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ABSTRACT

Just-In-Time Software Defect Prediction (JIT-SDP) is aimed at predicting the presence of de-
fects in code changes at the commit time instead of inspecting modules (i.e., files or packages)
in offline mode, as performed in traditional Software Defect Prediction (SDP). In a real-world
application of JIT-SDP, predictions must be done in an online fashion so that the developer
is informed about the presence of defect as soon as the code change is submitted, providing
to the developer the opportunity to further inspect the change while it is still fresh in one’s
mind. On the other hand, the model training can be done in an online or a batch fashion, since
this problem domain does not have real-time requirements. Regardless the type of training,
it is important to note that the code change is not labeled immediately after its submission
to the source code repository. The labelling time may take days or months, depending on the
time spent by the software development team to find and fix each defect. So, the model must
wait some time to trust in a label of a code change. And this amount of time is known as
verification latency. Another challenge faced by a JIT-SDP model is the fluctuation of the class
imbalance rate through time. This kind of concept drift is known as class imbalance evolution.
This work investigates the use of batch algorithms for dealing with JIT-SDP in the context
of verification latency and class imbalance evolution. In comparison to the state-of-the-art,
which is based on online algorithms, our approach (BORB) achieved improvements between
+2% and +11% on 9 of the 10 investigated datasets, in terms of g-mean. In only one dataset,
BORB achieved a result inferior to the state-of-the-art approach, a decrease of −2% in terms
of g-mean. Besides that, this work investigates the predictive performance in a context in
which the model is constrained to output a fixed defect prediction rate. More specifically, the
defect prediction rate is an online rate that corresponds to the number of predictions which
return the defect class divided by the total of predictions in a time interval. And a fixed defect
prediction rate means to constraint the model to maintain the specified rate over time. That
said, the results of the experiments show that, under this constraint, methods with higher
capability to maintain the defect prediction rate close to the fixed defect prediction set by
the hyperparameter tuning also obtain a higher predictive performance in the testing data,
i.e., there is a meaningful correlation between this capability and the predictive performance.
The correlation coefficient between them is 0.44. This result, added to the simplicity of the
approach, suggests that a fixed defect prediction rate may be used as a standard baseline to
the problem of class imbalance evolution.



Keywords: software defect prediction; verification latency; class imbalance; concept drift.



RESUMO

Just-In-Time Software Defect Prediction (JIT-SDP) tem o objetivo de identificar a presença
de defeitos em mudanças de código no momento do commit ao invés de inspecionar módulos
(i.e., arquivos e pacotes) de maneira offline, como é realizado em Software Defect Prediction
(SDP) tradicional. Em uma aplicação real de JIT-SDP, as predições devem ser feitas de
forma online para que o desenvolvedor seja informado sobre a presença de defeito logo após a
mudança de código ser submetida, provendo ao desenvolvedor a oportunidade de inspecionar
a mudança enquanto ela ainda está fresca em sua mente. Por outro lado, o treinamento do
modelo pode ser feito de forma online ou em lote, uma vez que este domínio de problema não
possui requisitos de tempo real. Independente do tipo de treinamento, é importante notar que
a mudança de código não é rotulada imediatamente após a sua submissão para o repositório
de código fonte. O tempo de rotulagem pode levar dias ou meses, dependendo do tempo gasto
pela equipe de desenvolvimento de software para descobrir e corrigir cada erro. Então, o modelo
deve esperar um tempo para confiar no rótulo de uma mudança de código. E este período
de tempo é conhecido como latência de verificação. Outro desafio enfrentado por um modelo
de JIT-SDP é a flutuação da taxa de desbalanceamento das classes ao longo do tempo. Este
tipo de mudança de conceito é conhecido como evolução no desbalanceamento das classes.
Este trabalho investiga o uso de algoritmos em lote para lidar com JIT-SDP no contexto
de latência de verificação e evolução no desbalanceamento das classes. Em comparação com
o estado da arte, que é baseado em algoritmos online, nossa abordagem (BORB) alcançou
melhorias entre +2% e +11% em 9 das 10 bases de dados investigadas, em termos de g-
mean. Em apenas uma base de dados, BORB obteve um resultado inferior ao da abordagem
estado da arte, uma baixa de −2% em termos de g-mean. Além disso, este trabalho investiga
a performance preditiva em um contexto no qual o modelo é restrito a retornar uma taxa de
predição de defeito fixa. Mais especificamente, a taxa de predição de defeito é uma taxa online
que corresponde ao número de predições que retornam a classe de defeito dividido pelo total
de predições em um intervalo de tempo. E a taxa de predição de defeito fixa significa restringir
o modelo para manter a taxa especificada ao longo do tempo. Dito isso, os resultados dos
experimentos mostraram que, submetido a esta restrição, métodos com mais capacidade de
manter a taxa de predição de defeito próximo à taxa de predição fixa definida pela otimização
de hiperparâmetros também obtém uma melhor performance preditiva no dados de teste, i.e.,
há uma correlação significativa entre esta capacidade e a performance preditiva. O coeficiente



de correlação entre elas é 0.44. Este resultado, adicionado à simplicidade da abordagem, sugere
que a taxa de predição de defeito fixa pode ser usada como uma linha de base padrão para o
problema de evolução no desbalanceamento das classes.

Palavras-chaves: predição de defeito de software; latência de verificação; desbalanceamento
de classes; mudança de conceito.



LIST OF FIGURES

Figure 1 – Delay to fix a defect by dataset. . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 2 – Oversampling boosting factors with 𝑓𝑟1 = 0.5, 𝑙0 = 9, 𝑙1 = 9 and different

values of 𝑖𝑟1 and 𝑚. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 3 – G-mean convergence on the validation segment of the data stream. . . . . 52
Figure 4 – Average and standard deviation (black vertical bar) of the g-mean by dataset

and classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 5 – Average ranks based on the g-mean and Bonferroni-Dunn critical distance

(bold horizontal bar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 6 – Heatmap of ranks based on the g-mean, horizontally sorted by average rank. 58
Figure 7 – Average and standard deviation (black vertical bar) of the distance between

recalls by dataset and classifier. . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 8 – Average ranks based on the distance between recalls and Bonferroni-Dunn

critical distance (bold horizontal bar). . . . . . . . . . . . . . . . . . . . . 59
Figure 9 – Heatmap of ranks based on the distance between recalls, horizontally sorted

by average rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 10 – G-mean, 𝑟0, 𝑟1 and |𝑟0 − 𝑟1| of BORB-MLP and ORB-OHT over the data

streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 11 – Relationship between the fixed defect prediction rate (𝑓𝑟1), the defect rate

and sudden drops in g-mean and 𝑟0 of BORB-LR and BORB-MLP over the
data streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 12 – Average and standard deviation (black vertical bar) of the distance between
the fixed defect prediction rate and the induced defect prediction rate. . . . 67

Figure 13 – Average rank based on the distance between the fixed defect prediction rate
and the induced defect prediction rate and Nemenyi critical distance (CD). 67

Figure 14 – Heatmap of ranks based on the distance between the fixed defect prediction
rate and the induced defect prediction rate, horizontally sorted by average
rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



LIST OF TABLES

Table 1 – Aspects of SDP research. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 2 – Information and statistics about the datasets. . . . . . . . . . . . . . . . . 49
Table 3 – Results of all combinations of classifier and dataset for all metrics. . . . . . 57
Table 4 – Results using the entire data stream for testing. . . . . . . . . . . . . . . . 80



LIST OF ABBREVIATIONS AND ACRONYMS

BORB Batch Oversampling Rate Boosting

BORB-NB Batch Oversampling Rate Boosting associated with Naive Bayes

BORB-IRF
Batch Oversampling Rate Boosting associated with Iterative Random
Forest

BORB-IHF
Batch Oversampling Rate Boosting associated with Iterative Hoeffding
Forest

BORB-LR Batch Oversampling Rate Boosting associated with Logistic Regression

BORB-MLP Batch Oversampling Rate Boosting associated with Multilayer Perceptron

CPSQ Cost of Poor Software Quality

DT Decision Tree

HATT Hoeffding Anytime Tree

HT Hoeffding Tree

IHF Iterative Hoeffding Forest

IRF Iterative Random Forest

JIT-SDP Just-In-Time Software Defect Prediction

LOC lines of code

LR Logistic Regression

MLP Multilayer Perceptron

N Negative

NB Naive Bayes

OHT Online Bagging of Hoeffding Trees

OO object-oriented

ORB Oversampling Rate Boosting

ORB-OHT
Oversampling Rate Boosting associated with Online Bagging of Hoeffding
Trees

P Positive



RF Random Forest

SDP Software Defect Prediction

TN True Negative

TP True Positive

USA United States of America



LIST OF SYMBOLS

𝛼 Alpha

𝜃 Theta

∈ Belongs to

|𝐴| Cardinality of the collection

→ Imply

𝑎⃗ Vector

∞ Infinity

< Less than

≤ Less than or equals

> Greater than

≥ Greater than or equals

= Equals

+ Addition

− Subtraction

× Multiplication

𝑎
𝑏

Division

% Percentual

√ Square root

∑︀ Summation

|𝑎| Absolute value

𝑚𝑜𝑑 Module

𝑓(𝑥) Function



𝑎𝑟𝑔 𝑚𝑎𝑥
𝑥

𝑓(𝑥) Argument 𝑥 that maximizes 𝑓(𝑥)

← Assignment



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 SOFTWARE DEVELOPMENT CONTEXT . . . . . . . . . . . . . . . . . 19
1.3 PROCESS AND MODEL INTEGRATION . . . . . . . . . . . . . . . . . . 21
1.4 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 DOCUMENT STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 RELATED-WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 SOFTWARE DEFECT PREDICTION . . . . . . . . . . . . . . . . . . . . 25
2.2 JUST-IN-TIME SOFTWARE DEFECT PREDICTION . . . . . . . . . . . . 26
2.3 ONLINE JUST-IN-TIME SOFTWARE DEFECT PREDICTION . . . . . . . 27
2.4 CLASS IMBALANCE IN JUST-IN-TIME SOFTWARE DEFECT PREDIC-

TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 PROBLEM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Model and Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Main Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 G-MEAN MAXIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 VERIFICATION LATENCY . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 PROPOSED APPROACH . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 LIMITATIONS IN THE STATE-OF-THE-ART . . . . . . . . . . . . . . . . 40
4.2 BATCH OVERSAMPLING RATE BOOSTING . . . . . . . . . . . . . . . . 41
4.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 BASE LEARNERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



5.2 EVALUATION METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 HYPERPARAMETER TUNING . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 TRAINING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6 EXPERIMENTAL SETUPS . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDIX A – TESTING ON ENTIRE DATASETS . . . . . . . . 79

APPENDIX B – CONFIGURATION SPACES AND BEST CON-

FIGURATIONS . . . . . . . . . . . . . . . . . . . 81



18

1 INTRODUCTION

Nowadays, software is a ubiquitous technology and is considered important to all sort of in-
dustries. Software can be seen as a way to scale up business processes and a defect introduced
during the software development is scaled up too. Despite the advances in software develop-
ment tools and processes, it is virtually impossible to conduct an entire software development
process without introducing defects. Apparently, this is a problem that can be mitigated, but
not totally solved.

1.1 MOTIVATION

According to Krasner (2020), the total Cost of Poor Software Quality (CPSQ) in the
United States of America (USA) for the year 2020 was 2.08 trillion (T), without considering
the future cost of the technical debt residing in defects that need to be corrected. He also said
that:

• The largest contributor to CPSQ is operational software failures. For 2020,
we estimated that it is $1.56 T, a 22% growth over 2 years — but that could
be underestimated given the meteoric rise in cybersecurity failures, and that
many failures go unreported. The underlying cause is primarily unmitigated
flaws in the software.

• The next largest contributor to CPSQ is unsuccessful development projects
totaling $260 billion (B), which rose by 46% since 2018. The project failure
rate has been steady at 19% for over a decade. The underlying causes are
varied, but one consistent theme has been the lack of attention to quality.

• Legacy system problems contributed $520 B to CPSQ (down from $635 B
in 2018).

Krasner (2020) general recommendations emphasize prevention. However, when the pre-
vention fails, he says that “the next best approach is to address weaknesses and vulnerabilities
in software by isolating, mitigating, and correcting them as closely as possible to where they
were injected to limit the damage”. More specifically, he gives two recommendations that can
be benefited from the research area of Software Defect Prediction (SDP): “(1) Recognize the
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inherent difficulties of developing software and use effective tools to help deal with those diffi-
culties. (2) Ensure early and regular analysis of source code to detect violations, weaknesses,
and vulnerabilities”. More specifically, SDP applies machine learning techniques to create ef-
fective tools (i.e., models) that analyze the source code to detect defect-prone modules (LI;

JING; ZHU, 2018; NAM, 2014) and, in the case of Just-In-Time Software Defect Prediction
(JIT-SDP), analyze code changes in order to identify defect-inducing changes (KAMEI et al.,
2013).

In addition, Jones (2011) showed that the average cost to build, maintain and support
software applications for five years in the USA drops from $2,000 to $1,200 per function
point when the development team uses effective combinations of defect prevention and defect
removal activities to achieve high quality levels. Thus, the identification of software defects is
a relevant problem in the current software development environment. And, this work tackles
it by applying machine learning techniques.

1.2 SOFTWARE DEVELOPMENT CONTEXT

In a software development process, a source code repository can be seen as a stream of
code changes in which each committed code change may be intended to add a new feature,
modify an existing one, or to fix a defect introduced by a previous code change. In this context,
it would be helpful for a development team to know as soon as possible whether a code change
induces a defect or not. With this information, the developer who touched the code may review
it and, if necessary, fix it. Or some colleague may give more attention to that specific change
by conducting a peer-review session. One advantage of the focus on code changes is that
the development team reviews only specific code snippets, while approaches based on the
inspection of modules (i.e., files and packages) are time-consuming and impractical for a large
software system (KAMEI et al., 2013).

To train and evaluate a model to classify code changes, one must consider the following
four characteristics of a source code repository: 1) There are many more clean code changes
than defect-inducing ones (i.e., this is a class imbalanced problem). 2) The code changes are
created in a certain time order and a code change can only be classified with a model trained
with the previous code changes. 3) There is a time period to confirm whether a code change
induces a defect or not, as the development team may take days or months to find and fix
the defect after the defect-inducing code change has been created. The delay for receiving
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the true labels is known as verification latency. 4) The data used to train the model changes
over time. These modifications are called concept drifts. And the concept drifts on the class
imbalance is also known as class imbalance evolution.

Most of the works in the literature of Software Defect Prediction (SDP) considers the
presence of class imbalance in the source code repository, and some of them study this topic
in depth (WANG; YAO, 2013). However, to the best of our knowledge, the time order, verification
latency and concept drifts have been neglected in the literature of SDP up until Tan et al.
(2015)’s work, when they introduced verification latency and a time sensitive approach to
train and evaluate the model. Since then, more works moved towards a realistic scenario by
considering time order, verification latency and concept drifts. McIntosh (2018) investigated
how the concept drifts on the properties of the code changes impact the performance and
interpretation of the model. And Cabral et al. (2019) investigated the verification latency in
depth, and how the class imbalance evolution impacts the performance of the model.

This work focuses on the creation of a model to predict whether a code change induces
a defect or not in a realistic scenario, in which we assume the presence of class imbalance,
time order, verification latency and concept drifts. Similarly to the state-of-the-art (CABRAL et

al., 2019), our approach (1) balances the training data so that the model learns both classes
properly, (2) respects the time order of the code changes, (3) and waits some time period
before using the code changes for training the model.

On the other hand, our approach tackles concept drifts differently. It periodically restarts
and retrains the model using random samples of the historical data while the state-of-the-art
model learns new concepts incrementally over the old ones. As a consequence, we expect that
our approach be able to take advantage of the historical data to improve the predictive power
when compared to the state-of-the-art. In addition, we expect that our approach maintains the
predictive performance between periodic retrainings since McIntosh (2018) showed that models
trained using more data tends to retain the performance for a longer time. Additionally, more
modifications were introduced in order to allow the investigation of the predictive performance
in a context in which the model is constrained to output a fixed defect prediction rate. More
details about these modifications are given in Chap. 4.

Before moving forward, we must specify that the defect prediction rate is the number of
predictions which return the defect-inducing class divided by the total number of predictions,
regardless of the defect predictions being true positives or false positives. More formally, as-
suming the clean class as the negative class and the defect-inducing class as the positive one,
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𝑑𝑒𝑓𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)/𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠. Furthermore, a
fixed defect prediction rate means to constraint the model to maintain the specified rate over
time. This work focuses on the defect prediction rate since the prediction rate of the clean
class is the complement of the former. The same relationship of complementary applies to the
fixed defect prediction rate.

In practice, the fixed defect prediction rate may be set in two ways: 1) Discretionarily,
in which the project manager sets the expected rate of defect predictions according to the
resources available (i.e., time and staff) to review the code changes. 2) Or automatically, in
which some evaluation metric should be optimized according to the fixed defect prediction
rate. In this work, we use the second option. More specifically, we choose the fixed defect
prediction rate that maximizes the g-mean during the hyperparameter tuning procedure.

1.3 PROCESS AND MODEL INTEGRATION

Given the advent of distributed version control systems, particularly Git (CHACON; STRAUB,
2014), a new paradigm for distributed software development emerged: pull-based software
development. In this paradigm, developers make the code changes in their own repositories
and when they are finished, they submit the code changes in a pull-request to the main
repository and wait for a peer revision. Then, the peer can ask for changes, accept or reject
the pull-request. This process may iterate over and over until acceptance or rejection of the
pull-request. After some time, pull-based software development became so popular in both
open- and closed-source projects that new platforms were created to support it (GOUSIOS;

PINZGER; DEURSEN, 2014), notably GitHub is the most popular.
In online Just-In-Time Software Defect Prediction (JIT-SDP) literature, the state-of-the-

art solution (CABRAL et al., 2019) achieved advances in predictive performance considering a
realistic scenario with respect to the order of the code changes and the verification latency, but
they failed in obtaining a performance level that could allow practical applications on some
investigated datasets. For example, when evaluated on the entire data stream (i.e., entire
software project), the worst g-mean achieved by our reimplementation of the state-of-the-art
was 51.03%. The predictive performance was especially poor on the beginning of the software
project. With this level of performance, the software practitioners definitely would not rely on
this classifier.

The poor performance on some investigated datasets may have happened, in part, due
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to the limitations imposed by the online setting applied for training the model, which is
constrained to use only the most recent labeled code change per training iteration. In present
work, we assume that the code changes are created in a relatively low frequency so that the
machine learning model does not have to learn them in real-time. Besides that, we assume
that the pull-based software development is the paradigm chosen by the development team,
similarly to Tan et al. (TAN et al., 2015). So, we can expect that the code changes arrive in
batches appended to the pull-requests, and that each pull-request takes a substantial amount
of time to be accepted, particularly in open-source projects (GOUSIOS; PINZGER; DEURSEN,
2014).

In this context, to incorporate the most recent data, the model can be rebuilt based on the
historical data, which includes recent and old instances, after one or more pull-requests being
accepted so that the use of the model in practice is not affected. This is feasible because the
repository compression makes the data volume small. In fact, the repository is small enough to
be kept in a single hard disk, as the developers do in their workstations. Additionally, over the
lifecycle of the software, the impact of the increasing number of code changes in the training
phase can be addressed by subsampling techniques, for example. The subsampling allow us
to set an upper bound on the computational resources spend for training the model using a
batch algorithm.

Batch algorithms have been successfully applied in online JIT-SDP literature (TAN et al.,
2015; YANG et al., 2016; CHEN et al., 2018; MCINTOSH; KAMEI, 2018). In this work, we expect
that they achieve better predictive performance when compared to the online ones since they
can revisit the training data many times and, when associated to random sampling, they are
expected to not emphasize recent data. Notice that we avoid emphasizing recent data because
we do not have prior information about the concept drifts on the investigated datasets. Since
our model does not know whether the next code change comes from an old concept or a new
one, it relies on the accumulated training data to learn the most prevalent concepts while
accepting the risk of a slower adaptation to new concepts.

Finally, despite the training phase being based on batch algorithms, our approach assumes
that the model has online requirements for the testing phase so that it can be used as an
on-demand service by any developer of the team.
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1.4 RESEARCH QUESTIONS

This work has the objective of investigating the predictive performance of batch algorithms
compared to online algorithms and investigating how the capability to output a fixed defect
prediction rate is correlated to the predictive performance.

Our study considers Oversampling Rate Boosting (ORB) (CABRAL et al., 2019) as the
baseline. To the best of our knowledge, ORB is the state-of-the-art approach for online JIT-
SDP, but it has shown to achieve poor results on some datasets. The major weaknesses that we
observed in ORB are related to its association with an online base learner that overemphasizes
recent data and the susceptibility to noise of the instance-based oversampling. The base learner
in question is the Hoeffding Tree (HT) (DOMINGOS; HULTEN, 2000; GAMA et al., 2014).

Our approach can be seen as a ORB modified to, regardless of the choice of base learner,
avoid overemphasizing recent data and decrease the susceptibility to noise by resampling
historical data in a batch mode. Despite the use of batch resampling, our approach can
be associated with both batch and online base learners. In fact, the introduction of batch
algorithms into ORB inspired the name of our approach: Batch Oversampling Rate Boosting
(BORB). Besides that, BORB is designed to output a fixed defect prediction rate.

That said, we can now list the research questions that we answered in this work:

RQ1 Why does ORB perform poorly in terms of predictive performance on some datasets?

RQ2 How to modify ORB to use historical data for resampling and output a fixed defect
prediction rate? How well BORB performs compared to ORB in terms of predictive
performance?

RQ3 How does BORB perform when using different base learners? In particular, do the use
of different base learners further improves the predictive performance of BORB?

RQ4 Is BORB able to output a fixed defect prediction rate? How correlated are the capabil-
ity to output a fixed defect prediction rate and the predictive performance? And how
adequate is each base learner to output a fixed defect prediction rate?

Regarding RQ1, RQ2 and RQ3, we formalize the methodology in which the predictive
performance is improved in Subsection 3.1.4. And, regarding RQ4, we formalize the hypotheses
about the fixed defect prediction rate in Subsection 3.1.5.
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1.5 CONTRIBUTIONS

After finished the study of the research questions, this work ended up with the following
novel contributions to the field of JIT-SDP:

1. Proposing a new approach able to considerably improve the predictive performance in
comparison to the state-of-the-art approach.

2. Evaluating the predictive performance of the novel approach with different base learners,
including online and batch algorithms.

3. Investigating the predictive performance in a context in which the model is constrained
to output a fixed defect prediction rate.

4. Finding a meaningful correlation between the capability to output a fixed defect predic-
tion and the predictive performance.

5. Evaluating which base learners are most capable to output a fixed defect prediction rate.

1.6 DOCUMENT STRUCTURE

The remainder of this document is structured as follows. Chap. 2 reviews the main works re-
lated to SDP, JIT-SDP, online JIT-SDP and class imbalance. Chap. 3 introduces key concepts
for a proper understanding of this work. Chap. 4 discusses the limitations in the state-of-the-art
approach and presents the proposed approach. Chap. 5 describes the base learners, the evalu-
ation metrics, the datasets and the hyperparameter tuning used in the experiments. Then, it
also describes the experimental setups defined to answer the research questions, and discusses
the results. Finally, Chap. 6 summarizes our conclusions and presents open questions that may
be investigated in future work.
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2 RELATED-WORK

In this chapter, we first discuss Software Defect Prediction (SDP) literature and its sub-
fields more related to the present work: JIT-SDP and online JIT-SDP. Then, we discuss class
imbalance evolution in the context of JIT-SDP. In the following discussion, we try to consider
previous works also connecting them with ours.

2.1 SOFTWARE DEFECT PREDICTION

To the best of our knowledge, the first study of SDP estimated the number of defects in a
software project by using the lines of code (LOC) as a complexity measure (AKIYAMA, 1971).
However, according to Nam (2014), this code metric is too simple to properly represent the
complexity of a software. So, the cyclomatic complexity (MCCABE, 1976) and the Halstead
complexity (HALSTEAD, 1977) were introduced, and became very popular code metrics for
estimating the number of defects in a software. Shen et al. (1985) used that code metrics
to build a linear regression model to predict the number of defects in modified modules and
in new modules. Munson (1992) added more code metrics to the set of the previous work,
and built a discriminant model to identify the modules most prone to defects. He also applied
principal component analysis to reduce the multicollinearity problem in the code metrics. After
the increase of popularity of object-oriented (OO) design, Chidamber (1994) proposed a suite
of code metrics for that design paradigm. And Basili et al. (1996) used them to predict defect-
prone classes.

Few years later, given the vast adoption of version control systems making code changes
being accumulated in these repositories, many new process metrics were proposed (NAGAPPAN;

BALL, 2005; KIM et al., 2007; HASSAN, 2009; D’AMBROS; LANZA; ROBBES, 2010; BIRD et al.,
2011). They were used in a new subfield of SDP that would be later called Just-In-Time
Software Defect Prediction (JIT-SDP). In this context, process metrics are statistics of code
changes computed between two versions of a module. For instance, time spent since the last
change of the module. These statistics can also be related to the changes itself instead of the
touched module. For instance, experience of the developer who created the change. On the
other hand, code metrics come from the source code of one specific version of a module. For
instance, number of parameters of a function and number of lines of a function.
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Table 1 – Aspects of SDP research.

Aspect Value Description

SDP

Training data Within-project Model is built and test on data from the same project
Cross-project Model is built on data from multiple projects and tested on one or many projects

Granularity Module A module version is a problem instance
Code change A code change is a problem instance

Metrics Code metrics Metrics from a source code version
Process metrics Metrics from code changes

Time Order Static No time order
Dynamic Time order

Algorithm Batch Batch resampling and learning
Online Online resampling and learning

Source: Created by the author (2021)

Moser et al. (2008) and Rahman (2013) conducted a comparative analysis of code metrics
and process metrics. Their works suggest the use of process metrics instead of code metrics.
Rahman (2013) shows that code metrics may not evolve with the changing distribution of
defects over the files. In that case, the model is led to focus on recurrently defective modules
instead of defect-dense modules. A more detailed review of SDP literature can be found in
Nam (2014) and Li et al. (2018)’s works.

To better segregate the subfields of SDP, Table 1 shows key characteristics of the different
branches of SDP. In this table, names in bold represent characteristics addressed in the present
work. According to them, our work uses data from a single project to build and test the model;
the instances of the datasets are code changes; the features of the problem come from statistics
related to the code changes; the chronology of the changes is respected so that the model is
trained only with instances labeled before current test time; and the algorithms proposed to
improve the predictive performance are batch.

2.2 JUST-IN-TIME SOFTWARE DEFECT PREDICTION

Traditional SDP inspects entire modules to classify which ones are defective in offline
mode. Differently, JIT-SDP is aimed at predicting the presence of defects in code changes
at the commit time. To the best of our knowledge, Mockus (2000) was the first work to
handle code changes. He identified the causes of the code changes by processing the textual
description field of these changes. The causes addressed by that work were the addition of
new features, the correction of defects, and code refactoring. However, that work did not
identify which code changes induce defects. Śliwerski et al. (2005) were the first ones to
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label code changes as defect-inducing or clean by linking the version control system to a
bug tracking database. Today, their algorithm is known as the SZZ, after the three authors:
Śliwerski, Zimmermann, and Zeller. Since then, several studies introduced new features to
code changes for different purposes. Kim et al. (2008) introduced the change classification
focused on file changes. They added features from change metadata, complexity metrics at
the moment of the change, change log messages, source code and file names. Eyolfson et
al. (2011) investigated the correlation between social characteristics of the commits (code
changes) and the probability of being defect-inducing. The investigated characteristics were
the time of the day of the commit, the day of the week of the commit and the developer’s
experience. Shihab et al. (2012) found the 5 best indicators to identify risky changes (changes
likely to be defect-inducing) from a total of 23 indicators. The number of lines added, the
number of locations that the added lines are spread, the worst ratio between fix changes and
total changes by file being changed, the number of bug reports linked to the change, and the
developer’s experience were considered the best indicators of a change to be defect-inducing.
Misirli et al. (2016) specialized the model to identify high impact defect-inducing changes.
The high impact is defined with respect to the developer’s perspective. So, it is considered the
amount of churn (i.e., number of lines of code modified), number of modified files and the
number of subsystems affected by the change.

Kamei et al. (2013) conducted a large-scale study on six open-source and five commercial
projects based on 13 characteristics of the code changes. They built an effort-aware model to
maximize the number of identified defect-inducing changes while minimizing the effort neces-
sary to review these changes. Obtaining these 13 features from open projects became easier
when Rosen (2015) released Commit Guru, a tool to extract data from GitHub repositories
and label the code changes as clean or defect-inducing.

None of the mentioned JIT-SDP studies investigated the predictive performance in a con-
text in which the model is constrained to output a fixed defect prediction rate.

2.3 ONLINE JUST-IN-TIME SOFTWARE DEFECT PREDICTION

Online JIT-SDP can be considered as a subfield of JIT-SDP in which time plays a relevant
role in how the model is trained and tested. The code changes are tested following the order
that they are committed, and the training phase can use only code changes whose label is
available before the code change being tested. Tan et al. (2015) were the first ones to study
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online JIT-SDP. They also introduced the requirement of waiting a fixed time period after
the code change commit so that the labels assigned to the training instances are more likely
to be the true labels. The delay for receiving the true labels is known as verification latency
(CABRAL et al., 2019) and, in JIT-SDP domain, it takes place because the software development
team may take days or months to find out that a code change is defect-inducing after its
commit. McIntosh (2018) investigated how the properties of the code changes fluctuates over
time. He found out that those fluctuations (concept drifts) causes a gradual loss of predictive
performance for the model. So, the model needs to be updated periodically to incorporate the
most recent data. He also found out that the models trained with long historical data retain
predictive performance for longer than when trained with short historical data. Cabral et al.
(2019) investigated how the class imbalance evolution hinders the predictive performance of
the model in the presence of verification latency. Differently from Tan et al. (TAN et al., 2015),
Cabral et al. (2019) proposed to use a defect-inducing change as soon as it is labeled by the fix
instead of waiting for a fixed verification latency time interval for both classes. In this context,
they proposed Oversampling Rate Boosting (ORB) to tackle the class imbalance evolution.
ORB performs an online resampling based on the prequential ratio between the classes in
the training data multiplied by an adjustable boosting factor intended to emphasize the class
that have been underemphasized on the most recent predictions. Due to the online resampling
mechanism, as limitation, ORB can be associated only with online base learners.

Online JIT-SDP was also studied in correlated subfields of JIT-SDP. Tabassum et al. (2020)
used ORB to investigate how data from different software projects (cross-project data) can
improve the model predictive performance on one target software project in an online scenario.
Cross-project data improved the overall predictive performance and the predictive performance
in the initial phase of the project. Besides that, cross-project data prevented sudden drops in
the predictive performance due to concept drifts. Yang et al. (2016) and Chen et al. (2018)
showed, with different approaches, that effort-aware models can better maximize the number of
defect-inducing changes identified while minimizing the effort required to review these changes.
They used timewise-cross-validation (online scenario) among other types of validation.

In this work, we modified ORB to support batch algorithms and output a fixed defect
prediction rate. The former modification has the objective of investigating the predictive per-
formance of batch algorithms compared to online algorithms, and the latter one is aimed at
investigating how the capability to output the fixed defect prediction is correlated to the pre-
dictive performance in an online scenario. To the best of our knowledge, this is the first work
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to do such investigations.

2.4 CLASS IMBALANCE IN JUST-IN-TIME SOFTWARE DEFECT PREDICTION

Class imbalance is a usual challenge in the JIT-SDP domain. Most of the studies apply
resampling techniques as preprocessing (KAMEI et al., 2013; TAN et al., 2015; MISIRLI; SHIHAB;

KAMEI, 2016), but some of them conduct a more in depth evaluation of these techniques
(KAMEI et al., 2016; MALHOTRA; KHANNA, 2017; CABRAL et al., 2019). Kamei et al. (2013) and
Misirli et al. (2016) applied undersampling to tackle class imbalance in an offline scenario.
Tan et al. (2015) experimented four types of resampling techniques on the hyperparameter
tuning procedure in order to choose the best option to apply on the testing data in online
JIT-SDP. Using cross-project data in an offline scenario, Kamei et al. (2016) found out that
undersampling tends to provide better predictive performance in terms of F-measure and recall.
Malhotra (2017) experimented three resampling methods and one cost-sensitive method to
deal with class imbalance. By doing this, they significantly improved the predictive performance
of the models in an offline scenario. Cabral et al. (2019) experimented six resampling techniques
to show that ORB, which is designed to tackle the class imbalance evolution in the presence of
verification latency, can improve the predictive performance in online JIT-SDP. In their work,
they identified the oversampling as the most reliable resampling technique in the investigated
scenario.

2.5 SUMMARY

In this chapter, we have provided a literature review of SDP and the subfields related to
this work: JIT-SDP, online JIT-SDP and class imbalance in JIT-SDP. We have also seen that
online JIT-SDP considers a more realistic scenario when compared to offline JIT-SDP. In online
JIT-SDP, the incoming code changes are classified respecting the chronology of its creation.
Besides that, the classifier must wait a realistic time interval, verification latency, to simulate
the true delay for receiving the training instances labels. Furthermore, when the verification
latency is associated to the class imbalance problem, an even more challenging context is
defined. In this work, we assume this realistic scenario to investigate our hypotheses about the
fixed defect prediction rate and the performance’s impact when using batch algorithms in the
specified scenario.
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3 FUNDAMENTALS

In this chapter, we introduce key concepts for a proper understanding of this work: data
stream, model and classifier, the main evaluation metric, the methodology, and our hypotheses
about the fixed defect prediction rate. In addition, we give an intuition on how to maximize
the g-mean when constrained by a fixed defect prediction rate over the data stream. Finally,
we define the verification latency and show the distribution of the delay to fix a defect on each
dataset.

3.1 PROBLEM DEFINITION

3.1.1 Data Stream

As mentioned in Section 1.2, when we assume a pull-based software development, a source
code repository can be seen as a stream of code changes that arrive in batches appended to
pull-requests. However, for the sake of our problem formulation, we can ignore the pull-requests
to work on the code change level. And define 𝑑𝑡 = (𝑥⃗𝑡, 𝑦𝑡) as the stream of code changes,
where 𝑡 𝜖 [0,∞) is the time, 𝑦𝑡 𝜖 {0, 1} is the class of the code change — 0 for clean and 1
for defect-inducing — and 𝑥⃗𝑡 is the feature vector of the incoming code change.

3.1.2 Model and Classifier

The true posterior probability distribution of classes can be defined as

𝑃𝑡(𝑦|𝑥⃗) = 𝑃𝑡(𝑥⃗|𝑦)𝑃𝑡(𝑦)
𝑃𝑡(𝑥⃗) , (3.1)

where 𝑦 is the class, 𝑥⃗ is the feature vector, and 𝑡 is the time. It is important to note that
we can have a different distribution at each time 𝑡. The change on the probability distribution
is called concept drift. And we can define the concept drift between the time 𝑡0 and 𝑡1

as ∃𝑥⃗ : 𝑃𝑡0(𝑦, 𝑥⃗) ̸= 𝑃𝑡1(𝑦, 𝑥⃗), where 𝑃𝑡(𝑦, 𝑥⃗) = 𝑃𝑡(𝑦|𝑥⃗)𝑃𝑡(𝑥⃗) = 𝑃𝑡(𝑥⃗|𝑦)𝑃𝑡(𝑦) is the joint
probability at time 𝑡 between 𝑦 and 𝑥⃗ (GAMA et al., 2014).

As we do not have access to the true posterior probability distribution defined by Eq. 3.1,
we need to create a model that estimates the distribution, defined as

𝑃 ′
𝑡(𝑦|𝑥⃗, 𝐷𝑡) = 𝑃𝑡(𝑥⃗|𝑦, 𝐷𝑡)𝑃𝑡(𝑦|𝐷𝑡)

𝑃𝑡(𝑥⃗|𝐷𝑡)
, (3.2)
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where 𝑡 = 0, 1, ... is now the timestep, a discretization of the time, and 𝐷𝑡 = {𝑑0, ..., 𝑑𝑡} is
the historical data at timestep 𝑡.

Furthermore, a step of thresholding is necessary to transform the posterior probability into
the prediction. The threshold is the value used to decide if the posterior probability yielded
by the model means a defect-inducing change or a clean one (HERNÁNDEZ-ORALLO; FLACH;

FERRI, 2012). And the threshold choice method is the mechanism used to choose a threshold
(HERNÁNDEZ-ORALLO; FLACH; FERRI, 2012). Our approach dynamically chooses thresholds to
maintain the fixed defect prediction rate over the data stream. In this case, our classifier can
be defined as

𝐶 ′
𝑡(𝑥⃗, 𝐷𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑃 ′

𝑡(𝑦 = 1|𝑥⃗, 𝐷𝑡) ≥ 𝑡ℎ𝑡

0, otherwise
, (3.3)

where 𝑡ℎ𝑡 is the threshold at the timestep 𝑡. So, when a code change has a posterior probability
greater than or equal to 𝑡ℎ𝑡, it is classified as defect-inducing; otherwise, it is classified as clean.

Due to the non-stationary nature of the problem, the model needs to be updated period-
ically. In this work, we assume that there is a fixed number of code changes to wait before
updating the model. That number is called the pull-request size (𝑝𝑠). After waiting for 𝑝𝑠

code changes, the model is restarted and trained with the historical data 𝐷𝑡. To implement
that, Eq. 3.4 incorporates this hyperparameter to the classifier as defined by

𝑃 ′
𝑡(𝑦|𝑥⃗, 𝐷𝑡, 𝜃) = 𝑃𝑡(𝑥⃗|𝑦, 𝐷𝑡, 𝜃)𝑃𝑡(𝑦|𝐷𝑡)

𝑃𝑡(𝑥⃗|𝐷𝑡)
, (3.4)

where 𝜃 is the hyperparameters vector that includes 𝑝𝑠. Furthermore, it is important to note
that 𝜃 is constant over the data stream. More details about 𝑝𝑠 and other hyperparameters are
given in Section 4.2.

In view of the classifier’s hyperparameters, Eq. 3.3 can be now rewritten as

𝐶 ′
𝑡(𝑥⃗, 𝐷𝑡, 𝜃) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑃 ′

𝑡(𝑦 = 1|𝑥⃗, 𝐷𝑡, 𝜃) ≥ 𝑡ℎ𝑡

0, otherwise
. (3.5)

3.1.3 Main Evaluation Metric

The g-mean is our main evaluation metric. And, to formulate it, we first need to define the
indicator function, the prequential recalls and the prequential g-means. The indicator function
helps to segregate the code changes by class and the predictions by correctness. And it is
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defined as

𝐼(𝑦′, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
1, 𝑦′ = 𝑦

0, otherwise
, (3.6)

where 𝑦′ is the expected class and 𝑦 is the true class of the code change or its prediction, de-
pending on the metric being calculated. It is important to say that we calculate the prequential
metrics as described in Gama et al. (2014)’s work. To do that, we assume some decay factor
𝛼 𝜖 [0, 1]. Then, we make counts using the decay effect and calculate one prequential recall
per class defined as

𝑛𝑐,𝑡 =

⎧⎪⎪⎨⎪⎪⎩
1 + 𝛼𝑛𝑐,𝑡−1, 𝐼(𝑐, 𝑦𝑡) = 1

𝑛𝑐,𝑡−1, otherwise
, (3.7)

ℎ𝑐,𝑡(𝐷𝑡, 𝜃) =

⎧⎪⎪⎨⎪⎪⎩
𝐼(𝑦𝑡, 𝐶 ′

𝑡(𝑥⃗𝑡, 𝐷𝑡, 𝜃)) + 𝛼ℎ𝑐,𝑡−1, 𝐼(𝑐, 𝑦𝑡) = 1

ℎ𝑐,𝑡−1, otherwise
, (3.8)

𝑟𝑐,𝑡(𝐷𝑡, 𝜃) = ℎ𝑐,𝑡(𝐷𝑡, 𝜃)
𝑛𝑐,𝑡

, (3.9)

where 𝑐 is the class that the recall is related to, 𝑡 is the timestep, 𝐷𝑡 is the historical data, 𝜃

is the hyperparameters vector, and 𝑛𝑐,0 = 0 and ℎ𝑐,0 = 0 are the initial values. Eq. 3.7 counts
the prequential number of code changes of the class 𝑐, Eq. 3.8 counts the prequential number
of correct classifications of the class 𝑐, and Eq. 3.9 calculates the prequential recall of the class
𝑐. Now, we can aggregate the prequential recalls of both classes into the prequential g-mean
defined as

𝑔-𝑚𝑒𝑎𝑛𝑡(𝐷𝑡, 𝜃) =
√︁

𝑟1,𝑡(𝐷𝑡, 𝜃)× 𝑟0,𝑡(𝐷𝑡, 𝜃). (3.10)

Then, we average the prequential g-mean to calculate the g-mean defined as

𝑔-𝑚𝑒𝑎𝑛(𝐷, 𝜃) = 1
|𝐷|

|𝐷|∑︁
𝑖=0

𝑔-𝑚𝑒𝑎𝑛𝑖(𝐷𝑖, 𝜃), (3.11)

where 𝐷 is a segment of the data stream, 𝜃 is the hyperparameters vector and 𝑔-𝑚𝑒𝑎𝑛𝑖(𝐷𝑖, 𝜃)

is the prequential g-mean, defined by Eq. 3.10.

3.1.4 Methodology

The methodology used to evaluate the approaches follows the recommendations described
by Salzberg (1997). First, we split the data stream into two non-overlapping sequential seg-
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ments defined as
𝑉 = 𝐷𝑣,

𝑇 = 𝐷𝑡 −𝐷𝑣,

where 𝐷𝑖 = {𝑑0, ..., 𝑑𝑖} is the historical data at timestep 𝑖, 𝑣 𝜖 (0, 𝑡) is the timestep used for
splitting 𝐷𝑡, 𝑉 is the validation segment, and 𝑇 is the testing segment. Then, we configure
the model in the hyperparameter tuning procedure using 𝑉 , and evaluate the configured model
using 𝑇 , as defined by

evaluate 𝑔-𝑚𝑒𝑎𝑛(𝑇, 𝜃𝑣)

subject to 𝜃𝑣 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

𝑔-𝑚𝑒𝑎𝑛(𝑉, 𝜃),
(3.12)

where 𝜃𝑣 is the hyperparameters vector that maximizes the g-mean on the segment 𝑉 of the
data stream, and 𝑔-𝑚𝑒𝑎𝑛 is defined by Eq. 3.11. More details about hyperparameter tuning
are given in Section 5.4.

3.1.5 Hypotheses

The idea to investigate the fixed defect prediction rate comes from the fact that the mean
is the point estimate that minimizes the mean squared error, as it is demonstrated in the
following proof.

Let 𝐸[𝑋] be the expected value of the random variable 𝑋, and 𝑝 be a point estimate of
𝑋. The mean squared error (𝑀𝑆𝐸) of the point estimate 𝑝 can be calculated as follows:

𝑀𝑆𝐸(𝑝) = 𝐸[(𝑋 − 𝑝)2]

= 𝐸[𝑋2 − 2𝑋𝑝 + 𝑝2]

= 𝐸[𝑋2]− 2𝑝𝐸[𝑋] + 𝑝2.

Then, to minimize 𝑀𝑆𝐸(𝑝), we find the value of 𝑝 in which the derivative of 𝑀𝑆𝐸(𝑝) is
equal to zero:

𝜕𝑀𝑆𝐸(𝑝)
𝜕𝑝

= 0

−2𝐸[𝑋] + 2𝑝 = 0

𝑝 = 𝐸[𝑋].
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Thus, the expected value of 𝑋 (𝐸[𝑋]) is the point estimate that minimizes the mean squared
error. And 𝐸[𝑋] can be empirically estimated as the mean of the observations of 𝑋.

In an optimistic scenario, the model would know the true probability distributions of classes
to produce a perfect ranking of the instances, and the classifier would know the true prequential
defect rate over the data stream in order to choose optimal thresholds for the predictions. On
that conditions, the predictive performance of the classifier would be perfect (HERNÁNDEZ-

ORALLO; FLACH; FERRI, 2012). However, if we constrained the classifier to output a fixed defect
prediction rate, the mean defect rate calculated on the whole data stream could be used as
the best point estimate to the prequential defect rate in terms of mean squared error. In fact,
the mean defect rate would give better information to support the classifier on the predictions
over the data stream than a complete absence of information about the prequential defect
rate (HERNÁNDEZ-ORALLO; FLACH; FERRI, 2012). To take advantage of that information, the
classifier would have to maintain the prequential defect prediction rate equals to the mean
defect rate over the data stream. In other words, the fixed defect prediction rate should be
equals to the mean defect rate.

On the other hand, in practice, the model does not yield posterior probabilities that form a
perfect ranking and the classifier does not know the true defect rate. Thus, there is no mean
defect rate calculated on the whole data stream to be used as the fixed defect prediction
rate. And, even if the true mean defect rate was available, its association with imperfect
posterior probabilities would lead the classifier to suboptimal results. Only by including both
uncertainties (i.e., unknown defect rate and imperfect posterior probabilities) into the decision-
making process of the fixed defect prediction rate we can expect optimal results (FERRI;

HERNÁNDEZ-ORALLO; FLACH, 2019). So, in this work, the fixed defect prediction rate that
maximizes the g-mean is found empirically in the hyperparameter tuning procedure.

Notice that the fixed defect prediction rate is a simplistic approach to deal with class
imbalance evolution since it does not adapt to fluctuations on the prequential defect rate.
However, we show that it may be considered as a standard baseline to this problem since, after
choosing the fixed defect prediction rate that maximizes the g-mean in the hyperparameter
tuning, the capability to maintain this rate over the testing segment is related to higher g-
means. More details about g-mean maximization using a fixed defect prediction rate are given
in Section 3.2.

That said, we can now formulate the hypotheses. The first hypothesis is that our approach
is able to output a fixed defect prediction rate over the data stream. To evaluate that, we
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need to calculate the prequential defect prediction rate as defined by

𝑛𝑡 = 1 + 𝛼𝑛𝑡−1, (3.13)

ℎ1,𝑡(𝐷𝑡, 𝜃) = 𝐼(1, 𝐶 ′
𝑡(𝑥⃗𝑡, 𝐷𝑡, 𝜃)) + 𝛼ℎ1,𝑡−1, (3.14)

𝑝𝑟1,𝑡(𝐷𝑡, 𝜃) = ℎ1,𝑡(𝐷𝑡, 𝜃)
𝑛𝑡

, (3.15)

where 𝑡 is the timestep, 𝐷𝑡 is the historical data, 𝜃 is the hyperparameters vector, 𝑛0 = 0 and
ℎ1,0 = 0 are the initial values. Eq. 3.13 counts the prequential number of predictions, Eq. 3.14
counts the prequential number of defect predictions, and Eq. 3.15 calculates the prequential
defect prediction rate. Then, we need to average the prequential distance between the fixed
defect prediction rate and the prequential defect prediction rate as defined by

|𝑓𝑟1 − 𝑝𝑟1|(𝐷, 𝜃) = 1
|𝐷|

|𝐷|∑︁
𝑖=0
|𝑓𝑟1 − 𝑝𝑟1,𝑖(𝐷𝑖, 𝜃)|, (3.16)

where 𝐷 is a segment of the data stream, 𝜃 is the hyperparameters vector, 𝑓𝑟1 is the fixed
defect prediction rate and 𝑝𝑟1,𝑖 is the prequential defect prediction rate, defined by Eq. 3.15.
Then, we can test if the distance between the fixed defect prediction rate and the defect
prediction rate (i.e., the average of the distance) is below a specific value with statistical
significance as defined by

𝐻0 : |𝑓𝑟1 − 𝑝𝑟1| = 𝑑,

𝐻𝑎 : |𝑓𝑟1 − 𝑝𝑟1| < 𝑑,
(3.17)

where |𝑓𝑟1 − 𝑝𝑟1| is the distance between the fixed defect prediction rate 𝑓𝑟1 and the defect
prediction rate 𝑝𝑟1, defined by Eq. 3.16, and 𝑑 is a value that corresponds to the maximum
acceptable distance, which is defined in Subsection 5.6.

The second hypothesis is that the capability to output the fixed defect prediction is corre-
lated to the g-mean. A high capability to output a fixed defect prediction rate corresponds to
a low distance between the fixed defect prediction rate and the induced defect prediction rate.
And the induced defect prediction rate is the defect prediction rate achieved by the classifier
during the training phase. More details about the induced defect prediction rate are given in
Section 4.2. For now, we just need to assume that that distance can measure how capable
the classifier is to output a fixed defect prediction rate. So, the second hypothesis can be
formulated as

𝑐𝑜𝑟𝑟(|𝑓𝑟1 − 𝑖𝑟1|, 𝑔-𝑚𝑒𝑎𝑛) = −𝑐, (3.18)
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where |𝑓𝑟1− 𝑖𝑟1| is the distance between the fixed defect prediction rate 𝑓𝑟1 and the induced
defect prediction rate 𝑖𝑟1, 𝑔-𝑚𝑒𝑎𝑛 is defined by the Eq. 3.11 and 𝑐 is a value that corresponds
to a strong or moderate negative correlation, which is defined in Subsection 5.6.

3.2 G-MEAN MAXIMIZATION

Suppose one step of a cross-validation where the model outputs perfect ranked scores,
and the related classifier has perfect knowledge about the class imbalance (defect rate) in
the test data: the number of clean changes N and the number of defect-inducing changes 𝑃 .
In that case, our classifier can take all the first N code changes ranked by ascending score
and classify them as clean. Then, take all the remaining 𝑃 code changes and classify them as
defect-inducing. That would result in a number of true negatives equals to the number of clean
changes, 𝑇𝑁 = 𝑁 ; and a number of true positives equals to the number of defect-inducing
changes, 𝑇𝑃 = 𝑃 . So, the recalls and the g-mean would be 100% as defined by

𝑟0 = 𝑇𝑁

𝑁
= 100%,

𝑟1 = 𝑇𝑃

𝑃
= 100%,

𝑔-𝑚𝑒𝑎𝑛 =
√

𝑟0 × 𝑟1 = 100%.

(3.19)

Now, suppose another step of a cross-validation where the model outputs almost perfect
ranked scores and the classifier still has perfect knowledge about the class imbalance in the
test data. If the classifier outputs the same defect rate on the predictions, most of the code
changes would be correctly classified, but 𝑒 > 0 clean changes would be misclassified as defect-
inducing and vice-versa. So, since JIT-SDP is an imbalanced problem where the clean class is
the majority class, i.e., 𝑁 > 𝑃 , the recalls and the g-mean would be hindered as defined by

(𝑇𝑁

𝑁
= 𝑇𝑃

𝑃
= 100% ∧𝑁 > 𝑃 )→ 𝑇𝑁 − 𝑒

𝑁
>

𝑇𝑃 − 𝑒

𝑃
→ 𝑟′

0 > 𝑟′
1,

𝑟′
0 = 𝑇𝑁 − 𝑒

𝑁
< 100%,

𝑟′
1 = 𝑇𝑃 − 𝑒

𝑃
< 100%,

𝑔-𝑚𝑒𝑎𝑛′ =
√︁

𝑟′
0 × 𝑟′

1 < 100%.

(3.20)

The new recalls would not be balanced and would not be 100%. As a consequence, the
new g-mean would not be 100% too. To maximize the g-mean in this scenario, the classifier
must ignore the perfect knowledge about the class imbalance and tries different defect rates to
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accept more misclassifications of the clean class, dividing 𝑟′
0 by 𝑒0, in exchange for more correct

classifications of the defect-inducing class, multiplying 𝑟′
1 by 𝑒1. In an optimistic scenario, the

𝑒1 would be greater than 𝑒0 and the new g-mean would be maximized as defined by

𝑟′′
0 = 𝑟′

0
𝑒0

< 100%,

𝑟′′
1 = 𝑟′

1𝑒1 < 100%,

1 < 𝑒0 < 𝑒1 →
𝑟′

0
𝑟′′

0
<

𝑟′′
1

𝑟′
1
→ 𝑟′

0𝑟
′
1 < 𝑟′′

0𝑟′′
1 → 𝑔-𝑚𝑒𝑎𝑛′ < 𝑔-𝑚𝑒𝑎𝑛′′,

𝑔-𝑚𝑒𝑎𝑛′′ =
√︁

𝑟′′
0 × 𝑟′′

1 =
√︃

𝑒1

𝑒0

√︁
𝑟′

0 × 𝑟′
1 =

√︃
𝑒1

𝑒0
𝑔-𝑚𝑒𝑎𝑛′ < 100%.

(3.21)

With perfect ranked scores, the knowledge about the operating condition (defect rate) on
the test data would be effective to set the best threshold (HERNÁNDEZ-ORALLO; FLACH; FERRI,
2012). However, in practice, the model outputs imperfect ranked scores and the classifier does
not have perfect knowledge about the class imbalance in the test data. So, the classifier has
to find the defect prediction rate that maximizes the g-mean empirically.

Optimal threshold choice methods such as ROC Analysis (FAWCETT, 2006) chooses the
threshold that optimizes the evaluation metric using validation data, and assuming that that
data comes from the same distribution as the testing data. In a step of a cross-validation,
the optimal threshold choice method would be applied only once to choose the threshold that
maximizes the g-mean. In an online evaluation, a distinct threshold would have to be chosen
for each tested instance of the data stream in order to maximize the prequential g-mean in
each timestep.

However, in this work, we want to investigate the fixed defect prediction rate that maximizes
the g-mean (Eq. 3.11) instead of the many thresholds that maximize the prequential g-mean
(Eq. 3.10). So, the classifier has to choose the thresholds in order to maintain the fixed defect
prediction rate over the data stream, while the choice of the fixed defect prediction rate that
maximizes the g-mean is done by the hyperparameter tuning.

That said, our approach applies two mechanisms to achieve the fixed defect prediction
rate. They are the rate-driven resampling, that induces the model to output the fixed defect
prediction rate during the training phase. And the rate-driven threshold choice method, that
changes the threshold to achieve the fixed defect prediction rate during the testing phase. The
calculation of the defect prediction rate over the testing data is based on a sliding window of
the predictions.
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The overall procedure of evaluation is the following: First, the fixed defect prediction is
tuned in the hyperparameter tuning over the validation segment of the data stream. Then,
the same value is applied over the testing segment. It is important to add that the validation
segment should be big enough to include some cycles of the class imbalance evolution. That
increases the chances of the hyperparameter tuning to find a fixed defect prediction rate that
better generalizes over the testing segment.

3.3 VERIFICATION LATENCY

As mentioned in Section 1.2, we need to wait a time period to confirm that a code
change induces a defect or not. That comes from the fact that, after introducing a defect in
the software, the development team takes some time to discover it and fix it. The delay for
receiving the true labels is known as verification latency.

One way to implement the verification latency is to wait before labeling the training in-
stances of both clean and defect-inducing changes. After that waiting time, the instance can
be labeled using the SZZ algorithm (TAN et al., 2015). Another option is to wait a time period
before labeling the clean changes, and labeling the defect-inducing changes as soon as they
are fixed (CABRAL et al., 2019). In this work, we used the latter approach. More details about
it are given in the Section 4.2.

Regardless the approach used for labeling, there is a trade-off between noise and concept
drift when setting the waiting time. The greater the time period is, the lesser is the noise in
the labels, and the larger are the chances of a concept drift impacting 𝑃𝑡(𝑥⃗|𝑦) (CABRAL et al.,
2019). Fig. 1 shows the distribution of the delay to fix a defect by dataset. In that figure, we
can see that the medians range from 16 to 417 days. That suggests using a different waiting
time for each dataset. In this work, we set up the hyperparameter tuning to find the best value
for each dataset.
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Figure 1 – Delay to fix a defect by dataset.

Source: Created by the author (2021)

3.4 SUMMARY

In this chapter, we have seen the fundamentals of our study: data stream, model and
classifier, the main evaluation metric, the methodology and the hypotheses. Then, we have
seen an intuition about how to maximize the g-mean when constrained by a fixed defect
prediction rate over the data stream. Finally, we have described the verification latency and
shown the distribution of the delay to fix a defect on the datasets used in this work.
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4 PROPOSED APPROACH

In this chapter, we discuss the limitations in the state-of-the-art approach, ORB, and we
present BORB as a solution to that problems. BORB is described in detail, including the
framework to label the instances in the context of verification latency.

4.1 LIMITATIONS IN THE STATE-OF-THE-ART

To the best of our knowledge, ORB (CABRAL et al., 2019) is the state-of-art in online
JIT-SDP, but it has achieved poor predictive performance on some investigated datasets. On
the evaluation of present work, the performance was relatively poor on 7 of the 10 datasets in
terms of rank based on the g-mean, as explained in Section 5.7. The following problems may
be the cause of poor predictive performance on that datasets:

1. ORB is based on instance-incremental learning, so its oversampling is focused on the
most recent training instance, even if that instance is noisy. The instance-based oversam-
pling has another bad interaction with the base learner. An HT leaf uses the Hoeffding
bound to determine the number of instances that must be observed before a split with
confidence. However, in each timestep, the instance-based oversampling resamples only
the current training instance. That increases the number of instances observed by the
HT’s leaf without the increase in the variance of the observed sample. In other words,
there is a chance of the split being done with statistics from many repeated instances,
which may result in overfitting the most recent instances.

2. The base learner associated with ORB, which is an online bagging (OZA, 2005) of
Hoeffding Trees (HT) (DOMINGOS; HULTEN, 2000; GAMA; FERNANDES; ROCHA, 2006),
adapts to concept drifts at the expense of old concepts. In fact, the only way that an HT
can learn a new concept is to increase its depth by splitting the leaves using continuous
attributes. The new concept is put over the previous one at every leaf of an increasingly
complex tree (MANAPRAGADA; WEBB; SALEHI, 2018). Additionally, it is important to
say that the majority of the attributes present in datasets used by ORB’s paper are
continuous. So, there is an infinite number of possible splits. This problem contributes
to overemphasizing the recent data.
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Hoeffding Anytime Tree (HATT) (MANAPRAGADA; WEBB; SALEHI, 2018) is an HT adap-
tation that is resilient to concept drifts and does not put new concepts over the old ones. In
fact, it revisits previous node splits to check if the statics accumulated since the beginning of
the data stream implicates in a different split in comparison to the current split. Thus, HATT
gives the same emphasis to old and new concepts since information of the whole historical
data is used to revisit the splits. However, its association with ORB would not remove the risk
of oversampling noisy instances as this is an intrinsic problem of ORB. That said, it was nec-
essary to create a new approach to avoid the risk of oversampling noisy instances and the risk
of overfitting the most recent training by resampling historical data in a batch mode. Besides
that, the new approach also ensure the same emphasis to old and new concepts by restarting
the base learner periodically so that it revisits the whole historical data in the training phase.

As a consequence, we expect that, when associated with a batch base learner, our ap-
proach be able to take advantage of the historical data to improve the predictive power when
compared to the state-of-the-art. In addition, we expect that the use of historical data in the
training phase maintains the predictive performance between periodic retrainings, since McIn-
tosh (2018) showed that models trained using more data tends to retain the performance for
a longer time.

4.2 BATCH OVERSAMPLING RATE BOOSTING

Batch Oversampling Rate Boosting (BORB) consists of a ORB modified to support batch
algorithms and output a fixed defect prediction rate over the data stream. Its pseudo-code is
presented in Algorithm 1.

To be able to classify a code change any time, BORB contains an online test functionality
(lines 3 to 5). However, in the beginning of the data stream, the base learner 𝐵 predicts that
all code changes are clean until at least one instance of each class is appended to the historical
data 𝐷 (line 6). After that, 𝐵 is trained (lines 8 to 16) and becomes able to output effective
scores and predictions.

Since then, all the steps of the algorithm starts to work as the following description.
First, the base learner 𝐵 yields the scores 𝐶 on the most recent feature vectors 𝑥𝑗 such as
𝑗 = 𝑡−𝑤+1, ..., 𝑡 (line 3). It is important to add that the base learner 𝐵 is a model as defined
by Eq. 3.4. So, 𝑆𝑐𝑜𝑟𝑒(𝐵, 𝑥⃗) can be implemented as the probability 𝑃 (𝑦 = 1|𝑥⃗) yielded by 𝐵.
Then, in order to maintain the fixed defect prediction rate 𝑓𝑟1, the threshold 𝑡ℎ is calculated
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Algorithm 1: BORB’s testing and training procedure
1 Input: Incoming code changes 𝑑𝑡 = (𝑥𝑡, ?), base learner 𝐵, sample size 𝑠, parameters

of the adjustment function (𝑓𝑟1, 𝑙0, 𝑙1, 𝑚), window size 𝑤, pull request size 𝑝𝑠,
number of iterations 𝑛, waiting time 𝑤𝑡

2 for 𝑡← 0 to ∞ do
3 𝐶 ← {𝑆𝑐𝑜𝑟𝑒(𝐵, 𝑥𝑗) | 𝑗 = 𝑡− 𝑤 + 1, ..., 𝑡};
4 𝑡ℎ← 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐶, 𝑓𝑟1);
5 𝑦𝑡 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐵, 𝑥𝑡, 𝑡ℎ);
6 𝐷 ← 𝐴𝑝𝑝𝑒𝑛𝑑(𝐷, 𝑑𝑡);
7 if 𝑡 mod 𝑝𝑠 = 0 then
8 𝑇 ← 𝐿𝑎𝑏𝑒𝑙𝑒𝑑(𝐷, 𝑤𝑡);
9 𝐵 ← 𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝐵);

10 (𝑜𝑏𝑓0, 𝑜𝑏𝑓1)← (1, 1);
11 for 𝑖← 1 to 𝑛 do
12 𝑆 ← 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑.𝑆𝑎𝑚𝑝𝑙𝑒(𝑇, 𝑜𝑏𝑓0, 𝑜𝑏𝑓1, 𝑠);
13 𝐵 ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝐵, 𝑆);
14 𝑖𝑟1 ← 1

𝑤

∑︀𝑡
𝑗=𝑡−𝑤+1 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐵, 𝑥𝑗, 0.5);

15 𝑜𝑏𝑓0 ← 𝑂𝐵𝐹0(𝑖𝑟1, 𝑓𝑟1, 𝑙0, 𝑚);
16 𝑜𝑏𝑓1 ← 𝑂𝐵𝐹1(𝑖𝑟1, 𝑓𝑟1, 𝑙1, 𝑚);

as the 𝑓𝑟1-quantile of the scores 𝐶 (line 4). And 𝐵 and 𝑡ℎ are used to make the prediction on
the current feature vector 𝑥𝑡, and the result is recorded in 𝑦𝑡 (line 5). It is important to add
that the base learner 𝐵 is also a classifier as defined by Eq. 3.5. So, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐵, 𝑥⃗, 𝑡ℎ) can be
implemented as the class 𝐶(𝑥⃗) returned by 𝐵. Finally, the current instance 𝑑𝑡 is appended to
the historical data 𝐷 (line 6), closing this block of steps.

The next block starts with the conditional statement (line 7) that waits the arrival of 𝑝𝑠

code changes between each training of the base learner 𝐵. When that happens, the training
set 𝑇 is created as the labeled instances in the historical data 𝐷 (line 8). And the instances
in 𝐷 are labeled according to the following rules:

1. If the code change 𝑑𝑖 fix the code change 𝑑𝑗, then 𝑑𝑗 is labeled as defect-inducing:
𝑑𝑗 = (𝑥𝑗, 1);

2. If the code change 𝑑𝑗 is older than the waiting time 𝑤𝑡, then 𝑑𝑗 is labeled as clean:
𝑑𝑗 = (𝑥𝑗, 0);

3. If the code change 𝑑𝑗 is younger than the waiting time 𝑤𝑡, then 𝑑𝑗 is kept unlabeled
and is not used for training.



43

After the training set has been created, the base learner 𝐵 is restarted (line 9) and trained
from scratch (lines 10 to 16). It is important to note that, even when associated with an
online base learner, BORB does not allow incremental learning over the data stream due to
that restart.

The oversampling boosting factors 𝑜𝑏𝑓0 and 𝑜𝑏𝑓1 are the variables that controls the em-
phasis given to each class (line 10). As they are initialized with the same value, no class is
emphasized in the first iteration of the training. From the second iteration, 𝑜𝑏𝑓0 and 𝑜𝑏𝑓1 may
be different, and the algorithm enters the general case, in which there is an emphasis on one
of the classes.

The emphasis affects the generation of the sample 𝑆 (line 12). 𝑆 is generated from a
weighted selection, with replacement, of the code changes in the training set 𝑇 . The size
of the sample 𝑆 is constrained to be less than or equals to sample size 𝑠 and less than or
equals to the size of the training set 𝑇 . In addition, the weighted selection considers that code
changes from different classes have different probabilities of being selected according to the
oversampling boosting factors 𝑜𝑏𝑓0 and 𝑜𝑏𝑓1. However, inside one specific class, the probability
is the same for all code changes as defined by

𝑃 (𝑇𝑐) = 1
|𝑇𝑐|
× 𝑜𝑏𝑓𝑐

𝑜𝑏𝑓0 + 𝑜𝑏𝑓1
, (4.1)

where 𝑇𝑐 is the set of code changes of the class 𝑐, 𝑐 𝜖 {0, 1}, and 𝑇 = 𝑇0 ∪ 𝑇1.
After the update of the base learner 𝐵 (line 13), 𝐵 yields the predictions on the most

recent feature vectors 𝑥𝑗 such as 𝑗 = 𝑡− 𝑤 + 1, ..., 𝑡. And the induced defect prediction rate
𝑖𝑟1 is calculated as the average of that predictions (line 14). It is important to note that, at
this point, a threshold of 0.5 is used to make the predictions.

Then, the functions 𝑂𝐵𝐹0 and 𝑂𝐵𝐹1 are used to update, respectively, 𝑜𝑏𝑓0 and 𝑜𝑏𝑓1

(lines 15 to 16) in order to emphasize the class that is underrepresented in the predictions on
the most recent feature vectors. The values of 𝑜𝑏𝑓0 and 𝑜𝑏𝑓1 are expected to change until 𝑖𝑟1

converges to 𝑓𝑟1. Regardless of that convergence, the training continues until iteration 𝑛.
The functions 𝑂𝐵𝐹0 and 𝑂𝐵𝐹1 are aimed at adjusting the emphasis given to each class

during the training phase, and they are defined in Eq. 4.2 and Eq. 4.3. To illustrate their
behavior, Fig. 2 shows how they change according to different values of the induced defect
prediction rate 𝑖𝑟1 and 𝑚, while 𝑓𝑟1, 𝑙0 and 𝑙1 are constants. 𝑖𝑟1 is the induced defect prediction
rate, 𝑚 determines the growth of the exponential function, 𝑓𝑟1 stands for the fixed defect
prediction rate, and 𝑙0 and 𝑙1 control the maximum boosting factor values (i.e., the boosting
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factors varies from 1 to 1 + 𝑙0 and 1 + 𝑙1). The class to emphasize is chosen according to the
relationship between the induced defect prediction rate 𝑖𝑟1 and the fixed defect prediction rate
𝑓𝑟1. When 𝑖𝑟1 > 𝑓𝑟1, the emphasis is given to the clean class; when 𝑖𝑟1 < 𝑓𝑟1, the emphasis
is given to the defect-inducing class; otherwise, there is no emphasis. It is important to note
that as the induced defect prediction rate 𝑖𝑟1 approaches to 0 or 1, the boosting factors growth
gets steeper, depending on the value of the parameter 𝑚. Cabral et al. (CABRAL et al., 2019)
created the functions 𝑂𝐵𝐹0 and 𝑂𝐵𝐹1. In present work, the names of the parameters were
changed to better fit in our context.

𝑂𝐵𝐹0(𝑖𝑟1, 𝑓𝑟1, 𝑙0, 𝑚) =

⎧⎪⎪⎨⎪⎪⎩
(︁

𝑚𝑖𝑟1 −𝑚𝑓𝑟1
𝑚−𝑚𝑓𝑟1 × 𝑙0

)︁
+ 1, if 𝑖𝑟1 > 𝑓𝑟1

1, otherwise
(4.2)

𝑂𝐵𝐹1(𝑖𝑟1, 𝑓𝑟1, 𝑙1, 𝑚) =

⎧⎪⎪⎨⎪⎪⎩
(︁

𝑚(𝑓𝑟1−𝑖𝑟1)−1
𝑚𝑓𝑟1 −1 × 𝑙1

)︁
+ 1, if 𝑖𝑟1 ≤ 𝑓𝑟1

1, otherwise
(4.3)

Finally, it is important to say that the base learner associated with BORB have to conduct
its training phase over many iterations (or epochs, in case of neural networks). Thus, after
each iteration, BORB has the chance to adjust the oversampling boosting factors and take a
rebalanced sample for the next iteration in order to make the induced defect prediction rate
converges to the fixed defect prediction rate. This procedure is not supported by a base learner
that does a single iteration training (e.g., Decision Tree and Random Forest). In this work,
we used some off-the-shelf iterative base learners, and customized others to become iterative.
More details about them are given in the Section 5.1.
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Figure 2 – Oversampling boosting factors with 𝑓𝑟1 = 0.5, 𝑙0 = 9, 𝑙1 = 9 and different values of 𝑖𝑟1 and 𝑚.

Source: Created by the author (2021)

4.3 SUMMARY

In this chapter, we have seen the limitations in ORB that are related to its association
with an online base learner that overemphasizes recent data and the susceptibility to noise
of the instance-based oversampling. Then, BORB was presented as a solution to solve these
problems while maintaining a fixed defect prediction rate over the data stream.
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5 EXPERIMENTS

This chapter presents the base learners experimented in the proposed approach (BORB),
the metrics used to evaluate the classifiers’ predictive performances, the investigated datasets,
the hyperparameter tuning procedure, the experimental setups used to answer the research
questions and the related discussions.

5.1 BASE LEARNERS

As mentioned in Section 4.2, the base learner associated with BORB is required to perform
the training over many iterations. So, algorithms such as Naive Bayes (NB), Logistic Regression
(LR) and Multilayer Perceptron (MLP) are suitable options to associate with BORB. Besides
that, we created two customized tree-based ensembles to match this training characteristic:
Iterative Random Forest (IRF) and Iterative Hoeffding Forest (IHF). Three libraries were used
to implement the base learners: Scikit-learn (PEDREGOSA et al., 2011) for NB, LR and IRF;
Scikit-multiflow (MONTIEL et al., 2018) for IHF; and PyTorch (PASZKE et al., 2019) for MLP.

IRF consists of an ensemble of Decision Trees (DT) which implements the CART algorithm
(BREIMAN et al., 1984) trained sequentially. It is similar to a Random Forest (RF) (BREIMAN,
2001). The main difference is that, instead of training all DTs at once, IRF grows one single
tree when it receives the first training sample. Then, it grows the second tree when it receives
the second sample, and so on. As a consequence, each DT may be grown using data with a
different class imbalance since BORB changes the oversampling boosting factors (𝑜𝑏𝑓0 and
𝑜𝑏𝑓1) across the training iterations, as explained in Section 4.2. This procedure results in an
ensemble of DTs with different prior probabilities (DÍEZ-PASTOR et al., 2015). Therefore, IRF
becomes a diversified ensemble while the model, as a whole, is induced to output a specific
defect prediction rate. Finally, it is important to mention that this customization was necessary
because, as we discussed in Section 4.2, RF fails to meet the iterative training requirement for
being associated with BORB.

IHF is a bagging of Hoeffding Trees (HT) (DOMINGOS; HULTEN, 2000) trained sequentially.
It is similar to IRF. The only difference is that we replace the DTs with HTs. In fact, IRF and
IHF share the same pseudo-code for the update and the scoring procedures presented in,
respectively, Algorithm 2 and Algorithm 3. As we can see in Algorithm 2, the tree 𝑇 is trained
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with the sample 𝑆𝑖 and is recorded as 𝐸𝑖 (line 2). Then, 𝐸𝑖 is appended to the ensemble 𝐸

as its i-th tree. And, as we can see in Algorithm 3, the score of the ensemble 𝑠 is the average
prediction of the trees in the ensemble 𝐸 (line 2). Despite HTs already having an iterative
training, IHF’s customization was necessary to apply HTs in the same context as DTs and, as
a consequence, to make a fair comparison between them.

Algorithm 2: Iterative Forest’s update procedure
1 Input: Sample 𝑆𝑖 of 𝑖-th update, ensemble of trees 𝐸, tree 𝑇
2 𝐸𝑖 ← 𝑇𝑟𝑎𝑖𝑛(𝑇, 𝑆𝑖);
3 𝐸 ← 𝐴𝑝𝑝𝑒𝑛𝑑(𝐸, 𝐸𝑖);

Algorithm 3: Iterative Forest’s scoring procedure
1 Input: Ensemble of trees 𝐸, feature vector 𝑥⃗, threshold 𝑡ℎ

2 𝑠← 1
|𝐸|

∑︀|𝐸|
𝑖=1 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐸𝑖, 𝑥⃗, 𝑡ℎ);

With respect to the baseline, we reimplemented ORB in our source code repository, and
associated it with an online bagging (OZA, 2005) of Hoeffding Trees (OHT). We implemented
OHT as a composite of components using the Scikit-multiflow (MONTIEL et al., 2018) similar
to Cabral et al. (2019), which implemented using the framework MOA (BIFET et al., 2010). It is
important to note that by reimplementing ORB in our source code repository, we ensure a fair
comparison between ORB and BORB as they are associated with the same implementation of
HT, and they are submitted to the same hyperparameter tuning procedure.

The complete list of classifiers (i.e., BORB and ORB’s associations) evaluated in our
experiments is as follows: (1) ORB-OHT, (2) BORB-IHF, (3) BORB-IRF, (4) BORB-LR, (5)
BORB-MLP and (6) BORB-NB. And the source code used in this work is available at GitHub1.

5.2 EVALUATION METRICS

As vastly discussed before, JIT-SDP is a class imbalanced problem. Therefore, the metrics
used to compute the classifiers’ performances must be sensitive to the class imbalance issue.
As in Cabral et al. (CABRAL et al., 2019)’s work, we use the recalls of the clean and defect-
inducing classes, the g-mean between these recalls and the distance between recalls. In addition,
given that this work investigates the defect prediction rate, two more metrics were added to
1 https://github.com/dinaldoap/jit-sdp-nn/tree/dissertation
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evaluate BORB’s capability to achieve the desired rate throughout the data stream and the
base learners’ capability to achieve the same rate in the training phase.

The complete list of evaluation metrics used in our experiments is as follows:

1. The g-mean, which is already defined by Eq. 3.11.

2. The recalls on the clean and defect-inducing classes, which are defined as

𝑟𝑐(𝐷, 𝜃) = 1
|𝐷|

|𝐷|∑︁
𝑖=0

𝑟𝑐,𝑖(𝐷𝑖, 𝜃), (5.1)

where 𝐷 is a segment of the data stream, 𝜃 is the hyperparameters vector and 𝑟𝑐,𝑖 is
the prequential recall, defined by Equation 3.9.

3. The distance between recalls defined as

|𝑟0 − 𝑟1|(𝐷, 𝜃) = 1
|𝐷|

|𝐷|∑︁
𝑖=0
|𝑟0,𝑖(𝐷𝑖, 𝜃)− 𝑟1,𝑖(𝐷𝑖, 𝜃)|, (5.2)

where 𝐷 is a segment of the data stream, 𝜃 is the hyperparameters vector, and 𝑟0,𝑖 and
𝑟1,𝑖 are the prequential recalls, defined by Equation 3.9.

4. The distance between the fixed defect prediction rate and the defect prediction rate,
which is defined by Eq. 3.16.

5. And the distance between the fixed defect prediction rate and the induced defect pre-
diction rate defined as

|𝑓𝑟1 − 𝑖𝑟1|(𝐷, 𝜃) = 1
|𝐷|

|𝐷|∑︁
𝑖=0
|𝑓𝑟1 − 𝑖𝑟1,𝑖(𝐷𝑖, 𝜃)|, (5.3)

where 𝐷 is a segment of the data stream, 𝜃 is the hyperparameters vector, 𝑓𝑟1 is the
fixed defect prediction rate, and 𝑖𝑟1,𝑖 corresponds to the induced defect prediction rate,
defined in Algorithm 1, at the end of the training phase.

5.3 DATASETS

The datasets used in this work are the same used by Cabral et al. (CABRAL et al., 2019). They
comprise characteristics extracted from commits by the tool Commit Guru (ROSEN; GRAWI;

SHIHAB, 2015). Each instance includes 14 characteristics grouped in 5 dimensions: diffusion,
size, purpose, history and experience. However, some of them are correlated (KAMEI et al.,
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Table 2 – Information and statistics about the datasets.

Dataset Code changes Defect rate Language
Entire dataset Validation segment Testing segment

brackets 17572 24% 30% 21% JavaScript
broadleaf 15010 17% 23% 14% Java

camel 30739 21% 42% 17% Java
fabric8 13483 20% 21% 20% Java
jgroups 18434 17% 23% 15% Java
neutron 19689 24% 37% 19% Python

nova 48989 25% 34% 24% Python
npm 7920 18% 23% 09% JavaScript

spring-integration 8750 27% 25% 29% Java
tomcat 18960 28% 36% 24% Java

Source: Created by the author (2021)

2016). So, we set up the base learners susceptible to multicollinearity with proper regularization:
LR is regularized with elastic net (ZOU; HASTIE, 2005), and MLP is regularized with dropout
(SRIVASTAVA et al., 2014). More details about the characteristics can be found in Kamei et al.
(2016)’s work. The datasets used in this work are available at GitHub2.

Table 2 shows some information and statistics about the datasets. As we can see, three
programming languages were used to develop those software projects. The number of code
changes ranges from 7920 to 48989. The defect rate on the entire dataset ranges from 17% to
28%. And, in some datasets, the difference between the defect rate in the validation segment
and the defect rate in the testing segment is relatively large. This brings an additional challenge
to, on the validation segment, tune a classifier that generalizes to the testing segment. Finally,
the diversified characteristics of the datasets assure some level of generalization to the results
obtained in this study, but they may not generalize to other software projects or to different
problems than JIT-SDP.

5.4 HYPERPARAMETER TUNING

As mentioned in Subsection 3.1.4, in this work, the data streams are first split into two
non-overlapping segments: 𝑉 , that is used for hyperparameter tuning, and 𝑇 , that is used
for testing. Similarly to Cabral et al. (2019), we used 5000 code changes for hyperparameter
tuning, but this amount could also be defined as a percentage multiplied by the dataset size.
2 https://github.com/dinaldoap/jit-sdp-data/tree/dissertation
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After splitting the data stream, the hyperparameter tuning procedure finds, within the specified
configuration space, the hyperparameters vector 𝜃𝑣 that maximizes the classifiers’ performance
on the segment 𝑉 . The configuration space corresponds to the classifier’s hyperparameters
and their possible values. As our approach and the baseline approach have a high dimensional
configuration space (i.e., many hyperparameters), we applied the random search (BERGSTRA;

BENGIO, 2012) as hyperparameter tuning procedure. The random search implementation from
Hyperopt (BERGSTRA et al., 2015) was adopted.

As recommended by Bergstra (2012), each combination of classifier and dataset was tuned
independently. Specifically, we defined one configuration space for each classifier and that same
configuration space is used by the random search over all datasets. However, since g-mean on
the validation segment, defined in Subsection 3.1.4, is maximized separately for each dataset,
we expect that the random search finds a different best configuration for each combination of
classifier and dataset.

The configuration space of ORB-OHT was set based on the values used by Cabral et al.
(2019), and the configuration space of the remaining classifiers were set based on preliminary
experiments. It is important to add that BORB and ORB share some hyperparameters, and
the configuration space related to these hyperparameters were set identical in order to produce
a fair comparison. This concern was also applied to the configuration spaces of OHT and IHF
since they share the hyperparameters related to the HTs.

The hyperparameter tuning procedure conducted in this work can be described as the
following steps: First, 128 random configurations are evaluated with 3 repetitions for each
combination of classifier and dataset (a distinct random seed is used for each repetition).
Then, for each combination of classifier, dataset and configuration, the average g-mean of
the 3 repetitions is calculated and the configuration with the maximum g-mean is chosen as
the best. Finally, the best configuration can be used in the testing phase. The configuration
space and the best configuration for each combination of classifier and dataset is described in
Appendix B.

Besides tuning the classifiers, we assessed the effectivity of the procedure by estimating the
empirical distribution of the maximum g-mean for each combination of classifier, dataset and
number of random configurations evaluated. For example, assume one combination of classifier,
dataset and 128 random configurations. So, from the 128 g-means of that combination, we
take a sample, with replacement, of 128 g-means and record the maximum g-mean. We repeat
that resampling 1000 times in total. After that, we have the data of the empirical distribution
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of the maximum g-mean for 128 random configurations. Then, we do the same procedure for
the remaining combinations of classifier, dataset and number of random configurations.

After estimating the empirical distributions, we created a visualization with letter-values
plots (HOFMANN; WICKHAM; KAFADAR, 2017) to analyze how the distributions change when
the number of random configurations is increased. Fig. 3 shows them grouped by dataset.
With that visualization, we can compare how well each classifier performed in terms of g-mean
convergence on the validation segment of each dataset. The more skewed is the distribution
towards the top g-mean the better is the performance of the classifier for the specified number
of random configurations. As can be observed, ORB-OHT presents relatively bad convergence
on broadleaf, nova and spring-integration datasets. BORB-NB and BORB-LR also presents
relatively bad convergence on, respectively, broadleaf and neutron. This suggests that the
configuration space may not be well set for those combinations of classifier and dataset. In
other words, there is a large region in the configuration space that results in poor g-means.
So, the probability of the classifier achieving poor g-means with all random configurations
is high. That implicates on a broader distribution of the maximum g-mean even when using
128 random configurations. The remaining combinations of classifier and dataset presented
relatively good convergence.

It is important to mention that, despite Fig. 3 being similar to Bergstra (2012)’s efficiency
curves, we applied a different approach in present work. As defined in Eq. 3.12, we assume a
certainty about the best configuration to use on testing data being the one with the maximum
g-mean on the validation data, while Bergstra (2012) takes into account any uncertainty in
the choice of which configuration is actually the best-performing one.
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Figure 3 – G-mean convergence on the validation segment of the data stream.

Source: Created by the author (2021)
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5.5 TRAINING DATA

As mentioned in Section 3.1.4, our procedure finds the classifiers’ configuration that maxi-
mizes the g-mean on the validation segment of the data stream and uses the same configuration
on the testing segment. And, regardless of the segment, when the classifier is requested to
make a prediction for a code change, it can use all previous code changes for training, in-
cluding both segments. For example, the classifier can make a prediction for a code change
in the testing segment after learning from the previous code changes of the testing segment
and from the whole validation segment, since the validation segment comes before the testing
one.

Notice that since ORB and BORB are based on, respectively, online and batch algorithms,
there are some differences between them with respect to consuming training data. A ORB’s
classifier learns from training data incrementally, starting from the beginning of the validation
segment until right before the code change being tested. On the other hand, a BORB’s classifier
accumulates training data to use them as a whole on each periodic training, as described in
Section 4.2. So, for a BORB’s classifier, the available training data tends to increase indefinitely
over the lifecycle of the software.

The impacts of the increasing number of code changes in the training data are addressed
by subsampling. More specifically, during the training phase, a BORB’s classifier learns from
random samples of the training data. The sample size is a hyperparameter of BORB set within
the range from 1000 to 4000. The maximum value of this range was chosen according to the
dataset with the greatest number of code changes available for training during hyperparameter
tuning. As defined in Section 5.4, the total number of code changes in the validation segment
is 5000, but, in the presence of verification latency, the amount available for training is reduced
to approximately 4000.

Another aspect of setting the sample size according to the training data available in the
validation segment is that the hyperparameter tuning procedure tends to configure the model
to have lower capacity than it is appropriate for the amount of training data available in the
testing phase. This decreases the risk of overfitting during the testing phase, but it increases
the risk of underfitting. We accepted the latter risk and, as a consequence, no additional
mechanism to avoid overfitting during the testing phase was required for any BORB’s classifier.
For example, early stopping (PRECHELT, 2012; BENGIO, 2012) was not applied to MLP, and
pruning (DUROUX; SCORNET, 2016; SCORNET, 2017) was not applied to IRF.
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5.6 EXPERIMENTAL SETUPS

Research Question 1 (RQ1)

This setup requires tuning and testing ORB-OHT over all datasets to analyze how robust
are the results achieved by that classifier in terms of rank based on the g-mean and rank based
on the distance between recalls. As mentioned in Section 5.4, the hyperparameter tuning
finds the best configuration for each combination of classifier and dataset. Then, the testing
executes each best configuration on its respective dataset, 30 times, using distinct seeds. The
last step is to average the metrics by dataset. It is important to say that the data recorded by
this experimental setup is also used by some following setups.

Research Question 2 (RQ2)

This setup requires data from the setup for RQ1, and additional tuning and testing for
BORB-IHF over all datasets. In this setup, we isolate the comparison between BORB and ORB
as both BORB-IHF and ORB-OHT are HT-based. In fact, among the proposed classifiers,
BORB-IHF is the most similar to ORB-OHT. The statistical test of the comparison of this
research question is part of a multiple comparison that is described in the setup for RQ3.

Research Question 3 (RQ3)

This setup requires data from the setup for RQ1, data from the setup for RQ2, and
additional tuning and testing of BORB-LR, BORB-MLP, BORB-NB and BORB-IRF over
all datasets. In this setup, we compare the mentioned classifiers against the baseline. It is
important to note that the setups from RQ1 to RQ3 have the same procedure and metrics.
So, we show the results of all the classifiers in the same table, visualizations and statistical tests
in the beginning of Section 5.7. On the other hand, the discussions of the results are segregated
following the research questions structure. The statistical tests used for multiple comparisons
against one baseline over multiple datasets are the Friedman test and the Bonferroni-Dunn
post-hoc test as described by Demsar (2006).
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Research Question 4 (RQ4)

The setup for RQ2 and the setup for RQ3 also record data related to the distance between
the fixed defect prediction rate and the defect prediction rate, and the distance between the
fixed defect prediction rate and the induced defect prediction rate for all combinations of
BORB’s classifier and dataset, but not for ORB as it does not use a fixed defect prediction
rate. With that data, we evaluate the first hypothesis (Eq. 3.17) and the second hypothesis
(Eq. 3.18). But, first, we set the maximum acceptable distance between the fixed defect
prediction rate and the defect prediction rate as 𝑑 = 0.05, and a moderate negative correlation
as 𝑐 ∈ [0.4, 0.6]. The first hypothesis is evaluated using Wilcoxon signed-rank test (WILCOXON,
1945), and the second hypothesis is evaluated using Spearman’s rank correlation coefficient
(SPEARMAN, 1987).

After the hypotheses, we evaluate which base learner is best suited to output a fixed
defect prediction rate doing multiple comparisons over multiple datasets using Friedman test
and Nemenyi post-hoc test as described by Demsar (2006), based on the distance between the
fixed defect prediction rate and the induced defect prediction, defined by Eq. 5.3. In contrast
to the g-mean, lower distances indicate better results.

5.7 RESULTS AND DISCUSSIONS

Before discussing the research questions, we present the results of the experiments of the
first three research questions. Fig. 4 shows the average and the standard deviation of the
g-mean by dataset and classifier, in which higher g-means indicate better performances. Fig. 5
shows the average ranks based on the g-mean, in which smaller average ranks indicate better
performances, and Bonferroni-Dunn critical distance. It is important to mention that we rank
the classifiers for each dataset separately, where the best classifier gets the rank of 1, the
second best rank 2, and so on. And the classifier’s average rank corresponds to the mean of
ranks of the specified classifier over all datasets (DEMSAR, 2006). Fig. 6 shows the heatmap
of ranks based on the g-mean.

Fig. 7 shows the average and the standard deviation of the distance between recalls by
dataset and classifier, in which smaller distances indicate more effective class imbalance treat-
ments. Fig. 8 shows the average ranks based on the distance between recalls, in which smaller
ranks indicates better performances, Bonferroni-Dunn critical distance. And Fig. 9 shows the
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Figure 4 – Average and standard deviation (black vertical bar) of the g-mean by dataset and classifier.

Source: Created by the author (2021)

Figure 5 – Average ranks based on the g-mean and Bonferroni-Dunn critical distance (bold horizontal bar).

Source: Created by the author (2021)

heatmap of ranks based on the distance between recalls.
Table 3 shows the results of all combinations of dataset, classifier and metric. Besides

that, we have also added, in Appendix A, the results of the experiments when using the same
methodology as Cabral et al. (2019). This enabled us to validate our reimplementation of
ORB-OHT, and to confirm that our hyperparameter tuning procedure is not hindering the
performance of ORB-OHT when compared to the procedure used by Cabral et al. (2019).
More details about that methodology are also given in Appendix A.
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Table 3 – Results of all combinations of classifier and dataset for all metrics.
Dataset Classifier 𝑟0 (std) 𝑟1 (std) |𝑟0 − 𝑟1| (std) g-mean (std) |𝑓𝑟1 − 𝑖𝑟1| (std) |𝑓𝑟1 − 𝑝𝑟1| (std)

brackets

BORB-IHF 60.52% (00.61%) 88.20% (00.52%) 27.68% (00.89%) 72.86% (00.39%) 05.72% (00.55%) 04.52% (00.43%)
BORB-IRF 77.72% (00.08%) 79.55% (00.19%) 06.87% (00.21%) 78.51% (00.08%) 02.18% (00.05%) 03.18% (00.05%)
BORB-LR 65.77% (00.06%) 89.48% (00.10%) 23.72% (00.12%) 76.61% (00.05%) 03.67% (00.04%) 02.90% (00.02%)

BORB-MLP 74.41% (00.12%) 82.84% (00.25%) 09.70% (00.22%) 78.41% (00.14%) 04.63% (00.23%) 02.86% (00.05%)
BORB-NB 60.14% (00.14%) 78.14% (00.20%) 18.20% (00.23%) 68.46% (00.12%) 14.38% (00.16%) 03.10% (00.06%)
ORB-OHT 75.91% (00.59%) 78.04% (00.68%) 05.97% (00.71%) 76.87% (00.38%) — —

broadleaf

BORB-IHF 73.90% (00.23%) 66.21% (00.46%) 09.16% (00.38%) 69.77% (00.30%) 06.63% (00.33%) 02.33% (00.08%)
BORB-IRF 58.19% (00.19%) 86.22% (00.35%) 28.32% (00.35%) 70.62% (00.20%) 13.61% (00.20%) 03.56% (00.12%)
BORB-LR 70.33% (00.09%) 78.96% (00.22%) 11.88% (00.24%) 74.32% (00.11%) 06.87% (00.08%) 02.81% (00.03%)

BORB-MLP 65.01% (00.21%) 82.91% (00.28%) 19.32% (00.34%) 73.20% (00.19%) 06.45% (00.13%) 03.61% (00.12%)
BORB-NB 66.16% (00.13%) 59.79% (00.61%) 07.53% (00.34%) 62.80% (00.34%) 30.35% (01.16%) 02.20% (00.05%)
ORB-OHT 74.63% (01.11%) 64.76% (01.20%) 11.86% (01.18%) 69.33% (00.78%) — —

camel

BORB-IHF 74.20% (00.12%) 61.87% (00.36%) 12.68% (00.27%) 67.66% (00.22%) 07.09% (00.21%) 02.36% (00.04%)
BORB-IRF 59.13% (00.10%) 83.26% (00.20%) 24.21% (00.20%) 70.03% (00.11%) 10.24% (00.16%) 03.47% (00.05%)
BORB-LR 61.47% (00.05%) 82.19% (00.08%) 20.79% (00.09%) 70.94% (00.05%) 09.22% (00.02%) 03.46% (00.02%)

BORB-MLP 65.44% (00.09%) 78.63% (00.21%) 13.90% (00.20%) 71.57% (00.10%) 05.58% (00.08%) 03.73% (00.06%)
BORB-NB 64.39% (00.06%) 52.06% (00.15%) 13.63% (00.14%) 57.69% (00.09%) 19.49% (00.14%) 04.07% (00.04%)
ORB-OHT 66.77% (00.28%) 74.44% (00.46%) 11.37% (00.45%) 70.20% (00.26%) — —

fabric8

BORB-IHF 67.73% (00.59%) 64.30% (01.11%) 07.40% (00.58%) 65.82% (00.63%) 09.66% (01.10%) 04.25% (00.20%)
BORB-IRF 73.25% (00.16%) 66.38% (00.29%) 08.87% (00.24%) 69.54% (00.20%) 02.83% (00.10%) 03.89% (00.10%)
BORB-LR 61.28% (00.07%) 76.11% (00.11%) 15.21% (00.10%) 68.15% (00.07%) 04.26% (00.05%) 03.64% (00.04%)

BORB-MLP 71.95% (00.22%) 74.79% (00.53%) 07.01% (00.35%) 73.23% (00.30%) 06.81% (00.34%) 03.73% (00.11%)
BORB-NB 65.21% (00.12%) 61.26% (00.18%) 09.35% (00.17%) 62.96% (00.12%) 20.01% (00.42%) 05.12% (00.06%)
ORB-OHT 76.61% (00.77%) 59.99% (01.11%) 18.03% (01.02%) 67.32% (00.87%) — —

jgroups

BORB-IHF 71.94% (00.24%) 56.01% (00.57%) 16.58% (00.61%) 63.33% (00.33%) 04.19% (00.31%) 02.97% (00.10%)
BORB-IRF 70.44% (00.14%) 62.48% (00.44%) 09.60% (00.36%) 66.19% (00.26%) 01.45% (00.08%) 04.26% (00.04%)
BORB-LR 68.75% (00.12%) 67.83% (00.22%) 05.90% (00.15%) 68.16% (00.11%) 03.27% (00.11%) 03.58% (00.04%)

BORB-MLP 67.58% (00.15%) 68.19% (00.44%) 05.85% (00.21%) 67.75% (00.23%) 04.95% (00.24%) 03.83% (00.07%)
BORB-NB 70.47% (00.16%) 47.33% (00.30%) 23.29% (00.32%) 57.60% (00.20%) 34.23% (01.70%) 04.00% (00.09%)
ORB-OHT 70.27% (00.46%) 59.32% (00.92%) 13.67% (00.90%) 64.27% (00.46%) — —

neutron

BORB-IHF 70.60% (00.16%) 90.55% (00.33%) 20.00% (00.39%) 79.64% (00.15%) 03.65% (00.14%) 04.41% (00.07%)
BORB-IRF 67.74% (00.07%) 94.84% (00.12%) 27.11% (00.15%) 79.69% (00.06%) 03.03% (00.05%) 05.33% (00.03%)
BORB-LR 57.68% (00.12%) 96.74% (00.06%) 39.06% (00.15%) 73.76% (00.10%) 05.49% (00.02%) 09.05% (00.11%)

BORB-MLP 69.37% (00.19%) 95.40% (00.22%) 26.03% (00.24%) 81.00% (00.18%) 02.89% (00.08%) 04.47% (00.14%)
BORB-NB 40.88% (00.21%) 81.19% (00.12%) 40.33% (00.21%) 56.21% (00.17%) 49.25% (00.20%) 21.96% (00.15%)
ORB-OHT 78.46% (00.98%) 80.55% (01.50%) 08.96% (01.31%) 79.31% (00.50%) — —

nova

BORB-IHF 79.02% (00.09%) 75.82% (00.20%) 14.37% (00.20%) 76.68% (00.13%) 10.08% (00.13%) 04.59% (00.04%)
BORB-IRF 83.40% (00.05%) 77.61% (00.12%) 13.96% (00.12%) 79.84% (00.06%) 09.24% (00.08%) 03.73% (00.02%)
BORB-LR 57.46% (00.07%) 93.60% (00.04%) 36.40% (00.08%) 71.24% (00.06%) 05.64% (00.01%) 11.80% (00.06%)

BORB-MLP 74.75% (00.17%) 86.91% (00.08%) 17.34% (00.17%) 79.72% (00.15%) 05.72% (00.08%) 05.45% (00.13%)
BORB-NB 53.11% (00.15%) 86.39% (00.11%) 33.96% (00.13%) 65.91% (00.14%) 18.01% (00.48%) 13.51% (00.10%)
ORB-OHT 79.50% (00.30%) 83.81% (00.51%) 10.13% (00.47%) 81.42% (00.25%) — —

npm

BORB-IHF 58.41% (00.52%) 73.68% (01.93%) 15.80% (01.78%) 65.43% (00.98%) 05.63% (00.79%) 03.34% (00.23%)
BORB-IRF 63.15% (00.31%) 77.01% (01.24%) 14.03% (01.34%) 69.63% (00.53%) 03.40% (00.54%) 03.25% (00.14%)
BORB-LR 57.59% (00.18%) 79.64% (00.12%) 22.54% (00.18%) 67.54% (00.12%) 04.03% (00.09%) 03.79% (00.05%)

BORB-MLP 66.00% (00.46%) 73.31% (01.55%) 09.25% (01.03%) 69.38% (00.80%) 05.75% (00.64%) 03.46% (00.26%)
BORB-NB 67.43% (00.45%) 40.78% (01.32%) 26.79% (01.48%) 52.09% (00.79%) 33.78% (01.22%) 05.89% (00.34%)
ORB-OHT 69.44% (01.42%) 60.54% (02.86%) 13.53% (02.58%) 64.28% (01.57%) — —

spring-integration

BORB-IHF 66.12% (02.18%) 75.71% (00.94%) 14.90% (02.37%) 70.03% (01.42%) 08.02% (00.62%) 06.22% (01.69%)
BORB-IRF 72.23% (00.20%) 77.98% (00.31%) 11.12% (00.22%) 74.72% (00.17%) 09.50% (00.21%) 03.03% (00.09%)
BORB-LR 67.32% (00.11%) 81.59% (00.14%) 15.84% (00.13%) 73.79% (00.09%) 09.34% (00.07%) 04.15% (00.07%)

BORB-MLP 77.07% (00.31%) 73.09% (00.58%) 10.96% (00.43%) 74.75% (00.36%) 06.51% (00.18%) 04.14% (00.14%)
BORB-NB 51.97% (00.60%) 60.77% (00.58%) 25.27% (00.48%) 53.72% (00.55%) 36.15% (00.79%) 16.06% (00.31%)
ORB-OHT 66.77% (00.94%) 71.01% (02.44%) 21.43% (02.08%) 67.53% (01.38%) — —

tomcat

BORB-IHF 63.83% (00.36%) 69.58% (00.47%) 07.38% (00.48%) 66.54% (00.27%) 07.39% (00.21%) 03.23% (00.15%)
BORB-IRF 70.54% (00.12%) 70.67% (00.21%) 05.94% (00.16%) 70.51% (00.12%) 02.89% (00.06%) 03.21% (00.04%)
BORB-LR 67.56% (00.06%) 73.09% (00.10%) 07.32% (00.07%) 70.17% (00.05%) 00.61% (00.04%) 02.65% (00.02%)

BORB-MLP 70.98% (00.19%) 70.14% (00.32%) 05.89% (00.19%) 70.46% (00.21%) 07.14% (00.45%) 03.50% (00.08%)
BORB-NB 64.68% (00.15%) 52.34% (00.34%) 13.22% (00.29%) 58.00% (00.20%) 55.38% (00.46%) 03.74% (00.05%)
ORB-OHT 64.87% (00.58%) 67.88% (00.53%) 08.66% (00.54%) 66.05% (00.40%) — —

Source: Created by the author (2021)
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Figure 6 – Heatmap of ranks based on the g-mean, horizontally sorted by average rank.

Source: Created by the author (2021)

RQ1’s discussion

As we can see in Fig. 6, in terms of rank based on the g-mean, ORB-OHT performs below
the median on the datasets broadleaf, fabric8, jgroups, neutron, npm, spring-integration and
tomcat (i.e., 7 out of 10 datasets). On the other hand, as we can see in Fig. 9, in terms of
rank based on the distance between recalls, ORB-OHT performs below the median on fabric8,
jgroups, spring-integration and tomcat (i.e., 4 out of 10 datasets).

It was mentioned in Section 4.1 that ORB-OHT’s predictive performance may be hindered
by its association with an online base learner that overemphasizes recent data and the suscep-
tibility to noise of the instance-based oversampling. To answer that, we need to use data from
RQ2’s experiments to compare the results of ORB-OHT and BORB-IHF since BORB-IHF
was designed to solve the mentioned problems of ORB-OHT while maintains an ensemble of
HTs as base learner. BORB-IHF avoid overemphasizing recent data and decrease the suscep-
tibility to noise by resampling historical data in a batch mode. However, the results shows
that the replacement of ORB-OHT with BORB-IHF is not enough to improve the g-mean,
as can be seen in . So, we can not assign the poor g-mean of ORB-OHT on some datasets
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Figure 7 – Average and standard deviation (black vertical bar) of the distance between recalls by dataset and
classifier.

Source: Created by the author (2021)

Figure 8 – Average ranks based on the distance between recalls and Bonferroni-Dunn critical distance (bold
horizontal bar).

Source: Created by the author (2021)

to the mentioned problems. In fact, the results shows that the base learner is a key factor
which determines the g-mean of BORB since only BORB-MLP achieved an improvement with
statistical significance, as can be seen in . Associating a larger amount of similar base learners
with both BORB and ORB would allow a better comparison between them. However, this
subject remained for future work.
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Figure 9 – Heatmap of ranks based on the distance between recalls, horizontally sorted by average rank.

Source: Created by the author (2021)

RQ2’s discussion

As shown in Fig. 5, BORB-IHF and ORB-OHT perform similarly in terms of average rank
based on the g-mean. However, as shown in Fig. 6, in terms of rank by dataset based on the
g-mean, they are placed in different sides of the median rank on brackets, camel, neutron and
nova (i.e., 4 out of 10 datasets). BORB-IHF changes the g-mean in comparison to the baseline
in the following descending order: +4% on spring-integration, +2% on npm, +1% on tomcat,
+1% on broadleaf, +0% on neutron, −1% on jgroups, −2% on fabric8, −4% on camel, −5%

on brackets and −6% on nova. The Friedman test applied to the multiple comparison of
BORB’s classifiers against ORB-OHT rejects the null hypothesis with 𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.08× 10−6.
However, as can be seen in Fig. 5, the Bonferroni-Dunn test does not present significant
difference between the average rank of BORB-IHF and the average rank of ORB-OHT based
on the g-mean. In fact, both are close to the 4𝑡ℎ place in Fig. 5.

Despite BORB being designed to use historical data for resampling, it takes samples from
the training set that are constrained by the sample size 𝑠, as defined in Algorithm 1, to
alleviate the computational burden. In the case of BORB-IHF, it means 𝑠 instances for each
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HT training. On the other hand, ORB-OHT does not rely on this constraint. It accumulates
the statistics from all instances on its HTs since the beginning of the data stream. In other
words, the HTs of ORB-OHT have access to an unlimited amount of data while the HTs of
BORB-IHF are constrained by the sample size 𝑠, which is set in the hyperparameter tuning
procedure within a range from 1000 to 4000.

The fact that BORB-IHF reaches a similar g-mean to ORB-OHT using fewer data suggests
that, when properly sampled, smaller portions of the historical data can provide proper infor-
mation to the classifier. So, a more powerful classifier should be able to improve the g-mean
when associated with BORB. In fact, we can use data from RQ3’s experiments to compare
BORB-IHF and BORB-IRF to observe the evolution of the g-mean when we maintain BORB
and replace the ensemble of HTs with an ensemble of DTs. So, in our experiments, the DTs
are able to capture more signal from the sample than the HTs.

As shown in Fig. 8, in terms of average rank based on the distance between recalls, BORB-
IHF and ORB-OHT perform similarly. However, as shown in Fig. 9, in terms of rank by dataset
based on the distance between recalls, BORB-IHF and ORB-OHT are placed in different sides
of the median rank on brackets, fabric8, neutron and spring-integration (i.e., 4 out of 10
datasets). Fig. 8 shows that the Bonferroni-Dunn test does not present significant difference
between the average rank of BORB-IHF and the average rank of ORB-OHT based on the
distance between recalls. In fact, both are close to the 3𝑡ℎ place in Fig. 8.

Furthermore, according to Table 3, it is possible to note that neither BORB-IHF nor ORB-
OHT are skewed towards a specific class. In fact, BORB-IHF and ORB-OHT achieved better
recall for the defect-inducing class 𝑟1 when compared to the recall for the clean class 𝑟0 on,
respectively, 5 and 6 of the 10 datasets.

RQ3’s discussion

As we can see in Fig. 4 and in Fig. 6, BORB-IRF and BORB-MLP are able to improve the
g-mean in comparison to ORB-OHT on most of the datasets. These improvements correspond
to increases that range from +2% to +11%. Both classifiers have a decrease in the g-mean of
−2% in only one dataset. BORB-MLP changes the g-mean in comparison to the baseline in the
following descending order: +11% on spring-integration, +9% on fabric8, +8% on npm, +7%
on tomcat, +6% on broadleaf, +5% on jgroups, +2% on neutron, +2% on brackets, +2%
on camel and −2% on nova. BORB-IRF changes the g-mean in comparison to the baseline in
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the following descending order: +11% on spring-integration, +8% on npm, +7% on tomcat,
+3% on fabric8, +3% on jgroups, +2% on brackets, +2% on broadleaf, +0% on neutron,
+0% on camel and −2% on nova.

Despite the improvements on the g-mean achieved by BORB-IRF, the Bonferroni-Dunn
test does not present significant difference between the average ranks of BORB-IRF and ORB-
OHT, as can be seen in Fig. 5. The reason is that Bonferroni-Dunn has a low power (DEMSAR,
2006). So, the addition of more datasets in future work is recommended to avoid the risk of
type 2 error on that statistical test. Only BORB-MLP presents an improvement with statistical
significance (i.e., 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) when compared to the baseline, as can be seen in Fig. 5. So,
to better understand the results of our best classifier, Fig. 10 shows the prequential g-mean,
𝑟0, 𝑟1 and |𝑟0 − 𝑟1| of BORB-MLP paired with ORB-OHT over the data streams.

BORB-LR is also able to improve the g-mean on most of the datasets when compared to
ORB-OHT, as we can see in Fig. 4 and in Fig. 6. However, it performs highly worse than ORB-
OHT on neutron and nova, datasets on which ORB-OHT achieves its best results in terms
of g-mean. BORB-LR changes the g-mean in comparison to the baseline in the following
descending order: +9% on spring-integration, +7% on broadleaf, +6% on tomcat, +6% on
jgroups, +5% on npm, +1% on fabric8, +1% on camel, +0% on brackets, −7% on neutron
and −13% on nova.

Finally, BORB-NB performs much worse than ORB-OHT over all datasets. This suggests
that BORB-NB is not adequate to the datasets used in this work. According to Rish (2001), NB
is expected to better perform with completely independent features and functionally dependent
features (i.e., deterministic dependencies), while it reaches the worst performance between
these extremes. Thus, non-deterministic dependencies between the features may be hindering
the predictive performance of BORB-NB since the investigated datasets present correlated
features, as we mentioned in Section 5.3.

Two evidences can be analyzed to understand the cause of the poor g-mean for BORB-LR
on neutron and nova. First, as we can see in Fig. 7 and in Table 3, BORB-LR overemphasized
the minority class on that datasets, as 𝑟1 is typically much larger than 𝑟0. Second, as we can
observe in Table 2 and in Fig. 11, there is a decreasing trend in the defect rate between the
validation segment and the testing segment of that data streams. So, poor ranked scores in
the beginning of the data stream added to a higher defect rate on the validation segment may
have led BORB-LR to be tuned with a fixed defect prediction rate that overemphasized the
minority class on the testing segment. However, it is important to note that BORB-IRF and
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BORB-MLP were not affected by that and achieved more robust results.
Another thing to keep in mind while analyzing the results is that BORB’s classifiers output a

fixed defect prediction rate over the data stream. If a dataset presents periods where the defect
rate abruptly changes to a value distant from the fixed defect prediction rate, the classifier
has more chances of performing poorly on those periods. For instance, during a refactoring
period, fewer defects are introduced in the software. So, when consecutive code changes with
low scores are tested, the classifier decreases its threshold so that it outputs the fixed defect
prediction rate on that period. Then, due to the low threshold, the following code changes with
middle scores are classified as defect-inducing until the classifier increases its threshold. The
threshold is increased after the classifier updates the sliding window of scores, as described
in Algorithm 1. The opposite happens when consecutive code changes with high scores are
tested. To illustrate that, Fig. 11 shows that BORB-LR was tuned with higher fixed defect
prediction rates 𝑓𝑟1 than BORB-MLP on neutron and nova. And, on that datasets, BORB-LR
has more sudden drops in the g-mean and in the recall of the clean class 𝑟0 than BORB-MLP
over the oscillations and the decreasing trend of the defect rate.

As shown in Fig. 7, in terms of distance between recalls, at least one of the classifiers
performs relatively different on each dataset. Besides that, the ranks by dataset based on the
distance between recalls (Fig. 9) looks more random when compared to the ranks by dataset
based on the g-mean (Fig. 6). The greater level of randomness in the former ranks fits the
result of the respective statistical test. Fig. 8 shows that the Bonferroni-Dunn test does not
present significant difference between the average ranks of all pairs of classifiers based on the
distance between recalls. That suggests that both BORB and ORB share a similar capability
to balance the recalls, regardless the base learner that BORB is associated with.

In addition, Table 3 shows some emphasis from most of the batch classifiers on the recall
of the defect-inducing class 𝑟1. In fact, BORB-IRF achieved better results on the recall of the
defect-inducing class 𝑟1 when compared to recall of the clean class 𝑟0 on 7 of the 10 datasets,
BORB-LR achieved the same on 9 of the 10, BORB-MLP achieved the same on 8 of the 10,
and BORB-NB achieved the same on 4 of the 10. So, BORB-NB was the only batch classifier
to emphasize to 𝑟0.
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RQ4’s discussion

The Wilcoxon signed rank test rejects the null hypothesis defined by Eq. 3.17 with 𝑝-𝑣𝑎𝑙𝑢𝑒 =

2.5 × 10−4. So, our conclusion is that BORB is able to output a fixed defect prediction
rate. More specifically, BORB is able to maintain the distance between the fixed defect
prediction rate and the defect prediction rate below 0.05 with statistical significance (i.e.,
𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05).

The Spearman’s rank correlation coefficient defined by Eq. 3.18 is −0.44 with 𝑝-𝑣𝑎𝑙𝑢𝑒 =

1.3×10−3. That means that the correlation between the g-mean and the distance between the
fixed defect prediction rate and the induced defect prediction rate is moderate. A moderate
correlation shows that we can maximize the g-mean assuming a fixed defect prediction rate,
but a better capability to output the fixed defect prediction is not always rewarded with an
improvement in the g-mean, and vice versa. Besides that, we know in advance that some
drawbacks of the fixed defect prediction rate may compromise further improvements in other
parts of our approach. More details about this and future work are given in Section 6.1.

Analyzing the multiple pairwise comparison between the base learners in terms of the
distance between the fixed defect prediction rate and the induced defect prediction rate, we
can find out which base learner is best suited to output a fixed defect prediction rate. Fig. 12
and Fig. 14 shows that BORB-NB achieves the worst results for all datasets, and the other
classifiers achieve relatively good results. The Friedman test rejects the null hypothesis with
𝑝-𝑣𝑎𝑙𝑢𝑒 = 2.1× 10−21, confirming that there is a difference with statistical significance (i.e.,
𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) between some pair of classifiers. As we can observe in Fig. 13, the Nemenyi
post-hoc test confirms that BORB-IRF, BORB-LR and BORB-MLP have a difference with
statistical significance (i.e., 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) from BORB-NB, and BORB-IHF does not have
a difference with statistical significance from the other two groups.
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Figure 10 – G-mean, 𝑟0, 𝑟1 and |𝑟0 − 𝑟1| of BORB-MLP and ORB-OHT over the data streams.

Source: Created by the author (2021)
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Figure 11 – Relationship between the fixed defect prediction rate (𝑓𝑟1), the defect rate and sudden drops in
g-mean and 𝑟0 of BORB-LR and BORB-MLP over the data streams.

Source: Created by the author (2021)



67

Figure 12 – Average and standard deviation (black vertical bar) of the distance between the fixed defect
prediction rate and the induced defect prediction rate.

Source: Created by the author (2021)

Figure 13 – Average rank based on the distance between the fixed defect prediction rate and the induced
defect prediction rate and Nemenyi critical distance (CD).

Source: Created by the author (2021)
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Figure 14 – Heatmap of ranks based on the distance between the fixed defect prediction rate and the induced
defect prediction rate, horizontally sorted by average rank.

Source: Created by the author (2021)
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5.8 SUMMARY

In this chapter, we have presented the experiments carried out to answer the research
questions defined in Section 1.4. The results showed that BORB, when associated with robust
batch base learners, manages to consistently improve the g-mean. For instance, BORB-MLP
was the best classifier and achieved improvements between +2% and +11% on 9 of the 10
investigated datasets, in terms of g-mean, and a decrease of −2% in only one dataset. Besides
that, we have confirmed our two hypotheses defined by Eq. 3.17 and by Eq. 3.18. That means,
respectively, that BORB is able to output a fixed defect prediction rate; and the better the
model is to output the fixed defect prediction rate, the better is its predictive performance
in terms of g-mean. Additionally, we have seen that, of the evaluated classifiers, BORB-IRF,
BORB-LR and BORB-MLP are the best suited to output a fixed defect prediction rate.
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6 CONCLUSIONS

In this work, we have investigated batch algorithms using a fixed defect prediction rate
that maximizes the g-mean in the presence of verification latency and class imbalance evolu-
tion in online JIT-SDP. Our objective was to investigate the predictive performance of batch
algorithms compared to online algorithms while testing two hypotheses about the fixed de-
fect prediction rate. The first hypothesis (3.17) tests whether our approach (BORB) is able
to output a fixed defect prediction rate, and the second one (3.18) evaluates the correlation
between the capability to output the fixed defect prediction and the predictive performance.
To do that investigations, four research questions were defined in Section 1.4. Then, four
batch classifiers (BORB-IRF, BORB-LR, BORB-MLP and BORB-NB), one online classifier
(ORB-OHT), and one hybrid classifier (BORB-IHF) were set up in our experiments to answer
the research questions. And the results led us to set the following answers:

RQ1 Why does ORB perform poorly in terms of predictive performance on some datasets?
Answer: ORB-OHT performs below the median on 7 of the 10 datasets in terms of
rank based on the g-mean. However, the results do not support assigning the poor
performance on some datasets to the known limitations in ORB related to its association
with an online base learner that overemphasizes recent data and the susceptibility to
noise of the instance-based oversampling. In fact, BORB-IHF was designed to solve
these limitations, but it did not achieve an improvement with statistical significance
(i.e., 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) in terms of g-mean. A larger amount of similar base learners
needs to be associated with both BORB and ORB to improve the comparison between
them.

RQ2 How to modify ORB to use historical data for resampling and output a fixed defect
prediction rate? How well BORB performs compared to ORB in terms of predictive
performance? Answer: BORB can be seen as a ORB modified to avoid overemphasizing
recent data and decrease the susceptibility to noise by resampling historical data in a
batch mode. When both BORB and ORB are associated with HTs to create, respectively,
BORB-IHF and ORB-OHT, their performances in terms of g-mean are similar. BORB-
IHF wins on half of the datasets and ORB-OHT wins on the other half. However, we
must note that BORB-IHF achieves a similar predictive performance using fewer data
than ORB-OHT. This suggests that, when properly sampled, even small fractions of
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the historical data can provide enough information so that the base learner captures the
most relevant concepts.

RQ3 How does BORB perform when using different base learners? In particular, do the use of
different base learners further improves the predictive performance of BORB? Answer:
There is an improvement in the predictive performance from BORB-IHF to BORB-IRF.
This improvement suggests that DTs are better suited than HTs to capture the most
relevant concepts from small portions of the historical data on the investigated datasets.
BORB-MLP and BORB-LR also improves the predictive performance in terms of the
average rank based on the g-mean, but only BORB-MLP achieved an improvement
with statistically significance (i.e., 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05). On the other hand, BORB-NB
achieved poor relative results on all datasets, which suggests that NB is not adequate
to the characteristics of the datasets used in this work. BORB-MLP wins on 9 of the 10
datasets, BORB-IRF wins on 8 of the 10, BORB-LR wins on 7 of the 10, and BORB-NB
loses on 10 of the 10 when compared to ORB-OHT

RQ4 Is BORB able to output a fixed defect prediction rate? How correlated are the capabil-
ity to output a fixed defect prediction rate and the predictive performance? And how
adequate is each base learner to output a fixed defect prediction rate? Answer: BORB
was capable of maintaining the distance between the fixed defect prediction rate and
the defect prediction rate below 0.05 with statistical significance (i.e., 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05).
So, we can conclude that BORB is able to output a fixed defect prediction rate. Addi-
tionally, the correlation between the g-mean and the distance between the fixed defect
prediction rate and the induced defect prediction rate is -0.44. So, we can conclude that
there is a moderate negative correlation between them. In other words, assuming that
the classifier is constrained to output a fixed defect prediction rate, it achieves a better
performance in testing when it is more capable to output the fixed defect prediction set
in the hyperparameter tuning. Finally, the average rank based on the distance between
the fixed defect prediction rate and the induced defect prediction rate shows us that
BORB-IRF, BORB-LR and BORB-MLP are equally adequate to output a fixed defect
prediction rate as they share the first position in the ranking, BORB-IHF comes next in
the fourth position, and BORB-NB comes in the last position, reflecting its poor relative
results on all datasets.
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6.1 FUTURE WORK

There are three main issues to be addressed by future work. They are related to the
experimental setup and the creation of new approaches to tackle class imbalance evolution,
as follows:

• A larger amount of similar base learners needs to be associated with both BORB and
ORB to improve the comparison between them and better evaluate the known limitations
in ORB.

• The addition of more datasets is necessary so that low power statistical tests for multiple
pairwise comparison, such as Nemenyi and Bonferroni-Dunn tests, do not result on type
2 error. For instance, BORB-IRF presented great improvements when compared to ORB-
OHT, but that was not reflected on the statistical test.

• The fixed defect prediction rate is not suited to tackle trends and high volatility in the
class imbalance evolution, but that concept drifts happen in some datasets used in this
work. So, there is room for improvements in the predictive performance by replacing the
fixed defect prediction rate with a more flexible mechanism. For example, the mechanism
could start with a defect prediction rate in the beginning of the software project and
change this rate over time, according to the expected trend for the defect rate.

Due to its simplicity, the fixed defect prediction can be considered as a standard baseline to
the problem of class imbalance evolution. Thus, we recommend implementing the fixed defect
prediction rate in the baseline of future work related to class imbalance evolution.
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APPENDIX A – TESTING ON ENTIRE DATASETS

In this appendix, we present our results when the first 5000 code changes of the data
stream are used for validation, and the entire data stream is used for testing. In other words,
the hyperparameter tuning is done as described in Section 5.4, but the testing is done with data
that overlaps the validation segment. As that might create an advantage for the classifiers able
to overfit the validation segment, we preferred not to include that segment into our evaluation.
Despite that, Table 4 shows our results using the entire data streams for testing so that they
can be compared to the results presented by Cabral et al. (2019), that used the methodology
described in this appendix.
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Table 4 – Results using the entire data stream for testing.

Dataset Classifier 𝑟0 (std) 𝑟1 (std) |𝑟0 − 𝑟1| (std) g-mean (std) |𝑓𝑟1 − 𝑖𝑟1| (std) |𝑓𝑟1 − 𝑝𝑟1| (std)

brackets

BORB-IHF 58.04% (00.41%) 85.65% (00.31%) 31.26% (00.59%) 67.86% (00.25%) 09.01% (00.57%) 08.33% (00.29%)
BORB-IRF 73.19% (00.10%) 78.53% (00.20%) 13.53% (00.19%) 73.05% (00.12%) 05.77% (00.05%) 07.54% (00.05%)
BORB-LR 62.06% (00.04%) 89.12% (00.07%) 27.85% (00.07%) 71.86% (00.04%) 06.87% (00.03%) 06.67% (00.01%)

BORB-MLP 70.02% (00.10%) 82.16% (00.19%) 14.95% (00.15%) 73.15% (00.10%) 08.10% (00.15%) 07.15% (00.04%)
BORB-NB 57.06% (00.09%) 78.86% (00.13%) 23.68% (00.15%) 64.60% (00.08%) 15.74% (00.08%) 06.81% (00.04%)
ORB-OHT 77.21% (00.48%) 70.34% (00.63%) 14.23% (00.58%) 69.67% (00.39%) - -

broadleaf

BORB-IHF 73.26% (00.14%) 64.71% (00.44%) 15.00% (00.37%) 67.46% (00.25%) 08.39% (00.42%) 04.42% (00.08%)
BORB-IRF 58.30% (00.18%) 83.45% (00.30%) 28.23% (00.32%) 68.35% (00.19%) 13.04% (00.24%) 05.52% (00.10%)
BORB-LR 69.73% (00.06%) 75.77% (00.21%) 13.71% (00.17%) 71.72% (00.11%) 07.13% (00.09%) 04.48% (00.03%)

BORB-MLP 64.27% (00.15%) 80.43% (00.30%) 19.44% (00.29%) 70.73% (00.17%) 06.47% (00.16%) 05.45% (00.10%)
BORB-NB 64.41% (00.11%) 60.45% (00.37%) 12.88% (00.27%) 61.10% (00.20%) 32.69% (00.91%) 04.84% (00.06%)
ORB-OHT 75.90% (00.88%) 59.06% (01.22%) 18.20% (01.07%) 65.29% (00.91%) - -

camel

BORB-IHF 74.54% (00.12%) 60.55% (00.23%) 15.72% (00.23%) 66.58% (00.15%) 08.45% (00.15%) 03.31% (00.04%)
BORB-IRF 60.11% (00.09%) 81.13% (00.21%) 22.99% (00.22%) 69.11% (00.10%) 10.02% (00.14%) 04.29% (00.05%)
BORB-LR 62.02% (00.04%) 80.52% (00.07%) 19.55% (00.07%) 70.14% (00.04%) 08.88% (00.02%) 04.08% (00.02%)

BORB-MLP 66.04% (00.08%) 76.61% (00.19%) 14.05% (00.21%) 70.50% (00.09%) 05.85% (00.09%) 04.47% (00.04%)
BORB-NB 64.59% (00.06%) 53.12% (00.15%) 14.92% (00.11%) 57.87% (00.08%) 23.64% (00.12%) 05.09% (00.03%)
ORB-OHT 67.28% (00.40%) 72.31% (00.42%) 13.25% (00.55%) 68.52% (00.28%) - -

fabric8

BORB-IHF 66.05% (00.49%) 64.21% (00.77%) 10.41% (00.54%) 63.75% (00.50%) 10.88% (00.75%) 06.51% (00.25%)
BORB-IRF 70.71% (00.09%) 67.62% (00.24%) 11.78% (00.15%) 67.40% (00.14%) 04.44% (00.13%) 06.60% (00.06%)
BORB-LR 59.61% (00.07%) 77.93% (00.10%) 19.66% (00.13%) 66.78% (00.04%) 06.92% (00.05%) 05.70% (00.03%)

BORB-MLP 69.09% (00.17%) 73.96% (00.34%) 10.05% (00.26%) 70.04% (00.19%) 07.83% (00.25%) 06.02% (00.07%)
BORB-NB 62.90% (00.11%) 64.45% (00.13%) 12.14% (00.10%) 61.99% (00.08%) 22.64% (00.25%) 07.56% (00.04%)
ORB-OHT 77.68% (00.55%) 54.37% (00.95%) 24.18% (00.89%) 62.37% (00.68%) - -

jgroups

BORB-IHF 71.69% (00.20%) 53.04% (00.49%) 19.56% (00.52%) 60.98% (00.29%) 08.08% (00.30%) 03.84% (00.09%)
BORB-IRF 68.74% (00.14%) 61.82% (00.30%) 13.95% (00.32%) 63.70% (00.17%) 03.92% (00.22%) 06.52% (00.05%)
BORB-LR 68.18% (00.07%) 66.08% (00.21%) 08.10% (00.12%) 66.45% (00.12%) 04.47% (00.12%) 04.72% (00.03%)

BORB-MLP 67.55% (00.18%) 66.01% (00.35%) 07.45% (00.28%) 66.29% (00.21%) 07.14% (00.25%) 04.53% (00.07%)
BORB-NB 68.95% (00.14%) 49.62% (00.26%) 21.99% (00.26%) 57.80% (00.17%) 32.60% (00.80%) 05.89% (00.08%)
ORB-OHT 70.43% (00.40%) 56.39% (00.80%) 17.26% (00.73%) 61.01% (00.43%) - -

neutron

BORB-IHF 72.82% (00.18%) 87.12% (00.32%) 18.08% (00.33%) 78.99% (00.18%) 04.94% (00.13%) 04.66% (00.05%)
BORB-IRF 68.45% (00.07%) 91.71% (00.11%) 25.04% (00.10%) 77.96% (00.07%) 04.82% (00.09%) 06.72% (00.02%)
BORB-LR 62.58% (00.09%) 93.47% (00.06%) 33.46% (00.12%) 75.10% (00.07%) 05.00% (00.02%) 08.20% (00.07%)

BORB-MLP 72.07% (00.34%) 90.50% (00.27%) 22.56% (00.39%) 79.77% (00.28%) 02.98% (00.15%) 04.79% (00.14%)
BORB-NB 49.78% (00.19%) 79.17% (00.11%) 31.97% (00.19%) 60.67% (00.14%) 40.06% (00.09%) 17.68% (00.13%)
ORB-OHT 78.23% (00.82%) 81.52% (01.15%) 12.11% (01.01%) 79.40% (00.42%) - -

nova

BORB-IHF 77.25% (00.10%) 74.77% (00.20%) 16.44% (00.16%) 74.52% (00.12%) 12.02% (00.16%) 06.08% (00.07%)
BORB-IRF 82.21% (00.05%) 75.75% (00.11%) 15.85% (00.10%) 77.64% (00.06%) 10.48% (00.08%) 04.79% (00.03%)
BORB-LR 57.37% (00.06%) 92.00% (00.03%) 35.22% (00.06%) 70.18% (00.05%) 06.45% (00.01%) 11.82% (00.04%)

BORB-MLP 73.50% (00.17%) 85.17% (00.13%) 18.01% (00.16%) 77.69% (00.14%) 06.74% (00.07%) 06.27% (00.12%)
BORB-NB 53.47% (00.12%) 84.76% (00.10%) 33.10% (00.14%) 64.99% (00.11%) 21.75% (00.43%) 13.54% (00.08%)
ORB-OHT 78.94% (00.29%) 80.74% (00.49%) 12.25% (00.48%) 78.51% (00.28%) - -

npm

BORB-IHF 58.60% (00.43%) 63.50% (00.92%) 13.61% (00.90%) 58.81% (00.48%) 11.23% (00.64%) 06.40% (00.32%)
BORB-IRF 62.26% (00.39%) 67.52% (00.72%) 13.05% (00.62%) 62.75% (00.43%) 07.80% (00.77%) 06.64% (00.30%)
BORB-LR 59.79% (00.15%) 76.01% (00.25%) 18.83% (00.31%) 66.70% (00.12%) 07.94% (00.10%) 04.98% (00.10%)

BORB-MLP 67.23% (00.36%) 66.25% (00.69%) 09.05% (00.56%) 65.78% (00.40%) 12.39% (00.42%) 04.85% (00.18%)
BORB-NB 61.53% (00.23%) 50.44% (00.51%) 32.86% (00.58%) 51.99% (00.35%) 39.40% (00.46%) 13.73% (00.15%)
ORB-OHT 62.98% (00.58%) 62.41% (01.10%) 22.71% (01.13%) 59.47% (00.56%) - -

spring-integration

BORB-IHF 58.34% (01.12%) 66.60% (00.66%) 18.73% (01.22%) 59.77% (00.74%) 15.14% (00.81%) 10.27% (00.89%)
BORB-IRF 66.80% (00.13%) 71.44% (00.23%) 14.17% (00.24%) 67.32% (00.13%) 13.89% (00.45%) 05.81% (00.08%)
BORB-LR 63.76% (00.08%) 77.06% (00.12%) 16.43% (00.15%) 69.05% (00.07%) 15.93% (00.05%) 05.90% (00.04%)

BORB-MLP 71.56% (00.27%) 66.82% (00.67%) 14.80% (00.54%) 67.91% (00.39%) 09.01% (00.23%) 06.35% (00.15%)
BORB-NB 58.74% (00.43%) 54.68% (00.22%) 24.42% (00.40%) 53.94% (00.35%) 35.64% (00.40%) 13.32% (00.26%)
ORB-OHT 75.56% (01.35%) 46.07% (01.56%) 40.54% (01.85%) 51.03% (01.31%) - -

tomcat

BORB-IHF 63.92% (00.32%) 67.75% (00.38%) 07.82% (00.36%) 65.39% (00.22%) 09.11% (00.31%) 03.81% (00.11%)
BORB-IRF 69.77% (00.13%) 70.30% (00.20%) 09.43% (00.14%) 69.04% (00.11%) 04.24% (00.10%) 04.84% (00.06%)
BORB-LR 68.52% (00.05%) 71.60% (00.08%) 07.21% (00.05%) 69.62% (00.04%) 01.03% (00.04%) 03.08% (00.02%)

BORB-MLP 71.76% (00.14%) 68.31% (00.30%) 07.68% (00.27%) 69.61% (00.16%) 07.17% (00.38%) 03.91% (00.10%)
BORB-NB 65.03% (00.12%) 52.19% (00.20%) 14.24% (00.18%) 57.68% (00.14%) 55.08% (00.28%) 04.47% (00.05%)
ORB-OHT 65.91% (00.50%) 65.47% (00.52%) 10.26% (00.62%) 64.91% (00.40%) - -

Source: Created by the author (2021)
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APPENDIX B – CONFIGURATION SPACES AND BEST CONFIGURATIONS

This appendix describes the configuration space and the best configuration for each combi-
nation of classifier and dataset. And each dimension of the configuration space (i.e., each hy-
perparameter) is structured as a triple (𝑟𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒, chosen value, 𝑟𝑎𝑛𝑔𝑒 𝑒𝑛𝑑 𝑣𝑎𝑙𝑢𝑒)

or as a set {chosen value, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠...} in the following list:

1. Classifier = BORB-IHF; dataset = broadleaf; borb-l0 = (1, 1.38, 20); borb-l1 =
(1, 1.73, 20); borb-m = (1.1, 1.94, 𝑒); borb-window-size = (50, 69, 200); borb-pull-
request-size = (50, 191, 500); borb-sample-size = (1000, 1859, 4000); borb-fr1 =
(3, 0.31, 5); borb-waiting-time = (90, 97, 180); ihf-grace-period = (100, 271, 500);
ihf-leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 30, 30); ihf-no-preprune
= {true, false}; ihf-split-confidence = (1×10-7, 1.33×10-5, 0.5); ihf-split-criterion =
{gini, information gain, hellinger}; ihf-tie-threshold = (0.05, 0.35, 0.5);

2. Classifier = BORB-IHF; dataset = camel; borb-l0 = (1, 1.38, 20); borb-l1 = (1, 1.73,
20); borb-m = (1.1, 1.94, 𝑒); borb-window-size = (50, 69, 200); borb-pull-request-size =
(50, 191, 500); borb-sample-size = (1000, 1859, 4000); borb-fr1 = (3, 0.31, 5); borb-
waiting-time = (90, 97, 180); ihf-grace-period = (100, 271, 500); ihf-leaf-prediction
= {mc, nb, nba}; ihf-n-estimators = (10, 30, 30); ihf-no-preprune = {true, false};
ihf-split-confidence = (1×10-7, 1.33×10-5, 0.5); ihf-split-criterion = {gini, information
gain, hellinger}; ihf-tie-threshold = (0.05, 0.35, 0.5);

3. Classifier = BORB-IHF; dataset = jgroups; borb-l0 = (1, 1.38, 20); borb-l1 = (1,
1.73, 20); borb-m = (1.1, 1.94, 𝑒); borb-window-size = (50, 69, 200); borb-pull-
request-size = (50, 191, 500); borb-sample-size = (1000, 1859, 4000); borb-fr1 =
(3, 0.31, 5); borb-waiting-time = (90, 97, 180); ihf-grace-period = (100, 271, 500);
ihf-leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 30, 30); ihf-no-preprune
= {true, false}; ihf-split-confidence = (1×10-7, 1.33×10-5, 0.5); ihf-split-criterion =
{gini, information gain, hellinger}; ihf-tie-threshold = (0.05, 0.35, 0.5);

4. Classifier = BORB-IHF; dataset = nova; borb-l0 = (1, 1.38, 20); borb-l1 = (1, 1.73,
20); borb-m = (1.1, 1.94, 𝑒); borb-window-size = (50, 69, 200); borb-pull-request-size =
(50, 191, 500); borb-sample-size = (1000, 1859, 4000); borb-fr1 = (3, 0.31, 5); borb-
waiting-time = (90, 97, 180); ihf-grace-period = (100, 271, 500); ihf-leaf-prediction
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= {mc, nb, nba}; ihf-n-estimators = (10, 30, 30); ihf-no-preprune = {true, false};
ihf-split-confidence = (1×10-7, 1.33×10-5, 0.5); ihf-split-criterion = {gini, information
gain, hellinger}; ihf-tie-threshold = (0.05, 0.35, 0.5);

5. Classifier = BORB-IHF; dataset = tomcat; borb-l0 = (1, 1.45, 20); borb-l1 = (1,
1.67, 20); borb-m = (1.1, 2.54, 𝑒); borb-window-size = (50, 119, 200); borb-pull-
request-size = (50, 73, 500); borb-sample-size = (1000, 1246, 4000); borb-fr1 = (3,
0.44, 5); borb-waiting-time = (90, 155, 180); ihf-grace-period = (100, 133, 500);
ihf-leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 12, 30); ihf-no-preprune =
{true, false}; ihf-split-confidence = (1×10-7, 6.8×10-5, 5×10-5, 0.5); ihf-split-criterion
= {gini, information gain, hellinger}; ihf-tie-threshold = (0.05, 0.33, 0.5);

6. Classifier = BORB-IHF; dataset = brackets; borb-l0 = (1, 1.49, 20); borb-l1 = (1,
19.48, 20); borb-m = (1.1, 1.77, 𝑒); borb-window-size = (50, 121, 200); borb-pull-
request-size = (50, 272, 500); borb-sample-size = (1000, 2463, 4000); borb-fr1 =
(3, 0.47, 5); borb-waiting-time = (90, 94, 180); ihf-grace-period = (100, 332, 500);
ihf-leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 18, 30); ihf-no-preprune
= {true, false}; ihf-split-confidence = (1×10-7, 0.02, 0.5); ihf-split-criterion = {gini,
information gain, hellinger}; ihf-tie-threshold = (0.05, 0.24, 0.5);

7. Classifier = BORB-IHF; dataset = fabric8; borb-l0 = (1, 19.74, 20); borb-l1 = (1,
3.54, 20); borb-m = (1.1, 1.23, 𝑒); borb-window-size = (50, 167, 200); borb-pull-
request-size = (50, 129, 500); borb-sample-size = (1000, 2857, 4000); borb-fr1 = (3,
0.39, 5); borb-waiting-time = (90, 93, 180); ihf-grace-period = (100, 443, 500); ihf-
leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 21, 30); ihf-no-preprune =
{true, false}; ihf-split-confidence = (1×10-7, 0.006, 0.5); ihf-split-criterion = {gini,
information gain, hellinger}; ihf-tie-threshold = (0.05, 0.16, 0.5);

8. Classifier = BORB-IHF; dataset = neutron; borb-l0 = (1, 3.95, 20); borb-l1 = (1,
15.06, 20); borb-m = (1.1, 2.27, 𝑒); borb-window-size = (50, 138, 200); borb-pull-
request-size = (50, 71, 500); borb-sample-size = (1000, 1215, 4000); borb-fr1 = (3,
0.4, 5); borb-waiting-time = (90, 161, 180); ihf-grace-period = (100, 122, 500); ihf-
leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 15, 30); ihf-no-preprune =
{true, false}; ihf-split-confidence = (1×10-7, 7.791×105, 0.5); ihf-split-criterion =
{gini, information gain, hellinger}; ihf-tie-threshold = (0.05, 0.21, 0.5);
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9. Classifier = BORB-IHF; dataset = spring-integration; borb-l0 = (1, 4.54, 20); borb-
l1 = (1, 2.43, 20); borb-m = (1.1, 1.69, 𝑒); borb-window-size = (50, 87, 200); borb-
pull-request-size = (50, 199, 500); borb-sample-size = (1000, 2052, 4000); borb-fr1 =
(3, 0.42, 5); borb-waiting-time = (90, 137, 180); ihf-grace-period = (100, 206, 500);
ihf-leaf-prediction = {mc, nb, nba}; ihf-n-estimators = (10, 19, 30); ihf-no-preprune
= {true, false}; ihf-split-confidence = (1×10-7, 0.02, 0.5); ihf-split-criterion = {gini,
information gain, hellinger}; ihf-tie-threshold = (0.05, 0.34, 0.5);

10. Classifier = BORB-IHF; dataset = npm; borb-l0 = (1, 9.25, 20); borb-l1 = (1, 3.4,
20); borb-m = (1.1, 1.41, 𝑒); borb-window-size = (50, 90, 200); borb-pull-request-
size = (50, 221, 500); borb-sample-size = (1000, 2066, 4000); borb-fr1 = (3, 0.44,
5); borb-waiting-time = (90, 108, 180); ihf-grace-period = (100, 150, 500); ihf-leaf-
prediction = {mc, nb, nba}; ihf-n-estimators = (10, 14, 30); ihf-no-preprune = {true,
false}; ihf-split-confidence = (1×10-7, 0.13, 0.5); ihf-split-criterion = {gini, information
gain, hellinger}; ihf-tie-threshold = (0.05, 0.1, 0.5);

11. Classifier = BORB-IRF; dataset = spring-integration; borb-l0 = (1, 1.12, 20); borb-
l1 = (1, 2.88, 20); borb-m = (1.1, 1.68, 𝑒); borb-window-size = (50, 74, 200); borb-
pull-request-size = (50, 140, 500); borb-sample-size = (1000, 2809, 4000); borb-fr1

= (3, 0.42, 5); borb-waiting-time = (90, 103, 180); irf-criterion = {gini, information
gain, hellinger}; irf-max-features = (3, 6, 7); irf-min-samples-leaf = (100, 181, 300);
irf-n-estimators = (20, 86, 100);

12. Classifier = BORB-IRF; dataset = nova; borb-l0 = (1, 1.8, 20); borb-l1 = (1, 12.18,
20); borb-m = (1.1, 1.42, 𝑒); borb-window-size = (50, 133, 200); borb-pull-request-
size = (50, 369, 500); borb-sample-size = (1000, 3088, 4000); borb-fr1 = (3, 0.31,
5); borb-waiting-time = (90, 97, 180); irf-criterion = {gini, entropy}; irf-max-features
= (3, 7, 7); irf-min-samples-leaf = (100, 104, 300); irf-n-estimators = (20, 91, 100);

13. Classifier = BORB-IRF; dataset = npm; borb-l0 = (1, 12.72, 20); borb-l1 = (1, 9.11,
20); borb-m = (1.1, 1.64, 𝑒); borb-window-size = (50, 59, 200); borb-pull-request-size
= (50, 191, 500); borb-sample-size = (1000, 3510, 4000); borb-fr1 = (3, 0.41, 5);
borb-waiting-time = (90, 102, 180); irf-criterion = {gini, entropy}; irf-max-features =
(3, 7, 7); irf-min-samples-leaf = (100, 124, 300); irf-n-estimators = (20, 30, 100);
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14. Classifier = BORB-IRF; dataset = neutron; borb-l0 = (1, 2.23, 20); borb-l1 = (1,
2.88, 20); borb-m = (1.1, 2.16, 𝑒); borb-window-size = (50, 147, 200); borb-pull-
request-size = (50, 109, 500); borb-sample-size = (1000, 3251, 4000); borb-fr1 = (3,
0.42, 5); borb-waiting-time = (90, 119, 180); irf-criterion = {gini, information gain,
hellinger}; irf-max-features = (3, 5, 7); irf-min-samples-leaf = (100, 167, 300); irf-n-
estimators = (20, 86, 100);

15. Classifier = BORB-IRF; dataset = broadleaf; borb-l0 = (1, 2.26, 20); borb-l1 = (1,
1.66, 20); borb-m = (1.1, 1.22, 𝑒); borb-window-size = (50, 184, 200); borb-pull-
request-size = (50, 205, 500); borb-sample-size = (1000, 1935, 4000); borb-fr1 = (3,
0.48, 5); borb-waiting-time = (90, 101, 180); irf-criterion = {gini, entropy}; irf-max-
features = (3, 5, 7); irf-min-samples-leaf = (100, 110, 300); irf-n-estimators = (20, 27,
100);

16. Classifier = BORB-IRF; dataset = camel; borb-l0 = (1, 2.26, 20); borb-l1 = (1, 1.66,
20); borb-m = (1.1, 1.22, 𝑒); borb-window-size = (50, 184, 200); borb-pull-request-
size = (50, 205, 500); borb-sample-size = (1000, 1935, 4000); borb-fr1 = (3, 0.48, 5);
borb-waiting-time = (90, 101, 180); irf-criterion = {gini, entropy}; irf-max-features =
(3, 5, 7); irf-min-samples-leaf = (100, 110, 300); irf-n-estimators = (20, 27, 100);

17. Classifier = BORB-IRF; dataset = brackets; borb-l0 = (1, 5.65, 20); borb-l1 = (1,
7.45, 20); borb-m = (1.1, 1.20, 𝑒); borb-window-size = (50, 193, 200); borb-pull-
request-size = (50, 111, 500); borb-sample-size = (1000, 3050, 4000); borb-fr1 = (3,
0.35, 5); borb-waiting-time = (90, 90, 180); irf-criterion = {gini, information gain,
hellinger}; irf-max-features = (3, 4, 7); irf-min-samples-leaf = (100, 165, 300); irf-n-
estimators = (20, 77, 100);

18. Classifier = BORB-IRF; dataset = fabric8; borb-l0 = (1, 5.65, 20); borb-l1 = (1, 7.45,
20); borb-m = (1.1, 1.20, 𝑒); borb-window-size = (50, 193, 200); borb-pull-request-
size = (50, 111, 500); borb-sample-size = (1000, 3050, 4000); borb-fr1 = (3, 0.35, 5);
borb-waiting-time = (90, 90, 180); irf-criterion = {gini, information gain, hellinger};
irf-max-features = (3, 4, 7); irf-min-samples-leaf = (100, 165, 300); irf-n-estimators =
(20, 77, 100);

19. Classifier = BORB-IRF; dataset = jgroups; borb-l0 = (1, 5.65, 20); borb-l1 = (1, 7.45,
20); borb-m = (1.1, 1.20, 𝑒); borb-window-size = (50, 193, 200); borb-pull-request-
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size = (50, 111, 500); borb-sample-size = (1000, 3050, 4000); borb-fr1 = (3, 0.35, 5);
borb-waiting-time = (90, 90, 180); irf-criterion = {gini, information gain, hellinger};
irf-max-features = (3, 4, 7); irf-min-samples-leaf = (100, 165, 300); irf-n-estimators =
(20, 77, 100);

20. Classifier = BORB-IRF; dataset = tomcat; borb-l0 = (1, 8.47, 20); borb-l1 = (1, 2.1,
20); borb-m = (1.1, 2.43, 𝑒); borb-window-size = (50, 127, 200); borb-pull-request-
size = (50, 78, 500); borb-sample-size = (1000, 2627, 4000); borb-fr1 = (3, 0.4, 5);
borb-waiting-time = (90, 122, 180); irf-criterion = {gini, information gain, hellinger};
irf-max-features = (3, 6, 7); irf-min-samples-leaf = (100, 170, 300); irf-n-estimators =
(20, 56, 100);

21. Classifier = BORB-LR; dataset = broadleaf; borb-l0 = (1, 19.54, 20); borb-l1 = (1,
1.28, 20); borb-m = (1.1, 1.41, 𝑒); borb-window-size = (50, 130, 200); borb-pull-
request-size = (50, 138, 500); borb-sample-size = (1000, 1997, 4000); borb-fr1 = (3,
0.37, 5); borb-waiting-time = (90, 101, 180); lr-alpha = (0.01, 0.03, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 64, 80);

22. Classifier = BORB-LR; dataset = jgroups; borb-l0 = (1, 19.54, 20); borb-l1 = (1,
1.28, 20); borb-m = (1.1, 1.41, 𝑒); borb-window-size = (50, 130, 200); borb-pull-
request-size = (50, 138, 500); borb-sample-size = (1000, 1997, 4000); borb-fr1 = (3,
0.37, 5); borb-waiting-time = (90, 101, 180); lr-alpha = (0.01, 0.03, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 64, 80);

23. Classifier = BORB-LR; dataset = brackets; borb-l0 = (1, 2.24, 20); borb-l1 = (1,
1.45, 20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-
request-size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3,
0.46, 5); borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

24. Classifier = BORB-LR; dataset = camel; borb-l0 = (1, 2.24, 20); borb-l1 = (1, 1.45,
20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-request-
size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3, 0.46, 5);
borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size = (128,
129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);
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25. Classifier = BORB-LR; dataset = fabric8; borb-l0 = (1, 2.24, 20); borb-l1 = (1, 1.45,
20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-request-
size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3, 0.46, 5);
borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size = (128,
129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

26. Classifier = BORB-LR; dataset = neutron; borb-l0 = (1, 2.24, 20); borb-l1 = (1,
1.45, 20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-
request-size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3,
0.46, 5); borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

27. Classifier = BORB-LR; dataset = nova; borb-l0 = (1, 2.24, 20); borb-l1 = (1, 1.45,
20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-request-
size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3, 0.46, 5);
borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size = (128,
129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

28. Classifier = BORB-LR; dataset = npm; borb-l0 = (1, 2.24, 20); borb-l1 = (1, 1.45,
20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-pull-request-
size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 = (3, 0.46, 5);
borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size = (128,
129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

29. Classifier = BORB-LR; dataset = spring-integration; borb-l0 = (1, 2.24, 20); borb-l1
= (1, 1.45, 20); borb-m = (1.1, 2.02, 𝑒); borb-window-size = (50, 158, 200); borb-
pull-request-size = (50, 58, 500); borb-sample-size = (1000, 3120, 4000); borb-fr1 =
(3, 0.46, 5); borb-waiting-time = (90, 90, 180); lr-alpha = (0.01, 0.08, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 53, 80);

30. Classifier = BORB-LR; dataset = tomcat; borb-l0 = (1, 5.36, 20); borb-l1 = (1,
10.16, 20); borb-m = (1.1, 1.24, 𝑒); borb-window-size = (50, 89, 200); borb-pull-
request-size = (50, 107, 500); borb-sample-size = (1000, 3292, 4000); borb-fr1 = (3,
0.42, 5); borb-waiting-time = (90, 100, 180); lr-alpha = (0.01, 0.33, 1); lr-batch-size
= (128, 129, 512); lr-log-transformation = {true, false}; lr-n-epochs = (10, 69, 80);
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31. Classifier = BORB-MLP; dataset = broadleaf; borb-l0 = (1, 13.28, 20); borb-l1 =
(1, 3.50, 20); borb-m = (1.1, 2.71, 𝑒); borb-window-size = (50, 194, 200); borb-pull-
request-size = (50, 134, 500); borb-sample-size = (1000, 3317, 4000); borb-fr1 = (3,
0.42, 5); borb-waiting-time = (90, 102, 180); mlp-batch-size = (128, 132, 512); mlp-
dropout-hidden-layer = (0.3, 0.32, 0.5); mlp-dropout-input-layer = (0.1, 0.15, 0.3);
mlp-hidden-layers-size = (5, 9, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 79, 80); mlp-n-hidden-layers
= (1, 2, 3);

32. Classifier = BORB-MLP; dataset = camel; borb-l0 = (1, 13.28, 20); borb-l1 = (1,
3.50, 20); borb-m = (1.1, 2.71, 𝑒); borb-window-size = (50, 194, 200); borb-pull-
request-size = (50, 134, 500); borb-sample-size = (1000, 3317, 4000); borb-fr1 = (3,
0.42, 5); borb-waiting-time = (90, 102, 180); mlp-batch-size = (128, 132, 512); mlp-
dropout-hidden-layer = (0.3, 0.32, 0.5); mlp-dropout-input-layer = (0.1, 0.15, 0.3);
mlp-hidden-layers-size = (5, 9, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 79, 80); mlp-n-hidden-layers
= (1, 2, 3);

33. Classifier = BORB-MLP; dataset = neutron; borb-l0 = (1, 13.28, 20); borb-l1 =
(1, 3.50, 20); borb-m = (1.1, 2.71, 𝑒); borb-window-size = (50, 194, 200); borb-pull-
request-size = (50, 134, 500); borb-sample-size = (1000, 3317, 4000); borb-fr1 = (3,
0.42, 5); borb-waiting-time = (90, 102, 180); mlp-batch-size = (128, 132, 512); mlp-
dropout-hidden-layer = (0.3, 0.32, 0.5); mlp-dropout-input-layer = (0.1, 0.15, 0.3);
mlp-hidden-layers-size = (5, 9, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 79, 80); mlp-n-hidden-layers
= (1, 2, 3);

34. Classifier = BORB-MLP; dataset = brackets; borb-l0 = (1, 2.02, 20); borb-l1 = (1,
1.24, 20); borb-m = (1.1, 2.03, 𝑒); borb-window-size = (50, 142, 200); borb-pull-
request-size = (50, 96, 500); borb-sample-size = (1000, 1207, 4000); borb-fr1 = (3,
0.38, 5); borb-waiting-time = (90, 91, 180); mlp-batch-size = (128, 131, 512); mlp-
dropout-hidden-layer = (0.3, 0.42, 0.5); mlp-dropout-input-layer = (0.1, 0.14, 0.3);
mlp-hidden-layers-size = (5, 14, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 51, 80); mlp-n-hidden-layers
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= (1, 3, 3);

35. Classifier = BORB-MLP; dataset = fabric8; borb-l0 = (1, 2.02, 20); borb-l1 = (1,
1.24, 20); borb-m = (1.1, 2.03, 𝑒); borb-window-size = (50, 142, 200); borb-pull-
request-size = (50, 96, 500); borb-sample-size = (1000, 1207, 4000); borb-fr1 = (3,
0.38, 5); borb-waiting-time = (90, 91, 180); mlp-batch-size = (128, 131, 512); mlp-
dropout-hidden-layer = (0.3, 0.42, 0.5); mlp-dropout-input-layer = (0.1, 0.14, 0.3);
mlp-hidden-layers-size = (5, 14, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 51, 80); mlp-n-hidden-layers
= (1, 3, 3);

36. Classifier = BORB-MLP; dataset = jgroups; borb-l0 = (1, 2.02, 20); borb-l1 = (1,
1.24, 20); borb-m = (1.1, 2.03, 𝑒); borb-window-size = (50, 142, 200); borb-pull-
request-size = (50, 96, 500); borb-sample-size = (1000, 1207, 4000); borb-fr1 = (3,
0.38, 5); borb-waiting-time = (90, 91, 180); mlp-batch-size = (128, 131, 512); mlp-
dropout-hidden-layer = (0.3, 0.42, 0.5); mlp-dropout-input-layer = (0.1, 0.14, 0.3);
mlp-hidden-layers-size = (5, 14, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 51, 80); mlp-n-hidden-layers
= (1, 3, 3);

37. Classifier = BORB-MLP; dataset = nova; borb-l0 = (1, 2.02, 20); borb-l1 = (1,
1.24, 20); borb-m = (1.1, 2.03, 𝑒); borb-window-size = (50, 142, 200); borb-pull-
request-size = (50, 96, 500); borb-sample-size = (1000, 1207, 4000); borb-fr1 = (3,
0.38, 5); borb-waiting-time = (90, 91, 180); mlp-batch-size = (128, 131, 512); mlp-
dropout-hidden-layer = (0.3, 0.42, 0.5); mlp-dropout-input-layer = (0.1, 0.14, 0.3);
mlp-hidden-layers-size = (5, 14, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 51, 80); mlp-n-hidden-layers
= (1, 3, 3);

38. Classifier = BORB-MLP; dataset = npm; borb-l0 = (1, 2.02, 20); borb-l1 = (1,
1.24, 20); borb-m = (1.1, 2.03, 𝑒); borb-window-size = (50, 142, 200); borb-pull-
request-size = (50, 96, 500); borb-sample-size = (1000, 1207, 4000); borb-fr1 = (3,
0.38, 5); borb-waiting-time = (90, 91, 180); mlp-batch-size = (128, 131, 512); mlp-
dropout-hidden-layer = (0.3, 0.42, 0.5); mlp-dropout-input-layer = (0.1, 0.14, 0.3);
mlp-hidden-layers-size = (5, 14, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
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log-transformation = {true, false}; mlp-n-epochs = (10, 51, 80); mlp-n-hidden-layers
= (1, 3, 3);

39. Classifier = BORB-MLP; dataset = spring-integration; borb-l0 = (1, 2.95, 20);
borb-l1 = (1, 12.14, 20); borb-m = (1.1, 1.98, 𝑒); borb-window-size = (50, 193, 200);
borb-pull-request-size = (50, 51, 500); borb-sample-size = (1000, 1828, 4000); borb-fr1

= (3, 0.37, 5); borb-waiting-time = (90, 99, 180); mlp-batch-size = (128, 129, 512);
mlp-dropout-hidden-layer = (0.3, 0.48, 0.5); mlp-dropout-input-layer = (0.1, 0.18, 0.3);
mlp-hidden-layers-size = (5, 8, 15); mlp-learning-rate = (0.0001, 0.0008, 0.01); mlp-
log-transformation = {true, false}; mlp-n-epochs = (10, 77, 80); mlp-n-hidden-layers
= (1, 2, 3);

40. Classifier = BORB-MLP; dataset = tomcat; borb-l0 = (1, 4.76, 20); borb-l1 = (1,
11.06, 20); borb-m = (1.1, 2.50, 𝑒); borb-window-size = (50, 140, 200); borb-pull-
request-size = (50, 92, 500); borb-sample-size = (1000, 2515, 4000); borb-fr1 = (3,
0.39, 5); borb-waiting-time = (90, 105, 180); mlp-batch-size = (128, 129, 512); mlp-
dropout-hidden-layer = (0.3, 0.34, 0.5); mlp-dropout-input-layer = (0.1, 0.17, 0.3);
mlp-hidden-layers-size = (5, 9, 15); mlp-learning-rate = (0.0001, 0.01, 0.01); mlp-log-
transformation = {true, false}; mlp-n-epochs = (10, 25, 80); mlp-n-hidden-layers =
(1, 1, 3);

41. Classifier = BORB-NB; dataset = tomcat; borb-l0 = (1, 1.12, 20); borb-l1 = (1,
16.81, 20); borb-m = (1.1, 1.83, 𝑒); borb-window-size = (50, 104, 200); borb-pull-
request-size = (50, 140, 500); borb-sample-size = (1000, 1527, 4000); borb-fr1 = (3,
0.39, 5); borb-waiting-time = (90, 119, 180); nb-n-updates = (10, 74, 80);

42. Classifier = BORB-NB; dataset = broadleaf; borb-l0 = (1, 1.15, 20); borb-l1 =
(1, 1.23, 20); borb-m = (1.1, 2.34, 𝑒); borb-window-size = (50, 53, 200); borb-pull-
request-size = (50, 154, 500); borb-sample-size = (1000, 3501, 4000); borb-fr1 = (3,
0.37, 5); borb-waiting-time = (90, 91, 180); nb-n-updates = (10, 17, 80);

43. Classifier = BORB-NB; dataset = neutron; borb-l0 = (1, 1.42, 20); borb-l1 = (1,
9.69, 20); borb-m = (1.1, 1.61, 𝑒); borb-window-size = (50, 161, 200); borb-pull-
request-size = (50, 88, 500); borb-sample-size = (1000, 3968, 4000); borb-fr1 = (3,
0.41, 5); borb-waiting-time = (90, 166, 180); nb-n-updates = (10, 34, 80);
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44. Classifier = BORB-NB; dataset = brackets; borb-l0 = (1, 1.43, 20); borb-l1 = (1,
11.12, 20); borb-m = (1.1, 2.26, 𝑒); borb-window-size = (50, 140, 200); borb-pull-
request-size = (50, 134, 500); borb-sample-size = (1000, 1438, 4000); borb-fr1 = (3,
0.48, 5); borb-waiting-time = (90, 90, 180); nb-n-updates = (10, 80, 80);

45. Classifier = BORB-NB; dataset = camel; borb-l0 = (1, 2.18, 20); borb-l1 = (1, 11.19,
20); borb-m = (1.1, 1.14, 𝑒); borb-window-size = (50, 150, 200); borb-pull-request-
size = (50, 162, 500); borb-sample-size = (1000, 3533, 4000); borb-fr1 = (3, 0.38,
5); borb-waiting-time = (90, 91, 180); nb-n-updates = (10, 32, 80);

46. Classifier = BORB-NB; dataset = jgroups; borb-l0 = (1, 3.16, 20); borb-l1 = (1,
6.12, 20); borb-m = (1.1, 2.14, 𝑒); borb-window-size = (50, 183, 200); borb-pull-
request-size = (50, 83, 500); borb-sample-size = (1000, 1314, 4000); borb-fr1 = (3,
0.32, 5); borb-waiting-time = (90, 96, 180); nb-n-updates = (10, 15, 80);

47. Classifier = BORB-NB; dataset = npm; borb-l0 = (1, 3.16, 20); borb-l1 = (1, 6.12,
20); borb-m = (1.1, 2.14, 𝑒); borb-window-size = (50, 183, 200); borb-pull-request-
size = (50, 83, 500); borb-sample-size = (1000, 1314, 4000); borb-fr1 = (3, 0.32, 5);
borb-waiting-time = (90, 96, 180); nb-n-updates = (10, 15, 80);

48. Classifier = BORB-NB; dataset = fabric8; borb-l0 = (1, 4.72, 20); borb-l1 = (1, 7.28,
20); borb-m = (1.1, 2.66, 𝑒); borb-window-size = (50, 193, 200); borb-pull-request-
size = (50, 101, 500); borb-sample-size = (1000, 2608, 4000); borb-fr1 = (3, 0.41,
5); borb-waiting-time = (90, 92, 180); nb-n-updates = (10, 51, 80);

49. Classifier = BORB-NB; dataset = spring-integration; borb-l0 = (1, 4.72, 20); borb-l1
= (1, 7.28, 20); borb-m = (1.1, 2.66, 𝑒); borb-window-size = (50, 193, 200); borb-
pull-request-size = (50, 101, 500); borb-sample-size = (1000, 2608, 4000); borb-fr1 =
(3, 0.41, 5); borb-waiting-time = (90, 92, 180); nb-n-updates = (10, 51, 80);

50. Classifier = BORB-NB; dataset = nova; borb-l0 = (1, 7.56, 20); borb-l1 = (1, 1.33,
20); borb-m = (1.1, 1.82, 𝑒); borb-window-size = (50, 100, 200); borb-pull-request-
size = (50, 259, 500); borb-sample-size = (1000, 2444, 4000); borb-fr1 = (3, 0.45,
5); borb-waiting-time = (90, 91, 180); nb-n-updates = (10, 18, 80);

51. Classifier = ORB-OHT; dataset = brackets; oht-grace-period = (100, 104, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 15, 40); oht-no-preprune =
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{true, false}; oht-split-confidence = (1×10-7, 0.0002, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.43, 0.5); orb-decay-factor
= (0.9, 0.96, 0.999); orb-l0 = (1, 1.89, 20); orb-l1 = (1, 2.63, 20); orb-m = (1.1,
1.52, 𝑒); orb-window-size = (50, 58, 200); orb-n = (3, 4, 7); orb-th = (3, 0.39, 5);
orb-waiting-time = (90, 95, 180);

52. Classifier = ORB-OHT; dataset = broadleaf; oht-grace-period = (100, 104, 500);
oht-leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 15, 40); oht-no-preprune
= {true, false}; oht-split-confidence = (1×10-7, 0.0002, 0.5); oht-split-criterion =
{gini, information gain, hellinger}; oht-tie-threshold = (0.05, 0.43, 0.5); orb-decay-
factor = (0.9, 0.96, 0.999); orb-l0 = (1, 1.89, 20); orb-l1 = (1, 2.63, 20); orb-m =
(1.1, 1.52, 𝑒); orb-window-size = (50, 58, 200); orb-n = (3, 4, 7); orb-th = (3, 0.39,
5); orb-waiting-time = (90, 95, 180);

53. Classifier = ORB-OHT; dataset = fabric8; oht-grace-period = (100, 104, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 15, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 0.0002, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.43, 0.5); orb-decay-factor
= (0.9, 0.96, 0.999); orb-l0 = (1, 1.89, 20); orb-l1 = (1, 2.63, 20); orb-m = (1.1,
1.52, 𝑒); orb-window-size = (50, 58, 200); orb-n = (3, 4, 7); orb-th = (3, 0.39, 5);
orb-waiting-time = (90, 95, 180);

54. Classifier = ORB-OHT; dataset = nova; oht-grace-period = (100, 104, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 15, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 0.0002, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.43, 0.5); orb-decay-factor
= (0.9, 0.96, 0.999); orb-l0 = (1, 1.89, 20); orb-l1 = (1, 2.63, 20); orb-m = (1.1,
1.52, 𝑒); orb-window-size = (50, 58, 200); orb-n = (3, 4, 7); orb-th = (3, 0.39, 5);
orb-waiting-time = (90, 95, 180);

55. Classifier = ORB-OHT; dataset = npm; oht-grace-period = (100, 111, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 33, 40); oht-no-preprune
= {true, false}; oht-split-confidence = (1×10-7, 4.27×107, 0.5); oht-split-criterion =
{gini, information gain, hellinger}; oht-tie-threshold = (0.05, 0.38, 0.5); orb-decay-
factor = (0.9, 0.95, 0.999); orb-l0 = (1, 1.74, 20); orb-l1 = (1, 14.07, 20); orb-m =
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(1.1, 2.28, 𝑒); orb-window-size = (50, 122, 200); orb-n = (3, 3, 7); orb-th = (3, 0.43,
5); orb-waiting-time = (90, 107, 180);

56. Classifier = ORB-OHT; dataset = camel; oht-grace-period = (100, 112, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 26, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 0.02, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.13, 0.5); orb-decay-factor =
(0.9, 0.98, 0.999); orb-l0 = (1, 1.73, 20); orb-l1 = (1, 10.09, 20); orb-m = (1.1,
1.10, 𝑒); orb-window-size = (50, 84, 200); orb-n = (3, 5, 7); orb-th = (3, 0.39, 5);
orb-waiting-time = (90, 102, 180);

57. Classifier = ORB-OHT; dataset = spring-integration; oht-grace-period = (100, 112,
500); oht-leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 26, 40); oht-no-
preprune = {true, false}; oht-split-confidence = (1×10-7, 0.02, 0.5); oht-split-criterion
= {gini, information gain, hellinger}; oht-tie-threshold = (0.05, 0.13, 0.5); orb-decay-
factor = (0.9, 0.98, 0.999); orb-l0 = (1, 1.73, 20); orb-l1 = (1, 10.09, 20); orb-m =
(1.1, 1.10, 𝑒); orb-window-size = (50, 84, 200); orb-n = (3, 5, 7); orb-th = (3, 0.39,
5); orb-waiting-time = (90, 102, 180);

58. Classifier = ORB-OHT; dataset = tomcat; oht-grace-period = (100, 112, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 26, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 0.02, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.13, 0.5); orb-decay-factor =
(0.9, 0.98, 0.999); orb-l0 = (1, 1.73, 20); orb-l1 = (1, 10.09, 20); orb-m = (1.1,
1.10, 𝑒); orb-window-size = (50, 84, 200); orb-n = (3, 5, 7); orb-th = (3, 0.39, 5);
orb-waiting-time = (90, 102, 180);

59. Classifier = ORB-OHT; dataset = jgroups; oht-grace-period = (100, 140, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 37, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 4.151×107, 0.5); oht-split-criterion =
{gini, information gain, hellinger}; oht-tie-threshold = (0.05, 0.26, 0.5); orb-decay-
factor = (0.9, 0.97, 0.999); orb-l0 = (1, 9.59, 20); orb-l1 = (1, 5.23, 20); orb-m =
(1.1, 1.64, 𝑒); orb-window-size = (50, 109, 200); orb-n = (3, 4, 7); orb-th = (3, 0.48,
5); orb-waiting-time = (90, 125, 180);
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60. Classifier = ORB-OHT; dataset = neutron; oht-grace-period = (100, 383, 500); oht-
leaf-prediction = {mc, nb, nba}; oht-n-estimators = (10, 20, 40); oht-no-preprune =
{true, false}; oht-split-confidence = (1×10-7, 0.07, 0.5); oht-split-criterion = {gini,
information gain, hellinger}; oht-tie-threshold = (0.05, 0.34, 0.5); orb-decay-factor
= (0.9, 0.92, 0.999); orb-l0 = (1, 3.09, 20); orb-l1 = (1, 4.13, 20); orb-m = (1.1,
1.55, 𝑒); orb-window-size = (50, 97, 200); orb-n = (3, 4, 7); orb-th = (3, 0.47, 5);
orb-waiting-time = (90, 124, 180);


	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Lista de quadros
	List of symbols
	Contents
	Introduction
	Motivation
	Software Development Context
	Process and Model Integration
	Research Questions
	Contributions
	Document Structure

	Related-work
	Software Defect Prediction
	Just-In-Time Software Defect Prediction
	Online Just-In-Time Software Defect Prediction
	Class Imbalance in Just-In-Time Software Defect Prediction
	Summary

	Fundamentals
	Problem Definition
	Data Stream
	Model and Classifier
	Main Evaluation Metric
	Methodology
	Hypotheses

	G-mean maximization
	Verification Latency
	Summary

	Proposed approach
	Limitations in the state-of-the-art
	Batch Oversampling Rate Boosting
	Summary

	Experiments
	Base Learners
	Evaluation Metrics
	Datasets
	Hyperparameter Tuning
	Training Data
	Experimental Setups
	Results and Discussions
	Summary

	Conclusions
	Future work

	References
	Testing on entire datasets
	Configuration spaces and best configurations

