

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENERGIA NUCLEAR PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIAS ENERGÉTICAS E NUCLEARES

ÉRICK DA SILVA OLIVEIRA

ESTIMATIVA DA DOSE EFETIVA EM FANTOMAS DE VOXEL PARA INDIVÍDUOS

DE 15 ANOS

ÉRICK DA SILVA OLIVEIRA

ESTIMATIVA DA DOSE EFETIVA EM FANTOMAS DE VOXEL PARA INDIVÍDUOS DE 15 ANOS

Dissertação apresentada ao Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares da Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, como requisito parcial para a obtenção do título de Mestre em Tecnologias Energéticas e Nucleares.

Área de Concentração: Dosimetria e Instrumentação Nuclear

Orientador: Prof. Dr. Fernando Roberto de Andrade Lima.

Coorientador: Prof. Dr. José Wilson Vieira.

Catalogação na fonte Bibliotecária Rosineide Mesquita gonçalves Luz CRB-4 / 1361

O48e Oliveira, Érick da Silva.

Estimativa da dose efetiva em Fantomas de Voxel para indivíduos de 15 anos / Érick da Silva Oliveira.

146 f., il., tabs, abrev. e siglas.

Orientador: Prof. Dr. Fernando Roberto de Andrade Lima.

Coorientador: Prof. Dr. José Wilson Vieira.

Dissertação (Mestrado) — Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares, Recife, 2021.

Inclui referências, apêndices e anexos.

1. Energia Nuclear. 2. Dose efetiva. 3. Fantomas de Voxel. 4. Método Monte Carlo. I. Lima, Fernando Roberto de Andrade (Orientador). II. Vieira, José Wilson (Coorientador). III. Título.

UFPE

612.01448 CDD (22. ed.)

BCTG / 2021-240

ÉRICK DA SILVA OLIVEIRA

ESTIMATIVA DA DOSE EFETIVA EM FANTOMAS DE VOXEL PARA INDIVÍDUOS DE 15 ANOS

Dissertação apresentada ao Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares da Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, como requisito parcial para a obtenção do título de Mestre em Tecnologias Energéticas e Nucleares.

Área de Concentração: Dosimetria e Instrumentação Nuclear.

Aprovada em: 22/09/2021.

BANCA EXAMINADORA

Prof. Dr. José Araújo dos Santos Júnior
Universidade Federal de Pernambuco

Dra. Isabelle Viviane Batista de Lacerda (Examinador Externo)
Instituto Federal de Pernambuco

Dr. Pedro Henrique Avelino de Andrade (Examinador Externo)

Instituto Federal de Pernambuco

AGRADECIMENTOS

Agradeço a Deus por mais uma etapa concluída. "Deixe nas mãos do Senhor tudo quanto você faz, e todos os seus planos serão bem-sucedidos" (Provérbios 16:3 NBV-P). Agradeço aos meus pais e minha noiva pelo incentivo, a meu amigo Ediclecio pelo apoio prestado no início do curso e ao grupo GDN pelos conhecimentos compartilhados.

RESUMO

Em dosimetria computacional, estudos de casos de exposição a fontes radioativas são realizados por meio de simulações baseadas em métodos Monte Carlo (MC), contendo cenários, fontes, e alvos hipotéticos. Nesse âmbito, os alvos que representam seres humanos, são os fantomas computacionais. Estes variam em características como gênero, idade, composição anatômica e outras. Neste trabalho foram desenvolvidos dois novos fantomas que representam adolescentes masculinos de 15 anos, SAMUEL e SAMUEL_S. O fantoma feminino SARA, que simula na mesma faixa etária, foi atualizado para a versão SARA_V2. Por meio do código MC EGSnrc, foram estimados os coeficientes de conversão para dose efetiva normalizada por kerma incidente no ar (E/INAK), para fótons monoenergéticos de energias que variam de 25 keVa 3000 keV, utilizando os fantomas SAMUEL_S e SARA_V2, e um algoritmo de transporte de radiação de exposição ambiental. Os passos recomendados pela ICRP e ICRU para obtenção da grandeza dosimétrica foram seguidos. Os fantomas foram expostos individualmente e avaliada a dose em seus tecidos e órgãos radiossensíveis para obter valor médio para a estimativa da dose efetiva. No intervalo de energia estudado, na parte que corresponde à faixa usada em radiodiagnóstico (25 keV - 150 keV), foi observado que os fótons de 100 keV promoveram maior dose efetiva. Também foi observado que a partir de 300 keV, a dose efetiva aumenta junto com a energia. Os três novos fantomas, elaborados neste trabalho, estão prontos para serem utilizados em avaliações dosimétricas, e estão disponíveis no site dosimetrianumerica.org, para livre acesso ao público.

Palavras-chave: dose efetiva; fantomas de voxel; método Monte Carlo.

ABSTRACT

In computational dosimetry, case studies of exposure to radioactive sources are carried out through simulations based on Monte Carlo (MC) methods, containing scenarios, sources, and hypothetical targets. In this context, the targets that represent human beings are the computational phantoms. These vary in characteristics such as gender, age, anatomical composition, etc. In this work, two new phantoms were developed that represent 15-year-old male adolescents, SAMUEL and SAMUEL S. The female SARA phantom, which simulates the same age group, has been updated to the SARA_V2 version. Using the MC code EGSnrc, the conversion coefficients for effective dose normalized by incident air kerma (E/INAK) were estimated for monoenergetic photons with energies ranging from 25 keV to 3000 keV, using the SAMUEL_S and SARA_V2 phantoms, and an environmental exposure radiation transport algorithm. The steps recommended by ICRP and ICRU to obtain the dosimetric quantity were followed. The phantoms were individually exposed and the dose evaluated in their radiosensitive tissues and organs to make an average that would lead to an estimate of the effective dose. In the range of energy studied, in the part that corresponds to the range used in radiodiagnosis (25 keV – 150 keV), it was observed that photons of 100 keV brought the highest effective dose. It was also observed that from 300 keV onwards, the effective dose increases along with energy. The three new phantoms, elaborated in this work, are ready to be used in dosimetric evaluations, and are available on the dosimetrianumerica.org website, for free access to the public.

Keywords: effective dose; voxel phantom; Monte Carlo method.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Método adotado pela ICRP para estimativa da dose efetiva.	
Figura 2 –	Fantoma adulto de Fisher-Snyder.	21
Figura 3 –	Fantomas MAX, FAX e ARC1.	
Figura 4 –	Fantomas Godwin e Klara da GSF.	24
Figura 5 –	Representação de um objeto através de voxels.	25
Figura 6 –	Modelagem em NURBS vs Modelagem em malhas poligonais.	26
Figura 7 –	Fantomas P00 e P01.	27
Figura 8 –	Fantomas M05, F05, M10 e F10.	27
Figura 9 –	Fantomas MASH e FASH.	28
Figura 10 –	Fantomas MARTIN, MARIA e SARA.	28
Figura 11 –	Pulmão esquerdo do Fantoma Recém-nascido UF.	30
Figura 12 –	Vistas frontais do fantoma recém-nascido feminino.	30
Figura 13 –	Fantomas de referência da ICRP para adultos.	32
Figura 14 –	Fantomas pediátricos de referência da ICRP, versão NURBS	33
Figura 15 –	com Malha Poligonal. Fantomas pediátricos de referência da ICRP, versão Voxel.	33
Figura 16 –	Configuração da Interface do Daz Studio	36
Figura 17 –	Acesso à biblioteca Genesis Starter Essentials.	36
Figura 18 –	Escolha do modelo adulto feminino.	37
Figura 19 –	Modelo adulto feminino no software Daz Studio.	37
Figura 20 –	Rotação do membro superior esquerdo.	38
Figura 21 –	Mudança no volume corporal.	38
Figura 22 –	Edição do nariz.	39
Figura 23 –	Escolha de cabelo.	39
Figura 24 –	Como Salvar modelo no formato *.obj.	40
Figura 25 –	Importando um arquivo *.obj.	41
Figura 26 –	Como adicionar um objeto de malha poligonal no Blender.	41
Figura 27 –	Ativação do modo de edição.	42
Figura 28 –	Modificar a malha do objeto com ferramenta a mover.	42
Figura 29 –	Modificar a malha do objeto com as ferramentas escalonamento e transformações.	43
Figura 30 –	Biblioteca de modificadores.	43

Figura 31 –	Adição da treliça na região de edição.	44
Figura 32 –	Edição com o modificador treliça.	44
Figura 33 –	Modificador solidificar.	45
Figura 34 –	Ativar função de verificar volume.	46
Figura 35 –	Como verificar o volume do objeto.	46
Figura 36 –	Salvar em formato *.obj.	47
Figura 37 –	Comando para extrair informações do fantoma.	48
Figura 38 –	Ilustração da sobreposição de voxels.	49
Figura 39 –	Software Daz Studio.	52
Figura 40 –	Modelo de adolescente de 15 anos.	53
Figura 41 –	Esqueleto do novo fantoma.	54
Figura 42 –	Vertebras.	54
Figura 43 –	Cartilagens.	55
Figura 44 –	Órgão ocos e tubulares.	55
Figura 45 –	Pênis, glândula tireoide e glândula pituitária.	56
Figura 46 –	Gordura envolvendo as vísceras.	56
Figura 47 –	Estruturas do fantoma SAMUEL.	57
Figura 48 –	Paralelepípedo delimitador das estruturas do fantoma.	57
Figura 49 –	Troca de IDs no ImageJ.	58
Figura 50 –	Fatias do fantoma SAMUEL voxelizado.	60
Figura 51 –	Fantoma SAMUEL voxelizado.	61
Figura 52 –	Osso esterno e cartilagem costal separados.	62
Figura 53 –	Vagina separada do útero e tubas uterinas.	63
Figura 54 –	Fatias da nova versão voxelizada do fantoma SARA.	64
Figura 55 –	Nova versão voxelizada do fantoma SARA.	65
Figura 56 –	Arquivos para compilação do fantoma SAMUEL_S.	66
Figura 57 –	Compilação no EGSnrc.	67
Figura 58 –	Simulação no EGSnrc.	67
Figura 59 –	Cenário de irradiação.	68
Figura 60 –	Dose efetiva por kerma incidente no ar em função da energia.	70

LISTA DE TABELAS

Tabela 1 –	Grandezas dosimétricas.	
Tabela 2 –	Códigos Monte Carlo.	
Tabela 3 –	Características do fantoma referência de 15 anos.	
Tabela 4 –	Características do fantoma referência de 15 anos da ICRP vs fantoma SAMUEL.	
Tabela 5 –	Estimativa da dose efetiva por kerma incidente no ar.	
Tabela 6 –	Fatores de ponderação de radiação recomendados na ICRP 103.	79
Tabela 7 –	Fatores de ponderação de tecido recomendados na ICRP 103.	80
Tabela 8 –	Órgãos e tecidos que compõe a versão de malha poligonal do fantoma SAMUEL.	
Tabela 9 –	Características do fantoma SAMUEL, versão voxelizada.	87
Tabela 10 –	Diferenças entre o Fantoma masculino de 15 anos da ICRP 143 e o Fantoma SAMUEL.	97
Tabela 11 –	Características da versão simplificada do fantoma SAMUEL.	108
Tabela 12 –	Características do fantoma SARA_V2.	117
Tabela 13 –	D/INAK (mGy/mGy) para os órgãos e tecidos radiossensíveis rotulados como RESTO na ICRP 103, obtidos para o fantoma SAMUEL_S.	126
Tabela 14 –	D/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SAMUEL S.	129
Tabela 15 –	(HT.wT)/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SAMUEL_S.	132
Tabela 16 –	D/INAK (mGy/mGy) para os órgãos e tecidos radiossensíveis rotulados como RESTO na ICRP 103, obtidos para o fantoma SARA V2.	135
Tabela 17 –	D/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SARA V2.	138
Tabela 18 –	(HT.wT)/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SARA V2.	141
Tabela 19 –	E/INAK (mSv/mGy) obtidos com os fantomas SAMUEL_S e SARA_V2.	144

LISTA DE ABREVIATURAS E SIGLAS

ARC0 Alderson Rando Computacional Versão 0
ARC01 Alderson Rando Computacional Versão 1

CERN Conseil Européen pour la Recherche Nucléaire

CSG Constructive Solid Geometry

D Dose absorvida

DCs Coeficientes de dose de referência

DIP Digital Image Processing

E Dose efetiva

EGS Electron Gamma Shower

F05 Versão de cinco anos de idade para FASH F10 Versão de dez anos de idade para FASH

FASH Female Adult meSH FAX Famale Adult voXel

FLUKA Fluktuierende Kaskade

GDN Grupo de Dosimetria Numérica e Grupo de Pesquisa em

Dosimetria Computacional e Sistemas Embarcados

GEANT4 Geometry and Tracking 4

GSF Gesellschaft für Strahlenforschung

HT Dose equivalente

IAEA International Atomic Energy Agency

ICRP International Commission on Radiological Protection

ICRU International Commission on Radiation Units and Measurements

ID Valor de identificação

INAK Kerma incidente no ar

K Kerma

LANL Los Alamos National Laboratory

M05 Versão de cinco anos de idade para MASH

M10 Versão de dez anos de idade para MASH

MARIA Modelo Antropomórfico para dosimetria das Radiações Ionizantes

em Adultas

MARTIN Male Adult with Macro Circulation and Lymphatic Vessels Phantom

MASH Male Adult meSH

MAX Male Adult voXel

MC Monte Carlo

MCEs Modelos Computacionais de Exposição

MCNP Monte Carlo N-Particle

MIRD Medical Internal Radiation Dosimetry

MRCPs Mesh-type Reference Computational Phantoms

NURBS Non-Uniform Rational B-Splines

ORNL Oak Ridge National Laboratory

P00 Hermaphrodite newborn phantom

P01 1-year-old phantom

PENELOPE Penetration and Energy Loss of Positrons and Electrons

PHITS Particle and Heavy Ion Transport code System

RM Ressonância Magnética

SAMUEL Simulador Antropomórfico Masculino para Dosimetria das

Radiações Ionizantes em Adolescentes

SAMUEL_S Simulador Antropomórfico Masculino para Dosimetria das

Radiações Ionizantes em Adolescentes Versão Simplificada

SARA Simulador Antropomórfico para Dosimetria das Radiações

Ionizantes em Adolescentes

SARA_V2 Simulador Antropomórfico para Dosimetria das Radiações

Ionizantes em Adolescentes Versão 2

SI Sistema Internacional de Unidades

TC Tomografia Computadorizada

SUMÁRIO

1	INTRODUÇÃO	14	
1.1	OBJETIVOS PRIMÁRIOS	16	
1.2	OBJETIVOS SECUNDÁRIOS		
2	REVISÃO DE LITERATURA	18	
2.1	GRANDEZAS DOSIMÉTRICAS		
2.2 2.2.1	MODELOS COMPUTACIONAIS DE EXPOSIÇÃO PARA ESTIMATIVAS DE DOSE Fantomas matemáticos	19 21	
2.2.2	Fantomas de voxel	22	
2.2.3	Fantomas de malhas poligonais e NURBS	25	
2.2.4	Fantomas híbridos	29	
2.2.5	Modelos de referência da ICRP	31	
3	MATERIAL E MÉTODOS	35	
3.1	ESTRUTURA DISPONÍVEL PARA A PESQUISA (HARDWARES, SOFTWARES E FANTOMAS PREEXISTENTES)		
3.2	DESENVOLVIMENTO DO FANTOMA EM MALHA		
3.3	DESENVOLVIMENTO DO FANTOMA EM VOXEL		
3.5	MODIFICAÇÕES NO FANTOMA SARA		
3.5	ACOPLAMENTO DO CÓDIGO E ESTIMATIVA DA DOSE EFETIVA		
4	RESULTADOS E DISCUSSÃO	52	
4.1	FANTOMA MASCULINO NO FORMATO MALHA POLIGONAL		
4.2	FANTOMA MASCULINO NO FORMATO VOXEL		
4.3	NOVA VERSÃO DO FANTOMA SARA	62	
4.4	ACOPLAMENTO DOS FANTOMAS NO CÓDIGO EGSNRC	65	
4.5	RESULTADO DAS SIMULAÇÕES	68	
5	CONCLUSÕES	71	
	REFERÊNCIAS	72	
	ANEXO A	77	
	KERMA	77	
	KERMA INCIDENTE NO AR	77	
	DOSE ABSORVIDA	77	

DOSE EQUIVALENTE	78
DOSE EFETIVA	79
ANEXO B	81
EGSnrc	81
FLUKA	81
MCNP	82
PHITS	82
PENELOPE	82
GEANT4	83
APÊNDICE A – SAMUEL, VERSÃO DE MALHA POLIGONAL	84
APÊNDICE B – SAMUEL, VERSÃO VOXELIZADA	87
APÊNDICE C – FANTOMA REFERÊNCIA DA ICRP VS SAMUEL	97
APÊNDICE D – SAMUEL_S	108
APÊNDICE E – SARA_V2	117
APÊNDICE F – RESULTADOS DOSIMÉTRICOS	126

1 INTRODUÇÃO

Em toda parte do planeta Terra há exposição à radiação ionizante, seja por fontes naturais ou artificiais. É conveniente pensar nos processos que causam essas exposições em humanos como uma rede de eventos e situações. Cada parte da rede começa a partir de uma fonte. A radiação ou material radioativo passa então por vias ambientais ou outros caminhos, levando à exposição dos indivíduos, e por conseguinte, doses. A proteção pode ser alcançada agindo na fonte ou em pontos das vias de exposição e, ocasionalmente, modificando a localização ou as características dos indivíduos expostos. Por conveniência, o caminho ambiental é geralmente adotado para incluir o vínculo entre a fonte de exposição e as doses recebidas pelos indivíduos. Os pontos de ação disponíveis têm um efeito substancial no sistema de proteção (ICRP 103, 2007).

A proteção radiológica visa a proteção das pessoas e do meio ambiente contra os efeitos prejudiciais da exposição à radiação, sem limitar indevidamente as ações humanas desejáveis que podem estar associadas a essa exposição. Para as pessoas, as exposições são gerenciadas e controladas para prevenir efeitos nocivos que são, em princípio, evitáveis; reduzir o risco de câncer e efeitos hereditários na medida do possível. Para o meio ambiente, o objetivo é ter um impacto insignificante na manutenção da diversidade biológica; na conservação de espécies; na saúde e o status de habitats naturais, comunidades e ecossistemas (IAEA, 2014).

A Comissão Internacional de Proteção Radiológica (ICRP, International Commission on Radiological Protection) é um dos principais órgãos de proteção contra radiação ionizante no mundo e fornece recomendações e orientações sobre proteção contra os riscos associados à radiação ionizante advinda de fontes artificiais amplamente usadas na medicina, indústria geral e empresas nucleares e de fontes naturais (ICRP 103, 2007). A ICRP também fornece um conjunto abrangente e consistente de valores de referência específicos por gênero e idade para características anatômicas e fisiológicas do corpo humano pertinentes à dosimetria de radiação (ICRP 89, 2002).

Doses de radiação podem ser reconstruídas ou previstas a partir de experimentos que simulem a situação de exposição radiológica. Um dos meios de estimativa de dose é a dosimetria computacional, que utiliza códigos Monte Carlo (MC) para simular o transporte e interação da radiação na matéria e avaliar dose de

radiação em qualquer ponto na parte interna ou externa do corpo humano. Este é representado através de fantomas computacionais, também chamados de simuladores antropomórficos virtuais, que retratam a anatomia humana com órgãos e tecidos. É necessário que esse tipo de fantoma esteja acoplado a um código MC e a um algoritmo simulador de uma fonte radioativa. O produto deste acoplamento é o Modelo Computacional de Exposição (MCE), que caracteriza o cenário de irradiação (corpo a ser irradiado e a fonte radioativa) do problema a ser estudado, e determina as grandezas dosimétricas resultantes.

Os fantomas computacionais têm muitas variedades. Algumas delas são a resolução, representação anatômica, e postura. A resolução está relacionada à fidelidade dos detalhes e a anatomia pode ser mais simples (poucos órgãos) ou mais complexa (muitos órgãos). As posições podem ser quaisquer, em pé, deitado, sentado, etc. Assim, diferentes grupos de pesquisa têm a própria família de fantomas, com as características que lhe são úteis em seus respectivos estudos.

O Grupo de Dosimetria Numérica e o Grupo de Pesquisa em Dosimetria Computacional e Sistemas Embarcados (ambos por razões históricas referenciados por GDN) têm em sua família de fantomas, os modelos SARA (Simulador Antropomórfico para Dosimetria das Radiações Ionizantes em Adolescentes) (SANTOS, 2016), que representa indivíduos do gênero feminino na idade de 15 anos e MARTIN (Male Adult with Macro Circulation and Lymphatic Vessels Phantom) (ANDRADE, 2018), que representa indivíduos adultos do gênero masculino. Por conta da diferença na faixa etária que ambos representam, é desaconselhável usá-los juntos em simulações que tratem apenas de uma idade.

Dose efetiva é uma grandeza dosimétrica que representa uma medida aproximada de risco de efeito estocástico ao ser humano, devido à exposição radiológica. Sua estimativa considera as doses equivalentes num modelo representativo de uma média populacional, sendo necessário um representante para cada gênero (masculino e feminino). A figura 1 mostra o método usado pela ICRP para estimar dose efetiva.

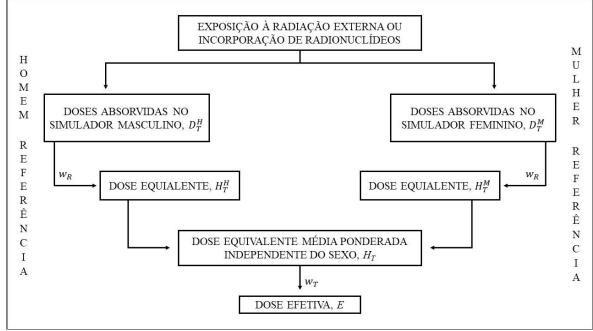


Figura 1 – Método adotado pela ICRP para estimativa da dose efetiva.

Fonte: ICRP 103, 2007.

Morfologicamente, os seres humanos de mesmo gênero podem apresentar diferenças consideráveis devido às faixas etárias, por exemplo, crianças, adolescentes e adultos têm corpos diferentes. Portanto, quando se trata de dose efetiva, o modelo representativo deve levar em conta a faixa etária da população a ser estudada.

Antes do desenvolvimento desse trabalho, o GDN não contava com um modelo masculino na faixa de 15 anos. Assim, para o estudo com esse tipo de fantoma, seria necessário desenvolvê-lo ou usar de outros grupos de pesquisa. A primeira opção se destaca pois é possível manter o padrão de características usadas pelo grupo, como resolução e quantidades mínimas de tecidos.

1.1 OBJETIVOS PRIMÁRIOS

Este trabalho tem como objetivo primário desenvolver um fantoma computacional que represente indivíduos de gênero masculino na idade de 15 anos. O desenvolvimento conta com remodelagens e edições no fantoma MARTIN.

1.2 OBJETIVOS SECUNDÁRIOS

Atualizar o fantoma SARA para uma versão que contenha o grupo de tecidos e órgãos caracterizados pela ICRP como radiossensíveis. Testar o funcionamento dos fantomas elaborados em simulações que levem à estimativa de dose efetiva.

2 REVISÃO DE LITERATURA

Nesta seção são descritos as grandezas dosimétricas e os componentes de um modelo computacional de exposição.

2.1 GRANDEZAS DOSIMÉTRICAS

Os efeitos da radiação na matéria dependem da fonte radioativa e das interações entre radiação e matéria. Quantidades dosimétricas, criadas para fornecer uma medida física para correlacionar-se com efeitos reais ou potenciais, são, em essência, produtos de quantidades radiométricas e coeficientes de interação. A radiação interage com a matéria em uma série de processos nos quais a energia das partículas é convertida e finalmente depositada na matéria (ICRU 60, 1998). A Comissão Internacional de Unidades e Medições de Radiação (ICRU, International Commission on Radiation Units and Measurements), a Agência Internacional de Energia Atômica (IAEA, International Atomic Energy Agency) e a ICRP, em suas publicações, trazem definições de quantidades dosimétricas que descrevem esses processos e algumas delas são apresentadas na tabela 1. O anexo A discorre mais detalhes sobre estas grandezas.

Tabela 1 – Grandezas dosimétricas.

Grandeza	Sigla	Definição
Kerma	K	É a soma da energia cinética inicial de todas as partículas carregadas liberadas pelas partículas não-carregadas (fótons e nêutrons) em uma massa de material.
Kerma incidente no ar	INAK	É o kerma que ocorre no espaço de ar entre a fonte radioativa e a pessoa ou fantoma. Considera-se o feixe principal da fonte.
Dose absorvida	D	É a energia média depositada pela radiação ionizante em um volume elementar de matéria.
Dose equivalente	H_T	É a dose absorvida média no órgão ou tecido, ponderado pelo tipo de radiação.
Dose efetiva	Е	É a média das doses equivalentes ponderada nos diversos órgãos e tecidos radiossensíveis do sexo masculino e feminino.

2.2 MODELOS COMPUTACIONAIS DE EXPOSIÇÃO PARA ESTIMATIVAS DE DOSE

O método matemático que simula um sistema real é construído num computador, usando técnicas MC. Um grande número de amostragem de tendência aleatória do modelo é aplicado, produzindo um grande número de amostras aleatórias dos resultados de saída. A origem sucedeu na década de 1940 através de três cientistas, John von Neumann, Stanislaw Ulam e Nicholas Metropolis, que estavam empregados em uma missão secreta no Laboratório Nacional de Los Alamos (LANL, Los Alamos National Laboratory), enquanto trabalhavam em um projeto de armas nucleares chamado Projeto Manhattan. A equipe formulou um modelo de sistema que estava estudando, o qual incluía variáveis de entrada e uma série de algoritmos de difícil solução analítica (THOMOPOULOS, 2012).

O método é baseado na execução do modelo quantas vezes estatisticamente for razoáveis como na amostragem aleatória. Para cada amostra, variáveis aleatórias são geradas para caracterizar o estado inicial da fonte; os cálculos são executados através do modelo, produzindo resultados aleatórios em cada variável de saída. Como cada entrada é aleatória, os resultados são aleatórios. Da mesma forma, eles geraram milhares dessas amostras e alcançaram milhares de resultados para cada variável de saída. Para realizar esse método, era necessário um grande fluxo de números aleatórios. Von Neumann desenvolveu uma maneira de gerar números pseudoaleatórios usando um método do quadrado médio e percebeu que o método apresentava falhas. Mas considerou que o método era o mais rápido que estava disponível na época, e saberia quando o método iria falhar (THOMOPOULOS, 2012).

O método provou ser bem-sucedido e foi um instrumento importante no Projeto Manhattan. Também se tornou uma ferramenta proeminente no desenvolvimento da bomba de hidrogênio. A Rand Corporation e a Força Aérea dos EUA foram duas das principais organizações que financiavam e divulgavam informações sobre o uso de métodos MC. Logo, as aplicações começaram a aparecer em todos os tipos de situações nos negócios, engenharia, ciência e finanças (THOMOPOULOS, 2012).

As simulações MC têm sido amplamente utilizadas em vários ramos da física médica, particularmente nas áreas de dosimetria de radiação, blindagem de radiação, planejamento de tratamento por radioterapia e imagem radiológica. O uso de métodos MC tem aumentado dramaticamente devido à disponibilidade de códigos MC de uso

geral e à crescente velocidade de computação e à redução no custo do processamento de dados (SHANMUGASUNDARAM; CHANDRASEKARAN, 2018). A tabela 2 apresenta alguns códigos MC usados em dosimetria computacional. O anexo B discorre maiores informações sobre eles.

Tabela 2 - Códigos Monte Carlo.

Código	Tipos de partículas que simula	Faixa de energia
EGSnrc	Fótons, elétrons e pósitrons.	1 keV – 10 GeV
FLUKA	Fótons, elétrons, pósitrons, prótons, nêutrons, antinêutrons, múons, hádrons carregados, neutrinos, antineutrinos e íons pesados.	100 eV – 10000 TeV
MCNP	Fótons, elétrons e nêutrons.	1 keV – 100 GeV
PHITS	Fótons, elétrons, pósitrons, prótons, nêutrons, muons e hádrons.	1 keV – 1 TeV
PENELOPE	Fótons, elétrons e pósitrons.	50 eV – 1 GeV
GEANT4	Fótons, elétrons, pósitrons, prótons, nêutrons, átomos neutros de hidrogênio, partícula alfa, íons, pions, kaons, híperons, hádrons, etc.	100 eV – 10 <i>TeV</i>

O advento dos computadores de primeira geração e os métodos de simulação MC, originalmente projetados para pesquisa de armas nucleares, demonstraram a viabilidade de calcular doses em órgãos usando fantomas computacionais. Estes incluem detalhes minuciosos das características exteriores e interiores do corpo humano, como a forma, o volume e a massa dos órgãos radiossensíveis. Juntamente com informações sobre densidade de tecidos e composição química, um fantoma computacional permite ao pesquisador simular interações de radiação e padrões de deposição de energia no corpo com precisão (XU, 2014).

Uma simulação MC para estimativa de dose conta como ferramenta principal um modelo computacional de exposição, que é composto fundamentalmente, por três elementos: um fantoma computacional, um código MC e um algoritmo para simular a fonte radioativa. Existem quatro tipos de fantomas computacionais: (1) fantomas matemáticos, (2) fantomas de voxel, (3) fantomas de malhas poligonais e/ou NURBS, (4) fantomas híbridos.

2.2.1 Fantomas matemáticos

A primeira geração de fantomas computacionais surgiu com o objetivo de fornecer melhores estimativas de doses a partir de materiais radioativos depositados internamente para trabalhadores e pacientes (XU, 2014).

O primeiro fantoma desta geração se originou na década de 1960 com o trabalho de Fisher e Snyder no Laboratório Nacional de Oak Ridge (ORNL, Oak Ridge National Laboratory) (MORGAN; SNYDER; STRUXNESS, 1967). Esse fantoma, mostrado na figura 2, chamado de fantoma adulto de Fisher-Snyder, foi desenvolvido através do uso de técnicas de Geometria Sólida Construtiva (CSG, Constructive Solid Geometry), que foram a base do desenvolvimento de todos os fantomas desta geração. O método CSG usa operadores booleanos para combinar várias formas primitivas, como esferas, cones, prismas ou cubóides, que podem ser descritas por equações, para criar um modelo de anatomia humana. O fantoma foi constituído homogeneamente com o mesmo tipo de tecido (XU, 2014). Embora o objetivo original do fantoma fosse trabalhar com a dosimetria interna, um estudo usou o fantoma para determinar a distribuição de doses de fontes externas de raios gama (MORGAN et al., 1967).

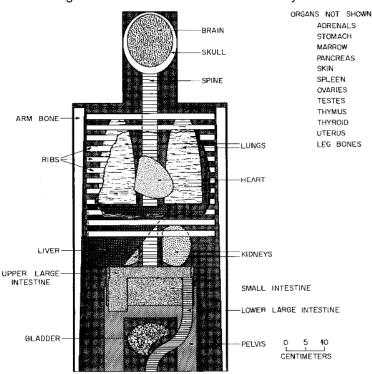
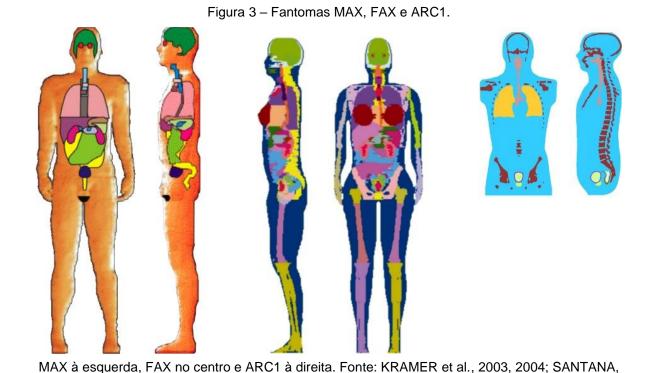


Figura 2 – Fantoma adulto de Fisher-Snyder.

Fonte: MORGAN et al., 1967.

Em 1969, o primeiro fantoma heterogêneo, o fantoma MIRD-5, foi publicado por Snyder e colaboradores. O fantoma era composto por três tipos de tecido: pulmão, esquelético e o restante era tecido mole homogêneo. O MIRD-5 pretendia representar o Homem de Referência da publicação 23 da ICRP. Em 1978 Snyder e colaboradores publicaram uma versão aprimorada do fantoma heterogêneo, que continha mais de 20 órgãos e características anatômicas mais detalhadas (XU, 2014).

Estes tipos de fantomas são limitados em sua capacidade de representar totalmente as complexidades da anatomia interna humana, mas, por serem baseados em equações matemáticas, são muito flexíveis em relação a fazer mudanças na posição do órgão e na forma geométrica (LEE et al., 2007). Assim são de grande valor em experimentos que não exigem precisão anatômica, como por exemplo dosimetria de radioterapia. No final da década de 1980, esforços substanciais foram direcionados para o desenvolvimento de fantomas anatomicamente realistas (XU, 2014).


2.2.2 Fantomas de voxel

A criação e evolução de técnicas de imagem médica permitiu a visualização 3D de estruturas internas anatômicas e abriu o caminho para o desenvolvimento de fantomas de voxel (também conhecido como tomográfico). Os fantomas de voxel, que podem descrever com mais precisão a anatomia humana, baseiam-se essencialmente em imagens de tomografia computadorizada (TC) e ressonância magnética (RM) de indivíduos. Eles são modelos anatômicos constituídos por vários voxels (pixels 3D) agrupados para modelar várias estruturas anatômicas. Como um voxel é um cubóide, os fantomas tomográficos também são baseados nos métodos CSG (XU, 2014).

O primeiro fantoma baseado em imagem para dosimetria de radiação foi desenvolvido por Gibbs e colaboradores para avaliar a dose do paciente durante procedimentos radiológicos dentários (GIBBS et al., 1984, 1987).

Pesquisadores do GDN têm desenvolvido diversos fantomas. Dentre os do tipo tomográfico a família conta com os adultos MAX (Male Adult voXel) e FAX (Famale Adult voXel) (KRAMER et al., 2003, 2004), masculino e feminino respectivamente. A construção do primeiro foi baseada em outro fantoma existente e a do segundo em imagens de TC de uma paciente. Ainda na categoria voxel, o grupo conta com ARCO (Alderson Rando Computacional Versão 0) e ARC1 (Alderson Rando Computacional

Versão 1) (SANTANA, 2019), construídos a partir de imagens de TC de um fantoma físico. Os Fantomas MAX, FAX e ARC1 estão representados na figura 3.

Zankl e colaboradores da Sociedade Para Pesquisa de Radiação (GSF, Gesellschaft für Strahlenforschung), na Alemanha, usaram imagens de TC em voluntários e pacientes saudáveis para desenvolver o que acabou se tornando uma família de 12 fantomas de voxel: Baby, Child, Donna, Frank, Helga, Irene, Golem, Godwin, Visible Human, Laura, Klara, e Katja (BECKER et al., 2007; FILL et al., 2004; PETOUSSI-HENSS et al., 2002; SCHLATTL et al., 2007; SMITH et al., 2000; WILLIAMS et al., 1986; ZANKL et al., 1988, 2002, 2005). A figura 4 mostra os fantomas Godwin e Klara.

2019.

Figura 4 – Fantomas Godwin e Klara da GSF.

Godwin à esquerda e Klara à direita. Fonte: ZANKL et al., 2005.

Os fantomas Golem e Laura passaram posteriormente por uma revisão significativa pelo grupo liderado por Zankl na GSF, para produzir os fantomas Rex e Regina que foram lançados ao público como o Homem e Mulher Referência da ICRP, onde o número de órgãos e tecidos identificados em cada fantoma era 140, que poderia ser atribuído a 53 materiais diferentes (ICRP 110, 2009; SCHLATTL; ZANKL; PETOUSSI-HENSS, 2007)

Os modelos de referência da ICRP ajudaram a padronizar a dosimetria de radiação baseada em fantomas de voxel, o que era uma necessidade real para o campo na época. No entanto, devido a espessuras de fatia relativamente grandes (8 mm no masculino de referência e 4,84 mm no feminino de referência), ocorreram alguns problemas com a precisão anatômica dos fantomas, como a definição irrealista de órgãos menores e foi relatado que a pele e os órgãos das paredes continham pequenos orifícios (XU, 2014).

O tamanho do voxel é muito importante. Enquanto alguns autores parecem pensar que uma resolução de voxel em x, y e z de 2 x 2 x 2 mm pode representar a anatomia humana com bastante precisão, não é pequeno o suficiente para delinear alguns órgãos menores e muito radiossensíveis, como a medula óssea (XU, 2014).

No entanto, enquanto um voxel menor permite melhor fidelidade anatômica, também aumenta o número de voxels no fantoma, o que aumenta o esforço computacional durante as simulações de MC. Portanto, deve haver um compromisso entre a fidelidade anatômica e o número de voxels. A figura 5 ilustra como o tamanho da voxel pode afetar a fidelidade da representação de um objeto.

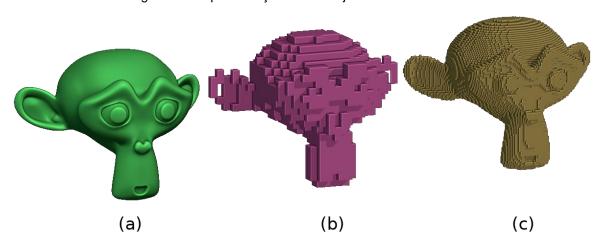
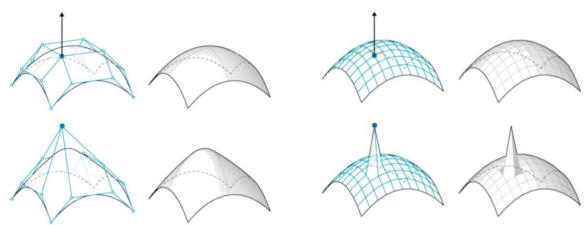


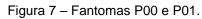
Figura 5 – Representação de um objeto através de voxels.

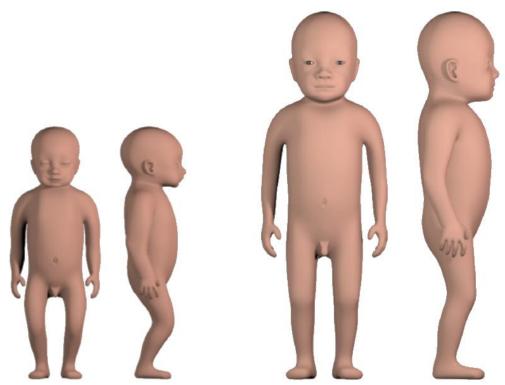
Objeto em (a); representação com voxels de tamanhos diferentes em (b) e (c). Fonte: O autor (2020).

2.2.3 Fantomas de malhas poligonais e NURBS

NURBS (sigla do inglês, <u>Non-Uniform Rational B-Splines</u>) é um modelo matemático que é comumente usado em computação gráfica para gerar e representar curvas e superfícies. É possível modelar desde carrocerias de automóveis e cascos de navios até personagens animados. Para explorar totalmente a flexibilidade do NURBS, é necessário um conhecimento prático completo da matemática subjacente (ROGERS, 2001). As malhas poligonais são uma alternativa flexível ao NURBS. Elas são uma coleção de vértices conectados para formar faces que definem a forma de um objeto poliédrico em computação gráfica 3D. Em lugar de equações matemáticas, o controle da geometria se dá por coordenadas dos vértices que a compõe. A figura 6 ilustra a diferença prática na modelagem com NURBS e malhas poligonais.

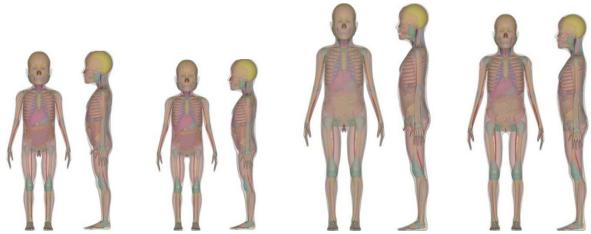



Figura 6 – Modelagem em NURBS vs Modelagem em malhas poligonais.


Fonte: Imagem da internet.

As principais vantagens dos fantomas de malhas poligonais e NURBS são sua capacidade de modelar detalhes anatômicos complexos e deformação da superfície, o que o torna ideal para tarefas como ajustar o tamanho do órgão, modelar o movimento do órgão e simular as interações dos seres humanos com o meio ambiente, variando a postura do fantoma.

Na época de desenvolvimento, a maioria dos códigos de transporte de radiação requeria que os fantomas fossem do tipo voxel. Assim a ICRP adotou tal formato como padrão nas simulações MC. É aconselhável que os fantomas do tipo malhas poligonais ou NURBS sejam convertidos para voxels, processo este chamado de voxelização (ICRP 143, 2020).


A família de fantomas do tipo malha desenvolvidas no GDN contém os hermafroditas P00 e P01, recém-nascido e de 1 ano respectivamente (CASSOLA et al., 2013), mostrados na figura 7; os casais M05 e F05, M10 e F10, MASH e FASH, de 5 e 10 anos e adultos respectivamente (CASSOLA, 2011; LIMA, 2011), mostrados nas figuras 8 e 9; os adultos MARTIN e MARIA, masculino e gestante respectivamente, e a adolescente SARA (ANDRADE, 2018; CABRAL, 2015; SANTOS, 2016), ambos mostrados na figura 10.

P00 à esquerda, e P01 à direita. Fonte: CASSOLA et al., 2013.

Figura 8 – Fantomas M05, F05, M10 e F10.

Da esquerda pra direita os fantomas M05, F05, M10 e F10. Fonte: LIMA, 2011.

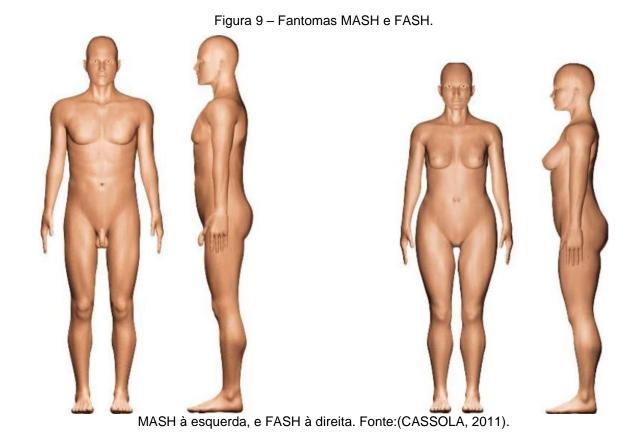
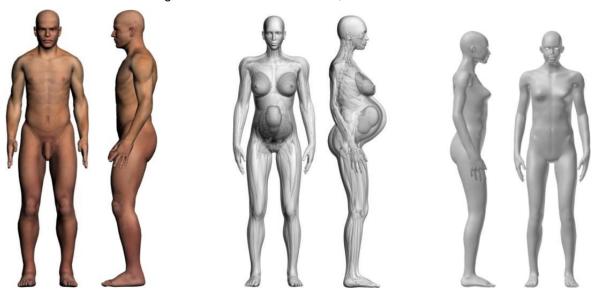



Figura 10 – Fantomas MARTIN, MARIA e SARA.

MARTIN à esquerda, MARIA no centro e SARA à direita. Fonte: ANDRADE, 2018; CABRAL, 2015; SANTOS, 2016.

O fantoma MARTIN foi desenvolvido para representar adultos masculinos e conta com uma grande variedade de estruturas internas, destacando-se o complexo sistema linfático e os vasos e nervos dos sistemas circulatório e nervoso. A sua versão voxelizada tem 435 x 296 x 1465 voxels de tamanho 0,12 cm x 0,12 cm 0,12 cm.

SARA é um fantoma que representa o gênero feminino na faixa etária de 15 anos e foi desenvolvido para simulações de tratamento radioterápico crânio-espinhal. A versão voxelizada compõe voxels de tamanho 0,12 cm x 0,12 cm 0,12 cm numa malha de 401 x 240 x 1342.

2.2.4 Fantomas híbridos

A geometria em voxel dos fantomas tomográficos depende diretamente do biotipo e posicionamento do paciente que fez os exames de imagens TC e/ou RM. Afim de obter uma melhor representação, a proposta de um fantoma híbrido é unir a riqueza de detalhes anatômicos oferecidos pelos fantomas tomográficos com uma técnica que, analogamente aos fantomas estilizados, permitam uma fácil manipulação. A construção é realizada em três etapas: poligonização do fantoma voxel, modelagem via superfícies NURBS e/ou malhas poligonais e voxelização fantoma (LEE et al., 2007).

Lee e colaboradores (2007) usaram NURBS para desenvolver fantomas computacionais híbridos de bebês recém-nascidos masculino e feminino. As informações anatômicas básicas usadas na construção dos modelos incluíram um fantoma de voxel pré-existente, o Modelo Recém-nascido UF (Universidade da Flórida), que foi criado por Nipper e cooperadores (2002), e o conjunto de imagens de TC que o deu origem.

O Modelo Recém-nascido UF no formato de matriz de voxel 3D foi primeiro convertido para um formato de malha poligonal usado posteriormente como estrutura básica para a modelagem de superfície NURBS subsequente. As superfícies NURBS foram geradas para todos os órgãos e tecidos internos, com exceção do cérebro e do esqueleto. O volume dos tecidos e órgãos foram corrigidos, afim de atender a referência da ICRP 89, e a postura também foi alterada. Na época os códigos de transporte de radiação não conseguiam lidar totalmente com NURBS, assim foi necessário o voxelizar o modelo para fazer simulações MC (LEE et al., 2007).

A figura 11 mostra o processo representativo da transformação do pulmão esquerdo do fantoma. O pulmão esquerdo original do fantoma recém-nascido UF voxel (figura 11 (A)) foi convertido em um modelo pulmonar de malha poligonal (figura 11 (B)). Este modelo de malha poligonal foi usado para gerar um modelo pulmonar suave baseado em NURBS (figura 11 (C)). O pulmão baseado em NURBS foi

subsequentemente triangulado usando uma tolerância de malha de 10° e depois voxelizado em duas resoluções diferentes de voxel: 2 × 2 × 2 mm³ e 1 × 1 × 1 mm³ (figura 11 (D) e figura 11 (E), respectivamente). A figura 12 mostra o fantoma feminino recém-nascido UF original, e as versões NURBS e voxelizada. A versão NURBS do fantoma híbrido UF é indicada como fantoma UFH-NURBS, enquanto a versão voxel é referida como fantoma UFH-Voxel (LEE et al., 2007).

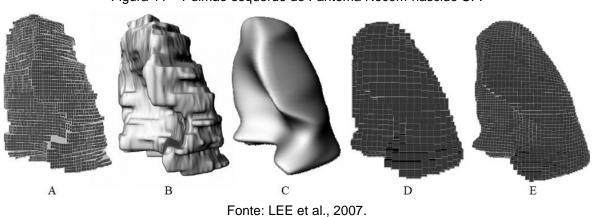
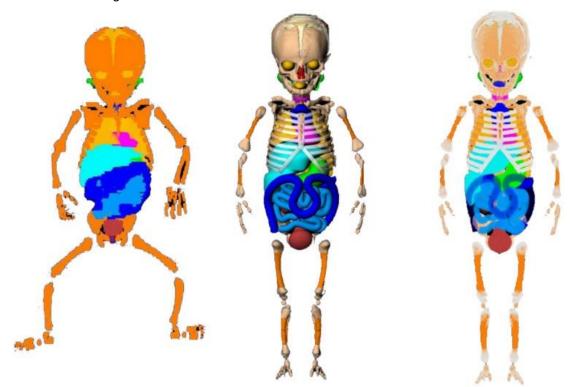



Figura 11 – Pulmão esquerdo do Fantoma Recém-nascido UF.

Versão voxel original à esquerda, versão híbrida em NURBS ao centro e versão híbrida em voxel à direita. Fonte: LEE et al., 2007

Os fantomas híbridos são vantajosos, dada a sua capacidade de representar algumas estruturas usando técnicas NURBS e malhas poligonais, nas quais a se obtém com mais facilidade a fidelidade anatômica. Também podem ser modeladas usando voxels, e desta forma tirar o melhor de cada geração. Desde a década de 2000, o mundo tem visto o interesse em fantomas híbridos aumentar bastante, existindo hoje em dia uma variedade de famílias de fantomas híbridos (XU, 2014; XU et al., 2000).

2.2.5 Modelos de referência da ICRP

Na publicação 89 a ICRP apresenta informações detalhadas sobre diferenças relacionadas a idade e gênero nas características anatômicas e fisiológicas dos indivíduos de referência. Esses valores de referência fornecem a entrada necessária para os cálculos prospectivos de dosimetria para fins de proteção contra radiação, tanto para trabalhadores quanto para o público em geral. O relatório apresenta uma série de valores de referência para homens e mulheres de seis idades diferentes: recém-nascido, 1 ano, 5 anos, 10 anos, 15 anos e adulto. Ao selecionar valores de referência, a Comissão usou dados sobre europeus ocidentais e norte-americanos porque essas populações foram bem estudadas em relação à anatomia, composição corporal e fisiologia (ICRP 89, 2002).

Após a publicação das Recomendações de 2007 da ICRP a Comissão lançou os fantomas computacionais de referência para adultos da ICRP com a Publicação 110. Esses fantomas de referência são do tipo voxel que foram construídos a partir de dados de tomografia computadorizada de corpo inteiro de pacientes adultos do sexo masculino e feminino. Eles são consistentes com as informações da Publicação 89, os parâmetros de referência anatômicas do Adulto Masculino e Adulto Feminino de Referência. Os fantomas de referência foram usados para produzir coeficientes de dose de referência (DCs) de doses equivalentes e efetivas para exposições externas e internas, seguindo o atual quadro dosimétrico da ICRP (KIM et al., 2018).

A ICRP formou o Grupo de Tarefas 103 com o objetivo de desenvolver novos Fantomas Computacionais de Referência do Tipo Malha (Mesh-type Reference Computational Phantoms, MRCPs). Recentemente, esse grupo de tarefas concluiu o desenvolvimento dos MRCPs para homens e mulheres adultos, que são os pares de malha dos fantomas de referência ICRP-110 do tipo voxel. Os MRCPs adultos foram

construídos convertendo os fantomas de voxel ICRP-110 em um formato de malha de alta qualidade e superando simultaneamente as limitações dos fantomas de voxel devido às suas resoluções limitadas de voxel. Os novos fantomas de malha incluem todas as regiões alvo e de origem relevantes para a avaliação da dose para fins de proteção radiológica (YEOM et al., 2019). A Figura 13 mostra os MRCPs masculinos e femininos adultos juntamente com os fantomas tipo voxel de referência da ICRP-110.

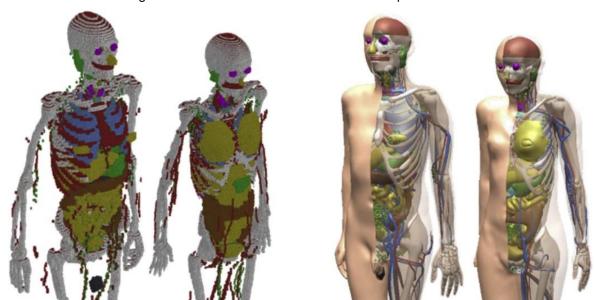


Figura 13 – Fantomas de referência da ICRP para adultos.

Fantomas do tipo voxel à esquerda e do tipo malha à direita. Fonte: YEOM et al., 2019.

Recentemente, na publicação 143, a ICRP apresentou uma família de 10 fantomas computacionais pediátricos para referência de indivíduos, masculinos e femininos, em idade de recém-nascido, 1 ano, 5 anos, 10 anos e 15 anos, conforme definido na publicação 89. Estes foram desenvolvidos em NURBS junto com malhas poligonais e por fim, foram voxelizados (ICRP 143, 2020). A figura 14 mostra todos os modelos masculinos e o feminino de 15 anos da família, na versão NURBS/Malha poligonal. Os mesmos, na versão voxelizada, são mostrados na figura 15.

Newborn 1-Year 5-Year 10-Year 15-Year Female 15-Year Male

Figura 14 – Fantomas pediátricos de referência da ICRP, versão NURBS com Malha Poligonal.

Fonte: ICRP 143, 2020.

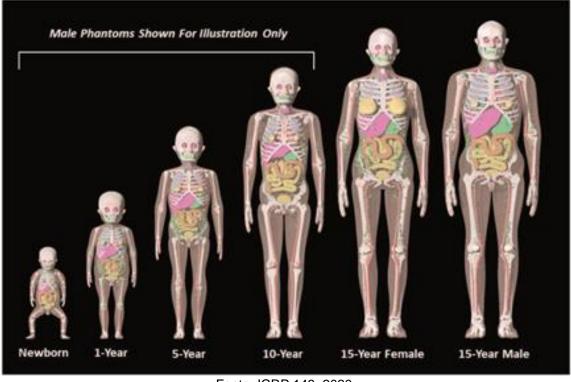


Figura 15 – Fantomas pediátricos de referência da ICRP, versão Voxel.

Fonte: ICRP 143, 2020.

Algumas das características do fantoma masculino de 15 anos da ICRP são mostradas na tabela 3.

Tabela 3 – Características do fantoma referência de 15 anos.

Característica	Valor
Altura	167 cm
Massa	56 kg
Quantidade total de voxels (tamanho da matriz)	53.662.950
Quantidade de voxels de tecido (voxels não vazios)	12.605.741
Espessura da fatia (altura do voxel)	2,832 mm
Largura do voxel	1,25 mm
Volume do voxel	4,425 mm ³
Número de colunas	407
Número de linhas	225
Número de fatias	586
Número de estruturas (tecidos, órgãos, ar interno) identificadas isoladamente (Nº de IDs)	137

3 MATERIAL E MÉTODOS

Nesta seção, são descritos os materiais necessários para execução deste trabalho de pesquisa, assim como a forma de usá-los.

3.1 ESTRUTURA DISPONÍVEL PARA A PESQUISA (HARDWARES, SOFTWARES E FANTOMAS PREEXISTENTES)

Para o desenvolvimento deste trabalho de pesquisa, foi disponibilizado um notebook com a seguinte configuração:

- Processador Intel® Core™ i5-8250U, 1.60 GHz, 8 threads, 64 bits;
- 8 Gb de RAM;
- GPU dedicada NIVIDIA GeForce MX130.

O sistema operacional usado no trabalho de pesquisa é o Windows 10 e os softwares são:

- 1. Daz Studio, versão 4.16: Software de modelagem 3D;
- Blender, versão 2.80: Software de modelagem 3D;
- DIP Digital Image Processing: Software de processamento de imagens digitais e voxelização de objetos 3D;
- 4. ImageJ: Software de processamento de imagens digitais.

O fantoma MARTIN, na versão de malha poligonal, é o modelo base para modelagem do novo fantoma masculino. A atualização de SARA partiu também da versão de malha poligonal.

3.2 DESENVOLVIMENTO DO FANTOMA EM MALHA

Daz Studio é um software de licença livre, destinado a criação de arte em 3D que permite construir cenários e personagens humanos personalizados em malha poligonal. Em seus modelos, o programa produz apenas o conteúdo visível externamente, ou seja, a superfície. Um personagem humano construído por exemplo, terá estruturas como pele, olhos, cabelo e unhas. Assim, o Daz Studio foi utilizado para criar um personagem adolescente masculino, afim de usar a pele e os olhos na composição do novo fantoma.

As figuras 16, 17, 18, 19, 20, 20, 21 e 22 são um sucinto exemplo de como criar um personagem no Daz Studio. O programa tem sete de interfaces diferentes. A usada neste trabalho é a *City Limits Lite*. A figura 16 mostra como ativá-la.

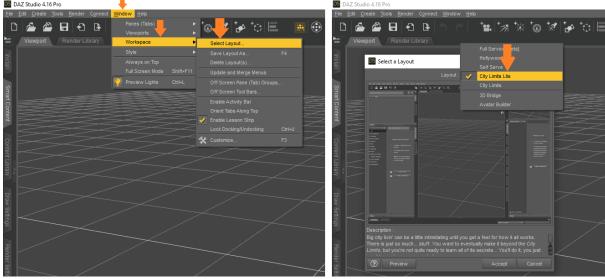


Figura 16 – Configuração da Interface do Daz Studio

Fonte: O autor (2020).

O programa tem bibliotecas com modelos genéricos pré-desenvolvidos, que servem de base para criação de novos personagens. As figuras 17 e 18 mostram como acessar uma biblioteca e escolher um modelo adulto feminino.

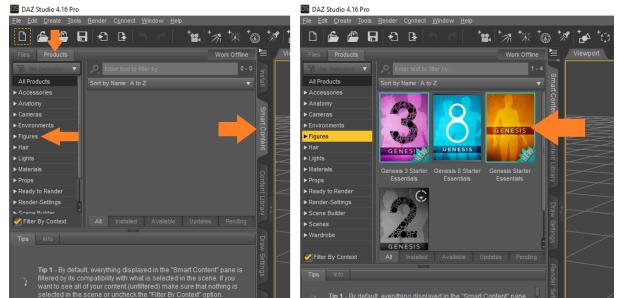


Figura 17 – Acesso à biblioteca Genesis Starter Essentials.

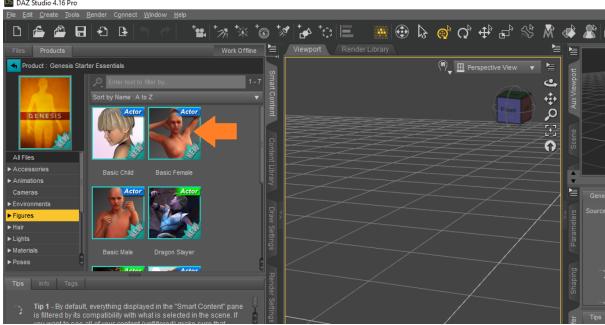


Figura 18 – Escolha do modelo adulto feminino.

Após o modelo ser escolhido, o Daz Studio o apresenta no ambiente de edição. Um exemplo de modificação na postura é apresentado nas figuras 19 e 20.

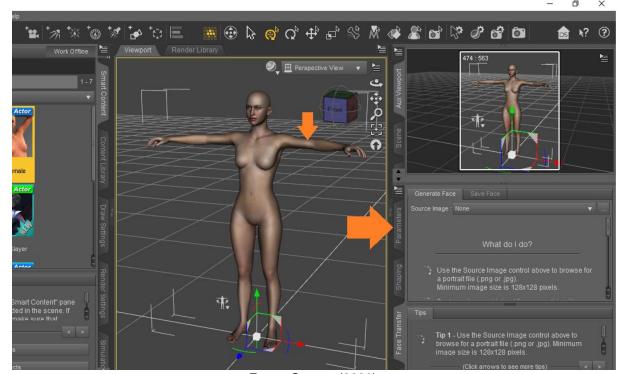


Figura 19 – Modelo adulto feminino no software Daz Studio.

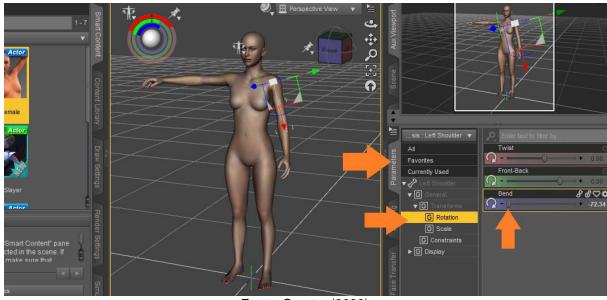


Figura 20 – Rotação do membro superior esquerdo.

Uma variedade de características físicas pode ser modificada. O exemplo mostrado nas figuras 21, 22 e 23 modifica o volume corporal, o formato do nariz e o tipo de cabelo. Procedimentos análogos permitiram a criação do personagem adolescente masculino.

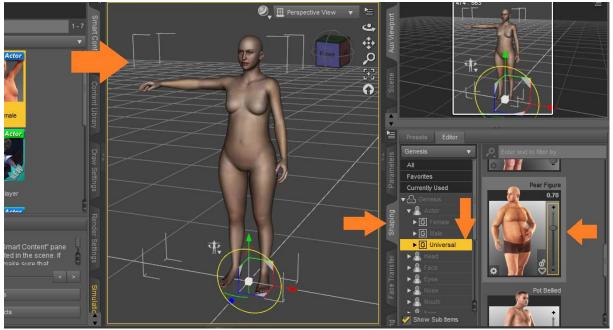


Figura 21 – Mudança no volume corporal.

Figura 22 – Edição do nariz.

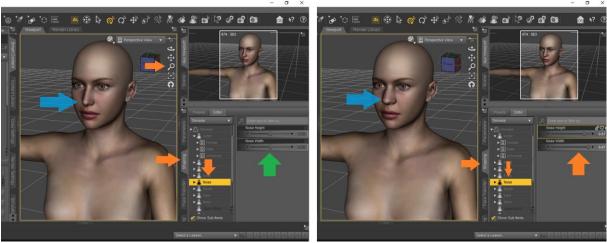
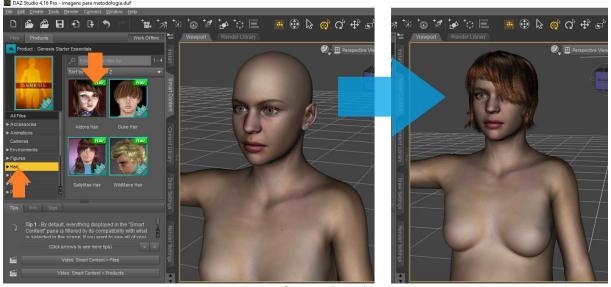



Figura 23 – Escolha de cabelo.

Fonte: O autor (2020).

Ao concluir o personagem, o usuário do programa deve salvá-lo num formato que possibilite a continuidade da edição no software Blender. Este lida bem com os formatos *Wavefront Object (*.obj)* e *Autodesk FBX (*.fbx)* oriundos do Daz Studio, sendo arbitrária a escolha de qualquer um. A figura 24 mostra como salvar em *.obj.

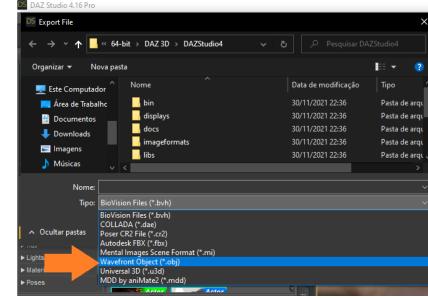


Figura 24 – Como Salvar modelo no formato *.obj.

DAZ Studio 4.16 Pro

Н

Export.

▶ Hair

▶ Lights

Fonte: O autor (2020).

Blender é um programa de computador de licença livre, destinado a, dentre outras coisas, modelagem, animação, texturização, e edição de vídeo. Devido a sua característica de criar e editar arquivos 3D, ele foi usado para modificar estruturas internas do fantoma MARTIN, desenvolver outras e unir ao personagem adolescente masculino que fora criado no Daz Studio. Assim, neste programa foi desenvolvido o fantoma masculino de 15 anos, na versão de malha poligonal.

A figura 25 mostra como importar um arquivo *.obj. Como exemplo, foi importado o modelo da figura 24. Esta função é usada para colocar no Blender o personagem adolescente masculino desenvolvido no Daz Studio e os órgãos do fantoma MARTIN.

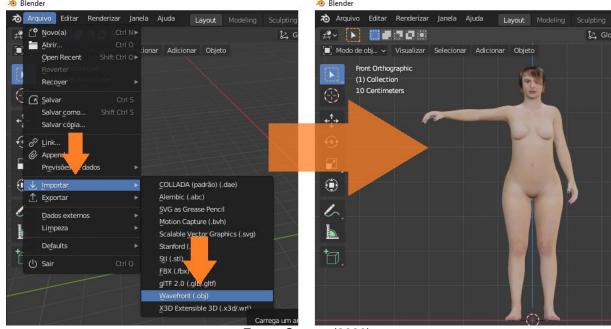


Figura 25 – Importando um arquivo *.obj.

A figura 26 exemplifica como adicionar um elemento que pode ser usado para criar um órgão. A figura 27 mostra como abrir o ambiente de edição. Neste modo, é possível usar ferramentas básicas do programa, como *mover, rotacionar, escalonamento e transformações* para modificar os vértices, arestas e faces do objeto. Um exemplo de modificação é ilustrado na figura 28 e 29.

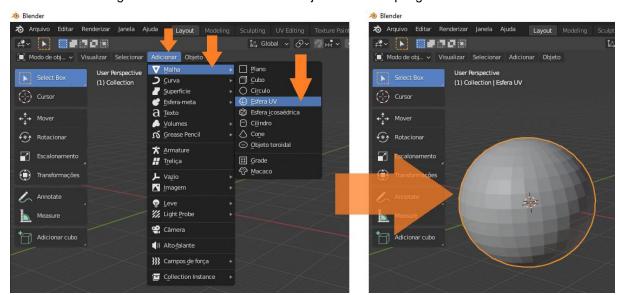


Figura 26 – Como adicionar um objeto de malha poligonal no Blender.

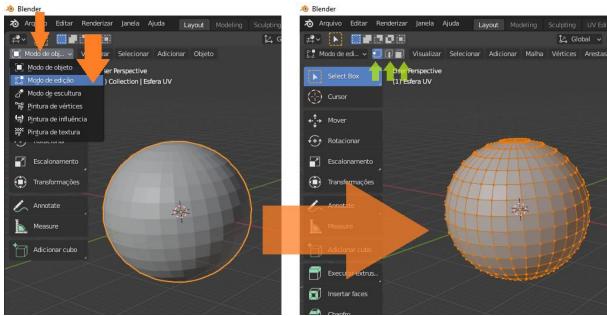


Figura 27 – Ativação do modo de edição.

Blender

A Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint

Arquivo Editar Renderizar Janela Ajuda Layout Modeling Sculpting UV Editing Touture Paint Pai

Figura 28 – Modificar a malha do objeto com ferramenta a mover.

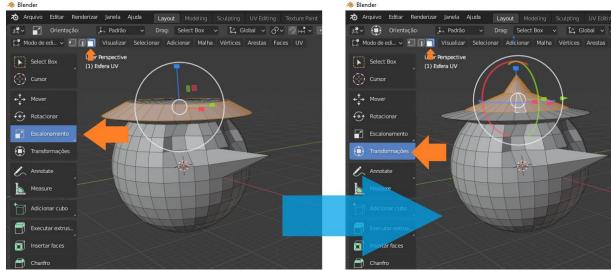


Figura 29 – Modificar a malha do objeto com as ferramentas escalonamento e transformações.

No Blender, há uma biblioteca de modificadores. Estes são ferramentas avançadas para edições na malha de um objeto. No desenvolvimento do fantoma, os modificadores *treliça* e *solidificar*, foram usados com muita frequência. A figura 30 mostra como acessá-los.

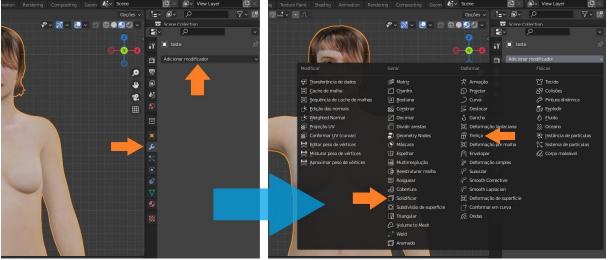


Figura 30 – Biblioteca de modificadores.

Fonte: O autor (2020).

O modificador *treliça* serve para deformar a malha poligonal através de uma rede de vértices que exerce "força de atração", semelhante ao NURBS. Antes de usálo, é preciso adicionar a treliça, isto é, a rede de vértices, na região que se quer manipular, e configurar o seu tamanho. A figura 31 ilustra este procedimento.

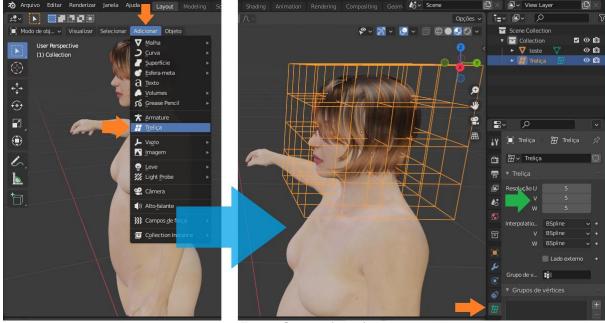


Figura 31 – Adição da treliça na região de edição.

Com o objeto treliça criado e ajustado sobre a região de edição, adiciona-se o modificador *treliça* e, no modo de edição, a modelagem pode ser feita. A figura 32 ilustra essa etapa. Através desse modificador, o esqueleto e a musculatura do MARTIN puderam ter o formato ajustado para concordar com a pele do personagem adolescente masculino criado no Daz Studio.

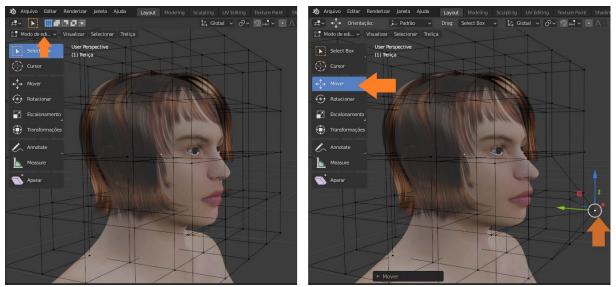


Figura 32 – Edição com o modificador treliça.

O modificador *solidificar* contorna o interior do objeto para gerar um novo volume dentro dele, porém menor. Essa função é útil para dar espessura aos objetos e gerar estruturas internas que têm formato semelhante às externas, como por exemplo a porção cartilaginosa das orelhas e a pele que reveste as orelhas. A figura 33 mostra o efeito resultante desse modificador.

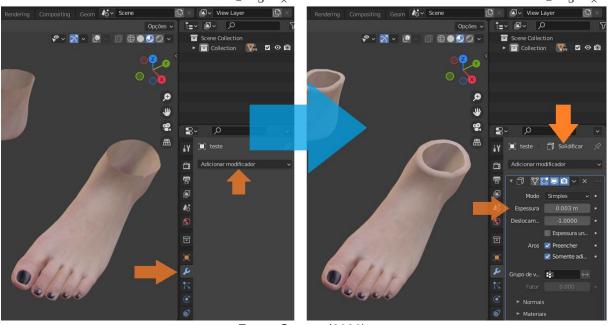


Figura 33 – Modificador solidificar.

Fonte: O autor (2020).

Com o auxílio dos dados anatômicos de referência da ICRP 89, os órgãos e tecidos do MARTIN que são relevantes para a estimativa de dose efetiva, foram modelados para concordarem com a referência masculina de 15 anos. Esta referência informa a massa e a densidade dos órgãos. Através dessas informações é possível obter o volume ideal para cada tecido. No Blender é possível verificar o volume do objeto que está sendo desenvolvido, assim as estruturas podem ser confeccionadas com uma maior fidelidade. A figura 34 mostra como ativar e a figura 35 como usar a função de verificar o volume.

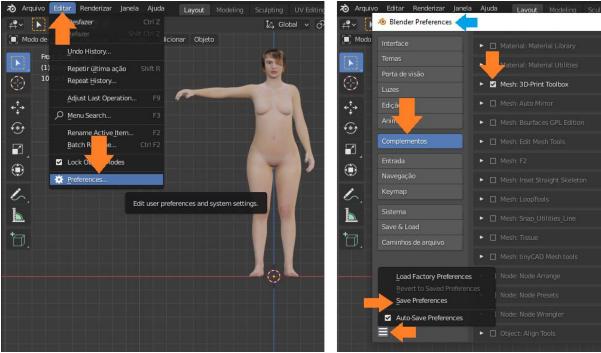


Figura 34 – Ativar função de verificar volume.

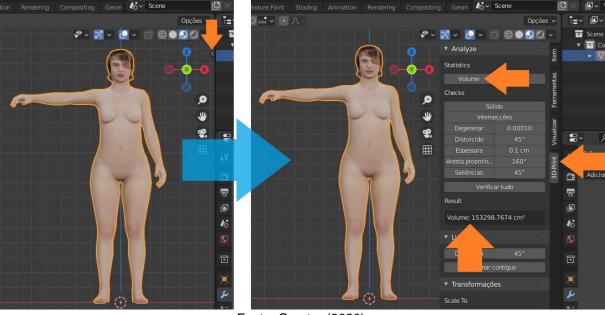


Figura 35 – Como verificar o volume do objeto.

Fonte: O autor (2020).

Algumas estruturas não oriundas do fantoma MARTIN foram criadas usando ferramentas básicas e modificadores. São a porção esponjosa dos ossos (ossos trabeculares), medula amarela dos ossos longos, glândula tireoide, glândula pituitária (hipófise), pênis, gordura visceral, cartilagens costais, cartilagem das orelhas, das

articulações dos membros superiores e inferiores e do nariz. O acoplamento dessas estruturas à nova pele caracteriza a conclusão do desenvolvimento do fantoma masculino tipo malha. Este foi salvo no formato *.obj.

O formato *.obj. pode levar consigo diversas informações do objeto 3D. Para o uso numa posterior voxelização, é recomendado deixar apenas as informações relevantes como o nome do objeto e a localização dos vértices e faces que compõe sua malha poligonal. Assim o arquivo terá um tamanho menor e a conversão em voxels se tornará mais rápida. A figura 36 mostra essa etapa.

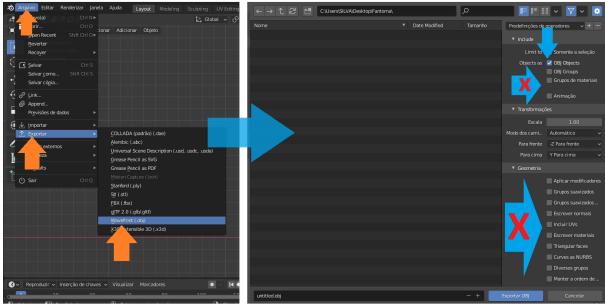


Figura 36 - Salvar em formato *.obj.

Fonte: O autor (2020).

3.3 DESENVOLVIMENTO DO FANTOMA EM VOXEL

DIP é um processador de imagens digitais que, dentre muitas funções, converte em voxels, malhas poligonais no formato *.obj. O primeiro passo para voxelização, é criar um arquivo de texto com a lista de estruturas que compõe o arquivo *.obj e seus detalhes. Esse procedimento é realizado através do caminho: Estudos > Construção de fantomas > Voxelização de FANTOMAS.OBJ: Ler um FANTOMA.OBJ e Criar... > Uma LISTA.TXT com os Ids, Nº de Vértices e Nomes dos Órgãos/Tecidos/Regiões do Fantoma. Esse comando está ilustrado na figura 37.

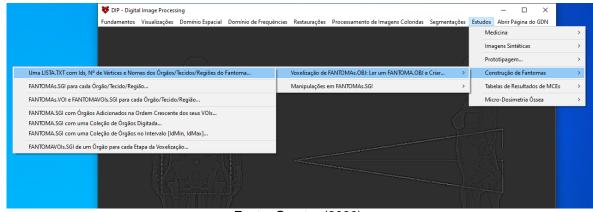


Figura 37 – Comando para extrair informações do fantoma.

O arquivo de texto gerado informa um ID (valore de identificação) para cada estrutura do fantoma que foi lida. A atribuição desse identificador ocorre de forma crescente, iniciando com número 1. Porém, o uso desses IDs não é obrigatório, assim, o arquivo pode ser editado, para que cada estrutura tenha a identificação que o autor deste trabalho deseje.

A resolução do voxel determina a quantidade que cada estrutura tem que ter. O tamanho escolhido é de 0,12cm x 0,12cm x 0,12cm, tendo volume de 0,001728cm³ ou 1,728mm³. Assim, para o órgão modelado no Blender com volume de, por exemplo, 53cm³, é esperado ter:

$$\frac{Volume\ do\ \acute{o}rg\~{a}o}{Volume\ do\ v\acute{o}xel} = \frac{53cm^3}{0,001728cm^3} = 30.865\ voxels$$

Na voxelização, é comum estruturas muito próximas terem partes sobrepostas umas às outras, caso o tamanho do voxel seja maior que a distância que as separa. A figura 38 ilustra dois objetos próximos em malha poligonal (a) e em voxels (b). É possível observar que em (b) há uma sobreposição no espaço que separa as estruturas.

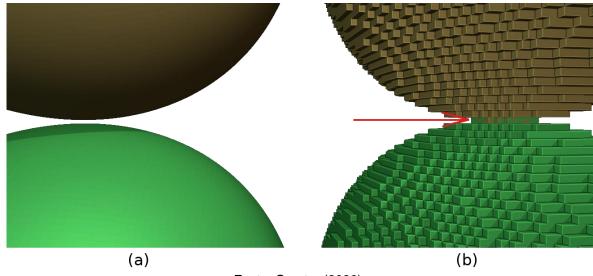


Figura 38 – Ilustração da sobreposição de voxels.

O DIP não permite que mais de um ID ocupe o mesmo voxel, assim quando diferentes estruturas tendem a ocupar o mesmo voxel, a que primeiro for voxelizada terá preferência. Assim, é aconselhável que as estruturas mais internas tenham preferência na ordem de voxelização, afim de evitar que as mais externas acabem ocupando o lugar que lhes são devidos. Por exemplo, é preferível voxelizar os brônquios antes dos pulmões.

Ao voxelizar, é necessário informar o tamanho máximo do fantoma. A altura de 167 cm, referência da ICRP para modelos masculinos de 15 anos, convertida em voxel de 0,12 cm, corresponde a 1392 voxel. Esta foi a dimensão máxima do fantoma. O caminho do comando para voxelização é: *Estudos > Construção de fantomas > Voxelização de FANTOMAS.OBJ: Ler um FANTOMA.OBJ e Criar... > FANTOMA.SGI com uma Coleção de Órgãos Digitada.*

A quantidade de voxels deve concordar com o volume de órgãos e tecidos. Assim, com o mesmo software pode ser feita uma verificação se a proporcionalidade está sendo respeitada. O caminho do comando é: Fundamentos > Contagens > Contagens de Voxels > Conta Voxels, Calcula os Volumes e Obtém as Localizações Min e Max dos Órgãos/Tecidos de um FANTOMA.SGI. As divergências encontradas devem ser solucionadas com troca de IDs.

Dois tipos de trocas de IDs se destacam: as que adicionam contornos e as que adicionam conteúdos aos órgãos. Úteis para se criar um tecido que reveste um órgão, como por exemplo a pleura que envolve os pulmões e o sangue que está interno ao coração. Os caminhos dos comandos são: Estudos > Construção de fantomas >

Manipulações em FANTOMAS.SGI > Adicionar Contorno(s) de Voxel em um Órgão. | Estudos > Construção de fantomas > Manipulações em FANTOMAS.SGI > Criar conteúdo de um Órgão Trocando Voxels Internos.

Uma terceira opção de troca é a que muda os IDs de grupos de voxels em diversas localidades do fantoma, formato geometrias de linfonodos, muito útil para aumentar a quantidade desse tecido no fantoma. O comando usado é: *Estudos > Construção de fantomas > Ajustes Monte Carlo > Adicionar, Uniformemente, Esferas em uma Região do Fantoma (linfonodos).*

O fantoma voxelizado é salvo numa pilha de imagens de 8 bits no formato padrão do DIP, o *.sgi (Simulações Gráficas Interativas). O software livre ImageJ é uma alternativa na edição dos voxels, pois sua interface gráfica permite que o "passo a passo" da edição seja mais "visual". Os IDs dos voxels que compreendem a parte interna das estruturas do trato respiratório foram trocados por um ID que represente o ar interno. Com as edições concluídas, o fantoma foi finalizado, podendo ser usado na dosimetria computacional.

3.5 MODIFICAÇÕES NO FANTOMA SARA

O fantoma SARA passou por algumas edições para adicionar novas estruturas ao corpo. Analogamente ao SAMUEL, essas modificações foram realizadas nos softwares Blender, DIP e ImageJ. A versão em malha poligonal foi editada, em seguida feita uma nova voxelização para dar seguimento às edições.

Os procedimentos no Blender serviram para criar a medula espinhal, gordura visceral, peritônio, cartilagem nasal cartilagem das orelhas, cartilagem das articulações e sangue do coração. Ainda no Blender, quatro estruturas foram separadas de outras. A língua foi separada da cavidade oral, as cartilagens costais foram separadas do osso esterno, a vagina foi separada do útero e tubas uterinas e os discos intervertebrais foram separados das colunas cervicais, torácica e lombar. No DIP, a parte trabecular dos ossos foi criada pelo método de adição de contorno. No ImageJ, a medula amarela e o ar interno foram criados trocando IDs de voxel nas regiões que compreendem essas estruturas.

3.5 ACOPLAMENTO DO CÓDIGO E ESTIMATIVA DA DOSE EFETIVA

O EGSnrc é um código MC bastante usado pelo grupo GDN, por ser muito bem dominado pelos membros, e trazer resultados confiáveis, assim, ele foi escolhido para acoplamento com os fantomas voxelizados e o algoritmo de transporte de radiação. Como o formato *.sgi não é lido diretamente pelo código, os fantomas foram convertidos para o formato de arquivo de texto de extensão *.data, através do software DIP. Afim de simular uma exposição de corpo inteiro, onde é melhor observado a interação da radiação com todos os órgãos, foi escolhido o algoritmo desenvolvido por Vieira (2017), que representa uma fonte isotrópica de solo, emissora de raios gama, para exposição ambiental.

Dois acoplamentos foram feitos, um para o fantoma masculino e outro para o feminino, produzindo então, dois MCEs. A simulação retornou os coeficientes de conversão para dose absorvida dividido por kerma incidente no ar para os órgãos e tecidos dos fantomas. Como a radiação é do tipo gama ($w_R = 1$, ver tabela 6 do anexo A), a dose equivalente teve o mesmo valor que dose absorvida. Analiticamente, com o uso do fator de ponderação de tecido, w_T (ver tabela 7 do anexo A), se obteve a estimativa de dose efetiva normalizada pelo kerma incidente no ar.

4 RESULTADOS E DISCUSSÃO

Nessa seção, são apresentados os resultados de cada parte deste trabalho de pesquisa.

4.1 FANTOMA MASCULINO NO FORMATO MALHA POLIGONAL

O modelo *Gênesis 3 Starter Essentials* foi escolhido para ser o. A figura 39 mostra a interface do programa e o modelo escolhido.

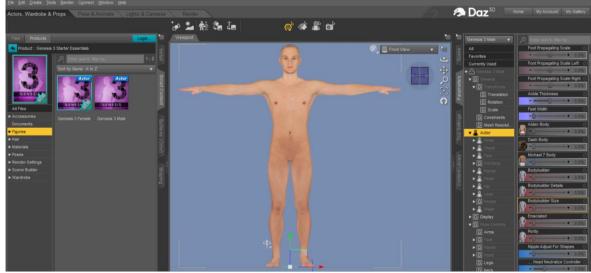


Figura 39 – Software Daz Studio.

Fonte: O autor (2020).

Para corresponder à semelhança de um adolescente de 15 anos, o modelo *Gênesis 3* teve as características físicas como altura, formato do rosto, tamanho dos membros, volume muscular, etc. modificadas. A postura também foi modificada e o resultado é mostrado na figura 40. Este modelo foi exportado para o Blender no formato *.obj.

Figura 40 – Modelo de adolescente de 15 anos.

O fantoma MARTIN foi importado para o Blender. Algumas de suas estruturas não foram escolhidas para compor o novo fantoma, como pele, olhos, glândula tireoide, vasos sanguíneos e linfáticos, os nervos, pênis e o osso esterno. Estas foram excluídas e as demais estruturas passaram por mudanças de volume, posição e formato, para concordarem com as recomendações da ICRP 89 e encaixarem na pele produzida no Daz Studio. Para a pele, que representa o corpo como um todo, foi atribuído o tamanho de 167 cm no eixo-z, que é a altura recomendada pela ICRP, para indivíduos masculinos de 15 anos.

Os ossos do esqueleto têm uma camada exterior densa que parece lisa e sólida a olho nu. Tal camada é a substância compacta (osso compacto). Na parte interna está a substância esponjosa (osso esponjoso), também chamado osso trabecular, que é formado por colunas ósseas chamadas de trabéculas. O espaço estre as trabéculas são preenchidos com medula óssea vermelha ou amarela, sendo a última encontrada somente nos ossos longos dos membros (MARIEB et al., 2014).

Com o modificador solidificar, foram feitos para os ossos do esqueleto, com exceção da pelve, escápulas e externo, a porção esponjosa e medula amarela. A figura 41 mostra a composição do esqueleto do fantoma separadamente, e a figura 42 mostra os ossos trabeculares envoltos pelos compactos.

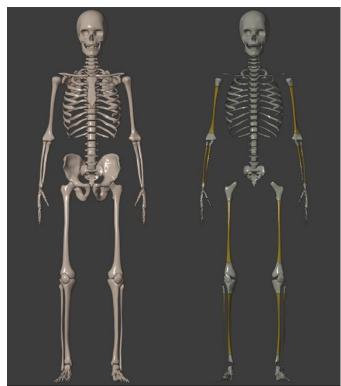


Figura 41 – Esqueleto do novo fantoma.

Figura 42 – Vertebras.

Fonte: O autor (2020).

O pênis e as cartilagens das orelhas também foram feitos com modificador solidificar, que contornou a pele na região correspondente. As demais cartilagens

foram desenvolvidas manipulando malha poligonal com ferramentas básicas. A figura 43 mostra as cartilagens do fantoma.

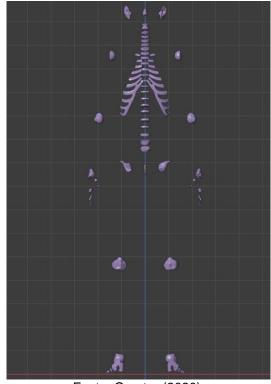


Figura 43 - Cartilagens.

Fonte: O autor (2020).

Aos órgãos tubulares e ocos foram dadas espessuras, através do modificador solidificar. A figura 44 exemplifica alguns resultados. Algumas das versões fechadas foram mantidas e consideradas como sendo o conteúdo dos mesmos.

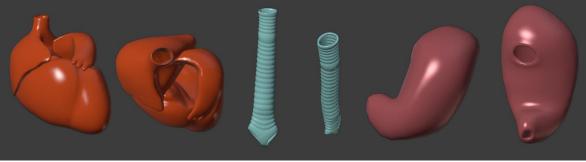


Figura 44 – Órgão ocos e tubulares.

As glândulas tireoide e pituitária e a gordura visceral foram desenvolvidos com ferramentas básicas de manipulação de malha poligonal. O pênis e as glândulas são mostrados na figura 45. A gordura é mostrada na figura 46, envolvendo as vísceras.

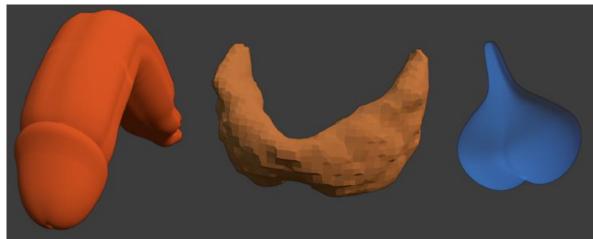


Figura 45 – Pênis, glândula tireoide e glândula pituitária.

Fonte: O autor (2020).

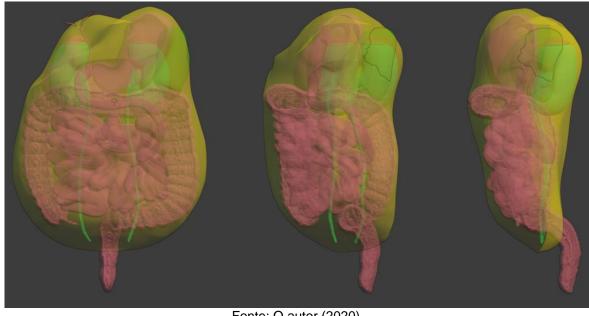


Figura 46 – Gordura envolvendo as vísceras.

Fonte: O autor (2020).

Um total de 127 estruturas compõe o fantoma e estão listadas no Apêndice A. Após todas as modificações o mesmo foi considerado finalizado e atribuído o nome de SAMUEL (Simulador Antropomórfico Masculino para Dosimetria das Radiações Ionizantes em Adolescentes). A figura 47 ilustra o resultado. Afim de preparar para voxelização, um paralelepípedo foi criado e o fantoma, inserido dentro dele. É possível ver a inserção na figura 48. Isso garante que as estruturas mantenham a correta proporção de tamanho, uma para com as outras. O arquivo foi salvo no formato *.obj.

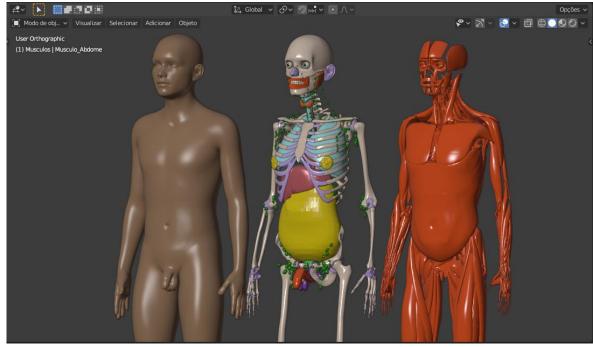


Figura 47 – Estruturas do fantoma SAMUEL.

Fonte: O autor (2020).

Figura 48 – Paralelepípedo delimitador das estruturas do fantoma.

4.2 FANTOMA MASCULINO NO FORMATO VOXEL

A voxelização foi realizada por intermédio do software livre DIP. Este importou o modelo de malha poligonal, identificou as faces e vértices que compõem os diferentes órgãos e tecidos, e criou uma matriz tridimensional de voxels para o corpo completo. Com base nas coordenadas das faces e vértices, o programa atribuiu diferentes IDs nos voxels, para fazer a diferenciação entre as estruturas do fantoma.

Com a opção de trocas no contorno de um volume, foram criados novos tecidos: a pleura que envolve os pulmões, as meninges que envolve o encéfalo, o peritônio que envolve as vísceras, a parte compacta do osso esterno, pelve e escápulas.

Na vesícula biliar, a troca de ID do volume interno, gerou seu conteúdo. Para a pele, foi trocado o ID dos voxels internos, onde estes representam a gordura subcutânea. Já para gordura visceral, foi trocado o ID do contorno para representar o peritônio. Para complementar os nodos linfáticos, alguns outros foram criados trocando IDs de algumas regiões do tecido adiposo subcutâneo e da gordura visceral.

A pesar de poder ser feito no DIP, a troca de IDs que compreende o espaço interno das vias aéreas, foi realizada no software ImageJ. A pilha de imagem foi carregada, e em cada fatia, foi analisada visualmente a necessidade de troca de ID na região das vias aéreas. Com as ferramentas de *pincel* e *balde*, "pintou-se" os voxels com um ID desejado. Esse procedimento é mostrado na figura 49.

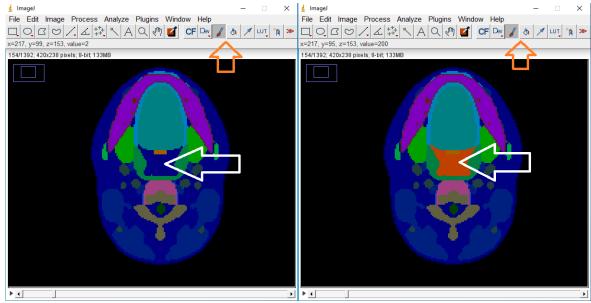


Figura 49 – Troca de IDs no ImageJ.

A verificação da quantidade de voxel para cada ID foi feita no DIP. A contagem mostrou que alguns tecidos tinham um pouco mais ou um pouco menos de voxels que o esperado, considerando o volume em que foram formados no Blender. Esse fenômeno se deu em função da ordem de voxelização, em que um ID prevaleceu sobre o outro nas regiões de sobreposição.

Novamente com o ImageJ, alguns voxels tiveram seus IDs trocados e assim, todos os reparos foram concluídos, finalizando o fantoma na versão voxelizada. São um total de 138 estruturas identificadas diferentemente (138 IDs). O Apêndice B litas todas essas estruturas. A figura 50 ilustra algumas fatias do fantoma SAMUEL voxelizado e a figura 51 ilustra uma projeção do mesmo, em cores diferentes.

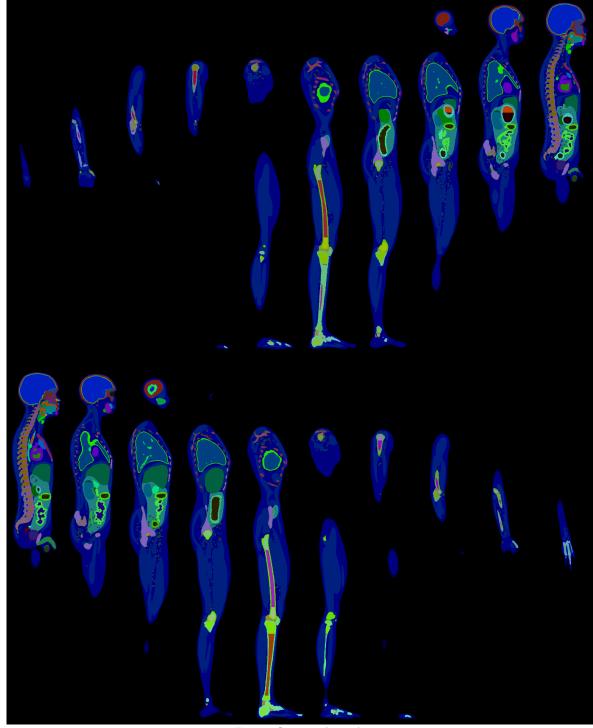


Figura 50 – Fatias do fantoma SAMUEL voxelizado.

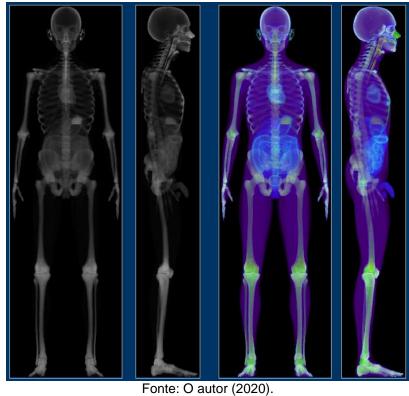


Figura 51 – Fantoma SAMUEL voxelizado.

Um comparativo entre os fantomas referência da ICRP e SAMUEL é apresentado na tabela 4. O Apêndice C apresenta com mais detalhes as diferenças anatômicas dos fantomas.

Tabela 4 – Características do fantoma referência de 15 anos da ICRP vs fantoma SAMUEL.

Característica	ICRP	SAMUEL
Altura	167 cm	167 cm
Massa	56 kg	~ 52,2 kg
Quantidade total de voxels (tamanho da matriz)	53.662.950	139.144.320
Quantidade de voxels de tecido (voxels não vazios)	12.605.741	29.874.472
Espessura da fatia (altura do voxel)	2,832 mm	1,2 mm
Largura do voxel	1,25 mm	1,2 mm
Volume do voxel	4,425 mm ³	1,728 mm³
Número de colunas	407	420
Número de linhas	225	238
Número de fatias	586	1392
Número de estruturas (tecidos, órgãos, ar interno) identificadas isoladamente (Nº de IDs)	135	138

Uma versão simplificada do fantoma, de nome SAMUEL_S, com menos tipos de tecido, foi feita. Os voxels com IDs correspondentes à pleura, meninges, uretra, ureteres, hipófise, amigdalas palatinas, epidídimo, foram trocados para o que corresponde ao tecido mole. Os IDs que dividem as porções do intestino grosso passaram a ser o mesmo, assim como o conteúdo. A porção esponjosa do osso hioide foi trocada pela mesma identificação que a porção compacta. Essas trocas foram feitas no DIP através do comando: *Fundamentos > Trocas > Em uma Pilha SGI de Imagens > Trocar > Troca de IdVelho por IdNovo*. A versão simplificada ficou com 124 estruturas e o Apêndice D lista todas.

4.3 NOVA VERSÃO DO FANTOMA SARA

A versão em malha poligonal do fantoma SARA foi aberta no Blender. Foi identificado que o osso esterno estava ligado às cartilagens costais numa mesma estrutura. Foi adicionado alguns planos na região das fronteiras entre um tecido e outro e com o modificador *Booliana*, os planos fizeram uma seção na estrutura, separando-a em duas. O resultado é mostrado na figura 52.

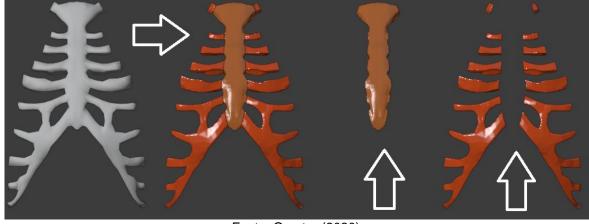


Figura 52 – Osso esterno e cartilagem costal separados.

Fonte: O autor (2020).

A vagina, o útero e as tubas uterinas compunham uma única estrutura. Na malha dessa estrutura, foram selecionadas as faces pertencentes à vagina e com o comando *separar seleção*, o órgão foi separado. O procedimento é ilustrado na figura 53. De forma análoga, a língua foi retirada da cavidade oral e os discos intervertebrais das colunas cervical, torácica e lombar. A gordura visceral, peritônio, medula espinhal

e cartilagens foram desenvolvidas manipulando malha poligonal com ferramentas comuns.

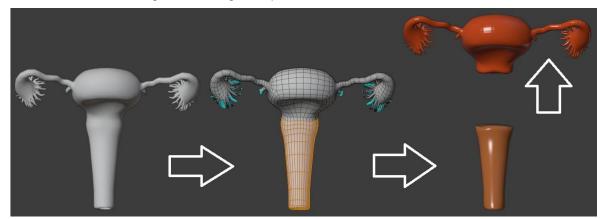


Figura 53 – Vagina separada do útero e tubas uterinas.

Fonte: O autor (2020).

O fantoma SARA foi voxelizado no DIP com os mesmos procedimentos que o SAMUEL. Os ossos trabeculares e o conteúdo dos órgãos ocos foram criados através dos comandos de troca de IDs. O ar interno e a medula amarela foram feitos no ImageJ, com o uso das ferramentas *pincel* e *balde*. O fantoma foi finalizado e a figura 54 ilustra algumas fatias. A figura 55 ilustra uma projeção do mesmo, em cores diferentes.

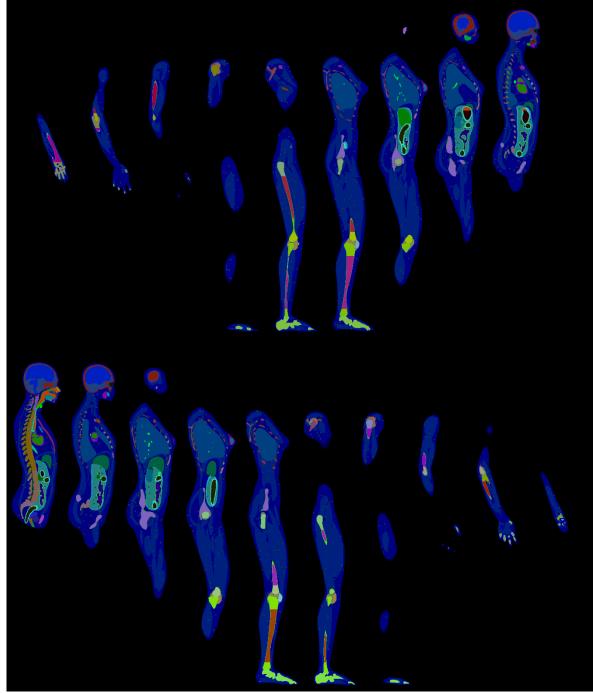


Figura 54 – Fatias da nova versão voxelizada do fantoma SARA.

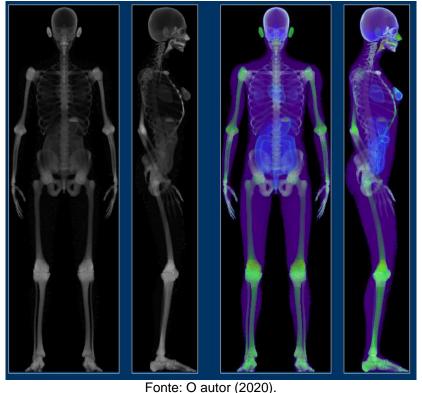


Figura 55 – Nova versão voxelizada do fantoma SARA.

A nova versão do fantoma SARA recebeu o nome SARA_V2. Ela contém 124 estruturas diferentes, as mesmas da versão simplificada de SAMUEL, com exceção do pênis, próstata e testículo, que no lugar tem vagina, útero e ovários. O Apêndice E lista todas as estruturas.

4.4 ACOPLAMENTO DOS FANTOMAS NO CÓDIGO EGSNRC

As duas versões do fantoma SAMUEL contém os tecidos e órgãos radiossensíveis da ICRP 103, assim qualquer uma das versões seria útil para usar na simulação de dose efetiva. No acoplamento no EGSnrc, foi usado SMUEL_S, pois tem os mesmos tipos e quantidades de estruturas que SARA_V2. Com o DIP, estes fantomas foram convertidos do formato *.sgi para *.data, através do comando: Fundamentos > Conversões > Coleções de Imagens 2D > Uma Pilha SGI em um Arquivo de Texto Lido nos MCEs com o EGSnrc.

A organização na área de usuário do sistema EGSnrc fica na pasta C:\HEN_HOUSE\EGS_HOME. Nela foram criadas duas pastas, uma para cada (C:\HEN_HOUSE\EGS_HOME\SAMUEL_S; fantoma

C:\HEN_HOUSE\EGS_HOME\SARA_V2). Os fantomas no formato *.data foram inseridos em suas respectivas pastas, juntamente com o algoritmo de transporte de radiação, e arquivos de configuração. A figura 56 ilustra a pasta do fantoma SAMUEL_S com os arquivos para compilação.

Figura 56 – Arquivos para compilação do fantoma SAMUEL_S.

C:\HEN_HOUSE\EGS_HOME\SAMUEL_S					
Nome	Tipo	Tamanho			
Makefile	Arquivo	3 KB			
micro10x.data	Arquivo DATA	6.150 KB			
micro12x.data	Arquivo DATA	6.150 KB			
micro15x.data	Arquivo DATA	6.150 KB			
micro20x.data	Arquivo DATA	6.150 KB			
micro55x.data	Arquivo DATA	6.150 KB			
mortjob.mortran	Arquivo MORTRAN	858 KB			
mspectra.data	Arquivo DATA	131 KB			
SAMUEL_S.data	Arquivo DATA	37.611 KB			
SAMUEL_S.make	Arquivo MAKE	2 KB			
SAMUEL_S.mortran	Arquivo MORTRAN	211 KB			
SAMUEL_S_execução.egsinp	Arquivo EGSINP	8 KB			
SAMUEL_S_List.data	Arquivo DATA	2 KB			
SAMUEL_S_win6432	Arquivo F	954 KB			
SAMUEL_S_win6432.mortlst	Arquivo MORTLST	1.270 KB			

Fonte: O autor (2021).

A compilação foi feita usando a interface do EGSnrc, gerando dois novos MCEs. A figura 57 mostra essa etapa para o fantoma SAMUEL_S e a figura 58 a execução da simulação. Para as simulações foi determinado que a fonte tivesse um raio de 50 metros e emitisse 38 valores discretos de energias no intervalo de 25 keV ≤ Energia ≤ 3000 keV. A figura 59 exemplifica o cenário de irradiação usado na simulação.

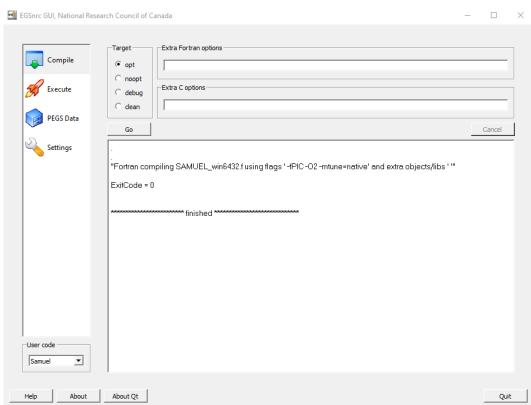
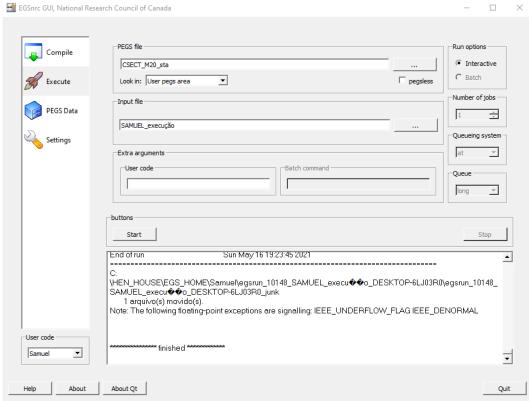



Figura 57 – Compilação no EGSnrc.

Figura 58 – Simulação no EGSnrc.

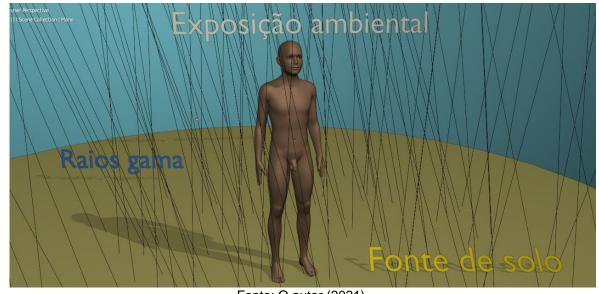


Figura 59 – Cenário de irradiação.

4.5 RESULTADO DAS SIMULAÇÕES

Para cada MCE foram realizadas 38 simulações com 10⁸ números de histórias. Cada simulação com uma energia diferente. No Apêndice F são apresentados os resultados dosimétricos para os órgãos e tecidos radiossensíveis. A tabela 5 apresenta E/INAK (dose efetiva por kerma incidente no ar) para o par de fantomas usados nas simulações. Estes dados foram obtidos com o uso da equação:

$$E = w_{seios} H_{seios\ femininos} + \sum_{T \neq seios} w_T \left[\frac{H_{T,masculino} + H_{T,feminino}}{2} \right]$$

onde os valores de

$$egin{dcases} W_{seios}H_{seios\ femininos} \ , w_TH_{T,feminino} \ w_T.H_{T,masculino} \ w_T. \left[rac{H_{T,masculino}+H_{T,feminino}}{2}
ight] \end{cases}$$

são apresentados na tabela 18 do apêndice E. são apresentados na tabela 13 do apêndice E. são apresentados na tabela 17 do apêndice E.

Tabela 5 – Estimativa da dose efetiva por kerma incidente no ar.

Energia (k <i>eV</i>)	E/INAK (m <i>Sv</i> /m <i>Gy</i>)	Energia (ke <i>V</i>)	E/INAK (m <i>Sv</i> /m <i>Gy</i>)	Energia (ke <i>V</i>)	E/INAK (m <i>Sv</i> /m <i>Gy</i>)
25	0,09725	150	0,75897	600	0,75956
30	0,17427	160	0,75631	650	0,76695
40	0,37217	170	0,75057	700	0,77193
50	0,56347	180	0,74761	750	0,77674
60	0,69422	190	0,74318	800	0,77951
70	0,77688	200	0,74131	850	0,78270
80	0,79650	250	0,73576	900	0,78627
90	0,79480	300	0,72866	950	0,78531
100	0,79899	350	0,73652	1.000	0,78678
110	0,78288	400	0,74138	1.600	0,82966
120	0,77459	450	0,74230	2.600	0,87269
130	0,76750	500	0,74257	3.000	0,88417
140	0,76398	550	0,75198		

O gráfico apresentado na figura 60 mostra a distribuição de E/INAK em função do valor da energia emitido pela fonte simulada. No intervalo 25 ke $V \le$ energia \le 1000 keV, 100 keV foi a que mais interagiu com os fantomas e em 300 ke $V \le$ energia \le 3.000 keV, a dose efetiva aumenta junto com a energia.

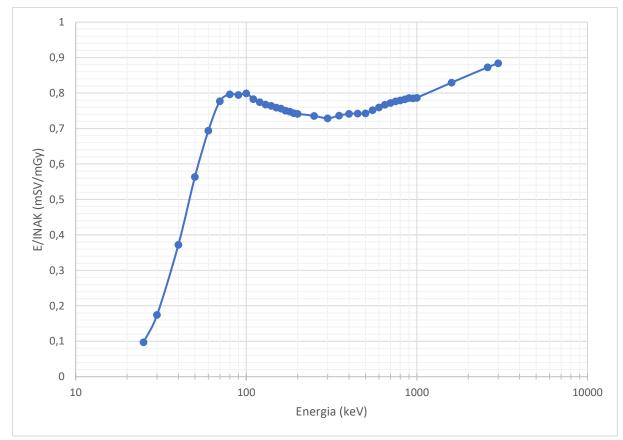


Figura 60 – Dose efetiva por kerma incidente no ar em função da energia.

5 CONCLUSÕES

Neste trabalho foi mostrado a construção de um fantoma adolescente masculino de 15 anos, com 3 versões, sendo duas em voxel (SAMUEL e SAMUEL_S) e uma em malha poligonal. O desenvolvimento se deu através da modelagem de um outro fantoma tipo malha poligonal pré-existente, MARTIN. O método de modelagem usado, possibilitou a segmentação dos tecidos ósseos, bem como o desenvolvimento de novas estruturas. O trabalho ainda confeccionou uma nova versão (SARA_V2) em voxel para o fantoma SARA, adicionando mais órgãos e tecidos a ele.

Com SAMUEL_S e SARA_V2, dois MCEs foram elaborados para exposição ambiental em fantomas de voxel que representem indivíduos de 15 anos. Os dados oriundos das simulações possibilitaram estimar a dose efetiva para esse grupo de pessoas. Foi observado que na faixa energética usada em radiodiagnóstico, 25 keV-150 keV, os fótons de 100 keV trouxeram uma maior dose efetiva para os fantomas. Também foi observado que a dose efetiva tende a aumentar junto com as energias acima de 300 keV. Esses dados são relevantes nos diversos serviços de aplicações de radiação ionizante em humanos, pois ajuda a escolher uma faixa energética de fótons que traga menor detrimento aos pacientes.

Os objetivos primários e secundário deste trabalho foram concluídos com êxito. Um fantoma masculino de 15 anos, SAMUEL, foi construído e SARA foi atualizado. Ambos foram usados em dosimetria computacional e se mostram eficazes na investigação proposta. A principal perspectiva deste trabalho é usar a versão com mais tecidos do fantoma SAMUEL em simulações que tenham o interesse de avaliar a dose em partes específicas do corpo.

REFERÊNCIAS

ALLISON, J.; AMAKO, K.; APOSTOLAKIS, J.; ARCE, P.; ASAI, M.; ASO, T.; BAGLI, E.; BAGULYA, A.; BANERJEE, S.; BARRAND, G.; BECK, B. R.; BOGDANOV, A. G.; BRANDT, D.; BROWN, J. M.C.; BURKHARDT, H.; CANAL, PH; CANO-OTT, D.; CHAUVIE, S.; CHO, K.; CIRRONE, G. A.P.; COOPERMAN, G.; CORTÉS-GIRALDO, M. A.; COSMO, G.; CUTTONE, G.; DEPAOLA, G.; DESORGHER, L.; DONG, X.; DOTTI, A.; ELVIRA, V. D.; FOLGER, G.; FRANCIS, Z.; GALOYAN, A.; GARNIER, L.; GAYER, M.; GENSER, K. L.; GRICHINE, V. M.; GUATELLI, S.; GUÈYE, P.; GUMPLINGER, P.; HOWARD, A. S.; HŘIVNÁČOVÁ, I.; HWANG, S.; INCERTI, S.; IVANCHENKO, A.; IVANCHENKO, V. N.; JONES, F. W.; JUN, S. Y.; KAITANIEMI, P.; KARAKATSANIS, N.; KARAMITROSI, M.; KELSEY, M.; KIMURA, A.; KOI, T.; KURASHIGE, H.; LECHNER, A.; LEE, S. B.; LONGO, F.; MAIRE, M.; MANCUSI, D.; MANTERO, A.; MENDOZA, E.; MORGAN, B.; MURAKAMI, K.; NIKITINA, T.; PANDOLA, L.; PAPROCKI, P.; PERL, J.; PETROVIĆ, I.; PIA, M. G.; POKORSKI, W.; QUESADA, J. M.; RAINE, M.; REIS, M. A.; RIBON, A.; RISTIĆ FIRA, A.; ROMANO, F.; RUSSO, G.; SANTIN, G.; SASAKI, T.; SAWKEY, D.; SHIN, J. I.; STRAKOVSKY, I. I.; TABORDA, A.; TANAKA, S.; TOMÉ, B.; TOSHITO, T.; TRAN, H. N.; TRUSCOTT, P. R.; URBAN, L.; UZHINSKY, V.; VERBEKE, J. M.; VERDERI, M.; WENDT, B. L.; WENZEL, H.; WRIGHT, D. H.; WRIGHT, D. M.; YAMASHITA, T.; YARBA, J.; YOSHIDA, H. Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v. 835, p. 186–225, 2016.

ANDRADE, P. H. A. Construção e voxelização de um fantoma mesh masculino adulto com macro circulação e vasos linfáticos. Recife: Universidade Federal de Pernambuco, 2018.

BATTISTONI, G.; BOEHLEN, T.; CERUTTI, F.; WAI, P.; SALVATORE, L.; FASSÒ, A.; FERRARI, A.; LECHNER, A.; EMPL, A.; MAIRANI, A.; MEREGHETTI, A.; GARCIA, P.; RANFT, J.; ROESLER, S.; SALA, P. R; VLACHOUDIS, V.; SMIRNOV, G. Overview of the FLUKA code. **ANNULS OF NUCLEAR ENERGY**, v. 82, n. 8, p. 10–18, 2015.

BECKER, J.; ZANKL, M.; PETOUSSI-HENSS, N. A software tool for modification of human voxel models used for application in radiation protection. **Physics in Medicine and Biology**, v. 52, n. 9, 2007.

CABRAL, M. O. M. **Desenvolvimento de um modelo computacional de exposição para uso em avaliações dosimétricas em gestantes**. Recife: Universidade Federal de Pernambuco, 2015.

CASSOLA, V. F. **Desenvolvimento de fantomas humanos computacionais usando malhas poligonais em função da postura, massa e altura**. Recife: Universidade Federal de Pernambuco, 2011.

CASSOLA, V. F.; KRAMER, R.; MELO L. V. J.; OLIVEIRA L. C. A. B.; KHOURY, H. J.; VIEIRA, J. W.; BROWN, K. R. Development of newborn and 1-year-old reference phantoms based on polygon mesh surfaces. **Journal of Radiological Protection**, v. 33, n. 3, p. 669–691, 2013.

- FILL, U. A.; ZANKL, M.; PETOUSSI-HENSS, N.; SIEBERT, M.; REGULLA, D. Adult female voxel models of different stature and photon conversion coefficients for radiation protection. **Health Physics**, v. 86, n. 3, p. 253–272, 2004.
- FISHER, D. R.; FAHEY, F. H. Appropriate use of effective dose in radiation protection and risk assessment. **Health Physics**, v. 113, n. 2, p. 102–109, 2017.
- GIBBS, S. J.; PUJOL, A.; CHEN, T.S.; MALCOLM, A.W.; JAMES, A. E. Patient risk from interproximal radiography. **Oral Surgery, Oral Medicine, Oral Pathology**, v. 58, n. 3, p. 347–354, 1984.
- GIBBS, S. J.; PUJOL, A.; CHEN, T. S.; CARLTON, J. C.; DOSMANN, M. A.; MALCOLM, A. W.; JAMES, A. E. Radiation doses to sensitive organs from intraoral dental radiography. **Dento maxillo facial radiology**, v. 16, n. 2, p. 67–77, 1987.
- HARRISON, J. D.; BALONOV, M.; MARTIN, C. J.; ORTIZ LOPEZ, P.; MENZEL, H. G.; SIMMONDS, J. R.; SMITH-BINDMAN, R.; WAKEFORD, R. Use of effective dose. **Annals of the ICRP**, v. 45, p. 215–224, 2015.
- IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements Part 3. Vienna: International Atomic Energy Agency, 2014.
- IAEA 457. **Dosimetry In Diagnostic Radiology: An International Code Of Practice**. Vienna: International Atomic Energy Agency, 2007.
- ICRP 89. ICRP Publication 89: Basic anatomical and physiological data for use in radiological protection: Reference values. Oxford: Pergamon, 2002.
- ICRP 103. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Oxford: Elsevier, 2007.
- ICRP 110. **ICRP Publication 110: Adult Reference Computational Phantoms**. Oxford: Elsevier, 2009.
- ICRP 143. ICRP Publication 143: Paediatric Reference Computational Phantoms. Oxford: SAGE, 2020.
- ICRU 57. **IRCU Report 57: Conversion Coefficients for Use in Radiological Protection against External Radiation**. Bethesda: SAGE Publications, 1998.
- ICRU 60. **IRCU Report 60: Fundamental quantities and units for ionizing radiation**. Bethesda: SAGE Publications, 1998.
- KAWRAKOW, I.; MAINEGRA-HING, E.; ROGERS, D.W.O.; TESSIER, F.; WALTERS, B.R.B. **EGSnrc: The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport**. Ottawa: National Research Council Canada, 2015.
- KIM, C. H.; YEOM, Y. S.; NGUYEN, T. T.; HAN, M. C.; CHOI, C.; LEE, H.; HAN, H.; SHIN, B.; LEE, J. K.; KIM, H. S.; ZANKL, M.; PETOUSSI-HENSS, N.; BOLCH, W. E.; LEE, C.; CHUNG, B. S.; QIU, R.; ECKERMAN, K. New mesh-type phantoms and

- their dosimetric applications, including emergencies. **Annals of the ICRP**, v. 47, n. 3–4, p. 45–62, 2018.
- KRAMER, R.; VIEIRA, J. W.; KHOURY, H. J.; LIMA, F. R. A.; FUELLE, D. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. **Physics in Medicine and Biology**, v. 42, n. 10, p. 1239–1262, 2003.
- KRAMER, R.; KHOURY, H. J.; VIEIRA, J. W.; LOUREIRO, E. C. M.; LIMA, V. J.M.; LIMA, F. R.A.; HOFF, G. All about FAX: A Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. **Physics in Medicine and Biology**, v. 49, n. 23, p. 5203–5216, 2004.
- LEE, C.; LODWICK, D.; HASENAUER, D.; WILLIAMS, J. L.; LEE, C.; BOLCH, W. E. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. **Physics in Medicine and Biology**, v. 52, n. 12, p. 3309–3333, 2007.
- LIMA, V. J. M. Desenvolvimento de fantomas mesh infantis, morfologicamente consistentes com a anatomia humana, para uso em dosimetria. Recife: Universidade Federal de Pernambuco, 2011.
- MARIEB, E. N.; WILHELM, P. B.; MALLATT, J. **Anatomia Humana**. 7. ed. São Paulo: Pearson Education do Brasi, 2014.
- MORGAN, K. Z.; SNYDER, W. S.; STRUXNESS, E. G. Health Physics Division Annual Progress Report for Period Ending July 31, 1967. Oak Ridge: Oak Ridge National Lab., 1967.
- NIPPER, J. C.; WILLIAMS, J. L.; BOLCH, W. E. Creation of two tomographic voxel models of. **Biomedical Engineering**, v. 47, p. 3143–3164, 2002.
- PETOUSSI-HENSS, N. et al. The GSF family of voxel phantoms. **Physics in Medicine and Biology**, v. 47, n. 1, p. 89–106, 2002.
- ROGERS, D. F. **An Introduction to NURBS: With Historical Perspective**. San Diego: Academic Press, 2001.
- SALVAT, F. The PENELOPE code system. Specific features and recent improvements. **Annals of Nuclear Energy**, v. 82, p. 98–109, 2015.
- SANTANA, I. E. Ferramentas computacionais para construção de um fantoma e otimização de modelos computacionais de exposição em braquiterapia de próstata. Recife: Universidade Federal de Pernambuco, 2019.
- SANTOS, P. N. C. Simulação de um tratamento radioterápico crânio-espinhal utilizando um fantoma de voxel infantil e espaços de fase representativos de um acelerador linear. Recife: Universidade Federal de Pernambuco, 2016.
- SATO, T.; NIITA, K.; MATSUDA, N.; HASHIMOTO, S.; IWAMOTO, Y.; NODA, S.; OGAWA, T.; IWASE, H.; NAKASHIMA, H.; FUKAHORI, T.; OKUMURA, K.; KAI, T.; CHIBA, S.; FURUTA, T.; SIHVER, L. Particle and Heavy Ion Transport code System, PHITS, version 2.52. **Journal ofNuclear Science andTechnology**, v. 50, n. 9, p.

- 913-923, 2013.
- SCHLATTL, H.; ZANKL, M.; PETOUSSI-HENSS, N. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. **Physics in Medicine and Biology**, v. 52, n. 8, p. 2123–2145, 2007.
- SHANMUGASUNDARAM, S.; CHANDRASEKARAN, S. Optimization of Variance Reduction Techniques used in EGSnrc Monte Carlo Codes. **Journal of Medical Physics**, v. 43, n. 3, p. 185–194, 2018.
- SMITH, T.; PETOUSSI-HENSS, N.; ZANKL, M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a "family" of phantoms. **European Journal of Nuclear Medicine**, v. 27, n. 9, p. 1387–1398, 2000.
- THOMOPOULOS, N. T. **Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models**. New York: Springer Science & Business Media, 2012.
- VIEIRA, J. W. Monte Carlo: um software para uso em avaliações dosimétricas das radiações ionizantes. Recife: Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, 2017.
- WERNER, C. J. **MCNP Users Manual Code Version 6.2**. Los Alamos: Los Alamos National Laboratory, 2017.
- WILLIAMS, G.; ZANKL, M.; ABMAYR, W.; VEIT, R.; DREXLER, G. The calculations of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods. **Physics in Medicine and Biology**, v. 31, n. 4, p. 449–452, 1986.
- XU, X. G. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history. **Physics in Medicine and Biology**, v. 59, n. 18, 2014.
- XU, X. G.; CHAO, T. C.; BOZKURT, A. VIP-Man an image-based whole-body adult male model constructed from color photographs of the Visible Human. **Health Phys**, v. 78, n. December 1999, p. 476–486, 2000.
- YEOM, Y. S.; CHOI, C.; HAN, H.; LEE, H.; SHIN, B.; NGUYEN, T. T.; HAN, M. C.; LEE, C.; KIM, C. Dose coefficients of mesh-type ICRP reference computational phantoms for idealized external exposures of photons and electrons. **Nuclear Engineering and Technology**, v. 51, n. 3, p. 843–852, 2019.
- ZANKL, M.; VEIT, R.; WILLIAMS, G.; SCHNEIDER, K.; FENDEL, H.; PETOUSSI, N.; DREXLER, G. The construction of computer tomographic phantoms and their application in radiology and radiation protection. **Radiation and Environmental Biophysics**, v. 27, n. 2, p. 153–164, 1988.
- ZANKL, M.; FILL, U.; PETOUSSI-HENSS, N.; REGULLA, D. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. **Physics in Medicine and Biology**, v. 47, n. 14, p. 301, 21 jul. 2002.

ZANKL, M.; BECKER, J.; FILL, U.; PETOUSSI-HENSS, N.; ECKERMAN, K. F. GSF male and female adult voxel models representing ICRP reference man - The present status. **Monte Carlo 2005 Topical Meeting**, p. 1913–1925, 2005.

ANEXO A - GRANDEZAS DOSIMÉTRICAS

Neste anexo são apresentadas as grandezas dosimétricas relevantes para o trabalho.

KERMA

Segundo a ICRU 57 (ICRU 57, 1998) a quantidade kerma, K, é a razão entre a energia cinética das partículas carregadas liberadas por partículas não carregadas. É o quociente de d E_{tr} por dm, em que d E_{tr} é a soma média das energias cinéticas iniciais de todas as partículas carregadas liberadas em uma massa dm de um material pelas partículas não carregadas incidentes em dm, portanto:

$$K = \frac{dE_{tr}}{dm}$$

A unidade de medida é joule por quilograma $(J.kg^{-1})$ e no SI (Sistema Internacional de Unidades) recebe o nome especial de gray (Gy).

KERMA INCIDENTE NO AR

A Agência Internacional de Energia Atômica, em sua publicação sobre dosimetria em radiologia diagnóstica (IAEA 457, 2007), define kerma incidente no ar como a quantidade de kerma que ocorre no espaço de ar entre a fonte que produz o feixe de raios X que incide sobre o paciente ou fantoma. A radiação retroespalhada não é levada em consideração.

DOSE ABSORVIDA

Dose absorvida, D, é a quantidade que descreve a deposição de energia por qualquer tipo de radiação ionizante em qualquer meio absorvente. A ICRU 57 a define como o quociente de $d\bar{\varepsilon}$ por dm, onde $d\bar{\varepsilon}$ é a energia média transmitida para a matéria de massa dm, portanto,

$$D = \frac{d\bar{\varepsilon}}{dm}$$

A unidade é $J.kg^{-1}$ que, igualmente ao kerma, recebe o nome de gray.

A dose absorvida está relacionada ao número de eventos de ionização na região alvo e os eventos de ionização estão relacionados ao dano físico causado. Quando a dose e os efeitos são avaliados corretamente, a dose absorvida correlaciona-se bem com efeitos biológicos, como reações adversas nos tecidos e morte de células tumorais. Essa quantidade dosimétrica é frequentemente correlacionada com efeitos tardios (longo período latente), efeitos cumulativos (exposição prolongada por longos períodos) e efeitos estocásticos (de exposições de curto prazo ou contínuas), como a probabilidade de indução de câncer (FISHER; FAHEY, 2017).

DOSE EQUIVALENTE

Em sua publicação nº 103, a ICRP (ICRP 103, 2007) define dose equivalente, H_T, como a dose em um tecido ou órgão T, expressa por:

$$H_T = \sum_R w_R D_{T,R}$$

onde $D_{T,R}$ é a dose média da radiação R absorvida em um tecido ou órgão T e w_R é o fator de ponderação da radiação. Como o w_R é adimensional, a unidade da dose equivalente é a mesma da dose absorvida, $J.kg^{-1}$, mas seu nome especial é sievert (Sv).

Os valores dos fatores de ponderação de radiação recomendados na ICRP 103 são mostrados na Tabela 6.

Tahala 6	Entoroc	da nandi	sracão do	radiacão	recomendados	no ICDD 102
i abela b -	- raiules i	ae bona	Flacau ut	raulacau	Tecomeniados	Hallone 100.

Tipo de radiação	Fator de ponderação de radiação, <i>w</i> _R
Fótons	1
Elétrons e múons	1
Prótons e píons carregados	2
Partículas alfa, fragmentos de fissão, íons pesados	20
	$W_R = \{2,5 + 18,2e^{-\frac{[ln(E_n)]^2}{6}}, E_n$
Nêutrons	$< 1 MeV 5,0 + 17,0e^{-\frac{[ln(2E_n)]^2}{6}}, 1 MeV $ $\leq E_n$
	$\leq 50 \ MeV \ 2.5 + 3.25e^{-\frac{[ln(0.04E_n)]^2}{6}}, E_n$ > 50 MeV

O conceito de dose equivalente se aplica apenas a efeitos estocásticos e médias de grupos populacionais (modelos de referência) para o planejamento da proteção radiológica e não para indivíduos isolados para avaliação de riscos. Por extensão, não é definida para reações adversas a curto prazo (efeitos determinísticos) na radiobiologia; não é o mesmo que "equivalente de dose". Citando a publicação 103 da ICRP (ICRP 103, 2007, p. 61): "Os fatores de ponderação da radiação para radiações caracterizadas por uma alta transferência linear de energia, as chamadas radiações de alta LET (consulte a Seção 4.3.3), são derivados de efeitos estocásticos em doses baixas".

Essas definições mostram que Gy é a unidade fornecida para quantidades mensuráveis ou calculadas de dose absorvida e kerma, e que Sv é usado apenas para quantidades derivadas de dose absorvida. A unidade especial Sv implica que a dose equivalente é uma quantidade intermediária para o cálculo da dose efetiva - aplicável apenas aos efeitos estocásticos tardios (câncer e dano hereditário) e não aos efeitos determinísticos imediatos (HARRISON et al., 2015).

DOSE EFETIVA

A dose efetiva, *E*, é usada na proteção radiológica como base para calcular os limites anuais, para trabalhadores e membros do público, de exposição à radiação e ingestão de radionuclídeos. A mesma também é usada para comparar uma dose ocupacional de registro atribuída aos padrões de proteção contra radiação. Assim, a

dose efetiva não é uma dose real de radiação para uma pessoa em si, mas sim um número estimado para medida de risco estocástico aplicado a um modelo representativo (FISHER; FAHEY, 2017).

Conforme a ICRU 57, a estimativa de *E* é dada pelo somatório, ponderado por tecidos, das doses equivalentes em todos os tecidos e órgãos radiossensíveis do corpo, com exceção dos seios masculinos:

$$E = w_{seios} H_{seios\ femininos} + \sum_{T \neq seios} w_T \left[\frac{H_{T,masculino} + H_{T,feminino}}{2} \right]$$

onde H_T é a dose equivalente em um tecido ou órgão T e w_T é o fator de ponderação do tecido. A unidade é $J.kg^{-1}$ e recebe o nome sievert.

Os valores dos fatores de ponderação de tecido recomendados na Publicação 103 são mostrados na Tabela 7.

Tabela 7 – Fatores de ponderação de tecido recomendados na ICRP 103.

Tecido	W T	∑ w τ
Medula óssea, mama, cólon, pulmão, estômago, tecidos restantes (13 para cada sexo *)	0,12	0,72
Gônadas	0,08	0,08
Bexiga urinária, esôfago, fígado, tireoide	0,04	0,16
Superfície óssea, cérebro, glândulas salivares, pele	0,01	0,04

^{*} Tecidos restantes: suprarrenais, regiões extratorácicas do trato respiratório, vesícula biliar, coração, rins, linfonodos, músculo, mucosa oral, pâncreas, próstata (masculino), intestino delgado, baço, timo e útero / colo uterino (feminino).

Além disso, a Publicação 103 da ICRP (ICRP 103, 2007, p. 61) declara: "Na definição e cálculo da dose efetiva, os fatores de ponderação de radiação recomendados, w_R , permitem diferenças no efeito de várias radiações em causar efeitos estocásticos enquanto fatores de ponderação tecidual, w_T , permitem variações na sensibilidade à radiação de diferentes órgãos e tecidos à indução de efeitos estocásticos".

ANEXO B - CÓDIGOS MONTE CARLO

Neste anexo são apresentados alguns códigos Monte Carlo usados em dosimetria computacional.

EGSnrc

O EGSnrc é um kit de ferramentas de software para realizar a simulação MC de transporte de radiação ionizante através da matéria. Ele modela a propagação de fótons, elétrons e pósitrons com energias cinéticas entre 1 keV e 10 GeV, em materiais homogêneos. O EGSnrc é uma versão estendida e aprimorada do pacote de software Electron Gamma Shower (EGS) desenvolvido originalmente no Centro de Aceleração Linear de Stanford (Stanford Linear Accelerator Center) na década de 1970. Mais notavelmente, incorpora refinamentos significativos no transporte de partículas carregadas, melhores seções transversais de baixa energia e a biblioteca de classes egs ++ para modelar geometrias elaboradas e fontes de partículas (KAWRAKOW et al., 2015).

FLUKA

FLUKA (sigla do alemão, Fluktuierende Kaskade), desenvolvido em pelo Laboratório Europeu de Física de Partículas (European Laboratory for Particle Physics) e pelo Instituto Italiano de Física Nuclear (National Institute for Nuclear Physics), é um código MC de propósito geral para a interação e transporte de hádrons, íons pesados e partículas eletromagnéticas de poucos keV (ou energias térmicas para nêutrons) a energias de raios cósmicos em materiais arbitrários. Possui uma ampla gama de aplicações na física de partículas, mas também no projeto e blindagem de aceleradores, dosimetria, proteção contra radiação e hadroterapia. Em particular, possui capacidades comprovadas na simulação de detectores de partículas, que variam de grandes calorímetros a monitores de nêutrons e radiação. É construído e mantido com o objetivo de incluir os melhores modelos físicos possíveis em termos de abrangência e precisão (BATTISTONI et al., 2015).

MCNP

O MCNP, desenvolvido e mantido pelo LANL, é um código MC de transporte de radiação projetado para rastrear muitos tipos de partículas em amplas faixas de energias. As áreas específicas de aplicação incluem, entre outras, proteção, dosimetria e blindagem de radiação, radiografia, física médica, segurança contra criticidade nuclear, projeto e análise de detectores, projeto de alvo para acelerador e projeto de reatores de fissão e fusão (WERNER, 2017).

PHITS

O PHITS (sigla do inglês, Particle and Heavy Ion Transport code System) é um código MC desenvolvido pela colaboração entre a Agência de Energia Atômica do Japão (Japan Atomic Energy Agency), Organização de Pesquisa em Ciência da Informação e Tecnologia (Research Organization for Information Science and Technology), Organização de Pesquisa do Acelerador de Alta Energia (High Energy Accelerator Research Organization) e várias outras instituições. Pode lidar com o transporte de quase todas as partículas, incluindo nêutrons, prótons, íons pesados, fótons e elétrons, em amplas faixas de energia usando vários modelos de reação nuclear e bibliotecas de dados. Várias quantidades, como deposição de calor, comprimento da trilha e rendimento da produção, podem ser deduzidas a partir de simulação com PHITS. Ele possui várias características importantes, como um modo gerador de eventos para interação de nêutrons de baixa energia, funções de transporte de feixes, uma função para calcular o deslocamento por átomo e uma função de registro microdosimétrico. Devido a esses recursos, ele tem sido amplamente utilizado para várias aplicações (SATO et al., 2013).

PENELOPE

PENELOPE (sigla do inglês, <u>Penetration and Energy Loss of Positrons and Electrons</u>) é um sistema de código de Monte Carlo de uso geral para a simulação de transporte de elétrons e fótons acoplados em materiais arbitrários. O código cobre a faixa de energia de 50 eV até 1 GeV. Os modelos de interação física implementados baseiam-se em informações confiáveis, limitadas apenas pela generalidade exigida

do código. Este incorpora um pacote de geometria flexível chamado PENGEOM que permite o rastreamento automático de partículas em geometrias complexas constituídas por corpos homogêneos limitados por superfícies quadráticas. PENELOPE é codificado como um conjunto de sub-rotinas FORTRAN, que realizam a amostragem aleatória de interações e o rastreamento de partículas (elétrons, pósitrons ou fótons) (SALVAT, 2015).

GEANT4

Geant4 (sigla do inglês, <u>Ge</u>ometry <u>and Tracking 4</u>), disponibilizado pelo CERN (<u>C</u>onseil <u>E</u>uropéen pour la <u>R</u>echerche <u>N</u>ucléaire), é um conjunto de ferramentas computacionais, chamado de toolkit. O código é voltado para simulação de transporte de partículas através da matéria. A faixa de energia que ele cobre vai de 100 eV até 10 TeV. É usado por um grande número de experimentos e projetos em uma variedade de aplicações, incluindo física de alta energia, astrofísica, física médica e proteção radiológica (ALLISON et al., 2016).

APÊNDICE A – SAMUEL, VERSÃO DE MALHA POLIGONAL

Neste apêndice é apresentada a tabela 8, que lista os 127 tecidos e órgãos que compõe o fantoma SAMUEL, em sua versão de malha poligonal, modelados no software Blender.

Tabela 8 – Órgãos e tecidos que compõe a versão de malha poligonal do fantoma SAMUEL.

nº	Tecido/Órgão	nº	Tecido/Órgão	nº	Tecido/Órgão
1	Pele	44	Vesícula biliar	87	Clavícula esquerda, osso esponjoso
2	Olhos	45	Intestino grosso, cólon ascendente	88	Clavícula direita, osso esponjoso
3	Lentes dos olhos	46	Estômago	89	Coluna cervical, osso esponjoso
4	Músculo esquelético estriado	47	Intestino grosso, cólon transverso	90	Coluna torácica, osso esponjoso
5	Encéfalo	48	Intestino delgado	91	Coluna lombar, osso esponjoso
6	Medula espinhal	49	Intestino grosso, cólon descendente	92	Sacro, osso esponjoso
7	Adrenais	50	Intestino grosso, cólon sigmoide	93	Úmero esquerdo, parte superior, osso esponjoso
8	Pulmões	51	Intestino grosso, reto	94	Rádio + Ulna esquerdo, esponjosa
9	Glândula pituitária (Hipófise)	52	Bexiga urinária	95	Mão esquerda, osso esponjoso
10	Pâncreas	53	Seios	96	Úmero direito, parte superior, osso esponjoso
11	Fígado	54	Coração	97	Rádio + Ulna direito, osso esponjoso
12	Rins	55	Dentes	98	Mão direita, osso esponjoso
13	Timo	56	Mandíbula, osso compacto	99	Fêmur esquerdo, parte superior, osso esponjoso

nº	Tecido/Órgão	nº	Tecido/Órgão	nº	Tecido/Órgão
14	Baço	57	Crânio, osso compacto	100	Patela esquerda, osso esponjoso
15	Passagem nasal	58	Esterno, osso compacto	101	Tíbia + Fíbula esquerda, osso esponjoso
16	Língua	59	Costelas, osso compacto	102	Pé esquerdo, osso esponjoso
17	Cavidade oral	60	Clavícula esquerda, osso compacto	103	Fêmur direito, parte superior, osso esponjoso
18	Glândulas salivares submandibulares	61	Clavícula direita, osso compacto	104	Patela direita, osso esponjoso
19	Glândulas salivares parótidas	62	Escápula esquerda, osso compacto	105	Tíbia + Fíbula direita, osso esponjoso
20	Glândulas salivares sublinguais	63	Escápula direita, osso compacto	106	Pé direito, osso esponjoso
21	Amígdalas palatinas	64	Coluna cervical, osso compacto	107	Hioide, osso esponjoso
22	Laringe	65	Coluna torácica, osso compacto	108	Úmero esquerdo, medula amarela
23	Esôfago	66	Coluna lombar, osso compacto	109	Rádio + Ulna esquerdo, medula amarela
24	Traqueia	67	Sacro, osso compacto	110	Úmero direito, medula amarela
25	Tireoide	68	Pelve, osso compacto	111	Rádio + Ulna direito, medula amarela
26	Brônquios	69	Úmero esquerdo, osso compacto	112	Fêmur esquerdo, medula amarela
27	Conteúdo do estômago	70	Rádio + Ulna esquerdo, osso compacto	113	Tíbia + Fíbula esquerda, medula amarela
28	Conteúdo do intestino delgado	71	Mão esquerda, osso compacto	114	Fêmur direito, medula amarela
29	Conteúdo do intestino grosso	72	Úmero direito, osso compacto	115	Tíbia + Fíbula direita, medula amarela
30	Conteúdo do reto	73	Rádio + Ulna direito, osso compacto	116	Cartilagem, discos intervertebrais

nº	Tecido/Órgão	nº	Tecido/Órgão	nº	Tecido/Órgão
31	Conteúdo da bexiga urinária	74	Mão direita, osso compacto	117	Cartilagem, sínfise púbica
32	Próstata	75	Fêmur esquerdo, osso compacto	118	Cartilagem, epiglote
33	Testículos	76	Patela esquerda, osso compacto	119	Cartilagem articular, membros superiores
34	Linfonodos	77	Tíbia + Fíbula esquerda, osso compacto	120	·
35	Tecido mole	78	Pé esquerdo, osso compacto	121	Cartilagem, orelhas
36	Tecido glandular	79	Fêmur direito, osso compacto	122	Cartilagem, nariz
37	Sangue do coração	80	Patela direita, osso compacto	123	Cartilagem articular, membros inferiores
38	Pênis	81	Tíbia + Fíbula direita, osso compacto	124	Úmero esquerdo, parte inferior, osso esponjoso
39	Gordura visceral	82	Pé direito, osso compacto	125	,
40	Ureteres	83	Hioide, osso compacto	126	Fêmur esquerdo, parte inferior, osso esponjoso
41	Uretra	84	Mandíbula, osso esponjoso	127	Fêmur direito, parte inferior, osso esponjoso
42	Epidídimo	85	Crânio, osso esponjoso		
43	Intestino grosso, ceco	86	Costelas, osso esponjoso		

APÊNDICE B – SAMUEL, VERSÃO VOXELIZADA

Neste apêndice é apresentada a tabela 9, que lista os 138 tecidos e órgãos que compõe o fantoma SAMUEL, em sua versão voxelizada. Além disso a tabela informa o número indicador (ID) de cada estrutura, suas dimensões, volume e a quantidade de voxels.

Tabela 9 – Características do fantoma SAMUEL, versão voxelizada.

SAI	MUEL	., Altura: 167cm			Tama	nho da	Matriz	(x,y,z):	420x23	8x1392
Dim	nensâ	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Coluna		Linha		F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
/	0	Vácuo	109269848	188818,3	1	420	1	238	1	1392
1	1	Pele	1084050	1873,24	7	416	5	234	1	1392
2	2	Gordura subcutânea	10317364	17828,4	8	415	6	232	2	1391
3	4	Olhos	7439	12,85	174	248	50	67	80	98
4	5	Lentes dos olhos	307	0,53	180	243	50	157	83	628
5	6	Músculo esquelético estriado	8802617	15210,92	10	413	16	227	23	1387
6	7	Encéfalo	870545	1504,3	160	262	43	192	8	143
7	8	Medula espinhal	13044	22,54	209	215	126	189	144	584
8	9	Adrenais	5790	10,01	164	258	139	167	434	444
9	10	Pulmões	1221669	2111,04	113	309	71	201	237	403

SAN	SAMUEL, Altura: 167cm Tamanho da Matriz (x,y,z): 420x238x1392											
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,1	2cm		Co	luna	Linha		Fatia			
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax		
10	11	Glândula pituitária (Hipófise)	281	0,49	206	216	112	118	77	87		
11	12	Pâncreas	29644	51,22	158	247	116	146	451	500		
12	13	Fígado	601495	1039,38	136	298	68	176	367	488		
13	14	Rins	135117	233,48	151	270	130	175	441	512		
14	15	Timo	19128	33,05	197	228	88	121	269	311		
15	16	Baço	76007	131,34	129	167	95	161	425	499		
16	17	Passagem nasal	32319	55,85	189	234	47	131	102	211		
17	18	Língua	28206	48,74	194	228	41	92	135	165		
18	19	Cavidade oral	19043	32,91	180	242	32	95	122	173		
19	20	Glândulas salivares submandibulares	8850	15,29	180	243	71	99	145	166		
20	21	Glândulas salivares parótidas	26315	45,47	155	267	75	119	105	156		
21	22	Glândulas salivares sublinguais	2911	5,03	201	222	56	81	164	172		
22	23	Amígdalas palatinas	1723	2,98	195	228	88	100	130	146		
23	24	Laringe	10636	18,38	194	228	83	119	165	207		
24	26	Esôfago	16856	29,13	190	221	114	161	212	434		
25	27	Traqueia	4150	7,17	204	225	109	153	204	303		

SAN	MUEL	., Altura: 167cm			Tama	nho da	Matriz ((x,y,z):	420x23	8x1392
Dim	nensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0),12cm		Co	luna	Li	Linha		atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
26	28	Tireoide	6686	11,55	190	232	91	113	183	208
27	29	Brônquios	26292	45,43	125	298	92	187	261	391
28	30	Conteúdo da vesícula biliar	22452	38,8	228	278	109	138	426	493
29	32	Conteúdo do estômago	54847	94,78	155	222	87	133	444	488
30	34	Conteúdo do intestino delgado	83965	145,09	155	267	87	149	471	611
31	36	Conteúdo do intestino grosso	169335	292,61	125	293	41	199	82	631
32	37	Conteúdo do reto	5313	9,18	203	217	152	174	618	681
33	38	Conteúdo da bexiga urinária	32825	56,72	191	232	119	153	637	672
34	39	Próstata	2404	4,15	203	220	139	154	676	692
35	40	Testículos	10428	18,02	150	260	72	206	324	723
36	41	Linfonodos	338474	584,88	22	400	45	206	88	1287
37	42	Tecido mole	59484	102,79	171	251	39	158	50	706
38	43	Tecido periarticular	9785	16,91	31	391	97	197	148	1337
39	46	Tecido glandular	1740	3,01	113	309	63	82	349	380
40	48	Sangue do coração	35300	61	181	237	102	142	301	359
41	49	Pênis	42027	72,62	198	225	43	146	659	717

SAN	MUEL	., Altura: 167cm			Tama	nho da	Matriz	(x,y,z):	420x23	8x1392
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,	12cm		Co	luna	Linha		Fatia	
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
42	50	Gordura visceral	1065053	1840,41	114	306	66	180	405	647
43	55	Peritônio	90085	155,67	113	307	65	181	404	648
44	56	Ureteres	9089	15,71	179	242	128	149	470	641
45	57	Uretra	4426	7,65	208	214	48	141	672	715
46	58	Epidídimo	983	1,7	195	227	73	94	695	723
47	60	Pleura	261825	452,43	110	312	68	204	234	406
48	61	Meninges	80974	139,92	158	264	41	194	6	145
49	88	Intestino grosso, ceco	10238	17,69	244	282	106	143	595	626
50	89	Vesícula biliar	4374	7,56	227	279	108	139	425	494
51	90	Intestino grosso, cólon ascendente	49405	85,37	262	299	90	144	490	611
52	91	Estômago	65981	114,02	145	228	82	138	410	493
53	92	Intestino grosso, cólon transverso	73260	126,59	133	283	66	132	481	517
54	93	Intestino delgado	237085	409,68	150	273	81	154	463	616
55	94	Intestino grosso, cólon descendente	51910	89,7	119	159	103	159	490	615
56	95	Intestino grosso, cólon sigmoide	31435	54,32	132	221	115	165	592	636
57	96	Intestino grosso, reto	15270	26,39	197	222	150	179	616	691

SAN	SAMUEL, Altura: 167cm Tamanho da Matriz (x,y,z): 420x238x1392											
Dim	ensã	o do Voxel (x,y,z): 0,12cm x 0,12cm x 0,1	2cm		Co	luna	Linha		F	atia		
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax		
58	97	Bexiga urinária	22074	38,14	187	236	115	157	633	676		
59	98	Seios	7285	12,59	111	311	61	86	344	384		
60	99	Coração	126621	218,8	172	246	93	151	282	368		
61	100	Dentes	15156	26,19	185	237	35	79	123	154		
62	101	Mandíbula, osso compacto	10544	18,22	168	254	36	102	106	174		
63	102	Crânio, osso compacto	121850	210,56	154	268	36	197	4	136		
64	103	Esterno, osso compacto	7594	13,12	191	231	60	123	248	364		
65	104	Costelas, osso compacto	94263	162,89	103	319	64	214	219	482		
66	105	Clavícula esquerda, osso compacto	10905	18,84	88	203	108	171	234	258		
67	106	Clavícula direita, osso compacto	10904	18,84	219	334	108	171	234	258		
68	107	Escápula esquerda, osso compacto	14476	25,01	84	175	140	221	227	331		
69	108	Escápula direita, osso compacto	14450	24,97	247	338	140	221	227	331		
70	109	Coluna cervical, osso compacto	42257	73,02	180	242	105	186	130	224		
71	110	Coluna torácica, osso compacto	142795	246,75	179	244	142	218	210	478		
72	111	Coluna lombar, osso compacto	80258	138,69	184	239	130	194	460	597		
73	112	Sacro, osso compacto	13445	23,23	170	252	153	210	577	659		

SAN	SAMUEL, Altura: 167cm Tamanho da Matriz (x,y,z): 420x238x1392											
Dim	ensã	o do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Coluna		Linha		Fatia			
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax		
74	113	Pelve, osso compacto	65330	112,89	104	319	101	212	534	712		
75	114	Úmero esquerdo, osso compacto	62771	108,47	28	101	154	198	249	494		
76	115	Rádio + Ulna esquerdo, osso compacto	42718	73,82	15	65	125	200	474	671		
77	116	Mão esquerda, osso compacto	31952	55,21	11	53	80	165	664	802		
78	117	Úmero direito, osso compacto	62693	108,33	321	394	154	198	248	493		
79	118	Rádio + Ulna direito, osso compacto	42659	73,71	357	408	125	200	474	671		
80	119	Mão direita, osso compacto	32161	55,57	369	412	80	165	664	802		
81	120	Fêmur esquerdo, osso compacto	119378	206,29	94	157	111	176	634	1001		
82	121	Patela esquerda, osso compacto	9886	17,08	97	131	99	120	979	1019		
83	122	Tíbia + Fíbula esquerda, osso compacto	118776	205,24	89	154	115	172	995	1347		
84	123	Pé esquerdo, osso compacto	67315	116,32	72	139	10	184	1319	1388		
85	124	Fêmur direito, osso compacto	119453	206,41	265	329	111	176	634	1001		
86	125	Patela direita, osso compacto	9919	17,14	292	325	99	120	979	1019		
87	126	Tíbia + Fíbula direita, osso compacto	119334	206,21	268	333	115	172	995	1347		
88	127	Pé direito, osso compacto	66938	115,67	284	351	10	184	1319	1388		
89	128	Hioide, osso compacto	1267	2,19	195	227	79	108	163	180		

SAN	IUEL	, Altura: 167cm			Tama	nho da	Matriz ((x,y,z):	420x23	8x1392
Dim	ensã	o do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
90	131	Mandíbula, osso esponjoso	25684	44,38	169	253	37	101	107	173
91	132	Crânio, osso esponjoso	213082	368,21	155	267	37	196	5	135
92	133	Esterno, osso esponjoso	24566	42,45	192	230	60	122	249	363
93	134	Costelas, osso esponjoso	115909	200,29	104	318	65	213	220	481
94	135	Clavícula esquerda, osso esponjoso	3668	6,34	92	199	111	168	238	252
95	136	Clavícula direita, osso esponjoso	3756	6,49	224	330	111	168	238	254
96	137	Escápula esquerda, osso esponjoso	25634	44,3	85	174	141	220	228	330
97	138	Escápula direita, osso esponjoso	25635	44,3	249	337	141	220	228	330
98	139	Coluna cervical, osso esponjoso	12874	22,25	189	233	110	169	133	221
99	140	Coluna torácica, osso esponjoso	100335	173,38	186	237	145	212	218	474
100	141	Coluna lombar, osso esponjoso	65635	113,42	188	233	133	192	463	592
101	142	Sacro, osso esponjoso	57827	99,93	171	251	154	209	578	658
102	143	Pelve, osso esponjoso	344347	595,03	105	318	102	211	535	711
103	144	Úmero, parte superior, osso esponjoso	10960	18,94	67	96	159	187	253	275
104	145	Rádio + Ulna esquerdo, esponjosa	7172	12,39	18	62	129	196	477	666
105	146	Mão esquerda, osso esponjoso	4652	8,04	13	52	82	163	667	775

SAN	IUEL	, Altura: 167cm			Tamai	nho da	Matriz ((x,y,z):	420x23	8x1392
Dim	ensã	o do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
106	147	Úmero direito, parte superior, osso esponjoso	11010	19,03	327	355	159	187	253	275
107	148	Rádio + Ulna direito, osso esponjoso	7203	12,45	360	405	128	196	478	667
108	149	Mão direita, osso esponjoso	4658	8,05	372	409	83	163	667	763
109	150	Fêmur esquerdo, parte superior, osso esponjoso	31184	53,89	99	154	139	172	637	714
110	151	Patela esquerda, osso esponjoso	1951	3,37	101	127	104	115	983	1012
111	152	Tíbia + Fíbula esquerda, osso esponjoso	58276	100,7	91	149	119	167	1000	1345
112	153	Pé esquerdo, osso esponjoso	36958	63,86	74	136	11	181	1322	1384
113	154	Fêmur direito, parte superior, osso esponjoso	31172	53,87	269	323	139	172	637	714
114	155	Patela direita, osso esponjoso	1943	3,36	296	321	104	115	983	1011
115	156	Tíbia + Fíbula direita, osso esponjoso	58202	100,57	273	332	119	167	1000	1344
116	157	Pé direito, osso esponjoso	36957	63,86	286	348	11	181	1322	1383
117	158	Hioide, osso esponjoso	1499	2,59	196	226	80	107	164	179
118	161	Úmero esquerdo, medula amarela	16078	27,78	35	89	165	194	276	473
119	162	Rádio + Ulna esquerdo, medula amarela	4146	7,16	21	53	137	192	514	634
120	163	Úmero direito, medula amarela	15950	27,56	334	387	165	193	276	473
121	164	Rádio + Ulna direito, medula amarela	4150	7,17	369	401	137	191	514	634

SAMUEL, Altura: 167cm Tamanho da Matriz (x,y,z): 420x238x1392											
Dim	ensã	o do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12c	:m		Co	luna	Li	nha	F	atia	
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax	
122	165	Fêmur esquerdo, medula amarela	34032	58,81	107	128	120	159	715	943	
123	166	Tíbia + Fíbula esquerda, medula amarela	39360	68,01	97	133	122	163	1051	1297	
124	167	Fêmur direito, medula amarela	33942	58,65	294	316	120	159	715	943	
125	168	Tíbia + Fíbula direita, medula amarela	39214	67,76	290	325	122	163	1051	1297	
126	170	Cartilagem, discos invertebrais	43474	75,12	194	228	111	184	147	602	
127	171	Cartilagem, sínfise púbica	2455	4,24	207	214	98	123	644	683	
128	172	Cartilagem, epiglote	1000	1,73	201	221	91	96	153	168	
129	173	Cartilagem articular, membros superiores	12768	22,06	33	406	149	196	245	667	
130	174	Cartilagem, costelas	50426	87,14	123	300	59	124	254	477	
131	175	Cartilagem, orelhas	4963	8,58	140	283	110	140	88	131	
132	176	Cartilagem, nariz	6357	10,98	201	221	20	48	95	122	
133	177	Cartilagem articular, membros inferiores	68091	117,66	93	330	28	175	642	1380	
134	180	Úmero esquerdo, parte inferior, osso esponjoso	3434	5,93	33	70	170	193	474	488	
135	182	Úmero direito, parte inferior, osso esponjoso	3468	5,99	352	390	170	193	474	488	
136	184	Fêmur esquerdo, parte inferior, osso esponjoso	35150	60,74	98	148	115	152	943	998	
137	186	Fêmur direito, parte inferior, osso esponjoso	35054	60,57	275	325	115	152	944	999	

SAM	UEL	, Altura: 167cm		Tamanho da Matriz (x,y,z): 420x238x1392						
Dime	Dimensão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12cm				Coluna Linha			F	Fatia	
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
138	200	Ar interno	102528	177,17	126	293	24	161	99	630

APÊNDICE C – FANTOMA REFERÊNCIA DA ICRP VS SAMUEL

Neste apêndice é apresentada a tabela 10, que mostra um comparativo da composição anatômica entre o fantoma referência de 15 anos da ICRP 143 e o fantoma SAMUEL.

Tabela 10 – Diferenças entre o Fantoma masculino de 15 anos da ICRP 143 e o Fantoma SAMUEL.

toma mas	culino de	15 anos da ICRP 143		Fantoma SAMUEL			
Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID	
1168	5,32	Glândula adrenal, esquerda	Glândulas adrenais (direita e	10,31	5790	9	
1025	4,67	Glândula adrenal, direita	esquerda)				
443	2,02	Passagem nasal anterior	Laringe	18,93	10636	24	
2714	12,37	Passagem nasal posterior	Passagem nasal	57,53	32319	17	
1128	5,14	Mucosa oral, língua	Cavidade oral	33,90	19043	19	
742	3,38	Mucosa oral, lábios e bochechas					
1580	7,48	Traqueia	Traqueia	7,39	4150	27	
1567	7,42	Brônquios	Brônquios	46,79	26292	29	
4155	19,49	Vasos sanguíneos, cabeça					
1853	8,69	Vasos sanguíneos, tronco					
20424	95,8	Vasos sanguíneos, braços					
29356	137,69	Vasos sanguíneos, pernas					
18954	150,97		Úmero esquerdo, osso compacto	195,25	62771	114	
	Nº de Voxels 1168 1025 443 2714 1128 742 1580 1567 4155 1853 20424 29356	Nº de Voxels Massa (g) 1168 5,32 1025 4,67 443 2,02 2714 12,37 1128 5,14 742 3,38 1580 7,48 1567 7,42 4155 19,49 1853 8,69 20424 95,8 29356 137,69	Voxels(g)11685,32Glândula adrenal, esquerda10254,67Glândula adrenal, direita4432,02Passagem nasal anterior271412,37Passagem nasal posterior11285,14Mucosa oral, língua7423,38Mucosa oral, lábios e bochechas15807,48Traqueia15677,42Brônquios415519,49Vasos sanguíneos, cabeça18538,69Vasos sanguíneos, tronco2042495,8Vasos sanguíneos, braços29356137,69Vasos sanguíneos, pernas	Nº de VoxelsMassa (g)ÓrgãoÓrgão11685,32Glândula adrenal, esquerdaGlândulas adrenais (direita e esquerda)10254,67Glândula adrenal, direitaLaringe271412,37Passagem nasal anteriorLaringe271412,37Passagem nasal posteriorPassagem nasal11285,14Mucosa oral, línguaCavidade oral7423,38Mucosa oral, lábios e bochechas15807,48TraqueiaTraqueia15677,42BrônquiosBrônquios415519,49Vasos sanguíneos, cabeça18538,69Vasos sanguíneos, tronco2042495,8Vasos sanguíneos, braços29356137,69Vasos sanguíneos, pernas	Nº de Voxels Massa (g) Órgão (g) Massa (g) 1168 5,32 Glândula adrenal, esquerda Glândulas adrenais (direita e esquerda) 10,31 1025 4,67 Glândula adrenal, direita Laringe 18,93 2714 12,37 Passagem nasal anterior Passagem nasal 57,53 1128 5,14 Mucosa oral, língua Cavidade oral 33,90 742 3,38 Mucosa oral, lábios e bochechas Traqueia 7,39 1567 7,48 Traqueia Traqueia 7,39 4155 19,49 Vasos sanguíneos, cabeça 1853 8,69 Vasos sanguíneos, tronco 20424 95,8 Vasos sanguíneos, braços 29356 137,69 Vasos sanguíneos, pernas	Nº de Voxels Massa (g) Órgão (g) Massa (g) Nº de Voxels 1168 5,32 Glândula adrenal, esquerda (glândulas adrenais (direita e esquerda) 10,31 5790 1025 4,67 Glândula adrenal, direita 11,31 5790 443 2,02 Passagem nasal anterior Laringe 18,93 10636 2714 12,37 Passagem nasal posterior Passagem nasal 57,53 32319 1128 5,14 Mucosa oral, língua Cavidade oral 33,90 19043 742 3,38 Mucosa oral, lábios e bochechas Traqueia 7,39 4150 1580 7,48 Traqueia Traqueia 7,39 46,79 26292 4155 19,49 Vasos sanguíneos, cabeça 1853 8,69 Vasos sanguíneos, tronco 7 7 20424 95,8 Vasos sanguíneos, pernas 7 7 7 7 7 7 7 7 8 8 8 9 Vasos sanguíneos, braços 7 7 7	

Fan	toma mas	culino de	15 anos da ICRP 143		Fan	toma SAN	IUEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
			Úmero, extremidade proximal, osso compacto	Úmero direito, osso compacto	194,99	62693	117
14	29940	151,9	Úmero, metade superior, osso esponjoso	Úmero esquerdo, parte superior, osso esponjoso	21,35	10960	144
				Úmero direito, parte superior, osso esponjoso	21,45	11010	147
15	4026	17,82	Úmero, metade superior, cavidade	Úmero esquerdo, medula amarela	27,70	Voxels 62693 10960 11010 16078 15950 62771 62693 3434 3468 16078 15950 42718 42659	161
			medular	Úmero direito, medula amarela	27,48	15950	163
16	21456	170,9	Úmero, metade inferior, osso	Úmero esquerdo, osso compacto	195,25	62771	114
			compacto	Úmero direito, osso compacto	194,99	62693	117
17	12626	64,42	Úmero, metade inferior, osso esponjoso	Úmero esquerdo, parte inferior, osso esponjoso	6,84	3434	180
			Coporijoso	Úmero direito, parte inferior, osso esponjoso	6,91	3468	182
18	3474	15,22	Úmero, metade inferior, cavidade	Úmero esquerdo, medula amarela	27,70	16078	161
			medular	Úmero direito, medula amarela	27,48	15950	163
19	27442	218,58	Ulna e rádio, osso compacto	Rádio + Ulna esquerdo, osso compacto	132,88	42718	115
				Rádio + Ulna direito, osso compacto	132,68	42659	118
20	16438	84,41	Ulna e rádio, osso esponjoso	Rádio + Ulna esquerdo, osso esponjoso	14,38	7172	145
				Rádio + Ulna direito osso esponjoso	14,45	7203	148
21	3342	14,49	Ulna e rádio, cavidade medular	Rádio + Ulna esquerdo, medula amarela	7,02	4146	162

Fan	toma mas	culino de	15 anos da ICRP 143		Far	ntoma SAN	IUEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
				Rádio + Ulna direito, medula amarela	7,03	4150	164
22	15991	127,37	Pulsos e ossos da mão, osso	Mão esquerda, osso compacto	99,38	31952	116
			compacto	Mão direita, osso compacto	100,03	32161	119
23	12154	57,98	Pulsos e ossos da mão, osso	Mão esquerda, osso esponjoso	8,67	Nº de Voxels 3 4150 3 31952 3 32161 7 4652 8 4658 1 10905 1 10904 4 3668 1 3756 1 121850 6 213082 2 119378 4 119453	146
			esponjoso	Mão direita, osso esponjoso	8,68	4658	149
24	5215	41,54	Clavículas, osso compacto	Clavícula esquerda, osso compacto	33,91	10905	105
				Clavícula direita, osso compacto	33,91	10904	106
25	3695	18,67	Clavículas, osso esponjoso	Clavícula esquerda, osso esponjoso	7,24	3668	135
				Clavícula direita, osso esponjoso	7,41	3756	136
26	66358	528,51	Crânio, osso compacto	Crânio, osso compacto	379,01	121850	102
27	76182	421,38	Crânio, osso esponjoso	Crânio, osso esponjoso	460,26	213082	132
28	39269	312,78	Fêmur, extremidade proximal, osso	Fêmur esquerdo, osso compacto	371,32	119378	120
			compacto	Fêmur direito, osso compacto	371,54	119453	124
29	42959	219,16	Fêmur, metade superior, osso	Fêmur esquerdo, parte superior, osso	62,89	31184	150
			esponjoso	esponjoso Fêmur direito, parte superior, osso esponjoso	62,87	31172	154
30	9978	44,06	Fêmur, metade superior, cavidade	Fêmur esquerdo, medula amarela	58,63	34032	165
			medular	Fêmur direito, medula amarela	58,47	33942	167

Fan	toma mas	culino de	15 anos da ICRP 143		Fantoma SAMUEL			
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID	
31	30440	242,45	Fêmur, metade inferior, osso	Fêmur esquerdo, osso compacto	371,32	119378	120	
			compacto	Fêmur direito, osso compacto	371,54	119453	124	
32	52376	278,58	Fêmur, metade inferior, osso esponjoso	Fêmur esquerdo, parte inferior, osso esponjoso	73,01	35150	184	
			00pogod	Fêmur direito, parte inferior, osso esponjoso	72,81	35054	186	
33	7774	34,06	Fêmur, metade inferior, cavidade	Fêmur esquerdo, medula amarela	58,63	34032	165	
			medular	Fêmur direito, medula amarela	58,47	33942	167	
34	59138	471,03	Tíbia, fíbula, osso compacto	Tíbia + Fíbula esquerda, osso	369,43	118776	122	
				compacto Tíbia + Fíbula direita, osso compacto	371,18	119334	126	
				Patela esquerda, osso compacto	30,74	9886	121	
			/	Patela direita, osso compacto	30,85	9919	125	
35	62412	299,3	Tíbia, fíbula e patela, osso	Patela esquerda, osso esponjoso	3,65	1951	151	
			esponjoso	Tíbia + Fíbula esquerda, osso esponjoso	109,16	58276	152	
				Patela direita, osso esponjoso	3,64	1943	155	
				Tíbia + Fíbula direita, osso esponjoso	109,02	58202	156	
36	15112	65,53	Tíbia, fíbula, cavidade medular	Tíbia + Fíbula esquerda, medula amarela	66,65	39360	166	
				Tíbia + Fíbula direita, medula amarela	66,40	39214	168	

Fan	toma mas	culino de	15 anos da ICRP 143		Fan	ntoma SAN	IUEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
37	26994	215,01	Tornozelos e ossos do pé, osso	Pé esquerdo, osso compacto	209,38	67315	123
			compacto	Pé direito, osso compacto	208,21	66938	127
38	76686	365,8	Tornozelos e ossos do pé, osso	Pé esquerdo, osso esponjoso	68,84	36958	153
			esponjoso	Pé direito, osso esponjoso	68,84	36957	157
39	6507	51,83	Mandíbula, osso compacto	Mandíbula, osso compacto	32,80	10544	101
40	5248	28,45	Mandíbula, osso esponjoso	Mandíbula, osso esponjoso	54,37	25684	131
				Hioide, osso compacto	3,94	1267	128
			/	Hioide, osso esponjoso	2,95	1499	158
41	24334	193,74	Pelve, osso compacto	Pelve, osso compacto	203,20	65330	113
42	90804	439,18	Pelve, osso esponjoso	Pelve, osso esponjoso	650,37	344347	143
43	20918	166,61	Costelas, osso compacto	Costelas, osso compacto	293,20	94263	104
44	34162	167,8	Costelas, osso esponjoso	Costelas, osso esponjoso	222,32	115909	134
45	14570	116,05	Escápulas, osso compacto	Escápula esquerda, osso compacto	45,02	14476	107
				Escápula direita, osso compacto	44,95	14450	108
46	18190	100,13	Escápulas, osso esponjoso	Escápula esquerda, osso esponjoso	55,11	25634	137
				Escápula direita, osso esponjoso	55,11	25635	138
47	4108	32,72	Coluna cervical, osso compacto	Coluna cervical, osso compacto	131,44	42257	109
48	9528	48,02	Coluna cervical, osso esponjoso	Coluna cervical, osso esponjoso	25,34	12874	139

Fan	toma mas	culino de	15 anos da ICRP 143		Far	ntoma SAN	IUEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
49	10801	86,03	Coluna torácica, osso compacto	Coluna torácica, osso compacto	444,15	142795	110
50	45257	223,29	Coluna torácica, osso esponjoso	Coluna torácica, osso esponjoso	193,32	100335	140
51	4409	35,12	Coluna lombar, osso compacto	Coluna lombar, osso compacto	249,64	80258	111
52	44549	216,45	Coluna lombar, osso esponjoso	Coluna lombar, osso esponjoso	124,54	65635	141
53	8654	68,93	Sacro, osso compacto	Sacro, osso compacto	41,81	13445	112
54	21908	102,37	Sacro, osso esponjoso	Sacro, osso esponjoso	105,53	57827	142
55	2821	22,47	Esterno, osso compacto	Esterno, osso compacto	23,62	7594	103
56	7433	35,82	Esterno esponjoso	Esterno, osso esponjoso	46,23	24566	133
57	6962	33,89	Cartilagem, cabeça	Cartilagem, epiglote	1,90	1000	172
				Cartilagem, orelhas	9,44	4963	175
				Cartilagem, nariz	12,08	6357	176
58	28078	136,67	Cartilagem, tronco	Cartilagem, discos invertebrais	82,63	43474	170
				Cartilagem, costelas	95,85	50426	174
				Cartilagem, sínfise púbica	4,66	2455	171
				Cartilagem articular, membros superiores	24,27	12768	173
			/	Cartilagem articular, membros inferiores	129,43	68091	177
61	308380	1419,16	Cérebro	Encéfalo	1564,47	870545	7

Fan	toma mas	culino de	15 anos da ICRP 143		Fan	ntoma SAM	UEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
62	1091	4,54	Mama esquerda, tecido adiposo	Seios	12,84	7285	98
64	1177	4,9	Mama direita, tecido adiposo				
63	604	2,73	Mama esquerda, tecido glandular	Tecido glandular	3,07	1740	46
65	612	2,76	Mama direita, tecido glandular				
66	49	0,23	Lente do olho esquerdo	Lente dos olhos	0,56	307	5
68	49	0,23	Lente do olho direito				
67	1435	6,67	Bulbo ocular direito	Olhos	13,49	7439	4
69	1435	6,67	Bulbo ocular esquerdo				
70	1690	7,7	Parede da vesícula biliar	Vesícula biliar	7,79	4374	89
71	9840	44,85	Conteúdo da vesícula biliar	Conteúdo da vesícula biliar	39,96	22452	30
72	26237	119,58	Parede do estômago	Estômago	117,44	65981	91
73	43582	198,64	Conteúdo do estômago	Conteúdo do estômago	97,62	54847	32
74	113290	516,35	Parede do intestino delgado	Intestino delgado	421,97	237085	93
75	148435	280	Conteúdo do intestino delgado	Conteúdo do intestino delgado	61,81	83965	34
76	16738	76,29	Parede do cólon ascendente	Intestino grosso, cólon ascendente	87,93	49405	90
				Intestino grosso, ceco	18,22	10238	88
77	9931	45,26	Conteúdo de cólon ascendente	Conteúdo do intestino grosso	200,44	169335	36
78	9968	45,43	Parede transversal do cólon, direita	Intestino grosso, cólon transverso	130,39	73260	92

Fan	toma mas	culino de	15 anos da ICRP 143		Fa	ntoma SAN	IUEL
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
79	5920	26,98	Conteúdo do cólon transverso, direito	Conteúdo do intestino grosso	200,44	169335	36
80	16815	76,64	Parede transversal do cólon, esquerda	Intestino grosso, cólon transverso	130,39	73260	92
81	12949	19,48	Conteúdo do cólon transverso, esquerdo	Conteúdo do intestino grosso	200,44	169335	36
82	9818	44,75	Parede descendente do cólon, esquerda	Intestino grosso, cólon descendente	92,39	51910	94
83	6203	9,33	Conteúdo de cólon descendente, esquerdo	Conteúdo do intestino grosso	200,44	169335	36
84	10790	49,18	Parede do cólon sigmoide	Intestino grosso, cólon sigmoide	55,95	31435	95
85	18135	60	Conteúdo do cólon sigmoide	Conteúdo do intestino grosso / Conteúdo do reto	200,44 / 6,87	169335 / 5313	36 / 37
86	1392	6,34	Parede do reto	Intestino grosso, reto	27,18	15270	96
87	49969	229,96	Parede do coração	Coração	227,55	126621	99
88	91401	428,72	Conteúdo da câmara do coração (sangue)	Sangue do coração	64,66	35300	48
89	19977	91,93	Rim, esquerdo, córtex	Rins	242,82	135117	14
90	7145	32,88	Rim, esquerdo, medula				
91	1420	6,53	Rim, esquerdo, pelve				
92	19935	91,74	Rim, direito, córtex				
93	7155	32,93	Rim direito medula				
94	1427	6,57	Rim, direito, pelve				

	Nº de Voxels	Massa	Órgão	<u> </u>			
95		(g)	Orgao	Órgão	Massa (g)	Nº de Voxels	ID
	279448	1298,39	Fígado	Fígado	1091,35	601495	13
96	3921	18,39	Pulmão esquerdo, sangue	Pulmões	757,86	1221669	10
97	251814	400,21	Tecido pulmonar, esquerdo, cheio de ar				
98	2675	12,55	Pulmão direito, sangue				
99	332488	468,85	Tecido pulmonar, direito, cheio de ar				
100	2531	11,54	Nódulos linfáticos, vias aéreas	Linfonodos	602,43	338474	41
101	2490	11,35	Nódulos linfáticos, vias aéreas torácicas				
102	923	4,21	Nódulos linfáticos, cabeça				
103	21606	98,47	Nódulos linfáticos, tronco				
104	1858	8,47	Nódulos linfáticos, braços				
105	1860	8,48	Nódulos linfáticos, pernas				
106	194733	904,78	Músculo, cabeça	Músculo esquelético estriado / Pênis	•		6 /
107	1427176	6631,02	Músculo, tronco		/ 76,25	42027	49
108	811048	3768,33	Músculo, braços				
109	2732527	12696	Músculos, pernas				
110	6521	29,72	Parede do esôfago	Esôfago	30,00	16856	26
113	24094	109,81	Pâncreas	Pâncreas	52,76	29644	12

Fantoma masculino de 15 anos da ICRP 143			Fa	Fantoma SAMUEL			
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
114	110	0,5	Glândula pituitária	Glândula pituitária (Hipófise)	0,50	281	11
115	942	4,29	Próstata	Próstata	4,27	2404	39
116	32723	139,01	, ,	Gordura subcutânea / Tecido mole /	16758,70	10317364	2/
				Tecido periarticular / Meninges	/ 105,87 /	/ 59484 /	42 /
					17,42 /	9785 /	43 /
					144,12	80974	61
117	2977794	77794 12649,67	649,67 Tecido residual, tronco Gordura subcutânea / Tecido mole Tecido periarticular / Gordura viscera	16758,70		2 /	
				•		/ 59484 /	42 /
				/ Peritônio / Uretra / Epidídimo /	17,42 /	9785 /	43 /
				Pleura	1729,99 /	1065053 /	50 /
					146,33 /	90085 /	55 /
				7,88 /	4426 /	57 /	
				1,75 /	983 /	58 /	
	000040			O 1 1 10 17	466,00	261825	60
118	208949	887,62	Tecido residual, braços	Gordura subcutânea / Tecido mole /	•	10317364	2/
119	502221	2133,43	Tecido residual, pernas	Tecido periarticular		/ 59484 /	42 /
					17,42		43
120	7481	33,77	Glândulas salivares, esquerda	Glândulas salivares submandibulares	15,75 /	8850 /	20 /
121	7545	34,05	Glândulas salivares, direita	/ Glândulas salivares parótidas /	46,83 /	26315 /	21 /
		<u> </u>	,	Glândula salivar sublingual	5,18	2911	22
122	23765	115,68	Pele cabeça	Pele	2060,56	1084050	1
123	128164	623,84	Pele, tronco				
124	78486	382,03	Pele, braços				
125	150418	732,16	Pele, pernas				

Fantoma masculino de 15 anos da ICRP 143			15 anos da ICRP 143	Fantoma SA			
ID	Nº de Voxels	Massa (g)	Órgão	Órgão	Massa (g)	Nº de Voxels	ID
126	10484	48,25	Medula espinhal	Medula espinhal	23,22	13044	8
127	27625	129,58	Baço	Baço	139,22	76007	16
128	3393	45,04	Dentes	Dentes	78,57	15156	100
129	1738	8	Testículo esquerdo	Testículos	18,92	10428	40
130	1736	7,99	Testículo direito				
131	7710	35,14	Timo	Timo	34,04	19128	15
132	2584	12,01	Tireoide	Tireoide	12,13	6686	28
133	11934	55,45	Língua (parte interna)	Língua	50,20	28206	18
134	664	3,03	Amígdalas	Amígdalas	3,07	1723	23
135	504	2,3	Ureter esquerdo	Ureteres	16,18	9089	56
136	515	2,35	Ureter direito				
137	8645	39,78	Parede da bexiga urinária	Bexiga urinária	39,67	22074	97
138	34304	153,31	Conteúdo da bexiga urinária	Conteúdo da bexiga urinária	57,29	32825	38
140	86773	0,5	Ar dentro do corpo	Ar interno	0,18	102528	200

APÊNDICE D - SAMUEL_S

Neste apêndice é apresentada a tabela 11, que lista os 124 tecidos e órgãos que compõe o fantoma de voxels SAMUEL_S. A tabela também informa o número indicador (ID) de cada estrutura, suas dimensões, volume e a quantidade de voxels.

Tabela 11 – Características da versão simplificada do fantoma SAMUEL.

SAI	MUE	L_S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	120x238	3x1392
Dim	nensa	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
/	0	Vácuo	109269848	188818,30	1	420	1	238	1	1392
1	1	Pele	1084050	1873,24	7	416	5	234	1	1392
2	2	Gordura subcutânea	10317364	17828,40	8	415	6	232	2	1391
3	4	Olhos	7439	12,85	174	248	50	67	80	98
4	5	Lentes dos olhos	307	0,53	180	243	50	157	83	628
5	6	Músculo esquelético estriado	8802617	15210,92	10	413	16	227	23	1387
6	7	Encéfalo	870545	1504,30	160	262	43	192	8	143
7	8	Medula espinhal	13044	22,54	209	215	126	189	144	584
8	9	Adrenais	5790	10,01	164	258	139	167	434	444
9	10	Pulmões	1221669	2111,04	113	309	71	201	237	403
10	12	Pâncreas	29644	51,22	158	247	116	146	451	500

SAI	MUEI	S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	120x238	3x1392
Dim	ensã	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
11	13	Fígado	601495	1039,38	136	298	68	176	367	488
12	14	Rins	135117	233,48	151	270	130	175	441	512
13	15	Timo	19128	33,05	197	228	88	121	269	311
14	16	Baço	76007	131,34	129	167	95	161	425	499
15	17	Passagem nasal	32319	55,85	189	234	47	131	102	211
16	18	Língua	28206	48,74	194	228	41	92	135	165
17	19	Cavidade oral	19043	32,91	180	242	32	95	122	173
18	20	Glândulas salivares submandibulares	8850	15,29	180	243	71	99	145	166
19	21	Glândulas salivares parótidas	26315	45,47	155	267	75	119	105	156
20	22	Glândulas salivares sublinguais	2911	5,03	201	222	56	81	164	172
21	24	Laringe	10636	18,38	194	228	83	119	165	207
22	26	Esôfago	16856	29,13	190	221	114	161	212	434
23	27	Traqueia	4150	7,17	204	225	109	153	204	303
24	28	Tireoide	6686	11,55	190	232	91	113	183	208
25	29	Brônquios	26292	45,43	125	298	92	187	261	391
26	30	Conteúdo da vesícula biliar	22452	38,80	228	278	109	138	426	493

SAI	MUEI	S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	120x238	3x1392
Dim	nensä	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
27	32	Conteúdo do estômago	54847	94,78	155	222	87	133	444	488
28	34	Conteúdo do intestino delgado	83965	145,09	155	267	87	149	471	611
29	36	Conteúdo do intestino grosso	174648	301,79	125	293	41	199	82	681
30	38	Conteúdo da bexiga urinária	32825	56,72	191	232	119	153	637	672
31	39	Próstata	2404	4,15	203	220	139	154	676	692
32	40	Testículos	10428	18,02	150	260	72	206	324	723
33	41	Linfonodos	338474	584,88	22	400	45	206	88	1287
34	42	Tecido mole	418785	723,66	110	312	39	204	6	723
35	43	Tecido periarticular	9785	16,91	31	391	97	197	148	1337
36	46	Tecido glandular	1740	3,01	113	309	63	82	349	380
37	48	Sangue do coração	35300	61,00	181	237	102	142	301	359
38	49	Pênis	42027	72,62	198	225	43	146	659	717
39	50	Gordura visceral	1065053	1840,41	114	306	66	180	405	647
40	55	Peritônio	90085	155,67	113	307	65	181	404	648
41	89	Vesícula biliar	4374	7,56	227	279	108	139	425	494
42	91	Estômago	65981	114,02	145	228	82	138	410	493

SAN	MUEL	_S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	20x238	3x1392
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
43	93	Intestino delgado	237085	409,68	150	273	81	154	463	616
44	95	Intestino grosso	231518	400,06	119	299	66	179	481	691
45	97	Bexiga urinária	22074	38,14	187	236	115	157	633	676
46	98	Seios	7285	12,59	111	311	61	86	344	384
47	99	Coração	126621	218,80	172	246	93	151	282	368
48	100	Dentes	15156	26,19	185	237	35	79	123	154
49	101	Mandíbula, osso compacto	10544	18,22	168	254	36	102	106	174
50	102	Crânio, osso compacto	121850	210,56	154	268	36	197	4	136
51	103	Esterno, osso compacto	7594	13,12	191	231	60	123	248	364
52	104	Costelas, osso compacto	94263	162,89	103	319	64	214	219	482
53	105	Clavícula esquerda, osso compacto	10905	18,84	88	203	108	171	234	258
54	106	Clavícula direita, osso compacto	10904	18,84	219	334	108	171	234	258
55	107	Escápula esquerda, osso compacto	14476	25,01	84	175	140	221	227	331
56	108	Escápula direita, osso compacto	14450	24,97	247	338	140	221	227	331
57	109	Coluna cervical, osso compacto	42257	73,02	180	242	105	186	130	224
58	110	Coluna torácica, osso compacto	142795	246,75	179	244	142	218	210	478

SAN	MUEL	_S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	120x238	3x1392
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
59	111	Coluna lombar, osso compacto	80258	138,69	184	239	130	194	460	597
60	112	Sacro, osso compacto	13445	23,23	170	252	153	210	577	659
61	113	Pelve, osso compacto	65330	112,89	104	319	101	212	534	712
62	114	Úmero esquerdo, osso compacto	62771	108,47	28	101	154	198	249	494
63	115	Rádio + Ulna esquerdo, osso compacto	42718	73,82	15	65	125	200	474	671
64	116	Mão esquerda, osso compacto	31952	55,21	11	53	80	165	664	802
65	117	Úmero direito, osso compacto	62693	108,33	321	394	154	198	248	493
66	118	Rádio + Ulna direito, osso compacto	42659	73,71	357	408	125	200	474	671
67	119	Mão direita, osso compacto	32161	55,57	369	412	80	165	664	802
68	120	Fêmur esquerdo, osso compacto	119378	206,29	94	157	111	176	634	1001
69	121	Patela esquerda, osso compacto	9886	17,08	97	131	99	120	979	1019
70	122	Tíbia + Fíbula esquerda, osso compacto	118776	205,24	89	154	115	172	995	1347
71	123	Pé esquerdo, osso compacto	67315	116,32	72	139	10	184	1319	1388
72	124	Fêmur direito, osso compacto	119453	206,41	265	329	111	176	634	1001
73	125	Patela direita, osso compacto	9919	17,14	292	325	99	120	979	1019
74	126	Tíbia + Fíbula direita, osso compacto	119334	206,21	268	333	115	172	995	1347

SAI	MUEL	_S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	20x238	3x1392
Din	nensâ	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
75	127	Pé direito, osso compacto	66938	115,67	284	351	10	184	1319	1388
76	128	Hioide, osso compacto	2766	4,78	195	227	79	108	163	180
77	131	Mandíbula, osso esponjoso	25684	44,38	169	253	37	101	107	173
78	132	Crânio, osso esponjoso	213082	368,21	155	267	37	196	5	135
79	133	Esterno, osso esponjoso	24566	42,45	192	230	60	122	249	363
80	134	Costelas, osso esponjoso	115909	200,29	104	318	65	213	220	481
81	135	Clavícula esquerda, osso esponjoso	3668	6,34	92	199	111	168	238	252
82	136	Clavícula direita, osso esponjoso	3756	6,49	224	330	111	168	238	254
83	137	Escápula esquerda, osso esponjoso	25634	44,30	85	174	141	220	228	330
84	138	Escápula direita, osso esponjoso	25635	44,30	249	337	141	220	228	330
85	139	Coluna cervical, osso esponjoso	12874	22,25	189	233	110	169	133	221
86	140	Coluna torácica, osso esponjoso	100335	173,38	186	237	145	212	218	474
87	141	Coluna lombar, osso esponjoso	65635	113,42	188	233	133	192	463	592
88	142	Sacro, osso esponjoso	57827	99,93	171	251	154	209	578	658
89	143	Pelve, osso esponjoso	344347	595,03	105	318	102	211	535	711
90	144	Úmero esquerdo, parte superior, osso esponjoso	10960	18,94	67	96	159	187	253	275

SAI	MUEL	_S, Altura: 167cm			Tama	nho da l	Matriz (x,y,z): 4	120x238	3x1392
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
91	145	Rádio + Ulna esquerdo, esponjosa	7172	12,39	18	62	129	196	477	666
92	146	Mão esquerda, osso esponjoso	4652	8,04	13	52	82	163	667	775
93	147	Úmero direito, parte superior, osso esponjoso	11010	19,03	327	355	159	187	253	275
94	148	Rádio + Ulna direito, osso esponjoso	7203	12,45	360	405	128	196	478	667
95	149	Mão direita, osso esponjoso	4658	8,05	372	409	83	163	667	763
96	150	Fêmur esquerdo, parte superior, osso esponjoso	31184	53,89	99	154	139	172	637	714
97	151	Patela esquerda, osso esponjoso	1951	3,37	101	127	104	115	983	1012
98	152	Tíbia + Fíbula esquerda, osso esponjoso	58276	100,70	91	149	119	167	1000	1345
99	153	Pé esquerdo, osso esponjoso	36958	63,86	74	136	11	181	1322	1384
100	154	Fêmur direito, parte superior, osso esponjoso	31172	53,87	269	323	139	172	637	714
101	155	Patela direita, osso esponjoso	1943	3,36	296	321	104	115	983	1011
102	156	Tíbia + Fíbula direita, osso esponjoso	58202	100,57	273	332	119	167	1000	1344
103	157	Pé direito, osso esponjoso	36957	63,86	286	348	11	181	1322	1383
104	161	Úmero esquerdo, medula amarela	16078	27,78	35	89	165	194	276	473
105	162	Rádio + Ulna esquerdo, medula amarela	4146	7,16	21	53	137	192	514	634
106	163	Úmero direito, medula amarela	15950	27,56	334	387	165	193	276	473

SAN	IUEL	S, Altura: 167cm			Tamai	nho da l	Matriz (x,y,z): 4	20x238	3x1392
Dim	ensâ	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12c	cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
107	164	Rádio + Ulna direito, medula amarela	4150	7,17	369	401	137	191	514	634
108	165	Fêmur esquerdo, medula amarela	34032	58,81	107	128	120	159	715	943
109	166	Tíbia + Fíbula esquerda, medula amarela	39360	68,01	97	133	122	163	1051	1297
110	167	Fêmur direito, medula amarela	33942	58,65	294	316	120	159	715	943
111	168	Tíbia + Fíbula direita, medula amarela	39214	67,76	290	325	122	163	1051	1297
112	170	Cartilagem, discos invertebrais	43474	75,12	194	228	111	184	147	602
113	171	Cartilagem, sínfise púbica	2455	4,24	207	214	98	123	644	683
114	172	Cartilagem, epiglote	1000	1,73	201	221	91	96	153	168
115	173	Cartilagem articular, membros superiores	12768	22,06	33	406	149	196	245	667
116	174	Cartilagem, costelas	50426	87,14	123	300	59	124	254	477
117	175	Cartilagem, orelhas	4963	8,58	140	283	110	140	88	131
118	176	Cartilagem, nariz	6357	10,98	201	221	20	48	95	122
119	177	Cartilagem articular, membros inferiores	68091	117,66	93	330	28	175	642	1380
120	180	Úmero esquerdo, parte inferior, osso esponjoso	3434	5,93	33	70	170	193	474	488
121	182	Úmero direito, parte inferior, osso esponjoso	3468	5,99	352	390	170	193	474	488
122	184	Fêmur esquerdo, parte inferior, osso esponjoso	35150	60,74	98	148	115	152	943	998

SAN	MUEL	_S, Altura: 167cm			Tamanho da Matriz (x,y,z): 420x238x1392							
Dimensão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12cm			cm		Co	luna	Li	nha	F	atia		
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax		
123	186	Fêmur direito, parte inferior, osso esponjoso	35054	60,57	275	325	115	152	944	999		
124	200	Ar interno	102528	177,17	126	293	24	161	99	630		

APÊNDICE E – SARA_V2

Neste apêndice é apresentada a tabela 12, que lista os 124 tecidos e órgãos que compõe o fantoma de voxels SARA_V2. A tabela também informa o número indicador (ID) de cada estrutura, suas dimensões, volume e a quantidade de voxels.

Tabela 12 – Características do fantoma SARA_V2.

SA	RA_\	/2, Altura: 161cm			Tama	nho da	Matriz ((x,y,z): 4	101x240	0x1342
Din	nens	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
/	0	Vácuo	101144965	174778,5	1	401	1	240	1	1342
1	1	Pele	899260	1553,92	1	401	1	240	1	1342
2	2	Gordura subcutânea	9775481	16892,03	2	401	2	239	2	1341
3	4	Olhos	6787	11,73	169	232	51	69	87	104
4	5	Lentes dos olhos	530	0,92	171	230	49	53	92	101
5	6	Músculo esquelético estriado	9184333	15870,53	3	399	13	223	31	1338
6	7	Encéfalo	488111	843,46	158	243	54	179	14	137
7	8	Medula espinhal	13384	23,13	199	205	130	179	138	581
8	9	Adrenais	9261	16	150	255	125	149	429	454
9	10	Pulmões	1948570	3367,13	103	301	59	201	231	426
10	12	Pâncreas	17447	30,15	155	228	103	126	461	495

SAF	RA_V	/2, Altura: 161cm			Tama	nho da l	Matriz (x,y,z): 4	101x240)x1342
Dim	nensä	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,	12cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
11	13	Fígado	214362	370,42	154	272	67	151	387	479
12	14	Rins	57334	99,07	142	261	126	157	447	500
13	15	Timo	3948	6,82	190	211	103	122	266	296
14	16	Baço	56126	96,99	127	159	94	152	416	492
15	17	Passagem nasal	14750	25,49	184	218	50	133	107	194
16	18	Língua	9374	16,2	190	213	57	100	140	161
17	19	Cavidade oral	8609	14,88	176	226	44	100	126	162
18	20	Glândulas salivares submandibulares	2675	4,62	178	225	77	97	145	157
19	21	Glândulas salivares parótidas	11015	19,03	157	245	66	117	112	151
20	22	Glândulas salivares sublinguais	1167	2,02	193	209	65	83	157	165
21	24	Laringe	7607	13,14	188	214	94	133	158	200
22	26	Esôfago	8877	15,34	184	210	106	156	193	425
23	27	Traqueia	5798	10,02	194	211	128	147	198	290
24	28	Tireoide	5733	9,91	184	218	106	127	171	194
25	29	Brônquios	25987	44,91	115	275	96	178	255	410
26	30	Conteúdo da vesícula biliar	2709	4,68	220	252	94	117	424	477

SAF	RA_V	/2, Altura: 161cm			Tama	nho da l	Matriz (x,y,z): 4	101x240)x1342
Dim	nensä	ão do Voxel (x,y,z): 0,12cm x 0,12cm x	c 0,12cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
27	32	Conteúdo do estômago	44518	76,93	150	216	85	122	426	479
28	34	Conteúdo do intestino delgado	138267	238,93	136	262	91	138	457	602
29	36	Conteúdo do intestino grosso	122700	212,03	122	278	79	176	474	668
30	38	Conteúdo da bexiga urinária	11787	20,37	187	217	121	147	641	665
31	39	Útero	14672	25,35	161	242	126	161	624	651
32	40	Ovários	1604	2,77	166	236	138	150	633	644
33	41	Linfonodos	360494	622,93	2	401	10	238	160	1339
34	42	Tecido mole	223639	386,45	158	243	44	179	12	683
35	43	Tecido periarticular	52282	90,34	18	382	79	218	227	1011
36	46	Tecido glandular	15432	26,67	125	279	28	53	315	345
37	48	Sangue do coração	75881	131,12	169	231	97	151	279	354
38	49	Vagina	4311	7,45	193	210	137	162	649	688
39	50	Gordura visceral	665407	1149,82	121	277	74	158	404	616
40	55	Peritônio	146334	252,87	119	281	72	160	404	619
41	89	Vesícula biliar	1494	2,58	182	253	93	119	421	482
42	91	Estômago	37439	64,69	146	218	81	125	407	483

SAF	RA_V	2, Altura: 161cm			Tama	nho da l	Matriz (x,y,z): 4	101x240)x1342
Dim	ensâ	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,1	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
43	93	Intestino delgado	68514	118,39	134	264	89	140	455	604
44	95	Intestino grosso	100171	173,1	120	280	76	179	471	671
45	97	Bexiga urinária	2271	3,92	186	218	120	148	640	666
46	98	Seios	30503	52,71	121	284	26	66	299	348
47	99	Coração	51827	89,56	166	234	93	153	278	358
48	100	Dentes	9764	16,87	181	220	45	84	125	154
49	101	Mandíbula, osso compacto	6647	11,49	165	236	50	106	112	171
50	102	Crânio, osso compacto	93509	161,58	153	248	42	183	8	138
51	103	Esterno, osso compacto	8705	15,04	176	226	53	130	238	384
52	104	Costelas, osso compacto	72734	125,68	98	304	63	206	216	478
53	105	Clavícula esquerda, osso compacto	3565	6,16	86	189	106	166	236	255
54	106	Clavícula direita, osso compacto	3526	6,09	213	317	105	165	237	255
55	107	Escápula esquerda, osso compacto	17430	30,12	73	164	151	223	224	375
56	108	Escápula direita, osso compacto	17352	29,98	240	330	150	221	223	375
57	109	Coluna cervical, osso compacto	9944	17,18	175	227	119	176	135	203
58	110	Coluna torácica, osso compacto	47011	81,24	170	229	129	207	191	473

SAF	RA_V	2, Altura: 161cm			Tamai	nho da l	Matriz (x,y,z): 4	101x240	0x1342
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
59	111	Coluna lombar, osso compacto	22308	38,55	175	225	117	175	452	587
60	112	Sacro, osso compacto	13451	23,24	162	242	140	199	571	653
61	113	Pelve, osso compacto	61788	106,77	98	305	100	207	523	698
62	114	Úmero esquerdo, osso compacto	14581	25,2	16	95	172	216	237	474
63	115	Rádio + Ulna esquerdo, osso compacto	14706	25,41	5	50	102	221	447	659
64	116	Mão esquerda, osso compacto	12126	20,95	6	58	55	135	647	779
65	117	Úmero direito, osso compacto	14614	25,25	305	385	170	213	239	477
66	118	Rádio + Ulna direito, osso compacto	14689	25,38	351	395	99	219	449	662
67	119	Mão direita, osso compacto	12300	21,25	342	394	53	132	649	781
68	120	Fêmur esquerdo, osso compacto	27970	48,33	87	149	83	172	621	976
69	121	Patela esquerda, osso compacto	2383	4,12	99	135	71	90	960	998
70	122	Tíbia + Fíbula esquerda, osso compacto	32134	55,53	88	153	88	155	970	1303
71	123	Pé esquerdo, osso compacto	23807	41,14	61	134	7	176	1272	1340
72	124	Fêmur direito, osso compacto	28019	48,42	255	317	82	171	621	976
73	125	Patela direita, osso compacto	2394	4,14	272	308	70	89	960	997
74	126	Tíbia + Fíbula direita, osso compacto	32115	55,49	252	317	87	153	970	1303

SAI	RA_V	2, Altura: 161cm			Tama	nho da l	Matriz (x,y,z): 4	101x240)x1342
Din	nensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,1	2cm		Co	luna	Li	nha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
75	127	Pé direito, osso compacto	23824	41,17	272	343	6	175	1272	1340
76	128	Hioide, osso compacto	826	1,43	189	212	92	106	153	161
77	131	Mandíbula, osso esponjoso	11697	20,21	166	235	52	105	114	170
78	132	Crânio, osso esponjoso	174051	300,76	154	247	43	182	9	137
79	133	Esterno, osso esponjoso	22033	38,07	176	225	54	129	239	383
80	134	Costelas, osso esponjoso	74497	128,73	99	303	64	205	217	477
81	135	Clavícula esquerda, osso esponjoso	9949	17,19	87	189	107	166	237	254
82	136	Clavícula direita, osso esponjoso	9976	17,24	213	316	106	165	238	254
83	137	Escápula esquerda, osso esponjoso	31767	54,89	74	163	152	222	225	373
84	138	Escápula direita, osso esponjoso	31527	54,48	241	329	151	220	224	373
85	139	Coluna cervical, osso esponjoso	24293	41,98	176	226	120	175	136	202
86	140	Coluna torácica, osso esponjoso	173741	300,22	171	228	130	206	192	472
87	141	Coluna lombar, osso esponjoso	98434	170,09	176	224	118	174	453	586
88	142	Sacro, osso esponjoso	58182	100,54	163	241	141	198	572	652
89	143	Pelve, osso esponjoso	320606	554,01	99	304	101	206	524	697
90	144	Úmero esquerdo, parte superior, osso esponjoso	21657	37,42	61	94	173	206	238	278

SAI	RA_V	2, Altura: 161cm			Tamai	nho da l	Matriz (x,y,z): 4	01x240)x1342
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	2cm		Co	luna	Li	inha	F	atia
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
91	145	Rádio + Ulna esquerdo, esponjosa	17377	30,03	6	49	103	220	448	658
92	146	Mão esquerda, osso esponjoso	21646	37,4	7	57	56	134	648	778
93	147	Úmero direito, parte superior, osso esponjoso	19303	33,36	306	340	171	204	240	278
94	148	Rádio + Ulna direito, osso esponjoso	17562	30,35	352	394	100	218	450	661
95	149	Mão direita, osso esponjoso	22052	38,11	343	393	54	131	650	780
96	150	Fêmur esquerdo, parte superior, osso esponjoso	50426	87,14	88	146	135	171	622	697
97	151	Patela esquerda, osso esponjoso	9927	17,15	100	134	72	90	961	997
98	152	Tíbia + Fíbula esquerda, osso esponjoso	97529	168,53	89	152	89	154	971	1302
99	153	Pé esquerdo, osso esponjoso	101518	175,42	62	133	8	175	1273	1339
100	154	Fêmur direito, parte superior, osso esponjoso	50505	87,27	257	316	134	170	622	697
101	155	Patela direita, osso esponjoso	9901	17,11	273	307	71	89	961	996
102	156	Tíbia + Fíbula direita, osso esponjoso	97639	168,72	253	316	88	152	971	1302
103	157	Pé direito, osso esponjoso	101135	174,76	273	342	7	174	1273	1339
104	161	Úmero esquerdo, medula amarela	29395	50,79	25	78	184	214	279	435
105	162	Rádio + Ulna esquerdo, medula amarela	23997	41,47	7	38	107	205	498	638
106	163	Úmero direito, medula amarela	29420	50,84	321	375	182	211	279	435

SARA_V	/2, Altura: 161cm			Tama	nho da l	Matriz (x,y,z): 4	101x240)x1342
Dimens	ão do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12	cm		Co	luna	Li	inha	F	atia
N⁰ ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
107 164	Rádio + Ulna direito, medula amarela	23857	41,22	363	393	105	204	498	638
108 165	Fêmur esquerdo, medula amarela	71572	123,68	95	132	91	155	698	927
109 166	Tíbia + Fíbula esquerda, medula amarela	71678	123,86	95	136	93	145	1028	1246
110 167	Fêmur direito, medula amarela	71657	123,82	272	309	90	154	698	927
111 168	Tíbia + Fíbula direita, medula amarela	71799	124,07	269	311	92	144	1028	1246
112 170	Cartilagem, discos invertebrais	10618	18,35	186	216	120	174	155	586
113 171	Cartilagem, sínfise púbica	4125	7,13	197	207	99	123	635	673
114 172	2 Cartilagem, epiglote	790	1,37	196	206	100	121	161	182
115 173	Cartilagem articular, membros superiores	33180	57,34	20	379	162	216	228	476
116 174	Cartilagem, costelas	48793	84,31	123	280	50	133	240	474
117 175	Cartilagem, orelhas	12795	22,11	137	265	106	130	81	118
118 176	Cartilagem, nariz	3991	6,9	192	209	30	53	104	130
119 177	Cartilagem articular, membros inferiores	59747	103,24	93	314	80	170	621	1009
120 180	Úmero esquerdo, parte inferior, osso esponjoso	15509	26,8	17	62	191	215	436	473
121 182	2 Úmero direito, parte inferior, osso esponjoso	16193	27,98	339	384	189	212	436	476
122 184	Fêmur esquerdo, parte inferior, osso esponjoso	49251	85,11	95	148	84	124	928	975

SAF	RA_V	2, Altura: 161cm			Tamai	nho da l	Matriz (x,y,z): 4	101x240)x1342
Dim	ensã	io do Voxel (x,y,z): 0,12cm x 0,12cm x 0,12c		Co	luna	Li	inha	F	atia	
Nº	ID	Tecido/Órgão	Nº de Voxels	Volume (cm³)	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
123	186	Fêmur direito, parte inferior, osso esponjoso	49010	84,69	256	309	83	122	928	975
124	200	Ar interno	39804	68,78	150	215	34	158	109	686

APÊNDICE F - RESULTADOS DOSIMÉTRICOS

Neste apêndice são apresentadas as tabelas 13, 14, 16 e 17, que listam os dados dosimétricos primários obtidos nas simulações MC para os fantomas SAMUEL_S e SARA_V2 e as tabelas 15, 18 e 19 que listam os dados secundários obtidos analiticamente para a estimativa da dose efetiva.

Tabela 13 – D/INAK (mGy/mGy) para os órgãos e tecidos radiossensíveis rotulados como RESTO na ICRP 103, obtidos para o fantoma SAMUEL_S.

Energia (keV)	Glând. Adren.	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Linf.	Músc.	Muc. Oral	Pâncr.	Próst.	Intest. Delg.	Baço	Timo	Média
25	0,02423	0,08892	0,04626	0,03195	0,03762	0,07660	0,16568	0,03668	0,01865	0,04212	0,06362	0,07339	0,03992	0,05736
30	0,08368	0,14526	0,12851	0,10248	0,11087	0,15340	0,25581	0,08615	0,07197	0,09743	0,15176	0,17388	0,10944	0,12851
40	0,28617	0,26635	0,36164	0,33475	0,33059	0,34410	0,43438	0,22776	0,27328	0,26959	0,38362	0,43032	0,31570	0,32756
50	0,51760	0,38136	0,60306	0,57601	0,55218	0,52683	0,57667	0,37004	0,49926	0,47084	0,60489	0,66213	0,51817	0,52762
60	0,68494	0,46796	0,77460	0,74202	0,71094	0,65198	0,66362	0,47308	0,67321	0,61747	0,75651	0,81505	0,64853	0,66769
70	0,79144	0,52945	0,86003	0,83979	0,80959	0,72787	0,71112	0,53871	0,78348	0,72136	0,84308	0,89441	0,72805	0,75218
80	0,83212	0,55263	0,87486	0,86548	0,83805	0,74563	0,71275	0,56405	0,82172	0,75123	0,86316	0,90780	0,76087	0,77618
90	0,83599	0,55924	0,88179	0,86049	0,83762	0,74271	0,70180	0,57238	0,82442	0,75868	0,85491	0,89647	0,75975	0,77587
100	0,84010	0,56942	0,88467	0,86466	0,84196	0,74838	0,70053	0,58408	0,83186	0,77116	0,85509	0,89444	0,76762	0,78107
110	0,82868	0,56930	0,85476	0,84824	0,82392	0,73417	0,68447	0,58169	0,82096	0,74723	0,83579	0,87247	0,75600	0,76598
120	0,81628	0,56984	0,84672	0,83536	0,81188	0,72442	0,67432	0,57441	0,80842	0,74065	0,82109	0,85461	0,74562	0,75566
130	0,80704	0,56833	0,83767	0,83035	0,80235	0,71838	0,66765	0,57604	0,79927	0,73365	0,81192	0,84173	0,74412	0,74912

Energia (keV)	Glând. Adren.	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Linf.	Músc.	Muc. Oral	Pâncr.	Próst.	Intest. Delg.	Baço	Timo	Média
140	0,80992	0,56772	0,83068	0,82247	0,79590	0,71374	0,66266	0,57188	0,79644	0,74283	0,80577	0,83492	0,73966	0,74574
150	0,79719	0,56919	0,82134	0,81927	0,79172	0,71167	0,65891	0,57662	0,79028	0,72836	0,79816	0,82689	0,73615	0,74044
160	0,79568	0,56582	0,81675	0,81329	0,78553	0,70549	0,65399	0,57577	0,78395	0,73419	0,79126	0,81727	0,73910	0,73678
170	0,79888	0,56339	0,81568	0,80866	0,78070	0,70222	0,64996	0,57638	0,78239	0,73044	0,78496	0,81402	0,73558	0,73410
180	0,79004	0,56760	0,79648	0,80575	0,77537	0,69897	0,64610	0,57238	0,77502	0,73339	0,77910	0,80681	0,73419	0,72932
190	0,78560	0,56385	0,80206	0,80418	0,76803	0,69669	0,64302	0,57076	0,77311	0,72403	0,77542	0,80189	0,73521	0,72645
200	0,78608	0,56239	0,78937	0,80083	0,76821	0,69372	0,63986	0,57097	0,77070	0,71799	0,77217	0,79767	0,72891	0,72299
250	0,78153	0,56025	0,78421	0,79939	0,75900	0,68933	0,63230	0,57225	0,75899	0,69965	0,76142	0,78436	0,73130	0,71646
300	0,76592	0,55452	0,77613	0,79845	0,75113	0,68385	0,62367	0,56094	0,75320	0,72268	0,75396	0,77101	0,73109	0,71127
350	0,77663	0,55904	0,77953	0,81197	0,75519	0,69140	0,62737	0,56632	0,76516	0,72547	0,76168	0,77597	0,74529	0,71854
400	0,78009	0,56081	0,79015	0,81975	0,76004	0,69464	0,62824	0,56410	0,77141	0,72863	0,76536	0,77820	0,75158	0,72254
450	0,78951	0,56198	0,79200	0,82797	0,76332	0,69803	0,62795	0,56664	0,77125	0,72794	0,76616	0,78036	0,75277	0,72507
500	0,79029	0,56122	0,78566	0,83016	0,76208	0,69759	0,62611	0,56604	0,77687	0,75038	0,76704	0,77975	0,75912	0,72710
550	0,79530	0,56846	0,79101	0,84508	0,77284	0,70852	0,63256	0,57032	0,78500	0,75913	0,77632	0,78693	0,77352	0,73577
600	0,79858	0,57075	0,79789	0,85778	0,78088	0,71497	0,63745	0,57348	0,79641	0,76240	0,78642	0,79487	0,78152	0,74257
650	0,81122	0,57465	0,81555	0,86767	0,78857	0,72265	0,64128	0,57961	0,80279	0,77713	0,79226	0,79855	0,78483	0,75052
700	0,81507	0,57803	0,82498	0,87789	0,79391	0,72843	0,64464	0,57865	0,80811	0,78975	0,79719	0,80282	0,79484	0,75649
750	0,82770	0,58179	0,82357	0,88524	0,79857	0,73253	0,64674	0,58429	0,81322	0,78460	0,80320	0,80937	0,80105	0,76091
800	0,84134	0,58081	0,82455	0,89132	0,80565	0,73445	0,64830	0,58209	0,81786	0,81133	0,80888	0,81022	0,80616	0,76638

Energia (keV)	Glând. Adren.	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Linf.	Músc.	Muc. Oral	Pâncr.	Próst.	Intest. Delg.	Baço	Timo	Média
850	0,84402	0,58143	0,83222	0,89628	0,80623	0,73860	0,64898	0,58607	0,82490	0,78622	0,81054	0,81373	0,81578	0,76808
900	0,83987	0,58440	0,83328	0,89998	0,80841	0,74032	0,64970	0,58556	0,82500	0,80924	0,81341	0,81633	0,81626	0,77090
950	0,84128	0,58426	0,83717	0,90235	0,80752	0,74204	0,64969	0,58953	0,82592	0,79580	0,81380	0,81411	0,81819	0,77090
1000	0,84194	0,58318	0,82585	0,90689	0,81114	0,74404	0,64964	0,58713	0,83016	0,81261	0,81663	0,81646	0,81749	0,77255
1600	0,91376	0,60112	0,88615	0,97008	0,85812	0,78603	0,67509	0,60797	0,88057	0,87042	0,86255	0,85226	0,86566	0,81768
2600	0,94691	0,62869	0,93195	1,03590	0,90899	0,83085	0,70038	0,63204	0,94304	0,93930	0,91253	0,89806	0,92248	0,86393
3000	0,96480	0,63316	0,94050	1,05210	0,92181	0,84077	0,70424	0,64022	0,95311	0,95269	0,92536	0,91573	0,93129	0,87506

Tabela 14 – D/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SAMUEL_S.

Energia (keV)	Testíc.	Bexiga	Esôfago	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea	Mama	Intest. Grosso	Pulm.	Estôm.	Média do
										Verm.					Resto
25	0,28658	0,02137	0,02335	0,07211	0,19641	0,03054	0,01281	0,18268	0,31822	0,02929	0,28759	0,09643	0,07127	0,06816	0,05736
30	0,40357	0,07184	0,06774	0,16842	0,26354	0,07600	0,05053	0,24991	0,36109	0,06926	0,33770	0,19075	0,16627	0,16401	0,12851
40	0,60418	0,25162	0,22655	0,42806	0,37133	0,24176	0,18870	0,36835	0,44463	0,20239	0,44719	0,41671	0,40526	0,42358	0,32756
50	0,75301	0,47409	0,41762	0,67239	0,46007	0,45777	0,33345	0,46567	0,51457	0,36656	0,55370	0,62426	0,61630	0,66455	0,52762
60	0,84047	0,63560	0,56597	0,83351	0,50296	0,64108	0,43344	0,53273	0,55982	0,50911	0,64847	0,76257	0,75411	0,82318	0,66769
70	0,87977	0,74294	0,67492	0,92391	0,55130	0,76207	0,49456	0,57898	0,59004	0,61338	0,72101	0,84232	0,83342	0,91685	0,75218
80	0,87407	0,77822	0,71134	0,93635	0,54626	0,80239	0,51347	0,58966	0,59010	0,66176	0,73986	0,85574	0,84983	0,93047	0,77618
90	0,86007	0,77986	0,72549	0,92502	0,53889	0,80110	0,51621	0,59050	0,58343	0,68343	0,75686	0,84806	0,84272	0,92134	0,77587
100	0,85650	0,79477	0,73214	0,92434	0,53544	0,79987	0,52404	0,59456	0,58736	0,70424	0,77440	0,84931	0,84809	0,91697	0,78107
110	0,82006	0,78489	0,73912	0,89739	0,52237	0,77497	0,51723	0,58950	0,57591	0,70382	0,78143	0,82875	0,83362	0,89512	0,76598
120	0,80575	0,76982	0,72744	0,88141	0,51929	0,75375	0,51463	0,58593	0,57039	0,70284	0,77728	0,81580	0,82186	0,88129	0,75566
130	0,80381	0,76213	0,72617	0,86844	0,52302	0,73891	0,51290	0,58643	0,56756	0,70349	0,76299	0,80618	0,81722	0,86963	0,74912
140	0,79472	0,75939	0,72499	0,85889	0,50869	0,72297	0,51201	0,58205	0,56488	0,70381	0,79502	0,79906	0,81345	0,85710	0,74574
150	0,79151	0,75909	0,72650	0,85234	0,50925	0,71255	0,51241	0,58332	0,56348	0,70504	0,77856	0,79355	0,81152	0,85244	0,74044
160	0,78689	0,75150	0,72489	0,84341	0,50633	0,70049	0,51005	0,58029	0,56015	0,70291	0,77172	0,78604	0,80784	0,84485	0,73678
170	0,78427	0,75063	0,72498	0,83746	0,50729	0,69233	0,50977	0,57988	0,55723	0,70167	0,77008	0,78098	0,80522	0,83888	0,73410
180	0,77552	0,74600	0,71845	0,83052	0,50645	0,68197	0,50996	0,57739	0,55388	0,69932	0,77217	0,77457	0,80393	0,83099	0,72932
190	0,76586	0,74135	0,71927	0,82555	0,50156	0,67493	0,50805	0,57581	0,55141	0,69859	0,76520	0,77051	0,80079	0,82510	0,72645

Energia (keV)	Testíc.	Bexiga	Esôfago	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea Verm.	Mama	Intest. Grosso	Pulm.	Estôm.	Média do Resto
200	0,76810	0,73930	0,72156	0,82061	0,49964	0,66850	0,50700	0,57291	0,54879	0,69655	0,75500	0,76705	0,79844	0,82362	0,72299
250	0,76131	0,73697	0,72080	0,80990	0,49338	0,65183	0,50826	0,56785	0,53911	0,69549	0,76690	0,75700	0,79816	0,81025	0,71646
300	0,74699	0,72766	0,71866	0,79830	0,48471	0,63958	0,50757	0,56056	0,52776	0,69221	0,75675	0,74820	0,79560	0,80032	0,71127
350	0,75305	0,74038	0,73315	0,80548	0,49321	0,64059	0,51426	0,56486	0,52469	0,70057	0,76526	0,75321	0,80659	0,80674	0,71854
400	0,74994	0,74809	0,74760	0,80754	0,48005	0,64249	0,51932	0,56371	0,51885	0,70725	0,75638	0,75795	0,81626	0,80758	0,72254
450	0,74483	0,75016	0,75738	0,81072	0,48654	0,64310	0,52185	0,56241	0,51176	0,71083	0,74970	0,75752	0,82203	0,81293	0,72507
500	0,75328	0,75147	0,76076	0,80942	0,48598	0,64086	0,52293	0,55908	0,50198	0,71132	0,75210	0,75684	0,82392	0,80956	0,72710
550	0,75821	0,76943	0,76617	0,81966	0,47780	0,64916	0,53104	0,56455	0,49905	0,72356	0,73880	0,76782	0,83650	0,81816	0,73577
600	0,75830	0,77542	0,78429	0,82864	0,49376	0,65469	0,53745	0,56809	0,49478	0,73217	0,76530	0,77351	0,84703	0,82669	0,74257
650	0,76136	0,78595	0,79137	0,83408	0,49178	0,65956	0,54292	0,57025	0,48921	0,73908	0,74465	0,77964	0,85704	0,83694	0,75052
700	0,77159	0,79710	0,80170	0,84126	0,49306	0,66421	0,54601	0,57119	0,48284	0,74596	0,78458	0,78333	0,86378	0,83946	0,75649
750	0,76545	0,80598	0,81041	0,84510	0,49821	0,66733	0,55011	0,57695	0,47605	0,75023	0,76627	0,78966	0,87255	0,84552	0,76091
800	0,77702	0,81124	0,81803	0,84878	0,50527	0,66974	0,55229	0,57466	0,46848	0,75486	0,76356	0,79380	0,87596	0,84862	0,76638
850	0,77293	0,81189	0,82211	0,85280	0,49182	0,67192	0,55476	0,57545	0,46128	0,75889	0,76836	0,79414	0,88059	0,84933	0,76808
900	0,77537	0,81710	0,83021	0,85504	0,50042	0,67333	0,55549	0,57439	0,45350	0,76222	0,75225	0,79585	0,88391	0,85279	0,77090
950	0,77929	0,81727	0,83506	0,85574	0,49724	0,67379	0,55674	0,57345	0,44623	0,76373	0,77181	0,79749	0,88538	0,85473	0,77090
1000	0,77342	0,82149	0,83823	0,85724	0,49579	0,67564	0,55844	0,57292	0,43861	0,76677	0,75876	0,79764	0,88851	0,85310	0,77255
1600	0,80766	0,88524	0,90353	0,90449	0,51642	0,71117	0,58786	0,59123	0,39096	0,81535	0,79441	0,84036	0,94408	0,89888	0,81768
2600	0,82727	0,94187	0,96468	0,95598	0,53327	0,74987	0,61855	0,60142	0,35667	0,86824	0,75559	0,88325	1,00220	0,95106	0,86393

Energia (keV)	Testíc.	Bexiga	Esôfago	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea Verm.	Mama	Intest. Grosso	Pulm.	Estôm.	Média do Resto
3000	0,83230	0,96229	0,96826	0,96813	0,53240	0,75893	0,62542	0,60140	0,34880	0,88080	0,73653	0,89563	1,01710	0,95521	0,87506

Os dados da tabela 15 e 18 são o resultado da multiplicação dos dados da tabela 14 e 17 pelo fator de ponderação de radiação $(w_R = 1)$ e o fator de ponderação de tecido (w_T) .

Tabela $15 - (H_T.w_T)/INAK (mGy/mGy)$ para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SAMUEL_S.

	- 4	. ,	= ^4	• • • •	•										
Energia (keV)	Testic. w _T =0,08	_	Esôfago w _T =0,04	_		, .		Gland. Saliv. w _T =0,01	Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	Mama w _T =0,12	Intest. Grosso w _T =0,12	Pulm. w _T =0,12	Estôm. w _T =0,12	Média do Resto w _T =0,12
25	0,02293	0,00085	0,00093	0,00288	0,00786	0,00031	0,00013	0,00183	0,00318	0,00351	0,03451	0,01157	0,00855	0,00818	0,00688
30	0,03229	0,00287	0,00271	0,00674	0,01054	0,00076	0,00051	0,00250	0,00361	0,00831	0,04052	0,02289	0,01995	0,01968	0,01542
40	0,04833	0,01006	0,00906	0,01712	0,01485	0,00242	0,00189	0,00368	0,00445	0,02429	0,05366	0,05001	0,04863	0,05083	0,03931
50	0,06024	0,01896	0,01670	0,02690	0,01840	0,00458	0,00333	0,00466	0,00515	0,04399	0,06644	0,07491	0,07396	0,07975	0,06331
60	0,06724	0,02542	0,02264	0,03334	0,02012	0,00641	0,00433	0,00533	0,00560	0,06109	0,07782	0,09151	0,09049	0,09878	0,08012
70	0,07038	0,02972	0,02700	0,03696	0,02205	0,00762	0,00495	0,00579	0,00590	0,07361	0,08652	0,10108	0,10001	0,11002	0,09026
80	0,06993	0,03113	0,02845	0,03745	0,02185	0,00802	0,00513	0,00590	0,00590	0,07941	0,08878	0,10269	0,10198	0,11166	0,09314
90	0,06881	0,03119	0,02902	0,03700	0,02156	0,00801	0,00516	0,00591	0,00583	0,08201	0,09082	0,10177	0,10113	0,11056	0,09310
100	0,06852	0,03179	0,02929	0,03697	0,02142	0,00800	0,00524	0,00595	0,00587	0,08451	0,09293	0,10192	0,10177	0,11004	0,09373
110	0,06560	0,03140	0,02956	0,03590	0,02089	0,00775	0,00517	0,00590	0,00576	0,08446	0,09377	0,09945	0,10003	0,10741	0,09192
120	0,06446	0,03079	0,02910	0,03526	0,02077	0,00754	0,00515	0,00586	0,00570	0,08434	0,09327	0,09790	0,09862	0,10575	0,09068
130	0,06430	0,03049	0,02905	0,03474	0,02092	0,00739	0,00513	0,00586	0,00568	0,08442	0,09156	0,09674	0,09807	0,10436	0,08989
140	0,06358	0,03038	0,02900	0,03436	0,02035	0,00723	0,00512	0,00582	0,00565	0,08446	0,09540	0,09589	0,09761	0,10285	0,08949
150	0,06332	0,03036	0,02906	0,03409	0,02037	0,00713	0,00512	0,00583	0,00563	0,08460	0,09343	0,09523	0,09738	0,10229	0,08885
160	0,06295	0,03006	0,02900	0,03374	0,02025	0,00700	0,00510	0,00580	0,00560	0,08435	0,09261	0,09432	0,09694	0,10138	0,08841
170	0,06274	0,03003	0,02900	0,03350	0,02029	0,00692	0,00510	0,00580	0,00557	0,08420	0,09241	0,09372	0,09663	0,10067	0,08809

Energia (keV)	Testic. w _T =0,08	_	Esôfago w _T =0,04	_		Superf. Óssea w _T =0,01		Glând. Saliv. w _⊤ =0,01	Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	Mama w _T =0,12	Intest. Grosso w _T =0,12	Pulm. w _T =0,12	Estôm. w _T =0,12	Média do Resto w _T =0,12
180	0,06204	0,02984	0,02874	0,03322	0,02026	0,00682	0,00510	0,00577	0,00554	0,08392	0,09266	0,09295	0,09647	0,09972	0,08752
190	0,06127	0,02965	0,02877	0,03302	0,02006	0,00675	0,00508	0,00576	0,00551	0,08383	0,09182	0,09246	0,09609	0,09901	0,08717
200	0,06145	0,02957	0,02886	0,03282	0,01999	0,00669	0,00507	0,00573	0,00549	0,08359	0,09060	0,09205	0,09581	0,09883	0,08676
250	0,06090	0,02948	0,02883	0,03240	0,01974	0,00652	0,00508	0,00568	0,00539	0,08346	0,09203	0,09084	0,09578	0,09723	0,08598
300	0,05976	0,02911	0,02875	0,03193	0,01939	0,00640	0,00508	0,00561	0,00528	0,08307	0,09081	0,08978	0,09547	0,09604	0,08535
350	0,06024	0,02962	0,02933	0,03222	0,01973	0,00641	0,00514	0,00565	0,00525	0,08407	0,09183	0,09039	0,09679	0,09681	0,08622
400	0,06000	0,02992	0,02990	0,03230	0,01920	0,00642	0,00519	0,00564	0,00519	0,08487	0,09077	0,09095	0,09795	0,09691	0,08670
450	0,05959	0,03001	0,03030	0,03243	0,01946	0,00643	0,00522	0,00562	0,00512	0,08530	0,08996	0,09090	0,09864	0,09755	0,08701
500	0,06026	0,03006	0,03043	0,03238	0,01944	0,00641	0,00523	0,00559	0,00502	0,08536	0,09025	0,09082	0,09887	0,09715	0,08725
550	0,06066	0,03078	0,03065	0,03279	0,01911	0,00649	0,00531	0,00565	0,00499	0,08683	0,08866	0,09214	0,10038	0,09818	0,08829
600	0,06066	0,03102	0,03137	0,03315	0,01975	0,00655	0,00537	0,00568	0,00495	0,08786	0,09184	0,09282	0,10164	0,09920	0,08911
650	0,06091	0,03144	0,03165	0,03336	0,01967	0,00660	0,00543	0,00570	0,00489	0,08869	0,08936	0,09356	0,10284	0,10043	0,09006
700	0,06173	0,03188	0,03207	0,03365	0,01972	0,00664	0,00546	0,00571	0,00483	0,08952	0,09415	0,09400	0,10365	0,10074	0,09078
750	0,06124	0,03224	0,03242	0,03380	0,01993	0,00667	0,00550	0,00577	0,00476	0,09003	0,09195	0,09476	0,10471	0,10146	0,09131
800	0,06216	0,03245	0,03272	0,03395	0,02021	0,00670	0,00552	0,00575	0,00468	0,09058	0,09163	0,09526	0,10512	0,10183	0,09197
850	0,06183	0,03248	0,03288	0,03411	0,01967	0,00672	0,00555	0,00575	0,00461	0,09107	0,09220	0,09530	0,10567	0,10192	0,09217
900	0,06203	0,03268	0,03321	0,03420	0,02002	0,00673	0,00555	0,00574	0,00454	0,09147	0,09027	0,09550	0,10607	0,10233	0,09251
950	0,06234	0,03269	0,03340	0,03423	0,01989	0,00674	0,00557	0,00573	0,00446	0,09165	0,09262	0,09570	0,10625	0,10257	0,09251
1000	0,06187	0,03286	0,03353	0,03429	0,01983	0,00676	0,00558	0,00573	0,00439	0,09201	0,09105	0,09572	0,10662	0,10237	0,09271

Energia (keV)					Tireoide w _T =0,04				Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	. ,	Intest. Grosso w _T =0,12	Pulm. w _T =0,12		Média do Resto w _T =0,12
1600	0,06461	0,03541	0,03614	0,03618	0,02066	0,00711	0,00588	0,00591	0,00391	0,09784	0,09533	0,10084	0,11329	0,10787	0,09812
2600	0,06618	0,03767	0,03859	0,03824	0,02133	0,00750	0,00619	0,00601	0,00357	0,10419	0,09067	0,10599	0,12026	0,11413	0,10367
3000	0,06658	0,03849	0,03873	0,03873	0,02130	0,00759	0,00625	0,00601	0,00349	0,10570	0,08838	0,10748	0,12205	0,11463	0,10501

Tabela 16 – D/INAK (mGy/mGy) para os órgãos e tecidos radiossensíveis rotulados como RESTO na ICRP 103, obtidos para o fantoma SARA_V2.

Energia (keV)	Glând. Adrenais	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Lin.	Músc.	Mucosa Oral	Pânc.	Útero	Intest. Delg.	Baço	Timo	Média
25	0,03145	0,08615	0,05407	0,04355	0,05169	0,19021	0,16332	0,05047	0,02564	0,02446	0,05534	0,06818	0,02901	0,06719
30	0,10698	0,13894	0,15055	0,13281	0,13873	0,28143	0,25906	0,10796	0,09252	0,07803	0,14218	0,16856	0,09796	0,14582
40	0,34102	0,25909	0,41097	0,40687	0,38496	0,46537	0,45204	0,25273	0,32663	0,26737	0,37964	0,43136	0,32502	0,36177
50	0,58249	0,37360	0,65794	0,67292	0,61997	0,61175	0,60103	0,38653	0,57292	0,48576	0,61108	0,66527	0,55937	0,56928
60	0,74997	0,46081	0,81481	0,84781	0,77797	0,69766	0,68661	0,47756	0,75053	0,64494	0,76864	0,81701	0,69093	0,70656
70	0,83936	0,51477	0,90584	0,93812	0,86873	0,74143	0,73053	0,53746	0,84841	0,75561	0,85633	0,89498	0,78937	0,78623
80	0,86655	0,52834	0,92746	0,95304	0,88059	0,74020	0,72714	0,55303	0,87635	0,79178	0,87660	0,90219	0,80702	0,80233
90	0,86033	0,53866	0,89893	0,94364	0,86866	0,72395	0,71125	0,55418	0,87264	0,79808	0,86588	0,88439	0,80379	0,79418
100	0,86643	0,54938	0,90608	0,94271	0,86748	0,72146	0,70767	0,56549	0,87172	0,80616	0,86483	0,88358	0,80300	0,79661
110	0,83705	0,54109	0,86297	0,92123	0,84239	0,70369	0,68940	0,56245	0,85188	0,78865	0,84247	0,85772	0,80370	0,77728
120	0,82137	0,53883	0,85309	0,90817	0,82665	0,69269	0,67714	0,55445	0,83278	0,77600	0,82728	0,83988	0,78593	0,76417
130	0,81260	0,54028	0,84020	0,89430	0,81402	0,68445	0,66884	0,54703	0,82290	0,77696	0,81454	0,82821	0,78842	0,75637
140	0,80865	0,53589	0,83382	0,89208	0,80281	0,67815	0,66342	0,55310	0,80961	0,77103	0,80566	0,81716	0,78642	0,75060
150	0,80164	0,53866	0,82931	0,88484	0,79711	0,67461	0,65929	0,54605	0,80441	0,76588	0,80220	0,80792	0,77802	0,74538
160	0,79521	0,53604	0,81922	0,88404	0,78836	0,67051	0,65428	0,54596	0,79278	0,76374	0,79426	0,80364	0,77382	0,74014
170	0,79196	0,53471	0,82250	0,87630	0,78181	0,66420	0,64952	0,55017	0,78842	0,75287	0,78607	0,79439	0,77132	0,73571
180	0,78538	0,53450	0,81362	0,87138	0,77604	0,66089	0,64537	0,54836	0,78653	0,75560	0,78125	0,79089	0,76624	0,73200
190	0,77863	0,53386	0,80677	0,87117	0,77102	0,65802	0,64220	0,54158	0,77959	0,74770	0,77839	0,78125	0,76681	0,72746

Energia (keV)	Glând. Adrenais	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Lin.	Músc.	Mucosa Oral	Pânc.	Útero	Intest. Delg.	Baço	Timo	Média
200	0,76706	0,53393	0,79399	0,86430	0,76558	0,65521	0,63861	0,54982	0,77278	0,74592	0,77446	0,77650	0,76196	0,72309
250	0,76693	0,52789	0,78820	0,86302	0,75412	0,64743	0,63057	0,53791	0,76459	0,74334	0,76179	0,76332	0,77201	0,71701
300	0,75666	0,52757	0,78022	0,86189	0,74484	0,63870	0,62239	0,53430	0,75834	0,73899	0,75483	0,75705	0,77004	0,71122
350	0,76598	0,52814	0,78645	0,87278	0,74986	0,64274	0,62570	0,54335	0,76509	0,75313	0,76091	0,76186	0,78580	0,71860
400	0,77298	0,53073	0,77698	0,88024	0,75391	0,64516	0,62663	0,54351	0,76877	0,75446	0,76900	0,75872	0,79700	0,72139
450	0,76589	0,52827	0,78839	0,88456	0,75100	0,64363	0,62610	0,53367	0,77211	0,76271	0,76804	0,76115	0,80065	0,72201
500	0,76849	0,52906	0,77577	0,88916	0,75514	0,64157	0,62425	0,53693	0,77073	0,76671	0,76810	0,76169	0,79770	0,72195
550	0,77363	0,53169	0,80869	0,90472	0,76504	0,64861	0,63046	0,54361	0,77663	0,77980	0,77963	0,76813	0,81281	0,73257
600	0,77861	0,53929	0,81466	0,91660	0,76696	0,65259	0,63559	0,55508	0,78398	0,79099	0,79112	0,77447	0,82525	0,74040
650	0,78945	0,54101	0,80769	0,92574	0,77686	0,65735	0,63975	0,54573	0,79661	0,80103	0,79450	0,78327	0,83017	0,74532
700	0,80337	0,54295	0,81325	0,93632	0,78041	0,65983	0,64204	0,55006	0,80557	0,80792	0,80212	0,78713	0,84377	0,75190
750	0,80088	0,54372	0,81133	0,94327	0,78560	0,66383	0,64474	0,55413	0,80731	0,81432	0,80663	0,78922	0,86020	0,75578
800	0,80957	0,54573	0,80484	0,94594	0,78438	0,66417	0,64658	0,54764	0,80927	0,81842	0,80891	0,79257	0,85845	0,75665
850	0,81473	0,54278	0,81521	0,95189	0,79403	0,66475	0,64706	0,55326	0,81755	0,82279	0,81587	0,79467	0,86955	0,76186
900	0,81200	0,54882	0,82578	0,95661	0,79395	0,66664	0,64751	0,55728	0,81806	0,82530	0,81925	0,79597	0,85499	0,76324
950	0,81435	0,54681	0,82731	0,95683	0,79303	0,66577	0,64744	0,56000	0,81412	0,82980	0,81831	0,79600	0,86034	0,76385
1000	0,81632	0,54866	0,82177	0,95776	0,79914	0,66606	0,64724	0,55924	0,82272	0,83062	0,81791	0,79776	0,86457	0,76537
1600	0,85586	0,57096	0,86535	1,01690	0,83688	0,68929	0,67174	0,57154	0,87402	0,89402	0,86918	0,83666	0,92213	0,80573
2600	0,90915	0,59079	0,90145	1,07330	0,88908	0,70790	0,69541	0,59527	0,91919	0,96091	0,92161	0,87991	0,97486	0,84760

Energia (keV)	Glând. Adrenais	Vias Aéreas Extr.	Vesíc. Biliar	Coração Parede	Rins	Nodos Lin.	Músc.	Mucosa Oral	Pânc.	Útero	Intest. Delg.	Baço	Timo	Média
3000	0,92939	0,59472	0,92491	1,08820	0,89620	0,70865	0,69968	0,59396	0,92073	0,96704	0,93163	0,89344	0,99960	0,85755

Tabela 17 – D/INAK (mGy/mGy) para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SARA_V2.

Energia (keV)	Ovár.	Bexiga Urinária	Esôf.	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea Verm.	Mama	Intest. Grosso	Pulm.	Estôm.	Média do Resto
25	0,02042	0,03420	0,03194	0,06713	0,16923	0,03607	0,01221	0,17669	0,29132	0,02727	0,23565	0,06034	0,11628	0,05763	0,06719
30	0,06775	0,09567	0,10415	0,17134	0,23006	0,09014	0,04922	0,23490	0,33397	0,07195	0,30432	0,14709	0,23374	0,15290	0,14582
40	0,24595	0,29561	0,34174	0,45459	0,33654	0,27697	0,18437	0,34636	0,42139	0,22744	0,42902	0,38242	0,50126	0,42161	0,36177
50	0,47126	0,50612	0,59400	0,71198	0,43560	0,50307	0,31916	0,43974	0,49144	0,41379	0,53758	0,60451	0,72057	0,67470	0,56928
60	0,61260	0,67627	0,76468	0,87423	0,48827	0,68528	0,40976	0,49899	0,53391	0,56688	0,60954	0,76003	0,85521	0,83879	0,70656
70	0,74408	0,78155	0,86694	0,95883	0,52720	0,79874	0,46557	0,54520	0,56029	0,67385	0,66907	0,84489	0,92861	0,92670	0,78623
80	0,79281	0,80927	0,89272	0,96317	0,52912	0,82635	0,48098	0,55890	0,55905	0,71664	0,68689	0,86398	0,93408	0,93346	0,80233
90	0,79248	0,79790	0,89220	0,94459	0,52492	0,81466	0,48232	0,56148	0,55037	0,73306	0,69975	0,85172	0,92235	0,92148	0,79418
100	0,80114	0,80129	0,89251	0,93513	0,52065	0,80770	0,48854	0,56059	0,55174	0,75115	0,70735	0,85089	0,92315	0,92022	0,79661
110	0,77071	0,78320	0,88171	0,90872	0,51138	0,77654	0,48335	0,54858	0,54141	0,74436	0,70149	0,83214	0,90289	0,89040	0,77728
120	0,78586	0,78892	0,86666	0,88924	0,50954	0,75238	0,48037	0,55305	0,53522	0,74052	0,70319	0,81676	0,89111	0,87284	0,76417
130	0,76817	0,77165	0,86264	0,87336	0,49935	0,73307	0,47752	0,54843	0,53135	0,73879	0,70124	0,80749	0,88315	0,85624	0,75637
140	0,78776	0,77425	0,85494	0,86281	0,48867	0,71818	0,47887	0,55045	0,52892	0,73743	0,70603	0,79805	0,87879	0,84956	0,75060
150	0,75566	0,75540	0,84984	0,85540	0,49228	0,70554	0,47920	0,54600	0,52696	0,73618	0,70222	0,79322	0,87594	0,84067	0,74538
160	0,77083	0,75968	0,84941	0,84655	0,49672	0,69452	0,47883	0,54847	0,52417	0,73393	0,70977	0,78454	0,87122	0,82971	0,74014
170	0,74258	0,74594	0,83892	0,83762	0,48193	0,68406	0,47683	0,54293	0,52141	0,73152	0,70309	0,77755	0,86683	0,82433	0,73571
180	0,74258	0,74516	0,84124	0,83069	0,48662	0,67450	0,47665	0,53707	0,51803	0,72903	0,70752	0,77339	0,86329	0,81801	0,73200
190	0,73375	0,74754	0,83788	0,82619	0,48075	0,66777	0,47630	0,53939	0,51543	0,72621	0,70004	0,77104	0,86135	0,80987	0,72746

Energia (keV)	Ovár.	Bexiga Urinária	Esôf.	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea Verm.	Mama	Intest. Grosso	Pulm.	Estôm.	Média do Resto
200	0,74064	0,74123	0,83484	0,81877	0,47914	0,66004	0,47553	0,54035	0,51337	0,72428	0,70306	0,76702	0,85859	0,80266	0,72309
250	0,73839	0,73612	0,82728	0,80625	0,47023	0,64179	0,47669	0,52936	0,50333	0,72203	0,70332	0,75638	0,85539	0,79293	0,71701
300	0,73632	0,73372	0,82245	0,79738	0,46291	0,62958	0,47595	0,52472	0,49191	0,71727	0,69196	0,74822	0,85063	0,78490	0,71122
350	0,75309	0,73634	0,83902	0,80157	0,47066	0,63081	0,48225	0,52500	0,48846	0,72616	0,69766	0,75510	0,86071	0,79217	0,71860
400	0,75830	0,75151	0,84570	0,80415	0,47438	0,63234	0,48680	0,53095	0,48184	0,73150	0,70839	0,75800	0,86635	0,79413	0,72139
450	0,76093	0,75733	0,84863	0,80497	0,47187	0,63142	0,48926	0,52836	0,47341	0,73456	0,69906	0,76199	0,86908	0,79440	0,72201
500	0,75042	0,76854	0,84761	0,80294	0,46881	0,63079	0,49044	0,52452	0,46359	0,73699	0,70263	0,75897	0,86914	0,79297	0,72195
550	0,77345	0,76497	0,86392	0,81300	0,47125	0,63687	0,49669	0,53042	0,45980	0,74759	0,70775	0,77026	0,88094	0,80391	0,73257
600	0,76865	0,77219	0,87151	0,82028	0,47819	0,64353	0,50313	0,53054	0,45451	0,75730	0,71609	0,78078	0,89128	0,81055	0,74040
650	0,80349	0,79235	0,87190	0,82865	0,48063	0,64827	0,50806	0,53512	0,44780	0,76507	0,71940	0,78741	0,90026	0,81350	0,74532
700	0,79601	0,79212	0,89293	0,83274	0,47844	0,65095	0,51059	0,53982	0,44034	0,77008	0,72216	0,79315	0,90649	0,82191	0,75190
750	0,80828	0,80440	0,89578	0,83761	0,48366	0,65443	0,51422	0,53804	0,43254	0,77667	0,72553	0,79682	0,90978	0,82640	0,75578
800	0,80794	0,80104	0,90900	0,84369	0,47922	0,65754	0,51630	0,53850	0,42452	0,78167	0,72101	0,80198	0,91484	0,82614	0,75665
850	0,82682	0,81700	0,90366	0,84213	0,48311	0,65903	0,51878	0,53473	0,41683	0,78463	0,72800	0,80491	0,91679	0,82913	0,76186
900	0,83978	0,80399	0,91421	0,84351	0,48868	0,66081	0,52030	0,53782	0,40913	0,78793	0,73314	0,80680	0,92018	0,83452	0,76324
950	0,82690	0,81468	0,90520	0,84614	0,48325	0,66067	0,52062	0,53336	0,40145	0,78929	0,72487	0,80802	0,92081	0,83168	0,76385
1000	0,82169	0,81696	0,91617	0,84653	0,48035	0,66139	0,52214	0,54292	0,39457	0,79107	0,73297	0,80709	0,92151	0,83184	0,76537
1600	0,87411	0,89289	0,97466	0,88976	0,50835	0,69410	0,54841	0,54858	0,35259	0,84059	0,75872	0,85516	0,96597	0,87806	0,80573
2600	0,95267	0,92735	1,02740	0,93759	0,51530	0,72971	0,57569	0,56020	0,32631	0,89324	0,77872	0,90503	1,01430	0,92762	0,84760

Energia (keV)	Ovár.	Bexiga Urinária	Esôf.	Fígado	Tireoide	Superf. Óssea	Cérebro	Glând. Saliv.	Pele	Medula Óssea Verm.	Mama	Intest. Grosso	Pulm.	Estôm.	Média do Resto
3000	0,98976	0,95324	1,04730	0,94844	0,52273	0,73729	0,57950	0,55362	0,32072	0,90444	0,78883	0,91999	1,02600	0,93401	0,85755

Tabela $18 - (H_T.w_T)/INAK (mGy/mGy)$ para os principais órgãos e tecidos radiossensíveis da ICRP 103, obtidos para o fantoma SARA_V2.

Energia (keV)	Ovár. w _T =0,08	Bexiga Urin. w _T =0,04	Esôf. w _T =0,04	•	Tireoide w _T =0,04	, •	Cérebro w _T =0,01	Glând. Saliv. w _⊤ =0,01	Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	Mama w _T =0,12	Intest. Grosso w _T =0,12	Pulm. w _T =0,12		Média do Resto w₁=0,12
25	0,00163	0,00137	0,00128	0,00269	0,00677	0,00036	0,00012	0,00177	0,00291	0,00327	0,02828	0,00724	0,01395	0,00692	0,00806
30	0,00542	0,00383	0,00417	0,00685	0,00920	0,00090	0,00049	0,00235	0,00334	0,00863	0,03652	0,01765	0,02805	0,01835	0,01750
40	0,01968	0,01182	0,01367	0,01818	0,01346	0,00277	0,00184	0,00346	0,00421	0,02729	0,05148	0,04589	0,06015	0,05059	0,04341
50	0,03770	0,02024	0,02376	0,02848	0,01742	0,00503	0,00319	0,00440	0,00491	0,04965	0,06451	0,07254	0,08647	0,08096	0,06831
60	0,04901	0,02705	0,03059	0,03497	0,01953	0,00685	0,00410	0,00499	0,00534	0,06803	0,07314	0,09120	0,10263	0,10065	0,08479
70	0,05953	0,03126	0,03468	0,03835	0,02109	0,00799	0,00466	0,00545	0,00560	0,08086	0,08029	0,10139	0,11143	0,11120	0,09435
80	0,06342	0,03237	0,03571	0,03853	0,02116	0,00826	0,00481	0,00559	0,00559	0,08600	0,08243	0,10368	0,11209	0,11202	0,09628
90	0,06340	0,03192	0,03569	0,03778	0,02100	0,00815	0,00482	0,00561	0,00550	0,08797	0,08397	0,10221	0,11068	0,11058	0,09530
100	0,06409	0,03205	0,03570	0,03741	0,02083	0,00808	0,00489	0,00561	0,00552	0,09014	0,08488	0,10211	0,11078	0,11043	0,09559
110	0,06166	0,03133	0,03527	0,03635	0,02046	0,00777	0,00483	0,00549	0,00541	0,08932	0,08418	0,09986	0,10835	0,10685	0,09327
120	0,06287	0,03156	0,03467	0,03557	0,02038	0,00752	0,00480	0,00553	0,00535	0,08886	0,08438	0,09801	0,10693	0,10474	0,09170
130	0,06145	0,03087	0,03451	0,03493	0,01997	0,00733	0,00478	0,00548	0,00531	0,08865	0,08415	0,09690	0,10598	0,10275	0,09076
140	0,06302	0,03097	0,03420	0,03451	0,01955	0,00718	0,00479	0,00550	0,00529	0,08849	0,08472	0,09577	0,10545	0,10195	0,09007
150	0,06045	0,03022	0,03399	0,03422	0,01969	0,00706	0,00479	0,00546	0,00527	0,08834	0,08427	0,09519	0,10511	0,10088	0,08945
160	0,06167	0,03039	0,03398	0,03386	0,01987	0,00695	0,00479	0,00548	0,00524	0,08807	0,08517	0,09414	0,10455	0,09957	0,08882
170	0,05941	0,02984	0,03356	0,03350	0,01928	0,00684	0,00477	0,00543	0,00521	0,08778	0,08437	0,09331	0,10402	0,09892	0,08829
180	0,05941	0,02981	0,03365	0,03323	0,01946	0,00675	0,00477	0,00537	0,00518	0,08748	0,08490	0,09281	0,10359	0,09816	0,08784

Energia (keV)	Ovár. w _T =0,08	Bexiga Urin. w _T =0,04	Esôf. w _T =0,04	•	Tireoide w _T =0,04	, •	Cérebro w _T =0,01	Glând. Saliv. w _T =0,01	Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	Mama w _T =0,12	Intest. Grosso w _T =0,12	Pulm. w _T =0,12		Média do Resto w _T =0,12
190	0,05870	0,02990	0,03352	0,03305	0,01923	0,00668	0,00476	0,00539	0,00515	0,08715	0,08400	0,09252	0,10336	0,09718	0,08730
200	0,05925	0,02965	0,03339	0,03275	0,01917	0,00660	0,00476	0,00540	0,00513	0,08691	0,08437	0,09204	0,10303	0,09632	0,08677
250	0,05907	0,02944	0,03309	0,03225	0,01881	0,00642	0,00477	0,00529	0,00503	0,08664	0,08440	0,09077	0,10265	0,09515	0,08604
300	0,05891	0,02935	0,03290	0,03190	0,01852	0,00630	0,00476	0,00525	0,00492	0,08607	0,08304	0,08979	0,10208	0,09419	0,08535
350	0,06025	0,02945	0,03356	0,03206	0,01883	0,00631	0,00482	0,00525	0,00488	0,08714	0,08372	0,09061	0,10329	0,09506	0,08623
400	0,06066	0,03006	0,03383	0,03217	0,01898	0,00632	0,00487	0,00531	0,00482	0,08778	0,08501	0,09096	0,10396	0,09530	0,08657
450	0,06087	0,03029	0,03395	0,03220	0,01887	0,00631	0,00489	0,00528	0,00473	0,08815	0,08389	0,09144	0,10429	0,09533	0,08664
500	0,06003	0,03074	0,03390	0,03212	0,01875	0,00631	0,00490	0,00525	0,00464	0,08844	0,08432	0,09108	0,10430	0,09516	0,08663
550	0,06188	0,03060	0,03456	0,03252	0,01885	0,00637	0,00497	0,00530	0,00460	0,08971	0,08493	0,09243	0,10571	0,09647	0,08791
600	0,06149	0,03089	0,03486	0,03281	0,01913	0,00644	0,00503	0,00531	0,00455	0,09088	0,08593	0,09369	0,10695	0,09727	0,08885
650	0,06428	0,03169	0,03488	0,03315	0,01923	0,00648	0,00508	0,00535	0,00448	0,09181	0,08633	0,09449	0,10803	0,09762	0,08944
700	0,06368	0,03168	0,03572	0,03331	0,01914	0,00651	0,00511	0,00540	0,00440	0,09241	0,08666	0,09518	0,10878	0,09863	0,09023
750	0,06466	0,03218	0,03583	0,03350	0,01935	0,00654	0,00514	0,00538	0,00433	0,09320	0,08706	0,09562	0,10917	0,09917	0,09069
800	0,06464	0,03204	0,03636	0,03375	0,01917	0,00658	0,00516	0,00539	0,00425	0,09380	0,08652	0,09624	0,10978	0,09914	0,09080
850	0,06615	0,03268	0,03615	0,03369	0,01932	0,00659	0,00519	0,00535	0,00417	0,09416	0,08736	0,09659	0,11001	0,09950	0,09142
900	0,06718	0,03216	0,03657	0,03374	0,01955	0,00661	0,00520	0,00538	0,00409	0,09455	0,08798	0,09682	0,11042	0,10014	0,09159
950	0,06615	0,03259	0,03621	0,03385	0,01933	0,00661	0,00521	0,00533	0,00401	0,09471	0,08698	0,09696	0,11050	0,09980	0,09166
1000	0,06574	0,03268	0,03665	0,03386	0,01921	0,00661	0,00522	0,00543	0,00395	0,09493	0,08796	0,09685	0,11058	0,09982	0,09184
1600	0,06993	0,03572	0,03899	0,03559	0,02033	0,00694	0,00548	0,00549	0,00353	0,10087	0,09105	0,10262	0,11592	0,10537	0,09669

Energia (keV)	Ovár. w _T =0,08	Bexiga Urin. w _T =0,04	Esôf. w _T =0,04	_	Tireoide w _T =0,04	, •			Pele w _T =0,01	Medula Óssea Verm. w _T =0,12	Mama w _T =0,12	Intest. Grosso w _T =0,12	Pulm. w _T =0,12		Média do Resto w _T =0,12
2600	0,07621	0,03709	0,04110	0,03750	0,02061	0,00730	0,00576	0,00560	0,00326	0,10719	0,09345	0,10860	0,12172	0,11131	0,10171
3000	0,07918	0,03813	0,04189	0,03794	0,02091	0,00737	0,00580	0,00554	0,00321	0,10853	0,09466	0,11040	0,12312	0,11208	0,10291

Os dados da tabela 19 compreendem a média aritmética dos valores que compõe as tabelas 15 e 18, assim como o somatório destes valores, que representa a dose efetiva.

Tabela 19 – E/INAK (mSv/mGy) obtidos com os fantomas SAMUEL_S e SARA_V2.

	n Média Ovários, Testíc.	Média Bexiga	Média Esôfago	Média Fígado	Média Tireoide	Média Superf. Óssea	Média Cérebro	Média Glân. Salivares	Média Pele	Média Medula Óssea Ver.	Apenas Mama Fem.	Média Intest. Grosso	Média Pulm.	Média Estôm.	Média do Resto Mas. Fem.	Σ (<i>E</i> /INAK)
25	0,01228	0,00111	0,00111	0,00278	0,00731	0,00033	0,00013	0,00180	0,00305	0,00339	0,02828	0,00941	0,01125	0,00755		0,09725
30	0,01885	0,00335	0,00344	0,00680	0,00987	0,00083	0,00050	0,00242	0,00348	0,00847	0,03652	0,02027	0,02400	0,01901	0,01646	0,17427
40	0,03401	0,01094	0,01137	0,01765	0,01416	0,00259	0,00187	0,00357	0,00433	0,02579	0,05148	0,04795	0,05439	0,05071	0,04136	0,37217
50	0,04897	0,01960	0,02023	0,02769	0,01791	0,00480	0,00326	0,00453	0,00503	0,04682	0,06451	0,07373	0,08021	0,08036	0,06581	0,56347
60	0,05812	0,02624	0,02661	0,03415	0,01982	0,00663	0,00422	0,00516	0,00547	0,06456	0,07314	0,09136	0,09656	0,09972	0,08245	0,69422
70	0,06495	0,03049	0,03084	0,03765	0,02157	0,00780	0,00480	0,00562	0,00575	0,07723	0,08029	0,10123	0,10572	0,11061	0,09230	0,77688
80	0,06668	0,03175	0,03208	0,03799	0,02151	0,00814	0,00497	0,00574	0,00575	0,08270	0,08243	0,10318	0,10703	0,11184	0,09471	0,79650
90	0,06610	0,03156	0,03235	0,03739	0,02128	0,00808	0,00499	0,00576	0,00567	0,08499	0,08397	0,10199	0,10590	0,11057	0,09420	0,79480
100	0,06631	0,03192	0,03249	0,03719	0,02112	0,00804	0,00506	0,00578	0,00570	0,08732	0,08488	0,10201	0,10627	0,11023	0,09466	0,79899
110	0,06363	0,03136	0,03242	0,03612	0,02068	0,00776	0,00500	0,00569	0,00559	0,08689	0,08418	0,09965	0,10419	0,10713	0,09260	0,78288
120	0,06366	0,03117	0,03188	0,03541	0,02058	0,00753	0,00498	0,00569	0,00553	0,08660	0,08438	0,09795	0,10278	0,10525	0,09119	0,77459
130	0,06288	0,03068	0,03178	0,03484	0,02045	0,00736	0,00495	0,00567	0,00549	0,08654	0,08415	0,09682	0,10202	0,10355	0,09033	0,76750
140	0,06330	0,03067	0,03160	0,03443	0,01995	0,00721	0,00495	0,00566	0,00547	0,08647	0,08472	0,09583	0,10153	0,10240	0,08978	0,76398
150	0,06189	0,03029	0,03153	0,03415	0,02003	0,00709	0,00496	0,00565	0,00545	0,08647	0,08427	0,09521	0,10125	0,10159	0,08915	0,75897
160	0,06231	0,03022	0,03149	0,03380	0,02006	0,00698	0,00494	0,00564	0,00542	0,08621	0,08517	0,09423	0,10074	0,10047	0,08862	0,75631

_	n Média Ovários, Testíc.	Média Bexiga	Média Esôfago	Média Fígado	Média Tireoide	Média Superf. Óssea		Média Glân. Salivares	Média Pele	Média Medula Óssea Ver.	Apenas Mama Fem.	Média Intest. Grosso	Média Pulm.	Média Estôm.	Média do Resto Mas. Fem.	Σ (<i>E</i> /INAK)
170	0,06107	0,02993	0,03128	0,03350	0,01978	0,00688	0,00493	0,00561	0,00539	0,08599	0,08437	0,09351	0,10032	0,09979	0,08819	0,75057
180	0,06072	0,02982	0,03119	0,03322	0,01986	0,00678	0,00493	0,00557	0,00536	0,08570	0,08490	0,09288	0,10003	0,09894	0,08768	0,74761
190	0,05998	0,02978	0,03114	0,03303	0,01965	0,00671	0,00492	0,00558	0,00533	0,08549	0,08400	0,09249	0,09973	0,09810	0,08723	0,74318
200	0,06035	0,02961	0,03113	0,03279	0,01958	0,00664	0,00491	0,00557	0,00531	0,08525	0,08437	0,09204	0,09942	0,09758	0,08676	0,74131
250	0,05999	0,02946	0,03096	0,03232	0,01927	0,00647	0,00492	0,00549	0,00521	0,08505	0,08440	0,09080	0,09921	0,09619	0,08601	0,73576
300	0,05933	0,02923	0,03082	0,03191	0,01895	0,00635	0,00492	0,00543	0,00510	0,08457	0,08304	0,08979	0,09877	0,09511	0,08535	0,72866
350	0,06025	0,02953	0,03144	0,03214	0,01928	0,00636	0,00498	0,00545	0,00507	0,08560	0,08372	0,09050	0,10004	0,09593	0,08623	0,73652
400	0,06033	0,02999	0,03187	0,03223	0,01909	0,00637	0,00503	0,00547	0,00500	0,08633	0,08501	0,09096	0,10096	0,09610	0,08664	0,74138
450	0,06023	0,03015	0,03212	0,03231	0,01917	0,00637	0,00506	0,00545	0,00493	0,08672	0,08389	0,09117	0,10147	0,09644	0,08682	0,74230
500	0,06015	0,03040	0,03217	0,03225	0,01910	0,00636	0,00507	0,00542	0,00483	0,08690	0,08432	0,09095	0,10158	0,09615	0,08694	0,74257
550	0,06127	0,03069	0,03260	0,03265	0,01898	0,00643	0,00514	0,00547	0,00479	0,08827	0,08493	0,09228	0,10305	0,09732	0,08810	0,75198
600	0,06108	0,03095	0,03312	0,03298	0,01944	0,00649	0,00520	0,00549	0,00475	0,08937	0,08593	0,09326	0,10430	0,09823	0,08898	0,75956
650	0,06259	0,03157	0,03327	0,03325	0,01945	0,00654	0,00525	0,00553	0,00469	0,09025	0,08633	0,09402	0,10544	0,09903	0,08975	0,76695
700	0,06270	0,03178	0,03389	0,03348	0,01943	0,00658	0,00528	0,00556	0,00462	0,09096	0,08666	0,09459	0,10622	0,09968	0,09050	0,77193
750	0,06295	0,03221	0,03412	0,03365	0,01964	0,00661	0,00532	0,00557	0,00454	0,09161	0,08706	0,09519	0,10694	0,10032	0,09100	0,77674
800	0,06340	0,03225	0,03454	0,03385	0,01969	0,00664	0,00534	0,00557	0,00447	0,09219	0,08652	0,09575	0,10745	0,10049	0,09138	0,77951
850	0,06399	0,03258	0,03452	0,03390	0,01950	0,00665	0,00537	0,00555	0,00439	0,09261	0,08736	0,09594	0,10784	0,10071	0,09180	0,78270
900	0,06461	0,03242	0,03489	0,03397	0,01978	0,00667	0,00538	0,00556	0,00431	0,09301	0,08798	0,09616	0,10825	0,10124	0,09205	0,78627

_	Média Ovários, Testíc.	Média Bexiga	Média Esôfago	Média Fígado	Média Tireoide	Média Superf. Óssea		Média Glân. Salivares	Média Pele	Média Medula Óssea Ver.	Apenas Mama Fem.	Média Intest. Grosso	Média Pulm.	Média Estôm.	Média do Resto Mas. Fem.	Σ (<i>E</i> /INAK)
950	0,06425	0,03264	0,03481	0,03404	0,01961	0,00667	0,00539	0,00553	0,00424	0,09318	0,08698	0,09633	0,10837	0,10118	0,09209	0,78531
1000	0,06380	0,03277	0,03509	0,03408	0,01952	0,00669	0,00540	0,00558	0,00417	0,09347	0,08796	0,09628	0,10860	0,10110	0,09228	0,78678
1600	0,06727	0,03556	0,03756	0,03589	0,02050	0,00703	0,00568	0,00570	0,00372	0,09936	0,09105	0,10173	0,11460	0,10662	0,09740	0,82966
2600	0,07120	0,03738	0,03984	0,03787	0,02097	0,00740	0,00597	0,00581	0,00341	0,10569	0,09345	0,10730	0,12099	0,11272	0,10269	0,87269
3000	0,07288	0,03831	0,04031	0,03833	0,02110	0,00748	0,00602	0,00578	0,00335	0,10711	0,09466	0,10894	0,12259	0,11335	0,10396	0,88417