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ABSTRACT

Beta regressions are commonly used with responses that assume values in the

standard unit interval, such as rates, proportions and concentration indices. Hypothesis

testing inferences on the model parameters are typically performed using the likelihood

ratio test. It delivers accurate inferences when the sample size is large, but can otherwise

lead to unreliable conclusions. It is thus important to develop alternative tests with

superior finite sample behavior. We derive the Bartlett correction to the likelihood ratio

test under the more general formulation of the beta regression model, i.e. under varying

precision. The model contains two submodels, one for the mean response and a separate

one for the precision parameter. Our interest lies in performing testing inferences on the

parameters that index both submodels. We use three Bartlett-corrected likelihood ratio

test statistics that are expected to yield superior performance when the sample size is

small. We present Monte Carlo simulation evidence on the finite sample behavior of the

Bartlett-corrected tests relative to the standard likelihood ratio test and to two improved

tests that are based on an alternative approach. The numerical evidence shows that one of

the Bartlett-corrected typically delivers accurate inferences even when the sample is quite

small. An empirical application related to behavioral biometrics is presented and discussed.

We also address the issue of performing testing inference in a general extreme value

regression model when the sample size is small. The model contains separate submodels for

the location and dispersion parameters. It allows practitioners to investigate the impacts

of different covariates on extreme events. Testing inferences are frequently based on the

likelihood test, including those carried out to determine which independent variables are

to be included into the model. The test is based on asymptotic critical values and may

be considerably size-distorted when the number of data points is small. In particular, it

tends to be liberal, i.e., it yields rates of type I errors that surpass the test’s nominal size.

We derive the Bartlett correction to the likelihood ratio test and use it to define three

Bartlett-corrected test statistics. Even though these tests also use asymptotic critical

values, their size distortions vanish faster than that of the unmodified test and thus they

yield better control of the type I error frequency. Extensive Monte Carlo evidence and an

empirical application that uses COVID-19 related data are presented and discussed.



Keywords: COVID-19; Bartlett correction; beta regression; extreme value; likelihood

ratio test.



RESUMO

Regressões beta são comumente usadas com respostas que assumem valores no

intervalo de unidade padrão, tais como taxas, proporções e índices de concentração.

Inferências via teste de hipóteses sobre os parâmetros do modelo são usualmente realizadas

utilizando o teste de razão de verossimilhanças. Tal teste fornece inferências precisas

quando o tamanho da amostra é grande, mas pode conduzir a conclusões imprecisas

quando o número de observações é pequeno. Portanto, é importante desenvolver testes

alternativos com comportamento superior em pequenas amostras. Derivamos o fator de

correção de Bartlett para o teste da razão de verossimilhanças sob a formulação mais

geral do modelo de regressão beta, ou seja, sob precisão variável. O modelo contém dois

submodelos, um para a resposta média e outro para o parâmetro de precisão. Nosso

interesse reside na realização de testes sobre os parâmetros que indexam os dois submodelos.

Usamos três estatísticas de teste da razão de verossimilhanças corrigidas por Bartlett

que devem apresentar desempenho superior quando o tamanho da amostra é pequeno

relativamente ao teste usual. Apresentamos resultados de simulações de Monte Carlo

sobre os comportamentos em pequenas amostras dos testes corrigidos por Bartlett, do

teste da razão de verossimilhanças usual e de dois testes melhorados que se baseiam

em uma abordagem alternativa. A evidência numérica apresentada mostra que um dos

testes corrigidos por Bartlett tipicamente conduz a inferências precisas, mesmo quando o

tamanho da amostra é muito pequeno. Uma aplicação empírica relacionada a biometria

comportamental é apresentada e discutida. Também consideramos a realização de teste

de hipóteses sobre os parâmetros que indexam um modelo geral de regressão de valor

extremo. O modelo contém submodelos separados para os parâmetros de localização

e dispersão e permite não linearidades. Com base em tal modelo, é possível avaliar os

impactos de diferentes covariáveis sobre a ocorrência de eventos extremos. As inferências

de teste são frequentemente baseadas no teste da razão de verossimilhanças, incluindo

aquelas realizadas para determinar quais variáveis independentes devem ser incluídas no

modelo. Tal teste utiliza valores críticos assintóticos e pode apresentar distorções de

tamanho apreciáveis quando o número de observações é pequeno. Em particular, ele tende

a ser liberal, ou seja, tipicamente fornece taxas de erro do tipo I que superam o nível de

significância selecionado pelo usuário. Derivamos o fator de correção de Bartlett para o

teste de razão de verossimilhanças e o utilizamos para definir três estatísticas de teste



corrigidas. Embora os testes corrigidos também utilizem valores críticos assintóticos, suas

distorções de tamanho convergem para zero mais rapidamente do que as do teste não

modificado e, portanto, os novos testes tendem a produzir melhor controle da frequência

de erro do tipo I. São apresentados e discutidos resultados de simulações Monte Carlo e

também uma aplicação empírica que utiliza dados relacionados à pandemia de COVID-19.

Palavras-chave: COVID-19; correção de Bartlett; regressão beta; valor extremo; teste

da razão de verossimilhanças.
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1 BARTLETT-CORRECTED TESTS FOR VARYING PRECISION

BETA REGRESSIONS WITH APPLICATION TO ENVIRONMEN-

TAL BIOMETRICS

1.1 INTRODUCTION

Regression models are useful for gaining knowledge on how different variables

(known as regressors, covariates or independent variables) impact the mean behavior of

a variable of interest (known as dependent variable or response). The beta regression

model is the most commonly used model with responses that are double bounded, in

particular with responses that assume values in the standard unit interval, (0,1). It was

introduced by Ferrari and Cribari-Neto (2004) who used an alternative parameterization

for the beta density, which is indexed by mean (µ) and precision (φ) parameters. Let Y

be a beta-distributed random variable. Its density is

b(y;µ,φ) = Γ(φ)
Γ(µφ)Γ(φ(1−µ))y

µφ−1(1−y)φ(1−µ)−1, 0< y < 1, (1.1)

0 < µ < 1,φ > 0, where Γ(·) is the gamma function. Such a law is quite flexible in the

sense that the density in (1.1) can assume different shapes depending on the parameter

values. It was used by Ferrari and Cribari-Neto (2004) as the underlying foundation for

a regression model in which y1, . . . ,yn are independent random variables such that yi is

beta-distributed with mean µi (i.e. E(yi) = µi) and precision parameter φ, for i= 1, . . . ,n.

They showed that the variance of yi is µi(1−µi)/(1+φ) which, for a given µi, is decreasing

in φ. The model is thus heteroskedastic since the variance of yi changes with µi. The

response means are modeled using a set of covariates and φ is assumed constant across

observations. This model became known as the fixed precision beta regression model.

A more general beta regression formulation was considered by Kieschnick and

McCullough (2003) and formally introduced by Simas, Barreto-Souza and Rocha (2010)

who allowed the precision parameter to vary across observations, i.e. yi is beta-distributed

with mean µi and precision φi, i = 1, . . . ,n. More flexibility can be achieved in some

situations by allowing the precision parameter to be impacted by some covariate values.

In such a more general formulation, the variance of yi is no longer restricted to be a

multiple of µi(1−µi). The model includes two separate regression submodels, one for the

mean and another for the precision, and became known as the variable precision beta

regression model. The fixed precision beta regression model is a particular case of the
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variable precision counterpart; it is obtained by setting φ1 = · · ·= φn = φ.

Fixed and varying precision beta regression modeling have been used in many

different fields. A beta regression analysis of the effects of sexual maturity on space use in

Atlantic salmon (Salmo salar) parr can be found in Bouchard et al. (2020). In Chen, Chiu

and Chang (2017) the beta regression model is used to segment and describe the container

shipping market by analyzing the relationships between service attributes and likelihood

of customer retention for the container shipping industry. Some applications of beta

regression modeling in ecology can be found in Douma and Weedon (2019). In Mandal,

Srivastav and Simonovic (2016), a statistical downscaling model is developed based on

beta regression which allow precipitation state in river basin to be calculated. The beta

regression model is used by Mullen, Marshall and McGlynn (2013) to model global solar

radiation. For a beta regression analysis of ischemic stroke volume, see Swearingen et al.

(2011).

In both variants of the beta regression model (fixed and variable precision),

parameter estimation is carried out by maximum likelihood. It is common practice to

perform likelihood ratio tests and z-tests on the model’s parameters. The latter are

Wald-type tests and are typically less accurate than the former; see Cribari-Neto and

Queiroz (2014). Point estimation and testing inferences are usually accurate when the

sample size (n) is large. In some applications, nonetheless, the number of data points is

small and it is recommended to make use of inferential tools that are expected to yield

reliable inferences in small samples. For instance, Ospina, Cribari-Neto and Vasconcellos

(2006) obtained modified parameter estimates that display smaller biases in fixed and

variable precision linear beta regression models.

The likelihood ratio test, which is commonly used in beta regression empirical

analyses, employs an asymptotic approximation: the critical values used in the test are

obtained from the test statistic’s asymptotic null distribution, which is known to be χ2
l ,

where l is the number of restrictions under evaluation; see the discussion in Chapter 9 of

Cox and Hinkley (1979). An asymptotic approximation is used because the test statistic’s

exact null distribution is unknown. In large samples, the test typically delivers accurate

inferences since there is good control of the type I error frequency. In contrast, when the

number of data points is small (e.g., less than 50 observations), size distortions can be

large. In particular, the test tends to be liberal (oversized): the effective null rejection
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rates tend to be considerably larger than the selected significance level. When the sample

size is quite small, the test’s effective null rejection can be much larger than the nominal

significance level, as shown by the numerical evidence we report. A Bartlett correction to

the likelihood ratio test was derived by Bayer and Cribari-Neto (2013) for beta regressions.

A major shortcoming of their result, however, is that it only holds for the fixed precision

beta regression model. In this chapter, we overcome such a shortcoming by deriving the

Bartlett correction for varying precision beta regressions, which are more commonly used

by practitioners. The derivation of the correction becomes more challenging in the more

general setting. That happens because the parameters that index the two submodels are

not orthogonal in the sense that Fisher’s information matrix is not block diagonal, and

that renders lengthier and more complex derivations of the quantities involved in the

Bartlett correction. We considered three Bartlett-corrected test statistics. It is noteworthy

that the size distortions of such tests vanish faster than those of the standard likelihood

ratio test as the sample size increases and thus the new tests are expected to outperform

the likelihood ratio test in small samples. In particular, the likelihood ratio test’s size

distortions are O(n−1) whereas those of the Bartlett-corrected tests are O(n−2). It is

noteworthy that, although we do not explicitly consider the test of linear restrictions on

the model’s parameters, the Bartlett correction we derive can be used when testing such

restrictions; see Arellano-Valle, Ferrari and Cribari-Neto (1999).

To motivate our analysis, consider the following important issue in behavioral

biometrics: the impact of average intelligence on the prevalence of religious disbelievers.

Suppose there is interest in measuring such a net impact using data on n nations. The

variable of interest (response) is the proportion of atheists in each country and the covariates

include average intelligence and other control variables. Cribari-Neto and Souza (2013)

carried out varying precision beta regression analyses and produced estimates of such

an impact under different scenarios. Each scenario corresponds to a particular choice of

countries. We consider the scenario that uses data on 50 countries. We show that by using

corrected likelihood ratio tests we arrive at a varying precision beta regression model which

differs from that used by Cribari-Neto and Souza (2013). It is noteworthy that our model

yields a better fit than their model. We also note that the maximal estimated impact

of intelligence on religious disbelief obtained from our model is considerably larger than

that computed from the model in Cribari-Neto and Souza (2013) in low income nations.
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Our results also reveal that, as countries become more developed, the maximal impact of

intelligence on the prevalence of atheists weakens and the impact becomes, in the plausible

range of average intelligence values, more symmetric. To the best of our knowledge, this

is the first analysis of how the maximal impact of average intelligence on the prevalence

of atheists changes with economic development. This illustrates the importance of using

tests with good small sample performance when performing beta regression analyses with

samples of small to moderate sizes.

The remainder of the chapter is structured as follows. In first section that

follows this introduction, we present the variable precision beta regression model. In the

second section, we derive the Bartlett correction to the likelihood ratio test in varying

precision beta regressions and use it in three modified test statistics. Our main contribution

is that we obtain closed-form expressions for the quantities that allow improved testing

inferences to be carried out in varying precision beta regressions. Additionally, we briefly

review an alternative small sample correction that is already available in the literature.

Unlike the correction we derive, however, it does not yield an improvement in the rate at

which size distortions vanish. In particular, the size distortions of our corrected tests vanish

at rate O(n−2) whereas those of the alternative tests we consider do so at rate O(n−1).

Monte Carlo simulation evidence is presented in the third section. An empirical application

that addresses an important issue in behavioral biometrics is presented and discussed in

the fourth section. The fifth section contains some concluding remarks. Technical details

related to the derivation of the quantities involved in the Bartlett correction are presented

in Appendix A.

1.2 THE BETA REGRESSION MODEL

Let y = (y1, . . . ,yn)> be a vector of independent random variables such that yi
follows the beta distribution with mean µi and precision φi, i= 1, . . . ,n. Such parameters

are modeled as

g1(µi) = ηi =
p∑
j=1

βjxij and g2(φi) = ζi =
q∑
j=1

δjhij ,

where β = (β1, . . . ,βp)> ∈Rp and δ = (δ1, . . . , δq)> ∈Rq are unknown regression parameters

(p+ q < n), ηi and ζi are linear predictors, xi1 ≡ hi1 ≡ 1∀i, xi2, . . . ,xip and hi2, . . . ,hiq are

mean and precision covariates, respectively, and g1 : (0,1) 7→ R and g2 : (0,∞) 7→ R are
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strictly monotonic and twice-differentiable link functions. Common choices for g1 are logit,

probit, loglog, cloglog and Cauchy, and common choices for g2 are log and square root; see

Cribari-Neto and Zeileis (2010).

Let θ = (β>, δ>)> be the vector containing all regression coefficients. The

log-likelihood function is

`(θ)≡ `(β,δ) =
n∑
i=1

`i(µi,φi), (1.2)

where `i(µi,φi) = logΓ(φi)− logΓ(µiφi)− logΓ((1−µi)φi)+(µiφi−1)y∗i +(φi−2)y†i , with

y∗i = log(yi/1−yi) and y†i = log(1−yi). The maximum likelihood estimators of β and δ

solve U = ∂`(β,δ)/∂θ =
(
Uβ(β,δ)>,Uδ(β,δ)>

)>
= 0p+q, where 0p+q is a (p+ q)-vector of

zeros. They cannot be expressed in closed-form. Maximum likelihood estimates can be

obtained by numerically maximizing the model log-likelihood function using a Newton

or quasi-Newton optimization algorithm such as the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm; see Nocedal and Wright (2006).

For a recent overview of the beta regression model, see Douma and Weedon

(2019). Practitioners can perform beta regression analyses using the betareg package

developed for the R statistical computing environment; see Cribari-Neto and Zeileis

(2010). Finally, it is worth noticing that the beta regression model belongs to the class of

Generalized Additive Models for Location Scale and Shape (GAMLSS); see Rigby and

Stasinopoulos (2005).

1.3 IMPROVED LIKELIHOOD RATIO TESTS IN BETA REGRESSIONS

At the outset, we consider a general setup. Suppose the interest lies in testing a

null hypothesis (H0) that imposes l restrictions on the k-dimensional parameter vector θ =

(β>, δ>)>, where k = p+ q. To that end, we write θ = (ψ>,λ>)>, where ψ = (ψ1, . . . ,ψl)>

is the vector of parameters of interest and λ = (λ1, . . . ,λs)> is the vector of nuisance

parameters so that l+s= p+q. We wish to test H0 : ψ = ψ(0) against H1 : ψ 6= ψ(0), where

ψ(0) is a given l-vector. The likelihood ratio test statistic is

ω = 2[`(ψ̂, λ̂)− `(ψ0, λ̃)],

where (ψ̂>, λ̂>) and (ψ0>, λ̃>) are the unrestricted and restricted maximum likelihood

estimators of (ψ>,λ>), respectively. Under the null hypothesis, w is asymptotically
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distributed as χ2
l . The test is usually performed using critical values obtained from such

an asymptotic null distribution, the approximation error being of order O(n−1). That

is, under the null hypothesis, Pr(ω > χ2
l;1−α) = α+O(n−1), where α ∈ (0,1) is the test

significance level and χ2
l;1−α is the (1−α)th quantile from the χ2

l distribution. The chi-

squared approximation to the null distribution of ω may be poor when the sample size

is small (e.g., less than 50 observations) and, as a result, large size distortions may take

place.

A correction that became known as ‘the Bartlett correction’ was developed to

improve the likelihood ratio test’s small sample behavior. It uses the fact that, under

H0, E(ω) = l+ b+O(n−2), where b= b(θ) is O(n−1). Using such a result, it is possible to

define the corrected test statistic

ωb1 = ω

1 + b/l

whose expected value equals l when terms of order O(n−2) are neglected. The quantity

c = 1 + b/l became known as ‘the Bartlett correction factor’. A general approach for

obtaining the Bartlett correction factor in statistical models was developed by Lawley

(1956). His approach requires the derivation of log-likelihood cumulants. The expected

value of ω, under the null hypothesis, can be expressed as

E(ω) = l+ εk− εk−l+O(n−2),

where εk and εk−l are of order O(n−1). Here,

εk =
∑
θ

(λrstu−λrstuvw), (1.3)

where

λrstu = κrsκtu
{
κrstu

4 −κ(u)
rst +κ

(su)
rt

}
and

λrstuvw = κrsκtuκvw
{
κrtv

(
κsuw

6 −κ(u)
sw

)
+κrtu

(
κsvw

4 −κ(v)
sw

)
+κ

(v)
rt κ

(u)
sw +κ

(u)
rt κ

(v)
sw

}
.

The above cumulants (κ’s) are defined in the Appendix. The indices r,s, t,u,v and w vary

over all k parameters in the summation in (1.3). The Bartlett correction factor can then

be written as

c= 1 + εk− εk−l
l

.
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Lawley (1956) also showed that all cumulants of the Bartlett-corrected test

statistic agree with those of the reference chi-squared distribution with error of order

O(n−3/2) which indicates that its null distribution is expected to be well approximated by

the limiting chi-squared distribution. Hayakawa (1977) obtained an asymptotic expansion

for the null distribution of ω; see also Chesher and Smith (1995), Cordeiro (1987) and Harris

(1986). Barndorff-Nielsen and Hall (1988) showed that size distortions of Bartlett-corrected

tests are of order O(n−2), and not of order O(n−3/2), as previously believed.

In what follows, we shall obtain the Bartlett correction factor for the class of

varying precision beta regressions. We shall only present the main result. Details on the

derivation can be found in Appendix A. It is noteworthy that β and δ are not orthogonal

(i.e., Fisher’s information matrix is not block diagonal), unlike what happens in the class

of generalized linear models. As a consequence, the derivation of the Bartlett correction

factor becomes lengthier and more challenging. We shall use the main result in Cordeiro

(1993), who wrote the general adjustment factor in matrix form. At the outset, we define

some k×k matrices whose (r,s) elements are

A(tu) =
{
κrstu

4 −κ(u)
rst +κ

(su)
rt

}
, P (t) = {κrst}, Q(u) = {κ(r)

su },

t,u= 1, . . . ,k. We derived the log-likelihood cumulants up to fourth order for the class of

varying precision beta regression models. These cumulants are presented in Appendix A.

Using such results, we obtain matrices A(tu) , P (t) and Q(u). It is then possible to write

εk as

εk = tr
(
K−1(L−M −N)

)
, (1.4)

where tr(·) is the trace operator and the (r,s) elements of L, M and N are

Lrs = {tr(K−1A(rs))},

Mrs =− 1
6{tr(K

−1P (r)K−1P (s))}+{tr(K−1P (r)K−1Q(s)>)}

−{tr(K−1Q(r)K−1Q(s))},

Nrs =− 1
4{tr(P

(r)K−1)tr(P (s)K−1)}+{tr(P (r)K−1)tr(Q(s)K−1)}

−{tr(Q(r)K−1)tr(Q(s)K−1)},

r,s= 1, . . . ,k. Also, εk−l is obtained from (2.14) by only considering the nuisance parame-

ters.
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The corrected statistic ωb1 is the standard Bartlett-corrected likelihood ratio

test statistic. In addition to it, we shall also consider two other Bartlett-corrected test

statistics that are used in Lemonte, Ferrari and Cribari-Neto (2010). The three test

statistics are equivalent up to order O(n−1) and are given by

ωb1 = ω

c
, ωb2 = ω exp

{
−(εk− εk−l)

l

}
, ωb3 = ω

{
1− (εk− εk−l)

l

}
.

We shall refer to the three corrected test statistics above as ’ratio-like’, ’exponentially

adjusted’ and ’multiplicative-like’, respectively. An advantage of ωb2 is that it is always

positive-valued. In order to use the above test statistics in a given class of models, it

is necessary to obtain closed-form expressions for εk and εk−l that are valid for such

models. For varying precision beta regressions, these quantities can be computed using

Equation (1.4), which is our main result. For details on Bartlett corrections, we refer

readers to Cordeiro and Cribari-Neto (2014) and Cribari-Neto and Cordeiro (1996).

An alternative correction to the likelihood ratio test statistic was proposed

by Skovgaard (2001) who generalized previous results in Skovgaard (1996). His main

result relate to those in Barndorff-Nielsen (1986), Barndorff-Nielsen (1991). The author

in Skovgaard (2001) proposed using the following two modified test statistics: ωa1 =

ω−2logξ and ωa2 = ω
(
1−ω−1 logξ

)2
, the latter having the advantage of always being

positive-valued. ξ is a function of several model-based quantities (score function, expected

information, observed information, etc.). Closed-form expressions for ξ were derived by

several authors considering different underlying models. In particular, for models tailored

for double limited responses, they were derived by Guedes, Cribari-Neto and Espinheira

(2020) for unit gamma regressions, by Ferrari and Pinheiro (2011) for varying precision beta

regression models, and by Rauber, Cribari-Neto and Bayer (2020) for beta regressions with

parametric mean link function. The finite sample performances of such corrected tests when

used in beta regressions was numerically evaluated by Cribari-Neto and Queiroz (2014). It

is noteworthy that the size distortions of the three Bartlett-corrected tests vanish at a

faster rate than those of ω, ωa1 and ωa2 as the sample size increases: O(n−2) versus O(n−1).

As a consequence, it is expected that, for a given sample size, the Bartlett-corrected tests

display superior control of the type I error probability.

Finally, we note that there are alternative strategies for achieving accurate

hypothesis testing inferences in small samples. For instance, Rocke (1989) proposed a

numerical approach for estimating the Bartlett correction factor and Ferrari, Lucambio
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and Cribari-Neto (2005) obtained the Bartlett correction for generalized linear models

using a modified version of the likelihood function that accounts for the impact of nuisance

parameters on the inference made on the parameters of interest. We shall not pursue these

approaches since, as we shall see, the standard Bartlett corrected test is able to deliver

extremely accurate inference in small samples in varying precision beta regressions even

when the number of nuisance parameters is large.

1.4 NUMERICAL EVIDENCE

In what follows we shall present Monte Carlo simulation results on the finite

sample performances of six tests in varying precision beta regressions, namely: ω, ωb1
(‘ratio-like’), ωb2 (‘exponentially adjusted’), ωb3 (‘multiplicative-like’), ωa1 and ωa2. All

reported results are based on 10,000 replications and were obtained using the R statistical

computing environment; see R Core Team (2021). Log-likelihood maximization was

performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with analytical

first derivatives. There were no convergence failures. Starting values for β and δ were

computed as described in Appendix A of Ferrari, Espinheira and Cribari-Neto (2011) with

minor tweaks. The computation of such starting values entails the estimation of two linear

regressions. We consider the varying precision beta regression model log(µi/(1−µi)) =

β1 +β2xi2 +β3xi3 +β4xi4 and log(φi) = δ1 + δ2hi2 + δ3hi3, i= 1, . . . ,n. All covariate values

were obtained as U(−0.5,0.5) random draws and remained constant for all replications

performed for a given sample size. We consider three scenarios. In the first scenario,

we test H0 : β4 = 0, and hence l = 1 (one restriction). The true parameter values are

β1 = 1.0, β2 = 1.7, β3 = 3.5, β4 = 0, δ1 = 3.7, δ2 = 1.5 and δ3 = 0.9. In the second scenario,

the interest lies in testing H0: β3 = β4 = 0, thus l = 2 (two restrictions). The parameter

values in this case are β1 = 1.0, β2 = 1.7, β3 = β4 = 0, δ1 = 3.7, δ2 = 1.5 and δ3 = 0.9.

In the third and final scenario, the null hypothesis under evaluation is H0: δ2 = δ3 = 0,

and hence l = 2 (two restrictions). The parameter values are β1 = 1.0, β2 = 1.7, β3 = 2.5,

β4 =−3.0, δ1 = 3.7 and δ2 = δ3 = 0. We computed the tests’ null rejection rates at the

α= 10%,5%,1% significance levels for different sample sizes (n ∈ {15,20,30,40}). They

are presented in Tables 1 (first scenario), 2 (second scenario) and 3 (third scenario); all

entries are percentages.

The tests’ null rejection rates for the first scenario are, as noted, presented in
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Table 1. At the outset, we note that the likelihood ratio test ω is considerably liberal,

that is, it rejects the null hypothesis too often when it is true. For instance, when n= 15

and α = 10%, its null rejection rate exceeds 30%, i.e. it is over three time larger than

the nominal significance level. When n = 20, it equals 25.2%. The test is considerably

oversized even when n= 40 (null rejection rate > 15%). The corrected tests display much

better control of the type I error frequency, especially the third Bartlett-corrected test (i.e.

that based on ωb3 – ‘multiplicative-like’). For example, when n= 20 and α = 10%, its null

rejection is 10.4% whereas those of ωb1, ωb2, ωa1 and ωa2, are, respectively, 16.7%, 14.6%,

14.7% and 17.2%. All modified tests display small size distortions when n= 40; again, ωb3
(‘mutiplicative-like’) is the best performer. Interestingly, ωb3 is the only conservative test

when the sample size is very small (n= 15).

Table 1 – Null rejection rates (%), H0: β4 = 0.
α = 10% α = 5% α = 1%

n n n

15 20 30 40 15 20 30 40 15 20 30 40
ω 30.1 25.2 19.2 15.7 21.8 17.6 12.1 9.0 10.7 7.4 4.0 2.9
ωb1 19.5 16.7 12.8 11.1 11.8 9.8 6.9 5.8 3.8 2.8 1.5 1.2
ωb2 16.6 14.6 11.6 10.6 9.5 8.2 6.0 5.4 2.4 1.8 1.1 1.1
ωb3 8.2 10.4 10.0 9.9 3.5 4.9 4.6 5.0 0.4 0.8 0.7 0.9
ωa1 16.0 14.7 10.6 10.0 10.2 9.3 5.3 5.2 4.0 3.0 1.2 1.1
ωa2 19.4 17.2 11.5 10.4 12.9 11.1 5.9 5.5 5.6 3.9 1.4 1.2

Source: The author (2020).

Figure 1 contains quantile-quantile (QQ) plots of three test statistics, namely:

the likelihood ratio test statistic, the best performing Bartlett-corrected test statistic (ωb3
– ‘mutiplicative-like’) and the best performing test statistics obtained from the alternative

finite sample correction (ωa1). We plot the exact quantiles of the three test statistics

against their asymptotic counterparts (obtained from the χ2
1 distribution). The included

45o line indicates perfect agreement between exact and asymptotic null distributions. The

left and right panels are for n= 15 and n= 20, respectively. In both plots, the line that

corresponds to ω is considerably above the 45o line which indicates that the test statistic

exact quantiles are much larger than the asymptotic quantiles, and that translates into

liberal test behavior, i.e., the test tends to overreject the null hypothesis. The exact
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quantiles of ωa1 also exceed those from the chi-squared distribution, but less dramatically.

The null distribution of ωb3, the Bartlett-corrected test statistic (‘mutiplicative-like’), is

very well approximated by the limiting χ2
1 distribution since the dashed line is very close

to the 45o line.

Figure 1 – Quantile-quantile plots, H0 : β4 = 0.
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Source: The author (2020).

Table 2 contains simulation results for the second scenario, that is, it contains

results relative to testing that β3 and β4 are jointly equal to zero. Here, l = 2. Again, the

likelihood ratio test is markedly oversized when the sample size is small, even more so

than in the previous scenario. For instance, when α = 10% and n= 20, the estimated size

of the test equals 31.1%, i.e. the test’s empirical size is over three times larger than the

nominal significance level. The corrected tests perform much more reliably. Again, overall,

the best performing test is that based on our third Bartlett-corrected test statistic (ωb3
– ’mutiplicative-like’). For instance, when n= 20 and α = 10%, its null rejection rate is

10.7%; the corresponding figures for ωa1 and ωa2 (the two alternative corrected tests) are

14.9% and 17.5%, respectively.

Figure 2 contains QQ plots for the second scenario. As in the previous scenario,

the null distribution of ω is poorly approximated by the limiting chi-squared distribu-

tion and the approximation works better for ωb3 (the Bartlett-corrected test statistic,

‘mutiplicative-like’) than for ωa1.

We shall now consider to tests on the coefficients of the precision submodel. The
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Table 2 – Null rejection rates (%), H0 : β3 = β4 = 0.
α = 10% α = 5% α = 1%

n n n

15 20 30 40 15 20 30 40 15 20 30 40
ω 39.6 31.1 21.2 16.6 29.9 22.0 12.9 9.5 16.5 9.6 4.2 2.8
ωb1 23.4 18.2 12.6 10.9 15.2 10.7 6.7 5.6 5.5 2.7 1.5 1.1
ωb2 19.1 15.7 11.5 10.5 11.4 8.6 5.9 5.2 3.3 1.8 1.2 1.0
ωb3 7.4 10.7 9.9 9.6 2.9 4.7 4.8 4.7 0.4 0.7 0.9 0.8
ωa1 16.7 14.9 10.5 9.8 10.8 8.8 5.3 4.8 4.1 2.7 1.1 0.9
ωa2 21.6 17.5 11.3 10.3 14.1 10.7 6.0 5.1 5.8 3.4 1.3 1.0

Source: The author (2020).

Figure 2 – Quantile-quantile plots, H0: β3 = β4 = 0.
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Source: The author (2020).

null rejection rates for the third scenario are in Table 3. We test the null hypothesis of fixed

precision, i.e. we test H0 : δ2 = δ3 = 0 which is equivalent to testing H0 : φ1 = · · ·= φn = φ

(the precision parameter is constant across observations). The figures in Table 3 indicate,

once again, that testing inferences based on ω can be quite unreliable when n is small.

Overall, the third Bartlett-corrected (‘multiplicative-like’) test outperforms all other

corrected tests. For instance, when n = 20 and α = 10%, its null rejection rate is 9.5%

whereas those of ωb1 (‘ratio-like’), ωb2 (‘exponentially adjusted’), ωa1 and ωa2 are 17.1%,

14.4%, 11.7% and 14.1%. We do not present QQ plots for brevity. We note, however, that

they show that the null distribution of ωb3 (‘mutiplicative-like’) is well approximated by

the limiting χ2 distribution.
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Table 3 – Null rejection rates (%), H0 : δ2 = δ3 = 0.
α = 10% α = 5% α = 1%

n n n

15 20 30 40 15 20 30 40 15 20 30 40
ω 39.6 29.8 20.3 16.3 30.2 20.7 12.9 9.3 15.9 8.8 4.4 2.7
ωb1 23.6 17.1 12.9 11.0 14.7 9.7 6.8 5.3 4.8 2.4 1.6 1.1
ωb2 19.1 14.4 12.0 10.3 10.9 7.5 6.2 5.0 2.7 1.8 1.3 1.0
ωb3 7.7 9.5 10.1 9.7 3.3 4.1 5.0 4.7 0.4 0.7 0.8 0.8
ωa1 13.1 11.7 10.3 9.7 7.4 6.1 5.3 4.8 1.9 1.5 1.2 1.0
ωa2 18.0 14.1 11.3 10.2 10.8 7.7 5.9 5.0 3.3 2.0 1.4 1.0

Source: The author (2020).

We also performed simulations using a data generating process that differs from

the estimated model, that is, we estimated the tests’ non-null rejection rates (powers). We

restrict attention to the likelihood ratio test (ω), the best performing Bartlett-corrected test

(ωb3 – ’mutiplicative-like’) and the best performing test obtained using the alternative finite

sample correction (ωa1). We consider two sample sizes (n ∈ {20,40}) and two significance

levels (α= 10%,5%). We test H0 : β4 = 0 (first scenario), but the data are generated using

a value of β4 that is different from zero; we denote such a value by γ. The null hypothesis

is thus false. Since some tests are oversized, all testing inferences are carried out using

exact (estimated from the size simulations) critical values. The tests’ estimated powers

for different values of γ are presented in Table 4. As expected, the tests become more

powerful when the sample size is larger and also as the value of γ moves away from zero.

Overall, the three tests display similar non-null rejection rates.

We shall now return to the evaluation of the tests’ null performances. First,

we shall investigate the impact of the number of nuisance parameters on the tests’ null

behavior. We set the sample size at n= 40 and consider the following model:

log
(

µi
1−µi

)
= β1 +

p∑
j=2

βjxij

log(φi) = δ1 + δ2xi2 + δ3xi3,

i= 1, . . . ,40. We test H0: β2 = 0 against H1: β2 6= 0. The covariate x2 is a dummy variable

that equals 1 for the first twenty observations and 0 otherwise. The values of all other

covariates were obtained as random U(−0.5,0.5) draws. Table 5 contains the tests’ null

rejection rates for p = 3,4,5,6. The results show that the likelihood ratio test tends to



28

Table 4 – Nonnull rejection rates (%), H0 : β4 = 0.
n= 20 n= 40

α = 5% α = 10% α = 5% α = 10%
γ ω ωb3 ωa1 ω ωb3 ωa1 ω ωb3 ωa1 ω ωb3 ωa1

−1.5 99.1 96.9 99.1 99.7 98.4 99.8 100.0 100.0 100.0 100.0 100.0 100.0
−1.25 95.7 94.2 95.8 98.3 97.3 98.5 99.9 99.9 99.9 100.0 100.0 100.0
−1.0 83.7 83.9 82.8 92.0 91.4 91.8 98.6 98.7 98.9 99.4 99.5 99.5
−0.75 59.3 61.9 57.8 74.1 75.7 73.8 87.8 88.8 89.3 93.6 94.0 94.3
−0.5 31.0 32.2 29.6 45.5 47.2 44.4 54.3 56.1 56.7 68.0 68.8 69.5

0.5 30.5 33.8 30.2 45.1 47.7 45.2 55.6 56.8 56.6 69.6 70.2 70.1
0.75 58.7 62.9 58.1 73.6 76.0 73.2 87.7 88.6 88.5 93.8 94.0 93.9
1.0 83.0 85.0 82.6 91.6 92.6 92.1 98.3 98.4 98.4 99.4 99.4 99.4
1.25 94.9 94.7 94.8 98.0 97.5 98.3 99.8 99.9 99.9 100.0 100.0 100.0
1.5 98.8 97.6 98.8 99.6 98.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0

Source: The author (2020).

become progressively more liberal as the number of nuisance parameters increases. In

contrast, the corrected tests are much less sensitive to the number of nuisance parameters,

especially ωb3 (’mutiplicative-like’), which is the best performing test. Its null rejection

rates for the different values of p at the 10% significance level range from 9.9% to 10%

whereas those of ω range between 14.1% (p= 3) and 17.1% (p= 6).

Table 5 – Null rejection rates (%), H0 : β2 = 0, varying number of nuisance parameters.
α = 10% α = 5% α = 1%

p p p

3 4 5 6 3 4 5 6 3 4 5 6
ω 14.1 14.6 16.1 17.1 7.9 8.4 9.8 10.1 2.2 2.3 2.9 3.1
ωb1 10.6 10.9 11.5 11.9 5.2 5.8 5.9 6.4 1.0 1.2 1.3 1.3
ωb2 10.3 10.5 11.0 11.1 5.0 5.4 5.4 5.8 0.9 1.1 1.1 1.1
ωb3 9.9 10.0 10.0 10.0 4.8 5.1 4.8 4.8 0.8 1.0 0.9 0.8
ωa1 10.1 10.3 10.4 10.6 5.0 5.3 5.3 5.4 0.9 1.1 1.1 1.1
ωa2 10.4 10.6 10.9 11.1 5.2 5.5 5.5 5.8 0.9 1.2 1.2 1.3

Source: The author (2020).

Second, we shall evaluate the tests’ finite sample performances when the null

hypothesis includes restrictions on the parameters of both submodels simultaneously. The
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data generating process is

log
(

µi
1−µi

)
= β1 +β2xi2 +β3xi3

log(φi) = δ1 + δ2xi2 + δ3xi3.

We consider two different null hypotheses, namely: (i) H0: β2 = 0, δ3 = 0 (l= 2) and (ii) H0:

β2 = 0, δ2 = δ3 = 0 (l= 3). The corresponding parameter values are (i) β1 = 1.0,β2 = 0,β3 =

3.0, δ1 = 1.7, δ2 = 0.7, δ3 = 0 and (ii) β1 = 1.5,β2 = 0,β3 =−1.4, δ1 = 1.5, δ2 = δ3 = 0. The

covariate values were obtained as random U(−0.5,0.5) draws and n ∈ {15,20,30,40}.

Table 6 contains the tests’ null rejection rates. The test based on the Bartlett-corrected

test statistic ωb3 (’mutiplicative-like’) is the best performer in both cases. For instance,

when l = 2 and n= 15, its null rejection rate at the 10% significance level is 9.5% whereas

those of the competing tests range from 11.1% to 25.0%.

Table 6 – Null rejection rates (%), H0 : β2, δ3 = 0 (l = 2) and H0 : β2, δ2, δ3 = 0 (l = 3).
α = 10% α = 5% α = 1%

n n n

15 20 30 40 15 20 30 40 15 20 30 40

l = 2

ω 25.0 20.4 15.3 12.4 16.4 12.6 9.0 6.7 6.8 4.5 2.4 1.6
ωb1 14.6 12.6 11.3 9.8 8.2 6.9 5.8 5.0 1.9 1.2 1.2 1.0
ωb2 12.8 11.5 10.9 9.6 6.9 6.1 5.6 4.8 1.3 0.9 1.1 0.9
ωb3 9.5 10.2 10.4 9.5 4.3 5.0 5.2 4.7 0.6 0.6 1.0 0.9
ωa1 11.1 11.6 10.8 9.5 6.0 6.2 5.5 4.8 1.2 1.1 1.2 1.0
ωa2 13.1 12.2 11.0 9.6 7.2 6.6 5.7 4.9 1.5 1.3 1.2 1.0

l = 3

ω 23.7 18.9 13.3 12.5 15.5 11.6 7.4 6.7 5.8 3.6 1.9 1.6
ωb1 13.4 11.9 9.8 9.8 7.2 6.2 5.0 4.7 1.9 1.4 1.1 1.1
ωb2 11.8 11.2 9.6 9.6 6.0 5.7 4.8 4.6 1.4 1.2 1.0 1.0
ωb3 9.4 10.2 9.3 9.5 4.4 5.0 4.7 4.6 0.8 1.0 0.9 1.0
ωa1 7.8 8.8 8.8 9.6 3.8 4.4 4.4 4.4 0.9 0.9 0.9 0.9
ωa2 9.2 9.6 9.1 9.7 4.7 4.8 4.6 4.5 1.3 1.0 0.9 1.0

Source: The author (2020).

Finally, we shall evaluate the impact of different levels of correlations between
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regressors on the tests’ small sample performance. The model is

log
(

µi
1−µi

)
= β1 +β2xi2 +β3xi3

log(φi) = δ1 + δ2xi2.

The values of the two regressors are obtained as random draws from the bivariate normal

distribution with mean (0,0)> and covariance matrix Σ. The diagonal and off-diagonal

elements of Σ are, respectively, 1 and ρ. Hence, ρ is the correlation coefficient between

x2 and x3. We test H0: β2 = β3 = 0 (l = 2). Data generation was carried out using

β1 = 1.0, β2 = β3 = 0, δ1 = 1.7 and δ2 = 0.1. Different correlation strengths were considered,

ranging from very low to very strong: ρ ∈ (0.1,0.5,0.75,0.95). The sample sizes are

n ∈ {15,20,30,40}. Table 7 contains the tests’ null rejection rates. Again, the likelihood

ratio test ω is quite liberal when n is small, slightly more so under very strong correlation

between the two regressors. The Bartlett-corrected tests perform very well for all correlation

values, especially ωb3 (’multiplicative-like’). Its null rejection rates are once again very close

to α. For instance, when ρ= 0.75, n= 15 and α= 10% (5%), the test’s null rejection rate is

9.7% (4.4%) whereas that of uncorrected test (ω) is 22.3% (14.0%) and those of alternative

tests ωa1 and ωa2 are 18.4% (9.9%) and 20.5% (13.4%), respectively. It is noteworthy that

the null rejection rates of the three Bartlett-corrected tests are insensitive to the level of

correlation between regressors. For example, when n= 15 and α = 10%, the null rejection

rates of ωb1 (’ratio-like’), ωb2 (’exponentially adjusted’) and ωb3 (’multiplicative-like’) for

ρ= (0.1,0.5,0.75,0.95) are in [13.3%,13.8%], [11.9%,12.2%] and [9.4%,10.6%], respectively.

Overall, the simulation evidence presented above indicates that the Bartlett-

corrected tests achieve excellent control of the type I error frequency, even when the

sample size is quite small. In particular, we recommend the use of ωb3 which was the best

performer.

1.5 BEHAVIORAL BIOMETRICS: INTELLIGENCE AND ATHEISM

We shall now address the behavioral biometrics issue briefly outlined in the

Introduction. The interest lies in modeling the impact of average intelligence on the

prevalence of religious disbelievers. General intelligence relates to the ability to reason

deductively or inductively, think abstractly, use analogies, synthesize information, and

apply it to new domains. It is typically measured by the intelligence quotient (IQ) which
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Table 7 – Null rejection rates (%), H0 : β2 = β3 = 0 (l = 2); varying correlation between
regressors.

α = 10% α = 5% α = 1%
n n n

15 20 30 40 15 20 30 40 15 20 30 40

ρ= 0.1

ω 21.5 16.3 15.2 13.1 13.7 9.6 8.5 7.2 4.7 2.9 2.2 1.6
ωb1 13.5 11.2 10.8 10.5 7.2 5.8 5.2 5.2 1.8 1.4 1.1 1.0
ωb2 12.2 10.6 10.4 10.3 6.4 5.5 5.1 5.1 1.4 1.2 1.0 1.0
ωb3 10.6 9.9 9.9 10.2 5.1 5.2 4.8 5.0 0.9 1.1 0.9 1.0
ωa1 16.9 10.4 10.3 10.5 9.8 5.7 4.9 5.3 2.9 1.2 1.0 1.0
ωa2 18.1 10.7 10.6 10.6 11.0 5.9 5.1 5.4 3.6 1.4 1.1 1.0

ρ= 0.5

ω 21.7 17.1 14.8 13.3 13.4 9.8 8.2 7.2 4.2 2.6 2.1 1.6
ωb1 13.3 11.4 10.6 10.6 6.8 5.7 5.3 5.5 1.2 1.2 1.2 1.1
ωb2 12.1 10.8 10.3 10.4 6.1 5.3 5.1 5.4 1.0 1.1 1.1 1.0
ωb3 10.5 10.1 9.8 10.3 4.8 4.9 4.8 5.3 0.8 0.9 1.0 1.0
ωa1 19.2 10.5 9.8 10.5 11.8 5.3 4.9 5.5 3.6 1.1 1.1 1.1
ωa2 21.3 10.9 10.1 10.6 13.6 5.5 5.1 5.5 4.9 1.2 1.1 1.1

ρ= 0.75

ω 22.3 17.0 14.7 12.8 14.0 9.8 8.3 6.8 4.4 2.6 2.3 1.8
ωb1 13.3 11.2 10.7 9.9 6.9 5.8 5.5 5.0 1.3 1.3 1.0 1.2
ωb2 11.9 10.7 10.3 9.8 5.9 5.4 5.3 4.9 1.0 1.2 1.0 1.1
ωb3 9.7 10.1 9.9 9.7 4.4 4.9 5.0 4.9 0.6 1.1 0.9 1.1
ωa1 18.4 10.2 10.0 10.9 9.9 5.3 5.2 5.1 3.3 1.3 1.0 1.1
ωa2 20.5 10.6 10.2 10.0 13.4 5.6 5.3 5.1 4.8 1.4 1.0 1.1

ρ= 0.95

ω 24.0 16.8 14.4 13.1 15.3 9.3 8.2 6.9 5.3 2.6 2.2 1.5
ωb1 13.8 11.0 10.4 10.5 7.1 5.4 5.3 5.1 1.7 1.2 1.2 0.9
ωb2 12.0 10.5 10.1 10.3 6.1 5.1 5.1 5.1 1.2 1.1 1.2 0.9
ωb3 9.4 9.8 9.8 10.1 4.3 4.7 4.8 5.0 0.8 0.9 1.0 0.9
ωa1 15.5 10.3 9.8 10.5 9.3 5.0 4.9 5.2 2.6 1.1 1.2 0.9
ωa2 17.9 10.7 10.0 10.9 10.6 5.2 5.1 5.3 3.7 1.1 1.3 0.9

Source: The author (2020).

is a score obtained from standardized tests. Average IQ scores have been computed for a

large number of countries; see e.g. Lynn and Meisenberg (2010) and Lynn and Vanhanen

(2006). There is evidence that intelligence negatively correlates with religious belief at

the individual level; see e.g. Ganzach and Gotlibovski (2013). The negative correlation

holds even when religiosity and performance on analytic thinking are measured in separate

sessions; see Pennycook et al. (2016). It also holds when computed from a cross section
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of nations and from the U.S. states; see Lynn, Harvey and Nyborg (2009) and Reeve

and Basalik (2011). There are evolutionary reasons for the inverse relationship between

intelligence and religious belief. More specifically, the Savanna-IQ Interaction Hypothesis

predicts that more intelligent individuals are more likely to acquire and hold evolutionarily

novel values and preferences (e.g., liberalism and atheism and, for men, sexual exclusivity)

relative to less intelligent individuals. It also predicts that intelligence does not impact the

acquisition and espousal of evolutionarily familiar values (e.g., children, marriage, family,

and friends). We refer readers to Kanazawa (2010).

Several regression analysis were performed to measure the net impact of changes

in intelligence levels on the prevalence of atheists; see Zuckerman, Silberman and Hall (2013)

for details. A beta regression analysis was carried out by Cribari-Neto and Souza (2013).

They used data on 124 nations and showed that the net impact of average intelligence on

the prevalence of religious disbelievers is always positive, gains strength up to a certain

level of average intelligence and then weakens. The same data set (n= 124) was analyzed

by Rauber, Cribari-Neto and Bayer (2020) using a beta regression model that includes a

parametric mean link function and by Guedes, Cribari-Neto and Espinheira (2020) using

the unit gamma regression model. In what follows, we shall consider a different data

set. On page 487 of their paper, Cribari-Neto and Souza (2013) briefly mention a beta

regression analysis that was performed using data on the fifty countries with the largest

prevalence of atheists (n= 50) which they call ‘scenario 3’. Since our interest lies in small

sample inferences, we shall pursue that modeling. A novel feature of such data is that they

do not include countries for which the prevalence of atheists is very small (close to zero).

The response variable (y) is the proportion of atheists in each country and the

covariates are: average intelligence quotient (x2), average intelligence quotient squared

(x3), life expectancy in 2007 in years (x4), the logarithm of the ratio between trade volume

(the sum of imports and exports) and gross national product (x5), and per capita income

adjusted for purchasing power parity (x6). Additionally, the following interactions are

used: x7 = x5×x6 and x8 = x4×x5; the latter was not considered by the original authors.

Except for x8, these are the same variables used by Cribari-Neto and Souza (2013). Average

intelligence is the independent variable of main interest and the remaining regressors are

control variables. Also, n = 50 (fifty countries with the largest prevalence of religious

disbelievers). The data and computer code used in the empirical analysis that follows can
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be obtained at <https://github.com/acguedes/beta-Bartlett>.

Cribari-Neto and Souza (2013) fitted the following beta regression model to

the data (ModelM1):

log
(

µi
1−µi

)
= β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6 +β7xi7√

φi = δ1 + δ2xi2 + δ3xi4 + δ4xi6.

We noticed that an improved fit according to standard model selection criteria and pseudo-

R2 (see below) can be achieved by adding x8 to the mean submodel and by only using x2

in the precision submodel, since the x4 and x5 lose statistical significance when the mean

submodel includes the interaction between these two variables. Our model (ModelM2) is

then

log
(

µi
1−µi

)
= β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6 +β7xi7 +β8xi8√

φi = δ1 + δ2xi2.

All parameter estimates of the above model are statistically significant at the 5% significance

level according to the z test, and its pseudo-R2, as defined by Ferrari and Cribari-Neto

(2004), is superior to that of the model fitted by Cribari-Neto and Souza (2013): 0.3719

vs 0.3216. ModelM2 is also favored by the three most commonly used model selection

criteria when compared to Model M1, AIC (−61.0555 vs −55.3188), AICC (−55.4144

vs −48.3714) and BIC (−41.9352 vs −34.2865). We shall investigate whether x4 and x5

should be excluded from our model by testing whether β4 and β5 equal zero (individually

and jointly). We shall use three tests, namely: the likelihood ratio test (ω), the best

performing Bartlett-corrected test (ωb3 – ‘mutiplicative-like’) and the best performing test

based on the alternative small sample correction (ωa1).

At the outset, we test the exclusion of x4 from Model M2, that is, we test

H0 : β4 = 0. The p-values of the ω, ωb3 and ωa1 tests are 0.0258, 0.0443 and 0.0295,

respectively. The first and third tests clearly reject the null hypothesis at α = 5% whereas

the p-value of the Bartlett-corrected test is very close to 0.05 which renders uncertainty

about the exclusion of x4 from the model. Next, we test H0 : β5 = 0. We obtain the

following p-values for ω, ωb3 and ωa1: 0.0303, 0.0505 and 0.0332, respectively. The first

and third tests clearly reject the removal of x5 from the model at the 5% significance level;

the null hypothesis is not rejected by the Bartlett-corrected test. Finally, we test the joint

https://github.com/acguedes/beta-Bartlett
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exclusion of both covariates, i.e. we test H0 : β4 = β5 = 0, and obtain the following p-values

for ω, ωb3 and ωa1: 0.0726, 0.1121 and 0.0840, respectively. The null hypothesis is not

rejected by the three tests at the 5% nominal level, but only the Bartlett-corrected test

maintains that inference at the 10% nominal level. That is, such a test provides more

evidence in favor of the removal of x4 and x5 from the mean submodel.

Based on the above testing inference, we arrive at the following reduced model

(ModelM2R), which is our final model:

log
(

µi
1−µi

)
= β1 +β2xi2 +β3xi3 +β4xi6 +β5xi7 +β6xi8√

φi = δ1 + δ2xi2.

The estimates of β1, . . . ,β6 (standard errors in parenthesis) are, respectively, 22.9423

(7.6472), −0.7583 (0.1942), 0.0044 (0.0011), 0.1866 (0.0545), −0.0483 (0.0136), 0.0265

(0.0055). For the precision submodel, we obtain δ̂1 = 22.0333 (5.0312) and δ̂2 =−0.1934

(0.0498). The model pseudo-R2 is 0.3455; it is higher than that of the model estimated

by Cribari-Neto and Souza (2013). Additionally, AIC =−59.8094, AICC =−56.2972 and

BIC = −44.5133. It is noteworthy that these criteria clearly favor our reduced model

relative to the model presented in Cribari-Neto and Souza (2013); recall that for that

model, AIC =−55.3188, AICC =−48.3714 and BIC =−34.2865. The difference in AIC

(AICC) [BIC] in favor of ModelM2R is of nearly 5 points (nearly 8 points) [over 10 points].

When the difference in AIC values exceeds 4, one can conclude that there is considerably

less support for the model with larger AIC; see Burnham and Anderson (2004). The

evidence in favor of our reduced model is thus strong.

Asymptotic confidence intervals with nominal coverage (1−α)× 100% for

the parameters of Model M2R can be obtained using the asymptotic normality of the

corresponding maximum likelihood estimators. In particular, for j = 1, . . . ,6 and k = 1,2,

β̂j + z1−α/2 se(β̂j) and δ̂k + z1−α/2 se(δ̂k) are asymptotic confidence intervals for βj and

δk with nominal coverage (1−α)× 100%, respectively, the asymptotic standard errors,

se, being obtained from Fisher’s information matrix inverse evaluated at the maximum

likelihood estimates. Here, z1−α/2 denotes the 1−α/2 standard normal quantile. Table 8

contains the lower and upper limits (LLCIa and ULCIa) of such intervals for the parameters

that index ModelM2R for 1−α = 0.95. Following Das, Dhar and Pradhan (2018), we

also computed approximate confidence intervals based on the test statistics ω, ωb3 and
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ωa1 which was done by finding the set of parameter values such that the test statistic is

smaller than χ2
1;0.95 for each parameter and each test statistic. Such intervals are also

presented in Table 8. For instance, the confidence intervals for β5 constructed using ωb3
and ωa1 are [−0.0796,−0.0169] and [−0.0781,−0.0145], respectively; the corresponding

asymptotic interval estimate is [−0.0749,−0.0216]. It is noteworthy that none of the

reported confidence intervals contains the value zero.

Table 8 – Lower (LLCI) and upper (ULCI) asymptotic confidence intervals limits for the
parameters of Model M2R; standard asymptotic confidence interval and
confidence intervals constructed using the test statistics ω, ωb3 and ωa1.

LLCIa ULCIa LLCIω ULCIω LLCIωb3 ULCIωb3 LLCIωa1 ULCIωa1

β1 7.9538 37.9302 3.7532 39.1532 3.7532 40.3532 3.7532 41.5532
β2 −1.1389 −0.3776 −1.1985 −0.4794 −1.1985 −0.4182 −1.1985 −0.4794
β3 0.0022 0.0065 0.0011 0.0068 0.0011 0.0069 0.0014 0.0072
β4 0.0798 0.2935 0.0674 0.3066 0.0622 0.3144 0.0505 0.3066
β5 −0.0749 −0.0216 −0.0778 −0.0184 −0.0796 −0.0169 −0.0781 −0.0145
β6 0.0159 0.0371 0.0137 0.0393 0.0127 0.0403 0.0137 0.0396
δ1 12.1722 31.8941 8.7085 32.7085 8.7085 33.5085 8.7085 32.3085
δ2 −0.2910 −0.0957 −0.2926 −0.0566 −0.2926 −0.0566 −0.2926 −0.0566

Source: The author (2020).

The model used by Cribari-Neto and Souza (2013) (Model M1) and our

reduced model (ModelM2R) are non-nested. In order to distinguish between them using

a hypothesis test, we performed the J test as outlined by Cribari-Neto and Lucena (2015).

When the test is applied to two non-nested models, say Models m1 and m2, each model is

sequentially tested against the other, i.e. we test Model m1 against Model m2, and then

we test Model m2 against Model m1. It is thus possible to accept one model as the true

model and reject the alternative model, to accept both models (i.e. to conclude that the

two models are empirically indistinguishable) or to reject both models. Since the J testing

inference is reached using the likelihood ratio test, we have also performed the test using

the two corrected tests. We first test ModelM1, i.e. the model fitted by Cribari-Neto and

Souza (2013), against our reduced model (ModelM2R). The p-values of the tests based

on ω, ωb3 and ωa1 are, respectively, 0.0036, 0.0825, 0.0233. All tests reject ModelM1 (i.e.

the model used by the authors) at the 10% significance level; the test based on ωa1 (ω)

yields rejection at α = 5% (1%). Next, Model M2R is tested against Model M1. The
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p-values of the tests that use ω, ωb3 and ωa1 are 0.0364, 0.1100 and 0.2001, respectively.

Interestingly, our model is rejected at the 5% significance level by the likelihood ratio test

whereas that inference is reversed when the small sample corrections are applied: the two

corrected tests do not yield rejection of the model, nor even at α = 10%. That is, our

model is not rejected by the two corrected tests.

It is noteworthy that if we consider the three sets of tests, i.e. the tests of

H0 : β4 = 0, H0 : β5 = 0 and H0 : β4 = β5 = 0, it is clear that the Bartlett-corrected test

was the test that most emphatically suggested the removal of both x4 and x5 from the

mean submodel of ModelM2.

We constructed a residual normal probability with simulated envelopes using

the combined residuals of Espinheira, Santos and Cribari-Neto (2017) from our fitted model

(ModelM2R); see Figure 3. The envelope bands were constructed using 100 replications

The plot shows that there is no evidence against the correct specification of our model

since all points lie inside the two envelope bands.

Figure 3 – Residual normal probability plot.
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Source: The author (2020).

In Cribari-Neto and Souza (2013), Figure 4, the authors plot an estimate of

∂µi/∂xi2 against a sequence of values of average intelligence by setting all other covariates
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at their median values. In Figure 4 we present a panel of similar plots each containing

two impact curves, namely: (i) that obtained from our reduced model (‘new’) and (ii)

that obtained using the model fitted by Cribari-Neto and Souza (2013) (‘old’). That is,

‘new’ and ‘old’ in Figure 4 refer to ModelsM2R andM1, respectively. Instead of only

fixing the covariates other than average intelligence at their median values, we do so at

four different quantiles: 0.10, 0.25, 0.50 (median) and 0.75. The number above each panel

indicates at which quantile the covariates other than those related to average intelligence

were fixed. We note that the two impact curves become more similar (more dissimilar) as

the quantile at which the regressors values are set increases (decreases). Such covariates

tend to assume larger values for more developed nations since they relate to per capita

income, life expectancy and integration to international trade. In particular, the former

two variables are highly correlated with economic development. It then follows that one

gets a somewhat different functional form of the impact of average intelligence on the

prevalence of religious disbelievers in lower income countries when our reduced model is

used relative to the model used by the original authors. At the lowest quantile (0.10), the

maximal impact computed from our model (ModelM2R) is over 11% larger than that

obtained using the alternative model (ModelM1). When the covariates values are set at

their medians, the figure drops to nearly 4%. To the best of our knowledge, our analysis

provides the first measure of the decline in the maximal impact of average intelligence on

the prevalence of religious disbelievers and also of the changes in the functional form of

such an impact as nations become more developed.

Figure 4 – Impact curves of average intelligence on the prevalence os atheists.
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Source: The author (2020).
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1.6 CONCLUDING REMARKS

The beta regression model is widely used to model responses that assume values

in (0,1). In the initial formulation of the model, the precision parameter was assumed

constant for all observations, i.e. all responses in the sample share the same precision.

This model became known as the fixed precision beta regression model. A more general

and more flexible formulation of the model was later proposed. It allows both distribution

parameters to vary across observations. Most empirical applications employ this version

of the model, which is known as the varying precision beta regression model. It contains

two submodels, one for mean and another for the precision.

In both variants of the regression model, testing inferences are usually performed

using the likelihood ratio test. Such a test employs an asymptotic approximation, and as

a consequence it can be quite size distorted when the sample size is small. In particular, it

tends to be liberal (oversized), i.e. it overrejects the null hypothesis when such a hypothesis

is true. Since many applications of the beta regression model are based on samples of

small to moderate sizes, it is important to develop alternative tests with superior finite

sample behavior, i.e. tests that yield better control of the type I error frequency. Bayer

and Cribari-Neto (2013) derived a Bartlett correction to the likelihood ratio test that can

be used to achieve more accurate testing inferences. Their result, nonetheless, only applies

to the more restrictive model formulation, namely: the fixed precision model. Since many

applications employ the varying precision formulation of the beta regression model, their

small sample correction cannot be used. In this chapter we derived the Bartlett correction

to the likelihood ratio test in full generality. Our correction can thus be used to construct

modified likelihood ratio tests to be used in varying precision beta regression analyses. We

considered three Bartlett-corrected tests. Monte Carlo simulation evidence revealed that

one of such tests typically delivers very accurate inferences even when the sample size

is quite small. Its small sample performance was numerically compared to those of two

tests that are based on an alternative correction. Overall, the results favor the test that

employs the Bartlett correction. A novel feature of our Bartlett-correction tests is that

their size distortions are guaranteed to vanish at a faster rate than that of the likelihood

ratio test: O(n−2) vs O(n−1).

We presented and discussed an empirical application that involved an important

issue in evolutionary biometrics, namely: the relationship between average intelligence
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and the prevalence of religious disbelievers. Using data on 50 countries, we showed that

by using our Bartlett-corrected testing inferences we arrive at a beta regression model

slightly different from that previously used in the literature. It is noteworthy that our

model displays superior fit and yields a noticeably different functional form of the impact

of intelligence on religious disbelief in low income countries. This empirical application

illustrates the usefulness of the Bartlett correction derived in this chapter.

A direction for future research is the extension of our analytical results for

testing inferences in inflated beta regression models introduced by Ospina and Ferrari

(2012) which include both continuous and discrete components and thus allow for response

values that are exactly equal to 0 or 1.
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2 BARTLETT-CORRECTED TESTS FOR GENERAL EXTREME-

VALUE REGRESSIONS WITH APPLICATION TO MAXIMAL

COVID-19 MORTALITY IN BRAZIL

2.1 INTRODUCTION

Extreme phenomena are of interest in many fields such as meteorology, finance,

hydrology, civil engineering, astronomy, metallurgy, insurance, oceanography, biomedicine,

among others; see, e.g., Kotz and Nadarajah (2000). The desire to gain knowledge

on the occurrence of extreme events has led to the development of statistical methods

for modeling phenomena such as natural disasters, earthquakes, landslides, financial

crises, and pandemics. Extreme events have specific attributes, and hence they should

not be modeled like events in which the interest typically lies in the central region of

the population distribution. In the statistical theory of extremes, parametric and semi-

parametric statistical models are developed to deal with rare events, i.e., with events

that occur with very small probabilities. It has been shown that the normalized (that is,

standardized using sequences of real numbers) maximal realization of an event necessarily

follows one of following three laws as the sample size tends to infinity: Weibull, Fréchet

or Gumbel; see Gumbel (1958). This fact is routinely explored when developing new

modeling strategies for extreme events.

It is typically of interest to model the dependence of extreme events on condi-

tioning (explanatory, independent) variables. A general extreme-value regression model

was introduced by Barreto-Souza and Vasconcellos (2011) under the assumption that the

extreme phenomenon of interest follows the Gumbel law. The model comprises of two

submodels for location and dispersion parameters which are modeled by separate nonlinear

predictors. Testing inferences on the parameters that index the two submodels are typically

carried out using the likelihood ratio test which uses asymptotic critical values, i.e., critical

values obtained from the test statistic’s asymptotic null distribution. This approximation

may be poor when the sample size is small since the test statistic’s exact null distribution

may not be close to its asymptotic counterpart. As a result, the likelihood ratio test may

be considerably size-distorted. In particular, as revealed by our numerical results, it tends

to be liberal, i.e., its exact type I error probability typically exceeds the test’s significance

level. This liberal behavior may, for instance, lead practitioners to include in their models

regressors that have no explanatory power on the phenomenon under study. It is thus
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important to obtain alternative tests with superior control of the type I error frequency.

We derive the Bartlett correction (BARTLETT, 1954) to the likelihood ratio

test and use it to define three Bartlett-corrected test statistics. The three modified tests

are also based on asymptotic critical values. They are improved in the sense that their

size distortions vanish faster than those of the unmodified test as the sample size increases.

The derivation of the Bartlett correction factor is lengthy and cumbersome because the

regression parameters in the two submodels are not orthogonal. We provide a closed-form

expression for such a correction factor whose numerical evaluation only requires simple

matrix operations. It can thus be easily computed in empirical applications that are based

on a small number of data points. We present the results of Monte Carlo simulations

that show that the proposed tests typically outperform the likelihood ratio test in small

samples. Indeed, our numerical evidence shows that the new tests behave remarkably

well even when the sample size is very small, the model is nonlinear and there is varying

precision.

The motivation for our work is a public health problem, specifically the COVID-

19 pandemic in Brazil. Our objective is to determine how the maximal COVID-19 mortality

(per 100,000 inhabitants, weekly moving average) in each federative unit is impacted by

factors (covariates) such as number of new COVID-19 cases, political positioning of the

state governor in relation to the federal government, number of health care facilities,

percentage change in the number of frontline physicians facing the disease, amount of

chloroquine and hydroxycholoroquine received by the local government, percentage change

in the number of ventilators, proportion of local hospitals that are private, and relative

availability of intensive care unit beds. We obtained and organized data from several

different sources on these variables for the 27 Brazilian federative units. We fitted the

generalized extreme-value model to the data and, through hypothesis testing, arrived at

reduced models. We arrived at a particular model using a Bartlett corrected test and at

two different models when inferences were based on the likelihood ratio test and on a test

that adopts an alternative finite sample correction. Measures of goodness-of-fit favored the

model obtained using the Bartlett test. Interestingly, this model, unlike the alternative

models, did not include among its regressors the number of boxes of chloroquine and

hydroxychloroquine pills received by the local government from the federal government.

As is well known, the medical literature has already established the inefficacy of these
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drugs.

The chapter is structured as follows. In Section 2.2, we present the general

extreme-value regression model. In Section 2.3, we derive the Bartlett correction factor

to the likelihood ratio test in such a class of models and use it to define three corrected

test statistics. They can be used to test restrictions on the parameters that index the

location and dispersion submodels of the general extreme-value regression model. Monte

Carlo simulation evidence on the corrected tests’ finite sample performance is presented in

Section 2.4. In Section 2.5, we model the maximal COVID-19 mortality in Brazilian states.

Some concluding remarks are offered in Section 2.6. Technical details on the derivation of

the Bartlett correction factor for the likelihood ratio test statistic in the general extreme

value regression model can be found in Appendix C.

2.2 THE GENERAL EXTREME-VALUE REGRESSION MODEL

There are two approaches in extreme-value theory, namely the block maximums

(BM) method and the peaks-over-threshold (POT) method. In the BM method, the sample

period is divided into periods of equal amplitude and the maximal data value in each

period is selected; see Gumbel (1958). For further details on the BM method, see Ferreira

and Haan (2015). In the POT method, by contrast, we select the observations that exceed

a certain high threshold.

The Fisher-Tippett-Gnedenko Theorem (Fisher and Tippett (1928), Gnedenko

(1943)) is a general result related to the asymptotic distribution of extreme order statistics.

Let V1, . . . ,Vn be a sequence of independent and identically distributed random variables.

Extreme value theory is interested in the behavior of the extremes of samples that are their

maximum or minimum value, given by Mn = max{V1, . . . ,Vn} and M̃n = min{V1, . . . ,Vn},

respectively. The exact behavior of Mn is not known. Under certain regularity conditions,

it is possible to gain knowledge on the approximate behavior of Mn when n→∞. In

particular, asymptotic theory reveals the existence of a family of models that can be

fitted to observed data on Mn; see Coles et al. (2001) and Smith (2003). The rule for

extrapolating models based on mathematical bounds as finite level approximations was

called by Coles et al. (2001) the extreme value paradigm. It is of interest to determine the

possible limiting distributions of Mn. We have that Pr(Mn ≤ v) = F (v)n, where F (·) is the

distribution function of V , for v < v+, where v+ is the smallest value such that F (v) = 1,
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and limn→∞F (v)n = 0. The distribution of Mn is thus degenerate at v+. The extreme

value distribution arises when it is possible to obtain real-valued sequences an ∈R+ and

bn ∈R such that

Pr
(
Mn− bn
an

≤ v
)

= F
(
anv+ bn

)n
→G(v) ∀v ∈R

as n→∞, whereG is a nondegenerate cumulative distribution function. Such a distribution

is known as the general extreme values (GEV) family:

G(v) = exp
−(1 + ξ

(
v−µ
φ

))−1/ξ , {v ∈R : 1 + ξ(v−µ)/φ > 0} , µ,ξ ∈R,φ > 0.

Here, µ, φ and ξ are location, scale and shape parameters, respectively.

According to Gnedenko (1943), Theorem 1, there are only three possible limiting

distributions for M∗n = (Mn− bn)/an. By making ξ→ 0, ξ > 0 and ξ < 0 one obtains the

classes of distributions, named as extreme-value distributions of types I, II and III; they are

also called Gumbel, Fréchet and Weibull distributions, respectively. The most frequently

used is Gumbel’s law. The limiting distribution is Gumbel when an = 1, bn = log(n) and

ξ→ 0. For more details on modeling extremes, see Beirlant et al. (2006) and Castillo et al.

(2005). Details on the extreme-value distributions can be found in Chapter 22 of Johnson,

Kotz and Balakrishnan (1995). Kusumoto and Takeuchi (2020) contains a study on the

uniform rate of convergence of the normalized sample maximum value (M∗n) with respect

to the Kolmogorov distance based on Stein equations.

The Gumbel distribution is commonly used for modeling events that occur with

low probability. In particular, it is quite useful in risk modeling, and is used in finance,

insurance, economics, risk management, hydrology, etc. Let Y be a random variable that

follows the Gumbel distribution, denoted Y ∼Gumbel(µ,φ). Its cumulative distribution

and density functions are, respectively,

F (y;µ,φ) = exp
(
−exp

(
−y−µ

φ

))

and

f(y;µ,φ) = 1
φ

exp
((
−y−µ

φ

)
− exp

(
−y−µ

φ

))
,

y ∈R, where µ ∈R and φ > 0 are location and dispersion parameters, respectively. The

distribution mean, variance, and quantile function are

E(Y ) = µ+φγ, Var(Y ) = π2φ2

6 and F−1(p) = µ−φ log(− log(p)),
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0 < p < 1, where γ = limn→∞
(∑n

k=1k
−1− logn

)
≈ 0.5772156649 is the Euler-Mascheori

constant and F (·) is the distribution function of Y .

In some cases the interest lies in modeling minimum values, M̃n = min{V1, . . . ,Vn},

as, e.g., in Smith and Naylor (1987). That can de done by taking −Vi which implies that

M̃n =−Mn.

Let Y = (Y1, . . . ,Yn)> be a vector of independent random variables such that

each yi is Gumbel-distributed with location parameter µi and dispersion parameter φi,

i= 1, . . . ,n. The general extreme value regression model proposed by Barreto-Souza and

Vasconcellos (2011) is defined by

g1(µ) = η1 = f1(X;β) (2.1)

and

g2(φ) = η2 = f2(Z;θ), (2.2)

where β = (β1, . . . ,βp)> ∈Rp and θ = (θ1, . . . , θq)> ∈Rq are vectors of unknown regression

parameters (p+ q < n), η1 = (η11, . . . ,η1n)>, η2 = (η21, . . . ,η2n)>, µ = (µ1, . . . ,µn)> and

φ= (φ1, . . . ,φn)>. It is worth noting that under nonlinearity the dimensions of the β and

θ parameter vectors may differ from the number of covariates in the respective submodels.

Also, X is the n×p1 matrix of location covariates whose ith line is xi = (xi1, . . . ,xip1)>

and Z is the n× q1 matrix of dispersion covariates with ith line zi = (zi1, . . . , ziq1)>. Such

matrices can coincide partially, totally or not at all. Also, f1(·, ·) and f2(·, ·) are possibly

nonlinear functions which are continuous and twice continuously differentiable in the second

argument such that the ranks of J1 = ∂η1/∂β and J2 = ∂η2/∂θ are p and q, respectively,

and g1(·) and g2(·) are link functions which are strictly monotonic and twice continuously

differentiable with domains R and R+, respectively.

Let υ = (β>, θ>)> be the vector of regression coefficients of the model given in

Equations (2.1) and (2.2). The log-likelihood function is

`(υ)≡ `(β,θ) =
n∑
i=1

`i(µi,φi), (2.3)

where

`i(µi,φi) = log(f(yi;µi,φi)) =− log(φi)−
yi−µi
φi

− exp
(
−yi−µi

φi

)
.
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It is possible to express `(υ) in matrix form as

`(υ) =−ι> {Φ∗+T +T ∗} ι,

where Φ∗ = diag(log(φ1), . . . , log(φn)), T = diag(t1, . . . , tn), T ∗ = diag(t∗1, . . . , t∗n) with ti =

(yi−µi)/φi and t∗i = exp(−ti), ι being an n-vector of ones. It is possible to show that

E(T ) = γ, E(T ∗) = 1, E(T ∗T ) = γ− 1, E(T ∗T 2) = Γ(2)(2), where Γ(2)(·) is the second

derivative of the gamma function. For further details on these results, see Appendix B.

The score function is obtained by differentiating the log-likelihood function

with respect to the regression parameters. We have that

U ≡ U(υ) =
(
Uβ(β,θ)>,Uθ(β,θ)>

)>
,

where

Uβj
(β,θ) = ∂`(β,θ)

∂βj
=

n∑
i=1

1
φi

(1− t∗i )
(
∂µi
∂η1i

)(
∂η1i
∂βj

)
, j = 1, . . . ,p, (2.4)

and

UθJ
(β,θ) = ∂`(β,θ)

∂θJ
=

n∑
i=1

1
φi

[−1 + ti(1− t∗i )]
(
∂φi
∂η2i

)(
∂η2i
∂θJ

)
, J = 1, . . . , q. (2.5)

Let Φ = diag(φ1, . . . ,φn), H1 = diag(∂µ1/∂η11, . . . ,∂µn/∂η1n), H2 = diag(∂φ1/∂η21, . . . ,

∂φn/∂η2n) and let I denote the n-dimensional identity matrix. It is possible to write

Equations (2.4) and (2.5) in matrix form as

∂`(β,θ)
∂β

= J>1 Φ−1H1 (I −T ∗) ι and ∂`(β,θ)
∂θ

= J>2 Φ−1H2 [−I+T (I −T ∗)] ι,

respectively.

The maximum likelihood estimator of υ, say υ̂, solves U(υ) = 0p+q, where 0p+q
is the (p+ q)-dimensional vector of zeros. It is not possible to express υ̂ in closed-form.

Parameter estimates are typically obtained by numerically maximizing `(υ) using a Newton

or quasi-Newton nonlinear optimization algorithm, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm; see Nocedal and Wright (2006).

The Hessian matrix J is

J =

 Jβθ Jβθ
Jθβ Jθθ

=


∂2`(β,θ)
∂β∂β>

∂2`(β,θ)
∂β∂θ>

∂2`(β,θ)
∂θ∂β>

∂2`(β,θ)
∂θ∂θ>

 .
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Let (jl)i = ∂2η1i/∂βj∂βl, (j, l)i = (∂η1i/∂βj)×(∂η1i/∂βl), (JL)i = ∂2η2i/∂θJ∂θL, (J,L)i =

(∂η2i/∂θJ)× (∂η2i/∂θL), etc. It follows that

∂2`(β,θ)
∂βj∂βl

=
n∑
i=1

− t∗iφ2
i

(
∂µi
∂η1i

)2
(j, l)i+

(
1− t∗i
φi

)(
∂2µi
∂η2

1i
(j, l)i+

∂µi
∂η1i

(jl)i
) ,

∂2`(β,θ)
∂βj∂θL

= ∂2`(β,θ)
∂θL∂βj

=−
n∑
i=1

{
1
φ2
i

[(ti−1)t∗i + 1]
(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(j,L)i

}
and

∂2`(β,θ)
∂θJ∂θL

=
n∑
i=1


(

1−2ti(1− t∗i )− t2i t∗i
φ2
i

)(
∂φi
∂η2i

)2
(J,L)i+

(
−1 + ti− tit∗i

φi

)

×
(
∂2φi
∂η2

2i
(J,L)i+

∂φi
∂η2i

(JL)i
)}

.

Fisher’s information matrix is

I≡ I(β,θ) =

 Iββ Iβθ
Iθβ Iθθ

 ,
where

Iββ = E
[
−∂

2`(β,θ)
∂βj∂βl

]
= J>1 Φ−1H2

1Φ−1J1,

Iβθ = I>θβ = E
[
−∂

2`(β,θ)
∂βj∂θL

]
= (γ−1)J>1 Φ−1H1Φ−1H2J2 and

Iθθ = E
[
−∂

2`(β,θ)
∂θJ∂θL

]
=
(
1 + Γ(2)(2)

)
J>2 Φ−1H2

2Φ−1J2.

It is noteworthy that the parameters β and θ are not orthogonal since Fisher’s information

matrix is not block-diagonal.

Several authors have modeled the occurrence of extreme values. Chan et al.

(2008) developed point and interval estimation for the parameters that index the minimum

extreme-value linear regression model with type II censoring. Bali (2003) introduced a

more general extreme-value distribution using the Box-Cox transformation. Residuals,

generalized leverage measures, an expression for Cook’s distance, and local influence

analysis for the general extreme-value regression model were developed by Oliveira Jr.,

Cribari-Neto and Nobre (2020). Generalized maximum likelihood estimators for the

nonstationary generalized extreme value model were defined by Adlouni et al. (2007).

Aryal and Tsokos (2009) used the quadratic rank transmutation map to generate a flexible

family of probability distributions taking the extreme-value distribution as the base value
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distribution. Miladinovic and Tsokos (2009) used a modified Gumbel distribution to

characterize the failure times of a given system. Calabrese and Osmetti (2013) introduced

a generalized extreme-value regression model for binary dependent variables. For empirical

analyses based on extreme-value regression models, see Calabrese and Giudici (2015).

2.3 IMPROVED LIKELIHOOD RATIO TESTS IN THE GENERAL EXTREME VA-

LUE REGRESSION MODEL

As noted earlier, the chi-squared distribution may not yield a good appro-

ximation to the exact null distribution of the likelihood ratio test statistic when the

sample size is not large. It is thus important to explore alternative testing strategies

with superior performance in small samples. A promising strategy is that which involves

modifying the likelihood ratio test statistic using what is known as ‘the Bartlett correction

factor’. This approach has been successfully used in different classes of models; see, e.g.,

Bayer and Cribari-Neto (2013), Botter and Cordeiro (1997), Chan, Chen and Yau (2014),

Guedes, Cribari-Neto and Espinheira (2021), Lemonte, Ferrari and Cribari-Neto (2010)

and Magalhães and Gallardo (2020). This is the approach we shall pursue.

We will adopt a general framework in which it is possible to perform infe-

rence on any set of parameters. To that end, we partition the parameter vector of the

general extreme-value regression model, υ = (β>, θ>)>, as υ = (ρ>, δ>)>, where ρ is an

l-dimensional vector of parameters of interest and δ is an r-dimensional vector of nuisance

parameters. Our interest lies in making inferences on ρ; more specifically, we wish to test

the null hypothesis H0 : ρ= ρ(0) against the composite alternative hypothesis H1 : ρ 6= ρ(0),

where ρ(0) is a given l-dimensional vector. For instance, we may test H0 : ρ(0) = 0l, where

0l is an l-dimensional vector of zeros, to determine whether the corresponding regressors

should be in the model. The likelihood ratio test statistic for the test of H0: ρ= ρ(0) is

ω = 2
[
`(ρ̂, δ̂)− `(ρ0, δ̃)

]
, (2.6)

where (ρ̂>, δ̂>)> and (ρ0>, δ̃>)> are, respectively, the unrestricted and restricted maxi-

mum likelihood estimators of (ρ>, δ>)>. Under the null hypothesis, ω is asymptotically

distributed as χ2
l ; veja te discussion in Chapter 9 of Cox and Hinkley (1979). The test

is then carried out using critical values from such an asymptotic distribution so that

H0 is rejected at significance level α ∈ (0,1) if ω > χ2
l,1−α, i.e., if the test statistic value
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exceeds the 1−α quantile of the limiting null distribution. It worth noticing that the

test may yield unreliable inferences since the exact null distribution of ω may be poorly

approximated by χ2
l when n is small. A more reliable test can be obtained by resorting to

second order asymptotic theory.

Bartlett (1937) proposed applying an adjustment factor to the likelihood ratio

statistic. He obtained a scalar correction factor c that made the expected value of the

new statistic equal to or very close to the expected value of the reference χ2 distribution.

By doing so, he achieved a better approximation to the null distribution of the modified

test statistic by the chi-squared distribution. Under the null hypothesis, he computed

the expected value of ω up to order n−1 and showed that E(ω) = l+ b+O(n−2), where

b = b(υ) is of order O(n−1). He then defined the quantity c = 1 + b/l. Thus, the first

Bartlett-corrected test statistic is expressed as ωb1 = ω/c and its expected value equals l if

we neglect terms of order O(n−2). He further established the agreement between the first

three cumulants of ωb1 with those of the chi-squared distribution with error of order n−1.

Bartlett (1938) obtained similar results in the context of multivariate analysis; see also

Bartlett (1947) and Bartlett (1954).

A more general approach came much later when Lawley (1956) obtained an

expansion of `(ρ̂, δ̂), under null hypothesis, up to order n−1 which involves derivatives of

the log-likelihood function up to the fourth order. He then showed that the expected value

of ω up to order O(n−1) can be expressed as

2E
[
`(ρ̂, δ̂)− `(ρ,δ)

]
= k+ εk +O(n−2). (2.7)

Here, εk is of order n−1 and can expressed as

εk =
∑

υ1,...,υk

(λrstu−λrstuvw) . (2.8)

The summation in (2.8) denoting the sum over all combinations of p+ q parameters of the

vector υ = (β>, θ>)>, i.e., the indices r,s, t,u,v and w range in the vectors β and θ,

λrstu = κrsκtu
{
κrstu

4 −κ(u)
rst +κ

(su)
rt

}
,

λrstuvw = κrsκtuκvw
{
κrtv

(
κsuw

6 −κ(u)
sw

)
+κrtu

(
κsvw

4 −κ(v)
sw

)
+κ

(v)
rt κ

(u)
sw +κ

(u)
rt κ

(v)
sw

}
,

where −κrs is the (r,s) element of the inverse of Fisher’s information matrix, I−1. He also

showed that

2E
[
`(ρ0, δ̃)− `(ρ,δ)

]
= k− l+ εk−l+O(n−2), (2.9)
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where εk−l is of order n−1 and can be written as

εk−l =
∑

υl+1,...,υk

(λrstu−λrstuvw) . (2.10)

Notice that the summation in (2.10) only operates on the k− l nuisance parameters. It is

thus possible to write the likelihood ratio test statistic ω given in (2.6) as

ω = 2
{[
`(ρ̂, δ̂)− `(ρ,δ)

]
−
[
`(ρ0, δ̃)− `(ρ,δ)

]}
.

It follows from (2.7) and (2.9) that, under the null hypothesis, the expected

value of ω is

E(ω) = 2E
{[
`(ρ̂, δ̂)− `(ρ,δ)

]
−
[
`(ρ0, δ̃)− `(ρ,δ)

]}
= l+ εk− εk−l+O(n−2)

= l
(

1 + εk− εk−l
l

)
+O(n−2).

We thus arrive at the following Bartlett-corrected test statistic:

ωb1 = ω

1 + εk−εk−l
l

.

It is easy to see that E(ωb1) = l+O(n−2). More generally, all of its cumulants coincide

with those of the chi-squared distribution with error of order O(n−3/2); see Lawley (1956).

The quantity c= 1 + (εk− εk−l)/l is known as ‘the Bartlett correction factor’.

The following two test statistics, denoted ωb2 and ωb3, are equivalent to ωb1 up

to order O(n−1):

ωb2 = ω exp
(
−(εk− εk−l)

l

)
and ωb3 = ω

[
1− (εk− εk−l)

l

]
;

see Lemonte, Ferrari and Cribari-Neto (2010). We note that ωb2 has the advantage of only

assuming positive values.

According to Cordeiro (1987), Chesher and Smith (1995) and Hayakawa (1977),

under null hypothesis, the corrected test statistic ωb1 is distributed as χ2
l up to order

O(n−1). It is worth noting that the correction factor c may depend on unknown parameters.

When that happens, they can be replaced by their restricted maximum likelihood estimates

with no impact on the order of the approximation. Barndorff-Nielsen and Hall (1988)

showed that the size distortions of the Bartlett-corrected tests are of order O(n−2), and not

of order O(n−3/2), as previously believed. It is thus noteworthy that the size distortions

of the Bartlett-corrected tests vanish much faster than that of the likelihood ratio test as
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n→∞: O(n−2) vs O(n−1). For further details on Bartlett corrections, we refer readers

to Cordeiro and Cribari-Neto (2014) and Cribari-Neto and Cordeiro (1996).

We aim to obtain Bartlett-corrected tests to be used in the general extreme-

value regression model with varying dispersion. The Bartlett correction factor depends on

the quantity εk, defined in (2.8), which in turn depends on joint cumulants of log-likelihood

derivatives. It is noteworthy that the model parameters β and θ are not orthogonal,

that is, Fisher’s information matrix is not block diagonal, unlike what happens in the

class of generalized linear models. As a consequence, the derivation of a closed-form

expression for εk becomes quite cumbersome. The Bartlett correction factor for use in

general extreme-value regressions can be obtained using the result developed by Cordeiro

(1993). The author presents a general matrix formula for the the adjustment factor. In

order to use his result, we need to obtain closed-form expressions for the log-likelihood

cumulants up to the fourth order for the general extreme-value regression model in full

generality, i.e., considering nonlinearity and varying dispersion. These cumulants are

presented in Appendix C. From them, we obtain the matrices of order k which are used in

the calculation of the correction factor whose (r,s) elements are

A(tu) =
{
κrstu

4 −κ(u)
rst +κ

(su)
rt

}
, P (t) = {κrst} , Q(u) =

{
κ(r)
su

}
, (2.11)

t,u = 1, . . . ,k. We then define the matrices L, M (1), M (2), M (3), N (1), N (2) and N (3)

whose (r,s) elements are

Lrs =
{

tr(I−1A(rs))
}
,

M (1)
rs =

{
tr(I−1P (r)I−1P (s))

}
,

M (2)
rs =

{
tr(I−1P (r)I−1Q(s)>)

}
,

M (3)
rs =

{
tr(I−1Q(r)I−1Q(s))

}
, (2.12)

N (1)
rs =

{
tr(P (r)I−1)tr(P (s)I−1)

}
,

N (2)
rs =

{
tr(P (r)I−1)tr(Q(s)I−1)

}
,

N (3)
rs =

{
tr(Q(r)I−1)tr(Q(s)I−1)

}
,

r,s= 1, . . . ,k, where tr(·) is the trace operator. We use the matrices given in (2.11) and
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(2.12) to express the following quantities in matrix form:

∑
υ1,...,υk

λrstu = tr(I−1L),

∑
υ1,...,υk

κrsκtuκvw
{
κrtvκsuw

6 −κrtvκ(u)
sw +κ

(v)
rt κ

(u)
sw

}
=−tr(I−1M (1))

6 (2.13)

+ tr(I−1M (2))− tr(I−1M (3)),

κrsκtuκvw
{
κrtuκsvw

4 −κrtuκ(v)
sw +κ

(u)
rt κ

(v)
sw

}
=−tr(I−1N (1))

4
+ tr(I−1N (2))− tr(I−1N (3)).

Since the trace operator is linear, it follows from (2.8) and from the expressions

in (2.13) that εk can be expressed in matrix notation as

εk = tr
(
I−1L

)
−

− tr
(
I−1M (1)

)
6 + tr

(
I−1M (2)

)
− tr

(
I−1M (3)

)
−

tr
(
I−1N (1)

)
4

+ tr
(
I−1N (2)

)
− tr

(
I−1N (3)

)= tr
(

I−1
[
L−

(
−M

(1)

6 +M (2)−M (3)− N
(1)

4 (2.14)

+ N (2)−N (3)
)])

= tr
(
I−1(L−M −N)

)
.

The quantity εk−l given in (2.10) can be obtained analogously to the term (2.14) by only

considering the k− l nuisance parameters.

It is important to note that as n increases the size distortions of the three

Bartlett corrected tests converge to zero considerably faster than those of the standard

likelihood ratio test: the former are O(n−2) whereas the latter is O(n−1).

2.4 NUMERICAL EVIDENCE

In what follows we will present results from Monte Carlo simulations that

were carried out to evaluate the performance of the likelihood ratio test (ω) and its

Bartlett-corrected versions (ωb1, ωb2 and ωb3) in general extreme value regressions. Our

focus is on small sample inference. Maximum likelihood estimates are obtained by

numerically maximizing the logarithm of the likelihood function using the BFGS quasi-

Newton nonlinear optimization algorithm with analytic first derivatives. There were very

few BFGS convergence failures. Gumbel random number generation is performed using

the inversion method. Uniform random number generation, which is needed for use with

the inversion method, was carried out using the Mersenne-Twister algorithm. The number
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of Monte Carlo replications is 10,000. All computations were carried out using the R

statistical computing environment (R Core Team, 2021). Since the likelihood ratio test is

liberal, power simulations were performed using exact critical values obtained from the

size simulations. We thus compare the powers of size-adjusted tests.

The optimization algorithm used for maximum likelihood estimation requires

the specification of starting values for the parameters β and θ. In the linear model

with fixed dispersion, we use as starting value for β, denoted by β(0), the ordinary least

squares estimator of the linear regression of g1(y) on X, that is, β(0) = (X>X)−1X>g1(y),

where y = (y1, . . . ,yn)>. Additionally, the starting value used for φ, denoted by φ(0), is

φ(0) = (1/n)
(
6σ̂2

i /π
2
)0.5

, where σ̂2
i = σ̌2/[g′1(µ̌i)]2, with σ̌2 = ě>ě/(n− p), ě = g1(y)− µ̌,

µ̌= (µ̌1, . . . , µ̌n)> and µ̌i = g−1
1
(
x>i β

(0)
)
. Here, xi is the ith row of X written as a column

vector. To define σ̌2 we use (i) Var(yi)≈ Var[g1(yi)]/[g′1(µi)]2 (ESPINHEIRA; SANTOS;

CRIBARI-NETO, 2017) and (ii) V̂ar(yi) = σ̌2. In the linear model with varying dispersion,

β(0) is as before. The starting value for θ, say θ(0), follows from starting values for

φ1, . . . ,φn: φ
(0)
i =

(
6σ̂2

i /π
2
)0.5

. We use θ(0) = (Z>Z)−1Z>g2(φ(0)). For the nonlinear

model, starting values for the parameters were computed following the suggestion made

in Section 4 of Espinheira, Santos and Cribari-Neto (2017) for nonlinear beta regressions

with the appropriate changes; for details, see Appendix D.

At the outset, we consider the following fixed dispersion linear general extreme

value regression model:

µi = β1 +β2xi2 +β3xi3 +β4xi4,

which we call ’Model I’. We test three null hypotheses, namely: H0 : β2 = 0 (l = 1),

H0 : β2 = β3 = 0 (l = 2) and H0 : β2 = β3 = β4 = 0 (l = 3). In the first case, the true

parameter values are β1 = 1.0, β2 = 0, β3 = 1.0 and β4 =−4.5; in the second case, β1 = 1.0,

β2 = 0, β3 = 0 and β4 =−4.5; in the third and final case, β1 = 1.0, β2 = 0, β3 = 0 and β4 = 0.

In all three cases, φ = 5. The covariate values were obtained as random N (0,1) draws.

The significance levels are α= 10%,5%,1% and the sample sizes are n= 15,20,30,40. The

tests null rejection rates are presented in Table 9 (all entries are percentages).

The figures in Table 9 lead to interesting conclusions. First, the likelihood

ratio test is considerably liberal when the sample size is small. For example, when n=

15 and α= 10%, the test’s null rejection rates range from 16.7% to 19.8%. Second, the
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Table 9 – Null rejection rates (%), Model I.

α= 10% α= 5% α= 1%

n ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3

l = 1

15 16.7 11.0 9.9 8.2 10.5 5.6 4.8 3.7 3.0 1.1 0.9 0.7

20 16.0 10.8 10.2 9.1 9.2 5.3 4.9 4.3 2.7 1.1 1.0 0.8

30 13.1 10.1 9.8 9.5 7.7 5.3 5.1 4.8 1.8 1.0 0.9 0.9

40 12.0 10.1 10.0 9.9 7.0 5.3 5.3 5.2 1.6 1.0 1.0 1.0

l = 2

15 19.1 11.0 9.7 8.2 11.7 5.5 4.7 3.7 3.5 1.2 0.9 0.7

20 17.2 10.9 10.1 9.1 9.9 5.4 5.0 4.4 2.9 1.0 0.9 0.7

30 14.2 10.3 10.0 9.8 8.1 5.2 5.1 4.8 1.9 1.0 0.9 0.9

40 13.1 10.2 10.0 9.9 7.2 5.2 5.1 5.0 1.8 1.2 1.1 1.1

l = 3

15 19.8 11.0 10.0 8.6 12.2 5.7 5.1 4.2 3.9 1.2 1.0 0.8

20 17.4 10.8 10.1 9.4 10.1 5.5 5.2 4.8 2.8 1.1 1.0 0.8

30 14.4 10.2 9.9 9.7 7.8 5.4 5.2 4.9 2.0 1.0 1.0 0.9

40 13.3 10.3 10.2 10.0 7.2 5.3 5.2 5.0 1.8 1.1 1.0 1.0

Source: The author (2021).

Bartlett-corrected tests (ωb1, ωb2 and ωb3) display much better control of the type I error

frequency, i.e., they are much less size-distorted. For instance, when n= 15, α = 5% and

l = 3, their null rejection rates are 5.7% (ωb1), 5.1% (ωb2) and 4.2% (ωb3) whereas that of

the likelihood ratio test is 12.2%. Also, the sizes of the corrected tests are not impacted

by the number of restrictions under test.

Figure 5 contains quantile-quantile (QQ) plots in which the exact quantiles

of ω, ωb1, ωb2 and ωb3 are plotted against the corresponding asymptotic quantiles. The

45o line indicates perfect agreement between exact and asymptotic null distributions.

The sample size is n= 20 and the three panels correspond to l = 1 (left), l = 2 (center),

and l = 3 (right). It is noteworthy that the exact quantiles of ω considerably exceed the

respective chi-squared quantiles. The asymptotic approximation used in the test is thus

quite poor. By contrast, the lines that correspond to the three Bartlett-corrected test

statistics are quite close to the 45o line. There is thus very good agreement between their

exact quantiles and the asymptotic quantiles.

The second set of simulations uses the following varying dispersion general
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Figure 5 – Quantile-quantile plots, (a)H0: β2 = 0 (l = 1), (b)H0: β2 = β3 = 0 (l = 2) and (c)H0:
β2 = β3 = β4 = 0 (l = 3), n=20, Model I.
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Source: The author (2021).

extreme-value regression model as data-generating process:

µi = β1 +β2xi2 +β3xi3

log(φi) = θ1 + θ2zi2,

i = 1, . . . ,n, which we call ’Model II’. We test the null hypothesis H0 : β3 = 0 against a

two-sided alternative hypothesis. The true parameter values are β1 = 1.0, β2 = 4.5, β3 = 0,

θ1 =−4.7 and θ2 = 0.4. The covariate values were obtained as random draws from the

Fisher-Snedecor distribution with 1 and 6 degrees-of-freedom, F(1,6). The significance

levels are α = 10%,5%,1% and the sample sizes are n = 15,20,30,40,50,60. Table 10

contains the tests’ null rejection rates (all entries are percentages).

Table 10 – Null rejection rates (%), H0 : β3 = 0, Model II.

α= 10% α= 5% α= 1%

n ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3

15 16.1 9.6 8.4 6.7 9.7 5.0 4.1 3.3 2.9 1.0 0.8 0.6

20 15.4 9.7 8.6 7.2 9.0 4.7 4.2 3.5 2.6 0.9 0.8 0.7

30 13.8 9.2 8.6 7.5 7.9 4.0 4.5 3.4 2.0 0.7 0.6 0.5

40 12.7 9.5 9.2 8.8 6.9 4.6 4.4 4.1 1.6 0.8 0.7 0.7

50 12.1 9.7 9.5 9.4 6.5 5.0 5.0 4.9 1.5 0.9 0.9 0.9

60 11.6 9.7 9.6 9.4 5.8 4.5 4.4 4.4 1.4 1.1 1.1 1.0

Source: The author (2021).

The figures in Table 10 show that the likelihood ratio test is oversized, especially
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when the sample size is small. Consider, e.g., n= 15 and α= 5%. The test’s null rejection

is 9.7%, i.e., the test’s exact size is almost twice the nominal size. The Bartlett-corrected

tests perform much better. For the same sample size and significance level, their null

rejection rates are 5.0% (ωb1), 4.1% (ωb2) and 3.3% (ωb3). Such tests yield much better

control of the type I error frequency. As expected, the size distortions of all tests diminish

as the sample size increases.

Figure 6 contains QQ plots for three sample sizes: 20 (left), 40 (center) and 60

(right) observations. In all three panels, there is considerable disagreement between the

exact and asymptotic quantiles of ω, especially for the smallest sample size. Two of the

modified tests display conservative behavior (lines below the 45o line) when n= 20: ωb2
and ωb3. There is very good agreement between the exact and asymptotic quantiles for

the three Bartlett-corrected tests when n= 40,60; when n= 20, the exact null distribution

of ωb1 is very well approximated by its asymptotic counterpart.

Figure 6 – Quantile-quantile plots, H0 : β3 = 0, Model II.
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Source: The author (2021).

We now consider a nonlinear data-generating mechanism. In particular, data

generation is performed using the following fixed dispersion general extreme-value regression

model:

µi = β1 + e(β2xi2) +β3xi3 +β4xi4,

which we call ’Model III’. The interest lies in testing H0 : β3 = 0 (l = 1) and the true

parameter values are β1 = 1.0, β2 = 1.0, β3 = 0, β4 = −5.0 and φ = 5. The values of

x2, x3 and x4 were selected, respectively, as random draws from the following uniform

distributions: U(0,5), U(0,1) and U(1,2). The significance levels are as before and the
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sample sizes are n= 15,20,30,40,50,60. Here, X is an n×4 matrix with ith row given by(
1,xi2eβ2xi2 ,xi3,xi4

)
. The second and third order derivatives of the nonlinear predictor

with respect to the β′s are ∂2η1i/∂βj∂βl = x2
i2eβ2xi2 and ∂3η1i/∂βj∂βl∂βm = x3

i2eβ2xi2 ,

respectively.

Table 11 – Null rejection rates (%), H0 : β3 = 0, Model III.

α= 10% α= 5% α= 1%

n ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3

15 13.8 8.0 7.5 6.7 7.2 4.1 4.1 3.8 2.1 1.4 1.5 1.4

20 13.7 9.3 8.9 8.2 7.3 4.5 4.2 3.9 1.3 0.8 0.8 0.7

30 13.0 9.5 9.2 8.9 6.7 4.3 4.2 4.0 1.2 0.7 0.7 0.7

40 12.8 10.3 10.1 9.9 7.1 5.2 5.0 4.9 1.6 1.1 1.1 1.1

50 11.8 9.3 9.1 9.0 5.9 4.5 4.4 4.4 1.3 0.9 0.9 0.9

60 11.5 9.6 9.5 9.4 6.0 4.8 4.8 4.7 1.2 0.9 0.9 0.9

Source: The author (2021).

Table 11 contains the tests’ null rejection rates for testing H0 : β3 = 0 in Model

III. As in the previous simulations, the likelihood ratio test is liberal, i.e., its null rejection

rates exceed the chosen significance levels. By contrast, the Bartlett-corrected tests display

good control of the type I error frequency, being slightly conservative when n is quite small.

For instance, when n= 20 and α = 10%, the null rejection rates of the modified tests are

9.3% (ωb1), 8.9%(ωb2) and 8.2% (ωb3) whereas that of ω is 13.7%. The first corrected test,

ωb1, displays very good performance even when n= 20.

Next, we consider a general extreme value regression model with both nonline-

arity and varying dispersion. The model is

µi = β1 +β2xi2− e(β3xi3)

log(φi) = θ1 + θ2zi2,

i= 1, . . . ,n. We shall refer to it as ’Model IV’. The null hypothesis under test is H0 : β2 = 0

(hence, l = 1) and the following parameter values were used for data generation: β1 = 1.5,

β2 = 0, β3 = 4.5, θ1 = 0.3 and θ2 =−2.0. The values of xi2 were obtained as random U(0,2)

draws, and the values of xi3 and zi2 were obtained by random sampling from U(0,1). Here,

X is an n×3 matrix with ith line given by
(
1,xi2,−xi3eβ3xi3

)
and Z is an n×2 matrix

whose ith line is (1, zi2). The second and third order derivatives of η1i with respect to the
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β’s are, respectively,

∂2η1i
∂βj∂βl

=−x2
i3eβ3xi3 , if (j, l) = (3,3),

∂3η1i
∂βj∂βl∂βm

=−x3
i3eβ3xi3 , if (j, l,m) = (3,3,3),

0, otherwise.

Table 12 contains the null rejection rates of the likelihood ratio test and its three Bartlett-

corrected variants for α = 10%,5%,1% and n= 15,20,30,40,50,60.

Table 12 – Null rejection rates (%), H0 : β2 = 0, Model IV.

α= 10% α= 5% α= 1%

n ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3

15 18.2 10.8 9.9 7.9 10.9 5.9 5.4 4.0 3.5 1.6 1.5 1.1

20 15.7 9.8 9.1 8.0 8.9 5.1 4.6 3.8 2.6 1.1 0.9 0.8

30 13.8 9.9 9.3 8.7 7.3 4.6 4.3 4.1 1.9 0.9 0.8 0.8

40 12.3 9.5 9.2 9.0 6.7 4.6 4.5 4.3 1.5 1.0 0.9 0.8

50 12.3 9.9 9.7 9.5 6.6 4.9 4.7 4.6 1.5 0.9 0.9 0.9

60 11.8 9.6 9.5 9.4 6.3 4.9 4.8 4.7 1.2 0.8 0.8 0.8

Source: The author (2021).

The numerical results reported in Table 12 show that the likelihood ratio is

quite oversized in small samples; e.g.: empirical size of 18.2% for n = 15 and α = 10%.

Interestingly, the Bartlett-corrected tests perform remarkably well in this most challenging

scenario (nonlinearity coupled with varying dispersion). For instance, for α = 10% and

n = 15, the null rejection rates of ωb1 and ωb2 are, respectively, 10.8% and 9.9%; the

third modified test is slightly conservative (7.9%). It is also worth noticing that the

Bartlett-corrected tests yield very good control of the type I error frequency for n≥ 20

even at α = 1% (extreme right tail of the test statistics’ asymptotic null distribution).

Figures 7 and 8 contain QQ plots for three sample sizes: 20 (left), 40 (center)

and 60 (right) data points. They correspond to Models III and IV, respectively. Again,

the exact quantiles of w greatly exceed the corresponding chi-squared quantiles, especially

when n < 60. By contrast, there is very good agreement between the quantiles of the

Bartlett-corrected test statistics and their asymptotic counterparts, especially when n≥ 40.

When n= 20, such an agreement is quite good for two modified test statistics, namely: ωb1
and ωb2. In this extreme situation (very small sample size, nonlinearity, varying dispersion),
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the test based on ωb3 is slightly conservative. Conservativeness is arguably less damaging

than liberalness since the effective type I frequency does not exceed the test’s significance

level, which is commonly viewed as the maximum acceptable probability of committing a

type I error.

Figure 7 – Quantile-quantile plots, H0 : β3 = 0, Model III.
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Source: The author (2021).

Figure 8 – Quantile-quantile plots, H0: β2 = 0, Model IV.
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Source: The author (2021).

Next, we shall evaluate the tests’ ability to correctly detect that the null

hypothesis under evaluation is false, i.e., we shall evaluate the tests’ powers. We test

H0 : β2 = 0 in Model IV. Data generation is performed, nonetheless, using a value of β2

that differs from zero; we denote such a value by γ. Table 13 contains the tests’ non-null

rejection rates for values of γ ranging from −2 to 2, for n= 15,30 and for two significance

levels (10% and 5%). As explained earlier, since the likelihood ratio is quite liberal, we

compare the powers of size-adjusted tests. The results show that the tests become more
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powerful as γ moves away from zero (in either direction). Additionally, the powers of the

four tests are very similar for all values of γ; when n= 15, the power of ω is very slightly

superior to those of the three modified tests.

2.5 MODELING MAXIMAL COVID-19 MORTALITY IN BRAZIL

Next, we will model data on COVID-19, a disease caused by the SARS-CoV-2

virus, from Brazil. The modeling will involve performing hypothesis testing inferences to

select the best fitting general extreme-value model. In our empirical analysis, we will use

the method of maximal values per blocks of observations.

Several authors have modeled COVID-19 data; e.g., the 2020 COVID-19

outbreak in India was analyzed by Pandey et al. (2020) and predictions were produced for

the number of cases in the coming weeks; Wu et al. (2020) evaluated whether long-term

exposure to air pollution increases the severity of COVID-19 health outcomes, including

death; Ribeiro et al. (2021) introduced a new regression model and used it to identify the

covariates that impacted COVID-19 mortality rates in the first COVID-19 wave in the

United States. Pro et al. (2021) modeled associations between county-level COVID-19

mortality, pre-pandemic county-level excessive drinking, and county rurality in the United

States. Cordeiro et al. (2021) modeled coronavirus death rates in the first wave of twenty

European countries using varying precision beta regressions.

Our interest lies in modeling the maximum value of the weekly moving average

of daily deaths per 100,000 inhabitants; this will be our response variable (y). Data on

such a maximal mortality was obtained for each of the 27 federative units/states of Brazil.

Therefore, the sample size is n = 27. The data were obtained from the ’CoronaCities

platform’ (<https://coronacidades.org>) for the period ranging from April 26, 2020 to

June 5, 2021.

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that has

high transmissibility. The SARS-CoV-2 virus was discovered in bronchoalveolar lavage

samples from patients with pneumonia of unknown cause in Wuhan, China in December

2019. In Brazil, the first case of COVID-19 was detected on February 26, 2020 in the state

of São Paulo and on March 20, 2020, SARS-CoV-2 transmission became community-wide.

By June 2021 the country counted more than 18 million cases and more than 516,000

deaths from COVID-19. Increased health resources in the public sector was important in

https://coronacidades.org
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Table 13 – Non-null rejection rates (%), H0 : β2 = 0, Model IV.

n=15

α= 5% α= 10%

γ ω ωb1 ωb2 ωb3 ω ωb1 ωb2 ωb3

−2.0 74.4 72.1 70.8 69.4 86.4 85.6 85.6 85.2

−1.75 63.3 61.1 59.7 58.1 77.9 77.2 76.8 76.3

−1.5 50.3 47.9 46.4 44.6 66.9 66.0 65.4 65.0

−1.25 37.3 35.1 34.0 32.8 53.2 52.6 52.0 51.5

−1.0 25.9 24.6 23.8 22.8 39.3 38.7 38.3 37.7

−0.75 16.7 15.8 15.1 14.7 27.7 27.2 27.0 26.5

−0.5 10.2 9.6 9.3 8.9 18.2 18.1 18.0 17.7

0.5 11.3 10.5 10.2 10.0 19.7 19.4 19.2 19.1

0.75 19.4 18.3 17.7 17.2 30.7 30.1 29.7 29.4

1.0 30.8 28.9 28.2 27.3 45.0 44.1 43.7 43.2

1.25 44.9 42.5 41.4 40.0 59.5 58.5 58.0 57.2

1.5 59.2 56.6 55.3 54.0 72.2 71.0 70.7 70.0

1.75 71.4 69.1 67.9 66.5 82.3 81.5 81.2 80.6

2.0 81.3 79.3 78.5 77.2 89.4 88.7 88.8 88.6

n=30

−2.0 98.8 98.8 98.8 98.8 99.6 99.6 99.6 99.6

−1.75 95.9 95.9 95.9 95.9 98.3 98.3 98.3 98.3

−1.5 88.9 88.8 88.8 88.8 94.2 94.2 94.2 94.2

−1.25 75.2 75.1 75.0 75.1 84.6 84.6 84.6 84.5

−1.0 56.4 56.1 56.1 56.2 68.6 68.6 68.6 68.5

−0.75 36.0 35.6 35.6 35.6 47.8 47.8 47.7 47.7

−0.5 19.3 19.0 19.0 19.0 28.2 28.2 28.2 28.1

0.5 21.3 21.1 21.0 21.0 30.6 30.6 30.6 30.6

0.75 40.8 40.5 40.5 40.5 52.2 52.2 52.2 52.1

1.0 62.3 62.1 62.0 62.0 72.2 72.2 72.2 72.2

1.25 79.6 79.3 79.3 79.3 86.9 86.9 86.9 86.9

1.5 91.1 91.0 91.0 91.0 94.7 94.6 94.6 94.6

1.75 96.7 96.7 96.6 96.7 98.2 98.2 98.2 98.2

2.0 98.9 98.9 98.9 98.9 99.4 99.4 99.4 99.4

Source: The author (2021).



61

the fight against COVID-19, since the National Health Survey (PNS) conducted in 2019

by the Brazilian Institute of Geography and Statistics (IBGE) showed that 71.5% of the

Brazilian population uses the Unified Public Health System (SUS) exclusively; 28.5% of

the population has some type of private health insurance plan. Thus, it is important to

understand how the maximum weekly moving average of deaths is impacted by variables

related to available health resources in each state, such as total the number of ventilators;

the number of physicians; the number of intensive care unit (ICU) beds; the number

of emergency care units (UPA), health posts, and basic health units (UBS); and the

proportion of hospitals that are private (not public). Additionally, it is important to

understand the association between variables related to partisan politics with the response

variable, since in many instances there were conflicting views involving the state governors

on the one hand and the president of the country, Jair Bolsonaro, on the other hand. Thus,

it is important to analyze how the political standing of governors towards the federal

government relates to the peaks in death tolls.

For each state, we obtained and organized data on the following explanatory

variables:

• x2: weekly moving average of daily cases per 100,000 inhabitants in the week in

which such a moving average was the highest (source: CoronaCidades platform);

• x3: dummy variable that equals 1 if the state governor opposes the federal government

and 0 otherwise (source: Veja magazine, March 22, 2021 (<https://is.gd/OpKtUG>));

• x4: total number of UPA, UBS, health clinics and public hospitals per 100,000

inhabitants in the week in which the weekly moving average of daily deaths per 100,000

inhabitants was the highest (source: National Registry of Health Establishments

(CNES) and DATASUS);

• x5: ratio between the total number of physicians in June 2020 and December

2019; we consider (a) the number of physicians on the COVID-19 frontline per

100,000 inhabitants in June 2020 (source: CNN Brasil/CFM) and (b) the number of

physicians per 100,000 inhabitants in December 2019 (source: CNES);

• x6: logarithm of the mean monthly number of boxes of chloroquine and hydroxychlo-

roquine pills received from the federal government up to the week with the maximal

mortality (source: Brazilian Open Data Portal);

• x7: percentage change in the number of available ventilators between December 2019
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and the week in which mortality peaked, composed of (a) number of ventilators per

100,000 inhabitants delivered by the date on which the maximum weekly moving

average of deaths per state was reached (source: Brazilian Open Data Portal) and

(b) number of existing ventilators per 100,000 inhabitants in December 2019 (source:

CNES);

• x8: proportion of hospitals that are private, considering general hospitals, specialized

hospitals and day hospitals (hospitals where the maximum stay is 12 hours) in

January 2020 (source: Brazilian Hospital Foundation (FBH));

• x9: logarithm of the ratio between (i) the total number of ICU beds per 100,000

inhabitants in the week of maximal mortality (source: CNES) and (ii) the total

number of ICU beds per 100,000 inhabitants in December 2019 (source: DATASUS);

• z2: total number of existing ICU beds per 100,000 inhabitants in the week in which

the weekly moving average of daily deaths per 100,000 inhabitants was the highest

(source: National Registry of Health Establishments (CNES));

• z3 = x3× [log(z2)]2.

We will comment on the choice of the above regressors later.

Figure 9 contains two boxplots. The left panel (panel (a)) relates to the total

number of UPA, UBS, health clinics and public hospitals per 100,000 inhabitants (x3)

split in two groups which correspond to whether the state governor supports or opposes

the federal government. The right panel (panel (b)) is for the response variable with the

same two-group split. ‘DF’, ‘PI’ and ‘SP’ stand for Federal District, the state of Piauí

and the state of São Paulo, respectively. It is clear from the two boxplots that there are

typically fewer hospitals in the states whose governors support the president of Brazil and

that the maximal COVID-19 mortality levels are generally higher in such states.

In Figure 10 we present scatter plots of the continuous covariates that will be

considered for the first submodel and the maximum value of the weekly moving average

of deaths per 100,000 inhabitants (y). Such graphs are indicative of the direction and

intensity of the relationship between each regressor and the response variable. For example,

y tends to decrease as the total number of health care facilities (x4) increases. Additionally,

the higher the proportion of private hospitals (x8) the higher the peak mortality from

COVID-19; this positive relationship is due to the fact that only 28.5% of Brazilians have

some type of health insurance. We note that the maximal mortality (maximal value of
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Figure 9 – (a) Boxplot of the number of hospitals per 100,000 inhabitants for states whose
governors support and oppose the federal government, (b) boxplot of maximal

mortality levels for the same two groups.

DF

PI

SP
10

20

30

40

Allies Opposition
x3

x
4

(a)

1

2

3

Allies Opposition
x3

y

(b)

Source: The author (2021).

yi) in the scatter plots in Figure 10 corresponds to the state of Amazonas, located in the

North of Brazil; the maximum daily moving average of deaths occurred on February 4,

2021.

Figure 10 – Dispersion plots for the some continuous covariates.
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In the following, we will fit general extreme-value regression models to the

Brazilian COVID-19 data described above. Testing inferences will be based on the

likelihood ratio test (ω) and on our first Bartlett-corrected test statistic (ωb1). We will also

consider another modified likelihood ratio test statistic that is available in the literature,

namely: ω̃∗ = ω− 2log(ζ), a corrected test statistic obtained by Ferrari and Pinheiro
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(2012) for use with the general extreme-value regression model; see their paper for a

closed-form expression for ζ. It tends to deliver inferences that are more accurate than

those achieved using ω, but the size distortions of the test vanish at the same rate as those

of the likelihood ratio test as n→∞, namely O(n−1). Recall that the size distortions of

our Bartlett-corrected tests decay to zero at a much faster rate: O(n−2). We will include

testing inferences based on ω̃∗ for comparison with those achieved using ωb1.

We initially fitted the following variable dispersion extreme-value regression

model (Model M1):

M1:
µi = β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6 +β7xi7 +β8xi8 +β9xi9

log(φi) = θ1 + θ2z
3/2
i2 + θ3zi3

,

i = 1, . . . ,27. The regressors used in the first submodel (submodel for µ) were selected

based on the absolute values of their correlations with the response (y). We then fitted

the fixed dispersion counterpart of Model M1 and obtained the standardized residuals

from such a model fit. The ith standardized residual for the variable dispersion model is

rsi = yi− µ̂i−γφ̂i√
π2φ̂2

i /6
=
√

6
π

(
yi− µ̂i
φ̂i

−γ
)

;

see Oliveira Jr., Cribari-Neto and Nobre (2020). For the fixed dispersion model, it suffices

to replace φ̂i with φ̂ in the above expression. We then used such residuals to select the

regressors to be included in the second submodel (submodel for φ). We did so by (i) plotting

the residuals against the regressors and some functions of the regressors, (ii) computing

the Pearson correlations between them and the regressors and also with some functions of

them, and (iii) computing the Pearson correlations between the squared regressors and

the covariates and also with some functions of them. In the residual plots, we searched for

visible patterns. We selected two explanatory variables for the second submodel based on

such an analysis.

All parameters in Model M1 are statistically non-null at the 10% significance

level according to individual z tests. We will now further investigate the statistical signifi-

cance of the covariates xi3, xi6 and xi9. After that, we will investigate the covariates in the

second submodel. At first, we will individually test the exclusion of epidemiological covari-

ates, which are (i) the logarithm of the average monthly number of boxes of chloroquine

and hydroxychloroquine pills received from the federal government until mortality peaked

(x6) and (ii) the logarithm of the ratio between the total number of existing ICU beds per
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100,000 inhabitants until reaching the maximum weekly moving average of deaths and

the total number of existing ICU beds per 100,000 inhabitants in December 2019 (x9).

That is, we test H0 : β6 = 0 and H0 : β9 = 0. The p-values of the ω, ωb1 and ω̃∗ tests for

the exclusion of x9 from the model are 0.1291, 0.3027 and 0.0976, respectively. Hence,

unlike the test based on ω̃∗, those based on ω and ωb1 do not reject the null hypothesis at

the 10% significance level; in particular, the p-value of the Bartlett-corrected test is quite

large. It follows that x9 should be removed from Model M1 according to the likelihood

ratio test and also according to our Bartlett-corrected test.

Next, we test H0 : β6 = 0. The p-values are 0.0595 (ω), 0.1618 (ωb1) and 0.0051

(ω̃∗). The tests based on ω and ω̃∗ reject H0 at 10%; by contrast, the Bartlett-correct

test does not reject the null hypothesis at 10%. Our test thus indicates that x6 should be

removed from Model M1. The conclusion reached on the basis of the Bartlett-corrected test

that the volume of chloroquine/hydroxychloroquine received by the state has no impact

on the maximal mortality is in agreement with findings from medical studies that point

to the lack of effectiveness of chloroquine/hydroxychloroquine in treating patients with

COVID-19; see, e.g., Reis et al. (2021) and Rosenberg et al. (2020). We removed x6 and

x9 from Model M1 and then tested H0 : θ2 = 0, the tests’ p-values being 0.2766, 0.4071 and

0.0250 (ω, ωb1 and ω̃∗, respectively). The likelihood ratio test and the Bartlett-corrected

test agree that z2 should be dropped from the second submodel; a different conclusion is

reached when the test with the alternative finite sample correction is used since it rejects

the null hypothesis at the 5% significance level. Finally, we test H0 : β3 = 0. The p-values

are 0.2546 (ω), 0.3456 (ωb1) and 0.2558 (ω̃∗), and the null hypothesis is not rejected; as a

consequence, x3 should be dropped from the model. The three tests thus agree that the

independent variable related to partisan politics does not impact µ.

By following the testing inferences based on the Bartlett-corrected test statistic

(ωb1) we arrive at the following model (Model M2):

M2:
µi = β1 +β2xi2 +β3xi4 +β4xi5 +β5xi7 +β6xi8

log(φi) = θ1 + θ2zi3
,

i= 1, . . . ,27. All parameters are significantly non-null at the 5% significance level according

to individual z tests. The maximum likelihood parameter estimates (standard errors

in parentheses) are β̂1 = 5.6962 (0.7950), β̂2 = 0.0303 (0.0033), β̂3 = −0.0582 (0.0061),

β̂4 =−2.2602 (0.6197), β̂5 =−0.0070 (0.0017), β̂6 =−1.4950 (0.2595), θ̂1 =−1.6541 (0.1980)
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and θ̂2 = 0.0541 (0.0237).

Following the testing inferences based on ω̃∗, the test statistic that employs an

alternative small sample adjustment, we arrive at the following model (Model M3):

M3:
µi = β1 +β2xi2 +β3xi4 +β4xi5 +β5xi6 +β6xi7 +β7xi8 +β8xi9

log(φi) = θ1 + θ2z
3/2
i2 + θ2zi3

,

i = 1, . . . ,27. The point estimates are β̂1 = 5.6728 (0.3032), β̂2 = 0.0217 (0.0013), β̂3 =

−0.0789 (0.0059), β̂4 = −2.2993 (0.2988), β̂5 = 0.0598 (0.0225), β̂6 = −0.0101 (0.0006),

β̂7 =−1.2454 (0.1132), β̂8 = 0.4277 (0.0734), θ̂1 =−5.0565 (0.3465), θ̂2 = 0.0121 (0.0013)

θ̂2 = 0.1867 (0.0239). Interestingly, unlike Model M2, this model includes as an expla-

natory variable the logarithm of the mean monthly number of boxes of chloroquine and

hydroxychloroquine pills received up to the moment when deaths peaked (x6). As noted

earlier, it has been already established in the medical literature that these drugs have no

efficacy against COVID-19; again, we refer readers to Reis et al. (2021) and Rosenberg

et al. (2020). It is thus expected that x6 should not impact maximal mortality levels.

Such a covariate is not in the model selected on the basis of the Bartlett-corrected test

(Model M2). The correlation between y and x6 is slightly positive, but weak: 0.1753. It

becomes even weaker when it is computed without the state with the highest mortality

(Amazonas) in the data: 0.0826. Manaus’s (the capital of Amazonas) health-care system

experienced a shortage of oxygen and partially collapsed in early 2021. It turns out that

Amazonas is the state with the fifth largest volume of chloroquine and hydroxychloroquine

pills received from the federal government, only behind São Paulo, Rio Grande do Sul,

Santa Catarina and Ceará; the values of x6 for the latter three states and for Amazonas

are nearly equal (11.5929, 11.4023, 11.3850 and 11.3523, respectively). The model we

arrived at using Bartlett-corrected testing inferences does not include the volume of drugs

that are known to be ineffective against Covid-19 as a relevant independent variable for

explaining fluctuations in maximal mortality.

Using the conclusions reached based on ω (i.e., based on the likelihood ratio

test) we arrive at a model (say, Model M4) that is similar to M2, but includes x6 as

a regressor in the submodel for µ (first submodel). The remaining covariates in both

submodels coincide.

Neither of the three models (M2, M3 and M4) includes x3, the partisan political

dummy variable. Thus, we conclude that the political stand of the state governor (support
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or opposition to the federal government) does not impact the maximal mortality level.

This variable, nonetheless, plays a role in determining the dispersions, since z3 (which is a

function of x3) is a covariate in the submodels for φ in the three models. Dispersion is

larger for states in which the governor opposes the federal government.

How do Models M1 through M4 compare? Which model yields the best fit?

We will compare the three models using two sets of goodness-of-fit measures, namely:

(i) model selection (information) criteria and (ii) pseudo-R2 measures. A pseudo-R2 is

an overall measure of the quality of the model fit that assumes values between zero (no

fit at all) and one (perfect fit). We propose a pseudo-R2 for use with the generalized

extreme-value regression model that is similar to that introduced by Ferrari and Cribari-

Neto (2004) for beta regressions. Their measure needs to be modified to account for

the fact that here µi differs from the mean of yi. Here, the goodness-of-fit measure is

given by the square of the correlation coefficient between yi and µ̂i+γφ̂i, hats denoting

evaluation at the maximum likelihood estimates. We will refer to this measure as pseudo-

R2
1. Following Bayer and Cribari-Neto (2017), we also consider the following adjusted

measure which includes a penalization term linked to the model dimension: pseudo-

R2
2 = 1− (1−pseudo-R2

1)× [(n−1)/(n−p− q)]. It is noteworthy that, unlike pseudo-R2
1,

pseudo-R2
2 can assume negative negative values when pseudo-R2

1 is very small, n is small

and the number of parameters is large. Models M2 and M4 share the same pseudo-R2
1:

approximately 0.71. Such a value is much lower for Models M1 and M3 (approx. 0.46 and

0.09, respectively). The value of pseudo-R2
2 favors Model M2 over M4: approx. 0.61 vs

0.59, respectively; the corresponding values for M1 and M4 are quite small (approx. 0.06

and negative, respectively).

As noted above, we followed Ferrari and Cribari-Neto (2004) when proposing a

pseudo-R2 measure for the general extreme-value regression model. Their measure was

introduced in the context of beta regressions where µi is the mean of yi, and is only

impacted by the first submodel, that postulated for µ. It is given by the square of the

correlation coefficient between the response transformed by the mean link function and

the estimated linear predictor of the mean submodel. In the generalized extreme-value

regression model, by contrast, µi does not equal the mean of yi. Our pseudo-R2
1 is thus

given by the square of the correlation coefficient between yi and µ̂i+γφ̂i. Unlike what

happens in beta regressions, it follows that here misspecification of the second submodel
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(that for φ) greatly impacts pseudo-R2
1. This explains why the value of such a measure is

so low for Model M3: this model includes a covariate in the submodel for φ which was

found to be irrelevant by the two alternative testing criteria.

We will now compare the four models using model selection criteria. We

consider the AIC (Akaike Information Criterion), AICc (Corrected Akaike Information

Criterion) and BIC (Bayesian Information Criterion); for details on these crteria, we refer

readers to Burnham and Anderson (2004). We note that the AICc is particularly useful

here since it incorporates a small sample correction and our sample size is small (n= 27).

Table 14 contains the values of three model selection criteria computed for the four models.

The AIC values are similar for Models M1, M2 and M3, being slightly larger for Model M4.

Model M2 is clearly favored by the AICc and BIC over all competing models. Indeed, the

difference in AICc and BIC values in favor of Model M2 relative to M3 are 9.5383 and

3.8258, respectively. Thus, overall, the information criteria favor the model selected on

the basis of Bartlett-corrected tests.

Table 14 – Model selection criteria.

AIC AICc BIC
Model M1 28.6968 50.9825 44.2469
Model M2 29.0338 37.0338 39.4005
Model M3 28.9721 46.5721 43.2263
Model M4 31.0309 41.6191 42.6934

Source: The author (2021).

Using the residuals from Model M2, we produced residual a half-normal proba-

bility plot with simulated envelopes for such a model which is given in Figure 11. The

envelopes were constructed using 1000 replications. All residuals fall within the envelopes,

and hence there is evidence that the model is correctly specified. We do not present similar

plots for the other models for brevity, but we note that there were residuals outside the

envelopes for Models M1 and M3.

Model M2 provides us with some interesting conclusions on the behavior of

the maximum weekly moving average of deaths per 100,000 inhabitants. The coefficient

estimate associated with the total number of health units is negative, which indicates that

maximum mortality tends to be higher in states with fewer health units. Additionally,
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Figure 11 – Residual half-normal probability plot for Model M2.
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the response variable tends to decrease when there is a relative increase in the number of

physicians. We also note that the maximum moving average of deaths decreases as the state

receives additional ventilators. It is worth noting that on the basis of our first Bartlett-

corrected test we conclude that the availability of chloroquine and hydroxychloroquine

pills in the state does not positively or negatively impact the maximal mortality. The

empirical application at hand showcases the importance of performing reliable testing

inferences when the sample size is small. In particular, it is important to use tests that

have good control of the type I error frequency even when the number of data points is

small.

Neither of the three models (M2, M3 and M4) includes x3, the partisan political

dummy variable. Thus, we conclude that the political stand of the state governor (support

or opposition to the federal government) does not impact the Gumbel location. This

variable, nonetheless, plays a role in determining the dispersions, since z3 (which is a

function of x3) is a covariate in the submodels for φ in the three models. Dispersion is

larger for states in which the governor opposes the federal government. Since x3 indirectly
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impacts φi, it also impacts the mean maximal mortality levels. The result implies that it

is larger for states that are political opposition to the federal government.

2.6 CONCLUDING REMARKS

Extreme value modeling is used in many fields to uncover information on

rare events. Oftentimes the occurrence of such events is impacted by changes in certain

conditioning variables, and when that happens it is useful to resort to regression analysis.

In this chapter, we focused on testing inferences in a general extreme-value regression model

that accommodates both nonlinearity and varying dispersion. The model comprises of two

submodels, one for the location parameter and a separate one for the dispersion parameter.

The independent variables used in these submodel may not coincide, may coincide partially

or may be the same. Testing inferences are often based on the likelihood ratio test. Such a

test uses asymptotic (approximate) critical values and may be considerably size-distorted

when the sample size is not large. Specifically, it tends to be quite liberal (oversized).

This may lead, for instance, a practitioner to conclude that a given regressor must be in

one or in both (linear or nonlinear) predictors used in the model when in truth such a

regressor has no impact on the occurrence of the extreme event of interest. We addressed

this shortcoming of the test by modifying its test statistic in a way that the limiting null

distribution of the transformed test statistic better approximates the exact, unknown test

statistic null distribution. As a result, the asymptotic critical values used for deciding

whether the null hypothesis should be rejected are close to the true/ideal (unknown)

critical values which implies that better control of the type I error frequency is achieved.

More specifically, we derived the Bartlett correction factor to the likelihood ratio test

statistic. The derivation was rather lengthy and cumbersome due to the non-orthogonality

between the parameters that index the two submodels. The formula we provided for

the correction factor is, nonetheless, rather simple and can be easily implemented into

statistical software and computing environments. We used the correction factor to define

three Bartlett-corrected test statistics. A noteworthy feature of our tests is that their size

distortions vanish at a much faster rate than that of the likelihood ratio test: O(n−2) vs

O(n−1). Additionally, all cumulants of our test statistics agree with those of the asymptotic

null reference distribution to order O(n−3/2).

Results from Monte Carlo simulations showed that the modified tests display
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much better control of the type I error frequency than the likelihood ratio test. In other

words, they are much less prone to size distortion. Indeed, their null performance is

remarkable even when the sample size is very small, there is nonlinearity and the model

incorporates varying dispersion. For instance, when the sample contains only 15 data

points, the significance level is 5%, the model is nonlinear and subject to nonconstant

dispersion, the empirical size of the likelihood ratio test is 10.9% (over twice the nominal

size!) whereas the exact sizes of the three modified tests developed in this chapter range

from 4.0% to 5.9% (Table 12 in Section 2.4). In particular, we recommend the use of ωb1
which was the best performing test.

We modeled the maximum COVID-19 mortality in Brazil. The response

variable used was the maximum value per federation unit of the weekly moving average of

deaths per 100,000 inhabitants. Several explanatory variables were considered, including

one of a political partisan nature that did not prove relevant. The sample size is small

(27 observations). We performed hypothesis tests to arrive at the model that provides

the best fit. In particular, we used the likelihood ratio test, one of the Bartlett-corrected

tests that we derived and a test that incorporates an alternative correction for small

samples. Interestingly, the likelihood ratio test and the alternative test led to two models

(which we called Models M4 and M3, respectively) and the Bartlett test led to another,

more parsimonious model (which we called Model M2). We note that Models M3 and

M4 included in the first submodel a covariate related to the volume of chloroquine and

hypoxycholoroquine received by the local government from the federal government. This

result is surprising and was not expected, given the ineffectiveness of such medications in

treating COVID-19. This regressor was not part of the model selected via the Bartlett-

corrected test.
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APPENDIX A – VARYING PRECISION BETA REGRESSION

LOG-LIKELIHOOD CUMULANTS

We shall now present the varying precision beta regression model log-likelihood

cumulants up to fourth order. We shall use lower and upper case case letters to index derivatives

of (2) with respect to the components of β and δ, respectively. We use tensor notation:

κrs = E
(
∂2`(θ)/∂βr∂βs

)
, κrst = E

(
∂3`(θ)/∂βr∂βs∂βt

)
, κrstu = E

(
∂4`(θ)/∂βr∂βs∂βt∂βu

)
, etc.,

r,s, t,u = 1, . . . ,k. Additionally, we use the following notation for derivatives of the above

cumulants: κ(t)
rs = ∂κrs/∂βt, κ(tu)

rs = ∂κrs/∂βt∂βu, κ(u)
rst = ∂κrst/∂βu, etc.

It can be shown that
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where ψ′(·) and ψ′′(·) is the trigamma and tetragamma functions, respectively. The following

derivatives are needed for obtaining the log-likelihood cumulants:
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The log-likelihood derivatives with respect to the components of θ = (β>, δ>)> are

given by
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xirxisxit,

UrsR =
n∑
i=1

{[
−ci

(
∂

∂ηi

∂µi
∂ηi

)
+ (y∗i −µ∗i )

(
∂

∂ηi

∂µi
∂ηi

)
+ui

(
∂µi
∂ηi

)](
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xir

×xisziR,

UrRS =
n∑
i=1

{(
∂

∂ζi

∂φi
∂ζi

)(
∂φi
∂ζi

)(
∂µi
∂ηi

)
[(y∗i −µ∗i )− ci]−

(
∂φi
∂ζi

)2
ri

}
xirziR

×ziS ,

URST =
n∑
i=1

{
−si

(
∂φi
∂ζi

)3
−di

(
∂

∂φi

(
∂φi
∂ζi

)2)(∂φi
∂ζi

)
−di

(
∂

∂φi

∂φi
∂ζi

)(
∂φi
∂ζi

)2

+ [(y†i −µ
†
i ) +µi(y∗i −µ∗i )]vi

}
×ziRziSziT ,

Urstu =
n∑
i=1

{
−φi

[
φ2
i

(
mi

∂

∂µi

(
∂µi
∂ηi

)3
+ ∂mi

∂µi

(
∂µi
∂ηi

)3)
+φi

[(
∂ai
∂µi

+ bi

)
wi

+ ∂wi
∂µi

ai

]
− (y∗i −µ∗i )

∂bi
∂µi

]
∂µi
∂ηi

}
xirxisxitxiu,

UrstR =
n∑
i=1

{[
−φi

[
φi

(
3mi+φi

(
∂mi

∂φi

))(
∂µi
∂ηi

)3
+ai

(
2wi+φi

(
∂wi
∂φi

))

+ bi

(
∂µ∗i
∂φi

)]
+ (y∗i −µ∗i )bi

](
∂φi
∂ζi

)}
xirxisxitziR,

UrsRS =
n∑
i=1

{[
[(y∗i −µ∗i )− ci]

(
∂

∂µi

∂µi
∂ηi

)(
∂

∂φi

∂φi
∂ζi

)(
∂φi
∂ζi

)
−
(
∂ri
∂µi

)(
∂φi
∂ζi

)2

−
(
∂µ∗i
∂φi

) (
∂µi
∂ηi

)(
∂φi
∂ζi

)2
+ [ui+ (y∗i −µ∗i )]

(
∂µi
∂ηi

)(
∂φi
∂ζi

)(
∂

∂φi

∂φi
∂ζi

)](
∂µi
∂ηi

)}

×xirxisziRziS ,

UrRST =
n∑
i=1

{
[(y∗i −µ∗i )− ci]

(
∂µi
∂ηi

)
vi− ri

(
∂

∂φi

(
∂φi
∂ζi

)3)
−
(
∂si
∂µi

)(
∂µi
∂ηi

)(
∂φi
∂ζi

)3}

×xirziRziSziT , URSTU =
n∑
i=1

{[
−
(
∂si
∂φi

)(
∂φi
∂ζi

)3
−2si

(
∂

∂φi

(
∂φi
∂ζi

)3)

− di

((
∂ti
∂φi

)
+vi

)
+ [(y†i −µ

†
i ) +µi(y∗i −µ∗i )]

(
∂vi
∂φi

)](
∂φi
∂ζi

)}
ziRziSziT ziU .

Using the above results, we arrive, after long derivations, at the following expressions
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for the relevant varying precision beta regression model cumulants:

κrs =−
n∑
i=1

{
φ2
iwi

(
∂µi
∂ηi

)2}
xirxis, κrR =−

n∑
i=1

{
ci

(
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirziR,

κRS =−
n∑
i=1

{
di

(
∂φi
∂ζi

)2}
ziRziS , κrst =−

n∑
i=1

{
φ3
imi

(
∂µi
∂ηi

)3
+φ2

iwiai

}
xirxisxit,

κrsR =
n∑
i=1

{[
ui

(
∂µi
∂ηi

)
− ci

(
∂

∂µi

∂µi
∂ηi

)](
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirxisziR,

κrRS =−
n∑
i=1

{
ri

(
∂φi
∂ζi

)2
+ ci

(
∂

∂φi

∂φi
∂ζi

)(
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirziRziS ,

κRST =−
n∑
i=1

{
si

(
∂φi
∂ζi

)3
+di

∂

∂φi

(
∂φi
∂ζi

)3}
ziRziSziT , κrstu =

n∑
i=1

{
−φi

[
φ2
i

(
∂mi

∂µi

×
(
∂µi
∂ηi

)3
+mi

∂

∂µi

(
∂µi
∂ηi

)3)
+φi

((
∂ai
∂µi

+ bi

)
wi+

∂wi
∂µi

ai

)]
∂µi
∂ηi

}
xirxisxitxiu,

κrstR =
n∑
i=1

{
−φi

[
φi

(
3mi+φi

(
∂mi

∂φi

))(
∂µi
∂ηi

)3
+ai

(
2wi+φi

(
∂wi
∂φi

))
+ bi

(
∂µ∗i
∂φi

)]

×
(
∂φi
∂ζi

)}
xirxisxitziR, κrsRS =

n∑
i=1

{
−ci

(
∂

∂µi

∂µi
∂ηi

)(
∂

∂φi

∂φi
∂ζi

)(
∂φi
∂ζi

)

−
(
∂ri
∂µi

)(
∂φi
∂ζi

)2
−
(
∂µ∗i
∂φi

)(
∂µi
∂ηi

)(
∂φi
∂ζi

)2
+ui

(
∂µi
∂ηi

)(
∂φi
∂ζi

)(
∂

∂φi

∂φi
∂ζi

)}
∂µi
∂ηi

×xirxisziRziS , κrRST =−
n∑
i=1

{
ci

(
∂µi
∂ηi

)
vi+ ri

(
∂

∂φi

(
∂φi
∂ζi

)3)
+
(
∂si
∂µi

)(
∂µi
∂ηi

)

×
(
∂φi
∂ζi

)3}
xirziRziSziT , κRSTU =−

n∑
i=1

{[(
∂si
∂φi

)(
∂φi
∂ζi

)3
+ 2si

(
∂

∂φi

(
∂φi
∂ζi

)3)

+ di

(
∂ti
∂φi

+vi

)](
∂φi
∂ζi

)}
ziRziSziT ziU .

Also, we obtained the following expressions for the first order derivatives of the

log-likelihood cumulants:
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κ(u)
rs =

n∑
i=1

{
−φ2

i

[
φimi

(
∂µi
∂ηi

)3
+ 2

3wiai

]}
xirxisxiu, κ

(R)
rs =

n∑
i=1

{
ui

(
∂µi
∂ηi

)2(∂φi
∂ζi

)}

×xirxisziR,

κ
(u)
rR =−

n∑
i=1

{[(
∂ci
∂µi

)(
∂µi
∂ηi

)
+ ci

(
∂

∂µi

∂µi
∂ηi

)](
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirxiuziR,

κ
(S)
rR =−

n∑
i=1

{[(
∂ci
∂φi

)(
∂φi
∂ζi

)
+ ci

(
∂

∂φi

∂φi
∂ζi

)](
∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirziRziS ,

κ
(u)
RS =−

n∑
i=1

{
ri

(
∂φi
∂ζi

)2}
xiuziRziS , κ

(T )
RS =−

n∑
i=1

{
si

(
∂φi
∂ζi

)3
+ 2

3diti

}
ziRziSziT ,

κ
(u)
rst =

n∑
i=1

{
−φ2

i

[
φi

(
mi

(
∂

∂µi

(
∂µi
∂ηi

)3
+ai

)
+ ∂mi

∂µi

(
∂µi
∂ηi

)3)

+ wi
∂ai
∂µi

]
∂µi
∂ηi

}
xirxisxitxiu,

κ
(R)
rst =−

n∑
i=1

{
φi

[(
3φimi+φ2

i

(
∂mi

∂φi

))(
∂µi
∂ηi

)3
+
(

2wi+φi

(
∂wi
∂φi

))
ai

](
∂φi
∂ζi

)}

×xirxisxitziR,

κ
(t)
rsR =

n∑
i=1

{[
2ui

(
∂

∂µi

∂µi
∂ηi

)(
∂µi
∂ηi

)2
− cibi+

(
∂ui
∂µi

)(
∂µi
∂ηi

)3
−
(
∂ci
∂µi

)(
∂

∂µi

∂µi
∂ηi

)

×
(
∂µi
∂ηi

)2](∂φi
∂ζi

)}
xirxisxitziR, κ

(S)
rsR =

n∑
i=1

{{[(
∂ui
∂φi

)(
∂φi
∂ζi

)
+ui

(
∂

∂φi

∂φi
∂ζi

)]

×
(
∂µi
∂ηi

)2
−
[
zi

(
∂φi
∂ζi

)
+ ci

(
∂

∂φi

∂φi
∂ζi

)](
∂

∂µi

∂µi
∂ηi

)(
∂µi
∂ηi

)}(
∂φi
∂ζi

)}

×xirxisziRziS ,

κ
(s)
rRS =

n∑
i=1

{[
−
(
∂ri
∂µi

)(
∂φi
∂ζi

)2
−
[(

∂ci
∂µi

)(
∂µi
∂ηi

)
+ ci

(
∂

∂µi

∂µi
∂ηi

)](
∂

∂φi

∂φi
∂ζi

)

×
(
∂φi
∂ζi

)](
∂µi
∂ηi

)}
xirxisziRziS , κ

(T )
rRS =−

n∑
i=1

{(
∂ri
∂φi

)(
∂φi
∂ζi

)3
+zi

(
∂µi
∂ηi

)

×
(
∂φi
∂ζi

)2( ∂

∂φi

∂φi
∂ζi

)
+ ri

(
∂

∂φi

(
∂φi
∂ζi

)2)(∂φi
∂ζi

)
+ civi

(
∂µi
∂ηi

)}
xirziRziSziT ,

κ
(r)
RST =−

n∑
i=1

{[(
∂si
∂µi

)(
∂φi
∂ζi

)3
+
(
∂di
∂µi

)(
∂

∂φi

(
∂φi
∂ζi

)3)](∂µi
∂ηi

)}
xirziRziSziT ,

κ
(U)
RST =−

n∑
i=1

{[(
∂si
∂φi

)(
∂φi
∂ζi

)3
+ 2si

(
∂

∂φi

(
∂φi
∂ζi

)3)
+di

(
∂ti
∂φi

)](
∂φi
∂ζi

)}

×ziRziSziT ziU .

The second order derivatives of the log-likelihood cumulants can expressed as follows:
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κ(tu)
rs =−

n∑
i=1

{
φ2
i

[
φi

(
mi

(
∂

∂µi

(
∂µi
∂ηi

)3
+ 2

3ai

)
+
(
∂µi
∂ηi

)3 ∂mi

∂µi

)
+ 2

3wi
∂ai
∂µi

]
∂µi
∂ηi

}

×xirxisxitxiu,

κ(Rt)
rs =

n∑
i=1

{[(
∂ui
∂µi

)(
∂µi
∂ηi

)2
+ui

(
∂

∂µi

(
∂µi
∂ηi

)2)](∂µi
∂ηi

)(
∂φi
∂ζi

)}
xirxisxitziR,

κ(RS)
rs =

n∑
i=1

{[(
∂ui
∂φi

)(
∂φi
∂ζi

)
+ui

(
∂

∂φi

∂φi
∂ζi

)](
∂µi
∂ηi

)2(∂φi
∂ζi

)}
xirxisziRziS ,

κ
(st)
rR =

n∑
i=1

{[
−φ2

i

(
mi+

(
∂

∂µi

∂wi
∂φi

))(
∂µi
∂ηi

)3
−
(
∂ci
∂µi

)(
∂

∂µi

(
∂µi
∂ηi

)3)
− cibi

]

×
(
∂φi
∂ζi

)}
xirxisxitziR,

κ
(Ss)
rR =

n∑
i=1
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−zi

(
∂

∂µi

∂µi
∂ηi

)(
∂φi
∂ζi

)2
− ci

(
∂

∂µi

∂µi
∂ηi

)(
∂

∂φi

∂φi
∂ζi

)(
∂φi
∂ζi

)
−
(
∂zi
∂µi

)

×
(
∂µi
∂ηi

)(
∂φi
∂ζi

)2
−
(
∂ci
∂µi

)(
∂

∂φi

∂φi
∂ζi

)(
∂φi
∂ζi

)(
∂µi
∂ηi

)](
∂µi
∂ηi

)}
xirxisziRziS ,

κ
(ST )
rR =−

n∑
i=1

{
zi

(
∂

∂φi

(
∂φi
∂ζi

)3)(∂µi
∂ηi

)
+ civi

(
∂µi
∂ηi

)
+
(
∂zi
∂φi

)(
∂µi
∂ηi

)(
∂φi
∂ζi

)3}

×xirziRziSziT , κ
(rs)
RS =−

n∑
i=1

{(
∂ri
∂µi

)(
∂φi
∂ζi

)2(∂µi
∂ηi

)}
xirxisziRziS ,

κ
(rT )
RS =−

n∑
i=1

{[(
∂ri
∂φi

)(
∂φi
∂ζi

)2
+ ri

(
∂

∂φi

(
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∂ζi

)2)](∂φi
∂ζi

)}
xirziRziSziT ,

κ
(TU)
RS =−

n∑
i=1

{[(
∂si
∂φi

)(
∂φi
∂ζi

)3
+si

(
∂

∂φi

(
∂φi
∂ζi

)3)
+si

(2
3 ti
)

+di

(2
3
∂ti
∂φi
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×
(
∂φi
∂ζi

)}
ziRziSziT ziU .
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APPENDIX B – RESULTS RELATED TO THE GUMBEL LAW

We will now present some useful results related to the Gumbel law. Let Y ∼

Gumbel(µ,φ). We obtain the cumulative distribution function and the probability density

function of the random variable T = (Y −µ)/φ which are, respectively,

FT (t) = Pr(T ≤ t) = Pr
(
Y −µ
φ
≤ t
)

= Pr(Y ≤ µ+φt) = exp(−exp(−t)),

fT (t) = exp(−t)exp(−exp(−t)),

t∈R. Hence, T ∼Gumbel(0,1), with E(T ) = γ. We also establish that the cumulative distribution

function and the probability density function of T ∗ = exp(−T ) are given, respectively, by

FT ∗(t∗) = Pr(T ∗ ≤ t∗) = Pr(exp(−T )≤ t∗) = 1−Pr(T ≤− ln(t∗)) = 1− exp(−t∗),

fT ∗(t∗) = exp(−t∗),

t∗ ∈ R+. It thus follows that T ∗ ∼ exponencial(1), with E(T ∗) = 1. Next, we will obtain the

expected value of Tn exp(−dt), for d ∈R. Notice that

E(Tn exp(−dt)) =
∫ ∞
−∞

tn exp(−dt)exp(−t− exp(−t))dt. (B.1)

Using the transformation W = exp(−T ) or, alternatively, T =− ln(W ) together with Equation

(4.358.5) in Gradshteyn and Ryzhik (2007), it follows that∫ ∞
0

zv−1 exp(−µz) ln(z)ndz = dn

dvn
[
µ−vΓ(v)

]
,

n= 1,2,3,4, . . ., with ψ(z) = Γ(1)(z)/Γ(z). It is thus possible to write Equation (B.1) as

E(Tn exp(−ct)) = (−1)nΓ(n)(1 + c). (B.2)

Using Equation (B.2), we can easily compute expected values of functions of T and T ∗. It is also

useful to recall that the score function has zero mean, i.e., E(U) = 0. Therefore, we obtain

E(T ∗) = (−1)0Γ(0)(2) = Γ(2) = 1, E(TT ∗) = (−1)1Γ(1)(2) = γ−1,

E(T 2T ∗) = (−1)2Γ(2)(2) = Γ(2)(2), E(T 3T ∗) = (−1)3Γ(3)(2) =−Γ(3)(2),

E(T 4T ∗) = (−1)4Γ(4)(2) = Γ(4)(2).
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APPENDIX C – GENERAL EXTREME-VALUE REGRESSION MODEL

LOG-LIKELIHOOD CUMULANTS

In this appendix, we will derive the general extreme-value regression model log-

likelihood cumulants up to fourth order. These cumulants are needed for obtaining the Bartlett

correction factor to the likelihood ratio test statistic. The derivatives of the log-likelihood function

given in (2.3) with respect to β are denoted by the lower case subscripts j, l,m,u and for those

with respect to θ we use the upper case subscripts J,L,M,U . Additionally, we use the following

notation for the derivatives with respect to the components of β:

Uj = ∂`(β,θ)
∂βj

, Ujl = ∂2`(β,θ)
∂βj∂βl

, Ujlm = ∂3`(β,θ)
∂βj∂βl∂βm

, Ujlmu = ∂4`(β,θ)
∂βj∂βl∂βm∂βu

.

The cumulants are κjl = E(Ujl), κjlm = E(Ujlm), κjlmu = E(Ujlmu), etc. Their derivatives with

respect to the elements of β are denoted by

κ
(m)
jl = ∂κjl

∂βm
, κ

(mu)
jl = ∂κjl

∂βm∂βu
, κ

(u)
jlm = ∂κjlm

∂βu
, etc.

The log-likelihood derivatives with respect to the components of θ, the corresponding cumulants

and their derivatives are expressed analogously. The mixed cumulants with respect to the

components of β and θ are written, e.g., as κjL = E(UjL) = E(∂2`(β,θ)/∂βj∂θL).

Let ti = (yi−µi)/φi, t∗i = exp(−(yi−µi)/φi) and νi =−1+ ti− tit∗i . We obtain the

following derivatives:

∂νi
∂µi

=−(1 + tit
∗
i − t∗i )
φi

,

∂2νi
∂µ2

i

= t∗i (2− ti)
φ2
i

,

∂νi
∂φi

= tit
∗
i − ti− t2i t∗i

φi
,

∂2νi
∂φ2

i

= 2ti−2tit∗i + 4t2i t∗i − t3i t∗i
φ2
i

,

∂3νi
∂φ3

i

=−(6ti−6tit∗i + 18t2i t∗i −9t3i t∗i + t4i t
∗
i )

φ3
i

∂2νi
∂µi∂φi

= (1− t∗i + 3tit∗i − t2i t∗i )
φ2
i

,

∂3νi
∂µi∂φ2

i

=−(2−2t∗i + 10tit∗i −7t2i t∗i + t3i t
∗
i )

φ3
i

∂3νi
∂φi∂µ2

i

=−(4t∗i −5tit∗i + t2i t
∗
i )

φ3
i

.

After long and tedious algebra, it is possible to write the log-likelihood derivatives

with respect to the parameters in υ = (β>,θ>)> as
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Ujl =
n∑
i=1

{
− t
∗
i

φi

(
∂µi
∂η1i

)2
(j, l)i+

(1− t∗i )
φi

[(
∂2µi
∂η2

1i

)
(j, l)i+

(
∂µi
∂η1i

)
(jl)i

]}
,

UjL =−
n∑
i=1

{ [(ti−1)t∗i + 1]
φi

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(j,L)i

}
,

UJL =
n∑
i=1

{
− ti[1 + t∗i (ti−1)]

φ2
i

(
∂φi
∂η2i

)2
(J,L)i+νi

[
1
φi

((
∂2φi
∂η2

2i

)
(J,L)i

+
(
∂φi
∂η2i

)
(JL)i

)
− 1
φ2
i

(
∂φi
∂η2i

)2
(J,L)i

]}
,

Ujlm =
n∑
i=1

{[
− t
∗
i

φ3
i

(
∂µi
∂η1i

)3
− 3t∗i
φ2
i

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)]
(j, l,m)i−

t∗i
φ2
i

(
∂µi
∂η1i

)2

× [(jm,l)i+ (lm,j)i+ (jl,m)i] + (1− t∗i )
φi

[(
∂3µi
∂η3

1i

)
(j, l,m)i+

(
∂2µi
∂η2

1i

)

× [(jm,l)i+ (lm,j)i+ (jl,m)i] +
(
∂µi
∂η1i

)
(jlm)i

]}
,

UjlM =
n∑
i=1

{
1
φi

(
∂2νi
∂µ2

i

)(
∂µi
∂η1i

)2( ∂φi
∂η2i

)
(j, l,M)i+

1
φi

(
∂νi
∂µi

)(
∂φi
∂η2i

)[(
∂2µi
∂η2

1i

)

× (j, l,M)i+
(
∂µi
∂η1i

)
(jl,M)i

]}
,

UjLM =
n∑
i=1

{
1
φi

(
∂2νi
∂µi∂φi

)(
∂φi
∂η2i

)2( ∂µi
∂η1i

)
(j,L,M)i+

1
φi

(
∂νi
∂µi

)(
∂µi
∂η1i

)

×
[((

∂2φi
∂η2

2i

)
− 1
φi

(
∂φi
∂η2i

)2)
(j,L,M)i+

(
∂φi
∂η2i

)
(j,LM)i

]}
,

UJLM =
n∑
i=1

{[(
− 2
φ2
i

(
∂νi
∂φi

)
+ 1
φi

(
∂2νi
∂φ2

i

)
+ 2νi
φi

)(
∂φi
∂η2i

)3
+ 3

( 1
φi

(
∂νi
∂φi

)
− νi
φ2

)

×
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)]
(J,L,M)i+

1
φi

((
∂νi
∂φi

)
− νi
φi

)(
∂φi
∂η2i

)2
[(JM,L)i

+ (LM,J)i+ (JL,M)i] + νi
φi

[(
∂3φi
∂η3

2i

)
(J,L,M)i+

(
∂2φi
∂η2

2i

)
[(JM,L)i

+ (LM,J)i+ (JL,M)i] +
(
∂φi
∂η2i

)
(JLM)i

]}
,
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Ujlmu =
n∑
i=1

− 1
φ2
i

 t∗i
φ2
i

(
∂µi
∂η1i

)4
+ 6t∗i
φi

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)2
+ 3t∗i

(
∂2µi
∂η2

1i

)2

+ 4t∗i
(
∂µi
∂η1i

)(
∂3µi
∂η3

1i

)]
(j, l,m,u)i+

[
− t
∗
i

φ3
i

(
∂µi
∂η1i

)3
− 3t∗i
φ2
i

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)]

× [(ju, l,m)i+ (lu,j,m)i+ (mu,j, l)i+ (jm,l,u)i+ (lm,j,u)i

+ (jl,m,u)i]−
t∗i
φ2
i

(
∂µi
∂η1i

)2
[(jmu,l)i+ (jm,lu)i+ (lmu,j)i+ (lm,ju)i

+ (jlu,m)i+ (jl,mu)i+ (jlm,u)i] + (1− t∗i )
φi

[(
∂4µi
∂η4

1i

)
(j, l,m,u)i

+
(
∂3µi
∂η3

1i

)
[(ju, l,m)i+ (lu,j,m)i+ (mu,j, l)i+ (jm,l,u)i+ (lm,j,u)i

+ (jl,m,u)i] +
(
∂2µi
∂η2

1i

)
[(jmu,l)i+ (jm,lu)i+ (lmu,j)i+ (lm,ju)i

+ (jlu,m)i+ (jl,mu)i+ (jlm,u)i] +
(
∂µi
∂η1i

)
(jlmu)i

]}
,

UjlMU =
n∑
i=1

{[
1
φi

(
− 1
φi

(
∂2νi
∂µ2

i

)(
∂φi
∂η2i

)2
+
(

∂3νi
∂φi∂µ2

i

)(
∂φi
∂η2i

)2
+
(
∂2νi
∂µ2

i

)(
∂2φi
∂η2

2i

))

×
(
∂µi
∂η1i

)2
+ 1
φi

(
− 1
φi

(
∂νi
∂µi

)(
∂φi
∂η2i

)2
+
(

∂2νi
∂φi∂µi

)(
∂φi
∂η2i

)2
+
(
∂νi
∂µi

)(
∂2φi
∂η2

2i

))

×
(
∂2µi
∂η2

1i

)]
(j, l,M,U)i+

1
φi

[(
∂2νi
∂µ2

i

)(
∂µi
∂η1i

)2
+
(
∂νi
∂µi

)(
∂2µi
∂η2

1i

)](
∂φi
∂η2i

)

× (j, l,M,U)i+
1
φi

[
− 1
φi

(
∂νi
∂µi

)(
∂φi
∂η2i

)2
+
(

∂2νi
∂φi∂µi

)(
∂φi
∂η2i

)2
+
(
∂νi
∂µi

)

×
(
∂2φi
∂η2

2i

)](
∂µi
∂η1i

)
(jl,M,U)i+

1
φi

(
∂νi
∂µi

)(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(jl,MU)i

}
,
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UjLMU =
n∑
i=1

{
1
φi

[
− 2
φi

(
∂2νi
∂µi∂φi

)
+
(

∂3νi
∂µi∂φ2

i

)
+ 2
φ2
i

(
∂νi
∂µi

)](
∂φi
∂η2i

)3( ∂µi
∂η1i

)

× (j,L,M,U)i+
3
φi

[(
∂2νi
∂φi∂µi

)
− 1
φi

(
∂νi
∂µi

)](
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)(
∂µi
∂η1i

)

× (j,L,M,U)i+
1
φi

[(
∂2νi
∂φi∂µi

)
− 1
φi

(
∂νi
∂µi

)](
∂φi
∂η2i

)2( ∂µi
∂η1i

)
[(j,LU,M)i

+ (j,MU,L)i+ (j,LM,U)i] + 1
φi

(
∂νi
∂µi

)(
∂µi
∂η1i

)[(
∂3φi
∂η3

2i

)
(j,L,M,U)i

+
(
∂2φi
∂η2

2i

)
[(j,LU,M)i+ (j,MU,L)i+ (j,LM,U)i] +

(
∂φi
∂η2i

)
(j,LM,U)i

]}
,

UJLMU =
n∑
i=1

{
1
φi

[(
6
φ2

(
∂νi
∂φi

)
− 3
φi

(
∂2νi
∂φ2

i

)
+
(
∂3νi
∂φ3

i

)
− 6νi
φ3
i

)(
∂φi
∂η2i

)4
+ 1
φi

×
(
−12
φi

(
∂νi
∂φi

)
+ 6

(
∂2νi
∂φ2

i

)
+ 12νi

φ2
i

)(
∂φi
∂η2i

)2(∂2φi
∂η2

2i

)
+ 4
φi

((
∂νi
∂φi

)
− νi
φi

)

×
(
∂3φi
∂η3

2i

)(
∂φi
∂η2i

)
+ 3
φi

((
∂νi
∂φi

)
− νi
φi

)(
∂2φi
∂η2

2i

)2
(J,L,M,U)i+

1
φi

[(
− 2
φi

(
∂νi
∂φi

)

+
(
∂2νi
∂φ2

i

+ 2νi
φ2
i

))(
∂φi
∂η2i

)3
+ 3

((
∂νi
∂φi

)
− νi
φi

)(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)]
[(JU,L,M)i

+ (LU,J,M)i+ (MU,J,L)i+ (LM,J,U)i+ (JM,L,U)i(JL,M,U)i] + 1
φi

[(
∂νi
∂φi

)
− νi
φi

](
∂φi
∂η2i

)2
[(JMU,L)i+ (JM,LU)i+ (LMU,J)i+ (LM,JU)i+ (JLU,M)i

+ (JL,MU)i+ (JLM,U)i] + νi
φi

[(
∂4φi
∂η4

2i

)
(J,L,M,U)i+

(
∂3φi
∂η3

2i

)
[(JU,L,M)i

+ (LU,J,M)i+ (MU,J,L)i+ (JM,L,U)i+ (LM,J,U)i+ (JL,M,U)i] +
(
∂2φi
∂η2

2i

)

× [(JMU,L)i+ (JM,LU)i+ (LMU,J)i+ (LM,JU)i+ (JLU,M)i+ (JL,MU)i

+ (JLM,U)i] +
(
∂φi
∂η2i

)
(JLMU)i

]}
.

By computing the expected values of the above derivatives we arrive at the following

cumulants:
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κjl =−
n∑
i=1

{
1
φ2
i

(
∂µi
∂η1i

)2
(j, l)i

}
,

κjL =−
n∑
i=1

{
(γ−1)
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(j,L)i

}
,

κJL =−
n∑
i=1

{
(Γ(2)(2) + 1)

φ2
i

(
∂φi
∂η2i

)
(J,L)i

}
,

κjlm =−
n∑
i=1

{
1
φ2
i

[
1
φi

(
∂µi
∂η1i

)3
+ 3

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)]
(j, l,m)i

+ 1
φ2
i

(
∂µi
∂η1i

)2
[(jm,l)i+ (lm,j)i+ (jl,m)i]

}
,

κjlM =
n∑
i=1

{
1
φ2
i

[
(3−γ)
φi

(
∂µi
∂η1i

)2( ∂φi
∂η2i

)
+ (1−γ)

(
∂2µi
∂η2

1i

)(
∂φi
∂η2i

)]
(j, l,M)i

− (γ−1)
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(jl,M)i

}
,

κjLM =
n∑
i=1

{
[4(γ−1)−Γ(2)(2)]

φ3
i

(
∂φi
∂η2i

)2( ∂µi
∂η1i

)
(j,L,M)i+

(1−γ)
φ2
i

(
∂µi
∂η1i

)

×
[(

∂2φi
∂η2

2i

)
(j,L,M)i+

(
∂φi
∂η2i

)
(j,LM)i

]}
,

κJLM =
n∑
i=1

{[
(Γ(3)(2) + 6Γ(2)(2) + 4)

φ3
i

(
∂φi
∂η2i

)3
− 3(Γ(2)(2) + 1)

φ2
i

(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)]

× (J,L,M)i−
(Γ(2)(2) + 1)

φ2
i

(
∂φi
∂η2i

)2
[(JM,L)i+ (LM,J)i+ (JL,M)i]

}
,

κjlmu =
n∑
i=1

− 1
φi

 1
φ3
i

(
∂µi
∂η1i

)4
+ 6
φ2
i

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)2
+ 3
φi

(
∂2µi
∂η2

1i

)2

+ 4
φi

(
∂µi
∂η1i

)(
∂3µi
∂η3

1i

)]
(j, l,m,u)i−

1
φ2
i

[
1
φi

(
∂µi
∂η1i

)3
+ 3

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)]

× [(ju, l,m)i+ (lu,j,m)i+ (mu,j, l)i+ (jm,l,u)i+ (lm,j,u)i

+ (jl,m,u)i]−
1
φ2
i

(
∂µi
∂η1i

)2
[(jmu,l)i+ (jm,lu)i+ (lmu,j)i+ (lm,ju)i

+ (jlu,m)i+ (jl,mu)i+ (jlm,u)i]} ,

κjlmU =
n∑
i=1

{[
(4−γ)
φ4
i

(
∂µi
∂η1i

)3
+ 3(3−γ)

φ3
i

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)
− (γ−1)

φ2
i

(
∂3µi
∂η3

1i

)]

×
(
∂φi
∂η2i

)
(j, l,m,U)i+

[
(3−γ)
φ3
i

(
∂µi
∂η1i

)2
− (γ−1)

φ2
i

(
∂2µi
∂η2

1i

)](
∂φi
∂η2i

)
× [(jm,l,U)i+ (lm,j,U)i+ (jl,m,U)i]−

(γ−1)
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
× (jlm,U)i} ,
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κjLMU =
n∑
i=1

{[
− [18(γ−1)−9Γ(2)(2)−Γ(3)(2)]

φ4
i

(
∂φi
∂η2i

)3
+ [12(γ−1)−3Γ(2)(2)]

φ3
i

×
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)
− (γ−1)

φ2
i

(
∂3φi
∂η3

2i

)](
∂µi
∂η1i

)
(j,L,M,U)i+

[
(4(γ−1)−Γ(2)(2))

φ3
i

×
(
∂φi
∂η2i

)2
− (γ−1)

φ2
i

(
∂2φi
∂η2

2i

)](
∂µi
∂η1i

)
[(j,LU,M)i+ (j,MU,L)i+ (j,LM,U)i]

− (γ−1)
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(j,LM,U)i

}
,

κjlMU =
n∑
i=1

{[
− [4−5(γ−1) + Γ(2)(2)]

φ4
i

(
∂µi
∂η1i

)2( ∂φi
∂η2i

)2
+ [3(γ−1)−Γ(2)(2)]

φ3
i

×
(
∂2µi
∂η2

1i

)(
∂φi
∂η2i

)2
+
(

(3−γ)
φ3
i

(
∂µi
∂η1i

)2
− (γ−1)

φ2
i

(
∂2µi
∂η2

1i

))((
∂2φi
∂η2

2i

)

− 1
φi

(
∂φi
∂η2i

)2)]
(j, l,M,U)i+

[
(3(γ−1)−Γ(2)(2))

φ3
i

(
∂φi
∂η2i

)2( ∂µi
∂η1i

)

− (γ−1)
φ2
i

(
∂µi
∂η1i

)((
∂2φi
∂η2

2i

)
− 1
φi

(
∂φi
∂η2i

)2)]
(jl,M,U)i+

[
(3−γ)
φ3
i

(
∂µi
∂η1i

)2

− (γ−1)
φ2
i

(
∂2µi
∂η2

1i

)](
∂φi
∂η2i

)
(j, l,MU)i−

(γ−1)
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(jl,MU)i

}
,

κJLMU =
n∑
i=1

{[
−(36Γ(2)(2) + 18 + 12Γ(3)(2) + Γ(4)(2))

φ4
i

(
∂φi
∂η2i

)4
+ (36Γ(2)(2) + 24 + 6Γ(3)(2))

φ3
i

×
(
∂φi
∂η2i

)2(∂2φi
∂η2

2i

)
− 4(Γ(2)(2) + 1)

φ2
i

(
∂3φi
∂η3

2i

)(
∂φi
∂η2i

)
− 3(Γ(2)(2) + 1)

φ2
i

(
∂2φi
∂η2

2i

)2


× (J,L,M,U)i+
[

(6Γ(2)(2) + 4 + Γ(3)(2))
φ3
i

(
∂φi
∂η2i

)3
− 3(Γ(2)(2) + 1)

φ2
i

(
∂2φi
∂η2

2i

)

×
(
∂φi
∂η2i

)]
[(JU,L,M)i+ (LU,J,M)i+ (MU,J,L)i+ (JM,L,U)i+ (LM,J,U)i

+ (JL,M,U)i]−
(Γ(2)(2) + 1)

φ2
i

(
∂φi
∂η2i

)2
[(JMU,L)i+ (JM,LU)i+ (LMU,J)i

+ (LM,JU)i+ (JLU,M)i+ (JL,MU)i+ (JLM,U)i]} .

Next, we obtain the following closed-form expressions for the first order derivatives

of the log-likelihood cumulants:
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κ
(m)
jl =−

n∑
i=1

{
1
φ2
i

[
2
(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)
(j, l,m)i+

(
∂µi
∂η1i

)2
[(jm,l)i+ (j, lm)i]

]}
,

κ
(M)
jl =

n∑
i=1

{
2
φ3
i

(
∂µi
∂η1i

)2( ∂φi
∂η2i

)
(j, l,M)i

}
,

κ
(m)
jL =−

n∑
i=1

{
(γ−1)
φ2
i

[(
∂2µi
∂η2

1i

)
(j,L,m)i+

(
∂µi
∂η1i

)
(jm,L)i

](
∂φi
∂η2i

)}
,

κ
(M)
jL =

n∑
i=1

{
(γ−1)
φ2
i

[
2
φi

(
∂µi
∂η1i

)(
∂φi
∂η2i

)2
(j,L,M)i−

(
∂µi
∂η1i

)(
∂2φi
∂η2

2i

)
(j,L,M)i

−
(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(j,LM)i

]}
,

κ
(m)
JL = 0,

κ
(M)
JL =

n∑
i=1

{
(Γ(2)(2) + 1)

φ2
i

[
2
(

1
φi

(
∂φi
∂η2i

)3
−
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

))
(J,L,M)i

−
(
∂φi
∂η2i

)2
[(JM,L)i+ (J,LM)i]

]}
,

κ
(u)
jlm =−

n∑
i=1

 3
φ2
i

 1
φi

(
∂µi
∂η1i

)2(∂2µi
∂η2

1i

)
+
(
∂2µi
∂η2

1i

)2

+
(
∂µi
∂η1i

)(
∂3µi
∂η3

1i

)(j, l,m,u)i

+
[

1
φ3
i

(
∂µi
∂η1i

)3
+ 3
φ2
i

(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)]
[(ju, l,m)i+ (lu,j,m)i+ (mu,j, l)i]

+ 2
φ2
i

(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)
[(lm,j,u)i+ (jm,l,u)i+ (jl,m,u)i] + 1

φ2
i

(
∂µi
∂η1i

)2

× [(jmu,l)i+ (jm,lu)i+ (lmu,j)i+ (lm,ju)i+ (jlu,m)i+ (jl,mu)i]} ,

κ
(M)
jlm =

n∑
i=1

{
3
φ3
i

[
1
φi

(
∂µi
∂η1i

)3
+ 2

(
∂2µi
∂η2

1i

)(
∂µi
∂η1i

)](
∂φi
∂η2i

)
(j, l,m,U)i+

2
φ3
i

×
(
∂µi
∂η1i

)2( ∂φi
∂η2i

)
[(jm,l,U)i+ (lm,j,U)i+ (jl,m,U)i]

}
,

κ
(u)
jlM =

n∑
i=1

{
1
φ2

[
2(3−γ)

φ

(
∂φi
∂η2i

)(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)
+ (1−γ)

(
∂3µi
∂η3

1i

)(
∂φi
∂η2i

)]

× (j, l,M,u)i+
(3−γ)
φ3
i

(
∂µi
∂η1i

)2( ∂φi
∂η2i

)
[(ju, l,M)i+ (j, lu,M)i]

+ (1−γ)
φ2
i

(
∂2µi
∂η2

1i

)(
∂φi
∂η2i

)
[(ju, l,M)i+ (j, lu,M)i+ (jl,M,u)i]

+ (1−γ)
φ2
i

(
∂φi
∂η2i

)(
∂µi
∂η1i

)
(jlu,M)i

}
,
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κ
(U)
jlM =

n∑
i=1

{
(3−γ)
φ3
i

[((
∂2φi
∂η2

2i

)
− 3
φi

(
∂φi
∂η2i

)2)
(j, l,M,U)i+

(
∂φi
∂η2i

)
(j, l,MU)i

]

×
(
∂µi
∂η1i

)2
+ (1−γ)

φ2
i

[((
∂2φi
∂η2

2i

)
− 2
φi

(
∂φi
∂η2i

)2)((∂2µi
∂η2

1i

)
(j, l,M,U)i

+
(
∂µi
∂η1i

)
(jl,M,U)i

)
+
(
∂φi
∂η2i

)((
∂2µi
∂η2

1i

)
(j, l,MU)i+

(
∂µi
∂η1i

)
(jl,MU)i

)]}
,

κ
(u)
jLM =

n∑
i=1

{[
(4(γ−1)−Γ(2)(2))

φ3
i

(
∂φi
∂η2i

)2
+ (1−γ)

φ2
i

(
∂2φi
∂η2

2i

)][(
∂2µi
∂η2

1i

)
(j,L,M,u)i

+
(
∂µi
∂η1i

)
(ju,L,M)i

]
+ (1−γ)

φ2
i

(
∂φi
∂η2i

)[(
∂2µi
∂η2

1i

)
(j,LM,u)i

+
(
∂µi
∂η1i

)
(ju,LM)i

]}
,

κ
(U)
jLM =

n∑
i=1

{[
(4(γ−1)−Γ(2)(2))

φ3
i

(
2
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)
− 1
φi

(
∂φi
∂η2i

)3)
+ 2(γ−1)

φ3
i

×
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)
− (γ−1)

φ2
i

(
∂3φi
∂η3

2i

)](
∂µi
∂η1i

)
(j,L,M,U)i+

1
φ2
i

×
[

(4(γ−1)−Γ(2)(2))
φi

(
∂φi
∂η2i

)2
− (γ−1)

(
∂2φi
∂η2

2i

)](
∂µi
∂η1i

)
[(j,LU,M)i

+ (j,L,MU)i] + (1−γ)
φ2
i

[((
∂2φi
∂η2

2i

)
− 2
φi

(
∂φi
∂η2i

)2)
(j,LM,U)i

+
(
∂φi
∂η2i

)
(j,LMU)i

](
∂µi
∂η1i

)}
,

κ
(u)
JLM = 0,

κ
(U)
JLM =

n∑
i=1

{
3
φ2
i

[
(4 + 6Γ(2)(2) + Γ(3)(2))

φi

((
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)2
− 1
φi

(
∂φi
∂η2i

)4)

− (Γ(2)(2) + 1)

(∂3φi
∂η3

2i

)(
∂φi
∂η2i

)
+
(
∂2φi
∂η2

2i

)2

− 2
φi

(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)2


× (J,L,M,U)i+
1
φ2
i

[
(4 + 6Γ(2)(2) + Γ(3)(2))

φi

(
∂φi
∂η2i

)3
−3(Γ(2)(2) + 1)

×
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)]
[(JU,L,M)i+ (LU,J,M)i+ (MU,J,L)i]

− 2(Γ(2)(2) + 1)
φ2
i

((
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)
− 1
φi

(
∂φi
∂η2i

)3)
[(JM,L,U)i

+ (LM,J,U)i+ (JL,M,U)i]−
(Γ(2)(2) + 1)

φ2
i

(
∂φi
∂η2i

)2
[(JMU,L)i

+ (JM,LU)i+ (LMU,J)i+ (LM,JU)i+ (JLU,M)i+ (JL,MU)i]} .

Finally, we compute the second order derivatives of the log-likelihood cumulants

which can expressed as follows:
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κ
(mu)
jl =

n∑
i=1

− 2
φ2
i

(∂2µi
∂η2

1i

)2

+
(
∂3µi
∂η3

1i

)(
∂µi
∂η1i

)(j, l,m,u)i+
(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)

× [(ju, l,m)i+ (lu,j,m)i+ (mu,j, l)i+ (jm,l,u)i+ (lm,j,u)i]]

− 1
φ2
i

(
∂µi
∂η1i

)2
[(jmu,l)i+ (jm,lu)i+ (lmu,j)i+ (lm,ju)i]

}
,

κ
(Mu)
jl =

n∑
i=1

{
2
φ3
i

(
∂φi
∂η2i

)[
2
(
∂µi
∂η1i

)(
∂2µi
∂η2

1i

)
(j, l,M,u)i+

(
∂µi
∂η1i

)2

× [(ju, l,M)i+ (j, lu,M)i]]} ,

κ
(MU)
jl =

n∑
i=1

{
2
φ3
i

(
∂µi
∂η1i

)2[((∂2φi
∂η2

2i

)
− 3
φi

(
∂φi
∂η2i

)2)
(j, l,M,U)i+

(
∂φi
∂η2i

)
× (j, l,MU)i]} ,

κ
(mu)
jL =

n∑
i=1

{
(1−γ)
φ2
i

(
∂φi
∂η2i

)[(
∂3µi
∂η3

1i

)
(j,L,m,u)i+

(
∂2µi
∂η2

1i

)
[(ju,L,m)i

+ (j,L,mu)i+ (jm,L,u)i] +
(
∂µi
∂η1i

)
(jmu,L)i

]}
,

κ
(Mu)
jL =

n∑
i=1

{
(γ−1)

[(
2
φ3
i

(
∂φi
∂η2i

)2
− 1
φ2
i

(
∂2φi
∂η2

2i

))((
∂2µi
∂η2

1i

)
(j,L,M,u)i

+
(
∂µi
∂η1i

)
(ju,L,M)i

)
− 1
φ2
i

(
∂φi
∂η2i

)((
∂2µi
∂η2

1i

)
(LM,j,u)i+

(
∂µi
∂η1i

)
× (LM,ju)i)]} ,

κ
(MU)
jL = (γ−1)

n∑
i=1

{[
− 6
φ4
i

(
∂φi
∂η2i

)3
+ 6
φ3
i

(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)
− 1
φ2
i

(
∂3φi
∂η3

2i

)]

×
(
∂µi
∂η1i

)
(j,L,M,U)i+

[
2
φ3
i

(
∂φi
∂η2i

)2
− 1
φ2
i

(
∂2φi
∂η2

2i

)](
∂µi
∂η1i

)
[(j,LU,M)i

+ (j,L,MU)i+ (LM,j,U)i]−
1
φ2
i

(
∂µi
∂η1i

)(
∂φi
∂η2i

)
(LMU,j)i

}
,

κ
(mu)
JL = 0, κ

(mU)
JL = 0,

κ
(MU)
JL = (Γ(2)(2) + 1)

n∑
i=1

{
− 2
φ2
i

[
3
φ2
i

(
∂φi
∂η2i

)4
− 5
φi

(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)2
+
(
∂3φi
∂η3

2i

)

×
(
∂φi
∂η2i

)
+
(
∂2φi
∂η2

2i

)2
(J,L,M,U)i+

2
φ2
i

[
1
φi

(
∂φi
∂η2i

)3
−
(
∂2φi
∂η2

2i

)(
∂φi
∂η2i

)]

× [(JM,L,U)i+ (LM,J,U)i+ (JU,L,M)i+ (LU,J,M)i+ (MU,J,L)i]

− 1
φ2
i

(
∂φi
∂η2i

)2
[(JMU,L)i+ (JM,LU)i+ (LMU,J)i+ (LM,JU)i]

}
.
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APPENDIX D – DETAILS ON HOW TO SELECT STARTING VALUES

FOR THE ITERATIVE SCHEME USED FOR MAXIMUM LIKELIHOOD

PARAMETER ESTIMATION UNDER NONLINEARITY

We shall now provide details on how to select starting values for the iterative scheme

used for maximum likelihood parameter estimation under nonlinearity. At the outset, we consider

p1 = p, where p1 is the number of columns of X and f1(xi,β), a nonlinear function. Expanding

the latter in Taylor series around β(0) up to first order, we obtain

f1(xi,β)≈ f1(xi,β(0)) +
p∑
j=1

[
∂f1(xi,β)

∂βj

]
β=β(0)

(βj−β(0)
j ), (D.1)

where β(0) = (β(0)
1 , . . . ,β

(0)
p )> is the vector of starting values for the estimation of β. Let

[∂f1(xi,β)/∂βj ]β=β(0) = c
(0)
ij and ψ(0)

j = (βj−β(0)
j ). It is possible to write (D.1) as

f1(xi,β)−f1(xi,β(0))≈
p∑
j=1

c
(0)
ij ψ

(0)
j (D.2)

In (D.2), we consider g1(yi)≈ g1(µi) = f1(xi,β), então g1(yi)≈ f1(xi,β). Thus, g1(yi)−f1(xi,β(0))≈

f1(xi,β)−f1(xi,β(0)). Next, we consider the least squares estimator of ψ(0), which is given by

ψ(0) ≈ (J (0)>
1 J

(0)
1 )−1J

(0)>
1

[
g1(y)−f1(X,β(0))

]
,

where J (0)
1 = [∂η1/∂β]β=β(0) . We have that ψ(0)

j = (β̂j−β(0)
j ); thus, β(1)

j = ψ
(0)
j +β

(0)
j . It follows

that the iterative scheme is β(m)
j = ψ

(m−1)
j +β

(m−1)
j . We arrive at

β(m) ≈
(
J

(m−1)>
1 J

(m−1)
1

)−1
J

(m−1)>
1

[
g1(y)−f1(X,β)(m−1)

]
+β(m−1).

Setting m= 1, we obtain the starting value for β:

β
(0)
NL =

(
J

(0)>
1 J

(0)
1

)−1
J

(0)>
1

[
g1(y)−f1(X,β(0)

L )
]

with β
(0)
L = (X>X)−1X>g(y), X denoting the n× p1 matrix of mean regressors of the linear

model.

To determine the starting value for θ, we consider q1 = q, where q1 is the number of

columns of Z and g2(φi) = f2(z>i ,θ), a non-linear function. Here, zi is the ith row of Z written

as a column vector. Analogously to what was done previously, we have that

θ
(0)
NL =

(
J

(0)>
2 J

(0)
2

)−1
J

(0)>
2

[
g2(φ(0)

NL)−f2(Z,θ(0)
L )

]
with

θ
(0)
L = (Z>Z)−1Z>g2(φ(0)

L ), J
(0)
2 =

[
∂η2
∂θ

]
θ=θ(0)

, φ
(0)
Li =

√
6σ̌2

Li

π2 and φ
(0)
NLi =

√
6σ̌2

NLi

π2 ,
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where φ(0)
L = (φ(0)

L1 , . . . ,φ
(0)
Ln)>, σ̌2

Li = ě>L ěL/{(n−p)[g′1(µ̌Li)]2}, µ̌Li = g−1
1 (x>i β

(0)
L ), ěL = g1(y)− µ̌L,

σ̌2
NLi = ě>NLěNL/{(n−p)[g′1(µ̌NLi)]2}, µ̌NLi = g−1

1 (f1(xi,β(0)
NL)), ěNL = g(y)− µ̌NL.

It is important to note that in one or both submodels there may be fewer regressors

than parameters, i.e., p1 < p and/or q1 < q. In that case, we proceed as follows. At the outset,

we attribute values to some parameters in order to obtain a predictor formed by covariates that

do not involve extra unknown parameters. For example, in g(µi) = β1 +β2[xi2/(xi2 +β3)], we

provide an initial value for β3. We note that the choice of values attributed to some of the

parameters must consider: (i) the characteristics of the regressors and (ii) the mathematical

relationship of the regressors to the functions in the nonlinear predictors. Next, we compute

(X>X)−1X>g1(y), X being based on a linear predictor. Thus, we obtain β(0)
L and, subsequently,

β
(0)
NL.
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