

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA CARTOGRÁFICA CURSO DE GRADUAÇÃO EM ENGENHARIA CARTOGRÁFICA E DE AGRIMENSURA

CAMILA RODRIGUES DOS SANTOS DA PAZ FELIPE CARVALHO DA PAZ

ESTUDO COMPARATIVO ENTRE OS MÉTODOS DE LEVANTAMENTO
TOPOGRÁFICO E GEODÉSICO (TRIGONOMÉTRICO E RTK) PARA
APROVAÇÃO DE UM SISTEMA DE ESGOTAMENTO SANITÁRIO EM ESCADA PE

CAMILA RODRIGUES DOS SANTOS DA PAZ FELIPE CARVALHO DA PAZ

ESTUDO COMPARATIVO ENTRE OS MÉTODOS DE LEVANTAMENTO TOPOGRÁFICO E GEODÉSICO (TRIGONOMÉTRICO E RTK) PARA APROVAÇÃO DE UM SISTEMA DE ESGOTAMENTO SANITÁRIO EM ESCADA PE

Trabalho de Conclusão de Curso, apresentado ao Curso de Graduação em Engenharia Cartográfica e de Agrimensura, da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do grau em Engenharia Cartográfica e de Agrimensura.

Orientadora: Profa. Dra. Maria de Lourdes de Aquino Macedo Gonçalves.

Coorientadora: Profa. Dra. Karoline Paes Jamur.

Recife

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

P348e

Paz, Camila Rodrigues dos Santos da.

Estudo comparativo entre os métodos de levantamento topográfico e geodésico (trigonométrico e RTK) para aprovação de um sistema de esgotamento sanitário em Escada - PE / Camila Rodrigues dos Santos da Paz, Felipe Carvalho da Paz. - 2021.

85 folhas, il., gráfs., tabs.

Orientadora: Profa. Dra. Maria de Lourdes de Aquino Macedo Gonçalves. Coorientadora: Profa. Dra. Karoline Paes Jamur.

TCC (Graduação) — Universidade Federal de Pernambuco. CTG. Departamento de Engenharia Cartográfica, 2021.

Inclui Referências e Anexos.

1. Engenharia cartográfica. 2. RTK. 3. GNSS. 4. Poligonal enquadrada. 5. Esgotamento sanitário. 6. Estação total. I. Paz, Felipe Carvalho da. II. Gonçalves, Maria de Lourdes de Aquino Macedo (Orientadora). III. Jamur, Karoline Paes (Coorientadora). IV. Título.

UFPE

526.1 CDD (22. ed.)

BCTG/2021-162

CAMILA RODRIGUES DOS SANTOS DA PAZ FELIPE CARVALHO DA PAZ

ESTUDO COMPARATIVO ENTRE OS MÉTODOS DE LEVANTAMENTO TOPOGRÁFICO E GEODÉSICO (TRIGONOMÉTRICO E RTK) PARA APROVAÇÃO DE UM SISTEMA DE ESGOTAMENTO SANITÁRIO EM ESCADA PE

Trabalho de Conclusão de Curso, apresentado ao Curso de Graduação em Engenharia Cartográfica e de Agrimensura, da Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, como requisito parcial para a obtenção do grau em Engenharia Cartográfica e de Agrimensura.

Aprovado em: 31/08/2021.

BANCA EXAMINADORA

Profa. Dra. Maria de Lourdes de Aquino Macedo Gonçalves (Orientadora)
Universidade Federal de Pernambuco

Profa. Dra. Karoline Paes Jamur (Coorientadora)
Universidade Federal de Pernambuco

Prof. Dr. Francisco Jaime Bezerra Mendonça (Examinador Interno)

Universidade Federal de Pernambuco

AGRADECIMENTOS

Primeiramente agradecemos a Deus pela vida e por todas as oportunidades oferecidas.

Aos professores, pelas correções e ensinamentos que permitiram apresentar um melhor desempenho em nosso processo de formação profissional ao longo do curso, em especial aos professores, (Maria de Lourdes de Aquino Macedo Gonçalves, Andrea de Seixas, Francisco Jaime Bezerra Mendonça, Ana Lucia Bezerra Candeias, José Diniz Madruga Filho, Karoline Paes Jamur e Erison Rosa de Oliveira Barros.)

Aos amigos, que sempre estiveram ao nosso lado, pela amizade incondicional e pelo apoio demonstrado ao longo de todo o período de tempo em que dedicamos a este trabalho, assim destacando a ajuda do amigo Juarez Antonio da Silva júnior.

Aos funcionários e prestadores de serviços do Departamento de Engenharia Cartográfica (Decart).

Gostaríamos de agradecer aos nossos pais que tanto apoiaram do início ao fim do curso, sempre acreditando e confiando na gente, A família Paz e Família dos Santos.

A todos da empresa PAZ ENGENHARIA, pelo fornecimento de equipamentos, dados e materiais que foram fundamentais para o desenvolvimento da pesquisa que possibilitou a realização deste trabalho.

A nossa orientadora e Co-orientadora, que conduziram o trabalho com paciência e dedicação, sempre disponível a compartilhar todo o seu vasto conhecimento.

Agradecemos por tudo.

RESUMO

O sistema de esgotamento sanitário no Brasil vem crescendo cada vez mais, deixando de lado a falta de saneamento básico para a população, fornecendo qualidade de vida a todos. Desde então, empresas vem atuando na implantação desses sistemas com o objetivo de melhorar a rede de esgoto em cada município. Para se ter um projeto de esgotamento precisa-se realizar um cadastro técnico que envolve levantamento de toda a rede, como também fazer a descrição das mesmas, analisar suas ligações, para depois passar para fase de execução (colocar essa rede para funcionar). Para o município de Escada-PE, existe uma rede implantada, sendo necessário o seu levantamento, que seria cadastrar todas as bacias de esgotamento sanitário. É importante lembrar que essa rede já existe no município a 10 anos, de acordo com moradores. Com isso foi realizado o levantamento do sistema com todos os parâmetros necessários, utilizando para este serviço dois equipamentos, como estação total e GNSS, para ser analisado e aprovado a bacia. A empresa responsável solicita que todo o levantamento tenha uma precisão vertical e horizontal necessária para os dois métodos utilizados (RTK e Poligonal Enquadrada). Para o estudo em questão foi escolhido uma área para ser analisada o uso de dois equipamentos (estação total e GNSS), com o objetivo final analisar estatisticamente e encontrar qual melhor equipamento em termos de precisão, terá uma melhor produção e tempo no campo.

Palavras-chave: RTK; GNSS; poligonal enquadrada; esgotamento sanitário; estação total.

ABSTRACT

The sanitary sewage system in Brazil has been growing more and more, leaving aside the lack of basic sanitation for the population, providing quality of life for all. Since then, companies have been working to implement these systems with the aim of improving the sewage network in each municipality. In order to have a sewage project, it is necessary to carry out a technical record that involves surveying the entire network, as well as describing them, analyzing their connections, and then moving on to the execution phase (putting this network to work). For the municipality of Escada-PE, there is a network in place, requiring a survey, which would be to register all sanitary sewage basins. It is important to remember that this network has existed in the city for 10 years, according to residents. With this, a survey of the system was carried out with all the necessary parameters, using for this service two pieces of equipment, such as a total station and GNSS, to analyze and approve the basin. The responsible company requests that the entire survey has the necessary vertical and horizontal precision for the two methods used (RTK and Polygonal Framed). For the study in question, an area was chosen to analyze the use of two equipment (total station and GNSS), with the final objective to statistically analyze and find which better equipment in terms of accuracy, will have a better production and time in the field.

Keywords: RTK; GNSS; framing polygonal; sanitary sewage; total station.

LISTA DE FIGURAS

Figura 1 - Estação Total e Acessórios	17
Figura 2 - Levantamento de uma Poligonal	18
Figura 3 - Poligonal Fechada	19
Figura 4 - Poligonal Enquadrada	19
Figura 5 - Poligonal Aberta	20
Figura 6 - Nivelamento Trigonométrico	20
Figura 7 - Nivelamento Geométrico	22
Figura 8 - Esquema de um Levantamento utilizando o Método RTK	27
Figura 9 - Esquema de Diferenças das Altitudes	30
Figura 10 - Etapas da Bacia de Esgotamento Sanitário	31
Figura 11 - Estação de Tratamento de Esgoto	32
Figura 12 - Croqui de Cadastro Técnico	34
Figura 13 - Marcos Geodésicos – Escada - PE	35
Figura 14 - Exemplo de Informações do RN	35
Figura 15 - Microrregiões de Pernambuco	36
Figura 16 - Área de Estudo da Bacia de Esgotamento Sanitário – Escada	37
Figura 17 - Rua Santo Amaro	37
Figura 18 - Rua Santa Maria	37
Figura 19 - Áreas de Risco – Enchente e Inundação – Escada - PE	38
Figura 20 - Planejamento de Campo	39
Figura 21 - Estação Total no Campo	40
Figura 22 - Estação Total do EPAZ-01	41
Figura 23 - Marco Geodésico RN08	41
Figura 24 - EPAZ-01	42
Figura 25 - EPAZ-02	42
Figura 26 - Monografia do EPAZ-01	43
Figura 27 - Monografia do EPAZ-02	44
Figura 28 - Relatório Do Processamento dos Marcos Geodésicos	45
Figura 29 - Relatório Do Processamento dos Marcos Geodésicos	45
Figura 30 - Relatório Do Processamento dos Marcos Geodésicos	45
Figura 31 - Nivelamento Trigonométrico do EPAZ-01	46

Figura 32 - Coleta da Profundidade da Caixa	48
Figura 33 - Coleta da Profundidade do Poço de Visita	48
Figura 34 - Ponto Auxiliar	49
Figura 35 - Caixa Lacrada com Cimento	49
Figura 36 - Poço de Visita Cheio de Esgoto	50
Figura 37 - Receptor GNSS	51
Figura 38 - Receptor GNSS no campo	52
Figura 39 - Coletora	52
Figura 40 - Coleta da Profundidade da Caixa	52
Figura 41 - Coleta da Profundidade da Caixa	52
Figura 42 - Coleta da Cota de Tampa do Poço de Visita	53
Figura 43 - Construções que causam Interferências para se Utilizar o GNSS	53
Figura 44 - Construções que causam Interferências para se Utilizar o GNSS	53
Figura 45 - Exemplo de Dados Levantados da Poligonal	54
Figura 46 - Dados Coletados com GNSS	57
Figura 47 - Dados Coletados com GNSS	58
Figura 48 - Dados Coletados com GNSS	59
Figura 49 - Gráfico Estatístico da Rua Santo Amaro	62
Figura 50 - Gráfico Estatístico da Rua Santa Maria	64
Figura 51 - Erro Quadrático Médio das discrepâncias	65

LISTA DE QUADROS

Quadro 1 - Materiais Utilizados – Estação Total	. 40
Quadro 2 - Nivelamento Geométrico do EPAZ-02	.46
Quadro 3 - Nivelamento Geométrico do EPAZ-02	.47
Quadro 4 - Materiais Utilizados - GNSS	.51
Quadro 5 - Dados Coletados da Rua Santo Amaro com Estação Total	.55
Quadro 6 - Dados Coletados da Rua Santa Maria com Estação Total	.56
Quadro 7 - Dados Coletados da Rua Santo Amaro com GNSS	.60
Quadro 8 - Dados Coletados da Rua Santa Maria com GNSS	.61
Quadro 9 - Dados Coletados do GNSS – Precisão Vertical (VRMS)	.63
Quadro 10 - Dados Coletados do GNSS – Precisão Vertical (VRMS)	. 64

LISTA DE TABELAS

Tabela 1 - Classificação de Estações Totais	18
Tabela 2 - Precisão do Posicionamento Relativo Estático em Função do	
Comprimento da Linha de Base, do Tempo de Observação e do	
Equipamento Utilizado	25
Tabela 3 - Precisão das Técnicas de Posicionamento	28
Tabela 4 - Cálculo de Contribuições - Parâmetros principais	32

LISTA DE SIGLAS

ABNT Associação Brasileira de Normas Técnicas

GLONASS Global Navigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

IBGE Instituto Brasileiro de Geografia e Estatística

LTM Local Transversa de Mercator

NBR Norma Brasileira Registrada

PTL Plano Topográfico Local

RTM Regional Transversa de Mercator

SIRGAS2000 Sistema de Referencia Geocêntrico para as Américas

SGB Sistema Geodésico Brasileiro

UTM Universal Transversa de Mercator

SUMÁRIO

1	INTRODUÇÃO	14
2	OBJETIVOS	15
2.1	OBJETIVO GERAL	15
2.2	OBJETIVOS ESPECÍFICOS	15
3	REVISÃO BIBLIOGRÁFICA	16
3.1	TOPOGRAFIA	17
3.1.1	Equipamentos e acessórios	17
3.1.2	Levantamentos	18
3.2	POSICIONAMENTO GNSS	23
3.2.1	Posicionamento por ponto ou absoluto	24
3.2.2	Posicionamento por ponto preciso (PPP)	24
3.2.3	Posicionamento Relativo	24
3.2.3.1	Posicionamento Relativo Estático	25
3.2.3.2	Posicionamento relativo estático-rápido	25
3.2.3.3	Posicionamento relativo semicinemático (stop and go)	26
3.2.3.4	Posicionamento relativo cinemático	26
3.2.3.5	Posicionamento relativo cinemático em Tempo Real (Real Time	
	Kinematic -RTK)	26
3.2.3.6	Precisão das técnicas de posicionamento	28
3.2.3.7	Tempo de Observação e Precisão dos métodos de posicionamento	28
3.3	ALTITUDES	28
3.4	PROJETO DE ESGOTAMENTO SANITÁRIO	30
3.4.1	Estação de Tratamento de Esgoto	32
3.5	CADASTRO TÉCNICO	33
4	METODOLOGIA	36
4.1	CARACTERIZAÇÃO DA ÁREA DE ESTUDO	36
4.1.1	Situação de alagamentos na área de estudo	38
4.2	PLANEJAMENTO	39
4.3	LEVANTAMENTO TOPOGRÁFICO	39
4.3.1	Equipamentos	39
4.3.1.1	Estação Total	39

4.3.1.2	Material Utilizado - Estação Total40	
4.3.2	Desenvolvimento em campo40	
4.4	LEVANTAMENTO GNSS50	
4.4.1	Equipamentos50	
4.4.1.1	GPS/GNSS50	
4.4.1.2	Material Utilizado no Levantamento RTK51	
4.4.2	Desenvolvimento em campo51	
5	RESULTADOS E CONCLUSÕES54	
5.1	RESULTADOS DO LEVANTAMENTO – ESTAÇÃO TOTAL54	
5.2	DADOS DA AMOSTRAGEM - ESTAÇÃO TOTAL55	
5.3	DADOS DA AMOSTRAGEM - RECEPTOR GNSS57	
5.4	DADOS DA AMOSTRAGEM - RECEPTOR GNSS60	
5.5	ANÁLISE COMPARATIVA62	
	REFERÊNCIAS67	
	ANEXO A - FOTOS69	
	ANEXO B - ARQUIVOS BRUTOS – ESTAÇÃO TOTAL77	
	ANEXO C - CADASTRO GERAL DA BACIA EM KMZ83	
	ANEXO D - CADASTRO GERAL DA BACIA EM DWG84	

1 INTRODUÇÃO

O sistema de esgotos sanitários é o conjunto de obras e instalações, propiciando coleta, transporte e afastamento, tratamento, e disposição final das águas residuárias, numa forma mais adequada do ponto de vista sanitário e ambiental. O sistema de esgotos tem o objetivo de afastar o contato de dejetos humanos com a população, águas de abastecimento, com vetores de doenças e alimentos. (Ribeiro, Júlia; Rooke, Juliana, 2010, p.10)

A altimetria é uma dimensão importante em um sistema de esgotos e deve ser estudada não somente na sua forma geométrica mas principalmente, com significado físico quando se trabalha com fluidos em projetos de engenharia e com isto, está diretamente relacionado à aplicação da geodésia física. Com o desenvolvimento da tecnologia de satélites artificiais, a conversão aproximada entre altitude elipsoidal (geométrica) e altitude ortométrica se tornou uma opção comum em aplicações geodésicas e topográficas. (Lima, Dannyelle, 2017, p.14)

De acordo com a norma NBR 13.133/1994 "Rede de referência cadastral" tratase da rede de apoio básico de âmbito municipal para todos os levantamentos que se destinem a projetos, cadastros ou implantação de obras, sendo constituída por pontos de coordenadas planialtimétricas materializados no terreno, referenciados ao Sistema Geodésico Brasileiro (SGB) e um mesmo sistema de representação cartográfica, permitindo a amarração e consequente incorporação de todos os trabalhos de topografia num mapeamento de referência cadastral

Este trabalho de conclusão de curso tem como finalidade analisar os dados coletados (coordenadas e altitudes) do cadastro técnico de uma bacia de esgotamento sanitário em Escada-PE. O serviço de cadastro foi realizado para aprovação desse sistema que no momento se encontra sem funcionar. A análise vai permitir fazer uma comparação entre os dados de cada equipamento (estação total e GNSS), analisando qual método possui maior rapidez e atenda às exigências da empresa responsável, que determina em seu termo de referência uma precisão de 5cm horizontal e 2cm vertical.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Analisar as altitudes ortométricas do cadastro técnico de uma bacia de esgotamento sanitário em Escada-PE, utilizando como equipamentos Estação Total e GNSS, aplicando os métodos trigonométricos e RTK no serviço executado.

2.2 OBJETIVOS ESPECÍFICOS

- a) Elaborar o projeto de cadastro da bacia de esgotamento sanitário;
- b) Executar o cadastro técnico da bacia de esgotamento sanitário, utilizando estação total e GNSS;
- c) Comparar os dados coletados pelos dois métodos;
- d) Analisar qual melhor método de levantamento para execução do serviço.

3 REVISÃO BIBLIOGRÁFICA

Os primeiros registros sobre levantamentos cadastrais começaram com a divisão do Egito em parcelas territoriais, em 1400 a.C., com objetivo tributários (cobrança de impostos), por agrimensores daquela época. As demarcações de limites das parcelas eram desfeitas anualmente devido as enchentes do Rio Nilo e novos levantamentos eram feitos para remarcar os limites às suas margens. Para tal atividade, os agrimensores utilizavam cordas como instrumentos de medição utilizados naquela época (WOLF e GHILANI, 2006).

Como resultado de um grande número de investigações ao longo do rio Nilo, pesquisadores gregos buscaram alternativas para resolver os problemas relacionados a essas investigações e se tornaram os pioneiros no desenvolvimento da ciência geométrica. No entanto, devido ao surgimento da geometria grega, a topografia foi permitida a ser aplicada a levantamentos. Eles foram os primeiros a escrever artigos topográficos. Entre eles, "Heron" ganhou destaque e foi o responsável pela redação de "The Dioptra", método de relatório levantamento de campo e desenho de plantas, como realização de cálculos relacionados a levantamentos (WOLF e GHILANI, 2006).

Segundo Gama (2008), o primeiro método de levantamento topográfico utilizado foi o método da interseção a ré, denominado também de "Pothenot", sendo aplicado aos levantamentos cadastrais desde o início da criação da geometria, onde se utilizava naquela época cálculos manuais para uma determinada solução.

Conforme Espartel (1965), Topografia é a ciência usada para definir a área, o perímetro e o volume da superfície da Terra. A curvatura da Terra não é considerada porque envolve uma pequena parte da Terra. Sendo assim, pode se tratar essa pequena fração de terra como sendo um plano tangente ao globo terrestre, chamado de plano topográfico, onde o mesmo recebeu o nome de Plano Topográfico Local pela NBR 13.133 lançada em 1994.

3.1 TOPOGRAFIA

3.1.1 Equipamentos e acessórios

a) Estação Totais

De acordo com (Veiga, Zanetti e Faggion, 2012), de maneira geral pode-se dizer que uma estação total nada mais é do que um teodolito eletrônico (medida angular), um distanciômetro eletrônico (medida linear) e um processador matemático, associados em um só conjunto.

A estação total é provavelmente o mais popular dos equipamentos topográficos utilizados nos levantamentos topográficos, substituindo na totalidade a utilização de teodolitos eletrônicos de distância isolados (WOLF, 2003).

Figura 1 - Estação Total e acessórios

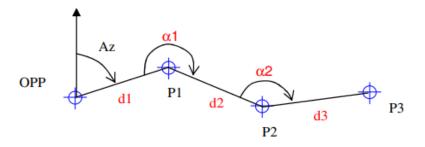
Fonte: Os Autores (2021).

A NBR13.133 (1994, p. 7) classifica as estações totais de acordo com seus desvios-padrão angular e linear que as caracterizam, de acordo com a (Tabela 1).

Tabela 1 - Classificação de estações totais

Classes de estações totais	Desvio-padrão Precisão angular	Desvio-padrão Precisão linear
1- precisão baixa	≤ ± 30"	± (5mm + 10ppm x D)
2- precisão média	≤ ± 07"	± (5mm + 5ppm x D)
3- precisão alta	≤ ± 02"	± (3mm +3ppm x D)

Fonte: IBGE, 2008.


3.1.2 Levantamentos

a) Poligonação

A poligonação é um dos métodos mais empregados para a determinação de coordenadas de pontos em topografia, principalmente para a definição de pontos de apoio planimétricos. Uma poligonal consiste em uma série de linhas consecutivas onde são conhecidos os comprimentos e direções, obtidos através de medições em campo. (Veiga, Zanetti e Faggion, 2012).

O levantamento de uma poligonal é realizado através do método de caminhamento, percorrendo-se um itinerário definido por uma série de pontos, medindo-se todos os ângulos, lados e uma orientação inicial (Figura 1). A partir destes dados e de uma coordenada de partida, é possível calcular as coordenadas de todos os pontos que formam esta poligonal. (Veiga, Zanetti e Faggion, 2012).

Figura 2 - Levantamento de uma poligonal

Fonte: Veiga, Zanetti e Faggion (2012).

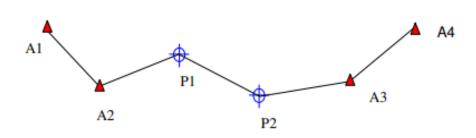
As poligonais levantadas em campo podem ser fechadas, partem de um ponto com coordenadas conhecidas e retornam ao mesmo ponto (Figura 2). Sua vantagem é permitir a verificação do erro de fechamento angular e linear. (Veiga,Zanetti e Faggion, 2012).

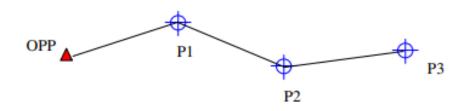
OPP P2

Figura 3 - Poligonal Fechada

Fonte: Veiga, Zanetti e Faggion (2012).

Poligonal enquadrada ou apoiada, parte de dois pontos com coordenadas conhecidas e acaba em outros dois pontos com coordenadas conhecidas (Figura 2). Permite a verificação do erro de fechamento angular e linear (Veiga, Zanetti e Faggion, 2012).




Figura 4 - Poligonal Enquadrada

Fonte: Veiga, Zanetti e Faggion (2012)

Poligonal aberta parte de um ponto com coordenadas conhecidas e acaba em um ponto cujas coordenadas deseja-se determinar (Figura 3). Não é possível determinar erros de fechamento, portanto deve-se tomar todos os cuidados

necessários durante o levantamento de campo para evitá-los. É um método expedito para reconhecimento da área de trabalho (Veiga, Zanetti e Faggion, 2012).

Figura 5 - Poligonal Aberta

Fonte: Veiga, Zanetti e Faggion (2012).

b) Nivelamento Trigonométrico

O nivelamento trigonométrico é um procedimento que consiste em realizar a medida da diferença de nível entre pontos topográficos por intermédio de leituras correspondentes a visadas inclinadas, realizadas com taqueômetros ou estação total, por meio de medidas de distâncias e ângulos verticais, conforme Figura 4 (ERBA et al., 2005).

Figura 6 - Nivelamento Trigonométrico

Fonte: Kahmen e Faig (1988).

As distâncias curtas o desnível entre os pontos A e B da Figura 4 pode ser calculado através da equação abaixo:

$$\Delta HAB = S^{R} * \cos Z + (i - t)$$
 (1)

Onde:

SR - Distância inclinada:

i - Altura do equipamento;

t - Altura do prisma refletor;

Z - Ângulo zenital;

S^H - Distância horizontal

A acurácia obtida neste método depende dos ângulos e distância medidos, das alturas do instrumento e do alvo, como também os efeitos da refração atmosférica e curvatura terrestre. (RESNIK e BILL, 2003 apud SOUZA, 2012).

Utilizou-se no levantamento do cadastro técnico o método de nivelamento trigonométrico para conferência de 10% de toda a bacia A3, para analisar as altitudes ortométricas, respeitando uma precisão de 5cm para cada ponto verificado de acordo com o termo de referência da empresa responsável, com o objetivo de obter a aprovação da Bacia estudada.

c) Nivelamento Geométrico

"Nivelamento que realiza a medida da diferença de nível entre pontos no terreno por intermédio de leituras correspondentes a visadas horizontais, obtidas com um nível, em miras colocadas verticalmente nos referidos pontos." ABNT (1994, p3).

O nivelamento geométrico é a operação que visa a determinação do desnível entre dois pontos a partir da leitura em miras (estádias ou em código de barras) efetuadas com níveis ópticos ou digitais. Este pode ser executado para fins geodésicos ou topográficos. A diferença entre ambos está na precisão (maior no caso do nivelamento para fins geodésicos) e no instrumental utilizado. Fonte: Veiga, Zanetti e Faggion, p.196

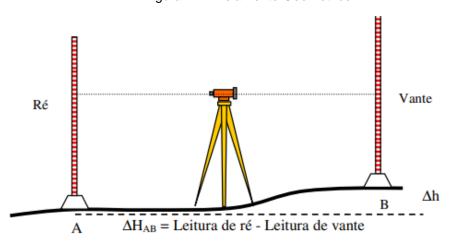


Figura 7 - Nivelamento Geométrico

Fonte: Veiga, Zanetti e Faggion (2012).

d) Triangulação

A determinação de coordenadas, a partir do método da triangulação, é obtida por meio da observação de ângulos formados entre os alinhamentos de vértices intervisíveis de uma rede de triângulos (INCRA,2013).

e) Trilateração

O posicionamento por meio da trilateração é baseado na observação de distâncias entre os vértices intervisíveis de uma rede de triângulos (INCRA,2013).

f) Triangulateração

Na triangulateração são observados ângulos e distâncias entre os vértices intervisíveis de uma rede de triângulos. A triangulação, quando comparada com a trilateração e triangulação, se destaca por possibilitar uma melhor precisão e melhor análise estatística das observações e das coordenadas. (INCRA,2013).

g) Interseção a ré e vante

O método da interseção a vante é recomendado em casos como, por exemplo, quando os pontos-objeto não são de fácil acesso fazendo necessária a utilização de métodos trigonométricos para determiná-los (SILVA et al, 2006).

3.2 POSICIONAMENTO GNSS

Segundo a empresa Comercio de equipamentos topográficos Eireli (CPE) (2018), a sigla GNSS (Global Navigation Satellite System) é uma denominação genérica que contempla sistemas de navegação com cobertura global, além de uma série de infraestruturas espaciais (SBAS – Satellite Based Augmentation System) e terrestre (GBAS – Ground Based Augmentation System) que associadas aos sistemas proporcionam maior precisão e confiabilidade. Dentre os sistemas englobados pelo GNSS podemos citar

- NAVSTAR-GPS (NAVigation System with Timing And Ranging Global Positioning System), mais conhecido como GPS. Sistema norte-americano;
- GLONASS (Globalnaya Navigatsionnaya Sputnikovaya Sistema). Sistema russo;
- Galileu. Sistema europeu;
- Compass/Beidou (China's Compass Navigation Satellite System CNSS).
 Sistema chinês.

Em relação ao SBAS temos os seguintes exemplos:

- WAAS (Wide Area Augmentation System). Sistema norte americano;
- EGNOS (European Geostationary Navigation Overlay System). Sistema europeu.

O posicionamento é definido como sendo a determinação da posição de objetos com relação a um referencial específico. Pode então ser classificado em posicionamento absoluto, quando as coordenadas de um objeto estão associadas diretamente ao geocentro, e relativo, quando as coordenadas são determinadas em

relação a um referencial materializado por um ou mais vértices com coordenadas conhecidas. No tocante ao posicionamento utilizando GNSS, independentemente do estado do objeto, podem-se ter posicionamentos absolutos, relativos e combinações com a presença ou ausência de movimento, ou seja, posicionamento cinemático e posicionamento estático respectivamente (MONICO, 2008).

3.2.1 Posicionamento por ponto ou absoluto

O posicionamento por ponto, também conhecido como posicionamento absoluto ou isolado, requer a utilização de apenas um receptor. Neste caso, o referencial geodésico das coordenadas determinadas é definido a partir das efemérides dos satélites. No caso das efemérides transmitidas, o referencial é o WGS 84, enquanto que o das efemérides produzidas pelo IGS é o ITRF. Este tipo de posicionamento pode ser subdivido em dois: posicionamento por ponto e posicionamento por ponto preciso (PPP). (IBGE,2008).

3.2.2 Posicionamento por ponto preciso (PPP)

Com o posicionamento por ponto preciso, as coordenadas do vértice de interesse são determinadas de forma absoluta, portanto, dispensa o uso de receptor instalado sobre um vértice de coordenadas conhecidas (IBGE,2008).

3.2.3 Posicionamento Relativo

No método relativo ou diferencial as observações são realizadas por dois receptores, sendo um instalado num local de coordenadas conhecidas e o outro nos pontos a determinar, formando assim um vetor ou linha base. Neste caso, para obter uma melhor precisão no posicionamento, pode-se fazer as correções dos erros, de duas maneiras: por meio do pós processamento dos dados, obtidos simultaneamente pelos dois receptores, ou por transmissão dos dados de uma estação de referência para o receptor móvel, onde os erros são calculados em tempo real. (HOFMANN-WELLENHOF et al., 1994; SEGANTINE, 1998).

3.2.3.1 Posicionamento Relativo Estático

Neste método pode-se utilizar receptores de uma frequência (L1) ou dupla frequência (L1 e L2). No campo deve-se ter um receptor fixo servindo de base, coletando dados continuamente, enquanto o outro receptor percorre as áreas e pontos de interesse para coleta de dados. Não há necessidade da continuidade de rastreamento durante as mudanças de pontos de interesses nem do receptor permanecer ligado durante o percurso. Os dados coletados da estação base e do receptor do caminhamento são processados para que se solucione o vetor de ambiguidade e se consiga uma melhor precisão (MOREIRA 2011).

Tabela 2 - Precisão do Posicionamento Relativo Estático em Função do Comprimento da Linha de Base, do Tempo de Observação e do Equipamento Utilizado

Linha de Base (Km)	Tempo de Coleta		Precisão alcançada
Linna de base (Kin)	(Minutos e Horas)		(mm+ppm)
00 - 05 Km	05 - 10 Min	L1 ou L1/L2	5 - 10 mm + 1 ppm
05 - 10 Km	10 - 15 Min	L1 ou L1/L2	5 - 10 mm + 1 ppm
10 - 20 Km	10- 30 Min	L1 ou L1/L2	5 - 10 mm + 1 ppm
20 - 50 Km	02 - 03 Horas	L1/L2	5 mm + 1 ppm
50 - 100 Km	Minímo 03 Horas	L1/L2	5 mm + 1 ppm
>100 Km	Minímo 04 Horas	L1/L2	5 mm + 1 ppm

Fonte: IBGE,2008

3.2.3.2 Posicionamento relativo estático-rápido

Também conhecido como pseudocinemático, o posicionamento relativo estático-rápido é realizado de forma similar ao estático. A grande diferença entre estas técnicas está no intervalo de tempo do rastreio, que no estático-rápido é inferior a 20 minutos. Este tipo de posicionamento é adequado quando se deseja alta produtividade e como alternativa ao método semicinemático em locais onde há muitas obstruções, pois o receptor móvel é desligado entre as sessões de coleta (MONICO, 2000a).

3.2.3.3 Posicionamento relativo semicinemático (stop and go)

O posicionamento relativo semicinemático também é conhecido como pseudoestático. Como as próprias denominações sugerem, esta técnica de posicionamento pode ser entendida como um estágio de desenvolvimento intermediário entre o posicionamento relativo estático e cinemático. A técnica conhecida como stop and go está inserida nesta categoria. (IBGE,2008).

Esta técnica de posicionamento é similar ao estático-rápido, onde o diferencial está no tempo de permanência em cada estação e na necessidade do receptor permanecer ligado durante todo o período do levantamento. (IBGE,2008).

3.2.3.4 Posicionamento relativo cinemático

Consiste em determinar um conjunto de coordenadas para cada época de observação, onde um receptor ocupa a estação de referência enquanto o outro permanece estacionado ou se deslocando sobre as feições de interesse. Portanto, no posicionamento cinemático, embora a antena esteja em movimento, a trajetória é descrita por uma série de pontos. Isso tem como consequência a necessidade do usuário dispor de no mínimo cinco satélites para realizar o posicionamento. (IBGE,2008).

3.2.3.5 Posicionamento relativo cinemático em Tempo Real (Real Time Kinematic - RTK)

O método relativo cinemático se baseia na fixação de um receptor em uma estação com coordenadas conhecidas (estação de referência) e o outro receptor se move sobre as estações de interesse, neste tipo de método adota-se como observável fundamental a fase da onda portadora. Os dados desse tipo de posicionamento podem ser processados após a coleta PPK - Post Processed Kinematic ou fornecido em tempo real durante a coleta RTK – Real Time Kinematic (MONICO, 2008; GHILANI e WOLF, 2013).

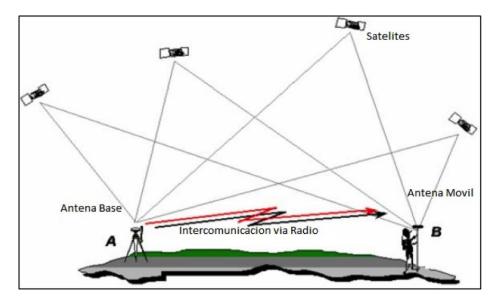


Figura 8 - Esquema de um Levantamento utilizando o método RTK

Fonte: Tecnoceano (2015)

Técnicas de posicionamento cinemático são indicadas em levantamentos onde se deseja determinar as coordenadas de diversos pontos de uma maneira rápida e produtiva. Segundo Monico (2008), Seeber (2003) e Segantine (2005) a tecnologia RTK é baseada nas seguintes características:

Transmissão em tempo real dos dados de fase da onda portadora e pseudodistância da estação base para estação móvel ou das correções das observáveis:

- Resolução das ambiguidades para linha de base entre a estação base e a móvel com solução quase instantânea;
- Determinação confiável do vetor da linha de base em tempo real.

No posicionamento RTK, os erros envolvidos no processo (ionosfera, troposfera e órbita dos satélites), são proporcionais ao comprimento da linha de base, o que restringe a distância entre a estação de referência e o usuário a poucos Quilômetros (BARBOSA et al., 2010).

Foi utilizado no levantamento do cadastro técnico, o método de RTK, apresentando instabilidade durante as coletas dos pontos, acredita-se que devido ao fato da área de levantamento possuir muitas interferências como: edificações (dois

pavimentos) e antenas parabólicas, impossibilitando o uso do receptor GNSS nessa bacia 100%.

3.2.3.6 Precisão das técnicas de posicionamento

Tabela 3 - Precisão das Técnicas de Posicionamento

Técnica	Observação	Equipamento Utilizado (f)	Precisão (nivel de confiança de 68,2%
	Convencional	Pseudodistância	15,3m
Por Ponto	Preciso	Pseudodistância e fase	0,02m
	Estático	DD pseudodistância e fase	0,01 a 1 ppm
Relativo	Estático-rápido	DD pseudodistância e fase	1 a 10 ppm
Relativo	Semicinemático	DD pseudodistância e fase	1 a 10 ppm
	Cinemático	DD pseudodistância e fase	1 a 10 ppm

Fonte: IBGE, 2008

3.2.3.7 Tempo de Observação e Precisão dos métodos de posicionamento

Há uma dificuldade muito grande em definir valores que representem a precisão do posicionamento geodésico com GPS, tendo em vista todas as variáveis que influenciam essa precisão. Neste sentido, vários pesquisadores vêm trabalhando para definir de forma mais confiável e realista possível os valores para a precisão posicional em função do comprimento da linha de base, do tempo de observação e do tipo de equipamento utilizado (L1 e L1/L2). Entretanto, devido às dificuldades em determinar esses valores de forma homogênea, ainda não há resultados definitivos que expressem as relações entre essas variáveis e a precisão (IBGE,2008).

3.3 ALTITUDES

Os elementos principais de um Sistema Geodésico de Referência Vertical (SGRV) são as coordenadas verticais – as altitudes físicas ou números geopotenciais das estações da rede de referência – e a superfície de referência, ou nível de referência, a partir do qual são estabelecidas as coordenadas verticais (IHDE et al., 2017)

As altitudes geométricas ou elipsoidais (h), resultado do levantamento com o GNSS, não têm vínculo com o campo da gravidade terrestre, logo não são adequadas para uso do posicionamento vertical. (IBGE,2019)

A altitude ortométrica é a distância medida entre o geóide e o ponto de interesse ao longo da linha vertical. Essa linha é ortogonal a todas as superfícies equipotenciais do campo da gravidade terrestre e, portanto, é uma curva reversa que reflete as irregularidades da distribuição de massas no corpo planetário. (IBGE,2019)

A altitude normal é medida ao longo da linha vertical normal, isto é, a ortogonal às superfícies equipotenciais do campo normal. Por não considerar o campo real, a altitude normal não se refere rigorosamente ao geoide, mas sim a uma superfície próxima a ele, denominada quase-geoide (IBGE,2019).

As diferenças entre a gravidade observada e a normal levam ao conceito de quase-geoide, ao qual se refere a altitude normal. Logo, a altitude normal de um ponto qualquer é a distância entre o mesmo e o quase-geoide. A adoção das altitudes normais está alinhada às recomendações internacionais relativas aos Sistemas Geodésico de Referência Altimétrico (SGRAs), em particular àquelas emanadas do SIRGAS. (IBGE,2018).

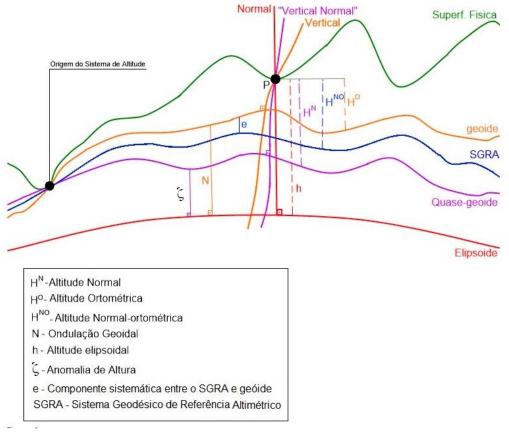


Figura 9 - Esquema de Diferenças das altitudes

Fonte: IBGE, 2018

As referências de nível (RRNN) do SGB até dia 30 de julho de 2018 eram disponibilizadas para os usuários altitudes ortométricas do "tipo normal", a partir da divulgação dos resultados do reajustamento altimétrico o Banco de Dados Geodésicos (BDG) vem disponibilizando altitudes normais, seguindo as recomendações do Sistema de Referencia Geocéntrico para las Américas - Sirgas (TALLER DEL SIRGAS-GTI, 2008, p. 13)

Em relação ao Levantamento do cadastro técnico utilizou-se a altitude ortométrica para cada marco geodésico de referência, através da monografia dos mesmos, repassadas pela empresa responsável.

3.4 PROJETO DE ESGOTAMENTO SANITÁRIO

Para o projeto de esgotamento, a área urbana de Escada (Figura 10) foi dividida em 12 bacias de esgotamento, onde as bacias A, C, D e E foram consideradas na

primeira etapa, deixando as demais para o ano de 2037. A primeira etapa contemplará uma população estimada em 36.516 habitantes. (ETE,2021).

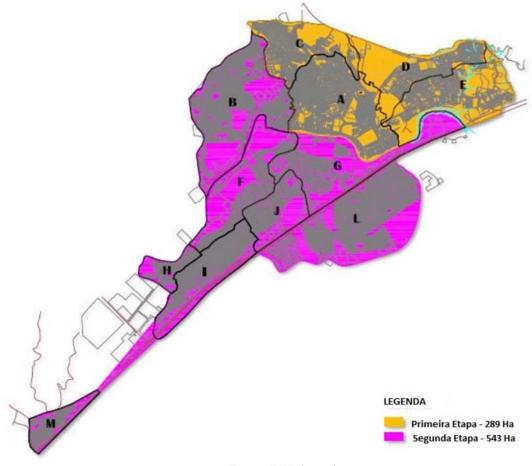


Figura 10 - Etapas da Bacia de Esgotamento Sanitário

Fonte: ETE (2021).

Os parâmetros principais (Tabela 7) decorrentes do dimensionamento das unidades integrantes da ETE, destacam-se os seguintes. (ETE,2021)

Tabela 4 - Cálculo de Contribuições - parâmetros principais

Cálculo das Contribuições		1 Etapa	2 Etapa	Total
População	P (hab) =	36,516	45,931	82,447
Extensão de rede	L (m) =	24,859	38,190	63,049
	Vazões de Projeto			
Infiltração	i (L/s) =	2,49	3,82	6,30
	i (m³/dia) =	214,78	329,96	544,74
Média diária	Q (L/s) =	53,2	67,61	120,81
	$Q(m^3/dia) =$	4596,7	5841,68	10438,38
Máxima diária	Q (L/s) =	63,35	80,37	143,72
	Q (m³/dia) =	5473,09	6944,03	12417,11
Máxima horária	Q (L/s) =	93,78	118,65	212,42
	Q (m³/dia) =	8102,24	10251,06	18353,30
Mínima diária	Q (L/s) =	27,84	35,72	63,56
	$Q(m^3/dia) =$	2405,74	3085,82	5491,56

Fonte: ETE,2021

3.4.1 Estação de Tratamento de Esgoto

A Estação (Figura 11) terá sua implantação dividida em duas fases, chamadas de Etapa 1 e Etapa 2. As unidades em verde são existentes e serão aproveitadas no projeto e implantadas juntamente com as desenhadas em vermelho na Etapa 1. As unidades na cor cinza são as unidades da Etapa 2. (ETE, 2021).

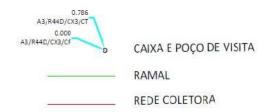
Figura 11 – Estação de Tratamento de Esgoto

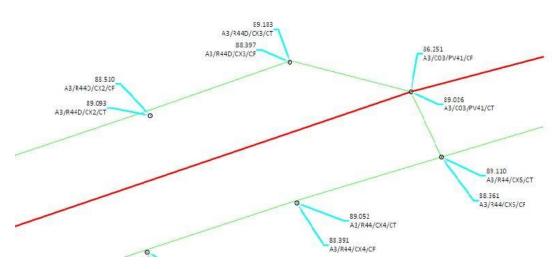
Fonte: ETE (2021).

A estação como um todo contará com edificações para operação, laboratório com os materiais e equipamentos mínimos necessários ao controle operacional, vestiário e sanitários para equipe operacional, isolamento de área e suprimento de energia elétrica. (ETE,2021).

As vazões de projeto e as cargas poluidoras serão calculadas para o horizonte de 20 anos de projeto, de forma a conceber em sua concepção um processo de tratamento que produza efluentes em estrita observância à Resolução Conama nº357, de março de 2005; Resolução Conama nº430, de maio de 2011; Norma Técnica CPRH nº2.002 e Norma Técnica CPRH nº2.007. (ETE,2021)

3.5 CADASTRO TÉCNICO


Segundo WILLIAMSON (2002b, p.1), cadastros são considerados uma parte importante do sistema de gestão territorial e infraestrutura, auxiliando na implementação de políticas de uso territorial. No entanto, a maioria dos sistemas cadastrais foram originalmente concebidos para apoiar o mercado imobiliário tradicional. Na gestão territorial mais ampla, como no caso do registro de infraestrutura, o apoio ao desenvolvimento econômico, gestão ambiental e estabilidade social em países desenvolvidos e em desenvolvimento são evidentes.


Para o estudo de um sistema cadastral envolve o entendimento dos seus aspectos técnicos, legais, administrativos e de recursos humanos, sendo apresentado abaixo os elementos técnicos que constituem o cadastro. (Coelho, Fernando.2004).

- Sistema de referência de medição, definindo a base geométrica
- Sistema gráfico, representando a base cartográfica
- Sistema descritivo, que apresenta atributos alfanuméricos referentes a cada unidade cadastrada.

A Figura 12 mostra um exemplo de um croqui do cadastro técnico de uma pequena área da rede de esgotamento sanitário.

Figura 12: Croqui de cadastro técnico

Fonte: Os Autores (2021).

O cadastro técnico envolve em seus estudos também uma análise geral de quais marcos geodésicos (Figura 13) poderão ser utilizados no levantamento trigonométrico. A localização dos marcos geodésicos foram fornecidos pela empresa responsável na extensão KMZ.

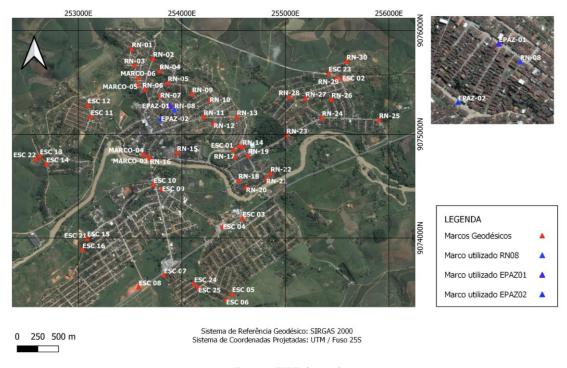


Figura 13 - Marcos Geodésicos - Escada - PE

Fonte: ETE (2021).

Para complementar a Figura 13 acima, no arquivo KMZ também se apresenta as características dos marcos geodésicos implantados, conforme Figura 14.

Figura 14: Exemplo de informações do RN

Supe	ervisora de Obras
NOME	RN-08
FID	12
FONTE	Supervisora de Obras
E	253928,305
N	9075235,304
ORTOETRICA	122,8797
GEOMETRICA	A 117,382
OND_GEOID	-5,4977
ESTADO	Bom
TIPO	Planimétrica e Altimétrica

Fonte: ETE (2021)

4 METODOLOGIA

4.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

O município de Escada está localizado no estado de Pernambuco, pertencendo à mesorregião Mata Pernambucana e microrregião (Figura 15) da Mata Meridional Pernambucana. Localiza-se a uma latitude 8º 21' 33" Sul e longitude 35º 13' 25" Oeste, conforme mapa de situação localizado abaixo. A altitude do município é de 109 metros acima do nível do mar. A distância da capital do Estado, Recife, é de 60km. Possui uma área territorial de 342,201 km², seu principal acesso dá-se pela Rodovia Governador Mário Covas, BR-101.

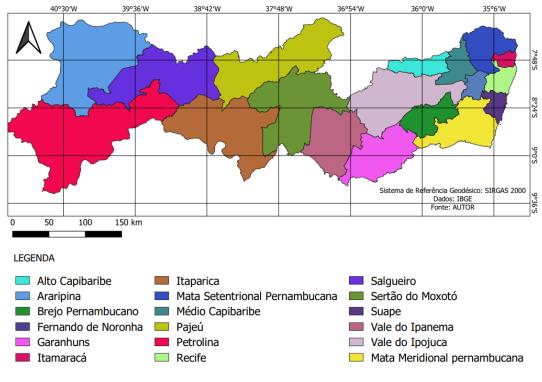


Figura 15 – Microrregiões de Pernambuco

A área de estudo está localizada no município de Escada, bairro de Nova Descoberta, de acordo com a Figura 16.

253800E 253700E 253800E 253900E 254000E 254100E 254200E 254300E 254400E 254500E 254600E

M005206

M005

Figura 16 – Área de Estudo da Bacia de Esgotamento Sanitário – Escada PE

Fonte: Os Autores (2021).

Figura 17 - Rua Santo Amaro

Fonte: Os Autores (2021).

Figura 18 - Rua Santa Maria

4.1.1 Situação de alagamentos na área de estudo

Segundo estudos realizados pela CPRM (Serviço Geológico do Brasil), para o município de Escada-PE, constatou-se que existem áreas de risco a movimentos de massas e enchentes para a região, sobretudo devido a cidade possuir o Rio Ipojuca em seu centro. Analisando as pesquisas da CPRM em 2012, chegou-se à conclusão que a região de estudo não apresentaria enchentes e inundações, conforme apresentado abaixo (Figura 19).

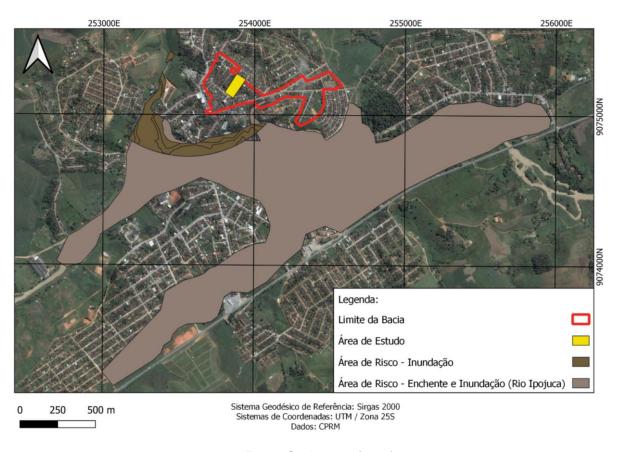


Figura 19: Áreas de Risco: Enchente e Inundação – Escada PE

4.2 PLANEJAMENTO

Nesta fase foi elaborado um fluxograma (Figura 20) para as etapas necessárias para execução do serviço de campo do cadastro técnico.

Figura 20: Planejamento de Campo

Fonte: Os Autores (2021).

4.3 LEVANTAMENTO TOPOGRÁFICO

No levantamento topográfico utilizou-se a estação total para o cadastro técnico da Bacia Estudada realizando fechamento de poligonais, através do método de poligonal enquadrada ou apoiada.

4.3.1 Equipamentos

4.3.1.1 Estação Total

Foi utilizado a estação total (Figura 16) modelo STS-752L no levantamento trigonométrico da bacia estudada. Essa estação possui uma precisão linear de 2mm+2ppm e angular de 2". Com esse equipamento utilizou-se o método de poligonal enquadrada ou apoiada.

4.3.1.2 Material Utilizado - Estação Total

Figura 21: Estação Total no Campo

Fonte: Os Autores (2021).

Quadro 1 - Materiais Utilizados - Estação Total

Q G G G .	materiale etinzaat	oo =otagao . ot
	1 Estação Tota	al
	1 Tripé	
	1 Bastão para pri	isma
	1 Prisma	
	1 Trena	
Software	Excel (Processame	ento dos dados)
Sof	tware Autocad Civ	ril 3D 2021
Sof	tware Autocad Civ	ril 3D 2021

Fonte: Os Autores (2021).

4.3.2 Desenvolvimento em campo

O serviço de campo foi desenvolvido utilizando como partida os marcos geodésicos de referência, através de suas monografias fornecidas pela empresa responsável.

No primeiro momento (Figura 22) instalou-se a estação na base de referência (EPAZ-01), visando a ré em outro marco (RN-08) — Figura 23, começando assim o levantamento da poligonal, cadastrando no caminhamento todas as caixas dos ramais e poços de visitas dos coletores, voltando ao mesmo marco de partida.

Figura 22 - Estação do EPAZ-01

Fonte: Os Autores (2021).

Figura 23: Marco Geodésico RN08

Para o cadastro da Bacia foi necessário implantar dois novos marcos geodésicos chamados de EPAZ-01 (Figura 24) e EPAZ02 (Figura 25), de acordo com monografias (Figura 26) e (Figura 27) apresentadas abaixo:

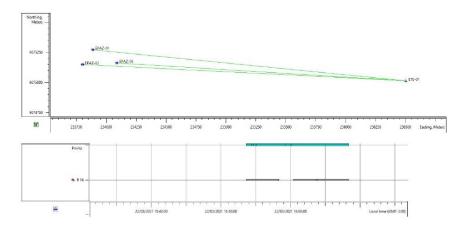
Figura 26: Monografia do EPAZ-01

MONOGRAFIA	DE MARCO GEODÉSICO ELABORADO PELA P	AZ ENGENHARIA					
	Munícipio						
	Escada	The same of the sa					
	Jome da Estação	ENCENHADIA					
N	MARCO EPAZ-01	CNGCINIARIA					
DADOS GERAIS	SISTEMAS DE PROJECAO-UTM	COORDENADAS					
Bairro: Nova Descoberta	Meridiano Central = 33º W Origem N (Equador) = 10000000 m Origem E (MC 33º W) = 500000 m K0 =0.9996 DATUM H SIRGAS2000 DATUM V Imbituba/SC	* LAT. = 8°21′33.79″S * LONG. =35°14′ 5.42″O * N =9075273.741m * E =253883.933m * H(ORT): 126.354					
	CROQUI						
	AV. TODOS OS SANTOS						
ITINERÁRIO	FOT	0					
Estação MARCO EPAZ-0 localizado em frente a Ca Santa Luzia, na Avenida T Santos.	pela de						
	Monografia elaborada em 2021						

Figura 27: Monografia do EPAZ-02

MONOGRAFIA DE MARCO GEODÉSICO ELABORADO PELA PAZ ENGENHARIA Munícipio Escada Nome da Estação MARCO EPAZ-02 **DADOS GERAIS** SISTEMAS DE PROJECAO-UTM COORDENADAS Meridiano Central = 33º W * LAT. = 8°21′33.79″S Origem N (Equador) = 10000000 m * LONG. =35°14′ 5.42″O Origem E (MC 33º W) = 500000 m K0 Bairro: Nova Descoberta * N =9075149.471m =0.9996 * E =253798.330m DATUM H SIRGAS2000 * H(ORT): 93.460 DATUM V Imbituba/SC CROQUI RUA SANTA LUISA EPAZ-02 ITINERÁRIO FOTO Estação MARCO EPAZ-02 está localizado na Praça da Caravela, na Rua Santa Luísa. Monografia elaborada em 2021

Para iniciarmos o trabalho com ambos equipamentos, foi necessário realizar um Posicionamento Relativo estático de três marcos geodésicos para serem implantados em duas bacias, durante o tempo de 15 minutos para cada ponto. Para esse serviço utilizou o receptor GNSS RTK i80 (propriedade da empresa responsável), com precisão horizontal de: 8mm+1ppm e precisão vertical de: 15mm+1ppm. Para o levantamento da bacia foram utilizados os marcos geodésicos EPAZ-01 e EPAZ02, conforme relatório apresentado abaixo, junto com as respectivas monografias.


Figura 28: Relatório do Processamento dos marcos geodésicos

					Point Summary					
Name	Grid Easting (m)	Grid Northing (m)	Latitude	Longitude	Elevation (m)	Std Dev e (m)	Std Dev n (m)	Std Dev Hz (m)	Std Dev u (m)	Contro
EPAZ-01	253883,933	9075273,741	8°21'33,76670"S	35°14'05,38554"W	126,384	0,013	0,014	0,019	0,018	None
EPAZ-02	253798,330	9075149,471	8°21'37,79445"S	35°14'08,20543"W	93,514	0,014	0,015	0,020	0,020	None
EPAZ-03	254085,658	9075162,467	8°21'37,42464"S	35°13'58,81533"W	89,495	0,015	0,014	0,021	0,020	None
ETE-01	256500,941	9075014,594	8°21'42,67966"S	35°12'39,92854"W	112,255	0,012	0,012	0,017	0,001	Both
Confidence lev Number of adju Number of plar Number of plar Number of use A posteriori pla Number of heig Number of heig		unds: (1,1)								

Figura 29: Relatório do Processamento dos marcos geodésicos

													GPS Observation	ons
Name	dN (m)	dE (m)	dHt (m)	Horz RMS (m)	Vert RMS (m)	Duration	Solution Type	Epochs	GPS Satellites	GLONASS Satellites	SigmaX (m)	SigmaY (m)	SigmaZ (m)	Orbit
EPAZ-01-ETE	-01 -259,147	2617,008	-14,129	0,009	0,017	00:14:20	Fixed	172	11	6	0,015	0,009	0,009	Broadcast
EPAZ-02-ETE	-01 -134,877	2702,611	18,741	0,011	0,020	00:14:25	Fixed	173	9	6	0,016	0,012	0,011	Broadcast
EPAZ-03-ETE	-01 -147,873	2415,283	22,760	0,011	0,020	00:14:45	Fixed	177	11	6	0,016	0,015	0,007	Broadcast
		GPS Occup	oations											
Point Name	Original Name	Method	Duration	H RMS (m)	V RMS (m)									
ETE-01	BASE 2203 TA	Static	02:45:00	2,191	2,272									
ETE-01	BASE 2203 M	Static	01:08:30	1,763	1,772									
EPAZ-02	EPAZ-02	Static	00:14:25	7,188	6,335									
EPAZ-03	EPAZ-03	Static	00:14:45	7,253	6,577									
EPAZ-01	EPAZ-01	Static	00:14:20	7,905	8,496									

Figura 30: Relatório do Processamento dos marcos geodésicos

Fonte: PAZ Engenharia (2021)

Depois da obtenção das coordenadas pelo método relativo estático dos marcos EPAZ-01 e EPAZ-02, foi realizado os nivelamentos e contranivelamentos: trigonométrico e geométrico para obtenção das altitudes ortométrica dos mesmos, de acordo com figura 31 e quadro 2 e 3 abaixo:

Figura 31: Nivelamento Trigonométrico do EPAZ-01

			_									
Arquivo	Editar	Pesquisar	Exibir	Ferra	mentas	Macros		Configurar	Jan	ela A	Ajuda	
NIVELAM	IENTO_EP	AZ01.txt * ×										
	Ponto	Norte	Topo	(m)	Este	Topo (m)	Eleva	ção	(m)	Código	o Controle
	RNS	9075	235.3	04	2539	928.305		122.	379	RN8	1	ESTACAO
	1	9075	273.7	40	2538	883.934		126.	354	EPAZ	01	RE
	2	9075	273.7	40	2538	883.934		126.3	354	EPAZ	01 1	ESTACAO
	3	9075	235.3	04	2538	883.305		122.	879	RNS		RE

Fonte: Os Autores (2021).

Quadro 2: Nivelamento Geométrico do EPAZ-02

NIVELAME	NTO DO I	PONTO EP	AZ-02		01
	NIVELAM	ENTO			VI
PONTO	RÉ	VANTE	DESNÍVEL	COTA	OBSERVAÇÃO
RN10				100.308	
	0.937				
AUX 01		3.337		97.408	
AUX 01	0.096				
AUX 02		1.834		95.670	
AUX 02	0.139				
ALIV M		2.007		00.400	
AUX 03	0.145	3.267		92.182	
AUX 03	0.143	+			
AUX 04		2.530		89.797	
AUX 04	1.504				
AUX 05		1.479		89.822	
AUX 05	1.053				
RN PAZ ASSOCIAÇÃO		1.671		89.204	
	C	ONTRA-N	VELAMENT		
RN PAZ ASSOCIAÇÃO				89.204	
RN PAZ ASSOCIAÇÃO	1.500				
AUX 05		0.885		89.819	
AUX 05	1.489				
		4.540		20.700	
AUX 04	0.470	1.516		89.792	
AUX 04	2.479				
AUX 03		0.093		92.178	
AUX 03	3.801	0.033		32.110	
A0A W	3.001				
AUX 02		0.311		95.668	
AUX 02	2.014			-2.000	
AUX 01		0.280		97.402	
AUX 01	3.450				
RN10		0.546		100.306	

Quadro 3: Nivelamento Geométrico do EPAZ-02

NIVELAM	02				
	NIVELAN				
PONTO	RÉ	VANTE	DESNÍVEL	COTA	OBSERVAÇÃO
RN PAZ ASSOCIAÇÃO				89.204	
RN PAZ ASSOCIAÇÃO	1.706				
ALIV M		1.055		00.055	
AUX 01 AUX 01	1.412	1.855		89.055	
AUXVI	1.412				
AUX 02		1.576		88.891	
AUX 02	1.734	1.010		00.001	
AUX 03		1.622		89.003	
AUX 03	1.501				
AUX 04			1.291	89.213	
AUX 04	2.264				
AUX 05		0.616		90.861	
AUX 05	2.391				
A 1 1 1 2 0 0		0.544		00.744	
AUX 06	1.044	0.511		92.741	
AUX 06	1.944				
EPAZ02		1.225		93.460	
EPAZ02	0.832	1.223		33.400	
EFAZUZ		CONTRA	NIVELAMENT	0	
EPAZ02			I V CE VIII CIV	93.460	
EPAZ02	0.832			55.155	
AUX 06		1.551		92.741	
AUX 06	0.335				
AUX 05		2.431		90.845	
AUX 05	0.595				
AUX 04		2.227		89.213	
AUX 04	1.281				
ALIV 03		1.404		00.000	
AUX 03 AUX 03	1.624	1.491		89.003	
AUX 03	1.024				
AUX 02		1.745		88.882	
AUX 02	1.580	1.140		00.00£	
7.57.02					
AUX 01		1.415		89.047	
AUX 01	1.864				
RN PAZ ASSOCIAÇÃO		1.715		89.196	
RN PAZ ASSOCIAÇÃO					

No cadastro das caixas (Figura 32) e poços de visita (Figura 33) implantou-se no decorrer da poligonal pontos auxiliares (Figura 34) para servirem de referência para o caminhamento da poligonal, chegando assim no marco de referência ou voltando ao marco de partida.

Figura 32: Coleta da Profundidade da Caixa

Fonte: Os Autores (2021).

Figura 33: Coleta da Profundidade do Poço de Visita

Figura 34: Ponto Auxiliar

Foi utilizado como complementação do cadastro técnico o software Autocad Civil 3D, para ser realizado as ligações dos ramais nas redes coletoras, como também inclusão das informações descritivas de levantamento.

No cadastro técnico levantado, existem caixas e poços de visita sem coleta de cota de fundo, esse motivo se dá por existirem caixas lacrada com cimento (Figura 35) pelo morador, como também em campo existe poços de visitas cheios de esgotos (Figura 36), por motivo dos moradores ligarem suas caixas indevidamente, sem o sistema de esgotamento está funcionando.

Figura 35: Caixa Lacrada com cimento

Figura 36: Poço de Visita cheio de esgoto

4.4 LEVANTAMENTO GNSS

O Levantamento realizado com GNSS foi utilizado o método RTK, para cadastrar a bacia, logo a coleta de dados apresentou interferências devido a área de levantamento possuir muitas residências (2 pavimentos) e antenas parabólicas. Esse levantamento por causa das interferências teve uma duração maior na coleta de dados.

4.4.1 Equipamentos

4.4.1.1 GPS/GNSS

O receptor GNSS Triumph-1 (Figura 37) possui todas as antenas (GNSS, UHF, GSM/CDMA 200, Blutoofth/Wifi) escondidas e protegidas. Esse equipamento foi utilizado para o levantamento, sendo considerado completo para fins de levantamento topográfico e geodésico. Com esse equipamento utilizou-se o método RTK (Tempo Real).

Figura 37: Receptor GNSS

Fonte: CPE Tecnologia

4.4.1.2 Material Utilizado no Levantamento RTK

Quadro 4: Materiais Utilizados - GNSS

	1 Tripé
RTK (Rece	ptor Base e Receptor Rover)
	1 Controladora
	1 Bastão
0	Software JAVAD
Software Exc	cel (Processamento dos dados)
Softwa	are Autocad Civil 3D 2021

Fonte: Os Autores (2021).

4.4.2 Desenvolvimento em campo

O serviço de campo foi desenvolvido a partir da instalação da base do GNSS (Figura 38) no marco geodésico (EPAZ-02), fazendo a configuração completa da coletora (Figura 39).

Figura 38 - Receptor GNSS no campo

Fonte: Os Autores (2021).

Figura 39 - Coletora

A partir da instalação da Base segue-se com o Rover para cadastrar as caixas (Figura 40 e 41) e os poços de visita (Figura 42), observando também como são as ligações das caixas e dos poços de visita, fazendo essas ligações no software Autocad civil 3D 2021.

Figura 40 e 41: Coleta da profundidade da Caixa

Figura 42: Coleta da cota de Tampa do Poço de Visita

Existe uma grande dificuldade na utilização do receptor GNSS no cadastro técnico, visto que a coleta de cada ponto demora muito, e quando se consegue muitas vezes não está dentro da precisão de 2 cm, solicitada pela empresa responsável. Com o método RTK não conseguimos coletar todos os pontos gerais da bacia de esgotamento sanitário em estudo.

Existem muitas interferências na área de levantamento, como antenas parabólicas e muitas construções de 2 pavimentos (Figura 43 e 44), sobretudo também por motivo das caixas estarem localizadas na maioria das vezes muito próximo a fachada do imóvel.

Figura 43 e 44: Construções que causam Interferências para se utilizar o GNSS

5 RESULTADOS E CONCLUSÕES

Para obtenção dos resultados e conclusões serão apresentados exemplo dos dados de uma poligonal no formato TXT, como também discrepâncias, gráficos estatísticos e erro quadrático médio do levantamento, mostrando assim qual resultado satisfatório com a utilização de ambos equipamentos utilizados (Estação Total e GNSS).

5.1 RESULTADOS DO LEVANTAMENTO – ESTAÇÃO TOTAL

É apresentado a seguir exemplo dos dados coletados referente as poligonais com seus respectivos fechamentos.

Figura 45: Exemplo de Dados Levantados da Poligonal

```
Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela Ajuda
CADASTRO.txt ×
1,9075273.661,253883.900,126.354,EPAZ01
2,9075235.304,253928.305,122.879,RN8
3,9075235.302,253928.308,122.871,RE RN8
4,9075249.503,253905.887,124.689,AUXILIAR E1
5,9075273.741,253883.933,126.348,RE RN8
6,9075243.938,253902.025,124.032,A3/R195D/CX1/CT/MORADOR NAO PERMITIU
7,9075242.208,253900.843,123.833,A3/R195D/CX2/CT/MORADOR NAO PERMITIU
8,9075240.828,253899.921,123.670,A3/R195D/CX3/CT
9,9075240.828,253899.921,123.116,A3/R195D/CX3/CF
144,9075121.417,253840.761,92.257,A3/R28B/CX8/CT/MORADOR NAO PERMITIU
145,9075130.438,253839.115,92.351,A3/R26/CX03/CT/MORADOR NAO PERMITIU
146,9075129.734,253840.090,93.268,A3/R26/CX04/CT/MORADOR NAO PERMITIU
147,9075218.961,253913.021,120.803,AUXILIAR D2
148,9075237.612,253923.383,123.155,AUXILIAR D1
149,9075235.317,253928.297,122.862,RN8
```

5.2 DADOS DA AMOSTRAGEM - ESTAÇÃO TOTAL

Para analisar a amostragem do levantamento com o equipamento Estação Total, foram escolhidos pontos conforme descrição abaixo.

Quadro 5: Dados coletados da Rua Santo Amaro com estação total

	RUA SAN	TO AMARO - EST.	AÇÃO TOTAL	
QUANT.	DESCRIÇÃO	E	N	ALTITUDE ORTOMÉTRICA
1	A3/R194A/CX05/CT	253857.909	9075232.401	120.954
2	A3/R194A/CX05/CF	253857.822	9075232.238	120.449
3	A3/R194A/CX06/CT	253857.179	9075231.044	120.667
4	A3/R194A/CX06/CF	253857.231	9075230.896	120.155
5	A3/R194A/CX09/CT	253845.377	9075209.154	115.232
6	A3/R194A/CX09/CF	253845.293	9075209.048	114.654
7	A3/R194A/CX10/CT	253844.927	9075208.091	114.993
8	A3/R194A/CX11/CT	253838.924	9075196.847	111.464
9	A3/R194A/CX11/CF	253838.959	9075196.738	110.951
10	A3/R194A/CX12/CT	253838.541	9075196.231	111.266
11	A3/R194A/CX13/CT	253835.524	9075190.549	109.475
12	A3/R194A/CX13/CF	253835.518	9075190.387	108.916
13	A3/R194A/CX14/CT	253832.390	9075185.043	107.635
14	A3/R194A/CX14/CF	253832.425	9075184.968	107.030
15	A3/R194A/CX15/CT	253829.376	9075179.808	105.832
16	A3/R194A/CX15/CF	253829.457	9075179.699	105.315
17	A3/R194A/CX16/CT	253828.879	9075178.654	105.493
18	A3/R194A/CX17/CT	253825.591	9075172.910	103.104
19	A3/R194A/CX17/CF	253825.509	9075172.774	102.576
20	A3/R194A/CX18/CT	253820.034	9075162.481	96.665
21	A3/R194A/CX18/CF	253819.961	9075162.517	96.144
22	A3/R194A/CX20/CT	253812.024	9075146.914	93.092
23	A3/C03/PV-32/CT	253807.524	9075144.789	93.106
24	A3/R194B/CX04/CT	253861.429	9075233.827	121.501
25	A3/R194B/CX07/CT	253845.610	9075205.743	114.574
26	A3/R194B/CX09/CT	253839.201	9075194.309	110.829
27	A3/R194B/CX10/CT	253836.125	9075189.290	109.234
28	A3/R194B/CX10/CF	253835.988	9075189.275	108.695
29	A3/R194B/CX11/CT	253832.071	9075181.702	106.725
30	A3/R194B/CX12/CT	253829.683	9075177.346	105.271
31	A3/R194B/CX13/CT	253826.399	9075171.403	102.769
32	A3/R194B/CX13/CF	253826.396	9075171.431	102.221
33	A3/R194B/CX14/CT	253821.529	9075162.353	96.923
34	A3/R194B/CX14/CF	253821.704	9075162.415	96.306
35	A3/R194B/CX15/CT	253818.132	9075156.248	94.796
36	A3/R26/CX01/CT	253813.641	9075144.257	92.836
37	A3/R26/CX02/CT	253823.391	9075138.215	92.621
38	A3/R26/CX03/CT	253839.115	9075130.438	92.351

Quadro 6: Dados coletados da Rua Santa Maria com estação total

	RUA SANTA MARIA - ESTAÇÃO TOTAL													
QUANT.	DESCRIÇÃO	E	N	ALTITUDE ORTOMÉTRICA										
1	A3/R195D/CX03/CT	253899.921	9075240.828	123.670										
2	A3/R195D/CX08/CT	253892.067	9075228.021	121.912										
3	A3/R195D/CX09/CT	253890.498	9075225.073	121.412										
4	A3/R195D/CX10/CT	253886.052	9075213.178	118.634										
5	A3/R195D/CX10/CF	253885.991	9075213.184	117.972										
6	A3/R195D/CX11/CT	253883.597	9075207.512	116.869										
7	A3/R195D/CX11/CF	253883.581	9075207.424	116.248										
8	A3/R195D/CX12/CT	253880.651	9075200.115	114.449										
9	A3/R195D/CX12/CF	253880.530	9075199.958	113.728										
10	A3/R195D/CX14/CT	253875.010	9075187.805	110.385										
11	A3/R195D/CX14/CF	253874.919	9075187.651	109.763										
12	A3/R195D/CX15/CT	253872.215	9075181.564	108.294										
13	A3/R195D/CX16/CT	253868.994	9075174.615	105.688										
14	A3/R195D/CX17/CT	253866.843	9075169.637	103.806										
15	A3/R195D/CX18/CT	253864.142	9075163.097	101.259										
16	A3/R195D/CX19/CT	253859.515	9075153.267	97.659										
17	A3/R195D/CX19/CF	253859.424	9075153.230	97.081										
18	A3/R195D/CX20/CT	253858.991	9075152.065	97.285										
19	A3/R195D/CX21/CT	253855.855	9075145.831	94.990										
20	A3/R195E/CX01/CT	253882.890	9075195.009	113.304										
21	A3/R195E/CX02/CT	253880.578	9075188.600	111.168										
22	A3/R195E/CX03/CT	253878.276	9075184.088	109.723										
23	A3/R195E/CX03/CF	253878.256	9075184.017	108.907										
24	A3/R195E/CX04/CT	253874.283	9075175.149	106.503										
25	A3/R195E/CX04/CF	253874.292	9075175.063	105.762										
26	A3/R195E/CX05/CT	253871.495	9075168.816	104.163										
27	A3/R195E/CX06/CT	253867.627	9075160.579	100.907										
28	A3/R195E/CX07/CT	253866.378	9075157.915	99.850										
29	A3/R195E/CX07/CF	253866.372	9075157.839	99.238										
30	A3/R195E/CX08/CT	253861.279	9075146.163	95.535										
31	A3/R195E/CX09/CT	253858.093	9075139.228	93.736										
32	A3/C03/PV32A/CT	253848.004	9075125.217	92.057										

5.3 DADOS DA AMOSTRAGEM - RECEPTOR GNSS

É apresentado a seguir os dados coletados através do método RTK, onde foi coletado apenas os pontos de igualdade com a estação total, para no final obtermos a comparação entre a utilização dos dois equipamentos.

Figura 46: Dados coletados com GNSS

Nome	Coordenadas	Tipo de	HRMS	VRMS	σN	σE	σН	PDOP	Antenna ID	Usuário Altura da	VERDADEIRO Altura da	Base ID	Base Nome	Base Distância	Satélit	Época	Ocupação Tempo	Data (UTC)	Descrição
1	Norte 9075146.5 Leste 253811.78	Soluçã Fixo	0.014	0.016	0.011	0.008	0.017	2.06	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	13.7856	7	6	20	06.08.202 1 16:02:39	A3/R194A/CX20/CT
2	Altitude(Ort.) 93.11 Norte 9075156.2 Leste 253818 Altitude(Ort.) 94.796	Fixo	0.023	0.028	0.027	0.007	0.034	2.393	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	20.8271	7	3	3	06.08.202 1 16:04:18	A3/R194B/CX15/CT
3	Altitude(Ort.) 94.796 Norte 9075162.6 Leste 253819.73 Altitude(Ort.) 96.627	Fixo	0.018	0.023	0.02	0.014	0.028	2.19	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	25.3098	7	3	3	06.08.202 1 16:04:38	A3/R194A/CX18/CT
4	Norte 9075162.5 Leste 253821.68 Altitude(Ort.) 96.934	Fixo	0.027	0.033	0.025	0.01	0.034	2.223	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	26.9463	7	3	3	06.08.202 1 16:04:55	A3/R194B/CX14/CT
5	Norte 9075171.5 Leste 253826.39 Altitude(Ort.) 102.759	Fixo	0.02	0.02	0.022	0.007	0.026	2.428	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	36.8611	6	3	3	06.08.202 1 16:05:26	A3/R194B/CX13/CT
6	Norte 9075172.9 Leste 253825.64 Altitude(Ort.) 103.067	Fixo	0.014	0.014	0.01	0.01	0.014	2.093	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	37.2622	7	3	4	06.08.202 1 16:05:38	A3/R194A/CX17/CT
7	Norte 9075177.5 Leste 253829.69 Altitude(Ort.) 105.243	Fixo	0.017	0.017	0.015	0.009	0.017	2.414	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	43.6736	6	3	17	06.08.202 1 16:06:17	A3/R194B/CX12/CT
8	Norte 9075178.7 Leste 253828.97 Altitude(Ort.) 105.466	Fixo	0.02	0.027	0.018	0.009	0.027	2.164	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	44.0293	7	3	3	06.08.202 1 16:06:30	A3/R194A/CX16/CT
9	Norte 9075179.7 Leste 253829.45 Altitude(Ort.) 105.791	Fixo	0.021	0.021	0.016	0.014	0.021	2.162	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	45.1282	7	3	3	06.08.202 1 16:06:38	A3/R194A/CX15/CT
10	Norte 9075181.7 Leste 253832.06 Altitude(Ort.) 106.678	Fixo	0.023	0.022	0.021	0.01	0.022	2.405	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	48.5017	6	3	3	06.08.202 1 16:06:48	A3/R194B/CX11/CT
11	Norte 9075185.1 Leste 253832.34 Altitude(Ort.) 107.587	Fixo	0.02	0.023	0.018	0.01	0.024	2.402	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	51.2459	6	3	3	06.08.202 1 16:06:59	A3/R194A/CX14/CT
12	Norte 9075189.3 Leste 253836.13 Altitude(Ort.) 109.253	Fixo	0.02	0.024	0.017	0.013	0.024	3.042	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	57.1362	6	3	3	06.08.202 1 16:07:11	A3/R194B/CX10/CT
13	Norte 9075190.5 Leste 253835.49 Altitude(Ort.) 109.517	Fixo	0.018	0.028	0.017	0.009	0.029	3.042	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	57.6114	6	3	3	06.08.202 1 16:07:19	A3/R194A/CX13/CT
14	Norte 9075194.3 Leste 253839.16 Altitude(Ort.) 110.911	Fixo	0.017	0.026	0.016	0.009	0.028	3.042	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	63.0887	6	3	3	06.08.202 1 16:07:30	A3/R194B/CX09/CT
15	Norte 9075196.1 Leste 253838.66 Altitude(Ort.) 111.291	Fixo	0.017	0.025	0.017	0.009	0.03	3.042	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	64.1996	6	3	3	06.08.202 1 16:07:38	A3/R194A/CX12/CT
16	Norte 9075196.7 Leste 253839 Altitude(Ort.) 111.501	Fixo	0.019	0.029	0.016	0.01	0.029	3.042	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	64.9173	6	3	3	06.08.202 1 16:07:45	A3/R194A/CX11/CT
17	Norte 9075205.7 Leste 253845.46 Altitude(Ort.) 114.704	Fixo	0.026	0.025	0.028	0.009	0.027	2.325	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	76.3887	7+1	3	22	06.08.202 1 16:11:47	A3/R194B/CX07/CT
18	Norte 9075208 Leste 253844.94 Altitude(Ort.) 115.01	Fixo	0.01	0.016	0.007	0.007	0.016	3.037	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	77.8295	6	3	7	06.08.202 1 16:12:09	A3/R194A/CX10/CT
19	Norte 9075209.1 Leste 253845.32 Altitude(Ort.) 115.246	Fixo	0.015	0.02	0.013	0.007	0.02	3.037	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	78.9844	6	3	3	06.08.202 1 16:12:16	A3/R194A/CX09/CT
20	Norte 9075231.1 Leste 253857.24 Altitude(Ort.) 120.724	Fixo	0.024	0.033	0.021	0.014	0.034	3.019	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	104.3293	6	3	3	06.08.202 1 16:18:05	A3/R194A/CX06/CT

Figura 47: Dados coletados com GNSS

21	Norte Leste Altitude(Ort.)	9075232.264 253857.88 121.016	Fixo	0.013	0.016	0.006	0.011	0.015	3.019	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	105.6425	6	3	4	06.08.2021 16:18:15	A3/R194A/CX05/CT
22	Norte	9075233.838 253861.469 121.538	Fixo	0.03	0.046	0.033	0.033	0.05	6.18	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	109.0538	5	3	3	06.08.2021 16:18:28	A3/R194B/CX04/CT
23		9075240.962 253899.973 123.696	Fixo	0.023	0.031	0.021	0.045	0.035	3.195	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	140.0574	6	3	10	06.08.2021 16:27:19	A3/R195D/CX03/CT
24		9075228.068 253892.393 121.892	Fixo	0.015	0.022	0.011	0.009	0.022	2.782	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	125.8317	6+2	3	3	06.08.2021 16:28:40	A3/R195D/CX08/CT
25		9075225.304 253890.635 121.407	Fixo	0.019	0.028	0.014	0.016	0.028	3.787	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	122.6861	5+2	3	3	06.08.2021 16:28:50	A3/R195D/CX09/CT
26		9075213.269 253886.111	Fixo	0.021	0.027	0.03	0.024	0.038	2.959	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	111.3965	6	3	3	06.08.2021 16:29:16	A3/R195D/CX10/CT
27	Norte Leste	118.631 9075207.734 253883.66 116.894	Fixo	0.015	0.021	0.014	0.011	0.025	2.957	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	105.9478	6	3	3	06.08.2021 16:29:29	A3/R195D/CX11/CT
28		9075200.076 253880.741 114.5	Fixo	0.031	0.032	0.023	0.022	0.032	2.955	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	98.9707	6	3	3	06.08.2021 16:29:48	A3/R195D/CX12/CT
29		9075195.007 253882.971 113.415	Fixo	0.025	0.029	0.023	0.026	0.035	2.948	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	98.1619	6	3	54	06.08.2021 16:30:54	A3/R195E/CX01/CT
30		9075188.657 253880.415 111.184	Fixo	0.052	0.041	0.035	0.039	0.045	2.941	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	92.6694	6	3	11	06.08.2021 16:31:57	A3/R195E/CX02/CT
31		9075187.811 253875.039 110.404	Fixo	0.018	0.025	0.015	0.011	0.026	2.938	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	87.4144	6	3	3	06.08.2021 16:32:15	A3/R195D/CX14/CT
32		9075184.024 253878.312 109.739	Fixo	0.015	0.021	0.011	0.011	0.021	2.937	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	88.6344	6	3	3	06.08.2021 16:32:27	A3/R195E/CX03/CT
33		9075181.715 253872.391 108.266	Fixo	0.011	0.014	0.008	0.008	0.015	2.936	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	82.1213	6	3	3	06.08.2021 16:32:39	A3/R195D/CX15/CT
34	Norte	9075175.168 253874.438 106.56	Fixo	0.02	0.033	0.013	0.015	0.033	6.388	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	81.3899	5	3	3	06.08.2021 16:32:54	A3/R195E/CX04/CT
35		9075174.578 253869.059 105.78	Fixo	0.014	0.018	0.015	0.008	0.021	2.931	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	76.0574	6	3	3	06.08.2021 16:33:14	A3/R195D/CX16/CT
36		9075168.787 253871.594 104.238	Fixo	0.02	0.023	0.018	0.016	0.025	2.93	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	76.5302	6	3	3	06.08.2021 16:33:28	A3/R195E/CX05/CT
37		9075169.616 253867.044 103.827	Fixo	0.01	0.015	0.007	0.007	0.015	2.766	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	72.3523	6+1	3	3	06.08.2021 16:33:40	A3/R195D/CX17/CT
38		9075163.276 253864.325 101.306	Fixo	0.012	0.016	0.009	0.008	0.016	2.765	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	67.8781	6+2	3	3	06.08.2021 16:33:55	A3/R195D/CX18/CT
39		9075160.769 253867.721 100.961	Fixo	0.02	0.02	0.009	0.018	0.02	2.925	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	70.7035	6	3	3	06.08.2021 16:34:11	A3/R195E/CX06/CT
40	Norte	9075157.938 253866.447 100.006	Fixo	0.021	0.021	0.013	0.024	0.021	2.923	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	68.9527	6	3	3	06.08.2021 16:34:23	A3/R195E/CX07/CT
41	Norte	9075153.388 253859.629 97.655	Fixo	0.021	0.021	0.014	0.015	0.024	2.921	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	61.5672	6	3	3	06.08.2021 16:34:42	A3/R195D/CX19/CT
42		9075152.204 253859.122 97.303	Fixo	0.019	0.021	0.016	0.011	0.024	2.919	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	60.9746	6	3	3	06.08.2021 16:34:52	A3/R195D/CX20/CT
43	Norte	9075146.171 253861.375 95.63	Fixo	0.035	0.049	0.029	0.02	0.049	4.703	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	63.1688	5+2	3	11	06.08.2021 16:35:13	A3/R195E/CX08/CT
44		9075145.765 253856.027 95.076	Fixo	0.021	0.036	0.016	0.014	0.036	4.705	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	57.8386	5+2	3	3	06.08.2021 16:35:25	A3/R195D/CX21/CT
45		9075139.303 253858.134 93.76	Fixo	0.037	0.039	0.032	0.042	0.043	2.947	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	60.6628	6	3	3	06.08.2021 16:35:38	A3/R195E/CX09/CT
46	Norte	9075125.337 253847.994 92.153	Fixo	0.068	0.032	0.046	0.064	0.049	2.937	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	55.2328	6	3	6	06.08.2021 16:37:11	A3/C03/PV32A/CT
47	Norte Leste	9075130.296 253839.091	Fixo	0.019	0.025	0.016	0.013	0.027	3.347	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	45.0625	6	3	3	06.08.2021 16:37:45	A3/R26/CX03/CT
48	Altitude(Ort.) Norte Leste	92.255 9075137.993 253823.24	Fixo	0.04	0.049	0.035	0.022	0.049	3.332	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	27.4373	6	3	14	06.08.2021 16:39:38	A3/R26/CX02/CT
49	Altitude(Ort.) Norte Leste	92.698 9075144.146 253813.451	Fixo	0.021	0.034	0.01	0.021	0.034	4.756	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	16.0432	5+2	3	3	06.08.2021 16:40:00	A3/R26/CX01/CT
50	Altitude(Ort.) Norte Leste	92.841 9075162.49 253819.662	Fixo	0.023	0.029	0.022	0.012	0.03	4.098	JAV_TRIUMPH-1	2.002	2.277	2	PAZ02	25.1238	5+2	3	3	06.08.2021 16:43:28	A3/R194A/CX18/CF
- 50	Altitude(Ort.) Norte	96.042 9075162.29	1100	0.023	0.029	0.022	0.012	0.05	4.098	NONE	2.002	2.211	-	1 ALUZ	23.1236	372	,	,	06.08.2021	AJK194ACATO/CI
51	Altitude(Ort.)	253821.676 96.268	Fixo	0.016	0.026	0.015	0.013	0.029	4.813	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	26.7814	5+2	3	3	16:46:16	A3/R194B/CX14/CF
52	Norte Leste Altitude(Ort.)	9075172.893 253825.536 102.631	Fixo	0.018	0.031	0.013	0.013	0.031	4.822	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	37.052	5+2	3	3	06.08.2021 16:47:31	A3/R194A/CX17/CF
53	Norte Leste	9075171.459 253826.46	Fixo	0.023	0.038	0.019	0.017	0.038	4.832	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	36.7939	5+2	3	3	06.08.2021 16:49:18	A3/R194B/CX13/CF
54		102.35 9075179.779 253829.395	Fixo	0.027	0.038	0.014	0.023	0.038	4.837	JAV_TRIUMPH-1	2.002	2.277	2	PAZ02	44.9994	5+2	3	3	06.08.2021 16:50:39	A3/R194A/CX15/CF
	Altitude(Ort.) Norte	105.349 9075185.27								NONE JAV_TRIUMPH-1									06.08.2021	
55	Leste Altitude(Ort.) Norte	253832.363 107.043 9075190.71	Fixo	0.082	0.072	0.059	0.071	0.072	4.84	NONE NONE	2.002	2.277	2	PAZ02	51.2281	5+2	3	42	16:52:49 06:08:2021	A3/R194A/CX14/CF
56		253835.491 108.973	Fixo	0.021	0.035	0.009	0.019	0.035	4.84	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	57.6389	5+2	3	3	16:53:40	A3/R194A/CX13/CF
57	Leste	9075189.274 253836.137	Fixo	0.016	0.014	0.016	0.014	0.014	2.118	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	56.9848	6+2	3	3	06.08.2021 16:54:30	A3/R194B/CX10/CF
		108.742 9075196.881 253838.876	E	0.021	0.00	0.027	0.000	0.00	2.020	JAV_TRIUMPH-1	2002	2.255		D47900	4 700	7.0	_		06.08.2021 16:55:34	42/D10/4 2001 127
58	Altitude(Ort.)	110.987 9075209.164	Fixo	0.024	0.03	0.026	0.008	0.03	2.029	NONE	2.002	2.277	2	PAZ02	64.7986	7+2	3	3	06.08.2021	A3/R194A/CX11/CF
59	Leste Altitude(Ort.)	253845.203 114.688	Fixo	0.026	0.035	0.025	0.009	0.035	2.129	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	78.8099	6+2	3	3	16:56:32	A3/R194A/CX09/CF
60	Leste	9075231.243 253857.321	Fixo	0.009	0.011	0.006	0.007	0.011	2.236	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	104.3041	6	3	3	06.08.2021 16:57:47	A3/R194A/CX06/CF
	Altitude(Ort.)	120.159		l	l	l	I				l					l	l	l		

Figura 48: Dados coletados com GNSS

61	Norte Leste Altitude(Ort.)	9075232.467 253857.863 120.46	Fixo	0.022	0.025	0.087	0.058	0.098	3.172	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	105.6481	6+1	3	4	06.08.2021 16:58:28	A3/R194A/CX05/CF
62	Norte Leste Altitude(Ort.)	9075213.127 253886.103 117.992	rixo	0.015	0.024	0.007	0.013	0.024	4.764	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	111.1666	5+2	3	3	06.08.2021 17:01:57	A3/R195D/CX10/CF
63	Norte Leste Altitude(Ort.)	9075207.253 253883.606 116.279		0.007	0.01	0.006	0.007	0.011	2.178	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	105.5058	6+2	3	3	06.08.2021 17:02:59	A3/R195D/CX11/CF
64	Norte Leste Altitude(Ort.)	9075199.935 253880.546 113.765	Fixo	0.008	0.012	0.012	0.008	0.017	2.186	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	98.5818	6+2	3	3	06.08.2021 17:03:51	A3/R195D/CX12/CF
65	Norte Leste Altitude(Ort.)	9075187.655 253875.158 109.7	Fixo	0.029	0.029	0.022	0.018	0.036	4.673	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	87.3173	5+2	3	3	06.08.2021 17:05:58	A3/R195D/CX14/CF
66	Norte Leste Altitude(Ort.)	9075183.866 253878.262 108.963	Fixo	0.04	0.032	0.048	0.024	0.04	2.363	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	88.3885	6	3	5	06.08.2021 17:07:26	A3/R195E/CX03/CF
67	Norte Leste Altitude(Ort.)	9075174.914 253874.266 105.797		0.024	0.031	0.03	0.012	0.034	2.233	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	81.0294	6+2	3	4	06.08.2021 17:08:11	A3/R195E/CX04/CF
68	Norte Leste Altitude(Ort.)	9075157.663 253866.265 99.234	rixo	0.014	0.02	0.013	0.005	0.02	2.255	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	68.6702	6+2	3	3	06.08.2021 17:09:57	A3/R195E/CX07/CF
69	Norte Leste Altitude(Ort.)	9075153.109 253859.525 97.126	Fixo	0.012	0.014	0.008	0.009	0.014	2.372	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	61.4128	6+2	3	3	06.08.2021 17:10:49	A3/R195D/CX19/CF
70	Norte Leste Altitude(Ort.)	9075144.708 253807.62 93.14	Fixo	0.018	0.022	0.018	0.017	0.026	3.094	JAV_TRIUMPH-1 NONE	2.002	2.277	2	PAZ02	10.4453	6+2	3	3	06.08.2021 17:17:42	A3/C03/PV-32/CT

RTK bases

Nome	Coorden	adas	Base ID	Antenna ID	Usuário Altura da Antena	VERDADEIRO Altura da Antena	Descrição		
PAZ02	Norte Leste Altitude(Ort.)	9075149.471 253798.33 93.46	1	JAV_TRIUMPH- 1 NONE	2.585	2.622	JAV_TRIUMPH- 1 NONE		

5.4 DADOS DA AMOSTRAGEM - RECEPTOR GNSS

Quadro 7: Dados coletados da Rua Santo Amaro com GNSS

	RUA SANTO AMARO - GNSS											
QUANT.	DESCRIÇÃO	Е	N	ALTITUDE ORTOMÉTRICA								
1	A3/R194A/CX05/CT	253857.880	9075232.264	121.016								
2	A3/R194A/CX05/CF	253857.863	9075232.467	120.460								
3	A3/R194A/CX06/CT	253857.240	9075231.147	120.724								
4	A3/R194A/CX06/CF	253857.321	9075231.243	120.159								
5	A3/R194A/CX09/CT	253845.320	9075209.102	115.246								
6	A3/R194A/CX09/CF	253845.203	9075209.164	114.688								
7	A3/R194A/CX10/CT	253844.935	9075207.961	115.010								
8	A3/R194A/CX11/CT	253838.996	9075196.747	111.501								
9	A3/R194A/CX11/CF	253838.876	9075196.881	110.987								
10	A3/R194A/CX12/CT	253838.660	9075196.131	111.291								
11	A3/R194A/CX13/CT	253835.492	9075190.461	109.517								
12	A3/R194A/CX13/CF	253835.491	9075190.710	108.973								
13	A3/R194A/CX14/CT	253832.337	9075185.110	107.587								
14	A3/R194A/CX14/CF	253832.363	9075185.270	107.043								
15	A3/R194A/CX15/CT	253829.451	9075179.736	105.791								
16	A3/R194A/CX15/CF	253829.395	9075179.779	105.349								
17	A3/R194A/CX16/CT	253828.970	9075178.722	105.466								
18	A3/R194A/CX17/CT	253825.643	9075172.928	103.067								
19	A3/R194A/CX17/CF	253825.536	9075172.893	102.631								
20	A3/R194A/CX18/CT	253819.728	9075162.611	96.627								
21	A3/R194A/CX18/CF	253819.662	9075162.490	96.042								
22	A3/R194A/CX20/CT	253811.781	9075146.471	93.110								
23	A3/C03/PV-32/CT	253807.620	9075144.708	93.140								
24	A3/R194B/CX04/CT	253861.469	9075233.838	121.538								
25	A3/R194B/CX07/CT	253845.462	9075205.707	114.704								
26	A3/R194B/CX09/CT	253839.156	9075194.292	110.911								
27	A3/R194B/CX10/CT	253836.132	9075189.297	109.253								
28	A3/R194B/CX10/CF	253836.137	9075189.274	108.742								
29	A3/R194B/CX11/CT	253832.058	9075181.722	106.678								
30	A3/R194B/CX12/CT	253829.690	9075177.491	105.243								
31	A3/R194B/CX13/CT	253826.385	9075171.499	102.759								
32	A3/R194B/CX13/CF	253826.460	9075171.459	102.350								
33	A3/R194B/CX14/CT	253821.684	9075162.457	96.934								
34	A3/R194B/CX14/CF	253821.676	9075162.290	96.268								
35	A3/R194B/CX15/CT	253817.998	9075156.192	94.796								
36	A3/R26/CX01/CT	253813.451	9075144.146	92.841								
37	A3/R26/CX02/CT	253823.240	9075137.993	92.698								
38	A3/R26/CX03/CT	253839.091	9075130.296	92.255								

Quadro 8: Dados coletados da Rua Santa Maria com GNSS

	RUA S	ANTO MARIA	- GNSS	
QUANT.	DESCRIÇÃO	E	N	ALTITUDE ORTOMÉTRICA
1	A3/R195D/CX03/CT	253899.973	9075240.962	123.696
2	A3/R195D/CX08/CT	253892.393	9075228.068	121.892
3	A3/R195D/CX09/CT	253890.635	9075225.304	121.407
4	A3/R195D/CX10/CT	253886.111	9075213.269	118.631
5	A3/R195D/CX10/CF	253886.103	9075213.127	117.992
6	A3/R195D/CX11/CT	253883.66	9075207.734	116.894
7	A3/R195D/CX11/CF	253883.606	9075207.253	116.279
8	A3/R195D/CX12/CT	253880.741	9075200.076	114.500
9	A3/R195D/CX12/CF	253880.546	9075199.935	113.765
10	A3/R195D/CX14/CT	253875.039	9075187.811	110.404
11	A3/R195D/CX14/CF	253875.158	9075187.655	109.700
12	A3/R195D/CX15/CT	253872.391	9075181.715	108.266
13	A3/R195D/CX16/CT	253869.059	9075174.578	105.780
14	A3/R195D/CX17/CT	253867.044	9075169.616	103.827
15	A3/R195D/CX18/CT	253864.325	9075163.276	101.306
16	A3/R195D/CX19/CT	253859.629	9075153.388	97.655
17	A3/R195D/CX19/CF	253859.525	9075153.109	97.126
18	A3/R195D/CX20/CT	253859.122	9075152.204	97.303
19	A3/R195D/CX21/CT	253856.027	9075145.765	95.076
20	A3/R195E/CX01/CT	253882.971	9075195.007	113.415
21	A3/R195E/CX02/CT	253880.415	9075188.657	111.184
22	A3/R195E/CX03/CT	253878.312	9075184.024	109.739
23	A3/R195E/CX03/CF	253878.262	9075183.866	108.963
24	A3/R195E/CX04/CT	253874.438	9075175.168	106.560
25	A3/R195E/CX04/CF	253874.266	9075174.914	105.797
26	A3/R195E/CX05/CT	253871.594	9075168.787	104.238
27	A3/R195E/CX06/CT	253867.721	9075160.769	100.961
28	A3/R195E/CX07/CT	253866.447	9075157.938	100.006
29	A3/R195E/CX07/CF	253866.265	9075157.663	99.234
30	A3/R195E/CX08/CT	253861.375	9075146.171	95.630
31	A3/R195E/CX09/CT	253858.134	9075139.303	93.760
32	A3/C03/PV32A/CT	253847.994	9075125.337	92.153

5.5 ANÁLISE COMPARATIVA

Para análise comparativa segue abaixo os gráficos estatísticos relacionados as discrepâncias e erro quadrático médio das altitudes ortométricas, referente aos dois equipamentos (estação total e GNSS).

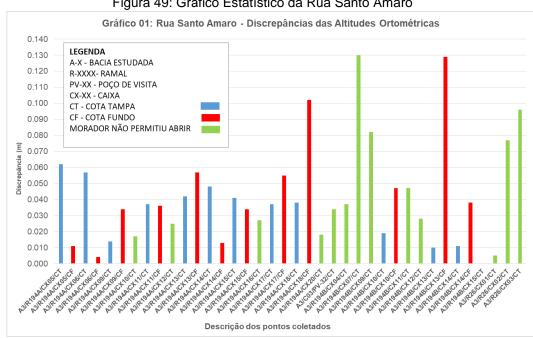


Figura 49: Gráfico Estatístico da Rua Santo Amaro

Fonte: Os Autores (2021).

Na Análise do Gráfico 01, para cada ponto nota-se uma variação de discrepância, que é apresentada nos pontos mais críticos, e para saber o motivo, verificou-se a precisão vertical apresentado no Quadro 9, como também a localização desses pontos, podendo estar em frente a residências de dois pavimentos e próximo a antena parabólica.

Logo, analisando os dados do Quadro 9, a precisão vertical do GNSS não interfere no valor de discrepância de cada ponto analisado, visto que a precisão vertical (VRMS) da caixa A3 /R194A /CX05 /CT, apresenta menor precisão vertical da que é exigida pela empresa responsável que seria de 2cm, obtendo assim um valor de discrepância de 6cm.

Mostrando que a precisão do equipamento não está relacionado com os valores de discrepância obtidos, estando relacionado com a área de levantamento, que possui interferências que prejudicam o levantamento, sobretudo quando usamos o GNSS, ao contrário da estação total que não apresenta dificuldade na sua utilização, devido ao equipamento não sofrer interferência de objetos na área do levantamento.

No GNSS é importante analisar os erros acometidos no levantamentos, pois permite a visualização e controle das suas precisões em tempo real em relação a cada ponto. A empresa responsável solicita que adote-se um valor de precisão vertical de 2cm, logo alguns pontos não obtiveram essa precisão, por motivo da área apresentar muitas interferências.

Analisando outros dados de um mesma finalidade de levantamento para esgotamento sanitário em outro município, verificou-se que a área de localização influencia na precisão final do serviço, visto a precisão com o mesmo equipamento utilizado em Escada, obteve-se precisões na casa dos milímetros.

Quadro 9: Dados coletados do GNSS – Precisão Vertical (VRMS)

		Tipo de							Antenna	Usuário	VERDADEIRO	Base	Base	Base	Satélit	Época	Ocupação	Data	
Nome	Coordenadas	Solução	HRMS	VRMS	σN	σE	σН	PDOP	ID	Altura da Antena	Altura da Antena	ID	Nome	Distância	es	s	Tempo	(UTC)	Descrição
1	Norte 9075194 Leste 253839.2 Altitude(Ort.) 110.911	Fixo	0.017	0.026	0.016	0.009	0.028	3.042	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	63.0887	6	3	3	06.08.202 1 16:07:30	A3/R194B/CX09/CT
2	Norte 9075206 Leste 253845.5 Altitude(Ort.) 114.704	Fixo	0.026	0.025	0.028	0.009	0.027	2.325	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	76.3887	7+1	3	22	06.08.202 1 16:11:47	A3/R194B/CX07/CT
3	Norte 9075231 Leste 253857.2 Altitude(Ort.) 120.724	Fixo	0.024	0.033	0.021	0.014	0.034	3.019	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	104.3293	6	3	3	06.08.202 1 16:18:05	A3/R194A/CX06/CT
4	Norte 9075232 Leste 253857.9 Altitude(Ort.) 121.016	Fixo	0.013	0.016	0.006	0.011	0.015	3.019	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	105.6425	6	3	4	06.08.202 1 16:18:15	A3/R194A/CX05/CT
5	Norte 9075130 Leste 253839.1 Altitude(Ort.) 92.255	Fixo	0.019	0.025	0.016	0.013	0.027	3.347	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	45.0625	6	3	3	06.08.202 16:37:45	A3/R26/CX03/CT
6	Norte 9075138 Leste 253823.2 Altitude(Ort.) 92.698	Fixo	0.04	0.049	0.035	0.022	0.049	3.332	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	27.4373	6	3	14	06.08.202 1 16:39:38	A3/R26/CX02/CT
7	Norte 9075162 Leste 253819.7 Altitude(Ort.) 96.042	Fixo	0.023	0.029	0.022	0.012	0.03	4.098	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	25.1238	5+2	3	3	06.08.202 1 16:43:28	A3/R194A/CX18/CF
8	Norte 9075173 Leste 253825.5 Altitude(Ort.) 102.631	Fixo	0.018	0.031	0.013	0.013	0.031	4.822	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	37.052	5+2	3	3	06.08.202 1 16:47:31	A3/R194A/CX17/CF
9	Norte 9075171 Leste 253826.5 Altitude(Ort.) 102.35	Fixo	0.023	0.038	0.019	0.017	0.038	4.832	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	36.7939	5+2	3	3	06.08.202 1 16:49:18	A3/R194B/CX13/CF
10	Norte 9075191 Leste 253835.5 Altitude(Ort.) 108.973	Fixo	0.021	0.035	0.009	0.019	0.035	4.84	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	57.6389	5+2	3	3	06.08.202 1 16:53:40	A3/R194A/CX13/CF

Gráfico 02: Rua Santa Maria - Discrepâncias das Altitudes Ortométricas 0.180 LEGENDA 0.160 A-X - BACIA FSTUDADA R-XXXX- RAMAI 0.140 PV-XX - POCO DE VISITA CX-XX - CAIXA 0.120 CT - COTA TAMPA CF - COTA FUNDO 0.100 MORADOR NÃO PERMITIU ABRIR 0.080 0.060 0.040 0.020 0.000 A3R1950CX12C P3/K9EDICK18 A 3 R 9 SO C T 2 1 A3IR1950ICX15 A3R 19 EDICK 10 A3/R1950/CX12 A3IR195DICK1 A3IR195DICK19 A3RA95ECXO A3IR195EICXO2 A3IR 950C AO A3/RA9/ECKOT A3/R195ECH08 A3/R195ECX09 A3/R1950/CXN1 A3RA95ECAO ASIR 195ECKE A3/R195ECA0T R3R4950CX R3R49EDICK! ASIR 195ECKE Kalk laggic Xt A3IR195ECXC ASPRISHICX Descrição dos pontos coletados

Figura 50: Gráfico Estatístico da Rua Santa Maria

Na Análise do Gráfico 02, nota-se uma variação menor dos pontos coletados, acredita-se que por essa área de estudo ser mais aberta (larga) e não apresentar muitas edificações de dois pavimentos, com pouca presença de antena parabólica, a coleta dos pontos com GNSS foi mais satisfatória, apresentando menores discrepâncias em seus resultados gerais.

Para confirmar a não relação da precisão vertical do GNSS com os valores das discrepâncias, segue abaixo Quadro 10 com os dados do relatório de campo.

Nome	Coordenadas	Tipo de Solução	HRMS	VRMS	σN	σE	σН	PDOP	Antenna ID	Usuário Altura da Antena	VERDADEIRO Altura da Antena	Base ID	Base Nome	Base Distância	Satélit es	Época 8	Осирасао Тетро	Data (UTC)	Descrição
1	Norte 9075195 Lesie 253883 AlkitudelOrt 113,415	Fino	0.025	0.029	0.023	0.026	0.035	2.948	JAV TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	98.1619	6	3	54	06.08.20 21 16:30:54	A3/R195E/CX01/I
2	Norte 9075175 Lesle 253874.4 Altitude(OrL) 106.56	Fino	0.020	0.033	0.013	0.015	0.033	6.388	JAV TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	81.3899	5	3	3	06.08.20 21 16:32:54	A3/R195E/CX04// T
3	Norte 90/51/5 Leste 253869.1 Altitude(Ort.) 105.78	Fino	0.014	0.018	0.015	0.008	0.021	2.931	JAV TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	76.0574	6	3	3	06.08.20 21 16:33:14	A3/R195D/CX166 T
4	Norte 90/5169 Leste 253871.6 Altitude(Ort.) 104.238	Fixo	0.02	0.023	0.018	0.016	0.025	2.93	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	76.5302	6	3	3	06.08.20 21 16:33:28	A3/R195E/CX05/r T
5	Norte 90/5161 Leste 253867.7 Altitude(Ort.) 100.961	Fixo	0.02	0.020	0.009	0.018	0.02	2.925	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PAZ02	70.7035	6	3	3	06.08.20 21 16:34:11	A3/R195E/CX06# T
6	Norte 90/5158 Leste 253866.4 Altitude(Ort.) 100.006	Fixo	0.021	0.021	0.013	0.024	0.021	2.923	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PA702	68.9527	6	3	3	06.08.20 21 16:34:23	A3/R195E/CX07# T
7	Norte 90/5146 Leste 253861.4 ARitude(Ort.) 95.63	Fixo	0.035	0.049	0.029	0.02	0.049	4.703	JAV_TRIUMPH- 1 NONE	2.002	2.277	2	PA702	63.1688	512	3	11	06.08.20 21 16:35:13	A3/R195E/CX08// T
8	Norte 90/5146 Leste 253856 ARItude(Ort.) 95.076	Fixo	0.021	0.036	0.016	0.014	0.036	4.705	JAV_TRIUMPII- 1 NONE	2.002	2.277	2	PA702	57.8386	512	3	3	06.08.20 21 16:35:25	A3/R195D/CX21/6 T
9	Norte 90/5188 Leste 253875.2 Altitude(Ort.) 109.7	Fino	0.029	0.029	0.022	0.018	0.036	4.673	JAV_TRIUMPH- I NONE	2.002	2.277	2	PAZ02	87.3173	5+2	3	3	06.08.20 21 17:05:58	A3/R195D/CX14/ F
10	Norte 90/5184 Leste 253878.3 Alkitude(Ort.) 108.948	Fixo	0.04	0.032	0.018	0.024	0.01	2.363	JAV_TRIUMPH- I NONE	2.002	2.277	2	PAZ02	88.3885	6	3	5	06.08.20 21 17:07:26	A3/R195E/CX03// F
11	Norte 90/5145 Leste 253807.6 Altitude(Ort.) 93.14	Fixo	0.018	0.022	0.018	0.017	0.026	3.091	JAV_TRIUMPH- I NONE	2.002	2.277	2	PAZ02	10.4453	6+2	3	3	06.08.20 21 17:17:12	A3/C03/PV-32/C

Logo analisando os dados do Quadro 10, a precisão vertical do GNSS não interfere no valor de discrepância de cada ponto analisado, visto que a precisão vertical da caixa A3 /R195D /CX16 /CT, é menor do que a exigida pela empresa responsável que seria de 2cm, obtendo assim um valor de discrepância de 9cm.

Mostrando também que a precisão do equipamento não está relacionada com os valores de discrepância obtidos, estando relacionada com a área de levantamento, se possui interferências que possam prejudicar o levantamento, sobretudo quando é usado o GNSS.

Pra melhor analisar os dados coletados, foi feito a análise estatística referente ao Erro Médio Quadrático, conforme figura 51 abaixo.

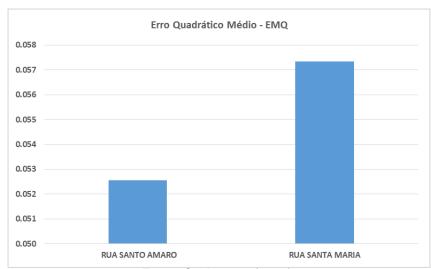


Figura 51: Erro Quadrático Médio das discrepâncias

Fonte: Os Autores (2021).

Na análise do erro quadrático médio, observa-se uma diferença apresentada na Rua Santa Maria, acredita-se que ocorra devido ao fato dessa área possuir uma quantidade maior de caixas e poços de visitas não abertos, ou as caixas estavam cimentadas ou o morador não permitiu o levantamento.

Em uma visão geral dos dois gráficos, acredita-se que pela área de estudo ser uma área fechada com edificações em sua maioria de 2 pavimentos, existindo também muitas antenas parabólicas na região, a coleta do pontos com GNSS, que sofre com influência de propagação de sinal, não foi satisfatória 100%, apresentando menores precisões verticais, não atendendo a empresa responsável que solicita uma boa precisão vertical para o levantamento, diferente da estação total que não sofre influência de sinal.

Chegou-se à conclusão que para o levantamento de um determinado serviço é necessário se conhecer a área, para se ter a clareza de qual equipamento deve ser utilizado, sobretudo quando envolve cadastro. Na Bacia estudada a mesma foi aprovada pela a empresa responsável, através da utilização da estação total, que não sofre influência de nenhuma interferência, deixando o levantamento mais rápido, conseguindo assim chegar a precisão necessária exigida pela empresa.

REFERÊNCIAS

ALMEIDA, Camila Barboza de. **Avaliação da precisão posicional no georreferenciamento de imóveis rurais por meio de diferentes estratégias de processamento de dados GNSS.** 2015. 96 f. TCC (Graduação) - Curso de Engenharia de Agrimensura e Cartográfica, Universidade Federal de Uberlândia, Monte Carmelo, 2015. Disponível em: https://repositorio.ufu.br/bitstream/123456789/20960/3/AvaliacaoPrecisaoPosicional.pdf. Acesso em: 01 mar. 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR13133** – Execução de levantamento topográfico. Rio de Janeiro: ABNT, 1994.

CARTA, Daniel Fernando Jimeno. A estação de tratamento de esgoto - ETE e a demanda de cobertura do sistema de esgotamento sanitário de Boa Vista/RR. 2019. 48 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade Federal de Roraima, Boa Vista, 2019. Disponível em: https://docplayer.com.br/196313002-Universidade-federal-de-roraima-centro-de-ciencias-e-tecnologia-departamento-de-engenharia-civil-daniel-fernando-jimeno-carta.html. Acesso em: 1 mar. 2021.

COELHO, Fernando José Moreira. **Estudo de sistemas cadastrais de empesas de saneamento através de benchmarking**. 2004. 99 f. Tese (Doutorado) — Programa de Pós-Graduação em Ciências Geodésicas e Tecnologias da Geoinformação, Universidade Federal de Pernambuco, Recife, 2004. Disponível em: https://repositorio.ufpe.br/bitstream/123456789/3330/1/arquivo4906_1.pdf. Acesso em: 20 mai. 2021.

Estação de Tratamento de Esgoto. ETE – **Manual Técnico** – memória descritiva – Escada -PE, 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Recomendações para levantamentos relativos estáticos - GPS.** Rio de Janeiro: IBGE, 2008. Disponível em: https://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/normas/recom_gps_internet.pdf. Acessado em: 21 mai. 2021.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Rede altimétrica**. Rio de Janeiro: IBGE, 2021. Disponível em: https://www.ibge.gov.br/geociencias/informacoes-sobre-posicionamento-geodesico/rede-geodesica/16283-rede-altimetrica.html?=&t=o-que-e. Acesso em: 21 jul. 2021.

INSTITUTO NACIONAL DE COLONIZAÇÃO E REFORMA AGRÁRIA. **Manual técnico de posicionamento:** georreferenciamento de imóveis rurais. Brasília: INCRA, 2013.

LIMA, Gerson Oliveira. Estudo comparativo entre os métodos de levantamento planialtimétrico (topografia convencional e aerofotogramétrico) para fins de elaboração do plano diretor da comissão regional de obras em Belém. 2018. 72 f. TCC (Graduação) - Curso de Engenharia Cartográfica e de Agrimensura, Universidade Federal Rural da Amazônia, Belém, 2018. Disponível em: https://graduacaoeca.ufra.edu.br/images/_Novos_documentos/TCC_GERSON_LIMA.pdf. Acesso em: 1 mar. 2021.

NASCIMENTO, Maraiza da Costa. **Analise da acuracia em levantamentos topográficos sob diferentes condições de campo**. 2016. 65 f. Monografia (Especialização) - Curso de Agronomia, Departamento de Engenharia Agrícola, Universidade Federal do Ceará, Fortaleza, 2016. Disponível em: http://www.repositorio.ufc.br/bitstream/riufc/36729/1/2016_tcc_mcnascimento.pdf. Acesso em: 1 mar. 2021.

PAZ, Camila Rodrigues dos Santos da; PAZ, Felipe Carvalho da. **Coleta de dados no campo e processamento**. Recife: PAZ ENGENHARIA, 2021.

PAZ ENGENHARIA. Coleta de dados no campo e processamento. 2021

PIRES, Fabrício Matheus Barcelos. **Sistema de esgotamento sanitário:** estudo de caso: Maré. 2018. 157 f. TCC (Graduação Curso de Engenharia Ambiental) - Escola Politécnica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018. Disponível em: http://repositorio.poli.ufrj.br/monografias/monopoli10023811.pdf. Acesso em: 1 mar. 2021.

SANTOS, Welisson Jose dos. A contribuição da topografia e da geodésica no estudo de terrenos inclinados e áreas de risco. 2017. 143 f. TCC (Graduação) - Curso de Engenharia Cartográfica e Agrimensura, Universidade Federal de Pernambuco, Recife, 2017. Disponível em: https://www.ufpe.br/documents/39451/1217366/ Welisson+Jos%C3%A9+dos+Santos.pdf/99a621fe-5003-4712-ad4b-feb899475456. Acesso em: 1 mar. 2021.

SERVIÇO GEOLÓGICO DO BRASIL. **Setorização de riscos geológicos de Pernambuco.** Brasília: CPRM, 2012. Disponível em: http://www.cprm.gov.br/publique/Gestao-Territorial/Prevencao-de-Desastres/Setorizacao-de-Riscos-Geologicos---Pernambuco-4884.html. Acessado em: 21 mai 2021.

SILVA, Bruno Ferreira. **Estudo comparativo de GNSS e estação total no levantamento topográfico**. 2017. 36 f. TCC (Graduação) - Curso de Engenharia Civil, Departamento de Engenharia Civil, Universidade Federal da Paraíba, João Pessoa, 2017. Disponível em: http://ct.ufpb.br/ccec/contents/documentos/tccs/2016.2/estudo-comparativo-de-gnss-e-estacao-total-no-levantamento-topografico.pdf/view. Acesso em: 1 mar. 2021.

VEIGA, L. A. K; ZANETTI, M. A. Z; FAGGION, P. L. **Fundamentos de topografia**. Apostila do curso de Engenharia Cartográfica e de Agrimensura da Universidade Federal do Paraná, 2012.

ANEXO A - FOTOS

Fotos

ANEXO B - ARQUIVOS BRUTOS - ESTAÇÃO TOTAL

```
Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela Ajuda
 CADASTRO A3_07.txt ×
 1,9075273.661,253883.900,126.326,EPAZ01
 2,9075235,252,253928,292,122,843,RN8
 3,9075255.252,253870.842,124.790,A3/R194A/CX1/CT
 4,9075255.028,253870.715,124.324,A3/R194A/CX1/CF
 5,9075253.601,253872.866,124.727,A3/R194B/CX1/CT
 6,9075253.404,253872.786,124.230,A3/R194B/CX1/CF
 7,9075248.542,253870.004,124.101,A3/R194B/CX2/CT
 8,9075248.613,253869.766,123.566,A3/R194B/CX2/CF
 9,9075248.951,253867.199,123.933,A3/R194A/CX2/CT/MORADOR NAO PERMITIU
 10,9075244.116,253864.494,123.217,A3/R194A/CX3/CT/OCULTA
 11,9075242.042,253866.259,123.043,A3/R194B/CX3/CT
 12,9075242.071,253866.010,122.599,A3/R194B/CX3/CF
 13,9075237.851,253860.981,122.014,A3/R194A/CX4/CT
 14,9075237.780,253860.953,121.494,A3/R194A/CX4/CF
 15,9075233.827,253861.429,121.501,A3/R194B/CX4/CT
 16,9075233.905,253861.142,120.990,A3/R194B/CX4/CF
 17,9075232.401,253857.909,120.954,A3/R194A/CX5/CT
 18,9075232.238,253857.822,120.449,A3/R194A/CX5/CF
 19,9075231.044,253857,179,120,667,A3/R194A/CX6/CT
 20,9075230.896,253857.231,120.155,A3/R194A/CX6/CF
 21,9075226.496,253854.817,119.712,A3/R194A/CX7/CT
 22,9075226.375,253854.675,119.172,A3/R194A/CX7/CF
 23,9075224.585,253855.589,119.530,A3/R194B/CX5/CT
 24,9075224.526,253855.674,118.994,A3/R194B/CX5/CF
 25,9075222.458,253853.329,118.907,AUXILIAR B4
 26,9075220.046,253851.174,118.309,A3/R194A/CX8/CT
 27,9075220.043,253851.138,117.727,A3/R194A/CX8/CF
 28,9075217.797,253852.408,117.941,A3/R194B/CX6/CT
 29,9075217.701,253852.274,117.429,A3/R194B/CX6/CF
 30,9075209.154,253845.377,115.232,A3/R194A/CX9/CT
 31,9075209.048,253845.293,114.654,A3/R194A/CX9/CF
 32,9075208.091,253844.927,114.993,A3/R194A/CX10/CT/MORADOR NAO PERMITIU
 33,9075205.743,253845.610,114.574,A3/R194B/CX7/CT/MORADOR NAO PERMITIU
 34,9075199.651,253842.053,112.501,A3/R194B/CX8/CT
 35,9075199.453,253841.981,111.963,A3/R194B/CX8/CF
 36,9075196.847,253838.924,111.464,A3/R194A/CX11/CT
 37,9075196.738,253838.959,110.951,A3/R194A/CX11/CF
 38,9075196.231,253838.541,111.266,A3/R194A/CX12/CT/MORADOR NAO PERMITIU
 39,9075194.309,253839.201,110.829,A3/R194B/CX9/CT
 40.9075194.369.253838.943.110.326.A3/R194B/CX9/CF
 41,9075190.549,253835.524,109.475,A3/R194A/CX13/CT
 42,9075190.387,253835.518,108.916,A3/R194A/CX13/CF
 43,9075189.290,253836.125,109.234,A3/R194B/CX10/CT
 44,9075189,275,253835,988,108,695,A3/R194B/CX10/CF
 45,9075185.043,253832.390,107.635,A3/R194A/CX14/CT
 46,9075184.968,253832.425,107.030,A3/R194A/CX14/CF
 47,9075181.702,253832.071,106.725,A3/R194B/CX11/CT
 48,9075181.727,253831.968,106.194,A3/R194B/CX11/CF
 49,9075179.808,253829.376,105.832,A3/R194A/CX15/CT
 50,9075179.699,253829.457,105.315,A3/R194A/CX15/CF
 51,9075178.654,253828.879,105.493,A3/R194A/CX16/CT/MORADOR NÃO PERMITIU
 53,9075177.346,253829.683,105.271,A3/R194B/CX12/CT
 54,9075177.346,253829.683,104.646,A3/R194B/CX12/CF
 55,9075172.910,253825.591,103.104,A3/R194A/CX17/CT
 56,9075172.774,253825.509,102.576,A3/R194A/CX17/CF
 57,9075171.403,253826.399,102.769,A3/R194B/CX13/CT
```

```
Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela Ajuda
 CADASTRO A3_07.txt ×
 56,9075172.774,253825.509,102.576,A3/R194A/CX17/CF
 57,9075171.403,253826.399,102.769,A3/R194B/CX13/CT
 58,9075171.431,253826.396,102.221,A3/R194B/CX13/CF
 59,9075140.242,253809.318,93.223,AUXILIAR B5
 60,9075162,353,253821,529,96,923,A3/R194B/CX14/CT
 61,9075162.415,253821.704,96.306,A3/R194B/CX14/CF
 62,9075162.481,253820.034,96.665,A3/R194A/CX18/CT
 63,9075162.517,253819.961,96.144,A3/R194A/CX18/CF
 64,9075156.248,253818.132,94.796,A3/R194B/CX15/CT
 65,9075156.248,253818.132,94.227,A3/R194B/CX15/CF
 66,9075155.840,253816.455,94.497,A3/R194A/CX19/CT
 67,9075155.840,253816.455,94.017,A3/R194A/CX19/CF
 68,9075146.914,253812.024,93.092,A3/R194A/CX20/CT/MORADOR NÃO PERMITIU
 69,9075144.789,253807.524,93.106,A3/C03/PV32/CT
 70,9075144.789,253807.524,91.896,A3/C03/PV32/CF
 71,9075149.547,253798.385,93.452,RN EPAZ 02
 72,9075144.257,253813.641,92.836,A3/R26/CX1/CT
 73,9075144.156,253813.781,92.316,A3/R26/CX1/CF
 74,9075138.215,253823.391,92.621,A3/R26/CX2/CT
 75,9075138.165,253823.447,91.988,A3/R26/CX2/CF
 76,9075175.510,253761.648,94.785,AUXILIAR B6
 77,9075140.307,253800.950,92.954,A3/R25/CX8/CT
 78,9075140.307,253800.950,92.373,A3/R25/CX8/CF
 79,9075148.777,253791.155,93.304,A3/R25/CX7/CT/MORADOR NAO PERMITIU
 80,9075150.443,253789.080,93.377,A3/R25/CX6/CT/MORADOR NAO PERMITIU
 81,9075159.387,253778.926,93.964,A3/R25/CX5/CT
 82,9075159.387,253778.926,93.464,A3/R25/CX5/CF
 83,9075163.550,253774.129,94.243,A3/R25/CX4/CT/MORADOR NAO PERMITIU
 84,9075166.983,253769.676,94.512,A3/R25/CX3/CT
 85,9075166.983,253769.676,94.001,A3/R25/CX3/CF
 86,9075152.444,253801.533,93.046,A3/R20/CX7/CT/MORADOR NAO PERMITIU
 87,9075155.356,253797.818,93.220,A3/R20/CX6/CT/MORADOR NAO PERMITIU
 88,9075156.080,253796.633,93.204,A3/R20/CX5/CT
 89,9075156.091,253796.724,92.725,A3/R20/CX5/CF
 90,9075162.658,253787.157,93.601,A3/R20/CX4/CT/MORADOR NAO PERMITIU
 91,9075163.305,253786.200,93.673,A3/R20/CX3/CT/MORADOR NAO PERMITIU
 92,9075166.405,253782.555,93.906,A3/R20/CX2/CT
 93,9075166.283,253782.661,93.375,A3/R20/CX2/CF
 94,9075173.464,253772.993,94.397,A3/R20/CX1/CT
 95,9075173.365,253772.948,93.736,A3/R20/CX1/CF
 96,9075171.021,253764.703,94.682,A3/R25/CX2/CT
 97,9075170.967,253764.821,94.259,A3/R25/CX2/CF
 98,9075171.705.253763.859.94.835.A3/R25/CX1/CT
 99,9075171.603,253763.969,94.330,A3/R25/CX1/CF
 100,9075177.232,253763.110,94.817,A3/C03/PV31/CT
 101,9075177.092,253763.139,93.706,A3/C03/PV31/CF
 102,9075183.676,253749.821,95.327,A3/R217/CX1/CT
 103,9075183.676,253749.821,94.852,A3/R217/CX1/CF
 104,9075176.645,253757.996,95.010,A3/R17/CX2/CT
 105,9075176.645,253757.996,94.394,A3/R17/CX2/CF
 106,9075193.348,253746.691,95.398,A3/R20A/CX1/CT/MORADOR NAO PERMITIU
 107,9075187.217,253754.936,95.056,A3/R20A/CX2/CT/MORADOR NAO PERMITIU
 108,9075183.965,253759.298,94.871,A3/R20A/CX3/CT/MORADOR NAO PERMITIU
 109,9075180.787,253763.429,94.755,A3/R20A/CX4/CT
 110,9075180.555,253763.357,93.938,A3/R20A/CX4/CF
 111,9075193.336,253741.061,95.622,A3/C03/PV30/CT
```

```
| 🖰 📂 🗐 🗐 🞒 🐧 📵 | 从 📵 🛍 🖺 🕮 🕰 🖂 / 産 📜 🗃 🗁 🖫 😂 💖 🐉 🚱 💇 🕍 🙀 🔸 110 → 📗 Procura de form
Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela
  CADASTRO A3 07.txt ×
 107,9075187.217,253754.936,95.056,A3/R20A/CX2/CT/MORADOR NAO PERMITIU
  108,9075183.965,253759.298,94.871,A3/R20A/CX3/CT/MORADOR NAO PERMITIU
  109,9075180.787,253763.429,94.755,A3/R20A/CX4/CT
  110,9075180.555,253763.357,93.938,A3/R20A/CX4/CF
  111,9075193.336,253741.061,95.622,A3/C03/PV30/CT
  112,9075193.336,253741.061,94.523,A3/C03/PV30/CF
  113,9075194.467,253736.978,95.832,A3/R17A/CX1/CT/MORADOR NAO PERMITIU
  114,9075204.466,253734.466,96.334,A3/R16/CX1/CT/MORADOR NAO PERMITIU
  115,9075202.101,253737.266,96.331,A3/R16/CX2/CT
  116,9075202.041,253737.374,95.751,A3/R16/CX2/CF
  117,9075198.431,253741.151,95.624,A3/R16/CX3/CT/OCULTA
  118,9075206.291,253724.413,96.403,A3/C03/PV29/CT/CHEGADA DE COLETOR
  119,9075206.141,253724.516,95.299,A3/C03/PV29/CF/CHEGADA DE COLETOR
  120,9075222.543,253703.892,98.717,A3/R14/CX09/CT/SOB PAVIMENTO DE CONCRETO
  121,9075212.374,253717.002,97.125,A3/R14/CX10/CT/MORADOR NAO PERMITIU
  122,9075217.224,253710.686,97.883,AUXILIAR B7
  123,9075220.953,253795.403,114.096,A3/R18A/CX13/CT/MORADOR NAO PERMITIU
  124,9075236.217,253808.276,119.165,AUXILIAR B8
  125,9075226.567,253798.618,115.936,A3/R18A/CX12/CT/MORADOR NAO PERMITIU
  126,9075224.296,253800.487,115.727,A3/R18B/CX11/CT
  127,9075224.296,253800.487,115.140,A3/R18B/CX11/CF
  128,9075226.189,253802.004,116.430,A3/R18B/CX10/CT
  129,9075226.189,253802.004,115.854,A3/R18B/CX10/CF
  130,9075228.386,253799.861,116.585,A3/R18A/CX11/CT/MORADOR NAO PERMITIU
  131,9075231.629,253806.000,118.062,A3/R18B/CX09/CT
  132,9075231.590,253805.938,117.504,A3/R18B/CX09/CF
  133,9075238.549,253807.197,119.342,A3/R18A/CX10/CT/MORADOR NAO PERMITIU
  134,9075239.258,253807.739,119.537,A3/R18A/CX09/CT/MORADOR NAO PERMITIU
  135,9075241.108,253812.989,120.428,A3/R18B/CX08/CT
  136,9075241.042,253812.995,119.822,A3/R18B/CX08/CF
  137,9075244.782,253811.611,120.847,A3/R18A/CX08/CT/MORADOR NAO PERMITIU
  138,9075246.559,253817.024,121.642,A3/R18B/CX07/CT
  139,9075246.559,253817.024,121.063,A3/R18B/CX07/CF
  140,9075251.702,253816.685,122.256,A3/R18A/CX07/CT/MORADOR NAO PERMITIU
  141,9075251.940,253821.022,122.704,A3/R18B/CX06/CT/MORADOR NAO PERMITIU
  142,9075254.890,253818.924,122.883,A3/R18A/CX06/CT/MORADOR NAO PERMITIU
  143,9075257.506,253825.264,123.747,A3/R18B/CX05/CT
  144,9075257.506,253825.264,123.224,A3/R18B/CX05/CF
  145,9075258.692,253826.192,123.966,A3/R18B/CX04/CT
  146,9075258.692,253826.192,123.455,A3/R18B/CX04/CF
  147,9075261.054,253823.452,124.013,A3/R18A/CX05/CT
  148,9075261.054,253823.452,123.483,A3/R18A/CX05/CF
  149,9075266.788,253827.571,124.995,A3/R18A/CX04/CT/MORADOR NAO PERMITIU
  150,9075264.876,253830.847,124.952,A3/R18B/CX03/CT
  151,9075264.876,253830.847,124.502,A3/R18B/CX03/CF
  152,9075270.961,253830.141,125.534,A3/R18A/CX03/CT/MORADOR NAO PERMITIU
  153,9075274.463,253837.960,126.273,A3/R18B/CX02/CT/MORADOR NAO PERMITIU
  154,9075276.654,253839.597,126.552,A3/R18B/CX01/CT
  155,9075276.654,253839.597,126.032,A3/R18B/CX01/CF
  156,9075276.131,253834.263,126.240,A3/R18A/CX02/CT
  157,9075276.131,253834.263,125.708,A3/R18A/CX02/CF
  158,9075279.026,253836.320,126.535,A3/R18A/CX01/CT
  159,9075279.026,253836.320,126.037,A3/R18A/CX01/CF
  160,9075295.432,253853.379,127.562,AUXILIAR B3
  161,9075273.748,253883.931,126.325,RN EPAZ 01
```

```
: 🖰 🚅 🖫 | 🗿 🖨 🐧 📵 | 🐰 🖺 📵 | 으 오 | 킅  | ౽ ¶ | 🚳 뽯 負 🙌 | 🍳 🗘 🐪 | • 11• • • 🕕 Procura
 Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela Ajuda
  CADASTRO A3_05.txt ×
 1,9075273.661,253883.900,126.354,EPAZ01
  2,9075235.304,253928.305,122.879,RN8
 3,9075235.302,253928.308,122.871,RE RN8
  4,9075249.503,253905.887,124.689,AUXILIAR E1
 5,9075273.741,253883.933,126.348,RE RN8
  6,9075243.938,253902.025,124.032,A3/R195D/CX1/CT/MORADOR NAO PERMITIU
  7,9075242.208,253900.843,123.833,A3/R195D/CX2/CT/MORADOR NAO PERMITIU
 8,9075240.828,253899.921,123.670,A3/R195D/CX3/CT
  9,9075240.828,253899.921,123.116,A3/R195D/CX3/CF
  10,9075238.312,253898.064,123.327,A3/R195D/CX4/CT/MORADOR NAO PERMITIU
 11,9075235.496,253896.428,123.010,A3/R195D/CX5/CT/MORADOR NAO PERMITIU
 12,9075233.769,253895.383,122.781,A3/R195D/CX6/CT/MORADOR NAO PERMITIU
 13,9075231.043,253893.953,122.405,A3/R195D/CX7/CT/MORADOR NAO PERMITIU
  14,9075228.021,253892.067,121.912,A3/R195D/CX8/CT
 15,9075227.895,253892.032,121.378,A3/R195D/CX8/CF
 16,9075225.073,253890.498,121.412,A3/R195D/CX9/CT
 17,9075225.064,253890.357,120.682,A3/R195D/CX9/CF
 18,9075213.178,253886.052,118.634,A3/R195D/CX10/CT
 19,9075213.184,253885.991,117.972,A3/R195D/CX10/CF
 20,9075211.455,253887.990,118.462,AUXILIAR E2
  21,9075207.512,253883.597,116.869,A3/R195D/CX11/CT
 22,9075207.424,253883.581,116.248,A3/R195D/CX11/CF
 23,9075200.115,253880.651,114.449,A3/R195D/CX12/CT
 24,9075199.958,253880.530,113.728,A3/R195D/CX12/CF
  25,9075195.009,253882.890,113.304,A3/R195E/CX1/CT/MORADOR NAO PERMITIU
 26,9075194.905,253878.291,112.682,A3/R195D/CX13/CT/MORADOR NAO PERMITIU
 27,9075188.600,253880.578,111.168,A3/R195E/CX2/CT
 28,9075188.597,253880.486,110.384,A3/R195E/CX2/CF
  29,9075187.805,253875.010,110.385,A3/R195D/CX14/CT
  30,9075187.651,253874.919,109.763,A3/R195D/CX14/CF
  31,9075184.088,253878.276,109.723,A3/R195E/CX3/CT
 32,9075184.017,253878.256,108.907,A3/R195E/CX3/CF
  33,9075181.564,253872.215,108.294,A3/R195D/CX15/CT
 34,9075181.532,253872.139,107.689,A3/R195D/CX15/CF
 35,9075174.615,253868.994,105.688,A3/R195D/CX16/CT
  36,9075174.615,253868.994,105.064,A3/R195D/CX16/CF
  37,9075175.149,253874.283,106.503,A3/R195E/CX4/CT
 38,9075175.063,253874.292,105.762,A3/R195E/CX4/CF
 39,9075168.816,253871.495,104.163,A3/R195E/CX5/CT
  40,9075168.816,253871.495,103.525,A3/R195E/CX5/CF
  41,9075169.637,253866.843,103.806,A3/R195D/CX17/CT/MORADOR NAO PERMITIU
  42,9075160.579,253867.627,100.907,A3/R195E/CX6/CT
 43,9075160.579,253867.627,100.248,A3/R195E/CX6/CF
  44,9075163.097,253864.142,101.259,A3/R195D/CX18/CT/MORADOR NAO PERMITIU
  45,9075157.915,253866.378,99.850,A3/R195E/CX7/CT
  46,9075157.839,253866.372,99.238,A3/R195E/CX7/CF
  47,9075153.267,253859.515,97.659,A3/R195D/CX19/CT
  48,9075153.230,253859.424,97.081,A3/R195D/CX19/CF
  49,9075152.065,253858.991,97.285,A3/R195D/CX20/CT/MORADOR NAO PERMITIU
 50,9075146.163,253861.279,95.535,A3/R195E/CX8/CT
 51,9075146.163,253861.279,95.007,A3/R195E/CX8/CF
  52,9075145.831,253855.855,94.990,A3/R195D/CX21/CT/MORADOR NAO PERMITIU
  53,9075139.228,253858.093,93.736,A3/R195E/CX9/CT
 54,9075139.228,253858.093,93.055,A3/R195E/CX9/CF
 55,9075134.326.253853.870.92.698.A3/R195E/CX10/CT
  56,9075134.332,253853.854,92.086,A3/R195E/CX10/CT
```

```
| Î``| 🚅 🔙 | 🗐 🚭 💽 | 🗟 🐿 🐿 🐿 | 으 으 | व्व 🏗 | 🕾 ¶ | 🍣 🤍 🛠 🙀 | 🍖 🕟 → 🎵 i P
Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela Ajuda
 CADASTRO A3_05.txt ×
  55,9075134.326,253853.870,92.698,A3/R195E/CX10/CT
  56,9075134.332,253853.854,92.086,A3/R195E/CX10/CT
  57,9075125.217,253848.004,92.057,A3/C03/PV32A/CT
  58,9075125.217,253848.004,90.907,A3/C03/PV32A/CF
  59,9075207.544,253893.561,120.687,AUXILIAR E3
  60,9075118.267,253811.955,93.177,A3/R28/CX35/CT
  61,9075118.056,253812.182,92.603,A3/R28/CX35/CF
  62,9075121.007,253801.041,93.934,A3/R28/CX34/CT
  63,9075121.006,253801.078,93.447,A3/R28/CX34/CF
  64,9075122.044,253796.113,94.779,A3/R28/CX33/CT
  65,9075122.044,253796.113,94.309,A3/R28/CX33/CF
  66,9075122.058,253789.850,96.739,A3/R28/CX32/CT
  67,9075122.058,253789.850,96.248,A3/R28/CX32/CF
  68,9075121.223,253777.693,100.471,A3/R28/CX31/CT
  69,9075121.177,253777.678,100.022,A3/R28/CX31/Cf
  70,9075121.055,253773.672,101.759,A3/R28/CX30/CT
  71,9075121.025,253773.598,101.249,A3/R28/CX30/CF
  72,9075120.806,253770.128,103.025,A3/R28/CX29/CT
  73,9075120.821,253770.152,102.446,A3/R28/CX29/CF
  74,9075119.433,253763.317,104.894,A3/R28/CX28/CT
  75,9075119.661,253763.398,104.269,A3/R28/CX28/CF
  76,9075116.957,253757.574,106.064,A3/R28/CX27/CT
  77,9075116.949,253757.447,105.685,A3/R28/CX27/CF
  78,9075116.014,253755.835,106.355,A3/R28/CX26/CT
  79,9075116.014,253755.835,105.996,A3/R28/CX26/CF
  80,9075114.075,253752.021,107.016,A3/R28/CX25/CT
  81,9075114.135,253751.971,106.650,A3/R28/CX25/CF
  82,9075111.171,253746.011,108.788,A3/R28/CX24/CT/OCULTA
  83,9075108.126,253741.125,109.785,A3/R28/CX23/CT
  84,9075108.003,253741.022,109.322,A3/R28/CX23/CF
  85,9075106.187,253738.002,110.499,A3/R28/CX22/CT
  86,9075106.204,253738.250,110.050,A3/R28/CX22/CF
  87,9075104.436,253735.009,111.078,A3/R28/CX21/CT
  88,9075104.462,253734.940,110.636,A3/R28/CX21/CF
  89,9075101.980,253730.641,112.129,A3/R28/CX20/CT
  90,9075101.992,253730.775,111.698,A3/R28/CX20/CF
  91,9075100,735,253728,776,112,633,A3/R28/CX19/CT
  92,9075100.738,253728.779,112.209,A3/R28/CX19/CF
  93,9075099.239,253726.571,113.267,A3/R28/CX18/CT
  94,9075099.344,253726.732,112.812,A3/R28/CX18/CF
  95,9075098.585,253725.462,113.577,A3/R28/CX17/CT
  96,9075098.631,253725.533,113.060,A3/R28/CX17/CF
  97,9075097,754,253724,066,113,948,A3/R28/CX16/CT
  98,9075097.740,253724.029,113.414,A3/R28/CX16/CF
  99,9075096.117,253721.265,114.442,A3/R28/CX15/CT
  100,9075096.212,253721.256,114.046,A3/R28/CX15/CF
  101,9075094.100,253717.777,115.018,A3/R28/CX14/CT
  102,9075094.158,253717.768,114.525,A3/R28/CX14/CF
  103,9075092.530,253715.223,115.280,A3/R28/CX13/CT
  104,9075092.579,253715.396,114.763,A3/R28/CX13/CF
  105,9075087.538,253706.974,116.002,A3/R28/CX12/CT
  106,9075087.486,253706.951,115.445,A3/R28/CX12/CF
  107,9075113.752,253744.843,109.229,A3/R28A/CX10/CT/MORADOR NAO PERMITIU
  108,9075127.873,253737.928,111.087,A3/R28A/CX09/CT
  109,9075127.710,253738.017,110.315,A3/R28A/CX09/CF
  110,9075133.805,253733.689,111.937,A3/R28A/CX08/CT
```

```
: D 🚅 🗐 🗐 🚭 🐧 🗐 | ¼ 🖺 🛍 | 으 오 | 킅 ☶ | 곧 ¶ | ﴿ ♥ ∯ ឦ ﴿ o + 🐪 | • •• → | | :
 Arquivo Editar Pesquisar Exibir Ferramentas Macros Configurar Janela
  CADASTRO A3_05.txt ×
  106,9075087.486,253706.951,115.445,A3/R28/CX12/CF
  107,9075113.752,253744.843,109.229,A3/R28A/CX10/CT/MORADOR NAO PERMITIU
  108,9075127.873,253737.928,111.087,A3/R28A/CX09/CT
  109,9075127.710,253738.017,110.315,A3/R28A/CX09/CF
  110,9075133.805,253733.689,111.937,A3/R28A/CX08/CT
  111,9075133.692,253733.625,111.333,A3/R28A/CX08/CF
  112,9075139.522,253729.090,112.818,A3/R28A/CX07/CT
  113,9075139.423,253729.243,112.203,A3/R28A/CX07/CF
  114,9075146.605,253723.160,113.414,A3/R28A/CX06/CT
  115,9075146.605,253723.160,112.839,A3/R28A/CX06/CF
  116,9075149.661,253720.714,113.695,A3/R28A/CX05/CT
  117,9075149.569,253720.637,113.144,A3/R28A/CX05/CF
  118,9075152.305,253718.591,113.878,A3/R28A/CX04/CT
  119,9075152.314,253718.565,113.294,A3/R28A/CX04/CF
  120,9075156.534,253714.883,114.039,A3/R28A/CX03/CT
  121,9075156.475,253714.882,113.530,A3/R28A/CX03/Cf
  122,9075157.815,253712.223,114.080,A3/R28A/CX02/CT
  123,9075157.803,253712.172,113.482,A3/R28A/CX02/CF
  124,9075159.539,253709.323,114.172,A3/R28A/CX01/CT
  125,9075159.349,253709.387,113.708,A3/R28A/CX01/CF
  126,9075167.481,253704.546,112.799,A3/R15/CX01/CT
  127,9075167.457,253704.433,112.249,A3/R15/CX01/CF
  128,9075172.039,253699.651,112.034,A3/R15/CX02/CT
  129,9075172.090,253699.423,111.586,A3/R15/CX02/CF
  130,9075180.282,253690.834,110.618,A3/R15/CX03/CT
  131,9075180.282,253690.834,110.085,A3/R15/CX03/CF
  132,9075093.783,253833.581,100.904,A3/R32A/CX01/CT
  133,9075093.783,253833.581,100.181,A3/R32A/CX01/CF
  134,9075094.399,253837.630,100.345,A3/R32A/CX02/CT/MORADOR NAO PERMITIU
  135,9075095.065,253844.493,99.949,A3/R32A/CX03/CT/OCULTA
  136,9075094.881,253849.144,99.788,A3/R32A/CX04/CT/OCULTA
  137,9075102.591,253799.398,94.943,A3/R28B/CX1/CT/SOB PAVIMENTO DE CONCRETO
  138,9075106.339,253804.628,94.253,A3/R28B/CX2/CT/SOB PAVIMENTO DE CONCRETO
  139,9075107.065,253805.657,94.166,A3/R28B/CX3/CT/SOB PAVIMENTO DE CONCRETO
  140,9075110.699,253811.181,93.483,A3/R28B/CX4/CT/SOB PAVIMENTO DE CONCRETO
  141,9075115.224,253817.940,93.040,A3/R28B/CX5/CT/SOB PAVIMENTO DE CONCRETO
  142,9075118.305,253826.836,92.604,A3/R28B/CX6/CT/SOB PAVIMENTO DE CONCRETO
  143,9075120.466,253832.515,92.419,A3/R28B/CX7/CT/SOB PAVIMENTO DE CONCRETO
  144,9075121.417,253840.761,92.257,A3/R28B/CX8/CT/MORADOR NAO PERMITIU
  145,9075130.438,253839.115,92.351,A3/R26/CX03/CT/MORADOR NAO PERMITIU
  146,9075129.734,253840.090,93.268,A3/R26/CX04/CT/MORADOR NAO PERMITIU
  147,9075218.961,253913.021,120.803,AUXILIAR D2
  148,9075237.612,253923.383,123.155,AUXILIAR D1
  149,9075235.317,253928.297,122.862,RN8
```

ANEXO C - CADASTRO GERAL DA BACIA EM KMZ

ANEXO D - CADASTRO GERAL DA BACIA EM DWG

