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ABSTRACT

This thesis deals with some theoretical aspects related to the two-dimensional incom-
pressible micropolar fluids model. In particular, two problems were addressed. The first of
them is known in the literature as the initialization problem. The fundamental idea of this
type of problem is to recover information from the initial data based on observations of the
state of the system. For this purpose, a bounded and smooth domain of R2 with Dirichlet
boundary conditions was considered. Optimal control theory techniques ensure the existence
of at least one and at most a finite number of solutions for the problem. We also provide
sufficient conditions to guarantee uniqueness of the solution. The second problem was the
study of well posedness, in Hadamard’s sense, for the micropolar model with partial viscosity
and singular initial data, including the possibility of measures as initial data in Morrey spaces.
Through integral techniques and compactness arguments, the existence of a weak solution was
established. Uniqueness and stability of these solutions were also analyzed, showing the model
to be well posed.

Keywords: Micropolar fluids. Initialization problem. Singular initial data. Morrey spaces.



RESUMO

Esta tese trata de alguns aspectos teóricos relacionados ao modelo bidimensional para
fluidos micropolares incompressíveis. Em particular, foram abordados dois problemas. O primeiro
deles é conhecido na literatura como problema de inicialização. A ideia fundamental desse tipo
de problema é partindo de observações do estado do sistema, buscar recuperar informações dos
dados iniciais. Para tanto, foi considerado um domínio suave e limitado do R2 com condições
de Dirichlet na fronteira. Através de técnicas da teoria de controle ótimo, assegura-se a
existência de pelo menos uma e no máximo uma quantidade finita de soluções para o problema.
Também foram estudadas condições suficientes para garantir a unicidade de solução. O segundo
problema foi dedicado ao estudo da boa colocação, no sentido de Hadamard, para o modelo
micropolar com viscosidade parcial e dados iniciais singulares, incluindo a possibilidade de
medidas como dados iniciais em espaços de Morrey. Por meio de técnicas integrais e argumentos
de compacidade foi estabelecida a existência de solução fraca. A unicidade e a estabilidade
dessas soluções também foram analisadas, concluindo que o modelo é bem-posto.

Palavras-chaves: Fluidos micropolares. Problema de inicialização. Dados iniciais singulares.
Espaços de morrey.
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1 INTRODUCTION

This thesis deals with the analysis of some problems on fluid mechanics. More specifically, we
study some problems related to the system of nonlinear partial differential equations describing
micropolar fluids in two spatial dimensions.

Initially, let us briefly recall some generalities related to the problems studied here. To
describe the behavior of fluid particles over time, some assumptions and simplifications are
necessary. Indeed, the initial idea is that of a fluid as a continuous medium, that is, the
matter in the fluid is continuously distributed in order to fill the entire region of the space it
occupies1. Then, based on the universal laws2 and the constitutive laws, we obtain a set of
partial differential equations (PDEs) for the variables of interest (velocity field, pressure, mass
density, ...). This way, we have got a mathematical model.

The so called initial value problems or Cauchy problems arise naturally in the above context,
being considered fundamental in continuum mechanics. The general idea is: Assume that
the mechanical state at time t = 0 (initial conditions) and the physical properties (PDEs and
complementary conditions) for all t are known. Then, determine the mechanical state of this
medium for all t (see (CARA, 2005)). The analysis of this type of problem is based on the
existence, uniqueness and stability of solution, that is, in the well-posedness of the system in the
sense of Hadamard. By stability we mean the continuous dependence of the solution with respect
to the data. In particular, the study of this type of problem for the Navier-Stokes equations
has provided significant advances in several areas of the natural sciences and technology.

The Navier-Stokes equations form the fundamental mathematical model for describing
the motion of Newtonian fluids as water and most gases. Since a wide variety of important
fluids are non-Newtonian, new theories and mathematical models taking into account the
complexity of these fluids are necessary. Over the time, the great advance in this direction is
notorious. Micropolar fluids follow this line of advances, describing accurately the behavior of
fluids with microstructures as, for example, polymeric suspensions, liquid crystals, blood or
fluids containing certain additives (LUKASZEWICZ, 1999). From this point of view, in this work
we aim to contribute to the study of micropolar fluids. Precisely, we address two problems,
independent of each other and originally studied for the Navier-Stokes equations, and extend
their results to the two-dimensional micropolar case, emphasizing the possible influences of the
fluid structure on the obtained results.

The first problem is the so called initialization problem. It is strongly related to practical
issues in the field of atmospheric sciences, in particular, in meteorology. In modern atmospheric
science3, the equations that govern atmospheric circulation (nonlinear PDEs) are analyzed
1 More formally, a continuum media is a collection of elements (particle or material point) which can be put

into one-to-one correspondence with some region (open connected set) of Euclidean space.
2 Laws of conservation of mass, momentum and energy, see (CHORIN; MARSDEN, 1990).
3 This is a field that combines, in general, meteorology, physics, mathematics, chemistry and computer

sciences (JACOBSON, 2005).
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through numerical and computational approaches. Thus, it is very important the initial conditions
of this system to be completely defined in order to allow the execution of the algorithms. This
is considered central to numerical weather prediction (GAL-CHEN, 1978; LEDIMET; TALAGRAND,
1986). Based on some technological devices (weather balloons, reconnaissance aircraft and
satellites), it is possible to obtain observational data for the system, while the complete definition
of the initial conditions is not ensured a priori. The initialization problem consists in to use
such observed data from the system to recover the initial data. In the Navier-Stokes case,
this problem has been studied in the works (NOTTE-CUELLO; ROJAS-MEDAR; SANTOS, 2002;
WHITE, 1993; ZHOU, 1995). More specifically, in (NOTTE-CUELLO; ROJAS-MEDAR; SANTOS,
2002), the authors was investigated a initialization problem for the Magnetohydrodinamic
type equations (MHD), where the Navier-Stokes model is a particular case. In (WHITE, 1993),
the author studies initialization problem for the Burgers equation with viscosity, which is a
conservation law related to the Navier-Stokes model in one-dimensional case. In (ZHOU, 1995),
the two-dimensional Navier-Stokes case is in fact studied.

The second problem is the study of the well posedness for the micropolar model with
singular initial data. The case in which the initial data are measures (in convenient Morrey
spaces) is included in the analysis. For this, partial viscosity and the evolution of vorticity in
a micropolar fluid are considered, as well as their relationship with the angular velocity of
the particles. In the Navier-Stokes case, there are several works with singular initial data, of
which we mention, for instance (BEN-ARTZI, 1994; BEN-ARTZI M.; CROISILLE; FISHELOV, 2013;
BENFATTO; ESPOSITO; PULVIRENTI, 1985; COTTET, 1986; GALLAGHER; GALLAY, 2005; GIGA;

MIYAKAWA; OSADA, 1986), and the references therein. The study of the evolution of vorticity
for the case of singular initial data goes beyond the classical theory of Leray. Indeed, in this
theory the initial data has “finite energy”, while measures have, in general, infinite energy (see
(BEN-ARTZI M.; CROISILLE; FISHELOV, 2013)).

Below, we outline the contents of this work. In chapter 2, we describe the model of micropolar
fluids and summarize some information and related results that will be used throughout this
work (for more details see (GIGA; GIGA; SAAL, 2010; LUKASZEWICZ, 1999; LUKASZEWICZ, 2001;
MAJDA; BERTOZZI; OGAWA, 2002; ROJAS-MEDAR, 1997; ROJAS-MEDAR, 1998)). In chapter
3, we investigate the initialization problem for the micropolar fluids model. The problem is
formulated as an optimal control problem. We prove that this problem has at least one and at
most finitely many solutions. Finally, we determine sufficient conditions to assure uniqueness of
the solution. The results of this chapter were accepted for publication in Applied Mathematics
& Optimization (SILVA; CUNHA; ROJAS-MEDAR, 2020). In chapter 4, we deal with the Cauchy
problem for the partial viscous micropolar fluids model in the whole space. We assume null
angular viscosity and singular initial data, which includes the possibility of vortex sheets or
measures as initial data in Morrey spaces. For this purpose, we will consider the velocity-vorticity
formulation for the micropolar fluid model presented in chapter 2. The results of this chapter
will soon be submitted for publication in an indexed journal (BÉJAR-LÓPEZ A.; CUNHA; SOLER,
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). In chapter 5, we briefly present some current projects and future works that arise naturally
from what was discussed in previous chapters.
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2 MICROPOLAR FLUIDS MODEL

Let Ω ⊂ Rn be a bounded open set, n = 2 or 3, with smooth boundary ∂Ω. For a T > 0,
we write QT := Ω× (0, T) and ΣT := ∂Ω× (0, T). The behavior of an incompressible fluid,
with constant density ρ = 1, confined to Ω is described by the following system of equations,

∂tu− div τ+ (u · ∇)u = f in QT ,
divu = 0 in QT , (2.1)
u = 0 in ΣT ,

u(·, 0) = u0 in Ω,

where we use boldface letters to denote vector fields in Rn. In system (2.1), the unknown
u = u(x, t) = (u1(x, t), · · · , un(x, t)) represents the linear velocity field. The functions
u0 = u0(x) and f = f(x, t) = (f1(x, t), · · · , fn(x, t)) are given and denote, respectively, the
initial linear velocity and external force. The tensor τ : Rn2

sym → Rn2
sym is called stress tensor.

We denote by Rn2
sym the set of all symmetric matrices n× n. The first equation above it is

frequently called the equation of motion of a fluid.
Fluids for which the stress tensor can be written as

τ(e(u)) = −Π Id+ 2νe(u) − 2
3ν(divu)Id, (2.2)

are called Newtonian fluids and they have been extensively studied in the last decades. In
identity (2.2), we have that the unknown Π = Π(x, t) represents the pressure, the viscosity ν
is a positive constant given, Id is the identity matrix in Rn2 and

e(u) =
1
2
[
∇u+ (∇u)t

]
is the shear-stress tensor due to friction forces. A large class of real fluids are Newtonian fluids,
for example water and most gases. In this case, the previous system becomes the well-known
Navier-Stokes system

∂tu− ν∆u+ (u · ∇)u+∇Π = f in QT ,
divu = 0 in QT ,
u = 0 in ΣT ,

u(·, 0) = u0, in Ω.

This model does not consider certain fluids where the stress tensor is not symmetric, for
example, polar fluids, and the same goes for fluids that can support stress moments and body
moments, for example, microfluids. In this context, we can find fluids with microstructures as
polymeric fluids, liquid crystals and biological fluids as blood or fluids containing certain additives,
which in general are of great interest for applications in the field of industry, engineering and
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biology. These fluids are called micropolar fluids and constitute a subclass of s imple microfluids
(ERINGEN, 1964), which exhibit only micro-rotational effects and micro-rotational inertia of its
elements. From a physical point of view (LUKASZEWICZ, 1999), micropolar fluids describe the
motion of fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a
viscous medium, where the deformation of fluid particles is ignored. In (ERINGEN, 1966), A.
C. Eringen developed the mathematical model of micropolar fluids as a simplification of the
theory of simple microfluids. According to this theory, one considers the interaction between
the fluid motion and rotational motion of micro–particles. Moreover, they are generalization of
the Navier-Stokes model in the sense that the micropolar fluids model allows considering some
physical phenomena that cannot be treated by the classical Navier-Stokes approach, given that
the particles of the fluid are subject to both translation and rotation motion.

The basic micropolar model, with constant density ρ = 1, is

∂tu+ (u · ∇)u = div τ+ f,
∂tl+ (u · ∇)l = div Γ + τ× + g,

where

• τ = −(Π+ 2
3νdivu)Id+ ν

[
∇u+ (∇u)t

]
+ κ
[
∇u− (∇u)t

]
− 2κw×,

• l = Iw, where I ∈ R3×3 is the called microinertia density tensor,

• Γ = γ0(div w)Id+ γd
[
∇w+ (∇w)t

]
+ γa

[
∇w− (∇w)t

]
,

• (w×)ij = εkijwk and

• (τ×)i = εijkτjk
1, where εijk is the Levi-Civita symbol.

As above, the unknowns u = u(x, t), w = w(x, t) and Π = Π(x, t) represent, respectively,
the linear velocity field, the microrotation field (interpreted as the angular velocity field of
rotation of particles), and the pressure. The functions f and g are given and denote, respectively,
the density of external body forces per unit mass and a body source of moments. The terms
τ, l and Γ represent, respectively, stress tensor, angular momentum per unit mass and the
moment stress tensor. The positive constants ν, κ, γ0, γd, γa are viscosity coefficients given,
satisfying

γ0 + γd > γa.

If l = 0, Γ = 0 and g = 0, then the stress tensor τ is symmetric (τ× = 0), which is the
situation generally considered in the literature. In this case, the system above reduces to the
Navier-Stokes equations presented above.
1 Here we use the Einstein notation for tensors.
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Assuming, in addition, the fluid to be incompressible, we have the micropolar fluids model
in Ω

∂tu− (ν+ κ)∆u+∇Π+ (u · ∇)u = 2κcurlw+ f in QT ,
∂tw− γ∆ w− (α+ β)∇divw+ 4κw+ (u · ∇)w = 2κcurlu+ g in QT , (2.3)

divu = 0 in QT ,

together with boundary and initial conditions

u = 0, w = 0 on ΣT , (2.4)
u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω, (2.5)

with γ = γa + γd > 0 and α+ β = γ0 + γd − γa > 0. For more details see (LUKASZEWICZ,
1999).

In the present work, we restrict ourselves to the case n = 2. Such a case can be understood as
a special case of the three-dimensional model (LUKASZEWICZ, 2001). To this end, one considers
that the flow itself and the external fields do not depend on the x3-coordinate. Moreover, assume
the velocity component u3 in the x3-direction to be zero and the axes of rotation of the particles
to be parallel to the x3-axis, that is, u = (u1(x, t), u2(x, t), 0) and w = (0, 0, w3(x, t))
with x = (x1, x2) ∈ Ω ⊂ R2. The external forces are f = (f1(x, t), f2(x, t), 0) and
g = (0, 0, g3(x, t)). Then, using the notation u = (u1(x, t), u2(x, t)), w = w3(x, t),
Π = Π(x), f = (f1(x, t), f2(x, t)), g = g3(x, t) and

curlu =
∂u2

∂x1
−
∂u1

∂x2
, divu =

∂u1

∂x1
+
∂u2

∂x2
, curlw =

(
∂w3

∂x2
,−∂w3

∂x1

)
,

we can replace u, w, f and g as above into system (2.3) to obtain the system

∂tu− (ν+ κ)∆u+∇Π+ (u · ∇)u = 2κcurlw+ f in QT ,
∂tw− γ∆w+ 4κw+ (u · ∇)w = 2κcurlu+ g in QT ,

divu = 0 in QT , (2.6)
u = 0, w = 0 in ΣT ,

u(x, 0) = u0(x), w(x, 0) = w0(x) x ∈ Ω.

There are several articles dealing with the mathematical analysis of the micropolar fluids
model and important results have been obtained, among them we have well-posedness, asymp-
totic behavior and stability results. We briefly mention some results: In (ROJAS-MEDAR, 1998),
the authors proved the existence of weak solutions in bounded regular domains Ω. Existence
of local and global in time strong solutions was obtained in (ORTEGA-TORRES; ROJAS-MEDAR,
1999) and (ROJAS-MEDAR, 1997). In (ORTEGA-TORRES; ROJAS-MEDAR; CABRALES, 2012) and
(ROJAS-MEDAR; BOLDRINI, 1997), the authors studied local and uniform in time convergence
rates for Galerkin approximations of the solutions. Regarding the several aspects of long time
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behavior of micropolar fluid flows, let us highlight the following results. In (SILVA et al., 2019),
the long time behavior of weak solutions, in L2 sense, for the micropolar fluids equations in the
whole space R3 was studied through Fourier splitting. In (SILVA; FRIZ; ROJAS-MEDAR, 2016), the
authors studied the convergence of nonstationary solutions to stationary solutions of system
(2.3)-(2.5) when t→∞ in the L2 and Lα case, with α > 3 (see also (LUKASZEWICZ, 2001)).
In (SILVA; FERNANDEZ-CARA; ROJAS-MEDAR, ; SILVA; CRUZ; ROJAS-MEDAR, 2014) the authors
proved the existence of a small time interval where the fluid variables converge uniformly as the
viscosities tend to zero. The case of unbounded domains is less studied. For the case of an ex-
terior domain, we highlight (BOLDRINI; DURAN; ROJAS-MEDAR, 2010), where the authors proved
the existence and uniqueness of a strong solution. For two-dimensional unbounded domains,
one can look at the work (LUKASZEWICZ, 2003) (see also (LUKASZEWICZ; SADOWSKI, 2004)). In
the general case of a connected open set of Rn, with n = 2, 3, in (GALDI; RIONERO, 1977) the
authors proved theorems of existence and uniqueness of weak solutions. For applications, for
example in theory of lubrification, theory of porous media and natural sciences, see (FERRARI,
1983; LUKASZEWICZ, 1999). Other related works are (ELLAHI et al., 2014; LUKASZEWICZ, 1990;
SZOPA, 2007; YAMAGUCHI, 2005).

2.1 FUNCTION SPACES

As stated above, we use boldface letters to denote vector fields in Rn, as well as to indicate
spaces whose elements are of this nature. We also use the standard notation for the usual
Lebesgue and Sobolev spaces. The inner product in L2(Ω) and H1

0(Ω) are represented by (·, ·)
and ((·, ·)), respectively. We denote

C∞0,σ(Ω) = {v ∈ (C∞0 (Ω))2 ; div v = 0},

H = the clousure of C∞0,σ(Ω) in L2(Ω),

V = the clousure of C∞0,σ(Ω) in H1
0(Ω).

The spaces H and V are Hilbert spaces with respect to the inner products induced by L2(Ω)

and H1
0(Ω), respectively. Moreover,

V = {v ∈ H1
0(Ω) ; div v = 0}

and
V ↪→ H ≡ H∗ ↪→ V∗,

with each space dense in the following one and with compact injections (see e.g. (TEMAM;

FORSTE, 1979)). The norm in L2 and H will be denoted by | · |, while the norm in H1
0 and

V will be denoted by ‖ · ‖. We indicate by P the orthogonal projection from L2(Ω) onto
H. The well known Stokes operator is A : D(A) ↪→ H given by A = −P∆ with domain
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D(A) = H2(Ω) ∩V. It is characterized by

(Au, v) = ((u, v)),

for all u ∈ D(A) and v ∈ V. When Au ∈ L2(Ω) one has u ∈ H2(Ω) and the norms ‖u‖H2

and |Au| are equivalent if Ω is regular. Similar properties hold for the Laplacian operator B ≡
−∆ : D(B)→ L2(Ω) with Dirichlet boundary conditions and domain D(B) = H2(Ω)∩H1

0(Ω).
If X is a Banach space, T is either a positive real number or T = +∞ and 1 6 p 6 ∞, we
denote by Lp(0, T ;X) the Banach space of all measurable functions v : (0, T) −→ X, such that
t 7→ ‖v(t)‖X is in Lp(0, T) with norm

‖v‖p =
( ∫T

0
‖v(t)‖pXdt

)1/p
, if 1 6 p <∞,

and
‖v‖∞ = ess sup

t∈[0,T ]
‖v(t)‖X,

if p = ∞. The space C([0, T ],X) is understood in a similar manner. We define the trilinear
form

b(u, v,w) =

2∑
i,j=1

∫
Ω

uj
∂vi

∂xj
widx

for vector-valued functions u, v,w ∈ V, and

b1(u, v,w) =
2∑
j=1

∫
Ω

uj
∂v

∂xj
wdx,

for u ∈ V and scalar functions v,w ∈ H1
0(Ω). These forms satisfy the following properties

(see (TEMAM; FORSTE, 1979; TEMAM, 1983)):

Lemma 2.1. (i) b(u, v,w)

1. is a continuous form on H1
0(Ω)×H1

0(Ω)×H1
0(Ω);

2. b(u, v, v) = 0, ∀ u ∈ V and ∀ v ∈ H1
0(Ω);

3. b(u, v,w) = −b(u,w, v), ∀ u ∈ V and ∀ v,w ∈ H1
0(Ω);

4. |b(u, v,w)| 6
√

2|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, ∀ u, v, w ∈ H1
0(Ω);

5. |b(u,u, v)| 6
√

2|u|‖u‖‖v‖, ∀ u, v ∈ V;

6. |b(u, v,w)| 6 C|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w|, ∀ u ∈ V, v ∈ D(A),w ∈ H;

7. |b(u, v,w)| 6 C|u|1/2|Au|1/2‖v‖|w|, ∀ u ∈ D(A), v ∈ V, w ∈ H.

(ii) b1(u, v,w)

1. is a continuous form on H1
0(Ω)×H1

0(Ω)×H1
0(Ω);

2. b1(u, v, v) = 0, ∀ u ∈ V and ∀ v ∈ H1
0(Ω);

3. b1(u, v,w) = −b1(u,w, v), ∀ u ∈ V and ∀ v,w ∈ H1
0(Ω);

4. |b1(u, v,w)| 6 C|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, ∀ u ∈ H1
0(Ω) and v, w ∈ H1

0(Ω).
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2.2 WEAK AND STRONG SOLUTIONS IN L2 SENSE

The weak formulation of problem (2.6) is as follows.

Definition 2.2. A pair of functions (u,w) defined on Ω × (0, T), T > 0, is called a weak
solution of system (2.6) if

u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), ∂tu ∈ L2(0, T ;V∗), (2.7)
w ∈ L2(0, T ;H1

0(Ω)) ∩ L∞(0, T ;L2(Ω)), ∂tw ∈ L2(0, T ;H−1(Ω)), (2.8)

and they satisfy

(∂tu,ϕ) + (ν+ κ)((u,ϕ)) + b(u,u,ϕ) = 2κ(curlw,ϕ), (2.9)
(∂tw,φ) + γ((w,φ)) + 4κ(w,φ) + b1(u,w,φ) = 2κ(curlu,φ), (2.10)

u(x, 0) = u0(x), (2.11)
w(x, 0) = w0(x), (2.12)

for all ϕ ∈ V, φ ∈ H1
0(Ω).

Remark 2.3. The regularity conditions (2.7) and (2.8) imply u ∈ C([0, T ];H) and w ∈
C([0, T ];L2(Ω)). Therefore, the initial conditions (2.11) and (2.12) make sense with u0 ∈ H
and w0 ∈ L2.

Strong solutions are defined as follows.

Definition 2.4. If u and w are such that

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V),

w ∈ L2(0, T ;D(B)) ∩ L∞(0, T ;H1
0(Ω)),

and satisfy (2.9) - (2.12), the pair (u,w) is said to be strong solutions of system (2.6).

Note that in this case the regularity of the solutions imply the initial conditions to be
satisfied pointwisely. We state known results about the existence of such solutions. For their
proof, see (ROJAS-MEDAR, 1997; ROJAS-MEDAR, 1998).

Theorem 2.5. Given T > 0, if u0 ∈ H and w0 ∈ L2(Ω), then there exists a unique weak
solution (u,w) of system (3.1). Moreover, this solution satisfy the energy inequality

|u(t)|2 + |w(t)|2 + (ν+ κ)

∫T
0
‖u(t)‖2dt+ γ

∫T
0
‖w(t)‖2dt 6

(
|u0|

2 + |w0|
2
)
eC(ν,κ,γ)T ,

(2.13)
for all t ∈ [0, T ].
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Theorem 2.6. Let T̄ > 0, if u0 ∈ V and w0 ∈ H1
0(Ω) then, in a (possibly small) time interval

[0, T ], with 0 < T 6 T̄ , the problem (3.1) has a unique strong solution. This solution belongs
to C([0, T ];V)× C([0, T ];H1

0(Ω)) and satisfies

‖u(t)‖2 + ‖w(t)‖2 + C

∫T
0

{
|Au(t)|2 + |Bw(t)|2

}
dt 6 K0 = K0(ν, κ,γ, ‖u0‖, ‖w0‖, T),

(2.14)
for all t ∈ [0, T ], with K0 → ‖u0‖2 + ‖w0‖2 for T → 0. In addition, if u0 ∈ D(A) and
w0 ∈ D(B), then the solution (u,w) satisfies, in particular,

|∂tu(t)|
2 + |∂tw(t)|

2 + C0

∫T
0

{
‖∂tu(t)‖2 + ‖∂tw(t)‖2

}
dt 6 CeCK0+CT , (2.15)

for every t ∈ [0, T ]. Also,

u ∈ C1([0, T ];H) ∩ C([0, T ];D(A)),

w ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];D(B)).

The results above will be widely used in chapter 3.

2.3 VORTICITY EQUATION

In this section we present some notations and basic results that will be used in chapter 4,
where the micropolar model will be studied through the velocity-vorticity formulation.

The previously mentioned works have in common the use of velocity-pressure formulation
and the solution in L2 sense. However, in the context of fluid dynamics it is interesting to
describe the events in terms of the evolution of the vorticity field. The vorticity of the vector
field v in Rn is denoted by curl v and represents the tendency of the fluid to rotate around
x ∈ Rn. For n = 2, the vorticity is a scalar real-valued function and, in the present work, we
write as ω(x, t) = curl u(x, t), x ∈ R2 and t > 0. Under the perspective of numerical and
computational methods, such approach is of great importance since it simplifies significantly
some numerical methods as the vortex method, which is widely used in the context of the
Navier-Stokes equations (COTTET, 1988). Moreover, the vorticity contains all the necessary
information for velocity field reconstruction from the Biot-Savart Law:

u(x, t) = (K ∗ω)(x, t) =
∫
R2
K(x− y)ω(y, t)dy, (2.16)

where K is the Biot-Savart kernel, that is,

K(x) =
1

2π |x|
−2x⊥, x ∈ R2, (2.17)

where x⊥ = (−x2, x1). The velocity fields given by (2.16) may include, in particular, the case
of vortex sheet.
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Remark 2.7. Here we use the same notation for the convolution A ∗ B = (A ∗ B1,A ∗ B2)

of a scalar function A and a vector function B = (B1,B2) that are defined on R2. It is also
convenient to fix the same notation for the convolution of a function f and a measure µ, that
is, we consider

(f ∗ µ)(x) =
∫
Rn
f(x− y)dµ(y).

The use of the velocity-vorticity formulation to describe fluid dynamics, especially for the
Navier-Stokes system, has been studied since the 1980’s. In particular, the works (CHORIN,
1982; MAJDA, 1986; MAJDA; BERTOZZI; OGAWA, 2002) bring more details about such a study
and the equivalence between the cited formulations. The main advantage of this approach,
with regard to this thesis work, is the parabolic character of the vorticity equation as well as
the fact that the pressure term is eliminated from the system.

The formulation of system (2.6) in terms of velocity-vorticity is

∂tω− (ν+ κ)∆ω+ (u · ∇)ω = −2κ∆w+ curl f,
∂tw− γ∆w+ 4κw+ (u · ∇)w = 2κω+ g,

u = K ∗ω,
ω(·, 0) = ω0,
w(·, 0) = w0,

where we take the curl operator of the first equation in (2.6), and we use that
curl ((u · ∇)u) = (u · ∇)ω, curl (∆u) = ∆ω and curl (∇Π) = 0. Moreover, in order
to apply the Biot-Savart law, the boundary condition is replaced by a condition of decay at
infinity. Then, we can use the equivalence between the identity (2.16) and the system

curl u = ω,
div u = 0,

|u(x, t)|→ 0 as |x|→ +∞.

Note that the pressure field can also be recovered considering the incompressibility of the fluid
and the velocity fields (u,w):

∆Π = div
(
f− (u · ∇)u+ (ν+ κ)∆u+ 2κcurl w

)
,

when the drivatives make sense.
To finish this section, we emphasize that in chapter 4 we will use for simplicity w := b to

represent the angular velocity, in order to avoid possible confusion between the notations for
angular velocity and the vorticity.
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3 THE INITIALIZATION PROBLEM

The fundamental idea of initialization problem is to seek to recover information from the
initial data, based on observations of the state of the system. Due to its importance in a
great variety of problems, as for example in numerical weather prediction, and more generally
in numerical simulations for prediction models, initialization problems have been studied by
several authors, for instance, in (GAL-CHEN, 1978; LEDIMET; TALAGRAND, 1986; LORENC, 1986;
NOTTE-CUELLO; ROJAS-MEDAR; SANTOS, 2002; WHITE, 1993; ZHOU, 1995). In (LEDIMET;

TALAGRAND, 1986), the use of variational methods is proposed, including techniques of optimal
control. In this method, the initial condition is understood as a control variable. Then, a control
functional is introduced comparing the observed data with the solution of the mathematical
model, which depends on the control variable. In this way, the problem is therefore viewed
as a minimization problem. The control formulation of initialization problems is discussed
in (LIONS, 1971). Through this approach, the initialization problems for Navier-Stokes and
MHD equations have been treated in (NOTTE-CUELLO; ROJAS-MEDAR; SANTOS, 2002; WHITE,
1993; ZHOU, 1995). In these works, it has been proven that if the time interval on which the
observations are taken is short enough, then there exists at most a finite number of solutions to
the initialization problem. In (ZHOU, 1995), it is proven that such a solution is indeed unique.
Our main goal in this chapter is to extend these results for the micropolar fluids case.

Thus, let us consider the following system in R2

∂tu− (ν+ κ)∆u+∇Π+ (u · ∇)u = 2κcurlw+ f in QT ,
∂tw− γ∆w+ 4κw+ (u · ∇)w = 2κcurlu+ g in QT ,

divu = 0 in QT , (3.1)
u = 0, w = 0 in ΣT ,

u(x, 0) = u0(x), w(x, 0) = w0(x) x ∈ Ω,

where we assume, without loss of generality to our ends, f = 0 and g = 0.
This chapter is organized according to its published version (SILVA; CUNHA; ROJAS-MEDAR,

2020). In section 3.1, we show the continuity of the flux of (3.1) as well as its Gâteaux
differentiability up to second order. In sections 3.2 and 3.3 we present our main results.

3.1 CONTINUITY AND GÂTEAUX DIFFERENTIABILITY OF THE FLUX

Consider the map S : V × H1
0(Ω) −→ L2(0, T ;V) × L2(0, T ;H1

0(Ω)), which takes the
initial data (u0,w0) ∈ V ×H1

0(Ω) to the corresponding solution of problem (3.1) in a time
interval [0, T ]. We denote

S(u0,w0) = (u(u0,w0),w(u0,w0))
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and

S(u0,w0)(t) = (u(t;u0,w0),w(t;u0,w0)),

for each t ∈ [0, T ]. In view of the Definition 2.2, we can also see S as a map from V ×H1
0(Ω)

into L∞(0, T ;H)× L∞(0, T ;L2(Ω)). We show that these maps are continuous.

Proposition 3.1. Given (u0,w0) ∈ V × H1
0(Ω), there exists a constant

C = C(ν, κ,γ, T , |u0|, |w0|) such that

‖S(u0,w0) − S(z, s)‖2
L∞(0,T ;H)×L∞(0,T ;L2) + ‖S(u0,w0) − S(z, s)‖2

L2(0,T ;V)×L2(0,T ;H1
0)

6 C‖(u0,w0) − (z, s)‖2
V×H1

0
, (3.2)

for all (z, s) ∈ V ×H1
0(Ω).

Proof. Let
δ(t) = S(u0,w0)(t) − S(z, s)(t) = (δ1(t), δ2(t))

and
χ = (u0 − z,w0 − s) = (χ1,χ2),

where (z, s) ∈ V × H1
0(Ω). In view of the embedding V ↪→ H and H1

0(Ω) ↪→ L2(Ω), it is
sufficient to prove that

‖δ‖2
L∞(0,T ;H)×L∞(0,T ;L2) + ‖δ‖2

L2(0,T ;V)×L2(0,T ;H1
0)
6 C‖χ‖2

H×L2 . (3.3)

Note that δ1 and δ2 satisfy the system

(∂tδ1,ϕ) + (ν+ κ)((δ1,ϕ)) + b(δ1,u(u0,w0),ϕ)
+b(u(z, s),δ1,ϕ) = 2κ(curl δ2,ϕ),

(∂tδ2,φ) + γ((δ2,φ)) + 4κ(δ2,φ) + b1(δ1,w(u0,w0),φ)
+b1(u(z, s), δ2,φ) = 2κ(curlδ1,φ),

δ1(0) = χ1,
δ2(0) = χ2,

for all ϕ ∈ V,φ ∈ H1
0(Ω). Taking ϕ = δ1, φ = δ2 and adding these equations we obtain

1
2
d

dt

{
|δ1(t)|

2 + |δ2(t)|
2
}
+ (ν+ κ)‖δ1(t)‖2 + γ‖δ2(t)‖2 + 4κ|δ2(t)|

2

+ b(δ1(t),u(t;u0,w0),δ1(t)) + b1(δ1(t),w(t;u0,w0), δ2(t))

= 2κ
{
(curl δ2(t),δ1(t)) + (curlδ1(t), δ2(t))

}
.
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By Lemma 2.1 and Young’s Inequality,
1
2
d

dt

{
|δ1(t)|

2 + |δ2(t)|
2
}
+ (ν+ κ)‖δ1(t)‖2 + γ‖δ2(t)‖2 + 4κ|δ2(t)|

2

6
ν+ κ

2 ‖δ1(t)‖2 +
γ

2 ‖δ2(t)‖2 +
4κ2

ν+ κ
|δ2(t)|

2 +
4κ2

γ
|δ1(t)|

2

+
4

ν+ κ

{
‖u(t;u0,w0)‖2 + ‖w(t;u0,w0)‖2

}
|δ1(t)|

2 +
1

8γ‖w(t;u0,w0)‖2|δ2(t)|
2

6
ν+ κ

2 ‖δ1(t)‖2 +
γ

2 ‖δ2(t)‖2 +
4κ2

ν+ κ
|δ2(t)|

2 +
4κ2

γ

{
|δ1(t)|

2 + |δ2(t)|
2
}

+ C

{
(ν+ κ)‖u(t;u0,w0)‖2 + γ‖w(t;u0,w0)‖2

}{
|δ1(t)|

2 + |δ2(t)|
2
}

,

that is,
d

dt

{
|δ1(t)|

2 + |δ2(t)|
2
}
+ (ν+ κ)‖δ1(t)‖2 + γ‖δ2(t)‖2 +

8κν
ν+ κ

|δ2(t)|
2

6 C

{
1 + (ν+ κ)‖u(t;u0,w0)‖2 + γ‖w(t;u0,w0)‖2

}{
|δ1(t)|

2 + |δ2(t)|
2
}

.

Let F(t;u0,w0) = 1 + (ν+ κ)‖u(t;u0,w0)‖2 + γ‖w(t;u0,w0)‖2. Then,
d

dt

{
|δ1(t)|

2 + |δ2(t)|
2
}
+ (ν+ κ)‖δ1(t)‖2 + γ‖δ2(t)‖2 6 CF(t;u0,w0)

{
|δ1(t)|

2 + |δ2(t)|
2
}

.

Integrating from 0 to t, we have

|δ1(t)|
2 + |δ2(t)|

2 + (ν+ κ)

∫ t
0
‖δ1(ξ)‖2dξ+ γ

∫ t
0
‖δ2(ξ)‖2dξ

6 C0‖χ‖2
H×L2 + C

∫ t
0
F(ξ;u0,w0)

{
|δ1(ξ)|

2 + |δ2(ξ)|
2
}
dξ. (3.4)

In particular, by Gronwall’s Inequality

|δ1(t)|
2 + |δ2(t)|

2 6 C0‖χ‖2
H×L2 exp

(
C

∫ t
0
F(ξ;u0,w0)dξ

)
, ∀ t ∈ [0, T ].

Note that due to the energy inequality (2.13),

C

∫ t
0
F(ξ;u0,w0)dξ 6 C(ν, κ,γ, T , |u0|, |w0|), ∀ t ∈ [0, T ].

Then,
|δ1(t)|

2 + |δ2(t)|
2 6 C‖χ‖2

H×L2 , ∀ t ∈ [0, T ]. (3.5)

Using inequalities (3.5) and (3.4), we obtain

|δ1(t)|
2 + |δ2(t)|

2 + θ

{∫ t
0
‖δ1(ξ)‖2dξ+

∫ t
0
‖δ2(ξ)‖2dξ

}
6 C‖χ‖2

H×L2 , (3.6)

for all t ∈ [0, T ] and θ = min{ν + κ,γ}. This implies the map S to be continuous from
V × H1

0(Ω) into L∞(0, T ;H) × L∞(0, T ;L2(Ω)) and from V × H1
0(Ω) into L2(0, T ;V) ×

L2(0, T ;H1
0(Ω)).
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Next we show that the map S : V ×H1
0(Ω) −→ L2(0, T ;V)× L2(0, T ;H1

0(Ω)) is Gâteaux
differentiability. The Gâteaux derivative of S at (z, s) ∈ V ×H1

0(Ω) along the direction (π, τ)
is denoted by

η = DS(z, s) · (π, τ) = (η1,η2),

which, if it exists, is a continuous linear map from V×H1
0(Ω) into L2(0, T ;V)×L2(0, T ;H1

0(Ω)).

Proposition 3.2. The map S is Gâteaux differentiable and η is the solution of the linear
system

(∂tη1,ϕ) + (ν+ κ)((η1,ϕ)) + b(η1,u,ϕ) + b(u,η1,ϕ) = 2κ(curlη2,ϕ)
(∂tη2,φ) + γ((η2,φ)) + 4κ(η2,φ) + b1(η1,w,φ) + b1(u,η2,φ) = 2κ(curlη1,φ), (3.7)

η1(0) = π,
η2(0) = τ,

for all ϕ ∈ V,φ ∈ H1
0(Ω), where u = u(t; z, s) and w = w(t; z, s). The function η is

estimated by

|η1(t)|
2 + |η2(t)|

2 + θ

{∫ t
0
‖η1(ξ)‖2dξ+

∫ t
0
‖η2(ξ)‖2dξ

}
6 C‖(π, τ)‖2

V×H1
0
, (3.8)

for all t ∈ [0, T ] and θ = min{ν+ κ,γ}.

Proof. Let (η1,η2) be the solution of system (3.7). We need to show

lim
h→0

{
‖η1,h − η1‖L2(0,T ;V) + ‖η2,h − η2‖L2(0,T ;H1

0)

}
= 0, (3.9)

where
η1,h =

u(z+ hπ, s+ hτ) − u(z, s)
h

and
η2,h =

w(z+ hπ, s+ hτ) −w(z, s)
h

,

with h ∈ R. The pair of functions (η1,h,η2,h) satisfy

(∂tη1,h,ϕ) + (ν+ κ)((η1,h,ϕ)) + b(η1,h,u(z+ hπ, s+ hτ),ϕ)
+ b(u(z, s),η1,h,ϕ) = 2κ(curlη2,h,ϕ),

(∂tη2,h,φ) + γ((η2,h,φ)) + 4κ(η2,h,φ) + b1(η1,h,w(z+ hπ, s+ hτ),φ)
+ b1(u(z, s),η2,h,φ) = 2κ(curlη1,h,φ),

η1,h(0) = π,
η2,h(0) = τ,
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for all ϕ ∈ V,φ ∈ H1
0(Ω). Therefore, r = η1,h − η1 and l = η2,h − η2 satisfy the system

(∂tr,ϕ) + (ν+ κ)((r,ϕ)) + b(u(z, s), r,ϕ)
+ b(r,u(z, s),ϕ) = 2κ(curl l,ϕ) − b(η1,h,hη1,h,ϕ),

(∂tl,φ) + γ((l,φ)) + 4κ(l,φ) + b1(u(z, s), l,φ) (3.10)
+ b1(η1,h,hη2,h,φ) = 2κ(curl r,φ) + b1(r,φ,w(z, s)),

r(0) = 0,
l(0) = 0,

for all ϕ ∈ V,φ ∈ H1
0(Ω). Taking ϕ = r, φ = l in system (3.10) and adding these equations

we obtain
1
2
d

dt

{
|r(t)|2 + |l(t)|2

}
+ (ν+ κ)‖r(t)‖2 + γ‖l(t)‖2 + 4κ|l(t)|2

= 4κ(l(t), curl r(t)) + b(r(t),u(t; z, s), r(t)) + b(η1,h(t), r(t),hη1,h(t))

+ b1(r(t), l(t),w(t; z, s)) + b1(η1,h(t), l(t),hη2,h(t)).

Using Lemma 2.1, Young’s inequality and the fact that (u,w) ∈ C([0, T ];V)×C([0, T ];H1
0(Ω)),

we obtain the following estimates

4κ|(l(t), curl r(t))| 6 Cε1 |l(t)|
2 + ε1‖r(t)‖2,

|b(r(t),u(t; z, s), r(t))| 6 Cε2 |r(t)|
2 + ε2‖r(t)‖2,

|b(η1,h(t), r(t),hη1,h(t))| 6 Cε3 |η1,h(t)|
2‖hη1,h(t)‖2 + ε3‖r(t)‖2,

|b1(r(t), l(t),w(t; z, s))| 6 Cε4 |r(t)|
2 + ε4‖r(t)‖2 + Cε5 |l(t)|

2

+ ε5‖l(t)‖2,
|b1(η1,h(t), l(t),hη2,h(t))| 6 C1|η1,h(t)|

2‖hη1,h(t)‖2 + C2|η2,h(t)|
2‖hη2,h(t)‖2

+ ε6‖l(t)‖2,

with εi > 0, i = 1, 2, 3, 4, 5, 6. In particular, we have

1
2
d

dt

{
|r(t)|2 + |l(t)|2

}
+ (ν+ κ)‖r(t)‖2 + γ‖l(t)‖2 6 (Cε2 + Cε4)|r(t)|

2

+ (Cε1 + Cε5)|l(t)|
2

+ (ε1 + ε2 + ε3 + ε4)‖r(t)‖2

+ (ε5 + ε6)‖l(t)‖2

+ C1|η1,h(t)|
2‖hη1,h(t)‖2

+ C2|η2,h(t)|
2‖hη2,h(t)‖2.
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Choosing the εi’s so that ε1 + ε2 + ε3 + ε4 = κ and ε5 + ε6 =
γ

2 , we obtain

d

dt

{
|r(t)|2 + |l(t)|2

}
+ 2ν‖r(t)‖2 + γ‖l(t)‖2 6 C0

{
|r(t)|2 + |l(t)|2

}
+ C1|η1,h(t)|

2‖hη1,h(t)‖2 (3.11)
+ C2|η2,h(t)|

2‖hη2,h(t)‖2.

By Gronwall’s Inequality and r(0) = 0, l(0) = 0, we have

|r(t)|2 + |l(t)|2 6 C
∫T

0

{
C1|η1,h(t)|

2‖hη1,h(t)‖2 + C2|η2,h(t)|
2‖hη2,h(t)‖2

}
dt.

Since∫T
0

{
C1|η1,h(t)|

2‖hη1,h(t)‖2 + C2|η2,h(t)|
2‖hη2,h(t)‖2

}
dt

=
C

h2

∫T
0
|u(t; z+ hπ, s+ hτ) − u(t; z, s)|2‖u(t; z+ hπ, s+ hτ) − u(t; z, s)‖2dt

+
C

h2

∫T
0
|w(t; z+ hπ, s+ hτ) −w(t; z, s)|2‖w(t; z+ hπ, s+ hτ) −w(t; z, s)‖2dt

6
C

h2‖u(z+ hπ, s+ hτ) − u(z, s)‖2
L∞(0,T ;H)‖u(z+ hπ, s+ hτ) − u(z, s)‖2

L2(0,T ;V)

+
C

h2‖w(z+ hπ, s+ hτ) −w(z, s)‖2
L∞(0,T ;L2)‖w(z+ hπ, s+ hτ) −w(z, s)‖2

L2(0,T ;H1
0)

,

we have by Proposition 3.1
|r(t)|2 + |l(t)|2 6 Ch2. (3.12)

By inequalities (3.11) and (3.12)∫T
0

{
2ν‖r(t)‖2 + γ‖l(t)‖2

}
dt 6 C0

∫T
0

{
|r(t)|2 + |l(t)|2

}
dt

+ C1

∫T
0
|η1,h(t)|

2‖hη1,h(t)‖2dt

+ C2

∫T
0
|η2,h(t)|

2‖hη2,h(t)‖2dt

6 Ch2,

that is, ∫T
0

{
2ν‖r(t)‖2 + γ‖l(t)‖2

}
dt 6 Ch2, (3.13)

proving (3.9). To prove the estimate (3.8), just proceed as in Proposition 3.1. Indeed, taking
ϕ = η1, φ = η2 in system (3.7). Then, adding these equations and considering Lemma 2.1,
Young’s and Gronwall’s inequalities, we obtain the estimate (3.8).

Similar arguments can be applied to the second order Gâteaux derivative of S. For ψ =

(z, s) ∈ V × H1
0(Ω), we denote the second order Gâteaux derivative of S at ψ along the

direction (π,τ) = ((π1,π2), (τ1, τ2)) by D2S(ψ) · π · τ. We are interested only in

ζ = D2S(ψ) · π · π = (ζ1, ζ2).
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Proposition 3.3. The second order Gâteaus derivative ζ exists and is the solution of the linear
system

(∂tζ1,ϕ) + (ν+ κ)((ζ1,ϕ)) + b(ζ1,u,ϕ)
+b(u, ζ1,ϕ) = 2κ(curl ζ2,ϕ) − 2b(η1,η1,ϕ),

(∂tζ2,φ) + γ((ζ2,φ)) + 4κ(ζ2,φ) + b1(ζ1,w,φ) (3.14)
+b1(u, ζ2,φ) = 2κ(curl ζ1,φ) − 2b1(η1,η2,φ),

ζ1(0) = 0,
ζ2(0) = 0,

for allϕ ∈ V,φ ∈ H1
0(Ω), where u = u(t; z, s),w = w(t; z, s) and η(t) = (DS(ψ)·π)(t) =

(η1(t),η2(t)). The function ζ is estimated by

‖ζ‖L2(0,T ;V)×L2(0,T ;H1
0)
6M‖π‖2

V×H1
0
, (3.15)

with M =M(ν, κ,γ, T ,u,w) > 0.

Proof. We consider
ζ1,h =

η1(z+ hπ1, s+ hπ2) − η1(z, s)
h

and
ζ2,h =

η2(z+ hπ1, s+ hπ2) − η2(z, s)
h

,

with h ∈ R, and the associated system with the pair (ζ1,h, ζ2,h). Then, we proceed as in the
proof of Proposition 3.2.

3.2 FORMULATION OF THE INITIALIZATION PROBLEM

Here, we present the problem of initialization as an optimal control problem whose control
variables are the initial data. In this way, we look for solving a minimization problem, as well as
to characterize its solutions through the “adjoint problem” (optimality conditions). Uniqueness
of the solution is investigated in the next section.

Let T > 0, β > 0 and Z1, Z2 be Hilbert spaces serving as the observation space z(t) =
(z1(t), z2(t)). Let C : V ×H1

0(Ω) −→ Z1×Z2 be a bounded linear mapping. We assume z ∈
L2(0, T ;Z1)×L2(0, T ;Z2). The control-to-state mapping S from V×H1

0(Ω) into L2(0, T ;V)×
L2(0, T ;H1

0(Ω)) is well defined and continuous (see Proposition 3.1). It follows that the map
ψ 7→ CS(ψ) is a continuous mapping from V ×H1

0(Ω) into L2(0, T ;Z1)× L2(0, T ;Z2). The
constant β serves as a regularization coefficient. The state is compared with the data by the
control functional

J(ψ) =

∫T
0
‖CS(ψ)(t) − z(t)‖2

Z1×Z2dt+ β‖ψ‖
2
V×H1

0
. (3.16)
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The optimal control problem is to find ψ0 ∈ V ×H1
0(Ω) such that

J(ψ0) = min{J(ψ) ; ψ ∈ V ×H1
0(Ω)}. (3.17)

We consider the following lemmas.

Lemma 3.4. Let {ψk} be a sequence in V × H1
0(Ω) such that ψk ⇀ ψ0 in V × H1

0(Ω)

and let S(ψk), S(ψ0) be the corresponding solutions of (3.1). Then, S(ψk) ⇀ S(ψ0) in
L2(0, T ;V)× L2(0, T ;H1

0(Ω)).

Proof. Since V × H1
0(Ω) ↪→ H × L2(Ω) with compact injection, ψk → ψ0 strongly in

H × L2(Ω). By Proposition 3.1, S(ψk) → S(ψ0) in L∞(0, T ;H) × L∞(0, T ;L2(Ω)), hence
in L2(0, T ;H)× L2(0, T ;L2(Ω)). By estimate (2.13), {S(ψk)}k is bounded in L2(0, T ;V)×
L2(0, T ;H1

0(Ω)). Therefore, there exists a subsequence {S(ψkj)}j that converges weakly to
some ψ̂ in L2(0, T ;V)×L2(0, T ;H1

0(Ω)). Since L2(0, T ;V)×L2(0, T ;H1
0(Ω)) ↪→ L2(0, T ;H)×

L2(0, T ;L2(Ω)), we have ψ̂ = S(ψ0). Then, by a subsequence argument, we conclude that
S(ψk) ⇀ S(ψ0) in L2(0, T ;V)× L2(0, T ;H1

0(Ω)).

Lemma 3.5. Let {ψk} be a sequence in V × H1
0(Ω) such that ψk ⇀ ψ0 in V × H1

0(Ω).
Then, CS(ψk) ⇀ CS(ψ0) in L2(0, T ;Z1)× L2(0, T ;Z2).

Proof. Let χ ∈ L2(0, T ;Z1)× L2(0, T ;Z2). Then,∫T
0
(CS(ψk),χ)Z1×Z2dt =

∫T
0
(S(ψk),C∗χ)V×H1

0(Ω)dt,

where (·, ·)Z1×Z2 is the inner product in Z1 × Z2 and C∗ denotes the adjoint of C.
By Lemma 3.4, ∫T

0
(S(ψk),C∗χ)V×H1

0(Ω)dt→
∫T

0
(S(ψ0),C∗χ)V×H1

0(Ω)dt

=

∫T
0
(CS(ψ0),χ)Z1×Z2dt.

By the definition of weak convergence, we obtain CS(ψk) ⇀ CS(ψ0) in L2(0, T ;Z1) ×
L2(0, T ;Z2).

The main result of this section is the following.

Theorem 3.6 (Optimality Criterion). There exists a solution ψ0 of the minimization problem
(3.17).

Proof. Initially note that

J(ψ) = ‖CS(ψ) − z‖2
L2(0,T ;Z1)×L2(0,T ;Z2)

+ β‖ψ‖2
V×H1

0
> 0,
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for all ψ ∈ V × H1
0(Ω). Then, let d = inf{J(ψ) ; ψ ∈ V × H1

0(Ω)} and let {ψk} be a
minimizing sequence for J, that is, J(ψk)→ d. Since β > 0, we have

‖ψk‖2
V×H1

0
6

1
β
J(ψk) 6 C, ∀ k ∈ N.

This implies that there exists a subsequence, which we still denote by {ψk}, such that ψk ⇀ ψ0

in V ×H1
0(Ω). By Lemma 3.5, CS(ψk) ⇀ CS(ψ0) in L2(0, T ;Z2)× L2(0, T ;Z2). Since in a

Hilbert space the norm is weakly lower semicontinuous, it follows that

d = lim inf
k→∞ J(ψk)

= lim inf
k→∞

{
‖CS(ψk) − z‖2

L2(0,T ;Z1)×L2(0,T ;Z2)
+ β‖ψk‖2

V×H1
0

}
> J(ψ0).

Hence, J(ψ0) 6 d and we conclude that J(ψ0) = d, that is,ψ0 is a solution of the minimization
problem (3.17). This finishes the proof

Under the above conditions, it is not always possible to guarantee the uniqueness of the
solution, since the state is a nonlinear function of the control (initial data). Hence, we define
the set

U0 = {ψ0 ; ψ0 is a solution of problem (3.17)}. (3.18)

From the continuity of J, it follows that U0 is a closed set in V ×H1
0(Ω). We will obtain more

information about the set U0 in the next section. In this direction, the following theorem is of
great importance.

Theorem 3.7. Suppose ψ0 = (u0,w0) ∈ U0. Then, there exist u,p ∈ L2(0, T ;V) and
w,q ∈ L2(0, T ;H1

0(Ω)) such that

(∂tu,ϕ) + (ν+ κ)((u,ϕ)) + b(u,u,ϕ) = 2κ(curlw,ϕ),
(∂tw,φ) + γ((w,φ)) + 4κ(w,φ) + b1(u,w,φ) = 2κ(curlu,φ), (3.19)

(u(0),w(0)) = ψ0,

−(∂tp,ϕ) + (ν+ κ)((p,ϕ)) + b(ϕ,u,p)
+b(u,ϕ,p) = 2κ(curlq,ϕ) + (C1S(ψ0) − z1,C1ξ)Z1 ,

−(∂tq,φ) + γ((q,φ)) + 4κ(q,φ) + b1(p,w,φ)
+b1(u,φ,q) = 2κ(curlp,φ) + (C2S(ψ0) − z2,C2ξ)Z2 , (3.20)
(p(T),q(T)) = 0,

2
{
(p(0),ϕ) + (q(0),φ)

}
+ β((ψ0,ξ))

+

∫T
0

{
b1(p(t),w(t),η2(t)) − b1(η1(t),w(t),q(t))

}
dt = 0, (3.21)

for all ξ = (ϕ,φ) ∈ V ×H1
0(Ω) and C = (C1,C2).
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Proof. We begin by computing the derivative of the functional J. For a fixed ψ0, we have
1
2DJ(ψ0) · ξ =

∫T
0
(CS(ψ0)(t) − z(t),Cη(t))Z1×Z2dt+ β((ψ0,ξ)), (3.22)

for all ξ ∈ V ×H1
0(Ω), where η = DS(ψ0) · ξ is the Gatêaux derivative of S at ψ0 along the

direction ξ = (ϕ,φ), which satisfy the system (3.7). Now, let (p, q) be the solution of the
adjoint system (3.20) above. Setting (ϕ,φ) = (p, q) in system (3.7), (ϕ,φ) = η = (η1,η2)

in adjoint system (3.20), after some manipulations we obtain

2∂t
{
(p,η1) + (q,η2)

}
− b1(p(t),w(t),η2(t))

+ b1(η1(t),w(t),q(t)) = −(CS(ψ0)(t) − z(t),Cη(t))Z1×Z2 .

Integrating from 0 to T , we have

2
{
(p(0),ϕ) + (q(0),φ)

}
+

∫T
0

{
b1(p(t),w(t),η2(t)) − b1(η1(t),w(t),q(t))

}
dt

=

∫T
0
(CS(ψ0)(t) − z(t),Cη(t))Z1×Z2dt

=
1
2DJ(ψ0) · ξ− β((ψ0,ξ)),

that is,

2
{
(p(0),ϕ) + (q(0),φ)

}
+ β((ψ0,ξ))

+

∫T
0

{
b1(p(t),w(t),η2(t)) − b1(η1(t),w(t),q(t))

}
dt =

1
2DJ(ψ0) · ξ.

Using that DJ(ψ0) ·ξ = 0 for ψ0 ∈ U0, for all ξ ∈ V×H1
0(Ω), we obtain identity (3.21).

In (ZHOU, 1995), two formulations of the initialization problem for the Navier-Stokes model
as an optimal control problem are presented:

I. Assuming that observations are taken continuously in time;

II. Assuming that the final state of system (the state of the system at a terminal time T) is
observed.

Moreover, the author shows that the arguments used for the case (I) may be adapted to case
(II) analogously with minor modifications. Here, the estimate (2.14) implies that it is possible
to get the previous results for the case (II) in the same way as in (ZHOU, 1995) (section
3). Therefore, we will omit the details for the case (II) and only present the corresponding
theorems.

Thus, considering that the final state is observed, the problem is to find an initial data so
that the corresponding final state is the closest to the observation. We compare the state with
the data using the control functional

Ĵ(ψ) = ‖CS(ψ)(T) − zd‖2
V×H1

0
+ β‖ψ‖2

V×H1
0
, (3.23)
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where C = (C1,C2) : V × H1
0(Ω) −→ V × H1

0(Ω) is a bounded linear mapping, zd =

(z1
d, z2

d) ∈ V ×H1
0(Ω) is the observation at time T and S(ψ)(T) is the evaluation of S(ψ) at

time T . As before, the optimal control problem is to find ψ0 ∈ V ×H1
0(Ω) such that

Ĵ(ψ0) = min{Ĵ(ψ) ; ψ ∈ V ×H1
0(Ω)}. (3.24)

Theorem 3.8 (Optimality Criterion). There exists a solution ψ0 of the minimization problem
(3.24).

Theorem 3.9. Suppose ψ0 ∈ Û0 = {ψ ; ψ is a solution of (3.24)}. Then, there exist
u,p ∈ L2(0, T ;V) and w,q ∈ L2(0, T ;H1

0(Ω)) such that

(∂tu,ϕ) + (ν+ κ)((u,ϕ)) + b(u,u,ϕ) = 2κ(curlw,ϕ),
(∂tw,φ) + γ((w,φ)) + 4κ(w,φ) + b1(u,w,φ) = 2κ(curlu,φ), (3.25)

(u(0),w(0)) = ψ0,

−(∂tp,ϕ) + (ν+ κ)((p,ϕ)) + b(ϕ,u,p) + b(u,ϕ,p) = 2κ(curlq,ϕ),
−(∂tq,φ) + γ((q,φ)) + 4κ(q,φ) + b1(p,w,φ) + b1(u,φ,q) = 2κ(curlp,φ), (3.26)

(p(T),q(T)) = (C∗1(C1S(ψ0)(T) − z
1
d),C∗2(C2S(ψ0)(T) − z

2
d)),

2
{
(p(0),ϕ) + (q(0),φ)

}
+ β((ψ0,ξ))

+

∫T
0

{
b1(p(t),w(t),η2(t)) − b1(η1(t),w(t),q(t))

}
dt = 0, (3.27)

for all ξ = (ϕ,φ) ∈ V ×H1
0(Ω).

3.3 SUFFICIENT CONDITIONS FOR UNIQUENESS

We now prove, under certain additional conditions of regularity and compactness, that the
minimization problem studied above admits at most a finite number of solutions. Moreover, we
show that through a suitable relation between T , β and the optimal controls, the solution is
indeed unique. We consider the problem (3.17) and, therefore, the system (3.19) - (3.21). We
assume the control ψ to be an element of an admissible set Qad such that

(i) Qad ⊂
(
H2(Ω)×H2(Ω)

)
∩
(
V ×H1

0(Ω)

)
and bounded in H2(Ω)×H2(Ω);

(ii) Qad is convex and closed in V ×H1
0(Ω).

The existence of a solution to the control problem restricted to Qad is shown as in the proof
of Theorem 3.6, since Qad is bounded, convex and closed. We define the solution set

U = {ψ0 ; ψ0 is a solution of problem (3.17)}. (3.28)
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Remark 3.10. Since
(
H2(Ω) × H2(Ω)

)
∩
(
V × H1

0(Ω)

)
↪→ V × H1

0(Ω) with compact

injection and U ⊂ Qad is bounded and closed, the set U is a compact set in V ×H1
0(Ω).

Theorem 3.11. If the time interval [0, T ] is short enough, then U is finite.

Proof. Initially see that

D2J(ψ) · π · τ = 2(CS(ψ) − Z,CD2S(ψ) · π · τ)L2(0,T ;Z1)×L2(0,T ;Z2)

+ 2(Cη̂,Cη)L2(0,T ;Z1)×L2(0,T ;Z2) + 2β((π,τ))V×H1
0
,

for all π,τ ∈ V ×H1
0(Ω), where η̂ = DS(ψ) · τ and η = DS(ψ) ·π. In particular, for τ = π

we have

D2J(ψ) · π · π = 2(CS(ψ) − Z,Cζ)L2(0,T ;Z1)×L2(0,T ;Z2)

+ 2‖Cη‖2
L2(0,T ;Z1)×L2(0,T ;Z2)

+ 2β‖π‖2
V×H1

0
,

where η and ζ = D2S(ψ) ·π ·π satisfy identities (3.7) and (3.14), respectively. Our goal is to
show that if T > 0 is small enough, then D2J(ψ) is positive definite, that is,

D2J(ψ) · π · π > ε‖π‖2, ∀ π ∈ V ×H1
0(Ω).

Then, it will follow by Taylor expansion up to second order that the points of U are isolated.
Finally, we use the compactness to prove that U is finite. Indeed, since

1
2D

2J(ψ) · π · π > β‖π‖2 + ‖Cη‖2 − ‖C‖‖CS(ψ) − Z‖‖ζ‖

> β‖π‖2 − ‖C‖‖CS(ψ) − Z‖‖ζ‖,

we have by the estimate (3.15)

D2J(ψ) · π · π >

(
2β− 2M‖C‖‖CS(ψ) − Z‖

)
‖π‖2.

By Lemma 3.1, the mapψ 7−→ ‖CS(ψ)−Z‖L2(0,T ;Z1)×L2(0,T ;Z2) is continuous from V×H1
0(Ω)

to R. Then, by compactness of U, we have

RT = max
ψ∈U
‖CS(ψ) − Z‖L2(0,T ;Z1)×L2(0,T ;Z2) < +∞.

Therefore,
D2J(ψ) · π · π >

(
2β− 2M‖C‖RT

)
‖π‖2.

Since RT → 0 for T → 0 and β > 0 fixed, we can choose T > 0 small enough so that
2β − 2M‖C‖RT > ε > 0. Therefore, for T > 0 small enough we have D2J(ψ) positive
definite.

For the purpose of proving the uniqueness for solution of Problem (3.17), we use
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Proposition 3.12. The solution of the adjoint system satisfies the following inequality∫T
t

{
‖p(s)‖2 + ‖q(s)‖2

}
ds 6 F(t, T), (3.29)

where lim
T→0

F(0, T) = 0.

Proof. Taking ξ = (ϕ,φ) = (p,q) in identities (3.20) and adding the resulting expressions,

−
1
2
d

dt

{
|p(t)|2 + |q(t)|2

}
+ θ

{
‖p(t)‖2 + ‖q(t)‖2

}
6 |b(p(t),u(t),p(t))|+ |b1(p(t),w(t),q(t))|+ 2κ

{
(curlq(t),p(t)) + (curlp(t),q(t))

}
+ (C1S(ψ)(t) − z1,C1ξ(t))Z1 + (C2S(ψ)(t) − z2,C2ξ(t))Z2

6 θ

{
‖p(t)‖2 + ‖q(t)‖2

}
+ c0

{
‖u(t)‖2 + ‖w(t)‖2 + 1

}{
|p(t)|2 + |q(t)|2

}
+ α1‖C1‖2‖C1S(ψ)(t) − z1(t)‖2

Z1
+ α2‖C2‖2‖C2S(ψ)(t) − z2(t)‖2

Z2

6 θ

{
‖p(t)‖2 + ‖q(t)‖2

}
+ c0

{
‖u(t)‖2 + ‖w(t)‖2 + 1

}{
|p(t)|2 + |q(t)|2

}
+ α3‖C‖2‖CS(ψ)(t) − Z(t)‖2

Z1×Z2 ,

that is,

−
d

dt

{
|p(t)|2 + |q(t)|2

}
6 c0

{
‖u(t)‖2 + ‖w(t)‖2 + 1

}{
|p(t)|2 + |q(t)|2

}
+ α3‖C‖2‖CS(ψ)(t) − Z(t)‖2

Z1×Z2 .

Integrating from t to T and using that p(T) = q(T) = 0

|p(t)|2 + |q(t)|2 6 α3‖C‖2
∫T
t

exp
(
c0

∫s
ξ

{
‖u(τ)‖2 + ‖w(τ)‖2 + 1

}
dτ

)
× ‖CS(ψ)(s) − Z(s)‖2

Z1×Z2
ds.

Hence,
|p(t)|2 + |q(t)|2 6 c(t, T)RT ,

where lim
T→0

c(t, T) > 0 and RT is as in the proof of Theorem 3.11. Defining F0(t, T) = c(t, T)RT ,
we have

|p(t)|2 + |q(t)|2 6 F0(t, T),

with lim
T→0

F0(0, T) = 0. Similarly as above, we also obtain

−
d

dt

{
|p(t)|2 + |q(t)|2

}
+
θ

2

{
‖p(t)‖2 + ‖q(t)‖2

}
6 c0

{
‖u(t)‖2 + ‖w(t)‖2 + 1

}
×
{
|p(t)|2 + |q(t)|2

}
+α3‖C‖2‖CS(ψ)(t) − Z(t)‖2Z1×Z2 ,
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that is,

‖p(t)‖2 + ‖q(t)‖2 6 c1
d

dt

{
|p(t)|2 + |q(t)|2

}
+ c2

{
‖u(t)‖2 + ‖w(t)‖2 + 1

}{
|p(t)|2 + |q(t)|2

}
+ c3‖CS(ψ)(t) − Z(t)‖2

Z1×Z2 .

Integrating from t to T∫T
t

{
‖p(s)‖2 + ‖q(s)‖2

}
ds 6 −c1

{
|p(t)|2 + |q(t)|2

}
+ c2

∫T
t

{
‖u(s)‖2 + ‖w(s)‖2 + 1

}{
|p(s)|2 + |q(s)|2

}
ds

+ c3

∫T
t

‖CS(ψ)(s) − Z(s)‖2
Z1×Z2

ds

6 c2

∫T
t

{
‖u(s)‖2 + ‖w(s)‖2 + 1

}{
|p(s)|2 + |q(s)|2

}
ds

+ c3

∫T
t

‖CS(ψ)(s) − Z(s)‖2
Z1×Z2

ds

6 c4(T − t) max
t∈[0,T ]

F0(t, T) + c5RT := F(t, T).

This proves the estimate (3.29).

Finally, suppose there exist two solutions ψ1 = (u1
0,w1

0), ψ2 = (u2
0,w2

0) for the optimal
control problem (3.17). If (u1,w1), (u2,w2), (p1,q1), (p2,q2) are the corresponding solutions
of the state and adjoint equations as given in Theorem 3.7, we define

δ = (u1 − u2,w1 −w2) = (δ1, δ2),
ρ = (p1 − p2,q1 − q2) = (ρ1, ρ2),
v = ψ1 −ψ2 = (v1, v2).

We see that δ, ρ and v satisfy the system

(∂tδ1,ϕ) + (ν+ κ)((δ1,ϕ)) + b(δ1,u1,ϕ) + b(u2,δ1,ϕ) = 2κ(curl δ2,ϕ)
(∂tδ2,φ) + γ((δ2,φ)) + 4κ(δ2,φ) + b1(δ1,w1,φ) + b1(u2, δ2,φ) = 2κ(curlδ1,φ)

(3.30)

δ(0) = v,

−(∂tρ1,ϕ) + (ν+ κ)((ρ1,ϕ)) + b(ϕ,u1,ρ1) + b(ϕ,δ1,p2) + b(u1,ϕ,ρ1)

+ b(δ1,ϕ,p2) = 2κ(curl ρ2,ϕ) + (C1δ,C1ξ)Z1 ,
−(∂tρ2,φ) + γ((ρ2,φ)) + 4κ(ρ2,φ) + b1(ρ1,w1,φ) (3.31)

+b1(p2, δ2,φ) + b1(u1,φ, ρ2) + b1(δ1,φ,q2) = 2κ(curlρ1,φ) + (C2δ,C2ξ)Z2 ,
ρ(T) = 0,
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2(ρ(0),ξ) + β((v,ξ))

+

∫T
0

{
b1(p1,w1,η1

2) − b1(η
1
1,w1,q1) − b1(p2,w2,η2

2) + b1(η
2
1,w2,q2)

}
dt = 0, (3.32)

for all ξ = (ϕ,φ) ∈ V × H1
0(Ω), C = (C1,C2) and ηi = (ηi1,ηi2) = DS(ψi) · ξ. We seek

estimates for δ, ρ and v.

Lemma 3.13. Let δ and v be defined as above. There exists nonnegative functions Gi(t),
i = 1, 2, such that

‖δ(t)‖2 6 exp
( ∫T

0
G1(t)dt

){
‖v‖2 +

∫T
0
G2(t)dt

}
.

In particular,
‖δ‖L∞(0,T ;V)×L∞(0,T ;H1

0)
6 Cδ,1(T)‖v‖+ Cδ,2(T), (3.33)

with lim
T→0

Cδ,i(T) > 0, i = 1, 2.

Proof. By the estimate (2.15), we have (∂tδ1(t),∂tδ2(t)) ∈ V×H1
0(Ω). Taking ϕ = ∂tδ1(t),

φ = ∂tδ2(t) in system (3.30) and adding the expressions, we get

|∂tδ1(t)|
2 + |∂tδ2(t)|

2 +
θ

2
d

dt
‖δ(t)‖2 6 2κ

{
(curl δ2(t),∂tδ1(t)) + (curlδ1(t),∂tδ2(t))

}
+ |b(δ1(t),u1(t),∂tδ1(t))|

+ |b(u2(t),δ1(t),∂tδ1(t))|

+ |b1(δ1(t),w1(t),∂tδ2(t))|

+ |b1(u2(t), δ2(t),∂tδ2(t))|.

Using Hölder and Young inequalities together with Lemma 2.1, we obtain

d

dt
‖δ(t)‖2 6 G1(t)‖δ(t)‖2 +G2(t),

where

G1(t) = C0 + C1‖u1(t)‖|Au1(t)|+ C2‖u2(t)‖|Au2(t)|+ C3‖w1(t)‖2 + C4‖u2(t)‖2,
G2(t) = C5‖∂tδ2(t)‖2.

Since u1,u2 ∈ L2(0, T ;D(A))∩C([0, T ];V) andw1,w2 ∈ L2(0, T ;H1
0(Ω)), we have

∫T
0
Gi(t)dt <∞,

i = 1, 2. Applying Gronwall’s Inequality and using that δ(0) = v, we obtain

‖δ(t)‖2 6 exp
( ∫T

0
G1(t)dt

){
‖v‖2 +

∫T
0
G2(t)dt

}
.

Then, Theorem 2.5 and Theorem 2.6 give us the estimate (3.33).
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Lemma 3.14. Given T > 0 and for δ, ρ be defined as above, we have

|ρ(t)|2 6
∫T
t

exp
(
K5

∫s
0

{
‖u1(τ)‖2+‖w1(τ)‖2+1

}
dτ

){
K6+K7‖p2(s)‖2+K8‖q2(t)‖2

}
‖δ(s)‖2ds.

In particular, there exists K(t, T) > 0 such that

|ρ(t)|2 6 K(t, T)‖δ‖2
L∞(0,T ;V)×L∞(0,T ;H1

0)
, (3.34)

where lim
T→0

K(0, T) = 0.

Proof. Taking ξ = (ϕ,φ) = ρ in system (3.31), adding the resulting expressions and writing
θ = min{ν+ κ,γ}, we have

−
1
2
d

dt
|ρ(t)|2 + θ‖ρ(t)‖26 |b(ρ1(t),u1(t),ρ1(t))|+ |b(ρ1(t),δ1(t),p2(t))|

+|b(δ1(t),ρ1(t),p2(t))|+ |b1(ρ1(t),w1(t), ρ2(t))|

+|b1(p2(t), δ2(t), ρ2(t))|+ |b1(δ1(t), ρ2(t),q2(t))|

+2κ
{
(curl ρ2(t),ρ1(t)) + (curlρ1(t), ρ2(t))

}
+ (Cδ(t),Cρ(t))

6 K0‖u1(t)‖|ρ1(t)|‖ρ1(t)‖+ 2K1‖ρ1(t)‖‖δ1(t)‖‖p2(t)‖

+K2|ρ1(t)|
1/2‖ρ1(t)‖1/2‖w1(t)‖|ρ2(t)|

1/2‖ρ2(t)‖1/2

+K3‖p2(t)‖‖δ2(t)‖‖ρ2(t)‖

+K4‖δ1(t)‖‖ρ2(t)‖‖q2(t)‖+ 2κ‖ρ2(t)‖|ρ1(t)|

+2κ‖ρ1(t)‖|ρ2(t)|+ ‖C‖2‖δ(t)‖‖ρ(t)‖,

that is,

−
1
2
d

dt
|ρ(t)|2 + θ‖ρ(t)‖2 6 K5

{
‖u1(t)‖2 + ‖w1(t)‖2 + 1

}
|ρ(t)|2 + θ‖ρ(t)‖2

+

{
K6 + K7‖p2(t)‖2 + K8‖q2(t)‖2

}
‖δ(t)‖2.

Through Gronwall’s Inequality and the fact that ρ(T) = 0, it follows

|ρ(t)|2 6
∫T
t

exp
(
K5

∫s
0

{
‖u1(τ)‖2+‖w1(τ)‖2+1

}
dτ

){
K6+K7‖p2(s)‖2+K8‖q2(t)‖2

}
‖δ(s)‖2ds.

Hence, using the estimate (2.13) and Proposition 3.12, we obtain the estimate (3.34).

Lemma 3.15. Let v and ρ be defined as above. If v ∈ V × H1
0(Ω) and v 6= 0, then there

exists a constant Cv,1 > 0, independent of T , and a nonnegative function Cv,2(T) such that

β‖v‖ 6 Cv,1|ρ(0)|+ Cv,2(T), (3.35)

where lim
T→0

Cv,2(T) = 0.
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Proof. Taking ξ = v in identity (3.32) and using the Cauchy-Schwarz and Poincaré inequalities,
we have

β‖v‖2 = − 2(ρ(0), v) −
∫T

0
b1(p1,w1,η1

2)dt+

∫T
0
b1(η

1
1,w1,q1)dt

+

∫T
0
b1(p2,w2,η2

2)dt−

∫T
0
b1(η

2
1,w2,q2)dt

6 2d(Ω)|ρ(0)|‖v‖+
∫T

0
|b1(p1,w1,η1

2)|dt+

∫T
0
|b1(η

1
1,w1,q1)|dt

+

∫T
0
|b1(p2,w2,η2

2)|dt+

∫T
0
|b1(η

2
1,w2,q2)|dt

:= Cv,1|ρ(0)|‖v‖+
∑
i

Ii.

It is enough to bound the first integral I1, since the others can be bounded in an entirely
analogous way. To this end, use Lemma 2.7, the fact that wi ∈ C([0, T ];H1

0(Ω)), Hölder
inequality and estimate (3.8) to obtain

I1 =

∫T
0
|b1(p1,w1,η1

2)|dt 6 c
∫T

0
‖p1(t)‖‖w1(t)‖‖η1

2(t)‖dt

6 c max
t∈[0,T ]

‖w1(t)‖
∫T

0
‖p1(t)‖‖η1

2(t)‖dt

6 c max
t∈[0,T ]

‖w1(t)‖
{∫T

0
‖η1

2(t)‖2dt

}1/2{∫T
0
‖p1(t)‖2dt

}1/2

6 c0(T) max
t∈[0,T ]

‖w1(t)‖‖v‖
{∫T

0
‖p1(t)‖2dt

}1/2

6 c1(T)‖v‖,

with lim
T→0

c1(T) = 0. Therefore, defining Cv,2(T) =
∑
i ci(T), we obtain

β‖v‖2 6

{
Cv,1|ρ(0)|+ Cv,2(T)

}
‖v‖.

If v 6= 0, we have inequality (3.35).

Theorem 3.16. Assuming U ⊂ Qad and the interval [0, T ] to be short enough, there is only
one solution of the initialization problem (P1).

Proof. Assume that v 6= 0. By the estimates (3.33), (3.34) and (3.35)

β‖v‖ 6 Cv,1|ρ(0)|+ Cv,2(T)

6 Cv,1K(0, T)‖δ‖L∞(0,T ;V)×L∞(0,T ;H1
0)
+ Cv,2(T)

6 Cv,1K(0, T)Cδ,1(T)‖v‖+ Cv,1K(0, T)Cδ,2(T) + Cv,2(T),

that is,
β‖v‖ 6 K̂1(T)‖v‖+ K̂2(T)
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with lim
T→0

K̂i(T) = 0, i = 1, 2. Thus,

0 < ‖v‖ 6 K̂2(T)

β− K̂1(T)
.

Letting T → 0, we get 0 < ‖v‖ 6 0, which is a contradiction. Therefore, the solution of the
Problem (3.17) is unique.
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4 MICROPOLAR FLUIDS WITH SINGULAR INITIAL DATA

The generation of vorticity usually occurs in very small regions, being natural to consider
initial vorticity concentrated in a set of zero Lebesgue measure. This motivates us to consider
the initial vorticity in L1 or, more generally, as a finite measure. We call this initial vorticity
a singular initial data. We would like to understand what is the evolution of this vorticity
over time. In the Navier-Stokes case, there are several works with singular initial data, for
instance (BEN-ARTZI, 1994; BEN-ARTZI M.; CROISILLE; FISHELOV, 2013; BENFATTO; ESPOSITO;

PULVIRENTI, 1985; COTTET, 1986; GALLAGHER; GALLAY, 2005; GALLAGHER; GALLAY; LIONS,
2005; GALLAY; WAYNE, 2005; GIGA; MIYAKAWA; OSADA, 1986), and the references therein. In
(BENFATTO; ESPOSITO; PULVIRENTI, 1985), the authors constructed a smooth global solution
for the Navier-Stokes model in R2 by considering the initial vorticity as a linear combination
of Dirac masses whose total variation is small when compared to the viscosity. This result
was generalized for the case of a finite measure in (COTTET, 1986) and (GIGA; MIYAKAWA;

OSADA, 1986). On the other hand, in (BEN-ARTZI, 1994) a global result of well-posedness in
L1(R2) was obtained. In (GALLAGHER; GALLAY, 2005), the uniqueness for the initial vorticity
being a finite measure was analyzed in bidimensional case. The authors were able to remove
the hypothesis about its size. For the three dimensional case, in (COTTET; SOLER, 1988; GIGA;

MIYAKAWA, 1989; SOLER, 1994) similar results to the two dimensional case were obtained
under the hypothesis of small initial vorticity. In addition, an L∞ estimate and decay in time
of the velocity field were obtained and the physically relevant case of the vortex sheets was
also discussed. We recall that the initial data has a vortex sheet structure if the vorticity can
be written as ω0 = αδS, where α is the strength and δS is the Dirac measure located on
the curve S. In all these works, the parabolic character of the vorticity equation was of great
importance so that these singular data are compatible with the considered model.

Turning our attention to the micropolar case, the parabolic character mentioned above was
also a key argument in (DONG; ZHANG, 2010), in the particular case of null angular viscosity
(γ = 0), to prove the global existence and uniqueness of smooth solutions for the system
(2.6) with initial data in Hs(R2), s > 2. The authors used an interesting new quantity, namely
Z = ω−

2κ
ν+ κ

b, with the goal of circumventing the recursive relationship that exists between
the angular velocity b and the vorticity ω, and then obtain estimates in L∞ for both quantities
(see too (DONG; LI; WU, 2017) and (DONG; CHEN, 2009)).

Motivated by these works, our goal here is to analyze the Cauchy problem associated with
the two dimensional micropolar fluids with partial viscosity, namely γ = 0, in terms of the
evolution of the singular initial vorticity. We are also interested in the asymptotic behavior of
the micropolar fluid motion with respect to time t > 0 as well as in the case of vortex sheets
structure of vorticity described above. This type of study is new in the context of micropolar
fluids.
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Thus, let us consider the following system in R2:

∂tω− (ν+ κ)∆ω+ (u · ∇)ω = −2κ∆b+ curl f,
∂tb+ 4κb+ (u · ∇)b = 2κω+ g,

u = K ∗ω, (4.1)
ω(·, 0) = ω0,
b(·, 0) = b0.

We assume, without loss of generality, f = 0 and g = 0. We also use the standard norm in
the space Lp(Rn) is denoted by ‖ · ‖p, and for the case of Ω ⊂ Rn bounded open set we
denote by ‖ · ‖Lp(Ω), with 1 6 p 6∞ and n ∈ N. On the other hand, for our purposes it is
important to mention the well-known Morrey–type space of measures. It is known that these
spaces are suitable for the mathematical formulation of phenomena that involve, for example,
mass concentration as the initial vorticity (TADMOR, 2001). Let us recall the definition of these
spaces. Let B(x,R) be the euclidean ball of center x and radius R > 0. We define the Morrey
space Mp(Rn) = Mp as the set of all measures µ satisfying

TVB(x,R)(µ) 6 CR
n/p

′
, 1

p
+

1
p
′ = 1,

independently of x ∈ Rn and R > 0, where TVB(x,R)(µ) is the total variation of µ in the
B(x,R). The Morrey spaces of functions Mp(Rn) =Mp are defined as the space of locally
integrable functions f such that∫

B(x,R)
|f(y)|dy < CRn/p

′ ∀x ∈ Rn, R > 0,

where C is independent of x and R. We highlight that Mp is a Banach space with respect to
the norm

‖µ‖Mp = sup
x∈Rn,R>0

R−n/p ′TVB(x,R)(µ).

In the same way, Mp is also a Banach space under the norm

‖f‖Mp = sup
x∈Rn,R>0

R−n/p ′
∫
B(x,R)

|f(y)|dy.

Note that M1 coincides with the space of finite variation measures, here denoted by M, and
M1 = L1. Moreover, M∞ = L∞, with equivalent norms, and Lp ⊂Mp for 1 < p <∞, with
continuous injection.

In what follows, we use C to denote a generic constant, independent of x and t, but still
depending on the general data of the problem. When we need to explicitly indicate certain
dependencies, we write C = C(Z,R, · · · ).

We now list the main results of this chapter.
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Theorem 4.1. Let ω0,b0 ∈ L1(R2) ∩ L∞(R2). Then, the system (4.1) has a unique global
mild solution, in the sense of Definition 4.14 (see page 51 below), and the inequality

‖u(·, t)‖∞ 6 C(ν, κ){(ν+ κ)t}−1/2 (4.2)

holds, with t ∈ (0, T ], for all T > 0. Moreover, assume that (ω,u,b) and (ω̂, û, b̂) are
mild solutions of system (4.1) with initial data (ω0,b0) and (ω̂0, b̂0), respectively. Then, the
following inequalities are verified

‖(u− û)(·, t)‖∞ 6 Ct−1/2, (4.3)
‖(ω− ω̂)(·, t)‖1 + ‖(ω− ω̂)(·, t)‖∞ + ‖(b− b̂)(·, t)‖1 + ‖(b− b̂)(·, t)‖∞ 6 CΠ̂, (4.4)

where Π̂ = Π̂(ω0,b0, ω̂0, b̂0) = max{‖ω0 − ω̂0‖1, ‖ω0 − ω̂0‖∞, ‖b0 − b̂0‖1, ‖b0 − b̂0‖∞} and
C > 0 is a constant independent of Π̂.

Theorem 4.2. Let ω0 ∈M(R2) and b0 ∈M(R2) ∩Mp(R2), with p > 2. The system (4.1)
has a unique global weak solution, in the sense of Definition 4.22 (see page 63 below), such
that

‖u(·, t)‖∞ 6 C(ν, κ){(ν+ κ)t}−1/2, (4.5)

with t ∈ (0, T ], for all T > 0. Moreover, the solutions are also stable in an analogous sense to
(4.3)-(4.4), where in this case Π̂ depends on the norms M(R2) and Mp(R2) of the initial data.

Below we summarize the general ideas used to demonstrate the above results. First, we
introduce a new quantity relating the vorticity and the angular velocity by

W = (ν+ κ)ω− 2κb. (4.6)

Then, we have that system (4.1) is formally equivalent to the following system, which will be our
main object of study in the sequel,

∂tW − (ν+ κ)∆W +
4κ2

ν+ κ
W = −(u · ∇)W +

8κ2ν

ν+ κ
b,

u = K ∗
(

1
ν+ κ

W +
2κ
ν+ κ

b

)
,

∂tb+
4κν
ν+ κ

b+ (u · ∇)b =
2κ
ν+ κ

W (4.7)

W(·, 0) =W0 = (ν+ κ)ω0 − 2κb0,

b(·, 0) = b0.

The next step will be to consider a regularized problem for (4.7) obtained by regularizing
the initial data and introducing a time-delay in the nonlinear terms. We will prove uniform
estimates for short times by integral equation techniques. In particular, we prove L∞ estimates
for the velocity field, which allow us to obtain the existence of solutions through compactness
arguments. Using the same ideas, uniqueness and stability of solution are obtained.

This chapter is organized as follows: in section 4.1 we introduce some notations and basic
results and the definition of solutions. We construct the regularized problem to obtain the
existence of a regularized solution. In sections 4.2 and 4.3, we prove our main results.
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4.1 PRELIMINARIES AND THE REGULARIZED PROBLEM

The aim of this section is to introduce the notations and summarize the basic results that
are necessary to follow the arguments.

We begin with the following result, see (BREZIS, 2010, Proposition 4.16) for the details.

Lemma 4.3. Let f ∈ L1(Rn), g ∈ Lp(Rn) and h ∈ Lq(Rn), with 1
p
+

1
q
= 1. Then we have

∫
Rn
(f ∗ g)hdx =

∫
Rn
g(f̌ ∗ h)dx,

where f̌(x) = f(−x).

The following results will be used extensively in this work to obtain a priori estimates for
the solutions, see (FISHELOV, 1991; MICHALSKI, 1993).

Lemma 4.4. If δ,µ, τ > 0 and t > 0, then

t1−µ
∫ t

0
(t− s)µ−1sδ−1e−τsds 6 C, (4.8)

where C = C(µ, δ, τ) = max{1, 21−µ}G(δ)(1 + δ/µ)τ−δ and G denotes the Gamma function.

Lemma 4.5. Given f ∈Wm,p(Rn) and θ : Rn → R satisfying:

1.
∫
Rn
θ(x)dx = 1,

2.
∫
Rn
xαθ(x)dx = 0, ∀ |α| 6 n− 1,

3.
∫
Rn

|x|n|θ(x)|dx <∞.

Set θδ(x) = 1
δn
θ
(
x
δ

)
, δ > 0. Then ‖f− f ∗ θδ‖p 6 Cδm‖f‖Wm,p .

Lemma 4.6. Let φ : R2 → R2 be a bijective map and I : R2 → R2 the identity map. If
I− φ ∈ L∞(R2,R2), there exists a constant C such that for every ω ∈ L1(R2) ∩ L∞(R2), it
holds∣∣∣ ∫

R2
(K(x−y)−K(x−φ(y)))ω(y)dy

∣∣∣ 6 C‖I−φ‖L∞(R2)(1+ | log ‖I−φ‖L∞(R2)|), (4.9)

where C = C(‖ω‖L1(R2) + ‖ω‖L∞(R2)).

We highlight more properties of the Biot-Savart kernel that will be useful. See (GIGA; GIGA;

SAAL, 2010, Chapter 6), (GIGA; MIYAKAWA, 1989, p. 588) and (STEIN, 1970, p. 119) for different
proofs.
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Lemma 4.7. 1. [Hardy-Littlewood-Sobolev inequality] Let 1 < q < p < ∞ with
1
p
+

1
n

=
1
q
+ 1 and µ ∈Mp(Rn). Then, K ∗ µ ∈Mq(Rn) and

‖K ∗ µ‖Mq 6 C(p)‖µ‖Mp .

2. Consider
1
p
+

1
n
< 1 < 1

q
+

1
n

,

and µ ∈Mp(Rn) ∩Mq(Rn). Then, there exists a constant C > 0 so that

‖K ∗ µ‖∞ 6 C‖µ‖
(

1
n−

1
q
′

)/(
1
q−

1
p

)
Mp ‖µ‖

(
1
p
′ −

1
n

)/(
1
q−

1
p

)
Mq .

System (4.1) couples the heat equation and the non-linear transport equation. Regarding
the heat equation, the Duhamel Principle will be widely used here in order to define a mild
solution to

∂tv− (ν+ κ)∆v = h, x ∈ R2, t > 0,
v(·, 0) = v0,

which is explicitly given by

v(·, t) = Γ(·, t) ∗ v0 +

∫ t
0
Γ(·, t− s) ∗ h(·, s)ds,

where
Γ(x, t) = 1

4π(ν+ κ)t
exp
(
−

|x|2

4(ν+ κ)t

)
is the Heat kernel.

The following result summarize some properties of the heat kernel Γ in Morrey spaces. See
(GIGA; MIYAKAWA, 1989, p. 586 - 590) for the details.

Lemma 4.8. Let 1 6 p 6 q 6∞ and µ ∈Mp(R2). Then, there exists a constant C > 0 for
which the inequality

‖∂βx Γ(·, t) ∗ µ‖Mq 6 C{(ν+ κ)t}−|β|/2−(1/p−1/q)‖µ‖Mp , (4.10)

holds, for all t > 0, where β is a multi-index. Moreover, Γ(·, t) ∗ µ→ µ, as t→ 0, weakly as
measures on each fixed open ball and

lim
t→0
‖Γ(·, t) ∗ µ‖Mp = ‖µ‖Mp . (4.11)

We recall below the definition of convergence of a function f(·, t), as t → 0, weakly
as measures. We begin recalling the definition of weak-∗ convergence in measures spaces
(see (BEN-ARTZI M.; CROISILLE; FISHELOV, 2013, Appendix A)).
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Definition 4.9. We say that the family of measures (µε)ε>0 converges in the weak-∗ topology
to measure µ, if

lim
ε→0
〈µε,ϕ〉 = 〈µ,ϕ〉,

for all ϕ ∈ C∞0 (R2), where and 〈·, ·〉 denote the pairing between measures and continuous
functions, that is,

〈µ,ϕ〉 =
∫
R2
ϕdµ.

For f(·, t) ∈ L1(R2), with t > 0, we can identify this function with a measure µf(·,t) by

〈µf(·,t),ϕ〉 =
∫
R2
f(x, t)ϕ(x)dx,

where dx is the Lebesgue measure. Thus, f(·, t)→ µ, as t→ 0, weakly as measures means

lim
t→0
〈µf(·,t),ϕ〉 = 〈µ,ϕ〉, (4.12)

or more specifically,
lim
t→0

∫
R2
f(x, t)ϕ(x)dx =

∫
R2
ϕdµ, (4.13)

for all ϕ ∈ C∞0 (R2).
If µ ∈Mp ∩Mq, 1 6 p 6 q 6∞, then we also have the following result of interpolation in
Morrey spaces

‖µ‖Mr 6 ‖µ‖1−θ
Mp ‖µ‖θMq ,

with 1
r
=

1 − θ

p
+
θ

q
and 0 6 θ 6 1. In particular, all the previous estimates also hold in Lp

spaces.
Now, we recall the classical representation for solutions of the transport equation.

Lemma 4.10. If v ∈ L∞(0, T ;W1,∞(R2)) and h ∈ L1(0, T ;Lp(R2)), the following Cauchy
problem for θ = θ(x, t) with initial data θ0 ∈ Lp(R2), 1 6 p 6∞, has a unique solution

∂tθ− div (vθ) = h, x ∈ R2, t ∈ [0, T),
div v = 0,
θ(·, 0) = θ0.

This solution is defined by

θ(x, t) = θ0(X(0; x, t)) +
∫ t

0
h(X(s; x, t), s)ds,

where the function X(t; x, t0), 0 6 t0 < T , denotes the characteristics related to v, that is,
the unique solution of the system

d

dt
X(t; x, t0) = v(X(t; x, t0), t), t ∈ [0, T),

X(t0; x, t0) = x.

In particular,

‖θ(·, t)‖p 6 ‖θ0‖p +
∫ t

0
‖h(·, s)‖pds, t ∈ [0, T). (4.14)
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For the proof, see (AMBROSIO, 2008, Chapter 1) and (COTTET, 1988, p. 232). This result
can be easily extended to Log-Lipschitz velocity fields

|v(x+ y, t) − v(x, t)| 6 C|y|(1 + | ln |y||), (4.15)

for all x,y ∈ R2 and t > 0, which will be our object of study here.
In order to construct regularized system for (4.7), we consider two C∞0 positive functions

ρ(t) and ψ(x) such that

(i) ψ(|x|) = ψ(x) and it is a nonincreasing function of |x|,

(ii)
∫
ρdt = 1 and

∫
ψdx = 1,

(iii) supp(ρ) ⊂ [1, 2].

Given ε > 0, we set ρε(t) = ε−1ρ(t/ε),ψε(x) = ε−2ψ(x/ε),Wε
0 =W0∗ψε and bε0 = b0∗ψε,

where ∗ denotes the convolution in R2. Note that Wε
0 , bε0 ∈Wm,1(R2) ∩Wm,∞(R2), for all

m ∈ N.
We denote by Π(W0,b0) a constant depending on the norms of the initial data, either in terms
of the L1 and L∞ norms, as in Section 4.2, or in terms of the norms in Morrey spaces, as in
Section 4.3.
Given a function f defined on R2 × R, we define the time-delay mollification of f, denoted by
Mε(f), by

Mε(f)(x, t) =
∫+∞

2ε
ρε(t− s)f(x, s)ds. (4.16)

Directly by this definition, it follows

Mε(f)(x, t) = 0, if t 6 2ε,

‖Mε(f)(·, t)‖X 6 max
t−2ε<s<t−ε

‖f(·, s)‖X (4.17)

6 max
t/2<s<t

‖f(·, s)‖X,

for any normed space X.
Introducing the following regularized and linearized problem

∂tW
ε − (ν+ κ)∆Wε +

4κ2

ν+ κ
Wε = −Mε((uε · ∇)Wε) +

8κ2ν

ν+ κ
Mε(bε),

uε = K ∗
(

1
ν+ κ

Wε +
2κ
ν+ κ

Mε(bε)

)
,

∂tb
ε +

4κν
ν+ κ

bε + (uε · ∇)bε = 2κ
ν+ κ

Wε, (4.18)

Wε(·, 0) =Wε
0 ,

bε(·, 0) = bε0 ,

one can state the main result of this section:
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Proposition 4.11. For each ε > 0, problem (4.18) admits a unique classical solution
(Wε,uε,bε). This solution is C∞ and div uε = 0.

Proof. We proceed by induction. We consider the time interval Jm = [mε, (m+ 1)ε], m ∈ N.
The argument will be as follows: using the definition (4.16), problem (4.18) reduced to a linear
problem on each time interval Jm. Through the semigroup theory, the smoothing effect of the
heat equation and the classic theory of the transport equation, we obtain smooth solutions
Wε, uε, bε in Jm. Since the nonlinear couplings associated to the system for t ∈ Jm+1 are
delayed on their values in t ∈ Jm, the problem is now linear and we conclude that there exists
a unique smooth solution for the above regularized problem. Indeed, using the definition (4.16),
for 0 6 t 6 ε the system (4.18) transforms into:

∂tW
ε
1 − (ν+ κ)∆Wε

1 +
4κ2

ν+ κ
Wε

1 = 0,

uε1 = K ∗
(

1
ν+ κ

Wε
1

)
,

∂tb
ε
1 +

4κν
ν+ κ

bε1 + (uε1 · ∇)bε1 =
2κ
ν+ κ

Wε
1 ,

Wε
1 (·, 0) =Wε

0 ,

bε1(·, 0) = bε0 ,

for 0 6 t 6 ε. Since Wε
0 ∈ C∞(R2)∩ L1(R2)∩ L∞(R2) (in particular), classic theory for heat

equation with a potential assures that there exists a unique smooth solutionWε
1 (·, t) ∈ C∞(R2)

of the above system. Therefore, uε1(·, t) =
1

ν+ κ
K ∗Wε is well defined and is C∞(R2) for

0 6 t 6 ε. Furthermore, the hypothesis bε0 ∈ C∞(R2) implies that there exists a unique
bε1(·, t) ∈ C∞(R2) satisfying, in the classic sense, the system

∂tb
ε
1 +

4κν
ν+ κ

bε1 + (uε1 · ∇)bε1 =
2κ
ν+ κ

Wε
1 ,

bε1(·, 0) = bε0 ,

for 0 6 t 6 ε. In summary, for 0 6 t 6 ε system (4.18) admits a unique C∞ solution given
by (Wε

1 ,uε1 ,bε1). Now, if ε 6 t 6 2ε, consider

∂tW
ε
2 − (ν+ κ)∆Wε

2 +
4κ2

ν+ κ
Wε

2 = 0,

uε2 = K ∗
(

1
ν+ κ

Wε
1

)
,

∂tb
ε
2 +

4κν
ν+ κ

bε2 + (uε2 · ∇)bε2 =
2κ
ν+ κ

Wε
2 ,

Wε
2 (·, ε) =Wε

1 (·, ε),

bε2(·, ε) = bε1(·, ε),

for ε 6 t 6 2ε. As in the previous case, this system admits a unique C∞(R2) solution given
by (Wε

2 ,uε2 ,bε2). We can repeat the reasonig for each spatial derivative. By gluing the previous
solutions, we have that system (4.18) admits a unique C∞ solution for 0 6 t 6 2ε. In this
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way, we construct a sequence {(Wε
m,uεm,bεm)} given by the solution of the system

∂tW
ε
m − (ν+ κ)∆Wε

m +
4κ2

ν+ κ
Wε
m = Gm,

uεm = K ∗
(

1
ν+ κ

Wε
m +

2κ
ν+ κ

Hm

)
,

∂tb
ε
m +

4κν
ν+ κ

bεm + (uεm · ∇)bεm =
2κ
ν+ κ

Wε
m,

Wε
m(·,mε) =Wε

m−1(·,mε),

bεm(·,mε) = bεm−1(·,mε),

for (m− 1)ε 6 t 6 mε. Here, G1 = G2 = G3 = H1 = H2 = H3 = 0,

G4(x, t) =
∫3ε

2ε
ρε(t− s)

[
8κ2ν

ν+ κ
bε3(x, s) − (uε3 · ∇)Wε

3 (x, s)
]
ds,

H4(x, t) =
∫3ε

2ε
ρε(t− s)

2κ
ν+ κ

bε3(x, s)ds,

for 3ε 6 t 6 4ε. If m > 5,

Gm(x, t) =
∫ (m−2)ε

(m−3)ε
ρε(t− s)

[
8κ2ν

ν+ κ
bεm−2(x, s) − (uεm−2 · ∇)Wε

m−2(x, s)
]
ds

+

∫ (m−1)ε

(m−2)ε
ρε(t− s)

[
8κ2ν

ν+ κ
bεm−1(x, s) − (uεm−1 · ∇)Wε

m−1(x, s)
]
ds,

Hm(x, t) =
∫ (m−2)ε

(m−3)ε
ρε(t− s)

2κ
ν+ κ

bεm−2(x, s)ds+
∫ (m−1)ε

(m−2)ε
ρε(t− s)

2κ
ν+ κ

bεm−1(x, s)ds,

for (m − 1)ε 6 t 6 mε. By an induction process, we have that Gm,Hm ∈ C∞ for every
m ∈ N, which implies, via the Duhamel principle, the existence and uniqueness for the triplet
(Wε,uε,bε) defined by Wε(x, t) = Wε

m(x, t),uε(x, t) = uεm(x, t),bε(x, t) = bεm(x, t),
with m such that (m− 1)ε 6 t 6 mε is the unique C∞ solution of system (4.18).

Furthermore, uε is divergence-free as a consequence of div K = 0 (for x 6= 0) and a
classic cutoff argument. Indeed, given δ > 0, we consider a cutoff function θδ(x) = θ(|x|/δ),
where θ ∈ C∞0 (R2) is such that supp(θ) ⊂ [0, 2] and θ(r) = 1, for all r ∈ [0, 1]. If we denote
Hε =

(
1

ν+ κ
Wε +

2κ
ν+ κ

Mε(bε)

)
and θδ = 1 − θδ, then

uε(x, t) =
∫
R2
θδ(x− y)K(x− y)H

ε(y, t)dy+

∫
R2
θδ(y)K(y)H

ε(x− y, t)dy

:= Iδ1(x, t) + Iδ2(x, t).

Since div(K(x)) = 0 for every x 6= 0 we deduce

div(Iδ1(x, t)) =
∫
|x−y|>δ

div(θδ(x− y)K(x− y))H
ε(y, t)dy

=

∫
|x−y|>δ

∇θδ(x− y) ·K(x− y)Hε(y, t)dy.
(4.19)
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Since θδ(x−y) is radial while K(x−y) is tangential, we have div(Iδ1(x, t)) = 0. On the other
hand, using that K is integrable in balls centered in 0, the Dominated Convergence Theorem
and the induction above, we derive

div(Iδ2(x, t)) =
∫
R2
θδ(y)K(y) · ∇Hε(x− y, t)dy

=

∫
|x−y|>δ

∇θδ(x− y) ·K(x− y)Hε(x− y, t)dy δ→0−→ 0
(4.20)

Therefore, since div(uε(x, t)) = div(Iδ1(x, t)) + div(Iδ2(x, t)) for every δ > 0, it follows that
div(uε(x, t)) = 0 and the proof is completed.

In order to define the mild formulation of system (4.18), note that using divuε = 0, we
have Mε((uε · ∇)Wε) =Mε(div uεWε). Since Mε commute with the convolution and with
the differentiation with respect to x, we obtain

−Γ(·, t− s) ∗Mε(div uεWε)(·, s)= −

∫
R2
Γ(·− y, t− s)

∫+∞
2ε

ρε(s− τ)
∑
j

∂(uεjW
ε)

∂xj
(y, τ)dτdy

=

∫+∞
2ε

ρε(s− τ)

∫
R2

∑
j

∂Γ

∂xj
(·− y, t− s)(uεjWε)(y, τ)dydτ

=

∫
R2

∑
j

∂Γ

∂xj
(·− y, t− s)

∫+∞
2ε

ρε(s− τ)(u
ε
jW

ε)(y, τ)dτdy

=
∑
j

∂Γ

∂xj
(·, t− s) ∗Mε(uεjW

ε)(·, s).

Therefore, we can write

−Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s) := ∇Γ(·, t− s) ∗Mε(uεWε)(·, s).

Then, the mild formulation of the problem (4.18) can be formulated by using the Duhamel
Principle and Lemma 4.10 as follows

Wε(·, t) = e− 4κ2
ν+κtΓ(·, t) ∗Wε

0 +

∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗Mε(uεWε)(·, s)ds

+
8κ2ν

ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)Γ(·, t− s) ∗Mε(bε)(·, s)ds, (4.21)

uε(·, t) =
(
K ∗
{

1
ν+ κ

Wε +
2κ
ν+ κ

Mε(bε)

})
(·, t), (4.22)

bε(·, t) = e− 4κν
ν+κtbε0(X

ε(0; ·, t)) + 2κ
ν+ κ

∫ t
0

e− 4κν
ν+κ (t−s)Wε(Xε(s; ·, t), s)ds, (4.23)

where 
d

dt
Xε(t; x, t0) = uε(Xε(t; x, t0), t), t ∈ [0, T),

Xε(t0; x, t0) = x.
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4.2 INITIAL DATA IN L1 ∩ L∞

In this section, we will present the proof of the Theorem 4.1. It will be divided into several
parts dealing with existence, uniqueness and stability of solutions. Firstly, we establish the a
priori estimates for the sequence (Wε,uε,bε) that was introduced in the previous section and
analyze the convergence of this sequence.

4.2.1 A priori estimates

We first derive a priori bounds for family (Wε,uε,bε) with initial data W0,b0 ∈ L1(R2)∩
L∞(R2).

Proposition 4.12. There exist T∗ = T∗(ν, κ,Π(W0,b0)) > 0 and a positive constant C =

C(ν, κ) such that the following estimates

‖uε(·, t)‖∞ 6 C{(ν+ κ)t}−1/2, (4.24)
‖Wε(·, t)‖1 + ‖Wε(·, t)‖∞ + ‖bε(·, t)‖1 + ‖bε(·, t)‖∞ 6 CΠ(W0,b0), (4.25)

hold for any time t ∈ (0, T∗]. In addition, the function uε is uniformly bounded in L∞(0, T∗;L∞(R2)).

Proof. In view of Lemma 4.7 and identity (4.22), we have

‖uε(·, t)‖∞ 6
C

ν+ κ

{
‖Wε(·, t)‖1+‖Wε(·, t)‖∞+2κ

(
max

t/2<s<t
‖bε(·, s)‖1+ max

t/2<s<t
‖bε(·, s)‖∞

)}
,

(4.26)
for all t > 0.

Let q = 1 or ∞. Using identity (4.23), we have

‖bε(·, t)‖q 6 Π(W0,b0) +
2κ
ν+ κ

∫ t
0

e− 4κν
ν+κ (t−s)‖Wε(·, s)‖qds, (4.27)

for all t > 0. Now, combining property (4.17), Lemma 4.8 and identity (4.21), we have

‖Wε(·, t)‖q 6 e−
4κ2
ν+κt‖Γ(·, t) ∗Wε

0 ‖q +

∫t
0

e−
4κ2
ν+κ (t−s)‖∇Γ(·, t− s) ∗Mε(Wεuε)(·, s)‖qds

+
8κ2ν

ν+ κ

∫t
0

e−
4κ2
ν+κ (t−s)‖Γ(·, t− s) ∗Mε(bε)(·, s)‖qds

6 ‖Wε
0 ‖q + C(ν+ κ)−1/2

∫t
0
(t− s)−1/2e−

4κ2
ν+κ (t−s)‖Mε(Wεuε)(·, s)‖qds

+
8κ2ν

ν+ κ

∫t
0

e−
4κ2
ν+κ (t−s)‖Mε(bε)(·, s)‖qds.

Then, we find

‖Wε(·, t)‖q 6 Π(W0,b0) + C(ν+ κ)−1/2
∫t

0
(t− s)−1/2e− 4κ2

ν+κ
(t−s) max

s/2<τ<s
‖uε(·, τ)‖∞‖Wε(·, τ)‖qds

+
8κ2ν

ν+ κ

∫t
0

e− 4κ2
ν+κ

(t−s) max
s/2<τ<s

‖bε(·, τ)‖qds, (4.28)
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for all t > 0. Combining the estimates (4.26), (4.27) and (4.28), and setting

λ(t) = sup
s6t

{
‖Wε(·, s)‖1, ‖Wε(·, s)‖∞, ‖bε(·, s)‖1, ‖bε(·, s)‖∞

}
,

we find
λ(t) 6 C0Π(W0,b0) + C1(ν, κ)tλ(t) + C2(ν, κ)

√
tλ(t)2,

or equivalently
0 6 C0Π(W0,b0) +

(
C1t− 1

)
λ(t) + C2

√
tλ(t)2,

where C0 > 1, C1(ν, κ) = 8κ2ν+ 2κ
ν+ κ

and C2(ν, κ) = C(ν+κ)−3/2(2κ+1). Choosing T∗ > 0
small enough such that T∗ <

1
C1

,

σ = (C1T
∗ − 1)2 − 4C0Π(W0,b0)C2

√
T∗ > 0,

(4.29)

and by the continuity of λ, we obtain

0 6 λ(t) 6
1 − C1t−

√
σ

2C2
√
t

6
1

2C2
√
t
,

for t ∈ (0, T∗]. From this we deduce ‖uε(·, t)‖∞ 6
C(2κ+ 1)
ν+ κ

λ(t), t > 0, and the estimate
(4.24) holds. Now, replacing the estimate (4.24) into (4.28) and adding the estimate (4.27),
we obtain

‖Wε(·, t)‖q + ‖bε(·, t)‖q 6 C0Π(W0,b0) + C(ν, κ)
∫t

0

{
(t− s)−1/2s−1/2 + e− 4κ2

ν+κ
(t−s) + e− 4κν

ν+κ
(t−s)

}
×
{

max
s/2<τ<s

‖Wε(·, τ)‖q + max
s/2<τ<s

‖bε(·, τ)‖q
}
ds.

If λ1(t) = max
s6t

{
‖Wε(·, s)‖q, ‖bε(·, s)‖q

}
, we have

λ1(t) 6 C0Π(W0,b0) + C(ν, κ)λ1(t)

∫ t
0

(
(t− s)−1/2s−1/2 + e− 4κ2

ν+κ (t−s) + e− 4κν
ν+κ (t−s)

)
ds

6 C0Π(W0,b0) + C(ν, κ)M(t)λ1(t),

with M(t) = 2t+ C. Then, if C(ν, κ)M(T∗) < 1, we have proved the estimate (4.25). Since
we know that ‖uε(·, t)‖L∞ 6

C(2κ+ 1)
ν+ κ

λ(t) and we have just proved that λ(t) is uniformly
bounded, we deduce that uε(x, t) is uniformly bounded in L∞.

Remark 4.13. Since Wε
0 , bε0 ∈ Wm,1(R2) ∩ Wm,∞(R2), for all m ∈ N, repeating the

previous arguments for each spatial derivative of uε, Wε, bε, we can obtain estimates for
‖Wε(·, t)‖Wm,p , and ‖bε(·, t)‖Wm,p , this time depending on initial conditions and on a negative
power of ε.
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4.2.2 Existence of solution

The objective of this section is to prove the existence of mild solution for system (4.7). We
prove that the estimates given in Proposition 4.12 provide compactness properties which in
turn allow us to pass to the limit in the regularized problem. The existence of the limit is based
on the Ascoli-Arzelá Theorem (see (GIGA; GIGA; SAAL, 2010, Chapter 5)). We begin with the
definition of mild solution.

Definition 4.14. The triplet (W,u,b) is a mild solution for system (4.7) if it satisfies the
initial data in the sense of weak-? convergence as t→ 0 (see Definition 4.9, identity (4.13)),
and

W(x, t) = e− 4κ2
ν+κt(Γ(·, t) ∗W0)(x) +

∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uW)(x, s)ds

+
8κ2ν

ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)Γ(·, t− s) ∗ b(x, s)ds,

b(x, t) = e− 4κν
ν+κtb0(X(0; x, t)) + 2κ

ν+ κ

∫ t
0

e− 4κν
ν+κ (t−s)W(X(s; x, t), s)ds,

u(x, t) = 1
ν+ κ

K ∗W(x, t) + 2κ
ν+ κ

K ∗ b(x, t),

hold, where the equality is understood in the sense of L∞(0, T∗; L1(R2)) functions.

Proposition 4.15. The family of solutions (Wε,uε,bε)ε>0 to the system (4.18) admit a
subfamily, still denoted by (Wε,uε,bε)ε>0, such that

Wε ⇀W weak-∗ in L∞(0, T∗;L∞(R2)), (4.30)
bε ⇀ b weak-∗ in L∞(0, T∗;L∞(R2)), (4.31)
uε −→ u uniformly in compact set of R2 × [0, T∗]. (4.32)

Proof. Through the estimate (4.25), one gets {Wε}ε>0 and {bε}ε>0 are bounded in L∞(0, T∗;L∞(R2)).
Therefore, there exists a subfamily and W,b such that the convergences (4.30) and (4.31)
hold.

In order to obtain the convergence (4.32), we use the estimates (4.24) and (4.25) to
find that {uε}ε>0 is uniformly bounded in L∞(0, T∗; L∞(R2)). Now, we need to ensure the
family {uε}ε>0 to be equicontinuous in time and space. By inequality (4.15), we obtain the
spatial equicontinuity for fixed time, that is, for all β > 0, there exist δ > 0 such that if
|(x, t) − (y, t)| < δ, then |uε(x, t) − uε(y, t)| < β, for x,y ∈ R2 and t ∈ [0, T∗]. For the
equicontinuity in time, let t, t+ h ∈ [0, T∗] with h > 0. We can write

uε(x, t+ h) − uε(x, t) =
1

ν+ κ
K ∗
{
Wε(x, t+ h) −Wε(x, t)

}
+

2κ
ν+ κ

K ∗
{
Mε(bε)(x, t+ h) −Mε(bε)(x, t)

}
.(4.33)
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The definition of Mε combined with identities (4.21) and (4.23), give

K ∗
{
Wε(x, t+ h) −Wε(x, t)

}
= K ∗

{
Γ(x,h) ∗Wε(x, t) −Wε(x, t)

}
+

∫t+h
t

e−
4κ2
ν+κ (t+h−s)∇Γ(x, t+ h− s) ∗K ∗Mε(Wεuε)(x, s)ds

+
8κ2ν

ν+ κ

∫t+h
t

e−
4κ2
ν+κ (t+h−s)Γ(x, t+ h− s) ∗K ∗Mε(bε)(x, s)ds

and

K ∗
{
Mε(bε)(x, t+h) −Mε(bε)(x, t)

}
=

∫+∞
2ε

ρε(t− s)K ∗
{
bε(x, s+h) − bε(x, s)

}
ds,

with

K ∗
{
bε(x, s+ h) − bε(x, s)

}
= K ∗

{
e− 4κν

ν+κ (s+h)bε(Xε(s, x, s+ h), s) − bε(x, s)
}

+
2κ
ν+ κ

∫s+h
s

e− 4κν
ν+κ (τ−s)K ∗Wε(Xε(τ, x, τ+ h), τ)dτ.

Then, we obtain
|K ∗ {Wε(x, t+ h) −Wε(x, t)}| 6 |K ∗ {Γ(x,h) ∗Wε(x, t) −Wε(x, t)}|

+

∣∣∣∣K ∗{∫t+h
t

e− 4κ2
ν+κ

(t+h−s)∇Γ(x, t+ h− s) ∗Mε(Wεuε)(x, s)ds
}∣∣∣∣

+

∣∣∣∣K ∗{ 8κ2ν

ν+ κ

∫t+h
t

e− 4κ2
ν+κ

(t+h−s)Γ(x, t+ h− s) ∗Mε(bε)(x, s)ds
}∣∣∣∣

:=W1 +W2 +
8κ2ν

ν+ κ
W3.

In order to estimate W1, applying Lemma 4.5 with θ = Γ , we obtain

W1 = |K ∗ {Γ(x,h) ∗Wε(x, t) −Wε(x, t)}| 6 C
√
h, (4.34)

where, for small ε, we have chosen the ε−1 associated with the W1,p norm of Wε(·, t) in the
order of ε =

√
h, while for ε large it is enough to apply the mean value theorem. Due to

Proposition 4.12, W2 and W3 can be estimated as

W2 =

∣∣∣∣K ∗{∫ t+h
t

e− 4κ2
ν+κ (t+h−s)∇Γ(x, t+ h− s) ∗Mε(Wεuε)(x, s)ds

}∣∣∣∣
6
∫ t+h
t

‖∇Γ(·, t+ h− s)‖1‖Mε(Wεuε)(·, s)‖1/2∞ ‖Mε(Wεuε)(·, s)‖1/2
1 ds

6 C
∫ t+h
t

(t+ h− s)−1/2ds 6 Ch1/2,

(4.35)

and

W3 =

∣∣∣∣K ∗{∫ t+h
t

e− 4κ2
ν+κ (t+h−s)Γ(x, t+ h− s) ∗Mε(bε)(x, s)ds

}∣∣∣∣
6
∫ t+h
t

‖K ∗Mε(bε)(·, s)‖∞ds
6
∫ t+h
t

max
s/26τ6s

‖bε(·, τ)‖1/2
1 ‖bε(·, τ)‖1/2∞ ds 6 Ch.

(4.36)
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On the other hand, in order to estimate the second term of identity (4.33), note that

|K ∗ {bε(x, s+ h) − bε(x, s)}| 6
∣∣∣K ∗ {e− 4κν

ν+κ (s+h)bε (Xε(s, x, s+ h), s) − bε(x, s)
}∣∣∣

+

∣∣∣∣ 2κ
ν+ κ

∫s+h
s

e− 4κν
ν+κ (τ−s)K ∗Wε(Xε(τ, x, τ+ h), τ)dτ

∣∣∣∣
:= B1 +

2κ
ν+ κ

B2.

Now, in order to bound the term B1, we write

B1 =

∣∣∣∣K ∗{e− 4κν
ν+κ (s+h)bε (Xε(s, x, s+ h), s) − bε(x, s)

+ e− 4κν
ν+κ (s+h)bε(x, s) − e− 4κν

ν+κ (s+h)bε(x, s)
}∣∣∣∣

6
∣∣∣K ∗ {e− 4κν

ν+κ (s+h)bε (Xε(s, x, s+ h), s) − e− 4κν
ν+κ (s+h)bε(x, s)

}∣∣∣
+
∣∣∣K ∗ {e− 4κν

ν+κ (s+h)bε(x, s) − bε(x, s)
}∣∣∣

:= B11 + B12.

Then, we have by Lemma 4.6,

B11 =

∣∣∣∣ ∫
R2
K(x− y)e−

4κν
ν+κ (s+h)bε (Xε(s,y, s+ h), s)dy−

∫
R2
K(x− z)e−

4κν
ν+κ (s+h)bε(z, s)dz

∣∣∣∣
=

∣∣∣∣∫
R2
[K(x− y) −K(x− Xε(s,y, s+ h))]e−

4κν
ν+κ (s+h)bε (Xε(s,y, s+ h), s)dy

∣∣∣∣
6 C‖I(·) − Xε(s, ·, s+ h)‖∞ (1 + |log ‖I(·) − Xε(s, ·, s+ h)‖∞|) ,

where C = C(‖bε(·, s)‖1 + ‖bε(·, s)‖∞) > 0. Since

‖I(·) − Xε(s, ·, s+ h)‖∞ = sup
y

|Xε(s,y, s+ h) − I(y)|

= sup
y

|Xε(s,y, s+ h) − Xε(s+ h,y, s+ h)|

= sup
y

∣∣∣∣∫s+h
s

uε(Xε(ξ,y, s+ h), ξ)dξ
∣∣∣∣ 6 Ch,

we obtain
B11 6 Ch [1 + log (Ch)] , (4.37)

and
B12 =

∣∣∣K ∗ {(e− 4κν
ν+κ (s+h) − 1

)
bε(y, s)

}∣∣∣
6 C

∣∣∣e− 4κν
ν+κ (s+h) − 1

∣∣∣ ‖bε(·, s)‖1/2
1 ‖bε(·, s)‖1/2∞

6 Ch.

(4.38)

Permuting integrals in time with the convolution, taking into account the estimates for Wε

and the area preservation properties of the mapping flow Xε, we also deduce

B2 =

∣∣∣∣K ∗{∫s+h
s

e− 4κν
ν+κ (τ−s)Wε(Xε(τ, x, τ+ h), τ)dτ

}∣∣∣∣ 6 Ch. (4.39)
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Hence, combining the estimates (4.34)-(4.39), the family t 7→ uε(x, t) is equicontinuous in
time allowing to apply Ascoli-ArzelÃ¡ theorem to deduce the existence of a subfamily of {uε}ε>0

such that convergence (4.32) hold.

Proposition 4.16. The triplet (W,u,b) given by Proposition 4.15 is a mild solution of system
(4.7).

Proof. Let ϕ ∈ C∞0 (R2 × [0, T∗)) and Ω = supp(ϕ). The identity (4.21) leads to∫T∗
0

∫
R2
Wε(x, t)ϕ(x, t)dxdt =

∫T∗
0

∫
R2

e− 4κ2
ν+κtΓ(x, t) ∗Wε

0 (x)ϕ(x, t)dxdt

+

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗Mε(uεWε)(x, s)ds

]
ϕ(x, t)dxdt

+
8κ2ν

ν+ κ

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)Γ(·, t− s) ∗Mε(bε)(x, s)ds

]
ϕ(x, t)dxdt.

The convergence of the left hand side follows directly from weak-∗ convergence of Wε. For the
first term of right hand side it’s possible to take the limit by definition of mollifier sequence.
Now, we prove the convergence of the second term of the right hand side, and the same idea
can be used to prove the convergence for the last term. Thus, we consider∫T∗

0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗Mε(uεWε)(x, s)ds

]
ϕ(x, t)dxdt := I1 + I2,

where

I1 =

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (Mε(uεWε) − uεWε)(x, s)ds

]
ϕ(x, t)dxdt

and
I2 =

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uεWε)(x, s)ds

]
ϕ(x, t)dxdt.

We begin showing that I1 converges to 0. Indeed, since

|I1| =

∣∣∣∣∫T∗
0

∫ t
0

∫
R2

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (Mε(uεWε) − uεWε)(x, s)ϕ(x, t)dxdsdt

∣∣∣∣
6 C(ν, κ, T∗)‖ϕ‖L∞(0,T∗;L∞(Ω))‖Mε(uεWε) − uεWε‖L∞(0,T∗;L1(Ω)),

and ‖Mε(uεWε) − uεWε‖L∞(0,T∗;L1(Ω)) 6 Cε, we have I1 → 0. Now, we focus on I2. Let
us write I2 = I21 + I22, where

I21 =

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uεWε − uWε)(x, s)ds

]
ϕ(x, t)dxdt.

and
I22 =

∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ uWε(x, s)ds

]
ϕ(x, t)dxdt.
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We have

|I21| =

∣∣∣∣∫T∗
0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uεWε − uWε)(x, s)ds

]
ϕ(x, t)dxdt

∣∣∣∣
6 ‖ϕ‖L∞(0,T∗;L∞(R2))

∫T∗
0

∫ t
0
‖∇Γ(·, t− s) ∗ (uε − u)Wε)(·, s)‖L1(Ω) dsdt

6 C(ν, κ, T∗)‖ϕ‖L∞(0,T∗;L∞(Ω))‖uε − u‖L∞(0,T∗;L∞(Ω))‖Wε‖L∞(0,T∗;L1(Ω)) → 0.

On the other hand, using Fubini theorem and the fact thatWε ⇀W weak-∗ in L∞(0, T∗;L∞(R2)),
we find

I22 →
∫T∗

0

∫
R2

[∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uW)(x, s)ds

]
ϕ(x, t)dxdt.

These arguments together with the Fundamental Lemma of Calculus of Variations lead to

W(x, t) = e− 4κ2
ν+κtΓ(·, t) ∗W0(x) +

∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (uW)(x, s)ds

+
8κ2ν

ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)Γ(·, t− s) ∗ b(x, s)ds.

(4.40)

The same strategy applied to identity (4.23) yields∫T∗
0

∫
R2
bε(x, t)ϕ(x, t)dxdt =

∫T∗
0

∫
R2

e− 4κν
ν+κtbε0(X

ε(0; x, t))ϕ(x, t)dxdt

+
2κ
ν+ κ

∫T∗
0

∫
R2

[∫ t
0

e− 4κν
ν+κ (t−s)Wε(Xε(s; x, t), s)ds

]
ϕ(x, t)dxdt.

We analysis the term

J =

∫T∗
0

∫
R2

e− 4κν
ν+κtbε0(X

ε(0; x, t))ϕ(x, t)dxdt.

For the rest of the terms, the argument is analogous. Using the change of variables Xε(0; x, t) =
y, we can write it as∫T∗

0

∫
R2

e− 4κν
ν+κtbε0(X

ε(0; x, t))ϕ(x, t)dxdt =
∫T∗

0

∫
R2

e− 4κν
ν+κtbε0(y)ϕ(X

ε(0;y, t), t)dydt

:= J1 + J2,

where
J1 =

∫T∗
0

∫
R2

e− 4κν
ν+κtbε0(y)(ϕ(X

ε(0;y, t), t) −ϕ(X(0;y, t), t))dydt,

and
J2 =

∫T∗
0

∫
R2

e− 4κν
ν+κtbε0(y)ϕ(X(0;y, t), t)dydt.

The term J1 converges to 0 due to the continuity of ϕ (uniform on compact sets):

|J1| =

∣∣∣∣∫T∗
0

∫
R2

e− 4κν
ν+κtbε0(y)(ϕ(X

ε(0;y, t), t) −ϕ(X(0;y, t), t))dydt
∣∣∣∣

6‖bε0‖L∞
∫T∗

0

∫
Ω

|ϕ(Xε(0;y, t), t) −ϕ(X(0;y, t), t)| dydt→ 0.
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Since ‖bε0 − b0‖1 → 0, we find

J2 →
∫T∗

0

∫
R2

e− 4κν
ν+κtb0(y)ϕ(X(0;y, t), t)dydt.

By change of variable, we obtain

J→
∫T∗

0

∫
R2

e− 4κν
ν+κtb0(X(0; x, t))ϕ(x, t)dxdt.

Then, we conclude

b(x, t) = e− 4κν
ν+κtb0(X(0; x, t)) + 2κ

ν+ κ

∫ t
0

e− 4κν
ν+κ (t−s)W(X(s; x, t), s)ds. (4.41)

Finally, the identity (4.22) leads to∫T∗
0

∫
R2
uε(x, t)ϕ(x, t)dxdt =

∫T∗
0

∫
R2

1
ν+ κ

K ∗Wε(x, t)ϕ(x, t)dxdt

+

∫T∗
0

∫
R2

2κ
ν+ κ

K ∗Mε(bε)(x, t)ϕ(x, t)dxdt := N1 +N2.

We prove the convergence of N1 directly from Lemma 4.3 and definition of weak-∗ convergence
of (Wε)ε. For N2, we proceed in the same way as above, that is, adding and subtracting bε in
the second member of the convolution. Then, the proof is completed by combining the above
inequalities.

In order to obtain global existence for the mild solution, we can consider the initial time to
t = δ < T∗, and take T∗ > 0 as in Proposition 4.12. Then, we have the estimates (4.24) and
(4.25) hold in [δ, T∗ + δ] and so on. We have proved the following result

Corollary 4.17. Let W0,b0 ∈ L1(R2)∩L∞(R2). For any T > 0, the system (4.7) has a global
mild solution, such that

{(ν+ κ)t}1/2u ∈ L∞(0, T ;L∞(R2)).

Remark 4.18. Note that in each step described above, the initial data is more regular and
thus we have regularity gain for the obtained solution (see (CAFFARELLI; KOHN; NIRENBERG,
1982)).

4.2.3 Uniqueness and stability of the solution

Let us take advantage of the results in the previous section to show uniqueness and
asymptotic stability for the solution of the problem (4.7) with respect to disturbances of the
initial data.

Proposition 4.19. Let W0,b0 ∈ L1(R2) ∩ L∞(R2). There exists a unique global solution of
system (4.7) satisfying the estimate (4.2).
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Proof. Suppose (W1,u1,b1) and (W2,u2,b2) are solutions of system (4.7). We will show
that W1 =W2 and b1 = b2 on R2 × (0, T ], for all T > 0. We set

Z(·, t) = (W1 −W2)(·, t),
E(·, t) = (b1 − b2)(·, t).

Note that (Z,E) satisfy the system

∂tZ− (ν+ κ)∆Z+
4κ2

ν+ κ
Z = −

((
K ∗

( 1
ν+ κ

Z+
2κ
ν+ κ

E
))
· ∇
)
W1 − (u2 · ∇)Z+

8κ2ν

ν+ κ
E

∂tE+
4κν
ν+ κ

E+ (u2 · ∇)E = −

((
K ∗

( 1
ν+ κ

Z+
2κ
ν+ κ

E
))
· ∇
)
b1 +

2κ
ν+ κ

Z

Z(·, 0) = 0,

E(·, 0) = 0,

and

Z(·, t) =
∫ t

0
e− 4κ2

ν+κ (t−s)∇Γ(·, t− s) ∗
{
W1
(
K ∗

(
1

ν+ κ
Z+

2κ
ν+ κ

E

))}
(·, s)ds

+

∫ t
0

e− 4κ2
ν+κ (t−s)∇Γ(·, t− s) ∗ (Zu2)(·, s)ds

+
8κ2ν

ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)Γ(·, t− s) ∗ E(·, s)ds,

E(·, t) =
∫ t

0
e− 4κν

ν+κ (t−s)∇Γ(·, t− s) ∗
{
b1
(
K ∗

(
1

ν+ κ
Z+

2κ
ν+ κ

E

))}
(·, s)ds

+
2κ
ν+ κ

∫ t
0

e− 4κν
ν+κ (t−s)Z(·, s)ds.

Then,

‖Z(·, t)‖1 6
∫ t

0

∥∥∥∥∇Γ(·, t− s) ∗{W1
(
K ∗

(
1

ν+ κ
Z+

2κ
ν+ κ

E

))}
(·, s)

∥∥∥∥
1
ds

+

∫ t
0
‖∇Γ(·, t− s) ∗ (Zu2)(·, s)‖1ds

+
8κ2ν

ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)‖Γ(·, t− s) ∗ E(·, s)‖1ds

6 C0(ν+ κ)−3/2
∫ t

0
(t− s)−1/2s−1/2

{
‖Z(·, s)‖1 + 2κ‖E(·, s)‖1

}
ds

+ C0

∫ t
0
(t− s)−1/2s−1/2‖Z(·, s)‖1ds

+
4κν
ν+ κ

∫ t
0

e− 4κ2
ν+κ (t−s)2κ‖E(·, s)‖1 ds,

that is,

‖Z(·, t)‖1 6 C1

∫ t
0

{
(t− s)−1/2s−1/2 + e− 4κ2

ν+κ (t−s)

}{
‖Z(·, s)‖1 + 2κ‖E(·, s)‖1

}
ds,



58

with C1 = max
{
C0(ν+ κ)−3/2 + C0,

4κν
ν+ κ

}
. Similarly, we have

2κ‖E(·, t)‖1 6 C2

∫ t
0

{
(t− s)−1/2s−1/2 + e− 4κν

ν+κ (t−s)

}{
‖Z(·, s)‖1 + 2κ‖E(·, s)‖1

}
ds,

with C2 = max
{

2κC0(ν+ κ)−3/2, 4κ2

ν+ κ

}
. Therefore,

‖Z(·, t)‖1 + 2κ‖E(·, t)‖1

6 C3

∫t
0

{
(t− s)−1/2s−1/2 + e−

4κ2
ν+κ (t−s) + e−

4κν
ν+κ (t−s)

}{
‖Z(·, s)‖1 + 2κ‖E(·, s)‖1

}
ds,

where C3 = max{C1, C2}. Define Υ(t) = sup
s6t

{
‖Z(·, s)‖1 + 2κ‖E(·, s)‖1

}
, t > 0. Then,

Υ(t) 6 C(ν, κ, T)Υ(t), with C(ν, κ, T) < 1, see Proposition 4.12. This estimate implies
Υ(t) = 0 and, therefore, the solution of problem (4.7) is unique.

Finally, let us state the stability result in the following proposition.

Proposition 4.20. Let W0,b0, Ŵ0, b̂0 ∈ L1(R2) ∩ L∞(R2). Assume that the (W,u,b) and
(Ŵ, û, b̂) are solution of problem (4.7) with initial data (W0,b0) and (Ŵ0, b̂0), respectively.
Then, the inequalities below are satisfied for t > 0

‖(u− û)(·, t)‖∞ 6 Ct−1/2, (4.42)
‖(W − Ŵ)(·, t)‖1 + ‖(W − Ŵ)(·, t)‖∞ + ‖(b− b̂)(·, t)‖1 + ‖(b− b̂)(·, t)‖∞ 6 CΠ̂,

(4.43)

where Π̂ = Π̂(W0,b0, Ŵ0, b̂0) = max{‖W0 − Ŵ0‖1, ‖W0 − Ŵ0‖∞, ‖b0 − b̂0‖1, ‖b0 − b̂0‖∞}
and C > 0 is a constant independent of Π̂.

Proof. Defining Z =W − Ŵ, E = b− b̂ and U = u− û, they satisfy the system

∂tZ− (ν+ κ)∆Z+
4κ2

ν+ κ
Z = −(U · ∇)W − (û · ∇)Z+

8κ2ν

ν+ κ
E,

U = K ∗
(

1
ν+ κ

Z+
2κ
ν+ κ

E

)
,

∂tE+
4κν
ν+ κ

E+ (û · ∇)E = −(U · ∇)b+ 2κ
ν+ κ

Z,

Z(·, 0) = Z0 =W0 − Ŵ0,
E(·, 0) = E0 = b0 − b̂0.

Then, we can proceed as Proposition 4.19.
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4.3 MEASURES AS INITIAL DATA

In this section we deal with a priori estimates considering the initial data W0 ∈ M(R2)

and b0 ∈M(R2) ∩Mp(R2), with p > 2 fixed. This case lead us to a theory of existence of
weak solutions for system (4.7). The main difference with respect to the case in which initial
data are in L1 ∩ L∞ is how one derives the appropriated a priori estimates.

First, observe that by Wε(·, t),bε(·, t) ∈ C∞(R)2 ∩ L1(R2) and
uε = K ∗

(
1

ν+ κ
Wε +

2κ
ν+ κ

Mε(bε)

)
. We have

curluε(·, t) = 1
ν+ κ

Wε(·, t) + 2κ
ν+ κ

Mε(bε)(·, t),

that is,
Wε(·, t) = (ν+ κ)curluε(·, t) − 2κMε(bε)(·, t).

Therefore, for 0 < s < t, we can write

−Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s) = ∇Γ(·, t− s) ∗Mε(Wεuε)(·, s) (4.44)

and

−Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s) = −(ν+ κ)curl∇Γ(·, t− s) ∗Mε(uεuε)(·, s)
− 2κ∇Γ(·, t− s) ∗Mε(Mε(bε)uε)(·, s), (4.45)

where uεuε :=
2∑
i,j

uεiu
ε
j . We have the following result:

Proposition 4.21. There exists T∗ = T∗(ν, κ,Π(W0,b0)) > 0 and a positive constant
C = C(ν, κ) such that

‖uε(·, t)‖∞ 6 C{(ν+ κ)t}−1/2,
‖Wε(·, t)‖1 + ‖bε(·, t)‖1 6 CΠ(W0,b0),

{(ν+ κ)t}1−
1
p‖Wε(·, t)‖Mp + ‖bε(·, t)‖Mp 6 CΠ(W0,b0),

hold for all t ∈ (0, T∗].
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Proof. Note that

‖uε(·, t)‖∞ 6
e−

4κ2
ν+κt

ν+ κ
‖(K ∗ Γ(·, t)) ∗Wε

0 ‖∞
+

1
ν+ κ

∫t
0

e−
4κ2
ν+κ (t−s)‖K ∗ (Γ(·, t− s) ∗Mε((uε · ∇)Wε))(·, s)‖∞ds

+
8κ2ν

(ν+ κ)2

∫t
0

e−
4κ2
ν+κ (t−s)‖Γ(·, t− s) ∗ (K ∗Mε(bε))(·, s)‖∞ds

+
2κ
ν+ κ

‖K ∗Mε(bε)(·, t)‖∞
6

C

ν+ κ
{(ν+ κ)t}−1/2‖W0‖M

+
C

ν+ κ

∫t
0

e−
4κ2
ν+κ (t−s)‖Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s)‖1/2

1

× ‖Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s)‖1/2∞ ds

+
8κ2ν

(ν+ κ)2

∫t
0

e−
4κ2
ν+κ (t−s)‖K ∗Mε(bε)(·, s)‖∞ds

+
2κ
ν+ κ

‖K ∗Mε(bε)(·, t)‖∞.

Applying Lemma 4.8, we obtain the estimates

‖Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s)‖1 = ‖∇Γ(·, t− s) ∗Mε(Wεuε)(·, s)‖1
6 C{(ν+ κ)(t− s)}−1/2 max

s/2<τ<s
‖uε(·, τ)‖∞‖Wε(·, τ)‖1,

and

‖Γ(·, t− s) ∗Mε((uε · ∇)Wε)(·, s)‖∞ 6 (ν+ κ)‖curl∇Γ(·, t− s) ∗Mε(uεuε)(·, s)‖∞
+ 2κ‖∇Γ(·, t− s) ∗Mε(Mε(bε)uε)(·, s)‖∞

6 C{(ν+ κ)(t− s)}−1 max
s/2<τ<s

‖uε(·, τ)‖2∞
+ 2κC{(ν+ κ)(t− s)}−1/2−1/p

× max
s/2<τ<s

{
‖uε(·, τ)‖∞ max

τ/2<η<τ
‖bε(·,η)‖Mp

}
.

On the other hand, by Lemma 4.7 we have

‖K ∗Mε(bε)(·, t)‖∞ 6 C‖Mε(bε)(·, s)‖α1 ‖Mε(bε)(·, s)‖1−α
Mp

6 C max
t/2<s<t

‖bε(·, s)‖α1 max
t/2<s<t

‖bε(·, s)‖1−α
Mp ,
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where α =
p− 2

2(p− 1) ∈ (0, 1). Therefore, combining the above estimates we obtain

‖uε(·, t)‖∞ 6
C

ν+ κ
{(ν+ κ)t}−1/2‖W0‖M

+
C

(ν+ κ)1/2

∫t
0
{(ν+ κ)(t− s)}−3/4 max

s/2<τ<s
‖uε(·, τ)‖3/2∞ ‖Wε(·, τ)‖1/2

1 ds

+
(2κ)1/2C

ν+ κ

∫t
0

e−
4κ2
ν+κ (t−s){(ν+ κ)(t− s)}−1/2−1/2p

× max
s/2<τ<s

{
‖uε(·, τ)‖∞‖Wε(·, τ)‖1/2

1 max
τ/2<η<τ

‖bε(·,η)‖1/2
Mp

}
ds

+
8κ2νC

(ν+ κ)2

∫t
0

e−
4κ2
ν+κ (t−s) max

s/2<τ<s
‖bε(·, τ)‖α1 max

s/2<τ<s
‖bε(·, τ)‖1−αMp ds

+
2κC
ν+ κ

max
t/2<s<t

‖bε(·, s)‖α1 max
t/2<s<t

‖bε(·, s)‖1−αMp .

Thus,

{(ν+ κ)t}1/2‖uε(·, t)‖∞ 6 C(ν+ κ)−1‖W0‖M

+ C(ν+ κ)−3/2t1/2
∫t

0
(t− s)−3/4s−3/4

× max
s/2<τ<s

({(ν+ κ)τ}1/2‖uε(·, τ)‖∞)3/2‖Wε(·, τ)‖1/2
1 ds

+ (2κ)1/2C(ν+ κ)−3/2−1/2pt1/2
∫t

0
e−

4κ2
ν+κ (t−s)(t− s)−1/2−1/2ps−1/2

× max
s/2<τ<s

{
{(ν+ κ)τ}1/2‖uε(·, τ)‖∞‖Wε(·, τ)‖1/2

1 (4.46)

× max
τ/2<η<τ

‖bε(·,η)‖1/2
Mp

}
ds

+ 8κ2νC(ν+ κ)−3/2t1/2
∫t

0
e−

4κ2
ν+κ (t−s) max

s/2<τ<s
‖bε(·, τ)‖α1

× max
s/2<τ<s

‖bε(·, τ)‖1−αMp ds

+ 2κC(ν+ κ)−1/2t1/2 max
t/2<s<t

‖bε(·, s)‖α1 max
t/2<s<t

‖bε(·, s)‖1−αMp .

Analogously, we obtain the following estimates for Wε and bε, where we assume
1 < 2p(p+ 2)−1 < r < 2 and 0 6 β 6 1 such that 1

r
= β+

1 − β

p
:

‖bε(·, t)‖1 6 ‖b0‖M + 2κ(ν+ κ)−1
∫ t

0
‖Wε(·, s)‖1ds, (4.47)

‖bε(·, t)‖Mp 6 ‖b0‖Mp + 2κ(ν+ κ)−2+1/p
∫ t

0
s−1+1/p{(ν+ κ)s}1−1/p‖Wε(·, s)‖Mpds,

(4.48)
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‖Wε(·, t)‖1 6 ‖W0‖M

+ C(ν+ κ)−1
∫t

0
(t− s)−1/2s−1/2 max

s/2<τ<s
{(ν+ κ)τ}1/2‖uε(·, τ)‖∞‖Wε(·, τ)‖1ds

+ 8κ2ν(ν+ κ)−1
∫t

0
max

s/2<τ<s
‖bε(·, τ)‖1ds, (4.49)

and

{(ν+ κ)t}1−1/p‖Wε(·, t)‖Mp 6 C‖W0‖M

+ C(ν+ κ)−1t1−1/p
∫t

0
(t− s)−1/2−1/r+1/ps−3/2+1/r (4.50)

× max
s/2<τ<s

{
{(ν+ κ)τ}1/2‖uε(·, τ)‖∞‖Wε(·, τ)‖β1

× ({(ν+ κ)τ}1−1/p‖Wε(·, τ)‖Mp)1−β
}
ds

+ 8κ2ν(ν+ κ)−1/pt1−1/p
∫t

0
e−

4κ2
ν+κ (t−s) max

s/2<τ<s
‖bε(·, τ)‖Mpds.

Setting Π(W0,b0) = max{‖W0‖M, ‖b0‖M, ‖b0‖Mp},

λ(t) = sup
s6t

{
{(ν+ κ)s}1/2‖uε(·, s)‖∞, ‖Wε(·, s)‖1,

{(ν+ κ)s}1−1/p‖Wε(·, s)‖Mp , ‖bε(·, s)‖1, ‖bε(·, s)‖Mp

}
,

and taking into account Lemma 4.4, we can rewrite the estimates (4.46) - (4.50)

{(ν+ κ)t}1/2‖uε(·, t)‖∞ 6 C(ν+ κ)−1Π(W0,b0)

+ C

(
(ν+ κ)−3/2 + (2κ)1/2(ν+ κ)−3/2−1/2p

)
λ(t)2

+ C(ν+ κ)1/2t1/2λ(t),

‖bε(·, t)‖1 6 Π(W0,b0) + 2κ(ν+ κ)−1tλ(t),

‖bε(·, t)‖Mp 6 Π(W0,b0) + 2κ(ν+ κ)−2+1/pt1/pλ(t),

‖Wε(·, t)‖1 6 Π(W0,b0) + C(ν+ κ)−1λ(t)2 + 8κ2ν(ν+ κ)−1tλ(t),

and

{(ν+ κ)t}1−1/p‖Wε(·, t)‖Mp 6 CΠ(W0,b0) + C(ν+ κ)−1λ(t)2 + 2ν(ν+ κ)1−1/pt1−1/pλ(t).

Therefore,

0 6 λ(t) 6 C0(ν, κ)Π(W0,b0)

+ C1(ν, κ,p)
[
t+ t1/2 + t1/p + t(p−1)/p

]
λ(t)

+ C2(ν, κ,p)λ(t)2,
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or equivalently

0 6 C0Π(W0,b0) +

{
C1

[
t+ t1/2 + t1/p + t(p−1)/p

]
− 1
}
λ(t) + C2λ(t)

2,

where C0, C1 and C2 depend on ν+ κ and are given by

C0 = C(ν+ κ)−1 + C+ 3,

C1 = max
{
C(ν+ κ)1/2, 2κ(ν+ κ)−1 + 8κ2ν(ν+ κ)−1, 2κ(ν+ κ)−2+1/p, 2ν(ν+ κ)1−1/p

}
and

C2 = C((ν+ κ)−3/2 + (2κ)1/2(ν+ κ)−3/2−1/2p) + 2C(ν+ κ)−1.

Thus, for initial data such that 4C0C2Π(W0,b0) < 1, there exists T∗ > 0 for which
C1

[
t+ t1/2 + t1/p + t(p−1)/p

]
− 1 < 0,

σ =

{
C1

[
t+ t1/2 + t1/p + t(p−1)/p

]
− 1
}2

− 4C0C2Π(W0,b0) > 0,
(4.51)

hold for all t ∈ [0, T∗]. Indeed, since lim
t→0+

C1

[
t+ t1/2 + t1/p + t(p−1)/p

]
= 0, there exists

δ > 0 such that t ∈ (0, δ) implies C1

[
t+ t1/2 + t1/p + t(p−1)/p

]
< 1 − 2

√
C0C2Π(W0,b0),

proving inequality (4.51) for 0 < T∗ 6 δ. Therefore, since λ is continuous, we conclude that
0 6 λ 6

1
2C2

. This complete the proof.

With these estimates, all the results from the previous section can be extended to the
case under discussion considering t > 0. However, this solution must be understood in a weak
sense, see Definition 4.22 below. However, a bootstrap a posteriori argument provides that the
solutions will be regular, see (CAFFARELLI; KOHN; NIRENBERG, 1982).

Definition 4.22. Given W0,b0 ∈M(R2) and T > 0, we say that (W,u,b) is a weak solution
of system (4.7) if it satisfies the initial data in weak-∗ sense, see Definition 4.9, identity (4.12),
and

(i) u = K ∗
(

1
ν+ κ

W +
2κ
ν+ κ

b

)
,

(ii) The following equalities∫T
0

∫
R2

(
∂tϕ− (ν+ κ)∆ϕ+

4κ2

ν+ κ
ϕ+ (u · ∇)ϕ

)
dW

= −

∫
R2
ϕ(·, 0) dW0 +

8κ2ν

ν+ κ

∫T
0

∫
R2
ϕ db,∫T

0

∫
R2

(
∂tφ+

4κν
ν+ κ

φ+ (u · ∇)φ
)
db

= −

∫
R2
φ(·, 0) db0 +

2κ
ν+ κ

∫T
0

∫
R2
φ dW.

(4.52)

hold for every ϕ ∈ C2
0(R2 × [0, T)) and φ ∈ C1

0(R2 × [0, T)).
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Indeed, taking into account that every uniformly bounded family in L1 admits a
subfamily which converges weak-∗ as measure in L∞(0, T∗;M(R2)) together with Propo-
sition 4.21, then an identical argument to that of Proposition 4.15 allows to conclude the
following result.

Proposition 4.23. The family (Wε,uε,bε)ε>0 of solutions system (4.18) admits a subfamily,
still denoted by (Wε,uε,bε)ε>0, such that

Wε ⇀W weak-∗ as measures in L∞(0, T∗;M(R2)), (4.53)
bε ⇀ b weak-∗ as measures in L∞(0, T∗;M(R2)), (4.54)
uε −→ u uniformly in compact set of R2 × (0, T∗). (4.55)

Proposition 4.24. The triplet (W,u,b) given by Proposition 4.23 is a weak solution of
system (4.7).

Proof. The regularized solutions (Wε,uε,bε)ε>0 satisty the system (4.18) in the weak sense∫T∗
0

∫
R2

(
∂tϕ− (ν+ κ)∆ϕ+

4κ2

ν+ κ
ϕ

)
Wεdxdt+

∫T∗
0

∫
R2
Mε

((
(uε · ∇)ϕ(x, t)

)
Wε

)
dxdt

= −

∫
R2
ϕ(·, 0)Wε

0dx+
8κ2ν

ν+ κ

∫T∗
0

∫
R2
Mε(bε)ϕdxdt,

(4.56)

∫T∗
0

∫
R2

(
∂tφ+

4κν
ν+ κ

φ+ (uε · ∇)φ
)
bεdxdt = −

∫
R2
φ(·, 0)bε0dx+

2κ
ν+ κ

∫T∗
0

∫
R2
Wεφdxdt,

(4.57)
for every ϕ ∈ C2

0(R2× [0, T)) and φ ∈ C1
0(R2× [0, T)). Note that the explicit dependence of

the variables (x, t) in identity (4.56) for ϕ indicates that the function is not affected by the
time-delay of Mε. From the estimates for Wε and bε in Morrey spaces (Proposition 4.21), we
deduce that the velocity is equicontinuous in space and time for t > 0. Next, considering the
non-linear term in identity (4.56)

Iε :=

∫T∗
0

∫
R2
Mε

((
(uε · ∇)ϕ(x, t)

)
Wε

)
dxdt,

and using identity (4.22), we obtain

Iε =
1

ν+ κ

∫T∗
0

∫
R2
Mε

(
(K ∗Wε) ·∇ϕ(x, t)Wε

)
(x, t)dxdt

+
2κ
ν+ κ

∫T∗
0

∫
R2
Mε

(
(K ∗Mε(bε)) ·∇ϕ(x, t)Wε

)
(x, t)dxdt

:=

∫T∗
0

∫
R2×R2

Mε

(
K(x− y)∇ϕ(x, t)Wε

yW
ε
x

)
(x, t)

+

∫T∗
0

∫
R2×R2

Mε

(
K(x− y)∇ϕ(x, t)Mε(bε)yW

ε
x

)
(x, t).
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By the estimates in Morrey spaces, there are no concentrations in the diagonal (x = y)
towards Dirac masses at the limit of Mε

(
(K(x− y)∇ϕ(x, t)Wε

yW
ε
x

)
(x, t), in compact sets

of R2 × R2 × (0, T∗), as ε→ 0. The same idea applies to the second term of Iε. Then, the
following convergence property for the non-linear terms∫T∗

0

∫
R2
Mε

((
(uε · ∇)ϕ(x, t)

)
Wε

)
dxdt→

∫T∗
0

∫
R2
(u · ∇)ϕdW

hold true, see (NIETO; POUPAUD; SOLER, 2001; SCHOCHET, 1995) for similar argument. Passing
to the limit in the linear terms does not present additional difficulty. Thus, we have proved the
proposition.

The nonconcentration argument from the preceding proof and the convolution properties
in Morrey spaces with singular kernels allow us to deduce the following result.

Corollary 4.25. If W0 ∈ M(R2) and b0 ∈ M(R2) ∩Mp(R2), with p > 2, then the system
(4.7) has a global weak solution such that for any T > 0,

{(ν+ κ)t}1/2u ∈ L∞(0, T ;L∞(R2)).

The uniqueness and stability of solution are entirely analogous to the previous case. This
complete the proof of Theorem 4.2.
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5 ADDITIONAL COMMENTS AND FUTURE WORKS

We briefly present some ongoing projects and future works that naturally arise from what
was discussed in the previous chapters.

It is of great importance for the formulation of the initialization problem as an optimal
control problem that the model be well posed, in the sense of Hadamard, in order to ensure
the map S, defined in section 3.1, to be well defined. In this sense, one may seek conditions
ensuring good properties for the map S in order to extend the results from chapter 3 for the
variable density case. Obtaining analogous results for the three dimensional case is also a
natural question. We intend to address these in a near future.

In the introduction of chapter 4, we have mentioned the case of vortex sheets as a motivation
to consider initial data in Morrey spaces. Classically, this configuration is associated with vorticity.
Indeed, as mentioned before, let δS be the Dirac measure located on the curve S in R2, with
no end points, parametrized by a piecewise C1 function ζ : I → R2. Here, I is an open real
interval and α a function on the curve S which represents its density or strength. In the case
of a vortex sheet structure of vorticity, the initial data is a measure of the type αδS. These
measures belongs to Ms(R2), where s depends on the regularity of α and on the regularity of
the tangent τ to S according to the following result.

Lemma 5.1. If the initial vorticity ω0 is given by αδS and τα ∈ Lp(S)2, with p > 1, then

ω0 ∈Ms(R2), with s = 2p ′

2p ′ − 1 and p ′ is defined as 1
p ′

+ 1
p
= 1.

Proof. By the definition of the Dirac delta on a curve, we have

〈αδS,ϕ〉 =
∫
I

ϕ(ζ(ξ)) · τ(ζ(ξ))α(ζ(ξ))dξ, ∀ ϕ ∈ C0(R2)2,

where · is the inner product in R2. Therefore

TVB(x,R)(αδS) 6
∫
ζ(I)∩B(x,R)

|ϕ(ζ(ξ))| |τ(ζ(ξ))α(ζ(ξ))|dξ

6 ‖ϕ‖L∞‖τα‖Lp |ζ(I) ∩ B(x,R)|1/p ′ 6 ‖ϕ‖L∞‖τα‖LpR1/p ′ .

Then, for s ′ = 2p ′, we have 1
s
+

1
s
′ = 1 and conclude that

TVB(x,R)(αδS) 6 ‖ϕ‖L∞‖τα‖LpR2/s ′

and αδS ∈Ms(R2).

Note that in the particular case of Lipschitz sheets, p =∞, the initial vorticity belongs to
M2(R2). Also, we can consider extending the structure of vortex sheet to the initial configuration
of W, which is included in the functional framework studied above. This possibility involves not
only the vorticity, but also affects the microstructure represented by b. Our goal is to analize if
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there are persistent conditions in time for this structure and then to study its dynamics in the
microscale associated with b. This study is ongoing.

In the context discussed in chapter 4, a natural research line is the evolution of configurations
of constant vorticity in a domain (vortex patches). Despite the complexity of the motion and
the deformation process that the vorticity undergoes, these special vortices subsist without any
deformation and keep their shape during the motion. In the framework of bidimensional Euler
equations, the first known example in the literature goes back to Kirchhoff who discovered
that a vorticity uniformly distributed inside an elliptic shape performs a uniform rotation about
its center with constant angular velocity. Notice that the solutions of vortex patch type have
motivated important mathematical achievements in recent years (BURBEA, 1982; CHEMIN,
1993; DEEM; ZABUSKY, 1978). The vanishing viscosity limit has been one of the key tools in
the analysis of Euler’s equations from Navier-Stokes results. In this scenario, we can study the
evolution of vortex patches. This a very typical problem in the framework of Euler’s equations
in fluid mechanics (SUEUR, 2015). The question to be raised concerns the existence of vortex
patch-type structures in micropolar fluids, of course in the vanishing viscosity regime. In this
context, the objective is related with the very challenging problem on the inviscid limit of
incompressible Navier-Stokes equations. In our case, the occurring spin up of the flow created
by the rotating particles may lead to a decrease of the effective viscosity. So, the additional
microrotation viscosity may be negative and could compensate the viscosity of the fluid1.

1 It seems that, at least, in the case of ferrofluids the microrotation viscosity could be negative and cancel
the overall viscosity.
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