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ABSTRACT

In this thesis we present controllability results for some models of fluid mechanics.
More precisely, we investigate the existence of controls that drive the solution of the
system from an initial state to a prescribed final state in a given positive time. In the
first Chapter, the controllability of the Stokes equation with memory is analyzed. This
model is a variant of the well-known Stokes equation, with the addition of a non-local
term in time building a memory effect in the equation. This model can also be seen as
a linearization around zero of an Oldroyd kind viscoelastic fluid system. We prove that
the result of null controllability for this equation is not true, even if the control acts over
the whole boundary. To this purpose, it is verified that the corresponding observability
inequality is not satisfied. We also build explicit initial data such that, for any control,
the corresponding solution is different from zero at final time. The second Chapter is
dedicated to the controllability of fluids in which thermal effects are important. We prove
the exact controllability to the trajectories of a coupled system of the Boussinesq type,
for a fluid satisfying boundary conditions of the Navier kind for the velocity and of the
Robin kind for the temperature. The control acts on a part of the boundary. First, using
a domain extension procedure, we transform the problem into to distributed controllabil-
ity problem. Then, we prove an approximate global controllability result, following the
strategy of Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Through
linearization and using appropriate Carleman estimates, we conclude with a local control
result.

Keywords: Stokes fluids with memory. Boussinesq systems. Control of fluids.



RESUMO

Nesta tese apresentamos resultados de controlabilidade para alguns modelos da mecâ-
nica dos fluidos. Mais precisamente, investigamos a existência de controles que conduzem
a solução do sistema de um estado inicial à um estado final prescrito em um tempo po-
sitivo dado. No primeiro Capítulo é analisada a controlabilidade da equação de Stokes
com memória. Este modelo é uma variante da conhecida equação de Stokes, com o acrés-
cimo de um termo não local em tempo criando um efeito de memória na equação. Este
modelo também pode ser visto como uma linearização entorno a zero de um sistema de
fluido viscoelástico do tipo Oldroyd. Provamos que o resultado de controlabilidade nula
para esta equação não é verdadeiro, mesmo se o controle atuar sobre toda a fronteira.
Para isso, verifica-se que a desigualdade de observabilidade correspondente não é satis-
feita. Também construimos um dado inicial explícito tal que, para qualquer controle, a
solução correspondente é diferente de zero no tempo final. O segundo Capítulo é dedicado
à controlabilidade de fluidos nos quais os efeitos térmicos são importantes. Provamos a
controlabilidade exata à trajetórias de um sistema acoplado do tipo Boussinesq, para um
fluido satisfazendo condições de fronteira do tipo Navier para o campo velocidade e do
tipo Robin para a temperatura. O controle atua sobre uma parte da fronteira. Primeiro,
usando um argumento de extensão de domínio passamos a um problema de controle dis-
tribuído. Então, provamos um resultado global de controlabilidade aproximada, seguindo
a estratégia de Coron et al [J. EUR. Mathematics. Soc., 22 (2020), pp. 1625-1673]. Por
meio de linearização e usando estimativas de Carleman apropriadas, concluimos com um
resultado de controle local.

Palavras-chave: Fluidos de Stokes com memória. Sistemas de Boussinesq. Controle de
fluidos.
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1 INTRODUCTION

The main aims of this thesis are the analysis and control (in a sense that we will soon de-
fine) of some boundary/initial value problems for partial differential equations originating
from fluid mechanics. Throughout this introduction we will present a description of such
equations, we will provide a short historical overview of the related control theory and we
will describe precisely the problems under study.

1.1 CONTROL THEORY

1.1.1 Generalities

Humanity has always been interested in studying the behavior of certain phenomena in
nature. Thus, a question that arises naturally is the possibility of influencing in order to
obtain a desired behavior. Once these are understood and represented mathematically, a
large number of tools and methods can be applied and it is at this point where the control
theory is based.

Looking at history, we realize that already in the design of Roman aqueducts there
are elements of the control theory, where they used a system of valves to maintain a con-
stant level of water. At the end of the 17th century, Ch. Huygens and R. Hooke studied
the oscillation of the pendulum. These works were then adapted to regulate the speed of
windmills and present elements of what we now know as control theory. J. Watt adapted
this principle to the steam engine, thus making a crucial contribution to the industrial
revolution. In this mechanism, the objective was to control the speed in order to remain
approximately constant. When the speed of the spheres increased, one or more of them
unblocked some valves, decreasing the pressure and reducing the speed; consequently, the
spheres covered the valves again and the speed increased. This self-regulating mechanism
is also features of control problems. In 1868, the physicist J. C. Maxwell gave the first
mathematical description of the system presented by Watt, explaining some of the some-
what erratic behavior observed in the machines of the time and proposed several control
devices.

During the industrial revolution, the ideas of what is now called control theory were
taking shape and becoming more and more present. In the 1930s, control engineering
formed an important part of the complex systems engineering network. At the same time,
there has been an important advance in everything related to automatic control and
design and analysis techniques, with several applications. During the Second World War
and the years that followed, engineers and scientists had to improve their experience with
control mechanisms in the aircraft and anti-aircraft missile segment.

After 1960, the methods described above began to be collected in a systematic way.
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This is the origin of “classic” control theory. However, since the Second World War, it
is clear that the models considered so far are not sufficiently to completely describe the
complexity of real world, which often has a non-linear and non-deterministic behavior.

The fundamental pillars of research in control theory of the last decades have been
given by the contributions of R. Bellman in the context of dynamic programming,
R. Kalman in the techniques of filtering and algebraic approximation to linear systems,
L. Pontryagin with the so called maximum principle for problems of non-linear optimal
control and J.-L. Lions with connections of EDPs, numerical analysis and applications.

1.1.2 Controllability problem

Control theory is an area of mathematics that studies the behavior of systems that can
be governed through commands (also called controls), applied in practice through actu-
ators. Control theory has become a rich interdisciplinary branch of mathematics, with
applications in many areas: engineering, biology, physics, economics, medicine, etc.

A control system is a dynamical system, where we have a state (the unknown system
variable that we want to control) and a control (the variable that can be freely chosen to
act on the system). The goal is to find a control such that the associated state behaves
appropriately. In particular, if this appropriate behavior is associated to the value of the
state at a given instant of time, we say that we are considering a controllability problem.

To present some concepts of control theory, consider the system⎧⎪⎨⎪⎩
𝑢𝑡 = 𝐹 (𝑡, 𝑢, 𝑣),

𝑢(𝑥, 0) = 𝑢0,
(1.1)

where 𝑇 > 0 and represents the time, 𝑢 : [0, 𝑇 ] ↦→ ℋ represents state (the variable that
we want to control) and the variable 𝑣 : [0, 𝑇 ] ↦→ 𝒰 which represents the control. Here, ℋ
and 𝒰 are suitable Banach spaces. Thus, the general question is:

Fixed a time 𝑇 > 0 and an initial state 𝑢0, is it possible to find a control 𝑣
such that the associated solution of (1.1) with 𝑢(·, 0) = 𝑢0 fulfills a desired
property?

Different notions of controllability can be identified and we will present some, among
several, present in the literature:

Exact controllability. The control system (1.1) is exactly controllable at time 𝑇 > 0
if, for every 𝑢0, 𝑢𝑇 ∈ ℋ , there exists 𝑣 such that the associated solution to system (1.1)
satisfies

𝑢(·, 𝑇 ) = 𝑢𝑇 .

This means that the system can be conducted from any initial state to any target.
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Exact controllability to the trajectory. The control system (1.1) is said to be con-
trollable to the trajectories at time 𝑇 > 0 if for all 𝑢0 ∈ ℋ and any trajectory (𝑢, 𝑣) of the
system (1.1), there exists a control function 𝑣 such that the associated solution satisfies

𝑢(·, 𝑇 ) = 𝑢(·, 𝑇 ).

This interesting concept means that it is possible to drive any initial state to any pre-
scribed trajectory of the system.

Null controllability. The control system (1.1) is said to be null controllable at time
𝑇 > 0 if for all 𝑢0 ∈ ℋ, there exists a control function 𝑣 such that the associated solution
to system (1.1) satisfies

𝑢(·, 𝑇 ) = 0.

This means that any initial state can be steered to zero equilibrium.

Approximate controllability. The control system (1.1) is approximately controllable
at time 𝑇 > 0 if, for every 𝑢0, 𝑢𝑇 ∈ ℋ and for every 𝜀 > 0, there exists 𝑣 such that the
associated solution to system (1.1) satisfies

‖𝑢(·, 𝑇 ) − 𝑢𝑇 ‖ℋ ≤ 𝜀.

This means that, it is possible to steer any initial state to an arbitrarily neighborhood of
any target, in some suitable topology.

Let us also remark that for linear systems, null controllability and controllability to
the trajectories are equivalents. On the contrary, note that even for linear systems, ap-
proximate controllability and exact controllability differ: an affine subspace of an infinite
dimensional space can be dense without filling all the space.

The controllability of PDEs is an important area of research and has been the sub-
ject of several studies in recent years. The controllability analysis for a given linear PDE
is equivalent to obtaining an observability inequality for the adjoint system. This is an
estimate that furnishes knowledge of the solution at a given time using only local mea-
surements of it (this property establishes a kind of duality between controllability and
observability). However, it is worth mentioning that the proof of such inequalities requires
tools adapted to the analyzed PDEs; for example: Ingham-type inequalities, multiplier
methods, micro-local analysis or Carleman-like inequalities.

Among the various methodologies, a very flexible tool is Carleman inequalities. These
are weighted energy estimates for the solutions to PDEs with weights of exponential
growth at final time . They were introduced with the goal to quantify unique continuation.
Over the last few years, the field of applications of Carleman inequalities went beyond
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its original purpose: currently, they are also used in the framework of inverse problems,
stabilization of PDEs, numerical calculation of control problem solutions, etc.

However, the arguments for proving controllability results for nonlinear problems are
much more complicated. Actually, the techniques are based on one of the following two
arguments: rewrite the problem as a fixed-point equation and then apply a Fixed-Point
Theorem or linearize at a well chosen control-state pair and then apply an Inverse Function
Theorem. A very relevant fact is that most of the control results for nonlinear problems
are of the local type.

1.2 SOME EQUATIONS IN FLUID MECHANICS

The mathematical theory of fluid dynamics began in the 17th Century with the work of
Newton, who applied his newly developed laws of mechanics to the movement of fluids.
Shortly afterwards, in 1755, Euler wrote the partial differential equations that describe
the movement of an ideal fluid, that is, a fluid where viscous effects are not present (an
inviscid fluid; these equations are known as Euler equations). Later, C.H. Navier (1822)
and, independently, G.G. Stokes (1845) considered a viscous fluid and then obtained what
we now call the Navier-Stokes equations.

The Euler and Navier-Stokes equations stand out for physically describing a large
number of phenomena of natural and industrial interests. For instance, they are used to
model the motion of ocean currents, water waves, estuaries, lakes and rivers, of stars inside
and outside the galaxy, flow around car and airplane airfoils, smoke spread in fires and in
industrial chimneys. They are also used directly in the study of blood flow, in the design
of aircraft, cars, hydroelectric plants and marine hydraulics, in the analysis of the effects
of water pollution in lakes, oceans and in the study of the dispersion of air pollution, etc.

Some postulates are needed to deduce the Navier-Stokes equations. The first one is
that a fluid is a continuous medium, that is, it does not contain voids, such as bubbles
dissolved in a gas. Another postulate is that all variables of interest such as pressure,
velocity, density, temperature, etc., are differentiable functions of space and time.

Basic principles of conservation of mass and momentum are used to obtain these equa-
tions. Sometimes it is necessary to consider an arbitrarily finite volume, called the control
volume, over which these principles can be easily applied. This volume is represented
by Ω and its containment surface by Γ. The control volume remains fixed in space or
can move like the fluid. This leads, however, to special considerations, as we show below
(the contents of the following paragraphs have been taken from references are (CHORIN;

MARSDEN, 1990; FERNANDEZ-CARA, 2012; JOSEPH, 2013)).

The fundamental problem in continuum mechanics
To fix ideas, let us adopt the viewpoint of a physicist. Thus, let Ω ⊂ R𝑛 (𝑛 ≥ 2) be a

bounded connected open set with Γ = 𝜕Ω and let 𝑇 > 0 be given. It is assumed that a
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continuum occupies the set Ω during the time interval (0, 𝑇 ). This means that the medium
under study is composed of particles and that there exist sufficiently regular functions 𝜌
and 𝑢 = (𝑢1, · · · , 𝑢𝑛) such that the following holds:

1. The mass of the particles of the medium whose positions at time 𝑡 are points of the
open set 𝑊 ⊂ Ω is given by

𝑚(𝑊, 𝑡) =
∫︁

𝑊
𝜌(𝑥, 𝑡) 𝑑𝑥.

2. The volume of particles of the medium whose positions at time 𝑡 are points of the
open set 𝑊 ⊂ Ω is given by

𝑉 (𝑊, 𝑡) =
∫︁

𝑊
𝑑𝑥.

3. The linear momentum associated to the particles in 𝑊 ⊂ Ω at time t is

𝐿(𝑊, 𝑡) =
∫︁

𝑊
(𝜌𝑢)(𝑥, 𝑡) 𝑑𝑥.

The functions 𝜌 and 𝑢 are the mass density and the velocity field, respectively. For
each 𝑡, the functions 𝜌(·, 𝑡) and 𝑢(·, 𝑡) provide a complete description of the mechanical
state of the medium at time 𝑡. The fundamental problem in continuum mechanics (FPM)
is the following:

Assume that, for a given medium, the mechanical state at time 𝑡 = 0 and the
physical properties for all 𝑡 are known. Then, determine the mechanical state
of this medium for all 𝑡.

In fluid mechanics there are two “canonical” coordinate systems in which the various
equations of motion can be written: Lagrangian coordinates are associated with fluid
particles (or fluid volume elements) as described below; by contrast, Eulerian coordinates
are the coordinates of the particles with respect to fixed reference frame associated with
the experiment.

Lagrangian coordinates and the Transport Lemma
In order to be more precise in the formulation of FPM, we need some tools. In par-

ticular, we have to first define a trajectory: for any 𝑥 ∈ Ω, one considers the Cauchy
problem ⎧⎪⎨⎪⎩

𝑋𝑡(𝑥, 𝑡) = 𝑢(𝑋(𝑥, 𝑡), 𝑡),

𝑋(𝑥, 0) = 𝑥.

We say that 𝑡 ↦→ 𝑋(𝑥, 𝑡) is the trajectory of the fluid particle that was at 𝑥 at time
𝑡 = 0. We say that (𝑥, 𝑡) ↦→ 𝑋(𝑥, 𝑡) is the flux function of the medium and the components
of 𝑋(𝑥, 𝑡) are the Lagrangian coordinates at time 𝑡 of the particle that was initially at 𝑥.
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For any open set 𝑊 ⊂ Ω, the set

𝑊𝑡 := {𝑋(𝑥, 𝑡) : 𝑥 ∈ 𝑊}

must be viewed as the set of the positions at time 𝑡 of the particles of the medium that
were in 𝑊 at time 𝑡 = 0.

The following result is known as the Transport Lemma.

Lemma 1 (Transport Lemma). Assume that ℎ ∈ 𝐶1(Ω× [0, 𝑇 ]) is given. Let 𝑊 ⊂ Ω and
let us set

𝐻(𝑡) :=
∫︁

𝑊𝑡

ℎ(𝑥, 𝑡) 𝑑𝑥

for all 𝑡 ∈ [0, 𝑇 ]. Then 𝐻 : [0, 𝑇 ] ↦→ R is a well defined 𝐶1 function. Moreover,

𝑑𝐻

𝑑𝑡
(𝑡) =

∫︁
𝑊𝑡

(︃
𝜕ℎ

𝜕𝑡
+ ∇ · (ℎ𝑢)

)︃
(𝑥, 𝑡) 𝑑𝑥 ∀ 𝑡 ∈ [0, 𝑇 ].

Let us now deduce a set of PDEs that must be satisfied by the density and the velocity
field.

The physical principles that lead to these equations are of two kinds: Universal laws,
that are common to all media; Particular constitutive laws, only satisfied for some media.
The universal laws
∙ Conservation of mass: Let 𝑊 ⊂ Ω be an open set. Then

𝑑

𝑑𝑡

(︂∫︁
𝑊𝑡

𝜌(𝑥, 𝑡) 𝑑𝑥
)︂

= 0 ∀ 𝑡 ∈ [0, 𝑇 ].

From the Transport Lemma, we easily find that

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌 𝑢) = 0 in Ω × (0, 𝑇 ).

This is a first PDE for 𝜌 and 𝑢. It is frequently called the continuity equation.

∙ Balance of linear momentum: Let 𝑊 ⊂ Ω be an open set. Then

𝑑

𝑑𝑡

(︂∫︁
𝑊𝑡

(𝜌𝑢)(𝑥, 𝑡) 𝑑𝑥
)︂

= ℱ(𝑊𝑡, 𝑡) ∀ 𝑡 ∈ [0, 𝑇 ],

where ℱ(𝑊𝑡, 𝑡) is the resultant of the forces acting on the particles whose positions are in
𝑊𝑡 at time 𝑡. Actually, this principle is the version in continuum mechanics of the famous
Newton‘s second law.

The resultant ℱ(𝑊𝑡, 𝑡) must be split as the sum of two vectors: ℱ = 𝐹𝑡𝑒𝑛 +𝐹𝑒𝑥𝑡, where
𝐹𝑡𝑒𝑛 is the resultant of the tension (or internal) forces and 𝐹𝑒𝑥𝑡 is the resultant of all other
external forces. Usually, we have that

𝐹𝑡𝑒𝑛(𝑊𝑡, 𝑡) =
∫︁

𝜕𝑊𝑡

𝜉 · 𝜈 𝑑𝛾,
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where 𝜈 is the outward unit normal vector to the boundary, 𝜉 = 𝜉(𝑥, 𝑡) is a 𝐶1 matrix-
valued function, usually called the stress tensor and, for some 𝐹 = 𝐹 (𝑥, 𝑡) one writes

𝐹𝑒𝑥𝑡(𝑊𝑡, 𝑡) =
∫︁

𝑊𝑡

(𝜌𝐹 )(𝑥, 𝑡) 𝑑𝑥.

Taking into account the balance of linear momentum and the Transport Lemma, we
can deduce the so called equation of motion:

(𝜌𝑢)𝑡 + ∇ · (𝜌𝑢⊗ 𝑢) = ∇ · 𝜉 + 𝜌𝐹 in Ω × (0, 𝑇 ).

∙ Conservation of energy: Let 𝑊 ⊂ Ω be an open set. Then

𝑑

𝑑𝑡

(︂∫︁
𝑊𝑡

1
2𝜌|𝑢|2 + 𝜌𝑤 𝑑𝑥

)︂
= 𝑃 (𝑊𝑡, 𝑡) ∀ 𝑡 ∈ [0, 𝑇 ],

where 𝑃 (𝑊𝑡, 𝑡) is the instantaneous power of work done by the forces acting on the
particles located at the points of 𝑊𝑡 at time 𝑡 and 𝑤 is the density of internal energy per
unit mass.

It is usual to write that

𝑃 (𝑊𝑡, 𝑡) =
∫︁

𝑊𝑡

𝜌𝐹 · 𝑢 𝑑𝑥+
∫︁

𝜕𝑊𝑡

(𝜉 · 𝑢) · 𝜈 𝑑𝛾 +
∫︁

𝜕𝑊𝑡

(−𝑞 · 𝜈) 𝑑𝛾

=
∫︁

𝑊𝑡

𝜌𝐹 · 𝑢+ ∇ · (𝜉 · 𝑢) − ∇ · 𝑞 𝑑𝑥,

where 𝑞 = 𝑞(𝑥, 𝑡) is a new vector-valued unknown, called the heat flux of the medium.
Arguing as before, we find the so called energy equation:

(𝜌𝑤)𝑡 + ∇ · (𝜌𝑤𝑢) = 𝜉∇𝑢− ∇ · 𝑞 in Ω × (0, 𝑇 ).

Here, we have a system of 𝑛 + 2 equations (the continuity equation, the 𝑛 equations
of motion and the scalar energy equation) for 𝑛2 + 2𝑛+ 2 unknowns: the scalar 𝜌 and 𝑤,
the 𝑛 components of 𝑢, the 𝑛 components of 𝑞 and the 𝑛2 components of 𝜉. Of course,
they are not enough, by themselves, to provide a complete description of the behavior of
the media. We have to particularize and introduce additional specific laws.

A particular set of constitutive laws
∙ Incompressibility (conservation of volume): Assume that the medium is an incom-

pressible fluid. This means that

𝑑

𝑑𝑡

(︂∫︁
𝑊𝑡

𝑑𝑥
)︂

= 0 ∀ 𝑡 ∈ [0, 𝑇 ].

Then, thanks to the Transport Lemma, we can easily deduce the so called incompress-
ibility equation for 𝑢:

∇ · 𝑢 = 0 in Ω × (0, 𝑇 ).



17

Now, it is convenient to write the stress tensor 𝜉 in the form 𝜉 = −𝑝Id + 𝜎, that is,
𝜉𝑖𝑗 = −𝑝𝛿𝑖𝑗 +𝜎𝑖𝑗 for all 𝑖 and 𝑗, where 𝑝 is called the pressure and 𝜎 is the tangential-stress
tensor (see (BATCHELOR, 1967) for more details). Thus, the motion equations reads:

(𝜌𝑢)𝑡 + ∇ · (𝜌𝑢⊗ 𝑢) = −∇𝑝+ ∇ · 𝜎 + 𝜌𝐹 in Ω × (0, 𝑇 ). (1.2)

∙ Newtonian law: Assume that the fluid is Newtonian. This means that, the velocity
field 𝑢 is of class 𝐶2 and 𝜎 depends linearly on the spatial derivatives of 𝑢. More precisely,
assume that the so called Stokes law

𝜎 = 𝜇0(∇𝑢+ ∇𝑢𝑡) − 2
3𝜇0(∇ · 𝑢)Id, (1.3)

is satisfied for some pressure 𝑝 ∈ 𝐶1 and some positive constant 𝜇0 (the fluid dynamical
viscosity).

Thus, using all the laws described above, we can arrive at the following set of equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜌𝑡 + ∇ · (𝜌𝑢) = 0 in Ω × (0, 𝑇 ),

(𝜌𝑢)𝑡 + ∇ · (𝜌𝑢⊗ 𝑢) − 𝜇0Δ𝑢+ ∇𝑝 = 𝜌𝐹 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in (0, 𝑇 ) × Ω.

These are the non-homogeneous incompressible Navier-Stokes equations of a fluid. We
find a system of 𝑛+ 2 PDEs for 𝑛+ 2 unknowns.

Note that, if the fluid is homogenous, that is, 𝜌(𝑥, 𝑡) = 𝜌0 > 0, it is natural to assume
that 𝜌0 is known and, in this case, the system reduces to the classical Navier-Stokes system⎧⎪⎨⎪⎩

𝜌0(𝑢𝑡 + ∇ · (𝑢⊗ 𝑢)) − 𝜇0Δ𝑢+ ∇𝑝 = 𝜌0𝐹 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in (0, 𝑇 ) × Ω.

∙ Fourier law: Assume that the heat flow 𝑞 is proportional to the spatial gradient of
the temperature. More precisely, assume that for some positive constant 𝜅0, called the
heat diffusion coefficient, one has

𝑞 = −𝜅0∇𝜃.

Usually, 𝑤 is assumed to be a linear function of the temperature, that is,

𝑤 = 𝑐 𝜃

for some positive 𝑐, called the specific heat coefficient.
Taking into account these considerations the energy equation now takes the form:

𝑐 ((𝜌𝜃)𝑡 + ∇ · (𝜌𝜃𝑢)) − 𝜅0Δ𝜃 = 2𝜇0𝐷𝑢∇𝑢,

where 𝐷 = 1
2(∇ + ∇𝑡) is the symmetric part of the gradient operator.
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We will consider a Newtonian fluid, incompressible and homogeneous, governed by
the so called Boussinesq systems. This means that the total external force 𝐹 is given by
𝑓 + 𝜃𝑒𝑛, where 𝑓 = 𝑓(𝑥, 𝑡) is a prescribed field and 𝑒𝑛 is the 𝑛-th vector of the canonical
basis in R𝑛. The equations are:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝜇Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝑓 + 𝜃𝑒𝑛 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in Ω × (0, 𝑇 ),

𝜃𝑡 − 𝜅Δ𝜃 + 𝑢 · ∇𝜃 = 𝑔 in Ω × (0, 𝑇 ),

where we have assumed that 𝜌0 = 1, we have taken 𝜇 = 𝜇0/𝜌0 (the kinematic viscosity),
𝜅 = 𝜅0/𝜌0 and 𝑔 represents a heat source.

A fluid can flow in two completely different ways depending on the viscosity. For
“large” kinematic viscosity 𝜇, fluid particles follow more or less ordered trajectories. In
the case, we say that the fluid is in a laminar regime. On the other hand, for 𝜇 small
enough, velocity and pressure exhibit extremely rapid variations and oscillations in time
and space and we observe “chaotic” behavior in the motion of particles. In this case, we
say that the flow is in a turbulent regime.

A particular case of the Navier-Stokes equations appears when the fluid is ideal and
incompressible (𝜇 = 0). This leads to the Euler equations:⎧⎪⎨⎪⎩

𝑢𝑡 + (𝑢 · ∇)𝑢+ ∇𝑝 = 𝑓 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in Ω × (0, 𝑇 ).

Another model related to the Navier-Stokes equations is found when we skip the non-
linear term. This way, we find the Stokes equations:⎧⎪⎨⎪⎩

𝑢𝑡 − 𝜇Δ𝑢+ ∇𝑝 = 𝑓 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in Ω × (0, 𝑇 ).

This describes the flow of a fluid where inertial forces are small compared to viscous forces
and it is a typical situation in flows where fluid velocities are very slow, viscosities are very
large or flow length scales are very small. This type of flow was first studied to understand
lubrication. In Nature, this behavior is found in the swimming of microorganisms and
sperm and, also, in lava flow problems. In technology, it occurs in ink, MEMS devices and
in the flow of viscous polymers in general.

The Newtonian fluid model has been used frequently for incompressible viscous flu-
ids allowing the description of moderate velocity flows. However, even before the XIX
Century, it was known that there were incompressible and viscous fluids not subject to
the Newtonian equations defined in (1.3). There are many fluids with this complex mi-
crostructure (biological fluids, polymeris, suspensions and liquid crystals, etc.) frequently
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used in industrial processes, that show a viscoelastic behavior that cannot be described
by the classical Newtonian model.

The first models that took into account the shear rate history of fluids, subsequently
called linear viscosity fluids, were proposed by Maxwell in (MAXWELL, 1867), Kelvin in
(KELVIN, 1875), Voigt in (VOIGT, 1890) and developments analyzed in the 1950‘s to a
considerable extent by Oldroyd in (OLDROYD, 1950) and (OLDROYD, 1953).

The first to find a relation between the stress and strain tensors was Maxwell, which
claimed that it is possible to construct a nonlinear invariant theory of fluids based on
springs and dampers. In fact, the system formed by a spring and a damper in series is
called a Maxwell element, as shown below.

Figure 1 – Maxwell element

The spring constant is called 𝐺 and the force 𝜎1 in the spring is 𝐺𝜆1, where 𝜆1 is the
displacement of the spring. The force 𝜎2 in the damper is 𝜂 𝜕𝜆2

𝜕𝑡
, where 𝜂 is the viscosity

and 𝜕𝜆2
𝜕𝑡

is the velocity (the time rate of change of 𝜆2) and due to the fact that they are
in series, one has 𝜎1 = 𝜎2 = 𝜎.

We also have that the time rate of change of the total displacement is

𝜕𝜆

𝜕𝑡
= 𝜕𝜆1

𝜕𝑡
+ 𝜕𝜆2

𝜕𝑡
= 1
𝐺

𝜕𝜎1

𝜕𝑡
+ 𝜎2

𝜂
= 1
𝐺

𝜕𝜎

𝜕𝑡
+ 𝜎

𝜂
.

Hence,
𝛼
𝜕𝜎

𝜕𝑡
+ 𝜎 = 𝜂

𝜕𝜆

𝜕𝑡
, (1.4)

where 𝛼 = 𝜂
𝐺

is a relaxation time. Another expression for 𝜎 is

𝜎 = 𝜂

𝛼

∫︁ 𝑡

−∞
exp

(︃
−(𝑡− 𝜏)

𝛼

)︃
𝜕𝜆(𝜏)
𝜕𝜏

𝑑𝜏. (1.5)

Obviously (1.4) is a differential equation model for the relation between force and
deformation and (1.5) is an integral equation showing that the present value of the force
𝜎(𝑡) is determined by the history of 𝜆.

In the one-dimensional case, let 𝜆 = 𝜕𝜉
𝜕𝑥

be the strain, where 𝜕𝜉
𝜕𝑡

= 𝑢 is the velocity.
Then,

𝜕𝜆

𝜕𝑡
= 𝜕𝑢

𝜕𝑥
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and from (1.4) one has
𝛼
𝜕𝜎

𝜕𝑡
+ 𝜎 = 𝜂

𝜕𝑢

𝜕𝑥
.

Solving this differential equation for 𝜎 and replacing in (1.2) (considering homogeneous
fluid) we have Maxwell’s fluid.

Also interesting is the Voigt (or Kelvin) model, where a spring and the damper are in
parallel, as in the figure below.

Figure 2 – Voigt element

The force in the elastic element is 𝐺𝜆 and the force in the viscous element is 𝜂2
𝜕𝜆
𝜕𝑡

;
and when in parallel, they are:

𝜎 = 𝐺𝜆+ 𝜂2
𝜕𝜆

𝜕𝑡
.

This element is instantaneously viscous because, by design, the deformation 𝜆 and the
rate of deformation 𝜕𝜆

𝜕𝑡
of the spring and damper occur simultaneously. The damper must

work in each and every deformation. If a constant force is applied, the deformation will
be damped by viscosity and the system will come to equilibrium with 𝜎 = 𝐺𝜆, as in an
elastic body.

The Voigt model is “good” for viscoelastic solids and not for fluids. Thinking about it,
Jeffreys (JEFFREYS, 1929) proposed a model which consider a damper and a Voigt model
in series, according to the scheme:

Figure 3 – Jeffreys element
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The total displacement 𝜆 in a Jeffreys element is the sum of the strains in the damper
and in the Voigt element. Hence,

𝜕𝜆

𝜕𝑡
= 𝜕𝜆1

𝜕𝑡
+ 𝜕𝜆2

𝜕𝑡
.

The forces in both elements are the same

𝜎 = 𝜂1
𝜕𝜆1

𝜕𝑡
= 𝐺𝜆2 + 𝜂2

𝜕𝜆2

𝜕𝑡
.

After eliminating 𝜆1 and 𝜆2, we get

𝜂1 + 𝜂2

𝐺

𝜕𝜎

𝜕𝑡
+ 𝜎 = 𝜂1

(︃
𝜕𝜆

𝜕𝑡
+ 𝜂2

𝐺

𝜕2𝜆

𝜕𝑡2

)︃
.

As in the Voigt model, the Jeffreys model is viscous because, by design, purely elastic
deformation of the element is impossible. Viscosity is active in each deformation. The
Jeffreys element cannot sustain a constant force in equilibrium; the force must relax. The
Jeffreys model is good for fluids and not for solids.

We can define a relaxation time and a retardation time, respectively as

𝛾1 = 𝜂1 + 𝜂2

𝐺
and 𝛾2 = 𝜂2

𝐺
.

Then, recalling the interpretation of force and deformation to stress and strain, as in
Maxwell fluids, we have

𝛾1
𝜕𝜎

𝜕𝑡
+ 𝜎 = 𝜂1

(︃
𝜕𝑢

𝜕𝑥
+ 𝛾2

𝜕2𝑢

𝜕𝑥𝜕𝑡

)︃
. (1.6)

The Maxwell model is recovered with 𝛾2 = 0 (𝜂2 = 0).
The tensorial generalization of (1.6) follows exactly the same lines established for

Maxwell (see (JOSEPH, 2013)). Therefore, one has:

𝛾1
𝜕𝜏

𝜕𝑡
+ 𝜏 = 2𝜂1

[︃
𝐷𝑢+ 𝛾2

𝜕𝐷𝑢

𝜕𝑡

]︃
. (1.7)

We may write previous equation as

𝜏 = 2𝜂1𝛾2

𝛾1
𝐷(𝑢(𝑡)) + 2𝜂1

𝛾1

(︃
1 − 𝛾2

𝛾1

)︃∫︁ 𝑡

−∞
exp[−(𝑡− 𝑠)/𝛾1]𝐷(𝑢(𝑠)) 𝑑𝑠.

That may still be split as
𝜏 = 𝜏𝑁 + 𝜏𝐸,

where
𝜏𝑁 = 2𝜇0𝐷𝑢

is the Newtonian contribution and

𝜏𝐸 = 2𝜂1

𝛾1

(︃
1 − 𝛾2

𝛾1

)︃∫︁ 𝑡

−∞
exp[−(𝑡− 𝑠)/𝛾1]𝐷(𝑢(𝑠)) 𝑑𝑠.
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is the viscoelastic contribution.
The general development and wide application of the linear theory of viscoelasticity

is relatively recent. In fact, the research activity in this field was mainly due to the
development and large-scale use of polymeric materials. Many of these newly developed
materials exhibit mechanical response features that are outside the scope of such theories
of mechanical behavior as elasticity and viscosity. Thus, the importance for a more general
theory is evident.

To be more specific, the elasticity theory can explain materials that have the capacity
to store mechanical energy without dissipating energy. On the other hand, a viscous
Newtonian fluid in a state of non-hydrostatic stress implies ability to dissipate energy,
but not to store it. Then, materials that must be outside the scope of these two theories
are those that only part of the work done to deform them can be recovered. Such materials
have the capacity to store and dissipate mechanical energy.

This type of material has a characteristic that can be described as a memory effect.
That is, the material response is not only determined by the current state of stress, but
it is also determined by all past states of stress and, in a general sense, the material
“remembers” all past states of stress.

In this context, in 1950 Oldroyd (OLDROYD, 1950; OLDROYD, 1953) proposed a model
of an incompressible and viscous fluid that satisfied (1.7) in the form

𝛾
𝜕𝜎

𝜕𝑡
+ 𝜎 = 2𝜂𝐷𝑢+ 2𝑘𝜕𝐷𝑢

𝜕𝑡
, (1.8)

where 𝛾 is a time relaxation parameter, 𝜂 is (again) the kinematic viscosity and 𝑘 is a
constant that represents time delay; it was assumed that 𝛾, 𝜂, 𝑘 > 0 and 𝜂 − 𝑘

𝛾
> 0.

Solving (1.8) with initial data 𝜎|𝑡=0 = 𝐷𝑢|𝑡=0 = 0 in the form of an integral equation
and replacing in the equation (1.2), we get the Oldroyd equations of motion, given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢𝑡− 𝜇Δ𝑢+ (𝑢 · ∇)𝑢− 𝛽
∫︁ 𝑡

0
exp

(︃
−𝑡− 𝑠

𝛾

)︃
Δ𝑢(𝑥, 𝑠) 𝑑𝑠+∇𝑝 =𝑓 in Ω × (0, 𝑇 ),

∇ · 𝑢 = 0 in Ω × (0, 𝑇 ),

where 𝜇 = 𝑘𝛾−1, 𝛽 = 𝛾−1(𝜂−𝑘𝛾−1) > 0. For physical details and mathematical modeling,
see (ASTARITA; MARRUCCI, 1974; OLDROYD, 1950; OLDROYD, 1953; OSKOLKOV, 1988).
For a complete description and analysis, see (JOSEPH, 2013; RENARDY; HRUSA; NOHEL,
1987).

1.2.1 Boundary conditions in fluid mechanics

The most used boundary condition for Navier-Stokes is the full adhesion (or non-slip) re-
quirement. This is often referred to as the Dirichlet condition, although it was introduced
by Stokes in (STOKES et al., 1851). Under this condition, fluid particles must remain at
rest near the boundary, generating boundary layers of large thickness. An alternative is
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the so-called Navier slip-with-friction condition. When it is imposed, the fluid is allowed
to slide along the boundary, but suffers friction near the impermeable walls.

Navier slip-with-friction condition is really suitable for a wide range of applications. For
example, it is appropiate for turbulent flow near rough walls (GALDI; LAYTON, 2000; LAUN-

DER; SPALDING, 1972) and also to model acoustics (GEYMONAT; SÁNCHEZ-PALENCIA,
1981); it is also used for simulations of flows near the rigid boundary, in aerodynamics,
weather forecast, hemodynamics, etc.

Historically, the adherence condition was presented after another condition introduced
by Navier in (NAVIER, 1823), involving friction:

𝑢 · 𝜈 = 0, [𝐷(𝑢)𝜈 + 𝛼𝑢]tan = 0, (1.9)

where 𝛼 is a positive coefficient. For flat boundary, this scalar coefficient measures the
amount of friction. When 𝛼 = 0 and the boundary is flat, the fluid slides along the
boundary without friction. When 𝛼 −→ +∞, the friction is so intense that the fluid is
almost at rest near the boundary and, as shown by Kelliher in (KELLIHER, 2006), Navier’s
condition [𝐷(𝑢)𝜈+𝛼𝑢]tan = 0 converges to the usual Dirichlet condition 𝑢 = 0. In (CORON,
1989), the boundary condition (1.9) for the Navier-Stokes equations is deduced rigorously
from the boundary condition at the kinetic level (Boltzmann equation).

When the physical friction on the solid boundary is very small, it is interesting to
study an asymptotic model describing a situation in which the fluid slips perfectly along
the boundary. Unfortunately, a perfect slip situation is not yet fully understood in the
mathematical literature.

The situation is simpler in the plane. In 1969, J.-L. Lions introduced the free boundary
condition 𝜔 = 0 in (LIONS, 1969). This is actually a special case of (1.9) where 𝛼 depends
on the position and 𝛼(𝑥) = 2𝜅(𝑥), where 𝜅(𝑥) is the curvature of the boundary at 𝑥 ∈ 𝜕Ω.

In space, for flat boundary, the slip is easily described with the usual impermeability
restriction 𝑢 · 𝜈 = 0, together with any of the following equivalent conditions:

𝜕𝜈 [𝑢]tan = 0, [𝐷(𝑢)𝜈]tan = 0, [∇ × 𝑢]tan = 0.

For general non-flat boundaries, these conditions are no longer equivalent. In fact, this
situation leads to some dubiety in the literature as which condition describes correctly a
slip situation.

Results of existence, uniqueness and regularity for equations with Navier slip-with-
friction condition can be found in (AMROUCHE; REJAIBA, 2014).

1.3 PREVIOUS RESULTS

In the context of fluid mechanics, the main controllability results are related to the Burg-
ers, Stokes, Euler, Navier-Stokes and Boussinesq equations. One tool used to obtain some
of these results are Carleman inequalities.
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Carleman inequalities were popularized in the works by Fursikov and Imanuvilov,
see (FURSIKOV; IMANUVILOV, 1996). In this direction, the work of Lebeau and Robbiano
(LEBEAU; ROBBIANO, 1995) stands out; they obtained there the null controllability of the
heat equation, using among other tools, a local Carleman inequality for elliptic equations.
For the approximate controllability of the semilinear heat equation, see (FABRE; PUEL;

ZUAZUA, 1995), by Fabre, Puel and Zuazua (note that, there, instead of an observability
inequality, the authors use a weakest property of the adjoint system: unique continuation).

Using Carleman inequalities and applying an Inverse Mapping Theorem, Fursikov
and Imanuvilov, in (FURSIKOV; IMANUVILOV, 1999), and Imanuvilov, in (IMANUVILOV,
2001), proved the local exact controllability to the 𝐶∞ trajectories of the Navier-Stokes
system. These results were subsequently improved for 𝐿∞ trajectories by Fernández-
Cara, Guerrero, Imanuvilov and Puel, in (FERNÁNDEZ-CARA et al., 2004). Then, inspired
by (FERNÁNDEZ-CARA et al., 2004; FURSIKOV; IMANUVILOV, 1999), Guerrero proved, in
(GUERRERO, 2006a), the local exact controllability to the trajectories to the Boussinesq
system. Using similar arguments as in (FERNÁNDEZ-CARA et al., 2004), Fernández-Cara,
Guerrero, Imanuvilov and Puel proved, under some geometric conditions, the local exact
controllability for Navier-Stokes and Boussinesq with 𝑁 − 1, see (FERNÁNDEZ-CARA et

al., 2006). We will also mention (CARREÑO, 2012; CARREÑO; GUERRERO, 2013; CORON;

GUERRERO, 2009; CORON; LISSY, 2014; FERNÁNDEZ-CARA; SOUZA, 2012; GUERRERO;

MONTOYA, 2018), where similar results are obtained with a reduced number of scalar
controls.

The small-time global exact null controllability problem for the Navier-Stokes equation
was conjectured by Jacques-Louis Lions in the 1990’s. In the original Lions question, the
boundary condition is of the Dirichlet kind. Since then, the controllability of these equa-
tions has been intensively studied, but so far only partial results are known. This is a very
challenging open problem, because the Dirichlet boundary condition gives rise to bound-
ary layers that have a large thickness, greater than for Navier slip-with-friction boundary
conditions. In (CORON; MARBACH; SUEUR, 2020), the Lions’ conjecture is solved when
Navier slip-with-friction boundary conditions are imposed. A similar result, controlling
strong solutions with regular controls is obtained in (LIAO; SUEUR; ZHANG, 2020). Others
controllability results for equations with Navier slip-with-friction boundary condition can
be found in (CORON, 1996b; GUERRERO, 2006b; MONTOYA, 2020).

In the literature, most of the controllability results for evolution equations with mem-
ory effects are negative. For one-dimensional heat equation, the leak of controllability was
proved by Ivanov and Pandolfi in (IVANOV; PANDOLFI, 2009), where it also requires that∫︀ 𝑇

0 𝑢(·, 𝑡) 𝑑𝑡 = 0. In higher dimensions, Guerrero and Imanuvilov proved in (GUERRERO;

IMANUVILOV, 2013) that the heat equation with a memory term of the kind
∫︀ 𝑡

0 𝑢(·, 𝑡) 𝑑𝑡
or
∫︀ 𝑡

0 Δ𝑢(·, 𝑠) 𝑑𝑠 cannot be steered to zero. A similar result was obtained by Zhou and
Gao in (ZHOU; GAO, 2014).
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In (BOLDRINI et al., 2012), the authors proved that linear systems of Maxwell type large
time approximate-finite dimensional and exact controllability results for suitable control
domain. Then, Fernández-Cara and Doubova established in (DOUBOVA; FERNÁNDEZ-

CARA, 2012) approximate controllability results for linear Jeffreys fluids with controls
acting on any part of boundary or any open subset of the physical domain. However, the
null controllability property was formulated as an open problem. With an appropriate
change of variable, the Jeffreys equation can be rewritten as a Stokes equation with an
integral-differential term that can be seen as a memory term.

1.4 MAIN RESULTS OF THE THESIS

In this thesis, we will present positive controllability results for a nonlinear problem and
lack of controllability results for some other linear problems. In both cases, the systems
have origin in fluid mechanics. All the results are included in accepted or submitted
papers.

Chapter 2: Controllability of the Stokes system with memory

Let 𝑇 > 0 be a real number and Ω a regular bounded domain in R𝑛 (𝑛 = 2 or 𝑛 = 3). We
will consider Stokes equations with memory:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢− 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 0 in 𝑄 := (0, 𝑇 ) × Ω,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 𝑣1𝛾 on Σ := (0, 𝑇 ) × 𝜕Ω,

𝑢(· , 0) = 𝑢0 in Ω,

(1.10)

where 𝛾 ⊂ Σ is a non-empty open subset of the boundary on which the control 𝑣 ∈
𝐿2(𝛾 × (0, 𝑇 )) acts. In (1.10), 𝑢 = 𝑢(𝑡, 𝑥) can be interpreted as a velocity field of a fluid
contained in Ω, 𝑝 is the associated pressure and 𝑢0 = 𝑢0(𝑥) is an initial velocity. Here,
𝑎, 𝑏 > 0 only for physical motivation, 𝑎 can be used as a “measure” of the elasticity of the
media and 𝑏 depends on the Reynolds number of the fluid and the polymeric viscosity.

Notice that, if 𝑏 = 0 in (1.10), the memory term is eliminated and we find the well-
known Stokes equation, which is null controllable. With the presence of the memory term
(𝑏 ̸= 0) new difficulties arises, since it is an integro-differential term.

Our first main result proves that the null controllability for Stokes equations with
memory is false. Precisely, we have the following result:

Theorem 1. Let 𝑇 > 0 be given. There exists initial data 𝑢0 ∈ 𝐻 such that, for any
control 𝑣 ∈ 𝐿2(𝛾 × (0, 𝑇 )), the associated solution to (1.10) is not identically zero at
time 𝑇 .
0 𝐻 := { 𝑤 ∈ 𝐿2(Ω)𝑛 : ∇ · 𝑤 = 0 in Ω, 𝑤 · 𝜈 = 0 on 𝜕Ω }
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Some ideas of the proof were adapted from (GUERRERO; IMANUVILOV, 2013), where
the heat equation with memory is treated.

Note that the above result ensures that we can construct explicit initial data that
cannot be steered to zero, even if the controls act on the whole boundary Σ × (0, 𝑇 ).

It is known that, by a duality argument, the null controllability result for (1.10) is
equivalent to an observability inequality for the adjoint system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜙𝑡 − Δ𝜙− 𝑏
∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)Δ𝜙(· , 𝑠) 𝑑𝑠+ ∇𝑞 = 0 in 𝑄,

∇ · 𝜙 = 0 in 𝑄,

𝜙 = 0 on Σ,

𝜙(· , 𝑇 ) = 𝜙𝑇 in Ω.

(1.11)

The observability inequality for the solution of (1.11) is:

‖𝜙( · , 0)‖2 ≤ 𝐶
∫︁∫︁

Σ

⃒⃒⃒⃒
⃒
(︃

−𝑞Id + ∇𝜙+ 𝑏
∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)∇𝜙(·, 𝑠) 𝑑𝑠

)︃
· 𝜈
⃒⃒⃒⃒
⃒
2

𝑑Γ𝑑𝑡, (1.12)

for all 𝜙𝑇 ∈ 𝐻, where 𝐶 is a positive constant.
To prove Theorem 1, first note that, by an extension argument, it is sufficient to prove

the result when Ω is a ball of radius 𝑅 and center at the origin. Then, we compute explicitly
a sequence (𝜙𝑘, 𝑞𝑘) of radial eigenfunctions and eigenvalues of the Stokes operator in Ω,
such that the related pressures 𝑞𝑘 are zero.

Our goal is to show that there is no positive constant C such that (1.12) holds. To
this propose, we will consider initial data

𝜙𝑇 =
∑︁
𝑘≥1

𝛽𝑘𝜙𝑘, {𝛽𝑘} ∈ ℓ2.

Then, we determine a sequence {𝜙𝑀} of solutions to (1.11), depending on a parameter
𝑀 . The functions 𝜙𝑀 are taken as follows:

𝜙𝑀( · , 𝑡) =
∑︁
𝑀

𝛼𝑘(𝑡)𝜙𝑘 ∀𝑡 ∈ (0, 𝑇 ),

where the 𝛼𝑘 are chosen such that 𝜙𝑀 is a solution to (1.11) and the notation
∑︁
𝑀

stands for

a convenient sum (for example, in the three-dimensional case, 𝑘 = 8𝑀+𝑗 with 1 ≤ 𝑗 ≤ 8).
We obtain lower and upper estimates of the form:

‖𝜙𝑀( · , 0)‖2 ≥ 𝐶0

𝑀𝛾1
, (1.13)

and ∫︁∫︁
Σ
𝑒2(𝑎+𝑏)(𝑇 −𝑡)

⃒⃒⃒⃒
⃒𝜕𝜙𝑀

𝜕𝜈

⃒⃒⃒⃒
⃒
2

𝑑Γ𝑑𝑡 ≤ 𝐶1

𝑀𝛾2
, (1.14)
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where 𝐶0, 𝐶1 are positive constants and 𝛾1, 𝛾2 are suitable positive integers (in the three-
dimensional case, 𝛾1 = 6 and 𝛾2 = 10).

Thanks to (1.13) and (1.14) and taking the parameter 𝑀 large enough, we ensure that
the observability inequality (1.12) is not true. Consequently, (1.10) is not null-controllable.
For the sake of completeness, we construct explicitly initial states 𝑢0 ∈ 𝐻 such that, for
all 𝑣 ∈ 𝐿2(Σ), the associated solutions to (1.10) do not vanish at 𝑡 = 𝑇 .

We also have a negative result for distributed controlled systems of the kind⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢− 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 𝑣1𝜔 in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 0 on Σ,

𝑢(· , 0) = 𝑢0 in Ω,

(1.15)

where 𝜔 ⊂ Ω is a non-empty open set called the distributed control domain. Specifically,
as an immediate consequence of Theorem 1, we get the following negative result of null
controllability:

Corollary 1. System (1.15) is not null-controllable, where 𝜔 ⊂ Ω is a non-empty open
set satisfying Ω ∖ 𝜔 ̸= ∅ and 𝑣 ∈ 𝐿2(𝜔 × (0, 𝑇 )).

A different proof is stablished in (MAITY; MITRA; RENARDY, 2019).
Let us consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢+ 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 0 in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 𝑣1𝛾 on Σ,

𝑢(· , 0) = 𝑢0 in Ω,

(1.16)

which differs from equation (1.10) in the memory term. Following the same lines as in the
proof of Theorem 1, with some adjustments, we obtain an equivalent result:

Theorem 2. Let 𝑇 > 0. Then, there exist initial conditions 𝑢0 ∈ 𝐻 such that for any
control function 𝑣 ∈ 𝐿2(Σ) the associated solution to (1.16) is not identically equal to zero
at time 𝑇 .

On the other hand, the approximate controllability results for (1.15) were established
by Fernández-Cara and Doubova in (DOUBOVA; FERNÁNDEZ-CARA, 2012). For that, they
proved a unique continuation result. The contribution of this thesis in this direction is the
reduction of the numbers of distributed controls. That is, we have the following result:

Theorem 3. The linear equation (1.15) is approximately controllable with 𝑛 − 1 scalar
controls.
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In general, in the three-dimensional case, the approximate controllability result does
not hold using only one control. The approximate controllability with only one control was
found to be false in the three-dimensional case for Ω = 𝐺×(0, 𝐿), for some special 𝐺 ⊂ R2.

The results of this chapter were collected in (FERNÁNDEZ-CARA; MACHADO; SOUZA,
2020) and it was done in collaboration with Enrique Fernández-Cara and Diego A. Souza.

Chapter 3: Controllability of the Boussinesq system

Let Ω ⊂ R𝑛 (𝑛 = 2, 3) be a smooth bounded domain with Γ := 𝜕Ω and let Γ𝑐 ⊂ Γ be a
non-empty open subset which intersects all connected components of Γ.

Let 𝑇 > 0 be a final time. We will consider a Boussinesq system where the fluid velocity
field must satisfy a Navier slip-with-friction boundary condition, the temperature fulfills
a Robin boundary condition and we assume that the control can act on Γ𝑐:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 in (0, 𝑇 ) × Ω,

𝜃𝑡 − Δ𝜃 + 𝑢 · ∇𝜃 = 0 in (0, 𝑇 ) × Ω,

∇ · 𝑢 = 0 in (0, 𝑇 ) × Ω,

𝑢 · 𝜈 = 0, 𝑁(𝑢) = 0 on (0, 𝑇 ) × (Γ ∖ Γ𝑐) ,

𝑅(𝜃) = 0 on (0, 𝑇 ) × (Γ ∖ Γ𝑐) ,

𝑢(0, · ) = 𝑢0, 𝜃(0, · ) = 𝜃0 in Ω.

(1.17)

The functions 𝑢 = 𝑢(𝑡, 𝑥), 𝜃 = 𝜃(𝑡, 𝑥) and 𝑝 = 𝑝(𝑡, 𝑥) are, respectively, viewed as
the velocity field, the temperature and the pressure of the fluid. The Navier and Robin
boundary condition terms are, respectively, given by the following formula:

𝑁(𝑢) := [𝐷(𝑢)𝜈 +𝑀𝑢]𝑡𝑎𝑛 and 𝑅(𝜃) := 𝜕𝜃

𝜕𝜈
+𝑚𝜃,

where 𝑀 = 𝑀(𝑡, 𝑥) is a smooth, symmetric matrix-valued function related to the rugosity
of the boundary, called the friction matrix and 𝑚 = 𝑚(𝑡, 𝑥) is a smooth function again
related to the properties of the boundary, known as the heat transfer coefficient.

Let us set

𝐿2
𝑐(Ω)𝑛 := {𝑢 ∈ 𝐿2(Ω)𝑛 : ∇ · 𝑢 = 0 in Ω, 𝑢 · 𝜈 = 0 on Γ ∖ Γ𝑐},

𝑊𝑇 (Ω) := [𝐶0
𝑤([0, 𝑇 ];𝐿2

𝑐(Ω)𝑛) ∩ 𝐿2(0, 𝑇 ;𝐻1(Ω)𝑛)] × [𝐶0
𝑤([0, 𝑇 ];𝐿2(Ω)) ∩ 𝐿2(0, 𝑇 ;𝐻1(Ω))].

We have the following main result:

Theorem 4. Let 𝑇 > 0 be a positive time, let (𝑢0, 𝜃0) ∈ 𝐿2
𝑐(Ω)𝑛 × 𝐿2(Ω) be an initial

state and let (𝑢, 𝜃) ∈ 𝑊𝑇 (Ω) be a weak trajectory of (1.17). Then, there exists a weak
controlled solution to (1.17) in 𝑊𝑇 (Ω) that satisfies

(𝑢, 𝜃) (𝑇, · ) =
(︁
𝑢, 𝜃

)︁
(𝑇, · ).



29

This Theorem generalizes to Boussinesq system (where thermal effects are considered) the
main control result in (CORON; MARBACH; SUEUR, 2020), stablished for the Navier-Stokes
equations.

We will reduce the task to a distributed controllability problem by applying a classical
domain extension technique, where we denote by 𝒪 the extended domain.

Figure 4 – Extension of the physical domain

Then, we will reduce our considerations to smooth initial data by using the smoothing
effect of the uncontrolled Boussinesq system. We will consider the nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 + 𝑣 in 𝒪𝑇 := (0, 𝑇 ) × 𝒪,

𝜃𝑡 − Δ𝜃 + 𝑢 · ∇𝜃 = 𝑤 in 𝒪𝑇 ,

∇ · 𝑢 = 𝜎 in 𝒪𝑇 ,

𝑢 · 𝜈 = 0, 𝑁(𝑢) = 0 on 𝛬𝑇 := (0, 𝑇 ) × 𝜕𝒪,

𝑅(𝜃) = 0 on 𝛬𝑇 ,

𝑢(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪,

(1.18)

where 𝑣 and 𝑤 are forcing terms supported in 𝒪 ∖ Ω and 𝜎 is a smooth nonhomogeneous
divergence condition also supported in 𝒪 ∖ Ω.

Thus, the proof of Theorem 4 can be divided in two important steps: global approxi-
mate controllability and local exact controllability results to the trajectories starting from
sufficiently smooth initial data.

The approximate controllability result is the following:

Proposition 1. Let us assume that 𝑇 > 0 and (𝑢, 𝑝, 𝜃, 𝑣, 𝑤, 𝜎) ∈ 𝐶∞([0, 𝑇 ]×𝒪;R2𝑛+4) is
a smooth trajectory, with 𝑣 and 𝑤 supported in 𝒪∖Ω. Let (𝑢*, 𝜃*) ∈ [𝐻3(𝒪)𝑛 ∩𝐿2

𝑑𝑖𝑣(𝒪)𝑛]×
𝐻3(𝒪) be an initial state. Then, for any 𝛿 > 0, there exist regular controls 𝑣, 𝑤 and 𝜎,
supported in 𝒪 ∖ Ω and an associated weak solution to (1.18) satisfying

‖(𝑢, 𝜃)(𝑇, · ) − (𝑢, 𝜃)(𝑇, · )‖ ≤ 𝛿.

0 𝐿2
𝑑𝑖𝑣(𝒪)𝑛 := {𝑢 ∈ 𝐿2(𝒪)𝑛 : ∇ · 𝑢 = 0 in 𝒪, 𝑢 · 𝜈 = 0 on 𝜕𝒪}
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For the proof, we follow the strategy introduced by Coron, Marbach, Sueur in (CORON;

MARBACH; SUEUR, 2020).
First, a scale change of variable associated to a small parameter 𝜀 > 0 is introduced:

𝑢𝜀(𝑡, 𝑥) := 𝜀𝑢(𝜀𝑡, 𝑥), 𝑝𝜀(𝑡, 𝑥) := 𝜀2𝑝(𝜀𝑡, 𝑥), 𝜃𝜀(𝑡, 𝑥) := 𝜀2𝜃(𝜀𝑡, 𝑥).

Then, (1.18) is transformed into a Boussinesq system with small viscosity and heat diffu-
sion 𝜀 that must be solved in the (long) time interval [0, 𝑇/𝜀]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝜀
𝑡 − 𝜀Δ𝑢𝜀 + (𝑢𝜀 · ∇)𝑢𝜀 + ∇𝑝𝜀 = 𝜃𝜀𝑒𝑛 + 𝑣𝜀 in (0, 𝑇/𝜀) × 𝒪,

𝜃𝜀
𝑡 − 𝜀Δ𝜃𝜀 + 𝑢𝜀 · ∇𝜃𝜀 = 𝑤𝜀 in (0, 𝑇/𝜀) × 𝒪,

∇ · 𝑢𝜀 = 𝜎𝜀 in (0, 𝑇/𝜀) × 𝒪,

𝑢𝜀 · 𝜈 = 0, 𝑁(𝑢𝜀) = 0 on (0, 𝑇/𝜀) × 𝜕𝒪,

𝑅(𝜃𝜀) = 0 on (0, 𝑇/𝜀) × 𝜕𝒪,

𝑢𝜀(0, · ) = 𝜀𝑢*, 𝜃𝜀(0, · ) = 𝜀2𝜃* in 𝒪.

The advantage of this scaling is that we can benefit from the roles played by nonlinear
terms (𝑢 · ∇)𝑢 and 𝑢 · ∇𝜃.

By taking formally 𝜀 = 0, we obtain the inviscid Boussinesq system. For this hyperbolic
system, we construct a particular nontrivial trajectory that connects (0, 0) ∈ R𝑛+1 to itself
and sends any particle outside the physical domain before the final time 𝑇 .

By linearizing the inviscid Boussinesq system around the previous nontrivial trajec-
tory, we obtain a new hyperbolic linear system that is small-time globally null-controllable.
Actually, what we are doing here is to apply the so called return method, due to Coron,
see (CORON, 1992). Note that the linearization around the trivial state leads to a non-
controllable system.

In the particular case of the special slip boundary condition, that is, 𝑀 such that
[∇×𝑢]tan = 0 on 𝛬𝑇 and when 𝑚 ≡ 0, we immediately conclude Proposition by estimating
the remainder terms. We do not need to use the long interval time [0, 𝑇/𝜀] to control,
since the solution is already small at the intermediate time 𝑇 ∈ (0, 𝑇/𝜀).

Unfortunately, in the general case, a boundary layer appears. This phenomenon was
already taken into account in (IFTIMIE; SUEUR, 2011), for the Navier-Stokes equations.
Thus, we have to introduce some corrector terms in the asymptotic expansion of the
solution depending on 𝜀 in order to estimate the residual layers. The boundary layer
decays but not enough. Hence, the corrector is not sufficiently small at the final time 𝑇/𝜀
and we still cannot conclude the approximate controllability.

In order to overcome this difficulty, we adapt the well-prepared dissipation method,
introduced by Marbach in (MARBACH, 2014). The idea is to design a control strategy that
reinforces the action of the natural dissipation of the boundary layer after the intermediate
time 𝑇 . A desired small state is obtained at final time and we can finally achieve the proof.
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For the local exact controllability to trajectories, we follow some ideas presented by
Guerrero in (GUERRERO, 2006b), for the Navier-Stokes equations. We will consider the
following Boussinesq system with distributed controls:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜃𝑡 − Δ𝜃 + 𝑢 · ∇𝜃 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑢 = 0 in 𝒪𝑇 ,

𝑢 · 𝜈 = 0, 𝑁(𝑢) + [𝑓(𝑢)]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(𝜃) + 𝑔(𝜃) = 0 on 𝛬𝑇 ,

𝑢(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪,

(1.19)

and we will assume the following regularity for the trajectories:

𝑢 ∈ 𝑋 := 𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2+1/2(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛) ∩𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1+1/2,𝜗1+1(𝒪)𝑛),

𝑢* ∈ 𝐻3(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛, 𝑁(𝑢*) + [𝑓(𝑢*)]𝑡𝑎𝑛 = 0 on 𝜕𝒪,

𝜃 ∈ 𝑌 := 𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2+1/2(𝒪)) ∩𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1+1/2,𝜗1+1(𝒪)),

𝜃* ∈ 𝐻3(𝒪), 𝑅(𝜃*) + 𝑔(𝜃*) = 0 on 𝜕𝒪,
(1.20)

with 0 < ℓ < 1/2 arbitrarily close to 1/2, 𝜗2 = (1/2)(3 − 𝑛) + (1 − ℓ)(𝑛 − 2) and 𝜗1 > 1
(arbitrarily small) if 𝑛 = 3 and 𝜗1 = 1 if 𝑛 = 2. We introduce the following notation to
denote the space where the control is looked for:

ℋ := 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛) ∩ 𝐶0([0, 𝑇 ];𝐻1(𝒪)𝑛) ×𝐻1(0, 𝑇 ;𝐿2(𝒪)) ∩ 𝐶0([0, 𝑇 ];𝐻1(𝒪)).

The local controllability result is the following:

Proposition 2. Let 𝑇 > 0, 𝑓 ∈ 𝐶3(R𝑛;R𝑛), 𝑔 ∈ 𝐶3(R), (𝑢*, 𝜃*) satisfying (1.20). Then,
there exists 𝛿 > 0 such that, for every (𝑢*, 𝜃*) ∈ [𝐻3(𝒪)𝑛 ∩ 𝐿2

𝑑𝑖𝑣(𝒪)𝑛] ×𝐻3(𝒪) satisfying
the compatibility condition

𝑁(𝑢*) + [𝑓(𝑢*)]𝑡𝑎𝑛 = 0, 𝑅(𝜃*) + 𝑔(𝜃*) = 0 on 𝜕𝒪

and such that ‖𝑢* − 𝑢*‖𝐻3 ≤ 𝛿 and ‖𝜃* − 𝜃*‖𝐻3 ≤ 𝛿, there exist controls (𝑣, 𝑤) ∈ ℋ and
associated solutions (𝑢, 𝑝, 𝜃) to (1.19) satisfying

𝑢(𝑇, · ) = 𝑢(𝑇, · ) and 𝜃(𝑇, · ) = 𝜃(𝑇, · ) in 𝒪.

The basic ideas of the proof have been applied to many other nonlinear control prob-
lems. The strategy was to obtain appropriate Carleman inequalities and, as a consequence,
deduce the null controllability of the linearized system. Then, using a Kakutani fixed-point
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Theorem, we reach at the desired result. A technical difficulty found in this proof is to ob-
tain the good Carleman inequality for the heat equation with Robin boundary conditions.
And an additional difficulty is to find suitable spaces to apply the fixed point argument.

Notice that, at the end of the approximate controllability step, the obtained estimates
are in 𝐿2, however, for the local result the estimates are in 𝐻3. Therefore, we need to prove
a smoothing effect result. This was a delicate point that made it necessary to impose the
symmetry assumption on 𝑀 .

The results of this chapter can be found in (CHAVES-SILVA et al., 2020) and it was done
in collaboration with Felipe W. Chaves-Silva, Enrique Fernández-Cara, Kévin Le Balc’h
and Diego A. Souza.
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2 CONTROLLABILITY OF THE STOKES SYSTEM WITH MEMORY

In this chapter, we consider the null controllability problem for the Stokes equations with
a memory term. For any positive final time 𝑇 > 0, we construct initial conditions such
that the null controllability does not hold even if the controls act on the whole boundary.
We also prove that this negative result holds for distributed controls.

2.1 INTRODUCTION

Let Ω ⊂ R3 be a smooth bounded domain and let 𝑇 > 0 be a prescribed final time. Let
us introduce the Hilbert spaces

𝐻 := {𝑤 ∈ 𝐿2(Ω)3 : ∇ · 𝑤 = 0 in Ω, 𝑤 · 𝜈 = 0 on 𝜕Ω }

and
𝑉 := {𝑤 ∈ 𝐻1

0 (Ω)3 : ∇ · 𝑤 = 0 in Ω },

where 𝜈 = 𝜈(𝑥) is the outward unit normal vector at 𝑥 ∈ 𝜕Ω. It is well known that
𝑉 →˓ 𝐻 with a compact and dense embedding. Consequently, after identification of 𝐻
and its dual 𝐻 ′, we have

𝑉 →˓ 𝐻 →˓ 𝑉 ′,

where the second embedding is again dense and compact.
In the sequel, we will use the notation 𝑄 := Ω × (0, 𝑇 ) and Σ := 𝜕Ω × (0, 𝑇 ). The

usual scalar products and norms in the spaces 𝐿2(Ω)𝑚 will be denoted by (· , ·) and ‖ · ‖,
respectively. The symbols 𝐶,𝐶0, 𝐶1, . . . will be used to design generic positive constants.

In this chapter, we will consider the controlled Stokes equations with memory:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢− 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 0 in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 𝑣1𝛾 on Σ,

𝑢(· , 0) = 𝑢0 in Ω,

(2.1)

where 𝑎, 𝑏 > 0 and 𝛾 ⊂ 𝜕Ω is a non-empty open subset of the boundary. Here, 𝑣 ∈
𝐿2(𝛾 × (0, 𝑇 ))3 is a control acting on 𝛾 during the whole interval (0, 𝑇 ) and 𝑢0 ∈ 𝐻 is an
initial state.

For any 𝑢0 ∈ 𝐻 and any 𝑣 ∈ 𝐿2(𝛾 × (0, 𝑇 ))3, there exists exactly one solution to
(2.1), in the sense of transposition. This means the following: there exists a unique
𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻) ∩ 𝐶0([0, 𝑇 ];𝑉 ′) satisfying∫︁ 𝑇

0
(𝑢(· , 𝑡), 𝑔(· , 𝑡)) 𝑑𝑡=(𝑢0, 𝜓(· , 0)) −

∫︁∫︁
𝛾×(0,𝑇 )

𝑣

(︃
−𝜋𝜈+ 𝜕𝜓

𝜕𝜈
+𝑏

∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)𝜕𝜓

𝜕𝜈
(· , 𝑠) 𝑑𝑠

)︃
𝑑Γ𝑑𝑡

(2.2)
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for all 𝑔 ∈ 𝐿2(0, 𝑇 ;𝐻), where 𝜓 is, together with some pressure 𝜋, the unique (strong)
solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜓𝑡 − Δ𝜓 − 𝑏
∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)Δ𝜓(· , 𝑠) 𝑑𝑠+ ∇𝜋 = 𝑔 in 𝑄,

∇ · 𝜓 = 0 in 𝑄,

𝜓 = 0 on Σ,

𝜓(· , 𝑇 ) = 0 in Ω.

(2.3)

Of course, if 𝑣1𝛾 is regular enough (for instance, 𝑣 = 𝑢|𝛾×(0,𝑇 ) with 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑉 ) and
𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝑉 ′)), then 𝑢 is, together with some pressure 𝑝, the unique weak solution
to (2.1).

These assertions are justified in Appendix A.
The boundary null controllability property for (2.1) reads as follows: for each 𝑢0 ∈ 𝐻,

find a boundary control 𝑣 ∈ 𝐿2(𝛾 × (0, 𝑇 ))3 such that the associated solution satisfies
𝑢(·, 𝑇 ) = 0.

When 𝑏 = 0, (2.1) is the Stokes equations and it is well known that the null control-
lability holds. In the general case, the presence of the memory term brings difficulties to
the analysis of the controllability for (2.1) .

By a duality argument, it is not difficult to see that the null controllability of (2.1) is
equivalent to prove an observability inequality for the adjoint system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜙𝑡 − Δ𝜙− 𝑏
∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)Δ𝜙(· , 𝑠) 𝑑𝑠+ ∇𝑞 = 0 in 𝑄,

∇ · 𝜙 = 0 in 𝑄,

𝜙 = 0 on Σ,

𝜙(· , 𝑇 ) = 𝜙𝑇 in Ω.

(2.4)

The usual way to deduce such an observability estimate is to first prove a global Carleman
inequality. But it seems difficult to adapt this approach in the presence of an integro-
differential term.

In the last decades, many researchers have been interested by the controllability of
systems governed by linear and nonlinear PDEs. For linear PDEs, the first relevant
contributions were obtained in (EMANUILOV, 1993; LEBEAU; ROBBIANO, 1995; LIONS,
1988; RUSSELL, 1973; RUSSELL, 1978; SEIDMAN, 1978). For instance, in (RUSSELL, 1978),
D.L. Russell presented a rather complete survey on the most relevant results available at
that time. There, the author described several tools developed to address controllability
problems, in some cases related to other subjects concerning PDEs: multipliers, moment
problems, nonharmonic Fourier series, etc. On the other hand, in (LIONS, 1988), J.-L. Li-
ons introduced a very useful technique, the so called Hilbert Uniqueness Method (HUM
for short). Among other things, this allows to reformulate the solution to an exact con-
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trollability problem as a Lax-Milgram problem in an “abstract” Hilbert space that can
be identified for instance in the case of the wave equation.

For semilinear systems, one can find the first contributions in (FABRE; PUEL; ZUAZUA,
1995; FURSIKOV; IMANUVILOV, 1996; LASIECKA; TRIGGIANI, 1991; ZUAZUA, 1997) and
some other related results can be found in (CORON, 2007; GLOWINSKI; LIONS, 2008).

In the context of fluid mechanics, the main controllability results are related to the
Burgers, Stokes, Euler and Navier-Stokes equations. For Stokes equations, the approxi-
mate and null controllability with distributed controls have been established in (FABRE,
1996; IMANUVILOV, 2001), respectively. For the Euler equations, global controllability
results are proved in (CORON, 1996a; GLASS, 2000a). On the other hand, for the Navier-
Stokes equations with initial and Dirichlet boundary conditions, only local exact control-
lability results are available; see for instance (FERNÁNDEZ-CARA et al., 2004; FERNÁNDEZ-

CARA et al., 2006; FURSIKOV; IMANUVILOV, 1999; IMANUVILOV, 2001). For Navier-Stokes
equations with Navier-slip (friction) boundary conditions a global exact controllability
result is available in (CORON; MARBACH; SUEUR, 2020).

For 1D heat equations with memory, the lack of null controllability for a large class
of memory kernels and controls was established in (IVANOV; PANDOLFI, 2009), where the
notion of null controllability also requires that

∫︀ 𝑇
0 𝑦(·, 𝑡) 𝑑𝑡 = 0. In a higher dimensional

situation, Guerrero and Imanuvilov proved in (GUERRERO; IMANUVILOV, 2013) that null
controllability does not hold for the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 −
∫︁ 𝑡

0
Δ𝑦(· , 𝑠) 𝑑𝑠 = 0 in 𝑄,

𝑦 = 𝑣1𝛾 on Σ,

𝑦(· , 0) = 𝑦0 in Ω.

(2.5)

A similar result was obtained in (ZHOU; GAO, 2014) by Zhou and Gao for⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦𝑡 − Δ𝑦 − 𝑏

∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)𝑦(· , 𝑠) 𝑑𝑠 = 0 in 𝑄,

𝑦 = 𝑣 on Σ,

𝑦(· , 0) = 𝑦0 in Ω.

Our main goal in this work is to prove that the null controllability of (2.1) does not
hold. More precisely, we have the following result:

Theorem 2.1. Let 𝑇 > 0 be given. There exists initial data 𝑢0 ∈ 𝐻 such that, for any
control 𝑣 ∈ 𝐿2(𝛾 × (0, 𝑇 ))3, the associated solution to (2.1) is not identically zero at
time 𝑇 .

The proof of this theorem follows some ideas of (GUERRERO; IMANUVILOV, 2013).
Thus, we prove that the required observability inequality does not hold and then, using
this fact, we construct explicit initial data that cannot be steered to zero.
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We also have a negative result for distributed controlled systems of the kind⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢− 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 𝑣1𝜔 in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 0 on Σ,

𝑢(· , 0) = 𝑢0 in Ω,

(2.6)

where 𝜔 ⊂ Ω is an open subset. Specifically, as an immediate consequence of Theorem 2.1,
we get the following result:

Corollary 2.2. Let 𝑇 > 0 be given and let 𝜔 be a non-empty open set with Ω ∖ 𝜔 ̸= ∅.
There exist initial data 𝑢0 ∈ 𝐻 such that, for any 𝑣 ∈ 𝐿2(𝜔 × (0, 𝑇 ))3, the associated
solution to (2.6) is not identically zero at time 𝑇 .

Remark 2.3. Theorem 2.1 and Corollary 2.2 still hold if we replace in (2.1) or (2.6) the
integral (memory) term by ∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)𝑢(· , 𝑠) 𝑑𝑠.

The analysis of the control of (2.1) and (2.6) is motivated by the interest to understand
the limits of controlling viscoelastic fluids of the Oldroyd kind. Thus, let us consider the
following systems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝜇Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = ∇ · 𝜏 in 𝑄,

𝜏𝑡 + (𝑢 · ∇)𝜏 + 𝑔(∇𝑢, 𝜏) + 𝑎𝜏 = 2𝑏𝐷(𝑢) in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 𝑣1𝛾 on Σ,

𝑢(· , 0) = 𝑢0, 𝜏(· , 0) = 𝜏0 in Ω

(2.7)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝜇Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = ∇ · 𝜏 + 𝑣1𝜔 in 𝑄,

𝜏𝑡 + (𝑢 · ∇)𝜏 + 𝑔(∇𝑢, 𝜏) + 𝑎𝜏 = 2𝑏𝐷(𝑢) in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 0 on Σ,

𝑢(· , 0) = 𝑢0, 𝜏(· , 0) = 𝜏0 in Ω,

(2.8)

where 𝑔(∇𝑢, 𝜏) := 𝜏𝑊 (𝑢) −𝑊 (𝑢)𝜏 −𝑘[𝐷(𝑢)𝜏 + 𝜏𝐷(𝑢)], 𝑘 ∈ [−1, 1] and we have used the
notation 𝐷(𝑢) := 1

2(∇𝑢+ ∇𝑢𝑡) and 𝑊 (𝑢) := 1
2(∇𝑢− ∇𝑢𝑡). The functions 𝑢, 𝑝 and 𝜏 are

respectively the velocity field, the pressure distribution and the elastic extra-stress tensor
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of the fluid; 𝑢0 ∈ 𝐻 and 𝜏0 ∈ 𝐿2(Ω; ℒ𝑠(R3)).1 For the physical meaning of these systems,
see for instance (JOSEPH, 2013; RENARDY; HRUSA; NOHEL, 1987).

The theoretical analysis of the Oldroyd systems (2.7) and (2.8) has been the subject
of considerable work. Note that these systems are more difficult to solve than the usual
Navier-Stokes equations. The main reason is the presence of the nonlinear term 𝑔(∇𝑢, 𝜏);
for details, see (FERNANDEZ-CARA; GUILLEN; ORTEGA, 2002; LIONS; MASMOUDI, 2000;
RENARDY, 2009a).

It is worth mentioning that, in (DOUBOVA; FERNÁNDEZ-CARA, 2012), the authors
studied a linear version of (2.8):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢+ ∇𝑝 = ∇ · 𝜏 + 𝑣1𝜔 in 𝑄,

𝜏𝑡 + 𝑎𝜏 = 2𝑏𝐷(𝑢) in 𝑄,

∇ · 𝑢 = 0 in 𝑄,

𝑢 = 0 on Σ,

𝑢(· , 0) = 𝑢0, 𝜏(· , 0) = 𝜏0 in Ω.

(2.9)

Plugging the explicit solution 𝜏 of (2.9)2 into (2.9)1, it is easy to see that the previous
system can be equivalently rewritten as an integro-differential equation in 𝑢:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − Δ𝑢− 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑢(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 𝑒−𝑎𝑡∇ · 𝜏0 + 𝑣1𝜔 in 𝑄,

∇ · 𝑢 = 0 on 𝑄,

𝑢 = 0 on Σ,

𝑢(· , 0) = 𝑢0 on Ω.

(2.10)

In (DOUBOVA; FERNÁNDEZ-CARA, 2012, Theorem 1.1 and 1.2), approximate controlla-
bility results are established for (2.9). Notice that, if 𝜏0 is the null matrix, then (2.10)
and (2.6) are exactly the same.

The system (2.9) governs the behavior of viscoelastic fluids of the so called linear
Jeffreys kind. If we neglect the viscosity term, we find a linear Maxwell fluid, for which
large time controllability results have been established, see (BOLDRINI et al., 2012); see
also (RENARDY, 2005; RENARDY, 2009b).

Recall that, in (DOUBOVA; FERNÁNDEZ-CARA, 2012), the null controllability of linear
Jeffreys fluids is formulated as an open problem. Hence, Theorem 2.1 and Corollary 2.2
solve this open question proving that the null controllability does not hold. A different
proof is stablished in (MAITY; MITRA; RENARDY, 2019).

This chapter is organized as follows. In Section 2.2, we compute the eigenfunctions
and eigenvalues of the Stokes operator in a ball and we prove some relevant estimates.
1 ℒ𝑠(R3) is the space of symmetric real 3 × 3 matrices.
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In Section 2.3, we prove Theorem 2.1. Finally, in Section 2.4, we present some additional
comments and open problems.

2.2 THE RADIALLY SYMMETRIC EIGENFUNCTIONS OF THE STOKES OPERATOR

In this section, we will assume that Ω is the ball of radius 𝑅 centered at the origin. We
will compute explicitly the eigenfunctions and eigenvalues of the Stokes operator and,
then, we will deduce some crucial estimates that will be used to prove Theorem 2.1. For
simplicity, the coordinates of a generic point in Ω will be denoted by 𝑥, 𝑦 and 𝑧.

Let us compute nontrivial couples (𝜙, 𝑞) and positive real numbers 𝜆 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δ𝜙+ ∇𝑞 = 𝜆𝜙 in Ω,

∇ · 𝜙 = 0 in Ω,

𝜙 = 0 on 𝜕Ω.

(2.11)

Let us look for eigenfunctions as the curl of radial stream functions, i.e. 𝜙 = ∇ × 𝜓,
for some radial stream function 𝜓. Setting 𝑤 = ∇ ×𝜙, we can easily deduce that if (𝑤,𝜓)
solves, together with 𝜆, the eigenvalue problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝑟𝑤′′ − 2𝑤′ = 𝜆𝑟𝑤 in (0, 𝑅),

−𝑟𝜓′′ − 2𝜓′ = 𝑟𝑤 in (0, 𝑅),

𝜓(𝑅) = 0, 𝜓′(𝑅) = 0, 𝜆 > 0

(2.12)

then 𝜙 = ∇ × 𝜓 is, together with 𝜆 and some 𝑞, a solution to (2.11). Here, we are using
the notation 𝑟 =

√
𝑥2 + 𝑦2 + 𝑧2 for any (𝑥, 𝑦, 𝑧) ∈ Ω.

In order to compute the solutions to (2.12), let us make the following change of vari-
ables: 𝜁 = 𝑟𝑤 and 𝜑 = 𝑟𝜓. Then, from (2.12), we see that 𝜁, 𝜑 and 𝜆 satisfy⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝜁 ′′ = 𝜆𝜁, −𝜑′′ = 𝜁 in (0, 𝑅),

𝜁(0) = 0, 𝜑(0) = 0,

𝜑(𝑅) = 0, 𝜑′(𝑅) = 0, 𝜆 > 0.

This way, it is not difficult compute explicitly the eigenvalues 𝜆𝑛 and the corresponding
eigenfunctions (𝜙𝑛, 𝑞𝑛) for (2.11):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝑛(𝑥, 𝑦, 𝑧) = 1
𝜆

1/2
𝑛 𝑟2

(︃
cos(𝜆1/2

𝑛 𝑟) − 1
𝜆

1/2
𝑛 𝑟

sin(𝜆1/2
𝑛 𝑟)

)︃
(𝑦 − 𝑧, 𝑧 − 𝑥, 𝑥− 𝑦),

𝑞𝑛 ≡ 0,

𝜆1/2
𝑛 𝑅 = 𝑡𝑔(𝜆1/2

𝑛 𝑅).

(2.13)
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Note that

𝜆𝑛 = 𝜋2

𝑅2 (𝑛+ 1/2)2 − 𝜀𝑛, for some 𝜀𝑛 > 0 with 𝜀𝑛 → 0. (2.14)

It is not difficult to see that {𝜙𝑛}𝑛∈N is an orthogonal family in 𝐻. Also, using (2.13)3,
we can compute the 𝐿2-norm of 𝜙𝑛:

‖𝜙𝑛‖2 = 8𝜋
∫︁ 𝑅

0

(︃
cos(𝜆1/2

𝑛 𝑟)
𝜆

1/2
𝑛

− sin(𝜆1/2
𝑛 𝑟)

𝜆𝑛𝑟

)︃2

𝑑𝑟

= 8𝜋
𝜆

3/2
𝑛

[︃
𝜆1/2

𝑛 𝑅

2 + sin(𝜆1/2
𝑛 𝑅)

(︃
cos(𝜆1/2

𝑛 𝑅)
2 − sin(𝜆1/2

𝑛 𝑅)
𝜆

1/2
𝑛 𝑅

)︃]︃

= 2𝜋𝑅
𝜆𝑛

(1 − cos(2𝜆1/2
𝑛 𝑅)).

(2.15)

From (2.14) and (2.15), we see that, if 𝑛 is large enough, cos(2𝜆1/2
𝑛 𝑅) < 0 and, conse-

quently,
‖𝜙𝑛‖2 ≥ 2𝜋𝑅

𝜆𝑛

. (2.16)

On the other hand, we can deduce some estimates for the normal derivatives of 𝜙𝑛. Indeed,
using (2.13)1 and (2.13)3, we get:

𝜕𝜙1
𝑛

𝜕𝜈

⃒⃒⃒⃒
⃒
𝜕Ω

=
(︃

−sin(𝜆1/2
𝑛 𝑅)
𝑅2 − 3cos(𝜆1/2

𝑛 𝑅)
𝜆

1/2
𝑛 𝑅3

+ 3sin(𝜆1/2
𝑛 𝑅)

𝜆𝑛𝑅4

)︃
(𝑦 − 𝑧),

𝜕𝜙2
𝑛

𝜕𝜈

⃒⃒⃒⃒
⃒
𝜕Ω

=
(︃

−sin(𝜆1/2
𝑛 𝑅)
𝑅2 − 3cos(𝜆1/2

𝑛 𝑅)
𝜆

1/2
𝑛 𝑅3

+ 3sin(𝜆1/2
𝑛 𝑅)

𝜆𝑛𝑅4

)︃
(𝑧 − 𝑥),

𝜕𝜙3
𝑛

𝜕𝜈

⃒⃒⃒⃒
⃒
𝜕Ω

=
(︃

−sin(𝜆1/2
𝑛 𝑅)
𝑅2 − 3cos(𝜆1/2

𝑛 𝑅)
𝜆

1/2
𝑛 𝑅3

+ 3sin(𝜆1/2
𝑛 𝑅)

𝜆𝑛𝑅4

)︃
(𝑥− 𝑦).

But, thanks to (2.13)3, the following relations hold:

−3cos(𝜆1/2
𝑛 𝑅)

𝜆
1/2
𝑛 𝑅3

+ 3sin(𝜆1/2
𝑛 𝑅)

𝜆𝑛𝑅4 = 0.

Therefore,
𝜕𝜙𝑛

𝜕𝜈

⃒⃒⃒⃒
⃒
𝜕Ω

=−sin(𝜆1/2
𝑛 𝑅)
𝑅2 (𝑦 − 𝑧, 𝑧 − 𝑥, 𝑥− 𝑦). (2.17)

2.3 THE LACK OF NULL CONTROLLABILITY

In this section, we prove Theorem 2.1. As already said, we will follow some ideas presented
in (GUERRERO; IMANUVILOV, 2013).

Notice that it is sufficient to consider the case where Ω is a ball and the solution is
radially symmetric. Indeed, if Ω is a general bounded domain in R3, we fix an open ball
𝐵 ⊂ Ω. If the result is established for any ball, we see that 𝐵 can be chosen such that,
for any 𝑇 > 0, there exist initial states 𝑢̂0 ∈ 𝐿2(𝐵)3, ∇ · 𝑢̂0 = 0 in 𝐵 and 𝑢̂0 · 𝜈 = 0
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on 𝜕𝐵, with the following property: for any boundary control 𝑣 ∈ 𝐿2(𝜕𝐵 × (0, 𝑇 ))3, the
associated solution 𝑢̂ is not identically equal to zero at time 𝑇 . Now, by extending 𝑢̂0 by
zero to the whole domain Ω, considering the extended system (2.1) in 𝑄 and arguing by
contradiction, we find that the null controllability at time 𝑇 also fails in Ω × (0, 𝑇 ).

Accordingly, we will assume in the sequel that Ω is a ball of radius 𝑅.
It is well known that the null controllability of (2.1) is equivalent to the following

observability inequality for the solutions to (2.4):

‖𝜙( · , 0)‖2 ≤ 𝐶
∫︁∫︁

Σ

⃒⃒⃒⃒(︃
−𝑞Id + ∇𝜙+ 𝑏

∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)∇𝜙(·, 𝑠) 𝑑𝑠

)︃
· 𝜈
⃒⃒⃒⃒2
𝑑Γ 𝑑𝑡 ∀𝜙𝑇 ∈ 𝐻. (2.18)

Our goal is to show that there is no positive constant 𝐶 such that (2.18) holds. To this
purpose, we will construct a family of solutions to (2.4), denoted 𝜙𝑀 , such that, for all
sufficiently large 𝑀 , one has

‖𝜙𝑀( · , 0)‖ ≥ 𝐶1

𝑀6 (2.19)

and ∫︁∫︁
Σ

⃒⃒⃒⃒(︃
−𝑞Id + ∇𝜙𝑀 + 𝑏

∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)∇𝜙𝑀(·, 𝑠) 𝑑𝑠

)︃
· 𝜈
⃒⃒⃒⃒2
𝑑Γ 𝑑𝑡 ≤ 𝐶2

𝑀10 , (2.20)

where 𝐶1 and 𝐶2 are independent of 𝑀 . Then, using these properties of the 𝜙𝑀 , we will
be able to construct initial data 𝑢0 in 𝐻 such that the solution to (2.1) cannot be steered
to zero, no matter the control is.

2.3.1 The structure of the 𝜙𝑀

For simplicity, the superindex 𝑀 will be omited in this section (and also in Sections 2.3.2
and 2.3.3).

Let us set
𝜙𝑇 :=

∑︁
𝑛≥1

𝛽𝑛𝜙𝑛,

where {𝛽𝑛} is a real sequence with only a finite amount of non-zero terms, see (2.27). We
try to find some particular 𝛽𝑛 such that the quotient of (2.26) over (2.33) becomes large,
see (2.19) and (2.20).

The solution to (2.4) associated with 𝜙𝑇 can be written in the form

𝜙( · , 𝑡) =
∑︁
𝑛≥1

𝛼𝑛(𝑡)𝜙𝑛, 𝑞 ≡ 0, ∀𝑡 ∈ (0, 𝑇 ), (2.21)

where the 𝛼𝑛 satisfy the following second-order Cauchy problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝛼′′

𝑛 + (𝜆𝑛 + 𝑎)𝛼′
𝑛 − 𝜆𝑛(𝑎+ 𝑏)𝛼𝑛 = 0 in (0, 𝑇 ),

𝛼𝑛(𝑇 ) = 𝛽𝑛,

𝛼′
𝑛(𝑇 ) = 𝜆𝑛𝛽𝑛.

(2.22)
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It is clear that there exists 𝑛0 ∈ N such that, if 𝑛 ≥ 𝑛0, then 𝐷𝑛 := (𝜆𝑛 + 𝑎)2 − 4(𝑎+
𝑏)𝜆𝑛 > 0. This way, taking 𝛽𝑛 = 0 for 𝑛 < 𝑛0, we have⎧⎪⎨⎪⎩

𝛼𝑛(𝑡) ≡ 0 ∀𝑛 < 𝑛0,

𝛼𝑛(𝑡) ≡ 𝐶1,𝑛𝑒
𝜇+

𝑛 (𝑇 −𝑡) + 𝐶2,𝑛𝑒
𝜇−

𝑛 (𝑇 −𝑡) ∀𝑛 ≥ 𝑛0,
(2.23)

where
𝜇+

𝑛 = −(𝜆𝑛 + 𝑎) +
√
𝐷𝑛

2 and 𝜇−
𝑛 = −(𝜆𝑛 + 𝑎) −

√
𝐷𝑛

2 (2.24)

and the coefficients 𝐶1,𝑛 and 𝐶2,𝑛 are given by

𝐶1,𝑛 = 𝛽𝑛
𝜆𝑛 − 𝑎+

√
𝐷𝑛

2
√
𝐷𝑛

and 𝐶2,𝑛 = 𝛽𝑛
𝑎− 𝜆𝑛 +

√
𝐷𝑛

2
√
𝐷𝑛

. (2.25)

It is not difficult to check that 𝜇+
𝑛 → −∞ and 𝜇−

𝑛 → −(𝑎+ 𝑏) as 𝑛 → +∞. Also, using
(2.16), (2.21), (2.23) and the orthogonality of 𝜙𝑛, we see that

‖𝜙( · , 0)‖2 =
∑︁

𝑛≥𝑛0

(𝐶1,𝑛𝑒
𝜇+

𝑛 𝑇 + 𝐶2,𝑛𝑒
𝜇−

𝑛 𝑇 )2‖𝜙𝑛‖2

≥
∑︁

𝑛≥𝑛0

2𝜋𝑅
𝜆𝑛

(𝐶1,𝑛𝑒
𝜇+

𝑛 𝑇 + 𝐶2,𝑛𝑒
𝜇−

𝑛 𝑇 )2.
(2.26)

Let 𝑀 be a large integer (such that 8𝑀 ≥ 𝑛0) and let us take

𝛽𝑛 = 0 ∀𝑛 ̸∈ {8𝑀 + 𝑘 : 1 ≤ 𝑘 ≤ 8}. (2.27)

The coefficients 𝛽𝑛 for 𝑛 ∈ {8𝑀 + 𝑘 : 1 ≤ 𝑘 ≤ 8} will be chosen below, in Section 2.3.3.
Then, one has

𝜙(· , 𝑡) =
∑︁
𝑀

𝛼𝑛(𝑡)𝜙𝑛 ∀𝑡 ∈ (0, 𝑇 ), (2.28)

where
∑︁
𝑀

stands for the sum extended to all indices of the form 𝑛 = 8𝑀 + 𝑘 with

1 ≤ 𝑘 ≤ 8.

2.3.2 The estimates from below

Let us use (2.26) to prove (2.19). To do this, let us begin with the inequality

∑︁
𝑀

1
𝜆𝑛

(︁
𝐶1,𝑛𝑒

𝜇+
𝑛 𝑇 + 𝐶2,𝑛𝑒

𝜇−
𝑛 𝑇
)︁2

≥
∑︁
𝑀

1
𝜆𝑛

(︂3
4𝐶

2
2,𝑛𝑒

2𝜇−
𝑛 𝑇 − 3𝐶2

1,𝑛𝑒
2𝜇+

𝑛 𝑇
)︂
.

Let us assume for the moment that the 𝛽8𝑀+𝑘 and the corresponding 𝐶1,8𝑀+𝑘 have been
chosen bounded independently of 𝑀 . This choice will be justified below, see Remarks 2.5
and 2.7. Then, from (2.14) and (2.24), we have that

𝐶2
1,8𝑀+𝑘𝑒

2𝜇+
8𝑀+𝑘

𝑇 ≤ 𝐶𝑒−𝐶𝑀2𝑇 ∀𝑘 = 1, . . . , 8. (2.29)
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Here and in the sequel, the generic constant denoted by 𝐶 is independent of 𝑀 . On the
other hand, using the notations

(𝑘 − 1/2)! = (𝑘 − 1/2)(𝑘 − 3/2) · · · 1/2 and (−1/2)! = 1,

we can expand the quotient (𝑎− 𝜆𝑛 +
√
𝐷𝑛)/

√
𝐷𝑛 in the definition of 𝐶2,𝑛 and get:

𝑎− 𝜆𝑛 +
√
𝐷𝑛√

𝐷𝑛

=
⎡⎣ 2𝑎
𝜆𝑛 + 𝑎

− 2𝜆𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)3 − 𝜆𝑛 − 𝑎

𝜆𝑛 + 𝑎

∑︁
𝑘≥2

(𝑘 − 1/2)!
𝑘!

(︃
4𝜆𝑛(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2

)︃𝑘
⎤⎦

=
[︃

2𝑎
𝜆𝑛 + 𝑎

− 2𝜆𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)3 − 6𝜆2

𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)5 + 𝒪(𝜆−3
𝑛 )

]︃

≈ 𝒪(𝜆−1
𝑛 ),

(2.30)
for 𝑛 large enough and, taking into account (2.14), we see that

inf
1≤𝑘≤8

⎛⎝𝑎− 𝜆2,8𝑀+𝑘 +
√︁
𝐷2,8𝑀+𝑘√︁

𝐷2,8𝑀+𝑘

⎞⎠2

≥ 𝐶

𝑀4 (2.31)

for 𝑀 large enough. Finally, combining (2.26), (2.14), (2.29), (2.31) and the fact that
𝜇−

𝑛 → −(𝑎+ 𝑏), one has:
‖𝜙𝑀( · , 0)‖2 ≥ 𝐶1

𝑀6 (2.32)

for 𝑀 large enough and some positive 𝐶1 independent of 𝑀 .

2.3.3 The estimates from above

In order to estimate the right hand side of (2.18) from above, it is sufficient to find an
upper bound of the integral ∫︁∫︁

Σ

⃒⃒⃒⃒
⃒𝜕𝜙𝜕𝜈

⃒⃒⃒⃒
⃒
2

𝑑Γ 𝑑𝑡.

To simplify the computations, let us introduce the weight 𝑒2(𝑎+𝑏)(𝑇 −𝑡) in the above integral
and consider instead this one: ∫︁∫︁

Σ
𝑒2(𝑎+𝑏)(𝑇 −𝑡)

⃒⃒⃒⃒
⃒𝜕𝜙𝜕𝜈

⃒⃒⃒⃒
⃒
2

𝑑Γ 𝑑𝑡.

Taking into account (2.17), the following estimate holds:⃒⃒⃒⃒
⃒𝜕𝜙𝜕𝜈

⃒⃒⃒⃒
⃒
2

≤ 12

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑛≥𝑛0

𝛾𝑛𝛼𝑛(𝑡)

⃒⃒⃒⃒
⃒⃒
2

,

where 𝛾𝑛 := sin(𝜆1/2
𝑛 𝑅)/𝑅 for all 𝑛. Therefore,

∫︁∫︁
Σ
𝑒2(𝑎+𝑏)(𝑇 −𝑡)

⃒⃒⃒⃒
⃒𝜕𝜙𝜕𝜈

⃒⃒⃒⃒
⃒
2

𝑑Γ 𝑑𝑡 ≤ 48𝜋𝑅2
∫︁ 𝑇

0
𝑒2(𝑎+𝑏)(𝑇 −𝑡)

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑛≥𝑛0

𝛼𝑛(𝑡)𝛾𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡

≤ 𝐴1 + 𝐴2,

(2.33)
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where we have set

𝐴1 :=96𝜋𝑅2
∫︁ 𝑇

0

(︃∑︁
𝑀

𝛾𝑛𝐶1,𝑛𝑒
(𝑎+𝑏+𝜇+

𝑛 )(𝑇 −𝑡)
)︃2

𝑑𝑡,

𝐴2 :=96𝜋𝑅2
∫︁ 𝑇

0

(︃∑︁
𝑀

𝛾𝑛𝐶2,𝑛𝑒
(𝑎+𝑏+𝜇−

𝑛 )(𝑇 −𝑡)
)︃2

𝑑𝑡.

Let us establish estimates of 𝐴1 and 𝐴2 separately.

Lemma 2.4. There exists 𝐶 > 0 such that, for 𝑀 large enough, one has

𝐴1 ≤ 𝐶

𝑀10 , (2.34)

Proof. Let us begin using (2.24) and noting that 𝑒(𝑎+𝑏+𝜇+
𝑛 )(𝑇 −𝑡) = 𝑒(𝑎+2𝑏−𝜆𝑛)(𝑇 −𝑡)𝑒𝐵𝑛(𝑇 −𝑡)),

where 𝐵𝑛 := −𝜇−
𝑛 − 𝑎− 𝑏 → 0 as 𝑛 → +∞. Also, from (2.14), we have

𝑒(𝑎+2𝑏−𝜆8𝑀+𝑘)(𝑇 −𝑡) = 𝑒

[︁
𝑎+2𝑏− 𝜋2

𝑅2 (8𝑀+ 1
2)2
]︁

(𝑇 −𝑡)
𝑒

[︁
− 𝜋2

𝑅2 (16𝑀𝑘+𝑘+𝑘2)+𝜀8𝑀+𝑘

]︁
(𝑇 −𝑡)

.

Let us rewrite 𝐴1 as follows:

𝐴1 = 96𝜋𝑅2
∫︁ 𝑇

0
𝑒(2𝑎+4𝑏−2 𝜋2

𝑅2 (8𝑀+ 1
2 )2)(𝑇 −𝑡)𝑔𝑀(𝑡) 𝑑𝑡,

where 𝑔𝑀(𝑡) := 𝑓𝑀(𝑡)2 and 𝑓𝑀 is given by

𝑓𝑀(𝑡) :=
8∑︁

𝑘=1
𝛾8𝑀+𝑘𝐶1,8𝑀+𝑘 exp

(︃[︃
− 𝜋2

𝑅2 (16𝑀𝑘 + 𝑘 + 𝑘2) + 𝜀8𝑀+𝑘 +𝐵8𝑀+𝑘

]︃
(𝑇 − 𝑡)

)︃
.

After integrating by parts ten times, we get:∫︁ 𝑇

0
𝑒(2𝑎+4𝑏− 2𝜋2

𝑅2 (8𝑀+ 1
2 )2)(𝑇 −𝑡)𝑔𝑀(𝑡) 𝑑𝑡 =

9∑︁
𝑗=0

𝑒(2𝑎+4𝑏− 2𝜋2
𝑅2 (8𝑀+ 1

2 )2)𝑇𝑔
(𝑗)
𝑀 (0) − 𝑔

(𝑗)
𝑀 (𝑇 )

(2𝑎+ 4𝑏− 2𝜋2

𝑅2 (8𝑀 + 1
2)2)𝑗+1

+
∫︁ 𝑇

0

𝑒(2𝑎+4𝑏− 2𝜋2
𝑅2 (8𝑀+ 1

2 )2)(𝑇 −𝑡)

(2𝑎+ 4𝑏− 2𝜋2

𝑅2 (8𝑀 + 1
2)2)10

𝑔
(10)
𝑀 (𝑡) 𝑑𝑡.

(2.35)
The quantities 𝜀8𝑀+𝑘, 𝐵8𝑀+𝑘 and 𝛾8𝑀+𝑘 are bounded independently of 𝑀 . If the

same happens to the 𝐶1,8𝑀+𝑘, we have |𝑓 (𝑗)
𝑀 | = 𝒪(𝑀 𝑗) and 𝑔

(𝑗)
𝑀 = 𝒪(𝑀 𝑗) for all 𝑗 ≥ 1

and all sufficiently large 𝑀 , whence
9∑︁

𝑗=0

𝑔
(𝑗)
𝑀 (𝑇 )

(2𝑎+ 4𝑏− 2𝜋2

𝑅2 (8𝑀 + 1
2)2)𝑗+1

= 𝒪(𝑀−2).

Thus, in order to obtain (2.34), we impose the following conditions to the 𝑔(𝑗)
𝑀 (𝑇 ):

𝑔
(0)
𝑀 (𝑇 ) = 𝑔

(1)
𝑀 (𝑇 ) = · · · = 𝑔

(8)
𝑀 (𝑇 ) = 𝑔

(9)
𝑀 (𝑇 ) = 0. (2.36)

Note that these conditions are fulfilled if the constants 𝐶1,8𝑀+𝑘 (1 ≤ 𝑘 ≤ 8) satisfy five
linear equations corresponding to the identities 𝑓 (0)

𝑀 (𝑇 ) = 𝑓
(1)
𝑀 (𝑇 ) = 𝑓

(2)
𝑀 (𝑇 ) = 𝑓

(3)
𝑀 (𝑇 ) =

𝑓
(4)
𝑀 (𝑇 ) = 0. More precisely, the constants 𝐶1,8𝑀+𝑘 (1 ≤ 𝑘 ≤ 8) should satisfy:⎧⎪⎪⎪⎨⎪⎪⎪⎩

8∑︁
𝑘=1

𝛾8𝑀+𝑘

(︃
− 𝜋2

𝑅2 (16𝑀𝑘 + 𝑘 + 𝑘2) + 𝜀8𝑀+𝑘 +𝐵8𝑀+𝑘

)︃𝑗

𝐶1,8𝑀+𝑘 = 0,

for 𝑗 = 0, 1, 2, 3, 4.
(2.37)



44

Remark 2.5. In this homogeneous system, there are 5 linear equations for the 8 un-
knowns 𝐶1,8𝑀+𝑘. Hence, the space of solutions has, at least, dimension 3 and it is possible
to choose a nontrivial solution bounded independently of 𝑀 . Of course, this is what we
do.

Finally, using (2.35), (2.36) and the bounds

𝑒(2𝑎+4𝑏− 2𝜋2
𝑅2 (8𝑀+ 1

2 )2)𝑇

(2𝑎+ 4𝑏− 2𝜋2

𝑅2 (8𝑀 + 1
2)2)𝑗+1

|𝑔(𝑗)
𝑀 (0)| ≤ 𝐶𝑒−𝐶𝑀2 1

𝑀 𝑗+2 <
𝐶

𝑀10 for 0 ≤ 𝑗 ≤ 9

and ⃒⃒⃒⃒
⃒⃒⃒∫︁ 𝑇

0

𝑒(2𝑎+4𝑏− 2𝜋2
𝑅2 (8𝑀+ 1

2 )2)(𝑇 −𝑡)

(2𝑎+ 4𝑏− 2𝜋2

𝑅2 (8𝑀 + 1
2)2)10

𝑔
(10)
𝑀 (𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ ≤

∫︁ 𝑇

0

1
(𝐶𝑀)20𝐶𝑀

10 𝑑𝑡 = 𝐶

𝑀10 ,

that hold for 𝑀 large enough, we deduce (2.34).

Lemma 2.6. There exists 𝐶 > 0 such that, for 𝑀 large enough, one has

𝐴2 ≤ 𝐶

𝑀12 , (2.38)

Proof. First, note that

𝜇−
𝑛 = 𝜆𝑛 + 𝑎

2

⎛⎝−1 +

⎯⎸⎸⎷1 − 4𝜆𝑚(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2

⎞⎠ = −𝜆𝑛 + 𝑎

4
∑︁
𝑘≥1

(𝑘 − 3/2)!
𝑘!

[︃
4𝜆𝑛(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2

]︃𝑘

.

On the other hand, the exponent in the expression of 𝐴2 can be split as follows:

𝑒(𝑎+𝑏+𝜇−
𝑛 )(𝑇 −𝑡) = 𝑒

𝑎(𝑎+𝑏)
𝜆𝑛+𝑎

(𝑇 −𝑡)𝑒𝑌𝑛(𝑇 −𝑡),

where

𝑌𝑛 := −𝜆𝑛 + 𝑎

4
∑︁
𝑘≥2

(𝑘 − 3/2)!
𝑘!

[︃
4𝜆𝑛(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2

]︃𝑘

.

Since 𝑒𝑥 = 1 + 𝑥+ 𝒪(𝑥2) for |𝑥| < 1, we see that

𝑒
𝑎(𝑎+𝑏)
𝜆𝑛+𝑎

(𝑇 −𝑡) = 1 + 𝑎(𝑎+ 𝑏)
𝜆𝑛 + 𝑎

(𝑇 − 𝑡) + 𝒪(𝜆−2
𝑛 ), (2.39)

for 𝑛 large enough.
Now, since 𝜇−

𝑛 → −(𝑎+ 𝑏), we have

|𝑌𝑛(𝑇 − 𝑡)| =
⃒⃒⃒⃒
⃒
(︃
𝑎+ 𝑏+ 𝜇−

𝑛 − 𝑎(𝑎+ 𝑏)
𝜆𝑛 + 𝑎

)︃
(𝑇 − 𝑡)

⃒⃒⃒⃒
⃒ < 1

and
𝑒𝑌𝑛(𝑇 −𝑡) = 1 − 𝜆2

𝑛(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)3 (𝑇 − 𝑡) + 𝒪(𝜆−2
𝑛 ), (2.40)
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where we have used that 𝑌𝑛 = −𝜆2
𝑛(𝑎+𝑏)2

(𝜆𝑛+𝑎)3 + 𝒪(𝜆−2
𝑛 ) for 𝑛 large enough. The following is

obtained from (2.39) and (2.40):

𝑒(𝑎+𝑏+𝜇−
𝑛 )(𝑇 −𝑡) = 1 − 𝜆2

𝑛(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)3 (𝑇 − 𝑡) + 𝑎(𝑎+ 𝑏)
𝜆𝑛 + 𝑎

(𝑇 − 𝑡) + 𝒪(𝜆−2
𝑛 ). (2.41)

Using (2.30) and (2.41), we see that

𝛾𝑛𝐶2,𝑛𝑒
(𝑎+𝑏+𝜇−

𝑛 )(𝑇 −𝑡) = 𝛾𝑛
𝛽𝑛

2

[︃(︃
2𝑎

𝜆𝑛 + 𝑎
− 2𝜆𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)

(𝜆𝑛 + 𝑎)3 − 6𝜆2
𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)5

)︃

+ (𝑇 − 𝑡)
(︃

− 2𝜆2
𝑛(𝑎+ 𝑏)2𝑎

(𝜆𝑛 + 𝑎)4 + 2𝜆3
𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)3

(𝜆𝑛 + 𝑎)6 + 2𝑎2(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2

− 2𝜆𝑛(𝜆𝑛 − 𝑎)𝑎(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)4

)︃
+ 𝒪(𝜆−3

𝑛 )
]︃
,

(2.42)
for 𝑛 large enough. Thus, in order to deduce (2.38), we impose these two conditions:

∑︁
𝑀

𝛾𝑛

(︃
𝑎

𝜆𝑛 + 𝑎
− 𝜆𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)

(𝜆𝑛 + 𝑎)3 − 3𝜆2
𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)5

)︃
𝛽𝑛 = 0 (2.43)

and

∑︁
𝑀

𝛾𝑛

(︃
𝜆2

𝑛(𝑎+ 𝑏)2𝑎

(𝜆𝑛 + 𝑎)4 − 𝜆3
𝑛(𝜆𝑛 − 𝑎)(𝑎+ 𝑏)3

(𝜆𝑛 + 𝑎)6 − 𝑎2(𝑎+ 𝑏)
(𝜆𝑛 + 𝑎)2 + 𝜆𝑛(𝜆𝑛 − 𝑎)𝑎(𝑎+ 𝑏)2

(𝜆𝑛 + 𝑎)4

)︃
𝛽𝑛 = 0.

(2.44)

Remark 2.7. In view of (2.25), we see that (2.37), (2.43) and (2.44) together form a
linear homogeneous system of 7 equations for the 8 unknowns 𝐶1,8𝑀+𝑘. Accordingly, as
before, the solution (and also the associated 𝛽8𝑀+𝑘) can be chosen bounded independently
of 𝑀 and this will be our choice.

Finally, from (2.42), (2.43) and (2.44), we observe that⃒⃒⃒⃒
⃒∑︁

𝑀

𝛾𝑛𝐶2,𝑛𝑒
(𝑎+𝑏+𝜇−

𝑛 )(𝑇 −𝑡)
⃒⃒⃒⃒
⃒ ≤ 𝐶

𝑀6

for 𝑀 large enough, which leads to (2.38).

An immediate consequence of the estimates (2.34) and (2.38) is that

∫︁∫︁
Σ
𝑒2(𝑎+𝑏)(𝑇 −𝑡)

⃒⃒⃒⃒
⃒𝜕𝜙𝑀

𝜕𝜈

⃒⃒⃒⃒
⃒
2

𝑑Γ 𝑑𝑡 ≤ 𝐶

𝑀10 (2.45)

for 𝑀 large enough.



46

2.3.4 Construction of non-controllable initial data

From the results obtained in Sections 2.3.1, 2.3.2 and 2.3.3, it becomes clear that there is
no 𝐶 such that (2.18) holds. Consequently, (2.1) is not null-controllable.

For the sake of completeness, let us construct explicitly initial states 𝑢0 ∈ 𝐻 such
that, for all 𝑣 ∈ 𝐿2(Σ)3, the associated solutions to (2.1) do not vanish at 𝑡 = 𝑇 .

Let 𝑀 be large enough (to be fixed below). In view of (2.26) and (2.32), there exists
an integer 𝑘0 with 1 ≤ 𝑘0 ≤ 8 and

‖𝜙8𝑀+𝑘0‖2
(︂
𝐶1,8𝑀+𝑘0𝑒

𝜇+
8𝑀+8𝑘0

𝑇 + 𝐶2,8𝑀+𝑘0𝑒
𝜇−

8𝑀+𝑘0
𝑇
)︂2

≥ 𝐶0

8𝑀6 . (2.46)

Let us introduce
𝑢0 :=

∑︁
ℓ≥1

1
ℓ3/4

𝜙8ℓ+𝑘0

‖𝜙8ℓ+𝑘0‖
. (2.47)

Then, it is not difficult to see that 𝑢0 ∈ 𝐻.
Let us check that 𝑢0 cannot be steered to zero. We will argue by contradiction. Thus,

let 𝑣 ∈ 𝐿2(Σ)3 be such that the solution to (2.1) associated with 𝑢0 satisfies 𝑢(· , 𝑇 ) = 0.
Then, we must have∫︁

Ω
𝑢0(𝑥)𝜙𝑀(𝑥, 0) 𝑑𝑥 =

∫︁∫︁
Σ
𝑣
𝜕𝜙𝑀

𝜕𝜈
𝑑Γ 𝑑𝑡+ 𝑏

∫︁ 𝑇

0

∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)

(︃∫︁
𝜕Ω
𝑣(𝜎, 𝑠)𝜕𝜙

𝑀

𝜕𝜈
(𝜎, 𝑡) 𝑑Γ

)︃
𝑑𝑠 𝑑𝑡,

(2.48)
where 𝜙𝑀 is defined in (2.28).

Using (2.47) and the orthogonality of the 𝜙𝑛, we get the identity∫︁
Ω
𝑢0(𝑥)𝜙𝑀(𝑥, 0) 𝑑𝑥 = 1

𝑀3/4 ‖𝜙8𝑀+𝑘0‖
(︂
𝐶1,8𝑀+𝑘0𝑒

𝜇+
8𝑀+𝑘0

𝑇 + 𝐶2,8𝑀+𝑘0𝑒
𝜇−

8𝑀+𝑘0
𝑇
)︂

and, in view of (2.46), we find that⃒⃒⃒⃒∫︁
Ω
𝑢0(𝑥)𝜙𝑀(𝑥, 0) 𝑑𝑥

⃒⃒⃒⃒
≥ 𝐶1

𝑀15/4 , (2.49)

for some positive constant 𝐾1 independent of 𝑀 .
On the other hand, taking into account (2.45), we see that the other terms in (2.48)

can be bounded as follows⃒⃒⃒⃒
⃒
∫︁∫︁

Σ
𝑣(𝜎, 𝑡)𝜕𝜙

𝑀

𝜕𝜈
(𝜎, 𝑡) 𝑑Γ 𝑑𝑡

⃒⃒⃒⃒
⃒ ≤ ‖𝑣‖𝐿2(Σ)

⃦⃦⃦⃦
⃦𝜕𝜙𝑀

𝜕𝜈

⃦⃦⃦⃦
⃦

𝐿2(Σ)
≤ 𝐾2

𝑀5 (2.50)

and⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)

(︃∫︁
𝜕Ω
𝑣(𝜎, 𝑠)𝜕𝜙

𝑀

𝜕𝜈
(𝜎, 𝑡)𝑑Γ

)︃
𝑑𝑠 𝑑𝑡

⃒⃒⃒⃒
⃒ ≤ 𝐶‖𝑣‖𝐿2(Σ)

⃦⃦⃦⃦
⃦𝜕𝜙𝑀

𝜕𝜈

⃦⃦⃦⃦
⃦

𝐿2(Σ)
≤ 𝐾3

𝑀5 , (2.51)

for some positive 𝐾2 and 𝐾3, again independent of 𝑀 .
Consequently, (2.49), (2.50) and (2.51) lead to

𝐶1

𝑀15/4 ≤ 𝐶4

𝑀5 ,

which is an absurd if 𝑀 is sufficiently large.
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2.4 SOME ADDITIONAL COMMENTS AND QUESTIONS

2.4.1 The lack of null controllability for the 2D Stokes equations with a memory
term

A result identical to Theorem 2.1 can be established for the two-dimensional Stokes sys-
tem. As before, it suffices to consider the case where Ω is a ball of radius 𝑅 centered at
the origin. Now, the eigenfunctions (𝜙𝑛, 𝑞𝑛) and eigenvalues 𝜆𝑛 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆1/2
𝑛 𝑅 = 𝑗1,𝑛

𝜓𝑛(𝑟) = 1
𝜆𝑛

∫︁ 𝜆
1/2
𝑛 𝑅

𝜆
1/2
𝑛 𝑟

𝐽1(𝜎) 𝑑𝜎

𝑞𝑛 ≡ 0

𝜙𝑛(𝑥, 𝑦) = 𝐽1(𝜆1/2
𝑛 𝑟)

𝜆
1/2
𝑛 𝑟

(−𝑦, 𝑥) ,

(2.52)

where 𝐽1 is the first order Bessel function of the first kind and 𝑗1,𝑛 is the 𝑛-th positive
root of 𝐽1 (for simplicity, 𝑥 and 𝑦 denote the coordinates of a generic point in Ω).

Thanks to (LORCH; MULDOON, 2008, Lemma 1), 𝜆𝑛 satisfies the following inequality:

𝜋2

𝑅2

(︂
𝑛+ 1

8

)︂2
≤ 𝜆𝑛 ≤ 𝜋2

𝑅2

(︂
𝑛+ 1

4

)︂2
∀𝑛 ≥ 1. (2.53)

Taking into account (2.52)1, a simple computation gives:

𝜕𝜙𝑛

𝜕𝜈

⃒⃒⃒⃒
⃒
𝜕Ω

= 𝐽 ′
1(𝜆1/2

𝑛 𝑅)
(︂

− 𝑦

𝑅
,
𝑥

𝑅

)︂
. (2.54)

On the other hand, thanks to (2.53), the following estimates also hold:

‖𝜙𝑛‖2 = 1
𝜆𝑛

∫︁
Ω
[𝐽1(𝜆1/2

𝑛 𝑟)]2 𝑑𝑥 𝑑𝑦

= 2𝜋
𝜆2

𝑛

∫︁ 𝑗1,𝑛

0
[𝐽1(𝑠)]2𝑠 𝑑𝑠

≥ 2𝜋
𝜆2

𝑛

∫︁ 1

0
𝐽2

1 (𝑟)𝑟 𝑑𝑟

≥ 2𝜋𝐶
𝜆2

𝑛

.

(2.55)

Then, as in the 3D case, we can define 𝛾𝑛 := 𝐽 ′
1(𝜆1/2

𝑛 𝑅). Thanks to (2.52)1, it is not
difficult to see that 𝛾𝑛 = 𝐽0(𝜆1/2

𝑛 𝑅) and, consequently, it is bounded independently of 𝑛.
In view of (2.53), (2.54), (2.55) and the boundedness of 𝛾𝑛, the proof of Theorem 2.1 can
be adapted and the desired non-controllability result is deduced.

2.4.2 The heat equation with memory

Using arguments similar to those in the previous sections, the non-controllability results
obtained in (GUERRERO; IMANUVILOV, 2013) for (2.5) can be extended to more general
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situations. More precisely, the following problem for the heat equation with memory can
be considered: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 − 𝑏
∫︁ 𝑡

0
𝑒−𝑎(𝑡−𝑠)Δ𝑦(· , 𝑠) 𝑑𝑠 = 0 in 𝑄,

𝑦 = 𝑣 on Σ,

𝑦(· , 0) = 𝑦0 in Ω.

It would be interesting to investigate which are the most general conditions for a time-
dependent memory kernel 𝐾 under which Theorem 2.1 still holds for the corresponding
system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 −
∫︁ 𝑡

0
𝐾(𝑡− 𝑠)Δ𝑦(· , 𝑠) 𝑑𝑠 = 0 in 𝑄,

𝑦 = 𝑣 on Σ,

𝑦(· , 0) = 𝑦0 in Ω.

Some results in the one-dimensional case have been obtained in (HALANAY; PANDOLFI,
2014).

2.4.3 Controls with less components

The approximate controllability result for (2.6), proved in (DOUBOVA; FERNÁNDEZ-CARA,
2012), can be improved with respect to the number of scalar controls. More precisely, we
will use similar ideas from (LIONS, 1996) to show a new unique continuation property for
the solutions to (2.4), i.e.:

𝜙𝑖 = 0 in 𝜔 × (0, 𝑇 ), for 1 ≤ 𝑖 < 𝑛 ⇒ 𝜙 = 0 Ω × (0, 𝑇 ),

where 𝜔 ⊂ Ω is an open subset and 𝑛 ≥ 2. Indeed, let us first notice that the free divergence
condition for 𝜙 implies that 𝑝 is harmonic in Ω with respect to 𝑥 for all 𝑡 ∈ (0, 𝑇 ). On
the other hand, since 𝜙𝑖 = 0 in 𝜔 × (0, 𝑇 ), for 1 ≤ 𝑖 < 𝑛, we deduce that

𝜕𝑝

𝜕𝑥𝑖

= 0 in 𝜔 × (0, 𝑇 ) for 1 ≤ 𝑖 < 𝑛.

Hence, elliptic unique continuation guarantees that

𝜕𝑝

𝜕𝑥𝑖

= 0 in Ω × (0, 𝑇 ) for 1 ≤ 𝑖 < 𝑛

and then 𝑝 is a function that only depends of 𝑥𝑛.
Now, one can see that 𝜙𝑖, for 1 ≤ 𝑖 < 𝑛, satisfies the following backward heat equation

with memory: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−𝜙𝑖,𝑡 − Δ𝜙𝑖 − 𝑏

∫︁ 𝑇

𝑡
𝑒−𝑎(𝑠−𝑡)Δ𝜙𝑖(· , 𝑠) 𝑑𝑠 = 0 in 𝑄,

𝜙𝑖 = 0 on Σ,

𝜙𝑖(· , 𝑇 ) = 𝜙0,𝑖 in Ω.
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Since the unique continuation result (DOUBOVA; FERNÁNDEZ-CARA, 2012, Lemma 2.3)
holds for both heat equation and Stokes equations with memory and the fact that 𝜙𝑖 = 0
in 𝜔 × (0, 𝑇 ), for 1 ≤ 𝑖 < 𝑛, we have

𝜙𝑖 = 0 in Ω × (0, 𝑇 ) for 1 ≤ 𝑖 < 𝑛.

Finally, the free divergence condition and the Dirichlet boundary condition lead to

𝜙 = 0 in Ω × (0, 𝑇 ).

Remark 2.8. In general, in the three-dimensional case, the approximate controllability
result does not hold using only one control. Indeed, let us consider 𝐿 > 0 and Ω =
𝐺 × (0, 𝐿), where 𝐺 ⊂ R2 is a bounded domain such that there exists an eigenfunction
of the Stokes equations in 𝐺 in which the corresponding pressure is zero (for example, if
𝐺 is a ball then this property holds). More precisely, there exist a nontrivial vector field
𝑢 = (𝑢1, 𝑢2) and a number 𝜆 > 0 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ(𝑥,𝑦)𝑢 = 𝜆𝑢 in 𝐺,

∇(𝑥,𝑦) · 𝑢 = 0 in 𝐺,

𝑢 = 0 on 𝜕𝐺.

To sum up, let us define 𝜙(𝑥, 𝑦, 𝑧, 𝑡) := 𝛼(𝑡) sin (𝜋𝑧/𝐿) (𝑢1(𝑥, 𝑦), 𝑢2(𝑥, 𝑦), 0), where 𝛼
is the solution to (2.22) with 𝛽𝑛 = 1 and 𝜆𝑛 = 𝜆 + 𝜋2/𝐿2. Then, 𝜙 is a nonzero solution
to (2.4) such that 𝜙3 ≡ 0.

2.4.4 Hyperbolic equations with memory

Differently to the case of the heat and Stokes equations, the wave equation with memory
is exactly controllable if the usual geometric control conditions are satisfied.

This is true, for instance, for a hyperbolic integro-differential equation of the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦𝑡𝑡 − 𝑎(𝑡)Δ𝑦 + 𝑏(𝑡)𝑦𝑡 + 𝑐(𝑡)𝑦 −

∫︁ 𝑡

0
𝐾(𝑡, 𝑠)Δ𝑦(· , 𝑠) 𝑑𝑠 = 0 in Ω × (0, 𝑇 ),

𝑦 = 𝑣1𝛾 on 𝜕Ω × (0, 𝑇 ),

𝑦(· , 0) = 0, 𝑦𝑡(·, 0) = 0 in Ω,

as long as the kernel 𝐾 = 𝐾(𝑡, 𝑠) is assumed to belong to 𝐶2(R2
+); for details, see (KIM,

1993). It would be interesting to analyze if the exact controllability results obtained there
can be extended to the hyperbolic Stokes equation with memory:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡𝑡 − Δ𝑦 −
∫︁ 𝑡

0
𝐾(𝑡, 𝑠)Δ𝑦(· , 𝑠) 𝑑𝑠+ ∇𝑝 = 0 in 𝑄,

∇ · 𝑦 = 0 in 𝑄,

𝑦 = 𝑣1𝛾 on Σ,

𝑦(· , 0) = 0, 𝑦𝑡(· , 0) = 0 in Ω.
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2.4.5 Nonlinear systems with memory

Recall that the null and approximate controllability of (2.7) and (2.8) are open questions.
It would be very interesting to see whether or not the effect of the nonlinear terms is
sufficient to modify the controllability properties of the linearized systems. This is the
case, for instance, for the equation studied in (CORON; LISSY, 2014).

2.4.6 Moving control

It would be interesting to see whether or not it is possible to use moving control strategy
to obtain a null controllability result for Stokes with memory (2.6).

In (CHAVES-SILVA; ROSIER; ZUAZUA, 2014), it was analyzed the control of a model of
viscoelasticity consisting of a wave equation with both viscous Kelvin-Voigt and frictional
damping: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑡𝑡 − Δ𝑦 − 𝜈Δ𝑦𝑡 + 𝛽(𝑥)𝑦𝑡 = 1𝜔(𝑡)𝑣 in 𝑄,

𝑦 = 0 on Σ,

𝑦(·, 0) = 𝑦0, 𝑦𝑡(·, 0) = 𝑦1 in Ω.

The strategy relies to allow the control region to move (by the flow of an ODE) in
order to cover the whole domain driving the time interval (0, 𝑇 ). At each time 𝑡 the control
support is located in the moving subset 𝜔(𝑡) of Ω.

This strategy has been extended to other equation involving time integral terms, see
(CHAVES-SILVA; SOUZA, 2020; CHAVES-SILVA; ZHANG; ZUAZUA, 2017; KHAPALOV, 1995;
KUNISCH; SOUZA, 2018; LÜ; ZHANG; ZUAZUA, 2017).
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3 CONTROLLABILITY OF THE BOUSSINESQ SYSTEM

In this chapter, we deal with the global exact controllability to the trajectories of the
Boussinesq system. We consider 2D and 3D smooth bounded domains. The velocity field of
the fluid must satisfy a Navier slip-with-friction boundary condition and a Robin boundary
condition is imposed to the temperature. We assume that one can act on the velocity and
the temperature on an arbitrary small part of the boundary. The proof relies on three main
arguments. First, we transform the problem into a distributed controllability problem by
using a domain extension procedure. Then, we prove a global approximate controllability
result by following the strategy of Coron et al [J. Eur. Math. Soc., 22 (2020), pp. 1625-
1673], which deals with the Navier-Stokes equations. This part relies on the controllability
of the inviscid Boussinesq system and asymptotic boundary layer expansions. Finally, we
conclude with a local controllability result that we establish with the help of a linearization
argument and appropriate Carleman estimates.

3.1 INTRODUCTION

Let Ω ⊂ R𝑛 (𝑛 = 2, 3) be a smooth bounded domain with Γ := 𝜕Ω and let Γ𝑐 ⊂ Γ be
a non-empty open subset which intersects all connected components of Γ. It will be said
that Γ𝑐 is the control boundary. Let us set

𝐿2
𝑐(Ω)𝑛 := {𝑢 ∈ 𝐿2(Ω)𝑛 : ∇ · 𝑢 = 0 in Ω, 𝑢 · 𝜈 = 0 on Γ ∖ Γ𝑐},

where 𝜈 = 𝜈(𝑥) is the outward unit normal vector to Ω at the points 𝑥 ∈ Γ. For a given
vector field 𝑓 , we denote by [𝑓 ]𝑡𝑎𝑛 the tangential part of 𝑓 , 𝐷(𝑓) the deformation tensor
and 𝑁(𝑓) the tangential Navier boundary operator, respectively given by the following
formula:

[𝑓 ]𝑡𝑎𝑛 := 𝑓 − (𝑓 · 𝜈)𝜈,

𝐷(𝑓) := 1
2
(︁
∇𝑓 + ∇𝑓 𝑡

)︁
,

𝑁(𝑓) := [𝐷(𝑓)𝜈 +𝑀𝑓 ]𝑡𝑎𝑛,

(3.1)

where 𝑀 = 𝑀(𝑡, 𝑥) is a smooth, symmetric matrix-valued function related to the rugosity
of the boundary, called the friction matrix. We also set

𝑅(𝜃) := 𝜕𝜃

𝜕𝜈
+𝑚𝜃, (3.2)

where 𝑚 = 𝑚(𝑡, 𝑥) is a smooth function again related to the properties of the boundary,
known as the heat transfer coefficient.
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Let 𝑇 > 0 be a final time. We will consider the Boussinesq system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢− Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 in (0, 𝑇 ) × Ω,

𝜕𝑡𝜃 − Δ𝜃 + 𝑢 · ∇𝜃 = 0 in (0, 𝑇 ) × Ω,

∇ · 𝑢 = 0 in (0, 𝑇 ) × Ω,

𝑢 · 𝜈 = 0, 𝑁(𝑢) = 0 on (0, 𝑇 ) × (Γ ∖ Γ𝑐) ,

𝑅(𝜃) = 0 on (0, 𝑇 ) × (Γ ∖ Γ𝑐) ,

𝑢(0, · ) = 𝑢0, 𝜃(0, · ) = 𝜃0 in Ω,

(3.3)

where the functions 𝑢 = 𝑢(𝑡, 𝑥), 𝜃 = 𝜃(𝑡, 𝑥) and 𝑝 = 𝑝(𝑡, 𝑥) must be respectively viewed as
the velocity field, the temperature and the pressure of the fluid and 𝑒𝑛 is the 𝑛-th vector
of the canonical basis of R𝑛, i.e., 𝑒𝑛 = (0, 1) if 𝑛 = 2 and 𝑒𝑛 = (0, 0, 1) if 𝑛 = 3.

In the controlled system (3.3), at any time 𝑡 ∈ [0, 𝑇 ], (𝑢, 𝜃)(𝑡, · ) : Ω → R𝑛 × R will be
interpreted as the state of the system and its restriction (𝑢, 𝜃)(𝑡, · ) : Γ𝑐 → R𝑛 ×R will be
regarded as the associated control.

3.1.1 Main result

In this section, we state the main result of the paper, which concerns small-time global
boundary exact controllability to the trajectories of (3.3).

Let us introduce the following notation:

𝑊𝑇 (Ω) := [𝐶0
𝑤([0, 𝑇 ];𝐿2

𝑐(Ω)𝑛) ∩ 𝐿2(0, 𝑇 ;𝐻1(Ω)𝑛)] × 𝐶0
𝑤([0, 𝑇 ];𝐿2(Ω)) ∩ 𝐿2(0, 𝑇 ;𝐻1(Ω))].

We have the following result:

Theorem 3.1. Let 𝑇 > 0 be a positive time, let (𝑢0, 𝜃0) ∈ 𝐿2
𝑐(Ω)𝑛 × 𝐿2(Ω) be an initial

state and let (𝑢, 𝜃) ∈ 𝑊𝑇 (Ω) be a weak trajectory of (3.3). Then, there exists a weak
controlled solution to (3.3) in 𝑊𝑇 (Ω) that satisfies

(𝑢, 𝜃) (𝑇, · ) =
(︁
𝑢, 𝜃

)︁
(𝑇, · ). (3.4)

Several comments are in order.

Remark 3.2. For the precise notions of weak trajectory and weak controlled solution, see
Definition 3.6 below. Essentially, we require to belong to 𝑊𝑇 (Ω) and satisfy the PDEs in
(3.3) in the weak (distributional) sense.

Remark 3.3. In Theorem 3.1, we do not indicate explicitly which are the controls. Indeed,
once the controlled solution is constructed, we see that the associated controls are the
appropriate traces of the solution on (0, 𝑇 ) × Γ𝑐.

Remark 3.4. Theorem 3.1 is stated as an existence result. The lack of uniqueness comes
from two main reasons:
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• If we do not specify any restriction, there exist many controls that drive the solution
to (3.3) to the desired trajectory.

• Even if we select a criterion in order to fix the control without ambiguity, it is not
known if weak solutions are unique in the 3-D case (in 2-D, it is known that weak
solutions are unique; see (BOYER; FABRIE, 2012; LERAY, 1934) for the Navier-Stokes
case).

3.1.2 Bibliographical comments

We now present some existing results in the literature which are related to Theorem 3.1.
There are several papers where the controllability properties of the Boussinesq equa-

tions are investigated. Most of them are local results covering boundary conditions of
various kinds. For instance, in (FURSIKOV; IMANUVILOV, 1998), the local exact boundary
controllability to the trajectories was obtained with boundary controls acting over the
whole boundary; in (FURSIKOV; IMANUVILOV, 1999), the exact controllability with dis-
tributed controls and periodic boundary conditions was analyzed; in (GUERRERO, 2006a),
the author proved the local exact controllability to the trajectories with Dirichlet bound-
ary conditions; this situation is also handled with a reduced number of controls in (CAR-

REÑO, 2012; FERNÁNDEZ-CARA et al., 2005; FERNÁNDEZ-CARA et al., 2006; GONZÁLEZ-

BURGOS; GUERRERO; PUEL, 2009). For incompressible ideal fluids, this subject has been
investigated by Coron (CORON, 1993; CORON, 1996a) and Glass (GLASS, 1997b; GLASS,
1997a; GLASS, 2000b) and also by Fernández-Cara et al. (FERNÁNDEZ-CARA; SANTOS;

SOUZA, 2016) when heat effect are considered.
On the other hand, the literature on the Navier-Stokes and Boussinesq equations

with Navier-slip boundary conditions is scarce. Let us recall some controllability results
obtained for the Navier-Stokes system: in (CORON, 1996b), a small-time global result
for the 2D equations has been proved where the exact controllability can be achieved in
the interior of the domain and the information about the solution near the boundaries
is unknown; the residual boundary layers are too strong to be handled satisfactorily
during the control design strategy. Guerrero proved in (GUERRERO, 2006b) the local
exact controllability to the trajectories with general nonlinear Navier boundary conditions.
Finally, the small-time global exact controllability with Navier slip-with-friction boundary
conditions towards weak trajectories was proved in (CORON; MARBACH; SUEUR, 2020)
by Coron, Marbach and Sueur. This article answers the famous open question by J.-L.
Lions concerning global null-controllability of the Navier-Stokes equations with boundary
conditions of this kind. A similar result, controlling strong solutions with regular controls
is obtained in (LIAO; SUEUR; ZHANG, 2020). In what concerns the Boussinesq system with
Navier-slip boundary conditions, see (IMANUVILOV, 1998; KIM; CAO, 2017; MONTOYA,
2020) for some local results.
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3.1.3 Strategy of the proof

We present in this section the main of ideas and results needed for the proof of Theorem
3.1.

• In Section 3.2, we will reduce the task to a distributed controllability problem by ap-
plying a classical domain extension technique. Then, we will limit our considerations
to smooth initial data by using the smoothing effect of the uncontrolled Boussinesq
system.

• In Section 3.3, starting from a sufficiently smooth initial data, we prove a global
approximate controllability result. In order to do this, we follow the strategy per-
formed by Coron, Marbach and Sueur in (CORON; MARBACH; SUEUR, 2020) in the
Navier-Stokes case.

• In Section 3.4, we prove a local controllability result by using Carleman inequalities
for the adjoint of the linearized system and a fixed-point strategy.

• In Section 3.5, we combine all these arguments and achieve the proof.

In general, the notation will be abridged. For instance, if 𝑢 ∈ 𝐻2(Ω)𝑛 and 𝜃 ∈ 𝐻1(Ω),
‖(𝑢, 𝜃)‖𝐻2×𝐻1 will stand for the norm of (𝑢, 𝜃) in the space 𝐻2(Ω)𝑛 × 𝐻1(Ω). The scalar
product and norm in 𝐿2 spaces will be denoted by ( · , · ) and ‖ · ‖, respectively. The
symbol 𝐶 will stand for a generic positive constant.

3.2 DOMAIN EXTENSION AND SMOOTHING EFFECT

3.2.1 Domain extension

We consider an extended bounded domain 𝒪 in such a way that Γ𝑐 ⊂ 𝒪 and Γ ∖ Γ𝑐 ⊂
Γ𝒪 := 𝜕𝒪. In the sequel, we will denote by 𝜈 = 𝜈(𝑥) the outward unit normal vector to
𝒪 at the points 𝑥 ∈ 𝜕𝒪. We will assume that 𝑀 and 𝑚 are extended to [0, 𝑇 ] × 𝜕𝒪 as
smooth functions such that 𝑀 is symmetric on (0, 𝑇 ) × 𝜕𝒪. This allows to speak of 𝑁(𝑢)
and 𝑅(𝜃) on (0, 𝑇 ) × 𝜕𝒪.

We will also need the space

𝐿2
𝑑𝑖𝑣(𝒪)𝑛 := {𝑢 ∈ 𝐿2(𝒪)𝑛 : ∇ · 𝑢 = 0 in 𝒪, 𝑢 · 𝜈 = 0 on 𝜕𝒪}.

The following proposition enables us to extend initial conditions to the whole domain 𝒪.

Proposition 3.5. Let (𝑢0, 𝜃0) ∈ 𝐿2
𝑐(Ω)𝑛 ×𝐿2(Ω) be given. There exist (𝑢*, 𝜃*) ∈ 𝐿2(𝒪)𝑛+1

and 𝜎* ∈ 𝐶∞
𝑐 (𝒪 ∖ Ω) such that

𝑢* = 𝑢0 and 𝜃* = 𝜃0 in Ω, ∇ · 𝑢* = 𝜎* in 𝒪, 𝑢* · 𝜈 = 0 on 𝜕𝒪. (3.5)
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Figure 5 – Extension of the physical domain

Furthermore, (𝑢*, 𝜃*) and 𝜎* can be chosen depending continuously on (𝑢0, 𝜃0) in the
following sense:

‖𝑢*‖ + ‖𝜎*‖ ≤ 𝐶‖𝑢0‖, ‖𝜃*‖ ≤ 𝐶‖𝜃0‖. (3.6)

Proof. Let 𝜃* ∈ 𝐿2(𝒪) be the extension by zero of 𝜃0 to the whole domain 𝒪, then we
have

‖𝜃*‖ ≤ ‖𝜃0‖.

Next, to find an appropriate extension for 𝑢0, we first notice that, since 𝑢0 ∈ 𝐿2
𝑐(Ω)𝑛,

the normal trace 𝑢0 · 𝜈 has a sense in 𝐻−1/2(𝜕Ω), see (BOYER; FABRIE, 2012, Chapter IV,
Section 3.2). Let us split

Γ𝑐 =
𝑘⋃︁

𝑖=1
Γ𝑖

𝑐,

where Γ𝑖
𝑐 represent the parts of Γ𝑐 in each connected component of Γ and we stand for

(𝒪 ∖ Ω)𝑖 its related extension. Also, let 𝜔𝑖 ⊂⊂ (𝒪 ∖ Ω)𝑖 be a non-empty open subset and
𝜎𝑖

* ∈ 𝐶∞
𝑐 (𝜔𝑖) such that ∫︁

(𝒪∖Ω)𝑖
𝜎𝑖

* = −⟨𝑢0 · 𝜈, 1⟩𝐻−1/2(Γ𝑖
𝑐),𝐻1/2(Γ𝑖

𝑐).

The following non homogeneous elliptic problem admits a unique solution 𝑤𝑖 ∈ 𝐻1((𝒪∖Ω)𝑖):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑤𝑖 = −𝜎𝑖
* in (𝒪∖Ω)𝑖,

𝜕𝑤𝑖

𝜕𝜈
= 𝑢0 · 𝜈 on Γ𝑖

𝑐,

𝜕𝑤𝑖

𝜕̃︀𝜈 = 0 on 𝜕(𝒪∖Ω)𝑖 ∖ Γ𝑖
𝑐.

Let us set

𝑢* :=

⎧⎪⎨⎪⎩
𝑢0 in Ω,

∇𝑤𝑖 in (𝒪∖Ω)𝑖, for 𝑖 = 1, . . . , 𝑘.

It is then clear that 𝑢* ∈ 𝐿2(𝒪)𝑛, ∇ · 𝑢* = 𝜎* in 𝒪 and 𝑢* · ̃︀𝜈 = 0 on 𝜕𝒪. On the other
hand, we see that, by construction, (3.5) and (3.6) are satisfied.
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Let us now present the notion of solution used throughout the paper. To this purpose,
let us introduce the following notations 𝒪𝑇 := (0, 𝑇 ) × 𝒪 and 𝛬𝑇 := (0, 𝑇 ) × 𝜕𝒪. In the
sequel, when there is no ambiguity, we will also denote by 𝜈 the outward unit normal
to 𝒪.

Definition 3.6. Let 𝑇 > 0 and (𝑢0, 𝜃0) ∈ 𝐿2
𝑐(Ω)𝑛 × 𝐿2(Ω) be given. It will be said that

(𝑢, 𝜃) ∈ 𝑊𝑇 (Ω) is a weak controlled trajectory of (3.3) if it is the restriction to (0, 𝑇 ) × Ω
of a weak Leray solution, still denoted by (𝑢, 𝜃), in the space 𝑊𝑇 (𝒪), to the nonlinear
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢− Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 + 𝑣 in 𝒪𝑇 ,

𝜕𝑡𝜃 − Δ𝜃 + 𝑢 · ∇𝜃 = 𝑤 in 𝒪𝑇 ,

∇ · 𝑢 = 𝜎 in 𝒪𝑇 ,

𝑢 · 𝜈 = 0, 𝑁(𝑢) = 0 on 𝛬𝑇 ,

𝑅(𝜃) = 0 on 𝛬𝑇 ,

𝑢(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪,

(3.7)

where 𝑣 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛)∩𝐶0([0, 𝑇 ];𝐻1(𝒪)𝑛) and 𝑤 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪))∩𝐶0([0, 𝑇 ];𝐻1(𝒪))
are forcing terms supported in 𝒪 ∖ Ω, 𝜎 ∈ 𝐶∞([0, 𝑇 ] × 𝒪) is a nonhomogeneous diver-
gence condition also supported in 𝒪 ∖ Ω and (𝑢*, 𝜃*) is an extension of (𝑢0, 𝜃0) furnished
by Proposition 3.5, satisfying ∇ · 𝑢* = 𝜎(0, · ).

Let us state an existence result of weak solution to (3.7), whose proof is sketched in
Appendix B:

Proposition 3.7. Let us assume that 𝑇 > 0, (𝑢*, 𝜃*) ∈ 𝐿2(𝒪)𝑛 × 𝐿2(𝒪) satisfies 𝑢* ·
𝜈 = 0 on 𝜕𝒪, 𝜎 ∈ 𝐶∞([0, 𝑇 ] × 𝒪) satisfies 𝜎(0, · ) = ∇ · 𝑢*, 𝑣 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛) ∩
𝐶0([0, 𝑇 ];𝐻1(𝒪)𝑛) and 𝑤 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪)) ∩ 𝐶0([0, 𝑇 ];𝐻1(𝒪)). Then there exists at
least one weak Leray solution (𝑢, 𝜃) to (3.7).

3.2.2 Smoothing effect of the uncontrolled Boussinesq system

The goal of this section is to show that, starting from 𝐿2 initial data, for any small time
interval, one can find a time such that the solution is sufficiently smooth. More precisely,
we have the following result:

Lemma 3.8. Let us assume that 𝑇 > 0 and (𝑢, 𝜃) ∈ 𝐶∞([0, 𝑇 ] × 𝒪)𝑛+1 is such that
∇ · 𝑢 = 0 in 𝒪𝑇 and 𝑢 · 𝜈 = 0 on 𝛬𝑇 . Then there exists a smooth function Ψ : R+ ↦→ R+

with Ψ(0) = 0 such that, for any (𝑟*, 𝑞*) ∈ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛 × 𝐿2(𝒪) and any weak Leray-Hopf
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solution (𝑟, 𝑞) ∈ 𝑊𝑇 (𝒪) to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑟 − Δ𝑟 + (𝑟 · ∇)𝑟 + (𝑢 · ∇)𝑟 + (𝑟 · ∇)𝑢+ ∇𝜋 = 𝑞𝑒𝑛 in 𝒪𝑇 ,

𝜕𝑡𝑞 − Δ𝑞 + (𝑟 + 𝑢) · ∇𝑞 + 𝑟 · ∇𝜃 = 0 in 𝒪𝑇 ,

∇ · 𝑟 = 0 in 𝒪𝑇 ,

𝑟 · 𝜈 = 0, 𝑁(𝑟) = 0 on 𝛬𝑇 ,

𝑅(𝑞) = 0 on 𝛬𝑇 ,

𝑟(0, · ) = 𝑟*, 𝑞(0, · ) = 𝑞* in 𝒪,

(3.8)

the following property holds:

∃ 𝑡0 ∈ [0, 𝑇 ]; ‖(𝑟, 𝑞)(𝑡0, · )‖𝐻3 ≤ Ψ (‖(𝑟*, 𝑞*)‖) .

The proof of this lemma is quite classical but, for completeness, will be given in
Appendix C.

3.3 APPROXIMATE CONTROLLABILITY PROBLEM

In this section, the goal is to prove the following approximate controllability result starting
from sufficiently smooth initial data.

Proposition 3.9. Let us assume that 𝑇 > 0 and (𝑢, 𝑝, 𝜃, 𝑣, 𝑤, 𝜎) ∈ 𝐶∞([0, 𝑇 ] × 𝒪;R2𝑛+4)
is a smooth trajectory of (3.7), with 𝑣 and 𝑤 supported in 𝒪 ∖ Ω. Let (𝑢*, 𝜃*) ∈ [𝐻3(𝒪)𝑛 ∩
𝐿2

𝑑𝑖𝑣(𝒪)𝑛] ×𝐻3(𝒪) be an initial state. Then, for any 𝛿 > 0 there exist regular controls 𝑣,
𝑤 and 𝜎, again supported in 𝒪 ∖ Ω and an associated weak solution to (3.7) satisfying

‖(𝑢, 𝜃)(𝑇, · ) − (𝑢, 𝜃)(𝑇, · )‖ ≤ 𝛿.

For the proof, we will follow the strategy introduced by Coron, Marbach, Sueur in
(CORON; MARBACH; SUEUR, 2020). Let us explain how it works:

• First, a scale change associated to a small parameter 𝜀 > 0 is introduced and (3.7)
is transformed into a Boussinesq system with small viscosity 𝜀 that must be solved
in the (long) time interval [0, 𝑇/𝜀] starting from a small initial state, see (3.9). The
advantage of this scaling is that we can benefit from the nonlinear terms (𝑢 · ∇)𝑢
and 𝑢 · ∇𝜃.

• By taking formally 𝜀 = 0, we obtain the inviscid Boussinesq system. For this
hyperbolic system, we construct a particular nontrivial trajectory that connects
(0, 0) ∈ R𝑛+1 to itself and sends any particle outside the physical domain before the
final time 𝑇 .
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• By linearizing the inviscid Boussinesq system around the previous trajectory, we
obtain a new hyperbolic linear system that is small-time globally null-controllable.
Actually, what we are doing here is to apply the so called return method, due to
Coron, see (CORON, 1992). Note that the linearization around the trivial state leads
to a noncontrollable system.

• In the particular case of the special slip boundary condition, that is, 𝑀 such that
[∇ × 𝑢]tan = 0 on 𝛬𝑇 and 𝑚 ≡ 0, we immediately conclude by estimating the
remainder terms. We do not need to use the long interval time [0, 𝑇/𝜀] to control,
since the solution is already small at the intermediate time 𝑇 ∈ (0, 𝑇/𝜀).

• Unfortunately, in the general case, a boundary layer appears. This phenomenon was
already taken into account in (IFTIMIE; SUEUR, 2011) for the Navier-Stokes PDEs.
Thus, we have to introduce some corrector terms in the asymptotic expansion of
the solution depending on 𝜀 in order to estimate the residual layers. The boundary
layer decays but not enough. Hence, the corrector is not sufficiently small at the
final time 𝑇/𝜀 and we still cannot conclude.

• In order to overcome this difficulty, we adapt the well-prepared dissipation method,
introduced by Marbach in (MARBACH, 2014). The idea is to design a control strategy
that reinforces the action of the natural dissipation of the boundary layer after the
intermediate time 𝑇 . A desired small state is obtained at final time and we can
finally achieve the proof.

In the sequel, we will frequently need vector functions (𝑢, 𝑝, 𝜃, 𝑣, 𝑤, 𝜎) representing
adequate states (𝑢, 𝑝, 𝜃), controls (𝑣, 𝑤) and auxiliary functions 𝜎, corresponding to some
linear or nonlinear systems. In all cases, it will be implicitly assumed that 𝑣 and 𝑤 vanish
outside 𝒪 ∖ Ω.

3.3.1 Time scaling

Let us introduce 𝑢𝜀, 𝑝𝜀, etc., with

𝑢𝜀(𝑡, 𝑥) := 𝜀𝑢(𝜀𝑡, 𝑥), 𝑝𝜀(𝑡, 𝑥) := 𝜀2𝑝(𝜀𝑡, 𝑥), 𝜃𝜀(𝑡, 𝑥) := 𝜀2𝜃(𝜀𝑡, 𝑥),

𝑣𝜀(𝑡, 𝑥) := 𝜀2𝑣(𝜀𝑡, 𝑥), 𝑤𝜀(𝑡, 𝑥) := 𝜀3𝑤(𝜀𝑡, 𝑥) 𝜎𝜀(𝑡, 𝑥) := 𝜀𝜎(𝜀𝑡, 𝑥).
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In these new variables, the original system (3.7) reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢
𝜀 − 𝜀Δ𝑢𝜀 + (𝑢𝜀 · ∇)𝑢𝜀 + ∇𝑝𝜀 = 𝜃𝜀𝑒𝑛 + 𝑣𝜀 in (0, 𝑇/𝜀) × 𝒪,

𝜕𝑡𝜃
𝜀 − 𝜀Δ𝜃𝜀 + 𝑢𝜀 · ∇𝜃𝜀 = 𝑤𝜀 in (0, 𝑇/𝜀) × 𝒪,

∇ · 𝑢𝜀 = 𝜎𝜀 in (0, 𝑇/𝜀) × 𝒪,

𝑢𝜀 · 𝜈 = 0, 𝑁(𝑢𝜀) = 0 on (0, 𝑇/𝜀) × 𝜕𝒪,

𝑅(𝜃𝜀) = 0 on (0, 𝑇/𝜀) × 𝜕𝒪,

𝑢𝜀(0, · ) = 𝜀𝑢*, 𝜃𝜀(0, · ) = 𝜀2𝜃* in 𝒪.

(3.9)

Instead of working hard in a small time interval, we now work easily during a large
time interval [0, 𝑇/𝜀]. The counterpart is the small viscosity that we find now in (3.9),
that can be viewed as a singular perturbation of a nonlinear inviscid system.

To prove Proposition 3.9, it is sufficient to prove that

‖𝑢𝜀(𝑇/𝜀, · ) − 𝜀𝑢(𝑇, · )‖ = 𝑜(𝜀) and
⃦⃦⃦
𝜃𝜀(𝑇/𝜀, · ) − 𝜀2𝜃(𝑇, · )

⃦⃦⃦
= 𝑜(𝜀2).

3.3.2 The special case of the slip boundary condition

In this section, we consider a special situation where the fluid perfectly slips. In this case,
the proof of Proposition 3.9 is more simple (there is no boundary layer). For the moment,
we will also assume that the smooth target trajectory is zero, i.e., (𝑢, 𝑝, 𝜃, 𝑣, 𝑤, 𝜎) ≡ 0.

Thus, the friction coefficient 𝑀 is assumed to be the Weingarten map (or shape oper-
ator) 𝑀𝑤. Thanks to (CORON; MARBACH; SUEUR, 2020, Lemma 1), on the uncontrolled
boundary one has

𝑢 · 𝜈 = 0 and [∇ × 𝑢]𝑡𝑎𝑛 = 0 on 𝛬𝑇 .

3.3.2.1 Ansatz with no correction term

Let us consider an asymptotic expansion of the solution:

𝑢𝜀 = 𝑢0 + 𝜀𝑢1 + 𝜀𝑟𝜀, 𝑝𝜀 = 𝑝0 + 𝜀𝑝1 + 𝜀𝜋𝜀, 𝜃𝜀 = 𝜃0 + 𝜀2𝜃1 + 𝜀2𝑞𝜀

𝑣𝜀 = 𝑣0 + 𝜀𝑣1, 𝑤𝜀 = 𝑤0 + 𝜀2𝑤1, 𝜎𝜀 = 𝜎0.
(3.10)

There is some intuition behind (3.10). The first term (𝑢0, 𝑝0, 𝜃0, 𝑣0, 𝑤0) is the solution to
an inviscid system, take 𝜀 = 0 in (3.9). It models a smooth reference trajectory around
which we linearize the original system. This is exactly what we have to do when we apply
the return method of Coron, see (CORON, 1992). It will be chosen in such a way that
the flow flushes the initial data off the physical domain before time 𝑇 . The second term
(𝑢1, 𝑝1, 𝜃1, 𝑣1, 𝑤1) takes into account the initial data (𝑢*, 𝜃*).Then, (𝑟𝜀, 𝜋𝜀, 𝑞𝜀) contains
higher order terms. At the end, we need to prove that ‖(𝑟𝜀, 𝑞𝜀)(𝑇, · )‖ = 𝑜(1), in order to
be able to conclude.
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3.3.2.2 Inviscid flow

By taking 𝜀 = 0 in (3.9), we obtain the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢
0 + (𝑢0 · ∇)𝑢0 + ∇𝑝0 = 𝜃0𝑒𝑛 + 𝑣0 in 𝒪𝑇 ,

𝜕𝑡𝜃
0 + 𝑢0 · ∇𝜃0 = 𝑤0 in 𝒪𝑇 ,

∇ · 𝑢0 = 𝜎0 in 𝒪𝑇 ,

𝑢0 · 𝜈 = 0 on 𝛬𝑇 ,

𝑢0(0, · ) = 𝑢0(𝑇, · ) = 0 in 𝒪,

𝜃0(0, · ) = 𝜃0(𝑇, · ) = 0 in 𝒪,

(3.11)

where 𝑣0, 𝑤0 and 𝜎0 are smooth forcing terms spatially supported in 𝒪 ∖ Ω. We want to
control (3.11) during the shorter time interval [0, 𝑇 ] instead of [0, 𝑇/𝜀]. Let us introduce
the flow Φ0 = Φ0(𝑠; 𝑡, 𝑥) associated to 𝑢0, ie., for any (𝑡, 𝑥), Φ0( · , 𝑡, 𝑥) solves⎧⎪⎨⎪⎩ 𝜕𝑠Φ0(𝑠; 𝑡, 𝑥) = 𝑢0(𝑠,Φ0(𝑠; 𝑡, 𝑥)),

Φ0(𝑠; 𝑡, 𝑥)|𝑠=𝑡 = 𝑥.
(3.12)

Hence, we look for trajectories such that:

∀ 𝑥 ∈ 𝒪, ∃ 𝑡𝑥 ∈ (0, 𝑇 ), Φ0(𝑡𝑥; 0, 𝑥) ̸∈ Ω. (3.13)

This property is obvious for the points 𝑥 already located in 𝒪 ∖ Ω. For points 𝑥 ∈ Ω,
we use the following result, whose proof can be found in (CORON, 1993; CORON, 1996a;
CORON, 1996b; CORON; MARBACH; SUEUR, 2020) in the 2D case and (GLASS, 2000b) in
the 3D case:

Lemma 3.10. There exists a non-zero solution to (3.11) (𝑢0, 𝑝0, 𝜃0, 𝑣0, 𝑤0, 𝜎0) ∈ 𝐶∞([0, 𝑇 ]×
𝒪;R2𝑛+4) such that the associated flow Φ0, defined in (3.12), satisfies (3.13). Moreover,
we can choose 𝑢0, 𝜃0 and 𝑤0 such that

𝜃0 = 𝑤0 = 0 and ∇ × 𝑢0 = 0 𝑖𝑛 [0, 𝑇 ] × 𝒪 (3.14)

and 𝑢0, 𝑝0, 𝜃0, 𝑣0, 𝑤0 and 𝜎0 are compactly supported in time in (0, 𝑇 ).

Note that, in the proof of this result, the assumption that Γ𝑐 intersects all connected
components of Γ must be used.

In the sequel, if needed, it will be assumed that 𝑢0, 𝑝0, 𝜃0, 𝑣0, 𝑤0 and 𝜎0 have been
extended by zero after time 𝑇 .
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3.3.2.3 Flushing

Let (𝑢1, 𝜃1) be the solution to the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢
1 + (𝑢0 · ∇)𝑢1 + (𝑢1 · ∇)𝑢0 + ∇𝑝1 = Δ𝑢0 + 𝑣1 in 𝒪𝑇 ,

𝜕𝑡𝜃
1 + 𝑢0 · ∇𝜃1 = 𝑤1 in 𝒪𝑇 ,

∇ · 𝑢1 = 0 in 𝒪𝑇 ,

𝑢1 · 𝜈 = 0 on 𝛬𝑇 ,

𝑢1(0, · ) = 𝑢*, 𝜃1(0, · ) = 𝜃* in 𝒪,

(3.15)

where 𝑣1 and 𝑤1 are forcing terms spatially supported in 𝒪∖Ω. Thanks to (3.14), we have
Δ𝑢0 = ∇(∇ · 𝑢0) = ∇𝜎0. Thus, it is smooth and can be absorbed by the source term 𝑣1.
Of course, (3.15) is a linear uncoupled system.

Lemma 3.11. Let us assume that (𝑢*, 𝜃*) ∈ [𝐻3(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛] × 𝐻3(𝒪). There exist

forcing terms

𝑣1 ∈ 𝐶1([0, 𝑇 ];𝐻1(𝒪)𝑛)∩𝐶0([0, 𝑇 ];𝐻2(𝒪)𝑛), 𝑤1 ∈ 𝐶1([0, 𝑇 ];𝐻2(𝒪))∩𝐶0([0, 𝑇 ];𝐻3(𝒪)),
(3.16)

with
supp(𝑣1, 𝑤1) ⊂⊂ 𝒪 ∖ Ω (3.17)

such that the associated solution (𝑢1, 𝜃1) to (3.15) satisfies (𝑢1, 𝜃1)(𝑇, · ) = (0, 0) in 𝒪.
Moreover, (𝑢1, 𝜃1) is bounded (with respect to 𝜀) in 𝐿∞(0, 𝑇 ;𝐻3(𝒪)𝑛) ×𝐿∞(0, 𝑇 ;𝐻3(𝒪)).

Proof. First, note that the result for 𝑢1 is proved in (CORON; MARBACH; SUEUR, 2020,
Lemma 3).

For 𝜃1, we have a similar situation and we can apply the same arguments. For com-
pleteness, let us sketch the main ideas. We will use the smooth partition of unity 𝜂ℓ for
1 ≤ ℓ ≤ 𝐿 defined in (CORON; MARBACH; SUEUR, 2020, Appendix A) which is related to
Φ0 as follows: thanks to (3.13), we can find 𝜀 > 0 and balls 𝐵ℓ for 1 ≤ ℓ ≤ 𝐿 covering 𝒪
such that

∀ℓ, ∃𝑡ℓ ∈ (𝜀, 𝑇−𝜀), ∃𝑚ℓ ∈ {1, · · · ,ℳ} such that Φ0(𝑠; 0, 𝐵ℓ) ⊂ 𝑄𝑚ℓ
∀𝑠 ∈ (𝑡ℓ−𝜀, 𝑡ℓ+𝜀),

(3.18)
where the 𝑄𝑚ℓ

are squares (or cubes) that never intersect Ω; hence, every ball spends a
positive amount of time within a given square (cube) where we can use a localized control
to act on the 𝜃1 profile. Here, it is assumed that the 𝜂ℓ satisfy 0 ≤ 𝜂ℓ(𝑥) ≤ 1, ∑︀ 𝜂ℓ = 1
and 𝑠𝑢𝑝𝑝(𝜂ℓ) ⊂ 𝐵ℓ.

Let us introduce a smooth function 𝛽 : R → [0, 1] with 𝛽 = 1 on (−∞,−𝜀) and 𝛽 = 0
on (𝜀,+∞).
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For each ℓ, we consider the solution 𝜃ℓ to⎧⎪⎨⎪⎩
𝜕𝑡𝜃ℓ + 𝑢0 · ∇𝜃ℓ = 0 in (0, 𝑇 ) × 𝒪,

𝜃ℓ(0, · ) = 𝜂ℓ𝜃* in 𝒪,

and we set 𝜃ℓ(𝑡, 𝑥) := 𝛽(𝑡− 𝑡ℓ)𝜃ℓ(𝑡, 𝑥). Since 𝛽(𝑇 − 𝑡ℓ) = 0 and 𝛽(−𝑡ℓ) = 1, 𝜃ℓ solves⎧⎪⎨⎪⎩
𝜕𝑡𝜃ℓ + 𝑢0 · ∇𝜃ℓ = 𝑤ℓ in (0, 𝑇 ) × 𝒪,

𝜃ℓ(0, · ) = 𝜂ℓ𝜃*, 𝜃ℓ(𝑇, · ) = 0 in 𝒪,

where 𝑤ℓ(𝑡, 𝑥) := 𝛽′(𝑡− 𝑡ℓ)𝜃ℓ. Thanks to (3.18), since 𝛽′ vanish outside (−𝜀, 𝜀), it is easy
to see that 𝑤ℓ is supported in 𝑄𝑚ℓ

.
At this point, we take

𝜃1 :=
∑︁

ℓ

𝜃ℓ and 𝑤1 :=
∑︁

ℓ

𝑤ℓ

and we see that the second PDE and the second initial condition in (3.15) are satis-
fied. Thanks to this explicit construction, the spatial regularity of 𝑤1 and 𝜃ℓ are the
same. Then, 𝑤1 ∈ 𝐶1([0, 𝑇 ], 𝐻2(𝒪)) ∩ 𝐶0([0, 𝑇 ], 𝐻3(𝒪)). The fact that 𝜃1 is bounded in
𝐿∞(0, 𝑇 ;𝐻3(𝒪)) readily comes from the fact that each 𝜃ℓ is bounded in 𝐿∞(0, 𝑇 ;𝐻3(𝒪)).
This ends the proof.

Lemma 3.11 is a null-controllability result. Thanks to the linearity and reversibility of
(3.15), it leads to an exact controllability result:

Lemma 3.12. Let us assume that (𝑢*, 𝜃*), (𝑢𝑇 , 𝜃𝑇 ) ∈ [𝐻3(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛] × 𝐻3(𝒪).

There exist 𝑣1 and 𝑤1 as in (3.16) and (3.17) such that the associated solution to (3.15)
satisfies (𝑢1, 𝜃1)(𝑇, · ) = (𝑢𝑇 , 𝜃𝑇 ). Moreover, (𝑢1, 𝜃1) is bounded (with respect to 𝜀) in
𝐿∞(0, 𝑇 ;𝐻3(𝒪)𝑛) × 𝐿∞(0, 𝑇 ;𝐻3(𝒪)).

3.3.2.4 Equations and estimates for the remainder

The equations for 𝑟𝜀, 𝜋𝜀 and 𝑞𝜀 in the extended domain 𝒪 are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑟
𝜀 − 𝜀Δ𝑟𝜀 + (𝑢𝜀 · ∇)𝑟𝜀 + ∇𝜋𝜀 = 𝑓 𝜀 − 𝐴𝜀𝑟𝜀 + 𝜀𝑞𝜀𝑒𝑛 + 𝜀𝜃1𝑒𝑛 in 𝒪𝑇 ,

𝜕𝑡𝑞
𝜀 − 𝜀Δ𝑞𝜀 + 𝑢𝜀 · ∇𝑞𝜀 = ℎ𝜀 −𝐵𝜀𝑟𝜀 in 𝒪𝑇 ,

∇ · 𝑟𝜀 = 0 in 𝒪𝑇 ,

𝑟𝜀 · 𝜈 = 0, [∇ × 𝑟𝜀]𝑡𝑎𝑛 = −[∇ × 𝑢1]𝑡𝑎𝑛 on 𝛬𝑇 ,

𝑅(𝑞𝜀) = −𝑅(𝜃1) on 𝛬𝑇 ,

𝑟𝜀(0, · ) = 0, 𝑞𝜀(0, · ) = 0 in 𝒪,

(3.19)
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where we have introduced

𝑓 𝜀 := 𝜀Δ𝑢1 − 𝜀(𝑢1 · ∇)𝑢1, 𝐴𝜀𝑟𝜀 := (𝑟𝜀 · ∇)(𝑢0 + 𝜀𝑢1),

ℎ𝜀 := 𝜀Δ𝜃1 − 𝜀𝑢1 · ∇𝜃1, 𝐵𝜀𝑟𝜀 := 𝜀𝑟𝜀 · ∇𝜃1.

We can establish energy estimates for the remainder by multiplying (3.19)1 by 𝑟𝜀 and
(3.19)2 by 𝑞𝜀. Indeed, after integration by parts, and thanks to the interpolation inequality
in (BOYER; FABRIE, 2012, Theorem 𝐼𝐼𝐼.2.36)), we easily obtain the following estimates

−
∫︁

𝜕𝒪
𝑞𝜀𝜕𝑞

𝜀

𝜕𝜈
𝑑Γ =

∫︁
𝜕𝒪
𝑚|𝑞𝜀|2 𝑑Γ +

∫︁
𝜕𝒪
𝑞𝜀𝑅(𝜃1) 𝑑Γ, (3.20)

⃒⃒⃒⃒∫︁
𝜕𝒪
𝑞𝜀𝑅(𝜃1) 𝑑Γ

⃒⃒⃒⃒
≤ ‖𝑞𝜀‖𝐿2(𝜕𝒪)

⃦⃦⃦
𝑅(𝜃1)

⃦⃦⃦
𝐿2(𝜕𝒪)

≤ 𝐶‖𝑞𝜀‖𝐻1

⃦⃦⃦
𝜃1
⃦⃦⃦

𝐻2
,⃒⃒⃒⃒∫︁

𝜕𝒪
𝑚|𝑞𝜀|2 𝑑Γ

⃒⃒⃒⃒
≤ 𝐶‖𝑞𝜀‖𝐿2‖𝑞𝜀‖𝐻1

and

𝑑

𝑑𝑡
(‖𝑟𝜀‖2 + ‖𝑞𝜀‖2) + 𝜀(‖∇× 𝑟𝜀‖2 + ‖∇𝑞𝜀‖2)

≤ 𝐶(𝜀+ ‖𝜎0‖𝐿∞ + ‖𝑓 𝜀‖ + ‖𝐴𝜀‖𝐿∞ + ‖𝐵𝜀‖𝐿∞ + ‖ℎ𝜀‖)(‖𝑟𝜀‖2 + ‖𝑞𝜀‖2)

+ (2𝜀‖𝑢1‖2
𝐻2 + ‖𝑓 𝜀‖ + 𝐶𝜀‖𝜃1‖2

𝐻2 + ‖ℎ𝜀‖), (3.21)

where the boundary term for 𝑟𝜀 is bounded in a similar way as in (CORON; MARBACH;

SUEUR, 2020, Section 2.5).
By applying Gronwall’s inequality and Lemma 3.11, we deduce that

‖𝑟𝜀‖2
𝐿∞(𝐿2) + ‖𝑞𝜀‖2

𝐿∞(𝐿2) + 𝜀
(︁
‖∇ × 𝑟𝜀‖2 + ‖∇𝑞𝜀‖2

)︁
= 𝑂(𝜀).

Consequently, at time 𝑇 , since (𝑢0, 𝜃0)(𝑇, · ) = (𝑢1, 𝜃1)(𝑇, · ) = (0, 0), we find:

‖𝑢𝜀(𝑇, · )‖ ≤ ‖𝜀𝑟𝜀(𝑇, · )‖ ≤ 𝑂(𝜀3/2) and ‖𝜃𝜀(𝑇, · )‖ ≤ ‖𝜀2𝑞𝜀(𝑇, · )‖ ≤ 𝑂(𝜀5/2).

This concludes the proof of Proposition 3.9 in the slip boundary condition case.

Remark 3.13. In the previous proof, we have used in a crucial way the homogeneous
Robin boundary conditions satisfied by 𝜃𝜀. Indeed, we have used (3.20), among others.
Contrarily, with homogeneous Dirichlet boundary conditions on 𝑞𝜀, we have⃒⃒⃒⃒

⃒
∫︁

𝜕𝒪
𝑞𝜀𝜕𝑞

𝜀

𝜕𝜈
𝑑Γ
⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁

𝜕𝒪
𝜃1𝜕𝑞

𝜀

𝜕𝜈
𝑑Γ
⃒⃒⃒⃒
⃒ ≤ 𝐶‖𝑞𝜀‖𝐻2‖𝜃1‖𝐻1 .

But unfortunately, the norm ‖𝑞𝜀‖𝐻2 cannot be absorbed by the left hand side of (3.21).

3.3.3 The case of Navier slip-with-friction boundary conditions

We come back to the general case, i.e. Navier slip-with-friction boundary conditions.
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3.3.3.1 Ansatz with correction term

Let us introduce a smooth function 𝜙 : R𝑛 ↦→ R such that 𝜙 = 0 on 𝜕𝒪, 𝜙 > 0 in 𝒪, 𝜙 < 0
outside of 𝒪 and |𝜙(𝑥)| = 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝒪) in a small neighborhood of 𝜕𝒪. Then, 𝜈 = −∇𝜙
near 𝜕𝒪 and 𝜈 can be extended smoothly within the full domain 𝒪.

Following the original boundary layer expansion for Navier slip-with-friction boundary
conditions proved in (IFTIMIE; SUEUR, 2011) by Iftimie and Sueur, we introduce the
following expansions of the variables and the forcing terms:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝜀(𝑡, 𝑥) = 𝑢0(𝑡, 𝑥) +
√
𝜀𝜌

(︃
𝑡, 𝑥,

𝜙(𝑥)√
𝜀

)︃
+ 𝜀𝑢1(𝑡, 𝑥) + · · · + 𝜀𝑟𝜀(𝑡, 𝑥),

𝑝𝜀(𝑡, 𝑥) = 𝑝0(𝑡, 𝑥) + 𝜀𝑝1(𝑡, 𝑥) + · · · + 𝜀𝜋𝜀(𝑡, 𝑥),

𝜃𝜀(𝑡, 𝑥) = 𝜃0(𝑡, 𝑥) + 𝜀2𝜃1(𝑡, 𝑥) + 𝜀2𝑞𝜀(𝑡, 𝑥),

(3.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑣𝜀(𝑡, 𝑥) = 𝑣0(𝑡, 𝑥) +
√
𝜀𝑣𝜌

(︃
𝑡, 𝑥,

𝜙(𝑥)√
𝜀

)︃
+ 𝜀𝑣1

1(𝑡, 𝑥),

𝑤𝜀(𝑡, 𝑥) = 𝑤0(𝑡, 𝑥) + 𝜀2𝑤1(𝑡, 𝑥),

𝜎𝜀(𝑡, 𝑥) = 𝜎0(𝑡, 𝑥).

Compared to the previous expansion (3.10), since 𝑢0 cannot satisfy the Navier slip-
with-friction boundary condition on 𝜕𝒪, the expansion (3.22) introduces a boundary
correction 𝜌. This profile is expressed in terms of both the slow space variable 𝑥 ∈ 𝒪 and
a fast scalar variable 𝑧 = 𝜙(𝑥)/

√
𝜀. In the equations of (3.22), the missing terms will help

us to prove that the remainder is small; the details are given in Section 3.3.3.4. We use
the profiles (𝑢0, 𝜃0) and (𝑢1, 𝜃1) (extended by zero for 𝑡 > 𝑇 ) introduced in the previous
sections, see Sections 3.3.2.2 and 3.3.2.3. The following sections are devoted to analyze
and estimate the terms of the expansion in (3.22).

The boundary layer corrector will be given as the solution to an initial boundary
value problem with a boundary condition associated to the extra variable. As in (IFTIMIE;

SUEUR, 2011), the boundary layer correction will be described by a tangential vector field
𝜌 = 𝜌(𝑡, 𝑥, 𝑧) satisfying the equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌+ [(𝑢0 · ∇)𝜌+ (𝜌 · ∇)𝑢0]𝑡𝑎𝑛 + 𝑢0
♭𝑧𝜕𝑧𝜌− 𝜕𝑧𝑧𝜌 = 𝑣𝜌 in R+ × 𝒪 × R+,

𝜕𝑧𝜌(𝑡, 𝑥, 0) = 𝑔0(𝑡, 𝑥) in R+ × 𝒪,

𝜌(0, 𝑥, 𝑧) = 0 in 𝒪 × R+,

(3.23)

where we have used the following notation:

𝑢0
♭ (𝑡, 𝑥) := −𝑢0(𝑡, 𝑥) · 𝜈(𝑥)

𝜙(𝑥) in R+ × 𝒪,

𝑔0(𝑡, 𝑥) := 2𝜒(𝑥)𝑁(𝑢0)(𝑡, 𝑥) in R+ × 𝒪, (3.24)
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with a smooth cut-off function 𝜒 satisfying 𝜒 = 1 in a neighbourhood of the boundary 𝜕𝒪.
We can formally obtain (3.23) by plugging the expansion 𝑢0 +

√
𝜀𝜌(𝑡, 𝑥, 𝜙(𝑥)/

√
𝜀) into

(3.9) and keeping the terms of order
√
𝜀.

The following points are in order:

• 𝑣𝜌 must be viewed as a smooth control whose spatial support is located outside of
Ω. With the help of the transport term, this control will enable us to modify the
behavior of 𝜌 inside the physical domain Ω.

• 𝜌 depends on 𝑛 + 1 spatial variables (𝑛 slow variables 𝑥𝑖 and one fast variable 𝑧);
it is thus not set in curvilinear coordinates. It is implicitly assumed that 𝜈 actually
refers to the extension −∇𝜙 of the normal and, in turn, this furnishes extensions of
the identities in (3.1).

• We will check that the construction above satisfies 𝑣𝜌 · 𝜈 = 0. Since the equation
is linear, it preserves the relation 𝜌(0, 𝑥, 𝑧) · 𝜈(𝑥) = 0 at initial time. Thus, the
boundary profile will be tangential, even inside the domain. Actually, this is the
reason why the equation (3.23) is linear; see (IFTIMIE; SUEUR, 2011, Section 2) for
more details.

• In (3.24), the role of the function 𝜒 is to ensure that 𝜌 is compactly supported near
𝜕𝒪.

• Since 𝑢0 is smooth and tangent to the boundary, a Taylor expansion proves that 𝑢0
♭

is smooth in 𝒪.

• The boundary layer profile 𝜌 does not depend on 𝜀.

3.3.3.2 Well-prepared dissipation method

Unlike in the previous section, where 𝑇 is the fixed time control, we will use here virtually
long time intervals [0, 𝑇/𝜀] to dissipate the boundary layer.

The most natural strategy would be to use that 𝑢0 is equal to 0 after time 𝑇 . Then
(3.23) would be reduced to a heat equation posed on the half line R+ with homogeneous
Neumann boundary conditions and the boundary layer would decay. Unfortunately, this
decay is too slow: one can prove that

√
𝜀𝜌(𝑇/𝜀, · , 𝜙( · )/

√
𝜀) = 𝑂(𝜀), see (CORON; MAR-

BACH; SUEUR, 2020, Section 3.2). Therefore, by dividing by 𝜀, 𝑢(𝑇, · ) = 𝑂(1) and this is
not enough for using the local result at the end.

This is why we use the source 𝑣𝜌 to prepare the dissipation of the boundary layer.
Let us define the following weighted Sobolev spaces

𝐻𝑠,𝑘(R) :=

⎧⎨⎩𝑓 ∈ 𝐻𝑠(R) ;
𝑠∑︁

|𝛼|=0

∫︁
R
(1 + |𝑧|2)𝑘|𝜕𝛼𝑓(𝑧)|2𝑑𝑧 < +∞

⎫⎬⎭ ,
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endowed with the corresponding (natural) norms. In (CORON; MARBACH; SUEUR, 2020,
Lemma 7), the following result is proved:

Lemma 3.14. Let 𝑘 ≥ 1 and 𝑢0 ∈ 𝐶∞([0, 𝑇 ] × 𝒪) be a fixed reference flow in (3.11).
There exists 𝑣𝜌 ∈ 𝐶∞(R+ × 𝒪 × R+) with 𝑣𝜌 · 𝜈 = 0, such that the 𝑥-support is included
in 𝒪 ∖ Ω, the time support is compact in (0, 𝑇 ) and, for any 𝑠, 𝑝 ∈ N and any 0 ≤ 𝑚 ≤ 𝑘,
the associated boundary layer profile satisfies:

|𝜌(𝑡, · , · )|𝐻𝑝
𝑥(𝐻𝑠,𝑚

𝑧 ) ≤ 𝐶

⃒⃒⃒⃒
⃒ log(2 + 𝑡)

2 + 𝑡

⃒⃒⃒⃒
⃒

1
4 + 𝑘

2 − 𝑚
2

, (3.25)

where the positive constant 𝐶 depends on 𝑝, 𝑠, 𝑚 and 𝑢0 but not on 𝑡.

The interest of Lemma 3.14 is twofold.

• The estimate (3.25) will be used to show that the source terms generated by the
boundary layer are integrable in long time and the equation satisfied by the remain-
der term is well-posed.

• It will be also used to prove that the boundary layer is sufficiently small at time
𝑇/𝜀.

Remark 3.15. A more ambitious idea would be to design a control strategy to get exactly
𝜌(𝑇, ·, 𝜙(· )/

√
𝜀) ≡ 0. But, unfortunately, it can be proved that (3.23) is not null-controllable

at time 𝑇 , see (CORON; MARBACH; SUEUR, 2020, Section 3.5).

3.3.3.3 Technical profiles

For a function 𝑓 = 𝑓(𝑡, 𝑥, 𝑧), we will use the notation {𝑓} to denote its values at points
(𝑡, 𝑥, 𝑧) with 𝑧 = 𝜙(𝑥)/

√
𝜀. The full decomposition will be the following

𝑢𝜀 = 𝑢0 +
√
𝜀{𝜌} + 𝜀𝑢1 + 𝜀∇𝜁𝜀 + 𝜀{𝛽} + 𝜀𝑟𝜀,

𝑝𝜀 = 𝑝0 + 𝜀{𝜓} + 𝜀𝑝1 + 𝜀𝜇𝜀 + 𝜀𝜋𝜀,

𝜃𝜀 = 𝜃0 + 𝜀2𝜃1 + 𝜀2𝑞𝜀,

𝑣𝜀 = 𝑣0 +
√
𝜀{𝑣𝜌} + 𝜀𝑣1,

𝑤𝜀 = 𝑤0 + 𝜀2𝑤1,

𝜎𝜀 = 𝜎0.

(3.26)

The functions 𝛽, 𝜁𝜀 and 𝜓 are given as follows:

𝛽(𝑡, 𝑥, 𝑧) = −2𝑒−𝑧𝑁(𝜌)(𝑡, 𝑥, 0) − 𝜈(𝑥)
∫︁ +∞

𝑧
∇𝑥 · 𝜌(𝑡, 𝑥, 𝑧′)𝑑𝑧′, (3.27)
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⎧⎪⎨⎪⎩
Δ𝜁𝜀 = −{∇ · 𝛽} in 𝒪,

𝜕𝜈𝜁
𝜀 = −𝛽(𝑡, · , 0) · 𝜈 on 𝜕𝒪,

(3.28)

𝜓 = 𝜓(𝑡, 𝑥, 𝑧) satisfies [(𝑢0·∇)𝜌+(𝜌·∇)𝑢0]·𝜈 = 𝜕𝑧𝜓 and 𝜓(𝑡, 𝑥, 𝑧) −→ 0 as 𝑧 −→ +∞.

(3.29)
It is proved in (CORON; MARBACH; SUEUR, 2020, Section 4.2) that the definitions

(3.27), (3.28) and (3.29) are compatible with (3.9) and, furthermore, the following esti-
mates hold:

‖𝛽(𝑡, ·, · )‖𝐻𝑝
𝑥(𝐻𝑠,𝑘

𝑧 ) ≤ 𝐶‖𝜌(𝑡, ·, · )‖𝐻𝑝+1
𝑥 (𝐻𝑠+1,𝑘+2

𝑧 ), (3.30)

‖𝜁𝜀(𝑡, · )‖𝐻4 ≤ 𝐶
(︁
𝜀−3/4‖𝛽(𝑡, · , · )‖𝐻4

𝑥(𝐻2,0
𝑧 ) + ‖𝜌(𝑡, · , · )‖𝐻3

𝑥(𝐻0,1
𝑧 )

)︁
, (3.31)

‖𝜁𝜀(𝑡, · )‖𝐻3 ≤ 𝐶
(︁
𝜀−1/4‖𝛽(𝑡, · , · )‖𝐻3

𝑥(𝐻1,0
𝑧 ) + ‖𝜌(𝑡, · , · )‖𝐻2

𝑥(𝐻0,1
𝑧 )

)︁
, (3.32)

‖𝜁𝜀(𝑡, · )‖𝐻2 ≤ 𝐶
(︁
𝜀1/4‖𝛽(𝑡, · , · )‖𝐻2

𝑥(𝐻0,0
𝑧 ) + ‖𝜌(𝑡, · , · )‖𝐻1

𝑥(𝐻0,1
𝑧 )

)︁
, (3.33)

‖𝜓(𝑡, ·, · )‖𝐻1
𝑥(𝐻0,0

𝑧 ) ≤ 𝐶‖𝜌(𝑡, ·, · )‖𝐻2
𝑥(𝐻0,2

𝑧 ). (3.34)

3.3.3.4 Equation and estimates of the remainder

We will now analyze the remainder defined in (3.26), which is in fact a solution in the
extended domain 𝒪 to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑟
𝜀 − 𝜀Δ𝑟𝜀 + (𝑢𝜀 · ∇)𝑟𝜀 + ∇𝜋𝜀 = {𝑓 𝜀} − {𝐴𝜀𝑟𝜀} + 𝜀𝑞𝜀𝑒𝑛 + 𝜀𝜃1𝑒𝑛 in (0,+∞) × 𝒪,

𝜕𝑡𝑞
𝜀 − 𝜀Δ𝑞𝜀 + 𝑢𝜀 · ∇𝑞𝜀 = {ℎ𝜀} −𝐵𝜀𝑟𝜀 in (0,+∞) × 𝒪,

∇ · 𝑟𝜀 = 0 in (0,+∞) × 𝒪,

𝑟𝜀 · 𝜈 = 0, 𝑁(𝑟𝜀) = −𝑁(𝑔𝜀) on (0,+∞) × 𝜕𝒪,

𝑅(𝑞𝜀) = −𝑅(𝜃1) on (0,+∞) × 𝜕𝒪,

𝑟𝜀(0, · ) = 0, 𝑞𝜀(0, · ) = 0 in 𝒪,
(3.35)

where 𝑔𝜀 := 𝑢1 + ∇𝜁𝜀 + 𝛽|𝑧=0. Let us introduce the amplification operators 𝐴𝜀 and 𝐵𝜀,
given by

𝐴𝜀𝑟𝜀 := (𝑟𝜀 · ∇)(𝑢0 +
√
𝜀𝜌+ 𝜀𝑢1 + 𝜀∇𝜁𝜀 + 𝜀𝛽) − (𝑟𝜀 · 𝜈)(𝜕𝑧𝜌+

√
𝜀𝜕𝑧𝛽)

and
𝐵𝜀𝑟𝜀 := 𝜀𝑟𝜀 · ∇𝜃1 (3.36)
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and the forcing terms 𝑓 𝜀 and ℎ𝜀, with

𝑓 𝜀 := (Δ𝜙𝜕𝑧𝜌− 2(𝜈 · ∇)𝜕𝑧𝜌+ 𝜕𝑧𝑧𝛽) +
√
𝜀(Δ𝜌+ Δ𝜙𝜕𝑧𝛽 − 2(𝜈 · ∇)𝜕𝑧𝛽)

+𝜀(Δ𝛽 + Δ𝑢1 + Δ∇𝜁𝜀) − ((𝜌+
√
𝜀(𝛽 + 𝑢1 + ∇𝜁𝜀)) · ∇)(𝜌+

√
𝜀(𝛽 + 𝑢1 + ∇𝜁𝜀))

−(𝑢0 · ∇)𝛽 − (𝛽 · ∇)𝑢0 − 𝑢0
♭𝑧𝜕𝑧𝛽 + (𝛽 + 𝑢1 + ∇𝜁𝜀) · 𝜈𝜕𝑧(𝜌+

√
𝜀𝛽)

−∇𝜓 − 𝜕𝑡𝛽

(3.37)
and

ℎ𝜀 := 𝜀Δ𝜃1 − (
√
𝜀𝜌+ 𝜀(𝑢1 + ∇𝜁𝜀 + 𝛽)) · ∇𝜃1. (3.38)

We have to estimate the size of the remainder (𝑟𝜀, 𝑞𝜀) at final time and check that it is
small. We begin by establishing an energy estimate. Thus, we multiply equation (3.35)1

by 𝑟𝜀 and the equation (3.35)2 by 𝑞𝜀 and integrate by parts. We proceed as before, term
by term, the unique different being the terms coming from the boundary.

We recall the following identity, see (IFTIMIE; SUEUR, 2011, Lemma 2.2) which will be
used throughout the paper∫︁

𝒪
(−Δ𝑢) · 𝑣 = 2

∫︁
𝒪
𝐷(𝑢) ·𝐷(𝑣) − 2

∫︁
𝜕𝒪

[𝐷(𝑢)𝜈]𝑡𝑎𝑛 · 𝑣 𝑑Γ𝒪,

where 𝑢 and 𝑣 are smooth vector fields such that 𝑣 is divergence free and tangent to the
boundary.

Therefore, it follows that

−𝜀
∫︁

𝒪
Δ𝑟𝜀 · 𝑟𝜀 = 2𝜀‖𝐷(𝑟𝜀)‖2 + 2𝜀

∫︁
𝜕𝒪

([𝑀𝑟𝜀]𝑡𝑎𝑛 −𝑁(𝑔𝜀)) · 𝑟𝜀 𝑑Γ𝒪,

and we estimate the boundary term as follows

2
⃒⃒⃒⃒∫︁

𝜕𝒪
([𝑀𝑟𝜀]𝑡𝑎𝑛 −𝑁(𝑔𝜀)) · 𝑟𝜀 𝑑Γ𝒪

⃒⃒⃒⃒
= 2

⃒⃒⃒⃒∫︁
𝜕𝒪
𝑀𝑟𝜀 · 𝑟𝜀 −𝑁(𝑔𝜀) · 𝑟𝜀 𝑑Γ𝒪

⃒⃒⃒⃒
≤ 𝜆‖∇𝑟𝜀‖2 + 𝐶𝜆(‖𝑟𝜀‖2 + ‖𝑁(𝑔𝜀)‖2

𝐿2(𝜕𝒪))

≤ 𝜆‖∇𝑟𝜀‖2 + 𝐶𝜆(‖𝑟𝜀‖2 + ‖𝑔𝜀‖2
𝐿2(𝜕𝒪) + ‖𝐷(𝑔𝜀)‖2

𝐿2(𝜕𝒪))

≤ 𝜆‖∇𝑟𝜀‖2 + 𝐶𝜆(‖𝑟𝜀‖2 + ‖𝑔𝜀‖2
𝐻2),

(3.39)
for any 𝜆 > 0, where 𝐶𝜆 is a constant depending on 𝜆. Let us absorb the term ‖∇𝑟𝜀‖2 in
(3.39). Thanks to the classical Korn’s inequality (see Lemma B.1), since ∇ · 𝑟𝜀 = 0 in 𝒪
and 𝑟𝜀 · 𝜈 = 0 on 𝜕𝒪, we have

‖𝑟𝜀‖2
𝐻1 ≤ 𝐶𝐾‖𝑟𝜀‖2 + 𝐶𝐾‖𝐷(𝑟𝜀)‖2.

for some 𝐶𝐾 > 0. Choosing 𝜆 = 1/(2𝐶𝐾), we get:
𝑑

𝑑𝑡
‖𝑟𝜀‖2 + 𝜀‖𝐷(𝑟𝜀)‖2 ≤

(︂
‖𝜎0‖∞ + 𝐶𝜀+ ‖{𝑓 𝜀}‖ + 2‖{𝐴𝜀}‖∞

)︂
‖𝑟𝜀‖2

+
(︂
𝐶𝜀‖𝑔𝜀‖2

𝐻2 + ‖{𝑓 𝜀}‖ + 𝜀‖𝜃1‖2
)︂

+ 𝜀‖𝑞𝜀‖2
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and
𝑑

𝑑𝑡
‖𝑞𝜀‖2 + 𝜀‖∇𝑞𝜀‖2 ≤

(︂
‖𝜎0‖∞ + ‖{ℎ𝜀}‖ + ‖{𝐵𝜀}‖∞ + 𝐶𝜀

)︂
‖𝑞𝜀‖2

+
(︂

‖{ℎ𝜀}‖ + 𝐶𝜀‖𝜃1‖2
𝐻2

)︂
+ ‖{𝐵𝜀}‖∞‖𝑟𝜀‖2.

Adding the two estimates above, we get
𝑑

𝑑𝑡
(‖𝑟𝜀‖2 + ‖𝑞𝜀‖2) + 𝜀(‖𝐷(𝑟𝜀)‖2 +‖∇𝑞𝜀‖2)

≤
(︂

‖𝜎0‖∞ + 𝐶𝜀+ ‖{𝑓 𝜀}‖ + 2‖{𝐴𝜀}‖∞ + ‖{ℎ𝜀}‖ + ‖𝐵𝜀‖∞

)︂
×
(︂

‖𝑟𝜀‖2 + ‖𝑞𝜀‖2
)︂

+
(︂
𝐶𝜀‖𝑔𝜀‖2

𝐻2 + ‖{𝑓 𝜀}‖ + ‖{ℎ𝜀}‖ + 𝐶𝜀‖𝜃1‖2
𝐻2

)︂
.

Applying Gronwall’s inequality in the interval (0, 𝑇/𝜀), and using the fact that the initial
datum is equal to 0 and the estimates

‖{𝐴𝜀}‖𝐿1(𝐿∞) + ‖𝐵𝜀‖𝐿1(𝐿∞) = 𝑂(1), (3.40)

𝜀‖𝜃1‖2
𝐿2(𝐻2) + 𝜀‖𝑔𝜀‖2

𝐿2(𝐻2) = 𝑂(𝜀 1
4 ), (3.41)

‖{𝑓 𝜀}‖𝐿1(𝐿2) + ‖{ℎ𝜀}‖𝐿1(𝐿2) = 𝑂(𝜀 1
4 ), (3.42)

we obtain:

‖𝑟𝜀‖2
𝐿∞(𝐿2) + ‖𝑞𝜀‖2

𝐿∞(𝐿2) + 𝜀‖𝐷(𝑟𝜀)‖2
𝐿2(𝐿2) + 𝜀‖∇𝑞𝜀‖2

𝐿2(𝐿2) = 𝑂(𝜀 1
4 ). (3.43)

The estimates (3.40), (3.41) and (3.42) hold on the whole interval [0,+∞). The esti-
mates for {𝐴𝜀}, 𝑔𝜀 and {𝑓 𝜀} can be found in (CORON; MARBACH; SUEUR, 2020, Section
4.4). Here, we give some details to obtain the estimates for 𝐵𝜀, 𝜃1 and {ℎ𝜀}, which are
new.

First, the estimates of 𝐵𝜀 and 𝜃1 are straightforward by using (3.36), and Lemma 3.11.
Indeed, we easily get that ‖𝐵𝜀‖𝐿1(𝐿∞) = 𝑂(1) and that 𝜀‖𝜃1‖2

𝐿2(𝐻2) = 𝑂(𝜀).
Now, let us justify the estimate of {ℎ𝜀}. Note that the fast scaling variable enables us

to win a factor 𝜀1/4, see (IFTIMIE; SUEUR, 2011, Lemma 3). In what follows, we estimate
each one of the terms in (3.38). The first term is 𝑂(𝜀), thanks to the regularity of 𝜃1. The
second one can be treated as follows

‖
√
𝜀{𝜌(𝑡, · )} · ∇𝜃1(𝑡, · )‖ ≤ 𝐶

√
𝜀‖{𝜌(𝑡, · )}‖𝐻1‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶
(︁√

𝜀‖𝜌(𝑡, · , · )‖𝐻1
𝑥(𝐻0,0

𝑧 ) + ‖{𝜕𝑧𝜌(𝑡, ·)}‖
)︁

‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶
(︁√

𝜀‖𝜌(𝑡, · , · )‖𝐻1
𝑥(𝐻0,0

𝑧 ) + 𝜀1/4‖𝜌(𝑡, · , · )‖𝐻1
𝑥(𝐻1,0

𝑧 )

)︁
‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶𝜀1/4‖𝜌(𝑡, · , · )‖𝐻1
𝑥(𝐻1,0

𝑧 )‖∇𝜃1(𝑡, · )‖𝐻1 .

Then, integrating by parts this last inequality with respect to time over (0, 𝑇/𝜀), using
Lemma 3.14 for 𝑘 = 4 and also the fact that 𝜃1 is bounded in 𝐿∞(0, 𝑇 ;𝐻3(𝒪)), we get:

‖
√
𝜀{𝜌(· , · )} · ∇𝜃1‖𝐿1(𝐿2) = 𝑂(𝜀1/4).
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Now, for the third term, by using (3.30) and (3.33) we have the following:

‖𝜀∇𝑥𝜁
𝜀(𝑡, · ) · ∇𝜃1(𝑡, · )‖ ≤ 𝐶𝜀‖∇𝑥𝜁

𝜀(𝑡, · )‖𝐻1‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶𝜀‖𝜁𝜀(𝑡, · )‖𝐻2‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶𝜀
(︁
𝜀1/4‖𝛽(𝑡, · , · )‖𝐻2

𝑥(𝐻0,0
𝑧 ) + ‖𝜌(𝑡, · , · )‖𝐻1

𝑥(𝐻0,1
𝑧 )

)︁
‖∇𝜃1(𝑡, · )‖𝐻1

≤ 𝐶𝜀‖𝜌(𝑡, · , · )‖𝐻3
𝑥(𝐻1,2

𝑧 )‖∇𝜃1(𝑡, · )‖𝐻1 .

Integrating by parts this last inequality, with respect to time, and using again Lemma
3.14 for 𝑘 = 3 and the fact that 𝜃1 is bounded in 𝐿∞(0, 𝑇 ;𝐻3(𝒪)), we find that

‖𝜀∇𝑥𝜁
𝜀(· , · ) · ∇𝜃1(·, · )‖𝐿1(𝐿2) = 𝑂(𝜀1/4).

The last term can be estimated in a similar way, using (3.30).

3.3.4 Towards the trajectory

In this section, we deduce a small-time global approximate controllability result to smooth
trajectories. For that, we will use Lemma 3.14 and the estimates on the remainder term
(3.43).

Let (𝑢𝜀, 𝑝𝜀, 𝜃𝜀) be the solution to the equation (3.9) on the time interval [0, 𝑇/𝜀]. First,
during the interval [0, 𝑇 ], we use the expansions

𝑢𝜀 = 𝑢0 +
√
𝜀{𝜌} + 𝜀𝑢1,𝜀 + 𝜀∇𝜁𝜀 + 𝜀{𝛽} + 𝜀𝑟𝜀,

𝜃𝜀 = 𝜃0 + 𝜀2𝜃1,𝜀 + 𝜀2𝑞𝜀,
(3.44)

where 𝑢1,𝜀(0, · ) = 𝑢*, 𝜃1,𝜀(0, · ) = 𝜃* and 𝑢1,𝜀(𝑇, · ) = 𝑢(𝜀𝑇, · ), 𝜃1,𝜀(𝑇, · ) = 𝜃(𝜀𝑇, · ). The
couple (𝑢1,𝜀, 𝜃1,𝜀) solves, together with some 𝑝1,𝜀, the usual first-order system (3.15) and
the profiles 𝑢1,𝜀 and 𝜃1,𝜀 depend on 𝜀. However, since the reference trajectory belongs to
𝐶∞, all the required estimates can be made independent of 𝜀. In a second step, for large
times 𝑡 ≥ 𝑇 , we change our expansions and set:

𝑢𝜀 =
√
𝜀{𝜌} + 𝜀𝑢(𝜀𝑡, · ) + 𝜀∇𝜁𝜀 + 𝜀{𝛽} + 𝜀𝑟𝜀,

𝑝𝜀 = 𝜀2𝑝(𝜀𝑡, · ) + 𝜀𝜇𝜀 + 𝜀𝜋𝜀,

𝑣𝜀 =
√
𝜀𝑣𝜌 + 𝜀2𝑣,

𝜃𝜀 = 𝜀2𝜃(𝜀𝑡, · ) + 𝜀2𝑞𝜀,

𝑤𝜀 = 𝜀3𝑤.

(3.45)

Note that, for 𝑡 ≥ 𝑇 , we have 𝑢0 = 0 and the profile (𝑢1, 𝜃1) is the main trajectory and
changing (3.44) by (3.45) allow us to get rid of some terms in the equation satisfied by the
remainder. Indeed, terms such as 𝜀Δ𝑢1, 𝜀(𝑢1 ·∇)𝑢1, 𝜀𝑢1 ·∇𝜃1 and 𝜀Δ𝜃1 will not appear any
more in (3.37) and (3.38) because they are already taken into account by

(︁
𝑢, 𝜃

)︁
. Actually,
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despite the presence of the profile (𝑢1, 𝜃1) in both steps, the estimates obtained for the
remainder profile are as in Section 3.3.3.4.

Let us introduce

𝑢(𝜀)(𝑡, 𝑥) := 1
𝜀
𝑢𝜀
(︂
𝑡

𝜀
, 𝑥
)︂

and 𝜃(𝜀)(𝑡, 𝑥) := 1
𝜀2 𝜃

𝜀
(︂
𝑡

𝜀
, 𝑥
)︂
.

Then, thanks to (3.30), (3.33) and (3.43), we see that⃦⃦⃦
𝑢(𝜀)(𝑇, · ) − 𝑢(𝑇, · )

⃦⃦⃦
=
⃦⃦⃦
𝜀−1/2 {𝜌 (𝑇/𝜀, · )} + ∇𝜁𝜀(𝑇/𝜀, · ) + {𝛽 (𝑇/𝜀, · )} + 𝑟𝜀 (𝑇/𝜀, · )

⃦⃦⃦
≤ 𝜀−1/2 ‖{𝜌 (𝑇/𝜀, · )}‖ + 𝜀1/4‖𝛽(𝑇/𝜀, · , · )‖𝐻2

𝑥(𝐻0,0
𝑧 )

+ ‖𝜌(𝑇/𝜀, · , · )‖𝐻1
𝑥(𝐻0,1

𝑧 ) + ‖{𝛽 (𝑇/𝜀, · )}‖ + ‖𝑟𝜀 (𝑇/𝜀, · )‖

≤ 𝜀−1/2 ‖{𝜌 (𝑇/𝜀, · )}‖ + 𝜀1/4‖𝜌(𝑇/𝜀, · , · )‖𝐻3
𝑥(𝐻1,2

𝑧 )

+ ‖𝜌(𝑇/𝜀, · , · )‖𝐻1
𝑥(𝐻0,1

𝑧 ) + ‖𝜌 (𝑇/𝜀, · , · )‖𝐻1
𝑥(𝐻1,2

𝑧 ) +𝑂(𝜀 1
8 ).

We can use (3.25) to estimate the terms containing 𝜌 in the estimates above. First, note
that

lim
𝑠→+∞

log 𝑠
𝑠1/2 = 0

and, consequently, there exists a positive constant 𝐶 > 0 such that

log 𝑠
𝑠

≤ 𝐶𝑠−1/2 ∀𝑠 ≥ 1.

Then, by taking 𝜀 sufficiently small, the following is found for 𝑘 ≥ 2:

𝜀− 1
2 ‖{𝜌 (𝑇/𝜀, · )}‖ = 𝜀− 1

2 ‖𝜌(𝑇/𝜀, · , · )‖𝐻0
𝑥(𝐻0,0

𝑧 ) ≤ 𝐶𝜀− 1
2

⃒⃒⃒⃒
⃒ log(2 + 𝑇/𝜀)

2 + 𝑇/𝜀

⃒⃒⃒⃒
⃒

1
4 + 𝑘

2

≤ 𝐶𝜀− 1
2 + 1

8 + 𝑘
4 ,

𝜀
1
4 ‖𝜌(𝑇/𝜀, · , · )‖𝐻3

𝑥(𝐻1,2
𝑧 ) ≤ 𝐶𝜀

1
4

⃒⃒⃒⃒
⃒ log(2 + 𝑇/𝜀)

2 + 𝑇/𝜀

⃒⃒⃒⃒
⃒

1
4 + 𝑘

2 −1

≤ 𝐶𝜀
1
4 + 1

8 + 𝑘
4 − 1

2 ,

‖𝜌(𝑇/𝜀, · , · )‖𝐻1
𝑥(𝐻0,1

𝑧 ) ≤ 𝐶

⃒⃒⃒⃒
⃒ log(2 + 𝑇/𝜀)

2 + 𝑇/𝜀

⃒⃒⃒⃒
⃒

1
4 + 𝑘

2 − 1
2

≤ 𝐶𝜀
1
8 + 𝑘

4 − 1
4 ,

|𝜌(𝑇/𝜀, · , · )|𝐻1
𝑥(𝐻1,2

𝑧 ) ≤ 𝐶

⃒⃒⃒⃒
⃒ log(2 + 𝑇/𝜀)

2 + 𝑇/𝜀

⃒⃒⃒⃒
⃒

1
4 + 𝑘

2 −1

≤ 𝐶𝜀
1
8 + 𝑘

4 − 1
2 .

Finally, we choosing 𝑘 large enough, we conclude that⃦⃦⃦
𝑢(𝜀)(𝑇, · ) − 𝑢(𝑇, · )

⃦⃦⃦
= 𝑂(𝜀 1

8 )

and, from (3.43), we have⃦⃦⃦
𝜃(𝜀)(𝑇, · ) − 𝜃(𝑇, · )

⃦⃦⃦
= ‖𝑞𝜀 (𝑇/𝜀, · )‖ = 𝑂(𝜀 1

8 ).

This concludes the proof of Proposition 3.9 holds.
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3.4 LOCAL CONTROLLABILITY OF THE BOUSSINESQ SYSTEM WITH NONLINEAR
BOUNDARY CONDITIONS

Let 𝜔𝑐 and 𝜔 be two non-empty open subsets such that 𝜔𝑐 ⊂⊂ 𝜔 ⊂⊂ 𝒪 ∖ Ω and let 𝜒𝜔

be a cut-off function such that 𝜒𝜔 = 0 outside 𝜔 and 𝜒𝜔 = 1 in 𝜔𝑐.
The goal of this section is to prove the local exact controllability to trajectories for

the Boussinesq system with distributed controls:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢− Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡𝜃 − Δ𝜃 + 𝑢 · ∇𝜃 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑢 = 0 in 𝒪𝑇 ,

𝑢 · 𝜈 = 0, 𝑁(𝑢) + [𝑓(𝑢)]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(𝜃) + 𝑔(𝜃) = 0 on 𝛬𝑇 ,

𝑢(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪,

(3.46)

where 𝑓 ∈ 𝐶3(R𝑛;R𝑛) with a symmetric Jacobian matrix (or equivalently, 𝑓 is an irro-
tational field) and 𝑔 ∈ 𝐶3(R). Note that, to prove Theorem 3.1, we only need to prove
a local-controllability result for (3.7), with linear Navier boundary conditions 𝑁(𝑢) as in
(3.1) and linear Robin boundary conditions 𝑅(𝜃) as (3.2). However, for sake of complete-
ness, we establish a local controllability result for the Boussinesq system with nonlinear
Navier boundary conditions on the velocity field and nonlinear Fourier boundary condi-
tions on the temperate.

Since (3.46) is nonlinear, we first begin by proving a (global) null-controllability result
for the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑧 − Δ𝑧 + ((𝑎+ 𝑏) · ∇)𝑧 + (𝑧 · ∇)𝑏+ ∇𝑞 = ℎ𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡ℎ− Δℎ+ (𝑎+ 𝑏) · ∇ℎ+ 𝑧 · ∇𝑐 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑧 = 0 in 𝒪𝑇 ,

𝑧 · 𝜈 = 0, [𝐷(𝑧)𝜈 + 𝐴𝑧]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕ℎ

𝜕𝜈
+𝐵ℎ = 0 on 𝛬𝑇 ,

𝑧(0, · ) = 𝑧*, ℎ(0, · ) = ℎ* in 𝒪,

(3.47)

where the vector fields 𝑎, 𝑏, the scalar function 𝑐, the symmetric matrix 𝐴 and the scalar
function 𝐵 satisfy the following assumptions:

𝑎, 𝑏 ∈ 𝐿∞(0, 𝑇 ;𝐿2
𝑑𝑖𝑣(𝒪)𝑛 ∩ 𝐿∞(𝒪)𝑛), 𝑎𝑡, 𝑏𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿𝑟(𝒪)𝑛), (3.48)

𝑐 ∈ 𝐿∞(0, 𝑇 ;𝐿∞(𝒪)), 𝑐𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿𝑟(𝒪)), (3.49)

𝐴 ∈ 𝑃 := 𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1,𝜗1+1(𝜕𝒪)𝑛×𝑛) ∩𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2(𝜕𝒪)𝑛×𝑛), (3.50)

𝐵 ∈ 𝑄 := 𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1,𝜗1+1(𝜕𝒪)) ∩𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2(𝜕𝒪)), (3.51)
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with 0 < ℓ < 1/2 arbitrarily close to 1/2, 𝑟 = 2𝑛, 𝜗2 = (1/2)(3 − 𝑛) + (1 − ℓ)(𝑛 − 2)
and 𝜗1 > 1 (arbitrarily small) if 𝑛 = 3 and 𝜗1 = 1 if 𝑛 = 2. By Sobolev embeddings, we
readily have 𝑃 →˓ 𝐿∞((0, 𝑇 ) × 𝜕𝒪)𝑛×𝑛 and 𝑄 →˓ 𝐿∞((0, 𝑇 ) × 𝜕𝒪).

It is well-known, that the null-controllability of system (3.47) is equivalent to prove
an observability estimate for the adjoint system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝜙− Δ𝜙− (𝑎 · ∇)𝜙−𝐷(𝜙)𝑏+ ∇𝜋 = 𝑐∇𝜓 in 𝒪𝑇 ,

−𝜕𝑡𝜓 − Δ𝜓 − (𝑎+ 𝑏) · ∇𝜓 = 𝜙 · 𝑒𝑛 in 𝒪𝑇 ,

∇ · 𝜙 = 0 in 𝒪𝑇 ,

𝜙 · 𝜈 = 0, [𝐷(𝜙)𝜈 + 𝐴𝜙]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕𝜓

𝜕𝜈
+𝐵𝜓 = 0 on 𝛬𝑇 ,

𝜙(𝑇, · ) = 𝜙*, 𝜓(𝑇, · ) = 𝜓* in 𝒪.

(3.52)

The desired observability inequality will be a consequence of a global Carleman inequality
for (3.52), see Proposition 3.16 below.

3.4.1 Carleman estimates

Before stating the required Carleman inequality, let us introduce several classical weights
in the study of Carleman inequalities for parabolic equations, see (FURSIKOV; IMANUVILOV,
1996). The basic weight will be a function 𝜂0 ∈ 𝐶2(𝒪) verifying

𝜂0 > 0 in 𝒪, 𝜂0 ≡ 0 on 𝜕𝒪, |∇𝜂0| > 0 in 𝒪 ∖ 𝜔′ , (3.53)

where 𝜔′ ⊂⊂ 𝜔𝑐 is a non-empty open set.
Thus, for any 𝜆 > 0 we set:

𝛼(𝑥, 𝑡) = 𝑒2𝜆‖𝜂0‖∞ − 𝑒𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 , 𝜉(𝑥, 𝑡) = 𝑒𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 ,

𝛼*(𝑡) = max
𝑥∈𝒪

𝛼(𝑥, 𝑡), ̂︀𝛼(𝑡) = min
𝑥∈𝒪

𝛼(𝑥, 𝑡),

𝜉*(𝑡) = min
𝑥∈𝒪

𝜉(𝑥, 𝑡), ̂︀𝜉(𝑡) = max
𝑥∈𝒪

𝜉(𝑥, 𝑡).

We also introduce the following notation:

𝐼(𝑠, 𝜆;𝜙) = 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜙|2

+𝑠−1
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉−1(|𝜙𝑡|2 + |Δ𝜙|2),

where 𝑠 and 𝜆 are positive real numbers and 𝜙 = 𝜙(𝑡, 𝑥).
We have the following Carleman inequality for (3.52):



74

Proposition 3.16. Assume that the assumptions (3.48), (3.49), (3.50), (3.51) are ful-
filled. There exist positive constants ̃︀𝜆, ̃︀𝑠 and 𝐶 = 𝐶(𝒪, 𝜔𝑐) such that, for any (𝜙*, 𝜓*) ∈
𝐿2

𝑑𝑖𝑣(𝒪) × 𝐿2(𝒪), the corresponding solution to (3.52) verifies:

𝐼(𝑠, 𝜆;𝜙) + 𝐼(𝑠, 𝜆;𝜓) ≤ 𝐶(1 + 𝑇 2)𝑠15/2𝜆8
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉15/2(|𝜙|2 + |𝜓|2), (3.54)

for all 𝜆 ≥ ̃︀𝜆 and 𝑠 ≥ ̃︀𝑠. Furthermore, ̃︀𝜆 and ̃︀𝑠 have the form ̃︀𝜆 = ̃︀𝜆0𝑒
̃︀𝜆1𝑇 and ̃︀𝑠 =̃︀𝑠0𝑒

𝜆̃︀𝑠1(𝑇 4 + 𝑇 8), where ̃︀𝜆0, ̃︀𝜆1 and ̃︀𝑠0 only depend on ‖𝑎‖∞, ‖𝑏‖∞, ‖𝑐‖∞, ‖𝑎𝑡‖𝐿2(𝐿𝑟),
‖𝑏𝑡‖𝐿2(𝐿𝑟), ‖𝑐𝑡‖𝐿2(𝐿𝑟), ‖𝐴‖𝑃 and ‖𝐵‖𝑄, and ̃︀𝑠1 only depend on 𝒪 and 𝜔𝑐.

The proof of Proposition 3.16 follows the arguments of (GUERRERO, 2006b). For com-
pleteness and because of the presence of the equation satisfied by 𝜓, we provide its details
in Appendices D and E.

3.4.2 Null controllability of the linearized system

In this section we will deduce the null-controllability of the linear system (3.47) as a
consequence of the inequality (3.54). We introduce the following notation for denoting
the space where the control is found:

ℋ := 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛)∩𝐶0([0, 𝑇 ];𝐻1(𝒪)𝑛)×𝐻1(0, 𝑇 ;𝐿2(𝒪))∩𝐶0([0, 𝑇 ];𝐻1(𝒪)). (3.55)

Proposition 3.17. Let (𝑧*, ℎ*) ∈ 𝐿2
div(𝒪)𝑛 ×𝐿2(𝒪) and let us suppose that (3.48), (3.49),

(3.50) and (3.51) holds. Then, there exist controls (𝑣, 𝑤) ∈ ℋ such that the corresponding
solution to (3.47) satisfies

𝑧(𝑇, · ) = 0 and ℎ(𝑇, · ) = 0. (3.56)

Moreover, the following estimate holds

‖𝜅1/2𝑣𝜒𝜔‖+‖𝜅1/2𝑤𝜒𝜔‖+‖𝑣‖𝐻1(𝐿2)+‖𝑣‖𝐿∞(𝐻1)+‖𝑤‖𝐻1(𝐿2)+‖𝑤‖𝐿∞(𝐻1) ≤ 𝐶(‖𝑧*‖+‖ℎ*‖),

where the positive constant C, depending only on 𝒪, 𝜔, 𝑇 , ‖𝑎‖∞, ‖𝑏‖∞, ‖𝑐‖∞, ‖𝑎𝑡‖𝐿2(𝐿𝑟),
‖𝑏𝑡‖𝐿2(𝐿𝑟), ‖𝑐𝑡‖𝐿2(𝐿𝑟), ‖𝐴‖𝑃 and ‖𝐵‖𝑄, and 𝜅(𝑡) = 𝑒4𝑠𝛼̂−2𝑠𝛼*

𝜉−15/2 and 𝑠, 𝜆, 𝛼̂, 𝛼* and 𝜉

are defined at the beginning of the previous section.

Proof. It follows the ideas of (GUERRERO, 2006b). It is based on a penalized Hilbert
Uniqueness Method. Thus, let (𝑧*, ℎ*) ∈ 𝐿2

div(𝒪)𝑛 × 𝐿2(𝒪), and for each 𝜀 > 0, let
consider the extremal problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minimize 1
2

∫︁∫︁
𝒪𝑇

𝜅(𝑡)
(︁
|𝑣|2 + |𝑤|2

)︁
𝜒𝜔 + 1

2𝜀
(︁
‖𝑧(𝑇, · )‖2

𝐿2 + ‖ℎ(𝑇, · )‖2
𝐿2

)︁
Subject to 𝑣 ∈ 𝐿2(𝒪𝑇 ), 𝑤 ∈ 𝐿2(𝒪𝑇 ) and (𝑧, ℎ, 𝑣, 𝑤) solves (3.47).

(3.57)
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There exists a (unique) solution to (3.57), denoted by (𝑧𝜀, ℎ𝜀, 𝑣𝜀, 𝑤𝜀), with
𝜅(𝑡)1/2(𝑣𝜀, 𝑤𝜀) ∈ 𝐿2(𝒪𝑇 )𝑛+1, since the functional in (3.57) is coercive, strictly convex
and 𝐶1 in the Hilbert space 𝐿2(𝒪𝑇 )𝑛+1. The associated Euler-Lagrange equation yields∫︁∫︁

𝒪𝑇

𝜅(𝑡) (𝑣𝜀 · 𝑣 + 𝑤𝜀𝑤)𝜒𝜔 + 1
𝜀

∫︁
𝒪

[𝑧𝜀(𝑇, · ) · 𝑍(𝑇, · ) + ℎ𝜀(𝑇, · )𝐻(𝑇, · )] = 0 (3.58)

for all (𝑣, 𝑤) ∈ 𝐿2(𝒪𝑇 )𝑛 × 𝐿2(𝒪𝑇 ), where (𝑍,𝐻) is, together with some Π, the solution
to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑍 − Δ𝑍 + ((𝑎+ 𝑏) · ∇)𝑍 + (𝑍 · ∇)𝑏+ ∇Π = 𝐻𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡𝐻 − Δ𝐻 + (𝑎+ 𝑏) · ∇𝐻 + 𝑍 · ∇𝑐 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑍 = 0 in 𝒪𝑇 ,

𝑍 · 𝜈 = 0, [𝐷(𝑍)𝜈 + 𝐴𝑍]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕𝐻

𝜕𝜈
+𝐵𝐻 = 0 on 𝛬𝑇 ,

𝑍(0, · ) = 0, 𝐻(0, · ) = 0 in 𝒪.

Let us now introduce the solution (𝜙𝜀, 𝜋𝜀, 𝜓𝜀) to the following homogeneous adjoint
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝜙
𝜀 − Δ𝜙𝜀 − (𝑎 · ∇)𝜙𝜀 −𝐷𝜙𝜀𝑏+ ∇𝜋𝜀 = 𝑐∇𝜓𝜀 in 𝒪𝑇 ,

−𝜕𝑡𝜓
𝜀 − Δ𝜓𝜀 − (𝑎+ 𝑏) · ∇𝜓𝜀 = 𝜙𝜀 · 𝑒𝑛 in 𝒪𝑇 ,

∇ · 𝜙𝜀 = 0 in 𝒪𝑇 ,

𝜙𝜀 · 𝜈 = 0, [𝐷(𝜙𝜀)𝜈 + 𝐴𝜙𝜀]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕𝜓𝜀

𝜕𝜈
+𝐵𝜓𝜀 = 0 on 𝛬𝑇 ,

𝜙𝜀(𝑇, · ) = −1
𝜀
𝑧𝜀(𝑇, · ), 𝜓𝜀(𝑇, · ) = −1

𝜀
ℎ𝜀(𝑇, · ) in 𝒪.

The duality between (𝜙𝜀, 𝜓𝜀) and (𝑍,𝐻) give

−1
𝜀

∫︁
𝒪

[𝑧𝜀(𝑇, · ) · 𝑍(𝑇, · ) + ℎ𝜀(𝑇, · )𝐻(𝑇, · )] =
∫︁∫︁

𝒪𝑇

(𝑣 · 𝜙𝜀 + 𝑤𝜓𝜀)𝜒𝜔

which, combined with (3.58), yields∫︁∫︁
𝒪𝑇

(𝑣 · 𝜙𝜀 + 𝑤𝜓𝜀)𝜒𝜔 =
∫︁∫︁

𝒪𝑇

𝜅(𝑡) (𝑣𝜀 · 𝑣 + 𝑤𝜀𝑤)𝜒𝜔

for all (𝑣, 𝑤) ∈ 𝐿2(𝒪𝑇 )𝑛 × 𝐿2(𝒪𝑇 ). Consequently, we have the following identify

𝑣𝜀 = 𝜅−1(𝑡)𝜙𝜀 and 𝑤𝜀 = 𝜅−1(𝑡)𝜓𝜀

The duality between the systems fulfilled by (𝑧𝜀, ℎ𝜀) and (𝜙𝜀, 𝜓𝜀), gives

−1
𝜀

(︁
‖𝑧𝜀(𝑇, · )‖2 +‖𝑤𝜀(𝑇, · )‖2

)︁
=
∫︁

𝒪
𝑧*·𝜙𝜀(0, · )+ℎ*𝜓

𝜀(0, · ) +
∫︁∫︁

𝒪𝑇

𝜅−1(𝑡)
(︁
|𝜙𝜀|2 + |𝜓𝜀|2

)︁
𝜒𝜔.
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Moreover, the Carleman inequality (3.54) applied to (𝜙𝜀, 𝜓𝜀) gives

‖𝜙𝜀(0, · )‖2 + ‖𝜓𝜀(0, · )‖2 ≤ 𝐶(𝒪, 𝜔, 𝑇, 𝑎, 𝑏, 𝑐, 𝐴,𝐵)
∫︁∫︁

𝒪𝑇

𝜅−1(𝑡)(|𝜙𝜀|2 + |𝜓𝜀|2)𝜒𝜔.

Hence, we conclude that

1
𝜀

‖𝑧𝜀(𝑇, · )‖2 + 1
𝜀

‖𝑤𝜀(𝑇, · )‖2 + ‖𝜅1/2𝑣𝜀𝜒𝜔‖2 + ‖𝜅1/2𝑤𝜀𝜒𝜔‖2 ≤ 𝐶
(︁
‖𝑧*‖2 + ‖ℎ*‖2

)︁
∀𝜀 > 0.
(3.59)

Let us now estimate the norms of (𝑣𝜀, 𝑤𝜀) in ℋ. To this purpose, let us introduce the
functions ( ̃︀𝜙𝜀, ̃︀𝜋𝜀, ̃︀𝜓𝜀) := 𝜅(𝑡)−1(𝜙𝜀, 𝜋𝜀, 𝜓𝜀), which satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡 ̃︀𝜙𝜀 − Δ ̃︀𝜙𝜀 − (𝑎 · ∇) ̃︀𝜙𝜀 −𝐷( ̃︀𝜙𝜀)𝑏+ ∇̃︀𝜋𝜀 = 𝑐∇ ̃︀𝜓𝜀 − 𝜕𝑡[𝜅(𝑡)−1]𝜙𝜀 in 𝒪𝑇 ,

−𝜕𝑡
̃︀𝜓𝜀 − Δ ̃︀𝜓𝜀 − (𝑎+ 𝑏) · ∇ ̃︀𝜓𝜀 = ̃︀𝜙𝜀 · 𝑒𝑛 − 𝜕𝑡[𝜅(𝑡)−1]𝜓𝜀 in 𝒪𝑇 ,

∇ · ̃︀𝜙𝜀 = 0 in 𝒪𝑇 ,

̃︀𝜙𝜀 · 𝜈 = 0, [𝐷( ̃︀𝜙𝜀)𝜈 + 𝐴 ̃︀𝜙𝜀]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕 ̃︀𝜓𝜀

𝜕𝜈
+𝐵 ̃︀𝜓𝜀 = 0 on 𝛬𝑇 ,

̃︀𝜙𝜀(𝑇, · ) = 0, ̃︀𝜓𝜀(𝑇, · ) = 0 in 𝒪.

Then, it is not difficult to deduce the following energy estimate

‖ ̃︀𝜙𝜀‖𝐿2(𝐻1) + ‖ ̃︀𝜓𝜀‖𝐿2(𝐻1) ≤ 𝐶𝑒𝐶𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝑐‖2
∞+‖𝐴‖2

∞+‖𝐵‖2
∞)
(︁
‖(𝜅−1)𝑡𝜙

𝜀‖ + ‖(𝜅−1)𝑡𝜓
𝜀‖
)︁
.

Now, applying strong energy estimates for the Stokes equations with Navier slip boundary
conditions, see (GUERRERO, 2006b, Proposition 1.1), and for the heat equation with Robin
boundary conditions, see (FERNÁNDEZ-CARA et al., 2006a, Proposition 2), we deduce that

‖ ̃︀𝜙𝜀
𝑡‖+‖ ̃︀𝜓𝜀

𝑡 ‖+‖ ̃︀𝜙𝜀‖𝐿2(𝐻2)+‖ ̃︀𝜓𝜀‖𝐿2(𝐻2)+‖ ̃︀𝜙𝜀‖𝐶0(𝐻1)+‖ ̃︀𝜓𝜀‖𝐶0(𝐻1)≤𝐶
(︁
‖(𝜅−1)𝑡𝜙

𝜀‖+‖(𝜅−1)𝑡𝜓
𝜀‖
)︁
,

where 𝐶 = 𝐶(𝒪, 𝜔, 𝑇, 𝑎, 𝑏, 𝑐, 𝐴,𝐵). Combining the previous estimate and the Carleman
estimate (3.54), we get

‖𝑣𝜀
𝑡 ‖+‖𝑤𝜀

𝑡 ‖+‖𝑣𝜀‖𝐿2(𝐻2)+‖𝑤𝜀‖𝐿2(𝐻2)+‖𝑣𝜀‖𝐶0(𝐻1)+‖𝑤𝜀‖𝐶0(𝐻1)≤𝐶
(︁
‖𝜅1/2𝑣𝜀𝜒𝜔‖+‖𝜅1/2𝑤𝜀𝜒𝜔‖

)︁
.

Finally, thanks to (3.59), there exists a control pair (𝑣, 𝑤) such that

(𝑣, 𝑤) ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛+1) ∩ 𝐿2(0, 𝑇 ;𝐻2(𝒪)𝑛+1) ∩ 𝐶0(0, 𝑇 ;𝐻1(𝒪)𝑛+1),

‖𝑣‖𝐻1(𝐿2)+‖𝑤‖𝐻1(𝐿2)+‖𝑣‖𝐿2(𝐻2)+‖𝑤‖𝐿2(𝐻2)+‖𝑣‖𝐶0(𝐻1)+‖𝑤‖𝐶0(𝐻1) ≤ 𝐶
(︁
‖𝑧*‖2

𝐻 + ‖ℎ*‖2
)︁
.

and the associated solution to (3.47), denoted by (𝑧, 𝑞, ℎ), satisfies (3.56) and, moreover,

‖𝜅1/2𝑣𝜒𝜔‖2 + ‖𝜅1/2𝑤𝜒𝜔‖2 ≤ 𝐶(‖𝑧*‖2 + ‖ℎ*‖2).

This concludes the proof.
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3.4.3 Local exact controllability to the trajectories of the Boussinesq system

This section is devoted to prove the local exact controllability to the trajectories of (3.46).
Let (𝑢, 𝑝, 𝜃) an uncontrolled solution of (3.46), that is, a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢− Δ𝑢+ (𝑢 · ∇)𝑢+ ∇𝑝 = 𝜃𝑒𝑛 in 𝒪𝑇 ,

𝜕𝑡𝜃 − Δ𝜃 + 𝑢 · ∇𝜃 = 0 in 𝒪𝑇 ,

∇ · 𝑢 = 0 in 𝒪𝑇 ,

𝑢 · 𝜈 = 0, 𝑁(𝑢) + [𝑓(𝑢)]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(𝜃) + 𝑔(𝜃) = 0 on 𝛬𝑇 ,

𝑢(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪.

We will assume the following regularity for the trajectories:

𝑢 ∈ 𝑋 := 𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2+1/2(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛) ∩𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1+1/2,𝜗1+1(𝒪)𝑛),

𝑢* ∈ 𝐻3(𝒪)𝑛 ∩ 𝐿2
𝑑𝑖𝑣(𝒪)𝑛, 𝑁(𝑢*) + [𝑓(𝑢*)]𝑡𝑎𝑛 = 0 on 𝜕𝒪,

𝜃 ∈ 𝑌 := 𝐻(3−ℓ)/2(0, 𝑇 ;𝐻𝜗2+1/2(𝒪)) ∩𝐻1−ℓ(0, 𝑇 ;𝑊 𝜗1+1/2,𝜗1+1(𝒪)),

𝜃* ∈ 𝐻3(𝒪), 𝑅(𝜃*) + 𝑔(𝜃*) = 0 on 𝜕𝒪.
(3.60)

We have the following result:

Proposition 3.18. Let 𝑓 ∈ 𝐶3(R𝑛;R𝑛), 𝑔 ∈ 𝐶3(R) , 𝑇 > 0, (𝑢*, 𝜃*) satisfying (3.60).
Then, there exists 𝛿 > 0 such that, for every (𝑢*, 𝜃*) ∈ [𝐻3(𝒪)𝑛 ∩ 𝐿2

𝑑𝑖𝑣(𝒪)𝑛] × 𝐻3(𝒪)
satisfying the compatibility condition

𝑁(𝑢*) + [𝑓(𝑢*)]𝑡𝑎𝑛 = 0, 𝑅(𝜃*) + 𝑔(𝜃*) = 0 on 𝜕𝒪 (3.61)

and such that ‖𝑢* − 𝑢*‖𝐻3 ≤ 𝛿 and ‖𝜃* − 𝜃*‖𝐻3 ≤ 𝛿, there exist controls (𝑣, 𝑤) ∈ ℋ and
associated solutions (𝑢, 𝑝, 𝜃) to (3.46) satisfying

𝑢(𝑇, · ) = 𝑢(𝑇, · ) and 𝜃(𝑇, · ) = 𝜃(𝑇, · ) in 𝒪.

Proof. Let us denote 𝑧 = 𝑢− 𝑢 and ℎ = 𝜃− 𝜃. Making the difference between the system
fulfilled by 𝑢 and system (3.46), we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑧 − Δ𝑧 + (𝑧 · ∇)𝑧 + (𝑧 · ∇)𝑢+ (𝑢 · ∇)𝑧 + ∇𝑞 = ℎ𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡ℎ− Δℎ+ 𝑧 · ∇ℎ+ 𝑢 · ∇ℎ+ 𝑧 · ∇𝜃 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑧 = 0 in 𝒪𝑇 ,

𝑧 · 𝜈 = 0, 𝑁(𝑧) + [𝐹 (𝑢, 𝑧)𝑧]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(ℎ) +𝐺(𝜃, ℎ)ℎ = 0 on 𝛬𝑇 ,

𝑧(0, · ) = 𝑢* − 𝑢* = 𝑧*, ℎ(0, · ) = 𝜃* − 𝜃* = ℎ* in 𝒪,
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where
𝐹𝑖(𝑢, 𝑧) =

∫︁ 1

0
∇𝑓𝑖(𝑢+ 𝑠𝑧) 𝑑𝑠, 𝐹 (𝑢, 𝑧) = (𝐹1(𝑢, 𝑧), . . . , 𝐹𝑛(𝑢, 𝑧))

and
𝐺(𝜃, ℎ) =

∫︁ 1

0
𝑔′(𝜃 + 𝑠ℎ) 𝑑𝑠.

Now, our goal is to find controls (𝑣, 𝑤) such that 𝑧(𝑇, · ) ≡ 0 and ℎ(𝑇, · ) ≡ 0. To this
purpose, we will use Proposition 3.17 and a fixed-point argument.

First, we introduce the following closed linear manifolds

𝑋0 = {Φ ∈ 𝑋 : Φ(0, · ) = 𝑧* in 𝒪} and 𝑌0 = {Ψ ∈ 𝑌 : Ψ(0, · ) = ℎ* in 𝒪}.

Then, for each (Φ,Ψ) ∈ 𝑋0 × 𝑌0, we can apply Proposition 3.17 to guarantee the
existence of controls (𝑣(Φ,Ψ), 𝑤(Φ,Ψ)) ∈ ℋ such that the associated solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑧 − Δ𝑧 + (Φ · ∇)𝑧 + (𝑧 · ∇)𝑢+ (𝑢 · ∇)𝑧 + ∇𝑞 = ℎ𝑒𝑛 + 𝑣𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡ℎ− Δℎ+ Φ · ∇ℎ+ 𝑢 · ∇ℎ+ 𝑧 · ∇𝜃 = 𝑤𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑧 = 0 in 𝒪𝑇 ,

𝑧 · 𝜈 = 0, 𝑁(𝑧) + [𝐹 (𝑢,Φ)𝑧]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(ℎ) +𝐺(𝜃,Ψ)ℎ = 0 on 𝛬𝑇 ,

𝑧(0, · ) = 𝑢* − 𝑢* = 𝑧*, ℎ(0, · ) = 𝜃* − 𝜃* = ℎ* in 𝒪,

(3.62)

verifies 𝑧(Φ,Ψ)(𝑇, · ) = 0, ℎ(Φ,Ψ)(𝑇, · ) = 0. Since 𝐹 ∈ 𝐶2(R𝑛 ×R𝑛;R𝑛×𝑛) and 𝐺 ∈ 𝐶2(R2;R)
and 𝑢 and 𝜃 verify (3.60), we have 𝐹𝑖(𝑢,Φ) ∈ 𝑋 for all Φ ∈ 𝑋0, 𝑖 = 1, . . . , 𝑛, and
𝐺(𝜃,Ψ) ∈ 𝑌 for all Ψ ∈ 𝑌0. Moreover, since 𝑓 is an irrotational field, we have that
𝐹 (𝑢,Φ) is symmetric.

Furthermore, these controls can be chosen satisfying

‖𝑣(Φ,Ψ)‖𝐻1(𝐿2) + ‖𝑤(Φ,Ψ)‖𝐻1(𝐿2) + ‖𝑣(Φ,Ψ)‖𝐿∞(𝐻1) + ‖𝑤(Φ,Ψ)‖𝐿∞(𝐻1) ≤ 𝐶
(︁
‖𝑧*‖2 + ‖ℎ*‖2

)︁
,

(3.63)
for some positive constant 𝐶 = 𝐶(𝒪, 𝜔, 𝑇, 𝑢, 𝜃, ‖Φ‖𝑋 , ‖𝐴‖𝑃 , ‖𝐵‖𝑄, ‖𝐹 (𝑢,Φ)‖𝑋 , ‖𝐺(𝜃,Ψ)‖𝑌 ).

Next, since we can prove that the terms (Φ · ∇)𝑧(Φ,Ψ), (𝑧(Φ,Ψ) · ∇)𝑢, (𝑢 · ∇)𝑧(Φ,Ψ),
ℎ(Φ,Ψ)𝑒𝑛 and 𝑣(Φ,Ψ)𝜒𝜔 belong to 𝐿∞(0, 𝑇 ;𝐻1(𝒪)𝑛) ∩ 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛). Thanks to (3.60)
and (3.61), we see that 𝑧* ∈ 𝐻3(𝒪)𝑛 ∩ 𝐿2

𝑑𝑖𝑣(𝒪)𝑛 satisfies the compatibility condition
𝑁(𝑧*)+[𝐹 (𝑢,Φ)(0, ·)𝑧*]𝑡𝑎𝑛 = 0.Hence, we can apply (GUERRERO, 2006b, Proposition 1.2)
to deduce that

𝑧(Φ,Ψ) ∈ ̃︁𝑋 := 𝐻2(0, 𝑇 ;𝐿2
𝑑𝑖𝑣(𝒪)) ∩𝐻1(0, 𝑇 ;𝐻2(𝒪)𝑛 ∩ 𝐿2

𝑑𝑖𝑣(𝒪)).

Likewise, one can prove that the terms Φ ·∇ℎ(Φ,Ψ), 𝑢 ·∇ℎ(Φ,Ψ), 𝑧(Φ,Ψ) ·∇𝜃 and 𝑤(Φ,Ψ)𝜒𝜔

belong to 𝐿∞(0, 𝑇 ;𝐻1(𝒪)) ∩𝐻1(0, 𝑇 ;𝐿2(𝒪)) and, thanks to equations (3.60) and (3.61),
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ℎ* ∈ 𝐻3(𝒪) satisfies the compatibility condition 𝑅(ℎ*) + 𝐺(𝜃,Ψ)(0, ·)ℎ* = 0. Therefore,
we have

ℎ(Φ,Ψ) ∈ ̃︀𝑌 := 𝐻2(0, 𝑇 ;𝐿2(𝒪)) ∩𝐻1(0, 𝑇 ;𝐻2(𝒪)).

Moreover, there exists ̃︀𝐶 = ̃︀𝐶(𝒪, 𝜔, 𝑇, 𝑢, 𝜃, ‖Φ‖𝑋 , ‖𝐴‖𝑃 , ‖𝐵‖𝑄, ‖𝐹 (𝑢,Φ)‖𝑋 , ‖𝐺(𝜃,Ψ)‖𝑌 )
a positive constant such that

‖(𝑧(Φ,Ψ), ℎ(Φ,Ψ))‖ ̃︀𝑋×̃︀𝑌 ≤ ̃︀𝐶 (‖𝑧*‖𝐻3∩𝑊 + ‖ℎ*‖𝐻3) . (3.64)

From well-known interpolation arguments, one has ̃︁𝑋 ⊂⊂ 𝑋 and ̃︀𝑌 ⊂⊂ 𝑌 , where the
notation ⊂⊂ stands for compact embedding.

For each (Φ,Ψ) ∈ 𝑋 × 𝑌 , let the set of admissible controls Λ(Φ,Ψ) be, by definition,
the family of controls (𝑣(Φ,Ψ), 𝑤(Φ,Ψ)) ∈ ℋ that drive the solution (𝑧(Φ,Ψ), ℎ(Φ,Ψ)) to zero at
time 𝑇 and such that (3.63) holds. On the other hand, let us set

ℰ(Φ,Ψ) :=

⎧⎪⎨⎪⎩(𝑧(Φ,Ψ), ℎ(Φ,Ψ)) ∈̃︁𝑋 × ̃︀𝑌 :
(𝑧(Φ,Ψ), ℎ(Φ,Ψ)) solves (3.62) with

(𝑣(Φ,Ψ), 𝑤(Φ,Ψ)) ∈Λ(Φ,Ψ)

⎫⎪⎬⎪⎭ .
Notice that ℰ(Φ,Ψ) ⊂ ̃︁𝑋 × ̃︀𝑌 ⊂⊂ 𝑋 × 𝑌 .

In what follows, we will prove that the set-valued mapping ℰ : 𝑋0 × 𝑌0 ↦→ 2𝑋0×𝑌0 pos-
sesses at least one fixed point. We will use the additional hypothesis ‖(𝑧*, ℎ*)‖𝐻3×𝐻3 ≤ 𝛿

for some sufficiently small 𝛿 depending on 𝒪, 𝜔 and 𝑇 and we will apply Kakutani’s Theo-
rem. More precisely, we will check that the mapping ℰ satisfies the following assumptions:

i) ℰ(Φ,Ψ) is a non-empty closed and convex set of 𝑋0 × 𝑌0 for all (Φ,Ψ) ∈ 𝑋0 × 𝑌0;

ii) There exists a convex compact set 𝐾 ⊂ 𝑋0 × 𝑌0 such that ℰ((Φ,Ψ)) ⊂ 𝐾 for all
(Φ,Ψ) ∈ 𝐾;

iii) ℰ(Φ,Ψ) is upper-hemicontinuous in 𝑋0 × 𝑌0, i.e. for any 𝛶 ∈ 𝑋 ′
0 × 𝑌 ′

0 the mapping

(Φ,Ψ) ↦→ sup
(Φ,Ψ)∈ℰ(Φ,Ψ)

⟨
𝛶, (Φ,Ψ)

⟩
𝑋′

0×𝑌 ′
0 ,𝑋0×𝑌0

is upper semicontinuous.

Then, in view of Kakutani’s Theorem, there exists (𝑧, ℎ) ∈ 𝐾 such that (𝑧, ℎ) ∈ ℰ(𝑧, ℎ).

Proof of assumption i) of Kakutani’s Theorem. This is easy. Indeed, for every
(Φ,Ψ) ∈ 𝑋0 × 𝑌0, ℰ(Φ,Ψ) is a non-empty set because of the null controllability property
of (3.62). On the other hand, since (3.62) is linear, we readily have that ℰ(Φ,Ψ) is closed
and convex.
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Proof of assumption ii) of Kakutani’s Theorem. Let 𝑅 > 0 be given and let us
introduce

𝐶(𝑅) := sup
‖(Φ,Ψ)‖𝑋×𝑌 ≤𝑅

̃︀𝐶(𝒪, 𝜔, 𝑇, 𝑢, 𝜃, ‖Φ‖𝑋 , ‖𝐴‖𝑃 , ‖𝐵‖𝑄, ‖𝐹 (𝑢,Φ)‖𝑋 , ‖𝐺(𝜃,Ψ)‖𝑌 ),

where ̃︀𝐶 is the constant arising in (3.64). If we choose 𝛿 ≤ 𝑅/𝐶(𝑅) and from (3.64) and
the fact that ̃︁𝑋 × ̃︀𝑌 ⊂⊂ 𝑋 × 𝑌 , we see that ℰ maps the closed convex set

̃︁𝐾 = {(Φ,Ψ) ∈ 𝑋0 × 𝑌0; ‖(Φ,Ψ)‖𝑋×𝑌 ≤ 𝑅}

into a compact set 𝐾 ⊂ ̃︁𝐾.

Proof of assumption iii) of Kakutani’s Theorem. Let us prove that ℰ is upper-
hemicontinuous. In fact, let {(Φ𝑘,Ψ𝑘)} be such that

(Φ𝑘,Ψ𝑘) → (Φ,Ψ) in 𝑋0 × 𝑌0.

From the compactness of ℰ(Φ𝑘,Ψ𝑘) into 𝑋 × 𝑌 , we deduce that there exist (𝑧𝑘, ℎ𝑘) ∈
ℰ(Φ𝑘,Ψ𝑘) for 𝑘 = 1, 2, · · · such that

sup
(Φ,Ψ)∈ℰ(Φ𝑘,Ψ𝑘)

⟨
𝛶, (Φ,Ψ)

⟩
𝑋′×𝑌 ′,𝑋×𝑌

= ⟨𝛶, (𝑧𝑘, ℎ𝑘)⟩𝑋′×𝑌 ′,𝑋×𝑌 ∀ 𝑘 ≥ 1.

We can choose a subsequence {(Φ𝑘′ ,Ψ𝑘′)} such that

lim sup
𝑘→∞

sup
(Φ,Ψ)∈ℰ(Φ𝑘,Ψ𝑘)

⟨
𝛶, (Φ,Ψ)

⟩
𝑋′×𝑌 ′,𝑋×𝑌

= lim
𝑘′→∞

⟨𝛶, (𝑧𝑘′ , ℎ𝑘′)⟩𝑋′×𝑌 ′,𝑋×𝑌 .

Denote by (𝑣𝑘′ , 𝑤𝑘′) ∈ Λ(Φ𝑘′ ,Ψ𝑘′) controls associated to (𝑧𝑘′ , ℎ𝑘′) solution of following
systems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑧𝑘′ − Δ𝑧𝑘′ + (Φ𝑘′ · ∇)𝑧𝑘′ + (𝑧𝑘′ · ∇)𝑢+ (𝑢 · ∇)𝑧𝑘′ + ∇𝑞𝑘′ = ℎ𝑘′𝑒𝑛 + 𝑣𝑘′𝜒𝜔 in 𝒪𝑇 ,

𝜕𝑡ℎ𝑘′ − Δℎ𝑘′ + Φ𝑘′ · ∇ℎ𝑘′ + 𝑢 · ∇ℎ𝑘′ + 𝑧𝑘′ · ∇𝜃 = 𝑤𝑘′𝜒𝜔 in 𝒪𝑇 ,

∇ · 𝑧𝑘′ = 0 in 𝒪𝑇 ,

𝑧𝑘′ · 𝜈 = 0, 𝑁(𝑧𝑘′) + [𝐹 (𝑢,Φ𝑘′)𝑧𝑘′ ]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝑅(ℎ𝑘′) +𝐺(𝜃,Ψ𝑘′)ℎ𝑘′ = 0 on 𝛬𝑇 ,

𝑧𝑘′(0, · ) = 𝑧*, ℎ𝑘′(0, · ) = ℎ* in 𝒪.

Then, using the fact the 𝐹 (𝑢,Φ𝑘′) → 𝐹 (𝑢,Φ) in 𝑋 and 𝐺(𝜃,Ψ𝑘′) → 𝐺(𝜃,Φ) in 𝑌 , we find
that the constants in (3.63) and (3.64) can be chosen independent of 𝑘′. Therefore, the
compact embedding ̃︁𝑋 × ̃︀𝑌 ⊂⊂ 𝑋 × 𝑌 , together with the estimates (3.63) and (3.64),
guarantees that, at least for a subsequence, we have

(𝑧𝑘′ , ℎ𝑘′) → (𝑧, ℎ) in 𝑋 × 𝑌,
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𝑣𝑘′ → 𝑣 weakly in 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛) ∩ 𝐿∞(0, 𝑇 ;𝐻1(𝒪)𝑛),

𝑤𝑘′ → 𝑤 weakly in 𝐻1(0, 𝑇 ;𝐿2(𝒪)) ∩ 𝐿∞(0, 𝑇 ;𝐻1(𝒪)).

It is not difficult to conclude that (𝑣, 𝑤) ∈ Λ(Φ,Ψ) and that (𝑧, ℎ) ∈ ℰ(Φ,Ψ). Therefore,
one has:

lim sup𝑘→∞ sup(Φ,Ψ)∈ℰ(Φ𝑘,Ψ𝑘)

⟨
𝛶, (Φ,Ψ)

⟩
𝑋′×𝑌 ′,𝑋×𝑌

= ⟨𝛶, (𝑧, ℎ)⟩𝑋′×𝑌 ′,𝑋×𝑌

≤ sup(𝑧,ℎ̄)∈ℰ(Φ,Ψ)

⟨
𝛶, (𝑧, ℎ̄)

⟩
𝑋′×𝑌 ′,𝑋×𝑌

.

This proves the upper-hemicontinuity of ℰ .

Thus, we have proved that ℰ has a fixed-point (𝑧, ℎ) and this achieves the proof of
Proposition 3.18.

3.5 GLOBAL CONTROLLABILITY TO THE TRAJECTORIES

This section is devoted to explain how the previous arguments can be chained in order to
prove our main result, that is, Theorem 3.1.

First, we reduce the controllability to weak trajectories to controllability smooth tra-
jectories as follows.

Despite that (𝑢, 𝑝, 𝜃) is only a weak solution in [0, 𝑇 ], there exists an interval time
[𝑇1, 𝑇2] ⊂ (0, 𝑇 ) such that (𝑢, 𝑝, 𝜃) is smooth in [𝑇1, 𝑇2]. Then, we can start our control
strategy by doing nothing in [0, 𝑇1], that is, taking 𝑣 = 𝑤 = 𝜎 = 0 in (3.7), and wait
for the reference trajectory to be regularized. Thus, the weak trajectory will move from
(𝑢*, 𝜃*) to some (𝑢, 𝜃)(𝑇1, · ), that will be considered the new initial data. Hence, without
loss of generality, we can work with a smooth reference trajectory.

We split the control strategy into four steps.

Step 1: Regularization of the data. We begin by extending Ω to a new domain 𝒪,
as explained in Section 3.2.1. We also use Proposition 3.5 to guarantee the existence of
(𝑢*, 𝜃*, 𝜎*) ∈ 𝐿2(𝒪)𝑛 × 𝐿2(𝒪) × 𝐶∞

𝑐 (𝜔0) satisfying (3.5). We set 𝜎(𝑡, 𝑥) := 𝛽(𝑡/𝑇 )𝜎*(𝑥)
with 𝛽 a smooth decreasing function such that 𝛽 ≡ 1 near 0 and 𝛽 ≡ 0 near 1/8. The
function 𝜎 must satisfy the compatibility condition ∇ · 𝑢* = 𝜎(0, · ). Then, we let system
(3.7) evolve with 𝑣 = 𝑤 = 0 in the time interval (0, 𝑇/8) in order to reach some data
(𝑢, 𝜃)(𝑇/8, · ) ∈ 𝐿2

𝑑𝑖𝑣(𝒪)𝑛 ×𝐿2(𝒪). Next, by using the smoothing effect of the uncontrolled
Boussinesq system starting from divergence free data (see Lemma 3.8), we deduce that
there exists 𝑇1 ∈ (0, 𝑇/4) such that (𝑢, 𝜃)(𝑇1, · ) ∈ 𝐻3(𝒪)𝑛 ∩ 𝐿2

𝑑𝑖𝑣(𝒪)𝑛 × 𝐻3(𝒪). Accord-
ingly, we can apply Lemma 3.12.
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Step 2: Global approximate controllability result in 𝐿2(𝒪). Let us set 𝑇2 := 𝑇/2.
Starting from the new initial data (𝑢, 𝜃)(𝑇1, · ), we use the global approximate controlla-
bility result stated in Proposition 3.9 in a time interval of size 𝑇2 − 𝑇1 ≥ 𝑇/4. Thus, for
any 𝛿 > 0, we can build a trajectory starting from (𝑢, 𝜃)(𝑇1, · ) and such that

‖(𝑢, 𝜃)(𝑇2, · ) − (𝑢, 𝜃)(𝑇2, · )‖ ≤ 𝛿.

In particular, we can find 𝛿 small enough such that

Ψ𝑇/4(𝛿) ≤ 𝛿𝑇/4,

where 𝛿𝑇/4 is the radius of local controllability result given in Proposition 3.18 , for 𝑓 = 0
and 𝑔 = 0, and the function Ψ𝑇/4 appears in the regularity result for the free Boussinesq
system; see Lemma 3.8.

Step 3: Regularizing argument. Now, we use again Lemma 3.8 to obtain the existence
of a time 𝑇3 ∈ (𝑇/2, 3𝑇/4) such that

‖(𝑢, 𝜃)(𝑇3, · ) − (𝑢, 𝜃)(𝑇3, · )‖𝐻3 ≤ Ψ𝑇/4(𝛿) ≤ 𝛿𝑇/4.

Step 4: Local controllability in 𝐻3(𝒪). Finally, we use the local controllability result
in [𝑇3, 𝑇3 + 𝑇/4], and get

(𝑢, 𝜃)(𝑇3 + 𝑇/4, · ) = (𝑢, 𝜃)(𝑇3 + 𝑇/4, · ).

Then, extending the control by zero for 𝑡 ∈ [𝑇3 + 𝑇/4], we obtain (3.4) and the proof is
complete.

3.6 COMMENTS AND OPEN QUESTIONS

3.6.1 Controlling with less controls

A natural extension of our main result would be the global exact controllability with a
reduced number of controls acting on a small part of the boundary. Unfortunately, in this
situation, one cannot use the extension domain technique.

However, in the spirit of (FERNÁNDEZ-CARA et al., 2006; GUERRERO; MONTOYA, 2018),
one could try to establish a small-time global null controllability for the internal control
system (3.7) in 2-D by acting only on the temperature. Roughly speaking, the intuition
behind a result of this kind is the following: the temperature 𝜃 is directly controlled by 𝑤,
then 𝜃 acts as an indirect control through the coupling term 𝜃𝑒2 to control the component
𝑢2, then 𝑢2 acts also as an indirect control through the incompressibility condition to
control the component 𝑢1. Results of this kind will be analyzed in a forthcoming paper.
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One could also try get the local control result acting only on the motion equation, that
is, with 𝑤 = 0 in (3.46). However, at least in the case of Neumann boundary conditions
for 𝜃, that is, with 𝑚 ≡ 0 and 𝑔 ≡ 0, the system does not seem to be controllable. To
justify this assertion, note that, by integrating in 𝒪 the equation satisfied by 𝜃, integrating
by parts and using the incompressibility and impermeability conditions, we find that the
total mass of 𝜃 is conserved: ∫︁

𝒪
𝜃(𝑇, · ) =

∫︁
𝒪
𝜃*.

Therefore, we cannot expect general null controllability.

3.6.2 Other boundary conditions

Another natural question is if Theorem 3.1 holds with 𝑢 and 𝜃 subject to other boundary
conditions.

For Dirichlet boundary conditions on the temperature, this is an interesting open
problem. As noticed for the slip case in Remark 3.13, the main difficulty is to obtain good
estimates for the remainder terms.

When we consider Dirichlet boundary conditions for the velocity, we face a challenging
open problem. This is related to a well know conjecture by Jacques-Louis Lions. As pointed
in (CORON; MARBACH; SUEUR, 2020), the boundary layer has a behavior which is not good
as in the case of Navier boundary conditions. This implies many difficulties to estimate
the boundary layer profiles and the remainder terms.

3.6.3 Controlling for strong solutions

Recently, in (LIAO; SUEUR; ZHANG, 2020), the small-time global null controllability for
strong solutions of Navier-Stokes was obtained. An interesting question would be to extend
this result to strong solutions of the Boussinesq system (then improving the Theorem 3.1).

3.6.4 Fluid-structure

Some controllability results for fluid-structure problem have been obtained in the past
years. For instance, local null controllability of a two-dimensional viscous fluid-structure
was obtained in (BOULAKIA; OSSES, 2008); on the other hand, boundary controllability
for the motion of a rigid body immersed in a perfect two-dimensional fluid was proved in
(GLASS; KOLUMBÁN; SUEUR, 2020). It would be interesting to analyze the global control-
lability for fluid-structure problem with Navier-slip boundary conditions.
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APPENDIX A – EXISTENCE AND UNIQUENESS OF A SOLUTION TO
STOKES EQUATIONS WITH MEMORY

Let us denote by 𝐴 the usual Stokes operator, with domain 𝐷(𝐴) := 𝐻2(Ω)3 ∩ 𝑉 . Recall
that 𝐷(𝐴) →˓ 𝑉 →˓ 𝐻, with dense and compact embeddings. Consequently, after identi-
fication of 𝐻 and its dual space, we also have 𝐻 →˓ 𝑉 ′ →˓ 𝐷(𝐴)′, where the embeddings
are again dense and compact.

Let us prove that, for each 𝑔 ∈ 𝐿2(0, 𝑇 ;𝐻), there exists exactly one strong solution
to (2.3). This can be seen (for example) as follows.

Let us introduce the change of variables

𝜙 =
∫︁ 𝑇

𝑡
𝑒−𝑎𝑠𝜓(· , 𝑠) 𝑑𝑠, 𝜂 = 𝑒−𝑎𝑡𝜋(· , 𝑡). (A.1)

Then, at least formally, we see that (𝜓, 𝜋) solves (2.3) if and only if (𝜙, 𝜂) solves the
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝑡𝑡 + 𝑎𝜙𝑡 + 𝑏Δ𝜙𝑡 − Δ𝜙+ ∇𝜂 = 𝑔 in 𝑄,

∇ · 𝜙 = 0 in 𝑄,

𝜙 = 0 on Σ,

𝜙(· , 𝑇 ) = 0, 𝜙𝑡(· , 𝑇 ) = 0 in Ω,

(A.2)

where 𝑔(· , 𝑡) := 𝑒−𝑎𝑡𝑔(· , 𝑡).
The existence and uniqueness of a solution to (A.2) can be deduced in a completely

standard way, for instance via the Galerkin method. Thus, we first introduce an or-
thogonal basis in 𝑉 (for instance, the basis formed by the eigenfunctions of the Stokes
operator), we solve the associated finite dimensional problems, we deduce uniform esti-
mates for the corresponding solutions in 𝐿∞(0, 𝑇 ;𝐷(𝐴)), for their first-order time deriva-
tives in 𝐿∞(0, 𝑇 ;𝑉 ) and 𝐿2(0, 𝑇 ;𝐷(𝐴)) and also for their second-order time derivatives
in 𝐿2(0, 𝑇 ;𝐻), we extract convergent subsequences and we finally take limits and check
that (A.2) is satisfied for some 𝜂 ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)). We also get estimates in these spaces
that prove linear and continuous dependence of 𝑔. The process is described with detail for
general second-order in time systems for instance in (EVANS, 1998, Chapter 7, pp. 380–
394); see also (TEMAM, 1977, Chapter 3, pp. 255–265).

With the help of (A.1), we deduce that there exists exactly one solution to (2.3), with

𝜓 ∈ 𝐿∞(0, 𝑇 ;𝑉 ) ∩ 𝐿2(0, 𝑇 ;𝐷(𝐴)), 𝜓𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻), 𝜋 ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω))

and, consequently,

𝜓 ∈ 𝐶0([0, 𝑇 ];𝑉 ) and
(︂

−𝜋𝑛+ 𝜕𝜓

𝜕𝜈
+𝑏

∫︁ 𝑇

·
𝑒−𝑎(𝑠−𝑡)𝜕𝜓

𝜕𝜈
(· , 𝑠) 𝑑𝑠

)︂⃒⃒⃒⃒
Σ

∈ 𝐿2(0, 𝑇 ;𝐻1/2(𝜕Ω)3),
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with appropriate estimates.
Now, let 𝑢0 ∈ 𝐻 and 𝑣 ∈ 𝐿2(𝛾 × (0, 𝑇 ))3 be given. For any 𝑔 ∈ 𝐿2(0, 𝑇 ;𝐻), the

right hand side of (2.2) (where (𝜓, 𝜋) solves the corresponding system (2.3)) makes sense
and is linearly and continuously dependent of 𝑔. Consequently, there exists a unique
𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻) satisfying (2.2) for all 𝑔 ∈ 𝐿2(0, 𝑇 ;𝐻) (by definition, this is the solution
by trasposition to (2.1)).

Note that 𝑢 solves, together with some 𝑝, (2.1)1 in the distributional sense in 𝑄 (this
is immediate if we first compute the action of the left hand side of (2.1)1 on a test
function in 𝑄 with zero divergence and, then, we apply De Rham’s Lemma). Therefore,
𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝐷(𝐴)′), whence we deduce that 𝑢 ∈ 𝐶0([0, 𝑇 ];𝑉 ′).

Finally, note that the solution by transposition to (2.1) can actually be defined
for more general 𝑢0 and 𝑣: in view of the previous argument, it suffices 𝑢0 ∈ 𝑉 ′

and 𝑣 ∈ 𝐿2(0, 𝑇 ;𝐻−1/2(𝛾)3).
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APPENDIX B – THE EXISTENCE OF SOLUTION TO BOUSSINESQ
EQUATIONS

In this section, we give a sketch of the proof of Proposition 3.7.
First, since the divergence source term is smooth, we start by solving a Stokes problem

in order to lift the non homogeneous divergence condition. To do that, we define (𝑢𝜎, 𝑝𝜎)
as the solution to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝜎 − Δ𝑢𝜎 + ∇𝑝𝜎 = 0 in 𝒪𝑇 ,

∇ · 𝑢𝜎 = 𝜎 in 𝒪𝑇 ,

𝑢𝜎 · 𝜈 = 0, 𝑁(𝑢𝜎) = 0 on 𝛬𝑇 ,

𝑢𝜎(0, · ) = 0 in 𝒪.

Smoothness (in time and space) of 𝜎 immediately gives smoothness on 𝑢𝜎. These are
standard maximal regularity estimates for the Stokes problem in the case of the Dirichlet
boundary condition. For Navier slip-with-friction boundary conditions, we refer to (SHI-

MADA, 2007), (SHIBATA; SHIMADA, 2007) and (SHIBATA; SHIMADA et al., 2007). Then, by
using Sobolev embeddings, we get that there exists a positive constant 𝐶 > 0 depending
on 𝜎 such that

‖𝑢𝜎‖𝐿∞(0,𝑇 ;𝑊 1,∞(𝒪)) ≤ 𝐶. (B.1)

Decomposing 𝑢 = 𝑢𝜎+𝑢ℎ and 𝑝 = 𝑝𝜎+𝑝ℎ, we obtain the following system for (𝑢ℎ, 𝑝ℎ, 𝜃):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢ℎ−Δ𝑢ℎ + (𝑢𝜎 · ∇)𝑢ℎ+ (𝑢ℎ · ∇)𝑢𝜎 + (𝑢ℎ · ∇)𝑢ℎ+∇𝑝ℎ =𝜃𝑒𝑛 + 𝑣 − (𝑢𝜎 · ∇)𝑢𝜎 in 𝒪𝑇 ,

𝜕𝑡𝜃 − Δ𝜃 + (𝑢ℎ + 𝑢𝜎) · ∇𝜃 = 𝑤 in 𝒪𝑇 ,

∇ · 𝑢ℎ = 0 in 𝒪𝑇 ,

𝑢ℎ · 𝜈 = 0, 𝑁(𝑢ℎ) = 0 on 𝛬𝑇 ,

𝑅(𝜃) = 0 on 𝛬𝑇 ,

𝑢ℎ(0, · ) = 𝑢*, 𝜃(0, · ) = 𝜃* in 𝒪.
(B.2)

So, it is sufficient to obtain the existence result for the system (B.2). We define weak
solutions to (B.2) as follows.

Recall that

𝑊𝑇 (𝒪) = [𝐶0
𝑤([0, 𝑇 ];𝐿2

𝑑𝑖𝑣(𝒪)𝑛)∩𝐿2(0, 𝑇 ;𝐻1(𝒪)𝑛)]×[𝐶0
𝑤([0, 𝑇 ];𝐿2(𝒪))∩𝐿2(0, 𝑇 ;𝐻1(𝒪))].
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We say that (𝑢ℎ, 𝜃) ∈ 𝑊𝑇 (𝒪) is a weak solution to (B.2) if it satisfies the following:

−
∫︁∫︁

𝒪𝑇

𝑢ℎ𝜕𝑡𝜑+
∫︁∫︁

𝒪𝑇

((𝑢𝜎 · ∇)𝑢ℎ + (𝑢ℎ · ∇)𝑢𝜎 + (𝑢ℎ · ∇)𝑢ℎ)𝜑+ 2
∫︁∫︁

𝒪𝑇

𝐷(𝑢ℎ) ·𝐷(𝜑)

=
∫︁

𝒪
𝑢* · 𝜑(0, 𝑥) − 2

∫︁∫︁
𝜕𝒪𝑇

(𝑀𝑢ℎ) · 𝜑+
∫︁∫︁

𝒪𝑇

(𝑣 − (𝑢𝜎 · ∇)𝑢𝜎)𝜑+
∫︁∫︁

𝒪𝑇

𝜃𝑒𝑛𝜑,

and

−
∫︁∫︁

𝒪𝑇

𝜃𝜕𝑡𝜓 +
∫︁∫︁

𝒪𝑇

((𝑢ℎ · ∇𝜃) + (𝑢𝜎 · ∇𝜃))𝜓 +
∫︁∫︁

𝒪𝑇

∇𝜃 · ∇𝜓

=
∫︁

𝒪
𝜃*𝜓(0, 𝑥) −

∫︁∫︁
𝜕𝒪𝑇

𝑚𝜃𝜓 +
∫︁∫︁

𝒪𝑇

𝑤𝜓,

for any which is divergence free and tangent to 𝜕𝒪 function 𝜑 ∈ 𝐶∞
𝑐 ([0, 𝑇 )×𝒪)𝑛 and any

𝜓 ∈ 𝐶∞
𝑐 ([0, 𝑇 ) × 𝒪). We moreover require that they satisfy the so-called strong energy

inequality for almost every 𝑡 ∈ (0, 𝑇 )

‖𝑢ℎ(𝑡, · )‖2 + ‖𝜃(𝑡, · )‖2 + 4
∫︁∫︁

𝒪𝑡

|𝐷(𝑢ℎ)|2 + 2
∫︁∫︁

𝒪𝑡

|∇𝜃|2 ≤ ‖𝑢ℎ(0, · )‖2 + ‖𝜃(0, · )‖2

−4
∫︁∫︁

𝜕𝒪𝑡

(𝑀𝑢ℎ) · 𝑢ℎ − 2
∫︁∫︁

𝜕𝒪𝑡

𝑚|𝜃|2

+2
∫︁∫︁

𝒪𝑡

[︁
𝜎|𝑢ℎ|2 − (𝑢ℎ · ∇)𝑢𝜎 · 𝑢ℎ + (𝑣 − (𝑢𝜎 · ∇)𝑢𝜎 + 𝜃𝑒𝑛) · 𝑢ℎ + 𝜎|𝜃|2 + 𝑤𝜃

]︁
.

(B.3)
Proof of the existence of solutions to (B.2). We recall the following identity, which will

be used throughout the paper:

−
∫︁

𝒪
Δ𝑢̃ · 𝑣 = 2

∫︁
𝒪
𝐷(𝑢̃) ·𝐷(𝑣) − 2

∫︁
𝜕𝒪

[𝐷(𝑢̃)𝜈]𝑡𝑎𝑛 · 𝑣,

where 𝑢̃ and 𝑣 are smooth vector fields such that 𝑣 is divergence free and tangent to
the boundary. Therefore, using above 𝜑 = 𝑢ℎ and 𝜓 = 𝜃, we obtain formally the energy
equality (B.3) replacing ≤ by =. We can get a bound of the right hand side term of (B.3)
by using a 𝐿∞ bound of 𝜎 and (B.1). Thus, we deduce that there exists a positive constant
𝐶 > 0 depending on 𝜎, 𝑣 and 𝑤 such that

‖𝑢ℎ(𝑡, · )‖2 + ‖𝜃(𝑡, · )‖2 + 4
∫︁∫︁

𝒪𝑡

|𝐷(𝑢ℎ)|2 + 2
∫︁∫︁

𝒪𝑡

|∇𝜃|2

≤ 𝐶

⎛⎝‖𝑢ℎ(0, · )‖2 + ‖𝜃(0, · )‖2 +
∫︁∫︁

𝒪𝑡

|𝑢ℎ|2 + |𝜃|2
⎞⎠−4

∫︁∫︁
𝜕𝒪𝑡

(𝑀𝑢ℎ) · 𝑢ℎ − 2
∫︁∫︁

𝜕𝒪𝑡

𝑚|𝜃|2.

(B.4)

From (B.4), and Gronwall Lemma, we obtain an a priori bound for (𝑢ℎ, 𝜃) in
𝐿∞(0, 𝑇 ;𝐿2(𝒪)𝑛+1). Before continuing, let us recall the following Korn inequality.

Lemma B.1. [Second Korn inequality] There exist two positive constants 𝐶1, 𝐶2 > 0 such
that, for every 𝑢 ∈ 𝐻1(𝒪)𝑛, one has

𝐶1 (‖𝑢‖ + ‖𝐷(𝑢)‖) ≤ ‖𝑢‖𝐻1 ≤ 𝐶2 (‖𝑢‖ + ‖𝐷(𝑢)‖) .
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By using the previous a priori bound for (𝑢ℎ, 𝜃) in 𝐿∞(0, 𝑇 ;𝐿2(𝒪)𝑛+1), the second Korn
inequality and the estimate (B.4), we also obtain an a priori bound in 𝐿2(0, 𝑇 ;𝐻1(𝒪)𝑛+1).
A standard Galerkin procedure implies the existence of a solution with this regularity.

We next justify that this solution can be assumed to verify the energy inequality.
We recall the standard argument to justify the energy inequality. Let (𝑢𝑁

ℎ , 𝜃
𝑁) be the

approximate solution obtained via the Galerkin method. We write the energy inequality
(B.3) that holds true for (𝑢𝑁

ℎ , 𝜃
𝑁) and pass to the limit as 𝑁 → +∞. We observe that

the right-hand side converges, because (𝑢𝑁
ℎ , 𝜃

𝑁) converges strongly to (𝑢ℎ, 𝜃) in 𝐿2(𝒪𝑇 ) as
𝑁 → +∞; this is a consequence the two previous bounds and, for instance, Aubin-Lions
Lemma. For the left-hand side, it is enough to use convexity, lower semicontinuity of the
norms and weak convergence.

Although uniqueness of weak Leray solutions is still an open question, adapting the
classic Leray-Hopf theory proves the global existence of weak solution for the case of
Navier boundary conditions (see (CLOPEAU; MIKELIC; ROBERT, 1998) and (FILHO; LOPES;

PLANAS, 2005) for 2D or (IFTIMIE; PLANAS, 2006) for 3D). Once forcing terms 𝑣, 𝑤 and
𝜎 are fixed, there exists thus at least one weak Leray solution (𝑢, 𝜃) to (3.7).
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APPENDIX C – SMOOTHING EFFECT FOR THE UNCONTROLLED
BOUSSINESQ SYSTEM

Let us present the proof of Lemma 3.8. In the following, we will use Korn’s inequality
recurrently, see Lemma B.1. We will also need the following results:

Lemma C.1. There exist positive constants 𝐶𝑙, 𝐶𝑟, 𝐾 > 0 such that, for every 𝑢 ∈
𝐻1(𝒪)𝑛, we have

𝐶𝑙‖𝑢‖𝐾,𝑀 ≤ ‖𝑢‖𝐻1 ≤ 𝐶𝑟‖𝑢‖𝐾,𝑀 ,

where ‖𝑢‖𝐾,𝑀 :=
(︂
𝐾‖𝑢‖2 +

∫︁
𝜕𝒪
𝑀𝑢 · 𝑢+ ‖𝐷(𝑢)‖2

)︂1/2
.

Lemma C.2. There exist positive constants 𝐶𝑙, 𝐶𝑟, 𝛾 > 0 such that, for every 𝜃 ∈ 𝐻1(𝒪),
we have

𝐶𝑙‖𝜃‖𝛾,𝑚 ≤ ‖𝜃‖𝐻1 ≤ 𝐶𝑟‖𝜃‖𝛾,𝑚,

where ‖𝜃‖𝛾,𝑚 :=
(︂
𝛾‖𝜃‖2 +

∫︁
𝜕𝒪
𝑚|𝜃|2 + ‖∇𝜃‖2

)︂1/2
.

The proofs of the two above Lemmas rely on the interpolation inequality (BOYER;

FABRIE, 2012, Theorem 𝐼𝐼𝐼.2.36). In particular, it is used that there exists a positive
constant 𝐶 such that

‖𝑢‖𝐿2(𝜕𝒪) ≤ 𝐶‖𝑢‖1/2‖𝑢‖1/2
𝐻1 ∀𝑢 ∈ 𝐻1(𝒪).

Lemma C.3 (Proposition 𝐼𝐼𝐼.2.35, (BOYER; FABRIE, 2012)). Let 𝑝 ∈ [1,+∞] and 𝑞 ∈
[𝑝, 𝑝*], where 𝑝* is the critical exponent associated with 𝑝. Then, there exists 𝐶 > 0 such
that

‖𝑢‖𝐿𝑞 ≤ 𝐶‖𝑢‖1+𝑛/𝑞−𝑛/𝑝
𝐿𝑝 ‖𝑢‖𝑛/𝑝−𝑛/𝑞

𝑊 1,𝑝 ∀𝑢 ∈ 𝑊 1,𝑝(𝒪).

Lemma C.4 (Pages 490-494, (GUERRERO, 2006b)). Let 𝑓 ∈ 𝐿2(𝒪)𝑛 and 𝑔 ∈ 𝐻1/2(𝜕𝒪)𝑛.
Then, there exists a unique strong solution (𝑢, 𝑝) ∈ 𝐻2(𝒪)𝑛×𝐻1(𝒪) to the Stokes problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑢+∇𝑝 = 𝑓 in 𝒪,

∇ · 𝑢 = 0 in 𝒪,

𝑢 · 𝜈 = 0, 𝑁(𝑢) = 𝑔 on 𝜕𝒪,

and there exists a positive constant 𝐶 > 0 such that

‖𝑢‖𝐻2 + ‖𝑝‖𝐻1 ≤ 𝐶(‖𝑓‖ + ‖𝑔‖𝐻1/2).

Moreover, if 𝑓 ∈ 𝐻𝑘(𝒪)𝑛 and 𝑔 ∈ 𝐻𝑘+1/2(𝜕𝒪)𝑛 for some 𝑘 ≥ 0, then (𝑢, 𝑝) ∈ 𝐻𝑘+2(𝒪)𝑛 ×
𝐻𝑘+1(𝒪) and we have

‖𝑢‖𝐻𝑘+2 + ‖𝑝‖𝐻𝑘+1 ≤ 𝐶(‖𝑓‖𝐻𝑘 + ‖𝑔‖𝐻𝑘+1/2).
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Lemma C.5. Let 𝑆 : 𝐷(𝑆) → 𝐿2
div(𝒪)𝑛 be the Stokes operator, where 𝐷(𝑆) = {𝑣 ∈

𝐻2(𝒪)𝑛 ∩ 𝐿2
div(𝒪)𝑛 : 𝑁(𝑣) = 0} and 𝑆 := −PΔ. There exists a positive constant 𝐶 > 0

such that, for every 𝑢 ∈ 𝐷(𝑆), we have

‖𝑢‖𝐻2 ≤ 𝐶 (‖𝑆𝑢‖ + ‖𝑢‖𝐻1) .

Moreover, if 𝑆𝑢 ∈ 𝐻𝑘(𝒪)𝑛 for some 𝑘 ≥ 0, then 𝑢 ∈ 𝐻𝑘+2(𝒪)𝑛 and we have

‖𝑢‖𝐻𝑘+2 ≤ 𝐶(‖𝑆𝑢‖𝐻𝑘 + ‖𝑢‖𝐻𝑘+1).

Lemma C.6. Let 𝑢 ∈ 𝐻1(𝒪) satisfy Δ𝑢 ∈ 𝐿2(𝒪) and

𝜕𝑢

𝜕𝜈
+𝑚𝑢 = 0 on 𝜕𝒪,

where 𝑚 ∈ 𝐿∞(𝜕𝒪). Then, there exists a constant 𝐶 > 0, only depending on 𝒪, such that

‖𝑢‖𝐻2 ≤ 𝐶(‖Δ𝑢‖ + ‖𝑚𝑢‖𝐻1/2(𝜕𝒪)).

Moreover, if Δ𝑢 ∈ 𝐻𝑘(𝒪) for some 𝑘 ≥ 0, then 𝑢 ∈ 𝐻𝑘+2(𝒪) and we have

‖𝑢‖𝐻𝑘+2 ≤ 𝐶(‖Δ𝑢‖𝐻𝑘 + ‖𝑚𝑢‖𝐻𝑘+1/2(𝜕𝒪)).

The proof this Lemma is consequence of (BOYER; FABRIE, 2012, Theorem 𝐼𝐼𝐼.4.3).
Throughout the proof of Lemma 3.8, the constants 𝐶 can increase from line to line

and depend on 𝑇 and the trajectory (𝑢, 𝜃). For simplicity, we consider the case 𝑛 = 3.

Step 1: Weak estimates in (0, 𝑇/3). Let us first multiply (3.8)1 by 𝑟 and (3.8)2 by
𝑞, integrate by parts, and sum. We get:

1
2
𝑑

𝑑𝑡

(︁
‖𝑟‖2 + ‖𝑞‖2

)︁
+ 2‖𝐷𝑟‖2 + ‖∇𝑞‖2 + 2

∫︁
𝜕𝒪
𝑀𝑟 · 𝑟 +

∫︁
𝜕𝒪
𝑚|𝑞|2

= (𝑞𝑒𝑛, 𝑟) −
∫︁

𝒪
(𝑟 · ∇)𝑢 · 𝑟 −

∫︁
𝒪
𝑟 · ∇𝜃 𝑞.

By Cauchy-Schwarz and Young inequalities, we obtain:

1
2
𝑑

𝑑𝑡

(︁
‖𝑟‖2 + ‖𝑞‖2

)︁
+ 2‖𝐷𝑟‖2 + ‖∇𝑞‖2 + 2

∫︁
𝜕𝒪
𝑀𝑟 · 𝑟 +

∫︁
𝜕𝒪
𝑚|𝑞|2 ≤ 𝐶(‖𝑟‖2 + ‖𝑞‖2).

Using Lemmas C.1 and C.2, we deduce

1
2
𝑑

𝑑𝑡

(︁
‖𝑟‖2 + ‖𝑞‖2

)︁
+ 2
𝐶2

𝑙

(‖𝑟‖2
𝐻1 + ‖𝑞‖2

𝐻1) ≤ (𝐶 + 2𝐾)‖𝑟‖2 + (𝐶 + 2𝛾)‖𝑞‖2. (C.1)

By applying Gronwall Lemma, we have for a.e. 𝑡 ∈ [0, 𝑇 ] that

‖𝑟(𝑡, · )‖2 + ‖𝑞(𝑡, · )‖2 +
∫︁ 𝑡

0

(︁
‖𝑟(𝑠, · )‖2

𝐻1 + ‖𝑞(𝑠, · )‖2
𝐻1

)︁
𝑑𝑠 ≤ 𝑒𝐶𝑡

(︁
‖𝑟*‖2 + ‖𝑞*‖2

)︁
.



99

Therefore, from the Mean Value Theorem, we deduce by contradiction that there exists
0 ≤ 𝑡1 ≤ 𝑇/3 such that

‖𝑟(𝑡1, · )‖2
𝐻1 + ‖𝑞(𝑡1, · )‖2

𝐻1 ≤ 𝐶1
(︁
‖𝑟*‖2 + ‖𝑞*‖2

)︁
, (C.2)

for a positive constant 𝐶1 independent of 𝑡1.

Step 2: Strong estimates in (𝑡1, 2𝑇/3). Let P be the classical Leray projector. We
multiply (3.8)1 and (3.8)2 by −𝑆𝑟 and −Δ𝑞, respectively, then integrate by parts. Since
𝑀 is symmetric, we obtain

𝑑

𝑑𝑡

(︂
‖𝐷𝑟‖2 +

∫︁
𝜕𝒪
𝑀𝑟 · 𝑟

)︂
+ ‖𝑆𝑟‖2

=
∫︁

𝜕𝒪
(𝑀𝑡)𝑟 · 𝑟 +

∫︁
𝒪

⎛⎝(𝑟 · ∇)𝑟 · 𝑆𝑟 + (𝑢 · ∇)𝑟 · 𝑆𝑟 + (𝑟 · ∇)𝑢 · 𝑆𝑟 − (𝑞𝑒𝑛, 𝑆𝑟)
⎞⎠

≤ 𝐶‖𝑟‖2
𝐻1 + 1

2‖𝑆𝑟‖2 + 𝐶‖𝑞‖2 + ‖𝑟‖2
𝐿6‖∇𝑟‖2

𝐿3 .

Also,

1
2
𝑑

𝑑𝑡

(︂
‖∇𝑞‖2 +

∫︁
𝜕𝒪
𝑚|𝑞|2

)︂
+ ‖Δ𝑞‖2 = 1

2

∫︁
𝜕𝒪

(𝑚𝑡)𝑞 · 𝑞 + (𝑟 · ∇𝑞,Δ𝑞)

+(𝑢 · ∇𝑞,Δ𝑞) + (𝑟 · ∇𝜃,Δ𝑞)

≤𝐶‖𝑞‖2
𝐻1 + 1

2‖Δ𝑞‖2 + 𝐶‖𝑟‖2 + ‖𝑟‖2
𝐿6‖∇𝑞‖2

𝐿3 .

Multiplying (C.1) by 𝜍 = max{𝐾, 𝛾}, adding the above inequalities and using Lemmas
C.1 – C.6, we deduce the following:

𝑑

𝑑𝑡

(︁
‖𝑟‖2

𝜍,𝑀 +‖𝑞‖2
𝜍,𝑚

)︁
+ ‖𝑟‖2

𝐻2 +‖𝑞‖2
𝐻2 ≤𝐶(‖𝑟‖2

𝜍,𝑀 +‖𝑞‖2
𝜍,𝑚+‖𝑟‖2

𝐿6‖∇𝑟‖2
𝐿3 +‖𝑟‖2

𝐿6‖∇𝑞‖2
𝐿3)

≤𝐶
[︁
(‖𝑟‖2

𝜍,𝑀 +‖𝑞‖2
𝜍,𝑚) + (‖𝑟‖2

𝜍,𝑀 +‖𝑞‖2
𝜍,𝑚)3

]︁
.

(C.3)
Introducing 𝑌 (𝑡) := ‖𝑟(𝑡, ·)‖2

𝜍,𝑀 +‖𝑞(𝑡, ·)‖2
𝜍,𝑚, we see that 𝑌 is a.e. differentiable and,

from (C.3), we have that
𝑌 ′ ≤ 𝐶(𝑌 3 + 𝑌 ). (C.4)

In view of (C.4), we obtain

𝑌 (𝑡)2 ≤ 𝑒𝐶(𝑡−𝑡1)𝑌 (𝑡1)2

𝑌 (𝑡1)2 + 1 − 𝑒𝐶(𝑡−𝑡1)𝑌 (𝑡1)2 .

Let us take 𝑡 − 𝑡1 ≤ 𝜏1 small enough and such that 𝑒𝐶(𝑡−𝑡1) ≤ 1 + 1
2𝑌 (𝑡1)2 . Then, 𝑌 (𝑡)2 ≤

2𝑒𝐶(𝑡−𝑡1)𝑌 (𝑡1)2 and, from (C.2), we deduce that 𝑌 (𝑡) ≤ 𝐶𝑌*, where 𝑌* := ‖𝑟*‖2 + ‖𝑞*‖2.
Therefore,

‖𝑟(𝑡, · )‖2
𝜍,𝑀 +‖𝑞(𝑡, · )‖2

𝜍,𝑚 +
∫︁ 𝑡

𝑡1
(‖𝑟(𝑠, · )‖2

𝐻2 + ‖𝑞(𝑠, · )‖2
𝐻2)𝑑𝑠 ≤ 𝐶𝑌* + 𝐶(𝑌* + 𝑌 3

* )𝜏1.
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Taking 𝜏1 small enough such that 𝜏1 ≤ (1+𝑌 2
* )−1, we have that 𝐶𝑌*+𝐶(𝑌*+𝑌 3

* )𝜏1 ≤ 𝐶2𝑌*.
Therefore, one has

‖𝑟(𝑡, · )‖2
𝜍,𝑀 +‖𝑞(𝑡, · )‖2

𝜍,𝑚 +
∫︁ 𝑡

𝑡1
(‖𝑟(𝑠, · )‖2

𝐻2 + ‖𝑞(𝑠, · )‖2
𝐻2)𝑑𝑠 ≤ 𝐶2

(︁
‖𝑟*‖2 + ‖𝑞*‖2

)︁
(C.5)

for 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝜏1. This ensures the existence of 𝑡1 ≤ 𝑡2 < min{2𝑇/3, 𝑡1 + 𝜏1} such that

‖𝑟(𝑡2, · )‖2
𝐻2 + ‖𝑞(𝑡2, · )‖2

𝐻2 ≤ 𝐶2

𝜏1

(︁
‖𝑟*‖2 + ‖𝑞*‖2

)︁
.

Step 3: Third energy estimate in (𝑡2, 𝑇 ). At this point, we differentiate (3.8) with
respect to time and multiply by 𝜕𝑡𝑟 and 𝜕𝑡𝑞. Then, we integrate by parts to obtain

1
2
𝑑

𝑑𝑡
‖𝑟𝑡‖2 + 2‖𝐷𝑟𝑡‖2 + 2

∫︁
𝜕𝒪
𝑀𝑟𝑡 · 𝑟𝑡

=−2
∫︁

𝜕𝒪
𝑀𝑡𝑟 · 𝑟𝑡 + (𝑞𝑡𝑒𝑛, 𝑟𝑡) − (𝑟𝑡 · ∇)𝑟 · 𝑟𝑡 − (𝑢𝑡 · ∇)𝑟 · 𝑟𝑡 − (𝑟𝑡 · ∇)𝑢 · 𝑟𝑡 − (𝑟 · ∇)𝑢𝑡 · 𝑟𝑡

≤ 𝐶
(︁
‖𝑟‖𝐻1‖𝑟𝑡‖𝐻1 + ‖𝑞𝑡‖2 + ‖𝑟𝑡‖2 + ‖𝑟𝑡‖3‖∇𝑟‖‖𝑟𝑡‖6 + ‖𝑟‖2

𝐻1

)︁
and

1
2
𝑑

𝑑𝑡
‖𝑞𝑡‖2 + ‖∇𝑞𝑡‖2 +

∫︁
𝜕𝒪
𝑚|𝑞𝑡|2 = −

∫︁
𝜕𝒪
𝑚𝑡𝑞𝑞𝑡 − ((𝑟𝑡 + 𝑢) · ∇𝑞, 𝑞𝑡)

−(𝑟𝑡 · ∇𝜃, 𝑞𝑡) − (𝑟 · ∇𝜃𝑡, 𝑞𝑡)

≤ 𝐶 (‖𝑞‖𝐻1‖𝑞𝑡‖𝐻1 + ‖𝑞‖2
𝐻1 + ‖𝑞𝑡‖2

+‖𝑟𝑡‖2 + ‖𝑟𝑡‖3‖∇𝑞‖‖𝑟𝑡‖6) .

Consequently, using Lemmas C.1 – C.3 and adding the two above inequalities, we have

𝑑

𝑑𝑡

(︁
‖𝑟𝑡‖2 + ‖𝑞𝑡‖2

)︁
+ ‖𝑟𝑡‖2

𝐻1 + ‖𝑞𝑡‖2
𝐻1

≤ 𝐶
(︁(︁

‖𝑟‖4
𝐻1 + ‖𝑞‖4

𝐻1 + 1
)︁

‖𝑟𝑡‖2 + ‖𝑞𝑡‖2 + ‖𝑟‖2
𝐻1 + ‖𝑞‖2

𝐻1

)︁
.

Now, introducing 𝑍(𝑡) := ‖𝑟𝑡(𝑡, ·)‖2 + ‖𝑞𝑡(𝑡, ·)‖2, we find from (C.5) that

𝑍 ′ ≤ 𝐶[(1 + 𝑌 2
* )𝑍 + 𝑌*]

for 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝜏1. By applying Gronwall’s Lemma, we have for a.e. 𝑡 ∈ [𝑡2, 𝑡1 + 𝜏1]

𝑍(𝑡) ≤ 𝑒𝐶(1+𝑌 2
* )(𝑡−𝑡2) (𝑍(𝑡2) + 𝐶𝑌*(𝑡− 𝑡2)) .

Since we have 𝑍(𝑡2) ≤ Ψ1(𝑌*) for some nonnegative regular Ψ1 with Ψ1(0) = 0, we find
that 𝑍(𝑡) ≤ Ψ2(𝑌*), with

Ψ2(𝑠) := 𝑒𝐶(1+𝑠2)(Ψ1(𝑠) + 𝐶𝑠) ∀𝑠 ≥ 0.

Therefore,

‖𝑟𝑡(𝑡, · )‖2 + ‖𝑞𝑡(𝑡 · )‖2 +
∫︁ 𝑡

𝑡2

(︁
‖𝑟𝑡(𝑠, · )‖2

𝐻1 + ‖𝑞𝑡(𝑠, · )‖2
𝐻1

)︁
𝑑𝑠 ≤ Ψ3(𝑌*) ∀𝑡 ∈ [𝑡2, 𝑡1 + 𝜏1],

(C.6)
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where Ψ3(𝑠) := 𝐶[(1 + 𝑠2)Ψ2(𝑠) + 𝑠]. In particular, this yields the existence of 𝑡3 ∈
(𝑡2, 𝑡1 + 𝜏1) such that

‖𝑟𝑡(𝑡3, · )‖2
𝐻1 + ‖𝑞𝑡(𝑡3, · )‖2

𝐻1 ≤ Ψ3(𝑌*)
(𝑡1 − 𝑡2 + 𝜏1)

. (C.7)

Actually, it is not difficult to check that the set of times 𝑡3 ∈ (𝑡2, 𝑡1 + 𝜏1) satisfying (C.7)
has a positive measure.

Step 4: Conclusion. Using (C.5) and (C.6), we deduce an estimate of 𝑟 in 𝐿∞(𝐻2).
It suffices to view (3.8)1 as a family of Stokes problems (see Lemma C.4 and the arguments
presented in (TEMAM, 1977, Theorem 3.8)). Then, looking (3.8)2 as a family of elliptic
problems, we also find 𝐿∞(𝐻2) estimates for 𝑞, see Lemma C.6. Both estimates depend on
𝑌* continuously. Therefore, repeating the procedure, we see that (𝑟(𝑡3), 𝑞(𝑡3)) ∈ 𝐻3 ×𝐻3

with an estimate of the form Ψ(𝑌*).
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APPENDIX D – CARLEMAN INEQUALITY FOR HEAT EQUATION WITH
ROBIN BOUNDARY CONDITION

Let us consider the following heat equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−𝜓𝑡 − Δ𝜓 = 𝑓 in 𝒪𝑇 := (0, 𝑇 ) × 𝒪,
𝜕𝜓

𝜕𝜈
+𝐵𝜓 = 0 on Λ𝑇 := (0, 𝑇 ) × 𝜕𝒪,

𝜓(𝑇, 𝑥) = 𝜓𝑇 (𝑥) in 𝒪,

(D.1)

with 𝐵 ∈ 𝑄 (see (3.51) for the definition of 𝑄).
Before stating the required Carleman inequality, let us introduce several classical

weights in the study of Carleman inequalities for parabolic equations. The basic weight
will be a function 𝜂0 ∈ 𝐶2(𝒪) defined in (3.53).

Thus, for any 𝜆 > 0 we set:

𝛼(𝑥, 𝑡) = 𝑒2𝜆‖𝜂0‖∞ − 𝑒𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 , 𝜉(𝑥, 𝑡) = 𝑒𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 ,

𝛼̃(𝑥, 𝑡) = 𝑒2𝜆‖𝜂0‖∞ − 𝑒−𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 , 𝜉(𝑥, 𝑡) = 𝑒−𝜆𝜂0(𝑥)

𝑡4(𝑇 − 𝑡)4 ,

We also introduce the following notation:

𝐼(𝑠, 𝜆;𝜓) = 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉3|𝜓|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜓|2

+𝑠−1
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉−1(|𝜓𝑡|2 + |Δ𝜓|2),

where 𝑠 and 𝜆 are positive real numbers and 𝜓 = 𝜓(𝑡, 𝑥).
The following Carleman inequality holds:

Lemma D.1. Let 𝑓 ∈ 𝐿2(𝒪) be given. There exist 𝜆0 = 𝜆0(𝒪, 𝜔), 𝑠0 = 𝑠0(𝒪, 𝜔′) and
𝐶 = 𝐶(𝒪, 𝜔) such that, for every 𝜆 ≥ 𝜆0𝑒

𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄), any 𝑠 ≥ 𝑠0𝑒
4𝜆||𝜂0||∞(𝑇 4 +𝑇 8)

and any 𝜓𝑇 ∈ 𝐿2(𝒪), the weak solution of (D.1) satisfies

𝐼(𝑠, 𝜆;𝜓) ≤ 𝐶

(︃
𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝑒−2𝑠𝛼𝜉3|𝜓|2

)︃
.

Proof. We begin by noticing that the following inequality is holds:

𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉3|𝜓|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜓|2 + 𝑠2𝜆3
∫︁∫︁

Λ𝑇

𝑒−2𝑠𝛼𝜉2|𝜓|2

≤ 𝐶

(︃∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝑒−2𝑠𝛼𝜉3|𝜓|2

)︃
(D.2)

In fact, this inequality follows from the Carleman inequality given in (FERNÁNDEZ-CARA

et al., 2006b, Theorem 1).
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For an easier comprehension the proof will be divided into several steps.
Step. 1. For 𝑠 > 0 and 𝜆 > 0, we make the change of variable

𝑤(𝑡, 𝑥) = 𝑒−𝑠𝛼𝜓(𝑡, 𝑥),

which implies
𝑤(𝑇, 𝑥) = 𝑤(0, 𝑥) = 0.

Notice that the boundary condition becomes

𝜕𝑤

𝜕𝜈
+𝐵𝑤 = 𝑠𝜆𝜉𝑤

𝜕𝜂0

𝜕𝜈
.

We have
𝐿1𝑤 + 𝐿2𝑤 = 𝑓𝑠, (D.3)

where
𝐿1𝑤 = −𝑤𝑡 + 2𝑠𝜆𝜉∇𝜂0 · ∇𝑤 + 2𝑠𝜆2𝜉|∇𝜂0|2𝑤,

𝐿2𝑤 = −Δ𝑤 − 𝑠2𝜆2𝜉2|∇𝜂0|2𝑤 − 𝑠𝛼𝑡𝑤

and
𝑓𝑠 = 𝑒−𝑠𝛼𝑓 + 𝑠𝜆2𝜉|∇𝜂0|2𝑤 − 𝑠𝜆𝜉Δ𝜂0𝑤.

From (D.3), we have that

||𝐿1𝑤||2 + ||𝐿2𝑤||2 + 2(𝐿1𝑤,𝐿2𝑤) = ||𝑓𝑠||2. (D.4)

In this step we analyze the terms appearing in (𝐿1𝑤,𝐿2𝑤). First, we write

(𝐿1𝑤,𝐿2𝑤) =
3∑︁

𝑖,𝑗=1
𝐼𝑖𝑗.

We have
𝐼11 =

∫︁∫︁
𝒪𝑇

𝑤𝑡Δ𝑤 =
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡.

Then,

𝐼12 = 1
2

∫︁∫︁
𝒪𝑇

[𝑠2𝜆2𝜉2|∇𝜂0|2 𝑑
𝑑𝑡

|𝑤|2] = −
∫︁∫︁

𝒪𝑇

𝑠2𝜆2𝜉𝜉𝑡|∇𝜂0|2|𝑤|2

≤ 𝐶𝑠2𝜆2𝑇 4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2

and
𝐼13 =

∫︁∫︁
𝒪𝑇

𝑠𝛼𝑡𝑤𝑤𝑡 ≤ 𝐶𝑒𝜆||𝜂0||∞𝑠𝑇 8
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2,

since
|𝛼𝑡𝑡| ≤ 𝐶𝑒𝜆||𝜂0||∞𝜉2(1 + 𝑇 8𝜉) ≤ 𝐶𝑒𝜆||𝜂0||∞𝜉3.
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Next,

𝐼21 = − 2
∫︁∫︁

𝒪𝑇

𝑠𝜆𝜉∇𝜂0∇𝑤Δ𝑤

= − 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+2𝑠𝜆

∫︁∫︁
𝒪𝑇

𝜕2𝜂0

𝜕𝑥𝑖𝑥𝑗

𝜉
𝜕𝑤

𝜕𝑥𝑖

𝜕𝑤

𝜕𝑥𝑗

+ 2𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0 · ∇𝑤|2 + 𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉∇𝜂0 · ∇|∇𝑤|2

:=𝐴1 + 𝐴2 + 𝐴3 + 𝐴4.

We keep the boundary term 𝐴1, the term 𝐴3 ≥ 0 and estimate the other two terms:

|𝐴2| ≤ 𝐶𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 .

For 𝐴4, we first observe that

𝐴4 = 𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 − 𝑠𝜆2

∫︁∫︁
𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

− 𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉Δ𝜂0|∇𝑤|2

:=𝐴41 + 𝐴42 + 𝐴43.

We keep 𝐴41 and 𝐴42 and estimate the last term as

|𝐴43| ≤ 𝐶𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 .

Consequently,

𝐼21 ≥ − 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+2𝑠𝜆2

∫︁∫︁
𝒪𝑇

𝜉|∇𝜂0 · ∇𝑤|2

+ 𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 − 𝑠𝜆2

∫︁∫︁
𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

− 𝐶𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 .

Next,

𝐼22 = − 2𝑠3𝜆3
∫︁∫︁

𝒪𝑇

∇𝜂0 · ∇𝑤𝜉3|∇𝜂0|2𝑤

= 3𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|∇𝜂0|4|𝑤|2 + 𝑠3𝜆3
∫︁∫︁

𝒪𝑇

Δ𝜂0|∇𝜂0|2𝜉3|𝑤|2

+ 2𝑠3𝜆3
∫︁∫︁

𝒪𝑇

𝜕𝜂0

𝜕𝑥𝑖

𝜕𝜂0

𝜕𝑥𝑖𝑥𝑗

𝜕𝜂0

𝜕𝑥𝑗

𝜉3|𝑤|2

− 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2

:=𝐵1 +𝐵2 +𝐵3 +𝐵4.

We keep 𝐵1 and 𝐵4. For the other two terms, we have

|𝐵2| + |𝐵3| ≤ 𝐶𝑠3𝜆3
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2.
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Consequently,

𝐼22 ≥ 3𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|∇𝜂0|4|𝑤|2 − 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2 − 𝐶𝑠3𝜆3

∫︁∫︁
𝒪𝑇

𝜉3|𝑤|2.

We also have

𝐼23 = − 2𝑠2𝜆
∫︁∫︁

𝒪𝑇

∇𝜂0 · ∇𝑤𝜉𝛼𝑡𝑤

= − 𝑠2𝜆
∫︁∫︁

Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2 + 𝑠2𝜆2

∫︁∫︁
𝒪𝑇

|∇𝜂0|2𝜉𝛼𝑡|𝑤|2

+ 𝑠2𝜆
∫︁∫︁

𝒪𝑇

𝜉∇𝜂0 · ∇𝛼𝑡|𝑤|2 + 𝑠2𝜆
∫︁∫︁

𝒪𝑇

𝜉Δ𝜂0𝛼𝑡|𝑤|2

:=𝐷1 +𝐷2 +𝐷3 +𝐷4.

Notice that
|𝐷2| + |𝐷3| + |𝐷4| ≤ 𝐶𝑒2𝜆||𝜂0||∞𝑠2𝜆2𝑇 4

∫︁∫︁
𝒪𝑇

|𝜉|3|𝑤|2,

which gives

𝐼23 ≥ −𝑠2𝜆
∫︁∫︁

Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2 − 𝐶𝑒2𝜆||𝜂0||∞𝑠2𝜆2𝑇 4

∫︁∫︁
𝒪𝑇

|𝜉|3|𝑤|2.

Next,

𝐼31 = − 2𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2𝑤Δ𝑤

= − 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 + 2𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

+ 4𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉
𝜕𝜂0

𝜕𝑥𝑖

𝜕𝜂0

𝜕𝑥𝑖𝑥𝑗

𝜕𝑤

𝜕𝑥𝑗

𝑤 + 𝑠𝜆3
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2∇𝜂0 · ∇|𝑤|2

=𝐸1 + 𝐸2 + 𝐸3 + 𝐸4.

We keep 𝐸1 and 𝐸2. For 𝐸3 and 𝐸4, we have

𝐸3 ≤ 𝐶𝑠𝜆4
∫︁∫︁

𝒪𝑇

𝜉|𝑤|2 + 𝐶𝑠
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

and
𝐸4 ≤ 𝐶𝑠2𝜆4

∫︁∫︁
𝒪𝑇

𝜉2|𝑤|2 + 𝐶𝜆2
∫︁∫︁

𝒪𝑇

|∇𝑤|2.

Hence,

𝐼31 ≥ − 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 + 2𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

− 𝐶𝑠𝜆4
∫︁∫︁

𝒪𝑇

𝜉2|𝑤|2 − 𝐶𝑠
∫︁∫︁

𝒪𝑇

|∇𝑤|2

− 𝐶𝑠2𝜆4
∫︁∫︁

𝒪𝑇

𝜉2|𝑤|2 − 𝐶𝜆2
∫︁∫︁

𝒪𝑇

|∇𝑤|2

and
𝐼32 = −2𝑠3𝜆4

∫︁∫︁
𝒪𝑇

|∇𝜂0|4𝜉3|𝑤|2.
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Finally,
𝐼33 = −2𝑠2𝜆2

∫︁∫︁
𝒪𝑇

𝜉|∇𝜂0|2𝛼𝑡|𝑤|2 ≤ 𝐶𝑒2𝜆||𝜂0||∞𝑠2𝜆2𝑇 4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2.

Therefore,

(𝐿1𝑤,𝐿2𝑤) ≥
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡 − 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2

− 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 − 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2

+ 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|∇𝜂0|4|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

− 𝐶𝑠2𝜆4
∫︁∫︁

𝒪𝑇

𝜉2|𝑤|2 − 𝐶𝜆2
∫︁∫︁

𝒪𝑇

|∇𝑤|2

− 𝐶𝑠𝜆4
∫︁∫︁

𝒪𝑇

𝜉2|𝑤|2 − 𝐶𝑠
∫︁∫︁

𝒪𝑇

|∇𝑤|2

− 𝐶𝑒2𝜆||𝜂0||∞𝑠2𝜆2𝑇 4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 − 𝐶𝑠2𝜆2𝑇 4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2

− 𝐶𝑠𝜆
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 − 𝐶𝑒𝜆||𝜂0||∞𝑠𝑇 8
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2

− 𝐶𝑒2𝜆||𝜂0||∞𝑠2𝜆2𝑇 4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 − 𝐶𝑠3𝜆3
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 . (D.5)

As a consequence of the properties of 𝜂0, we have that

𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|∇𝜂0|4|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝜂0|2|∇𝑤|2

≥ 𝐶𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + 𝐶𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

− 𝐶𝑠3𝜆4
∫︁∫︁

𝜔′×(0,𝑇 )
𝜉3|𝑤|2 − 𝐶𝑠𝜆2

∫︁∫︁
𝜔′×(0,𝑇 )

𝜉|∇𝑤|2.

Taking 𝜆 ≥ 𝜆0(𝒪, 𝜔) and 𝑠 ≥ 𝑠0(𝒪, 𝜔)(𝑒2𝜆||𝜂0||∞𝑇 4 + 𝑇 8), we can absorb the lower order
terms in (D.5) and in 𝑓𝑠 and obtain, from (D.4), that

||𝐿1𝑤||2 + ||𝐿2𝑤||2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

+
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡 − 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2

− 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 (D.6)

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 − 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2

≤ 𝐶
(︁
||𝑒−𝑠𝛼𝑓 ||2 + 𝑠3𝜆4

∫︁∫︁
𝜔′×(0,𝑇 )

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝜔′×(0,𝑇 )
𝜉|∇𝑤|2

)︁
.

Let us now add integrals of Δ𝑤 and 𝑤𝑡 in the left-hand side of (D.6). This can be done
since

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1|𝑤𝑡|2 ≤ 𝐶
(︂
𝑠𝜆4

∫︁∫︁
𝒪𝑇

𝜉|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 + ||𝐿1𝑤||2
)︂
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and

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1|Δ𝑤|2 ≤ 𝐶
(︂
𝑠3𝜆4

∫︁∫︁
𝒪𝑇

𝜉|𝑤|2 + 𝑠𝑇 8𝑒4𝜆||𝜂0||∞
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + ||𝐿2𝑤||2
)︂
,

for 𝑠 ≥ 𝐶𝑇 8. Accordingly, we deduce from (D.6) that

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

+
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡 − 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2

− 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 (D.7)

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 − 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2

≤ 𝐶

(︃
||𝑒−𝑠𝛼𝑓 ||2 + 𝑠3𝜆4

∫︁∫︁
𝜔′×(0,𝑇 )

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝜔′×(0,𝑇 )
𝜉|∇𝑤|2

)︃
.

Now, we estimate the local integral of ∇𝑤 in (D.7). To this end, let us introduce a function
𝜃 = 𝜃(𝑥), with

𝜃 ∈ 𝐶∞
0 (𝜔), 𝜃 ≡ 1 in 𝜔′, 0 ≤ 𝜃 ≤ 1

and we make some computations:

𝑠𝜆2
∫︁∫︁

𝜔′×(0,𝑇 )
𝜉|∇𝑤|2 ≤ 𝑠𝜆2

∫︁∫︁
𝜔×(0,𝑇 )

𝜃𝜉|∇𝑤|2

= − 𝑠𝜆2
∫︁∫︁

𝜔×(0,𝑇 )
𝜃𝜉𝑤Δ𝑤 − 𝑠𝜆2

∫︁∫︁
𝜔×(0,𝑇 )

𝜉(∇𝑤 · ∇𝜃)𝑤

− 𝑠𝜆3
∫︁∫︁

𝜔×(0,𝑇 )
𝜃𝜉(∇𝑤 · ∇𝜂0)𝑤

≤ 𝛿𝑠−1
∫︁∫︁

𝜔×(0,𝑇 )
𝜉−1|Δ𝑤|2 + 𝑠3𝜆4

∫︁∫︁
𝜔×(0,𝑇 )

𝜉3|𝑤|2 .

In view of this last estimate, we deduce that the integral on ∇𝑤 in the right-hand side of
(D.7) can be supressed if we enlarge slightly the control domain. We have the following
estimate:

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

+
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡 − 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2

− 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
+𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 (D.8)

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 − 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2

≤ 𝐶

(︃
||𝑒−𝑠𝛼𝑓 ||2 + 𝑠3𝜆4

∫︁∫︁
𝜔×(0,𝑇 )

𝜉3|𝑤|2
)︃
.

Step. 2. We perform the same computations as in step 1, but now with the weights
𝛼̃ and 𝜉 instead of 𝛼 and 𝜉.
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For 𝑠 > 0 and 𝜆 > 0, we consider the change of variable

𝑤̃(𝑡, 𝑤) = 𝑒−𝑠𝛼̃𝜓(𝑡, 𝑤),

which implies
𝑤̃(𝑇, 𝑥) = 𝑤̃(0, 𝑥) = 0.

By the boundary condition, we have

𝜕𝑤̃

𝜕𝜈
+𝐵𝑤̃ = −𝑠𝜆𝜉𝑤̃𝜕𝜂

0

𝜕𝜈
.

We have
𝐿̃1𝑤 + 𝐿̃2𝑤 = 𝑓𝑠, (D.9)

where
𝐿̃1𝑤̃ = −𝑤̃𝑡 − 2𝑠𝜆𝜉∇𝜂0 · ∇𝑤̃ + 2𝑠𝜆2𝜉|∇𝜂0|2𝑤̃,

𝐿̃2𝑤̃ = −Δ𝑤̃ − 𝑠2𝜆2𝜉2|∇𝜂0|2𝑤̃ − 𝑠𝛼̃𝑡𝑤̃

and
𝑓𝑠 = 𝑒−𝑠𝛼̃𝑓 + 𝑠𝜆2𝜉|∇𝜂0|2𝑤̃ + 𝑠𝜆𝜉Δ𝜂0𝑤̃.

From (D.9), we have that

||𝐿̃1𝑤̃||2 + ||𝐿̃2𝑤̃||2 + 2(𝐿̃1𝑤̃, 𝐿̃2𝑤̃) = ||𝑓𝑠||2.

In this step we analyze the terms appearing in (𝐿1𝑤,𝐿2𝑤). First, we write

(𝐿̃1𝑤̃, 𝐿̃2𝑤̃) =
3∑︁

𝑖,𝑗=1
𝐼𝑖𝑗.

As before, the following inequality can be proved

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤̃𝑡|2 + |Δ𝑤̃|2) + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤̃|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤̃|2

+
∫︁∫︁

Λ𝑇

𝜕𝑤̃

𝜕𝜈
𝑤̃𝑡 + 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼̃𝑡
𝜕𝜂0

𝜕𝜈
|𝑤̃|2

+ 2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤̃
𝜕𝜈

⃒⃒⃒2
−𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤̃|2 (D.10)

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤̃
𝜕𝜈

𝑤̃ + 𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤̃|2

≤ 𝐶

(︃
||𝑒−𝑠𝛼̃𝑓 ||2 + 𝑠3𝜆4

∫︁∫︁
𝜔×(0,𝑇 )

𝜉3|𝑤̃|2
)︃
,

for 𝜆 ≥ 𝜆0(𝒪, 𝜔) and 𝑠 ≥ 𝑠0(𝒪, 𝜔)(𝑒2𝜆||𝜂0||∞𝑇 4 + 𝑇 8).

Step. 3. Let us now add the inequalities (D.8) and (D.10) and let us check that the
integrals on Λ𝑇 can be simplified, so that there it will only remain integrals in 𝒪𝑇 .
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First, observe that, since 𝜂0 = 0 on 𝜕𝒪, we have

𝜉 = 𝜉, 𝛼 = 𝛼̃ and 𝑤 = 𝑤̃ on Λ𝑇 .

Let us set
𝛼*(𝑡) := 𝛼|Λ𝑇

, 𝜉*(𝑡) := 𝜉|Λ𝑇
and 𝑤* := 𝑒−𝑠𝛼*

𝜓.

However, we know that

𝜕𝑤̃

𝜕𝜈
+𝐵𝑤̃ = −𝑠𝜆𝜉𝑤̃𝜕𝜂

0

𝜕𝜈
and 𝜕𝑤

𝜕𝜈
+𝐵𝑤 = 𝑠𝜆𝜉𝑤

𝜕𝜂0

𝜕𝜈
,

and therefore
𝜕𝑤

𝜕𝜈
+ 𝜕𝑤̃

𝜕𝜈
= −2𝐵𝑤 and 𝜕𝑤

𝜕𝜈
− 𝜕𝑤̃

𝜕𝜈
= 2𝑠𝜆𝜉𝑤𝜕𝜂

0

𝜕𝜈
.

We now add (D.8) and (D.10) and analyze each one of the boundary terms.
For the first one, we have

𝑆1 :=
∫︁∫︁

Λ𝑇

𝜕𝑤

𝜕𝜈
𝑤𝑡 +

∫︁∫︁
Λ𝑇

𝜕𝑤̃

𝜕𝜈
𝑤̃𝑡 = −2

∫︁∫︁
Λ𝑇

𝐵𝑤𝑤𝑡 = −2
∫︁∫︁

Λ𝑇

𝐵𝑤* 𝑤*
𝑡 .

For the moment, assume that 𝑤* ∈ 𝐻(1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪)), then by product of functions
and since 𝐵 ∈ 𝑄 ⊂ 𝐻1−ℓ(𝑊 𝜗1,𝜗1+1(𝜕𝒪)) ⊂ 𝐻(1−ℓ)/2(𝐻−3/2+𝑛/2+2ℓ(𝜕𝒪)) we have that
𝐵𝑤* ∈ 𝐻(1−ℓ)/2(𝐻−1/2+ℓ(𝜕𝒪)). Note that 𝑤*

𝑡 ∈ 𝐻(−1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪)), thus by duality
we obtain

−2
∫︁∫︁

Λ𝑇

𝐵𝑤* 𝑤*
𝑡 ≤ 𝐶‖𝐵𝑤*‖𝐻(1−ℓ)/2(𝐻−1/2+ℓ(𝜕𝒪))‖𝑤*

𝑡 ‖𝐻(−1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪))

≤ 𝐶‖𝐵‖𝑄‖𝑤*‖2
𝐻(1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪)).

In order to estimate the last expression, note that 𝑤* solves⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−𝑤*
𝑡 − Δ𝑤* = 𝑓 * in 𝒪𝑇 ,

𝜕𝑤*

𝜕𝜈
+𝐵𝑤* = 0 on Λ𝑇 ,

𝑤*(𝑇, ·) = 0 in 𝒪,

where
𝑓 * := 𝑒−𝑠𝛼*

𝑓 − (𝑒−𝑠𝛼*)𝑡𝜓.

One can perform a similar estimate like of the (GUERRERO, 2006b, Proposition 1.1), that
is

‖𝑤*‖2
𝐻1(𝐿2(𝒪)) + ‖𝑤*‖2

𝐿2(𝐻2(𝒪)) ≤ 𝐶𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖4

𝑄)‖𝑓 *‖2
𝐿2(𝒪𝑇 ).

Besides, by interpolation inequality 𝑤* ∈ 𝐻(1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪)) and can be estimated as
follow

‖𝑤*‖2
𝐻(1+ℓ)/2(𝐻1/2−ℓ(𝜕𝒪)) ≤ 𝐶‖𝑤*‖1+ℓ

𝐻1(𝐿2(𝒪))‖𝑤
*‖1−ℓ

𝐿2(𝐻2(𝒪)) ≤ 𝐶(‖𝑤*‖2
𝐻1(𝐿2(𝒪))+‖𝑤*‖2

𝐿2(𝐻2(𝒪))).
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From the properties of 𝛼*, we have

|𝛼*
𝑡 | ≤ 𝐶𝑇𝑒2𝑠‖𝜂0‖∞(𝜉*)5/4.

Combining the above estimates, we find

𝑆1 ≤ 𝐶‖𝐵‖𝑄𝑒
𝐶𝑇 ‖𝐵‖2

𝑄(1 + ‖𝐵‖4
𝑄)‖𝑓 *‖2

≤ 𝐶𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄)
(︂∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼*|𝑓 |2 + 𝑠2𝑇 2𝑒4𝜆‖𝜂0‖∞
∫︁∫︁

𝒪𝑇

(𝜉*)5/2|𝑤*|2
)︂

≤ 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝜆𝑠3
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 ,

taking 𝜆 ≥ 𝐶𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄) and 𝑠 ≥ 𝐶𝑒4𝜆‖𝜂0‖∞𝑇 6.
Also

𝑠2𝜆
∫︁∫︁

Λ𝑇

𝜉𝛼̃𝑡
𝜕𝜂0

𝜕𝜈
|𝑤̃|2 − 𝑠2𝜆

∫︁∫︁
Λ𝑇

𝜉𝛼𝑡
𝜕𝜂0

𝜕𝜈
|𝑤|2 = 0.

Next,

2𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤̃
𝜕𝜈

⃒⃒⃒2
−2𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
= 2𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

(︃⃒⃒⃒𝜕𝑤̃
𝜕𝜈

⃒⃒⃒2
−
⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2)︃

= 8𝑠2𝜆2
∫︁∫︁

Λ𝑇

𝜉2|𝜕𝜂
0

𝜕𝜈
|2𝐵|𝑤|2.

For the other terms, we have

𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤|2 − 𝑠𝜆

∫︁∫︁
Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈
|∇𝑤̃|2

= 𝑠𝜆
∫︁∫︁

Λ𝑇

𝜉
𝜕𝜂0

𝜕𝜈

(︃⃒⃒⃒𝜕𝑤
𝜕𝜈

⃒⃒⃒2
−
⃒⃒⃒𝜕𝑤̃
𝜕𝜈

⃒⃒⃒2)︃

= −4𝑠2𝜆2
∫︁∫︁

Λ𝑇

𝜉2|𝜕𝜂
0

𝜕𝜈
|2𝐵|𝑤|2,

− 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤
𝜕𝜈

𝑤 − 2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝜕𝑤̃
𝜕𝜈

𝑤̃

= −2𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2
(︃
𝜕𝑤

𝜕𝜈
+ 𝜕𝑤̃

𝜕𝜈

)︃
𝑤

= 4𝑠𝜆2
∫︁∫︁

Λ𝑇

𝜉|∇𝜂0|2𝐵|𝑤|2

and also

𝑠3𝜆3
∫︁∫︁

Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤̃|2 − 𝑠3𝜆3

∫︁∫︁
Λ𝑇

𝜉3|∇𝜂0|2𝜕𝜂
0

𝜕𝜈
|𝑤|2 = 0.

Thus, notice that all the boundary terms can be estimated by

|Boundary terms| ≤ 𝐶𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2|𝑤|2 + 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝜆𝑠3
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2,
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for 𝜆 ≥ 𝐶𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄) and 𝑠 ≥ 𝐶𝑒4𝜆‖𝜂0‖∞𝑇 6.
Let us now finish the proof. To do this, using the previous estimates, in the sum of

(D.8) and (D.10), we conclude that

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤̃𝑡|2 + |Δ𝑤̃|2) + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤̃|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤̃|2

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2

≤ 𝐶
(︁
||𝑒−𝑠𝛼𝑓 ||2 + ||𝑒−𝑠𝛼̃𝑓 ||2 + 𝑠3𝜆4

∫︁∫︁
𝜔×(0,𝑇 )

𝜉3|𝑤|2 + 𝜉3|𝑤̃|2
)︁

(D.11)

+ 𝐶𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2|𝑤|2 + 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝜆𝑠3
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2,

for 𝜆 ≥ 𝜆0(𝒪, 𝜔)𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄) and 𝑠 ≥ 𝑠0(𝒪, 𝜔)𝑒4𝜆||𝜂0||∞(𝑇 4 + 𝑇 8).
From the definitions os 𝜉, 𝜉, 𝛼 and 𝛼̃, we have

𝜉 ≤ 𝜉, 𝑒−2𝑠𝛼̃ ≤ 𝑒−2𝑠𝛼 in 𝒪𝑇 .

Hence, (D.11) yields

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3|𝑤|2

≤ 𝐶

(︃
𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝜉3|𝑤|2 + 𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2|𝑤|2
)︃
, (D.12)

for 𝜆 ≥ 𝜆0(𝒪, 𝜔)𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄) and 𝑠 ≥ 𝑠0(𝒪, 𝜔)𝑒4𝜆||𝜂0||∞(𝑇 4 + 𝑇 8).
We finally turn back to 𝜓. For the moment, we have

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉|∇𝑤|2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2 (D.13)

≤ 𝐶

(︃
𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝜉3𝑒−2𝑠𝛼|𝜓|2 + 𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2𝑒−2𝑠𝛼|𝜓|2.
)︃

Thus, we find that

𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉𝑒−2𝑠𝛼|∇𝜓|2 ≤ 𝐶
(︁
𝑠𝜆2

∫︁∫︁
𝒪𝑇

𝜉|∇𝑤|2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2
)︁
.

Accordingly, the previous integral in ∇𝜓 can be added to the left-hand side of (D.13):

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1(|𝑤𝑡|2 + |Δ𝑤|2) + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉𝑒−2𝑠𝛼|∇𝜓|2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2

≤𝐶

(︃
𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝜉3𝑒−2𝑠𝛼|𝜓|2 + 𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2𝑒−2𝑠𝛼|𝜓|2.
)︃

For Δ𝜓, we use the identity

Δ𝑤 = 𝑒−𝑠𝛼(Δ𝜓 − 𝑠𝜆Δ𝜂0𝜉𝜓 + 𝑠𝜆2|∇𝜂0|2𝜉𝜓 − 2𝑠𝜆∇𝜂0 · ∇𝜓 + 𝑠2𝜆2|∇𝜂0|2𝜉2𝜓)

and we obtain

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1𝑒−2𝑠𝛼|Δ𝜓|2 ≤ 𝐶
(︁
𝑠−1

∫︁∫︁
𝒪𝑇

𝜉−1|Δ𝑤|2

+ 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2 + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉𝑒−2𝑠𝛼|∇𝜓|2
)︁
.
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Finally, for 𝜓𝑡, we get

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1𝑒−2𝑠𝛼|𝜓𝑡|2 ≤𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1|𝑤𝑡|2

+ 𝑠𝑒4𝜆||𝜂0||∞𝑇 8
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2,

since
𝜓𝑡 = 𝑒𝑠𝛼(𝑤𝑡 + 𝑠𝛼𝑡𝑤).

Therefore, if 𝜆 ≥ 𝜆0(𝒪, 𝜔)𝑒𝐶𝑇 ‖𝐵‖2
𝑄(1 + ‖𝐵‖5

𝑄) and 𝑠 ≥ 𝑠0(𝒪, 𝜔)𝑒4𝜆||𝜂0||∞(𝑇 4 + 𝑇 8).

𝑠−1
∫︁∫︁

𝒪𝑇

𝜉−1𝑒−2𝑠𝛼(|𝜓𝑡|2 + |Δ𝜓|2) + 𝑠𝜆2
∫︁∫︁

𝒪𝑇

𝜉𝑒−2𝑠𝛼|∇𝜓|2 + 𝑠3𝜆4
∫︁∫︁

𝒪𝑇

𝜉3𝑒−2𝑠𝛼|𝜓|2

≤ 𝐶

(︃
𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝑓 |2 + 𝑠3𝜆4
∫︁∫︁

𝜔×(0,𝑇 )
𝜉3𝑒−2𝑠𝛼|𝜓|2 + 𝑠2𝜆2‖𝐵‖𝐿∞

∫︁∫︁
Λ𝑇

𝜉2𝑒−2𝑠𝛼|𝜓|2
)︃

and the proof of Lemma D.1 follows directly from (D.2).
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APPENDIX E – GLOBAL CARLEMAN ESTIMATE FOR BOUSSINESQ
SYSTEM WITH NAVIER-SLIP AND ROBIN BOUNDARY CONDITIONS

This appendix is dedicated to the proof of Proposition 3.16.

The proof is divided into eight steps and is inspired by the ideas of (GUERRERO,
2006b). In the following, the positive constants 𝐶 vary from line to line and depend only
on 𝒪 and 𝜔.

Let the non-empty open sets 𝜔′ and 𝜔𝑐 be given, with 𝜔
′ ⊂⊂ 𝜔0 ⊂⊂ 𝜔𝑐.

Step 1: Global Carleman estimates for 𝜑 and 𝜓 and absorption of global terms.
We apply the Carleman estimate (GUERRERO, 2006b, Proposition 2.1) for the heat

system (3.52)1 with source term 𝐺 := 𝑐∇𝜓 − ∇𝜋 +𝐷𝜙𝑏+ (𝑎 · ∇)𝜙, to get

𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝜆(‖𝑎‖2
∞ + ‖𝑏‖2

∞)
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜙|2

+ 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2 + 𝜆‖𝑐‖2
∞

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼|∇𝜓|2
)︃
, (E.1)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 ‖𝐴‖2
𝑃 (1+‖𝐴‖5

𝑃 ) and 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 6 +𝑇 8) and ̂︀𝜆, ̂︀𝑠 only depend on 𝒪 and 𝜔.
Thanks to the definition of 𝜉, we have 1 ≤ 𝐶𝑇 8𝜉 ≤ 𝐶𝑠𝜉 and we can eliminate the second
term in the right-hand side of (E.1) with the term in 𝑠𝜆2 that appears in the expression
of 𝐼(𝑠, 𝜆;𝜙). Indeed, if we take 𝜆 ≥ ̂︀𝜆(‖𝑎‖2

∞ + ‖𝑏‖2
∞), we get

𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2

+𝜆‖𝑐‖2
∞

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼|∇𝜓|2
)︃
,

(E.2)

for any 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 ‖𝐴‖2
𝑃 (1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞ + ‖𝐴‖5

𝑃 ) and any 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 6 + 𝑇 8).
Next, we apply the known Carleman estimates for the heat equation with homogeneous

Robin boundary condition fulfilled by 𝜓 (see Appendx D), which gives

𝐼(𝑠, 𝜆;𝜓) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜓|2 + (‖𝑎‖2
∞ + ‖𝑏‖2

∞)𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜓|2

+𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝜙 · 𝑒𝑛|2
)︃
,

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞ + ‖𝐵‖5
𝑄 + ‖𝐴‖5

𝑃 ) and 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8).
The same argument above yields

𝐼(𝑠, 𝜆;𝜓) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜓|2 + 𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝜙 · 𝑒𝑛|2
)︃
, (E.3)
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for any 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1+‖𝑎‖2
∞ +‖𝑏‖2

∞ +‖𝐵‖5
𝑄 +‖𝐴‖5

𝑃 ) and 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4 +𝑇 8).
From (E.2) and (E.3), we get

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2 + 𝜆‖𝑐‖2
∞

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼|∇𝜓|2

+𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|𝜙 · 𝑒𝑛|2
)︃
,

(E.4)

for any 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1+‖𝑎‖2
∞ +‖𝑏‖2

∞ +‖𝐵‖5
𝑄 +‖𝐴‖5

𝑃 ) and any 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4 +
𝑇 8). Using the parameters 𝑠3𝜆4, 𝑠𝜆2 appearing in 𝐼(𝑠, 𝜆;𝜙) and 𝐼(𝑠, 𝜆;𝜓) we can absorb
the lower order terms on the right-hand side of (E.4). This way, we have

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+𝜆
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2
)︃
,

(E.5)

for every 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞ + ‖𝑐‖2
∞ + ‖𝐵‖5

𝑄 + ‖𝐴‖5
𝑃 ) and any 𝑠 ≥̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8).

Step 2: Localization of the pressure term by a global elliptic Carleman esti-
mate.

We estimate the integral on the pressure term in (E.5). To do that, let us take the
divergence operator in the equation verified by 𝜙, thus

Δ𝜋(𝑡, · ) = ∇ · ((𝑎 · ∇)𝜙+𝐷𝜙𝑏+ 𝑐∇𝜓) in 𝒪 a.e. 𝑡 ∈ (0, 𝑇 ). (E.6)

Now, since the right-hand side of (E.6) is a 𝐻−1 term, we can apply the elliptic Carle-
man inequality given in (IMANUVILOV; PUEL, 2002, Theorem 0.1). Hence, there exist two
positive constants 𝜏 ≥ 1 and 𝜆̃ ≥ 1, such that∫︁

𝒪
𝑒2𝜏𝜂|∇𝜋(𝑡, · )|2+𝜏 2𝜆2

∫︁
𝒪
𝑒2𝜏𝜂𝜂2|𝜋(𝑡, · )|2

≤ 𝐶

(︃
𝜏

1
2 𝑒2𝜏 ‖𝜋(𝑡, · )‖2

𝐻
1
2 (𝜕Ω)

+ 𝜏
∫︁

𝒪
𝑒2𝜏𝜂𝜂|(𝑎 · ∇)𝜙+𝐷𝜙𝑏+ 𝑐∇𝜓|2

+𝜏 2𝜆2
∫︁

𝜔′
𝑒2𝜏𝜂𝜂2|𝜋(𝑡, · )|2 +

∫︁
𝜔′
𝑒2𝜏𝜂|∇𝜋(𝑡, · )|2

)︃

≤ 𝐶

(︃
𝜏(‖𝑎‖2

∞ + ‖𝑏‖2
∞)
∫︁

𝒪
𝑒2𝜏𝜂𝜂|∇𝜙(𝑡, · )|2 + 𝜏

1
2 𝑒2𝜏 ‖𝜋(𝑡, · )‖2

𝐻
1
2 (𝜕𝒪)

+𝜏‖𝑐‖2
∞

∫︁
𝒪
𝑒2𝜏𝜂𝜂|∇𝜓(𝑡, · )|2 + 𝜏 2𝜆2

∫︁
𝜔′
𝑒2𝜏𝜂𝜂2|𝜋(𝑡, · )|2

+
∫︁

𝜔′
𝑒2𝜏𝜂|∇𝜋(𝑡, · )|2

)︃
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for 𝜏 ≥ ̂︀𝜏 and 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞ + ‖𝑐‖2
∞ + ‖𝐵‖5

𝑄 + ‖𝐴‖5
𝑃 ). Here, for

each 𝜆 > 0, the function 𝜂 is given by 𝜂(𝑥) = 𝑒𝜆𝜂0(𝑥) where the function 𝜂0 is defined
in (3.53). Let us now set 𝜏 = 𝑠/(𝑡4(𝑇 − 𝑡)4). We multiply the previous inequality by
exp(−2𝑠𝑒2𝜆‖𝜂0‖∞/(𝑡4(𝑇 − 𝑡)4)) and integrate between 𝑡 = 0 and 𝑡 = 𝑇 . It is not difficult
to see that∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2 + 𝑠2𝜆2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉2|𝜋|2

≤ 𝐶

(︃
𝑠(‖𝑎‖2

∞ + ‖𝑏‖2
∞)
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜙|2 + 𝑠‖𝑐‖2
∞

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜓|2

+ 𝑠
1
2

∫︁ 𝑇

0
𝑒−2𝑠𝛼*(𝜉*) 1

2 ‖𝜋(𝑡, · )‖2
𝐻

1
2 (𝜕𝒪)

+ 𝑠2𝜆2
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼𝜉2|𝜋|2

+
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼|∇𝜋|2

)︃
(E.7)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1+‖𝑎‖2
∞ +‖𝑏‖2

∞ +‖𝑐‖2
∞ +‖𝐵‖5

𝑄 +‖𝐴‖5
𝑃 ) and 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4 +

𝑇 8). Combining (E.7) with (E.5), we can absorb the first and second terms in the right
hand side of (E.7) to get

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+ 𝑠
1
2𝜆
∫︁ 𝑇

0
𝑒−2𝑠𝛼*(𝜉*) 1

2 ‖𝜋(𝑡, · )‖2
𝐻

1
2 (𝜕𝒪)

+ 𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼𝜉2|𝜋|2

+ 𝜆
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼|∇𝜋|2

)︃
(E.8)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1+‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝑐‖2
∞+‖𝐵‖5

𝑄+‖𝐴‖5
𝑃 ) and 𝑠 ≥ ̂︀𝑠𝑒4𝜆‖𝜂0‖∞(𝑇 4+ 𝑇 8).

Step 3: Estimate of the trace of the pressure.
We introduce the followings functions:

𝛽(𝑡) = 𝑠
1
4 𝑒−𝑠𝛼*(𝜉*) 1

4 , 𝜙 = 𝛽𝜙 and 𝜋̃ = 𝛽𝜋,

which satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝜙− Δ𝜙− (𝑎 · ∇)𝜙−𝐷𝜙𝑏+ ∇𝜋̃ = 𝛽𝑐∇𝜓 − 𝛽𝑡𝜙 in 𝒪𝑇 ,

∇ · 𝜙 = 0 in 𝒪𝑇 ,

𝜙 · 𝜈 = 0, [𝐷(𝜙)𝜈 + 𝐴𝜙]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜙(𝑇, · ) = 0 in 𝒪.

(E.9)

Let us regard 𝜙 as a weak solution to (E.9). In particular, 𝜙 satisfies, by well-known
energy estimates for the Stokes equation (see the beginning of the proof of (GUERRERO,
2006b, Proposition 1.1)), the following:

‖𝜙‖2
𝐿2(𝐻1) ≤ 𝑒𝐶𝑇 (‖𝑎‖2

∞+‖𝑏‖2
∞+‖𝐴‖2

∞)‖𝛽𝑐∇𝜓 − 𝛽𝑡𝜙‖2.



116

Again from energy estimates, using the fact that 𝑃 →˓ 𝐿∞(𝛬𝑇 )𝑛×𝑛, we have

‖𝜋̃‖2
𝐿2(𝐻1) ≤ 𝐶𝑒𝐶𝑇 (‖𝑎‖2

∞+‖𝑏‖2
∞+‖𝐴‖2

𝑃 )(1 + ‖𝐴‖4
𝑃 )(1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞)

×
(︃
𝑠

5
2 𝑒4𝜆‖𝜂0‖∞𝑇 2

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*(𝜉*)3|𝜙|2 + ‖𝑐‖2
∞𝑠

1
2

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*(𝜉*) 1
2 |∇𝜓|2

)︃
,

where we have used that ‖𝛼*
𝑡 ‖ + ‖𝜉*

𝑡 ‖ ≤ 𝐶𝑇𝑒2𝜆‖𝜂0‖∞(𝜉*)5/4.

Taking 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1+‖𝑎‖2
∞ +‖𝑏‖2

∞)(1+‖𝐴‖5
𝑃 +‖𝐵‖5

𝑄)(1+‖𝑐‖2
∞)

and 𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8), from this last estimate and (E.7), we get:∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼|∇𝜋|2 +𝑠2𝜆2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉2|𝜋|2

≤ 𝐶

(︃
𝑠(‖𝑎‖2

∞ + ‖𝑏‖2
∞)
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜙|2

+𝑠‖𝑐‖2
∞

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼𝜉|∇𝜓|2 + 𝑠2𝜆2
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼𝜉2|𝜋|2

+
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼|∇𝜋|2 + 𝑠3𝜆

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼𝜉3|𝜙|2 .

Combining this and (E.8) and absorbing the lower order terms, we also get the estimates

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2

+𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+𝑠2𝜆3
∫︁∫︁

𝜔′×(0,𝑇 )
𝑒−2𝑠𝛼𝜉2|𝜋|2 + 𝜆

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼|∇𝜋|2
)︃ (E.10)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞)(1 + ‖𝐴‖5
𝑃 + ‖𝐵‖5

𝑄)(1 + ‖𝑐‖2
∞) and

𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8).

Step 4: Local estimates of the pressure.
We now follow the ideas of (FERNÁNDEZ-CARA et al., 2004) to estimate the local terms

on the pressure. Indeed, we assume that the pressure 𝜋 has mean-value zero in 𝜔′:∫︁
𝜔′
𝜋(𝑡, · ) = 0 a.e. 𝑡 ∈ (0, 𝑇 ).

Then, using that 𝑒−2𝑠𝛼𝜉2 ≤ 𝑒−2𝑠𝛼̂𝜉2 and the Poincaré-Wirtinger’s inequality, we have

𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼𝜉2|𝜋|2 ≤ 𝐶𝑠2𝜆3

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼̂𝜉2|∇𝜋|2

and
𝜆
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼|∇𝜋|2 ≤ 𝐶𝑠2𝜆3

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼̂𝜉2|∇𝜋|2 .

Now, using that
∇𝜋 = 𝜕𝑡𝜙+ Δ𝜙+ (𝑎 · ∇)𝜙+𝐷𝜙𝑏+ 𝑐∇𝜓,
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the estimate (E.10) gives

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶

(︃
𝑠3𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼𝜉3|𝜙|2 + 𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+ 𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼̂𝜉2|𝜙𝑡|2 + 𝑠2𝜆3

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼̂𝜉2|Δ𝜙|2

+ 𝑠2𝜆3(‖𝑎‖2
∞ + ‖𝑏‖2

∞)
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼̂𝜉2|∇𝜙|2

+ 𝑠2𝜆3‖𝑐‖2
∞

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼̂𝜉2|∇𝜓|2
)︃

(E.11)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞)(1 + ‖𝐴‖5
𝑃 + ‖𝐵‖5

𝑄)(1 + ‖𝑐‖2
∞) and

𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8).

Step 5: Local estimate of the term on Δ𝜙.
Now, we present a local estimate of the integral on Δ𝜙 in the right-hand side of (E.11);

this follows the ideas included in (FERNÁNDEZ-CARA et al., 2004, Step 4 of the proof of
Theorem 1).

Let us introduce an additional open set 𝜔1 such that 𝜔′ ⊂⊂ 𝜔1 ⊂⊂ 𝜔0 ⊂⊂ 𝜔𝑐,
𝑑𝑖𝑠𝑡(𝜕𝜔′, 𝜕𝜔1) ≥ 𝑑𝑖𝑠𝑡(𝜕𝜔1, 𝜕𝜔0) and a positive function 𝜁 ∈ 𝒟(𝜔0) satisfying 𝜁 = 1 in 𝜔1.
Let ̂︀𝜂(𝑡) := 𝑠𝜆

3
2 𝑒−𝑠𝛼̂(𝑡)𝜉(𝑡) and

𝑢̃(𝑡, 𝑥) := 𝜂(𝑡)𝜁(𝑥)Δ𝜙(𝑇 − 𝑡, 𝑥) in (0, 𝑇 ) × R𝑛,

where 𝑢̃ has been extended by zero outside 𝜔0.
Applying Laplace operator to (3.52)1, we get

(Δ𝜙(𝑇 − 𝑡, · ))𝑡 − Δ(Δ𝜙(𝑇 − 𝑡, · )) = 𝑓 in 𝑄, (E.12)

where

𝑓 := Δ((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · ) + Δ(𝐷𝜙𝑏)(𝑇 − 𝑡, · ) + Δ(𝑐∇𝜓)(𝑇 − 𝑡, · )

−∇ (∇ · ((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · )) − ∇(∇ · (𝐷𝜙𝑏))(𝑇 − 𝑡, · ) − ∇(∇ · (𝑐∇𝜓))(𝑇 − 𝑡, · ).

From (E.12), we deduce that 𝑢̃ solves⎧⎪⎨⎪⎩
𝜕𝑡𝑢̃− Δ𝑢̃ = 𝐹 in (0, 𝑇 ) × R𝑛,

𝑢̃(0, · ) = 0 in R𝑛,
(E.13)

with

𝐹 = 𝜂𝜁𝑓 + 𝜂′𝜁Δ𝜙(𝑇 − 𝑡, · ) − 2𝜂∇𝜁 · ∇Δ𝜙(𝑇 − 𝑡, · ) − 𝜂Δ𝜁Δ𝜙(𝑇 − 𝑡, · ).

Notice that 𝐹 ∈ 𝐿2(0, 𝑇 ;𝐻−2(R𝑛)𝑛) and we a priori know that 𝑢̃ ∈ 𝐿2((0, 𝑇 )×R𝑛)𝑛 (from
its definition). From (E.13), we have that 𝑢̃𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻−2(R𝑛)𝑛), so that 𝑢(0, · ) makes
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sense. Now, we rewrite 𝐹 in a more appropriate way, so that it is given by the sum of
two functions: in the first one, we include all the terms with derivatives of second order of
(𝑎 ·∇)𝜙, 𝐷𝜙𝑏, 𝑐∇𝜓 and 𝜙; in the second one, we consider all the other terms. Notice that
this second function has a support contained in 𝜔0 ∖ 𝜔1 (because derivatives of 𝜁 appear
everywhere). More precisely, we set 𝐹 = 𝐹1 + 𝐹2, with

𝐹1 = 𝜂Δ (𝜁((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · )) + 𝜂Δ (𝜁(𝐷𝜙𝑏)(𝑇 − 𝑡, · )) + 𝜂Δ (𝜁(𝑐∇𝜓)(𝑇 − 𝑡, · ))

−𝜂∇ (∇ · (𝜁((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · ))) − 𝜂∇ (∇ · (𝜁(𝐷𝜙𝑏)(𝑇 − 𝑡, · )))

−𝜂∇ (∇ · (𝜁(𝑐∇𝜓)(𝑇 − 𝑡, · ))) + 𝜂′Δ(𝜁𝜙(𝑇 − 𝑡, · )),

and

𝐹2 = −2𝜂∇𝜁 · ∇((𝑎 · ∇)𝜙)(𝑇 − 𝑡, ·) − 𝜂Δ𝜁((𝑎 · ∇)𝜙)(𝑇 − 𝑡, ·) − 2𝜂∇𝜁 · ∇(𝐷𝜙𝑏)(𝑇 − 𝑡, ·)

−𝜂Δ𝜁(𝐷𝜙𝑏)(𝑇 − 𝑡, · ) − 2𝜂∇𝜁 · ∇(𝑐∇𝜓)(𝑇 − 𝑡, · ) − 𝜂Δ𝜁(𝑐∇𝜓)(𝑇 − 𝑡, · )

+𝜂∇ (∇𝜁 · ((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · ))) + 𝜂∇𝜁(∇ · ((𝑎 · ∇)𝜙)(𝑇 − 𝑡, · ))

+𝜂∇ (∇𝜁 · (𝐷𝜙𝑏)(𝑇 − 𝑡, · ))) + 𝜂∇𝜁(∇ · (𝐷𝜙𝑏)(𝑇 − 𝑡, · ))

+𝜂∇ (∇𝜁 · (𝑐∇𝜓)(𝑇 − 𝑡, · ))) + 𝜂∇𝜁(∇ · (𝑐∇𝜓)(𝑇 − 𝑡, · ))

−2𝜂′∇𝜁 · ∇𝜙(𝑇 − 𝑡, ·) − 𝜂′Δ𝜁𝜙(𝑇 − 𝑡, ·) − 2𝜂∇𝜁 · ∇Δ𝜙(𝑇 − 𝑡, ·) − 𝜂Δ𝜁Δ𝜙(𝑇 − 𝑡, ·).

Notice that 𝐹 , 𝐹1 ∈ 𝐿2(0, 𝑇 ;𝐻−2(R𝑛)𝑛), while 𝐹2 ∈ 𝐿2(0, 𝑇 ;𝐻−1(R𝑛)𝑛).
Next, we introduce two functions 𝑢̃1 and 𝑢̃2 in 𝐿2((0, 𝑇 ) × R𝑛)𝑛 satisfying⎧⎪⎨⎪⎩

𝜕𝑡𝑢̃
𝑖 − Δ𝑢̃𝑖 = 𝐹𝑖 in (0, 𝑇 ) × R𝑛,

𝑢̃𝑖(0, · ) = 0 in R𝑛,
(E.14)

for 𝑖 = 1, 2. It is clear that 𝑢̃ = 𝑢̃1 + 𝑢̃2 then
∫︁∫︁

(0,𝑇 )×𝜔′
|𝑢̃|2 ≤ 2

(︃∫︁∫︁
(0,𝑇 )×𝜔′

|𝑢̃1|2 +
∫︁∫︁

(0,𝑇 )×𝜔′
|𝑢̃2|2

)︃
.

Step 5.a: Estimates of 𝑢̃1.
We see 𝑢̃1 as the transposition solution of the Cauchy problem for the heat equation

(E.14) for 𝑖 = 1. This means that 𝑢̃1 is the unique function in 𝐿2((0, 𝑇 ) × R𝑛)𝑛 that, for
each ℎ ∈ 𝐿2((0, 𝑇 ) × R𝑛)𝑛, one has∫︁∫︁

(0,𝑇 )×R𝑛
𝑢̃1 · ℎ =

∫︁∫︁
(0,𝑇 )×R𝑛

(𝜂𝜁((𝑎 · ∇)𝜙+𝐷𝜙𝑏+ 𝑐∇𝜓)(𝑇 − 𝑡, · )) · Δ𝑧

−
∫︁∫︁

(0,𝑇 )×R𝑛
𝜂𝜁((𝑎 · ∇)𝜙+𝐷𝜙𝑏+ 𝑐∇𝜓)(𝑇 − 𝑡, · ) · ∇(∇ · 𝑧)

+
∫︁∫︁

(0,𝑇 )×R𝑛
𝜂′𝜁𝜙(𝑇 − 𝑡, · ) · Δ𝑧 ,



119

where 𝑧 is the solution of ⎧⎪⎨⎪⎩
−𝜕𝑡𝑧 − Δ𝑧 = ℎ in (0, 𝑇 ) × R𝑛,

𝑧(𝑇, · ) = 0 in R𝑛.
(E.15)

Remark that, for every ℎ ∈ 𝐿2((0, 𝑇 )×R𝑛)𝑛, equation (E.15) possesses exactly one solution
𝑧 ∈ 𝐿2(0, 𝑇 ;𝐻2(R𝑛)𝑛) that depends continuously on ℎ. Therefore, 𝑢̃1 is well defined and

‖𝑢̃1‖𝐿2((0,𝑇 )×R𝑛)𝑛 ≤ 𝐶‖𝐹1‖𝐿2(0,𝑇 ;𝐻−2(R𝑛)𝑛). (E.16)

Furthermore, it is not difficult to show that 𝑢̃1 ∈ 𝐶0([0, 𝑇 ];𝐻−2(R𝑛)𝑛) and solves (E.14)
for 𝑖 = 1 in the distributional sense. Moreover, from (E.16) it follows that

∫︁∫︁
(0,𝑇 )×R𝑛

|𝑢̃1|2 ≤ 𝐶

(︃∫︁∫︁
(0,𝑇 )×R𝑛

|𝜂𝜁(𝑎 · ∇)𝜙|2 +
∫︁∫︁

(0,𝑇 )×R𝑛
|𝜂𝜁𝐷𝜙𝑏|2

+
∫︁∫︁

(0,𝑇 )×R𝑛
|𝜂𝜁𝑐∇𝜓|2 +

∫︁∫︁
(0,𝑇 )×R𝑛

|𝜂′𝜁𝜙|2
)︃
.

Here, we have used the fact that 𝜂(𝑇−𝑡, · ) = 𝜂(𝑡, · ) ∀𝑡 ∈ (0, 𝑇 ). Thanks to the properties
of 𝜁, we finally get∫︁∫︁

(0,𝑇 )×𝜔′
|𝑢̃1|2 ≤

∫︁∫︁
(0,𝑇 )×R𝑛

|𝑢̃1|2

≤ 𝐶

(︃∫︁∫︁
(0,𝑇 )×𝜔0

|𝜂(𝑎 · ∇)𝜙|2 +
∫︁∫︁

(0,𝑇 )×𝜔0
|𝜂𝐷𝜙𝑏|2

+
∫︁∫︁

(0,𝑇 )×𝜔0
|𝜂𝑐∇𝜓|2 +

∫︁∫︁
(0,𝑇 )×𝜔0

|𝜂′𝜙|2
)︃
.

(E.17)

Step 5.b: Estimates of 𝑢̃2.
Now, we deal with the Cauchy problem (E.14) for 𝑖 = 2, where the right-hand side is

in 𝐿2(0, 𝑇 ;𝐻−1(R𝑛)𝑛). The existence and uniqueness of a solution 𝑢̃2 ∈ 𝐿2(0, 𝑇 ;𝐻1(R𝑛)𝑛)
is classical. Recall that 𝐹2(𝑡, · ) has support in 𝜔0 ∖ 𝜔1 for almos every 𝑡, while we would
like to estimate the 𝐿2-norm of the solution in 𝜔′ and 𝜔′ is disjoint of 𝜔0 ∖ 𝜔1. We will
start by writing 𝑢̃2 in terms of the fundamental solution 𝐺 = 𝐺(𝑡, 𝑥) of the heat equation.
To do this, we first notice that 𝐹2 can be written in the form

𝐹2 = 𝐹21 + ∇ · 𝐹22,

where 𝐹21 and 𝐹22 are 𝐿2 functions supported in [0, 𝑇 ]× (𝜔0 ∖𝜔1) which can be written as
sums of derivatives up to the second order of products 𝜂𝐷𝛽𝜁𝜙, 𝜂𝐷𝛽𝜁(𝑎 · ∇)𝜙, 𝜂𝐷𝛽𝜁𝐷𝜙𝑏,
𝜂𝐷𝛽𝜁𝑐∇𝜓 and 𝜂′𝐷𝛽𝜁𝜙 with 1 ≤ |𝛽| ≤ 4. Thus, we have:

𝑢̃2(𝑡, 𝑥) =
∫︁ 𝑡

0

∫︁
𝜔0∖𝜔1

𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝐹21(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠−
∫︁ 𝑡

0

∫︁
𝜔0∖𝜔1

∇𝑦𝐺(𝑡− 𝑠, 𝑥− 𝑦) ·𝐹22(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,
(E.18)
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for all (𝑡, 𝑥) ∈ (0, 𝑇 )×𝜔′, where 𝐺 is the fundamental solution for the heat operator given
by

𝐺(𝑡, 𝑥) = 𝑒−|𝑥|2/2𝑡

(4𝜋𝑡)𝑛/2 ∀𝑥 ∈ R𝑛, ∀𝑡 > 0.

Notice that the above formula makes sense because the integration is over a region
far from the singularity of 𝐺, i.e. for any 𝑦 ∈ 𝜔0 ∖ 𝜔1 and any 𝑥 ∈ 𝜔′, one has |𝑥 − 𝑦| ≥
𝑑𝑖𝑠𝑡(𝜕𝜔1, 𝜕𝜔0) > 0. Integrating by parts with respect to 𝑦 in (E.18) and passing all the
derivatives from 𝐹21 and 𝐹22 to 𝐺 and ∇𝑦𝐺, we obtain an expression for 𝑢̃2 of the form

𝑢̃2(𝑡, 𝑥) =
∫︁∫︁

(0,𝑡)×(𝜔0∖𝜔1)

∑︁
𝛼∈𝐼,𝛽∈𝐽

𝐷𝛼
𝑦𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝐷𝛽

𝑦 𝜁(𝑦)𝑧𝛼,𝛽(𝑠, 𝑦)𝑑𝑦 𝑑𝑠,

where all 𝛼 ∈ 𝐼 satisfy |𝛼| ≤ 3, all 𝛽 ∈ 𝐽 satisfy 1 ≤ |𝛽| ≤ 4 and

𝑧𝛼,𝛽(𝑠, 𝑦) = 𝜂(𝑠) (𝐶𝛼,𝛽𝜙(𝑠, 𝑦) +𝐷𝛼,𝛽((𝑎 · ∇)𝜙)(𝑠, 𝑦) + 𝐸𝛼,𝛽(𝐷𝜙𝑏)(𝑠, 𝑦))

+𝐹𝛼,𝛽(𝑐∇𝜓)(𝑠, 𝑦) + 𝐿𝛼,𝛽𝜂
′(𝑠)𝜙(𝑠, 𝑦),

with 𝐶𝛼,𝛽, 𝐷𝛼,𝛽, 𝐸𝛼,𝛽, 𝐹𝛼,𝛽, 𝐿𝛼,𝛽 ∈ R. The expression for 𝑢̃2 yields

|𝑢̃2(𝑡, 𝑥)| ≤
∫︁∫︁

(0,𝑡)×(𝜔0∖𝜔1)

∑︁
𝛼∈𝐼

|𝐷𝛼
𝑦𝐺(𝑡− 𝑠, 𝑥− 𝑦)||𝑧(𝑠, 𝑦)|𝑑𝑦 𝑑𝑠

for all (𝑡, 𝑥) ∈ (0, 𝑇 ) × 𝜔′, where

𝑧(𝑠, 𝑦) = 𝜂(𝑠) (𝐶1𝜙(𝑠, 𝑦) + 𝐶2((𝑎 · ∇)𝜙)(𝑠, 𝑦) + 𝐶3(𝐷𝜙𝑏)(𝑠, 𝑦))

+𝐶4(𝑐∇𝜓)(𝑠, 𝑦) + 𝐶5𝜂
′(𝑠)𝜙(𝑠, 𝑦)

Now, for every 0 < 𝛿 < 𝑑𝑖𝑠𝑡(𝜕𝜔1, 𝜕𝜔0) there exists a positive constant 𝐶(𝛿, 𝜔𝑐) such that

|𝐷𝛼𝐺(𝑡−𝑠, 𝑥−𝑦)| ≤ 𝐶 exp
(︃

−𝛿2

2(𝑡− 𝑠)

)︃
, ∀𝛼 ∈ 𝐼, (𝑡, 𝑥) ∈ (0, 𝑇 )×𝜔′, ∀(𝑠, 𝑦) ∈ (0, 𝑡)×(𝜔0∖𝜔1).

Thus, we have that

|𝑢̃2(𝑡, 𝑥)| ≤ 𝐶
∫︁∫︁

(0,𝑡)×(𝜔0∖𝜔1)
exp

(︃
−𝛿2

2(𝑡− 𝑠)

)︃
|𝑧(𝑠, 𝑦)| 𝑑𝑦 𝑑𝑠.

Next, we integrate this last estimate in (0, 𝑇 ) ×𝜔′ and use Cauchy-Scwharz inequality
to obtain∫︁∫︁

(0,𝑇 )×𝜔′
|𝑢̃2(𝑡, 𝑥)|2 ≤ 𝐶

∫︁ 𝑇

0

(︃∫︁ 𝑡

0

∫︁
𝜔0∖𝜔1

exp
(︃

−𝛿2

2(𝑡− 𝑠)

)︃
|𝑧(𝑠, 𝑦)|𝑑𝑦𝑑𝑠

)︃2

𝑑𝑡

≤ 𝐶𝑇
∫︁ 𝑇

0

(︃∫︁ 𝑡

0
exp

(︃
−𝛿2

2(𝑡− 𝑠)

)︃
‖𝑧(𝑠)‖2

𝐿2(𝜔0)𝑑𝑠

)︃
𝑑𝑡.

Finally, observe that we can write the last term of the previous estimate as a convo-
lution, i.e. ∫︁ 𝑇

0

(︃∫︁ 𝑡

0
exp

(︃
−𝛿2

2(𝑡− 𝑠)

)︃
‖𝑧(𝑠, · )‖2

𝐿2(𝜔0)𝑑𝑠

)︃
𝑑𝑡 =

∫︁ 𝑇

0
(𝑓1 * 𝑓2)(𝑡)𝑑𝑡,
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where
𝑓1(𝑡) := 𝑒−𝛿2/2𝑡1(0,+∞)(𝑡) and 𝑓2(𝑡) := ‖𝑧(𝑡, · )‖2

𝐿2(𝜔0)1[0,𝑇 ](𝑡),

that is, 𝑓1, 𝑓2 ∈ 𝐿1(R). From Young’s inequality, we obtain∫︁∫︁
(0,𝑇 )×𝜔′

|𝑢̃2(𝑡, 𝑥)|2 ≤ 𝐶𝑇 2
∫︁∫︁

(0,𝑇 )×𝜔0
|𝑧(𝑡, 𝑥)|2

and the definition of 𝑧 gives∫︁∫︁
(0,𝑇 )×𝜔′

|𝑢̃2(𝑡, 𝑥)|2 ≤ 𝐶𝑇 2
(︃∫︁∫︁

(0,𝑇 )×𝜔0
|𝜂′𝜙|2 + |𝜂|2

(︁
|𝜙|2 + |(𝑎 · ∇)𝜙)|2 + |𝐷𝜙𝑏|2 + |𝑐∇𝜓|2

)︁)︃
.

Hence, from (E.17), and the previous estimates of 𝑢̃1 and 𝑢̃2, we deduce the following
∫︁∫︁

(0,𝑇 )×𝜔′
|𝜂|2|Δ𝜙|2 ≤ 𝐶(1 + 𝑇 2)

(︃∫︁∫︁
(0,𝑇 )×𝜔0

|𝜂′𝜙|2 + |𝜂|2
(︁
|𝜙|2 + |(𝑎 · ∇)𝜙|2

+|𝐷𝜙𝑏|2 + |𝑐∇𝜓|2)
⎞⎠

≤ 𝐶(1 + 𝑇 2)
(︃
𝑠9/2𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼̂𝜉9/2|𝜙|2

+𝑠2𝜆3(‖𝑎‖2
∞ + ‖𝑏‖2

∞)
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2|∇𝜙|2

+𝑠2𝜆3‖𝑐‖2
∞

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼̂𝜉2|∇𝜓|2
)︃

≤ 𝐶(1 + 𝑇 2)
(︃
𝑠9/2𝜆4

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−2𝑠𝛼̂𝜉9/2|𝜙|2

+𝑠2𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2(|∇𝜙|2 + |∇𝜓|2)

)︃
,

(E.19)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝑎‖2
∞ + ‖𝑏‖2

∞)(1 + ‖𝐴‖5
𝑃 + ‖𝐵‖5

𝑄)(1 + ‖𝑐‖2
∞) and

𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8).

Step 6: Local estimate of 𝜙𝑡.
In this step, we estimate the local term on 𝜙𝑡 in (E.11). First, integration by parts

gives
𝑠2𝜆3

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−2𝑠𝛼̂𝜉2|𝜙𝑡|2 = 1
2𝑠

2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′

(︁
𝑒−2𝑠𝛼̂𝜉2

)︁
𝑡𝑡

|𝜙|2

−𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼̂𝜉2𝜙 · 𝜙𝑡𝑡 .

Now, since there exists 𝐶 > 0 such that⃒⃒⃒(︁
𝑒−2𝑠𝛼̂𝜉2

)︁
𝑡𝑡

⃒⃒⃒
≤ 𝐶𝑠2𝑇 2𝑒−2𝑠𝛼̂𝜉9/2 and 𝑒−2𝑠𝛼̂ ≤ 𝐶𝑒−4𝑠𝛼̂+2𝑠𝛼*

we have that

𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼̂𝜉2|𝜙𝑡|2 ≤ 𝐶𝑠15/2𝜆8

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉15/2|𝜙|2

+
∫︁∫︁

(0,𝑇 )×𝜔′
|𝜂*|2|𝜙𝑡𝑡|2 , (E.20)
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with
𝜂* := 𝑠−7/4𝜆−1𝑒−𝑠𝛼*

𝜉−7/4.

In what follows, we estimate the second term in the right-hand side of (E.20). To do
this, we set (𝑦, 𝑞, 𝜑) := (𝜂*𝜙𝑡, 𝜂

*𝜋𝑡, 𝜂
*𝜓𝑡), and note that (𝑦, 𝑞, 𝜑) solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝑦 − Δ𝑦 − (𝑎 · ∇)𝑦 −𝐷𝑦𝑏+ ∇𝑞 = 𝑐∇𝜑+𝐺1 in 𝒪𝑇 ,

−𝜕𝑡𝜑− Δ𝜑− (𝑎+ 𝑏) · ∇𝜑 = 𝑦 · 𝑒𝑛 +𝐺2 in 𝒪𝑇 ,

∇ · 𝑦 = 0 in 𝒪𝑇 ,

𝑦 · 𝜈 = 0, [𝐷(𝑦)𝜈 + 𝐴𝑦]𝑡𝑎𝑛 = −𝜂*𝐴𝑡𝜙 on 𝛬𝑇 ,

𝜕𝜑

𝜕𝜈
+𝐵𝜑 = −𝜂*𝐵𝑡𝜓 on 𝛬𝑇 ,

𝑦(𝑇, · ) = 0, 𝜑(𝑇, · ) = 0 in 𝒪,

(E.21)

where
𝐺1 = −𝜂*

𝑡𝜙𝑡 + 𝜂*(𝑎𝑡 · ∇)𝜙+ 𝜂*𝐷𝜙𝑏𝑡 + 𝜂*𝑐𝑡∇𝜓

and
𝐺2 = −𝜂*

𝑡𝜓𝑡 + 𝜂*(𝑎+ 𝑏)𝑡 · ∇𝜓.

To see that (𝑦, 𝑞, 𝜑) solves (E.21), one can take a sequence of regular functions (𝑎𝑘, 𝑏𝑘, 𝑐𝑘)
such that

(𝑎𝑘, 𝑏𝑘, 𝑐𝑘) −→ (𝑎, 𝑏, 𝑐) weakly star in 𝐿∞(0, 𝑇 ;𝐿∞(𝒪)2𝑛+1)

and
(𝑎𝑘

𝑡 , 𝑏
𝑘
𝑡 , 𝑐

𝑘
𝑡 ) −→ (𝑎𝑡, 𝑏𝑡, 𝑐𝑡) weakly in 𝐿2(0, 𝑇 ;𝐿𝑟(𝒪)2𝑛+1).

Since there exists a unique solution (𝑦𝑘, 𝑞𝑘, 𝜑𝑘) to (E.21) with (𝑎, 𝑏, 𝑐) replaced by (𝑎𝑘, 𝑏𝑘, 𝑐𝑘),
one can take limits and conclude that (𝑦, 𝑞, 𝜑) solves (E.21).

Next, using the hypothesis on 𝑎, 𝑏, 𝑐, 𝐴 and 𝐵, the fact that 𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝒪)𝑛) ∩
𝐻1(0, 𝑇 ;𝐻−1(𝒪)𝑛) and 𝜓 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝒪)) ∩ 𝐻1(0, 𝑇 ;𝐻−1(𝒪)), we see that 𝐺1 ∈
𝐿2(0, 𝑇 ;𝐻−1(𝒪)𝑛), 𝐺2 ∈ 𝐿2(0, 𝑇 ;𝐻−1(𝒪)), 𝜂*𝐴𝑡𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻−1/2(𝜕𝒪)𝑛) and 𝜂*𝐵𝑡𝜓 ∈
𝐿2(0, 𝑇 ;𝐻−1/2(𝜕𝒪)). Moreover, the following estimate holds

‖𝑦‖2
𝐿2(𝐻1) + ‖𝜑‖2

𝐿2(𝐻1)

≤ 𝐶𝑒𝐶𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝑐‖2
∞+‖𝐴‖2

∞)
(︁
‖(𝐺1, 𝐺2)‖2

𝐿2(𝐻−1) + ‖𝜂*(𝐴𝑡𝜙,𝐵𝑡𝜓)‖2
𝐿2(𝐻−1/2)

)︁
.

(E.22)

Notice that this is still not enough to absorb the local term on 𝜙𝑡𝑡 in (E.20). Thus, we
must show that 𝑦 is actually a strong solution of (E.21)1,3,4,6, which will be true if we prove
that 𝐺1 ∈ 𝐿2(𝒪𝑇 )𝑛 and 𝜂*𝐴𝑡𝜙 ∈ 𝐻(1−𝑙)/2(0, 𝑇 ;𝐻(𝑙−1/2)(𝜕𝒪)𝑛) ∩ 𝐿2(0, 𝑇 ;𝐻1/2(𝜕𝒪)𝑁).

To see that 𝐺1 ∈ 𝐿2(𝒪𝑇 )𝑛, we must verify that 𝜂*(𝑎𝑡 ·∇)𝜙, 𝜂*𝐷𝜙𝑏𝑡 and 𝜂*𝑐𝑡∇𝜓 belong
to 𝐿2(𝒪𝑇 )𝑛. In fact, since 𝑦 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝒪)𝑛), we have that 𝜂*∇𝜙 ∈ 𝐻1(0, 𝑇 ;𝐿2(𝒪)𝑛×𝑛)
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and, using that 𝜂*∇𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝒪)𝑛×𝑛) and (BOYER; FABRIE, 2012, Theorem II.5.14),
we conclude that

𝜂*∇𝜙 ∈ 𝐶0([0, 𝑇 ];𝐻1/2(𝒪)𝑛×𝑛).

Analogously, we have that

𝜂*∇𝜓 ∈ 𝐶0([0, 𝑇 ];𝐻1/2(𝒪)𝑛).

Hence, from the assumptions on 𝑎𝑡, 𝑏𝑡 and 𝑐𝑡, we readily see that 𝜂*(𝑎𝑡 · ∇)𝜙 ∈ 𝐿2(𝒪𝑇 )𝑛,
𝜂*𝐷𝜙𝑏𝑡 ∈ 𝐿2(𝒪𝑇 )𝑛 and 𝜂*𝑐𝑡∇𝜓 ∈ 𝐿2(𝒪𝑇 )𝑛. Moreover, the following estimate holds

‖𝜂*(𝑎𝑡 · ∇)𝜙‖2
𝐿2(𝒪𝑇 )𝑛 + ‖𝜂*𝐷𝜙𝑏𝑡‖2

𝐿2(𝒪𝑇 )𝑛 + ‖𝜂*𝑐𝑡∇𝜓‖2
𝐿2(𝒪𝑇 )𝑛

≤ 𝐶
(︁
‖𝑎𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2

𝐿2(𝐿𝑟)

)︁
×
(︃

‖𝜂*𝜙‖2
𝐿2(𝐻2) + ‖𝜂*

𝑡𝜙‖2
𝐿2(𝐻1) + ‖𝑦‖2

𝐿2(𝐻1)

+‖𝜂*𝜓‖2
𝐿2(𝐻2) + ‖𝜂*

𝑡𝜓‖2
𝐿2(𝐻1) + ‖𝜑‖2

𝐿2(𝐻1)

)︃
.

Let us now prove that 𝜂*𝐴𝑡𝜙 ∈ 𝐻(1−𝑙)/2(0, 𝑇 ;𝐻(𝑙−1/2)(𝜕𝒪)𝑛) ∩ 𝐿2(0, 𝑇 ;𝐻1/2(𝜕𝒪)𝑛).
Indeed, from estimate (E.22) we see that 𝜂*𝜙 ∈ 𝐻1(0, 𝑇 ;𝐻1/2(𝜕𝒪)𝑛) and, together with
assumption (3.50) on 𝐴, we obtain

𝜂*𝐴𝑡𝜙 ∈ 𝐻(1−𝑙)/2(0, 𝑇 ;𝐻𝜗2(𝜕𝒪)𝑛) ⊂ 𝐻(1−𝑙)/2(0, 𝑇 ;𝐻 𝑙−1/2(𝜕𝒪)𝑛),

with the following estimate

‖𝜂*(𝜕𝑡𝐴)𝜙‖2
𝐻(1−𝑙)/2(𝐻𝑙−1/2) ≤ 𝐶‖𝐴‖2

𝐻(3−𝑙)/2(𝐻𝜗2 )

(︁
‖𝜂*

𝑡𝜙‖2
𝐿2(𝐻1) + ‖𝑦‖2

𝐿2(𝐻1) + ‖𝜂*𝜙‖2
𝐿2(𝐻1)

)︁
.

Also, since 𝜂*𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻2(𝒪)𝑛) ∩𝐻1(0, 𝑇 ;𝐻1(𝒪)𝑛), by interpolation we have that
𝜂*𝜙 ∈ 𝐻1/4(0, 𝑇 ;𝐻5/4(𝜕𝒪)𝑛), which gives 𝜂*𝐴𝑡𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻1/2(𝜕𝒪)𝑛), because 𝐴𝑡 ∈
𝐻(1−𝑙)/2(0, 𝑇 ;𝐻𝜗2(𝜕𝒪𝑛×𝑛)). Moreover,

‖𝜂*𝐴𝑡𝜙‖2
𝐿2(𝐻1/2) ≤ 𝐶‖𝐴‖2

𝐻(3−𝑙)/2(𝐻𝜗2 )

(︁
‖𝜂*𝜙‖2

𝐿2(𝐻2) + ‖𝜂*
𝑡𝜙‖2

𝐿2(𝐻1) + ‖𝑦‖2
𝐿2(𝐻1)

)︁
.

Thus, we have proved that 𝑦 is a strong solution of (E.21)1,3,4,6. Recalling (GUERRERO,
2006b, Proposition 1.1), we deduce in particular that 𝑦𝑡 ∈ 𝐿2(𝒪𝑇 ) and

‖𝑦𝑡‖2
𝐿2(𝒪𝑇 ) ≤ 𝐶𝑒𝐶𝑇 ‖𝐴‖2

𝑃 (1 + ‖𝐴‖4
𝑃 )
(︂

‖𝐺1‖2
𝐿2(𝒪𝑇 )𝑛 + ‖(𝑎 · ∇)𝑦‖2

𝐿2(𝒪𝑇 )𝑛

+ ‖𝐷𝑦𝑏‖2
𝐿2(𝒪𝑇 )𝑛 + ‖𝑐∇𝜑‖2

𝐿2(𝒪𝑇 )𝑛 + ‖𝜂*𝐴𝑡𝜙‖2
𝐿2(𝐻1/2) + ‖𝜂*𝐴𝑡𝜙‖2

𝐻(1−𝑙)/2(𝐻𝑙−1/2)

)︂
≤ 𝐶𝑒𝐶𝑇 ‖𝐴‖2

𝑃 (1 + ‖𝐴‖4
𝑃 )(1 + ‖𝐴‖2

𝑃 )
[︃ (︁

1 + ‖𝑎𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2
𝐿2(𝐿𝑟)

)︁
×
(︁
‖𝜂*

𝑡𝜙𝑡‖2
𝐿2(𝒪𝑇 )𝑛 + ‖𝜂*𝜙‖2

𝐿2(𝐻2) + ‖𝜂*
𝑡𝜙‖2

𝐿2(𝐻1) + ‖𝑦‖2
𝐿2(𝐻1) + ‖𝜂*𝜓‖2

𝐿2(𝐻2)

+‖𝜂*
𝑡𝜓‖2

𝐿2(𝐻1) + ‖𝜑‖2
𝐿2(𝐻1)

)︁
+
(︁
‖𝑎‖2

∞ + ‖𝑏‖2
∞ + ‖𝑐‖2

∞

)︁ (︁
‖𝑦‖2

𝐿2(𝐻1) + ‖𝜑‖2
𝐿2(𝐻1)

)︁
+
(︁
‖𝜂*𝜙‖2

𝐿2(𝐻2) + ‖𝜂*
𝑡𝜙‖2

𝐿2(𝐻1) + ‖𝑦‖2
𝐿2(𝐻1)

)︁ ]︃
.
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Taking now 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝐴‖2
𝑃 )(1 + ‖𝐴‖5

𝑃 + ‖𝐵‖5
𝑄)(1 + ‖𝑎‖2

∞ +
‖𝑏‖2

∞ + ‖𝑐‖2
∞ + ‖𝑎𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2

𝐿2(𝐿𝑟))(1 + ‖𝑐‖2
∞) and 𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 + 𝑇 8),

from (E.22) we obtain

‖𝜂*𝜙𝑡𝑡‖2
𝐿2(𝒪𝑇 ) ≤ 𝐶𝜆2

(︁
‖𝜂*

𝑡𝜙𝑡‖2
𝐿2(𝒪𝑇 )𝑛 + ‖𝜂*

𝑡𝜓𝑡‖2
𝐿2(𝒪𝑇 ) + ‖𝜂*𝜙‖2

𝐿2(𝐻2) + ‖𝜂*
𝑡𝜙‖2

𝐿2(𝐻1)

+‖𝜂*𝜓‖2
𝐿2(𝐻2) + ‖𝜂*

𝑡𝜓‖2
𝐿2(𝐻1) + ‖𝑦‖2

𝐿2(𝒪𝑇 ) + ‖𝜑‖2
𝐿2(𝒪𝑇 )

)︁
.

Since |𝜂*
𝑡 | ≤ 𝜀𝜆−1𝑠−1/2𝜉−1/2𝑒−𝑠𝛼* , for 𝜀 sufficiently small, the following is found:

‖𝜂*𝜙𝑡𝑡‖2
𝐿2(𝒪𝑇 ) ≤ 𝐶𝜀

(︃
𝑠−1

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−1(|𝜙𝑡|2 + |𝜓𝑡|2)

+𝑠−1
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−1(|∇𝜙|2 + |∇𝜓|2)

)︃

+𝐶𝜆2
(︁
‖𝜂*𝜙‖2

𝐿2(𝐻2) + ‖𝜂*𝜓‖2
𝐿2(𝐻2)

)︁
.

(E.23)

We need to estimate the terms ‖𝜂*𝜙‖2
𝐿2(𝐻2) and ‖𝜂*𝜓‖2

𝐿2(𝐻2). Thus, let us set (𝜙, 𝜋̂, 𝜓) :=
𝜂*(𝜙, 𝜋, 𝜓). One has:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝜙− Δ𝜙− (𝑎 · ∇)𝜙−𝐷𝜙𝑏+ ∇𝜋̂ = 𝜂*𝑐∇𝜓 − 𝜂*
𝑡𝜙 in 𝒪𝑇 ,

−𝜕𝑡𝜓 − Δ𝜓 − (𝑎+ 𝑏) · ∇𝜓 = 𝜂*𝜙 · 𝑒𝑛 − 𝜂*
𝑡𝜓 in 𝒪𝑇 ,

∇ · 𝜙 = 0 in 𝒪𝑇 ,

𝜙 · 𝜈 = 0, [𝐷(𝜙)𝜈 + 𝐴𝜙]𝑡𝑎𝑛 = 0 on 𝛬𝑇 ,

𝜕𝜓

𝜕𝜈
+𝐵𝜓 = 0 on 𝛬𝑇 ,

𝜙(𝑇, · ) = 0, 𝜓(𝑇, · ) = 0 in 𝒪.

Again, from energy estimates (GUERRERO, 2006b, Proposition 1.1), we find that

‖𝜙‖2
𝐿2(𝐻2) ≤ 𝐶𝑒𝐶𝑇 (‖𝑎‖2

∞+‖𝑏‖2
∞+‖𝐴‖2

𝑃 )(1+‖𝐴‖4
𝑃 )(1+‖𝑎‖2

∞+‖𝑏‖2
∞)
(︁
‖𝜂*

𝑡𝜙‖2 + ‖𝑐‖2
∞‖𝜂*∇𝜓‖2

)︁
,

and, from maximal 𝐿2-regularity estimates for the heat equation with homogeneous Robin
boundary conditions (similar arguments as in (FERNÁNDEZ-CARA et al., 2006a, Proposition
2)), we deduce that

‖𝜓‖2
𝐿2(𝐻2) ≤ 𝐶𝑒𝐶𝑇 (‖𝑎‖2

∞+‖𝑏‖2
∞+‖𝐵‖2

𝑄)(1 + ‖𝐵‖4
𝑄)(1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞)
(︁
‖𝜂*𝜙‖2 + ‖𝜂*

𝑡𝜓‖2
)︁
.

Adding the last two inequalities, we have:

‖𝜙‖2
𝐿2(𝐻2) + ‖𝜓‖2

𝐿2(𝐻2) ≤ 𝜆 (‖𝜂*
𝑡𝜙‖2 + ‖𝜂*

𝑡𝜓‖2 + ‖𝜂*∇𝜓‖2 + ‖𝜂*𝜙‖2)

≤ 𝜆

(︃
𝜀𝑠−1𝜆−2

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−1(|𝜙|2 + |𝜓|2)

+𝑠−7/2𝜆−2
∫︁∫︁

𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−7/2|∇𝜓|2

)︃
.
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From this last estimate, (E.23) and (E.20), we see that

𝑠2𝜆3
∫︁∫︁

(0,𝑇 )×𝜔′
𝑒−2𝑠𝛼̂𝜉2|𝜙𝑡|2 ≤ 𝐶𝑠15/2𝜆8

∫︁∫︁
(0,𝑇 )×𝜔′

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉15/2|𝜙|2

+𝜀𝐼(𝑠, 𝜆;𝜙) + 𝜀𝐼(𝑠, 𝜆;𝜓),
(E.24)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝐴‖2
𝑃 )(1 + ‖𝐴‖5

𝑃 )(1 + ‖𝐵‖5
𝑄)(1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞ +

‖𝑐‖2
∞ + ‖𝑎𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2

𝐿2(𝐿𝑟) + ‖𝐵‖2
∞)(1 + ‖𝑐‖2

∞) and 𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 +𝑇 8).

Step 7: Arrangements.
Combining (E.11), (E.19) and (E.24), it follows that

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶(1 + 𝑇 2)
(︃
𝑠15/2𝜆8

∫︁∫︁
(0,𝑇 )×𝜔0

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉15/2|𝜙|2

+𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼𝜉3|𝜓|2

+𝑠2𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2(|∇𝜙|2 + |∇𝜓|2)

)︃
,

(E.25)

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝐴‖2
𝑃 )(1 + ‖𝐴‖5

𝑃 )(1 + ‖𝐵‖5
𝑄)(1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞ +

‖𝑐‖2
∞ + ‖𝑎𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2

𝐿2(𝐿𝑟) + ‖𝐵‖2
∞)(1 + ‖𝑐‖2

∞) and 𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 +𝑇 8).

Step 8: Estimates of the local gradient terms.
Let us consider a cut-off function 𝜌 ∈ 𝐶1(𝜔𝑐) with 𝜌 = 1 in 𝜔0, supp 𝜌 ⊂⊂ 𝜔𝑐. Then,

𝑠2𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2|∇𝜙|2 ≤ 𝑠2𝜆4

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼̂𝜉2𝜌|∇𝜙|2 .

After integration by parts, thanks to Hölder and Young inequalities, we deduce that

𝑠2𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2|∇𝜙|2 ≤ 𝜀𝑠−1

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−1(|Δ𝜙|2 + |∇𝜙|2)

+ 𝐶𝑠5𝜆8
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉5|𝜙|2 ,

where 𝜀 is a small enough constant.
Similar computations yield

𝑠2𝜆4
∫︁∫︁

(0,𝑇 )×𝜔0
𝑒−2𝑠𝛼̂𝜉2|∇𝜓|2 ≤ 𝜀𝑠−1

∫︁∫︁
𝒪𝑇

𝑒−2𝑠𝛼*
𝜉−1(|Δ𝜓|2 + |∇𝜓|2)

+ 𝐶𝑠5𝜆8
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉5|𝜓|2 .
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Then, using (E.25), and these inequalities, we obtain

𝐼(𝑠, 𝜆;𝜓) + 𝐼(𝑠, 𝜆;𝜙) ≤ 𝐶(1 + 𝑇 2)
(︃
𝑠15/2𝜆8

∫︁∫︁
(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉15/2|𝜙|2

+ 𝑠5𝜆8
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉5|𝜙|2

+ 𝑠3𝜆4
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−2𝑠𝛼𝜉3|𝜓|2

+ 𝑠5𝜆8
∫︁∫︁

(0,𝑇 )×𝜔𝑐

𝑒−4𝑠𝛼̂+2𝑠𝛼*
𝜉5|𝜓|2

)︃

+ 𝜀𝐼(𝑠, 𝜆;𝜙) + 𝜀𝐼(𝑠, 𝜆;𝜓),

for 𝜆 ≥ ̂︀𝜆𝑒̂︀𝜆𝑇 (‖𝑎‖2
∞+‖𝑏‖2

∞+‖𝐴‖2
𝑃 +‖𝐵‖2

𝑄)(1 + ‖𝐴‖2
𝑃 )(1 + ‖𝐴‖5

𝑃 )(1 + ‖𝐵‖5
𝑄)(1 + ‖𝑎‖2

∞ + ‖𝑏‖2
∞ +

‖𝑐‖2
∞ + ‖𝑎𝑡‖2

𝐿2(𝐿𝑟) + ‖𝑏𝑡‖2
𝐿2(𝐿𝑟) + ‖𝑐𝑡‖2

𝐿2(𝐿𝑟) + ‖𝐵‖2
∞)(1 + ‖𝑐‖2

∞) and 𝑠 ≥ ̂︀𝑠𝑒8𝜆‖𝜂0‖∞(𝑇 4 +𝑇 8).
Finally, we easily obtain the desired Carleman estimate (3.54) by taking 𝜀 sufficiently
small.

This concludes the proof.
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