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ABSTRACT

Fractures, vugs, cavities and caves can significantly alter the fluid flow on carbonate petroleum
reservoirs, making the computational simulation even more challenging due to the existence
of free flow (Stokes) and porous media flow (Darcy). Different strategies can be devised to
handle this problem, including the triple porosity and single permeability, the triple porosity
and triple permeability etc. A much more accurate modeling can be done by using the so-called
Darcy-Stokes model. In this approach, the Darcy´s Law is used in the porous media domain
and the Stokes equation is used in the free flow region. However, for carbonate petroleum
reservoirs the use of this model is extremely complex due to the difficulties of accurately rep-
resenting the geometrical intricacies of the naturally fractured media. An alternative approach
is to use the Stokes-Brinkman (S-B) model. In this formulation, a single equation, is used to
represent the fluid flow in both, the free flow region and in the porous media. This approach
avoids the explicit modeling of the interface between the two domains, by transitioning be-
tween them automatically. In this context, in the present thesis, we have used the S-B model
to represent the fluid flow in the entire reservoir rock. To solve the system of equations, we
have used a cell-centered finite volume scheme based on harmonic points (MPFA-H) and the
Rhie and Chow’s interpolation to ensure the coupling between the variables. The MPFA-H is
a robust method that can handle heterogeneous and anisotropic media on unstructured polyg-
onal meshes. Finally, we have compared the SIMPLEC (Semi Implicit Method for Pressure
Linked Equations Consistent) and the monolithic approaches to solve the system of equations.
The proposed formulation presented good results, especially regarding the physical represen-
tation of the Stokes and Darcy models in the so-called free-flow and porous medium domains,
respectively, demonstrating proximity to data available in the literature, considering the same
flow conditions.

Keywords: Carbonate Reservoirs, Stokes-Brinkman Model, Finite Volume Method, MPFA-H,
SIMPLEC.



RESUMO

Fraturas, vugs e cavernas podem alterar significativamente o escoamento de fluidos em reser-
vatórios carbonáticos de petróleo, tornando a simulação computacional ainda mais desafiadora
devido a existência de escoamento livre (Stokes) e escoamento em meios porosos (Darcy).
Diferentes estratégias são utilizadas para superar este problema, icluindo modelos de tripla
porosidade, tripla porosidade e tripla permeabilidade, etc. Uma modelagem muito mais acu-
rada pode ser obtida com a utilização do chamado modelo Darcy-Stokes. Neste caso, a Lei
de Darcy é utilizada na região de meio poroso e a equção de Stokes é utilizada na região de
escoamento livre. Porém, em reservatórios carbonáticos de petróleo a utilização de tal mod-
elo pode ser extremamente complexo devido as dificuldades de representar de forma acurada
a geometria de meios natuuralmente fraturados. Uma abordagem alternativa é a utilização
do modelo de Stokes-Brinkman (S-B). Nesta formulação, uma única equação, é usada para
representar o escoamento do fluido tanto na região de meio poroso quanto de escoamento
livre. Esta abordagem evita a necessidade de modelar explicitamente a interface entre os dois
domínios, fazendo esta transição de maneira automática. Neste contexto, no presente trabalho,
o modelo de S-B foi utilizado para representar o escoamento do fluido em todo reservatório.
Para resolver o sistema de equações foi utilizado uma formulação de volumes finitos centrada
na célula baseado em pontos harmônicos (MPFA-H) e o método de interpolação de Rhie-Chow
foi utilizado para garantir o acoplamento entre as variáveis. O MPFA-H é um método robusto,
capaz de lidar com meios heterogêneos e anisotrópicos em malhas poligonais não estruturadas.
Por fim, comparou-se os resultados da formulação segregada, SIMPLEC (Semi Implicit Method

for Pressure Linked Equations Consistent) e a monolítica. A formulação proposta apresentou
bons resultados, principalmente no que diz respeito a representação física dos modelos de
Stokes e Darcy nos domínios ditos de fluxo livre e meio poroso, respectivamente, demon-
strando proximidade com dados disponíveis na literatura, considerando as mesmas condições
de escoamento.

Palavras-chaves: Reservatórios Carbonáticos, Modelo de Stokes-Brinkman, Método dos Vol-
umes Finitos, MPFA-H, SIMPLEC.
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1 INTRODUCTION

Carbonate Karstic reservoirs are commonly found around the world, such as in China (AHR

et al., 2005), Middle East (DABBOUK et al., 2002), in the Brazilian Pre-Salt region (DOROBEK et

al., 2012). Some estimates relates that 60% of the world’s oil reserve lie in carbonate reservoirs
(SPADINI et al., 2008).

A diagenetic processes that occurs on carbonate reservoirs on account of the chemical
nature of the carbonate rocks, associated to the phenomena of tectonization and karstification,
originate geological features such as vugs, small to medium size voids, and caves, large size
voids, that can be interconnected or not involving multiple scales (BI et al., 2009; KROTKIEWSKI

et al., 2011; HE et al., 2015).
The presence of these geological features on multiple scales, represents a challenge to

numerical simulation of fluid flow in these reservoirs due the highly heterogeneous rock prop-
erties and the coexistence of two different flow regions, a Darcian flow region in the porous
media and a free flow region in the vugs, cavities and caves, making the coupled approximate
numerical modeling of the fluid flow in these reservoirs very challenging (CONCEIÇÃO et al.,
2019). Different approaches are used to model the fluid flow on these reservoirs, two possible
mathematical models for modeling the fluid flow in carbonate reservoirs are the continuum
models and discontinuum models (YAO et al., 2010).

Triple-continuum models, due it simplicity, are the most popular continuum model (VE-

LAZQUEZ et al., 2005; WU et al., 2007), in which three overlap continua, the rock matrix, the
fractures and the karstic region, are all treated as a porous media with homogeneous and uni-
form properties (HALLACK; FILHO; COUTO, 2019). Another approach is to represent the three
continua, the rock matrix, the fracture and the vugs, as an unique equivalent media by adopt-
ing a homogenization of the permeabilities and porosities of the domain. Although simple,
particularly in terms of computational efforts, it is extremely demanding to approximate the
equivalent properties properly. Furthermore, as a consequence of it, the continuum models can
not account the coexistence of the porous and the free flow region.

Alternatively, the discontinuum model represents the discontinuities of the rock in a dis-
cretized form, in such manner that it may be a natural and interesting approach when dealing
with media that presents such complex fluid flow pattern (GOLFIER; LASSEUX; QUINTARD,
2014). When using a double domain model, the most common approach is adopt the so-called
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Darcy-Stokes model Arbogast and Lehr (2006), Yao et al. (2010), in which the porous media
is modeled using the Darcy equation, in the matrix region, and, in the free flow regions, using
the Stokes equation. By adopting these strategies, additional interface conditions must be used
to guarantee the mass conservation and linear momentum conservation along the interface
between the porous media region and free flow region (HE et al., 2015).

An alternative approach to model the fluid flow on highly heterogeneous carbonate reser-
voirs, using a discontinuum model, is to employ the Stokes-Brinkman’s equation (BRINKMAN,
1949), in which a single equation is used to model the fluid flow in the porous media and
free flow regions. Furthermore, by adopting this approach, there is no need of modeling, ex-
plicitly, interface conditions alongside the different flow regions (BI et al., 2009; LAPTEV, 2003;
KROTKIEWSKI et al., 2011).

In literature, different strategies are used to simulate the fluid flow on carbonate reservoirs,
using the Stokes-Brinkman’s equation. For example, He et al. (2015) and Conceição et al.
(2019) adopted a formulation based on Finite Difference Method (FDM) when dealing with
structured meshes, Bi et al. (2009) applied the Finite Element Method (FEM) and a upscaling
process to solve the Stokes-Brinkman’s equation on unstructured meshes.

Multipoint Flux Approximation (MPFA) methods have been widely used in the last decades
to discretize fluid flow problems in porous media that are modeled by the Darcy equation
(AAVATSMARK et al., 1998a; AAVATSMARK et al., 1998b; AHMED et al., 2015; FRIIS; EDWARDS,
2011; CAVALCANTE et al., 2020; CONTRERAS; LYRA; de Carvalho, 2019; QUEIROZ et al., 2014;
CONTRERAS et al., 2016) MPFA methods are robust and flexible to handle full permeability
tensors and unstructured meshes. Recently, (ILIEV et al., 2014) has adapted the MPFA-O
method to model the Stokes-Brinkman problem using structured quadrilateral meshes. In
this context, and due the presence of the vugs and caves on karstic reservoirs, that have
different properties when compared with the rock matrix (OLSON; LAUBACH; LANDER, 2007),
and the need for a more precise geometric representation of the vugs, the Multipoint Flux
Approximmation Methods (MPFA) method, arises as a numerical scheme capable of handling
the characteristics of these reservoirs.

In this thesis, a full pressure suport MPFA-H originnaly proposed by Gao and Wu (2013), for
the first time in literature, is extended to discretize the Stokes-Brinkman’s equations to allow
the simulation using nonhomogeneous, anisotropic permeablity tensors, using unstructured
meshes.
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1.1 MOTIVATION

A great deal of proven oil reserves lays on carbonate reservoirs. Due the karstification
process, these reservoirs have a great deal of uncertainties in production forecasts, associated
to geological models and the fluid flow pattern, notably in the regions where these process is
prominent.

Another aspect is the lack of work in literature, particularly when dealing with anisotropic
media and unstructured meshes. In that fashion, and bearing in mind the importance of the
oil industry, the study of a unified model that can depict the fluid flow, and diminish the
uncertainties of production, when dealing with carbonate reservoirs are the motivation of this
work.

1.2 RESEARCH OBJECTIVES

Within this frame of reference, the general objectives of this thesis is the study and de-
velopment of a finite volume scheme for the 2-D numerical simulation of a one-phase flow on
heterogeneous and anisotropic carbonate petroleum reservoirs, using general polygonal meshes.

1.2.1 Specific Objectives

1. Develop a framework for the simulation of one-phase flow on heterogeneous and anisotropic
carbonate reservoirs using a flux approximation consistent with unstructured grids.

2. Incorporate the MPFA-H to solve the Stokes-Brinkman equation.

3. Investigate the influence of the karstic structures on the pressure and velocity fields,
considering a incompressible fluid flow.

1.3 THESIS ORGANIZATION

This thesis is constituted by 6 different chapters. In this first chapter a review of carbonate
reservoirs and the issues regarding the simulation of one-phase flow on these reservoirs are
addressed. The second chapter comprises the mathematical formulation used to derive the
Partial Differential Equation (PDE) that described the flow on carbonate reservoirs. The third



19

chapter is dedicated to the numerical formulation, in which, we present the numerical scheme
used to approximate the equations of the previous chapter. In the fourth chapter, we present
a monolithic and a segregate solution for the Stokes-Brinkman equation, using SIMPLEC
algorithm. In the fifth chapter the numerical results for a single-phase flow are presented.
Ultimately, in the sixth chapter we present the conclusions and suggestions for further work.
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2 MATHEMATICAL FORMULATION

In this chapter, a concise introduction of the laws and hypothesis used to derive the
equations that govern the fluid flow on porous media and free flow regions are presented.
First we describe the mass conservation PDE, that model the pressure distribution along the
reservoir, and the linear momentum PDE that represents the phenomena. Furthermore, we
will discuss three different formulation for the conservation of momentum equation:

1. Stokes Equation,

2. Darcy Equation, and

3. Stokes Brinkman Equation.

2.1 SIMPLIFYING HYPOTHESES

Due the complexity associated to the fluid flow on these reservoirs, it is essential the usage
of physical-mathematical simplifications. In this fashion, we adopted in this work the following
simplifying hypotheses:

1. The fluid flow is considered a single-phase flow,

2. The fluid is considered Newtonian,

3. The rock is considered incompressible and it is fully saturated with the fluid,

4. All chemical reactions, thermical effects and capillarity effects are neglected,

5. The effects of gravity are neglected.

2.2 MASS CONSERVATION EQUATION

Let us consider a medium that is fully saturated with a single-phase fluid. The mass
conservation equation states that for a given volume 𝑉 fully saturated and inclosed by a
surface 𝐴, the variation of the mass inside this volume, at any time 𝑡, is equal to the net
mass flow rate in the absence of source terms (HIRSCH, 2007; EWING, 1983; BEAR, 2013).
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Considering the simplifying hypothesis, we can apply the mass conservation for all continuous
domain as:

Φ𝑐𝑡
𝜕𝜌

𝜕𝑡
+ ∇(𝜌u) = 𝑞𝑚 (2.1)

where 𝜌 is the fluid density, u is the fluid velocity vector, Φ is the porosity, 𝑐𝑡 is the media
compressibility and 𝑞𝑚 is the source term.

Considering the fluid incompressible and homogeneous i.e. the fluid density does not change
in time and space and without any source terms, we can simplify Equation 2.1 as:

∇ · u = 0 (2.2)

2.3 DARCY’S LAW

The Darcy’s Law is based on the experiments of Henry Darcy on water flow through a bed
sands (DARCY, 1856). Darcy’s Law is valid when the scale of the problem is more considerable
when compared with pore scale, in this fashion it is a volume average of the Navier-Stokes
equation (EWING, 1983). Darcy’s law states that for a single phase fluid, the fluid velocity is
proportional to the pressure gradient, as described by the equation bellow:

u = −K
𝜇

∇𝑝 (2.3)

where K is the rock permeability tensor, 𝜇 is the fluid viscosity and 𝑝 is the pore average
pressure distributed throughout the inside the reservoir (HALLACK; FILHO; COUTO, 2019).

In Equation 2.3, the rock absolute permeability tensor, K, by adopting Cartesian coordinate
system in a two dimensional space is given by:

K =

⎡⎢⎢⎣ 𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦

⎤⎥⎥⎦ (2.4)

The absolute permeability K is an intrinsic property of the rock and it denotes the capacity
of the medium to permit the flow.

2.4 STOKES’ EQUATION

Usually, the system of equations that represents the Navier-Stokes Equation are composed
by the mass conservation equation, Equation 2.1, previously discussed and the conservation
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of linear momentum equation (DREW; PASSMAN, 1999).
The linear momentum conservation equation is based on the Newton’s Second Law i.e.

the momentum net rate on any portion of fluid must be equal to the sum of all the forces
acting on this same portion:

𝐷(𝜌u)
𝐷𝑡

= −∇ · 𝜏 − ∇𝑝 + 𝜌𝑔 + 𝐹 (2.5)

in which, 𝜏 is the shear stress tensor, 𝑔 is the gravity and 𝐹 is the summation of all external
forces.

By assuming the hypotheses suggested by (STOKES, 1845; GLOVER, 1994) we can finally
define de well known Navier-Stokes Equation:

𝐷(𝜌u)
𝐷𝑡

= 𝜇∇2u − ∇𝑝 + 𝜌𝑔 (2.6)

in which the term 𝜇∇2u is known as diffusive viscosity term and 𝐷(𝜌u
𝐷𝑡

represents the total
acceleration, that is divided on an instantaneous acceleration (transient term) and a advective
acceleration, moreover the term 𝜌𝑔 depict the gravitational force influence.

When dealing with a fluid flow with a low Reynolds Number, 𝑅𝑒 < 1, the inertial forces
can be neglected, once the effects of the viscous forces are predominant on the fluid flow
(BATCHELOR, 2000). In that way, Equation 2.6 can be simplyfied as:

𝜇∇2u − ∇𝑝 + 𝜌𝑔 = 0 (2.7)

Equation 2.7 is known as Stokes Equation, that can be used to analyse the fluid flow in the
karstic domain of the carbonate petroleum reservoirs, because the fluid flow in this geological
formations has a low 𝑅𝑒 and the flow is considered a free flow (HE et al., 2015; CONCEIÇÃO et

al., 2019)

2.5 STOKES-BRINKMAN EQUATION

Occasionally, it is possible to encounter in nature porous media with high values of porosity.
In that fashion, the carbonate reservoirs can be included in this group due the presence of
vugs and caves.

For media with these characteristics, the Darcy’s Law, often, does not show a good agree-
ment with experimental results, specially when dealing with high permeability media. With
the intention of overcome these problem, Brinkman (BRINKMAN, 1949) studied the effects of
viscous forces exerted for the fluid flow over a swarm of particles.
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Brinkman proposed a model for the fluid flow in which a modification was made on the
Darcy’s Law, Equation 2.3, by adding the viscous term present on Stoke’s Equation, Equation
2.7, in a empiracal form such that, in the stationary regime, is given by Equation 2.8

∇𝑝 = − 𝜇

K
u + 𝜇

′∇2u (2.8)

where 𝜇
′ is the fluid effective viscosity.

The fluid effective viscosity, also know as the Brinkman’s effective viscosity, is widely
discussed in literature (AURIAULT; BOUTIN; GEINDREAU, 2010; MARTYS; BENTZ; GARBOCZI,
1994; BRINKMAN, 1949). In this work, on the grounds that the effects of suspended particles
are neglected, consider the dynamic and effective viscosity is a good approximation for the
model (CARMAN, 1997).

For a typical carbonate reservoir, inside of which there are two types of fluid flow regions
the Equation 2.8 reduces to Darcy Equation on the porous media domain, wherein the term
𝜇K−1u prevails over the term 𝜇∇2u by orders of magnitude. On the other hand, in the
free flow regions, in the free flow regions, inside the karstics structures, where the values of
permeability are much bigger than in the porous media, ideally K → ∞, the term 𝜇∇2u

becomes predominant and Equation 2.8 tends to Stokes Equation (2.7) (KROTKIEWSKI et al.,
2011; CONCEIÇÃO et al., 2019; HE et al., 2015)

2.6 INITIAL AND BOUNDARY CONDITIONS

To completely define the system of equations that governs the fluid flow, and make the
mathematical model well-posed, a proper combination of initial and boundary conditions must
be applied. A typical set of boundary conditions are (CONTRERAS et al., 2017; CARVALHO,
2005; CONCEIÇÃO et al., 2019):

𝑝(xD, 𝑡) = 𝑔𝐷 in Γ𝐷 × 𝑇

u · n = 𝑔𝑁 in Γ𝑁 × 𝑇

u(x, 0) = u0 in Ω 𝑎𝑡 𝑡 = 0

u(x, 𝑡) = 0 𝑖𝑛 Γ𝑆 × 𝑇

(2.9)

in which Γ𝐷 and Γ𝑁 represent the Neumman and Dirichlet boundaries conditions, respectively,
Γ𝑆 denotes the solid wall boundaries and 𝑇 is the time interval of the analysis. The scalar 𝑔𝐷

(prescribed pressure), 𝑔𝑁 (prescribed flux) are applied defined at Γ𝑁 and Γ𝐷 respectively and
Γ is the domain.
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Figure 1 – Computational Domain Identifying the injection and production well, and the Neumman and Dirich-
let boundaries

Source: Author.

The contour of the domain Ω, represented by 𝜕Ω, can be considered as a disjunct union
of the other countors:

𝜕Ω = Γ𝑆 ∪ Γ𝐷 ∪ Γ𝐷 ∪ Γ𝑝𝑟𝑜𝑑 ∪ Γ𝑖𝑛𝑗 (2.10)

in which, Γ𝑝𝑟𝑜𝑑 and Γ𝑖𝑛𝑗 represents the production and injection wells, respectively, as shown
in Figure 1.
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3 NUMERICAL FORMULATION

In this chapter, we present the numerical strategy used to numerically solve the PDEs
presented in the last chapter. A large number of methods, were developed to do so, among
them, the Finite Volume Method (FVM), that provides conservative solutions.

3.1 VARIABLE ARRANGEMENT

Due the weak coupling between the variables, pressure and velocity that exists in some
equations, such as Navier-Stokes and Stokes-Brinkman equations, different grid arrangements
were used to face this problem.

The staggered grid arrangement described by Patankar (2018) in which the values of
pressures are stored at the centroid of the control volume and the components of velocities,
namelly 𝑢 and 𝑣, are stored at the cell faces (edge in 2-D). As a consequence, the problems
related to the so called checker-board pressure fields, are solved, despite that by using a
staggered grid arrangement it may became unmanageable in Three Dimensions (3-D) and
even for curvilinear and circular grids, and, consequently for unstructured meshes (FERZIGER;

PERIĆ; STREET, 2020; MARCHI; MALISKA, 1994).
An alternative variable arrangement is the cell-centered, in which all the variables are stored

at the center of the control volume (CARVALHO, 2005; FERZIGER; PERIĆ; STREET, 2020). By
doing that, and due to the weak couple of the variables it mandatory to use some strategy that
ensure the coupling, but the computational implementation of the numerical method becomes
simple even for 3-D cases (RHIE; CHOW, 1983; MAZUMDER, 2015).

In this work, we adopted a cell-centered finite volume scheme alongside a momentum in-
terpolation method to ensure the coupling between the variables, that will be further explained
in the next sections.

3.2 FINITE VOLUME DISCRETIZATION OF STOKES-BRINKMAN EQUATION

Initially, we should rewrite the Equation 2.8 considering a transient term regarding the
velocity components. Thus, we can define a system of equations, Equation 3.1 , composed
by the the mass conservation equation and the Stokes-Brinkman Equation in the transient
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regime: ⎧⎪⎪⎨⎪⎪⎩
𝜕(𝜌u)

𝜕𝑡
+ 𝜇K−1u − 𝜇

′∇2u = −∇𝑝

∇u = 0
(3.1)

Assuming that the computational domain is two-dimensional, the Equation 3.1 can be
rewrite in terms of the cartesian velocity components 𝑢 and 𝑣, that represents the velocities
in the 𝑥 and 𝑦 direction, respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕(𝜌𝑢)
𝜕𝑡

+ 𝜇K−1𝑢 − 𝜇
′∇2𝑢 = 𝜕𝑝

𝜕𝑥

𝜕(𝜌𝑣)
𝜕𝑡

+ 𝜇K−1𝑣 − 𝜇
′∇2𝑣 = 𝜕𝑝

𝜕𝑦

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0

(3.2)

On the basis of the FVM, the approximate solution of Equation 3.1, the conservation of
momentum equation and the divergence free velocity equation, is obtained by integrating it
throughout the domain Ω, which leads to:

∫︁
Ω

𝜕(𝜌u)
𝜕𝑡

𝑑Ω +
∫︁

Ω
𝜇K−1u 𝑑Ω −

∫︁
Ω

𝜇
′∇2u 𝑑Ω = −

∫︁
Ω

∇𝑝 𝑑Ω (3.3)

∫︁
Ω

∇𝑢 𝑑Ω = 0 (3.4)

Figure 2 – Discrete domain and general control volume Ω𝐿̂

Source: Author.

In order to obtain a discrete form of Equation 3.3 and 3.4, the domain Ω is subdivided in
a series of 𝑛𝑣 Control Volume (CV) Ω𝐿̂, as shown on Figure 2. In that fashion, we can rewrite
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Equation 3.3 and 3.4 as a sum of integrals over all the 𝑛𝑣 CV:

𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

𝜕(𝜌u)
𝜕𝑡

𝑑Ω𝐿̂ +
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

𝜇K−1u 𝑑Ω𝐿̂ −
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

𝜇
′∇2u 𝑑Ω𝐿̂ = −

𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇𝑝 𝑑Ω𝐿̂ (3.5)

𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇𝑢 𝑑Ω𝐿̂ = 0 (3.6)

In the following subsections we will address all the terms separately. Initially, the momentum
equation will be discretized using the MPFA-H, soon after the mass conservation equation will
be discretized alongside a Momentum Interpolation Method (MIM) in order to guarantee the
coupling between the variables.

3.2.1 Pressure Gradient

The pressure gradient, with respect to each control volume Ω𝐿̂, fourth term of Equation
3.5 is approximate by employing the Green-Gauss’s divergence theorem, as:

−
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇𝑝 𝑑Ω𝐿̂ = −
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽

𝑝nΓ𝐼𝐽
𝑑𝑠 = −

∑︁
𝐼𝐽∈Γ𝐿̂

𝑝𝐼𝐽 ‖𝐼𝐽‖ n𝐼𝐽 (3.7)

where 𝑝𝐼𝐽 = 1
‖𝐼𝐽‖

∫︀
𝐼𝐽 𝑝𝑑𝑠 and n𝐼𝐽 is the outward unit normal with respect to the face 𝐼𝐽

and 𝑝𝐼𝐽 stands for the pressure at the control surfaces in Ω𝐿̂, with ‖𝐼𝐽‖ referring to the
area (length in 2-D) of the face ‖𝐼𝐽‖. In (ILIEV et al., 2014) the author adopted the cell face
midpoint as interpolation point, however in the present work we have adopted the so-called
harmonic interpolation points (CONTRERAS et al., 2017).

3.2.1.1 Interpolation Strategy Using Harmonic Points

The definition and derivation of harmonic points adopted in this paper, was firstly proposed
by (AGELAS; EYMARD; HERBIN, 2009).

Consider two control volumes, 𝐿̂ and 𝑅̂, adjacent to a face 𝐼𝐽 of the domain, with respec-
tive permeability tensors KL̂ and KR̂ and 𝑥𝐿̂ ∈ 𝐿̂ and 𝑥𝑅̂ ∈ 𝑅̂ the corresponding centroids
of the control volumes, see Figure 5. With the purpose of obtaining a method with a small
stencil, we need to find a point over the face 𝐼𝐽 in which the solution is a combination, solely,
of the pressures of the adjacent control volumes, 𝑝𝐿̂ and 𝑝𝑅̂. In that sense, we can write the
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co-normal vectors K⊤
L̂ and K⊤

R̂ as follows:

K⊤
L̂nIJ = 𝑎𝐿̂(𝑥𝐿̂,𝑖(𝐼𝐽) − 𝑥𝐿̂) + 𝑏𝐿̂(𝐽 − 𝐼) (3.8)

and
K⊤

R̂nIJ = 𝑎𝑅̂(𝑥𝑅̂ − 𝑥𝑅̂,𝑖(𝐼𝐽)) + 𝑏𝑅̂(𝐽 − 𝐼) (3.9)

For each face (edge in 2-D) of a control volume 𝐿̂ it is always possible to define two
auxiliary points, designated by 𝑥𝐿̂,𝑖(𝐼𝐽) and 𝑥𝐿̂,𝑗(𝐼𝐽), which are the harmonic points, in a way
that the vectors −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) and −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) are not collinear, as it can be seen in Figure 3.

Figure 3 – Representation of the physical and geometric parameters for the MPFA-H method.

Source: Author.

In these points, 𝑥𝐿̂,𝑖(𝐼𝐽) and 𝑥𝑅̂,𝑖(𝐼𝐽), such that 𝑥𝐿̂,𝑖(𝐼𝐽) = 𝑥𝑅̂,𝑖(𝐼𝐽), the coefficients 𝑏𝐿̂ and
𝑏𝑅̂ depends solely on physical-geometrical parameters of the domain (GAO; WU, 2013), and 𝑎𝐿̂

and 𝑎𝑅̂, in Equation 3.8 and Equation 3.9, respectively, are given by:

𝑎𝐿̂ =
𝐾

(𝑛)
𝐿̂,𝐼𝐽

ℎ𝐿̂,𝐼𝐽

, 𝑎𝑅̂ =
𝐾

(𝑛)
𝑅̂,𝐼𝐽

ℎ𝑅̂,𝐼𝐽

, 𝐾
(𝑛)
𝐿̂,𝐼𝐽

= n⊤
IJKL̂ · nIJ and 𝐾

(𝑛)
𝑅̂,𝐼𝐽

= n⊤
JIKR̂ · nJI (3.10)

where ℎ𝐿̂,𝐼𝐽 and ℎ𝑅̂,𝐼𝐽 are the orthogonal distances from the correspondents centroids, 𝑥𝐿̂ and
𝑥𝑅̂, respectively, to the face 𝐼𝐽 , as it can be seen on Figure 4.
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Figure 4 – Geometric parameters for a general face (edge in 2-D) of two adjacent control volumes 𝐿̂ and 𝑅̂.

Source: Author.

Subtracting Equation 3.9 from Equation 3.8 and isolating the harmonic point, 𝑥𝐿̂,𝑖(𝐼𝐽), as
a function of the physical and geometrical parameters, leads us to the following expression:

𝑥𝐿̂,𝑖(𝐼𝐽) =
𝑎𝐿̂𝑥𝐿̂ + 𝑎𝑅̂𝑥𝑅̂ +

(︁
K⊤

L̂ − K⊤
R̂

)︁
nIJ

𝑎𝐿̂ + 𝑎𝑅̂

+ 𝑏𝑅̂(𝐽 − 𝐼) − 𝑏𝐿̂(𝐼 − 𝐽)
𝑎𝐿̂ + 𝑎𝑅̂

(3.11)

substituting the values of the parameters 𝑎𝐿̂ and 𝑎𝑅̂ given by Equation 3.10 in Equation
3.11, we obtain:

𝑥𝐿̂,𝑖(𝐼𝐽) =
ℎ𝐿̂,𝐼𝐽𝐾

(𝑛)
𝑅̂,𝐼𝐽

𝑥𝑅̂ + ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂,𝐼𝐽

𝑥𝐿̂ + ℎ𝐿̂,𝐼𝐽ℎ𝑅̂,𝐼𝐽

(︁
K⊤

L̂ − K⊤
R̂

)︁
nIJ

ℎ𝐿̂,𝐼𝐽𝐾
(𝑛)
𝑅̂,𝐼𝐽

+ ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂,𝐼𝐽

+
ℎ𝐿̂,𝐼𝐽ℎ𝑅̂,𝐼𝐽 (𝑏𝑅̂ − 𝑏𝐿̂) (𝐽 − 𝐼)

ℎ𝐿̂,𝐼𝐽𝐾
(𝑛)
𝑅̂,𝐼𝐽

+ ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂,𝐼𝐽

(3.12)

Figure 5 – Stencil for the discrete flux on the control surface using harmonic interpolation points.

Source: Author.
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A sufficient condition to derive a method with a local stencil, is given by assuming 𝑏𝐿̂ = 𝑏𝑅̂

(GAO; WU, 2013). Thus, by making this assumption, we have:

𝑥𝐿̂,𝑖(𝐼𝐽) =
ℎ̂︀𝐿,𝐼𝐽

𝑘
(𝑛)̂︀𝑅,𝐼𝐽

𝑥̂︀𝑅 + ℎ̂︀𝑅,𝐼𝐽
𝑘

(𝑛)̂︀𝐿,𝐼𝐽
𝑥̂︀𝐿 + ℎ̂︀𝐿,𝐼𝐽

ℎ̂︀𝑅,𝐼𝐽

(︁
K⊤̂︀𝐿 − K⊤̂︀𝑅)︁n𝐼𝐽

ℎ̂︀𝐿,𝐼𝐽
𝑘

(𝑛)̂︀𝑅,𝐼𝐽
+ ℎ̂︀𝑅,𝐼𝐽

𝑘
(𝑛)̂︀𝐿,𝐼𝐽

(3.13)

Similarly, following the same procedure, we can define the harmonic point 𝑥𝐿̂,𝑗(𝐼𝐽) and
𝑥𝑅̂,𝑗(𝐼𝐽). For control surfaces inside the domain, the interpolation point defined in Equation
3.13 is the harmonic point for a non-homogeneous porous media. On the other hand, if the
control surface that belongs to the boundary of the domain we simply use the middle point of
the face 𝐼𝐽 as the interpolation point (CONTRERAS, 2016).

Remark. When dealing with severely distorted meshes or with problems that presents high

anisotropy, the harmonic points even belonging to the face (edge in 2-D) 𝐼𝐽 , the sum of the

angles 𝜃1
𝐿̂,𝐼𝐽

+ 𝜃2
𝐿̂,𝐼𝐽

is greater than 180∘, in this case we adopted the middle point of the face

as the harmonic point (see Figure 6) (CONTRERAS et al., 2017).

Figure 6 – Representation of a pathological case in which the harmonic point belongs to the edge, but the
sum the angles is greater than 180∘.

Source: Author.

A particular case for the harmonic points calculation arises when dealing with a homoge-
neous and isotropic porous media such as inside the vuggy region (free flow region). In this
scenario, the harmonic points, 𝑥𝐿̂,𝑖(𝐼𝐽) and 𝑥𝐿̂,𝑗(𝐼𝐽) only depend on geometric parameters of
the two adjacents control volumes 𝐿̂ and 𝑅̂, then:

𝑥𝐿̂,𝑖(𝐼𝐽) =
ℎ̂︀𝐿,𝐼𝐽

𝑥̂︀𝐿 + ℎ̂︀𝑅,𝐼𝐽
𝑥̂︀𝑅

ℎ̂︀𝐿,𝐼𝐽
+ ℎ̂︀𝑅,𝐼𝐽

(3.14)
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Once the interpolation points are defined for all control surfaces of the computational
mesh, the value of the variables at these points can be computed as a convex combination
of the cell center variables regarding the control volumes that shared a generic face IJ of the
domain, as given by:

𝑝𝐼𝐽 = 𝜔𝐿̂,𝐼𝐽𝑝̂︀𝐿 + 𝜔𝑅̂,𝐼𝐽𝑝̂︀𝑅 (3.15)

where 𝜔𝐿̂,𝐼𝐽 and 𝜔𝐿̂,𝐼𝐽 are the weights defined in Equation 3.16. It should be pointed out that
the interpolation given by Equation 3.15 fulfills the linearity-preserving criteria (CONTRERAS,
2016).

𝜔𝐿̂,𝐼𝐽 =
ℎ𝑅̂,𝐼𝐽 𝑘

(𝑛)
𝐿̂,𝐼𝐽

ℎ𝑅̂,𝐼𝐽 𝑘
(𝑛)
𝐿̂,𝐼𝐽

+ ℎ𝐿̂,𝐼𝐽 𝑘
(𝑛)
𝑅̂,𝐼𝐽

and 𝜔𝑅̂,𝐼𝐽 = 1 − 𝜔𝐿̂,𝐼𝐽 (3.16)

3.2.2 Diffusive Term

Considering the third term in the left hand side of Equation 3.5, we can write as:

−
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇ · (𝜇∇u) 𝑑Ω𝐿̂ =
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇ · F 𝑑Ω𝐿̂ (3.17)

in which F = −ℳ∇u is the diffusive flux flux and ℳ = 𝜇I, where I is identity matrix.
Applying the Green-Gauss divergence theorem in Equation 3.17, considering a generic control
volume 𝐿̂, we get: ∫︁

Ω𝐿̂

∇ · F 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

F · nΓ𝐿̂
𝑑Γ𝐿̂ =

∑︁
𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽

F · nIJ𝑑𝑠 (3.18)

Now consider two control volumes, namely 𝑅̂ and 𝐿̂, adjacent to a generic internal face
𝐼𝐽 of the domain Ω, see Fig 5. We can define the one-sided flux of a given property 𝜑 with
respect to the control volume 𝐿̂ for a face 𝐼𝐽 of Γ𝐿̂ as:∫︁

IJ
F · nIJ 𝑑Γ𝐿̂ =

∫︁
IJ

−ℳ𝐿̂∇𝜑 · nIJ 𝑑𝑠 = F𝐿̂
𝜑,𝐼𝐽 · NIJ, with 𝜑 = 𝑢 or 𝑣 (3.19)

where F𝐿̂
𝜑,𝐼𝐽 = −ℳ𝐿̂(∇𝜑)𝐼𝐽 , and NIJ is the area vector of the edge 𝐼𝐽 . Now we can rewrite

Equation3.19 as:

F𝐿̂
𝜑,𝐼𝐽 · NIJ =

∫︁
IJ

−ℳ𝐿̂∇𝜑 · nIJ 𝑑𝑠 =
∫︁

IJ
−∇𝜑 ·

(︁
ℳ⊤

𝐿̂ nIJ

)︁
𝑑𝑠 (3.20)

in which 𝜑 represents each of velocity components, 𝑢 and 𝑣 of the velocity vector u. In Equation
3.20, we should approximate the term ∇𝜑·

(︁
ℳ⊤

𝐿̂ nIJ

)︁
, using a Taylor series expansion (POTIER,

2009; YUAN; SHENG, 2008).
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3.2.2.1 MPFA based in Harmonic points scheme MPFA-H

In this sub section, we describe the Multipoint Flux Approximation mehtod based on
harmonic points MPFA-H, which was orginally devised to discretize diffusion problems in
heterogeneous and anisotropic media in (GAO; WU, 2014) and that was adapted for modeling
Darcian two-phase fluid flows in petroleum reservoirs by (CONTRERAS, 2016; QUEIROZ et al.,
2014; CARVALHO; WILLMERSDORF; LYRA, 2009; TEIXEIRA; GUIMARÃES; CARVALHO, 2021). In
this scheme, the unique flux on each control surface of the discrete domain is expressed as a
linear combination of the one-sided fluxes of the two control volumes adjacent to each face.

These fluxes are explicitly expressed by one cell centered unknown and points defined
on the faces that do not necessarily belong to the same face shared by the adjacent cells
independently (AGELAS; EYMARD; HERBIN, 2009). In Figure 5, we present a small portion of a
polygonal 2-D mesh with the stencil used to define the face fluxes and the harmonic points.

Using the vectors non collinear 𝑥𝐿̂,𝑖(𝐼𝐽) and 𝑥𝐿̂,𝑗(𝐼𝐽), in a way that the vectors −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽)

and −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) are not collinear, as it can be seen in Figure 7. This implies that there are two
coefficients 𝛼𝐿̂,𝑖(𝐼𝐽) and 𝛼𝐿̂,𝑗(𝐼𝐽) associated to each auxiliary point, we can write:

ℳ⊤
𝐿̂ nIJ = 𝛼𝐿̂,𝑖(𝐼𝐽)

−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐿̂,𝑗(𝐼𝐽)
−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) (3.21)

where 𝑥𝐿̂ is the centroid of the control volume 𝐿̂, and the term ℳ⊤
𝐿̂ nIJ is the projection of

ℳ in the normal direction of a face 𝐼𝐽 . In Equation 3.21 the coefficients 𝛼𝐿̂,𝑖(𝐼𝐽) and 𝛼𝐿̂,𝑗(𝐼𝐽)

are given by:

𝛼𝐿̂,𝑖(𝐼𝐽) =

(︁
ℳ⊤

𝐿̂ nIJ, −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽), 𝑒⃗𝑧

)︁
(−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),

−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽), 𝑒⃗𝑧) and 𝛼𝐿̂,𝑗(𝐼𝐽) =

(︁−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽), ℳ⊤
𝐿̂ nIJ, 𝑒⃗𝑧

)︁
(−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),

−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽), 𝑒⃗𝑧) (3.22)

where (⃗𝑎, 𝑏⃗, 𝑐⃗) represents the mixed product of the vectors 𝑎⃗, 𝑏⃗, 𝑐⃗, and 𝑒⃗𝑧 is the unitary
vector that represents the 𝑧 axis.

By substituting Equation 3.21 into Equation 3.20, and using a finite difference method to
approximate the partial derivatives of 𝜑, i.e. ∇𝜑 along the directions, −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) and −−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),
we get:

F𝐿̂
𝜑,𝐼𝐽 · NIJ =

∫︁
IJ

−∇𝜑 ·
(︁
ℳ⊤

𝐿̂ nIJ

)︁
𝑑𝑠 = ‖𝐼𝐽‖

(︃
𝛼𝐿̂,𝑖(𝐼𝐽)

𝜑𝐿̂ − 𝜑𝐿̂,𝑖(𝐼𝐽)

‖−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽)‖
+ 𝛼𝐿̂,𝑗(𝐼𝐽)

𝜑𝐿̂ − 𝜑𝐿̂,𝑗(𝐼𝐽)

‖−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽)‖

)︃
(3.23)

Equation 3.23 is equivalent to:

F𝐿̂
𝜑,𝐼𝐽 · NIJ = ‖𝐼𝐽‖ (𝜉𝐿̂,𝑖(𝐼𝐽)(𝜑𝐿̂ − 𝜑𝐿̂,𝑖(𝐼𝐽)) + 𝜉𝐿̂,𝑗(𝐼𝐽)(𝜑𝐿̂ − 𝜑𝐿̂,𝑗(𝐼𝐽))) (3.24)
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Figure 7 – Representation of the physical and geometric parameters for the MPFA-H method for diffusive
fluxes.

Source: Author.

where:

𝜉𝐿̂,𝑖(𝐼𝐽) = 𝛼𝐿̂,𝑖(𝐼𝐽)

‖−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽)‖
and 𝜉𝐿̂,𝑗(𝐼𝐽) = 𝛼𝐿̂,𝑗(𝐼𝐽)

‖−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽)‖
(3.25)

Similarly, for the control volume 𝑅̂ it is possible to write the one-sided flux with respect
to the face 𝐼𝐽 , as:

F𝑅̂
𝜑,𝐼𝐽 · NIJ = ‖𝐼𝐽‖ (𝜉𝑅̂,𝑖(𝐼𝐽)(𝜑𝑅̂ − 𝜑𝑅̂,𝑖(𝐼𝐽)) + 𝜉𝑅̂,𝑗(𝐼𝐽)(𝜑𝑅̂ − 𝜑𝑅̂,𝑗(𝐼𝐽))) (3.26)

where:

𝜉𝑅̂,𝑖(𝐼𝐽) = 𝛼𝑅̂,𝑖(𝐼𝐽)

‖−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑖(𝐼𝐽)‖
and 𝜉𝑅̂,𝑗(𝐼𝐽) = 𝛼𝑅̂,𝑗(𝐼𝐽)

‖−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑗(𝐼𝐽)‖
(3.27)

In Equation 3.27, and as shown on Figure 7, 𝑥𝑅̂ is the centroid of the control volume 𝑅̂,
and 𝑥𝑅̂,𝑖(𝐼𝐽), 𝑥𝑅̂,𝑗(𝐼𝐽) are the interpolations points related to the control volume 𝑅̂.

In order to obtain a conservative scheme, the unique flux over the face 𝐼𝐽 is written as
a convex combination of the one-sided fluxes (FUHRMANN; OHLBERGER; ROHDE, 2014), given
by Equation 3.24 and Equation 3.26:

F𝜑,𝐼𝐽 · NIJ = 𝑤𝐿̂,𝐼𝐽F𝐿̂
𝜑,𝐼𝐽 · NIJ + 𝑤𝑅̂,𝐼𝐽F𝑅̂

𝜑,𝐼𝐽 · NIJ (3.28)

in which 𝑤𝐿̂,𝐼𝐽 and 𝑤𝑅̂,𝐼𝐽 are weights, defined as:

𝑤𝐿̂,𝐼𝐽 = ℎ𝑅̂,𝐼𝐽

ℎ𝑅̂,𝐼𝐽 + ℎ𝐿̂,𝐼𝐽

𝑎𝑛𝑑 𝑤𝑅̂,𝐼𝐽 = 1 − 𝑤𝐿̂,𝐼𝐽 (3.29)
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where ℎ𝐿̂,𝐼𝐽 (resp. ℎ𝑅̂,𝐼𝐽) is the orthogonal distance from 𝑥𝐿̂ (resp. 𝑥𝑅̂) to the face 𝐼𝐽 (see
Figure 4). Importantly, in Equation 3.29, the weights depends only on geometrical parameters
and they satisfy the convex restriction condition 𝑤𝑅̂,𝐼𝐽 + 𝑤𝐿̂,𝐼𝐽 = 1 (POTIER, 2009; LIPNIKOV

et al., 2007; CONTRERAS, 2016). After some algebraic manipulation (CONTRERAS, 2016), the
total flux of a face 𝐼𝐽 can then be written as:

F𝜑,𝐼𝐽 · NIJ =
∑︁

𝛾=𝑖,𝑗

∑︁
𝑟=𝐿̂,𝑅̂

𝜒𝑟,𝛾(𝐼𝐽)(𝜑𝑟 − 𝜑𝑟,𝛾(𝐼𝐽))‖𝐼𝐽‖ (3.30)

where 𝜒𝑟,𝛾(𝐼𝐽) = 𝑤𝑟,𝐼𝐽𝜉𝑟,𝛾(𝐼𝐽), with 𝑟 = 𝐿̂, 𝑅̂ and 𝛾 = 𝑖, 𝑗.
Then, the velocities components on the harmonic points given by Equation 3.14 are defined

as: 𝜑𝑟,𝛾(𝐼𝐽) = 𝜔𝑀̂,𝛾(𝐼𝐽)𝜑̂︀𝑀,𝛾
+ 𝜔𝑁̂,𝛾(𝐼𝐽)𝜑̂︀𝑁,𝛾

, where 𝜔𝑀̂,𝛾𝐼𝐽 =
ℎ̂︀𝑀,𝛾(𝐼𝐽)

ℎ̂︀𝑀,𝛾(𝐼𝐽)
+ℎ̂︀𝑁,𝛾(𝐼𝐽)

and 𝜔𝑁̂,(𝐼𝐽) =

1 − 𝜔𝑀̂,𝛾(𝐼𝐽), in which 𝑀 and 𝑁 are the two control volumes that sharing a generic face 𝐼𝐽 .

3.2.3 Darcy Term

The so called Darcy term in this work, refers to the second term in Equation 3.5. Thus,
consider a generic control volume 𝐿̂, with respective permeability tensor KL̂. By integrating,
over a generic control volume 𝐿̂ and by using the mean value theorem, we get:

∫︁
Ω𝐿̂

𝜇K−1
L̂ u 𝑑Ω𝐿̂ = 𝜇𝑉𝐿̂K−1

L̂ un+1
L̂ (3.31)

in which u𝐿̂ = 1
𝑉𝐿̂

∫︀
u𝑑𝑉 in Ω𝐿̂, with 𝑉𝐿̂ being the volume (area in 2-D) of the control volume

𝐿̂.

3.2.4 Transient Term

We use the first order Euler backward scheme to approximate the transient term , first
term in Equation 3.5. Which considering a generic control volume 𝐿̂ as:

∫︁
Ω𝐿̂

𝜌
𝜕u
𝜕𝑡

𝑑Ω𝐿̂ = 𝜌𝑉𝐿̂

Δ𝑡

(︁
uL̂

𝑛+1 − uL̂
𝑛
)︁

(3.32)

in which Δ𝑡 is the time step, Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, and the superscripts 𝑛 + 1 and 𝑛 refer, to the
next and the current time level of the simulation, respectively. In this thesis, we have adopted
a fully implicit scheme, in other words, all the variables, pressure and velocity, are evaluated
at the time step 𝑛 + 1.



35

3.2.5 Final Form of the Momentum Equation

After the discretization of all terms in Equation 3.5 using the MPFA-H scheme, considering
a generic control volume 𝐿̂ we get:

𝜌𝑉𝐿̂

Δ𝑡

(︁
𝜑𝐿̂

𝑛+1 − 𝜑𝐿̂
𝑛
)︁

+ 𝜇𝑉𝐿̂K−1
L̂ 𝜑𝑛+1

𝐿̂
+

∑︁
Γ𝐼𝐽 ∈Γ𝐿̂

∑︁
𝛾=𝑖,𝑗

∑︁
𝑟=𝐿̂,𝑅̂

‖𝐼𝐽‖𝜒𝑟,𝛾(𝐼𝐽)(𝜑𝑟 − 𝜑𝑟,𝛾(𝐼𝐽))𝑛+1

= −
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

𝑝𝑛+1
𝐼𝐽 ‖𝐼𝐽‖n𝐼𝐽 (3.33)

Grouping all terms related to the velocity components and to the pressure gradient, we
can write the equations for the conservation of momentum in a more compact form, as:

𝑎𝑢,𝐿̂𝑢𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1

𝑃 − 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂

+ 𝜌𝐿̂𝑉𝐿̂

Δ𝑡
𝑢𝑛

𝐿̂ (3.34)

𝑎𝑣,𝐿̂𝑣𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑣𝑛𝑏)𝑛+1

𝑃 − 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐿̂

+ 𝜌𝐿̂𝑉𝐿̂

Δ𝑡
𝑣𝑛

𝐿̂ (3.35)

where,

𝑎𝑢,𝐿̂ = 𝜌𝑉𝐿̂

Δ𝑡
+ 𝜇𝑉𝐿̂K−1

L̂ +
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

(︂ ∑︁
𝛾=𝑖,𝑗

𝜒𝐿̂,𝛾(𝐼𝐽)(1 + 𝜔𝐿̂,𝛾(𝐼𝐽))) − 𝜔𝑅̂,𝑗(𝐼𝐽)

)︂
‖𝐼𝐽‖ (3.36)

𝑎𝑢,𝑛𝑏 =
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

(︂ ∑︁
𝛾=𝑖,𝑗

𝜒𝐿̂,𝛾(𝐼𝐽)(1 + 𝜔𝑅̂,𝛾(𝐼𝐽))) − 𝜔𝐿̂,𝑗(𝐼𝐽)

)︂
‖𝐼𝐽‖ (3.37)

and,

𝑎𝑣,𝐿̂ = 𝜌𝑉𝐿̂

Δ𝑡
+ 𝜇𝑉𝐿̂K−1

L̂ +
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

(︂ ∑︁
𝛾=𝑖,𝑗

𝜒𝐿̂,𝛾(𝐼𝐽)(1 + 𝜔𝐿̂,𝛾(𝐼𝐽))) − 𝜔𝑅̂,𝑗(𝐼𝐽)

)︂
‖𝐼𝐽‖ (3.38)

𝑎𝑣,𝑛𝑏 =
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

(︂ ∑︁
𝛾=𝑖,𝑗

𝜒𝐿̂,𝛾(𝐼𝐽)(1 + 𝜔𝑅̂,𝛾(𝐼𝐽))) − 𝜔𝐿̂,𝑗(𝐼𝐽)

)︂
‖𝐼𝐽‖ (3.39)

in which, adopting the classical and more compact form of representing the discrete equa-
tions, 𝑎𝑢,𝐿̂ is the central coefficient, related to the 𝑢 component of the velocity at the control
volume 𝐿̂, and 𝑎𝑢,𝑛𝑏 are the coefficients connecting the variables at the cell center with their
respective neighbors. Whenever dealing with structured meshes, those neighbors are normally
refereed to 𝑛, 𝑠, 𝑒, 𝑤, north, south, east and west (PATANKAR, 2018). Furthermore, 𝜌𝐿̂ is the
fluid density on the control volume 𝐿̂, once the fluid flow is considered incompressible, this
value is constant throughout the whole simulation.

Since we have adopted a cell centered variable arrangement the coefficients 𝑎𝑢,𝐿̂ and 𝑎𝑢,𝑛𝑏

are the same as 𝑎𝑣,𝐿̂ and 𝑎𝑣,𝑛𝑏 in Equation 3.34 and Equation 3.35, but with different pressure
gradient and transient terms.
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3.2.6 Mass Conservation Equation

Considering the Equation 3.6 for a generic control volume 𝐿̂ and apllying the Green-Gauss
divergence theorem:

∫︁
Ω𝐿̂

∇ · u 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

u 𝑑Γ𝐿̂ =
∑︁

Γ𝐼𝐽 ∈Γ𝐿̂

(u𝐼𝐽n𝐼𝐽‖𝐼𝐽‖) (3.40)

in which u𝐼𝐽 is the cell face velocity.
If a central difference scheme is adopted to approximate the control surfaces velocities, it

is well know in literature that a decoupling between the pressure and velocity variables may
occur (PATANKAR, 2018) spurious oscillatory pressure fields may arise. In order to guarantee
the proper coupling between the variables, different strategies are used to approximate the con-
trol surface velocities such as: the Rhie-Chow interpolation method (RHIE; CHOW, 1983), the
momentum interpolation method, proposed by Majumdar (1988), and the Physical Influence
Scheme (SCHNEIDER; RAW, 1987).

In the present thesis a modification of the original Rhie and Chow interpolation (RHIE;

CHOW, 1983) is used. In this new scheme, proposed by (ZHANG; ZHAO; BAYYUK, 2014), the
well know problems of the Rhie and Chow interpolation, for example the time step dependence
and the large errors due the presence of strong body forces, are addressed and solved.

3.2.6.1 Momentum Interpolation Scheme

Considering two generic control volumes adjacent to the same control surface 𝐼𝐽 (edge in
2-D) of the computational mesh, namely 𝐿̂ and 𝑅̂. We can write the momentum equations
for the velocity component 𝑢 such as Equation 3.34:

𝑎𝑢,𝐿̂𝑢𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1

𝐿̂
− 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂

+ 𝜌𝐿̂𝑉𝐿̂

Δ𝑡
𝑢𝑛

𝐿̂ (3.41)

𝑎𝑢,𝑅̂𝑢𝑛+1
𝑅̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1

𝑅̂
− 𝑉𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝑅̂

+ 𝜌𝑅̂𝑉𝑅̂

Δ𝑡
𝑢𝑛

𝑅̂ (3.42)

where, 𝑉𝑅̂ is the volume (area in 2-D) of the control volume 𝑅̂ and 𝜌𝑅̂ is the fluid density on
the control volume 𝑅̂.

Similarly, we can write for the face 𝐼𝐽 :

𝑎𝑢,𝐼𝐽𝑢𝑛+1
𝐼𝐽 =

𝑛𝑏∑︁
𝑖=1

(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1
𝐼𝐽 − 𝑉𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐼𝐽

+ 𝜌𝐼𝐽𝑉𝐼𝐽

Δ𝑡
𝑢𝑛

𝐼𝐽 (3.43)
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In order to derive the Rhie-Chow interpolation, we need to define the following auxiliary
variables:

𝑀𝑢,𝑖 =
∑︀𝑛𝑏

𝑖=1(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1
𝑖

𝑎𝑢,𝑖

𝑎𝑛𝑑 𝑖 = 𝐿̂, 𝑅̂, 𝐼𝐽 (3.44)

Considering that, 𝑀𝑢,𝐼𝐽 can be obtained by a linear interpolation between the values of
the control volumes at the left and at the right side of the face IJ, we can write:

𝑀𝑢,𝐼𝐽 = (1 − 𝛽)𝑀𝑢,𝐿̂ + 𝛽𝑀𝑢,𝑅̂ (3.45)

in this work, we have adopted 𝛽 = 1
2 , similarly as in the original MIM proposed by Rhie and

Chow (1983).
Substituting the terms 𝑀𝑢,𝐿̂ and 𝑀𝑢,𝑅̂ in Equation 3.45, and rearranging the terms, the

control surface velocities can be expressed as:

𝑢𝐼𝐽 = 𝑢𝐼𝐽 + (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝑅̂

− 𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐼𝐽

+ (TRANSIENT TERM)

(3.46)
in which:

𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

= (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(3.47)

and:
𝑢𝐼𝐽 = (1 − 𝛽)𝑢𝑛+1

𝐿̂
+ 𝛽𝑢𝑛+1

𝑅̂
(3.48)

3.2.6.2 Transient term interpolation

In order to overcome the well know problems of the conventional Rhie-Chow interpolation
scheme when dealing with small time steps, we have decided to use the method proposed by
(ZHANG; ZHAO; BAYYUK, 2014). Therefore, we can write the transient term as:

TRANSIENT TERM = −(1 − 𝛽)𝜌𝐿̂𝑉𝐿̂

𝑎𝑢,𝐿̂ Δ𝑡
𝑢𝑛

𝐿̂ − 𝛽𝜌𝑅̂𝑉𝑅̂

𝑎𝑢,𝑅̂ Δ𝑡
𝑢𝑛

𝑅̂ + 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽 Δ𝑡
𝑢𝑛

𝐼𝐽 (3.49)

where it is feasible to make the following approximations (ZHANG; ZHAO; BAYYUK, 2014):

𝜌𝐿̂𝑉𝐿̂

𝑎𝑢,𝐿̂ Δ𝑡
≈ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽 Δ𝑡
(3.50)

𝜌𝑅̂𝑉𝑅̂

𝑎𝑢,𝑅̂ Δ𝑡
≈ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽 Δ𝑡
(3.51)

by doing that, the cell face velocity, Equation 3.46, can be written as:

𝑢𝐼𝐽 = 𝑢𝐼𝐽 + (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝑅̂

− 𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐼𝐽

+ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽 Δ𝑡
𝑢𝑛

𝐼𝐽 (3.52)
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where
𝑢𝑛

𝐼𝐽 =
[︃

(1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃
𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃
𝑅̂

− 𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃
𝐼𝐽

]︃𝑛

(3.53)

Similarly, following the same procedure, we can write the cell face velocity component 𝑣

as:

𝑣𝐼𝐽 = 𝑣𝐼𝐽 + (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑣,𝑅̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝑅̂

− 𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐼𝐽

+ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽 Δ𝑡
𝑣𝑛

𝐼𝐽 (3.54)

where
𝑣𝑛

𝐼𝐽 =
[︃

(1 − 𝛽)𝑉𝐿̂

𝑎𝑣,𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃
𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑣,𝑅̂

(︃
𝜕𝑝

𝜕𝑦

)︃
𝑅̂

− 𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑦

)︃
𝐼𝐽

]︃𝑛

(3.55)

By making this assumption, the term depicted in Equation 3.53 becomes larger as the time
step decreases, reinforcing the stabilizing effects of these terms.
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4 SOLUTION METHODS FOR THE STOKES-BRINKMAN EQUATION

Several strategies have been devised to overcome the numerical difficult for solving mathe-
matical model such as, Navier-Stokes Equations (STOKES, 1845), Stokes-Brinkman Equations
(BRINKMAN, 1949), that arises due the coupling between the pressure and velocity variables
(AGUERRE et al., 2020). These strategies can be classified in two groups: monolithic and seg-
regated methods.

Monolithic methods solve all the governing equations, conservation of momentum and
mass conservation equation, simultaneously for all the variables. Segregated algorithms, on
the contrary, solve the equations in a sequencial process, each variable at time (MAZUMDER,
2015; MAZHAR, 2002; FERZIGER; PERIĆ; STREET, 2020).

In this chapter, we present the two methods for solving the Stokes-Brinkman equations.
First, the monolithic approach will be discussed, then we will introduce a segregated algorithm
to solve the Stokes-Brinkman system of equation using a pressure-velocity coupling algorithm.

4.1 MONOLITHIC APPROACH TO SOLVE THE STOKES-BRINKMAN EQUATION

In Chapter 3 the mass conservation equation and the linear momentum equation were
discretized, including the evaluation of the cell face velocities using a modified momentum
interpolation scheme. Therefore, the resulting equations will only depend on the cell centered
values of the unknowns of the problem.

Unlike the segregated methods, that will be discussed on the following section, when
adopting a monolithic approach to solve the system of equation, Equation 4.1, the pressure
and velocity fields, obtained during the solution procedure, satisfy both the mass conservation
equation and the momentum conservation equation. In fact, the problems that arises from
the coupling between the variables 𝑝 and 𝑣 is absent when adopting this procedure, once it is
implicitly treated during the solution (HONÓRIO, 2013).

𝐴𝑝𝑝 𝐴𝑝𝑢 𝐴𝑝𝑣

𝐴𝑢𝑝 𝐴𝑢𝑢 0
𝐴𝑣𝑝 0 𝐴𝑣𝑣

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

𝑝

𝑢

𝑣

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ =

𝐵𝑝

𝐵𝑢

𝐵𝑣

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

𝑀𝐶𝐸

𝐿𝑀𝐶𝑥

𝐿𝑀𝐶𝑦

(4.1)

In Equation 4.1, the linear system of equation has a dimension of (3𝑛𝑣 × 3𝑛𝑣), and we can
divided it in three sectors. The first one with dimension of (𝑛𝑣 × 𝑛𝑣), whose coefficients 𝐴𝑝𝑝,
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𝐴𝑝𝑢, 𝐴𝑝𝑢 and 𝐵𝑝 arises from the discretization of the mass conservation equation (𝑀𝐶𝐸)
using a modified Rhie-Chow interpolation. The second and the third sector refers, respectively,
to the linear momentum conservation in the 𝑥 direction (𝐿𝑀𝐶𝑥) and in the 𝑦 direction
(𝐿𝑀𝐶𝑦), both with dimension of (𝑛𝑣 ×𝑛𝑣), with respective coefficients 𝐴𝑢𝑝 (resp. 𝐴𝑣𝑝) , 𝐴𝑢𝑢

(resp. 𝐴𝑣𝑣) and 𝐵𝑣 (resp. 𝐵𝑣). The solution procedure for the monolithic approach can be
seen in Figure 8, for the transient regime. It is important to mention that the solution for the
permanent regime is only a particular case of the transient regime for a time level in which a
steady state is reached.

Figure 8 – Monolithic Flowchart.

Guess the initial velocity field 𝑢0 and 𝑣0

Assembly the conservation of momentum
equation 𝐿𝑀𝐶𝑥 and 𝐿𝑀𝐶𝑦

Assembly the mass conservation equation 𝑀𝐶𝐸
using modified Rhie-Chow interpolation

Solve the linear system of equation, Equation 4.1

Calculate the Residues

Update
𝑝,𝑢 and 𝑣

Is 𝑡 ≥ 𝑡𝑓𝑖𝑛𝑎𝑙?

End of Simulation

no

yes

Source: Author.
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4.2 SEGREGATED APPROACH TO SOLVE THE STOKES-BRINKMAN EQUATION

Within the so called segregated methods, the penalty method (TEMAM, 1968), the artificial
compressibility method (HARTEN, 1978) and the projection method (CHORIN, 1968; CHORIN,
1997) are amidst the most used in Computational Fluid Dynamics (CFD) codes (WANG et al.,
2018).

In the projection methods, an initial estimation of the velocity field is corrected as a result
of a pressure equation in which the velocity field is enforced to satisfy the divergence free-
condition. Specifically, the Fractional Step Method (KIM; MOIN, 1985) count on a temporal
splitting on the velocity field: first an intermediate velocity is obtained with the conservation
of momentum equation using a guessed pressure field, this velocity is subsequently corrected
by solving a pressure correction equation based on the mass conservation.

Under the context of projection methods, a family of pressure-velocity algorithms known
as SIMPLE-like algorithms, was originally introduced with the development of Semi Implicit
Linked Equations (SIMPLE) proposed by Patankar and Spalding (1983). In this scheme, a
pressure equation is derived after introducing the momentum equation into the mass conser-
vation equation. A drawback to use a procedure similar to the SIMPLE algorithm to solve
the Stokes-Brinkman equation, is that it does not "see" the porous media (ČIEGIS; ILIEV;

LAKDAWALA, 2007).
Another approach is the SIMPLEC algorithm, proposed by Doormaal and Raithby (1984),

in which the neighbours velocity correction are equal to the one of the current cell. By making
this assumption, there is no need to under relax the pressure field. The SIMPLEC algorithm
adopted in this work can be described as follows:

The conservation of momentum equation, for a generic control volume 𝐿̂, can be written
as:

𝑎𝑢,𝐿̂𝑢𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1

𝐿̂
− 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂

+ 𝜌𝑉𝐿̂

Δ𝑡
𝑢𝑛 (4.2)

𝑎𝑣,𝐿̂𝑣𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑣𝑛𝑏)𝑛+1

𝐿̂
− 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐿̂

+ 𝜌𝑉𝐿̂

Δ𝑡
𝑣𝑛 (4.3)

The first step in the SIMPLEC algorithm uses a guessed pressure field, 𝑝*, to estimate an
intermediate velocity field, 𝑢* and 𝑣*, that does not necessarily satisfy both the conservation
of momentum and the mass conservation equation. By using Equations 4.2 and 4.3, it follows



42

that:

𝑎𝑢,𝐿̂𝑢*
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢

*
𝑛𝑏)𝐿̂ − 𝑉𝐿̂

(︃
𝜕𝑝*

𝜕𝑥

)︃
𝐿̂

+ 𝜌𝑉𝐿̂

Δ𝑡
𝑢𝑛 (4.4)

𝑎𝑣,𝐿̂𝑢*
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑣

*
𝑛𝑏)𝐿̂ − 𝑉𝐿̂

(︃
𝜕𝑝*

𝜕𝑦

)︃
𝐿̂

+ 𝜌𝑉𝐿̂

Δ𝑡
𝑣𝑛 (4.5)

Now, the correct pressure field 𝑝 is obtained as:

𝑝𝑛+1
𝐿̂

= 𝑝*
𝐿̂

+ 𝑝
′

𝐿̂
(4.6)

in which 𝑝
′ is the pressure correction term. Subsequently, we need to investigate how the

velocity components respond to this change in pressure. In that fashion, we can introduce the
corresponding velocity corrections 𝑢

′ and 𝑣
′ as:

𝑢𝑛+1
𝐿̂

= 𝑢*
𝐿̂

+ 𝑢
′

𝐿̂
(4.7)

𝑣𝑛+1
𝐿̂

= 𝑣*
𝐿̂

+ 𝑣
′

𝐿̂
(4.8)

Subtracting Equation 4.2 (resp. 4.3) from Equation 4.4 (resp. 4.5) we get:

𝑎𝑢,𝐿̂(𝑢𝑛+1
𝐿̂

− 𝑢*
𝐿̂
) =

𝑛𝑏∑︁
𝑖=1

(𝑎𝑢,𝑛𝑏(𝑢𝑛+1
𝑛𝑏 − 𝑢*

𝑛𝑏))𝐿̂ − 𝑉𝐿̂

(︃
𝜕(𝑝𝑛+1 − 𝑝*)

𝜕𝑥

)︃
𝐿̂

(4.9)

𝑎𝑣,𝐿̂(𝑣𝑛+1
𝐿̂

− 𝑣*
𝐿̂
) =

𝑛𝑏∑︁
𝑖=1

(𝑎𝑣,𝑛𝑏(𝑣𝑛+1
𝑛𝑏 − 𝑣*

𝑛𝑏))𝐿̂ − 𝑉𝐿̂

(︃
𝜕(𝑝𝑛+1 − 𝑝*)

𝜕𝑦

)︃
𝐿̂

(4.10)

Substituting Equation 4.6 and Equation 4.7 (resp. 4.8) in Equation 4.9 (resp. 4.10):

𝑎𝑢,𝐿̂𝑢
′

𝐿̂
=

𝑛𝑏∑︁
𝑖=1

(𝑎𝑢,𝑛𝑏𝑢
′

𝑛𝑏)𝐿̂ − 𝑉𝐿̂

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

(4.11)

𝑎𝑣,𝐿̂𝑣
′

𝐿̂
=

𝑛𝑏∑︁
𝑖=1

(𝑎𝑣,𝑛𝑏𝑣
′

𝑛𝑏)𝐿̂ − 𝑉𝐿̂

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

(4.12)

The SIMPLEC algorithm proposes that the term related to the neighbours velocity correc-
tion should be approximate as follows:

𝑛𝑏∑︁
𝑖=1

(𝑎𝑣,𝑛𝑏𝑢
′

𝑛𝑏)𝐿̂ ≈
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑢

′

𝐿̂
)𝐿̂ (4.13)

𝑛𝑏∑︁
𝑖=1

(𝑎𝑣,𝑛𝑏𝑣
′

𝑛𝑏)𝐿̂ ≈
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑣

′

𝐿̂
)𝐿̂ (4.14)
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We can rewrite Equation 4.11 and Equation 4.12 as:

(︃
𝑎𝑢,𝐿̂ −

𝑛𝑏∑︁
𝑖=1

(𝑎𝑢,𝑛𝑏)
)︃

𝑢
′

𝐿̂
= −𝑉𝐿̂

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

(4.15)

(︃
𝑎𝑣,𝐿̂ −

𝑛𝑏∑︁
𝑖=1

(𝑎𝑣,𝑛𝑏)
)︃

𝑢
′

𝐿̂
= −𝑉𝐿̂

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

(4.16)

that can be rewrite as follows:
𝑢

′

𝐿̂
= 𝑑𝑢,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

(4.17)

𝑢
′

𝐿̂
= 𝑑𝑣,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

(4.18)

in which:

𝑑𝑣,𝐿̂ = − 𝑉𝐿̂(︁
𝑎𝑢,𝐿̂ −∑︀𝑛𝑏

𝑖=1(𝑎𝑢,𝑛𝑏)
)︁ (4.19)

𝑑𝑣,𝐿̂ = − 𝑉𝐿̂(︁
𝑎𝑣,𝐿̂ −∑︀𝑛𝑏

𝑖=1(𝑎𝑣,𝑛𝑏)
)︁ (4.20)

Then, the velocity correction equations, Equation 4.7 and Equation 4.8, can be written in
terms of the pressure correction as:

𝑢𝑛+1
𝐿̂

= 𝑢*
𝐿̂

+ 𝑑𝑢,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

(4.21)

𝑣𝑛+1
𝐿̂

= 𝑣*
𝐿̂

+ 𝑑𝑣,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

(4.22)

Up to this point, we only considered the conservation of momentum equation, but as
mentioned before, the velocity field must satisfy the divergence-free condition. As mentioned
in Section 3.2.6.1, we can estimate the fluid velocity in the surface of a generic control volume
𝐿̂ by means of a momentum a momentum interpolation scheme. By following this procedure,
it is possible to obtain a pressure correction equation as:

∑︁
Γ𝐼𝐽 ∈Γ𝐿̂

(u𝐼𝐽n𝐼𝐽‖𝐼𝐽‖) = 0 (4.23)

In order to estimate the cell face velocities, for each component 𝑢 and 𝑣, we will follow
the same procedure described in 3.2.6.1. In that fashion, the cell face velocities can be written
as:

𝑢𝑒 = 𝑢*
𝑒 +

𝑑𝑢,𝐿̂

2

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

+
𝑑𝑢,𝑅̂

2

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝑅̂

− 𝑑𝑢,𝑒

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝑒

+ 𝜌𝑒𝑉𝑒

𝑎𝑢,𝑒 Δ𝑡
𝑢𝑛

𝑒 (4.24)
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𝑣𝑒 = 𝑣*
𝑒 +

𝑑𝑣,𝐿̂

2

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

+
𝑑𝑣,𝑅̂

2

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝑅̂

− 𝑑𝑣,𝑒

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝑒

+ 𝜌𝑒𝑉𝑒

𝑎𝑣,𝑒 Δ𝑡
𝑣𝑛

𝑒 (4.25)

in which:

𝑢*
𝑒 =

𝑢*
𝐿̂

+ 𝑢*
𝑅̂

2 (4.26)

𝑣*
𝑒 =

𝑣*
𝐿̂

+ 𝑣*
𝑅̂

2 (4.27)

and the transient term, 𝑢𝑛
𝑒 and 𝑣𝑛

𝑒 , can be approximated using Equation 3.53.
After solving Equation 4.23 we get a pressure correction field, 𝑝

′ , for all control volumes,
that will be used to update the velocity and the pressure fields as:

𝑝𝑛+1
𝐿̂

= 𝑝*
𝐿̂

+ 𝑝
′

𝐿̂
(4.28)

𝑢𝑛+1
𝐿̂

= 𝑢*
𝐿̂

+ 𝑑𝑢,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑥

)︃
𝐿̂

(4.29)

𝑣𝑛+1
𝐿̂

= 𝑣*
𝐿̂

+ 𝑑𝑣,𝐿̂

(︃
𝜕𝑝

′

𝜕𝑦

)︃
𝐿̂

(4.30)

The complete SIMPLEC algorithm procedure can be seen on Figure 9. It is important to
notice that in order to update the velocity field, 𝑢* and 𝑣*, for the next time step, it must
satisfy both, the momentum equation and the divergence-free condition (Condition 1).



45

Figure 9 – SIMPLEC Flowchart.

Guess the pressure field 𝑝*

and the initial velocity filed, 𝑢𝑛 and 𝑣𝑛

Solve the Conservation of Momentum Equation
to obtain 𝑢* and 𝑣*

Calculate the cell face velocities using
modified Rhie-Chow interpolation

Solve the pressure correction equation and find 𝑝
′

Correct pressure and velocities
using 𝑝

′

Converged for
time 𝑡?

Do
𝑢*

𝑘 = 𝑢𝑛

𝑣*
𝑘 = 𝑣𝑛

𝑝*
𝑘 = 𝑝

Satisfy
Condition 1?

Is 𝑡 ≥ 𝑡𝑓𝑖𝑛𝑎𝑙?

End of Simulation

no

no

yes

yes

yes

no

Source: Author.
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5 NUMERICAL RESULTS

In this section, we present four examples in order to evaluate the accuracy and robustness of
our numerical formulation. In the first one, we simulate a steady state flow through a channel
filled with porous material for which there is an analytical solution. The second example
consists in a transient flow in a channelized carbonate (karst) domain. In the third one, we
evaluate the robustness of our formulation to model the one phase flow in a quarter of five-spot
configuration with four vuggy structures with a high contrast in permeability when compared
with the porous material. In the final example, we consider a 1/4 five-spot with vuggy structures
connected by a network of fractures.

In order to compare the the numerical results, initially we define the L2-norm of the error
Eq. 5.1, and the convergence rate Eq. 5.2.

𝜀𝐿2 =
(︃∑︀

𝐿̂∈Ω(𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑥𝑖̂) − 𝑣𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖̂))∑︀
𝐿̂∈Ω(𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑥𝑖̂))

)︃ 1
2

(5.1)

𝑞 = log2

(︃
𝜀𝑖

𝜀𝑖+1

)︃
(5.2)

5.1 STEADY STATE FLOW THROUGH A CHANNEL FILLED WITH POROUS MATERIAL

This problem was adapted from (JHA; KAURANGINI, 2011) in order to study fully developed
and laminar fluid flow in a channel defined by two parallel plates with a distance 𝐻 between
them, see Figure 10. The channel is filled with isotropic porous material with permeability given
by K = 𝑘I. The fluid is considered incompressible, and the dynamic and effective viscosities
are equal, i.e. 𝜇′ = 𝜇. For this problem, the athors proposed a analytical solution for the
Brinkman-Forchheimer-Extended-Darcy flow model, defined as:

𝜇

𝜇′
𝑑2𝑣

𝑑𝑦2 − 𝐻2

𝑘
𝑣 − 𝐶

4

√︂(︁
𝑘

𝐻2

)︁𝑛
𝑣𝑛 − 𝐻3

𝜌𝑣2
𝑑𝑝

𝑑𝑥
= 0 (5.3)

in which the 𝐶 is the coefficient of inertia.
We also neglect the third term in the left hand side of Equation 5.3, known as Forchheimer’s

term, by adopting a Reynolds number smaller than 1, consequently the analytical solution of
Equation 5.3 is given by (JHA; KAURANGINI, 2011):
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Figure 10 – Representation of the physical and geometric parameters for the Steady State Flow Through a
Channel Filled with Porous Material.

Source: Author.

𝑣(𝑦) = sinh(𝜆(1 − 𝑦))
sinh(𝑦) − 𝐺

𝜆2𝛾

(︃
sinh(𝜆(1 − 𝑦)) + sinh(𝜆𝑦)

sinh(𝑦)

)︃
(5.4)

where 𝐺 is the dimensionless pressure gradient imposed along the channel in the 𝑥 direction,
defined as:

𝐺 = − 𝐻3

𝜌𝜇2
Δ𝑝

𝐿
(5.5)

and 𝛾 is the ratio between the effective and dynamic viscosities, and 𝜆 is given by:

𝜆 = 1
√

𝛾

⎯⎸⎸⎸⎷
⎛⎝𝐻2

𝑘
+ 1

4
√︁

𝑘
𝐻2

⎞⎟⎠ (5.6)

By making these assumptions it was possible to compare the numerical results of the
proposed scheme with the analytical solution provided by Equation 5.4. In order to do so, a
pressure drop, 𝐺, of 99𝑝𝑠𝑖 was imposed along the 𝑥 direction, and no-flow boundary conditions
were imposed on the upper and lower boundaries, the channel height H=1,0 m and the length
of the domain is L=100m. For this problem, we have adopted a uniform quadrilateral structured
mesh of 128 × 128 control volumes and different values of permeability, 𝑘 = 1.5 × 10−15 𝑚2,
𝑘 = 1.5 × 10−13 𝑚2, 𝑘 = 1.5 × 10−12 𝑚2, were tested in order to simulate the different fluid
flow regions that exist on carbonate reservoirs.
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Figure 11 – Steady State Flow Through a Channel Filled with Porous Material: Computational mesh with 128
control volumes in vertical direction and the fluid velocity profiles through the center line for the
problem of the flow through a channel filled with porous material for a value of the permeability
equal to a) 𝑘 = 1.5 × 10−15 𝑚2; b) 𝑘 = 1.5 × 10−13 𝑚2; c) 𝑘 = 1.5 × 10−12 𝑚2.

(a)

(b)

(c)

Source: Author.
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By analysing the Figure 11, it can be clearly seen that when the value of the permeability
increases, the velocity profile becomes essentially parabolic as it is expected in the free flow
region. In all cases, we can notice the excellent agreement between the analytical and the
numerical solutions obtained using our formulation.

In order to evaluate the convergence rate of our scheme, we evaluate the behavior of the
L2 norm of the error for the velocity field for different mesh densities with the mesh spacing as
shown in Table 1 .As expected, the error has a decreasing behavior during the mesh refinement
Figure 12.

Table 1 – Errors and convergence rates for different values of permeability

𝑘 = 1.5 × 10−12 𝑚2 𝑘 = 1.5 × 10−14 𝑚2 𝑘 = 1.5 × 10−15 𝑚2

Vertical CVs 𝜀𝐿2 𝑞 𝜀𝐿2 𝑞 𝜀𝐿2 𝑞

8 3.18 × 10−3 - 8.91 × 10−3 - 1.86 × 10−3 -
16 9.14 × 10−4 1.798 2.73 × 10−3 1.704 5.49 × 10−4 1.761
32 2.69 × 10−4 1.764 8.31 × 10−4 1.748 1.52 × 10−4 1.856
64 7.29 × 10−5 1.833 2.43 × 10−4 1.742 4.33 × 10−5 1.806
128 2.19 × 10−6 1.833 6.78 × 10−5 1.841 1.27 × 10−5 1.766

Source: Author.

Figure 12 – Steady State Flow Through a Channel Filled with Porous Material: Error behavior related to
the mesh refinement, using a permeability of 𝑘 = 1.5 · 10−15𝑚2, 𝑘 = 1.5 · 10−14𝑚2 and 𝑘 =
1.5 · 10−13𝑚2.

Source: Author.
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5.2 TRANSIENT FLOW IN A CHANNELIZED CARBONATE KARST DOMAIN

In this example, adapted from (BI et al., 2009), we consider a square [1 × 1] porous domain
which contains a vuggy structure represented by a circle, with a radius of 0.25m positioned
at the center of the domain. A pressure drop of 1 psi was imposed along the x direction,
and no-flow boundary conditions were imposed on the upper and bottom boundaries of the
reservoir. The domain was discretized using a triangular mesh, see Figure 13. The rock matrix
is considered homogeneous and isotropic with permeability tensor given by K = 𝑘I with
𝑘 = 1.5×10−15 𝑚2, and the in the vugs regions, 𝑘 = 1.5×10−12 𝑚2. The pressure distribution
presented in Figure 14 shows the effects of the vugs on the pressure distribution, moreover in
Figure 15 shows that at the close to the vugs the velocity field pattern are changed significantly.

Figure 13 – Transient Flow in a Channelized Carbonate Karst Domain: Geometry, mesh and wells, or the
problem of the transient flow in a channelized carbonate (karst) domain.

Source: Author.
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Figure 14 – Transient Flow in a Channelized Carbonate Karst Domain:Pressure distribution for the problem
of the transient flow in a channelized carbonate (karst) domain using an unstructured mesh with
15,488 triangular control volumes at t=100 days.

Source: Author.

Figure 15 – Transient Flow in a Channelized Carbonate Karst Domain:Pressure distribution for the problem
of the transient flow in a channelized carbonate (karst) domain using an unstructured mesh with
15,488 triangular control volumes at t=100 days.

Source: Author.
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In Figure 16 we present the solutions obtained on a sequence of sucessively refined triangular
meshes with 242, 968, 3,872, 15,488 and compared the behavior of the pressure field to the
reference solution obtained with 61,952 control volumes.

Figure 16 – Transient Flow in a Channelized Carbonate Karst Domain: Pressure drop along the diagonal
connecting the bottom left part (x=0;y=1) to the upper right part (x=1;y=0) of the reservoir
for the problem of the transient flow in a channelized carbonate (karst) domain with different
sucessively refined unstructured triangular meshes with 242; 968; 3,872; 15,488 and 61,952 control
volumes.

Source: Author.

In order to verify the segregated approach, for the same problem, the errors and the numer-
ical convergence rates for both, the monolithic and the segregated approaches are presented in
Table 2 , considering triangular meshes with 242, 968 and 3,872 control volumes. In Figure 17
we present the pressure drop along the diagonal connecting the bottom left part to the upper
right part of the reservoir using the monolithic and the SIMPLEC approaches with a triangular
mesh with 3,872 control volumes alongside the reference pressure that was considered using
a monolithic approach with 15,488 triangular control volumes.
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Table 2 – Transient Flow in a Channelized Carbonate Karst Domain: Errors and convergence rates for the
monolithic and the SIMPLEC approaches

# CVs 242 968 3,872

SIMPLEC 𝜀𝐿2 1.487 × 10−2 4.109 × 10−3 1.193 × 10−3

𝑞 - 1.855 1.783

Monolithic 𝜀𝐿2 1.321 × 10−2 3.499 × 10−3 9.794 × 10−4

𝑞 - 1.916 1.837
Source: Author.

Figure 17 – Transient Flow in a Channelized Carbonate Karst Domain: Pressure drop along the diagonal
connecting the bottom left part to the upper right part of the reservoir for the triangular mesh
with 3,872 control volumes using the monolith and the SIMPLEC approaches.

Source: Author.

By analysing the results obtained in Figures. 13, 16 and 17 it is possible to infer that our
formulation, using both approaches, is capable to model the fluid flow in the porous media
(Darcy flow) and in the vugular free flow region (Stokes flow). It worth mentioning that our
results compare quite well with those presented in (BI et al., 2009).
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5.3 ONE PHASE FLOW IN A POROUS DOMAIN WITH FOUR VUGGY STRUCTURES
WITH A 1/4 OF FIVE-SPOT CONFIGURATION

This example consists in square [1 × 1] porous domain with four elliptical vuggy structures
within it, as shown in Figure 19.

In this problem, we will evaluate three different scenarios: 1. a strictly Darcy flow; 2. the
permeability of the vugs has a value that represents a free flow region; 3. the permeability
tensor is rotated in the rock matrix to appraise our scheme for full tensor permeability. This
model provides verification of the proposed scheme by adopting three different case studies:
first an homogeneous porous media to test the scheme in a Darcy fluid flow configuration,
subsequently the permeability of the vugs will be changed to a value that can represent a
free flow region inside those geological features, and finally we will perform a rotation on the
permeability tensor in the matrix region in order to test the proposed scheme with full tensors.

Figure 18 – One phase flow in a porous domain with four vuggy structures with a 1/4 of five-spot configuration:
Geometry, mesh and wells, for the one phase flow in a porous domain with four vuggy structures
with a 1/4 of five-spot configuration.

Source: Author.
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5.3.1 Homogeneous Porous Media

In the first case, we consider a homogeneous and isotropic permeability tensor for the
whole reservoir including the four elliptic regions, with K=kI and 𝑘 = 1.5 × 10−15 𝑚2. The
fluid viscosity is 𝜇 = 0.7 cP. Pressure at the injection well is 𝑝𝑖 = 1 psi and 𝑝𝑝 = 0 at the
producer well. In Figure ??, we present the pressure field, which, as expected reproduces quite
well the expected solution profile for this 1/4 of five-spot problem.

Figure 19 – Homogeneous Porous Media: Pressure distribution along the domain on a homogeneous Porous
Media in t=100 days.

Source: Author.

5.3.2 Heterogeneous and Isotropic Porous Media

In the second case, in order to verify the influence of the vuggy structures on the fluid flow
pattern, we considered a isotropic rock permeability tensor, K = 𝑘I, with 𝑘 = 1.5×10−12 𝑚2,
in the vuggy regions, and 𝑘 = 1.5 × 10−15 𝑚2 in the rock matrix. As in the previous case, the
fluid viscosity is 𝜇 = 0.7 cP. Pressure at the injection well is 𝑝𝑖 = 1 psi and 𝑝𝑝 = 0 psi at the
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producer well.
The pressure distribution presented in Figures 20, 21 and 22, in different time steps, shows

that the presence of the karstic formations alter significantly the pressure distributions, specially
at the regions of the domain near the structures. Furthermore, the fluid flow streamlines, Figure
23, at 𝑡 = 100 days, are diverted due the presence of the regions with high permeabilities.

Figure 20 – Heterogeneous and Isotropic Porous Media: Pressure distribution for the heterogeneous reservoir
with four vuggy regions in a 1/4 of five-spot configuration using an unstructured mesh with 3,872
triangular control volumes, in 𝑡 = 1 day.

Source: Author.



57

Figure 21 – Heterogeneous and Isotropic Porous Media: Pressure distribution for the heterogeneous reservoir
with four vuggy regions in a 1/4 of five-spot configuration using an unstructured mesh with 3,872
triangular control volumes, in 𝑡 = 10 days.

Source: Author.

Figure 22 – Heterogeneous and Isotropic Porous Media: Pressure distribution for the heterogeneous reservoir
with four vuggy regions in a 1/4 of five-spot configuration using an unstructured mesh with 3,872
triangular control volumes, in 𝑡 = 100 days.

Source: Author.
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Figure 23 – Heterogeneous and Isotropic Porous Media: Streamlines, at 𝑡 = 100 days, along the domain on a
Heterogeneous Isotropic Porous Media with karstification.

Source: Author.

In Figure 24, we present the pressure field obtained along the diagonal connecting the
injection and the production wells, with different mesh densities, with 242; 968; 3,872 and
15,872 control volumes and the reference solution obtained for the mesh with 61,952 control
volumes.

Figure 24 – Heterogeneous and Isotropic Porous Media: Pressure drop along the diagonal connecting the
injection and the producer wells for the heterogeneous reservoir with four vuggy regions in a
1/4 of five-spot configuration for different triangular mesh densities with 242; 968; 3,872; 15,488
control volumes and the reference solution obtained with 61,952 control volumes.

Source: Author.
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Additionally, with the aim to verify the segregated approach, for the problem of a Hetero-
geneous and Isotropic Porous Media, the errors and the numerical convergence rates for both,
the monolithic and the segregated approaches are presented in Table 3 , considering triangular
meshes with 242, 968 and 3,872 control volumes. In Figure 25 we present the pressure drop
along the diagonal connecting the bottom left part to the upper right part of the reservoir
using the monolithic and the SIMPLEC approaches with a triangular mesh with 3,872 control
volumes alongside the reference pressure that was considered using a monolithic approach with
15,488 triangular control volumes.

Table 3 – Heterogeneous and Isotropic Porous Media: Errors and convergence rates for the monolithic and the
SIMPLEC approaches

# CVs 242 968 3,872

SIMPLEC 𝜀𝐿2 9.631 × 10−2 2.855 × 10−2 8.693 × 10−3

𝑞 - 1.754 1.716

Monolithic 𝜀𝐿2 9.38 × 10−2 2.591 × 10−3 7.121 × 10−4

𝑞 - 1.856 1.863
Source: Author.

Figure 25 – Heterogeneous and Isotropic Porous Media: Pressure drop along the diagonal connecting the
bottom left part to the upper right part of the reservoir for the triangular mesh with 3,872 control
volumes using the monolith and the SIMPLEC approaches.

Source: Author.
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By analysing the results in this case study scenario, it is possible to infer that the pro-
posed scheme, by adopting the monolithic and segregated approaches, is able to capture the
phenomena on the karstic structures on carbonate reservoirs.

5.3.3 Heterogeneous and Anisotropic Reservoir with Four Vuggy Regions in a 1/4

of Five-Spot Configuration

In this third case, we consider the one-phase flow in a heterogeneous and anisotropic
reservoir with four vuggy regions. In the rock matrix the permeability is a full tensor given
by Equation 5.8 and Equation 5.7. The permeability inside the vugs is given by K = 𝑘I

with 𝑘 = 1.5 × 10−12 𝑚2. We have used an unstructured triangular mesh with 3,872 control
volumes. The rock permeability tensor in the rock matrix is defined as

K = ℛ

⎡⎢⎢⎣ 1.5 · 10−14 0

0 1.5 · 10−15

⎤⎥⎥⎦ℛ⊤ (5.7)

The anticlockwise, rotation matrix, ℛ, is defined as:

ℛ =

⎡⎢⎢⎣ cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

⎤⎥⎥⎦ , with 𝜃 = 𝜋

6 (5.8)

The pressure distribution seen on Fig 26, by comparing with the Figure ?? (c), at 𝑡 = 100

days, we can infer that the anisotropy of the rock matrix regions alter pronouncedly the pressure
distribution. Moreover, the fluid flow streamlines, Figure 27 are distorted when compared with
the previous case due the anisotropy of the rock matrix.



61

Figure 26 – Heterogeneous and anisotropic reservoir with four vuggy regions in a 1/4 of five-spot configuration:
Pressure Distribution along the domain on a Heterogeneous Anisotropic Porous Media with 3,872
triangular control volumes.

Source: Author.

Figure 27 – Heterogeneous and Anisotropic Reservoir with Four Vuggy Regions in a 1/4 of Five-Spot Con-
figuration: Streamlines a Heterogeneous Anisotropic Porous Media with 3,872 triangular control
volumes.

Source: Author.
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5.4 ONE PHASE FLOW IN A POROUS DOMAIN WITH DISTRIBUTED VUGGY STRUC-
TURES CONNECTED BY A NETWORK OF FRACTURES WITH A 1/4 OF FIVE-
SPOT CONFIGURATION

In the last case, inspired from one of the cases presented in (HE et al., 2015), we consider
a carbonate rock with twenty five vugs distributed throughout the domain with a network
of fourteen fractures connecting some of these vugs. The domain is a square defined by
[100𝑚𝑥100𝑚]. The permeability is given by K = 𝑘I with 𝑘 = 1.5 × 10−15 𝑚2 for the porous
media region and 𝑘 = 1.5 × 10−12 𝑚2 for the vugs and the fractures. The prescribed pressure
on the injection well, which is placed in the bottom left part of the reservoir is given by
𝑝𝑖 = 3.13 × 107𝑃𝑎 and the prescribed pressure on the producer well, located in the right
upper part of the reservoir is given by 𝑝𝑝 = 2.95 × 107𝑃𝑎 (see Figure 28). Null flux boundary
conditions are set for all external faces of the domain. For this problem we have decided to
use the unstructured triangular mesh with 61,952 control volumes.

Figure 28 – One Phase Flow in a Porous Domain with Distributed Vuggy Structures Connected by a Network
of Fractures with a 1/4 of Five-spot Configuration: Geometry and model description for the 1/4
of five-spot configuration in a reservoir with vugy structures connected by a network of fractures.

Source: Author.
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Figure 29 – One Phase Flow in a Porous Domain with Distributed Vuggy Structures Connected by a Network
of Fractures with a 1/4 of Five-spot Configuration: Pressure contours for the 1/4 of five-spot
configuration in a reservoir with vuggy structures connected by a network of fractures with an
unstructured triangular mesh with 61,952 control volumes.

Source: Author.

In Figure 29, as it can be clearly seen, it is evident the strong influence of the vuggy and
fracture structures in the pressure field and, consequently, in the fluid flow throughout the
carbonate reservoir rock. It is wroth mentioning that our results compare quite well with those
presented in (HE et al., 2015).
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6 CONCLUSIONS AND FURTHER WORK

In this work, we presented and implemented a full pressure support Multipoint Flux Ap-
proximation method based on harmonic points (MPFA-H) for the numerical simulation of the
one-phase flow in carbonate petroleum reservoirs using unstructured meshes. In that fashion,
we analysed the influence of the karstic structures on the fluid flow. In order to solve the Stokes
Brinkman’s equation with the proposed scheme, two approaches were adopted: monolithic, in
which the conservation of momentum equation and the mass conservation equation are solved
simultaneously, and the segregated approach, in which the the conservation of momentum
equation and the mass conservation equation are solved apart.

In the Stokes-Brinkman model, a single equation is used to model the fluid flow on the
porous media and free flow regions. Furthermore, by adopting this approach, there is no need
of modeling, explicitly, interface conditions alongside the different flow regions

It is important to highlight the contributions of the present work, in which, for the first
time in literature, the MPFA-H method was extended to discretize the Stokes Brinkman’s
equations. Moreover, in order to guarantee the proper coupling between the pressure and
velocity variables, avoiding the odd-even decoupling and oscilations of the pressure field, a
modification of Rhie-Chow’s interpolation method (ZHANG; ZHAO; BAYYUK, 2014). In order to
verify the proposed formulation, we solved some benchmarks found in literature for one-phase
flow problems, using unstructured meshes.

For all cases, the results obtained with our formulation were similar to the adopted ref-
erences, representing in a coherent form the fluid flow on the porous domain, in which the
flow is essentially Darcian, and in the free flow region. Finally, we verify the importance to
adopt appropriate methods to properly represent the vuggy regions, once the presence of these
structures alter significantly the fluid flow on these reservoirs.

Ultimately, some suggestions for future work:

• Extend the proposed formulation for three-dimensional domains and two-phase flows;

• Implement multiscale methods to solve the Stokes-Brinkman’s equation;

• Implement numerical upscaling methods for modeling the fluid flow on carbonate petroleum
reservoirs;

• Improve the physical model to include gravity and capillarity effects.
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APPENDIX A – RESUMO ESTENDIDO

UM MÉTODO DE APROXIMAÇÃO DE FLUXO POR MÚLTIPLOS PONTOS

PARA A SIMULAÇÃO NUMÉRICA DO MODELO DE STOKES-BRINKMAN EM

2-D UTILIZANDO MALHAS NÃO ESTRUTURADAS

Introdução

Reservatórios carbonáticos são comumente encontrados em todo mundo,

como por exmplo na China (AHR et al., 2005), Oriente Médio (DABBOUK et

al., 2002) e na região do Pré-Sal brasileiro (DOROBEK et al., 2012). Estima-se

que, cerca de 60% das reservas mundiais de petróleo estão nos reservatórios

carbonáticos (SPADINI et al., 2008).

Devido aos processos diagenéticos que ocorrem nestes reservatórios, aliado

a natureza química das rochas carbonáticas e aos fenômenos de tectonização

e casrtificação, originam estruturas geológicas como vugs, vazios pequenos

e médios, e cavernas, que podem ou não estar interconectados, envolvendo

mútliplas escalas (BI et al., 2009; KROTKIEWSKI et al., 2011; HE et al., 2015).

A presença destas estruturas geológicas em múltiplas escalas, representa um

desafio para a simulação do escoamento nestes reservatórios devido à grande

heterogeneidade nas propriedades da rocha e à coexistência de duas regiões de

escoamento distintas, uma região de escoamento em meio poroso, Darciniana,

e uma região de escoamento livre, na região dos vugs e cavernas, tornando o

modelo numérico aproximado para o escoamento de fluidos desafiador (CON-

CEIÇÃO et al., 2019). Diferentes modelos são utilizados para representar o es-

coamento nestes reservatórios como os modelos de dupla ou tripla porosidade,

tripla permeabilidade e o modelo Darcy-Stokes (VELAZQUEZ et al., 2005; WU et

al., 2007; YAO et al., 2010; HALLACK; FILHO; COUTO, 2019).
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Uma vez que reservatórios carbonáticos são muito heterogêneos, a utilizaçao

destes modelos pode representar um grande custo computacional e complex-

idade ao modelo devido à necessidade de condições de interface (CONCEIÇÃO

et al., 2019). Uma abordagem alternativa é a utilziação do modelo de Stokes

Brinkman (BRINKMAN, 1949), onde uma única equação é capaz de representar

o escoamento de fluido nas duas regiões, meio poroso e escoamento livre.

Métodos de aproximação de fluxo por múltiplos pontos (MPFA) tem sido

largamente utilizados em problemas de escoamento em meio poroso (CAVAL-

CANTE et al., 2020; CONTRERAS et al., 2016). Métodos MPFA são robustos e

flexíveis para lidar com tensores de permeabilidade cheios e malhas poligo-

nais quaisquer. Nesta dissertação, um método MPFA com suporte completo

de pressão, originalmente proposto por Gao and Wu (2013), é extendido para

discretizar a Equação de Stokes-Brinkman em reservatórios carbonáticos.

Objetivos Gerais

O objetivo geral do presente trabalho é o estudo e desenvolvimento de um

método de volumes finitos em 2-D para a simulação numérica do escoamento

monofásico em reservatórios carbonáticos heterogêneos e anisotrópicos, uti-

lizando malhas poligonais quaisquer.

Objetivos Específicos

1. Desenvolver um framework para a simulação do escoamento monofásico

em reservatórios carbonáticos heterogêneos e anisotrópicos consistente

com malhas não estruturadas.

2. Incorporar o MPFA-H para solução da Equação de Stokes-Brinkman.



73

3. Investigar a influência das estruturas cársticas nos campos de pressão e

velocidade, considerando um escoamento incompressível.

Formulação Matemática

Devido à complexidade associada ao escoamento nestes reservatórios, neste

trabalho algumas hipóteses simplificadoras foram feitas como: o escoamento

é considerado monofásico, o fluido é Newtoniano, a rocha é incompressível e

está totalmente saturada com fluido, efeitos térmicos, uímicos e gravidade são

desconsiderados.

Equação de Stokes-Brinkman

A Equação de Stokes-Brinkman, considerando um escoamento incompressível

no regime transiente é dada por:
𝜕(𝜌u)

𝜕𝑡
+ 𝜇K−1u − 𝜇

′∇2u = −∇𝑝 (A.1)

onde u é o vetor velocidade, 𝑝 representa a pressão do fluido, 𝜌 é a densidade

do fluido, 𝜇 a viscosidade dinâmica e K é o tensor de permeabilidade absoluto

da rocha.

Equação de Conservação da Massa

Considerando o fluido incompressível e homogêneo, ou seja, a densidade

não varia no tempo e no espaço, e na ausência de termos fonte ou sumidouro,

a equação de conservação da massa é dada por (FERZIGER; PERIĆ; STREET,

2020):

∇ · u = 0 (A.2)



74

Condições Iniciais e de Contorno

Para tornar o modelo matemático descrito acima bem-posto, devemos pro-

por condições de contorno e condições iniciais consistentes. As condições de

contorno usuais para o problema são (CARVALHO, 2005; CONTRERAS et al., 2017;

CONCEIÇÃO et al., 2019):

𝑝(xD, 𝑡) = 𝑔𝐷 in Γ𝐷 × 𝑇

u · n = 𝑔𝑁 in Γ𝑁 × 𝑇

u(x, 0) = u0 in Ω 𝑎𝑡 𝑡 = 0

u(x, 𝑡) = 0 𝑖𝑛 Γ𝑆 × 𝑇

(A.3)

onde Γ𝐷 e Γ𝑁 representam as fronteiras do contorno de Dirichlet e Neumann,

respectivamente, Γ𝑆 são as paredes sólidas e 𝑇 é o intervalo da análise. O

escalar 𝑔𝐷 (pressão prescrita) e 𝑔𝑁 (fluxo prescrito) são aplicadoes em Γ𝐷 e

Γ𝑁 , respectivamente.

Formulação Numérica

As equações de conservação do momento linear e de conservação da massa

são então discretizadas utilizando um esquema da família dos volumes finitos.

Além disso, para garantir o acoplamneto entre as variáveis, pressão e veloci-

dade, foi utilizado um método de interpolação do momento (ZHANG; ZHAO;

BAYYUK, 2014), o qual consiste em uma modificação do Método de Rhie-

Chow (RHIE; CHOW, 1983).

Gradiente de Pressão

Para estimar o gradiente de pressão em cada volume de controle Ω𝑣, é
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necessário estimar o valor da pressão nos chamados pontos harmônicos.

−
𝑛𝑣∑︁
𝑖=1

∫︁
Ω𝐿̂

∇𝑝 𝑑Ω𝐿̂ = −
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽

𝑝nΓ𝐼𝐽
𝑑𝑠 = −

∑︁
𝐼𝐽∈Γ𝐿̂

𝑝𝐼𝐽 ‖𝐼𝐽‖ n𝐼𝐽 (A.4)

onde 𝑝𝐼𝐽 é a pressão nos pontos harmônicos, 𝐼𝐽 é área da face (comprimento

em 2-D) e nIJ é o vetor normal unitário associado à face.

A definição e derivação dos pontos harmônicos neste trabalho segue aquele

definido por Agelas, Eymard and Herbin (2009).

Considerando dois volumes de controle, 𝐿̂ e 𝑅̂, adjacentes a uma face 𝐼𝐽

do domínio, com tensores de permeablidade KL̂ e KR̂, respectivamente, cujos

centróides são designados por 𝑥𝐿̂ e 𝑥𝑅̂. Desta forma, o ponto de interpolação

sobre a superfície 𝐼𝐽 é definido por:

𝑥𝐿̂,𝑖(𝐼𝐽) =
ℎ̂︀𝐿,𝐼𝐽𝑘

(𝑛)̂︀𝑅,𝐼𝐽
𝑥̂︀𝑅 + ℎ̂︀𝑅,𝐼𝐽𝑘

(𝑛)̂︀𝐿,𝐼𝐽
𝑥̂︀𝐿 + ℎ̂︀𝐿,𝐼𝐽ℎ̂︀𝑅,𝐼𝐽

(︁
K⊤̂︀𝐿 − K⊤̂︀𝑅 )︁n𝐼𝐽

ℎ̂︀𝐿,𝐼𝐽𝑘
(𝑛)̂︀𝑅,𝐼𝐽

+ ℎ̂︀𝑅,𝐼𝐽𝑘
(𝑛)̂︀𝐿,𝐼𝐽

(A.5)

Tendo definido o ponto harmônico, sabe-se que a pressão no mesmo é

uma combinação convexa das pressões dos volumes de controle adjacentes

(CONTRERAS et al., 2017). Desta forma a pressão na superfície de controle 𝐼𝐽

é dada por:

𝑝𝐼𝐽 = 𝜔𝐿̂,𝐼𝐽𝑝𝐿̂ + 𝜔𝑅̂,𝐼𝐽𝑝𝑅̂ (A.6)

onde os termos 𝜔𝐿̂,𝐼𝐽 e 𝜔𝑅̂,𝐼𝐽 são os pesos. Deve-se salientar que a interpo-

lação da pressão nos pontos harmônicos preserva o princípio de linearidade

(CONTRERAS et al., 2016).

𝜔𝐿̂,𝐼𝐽 =
ℎ𝑅̂,𝐼𝐽 𝑘

(𝑛)
𝐿̂,𝐼𝐽

ℎ𝑅̂,𝐼𝐽 𝑘
(𝑛)
𝐿̂,𝐼𝐽 + ℎ𝐿̂,𝐼𝐽 𝑘

(𝑛)
𝑅̂,𝐼𝐽

and 𝜔𝑅̂,𝐼𝐽 = 1 − 𝜔𝐿̂,𝐼𝐽 (A.7)

Termos Difusivos
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Utilizamos um método com suporte completo de pressão para a aproximação

dos fluxos das componentes da velocidade, 𝑢 e 𝑣. Desta maneira, o fluxo único

sob uma superfície de controle 𝐼𝐽 é dado por:

F𝜑,𝐼𝐽 · NIJ =
∑︁

𝛾=𝑖,𝑗

∑︁
𝑟=𝐿̂,𝑅̂

𝜒𝑟,𝛾(𝐼𝐽)(𝜑𝑟 − 𝜑𝑟,𝛾(𝐼𝐽))‖𝐼𝐽‖ (A.8)

onde:

𝜒𝑟,𝛾(𝐼𝐽) = 𝑤𝑟,𝐼𝐽𝜉𝑟,𝛾(𝐼𝐽), com 𝑟 = 𝐿̂, 𝑅̂ e 𝛾 = 𝑖, 𝑗.

Finalmente, o valor das componentes da velocidade nos pontos harmôni-

cos são definidas por: 𝜑𝑟,𝛾(𝐼𝐽) = 𝜔𝑀̂,𝛾(𝐼𝐽)𝜑 ̂︀𝑀,𝛾 + 𝜔𝑁̂ ,𝛾(𝐼𝐽)𝜑̂︀𝑁,𝛾, onde 𝜔𝑀̂,𝛾𝐼𝐽 =
ℎ ̂︀𝑀,𝛾(𝐼𝐽)

ℎ ̂︀𝑀,𝛾(𝐼𝐽)+ℎ̂︀𝑁,𝛾(𝐼𝐽)
and 𝜔𝑁̂ ,(𝐼𝐽) = 1 − 𝜔𝑀̂,𝛾(𝐼𝐽), no qual 𝑀 e 𝑁 representam os

volumes de controle adjacentes à face 𝐼𝐽 .

Forma Final da Equação de Conservação do Momento

Após a discretização dos termos na equação de conservação do momento,

considerando um volume de controle genérico 𝐿̂ temos:

𝜌𝑉𝐿̂

Δ𝑡

(︁
𝜑𝐿̂

𝑛+1 − 𝜑𝐿̂
𝑛
)︁
+𝜇𝑉𝐿̂K−1

L̂ 𝜑𝑛+1
𝐿̂

+
∑︁

Γ𝐼𝐽∈Γ𝐿̂

∑︁
𝛾=𝑖,𝑗

∑︁
𝑟=𝐿̂,𝑅̂

‖𝐼𝐽‖𝜒𝑟,𝛾(𝐼𝐽)(𝜑𝑟−𝜑𝑟,𝛾(𝐼𝐽))𝑛+1

= −
∑︁

Γ𝐼𝐽∈Γ𝐿̂

𝑝𝑛+1
𝐼𝐽 ‖𝐼𝐽‖n𝐼𝐽 (A.9)

Agrupando todos os termos relacionados às componentes de velocidade e

ao gradiente de pressão, é possível reescrever a equação de conservação do

momento de forma mais compacta, como:

𝑎𝑢,𝐿̂𝑢𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑛+1

𝑃
− 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂
+ 𝜌𝐿̂𝑉𝐿̂

Δ𝑡
𝑢𝑛

𝐿̂
(A.10)

𝑎𝑣,𝐿̂𝑣𝑛+1
𝐿̂

=
𝑛𝑏∑︁

𝑖=1
(𝑎𝑣,𝑛𝑏𝑣𝑛𝑏)𝑛+1

𝑃
− 𝑉𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐿̂

+ 𝜌𝐿̂𝑉𝐿̂

Δ𝑡
𝑣𝑛

𝐿̂
(A.11)
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Interpolação das Velocidades nas Faces

Com o objetivo de garantir o acoplamento entre as variáveis, pressão e

velocidade, foi utilizado uma estratégia de interpolação do momento (ZHANG;

ZHAO; BAYYUK, 2014) para estimar as velocidades nas superfícies de controle

𝐼𝐽 do domínio.

Desta forma, as velocidades nas faces 𝐼𝐽 são dadas por:

𝑢𝐼𝐽 = 𝑢𝐼𝐽 + (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐿̂
+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝑅̂
− 𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃𝑛+1

𝐼𝐽
+ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽 Δ𝑡
𝑢𝑛

𝐼𝐽

(A.12)

onde

𝑢𝑛
𝐼𝐽

=
⎡⎣(1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑥

)︃
𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑢,𝑅̂

(︃
𝜕𝑝

𝜕𝑥

)︃
𝑅̂

− 𝑉𝐼𝐽

𝑎𝑢,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑥

)︃
𝐼𝐽

⎤⎦𝑛

(A.13)

De maneira similar, podemos escrever a velocidade na face para a compo-

nente 𝑣 como:

𝑣𝐼𝐽 = 𝑣𝐼𝐽 + (1 − 𝛽)𝑉𝐿̂

𝑎𝑢,𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑣,𝑅̂

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝑅̂

− 𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑦

)︃𝑛+1

𝐼𝐽

+ 𝜌𝐼𝐽𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽 Δ𝑡
𝑣𝑛

𝐼𝐽

(A.14)

onde

𝑣𝑛
𝐼𝐽

=
⎡⎣(1 − 𝛽)𝑉𝐿̂

𝑎𝑣,𝐿̂

(︃
𝜕𝑝

𝜕𝑦

)︃
𝐿̂

+ 𝛽𝑉𝑅̂

𝑎𝑣,𝑅̂

(︃
𝜕𝑝

𝜕𝑦

)︃
𝑅̂

− 𝑉𝐼𝐽

𝑎𝑣,𝐼𝐽

(︃
𝜕𝑝

𝜕𝑦

)︃
𝐼𝐽

⎤⎦𝑛

(A.15)

Ao assumirmos esta aproximação para o termo transiente, este tende a es-

tabilzar o método à medida que o passo de tempo diminui.

Conclusão

Neste trabalho, apresentamos e implementamos um método de Aproxi-

mação de Fluxo por Múltiplos Pontos com suporte de pressão completo baseado

em pontos harmônicos (MPFA-H) para a simulação numérica do escoamento
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monofásico em reservatórios de petróleo carbonáticos usando malhas não-

estruturadas. Dessa forma, analisamos a influência das estruturas cársticas

no escoamento do fluido. Para resolver a equação de Stokes Brinkman com o

esquema proposto, duas abordagens foram adotadas: a monolítica, em que a

equação de conservação da quantidade de movimento e a equação de conser-

vação de massa são resolvidas simultaneamente, e a abordagem segregada, na

qual a equação de conservação de quantidade de movimento e as equações de

conservação de massa são resolvidas separadamente.

É importante destacar as contribuições do presente trabalho, no qual, pela

primeira vez na literatura, o método MPFA-H foi estendido para discretizar as

equações de Stokes Brinkman. Além disso, a fim de garantir o acoplamento

adequado entre as variáveis de pressão e velocidade, evitando o desacoplamento

par-ímpar e oscilações do campo de pressão, foi utilzado uma modificação do

método de interpolação de Rhie-Chow (ZHANG; ZHAO; BAYYUK, 2014). Para

verificar a formulação proposta, resolvemos alguns benchmarks encontrados

na literatura para problemas de escoamento monofásico, utilizando malhas

não estruturadas.

Para todos os casos, os resultados obtidos com nossa formulação foram

semelhantes às referências adotadas, representando de forma coerente o es-

coamento do fluido no domínio poroso, no qual o escoamento é essencialmente

Darciniano, e na região de escoamento livre. Por fim, verificamos a importância

da adoção de métodos adequados para representar adequadamente as regiões

de vuggy, uma vez que a presença dessas estruturas altera significativamente

o escoamento do fluido nesses reservatórios.
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