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ABSTRACT

The idea of collaboration among clouds has emerged to address issues related to single cloud
adoption. From the developer’s perspective, distributed applications can take advantage of
multi-cloud environments to create, extend and integrate their components across cloud domains
in a dynamic, automatic and transparent way and improve their quality requirements, such as
availability, performance, and scalability. However, the management complexity increases sub-
stantially in this scenario, whose responsibility lies with the developer. Despite standardisation
efforts, most applications cannot exploit multi-cloud benefits (e.g., elasticity). Furthermore,
solutions for interoperability, cloud’s administrative boundaries, and the lock-in problem remain
as open challenges, concerning at the IaaS level, unaware of what is running on top of it. This
work proposes a middleware architecture for distributed applications in multi-cloud environ-
ments: Multi-Cloud Aware Middleware (M-CaMid). The architecture combines middleware
functionalities with IaaS services for distributed application management. M-CaMid takes ad-
vantage of elasticity to provide a cross management that integrates infrastructure and application
layers (vertical management) and integrate many clouds (horizontal management), enabling a
holistic view of distributed systems and a better application performance and rational usage of
cloud resources. Experiments were carried out to assess the performance gains due to M-CaMid.
Results show that cross management can improve performance of distributed applications and ra-
tional usage of cloud resources for distributed applications in a multi-cloud environment. Thesis’
unique contributions are: (i) middleware architecture for distributed application management in
a multi-cloud environment; (ii) cross management that integrates infrastructure and application
layers and many clouds; and (iii) multi-cloud elasticity that extends single cloud elasticity to the
multi-cloud scope.

Keywords: middleware; multi-cloud computing; elasticity.



RESUMO

A ideia de colaboração entre nuvens surgiu para tratar de limitações relacionadas à adoção de uma
única nuvem. Do ponto de vista do desenvolvedor, aplicações distribuídas podem tirar proveito
de ambientes multi-cloud para criar, estender e integrar seus componentes em várias nuvens
de forma dinâmica, automática e transparente. No entanto, a complexidade do gerenciamento
aumenta substancialmente neste cenário, cuja responsabilidade é do desenvolvedor. Apesar
dos esforços de padronização dos serviços de nuvem, a maioria das aplicações distribuídas
não usufrui dos benefícios de várias nuvens como, por exemplo, escalar seus componentes
distribuídos em outras nuvens. Além disso, a maioria das soluções para interoperabilidade, limites
administrativos e escalabilidade concentra-se em nível IaaS, ignorando aplicações que rodam
acima da camada de infraestrutura. Este trabalho apresenta uma arquitetura de middleware para
aplicações distribuídas em ambientes multi-cloud – Multi-Cloud Aware Middleware (M-CaMid).
A arquitetura combina funcionalidades de middleware com serviços de IaaS para o gerenciamento
de aplicações distribuídas em ambientes multi-cloud. M-CaMid tira proveito da elasticidade para
o gerenciamento transversal que integra camadas de infraestrutura e software (vertical) e múltiplas
nuvens (horizontal), permitindo uma visão holística do sistema distribuído e proporcionando
melhor suporte ao gerenciamento do desempenho de aplicações distribuídas e uso racional de
recursos das nuvens. Experimentos realizados avaliaram o ganho de desempenho de aplicações
distribuídas, bem como o uso racional de recursos de infraestrutura, demonstrando os benefícios
do uso da elasticidade de múltiplas nuvens.As contribuições desta tese são: (i) arquitetura
de middleware para o gerenciamento de aplicações distribuídas em ambientes de múltiplas
nuvens; (ii) gerenciamento transversal, integrando as várias camadas de um sistema distribuído e
integrando várias nuvens; e (iii) o uso da elasticidade em um ambiente multi-cloud.

Palavras-chave: middleware; computação multi-cloud; elasticidade.
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1 INTRODUCTION

Cloud computing has become one of the main streams of Information and Communication
Technology (ICT) in industry and academy with predictions of changing the computing into
the fifth utility such as electricity and telephony (Parkhill, 1966; Buyya et al., 2009; Gill et al.,
2022). However, because of its youth, many challenges are still open and, as the demand
for cloud services grows, new challenges arise. This chapter introduces challenges related to
developing and managing multi-cloud distributed applications, contextualising the scenario, and
presenting the current issues. Furthermore, this thesis is introduced as a solution for distributed
systems based on middleware that can support the development and management of distributed
applications by leveraging cloud elasticity in a multi-cloud environment.

1.1 CONTEXT

Nowadays, cloud computing is a consolidated paradigm for on-demand services delivery based
on virtual provisioning of computational resources, such as processing, storage, networking,
and application services. We can observe the growth in the adoption of cloud computing to
offer services without requiring significant capital and technical skills for managing the service’s
infrastructures.

The abstraction of the infrastructure management allows cloud developers and cloud users to
focus only on the application’s business logic, avoiding knowing about complexities concern-
ing underlying software and hardware infrastructure. Another benefit is the ability to re-size
dynamically virtual resources according to the current demand, namely elasticity. Cloud users
can allocate more resources at workload peak times and release them when it is no longer needed
instead of purchasing permanent hardware and software resources to attend to eventual workload
demands.

Both academia and industry have coined their definitions of cloud computing in this be-
ginning (Foster et al., 2008; Vaquero et al., 2009; Armbrust et al., 2009; Lenk et al., 2009;
Mell and Grance, 2011). However, a more well-defined way to describe cloud computing is
characterising it by the following criteria (Armbrust et al., 2009): consuming resource as a
service, pay-as-you-go economic model and rapid elasticity and self-service (without human
interaction). Cloud Computing promises benefits to its users on supporting of Everything-as-a-
Service (XaaS), management complexity reduction, pay-per-use billing, elasticity, heterogeneity,
infinite resources illusion, and Quality of Service (QoS).

Elasticity is a crucial cloud property that motivates the consolidation of cloud computing
paradigm growth. It refers to the ability for adding and removing resources “on the fly” to adapt
according to the variation of the user demand in real-time (Al-Dhuraibi et al., 2018), providing
the illusion of infinite resources. By elasticity, it is possible to improve desirable distributed



17

system’s requirements, such as availability, scalability, and performance.
Cloud computing environments are also featured by their service models logically organised

in a layers stack (Figure 1): Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS). The three layers comprise a natural hierarchy that characterises
abstraction levels of delivery models.

SaaS encapsulates the functionality of business processes, delivering the application as a final
product. The cloud consumer has limited administrative control in this layer since its interaction
is only with the application interface.

PaaS is an environment for running and developing user’ applications and data management.
It relies on pre-packaged products used to support the application lifecycle. However, with
applications’ development and configuration flexibility, the cloud consumer is still tied in some
aspects of the application environment. For example, the development tools are usually designed
for running exclusively on a specific PaaS environment, leading to the lock-in problem.

Finally, IaaS provides hardware virtualisation for computing, network, and data storage
resources through virtual hypervisors. Virtual resources can be accessed and managed through
IaaS interfaces. The IaaS environment allows high-level control over the configuration and
utilisation of its resources. The more abstract the level, the more restrictive is the user control
over the resources. A natural consequence of this architecture is service integration among the
levels. For example, a PaaS environment can be deployed upon a IaaS environment benefiting
from cloud facilities instead of deploying upon the traditional hardware infrastructure.

Figure 1 – Cloud architecture based on service layers.

Source: author (2021).

Regarding infrastructure provisioning, the cloud deployment model can be characterised as
private, public or hybrid (Mell and Grance, 2011). Private cloud refers to on-premise infrastruc-
ture provisioned for the exclusive use of a single organisation. Public clouds allow public access
to their resources, and hybrid cloud combines both deployment models. For example, a private
cloud can extend its infrastructure by allocating resources from a public cloud.

As observed in the aforementioned hybrid cloud example, cloud computing has evolved to
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integrate several services at different abstraction layers and cloud environments. Bittman (2008)
has predicted the evolution of cloud in three phases:

• Monolithic, which cloud services were based on proprietary/internal architectures - an
island of cloud services without integration. The principal purpose of this phase is to take
benefit of the on-demand allocation of single virtualised resources without intention for
integrating with other services at different layers;

• Vertical Supply Chain, which cloud providers leverage services from other cloud providers.
In this scenario, higher-level services (e.g., applications at the SaaS layer, namely service
provider) are hosted on underlying infrastructure (virtual machines at IaaS layer) of other
cloud providers – namely, IaaS provider. Various small companies provide value-added
services around deploying, managing, and scaling applications on compute clouds, build-
ing many ecosystems around the clouds (Sotomayor et al., 2009; Maximilien et al., 2009b);
and

• Horizontal Federation, when smaller and medium providers federate their resources
horizontally to gain economies of scale and improve their peak capacity (overdraft protec-
tion and cloud bursting). Federation of clouds foresees collaboration among clouds in a
coordinated way to assure integration at data, processing and security levels. Furthermore,
business operators predict that process toward an interoperable federated cross-cloud
scenario will begin shortly (Celesti et al., 2010a).

Integrating clouds (private or public clouds) can follow different architectural models. Be-
cause of the many models and definitions to characterise groups of cloud sharing resources, this
thesis refers to collaboration among cloud in a general way as multi-cloud computing.

1.2 MOTIVATION

Private clouds are usually physical-limited on-premise infrastructure exclusively used by a single
organisation when compared to public clouds. As observed by Gill (2021), around 75%of enter-
prise workloads will run in the private cloud while only 12% intend to reduce their on-premise
infrastructure. The main motivations behind these figures are performance, compliance and cost.
Usually, these enterprises keep their applications running in on-premises data centres. Besides,
enterprises plan to move their private clouds towards multi-cloud architecture. McGillicuddy
(McGillicuddy, Shamus, 2021) envisages that most organisations plan to expand their private
clouds to more data centre sites.

Cloud computing evolution has been motivated to move towards the third phase. That
is, small and large enterprises will opt to use several cloud providers rather than stand on a
single one (Maximilien et al., 2009b; Varghese and Buyya, 2018; Takamura et al., 2019; Ravi
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and Thangarathinam, 2019). Another motivation is that clouds are becoming increasingly
geographically distributed to support new applications paradigms (Buyya et al., 2018).

Small and medium organisations can connect their on-premise infrastructure to compose a
multi-cloud infrastructure. For example, a small private cloud can extend its infrastructure by
sharing resources with other private clouds. This collaboration can address single cloud hurdles,
such as hardware limitations, the lock-in problem, and administrative boundaries.

Although public cloud providers advertise the illusion of infinite resources, there is a natural
limitation of physical resources (processor, memory, and network), mainly in cases of small and
medium cloud providers (Aoyama and Sakai, 2011; Esposito et al., 2013; Ficco et al., 2014). It is
desirable that private data centres, with limited resources, can extend their capabilities to another
cloud in workload peak times and shrink them when it is no longer needed. Moreover, it is hard
to deal with unpredictable workload behaviours without guarantees of resource scalability since
the cloud provider meets different user’s demand needs (Buyya et al., 2010; Aoyama and Sakai,
2011; Grozev and Buyya, 2014). Complying with QoS agreements is a critical task. Services
can become unavailable if the underlying infrastructure is not enough or even fails. Even large
providers such as Amazon and Google have experienced some kinds of outage (Budnik, 2013;
Pariseau and Jones, 2014; Roumani and Nwankpa, 2019).

From the perspective of small and medium organisations, three main motivations drive the
mentioned evolution: cost optimisation, QoS improvement (Petcu, 2014), and the well-known
vendor lock-in problem (Opara-Martins et al., 2016), which becomes cloud consumer unable to
change or add technologies from another cloud provider. The lock-in problem is the result of
proprietary technologies that are incompatible with other providers (Bouzerzour et al., 2020).

Another aspect motivating the adoption of multiple clouds is the increasing software com-
plexity, notably distributed applications (e.g., social networks and weather forecast applications)
whose components can run on different devices or even different clouds (Desprez et al., 2010).
These applications can require distributed resources that a single private cloud may not be enough
to support application’s QoS requirements.

The adoption of many clouds considers integrating services at different layers from different
cloud providers. Since both cloud provider and consumer needs are diverse, different approaches
are found in the literature, being inter-cloud, cloud federation and multi-cloud the most adopted
(Buyya et al., 2010; Petcu, 2014; Cuadrado et al., 2014; Toosi et al., 2014; Elhabbash et al., 2019;
Ferrer et al., 2019). Although diversity, adopting more than one cloud, aims to face limitations
of single cloud solutions. Multi-Cloud computing brings many advantages for cloud consumers.
Cloud consumers and applications can extend their capabilities dynamically for improving their
services through collaboration with other clouds.

The ability for extending infrastructure resources over cloud domains may improve desirable
requirements for distributed applications. Multi-Cloud environments allow application resilience,
availability, reliability, performance and fault tolerance. Furthermore, choosing the best solution
for cloud consumers needs to aggregate flexibility on the development and management of
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applications. Cloud consumers can coordinate and distribute application components over
diverse cloud domains according to their specific requirements. Besides the classical challenges
of distributed systems, such as openness, heterogeneity and scalability (Tanenbaum and Steen,
2007; Coulouris et al., 2013), the multi-cloud computing paradigm has added elasticity as a new
desired property for distributed applications.

On the other hand, middleware is in charge of dealing with distribution aspects on supporting
quality properties, such as scalability, performance, and availability. Middleware for cloud
computing aims to promote scalability, performance, response time and efficient resource
optimisation (Chauhan et al., 2017).

The role of middleware systems in cloud computing environments has ranged from a virtu-
alisation management tool to a data format converter (Spring, 2011). At the middleware level,
abstractions are necessary for application developers to focus on functional concerns instead of
non-functional concerns that must be delegated to the middleware layer (Imai et al., 2016).

Middleware is used to deal with distribution aspects. It aims to provide transparency among
distributed applications, abstracting communication details, distribution, and integrating het-
erogeneous technologies. Furthermore, the middleware’s role is beyond the communication
capabilities and usually also includes common and specific services such as management and
monitoring services (Schantz and Schmidt, 2002). Adopting middleware for cloud applications
can bring advantages:

• Middleware can perform the integration among cloud domains in a transparent fashion,
treating multiple clouds as a homogeneous environment;

• Developers can focus on business logic issues since middleware leverages the QoS appli-
cation’s requirements by benefiting from cloud services;

• Middleware can combine different types of services from the IaaS layer to meet QoS
requirements transparently;

• Middleware can bring flexibility for management and communication of applications,
dealing with rapid changes in the environment.

In a nutshell, multi-cloud computing can benefit small and medium companies if they
integrate their on-premise infrastructures to share resources and services. Sharing resources and
services can mitigate the hardware limitation of single private clouds.

However, organisations must evaluate the trade-off between adapting their infrastructures to
meet some standards and keeping autonomy to plan their infrastructure architecture. Autonomy
in a cloud platform means that organisations can define their infrastructure regardless of cloud
architectures and platforms composing the multi-cloud environment. Furthermore, applica-
tion performance may demand more resources in a limited environment. From the developer
perspective, there is a trade-off between application performance and management of limited
resources.
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1.3 THE PROBLEM

As discussed in the previous section, organisations have strong motivations to shift to multi-cloud
computing, including elasticity supported by many clouds. Despite the benefits of multi-cloud
computing, both distributed application and elasticity management still needs to address chal-
lenges until reaching plenty of functionality. The state-of-the-art presents several shortcomings
related to management in the multi-cloud context, such as heterogeneity, networking, lack of
control, automatism, scalability, and security.

In a limited infrastructure as a single private cloud, improving performance may be im-
practical. Even in a multi-cloud environment composed of private clouds, there are hardware
limitations compared to public clouds. In this scenario, applications of many purposes belonging
to single private clouds are competing for resources. There is a trade-off between application
performance and limited resource sharing, and the more performance application requires, the
more resource is needed.

Currently, existing works address the mentioned issues. However, most efforts on cloud
management focus on infrastructure aspects, prioritising solutions to cloud providers, not for
consumer ones (Papazoglou and van den Heuvel, 2011; Petcu, 2014; Varghese and Buyya,
2018). These provider-centric approaches are restrictive and with limited scope, not giving
facilities to the cloud user. Furthermore, the elasticity at IaaS level can lead to problems of under-
provisioning and over-provisioning (Islam et al., 2012; Mondéjar et al., 2013; Lorido-Botrán
et al., 2014) that is harmful to small and medium organisations. On the other hand, client-centric
approaches offer more flexibility and control in elasticity management, such as on-the-fly and
opportunistic combinations of different cloud services (Singhal et al., 2013).

Regarding distributed application management, configuring and executing applications across
many clouds is a challenging task since the developer must deal with heterogeneous cloud
technologies to integrate distributed application components (Leite et al., 2016; Saatkamp
et al., 2020). Accomplishing communication and distribution management of applications
running on different clouds becomes a complex, laborious and error-prone task for application
developers. Besides, applications are not developed to take advantage of cloud benefits, such as
resource monitoring and elasticity. These applications require mechanisms to hide underlying
complexities, such as middleware.

Distributed systems’ transparencies (e.g., access, location, fault-tolerance, and scalability) are
services provided by middleware. However, traditional middleware is not designed to leverage
cloud computing facilities and capabilities. In practice, middleware platforms (Bernstein, 1996;
Vinoski, 2002) are developed to non-cloud infrastructures, where resources must be previously
defined. These infrastructures behave in a planned fashion, in contrast to the dynamic behaviour
of cloud computing.

With the benefits of elasticity, distributed applications can take advantage of multi-cloud
computing transparently and automatically. Nevertheless, research challenges of elasticity man-
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agement remain, such as the management of computational demand and application performance
(Imai et al., 2012; Srirama and Ostovar, 2014), and scaling out and in virtual resources (infras-
tructure and application resources) accurately (Imai et al., 2013; Qu, 2016; Muñoz-Escoí and
Bernabéu-Aubán, 2016; Al-Dhuraibi et al., 2018; Pahl et al., 2018).

The efficient use of elasticity requires automatically and timely provisioning services without
human intervention (Qu, 2016). Furthermore, to fulfil these characteristics at the application level
is a complicated, tiresome and error-prone task for developers (Hoffert et al., 2010; Hamdaqa
and Tahvildari, 2012).

This scenario, where distributed applications run in a limited-resource multi-cloud environ-
ment, defines some requirements to comply with the distributed application’s needs and provides
an opportunistic, automatic, and transparent application lifecycle management.

The middleware architecture must be revisited, intending to tailor it to the multi-cloud context.
Furthermore, existing cloud middleware solutions (Maximilien et al., 2009b; Abbadi, 2011b,a;
Amin et al., 2012; Azeez et al., 2010; Ferretti et al., 2010; Hoffert et al., 2010; Merle et al.,
2011; Paraiso et al., 2016) do not draw the cloud capabilities on the well-known Distributed
Object Computing (DOC) middleware architecture, proposed by Schantz and Schmidt (2002)
composed of the layers infrastructure, distribution, common services and domain-specific ser-
vices. Although Schantz’s model is based on the specific paradigm of distributed objects, most
middleware technologies follow many of its principles, even that it is not explicitly declared.
Furthermore, DOC middleware architecture distributes middleware’s responsibilities through its
layers, clearly defining the distribution of the roles.

1.4 PARTIAL SOLUTIONS

Multi-cloud elasticity management can be divided into provider-centric and client-centric so-
lutions (Singhal et al., 2013; Bouzerzour et al., 2020). The first one focuses on IaaS resource
provisioning, allowing the management by cloud providers, while in the last one, the control
focuses on consumer and application needs, shifting more power to cloud clients. Most solutions
focus on cloud integration and elasticity at the IaaS level (provider-centric), neglecting the
application requirements. In fact, provider-centric managers are unaware of what runs on top
of a Virtual Machine (VM). These provider-centric solutions can lead to problems of resource
under-provisioning and over-provisioning (Islam et al., 2012; Mondéjar et al., 2013; Lorido-
Botrán et al., 2014). They commonly work by moving the whole VM between the clouds. Over
time, a VM may become underused, wasting resources and being costly. On the other hand, the
client-centric approach offers more flexibility, shifting the infrastructure control to third party
entities.

In the last years, the container-based virtualisation approach has gained more attention be-
cause it reduces the deployment time and application management complexity and flexibility,
enabling a lightweight environment (Rodriguez and Buyya, 2019) compared to hardware virtuali-



23

sation. As VM, containers are designed to provide portable Operating System (OS) environment
to run applications. Containers allow fine-grained sharing of cloud resources and reduce the
deployment overhead (Pahl, 2015). However, like VMs, containers are subject to elasticity and
demanding management mechanisms.

Since the client-centric approach allows resource management at different abstraction levels
(infrastructure, platform and application), they can deliver better management services to appli-
cation developers, such as on-the-fly and opportunistic combinations of infrastructural resource
and application components in a multi-cloud environment at different abstraction levels (Singhal
et al., 2013). However, most efforts exploring multi-level abstractions are single cloud solutions
(Naskos et al., 2016).

Many efforts can be found in the literature, presenting a solution for many contexts. However,
few initiatives intend to cope entire magnitude of elasticity power.

1.5 RESEARCH QUESTIONS

Applications can take advantage of the elasticity service of many cloud providers to support
performance requirements. However, in a scenario with limited-hardware cloud infrastructures
composing a multi-cloud system, meeting application performance may be a problem since
scaling solutions require additional resources. Elasticity management also requires timely and
precise resource management mechanisms to automatically respond to the environment when it
changes and avoid over/under-provisioning scarce infrastructure resources.

From the developer perspective, middleware must abstract elasticity management and multi-
cloud integration complexities, besides meeting non-functional goals of distributed applications
like performance. This challenge implies designing a middleware architecture to explore avail-
able cloud resources as more as possible in a multi-cloud environment to meet application
performance requirements. This challenge leads to other three ones: (a) how to incorporate
elasticity mechanisms into a multi-layer middleware architecture along with traditional middle-
ware elements since middleware architecture is not designed to leverage the multi-cloud benefits,
specifically the multi-cloud elasticity; (b) how to tackle the multi-cloud heterogeneity challenge,
since cloud platforms and cloud providers are independents and adopt proprietary management
standards; and (c) how to explore the elasticity abstraction levels to provide timely and efficient
mechanisms to manage infrastructure and application resources.

1.6 HYPOTHESIS

This thesis presents a multi-cloud-aware middleware architecture (M-CaMid) for supporting the
development and management of distributed applications running on a multi-cloud environment.
The proposed architecture combines middleware functionalities with cloud services provided by
the IaaS layer.

The thesis is based on the following hypothesis:
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Hypothesis:
Middleware-based approaches can support the development and run-time management
of distributed applications in a limited-resource multi-cloud environment by leveraging
cloud elasticity, allowing timely and more precise application management, resource usage
maximisation, and multi-cloud elasticity automatically and transparently.

The middleware architecture can meet the requirements mentioned before by supporting
the ability to re-configuring the distributed application and its infrastructure dynamically and
automatically by taking advantage of the elasticity of many cloud domains with limited infras-
tructure resources. Managing elasticity across many clouds can improve distributed applications’
high availability, scalability, and performance, mitigating the trade-off between performance and
resource limitations.

M-CaMid is a distributed architecture built on the DOC middleware architecture (Schantz
and Schmidt, 2002). In this model, middleware functionalities are drawn into the layer stack
perspective. This view contributes to a better understanding and positioning of the relationship
between middleware and cloud computing.

Since cloud providers are distributed and independent, the thesis takes into account a model
of the multi-cloud environment for distributed applications composed of three domains: node,
cloud, and multi-cloud. A node domain comprises a Virtual Machine (VM) provided by a
cloud provider, a set of components of the distributed application running in this VM, and an
instance of the middleware (node middleware) for managing the respective domain. A set of
node domains in the same cloud provider constitutes a cloud domain managed by a middleware
instance (cloud middleware) to orchestrate all nodes into the cloud domain.

The middleware organises its duties according to its role in each domain. For example, for
each cloud domain (e.g., cloud provider), the middleware instantiates a management module
that controls all application’s components and virtual resources (node domains) in the respective
cloud domain. Two or more cloud domains establish the multi-cloud domain. The cloud domains
must collaborate through their cloud middleware instances to provide seamless management
of the distributed application. Each middleware instance must be autonomous concerning its
management.

Middleware should also ensure adequate response to events and changes in the environment
to accomplish efficient management through a distributed management architecture. Distribution
and elasticity management is achieved through dynamic and automatic management mechanisms
regardless of the cloud domains. The management design is based on a distributed architecture
where management components are implemented according to the respective domain. Each mid-
dleware’s instance monitors and controls the application’s components, running on its respective
cloud domain. The instances communicate with each other for sharing monitoring information
among them. The monitoring information coming from all cloud domains composes the holistic
view of the whole application. Furthermore, each management instance is autonomous on the
control of its managed components and can request IaaS resources to other cloud domains.
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For example, it can replicate components in other cloud domains to tolerate fails or improve
application performance.

Experiments were performed to observe and evaluate the M-CaMid architecture on managing
elasticity in a multi-cloud environment to benefit distributed applications’ performance. A
systematic approach for performance evaluation was adopted (Jain, 1991) to accomplish the
experiments. Some steps are defined to conduct the experiments: goals and system boundaries,
scenarios, services and outcomes, metrics, parameters and factors and experiment design. Then,
the results are presented and discussed.

The experiment’s scenario comprises two cloud infrastructures with limited hardware re-
sources where distributed applications are running. A distributed application is submitted to
a sudden peak of workload that affects its performance. It is expected M-CaMid steps in the
environment to reconfigure both application and infrastructure to reestablish the expected system
behaviour pre-defined by the developer.

1.7 UNIQUE CONTRIBUTIONS

This thesis contributes to scientific and technological communities by presenting a middleware
architecture to support distributed applications’ development and run-time management in
multi-cloud environments. In short, the unique contributions of this work are:

1. Multi-Cloud elasticity extends cross management of a single cloud environment to a
multi-cloud environment. Applications components distribution can range from a single
VM to many VMs spread in many clouds. M-CaMid manages elasticity in both domains:
single cloud and multi-cloud. Furthermore, multi-cloud elasticity integrates single clouds
elasticity services to benefit distributed applications yielding precise resource usage and
timely response to undesired events through cross-layer management mechanisms;

2. Cross management, which defines two management dimensions: vertical (cross-layer)
and horizontal (cross-domain), allowing a more precise and transparent multi-grained
elasticity: coarse-grained elasticity at the virtual machine level and fine-grained elasticity
at application component level. Cross management enables developers to explore elasticity
services from many clouds at the same time affords timely application scalability and
infrastructure resource rational usage; and

3. Multi-Cloud middleware architecture in addition to classical DOC middleware architecture,
identifying and locating the new functionalities in the middleware layer stack. The manage-
ment layer brings mechanisms to integrate application and infrastructure layers. Thus, the
middleware is aware of both the application and infrastructure layers. Besides, its hybrid
architecture meets both cloud (centralised architecture) and multi-cloud (decentralised
architecture) behaviours;
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1.8 THESIS STRUCTURE

The rest of this document is organised as follow:

• Chapter 2 presents the basic concepts of cloud computing, multiple clouds paradigms,
multi-cloud applications, and multi-cloud middleware. Finally, middleware, its classifica-
tion and benefits are discussed.

• Chapter 3 presents multi-cloud principles driving M-CaMid conception, and the require-
ments M-CaMid must realise to meet these principles.

• Chapter 4 presents how M-CaMid meets the multi-cloud principles’ requirements to
reach the thesis’ goals. M-CaMid architecture is presented in detail, highlighting the
management layer and the elasticity cross management.

• Chapter 5 details experiments realised to assess M-CaMid. This chapter describes the
experiments scenarios and environmental configurations to accomplish the middleware
evaluation. Results are presented and discussed, evidencing M-CaMid efficiency.

• Chapter 6 presents similar efforts on application and elasticity management in the cloud
and multi-cloud environments.

• Chapter 7 summarises the thesis, discussing its results, limitations and benefits, as well
as proposing some future works not covered in the thesis.
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2 MULTI-CLOUD COMPUTING FOUNDATIONS

Cloud computing is a paradigm for provisioning computing as a utility (Parkhill, 1966), shifting
the on-premise infrastructure to the Internet, reducing costs and abstracting the underlying
infrastructure complexity. Although in its childhood phase, cloud computing has grown up
fast with many advances and technology diversity. This chapter presents the basic foundations
of cloud and multi-cloud computing, multi-cloud application and multi-cloud middleware to
comprehend this work better.

2.1 CLOUD COMPUTING

The Cloud Computing paradigm has many definitions because of its application diversity, varying
according to the context of its use. Vaquero et al. (2009) compared about 20 definitions showing
how the proposed definitions focus on specific characteristics of cloud computing, such as
dynamic management, business model, virtualisation, and elasticity. They proposed a more
comprehensive definition for Cloud Computing:

Clouds are a large pool of easily usable and accessible virtualised resources,
such as hardware, development platforms or services. These resources can be
dynamically reconfigured to adjust to a variable load (scale), allowing optimum
resource utilisation. This pool of resources is typically exploited by a pay-per-
use model in which guarantees are offered by the infrastructure Provider using
customised Service-Level Agreements (SLAs).

Another summarised and widely known definition was published by the National Institute of
Standards and Technology (NIST) (Mell and Grance, 2011):

Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

Furthermore, NIST complemented this definition by listing the essential characteristics to
describe cloud computing:

• On-demand self-service: A cloud user can consume virtual resources as needed without
human interaction, thanks to the service model for resource provision.

• Broad network access: The virtual resources are available over the network, and the
cloud consumer can access them through standard mechanisms that abstract aspects of
heterogeneity.

• Resource pooling: The computing resources are transparently shared among multiple
consumers by using a multi-tenant model. The cloud consumer can use its resources
dynamically, assigning and reassigning according to his/her demand.
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• Rapid elasticity: Capabilities can be scaled up and down and, in some cases, automati-
cally. This characteristic allows the illusion of unlimited resources that can be adjusted
dynamically according to their demand for cloud consumers.

• Measured service: Cloud systems automatically monitor, control and optimise the re-
sources to meter the cloud usage based on pay-per-use or charge-per-use model.

Cloud computing can be classified according to two models: delivery and deployment (Erl
et al., 2013). The delivery model is how a cloud provider offers its cloud services to the consumer,
while the deployment model defines how the infrastructure is provisioned.

2.1.1 Delivery Model

A cloud delivery model represents a specific combination of Information Technology (IT)
resources offered by a cloud provider (Erl et al., 2013). Three basic models are widely established:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS). Further models are considered according to the goals in the cloud computing adoption,
e.g., Storage-as-a-Service, Security-as-a-Service, and Business-as-a-Service.

The IaaS model comprises of an infrastructure IT resources environment. It can include
hardware, network, and OS. These resources are virtualised and packaged into bundles (e.g.,
VMs). IaaS provides services for managing pre-configured resources with a high level of control
and administrative responsibility for their resources. The IaaS model allows more flexibility in
the configuration and management of the resources. However, it charges the cloud consumer
with more effort, complexity, and responsibility.

The PaaS model is a pre-defined environment for the development and execution of applica-
tions. The cloud provider provides a development environment for the cloud consumer. This
environment is usually composed of programming languages, libraries and services supported by
the providers. The underlying infrastructure is out of the cloud consumer control. The control is
only over the deployed application and some configuration settings for application deployment.
PaaS providers have their platforms hosted on IaaS environments.

In the SaaS model, software products are available as pubic resources. Cloud consumers
can use applications running on a cloud infrastructure. Only application is accessible from the
cloud consumer through a thin client interface, such as a web browser. The control over these
resources (such as configuration, performance and scalability) is minimal compared to the other
models since users access only the application. The access to software development platforms or
infrastructures is restricted to their respective providers.

The three models are tightly related regarding the dependency among them. In other words,
each model forms an abstraction layer in the cloud delivery architecture in a way that the SaaS
layer depends on the PaaS, that in turn, depends on the IaaS layer, as shown in Figure 1.
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2.1.2 Deployment Model

A deployment model refers to how the cloud infrastructure is provisioned, primarily characterised
by ownership, size and access. The primary standard deployment models are public, community,
private, and hybrid (Mell and Grance, 2011). In the public model, the cloud provider allows
the public access to its environment. The cloud infrastructure is provisioned for open use by
the general public. Since it is public, the public cloud usually has an extensive infrastructure to
support many users. This infrastructure is managed and operated by a single owner.

The community model is similar to a public cloud, except for a cloud infrastructure provi-
sioned for the exclusive use of a community of cloud consumers grouped in organisations with
shared concerns. The community is in charge of managing and operating the cloud infrastructure.

Private cloud is provisioned and exclusively used by a single organisation, as well as, the
management and operation is the responsibility of this organisation. In this model, the consumer
is also the provider of the cloud. Usually, the private cloud has a small infrastructure. Finally,
the hybrid cloud combines two or more different cloud models. For example, a private cloud
with a small infrastructure can expand its resources by allocating resources in the public cloud.

Multiple cloud adoption introduced an architecture model composed of two or more cloud
infrastructures. For example, two public cloud providers can be integrated into sharing common
services with the cloud consumer. The hybrid model is a type of architecture model. This model
differentiates from the Inter-Cloud one in the model combination. The hybrid combines different
models, while Inter-Cloud combines infrastructures of the same model or not. More details about
the Inter-Cloud model will be presented in Section 2.3.

2.2 CLOUD ELASTICITY

Elasticity is a crucial characteristic of cloud computing that refers to the ability of rapidly
provisioning resources dynamically to comply with the client’s needs, on which the client can
later release resources when they are not needed anymore (Mell and Grance, 2011). The system
can add and remove resources adapting its infrastructure to meet the load demand variation in
real-time (Al-Dhuraibi et al., 2018). On the other hand, the consumer can remove unnecessary
resources, minimising the cost of resources utilisation.

Although many authors refer to scalability and elasticity as the same thing, there are differ-
ences between them. Scalability refers to the ability to support the system’s growth, such as
the increase of computing workload or the increase of components geographically distributed
(Coulouris et al., 2013; Tanenbaum and Steen, 2007). However, scalability is only a static
property which the system’s demands grows up only, instead of considering the reduction of the
system (Coutinho et al., 2014). If the demand shrinks, the resources become underused. The
scalability is also time-independent. That is, it does not concern about how long the system
takes to adequate the system’s performance, neither how efficient the system supports its growth
(Herbst et al., 2013). The efficiency is measured by the number of used resources and how fast
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the system adapts to meet the demand.
On the other hand, elasticity is the ability to expand and shrink the system’s resources

dynamically by adding or removing computational resources based on the ad hoc demand.
The elasticity allows the efficient use of virtual resources through the rapid adaptation of the
system to fit the resource amount to the system’s needs (Herbst et al., 2013; Han et al., 2014;
Naskos et al., 2016). The precision on allocating or deallocating resources aims to address the
over-provisioning and under-provisioning. The precision and the time take in adaptation are two
critical factors for characterising the elastic efficiency.

Finally, Al-Dhuraibi et al. (2018) reduce the elasticity understanding to the following equa-
tion:

elasticity = scalability+automation︸ ︷︷ ︸
auto−scaling

+optimisation. (1)

In this case, elasticity is based on the scalability automatised through an auto-scaling process
that optimises optimisation as best and fast as possible.

Both the scalability and elasticity properties have the goal to support the system’s performance
and availability. However, the dynamic nature of elasticity allows more precise management
and cost reduction by renting virtual resources instead of investing in physical resources. In a
multi-cloud scenario, the elasticity can be employed to improve availability and performance
through deployment across cloud providers as discussed in the Section 1.2.

In practice, the elasticity extends the concept of scalability comprising dynamic properties,
such as time and efficiency. To reach these properties, an elastic system must be fast and precise
from the consumer perspective. In other words, scalability, autonomy, adaptability (Herbst et al.,
2013), and SLA-awareness (Muñoz-Escoí and Bernabéu-Aubán, 2016) are desired properties of
the auto-scaling process.

2.2.1 Taxonomy

There are several taxonomies to elasticity. Galante and de Bona (2012) classify elasticity based
on four dimensions: the purpose of elasticity, the abstraction level of the elasticity’s management,
the way the elasticity is managed (manual and automatic), and the method for realising the
elasticity.

2.2.1.1 Purpose of elasticity

The elasticity purpose is motivated by specific concerns, such as performance, availability and
cost reduction. In short, purposes can be viewed from the cloud provider’s perspective, whose
focus on better resource usage (for cost reduction on hardware investments) and energy-saving,
and provided QoS; and can be viewed from the cloud consumer perspective, whose focus in
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on the application’s QoS, such as availability and performance. In the context of multi-cloud
computing, both perspectives focus on cost savings and fault tolerance against natural disasters.

2.2.1.2 Abstraction level

The abstraction level refers to who has the elasticity control. It can be realised by the underlying
infrastructure or the application/platform. In the first case, the IaaS provider provides the control,
and in the last case, the platform or even the application controls the elasticity. When the
application controls the elasticity, the controller is embedded in the application.

2.2.1.3 Elasticity management

Elasticity management refers to elasticity mechanisms that adapt the cloud environment to meet
the workload demand. The elasticity management can be manual and automatic. Manually,
the user is in charge of monitoring her/his virtual resources and applications, making decisions,
and intervening in the environment. Automatically, the monitoring and control are performed
by autonomous mechanisms that can be reactive or predictive. The reactive adaptation means
the elasticity mechanism triggers actions based on monitoring information compared to a set
of thresholds or rules. The predictive management implements mechanisms to forecast future
demands and trigger adaptation actions in advance.

2.2.1.4 Realising elasticity

The method for realising cloud elasticity can be replication, redimensioning and migration. The
replication task creates copies of a resource and instantiating it in a distinct computing node in
a distributed system, improving availability and performance. In cloud computing, it realises
horizontal elasticity. Redimentioning consists of reconfiguring a computing node characteristics
by adding (scaling-up) or removing (scaling down) nodes’ resources, such as CPU, memory
and network bandwidth. Resource dimensioning accomplishes vertical elasticity. Migration in
cloud computing can be considered vertical elasticity. It consists of moving resources between
infrastructure environments. Its goal is to change underlying resources (e.g., node computing)
to another with more or less computational resources. For example, a VM can be moved to a
physical machine with more (scaling-up) or less (scaling down) computational performance.

Naskos et al. (2016) extend Galante’s taxonomy, including more dimensions. They detail the
scope dimension by adding the application type category under this scope. The policy dimension
is split into decision making and elastic action. The decision making refers to the triggering way
(reactive or predictive) and the mechanism (rule-based, control theory, model checking, statistical
optimisation, and machine learning). The elasticity action dimension adds other methods in
the taxonomy, making explicit the different abstraction levels of elasticity: infrastructure and
application. The elasticity action can be classified as: a) horizontal scaling; b) vertical scaling;
c) VM live migration; d) application reconfiguration; and e) application live migration. The
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first three types (at infrastructure abstraction level) refer to the replication of virtual resources,
the re-size of a resource by adding more process (CPU cores) and memory capacities, and
migration of resources without stopping its execution. The last two are actions for reconfiguring
applications and migrating to another resource without stopping its execution.

Furthermore, Naskos et al. (2016) classify the cloud elasticity based on the scope. The scope
refers to the range of cloud providers supported by elasticity. An elasticity tool can support
only a single cloud provider or more than one. In the case of more than one cloud provider,
the support may be simultaneous or not. The non-simultaneous multi-cloud elasticity is tightly
related to the portability of the resources, while the simultaneous one is related to multi-cloud
interoperability.

Finally, Al-Dhuraibi et al. (2018) complement the taxonomy, adding the dimension archi-
tecture that can be centralised or decentralised. Centralised elasticity management architecture
has its control on a single entity. Most solutions adopt the centralised architecture Al-Dhuraibi
et al. (2018). In decentralised architecture, many entities realise the elasticity control through
application managers or middleware. They are in charge of managing elasticity for different
cloud platforms and system components.

2.3 MULTI-CLOUD COMPUTING

Over time, cloud computing has evolved to a phase where single clouds are not enough, and the
need for cloud integration has become apparent. The adoption of many clouds has emerged to
solve distribution challenges such as availability, scalability, performance, and security. This
section discusses the paradigm of many clouds adoption, existing concepts and their taxonomy.

2.3.1 Definitions and Concepts

Since its beginning, the academy and industry have had few consensuses about definitions of
clouds integration and its terminological ambiguities. Many initiatives have been coined terms
and definitions based on technical issues. Inter-Cloud (Bernstein et al., 2009), Cloud-of-Clouds
(Bessani et al., 2011), Cross-Cloud (Celesti et al., 2010b), Sky Computing (Keahey et al., 2009)
and Multi-Cloud (Ferrer et al., 2012) are examples of clouds integration concepts. Each one has
its proper definitions and characteristics.

Keahey et al. (2009) propose the Sky Computing in which dynamically provisioned distributed
domains are built over several clouds combining the ability to trust remote sites with a trusted
networking environment. Sky Computing assumes that there is the compatibility of Virtual Image
(VI), standard Application Programming Interface (API) for service and trusted networking
environments between cloud providers. It must provide an end-user environment that represents
a uniform abstraction of the resources (such as a virtual cluster or a virtual site) independent
from any particular cloud provider and can be instantiated dynamically.
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The term Inter-Cloud was coined by Bernstein et al. (2009), who proposed a set of inter-cloud
protocols to connect resources provided by different cloud providers, allowing portability and
interoperability among them. Aoyama and Sakai (2011) also presents a concept of Inter-Cloud

Computing, defining it as single cloud systems inter-connected via broadband networks that can
mutually request resources from their peers or provide virtual resource capacity to them.

Celesti et al. (2010b) refer to Cross-Cloud as a federation of clouds where clouds can
cooperate accomplishing trust contexts and providing new business opportunities such as cost-
effective assets optimisation, power saving, and on-demand resources provisioning. This initiative
introduces an abstract layer to support developing a set of high-level management components
on top of conventional cloud computing systems to reach a higher level of sustainability among
the participating cloud systems. This proposal exempts cloud providers to agree with standards
and protocols.

The Global Inter-Cloud Technology Forum (GICTF) formally defines Inter-Cloud Computing
(Global Inter-Cloud Technology Forum., 2010) as:

A cloud model that, to guarantee service quality, such as the performance and
availability of each service, allows on-demand reassignment of resources and
transfer of workload through an inter-working of cloud systems of different
cloud providers based on coordination of each consumers requirements for
service quality with each provider SLA and use of standard interfaces.

As discussed in Section 2.3.3, cloud federation and multi-cloud computing are specialisa-
tions in the taxonomy. In this work, multi-cloud computing is adopted because it meets the
requirements of our proposal.

Despite several definitions of many clouds integration, it is possible to identify a set of
common characteristics. Firstly, it extends the properties of a single cloud provider for improving
the QoS of their resources, services and applications, such as availability, reliability, fault
tolerance, and performance, by dynamically expanding their provisions. Secondly, a single cloud
can expand its infrastructure by requesting resources from other clouds. Thirdly, cloud providers
can also deliver specific services in cooperation with other clouds to provide a complete service.

On the other hand, cloud consumers can explore different aspects of cloud providers to offer
better services and applications. Finally, cost reduction is possible for both the cloud client and
cloud provider since they can make choices based on the cost-benefit. In all cases, existing
solutions promise flexibility and diversity in support of the needs of cloud providers and cloud
clients.

2.3.2 Basic Elements

The conceptual reference model of cloud architecture proposed by the NIST (Figure 2) (Liu
et al., 2011) includes elements related to multiple clouds usage by identifying its main actors,
their activities and functions. Beyond Cloud consumer and Cloud provider concepts, the model
specifies the Cloud Auditor, Cloud Broker and Cloud Carrier.
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Figure 2 – The Conceptual Reference Model proposed by NIST.

Source: (Liu et al., 2011).

2.3.2.1 Cloud Auditor

Cloud Auditor is a third-party element that can conduct an independent evaluation of cloud
services, information system services, performance and security of the cloud implementation. In
the multiple cloud scenario, it can provide certification based on cloud service verification of
criteria such as security, performance, and SLA. Although its relevance, Cloud Auditor is out of
the scope of this proposal.

2.3.2.2 Cloud Broker

Cloud Broker is in charge of managing the use, performance and distribution of cloud services and
negotiating relationships between cloud providers and cloud consumers, allowing intermediation,
aggregation and arbitrage of services. Cloud Broker can improve the interoperability by access
and identity management. It can also support the management of distributed applications on
multiple clouds by providing integration among cloud providers.

Some organisations (Edmonds and Nyrén, 2011; Bankston et al., 2012; Palma and Spatzier,
2013) propose cloud standards as an approach to realise cloud interoperability instead of the
use of Cloud Brokers. However, even though interoperability standards are defined and broadly
adopted, mechanisms still need to realise the standards and manage the interoperability between
cloud providers.

In most cases, however, cloud brokers act on behalf of the cloud consumer and cloud provider
dealing with infrastructure services and cloud consumer’s applications. Cloud Broker can
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manage the interoperability horizontally at application (interoperability between application
components) or infrastructure (cloud providers inter-operation) levels and vertically, supporting
the relationships between application and infrastructure levels.

The Cloud Broker’s functions can be categorised into provisioning and management. Provi-
sioning functions are related to the selection of cloud providers:

• Searching resources that meet cloud consumer requirements. As a result, the function
returns a set of cloud candidates that fit well with the consumer’s needs;

• Negotiation among the cloud resources found by the Broker, the negotiation selects the
best fit based on the consumer requirements;

• Deploying virtual resources on heterogeneous cloud providers, through a unified interface,
allowing automatic deployments, migration of applications and cloud services; and

• Accessing to other clouds requires the Broker mechanisms to authenticate and authorise
different cloud providers using a universal identity.

Management functions are related to the coordination of infrastructure resources and ap-
plication lifecycle and distribution management. Management functions play two primary
roles:

• Monitoring gathers information from the environment for identifying events. Events refer
to changes in the environment. Monitors are in charge of analysing information and
notifying Controllers about changes that can affect environment functioning.

• control execute operations based on monitoring information to adjust the environment
according to consumer’s requirements.

Cloud Broker functions are usually made available through services or libraries (Grozev and
Buyya, 2014). The functions can be accomplished by services designed by the own provider,
federation or a third-party service provider. The developer must specify an SLA or a set of rules
that trigger actions whenever rules’ premises are satisfied. For example, a VM or application
overload can trigger actions for scaling up resources by elasticity. Libraries are collections of
implementations designed to abstract the programmers from differences of management APIs
and provide control over the provisioning of resources of cloud providers. Libraries only focus
on providing a single interface of cloud services. The developer must programme solutions that
use the libraries.

2.3.2.3 Cloud Carrier

Cloud Carrier is in charge of the connectivity and transport of data between Cloud Consumer
and Cloud Providers. While cloud computing focuses on the data centre, the Cloud Carrier
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addresses the network connecting data centres and cloud users. In general, the Cloud Carrier
may be required to provide dedicated and encrypted connections. Carrier clouds encompass
data centres at different network tiers and extensive area networks that connect multiple data
centres and cloud users. Links between data centres are used, for instance, for fail-over, overflow,
backup, and geographic diversity.

2.3.3 Taxonomy

As discussed in Section 2.3.1 there is little consensus in the terms to define and classify multiple
cloud usage. Because of the application diversity, several terms are applied to multiple clouds,
such as multi-cloud, inter-cloud, cross-cloud, and cloud-of-clouds. For disambiguation reasons,
this work takes inter-cloud as the general term to refer to multiple cloud usage. Federation and
multi-cloud are classifications of inter-cloud computing.

The inter-cloud models define the way the cloud providers and cloud consumers a) deliver
their resources and b) delegate the management control. Cloud providers deliver resources for
general purposes to support the massive diversity of consumers’ requirements. It motivates the
usage of more than one cloud that can be in two ways. Subsequent usage refers to the migration
of VM or application from one cloud to another motivated by economic reasons, legislation and
political reasons, or better services. Simultaneous usage of multiple clouds can improve QoS
requirements of distributed applications and support for a wide range of distributed applications.
The entities involved in the simultaneous usage of cloud providers require mechanisms to deal
with cloud interoperability.

Concerning the management, inter-cloud computing can be provider-centric or client-centric.
Provider-centric depicts a scenario where the cloud provider deals with the interoperability with
other ones. Different cloud providers agree with the adoption of standards for their common
services constituting cloud federations. Furthermore, they are responsible for extending their
functionalities to other clouds by requesting resources exempting the consumer’s concern in
infrastructure management. Although the benefits, cloud providers do not intend to commoditise
their services. Even adopting service standards, they will try to offer differentiated services.

Since most cloud providers have few interests in “put all together”, the client-centric model
adopts third-party solutions to integrate cloud services. The cloud provider is unaware of
clouds’ integration. The cloud consumer is in charge of integration among clouds and resources’
management. On the one hand, the cloud consumer gets more flexibility to define its infrastructure
according to the application needs. On the other hand, this model charges the consumer for
infrastructure management.

Third-party brokers aim to provide facilities of cloud integration for cloud consumers. In
this sense, cloud brokers provide support for different purposes based on the consumer’s needs,
such as searching and selecting cloud providers, cloud accessibility, resource management, and
application lifecycle management.

Three primary surveys (Grozev and Buyya, 2014; Toosi et al., 2014; Petcu, 2014) propose
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taxonomies for multiple cloud usage. The authors take into account different criteria to define
categories and classify projects. Although divergences and overlapping in terms and categorisa-
tions, there is a consensus on two primary models: cloud federation and multi-cloud computing.
Recently, Bouzerzour et al. (2020) extend the taxonomy proposed by Toosi et al. (2014) adding
new approaches in client-centric and provider-centric categories.

2.3.3.1 Cloud Federation

Cloud Federation model allows resource sharing through federation regulations (Toosi et al.,
2014). Cloud providers collectively agree upon standards of operation. The term may be used
when describing the inter-operation of two distinct, formally disconnected communications
networks that may have different internal structures (Serrano et al., 2011). Federated clouds
aim at supporting their users by providing a single interface on which they can transparently
handle different cloud providers Kertesz et al. (2013). The role of cloud federation goes beyond
interface adaptation. It includes federation services that act as mediators between users and
providers (Carlini et al., 2012).

A federation of clouds requires a formal agreement among cloud providers based on trust to
collaborate by sharing their resources. Cloud interoperability requires cloud providers to adopt
and implement standard interfaces, protocols, formats and architectural components. Cloud
members can request resources from other members to make up their resource limitations. On the
other hand, the members can make available underused resources to other members. This model
is focused on cloud provider interest depicting a provider-centric scenario of interoperability.

The primary motivation for adopting cloud federation is the ability to expand by elasticity the
resource infrastructure meeting QoS requirements such as scalability, performance, availability
and fault tolerance. Since cloud members agree on a universal standard for interoperability, cloud
consumers are unaware of the underlying infrastructure where their virtual resources are running.
For example, a cloud provider can ask for a new VM to other cloud providers in the federation to
answer a client request. The client request is transparently forwarded to the other cloud. The
federation limits the flexibility and control over cloud resources since the federation can deliver
only standard services.

On the other hand, no matter what the federation offers as essential services, many cloud
providers offer specific services to aggregate value and differentiate themselves from the other
providers. The collaboration among federated clouds usually occurs in two ways (Villegas
et al., 2012): vertical or horizontal. Vertical federation or delegation means collaboration among
cloud service layers. For example, overloaded SaaS applications can increase their capacity by
requesting more resources to underlying layers. In this case, the layers must agree on standard
interfaces. Horizontal federation means the collaboration among cloud members at the same
service layer. In this case, the federated services are available at the same deployment level,
usually IaaS level. Horizontal collaboration is the majority of existing federations (Toosi et al.,
2014; Assis and Bittencourt, 2016).
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Architecture Cloud federations can be classified based on their architecture. The architecture
is defined according to how cloud members manage their collaboration, centralised or decen-
tralised. In a centralised architecture, a central entity performs and facilitates the cloud members
collaboration. A cloud broker instance realises every interaction among clouds in charge of
connecting both sides of the interaction. Figure 3a shows the relationship among cloud members
in a centralised architecture.

Figure 3 – Architectures of cloud federations.

(a) Centralised architecture. (b) Decentralised architecture.

Source: author (2021).

Decentralised architectures do have not a central entity to manage the communication among
cloud entities and manage distributed resources. All elements in a decentralised architecture
have similar roles. The Cloud Federation can have more than one Cloud Broker distributed
in the federation. This approach can enhance the performance of the federation management
and supports the availability and reliability of the federation services. However, decentralised
management is usually more complicated than centralised one. A fully distributed management
(Peer-to-Peer (P2P) architecture) is presented in Figure 3b where each cloud member has a cloud
broker instance in charge of dealing directly with other cloud members.

2.3.3.2 Multi-Cloud

Multi-Cloud is a client-centric model for using multiple and independent clouds. This approach
is substantially independent of the cloud provider while the cloud consumer manages the
collaboration among them. Unlike cloud federation, in the multiple clouds, cloud provider
integration is not spontaneous.

The non-spontaneity on integration by large cloud providers motivates the multi-cloud
adoption by cloud consumers. Cloud providers design their services for general purpose needs.
Applications must adapt themselves to meet their needs. Although cloud federation offers
different services, it is still unaware of what applications need because it usually focuses on IaaS
services and not on what is running on top of VMs.

From the cloud consumer perspective, multi-cloud gives more flexibility to the application
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lifecycle management, such as QoS guarantees. This approach allows more refined tuning of
application components aiming the management based on the application needs. However, the
development of such applications increases on complexity whose responsibility for managing
the collaboration between a cloud application and IaaS service layer is the application.

Architecture Multi-Cloud management functions may be accomplished by an adapter layer
responsible for the collaboration and interoperability of cloud applications and cloud providers.
The Adapter layer can provide functions as a service or library. In the first case, the functions
are implemented by services hosted in-house or in the cloud which developers can specify the
application requirements by SLA or defining a set of rules. In the second case, an API is used by
the application to interact directly with IaaS providers. APIs facilitates the use of multiple clouds
in a uniform way. However, the developer must implement how the multi-cloud management
uses the API. Services can use libraries to implement their brokerage functions. Multi-Cloud
solutions based on services usually adopt libraries to provide portability and interoperability to
cloud consumers. Figure 4 shows the basic architecture of the multi-cloud model. The Adapter
Layer interacts with a specific cloud provider’s API and provides either uniform services or a
uniform API to the cloud consumer.

Figure 4 – Basic architecture of the multi-cloud model.

Source: author (2021).

2.4 MULTI-CLOUD APPLICATIONS

Cloud providers deliver resource services for a general purpose instead of meeting specific
application needs. On the other hand, classical applications are not designed to take advantage of
the cloud benefits. Although cloud computing brings new possibilities for distributed applications,
it also brings new challenges up.

Beyond the relationship between cloud consumers and cloud providers, it is necessary to
manage distributed application components. The multi-cloud application refers to one with a set
of distributed components into a multi-cloud environment (Cuadrado et al., 2014).
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The multi-cloud application brings many advantages. Applications can be managed based
on specific aspects defined by the cloud consumer instead of general aspects defined at the
infrastructure level by the IaaS provider. The approach allows more flexibility in choosing
cloud providers and fine-grained control over the application. However, the onus for managing
infrastructure resources and applications’ lifecycle lies with the cloud consumer. The application
developer must be aware of details of underlying infrastructures to support meeting desirable
distribution properties. Furthermore, as a multi-cloud application, the dynamic nature of multi-
cloud computing adds more complexity to application management.

2.4.1 Scopes of Multi-Cloud Applications

The environment of distributed applications in the cloud scenario can range from a single VM
to a set of resources distributed throughout different clouds. In the simplest case, the entire
application runs on top of a VM and distribution occur at the application process level. The
application can also be distributed over more than one VM, characterising the distribution at the
infrastructure level. In this scenario, the scope of the application is restricted to a single cloud
domain. Lastly, the components of an application can be hosted on VMs instances running on
different cloud domains, characterising the multi-cloud domain.

Figure 5 shows a distributed application running in different scopes. The client/server
application is distributed on two clouds. In Cloud1, VM1.1 and VM1.2 host client and server sides
of the application, respectively. The interactions between client and server sides in this scenario
are contained in the cloud domain. VM2.1 in Cloud2 hosts another server component (remote
object) of the application. Interactions between the client on VM1.2 and server hosted on VM2.1

take place in a multi-cloud domain.

Figure 5 – Scopes of a distributed object application in the multi-cloud.

Source: author (2021).

2.4.2 Multi-Cloud Application Requirements

Both business and technological contexts can classify application requirements. The first one
states strategy’s needs about non-technical issues, such as the economy and logistics. For
example, the cost of the application deployment may have constraints. The last one refers to
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aspects of the application functioning (e.g., communication) and non-functional characteristics,
such as availability, performance and scalability. Furthermore, the dynamic nature of cloud
computing introduces new requirements:

Multi-Cloud elasticity is an essential requirement for assuring applications can be distributed
through many cloud providers, leveraging the benefits of multi-cloud computing. The
multi-cloud elasticity improves the application support for meeting primary distributed
systems’ requirements, such as scalability and availability on the presence of performance
degradation and even faults. Furthermore, the elasticity management must be automatic to
provide transparency to application development, exempting (at least reducing) the human
intervention and hiding management complexities on scaling in/out virtual resources in a
multi-cloud environment. The automation also improves the efficiency of the application
on timely responding to undesirable behaviours.

Distribution transparency hides the complexities of application distribution, such as access,
location, scalability and failure. Developers can focus on the business logic, exempting
themselves from being aware of distribution management. Since the elasticity is tightly
related to distribution aspects, it is also distribution transparency.

Cross interoperability among mechanisms at different layers and clouds can improve collabo-
ration to leverage cloud benefits. Vertical and horizontal interoperability must be covered
to realise integration between application and underlying IaaS resources, and among re-
sources at different cloud domains (multi-cloud interoperability), respectively. Vertical
interoperability allows the integration of management mechanisms at different levels of
abstraction (infrastructure and application) for more precise monitoring and control of
the application and its infrastructure. Fine-Grained management means more precise
management and fewer cost and complexity since it allows the rational resource usage,
one of the characteristics that differentiate elasticity from scalability. Furthermore, the
interoperability must be provided in a seamless way of supporting distribution transparency.
The application also must be cloud agnostic to accomplish this requirement.

2.4.3 Multi-Cloud Application Management

Rapid changes in the cloud environment feature the dynamic nature of cloud computing. Man-
agement mechanisms should assure adequate response that does not affect the application
performance and availability. However, cloud providers only manage virtual resources without
knowing what is running on top of the virtual resources and how it is running. It is not man-
ageable by the provider’s mechanisms. On the other hand, the consumer’s lack of control over
infrastructure resources limits the decision-making power.

Mechanisms must consider monitoring information from different abstraction levels and
cloud domains to perform complete and accurate management, combining them to give a
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big picture of application health. The management can make decisions about the application
controlling based on this monitoring information. The multi-cloud application management
benefits from cloud elasticity to meet the most application requirements.

2.5 DISTRIBUTION MIDDLEWARE

The role of middleware systems in cloud computing environments has ranged from an interop-
erability enabler (Bouzerzour et al., 2020) to a data distribution manager (Ömer Köksal and
Tekinerdogan, 2017) and cloud-based Internet of Things (IoT) distribution platforms (Ngu et al.,
2017). However, similarly to off-cloud middleware systems, it should be noted that the middle-
ware is used to deal with distribution aspects, such as transparency among remote applications,
hiding complexities of communication, distribution and integration (de Morais et al., 2013;
de Morais and Rosa, 2017).

Middleware platforms facilitate the development of distributed applications by implementing
distribution transparencies (e.g., access, location and failure) and providing distributed services
(e.g., naming, security, and concurrency) to developers (Bernstein, 1996; Schantz and Schmidt,
2002; Völter et al., 2004). In practice, the middleware hides from application developers the com-
plexity of underlying communication, distribution and concurrency mechanisms, offering general
services that support distributed execution of applications. It is an additional software layer that
sits between the network services provided by Operating System (OS) and the application layer
hosting the client and server application.

Middleware systems are in charge of realising distribution tasks for i) operational interaction
between application components by message exchange; ii) remote interaction between compo-
nents hosted in different address spaces. The remote style defines how the interaction takes place.
For example, remote objects interact with each other by method invocation; iii) distribution
transparency for application’s standpoint. The application is unaware of the type of interactions
among application components that can be local or remote interactions; and iv) technological
independence, supporting the integration of different technologies.

2.5.1 DOC Architecture

The basic middleware architecture can be organised according to its function: communication and
distribution. The first one is in charge of encapsulating and enhancing native OS communication
and concurrency mechanisms. The distribution layer defines higher-level distribution mechanisms
that can be based on the remoting patterns (Völter et al., 2005). Figure 6 shows the basic
architecture and the style variations. It is based on the layers of Distributed Object Computing
(DOC) middleware architecture proposed by Schantz and Schmidt (2002). In Figure 6, the
communication layer interacts directly with the infrastructure, while the distribution layer
provides transparency of communication services to distributed applications based on remote
style. The application interacts with the middleware through APIs of the distribution layer’s
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components.
In addition to Figure 6, two more layers are placed on top of the distribution layer: common

services and domain-specific services. The first one consists of generic services (e.g., security,
naming, transaction, concurrency), and the last one performs domain-specific tasks such as
telecommunication, e-commerce, e-learn, and cloud services. The interaction between the
application layer and the middleware can be direct with the distribution layer or through the
services’ layer.

Despite the great diversity of middleware models and products, the architecture presented
by Schantz and Schmidt (2002) is widely adopted for structuring distributed object computing
middleware. Furthermore, the concepts of the object model ideally reflect the characteristics of
distributed systems (Puder et al., 2006).

Figure 6 – Middleware basic architecture adapted from (Schantz and Schmidt, 2002).

Source: (Schantz and Schmidt, 2002).

2.5.2 Multi-Cloud Middleware Goals and Challenges

A multi-cloud middleware system should provide support to a distributed application on meeting
its requirements (see Section 2.4.2) by leveraging the benefits of multi-cloud computing. The
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multi-cloud elasticity is a crucial characteristic of cloud computing that can improve the middle-
ware on the support of multi-cloud applications. Therefore, the multi-cloud middleware goals
are:

1. Provide multi-cloud elasticity for distributed applications in a transparent way; and

2. Provide multi-cloud interoperability so that distributed applications take advantage of the
elasticity in different cloud providers.

However, these goals demand complex management and multi-cloud interoperability. The
development of a multi-cloud middleware requires solving these demands, hiding them from
the developer. Therefore, some principles must be followed in the design process, such as
adaptability and multi-cloud awareness.

2.6 CONCLUDING REMARKS

This chapter presented the foundations of multi-cloud computing, encompassing cloud and
inter-cloud computing, elasticity, multi-cloud application, and multi-cloud middleware. Some
definitions and terms were discussed, and their essential elements and taxonomies were also
presented.

The elasticity is presented as a critical characteristic of cloud computing that refers to rapidly
provisioning resources dynamically to comply with the client’s needs. The management of
elasticity can take place at the infrastructure level or application/platform level. Mechanisms of
migration and replications can realise its management.

Inter-cloud computing is classified into cloud federation and multi-cloud. The first one is
computing or network providers that agree upon standards of operation in a coordinated fashion
that aims to support their users by providing a single interface on which they can transparently
handle different cloud providers. The last one is a client-centric model for using multiple and
independent clouds. This approach is substantially independent of the cloud provider while the
cloud consumer manages the collaboration among them.

Finally, the middleware definition and its underlying architecture composed of two primary
layers (communication and distribution) were presented. The DOC layer stack was shown as
a widely accepted architecture. Two more layers are added to the basic architecture: common
services and domain-specific services.
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3 MULTI-CLOUD PRINCIPLES

Designing a middleware solution for multi-cloud computing must follow some basic principles.
These principles are fundamental statements placed at the beginning of any inference related
to multi-cloud design. For multi-cloud middleware design, some fundamental propositions are
decentralisation, openness and interoperability, dynamic behaviour, and adaptability. These
multi-cloud principles drive the middleware development, point out design requirements to be
addressed, such as multi-cloud awareness, multi-cloud elasticity, and cross-management.

This chapter initially presents some primary multi-cloud middleware goals. Next, it describes
the proposed principles by focusing on what is the principle, why it is necessary to adopt the
principle, where it could be placed within the middleware structure and how it can be achieved.

3.1 MULTI-CLOUD MIDDLEWARE GOALS

Multi-cloud middleware platforms target to provide distribution transparencies for cloud providers
and multi-cloud applications, hiding underlying complexities such as communication, distri-
bution and integration (de Morais et al., 2013). It can benefit from multi-cloud computing to
support multi-cloud distributed applications in meeting their requirements (see Section 2.4.2) and
support interoperation and collaboration between cloud providers. Therefore, the multi-cloud
middleware goals are:

1. To manage, in a seamless way, distributed applications components running in multiple
clouds;

2. To manage infrastructure resources, improving their rational usage and abstracting man-
agement aspects;

3. To provide multi-cloud elasticity for distributed applications in a transparent way; and

4. To support the transparent integration of cloud providers so that distributed applications
take advantage of virtual resources in different cloud providers.

However, these goals demand to assume some principles for designing multi-cloud middle-
ware systems. These principles are related to cloud and multi-cloud aspects and their influence
on distributed application requirements.

3.2 DECENTRALISATION (P1)

The decentralisation principle refers to the component autonomy in a distributed architecture,
where each component is independent and responsible for its management. System’s architecture



46

follows two models (Tanenbaum and Steen, 2007; Coulouris et al., 2013): centralised and
decentralised. Centralised architecture is composed of entities with distinct roles and hierarchical
relationships among them. Entities in decentralised architectures have similar roles, establishing
a flat relationship among them.

Single cloud architecture follows the centralised model since its resource management
tools are grouped into a specific entity – IaaS manager. IaaS manager (server) is the element
controlling the resources’ life cycle to deliver cloud services to the customer (client). On the
other hand, a multiple cloud environment comprises autonomous cloud providers, characterising
a decentralised architecture. Cloud providers have similar behaviour from an external cloud view,
delivering the same essential cloud services autonomously. Cloud providers can connect their
domains, composing a decentralised architecture, such as federated clouds (Section 2.3.3.1).

It is crucial to understand the relationship between cloud architectural elements in the cloud
and multi-cloud scenarios. A multi-cloud middleware project can drive its design considering
architectural aspects, such as communication models and management architecture. For example,
communication models can be chosen according to the system’s architecture, such as oriented
messaging communication for multi-cloud communication and management strategies.

Management strategies for multiple clouds can vary according to the multi-cloud architectural
aspects. As discussed in Section 2.3, management control can be realised by the cloud provider
or delegated to a third-party entity. However, the cloud provider management is limited to
infrastructure resources because it is unaware of what is running on top of VMs. In both
cases, the management can centralise or decentralise its control (Figure 7). Centralised control
(Figure 7a) concentrates all management mechanisms into a single entity. While decentralised
one (Figure 7b) distributes mechanisms instances through many entities.

Figure 7 – Centralised and decentralised management for multi-cloud environments.

(a) Centralised architecture. (b) Decentralised architecture.

Source: author (2021).
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3.3 OPENNESS AND INTEROPERABILITY (P2)

Openness is the capability of a system to offer services according to standardised rules (Tanen-
baum and Steen, 2007). Then, users can enjoy cloud services without ordering them to the
service provider. According to (Czaja, 2018), openness has the following characteristics:

• Independence of desired system behaviour through intermediate languages and their
compilers or interpreters;

• Unified and standardised communication mechanisms, such as communication protocols;
and

• Widely offered standard interfaces of access to common resources.

Nowadays, many cloud platforms are available, offering different kinds of services through
application interfaces. Cloud providers are open platforms because they provide public specifi-
cations and documentation of their primary services – public interfaces as openness property
enablers. With public interfaces, cloud computing has evolved naturally towards a horizontal
integration model where cloud environments interoperate.

Openness capabilities allow independent systems to be interoperable. The decentralised
nature of multi-cloud architecture is tightly related to interoperability since cloud platforms are
independents and heterogeneous. Interoperability is the ability of computing systems to coexist
and work together (Tanenbaum and Steen, 2007) by information and service exchange, which
states that a computing system is open when it can be extended or reimplemented in many ways
(Coulouris et al., 2013). In multi-cloud computing, interoperability allows applications to have
distributed components deployed on many cloud environments to communicate, integrate and
migrate regardless of their location and platform heterogeneity (Bouzerzour et al., 2020).

Before cloud computing, interoperability was a challenge for system heterogeneity and
evolution (DeNardis, 2012). As discussed in Chapter 1, there are many standardisation proposals,
although the industry showed little interest to adopt them. Furthermore, adopting a standard does
not mean addressing the interoperability problem because there is a pletora of divergent standards
(Nogueira et al., 2016) and few consensus about standard adoption. In addition, even if clouds
adopt standards for basic services, commercial providers are always looking for specialised
services to add value to their product.

The interoperability charge can be placed in a client-centric perspective, where middle-
ware design can adopt standards defined by wide used cloud platforms, such as (OpenStack
(RackSpace, 2010) and OpenNebula (Moreno-Vozmediano et al., 2012)), or mass-adopted li-
braries that encapsulate heterogeneous cloud services into interfaces – API, such as JCloudsr

(Apache, 2011).
Figure 8 shows two multi-cloud interoperability scenarios. In the first one, Cloud1 and

Cloud2 implement their services following some standard. Thus, a middleware system can
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access its services through public APIs. In the second one, Cloud3 implements its services
following a proprietary pattern. In this case, the middleware can implement its own library to
access the cloud services through pattern-proprietary APIs or use libraries that implement basic
cloud services access. In this example, the middleware accesses Cloud3 services through the
JCloudsr library.

Figure 8 – Interoperability scenarios for multi-cloud integration through middleware.

Source: author (2021).

3.4 DYNAMIC BEHAVIOUR (P3)

Dynamic behaviour of a system refers to the state pattern changing over time (Coad, 1992).
Multi-Cloud computing inherits the dynamic nature of cloud computing. Constantly, virtual
resources are deployed and undeployed or resized in a single cloud environment, changing its
state.

Cloud computing faces changes and events in the environment according to customer de-
mands. As customer’s needs change, the cloud environment state also changes. For example, in a
single cloud provider with global access, new customers can request deployments of VMs, while
others are requesting VMs shutdown. Any management design for cloud and multi-cloud com-
puting views the system as a dynamic environment. Therefore, a middleware architecture must
design efficient management mechanisms to deal with the dynamic nature of multi-cloud com-
puting. Addressing this principle implies on middleware’s ability to support system scalability
and adaptability.

Figure 9 depicts the dynamic behaviour of a multi-cloud environment. Virtual resources are
constantly in change, both inside a single cloud or a multi-cloud context. Inside Cloud1, running
VMs are turned off by the IaaS manager. On the other hand, in Cloud2, new VMs are deployed.
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In the case of Cloud3 IaaS, the manager replicates a VM. At multi-cloud scope, cloud providers
can interact through operation such as migration and replication, characterising the multi-cloud
dynamic behaviour: Cloud1 replicates a VM in Cloud2 and Cloud3 migrates its VM to Cloud2.
It is worth mentioning that the interoperability principle is allowing the cloud cooperation.

Figure 9 – Events constantly changing the multi-cloud environment state.

Source: author (2021).

Multi-cloud dynamic behaviour can be observed through clouds’ monitoring information.
However, no cloud provider monitors a multi-cloud environment thanks to its decentralised
architectural nature. Each cloud provider is in charge of monitoring the behaviour of its virtual
resources. Observing the multi-cloud behaviour is possible through monitoring from multi-cloud
participating cloud providers.

In a single cloud, the IaaS manager is in charge of monitoring the environmental state at
the infrastructure level, assuring performance and scalability. In a multiple cloud environment,
participant cloud providers share behavioural information between them (cloud federation).
However, most multi-cloud scenarios are composed of non-voluntary participating clouds that
are unaware of other cloud providers – third-party solutions aggregate information from multi-
cloud participating cloud providers and provide a holistic view of multi-cloud behaviour.

3.5 ADAPTABILITY (P4)

The adaptability principle refers to the capability of a system to adapt itself (autonomy) to keep
its components working as close as possible to parameters required by the customer. A system
is autonomous when it can configure itself according to high-level policies Kephart and Chess
(2003).

According to the decentralisation principle, a cloud provider is an autonomous participant of
a multi-cloud environment. Cloud providers can configure the customer’s resource system to
meet a pre-defined Service-Level Objective (SLO) with minimal human intervention, thanks to
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the cloud’s adaptation ability through elasticity service (Pahl et al., 2018). The elasticity allows
clouds to adapt their infrastructure to meet client demands by increasing or shrinking resources.
The dynamic nature of cloud and multi-cloud computing establishes an adaptable behaviour of
their related elements, such as architectures, technologies and tools.

The adaptability principle intersects with decentralisation and dynamic behaviour principles.
Both intersections characterise the importance to assume adaptability as the dynamic behaviour
agent of each autonomous (decentralised control) participating cloud in the multi-cloud environ-
ment.

Based on the conceptual model defined by de Lemos et al. (2013), an autonomic multi-cloud
system comprises:

• The environment, representing the external world where a multi-cloud application is
running (multi-cloud environment and Internet, from where clients interact with the multi-
cloud application);

• The managed system, comprising cloud resources (infrastructure level) and multi-cloud
application components (application level). The managed system is the object of adaptation.
It is equipped with sensors for gathering environmental data;

• Policies, defining adaptation goals and rules to meet customer SLO;

• The managing system, responsible for realising the adaptation based on the system policies.
It comprises mechanisms for monitoring the multi-cloud environment and adapting the
managed systems based on analysis of environmental monitoring data.

Figure 10 shows a multi-cloud autonomous environment, where the middleware is in
charge of implementing the managing system. The environment comprises cloud providers
(Local cloud, Cloud1, Cloud2, ... ..., Cloudn) and the Internet where customers access the
application. The middleware monitors and controls infrastructure resources and applications
through managing systems’ mechanisms (Monitor and Adaptor). Monitoring mechanisms gather
data from the environment to support the adaptation process that is performed by the Adaptor,
based on rules and goals defined in policies. The Adaptor can request elastic services to the
current cloud (Local cloud) or to an external cloud (Cloudn)

A multi-cloud managing system (e.g., multi-cloud middleware) can take advantage of cloud
elasticity services to support adaptability for multi-cloud systems. The middleware extends
elasticity to the multi-cloud context.

From a multi-cloud perspective, the autonomic behaviour of a single cloud can be extended
to the multi-cloud environment through voluntary cloud collaboration (federated clouds) or mid-
dleware as a third-party system, intermediating communication and supporting interoperability in
case of cloud providers are not volunteers. The managing control of adaptation can be centralised
or decentralised, as presented in Figure 7. Furthermore, the middleware can apply adaptation to
infrastructure and application levels (de Lemos et al., 2013).
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Figure 10 – Elements of a multi-cloud autonomic system with managing system as part of
middleware.

Source: author (2021).

3.6 CONCLUDING REMARKS

This chapter presented basic principles to drive a multi-cloud middleware design: decentralisation,
interoperability, dynamic behaviour and adaptability. These principles drive the middleware
design according to multi-cloud middleware goals. Each principle was discussed in the context
of its definition, justifying its adoption and relating it to the cloud and multi-cloud computing
context. Besides, this chapter discusses how principles take place in cloud and multi-cloud
computing and where the middleware can realise them. Finally, Some principles’ relationships
were presented throughout the chapter.

Multi-cloud principles are fundamental for multi-cloud design. Following them, the next
chapter presents the requirements and architecture of Multi-Cloud aware Middleware (M-CaMid),
an object-oriented middleware specially designed for supporting the development and manage-
ment of distributed applications in multi-cloud environments.
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4 MULTI-CLOUD AWARE MIDDLEWARE – M-CAMID

This chapter presents the M-CaMid architectural design, detailing its components operations
and relationships, and M-CaMid management mechanisms to meet multi-cloud requirements.
M-CaMid design follows multi-cloud principles discussed in the previous Chapter 3. Section 4.1
introduces M-CaMid goals and requirements, and the rest of this chapter presents details of its
design.

4.1 M-CAMID DEFINITION, GOALS AND REQUIREMENTS

M-CaMid (Multi-Cloud aware Middleware) is an object-oriented middleware specially designed
for supporting the development and management of distributed applications for multi-cloud
environments by abstracting underlying distribution complexities inherent to multi-cloud in-
frastructures. M-CaMid implements mechanisms to support (i) communication between the
application’s components distributed over many cloud domains; and (ii) execution and man-
agement of distributed applications and their infrastructure resources with minimal human
intervention by leveraging the cloud elasticity benefit automatically and transparently.

Aiming afore mentioned M-CaMid goals, the architectural design follows multi-cloud essen-
tial principles presented in Chapter 3: (P1) decentralisation, (P2) openness and interoperability,
(P3) dynamic behaviour, and (P4) adaptability. However, following these principles implies meet-
ing some requirements, such as hybrid architecture, multi-cloud awareness, cross management,
and elasticity. The following sections discuss requirements related to each principle.

4.1.1 Decentralisation (P1) Requirements

Why The multi-cloud architecture comprises independents and heterogeneous cloud providers,
where the control is usually decentralised. On the other hand, a single cloud provider is
characterised by its centralised architecture, where its controls are centred in the IaaS manager.
In both scenarios, the cloud provider architectural style follows the layered model for delivering
cloud services (IaaS, PaaS and SaaS).

Requirements M-CaMid must be multi-cloud aware (R1) for controlling both distributed
applications and infrastructure, targeting transparency of technology and distribution to hide
underlying complexities from developers.

Besides, M-CaMid must tackle the hybrid multi-cloud architecture (R2) to deal with both
centralised and decentralised architectures of a multi-cloud environment.

Finally, M-CaMid must be aware of different abstraction levels at cloud and multi-cloud
scopes. In other words, M-CaMid must combine different abstraction levels (infrastructure and
application) at cloud and multi-cloud scopes.
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4.1.2 Openness and Interoperability (P2) Requirements

Why Although multi-cloud evolution, many cloud platform solutions offer heterogeneous
services demanding standard pattern specifications (lock-in problem). A distributed application
needs to be cloud-agnostic in a multi-cloud environment to leverage essential cloud services from
different cloud applications regardless of cloud technology. Application’s parts in various cloud
platforms also need to interoperate. For example, a distributed application with components
scattered in many clouds platforms must deal with distinct infrastructure organisations, e.g.
networking.

A mitigating solution is to place the interoperability in charge of the middleware. A mid-
dleware design can adopt standards defined by comprehensive used cloud platforms, such as
(OpenStack (RackSpace, 2010) and OpenNebula (Moreno-Vozmediano et al., 2012)), or popular
libraries that encapsulate heterogeneous cloud services into interfaces – API, such as JClouds
(Apache, 2011).

Requirements Openness and interoperability are tightly related to the decentralisation princi-
ple, demanding the multi-cloud aware requirement (R1) since M-CaMid must adopt available
cloud standards to deal with different cloud abstraction levels.

4.1.3 Dynamic Behaviour (P3) Requirements

Why Dynamic behaviour is a mandatory principle for multi-cloud distributed application
management since its state is constantly in change. Multi-cloud behaviour is affected by events
in the abstraction levels and the cloud and multi-cloud scopes. The dynamic nature of multi-cloud
computing requires timely middleware response for realising cloud tasks, such as deploying and
undeploying VMs in many clouds. Moreover, there is a trade-off between interoperability and
performance. As more the system is interoperable, the worse is its performance. Multi-cloud
management requires not only a rapid response but also precision.

Requirements Middleware design must include automatic mechanisms to support environmen-
tal changes without human intervention. Its management mechanisms must monitor the system’s
behaviour at the abstraction levels to decide where acting (infrastructure or application levels)
and the best configuration to assure rapid and precise responses to keep the system’s stability.
The management of abstraction levels (vertical management) and across cloud and multi-cloud
environments (horizontal management) are fundamental for assuring rapid middleware response
to multi-cloud behaviour changes – cross management (R3).

In a multi-cloud environment, the application elasticity depends on the application’s ability
to deal with different cloud platforms. It requires a middleware to extend elasticity service to the
multi-cloud scope. Multi-cloud elasticity (R4) allows distributed applications to use elasticity
among cloud platforms.
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4.1.4 Adaptability (P4) Requirements

Why Adaptability is the reason the multi-cloud environment is dynamic, with elasticity being
the protagonist of this relation. Management entities must control the adaptation of multi-cloud
elements through the elasticity services of clouds (multi-cloud elasticity – R4). The elasticity
approach also must consider two management granularity levels: fine-grained (at the application
level) and coarse-grained elasticity (at the infrastructure level).

Requirement M-CaMid must support the cross management requirement (R3) by designing
vertical (cloud layers) and horizontal (cloud scopes) elasticity management. M-CaMid must
act as an adaptation agent to support the elasticity management in a multi-cloud environment,
allowing automaticity and transparency to elasticity and dealing with different architectural
scenarios: centralised into the cloud domain and decentralised in the multi-cloud domain.

4.2 MULTI-CLOUD AWARENESS MIDDLEWARE

M-CaMid must be aware of the multi-cloud environment, dealing with different cloud tech-
nologies. Designing multi-cloud aware middleware shifts the interoperability concerns to the
middleware level, allowing distributed applications to be agnostic and interoperable.

Being aware means that M-CaMid knows the different scopes of multi-cloud architecture.
M-CaMid’s approach defines a multi-cloud model characterised by three domains to represent
the scopes of a multi-cloud environment: Node, Cloud, and Multi-Cloud domains. The role of
M-CaMid is defined according to the domain that it is related.

4.2.1 Node Domain

Node domain is the canonical environment, namely Node, that comprises the VM provided
by a cloud provider, the software stack (OS and the middleware itself), and application’s
components. For each node domain, an instance of the M-CaMid (Node M-CaMid) is in charge
of managing (monitoring and control) both infrastructure and the application lifecycle, and
providing communication at application and middleware level. The node domain communicates
with its respective cloud domain (through the Node M-CaMid) for notifying about events and
exchanging monitoring information. At application level, it realises the communication among
application’s components. Figure 11 shows the relationship among Node M-CaMid and Cloud

M-CaMid.

4.2.2 Cloud Domain

A set of nodes, on which their VMs are managed by a cloud provider, constitutes a cloud domain.
The cloud domain is composed by the set of nodes, the IaaS cloud manager, and a M-CaMid
instance. In this domain, the nodes can cooperate by sharing its resources under the management
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Figure 11 – M-CaMid instances relationship.

Source: author (2021).

of the M-CaMid instance. The M-CaMid (Cloud M-CaMid) has the role of supporting the
communication among the application’s components and orchestrating all nodes as a whole,
providing a uniform management view of the cloud environment.

4.2.3 Multi-Cloud Domain

Two or more cloud domains running components of the same multi-cloud application establish
the multi-cloud domain. The whole environment is composed by nodes spread over cloud

domains. The components running into these nodes define the multi-cloud application. In this
scope, all cloud domains are reachable from each other. Since cloud domains (cloud providers)
have independent infrastructures, interoperability occurs at the middleware level in the multi-
cloud environment. M-CaMid is in charge of providing transparent interoperation among the
cloud domains. Figure 11 shows the relationship among cloud domains through M-CaMid
instances (Cloud M-CaMid). It can extend the resources of a multi-cloud application to another
cloud domain by requesting new resources. Similarly, it can receive requests to lend resources.
Each M-CaMid instance of cloud domain is in charge of receiving messages and redirecting the
proper component endpoint into the cloud domain.

Table 1 summarises the roles of M-CaMid according to the domain.

4.3 ARCHITECTURE

M-CaMid distributed architecture organises its operations according to the three domains: node,
cloud and multi-cloud. The operations distribution allows a clear definition of the architectural
components and their roles. Figure 12 shows the distribution of M-CaMid’s operations. An
operation acts over the multi-cloud environment according to its respective domain. For example,
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Table 1 – Domains and M-CaMid functions.

Domain Function Description

Node

Monitoring Monitors OS and Application components.
Communication Local management of sending and receiving messages.
Analysing Checks data from monitoring and notifies the cloud domain.
Application
management

Manages application components lifecycle: deploying and
undeploying.

Cloud

Communication

Intermediates the communication among application
components through forwarding pattern;
Manages the components’ communication on supporting
of load balancing and distribution transparency.

Monitoring
Gathers monitoring information from node domains to
analyse the cloud environment.

Naming
Registries location information of the the application,
middleware, cloud and nodes.

Adaptation
Adapts the cloud environment to meet the application
requirements triggering replication tasks.

Multi-Cloud
Communication Provides communication among cloud domains.

Brokering
Requests and provides virtual resources to others cloud
domains.

Source: author (2021).

monitoring operations (node monitoring, cloud monitoring, and multi-cloud monitoring) execute
different tasks in their respective domain.

Because multi-cloud domains have different characteristics and behaviours, M-CaMid con-
siders different architectures for its components in cloud and multi-cloud environments. The
hybrid architecture is a requirement discussed in Section 4.1 since the multi-cloud domain can
be composed of independent cloud domains. In contrast, a single cloud domain usually is based
on a centralised architecture.

Figure 11 shows the relationship between Cloud M-CaMid and Node M-CaMids into a single
cloud (cloud domain) and the relationship among Cloud M-CaMid linking many single clouds,
composing the multi-cloud domain.

Cloud M-CaMid is the element that integrates a single cloud to a multi-cloud environment.
In the scope of cloud domain, Cloud M-CaMid plays as a server while Node M-CaMids are the
clients. Cloud M-CaMid manages all Node M-CaMids in the cloud domain. In the multi-cloud
domain, cloud domains act equally. Each Cloud M-CaMid acts as a broker in a decentralised
architecture, managing the cloud participation in the multi-cloud environment. Cloud M-CaMid

is in charge of:

1. Redirecting application’s requests to the proper component’s endpoint;

2. Balancing the workload among component’s replicas, if exists;

3. Monitoring and analysing the cloud environment by gathering information from nodes and
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Figure 12 – M-CaMid operations arrangement over the multi-cloud domains.

Source: author (2021).

IaaS cloud manager;

4. Stepping in the environment as a response to undesirable events, such as node overload
and too high response time of an application’s component. As an example, an action to
deal with overload may be the replication of an application’s component or even the VM
replication;

5. Rearranging components distribution among the nodes to balance the workload;

6. Interacting with the underlying infrastructure to request IaaS services; and

7. Providing inter-operation with other cloud domains through communication and distribu-
tion tasks, featuring the interoperability among cloud domains.

4.3.1 M-CaMid’s Components

M-CaMid architecture is based on the well-known layers stack of DOC middleware proposed
by Schantz and Schmidt (2002). Moreover, M-CaMid adds a fourth layer in the architecture
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to group the management components (de Morais et al., 2013). This approach is analogous to
the cloud management layer proposed by Lenk et al. (2009), whose vertical layer covers all
stack layers providing management services at different abstraction layers. Figure 13 shows the
architecture of M-CaMid.

Transport encapsulates OS services for object communications. The transport layer’s compo-
nents enhance native OS communication and concurrency mechanisms and abstracts away
peculiarities of individual OSs;

Distribution the Distribution layer provides APIs and components to automate and extend
communication capabilities encapsulated by the Transport layer. This layer establishes
high-level operations for remote object programming;

Common Services supports the distribution and management layer by defining higher-level
services;

Management delivers a set of mechanisms for monitoring and controlling the application’s ob-
jects and cloud resources distributed over cloud domains, providing a holistic management
view.

4.3.2 Transport Layer

The transport layer works as a wrapper to the operating system. It consists of two remote
architectural patterns (Völter et al., 2005), namely Client Request Handler and Server Request

Handler that take responsibility for dealing with all aspects related to the communication inside
the middleware, e.g., to establish and configure connections. Client Request Handler sends
requests and receives replies from the network on the client-side, while Server Request Handler

has a similar role on the server-side. The proposed Transport layer has been implemented on
Transmission Control Protocol (TCP), and its API provided consists of two operations: send and
receive.

Figure 14 presents the transport layer architecture in details composed of Client Request

Handler and Server Request Handler. In the client-side, all requests coming from the component
Requestor in the distribution layer are placed into a sending queue. The component Connector is
responsible for managing the connections. To improve scalability, Connectors are managed by a
Thread pool. For each Requestor invocation, a Connector is created to handle the communication
between the client and server. The invocations are processed concurrently, improving the
scalability of client-side. Connector creates a connection to the server-side for sending the
request message. After the connection is established, Connector sends the message to the
server-side. The connection is closed at the end of the transmission. Connector handles the
connection by using the operating system’s APIs for networking management.
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Figure 13 – M-CaMid architectural elements.

Source: author (2021).

Server Request Handler is a pattern similar to Client Request Handler. Its role is to manage
the communication on the application’s server-side, hiding low-level networking complexity (OS

API) from the upper layer. In other words, Server Request Handler is responsible for establishing
connections with the client-side, receive invocations and dispatch them to the proper Invoker in
the distribution layer. Connections are handled concurrently since the server-side complies with
more than one client request. Server Request Handler deals with networking operations through
OS APIs.

For each connection established, Acceptor receives an invocation message and lining up it
in Dispatching queue. Thread Pool consumes messages from Dispatching queue and creates a
Dispatcher thread instance for each message. Dispatcher redirects the message to the proper
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Invoker. The connection is closed after the transaction ends.
The Transport layer is used for all M-CaMid’s components that need to communicate

regardless of their scope.

Figure 14 – Transport layer’s components.

Source: author (2021).

4.3.3 Distribution Layer

The distribution layer provides APIs and components to automate and extend the communication
capabilities encapsulated by the transport layer. In practice, clients invoke local or remote objects
without hard-coding dependencies (Schantz and Schmidt, 2002). Furthermore, the distribution
layer realises the multi-cloud communication through the components in the Gateway (see
Figure 13). Thus, the distribution layer plays two main roles: support the remote object
invocation and multi-cloud distribution management. Architectural components of distribution
layer differs according to the application side: M-CaMid client and server sides. M-CaMid
client side is composed of Client Remote Invocation (Client Proxy, Marshaler and Requestor).
In the server side, there are two M-CaMid instances: Cloud M-CaMid, composed of Remote

Invocation, Cloud Gateway and Messaging, and Node M-CaMid, composed of Server Remote

Invocation and Object Lifecycle Manager.
Remote Invocation comprises designed components designed following remoting patterns

for communication (Völter et al., 2005): Client Proxy, Marshaller, Requestor, Invoker, and
Forwarder. Remote Invocation is present in all instances, however its components vary according
to each instance. Following, Remote Invocation is discussed in the three M-CaMid instances.
Figure 15 shows the interaction between the three instances.

4.3.3.1 M-CaMid Client Side

Client Remote Invocation is in charge of receiving the client invocation through Client Proxy.
This component represents a remote object on the client-side application, making the same
interface of the invoked remote object available. The client application invokes methods of Client
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Figure 15 – Remote invocation in the distribution layer architecture.

Source: author (2021).

Proxy, as the remote object itself. Client Proxy is in charge of translating the local invocation
into parameters to Requestor. The client application is unaware of the object’s localisation.
Client Proxy carries the cloud domain’s endpoint where its respective remote object is running.
From the client’s perspective, the remote object behaves as it is running locally. The client
application gets Client Proxy by looking up the remote object in Naming Service (as described in
Section 4.3.4).

Requestor takes the responsibility of sending requests to the server-side by using the transport
layer. Requestor invokes operations to Marshaller to convert remote invocations into byte streams
(serialisation) ready to be sent over the network.

4.3.3.2 Cloud M-CaMid

On the server-side, Cloud M-CaMid receives remote invocations and redirects them to the proper
Node M-CaMid. Cloud M-CaMid Its Remote Invocation is composed of both Client and Server

Remote Invocation components since its responsibility comprises receiving and forwarding
remote invocations.

Invoker receives a byte stream from the transport layer and uses it to convert the received byte
stream into parameters to build the method call. Invoker allows the implementation of remote
objects to be independent of details of communication and management. In Cloud M-CaMid,
Cloud Gateway is implemented as a remote object. It is loaded locally by Invoker that calls the
remote method.

Cloud Gateway is composed of Forwarder and Load Balancer. These components manage
the distribution of both cloud and multi-cloud domains. Goals of Cloud Gateway are: (i) Forward
requests to proper remote object’s endpoint wherever it is running on; (ii) Balance requests
among object replicas; (iii) Hide details of cloud provider’s configuration policies (e.g., network
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configurations); and (iv) Provide location transparency for remote objects.
Component Forwarder plays the role of mediator of the communication between a client

application and remote objects. It forwards invocations to the proper remote object’s endpoint
inside or outside the cloud, supporting the location transparency. Naming Service provides
location transparency to remote objects dealing with the dynamic nature of cloud computing and
object visibility on both cloud and multi-cloud domains.

Figure 16 shows the component Forwarder in an remote invocation scenario. The component
redirects incoming invocations to the proper remote object’s endpoint. Forwarder 1 receives
the incoming message and 2 gets the target remote object reference in Naming Service. Thus,
Forwarder 3 redirects the invocation to the target location. Suppose the remote object has been
recently replicated in another node located in the same cloud domain or another one. In that case,
Load Balancer defines which endpoint Forwarder a redirects the invocation message. In the
case of multi-cloud replication, Forwarder of the current cloud domain (cloud1) redirects the
invocation to the new cloud domain (cloud2), which in turn redirects to the proper remote object
endpoint.

Figure 16 – Cloud Gateway on the remote invocation.

Source: author (2021).

Forwarder implements the pattern Location Forwarder in the two strategies described be-
fore. Forwarder diverts invocations to another location without awareness of the client side’s
middleware, in case of replication in the cloud domain; or Forwarder notifies the client-side
M-CaMid about the new object’s location. In the multi-cloud environment, where the Internet is
the communication channel, this last strategy is crucial since it avoids the message goes through
the Internet twice each time a remote object is invoked. Although the client side’s M-CaMid is
aware of changes, it remains transparent to the client application layer. Before replicating, the
object replica must register its new location on Naming System. Information about locations of
objects’ replicas is held by Forwarder and updated by management mechanisms of replication
(management layer).

Note that all communication in a cloud domain goes through Cloud Gateway that encapsulates
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its respective nodes. It is worth noting that Cloud M-CaMid runs in a specific node in the
cloud domain. Through this node, Cloud M-CaMid provides access to cloud and multi-cloud
environments.

4.3.3.3 Node M-CaMid

In the same way, as in the Cloud M-CaMid, Invoker unmarshals a byte stream from the transport
layer into parameters to build the method call. However, instead of requesting Forwarder’s

services, Invoker request to Object Lifecycle Manager (OLM) to create and initiate object
servants locally to execute the requested method. OLM is in charge of managing remote objects’
lifecycle, creating, initiating, destroying and registering objects’ servants locally, ensuring that
no unnecessary servants are loaded into the memory. OLM implements the Pooling pattern.
This pattern introduces a pool of servants for each remote object to handle remote invocations.
Servants are initialised with the state of the remote object they represent. After finalising
execution, the servants remove the objects’ state (Völter et al., 2005).

4.3.3.4 Messaging

The M-CaMid management components adopt messaging (Hohpe and Bobby, 2004) as a
communication pattern to exchange management information. Messaging component implements
the communication pattern. The messaging allows loosely coupled integration among the
management components through asynchronous communication, as shown in Figure 17. Node

M-CaMid sends monitoring information and alerts to Cloud M-CaMid as messages. Node

M-CaMids writes information to a message channel, while Cloud M-CaMid reads ones from that
channel.

Cloud M-CaMid also uses messaging for requesting information to their respective Node

CaMid instances and to others Cloud M-CaMid instances. Figure 17 shows the integration
among the managers.

The messaging system uses two channels for managers integration. Cloud Message Channel

allows the communication among Node CaMid instances and the respective Cloud CaMid and
Multi-Cloud Massage Channel connects the all Cloud CaMid instances.

4.3.4 Service Layer

The two services M-CaMid deliveries are naming and IaaS services. These services act in the
different application domains. For example, the naming service has components for the cloud
domain and multi-cloud domain.



64

Figure 17 – M-CaMid messaging system.

Source: author (2021).

4.3.4.1 Naming Service

The Naming service provides an intuitive identification of resources and binds them to their
respective names regardless of location. In our proposal, we consider three types of resources:
the remote object is the canonical entity in the multi-cloud environment; a node is a VM resource
provided by the cloud domain and has remote object running; cloud domain represents a cloud
provider where remote objects are running. The node’s resource location is defined by its
local network address, usually an Internet Protocol (IP) address. Remote objects use the node
address and a port number (where they are running and listening) to define this endpoint. A
cloud domain has a public IP address for multi-cloud communication and a local IP address for
communication with its respective nodes. The Naming Service locates both remote objects and
cloud domains through their registered names. Even that IP address changes, it is possible to
locate resources because Naming Service updates the services registres when changes occur. It
allows communication through the Internet and communication inside the cloud domain.

However, the high dynamic cloud behaviour requires naming mechanisms to deal efficiently
with sudden changes in resource location and support the multi-cloud interoperability. Fur-
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thermore, those mechanisms must provide an intuitive understanding of resource location to
application developers and location transparency to the application layer.

The multi-cloud environment is composed of independent cloud domains with their respective
namespaces. Thus, locating resources from other cloud domains becomes non-trivial. The Nam-
ing service must consider the many namespaces and provide resource visibility to multi-cloud
applications overcoming the heterogeneity. The dynamic nature of multi-cloud environments
requires scalable and extensible mechanisms for resolving names rapidly and transparently.

M-CaMid considers two basic naming spaces to support these requirements: the cloud
domain and the multi-cloud domain. This approach allows the distribution of naming services
with more flexibility and scalability as well as autonomic management. Components Cloud

Registry, Multi-Cloud Registry, and Resolver compose the naming service in a cloud domain.
Cloud Registry keeps information of nodes and remote objects of the respective cloud domain,
allowing visibility into the cloud domain. In contrast, Multi-Cloud registry stores information
of other cloud domains (name, endpoint and provider) for multi-cloud communication. Both
Registry implementations are data structures based on a hash table, where the key is the resource’s
id, and the value is a reference to the resource information.

Resolver is a set of operations to manage the naming in the registries. Operations of binding

and looking up are realised by this component. A new resource in a cloud domain should be
registered by M-CaMid. Resolver binds new resources and updates information as soon as
necessary. For example, unused resources are unbounded.

The registration process is realised by the binding operation for new remote objects and
nodes. New remote objects running in a node are registered in Cloud Registry by Node Manager.
The binding operation registries the remote object, binding its id to a set of information (name,
endpoint, node id and a Client Proxy object. New nodes in the cloud domain are registered by
Cloud Manager carrying the node identification, endpoint, and configuration information, such
as the number of CPU cores, memory size and operating system.

The lookup operation (Figure 18) is invoked by clients to look up for a service before invoking
any remote object. In the lookup, the client sets the naming service’s endpoint and remote object’s
name. Naming Service returns Client Proxy of the remote object. When a remote object is not
found in the respective cloud domain, its Naming Service asks the other cloud domains about it.
If the service is found in another cloud domain, Naming Service returns the correct cloud domain
endpoint to the client-side. Otherwise, it returns null.

Multi-Cloud Registry provides information to Cloud Manager communicates with others
since each cloud domain Naming Service has information about all the others. Cloud Manager

queries information to Multi-Cloud Registry for requesting resources outside its cloud domain.

4.3.4.2 IaaS Service

The component IaaS Service provides an interface to a set of IaaS’s APIs, dealing with the
heterogeneity of cloud technologies. M-CaMid can interact with different cloud providers
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Figure 18 – Remote object lookup.

Source: author (2021).

transparently. The component uses the open-source library JCloudsr (Apache, 2011). JCloudsr

is a mature library for programming multi-cloud solutions that offer several API abstractions for
programming languages, such as Java and Clojure.

4.3.5 Management Layer

The cloud domain management is realised by a Cloud Manager and a set of Node Managers

as shown in Figure 11. Node Manager is in charge of monitoring all node’s elements (remote
objects, guest OS, and middleware components), sending monitoring information to Cloud

Manager that is responsible for monitoring and controlling all cloud domains. Both managers
interact with each other by exchanging information and requesting services. Each Cloud Manager

manages one cloud domain composed by at least one node that is managed by a Node Manager.
The management layer groups components in charge of managing multi-cloud applications.

Node M-CaMid and Cloud M-CaMid are composed of two main components: Node Manager

and Cloud Manager, respectively. Both components include management mechanisms according
to their operation domain. M-CaMid implements a distributed management in which its roles are
arranged along the node (Node Manager), cloud and multi-cloud (Cloud Manager) domains.

M-CaMid provides a holistic view of the environment and automatically supports the ap-
plication management by taking advantage of cloud elasticity. Automation allows timely and
efficient responses when changes and undesirable events occur in the environment. M-CaMid
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management layer (Figure 19) is composed of:

(a) Node Manager and Cloud Manager that monitor and control the nodes and the cloud
environment, respectively;

(b) Descriptors structures information about multi-cloud application and infrastructure, where
each element of the multi-cloud environment holds a data set defining its attributes and
relationships with other parts. Descriptors also has pre-defined metrics references used as
a reference for monitoring information analysis.

(c) Broker acts as a multi-cloud coordinator in charge of dealing with other cloud domains.
Through Brokers, cloud domains share information about applications and virtual resources
to cooperate. For example, a cloud domain can need to replicate some remote object to
alleviate its workload. Thus, it asks other cloud domains about available nodes that can
host the objects. Cloud domains having enough virtual resources may answer with resource
details that are analysed to choose the best-fit; and

(d) Resource Manager interacts with the IaaS manager of the cloud infrastructure for re-
questing cloud services, such as VM deployment and monitoring information. Resource

Manager uses IaaS Interface in the common service layer to deal with the different IaaS
managers.

Figure 19 – Node M-CaMid and Cloud M-CaMid relationship.

Source: author (2021).

Management considers application and infrastructure layers to monitor and control its
respective elements, combining monitoring information from different layers and domains
to support adaptation. Node Manager and Cloud Manager collect and analyse monitoring data
from nodes and IaaS to support the decision making. In turn, control mechanisms act over the
environment for maintaining the application execution.
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Cloud Manager handles the multi-cloud elasticity by following scaling strategies comprising
a set of rules that Cloud Manager can trigger according to monitoring information collected
from the cloud domain.

Both Node Manager and Cloud Manager uses Descriptors to structure information about the
deployment architecture and execution of multi-cloud applications.

4.3.5.1 Multi-Cloud Descriptors

M-CaMid uses descriptors to structure registry information of each element in the multi-cloud en-
vironment. Descriptors hold data defining elements’ attributes and their relationships. M-CaMid
needs information such as identification, placement, configuration, computing requirements and
metrics. The description is organised in application and infrastructure descriptors. Table 2 shows
the descriptor structure of applications.

Table 2 – Application descriptor.

Element Attribute Structure Description

Object

id String Object’s identification
service String Service name
endpoint [IP]:[port] Object’s location composed by the local IP address and port (integer)
node_id Integer node where the remote object is running
interface {o1,o2, ... ...,on}, n > 0 List of operation
proxy Object type Object’s proxy

sla < max_rt,max_t p >
Metrics used by the M-CaMid monitor, where
max_rt – maximum response time for an invocation (Real)
max_t p – maximum throughput (Real)

sla_metrics {< oi,slai >}, i > 0 List of tuples relating operations to metrics
replicas Integer The number of running replicas
is_replica Boolean Identifies the object as a replica

OS_reqs < OS_type,cpus,mem_size >

Deployment specification for the object, where
OS_type is the operating system;
cpus is the minimum number of required CPUs (Integer); and
mem_size is the minimum memory size required (Integer)

Application
id Integer Application’s identification
name String Application’s name
objects {ro1,ro2, ... ...,rom}, m > 0 List of remote objects

Source: author (2021).

A distributed application is composed of a set of remote objects. Each remote object has
a set of attributes that provides information about its relationships and requirements. For
example, a remote object has an interface whose operations has SLA metrics to be met by the
underlying infrastructure. The application descriptor is relevant to the deployment, execution,
and management of the multi-cloud application.

The infrastructure description is composed of the node and cloud descriptors as shown in
Table 3. Many of those information feeds Naming Service on application initialisation and is
used by both node and cloud monitors.

The developer specifies both application and infrastructure descriptors that is accessed by M-
CaMid. Each cloud domain has a descriptor specifying its infrastructure specification, and each
application also has a descriptor defining its specification. In case of application is distributed
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Table 3 – Node and cloud domains specifications.

Element Attribute Sintaxe Description

Node

id Integer Node identification.
endpoint [IP]:[port] Local network address.

pub_endpoint [IP]:[port]
Endpoint where the Cloud M-CaMid is listening . A not null value means
that the node hosts the Cloud M-CaMid (master_node).

cloud_id Integer Identification of the cloud where the node is deployed.

conf < cpus,mem,os >

Node configuration, where:
cpus is the number of CPU cores;
mem is the size of memory; and
os is the operating system of the VM.

Cloud

id Integer Cloud identification.
provider String Name of the cloud provider.
nodes {n1,n2, ... ...,nm} Set of nodes (node’s ids) belonging to the cloud.
endpoint [IP]:[port] Endpoint where the Cloud M-CaMid is listening on.
master_node Integer It refers to the node id where the Cloud M-CaMid is deployed.
nodes_number Integer Maximum amount of allocated nodes.

Source: author (2021).

in more than one cloud domain, the application descriptor must be replicated in those cloud
domains.

The cloud domains can cooperate at multi-cloud domain by sharing information about
distributed application’s components running on its respective cloud domain and information
about its available resources. Information sharing allows Cloud Manager to infer decisions, such
as the best way to leverage cloud elasticity. The Broker is in charge of cloud interoperability.

4.3.5.2 Node Manager

The Node Manager in Node M-CaMid is composed of monitoring and control mechanisms, as
shown in Figure 20. The monitoring system collects, processes and analyses data from remote
objects, middleware layers and the guest OS (OS of the VM in the node) through the components:

• Observers collect information from the remote objects, the middleware layers stack and
the guest OS (VM’s OS). Observers allow different levels of information granularity that
can be combined to produce additional information and improve the decision-making
process. Observers continually collect CPU and memory usages (System Observers), and
the time consumed to a remote object process incoming invocations (Object Observer).
Also, Handler Observers gather general incoming request data in the node (e.g. incoming
request ratio). All those data are then periodically sent to the Information Processor.

• Information Processor receives raw data to formats and summarises collected data, com-
puting many common statistical values, including lowest and highest values, standard
deviation and mean. The Information Processor periodically calls Monitoring Information

Service (MIS) to analyse the data.

• Monitoring Information System (MIS) infers monitoring data coming from different
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abstraction levels. MIS analyses and relate gathered data from middleware and system
observers. Monitoring data is compared to a set of pre-defined reference metrics specified
in Descriptors to monitor the adequated environmental behaviour and alert about abnormal
events. M-CaMid needs information such as identification, placement, configuration,
computing requirements and metrics.

• Object and Node Descriptors The description is organised in objects and node infrastruc-
ture descriptors. Table 2 and Table 3 shows the description of the remote object and node
data structures, respectively.

Figure 20 – Architectural elements of Node Manager.

Source: author (2021).

Controller in Node Manager implements actions to control remote objects and replicas
running locally, such as local deployment, object binding and unbinding with the Naming
Service’s help. Controller has two components, namely Adaptor and Object Deployer.

Adaptor executes actions for setting up objects and replicas locally. It creates and destroys
objects, create replicas to run in other application nodes, and registers objects in the Naming

Service. For example, when an object needs to be replicated, the Adaptor makes an object’s copy
and sends it to the target node domain. In the target node, the Adaptor receives the replica and
registers it in the Naming Service. Next, the Adaptor uses the Object Deployer to locally record
the replica and deploy it in the Lifecycle Manager.

The Object Deployer is in charge of deploying/undeploying objects and replicas locally.
The deployment registers the object locally and requests the Lifecycle Manager to execute the
object. Conversely, the undeployment unregisters objects locally and stops them in the Lifecycle

Manager.
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Periodically, MIS sends information about the general performance of the node to Cloud

Manager that is responsible for orchestrating the workload balancing in the cloud domain.

4.3.5.3 Cloud Manager

Cloud Manager is in charge of monitoring and control all nodes in a cloud domain. Cloud

Manager is responsible for:

• Managing virtual resources and remote objects, taking actions based on monitoring
information gathered from the environment;

• Interacting with IaaS mechanisms for using its services; and

• Cooperating with other cloud domains for sharing information and requesting services.

Cloud Manager receives nodes’ monitoring information and requests through Cloud Monitor

and processes it to produce knowledge about the environment. Information feeds Cloud Man-

ager that can step in the cloud environment, triggering actions to solve problems or improve
performance. Cloud Manager also monitors incoming invocations to object’s services deployed
in the cloud, metering invocation response time and invocations throughput, for example. These
measurements allow analysing the service behaviour taking into account the communication
between Cloud M-CaMid and Node M-CaMid during a service invocation. Furthermore, Cloud

Manager interacts with other ones to exchange information for supporting the multi-cloud re-
source sharing. Through Cloud Manager, it is possible to accomplish four main tasks: sharing
performance information with other cloud domains, requesting resources, offering available
resources, and executing replication in the multi-cloud environment.

Periodically, Cloud Monitor analyses nodes usage to identify idle nodes and redistribute
the workload among them. Remote objects can be reallocated without depreciating the overall
performance. The workload rearrangement can reduce costs avoiding resource wasting.

Figure 21 presents the components of Cloud Manager. Cloud Monitor has similar compo-
nents to Node Manager. Each node sends information about its performance. Observers in Cloud

Monitor receive information and alerts from nodes and send it to Information Processor to be
processed and then analysed by Monitoring Information Service (MIS). The analysis combines
information to identify relationships among them. Based on these relationships, new information
can be inferred by MIS. Besides, Observers gathers services information from Cloud M-CaMid

distribution layer, such as invocation response time and throughput.
Adaptor performs actions automatically and decides on which plan should be executed to

scale the resource. It must decide what replicates (remote objects or nodes), how to replicate
(scaling up and scaling down) and where to replicate (in the same cloud or outside the cloud).
For example, it can replicate the whole node or just some remote objects to another node.
Adaptor coordinates actions for replication of remote objects requesting services to Scheduler

and Resource Controller. These decisions compose the adaptation plan, as shown in Table 4.
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Figure 21 – Architectural elements of cloud management.

Source: author (2021).

Table 4 – Adaptation plan decisions.

Plan Decisions
What remote objects or nodes
How Scaling up or scaling down
Where Cloud domain or multi-cloud domain

Source: author (2021).

Scheduler executes adaptation plans built by Adaptor. It looks for a list of available nodes,
where Scheduler can deploy remote objects without degrading the node’s performance. If no
active node is available (with enough resources to meet the request), Scheduler interacts with
Resource Controller to allocate a new VM and configure it as a new node. Resource Controller

executes operations at IaaS level and wraps specifics services of the cloud provider, such as
allocating, deallocating and cloning VMs.

Broker acts as a multi-cloud coordinator in charge of dealing with other cloud domains.
Through Brokers, cloud domains share information about multi-cloud applications and virtual
resources. Broker is in charge of requesting resources to other Brokers and selecting them. Broker

receives the request for new resources from Adaptor whenever it is not possible to allocate more
resources in the current cloud domain. Broker asks for more resources by sending a message
to others. In turn, cloud domains with available resources respond through their Brokers. After
receiving the responses, Broker selects the best-fit resources and redirects them to Adaptor that
selects the best-fit option to execute the replication of the remote object. The target cloud domain
can offer resources into a running node or a new node (by instantiating a new VM) if there is not
enough resource in the cloud domain.

Node Managers and Cloud Manager form a group into a domain, following the group
communication paradigm (Coulouris et al., 2013). Each one has attributions as a member, such
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as joining or leaving the group. The group communication allows reliable communication
between the group’s members, ensuring that sent messages are delivered to all target members.
The group communication paradigm manages the member’s participation through four tasks:
(a) creating and destroying groups and adding and removing members, (b) fault detection and
change notification (members are notified about changes, such as new member and leaving
member) (c) message delivery coordination (task delivers messages regardless of the changes in
the member participation). Group Coordination Handler component is in charge of realising
reliable group communication.

4.4 CROSS MANAGEMENT

As discussed previously, M-CaMid must integrate the different domains at different levels.
Managers in Node and Cloud M-CaMid implement transversal management encompassing many
granularity levels that allow more detailed monitoring data to support a more precise action
over the environment (vertical management). Different information levels improve a “best fit”
resource sharing among domains. Instead of deploying entire nodes, M-CaMid can choose
underused nodes to replicate only remote objects. This strategy becomes possible thanks to
cooperation among nodes through the Cloud M-CaMid even out of a cloud domain (horizontal
management).

M-CaMid defines two management dimensions: vertical and horizontal. The vertical dimen-
sion is related to the management granularity level based on the monitoring information analysis.
Coarse-grained management takes place at the infrastructure level through the deployment of new
VMs. Fine-grained control occurs at the application level, where M-CaMid looks for underused
VMs and replicates overloaded remote objects in an existing VM. The vertical dimension refers
to how control actions are realised, while the horizontal dimension refers to where the action
takes place: same cloud (single cloud environment) or another cloud (multi-cloud environment).

The information analysis in the Node M-CaMid periodically checks infrastructure usage
data by comparing it to pre-defined metrics. If MIS identifies inconsistent values, an alert is
generated. For example, the node CPU usage can exceed the maximum allowed value for a
while, overloading the node. MIS notifies the Controller that requests more resource to Cloud

M-CaMid.
Node CaMid sends to Cloud M-CaMid a message with the type of alert and objects’ monitor-

ing information to support the Cloud M-CaMid decision making (Figure 22). For example, a
node’s overloading can be caused by a specific remote object with a high response time. Thus,
Cloud M-CaMid can step in the node only handling the specific object. For a complete analysis,
M-CaMid ask other nodes in the cloud for information about resource usage to elect the “best
fit” nodes as candidates to assist Cloud M-CaMid on environment’s adaptation performed by
Controller. In the absence of available resources in the cloud domain, the Controller, through
Broker component, can request resources outside the cloud.
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Figure 22 – Node MIS and Cloud MIS interactions.

Source: author (2021).

Broker can request resources to other cloud domains, send information about its demand
(Figure 23 shows the Brokers’ relationships). Each Cloud Broker receiving the request asks the
respective MIS about available cloud resources. In turn, MIS requests monitoring information to
its cloud nodes and analyses to select the “best fit” available nodes, as shown in Figure 24. If
there is not enough resource, the Broker responds with an empty list.

Figure 23 – Brokers relationship: Broker0 requests resources to others Brokers.

Source: author (2021).

Each cloud domain can decide about how and where to adapt its environment based on
monitoring information that can be: (i) replication of remote objects (fine-grained management)
to another existing node or create a new node to support the new demand (coarse-grained
management) – vertical management–, and (ii) replication can take place inside or outside the
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cloud domain (horizontal management). Controller’s decisions define how M-CaMid can explore
multi-cloud elasticity.

Figure 24 – Broker locally requesting resources to other cloud domain.

Source: author (2021).

4.5 MANAGING ELASTICITY

The main goal of M-CaMid is the multi-cloud application management by exploiting the elasticity
benefit among multiple clouds. M-CaMid transparently manages distributed applications and
their infrastructure. The elasticity method considers how and where to scale out and in. Issue
how refers to the levels of granularity for elasticity: fine-grained and coarse-grained. In the
first one, elasticity is applied to remote objects, while in the second one, elasticity is applied
to VMs. In both cases, M-CaMid realises a replication task that can be an object or a VM
replication, respectively. Replication is the process of copying a resource and instantiating it in a
distinct computing node in a distributed system, improving availability and performance. Now,
Cloud Gateway in the distribution layer also redirects remote invocations to the original resource
and its replicas through the Load Balancing mechanism that selects a target endpoint. It uses
Load Balancer and Forwarder to select the target node and redirect the invocation to this node,
respectively.

Meanwhile, issue where refers to the domain where elasticity can occur: into the current
cloud domain or outside. Analysis and decision making about elasticity strategy occur in the
Cloud Manager, as presented in Section 4.3.5.3.

In Cloud Manager, Monitor notifies Controller about two types of abnormal events. The
first one occurs when a remote object’s response time overcomes the response time threshold
defined in the policy, breaching pre-defined requirements. This type of event is detected by
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Cloud Manager, where the total response time in server-side can be measured and analysed by
Monitor that, in turn, produces an alert to Controller. The second one occurs in a node domain
when its VM is overloaded, and the system’s thresholds (CPU or memory usages) are overtaken.
An overloaded VM may occur due to a massive amount of invocations to a remote object. Thus,
the service response time also can increase due to the VM overloading.

Regarding where elasticity takes place, two strategies are defined: cloud elasticity and multi-
cloud elasticity. The first is a default strategy, while the second is triggered if it is impossible to
allocate more resources in the current cloud (resource limit has been reached).

4.5.1 Cloud Elasticity

Cloud Manager can generate alerts when response time some service overtakes a pre-defined
threshold during a period. Cloud M-CaMid Monitor, through Observers (Figure 25, 1 ), mea-
sures the response time of remote objects’ invocations in Cloud Gateway. Information Processor
computes statistical measurement, such as mean response time and throughput. MIS can identify
abnormal events based on statistical data. Since generated alert refers to an application service
running in one or more nodes (in case the service has replicas) in the cloud, Cloud Manager

requests monitoring information (CPU and memory usage) to all related nodes. Node MIS in
Node Manager of each related Node M-CaMid sends information to Information Processor in
the Cloud M-CaMid that relates nodes’ information to the overloaded service and sends to MIS.
MIS analyses how nodes are affected by service overloading. Nodes with critical performance
are candidates to be adapted.

Figure 25 2 also shows another type of event generated by Node Managers to notify Cloud

Manager about system overload (CPU usage). In Cloud M-CaMid, Cloud Manager receives
an alert with event monitoring information and a list of remote objects running in that node.
Information Processor relates event information to the respective service’s throughput and
response time collected by Observers from in Cloud Gateway. Information Processor also gets
information about available nodes resources in the cloud domain. MIS analyses information to
identify which remote objects are more affected by node’s overload (by comparing response
time and throughput thresholds). In both cases, MIS analyses information at the infrastructure
and application levels to provide a precise analysis to support Adaptor on decision making.

Adaptation process is exclusively realised by Cloud M-CaMid as shown in Figure 26. Based
on analysed information, Adaptor in Cloud Manager makes decision about what and how and
where to adapt. Adaptation defines the granularity level of elasticity (what), actions to be
executed (how) and where executing replication.

Adaptor is in charge of making an adaptation plan, defining what, how and where to do.
Adaptor defines the granularity level of elasticity: coarse-grained or fine-grained. First, Adaptor

decides what to do, choosing between two options: scaling up or scaling down. In case of
occurrence of a node overload or a service exceeds its response time threshold, Adaptor decides
to scale up. Scaling up can be accomplished according to the elasticity strategy defined in the
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Figure 25 – Event detection and analysis in cloud elasticity process.

Source: author (2021).

plan (how). Instead, a service implemented by a remote object and its replicas can have response
time and throughput under their minimum limits. These minimum limits are defined through
controlled tests that combine response time and throughput measurements to state minimum
values to keep the service stable. When these measurement values are reached, Adaptor decides
to scale down, turning some remote objects off. Scaling down does not undeploy nodes because
they can be used in the short term to host other affected remote objects.

Regarding how to adapt, Adaptor checks a list of available nodes provided by Information

Processor to find underused nodes. For example, a node with CPU usage under 30% can be an
available resource composing the available node list. In case of the list is not empty, Adaptor

chooses fine-grained elasticity, replicating the most performance affected remote objects in other
underused nodes. On the other hand, if the available node list is empty, Adaptor must plan to
request new nodes to host affected remote objects.

Finally, Adaptor plans where adaptation must take place. Suppose the available nodes list is
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empty and no more resources can be allocated (maximum resource limit has been reached). In
that case, Adaptor decides for scaling up outside the cloud domain, requesting resources to other
clouds.

Adaptor concludes the adaptation plan by defining what to do (scaling up and down), how to
do (fine-grained and coarse-grained elasticity) and where to do (cloud and multi-cloud domains).
Table 4 summarises the plan options of Adaptor. After, Adaptor requests to Scheduler to execute
adaptation plans.

Figure 26 – Adaptation in cloud and multi-cloud elasticity process.

Source: author (2021).
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As explained in Section 4.3.5.3, Scheduler is in charge of executing adaptation plan. It
maps remote objects to available nodes selected by Adaptor. Depending on how to do the
adaptation, Scheduler can execute replication actions (scaling-up) or deactivate remote objects
(scaling down). Scaling up action depends on what must be adapted: remote object through
fine-grained elasticity or node through coarse-grained elasticity. In both cases, Scheduler notifies
both source and target Node Managers about which and where remote objects must be replicated.
Source Node Manager sends an object’s copy to the target one that deploys the object locally
(Object Deployer). The new replica is registered locally and in Naming Service. However,
when adaptation occurs outside the cloud (multi-cloud domain), Scheduler requests to Broker to
mediate new resources acquisitions in the multi-cloud domain.

Scaling down action deactivate remote objects which service’s measures are under minimum
limits. M-CaMid prioritises turning remote objects off hosted in other clouds and those hosted in
nodes with low CPU usage.

4.5.2 Multi-Cloud Elasticity

The multi-cloud elasticity is triggered when no more resources are available in the current cloud
domain. In this scenario, source cloud Broker requests more resources to all clouds in the
multi-cloud domain through Broker, sending information about its demand. Each target cloud
domain (through its Broker) receives and analyses the request. First, Broker checks the node
availability, i.e., the number of running nodes and total nodes available in that cloud domain.
Without enough reservation, the cloud domain is unfit to meet the demand. Target Broker

validates a request based on its deployment constraints: VM size (memory and CPU), OS type
and maximum resource limit. In case the cloud domain meets constraints, Broker sends the
resource characteristics to the source cloud domain. The source cloud domain may receive the
resource offering of many cloud domains and, thus, decides which one best fits the demand.
Once the source cloud domain chooses the best fit resource, its Broker sends object’s replicas to
be deployed in the new cloud domain.

Remote object replication processes among cloud domains are similar to the respective cloud
processes. The difference is that Broker mediates the process. It is in charge of getting the
object’s copy and sending it to the target Broker. In turn, the target Cloud Controller and Node

Controller are responsible for deploying the remote object’s copy deployment in the respective
domain. The target node notifies about the operation success or failure. The new object is
registered in Naming Service. The source cloud domain is also notified, and the new location is
registered in its Naming Service. The registration is useful to Forwarder redirects multi-cloud
invocations as described in Section 4.3.3.2.
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4.6 CONCLUDING REMARKS

This chapter presented requirements for designing the M-CaMid architecture. Principles (Chap-
ter 3) and Requirements drove the M-CaMid architecture design. To be multi-cloud aware,
M-CaMid defined three domains in the multi-cloud environment: node, cloud and multi-cloud.
The architecture details and operations were discussed regarding distributed application commu-
nication and management in a multi-cloud environment. The architecture’s layers were presented:
transport, distribution, common service and management. Cross management gave how its com-
ponents interact to manage multi-cloud distributed applications by exploring elasticity in the
cloud and multi-cloud domain. Finally, elasticity management was explained, presenting its
components and how adaptation is accomplished.
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5 EXPERIMENTAL EVALUATION

This chapter discusses experiments to evaluate M-CaMid. The main goal is to assess the M-
CaMid in managing multi-cloud distributed applications by exploring elasticity at different levels
of granularity and scopes. A systematic approach for performance evaluation was adopted (Jain,
1991) to accomplish the experiments. First, some steps are defined to conduct the experiments:
goals and system boundaries, scenarios, services and outcomes, metrics, parameters and factors,
experiment design. Then, the results are presented and discussed.

5.1 GOALS AND SYSTEM BOUNDARIES

The experiments’ main goal is to estimate the impact of using M-CaMid over the performance of
multi-cloud distributed applications. The experiment’s system consists of a multi-cloud envi-
ronment. Its components are a multi-cloud distributed application, a multi-cloud infrastructure
composed of a set of private clouds and M-CaMid. The multi-cloud application follows a client-
server architecture, where the client-side can invoke a service implemented by remote objects on
the server-side. The service executes the calculation of the Fibonacci sequence. Remote objects
can be hosted in a single node, in many nodes in a single cloud, or many clouds.

Since M-CaMid is a client-centric solution, some environment components do not belong
to the system under evaluation: tools for IaaS management, low-level communication channel
and the Internet. Public clouds are not used in the experiments because their IaaS infrastructure
resources are out of the system boundaries.

5.1.1 Scenarios’ Description

M-CaMid runs on scenarios where a multi-cloud application executes in a limited-growth
infrastructure and is submitted to unpredictable peaks of workloads.

To face this challenge, M-CaMid supports the high availability and scalability of multi-cloud
applications. The implemented distributed application follows the client/server architecture, in
which a wide range of client applications (client-side) invoke remote objects’ methods (server-
side). The client-side is deployed on top of a VM outside of cloud domains. The remote object
on the server-side delivers as a service the calculation of Fibonacci sequence. Initially, instances
of M-CaMid Naming Service and Cloud M-CaMid are deployed in all cloud domains. Cloud M-

CaMid instances register themselves in the respective M-CaMid Naming Service. Then, a Node

M-CaMid instance is deployed on a VM in the respective cloud domain. It is worth noting that
Node M-CaMid deployment can occur in more than one cloud domain. Node M-CaMid registers
itself and its remote objects in the respective M-CaMid Naming Service. After registration, a
remote object can be reachable by client-side instances.
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The multi-cloud environment is composed of two cloud domains where remote objects
are deployed. Both cloud domains have the same hardware configuration but different cloud
management technologies: OpenNebula (Moreno-Vozmediano et al., 2012) and OpenStack
(RackSpace, 2010). In both cases, the cloud infrastructure comprises a cloud frontend and a
host server. The cloud frontend is in charge of managing hardware resources and works as an
interface for cloud users, and the host server shares its resource for VMs. The OpenNebula and
OpenStack frontend instances run on machines core i5 2.44GHz with 4 GB of memory, and their
respective host servers are octa-core Xeon 2.93 GHz machines with 20 GB of memory.

VMs for hosting M-CaMid instances (Cloud and Node M-CaMid) are configured with one
CPU core and 1 GB of memory. Initially, two VMs were deployed to execute the experiments: a
server-side application node (Node M-CaMid) and a Cloud M-CaMid VM. As the experiment
progresses, Cloud M-CaMid may deploy new VMs.

5.2 M-CAMID’S SERVICES AND OUTCOMES

M-CaMid provides a set of services for managing communication and distribution of multi-cloud
applications. M-CaMid must keep the multi-cloud application working properly, assuring its
properties. At the same time, it manages the underlying infrastructure, providing efficient use of
its resources.

It is expected that M-CaMid supports the remote object invocation assuring its correct
completion within an acceptable period (response time). Otherwise, the invocation can fail or
take a time higher than the pre-established threshold. The undesirable requests must be detected
by M-CaMid that acts over the environment through the elasticity. Elasticity management
comprises monitoring and controlling resources through replication, migration and load balancing
in different domains. Undesirable results are short reaction time by M-CaMid facing unwanted
events (e.g., overload) and efficient workload distribution among application’s nodes. The
desirable results are low overhead and error rate in remote invocation when M-CaMid’s services
are activated.

5.3 EXPERIMENTS

Three experiments evaluate the M-CaMid operations for managing multi-cloud distributed
applications:

1. Management reaction time: evaluates the automatic control of M-CaMid on dealing with
undesired environment’s behaviour. It observes how fast M-CaMid steps in the environ-
ment to keep it stable. The experiment evaluates M-CaMid’s performance measuring
the reaction time and response time with M-CaMid management turned off and turned
on. Both scenarios are analysed by comparing each other. In the scenario turned on, the
reaction time is measured in two elasticity levels (VM and application level).
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2. Elasticity resource management: assesses the rational usage of infrastructure (virtual
machines) considering coarse- and fine-grained management. It evaluates M-CaMid man-
agement by measuring the resource usage of VMs (CPU usage), observing resource over-
and under-provisioning aspects. The experiment scenario takes place at two management
levels: coarse- and fine-grained management.

3. M-CaMid overhead: assesses the overhead introduced by M-CaMid’s node monitor on the
application performance. The overhead is measured in two scenarios: node monitor turned
off, and node monitor turned on. This experiment is limited to the monitoring system
because a growing workload stresses M-CaMid. In this case, if the M-CaMid controller is
on, the manager triggers the elasticity to fix the overload problem, affecting the experiment
results.

5.4 REACTION TIME

The experiment’s primary goal is to assess how fast M-CaMid automatic management intervenes
in the environment to reestablish a multi-cloud application’s regular operation. It intends to
observe the time spent by M-CaMid’s strategies to reconfigure the environment under undesired
behaviours. Metric reaction time is measured in milliseconds data units. Reaction time is
measured when M-CaMid management is configured to adopt different levels (coarse- and
fine-grained control) in the single cloud and multi-cloud domains. The experiment analyses
differences among strategies in both domains. Fine-grained management is expected to take
less time to reconfigure the environment regardless of the domain—furthermore, the experiment
analyses differences in the same management strategy in both domains.

5.4.1 Hypotheses

In the experiment null hypotheses (H01..6), there is no difference in the reaction time (RT ) when
cross management strategy assumes the configurations turned off (o f f ), coarse-grained (cg) or
fine-grained ( f g) levels, whether at a single cloud (sc) or multi-cloud (mc) domains.

H01 : RTo f f _sc ∼= RTcg_sc

H02 : RTcg_sc ∼= RTf g_sc

H03 : RTcg_sc ∼= RTf g_mc

H04 : RTcg_mc ∼= RTf g_mc

H05 : RTcg_sc ∼= RTcg_mc

H06 : RTf g_sc ∼= RTf g_mc

On the other hand, the alternatives hypotheses (H11..6) are:
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H11 : RTo f f _mc < RTcg_sc

H12 : RTcg_sc < RTf g_sc

H13 : RTcg_sc < RTf g_mc

H14 : RTcg_mc < RTf g_mc

H05 : RTcg_sc < RT cg_mc

H06 : RTf g_sc < RT f g_mc

5.4.2 Metrics, Parameters and Factors

The metric adopted to assess the mean reaction time (RT ) is the time taken by M-CaMid to
conclude management actions to restore the multi-cloud application’s regular operation. This
period comprises the undesired event detection (application’s response time violation) until the
multi-cloud application regular operation reestablishment (response time under the maximum
limit).

The system parameters are constants. Thus, we keep the exact configuration of VMs, cloud
management configurations, and hardware specifications (Section 5.4.4). The cloud and multi-
cloud domains are simulated in private environments to avoid distortions on measuring caused
by the Internet’s speed fluctuations.

The workload parameters (factors) vary to analyse M-CaMid behaviour while it steps in the
environment. Section 5.4.4 describes the workload in details. The workload parameters are the
following:

• Number of clients (NC): number of simultaneous users (client-side instances);

• Cross management (CM): it can be turned off, turned on and set to coarse- or fine-grained
management (CM = {o f f ,cg, f g}); and

• Domain (D): it indicates the domain where replication takes place (single cloud or multi-
cloud) (D = {sc,mc}).

5.4.3 Treatment

The treatment applied to this experiment is the M-CaMid cross management approach that
manages the elasticity at different granularity levels and domains. The absence of treatment is
called cross management off in a single cloud domain, while the treatment is called management
in the single cloud and multi-cloud domains.

M-CaMid cross management impacts are analysed by comparing multi-cloud application
performance without treatment, with M-CaMid cross management acting exclusively at the
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infrastructure and application levels. Besides, treatments are compared to validate the use of
multiple strategies and domains.

The experiment’s control object is a multi-cloud distributed application whose server-side is
a remote object that implements the Fibonacci sequence in two situations: without M-CaMid
management (CM = o f f ) in a single cloud (D = sc) and with coarse-grained management
(CM = cg) in a single cloud (D = sc). The experiment submits the object control to a workload
to observe its behaviour as the workload varies.

The experimental object is the same as the control object but with M-CaMid management
configured to fine-graned management. The experiment also submits the same workload as the
control object. Both object behaviours are observed at single cloud and multi-cloud domains.

5.4.4 Experimental Design

A client-server application implemented atop M-CaMid and two cloud technologies, namely
OpenNebula (Moreno-Vozmediano et al., 2012) and OpenStack (RackSpace, 2010), were utilized
in this experiment. The OpenNebula was configured with an IaaS manager (frontend) and a
host for running VMs. The frontend runs on a machine core i5 2.44GHz with 4 GB of memory,
and the host is an octa-core Xeon 2.93 GHz machine with 20 GB of memory. Each VM is
configured with one CPU core and 1 GB of memory. Three VMs were deployed to execute the
experiments: a server-side application and its replicas. OpenStack was configured in a similar
way to OpenNenbula.

Figure 27 shows the basic configurations used in all scenarios. In the first scenario (S1), which
works as a base case of response time behaviour, cross management is turned off. In Scenario
S2, cross management is set to trigger the coarse-grained strategy, deploying a new VM when
necessary. Scenario S3 describes how existing underused VMs can support new application’s
replicas without the need for new VM deployments. These three scenarios were deployed in a
single cloud environment, as shown in Figure 27a.

In the multi-cloud scenarios (S4 and S5), shown in Figure 27b, the current cloud domain do
not support more resources to new application’s replicas and become necessary to request further
resources in another cloud domain. In these scenarios, it is up to the target cloud domain to
decide the cross management level that Adaptor must trigger. In scenario S4, the target cloud
deploys a new VM (coarse-grained level). In contrast, in scenario S5, a new application’s object
replica is created in an existing VM in the target cloud domain.

The experiments use a workload pattern having a periodic unexpected workload increase.
In this way, it is expected that the response time suddenly increases and exceeds a pre-defined
maximum response time. The execution starts with 100 clients that continuously invoke a
method to the remote object that runs on the server-side. After 60 seconds, the number of clients
increases to 300 and lasts for 200 seconds. During this time, the server-side becomes overloaded,
leading to an abrupt increase in the response time. After that, the number of clients decreases to
100, and the response time returns to the same level as before. The same pattern repeats until the
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Figure 27 – Basic configurations used in all scenarios.

(a) Single cloud environment.
(b) Multi-cloud environment.

Source: author (2021).

Table 5 – Evaluation scenarios.

Scenario Cross management
strategy Domain

S1 OFF sc (single cloud)
S2 cg (coarse-grained) sc (single cloud)
S3 f g (fine-grained) sc (single cloud)
S4 cg (coarse-grained) mc (multi-cloud)
S5 f g (fine-grained) mc (multi-cloud)

Source: author (2021).

end of the experiment.
Each client continuously makes requests, and the time interval between requests has a Gaus-

sian distribution whose mean value and standard deviation are 50ms and 12.5ms, respectively.
Additionally, two thresholds were defined to trigger the creation/release of VMs. If the response

time becomes higher than 1300ms (highest response time), a new VM is necessary. Meanwhile,
if the response time becomes lower than 500ms (lowest response time), there is an excess of
resources being allocated, and a VM needs to be released. All mentioned thresholds were empiri-
cally defined through several initial experiments, where the system ran in different scenarios and
under diverse operational conditions.

5.4.5 Analysis

This experiment compares the data of experimental and control objects to check the null hypoth-
esis rejection. First, this section discusses the observed scenarios behaviours. It then analyses
the cross management impact over the M-CaMid reaction time by denying null hypotheses (Sec-
tion 5.4.1).Table 6 summarises statistical results of the experiments for each scenario presented
in Table 5.
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Table 6 – Average reaction time and standard deviation in different experiment’s scenarios.

Scenario Reaction time (s) Standard deviation (s)
S1 182 4.472
S2 110 7.071
S3 22 4.472
S4 122 8.365
S5 36 5.477

Source: author (2021).

Figure 28 shows the behaviour of metric response time in scenario S1. As mentioned before,
this scenario works as the base case in which the cross management is disabled, and the response

time is only impacted by the changes defined by the workload pattern described before.

Figure 28 – Response time without elasticity management.

Source: author (2021).

Figure 29 shows the behaviour of response time in scenarios in which the M-CaMid cross
management is enabled in a single cloud. Figure 29a shows the coarse-grained management
level in action as defined in scenario S2. It is possible to observe that higher response time and
lower response time violations trigger the coarse-grained strategy deploying a new VM to host
an object’s replica when the higher response time is reached. Meanwhile, M-CaMid releases the
VM when the response time is below lower response time. The creation and releasing of VMs
occur in a single cloud.

The null hypothesis H01 proposes no significant difference between the mean response time
in S1 and the mean response time in S2. In scenario S1, the meantime between the abnormal
event detection and the response time reestablishment was 182s with a standard deviation of
4.472s, while scenario S2, it was 110 with a standard deviation of 7.071.
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Figure 29 – Response time with elasticity management (single cloud).

(a) Coarse-grained elasticity.

(b) Fine-grained elasticity.

Source: author (2021).

The null hypothesis H01 is rejected in the statistical t-test since the result is significant
at p < 0.05: t-value is 19.243, and p-value is < 0.00001. Thus, the experiment can assert a
significant performance gain when M-CaMid manages a multi-cloud application. Furthermore,
the effect size for the t-test is Cohen’s d = 12.17, expressing a hugely significant difference.

In scenario S3, Figure 29b, M-CaMid steps in the cloud replicating a remote object in an
underused VM belonging to the same cloud. In this scenario, it is possible to note the mean
response time remains above higher response time for a shorter period than in scenario S2 (22s

with a standard deviation of 4.4721s, and 110s with a standard deviation of 7.071s, respectively).
This difference happens because starting a new VM with a coarse-grained management strategy
takes longer than finding an existing underused running VM and replicating the remote object.
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However, the existence of an underused VM is necessary to execute the fine-grained strategy.
The null hypothesis H02 proposes no significant difference between the mean response time

in S2 and the mean response time in S3. In scenario S2, the meantime between the abnormal
event detection and the response time reestablishment was 182s with a standard deviation of
4.472s, while scenario S2, it was 110s with a standard deviation of 7.071s.

The null hypothesis H02 is rejected in the statistical t-test since the result is significant at
α = 0.05: t-value is 19.243, and p-value is < 0.00001. Thus, the experiment asserts a significant
performance gain when M-CaMid manages a multi-cloud application. Furthermore, the effect
size for the t-test is Glass’s delta δ = 16.1, expressing a very significant difference.

The null hypothesis H03 says no significant difference between mean response time in
scenarios S2 e S5. The experiment intends to reject this hypothesis to show that the fine-
grained management level takes less time even in the multi-cloud domain when compared to
the coarse-grained level in a single cloud domain. In Scenarios S2 and S5, M-CaMid takes 110s

(standarddeviation= 7.071) and 36s (standarddeviation= 5.477) to execute the coarse-grained
and fine-grained levels, respectively.

The statistical t-test of H03 results in the hypothesis rejection with t− value = 18.5 and
p− value < 0.00001. The result is significant at p < 0.05. It concludes that even if the object
replication occurs in another cloud, the taken time to perform the replication is less than deploying
a new VM in the same single cloud. The t-test effect size is Cohen’s d = 11.7, ratifying the null
hypothesis rejection.

The same comparison between Scenarios S4 and S5 is analysed. The null hypothesis H04

argues no significant difference when M-CaMid cross management performs both management
levels in a multi-cloud domain. The t-test result rejects the null hypothesis, presenting a
significant difference between the samples at p < 0.05 with t− value = −6.532, p− value =

0.000091. Once more, the result validates that deploying a new VM costs more than replicating a
remote object, even in the multi-cloud domain. The Cohen’s d effect size reinforces the rejection
with d = 2.8.

By comparing the behaviour of coarse-grained level in the single cloud (Figure 29a) and multi-
cloud (Figure 30a) domains (scenarios S2 and S4), it is possible to note that it performs better
in a single cloud with reaction time of 110s (standard deviation = 7.072) and 122s (standard

deviation = 8.365) in scenarios S2 and S4, respectively, i.e., the coarse-grained management
in a single cloud is 10.909% faster than in a multi-cloud environment. This difference has its
origin in three facts: different cloud technologies have distinct deployment methods, the VM size
differs from cloud to cloud technologies, and the time taken to request, analyse and select another
cloud domain. The chosen cloud domain also spends time searching and assigning resources to
perform the best-fit approach to meet the new demand.

The statistical t-test of H05 says that there is no significant difference between scenarios S2

and S4 results in the hypothesis rejection with t− value =−2.449 and p− value = 0.02. The
result is significant at p < 0.05 with a significance level α = 0.05. H05 is rejected with an
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Figure 30 – Response time with elasticity management (multi-cloud).

(a) Coarse-grained elasticity.

(b) Fine-grained elasticity.

Source: author (2021).

effect size is Cohen’s d = 1.549, ratifying the null hypothesis rejection. The difference between
S2 and S4 is because there are delays related to the multi-cloud communication and the cross
management actions performed in the chosen cloud domain. However, the effect size is much
smaller compared to the other t-tests.

A similar comparison between the performance of the fine-grained level in single (Figure 29b)
and multi-cloud (Figure 30b) environments (scenarios S3 and S5) shows that it performs 80%
better in the single one. Also, this difference is because of the network delay and cross manage-
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ment operations delay in the target cloud. These values are absolutes regardless of the domains.
Thus, the experiment rejected the hypothesis H06. t-value is −4.42719 and p-value is 0.001103.
The result is significant at p < 0.05 with a Cohen’s d impact size of d = 2.8.

Figure 31 compares the response time behaviours in the different scenarios, zooming in
a eight minutes interval. In this figure, it is possible to observe how fast M-CaMid cross
management reacts when the application is overloaded underloaded, i.e., the response time
becomes higher than the higher response time and less than the lower response time.

Figure 31 – Response time behaviour with elasticity management at different scenarios.

Source: author (2021).

As expected, the fine-grained approach is faster than the coarse-grained one, whatever the
environment. The performance of each method is better in the single cloud than in the multi-
cloud environment because of network and management delays performed in the case of two
single cloud negotiation and management (multi-cloud domain). Table 7 summarises the null
hypothesis statistical t-test values.

Table 7 – Experiment t-tests results.

Hypothesis Null hypothesis t-value p-value Cohen’s d
H01 rejected 19.243 < 0.00001 12.17
H02 rejected 19.243 < 0.00001 16.1
H03 rejected 18.5 < 0.00001 11.7
H04 rejected −6.532 < 0.00001 12.162
H05 rejected −2.449 0.02 1.549
H06 rejected −4.42719 0.001103 2.8

Source: author (2021).

It is worth observing that although rejection of the null hypotheses H05 and H06, Cohen’s
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impact sizes are too small compared to the other ones. It means that both null hypotheses t-test
are much closer to no rejection than the other hypotheses analysis results.

5.5 RESOURCE MANAGEMENT

One of the M-CaMid goals is the rational usage of infrastructure resources through the cross
management method. Resource management experiment assesses if M-CaMid reaches its goals
by observing how management leverages infrastructure to maximise resource usage.

It is expected M-CaMid leverages underused VMs (fine-grained management - f g) instead
of creates new VMs (coarse-grained control - cg). In this scenario, there are underused VMs in
cloud domain which M-CaMid must analyse the possibility of object replication instead of new
VMs deployments. The resource usage is evaluated through metrics related to VM processor
usage.

The experiment evaluates the amount of VMs and the CPU percentage used by the server-side
application in two scenarios: when M-CaMid cross management is configured with coarse-
grained (S1) and fine-grained (S2) levels. Results of both scenarios are compared to decide which
one is more efficient. Furthermore, the experiment calculates the efficiency of M-CaMid using
infrastructure resources EFF (Equation (1)).

5.5.1 Hypotheses

Based on the previous description, The experiment can define its hypotheses. Thus, null
hypotheses advocate no difference between the M-CaMid cross management strategies regarding
resource usage:

H0 : CPU_usagecg ∼=CPU_usage f g

Alternative hypotheses argues that fine-grained level uses better available resources than the
coarse-grained level:

H1 : CPU_usagecg <CPU_usage f g

5.5.2 Metrics, Parameters and Factors

The metric adopted to assess resource usage efficiency (EFF) is the proportion of resources used
and resources available – Equation (1). The resource usage is measured in CPU percentage with
value in a 0..1 range. Furthermore, CPU usage is related to the mean application’s response time.
Even if the CPU usage is at 1 (100%), the average response time can be within the pre-defined
limits. It means that, probably, the application is using the CPU as much as possible. On the
other hand, if the average response time increases out of bounds while the CPU usage remains at
1, it means a performance depreciation. The mean response time (RT ) is measured in seconds.

EFF =
∑CPU_usage

∑CPU_available
(1)
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The system parameters are constants. Thus, we keep the exact configuration of VMs, cloud
management configurations, and hardware specifications (Section 5.4.4). The cloud domain is
simulated in private environments to avoid distortions on measuring caused by the Internet’s
speed fluctuations. Besides, available underused resources are set with a small CPU workload
(≈ 0.25).

The workload parameters (factors) vary to analyse the resource usage by M-CaMid while
it steps in the environment. Section 5.5.4 describe in details the workload. The workload
parameters are the following:

Number of clients - NC : number of simultaneous users (client-side instances); and

Cross management - CM : it is set to coarse-grained and fine-grained management levels
(CM = cg, f g).

5.5.3 Treatment

The treatment applied to this experiment is the M-CaMid cross management approach that
manages the elasticity at different granularity levels. The reference treatment is the coarse-
grained level in a single cloud domain, while the treatment is the fine-grained level in a single
cloud domain.

M-CaMid cross management fine-grained level impacts on the resource usage are assessed
by comparing to the coarse-grained level. Coarse-grained management is the usual elasticity
level adopted in cloud providers.

The experiment’s control object is a multi-cloud distributed application whose server-side is
a remote object that implements the Fibonacci sequence in two situations. M-CaMid is set to
coarse-grained level (CM = cg) in a single cloud. The experiment submits the object control to a
workload to observe its behaviour as the workload varies and triggers cross management.

The experimental object is the same as the control object but with M-CaMid management
configured to fine-grained management. The experiment also submits the same workload as the
control object. Both objects behaviours are observed at a single cloud.

5.5.4 Experimental Design

The experiment system follows the same configuration as defined in Section 5.5.4. Each VM
is configured with one CPU core and 1GB of memory. Three VMs were deployed to execute
the experiments: a server-side application and its replicas. One of the VMs is the available
underused resource (AR), with a Gaussian distribution whose average workload of 0.25 and a
standard deviation of 0.05.

The number of clients (NC) increases and decreases to generate different workloads to trigger
cross management control to step in the environment and observe the relation between used
resources and available resources.
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The experiment starts with 100 clients invoking remote objects. Each client continuously
invokes a remote object in time intervals of a Gaussian distribution whose mean value and
standard deviation are 50ms and 12.5ms, respectively. Additionally, two thresholds were defined
to trigger cross management. If the response time becomes higher than 1300ms (highest response

time), new resource is necessary.

5.5.5 Analysis

The analysis discusses the resource usage during the experiment by comparing it with the
application response time measurement in scenarios S2 and S3. Figure 32 shows resource usage
by M-CaMid coarse-grained management. The graph overlaps the measurements, showing when
M-CaMid add a new node, the application response time decreases. Similarly, when the response
time is under the lower limit, the node is put away, increasing the response time again but still
within limits.

Figure 32 – Node usage in coarse-grained strategy.

Source: author (2021).

The same behaviour occurs when M-CaMid executes fine-grained management. However, the
reaction time is shorter, and the amount of the used node is smaller. Figure 33 shows used nodes
by fine-grained strategy along the experiment time. A fine-grained approach takes advantage of
underused resources.

Regarding CPU usage, Figure 34 shows available CPU percentage (dashed line) and used
CPU by M-CaMid coarse-grained strategy. Note that there are no utilising resources as occurs in
traditional infrastructure elasticity. Instead, it deploys new resources regardless of underused
resource availability. On the other hand, M-CaMid fine-grained strategy leverages underused
resources to avoid resource-wasting, as shown in Figure 35. M-CaMid keeps a rational number
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Figure 33 – Node usage in fine-grained strategy.

Source: author (2021).

of nodes whenever possible.

Figure 34 – CPU usage in coarse-grained strategy.

Source: author (2021).

The CPU usage average in both strategies is presented in Figure 36. It compares the total
used and total not used CPU by the server-side application, considering coarse-grained and
fine-grained cross management levels. Coarse-grained wastes about 0.532 of 3 CPUs, and
fine-grained does not use only 0.08 from 2 VMs. The coarse-grained efficiency is EFF = 0.194
and fine-grained has EFF = 0.954. Table 8 summarises the results of rational usage of CPU
resources.
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Figure 35 – CPU usage in fine-grained strategy.

Source: author (2021).

Table 8 – CPU usage efficiency (EFF) in coarse and fine-grained management strategies
(scenarios S1 and S2, respectively).

Scenario Adaptation
strategy

Underused
CPU ratio

Used
CPU ratio

Available
CPU ratio EFF

S2 cg (coarse-grained) 2.204 0.532 2.736 0.194
S3 f g (fine-grained) 0.08 1.656 1.736 0.954

Source: author (2021).

With these results, the null hypothesis H0 can be rejected because the result is significant at
p < 0.05 with t−value =−6.833 and p−value = 0.000067. The effect size Cohen’s d = 4.49.
Thus, the experiment shows the efficiency of M-CaMid using cloud resources is satisfactory.

5.6 PERFORMANCE OVERHEAD

This experiment assesses the overhead introduced by M-CaMid in the multi-cloud application
performance and its infrastructure. It intends to observe the impact on invocations’ response time
when the experiment submits a multi-cloud application to a variable workload. This investigation
also defines levels of workload supported by M-CaMid.

As outcomes, it is expected M-CaMid manages remote objects and their infrastructures during
the multi-cloud application execution without significant overhead introduction. The overhead
can be expressed by the metric response time measured when the client-side application invokes
a successively remote object (RO). This metric evaluates the overhead over the multi-cloud
application. The infrastructure overhead is expressed by VM CPU usage (V M). The experiment
occurs in two scenarios: M-CaMid with cross management turned OFF (OFF) and turned ON
(ON).
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Figure 36 – CPU percentage used by M-CaMid cross management.

Source: author (2021).

5.6.1 Hypotheses

In the experiments null hypotheses (H0RO..V M), there are a significant difference among re-
sponse times (H0RO) and significant differences among CPU usage (H0V M) when M-CaMid
management is OFF or ON.

H0RO : ROOFF < ROON

H0V M : V MOFF <V MOFF

On the other hand, the alternatives hypotheses (H11..3) are:

H1RO : ROOFF ∼= ROON

H1V M : V MOFF ∼=V MOFF

5.6.2 Metrics, Parameters and Factors

As aforementioned, response time and CPU usage are metrics to access how M-CaMid man-
agement affects multi-cloud applications and VM performances, respectively, by introducing
workload overhead.

The system parameters are fixed, keeping the exact configuration of VM, cloud management
configurations, and hardware specifications (Section 5.4.4). The experiment carries only on
the cloud domain since it is expected that VMs have similar behaviour regardless of the cloud
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technology. Furthermore, M-CaMid switches off parameters for triggering actions because the
experiment aims to stress the system to observe the elements’ behaviours.

Some factors affect the M-CaMid performance. The workload parameters (factors) vary to
analyse M-CaMid behaviour. They are:

1. Number of clients: number of simultaneous users (client-side instances);

2. Number of invocations: number of successive remote invocations performed by each
user;

3. Cross management: it can be turned on or turned off.

Table 9 shows factors and their respective values assumed in the experiment.

Table 9 – Factors and values of M-CaMid overhead.

Factor Values
Simultaneous clients 100,200,300,400,500,600,700,800,900,1000

Invocation interval
Gaussian distribution: mean value 100ms

standard deviation 12.5ms
Cross management turned off and turned on

Source: author (2021).

5.6.3 Treatment

The treatment applied to this experiment is the M-CaMid approach that monitors and controls
the multi-cloud application environment. The absence of treatment is called cross management
off (OFF), while the treatment is called management on (ON).

M-CaMid cross management impacts are analysed by comparing response time measures of
a multi-cloud application under different workload levels with (ON) or without (OFF) treatment.

The experiment’s control object is a multi-cloud application whose server-side is a remote
object that implements the Fibonacci sequence without M-CaMid cross management (OFF).
The experiment submits the object control to a workload to observe the system behaviour as the
workload varies.

The experimental object is the same as the control object but with M-CaMid management
turned on (ON). The experiment also submits the same workload as the control object. Both
objects behaviours are observed at a single cloud domain since the same behaviour is expected
regardless of cloud technology.

5.6.4 Experimental Design

Figure 37 shows the basic configurations used in the experiment. The experiment system
comprises the client-server application implemented atop M-CaMid and OpenNebula (Moreno-
Vozmediano et al., 2012) as cloud infrastructure. The OpenNebula was configured with an IaaS
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manager (frontend) and a host for running VMs. Frontend runs on a machine core i5 2.44GHz
with 4 GB of memory, and the cloud host (where the frontend deploys VMs) is an octa-core
Xeon 2.93 GHz machine with 20 GB of memory. Each VM is configured with one CPU core
and 1 GB of memory.

Figure 37 – M-CaMid scenario for M-CaMid overhead experiment.

Source: author (2021).

Both M-CaMid’s monitors (node and cloud) are configured to gather monitoring data in an
interval of 10s. Common real-world monitoring systems time intervals include 1, 5, 15, and
60 minutes. The experiment set M-CaMid time interval as 10s because its goal is to observe
M-CaMid’s behaviour under stressful workloads. Furthermore, in the experimental object, the
thresholds (lowest and highest response times) are set with values out of the range to prevent M-
CaMid management from adding or removing infrastructure resources and biasing the experiment
result.

The experiment submits M-CaMid to a growing workload. The number of users increases,
assuming values as described in Table 9. The M-CaMid behaviour is observed through response
time (milliseconds) and throughput measurements (request per second).

5.6.5 Analysis

The study analysis compares the experimental object’s measurements and control object trials to
reject the null hypotheses. The experiment assesses the M-CaMid performance impact over the
multi-cloud application response time.

Section 9 described the applied factor values. A t-test compares the mean values of two data
sets: with M-CaMid management turned off and with M-CaMid management turned on. T-test
analyses if their differences are not significant.
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The experiment goal is not to reject the null hypothesis since the experiment intends to show
no significant difference between the means. The null hypothesis claims the mean response
times are equivalents with M-CaMid management ON than with M-CaMid management off
(H0RO : ROOFF < ROON). The experiment calculates the mean response time with the two
M-CaMid configurations for each number of clients. The assumed test’s confidence is 95%.

Figure 38 shows the mean response time when the M-CaMid management is ON and OFF.
As the application is the same in both cases, the difference between mean response times is
the overhead of the M-CaMid management. The mean overhead is 3.067% even when the
application server is submitted to a heavy workload, i.e., 1000 clients. The lowest and highest
overheads are 1.626% and 5.603%, respectively. In this way, it is intuitive to observe that cross
management has a minimal impact on the multi-cloud application’s performance.

Figure 38 – M-CaMid overhead impact over application response time.

Source: author (2021).

Regarding the statistical test, Table 10 shows the results. The t-value is −0.00745 and
the p-value is 0.497065. The result (mean difference) is not significant at p < 0.05. The null
hypothesis can not be rejected.

Table 10 – T-student test statistics values.

α Difference of means p-value t-value
0.05 −8.85 0.497065 −0.497065

Source: author (2021).
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5.7 CONCLUDING REMARKS

This chapter presented the evaluation of M-CaMid. The primary goal was to show the per-
formance of M-CaMid supporting the execution of multi-cloud distributed applications. A
systematic approach to performance evaluation was adopted to accomplish the experiments.
Initially, some steps were defined to conduct the experiments: goals, hypotheses, scenarios,
metrics, parameters and factors, and experiment design. Finally, results were presented and
discussed through statistical tests.
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6 RELATED WORK

Nowadays, many challenges related to multi-cloud computing are still open, despite efforts from
the academy and industry. Since multi-cloud computing has issues in an extensive area, many
solutions support different issues, features and viewpoints, such as interoperability, dynamic
management, fault tolerance, elasticity, multi-tenancy, and security. Many research efforts in
cloud computing focus on elasticity management from different points of view regarding multi-
cloud application management. This work discusses some researches based on the achieved goals:
a) multi-cloud awareness: cloud middleware is aware of more than one cloud and provides
transparency to upper application layers to deal with different cloud management technologies;
b) architecture: cloud middleware architecture meets requirements of cloud and multi-cloud
architectures; and c) cross management: cloud middleware looks at elasticity management from
different dimensions, such as granularity levels (coarse and fine-grained elasticity) and coverage
(single cloud and multi-cloud domains). Furthermore, some relevant solutions are discussed
despite not being classified into the goals mentioned earlier.

6.1 MULTI-CLOUD AWARENESS

Multi-Cloud awareness requires cloud interoperability. Interoperability approaches can range
from standards, API and blueprints to middleware systems. Many organisations proposed
cloud standards for addressing the interoperability, such as e.g., Distributed Management
Task Force (DMTF) (Bankston et al., 2012), Open Cloud Computing Interface (OCCI) (Ed-
monds and Nyrén, 2011) and Organisation for the Advancement of Structured Information
Standards (OASIS) (Palma and Spatzier, 2013). However, there is a little advance towards a
universal standard because the proposed standards tend to be divergent. Even when standards are
adopted, cloud providers are still trying to differentiate their services by using proprietary tech-
nologies (Nelson, 2009). Furthermore, choosing one standard may imply on a lock-in problem of
standard (Nogueira et al., 2016). Another problem with standard adoption is the fact they are
limited to the IaaS level (Lewis et al., 2013) because of the greater diversity of platforms and
applications. On the other hand, some initiatives proposed libraries to abstract developers from
the heterogeneous cloud technologies by providing common API. JCloudsr (Apache, 2011) is
the most popular library. As standards, current libraries do not comprise all cloud technologies.
Usually, middleware-based solutions use libraries to deal with heterogeneous cloud technologies.

Blueprint proposals were introduced for driving the development of multi-cloud systems.
Bernstein et al. (2009) suggest a set of protocols and formats to address interoperability and
portability issues. A visionary approach, named Cloud Blueprint, was proposed by Papazoglou
and van den Heuvel (2011), whose goal is to break the cloud’s monolithic architecture and
let developers choose and intermix the lowest costs and best quality PaaS/SaaS offerings by
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cloud providers. To realise this approach, they propose three language components: a definition
language, constraint language and manipulation language. The method converts all cloud stack
layers into general-purpose commodities to attract partners and build a proper cloud ecosystem.

Middleware-based solutions are usually based on brokers to tackle the multi-cloud interoper-
ability. Altocumulus (Maximilien et al., 2009a,b) is one of the seminal works on middleware for
cloud interoperability. The focus of Altocumulus solving the application interoperability problem
within and between clouds. Altocumulus facilitates deployment, management, and migration
of applications across multiple clouds. They propose a meta-model for defining cloud-agnostic
representations for portability, deployment and configuration to realise these facilities. The
middleware platform is composed of components in three categories: tools, API and knowledge.
The tools are a dashboard for user interaction and monitoring activities, an image repository, and
a core APIs tester for testing multi-cloud APIs. Although the work refers to elasticity, there is no
reference to how it is realised. Besides, replication is not present as a facility.

mOSAIC (Petcu et al., 2011, 2013) is a project to support resource interoperability and
portability at both federation and multi-cloud models. It is a complete and integrated solution
for developing, deploying, and managing applications for multi-cloud environments. mOSAIC
can support interoperability thanks to its deployable broker that provides integration between
cloud providers, executing operations, such as cloud search and selection. Although mOSAIC
supports multi-cloud models, its management acts at the infrastructure level only and application
scalability management is not designed.

Sotiriadis and Bessis (2016) propose Inter-Cloud Mediation Service, a multi-cloud bridge
system for developers to build collaborative environments for distribution and management of
cloud services using the RESTFul protocol. The interoperability between cloud providers is by
a broker based on OCCI-compliant open standards. Its architecture is based on the OpenStack
cloud platform (RackSpace, 2010). The multi-cloud collaboration occurs through the cloud
service registration that allows cloud users to register, search, and use cloud services. The
Inter-cloud mediator is the core component that offers cloud APIs to users. Furthermore, the
Complex Event Processing Service (CEP) allows developers to define rules and patterns to react
to event occurrences. Inter-Cloud Mediation Service is multi-cloud aware through OpenStack
cloud platform, limiting its interoperability.

M-CaMid adopts the broker pattern to allow multi-cloud collaboration between distributed
application components. Its primary purpose is to provide multi-cloud elasticity for supporting
distributed application performance and availability.

As a design decision, M-CaMid adopts third-party API libraries and the most popular cloud
platforms OpenNebula (Moreno-Vozmediano et al., 2012) and OpenStack (RackSpace, 2010)
since they deliver integration services with many public clouds and other platforms. Since
M-CaMid should comply with the cloud awareness requirement, API libraries were the best
alternative to avoid the lock-in problems besides meeting the client-centric approach (Bouzerzour
et al., 2020). M-CaMid architecture uses the JClouds library to interact with different underlying
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infrastructure cloud technologies.

6.2 MIDDLEWARE ARCHITECTURE

Due to multi-cloud environment complexity, middleware architecture must be taken as a relevant
aspect. As discussed before, cloud and multi-cloud domains components interact in different
ways. While a single cloud has centralised management behaviour, a multi-cloud environment
comprises independent members with similar roles. Most solutions adopt the centralised archi-
tecture. Intercloud (Buyya et al., 2010; Calheiros et al., 2012), mOSAIC (Petcu et al., 2011,
2013), soCloud (Paraiso et al., 2016) and elastic component model Pokahr and Braubach (2015)
are examples of centralised architecture.

In the decentralised architecture, the control is distributed, where the processes are logi-
cally similar. CloudSNAP (Mondéjar et al., 2013) is a decentralised web deployment platform
that promises to move any web application to the cloud. It allows a decentralised deployment
environment and distributed mechanisms, like load balancing, fault tolerance, dynamic activa-
tion, persistence and replication. The CloudSNAP architecture is based on P2P overlays and
interception patterns. However, its distributed architecture, management of P2P infrastructure
and application lifecycle follow a centralised logic. Although CloudSNAP claims to provide
elasticity, the paper only presents no elasticity method.

Zhang et al. (2013) adopt the proxy approach to design a fully distributed management for a
large scale server environment in the cloud. The decentralised control solution is designed to offer
both overload protection and resource efficiency for the back-end servers while achieving service
differentiation based on SLA. Its management defines two control roles: the sub-controller and
proxy dispatcher. The management is spread among all servers and proxies, which perform
resource management and traffic control automatically and independently. The management
audits local resource consumption such as CPU capacity, memory usage, bandwidth availability
etc. Its main component is the Proxy Dispatcher that regulates the request admission rate to each
back-end server. The approach focuses on the multi-cloud domain at the infrastructure level.

Similarly, CloudSNAP (Mondéjar et al., 2013) is a P2P-based platform that allows a man-
agement environment with a set of distributed mechanisms for deployment, load balancing,
fault tolerance, dynamic activation, persistence and replication. Although the architecture is
distributed, the management of P2P infrastructure and application lifecycle follows a centralised
logic. M-CaMid hybrid architecture allows management autonomy between cloud domains
(decentralised architecture). However, inside the cloud domain, M-CaMid follows a centralised
architecture, enabling a full management view.

CLAMBS (Cross-Layer Multi-Cloud Application Monitoring and Benchmarking as-a-
Service) (Alhamazani et al., 2019) intends to monitor individual application components de-
ployed in a multi-cloud environment. Monitoring agents are deployed in clouds to monitor
applications hosted in many cloud layers (IaaS, PaaS and SaaS). Furthermore, CLAMBS allows
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centralised and distributed architecture configuration. Although CLAMBS is a monitoring
solution, it is worth mentioning because of its architectural similarity with M-CaMid regarding
cross-layer and cross-cloud integration.

Join the First Idle Queue (JFIQ) (Desmouceaux et al., 2021) introduces a unified, centralised-
monitoring-free architecture for supporting load balancing and auto-scaling, promising to reduce
operational overhead and increase response time performance. JFIQ monitoring system is
distributed in application nodes, allowing decision making in loco. The application-level elasticity
management decides to accept or reject a request according to its workload. In case of rejection,
the request is redirected to the next node. JFIQ design supports only the single cloud domain.

The hybrid architecture of M-CaMid meets the principles’ requirement of multi-cloud com-
puting. Inside a single cloud domain, its monitoring system follows a decentralised architecture,
while its controller is centralised, providing integrated actions to reconfigure the environment
components. The decentralised monitoring system distributes workloads among nodes and noti-
fies the centralised controller about undesired events. Regarding multi-cloud domain, M-CaMid
adopts a decentralised architecture since cloud domains are independents. Cooperation through
message exchange realises their integration.

6.3 CROSS MANAGEMENT

Elasticity dimensions can characterise the management approach. This work considers two
dimensions: the elasticity abstraction level, i.e. its granularity (coarse-grained and fine-grained),
and coverage (cloud and multi-cloud domains). Furthermore, it is worth mentioning the im-
plementation approach, which can be programmatic. Elasticity implementation is built in the
code or the middleware layer, providing more transparency to developers and decoupling the
application from infrastructure.

Elasticity programming can be applied to parallel programming through languages and
programming platforms. Dustdar et al. (2012) propose the Simple-Yet-Beautiful Language
(SYBL) to implement elasticity directives and runtime functions inside cloud-based applications.
Directives allow specifying runtime properties related to resources, quality and cost. Developers
can implement elasticity by using SYBL runtime functions to get and set properties, check a
program’s cost, and execute external scripts. Cloudine framework (Galante and Erpen De Bona,
2015) is a framework for programming elasticity in scientific applications. The approach explores
cloud elasticity, in which its elasticity controller is embedded in the application source code. The
controller allows the allocation and deallocation of resources by the application without external
mechanisms. Its monitoring system uses data from VM and application events. However, the
elasticity control is embedded in the source code, and it takes place at IaaS level.

Middleware platforms can provide API for programming elasticity. ElasticRMI (Jayaram,
2013) is an object-oriented middleware that enables application developers to configure elasticity
parameters to handle remote method invocation workloads. Developers can combine resource
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utilisation metrics and fine-grained application-specific information to manage elasticity. The
middleware provides a high-level programming framework that addresses elasticity at the level
of classes and objects. ElasticRMI middleware targets distributed applications that run on top of
IaaS layer. Its runtime system handles all low-level mechanics for instantiating elastic objects,
monitoring and balancing workload, and adding and removing additional objects if necessary.
The interaction between middleware and the IaaS layer’s is realised by Apache Mesos. However,
all configuration of elasticity metrics is defined inside the code at development time.

JCLOUDSCALE (Zabolotnyi et al., 2015) is a Java-based middleware for building elastic
IaaS applications. It aims is to facilitate developers to implement cloud applications as local,
multi-threaded applications without even being aware of the cloud deployment and elasticity. The
middleware takes over the management of the underlying physical distribution. The IaaS resource
management is accomplished through a declarative programming model. JCLOUDSCALE uses
aspect-oriented programming (via AspectJ) to inject remoting and cloud management code
into target applications. Hence, all elasticity policy configurations should also be programmed,
adding complexity to development. Any change in the elasticity policy requires recompiling the
code. JCLOUDSCALE manages the application elasticity at object (application) and IaaS level.
The middleware takes over remote objects monitoring, forwarding information into a complex
event processing (CEP) engine. All management is centralised on the client-side. Although
JCLOUDSCALE supports application portability between cloud providers, it is not designed to
interoperate in multi-cloud environments.

The elasticity programming approach requires development experience, besides being code
invasive. However, it can be viable for parallel programming since parallelism depends on
how implementations are designed. Although some of the above solutions presented here are
middleware-based, they provide API to programming elasticity inside the application, being
code invasive and without management transparency.

Middleware platforms allow transparent elasticity management to developers. Some middleware-
based solutions focus on abstracting underlying management complexity. JadexCloud (Braubach
et al., 2011) is an infrastructure for developing, deploying and managing distributed applications
for running on top of private IaaS layers. Applications are composed of agent-like autonomous
entities interacting via services. JadexCloud supports building scalable and robust enterprise
applications through high modular and independent acting modules that can be replaced or
restarted if unexpected errors occur. Its main principle is distribution transparency. Although
it claims to manage dynamically distributed applications, many functions are still manually
executed in this version.

Abbadi (2011b,c) proposes a conceptual and hybrid solution for middleware systems. Abbadi
adopts a cloud stack composed of three layers: the physical layer, which contains the features of
the physical infrastructure of the cloud (servers, storage and network); the virtual layer, which
represents virtual resources hosted at the physical layer; and the application layer that includes
user applications. In this structure, the middleware serves as “glue” between resources of the
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many cloud layers, whilst its primary responsibility is to provide a set of self-managed services
for the layers mentioned above. These services automatically manage the applications running in
the cloud and all their dependencies and include: adaptability, resilience, scalability, availability,
reliability, security services. Although modelling cross-layer management, the solution does not
target the multi-cloud domain, and it is limited to a conceptual model.

Yangui et al. (2011) propose a framework that adds facilities for monitoring and configuring
service-based applications deploying them into a cloud using a scalable micro-container. The
framework allows fine-tuning monitoring and reconfiguration at different granularities levels of
application. The services don’t need to be designed to be monitored or reconfigured. Instead,
they are encapsulated in a new composite added of non-functional service of monitoring and
reconfiguration delivering the same functionality as the original. This component transformation
is applied dynamically by adding new features for monitoring and configurations. Although
fine-grained management, it is not clear about at which level the elasticity takes place.

Pokahr and Braubach (2015) propose an autonomic management system (Monitor-Analyse-
Plan-Execute over a shared Knowledge (MAPE-K) approach) based on a vision of elastic
component-based applications. This vision is supported by a component-based programming
model for allowing developers to specify application functionality in a cloud-enabled way and a
runtime environment that supports the specification and automatic management of non-functional
attributes, such as application response times. The solution is based on Jadex (Pokahr et al.,
2010), which supports monitoring non-functional requirements and provides load balancing
and instance management services. In other words, scalability occurs at the component level.
The underlying idea is that an application has to offer non-functional properties that can be
measured at runtime and which will be used to validate if and to what degree the user-defined
non-functional requirements are satisfied. The authors do not detail if elasticity also takes place
at IaaS level, i.e., whether the solution interoperates with IaaS layer or not.

Suprex (Aslanpour et al., 2017) is a cost-aware scaling mechanism based on the MAPE-K
concept, focusing on the execution phase of the execution phase. The approach mitigates the
oscillation of under and over-provisioning by maximising the billing time usage of a surplus
VM. For example, since the VM is billed per hour, one surplus VM running for 2h10min is
charged as 3h wasting 50min of usage. The approach sends the surplus VM to quarantine instead
of releasing it. In case of application overload in this period, the VM is recovered to meet the
new demand. It also avoids the delay caused by the instantiation of a new VM. Suprex is an
executor mechanism in the MAPE-K cycle. The proposal’s architecture is centralised in the
application provider, where incoming requests are forwarded to the web application. Its elasticity
management takes place at IaaS level.

As presented before, Join the First Idle Queue (JFIQ) (Desmouceaux et al., 2021) introduces
a unified, centralised-monitoring-free architecture for supporting load balancing and auto-scaling.
The application-level elasticity management decides to accept or reject a request according to
its workload. In case of rejection, the application instance redirects the request to the next one.
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Load balancer organises these instances in a round-robin structure. It sends a request to the first
application instance that can accept or reject according to its workload. The last instance decision
is indicative of upscaling of application instances. M-CaMid monitors application components
in a similar way. However, the decision making control is centralised in the M-CaMid gateway,
which has a broad view of the cloud environment and can extend elasticity to the multi-cloud
environment.

Mazidi et al. (2021) propose a MAPE-K control loop for autonomic resource scaler to
minimising costs for users. It presents a weighted ensemble prediction model using single
prediction models structured in a decision tree. Cloud applications are structured in layers: web,
app and database. Which one with its own particular VM configuration. Its monitoring system
covers both infrastructure and application layers. However, scaling actions occurs only at the
infrastructure.

Recently, OS virtualisation, namely containerisation, has been popular in industry and
academy. Elastic container platforms, such as Kubernetes (Cloud Native Computing Foundation,
2014), Docker in Swarm mode (Hykes, 2013) and Apache Mesos (Hindman et al., 2011), support
containers’ lifecycle management and container-level elasticity. For example, Kubernetes
(Cloud Native Computing Foundation, 2014), the most popular platform, orchestrates distributed
applications taking care of their scaling and failover. However, Kubernetes does not provide
application-level services, such as middleware platforms. Another limitation is incompatibilities
among optional and alternative Kubernetes features that cause system dependencies (Truyen
et al., 2020).

Containers platforms can be classified as infrastructure solutions. Furthermore, container-
level elasticity services are limited to a single cloud domain in most platforms. Kratzke (2017)
propose a control process to scale containers across public and private clouds. Its elasticity
service executes container migration that can be added to the execution phase of a MAPE-K loop.
However, the management is limited to the container level, neglecting aspects of applications
running in the container and underlying infrastructure (cloud VMs). In the multi-cloud context,
M-CaMid supports elasticity by accomplishing replication besides integrating application and
infrastructure levels.

Previous elasticity management solutions target the single cloud environment. Most of
them can be extended to the multi-cloud domain because they allow application management
independent of cloud providers. However, their designs coverage only the cloud domain, lacking
communication and integration among clouds.

Regarding multi-cloud elasticity, few works proposed solutions with a multi-cloud coverage.
soCloud (Paraiso et al., 2016) is a service-oriented component-based PaaS for managing porta-
bility, elasticity, provisioning, and high availability across multiple clouds. soCloud operates
elasticity at IaaS and PaaS levels, in the same manner, referring to resources through abstractions.
The scaling of resources occurs at most at IaaS level, on which the middleware can allocate
resources for the application as needed. It also monitors the resources looking for the under-
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used ones and re-size them as necessary. Monitoring information comes from the application’s
parts deployed in many clouds and is analysed by the centralised component Workload Man-

ager. Multi-cloud elasticity is used to deal with fail-overs. In case of the application fails, the
Controller component decides to instantiate a new application. soCloud considers cloud and
multi-cloud domains as management granularity levels, where a cloud is in the coarse-grained
level, and a VM is in the fine-grained level.

Parlavantzas et al. (2018) propose an approach for dynamically deploying applications
over multiple clouds to increase the application’s owner profits. This approach continuously
optimises the deployment generating a deployment plan that optimises gain under the current
runtime conditions and deciding when and how to reconfigure the entire application. Unlike
M-CaMid, this approach does not support distributed applications, and continuous optimisation
takes advantage of only the VM elasticity level.

Kirthica and Sridhar (2018) propose a residue-based horizontal scaling approach for multi-
cloud provisioning. The technique splits the resource demand to be met by external clouds, which
each one replies to, providing the maximum available IaaS resource. The Cloud Inter-operation
Tool (CIT) requests resources to clouds one by one until there is no residue of demand. CIT
is a provider-centric approach which deals with rational resource usage of hardware resources
by fitting the best resource demand slice in cloud hardware offering. M-CaMid has a similar
system to manage resources. However, M-CaMid supports more precise management through
fine-grained management. Moreover, M-CaMid is client-centric, shifting control to third parties.

Table 11 summarises cloud middleware solutions and their characteristics.
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6.4 DISCUSSION

Many works propose solutions for the management of distributed applications in a multi-cloud
environment. However, most of them concern with tackling the interoperability issue or resource
provisioning and management without considering multi-cloud elasticity mechanisms.

Multi-Cloud application management solutions provide mechanisms to support the elasticity
in the cloud and multi-cloud domains. However, most elasticity management proposals target
the cloud elasticity (Mondéjar et al., 2013; Jayaram, 2013; Zabolotnyi et al., 2015; Galante and
Erpen De Bona, 2015). Furthermore, elasticity requires timely and efficient management. The
presented works manage elasticity at infrastructure-level providing coarse-grained elasticity
(Mondéjar et al., 2013; Galante and Erpen De Bona, 2015; Aslanpour et al., 2017; Buyya et al.,
2010; Calheiros et al., 2012; Paraiso et al., 2016), or an application-level providing fine-grained
elasticity (Jayaram, 2013; Zabolotnyi et al., 2015; Pokahr and Braubach, 2015; Yangui et al.,
2011; Abbadi, 2011b,c).

Recently, OS virtualisation, namely containerisation, has been popular in industry and
academy. Elastic container platforms, such as Kubernetes (Cloud Native Computing Foundation,
2014), Docker in Swarm mode (Hykes, 2013) and Apache Mesos (Hindman et al., 2011), support
containers’ lifecycle management and container-level elasticity. For example, Kubernetes
(Cloud Native Computing Foundation, 2014), the most popular platform, orchestrates distributed
applications taking care of their scaling and failover. However, Kubernetes does not provide
application-level services, such as middleware platforms. Another limitation is incompatibilities
among optional and alternative Kubernetes features that cause system dependencies (Truyen
et al., 2020).

Container-based virtualisation is a growing approach that reduces infrastructure deployment
and overhead, but most container platforms are still limited to the infrastructure layer and a single
cloud domain. M-CaMid cross management integrates application and infrastructure layers
management through monitoring and control mechanisms that support multi-cloud elasticity. M-
CaMid elasticity method can also be applied to containers once they are infrastructure resources
managed by developers.

Regarding multi-cloud elasticity, few solutions were proposed (Buyya et al., 2010; Calheiros
et al., 2012; Paraiso et al., 2016; Kirthica and Sridhar, 2018). However, none of them provides
fine-grained elasticity to multi-cloud applications.

Regarding implementation, some solutions are code invasive since they propose to developers
to program management tasks or insert annotations inside the code (Jayaram, 2013; Zabolotnyi
et al., 2015; Galante and Erpen De Bona, 2015; Pokahr and Braubach, 2015). Other ones suggest
a middleware layer to abstract underlying infrastructure aspects (Mondéjar et al., 2013; Braubach
et al., 2011; Pokahr and Braubach, 2015; Abbadi, 2011b,c; Yangui et al., 2011; Aslanpour et al.,
2017; Buyya et al., 2010; Calheiros et al., 2012; Paraiso et al., 2016).

M-CaMid is a multi-cloud middleware architecture that proposes multi-cloud application
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management taking advantage of cloud elasticity of different cloud providers. In other words,
M-CaMid extends the elasticity to the multi-cloud environment. The management architecture
follows a hybrid control: for cloud domain management, it is centralised, and for the multi-cloud
environment, the control is decentralised to allow independence between M-CaMid cloud domain
managers. Furthermore, M-CaMid integrates the infrastructure and application layers through
the cross management to provide precise elasticity, extending this integration to a multi-cloud
environment.

From the developer perspective, we advocate that a multi-cloud middleware must a) be based
on the multi-cloud model, and its broker component must be independent of cloud providers;
b) support distributed communication between components of a multi-cloud application regard-
less of the scope (node, cloud or multi-cloud); c) support the management at application and
infrastructure layers, allowing the integration of management mechanisms aiming more precise
resource management; d) deliver elasticity at infrastructure and application level (coarse-grained
and fine-grained, respectively); e) transparently extend the elasticity to a multi-cloud domain.

6.5 CONCLUDING REMARKS

This chapter presented the related work about single cloud and multi-cloud application manage-
ment. It presented solutions to provide interoperability between cloud providers as an essential
requirement for multi-cloud computing. Next, proposals related to the multi-cloud application
management were discussed regarding their main characteristics related to architecture, cov-
erage and elasticity management. Finally, the works were discussed, highlighting the unique
contributions of M-CaMid.
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7 CONCLUSION

This chapter summarises this thesis. First, it presents the thesis’s general thoughts. Next, it
highlights the thesis’ unique contributions. Then, it discusses the future works.

7.1 GENERAL CONSIDERATIONS

M-CaMid can reconfigure dynamically and automatically the system structure (application and
infrastructure) in response to undesirable events that threaten the application’s performance
requirements. M-CaMid cross management that considers two dimensions: (a) vertical: inte-
grates application and infrastructure management layers (cross-layer), allowing more precise and
transparent management, through the multi-grained elasticity: coarse-grained elasticity at VM
level, and fine-grained elasticity at application component level; and (b) horizontal: integrates
domains of a multi-cloud environment (cross-domain): node, cloud and multi-cloud.

After an exploratory literature review, some challenges related to multi-cloud application
development and management were identified and motivated this work. It observed several
initiatives on cloud and multi-cloud management. However, most of the solutions target cloud
infrastructure management, neglecting applications running on top of the IaaS infrastructure.
Some solutions take into account application requirements but execute elasticity at the IaaS level,
a coarse-grained elasticity. Furthermore, few works tackle the multi-cloud elasticity. However,
anyone proposes an elasticity cross management. Finally, any one of the works presented a
middleware solution based on the classical DOC middleware architecture.

Besides the thesis motivation, the literature review produced the thesis background. The
basic concepts of the cloud and multi-cloud computing paradigm were introduced, discussing
the many definitions and terms that identified the essential elements and defined the multi-cloud
taxonomy. The application’s components distribution in this scenario can range from a single
VM to many cloud platforms.

Some basic principles were discussed since they were introductory statements to multi-cloud
design. M-CaMid design treated four seminal principles: decentralisation, interoperability,
dynamic behaviour, and adaptability. Furthermore, this work assumed layered architectural style
as a principle following the DOC middleware model. These principles drove the M-CaMid
design.

Decentralisation and interoperability are tightly related principles because cloud technologies
are independent and heterogeneous.

Decentralisation is a multi-cloud principle that states all clouds are at the same level of
resource control and fully independent. Accepting this principle implies M-CaMid needs to adopt
a multi-cloud management approach to meet the multi-cloud aware requirement. Furthermore,
interoperability means that many clouds can interoperate. M-CaMid must meet multi-cloud
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aware requirements since cloud technologies are very heterogeneous.
Dynamic behaviour and adaptability are principles supported by the elasticity benefit. How-

ever, these principles require timely and precise automatic resource management. Therefore,
M-CaMid must implement multi-cloud elasticity to meet them.

M-CaMid met all requirements by proposing a cross management approach that established
two management dimensions: vertical and horizontal. In the vertical view, the architecture is
composed of vertical layers, namely, infrastructure, distribution and service layers, following the
DOC layers stack (layered architectural style as principle). The infrastructure layer serves as a
wrapper to underlying cloud and communication mechanisms; the distribution layer implements
distribution transparencies. The service layer provides the traditional naming service and security
service. Also, M-CaMid extended the DOC model by adding a fourth transverse layer in charge
of managing multi-cloud distributed application and their underlying IaaS infrastructure.

The horizontal view considered the M-CaMid distribution throughout the multi-cloud envi-
ronment: node, cloud and multi-cloud domain. The management components were distributed
according to their responsibilities in the respective field.

The M-CaMid transparently took benefit of cloud facilities and allowed multi-cloud man-
agement at application and infrastructure levels. The cross management considered how, and
where to scale out and in both application parts and infrastructure. How refers to the levels of
granularity for the elasticity: fine-grained and coarse-grained. In the first one, the elasticity is
applied to the remote object, while in the second one, the elasticity is employed to VM. Where

referred to the domain where the elasticity can take place: into the current cloud domain or
outside that.

The experiment’s design of M-CaMid follows a systematic approach. The investigation
adopts a method to evaluate the M-CaMid cross management. As a result, it is expected the
experiments show how the cross management strategies adapt the environment timely and
efficiently to keep the distributed application working properly.

Some experiments were carried out aiming to assess if M-CaMid reaches the required
goals. All experiments were performed under a scenario where M-CaMid was submitted to
unpredictable peaks of workloads. The experiment’s goals were to observe how M-CaMid
supports the high availability and scalability of multi-cloud distributed applications.

Three experiments assessed M-CaMid: (i) management reaction time evaluated the automatic
control of M-CaMid on dealing with undesired environment’s behaviour; (ii) elasticity resource
management assessed the rational usage of infrastructure (virtual machines) considering coarse-
and fine-grained management; and (iii) M-CaMid overhead assessed the overhead introduced by
M-CaMid node monitor on the application performance.

M-CaMid presented satisfactory results improving the management of distributed applications
in a multi-cloud environment. Statistical tests ratified the experimental results.

Finally, state of the art is discussed, listing some related initiatives to address the multi-cloud
challenges. The related work shows the unpublished contributions of the M-CaMid proposal. The
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M-CaMid approaches the multi-cloud elasticity through a cross-management strategy, allowing
a more precise and transparent multi-grained management: fine-grained management at the
application component level and coarse-grained control at the VM level.

7.2 CONTRIBUTIONS

M-CaMid realised unique contributions presented in the Chapter 1 of this thesis:

1. M-CaMid architecture extended the classical DOC model by the introduction of the
management layer to place the new functionalities related to cloud and multi-computing;

2. Cross management allowed a timely and efficiently adaptation of multi-cloud distributed
applications, giving the ability to M-CaMid to manage resources in a decentralised and
interoperable environment; and

3. In a highly dynamic and adaptable multi-cloud environment, multi-cloud elasticity together
cross management took advantage of many cloud technologies’ elasticity service thanks to
M-CaMid meets the multi-cloud aware ability.

Furthermore, this work has accomplished others contributions. First, ongoing and future
research directions can adopt the full implementation of multi-cloud middleware architecture as
a basis for research and technological development. M-CaMid architecture provides elementary
distribution middleware services, enabling middleware to be a tool “foundation” toward future
work in many multi-cloud areas. Second, the principles’ definition contributes to drive multi-
cloud middleware projects and identify essential middleware requirements. Decentralisation,
openness and interoperability, dynamic behaviour and adaptability principles were introduced as
fundamentals statements driving middleware development. Finally, the extensive adoption of
remoting patterns in designing all aspects of the middleware architecture reinforces M-CaMid
architecture as a development foundation for multi-cloud middleware.

7.3 LIMITATIONS AND LESSONS LEARNED

During experiments, some threats were identified. Limited hardware capacities hampered
experiments with more complex distributed applications and environments. It also limited
cloud technologies adoption in two types: OpenNebula and OpenStack. Furthermore, shared
resources in cloud infrastructure can bias experiments’ results since cloud hardware configuration
for deployment is transparent to the client. M-CaMid development can draw some lessons:
(i) interoperability standards is a facility for multi-cloud middleware development. However, it
is so far to be fully reached since cloud providers design their services aiming at exclusivity;
(ii) Managing multi-cloud elasticity requires new load balancing strategies, mainly the distributed
ones. Forwarding requests across cloud domains to equalise workload among cloud domains is a
complex task because of the autonomous nature of cloud providers (decentralisation principle);
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(iii) the broad purpose of cloud computing may change middleware design goals as new areas
emerge, such as Internet of things (IoT), mobile cloud computing, big data computing and
edge computing; and (iv) many elasticity management solutions focus on specific approaches,
neglecting elasticity dimensions and wasting its full benefits.

7.4 RESEARCH DIRECTIONS

M-CaMid is a not finished project. Many significant advances in the multi-cloud area are
happening, such as adopting Artificial Intelligence (AI) and deep learning technologies to
improve adaptation, automatic deployment and load balancing. Also, M-CaMid must extend to
support decentralised cloud management in mobile, edge computing, and the increasing use of
containers.

As future work, we intend to improve M-CaMid cross management with predictive strategies
for adaptation. Thus, using hybrid adaptation approaches (reactive and predictive) can support
the multi-cloud elasticity by applying the best method based on management knowledge.

Reactive and predictive methods can also improve load balancing. The main goal is to
ally distributed load balancing techniques and adaptation methods since M-CaMid follows the
decentralised multi-cloud principle.

Another future work is to introduce cost-aware aspects to cross management decision making
because M-CaMid can deal with different cloud providers with varying price policies.

Finally, M-CaMid cross management intends to be not technology restrictive, initially
extending its support to containers technologies. Container is an evolving technology that needs
attention and has challenges in the multi-cloud computing area.
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