2.2.5)

we have
(︁
𝑋𝑋𝜖

𝑥(𝑇 )(·), 𝜈(·)
)︁

∈ 𝜏𝐴(𝑋𝜖
𝑥(𝑇 )) and then 𝑈−

𝐴 (𝑋𝜖
𝑥(𝑇 )) ≤

∫︀∞
0 𝑙

(︁
𝑋𝑋𝜖

𝑥(𝑇 )(𝑠), 𝜈(𝑠)
)︁
𝑒−𝜆𝑠𝑑𝑠.

Thanks to (2.2.4) and (2.2.5), we have

𝑈−
𝐴 (𝑥) + 𝜖 ≥

∫︁ 𝑇

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑈−
𝐴 (𝑋𝜖

𝑥(𝑇 )) 𝑒−𝜆𝑇 ≥ 𝑈 (𝑥) . (2.2.6)

Taking limits as 𝜖 goes to 0, we obtain

𝑈−
𝐴 (𝑥) ≥ 𝑈 (𝑥) .

The proof for 𝑈+
𝐴 is analogous.

Remark 2.2.2 Consider a sequence (𝑋𝜖
𝑥, 𝜈

𝜖) ∈ 𝜏𝐴𝑚(𝑥) such that

𝑈−
𝐴𝑚 (𝑥) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡.

Since 𝑈−
𝐴 (𝑥) = 𝑈 (𝑥) due to the inequality (2.2.6) we obtain

𝑈−
𝐴 (𝑥) = lim

𝜖→0

(︃∫︁ 𝑇

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑈−
𝐴 (𝑋𝜖

𝑥(𝑇 )) 𝑒−𝜆𝑇

)︃
= 𝑈 (𝑥) .

Analogously, if a sequence (𝑋𝜖
𝑥, 𝜈

𝜖) ∈ 𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥) satisfies that

𝑈+
𝐴𝑚 (𝑥) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡,

then
𝑈+

𝐴 (𝑥) = lim
𝜖→0

(︃∫︁ 𝑇

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴 (𝑋𝜖

𝑥(𝑇 )) 𝑒−𝜆𝑇

)︃
. (2.2.7)
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The lemma below, gives a bound of the trajectories, that will be very useful to consider

that the trajectories are in bounded sets.

Lemma 2.2.3 Assume that there exists 𝐶 such that

|𝑏𝑖(𝑥, 𝛼𝑖)| < 𝐶(1 + |𝛼𝑖| + |𝑥|) for all 𝑥 ∈ 𝑅𝑁 and 𝛼𝑖 ∈ 𝐴𝑚
𝑖 .

Then, given 𝑥 ∈ 𝑅𝑁 and 𝑇 > 0 there exist 𝑅𝑚
𝑇 > 0 such that for any (𝑋𝑚

𝑥 , 𝛼
𝑚) ∈ 𝜏𝐴𝑚(𝑥),

we have
𝑋𝑚

𝑥 (𝑡) ∈ 𝐵𝑅𝑚
𝑇

(𝑥) for all 𝑡 ∈ [0, 𝑇 ].

Since (𝑋𝑚
𝑥 , 𝛼

𝑚) ∈ 𝜏𝐴𝑚(𝑥), we have

|𝑋𝑚
𝑥 (𝑡)| ≤ |𝑥| +

∫︁ 𝑡

0
|𝑏(𝑋𝑚

𝑥 (𝑠), 𝛼𝑚(𝑠))|𝑑𝑠

≤ |𝑥| + 𝐶(1 + sup
𝛼∈𝐴𝑚

𝑖

|𝛼|)𝑡+
∫︁ 𝑡

0
𝐶|𝑋𝑚

𝑥 (𝑠)|𝑑𝑠

Thanks to Gronwall inequality

|𝑋𝑚
𝑥 (𝑡)| ≤ 𝐶𝑚

𝑇 𝑒
𝐶𝑇 ∀ 𝑡 ∈ [0, 𝑇 ]

where 𝐶𝑚
𝑇 := |𝑥| + 𝐶(1 + sup

𝛼∈𝐴𝑚
𝑖

|𝛼|)𝑇

Then,

|𝑋𝑚
𝑥 (𝑡) − 𝑥| ≤ |𝑥| + 𝐶𝑚

𝑇 𝑒
𝐶𝑇 ∀ 𝑡 ∈ [0, 𝑇 ].

Thus, we take 𝑅𝑚
𝑇 := |𝑥| + 𝐶𝑚

𝑇 𝑒
𝐶𝑇 . We need to introduce the lemma below to prove the

following result.

Lemma 2.2.4 Assume that

1. 𝑓𝑛
*
⇀ 𝑓 in 𝐿∞(0, 𝑇 ;𝑅𝑁).

2. There exists a measurable set map 𝑠 ↦→ 𝐾(𝑠) ⊂ 𝑅𝑁 defined on [0, 𝑇 ] such that for any
𝑛 ∈ 𝑁 , and 𝑠 ∈ (0, 𝑇 ), 𝑓𝑛(𝑠) ∈ 𝐾(𝑠) a.e..

Then for any 𝑠 ∈ (0, 𝑇 ), the weak* limit also satisfies 𝑓(𝑠) ∈ 𝐾(𝑠) a.e..

Let 𝐸 = 𝐿∞(0, 𝑇 ;𝑅𝑁) and consider 𝑓 ∈ 𝐸. We define the functional 𝐺 by

𝐺(𝑓) :=
∫︁ 𝑇

0
𝑑𝑖𝑠𝑡(𝑓(𝑠), 𝐾(𝑠))𝑑𝑠 ∈ 𝑅+ ∪ {∞}. (2.2.8)

Observe that 𝐺 has the following properties,
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(a) 𝐺 : 𝐸 → 𝑅 is convex. Indeed, the distance function is convex (this follows from the

triangle inequality and positive homogeneity).

(b) 𝐺 : 𝐸 → 𝑅 is continuous for the strong topology. Indeed, if 𝑓𝑛 → 𝑓 strongly in 𝐸, then

|𝑑𝑖𝑠𝑡(𝑓𝑛, 𝐾) − 𝑑𝑖𝑠𝑡(𝑓,𝐾)| ≤ |𝑓𝑛 − 𝑓 | → 0 in 𝐿∞(0, 𝑇 ). Then, 𝐺(𝑓𝑛) → 𝐺(𝑓).

(c) Since 𝐺 is convex and continuous it is lower semi-continuous with respect to the weak*

topology.

Since 𝑓𝑛
*
⇀ 𝑓 in 𝐿∞(0, 𝑇 ;𝑅𝑁), thanks to Proposition ??

𝐺(𝑓) ≤ lim inf
𝑛→∞

𝐺(𝑓𝑛).

But since 𝑓𝑛(𝑠) ∈ 𝐾(𝑠) a.e., then 𝐺(𝑓𝑛) = 0 for any 𝑛 ∈ 𝑁 . We deduce that 𝐺(𝑓) = 0,

which implies that 𝑓(𝑠) ∈ 𝐾(𝑠) a.e. on (0, 𝑇 ). The following result will be used to prove

comparison results related to 𝑈+
𝐴𝑚

Lemma 2.2.5 Under the hypotheses of Lemma 2.2.3 and hypothesis (HC). Consider a se-
quence (𝑋𝜖

𝑥, 𝜈
𝜖) ∈ 𝜏 𝑟𝑒𝑔

𝐴𝑚(𝑥) such that

𝑈+
𝐴𝑚 (𝑥) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡.

Then given 𝑇 > 0 there exists (𝑋𝑇
𝑥 , 𝛼

𝑇 ) ∈ 𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥) satisfying

∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑠)
)︁
𝑒−𝜆𝑠 = lim

𝜖→0

(︂∫︁ 𝑠

0
𝑙(𝑋𝜖

𝑥(𝑡), 𝛼𝜖(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚 (𝑋𝜖

𝑥 (𝑠)) 𝑒−𝜆𝑠
)︂

for any 𝑠 ≤ 𝑇 . Moreover
∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑠)
)︁
𝑒−𝜆𝑠 = 𝑈+

𝐴𝑚(𝑥) ∀𝑠 ≤ 𝑇.

We define

𝑌 𝜖(𝑠) :=
∫︁ 𝑠

0
𝑙(𝑋𝜖

𝑥(𝑡), 𝛼𝜖(𝑡))𝑑𝑡,

and consider the trajectories

(𝑋𝜖
𝑥, 𝑌

𝜖) : (0, 𝑇 ) −→ 𝑅𝑁+1

Due to Lemma 2.2.3 there exists 𝑅𝑚
𝑇 such that |𝑋𝑇,𝜖

𝑥 (𝑡) − 𝑥| ≤ 𝑅𝑚
𝑇 for any 𝑡 ∈ (0, 𝑇 ],

then we have

|𝑏(𝑋𝜖
𝑥(𝑡), 𝛼𝜖(𝑡))| ≤ ||𝑏||𝐿∞(𝐵𝑅𝑇

(𝑥)×𝐴𝑚), |𝑙(𝑋𝜖
𝑥(𝑡), 𝛼𝜖(𝑡))| ≤ ||𝑙||𝐿∞(𝐵𝑅𝑇

(𝑥)×𝐴𝑚).
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Thus, the curves (𝑋𝜖
𝑥, 𝑌

𝜖) are equicontinuous and uniformly bounded in [0, 𝑇 ]. Thus, thanks

to Ascoli Arzela’s Theorem, we can extract a subsequence (𝑋𝜖
𝑥, 𝑌

𝜖) which converges uniformly

in [0, 𝑇 ] to (𝑋𝑇
𝑥 , 𝑌

𝑇 ). Moreover, thanks to Banach–Alaoglu Theorem we can extract a sub-

sequence of (𝑋̇𝜖
𝑥, 𝑌̇

𝜖) that converges weakly* in 𝐿∞(0, 𝑇, 𝑅𝑁+1) to (𝑋̇𝑇
𝑥 , 𝑌̇

𝑇 ). Indeed, given

𝜑 ∈ 𝐶∞
0 (𝑅𝑁), by definition of weak derivative

∫︁ 𝑇

0
(𝑋̇𝜖

𝑥, 𝑌̇
𝜖)(𝑠)𝜑(𝑠)𝑑𝑠 =

∫︁ 𝑇

0
(𝑋𝜖

𝑥, 𝑌
𝜖)(𝑠)∇𝜑(𝑠)𝑑𝑠. (2.2.9)

Let 𝑔 be a weak* limit of (𝑋̇𝜖
𝑥, 𝑌̇

𝜖)(𝑠) then taking limits on the left hand side of (2.2.9) as 𝜖

goes to 0, we obtain ∫︁ 𝑇

0
(𝑋̇𝜖

𝑥, 𝑌̇
𝜖)(𝑠)𝜑(𝑠)𝑑𝑠 →

∫︁ 𝑇

0
𝑔(𝑠)𝜑(𝑠)𝑑𝑠

Thanks to uniform limit of (𝑋𝜖
𝑥, 𝑌

𝜖), then taking limits on the right hand side of (2.2.9) as 𝜖

goes to 0, we obtain∫︁ 𝑇

0
(𝑋𝜖

𝑥, 𝑌
𝜖)(𝑠)∇𝜑(𝑠)𝑑𝑠 →

∫︁ 𝑇

0
(𝑋𝑥, 𝑌 )(𝑠)∇𝜑(𝑠)𝑑𝑠.

Therefore, ∫︁ 𝑇

0
𝑔(𝑠)𝜑(𝑠)𝑑𝑠 =

∫︁ 𝑇

0
(𝑋𝑥, 𝑌 )(𝑠)∇𝜑(𝑠)𝑑𝑠 ∀𝜑 ∈ 𝐶∞

0 (𝑅𝑁). (2.2.10)

Thus, 𝑔 is the weak derivative of (𝑋𝑇
𝑥 , 𝑌

𝑇 ).

We define the set of dynamic and cost functions,

𝐵𝐿𝑖(𝑍𝑇 ) := {(𝑏𝑖(𝑋𝑇
𝑥 , 𝛼𝑖), 𝑙𝑇𝑖 (𝑋𝑇

𝑥 , 𝛼𝑖))|𝛼𝑖 ∈ 𝐴𝑖}

and

ℬℒ(𝑍) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐵𝐿1(𝑍) if 𝑍𝑁 > 0

𝐵𝐿2(𝑍) if 𝑍𝑁 < 0

𝑐𝑜(𝐵𝐿1(𝑍) ∪𝐵𝐿2(𝑍)) if 𝑍𝑁 = 0,

(2.2.11)

where 𝑍𝑁 is the 𝑁 -th coordinate of 𝑍. Thanks to the uniform convergence of 𝑍𝜖 and since 𝑙

and 𝑏 are Lipschitz. Given 𝛾 > 0, then for 𝜖 small enough 𝑍𝜖 := (𝑋𝜖
𝑥, 𝑌

𝜖) is solution of the

differential inclusion

𝑍̇𝜖(𝑡) = (𝑏(𝑍𝜖(𝑡), 𝛼𝜖(𝑡)), 𝑙(𝑍𝜖(𝑡), 𝛼𝜖(𝑡)) ∈ ℬℒ(𝑍𝜖(𝑡)) ⊂ ℬℒ(𝑍𝑇 (𝑡)) + 𝛾𝐵1(0)

Let 𝑍𝑇 := (𝑋𝑇
𝑥 , 𝑌

𝑇 ). Applying Lemma 2.2.4 to 𝐾(𝑠) = ℬℒ(𝑍𝑇 (𝑠)) + 𝛾𝐵1(0), we have

𝑍̇𝑇 (𝑠) ∈ ℬℒ(𝑍𝑇 (𝑠)) + 𝛾𝐵1(0) 𝑎.𝑒.
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Taking limits as 𝛾 goes to 0, we obtain

𝑍̇𝑇 (𝑠) ∈ ℬℒ(𝑍𝑇 (𝑠)) 𝑎.𝑒.

Since ℬℒ(𝑍𝑇 (𝑠)) is closed, then

𝑍̇𝑇 (𝑠) ∈ ℬℒ(𝑍𝑇 (𝑠)) 𝑎.𝑒.

We use Filippov’s Theorem 2.1.2 with

𝐹 (𝑡) = 𝐴, ℎ(𝑡) = 𝑍̇(𝑡), Ω = [0, 𝑇 ], 𝑔(𝑡, 𝛼) = (𝑏(𝑋𝑇
𝑥 (𝑡), 𝛼), 𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼)),

we obtain that there exists a measurable control 𝛼𝑇 (·) such that

(𝑋̇𝑇
𝑥 (𝑡), 𝑌̇ 𝑇 (𝑡)) = (𝑏(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡)), 𝑙(𝑋𝑇
𝑥 (𝑡), 𝛼𝑇 (𝑡))).

Therefore for 𝑠 ≤ 𝑇 , we have 𝑙(𝑋𝜖
𝑥(·), 𝛼𝜖(·)) converges weakly* in 𝐿∞([0, 𝑠];𝑅) to 𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡)).

Moreover, since 𝑒−𝜆𝑡 ∈ 𝐿1([0, 𝑠];𝑅) and thanks to (2.2.7), we obtain that

𝑈+
𝐴𝑚(𝑥) = lim

𝜖→∞

(︂∫︁ 𝑠

0
𝑙(𝑋𝜖

𝑥(𝑡), 𝛼𝜖(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚 (𝑋𝜖

𝑥 (𝑇 )) 𝑒−𝜆𝑠
)︂

=
∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑠)
)︁
𝑒−𝜆𝑠.

Moreover, thanks to (BARLES; CHASSEIGNE, 2018, Lemma 6.3.1, p. 115), we have (𝑋𝑇
𝑥 (·), 𝛼𝑇 (·)))

is regular in [0, 𝑇 ], that is, the limit of regular trajectory is also a regular trajectory. Thanks

to hypothesis (HC) there exists a control 𝛼*
𝑖 ∈ 𝐴𝑖 with 𝑏𝑖(𝑋𝑇

𝑥 (𝑇 ), 𝛼*
𝑖 ) = 0 then we can define

𝑋𝑇
𝑥 (𝑡) := 𝑋𝑇

𝑥 (𝑇 ) and 𝛼𝑇
𝑖 (𝑡) := 𝛼*

𝑖 for any 𝑡 ≥ 𝑇 . Thus, (𝑋𝑇
𝑥 , 𝛼

𝑇 ) ∈ 𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥). We have a

slightly weaker version of the previous Lemma 2.2.5 without assuming the growing hypothesis

on the dynamic function. To do this we consider the following result, where we state a bound

of the trajectories in 𝜏𝐴𝑚(𝑥).

Lemma 2.2.6 Let 𝑚 ∈ 𝑁 and let 𝑏𝑖 : Ω𝑖 × 𝐴𝑚
𝑖 → 𝑅𝑁 be continuous. Given 𝑟 > 0 and

𝑥 ∈ 𝑅𝑁 , there exist 𝑡 > 0 such that for any trajectory (𝑋𝑥, 𝛼) ∈ 𝜏𝐴𝑚(𝑥), we obtain

|𝑋𝑥(𝑠) − 𝑥| ≤ 𝑟, ∀ 𝑠 ≤ 𝑡.

Since

𝑋 ′
𝑥 (𝑡) = 𝑏1 (𝑋𝑥 (𝑡) , 𝛼1 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω1} + 𝑏2 (𝑋𝑥 (𝑡) , 𝛼2 (𝑡)) 1{𝑋𝑥(𝑡)∈Ω2}

+ 𝑏ℋ (𝑋𝑥 (𝑡) , 𝛼 (𝑡)) 1{𝑋𝑥(𝑡)∈Ωℋ} for a.e. 𝑡 ∈ 𝑅+.
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Integrating the expression above, we can consider 𝑡 ≤ 𝑟
||𝑏||𝐵𝑟(𝑥)×𝐴𝑚

to obtain the result. Below

we state the weaker version of Lemma 2.2.5 without assuming the growing hypothesis on the

dynamic function. This result will be useful to prove comparison results related to the value

function 𝑈+
𝐴𝑚

Lemma 2.2.7 Under hypotheses in Lemma 2.2.6 and hypothesis (HC). Consider a sequence
(𝑋𝜖

𝑥, 𝜈
𝜖) ∈ 𝜏 𝑟𝑒𝑔

𝐴𝑚(𝑥) such that

𝑈+
𝐴𝑚 (𝑥) + 𝜖 ≥

∫︁ ∞

0
𝑙 (𝑋𝜖

𝑥(𝑡), 𝜈𝜖(𝑡)) 𝑒−𝜆𝑡𝑑𝑡.

Then for 𝑇 > 0 there exists a trajectory (𝑋𝑇
𝑥 , 𝛼

𝑇 ) ∈ 𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥) such that

∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑠)
)︁
𝑒−𝜆𝑠 = lim

𝜖→0

(︂∫︁ 𝑠

0
𝑙(𝑋𝜖

𝑥(𝑡), 𝛼𝜖(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚 (𝑋𝜖

𝑥 (𝑠)) 𝑒−𝜆𝑠
)︂

for any 𝑠 ≤ 𝑇 . Moreover,
∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑠)
)︁
𝑒−𝜆𝑠 = 𝑈+

𝐴𝑚(𝑥), ∀𝑠 ∈ [0, 𝑇 ].

We just replace Lemma 2.2.3 by Lemma 2.2.6 in the proof of lemma 2.2.5.

2.3 REGULARITY OF VALUE FUNCTIONS

Let us recall the main hypotheses on the dynamic and cost functions associated to Ω𝑖 that

will be used to prove the results in this section.

(HA) 𝑙𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 and 𝑏𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 satisfy

lim
|𝛼|→∞

𝑙𝑖(𝑦, 𝛼)
1 + |𝑏𝑖(𝑦, 𝛼)| = ∞ and lim

|𝛼|→∞
|𝑏𝑖(𝑦, 𝛼)| = ∞

uniformly in compact sets of 𝑅𝑁 with respect to 𝑦 ∈ 𝑅𝑁 .

(HB) 𝑙𝑖 is continuous and 𝑏𝑖 is Lipschitz continuous.

(HC) For any 𝑥 ∈ 𝑅𝑁 , the set {(𝑏𝑖(𝑥, 𝛼𝑖), 𝑙𝑖(𝑥, 𝛼𝑖))| 𝛼 ∈ 𝐴𝑚
𝑖 } is a closed and convex set.

Moreover, there exists 𝛿 > 0 such that

𝐵𝛿(0) ⊂ ℬ𝐴𝑖(𝑥), where ℬ𝐴𝑖(𝑥) := {𝑏𝑖(𝑥, 𝛼)|𝛼 ∈ 𝐴𝑚
𝑖 }

where 𝐴𝑚
𝑖 is compact sequence which union equal a 𝑅𝑁 .

In the following theorem we prove the regularity of the value functions.
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Proposition 2.3.1 Under hypotheses (HA), (HB) and (HC), then the value functions 𝑈−
𝐴

and 𝑈+
𝐴 are locally bounded and locally Lipschitz continuous functions.

We prove the result for 𝑈+
𝐴 , the proof for 𝑈−

𝐴 is analogous. Initially we prove that 𝑈+
𝐴

is locally bounded. Consider a convex compact set 𝑉 ⊂ 𝑅𝑁 . Thanks to hypothesis (HA)

there exists 𝑅 > 0 such that if |𝑏𝑖(𝑥, 𝛼𝑖)| ≤ 𝛿, for some 𝑥 ∈ 𝑉 , then 𝛼𝑖 ∈ 𝐵𝐴𝑖
𝑅 (0) , where

𝐵𝐴𝑖
𝑅 (0) := {𝛾𝑖 ∈ 𝐴𝑖| ‖𝛾𝑖‖ ≤ 𝑅}.

If 𝑥 ∈ Ω𝑖 ∩ 𝑉 , thanks to (HC) we can choose 𝛼*
𝑖 ∈ 𝐵𝐴𝑖

𝑅 (0) such that 𝑏𝑖(𝑥, 𝛼*
𝑖 ) = 0. Thus,

we can associate the trajectory 𝑋𝑥(𝑡) = 𝑥 with the control, 𝛼𝑖(𝑡) = 𝛼*
𝑖 , for all 𝑡, since we

have

𝑋 ′
𝑥(𝑡) = 𝑏𝑖(𝑋𝑥(𝑡), 𝛼𝑖(𝑡)) = 𝑏𝑖(𝑥, 𝛼*

𝑖 ) = 0.

In this particular case (𝑋𝑥(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑥). Using the definition of 𝑈+

𝐴 , hypotheses (HA)

and (HC), we have

𝑈+
𝐴 (𝑥) ≤

∫︁ ∞

0
𝑙𝑖(𝑋𝑥(𝑡), 𝛼𝑖(𝑡))𝑒−𝜆𝑡𝑑𝑡 =

∫︁ ∞

0
𝑙𝑖(𝑥, 𝛼*

𝑖 )𝑒−𝜆𝑡𝑑𝑡 = 𝑙𝑖(𝑥, 𝛼*
𝑖 )

𝜆
≤

‖𝑙𝑖‖𝑉 ×𝐵
𝐴𝑖
𝑅 (0)

𝜆

for all 𝑥 ∈ 𝑉 . Then we have proved that 𝑈+
𝐴 is bounded for 𝑥 ∈ Ω𝑖 ∪ 𝑉 .

Now, let 𝑥 ∈ ℋ ∩ 𝑉 , thanks to hypothesis (HC), we can choose 𝛼*
1 ∈ 𝐴1 and 𝛼*

2 ∈ 𝐴2

such that 𝑏1(𝑥, 𝛼*
1) = 0 = 𝑏2(𝑥, 𝛼*

2). Considering 𝑋𝑥(𝑡) = 𝑥 and 𝛼(𝑡) = (𝛼*
1, 𝛼

*
2, 𝜇), with

𝜇 ∈ [0, 1], then

𝑋 ′
𝑥(𝑡) = 𝑏ℋ(𝑋𝑥(𝑡), 𝛼(𝑡)) = 𝑏ℋ(𝑥, (𝛼*

1, 𝛼
*
2, 𝜇)) = 0.

Since (𝑋𝑥(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑥),

𝑈+
𝐴 (𝑥) ≤

∫︁ ∞

0
𝑙ℋ(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

= 𝑙ℋ(𝑥, (𝛼*
1, 𝛼

*
2, 𝜇))

𝜆

= (1 − 𝜇)
𝜆

𝑙1(𝑥, 𝛼*
1) + 𝜇

𝜆
𝑙2(𝑥, 𝛼*

2)

≤ 1 − 𝜇

𝜆
||𝑙1||𝑉 ×𝐵

𝐴𝑖
𝑅 (0) + 𝜇

𝜆
||𝑙2||𝑉 ×𝐵

𝐴𝑖
𝑅 (0)

≤
||𝑙1||𝑉 ×𝐵

𝐴𝑖
𝑅 (0) + ||𝑙2||𝑉 ×𝐵

𝐴𝑖
𝑅 (0)

𝜆
.

Therefore, we have proved that 𝑈+
𝐴 is locally bounded.

Now will prove that 𝑈+
𝐴 is locally Lipschitz. Let 𝑥, 𝑧 ∈ 𝑉 and consider the unitary vector

𝑤 = 𝑥−𝑧
|𝑥−𝑧| . Let us define the trajectory

𝑋𝑧(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑧 + 𝑡𝛿𝑤 if 0 ≤ 𝑡 < |𝑥−𝑧|

𝛿

𝑥 if 𝑡 ≥ |𝑥−𝑧|
𝛿
.

(2.3.1)
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which satisfies the differential inclusion 𝑋 ′
𝑥(𝑡) ∈ ℬ(𝑋𝑥(𝑡)). Below we build regular controls for

the trajectory 𝑋𝑧.

We divide this part of the proof in two cases: {𝑧, 𝑥} ⊂ ℋ and {𝑧, 𝑥} ̸⊂ ℋ.

Case 1: {𝑧, 𝑥} ⊂ ℋ. In this case 𝑤 and 𝑋𝑧(𝑡) are in ℋ for all 𝑡. By hypothesis (HC) there

exists 𝛼𝑖(𝑡) ∈ 𝐴𝑖 such that

𝑏1(𝑋𝑧(𝑡), 𝛼1(𝑡)) = 𝛿𝑤 and 𝑏2(𝑋𝑧(𝑡), 𝛼2(𝑡)) = 0

Moreover 𝑏1(𝑋𝑧(𝑡), 𝛼1(𝑡)) · 𝑒𝑁 = 𝛿𝑤 · 𝑒𝑁 = 0 and 𝑏2(𝑋𝑧(𝑡), 𝛼2(𝑡)) = 0 . Furthermore,

thanks to Filippov’s Theorem 2.1.2 we can choose the control 𝛼(𝑡) := (𝛼1(𝑡), 𝛼2(𝑡), 1) mea-

surable. Hence (𝑋𝑧 (·) , 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑧).

Thanks to the construction of the trajectory 𝑋𝑧(𝑡), (2.3.1), we have 𝑋𝑧(𝑡) ∈ 𝑉 and

|𝑏𝑖(𝑋𝑧(𝑡), 𝛼𝑖(𝑡))| ≤ 𝛿 a.e then by hypothesis (HA), there exists 𝑅 such that 𝛼𝑖(𝑡) ∈ 𝐵𝐴𝑖
𝑅 (0)

for a.e. 𝑡. Consequently |𝑙(𝑋𝑧(𝑡), 𝛼𝑖(𝑡))| ≤ 𝐶 for a.e. 𝑡.

Case 2: {𝑦, 𝑧}ℋ. Thanks to Theorem 2.1.3 there exist a measurable control, 𝛼(·), for

which we can express 𝑋 ′
𝑧(·) as in (2.1.8). Since {𝑦, 𝑧}ℋ then there exist at most one point

of the trajectory 𝑋𝑧(·) that belongs to ℋ. Due hypothesis (HA), we have 𝛼𝑖(𝑡) ∈ 𝐵𝐴𝑖
𝑅 (0) for

a.e. 𝑡 ≤ |𝑥−𝑧|
𝛿

and thanks to hypothesis (HC), we can keep the trajectory at 𝑥 = 𝑋𝑧( |𝑥−𝑧|
𝛿

) for

all 𝑡 ≥ |𝑥−𝑧|
𝛿

and therefore we can assume that (𝑋𝑧(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑧).

Since 𝑋𝑧(𝑡) ∈ 𝑉 for all 𝑡 and a 𝛼𝑖(𝑡) ∈ 𝐵𝐴𝑖
𝑅 (0) for a.e. 𝑡, we have |𝑙(𝑋𝑧(𝑡), 𝛼𝑖(𝑡))| ≤ 𝐶

for a.e. t.

Now, we us prove that 𝑈+
𝐴 (·) is locally Lipschitz. Let 0 < 𝑀 < ∞ be a constant such that

max{‖𝑙𝑖‖𝐿∞(𝑉 ×𝐵
𝐴𝑖
𝑅 (0)), ‖𝑈+

𝐴 ‖𝐿∞(𝑉 )} < 𝑀.

Let 𝑇 := |𝑥−𝑧|
𝛿

. we have 𝑋𝑧 (0) = 𝑧 and 𝑋𝑧 (𝑇 ) = 𝑥. Since (𝑋𝑧(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑧), and

thanks to the Dynamic Programming Principle Theorem 2.2.1, we have

𝑈+
𝐴 (𝑧) ≤

∫︁ 𝑇

0
𝑙 (𝑋𝑧(𝑡), 𝛼(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑇𝑈+

𝐴 (𝑥) .
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Thus, since 𝛼𝑖(𝑡) ∈ 𝐵𝐴𝑖
𝑅 (0), for a.e 𝑡, and 𝑇 = |𝑥−𝑧|

𝛿
then by Mean Value Theorem, we obtain

𝑈+
𝐴 (𝑧) − 𝑈+

𝐴 (𝑥) ≤
∫︁ 𝑇

0
𝑙 (𝑋𝑧(𝑡), 𝛼(𝑡)) 𝑒−𝜆𝑡𝑑𝑡+ (𝑒−𝜆𝑇 − 1)𝑈+

𝐴 (𝑥)

≤ 𝑀𝑇 +
⃒⃒⃒
1 − 𝑒−𝜆𝑇

⃒⃒⃒
𝑈+

𝐴 (𝑥)

≤ 𝑀𝑇 +𝑀𝜆𝑇

=
(︃
𝑀

𝛿
+ 𝑀𝜆

𝛿

)︃
|𝑥− 𝑧| = 𝐶|𝑥− 𝑧|.

Therefore, we have proved that 𝑈+
𝐴 is a locally Lipschitz continuous function.

Remark 2.3.2 In the previous Proposition 2.3.1, if we add the hypothesis

(i) Let 𝐾 be a compact subset of 𝐴𝑖, then there exists 𝐶𝐾(𝑏) and 𝐶𝐾(𝑙) such that

|𝑏𝑖(𝑦, 𝛼)| ≤ 𝐶𝐾(𝑏) and 𝑙𝑖(𝑦, 𝛼) ≤ 𝐶𝐾(𝑙), ∀ 𝑦 ∈ 𝑅𝑁 , 𝛼 ∈ 𝐾. (2.3.2)

we obtain that 𝑈+ and 𝑈− are globally bounded and Lipschitz continuous functions.

In the following result we prove that for (𝑥, 𝑢, 𝑞) ∈ Ω𝑖 ×𝑅 ×𝑅𝑁 , the Hamiltonian

𝐻𝑖(𝑥, 𝑢, 𝑞) = sup
𝛼∈𝐴𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼) + 𝜆𝑢}

is well defined, continuous and locally coercive with respect to the third variable, that is, it

grows to infinity on the extremes where it is defined.

Lemma 2.3.3 Under hypotheses (HA), (HB) and (HC). Given (𝑥, 𝑢, 𝑞) ∈ Ω𝑖 ×𝑅×𝑅𝑁 then

(a) 𝐻𝑖(𝑥, 𝑢, 𝑞) is well-define and is continuous with respect to all the variables. 𝐻𝑖 attains
its supremum locally in a compact set of 𝐴𝑖.

(b) 𝐻𝑖(𝑥, 𝑢, 𝑞) is locally coercive.

Consider 𝑔𝑖 : 𝐴𝑖 × Ω𝑖 ×𝑅 ×𝑅𝑁 −→ 𝑅 defined as

𝑔𝑖(𝛼, 𝑥, 𝑢, 𝑞) := −𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼) + 𝜆𝑢.

Note that 𝑔𝑖 is a continuous function. Let 𝑉𝑖 × 𝑈 × 𝐷 ⊂ Ω𝑖 × 𝑅 × 𝑅𝑁 be compacts sets.

Thanks to hypothesis (HA), {𝛼 ∈ 𝐴𝑖 | 𝑏𝑖(𝑥, 𝛼) = 0} ⊂ 𝐵𝐴𝑖
𝑅 (0) ∀ 𝑥 ∈ 𝑉𝑖. Let 𝑥 ∈ 𝑉𝑖, 𝛼𝑥

𝑖 ∈ 𝐴𝑖

with 𝑏𝑖(𝑥, 𝛼𝑥
𝑖 ) = 0 then

sup
𝛼∈𝐴𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} ≥ −𝑏𝑖(𝑥, 𝛼𝑥
𝑖 ) · 𝑞 − 𝑙𝑖(𝑥, 𝛼𝑥

𝑖 ) ≥ −‖𝑙𝑖‖𝐿∞(𝑉𝑖×𝐵
𝐴𝑖
𝑅 (0)).
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We consider 𝑀𝑖 such that,

𝑀𝑖 > max
{︂

max
𝑞∈𝐷

|𝑞|, ‖𝑙𝑖‖𝐿∞(𝑉𝑖×𝐵
𝐴𝑖
𝑅 (0))

}︂
.

Thanks to hypothesis (HA), there exists Γ𝑀𝑖
> 0 such that if |𝛼| > Γ𝑀𝑖

then

𝑙𝑖(𝑥, 𝛼) > 𝑀𝑖(1 + |𝑏𝑖(𝑥, 𝛼)|) ∀𝑥 ∈ 𝑉𝑖.

That is,

−𝑙𝑖(𝑥, 𝛼) +𝑀𝑖|𝑏𝑖(𝑥, 𝛼)| < −𝑀𝑖.

Thus for |𝛼| ≥ Γ𝑀𝑖
, we have

−𝑙𝑖(𝑥, 𝛼)−𝑏𝑖(𝑥, 𝛼)·𝑞 ≤ −𝑙𝑖(𝑥, 𝛼)+|𝑏𝑖(𝑥, 𝛼)||𝑞| ≤ −𝑙𝑖(𝑥, 𝛼)+𝑀𝑖|𝑏𝑖(𝑥, 𝛼)| < −𝑀𝑖 ≤ −‖𝑙𝑖‖𝐿∞(𝑉𝑖×𝐵
𝐴𝑖
𝑅 (0)).

Hence,
−𝑙𝑖(𝑥, 𝛼) − 𝑏𝑖(𝑥, 𝛼) · 𝑞 + 𝜆𝑢 ≤ −𝑙𝑖(𝑥, 𝛼) +𝑀𝑖|𝑏𝑖(𝑥, 𝛼)| + 𝜆𝑢

< −𝑀𝑖 + 𝜆𝑢

< −‖𝑙𝑖‖𝐿∞(𝑉𝑖×𝐵
𝐴𝑖
𝑅 (0)) + 𝜆𝑢

≤ 𝐻𝑖(𝑥, 𝑢, 𝑞).

Therefore, if (𝑥, 𝑢, 𝑞) ∈ 𝑉𝑖 × 𝑈 ×𝐷

𝐻𝑖(𝑥, 𝑢, 𝑞) = sup
𝛼∈𝐴𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑢

= sup
𝛼∈𝐵

𝐴𝑖
Γ𝑀𝑖

(0)

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑢

= sup
𝛼∈𝐵

𝐴𝑖
Γ𝑀𝑖

(0)

𝑔𝑖(𝛼, 𝑥, 𝑢, 𝑞).

Therefore, 𝐻𝑖 is a continuous function because is the supremum of a continuous function over

a compact set.

Now let us prove that 𝐻𝑖 is locally coercive. Let 𝑉 be a compact set of Ω𝑖. Given 𝑥 ∈ 𝑉

and 𝑞 ∈ 𝑅𝑁 , there exists 𝑟 > 0 and 𝛼𝑖 ∈ 𝐵𝐴𝑖
𝑟 (0) such that

|𝑏𝑖(𝑥, 𝛼𝑖)| = 𝛿, and − 𝑏𝑖(𝑥, 𝛼𝑖) · 𝑞 = 𝛿|𝑞|.

Moreover, we consider 𝑢 in a compact set such that |𝑢| < 𝑅. Thus,

𝐻𝑖(𝑥, 𝑢, 𝑞) ≥ −𝑏𝑖(𝑥, 𝛼𝑖) · 𝑞 − 𝑙𝑖(𝑥, 𝛼𝑖) + 𝜆𝑢 ≥ 𝛿|𝑞| − ||𝑙𝑖||𝑉 ×𝐵
𝐴𝑖
𝑟 (0) − 𝜆𝑅
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Hence,

lim
|𝑞|→∞

𝐻𝑖(𝑥, 𝑢, 𝑞) = ∞.

Thus, 𝐻𝑖 is locally coercive.

Remark 2.3.4 If the previous Lemma 2.3.3, if we add the hypothesis

(i) Let 𝐾 be compact contained in 𝐴𝑖, then there exists 𝐶𝐾(𝑏) and 𝐶𝐾(𝑙) such that

|𝑏𝑖(𝑦, 𝛼)| ≤ 𝐶𝐾(𝑏) and 𝑙𝑖(𝑦, 𝛼) ≤ 𝐶𝐾(𝑙), ∀ 𝑦 ∈ 𝑅𝑁 , 𝛼 ∈ 𝐾. (2.3.3)

then for (𝑥, 𝑣, 𝑞) ∈ Ω𝑖 × 𝑈 ×𝐷, where 𝑈 ×𝐷 ⊂ 𝑅 ×𝑅𝑁 are compact, we obtain

𝐻𝑖(𝑥, 𝑣, 𝑞) = sup
𝛼∈𝐴𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑣 = sup
𝛼∈𝐵

𝐴𝑖
Γ𝑀𝑖

(0)

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑣

That is, the compact where the supremum is reached depends only on the modulus of the
third variable.

2.4 VALUE FUNCTIONS ARE SOLUTIONS OF THE ISHII PROBLEM

The aim o this section is to prove the that the value functions 𝑈+ and 𝑈− are solutions

of the Ishii problem (2.1.1). To do this we will prove first that the value functions in compact

control set are solutions of the auxiliar Ishii problem associated to compact control sets, and

finally we pass to the limit.

The following theorem is an auxiliar result which proves that the value functions associated

to compact control sets are locally bounded and locally Lipschitz continuous functions, and

they are solutions of the Ishii problem associated to compact control sets.

Theorem 2.4.1 Under hypotheses (HA), (HB) and (HC). Then 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 are viscosity
solutions of the Ishii problem (2.1.14) associated to compact control sets.
Furthermore,

(i) 𝑈−
𝐴𝑚 is subsolution of of the tangential Hamiltonian 𝐻𝑚

𝑇 , (2.1.15), that is, for 𝑥̄ ∈ 𝑅𝑁−1,
then 𝑥̄ → 𝑈−

𝐴𝑚(𝑥̄, 0) satisfies

𝐻𝑚
𝑇 (𝑥, 𝑢,𝐷ℋ𝑢) ≤ 0.
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(ii) 𝑈+
𝐴𝑚 is subsolution of the tangential Hamiltonian 𝐻𝑚,𝑟𝑒𝑔

𝑇 , (2.1.16). That is, for 𝑥̄ ∈

𝑅𝑁−1, then 𝑥̄ → 𝑈+
𝐴𝑚(𝑥̄, 0) satisfies

𝐻𝑚
𝑇 (𝑥, 𝑢,𝐷ℋ𝑢) ≤ 0.

Thanks to Proposition 2.3.1 we have 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 are locally bounded and locally Lipschitz

functions. Since the control sets 𝐴𝑚 are compact, we can apply Theorem 2.5 in (BARLES;

BRIANI; CHASSEIGNE, 2013), to obtain that 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 are subsolutions of (2.1.14). Let

us prove that 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 are supersolutions. We will denote 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 by 𝑈 for the

simplicity of the notation. Let 𝜑 be a test function, consider 𝑥 a local minimum of 𝑈 − 𝜑

and assume 𝑈(𝑥) = 𝜑(𝑥) without lost of generality. Then there exists 𝑟 ≥ 0 such that

𝑈 ≥ 𝜑 in 𝐵𝑟(𝑥). Thanks to Lemma 2.2.6, there exist 𝑡 > 0 such that for any trajectory

(𝑋𝑥, 𝛼) ∈ 𝜏𝐴𝑚(𝑥), we have |𝑋𝑥(𝑠) − 𝑥| ≤ 𝑟, 𝑠 ≤ 𝑡. Then the trajectories are in a bounded

subset, and we can apply Theorem 2.5 in (BARLES; BRIANI; CHASSEIGNE, 2013).

The theorem below is the principal result of this section. It states that the value functions

are solution of the Ishii problem (2.1.1).

Theorem 2.4.2 Under hypotheses (HA), (HB) and (HC). Then the value functions 𝑈−
𝐴 ,

𝑈+
𝐴 are viscosity solutions of the Hamilton-Jacobi-Bellman problem (2.1.1). Moreover 𝑈−

𝐴 is
a subsolution of the tangential Hamiltonian 𝐻𝑇 , and 𝑈+

𝐴 is a subsolution of the tangential
Hamiltonian 𝐻𝑟𝑒𝑔

𝑇 .

We will follow the ideas in (BARLES, 1990) to prove that 𝑈+
𝐴 and 𝑈−

𝐴 are supersolutions.

Consider a sequence of compacts 𝐴𝑚
𝑖 ⊂ 𝐴𝑖. Recall that if 𝑚 ≤ 𝑚′, then 𝐴𝑚

𝑖 ⊂ 𝐴𝑚′
𝑖 , and

thanks to the definition of 𝑈+
𝐴𝑚 and 𝑈−

𝐴𝑚 , we have

𝑈+
𝐴𝑚′ (𝑥) ≤ 𝑈+

𝐴𝑚(𝑥), 𝑈−
𝐴𝑚′ (𝑥) ≤ 𝑈−

𝐴𝑚(𝑥).

This implies together with Proposition 2.3.1, that 𝑈−
𝐴𝑚 and 𝑈+

𝐴𝑚 are uniformly locally bounded.

Moreover, since the sequences 𝑈−
𝐴𝑚 and 𝑈+

𝐴𝑚 are decreasing we have

inf
𝑚
𝑈+

𝐴𝑚(𝑥) = 𝑈+
𝐴 (𝑥), inf

𝑚
𝑈−

𝐴𝑚(𝑥) = 𝑈−
𝐴 (𝑥).

Thanks to Proposition 2.3.1 and Theorem (2.4.1), 𝑈−
𝐴𝑚
, 𝑈−

𝐴 , 𝑈+
𝐴𝑚
, 𝑈+

𝐴 are continuous, then

due Lemma ??
lim inf

(𝑚,𝑦)→(∞,𝑥)
𝑈+

𝐴𝑚(𝑦) =
(︂

inf
𝑚
𝑈+

𝐴𝑚

)︂
*

(𝑥) = 𝑈+
𝐴 (𝑥)

lim inf
(𝑚,𝑦)→(∞,𝑥)

𝑈−
𝐴𝑚(𝑦) =

(︂
inf
𝑚
𝑈−

𝐴𝑚

)︂
*

(𝑥) = 𝑈−
𝐴 (𝑥),

(2.4.1)
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where (·)* is the envelope of l.s.c functions.

Consider the discontinuous Hamiltonians 𝐻𝑚 and 𝐻 given by

𝐻𝑚 (𝑥, 𝑢, 𝑝) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑚
1 (𝑥, 𝑢, 𝑝) in Ω1

𝐻𝑚
2 (𝑥, 𝑢, 𝑝) in Ω2

max{𝐻𝑚
1 (𝑥, 𝑢, 𝑝) , 𝐻𝑚

2 (𝑥, 𝑢, 𝑝)} on ℋ

(2.4.2)

and

𝐻 (𝑥, 𝑢, 𝑝) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢, 𝑝) in Ω1

𝐻2 (𝑥, 𝑢, 𝑝) in Ω2

max{𝐻1 (𝑥, 𝑢, 𝑝) , 𝐻2 (𝑥, 𝑢, 𝑝)} on ℋ.

(2.4.3)

Let (𝑦, 𝑣, 𝑞) and (𝑥, 𝑢, 𝑝) in 𝑅𝑁 ×𝑅 ×𝑅𝑁 , then

lim sup
(𝑚,𝑦,𝑣,𝑞)→(∞,𝑥,𝑢,𝑝)

(𝐻𝑚(𝑦, 𝑣, 𝑞)) = lim
𝑚→∞

sup{𝐻𝑚(𝑦, 𝑣, 𝑞) | (𝑦, 𝑣, 𝑞) ∈ 𝐵1/𝑚(𝑥, 𝑢, 𝑝) ∖ {(𝑥, 𝑢, 𝑝)}}

= lim sup
(𝑦,𝑣,𝑞)→(𝑥,𝑢,𝑝)

𝐻(𝑦, 𝑣, 𝑞)

= 𝐻*(𝑥, 𝑢, 𝑝)

= 𝐻(𝑥, 𝑢, 𝑝),
(2.4.4)

where (·)* is the envelope of u.s.c functions.

Thanks to Theorem 2.4.1 we know that 𝑈+
𝑚 and 𝑈−

𝑚 are supersolutions of 𝐻𝑚, and thanks

to Proposition 2.3.1 and Lemma 2.3.3 we have 𝑈+
𝑚, 𝑈−

𝑚 and 𝐻𝑚 are locally bounded. From

(2.4.1) and (2.4.4), and thanks to the Half-Relaxed Limit Method Theorem ??, we obtain

that 𝑈−
𝐴 and 𝑈+

𝐴 are supersolutions of Ishii problem (2.1.1).

The proof that 𝑈+
𝐴 and 𝑈−

𝐴 are subsolutions of 𝐻𝑖 in Ω𝑖 is classical, cf. (BARLES, 1994). We

prove below that 𝑈+
𝐴 , 𝑈−

𝐴 are subsolutions of min{𝐻1, 𝐻2} and that 𝑈+
𝐴 , 𝑈−

𝐴 are subsolutions

of the tangential Hamiltonians 𝐻𝑟𝑒𝑔
𝑇 and 𝐻𝑇 respectively. We prove the result for 𝑈+

𝐴 , the proof

for 𝑈−
𝐴 is analogous. Let 𝑥 ∈ ℋ be a local maximum of 𝑈+

𝐴 −𝜑, with 𝜑 ∈ 𝐶1(𝑅𝑁). We assume

that this maximum is zero for simplicity. Thus, there exist 𝑟 > 0 with 𝑈+
𝐴 (𝑦) − 𝜑(𝑦) ≤ 0 for

all 𝑦 ∈ 𝐵𝑟(𝑥) ⊂ 𝑅𝑁 and 𝑈+
𝐴 (𝑥) = 𝜑(𝑥).

Initially we will show that 𝑈+
𝐴 is subsolution of min{𝐻1, 𝐻2}. Thanks to Lemma 2.3.3,

since 𝐻𝑖 attains its supremum in a bounded control set, then there exist (𝛼1, 𝛼2) ∈ 𝐴1 × 𝐴2
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such that

𝐻1 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) = −𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥)

𝐻2 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) = −𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥) .

In order to prove that 𝑈+
𝐴 is subsolution of min{𝐻1, 𝐻2}, we use specific trajectories that we

build using the constant controls 𝛼1 and 𝛼2. To do this we divide the proof in cases for the

different combinations of signs of 𝑏𝑖(𝑥, 𝛼𝑖) · 𝑒𝑁 .

Case 1

Let (𝛼1, 𝛼2) such that

(𝑏1(𝑥, 𝛼1) − 𝑏2(𝑥, 𝛼2)) · 𝑒𝑁 < 0.

We construct regular trajectories, (𝑋𝑥(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑥) which stay on ℋ, at least for a while.

We emphasize that it is essential to consider regular trajectories in order to be able to use the

Dynamic Programming Principle for 𝑈+
𝐴 . We divide Case 1 in three sub-cases:

1.A 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 < 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 > 0.

1.B 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 = 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 > 0.

1.C 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 < 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 = 0.

Case 1.A. Let 𝛿 > 0, 𝑦 ∈ ℋ ∩𝐵𝛿(𝑥). We define

𝜇(𝑦) := −𝑏2(𝑦, 𝛼2) · 𝑒𝑁

(𝑏1(𝑦, 𝛼1) − 𝑏2(𝑦, 𝛼2)) · 𝑒𝑁

(2.4.5)

Note that since (𝑏1(·, 𝛼1)−𝑏2(·, 𝛼2))·𝑒𝑁 is continuous then (𝑏1(·, 𝛼1)−𝑏2(·, 𝛼2))·𝑒𝑁 < 0 on

a neighbourhood of 𝑥, therefore 𝜇 is well defined in this neighbourhood and 𝑏1(·, 𝛼1) · 𝑒𝑁 < 0,

−𝑏2(·, 𝛼2) · 𝑒𝑁 < 0. So,

0 < 𝜇(𝑦) = 1
1 − (𝑏1(𝑦,𝛼1))·𝑒𝑁

𝑏2(𝑦,𝛼2)·𝑒𝑁

< 1

in such neighbourhood. Now, consider the local trajectory that satisfies

𝑋 ′ (𝑡) = 𝜇(𝑋(𝑡))𝑏1 (𝑋 (𝑡) , 𝛼1) + (1 − 𝜇(𝑋(𝑡)))𝑏2 (𝑋 (𝑡) , 𝛼2) , 𝑋 (0) = 𝑥. (2.4.6)

Since 𝑏1, 𝑏2 and 𝜇 are continuous functions, then (2.4.6) has a local solution. Substituting in

(2.4.6), 𝜇(𝑋(𝑡)) by its expression (2.4.5), we get

𝑋 ′ (𝑡) = (−𝑏2(𝑋(𝑡), 𝛼2) · 𝑒𝑁)𝑏1(𝑋(𝑡), 𝛼1) + (𝑏1(𝑋(𝑡), 𝛼1) · 𝑒𝑁)𝑏2(𝑋(𝑡), 𝛼2)
(𝑏1(𝑋(𝑡), 𝛼1) − 𝑏2(𝑋(𝑡), 𝛼2)) · 𝑒𝑁

.
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Thus, the trajectory satisfies locally 𝑋 ′ (𝑡) · 𝑒𝑁 = 0. Thus, since 𝑥 ∈ ℋ then 𝑋 (𝑡) stays on

ℋ for a while.

Since 0 < 𝜇(𝑋(0)) = 𝜇(𝑥) < 1, thanks to the continuity of 𝜇(𝑋(·)), there exist 𝑇 > 0

such that

0 < 𝜇(𝑋(𝑡)) < 1, 𝑏1(𝑋(𝑡), 𝛼2) · 𝑒𝑁 < 0, 𝑏2(𝑋(𝑡), 𝛼2) · 𝑒𝑁 > 0 for 0 ≤ 𝑡 ≤ 𝑇.

Let us define the following trajectory

𝑋𝑥(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑋(𝑡), if 0 ≤ 𝑡 < 𝑇

𝑋(𝑇 ), if 𝑡 ≥ 𝑇.

(2.4.7)

Furthermore, thanks to the continuity of 𝑏𝑖 and the trajectory, there exists a constant 𝐶𝑇 such

that

𝑋 ′ (𝑡) = 𝜇(𝑋(𝑡))𝑏1 (𝑋 (𝑡) , 𝛼1) + (1 − 𝜇(𝑋(𝑡)))𝑏2 (𝑋 (𝑡) , 𝛼2) ≤ 𝐶𝑇 , ∀𝑡 ≤ 𝑇.

Hence𝑋𝑥(·) is Lipschitz. Thanks to hypothesis (HC), there exists 𝛼*
𝑖 ∈ 𝐴𝑖 such that 𝑏𝑖(𝑋𝑥(𝑇 ), 𝛼*

𝑖 ) =

0, then we consider the control

𝛼(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
(𝛼1, 𝛼2, 𝜇(𝑋(𝑡))) if 0 ≤ 𝑡 < 𝑇,

(𝛼*
1, 𝛼

*
2, 𝜇) if 𝑡 ≥ 𝑇.

(2.4.8)

Hence (𝑋𝑥(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 .

Recall 𝑈𝐴(𝑦) − 𝜑(𝑦) ≤ 0 for all 𝑦 ∈ 𝐵𝑟(𝑥) and 𝑈𝐴(𝑥) = 𝜑(𝑥). Since 𝑋𝑥 is Lipschitz,

then there exists 𝑇 ′ > 0 such that 𝑋𝑥 (𝑡) ∈ 𝐵𝑟(𝑥) for all 𝑡 < 𝑇 ′ < 𝑇 . By the Dynamic

Programming Principle we have

𝜑 (𝑥) ≤
∫︁ 𝑇 ′

0
𝑙ℋ(𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋(𝑡)))𝑒−𝜆𝑡𝑑𝑡+ 𝜑 (𝑋𝑥 (𝑇 ′)) 𝑒−𝜆𝑇 ′

By the Fundamental Calculus Theorem, we obtain

0 ≥
∫︁ 𝑇 ′

0
[−𝑙ℋ(𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋(𝑡))) + 𝜆𝜑 (𝑋𝑥(𝑡)) − 𝑏ℋ (𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋𝑥(𝑡)))) · ∇𝜑 (𝑋𝑥(𝑡))] 𝑒−𝜆𝑡𝑑𝑡

Dividing by 𝑇 ′ and taking limits as 𝑇 ′ goes to 0 yields

0 ≥ −𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇(𝑥)) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇(𝑥)) · ∇𝜑 (𝑥)

= 𝜇(𝑥)(−𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥)) + (1 − 𝜇(𝑥))(−𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥)).
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Thus,

0 ≥ min{−𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥) ,−𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥)}

= min{𝐻1 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) , 𝐻2 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥))}.

Case 1.B Let (𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥) such that

𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 = 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 > 0.

Thanks to hypothesis (HC), there exist 𝛼+
1 ∈ 𝐴1 such that 𝑏1

(︁
𝑥, 𝛼+

1

)︁
= −𝛿𝑒𝑁 , and for

0 < 𝜈 < 1, by convexity, there exists 𝛼𝜈
1 satisfying

𝑏1 (𝑥, 𝛼𝜈
1) = 𝜈𝑏1

(︁
𝑥, 𝛼+

1

)︁
+ (1 − 𝜈)𝑏1 (𝑥, 𝛼1)

𝑙1 (𝑥, 𝛼𝜈
1) = 𝜈𝑙1

(︁
𝑥, 𝛼+

1

)︁
+ (1 − 𝜈)𝑙1 (𝑥, 𝛼1) .

Therefore, 𝑏1 (𝑥, 𝛼𝜈
1) · 𝑒𝑁 = −𝜈𝛿 < 0 and we argue as in case 1.A with control (𝛼𝜈

1 , 𝛼2, 𝜇
𝜈(𝑥))

in 𝐴𝑟𝑒𝑔
0 (𝑥) where

𝜇𝜈(𝑥) = −𝑏2(𝑥, 𝛼2) · 𝑒𝑁

(𝑏1(𝑥, 𝛼𝜈
1) − 𝑏2(𝑥, 𝛼2)) · 𝑒𝑁

.

We obtain that

0 ≥ −𝑙ℋ(𝑥, 𝛼𝜈
1 , 𝛼2, 𝜇

𝜈(𝑥)) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼𝜈
1 , 𝛼2, 𝜇

𝜈(𝑥)) · ∇𝜑 (𝑥)

Hence,

0 ≥ 𝜇𝜈(𝑥)(−𝑙1(𝑥, 𝛼𝜈
1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼𝜈

1)·∇𝜑 (𝑥))+(1−𝜇𝜈(𝑥))(−𝑙2(𝑥, 𝛼2)+𝜆𝜑 (𝑥)−𝑏2 (𝑥, 𝛼2)·∇𝜑 (𝑥)).

(2.4.9)

By construction, (𝑏1 (𝑥, 𝛼𝜈
1) , 𝑙1 (𝑥, 𝛼𝜈

1) , 𝜇𝜈(𝑥)) converges to (𝑏1 (𝑥, 𝛼1) , 𝑙1 (𝑥, 𝛼1) , 1) as 𝜈 goes

to 0. Therefore taking limits as 𝜈 go to 0 in (2.4.9), we have

0 ≥ −𝑙ℋ(𝑥, 𝛼1, 𝛼2, 1) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 1) · ∇𝜑 (𝑥)

= (−𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥))

= 𝐻1(𝑥, 𝜑(𝑥)),∇𝜑(𝑥)).

Case 1.C We proceed analogously to case 1.B. There exists 𝛼+
2 ∈ 𝐴2 such that 𝑏2

(︁
𝑥, 𝛼+

2

)︁
=

𝛿𝑒𝑁 . Let 0 < 𝜈 < 1. We can find 𝛼𝜈
2 ∈ 𝐴2 satisfying

𝑏2 (𝑥, 𝛼𝜈
2) = 𝜈𝑏2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈)𝑏2 (𝑥, 𝛼2)

𝑙2 (𝑥, 𝛼𝜈
2) = 𝜈𝑙2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈)𝑙2 (𝑥, 𝛼2) .
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By construction, (𝑏2 (𝑥, 𝛼𝜈
2) , 𝑙2 (𝑥, 𝛼𝜈

2) , 𝜇𝜈(𝑥)) goes to (𝑏2 (𝑥, 𝛼2) , 𝑙2 (𝑥, 𝛼2) , 1) as 𝜈 goes to

0. Thus,

0 ≥ (−𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥)) = 𝐻2(𝑥, 𝜑(𝑥),∇𝜑(𝑥)).

Case 2 We construct regular trajectories, (𝑋𝑥(·), 𝛼(·)) ∈ 𝜏 𝑟𝑒𝑔
𝐴 (𝑥), which stay in Ω𝑖 at least

for a while. We divide this case in the following subcases.

2.A 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 > 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 < 0

2.B 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 = 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 < 0

2.C 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 > 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 = 0.

2.D 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 > 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 > 0.

2.E 𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 < 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 < 0.

In all theses cases we can build trajectories that stay in Ω𝑖 for all 𝑠 ∈]0, 𝑇 ] for some 𝑇 > 0

. So,

0 ≥ (−𝑙𝑖(𝑥, 𝛼𝑖) + 𝜆𝜑 (𝑥) − 𝑏𝑖 (𝑥, 𝛼𝑖) · ∇𝜑 (𝑥)) = 𝐻𝑖(𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)).

In the cases 2.A, 2.B and 2.C we can also build trajectories that stay on ℋ for a while and

such that

0 ≥ −𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · ∇𝜑 (𝑥) .

Case 3 Let (𝛼1, 𝛼2) ∈ 𝐴1 × 𝐴2 such that

𝑏1 (𝑥, 𝛼1) · 𝑒𝑁 = 0 and 𝑏2 (𝑥, 𝛼2) · 𝑒𝑁 = 0.

From hypothesis (HC), there exist controls 𝛼−
1 ∈ 𝐴1 and 𝛼+

2 ∈ 𝐴2 such that 𝑏1
(︁
𝑥, 𝛼−

1

)︁
=

−𝛿𝑒𝑁 and 𝑏2
(︁
𝑥, 𝛼+

2

)︁
= 𝛿𝑒𝑁 . For 0 < 𝜈, 𝜈 ′ < 1, thanks to the convexity, we can find 𝛼𝜈

1 ∈ 𝐴1

and 𝛼𝜈′
2 ∈ 𝐴2 such that

𝑏1 (𝑥, 𝛼𝜈
1) := 𝜈𝑏1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑏1 (𝑥, 𝛼1)

𝑙1 (𝑥, 𝛼𝜈
1) := 𝜈𝑙1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑙1 (𝑥, 𝛼1)

and
𝑏2(𝑥, 𝛼𝜈′

2 ) := 𝜈 ′𝑏2
(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑏2 (𝑥, 𝛼2)

𝑙2(𝑥, 𝛼𝜈′
2 ) := 𝜈 ′𝑙2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑙2 (𝑥, 𝛼2) .

Therefore, 𝑏1 (𝑥, 𝛼𝜈
1) · 𝑒𝑁 = −𝜈𝛿 < 0 and 𝑏2

(︁
𝑥, 𝛼𝜈′

2

)︁
· 𝑒𝑁 = 𝜈 ′𝛿 > 0. Arguing as in case 1.A,

we obtain (𝑋𝑥(·), (𝛼𝜈
1 , 𝛼

𝜈′
2 , 𝜇(𝑋𝑥(·))) ∈ 𝜏 𝑟𝑒𝑔

𝐴 (𝑥) satisfying

0 ≥ 𝜇(𝜈, 𝜈 ′)(−𝑙1(𝑥, 𝛼𝜈
1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼𝜈

1)·∇𝜑 (𝑥))+(1−𝜇(𝜈, 𝜈 ′))(−𝑙2(𝑥, 𝛼𝜈′

2 )+𝜆𝜑 (𝑥)−𝑏2
(︁
𝑥, 𝛼𝜂′

2

)︁
·∇𝜑 (𝑥))

(2.4.10)
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where 𝜇(𝜈, 𝜈 ′) = 𝜇(𝑋𝑥(0)) = 𝜈′

𝜈′+𝜈
and 𝑎 = (𝛼𝜈

1 , 𝛼
𝜈′
1 , 𝜇(𝜈, 𝜈 ′)) ∈ 𝐴𝑟𝑒𝑔

0 (𝑥). By construction, we

have the following convergences

𝑏1 (𝑥, 𝛼𝜈
1) −→ 𝑏1 (𝑥, 𝛼1) , 𝑙1 (𝑥, 𝛼𝜈

1) −→ 𝑙1 (𝑥, 𝛼1) as 𝜈 → 0

𝑏2(𝑥, 𝛼𝜈′
2 ) −→ 𝑏2 (𝑥, 𝛼2) , 𝑙2

(︁
𝑥, 𝛼𝜈′

2

)︁
−→ 𝑙2 (𝑥, 𝛼2) as 𝜈 ′ → 0

Given 0 ≤ 𝜇 ≤ 1, we can consider the sequences (𝜈𝑛)𝑛, (𝜈 ′
𝑛)𝑛 that converge to 0 and such

that 𝜈𝑛

𝜈′
𝑛

= 1−𝜇
𝜇

, then 𝜇(𝜈𝑛, 𝜈
′
𝑛) converges to 𝜇. Taking limits in (2.4.10) as 𝜈 and 𝜈 ′ go to 0

we have

0 ≥ 𝜇(−𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥)) + (1 − 𝜇)(−𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥))

≥ min{𝐻1 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) , 𝐻2 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥))}.

Therefore, we have proved that in all the cases, 𝑈+
𝐴 is subsolution of min{𝐻1, 𝐻2} on ℋ.

Now, let us show that 𝑈−
𝐴 is subsolution of 𝐻𝑇 . We consider 𝜑 ∈ 𝐶1(𝑅𝑁−1) and 𝑥 =

(𝑥′, 0) ∈ ℋ such that 𝑥′ ↦−→ 𝑈−
𝐴 (𝑥′, 0) − 𝜑(𝑥′) has a local maximum at 𝑥′

0. We assume that

this maximum is equal to 0 for simplicity. We extend the test function defining a new function

as follows 𝜑

𝜑(𝑥′, 𝑥𝑁) = 𝜑(𝑥′),

then 𝜑 ∈ 𝐶1(𝑅𝑁) and 𝜑 is independent of the N-th coordinate. Notice that

𝐷𝜑(𝑥) = (𝐷ℋ𝜑(𝑥′), 0).

Consider (𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥), then (𝛼1, 𝛼2) is in some of the following cases: case 1, case 2.A,

case 2.B, case 2.C or case 3. Then have that

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · ∇𝜑 (𝑥) ≤ 0.

Thus, taking supremum in 𝐴0(𝑥) we obtain that

𝐻𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ) = sup
(𝛼1,𝛼2,𝜇)∈𝐴0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥) , 0) ≤ 0.

Analogously we prove that 𝑈+
𝐴 is subsolution of𝐻𝑟𝑒𝑔

𝑇 . Given a control (𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑟𝑒𝑔
0 (𝑥),

we have (𝛼1, 𝛼2) is in case 1 or case 3. Then

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · ∇𝜑 (𝑥) ≤ 0.

Thus, taking supremum in 𝐴𝑟𝑒𝑔
0 (𝑥), we have

𝐻𝑟𝑒𝑔
𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥) , 0) ≤ 0.
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3 COMPARISON AND UNIQUENESS RESULTS

In this chapter, we prove comparison results under suitable growing conditions on the dy-

namic and cost functions. This way, we are able to prove uniqueness of solution of the Ishii

problem. Initially we prove the results locally and use the fact that under suitable conditions

we have a relation between the local and global comparison results, cf. (BARLES; CHASSEIGNE,

2018). We also present specific examples of unbounded dynamic and cost functions with non-

compact controls space and consider Filippov approximations.

Let us recall the definition of the Ishii problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1,

𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω2,

min{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ,

max{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ.

(3.0.1)

where

𝐻𝑖 (𝑥, 𝑢, 𝑞) = sup
𝛼𝑖∈𝐴𝑖

(−𝑏𝑖(𝑥, 𝛼𝑖) · 𝑞 − 𝑙𝑖(𝑥, 𝛼𝑖) + 𝜆𝑢).

with (𝑥, 𝑢, 𝑞) ∈ Ω𝑖 ×𝑅 ×𝑅𝑁 and 𝜆 ∈ 𝑅 is a discount factor.

Let us recall the definition of the control sets

𝐴0(𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴 | 𝑏ℋ(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 = 0}.

𝐴𝑟𝑒𝑔
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴0 | 𝑏ℋ(𝛼1, 𝛼2, 𝜇) is regular}.

Then we define the tangential Hamiltonians, for (𝑥, 𝑢, 𝑞) ∈ ℋ ×𝑅 ×𝑅𝑁−1

𝐻𝑇 (𝑥, 𝑢, 𝑞) = sup
(𝛼1,𝛼2,𝜇)∈𝐴0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝑢− 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝑞, 0) (3.0.2)

and

𝐻𝑟𝑒𝑔
𝑇 (𝑥, 𝑢, 𝑞) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝑢− 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝑞, 0) . (3.0.3)

We consider also the Ishii problem associated to the compact control sets 𝐴𝑚,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1

𝐻𝑚
2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω2

min{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ

max{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ

(3.0.4)
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where

𝐻𝑚
𝑖 (𝑥, 𝑢, 𝑞) = sup

𝛼∈𝐴𝑚
𝑖

{−𝑏𝑖(𝑥, 𝛼) · 𝑞 − 𝑙𝑖(𝑥, 𝛼)} + 𝜆𝑢.

We consider the associated control sets defined by

𝐴𝑚
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑚 | 𝑏ℋ(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 = 0}.

𝐴𝑚,𝑟𝑒𝑔
0 (𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑚

0 | 𝑏ℋ(𝛼1, 𝛼2, 𝜇) is regular}.

Then we can define the tangential Hamiltonians for 𝑥 ∈ ℋ

𝐻𝑚
𝑇 (𝑥, 𝑢(𝑥), 𝐷ℋ𝑢) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑚
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝑢 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝑢 (𝑥) , 0)

(3.0.5)

where 𝑢(𝑥′, 𝑥𝑁) = 𝑢(𝑥′), with 𝑥′ ∈ 𝑅𝑁−1 and

𝐻𝑚,𝑟𝑒𝑔
𝑇 (𝑥, 𝑢(𝑥), 𝐷ℋ𝑢) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑚,𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝑢 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝑢 (𝑥) , 0)

(3.0.6)

3.1 COMPARISON RESULTS WITH COMPACT CONTROL SETS

In the following result we prove that if we have a supersolution of the Ishii problem, then

it is also a supersolution of the Ishii problem associated to compact control sets on compact

subsets of 𝑅𝑁 .

Proposition 3.1.1 Assume hypotheses (HA), (HB) and (HC). Let 𝑉 ⊂ 𝑅𝑁 be compact. If
𝑣 is a locally bounded lsc supersolution of (3.0.1), then there exists 𝑚 ∈ 𝑁 such that 𝑣 is
supersolution of (3.0.4) on 𝑉 .

Due to hypotheses (HA) and (HC) there exists a control set 𝐴𝛿
𝑖 ⊂ 𝐴𝑖 such that given

𝜔 ∈ 𝐵𝛿(0) and 𝑥 ∈ 𝑉 there exists 𝛼𝑖 ∈ 𝐴𝛿
𝑖 with 𝑏𝑖(𝑥, 𝛼𝑖) = 𝜔. Thanks to hypothesis (HA)

we have 𝐴𝛿
𝑖 is bounded, then there exists 𝑚̄ big enough such that 𝐴𝛿

𝑖 ⊂ 𝐴𝑚̄
𝑖 .

Let 𝜑 ∈ 𝐶1(𝑉 ) and 𝑥 ∈ 𝑉 be a local minimum point of 𝑣 − 𝜑. We divide the proof

in two cases for 𝜑 such that |∇𝜑(𝑥)| ≥
||𝑙||

𝐿∞(𝑉 ×𝐴𝛿
𝑖

)+𝜆||𝑣||𝐿∞(𝑉 )

𝛿
and 𝜑 such that |∇𝜑(𝑥)| <

||𝑙||
𝐿∞(𝑉 ×𝐴𝛿

𝑖
)+𝜆||𝑣||𝐿∞(𝑉 )

𝛿
.

Case 1: |∇𝜑(𝑥)| ≥
||𝑙||

𝐿∞(𝑉 ×𝐴𝛿
𝑖

)+𝜆||𝑣||𝐿∞(𝑉 )

𝛿
.

Since 𝑣 is supersolutionSince exist 𝛼𝑖 ∈ 𝐴𝑖 such that −𝑏𝑖(𝑥, 𝛼𝑖) · ∇𝜑(𝑥) = 𝛿|∇𝜑(𝑥)|, and

then 𝛼𝑖 ∈ 𝐴𝛿
𝑖 , and since 𝐴𝛿

𝑖 ⊂ 𝐴𝑚̄
𝑖 . we have for 𝑥 ∈ 𝑉

𝐻𝑚
𝑖 (𝑥, 𝑣(𝑥),∇𝜑(𝑥)) ≥ −𝑏𝑖(𝑥, 𝛼𝑖)·∇𝜑(𝑥)−𝑙𝑖(𝑥, 𝛼𝑖)+𝜆𝑣 ≥ 𝛿|∇𝜑(𝑥)|−||𝑙𝑖||𝐿∞(𝑉 ×𝐴𝛿

𝑖 )−𝜆||𝑣||𝐿∞(𝑉 ) ≥ 0.
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Case 2: |∇𝜑(𝑥)| <
||𝑙||

𝐿∞(𝑉 ×𝐴𝛿
𝑖

)+𝜆||𝑣||𝐿∞(𝑉 )

𝛿
.

Since |∇𝜑(𝑥)| is bounded, 𝑣 is supersolution of (2.1.1), and thanks to Lemma 2.3.3, there

exists 𝑚𝑣 > 0 such that

𝐻𝑚𝑣
𝑖 (𝑥, 𝑣(𝑥),∇𝜑(𝑥)) = 𝐻𝑖(𝑥, 𝑣(𝑥),∇𝜑(𝑥)) ≥ 0.

Choosing 𝑚 > max{𝑚,𝑚𝑣},

𝐻𝑚
𝑖 (𝑥, 𝑣(𝑥),∇𝜑(𝑥)) ≥ 0.

Therefore, 𝑣 is supersolution of 𝐻𝑚
𝑖 .

In the particular case in which 𝑥 ∈ 𝑉 ∩ ℋ then

max{𝐻1(𝑥, 𝑣(𝑥),∇𝜑(𝑥)), 𝐻2(𝑥, 𝑣(𝑥),∇𝜑(𝑥))} ≥ 0.

Consequently there exists 𝑖 ∈ {1, 2} with 𝐻𝑖(𝑥, 𝑣(𝑥),∇𝜑(𝑥)) ≥ 0. From the prove above, we

know that there exists 𝑚𝑖 ∈ 𝑁 big enough such that 𝐻𝑚𝑖
𝑖 (𝑥, 𝑣(𝑥),∇𝜑(𝑥)) ≥ 0. So, taking

𝑚 > 𝑚𝑖, we have

max{𝐻𝑚
1 (𝑥, 𝑣(𝑥),∇𝜑(𝑥)), 𝐻𝑚

2 (𝑥, 𝑣(𝑥),∇𝜑(𝑥))} ≥ 0.

In the result below we add and extra hypothesis to obtain a better version of the previous

result. In particular it states that if 𝑣(𝑥) is a supersolution of (3.0.1) then 𝑣(𝑥) is a supersolution

of (3.0.4) for 𝑚 big enough and for any 𝑥 ∈ 𝑅𝑁 .

Proposition 3.1.2 Under hypotheses (HA), (HB) and (HC). Let 𝐴𝑚
𝑖 ⊂ 𝐴𝑖 be compact, then

there exists 𝐶𝑚(𝑏) and 𝐶𝑚(𝑙) such that

|𝑏𝑖(𝑦, 𝛼)| ≤ 𝐶𝑚(𝑏) and 𝑙𝑖(𝑦, 𝛼) ≤ 𝐶𝑚(𝑙), ∀ 𝑦 ∈ 𝑅𝑁 , and ∀𝛼 ∈ 𝐴𝑚
𝑖 . (3.1.1)

Let 𝑣 be a bounded lsc supersolutions of (3.0.1), then there exists 𝑚 ∈ 𝑁 such that 𝑣 is
supersolution of (3.0.4).

The proof is analogous to the proof in Proposition 3.1.1, where we just need to substitute

the norm 𝐿∞(𝑉 ) by the norm 𝐿∞(𝑅𝑁).

Remark 3.1.3 Thanks to hypothesis (3.1.1) in the previous Proposition 3.1.2, we have 𝑈+
𝐴

and 𝑈−
𝐴 are bounded and hence they are supersolutions of 3.0.4 for some 𝑚 ∈ 𝑁 .
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Below we state some results for which under hypotheses in Proposition 3.1.2 we obtain

that the supersolutions are supersolutions of the Ishii problem associated to a compact control

set and then we can apply the results in (BARLES; BRIANI; CHASSEIGNE, 2013), obtaining some

comparison results.

The following results gives a comparison result under hypothesis (3.1.1). If we have a

bounded subsolution and a bounded supersolution, then they are ordered.

Corollary 3.1.3.1 Under hypotheses of Proposition 3.1.2. Given 𝑢 bounded subsolution of
Ishii problem of (3.0.1), (3.0.2) and and 𝑣 a bounded supersolution of (3.0.1) then

𝑢 ≤ 𝑣.

Due to Proposition 3.1.2, we have 𝑣 is supersolution of (2.1.14) for some 𝑚. Applying Corollary

4.4 in (BARLES; BRIANI; CHASSEIGNE, 2013), we obtain that 𝑢 ≤ 𝑣.

The following result we prove that under assumption (3.1.1), we have 𝑈−
𝐴 is a minimal

supersolution of (3.0.1), 𝑈+
𝐴 is a maximal subsolution of the Ishii problem and the value

function 𝑈−
𝐴 is actually equal to the value function 𝑈−

𝐴𝑚 associated to a compact control set

𝐴𝑚.

Corollary 3.1.3.2 Under hypotheses in Proposition 3.1.2.

(a) The value function 𝑈−
𝐴 is a minimal supersolution of the Ishii problem (3.0.1).

(b) The value function 𝑈+
𝐴 is a bounded maximal subsolution of (3.0.1).

(c) There exists 𝑚 ∈ 𝑁 such that 𝑈−
𝐴 = 𝑈−

𝐴𝑚 .

(a) Thanks to Theorem 2.4.2, we have 𝑈−
𝐴 is subsolution and supersolution of (3.0.1). Given

𝑣 a bounded supersolution of (3.0.1), thanks to Corollary 3.1.3.1, we obtain that 𝑈−
𝐴 ≤ 𝑣.

(b) Thanks to the definition of 𝐴𝑚. Given 𝑢 subsolution of (3.0.1) then 𝑢 is subsolution

of (3.0.4) for all 𝑚. Applying Corollary 4.4 in (BARLES; BRIANI; CHASSEIGNE, 2013), we obtain

that 𝑢 ≤ 𝑈+
𝐴𝑚 for all 𝑚 ∈ 𝑁 . Then,

𝑢 ≤ inf
𝑚
𝑈+

𝐴𝑚 = 𝑈+
𝐴 .
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(c) Thanks to Proposition 3.1.2, we have 𝑈−
𝐴 is a supersolution of (2.1.14) for some 𝑚 ∈ 𝑁 ,

then applying Corollary 4.4 in (BARLES; BRIANI; CHASSEIGNE, 2013), we have 𝑈−
𝐴𝑚 ≤ 𝑈−

𝐴 , but

by definition 𝑈−
𝐴 ≤ 𝑈−

𝐴𝑚 . Thus, the result.

3.2 LOCAL COMPARISON RESULTS

The Proposition 3.1.1, allows us to obtain a Local Comparison Result. To do this we need

to define below the local version of the Ishii problem (3.0.1), (3.0.2) and (3.0.3) as well as of

(3.0.4), (3.0.5) and (3.0.6).

Let 𝑥 ∈ 𝑅𝑁 and 𝑅 > 0. We denote

Ω𝑅
𝑖 := 𝐵𝑅(𝑥) ∩ Ω𝑖 and ℋ𝑅 := 𝐵𝑅(𝑥) ∩ ℋ.

We consider the local version of the Ishii problem (3.0.1), given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω𝑅
1

𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω𝑅
2

max{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≥ 0 on ℋ𝑅

min{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ𝑅.

(3.2.1)

We consider also the local version of the tangential Hamiltonians

𝐻𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup
(𝛼1,𝛼2,𝜇)∈𝐴0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥), 0) on ℋ𝑅.

(3.2.2)

𝐻𝑟𝑒𝑔
𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑟𝑒𝑔
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥), 0) on ℋ𝑅.

(3.2.3)

Let us describe below the local version of the Ishii problem associated to compact control sets,

(3.0.4), given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω𝑅

1

𝐻𝑚
2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω𝑅

2

max{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≥ 0 on ℋ𝑅

min{𝐻𝑚
1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻𝑚

2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 on ℋ𝑅.

(3.2.4)
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We consider the operator 𝐻𝑚
𝑇 locally defined on ℋ𝑅 as follows

𝐻𝑚
𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑚
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥), 0) on ℋ𝑅.

(3.2.5)

𝐻𝑟𝑒𝑔,𝑚
𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝑟𝑒𝑔,𝑚
0 (𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥), 0) on ℋ𝑅.

(3.2.6)

The following result is a result from (BLANC, 2001) which will be used in this section to

prove some comparison results.

In what follows, we assume that 𝑌 𝑖
𝑥 is a trajectory that satisfies

𝑌̇ 𝑖
𝑥(𝑠) = 𝑏𝑖(𝑌 𝑖

𝑥(𝑠), 𝛼𝑖(𝑠)) for 𝑠 > 0, and 𝑌 𝑖
𝑥(0) = 𝑥.

Theorem 3.2.1 Let 𝐷𝑖 ⊂ Ω𝑖 be a bounded open domain with 𝐶1-boundary, let 𝑥 ∈ 𝐷𝑖. If 𝑣
is a locally bounded lsc supersolutions of (3.2.4), then

𝑣(𝑥) ≥ inf
𝛼(·)∈𝒜𝑚

𝑖 ,𝜃𝑖

(︃∫︁ 𝑡∧𝜃𝑖

0
𝑙𝑖(𝑌 𝑖

𝑥(𝑠), 𝛼(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖
𝑥(𝑡 ∧ 𝜃))𝑒−𝜆(𝑡∧𝜃)

)︃
(3.2.7)

On the other the hand, if 𝑢 is a locally bounded subsolutions of (3.2.4) and (3.2.5)

𝑢(𝑥) ≤ inf
𝛼(·)∈𝒜𝑚

𝑖 ,𝜃𝑖

∫︁ 𝑡∧𝜃𝑖

0
𝑙𝑖(𝑌 𝑖

𝑥(𝑠), 𝛼(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑢(𝑌 𝑖
𝑥(𝑡 ∧ 𝜃𝑖))𝑒−𝜆(𝑡∧𝜃𝑖) (3.2.8)

where 𝑡 ∧ 𝜃𝑖 = min{𝑡, 𝜃𝑖}, 𝜃𝑖 is an stopping time such that 𝑌 𝑖
𝑥(𝜃𝑖) ∈ 𝜕𝐷𝑖 and 𝜏𝑖 ≤ 𝜃𝑖 ≤ 𝜏 𝑖,

where 𝜏𝑖 is the exit time of the trajectory 𝑌 𝑖
𝑥 from 𝐷𝑖 and 𝜏 𝑖 is the exit time from 𝐷𝑖. Moreover,

the infimum is reached for some control 𝛼 ∈ 𝐴𝑚
𝑖 and 𝜃𝑖 ∈ [𝜏𝑖, 𝜏 𝑖].

Observe that if 𝑣 satisfies (3.2.7), then it is a supersolution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑤𝑡(𝑡, 𝑥) +𝐻𝑚
𝑖 (𝑥,𝑤(𝑡, 𝑥), 𝐷𝑤(𝑡, 𝑥)) = 0 in 𝐷𝑖 × (0,∞),

𝑤(𝑥, 0) = 𝑣(𝑥) on 𝐷𝑖,

𝑤(𝑥, 𝑡) = 𝑣(𝑥) on 𝜕𝐷𝑖 × (0,∞).

(3.2.9)

Besides that, the right hand side of (3.2.7) is the minimal supersolution of (3.2.9).

Observe also that if 𝑢 satisfies (3.2.8), then it is a supersolution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑤𝑡(𝑡, 𝑥) +𝐻𝑚
𝑖 (𝑥,𝑤(𝑡, 𝑥), 𝐷𝑤(𝑡, 𝑥)) = 0 in 𝐷𝑖 × (0,∞),

𝑤(𝑥, 0) = 𝑢(𝑥) on 𝐷𝑖,

𝑤(𝑥, 𝑡) = 𝑢(𝑥) on 𝜕𝐷𝑖 × (0,∞).

(3.2.10)



55

Moreover, the right hand side of (3.2.8) is the maximal subsolution of (3.2.10).

For the local problem in a ball of radius 𝑅 centered in 𝑥, we have a Local Comparison

Result. Indeed, fixed 𝑚 ∈ 𝑁 , we have the following local comparison result for the local Ishii

problem associated to the compact control set 𝐴𝑚.

Theorem 3.2.2 Assume hypotheses (HB) and (HC). Let 𝑥 ∈ 𝑅𝑁 , 𝑅 > 0, let 𝑢 be a bounded
subsolutions of (3.2.4) and (3.2.5), 𝑣 be a bounded lsc supersolution of (3.2.4) in 𝐵𝑅(𝑥),
we obtain

max
𝐵𝑅(𝑥)

(𝑢− 𝑣)+ ≤ max
𝜕𝐵𝑅(𝑥)

(𝑢− 𝑣)+.

Before presenting the proof of Theorem 3.2.2, let us see its fundamental consequence, which

is the local comparison result for the local version of the Ishii problem associated to the

unbounded control set 𝐴.

Theorem 3.2.3 Assume (HA), (HB) and (HC). Let 𝑥 ∈ 𝑅𝑁 , 𝑅 > 0, let 𝑢 be a locally
bounded subsolution of (3.2.1) and (3.2.2), let 𝑣 be a locally bounded lsc supersolutions of
(3.2.1). Then

max
𝐵𝑅(𝑥)

(𝑢− 𝑣)+ ≤ max
𝜕𝐵𝑅(𝑥)

(𝑢− 𝑣)+.

Thanks to the definition of 𝐴𝑚, since 𝑢 is a locally bounded subsolution of (3.2.1) and

(3.2.2), then 𝑢 is a subsolution of (3.2.4) and (3.2.5). Furthermore, thanks to Proposition

3.1.1 we have 𝑣 is a supersolution of (3.2.4) for some 𝑚 ∈ 𝑁 . Thus, 𝑢 and 𝑣 satisfy the

hypotheses of Theorem 3.2.2 and the proof is complete.

To prove Theorem 3.2.2 we need some previous results. The next Theorem plays a fun-

damental role. It gives an alternative for the supersolutions, or they consider trajectories that

stay on the hyperplane for a while or the supersolutions satisfy that the tangential Hamiltonian

is greater or equal to zero.

Theorem 3.2.4 Assume hypotheses (HB) and (HC). Let 𝑣 be locally bounded lsc supersolu-
tion of (3.2.4). Let 𝑥0 = (𝑥′

0, 0) ∈ ℋ. Fix 𝑅 > 𝑅̄ > 0. Let 𝐷𝑖 ⊂ Ω𝑖 be a bounded open domain
with 𝐶1-boundary such that 𝐵𝑅̄(𝑥0) ∩ Ω𝑖 ⊂ 𝐷𝑖 ⊂ 𝐵𝑅(𝑥0) ∩ Ω𝑖. Consider 𝜑 ∈ 𝐶1(𝐷𝑖 ∩ ℋ)

such that 𝑥′ ↦−→ 𝑣(𝑥′, 0) − 𝜑(𝑥′) has a local minimum at 𝑥′
0. Then, either

A) there exists 𝜂 > 0, and a sequence 𝑥𝑘 ∈ 𝐷𝑖 that converges to 𝑥0 = (𝑥′
0, 0) as 𝑘 goes

to ∞, such that 𝑣(𝑥𝑘) converges to 𝑣(𝑥0) as 𝑘 goes to ∞, and, for each 𝑘, there exists a
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control 𝛼𝑘
𝑖 (·) ∈ 𝒜𝑚

𝑖 such that the corresponding trajectory 𝑌 𝑖
𝑥𝑘

(𝑠) ∈ 𝐷𝑖 for all 𝑠 ∈ [0, 𝜂] and

𝑣(𝑥𝑘) ≥
∫︁ 𝜂

0
𝑙𝑖
(︁
𝑌 𝑖

𝑥𝑘
(𝑠), 𝛼𝑘

𝑖 (𝑠)
)︁
𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝑘
(𝜂))𝑒−𝜆𝜂

or
B) 𝐻𝑚

𝑇 (𝑥0, 𝑣 (𝑥0) , 𝐷ℋ𝜑(𝑥0)) ≥ 0.

We are going to prove that, if A does not hold, then we have B. To do so, we first claim

that (𝑥′
0, 0) is an strict local minimum of 𝑣(𝑥′, 0)−𝜑(𝑥′)+|𝑥′−𝑥′

0|2 in 𝐵𝑟(𝑥′
0) ⊂ 𝑅𝑁−1 for 0 <

𝑟 < 𝑅̄. Then we define the function 𝜑(𝑥′, 𝑥𝑁) = 𝜑(𝑥′) and we have 𝐷𝜑(𝑥) = (𝐷ℋ𝜑(𝑥′), 0).

For 𝜖 > 0 and fixed 𝛿 ∈ 𝑅, consider

Γ𝜖(𝑥′, 𝑥𝑁) := 𝑣(𝑥′, 𝑥𝑁) − 𝜑(𝑥′, 𝑥𝑁) + |𝑥− 𝑥0|2 − 𝛿𝑥𝑁 + 𝑥2
𝑁

𝜖2 . (3.2.11)

Since Γ𝜖(𝑥′, 𝑥𝑁) is lsc and 𝐵𝑟(𝑥0) ⊂ 𝑅𝑁 is compact, then Γ𝜖 achieves its minimum in 𝐵𝑟(𝑥0)

in 𝑥𝜖, and

Γ𝜖(𝑥𝜖) ≤ Γ𝜖(𝑥0) = 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′) = 𝐶.

We are going show that 𝑥𝜖 → 𝑥0 when 𝜖 → 0. Since Γ𝜖(𝑥𝜖) ≤ 𝐶, (𝑣 − 𝜑) is bounded in

𝐵𝑟(𝑥0) and by (3.2.11), there exists a constant 𝐶 ′ satisfying

0 ≤ (𝑥𝜖)2
𝑁

𝜖2 ≤ 𝐶 ′ + 𝛿(𝑥𝜖)𝑁 − |𝑥𝜖 − 𝑥0|2 ≤ 𝐶 ′ + 𝛿(𝑥𝜖)𝑁 .

Thus

(𝑥𝜖)2
𝑁 ≤ 𝐶 ′𝜖2 + 𝜖2𝛿(𝑥𝜖)𝑁 .

Since 𝑥𝜖 ∈ 𝐵𝑟(𝑥0) and 𝛿 is fixed, then lim𝜖→0(𝑥𝜖)𝑁 = 0 and hence 𝑥𝜖 → (𝑦, 0) for some

𝑦 ∈ 𝑅𝑁−1. Then, either 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′) ≤ 𝑣(𝑥𝜖) − 𝜑(𝑥′
𝜖) + |𝑥𝜖 − 𝑥0|2 for 𝜖 small enough or

either there exists a subsequence satisfying 𝑣(𝑥𝜖) − 𝜑(𝑥′
𝜖) + |𝑥𝜖 − 𝑥0|2 ≤ 𝑣(𝑥′

0, 0) − 𝜑(𝑥0
′).

Case a) if 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′) ≤ 𝑣(𝑥𝜖) − 𝜑(𝑥′
𝜖) + |𝑥𝜖 − 𝑥0|2 for 𝜖 small enough, then

𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′) − 𝛿(𝑥𝜖)𝑁 + (𝑥𝜖)2
𝑁

𝜖2 ≤ Γ𝜖(𝑥𝜖) ≤ Γ𝜖(𝑥0) = 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′). (3.2.12)

Thus,
(𝑥𝜖)2

𝑁

𝜖2 ≤ 𝛿(𝑥𝜖)𝑁 =⇒ lim
𝜖→0

(𝑥𝜖)2
𝑁

𝜖2 = 0.

Therefore, − (𝑥𝜖)2
𝑁

𝜖2 + 𝛿(𝑥𝜖)𝑁 converges to 0 and for 𝜖 small enough and there exists a constant

𝐶Γ such that |Γ𝜖(𝑥𝜖)| < 𝐶Γ.
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So there exists a convergent subsequence (Γ𝜖(𝑥𝜖))𝜖 and we have the convergence as 𝜖 goes

to zero of

𝑣(𝑥𝜖) − 𝜑(𝑥′
𝜖) = Γ𝜖(𝑥𝜖) − (𝑥𝜖)2

𝑁

𝜖2 + 𝛿(𝑥𝜖)𝑁 .

Since 𝑣 is lsc, thanks to (3.2.12) and lim𝜖→0 𝑥𝜖 = (𝑦, 0), we have

𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′) ≥ lim
𝜖→0

Γ𝜖(𝑥𝜖)

= lim
𝜖→0

(︂
𝑣(𝑥𝜖) − 𝜑(𝑥′

𝜖) + |𝑥𝜖 − 𝑥0|2 − 𝛿(𝑥𝜖)𝑁 + (𝑥𝜖)2
𝑁

𝜖2

)︂
= lim

𝜖→0

(︁
𝑣(𝑥𝜖) − 𝜑(𝑥′

𝜖, (𝑥𝜖)𝑁) + |𝑥𝜖 − 𝑥0|2
)︁

= lim
𝜖→0

(𝑣(𝑥𝜖)) − 𝜑(𝑦, 0) + |(𝑦, 0) − 𝑥0|2

≥ 𝑣(𝑦, 0) − 𝜑(𝑦, 0) + |(𝑦, 0) − 𝑥0|2.

(3.2.13)

Since 𝑥′
0 is strict local minimum of 𝑣(𝑥′, 0) − 𝜑(𝑥′, 0) + |𝑥′ − 𝑥′

0|2, then

𝑣(𝑥′
0, 0) − 𝜑(𝑥′

0, 0) = 𝑣(𝑦, 0) − 𝜑(𝑦, 0), and (𝑦, 0) = 𝑥0. (3.2.14)

Thhanks to (3.2.13) and (3.2.14), we have the result

lim
𝜖→0

𝑣(𝑥𝜖) = 𝑣(𝑥0) lim
𝜖→0

𝑥𝜖 = 𝑥0.

Case b) If 𝑣(𝑥′
𝜖, (𝑥𝜖)𝑁) − 𝜑(𝑥′

𝜖, (𝑥𝜖)𝑁) + |𝑥𝜖 − 𝑥0|2 ≤ 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′). Since 𝑣 is lsc,

taking limits in the inequality, we have

𝑣(𝑦, 0) − 𝜑(𝑦, 0) + |(𝑦, 0) − (𝑥′
0, 0)|2 ≤ lim𝜖→0(𝑣(𝑥′

𝜖, (𝑥𝜖)𝑁) − 𝜑(𝑥′
𝜖, (𝑥𝜖)𝑁) + |𝑥𝜖 − 𝑥0|2)

≤ 𝑣(𝑥′
0, 0) − 𝜑(𝑥0

′).

Since 𝑥′
0 is strict local minimum of 𝑣(𝑥′, 0) − 𝜑(𝑥′, 0) + |𝑥′ − 𝑥′

0|2, then

𝑣(𝑥′
0, 0) − 𝜑(𝑥′

0, 0) = 𝑣(𝑦, 0) − 𝜑(𝑦, 0),

and (𝑦, 0) = 𝑥0. Moreover

lim
𝜖→0

𝑣(𝑥𝜖) = 𝑣(𝑥0).

Thus, we have proved that lim𝜖→0 𝑥𝜖 = 𝑥0.

Let us consider the test function

𝜓𝜖(𝑥′, 𝑥𝑁) := 𝜑(𝑥′, 𝑥𝑁) + 𝛿𝑥𝑁 − 𝑥2
𝑁

𝜖2 − |𝑥− 𝑥0|2.

Case 1: Assume that the sequence (𝑥𝜖)𝜖 that converges to 𝑥0, satisfies that 𝑥𝜖 ∈ ℋ, ∀ 𝛿 ∈

𝑅. In this case, we will prove that B) occurs.



58

Thus, the sequence is given by 𝑥𝜖 = (𝑥′
𝜖, 0). By definition, 𝑥′

𝜖 is the local minimum point

of 𝑣(𝑥′, 0)−𝜑(𝑥′)+ |𝑥−𝑥0|2 at 𝐵𝑟(𝑥′
0). Since 𝑥′

0 is a strict minimum point, we have 𝑥′
𝜖 = 𝑥′

0.

Since 𝑣 is a supersolution of (3.2.4), considering the minimum point 𝑥′
𝜖 = 𝑥′

0 of 𝑣 − 𝜓𝜖 = Γ𝜖,

then

𝑓(𝛿) = max{𝐻1(𝑥0, 𝑣(𝑥0), (𝐷ℋ𝜑(𝑥0), 𝛿)), 𝐻2(𝑥0, 𝑣(𝑥0), (𝐷ℋ𝜑(𝑥0), 𝛿))} ≥ 0

we have 𝑓 is coercive and convex, since it is the maximum of 𝐻1 and 𝐻2 which are convex

and coercive functions. In fact, 𝑓(𝑠) := 𝐻𝑖(𝑥0, 𝑣(𝑥0), (𝐷ℋ𝜑(𝑥0), 𝑠)) for 𝑖 = 1 or 𝑖 = 2, and

there exists 𝛼𝑖 ∈ 𝐴𝑚
𝑖 such that

𝑓((1 − 𝜇)𝛿1 + 𝜇𝛿2) = −𝑏𝑖(𝑥0, 𝛼𝑖) · (𝐷ℋ𝜑(𝑥′
0), (1 − 𝜇)𝛿1 + 𝜇𝛿2) − 𝑙𝑖(𝑥0, 𝛼𝑖) + 𝜆𝑣(𝑥0)

= (1 − 𝜇) (−𝑏𝑖(𝑥0, 𝛼𝑖) · (𝐷ℋ𝜑(𝑥′
0), 𝛿1) − 𝑙𝑖(𝑥0, 𝛼𝑖) + 𝜆𝑣(𝑥0))

+𝜇 (−𝑏𝑖(𝑥0, 𝛼𝑖) · (𝐷ℋ𝜑(𝑥′
0), 𝛿2) − 𝑙𝑖(𝑥0, 𝛼𝑖) + 𝜆𝑣(𝑥0))

≤ (1 − 𝜇)𝑓(𝛿1) + 𝜇𝑓(𝛿2).

Thus, 𝑓 has a global minimum point at 𝛿, and we have

0 ∈ 𝜕−𝑓(𝛿).

Let 𝛼 ∈ 𝐴𝑚
1 ∪ 𝐴𝑚

2 and consider a new function

𝑓𝛼(𝛿) := −𝑏(𝑥0, 𝛼) · (𝐷ℋ𝜑(𝑥′
0), 𝛿) − 𝑙(𝑥0, 𝛼) + 𝜆𝑣(𝑥0)

where (𝑏, 𝑙) = (𝑏𝑖, 𝑙𝑖), when 𝛼 ∈ 𝐴𝑚
𝑖 . Then we have

𝑓(𝛿) = sup
𝛼∈𝐴𝑚

1 ∪𝐴𝑚
2

𝑓𝛼(𝛿)

Since 𝑓𝛼 is differentiable and 𝜕−𝑓𝛼(𝛿) = 𝑏(𝑥0, 𝛼) · 𝑒𝑁 , by classical result of Convex Analysis

𝜕−𝑓(𝛿) = 𝑐𝑜(
⋃︁

𝛼∈𝐴𝑚
1 ∪𝐴𝑚

2 , 𝑓𝛼(𝛿)=𝑓(𝛿)
𝜕−𝑓𝛼(𝛿)) = 𝑐𝑜(

⋃︁
𝛼∈𝐾, 𝑓𝛼(𝛿)=𝑓(𝛿)

𝑏(𝑥0, 𝛼) · 𝑒𝑁). (3.2.15)

Since 0 ∈ 𝜕−𝑓(𝛿), by (3.2.15) there exist 𝑟1, · · · , 𝑟𝑘 ≥ 0 with ∑︀𝑘
𝑖=1 𝑟𝑖 = 1 such that

0 =
(︃

𝑘∑︁
𝑖=1

𝑟𝑖𝑏(𝑥0, 𝛼𝑟𝑖
)
)︃

· 𝑒𝑁 =
⎛⎝ 𝑘1∑︁

𝑖=1
𝑟1𝑖𝑏1(𝑥0, 𝛼𝑟1𝑖

) +
𝑘2∑︁

𝑗=1
𝑟2𝑗𝑏2(𝑥0, 𝛼𝑟2𝑗

)
⎞⎠ · 𝑒𝑁 ,

with 𝑘1 +𝑘2 = 𝑘. Let 𝜇 := ∑︀𝑘1
𝑖=1 𝑟1𝑖 and 1 −𝜇 = ∑︀𝑘2

𝑗=1 𝑟2𝑗. By convexity of ℬ𝑖(𝑥0), there exist

𝛼*
1 ∈ 𝐴𝑚

1 , 𝛼
*
2 ∈ 𝐴𝑚

2 with (𝛼*
1, 𝛼

*
2, 𝜇) ∈ 𝐴0(𝑥0), such that

0 =
⎛⎝𝜇 𝑘1∑︁

𝑖=1

𝑟1𝑖

𝜇
𝑏1(𝑥0, 𝛼𝑟1𝑖

) + (1 − 𝜇)
𝑘2∑︁

𝑗=1

𝑟2𝑗

1 − 𝜇
𝑏2(𝑥0, 𝛼𝑟2𝑗

)
⎞⎠·𝑒𝑁 = (𝜇𝑏1(𝑥0, 𝛼

*
1) + (1 − 𝜇)𝑏2(𝑥0, 𝛼

*
2))·𝑒𝑁 .
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Moreover, thanks to (3.2.15), we have for all 𝑖 = 1, . . . , 𝑘1 and 𝑗 = 1, . . . , 𝑘2

𝑓(𝛿) = −𝑏1(𝑥0, 𝛼𝑟1𝑖
) · (𝐷ℋ𝜑(𝑥′

0), 𝛿) − 𝑙1(𝑥0, 𝛼𝑟1𝑖
) + 𝜆𝑣(𝑥0)

𝑓(𝛿) = −𝑏2(𝑥0, 𝛼𝑟2𝑗
) · (𝐷ℋ𝜑(𝑥′

0), 𝛿) − 𝑙2(𝑥0, 𝛼𝑟2𝑗
) + 𝜆𝑣(𝑥0)

Since (𝛼*
1, 𝛼

*
2, 𝜇) ∈ 𝐴0(𝑥), then 𝑏ℋ(𝑥0, 𝛼

*
1, 𝛼

*
2, 𝜇) · (𝛿𝑒𝑁) = 0. Thus

0 ≤ 𝑓(𝛿) = ∑︀𝑘
𝑖=1 𝑓(𝛿)𝑟𝑖

=
(︁
−∑︀𝑘1

𝑖=1 𝑟1𝑖𝑏1(𝑥0, 𝛼𝑟1𝑖
)
)︁

· (𝐷ℋ𝜑(𝑥′
0), 𝛿) −

(︁∑︀𝑘1
𝑖=1 𝑟1𝑖𝑙1(𝑥0, 𝛼𝑟1𝑖

)
)︁

+
(︁
(∑︀𝑘1

𝑖=1 𝑟1𝑖𝜆𝑣(𝑥0)
)︁

+
(︁
−∑︀𝑘2

𝑖=1 𝑟2𝑗𝑏2(𝑥0, 𝛼𝑟2𝑗
)
)︁

· (𝐷ℋ𝜑(𝑥′
0), 𝛿) −

(︁∑︀𝑘2
𝑖=1 𝑟2𝑗𝑙1(𝑥0, 𝛼𝑟2𝑗

)
)︁

+
(︁
(∑︀𝑘2

𝑖=1 𝑟2𝑗𝜆𝑣(𝑥0)
)︁

= −𝜇𝑏1(𝑥0, 𝛼
*
1) · (𝐷ℋ𝜑(𝑥′

0), 𝛿) − 𝜇𝑙1(𝑥0, 𝛼
*
1) + 𝜇𝜆𝑣(𝑥0)

−(1 − 𝜇)𝑏2(𝑥0, 𝛼
*
2) · (𝐷ℋ𝜑(𝑥′

0), 𝛿) − (1 − 𝜇)𝑙2(𝑥0, 𝛼
*
2) + (1 − 𝜇)𝜆𝑣(𝑥0)

= −𝑏ℋ(𝑥0, 𝛼
*
1, 𝛼

*
2, 𝜇) · (𝐷ℋ𝜑(𝑥′

0), 0) − 𝑙ℋ(𝑥0, 𝛼
*
1, 𝛼

*
2, 𝜇) + 𝜆𝑣(𝑥0)

≤ 𝐻𝑇 (𝑥0, 𝑣(𝑥0), 𝐷ℋ𝜑(𝑥′
0))

Thus, we are on case B).

The arguments in Case 1 work whenever 𝑓(𝛿) ≥ 0 even if 𝑥𝜖 is not in ℋ.

Case 2: Let 𝑓(𝛿) < 0 and 𝑥𝜖 ∈ 𝐵𝑅̄(𝑥0) ∖ ℋ for 𝜖 small enough, then 𝑥𝜖 ∈ 𝐷𝑖. Thanks to

Theorem 3.2.1 in the domain 𝐷𝑖 we have

𝑣(𝑥𝜖) ≥ inf
𝛼𝜖(·),𝜃𝜖

∫︁ 𝑡∧𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝑡 ∧ 𝜃𝜖))𝑒−𝜆(𝑡∧𝜃𝜖). (3.2.16)

Assume that the infimum in (3.2.16) is reached for (𝛼𝜖(·), 𝜃𝜖) which exists due to the

convex hypothesis (HC), then

𝑣(𝑥𝜖) ≥
∫︁ 𝑡∧𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝑡 ∧ 𝜃𝜖))𝑒−𝜆(𝑡∧𝜃𝜖).

Since we are assuming that A) does not hold, we have lim𝜖→0 𝜃𝜖 = 0. Then for 𝜖 small

enough

𝑣(𝑥𝜖) ≥
∫︁ 𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))𝑒−𝜆𝜃𝜖 . (3.2.17)

We claim that for 𝜖 small enough 𝑌 𝑖
𝑥𝜖

(𝜃𝜖) /∈ 𝜕𝐷𝑖 ∖ ℋ. This follows from the fact that

there exists 𝑀 > 0 such that ||𝑏𝑖||𝐿∞(𝐷𝑖×𝐴𝑚
𝑖 ) ≤ 𝑀 , lim𝜖→0 𝑥𝜖 = 𝑥0, lim𝜖→0 𝜃𝜖 = 0 and

𝐵𝑅̄(𝑥0) ∩ Ω𝑖 ⊂ 𝐷𝑖. Whence 𝑌 𝑖
𝑥𝜖

(𝜃𝜖) ∈ ℋ ∩ 𝜕𝐷𝑖.

Now we subtract 𝜓𝜖(𝑥𝜖) in (3.2.17) and we assume that 𝑣(𝑥𝜖) − 𝜓𝜖(𝑥𝜖) = 0 then

0 = 𝑣(𝑥𝜖) − 𝜓𝜖(𝑥𝜖) ≥
∫︁ 𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))𝑒−𝜆(𝜃𝜖) − 𝜓𝜖(𝑥𝜖). (3.2.18)
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Since 𝑥𝜖 is the where the minimum of 𝑣 − 𝜓𝜖 is attained, then

0 = −𝑣(𝑥𝜖) + 𝜓𝜖(𝑥𝜖) ≥ −𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)) + 𝜓𝜖(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)).

Thus adding −𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖))+𝜓𝜖(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)) to (3.2.18), and by the Fundamental Calculus Theorem,

we obtain

0 ≥
∫︁ 𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))(𝑒−𝜆(𝜃𝜖) − 1) + (𝜓𝜖(𝑌 𝑖

𝑥𝜖
(𝜃𝜖)) − 𝜓𝜖(𝑥𝜖))

=
∫︁ 𝜃𝜖

0
𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠𝑑𝑠+ 𝑣(𝑌 𝑖

𝑥𝜖
(𝑡𝜖))(𝑒−𝜆𝜃𝜖 − 1) +

∫︁ 𝜃𝜖

0

[︁
𝐷ℋ𝜑(𝑌 𝑖

𝑥𝜖
(𝑠)) + 𝛿𝑒𝑁

]︁
· 𝑏𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑑𝑠

−
(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))2

𝑁

𝜖2 + (𝑥𝜖)2
𝑁

𝜖2

Since − (𝑌 𝑖
𝑥𝜖 (𝜃𝜖))2

𝑁

𝜖2 + (𝑥𝜖)2
𝑁

𝜖2 ≥ 0, because (𝑌 𝑖
𝑥𝜖

(𝜃𝜖))𝑁 = 0. Then,

0 ≤
∫︁ 𝜃𝜖

0
−𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠))𝑒−𝜆𝑠 − 𝑏𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖(𝑠)) ·

[︁
𝐷ℋ𝜑(𝑌 𝑖

𝑥𝜖
(𝑠)) + 𝛿)𝑒𝑁

]︁
𝑑𝑠− 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))(𝑒−𝜆𝜃𝜖 − 1)

≤
∫︁ 𝜃𝜖

0
sup

𝛼𝜖∈𝒜𝑚
𝑖

(︁
−𝑙𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖)𝑒−𝜆𝑠 − 𝑏𝑖(𝑌 𝑖

𝑥𝜖
(𝑠), 𝛼𝜖) ·

[︁
𝐷ℋ𝜑(𝑌 𝑖

𝑥𝜖
(𝑠)) + 𝛿)𝑒𝑁

]︁)︁
𝑑𝑠

−𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖))(𝑒−𝜆𝜃𝜖 − 1).
(3.2.19)

For 𝑠 ≤ 𝜃𝜖, there exists 𝑀 > 0 such that ||𝑏||𝐿∞(𝐷𝑖×𝐴𝑚
𝑖 ) < 𝑀 . Thus,

|𝑌 𝑖
𝑥𝜖

(𝑠) − 𝑥0| ≤ |𝑥0 − 𝑥𝜖| + |𝑌 𝑖
𝑥𝜖

(𝑠) − 𝑥𝜖| ≤ |𝑥0 − 𝑥𝜖| +𝑀𝜃𝜖.

Denote 𝑟𝜖 = |𝑥0 − 𝑥𝜖| +𝑀𝜃𝜖. Since 𝐴𝑚
𝑖 is compact, then the function

𝜁(𝑦, 𝑡) := sup
𝛼𝑖∈𝐴𝑚

𝑖

[︁
−𝑙𝑖(𝑦, 𝛼𝑖)𝑒−𝜆𝑡 − 𝑏𝑖(𝑦, 𝛼𝑖) · [𝐷ℋ𝜑(𝑦) + 𝛿𝑒𝑁 ]

]︁
is continuous. Moreover, since 𝑠 ≤ 𝜃𝜖 then (𝑌 𝑖

𝑥𝜖
(𝑠), 𝑠) → (𝑥0, 0) when 𝜖 goes to 0, ans thanks

to the continuity of the function 𝜁, there exists 𝑅𝜖 > 0, such that

|𝜁(𝑌 𝑖
𝑥𝜖

(𝑠), 𝑠) − 𝜁(𝑥0, 0)| < 𝑅𝜖, 𝜁(𝑌 𝑖
𝑥𝜖

(𝑠), 𝑠) ≤ 𝜁(𝑥0, 0) +𝑅𝜖

and

lim
𝜖→0

𝑅𝜖 = 0.

Rewriting (3.2.19), we have

0 ≤
∫︁ 𝜃𝜖

0
𝜁(𝑌 𝑖

𝑥𝜖
(𝑠), 𝑠)𝑑𝑠− 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))(𝑒−𝜆𝜃𝜖 − 1)

≤
∫︁ 𝜃𝜖

0
(𝜁(𝑥0, 0) +𝑅𝜖)𝑑𝑠− 𝑣(𝑌 𝑖

𝑥𝜖
(𝜃𝜖))(𝑒−𝜆𝜃𝜖 − 1)

= (𝜁(𝑥0, 0) +𝑅𝜖) 𝜃𝜖 − 𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖))(𝑒−𝜆𝜃𝜖 − 1)

(3.2.20)
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We recall that lim𝜖→0 𝑣(𝑥𝜖) = 𝑣(𝑥0) and lim𝜖→0 𝜃𝜖 = 0. Taking limits as 𝜖 goes to 0 in (3.2.17),

we have 𝑣(𝑥0) ≥ lim𝜖→0 𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)). Moreover since 𝑣 is lsc then lim𝜖→0 𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)) ≥ 𝑣(𝑥0).

Thus lim𝜖→0 𝑣(𝑌 𝑖
𝑥𝜖

(𝜃𝜖)) = 𝑣(𝑥0). Dividing (3.2.20) by 𝜃𝜖 and taking limits as 𝜖 goes to 0, we

obtain

0 ≤ 𝜁(𝑥0, 0) + 𝜆𝑣(𝑥0) = 𝐻𝑖 (𝑥0, 𝑣(𝑥0), 𝐷ℋ𝜑(𝑥′
0) + 𝛿𝑒𝑁) .

Therefore, 𝑓(𝛿) ≥ 0 which is a contradiction. Thus, the proof is complete.

To prove the Theorem 3.2.2 we will also need to regularize the subsolution, we will do this

via convolution. Let

𝑉 = 𝐵𝑅(0) and 𝑉𝜖 := {𝑥 ∈ 𝑉 | 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝑉 ) > 2𝜖}.

In the following result we will consider the convolution of 𝑢 with a 𝐶∞
𝐶 (𝑅𝑁−1) function. We will

denote this convolution by 𝑢𝜖. In particular, we can define it as follows. Let 𝜌 ∈ 𝐶∞
𝐶 (𝑅𝑁−1),

with
∫︀

𝑅𝑁−1 𝜌(𝑦)𝑑𝑦 = 1 and 𝑠𝑢𝑝𝑝(𝜌) ⊂ 𝐵1(0). We define

𝜌𝜖(𝑦) := 1
𝜖𝑁−1𝜌(

𝑦

𝜖
).

For any 𝑥 ∈ 𝑉𝜖, we define

𝑢𝜖(𝑥) :=
∫︁

𝑅𝑁−1
𝑢(𝑥′ − 𝑦, 𝑥𝑁)𝜌𝜖(𝑦)𝑑𝑦.

We will need the following lemma which states that any convex combination of subsolutions

is a subsolution, under suitable convex hypotheses on the operator that defines the equation.

Lemma 3.2.5 Let 𝒱 be an open set of 𝑅𝑁 ×𝑅×𝑅𝑁 . Assume that 𝐺 : 𝒱 → 𝑅 is l.s.c. and
𝐺 is convex in the last two variables, that is, for 𝜇1 + 𝜇2 = 1

𝐺(𝑥, 𝜇1𝑟1 + 𝜇2𝑟2, 𝜇1𝑝1 + 𝜇2𝑝2) ≤ 𝜇1𝐺(𝑥, 𝑟1, 𝑝1) + 𝜇2𝐺(𝑥, 𝑟2, 𝑝2).

Then any convex combination of Lipschitz continuous subsolutions of 𝐺 = 0 in 𝒱 is a subso-
lution of 𝐺 = 0 in 𝒱 .

We only have to prove the result for a convex combination of two subsolutions 𝜔1 and 𝜔2 of

𝐺 = 0, given by

𝜔 := 𝜇1𝜔1 + 𝜇2𝜔2,

with 𝜇1 + 𝜇2 = 1. The general case involving 𝑛 subsolutions for 𝑛 > 2 derives immediately

by iteration of the result. We assume without loss of generality that 𝜇1 and 𝜇2 are strictly

positive.
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Let 𝜑 be a smooth test-function and 𝑥̃ ∈ 𝐵𝑟(𝑥) be a local strict maximum point of 𝑤− 𝜑

in 𝐵𝑟(𝑥̃) ⊂ 𝐵𝑟(𝑥). We use a tripling of variables by considering in 𝐵𝑟(𝑥̃) ×𝐵𝑟(𝑥̃) ×𝐵𝑟(𝑥̃) the

function

Ψ(𝑥1, 𝑥2, 𝑥) := 𝜇1𝜔1(𝑥1) + 𝜇2𝜔2(𝑥2) − 𝜑(𝑥) − 𝜇1
|𝑥1 − 𝑥|2

𝜖
− 𝜇2

|𝑥2 − 𝑥|2

𝜖
.

Let (𝑥𝜖
1, 𝑥

𝜖
2, 𝑥

𝜖) be a local maximum point of Ψ. we have (𝑥𝜖
1, 𝑥

𝜖
2, 𝑥

𝜖) converges to (𝑥̃, 𝑥̃, 𝑥̃) as

𝜖 goes to 0. Thus, 𝑥𝜖
1 is local maximum point of

𝜇1𝜔1(𝑥1) + 𝜇2𝜔2(𝑥𝜖
2) − 𝜑(𝑥𝜖) − 𝜇1

|𝑥1 − 𝑥𝜖|2

𝜖
− 𝜇2

|𝑥𝜖
2 − 𝑥𝜖|2

𝜖
.

Hence, 𝑥𝜖
1 is local maximum point of

𝜔1(𝑥1) + 𝜇2

𝜇1
𝜔2(𝑥𝜖

2) − 𝜑(𝑥𝜖)
𝜇1

− |𝑥1 − 𝑥𝜖|2

𝜖
− 𝜇2

𝜇1

|𝑥𝜖
2 − 𝑥𝜖|2

𝜖
.

Then ∇𝜔1 is given by

∇
(︃

−𝜇2

𝜇1
𝜔2(𝑥𝜖

2) + 𝜑(𝑥𝜖)
𝜇1

+ |𝑥1 − 𝑥𝜖|2

𝜖
+ 𝜇2

𝜇1

|𝑥𝜖
2 − 𝑥𝜖|2

𝜖

)︃
= 2(𝑥1 − 𝑥𝜖)

𝜖
. (3.2.21)

Since 𝜔1 is a subsolution of 𝐺 = 0, and thanks to (3.2.21), we have

𝐺

(︃
𝑥𝜖

1, 𝜔1(𝑥𝜖
1),

2(𝑥1 − 𝑥𝜖)
𝜖

)︃
≤ 0. (3.2.22)

Analogously, we obtain that

𝐺

(︃
𝑥𝜖

2, 𝜔2(𝑥𝜖
2),

2(𝑥2 − 𝑥𝜖)
𝜖

)︃
≤ 0. (3.2.23)

Finally 𝑥𝜖 is a local maximum point of

𝜇1𝜔1(𝑥𝜖
1) + 𝜇2𝜔2(𝑥𝜖

2) − 𝜑(𝑥) − 𝜇1
|𝑥𝜖

1 − 𝑥|2

𝜖
− 𝜇2

|𝑥𝜖
2 − 𝑥|2

𝜖
.

Whence,

∇𝜑(𝑥𝜖) = 𝜇1
2(𝑥𝜖

1 − 𝑥𝜖)
𝜖

+ 𝜇2
2(𝑥𝜖

2 − 𝑥𝜖)
𝜖

. (3.2.24)

Since 𝑤𝑖 is Lipschitz continuous due to (BARLES, 1994, Th. 2.2 p. 17), |2(𝑥𝜖
𝑖−𝑥𝜖)
𝜖

| ≤ 𝐶𝑖, where

𝐶𝑖 is the Lipschitz constant of 𝑤𝑖. Extracting if necessary a subsequence, we can assume that

the gradient |2(𝑥𝜖
𝑖−𝑥𝜖)
𝜖

| converges to a function that we denote by 𝑃𝑖 as 𝜖 goes to 0.

Taking limits as 𝜖 goes to 0 in (3.2.22) and (3.2.23), and since 𝐺 is lower semi-continuous,

we obtain that

𝐺(𝑥̃, 𝜔1(𝑥̃), 𝑃1) ≤ 0 and 𝐺(𝑥̃, 𝜔2(𝑥̃), 𝑃2) ≤ 0. (3.2.25)
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Because of the continuity of ∇𝜑, taking limits as 𝜖 goes to 0 in (3.2.24), we obtain

∇𝜑(𝑥̃) = 𝜇1𝑃1 + 𝜇2𝑃2.

So, thanks to (3.2.25) and the convexity of 𝐺, we finally get

𝐺(𝑥̃, 𝜔(𝑥̃),∇𝜑(𝑥̃)) = 𝐺(𝑥̃, 𝜇1𝜔1(𝑥̃) + 𝜇2𝜔2(𝑥̃), 𝜇1𝑃1 + 𝜇2𝑃2)

≤ 𝜇1𝐺(𝑥̃, 𝜔1(𝑥̃), 𝑃1) + 𝜇2𝐺(𝑥̃, 𝜔2(𝑥̃), 𝑃2)

≤ 0,

which proves that 𝜔 is a viscosity subsolution of 𝐺 = 0.

In the following result we proof that the Hamiltonians associated to compact control sets,

𝐻𝑚
𝑖 and 𝐻𝑚

𝑇 , are convex, continuous and we give some bounds of these Hamiltonians.

Lemma 3.2.6 Under hypotheses (HB) and (HC). 𝐻𝑚
𝑖 is continuous, convex in the last vari-

able and satisfies that there exists 𝑀 > 0 such that

|𝐻𝑚
𝑖 (𝑥, 𝑢, 𝑝) −𝐻𝑚

𝑖 (𝑥1, 𝑢, 𝑝)| ≤ 𝑀 |𝑥− 𝑥1||𝑝| for 𝑥, 𝑥1 ∈ Ω𝑖 and (𝑢, 𝑝) ∈ 𝑅 ×𝑅𝑁 .

(3.2.26)

Moreover, 𝐻𝑚
𝑇 is continuous, convex in the last variable and satisfies

|𝐻𝑚
𝑇 (𝑧, 𝑢, 𝑞)−𝐻𝑚

𝑇 (𝑧, 𝑢, 𝑞)| ≤ 𝑀 |𝑧−𝑧||𝑞| for 𝑧, 𝑧 ∈ ℋ and (𝑢, 𝑞) ∈ 𝑅×𝑅𝑁−1. (3.2.27)

Let 𝛼̄ = (𝛼̄1, 𝛼̄2, 𝜇̄) ∈ 𝐴𝑚
0 (𝑧) such that

𝐻̃𝑚
𝑇 (𝑧, 𝑞) = −𝑏ℋ(𝑧, 𝛼̄) · 𝑞 − 𝑙ℋ(𝑧, 𝛼̄).

We will show that there exist 𝛼̃ ∈ 𝐴0(𝑧) such that⎧⎪⎪⎨⎪⎪⎩
𝑏ℋ (𝑧, 𝛼̄) = 𝑏ℋ (𝑧, 𝛼̃) + 𝜎(|𝑧 − 𝑧|)

𝑙ℋ (𝑧, 𝛼̄) = 𝑙ℋ (𝑧, 𝛼̃) + 𝛾(|𝑧 − 𝑧|)
(3.2.28)

with 𝜎 and 𝛾 going to 0 when |𝑧 − 𝑧| goes to 0. We will prove this approach for 𝑏ℋ, the

proof for 𝑙ℋ is analogous. First, let us define

𝜎𝑖(|𝑧 − 𝑧|) := 𝑏𝑖(𝑧, 𝛼̄𝑖) − 𝑏𝑖(𝑧, 𝛼̄𝑖).

Since 𝑏𝑖 is Lipschitz, then |𝜎𝑖(|𝑧− 𝑧|)| ≤ 𝐶𝑏𝑖
|𝑧− 𝑧|, where 𝐶𝑏𝑖

is the Lipschitz constant of 𝑏𝑖.

Consider 𝛽 := min{ 𝛿−|𝜎̃1(𝑧−𝑧)|
𝛿

, 𝛿−|𝜎̃2(𝑧−𝑧)|
𝛿

} and define

𝜎𝑖(|𝑧 − 𝑧|) := (1 − 𝛽)(𝑏𝑖(𝑧, 𝛼̄𝑖) + 𝜎̃𝑖(|𝑧 − 𝑧|)). (3.2.29)
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Note that

|𝜎𝑖(|𝑧 − 𝑧|)| ≤ (1 − 𝛽)(‖𝑏𝑖‖𝐿∞(𝑉 ×𝐴𝑚
𝑖 ) + |𝜎̃𝑖(|𝑧 − 𝑧|)|).

Thus, 𝜎𝑖(|𝑧−𝑧|) is going to 0 when |𝑧−𝑧| goes to 0, because 1−𝛽 = max{ |𝜎̃1(𝑧−𝑧)|
𝛿

, |𝜎̃2(𝑧−𝑧)|
𝛿

}.

Now, we proof that there exists 𝛼𝑖 ∈ 𝐴𝑚
𝑖 satisfying

𝑏𝑖(𝑧, 𝛼𝑖) = 𝑏𝑖(𝑧, 𝛼𝑖) + 𝜎𝑖(|𝑧 − 𝑧|).

Indeed, by definition of 𝜎̃𝑖(|𝑧 − 𝑧|), we have |𝛽𝜎̃𝑖(|𝑧−𝑧|)
1−𝛽

| ≤ 𝛿, and there exists 𝛼̃𝑖 ∈ 𝐴𝑚
𝑖 such

that
𝛽𝑏𝑖(𝑧, 𝛼𝑖) = 𝛽(𝑏𝑖(𝑧, 𝛼𝑖) + 𝜎̃𝑖(|𝑧 − 𝑧|))

= 𝛽𝑏𝑖(𝑧, 𝛼𝑖) + (1 − 𝛽)𝛽𝜎̃𝑖(|𝑧−𝑧|)
1−𝛽

= 𝑏𝑖(𝑧, 𝛼𝑖).

(3.2.30)

Thanks to (3.2.29) and (3.2.30), we obtain

𝑏𝑖(𝑧, 𝛼𝑖) = 𝛽𝑏𝑖(𝑧, 𝛼𝑖) + (1 − 𝛽)𝑏𝑖(𝑧, 𝛼𝑖)

= 𝑏𝑖(𝑧, 𝛼𝑖) + (1 − 𝛽)(𝑏𝑖(𝑧, 𝛼𝑖) + 𝜎̃𝑖(|𝑧 − 𝑧|))

= 𝑏𝑖(𝑧, 𝛼𝑖) + 𝜎𝑖(|𝑧 − 𝑧|).

Furthermore, we have

[𝜇̄𝑏1(𝑧, 𝛼̃1) + (1 − 𝜇̄)𝑏2(𝑧, 𝛼̃2)] · 𝑒𝑁 = 𝛽 [𝜇̄𝑏1(𝑧, 𝛼̄1) + (1 − 𝜇̄)𝑏2(𝑧, 𝛼̄2)] · 𝑒𝑁 = 0.

Hence, 𝛼̃ = (𝛼̃1, 𝛼2, 𝜇̄) ∈ 𝐴𝑚
0 (𝑧) and

𝑏ℋ (𝑧, 𝛼̄) = 𝑏ℋ (𝑧, 𝛼̃) + 𝜎(|𝑧 − 𝑧|)

where 𝜎 = 𝜇̄𝜎1 + (1 − 𝜇̄)𝜎2. Therefore,

𝐻̃𝑚
𝑇 (𝑧, 𝑞) = −𝑏ℋ (𝑧, 𝛼̄) · 𝑞 − 𝑙ℋ (𝑧, 𝛼̄)

= −𝑏ℋ (𝑧, 𝛼̃) · 𝑞 − 𝜎(|𝑧 − 𝑧|) · 𝑞 − 𝑙ℋ (𝑧, 𝛼̃) − 𝛾(|𝑧 − 𝑧|)

≤ 𝐻̃𝑚
𝑇 (𝑧, 𝑞) − 𝜎(|𝑧 − 𝑧|) · 𝑞 − 𝛾(|𝑧 − 𝑧|).

Symmetrically,

𝐻̃𝑚
𝑇 (𝑧, 𝑞) ≤ 𝐻̃𝑚

𝑇 (𝑧, 𝑞) − 𝜎̄(|𝑧 − 𝑧|) · 𝑞 − 𝛾(|𝑧 − 𝑧|)

with 𝜎̄ and 𝛾 going to 0 when |𝑧 − 𝑧| goes to 0.

|𝐻̃𝑚
𝑇 (𝑧, 𝑞)−𝐻̃𝑚

𝑇 (𝑧, 𝑞)| ≤ max{(|𝜎̄(|𝑧 − 𝑧|)||𝑞| + |𝛾(|𝑧 − 𝑧|)|) , (𝜎(|𝑧 − 𝑧|)||𝑞| + |𝛾(|𝑧 − 𝑧|)|)}.

(3.2.31)
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We denote by 𝑚(|𝑧 − 𝑧|) the right hand side of the inequality (3.2.31). we have 𝑚 goes to 0

when |𝑧 − 𝑧| goes to 0. Thus,

𝐻̃𝑚
𝑇 (𝑧, 𝑞) ≤ 𝐻̃𝑚

𝑇 (𝑧, 𝑞) +𝑚(|𝑧 − 𝑧|), 𝐻̃𝑚
𝑇 (𝑧, 𝑞) ≤ 𝐻̃𝑚

𝑇 (𝑧, 𝑞) +𝑚(|𝑧 − 𝑧|).

In the following result we prove that if 𝑢 is a subsolution of the Ishii problem associated

to a compact control set locally, in a ball of radius 𝑅, then the convolution 𝑢𝜖 minus an term

that goes to zero as 𝜖 goes to zero, is also a subsolution of the Ishii problem in a ball with a

slightly smaller radius.

Lemma 3.2.7 We assume hypotheses (HB) and (HC). Let 𝑢 be a locally Lipschitz subsolution
of (3.2.4), (3.2.5) in the ball of radius 𝑅. Let 𝜖 > 0. There exists a function 𝜁 : 𝑅+ → 𝑅+

with lim
𝑠→0+

𝜁(𝑠) = 0 such that the function 𝑢𝜖 − 𝜁(𝜖) is a viscosity subsolution of (3.2.4),
(3.2.5) in the ball of radius 𝑅 with 𝑅 = 𝑅 − 2𝜖.

In this proof, we denote 𝐻𝑚
𝑇 and 𝐻𝑚

𝑖 by 𝐺. we have 𝑢𝜖(𝑥) :=
∫︀

𝑅𝑁−1 𝑢(𝑥′ − 𝑦, 𝑥𝑁)𝜌𝜖(𝑦)𝑑𝑦

is smooth in the first 𝑁 − 1 variables. Let us approximate 𝑢𝜖(𝑥) by Riemann sums

𝑢𝑛
𝜖 (𝑥) :=

𝑛∑︁
𝑗=1

𝑉𝑗𝑢(𝑥′ − 𝑒𝑗, 𝑥𝑁)𝜌𝜖(𝑒𝑗) =
𝑛∑︁

𝑗=1
𝜇𝑗𝑢(𝑥′ − 𝑒𝑗, 𝑥𝑁)

where 𝑒𝑗 ∈ 𝐵𝜖(0), and 𝜇𝑗 := 𝑉𝑗𝜌𝜖(𝑒𝑗) and 𝑉𝑗 is the volume of the j-th block of the partition.

Thus,

lim
𝑛→∞

𝑛∑︁
𝑗=1

𝜇𝑗 = lim
𝑛→∞

𝑛∑︁
𝑗=1

𝑉𝑗𝜌𝜖(𝑒𝑗) =
∫︁

𝐵𝜖(0)
𝜌𝜖(𝑦)𝑑𝑦 = 1.

We exchange 𝜇𝑛 by 𝜇𝑛 such that 𝜇𝑛 +∑︀𝑛−1
𝑖=1 𝜇𝑖 = 1. Clearly 𝜇𝑛 − 𝜇𝑛 goes to 0 when 𝑛 goes

to ∞. The function

𝑢̃𝑗(𝑥′, 𝑥𝑁) := 𝑢(𝑥′ − 𝑒𝑗, 𝑥𝑁)

approximates well a subsolution. Indeed, consider the test function 𝜑 and (𝑥′
0, 𝑥

0
𝑁) a local

maximum point of

𝑢̃𝑗(𝑥′, 𝑥𝑁) − 𝜑(𝑥′, 𝑥𝑁).

Consider 𝜑(𝑥′, 𝑥𝑁) := 𝜑(𝑥′ + 𝑒𝑗, 𝑥𝑁), then ∇𝜑(𝑥′, 𝑥𝑁) = ∇𝜑(𝑥′ + 𝑒𝑗, 𝑥𝑁). Thus, (𝑥′
0, 𝑥

0
𝑁) is

a local maximum point of

𝑢̃𝑗(𝑥′, 𝑥𝑁) − 𝜑(𝑥′ − 𝑒𝑗, 𝑥𝑁) = 𝑢(𝑥′ − 𝑒𝑗, 𝑥𝑁) − 𝜑(𝑥′ − 𝑒𝑗, 𝑥𝑁).

Hence, (𝑥′
0 − 𝑒𝑗, 𝑥

0
𝑁) is local maximum point of 𝑢− 𝜑. Since 𝑢 is a subsolution of 𝐺 then

𝐺((𝑥′
0 − 𝑒𝑗, 𝑥

0
𝑁), 𝑢(𝑥′

0 − 𝑒𝑗, 𝑥
0
𝑁),∇𝜑(𝑥′

0 − 𝑒𝑗, 𝑥
0
𝑁)) ≤ 0
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where ∇𝜑((𝑥′
0 − 𝑒𝑗, 𝑥

0
𝑁)) = ∇𝜑(𝑥′

0, 𝑥
0
𝑁). Thus,

𝐺((𝑥′
0 − 𝑒𝑗, 𝑥

0
𝑁), 𝑢̃𝑗(𝑥′

0, 𝑥
0
𝑁),∇𝜑(𝑥′

0, 𝑥
0
𝑁)) ≤ 0. (3.2.32)

Since 𝑒𝑗 ∈ 𝐵𝜖(0) and thanks to Lemma 3.2.6, we have

|𝐺((𝑥′
0, 𝑥

0
𝑁), 𝑢̃𝑗(𝑥′

0, 𝑥
0
𝑁),∇𝜑(𝑥′

0, 𝑥
0
𝑁)) −𝐺((𝑥′

0 − 𝑒𝑗, 𝑥
0
𝑁), 𝑢̃(𝑥′

0, 𝑥
0
𝑁),∇𝜑(𝑥′

0, 𝑥
0
𝑁))| ≤ 𝜂(𝜖).

(3.2.33)

where 𝜂(𝜖) goes to 0 when 𝜖 goes to 0. From (3.2.32) and (3.2.33), we obtain,

𝐺((𝑥′
0, 𝑥

0
𝑁), 𝑢̃𝑗(𝑥′

0, 𝑥
0
𝑁),∇𝜑(𝑥′

0, 𝑥
0
𝑁)) − 𝜂(𝜖) ≤ 0.

That is, 𝑢̃𝑗 is subsolution of 𝐺−𝜂(𝜖). Thanks to Lemma 3.2.5, the convex combination defined

by 𝑢𝑛
𝜂 := ∑︀𝑛−1

𝑗=1 𝜇𝑗𝑢̃𝑗 + 𝜇𝑛𝑢̃𝑛 is subsolution of 𝐺− 𝜂(𝜖). Taking limits as 𝑛 goes to infinity, we

have

lim
𝑛→∞

𝑢𝑛
𝜂 (𝑥′, 𝑥𝑁) = 𝑢𝜖(𝑥′, 𝑥𝑁) = lim

𝑛→∞
𝑢𝑛

𝜖 (𝑥′, 𝑥𝑁).

Moreover note that 𝑢𝑛
𝜂 and 𝑢𝑛

𝜂 are equi-Lipschitz equi-bounded and consequently the conver-

gence is uniform. By stability, (BARLES, 1994, Th 2.3 p.21 ), 𝑢𝜖 is a subsolution of 𝐺− 𝜂(𝜖).

So, we can take 𝜁(𝜖) := 𝜂(𝜖)
𝜆

.

Let us prove below the main local comparison result of this section.

Proof of Theorem 3.2.2. Let 𝑉𝜖 := {𝑥 ∈ 𝐵𝑅(𝑥)| 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐵𝑅(𝑥)) > 2𝜖}, and define

𝑢̄𝜖 := 𝑢𝜖 − 𝜁(𝜖),

where 𝜁 is the function in Lemma 3.2.7. Let

𝑀𝜖 := sup
𝑉 𝜖

(𝑢̄𝜖 − 𝑣).

Since 𝑢̄𝜖 −𝑣 is usc then the supreme is achieved on the compact 𝑉 𝜖. Thus, there exists 𝑥𝜖 ∈ 𝑉 𝜖

such that 𝑀𝜖 = 𝑢̄𝜖(𝑥𝜖) − 𝑣(𝑥𝜖). If 𝑀𝜖 ≤ 0 we have the result. So let us assume that 𝑀𝜖 > 0.

Case 1: 𝑥𝜖 ∈ Ω𝑖 ∩ 𝑉𝜖.

There exists 𝑟 > 0 such that 𝐵𝑟(𝑥𝜖) ⊂ Ω𝑖 ∩ 𝑉𝜖. Consider the usc function

𝜉𝛽(𝑥, 𝑦) := 𝑢̄𝜖(𝑥) − 𝑣(𝑦) − |𝑥− 𝑦|2

𝛽2 − |𝑥𝜖 − 𝑥|2.

Let (𝑥𝛽, 𝑦𝛽) be the maximum point of 𝜉𝛽 in 𝐵𝑟(𝑥𝜖) ×𝐵𝑟(𝑥𝜖) and denote

𝑀𝛽
𝜖 = 𝜉𝛽(𝑥𝛽, 𝑦𝛽) = 𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽) − |𝑥𝛽 − 𝑦𝛽|2

𝛽2 − |𝑥𝜖 − 𝑥𝛽|2 (3.2.34)
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Thus
0 < 𝑀𝜖 = 𝑢̄𝜖(𝑥𝜖) − 𝑣(𝑥𝜖) − |𝑥𝜖−𝑥𝜖|2

𝛽2 − |𝑥𝜖 − 𝑥𝜖|2

≤ 𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽) − |𝑥𝛽−𝑦𝛽 |2
𝛽2 − |𝑥𝜖 − 𝑥𝛽|2

< 2𝐶 − |𝑥𝛽−𝑦𝛽 |2
𝛽2 − |𝑥𝜖 − 𝑥𝛽|2

where 𝐶 > max{||𝑢̄𝜖||𝐿∞(𝑉𝜖), ||𝑣||𝐿∞(𝑉𝜖)}. Consequently,

|𝑥𝛽 − 𝑦𝛽|2

𝛽2 + |𝑥𝜖 − 𝑥𝛽|2 < 2𝐶 =⇒ |𝑥𝛽 − 𝑦𝛽| ≤
√

2𝐶𝛽 (3.2.35)

That is why, lim𝛽→0 𝑥𝛽 = 𝑧 = lim𝛽→0 𝑦𝛽. Moreover from (3.2.34), we have

𝑀𝜖 ≤ 𝑀𝛽
𝜖

≤ 𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽) − |𝑥𝜖 − 𝑥𝛽|2
.

Taking limits as 𝛽 goes to 0 and since −𝑣 is usc and 𝑢̄𝜖 is differentiable, we obtain

𝑀𝜖 ≤ lim
𝛽→0

𝑀𝛽
𝜖 = 𝑢̄𝜖(𝑧) − 𝑣(𝑧) − |𝑥𝜖 − 𝑧|2 ≤ 𝑢̄𝜖(𝑧) − 𝑣(𝑧).

Since 𝑥𝜖 is an strict maximum of 𝑢̄𝜖(𝑥) − 𝑣(𝑥) − |𝑥̄𝜖 − 𝑥|2 in 𝑉 𝜖, then 𝑧 = 𝑥𝜖 and

lim
𝛽→0

𝑀𝛽
𝜖 = 𝑀𝜖. (3.2.36)

Thus, taking limits as 𝛽 goes to 0 in (3.2.34), we have

lim
𝛽→0

|𝑥𝛽 − 𝑦𝛽|2

𝛽2 = 0. (3.2.37)

We prove below that 𝑥𝛽 is the maximum point of 𝑢̄𝜖(𝑥) −
(︁
𝑣(𝑦𝛽) + |𝑥−𝑦𝛽 |2

𝛽2 + |𝑥𝜖 − 𝑥𝛽|2
)︁

in 𝐵𝑟(𝑥̄) and 𝑦𝛽 is a minimum point of 𝑣(𝑦) −
(︁
𝑢̄𝜖(𝑥𝛽) − |𝑦−𝑥𝛽 |2

𝛽2 − |𝑥𝜖 − 𝑥𝛽|2
)︁

in 𝐵𝑟(𝑥̄). By

definition, |𝑥𝛽−𝑦𝛽 |2
𝛽2 + |𝑥𝜖 − 𝑥𝛽| + 𝑀𝛽

𝜖 = 𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽). Since lim𝛽→0 𝑀
𝛽
𝜖 = 𝑀𝜖 > 0, then

𝑀𝛽
𝜖 > 0 for 𝛽 small enough then 𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽) > 0.

Since 𝑢̄𝜖, 𝑣 are respectively subsolution and supersolution of 𝐻𝑖, and 𝑏𝑖 and 𝑙𝑖 are Lipchitz,



68

we obtain

0 < 𝜆
(︁ |𝑥𝛽−𝑦𝛽 |2

𝛽2 + |𝑥𝜖 − 𝑥𝛽| +𝑀𝛽
𝜖

)︁
= 𝜆(𝑢̄𝜖(𝑥𝛽) − 𝑣(𝑦𝛽))

= 𝐻𝑖

(︁
𝑥𝛽, 𝑢̄𝜖(𝑥𝛽), 2(𝑥𝛽−𝑦𝛽)

𝛽2

)︁
−𝐻𝑖

(︁
𝑥𝛽, 𝑣(𝑦𝛽), 2(𝑥𝛽−𝑦𝛽)

𝛽2

)︁
≤ 𝐻𝑖

(︁
𝑦𝛽, 𝑣(𝑦𝛽), 2(𝑥𝛽−𝑦𝛽)

𝛽2

)︁
−𝐻𝑖

(︁
𝑥𝛽, 𝑣(𝑦𝛽), 2(𝑥𝛽−𝑦𝛽)

𝛽2

)︁
≤ −𝑏𝑖(𝑦𝛽, 𝛼𝑦) · 2(𝑥𝛽−𝑦𝛽)

𝛽2 + 𝑙𝑖(𝑦𝛽, 𝛼𝑦) − (−𝑏𝑖(𝑥𝛽, 𝛼𝑦) · 2(𝑥𝛽−𝑦𝛽)
𝛽2 + 𝑙𝑖(𝑥𝛽, 𝛼𝑦))

≤ 𝐶|𝑥𝛽 − 𝑦𝛽|
(︁⃒⃒⃒2(𝑥𝛽−𝑦𝛽)

𝛽2

⃒⃒⃒
+ 1

)︁
= 𝐶

(︁2|𝑥𝛽−𝑦𝛽 |2
𝛽2 + |𝑥𝛽 − 𝑦𝛽|

)︁
,

where 𝛼𝑦 ∈ 𝐴𝑚
𝑖 is the control for which the supremum of 𝐻𝑖

(︁
𝑦𝛽, 𝑣(𝑦𝛽), 2(𝑥𝛽−𝑦𝛽)

𝛽2

)︁
is attained.

Since lim𝛽→0 𝑀
𝛽
𝜖 = 𝑀𝜖, lim𝛽→0

|𝑥𝛽−𝑦𝛽 |2
𝛽2 = 0, lim𝛽→0 |𝑥𝛽 − 𝑦𝛽| = 0 and lim𝛽→0 |𝑥𝛽 − 𝑥̄| = 0,

taking the limit as 𝛽 goes to 0, we obtain a contradiction.

Case 2: 𝑥𝜖 ∈ ℋ ∩ 𝑉𝜖

Recall that for 𝑟 small enough, 𝐵𝑟(𝑥𝜖) ∩ Ω𝑖 ⊂ 𝑉𝜖. Since 𝑢̄𝜖 is a subsolution and it is

differentiable with respect to the first 𝑁 − 1 variables, we have

𝐻𝑇 (𝑥𝜖, 𝑢̄𝜖(𝑥𝜖), 𝐷ℋ𝑢̄𝜖(𝑥𝜖)) ≤ 0.

Now we consider a set 𝐷𝑖 as in Theorem 3.2.4. We apply this Theorem for 𝑥0 = 𝑥𝜖, 0 < 𝑟 < 𝑟

such that 𝐵𝑟(𝑥𝜖) ∩ Ω𝑖 ⊂ 𝐷𝑖 ⊂ 𝐵𝑟(𝑥𝜖) ∩ Ω𝑖.

Either we are in case B) 𝐻𝑇 (𝑥𝜖, 𝑣(𝑥𝜖), 𝐷ℋ(𝑥𝜖)) ≥ 0. Therefore,

𝜆(𝑢̄𝜖(𝑥𝜖) − 𝑣(𝑥𝜖)) = 𝐻𝑇 (𝑥𝜖, 𝑢̄𝜖(𝑥𝜖), 𝐷ℋ𝑢̄𝜖(𝑥𝜖)) −𝐻𝑇 (𝑥𝜖, 𝑣(𝑥𝜖), 𝐷ℋ𝑢̄𝜖(𝑥𝜖)) ≤ 0.

Thus, 𝑀𝜖 ≤ 0, what leads to contradiction.

Or either we are in case A). Then there exists a sequence 𝑥𝑘 → 𝑥𝜖 and 𝑣(𝑥𝑘) → 𝑣(𝑥𝜖)

such that

𝑣(𝑥𝑘) ≥
∫︁ 𝜂

0
𝑙𝑖
(︁
𝑌 𝑖

𝑥𝑘
(𝑠), 𝛼𝑘

𝑖 (𝑡)
)︁

+ 𝑣(𝑌 𝑖
𝑥𝑘

(𝜂))𝑒−𝜆𝜂 (3.2.38)

with 𝑌 𝑖
𝑥𝑘

(𝑠) ∈ 𝐷𝑖 for 𝑠 ∈ [0, 𝜂]. Consequently the exit time from 𝐷𝑖 of this trajectory is greater

than 𝜂. Since 𝑢̄𝜖 is subsolution of (3.2.4), and thanks to Theorem 3.2.1, we know that

𝑢̄𝜖(𝑥𝑘) ≤
∫︁ 𝜂

0
𝑙𝑖
(︁
𝑌 𝑖

𝑥𝑘
(𝑠), 𝛼𝑘

𝑖 (𝑡)
)︁

+ 𝑢̄𝜖(𝑌 𝑖
𝑥𝑘

(𝜂))𝑒−𝜆𝜂. (3.2.39)
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Subtracting inequalities (3.2.38) and (3.2.39), we obtain

𝑢̄𝜖(𝑥𝑘) − 𝑣(𝑥𝑘) ≤ (𝑢̄𝜖(𝑌 𝑖
𝑥𝑘

(𝜂)) − 𝑣(𝑌 𝑖
𝑥𝑘

(𝜂)))𝑒−𝜆𝜂 ≤ 𝑀𝜖𝑒
−𝜆𝜂. (3.2.40)

Taking limits in (3.2.40) as 𝑘 goes to infinity, we have

𝑀𝜖 ≤ 𝑀𝜖𝑒
−𝜆𝜂.

which is a contradiction. Thus, if 𝑀𝜖 = 𝑢̄𝜖(𝑥𝜖) − 𝑣(𝑥𝜖) > 0 then 𝑥𝜖 ∈ 𝜕𝑉𝜖, that is

max
𝑉𝜖

(𝑢̄𝜖 − 𝑣)+ < max
𝜕𝑉𝜖

(𝑢̄𝜖 − 𝑣)+

Since 𝑢̄𝜖 is continuous then letting 𝜖 go to 0 , we obtain

max
𝑉

(𝑢̄− 𝑣)+ ≤ max
𝜕𝑉

(𝑢̄− 𝑣)+.

.

3.3 GLOBAL COMPARISON RESULTS

To obtain global comparison result in 𝑅𝑁 , we need two extra hypotheses that we denote

by LOC 1 and LOC 2. Let 𝒞* be a set of subsolutions with certain growing hypotheses and

let 𝒞* a set of supersolutions with certain growing hypotheses, which will be specified in the

examples in section 3.5.

LOC 1: Given a subsolution 𝑢 ∈ 𝒞* and supersolution 𝑣 ∈ 𝒞* then there exists a sequence

of subsolutions (𝑢𝛽)𝛽 such that for all 𝑥 ∈ 𝑅𝑁 ,

lim
|𝑥|→∞

(𝑢𝛽 − 𝑣)(𝑥) = −∞ and lim
𝛽→0

𝑢𝛽(𝑥) = 𝑢(𝑥).

LOC 2: Let 𝑥 ∈ 𝑅𝑁 , 𝑟 > 0, and consider 𝑢𝛽 of LOC 1. There exists a sequence (𝑢𝛽𝛾)𝛾 of

subsolutions such that

𝑢𝛽𝛾(𝑥) − 𝑢𝛽(𝑥) ≥ 𝑢𝛽𝛾(𝑦) − 𝑢𝛽(𝑦) + 𝑑(𝛾) for all 𝑦 ∈ 𝜕𝐵𝑟(𝑥) with 𝑑(𝛾) > 0.

Moreover, 𝑢𝛽𝛾(𝑧) → 𝑢𝛽(𝑧) as 𝛾 → 0 for any 𝑧 ∈ 𝐵𝑟(𝑥).

The following result states that if we have local comparison results as in Theorem 3.2.3,

then we have also global comparison results for the problem (3.0.1).
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Theorem 3.3.1 Under the hypotheses LOC 1 and LOC 2, Local Comparison Result implies
Global Comparison Result, that is

𝑢(𝑥) ≤ 𝑣(𝑥) ∀𝑥 ∈ 𝑅𝑁 .

Thanks to LOC 1 there exists 𝑥𝛽 ∈ 𝑅𝑁 such that

𝑀𝛽 := max
𝑅𝑁

(𝑢𝛽 − 𝑣) = 𝑢𝛽(𝑥𝛽) − 𝑣(𝑥𝛽).

Assume by contradiction that 𝑀𝛽 > 0. Thanks to LOC2, there exists a sequence of subsolu-

tions (𝑢𝛽𝛾)𝛾 that is an approximation of 𝑢𝛽. We will use Local Comparison Results with 𝑢𝛽𝛾

and 𝑣 on 𝐵𝑅(𝑥𝛽), that is

max
𝐵𝑅(𝑥𝛽)

(𝑢𝛽𝛾 − 𝑣)+ ≤ max
𝜕𝐵𝑅(𝑥𝛽)

(𝑢𝛽𝛾 − 𝑣)+.

We divide the proof in two cases:

Case 1 max𝐵𝑅(𝑥𝛽)(𝑢𝛽𝛾 − 𝑣) ≤ 0.

Since 𝑀𝛽 > 0, and thanks to LOC 2, we have lim𝛾→ 𝑢𝛽𝛾(𝑥𝛽) = 𝑢𝛽(𝑥𝛽), then for 𝛾 small

enough we have a contradiction with max𝐵𝑅(𝑥𝛽)(𝑢𝛽𝛾 − 𝑣) ≤ 0.

Case 2 max𝐵𝑅(𝑥𝛽)(𝑢𝛽𝛾 − 𝑣) > 0. Thanks to the Local Comparison Result and hypothesis

LOC2, we have

𝑢𝛽𝛾(𝑥𝛽) − 𝑣(𝑥𝛽) ≤ max𝜕𝐵𝑅(𝑥𝛽)(𝑢𝛽𝛾 − 𝑣)

≤ max𝜕𝐵𝑅(𝑥𝛽)(𝑢𝛽 − 𝑣) + max𝜕𝐵𝑅(𝑥𝛽)(𝑢𝛽𝛾 − 𝑢𝛽)

≤ 𝑀𝛽 + (𝑢𝛽𝛾(𝑥𝛽) − 𝑢𝛽(𝑥𝛽)) − 𝑑(𝛾).

Consequently,

𝑀𝛽 = 𝑢𝛽(𝑥𝛽) − 𝑣(𝑥𝛽) ≤ 𝑀𝛽 − 𝑑(𝛾),

which is a contradiction. Therefore, 𝑀𝛽 ≤ 0 and 𝑢𝛽(𝑥) ≤ 𝑣(𝑥) for any 𝑥 ∈ 𝑅𝑁 . Taking limits

as 𝛽 goes to 0, we obtain that 𝑢(𝑥) ≤ 𝑣(𝑥) for any 𝑥 ∈ 𝑅𝑁 .

3.4 𝑈−
𝐴 MINIMAL SUPERSOLUTION AND 𝑈+

𝐴 MAXIMAL SUBSOLUTION OF ISHII PRO-

BLEM

In the result below we prove that 𝑈−
𝐴 is a minimal supersolution of the Ishii problem.
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Proposition 3.4.1 Under the hypotheses (HA), (HB), (HC), LOC 1 and LOC 2, 𝑈−
𝐴 is a

minimal locally bounded lsc supersolution of the Ishii problem (3.0.1).

𝑈−
𝐴 is subsolution of (3.0.1) and (3.0.2), then given a l.s.c supersolution 𝑣 of (3.0.1).

Due to Theorem 3.2.3, we obtain Local Comparison and Theorem 3.3.1 provide us the Global

Comparison Result, that is 𝑈−
𝐴 (𝑥) ≤ 𝑣(𝑥) for all 𝑥 ∈ 𝑅𝑁 .

Now, we will introduce several results that will be used to prove that 𝑈+
𝐴 is a maximal

subsolution of the Ishii problem.

The result below can be found in (BARLES; BRIANI; CHASSEIGNE, 2013). It states that any

subsolution of the Ishii problem is a subsolution of the regular tangential Hamiltonian.

Theorem 3.4.2 Let 𝑢 be a subsolution locally bounded of (3.0.1) then 𝑢 is subsolution of
(3.0.3).

See (BARLES; BRIANI; CHASSEIGNE, 2013, Th. 3.1).

The following theorem is similar to Theorem 3.2.4. It gives an alternative for 𝑈+
𝐴𝑚 , or it

considers trajectories that stay on the hyperplane for a while or it satisfies that the regular

tangential Hamiltonian is greater or equal to zero. The difference here is that it considers the

regular tangential Hamiltonian, and the result is only valid for the supersolution 𝑈+
𝐴𝑚 .

Theorem 3.4.3 Assume hypothesis (HC). Let 𝑥0 = (𝑥′
0, 0) ∈ ℋ. Fix 𝑅 > 𝑅̄ > 0. Let

𝐷𝑖 ⊂ Ω𝑖 be an open bounded domain with 𝐶1-boundary and such that 𝐷𝑖 ∩ ℋ ̸= ∅, and
𝐵𝑅̄(𝑥0) ∩ Ω𝑖 ⊂ 𝐷𝑖 ⊂ 𝐵𝑅(𝑥0) ∩ Ω𝑖. Consider 𝜑 ∈ 𝐶1(𝐷𝑖 ∩ ℋ) such that 𝑥′ ↦−→ 𝑈+

𝐴𝑚(𝑥′, 0) −

𝜑(𝑥′) has a local minimum at 𝑥′
0. Then, either

A) there exists 𝜂 > 0, and a control 𝛼𝑖(·) ∈ 𝒜𝑚
𝑖 such that the corresponding trajectory

𝑌 𝑖
𝑥0(𝑠) ∈ 𝐷𝑖 for all 𝑠 ∈ (0, 𝜂] and

𝑈+
𝐴𝑚(𝑥0) ≥

∫︁ 𝜂

0
𝑙𝑖
(︁
𝑌 𝑖

𝑥0(𝑠), 𝛼𝑖(𝑠)
)︁
𝑒−𝜆𝑠𝑑𝑠+ 𝑈+

𝐴𝑚(𝑌 𝑖
𝑥0(𝜂))𝑒−𝜆𝜂

or
B) (𝐻𝑚

𝑇 )𝑟𝑒𝑔
(︁
𝑥0, 𝑈

+
𝐴𝑚 (𝑥0) , 𝐷ℋ𝜑(𝑥0)

)︁
≥ 0.

By Lemma 2.2.7 there exists 𝑇 and (𝑋𝑇
𝑥0 , 𝛼

𝑇 ) ∈ 𝜏 𝑟𝑒𝑔
𝐴𝑚(𝑥0) such that for 𝑠 ≤ 𝑇

𝑈+
𝐴𝑚(𝑥0) =

∫︁ 𝑠

0
𝑙(𝑋𝑇

𝑥0(𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥0 (𝑠)
)︁
𝑒−𝜆𝑠.

If case A) does not hold then there exists sequence 𝑡𝑘 that goes to 0 as 𝑘 goes to ∞

such that 𝑋𝑇
𝑥0(𝑡𝑘) ∈ 𝜕𝐷𝑖. However, for 𝑘 large enough 𝑋𝑇

𝑥0(𝑡𝑘) /∈ 𝜕𝐷𝑖 ∖ ℋ. This follows from
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the fact that there exists 𝑀 > 0 such that ||𝑏𝑖||𝐿∞(𝐷𝑖×𝐴𝑚
𝑖 ) ≤ 𝑀 , 𝑑(𝑥0, 𝜕𝐷𝑖 ∖ ℋ) > 𝑅̄ and

(𝐵𝑅̄(𝑥0) ∩ Ω𝑖) ⊂ 𝐷𝑖. Whence 𝑋𝑇
𝑥0(𝑡𝑘) ∈ ℋ ∩ 𝜕𝐷𝑖. Consequently,

𝑈+
𝐴𝑚(𝑥0) =

∫︁ 𝑡𝑘

0
𝑙(𝑋𝑇

𝑥0(𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈+
𝐴

(︁
𝑋𝑇

𝑥0 (𝑡𝑘)
)︁
𝑒−𝜆𝑡𝑘 .

We assume without lost of generality that the minimum 𝑈+
𝐴𝑚(𝑥′

0, 0) − 𝜑(𝑥′
0) is equal to 0,

then

𝜑(𝑥′
0) ≥

∫︁ 𝑡𝑘

0
𝑙(𝑋𝑇

𝑥0
(𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝜑

(︁
𝑋𝑇

𝑥0 (𝑡𝑘)
)︁
𝑒−𝜆𝑡𝑘 .

Let us define

𝐴[𝜑](𝑠) := 𝑋̇𝑇
𝑥0(𝑠) · ∇𝜑(𝑋𝑇

𝑥0(𝑠)) + 𝜆𝜑(𝑋𝑇
𝑥0(𝑠)) − 𝑙(𝑋𝑇

𝑥0(𝑠), 𝛼𝑇 (𝑠)).

Then ∫︁ 𝑡𝑘

0
𝐴[𝜑](𝑠)𝑑𝑠 ≥ 0. (3.4.1)

Now, assume by contradiction that

𝐻𝑚,𝑟𝑒𝑔
𝑇

(︁
𝑥0, 𝑈

+
𝐴𝑚 (𝑥0) , 𝐷ℋ𝜑(𝑥0)

)︁
< 0. (3.4.2)

Define 𝜀𝑘
𝑖 := {𝑠 ∈ (0, 𝑡𝑘) : 𝑋𝑇

𝑥0(𝑠) ∈ (𝐵𝑅̄(𝑥0) ∩ Ω𝑖)} and 𝜀𝑘
ℋ := {𝑠 ∈ (0, 𝑡𝑘) : 𝑋𝑇

𝑥0(𝑠) ∈

(𝐵𝑅̄(𝑥0) ∩ ℋ)}. Since 𝑋𝑇
𝑥0 is regular and thanks to Lemma 3.2.6, 𝐻𝑚,𝑟𝑒𝑔

𝑇 is continuous, then

by (3.4.2), for 𝑘 large enough, we obtain
∫︁ 𝑡𝑘

0
𝐴[𝜑](𝑠)1𝜀𝑘

ℋ
(𝑠)𝑑𝑠 ≤

∫︁ 𝑡𝑘

0
𝐻𝑚,𝑟𝑒𝑔

𝑇

(︁
𝑋𝑇

𝑥0(𝑠), 𝑈+
𝐴𝑚

(︁
𝑋𝑇

𝑥0(𝑠)
)︁
, 𝐷ℋ𝜑(𝑋𝑇

𝑥0(𝑠))
)︁
𝑑𝑠 < 0. (3.4.3)

On the other the hand, since 𝜀𝑘
𝑖 is an open set then

𝜀𝑘
𝑖 =

𝑛𝑖
𝑘⋃︁

𝑗=1
(𝑐𝑘

𝑖,𝑗, 𝑑
𝑘
𝑖,𝑗)

with 𝑋𝑇
𝑥0(𝑐𝑘

𝑖,𝑗), 𝑋𝑇
𝑥0(𝑑𝑘

𝑖,𝑗) ∈ ℋ and 𝑋̇𝑇
𝑥0 = 𝑏𝑖(𝑋𝑇

𝑥0 , 𝛼) on (𝑐𝑘
𝑖,𝑗, 𝑑

𝑘
𝑖,𝑗). Consider 𝑑(𝑥) := 𝑥𝑁 , then

0 = 𝑑(𝑋𝑇
𝑥0(𝑑𝑘

𝑖,𝑗)) − 𝑑(𝑋𝑇
𝑥0(𝑐𝑘

𝑖,𝑗)) =
∫︁ 𝑑𝑘

𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑋𝑇
𝑥0(𝑠), 𝛼(𝑠)) · 𝑒𝑁𝑑𝑠. (3.4.4)

Furthermore,
∫︁ 𝑑𝑘

𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑋𝑇
𝑥0(𝑠), 𝛼(𝑠))𝑑𝑠 =

∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑋𝑇
𝑥0(𝑠), 𝛼(𝑠)) − 𝑏𝑖(𝑥0, 𝛼(𝑠))𝑑𝑠+

∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑥0, 𝛼(𝑠))𝑑𝑠.

Since ⃒⃒⃒⃒
⃒
∫︁ 𝑑𝑘

𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑋𝑇
𝑥0(𝑠), 𝛼(𝑠)) − 𝑏𝑖(𝑥0, 𝛼(𝑠))𝑑𝑠

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑏||𝑋𝑇

𝑥0(·) − 𝑥0||(𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗).
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Therefore, ∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑋𝑇
𝑥0(𝑠), 𝛼(𝑠))𝑑𝑠 =

∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑥0, 𝛼(𝑠))𝑑𝑠+𝑂(𝑘) (3.4.5)

with 𝑂(𝑘)
(𝑑𝑘

𝑖,𝑗−𝑐𝑘
𝑖,𝑗) → 0 when 𝑘 → ∞. Now we calculate the Riemann integral

∫︀ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗
𝑏𝑖(𝑥, 𝛼(𝑠))𝑑𝑠.

For each 𝑘. We partition (𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗) in 𝑛 equal parts, 𝐼1, · · · , 𝐼𝑛 of length 𝑑𝑘
𝑖,𝑗−𝑐𝑘

𝑖,𝑗

𝑛
. For each

𝑧 ≤ 𝑛, we choose 𝑠𝑧 ∈ 𝐼𝑧. By convexity of ℬ𝑖(𝑥0) there exists 𝛼𝑘,𝑛*
𝑖 ∈ 𝐴𝑚

𝑖 such that

𝑛∑︁
𝑧=1

𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗

𝑛
𝑏𝑖(𝑥0, 𝛼(𝑠𝑧)) = (𝑑𝑘

𝑖,𝑗 − 𝑐𝑘
𝑖,𝑗)

𝑛∑︁
𝑧=1

1
𝑛
𝑏𝑖(𝑥0, 𝛼(𝑠𝑧)) = (𝑑𝑘

𝑖,𝑗 − 𝑐𝑘
𝑖,𝑗)𝑏𝑖(𝑥0, 𝛼

𝑘,𝑛*
𝑖,𝑗 )

Since ℬ𝑖(𝑥0) is a closed set, taking limits as 𝑛 goes to infinity, we find 𝛼𝑘*
𝑖,𝑗 ∈ 𝐴𝑚

𝑖 such that

∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝑏𝑖(𝑥0, 𝛼(𝑠))𝑑𝑠 = (𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗)𝑏𝑖(𝑥0, 𝛼
𝑘*
𝑖,𝑗) (3.4.6)

By (3.4.6), (3.4.4) and taking the inner product in (3.4.5) with 𝑒𝑁 , we obtain

𝑏𝑘*
𝑖,𝑗,𝑁 := −𝑏𝑖(𝑥0, 𝛼

𝑘*
𝑖,𝑗) · 𝑒𝑁 = − 𝑂(𝑘) · 𝑒𝑁

(𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗)
→ 0. (3.4.7)

The above definition, plays a key role in approximating 𝛼𝑘*
𝑖,𝑗 by regular controls. In fact, let

𝛿 > 0 and define

𝛽𝑘
𝑗 := min

{︃
𝛿 − 2|𝑏𝑘*

1,𝑗,𝑁 |
𝛿

,
𝛿 − 2|𝑏𝑘*

2,𝑗,𝑁 |
𝛿

}︃
.

Since 𝑏𝑘*
𝑖,𝑗,𝑁 goes to 0 when 𝑘 → ∞ then 𝛽𝑘

𝑗 → 1 when 𝑘 → ∞.

If 𝛽𝑘
𝑗 = 1, then |𝑏𝑘*

1,𝑗,𝑁 | = 0 = |𝑏𝑘*
2,𝑗,𝑁 |. Thus, we can take

𝛼𝑘**
𝑖,𝑗 := 𝛼𝑘*

𝑖,𝑗, such that 𝑏𝑖(𝑥0, 𝛼
𝑘**
𝑖,𝑗 ) · 𝑒𝑁 = 0.

On the other hand, if 𝛽𝑘
𝑗 ̸= 1. Since for 𝑘 large enough |𝛽𝑘

𝑗 | ≤ 1 and |𝑏𝑘*
𝑖,𝑗,𝑁 |

1−𝛽𝑘
𝑗

≤ 𝛿
2 , then by

convexity of ℬ𝑖(𝑥0), there exists 𝛼𝑘**
𝑖,𝑗 ∈ 𝐴𝑚

𝑖 satisfying

𝑏𝑖(𝑥0, 𝛼
𝑘**
𝑖,𝑗 ) := 𝛽𝑘

𝑗 𝑏𝑖(𝑥0, 𝛼
𝑘*
𝑖,𝑗(𝑠)) + (1 − 𝛽𝑘

𝑗 )
(︂

𝛽𝑘
𝑗 𝑏𝑘*

𝑖,𝑗,𝑁 𝑒𝑁

1−𝛽𝑘
𝑗

)︂
= 𝛽𝑘

𝑗

(︁
𝑏𝑖(𝑥0, 𝛼

𝑘*
𝑖,𝑗) + 𝑏*𝑘

𝑖,𝑗,𝑁 𝑒𝑁

)︁
.

Therefore, due to (3.4.7), 𝑏𝑖(𝑥0, 𝛼
𝑘**
𝑖,𝑗 ) · 𝑒𝑁 = 0, then 𝛼𝑘**

𝑖,𝑗 ∈ 𝐴𝑟𝑒𝑔
0 (𝑥0).

∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝐴[𝜑](𝑠)𝑑𝑠 = (𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗)
(︁
𝑏𝑖(𝑥0, 𝛼

𝑘**
𝑖,𝑗 (𝑠)) · ∇𝜑(𝑥0) + 𝜆𝜑(𝑥0) − 𝑙𝑖(𝑥0, 𝛼

𝑘**
𝑖,𝑗 (𝑠))

)︁
+𝑂(𝑘)

≤ (𝑑𝑘
𝑖,𝑗 − 𝑐𝑘

𝑖,𝑗)𝐻
𝑚,𝑟𝑒𝑔
𝑇

(︁
𝑥0, 𝑈

+
𝐴𝑚 (𝑥0) , 𝐷ℋ𝜑(𝑥0)

)︁
+𝑂(𝑘).
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Due to (3.4.2), for 𝑘 large enough ∫︁ 𝑑𝑘
𝑖,𝑗

𝑐𝑘
𝑖,𝑗

𝐴[𝜑](𝑠)𝑑𝑠 < 0. (3.4.8)

From (3.4.3) and (3.4.8) we obtain that,∫︁ 𝑡𝑘

0
𝐴[𝜑](𝑠)𝑑𝑠 < 0

which is a contradiction with (3.4.1).

In the following result we obtain a local comparison result for 𝑈+
𝐴𝑚 in the ball of radius 𝑅,

where we compare 𝑈+
𝐴𝑚 with any subsolution of the Ishii problem, and not with subsolutions

of the Ishii problem and the tangential Hamiltonian at the same time, as we did in Theorem

3.2.2.

Theorem 3.4.4 Assume hypotheses (HB) and (HC). Let 𝑢 be a locally bounded subsolution
of (3.0.4). Let 𝑥 ∈ 𝑅𝑁 , 𝑅 > 0, we obtain

max
𝐵𝑅(𝑥)

(𝑢− 𝑈+
𝐴𝑚)+ ≤ max

𝜕𝐵𝑅(𝑥)
(𝑢− 𝑈+

𝐴𝑚)+.

The proof is analogous to the one in Theorem 3.2.2.

As before, we regularize 𝑢 via convolution, obtaining 𝑢𝜖 in 𝑉𝜖 := {𝑥 ∈ 𝐵𝑅(𝑥)| 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐵𝑅(𝑥)) >

2𝜖}. Define 𝑢̄𝜖 := 𝑢𝜖 −𝜁(𝜖), where 𝜁 is as in Lemma 3.2.7, and 𝑀𝜖 := sup𝑉 𝜖
(𝑢̄𝜖 −𝑈+

𝐴𝑚). Since

𝑢̄𝜖 − 𝑈+
𝐴𝑚 is continuous functions then the supreme is achieved on the compact 𝑉 𝜖. Thus,

there exists 𝑥𝜖 ∈ 𝑉 𝜖 such that 𝑀𝜖 = 𝑢̄𝜖(𝑥𝜖) − 𝑈+
𝐴𝑚(𝑥𝜖). Let us assume that 𝑀𝜖 > 0. We

divide the proof in two cases:

Case 1: 𝑥𝜖 ∈ Ω𝑖 ∩ 𝑉𝜖, and case 2: 𝑥𝜖 ∈ ℋ ∩ 𝑉𝜖.

The proof is the same as in Theorem 3.2.2 for case 1. For case 2, we change 𝐻𝑚
𝑇 by

𝐻𝑚,𝑟𝑒𝑔
𝑇 . Thanks to Theorem 3.4.2, since 𝑢̄𝜖 is a subsolution of the Ishii problem (3.0.4), then

we have

𝐻𝑚,𝑟𝑒𝑔
𝑇 (𝑥𝜖, 𝑢̄𝜖(𝑥𝜖), 𝐷ℋ𝑢̄𝜖(𝑥𝜖)) ≤ 0.

Then we apply Theorem 3.4.3, and the rest of the proof is analogous.

The following results states that 𝑈+
𝐴 is the maximal subsolution of the Ishii problem.

Corollary 3.4.4.1 Assume hypotheses (HA), (HB), (HC), LOC 1 and LOC 2. Let 𝑢 be a
locally bounded subsolution of the Ishii problem (3.0.1). Then 𝑈+

𝐴 is maximal subsolution of
(3.0.1), that is

𝑢(𝑥) ≤ 𝑈+
𝐴 (𝑥) for all 𝑥 ∈ 𝑅𝑁 .
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Let 𝑢 be a locally bounded subsolution of 3.0.1 then 𝑢 is a subsolution of the Ishii problem

associated to the compact control set 𝐴𝑚, 3.0.4, for all 𝑚 ∈ 𝑁 . Thanks to Theorem 3.4.4 and

Theorem 3.3.1, we have 𝑢(𝑥) ≤ 𝑈+
𝐴𝑚(𝑥) for all 𝑥 ∈ 𝑅𝑁 . Taking limits as 𝑚 goes to infinity

we obtain 𝑢(𝑥) ≤ 𝑈+
𝐴 (𝑥) for all 𝑥 ∈ 𝑅𝑁 .

3.5 EXAMPLE OF NONLINEAR HAMILTONIAN WITH UNBOUNDED ASSOCIATED CON-

TROL SET

Let us consider the following nonlinear Hamiltonian which has associated unbounded con-

trol sets

𝐻𝑖(𝑥, 𝑢, 𝑝) = 𝜆𝑢+ 𝑑𝑖(𝑥)𝜉|𝑝|𝜉 − 𝑓𝑖(𝑥).

For this example, we consider the dynamic function

𝑏𝑖(𝑥, 𝛼𝑖) := 𝑐𝜉𝑑(𝑥)|𝛼𝑖|𝜉−2𝛼𝑖, where 0 < 𝑑𝑖(𝑥) ≤ |𝑥|𝛽 is locally Lipschitz and 𝑐𝜉 = 𝜉
𝜉

√︁
(𝜉 − 1)𝜉−1

(3.5.1)

and the cost function

𝑙𝑖(𝑥, 𝛼𝑖) := 𝑓𝑖(𝑥) + |𝛼𝑖|𝜉 with 0 ≤ 𝑓𝑖(𝑥) ≤ 𝐶𝑓 |𝑥|𝜁−𝜀 + 𝐶𝑓 , with 𝑓𝑖 continuous in Ω𝑖.

We consider the constant 𝜆 satisfying

𝜆 ≥ 𝜁𝜉.

Observe that 𝑏𝑖 and 𝑙𝑖 satisfy hypothesis (HA), (HB) and (HC). Indeed 𝑏𝑖(𝑥, 0) = 0, and

given 𝑣 in 𝑅𝑁 different from zero and 𝑥 ∈ 𝑅𝑁 , there exists a control 𝛼𝑖 such that 𝑏𝑖(𝑥, 𝛼𝑖) = 𝑣,

where 𝛼𝑖 is given by

𝛼𝑖 := ( |𝑣|
𝑐𝜉𝑑(𝑥))

1
𝜉−1

𝑣

|𝑣|
This implies that, 𝑅𝑁 ⊂ ℬ𝑖(𝑥) for any 𝑥 ∈ 𝑅𝑁 , and hypothesis (HC) is satisfied. Let us verify

that hypothesis (HA) is satisfied,

lim
|𝛼𝑖|→∞

𝑙𝑖(𝑥, 𝛼𝑖)
1 + |𝑏𝑖(𝑥, 𝛼𝑖)|

= lim
|𝛼𝑖|→∞

𝑓𝑖(𝑥) + |𝛼𝑖|𝜉

𝑐𝜉𝑑(𝑥)|𝛼𝑖|𝜉−1 = ∞.

Let 𝑚 ∈ (0,∞), we consider the compact control sets

𝐴𝑚 := 𝐵𝑚(0) ⊂ 𝑅𝑁 ,

then we denote

𝐵𝑚
𝑖 (𝑥) := {𝑏𝑖(𝑥, 𝛼𝑖) |𝛼𝑖 ∈ 𝐵𝑚(0)}
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and

𝐿𝑚
𝑖 (𝑥) := {𝑙𝑖(𝑥, 𝛼𝑖) |𝛼𝑖 ∈ 𝐵𝑚(0)}.

The sets 𝐵𝑚
𝑖 (𝑥) and 𝐿𝑚

𝑖 (𝑥) are convex, but 𝐵𝐿𝑚
𝑖 (𝑥) := {(𝑏𝑖(𝑥, 𝛼𝑖), 𝑙𝑖(𝑥, 𝛼𝑖))|𝛼𝑖 ∈ 𝐵𝑚(0)}

may not be convex, what is necessary in hypothesis (HC). Indeed, let 𝛼𝑖, 𝛼𝑖 ∈ 𝐵𝑚(0)

(1 − 𝜇)𝑏𝑖(𝑥, 𝛼𝑖) + 𝜇𝑏𝑖(𝑥, 𝛼𝑖) = 𝑏𝑖(𝑥, 𝛼𝑏*
𝑖 )

(1 − 𝜇)𝑙𝑖(𝑥, 𝛼𝑖) + 𝜇𝑙𝑖(𝑥, 𝛼𝑖) = 𝑙𝑖(𝑥, 𝛼𝑙*
𝑖 )

where

|𝛼𝑏*
𝑖 | = (|(1 − 𝜇)|𝛼𝑖|𝜉−2𝛼𝑖 + 𝜇|𝛼𝑖|𝜉−2𝛼𝑖|)

1
𝜉−1

|𝛼*𝑙
𝑖 | = ((1 − 𝜇)|𝛼𝑖|𝜉 + 𝜇|𝛼𝑖|𝜉)

1
𝜉 .

Consequently,

|𝛼𝑏*
𝑖 |, |𝛼𝑙*

𝑖 | ≤ max{|𝛼𝑖|, |𝛼𝑖|}.

Thus, 𝛼𝑏*
𝑖 , 𝛼

𝑙*
𝑖 ∈ 𝐵𝑚(0) and 𝐵𝑚

𝑖 (𝑥) and 𝐿𝑚
𝑖 (𝑥) are convex . To address this problem we

consider the convex hull of 𝐵𝐿𝑚
𝑖 (𝑥) and we work with ℬℒ𝑚(𝑥) defined as

ℬℒ𝑚(𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑜 (𝐵𝑚
1 (𝑥) × 𝐿𝑚

1 (𝑥)) if 𝑥𝑁 > 0

𝑐𝑜 (𝐵𝑚
2 (𝑥) × 𝐿𝑚

2 (𝑥)) if 𝑥𝑁 < 0

𝑐𝑜((𝐵𝑚
1 (𝑥) × 𝐿𝑚

1 (𝑥)) ∪ (𝐵𝑚
2 (𝑥) × 𝐿𝑚

2 (𝑥))) if 𝑥𝑁 = 0.

(3.5.2)

To define the value functions and the Hamiltonians associated to ℬℒ𝑚(𝑥). We consider first,

𝜏𝑥(𝐴𝑚), the set of all trajectories, denoted by (𝑋, 𝑌 ), which are Lipschitz functions, solutions

of the differential inclusion (𝑋̇, 𝐿̇)(𝑠) ∈ ℬℒ𝑚(𝑋(𝑠)) with 𝑋(0) = 𝑥. Now, we define the value

function

𝑈
−
𝐴𝑚(𝑥) := inf

𝜏𝑥(𝐴𝑚)

∫︁ ∞

0
𝐿̇(𝑠)𝑒−𝜆𝑠𝑑𝑠

We define the Hamiltonian associated to compact control set as follow

𝐻
𝑚

𝑖 (𝑥, 𝑢, 𝑝) := sup
ℬℒ𝑚(𝑥)

−𝑏 · 𝑝− 𝑙 + 𝜆𝑢

Let us introduce the dynamic and cost functions such that will be considered to define the

tangential Hamiltonians. We recall that 𝑏ℋ(𝑥, 𝛼) = 𝜇𝑏1(𝑥, 𝛼1) + (1 − 𝜇)𝑏2(𝑥, 𝛼2), where

(𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝑚
1 × 𝐴𝑚

2 × [0, 1],then we consider

ℬℒ𝑚
𝑇 (𝑥) := {(𝑏ℋ, 𝑙ℋ), 𝑤𝑖𝑡ℎ(𝑏, 𝑙) ∈ ℬℒ𝑚(𝑥) | 𝑏ℋ · 𝑒𝑁 = 0},
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then we define the tangential Hamiltonian as

𝐻
𝑚
𝑇 (𝑥, 𝑢, 𝑝) := sup

ℬℒ𝑚
𝑇 (𝑥)

−𝑏 · 𝑝− 𝑙 + 𝜆𝑢.

Now, we consider the regular trajectories. We say that 𝑏ℋ is regular if 𝑏1·𝑒𝑁 ≤ 0 and 𝑏2·𝑒𝑁 ≥ 0,

then we define

ℬℒ𝑚,𝑟𝑒𝑔
𝑇 (𝑥) := {(𝑏ℋ, 𝑙ℋ) ∈ ℬℒ𝑚

𝑇 (𝑥) | 𝑏ℋ is regular},

then the regular tangential Hamiltonian is defined as

𝐻
𝑚,𝑟𝑒𝑔
𝑇 (𝑥, 𝑢, 𝑝) := sup

ℬℒ𝑚,𝑟𝑒𝑔
𝑇 (𝑥)

−𝑏 · 𝑝− 𝑙 + 𝜆𝑢.

Finally we define

𝑈
+
𝐴𝑚(𝑥) := inf

𝜏𝑟𝑒𝑔
𝑥 (𝐴𝑚)

∫︁ ∞

0
𝐿̇(𝑠)𝑒−𝜆𝑠𝑑𝑠.

where

𝜏 𝑟𝑒𝑔
𝑥 (𝐴𝑚) := {(𝑋, 𝑌 ) ∈ 𝜏𝑥(𝐴𝑚) | 𝑋̇(𝑠) is regular for 𝑋(𝑠) ∈ ℋ}

Below we give some results related to the convex hull, that will be useful to prove that

the Hamiltonians, 𝐻𝑖, that we have defined, with the convex hull of the dynamic and cost

functions, are equal to the Hamiltonians, 𝐻𝑖, that we consider without the convex hull.

Let us consider first the definition of a convex hull of a compact set 𝐾 ⊂ 𝑅𝑁 ,

𝑐𝑜(𝐾) =
{︂∫︁

𝐾
Λ𝑑𝜇(Λ) : 𝜇 probability measure on 𝐾

}︂
.

The result below states that the supremum in the convex hull of a compact set is equal to the

supremum in the compact set.

Lemma 3.5.1 Let 𝐹 : 𝑅𝑝 → 𝑅 be a convex function and 𝐾 ⊂ 𝑅𝑝 compact. Then

sup
Λ∈𝑐𝑜(𝐾)

𝐹 (Λ) = sup
Λ∈𝐾

𝐹 (Λ).

For each 𝜖 > 0, we consider 𝐹𝜖(Λ) := 𝐹 (Λ)+𝜖|Λ|2 which is strictly convex. Notice that 𝑐𝑜(𝐾)

is compact: it is clearly closed by definition and since 𝐾 is bounded, any convex combination

of elements of K is also bounded by some fixed constant.

The supremum of 𝐹𝜖 over 𝑐𝑜(𝐾) is attained at a point Λ𝜖 ∈ 𝑐𝑜(𝐾), associated to a

measure 𝜇𝜖. If 𝜇 is not trivial (i.e. not a Dirac Delta), then we reach a contradiction. From

Jensen’s inequality (for a strictly convex function) we have

sup
Λ∈𝑐𝑜(𝐾)

𝐹𝜖(Λ) = 𝐹𝜖(
∫︁

𝐾
Λ𝑑𝜇𝜖(Λ)) <

∫︁
𝐾
𝐹𝜖(Λ)𝑑𝜇𝜖(Λ)) ≤ sup

Λ∈𝐾
𝐹𝜖(Λ).
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So, necessarily the convex combination for Λ𝜖 is trivial, in other words 𝜇𝜖 = 𝛿Λ𝜖 and Λ𝜖 ∈ 𝐾.

Now,

sup
𝑐𝑜(𝐾)

𝐹 ≤ sup
𝑐𝑜(𝐾)

𝐹𝜖 = 𝐹 (Λ𝜖) + 𝜖|Λ𝜖|2 ≤ sup
𝐾
𝐹 + 𝜖|Λ𝜖|2

and since K is compact, Λ𝜖 → Λ* ∈ 𝐾 at least along a subsequence. So, passing to the limit

as 𝜖 goes to 0, yields that

sup
𝑐𝑜(𝐾)

𝐹 ≤ sup
𝐾
𝐹.

which gives the result. The other inequality is trivial.

We apply now this lemma to the Hamiltonians associated to compact control sets.

Corollary 3.5.1.1

𝐻𝑚
𝑖 = 𝐻

𝑚
𝑖 , 𝐻𝑚

𝑇 = 𝐻
𝑚
𝑇 , and 𝐻𝑚,𝑟𝑒𝑔

𝑇 = 𝐻
𝑚,𝑟𝑒𝑔
𝑇 .

Thanks to Lemma 3.5.1, considering 𝐹 (𝑏, 𝑙) = −𝑏 ·𝑝− 𝑙 and 𝐾 = 𝐵𝐿𝑖(𝑥), 𝐾 = 𝐵𝐿𝑇 (𝑥) and

𝐾 = 𝐵𝐿𝑟𝑒𝑔
𝑇 (𝑥), respectively, we obtain the results.

Since we have proved that hypotheses (HA), (HB) and (HC) are satisfied for the convex

hull of 𝑏 and 𝑙 in the example, then we can obtain the main results in Chapter 1 and Chapter

2. In particular we have

Proposition 3.5.2 𝑈
−
𝐴𝑚(𝑥) and 𝑈+

𝐴𝑚(𝑥) are solutions of the Ishii problem. Moreover, 𝑈−
𝐴𝑚(𝑥)

is subsolution of 𝐻𝑚
𝑇 and 𝑈+

𝐴𝑚(𝑥) is subsolution of 𝐻𝑚,𝑟𝑒𝑔
𝑇

We denote the value functions associated to the unbounded control set, 𝑅𝑁 , by 𝑈−
𝐴(𝑥),

and 𝑈+
𝐴(𝑥). We define them analogously to 𝑈−

𝐴𝑚(𝑥), and 𝑈+
𝐴𝑚(𝑥) just changing the control

set 𝐴𝑚 by 𝑅𝑁 .

Proposition 3.5.3 𝑈
−
𝐴(𝑥), 𝑈+

𝐴(𝑥) are solutions of Ishii problem (3.0.1). Moreover, 𝑈−
𝐴(𝑥) is

subsolution of 𝐻𝑇 and 𝑈+
𝐴(𝑥) is subsolution of 𝐻𝑟𝑒𝑔

𝑇 .

Proof of Propositions 3.5.2 and 3.5.3: is analogous to the proof of Theorems 2.4.1 and

2.4.2. We do not use the convexity of 𝐵𝐿𝑖(𝑥) to prove that the value functions are su-

persolutions of the respective Hamiltonians. But we use the convexity to proof that they are

subsolutions of 𝐻 = min{𝐻1, 𝐻2}, 𝐻𝑇 and 𝐻𝑟𝑒𝑔
𝑇 . We use convexity to approximate a dynamic

𝑏𝑖(𝑥, 𝛼𝑖) such that 𝑏𝑖(𝑥, 𝛼𝑖) · 𝑒𝑁 = 0 and

𝐻𝑖(𝑥, 𝜑(𝑥),∇𝜑(𝑥)) = (−𝑙𝑖(𝑥, 𝛼𝑖) + 𝜆𝜑 (𝑥) − 𝑏𝑖 (𝑥, 𝛼𝑖) · ∇𝜑 (𝑥)).
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For regular trajectories, we approximate by dynamics 𝑏𝑖(𝑥, 𝛼𝜈𝑏*
𝑖 ) such that 𝑏𝑖(𝑥, 𝛼𝜈𝑏*

𝑖 ) · 𝑒𝑁 is

strictly positive or negative with 0 < 𝜈 < 1. We choose controls 𝛼𝜈𝑏*
𝑖 and 𝛼𝜈𝑙*

𝑖 that satisfy

𝑏𝑖

(︁
𝑥, 𝛼𝜈𝑏*

𝑖

)︁
= 𝜈𝑏𝑖 (𝑥, 𝛼̃𝑖) + (1 − 𝜈)𝑏𝑖 (𝑥, 𝛼𝑖)

𝑙𝑖
(︁
𝑥, 𝛼𝜈𝑙*

𝑖

)︁
= 𝜈𝑙𝑖 (𝑥, 𝛼̃𝑖) + (1 − 𝜈)𝑙𝑖 (𝑥, 𝛼𝑖) .

where 𝑏𝑖(𝑥, 𝛼̃𝑖) = (−1)𝑖𝛿𝑒𝑁 . Moreover, we have 𝑏𝑖

(︁
𝑥, 𝛼𝜈𝑏*

𝑖

)︁
, 𝑙𝑖
(︁
𝑥, 𝛼𝜈𝑙*

𝑖

)︁
converges to (𝑏𝑖 (𝑥, 𝛼2) , 𝑙𝑖 (𝑥, 𝛼𝑖))

as 𝜈 goes to 0. Arguing as in Theorem 2.4.2 and thanks to Lemma 3.5.1, we obtain

𝐻(𝑥, 𝜑(𝑥),∇𝜑(𝑥)) = 𝐻(𝑥, 𝜑(𝑥),∇𝜑(𝑥)) ≤ 0.

We obtain also a local comparison result for this example.

Theorem 3.5.4 Let 𝑢 be a locally bounded subsolution of (3.0.1). Let 𝑥 ∈ 𝑅𝑁 , 𝑅 > 0, then

max
𝐵𝑅(𝑥)

(𝑢− 𝑈
+
𝐴𝑚)+ ≤ max

𝜕𝐵𝑅(𝑥)
(𝑢− 𝑈

+
𝐴𝑚)+

The proof is similar to the one in Theorem 3.4.4 We just modify the part that uses the

convexity of 𝐵𝐿𝑖(𝑥). In fact, we only need the convexity of 𝐵𝑖(𝑥) and 𝐿𝑖(𝑥) this is enough so

we do not need to use relaxed controls in Theorem 3.2.1. Moreover, let 𝜇𝑗 with 0 ≤ 𝜇𝑗 ≤ 1

and ∑︀𝑛
𝑗=1 𝜇𝑗 = 1 then there exists 𝛼𝑏*

𝑖 , 𝛼
𝑙*
𝑖 ∈ 𝐴𝑚

𝑖 such that

𝑛∑︁
𝑗=1

𝜇𝑗(𝑏𝑖(𝑥, 𝛼𝑗), 𝑙𝑖(𝑥, 𝛼𝑗)) = (𝑏𝑖(𝑥, 𝛼𝑏*
𝑖 ), 𝑙𝑖(𝑥, 𝛼𝑙*

𝑖 )).

Thus, if (𝛼𝑏*
1 , 𝛼

𝑏*
2 ) ∈ ℬℒ𝑚,𝑟𝑒𝑔

𝑇 (𝑥) then by definition of 𝐻 𝑚,𝑟𝑒𝑔
𝑇 (𝑥, 𝑢, 𝑝) and Lemma 3.5.1, we

obtain

−𝑏ℋ(𝑥, 𝛼𝑏*
1 , 𝛼

𝑏*
2 ) · 𝑝− 𝑙ℋ(𝑥, 𝛼𝑙*

1 , 𝛼
𝑙*
2 ) + 𝜆𝑢 ≤ 𝐻

𝑚,𝑟𝑒𝑔
𝑇 (𝑥, 𝑢, 𝑝) = 𝐻𝑚,𝑟𝑒𝑔

𝑇 (𝑥, 𝑢, 𝑝).

To obtain global comparison results we need to verify that for our example, hypotheses LOC

1 and LOC 2 are satisfied. To do this, we assume some growing conditions on the subsolutions

and supersolutions.

Recall that in the example, we consider the dynamic function

𝑏𝑖(𝑥, 𝛼𝑖) := 𝑐𝜉𝑑(𝑥)|𝛼𝑖|𝜉−2𝛼𝑖, where 0 < 𝑑𝑖(𝑥) ≤ |𝑥|𝛽 is locally Lipschitz and 𝑐𝜉 = 𝜉
𝜉

√︁
(𝜉 − 1)𝜉−1

,
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with 𝜉 > 1, and cost function

𝑙𝑖(𝑥, 𝛼𝑖) := 𝑓𝑖(𝑥) + |𝛼𝑖|𝜉 with 0 ≤ 𝑓𝑖(𝑥) ≤ 𝐶𝑓 |𝑥|𝜁−𝜀 + 𝐶𝑓 , with 𝑓𝑖 continuous in Ω𝑖.

We consider the constant 𝜆 satisfying

𝜆 ≥ 𝜁𝜉.

Let 𝒞 be the set of subsolutions of (3.0.1),(3.0.2) and supersolutions of (3.0.1) with growth

|𝑥|𝜁−𝜖, where 𝜁 is related with 𝛽 and 𝜉, constants that define the dynamic and cost functions.

Then any 𝜔 ∈ 𝒞 satisfies

|𝜔(𝑥)| ≤ 𝐶𝜔|𝑥|𝜁−𝜖 + 𝐶𝜔 where 𝜁 ≥ (𝜁 − 1)𝜉 + 𝛽𝜉. (3.5.3)

We will prove that any function in 𝒞 satisfies hypotheses LOC 1, LOC 2 and then use

Theorem 3.3.1, to obtain the global comparison result. Moreover since

𝑈
−
𝐴(𝑥) ≤ 𝑈

−
𝐴𝑚(𝑥), 𝑈+

𝐴(𝑥) ≤ 𝑈
+
𝐴𝑚(𝑥) and 𝑈

+
𝐴𝑚(𝑥), 𝑈−

𝐴𝑚(𝑥) ≤ 𝐶𝑓𝑖

𝜆
|𝑥|𝜁−𝜖 + 𝐶𝑚

the value functions 𝑈+
𝐴(𝑥), 𝑈−

𝐴(𝑥) are in the set of solutions 𝒞 for which we will prove global

comparison results.

Let us start computing the Hamiltonian

𝐻𝑖(𝑥, 𝑢, 𝑝) = 𝜆𝑢− 𝑓𝑖(𝑥) + sup
𝐴𝑖

(︁
𝑐𝜉𝑑𝑖(𝑥)|𝛼𝑖|𝜉−2𝛼𝑖 · 𝑝− |𝛼𝑖|𝜉

)︁
.

Let 𝑦 = |𝛼𝑖|,

𝑐𝜉|𝛼𝜉−2
𝑖 |𝛼𝑖 · 𝑝− |𝛼𝑖|𝜉 ≤ −𝑦𝜉 + 𝑐𝜉𝑑𝑖(𝑥)|𝑝|𝑦𝜉−1

Thus differentiating, we obtain that −𝑦𝜉 + 𝑐𝜉𝑑𝑖(𝑥)|𝑝|𝑦𝜉−1 reaches its maximum in 𝑦 = 0

or in 𝑦 = 𝑐𝜉𝑑𝑖(𝑥)|𝑝| 𝜉−1
𝜉

. Due to the choice of 𝑐𝜉 the maximum is 𝑑𝑖(𝑥)𝜉|𝑝|𝜉. So that,

𝐻𝑖(𝑥, 𝑢, 𝑝) = 𝜆𝑢+ 𝑑𝑖(𝑥)𝜉|𝑝|𝜉 − 𝑓𝑖(𝑥).

Fixed 𝜁 > 1, we want to find a differentiable subsolution with growth ∼ |𝑥|𝜁 . A good candidate

is

−(1 + |𝑥|2𝜁)1/2 ∼ −|𝑥𝜁 |

which is differentiable for 2𝜁 > 1.

Let us compute for which values of 𝜉 and 𝛽 we have −(1 + |𝑥|2𝜁)1/2 is a subsolution.

we have

|∇(1 + |𝑥|2𝜁)1/2| = 𝜁
|𝑥|2𝜁−1√︁
|𝑥|2𝜁 + 1

< 𝜁
|𝑥|2𝜁−1√︁

|𝑥|2𝜁
= 𝜁|𝑥|𝜁−1.
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Therefore,

|∇(1 + |𝑥|2𝜁)1/2|𝜉 < 𝜁𝜉|𝑥|(𝜁−1)𝜉.

Since 𝑑𝑖(𝑥) has growth |𝑥|𝛽 and 𝜆 ≥ 𝜁𝜉 then for (𝜁, 𝜉, 𝛽) satisfying

𝜁 ≥ (𝜁 − 1)𝜉 + 𝛽𝜉, (3.5.4)

we obtain that for |𝑥| ≥ 1,

𝐻𝑖(𝑥,−(1 + |𝑥|2𝜁)1/2,−∇(1 + |𝑥|2𝜁)1/2) ≤ −𝜆(1 + |𝑥|2𝜁)1/2 + 𝜁𝜉|𝑥|𝜉(𝜁−1+𝛽) − 𝑓𝑖(𝑥)

≤ −𝜆|𝑥|𝜁 + 𝜁𝜉|𝑥|𝜉(𝜁−1+𝛽) − 𝑓𝑖(𝑥)

≤ 0.

For |𝑥| < 1

𝐻𝑖(𝑥,−(1 + |𝑥|2𝜁)1/2,−∇(1 + |𝑥|2𝜁)1/2) ≤ −𝜆(1 + |𝑥|2𝜁)1/2 + 𝜁𝜉|𝑥|𝜉(𝜁−1+𝛽) − 𝑓𝑖(𝑥)

≤ −𝜆+ 𝜁𝜉 − 𝑓𝑖(𝑥)

≤ 0.

By definition of 𝑐𝜉, we have 𝜉 > 1.

Fix 𝜁 > 1. Now, let us focus on finding values for 𝜉 and 𝛽 such that for which −(1+|𝑥|2𝜁)1/2

is subsolution of (3.0.1) and 3.0.3, and

𝜁 ≥ (𝜁 − 1)𝜉 + 𝛽𝜉.

we have 1 < 𝜉 ≤ 𝜁
𝜁−1+𝛽

and consequently 𝛽 < 1. Thus, fixed 𝛽 ∈ [0, 1), we have for any

𝜉 ∈ (1, 𝜁
𝜁−1+𝛽

] .

On the other hand, let us fix 𝜉, 𝛽 and seek values of 𝜁 for which −(1 + |𝑥|2𝜁)1/2 is

subsolution of (3.0.1) and 3.0.3. Since 𝜉 > 1, then 0 < 𝜁 ≤ 𝜉
𝜉−1(1 − 𝛽). In order to obtain

that −(1 + |𝑥|2𝜁)1/2 is differentiable, we need that 𝜉
𝜉−1(1 − 𝛽) > 1

2 , that is,

𝛽 <
𝜉 + 1

2𝜉 .

Chosen 𝛽 ∈ (0, 𝜉+1
2𝜉

), we can take any 𝜁 ∈ (1
2 ,

𝜉
𝜉−1(1 − 𝛽)) .

Now since (𝜁, 𝛽, 𝜉) satisfies (3.5.4) and 𝜆 ≥ 𝜁𝜉. In particular if 𝑦 ∈ ℋ then

𝐻1(𝑦,−(|𝑦|2𝜁 + 1) 1
2 ,−∇(|𝑦|2𝜁 + 1) 1

2 ) ≤ 0, and 𝐻2(𝑦,−(|𝑦|2𝜁 + 1) 1
2 ,−∇(|𝑦|2𝜁 + 1) 1

2 ) ≤ 0.

(3.5.5)
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Consequently,

min{𝐻1(𝑦,−(|𝑦|2𝜁 + 1) 1
2 ,−∇(|𝑦|2𝜁 + 1) 1

2 ), 𝐻2(𝑦,−(|𝑦|2𝜁 + 1) 1
2 ,−∇(|𝑦|2𝜁 + 1) 1

2 )} ≤ 0.

Moreover defining

𝑆(𝑦1, · · · , 𝑦𝑁) := (𝑦1, · · · , 𝑦𝑁−1, 0) ∈ 𝑅𝑁

then |𝑆(𝑦)| ≤ |𝑦| and from (3.5.5), we obtain

𝐻𝑇 (𝑦,−(|𝑦|2𝜁 + 1) 1
2 , 𝑆(−∇(|𝑦|2𝜁 + 1) 1

2 ))

≤ 𝐻1(𝑦,−(|𝑦|2𝜁 + 1)
1

2𝜁 , 𝑆(−∇(|𝑦|2𝜁 + 1) 1
2 )) +𝐻2(𝑦,−(|𝑦|2𝜁 + 1) 1

2 , 𝑆(−∇(|𝑦|2𝜁 + 1) 1
2 ))

≤ 0.

Let 𝑢 be a subsolution of (3.0.1) in 𝒞 and let us define,

𝑢𝛽(𝑦) := (1 − 𝛽)𝑢(𝑦) − 𝛽(|𝑦|2𝜁 + 1) 1
2

Note that 𝑢𝛽 is a subsolution of 3.0.1. Let 𝜑 ∈ 𝐶1(𝑅𝑁) be a test function and 𝑦0 be a local

maximum point of 𝑢𝛽 −𝜑 = (1 −𝛽)𝑢(𝑦) − (𝛽(|𝑦|2𝜁 + 1) 1
2 +𝜑(𝑦)). Then 𝑦0 is local maximum

point of 𝑢(𝑦) − 𝛽(|𝑦|2𝜁+1)
1
2 +𝜑(𝑦)

1−𝛽
and thanks to the the convexity of 𝐻𝑖 in the last two variables,

we obtain

𝐻𝑖(𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0))

= 𝐻𝑖

(︂
𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0) + 𝛽𝜁|𝑦0|2𝜁−2𝑦0

(|𝑦0|2𝜁+1)
1
2

− 𝛽𝜁|𝑦0|2𝜁−2𝑦0

(|𝑦0|2𝜁+1)
1
2

)︂
≤ (1 − 𝛽)𝐻𝑖

(︂
𝑦0, 𝑢(𝑦0), ∇𝜑(𝑦0)

1−𝛽
+ 𝛽𝜁|𝑦0|2𝜁−2𝑦0

(1−𝛽)(|𝑦0|2𝜁+1)
1
2

)︂
+ 𝛽𝐻𝑖

(︂
𝑦0,−(|𝑦0|2𝜁 + 1) 1

2 ,− 𝜁|𝑦0|2𝜁−2𝑦0

(|𝑦0|2𝜁+1)
1
2

)︂
≤ 0.

Now assume that 𝑦0 ∈ ℋ, arguing as above, we have

min{𝐻1(𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0)), 𝐻2(𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0))} ≤ 0.

Take 𝜑 ∈ 𝐶1(𝑅𝑁−1) and 𝑦0 a local maximum point of 𝑢𝛽(𝑦)−𝜑(𝑦) = (1−𝛽)𝑢(𝑦)−(𝛽(|𝑦|2𝜁 +

1) 1
2 +𝜑(𝑦)). Then 𝑦0 is a local maximum point of 𝑢(𝑦)− 𝛽(|𝑦|2𝜁+1)

1
2 +𝜑(𝑦)

1−𝛽
and from the convexity

of 𝐻𝑇 in the last two variables, we have

𝐻𝑇 (𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0))

= 𝐻𝑇

(︂
𝑦0, 𝑢𝛽(𝑦0),∇𝜑(𝑦0) +𝐷ℋ(𝛽(|𝑦|2𝜁+1)

1
2

1−𝛽
) −𝐷ℋ(𝛽(|𝑦|2𝜁+1)

1
2

1−𝛽
)
)︂

≤ (1 − 𝛽)𝐻𝑇

(︂
𝑦0, 𝑢(𝑦0), ∇𝜑(𝑦0)

1−𝛽
+𝐷ℋ(𝛽(|𝑦|2𝜁+1)

1
2

1−𝛽
)
)︂

+ 𝛽𝐻𝑇

(︂
𝑦0,−(|𝑦0|2𝜁 + 1) 1

2 , 𝐷ℋ(−(|𝑦|2𝜁+1)
1
2

1−𝛽
)
)︂

≤ 0.
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Let 𝑣 be a supersolution of (3.0.1) in 𝒞, then

𝑢𝛽(𝑦) − 𝑣(𝑦) = (1 − 𝛽)𝑢(𝑦) − 𝛽(|𝑦|2𝜁 + 1) 1
2 − 𝑣(𝑦)

≤ |𝑢(𝑦)| + |𝑣(𝑦)| − 𝛽𝜆(|𝑦|2𝜁 + 1) 1
2

≤ (𝐶𝑢 + 𝐶𝑣)|𝑦|𝜁−𝜖 + (𝐶𝑢 + 𝐶𝑣) − 𝛽(|𝑦|2𝜁 + 1) 1
2

≤ |𝑦|𝜁−𝜖(𝐶𝑢 + 𝐶𝑣 + 𝐶𝑢+𝐶𝑣

|𝑦|𝜁−𝜖 − 𝛽|𝑦|𝜖).

Taking limits as |𝑦| goes to infinity, we obtain that 𝑢𝛽(𝑦) − 𝑣(𝑦) goes to −∞. Thus, the

sequence 𝑢𝛽 satisfies LOC 1. Therefore, there exist 𝑥𝛽 such that 𝑀𝛽 := max𝑅𝑁 (𝑢𝛽 − 𝑣) =

𝑢𝛽(𝑥𝛽) − 𝑣(𝑥𝛽).

Now we build a subsequence, 𝑢𝛽𝛾, of the sequence 𝑢𝛽, satisfying LOC 2. Consider

𝑢𝛽𝛾(𝑥) := 𝑢𝛽(𝑥) − 𝛾(|𝑥− 𝑥𝛽|2 + 1) 1
2 .

We will show that there exists a neighbourhood of 𝑥𝛽 where 𝑢𝛽𝛾 is subsolution of 𝐻𝑖. Let 𝑥 be a

local maximum point of 𝑢𝛽𝛾 −𝜑 then 𝑥 is local maximum point of 𝑢𝛽(𝑥)−((𝛾(|𝑥−𝑥𝛽|2+1) 1
2 +

𝜑(𝑥)). Due to Lemma 2.3.3, there exists 𝐴𝑚
𝑖 such that the supremum 𝐻𝑖(𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥)) is

reached in 𝐴𝑚
𝑖 for any 𝑥 ∈ 𝐵𝑟(𝑥𝛽), for 𝑟 > 0. Thus, given 𝑥 ∈ 𝐵𝑟(𝑥𝛽), there exists 𝛼𝑥

𝑖 ∈ 𝐴𝑚
𝑖

such that

𝐻𝑖(𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥)) = 𝐻𝑖

(︂
𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥) + 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

− 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
= −𝑙𝑖(𝑥, 𝛼𝑥

𝑖 ) + 𝜆𝑢𝛽𝛾(𝑥) − 𝑏𝑖(𝑥, 𝛼𝑥
𝑖 )·
(︂

∇𝜑(𝑥) + 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

− 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
=−𝑙𝑖(𝑥, 𝛼𝑥

𝑖 )+𝜆𝑢𝛽(𝑥)−𝑏𝑖(𝑥, 𝛼𝑥
𝑖 )·
(︂
∇𝜑(𝑥)+ 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
−𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 −𝑏𝑖(𝑥, 𝛼𝑥
𝑖 )· −𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

≤ 𝐻𝑖

(︂
𝑥, 𝑢𝛽(𝑥),∇𝜑(𝑥) + 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
− 𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 + 𝑏𝑖(𝑥, 𝛼𝑥
𝑖 ) · 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

≤ −𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1
2 + 𝑏𝑖(𝑥, 𝛼𝑥

𝑖 ) · 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

Let ||𝑏𝑖||𝐿∞(𝐵𝑟(𝑥𝛽)×𝐴𝑚
𝑖 ) < 𝐵, and let as choose 𝑟 such that 𝑟 < 𝜆

𝐵
, then |𝑥 − 𝑥𝛽| < 𝑟 < 𝜆

𝐵
,

and

−𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1
2 + 𝑏𝑖(𝑥, 𝛼𝑥

𝑖 ) · 𝛾(𝑥− 𝑥𝛽)
(|𝑥− 𝑥𝛽|2 + 1) 1

2
≤ −𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 + 𝜆𝛾 ≤ 0.

Thus, we obtain that

𝐻𝑖(𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥)) ≤ 0, ∀𝑥 ∈ 𝐵𝑟(𝑥𝛽).

Assume that 𝑥𝛽 ∈ ℋ. Take 𝑥 ∈ 𝐵𝑟(𝑥𝛽). If 𝑥 ∈ Ω𝑖 there is nothing to prove. Hence we can

assume that 𝑥 ∈ ℋ. Arguing as for 𝑥 ∈ Ω𝑖, we obtain

min{𝐻1(𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥)), 𝐻2(𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥))} ≤ 0.
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Therefore 𝑢𝛽𝛾 is subsolution of the Ishii problem. Now let us prove that 𝑢𝛽𝛾 is subsolution of

𝐻𝑇 . Consider the test function 𝜑 ∈ 𝑅𝑁−1 and 𝑥 = (𝑥′, 0) a local maximum point of 𝑢𝛽𝛾 − 𝜑.

Given 𝑦 ∈ 𝐵𝑟(𝑥𝛽), we denote by 𝛼𝑛*(𝑦) := (𝜇𝑛* , 𝛼1
𝑛*(𝑦), 𝛼2

𝑛*(𝑦)) a control that satisfies

𝐻̃𝑇 (𝑦,∇𝜑(𝑦)) − 1
𝑛* ≤ −𝑙ℋ(𝑦, 𝛼𝑛*(𝑦)) − 𝑆(𝑏ℋ(𝑦, 𝛼𝑛*(𝑦))) · ∇𝜑(𝑦). (3.5.6)

This way,

𝜆𝑢𝛽𝛾(𝑥) + 𝐻̃𝑇 (𝑥,∇𝜑(𝑥)) − 1
𝑛

= 𝐻𝑇

(︂
𝑥, 𝑢𝛽𝛾(𝑥),∇𝜑(𝑥) + 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

− 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
− 1

𝑛

≤ −𝑙ℋ(𝑥, 𝛼𝑛(𝑥)) + 𝜆𝑢𝛽𝛾(𝑥) − 𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) ·
(︂

∇𝜑(𝑥) + 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

− 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
= −𝑙ℋ(𝑥, 𝛼𝑛(𝑥)) + 𝜆𝑢𝛽(𝑥) − 𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) ·

(︂
∇𝜑(𝑥) + 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
−𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 + 𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) · 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

≤ 𝐻𝑇

(︂
𝑥, 𝑢𝛽(𝑥),∇𝜑(𝑥) + 𝛾(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

)︂
−𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 + 𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) · 𝛾𝑆(𝑥−𝑥𝛽)

(|𝑥−𝑥𝛽 |2+1)
1
2

where 𝛼𝑛 is a control in 𝐴. Let us prove that 𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) is uniformly bounded 𝐵𝑟(𝑥𝛽).

Initially note that there exists 𝐶𝑟 such that

|𝐻̃𝑇 (𝑥,∇𝜑(𝑥))| < 𝐶𝑟, ∀ 𝑥 ∈ 𝐵𝑟(𝑥𝛽). (3.5.7)

Indeed,

−||𝑙1||𝐿∞(𝐵𝑟(𝑥𝛽)×𝐴*
1) − ||𝑙2||𝐿∞(𝐵𝑟(𝑥𝛽)×𝐴*

2) ≤ 𝐻̃𝑇 (𝑥,∇𝜑(𝑥)) ≤ 𝐻̃1(𝑥,∇𝜑(𝑥)) + 𝐻̃2(𝑥,∇𝜑(𝑥)).

where 𝐴*
𝑖 is a compact set such that for each 𝑥 ∈ 𝑅𝑁 there exists 𝛼𝑖 ∈ 𝐴*

𝑖 with 𝑏(𝑥, 𝛼𝑖) = 0.

Now assume by contradiction that 𝐷 := {𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥)))|𝑥 ∈ 𝐵𝑟(𝑥𝛽), 𝑛 ∈ 𝑁} is

unbounded. Then there exists sequence (𝑥𝑛, 𝛼𝑛*(𝑥𝑛)) satisfying

lim
𝑛→∞

𝑆(𝑏ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛))) = ∞. (3.5.8)

Since 𝑏ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛)) = 𝜇𝑖
𝑛*𝑏1(𝑥𝑛, 𝛼𝑛*(𝑥𝑛)) + 𝜇2

𝑛*𝑏2((𝑥𝑛, 𝛼𝑛*(𝑥𝑛))), where 𝜇1
𝑛* + 𝜇2

𝑛* = 1.

Let {𝑖, 𝑗} = {1, 2}, then we have lim𝑛→∞ 𝜇𝑖
𝑛*𝑆(𝑏𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛))) = ∞. Thanks hypothesis

(HA) we have |𝛼𝑖
𝑛*(𝑥)| → ∞, and

lim
𝑛→∞

𝑙𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛))

1 + |𝑏𝑖(𝑥𝑛, 𝛼𝑖
𝑛*(𝑥𝑛)| → ∞.
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Given 𝑀 > 0, there exist 𝐶𝑀 so that for 𝑛 > 𝐶𝑀 :

𝑙𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛))

1 + |𝑏𝑖(𝑥𝑛, 𝛼𝑖
𝑛*(𝑥𝑛)| ≥ 2𝑀 and |𝜇𝑖

𝑛*𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛)))| > 1,

then
𝑙𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)) ≥ 2𝑀 + 2𝑀 |𝑏𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥))|

≥ 2𝑀 |𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛))|

≥ 2𝑀 |𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛)))|

which implies that for 𝑛 > 𝐶𝑀

𝜇𝑖
𝑛*𝑙𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)) ≥ 2𝑀𝜇𝑖

𝑛*|𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛)))|

≥ 𝑀 +𝑀𝜇𝑖
𝑛*|𝑆(𝑏𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)))|

Consequently, for 𝑀 > ||∇𝜑||𝐿∞(𝐵𝑟(𝑥𝛽)), we have

−𝜇𝑖
𝑛*𝑙𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)) + 𝜇𝑖

𝑛*∇𝜑(𝑥𝑛) · 𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛)))

≤ −𝜇𝑖
𝑛*𝑙𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)) +𝑀𝜇𝑖

𝑛*|𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥𝑛)))|

≤ −𝑀.

That is,

−𝜇𝑖
𝑛*𝑙𝑖(𝑥𝑛, 𝛼

𝑖
𝑛*(𝑥𝑛)) + 𝜇𝑖

𝑛*∇𝜑(𝑥𝑛) · 𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑖
𝑛*(𝑥))) ≤ −𝑀.

Since {𝑖, 𝑗} = {1, 2}, from (3.5.8), taking subsequence if necessary, for 𝑗 we have two pos-

sibilities, either 𝜇𝑗
𝑛*𝑆(𝑏𝑗(𝑥𝑛, 𝛼

𝑗
𝑛*(𝑥))) = ∞ or 𝜇𝑗

𝑛*𝑆(𝑏𝑗(𝑥𝑛, 𝛼
𝑗
𝑛*(𝑥))) < ∞. In the first case,

arguing as above we have

−𝜇𝑗
𝑛*𝑙𝑗(𝑥𝑛, 𝛼

𝑗
𝑛*(𝑥𝑛)) + 𝜇𝑗

𝑛*∇𝜑(𝑥𝑛) · 𝑆(𝑏𝑖(𝑥𝑛, 𝛼
𝑗
𝑛*(𝑥𝑛))) ≤ −𝑀.

Thus, for 𝑀 > max{||∇𝜑||𝐿∞(𝐵𝑟(𝑥𝛽)), 𝐶𝑟 + 2}, from (3.5.7), we obtain

−𝑙ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛)) − 𝑆(𝑏ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛))) · ∇𝜑(𝑥𝑛) ≤ −2𝑀

≤ −2|𝐻̃𝑇 (𝑥𝑛,∇𝜑(𝑥𝑛))| − 4

< 𝐻̃𝑇 (𝑥𝑛,∇𝜑(𝑥𝑛)) − 1
𝑛*

which is contradiction with (3.5.6).

Now, let us assume that 𝜇𝑗
𝑛*𝑆(𝑏𝑗(𝑥𝑛, 𝛼

𝑗
𝑛*(𝑥))) < ∞, then there exists 𝐶𝑗 such that

−𝜇𝑗
𝑛𝑙𝑗(𝑥𝑛, 𝛼

𝑗
𝑛*(𝑥𝑛)) + 𝜇𝑗

𝑛∇Φ(𝑥𝑛) · 𝑆(𝑏𝑗(𝑥𝑛, 𝛼
𝑗
𝑛*(𝑥𝑛))) ≤ 𝐶𝑗
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Hence, taking 𝑀 > max{|∇𝜑(𝑥)|𝐵𝑟(𝑥𝛽), 𝐶𝑟 + 𝐶𝑗 + 4}, we obtain

−𝑙ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛)) − 𝑆(𝑏ℋ(𝑥𝑛, 𝛼𝑛*(𝑥𝑛))) · ∇𝜑(𝑥𝑛) ≤ −𝑀 + 𝐶𝑗

≤ −|𝐻𝑇 (𝑥𝑛,∇𝜑(𝑥𝑛))| − 4

< 𝐻𝑇 (𝑥𝑛,∇𝜑(𝑥𝑛)) − 1
𝑛*

which is again a contradiction with (3.5.6). Therefore,𝐷 = {𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥)))|𝑥 ∈ 𝐵𝑟(𝑥𝛽), 𝑛 ∈

𝑁} is bounded. Then, there exists 𝐵 > 0 such that ‖𝑏‖ < 𝐵 for all 𝑏 ∈ 𝐷. Consider 𝑟 such

that 𝑟 < 𝜆
𝐵

, and 𝑥 ∈ 𝐵𝑟(𝑥𝛽), then

−𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1
2 +𝑆(𝑏ℋ(𝑥, 𝛼𝑛(𝑥))) · 𝛾(𝑥− 𝑥𝛽)

(|𝑥− 𝑥𝛽|2 + 1) 1
2

≤ −𝜆𝛾(|𝑥− 𝑥𝛽|2 + 1) 1
2 +𝜆𝛾 ≤ 0.

Thus, 𝑢𝛽𝛾 is subsolution of the Ishii problem. Let us prove that 𝑢𝛽𝛾 satisfies LOC 2. Indeed,

let 𝑥 ∈ 𝜕𝐵𝑟(𝑥𝛽)

𝑢𝛽𝛾(𝑥𝛽) − 𝑢𝛽(𝑥𝛽) = −𝛾 > −𝛾(𝑟2 + 1) 1
2 = −𝛾(|𝑥− 𝑥𝛽|2 + 1) 1

2 = 𝑢𝛽𝛾(𝑥) − 𝑢𝛽(𝑥).

We can choose 𝑑(𝛾) := 𝛾(𝑟2+1)
1
2 −𝛾

2 > 0. Moreover, 𝑢𝛽𝛾(𝑥) → 𝑢𝛽(𝑥) as 𝛾 → 0 for any

𝑥 ∈ 𝐵𝑟(𝑥𝛽).

Therefore, the set 𝒞 of subsolutions 𝑢 of (3.0.1),(3.0.2) and supersolutions 𝑣 of (3.0.1),

satisfying the growth condition (3.5.3), satisfy the hypotheses LOC 1 and LOC 2. Hence,

thanks to Theorem (3.3.1), we obtain a global comparison result,

𝑢(𝑥) ≤ 𝑣(𝑥) ∀ 𝑥 ∈ 𝑅𝑁 .

Due to Proposition 3.5.3, we have also that 𝑈−
𝐴 is a minimal locally bounded l.s.c supersolution

of the Ishii problem. Moreover, thanks to Theorem 3.5.4, we have 𝑈+
𝐴 is a maximal subsolution

of the Ishii problem.

3.6 FILIPPOV APROXIMATIONS

In this section we consider consider Filippov approximations. Let 𝜙 : 𝑅 → [0, 1] be a

continuous functions satisfying lim
𝑦→∞

𝜙(𝑦) = 1 and lim
𝑦→−∞

𝜙(𝑦) = 0. Let

𝜙𝜀(𝑦) := 𝜙(𝑦
𝜀

)

We extend 𝐻1 and 𝐻2 for any 𝑥 ∈ 𝑅𝑁 as follows
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𝐻𝜀(𝑥, 𝑢, 𝑝) := 𝜙𝜀(𝑥𝑁)𝐻1(𝑥, 𝑢, 𝑝) + (1 − 𝜙𝜀(𝑥𝑁))𝐻2(𝑥, 𝑢, 𝑝), ∀𝑥 ∈ 𝑅𝑁 (3.6.1)

We assume the hypotheses

(HA) 𝑙𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 and 𝑏𝑖 : 𝑅𝑁 × 𝐴𝑖 → 𝑅 satisfy

lim
|𝛼|→∞

𝑙𝑖(𝑦, 𝛼)
1 + |𝑏𝑖(𝑦, 𝛼)| = ∞ and lim

|𝛼|→∞
|𝑏𝑖(𝑦, 𝛼)| = ∞

uniformly in compact sets of 𝑅𝑁 with respect to 𝑦 ∈ 𝑅𝑁 .

(HB) 𝑏𝑖, 𝑙𝑖 are continuous functions and 𝑏𝑖, 𝑙𝑖 are locally Lipschitz in the spacial variable.

(HC) For any 𝑥 ∈ 𝑅𝑁 , the set {(𝑏𝑖(𝑥, 𝛼𝑖), 𝑙𝑖(𝑥, 𝛼𝑖))| 𝛼 ∈ 𝐴𝑚
𝑖 } is a closed and convex set.

Moreover, there exists 𝛿 > 0 such that

𝐵𝛿(0) ⊂ ℬ𝐴𝑚
𝑖 (𝑥), where ℬ𝐴𝑚

𝑖 (𝑥) := {𝑏𝑖(𝑥, 𝛼)|𝛼 ∈ 𝐴𝑚
𝑖 }.

(HCC) Let 𝐴𝑚
𝑖 ⊂ 𝐴𝑖 be compact, then there exists 𝐶𝑚(𝑏) and 𝐶𝑚(𝑙) such that

|𝑏𝑖(𝑦, 𝛼)| ≤ 𝐶𝑚(𝑏) and 𝑙𝑖(𝑦, 𝛼) ≤ 𝐶𝑚(𝑙), ∀ 𝑦 ∈ 𝑅𝑁 , 𝛼 ∈ 𝐴𝑚
𝑖 . (3.6.2)

where 𝐴𝑚
𝑖 is a chain of compact set which union is equal to 𝑅𝑁 . Assuming also hypotheses

(HA), (HB), (HC) and (HCC) we are able to prove uniqueness of solution of 𝐻𝜀, and the

solution converges as 𝜀 goes to zero to 𝑈−
𝐴 . To do this is very important to have hypotheses

(HCC), which assumes that the dynamic and cost functions are bounded when restricted to

compact set.

Theorem 3.6.1 Under Hypotheses (HA), (HB), (HC) and (HCC). There exists a unique
bounded Lipschitz continuous solution 𝑢𝜀 of (3.6.1). Moreover, 𝑢𝜀 converges to 𝑈−

𝐴 as 𝜀 goes
to 0 locally uniformly in 𝑅𝑁 .

Fix 𝑚0 ∈ 𝑁 . Note that 𝐻𝑚0
𝜀 is coercive, because 𝐻1 and 𝐻2 are coercive. Thus, there exists

𝐶𝑚0 > 0 such that

𝐻𝑚0
𝜀 (𝑥, 𝑢, 𝑝) > 0, for |𝑢| < ||𝑈−

𝐴𝑚0 ||𝐿∞(𝑅𝑁 ) + ||𝑈−
𝐴 ||𝐿∞(𝑅𝑁 ) + 1, 𝑥 ∈ 𝑅𝑁 and |𝑝| > 𝐶𝑚0 .

(3.6.3)
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If 𝑚′
0 > 𝑚0, by definition, we have

𝐻𝑚′
0

𝜀 (𝑥, 𝑢, 𝑝) ≥ 𝐻𝑚0
𝜀 (𝑥, 𝑢, 𝑝).

By Lemma (2.3.3) there exists 𝑚 > 𝑚′
0 such that

𝐻𝜀(𝑥, 𝑢, 𝑝) = 𝐻𝑚
𝜀 (𝑥, 𝑢, 𝑝), if |𝑝| ≤ 𝐶𝑚0 . (3.6.4)

Thanks to Corollary 3.1.3.2, let 𝑚′ be large enough, with 𝑚′ > 𝑚 such that 𝑈−
𝐴 = 𝑈−

𝐴𝑚′ .

Thanks to (BARLES; BRIANI; CHASSEIGNE, 2013, Th 6.1) there exists a unique bounded Lips-

chitz continuous solution 𝑢𝑚′
𝜀 of 𝐻𝑚′

𝜀 such that 𝑢𝑚′
𝜀 converges to 𝑈−

𝐴𝑚′ as 𝜀 goes to 0, locally

uniformly in 𝑅𝑁 . Therefore lim𝜖→0 𝑢
𝑚′
𝜖 = 𝑈−

𝐴 locally uniformly in 𝑅𝑁 . We know that 𝑢𝑚′
𝜀 is

supersolution of 𝐻𝜀. To conclude we just have to prove that 𝑢𝑚′
𝜀 is subsolution of 𝐻𝜀.

Since 𝑢𝑚′
𝜖 is Lipschitz continuous subsolution of 𝐻𝑚′

𝜀 , then

𝐻𝑚′

𝜀 (𝑥, 𝑢𝑚′

𝜀 (𝑥),∇𝑢𝑚′

𝜀 (𝑥)) ≤ 0, 𝑎.𝑒. (3.6.5)

Since 𝑢𝑚′
𝜀 converges to 𝑈−

𝐴 locally uniformly, for 𝜀 small enough we have |𝑢𝑚′
𝜀 (𝑦)| ≤ |𝑈−

𝐴 (𝑦)|+1

for all 𝑦 ∈ 𝐵𝑟(𝑥). If 𝑢𝑚′
𝜀 is differentiable in 𝑥 then by (3.6.3), we have |∇𝑢𝑚′

𝜀 (𝑥)| ≤ 𝐶𝑚0 .

Consequently, thanks to (BREZIS; BRÉZIS, 2011, Remark 7, p. 269), we have

|𝑢𝑚′

𝜀 (𝑥) − 𝑢𝑚′

𝜀 (𝑦)| ≤ ||∇𝑢𝑚′

𝜀 ||𝐿∞(𝐵𝑟(𝑥))|𝑥− 𝑦| ≤ 𝐶𝑚0 |𝑥− 𝑦|.

Thus, 𝑢𝑚′
𝜀 is uniformly locally Lipschitz with Lipschitz constant 𝐶𝑚0 , for 𝜀 small enough. Thus,

if 𝑝𝜀 ∈ 𝜕+𝑢𝑚′
𝜀 (𝑥) , then |𝑝𝜀| < 𝐶𝑚0 , cf. (BARLES, 1994, Lemma 2.4 p. 31). Thus, by (3.6.4)

and (3.6.5), 𝑢𝑚′
𝜀 is subsolution of 𝐻𝜀.

Assume that 𝐻𝜀 has another bounded Lipschitz continuous solution 𝑣𝜀 ̸= 𝑢𝑚′
𝜀 , then since

||∇𝑣𝜀|| ≤ 𝐶𝑣. Thanks to Lemma (2.3.3), there exist 𝑚* > 𝑚′ such that 𝑣𝜀 is solution of 𝐻𝑚*
𝜀 .

Thanks to (BARLES; BRIANI; CHASSEIGNE, 2013, Th 6.1), 𝐻𝑚*
𝜀 has a unique solution, and then

𝑣𝜀 = 𝑢𝑚*
𝜖 . Since 𝑢𝑚′

𝜀 is solution of 𝐻𝜀 then it is also a solution of 𝐻𝑚*
𝜀 . Thus, 𝑢𝑚′

𝜀 = 𝑢𝑚*
𝜀 = 𝑣𝜀.

Let us focus now on the example of nonlinear Hamiltonian which satisfies only hypotheses

(HA), (HB) and (HC). We will obtain this result of uniqueness of solution for the Filippov

approximated Hamiltonian 𝐻𝜀, and the convergence to 𝑈−
𝐴. Recall that the Hamiltonian con-

sidered in the previous section is given by

𝐻𝑖(𝑥, 𝑢, 𝑝) = 𝜆𝑢+ 𝑑(𝑥)𝜉|𝑝|𝜉 − 𝑓𝑖(𝑥)

with associated dynamic function
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𝑏𝑖(𝑥, 𝛼𝑖) := 𝑐𝜉𝑑(𝑥)|𝛼𝑖|𝜉−2𝛼𝑖, where 0 < 𝑑𝑖(𝑥) ≤ |𝑥|𝛽 is locally Lipschitz and 𝑐𝜉 = 𝜉
𝜉

√︁
(𝜉 − 1)𝜉−1

(3.6.6)

and the cost function

𝑙𝑖(𝑥, 𝛼𝑖) := 𝑓𝑖(𝑥) + |𝛼𝑖|𝜉 with 0 ≤ 𝑓𝑖(𝑥) ≤ 𝐶𝑓 |𝑥|𝜁−𝜀 + 𝐶𝑓 , with 𝑓𝑖 continuous in Ω𝑖.

We consider the constant 𝜆 satisfying

𝜆 ≥ 𝜁𝜉,

where 𝜁 > 1, 𝜉 and 𝛽 satisfy

𝜁 ≥ (𝜁 − 1)𝜉 + 𝛽𝜉.

We proved in the previous section that hypotheses (HA), (HB) and (HC) are satisfied. We

also have that

𝑈
−
𝐴(𝑥) ≤ 𝑈

−
𝐴𝑚(𝑥), 𝑈+

𝐴(𝑥) ≤ 𝑈
+
𝐴𝑚(𝑥) and 𝑈+

𝐴𝑚(𝑥), 𝑈−
𝐴𝑚(𝑥) ≤ 𝐶𝑓𝑖

𝜆
|𝑥|𝜁−𝜖 + 𝐶𝑚.

These value functions 𝑈+
𝐴(𝑥), 𝑈−

𝐴(𝑥) are in the set 𝒞 of solutions for which we have compa-

rison results.

In the following result we prove that there exists a unique solution of the Filippov aproxi-

mation Hamiltonian, and this solution converges to the value function 𝑈−
𝐴.

Theorem 3.6.2 There exists a unique locally Lipschitz continuous solution 𝑢𝜀 of (3.6.1)

satisfying
−𝐶(1 + |𝑥|2𝜁) 1

2 −𝜖 − 𝐶 ≤ 𝑢𝜀(𝑥) ≤ 𝐶(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶

where 𝐶 > max
{︂
𝐶𝑚,

𝐶𝑓

𝜆
,

𝐶𝑓

𝜆

}︂
. Moreover, 𝑢𝜀 converges to 𝑈−

𝐴 as 𝜀 goes to 0, locally uniformly
in 𝑅𝑁 .

First we prove the existence of a solution for (3.6.1) using the Perron Method, see (BARLES,

1994, p. 52). In order to proof uniqueness, we first need to fix the set where we will prove

comparison result

𝒮𝜀 := {𝑢 solution of (3.6.1)| − 𝐶(1 + |𝑥|2𝜁) 1
2 −𝜖 − 𝐶 ≤ 𝑢(𝑥) ≤ 𝐶(1 + |𝑥|2𝜁)

1
2 − 𝜖

2𝜁 + 𝐶 for all 𝑥 ∈ 𝑅𝑁}.
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Since 𝐻𝜀 is continuous, 𝜆(𝑢 − 𝑣) = 𝐻𝜀(𝑥, 𝑣, 𝑝) − 𝐻𝜀(𝑥, 𝑢, 𝑝) and 𝐻𝜀 are locally coercive

then thanks to (BARLES, 1994, Cor. 2.2, p. 27), we obtain Local Comparison Result.

Moreover we have −(1+ |𝑥|2𝜁) 1
2 is subsolution of (3.6.1), therefore hypotheses LOC 1 and

LOC 2 are satisfied. We have LOC 1 with

𝑢𝛽(𝑦) := 𝛽𝑢(𝑦) − (1 − 𝛽)(1 + |𝑦|2𝜁) 1
2 ,

and LOC 2 with

𝑢𝛽𝛾(𝑦) := 𝑢𝛽(𝑦) − 𝛾(|𝑦 − 𝑥𝛽|2 + 1) 1
2 .

Finally, thanks to Theorem 3.3.1 we obtain global comparison result for 𝐻𝜀 in 𝒮𝜀, what proves

the uniqueness.

Now let us prove the existence via Perron’s Method. It is important to note that 𝐶(1 +

|𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 is a differentiable supersolution of (3.6.1). In fact,

(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 > (|𝑥|2𝜁)
1
2 − 𝜖

2𝜁 = |𝑥|𝜁−𝜖

and by choosing 𝐶 big enough we have

𝐶(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 > 𝑓𝑖(𝑥).

Consider

𝒮𝜀 := {𝑢 subsolution of (3.6.1)| − 𝐶(1 + |𝑥|2𝜁) 1
2 −𝜖 − 𝐶 ≤ 𝑢(𝑥) ≤ 𝐶(1 + |𝑥|2𝜁)

1
2 − 𝜖

2𝜁 + 𝐶 ∀𝑥 ∈ 𝑅𝑁}

Note that 𝒮𝜀 is non-empty because 0, 𝑈+
𝐴 and 𝑈−

𝐴 ∈ 𝒮𝜀. Indeed, by choosing 𝐶

𝑈
+
𝐴(𝑥), 𝑈−

𝐴(𝑥) ≤ 𝐶𝑓𝑖

𝜆
|𝑥|𝜁−𝜖 + 𝐶𝑚 ≤ 𝐶(1 + |𝑥|2𝜁)

1
2 − 𝜖

2𝜁 + 𝐶

Thus for any 𝑥 ∈ 𝑅𝑁 , we define

𝑢𝜀(𝑥) := sup
𝑢∈𝒮𝜀

𝑢(𝑥). (3.6.7)

Thanks to (BARLES, 1994, Lemma 2.5, p.33), we have any subsolution 𝑢 in 𝒮𝜀 is a Lipschitz

function on compact sets 𝐾 ⊂ 𝑅𝑁 with Lipschitz constant 𝐶𝐾 .

Now the aim is to prove that 𝑢𝜀 ∈ 𝒮𝜀. we have

−𝐶(1 + |𝑥|2𝜁) 1
2 −𝜖 − 𝐶 ≤ 𝑢𝜀(𝑥) ≤ 𝐶(1 + |𝑥|2𝜁)

1
2 − 𝜖

2𝜁 + 𝐶.
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Let 𝑥, 𝑦 ∈ 𝐾

𝑢𝜀(𝑥) − 𝑢𝜀(𝑦) = sup
𝒮𝜀

𝑢(𝑥) − sup
𝒮𝜀

𝑢(𝑦)

≤ sup
𝒮𝜀

(𝑢(𝑥) − 𝑢(𝑦))

Let 𝑢𝑛 ∈ 𝒮𝜀 be a sequence such that lim𝑛→∞ 𝑢𝑛(𝑥) = 𝑢𝜀(𝑥). Then by definition of 𝑢𝜀, we

have 𝑢𝜀(𝑥) − 𝑢𝜀(𝑦) ≤ 𝑢𝑛(𝑥) − 𝑢𝑛(𝑦). Taking limits as 𝑛 goes to infinity,

𝑢𝜀(𝑥) − 𝑢𝜀(𝑦) ≤ lim𝑛→∞(𝑢𝑛(𝑥) − 𝑢𝑛(𝑦))

≤ sup
𝑢∈𝒮𝜀

(𝑢(𝑥) − 𝑢(𝑦))

≤ 𝐶𝒮𝜀,𝐾 |𝑥− 𝑦|.

Now to prove that 𝑢𝜀 ∈ 𝒮𝜀, we just need to show that 𝑢𝜀 is subsolution of (3.6.1). To

do this we use the following lemmas that state that the supremum of two subsolutions is also

a subsolution; the supremum of a sequence of subsolutions is also a subsolutions, and the

supremum of a family of subsolutions is also a subsolution.

Lemma 3.6.3 Let 𝑢1, 𝑢2 be subsolutions then 𝑢 := sup{𝑢1, 𝑢2} also is subsolution.

Let 𝑥 ∈ 𝑅𝑁 . There exist three possibilities :

Case 1. 𝑢(𝑥) > 𝑢1(𝑥)

Case 2. 𝑢(𝑥) > 𝑢2(𝑥)

Case 3. 𝑢(𝑥) = 𝑢1(𝑥) = 𝑢2(𝑥)

We use the definition of subsolution via superdifferential, see (BARLES, 1994, Th. 2.2 p. 17).

In cases 1 and 2, we have 𝑢 = 𝑢𝑖 in a neighborhood of 𝑥, hence 𝜕+𝑢𝑖(𝑥) = 𝜕+𝑢(𝑥). In Case

3, let 𝑝 ∈ 𝜕+𝑢(𝑥). Since 𝑢𝑖(𝑦) ≤ 𝑢(𝑦)

𝑢𝑖(𝑦) − 𝑢𝑖(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

≤ 𝑢(𝑦) − 𝑢(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

.

Taking lim sup

lim sup
𝑦→𝑥

𝑢𝑖(𝑦) − 𝑢𝑖(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

≤ lim sup
𝑦→𝑥

𝑢(𝑦) − 𝑢(𝑥) − 𝑝 · (𝑦 − 𝑥)
|𝑦 − 𝑥|

≤ 0.

Hence 𝑝 ∈ 𝜕+𝑢𝑖(𝑥).

Lemma 3.6.4 Let 𝑢𝑛 be a sequence of elements of 𝒮𝜀 then 𝑢 := sup
𝑛
𝑢𝑛 also is subsolution.
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Let us define 𝜗𝑛 = sup
𝑝≤𝑛

𝑢𝑝. Thanks to Lemma 3.6.3, 𝜗𝑛 is a subsolution. Since 𝑢 = sup
𝑛
𝜗𝑛 by

Dini’s Theorem, 𝜗𝑛 converges locally uniformly to 𝑢. Therefore, by (BARLES, 1994, Th 2.3 p.

21) 𝑢 is subsolution of 𝐻𝜀.

Lemma 3.6.5 Let (𝑢𝜅)𝜅∈ℱ be a family of elements of 𝒮𝜀 then 𝑢 := sup
𝜅∈ℱ

𝑢𝜅 also is a subso-
lution.

Given 𝑥 ∈ 𝑅𝑁 there exists sequence 𝜅𝑛 such that lim𝑛→∞ 𝑢𝜅𝑛
(𝑥) = 𝑢(𝑥). Let 𝑦 ∈ 𝑅𝑁 , and

consider 𝑢*(𝑦) := lim 𝑢𝜅𝑛
(𝑦). Then 𝑢*(𝑦) is subsolution by Lemma 3.6.4 with 𝑢(𝑦) ≥ 𝑢*(𝑦)

and 𝑢(𝑥) = 𝑢*(𝑥). Using the same arguments of lemma 3.6.3, we obtain 𝜕+𝑢*(𝑥) ⊂ 𝜕+𝑢(𝑥).

As a consequence of Lemma 3.6.5, considering ℱ = 𝒮𝜀 we obtain that 𝑢𝜀 is a subsolution

of (3.6.1).

Now let us prove that 𝑢𝜀 is a supersolution of (3.6.1).

Assume by contradiction that 𝑢𝜀 is not supersolution, then there exists a test function 𝜑

and 𝑥 a local minimum point of 𝑢𝜀 − 𝜑 on 𝐵𝑟(𝑥), with 𝑟 > 0, such that

𝐻𝜀(𝑥, 𝜑(𝑥), 𝐷𝜑(𝑥)) < 0. (3.6.8)

We assume without loss of generality that 𝜑(𝑥) = 𝑢𝜀(𝑥). We assume also that 𝑥 is a global

minimum point of 𝑢𝜀 −𝜑 . To do this, we consider a bump function, Γ, with Γ(𝑦) = 1 for any

𝑦 ∈ 𝐵 𝑟
2
(𝑥) and Γ(𝑦) = 0 for any 𝑦 outside 𝐵𝑟(𝑥). We just need to exchange 𝜑(𝑦) by

Γ(𝑦)𝜑(𝑦) + (1 − Γ(𝑦))
(︁
−𝐶(1 + |𝑦|2𝜁) 1

2 −𝜖 − 𝐶
)︁

≤ 𝑢𝜀(𝑦) for any 𝑦 ∈ 𝑅𝑁 .

Let us define

𝑢𝜈(𝑦) := max{𝑢𝜀(𝑦), 𝜑(𝑦) + 𝜈 − |𝑦 − 𝑥|2}.

We will prove that for 𝜈 small enough 𝑢𝜈 ∈ 𝒮𝜀 which is a contradiction with (3.6.7)

since 𝑢𝜈(𝑥) = 𝜑(𝑥) + 𝜈 = 𝑢𝜀(𝑥) + 𝜈 > 𝑢𝜀(𝑥). Indeed, by definition, 𝑢𝜈(𝑦) ≥ 𝑢𝜀(𝑦) ≥

−𝐶(1+|𝑦|2𝜁) 1
2 −𝜖−𝐶. Moreover, 𝑢𝜈(𝑦) ≤ 𝐶(1+|𝑦|2𝜁)

1
2 − 𝜖

2𝜁 +𝐶 for 𝜈 small enough. Otherwise,

there exists a sequence (𝜈𝑛, 𝑦𝑛) such that |𝑦𝑛 − 𝑥| ≤ 𝜈𝑛, 𝜈𝑛 goes to zero as 𝑛 goes to infinity,

and such that

𝐶(1 + |𝑦𝑛|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 < 𝑢𝜈(𝑦𝑛) = 𝜑(𝑦𝑛) + 𝜈𝑛 − |𝑦𝑛 − 𝑥|2.

Taking limits as 𝑛 goes to infinity, we obtain 𝐶(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 ≤ 𝜑(𝑥) = 𝑢𝜀(𝑥). Hence,

since 𝑢𝜀 ∈ 𝒮𝜀, we have

𝐶(1 + |𝑦|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 = 𝜑(𝑥) = 𝑢𝜀(𝑥).
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Besides that, since 𝑥 is global minimum point of 𝑢𝜀 − 𝜑 we have

𝜑(𝑦) ≤ 𝑢𝜀(𝑦) ≤ 𝐶(1 + |𝑦|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 for all 𝑦 ∈ 𝑅𝑁 .

Therefore 𝑥 is global minimum point of 𝐶(1 + |𝑦|2𝜁)
1
2 − 𝜖

2𝜁 +𝐶 − 𝜑(𝑦) which has null gradient

at 𝑥, that is,

∇𝜑(𝑥) = ∇(𝐶(1 + |𝑦|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶).

Since 𝐶(1 + |𝑦|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶 is a differentiable supersolution and from (3.6.8),

0 > 𝐻𝜀(𝑥, 𝜑(𝑥),∇𝜑(𝑥)) = 𝐻𝜀(𝑥,𝐶(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶,∇(𝐶(1 + |𝑥|2𝜁)
1
2 − 𝜖

2𝜁 + 𝐶)) ≥ 0

which is a contradiction.

Now just need to prove that 𝑢𝜈 is a subsolution of (3.6.1). Thanks to (3.6.8) and the

continuity of 𝐻𝜀 we obtain that 𝜑(𝑦) + 𝜈 − |𝑦 − 𝑥|2 is a subsolution of 𝐻𝜀 for 𝑦 such that

|𝑦 − 𝑥|2 ≤ 𝜈 for 𝜈 small enough. Therefore, due to Lemma 3.6.3, 𝑢𝜈 is subsolution of 𝐻𝜀 for

𝑦 such that |𝑦 − 𝑥|2 ≤ 𝜈. Moreover, if |𝑦 − 𝑥|2 > 𝜈, 𝑢𝜈 = 𝑢𝜀, because 𝑢𝜈(𝑦) ≥ 𝑢𝜀(𝑦) ≥ 𝜑(𝑦)

for all 𝑦 ∈ 𝑅𝑁 . Hence, 𝑢𝜈 is a subsolution.

Let us take limit of 𝑢𝜀 when 𝜀 goes to 0. We will prove that this limit is a viscosity solution

of the Ishii Problem 3.0.1 and 𝐻𝑇 . Therefore, by uniqueness we obtain that the limit of 𝑢𝜀 is

𝑈−
𝐴 .

By definition, (𝑢𝜀)𝜀 is locally uniformly bounded. Moreover, by coercivity of 𝐻1 and 𝐻2,

we get that (𝑢𝜀)𝜀 is locally uniformly Lipschitz. Thanks to Arzela-Ascoli’s Theorem, we can

extract a convergent subsequence which converges to a continuous function 𝑢. Therefore,

(lim inf)*𝑢𝜀(𝑥) = 𝑢(𝑥) = (lim sup)*𝑢𝜀(𝑥).

Moreover 𝐻𝜀 also converges uniformly to 𝐻𝑖 on compact sets 𝐾 ×𝑊 × 𝑉 ⊂ Ω𝑖 ×𝑅 ×𝑅𝑁

lim
𝜀→0

𝜙𝜀(𝑥𝑁)𝐻1(𝑥, 𝑡, 𝑝) + (1 − 𝜙𝜀(𝑥𝑁))𝐻2(𝑥, 𝑡, 𝑝) = 𝐻𝑖(𝑥, 𝑡, 𝑝).

Since 𝐻𝑖 is continuous on Ω𝑖 ×𝑅 ×𝑅𝑁 , then

(lim inf)*𝐻𝜀(𝑥, 𝑡, 𝑝) = 𝐻𝑖(𝑥, 𝑡, 𝑝) = (lim sup)*𝐻𝜀(𝑥, 𝑡, 𝑝).

For 𝑥 ∈ ℋ

(lim inf)*𝐻𝜀(𝑥, 𝑡, 𝑝) = min{𝐻1(𝑥, 𝑡, 𝑝), 𝐻2(𝑥, 𝑡, 𝑝)},

(lim sup)*𝐻𝜀(𝑥, 𝑡, 𝑝) = max{𝐻1(𝑥, 𝑡, 𝑝), 𝐻2(𝑥, 𝑡, 𝑝)}.
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Thanks to Half-Relaxed limit Method, Theorem ?? we obtain that 𝑢 is solution of Ishii Problem

1.7.1.

Now let us prove that 𝑢 is a subsolution of 𝐻𝑇 and consequently by Global Comparison

Result Theorem 3.3.1, we obtain 𝑢 = 𝑈−
𝐴 .

Let 𝑥′ be strict local maximum point of 𝑢(𝑦′, 0) − 𝜑(𝑦′). We need to proof

𝐻𝑇 (𝑥, 𝑢(𝑥), 𝐷ℋ𝜑(𝑥′)) ≤ 0.

That is,

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝜑 (𝑥) − 𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝐷ℋ𝜑 (𝑥) , 0) ≤ 0

for all (𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥). Take (𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥), there exists 𝑠 ∈ 𝑅 such that 𝜙(𝑠) = 𝜇,

where 𝜙 is the function we use to define the Filippov approximation. We define

𝑢𝜀(𝑦) − 𝜑(𝑦′) − 1
𝜀

⃒⃒⃒⃒
𝑦𝑁

𝜀
− 𝑠

⃒⃒⃒⃒2
as 𝜀goes to 0

Let 𝑥𝜀 be the local maximum point of of 𝑢𝜀(𝑦) − 𝜑(𝑦′) − 1
𝜀

⃒⃒⃒
𝑦𝑁

𝜀
− 𝑠

⃒⃒⃒2
, then

1
𝜀

⃒⃒⃒⃒
𝑥𝜀𝑁

𝜀
− 𝑠

⃒⃒⃒⃒2
→ 0

Since 𝑢𝜀 is locally Lipschitz functions then 𝜕+𝑢𝜀(𝑥) is bounded, 𝜑 is fixed and 𝑥𝜀 → 𝑥 as

𝜀 → 0, then for 𝜀 small enough ∇𝜑(𝑥𝜀) is bounded. Then 𝑔𝜀,𝑁 := 2
𝜀2 (𝑥𝜀𝑁

𝜀
− 𝑠) < 𝐶. Thus,

since (𝛼1, 𝛼2, 𝜇) ∈ 𝐴0(𝑥),

lim
𝜀→0

(𝑏1(𝑥𝜀, 𝛼1) · 𝑒𝑁 + 𝑏2(𝑥𝜀, 𝛼2) · 𝑒𝑁)𝑔𝜀,𝑁 = 0 (3.6.9)

As |𝑥𝜀𝑁

𝜀
− 𝑠| → 0 and 𝜙 is continuous function

𝜙𝜀(𝑥𝜀𝑁) = 𝜙(𝑠) + 𝑜(1). (3.6.10)

Since 𝑢𝜀 is subsolution of 𝐻𝜀

𝜙𝜀(𝑥𝜀𝑁)𝐻1(𝑥𝜀, 𝑢𝜖(𝑥𝜀), 𝐷ℋ𝜑(𝑥′) + 𝑔𝜀,𝑁) + (1 − 𝜙𝜀(𝑥𝜀𝑁))𝐻2(𝑥𝜀, 𝑢𝜀(𝑥𝜀), 𝐷ℋ𝜑(𝑥′) + 𝑔𝜀,𝑁) ≤ 0.

Thanks to (3.6.10)

𝜙(𝑠)𝐻1(𝑥𝜀, 𝑢𝜀(𝑥𝜀), 𝐷ℋ𝜑(𝑥′
𝜀) + 𝑔𝜀,𝑁) + (1 − 𝜙(𝑠))𝐻2(𝑥𝜀, 𝑢𝜀(𝑥𝜀), 𝐷ℋ𝜑(𝑥′

𝜀) + 𝑔𝜀,𝑁) ≤ 𝑜(1)

Using the expression of 𝐻𝑖, we obtain

𝜙(𝑠)(−𝑙1(𝑥𝜀, 𝛼1) + 𝜆𝑢𝜀 (𝑥) − 𝑏1 (𝑥𝜀, 𝛼1) · (𝐷ℋ𝜑 (𝑥𝜀) , 𝑔𝜀,𝑁))

+(1 − 𝜙(𝑠))((−𝑙2(𝑥𝜀, 𝛼1) + 𝜆𝑢𝜀 (𝑥𝜀) − 𝑏2 (𝑥𝜀, 𝛼1) · (𝐷ℋ𝜑 (𝑥𝜀) , 𝑔𝜀,𝑁))) ≤ 𝑜(1).

By (3.6.9), taking limits as 𝜀 goes to 0, we obtain

−𝑙ℋ(𝑥, 𝛼) − 𝑏ℋ(𝑥, 𝛼) ·𝐷ℋ𝜑 (𝑥) + 𝜆𝑢(𝑥) ≤ 0.



95

4 𝑈𝜂 FUNCTIONS

In this chapter we build a whole family of value functions, 𝑈𝜂, which are locally Lipschitz

Ishii solutions. Under appropriate assumptions we obtain that the limit when 𝜂 goes to zero is

𝑈+
𝐴 and when 𝜂 goes to infinite is 𝑈−

𝐴 . Hence, this family can be seen as a continuous path

between 𝑈−
𝐴 and 𝑈+

𝐴 .

Let 𝜂 > 0. We define the 𝜂-trajectories as

𝜏 𝜂
𝐴(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴(𝑥) | for a.e. 𝑡 ∈ ℰℋ, 𝑏2(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≥ −𝜂, 𝑏1(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≤ 𝜂}

(4.0.1)

These 𝜂−trajectories may not be regular for small 𝜂, but they are almost regular. Moreover

𝜏 𝑟𝑒𝑔
𝐴 (𝑥) ⊂ 𝜏 𝜂

𝐴(𝑥) and if 𝜂′ ≤ 𝜂 we have 𝜏𝐴
𝜂′ (𝑥) ⊂ 𝜏𝐴

𝜂 (𝑥).

Now, we define the associated value function.

𝑈𝜂
𝐴(𝑥) = inf

𝜏𝜂
𝐴(𝑥)

(︂∫︁ ∞

0
𝑙(𝑋𝑥(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡

)︂
. (4.0.2)

Let 𝜂 ≤ 𝜂′, as a consequence of the definitions we have the following relations between

them

𝑈−
𝐴 ≤ 𝑈𝜂′

𝐴 ≤ 𝑈𝜂
𝐴 ≤ lim

𝜂→0
𝑈𝜂

𝐴 ≤ 𝑈+
𝐴 , (4.0.3)

4.1 DYNAMIC PROGRAMMING PRINCIPLE AND REGULARITY OF 𝑈𝜂 FUNCTIONS

We have also the Dynamic Programming Principle for the value functions.

Theorem 4.1.1 (Dynamic Programming principle) Let 𝐾 ⊂ 𝐴 be a compact controls
set, then

𝑈−
𝐾(𝑥) = inf

𝜏𝐾(𝑥)

(︃∫︁ 𝑇

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈−

𝐾(𝑥) (𝑋 (𝑇 )) 𝑒−𝜆𝑇

)︃
. (4.1.1)

𝑈𝜂
𝐴(𝑥) = inf

𝜏𝜂
𝐴(𝑥)

(︃∫︁ 𝑇

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈𝜂

𝐴 (𝑋 (𝑇 )) 𝑒−𝜆𝑇

)︃
. (4.1.2)
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The proof is analogous to Theorem 2.2.1 in Chapter 1. We prove that 𝑈𝜂
𝐴 has the same

regularity of 𝑈+
𝐴 and 𝑈−

𝐴 , under the hypotheses in Proposition 2.3.1. Then, 𝑈𝜂
𝐴 is locally

bounded and locally Lipschitz.

Theorem 4.1.2 We assume that (HA), (HB) and (HC) then, for 𝜂 small enough, the value
functions 𝑈𝜂

𝐴, are locally bounded and locally Lipschitz continuous functions defined from 𝑅𝑁

to 𝑅.

Since in Proposition 2.3.1 we proved the result with trajectories in 𝜏 𝑟𝑒𝑔
𝐴 (𝑥), and we have

𝜏 𝑟𝑒𝑔
𝐴 (𝑥) ⊂ 𝜏 𝜂

𝐴(𝑥), then we have the proof is analogous for 𝑈𝜂
𝐴. In the above Theorem prove

regularity of 𝑈𝜂 only for 𝜂 small enough, but after proving that 𝑈𝜂 is subsolution the Ishii

Problem, we obtain regularity for all 𝜂.

4.2 𝑈𝜂
𝐴 SOLUTIONS OF THE ISHII PROBLEM

In this section we prove that the value functions 𝑈𝜂
𝐴 are solutions of the Hamilton-Jacobi-

Bellman problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0 in Ω1

𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) = 0, in Ω2

min{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ

max{𝐻1 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) , 𝐻2 (𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))} ≤ 0 in ℋ

(4.2.1)

where

𝐻𝑖 (𝑥, 𝑢, 𝑞) = sup
𝑤∈𝐴𝑖

(−𝑏(𝑥,𝑤) · 𝑞 − 𝑙𝑖(𝑥,𝑤) + 𝜆𝑢)

We define the set of controls

𝐴𝜂
0(𝑥) = {(𝛼1, 𝛼2, 𝜇) ∈ 𝐴0 | 𝑏1(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 ≤ 𝜂, 𝑏2(𝑥, 𝛼1, 𝛼2) · 𝑒𝑁 ≥ −𝜂}.

and the tangential Hamiltonian

𝐻𝜂
𝑇 (𝑥, 𝜑(𝑥), 𝐷ℋ𝜑) = sup

(𝛼1,𝛼2,𝜇)∈𝐴𝜂
0(𝑥)

−𝑙ℋ(𝑥, 𝛼1, 𝛼2, 𝜇)+𝜆𝜑 (𝑥)−𝑏ℋ (𝑥, 𝛼1, 𝛼2, 𝜇)·(𝐷ℋ𝜑 (𝑥) , 0)

Theorem 4.2.1 Under hypotheses (HA), (HB) e (HC) the values functions 𝑈𝜂
𝐴 are viscosity

solutions of the Hamilton-Jacobi-Bellman problem (4.2.1). Moreover, 𝑈𝜂
𝐴 is subsolution of 𝐻𝜂

𝑇 .
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Since we have the Dynamic Programming Principle 4.1.1, the proof of 𝑈𝜂
𝐴 being sub and

supersolutions of (4.2.1) is analogous to the proof in Theorem 2.4.2.

Let us prove the second part of the theorem that states that the 𝜂-value functions are

subsolutions of the tangential Hamiltonian 𝐻𝜂
𝑇 . Let 𝜑 be a test function, and let 𝑥 be the

point where the local maximum of 𝑈𝜂
𝐴 − 𝜑 is attained, and consider without lost of generality

that the maximum is equal to zero, then 𝑈𝜂
𝐴(𝑥) = 𝜑(𝑥). Thanks to the proof of Lemma 2.3.3

we know that there exist (𝛼1, 𝛼2) ∈ 𝐴1 × 𝐴2 such that

𝐻1 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) = −𝑙1(𝑥, 𝛼1) + 𝜆𝜑 (𝑥) − 𝑏1 (𝑥, 𝛼1) · ∇𝜑 (𝑥)

𝐻2 (𝑥, 𝜑 (𝑥) ,∇𝜑 (𝑥)) = −𝑙2(𝑥, 𝛼2) + 𝜆𝜑 (𝑥) − 𝑏2 (𝑥, 𝛼2) · ∇𝜑 (𝑥) .

We construct specific trajectories for these constant controls 𝛼𝑖 that will help to prove that

𝑈𝜂
𝐴 is subsolution of 𝐻𝜂

𝑇 . Let (𝛼1, 𝛼2, 𝜇) ∈ 𝐴𝜂
0(𝑥). Let us consider three cases:

Case 1: Let 𝛼1, 𝛼2 be such that

𝑏1(𝑥, 𝛼1) · 𝑒𝑁 < 𝜂 and 𝑏2(𝑥, 𝛼2) · 𝑒𝑁 > −𝜂.

Let us consider a trajectory that satisfies the following differential equation locally

𝑋 ′
𝑥 (𝑡) = (−𝑏2(𝑋𝑥(𝑡), 𝛼2) · 𝑒𝑁)𝑏1(𝑋𝑥(𝑡), 𝛼1) + (𝑏1(𝑋𝑥(𝑡), 𝛼1) · 𝑒𝑁)𝑏2(𝑋𝑥(𝑡), 𝛼2)

(𝑏1(𝑋𝑥(𝑡), 𝛼1) − 𝑏2(𝑋𝑥(𝑡), 𝛼2)) · 𝑒𝑁

, 𝑋𝑥(0) = 𝑥.

We build an 𝜂-trajectory 𝑋𝑥(·) that stays in ℋ for all 𝑡 ∈ [0, 𝑇 ] and such that

𝑏1(𝑋𝑥(𝑡), 𝛼1) · 𝑒𝑁 < 𝜂 and 𝑏2(𝑋𝑥(𝑡), 𝛼2) · 𝑒𝑁 > −𝜂 for 𝑡 ≤ 𝑇.

we have 𝑈𝜂
𝐴(𝑦)−𝜑(𝑦) ≤ 0 for all 𝑦 ∈ 𝐵𝑟(𝑥) for 𝑟 small enough, and 𝑈𝜂

𝐴(𝑥) = 𝜑(𝑥). Thanks to

the continuity of the trajectory, there exists 𝑇 ′ > 0 such that 𝑋𝑥 (𝑡) ∈ 𝐵𝑟(𝑥) for 𝑡 < 𝑇 ′ < 𝑇 .

By the Dynamic Programming Principle we have

𝜑 (𝑥) ≤
∫︁ 𝑇 ′

0
𝑙ℋ(𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋𝑥(𝑡)))𝑒−𝜆𝑡𝑑𝑡+ 𝜑 (𝑋𝑥 (𝑇 ′)) 𝑒−𝜆𝑇 ′

.

By the Fundamental Calculus Theorem, we obtain

0 ≥
∫︁ 𝑇 ′

0
[−𝑙ℋ(𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋(𝑡))) + 𝜆𝜑 (𝑋𝑥(𝑡)) − 𝑏ℋ (𝑋𝑥(𝑡), (𝛼1, 𝛼2, 𝜇(𝑋𝑥(𝑡)))) · ∇𝜑 (𝑋𝑥(𝑡))] 𝑒−𝜆𝑡𝑑𝑡

Dividing by 𝑇 ′ and taking limits as 𝑇 ′ goes to 0 yields,

−𝑏ℋ(𝑥, 𝛼1, 𝛼2, 𝜇) + 𝜆𝜑 (𝑥) − 𝑙ℋ (𝑥, 𝛼1, 𝛼2, 𝜇) · (𝐷ℋ𝜑 (𝑥) , 0) ≤ 0.
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Thus we have proved that 𝑈𝜂
𝐴 is a subsolution of 𝐻𝜂

𝑇 .

Case 2: Let 𝛼1, 𝛼2 be such that

𝑏1(𝑥, 𝛼1) · 𝑒𝑁 = 𝜂 and 𝑏2(𝑥, 𝛼2) · 𝑒𝑁 = −𝜂.

Let 𝜀 > 0, thanks to the controllability hypothesis (HC), there exist controls 𝛼−
1 and 𝛼+

2 such

that for 𝜀 < 𝜂 < 𝛿

𝑏1
(︁
𝑥, 𝛼−

1

)︁
= (𝜂 − 𝜀)𝑒𝑁 and 𝑏2

(︁
𝑥, 𝛼+

2

)︁
= (−𝜂 + 𝜀)𝑒𝑁 .

Thanks to the convexity hypothesis on the control variable, we have for 0 < 𝜈, 𝜈 ′ < 1, there

exist controls 𝛼𝜈
1 and 𝛼𝜈′

2 such that

𝑏1 (𝑥, 𝛼𝜈
1) = 𝜈𝑏1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑏1 (𝑥, 𝛼1)

𝑙1 (𝑥, 𝛼𝜈
1) = 𝜈𝑙1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑙1 (𝑥, 𝛼1)

and
𝑏2(𝑥, 𝛼𝜈′

2 ) = 𝜈 ′𝑏2
(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑏2 (𝑥, 𝛼2)

𝑙2(𝑥, 𝛼𝜈′
2 ) = 𝜈 ′𝑙2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑙2 (𝑥, 𝛼2) .

Then we have

𝑏1 (𝑥, 𝛼𝜈
1) · 𝑒𝑁 = 𝜈(𝜂 − 𝜀) + (1 − 𝜈)𝜂 = 𝜂 − 𝜈𝜖 < 𝜂

𝑏2
(︁
𝑥, 𝛼𝜈′

2

)︁
· 𝑒𝑁 = 𝜈 ′(−𝜂 + 𝜀) + (1 − 𝜈 ′)(−𝜂) = −𝜂 + 𝜈 ′𝜖 > −𝜂

and

0 ≥ 𝜇(𝜈, 𝜈 ′)(−𝑙1(𝑥, 𝛼𝜈
1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼𝜈

1)·∇𝜑 (𝑥))+(1−𝜇(𝜈, 𝜈 ′))(−𝑙2(𝑥, 𝛼𝜈′

2 )+𝜆𝜑 (𝑥)−𝑏2
(︁
𝑥, 𝛼𝜈′

2

)︁
·∇𝜑 (𝑥))

where 𝜇̄(𝜈, 𝜈 ′) = 𝜇̄(𝑋𝑥(0)) = 𝜈′

𝜈′+𝜈
and (𝛼𝜈

1 , 𝛼
𝜈′
2 , 𝜇(𝜈, 𝜈 ′)) ∈ 𝐴𝑟𝑒𝑔

0 (𝑥).

We consider sequences 𝜈𝑛 and 𝜈 ′
𝑛 that go to 0 as 𝑛 goes to ∞, we obtain by construction

the following convergences as 𝑛 goes to ∞

𝑏1 (𝑥, 𝛼𝜈𝑛
1 ) −→ 𝑏1 (𝑥, 𝛼1) , 𝑙1 (𝑥, 𝛼𝜈𝑛

1 ) −→ 𝑙1 (𝑥, 𝛼1)

and

𝑏2(𝑥, 𝛼𝜈′
𝑛

2 ) −→ 𝑏2 (𝑥, 𝛼2) , 𝑙2
(︁
𝑥, 𝛼

𝜈′
𝑛

2

)︁
−→ 𝑙2 (𝑥, 𝛼2) .

Given 0 ≤ 𝜇 ≤ 1, we consider sequences 𝜈𝑛, 𝜈 ′
𝑛 that converge to 0 and 𝜈𝑛

𝜈′
𝑛

= 1−𝜇
𝜇

. Then

𝜇̄(𝜈𝑛, 𝜈
′
𝑛) −→ 𝜇.
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Since (𝛼𝜈𝑛
1 , 𝛼

𝜈′
𝑛

2 , 𝜇̄(𝜈𝑛, 𝜈
′
𝑛)) is in case 1. Taking limits as 𝑛 goes to ∞ we obtain

0 ≥ 𝜇(−𝑙1(𝑥, 𝛼1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼1)·∇𝜑 (𝑥))+(1−𝜇)(−𝑙2(𝑥, 𝛼2)+𝜆𝜑 (𝑥)−𝑏2 (𝑥, 𝛼2)·∇𝜑 (𝑥)).

Arguing as in case 1 we obtain that 𝑈𝜂
𝐴 is a subsolution of 𝐻𝜂

𝑇 .

Case 3: We divide this case in two cases:

Case 3.1 Let 𝛼1, 𝛼2 be such that

𝑏1(𝑥, 𝛼1) · 𝑒𝑁 = 𝜂 and 𝑏2(𝑥, 𝛼2) · 𝑒𝑁 > −𝜂.

Arguing as in case 2, let 𝜀 > 0, thanks to hypothesis (HC), there exists a control 𝛼−
1 such

that such that

𝑏1
(︁
𝑥, 𝛼−

1

)︁
= (𝜂 − 𝜀)𝑒𝑁 .

For 0 < 𝜈 < 1, we can find a control 𝛼𝜈
1 such that

𝑏1 (𝑥, 𝛼𝜈
1) = 𝜈𝑏1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑏1 (𝑥, 𝛼1)

𝑙1 (𝑥, 𝛼𝜈
1) = 𝜈𝑙1

(︁
𝑥, 𝛼−

1

)︁
+ (1 − 𝜈)𝑙1 (𝑥, 𝛼1)

Thus,

𝑏1 (𝑥, 𝛼𝜈
1) · 𝑒𝑁 = 𝜈(𝜂 − 𝜀) + (1 − 𝜈)𝜂 < 𝜂 − 𝜈𝜖 < 𝜂.

Taking limits as 𝜈 goes to 0, we obtain

0 ≥ 𝜇(−𝑙1(𝑥, 𝛼1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼1)·∇𝜑 (𝑥))+(1−𝜇)(−𝑙2(𝑥, 𝛼2)+𝜆𝜑 (𝑥)−𝑏2 (𝑥, 𝛼2)·∇𝜑 (𝑥)).

Arguing as in case 1, we obtain that 𝑈𝜂
𝐴 is a subsolution of 𝐻𝜂

𝑇 , since 𝐻𝜂
𝑇 (𝑥, 𝜑,𝐷ℋ𝜑) ≤ 0.

Case 3.2 Let 𝛼1, 𝛼2 be such that

𝑏1(𝑥, 𝛼1) · 𝑒𝑁 < 𝜂 and 𝑏2(𝑥, 𝛼2) · 𝑒𝑁 = −𝜂.

Let 𝜀 > 0, thanks to hypothesis (HC), there exists a control 𝛼+
2 such that for 𝜀 < 𝜂 < 𝛿

and 𝑏2
(︁
𝑥, 𝛼+

2

)︁
= (−𝜂 + 𝜀)𝑒𝑁 .

For 0 < 𝜈 ′ < 1, we can find a control 𝛼𝜈′
2 such that

𝑏2(𝑥, 𝛼𝜈′
2 ) = 𝜈 ′𝑏2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑏2 (𝑥, 𝛼2)

𝑙2(𝑥, 𝛼𝜈′
2 ) = 𝜈 ′𝑙2

(︁
𝑥, 𝛼+

2

)︁
+ (1 − 𝜈 ′)𝑙2 (𝑥, 𝛼2)
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Then

𝑏2
(︁
𝑥, 𝛼𝜈′

2

)︁
· 𝑒𝑁 = 𝜈 ′(−𝜂 + 𝜀) + (1 − 𝜈 ′)(−𝜂) = −𝜂 + 𝜈 ′𝜖 > −𝜂.

Taking limits as 𝜈 ′ goes to 0, we obtain

0 ≥ 𝜇(−𝑙1(𝑥, 𝛼1)+𝜆𝜑 (𝑥)−𝑏1 (𝑥, 𝛼1)·∇𝜑 (𝑥))+(1−𝜇)(−𝑙2(𝑥, 𝛼2)+𝜆𝜑 (𝑥)−𝑏2 (𝑥, 𝛼2)·∇𝜑 (𝑥)).

Therefore, 𝑈𝜂
𝐴 is a subsolution of 𝐻𝜂

𝑇 , since 𝐻𝜂
𝑇 (𝑥, 𝜑,𝐷ℋ𝜑) ≤ 0.

Remark 4.2.2 Observe that in the proof above, in all the three cases, we have that 𝐻𝜂
𝑇 ≥

𝐻𝑟𝑒𝑔
𝑇 .

Convergence of 𝑈𝜂
𝐴 Our 𝜂 trajectories approximate regular trajectories when 𝜂 goes to zero.

This suggests that the limit of 𝑈𝜂 when 𝜂 goes to zero is 𝑈+ . Moreover, when we increase

𝜂 the set of trajectories grow, which indicates that the limit of 𝑈𝜂 when 𝜂 goes to ∞ is 𝑈−.

In this section we prove the two convergences.

In the two lemmas below we prove some relations between 𝑈+
𝐴 , 𝑈

−
𝐴 and 𝑈𝜂

𝐴.

Lemma 4.2.3 Let 𝜂 ≤ 𝜂′, then

𝑈−
𝐴 ≤ 𝑈𝜂′

𝐴 ≤ 𝑈𝜂
𝐴 ≤ lim

𝜂→0
𝑈𝜂

𝐴 ≤ 𝑈+
𝐴 . (4.2.2)

By definition, 𝜏 𝑟𝑒𝑔
𝐴 (𝑥) ⊂ 𝜏 𝜂

𝐴(𝑥) and 𝑈𝜂′

𝐴 (𝑥) ≤ 𝑈𝜂
𝐴(𝑥) for 𝜂 ≤ 𝜂′. Thus the result.

Lemma 4.2.4 Let 𝛿 > 0,
𝐵𝛿(0) ⊂ ℬ𝐴𝑖

𝑖 (𝑥), (4.2.3)

where ℬ𝐴𝑖
𝑖 (𝑥) := {𝑏𝑖(𝑥,𝑤)|𝑤 ∈ 𝐴𝑖}. Assume that there exist 𝜆,𝐶 and 𝐶 such that

(HD)
|𝑏𝑖(𝑥, 𝛼𝑚

𝑖 )| ≤ 𝜆(1 + |𝛼𝑚
𝑖 | + |𝑥|),

𝑙𝑖(𝑥, 𝛼𝑚
𝑖 ) ≤ 𝐶|𝑥|1−𝜖 + 𝐶|𝛼𝑖|.

for all 𝑥 ∈ 𝑅𝑛 and 𝛼𝑚
𝑖 ∈ 𝐴𝑚

𝑖 for 𝑖 = 1, 2. Let (𝑋𝑥, 𝛼
𝑚) ∈ 𝜏𝑥(𝐴𝑚

𝑖 ). Then,

lim
𝑇 →∞

𝑈𝜂
𝐴𝑚(𝑋𝑥(𝑇 ))𝑒−𝜆𝑇 = lim

𝑇 →∞
𝑈−

𝐴𝑚(𝑋𝑥(𝑇 ))𝑒−𝜆𝑇 = lim
𝑇 →∞

𝑈+
𝐴𝑚(𝑋𝑥(𝑇 ))𝑒−𝜆𝑇 = 0
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Denote 𝑈+
𝐴𝑚 , 𝑈−

𝐴𝑚 and 𝑈𝜂
𝐴𝑚 by 𝑈𝐴𝑚 . Thanks to hypothesis (4.2.3), there exists a control 𝛼𝑚

𝑋𝑥(𝑇 )

such that 𝑏𝑖(𝑋𝑥(𝑇 ), 𝛼𝑚
𝑋𝑥(𝑇 )) = 0. Thus , we can consider the fixed trajectory at 𝑋𝑥(𝑇 ), then

by definition of 𝑈𝐴𝑚 , hypothesis (HD) and Lemma 2.2.3 we have

𝑈+
𝐴𝑚(𝑋𝑥(𝑇 ))𝑒−𝜆𝑇 ≤

𝑙(𝑋𝑥(𝑇 ), 𝛼𝑚
𝑋𝑥(𝑇 ))

𝜆
𝑒−𝜆𝑇

≤ 𝐶|𝑋𝑥(𝑇 )|1−𝜖 + 𝐶

𝜆
𝑒−𝜆𝑇

≤ 𝐶(|𝑥| + 𝐶𝑚
𝑇 𝑒

𝜆𝑇 )1−𝜖

𝜆
𝑒−𝜆𝑇 + 𝐶

𝜆
𝑒−𝜆𝑇

= 𝐶𝑒𝜆𝑇 (1−𝜖)(|𝑥|𝑒−𝜆𝑇 + 𝐶𝑚
𝑇 )1−𝜖

𝜆
𝑒−𝜆𝑇 + 𝐶

𝜆
𝑒−𝜆𝑇

= 𝐶(|𝑥|𝑒−𝜆𝑇 + 𝐶𝑚
𝑇 )1−𝜖

𝜆
𝑒−𝜆𝑇 𝜖 + 𝐶

𝜆
𝑒−𝜆𝑇 .

Hence, lim
𝑇 →∞

𝑈+
𝐴𝑚(𝑋𝑥(𝑇 ))𝑒−𝜆𝑇 = 0.

The following result proves the convergence of 𝑈𝜂
𝐴𝑚 to 𝑈−

𝐴𝑚 as 𝜂 goes to infinity in compact

control set 𝐴𝑚.

Theorem 4.2.5 Under the hypotheses (HA), (HB) (HC) and (HD), we have

lim
𝜂→∞

𝑈𝜂
𝐴𝑚(𝑥) = 𝑈−

𝐴𝑚(𝑥),

where 𝐴𝑚 ⊂ 𝐴 is a compact control set.

Fix 𝑇 > 0. Thanks to the Dynamic Programming Theorem 4.1.1, there exists a sequence

(𝑋𝑛
𝑥 , 𝛼

𝑛) ∈ 𝜏𝐴𝑚(𝑥) such that

lim
𝑛→∞

(︃∫︁ 𝑇

0
𝑙(𝑋𝑛

𝑥 (𝑡), 𝛼𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈−
𝐴𝑚 (𝑋𝑛

𝑥 (𝑇 )) 𝑒−𝜆𝑇

)︃
= 𝑈−

𝐴𝑚(𝑥).

We define

𝑌 𝑛(𝑠) =
∫︁ 𝑠

0
𝑙(𝑋𝑛

𝑥 (𝑡), 𝛼𝑛(𝑡))𝑑𝑡,

and consider the trajectories

(𝑋𝑛
𝑥 , 𝑌

𝑛) : (0, 𝑇 ) −→ 𝑅𝑁+1.

Due to the Lemma 2.2.3 there exist 𝑅𝑚
𝑇 such that |𝑋𝑛

𝑥 (𝑡) − 𝑥| ≤ 𝑅𝑚
𝑇 for any 𝑡 ∈ (0, 𝑇 ] then

|𝑏(𝑋𝑛
𝑥 (𝑡), 𝛼𝑛(𝑡))| ≤ ||𝑏||𝐵𝑅𝑇

(𝑥)×𝐴𝑚 , and |𝑙(𝑋𝑛
𝑥 (𝑡), 𝛼𝑛(𝑡))| ≤ ||𝑙||

𝐵𝑅𝑇
(𝑥)×𝐴𝑚 ∀𝑡 ∈ (0, 𝑇 ].

Arguing as in Lemma 2.2.5, we obtain trajectories (𝑋𝑇
𝑥 , 𝑌

𝑇 )(·) in [0, 𝑇 ] which satisfy that

𝑋̇𝑇
𝑥 (𝑠) = 𝑏(𝑋𝑇 (𝑠), 𝛼𝑇 (𝑠)) for a.e. 𝑠 ∈ [0, 𝑇 ]



102

and

𝑈−
𝐴𝑚(𝑥) = lim

𝑛→∞

(︃∫︁ 𝑇

0
𝑙(𝑋𝑛

𝑥 (𝑡), 𝛼𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈−
𝐴𝑚 (𝑋𝑛

𝑥 (𝑇 )) 𝑒−𝜆𝑇

)︃

=
∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈−
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 .

Due to Lemma 4.2.4, we know that lim
𝑇 →∞

𝑈−
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 = 0. Thus,

𝑈−
𝐴𝑚(𝑥) = lim

𝑇 →∞

∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡. (4.2.4)

Thanks to hypothesis (HC) there exists a control 𝛼*
𝑖 such that 𝑏𝑖(𝑋𝑇

𝑥 (𝑇 ), 𝛼*
𝑖 ) = 0. Then

we can define a trajectory such that

𝑋𝑇
𝑥 (𝑡) := 𝑋𝑇

𝑥 (𝑇 ) and 𝛼𝑇
𝑖 (𝑡) := 𝛼*

𝑖 for any 𝑡 ≥ 𝑇.

Taking 𝜂𝑇 = max{||𝑏1||𝑅𝑚
𝑇 ×𝐴𝑚

1
, ||𝑏2||𝑅𝑚

𝑇 ×𝐴𝑚
𝑖
, 𝑇} then (𝑋𝑇

𝑥 , 𝛼
𝑇 ) ∈ 𝜏 𝜂𝑇

𝐴𝑚(𝑥). Hence, by definition

of 𝑈𝜂𝑇

𝐴𝑚

𝑈−
𝐴𝑚(𝑥) ≤ 𝑈𝜂𝑇

𝐴𝑚(𝑥) ≤
∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈𝜂𝑇

𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 . (4.2.5)

Moreover, by definition

𝑈−
𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 ≤ 𝑈𝜂𝑇

𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 ≤ 𝑈+

𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 .

Thanks to Lemma 4.2.4, we have

lim
𝑇 →∞

𝑈𝜂𝑇

𝐴𝑚

(︁
𝑋𝑇

𝑥 (𝑇 )
)︁
𝑒−𝜆𝑇 = 0. (4.2.6)

Taking limits as 𝑇 goes to ∞ in (4.2.5) and thanks to (4.2.4) and (4.2.6), we obtain

𝑈−
𝐴𝑚(𝑥) ≤ lim

𝑇 →∞
𝑈𝜂𝑇

𝐴𝑚(𝑥) ≤ lim
𝑇 →∞

∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡 = 𝑈−
𝐴𝑚(𝑥).

Therefore,

lim
𝑇 →∞

𝑈𝜂𝑇

𝐴𝑚(𝑥) = 𝑈−
𝐴𝑚(𝑥).

Observe that 𝜂𝑇 > 𝑇 then lim
𝑇 →∞

𝜂𝑇 = ∞.

The following result is a consequence of Theorem 4.2.5 that states the convergence of 𝑈𝜂
𝐴

to 𝑈−
𝐴 as 𝜂 goes to infinity in a general unbounded control set 𝐴.

Corollary 4.2.5.1 Under the hypotheses (HA), (HB) (HC) and (HD), we have

lim
𝜂→∞

𝑈𝜂
𝐴(𝑥) = 𝑈−

𝐴 (𝑥).
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Thanks to the definition of 𝑈−
𝐴𝑚 , we have given 𝑗 ∈ 𝑁 there exists 𝑚𝑗 such that for

𝑚 ≥ 𝑚𝑗 then

|𝑈−
𝐴 (𝑥) − 𝑈−

𝐴𝑚| < 1
4𝑗 . (4.2.7)

Then there exists 𝜂(𝑗) such that

|𝑈−
𝐴𝑚𝑗 − 𝑈

𝜂(𝑗)
𝐴𝑚𝑗 | ≤ 1

4𝑗 . (4.2.8)

From (4.2.7) and (4.2.8), we obtain

|𝑈−
𝐴 (𝑥) − 𝑈

𝜂(𝑗)
𝐴𝑚𝑗 | ≤ |𝑈−

𝐴 (𝑥) − 𝑈−
𝐴𝑚𝑗 | + |𝑈−

𝐴𝑚𝑗 − 𝑈
𝜂(𝑗)
𝐴𝑚𝑗 | < 1

2𝑗 .

Moreover, there exists 𝑚 > 𝑚𝑗 such that |𝑈𝜂(𝑗)
𝐴𝑚 (𝑥) − 𝑈

𝜂(𝑗)
𝐴 (𝑥)| < 1

2𝑗
. Furthermore,

𝑈
𝜂(𝑗)
𝐴𝑚𝑗 (𝑥) ≥ 𝑈

𝜂(𝑗)
𝐴𝑚 (𝑥) ≥ 𝑈−

𝐴𝑚(𝑥) ≥ 𝑈−
𝐴 (𝑥).

Hence,

|𝑈−
𝐴 (𝑥) − 𝑈

𝜂(𝑗)
𝐴𝑚 (𝑥)| ≤ |𝑈−

𝐴 (𝑥) − 𝑈
𝜂(𝑗)
𝐴𝑚𝑗 (𝑥)| ≤ 1

2𝑗 .

So that,

|𝑈−
𝐴 (𝑥) − 𝑈

𝜂(𝑗)
𝐴 (𝑥)| ≤ |𝑈−

𝐴 (𝑥) − 𝑈
𝜂(𝑗)
𝐴𝑚 | + |𝑈𝜂(𝑗)

𝐴𝑚 − 𝑈
𝜂(𝑗)
𝐴 (𝑥)| ≤ 1

𝑗
.

The following theorem states the convergence of 𝑈𝜂
𝐴𝑚 to 𝑈+

𝐴𝑚 as 𝜂 goes to zero where 𝐴𝑚

is a compact control set.

Theorem 4.2.6 Under the hypotheses (HA), (HB) (HC) and (HD), we have

lim
𝜂→0

𝑈𝜂
𝐴𝑚(𝑥) = 𝑈+

𝐴𝑚(𝑥),

where 𝐴𝑚 ⊂ 𝐴 is a compact control set.

Consider a strictly positive decreasing sequence {𝜂𝑛}𝑛≥0 such that lim
𝑛→∞

𝜂𝑛 = 0. Since

𝑈 𝜖
𝐴𝑚(𝑥) ≥ 𝑈 𝜖′

𝐴𝑚(𝑥) for 𝜖 ≤ 𝜖′.

We assume that

𝑈𝜂𝑛

𝐴𝑚(𝑥) < 𝑈+
𝐴𝑚(𝑥), (4.2.9)

otherwise, there exists 𝑁 ∈ 𝑁 such that 𝑈𝜂𝑛

𝐴𝑚(𝑥) = 𝑈+
𝐴𝑚(𝑥) for all 𝑛 ≥ 𝑁 and we have

the result. Given 𝑇 > 0, thanks to (4.2.9), and due to the Dynamic Programming Principle

Theorem 4.1.1, there exists (𝑋𝜂𝑛
𝑥 , 𝛼𝜂𝑛) ∈ 𝜏 𝜂𝑛

𝐴𝑚(𝑥) satisfying∫︁ 𝑇

0
𝑙(𝑋𝜂𝑛

𝑥 (𝑡), 𝛼𝜂𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡+𝑈𝜂𝑛

𝐴𝑚(𝑋𝜂𝑛
𝑥 (𝑇 ))𝑒−𝜆𝑇 ≤ 𝑈𝜂𝑛

𝐴𝑚(𝑥) + 𝑈+
𝐴𝑚(𝑥) − 𝑈𝜂𝑛

𝐴𝑚(𝑥)
2 < 𝑈+

𝐴𝑚(𝑥).

(4.2.10)
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Let us define

𝑌 𝜂𝑛(𝑠) :=
∫︁ 𝑠

0
𝑙(𝑋𝜂𝑛

𝑥 (𝑡), 𝛼𝜂𝑛(𝑡))𝑑𝑡.

Since 𝑏𝑖(𝑋𝜂𝑛
𝑥 , 𝛼𝜂𝑛) and 𝑙𝑖(𝑋𝜂𝑛

𝑥 , 𝛼𝜂𝑛) are bounded in [0, 𝑇 ] and thanks to Lemma 2.2.3, we

have the curves (𝑋𝜂𝑛
𝑥 , 𝑌 𝜂𝑛)(·) are equicontinuous and uniformly bounded in [0, 𝑇 ]. Therefore,

by Ascoli Azela’s Theorem, we can extract a subsequence (𝑋𝜂𝑛
𝑥 , 𝑌 𝜂𝑛)(·) which converges

uniformly to 𝑍𝑇 := (𝑋𝑇
𝑥 , 𝑌

𝑇 ) in [0, 𝑇 ]. Proceeding as in Lemma 2.2.5, we find a measurable

control 𝛼𝑇 (·) such that

(𝑋̇𝑇
𝑥 (𝑡), 𝑌̇ 𝑇 (𝑡)) = (𝑏(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡)), 𝑙(𝑋𝑇
𝑥 (𝑡), 𝛼𝑇 (𝑡))) ∀𝑡 ∈ [0, 𝑇 ]. (4.2.11)

Thus, ((𝑏(𝑋𝜂𝑛(𝑡), 𝛼𝜂𝑛(𝑡)), 𝑙(𝑋𝜂𝑛(𝑡), 𝛼𝜂𝑛(𝑡)))) converges weakly* to
(︁
𝑏(𝑋𝑇 (𝑡), 𝛼𝑇 (𝑡)), 𝑙(𝑋𝑇 (𝑡), 𝛼𝑇 (𝑡))

)︁
in 𝐿∞([0, 𝑇 ];𝑅)2.

Below we want to prove that the limit control 𝛼𝑇 is regular. To do this we need to define

for 𝑧 ∈ ℋ,

𝐾(𝑧) := {𝑏ℋ(𝑧, 𝛼′) : 𝛼′ ∈ 𝐴𝑟𝑒𝑔
0 (𝑧)}.

𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 ) := {𝑠 ∈ [0, 𝑇 ] : 𝑋𝑇

𝑥 (𝑠) ∈ ℋ and 𝑑𝑖𝑠𝑡(𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼𝑇 (𝑠)), 𝐾(𝑋𝑇

𝑥 (𝑠))) ≥ ϒ}.

𝐸𝑠𝑖𝑛𝑔(𝑇 ) := {𝑠 ∈ [0, 𝑇 ] : 𝑋𝑇
𝑥 (𝑠) ∈ ℋ and 𝑑𝑖𝑠𝑡(𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼𝑇 (𝑠)), 𝐾(𝑋𝑇
𝑥 (𝑠))) > 0}.

where 𝑑𝑖𝑠𝑡 is the euclidian distance in 𝑅𝑁 .

Note that

𝐸𝑠𝑖𝑛𝑔(𝑇 ) =
⋃︁

𝑗∈𝑁

𝐸
1
𝑗

𝑠𝑖𝑛𝑔(𝑇 ).

We claim that |𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )| = 0 for any ϒ > 0. Then,

|𝐸𝑠𝑖𝑛𝑔(𝑇 )| ≤ |
⋃︁

𝑗∈𝑁

𝐸
1
𝑗

𝑠𝑖𝑛𝑔(𝑇 )| = 0.

Since 𝑙(𝑋𝜂𝑛
𝑥 (𝑡), 𝛼𝜂𝑛(𝑡)) converges weakly* to 𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡)) in 𝐿∞([0, 𝑇 ];𝑅) and 𝑒−𝜆𝑡 is in

𝐿1([0, 𝑇 ];𝑅), we obtain

lim
𝑛→∞

∫︁ 𝑇

0
𝑙(𝑋𝜂𝑛

𝑥 (𝑡), 𝛼𝜂𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡 =
∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡.

Thanks to hypothesis (HC), there exists a control 𝛼*
𝑖 such that 𝑏𝑖(𝑋𝑇

𝑥 (𝑇 ), 𝛼*
𝑖 ) = 0 then we

can define 𝑋𝑇
𝑥 (𝑡) := 𝑋𝑇

𝑥 (𝑇 ) and 𝛼𝑇
𝑖 (𝑡) := 𝛼*

𝑖 for any 𝑡 ≥ 𝑇 . Thus, (𝑋𝑇
𝑥 (·), 𝛼𝑇 (·)) ∈ 𝜏 𝑟𝑒𝑔

𝐴𝑚(𝑥).
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Thanks to Dynamic Programming Theorem 4.1.1, (4.2.10) and (4.2.9), we have

𝑈+
𝐴𝑚(𝑥) − 𝑈+

𝐴𝑚(𝑋𝑇
𝑥 (𝑇 ))𝑒−𝜆𝑇 ≤

∫︁ 𝑇

0
𝑙(𝑋𝑇

𝑥 (𝑡), 𝛼𝑇 (𝑡))𝑒−𝜆𝑡𝑑𝑡

= lim
𝑛→∞

∫︁ 𝑇

0
𝑙(𝑋𝜂𝑛

𝑥 (𝑡), 𝛼𝜂𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡

≤ lim
𝑛→∞

(︃∫︁ 𝑇

0
𝑙(𝑋𝜂𝑛

𝑥 (𝑡), 𝛼𝜂𝑛(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈𝜂𝑛

𝐴𝑚(𝑋𝜂𝑛
𝑥 (𝑇 ))𝑒−𝜆𝑇

)︃

≤ lim
𝑛→∞

𝑈𝜂𝑛

𝐴𝑚(𝑥) + lim
𝑛→∞

𝑈+
𝐴𝑚(𝑥) − 𝑈𝜂𝑛

𝐴𝑚(𝑥)
2

≤ 𝑈+
𝐴𝑚(𝑥).

(4.2.12)

That is,

𝑈+
𝐴𝑚(𝑥) − 𝑈+

𝐴𝑚(𝑋𝑇
𝑥 (𝑇 ))𝑒−𝜆𝑇 ≤ lim

𝑛→∞
𝑈𝜂𝑛

𝐴𝑚(𝑥) + lim
𝑛→∞

𝑈+
𝐴𝑚(𝑥) − 𝑈𝜂𝑛

𝐴𝑚(𝑥)
2 ≤ 𝑈+

𝐴𝑚(𝑥)

By Lemma 4.2.4 we know that

lim
𝑇 →∞

𝑈+
𝐴𝑚(𝑋𝑇

𝑥 (𝑇 ))𝑒−𝜆𝑇 = 0.

Taking limits in (4.2.12) as 𝑇 goes to infinity, we obtain that

𝑈+
𝐴𝑚(𝑥) ≤ lim

𝑛→∞
𝑈𝜂𝑛

𝐴𝑚(𝑥) + lim
𝑛→∞

𝑈+
𝐴𝑚(𝑥) − 𝑈𝜂𝑛

𝐴𝑚(𝑥)
2 ≤ 𝑈+

𝐴𝑚(𝑥)

Thus, 𝑈+
𝐴𝑚(𝑥) = lim

𝑛→∞
𝑈𝜂𝑛

𝐴𝑚(𝑥) + lim
𝑛→∞

𝑈+
𝐴𝑚 (𝑥)−𝑈𝜂𝑛

𝐴𝑚 (𝑥)
2 . Therefore,

lim
𝑛→∞

𝑈𝜂𝑛

𝐴𝑚(𝑥) = 𝑈+
𝐴𝑚(𝑥).

Since 𝑈 𝜖
𝐴𝑚(𝑥) ≥ 𝑈 𝜖′

𝐴𝑚(𝑥) for 𝜖 ≤ 𝜖′, we have the convergence as 𝜂 goes to zero, i.e.,

lim
𝜂→0

𝑈𝜂
𝐴𝑚(𝑥) = 𝑈+

𝐴𝑚(𝑥).

To conclude the proof, we need to show that |𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )| = 0 for any ϒ > 0. Assume by

contradiction that there exist ϒ > 0 such that |𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )| > 0. To prove this we need the

following result.

Lemma 4.2.7 Let 𝐸 ⊂ 𝑅𝑁 and 𝐶(𝑅𝑁) be the set of all compact, convex subsets of 𝑅𝑁 .
Let 𝐹 : 𝐸 → 𝑅𝑁 be a measurable function and 𝒦 : 𝐸 → 𝐶(𝑅𝑁) be a continuous set-valued
map. Moreover we assume that there exists ϒ > 0 such that for almost everywhere 𝑠 ∈ 𝐸,
𝑑𝑖𝑠𝑡(𝐹 (𝑠),𝒦(𝑠)) ≥ ϒ. Then there exists an affine function

Ψ𝑠(𝑧) : 𝑐(𝑠) · 𝑧 + 𝑑(𝑠)

with measurable coefficients 𝑐, 𝑑 such that for almost any 𝑠 ∈ 𝐸, Ψ𝑠(𝐹 (𝑠)) ≤ −1 and
Ψ𝑠(𝑧) ≥ 1 for 𝑧 on 𝒦(𝑠).
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For fixed 𝑠 ∈ 𝐸, 𝒦(𝑠) is compact and convex, then the projection 𝜋𝒦(𝑠) : 𝑅𝑁 → 𝒦(𝑠) is

well-defined. Moreover, 𝑠 ↦−→ 𝒦(𝑠) is continuous set-valued map. Now, since 𝑠 ↦−→ 𝐹 (𝑠) is

measurable, 𝑠 ↦−→ 𝜋𝑠(𝐹 (𝑠)) is also measurable and we denote by 𝑃 (𝑠) := 𝜋𝒦(𝑠)(𝐹 (𝑠)) the

projection of 𝐹 (𝑠) in 𝒦(𝑠). Thanks to (AUBIN; FRANKOWSKA, 1990, Cor. 8.2.13 p. 317) 𝑃 is

measurable.

Let us define by 𝑀(𝑠) := (𝐹 (𝑠) +𝑃 (𝑠))/2 the middle point of segment [𝐹 (𝑠), 𝑃 (𝑠)], and

set

𝑒𝑠 := 𝑃 (𝑠) − 𝐹 (𝑠)
||𝑃 (𝑠) − 𝐹 (𝑠)||

so that 𝑒𝑠 is the unit vector pointing in the direction from 𝐹 (𝑠) towards 𝑃 (𝑠). Then we define

the affine function

Ψ𝑠(𝑧) := 2𝑒𝑠

ϒ · (𝑧 −𝑀(𝑠)) = 𝑐(𝑠) · 𝑧 + 𝑑(𝑠)

where 𝑐(𝑠) := 2𝑒𝑠

ϒ and 𝑑(𝑠) := −2𝑒𝑠

ϒ · 𝑀(𝑠) . Notice that since 𝑃 (𝑠) is measurable, then

so is 𝑀(𝑠) and 𝑒𝑠. So, the coefficients 𝑐(𝑠) and 𝑑(𝑠) are indeed measurable.

Let us recall that by assumption, ||𝐹 (𝑠) − 𝑃 (𝑠)|| ≥ ϒ, then

(𝐹 (𝑠) −𝑀(𝑠)) · 𝑒𝑠 ≤ −ϒ
2 , (𝑃 (𝑠) −𝑀(𝑠)) · 𝑒𝑠 ≥ ϒ

2

This first inequality implies immediately that Ψ𝑠(𝐹 (𝑠)) = 2
ϒ𝑒𝑠 · (𝐹 (𝑠) − 𝑀(𝑠)) ≤ −1 and

Ψ𝑠(𝑃 (𝑠)) = 2
ϒ𝑒𝑠 · (𝑃 (𝑠) −𝑀(𝑠)) ≥ 1. For the second one, notice that since 𝐾(𝑠) is convex,

for any 𝑤 ∈ 𝐾(𝑠) there exists 𝑣 ∈ 𝑅𝑁 such that 𝑤 = 𝑃 (𝑠) + 𝑣 with 𝑒𝑠 · 𝑣 ≥ 0, which implies

by our choice of Ψ𝑠 that for any 𝑤 ∈ 𝐾(𝑠)

Ψ𝑠(𝑤) ≥ Ψ𝑠(𝑃 (𝑠)) ≥ 1

which gives the second property and completes the proof. Now, we apply Lemma 4.2.7 with

𝐸 = 𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 ), 𝐹 (𝑠) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼𝑇 (𝑠)) and 𝒦(𝑠) = 𝐾(𝑋𝑇
𝑥 (𝑠)). Then, there exists 𝜓𝑠

defined as

𝜓𝑠(𝑧) = 𝑐(𝑠) · 𝑧 + 𝑑(𝑠) (4.2.13)

with (𝑐, 𝑑)(·) ∈ 𝐿∞([0, 𝑇 ], 𝑅𝑁+1) such that for a.e. 𝑠 ∈ 𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 ), that is, we have 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼𝑇 (𝑠))

is not in 𝐾(𝑋𝑇
𝑥 (𝑠)) and

𝜓𝑠(𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼𝑇 (𝑠))) ≤ −1, 𝜓𝑠(𝑧) ≥ +1 on 𝐾(𝑋𝑇

𝑥 (𝑠)). (4.2.14)

Observe that the affine function 𝜓𝑠 is less or equal than −1 on the times where the trajectory

is singular and 𝜓𝑠 is greater or equal than 1 where the trajectory is regular.



107

Recall that we are assuming by contradiction that there exists ϒ > 0 such that |𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )| >

0.

Note that 𝑋̇𝜂𝑛
𝑥 (·) converges weakly* to 𝑋̇𝑇

𝑥 (·) in 𝐿∞([0, 𝑇 ];𝑅𝑁). We define

𝐼𝜂𝑛 :=
∫︁ 𝑇

0
𝜓𝑠(𝑋̇𝑋𝜂𝑛

𝑥 (𝑠))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

=
∫︁ 𝑇

0
𝑐(𝑠) · (𝑋̇𝑋𝜂𝑛

𝑥 (𝑠))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠+

∫︁ 𝑇

0
𝑑(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠.

We will arrive to contradiction proving that 𝐼𝜂𝑛 is strictly negative and positive.

Since 𝑋̇𝜂𝑛(·) converges weakly* to 𝑋̇𝑇
𝑥 (·) = 𝑏ℋ(𝑋𝑇

𝑥 (·), 𝛼𝑇 (·)), 𝑐 ∈ 𝐿∞([0, 𝑇 ], 𝑅𝑁) ⊂

𝐿1([0, 𝑇 ], 𝑅𝑁), and thanks to (4.2.13) and (4.2.14), we obtain

lim
𝑛→∞

𝐼𝜂𝑛 = lim
𝜂𝑛→0

∫︁ 𝑇

0
𝑐(𝑠) · ( ˙𝑋𝜂𝑛

𝑥 (𝑠))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠+

∫︁ 𝑇

0
𝑑(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

=
∫︁ 𝑇

0
𝑐(𝑠) · (𝑋̇𝑇

𝑥 (𝑠))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠+

∫︁ 𝑇

0
𝑑(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

=
∫︁ 𝑇

0
𝜓𝑠(𝑋̇𝑇

𝑥 (𝑠))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

=
∫︁ 𝑇

0
𝜓𝑠(𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼𝑇 (𝑠)))1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

≤ −|𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )| < 0.

Below we prove that lim
𝑛→∞

𝐼𝜂𝑛 ≥ 0 what leads to contradiction.

Note that

𝑋̇𝜂𝑛
𝑥 (𝑠) = 𝑏(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))

= 𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1{𝑋𝜂𝑛

𝑥 (𝑠)∈Ω1} + 𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1{𝑋𝜂𝑛

𝑥 (𝑠)∈Ω2}(𝑥)

+𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1{𝑋𝜂𝑛

𝑥 (𝑠)∈ℋ}(𝑥).

Then

𝐼𝜂𝑛 =∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠) (𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω1(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠+ 𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω2(𝑋𝜂𝑛

𝑥 (𝑠))) 𝑑𝑠

+
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠+
∫︁ 𝑇

0
𝑑(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠
(4.2.15)

Let us divide 𝐼𝜂𝑛 in two parts, we denote

𝐼𝜂𝑛
1 =

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠) (𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω1(𝑋𝜂𝑛

𝑥 (𝑠)) + 𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω2(𝑋𝜂𝑛

𝑥 (𝑠))) 𝑑𝑠
(4.2.16)
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𝐼𝜂𝑛
2 =

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠+
∫︁ 𝑇

0
𝑑(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑑𝑠

(4.2.17)

Observe that

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠))1{𝑋𝜂𝑛
𝑥 ∈Ω𝑖}(𝑠) =

∫︁
𝐴𝑖

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛

𝑖 (𝑠)

where 𝜗𝜂𝑛
𝑖 (𝑠) is a Borel measure defined on 𝐴𝑚

𝑖 as 𝜗𝜂𝑛
𝑖 (𝑠)(𝑉 ) := 𝛿𝛼𝜂𝑛

𝑖 (𝑠)(𝑉 )1{𝑋𝜂𝑛
𝑥 ∈Ω𝑖}(𝑠).

Thus,
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω1(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠 =
∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑐(𝑠)1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛
𝑖 (𝑠)𝑑𝑠.

Consequently,
∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛

𝑖 (𝑠) =∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑖) − 𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛
𝑖 (𝑠)𝑑𝑠+

∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛

𝑖 (𝑠)𝑑𝑠

Since 𝑋𝜂𝑛
𝑥 converges uniformly to 𝑋𝑇

𝑥 and 𝑏𝑖 is Lipschitz, then

lim
𝑛→∞

∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑐(𝑠)1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛
𝑖 (𝑠)𝑑𝑠 =

lim
𝑛→∞

∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑐(𝑠)1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛
𝑖 (𝑠)𝑑𝑠.

Let ℛ(𝐴𝑚
𝑖 ) be the Radon measures in 𝐴𝑚

𝑖 , and assume that 𝜗𝜂𝑛
𝑖 : [0, 𝑇 ] −→ ℛ(𝐴𝑚

𝑖 ) is

convergent, taking subsequence if necessary, with limit 𝜗𝑖. Then thanks to Theorem ??, we

have

lim
𝑛→∞

∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑐(𝑠)1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝜂𝑛
𝑖 (𝑠)𝑑𝑠 =

∫︁ 𝑇

0

∫︁
𝐴𝑚

𝑖

𝑐(𝑠)1𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝑖(𝑠)𝑑𝑠.

Let us compute
∫︀

𝐴𝑚
𝑖
𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝑖(𝑠). For each 𝑠 ∈ [0, 𝑇 ], we have either 𝜗𝑖(𝑠)(𝐴𝑚
𝑖 ) = 0,

or 𝜗𝑖(𝑠)(𝐴𝑚
𝑖 ) ̸= 0 and 𝜗𝑖(𝑠)

𝜗𝑖(𝑠)(𝐴𝑚
𝑖 ) is a Borel probability measure on 𝐴𝑚

𝑖 .

If 𝜗𝑖(𝑠)(𝐴𝑚
𝑖 ) ̸= 0, since 𝐴𝑚

𝑖 is a separable metric space, then there exists an enumerable

set {𝛼1
𝑖 , · · · , 𝛼𝜁

𝑖 , · · · } dense in 𝐴𝑚
𝑖 , i.e., there exist coefficients 𝜇1

𝑖,𝜁(𝑠), · · · , 𝜇𝑚
𝑖,𝜁(𝑠) ∈ [0, 1]

with
𝜁∑︀

𝑗=1
𝜇𝑗

𝑖,𝜁(𝑠) = 1, such that

lim
𝜁→∞

𝜇1
𝑖,𝜁(𝑠)𝛿𝛼1

𝑖
+ 𝜇2

𝑖,𝜁(𝑠)𝛿𝛼2
𝑖

+ · · · + 𝜇𝜁
𝑖,𝜁(𝑠)𝛿𝛼𝜁

𝑖
= 𝜗𝑖(𝑠)
𝜗𝑖(𝑠)(𝐴𝑚

𝑖 ) .
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By convexity of ℬ𝑖(𝑋𝑇
𝑥 (𝑠)) there exists 𝛼𝜁

𝑖 ∈ 𝐴𝑚
𝑖 such that

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝜁

𝑖 ) = 𝜇1
𝑖,𝜁(𝑠)𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼1
𝑖 ) + 𝜇2

𝑖,𝜁(𝑠)𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼2

𝑖 ) + · · · + 𝜇𝜁
𝑖,𝜁(𝑠)𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝜁
𝑖 )

=
∫︁

𝐴𝑚
𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖) 𝑑

(︁
𝜇1

𝑖,𝜁(𝑠)𝛿𝛼1
𝑖

+ 𝜇2
𝑖,𝜁(𝑠)𝛿𝛼2

𝑖
+ · · · + 𝜇𝜁

𝑖,𝜁(𝑠)𝛿𝛼𝜁
𝑖

)︁
.

(4.2.18)

Thus, by definition of weak* convergence of Radon measures, we have

lim
𝜁→∞

∫︁
𝐴𝑚

𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑(𝜇1

𝑖,𝜁(𝑠)𝛿𝛼1
𝑖
+𝜇2

𝑖,𝜁(𝑠)𝛿𝛼2
𝑖
+· · ·+𝜇𝜁

𝑖,𝜁(𝑠)𝛿𝛼𝜁
𝑖
) =

∫︁
𝐴𝑚

𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑

𝜗𝑖(𝑠)
𝜗𝑖(𝑠)(𝐴𝑚

𝑖 ) .

(4.2.19)

From (4.2.18) and (4.2.19), we have

lim
𝜁→∞

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝜁

𝑖 ) =
∫︁

𝐴𝑚
𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑

𝜗𝑖(𝑠)
𝜗𝑖(𝑠)(𝐴𝑚

𝑖 ) . (4.2.20)

From (4.2.20), and since ℬ𝑖(𝑋𝑇
𝑥 (𝑠)) is closed there exists a control 𝛼𝑖(𝑠) ∈ 𝐴𝑚

𝑖 satisfying

𝜗𝑖(𝑠)(𝐴𝑚
𝑖 )𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖(𝑠)) =
∫︁

𝐴𝑚
𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝑖(𝑠). (4.2.21)

On the other hand, if 𝜗𝑖(𝑠)(𝐴𝑚
𝑖 ) = 0 then for any 𝛼𝑖(𝑠) ∈ 𝐴𝑚

𝑖

𝜗𝑖(𝑠)(𝐴𝑚
𝑖 )𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖(𝑠)) = 0 =
∫︁

𝐴𝑚
𝑖

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)𝑑𝜗𝑖(𝑠).

Thus, we arrive to the same expression for the integral of 𝑏𝑖 in 𝐴𝑚
𝑖 .

Thanks to the Measurable Selection Theorem 2.1.1 we we can choose the control 𝛼𝑖(·) ∈

𝐿∞([0, 𝑇 ];𝑅𝑁) and thanks to (4.2.21), we have

lim
𝑛→∞

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1Ω𝑖

(𝑋𝜂𝑛
𝑥 (𝑠))𝑑𝑠

=
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝜗𝑖(𝑠)(𝐴𝑚
𝑖 )𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑖(𝑠))𝑑𝑠.
(4.2.22)

Analogously we consider measures 𝜗𝜂𝑛

ℋ : [0, 𝑇 ] −→ ℛ(𝐴𝑚) such that∫︁
𝐴𝑚

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼)𝑑𝜗𝜂𝑛

ℋ (𝑠) := 𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1{𝑋𝜂𝑛 ∈ℋ}(𝑠).

Similarly we can assume that 𝜗𝜂𝑛

ℋ converges to some 𝜗ℋ and there exists 𝛼ℋ ∈ 𝐴𝑚 such that

lim
𝑛→∞

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1{𝑋𝜂𝑛

𝑥 ∈ℋ}(𝑠) = 𝜗ℋ(𝑠)(𝐴𝑚)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼ℋ(𝑠)). (4.2.23)

Consequently,

lim
𝑛→∞

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠

=
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝜗ℋ(𝑠)(𝐴)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼ℋ(𝑠))𝑑𝑠.

(4.2.24)
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For 𝑠 ∈ 𝐸ϒ
𝑠𝑖𝑛𝑔(𝑇 ) and the trajectories on the hyperplane, 𝑋𝑇

𝑥 (𝑠) ∈ ℋ, we claim that

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖(𝑠)) · 𝑒𝑁 = 0.

Indeed, consider the sequence of Lipschitz continuous functions, (𝑋𝜂𝑛

𝑥,𝑁)+ := max{0, 𝑋𝜂𝑛

𝑥,𝑁},

which converges uniformly to (𝑋𝑇
𝑥,𝑁)+ := max{0, 𝑋𝑇

𝑥,𝑁} on [0, 𝑇 ], up to an additional extrac-

tion of subsequence. Thus, we have weak* convergence of the derivative

(𝑋̇𝜂𝑛

𝑁 )+
*
⇀ (𝑋̇𝑁)+. (4.2.25)

Furthermore,

(𝑋̇𝜂𝑛

𝑥,𝑁)+(𝑠) = (𝑋̇𝜂𝑛

𝑥,𝑁)(𝑠)1{𝑋̇𝜂𝑛
𝑥,𝑁 ∈Ω𝑖}(𝑠) and (𝑋̇𝑇

𝑥,𝑁)+ = (𝑋̇𝑇
𝑥,𝑁)(𝑠)1{𝑋𝑇

𝑥,𝑁 ∈Ω𝑖}(𝑠). (4.2.26)

The above derivative is in the sense of distributions. Therefore, we have the weak* convergence

(𝑋̇𝜂𝑛

𝑥,𝑁)(𝑠)1{𝑋𝜂𝑛
𝑥,𝑁 ∈Ω𝑖}(𝑠)1{𝑋𝑇

𝑥,𝑁 ∈ℋ}(𝑠)
*
⇀ (𝑋̇𝑇

𝑥,𝑁)(𝑠)1{𝑋𝑇
𝑥 ∈Ω𝑖}(𝑠)1{𝑋𝑇

𝑥 ∈ℋ}(𝑠).

Since 1{𝑋𝑇
𝑥 ∈Ω𝑖}(𝑠)1{𝑋𝑇

𝑥 ∈ℋ}(𝑠) = 0, we have

(𝑋̇𝜂𝑛

𝑥,𝑁)(𝑠)1{𝑋𝜂𝑛
𝑥,𝑁 ∈Ω𝑖}(𝑠)1{𝑋𝑇

𝑥,𝑁 ∈ℋ}(𝑠)
*
⇀ 0.

Since

(𝑋̇𝜂𝑛

𝑥,𝑁)(𝑠)1{𝑋𝜂𝑛
𝑥,𝑁 ∈Ω𝑖}(𝑠)1{𝑋𝑇

𝑥,𝑁 ∈ℋ}(𝑠) = 𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠)) · 𝑒𝑁1{𝑋𝑇
𝑥 (𝑠)∈ℋ}

Since the left hand side converges weakly* to zero and the right hand side converges to

𝜗𝑖(𝑠)(𝐴𝑖)𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)(𝑠) · 𝑒𝑁1{𝑋𝑇

𝑥 (𝑠)∈ℋ}, we obtain that

𝜗𝑖(𝑠)(𝐴𝑖)𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)(𝑠) · 𝑒𝑁1{𝑋𝑇

𝑥 (𝑠)∈ℋ}(𝑠) = 0.

Then

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖)(𝑠) · 𝑒𝑁 = 0 on {𝑋𝑇

𝑥 (𝑠) ∈ ℋ},

Now, we can choose a control in 𝐴𝑟𝑒𝑔
0 such that 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), ·) is in 𝐾(𝑋𝑇
𝑥 (𝑠)). Thanks to

hypothesis (HC), there exists 𝛼**
𝑗 (𝑠) such that 𝑏𝑗(𝑋𝑇

𝑥 (𝑠), 𝛼**
𝑗 (𝑠)) = 0, then (𝛼𝑖(𝑠), 𝛼**

𝑗 (𝑠), 1) ∈

𝐴𝑟𝑒𝑔
0 (𝑋𝑇

𝑥 (𝑠)) and

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑖(𝑠)) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠)𝛼𝑖(𝑠), 𝛼**
𝑗 (𝑠), 1) ∈ 𝐾(𝑋𝑇

𝑥 (𝑠)).
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Let us focus now on the term in 𝐼𝜂𝑛
2 given by

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠

We proceed as in (BARLES; BRIANI; CHASSEIGNE, 2014, Lemma 5.3). What changes in

our case is that we are not taking the limit of a sequence of regular trajectories but of 𝜂𝑛-

trajectories. We prove that for 𝑠 in

Δ𝑛 := (𝑋𝜂𝑛
𝑥 )−1(ℋ) ∩ 𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 ),

there exists a regular control 𝛼̃(𝑠) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝑇

𝑥 (𝑠)) satisfying

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠)) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼̃(𝑠)) + 𝜍𝑛(𝑠) (4.2.27)

with 𝜍𝑛(·) measurable going uniformly to 0 when 𝑛 goes to infinity and 𝛼̃(·) ∈ 𝐿∞(Δ𝑛;𝐴𝑚).

We will focus on proving (4.2.27). To do this, first we will find a regular control 𝛼𝑛(·) for

the trajectory 𝑋𝜂𝑛
𝑥 (·) such that 𝑏ℋ(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛(𝑠)) approaches well 𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠)). After

that, we find a regular control 𝛼̃(·) for trajectory 𝑋𝑇
𝑥 (·) such that 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼̃(·)) approaches

well 𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛(𝑠)).

Let us find the regular controls 𝛼𝑛. For the first step, we define below the functions

𝛾𝑛
1 (𝑠) := − max{0, 𝑏1(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
1 (𝑠)) · 𝑒𝑁}

𝛾𝑛
2 (𝑠) := − min{0, 𝑏2(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
2 (𝑠)) · 𝑒𝑁}.

(4.2.28)

On one hand, if (𝛼𝜂𝑛
1 (𝑠), 𝛼𝜂𝑛

2 (𝑠), 𝜇𝜂𝑛(𝑠)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝜂𝑛

𝑥 (𝑠)) then 𝛾𝑛
1 (𝑠) = 0 = 𝛾𝑛

2 (𝑠).

Since 𝑋𝜂𝑛
𝑥 (𝑠) ∈ ℋ, we have 𝑏ℋ(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛(𝑠)) · 𝑒𝑁 = 0 almost everywhere on Δ𝑛, then

if (𝛼𝜂𝑛
1 (𝑠), 𝛼𝜂𝑛

2 (𝑠), 𝜇𝜂𝑛(𝑠)) /∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝜂𝑛

𝑥 (𝑠)), we have

𝜇𝜂𝑛𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

1 (𝑠)) · 𝑒𝑁 + (1 − 𝜇𝜂𝑛)𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

2 (𝑠)) · 𝑒𝑁 = 0. (4.2.29)

If 𝜇𝜂𝑛(𝑠) ∈ (0, 1), we obtain 𝛾𝑛
𝑖 (𝑠) := −𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
𝑖 (𝑠)) · 𝑒𝑁 and

𝜇𝜂𝑛𝛾𝑛
1 (𝑠)+(1−𝜇𝜂𝑛)𝛾𝑛

2 (𝑠) = −(𝜇𝜂𝑛𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

1 (𝑠))·𝑒𝑁+(1−𝜇𝜂𝑛)𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

2 (𝑠))·𝑒𝑁) = 0.

If 𝜇𝜂𝑛(𝑠) = 1, 𝛾𝑛
1 (𝑠) = 0 and 1 − 𝜇𝜂𝑛(𝑠) = 0.

If 𝜇𝜂𝑛(𝑠) = 0, we have 𝛾𝑛
2 (𝑠) = 0. Then

𝜇𝜂𝑛𝛾𝑛
1 (𝑠) + (1 − 𝜇𝜂𝑛)𝛾𝑛

2 (𝑠) = 0, for a.e. 𝑠 ∈ Δ𝑛. (4.2.30)
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Moreover since 𝑏𝑖 and 𝑋𝜂𝑛
𝑥 are continuous and 𝛼𝜂𝑛

𝑖 (·) is measurable, then 𝛾𝑛
𝑖 is measurable.

Since |𝛾𝑛
𝑖 (𝑠)| ≤ 𝜂𝑛 almost everywhere on Δ𝑛, then

𝛾𝑛
𝑖 → 0, uniformly as 𝑛 → ∞. (4.2.31)

Moreover,

(𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

1 (𝑠))+𝛾𝑛
1 (𝑠)𝑒𝑁) ·𝑒𝑁 ≤ 0, (𝑏2(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
2 (𝑠))+𝛾𝑛

2 (𝑠)𝑒𝑁) ·𝑒𝑁 ≥ 0. (4.2.32)

Now we are going to use 𝛾𝑛
𝑖 to build the regular control 𝛼𝑛(·). To do so, we define

𝛽𝑛(𝑠) := min
{︃
𝛿 − 2|𝛾𝑛

1 (𝑠)|
𝛿

,
𝛿 − 2|𝛾𝑛

2 (𝑠)|
𝛿

}︃
.

Thanks to (4.2.31), we have 𝛽𝑛(𝑠) → 1 when 𝑛 → ∞.

We claim that there exists 𝛼𝜂𝑛*
𝑖 (𝑠) ∈ 𝐴𝑖 such that

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠)) = 𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

𝑖 (𝑠)) + 𝑝𝑛
𝑖 (𝑠), (4.2.33)

where

𝑝𝑛
𝑖 (𝑠) := (1 − 𝛽𝑛(𝑠)) (𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
𝑖 (𝑠)) + 𝛾𝑛

𝑖 (𝑠)) − 𝛾𝑛
𝑖 (𝑠).

Note that 𝑝𝑛
𝑖 is measurable and goes uniformly to 0 when 𝑛 goes to infinity.

Indeed, if 𝛽𝑛(𝑠) = 1, then |𝛾𝑛
1 (𝑠)| = 0 = |𝛾𝑛

2 (𝑠)|. Thus, we can take

𝛼𝜂𝑛*
𝑖 (𝑠) := 𝛼𝜂𝑛

𝑖 (𝑠) and 𝑝𝑛
𝑖 (𝑠) = (1 − 1)(𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
𝑖 (𝑠)) + 0) − 0 = 0.

Otherwise, if 𝛽𝑛(𝑠) ̸= 1. For 𝑛 large enough 0 ≤ 𝛽𝑛(𝑠) ≤ 1 and |𝛾𝑛
𝑖 (𝑠)|

1−𝛽𝑛(𝑠) ≤ 𝛿
2 . Thanks to

hypothesis (HC), there exist 𝛼𝜂𝑛*
𝑖 (𝑠) ∈ 𝐴𝑚

𝑖 such that

𝛽𝑛(𝑠) (𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠)) + 𝛾𝑛
𝑖 (𝑠)𝑒𝑁) = 𝛽𝑛(𝑠)𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝜂𝑛
𝑖 (𝑠)) + (1 − 𝛽𝑛(𝑠))(𝛽𝑛(𝑠)𝛾𝑛

𝑖 (𝑠)𝑒𝑁 )
1−𝛽𝑛(𝑠)

= 𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

𝑖 (𝑠)).

Furthermore, thanks to (4.2.32)

𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

1 (𝑠)) · 𝑒𝑁 = 𝛽𝑛(𝑠)(𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

1 (𝑠)) + 𝛾𝑛
1 (𝑠)) · 𝑒𝑁 ≤ 0

𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

2 (𝑠)) · 𝑒𝑁 = 𝛽𝑛(𝑠)(𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

2 (𝑠)) + 𝛾𝑛
2 (𝑠)) · 𝑒𝑁 ≥ 0

Thanks to (4.2.29) and (4.2.32)

𝜇𝜂𝑛(𝑠)𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

1 (𝑠)) · 𝑒𝑁 + (1 − 𝜇𝜂𝑛(𝑠))𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

2 (𝑠)) · 𝑒𝑁
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= 𝜇𝜂𝑛(𝑠)𝛽𝑛(𝑠)𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

1 (𝑠)) · 𝑒𝑁 + (1 − 𝜇𝜂𝑛(𝑠))𝛽𝑛(𝑠)(𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

2 (𝑠))

+𝛽𝑛(𝑠)𝜇𝜂𝑛𝛾𝑛
1 (𝑠) + 𝛽𝑛(𝑠)(1 − 𝜇𝜂𝑛)𝛾𝑛

2 (𝑠) = 0 𝑎.𝑒 on ℋ.

Then, we have (𝛼𝜂𝑛*
1 (𝑠)𝛼𝜂𝑛*

2 (𝑠), 𝜇𝜂𝑛(𝑠)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝜂𝑛

𝑥 (𝑠)).

However (𝛼𝜂𝑛*
1 (·)𝛼𝜂𝑛*

2 (·), 𝜇𝜂𝑛(·)) is not necessarily measurable. But we can use Filip-

pov Theorem 2.1.2 to obtain measurable controls. We use Filippov in the following way:

ℎ(𝑠) = 𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠)) − 𝑝𝑛
𝑖 (𝑠) on [0, 𝑇 ], 𝐹 (𝑠) = 𝐴𝑖 on [0, 𝑇 ], 𝑍 = Δ𝑛 and 𝑔(𝑠, 𝛼𝑖) =

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑖). Indeed,

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛*

𝑖 (𝑠)) ∈ ℬ𝑖(𝑋𝜂𝑛
𝑥 (𝑠)).

So, we can find 𝛼𝑛
𝑖 (·) measurable such that

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛

𝑖 (𝑠)) − 𝑝𝑛
𝑖 (𝑠) = 𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)).

Thus, 𝛼𝑛(·) := (𝛼𝑛
1 (·), 𝛼𝑛

2 (·), 𝜇𝑛(·)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝜂𝑛

𝑥 (𝑠)) is measurable.

Consequently,

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠)) = 𝑏ℋ(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛(𝑠)) + 𝑝𝑛(𝑠)

where 𝑝𝑛(𝑠) = 𝜇𝜂𝑛(𝑠)𝑝𝑛
1 (𝑠)+(1−𝜇𝜂𝑛(𝑠))𝑝𝑛

2 (𝑠). Note that 𝑝𝑛 is measurable and goes uniformly

to 0 when 𝑛 goes to infinity since 𝑝𝑛
𝑖 goes to zero as 𝑛 goes to infinity.

Since (𝛼𝑛
1 (𝑠), 𝛼𝑛

2 (𝑠), 𝜇𝜂𝑛(𝑠)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝜂𝑛

𝑥 (𝑠)) and thanks to (BARLES; BRIANI; CHASSEIGNE,

2014, Lemma 5.3) there is a measurable control 𝛼̃ ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝑇

𝑥 (𝑠)) satisfying

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛(𝑠)) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼̃(𝑠)) + 𝜎𝑛(𝑠). (4.2.34)

with 𝜎𝑛(·) measurable that goes uniformly to 0 when 𝑛 goes to infinity. Therefore,

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠)) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼̃(𝑠)) + 𝜎𝑛(𝑠) + 𝑝𝑛(𝑠)

and we can choose 𝜍𝑛(𝑠) := 𝜎𝑛(𝑠) + 𝑝𝑛(𝑠) in (4.2.27).

We prove (4.2.34) as follows. Define,

𝜎̃𝑛
𝑖 (𝑠) := 𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)) − 𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)).

Since 𝑏𝑖, 𝑋
𝜂𝑛 and 𝑋𝑇

𝑥 are continuous and 𝛼𝑛
𝑖 (·) is measurable, then 𝜎̃𝑛

𝑖 (·) is measurable.

Furthermore, 𝜎̃𝑛
𝑖 (·) converges uniformly to 0 as 𝑛 goes to infinity, because

|𝜎̃𝑛
𝑖 (𝑠)| = |𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)) − 𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠))| ≤ 𝐶𝑏|𝑋𝜂𝑛

𝑥 (𝑠) −𝑋𝑇
𝑥 (𝑠)|
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and 𝑋𝜂𝑛
𝑥 (·) converges uniformly to 𝑋𝑇

𝑥 (·) . Thus,

𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) = 𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) + 𝜎̃𝑛
𝑖 (𝑠).

There exist 𝛼̃*
𝑖 (𝑠) ∈ 𝐴𝑖 and 𝜎𝑛

𝑖 (𝑠) such that

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) = 𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼̃*

𝑖 (𝑠)) + 𝜎𝑛
𝑖 (𝑠).

with 𝜎𝑛
𝑖 (𝑠) = (1−𝛽𝑛(𝑠))(𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠))+𝜎̃𝑛

𝑖 (𝑠))−𝜎̃𝑛
𝑖 (𝑠), where 𝛽𝑛(𝑠) = min{ 𝛿−2|𝜎̃𝑛

1 (𝑠)|
𝛿

,
𝛿−2|𝜎̃𝑛

2 (𝑠)|
𝛿

}.

Thus, 𝜎𝑛
𝑖 is measurable and goes uniformly to 0 when 𝑛 goes to infinity.

If 𝛽𝑛(𝑠) = 1, then |𝜎̃𝑛
1 (𝑠)| = 0 = |𝜎̃𝑛

2 (𝑠)|. Thus, we can take 𝛼̃*
𝑖 (𝑠) := 𝛼𝑛

𝑖 (𝑠) and

𝜎𝑛
𝑖 (𝑠) = (1 − 1)(𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)) + 0) − 0 = 0.

On the other hand, if 𝛽𝑛(𝑠) ̸= 1, we proceed as follows,

𝛽𝑛(𝑠)𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) = 𝛽𝑛(𝑠)
(︁
𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)) + 𝜎̃𝑛

𝑖 (𝑠)
)︁

= 𝛽𝑛(𝑠)𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) + (1 − 𝛽𝑛(𝑠))
(︁

𝛽𝑛(𝑠)𝜎̃𝑛
𝑖 (𝑠)

1−𝛽𝑛(𝑠)

)︁
= 𝑏𝑖(𝑋𝑇

𝑥 (𝑠), 𝛼̃*
𝑖 (𝑠)).

Thus,

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼̃*

𝑖 (𝑠)) · 𝑒𝑁 = 𝛽𝑛(𝑠)𝑏𝑖(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛

𝑖 (𝑠)) · 𝑒𝑁 ,

and

𝜇𝜂𝑛(𝑠)𝑏1(𝑋𝑇
𝑥 (𝑠), 𝛼̃*

1(𝑠)) · 𝑒𝑁 + (1 − 𝜇𝜂𝑛(𝑠)))𝑏2(𝑋𝑇
𝑥 (𝑠), 𝛼̃*

2(𝑠)(𝑠)) · 𝑒𝑁

= 𝜇𝜂𝑛(𝑠)𝛽𝑛(𝑠)𝑏1(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛

1 (𝑠)) · 𝑒𝑁 + (1 − 𝜇𝜂𝑛(𝑠))𝛽𝑛(𝑠)(𝑏2(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛

2 (𝑠)) · 𝑒𝑁

= 𝛽𝑛(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛(𝑠)) · 𝑒𝑁 = 0.

Hence (𝛼̃*
1(𝑠), 𝛼̃*

2(𝑠), 𝜇𝜂𝑛(𝑠)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝑇

𝑥 (𝑠)), however it is not necessarily measurable. Arguing

as above, thanks to Filippov’s Theorem 2.1.2, we obtain measurable controls 𝛼̃1(·), 𝛼̃2(·) such

that

𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼̃𝑖(𝑠)) = 𝑏𝑖(𝑋𝜂𝑛

𝑥 (𝑠), 𝛼𝑛
𝑖 (𝑠)) − 𝜎𝑛

𝑖 (𝑠) = 𝑏𝑖(𝑋𝑇
𝑥 (𝑠), 𝛼̃*

𝑖 (𝑠)).

Thus, 𝛼̃(𝑠) = (𝛼̃1(𝑠), 𝛼̃2(𝑠), 𝜇𝜂𝑛(𝑠)) ∈ 𝐴𝑟𝑒𝑔
0 (𝑋𝑇

𝑥 (𝑠)) is measurable and

𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝑛(𝑠)) = 𝑏ℋ(𝑋𝑇

𝑥 (𝑠), 𝛼̃(𝑠)) + 𝜎𝑛(𝑠),

with 𝜎𝑛(𝑠) = 𝜇𝜂𝑛(𝑠)𝜎𝑛
1 (𝑠) + (1 − 𝜇𝜂𝑛(𝑠))𝜎𝑛

2 (𝑠). Note that 𝜎𝑛 is measurable and go uniformly

to 0 when 𝑛 goes to infinity.
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Now we consider 𝛼* satisfying

𝑐(𝑠)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼*(𝑠)) = min

{𝑎∈𝐴𝑟𝑒𝑔
0 : 𝑏ℋ(𝑋𝑇

𝑥 ,𝑎)∈𝐾(𝑋𝑇
𝑥 )}

𝑐(𝑠)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝑎). (4.2.35)

The minimum on the left hand side exists due to the compactness of 𝐾(𝑋𝑇
𝑥 (𝑠)). We can

assume that 𝛼* is measurable by the Measurable Selection Theorem 2.1.1. Also, note that 𝛼*

does not depend on 𝜂𝑛. Thanks to (4.2.35), we have,
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠

=
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼̃(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠+ 𝑜𝜂𝑛

≥
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼*(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠+ 𝑜𝜂𝑛 .

Taking limits as 𝑛 goes to infinity, we obtain thanks to (4.2.24), that

lim
𝑛→∞

∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝑏ℋ(𝑋𝜂𝑛
𝑥 (𝑠), 𝛼𝜂𝑛(𝑠))1ℋ(𝑋𝜂𝑛

𝑥 (𝑠))𝑑𝑠

≥
∫︁ 𝑇

0
𝑐(𝑠)1𝐸ϒ

𝑠𝑖𝑛𝑔(𝑇 )(𝑠)𝜗ℋ(𝑠)(𝐴𝑚)𝑏ℋ(𝑋𝑇
𝑥 (𝑠), 𝛼*(𝑠))𝑑𝑠.

(4.2.36)
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5 OTHER PROBLEMS

5.1 STRATIFICATIONS

In this thesis we work with discontinuities in the hyperplane ℋ, but our set of disconti-

nuities can be much more general. Emmanuel and Guy have done this via Whitney Stratifica-

tion in (BARLES; CHASSEIGNE, 2018). Now, let us present the definition of stratification. Let

𝑀0,𝑀1, · · · ,𝑀𝑁 be disjoint submanifolds of 𝑅𝑁 such that 𝑅𝑁 = 𝑀0 ∪ 𝑀1 ∪ · · · ∪ 𝑀𝑁

where each 𝑀𝑘 decomposes as 𝑀𝑘 = ⋃︀
𝑗 𝑀

𝑘
𝑗 , for 𝑘 ∈ {0, 1, . . . , 𝑁}.

Definition 5.1.1 We say that 𝑀 = (𝑀𝑘)𝑁
𝑘=0 is an Admissible Flat Stratification of 𝑅𝑁 if

the following hypotheses are satisfied
If 𝑥 ∈ 𝑀𝑘 for 𝑘 = 0, 1 · · · , 𝑁 there exists 𝑟 = 𝑟𝑥 such that

• 𝐵(𝑥, 𝑟) ∩𝑀𝑘 = 𝐵(𝑥, 𝑟) ∩ (𝑥+𝑉𝑘), where 𝑉𝑘 is a 𝑘-dimensional linear subspace of 𝑅𝑁 .

• if 𝑙 < 𝑘, 𝐵(𝑥, 𝑟) ∩𝑀 𝑙 = ∅

• For any 𝑙 > 𝑘, then 𝐵(𝑥, 𝑟) ∩ 𝑀 𝑙 is either empty or has at most a finite number of
connected components;

• For any 𝑙 > 𝑘, 𝐵(𝑥, 𝑟) ∩𝑀 𝑙 ̸= ∅ if and only if 𝑥 ∈ 𝜕𝑀 𝑙
𝑗.

If 𝑀𝑘
𝑖 ∩𝑀

𝑙

𝑗 ̸= ∅ with 𝑙 > 𝑘 then 𝑀𝑘
𝑖 ⊂ 𝑀

𝑙

𝑗;
Moreover, we have 𝑀𝑘 ⊂ 𝑀0 ∪𝑀1 ∪ · · · ∪𝑀𝑘.

With this definition we can present a more general notion of stratification.

Definition 5.1.2 We say that 𝑀 = (𝑀𝑘)𝑁
𝑘=0 is a Regular General Stratification of 𝑅𝑁 if the

following hypotheses are satisfied

• 𝑅𝑁 = 𝑀0 ∪𝑀1 ∪ · · · ∪𝑀𝑁 ;

• for any 𝑥 ∈ 𝑅𝑁 , there exists 𝑟 = 𝑟(𝑥) > 0 and a 𝐶1,1 change of coordinates 𝜓𝑥 :

𝐵(𝑥, 𝑟) → 𝑅𝑁 such that 𝜓𝑥(𝑥) = 𝑥 and {𝜓𝑥(𝑀 ∩ 𝐵(𝑥, 𝑟))}𝑁
𝑘=0 is the restriction to

𝜓𝑥(𝐵(𝑥, 𝑟)) of an admissible flat stratification.
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When the set of discontinuities form an stratification, then the results that we have th-

roughout this Thesis, may be reached with these new discontinuities.

In (BARLES; CHASSEIGNE, 2018) Guy and Emmanuel handle the problem with bounded

data. Our aim is to prove the results under the same settings in this Thesis, with unbounded

cost and dynamic functions, and unbounded control set.

5.2 KPP EQUATION

Reaction-diffusion equation of type KPP appears in different models in Physics, combustion

for example, and Biology. In simple format, the KPP equation is expressed as

𝑢𝑡 − 1
2∇𝑢 = 𝑐𝑢(1 − 𝑢) in 𝑅𝑁 × (0,∞).

The important thing in applications is to understand the behavior of u for long times and large

space. Therefore, we consider the rescaling 𝑢𝜖(𝑥, 𝑡) = 𝑢(𝑥
𝜖
, 𝑡

𝜖
) which solves

𝑢𝜖
𝑡 − 𝜖∇𝑢𝜖 = 𝜖−1𝑐𝑢(1 − 𝑢) in 𝑅𝑁 × (0,∞).

In (BARLES; CHASSEIGNE, 2018), Emanuel and Guy have studied in the viscosity sense, the

KPP equation with discontinuities. We would like to apply the unbounded framework to deal

with these type of problems.

5.3 OTHER VALUES FUNCTIONS

There exist many family of functions that may be considered, as we did in Chapter 3.

Another family of value functions that we can consider is the following defined below.

𝜏 𝜈
𝐴(𝒮)(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴(𝑥)|for a.e. 𝑡 ∈ ℰℋ, 𝑏2(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≤ 𝜈, 𝑏1(𝑋𝑥(𝑡), 𝛼(𝑡))·𝑒𝑁 ≥ −𝜈}

(5.3.1)

We define

𝑈𝜈
𝐴(𝒮)(𝑥) := inf

𝜏𝜈
𝐴(𝑥)

(︃∫︁ 𝑇

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡+ 𝑈𝜈

𝐴(𝒮) (𝑋 (𝑇 )) 𝑒−𝜆𝑇

)︃
. (5.3.2)

Of course two questions arise: what is the limit of 𝑈𝜈
𝐴(𝑥) when 𝜈 goes to zero? And when 𝜈

goes to infinity?

A good candidate as a limit of 𝑈𝜈
𝐴(𝒮) when 𝜈 goes to zero is

𝑈𝒮
𝐴(𝑥) := inf

𝜏𝒮
𝐴(𝑥)

∫︁ ∞

0
𝑙(𝑋(𝑡), 𝛼(𝑡))𝑒−𝜆𝑡𝑑𝑡 (5.3.3)
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where,

𝜏𝒮
𝐴(𝑥) := {(𝑋𝑥(·), 𝛼(·)) ∈ 𝜏𝐴(𝑥) | for a.e. 𝑡 ∈ ℰℋ, 𝑏2(𝑋𝑥(𝑡), 𝛼2(𝑡))·𝑒𝑁 ≤ 0, 𝑏1(𝑋𝑥(𝑡), 𝛼1(𝑡))·𝑒𝑁 ≥ 0}.

(5.3.4)

And when 𝜈 goes to infinity we suspect that the limit of 𝑈𝜈
𝐴(𝒮) is 0.

5.4 CONTROLS IN 𝐿𝑝

We work with controls in 𝐿∞(𝐴). But what happens if we work with controls in 𝐿𝑝(𝐴)?

The main difficulty of this approach is to obtain comparison and limit results.
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In the discontinuous approach, we work with supersolutions that are lower semicontinuous

Definition 6.3. Let X be a topological space and f : X → (−∞,∞]. We say that f is lower
semicontinuous when f(x0) ≤ lim inf

x→x0

f(x) .

Equivalently we have the definitions in the proposition below.

Proposition 6.1. Let X a topological space and f : X → (−∞,∞]. Then f is lower
semicontinuous iff

(i) f−1((−∞, λ]) is closed set for all λ ∈ R.

(ii) f(x0) ≤ lim inf
x→x0

f(x).

Thanks to characterization (i) we obtain the following result.

Theorem 6.2. Let X be a normed space and f strong lower continuous and convex function
then f is lower semicontinuous with respect a weak topology.

Proof. Since f is lower semicontinuous and convex function then the set f−1(−∞, λ] is convex
and strong closed set. Thus, thanks to Mazur Theorem (see [13] page 61), f−1(−∞, λ] is
convex and weak closed set. Therefore, due Proposition 6.1 f is weak lower semicontinuous.

The advantage of the discontinuous approach is that we can cross the limit without
requiring almost anything, just uniform local bound. To do this, we need the following
notion of limit

Given gε a sequence of uniformly locally bounded functions, the half-relaxed limits of
(gε)ε is defined by

(lim inf)∗gε(x) = lim inf
(ε, y)→(0, x)

gε(y) := sup
ε→0

inf{gγ(y) : 0 < γ < ε, |x− y| < ε}

(lim sup)∗gε(x) = lim sup
(ε, y)→(0, x)

gε(y) := inf
ε→0

sup{gγ(y) : 0 < γ < ε, |x− y| < ε}

This notion of limit allows us to obtain the following result

Theorem 6.3 (Half-Relaxed Limit Method). Given sequences (uε)ε and (Hε)ε uniformly
locally bounded such that uε is supersolution of

Hε(x, v(x), Dv(x)) = 0 in RN .

Let
u(x) := (lim inf)∗uε(x) and H(x, u, p) = (lim sup)∗Hε(x, u, q).

Then u is a viscosity supersolution of

H(x, v(x), Dv(x)) = 0 in RN .
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Analogously, given sequences (uε)ε and (Hε)ε uniformly locally bounded such that uε is
subsolution of

Hε(x, v(x), Dv(x)) = 0 in RN .

Let
u(x) := (lim sup)∗uε(x) and H(x, u, p) = (lim inf)∗Hε(x, u, q).

Then u is a viscosity subsolution of

H(x, v(x), Dv(x)) = 0 in RN .

Proof. See [20, Th A.2, p. 577], [4, Th 4.1, p. 85] and [7, Th 3.1.3, p. 29].

In particular we have the following lemma

Lemma 6.4. Consider uε a sequence of uniformly locally bounded continuous functions. If
uε is non-increasing, then

lim sup
(ε,y)→(0,x)

uε(y) = inf
ε
uε(x) and lim inf

(ε,y)→(0,x)
uε(y) =

(
inf
ε
uε

)
∗
(x).

If uε is non-decreasing, then

lim inf
(ε,y)→(0,x)

uε(y) = sup
ε
uε(x) and lim sup

(ε,y)→(0,x)

uε(y) =

(
sup
ε
uε

)∗
(x).

where (·)∗ and (·)∗ are the envelope of u.s.c and l.s.c functions respectively.

Proof. See [4, p. 91].
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The relaxed control method plays an important role in the theory of viscosity solutions of
the Bellman-Hamilton-Jacobi equation. In this section we present this method and its main
result.

We denote a Radon measure in a compact set A by R(A) and Ar set of Radon probability
measure, Ar the set of measurable functions (0,∞) → Ar and Ar

T set of measurable functions
(0, T ) → Ar.

Let C(A) be the set of continuous functions of A → R and (C(A))∗ dual space of C(A).
we have

(C(A))∗ = R(A).

Since C(A) is separable, due to Alaoglu Theorem the unit ball in the dual space (C(A))∗

is compact in the weak* topology, (metrizable compact). Thus,

Ar ↪→ (C(A))∗.

Consequently, Ar is compact metrizable space, with the weak* topology. Beyond that

A ↪→ Ar

with a→ δa where δa is Dirac measure concentrated in a.
So relaxing the controls means extending the control set, A, to a larger compact, Ar. Since

we changed the set of controls then we need to change too the cost function and dynamic
function:

br(x,m) =

∫

A

b(x, a)dµ µ ∈ Ar

lr(x,m) =

∫

A

l(x, a)dµ µ ∈ Ar

Then br, lr satisfy
co(l(x,A)× b(x,A)) = lr(x,Ar)× br(x,Ar)

We define:

• relaxed control: Ar, the set of measurable functions (0,∞) → Ar.

• Relaxed trajectories:

y(t)− x =

∫ t

0

br(y(s), µ(s))ds.

• Relaxed cost function:

Jr(x, µ) =

∫ ∞

0

lr(y(s), µ(s))ds.

• Relaxed value function:

vr(x) := inf
µ∈Ar

∫ ∞

0

lr(y(s), µ(s))ds. (6.5)
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The advantage of considering relaxed problem is that it always has an optimal trajec-
tory that is trajectories which reach the infimum (6.5), cf. [2, Cor 1.4 p. 368].

The result below is the main Theorem in this section, this theorem allows us to get the
relaxed controls limit.

Theorem 6.5. [Bunford-Pettis] Consider

V := {ν : [0, T ] → R(A)| ν is measurable and sup ess
t∈[0,T ]

|ν(t)| ≤ ∞}

and

B := {ϕ : [0, T ]× A→ R|ϕ(·, α) is measurable for all α ∈ A, ϕ(s, ·) is continuous
supA ≤ |ϕ(s, α)| ≤ ψ(s)∀s ∈ [0, T ] for some ψ ∈ L1([0, T ]).}

Then there exists an isomorphism φ : V → B′. Given ν ∈ V, we define Λν as

Λν(ϕ) :=

∫ T

0

∫

A

ϕ(s, a)dµ(s)ds, for ϕ ∈ B and |Λν |B = sup ess
t∈[0,T ]

|ν(t)|

where {B, | · |B} is isometrically isomorphic to the space L1([0, T ];C(A)). Moreover, if
(νn(t)(A))n is uniformly bounded for any t ∈ [0, T ], n ∈ N then there exists subsequence
such that Λνn converges weakly* to Λν, that is,

lim
n→∞

∫ T

0

∫

A

ϕ(s, a)dνn(s)ds =

∫ T

0

∫

A

ϕ(s, a)dν(s)ds.

Proof. See [24, p. 268] and [2, p. 166].

We apply Theorem 6.5 with the sequence of Dirac measures µn(t) = δαn(t). We can extract
convergent subsequence of µn which converges weakly* to µ ∈ Ar.

Theorem 6.6 (Relaxed Control). Given a sequence of classical controls, αn ∈ L∞(0,∞;A).
Let yn be the trajectory associated with αn. Then, extract a subsequence , yn uniformly
convergent to y and there exists µ ∈ Ar such that

lim
n→∞

∫ t

0

l(yn(s), αn(s))e−λsds =

∫ t

0

∫

A

l(y(s), α)e−λsdµ(s)ds.

Proof. Since b is Lipschitz

yn(t)− x =

∫ t

0

b(yn(s), αn(s))ds =

∫ t

0

b(yn(s), αn(s))− b(x, αn(s))ds+

∫ t

0

b(x, αn(s))ds.

Then

|yn(t)− x| ≤ C

∫ t

0

|yn(s)− x|ds+ t sup
α∈A

|b(x, α)|.
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Taking t ≤ T , thanks to Gronwall inequality yn is uniformly bounded in [0, T ] and since
the dynamics are bounded, yn is a sequence of equicontinuous functions. Due to Arzela-Ascoli
Theorem, We can extract a subsequence yn uniformly convergent to y. Consequently,

y(t)− x = lim
n→∞

(yn(t)− x) = lim
n→∞

∫ t

0

∫

A

b(yn(s), α)dµnds

= lim
n→∞

∫ t

0

∫

A

b(y(s), α)dµnds

=

∫ t

0

∫

A

b(y(s), α)dµds.

Therefore, y is a relaxed trajectory associated the measure µ. Now, take ϕ(s, α) = l(y(s), α)e−λs

and use the sequence of Dirac measures µn(t) = δαn(t) then

lim
n→∞

∫ t

0

l(yn(s), αn(s))e−λsds = lim
n→∞

∫ t

0

∫

A

l(y(s), α)e−λsdµn(s)ds =

∫ t

0

∫

A

l(y(s), α)e−λsdµ(s)ds.

(6.6)
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