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ABSTRACT

An important aspect of speech understanding is quality, which can be defined as the

fidelity of the signal in relation to its original (or idealized) version when a comparison is al-

lowed. Despite being a subjective issue, there are approaches to measuring speech quality.

The most effective approach consists of applying subjective tests, in which individuals evaluate

the quality of the speech samples, associating them with quality indexes. However, there are

automatic measurement applications that operate at lower costs and generate faster responses.

Such solutions can be divided into methodologies that use only the sample to be evaluated

(non-reference) and those that use the degraded and reference versions of the speech sample

(full-reference). Unfortunately, for many current applications, it is impossible to obtain the

original speech sample, requiring the development and application of non-reference techniques.

Thus, this dissertation presents a model of convolutional neural network for speech quality as-

sessment (CNN-SQA). This is a non-reference methodology that applies fully convolutional

layers as extractors of characteristics for speech representation. In addition, fully-connected

layers are used to perform the quality assessment step. For the entry of the model, some visual

characteristics were evaluated, despite the use of MFCC coefficients having presented the best

results. Other parameters of the new model were obtained through an iterative and incremen-

tal parameter selection process. The performance of the model was evaluated by comparing it

with the PESQ, ViSQOL and P.563 methodologies. Other experiments present analyzes of the

model’s behavior in isolated situations of speech and noise. The experiments were carried out

on publicly available databases, as well as on a new database built to evaluate the new method-

ology in the context of background noise. Finally, the results were analyzed using correlation

measures and statistical descriptions.

Keywords: Speech. Quality. Automatic assessment. Speech quality assessment. Convolutional

Neural Networks.



RESUMO

Um aspecto importante do entendimento da fala é a qualidade, esta pode ser enten-

dida como a fidelidade do sinal em relação à sua versão original (ou idealizada) quando uma

comparação é permitida. Apesar de ser uma questão subjetiva, existem abordagens para medir a

qualidade de fala. A abordagem mais eficaz consiste na aplicação de testes subjetivos, nos quais

os indivíduos avaliam a qualidade de amostras de fala, associando-as a índicies de qualidade.

No entanto, existem aplicações de medição automática que operam a custos mais baixos e geram

respostas mais rápidas. Tais soluções podem ser divididas em metodologias que usam apenas a

amostra a ser avaliada (non-reference) e aquelas que usam as versões degradada e de referência

da amostra de fala (full-reference). Infelizmente, para muitas aplicações atuais, é impossível

obter a amostra de fala original, contribuindo para o desenvolvimento e a aplicação de técnicas

(non-reference). Assim, esta dissertação apresenta um modelo de rede neural convolucional

para avaliação da qualidade de fala (CNN-SQA). Essa é uma metodologia (non-reference) que

aplica camadas completamente convolucionais como extratores de características para repre-

sentação da fala. Além disso, camadas completamente conectadas são utilizadas para executar

a etapa de avaliação de qualidade. Para a entrada do modelo algumas características visuais

foram avaliadas, apesar do uso de coeficientes MFCC ter apresentado os melhores resultados.

Outros parâmetros do novo modelo foram obtidos através de um processo iterativo e incremen-

tal de seleção de parâmetros. O desempenho do modelo foi avaliado comparando-o com as

metodologias PESQ, ViSQOL e P.563. Outros experimentos apresentam análises do comporta-

mento do modelo em situações isoladas de fala e ruído. Os experimentos foram realizados em

bancos de dados publicamente disponíveis, bem como em um novo banco de dados construído

para avaliar a nova metodologia no contexto de ruído de fundo. Por fim, os resultados foram

analisados usando medidas de correlação e descrições estatísticas.

Palavras-chave: Fala. Qualidade. Avaliação automática. Avaliação da qualidade de fala.

Redes Neurais Convolucionais.
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1 INTRODUCTION

As one of the main human characteristics, the speech is the result of a process that starts

in the human vocal apparatus. There, it is produced a structured set of continuous sounds which,

when following language rules, becomes understandable by other humans (MCLOUGHLIN,

2009). The speech can be considered a subsystem of a language, used to conduct commu-

nication throughout the acoustic channel (RAAKE, 2006). Three main components can be

extracted from the human communication process: the produced speech sample, the underlying

language and lastly the listener. The object of study of this work is focused on the last com-

ponent, that involves a human being able to listen and to understand the speech sample. As a

matter of human perception, speech understanding is a complex topic that involves the human

auditory system and brain processes needed to decode the speech message.

The two main aspects of speech understanding can be defined as intelligibility and

quality (MCLOUGHLIN, 2009) (both strongly connected to each other). The first one is

concerned on the original message information contained in a speech signal; in this view, even

a highly noise speech sample can be considered as with highly intelligibility if its content can

be understandable. The quality aspect describes the fidelity of the speech signal in relation of its

original (or idealized) version. This does not mean that the speech signal can not be changed,

but that the processed version of it must have high similarity with the reference version to

achieve high fidelity. Quality is a subjective matter and, due to that, is quite difficult to measure

and to predict.

In this work, the focus is on the quality aspect of the speech; the reader can learn more

about speech intelligibility consulting (PAVLOVIC, 2018). Although the quality aspect of the

speech can be considered a highly subjective metric, there are ways to measure it from a speech

sample by means of auditory tests, or even it can be estimated by instrumental methods.

The more confident way to measure quality in speech processing systems is the use

of subjective listening tests. On such tests, subjects evaluate the quality of speech samples

associating it to a score. One often choice to determine the overall sample score is the use of

scales, that insert some semantic to the evaluation result; the most commonly used is the Mean

Opinion Score (MOS) (ITU-T, 2016). In its most used version, it is used a scale of five possible

rates (with scales graded as integers from 1, meaning the worst quality, to 5, meaning the best
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quality), the average score is used as the final quality measure. Although the use of subjective

listening tests is the most reliable method to evaluate speech quality, there are relevant details

concerned to apply them (ITU–T, 1996a), some of them can be listed as:

• It is expensive since depend on high quality sound equipments and specific test condi-

tions.

• It is time consuming since they depend of laborious actions such as to recruit people, to

organize experimentation, to acquire database samples, etc.

• It is not practical for systems that needs real-time analysis.

• It is very difficult to be reproduced.

Besides the problems when employing subjective listening tests, the use of digital

technologies in telecommunications networks has promoted the emergence of various types

of services that increasingly require diagnostic tools. As an example, the development of the

fourth generation (4G) for mobile networks technology, making possible the internet access,

expanding the use of Voice over Internet Protocol (VoIP) technologies by applications as Hang-

outs, WhatsApp and Skype. These events contributed to increase the need for development of

automatic quality assessment approaches. Thus, there have been an increase number of method-

ologies for instrumental quality estimation (MÖLLER et al., 2011). These are tools devoted to

approximate the subjective quality for an average user automatically.

Since the birth of automatic quality assessment, methodologies dedicated to address-

ing an increasing number of degradations have raised. Some models have proven effective,

becoming international recommendations (ITU-T, 1998), (ITU–T, 2005), (ITU–T, 2011a).

Since the emergence of the area, the vast majority of methodologies that have emerged

perform quality assessment by using hand-crafted algorithms, highly based on speech and hear-

ing characteristics. However, because the task is based on modeling human perception, it is not

always possible to perfectly compute all sensory effects of a human being. Besides that, each

person has a different perception of the outside world based on their own experiences, making

the modeling task more complex. With these problems in mind, new methodologies have arisen

employing techniques more similar to the human learning process, based on machine learning

to model the quality perception stages (ROZHON et al., 2016), (XIE et al., 2016), (WANG

et al., 2018).
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In the last few years, the use of Deep Learning (DL) to solve classical speech process-

ing problems turned the attention to the high accuracy capacity of such models in subjective

tasks. More specifically, such advances conducted the development of approaches applied to

evaluate the speech quality assessment using Deep Neural Networks (DNN) models. As ex-

ample, in (JUNIOR; ROSA; RODRIGUEZ, 2018) is presented a non-reference model based

on a hybrid Restricted Boltzmann Machine (RBM) to evaluate speech quality that overcame

the ITU-T Recommendation P.563 in a built database. In (SONI; PATIL, 2016) is proposed

a speech quality assessment model based on deep autoencoder to extract features from spec-

trum of speech signals, it is compared with the ITU-T Recommendation P.563 and presented

more accurate results. A new non-reference model, based on Deep Belief Networks (DBN), is

presented in (AFFONSO; ROSA; RODRÍGUEZ, 2018), its performance was evaluated in com-

parison with the ITU-T Recommendation P.563 in a built database, presenting high accuracy

on speech quality classification. In (FU; TSAO; HWANG, et al., 2018) is presented a non-

intrusive speech quality assessment model based on Bidirectional Long Short-Term memory

(BLSTM) at frame-level, in that work was observed scores with high correlation to PESQ.

1.1 MOTIVATION

As already exposed, the problems involving the applicability of subjective listening

tests naturally demand efforts in the development of automatic speech quality assessment method-

ologies. This is the main motivation to the creation of new approaches that must be capable of

addressing the increasing demand of new technologies.

Besides the problematic of subjective listening tests, there exists a remarkable neces-

sity of non-reference methodologies. Actually, state of the art approaches such as PESQ and

POLQA – and many others – need a reference signal to evaluate the degradations present in

the processed signal. However, a reference signal is not always available, making difficult the

applicability of full-reference approaches.

Even for well standardized automatic speech quality assessment techniques, the cover-

age of all subjective characteristics of quality, experimented by a human being, is not complete.

Taking as an example PESQ: this is one of the most popular methodologies in the area, being

cited in many works (ROZHON et al., 2016), (KIM, 2004), (CÔTÉ et al., 2010), (LAPIDUS;

SHALLOM, 2010). Even so, PESQ is considered as having bad accuracy at specific test con-

ditions (QIAO; SUN; IFEACHOR, 2008). This depicts the complexity involved on modeling
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the speech quality assessment experimented by average subjects, being necessary the develop-

ment of models with higher generalization performance attending the whole complexity of such

subjective problems.

The need of models with good generalization were partially supplied by the develop-

ment of Neural Networks (NN) techniques. These types of methodologies are well standardized

models, inherently created to have good generalization performance, being able to model var-

ious types of problems (ABIODUN et al., 2018). In the speech quality assessment area, the

use of NN methodologies brought relevant improvements to solve some barriers not solved by

hand-crafted solutions. However, as stated before, NN are models highly based on the brain

operation; they mimic the minimal brain units (neurons) and communication paths (synapses)

to get a highly generalization model (ABIODUN et al., 2018). Since NN models has been

used to solve a multitude of problems, many times presenting low generalization error, it is not

proved that they are the best choice when modeling sensory perception, as will be shown next.

Currently, with the advances in the DL area, new models have been created, presenting

lower error rates in the modeling of subjective tasks. More specifically, the application of DL

approaches to solve classic problems in the area of signal processing (HE; ZHANG, et al.,

2016), (CHIU et al., 2018). Many of the improvements achieved are due to the use of new

types of architectures. As example, the use of Convolutional Neural Network (CNN) layers as

a feature extractors contributed to many improvements on signal processing tasks (ABDEL-

HAMID et al., 2014), (ANDERSEN et al., 2018), (PARK; LEE, 2017). In speech related

tasks, the use of CNNs has proved to be very important to get highly accuracy, in some cases

outperforming human results (ABDEL-HAMID et al., 2014).

With that was exposed in this section, it becomes clear the necessity of study and de-

velopment of automatic speech quality assessment methodologies, that are non-reference based,

with highly capacity for modeling the underlying speech features and to be more faithful to the

quality score of an averaged subject.

1.2 OBJECTIVES

This dissertation has as primary objective to analyze the use of CNN as a framework

of feature extraction for automatic speech quality assessment. It is expected to be possible to

prove the efficiency of convolutional layers for modeling the underlying speech quality aspects.

In this scenario, it is crucial the development and evaluation of architectures using convolutional
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layers for feature extraction. With the use of such architectures, it is expected to reach similar,

or even better, accuracy to the current state of the art in speech quality assessment.

1.3 DISSERTATION STRUCTURE

In the second chapter, the main aspects of speech quality are discussed, as well as

the most important methodologies that make up the state of the art. In the third chapter, the

main components of a CNN model are explained, besides the classical CNN architectures are

commented with focus on their design. In the next chapter, the proposed model structure is

presented. In Chapter 5, the experiments performed using a classical database, as well as a

database built in this work, are presented. Still in the fifth chapter, it is presented the result anal-

ysis with the focus on comparing the proposed model with the state of the art methodologies.

The last chapter brings the conclusions and future works.
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2 SPEECH QUALITY

Differently of intelligibility, the speech quality is concerned on extra linguistic con-

cepts. Its assessment is an important role to the planning of networks and speech processing

systems. Because of this, subjective listening tests were primarily developed, using subjects

to evaluate corrupted samples. To overcome the problems involving subjective tests, automatic

methodologies were developed.

In this chapter, a plan definition about the speech quality term is presented. The main

factors that affect it are presented and discussed. The subjective tests are briefly commented.

The final part of this chapter present some of the best known instrumental speech quality as-

sessment methodologies.

2.1 DEFINITION

Speech quality is a complex topic in speech processing area, more because of the

human subjectivity involved. In this sense, not only typical degradations are analyzed, but

many aspects of the emotional subject state need to be considered when addressing quality. A

resumed definition can be stated as: speech quality is the result of a perception process in which

a speech signal, perceived by a human being, is judged (rated) with respect to an expected

internal reference. The representation schematic for the speech quality judgment process is

depicted in Fig. 1.

Firstly the perception process involves the sound wave that reaches a human ear (sound

event); in the ear, the wave is perceived by the hearing system and then decoded in quality

features (perceptual event). The expected internal references are the desired features, generated

from an idealized version of the speech signal, created at the communication situation by the

listener. In situations where the listener has experience in the communication situation, it is

possible that an internal reference schema already exists; besides that, it is even possible that

the listener anticipates perception in a limited way. The construction process of the expected

reference can be altered by factors as context, situation, motivation, mood, etc. The quality

event, in a resumed view, is generated from the comparison between the reference features and

the features obtained from the speech sample. The description step is a final process of encoding

the quality judgment event into a scale known by other humans, serving as criteria of measure.
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Figure 1 – Representation schematic for the speech quality judgment by a subject.

Source: Generated by the author.

More details about speech quality perception can be found in (RAAKE, 2006), (BENESTY;

SONDHI; HUANG, 2008) and (JEKOSCH, 2005).

2.2 QUALITY FACTORS

The most part of the complexity involved to assess automatic speech quality is asso-

ciated to the countless quantity of factors that can influence perception, whose are ample and

highly depends on the application. Due to the degradation that affects speech samples, low

quality features are generated (result of perceptual event in Fig. 1) which, when compared with

the desired features, in the judgment process, result in low score ratings. Besides, some impair-

ments can affect the generation of the desired reference signal (desired features in Fig. 1); in

this case, more subjective effects are present. Actually, a big challenge in the area is the reliable

speech quality assessment when all these factors are added together.

2.2.1 Degradation

In this section, a general view of the most important factors that affect speech quality,

at the telephone and VoIP scenarios, are discussed.
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2.2.1.1 Background Noise

Noise had a great highlight in old analog circuit-switched telephony and regained im-

portance with the arise of mobile communication. The most common type of noise, encoun-

tered in telecommunications, is the background noise. This kind of degradation occurs as a

background element in a conversation scenario, being added to speech signal at the sender

side, during a call for example. At the receiver side, the resultant sound is a composition of

speech and noise, and possibly other impairments, that together form the input for a percep-

tive instance. The background noise presents two factors necessary for the perception scenario:

degradation and context. In the first one, the noise is characterized as an impairment element;

in this view, it impacts the speech signal with masking, possibly removing important speech

components and compromising the intelligibility. In scenarios with low background noise, the

impact in quality perception is typically low (RAAKE, 2006); even in scenarios with a louder

noise, adaptive users attitudes can compensate the impairments by changing speaking behavior

(MÖLLER, 2005). The second factor of perception, played by the background noise impair-

ment, is the context information provided for the listener. The contextual information is crucial

to the perception analysis employed by the listener, it is used to form the reference internal

model.

2.2.1.2 Codecs

The use of codecs to reduce costs with bandwidth in transmission are typically ad-

dressed by means of perceivable degradation of speech quality. When transmitted across differ-

ent types of networks, the speech signal can be coded multiple times (tandeming), and it can be

submitted to different types of coding. In this way, different types of codec degradations can be

applied. More details about it can be found in (RAAKE, 2006).

2.2.1.3 Delay

Delay can be originated from diverse sources, as encoders and error correction schemes;

it can reduce the communicability, degrading the overall quality. Sometimes, the effects of de-

lay can be masked: users can associate the effects of delays to the communication partner in

the call. The effects of delay are prominent to the users with a more experience on delay-type

degradation.
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2.2.1.4 Jitter

Jitter can be defined as the variation in packet delay time, affecting the order of the

packet sequence in transmission events. It is caused by the packet routing over different network

paths and the asynchronous characteristics of the networks. To compensate the effects of jitter,

buffers are used, at the receiver side, which store packets during a time before playback. The

time used to maintain the packets in the jitter buffer can address an important role on the packet

loss since the latest packets are discarded. This way similar rules applied to delay and packet

loss can be addressed to the jitter control apparatus (BENESTY; SONDHI; HUANG, 2008).

2.2.1.5 Packet Loss

The most characteristic degradation affecting VoIP systems is the packet loss. This

type of data loss typically occurs at moments of network congestion, when the packets are

delayed to playback, being discarded by jitter buffers, or in case of bit errors. The affected

speech quality is highly dependent of some aspects such as the loss distribution, packet size

and packet loss recovery methods. The use of large packet sizes can overhead the network

congestion contributing to the delay. The packet loss recovery methods can, in some instance,

recover, or estimate, the lost packets.

Techniques as Packet Loss Concealment (PLC) compensates lost packets at the re-

ceiver side; they can use approaches as insertion of silence, interpolation or frame repetition,

sometimes warping effects can affect the result signal. Besides, it can occurs the phenomena

called Clock Drift, in which there is loss of synchronization between transmitter and receiver,

resulting in packet loss and signal deformation (MELVIN; MURPHY, 2002).

Techniques as PLC are not always a good choice since the estimated data inserted is

not the real version, causing degradation on the perceived quality. Other techniques such as

Forward Error Correction (FEC) uses duplicated versions of the coded speech data to correct

the loss events. The use of an original duplicate version of the data can restore the entire loss

section with the cost of more network congestion, and so the overall network delay can be add to

the network. More detailed descriptions of packet loss distortions can be found in (BENESTY;

SONDHI; HUANG, 2008).
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2.2.1.6 Echo

Echo effects can be perceived by a speaker because of reflections at some point in the

speech path (from mouth of the talker to the ear of the listener). Nowadays, echo effects are

more prominent when using microphones; the talk interface picking up the speech sounds from

the hearing part, in a acoustic coupling between loudspeaker and microphone. Due to echo,

difficulties in talking may arise; the users can be confused with the real speech being talked.

However, masking effects can conduct to less annoying in periods of double talk. The use

of Echo Cancelers to reduce effects of talker echo can generate new distortions in the speech

signal, such as residual echo, nonlinear distortions, clipping and delay.

Other distortions such as the residual use of noise suppression techniques, bit errors,

clipping, loudness loss and more details about quality elements can found in (RAAKE, 2006)

and (BENESTY; SONDHI; HUANG, 2008).

2.2.2 Subjective Effects

As a perception matter, the speech quality assessment is affected by many subjective

effects, such as mood and context. These effects vary from person to person and so far have

been poorly explored in the literature. However, they play important rules in the speech quality

assessment process and are discussed next.

Context is one of the most important elements in a conversation task. It acts as a

primordial reference to the message being transmitted. So, in a conversation scenario, it is

possible to capture clues to identify the context. The main contextual clues are presented in the

message content. However, sometimes, just that does not complete the contextual information,

so other sources are claimed. As stated before, the presence of background noise provides

contextual clues for the listener. These clues serve for adaptation to the perceptual scenario by

the listener. In this way, the listener can relate contextual information with the speech message

to get better speech understanding.

Other factors have few mentions in literature but are relevant in more specific contexts.

As example, the financial cost can alter the expected conversation quality when a user is paying

for the call, or service. Another effect can be defined as the experience of the user with the

service in use: some users can get used to the quality of a service and form a expected reference

quality, while new users can, based on other service experiences, to analyze differently a new

service quality. At last, the effects as humor and motivation can play an important relationship
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with the quality assessment of a service but are further subjective and depend on more spe-

cific details. More subjective effects affecting the speech quality perception can be found in

(RAAKE, 2006), (MÖLLER, 2000) and (JAUK et al., 2018).

2.2.3 Mix of effects

In the current telecommunication scenario, a composition of networks allows that a

signal can travel across multiple types of channels. Thus, the path a speech signal can travel

from a talker source until it reaches the listener can be composed by a combination of tele-

phonic network and a packet based network, for example. This architecture of communication

networks applies multiple types of impairments (as those listed before) in the speech signal,

being perceived in the listener endpoint.

The great challenge when addressing speech quality assessment is the reliable evalua-

tion of the mentioned degradations when they appear together, mixed in a speech signal. The

problem becomes even more complex when the impairments interact on a perceptual level. For

example, when packet loss and echo are mixed, the subject perceived quality is affected. In

the literature, few studies on combined degradations are reported until the production of this

Dissertation. The main studies with such analysis is reported in an additivity assumption of the

E-model (MÖLLER, 2000).

2.3 MEASUREMENT

As mentioned before, the quality is a perceptual aspect, being internal to each subject.

Because of this, the more reliable type of speech quality measure is conducted by the use of

auditory tests. However, as appointed out in the first chapter, this type of measurement is time-

consuming and costly, restricting their use in real-time applications. The use of instrumental

measurements has been proved to provide valid quality predictions and so are the principal way

to assess speech quality. This section mentions the main auditory methods recommended in

(ITU-T, 2016). Besides, it presents an overview of the main instrumental methodologies.

Auditory methods are typically carried out by the use of listening only tests. In sum-

mary, in these methods, subjects are oriented to listen corrupted speech samples and to associate

to each one an integral quality rate. A typical test used in telecommunications is the Absolute

Categorical Rate (ACR), in this test methodology, the user associates the speech signal to a

category rate (ITU–T, 1996a). Different scales are available, but the typical scale used to rate a
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speech signal is the five point quality scale, in which: 1 (bad), 2 (poor), 3 (fair), 4 (good) and

5 (excellent). The mean over the ratings, for all listeners, is used as the overall quality score

being defined as Mean Opinion Score (MOS).

Speech quality assessment methodologies can be divided into two sets: parameter

based and signal based. Those in the first set perform a communication channel parameter

modeling (or system under test) to assess speech quality. The second set deals with quality

assessment using the processed signal.

Another type of classification concerns the use of the original signal as a reference.

In case both of original and processed signals are used, the quality assessment methodology is

classified as intrusive (or full-reference); if only the processed signal is used the methodology

is classified as non-intrusive (or non-reference).

In this section, some of the most renowned methodologies of the area are presented;

some of them has become reference in the standardization bodies.

2.3.1 Full-reference methodologies

Full-reference measures form a subset of the quality assessment methodologies. They

are characterized by using the original signal and the signal processed by the system under test

to perform the assessment. The great advantage of using a reference signal is the possibility

of comparing the two versions of the signal, since when processing a signal with a variety of

distortions, the original signal serves as a pure version.

2.3.1.1 PESQ

The Perceptual Evaluation of Speech Quality (PESQ) methodology is a tool developed

by ITU-T, being the Recommendation P.862 for voice quality assessment (ITU–T, 2005). It

was created to complement the Perceptual Speech Quality Measure (PSQM), ITU-T recom-

mendation P.861 (ITU-T, 1998), unable to make predictions under conditions of packet loss,

background noise and coding distortions.

The first version of the PESQ model focused on narrowband quality assessments, cov-

ering ranges from 100 to 3500 Hz. However, a new standardization was carried out by designing

an updated version of PESQ capable of covering distortion in bandwidths up to 7 kHz (ITU–T,

2017).
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Although the PESQ model can operate in the aforementioned modes, its use is gener-

ally recommended in short-band ranges, as the tests performed have a higher correlation with

the test samples (ITU–T, 2005). The PESQ methodology covers a wide scope of distortions

and it is one of the reference algorithms for intrusive quality assessment actually.

2.3.1.2 POLQA

With the arise of voice services, introducing new types of broadband frequency band

distortion, the PESQ model has begun to fail to deliver good results. Thus, a new standardiza-

tion was initiated by the ITU-T Study Group 12 to replace the PESQ model. Three candidate

algorithms were selected and integrated into a single model, resulting in the Perceptual Ob-

jective Listening Quality Assessment (POLQA), a quality assessment standard that became

the P.863 recommendation, specified in (ITU–T, 2011a) and subsequently updated in (ITU–T,

2011b). POLQA is a methodology designed for objective quality prediction capable of process-

ing in short-band (up to 3.5 kHz), broadband (up to 7 kHz), super-broadband (up to 14 kHz)

and super-wideband (48 kHz).

2.3.1.3 VISQOL

With the adoption of the VOIP standard, a range of problems related to speech quality

factors were introduced. This way, it was necessary to adapt the quality assessment models

to the new scenario, taking into account some types of distortions commonly found in VoIP:

Delay, Jitter, Warping and Clock drift.

Typically, more than one type of distortion is encountered when using VOIP architec-

ture. Thus, the models should be able to detect not only one, but most of the degradations that

exist when using the VOIP standard, more details on quality factors can be found in (TORAL-

CRUZ et al., 2011).

Primarily designed to solve quality problems associated with the VOIP standard, the

Virtual Speech Quality Objective Listener (ViSQOL) (HINES et al., 2015) has emerged as a

methodology that assesses speech quality using a spectrum-time measurement of similarity. Its

performance competes with POLQA, being an effective alternative in predicting voice quality

in VOIP scenarios.
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2.3.2 Non-reference methodologies

In several situations, it is impossible to obtain a reference signal for quality assessment.

For the most real-time applications is not possible to obtain the original signal from the source,

being necessary to perform assessment on just one version of the signal, or on parameters of

the communication channel. Thus, quality assessment methodologies have emerged that do not

require a reference signal, called non-reference methodologies.

2.3.2.1 ANIQUE

The Auditory Non-Intrusive Quality Estimation (ANIQUE) model employs a non-

intrusive approach to speech quality assessment by exploring the sensitivity of the human ear

to temporal envelope variation, defined in (KIM, 2005). In this approach, some steps are com-

mon to other quality assessment methodologies, such as filtering, psychoacoustic modeling and

degradation estimation.

2.3.2.2 ITU-T Recommendation P.563

The ITU-T Recommendation P.563 was the first non-intrusive recommendation for

measuring applications, taking the full spectrum of distortions found in public switched tele-

phone networks, capable of assessing quality on the MOS-LQO scale (ITU–T, 2004). This

methodology addresses speech quality assessment by employing a linear combination of speech

parameters. Various speech parameters are used, some of them being speech descriptors, noise

description and voice characterization.
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3 CONVOLUTIONAL NEURAL NETWORKS

Artificial neural networks have emerged as models that attempts to mimic the process-

ing in human brain and have become popular over the years, being applied to a host of practical

problems. However, the use of such models still encounter some problems that limit their appli-

cability, especially in the context of image processing. As example, the use of Fully-connected

Neural Network (FNN) models in tasks as character recognition is accomplished with some

limitations. A familiar problem is caused because the dimensions of the input images can be

large, increasing the amount of the network training parameters. As example, using a FNN

model with input samples of 28x28 pixels, each neuron of the input layer would have a total

of 784 connections, one for each pixel of the image (Fig. 2). In this case, in a network of

100 neurons it would be necessary to maintain 78,400 trainable weights for the first layer only.

Therefore, a considerable amount of memory capable of maintaining network weights should

be available.

Figure 2 – Input scheme of a neural network architecture for digit image classification.

Source: ml4a.github.io/ml4a/looking_inside_neural_nets/
0

Other factors as the sensitivity to translation, deformation and partial clipping in im-

ages with objects on the scene limits their use as input for FNN models. To overpass these

problems, pre-processing steps are performed over the input images such as: normalization and

https://ml4a.github.io/ml4a/looking_inside_neural_nets/
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centering. Another approach to mitigate the mentioned problems is the insertion of distorted

samples to the training set, generating new training images (in the ML area this task is known as

data augmentation). Although this approach be useful, by increasing the training set variability

generates other problems such as the need for more complex networks, and so more neurons

with demands for more connections, the huge number of parameters would quickly lead the

model overfitting. In addition, due to the translation of input images, the FNN weights would

learn similar patterns, causing redundancy at the learned features. Lastly, FNN models have

indifference to the topology of the inputs because the neurons of the input layer connect to all

pixels in the image. Therefore, local characteristics such as edges, lines, and corners, and their

relative positions in the image, are ignored by the model.

The main studies on the cortex date back to the 1960s (HUBEL; WIESEL, 1959),

(HUBEL; WEISEL, 1968). The researchers discovered the presence of local receptive fields in

which portions of neurons react only to visual stimulus, located in a limited region of the visual

field. Besides that, it was noted that other type of neurons have larger receptive fields reacting

to more complex patterns that are combinations of the lower-level patterns. These studies have

inspired some models that evolved into what it is called today as Convolutional Neural Network

(CNN).

With the ability to overcome many of the problems presented for the use of FNNs

arise the CNN architectures. These are specialized neural networks that use convolution opera-

tions for processing data with a grid-like topology (GOODFELLOW; BENGIO; COURVILLE,

2016). The rise of these networks represented a milestone in the history of some research fields

such as: object recognition, image segmentation and speech recognition.

3.1 GENERAL ARCHITECTURE OF A CNN

In the last few years, motivated by the intensive arise of studies in the DL area, the

CNN evolved to multiple types and forms. Although the types we have today, the common

architecture of a CNN model remained limited to the use of convolutional Layers, pooling

Layers, and fully-Connected Layers.

3.1.1 Input

The CNN architecture make the explicit assumption that the inputs are volumes and so

its units are treated as arranged in 3 dimensions: width, height, depth. Besides the input, each
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convolutional layer accepts as input a 3D volume and transforms it to an output 3D volume

through a differentiable function.

3.1.2 Convolutional layer

The main block of an CNN architecture is the convolutional layer. This layer is used

to extract features by using learnable filters (kernels). Each filter is a small 3D volume, they

typically cover a small region over the height and width dimensions (referred here as planar

dimensions), while covering full depth dimension of the input volume. The use of small region

sizes over the planar dimensions is called as the sparse connectivity property (GOODFELLOW;

BENGIO; COURVILLE, 2016). In the FNN architectures each neuron (unit) in a layer is con-

nected with all other units of a preceding layer, this approach makes the units extract more

global features, based on the units of a preceding layer. The CNN filters instead cover a small

region aiming to extract localized features as edges, corners, etc. The sparse connectivity prop-

erty leads the CNN models to use fewer parameters and consequently less resources, such as

memory.

To the extension of the local connectivity for a filter is referred as the receptive field, it

is defined as the planar region in which the filter acts. In similarity of the receptive fields of the

cats and monkeys in the early studies of the visual cortex, this type of visual structure acts by

distinguishing local patterns in a image. The connections between receptive fields of different

layers can visualized in the Fig.3.

Figure 3 – Convolutional receptive fields connections.

Source: Image taken from (LIN; SHI; ZOU, 2017) Receptive Fields of a convolutional layer.

In the figure, it can be seen that each receptive field of an unit covers an area repre-

https://www.researchgate.net/figure/The-receptive-field-of-each-convolution-layer-with-a-3-3-kernel-The-green-area-marks_fig4_316950618
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senting a region of the input volume. Since the depth dimension is entirely covered by a CNN

filter, in the Fig.3 the depth dimension is omitted.

Another important property is defined as the parameter sharing; in the case of CNN

layers this property defines that the units in a given layer share the same filter weights. So, each

unit of one layer in the Fig.3 shares the filter weights related to that layer. This ensure that, in

comparison with FNN layers, less weights are used to train a convolutional layer.

For each unit in the CNN layer, it is performed a dot product between the filter weights

and that others of the intersection region within the input volume. Because the CNN units share

the filter weights, the convolutional layer operates similar to a slide function, applying filters

functions (weights) over the input volume. The mentioned slide is similar to a convolution

operation because the same function (weights) is convolved over the entire input volume.

The result of the sliding operation performed by one filter is a 2-dimensional activa-

tion map, also called of feature map. The generated activation map will have high values for

the locations where the filter weights are similar to the values of the region in the input vol-

ume because the operation of dot product. Therefore, the operation of convolution acts as a

pattern search, in which the filter is the pattern to be found in the input volume. The activation

maps, produced by the filters in the same convolutional layer, are stacked together forming the

output volume. In the Fig.4 is shown the input and the output feature maps resulting from a

convolutional operation.

Figure 4 – Feature maps of a convolutional layer.

Source: Image taken from (VÉSTIAS, 2019) Feature maps of a convolutional layer.

In the image can be seen the result of the convolutional operation by using two different

filters (kernels). On the left, the input feature maps are shown colored by the instantaneous of

https://www.researchgate.net/figure/Input-and-output-feature-maps-of-a-convolutional-layer_fig1_334819564
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two filters locations. On the right, the output feature maps generated by the convolutional

operation using the two filters are shown in highlight.

The output volume dimensions of a convolutional layer are defined by the use of three

hyperparameters. The first parameter is the number of filters: this parameter defines the number

of feature maps in the output volume, and consequently set its depth dimension. Another pa-

rameter is related to the slide size used to convolve the filter with the input volume through the

planar dimensions: this size is called stride, and in some part it defines the planar dimensions

of the output volume. A typical convolution operation is accomplished by centering the filter

receptive field to regions of the input volume. If this centering is accomplished at the edge pix-

els, some units would be behind the extensions of the input volume. To solve this problem, it

can be used the padding operation in which the input volume is padded with some values (zero

in many cases) around the border. Considering the use of only square filters in a convolutional

layer, the mentioned parameters can be used in a equation to calculating the planar dimensions

of the output volume (O), as it can be seen in Eq.3.1.

O =
(W −F +2P)

S+1
(3.1)

where W is the size of the planar dimensions of a input volume, F is the size of the

receptive fields, P is the size of the padding and S the stride.

A convolutional layer can have countless filters; the greater the number of filters, the

greater the diversity of characteristics extracted from the input volume. Because the coupling

between convolutional layers, the higher layers focus on the resulting activation maps from the

lower layers. This process generates a hierarchical topology in which complex patterns are build

from the low level patterns. This is accomplished because the CNN filters learns the best filters

and how to combine them. This is an important property that assign to the CNN architectures

the power to extract a structured set of features.

3.1.3 Pooling layer

To reduce the planar dimensions, size pooling layers can be inserted in a typical CNN

architecture. This type of layer applies an operation similar to a downsample by applying a

transform function over the input volume. Similar to what was presented for filters of convolu-

tional layers, the pooling filters operates by slicing over the input volume, applying the down-



Chapter 3. Convolutional Neural Networks 36

sample function, but the application of the downsample function is limited for each feature map

instead. As it can be seen in Fig.5, the pooling layer applies the downsampling function over

the input volume; the result volume has planar dimensions divided by a factor of two while the

depth dimension is keep the same.

Figure 5 – The result volume of applying the pooling layer.

Source: Image taken from CS231n Convolutional Neural Networks for Visual Recognition
Course

The downsample functions used in pooling layers are used to aggregate the values of a

planar region in a comprehensive way; in Fig.6, it can be seen the application of a max pooling

function (that take only the maximum value of input) over an input feature map.

Figure 6 – Pooling layer application using a max pooling function.

Source: Image taken from CS231n Convolutional Neural Networks for Visual Recognition
Course

The use of pooling layers are beneficial to avoid the overfitting since they reduce the

number of parameters of the network. Besides, small variations in the features of the input

volume can be addressed properly by the pooling layers. They reduce the total computation

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
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used by the training step of an convolutional model. The application of a pooling layer over one

feature map can be seen in the Fig6.

3.1.4 Fully-connected layer

In typical CNN architectures, the final layers are constituted of fully-connected layers.

These layers are used to aggregate the feature maps generated by the preceding convolutional

layers. In problems as classification, the output of a fully-connected layer is the most probable

classes for the data training. In problems of regression, in which a value must be generated as

response, the output fully-connected layers has only one output at the final layer.

A complete CNN architecture can be seen in Fig.7. This is a typically CNN architec-

ture, involving the input image, the convolutional layers and the final fully-connected layers.

Figure 7 – A complete CNN architecture with the input, convolutional layers, pooling layers,
fully-connected layers and the output.

Source: Image taken from (WEI et al., 2019)CS231n Convolutional Neural Networks for Visual
Recognition Course

3.2 IMAGENET

The ImageNet project was created to bring together a massive collection of labeled

images available to assist research and development in the area of object detection and classifi-

cation. Since its presentation in 2009 in the Conference on Computational Vision and Pattern

Recognition (CVPR) at Princeton University, people around the world have collaborated to

label this mass of data.

Since 2010, there has been an annual challenge, the ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC), in which teams run their models on the data mass and com-

pete for the highest accuracy in image recognition tasks. In this challenge 1000 categories are

https://www.researchgate.net/figure/A-typical-CNN-model-is-composed-of-convolutional-layers-pooling-layers-and-fully_fig1_331991539
https://www.researchgate.net/figure/A-typical-CNN-model-is-composed-of-convolutional-layers-pooling-layers-and-fully_fig1_331991539
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used with approximately 1000 images per category. Since the competition began, there has

been a rapid decline in error rate due to the use of deep convolutional network architectures.

Several convolutional network architectures have emerged and gained prominence and are used

in other projects around the world. Some of these architectures and their respective error rates

in the ImageNet challenge are presented in Fig.8.

Figure 8 – Error rate and name of the winning architecture from ImageNet Challenge from 2010
to 2015.

Source: Image taken from the Kaiming He presentation, Deep Residual Learning for Image
Recognition.

In 2015, a milestone occurred in the history of deep architectures: an architecture

achieved an error rate lower than the average human object classification capability with the

ResNet architecture. The average human error was approximately 5%, while the new architec-

ture achieved an error rate of 3.57%.

3.3 CLASSICAL ARCHITECTURES

Since the advent of the ImageNet challenge, several network architectures have been

created, which has provided a lot of innovation in machine learning. Another contribution was

the creation of new learning models, bringing new architectures and models that could be used

in various problems.

In this section, some of the most important architectures for advancing the area are

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
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presented. The focus will be in describe what innovations in the learning models have been

introduced with each new architecture.

3.3.1 Lenet-5

The work presented in (LECUN et al., 1998) was an important breakthrough to the

pattern recognition area since it initiate a paradigm breaking of the traditional design. Before the

popularization of the convolutional neural networks the pattern recognition area was dominated

by approaches with the architecture design following the schema of Fig.9.

Figure 9 – Traditional Pattern Recognition architecture diagram.

Source: Image taken from (LECUN et al., 1998)

The Feature Extractor Module was typically a heuristic algorithm using approaches

specific to the task. In the Trainable Classifier Module the neural network architecture was

used. One of the problems with this architecture is in its recognition accuracy, it was limited

by the ability of the feature extractor to come up with good features. Therefore, there was a

necessity of development of trainable approaches to be used as feature extractor modules.

An alternative at the epoch was the use of fully connected feed-forward networks been

fed with raw inputs directly. In (LECUN et al., 1998) is presented as example the use of such

networks for tasks of character recognition. Although the arise of such architecture its use come

up with some problems such as:

• The size of images is typically large increasing the total number of the network trainable

weights.

• The complete no built-in invariance to input translations, or local distortions.
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• The topology of the input is ignored.

The first convolutional network which has presented good performance in character

image classification was known as Lenet-5 (LECUN et al., 1998). Its architecture is shown in

Fig.10. It was one of the first networks to use convolutional architecture, being able to obtain

highly accurate classification results.

Figure 10 – Lenet-5 architecture.

Source: Image taken from (LECUN et al., 1998)

Fig.10 shows a block diagram of a typical CNN architecture. The inputs are images

of characters zero-padded and normalized in size. The transformations applied to the original

images was useful to force the centralization of the receptive fields of the highest-level feature

detector.

Convolutional layers are presented with the CN label, where the N is the layer index.

In the CN layers, typical convolutional layers are presented, used as the feature extractors of

the character image. In the C1 and C5, classical connection between feature maps and receptive

fields of the next layer are used. However, for the C3 layer, it is used a different approach. In

that layer, different sub-sets of the feature maps from S2 are connected to the C3 receptive fields.

This approach was mainly applied to force a break of the symmetry in the network, forcing the

different kernels to learn different sets of features. The last convolutional layer applies receptive

fields of the same spatial size of the feature maps from the S4 layer, generating feature maps of

1x1 dimensions. In the Lenet-5 diagram, the feature maps and the receptive fields are shown

in each layer labelled as F@KxK where the F label represents the number of feature maps and

the K is used to represent the dimensions of receptive fields.

The pooling layers are presented with the SN label, such layers were called Sub-

sampling layers at epoch; because of this, there is the use of labels with S instead of P. In
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such layers, it is used a specific type of averaged pooling, the sequence of operations are: each

neuron computes the mean of its inputs, then multiplies the result by a learnable coefficient,

adds a learnable bias and, finally, it applies an activation function. The pooling layers are

mainly used to reduce the precision in which the position of different features are encoded in

a feature map. It was noted that this approach could be beneficial to recognition of different

images of characters with variable deformation.

The use of successive convolutional layers and pooling layers, each one applying a

processing stage in which occurs the increasing of the feature maps and decreasing of the spa-

tial dimension, was adopted with the expectation of achieve a large degree of invariance to

geometric transformations.

The F6 layer is a typical fully-connected layer with the activation hyperbolic tangent.

The output layer is composed of Euclidean Radial Basis Function units (RBF), one for each

class. Instead of applying the typically operation of dot product between input and weights,

the output layer computes an Euclidean distance between its input and its weights. This can be

interpreted as a penalty measuring the fit between input and the weights representing a model

of the desired class.

3.3.2 AlexNet

One of the first convolutional networks to perform well in the ILSVRC challenge is

popularly known as AlexNet in honor of one of the creators (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012). The network architecture is presented in Fig.11.

3.3.2.1 Activation Function

For the training of the model AlexNet, it was used the activation function known as

Rectified Linear Units (ReLU). The choice was made because, as shown in (NAIR; HINTON,

2010), some activation functions, such as logistic sigmoid and hyperbolic tangent, used for

convolutional network training, take longer time, on average, to converge.

3.3.2.2 Training

Given the computational capabilities of that time, the AlexNet network was trained

using a GTX 580 card with 3GB of memory. With low memory available and due to the size of

the network it was necessary to use two cards working together to perform the network training.
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Figure 11 – AlexNet architecture.

Source: Image taken from bskyvision.com/421

The approach used was to couple the two networks only a few layers, making the convolutional

input layer, the third layer and the fully connected layers share all the weights of the previous

layers. The network sharing and weight sharing scheme is shown in Fig.11. This selected layer

sharing and weight sharing scheme provided a 1.7% reduction in top-1 error rate (the best result

at that time) and 1.2% on top-5 error rate (top five results at that time).

3.3.2.3 Local Response Normalization

Even using an activation function that does not present saturation problems, the authors

proposed a scheme that makes the resulting model generalize more. The developed normaliza-

tion scheme is defined in the Eq3.2.

bi
x,y = ai

x,y/

(
κ +

min(N−1,i+n/2)

∑
j=max(0,i−n/2)

(
ai

x,y
)2
)β

(3.2)

where:

• bi
x,y is the normalized activation response

• ai
x,y is the activation of a neuron by applying kernel i to position (x, y) and then applying

the ReLU function

• N is the quantity of kernels

https://bskyvision.com/421
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• n is the quantity of adjacent kernels

• κ , α and β are constants

In AlexNet, it was used the values of κ = 2, n = 5, α = 10−4 and β = 0.75. These val-

ues were the best parameters found using the validation set, when training the model. Analysis

of Eq.3.2 shows that, given an activation, its neighbors (activations that are in the vicinity) will

be inhibited, what means that their values will be decreased by normalization. The authors call

this method “brightness normalization” since normalization is applied directly, without using

the mean value, as another classical normalization techniques.

3.3.2.4 Overlapping Pooling

Newer convolutional network pooling layers are used such that there is no overlap be-

tween pooling kernels. Typically, max-pooling layers are used, which get the highest activation

value in a kernel-size fetch region. However, in the AlexNet network, an overlapping pooling

scheme with a kernel size of 3 and a stride of 2 is used; the overlapping size is set to the unit

value.

3.3.2.5 Architecture

Fig.11 shows the 8-layer AlexNet network; 5 convolutional and 3 completely con-

nected. This network was created to solve a classification problem with 1,000 classes. Thus,

the network output is formed by applying the Softmax function to 1,000 different classes.

From Fig.11 it is possible to verify the division applied to the network due to limita-

tions in the hardware, as already mentioned before. In this split scheme the second, fourth and

fifth convolutional layer kernels are connected only to the feature maps of the previous layers

that are in the same GPU. This can be seen by checking the mentioned layers and the dashed

lines crossing the parallel networks in the tables 1, 2, 3 and 4. The kernels of the third convo-

lutional layer are connected to all feature maps of the second layer, just as neurons of the fully

connected layers are attached to all neurons of the previous layers.

The Local Response Normalization (LRN) scheme is applied only to the first and

second convolutional layer outputs. Pooling is applied overlapping and max-pooling (kernel-

pooling) is used on the standard response outputs of the first and second tiers, and a fifth con-
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Convolutional layers conv1 conv2 conv3 conv4 conv5

kernel
11x11 5x5 3x3 3x3 3x3

3x3

padding
0 2 1 1 1

1

stride
4 1 1 1 1

1

channels
3 48 128 192 192

128

filters
48 128 192 192 128

192
neuron - ReLU ReLU ReLU -

Table 1 – The attributes of the convolutional layers of the AlexNet model.

LNR conv1 conv2 conv3 conv4 conv5
channels 48 128 - - -

size 5 5 - - -

Table 2 – The attributes of the LRN layers of the AlexNet model.

Max Overlap Pooling conv1 conv2 conv3 conv4 conv5
kernel 3x3 3x3 - - 3x3
stride 2 2 - - 2

channels 48 128 - - 128
neuron ReLU - - - ReLU

Table 3 – The attributes of the pooling layers of the AlexNet model.

Fully-Connected layers fc1 fc2 fc3

outputs
2048 2048 1000
2048 2048

neuron ReLU ReLU Softmax
dropout 0.50 0.50 -

Table 4 – The attributes of the fully-connected layers of the AlexNet model.

volutional tier is also applied. The ReLU activation function is applied to the output of each

convolutional layer and completely connected.

3.3.2.6 Decreasing Overfitting

In order to reduce the possibility of overfitting some measures were taken, the first

one was the creation of data from the training images (Data Augmentation). Two types of

transformations were made in the input images; translation and reflection. Since the original

images are 256x256 pixels in size, 224x224 pixels random cropping has been extracted.
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In the test stage, the input image is translated by shifting the crop to the four corners

of the image plus the central region; Then the image is reflected horizontally and the same

translation and crop extraction operation is performed. This operation generates ten patches,

for each one the prediction is generated and, finally, the predictions for the ten patches of the

original image are averaged.

The second form of data generation was the use of Principal Components Analysis

(PCA) to change the intensity values of the RGB image. This simulates lighting changes in a

scene with a given object.

Another way to combat overfitting is to apply dropout at the training stage. The

AlexNet network applies dropout into the first and second convolutional layers with a 50%

probability. Without the use of this method there is the incidence of overfitting reported by the

authors in (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

3.3.3 GoogleNet

The work developed in (SERRE et al., 2007) used Gabor filters of different sizes to

manipulate multiple scales. In the development of the GoogleNet network a similar approach

was used: filters of different sizes were used. Besides, the use of internal networks, as presented

in (LIN; CHEN; YAN, 2013), was taken as inspiration for the creation of GoogleNet. In that

work a network named Network In Network (NIN) is presented in which subnets - a convo-

lutional layer connected to a Multilayer Perceptron (MLP) - are used to compose the network

layers, the architecture used in (LIN; CHEN; YAN, 2013) is presented. in Fig.12.

Figure 12 – NIN network architecture.

Source: Image taken from (LIN; CHEN; YAN, 2013)

Another inspiration from the NIN network was the use of convolutional layers with

additional 1x1 filter dimensions. These additional layers serve two purposes in the GoogleNet
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network architecture: firstly to perform the dimensionality reduction, explained below, and

second to increase the depth and width of the network, factors that tend to contribute to the

generalizability of the network, as discussed in (ZEILER; FERGUS, 2014) and (SZEGEDY

et al., 2015).

As discussed in (ZEILER; FERGUS, 2014) and (SZEGEDY et al., 2015), increasing

the depth of the net typically results in increase of accuracy. However, the increase in the

dimensions of a deep net brings consequences such as the tendency to overfitting, more apparent

in cases where the complexity of the net is too much in relation to the size and variability of the

training database. In such cases, it is possible to increase the database, a very expensive task

that repeatedly requires expert analysis. Another problem with increasing the size of a network

is the increased computational load: a deeper network with more training parameters usually

requires more memory and processing resources for training. One solution addressed to solve

such problems is the insertion of sparsity into the network. However, computation of sparse

models is currently not efficient, the problem gets even bigger as current hardware and libraries

are designed to perform well on dense components such as dense matrix multiplication.

One way to use sparsity was shown in (LECUN et al., 1998) with presentation of the

Lenet-5 network. In this network, it was used a sparse connection table grouping neurons in

order to break the symmetry of the network and improve learning. However, newer architec-

tures have begun to utilize dense, uniformly structured connections, made possible by the use of

parallel computing and increased training parameters set. The big challenge facing GoogleNet

architecture was the creation of a sparse architecture model that makes use of the existing en-

hanced computing infrastructure for dense computing.

3.3.3.1 Inception Architecture

The fundamental idea behind the creation of the Inception architecture was achieved

by considering how an optimal local sparse structure of a typical convolutional network can be

approximated and covered by dense components (SZEGEDY et al., 2015).

To achieve translation invariance, in the construction of GoogleNet, convolutional fil-

ters were used. The construction addressed by Arora et al. (ARORA et al., 2014) suggests an

optimal network construction performed layer by layer, using clustering of the most correlated

neural units. These groupings form the units of the next layer and are connected to the pre-

vious layer. This process repeats until the end of the network. In the Inception model, it was
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assumed that each unit, generated as described, corresponds to a region of the input image and

these regions are grouped into filter banks. In layers closer to the image (first layers), coverage

would be concentrated in more local regions, finer details of the image. Thus, several clusters

would be located in a single region, or in a few regions, and as suggested in (LIN; CHEN; YAN,

2013), these thinner regions could be covered by convolutions with 1x1 dimensions. However,

other larger and more spread out regions could be covered by wider convolutions, so larger

convolutional filters are used for such regions. For the Inception network 1x1, 3x3 and 5x5 fil-

ter dimensions were used, the convolutional filter outputs are concatenated, generating a single

convolutional filter output. In addition to convolutional filters, a pooling block is used parallel

to convolutional filters, due to high acceptance and success when using this type of block. The

result can be seen in Fig.13.

Figure 13 – Inception module.

Source: Image taken from (SZEGEDY et al., 2015)

From the figure, it can be seen the input from a previous layer; in this architecture it is

expected that the previous layer follows the same construction model presented in (SZEGEDY

et al., 2015) and modeled with convolutional networks. In the middle, there is a layer with the

convolutional blocks of variable sizes and a pooling block; this layer represents the grouping

of correlated regions, to capture groupings in more or less scattered regions of the image, con-

volutional filters of different sizes are used. At the top, there is a layer that concatenates the

result from the middle blocks; this layer addresses the generation of the next layer elements in

the Arora model.
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The presented Inception module is said to be naive as it performs direct convolutions

on the input layer. Thus, many parameters are calculated and a massive number of operations

are performed, causing bottlenecks in the network. To mitigate this problem without decreasing

network performance, convolutional blocks with 1x1 filters were inserted into the inception

block as shown in Fig.14.

Figure 14 – Extended Inception module.

Source: Image taken from (SZEGEDY et al., 2015)

The GoogleNet model can be generically presented as a composition of several con-

nected inception blocks creating a long convolutional network. In the final architecture, tradi-

tional convolutional blocks are used in the first layers, this approach yielded the best results.

Fig.15 shows the parameters of the ILSVRC 2014 winning GoogleNet network.

3.3.4 ResNet

The use of deep convolutional networks has been recurrent in the ImageNet challenge

over the years. Exploitation of this type of architecture and the increase in the number of layers

caused the test error to reach almost the average user value (5%). Increasing the number of

layers has proved crucial to increase network accuracy.

As the number of layers increased, some problems arose as disappearance or saturation

of the gradient value. To avoid such problems, normalization techniques were created: normal-

ized initialization and batch normalization. Even with such solutions, adding too many layers
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Figure 15 – Google net parameters.

Source: Image taken from (SZEGEDY et al., 2015)

to a network causes a saturation problem. As discussed in (HE; SUN, 2015), which analyzes

the performance impact of a network by varying its parameters, the excessive increase in the

number of layers causes the network error to increase, for each new layer added the error value

is increased. Although it may seem, this type of behavior is not associated with the phenomenon

of overfitting, in which, with the network increase, would be expected the error to stop growing

in some moment.

Since there is a problem with the way multi-layered networks learn, a learning method

called Residual Learning was created. In this method, the mapping function is replaced by a

residual version, in which a term called residue is added to the function (HE; ZHANG, et al.,

2016). F(x) is the objective function to be approximated:

F(x) = H(x)− x (3.3)

where x is the input of the function, and H(x) represents the network mapping (adjust-

ment of the weights in the intermediate layers).

The most straightforward example of the usefulness of this learning method is when
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one wants to approximate the identity function. This function only maps the input to the output,

so the function F(x) would be equal to x. Therefore, it would only be necessary to turn to

zero the value of H(x) in equation Eq.3.3. However, in a conventional learning situation, for

a network to learn the identity function, it is necessary the weights of their layers to represent

the mapping function being adjusted in training. In deep networks, a residual learning block is

implemented following the model of Fig.16.

Figure 16 – Residual learning block.

Source: Image taken form (HE; ZHANG, et al., 2016)

In this block, one or more layers are placed between the input and the residual function.

The objective function F(x) and the input of the previous block, the x in the 16, are summed

before function activation. One limitation is related to input and function sizes: both must be

the same size to maintain the consistency of the sum operation. For this, a linear projection can

be performed.

In Fig.17, two neural network architectures are presented: a flat architecture and a

similar architecture with shortcut connections. The first is used as a comparative model for

creating the ResNet architecture. The two architectures have similar features: neighboring

convolutional layers are used such that, for feature maps of the same size, the layers have

the same number of filters, and, if the size of the feature map is cut in a half, the number of

filters is folded. Thus, the height and width of feature maps are decreased and their depth is

doubled with each new set of convolutions. This approach is performed in order to maintain

the original volume and hence the time complexity in each layer. Downsampling uses a stride

of 2 for convolutions, reducing the width and height by half when using 3x3 dimension filters.

At the end of the network, an average pooling block and a completely connected layer with

1,000 units and softmax are used. Shortcut connections are inserted in the residual architecture.

The solid lines in Fig.17 represent layers with equal feature map sizes and those with dashed
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lines represent layers with different feature map sizes. The increase in dimensions between

feature maps of neighboring layers makes it necessary to perform some adaptation to shortcut

connections so that the dimensions at the sum are equal. Thus, as mentioned earlier, one option

is to perform a linear projection, an approach that requires additional parameters in the network.

Another possibility introduced is to perform padding to increase the dimension. Either approach

is still required to downsample using a 1x1 convolution with a stride of 2.

Training parameters and network normalization methods can be found in (SZEGEDY

et al., 2015). In the same work, several residual network configurations are evaluated and, for

comparison, the flat architecture is used. Among the experiments performed it was noted that:

• The increase in the depth of the flat net caused the error rate to increase in the validation

training set, being affected by the degradation problem.

• The increased depth of residual networks caused the error rate to decrease in the valida-

tion training set, favored by the greater complexity of the network and overcoming the

degradation problem.

• The approaches of using padding, linear projection only in layers with different character-

istic maps or linear projection in all layers to solve the problem in the shortcut connections

step presented similar results, and for the first solution no parameters are inserted in the

network in relation to other alternatives.

To make even deeper networks, while trying to maintain time limits on the number

of operations, a methodology of feature map complexity reduction, similar to that used in the

GoogleNet network, was tested: 1x1 filters were inserted before and after the 3x3 filters in

network layers, Fig.18.

With this model, residual networks with 50, 101 and 152 layers were evaluated. For

the summation between neighboring feature maps step, linear projection is used only between

layers of different sizes. Each convolutional two-layer block in Fig.17 is replaced by a three-

layer block with complexity reduction (Fig.18 on the right). The increase in the number of

layers presented results similar to those already observed for residual networks: the reduction in

the error rate, reaching the top-5 validation error value of 4.49% with the 152 layer architecture.

Finally, 6 models of different depths were combined, culminating in an error rate of 3.57% and

winning the 2015 ILSVRC.
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Figure 17 – Flat architecture (left) and ResNet architecture (right).

Source: Image edited form (HE; ZHANG, et al., 2016)

3.4 SPEECH RELATED MODELS

In the last few years, CNN based approaches brought new solutions to problems related

to speech. In some cases the appropriate use of the convolutional approaches overpass the
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Figure 18 – Convolutional blocks with shortcut connections of similar complexity due to the
use of the right bottleneck model.

Source: Image edited form (HE; ZHANG, et al., 2016)

human accuracy in some tasks, in another cases the solutions bring new ways to solve old

problems.

In this section are briefly discussed important works whose presented solutions to solve

speech related problems using CNN. The discussion is focused on the main aspects which

contributed to the performance of the models. Some of the models presented in this section

were used as the inspirations to the development of the proposed model presented in the next

chapter.

3.4.1 Speech Recognition

The Automatic Speech Recognition (ASR) term refers to a classical recognition area

in which the transcription of speech into spoken words is the main object of study. Before the

appearing of CNNs, the ASR models was typically using an architecture based on the Hidden

Markov Models (HMM). This type of model is still largely used because it is useful to model

the changes between phones of a language. Besides the use of HMM, a classical architecture

used in the ASR task involves the use of Gaussian Mixture Models (GMM). This algorithm

was useful to model the probability of a feature vector, representing a speech frame, to be the

equivalent form of a phone. In conjunction, the GMM-HMM model was topically presented as

the state of the art when treating ASR tasks.

With the introduction of deep learning models new ASR approaches arise, many of

them still employing the HMM model. As presented in (ABDEL-HAMID et al., 2014) it is

used an approach involving the use of a CNN instead of the GMM, the so called CNN-HMM

model. In that work is highlighted that the use of CNN layers was benefical in a sort of manners.
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Firstly, the CNN locality property gives a better treatment for features affected by noise. As the

receptive fields have limited dimensions, they cover a limited area of the input feature map,

their weights will learning local features that can be combined in higher convolution layers.

This represent an improvement in relation the classical DNNs where all cells of a feature map is

connected to an unit to the DNN layer. The weight sharing property is too appointed as benefical

to the modelling of speech in ASR tasks, that property reduce the overfitting by applying an

analysis by the same weights for multiple frequency band, instead of only one predefined region

as occurs in the DNNs models. Besides, the use of pooling in CNN models is useful to model

small frequency shifts that occurs in speech. In resume, the use of CNNs is a benefical approach

because these models are better to model speech variability than the standard DNNs. In the

work presented in (ABDEL-HAMID et al., 2014) was showed a performance improvement

when using CNN instead of a classical DNN approach, while maintaining a similar number of

parameters to train the model.

3.4.2 Speech Enhancement

For speech enhancement, in (PARK; LEE, 2017), a fully convolutional model was used

to remove babble noise. In that work, a generative approach with convolutional layers was used

to obtain the enhanced speech version. The CNN structure used was virtually separated in two

parts: an encoder and a decoder. At the encoder, the feature extraction processing was addressed

by the use of layers with a convolutional layer, batch normalization and the ReLU activation.

The number of filters at the encoder was gradually increased. At the decoder, the same layers

are used, although the number of filters are gradually decreased. The encoder-decoder approach

was used as a resource for firstly encoder the features into a higher dimension space and later

applying a compression along the decoder. The mentioned model achieved similar or higher

accuracy with less parameters than the state of the art recurrent network model at the epoch.

The results achieved by the fully-connected approach were associated, by the authors,

to the increasing dimension of the feature space by the encoder and later decreasing by the

decoder. Two details are important in the success of (PARK; LEE, 2017): firstly, pooling layers

were not used, thus no data was lost and all information was preserved at the encoder. Secondly,

the increase of feature space by increasing convolutional layers, at the encoder, conducted the

generated features to a higher dimension representation.
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3.4.3 Speech Intelligibility

As aforementioned, intelligibility and quality are the two mainly aspects which char-

acterize speech. The intelligibility aspect is more concerned to the quantity of samples correctly

understood. It can be defined as the average of words that listeners can understand in a given

listening condition. As in the case of speech assessment algorithms, the SIP models can be

divided into reference and non-reference models. Similar to the speech quality assessment area,

there is the necessity of the development of non-reference models.

The use of algorithms to address Speech Intelligibility Prediction (SIP) is extensive,

and in the literature methodologies arise aiming to predict it by using the intrusive and non-

intrusive approaches. Some models are widely known, such as the Speech to Reverberation

Modulation energy Ratio (SRMR) (FALK; ZHENG; CHAN, 2010) and the Short-Time Objec-

tive Intelligibility (STOI) (TAAL et al., 2011).

More recently, with the popularization of deep learning, new SIP methodologies emerged,

some of them adopting data-drive approaches. In (ANDERSEN et al., 2018) a non-intrusive

SIP methodology is proposed based on the Convolutional Neural Network architecture. The

CNN structure was chosen because its handle well inputs of varying size dimensions and be-

cause its convolutional kernels can be visually inspected. In the referred study the evaluation

is accomplished for full signal samples consisting of multiple sentences. This approach was a

experimental design choice since many of the systems processing speech works on the frames

of a signal.

Many of the SIP algorithms assume that contributions to intelligibility are supplied

from separated channels (different frequency bands), and that these contributions are combined

by a linear weighted function. The work presented in (ANDERSEN et al., 2018) mimics this

behavior by combining the outputs from the fully-connected layers to form the prediction of

intelligibility.

A series of experiments were accomplished by datasets combined from different sources.

Another experiments were taken from additional datasets which were not used for training.

They compare the CNN model with non-intrusive and intrusive SIP algorithms, some of them

from the STOI family. The main results appointed that the accurate predictions were taken

for unseen conditions. Besides, the model respond well for clean speech or noise speech only

datasets.
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3.4.4 Speech Assessment

It must be highlighted that, during the final development phase of this dissertation,

it was found that some researches explored the capacities of convolutional layers to evaluate

speech quality in an automatic manner (LO et al., 2019), (AVILA et al., 2019). These works

could not be tested due to the lack of time.
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4 PROPOSED MODEL FOR SPEECH QUALITY ASSESSMENT BASED ON CNN

Based on the CNN models presented in the last chapter, it becomes evident that con-

volutional layers achieve high performance at the speech and noisy characterization. Then, it

becomes natural their use in areas involving speech quality demands. Therefore, the focus of the

present work is directed to the evaluation of a new model addressing speech quality assessment

by using convolutional layers. The next section shows the aspects of the model developed.

As one of the most important contributions of the present work, the details of the new

methodology addressing automatic speech quality assessment is explained in this chapter. The

proposed model was developed based on the findings presented in the previous section, and by

the incremental improvements when evaluating the model on available speech quality databases.

4.1 OVERVIEW

To analyse the performance of CNNs in the task of speech quality assessment, it was

created a new model, referenced as Convolutional Neural Network approach for Speech Quality

Assessment (CNN-SQA). The model can be divided into three main steps: input transforma-

tions which convert the input speech signal into a visual representation, the feature extraction

in which are generated features representing the speech characteristics, and finally a quality es-

timation step that generates the quality judgment from the extracted features. The model steps

are shown in the diagram of Fig.19. Each layer is indicated by a label, the topmost labels are

used to group related layers.

Figure 19 – CNN-SQA model steps.

Source: Generated by the author.

The model receives the input speech samples as illustrated in blue waveform at the left

side of Fig.19. The speech samples are uncompressed digital records in raw format, in which
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it is expected to have parts of speech activity, with continuous utterances in a human language,

and silence (typically with some noise). At the picture, it is seen only one speech sample, but in

the practical model realization the application receives mini-batches, random groups of samples

used to train models.

In the first step of the pipeline, transformations are applied to the input samples, result-

ing in visual speech features, used to train the convolutional layers. The first transformation is

the spectral generation in which speech samples are converted into spectrograms. In the spec-

tral representation, the underlying frequencies are better presented just as the time variation is

maintained at the appropriate axis. Other transformations can be applied with the aim to gener-

ate the final features; Fig.19 shows only one, for simplicity. A possible second transformation

is the generation of new features from spectrogram; this step is typically applied in order to

compress the features dimension since, in the spectrogram, the visual representation is sparse

and it maintains redundant information.

The second phase of pipeline shown in Fig.19 is the feature extraction step. From a

visual representation, generated in the transformation step, are extracted the main features rep-

resenting the speech and distortion characteristics. To do such job is crucial the use of good

feature extractors, which can represent the more important characteristics related to speech

quality perception. As stated in literature and presented in the previous chapter, convolutional

layers were successfully employed in speech and noisy related tasks, as in (PARK; LEE, 2017),

(ABDEL-HAMID et al., 2014), (ANDERSEN et al., 2018). These works show that convo-

lutional layers are able to produce feature extractors with higher generalization performance,

often outperforming the state of the art methodologies. The feature extractors are generated by

training the convolutional layers; it is expected they are able to learn the best features represent-

ing the speech signal.

The final step is the quality estimation; it simulates the human quality assessment

processing. As it has been described in literature (ABIODUN et al., 2018), (JELASSI et al.,

2012), fully connected layers were applied to speech problems, presenting good results when

comparing with handcrafted algorithms. Beyond traditional speech applications, parametric ap-

proaches had been employed neural networks architectures to map speech related network pa-

rameters (delay, jitter, packet-loss, etc.) for quality estimation (ROZHON et al., 2016), (YANG

et al., 2016). So, based on the performance of neural networks on speech perception tasks, the

final step of the proposed model is accomplished by the use of fully connected layers (dense
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layers), which aim to map the high level features to a quality score estimation. The output is

generated by the use of a regressor, an output layer that aggregates the trained weights into a

value, representing a quality score.

4.2 CNN-SQA

The proposed model described in this section is based on the general steps shown in

Fig.19. It is presented in a block diagram format, with architectural information in each block;

the layers are depicted in Fig.20.

4.2.0.1 Parameter selection

To define the parameter set for the proposed model it was performed a parameter selec-

tion step with a grid search approach. The ITU-T Supplement 23 database was used to perform

the parameter selection, 60% of data was used for training and 20% for parameter validation,

while the remaining 20% was used in the test phase, explained in the experiments chapter. In

the first step was choose an initial configuration (dummy) for the model parameters, this con-

figuration can be seen in Tables 5, 6 and 7. Then successive parameter selection steps were

performed, so that each model step would be trained with the selected parameters, varying,

within predefined values (grid search), while the remaining parameters were kept the same. At

the end of each selection step the best value for the evaluated parameter is maintained. Thus, it

becomes possible to verify the improvement of the model according to the parameters change,

in addition to making a combination of all possible model parameters would be impractical

which requires the adoption of methods such as the one shown.

Feature Coefficients
MFCC 40

Table 5 – Initial feature parameters of the proposed model used for parameter selection step.

Layers Filters Filter dimensions Activation
1 50 5x5 ReLU

Table 6 – Initial convolutional layer parameters of the proposed model used for parameter se-
lection step.
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Figure 20 – Block diagram of the proposed model.

Source: Generated by the author.

Hidden layers Units per layer Activation
1 400 ReLU

Table 7 – Initial fully-connected layer parameters of the proposed model used for parameter
selection step.

4.2.1 Input Transformations

The input transformations, used in the proposed model, are shown in the first stage

of Fig.20. In this work, two transformation steps are used: a spectrogram conversion and
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generation of the corresponding Mel Frequency Cepstral Coefficients (MFCC).

4.2.1.1 Spectrogram

The input speech signal is transformed into a spectral-temporal representation by using

the Short Time Fourier Transform (STFT). To do so, it is usual to define a proper analysis

window length. As explained in (MCLOUGHLIN, 2009), the speech presents slowly changes

in its spectral characteristics, being able to assume it is pseudo-stationary state over the period

of about 20-30 ms. In this view, it is used a frequency analysis window with duration of 32.0 ms,

the first multiple of 8, greater than pseudo-stationary range (as the typically sampling frequency

used on speech is multiple of 8 KHz). The overlap used is 75% over the frame length, and the

Hanning window is applied. To avoid manipulation of complex numbers, their absolute values

are taken.

4.2.1.2 MFCC

As for the selection of other model parameters, the selection of the model input feature

was performed by evaluating the visual features: spectrogram absolute values, mel spectrogram,

MFCC and PNCC.

The mel scale is a nonlinear psychoacoustic scale (STEVENS; VOLKMANN; NEW-

MAN, 1937). The distances between their units (mels) are judged by listeners to be equivalent

in the perceived sound distance. A classical equation to convert Hz to mels is presented in

Eq.4.1.

m = 2595log10

(
1+

f
700

)
(4.1)

The mel spectrogram is accomplished by the use of half-overlapped triangular win-

dows (band pass filters) equally spaced on the mel scale. Firstly is applied a windowing to

get the frames of spectrogram. Each magnitude spectrogram frame is multiplied by band pass

filters and summed, resulting one bin per filter. The whole process, applied over one frame, is

resumed in the diagram of Fig.21.

As stated in (DAVIS; MERMELSTEIN, 1980) the MFCC generation is accomplished

by using a similar pipeline of Fig.21, with additional processing steps. A logarithmic non
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Figure 21 – Diagram of the mel spectrogram generation.

Source: Generated by the author.

linearity is applied on the result of the triangular frequency integration. Lastly, to generate the

cepstral coefficients, it is used a Discrete Cosine Transform (DCT), Eq.4.2.

Xk =
N

∑
n=1

xn cos
[

π

N

(
n+

1
2

)
k
]

k = 1, . . . ,N. (4.2)

where N is the number of cepstrum coefficients, and xn is the log-energy output of the

k-th filter. The general steps can be seen in the diagram of the Fig.22.

The last feature evaluated is the PNCC, presented in (KIM; STERN, 2016). The PNCC

generation has similarities with the generation steps of MFCC; the differences can be seen in

the colored blocks of Fig.23. In the figure, it can be seen that the blocks of STFT, magnitude

squared and DCT are the same as used in the MFCC generation. The Pre-Emphasis and Mean

Normalization blocks are steps that can be applied in MFCC, they act as compensation filters

used before and later of coefficients computation. Equivalently to the use of triangular integra-

tion in MFCC, in the PNCC generation, it is used a gammatone-shaped filter bank, and it is used

a different linear spacing approach. It was verified, by the authors, that the use of gammatone

frequency weighting provides a better ASR accuracy in white noise. In the Time Process-

ing block, Fig.23, are performed nonlinear time-varying operations to ease the environmental

degradation by use of a noise subtraction approach. The step of Mean Power Normalization is

used to minimize the impact of amplitude scaling, that can be affected by the use of the power-
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Figure 22 – Diagram of the MFCC generation.

Source: Generated by the author.

law nonlinearity. In the PNCC, after frequency integration, instead of apply a Logarithmic

nonlinearity, as in MFCC, it is applied a Power-law nonlinearity; this choice was done based on

the believe that this nonlinearity provides a superior robustness when suppressing small signals.

The feature which resulted in the best trade-off between results and space complexity

for our model was MFCC; so it is used as the main visual representation of the speech signal.

To define the quantity of MFCC coefficients as input for the CNN layers were evaluated the use

of 13, 20, 40 and 60 coefficients, in the parameter selection phase. The use of 13 coefficients

is well reported in literature, the other values were used to verify how the proposed model

changes with the use of more or less coefficients. The result that presented the best trade-off

between model accuracy and memory usage was obtained by applying 40 MFCC coefficients.

The coefficients are generated using a mel scale spaced from 20Hz to 4kHz. The results found

for MFCC can be associated to the fact that this type of visual feature is very sensitive to noise

interference, providing a greater correlation with quality perception aspects.
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Figure 23 – Diagram of the PNCC generation. The blue boxes are the ones which does not
exist in the MFCC generation diagram. The Green boxes represents the equivalent
operations in the MFCC generation diagram.

Source: Generated by the author.

4.2.2 Feature Extraction

As presented previously, the use of convolutional layers as feature extractor is inspired

on the works that successfully employed CNNs to solve problems on speech enhancement and

speech assessment. The use of such layers can be seen in the middle block of Fig.20.

4.2.2.1 Convolutional Layers

To determine the number of convolutional layers networks with 1 to 7 layers were

evaluated. In that evaluation was found that after the sixth layer the results did no improve
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significantly. To define the quantity of convolutional filters the use of 20 to 100 filters was

evaluated in increments of 20 per convolutional layer. Regarding the dimensions of the convo-

lutional filters, square filters with dimensions of height x width ranging from 2x2 to 9x9 were

evaluated, the evaluation of filters with increasing dimensions per convolutional layer was also

carried out ranging from 2x2 to 9x9 in steps of 1 and 2 pixels per dimension. Finally, the use of

filter dimensions of 2x2, 3x3, 5x5, 7x7 and 9x9 was selected because presented the best results

in validation set. The stride parameter was selected based on the evaluation of the possible

values 1, 2 and a combination of that values for the five convolutional layers, finally the use of

a stride of 1 for the first convolutional layer and 2 for the remaining layers presented the best

results.

Altogether are used five convolutional layers with different kernel sizes. The first layer

aims to conduct the cepstral coefficients to the feature map domain, so it is used a square kernel

of 2x2 bins, and a stride of one bin. Thus, at the output of the first convolutional layer, feature

maps are generated with same dimensions of the MFCC result, but with the extended channels.

In the following convolutional layers, the kernels dimensions are increased (3x3, 5x5, 7x7 and

9x9), at the same time as the stride is kept in two bins. The increase in kernels dimensions is

necessary to build the hierarchical feature space used by the quality estimation module and it

is in conformity with (PARK; LEE, 2017). In all convolutional layers, eighty feature maps are

generated, this approach presented the best results on the validation step.

4.2.2.2 ReLU

The use of stable activation functions is crucial to successfully train convolutional lay-

ers. The most common problem occasioned by the use of unstable activation functions occurs

when algorithms, as back-propagation, progresses down to the lower layers with gradients get-

ting smaller and smaller, culminating on weights unchanged, a problem known as vanishing

gradients. In opposite, sometimes the gradients can grow bigger and bigger, culminating in

large weights and leading the algorithm to diverge, a problem know as exploding gradients.

The aforementioned problems are investigated in more details in (BENGIO; GLOROT, 2010).

To avoid the problems with activation functions, in the present work, we evaluated the use of

three activation functions well reported in the state of the art. The result was that the Rectified

Linear Units (ReLU) outperformed the Softplus and Exponential linear unit (ELU) activations.



Chapter 4. Proposed Model for Speech Quality Assessment based on CNN 66

The ReLU equation is defined in Eq.4.3.

f (x) = max(0,x) (4.3)

4.2.2.3 Batch Normalization

Another problem involving convolutional layers and their training is called the Inter-

nal Covariate Shift. It is caused by the layer’s input/output distribution changes during training.

The problem can be compensated by the use of a normalization technique called Batch Normal-

ization (IOFFE; SZEGEDY, 2015). This technique acts before the activation function in each

layer, applying a zero-centering and normalizing the inputs, then scaling and shifting the result.

The Batch Normalization parameters (scale and mean) are learned during the training, so that

the model can learn their best parameters. Besides the advantages of Batch Normalization, its

use can be benefit to accelerate the training, getting a faster convergence time. As well as for

another model parameters, in the parameter selection phase the use of Batch Normalization was

beneficial to reduce the model error rate. So, before the activation function of each layer, it is

added a Batch Normalization step in the model of Fig.20 (not shown in this figure).

4.2.2.4 Dropout

As a final step in the training of convolutional layers, the use of regularization tech-

niques is applied to avoid overfitting. The most popular and successful regularization technique

is called dropout (SRIVASTAVA et al., 2014). This technique consists on the association of

an activation probability to a neuron, meaning that it can be entirely ignored during training.

This technique avoids the neurons to co-adapt with their neighbors. In the parameter selection

phase was evaluated the model performance with and without Dropout as a final step for the

convolutional layers, the results appointed improvements in the error rate when using Dropout.

This way it is used Dropout as a final step of each convolutional layer, in which a probability of

50% is associated to each neuron.

4.2.3 Quality Estimation

In the final step typically neural network layers are used to the regression of the speech

quality score. The selection of the parameters of the fully-connected layer was carried out by

evaluating one to three hidden layers, with the same number of neurons for all hidden layers,
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from 200 to 800 neurons per layer. But the final configuration, which is used two hidden layers

with four hundreds neurons each, shows better results in the validation step. As well as for the

convolutional layers, the use of ReLU activations presented better results and are used in the

two fully-connected layers. The final layer is a regressor which maps the trained weights to a

decimal value, the quality score.
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5 EXPERIMENTS AND ANALYSIS

To evaluate the proposed model, an experimental workflow is performed using two

databases. One of them being a proposed database developed in this work. To conduct the

experiments the new model is trained across the databases; its validation errors are compared

with the results of other methodologies available. The results analysis, in resume, suggest a

better fit of the proposed model on the databases.

5.1 DATABASES

In this section are presented the databases used in the experiments. The database used

in the second experiment is a built dataset, used to evaluate the proposed model in a larger

number of samples with background noise.

5.1.1 ITU-T Supplement 23 and TCD-VoIP

The first database is a composition of the classical ITU-T Supplement 23 database,

with addition of samples from TCD-VoIP database and the use of a data augmentation technique

to expand the number of trainable samples. Next are presented the details about the mentioned

database.

5.1.1.1 ITU-T Supplement 23

The largest portion of the first database used in the experiments is composed of samples

from ITU-T Recommendation Suppl. 23 (ITU–T, 1998). This source was initially created to

evaluate subjective tests on CODECs (coder-decoder) at 8 Kbits/s. In the construction of the

source material by ITU-T Group, sentences with 2-3 seconds length were used combined with

silence periods; the final speech samples have 8 seconds. All sources have been sampled at

16KHz with 16-bit of precision per sample. Three experiments were created in the process,

each addressing a subset of degradation available in the context of speech CODECs evaluation.

The configuration of each experiment is presented in Table 8.

Each laboratory used four speakers (two males and two females) with different nation-

alities to create their sources, totaling seven languages used in the experiments. Adding the

samples generated by all laboratories, it was built a dataset with 1,480 speech samples.
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Experiment Description Labs # samples Languages

1

Interworking With
Other Wireless and
Transmission Stan-
dards

3 188

French,
Japanese,
American
English,
German,
Norwegian

2
Effect of Environmen-
tal Noise

3 28

French,
Japanese,
American
English,
German

3
Effect of Channel
Degradation

4 208

French,
Japanese,
American
English,
German,
Italian

Table 8 – Resume of ITU-T Rec. Suppl. 23 database.

The use of the ITU-T Recommendation Suppl. 23 database is restricted by the uti-

lization of the experiments 1 and 3. This was motivated by the test method employed in each

experiment. In experiments 1 and 3 the overall sample quality is rated using the aforementioned

ACR test with the MOS scale. On the another hand in experiment 2 is used the Comparison Cat-

egory Rating (CCR) procedure, in this test is used a different approach of ACR, to the subjects

are presented two samples, a distorted and a reference one, in random order. In CCR tests, to

rate samples is used a rate scale, to address the quality of the second compared to the quality of

the first in a range from much worse quality to much better quality (ITU–T, 1996a). Besides the

different rate scale, the use of reference samples makes it incompatible with the ACR approach.

5.1.1.2 TCD-VoIP

The another portion of the first database is composed of samples from TCD-VoIP

(HARTE; GILLEN; HINES, 2015). This is a database of degraded speech for assessing quality

in VoIP applications. Five types of degradation are in the TCD-VoiP database: background

noise, intelligible competing speakers, echo effects, amplitude clipping, and choppy speech (it

simulates the missing samples degradation). These are considered platform independent and

are the most common VoIP degradation. The instructions in (ITU–T, 1996a) were used for

the database creation, Therefore the samples are compatible with the ITU-T Recommendation

Suppl. 23 dataset. In the TDC-VoIP database each experiment applied to ACR test comprised
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a number of conditions in which an amount of quality degradation was applied. Differently of

Recommendation Suppl. 23 dataset, in the TCD-VoIP database there are reference condition

samples for what no degradation has been applied. Including all samples the packet has a total

of 400 samples, in the Table 9 is exposed the resume for the TCD-VoIP database.

Degradation Conditions # samples
Competing Speakers 10 56
Amplitude Clippings 10 56
Background Noises 20 96

Choppy Speechs 20 96
Echo Effectss 20 96

Table 9 – TCD-VoIP database conditions.

The original samples of TCD-VoIP database were sampled at 48kHz, so it was nec-

essary apply a downsample to 16kHz to fit them to the same sample rate of the ITU-T Rec-

ommendation Suppl. 23. Because the proposed model was not developed to address effects as

echos and missing samples, the samples with these degradation were removed from TCD-VoIP

database before the experiments. A total of 192 samples were removed, remaining 208 samples.

5.1.1.3 Data Augmentation

In scenarios where few samples are available for training, data augmentation tech-

niques are typically used to supply new samples. In audio processing context, a few approaches

are commonly used: speed change, pitch change and noise insertion (CHAN et al., 2016),

(PARK; CHAN, et al., 2019). However, for quality analysis, most of them can not be applied

because they can change the original samples affecting speech quality aspects. Therefore, a less

popular data augmentation approach was used, the Random Circular Shifting (RCS). The RCS

is a data augmentation approach, that shifts the data in an array, keeping all original samples.

Firstly, a quantity (q) is randomly chosen to be used as total shifting; later it is used to shift all

samples to a direction (left or right).

When using the database resulting from the combination of ITU-T Suppl. 23 and TCD-

VoIP databases, during the training phase, it was used an RCS approach for data augmentation;

for each training sample, it was generated a new version with shifting between 10% and 90%

of the audio sample length. This approach was used to avoid small shifts in which the signal

would remain pretty much its original version. In order to characterize the levels which a speech

signal can be distorted, six different Signal-to-Noise Ratio (SNR) were used; they are evaluated
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by getting the active levels of speech and noise. The submitted SNR levels were 5dB, 10dB,

15dB, 20dB, 25dB and 30dB. These conditions are used to simulate a range of possible speech

levels in a telephonic call.

5.1.1.4 Consideration

The composed database presented in this section was used as a first experimental re-

source to evaluate the proposed model. To evaluate the model in a large dataset, with better

background noise levels representation, it was built a database presented next.

5.1.2 SNDSuppl23

In the last few years, there has been an increasing number of deep learning solutions

motivated by the evolution of neural network techniques and computers processing capacity.

However, to train the new deep models it was necessary to increase the number of samples in

datasets to a scale of thousands. Even with the data available on the internet, and other sources,

some challenges must be transposed by those who try to train deep models.

Some areas are well served with data, such as speech recognition, sometimes motivated

by the global competitions, as ImageNet Challenge (DENG et al., 2009), and other events. On

the other hand, for some areas, as quality assessment, the creation of large labelled databases

is time consuming and costly. Some problems in the development of new databases can be

identified in (ITU-T, 2016). To solve such problems some solutions were developed: in some

cases the dataset can be crafted directly; besides that, it is possible to use small datasets that

can be expanded using techniques like data augmentation (MIKOŁAJCZYK; GROCHOWSKI,

2018). Some of the latest models using deep learning to solve speech problems have adapted

existing databases inserting speech noisy samples (FU; TSAO; HWANG, et al., 2018), (FU;

TSAO; LU, 2016). Even so, there are still many other problems making it difficult to create

new datasets, such as in quality assessment area, that depends on human subjective evaluation.

As can be expected, the new deep learning solutions involving speech quality assessment need

large labelled datasets.

Motivated by the necessity of large datasets in the context of speech quality assess-

ment, it was built a database called Speech Noise Database with Rec. Suppl23 (SNDSuppl23),

labelled by the Perceptual Evaluation of Speech Quality (PESQ) (ITU–T, 2005), described in

this documentation.
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Following, it is described all the details for the built of the Speech Noise Database with

Rec. Suppl23 (SNDSuppl23) dataset, including clean speech signal information, degradation

methods, the utilities used to build speech and noisy samples, all the main characteristics of the

database and the software used to generate the quality scores.

5.1.2.1 Requirements

To correctly use PESQ as quality assessment tool, it was followed the guidelines from

the Application guide for objective quality measurement based on Recommendations P.862,

P.862.1 and P.862.2 (ITU–T, 2007). Besides PESQ requirements, in order to choose the speech

source, it was stated as necessary a representative variability of the samples and a minimum

sample length.

5.1.2.2 Speech source

The speech source must be a set of human voice samples created by recording spo-

ken phrases of native human subjects. To aggregate phonemes variability in the speech corpus,

speakers of different nationalities are necessary; besides nationality, age and genre are also

important factors of human voice diversity taken into account. Therefore, to built the SND-

Suppl23, it was used the speech material from ITU-T Recommendation Suppl. 23.

5.1.2.3 Noise source

The distortions used in the development of the built database are composed by back-

ground noise samples. These samples were taken from the Suppl.23 dataset, they were consid-

ered important to evaluate CODECs in some experiments (ITU–T, 1998). Information about

noise is summarized in Table 10.

Label Description Length (seconds)
Babble Office bable 8

Car Inside car 8
Hoth Simulated room noise 12
Music Violins playing 8
Street Street noise 120
White White noise 12

Table 10 – Information of noisy samples of ITU-T Rec. Suppl. 23.
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5.1.2.4 Conditions

In order to characterize the levels which a speech signal can be distorted, six different

SNR were used; they are evaluated by getting the active levels of speech and noise. The sub-

mitted SNR levels were 5dB, 10dB, 15dB, 20dB, 25dB and 30dB. These conditions are used to

simulate a range of possible speech levels in a telephonic call.

5.1.2.5 Database generation

To prepare the input signals for a validation stage, four steps are applied as shown in

the diagram of Fig. 24 and detailed next.

Figure 24 – Database generation steps.

Source: Generated by the author.

Because the pre-processing tool works only on .raw files, it was necessary to convert

the .wav input files into a more proper format. To perform the conversion the Sound eXchange

(SoX) tool was used; this is a cross-platform command line utility that can convert and apply

effects to sound files (NORSKOG, 2014).

The pre-processing steps are used to prepare the input data before applying the mixing

operation. Primarily, the signal is filtered by a Modified Intermediate Reference System (MIRS)

(ITU–T, 1996b); this is an ITU-T recommendation that simulates the frequencies when trans-

mitting the signals by a network. PESQ assumes that the signals reflects the electro-acoustic

characteristics of transmission.

The second pre-processing step is the Level Alignment (LA) used to level the active

values in both signal. This step is crucial to conduct the signals to appropriate reference levels
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before applying mixing. Both signals are level aligned to -30dBov1.

To pre-processing .raw files, it was used the ITU-T Recommendation G.191 tool to

address audio coding standardization (ITU–T, 2019).

The mixing block is responsible to merge the pre-processed signals at a specific SNR

level. This is done by applying the Filtering and Noise Adding Tool (FaNT) in the sources

signals and the conditions. The FaNT tool (HIRSCH, 2005) is a mixing and filtering signal

utility used to generate the Aurora-2 and Aurora-4 databases.

The second conversion step is applied to convert the raw files into an proper wav format

used by the quality assessment tool. Here again, SoX tool is used to convert the files.

In the final stage, it is generated the virtual quality scores; it is generated by a full-

reference tool simulating the real quality score. The tool used is the PESQ, ITU-T Recom-

mendation to address speech quality assessment in a sort of distortions (ITU–T, 2005). PESQ

represents the actual open source state of the art tool in speech quality assessment. As a full-

reference tool, PESQ needs the reference signal and its distorted version in order to generate

the quality score. Thus, the final step is the PESQ score generation using the reference and

distorted speech signals.

5.2 TRAINING METHODOLOGY

In this section, it is presented the details involving model implementation, their param-

eters, and training approach employed to fit the CNN-SQA model on the databases.

5.2.1 Settings

This section presents the model details and show all parameters used on the model

realization. Along of the model validations, each parameter was set to benefit some processing

stage, aiming to achieve the best results.

5.2.1.1 Input

The input signal is represented as a waveform, loaded from an audio file. In our case, it

is in the PCM 16-bit format. The default sampling frequency used was 16kHz. The parameters

are resumed in Table 11.
1 The dB overload (dBov) is a like decibel measure relative to the overload point of a system.
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Extension Digital
format

Quantization Clip
duration

Sampling
frequency

Byte order

wav PCM 16-bit 8000 ms 16kHz little endian

Table 11 – Parameters related to the input signal.

5.2.1.2 Spectrogram

Generating a spectrogram typically involves to use parameters related to windowing.

The window size parameter states the size in samples, being necessary to apply the STFT.

Besides, it is necessary to set the overlapping samples which can be equivalently addressed by

the window stride parameter; this one represents the samples to jump in each STFT windowing

step. To apply windowing, it is also necessary to choose the window format. In this work, it is

used the Hanning window as this is a common window for speech applications. The parameters

are resumed in Table 12.

Window size Window stride Window Feature
32 ms 8 ms Hanning absolute

Table 12 – Parameters related to spectrogram generation.

5.2.1.3 Feature Extraction

The parameters related to the feature extraction process are dependent on the kind of

feature used. In this work, some features were evaluated from: spectrogram absolute values,

Mel spectrogram, PNCC and MFCC. The feature which resulted in the best results for our

model was MFCC; so it was used as the default feature. In a typical MFCC, the main parameter

is the number of coefficients generated; in most part of our experiments, 40 coefficients are

used. Other parameters are related to the search in the spectral range used to generate coeffi-

cients. The parameters are summarized in Table 13. Besides the dimension problem, the use of

spectral features to solve problems involving speech is extensive (DUBEY; KUMAR, 2013),

(UPADHYAY; KARMAKAR, 2015). Its frequent use is related to its high capacity of speech

representation (WU; CAO, 2005).

Type Coefficients Lower edge (Hertz) Upper edge (Hertz)
MFCC 40 20 4000

Table 13 – Parameters related to feature generation.
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5.2.1.4 Convolutional Layers

The convolutional layers cover many of the parameters used; their presentation is con-

ducted to the most general to most specific. The first, and one of the most important parameters,

is the number of convolutional layers: it is responsible to define how many levels of high level

feature extraction are applied on the input visual representation.

The next parameters are related to the layer itself; so each one of them exists for each

layer. The first one is the number of convolutional feature maps: each one is generated by

applying a convolutional filter fitted in the training model, with more feature maps more char-

acteristics of the preceding layer are captured. Besides the feature maps, the width and the

height of each convolutional filter are necessary to set the aspect of visual field in each convo-

lutional layer, this parameter depends on the visual characteristics mapped in the convolutional

process. The last parameter involving the convolutional filter is the stride, used in convolution

process to define how many feature pixels must be jumped to access the next convolutional

mapping.

Other parameters are not involved with each convolutional layer itself but are applied

later than each convolutional layer. The activation function is chosen to map the feature map

values to activations, typically just one activation function type is shared to all convolutional lay-

ers. Other parameters are used to apply regularization steps in order to constraint the model and

avoid overfitting. The use of batch normalization steps (IOFFE; SZEGEDY, 2015) is applied

later than activation layer and is responsible to normalize the output of the layer, constraining

the range values to the next layer. One last parameter can be applied to avoid overfitting too,

it does adding an inactivation probability on each layer, this parameter is called dropout (SRI-

VASTAVA et al., 2014), Table 14 and Table 15 show default values to the presented parameters.

Layer Feature maps Filter width Filter height Stride
Conv1 80 2 2 1
Conv2 80 3 3 2
Conv3 80 5 5 2
Conv4 80 7 7 2
Conv5 80 9 9 2

Table 14 – Convolutional layer parameters.
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Layer Activation Apply Batch
normalization

Apply dropout

Conv1 ReLU true true
Conv2 ReLU true true
Conv3 ReLU true true
Conv4 ReLU true true
Conv5 ReLU true true

Table 15 – Additional convolutional layers parameters.

5.2.1.5 Fully connected Layers

As stated before, for convolutional layers, the number of layers is a parameter used to

define how many mapping layers must be used. In the context of fully connected networks the

more layers added than more complex models are generated.

In a FNN, each layer has the quantity of neurons and the activation function as param-

eters. The parameters used to set the default fully connected layers are shown in 16.

Layer Neurons Activation
FC1 400 ReLU
FC1 400 ReLU

Table 16 – Fully connected layers parameters.

5.2.1.6 Database Partition

To training and validation on the proposed database it was used a stratified partition

approach that divides the training and validation sets with similar diversity of samples into noise

type and SNR levels categories. The parameters used and the total amount of samples in each

set is shown in Table 17.

Set Parcel # samples
Training 80% 42624

Validation 20% 10656

Table 17 – Database partitions sets.

5.2.1.7 Training

Other parameters are related to training process itself, they are important to define

the time and hardware resources consuming in the training phases; besides, they are crucial to

generate good results in generalization of the model. The batch size parameter sets the total of
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samples applied (in batch) during model training steps; increasing this parameter can accelerate

the training but, at the same time, it can be memory consuming and must be handled carefully.

The optimizer sets the algorithm used to train the model, the most used is the Batch

Gradient Descent (RUDER, 2016); this algorithm gets the gradient errors to point to the right

direction of learning variables changes. The loss is a measure used to define the error during

the training process, comparing the predictions with the ground truth values. The default loss

used to train the model is the Root Mean Squared Error (RMSE), a typical error measure used

when comparing decimal values. In the training process, the batches of samples are used and

evaluated by RMSE loss, however during the training process, to evaluate the validation set, it

is necessary to apply all validation samples that is much bigger than batch size. Thus to the

validation set, it is applied a weighted version of the RMSE measure. The RMSE measure is

weighted by batch size on validation step; this approach conducts to a very close RMSE value

over validation set.

To avoid overfitting and to add variability on databases, a schema where samples are

artificially generated can be used, a process called data augmentation. The process of new sam-

ples generation includes the use of the original database samples applying data transformations.

To execute the training, it is necessary to set how many steps must be applied and how

the learning rate changes during training step. All the parameters are presented in Table 18 and

19.

Batch size Optimizer Loss Validation loss Data
augmentation

algorithm
30 Gradient

descent
RMSE Weighted

RMSE
RCS

Table 18 – Training parameters.

Step 0-5000 5001-5500 5501-6000 6001-6500 6501-7000
Learning

rate
0.01 0.007 0.005 0.003 0.001

Table 19 – Training steps and learning rates.

5.2.1.8 Evaluation

The last set of parameters covert the evaluation process; the summary step interval is

used to summarize how many training steps are applied until the training error is evaluated.
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The eval step interval summarizes the interval which the validation error is evaluated. Table 20

shows their default values.

Summary step interval Eval step interval
5 100

Table 20 – Evaluation properties.

5.2.2 Implementation

The implementation was conducted by using Python language, version 2.7.15, with

Tensorflow framework version 1.11.0. The model building using this framework involves the

creation of a graph; this is a connectionist representation of the model implementation. The

Tensorflow graph of the proposed model, with the default parameters is shown in Fig. 25. The

training involves the graph execution using the hardware infrastructure, more details can be

found on Tensorflow documentation.

5.2.3 Training

To generate the objective speech quality scores used in the experimental methodology,

the model was trained across the two databases presented in this chapter. The parameters used to

train the model are the same already presented as default parameters. The training was executed

along 7,000 steps with the decreasing of learning rate following the 19. Next are shown the

learning curves, the training (in orange) and the validation (in blue) curves are showed for each

database. In the vertical axis, it is presented the RMSE of training and the weighted RMSE of

the validation set. In the graphics can be seen that the validation curve starts some steps later;

more precisely, it starts at the 100th step. This was defined as an initial step, done to avoid

printing large outliers at the beginning of the training phase. In the initial steps, it is notable the

usual decaying of the curves with a high negative slope. In those steps, the model is starting

from an initial random state to a poorly fitted state.

5.2.4 ITU-T Supplement 23 and TCD-VoIP

In the Fig.26 is shown the training and validation curves for database composed of

ITU-T Suppl. 23 and TCD-VoIP databases. As can be seen, the two curves follow similar

trends across the steps. The similar trend is more clearly shown in the bottom graphic, with the

overlapping curves.
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Figure 25 – Tensorflow graph of CNN-SQA model.

Source: Image generated by the author by using the Tensorboard tool
(www.tensorflow.org/tensorboard/get_started)

Applying a smoothing in the curves of the Fig.26 are generated the corresponding

curves in the Fig.27. The smoothed graphic version is better representation for visualize trends.

It can be seen, the two curves began fairly high (both above the RMSE value of 1.5) and, as

more training steps are performed, the curves find a plateau, with final RMSE values next to

0.5. This a expected behavior when training the machine learning models, indicating a good

generalization fit in the validation set. A summary about RMSE values for the training and

validation curves can be seen in Table 21.

https://www.tensorflow.org/tensorboard/get_started
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Figure 26 – The training and validation curves for ITU-T Supplement 23 and TCD-VoIP mixed
database. On top the training curve, in the middle the validation curve and in the
bottom is shown the overlapping curves.

Source: Image generated by the author by using the Tensorboard tool
(www.tensorflow.org/tensorboard/get_started)

https://www.tensorflow.org/tensorboard/get_started
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Figure 27 – The training and validation curves with smoothing of 0.75 for ITU-T Supplement
23 and TCD-VoIP mixed database. On top the training curve, in the middle the
validation curve and in the bottom is shown the overlapping curves.

Source: Image generated by the author by using the Tensorboard tool
(www.tensorflow.org/tensorboard/get_started)

https://www.tensorflow.org/tensorboard/get_started
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Step 5 100 5,000 5,500 6,000 6,500 7,000
Learning rate 0.01 0.01 0.01 0.007 0.005 0.003 0.001
Training RMSE 2.32 0.96 0.40 0.28 0.35 0.35 0.38
Validation weighted
RMSE

- 1.81 0.53 0.47 0.47 0.47 0.46

Table 21 – Summary of training and validation steps for ITU-T Supplement 23 and TCD-VoIP
mixed database.

Source: Table generated by the author.

5.2.5 SNDSuppl23

In Fig.28, it is shown the training and validation curves for database SNDSuppl23.

The curves begin at a high RMSE value (around 2.0) and goes down to find the plateau. As

expected, the two curves follow similar trends across the steps, however the similar trends is

more clearly shown when applying a smoothing.

Fig. 29 presents the smoothed version of the curves from Fig. 28. Differently of the

learning curves for the fist database, the curves of Fig.29 shown the final RMSE values with a

shorter gap between curves, and with lower RMSE values. This can be explained based on the

total amount of samples involved in training. The SNDSuppl23 database has significantly more

samples, with more variability on SNR conditions, than the dataset composed by the ITU-T

Suppl.23 and TCD-VoIP databases. A summary about training steps can be seen in Table 22.

Step 5 100 5,000 5,500 6,000 6,500 7,000
Learning rate 0.01 0.01 0.01 0.007 0.005 0.003 0.001
Training RMSE 2.07 0.25 0.18 0.22 0.21 0.20 0.12
Validation weighted
RMSE

- 1.95 0.19 0.34 0.22 0.24 0.19

Table 22 – Summary of training and validation steps for SNDSuppl23 database.

5.3 RESULTS

In this section are presented the experimental results when evaluating the CNN-SQA

model on the two databases presented at the beginning of this chapter. The evaluation is ad-

dressed by comparing the CNN-SQA results with the publicly available state of the art method-

ologies: PESQ, ViSQOL and P563. These models were chosen because they represent stan-

dards in full-reference (PESQ) and non-reference (P563) methodologies. The use of ViSQOL

model, in the experiments, was applied as an additional model to evaluate the results from
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Figure 28 – The training and validation curves for SNDSuppl23 database. On top the training
curve, in the middle the validation curve and in the bottom is shown the overlapping
curves.

Source: Image generated by the author by using the Tensorboard tool
(www.tensorflow.org/tensorboard/get_started)

https://www.tensorflow.org/tensorboard/get_started
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Figure 29 – The training and validation curves with smoothing of 0.75 for SNDSuppl23
database. On top the training curve, in the middle the validation curve and in the
bottom is shown the overlapping curves.

Source: Image generated by the author by using the Tensorboard tool
(www.tensorflow.org/tensorboard/get_started)

https://www.tensorflow.org/tensorboard/get_started
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CNN-SQA model. Other models presented in this work, like as POLQA and ANIQUE, were

not used in experiments because they are not publicly available.

5.3.1 Performance metrics

In the present work, the performance evaluation is conducted by using two metrics

from (HU; LOIZOU, 2008). In that work, the metrics, named Pearson’s correlation coefficient

and the standard deviation of the error, are used to evaluate objective speech quality measures

over noise speech enhanced samples.

The absolute values of Pearson’s correlation coefficient ρ can be calculated by:

ρ =
∑

n
i=1(si − s)(oi −o)√

∑
n
i=1(si − s)2

√
∑

n
i=1(oi −o)2

(5.1)

where si and oi are the equivalent values from two samples in index i; in this case,

s can be treated as the reference signal (the subjective quality rate) and y the evaluated signal

(the objective quality rate), the s and o are the average values of s and o, respectively. n is the

maximum index; it represents the quantity of samples in the evaluated set. Pearson’s correla-

tion coefficient measures the strength and direction of a linear relationship between two sets of

samples. Its values are limited to the range from -1 to 1; in that range a big positive coefficient

represents a positive linear correlation, while a big negative value represents the inverse, a neg-

ative linear correlation. The zero value for Pearson’s correlation means no linear relationships

between the sets of samples.

The standard deviation of the error σ̂e can be calculated by:

σ̂e = σ̂s

√
1−ρ2 (5.2)

where σ̂s is the standard deviation of the subjective quality scores and ρ is the Pearson’s

correlation coefficient. This metric represents a dispersion measure where big values can be

interpreted as a high variability of the error.

5.3.2 ITU-T Supplement 23 and TCD-VoIP

In this subsection, it is presented the statistical analysis of the scores on validation set

for the database composed by the ITU-T Suppl.23 and TCD-VoIP; more specifically, the ground
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truth mean opinion scores (MOS) and the scores predicted by CNN-SQA, and other models, are

compared using statistical tools.

In Fig.30, it is presented the scatter plot for each model; it can be seen, by the color,

the distribution for the two databases. The ViSQOL scores appear to be more spread in relation

to the other results.

Figure 30 – Scatter results (ITU-T Suppl. 23 and TCD-VoIP). Objective measures against sub-
jective MOS scores using ITU-T Suppl. 23 (Experiments 1 and 3, in blue color)
and TCD-VOIP (background noise, clip and competing speakers, in orange color).

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

Applying a linear regression to the curves of the graphics in Fig.30, and plotting a

reference regression ideal line, is shown in the Fig.31. In this graphics is seen that the regression

line of the CNN-SQA model results are the most similar with the reference line. The PESQ and

the P563 trends to overestimate the samples scores with low MOS-LQS. In another hand the

ViSQOL mode trends to underestimate the samples as the MOS-LQS increases.

A table with the Pearson’s correlations for each model is shown in the Table 23. As

https://seaborn.pydata.org/
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Figure 31 – Scatter results (ITU-T Suppl. 23 and TCD-VoIP). Objective measures against sub-
jective MOS scores using ITU-T Suppl. 23 (Experiments 1 and 3) and TCD-VOIP
(background noise, clip and competing speakers). The red lines are the regression
lines generated and the black lines are the ideal reference lines.

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

suspected, the CNN-SQA model achieves the best performance in the mixed database. How-

ever, in the TCD-VoIP database, the PESQ correlation is bigger than CNN-SQA correlation by

0.02. This is explained by the amount of samples used from each database, in the validation

set the percentage of samples used from each database is the same, however the total number

of samples in database ITU-T Suppl. 23 is much greater than in database TCD-VoIP, making

many more samples from the database ITU-T Suppl. 23 appear in the validation set.

Model Mixed Suppl23 TCD-VOIP
CNN-SQA 0.84 0.82 0.90

PESQ 0.82 0.79 0.92
ViSQOL 0.62 0.59 0.89

P563 0.70 0.71 0.52

Table 23 – Pearson correlation for all models on validation set using the database composed by
samples from the ITU-T Suppl. 23 and TCD-VOIP datasets.

https://seaborn.pydata.org/
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A table with the standard deviation for each model is shown in the Table 24. Again, a

similar result, to that for Person’s correlation, is observed; the CNN-SQA model achieves the

best result in the mixed database, while in the TCD-VoIP database the PESQ standard deviation

is lower than CNN-SQA result by 0.05.

Model Mixed Suppl23 TCD-VOIP
CNN-SQA 0.47 0.47 0.43

PESQ 0.50 0.51 0.38
ViSQOL 0.68 0.67 0.45

P563 0.62 0.58 0.83

Table 24 – Standard deviation for all models on validation set using the database composed by
samples from the ITU-T Suppl. 23 and TCD-VOIP datasets.

To obtain the presented results the CNN-SQA was trained a few times showing little

variation in each step.

5.3.3 SNDSuppl23

In this subsection, the scores generated by PESQ, treated as ground truth in the SND-

Suppl23 database, and the scores predicted by the other models are compared using statistical

tools. Because the existence of many conditions, generated by the permutation of noise type,

SNR level and the quantity of speech samples available in database SNDSuppl23, a further

analysis is conducted from a general overview to a categorized statistical description.

5.3.3.1 General Description

In the Fig.32 is presented the scatter plot for CNN-SQA model results. It can be

seen the almost linear relation between objective and subjective MOS. Besides, because the

subjective MOS are based on the PESQ scores, the maximum score in the graphic is limited by

almost 4.

In Fig.33, it was applied a linear regression to the points of the graphic in Fig.32, and

plotting a reference regression ideal line. In this graphic, it is seen that the regression line of

the CNN-SQA model results are almost equal to the reference line, indicating a good fit of the

model in the database SNDSuppl23.

Table 25 shows Pearson’s correlation (ρ) and the standard deviation of the error (σ̂e)

for the models CNN-SQA, ViSQOL and P563. As we have suspected, the CNN-SQA model

achieves the best performance in the SNDSuppl23 database. The results for ViSQOL and P563
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Figure 32 – Scatter plot of the scores for the CNN-SQA model when training with SND-
Suppl23. Objective MOS (vertical) against subjective MOS (horizontal).

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

Figure 33 – Scatter plot of the scores for the CNN-SQA model when training with SND-
Suppl23. Objective MOS (vertical) against subjective MOS (horizontal). The red
line is a linear regression generated for shows the scores set, and the black line a
reference line of a ideal linear regression result.

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

are presented just for reference, since this database was projected for training and analysis of

the CNN-SQA model.

5.3.3.2 Categorized Description

When plotting the results in a scatter plot, Fig. 34, besides the visualization of an

almost linear relation between the distributions, it is presented the color change with respect

https://seaborn.pydata.org/
https://seaborn.pydata.org/


Chapter 5. Experiments and Analysis 91

Model ρ σ̂e
CNN-SQA 0.98 0.15
ViSQOL 0.85 0.43

P563 0.65 0.62

Table 25 – Pearson correlation for all models on validation set using the SNDSuppl23.

to the SNR levels. It is notable the scores increasing when the SNR levels grows; an expected

result since the active level of degradations is going down.

Figure 34 – The scatter plot with the samples colored by SNR.

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

As illustrated in Fig. 35, for almost all types of noise, the relation between predicted

and Ground Truth (GT) scores seems linear and similar to the general overview. In the graphics,

it is possible to visualize the increase of scores according to the increasing of SNR.

To get more insights about the underlying distributions, a KDE plot is used, comparing

the ground truth (MOS-LQS) vs predicted scores (MOS-LQO), grouped by noise, as shown in

Fig. 36. It can be seen that similar patterns are presented for both distributions. Between the

scores range of 1 and 2 is found a peak for all noise types, this is explained by the low objective

quality scores predicted by PESQ for low SNR.

The results indicate that the CNN-SQA model achieved better results compared to

almost all other models evaluated. In comparison, in the first experiment, the PESQ methodol-

ogy achieved the best results among all models in the subset of the TCD-VOIP database. On

the other hand, when using the ITU-T Recommendation Supplement 23 database it was found

that the CNN-SQA model achieved the best correlation rates. Finally, in the overall result the

CNN-SQA model obtained the higher correlation results. Therefore, the results indicated a bet-

ter fit of the CNN-SQA model when a more variable set of samples is available for training.

https://seaborn.pydata.org/
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Figure 35 – The scatter plot of predictions by Ground Truth (GT) grouped by noise type and
colored conform SNR increase.

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

Figure 36 – The KDE plot of predictions by ground truth (GT) grouped by noise type.

Source: Image generated by the author by using the Seaborn visualization library
(seaborn.pydata.org/)

This was observed in the analysis of the experiments, when comparing the MOS-LQO with the

MOS-LQS, in which a better fit was observed for the model CNN-SQA. It was observed an al-

https://seaborn.pydata.org/
https://seaborn.pydata.org/
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most linear relation between the predicted scores of of the CNN-SQA model and the subjective

scores. Although, the predicted scores of the PESQ model have overestimated some subjective

scores.

In the experiments with the SNDSuppl23 database, it was verified the behavior of the

proposed model in a situation in which a huge quantity of samples was available for training.

Besides, to evaluate the new model in the context of background noise, with variable SNR,

it were used six different types of noises combined with six different values of SNR levels.

Analysing the results, it was noted that an even higher disparity between results was reached,

the proposed model outperformed the other methodologies with high correlated results. This

can be assigned to the quantity and diversity of samples available, besides that the others models

were trained with such database.
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6 CONCLUSIONS

Speech understanding is a complex mechanism which is highly dependent on several

aspects as speech quality. This is a subjective matter and it is difficult to measure, being nec-

essary high demands of cost and time to do it properly. Although its complexity, it is of very

important as many communication systems could use such measures to verify the quality of

their services. There are different types of approaches to solve that problem in an automatic

manner, including international standardized methodologies which in some scenarios get poor

accuracy.

In this work, automatic speech quality assessment is investigated. Many of the existing

concepts and some of the main methodologies of the area are presented throughout the work. As

a matter of importance for many speech systems processing, the application of automatic speech

quality assessment resulted in many standardized models which were defined as international

recommendations, some of them being presented in this work. In the research context, this is

an area in continuous evolution in which many studies are constantly elaborated.

Since the proposed model is formulated over the CNN architecture, this work get in

touch with the advances in the DL area. More specifically, the main concepts involving the

structure of CNN architectures are presented. Besides that, the classical convolutional architec-

tures that were part of the evolution of the area are summarized.

One of the main problems when addressing speech quality, in a non-reference ap-

proach, is concerned on the proper characterization of speech and the underlying noise. Many

of the current tools focus on solutions involving the psychoacoustic modeling, or in parameters

extracted from the analysed system. Although there are great solutions to solve such problems,

many of them generate bad results under noise conditions. In another direction, many of the

problems involving speech processing are being modeled by DL techniques. Many of them

employing the use of CNN architectures as their main feature extractors, sometimes serving to

characterize speech and noise. Thus, it would be expected that the use of CNN architectures

could be useful as solutions for problems involving speech quality modeling.
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6.1 CONTRIBUTIONS

To evaluate the CNN architecture as a solution for speech quality assessment, it was

proposed a new methodology called CNN-SQA. In this model, convolutional layers were used

as feature extractors to address speech quality assessment in a non-reference approach. The

new model, that can be trained in a supervisioned manner using speech databases, is publicly

available and can be used as a reference model in speech quality experiments.

The problems involving the applicability of subjective tests, as time and cost, limit

the creation and availability of new databases. Because of this, in areas as speech quality

assessment there is high demand for open labelled databases. Thus, besides the proposal of a

new methodology to address speech quality assessment, the present work has contributed with

the built of the SNDSuppl23 database. It was built to evaluate the proposed model on conditions

of background noise. Their corrupted samples were generated using samples from the ITU-T

Recommendation Sumplement 23. Its conditions includes the presence of six different types of

background noises mixed with six different types of SNR values. The SNDSuppl23 database

was used in the experiments as an alternative to shortage of public datasets. It will be publicly

available, serving not only as a reference dataset, to compare the performance of other speech

quality assessment approaches with the CNN-SQA model, but as a bigger source of samples to

use in experiments involving speech and background noise conditions.

In the first of two experiments, it was evaluated the performance of the proposed model,

in comparison to other three models, when training it in a mix of public available databases. The

databases conditions included the situation of few samples for training, with a diversified set of

degradations, including distortions inserted by using speech CODECs and a subset of the VoIP

degradations. It was shown that the use of an CNN based architecture reached better results

in comparison with almost all other models evaluated. Although the proposed model has not

achieved the best results on the subset of samples with VoIP degradations, the regression analy-

sis, used to compare the real scores with the predicted ones, showed a better fit of the proposed

model in an almost linear relation. These results indicates that a higher overall generalization

was reached when employing convolutional layers as feature extractors. In this view, the use of

convolutional layers, for speech and noise characterization, can be announced as a good choice

in the context of speech quality assessment.

In the second experiment, in which it was used the SNDSuppl23 database, it was anal-
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ysed the behavior of the proposed model in the context of background noise, in which a huge

quantity of samples was available for training. It was noted that a higher disparity between

results was reached, the proposed model outperformed the other methodologies with higher

correlated results. This shows that the proposed model is able to characterize speech and back-

ground noise properly. Even for databases where complex degradations are present, such as

babble noise in which speech samples are used as distortions, and street noise in which differ-

ent noise types are mixed together, the use of the same convolutional architecture used in the

first experiment can reach higher correlation rates. In any case, it could be noted that the use of

a larger dataset was beneficial to increase the model accuracy.

Besides other approaches using CNN to solve speech quality assessment problems,

this work is innovative in some ways. Firstly, in the present work were used MFCC coefficients

as the main visual representation of the speech and noise as input for CNN layers aiming to

solve the speech quality assessment problem. Besides, in this work was presented the use of

fully-convolutional layers to extract the main features representing speech quality elements,

this approach was beneficial to provide a good characterization of speech and noise. Lastly, the

training and evaluation of the proposed model using standardized public databases making it

possible to compare other models using the chosen databases.

6.2 FUTURE WORKS

Since the CNN-SQA presented in this work was an initial approach to verify the per-

formance of a CNN architecture in the context of speech quality assessment in a controlled

environment it is subject of improvement. Future works should be evaluated with a view of

improving the CNN-SQA.

Firstly, the evaluation of other types of features as input for the CNN architecture

should be done more deeply. Since the evaluation described in this work was in some view

limited, it becomes necessary the evaluation of more features to characterize speech and noisy.

Another future research should be the investigation of the use of windowing analysis

over the inputs of the CNN architecture. Instead of deal with full images of features, represent-

ing a complete speech sample as in the case of the CNN-SQA model, the use of windowing

will force the feature extraction block (CNN layers) acts in a frame level quality assessment

resolution. With this approach, it is expected that more localized features, representing speech

and noise characteristics, could be extracted. It should be useful as a comparison between the
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use of full images versus the use of only frames to train the CNN model. Thus it should be

useful a later comparison using a hybrid model taking the advantages of the two approaches.

Although the use of windowing is a classical approach in speech processing area, its

use bring some difficulties to the training of CNN architectures. Firstly, it would be necessary

the addition of some preprocessing steps for the input in order to apply the windowing, dividing

the input images into frames of speech. It would be necessary the evaluation of the size in the

time and frequency dimensions since there is no previous study appointing the beneficial use of

smaller or bigger regions.

Besides the additional steps to apply windowing in the CNN architecture, it could be

necessary the investigation of other types of loss functions more appropriated to work with

windowing. Thus, it should be evaluated the use of different loss functions that be sensitive to

local aspects concerned to speech quality.

Since the present work does not present an investigation on what is learned by the

CNN-SQA model, an analysis should be conducted with the use of visualization techniques

to investigate the CNN architecture weights. This investigation could be useful to indicate

improvement points in the architectural design.

The comparison made between the CNN-SQA and the other models (PESQ, POLQA,

ViSQOL and P563) was useful to verify the applicability of the proposed model in relation to

the performance of popular models. As a future work, it should be useful the comparison in a

broader group of methodologies. Some other models should be used, the works presented in

(LO et al., 2019) and (AVILA et al., 2019) should be carefully studied and tested.
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