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ABSTRACT

The treatment of large data streams in the presence of concept drifts is one of the main
challenges in the fields of machine learning and data mining. This dissertation presents
two families of ensemble algorithms designed to quickly adapt to concept drifts, both
abrupt and gradual. The families |[Fast Stacking of Ensembles boosting the Old (FASEO)|
and [Fast Stacking of Ensembles boosting the Best (FASEB)| are adaptations of the
|[Adaptive Stacking of Ensembles (FASE)| algorithm, designed to improve run-time and

memory requirements, without presenting a significant decrease in terms of accuracy when
compared to the original [FASE] In order to achieve a more efficient model, adjustments

were made in the update strategy and voting procedure of the ensemble. To evaluate the

proposals against state of the art methods, [Naive Bayes (NB)| and [Hoeffding Tree (HT)|

are used, as learners, to compare the performance of the algorithms on artificial and real-
world data-sets. An extensive experimental investigation with a total of 70 experiments
and application of Friedman and Nemenyi statistical tests showed the families [FASEQ|
and [FASEB| are more efficient than [FASE] with respect to execution time and memory in

many scenarios, often also achieving better accuracy results.

Keywords: Concept Drift. Data Stream. Ensemble Methods. Non-stationary Data.



RESUMO

O tratamento de grandes fluxos de dados na presenca de mudangas de conceito é
um dos principais desafios nas areas de aprendizado de maquina e mineracao de dados.
Essa dissertacao apresenta duas familias de algoritmos de combinagao de classificadores
projetados para se adaptar rapidamente a mudancas de conceitos, tanto abruptos quanto
graduais. As familias Fast Stacking of Ensembles boosting the Old e Fast Stac-
king of Ensembles boosting the Best sao adaptacoes do algoritmo Fast Stacking
of Ensembles , projetadas para melhorar seu tempo de execugdo e consumo de
memoria, sem apresentar uma diminuicao significativa de desempenho em termos de acu-
racia em comparagdo com o algoritmo original. Para obter um modelo mais eficiente,
foram feitos ajustes na estratégia de atualizagdo e no processo de votagdo de [FASE] Para
avaliar as propostas em relagao ao estado da arte, usamos o Naive Bayes e o Hoeft-
ding Tree como classificadores base para comparar o desempenho dos algoritmos em
conjuntos de dados reais e sintéticos. Um avaliacdo experimental extensa, com um total
70 experimentos e emprego dos testes estatisticos de Friedman e Nemenyi, mostraram

que as familias [FASEQ] e [FASEB]| sao mais eficientes que [FASE] com respeito a tempo de

execuc¢ao e memoria em varios cendrios, as vezes alcancando também melhores resultados

na acuracia dos algoritmos.

Palavras-chaves: Mudancas de conceito. Fluxo de dados. Métodos de Combinacao de

Classificadores. Dados nao-estacionarios.
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1 INTRODUCTION

In recent years, data generated by different sources such as cell phones, sensors, net-
works and satellites has increased significantly. There are numerous examples of technolo-
gies used in many areas that generate large amounts of data very quickly. Part of these
data can be viewed as a sequence of examples that arrive at high rates and can often
be read only once using a small amount of processing time and memory (GAMA; GABER,
2007). In the literature, such data are known as data-streams.

According to (AGGARWAL, |2014), in the streaming scenario, two primary issues have
to be dealt with in the construction of training models: (i) One-pass Constraint, which
regards the need for all processing algorithms to perform their computations in one single
pass over the data, since volume in data-streams is very large and, (ii) Concept Drift, which
refers to the fact that the typical generating process of the data-streams may change over
time. In this case, learning from data-streams is directly related to Concept Drift because
it is an inherent feature of the data arrival process itself over time (VERDECIA-CABRERA;
BLANCO; CARVALHO, [2018)).

The presence of Concept Drift affects the performance of the classification algorithms,
because models become stale over time. Therefore, it is crucial to adjust the model in an
incremental way in order for the algorithm to achieve high accuracy over current unknown
instances (AGGARWAL, [2014)).

According to (FRIAS-BLANCO) 2014), Concept Drift involves two different concepts:
initial concept (P;) and final concept (Pr). Attending to the time it takes to change
from P; to Pp (te), this change can be abrupt (sudden) (t., ~ 0) or gradual (t., > 0).
Depending on the taxonomy of the involved aspects in the distribution change, different
types of Concept Drift can be analyzed: virtual Concept Drift (the distribution of instances
change but the underlying concept does not), real Concept Drift (there exist a change in
the class boundary), recurrence of the concepts (when previously active concept reappears
after some time) (ORTIZ-DIAZ et al) 2015), and some other types which will be further
discussed in chapter [3].

Giving the difficulty of processing data-streams with concept drifts with traditional
data mining algorithms, irrespective of their nature, there is a growing interest in the
efficient processing of data-streams with the least amount of resources possible.

However, most of the studies conducted so far have focussed on accuracy, although it
is well known that following an error-rate-only approach is not beneficial in all situations
because concept drifts occur in many scenarios where other parameters should also be
taken into account.

For example, in an emergency response context, the time required to present a model

to users may be the most important criteria, i.e., users may be willing to accept less
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accuracy for speed and partial information. Further, regarding the area of mobile data
mining, which has application in defense and environmental impact assessment. Here,
the memory resources may be limited, due to connection issues, and thus reducing the
memory footprint is also of importance (PESARANGHADER; VIKTOR; PAQUET, [2018)).
Based on previous works (BARROS; SANTOS, [2019) that analyzed the performance
of several algorithms, it was observed that [Fast Adaptive Stacking of Ensembles| (FASE)
(FRIAS-BLANCO et al; 2016)) presents good accuracy results, but its memory and run-times

indicate there is room for improvement. [FASE]is an ensemble method which uses a meta-
learner to combine the predictions of the classifiers. It also maintains a set of adaptive
classifiers in order to deal with changes of concepts in the data-stream. The method can
be regarded as a three-level ensemble (FRIAS-BLANCO et al., [2016), one of the reasons to

impact its performance.

Since in many scenarios, the processing of data-streams demands constraints on the
amount of memory and run-time used. This dissertation considers a few different strategies
to improve the original [FASE] algorithm with respect to these other metrics, yet trying to
preserve, at the same time, its accuracy rate.

The following question is raised and investigated in this research: how to handle more
efficiently both abrupt and gradual changes to perform the learning task in the context
of data streaming.

In this research “efficiency” has a particular meaning: it is a suitable balance among
accuracy, memory and run-time highlighting that “suitable” is associated with the degree
to which these aspects have relevance in a given context. That is, producing the desired
result without excessive effort or expense preventing the wasteful use of these particular
resources (STEVENSON, 2010).

To accomplish that, this research proposes and experimentally investigates two main
modifications in [FASE] regarding (i) the update strategy and (ii) the voting procedure of
the ensemble.

The update strategy [FASE] employs is based on the use of a set of adaptive learners.
Each adaptive learner also uses |Hoeffding-based Drift Detection Method 4_tes; (HDDM 4 )
(FRIAS-BLANCO et al), 2015)) to monitor the error rate of the classifier induced for stable

concepts. When the warning level is raised, the adaptive learner trains an alternative
classifier that replaces the main classifier if the warning level is followed by a drift signal.
Adaptive learners can thus have at most two learners and their predictions are combined
by weighted voting (FRIAS-BLANCO et al), [2016). In addition, [FASEs voting procedure is
based on a meta-classifier that combines the predictions of the classifiers in the ensem-
ble (FRIAS-BLANCO et all, 2016).

This work proposes two families of methods obtained from [FASE} [Fast Stacking of]
[Ensembles boosting the Best| (FASEB)) and [Fast Stacking of Ensembles boosting the Old|
(FASEQ). They partially adopt [FASE[s model but make some changes. For example, the
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concept of adaptive classifier is eliminated, because the design of adaptive learners allows
them to have two classifiers (the main and the alternative classifier), and this structure is
part of both the ensemble of classifiers and the meta-classifier. Instead, it was introduced
an alternative ensemble where a new classifier is activated and begins to be trained when
the warning level is reached by a classifier in the main ensemble. Once a drift is detected
in the main ensemble, the corresponding classifier is replaced by the classifier with greater
accuracy methods) or by the classifier with more time in the alternative ensemble
methods).

The second modification regards the voting strategy of the ensemble. The first two
variants with the same name of [FASEB| and [FASEO] families, respectively, adopt a similar
concept to the employed in [FASE] maintaining a meta-classifier, but the design of the

classifiers in our model is simpler than an adaptive classifier, only formed by learners
that include a drift detector, by default [ HDDM 4|, in order to monitor its error rate. This
mechanism allows us to determine when the learner triggered a warning and if it reaches
a drift.

The following variants use Weighted Majority Voting to combine the classifiers’ pre-

dictions instead a Meta-Classifier:

o |[Fast Ensemble boosting the Best with Combined Weighting Voting; (FASEB,,,1)|

o |[Fast Ensemble boosting the Best with Combined Weighting Voting, (FASEB,,,» )|

o |Fast Ensemble boosting the Best with Combined Weighting Votings (FASEB,,,s3 )|

o |Fast Ensemble boosting the Old with Combined Weighting Voting; (FASEQO,,,1 )|

o |[Fast Ensemble boosting the Old with Combined Weighting Votings (FASEQ,,,» )|

o |Fast Ensemble boosting the Old with Combined Weighting Votings (FASEQ,,,3)|

1.1 OBJETIVE

The objective of this research is to develop ensemble systems based on[FASE]improving
its run-time and consumed memory in order to handle more efficiently both abrupt and

gradual changes during the learning task from data-streams.

1.2 HYPOTHESES

Ensemble algorithms based on [FASE]|that improving its run-time and consumed mem-
ory can handle more efficiently both abrupt and gradual changes during the learning task

from data-streams.
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1.3 METODOLOGY

The methodologies and research techniques were used at a theoretical and empirical
level to achieve the objective. For this purpose, an analysis of the concepts related to the
problem of Concept Drift in data-streams and a survey of the state of the art research
in the area were conducted. This allowed to determine the strengths and weaknesses of
existing approaches, showing new research needs.

In addition, a detailed study was carried out of the procedures to be followed to
address these weaknesses in order to improve the selected existing methods in some aspect.
The proposed methods are experimentally evaluated using appropriate techniques on an
extensive well-known data-set and compared with the benchmarks in different scenarios.

To achieve the proposed objective, the following research tasks were developed:

o Theoretical study of the state of art focused on classification ensemble algorithms

designed to work on non-stationary data-stream;

o Characterization of the benchmark classification ensemble algorithms designed to
work on non-stationary data-streams, considering their main strengths and weak-

nesses;

Analysis of some of the most representative data-sets (synthetic and real) used in

the evaluation and comparison of classification ensemble algorithms, designed to

work on non-stationary data-stream;

o Selection and proposal of new ideas, starting from the [FASE| method, to obtain new
ensemble algorithms in order to more efficiently handle abrupt and gradual concept

changes on large data-streams;

Design and implementation of the new methods on the framework [Massive Online
lAnalysis (MOA )| based on the proposed ideas;

o Employment of evaluation methodologies to compare the proposed methods with
the benchmark in the context of classification ensembles designed to work in non-

stationary data-streams.

This research work is structured as follows:

1.4 STRUCTURE

o Chapter[gpresents several issues related to the research area that support the present
work such as data-stream concept, classification tasks, and the classifiers ensemble
model. This chapter also discuss the several measures and methodologies used in

the evaluation and comparison of the proposed methods to the benchmarks models.
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In Chapter [3 the Concept Drift problem is discussed and some related works are

also reported.

Chapter[{|presents the implementation of the proposed families of algorithms[FASEB]|
and [FASEO] Each method is explained through a general description of its pseudo-
code emphasizing the differences and similarities between [FASEB| and [FASEOL

In Chapter[J an analysis of the spatial and temporal complexity of the proposed
methods is presented and the experimental setup is described, providing the perfor-
mance evaluation of the proposed algorithms against previous approaches, discussing

the results and main findings obtained with the proposed methods.

Finally, Chapter [f concludes the dissertation, points out the main contributions of
the research carried out, discusses limitations and raises possible ideas for future

works.
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2 THE CLASSIFICATION CHALLENGES IN DATA-STREAM CONTEXTS

2.1 INTRODUCTION

Within the area of |[Artificial Intelligence| , the learning component refers to the

techniques and mechanisms for generalizing from examples and updating the predictive

models from evolving data (GAMA et all [2014). Learning can also be seen as an update
on behavior, skills or knowledge in general in order to improve performance (ORTIZ-DIAZ,
2014). In this context, [Machine Learning] (ML) involves the study and development of
computational models capable of improving their performance with experience and of
acquiring knowledge on their own (MINKU; WHITE; YAO, 2010).

When designing a learning system, several elements must be taken into account: the
type of training experience, the measurement of performance, the target function and
its representation as well as the algorithm to approximate it. The target function can
be understood as the definition of the type of knowledge that must be learned.
[Learning] (ML) seeks to describe an target function in order to use some algorithms to

compute it. Commonly, the description of this function is non-operational, that is, it

cannot be computed efficiently. As a consequence, learning systems seek an operational

description of it, which is called approximation of functions. Depending on the kind of

experience used, [Machine Learning| (ML) can be divided into two main types: Supervised,

when the aim is learning a function from examples of inputs and outputs, that is, the a
priori classes are previously known and based on them the data is classified; and Unsu-
pervised, when there are no specified output values of a priori classes on the data, and the
aim is learning patterns of inputs and creating differentiated groups (ORTIZ-DIAZ, 2014)).

Thus, the classification within supervised learning tries to infer a target function that
maps feature values into class labels from training data, and apply the function to data
with unknown class labels. In general, a classification algorithm defines a hypothesis space
to search for the correct model making certain assumptions about hypothesis space. The
algorithm also defines a criterion to determine the quality of the model. Thus, the model
that reached the best measure in the hypothesis space will be returned. The classification
aims to find the model that achieves good performance when predicting the labels of
future unseen data. To improve the generalization ability of a classification model, it
should not overfit the training data; instead, it should be general enough to cover unseen
cases (AGGARWAL, [2014)).

In the following sections, related topics will be addressed in more detail. The present
chapter discusses how classification algorithms process the data-stream whether stationary

or not, whereas the next chapter will address the problem of Concept Drift.
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2.2 DATA-STREAM CONTEXT

Advances in hardware technology have led to the increasing popularity of data-streams.
Many simple operations of everyday life, such as using a credit card or the phone, often
lead to automated creation of data. Since these operations often involve a large numbers of
participants, they lead to massive data-streams. Similarly, telecommunications and social
networks often contain large amounts of network or text data-streams (AGGARWAL|, 2014)).
A data-stream is a potentially unbounded, ordered sequence of data items which arrive
over time. The time intervals between the arrival of each data item may vary. These data
items can be simple attribute-value pairs like relational database tuples, or more complex
structures (KRAWCZYK et al., 2017)).

Thus, data-streams can be seen as stochastic processes in which events occur con-
tinuously and independently from each another. Querying data-streams is quite different
from querying in the conventional relational model. A key idea is that operating on the
data-stream model does not preclude the use of data in conventional stored relations: data
might be transient (GAMA| 2010). What makes processing data-streams different from the
conventional relational model?

Traditional data mining is able to scan data-sets many times; execute with unlim-
ited time and memory; has only one concept; and needs to produce fairly accurate re-
sults. Moreover, data-stream mining may produce approximate results and has to satisfy
constraints, such as single-pass, real-time response, bounded memory, and concept-drift
detection (RASTIN| 2018):

o Single-pass: Unlike traditional data mining that may read static data-sets repet-
itively many times, each sample in a data-stream is examined at most once and

cannot be backtracked.

o Real-time response: Many data-stream applications such as stock market prediction
require real-time response. The amount of time for processing the data and providing

decision must be fast.

o Bounded memory: The amount of arriving data is extremely large. As we may only
compute and store a small summary of the data-streams and possibly throw away

the rest of the data; approximate results are acceptable.

o Concept Drift: In data-streams, concept drifts refer to the situation when the dis-

covered patterns (or the underlying data distribution) change over time.

Data-streams pose new challenges for [Machine Learning| (ML) and [Data Mining] (DM])

as the traditional methods have been designed for static data-sets and are not capable

of efficiently analyzing fast growing amounts of data because this context grants new
features in the data, for example (GAMA| [2010):
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o The data elements in the stream arrive sequentially over time.

o The system has no control over the order in which data elements arrive, either within

a data-stream or across data-streams.

» Data-streams are potentially unbound in size, it is usually impossible to store all

the data from the data-stream in memory.

e Once an element from a data-stream has been processed, it is discarded or archived
(only one scan). It cannot be retrieved easily unless it is explicitly stored in memory,

which is small relative to the size of the data-streams.

o The data items arrival rate is rapid (relatively high with respect to the processing

power of the system),

« data-streams are susceptible to change (data distributions generating examples may

change on the fly),

« The data labeling may be very costly (or even impossible in some cases), and may

not be immediate.

Data-Streams may be described by a sequence (possibly infinite) of examples (also
known by instances or experiences) S = {z1, 2o, ...,%;,...,%Z} that are obtained in time,
usually one at a time. A training example z; = (X;, ;) is formed by a d-dimensional vector
x; = (T, ..., Tij, ..., Tiq) and a discrete value or category y;, that is its corresponding
class label taken from a finite set Y of class labels. Each vector x; has the same number
of dimensions d, where each dimension corresponds to an attribute whose attribute value
(numeric or nominal) is x;; (FRIAS-BLANCO, [2014). These data can be stationary, where
examples are drawn from a fixed, albeit unknown, probability distribution, and non-
stationary, where data can evolve over time. In the second case, target concepts (classes of
examples) and /or attribute distributions change. In other words, the concept from which
the data-stream is generated shifts after a minimum stability period. This phenomenon
is called Concept Drift.

The change of concept are reflected in the incoming instances and deteriorate the
accuracy of models learned from past training instances (KRAWCZYK et al., 2017). Some
real-life scenarios of the non-stationary data-stream are (ZLIOBAITE, 2010)): computer or
telecommunication systems (attackers look for new ways of overcoming security systems),
traffic monitoring (patterns may change over time), weather predictions (climate changes
and natural anomalies may influence the forecast), system following personal interests
like personal advertisement (users may change their preferences), medical decision aiding
(disease progression may be influenced and changed in response to applied drugs or natural

resistance of the patients), and others.
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2.3 THE CLASSIFICATION PROBLEM

An important challenge in the streaming scenario is data classification. In this problem,
the data instances are associated with labels, and it is desirable to determine the labels
on the unknown instances. Typically, it is assumed that both the training data and the
test data may arrive in the form of a stream. In the most general case, the two types of
instances are mixed with one another. Since the test instances are classified independently
of one another, it is usually not difficult to perform the real-time classification of the test
stream (AGGARWAL, [2014)).

In the classification scenario, it is assumed that exist a target function f(x) = y and the
goal is to obtain a model that approximates f(x) as h(x) to classify or predict the label
of unlabeled examples, such that h(x) maximizes the prediction accuracy (MITCHELL,
1997)). In others words, during the classification task, a learning model h(x) attempts to
predict the class label of the incoming instance (KHAMASSI et al., 2018)).

The problem of data classification is one of the most widely studied in the [DM] and
communities. Classification is a rather diverse topic, and the underlying algorithms
depend on the data domain and problem scenario. This is because the problem try to
learn the relationship between a set of feature variables and a target classes. Since many
practical problems can be expressed as associations between feature and target variables,
this provides a broad range of applicability of this task. Applications of classification
include a wide variety of problem domains such as (AGGARWALJ 2014)):

o Medical Disease Diagnosis: The use of data mining methods in medical technology
has gained increasing attraction in recent years.The features may be taken out from
medical records and the goal is to predict whether or not a patient may pick up a

disease in the future.

o Customer Target Marketing: This method is extremely popular for the problem of
customer target marketing. In such cases, feature variables describing the customer
are used as previous training examples in order to predict their interests. The target

variable may encode the buying interest of the customer.

o Supervised Event Detection: Class labels may be related with time stamps corre-
sponding to unusual events in a large number of scenarios. For example, an intrusion
activity may be considered as a class label. In such cases, time-series classification

methods can be very useful.

o Social Network Analysis: Many forms of social network analysis, such as collective
classification, associate labels with the underlying nodes. These are then used in
order to predict the labels of other nodes. Such applications are very useful for

predicting useful properties of actors in a social network.
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« Biological Data Analysis: Biological data is often represented as discrete sequences,
in which it is desirable to predict the properties of particular sequences. In some
cases, the biological data is also expressed in the form of networks. Therefore, clas-

sification methods can be applied in a variety of different ways in this scenario.

o Multimedia Data Analysis: It is often desirable to perform classification of large
volumes of multimedia data such as photos, audio and videos. Many times multi-
media data analysis can be challenging, because of the complexity of the underlying
feature space and the semantic gap between the feature values and corresponding

inferences.

e Document Categorization and Filtering: Large numbers of applications require the
classification of many documents in real time. This application is referred to as

document categorization, and is an important area of research in its own right.

The problem of classification may be stated as follows: Given a training data set along
with associated labels, determine the class label for an unlabeled data. These kind of
algorithms typically contain two phases (AGGARWAL, 2014]):

(i) Training Phase: In this phase, a model is constructed from the training instances.

(ii) Testing Phase: In this phase, the model is used to assign a label to an unlabeled

test instance

In the first phase, the model is constructed tuple to tuple, describing in each case
the attributes of the data-set that is analyzed. It is assumed that each tuple belongs
to a predefined class, which is determined by one of the attributes called class. The
tuples within the classification are also known as examples, instances or experiences. The
set of examples analyzed to build the model form the training data-set. The individual
examples that make up the training set are randomly selected from the sample population
by assigning to each one a class label.

In the second phase, the model obtained in the previous phase is used in the pre-
diction and the model (or classifier) accuracy can be estimated (ORTIZ-DIAZ, 2014). The
output of a classification algorithm may be presented for a test instance in one of two
ways (AGGARWAL| 2014):

o Discrete Label: In this case, a label is returned for the test instance.

o Numerical Score: In this case, a numerical score is returned for each class label and
test instance combination.The numerical score can be converted to a discrete label
for a test instance and its advantage is that it now becomes possible to compare
the relative propensity of different test instances to belong to a particular class of

importance, and rank them if needed
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As a summary, we can say that, the classification aims at the construction of concise
models that represent the distribution of the dependent attribute (class) as a function
of the predictor attributes (attributes). The resulting model will be used, mainly, to
determine the class to which the observations belong, of which all the values of their
attributes are known, with the exception of the class value, that is, their task will be
preferably predictive (YE; CHEN| 2003).

2.3.1 Popular classification algorithms

[MT]] classifiers have been successfully used in a range of different applications. Classi-
fiers widely used include statistical and probabilistic classifiers (i.e., the Naive Bayes
algorithm), decision tree and rule-based classifiers (i.e., ID3 and C4.5), regression methods
(i.e., logistic regression), neural networks, support vector machines, and instance based
learning classifiers (i.e., kNN algorithm).

The identification of optimal base learners is very important for the predictive per-
formance of any model that involves the use of classifiers as base learners. The following

sections describe the selected base classifiers, [HT] and [NB|in the proposed approaches.

2.3.1.1 Naive Bayes classifier

The Naive Bayes classifier(NB) (JOHN; LANGLEY, (1995) algorithm is a statistical clas-
sification algorithm based on Bayes’s theorem. It allows probabilistic knowledge to be
used, learned, and represented clearly, since the statistical components of the [NB| al-
gorithm can be unambiguously and formally expressed. Based on the class conditional
independence assumption, the algorithm is a simple, yet computationally efficient classifi-
cation algorithm that can scale well in several fields. The algorithm shows high predictive
performance and obtains results comparable to other classification techniques, such as
decision trees and neural networks (ONAN; KORUKOGLU; BULUT, [2016). As shown in the
[2.T]equation for each unlabelled instance, the [NB|predicts a class y, based on the posterior

probability of class y, given the instance x = (x1,...,2;,...,Tq):
d
g = argmax P(y) H P(xzjly) (2.1)
yey =1

where P(y) is the prior probability of class y and P(x;|y) is the conditional probability

of z; given y.

2.3.1.2 Hoeffding Tree classifier

[Very Fast Decision Tree classifier (VFDT)| is based on the Hoeffding Tree classifier
(HT) (HULTEN; SPENCER; DOMINGOS, |2001)), a decision tree learning method. The intu-
ition idea of the [HT]is that to find the best splitting attribute it is sufficient to consider
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only a small portion of the training items available at a node. To achieve this goal, the
Hoeffding bound (HOEFFDING, [1963) is utilized. Basically, given a real-valued random
variable r having range R, if we have observed n values for this random variable, and the
sample mean is 7, then the Hoeffding bound states that, with probability 1 — 4, the true
mean of r is at least © — &, where:
R*(In1/d
€= <2n/) (2.2)

Based on the above analysis, if at one node we find that Gy(z,) — G;(x3) > € where G|
is the splitting criterion, and x, and z; are the two attributes with the best and second
best G, respectively, then z, is the correct choice with probability 1 — § (AGGARWAL),
2014).

What makes Hoeffding Bound attractive is the ability to achieve the same results
regardless of the probability distribution that generates the observations. However, the
number of observations required to reach certain values of 9 and e to obtain the best
performance of the classifier must be adjusted according to the probabilities distribution in
which it is intended to apply. For a better understanding of the algorithm, the Hoeffding’s
Inequality Theorem and the pseudo-code are presented in Appendiz. [A]

2.4 ENSEMBLE OF CLASSIFIERS IN DATA-STREAM CONTEXT

Ensemble algorithms are classification methods that re-uses one or more currently
existing classification algorithm by applying either multiple models, or combining the
results of the same algorithm with different parts of the data. Ensemble methods aim to
obtain more robust results by combining the output from multiple training models either
sequentially or independently. Different forms of ensemble analysis attempt to reduce the
bias and variance because the overall error of a classification model depends upon the bias
and variance, besides the intrinsic noise present in the data. The bias of a classifier depends
upon the fact that the decision boundary of a particular model may not correspond to
the true decision boundary (AGGARWAL), 2014)).

These methods have emerged as a powerful technique for improving the accuracy of
base models (AGGARWAL, 2014)) combining the predictions of multiple classifiers to obtain
a classification model with better predictive performance. Thus, by combining classifiers,
the variance and bias of classification can be reduced and the dependency of results on
characteristics of a single training set eliminated (KUNCHEVA, 2004)).

Moreover, they are particularly popular methods for stream classification, because
of the fact that classification models frequently cannot be built robustly in a fast data-
stream. Ensemble algorithms can be regarded as a family of classification algorithms,
which are developed to improve the generalization abilities of classifiers. It is hard to

get a single classification model with good generalization ability, which is called a strong
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classifier, but ensemble learning can transform a set of weak classifiers into a strong one
by their combination. Formally, we training k classifiers hy, ..., hj, ..., by each of which
maps vectors of feature values x into a class label y. We combine them into an ensemble
classifier H with the hope that it achieves better performance (AGGARWAL| 2014)).

There are two important factors that contribute to the success of ensemble learn-
ing (ORTIZ-DIAZ, 2014; |AGGARWAL), 2014)):

(i) The expected error in ensemble models is smaller than the expected error in a single

model.

(ii) Ensemble models have the ability to overcome the limitation of the hypothesis space

made by single models.

Intuitively, if we know in advance that hy(x) was the best prediction performance on
unknown data, then without hesitation, we should discard the other classifiers and choose
hy for future predictions. However, we do not know the true labels of unknown data, and
thus we are unable to know in advance which classifier performs the best. Therefore, our
best bet should be the prediction obtained by combining multiple models.

On the other hand, a single-model classifier usually searches for the best model within
a hypothesis space that is assumed by the specific learning algorithm. It is very likely that
the true model does not reside in the hypothesis space, and then it is impossible to obtain
the true model by the learning algorithm. However, by combining multiple classifiers,
ensemble methods can simulate the true boundary. The reason is that ensemble approaches
combine different hypotheses and the final hypothesis is not necessarily contained in
the original hypothesis space. Therefore, ensemble methods have more flexibility in the
hypothesis they could represent.

Due to these advantages, many ensemble approaches have been developed to combine
complementary predictive power of multiple models (AGGARWAL, [2014). There are two
components in ensemble learning: Training base models and learning their combinations.

From the majority voting, the base classifiers should be accurate and independent
to obtain a good ensemble. In general, we do not require the base models to be highly
accurate—as long as we have a good amount of base classifiers, the weak classifiers can
be boosted to a strong classifier by combination. However, in the extreme case where
each classifier is extremely wrong, the combination of these classifiers will give even worse
results. Therefore, at least the base classifiers should be better than random guessing.
Independence among classifiers is another important issue we want to see in the collection
of base classifiers. If base classifiers are highly correlated and make very similar predictions,
their combination will not improve anymore.

In contrast, when base classifiers are independent and make diverse predictions, the
independent errors have better chances to be canceled out. Typically, the following tech-

niques have been used to generate a good set of base classifiers (AGGARWAL, |2014):
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o Obtain different bootstrap samples from the training set and train a classifier on

each bootstrap sample;

o Extract different subsets of examples or subsets of features and train a classifier on

each subset;
o Apply distinct learning algorithms on the training set;

o Incorporate randomness into the process of a particular learning algorithm or use

different parametrization in order to obtain different predictions.

To further improve the accuracy and diversity of base classifiers, people have explored
various ways to prune and select base classifiers (AGGARWAL, 2014)). Classifier selection
involves the identification of an optimal set of classifiers however, identifying an optimal
subset of classifiers can require enumerating many different cases. In order to overcome this
computational burden, heuristic methods and selection metrics can be used in classifier
selection (ONAN; KORUKOGLU; BULUT) 2016)).

2.4.1 Ensemble combination strategy

Once the base classifiers are obtained, the important question is how to combine
them. The combination strategies used by ensemble learning methods roughly fall into

two categories: Stacking and Voting (Un-weighted and weighted).

2.4.1.1 Stacking

Stacked Generalization (Stacking) learns a high-level classifier on top of the base clas-
sifiers. It can be regarded as an ensemble learning method which has a two-level struc-
ture (WOLPERT, 1992)). In that strategy, the base classifiers are called first-level classifiers
and a second-level classifier (meta-classifier) is learn to combine the first-level classifiers.

The general procedure of Stacking has the following three major steps:
(i) First-level classifiers are trained to obtain predictions based on training instances.

(ii) Construct a meta-level training data-set with the same classes of the original. To
obtain meta-level data, a meta-instance is generated by combining the outputs of
the k first-level classifiers and true class labels, and the meta-classifier is trained
with those meta-instances. In others words, the output predicted labels of the first-
level classifiers are regarded as new features, and the original class labels are kept as
the labels in the new data-set based on the outputs of these classifiers. Formally, is
assumed that each example in D is (x, y) and is constructed a corresponding example
(x',y) in the new data-set, where x = (hy(X), ..., h;j(X), ..., hx(x)) (AGGARWAL,

2014)). Because in the learning process, each classifier h;, can map vectors of feature
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values x into a class label y, the meta-instance can also be represented as M =
(x',y) = (G1,---,9j, -, 0k; y) where each §; = hj(x) is the predicted class label

provided by classifier h; and y is its corresponding class label.

(iii) Learn a second-level classifier based on the newly constructed data-set. Any learning
method could be applied to learn the second-level classifier. Once the second-level
classifier is generated, it can be used to combine the first-level classifiers. For an
unseen example, its predicted class label of stacking is h' (h1(x), ..., h;j(X), ..., hr(X)),
where hq, ..., hj, ..., hy represent the first-level classifiers and ' is the second-level
classifier. We can see that Stacking is a general framework. We can plug in different
learning approaches or even ensemble approaches to generate first or second level
classifiers. Compared with Bagging and Boosting, Stacking “learns” how to combine
the base classifiers instead of voting (AGGARWALL 2014).

Is important to consider what types of feature to create for the second-level classi-
fier’s training set, and what type of learning methods to use in building the second-level
classifier (WOLPERT), 1992)). Besides using predicted class labels of first-level classifiers,
we can consider using class probabilities as features (TING; WITTEN, |1999). The advan-
tage of using conditional probabilities as features is that the training set of second-level
classifier will include not only predictions but also prediction confidence of first-level clas-
sifiers. Some choices of second-level classification algorithms are eligible, for example, (i)
Feature-Weighted Linear Stacking combines classifiers using a linear combination of meta
features, (ii) Multi-response linear regression, a variant of least-square linear regression,
etc (AGGARWAL) 2014)).

2.4.1.2 Voting Strategy

Voting is the simplest form of combining individual classification algorithms, in which
choosing the combination rule is critical for designing classifier ensembles. In general,
voting strategy include: Un-weighted and Weighted voting:

Un-weighted voting

In classifier ensembles, simple majority voting ranks among the most widely used
combination rules. It is a typical un-weighted combination strategy, in which we count
the number of votes for each predicted label among the base classifiers and choose the one
with the highest votes as the final predicted label (AGGARWALY |2014), in other words, the
binary outputs of the k base classifier are combined so that the highest number of votes
is determined as the output of the ensemble. This approach treats each base classifier as
equally accurate and thus does not differentiate them in the combination. However, several
other linear algebraic combination rules guide classifiers as well: minimum probability,
maximum probability, product of probability, and the average of probabilities (ONAN;
KORUKOGLU; BULUT, 2016).
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Let z = (x,y) be an instance and let h; (1 < j < k) be a classifier.

Let hj(x) = (Pj(v1|x), ..., Pj(yc|x)) where P;(y.|x) (1 < ¢ < C) is the posterior prob-
ability of y. given x. Let LC(x) = (Z?Zl Pi(y1|x), . .. Z?Zl Pi(yc|x)), where LC,(x) =
YF_ Pj(yelx)), then H(x) is the component of LC(x) which has the largest sum of prob-
abilities in Equation. to determine the final output of the classifier ensemble (ONAN;
KORUKOGLU; BULUT, 2016):

H(x) = argmax(LC,(x)) (2.3)

1<e<C
in which ¢ denotes the number of classes. Based on that notation, average, product,
minimum, and maximum of probabilities and majority voting combination rules can be
computed using Equation. 2.4H2.7] respectively (ONAN; KORUKOGLU; BULUT, [2016):

LX) = 3P0 (2.4)
LC(x) = ;H Py(ylx) (2.5)
LC.(x) = min Py (s (26)
LCc(x) = max P;(ye|x) (2.7)

Weighted voting

Weighted combination usually assigns a weight to each classifier with the hope that
higher weights are given to more accurate classifiers so that the final prediction can bias
towards the more accurate classifiers. The weights can be inferred from the performance
of base classifiers or the combined classifier on the training set (AGGARWAL, [2014)).

In simple weighted voting, the weight values w; for each classifier are determined

based on the predictive performance of a particular classifier with the training set using

Equation2.§|

a;
= 2.8
>k Qi ( )

in which a; denotes the estimated accuracy of the jy, classifier on the training set and ay,

w;j

refers to the estimated accuracy of the ky, classifier.

In rescaled weighted voting, a zero weight is assigned to classifiers that have the worst
performance with the training data. Consequently, classifiers with predictive performance
inferior than the threshold value are excluded from the classifier ensemble. The weight

values are scaled proportionally using Equation., in which e; denotes the number of
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errors obtained by a particular classifier h;, n denotes the number of samples, and ¢
denotes the number of classes (MORENO-SECO et al., [2000)):

w; = max {o, 1- R(Ziﬂl)} (2.9)

In best—worst weighted voting, classifiers in the ensemble with the best and worst
performance are identified. The weight value of the best classifier is one, whereas the
weight value of the worst classifier is zero. As such, the classifier with the worst predictive
performance is removed from the classifier ensemble. The weight value of the j — th
classifier is determined using Equation[2.10] in which e; is the error of the j —th classifier,
ep denotes the minimum error among the classifiers and e,, the maximum error (MORENO-
SECO et al., [2000]):

€; —€R

w;=1— (2.10)

€w —€EB
The quadratic best—worst weighted vote aims to assign higher weight values to classi-

fiers with higher predictive performance, namely by using Equation)2.11}

w; = (W)Q (2.11)

€w —€B
Once the weights for each classifier decision have been computed, the class receiving
the highest score in the voting is the final class prediction, then the prediction of the

ensemble can be computed as:

H(x) = argmax(w; LC.(x)) (2.12)

1<e<C

2.4.2 Popular ensemble algorithms

Some examples of popular and representative ensemble algorithms follow below (AG-
GARWAL, 2014)):

« Boosting: Boosting (FREUND, 1995) is a common technique used in classification.
The idea is to focus on successively difficult portions of the data-set to create models
that can classify the data points in these portions more accurately, and then use the
ensemble scores over all the components. A hold-out approach is used in order to
determine the incorrectly classified instances for each portion of the data-set. Thus,
the idea is to sequentially determine better classifiers for more difficult portions of
the data, and then combine the results in order to obtain a meta-classifier, which

works well on all parts of the data.

« Bagging: Bagging (BREIMAN, (1996) is an approach that works with random data

samples, and combines the results from the models constructed using different sam-
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ples. The training examples for each classifier are selected by sampling with re-
placement. These are referred to as bootstrap samples. This approach has often
been shown to provide superior results in certain scenarios, though this is not al-
ways the case. This approach is not effective for reducing the bias, but can reduce

the variance, because of the specific random aspects of the training data.

o Model Averaging and Combination: This is a typical model used in ensemble analy-
sis. In fact, the random forest method is a special case of this idea. In the context of
the classification problem, many Bayesian methods (DOMINGOS; HULTEN, [2000) ex-
ist for the model combination process. The use of different models ensures that the
error caused by the bias of a particular classifier does not dominate the classification

results.

o Random Forests: Random forests (BREIMAN] 2001) are a method that use sets of
decision trees on either splits with randomly generated vectors, or random sub-sets of
the training data, and compute the score as a function of these different components.
Frequently, the random vectors are generated from a fixed probability distribution.
Therefore, random forests can be created by either random split selection, or random
input selection. Random forests are related to bagging, and in fact bagging with
decision trees can be considered a special case of random forests, in terms of how
the sample is selected (boot strapping). In the case of random forests, it is also
possible to create the trees in a lazy way, which is tailored to the particular test

instance at hand.

 Stacking: Methods such as stacking (WOLPERT, 1992) also combine different models
in a variety of ways, such as using a second-level classifier in order to perform the
combination. The output of different first-level classifiers is used to create a new
feature representation for the second level classifier. These first level classifiers may
be chosen in a variety of ways, such as using different bagged classifiers, or by using
different training models. In order to avoid over fitting, the training data needs to

be divided into two subsets for the first and second level classifiers.

2.5 EVALUATION IN DATA-STREAM CONTEXT

Proper evaluation of the different models is a important issue in [MI] Thus, many eval-
uation measures, techniques for their experimental estimation and approaches to compare
algorithms have already been proposed for static data scenarios. On the other hand, re-
searchers agree that the evaluation of data-stream algorithms is a complex task. Especially
in non-stationary environments, fewer solutions are presented (KRAWCZYK et al., 2017).
This fact is due to many challenges like the presence of Concept Drift, limited processing

time in real-world applications and the need for time-oriented evaluation, amongst oth-
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ers (GAMA et al., 2004)). The next section presents some out of the most popular evaluation

measures and then their experimental estimation procedures.

2.5.1 Evaluation measures

According to (KOHAVI; PROVOST, [1998) confusion matrix contains information about

actual and predicted classifications done by a binary classification system where:

o True Positive (TP) are the number of positive instances correctly classified.

« False Positive (FP) are the number of instances that are falsely classified to the

positive class.
« True Negative (TN) are the number of negative instances correctly classified.

« False Negative (FIN) are the number of instances that are falsely classified to the

negative but are positive.

The metrics above are defined for binary classification problems, but they can easily
be used for multi-class problems. A common practice is to calculate the measure for each
class separately and then to average the metrics over all classes (AGGARWAL, [2014)).

From the classification outputs, it is possible to obtain several metrics that may be
more or less useful in certain contexts. Some of these metrics will be discussed below.

Accuracy (ACC): Represent the overall correctness of the learner. The accuracy
is most often used as the defining measure of the classification performance for evaluat-
ing learning algorithms in most streaming studies (HULTEN; SPENCER; DOMINGOS|, 2001}
GAMA et al., 2004} BAENA-GARCIA et al, 2006; BIFET; GAVALDA| 2007; HUANG et all, 2015)).
It is calculated incrementally using either the prequential or hold-out evaluation proce-
dures (BIFET; KIRKBY] 2009) that is, as the sum of correctly classified instances divided

by the total instances. The accuracy is computed using the equation:

TN+TP
A = 2.1
ce TN+ FN+FP+TP (2.13)

Generally, in online learning, is also important to consider the equation [2.14] that
computes the accuracy given a time ¢ (BAENA-GARCIA et all), 2006; DU; SONG; JIA, 2014]).
It represents the average accuracy obtained by the prediction of each example before it
is learned, where acc,, is 1 if the current example is correctly classified and 0 otherwise.
f represent the first timestamp of every calculation, ie, the timestamp of each detected
concept drift. Thus, the highest value is the best, suggesting better performance in pre-
quential accuracy (MINKU; YAO, [2012; HIDALGO; MACIEL; BARROS, 2019)).

acc(t) = acces (t), if 1= (2.14)

acc(t — 1) + %, otherwise.
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An interesting feature in the dynamic environments is the fact that usually the data
is not stationary, i.e., the probability distribution of the data may change over time (HI-
DALGO; MACIEL; BARROS, 2019). When analyzing the performance of classifiers dedicated
to non-stationary data, other factors should be also taken into consideration as their adap-
tation to change abilities, i.e., evaluating the maximum performance deterioration and
restoration time. Apart from the predictive accuracy or error, the following performance
metrics should be monitored and taken into account during properly executed evaluation
of streaming algorithms (KRAWCZYK et al., 2017):

Memory consumption: Memory consumption should not only monitor the average
memory requirements of each algorithm, but also their change over time with respect to
actions being taken.

Update time: Update time refers to the amount of time that an algorithm requires to
update its structure and accommodate new data from the stream. In an ideal situation,
the update time should be lower than the arrival time of a new example (or chunk of
data).

Decision time: Decision time represent the time that a model needs to make a de-
cision regarding new instances from the stream. This phase usually comes before the
updating procedure takes place. So, any decision latency may result in creating a bottle-
neck in the stream processing. This is especially crucial for algorithms that cannot update
and make predictions regarding new instances at the same time. Nevertheless, in order to
compute reaction times and other adaptability measures, usually a human expert needs to
determine moments when a drift starts and when a classifier recovers from it. Alternately,
such evaluations are carried out with synthetic data generators (KRAWCZYK et al., 2017).

Besides, the interplay between the accuracy and other factors, such as memory usage
and run-time considerations, has received limited attention (PESARANGHADER; VIKTOR;
PAQUET), 2016]). Thus, more complex measures have also been proposed to evaluate other
properties of algorithms. Some proposals follow:

Bifet et al. (2009) considered the Memory, Time and Recall measures separately,
in order to compare the performances of ensembles of classifiers.

Bifet et al.| (2010) further introduced the RAM-Hour measure, where every RAM-
Hour equals to 1 GB of RAM occupied for one hour, to compare the performances of
three versions of perceptron-based Hoeffding Trees.

In (SHAKER; HiLLERMEIER, 2015) it was proposed a complete framework for evalu-
ating the recovery rate of the algorithm once a change has occurred in the stream. They
consider not only how well the model reduced its error in the new decision space, but also
what was the time necessary to achieve this.

In (PESARANGHADER; VIKTOR; PAQUET, 2016)) it was introduced the EMR mea-
sure which combines error-rate, memory usage and run-time for evaluating and ranking

learning algorithms.
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In (ZLIOBAITE; BUDKA; STAHL, 2015)) it was proposed the return on investment ROI
measure to determine whether the adaptation of a learning algorithm is beneficial. Through
the notion of cost-sensitive update is evaluated the potential gain from the cost (under-
stood as time and computational resources). The authors argue that this allows to check if
the actual update of the model was a worthwhile investment. They concluded that adap-
tation should only take place if the expected gain in performance, measured by error-rate,
exceeds the cost of other resources (i.e., memory and time) required for adaptation. In
their work, the ROI measure was used to indicate whether an adaptation to a Concept
Drift is beneficial, over time.

In (OLORUNNIMBE; VIKTOR; PAQUET, 2015) it was extended the above mentioned
ROI measure, in order to dynamically adapt the number of base learners in online bagging
ensembles.

In (PESARANGHADER; VIKTOR; PAQUET, 2016) it was proposed an approach to count
true positive (TP), false positive (FP), and false negative (FIN) of drift detection, in order
to evaluate the performances of Concept Drift detectors. They introduced the acceptable
delay length notion as a threshold that determines how far a detected drift could be from
the real location of drift to be considered as a true positive.

In (PESARANGHADER; VIKTOR; PAQUET, 2018) it was introduced the CAR measure
which not only considers the classification error-rates, memory usages, and run-times but
also the drift detection delays, false positives and false negatives. The CAR measure,
consists of three components namely Classification, Adaptation, and Resource Consump-
tion. The classification part consists of the error-rate (E¢ ) of classifier C', the adaptation
part represents the detection delay (Dp), false positive (FPp) and false negative (FNp)
of drift detector D, while the resource consumption part is associated with the memory

consumption (M, py) and run-time (R¢,p)) of the (Classifier, Detector) pair.

2.5.2 Techniques used for evaluation

Any classification algorithms require training and testing phases, in which the test
examples are cleanly separated from the training data and the model is constructed on
these examples (AGGARWAL, [2014)). In order to do this, several strategies can be applied,
such as holdout, bootstrapping, cross-validation and Prequential methodology (DAWID)|
1984)).

Bootstrapping: Bootstrapping used sampling with replacement for creating the train-
ing examples. The most typical scenario is that n examples are sampled with replacement,
as a result of which the fraction of examples not sampled is equal to (1 — 1/n)" ~ 1/e,
where e is the basis of the natural logarithm. The class accuracy is then evaluated
as a weighted combination of the accuracy acc; on the test examples, and the accu-
racy accy on the full labeled data. The full accuracy can be computed by the equation:

ACC = (1—1/e).acc;+(1/e).acce This procedure is repeated over multiple bootstrap sam-
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ples and the final accuracy is reported. The component accy tends to be highly optimistic,
as a result of which the bootstrapping approach produces highly optimistic estimates. It
is most appropriate for smaller data-sets (AGGARWAL, 2014).

Cross-validation: The training data is divided into a set of s disjoint subsets. One
of the s subsets is used for testing, whereas the other (s — 1) subsets are used for training.
This process is made periodically by using each of the s subsets as the test set, and the
error is averaged over all possibilities. This has the advantage that all examples in the
labeled data have an opportunity to be treated as test examples. Furthermore, when s is
large, the training data size approaches the full labeled data. Therefore, such an approach
approximates the accuracy of the model using the entire labeled data well. A special case
is “leave-one-out” cross-validation, where s is chosen to be equal to the number of training
examples, and therefore each test segment contains exactly one example. This is, however,
expensive to implement (AGGARWAL)| 2014)).

In the context of static and batch learning the most often used scenario for estimating
prediction measures is cross validation. However, in the context of online learning with
computationally strict requirements and concept drifts, it is not directly applicable. Two
main approaches are used depending whether the stream is stationary or not (KRAWCZYK
et al, 2017)), as shown below.

Holdout evaluation: A fixed percentage of the training examples are not used in the
training. These examples are then used for evaluation. It is arranged that, at any given
moment of time when we want to conduct model evaluation, we have at our disposal a
holdout set not previously used by our model. Since only a subset of the training data
is used, the evaluation tends to be pessimistic with the approach. Some variations use
stratified sampling, in which each class is sampled independently in proportion. This en-
sures that random variations of class frequency between training and test examples are re-
moved (AGGARWAL, 2014)). By testing the learning model on such a continuously updated
set (it must be changed after each usage to ensure that it represents the current concept
well), we obtain an unbiased estimator of the model error. When conducted in a given
time or instance interval, it allows us to monitor the progress of the model (KRAWCZYK
et al., | 2017)).

Prequential evaluation: Methodology for the performance evaluation of classifiers
on data-streams with stationary and non stationary distributions. The prequential (com-
bination of words predictive and sequential) evaluation use each instance first to test the
model, and then to train the model. This scheme has the advantage that no holdout set
is needed for training, making maximum use of the available data, even so, knowing that
the holdout methodology provides alower error-rate during early stages of learning (BIFET
et al), 2009). It performs a sequential analysis where the sample size is not fixed in ad-
vance. Instead, data are evaluated as they are collected. Predictive sequential evaluation,

or prequential, follows the online learning protocol. Whenever an example is observed,
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the current model makes a prediction; when the system receives feedback from the en-
vironment, we can compute the loss function (KRAWCZYK et al., 2017). The prequential
evaluation methodology has three common variations regarding the portion of the data
considered in the calculations: (i) Basic Window (BW), (ii) Sliding Window (SW), and
(iii) Fading Factors (FF) (HIDALGO; MACIEL; BARROS, 2019):

(i) BW variation, also known as Interleaved Test-Then-Train, uses all processed in-
stances of the stream to builds the decision model. This feature might be seen as a
disadvantage of the method because can difficult the classification task at a given

point in time, since the success rate is influenced by errors in previous concepts.

(ii) SW variation was proposed later to provide a forgetting mechanism aiming to min-
imize possible issues using very large numbers of instances. In this case, the decision

model is updated based on a portion of instances, represented by a SW of size W.

(ii) FF variation also adopts a forgetting mechanism. In addition, FF uses a fading
factor which applied a function in order to decrease weight, giving more importance

to the recent examples.

2.6 FINAL CONSIDERATIONS

This chapter has presented several inherent definitions of [Machine Learning (ML )[and

more specifically the classification problem in data-streams context. As was discussed, [MI]
involves the study and development of computational models and seeks to describe a tar-
get function in order to use some algorithms to compute it. The target function represents
the knowledge that must be learned. The classification problem tries to infer this function
mapping feature values into class labels. In traditional data mining, it is assumed data-
sets can be scanned many times, execution can go on with unlimited time and memory,
and yet fairly accurate results have to be produced. Moreover, data-stream mining may
produce approximate results and has to satisfy constraints, such as single-pass, real-time
response, bounded memory, and concept-drift detection. Data classification is an impor-
tant challenge in the streaming scenario. The way to address the classification problem
depends on the data domain. As discussed in this chapter, there are many scenarios in
which classification algorithms can be applied, such as Medical Disease Diagnosis, Cus-
tomer Target Marketing, Social Network Analysis, and others. Classifiers used include
statistical and probabilistic classifiers, decision tree and rule-based classifiers, regression
methods, neural networks, support vector machines, and instance-based learning classi-
fiers. Two examples of classifiers widely applied in data-stream mining are [NB| and [HT]
On the other hand, Ensemble methods emerged as a powerful technique that aims to
obtain more robust results by combining the output from classifiers. An important ques-

tion is how to do this. The combination strategies used by ensemble learning methods
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roughly fall into two categories: Stacking and Voting. As results of these approaches, pop-
ular ensemble algorithms are implemented such as Boosting, Bagging, Model Averaging
and Combination, Random Forests, Stacking. Other important issue in [MI]is the proper
evaluation of the different models. Researchers agree that the evaluation of data-stream
algorithms is a complex task. Thus, some of the most frequent approaches in the liter-
ature to address this challenge were also discussed in the present chapter, highlight the
interplay between the accuracy and other factors, such as memory usage and run-time.
Finally, it is very important the experimental estimation procedures. In order to do this,
several strategies can be applied, such as holdout, bootstrapping, cross-validation and
Prequential methodology. The last one is the most used on data-streams with stationary
and non-stationary distributions, in this sense, the Prequential methodology was more

widely addressed.
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3 CONCEPT DRIFT & RELATED WORKS

In the previous chapter, the data-streams concept and some approaches over data-
stream classification through the classifiers ensemble methods were discussed. However,
when the data-stream is not stationary, a new challenge when carrying out the classifica-
tion task emerge. The present chapter makes a study of the problem of the Concept Drift,
associated definitions, types of Concept Drift and already existing approaches. Moreover,
some of these approaches are discussed, as part of the related works used as a comparative

basis during the empirical study.

3.1 INSIDE OF CONCEPT DRIFT

According to (WEBB et al,|2016) the classical definition of a concept is “a concept is a
set of objects”; by extension two variants are possible: (i) a concept is a set of vectors of
values such that any object with any vector of values in the set belongs to the concept.
However this definition does not allow that different objects with identical attribute values
might belong to different concepts. The other definition: (ii) concept is a set of object
instances. This is coherent, but does not seem useful in the context of stream learning,
because in many applications each object instance will appear only once. In order to
deepen these definitions and adapt them for data-stream environments, this section will

characterize the Concept Drift problem, main categorizations, and study approaches.

3.1.1 Concept Drift definitions

According to (NARASIMHAMURTHY; KUNCHEVA, 2007) the term “concept” is used
to mean slightly different things. It is sometimes used to refer to the class of interest.
Concept Drift or concept change, refers to a non-stationary learning problem over time.
The training and the application data often mismatch in real life problems (HAND, 2006)).
A concept change in this case would mean a deviation of the description of the class from
the original description.

In this work, the use of “concept” refer to the whole distribution of the problem at
time moment. This concept can be characterized by the distribution D which represents
the joint probability P(X,y), where X denotes a random variable over vectors of attribute
values x and y is a corresponding class label taken from a finite set Y of class labels. Hence,
when referring to a particular distribution D, at time ¢ (i.e. a particular joint probability
P,(X,y) at time t) we define it as a concept D; = {P(X,y1), P(X, y2), ..., Pt(X, yc) }.
In this way, a change in the probability distribution function of the problem (also known

as context (GAMA et all [2004) brings about a change of concept. Thus, a Concept Drift
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occurs when there is a change in the joint probability between two time points t, and
t1 (FRIAS-BLANCO, 2014)).

Formally, Concept Drift between time point ¢y and time point ¢; can be defined as
X : P, (X,y) # P, (X,y) (GAMA et al} 2014))) where P, (X,y) = P (initial concept)
and P, (X,y) = Pr (final concept)

Let us deeply understand the origin of Concept Drift. To estimate P(X,y) at any
time point, we consider the prior class probability P(y) and the class-conditional prob-
ability P(X|y) as follows: P(X,y) = P(y)P(X|y). Then, to make classification deci-
sion for instance z, the learner considers the maximal posterior probability P(y|X) for
a class y according to the Bayesian Decision (DUDA; STORK; HART, 2001): P(y|X) =
(P(y)P(X|y))/P(X) where P(X) =%, P(y)P(X|y) for all classes y € Y.

Notice that P(X) is the evidence factor which is considered as a scale factor that
guarantees that the posterior probabilities sum is equal to 1. Thus, it is constant for all
the classes y; (KHAMASSI et al., [2018)).

3.1.2 Categorization of Concept Drift

The type of changes can be roughly summarized as follows. These categories are by
no means mutually exclusive and various combinations are possible (ZLIOBAITE, [2010)).

They are briefly discussed in the following section.

3.1.2.1 Attending to the affected class

According to (GAMA et al., 2014)), Concept Drift can occur with respect to any of the

three major variables in in the context of Bayes theorem,
« the prior probabilities of classes P(y) may change,
« the class conditional probabilities P(X|y) may change, and as a result
« the posterior probabilities of classes P(y|X) may change, affecting the prediction.

In (HOENS; POLIKAR; CHAWLA| 2012)) was explained Real and Virtual Concept Drift
like:

Virtual Concept Drift: In virtual Concept Drift, while the distribution of instances
may change (corresponding to a change in the class priors or the distribution of the
classes), the underlying concept (i.e., the posterior distribution) does not, as shown in
Figure [I(c)] It was defined more formally in (DITZLER et all [2015) like the evidence
or the marginal distribution of the data, P(X) changes without affecting the posterior
probability of classes P(y|X). This may cause problems for the learner, as such changes
in the probability distribution may change the error of the learned model, even if the

concept did not change. Additionally, while previously portions of the target concept may
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have gone unseen by the learner, due to a change in the distribution such instances may
become more prevalent.

Real Concept Drift: Real Concept Drift is defined as a change in the class boundary (or,
more formally, a change in the posterior distribution). (DITZLER et al., 2015) has defined
it mathematically like the posterior probability P(y|X) varies over time, independently
from variations in the evidence P(X). Figure illustrates this definition.

Figure 1 — Types of Concept Drift. (a) Stationary data-stream, (b) Real Concept Drift,
(c) Virtual Concept Drift.
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Source: Adapted from Khamassi et al. (2018))

Class prior Concept Drift: Attending to the researches (KHAMASSI et al., [ 2015; KHAMASSI
et al.,|2018)) other distinct drift type is considered when changes take place in the class prior
probability P(y). This kind of drift can exhibit class imbalance, novel class emergence or

existing class fusion, and is named Class prior Concept Drift.

3.1.2.2 Attending to the speed of drift

If the period in which a change of concept occurs is considered, it can be classified as
gradual or abrupt Concept Drift. According to (MINKU; WHITE; YAO, 2010; [KHAMASST
et al), |2018)), speed is the inverse of the drifting time. In the sense that a higher speed is
related to a lower number of time steps and a lower speed is related to a higher number
of time steps. Gradual drift: Gradual drift occurs when the drifting time is considered
large. However, in fact there are two types being mixed under this term. The first type of
gradual drift is referring to a period when two sources that provide the distributions D,
and D respectively, are active. As time passes, the probability of sampling from source Dy
decreases, probability of sampling from source D; increases. Note, that at the beginning of
this gradual drift, before more instances are seen, an instance from the source D; might be
easily mixed up with random noise. Another type of drift also referred as gradual includes
more than two sources, however, the difference between the sources is very small, thus
the drift is noticed only when looking at a longer time period (ZLIOBAITE, 2010)). Figure
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2(b)| illustrates this definition, where P; and Pp represent the initial and final concept
respectively.

Abrupt drift: Abrupt drift, as know as sudden drift too, occurs when the new con-
cept, rapidly, replaces the old one in short drifting time. This kind of drift immedi-
ately deteriorates the learner performance, as the new concept quickly substitutes the old
one (KHAMASSI et al) 2018)). If Dy generates the original concept, D; generates the new
concept, and t is a definite time period at which D, ceases to be used to generate the
concepts; at this point D; is used instead. This is the simplest case of Concept Drift.
Since sudden Concept Drift, is defined as having a sharp boundary between generating
functions, it is often the easiest to detect, as future data no longer resembles the past
data (HOENS; POLIKAR; CHAWLA, |2012). Figure illustrates this definition.

3.1.2.3 Attending to the severity of drift

The criterion severity was introduced in (MINKU} 2010). Attending this work, drifts
can be divided into Severe or Global and Intersected or Local.

Severe or Global drift: Drifts are severe when no example maintains its target class in
the new concept or if the probabilities associated to the whole input space are modified.

Intersected or Local: If part of the input space has the same target class in the old
and new concepts, or if part of the input space maintains the same probability, the drift is
intersected. They suggested 2 different measures to characterize drifts according to class
severity:

Percentage of the input space which has its target class changed after the drift is
complete. Maximum percentage of the input space associated to a particular class in the
old concept that has its target class changed in the new concept. Although class severity
can reflect mainly changes in the prior and posterior probabilities, it does not reflect well
changes in the unconditional and class-conditional pre-change probability distributions
function (pdfs). That mean, the feature severity represents the amount of changes in the
distribution of the input attributes. This criterion can be measured, by calculating the

area between the curves of the old and new unconditional pdfs.

3.1.2.4 Attending to the recurrency of concept

Another big type of drift referred as reoccurring context. That is when previously
active concept reappears after some time. Figure represents this context where P;
and Pp represent the initial and final concept respectively. According to (ZLIOBAITE,
2010)) it differs from common seasonality notion in a way that it is not certainly periodic,
it is not clear when the source might reappear. According to (MINKU; WHITE; YAO, 2010))
and (KHAMASSI et al., 2018) the recurrent drift can be divided into cyclic and acyclic.

Cyclic recurrent drift: The cyclic recurrent drift may occur according to a certain

periodicity or due to a seasonable trend.
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Acyclic recurrent drift: The acyclic recurrent drift may not be certainly periodic, i.e.,

it is not clear when the concept may reappear.

Figure 2 — Types of Concept Drift according to speed. (a) Abrupt Concept Drift, (b)
Gradual Concept Drift, (¢) Recurring Concept Drift.
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3.1.3 Popular approaches to handle Concept Drift

According to Khamassi et al| (2018]), most of the approaches can be analyzed tak-
ing into account some dimensions like how the data is processed, how is Concept Drift
monitored, how the Concept Drift is handled and how the learning task is processed. The

section will introduce some approaches that meet these criteria.

3.1.3.1 Data processed

One possible categorization of this methods is like (GAMA et al., 2014)) proposed. They
categorized Concept Drift methods into three general groups, as follows:

Sequential Analysis based Methods: Sequentially evaluate prediction results as they
become available, and alarm for drifts when a pre-defined threshold is met. Consider a
sequence of examples. The null hypothesis Hy is that X is generated from a given distri-
bution Dy, and the alternative hypothesis H; is that X is generated from another (known)
distribution D;. The logarithm (log) of the likelihood ratio for the two distributions is
calculated. Two thresholds, o and [ are defined depending on the target error rates. If
log < «a, Hy is accepted, else if log > [, H; is accepted. In the case where a < log < [,
the decision is postponed, the next example in the stream is added to the set, and is cal-
culated and compared with the thresholds (FAITHFULL; RODRIGUEZ; KUNCHEVA, [2019).
This strategy is applicated for detecting significant change in the mean of input data.
The Cumulative Sum (CUSUM), Page-Hinkley (PH) (PAGE, 1954) and Geometric Mov-
ing Average (GMA) (ROBERTS, |1959) are exemplars of this group.

Statistical based Approaches: Also know as Control charts, are a category of methods

that are based upon statistical process control (SPC). Assume that we monitor classifica-
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tion error. This error can be interpreted as a Bernoulli random variable with probability of
“success” (where error occurs) p. The probability is unknown at the start of the monitor-
ing, and is re-estimated with every new example as the proportion of errors encountered
thus far. At example ¢, we have a binomial random variable with estimated probability
p; and standard deviation ;. The method follows a set of rules to place itself into one
of three possible states: in-control, warning, and out-of-control (FAITHFULL; RODRIGUEZ;
KUNCHEVA, [2019). The Drift Detection Method (DDM) (GAMA et al., [2004), Early Drift
Detection Method (EDDM) (BAENA-GARCIA et al., [2006), Exponentially Weighted Moving
Average (EWMA) (ROSS et al, 2012)), are members of this second group.

Windows based Methods: The methods in this category monitor the distributions of
two windows of data. The basic construction involves a reference window composed of old
data, and a detection window composed of new data. This can be achieved with a static
reference window and a sliding detection window, or a sliding pair of windows over consec-
utive observations. The old and new windows can be compared with statistical tests, with
the null hypothesis being that both windows are drawn from the same distribution (FAITH-
FULL; RODRIGUEZ; KUNCHEVA| 2019). A significant difference between the distributions of
these two windows suggests the occurrence of a drift. Kifer’s (KIFER; BEN-DAVID; GEHRKE,
2004)), Nishida’s (NISHIDA; YAMAUCHI, |2007), Bach’s (BACH; MALOOF, |2008), the Adap-
tive Windowing (ADWIN) (BIFET; GAVALDA, [2007)), SeqDrift detector (SAKTHITHASAN;
PEARS; KOH, [2013), (HDDM A-test and HDDM W-test) (FRIAS-BLANCO et al., [2015), and
Adaptive Cumulative Windows Model (ACWM) (SEBASTIAO; GAMA; MENDONCA|, 2017)

are examples of the successful application of this approach.

3.1.3.2 Monitoring process

These methods can also be classified according to whether the class tag is present
or not, if the class tag is present, a supervised approach is followed. Depending on the
percentage of data with tagged classes that the data-set has, an unsupervised or semi-
supervised approach can be followed.

Methods based on supervised indicators: Methods based on supervised indicators are
useful for detecting changes when the prediction feedback is immediately available. Very
often, these methods focus on preserving the learner performance by handling Real Con-
cept Drifts. The main key for handling this type of drift relies on monitoring the learner
feedback. Some measures that are widely used for the feedback are Accuracy, Recall,
Precision, Sensitivity. The works (GAMA; CASTILLO, 2006), (BIFET; GAVALDA, 2007),
(BAENA-GARCIA et al., 2006]), (KHAMASSI et al., [2015) used this approach.

Methods based on semi-supervised indicators: Methods based on semi-supervised in-
dicators are useful for detecting Concept Drift in data-streams with scarcely labeled in-
stances. They utilize a large number of unlabeled data with the limited amount of labeled
data (KIM; PARK) 2017). The work (LUGHOFER et al., 2016), (KIM; PARK, [2017)) are ex-
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amples of works that used this kind of approach.

Methods based on unsupervised indicators: Methods based on unsupervised indicators
are useful for detecting changes when the prediction feedback is delayed. These approaches
must be robust in the face of unknown context (FAITHFULL; RODRIGUEZ; KUNCHEVA,
2019)). The work of (REIS et al., [2016; SONG et al., 2016)) are representative of the use of
this kind of approach.

3.1.3.3 Adapting process

Inside this category, there are two main approaches (GAMA et al., 2004): strategies
that adapt the learning at regular intervals without considering that the change really
occurred (implicit change detection), known as Blind methods or also Passive Approaches
Adaptation algorithms; and strategies that first detect the Concept Drift, and then execute
a learning process to adapt the model (explicit change detection), know as Informed
methods or also Active Approaches Adaptation.

Blind methods or Passive Approaches Adaptation algorithms: Algorithms following
the passive approaches continuously update the model every time new data are presented,
without any strategy to explicitly detect Concept Drift. Typically it uses techniques as
fixed-size sliding windows that take a window size W as a parameter and periodically
retrain the model with the latest W examples. A special case of Passive Approaches is
incremental and online learning where the model evolves with data. These strategies are
proactive; they update the model based on the loss function, forget old concepts at a
constant speed independently of whether changes are happening or not. When changes
are happening, it may be more beneficial to discard old data faster, and to discard old
data slower or not discard at all at times when changes are not happening. The main
limitation of this methods is slow reaction to Concept Drift (GAMA et al., 2014)). Ditzler
et al. (2015) concluded that passive approaches have been shown to be quite effective in
prediction settings with gradual drifts and recurring concepts. In addition, they are gen-
erally better suited for batch learning. Are member of this group the works (MUTHUKR-
ISHNAN; BERG; WU, [2007)), (PINTO; GAMA| 2007), (KRAWCZYK; WOZNIAK; SCHAEFER,
2014)), (VORBURGER; BERNSTEIN, 2006|) and (KUNCHEVA, 2004).

Informed methods or Active Approaches Adaptation: Algorithms following the active
approach specifically aim at detecting Concept Drift. This approach generally include
methods that are more complex and two main techniques can be distinguished: instance
selection and instance weighting. Active approaches work quite well in settings where the
drift is abrupt and have been shown to work well in online settings as well. This method
are reactive; their actions depend on whether a trigger has been flagged (BIFET; GAVALDA),
2006). Triggers can be either change detectors or specific data descriptors that we will see
in the reoccurring concept management techniques (WIDMER; KUBAT, 1996)). The reac-

tion to a drift signal might apply to the model as a whole or might explore characteristics
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of the language used to represent generalization of examples (GAMA et all 2004). The
researches (GAMA; CASTILLO), 2006]), (BAENA-GARCIA et al., 2006)), (KHAMASSI; SAYED-|
MOUCHAWEH, 2014)), (GONQALVES et al., 2014)), (CIESLAK; CHAWLA| 2009), (LICHTEN-
'WALTER; LUSSIER; CHAWLA| 2010), (DITZLER; POLIKAR, 2011)), (CAUWENBERGHS; POG-|

, 2001)) are used this approach.

Both active and passive approaches intend to provide an up-to-date model; however,

the mechanisms used by each to do so are different. (DITZLER et al) 2015) emphasize

that both approaches can be successful in practice; however, the reason for choosing one
over the other is typically specific to the application. In fact, before choosing a specific
algorithm for learning in a non-stationary environment, it is important to consider the
dynamics of the learning scenario, computational resources available and any assumptions
that can be made about the distributions of the data.

3.1.3.4 Learning process

It alludes to how the learning process is more efficient if using a single classifier or an
ensemble of classifiers.

Single learner: In non-stationary environment, single adaptive (or dynamic) learning
algorithms are widely used for handling concept changes. They can be considered as
an extension of incremental algorithms especially when they can incorporate forgetting
mechanisms in order to discard data from outdated concepts. Another possible extension
of the incremental learning algorithms is to be self-adaptive. The objective is to monitor
the learning process, adapt the model, and interpret the encountered changes in order to
response to the new environment requirement. These approaches are not recommended for
handling recurrent drift. An example of this work is the approach of (CAUWENBERGHS;
POGGIO, 2001)).

Ensemble learners: Ensemble learners have received great interest as they have shown

better generalization abilities than single learner in the last years. The success of the
ensemble methods for handling Concept Drift relies on two primordial points: diversity and
adaptability. There are many related works, some of them are (POLIKAR) 2001), (KOLTER;|
MALOOF, 2007)), (OZA; RUSSELL, |2001), (BIFET et al), 2010), (MINKU; WHITE; YAO, 2010),
(WOZNIAK; KRAWCZYK, 2012), (KUNCHEVA, 2004), (KOLTER; MALOOF}, [2007)), (SANTOS|
et al., [2014), (BARROS; SANTOS; GONCALVES JR., [2016), (FRIAS-BLANCO et al., 2016).

3.2 RELATED WORKS

As was mentioned above, Gama et al.| (2004)) distinguishes two categories where strate-

gies are located to face the problem of changing the concept: (i) strategies that adapt

learning at regular time intervals without considering that a change in the concept has
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occurred or not and (ii) strategies that first detect the change of concept and then the
learning model is adapted to the change.

Ensemble system is usually included within the first strategy since they have mech-
anisms that allow them to evolve without having to directly detect points exchange.
However, today there are several researches that insert mechanisms for direct detection of
changes of concepts into the ensemble, which also includes them within the second strat-
egy. The advantage of incorporating change detectors is to take advantage of the ability
of ensemble system in order to adapt to gradual changes combined with the work of the
change detector for abrupt changes (ORTIZ-DIAZ, 2014). In the next sections, some of the

algorithms, used as a comparative basis are described, which covers ensemble methods and

their respective detection methods, which are available in the [Massive Online Analysis|
(MOA)) (BIFET et al., 2010).

3.2.1 Related ensemble methods

In this section, a bibliographic study of the ensemble methods with or without de-
tection mechanisms will be carried out aiming to highlight the methods related to our
proposal in this dissertation. Later, Section [5.2] will provide a comparison between the

methods proposed in this dissertation and some of the methods described below.

3.2.1.1 Fast Adaptive Stacking of Ensembles

Fast Adaptive Stacking of Ensembles (FASE) (FRIAS-BLANCO et al., 2016) is based on
the online bagging algorithm (OZA; RUSSELL, |2001), and uses as a drift detection
mechanism to estimates the error. It has a set of adaptive learners to handle Concept Drift
explicitly by detecting the changes and updating the model if a Concept Drift is estimated.
The adaptive learners estimate error rates (by the corresponding change detectors) with
a predictive sequential approach (test-then-train). uses weighted voting to combine
the predictions of the main and alternative models. It uses a meta-classifier too, combining
the predictions of the adaptive learners. For that, it generates a training meta-instance
M = (91,...,9j,- -, Uk;y) where each y; is an attribute value and y is its corresponding
class label. Each attribute value g; of the meta-instance M corresponds to the prediction
from classifier h; for the example z. The class label of the meta-instance M is the same
label of the original training example (FRIAS-BLANCO et al., 2016)).

3.2.1.2 Boosting-like Online Learning Ensemble

Boosting-like Online Learning Ensemble (BOLE) (BARROS; SANTOS; GONCALVES JR.,

2016)) is based on simple heuristic modifications to [Adaptable Diversity-based Onling|
[Boosting (ADOB)| (SANTOS et al., 2014). To obtain [Boosting-like Online Learning Ensem-|
ble (BOLE)| two modifications were made with respect to the original algorithm (i) weak-
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ening the requirements to allow the experts to vote and (ii) changing the Concept Drift
detection method internally used, improving the ensemble accuracy in most situations,
especially when concept drifts are frequent and/or abrupt. In addition, delivers
very strong performance in most situations, irrespective of the auxiliary drift detection
method used (BARROS; SANTOS, |2019), however the authors considered the comparison
of Concept Drift detectors (GONCALVES et al., [2014) to concluded that [Drift Detection|
Method (DDM)| (GAMA et al,, 2004) is the best default detector method owverall. Thus,
the variant used (BOLEJ) to carry out the experiment, incorporates as default

detection mechanism.

3.2.1.3 Dynamic Weighted Majority

Dynamic Weighted Majority(DWM) (KOLTER; MALOOF, 2007) is an ensemble method
to cope with Concept Drift based on[Weighted Majority Algorithm (WMA)| (BLUM, (1997)),

which aggregates and eliminates classifiers considering its local and global performance.

It can be regarded as a general method since it can be used any online learning algorithm

as a base learner.

IDynamic Weighted Majority (DWM)|obtains a classification from each member of the

ensemble. If one’s prediction is incorrect, then [DWM] decreases the learner’s weight by
multiplying it by a parameter 3. Regardless of the correctness of the prediction, DWM]
uses each learner’s prediction and its weighth to compute a weighted sum for each class.
The class with the greastest weight is set as the global prediction. Since DWM] always
decreases the weights of experts, it normalizes the weights by scaling them uniformly
so that, after the transformation, the maximum weight is 1. This prevents newly added
experts from dominating predictions. DWM] also removes poorly performing experts by
removing those with a weight less than the threshold 4, although it will not remove the last
expert in the ensemble. If the global prediction is incorrect, DWM] adds a new expert to
the ensemble with a weight of 1. Finally, after using the new example to train each learner
in the ensemble, outputs the global prediction, which is the weighted vote of the
expert predictions. In order to cope better with noisy or many examples, a parameter p
defines the period over which[ DWM] will not update learners’ weights and will not remove

or create experts. During this period, however, DWM]still trains the learners.

3.2.1.4 Oza and Russell’'s Online Bagging(OzaBag)

Oza and Russell’s Online Bagging (OzaBag) (OZA; RUSSELL, 2001)) is a version on-
line for Bagging ensemble learning methods. The traditional Bagging algorithms combine
multiple learned base models with the aim of improving generalization performance. It
works by resampling the original training set of size n to produce m bootstrap training
sets of size n, each of which is used to train a base model. The online version trains m

base models online. It simulates the bootstrap process by sending z K copies of each new
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example to update each base model, where zK is a suitable Poisson random variable.
This simple trick yields learning behavior similar to that of bath bagging. Online Bagging
using ADWIN (BIFET et al., 2009) is implemented as ADWIN Bagging where the Bagging
method is the online bagging method of Oza and Rusell with the addition of the ADWIN
algorithm (BIFET; GAVALDA, 2007)) as a change detector. The base classifiers used are Ho-
effding Trees. When a change is detected, the worst classifier of the ensemble of classifiers

is removed and a new classifier is added to the ensemble. The variant used in this work,

called |Oza and Russell’s Online Bagging with Detector (OzaBagp)| is an adaptation of
ADWIN Bagging where the detection mechanism can be any, by default it is [ HDDM 4|

3.2.1.5 Diversity for Dealing with Drifts

Diversity for Dealing with Drifts (DDD) (MINKU; YAO, 2012) is also a variation of
Online Bagging and uses four ensembles of classifiers with high and low diversity, before
and after a Concept Drift is detected by a configurable auxiliary drift detector (default is
[Early Drift Detection Method (EDDM))). Prior to drift is detected, the learning system

is composed of two ensembles: an ensemble with lower diversity (h,;) and an ensemble

with higher diversity (h,;). Both ensembles are trained with incoming examples, but only
the low diversity ensemble is used for system predictions. After a drift is detected, new
low diversity and high diversity ensembles are created. The ensembles before the drift
detection are kept and denominated old low and old high diversity. The old high diversity
ensemble starts to learn with low diversity in order to improve its convergence to the new
concept. Maintaining the old ensembles allows not only a better exploitation of diversity
and the use of information learned from the old concept to aid the learning of the new
concept, but also helps the approach to be robust to false alarms. Both the old and the new
ensembles perform learning and the system predictions are determined by the weighted
majority vote of the output of 1) the old high diversity, 2) the new low diversity, and 3)

the old low diversity ensemble.

3.2.2 Related detection methods

The detection methods can indicate whether there has been a change of concepts or
not, generally observing the number of errors sequentially committed by the base classifier
(BRZEZINSKI; STEFANOWSKI, 2016). In general, a detector can be in one of these three
states: in-control, warning, and out-of-control (drift), where drift represents that a change
of concept occurred.

The following methods represent the detection mechanisms that integrate the ensemble

algorithms used as a comparative basis to evaluate our proposals.
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3.2.2.1 Drift Detection Method

Drift Detection Method (DDM) (GAMA et al., [2004)) uses the prediction error of an
incremental learning algorithm as a random variable corresponding to Bernoulli’s exper-
iments. A binomial distribution is assumed and it is considered that for a large number
of instances this is close to the normal distribution, where the error in the prediction (p;)
and its standard deviation s; = y/p;(1 — p;)/i are calculated for each instance (). It is
established that the error of the learning algorithm (p;) will decrease if the number of
examples increases and the distribution of the examples remains stationary. On the other
hand, a significant increase in the number of algorithm errors suggests that the class distri-
bution is changing and therefore the current decision model is inappropriate.The method
for detecting changes stores two variables in training the learning algorithm,(p,,;,) and
(Smin), which are updated when a new instance causes p; + $; < Pmin + Smin-

[DDM] presents three states:

o in-control: when p; + S; < Pyin +W X Smin, to be declared stable, the authors assume
that the same distribution contains the generated examples where w represents an

error tolerance factor to reach the warning level.

o warning: when p; + S; > Pmin + W X Smin, the level warns that the error is increasing

but has not yet reached the level considered significantly high to declare the change.

o drift: the change is detected, since p; + $; > Ppin + d X Spmin is satisfied, so the values
Pmin € Smin are restarted. In this context, d represents an error tolerance factor to
reach the drift level.

The [DDM] parameters by default in[MOA]for the warning and drift levels are: w = 2.0,
d = 3.0 respectively, and n = 30, where n is the minimum number of instances before
change detection is allowed. This detector has good detection efficiency in scenarios where
abrupt and gradual changes are not very slow, but in scenarios where gradual changes are
very slow, it presents some difficulties (BAENA-GARCIA et al., 2000)).

3.2.2.2 Early Drift Detection Method

Early Drift Detection Method (EDDM) (BAENA-GARCIA et al., [2006) was constructed
with the purpose of improving the difficulties in detecting gradual changes while main-
taining the same results as [DDM] in detecting abrupt changes. Basically this detector
considers the distance between two classification errors instead of exclusively considering
the number of errors as done by [DDM]|

Therefore, the detector assumes that as long as the learned distribution remains sta-
tionary or while the learning method is learning, it will improve the predictions and the

distance between two errors will increase. The method for each instance (i) calculates the
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mean of the distances between two errors (p;) and its standard deviation (s;). When p;

and s; reach their maximum values (p; + 2 x s; reaches its maximum value), they will

!

. / . . . . .
be stored in p,,,, and s being overwritten each time a new maximum is found. Two

thresholds are defined:
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restarted. The model induced by the learning method is reset and a new model is

< d, being the values p,,,, and s, .

learnt using the examples stored since the warning level triggered.

It is necessary that w > d for the creation of previous states. As default values, the

authors leave fixed 0,95 e 0,90 to alert and change states, respectively.

3.2.2.3 Hoeffding-based Drift Detection Methods

Hoeffding-based Drift Detection Methods (HDDM) authors (FRIAS-BLANCO et al.
2015)) propose to monitor the performance of the base learner by applying “some probabil-
ity inequalities that assume only independent, univariate and bounded random variables
to obtain theoretical guarantees for the detection of such distributional changes”.
“involves moving averages and is more suitable to detect abrupt changes” and the second
[Hoeffding-based Drift Detection Methody_tes; (HDDMyy )| “follows a widespread intuitive
idea to deal with gradual changes using weighted moving averages”. For both cases, the
Hoeffding inequality (HOEFFDING] 1963) is used to set an upper bound to the level of

difference between averages. They have three common parameters, the confidence values
for drifts (ap = 0.001) and warnings (ay = 0.005), and the direction of the error, which
can be one-sided ( ¢ = 0, only increments), default for or two-sided (t = 1,
error increments and decrements), default for . Finally, has an extra
parameter (A =0.05) which is used to control how much weight is given to more recent

data in comparison to older data.

3.3 FINAL CONSIDERATIONS

In this chapter, were discussed the Concept Drift problem. Concept Drift (CD) or
Concept Change refers to a non-stationary learning problem over time. There are diverse
categories of changes. Attending to the affected class, Virtual and Real CD can be dis-
tinguished. If the period in which a change of concept occurs is considered, it can be
classified as Gradual or Abrupt CD. Recurrency of the concept is when previously active
concept reappears after some time. Attending to the severity of drift the change can be
Global or Local. Whatever the nature of CD, it may cause problems for the learner even

if the class label did not change. Normally, if the change is abrupt, the learner performs is
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more strongly affected. Popular approaches to handle CD were discussed considering how
the data is processed (Sequential analysis based methods, Statistical based approaches,
Windows-based methods), how is CD monitored (Methods based on Supervised, Semi-
supervised and Unsupervised indicators), how the CD is adapted (Blind and Informed
methods), and how the learning task is processed (Using a single classifier or an ensemble
of classifiers). The related works presented the benchmarks that have been taken as a
comparative basis in order to perform the experiments. They were separated take into
consideration: (i) the strategies that adapt learning at regular time intervals without con-
sidering a change in the concept has occurred, such as and (ii) strategies that first
detect the change and then the learning model is adapted, such as [DDM] [EDDM] and
[HDDM 4| Ensemble systems are usually included within the first strategy since they have

mechanisms that allow them to evolve without having to directly detect points of change.

However, there are several researches that insert mechanisms for direct detect CD, then
these particular systems are include within the second strategy such as [FASE] [BOLE],
|OzaBagp|and [Diversity for Dealing with Drifts (DDD)|
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4 PROPOSED METHODS

This chapter introduces two families of classifier ensemble methods derived from [FASE}
[FASEO] and [FASEB| Algorithm families are originated using different change adaptation

strategies and methods to combine the predictions of the classifiers that make up the

ensemble. An overview of the different proposed methods is described below, followed
by a detailed description of the strategies used. In particular, it is explained the general

algorithm for updating the ensemble methods step by step.

4.1 OVERVIEW OF THE METHODS

According to (ORTIZ-DIAZ, [2014), when designing ensemble of classifiers two main
points must be considered: (i) how the base classifiers in the ensemble are updated and
(ii) how they are combined to make a joint prediction.

Taking into account above assumption, variations were introduced in [FASE] to search
for a better balance accuracy and necessary resources (memory and run-time) for its
operation. Given can be viewed as a three-level ensemble of classifiers (FRIAS-
BLANCO et al, 2016), we argue that the complexity introduced by its structure is the
main reason to influence its high demand of memory and run-time.

The original algorithm is composed of a set of adaptive classifiers (see Figure
(FRIAS-BLANCO et al., [2016])). Each one is formed by a base classifier and an alternative
classifier (both classifiers include a drift detection mechanism) that is generated each time
the base classifier issues a warning state. Both classifiers, the main and the alternative,
process each instance and by weighted voting determines its class. This strategy is followed
in the adaptive classifiers that form the ensemble, but also in the level of the meta-classifier
(see Figure[3(b)] (FRIAS-BLANCO et al}, [2016)) that receives as input the predictions of each
classifier in the form of a meta-instance.

Considering this scenario, our proposals aim to handle resources more efficiently while
keeping accuracy at similar levels. Thus, the main proposed modifications made on [FASE]
are (i) the update strategy and (ii) the voting procedure of the ensemble. As a result of
these modifications, two families of ensemble algortithms derived from [FASE]| were devised:
[FASEQ] and [FASEB

Differently, [FASE] variants eliminate the use of adaptive classifiers and create, in the
structure of the general model, a parallel ensemble where a classifier is activated and begins
to train once one of the classifiers of the main ensemble reaches the warning level. When
a Concept Drift is detected, then one of two variants is followed, (i) the first classifier,
the one that stayed longer (the oldest) in the alternative classifier ensemble, is promoted

or (ii) the classifier with the best accuracy of the alternative classifiers is promoted. Such
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Figure 3 — FASE s’ details of the structure and performance.
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strategies promote the creation of [FASEO] and [FASEB]| families, respectively.

Each family of algorithms is based on classifiers that integrate detection mechanisms.

So, the associated detector triggers each of the three different drift signals manipulated in
the model. The first two methods, (FASEO|and |[FASEB|), maintained the meta-classifier
proposed in [FASE| in order to perform class voting while the others combine weighted

voting for final decision. To determine the whole weight of each classifier, accuracy, entropy
degree and class probabilities are combined in different ways.

In this work are considered two update strategies. The first, updates the ensemble with
the alternative classifier that has greater accuracy, the second updates the ensemble with
the oldest alternative classifier. Moreover, it is also considered two class voting strategies.
The first provides a combined voting using a meta-classifier. The second gives a combined

voting using weighted majority voting in different ways.

Table 1 — All proposed methods.

ENSEMBLE
UPDATE CLASS VOTING STRATEGY
STRATEGY
Meta- Weighted Majority Voting
classifier
Approach1 Approach2 Approach3
Promote the
best FASEB FASEB,,, FASEB,,, FASEB,,;
P teth
oy FASEO  FASEO,,  FASEO,, FASEO,,

Source: Own elaboration (2019)
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Figure 4 — Combining strategies.
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The update strategies together the class voting strategies, give rise 8 methods, which
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Figure [4 and Table [I] summarize this explanation.

The description of each algorithm follows below:

[FASEO} To update the main ensemble, the classifier with more training time in
the set of alternative classifiers is promoted. To determine the final class, a meta-
classifier is used with its inputs being the meta-instances formed by the predictions

of each classifier in the main ensemble.

[FASEO,.1} As in [FASEQ] to update the main ensemble, the oldest classifier in the

set of alternative classifiers is promoted. To vote the final class, the weight of each
classifier is computed taking into account accuracy, entropy degree, and the class

probability vector.

[FASEO .0t As in[FASEQ]and [FASEO,,,1}, to update the main ensemble the classifier

with more training time in the set of alternative classifiers is promoted. To vote the

final class, the weight of each classifier is computed taking into account only accuracy

and the class probability vector.

[FASEO,,.3t As in the three former cases, to update the main ensemble, the classifier
with more training time in the set of alternative classifiers is promoted. To vote
the final class, the weight of each classifier is computed taking into account only

accuracy and entropy degree.

[FASEB} To update the main ensemble, the classifier with the best accuracy among

the alternative classifiers is promoted. Decision on the final class is given by a meta-
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classifier, whose inputs are the meta-instances formed by the predictions from each

classifier in the main ensemble.

. As in [FASEB] to update the main ensemble, the classifier with the best

accuracy among the alternative classifiers is promoted. To vote the final class, the
weight of each classifier is computed taking into account accuracy, entropy degree,

and the class probability vector.

. As in[FASEB|and [FASEB,,,1| to update the main ensemble, the classifier

with the best accuracy among the alternative classifiers is promoted. To vote the

final class, the weight of each classifier is computed taking into account only accuracy

and the class probability vector.

. As in the three last cases, to update the main ensemble, the classifier
with the best accuracy is promoted. To vote the final class, the weight of each

classifier is computed taking into account only accuracy and entropy degree.

The proposed algorithms were implemented in Java using IDE Eclipse 4.6.0 (<https:
/ /www.eclipse.org/>). The main benefits of Java, are portability, where applications can
be run on any platform with an appropriate Java Virtual Machine (JVM), and the strong
and well-developed support libraries. Use of the language is widespread, and features such
as automatic garbage collection help to reduce programmer burden and error. Also, this
guarantees the ease of integration into [MOA]

As a summary, all proposed methods include base learner models (classifiers 4+ con-
cept drift detectors), that trigger warnings and drifts when changes in the concept have
likely occurred and have been detected, respectively. Besides they have a parallel ensemble
formed by alternative learners, activated once any learner models of the main ensemble
is in the warning level. Otherwise, the alternative classifiers remain inactive. As a conse-
quence, when a classifier of the main ensemble detects a concept drift without previous
warning (abrupt changes), it is immediately replaced by an already trained classifier. In

certain situations, this should contribute to time optimization.

4.2 THE UPDATE STRATEGY

This section provides a detailed description of update strategy used in the FASEO]and
[FASEB]| families. In a general way, the proposed ensemble algorithms are updated once
one of the learners (classifier with change detection mechanism) that compose the main

ensemble, experiment any of the following change of states:

(i) A classifier initially in-control, triggered a warning (through its detection mecha-

nism)

(ii) A classifier suddenly reaches the drift level from in-control state
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(iii) A classifier reaches the drift level from state of warning
(iv) A classifier, currently in warning, return to the (by-default state) in-control

In (i), an alternative classifier is activated and placed in a parallel set (ensemble of
alternative classifiers). When no drift is detected, the learning process is carried out by
the learners of the main set.

When one of the classifiers of the main set reached an out-of-control signal (drift),
(case (ii) or (iii)) the main set is updated, firstly the drifted classifier is deleted and then
is promoted to the main ensemble a) the alternative classifier with the greatest accuracy
methods) or b) the oldest alternative classifier methods). Once the
alternative classifier is promoted, it is deleted from the parallel ensemble. Then, in (ii),
the model activates a new alternative classifier, since, due to a sudden change, it was not
created and, therefore, it was taken “borrowed” from a classifier that triggered warning,
therefore, should be “returned to it”.

In order to handle the final states there is an arrangement of states: initially, it is
assumed that each value corresponding to the status of each classifier that is part of
the main ensemble is in-control and therefore takes value 0; whenever a classifier of the
ensemble enters warning, its status has value 1. When a classifier of the main ensemble
detects a drift, either by going from in-control to drift or from warning to drift, the
algorithm quickly updates the ensemble and the state is again in-control. Therefore, once
the algorithm removes the classifier from the array of alternatives, it updates the state
corresponding to the new classifier that became part of the main ensemble to in-control.

In the following, we present the general update strategy step by step. The proposed
methods (see algorithm (1)) receive as input the size of the main ensemble and training
instances.

Lines 1 to 3 initialize the size of the active-classifier parallel ensemble, the main en-
semble (with a learner and an associated detector in each position), and the state of the
classifier. In line 4 the data-stream is read. Lines 5 to 37 represent the processing cycle
of the ensemble. Lines 6 and 9 update the state of the classifiers of the ensemble before
and after processing an instance, respectively. In line 7 the Poisson function is applied to
the distribution in order to create diversity in the training instances. Line 8 represents
the training of the main ensemble using the weight for training with the examples. Lines
10 to 36 check the four cases that may happen during the processing of instances of the
data-stream.

The first case (lines 10 to 13) regards a stable (in-control) classifier that changes to
the warning level. If this is the case, the status is updated and one classifier is activated
in the ensemble of alternative classifiers.

The second case (lines 14 to 22) refers to stable classifiers that change to a drift state.

Firstly, the existence of active alternative classifiers is verified: if available, the best one
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is promoted and the ensemble of alternative classifiers is updated. When the drift signal
is triggered without warning, it is necessary to activate an alternative classifier (line 18).
When no alternative classifier is active, the classifier in the main ensemble that reached
drift is restarted (line 21). The function in lines 16 and 25 promotes one alternative
classifier to the main set. In Case 3 (lines 23 to 28), the warning level is followed by
a drift signal. In this case, at least one active alternative classifier exists and the best
one is promoted. The last condition (lines 29 to 33) captures the case of a classifier that
returns to the in-control state after a warning. The number of active alternative classifiers
is decremented (line 31) and the state is updated (line 32).

Algoritmo 1: General algorithm that represents the update strategy.

Input: main ensemble size k, training instances z;.

1 nClassWarn < 0
2 InitializeMainEnsemble (OnlineBaseLearningAlg, d;)
3 stateNow <« in — control
4 Next z;
5 for j «+ 1 to k do
6 stateBefore < stateNow
7 zk; < Poisson (z;)
8 TrainingMainEnsemble (zk;)
9 stateNow <« State(d(zk;))
10 if stateBefore = in — control & stateNow = warning then
11 UpdateState (stateNow)
12 ++nClassWarn
13 else
14 if stateBefore = in — control & stateNow = drift then
15 if (nClassWarn > 0) then
16 PromoteAlternativeClassifier(nClassWarn, j)
17 UpdateAlternativeEnsemble(——nClassWarn)
18 ++nClassWarn
19 UpdateState (stateNow)
20 else
21 | main-ensemble[j]. Reset Learning()
22 else
23 if stateBefore = warning &
24 stateNow = drift then
25 PromoteAlternativeClassifier(-)
26 UpdateState (stateNow);
27 UpdateAlternativeEnsemble(——nClassWarn)
28 else
29 if stateBefore = warning &
30 stateNow = in — control then
31 UpdateAlternativeEnsemble (——nClassWarn)
32 L UpdateState (stateNow)

The implementation of the [FASEQ] and [FASEB]| families methods has as a main differ-
ence the PromoteAlternativeClassifier(-) function. The former function in [FASEO| meth-

ods only receives as a parameter the number of classifiers that must be active in the

parallel set (nClassWan), then the classifiers in the parallel set are reorganized until the
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first position is occupied. So this function guarantees that always the first value of the
parallel set is the learner that has more training time (the oldest classifier of the set).
If the concept change occurs, the first learner of the parallel set is taken to replace the
drifting learner in the main ensemble and then it is deleted from the parallel set.

In methods the PromoteAlternativeClassifier(-) function receives as a param-
eter the index of the classifier in the main ensemble that changed to drift (j) and also
the number of active alternative classifiers (nClassWan). The PromoteAlternativeClassi-
fier (nClassWan, j) function search in the parallel set, among the learners that are active
until the one with the most accuracy (the best) is found; once this happens, it replaces
the learner who reached the drift level in the main ensemble and later it is deleted from
the parallel set. The number of active classifiers is also updated. If there are two classifiers
with the same accuracy the most recent of them will be promoted. In the exceptional case
that none of the active classifiers in the alternative ensemble had an accuracy greater
than 0, then the last classifier of the ensemble (the most recent of all) will be promoted.

This could positively influence on the adapt-to-the change process.

4.3 CLASS VOTING STRATEGIES

As previously explained, an ensemble of classifiers H(x) are models learned from a
set of classifiers hy(x), ..., hj(X), ..., hx(x). During the training process, it receives as an
input a labeled instance (x;,y;), and the model H(x) aims to predict the class g; of each
instance in unlabeled data-set. To achieve this task, there is different ways of ensemble
combination methods like stacking, voting schemes, unweighted voting schemes. Thus, in
this work the classification is done using the stacking and the weighted-voting strategies,

the particular way in which these strategies are applied is explained below.

4.3.1 Meta-classifier strategy

As was exposed before, the two first methods represent and have the same name
that the algorithm families proposed: [FASEO| and [FASEB]| both use a meta-learning as a

class voting mechanism like [FASE] Meta-learning is the process of learning from ensemble

members. Thus, the input of the meta-learner are the outputs of the ensemble-member
classifiers. The goal of meta-learning process is to train a meta-classifier (meta-learner),
which will combine the ensemble members’ predictions into a single prediction. In this
process, both the ensemble members and the meta-classifier need to be trained. The
meta-classifier is the ensemble’s combiner (MENAHEM; ROKACH; ELOVICL, 2013), thus, it
is responsible for producing the final prediction. Similar to the ensemble-members, the
meta-classifier of these methods is a one class classifier; it learns a classification model from
meta-instances, whose attributes are nominal. As[FASE] both methods uses a Prequential

methodology to generate meta-instances. Thus, for each original training instance z =
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Figure 5 — Meta-learning strategy.

Meta-classifier

 Meta-instance |
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y
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X N X
X,y I

Source: Own elaboration (2019)

(x,y) it is generated a training meta-instance M = (y1,...,9;,...,Yk;y), where each
attribute value ¥; of the meta-instance M corresponds to the prediction from the base
classifier 7 in the main ensemble for the original example z (see Figure . The class label
of the meta-instance M is the same label of the original training example. The main
set of base classifiers can change over time, since these classifiers can be substituted in
response to Concept Drift. Thus, the meta-classifier can be affected by changes in the
target concept that relates the predictions of the base classifiers with the true class label
of a given instance (FRIAS-BLANCO et al., 2016)). Similar to these two methods use

the same kind of learner in the meta-classifier and in ensemble members. The ensemble

members are classifier with change detector. During the ensemble’s training, the ensemble-

members, as part of a test-then-train process, are generating the meta-classifier’s input.

4.3.2 Weighted voting strategies

A weighted voting is a system in which not all learners have the same amount of
influence over the outcome because their votes have a different weight. In the classification
task, an ensemble classifier can combines the decision of a set of classifiers by weighted
voting to classify unknown examples. The weighting methods are best suited for problems
where individual classifiers perform the same task (SHEN et al), 2018). Therefore, that
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is the reason why in this work was adopted the weighted majority vote to obtain the
final prediction of the class label combining hard and soft voting in different ways. In
hard voting, is predicted the final class as the class label that has been predicted most
frequently by the classification models. In soft voting, is predicted the class labels based
on the predicted probabilities. In the proposed methods the vector of class probabilities
stores in “soft” or “hard” way the predicted vote that each classifier of the main ensemble
does by determining the class label for each instance in the data-stream.

As seen in the chapter [2, the weighted majority voting can be computed as in Equa-
tion (2.12)): H(x) = argmax(ijC’c(x)). Then, if LC.(x) = >%_, Pj(y.|x) the weighted

7=1
1<e<C
majority voting can be computed as:

H(x) = argmax {Z ijj(yC]x)} (4.1)

1<e<C | i

where w; is the weight with which the classifier h; predicts the class y..

In order to improve the performance of each classifier, the historical information of the
training data and the recent information of the test data are combined. A similar idea was
previously proposed in (SONG et al} 2016). To determine the weight of each classifier, the
accuracy (a component of the weight derived from historical performance) and the degree
of entropy in its classification (the component of the weight coming from the current

behavior of the classifier) are taken into account. The weighted voting components are:

o Accuracy:

To compute the weight component from historical information is adopted the simple
weighted voting model where the weight values wgc; for each classifier are deter-

mined based on the predictive performance of a particular classifier with the training
set using Equation[2.§]

In this equation is considered the prequential accuracy that represents the average
accuracy obtained by the prediction of each example before it is learned, calculated
online. The computation of the prequential accuracy at timestamp ¢ is 1 if the
current example is correctly classified and 0 otherwise (HIDALGO; MACIEL; BARROS,
2019).

» Entropy:

In Information Theory, entropy is defined as a way of measuring the average de-
gree of uncertainty regarding information sources, which consequently allows the
quantification of the present information flowing in the system. In simple terms, the
concept of entropy is associated with the idea that, the more uncertain the result of
a random experiment, the more information is obtained by observing its occurrence.
In this context, a high degree of uncertainty is understood as bad performance, be-

ing unable to discern between classes, and thus its corresponding weight will be low.
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The uncertainty is calculated as follows (HOLUB; PERONA; BURL), 2008):

E = =) Pi(yelx)log2P;(ye|x) (4.2)

where P;(y.|x) is the posterior probability of the instance z being a member of the

¢, class, which takes into account all possible labels.

The value that is used in the weighting of voting by entropy is given by wg =1—F

and, thus, when E increases, the value of wg decreases.

These component are combined in different ways originating three weighting ap-

proaches:

o Approach 1: it is used the classifier accuracy weight, class probability vector and
entropy weight. In this approach the vector of class probabilities stores in “soft”
way the predicted vote. Besides, w; is computed as: w; = wg * Waee, Where w; is the

weight with which the classifier j predicts the class y;.

o Approach 2: it is used the classifier accuracy weight and class probability vector. In
this approach the vector of class probabilities also stores in “soft” way the predicted

vote. Besides, w; is computed as: w; = wec,

o Approach 3: it is used the classifier accuracy weight and entropy weight. In this
approach the vector of class probabilities stores in “hard” way the predicted vote.

Besides, w; is computed as: w; = wg * Waec,

4.4 FINAL CONSIDERATIONS

The chapter provided the description and implementation of the strategies that give
rise to the [FASEO] and [FASEB| families derived from [FASE] The first family boosting to
the main ensemble the oldest alternative classifier. The [FASEB|family promote the classi-
fier with the best accuracy result out of the alternative classifiers. The first two methods
of these families, also named respectively [FASEQ] and [FASEB]| at the same time that

modify the update procedure as was described before, they maintain the voting system

(meta-learner) from the original ensemble algorithm. That is, combining the prediction
of the main models in a meta-instance in order to train the meta-classifier. The main
different regarding [FASE]is the base-learner structures. [FASE| have an adaptive classifier
in all their structures, instead the new proposals have a classifier with detection mecha-
nism, reducing its complexity. The other 6 methods [FASEO,,,1, [FASEO .9l [FASEO,,,3}
[FASEB,,.,, [FASEB,,.2| and [FASEB,,.3| adopt an approach based on weighted majority

voting to predict the class label of each instance, and also modify the update procedure

and the base-learner structures reducing its complexity. The resulting weight of each main

classifier is computed by the combined weight between the entropy degree and accuracy in
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3 different ways. The first approach considers the historical performance of the classifier
(accuracy weight), the actual performance of the classifier (entropy weight) and uses soft
voting in order to predict the final class label. The second approach only considers the
historical performance of the classifier and also uses soft voting in order to predict the
final class label. Finally, the third approach also considers the historical performance of
the classifier, the actual performance of the classifier but uses hard voting in order to

predict the final class label.
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5 THEORETICAL AND EMPIRICAL STUDY

This chapter presents a theoretical and empirical study of the proposed methods in
comparison to previous works. The former aims to analyze the temporal and spatial com-
plexities of the methods with respect to the original [FASE|algorithm. The latter examines
the experimental performance of those algorithms with respect to other references in the
area. The experimental environment, configurations and data-set used to test the algo-

rithms are described. Finally, the empirical results are discussed and statistically analyzed.

5.1 THEORETICAL ANALYSIS

In order to compare [FASE]algorithm with their derived methods, [FASEB|and [FASEQ]

families, it is necessary to perform an analysis of spatial and time complexity of all these

algorithms. To do this, it is considered both the complexity of the base learners that make

up its structure as well as the structures of the algorithms themselves.

5.1.1 Space complexity

If (JOHN; LANGLEY], [1995) is used as base learner, the space complexity analysis
appear in the literature as O(dvc) (ZHENG; WEBB, [2005)). In the case of (HULTEN;
SPENCER; DOMINGOS, 2001)), the worst case space complexity is given in terms of the
current number of leaves [ as O(ldvc) (MANAPRAGADA; WEBB; SALEHI, 2018). For both
cases, d is the number of attributes, with v values per attribute and ¢ is the number of
classes per instance.

On the other hand, the space complexity also depends on the number of classifiers in
the ensembles (k). Particularly for [FASE] when all adaptive classifiers in the ensemble
are in the warning level, the dimension of these structures is 2k, in the worst case. This
happens because in the warning state each base structure of the ensemble is composed
of two basic models, the main and the alternative one. Thus, the final space complexity
for is approximately O(Nldvc) using as base learner and O(Ndvc) using
where N = 2k.

On the other hand, both [FASEB|and [FASEO] families have the same space complexity

that [FASE]in the worst case, because these methods has two base arrays with a maximum

of k elements completely full. When the methods use [HT] as base learner, the complexity
by each array is closely to O(kldvc) and O(kdvc) if is used.
5.1.2 Time Complexity

In this case, we measure the run-time for each processed instance, since the methods

are designed for continuous execution in data-stream. Therefore, to perform this analysis,
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three different situations are taken into account:

o Create/Activate a base learner: and the derived families algorithms
and [FASEQ] have similar performance in this process where the warning alarm
must have been triggered before. Theoretical time complexity for (FRIAS-
BLANCO et al., [2015) is O(1). Thus, the temporal complexity depends on the tempo-
ral complexity of the selected base classifier or to process each example.

Theoretically the time complexity for is O(nd) where n is the number of training
examples and d is the number of attributes of each example (ZHENG; WEBB], 2005):
for one example, the complexity is O(d) because n = 1. On the other hand, there
are two primary operations in the learning using [HT} (i) incorporating a training
example by incrementing leaf statistics and (ii) evaluating potential splits at the leaf
reached by an example (MANAPRAGADA; WEBB; SALEHI, 2018)). The final time com-
plexity using for the algorithms is O(ndGc) (MANAPRAGADA; WEBB; SALEHI,
2018) where G is the computation of information gains that requires O(1) arithmetic

operations and ¢ classes. For one example, it is O(dGc).

o Update the base learners: In the update process, the drift alarm must have been
triggered by and the theoretical time complexity for it is O(1), as before.
In the temporal complexity is O(kd). family has a function in order to
find the classifier with a better accuracy in the alternative ensemble. This function
also has order O(k). Then, the temporal complexity is O(k) + O(kd). The temporal
complexity of family is O(kd), where k is the number of base learners.

o Update the meta-classifier: In this process, the drift alarm must also have been
triggered by and the theoretical time complexity for it is O(1), as above.
The meta-learner has a similar structure of a base classifier but it is trained with
meta-instances. The temporal complexity depends on the temporal complexity of
the selected base learner or to process each meta-instance.

The time complexity for is O(nk) where n is the number of examples and k is
the number of predictions made by the ensemble for each example, i.e., the meta-
instances have as many attributes as base learners on the set. For a single example,
it is O(k) because n = 1.

The final time complexity using for the meta-classifier is O(nkGc). For a single
example, it is O(kGc). [FASEB,,1, [FASEB,,,2} [FASEB,,.3, [FASEO,,.1] [FASEO,,.J|

and have no meta-classifier as the voting process of the class is done by
weighted voting. This process is order O(k).
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5.2 EMPIRICAL ANALYSIS

The section presents the elements taken into account to carry out the experimentation.
The environment in which the experiments were made is described, reporting the charac-
teristics of the server employed , the frameworks and the tools used in the development
and evaluation of the methods. The synthetic and real data-sets are also described and
the configuration with which each method was evaluated. Finally, the results obtained are

presented and discussed and an statistical analysis of results is described.

5.2.1 Environment description

In order to evaluate all methods, experimentation was performed on an AMD Fesktop
Server with RYZEN 5 1600 COOLER processor, and 16 GB dual-channel DDR4 with
2400 Mhz of RAM, a SSD KINSTON 2,5 480 GB A400 SATA III of hard disk, with the
Ubuntu operating system 18.04.2 64 bits.

In addition, a framework for dealing with data-streams mining (BIFET et al),
2010) was installed. is used in order to compare the proposed methods against
some of the previous algorithms explained in chapter [3] The framework was developed in
Java language at the University of Waikato in New Zealand and is on GPL licensed. It
has a lot of acceptance by the researchers and is strengthened by its easy integration with
the traditional mining framework WEKA (HALL et al.,, 2009). It is available in: <https:
/ /moa.cms.waikato.ac.nz/>

[MOA] is mainly used in classification and clustering tasks but can be also used in
regression, outliers treatment, and Concept Drift detection tasks. Also, it has a good col-
lection of synthetic data-set generators as well as integration of real scenarios databases.
Some of the generators currently available are Random Tree Generator, SEA Concepts
Generator, STAGGER Concepts Generator, Rotating Hyperplane, Random-RBF Gener-
ator, LED Generator, Waveform Generator, and Function Generator.

In addition [MOA] contains several classifier methods such as: Naive Bayes, Decision
Stump, Hoeffding Tree, Hoeffding Option Tree, Bagging, Boosting, Bagging using AD-
WIN;, and Bagging using Adaptive-Size Hoeffding Trees (BIFET et al., [2009).

In order to model Concept Drift, MOA| combines two pure distributions which charac-
terizes the target concepts before and after the drift. Within this framework, it is possible
to define the probability of instances in the stream to belong to the new concept after
the drift. It uses the sigmoid function as an elegant and practical solution (BIFET et al.,
2010). This function determines the change from one concept to another.

Finally, allows the evaluation of data-stream classification algorithms in large
streams. Traditional evaluation techniques considered to build a picture of accuracy over
time are included as Holdout and Interleaved Test-Then-Train or Prequential (BIFET et
al, 2010).
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In addition, the MOAManager tool (PEREZ, 2018) was employed, which is an open-
source Web tool to assist in the creation, execution, extraction, and edition of experiments
in online environments using the MOA framework. It is available in: <https://github.com/

brunom4ciel /moamanager />

5.2.2 Experimental Settings

This section describes relevant aspects of the experimental settings used to evaluate the
proposed methods. Thus, the implementations of the methods proposed were compared
to [FASE] [BOLE|, [DWM]| [DDD)] and [OzaBag | ensembles with similar objectives.

To evaluate the accuracy of the learning models, the Prequential methodology (DAWID,
1984)) with a sliding window of size 1000 (default setting in the framework) as its
forgetting mechanism (GAMA; SEBASTIAO; RODRIGUES, [2013) was used. This choice was
performed based on the research (HIDALGO; MACIEL; BARROS| [2019) that empirically

evaluates the Prequential methodology considering its three common strategies: Basic
Window, Sliding Window, and Fading Factors. The carried-out experiments suggest that
the use of Prequential with the default Sliding Window variation is the best alternative
in data-stream environment with concept drift. In general, the Prequential methodology
is commonly used for both, stationary and non-stationary data-stream. This technique
guarantees each instance of the data-stream is exploited to the maximum, first tested and
then used for training (HIDALGO; MACIEL; BARROS, |2019).

Given that [FASEB| and [FASEQ| family methods aim to make improvements in run-

time and memory without having significant losses in accuracy, the methods are analyzed

with respect to those metrics. To compute the measures in the synthetic data-sets, the
experiments were run 30 times and the mean results were computed. In section [5.2.5] this

topic will be more thoroughly addressed.

5.2.3 Parametrization of the Methods

As the compared methods have common parameters, they were similarly configured
for a fair evaluation of results. Thus, two base learners were chosen, and among
other possible classifiers because they are fast algorithms, widely used (FRIAS-BLANCO et
all, 2016; BARROS; SANTOS; GONCALVES JRJ, 2016; BARROS et all, 2017; BARROS; SANTOS,
2019; HIDALGO; MACIEL; BARROS, 2019) in environments with data-stream and their
implementations are available in the [MOA]| framework. Also, these base learners are the
base classifiers by default in the state of the art compared methods (DWM], [DDD| [FASE]

use [NB| and [OzaBagp| [BOLE use [HT)).

The number of experts was set to 10 for all methods that require this setup.

The parameters of [FASE] are the significant level for the change detections of
and the number of classifiers in the ensemble (FRIAS-BLANCO et al, 2016). Based on its
default configuration in the framework (BIFET et al., [2010)), the significant levels of
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[HDDM 4| were set to ap = 0.001 for drifts and ay = 0.005 for warnings. The meta-Learner
was setup by default with as change detector. [FASEB| and [FASEO)] families have
the same parameters of [FASE] and were set with the same default values.

The variant of [BOLE] used in the experiments was [BOLE], its default parametriza-
tion in [MOA] which uses the 50%-Continue voting strategy: breakVotes = “n”, error-
Bound=0.5, and weightShift=0.0 (BARROS; SANTOS; GONCALVES JR., [2016]). The base
learner and the ensemble size were configured such as in the other methods.

uses 3 basic parameters, set to their default values. The time needed to verify

if any expert will be added or removed and to update the weights of classifiers that

incorrectly classifies the actual instance (p = 50); the decrement applied to the weight of
an expert when it makes a mistake (f = 0.5); and the minimum value an expert must
have to stay in the ensemble (# = 0.01) (KOLTER; MALOOF, 2007; BARROS; SANTOS;
GONCALVES JR., 2016).

DDD)| uses 4 default parameters: \; = 1 for encouraging low diversity in the underlying
ensemble learning algorithm, A\, = 0,1 for encouraging hight diversity in the underlying
ensemble learning algorithm, multiplier constant W = 1 for the weight of the old low
diversity ensemble, and parameter v, for the drift detection methods, which is by default
[EDDM.

[OzaBagp} such as in [FASE] and its variants, the parameters are given by the detector
employed, in this case [ HDDM 4| which was left with its default level setting, ap = 0.001

for drifts and ay = 0.005 for warnings.

5.2.4 Data-Sets

This section presents the data-sets used, both synthetic and real-world data-sets. A
total of 6 synthetic generators and 11 real data-sets, easily integrated into the
framework, were considered for experimentation ([5.2.4.2]).

Synthetic Data-sets are useful due to the flexibility to impose different testing scenarios
such as amount, position, and width of the concept drifts. Real world data-sets are equally
important since their structure is typically unknown and bring unpredictability. Most of
the data sets employed are available in the MOA website. In addition, Appendix. [B]
summarizes the characteristics of several synthetic and real data-sets commonly used in

the area.

5.2.4.1 Synthetic Data-set Generators

In order to make adequate evaluation and comparisons between the methods, data-sets
were built with known controlled concept drifts as the number of concept changes, the
moment and frequency with which changes occur. Six (6) synthetic data-set were selected
with two different sizes: 10000 and 50000 instances and for each of them, abrupt and

gradual concept drifts were introduced.
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In all generated synthetic data-sets, the concept drifts were distributed at regular in-
tervals; for example, when the size of artificial data-set is 10000, the drifts are in instances
2000, 4000, 6000 and 8000.

For the gradual concept drifts, we simulated a window of change where the probability
of a given instance belonging to the current concept or to the new concept follows the
= m (see Fig. @ (PEREZ, 2018)) present in MOA|framework).

This function determines the change from one concept to another.

sigmoid function f(t)

Figure 6 — Sigmoid function

fit)

flt)

Source: Pérez| (2018)

The parameter t; of the previous function, as well as o and W are used to setup
the moment in which the Concept Drift occurs, the noise and the number of instances
until the change occurs, respectively. At the beginning of the window W, the probability of
processing an instance of the current concept is high; however, near the end of the window
this probability decreases. After the window, the new concept is stable.The length of this
window was set to 500 instances. In the abrupt concept drifts, the two concepts are simply
concatenated.

Agrawal

The Agrawal generator stores information from people willing to receive a concession of
a bank loan. To perform the classification task, the authors proposed 10 different functions
with 9 attributes. Among the attributes, education level, car brand and zip code are
categorical. Whereas salary, commission, age, value of the house, age of the house, and the
desired loan amount are numerical. From this data, they should be classified as belonging
to class A or B. The meaning of these groups varies according to each function. Agrawal
is an excellent choice to generate concept changes since classification can be performed
with up to ten different functions, and the label of each instance may vary according
to the function used. In addition, it was used to show scalability in learning algorithms
with decision trees. This data-set was previously tested in several researches (AGGARWAL;
IMIELINSKT; SWAMI, [1993; MACIEL; SANTOS; BARROS), 2015]).

LED

The LED generator represents the problem of predicting the digit shown by a seven-
segment LED display, meant to simulate 7 light-emitting diodes. It has 24 boolean at-

tributes (17 of which are irrelevant) and a categorical class, with ten possible values
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(which is an integer ranging between 0 and 9). All attribute values are either 0 or 1,
according to whether the corresponding light is on or off for the decimal digit. Each at-
tribute has 10% chance of being inverted (noise). Concept drifts are simulated by simply
changing the position of relevant attributes. This data-set was previously tested in sev-
eral researches (BREIMAN et al., [1984; BIFET et al., | 2010; BRZEZINSKI; STEFANOWSKI, 2011}
GONCALVES; BARROS, [2013; [SANTOS et al., 2014)).

Mixed

The Mixed generator aims at classifying an instance as positive or negative based
on analysis of four attributes: two boolean (v, w) and two numerical (x,y). To do this,
three conditions are checked for the attributes: v,w,y < 0.5 4+ 0.3 x sin(37z). If at least
2 of these conditions are satisfied, the example is considered positive. When a Concept
Drift occurs, the classification is reversed. Concept Drift is made by gradually choosing
examples from the old and new concepts, reducing the probability of selecting examples
from the old context, while increasing the probability of the new context. In this data-set,
we have an initial stable context that gradually changes to a new stable context. This is
a noise free data-set and was previously tested in several researches (GAMA et al., 2004;
BAENA-GARCIA et al} 2006} [GCONCALVES; BARROS, 2013).

Sine

The Sine generator (GAMA et al) 2004) has two numeric attributes (x,y), each one
having values distributed in the interval[0, 1]. Sinel and Sine2 are the two possible context.
In the first context, a given instance will be classified as positive if the point is below the
curve y = sin(z) . In the latter, the condition y < 0,5 + 0, 3sin(37z) must be satisfied.
Concept drifts can be simulated either by reversing the aforementioned conditions or
alternating between Sinel and Sine2. This data-set was also previously tested by several
authors: (GAMA et al., [2004; BAENA-GARCIA et al., [2006; ROSS et al., |2012).

Waveform

The Waveform generator represents the problem of differentiating between three wave
classes, generated by combining two out of three base waves. A waveform has 40 nu-
merical attributes, with the last 19 being irrelevant, only used to produce noise and also
present three-classes. To perform changes, the positions of the attributes representing
a certain context are reversed. This data-set was previously used in experiments in the
works (BREIMAN et al., [1984; BIFET et al., [2009; SANTOS; BARROS; Gongalves Jr., 2015))

Random-RBF

The Random-RBF (Radial Basis Function) generator uses a fixed number of random
centroids with their centers. Each center has a random position, a single standard devi-
ation, a class label, and a weight. New examples are generated by selecting a center at
random, taking weights into consideration so that centers with higher weights are more
likely to be chosen. A random direction is chosen to offset the attribute values from the

central point. The length of the displacement is randomly drawn from a Gaussian distribu-
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tion with standard deviation determined by the chosen centroid. This data-set generator
has 6 classes, 40 attributes, and 50 centroids. The chosen centroid also determines the
class label of the example. This effectively creates a normally distributed hypersphere
of examples surrounding each central point with varying densities which is very hard to
learn. A Concept Drift is simulated by changing the positions of centroids with a constant
speed. The Random-RBF set was already used in the following papers (BIFET et al., 2009;
BIFET et al), 2010; [MACIEL; SANTOS; BARROS), 2015)).

5.2.4.2 Real Data-sets

In addition, real-world data-sets previously used in the area were experimented with
different number of instances and complexities. In these data-sets, the number and position
of the drifts are unknown. The databases are available at | <http://archive.ics.uci.edu/ml/
index.php>, belonging to the UCI Machine Learning Repository (DUA; GRAFF, [2017)).

Connect-4

The Connect-4 contains 67557 instances without missing values and describes the all
legal 8-play positions in the game of Connect-4 in which neither player has won yet, and
in which the next move is not forced. “x” is the first player and “0” is the second. It has
42 categorical attributes and 3 classes. The outcome class is the game theoretical value
for the first player that can be win, loss or draw. The database has been used in the works
(BURTON; KELLY], 2006} [ZHONG; TANG; KHOSHGOFTAAR), 2005} [GODASE; ATTAR|, 2012
WANKHADE; DONGRE; THOOL), [2012)).

Covertype/CovSorted

The Covertype datset aims to predict the forest cover type from cartographic variables.
Its contains information on the forest cover type for 30 x 30 meter cells obtained from US
Forest Service (USFS) Region 2 data and contains 581,012 examples and 54 attributes
(numeric and categorical). It has been used in several papers on data-stream classification,
such as (BIFET et al}, 2009; BIFET et al}, 2010; [GONCALVES; BARROS, [2013; MACIEL; SAN-
TOS; BARROS, 2015). There is another version referred to as Covertype-Sorted (IENCO et
al., 2013)) where the instances are sorted by the elevation attribute. It induces gradual con-
cept drifts on the class distribution depending on the elevation, some types of vegetation
disappear while others start to appear.

Lung-cancer

The Lung-cancerdata-set records 3 types of pathological lung cancers. The authors
give no information on the individual variables nor on where the data was originally used.
This database has 32 instances and 56 integer attributes. All predictive attributes are
nominal with integer values 0-3. The data present missing values and was previously used
in (HONG; YANG, 1991)) as well as other papers (DASH; LIU}, [1998; JIN; AGRAWAL), 2003)).

NSL-KDDCup99


http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
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The NSL-KDDCup99 data-set represents a network connection and is a refined version
of the KDDCup99 data-set used in the 3"¢ International Knowledge Discovery and Data,
Mining Tools Competition, modified to eliminate some of the limitations present in the
original data-set. Many types of analysis have been carried out by researchers with the
NSL-KDDCup99 data-set employing different techniques and tools with a universal objec-
tive to develop an effective intrusion detection system. It is available at the UCI Machine
Learning Repository (DUA; GRAFF} 2017)). The possible value of classes is 23, with 22 of
them representing attack and the remaining 23rd representing normality (PERVEZ; FARID,
2014). In this research, a version of the database containing only two classes (normal and
anomaly) was applied. The data-set has 125.973 instances with 41 discrete or continuous
values input attributes. This data-set has been used in related works (REVATHI; MALATHI,
2013; KUMAR; CHAUHAN; PANWAR), 2013)).

PokerHand /Pokerhand-1M

The Pokerhand represents the problem of identifying the value of a five-card hand in
the game of Poker. It is constituted of five numeric and five categorical attributes and
one categorical class with 10 possible values informing the value of the hand (one pair,
two pairs, a sequence, a street flush, etc). In the original and harder to classify version of
this data-set, with 1,000,000 instances, the cards are not ordered. This version is referred
to Pokerhand-1M in this work. This data-set was previously used in (BIFET et al., 2009;
SANTOS; BARROS; Gongalves Jr., 2015). There is a modified version available at the MOA
website (BIFET et al) 2010; (GONCALVES; BARROS, 2013)) in which cards are sorted by
rank, and suit and duplicates are removed, resulting in 829,201 instances. This version is
comparatively much more used than the original version.

Wine/ Wine-Red/ Wine-Red-100

These data-sets are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determines the
quantities of 13 constituents found in each of the three types of wines. The data-sets have
been used first in (FORINA et al, [1991). Due to confidentiality and logistic issues, only
physicochemical (inputs) and sensory (the output) variables are available (i.e. there is
no data about grape types, wine brand, wine selling price, etc.). The classes are ordered
and not balanced (i.e. there are much more normal wines than excellent or poor ones).
It has 1599 instances, 11 real attributes an the class value are integers between 1 and
9. In particular, Wine-Red-100 is a version of Wine-Red database with 100 instances.
Those data-sets have been used in classification and regression tasks in some related
works (ZHONG; TANG; KHOSHGOFTAAR), [2005}, [FISCHER; POLAND), [2005)).

Usenet

Usenet: The Usenet-1 and Usenet-2 data-sets are based on the 20 newsgroups col-
lection. Usenet-2 (KATAKIS; TSOUMAKAS; VLAHAVAS, [2008; KOHAIL, |2011; DUA; GRAFF),

2017) is a version of Usenet-1. This database is a flow of 1500 instances, divided into five
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time periods. The periods contain 300 instances. Concept change happens after the end
of each period. They simulate a stream of messages from different newsgroups sequen-
tially presented to a user, who then labels them as interesting (+) or junk (-), according
to his/her personal interest. It also has 100 categorical attributes and 2 classes. It is
available at <http://qwone.com/~jason/20Newsgroups/>. It is noted the first Usenetl
database is a much more diverse data-set, with all categories changing the class in each
period (KATAKIS; TSOUMAKAS; VLAHAVAS, 2008)). For its part, Usenet-2 is more mod-
erate in concept changes (2 of 3 classes change concepts all the time). Both databases
present abrupt and recurrent concept changes. This data-set has been used in some related
works (KATAKIS; TSOUMAKAS; VLAHAVAS, [2010; SUDHA; GOVINDARAJAN| 2017)).

Sensor

Sensor Stream (ZHU et al) 2010) contains information collected from 54 sensors de-
ployed in the Intel Berkeley Research Lab (temperature, humidity, light, and sensor volt-
age). It contains consecutive information recorded over a 2 months period, with one read-
ing every 1-3 minutes. The sensor ID is the target attribute, which must be identified
based on the sensor data and the corresponding recording time. This data-set is con-
stituted of 2,219,803 instances, 5 attributes, and 54 classes. This is an interesting and
intriguing data-set because, in addition to being much larger than the others, produces

considerable variations in the accuracy performance of the methods.

5.2.5 Experimental Result and Analysis

This section compares algorithms[FASEO] [FASEO,,,;} [FASEO,,,2, [FASEO,,. 3, [FASEB]
ISESEBU}'[)IL ISESEB’UJUQ) IS{SEBU}'&?L M7 MEL DWML OzaBagD and Dm in 5 exper-

imentation scenarios. Among those scenarios, four were designed with synthetic data and

one with real data. The scenarios with synthetic data cover data-sets of size 10k and 50k
built with abrupt and gradual changes. Both in the synthetic (24) and real (11) data-sets
each algorithm is tested and trained using the classifiers [HT] and [NB] In summary, 70
experiments were carried out to evaluate the performance of each method according to
the three metrics considered.

Tables [2] to [11] present accuracy rates, run-times and memory values achieved by the
algorithms in the 5 experimentation scenarios, using both [NB| and [HT] as base learners.
In addition, the average rank reached by each method according to above metrics is
presented, based on the statistical Friedman test.

The first values appearing in the tables refer to accuracy, then run-times and finally
consumed memory. Each cell in the tables presents the values reached by the methods.
The higher values are indicated in bold inside a cell with an edge and results indicat-
ing improvements with respect to [FASE| are in highlighted bold and italics. Note that
higher values in accuracy indicate better performance whereas, for the other two metrics,

the lower values the better. The average ranks by scenario where the best measurements
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are determined by lower values are indicated in bold. Conversely, worst results are high-
lighted in italics. Thus, regarding the proposed algorithms, highlighted values indicate
improvements with respect to [FASE]

Below, a first general idea about the overall results achieved is clarified. Then, a more

detailed evaluation of the methods is presented with both synthetic and real data-sets

and different scenarios for each base classifier (NBfand [HT)).

5.2.5.1 Overview of Results

In general, regarding accuracy [FASE] still presented the best average in the synthetic
data-set, especially in the data-sets obtained from the Agrawal and Mixed generators.
In almost all cases with synthetic data, it had better performance than the proposed
variants, although the results with the proposed methods remained very close to those of
[FASE]

However, the [FASEB] variant, particularly, outperformed [FASE]in 25 experiments out
of 70 carried out (35,71%). See Appendix D] Table [17]

Also, Using [NB] as base classifier, [FASEB| had the best performance in the gradual
synthetic data-set whereas the same method performed better in the synthetic data-sets
with abrupt changes when the [HT] classifier was used.

The data-set on which the developed variants performed better were those obtained
from the Led generator, where the methods that use weighted voting to perform classifi-

cation reached better behavior, especially [FASEO,,,o| and [FASEB,, .}
Concerning the other methods, they are surpassed by the proposed methods in most

scenarios, although in Scenario 5, corresponding to real data-sets, [BOLE] obtained the
best result with both [NB] and as base classifiers. In this scenario, when the methods
use the classifier, [FASEO,,,9] and [FASEB,,,9| performed equally or better than [FASE]
in 6 out of 11 real data-sets (See Appendix.@ Table . Similarly, improved or
tied in 6 out of the 11 real data-sets when was employed (See Appendix.@
Table . Moreover, in each designed scenario, has the worst performance.

Considering run-time was the best-ranked algorithm using both [NB|and [HT]
as base classifiers in each designed scenario, while [FASE| and [DDD]| were the worst, respec-

tively, with those classifiers. The implemented variants of [FASE| had better performance
than [FASE] with better ranking positions in all scenarios. The exception was notived with
classifier [HT] in Scenario 5, corresponding to real data-sets, where [FASEQ| and [FASED]|
performed slower than [FASE] In conclusion, the variant of [FASE] with a meta-classifier
demanded more run-time to perform the classification than the others with weighted
voting. Particularly, improvement over [FASE] occured in 66 out of 70 exper-
iments (94.29 %), being the fastest among all proposed methods. Appendix[D] Table

summarizes the results.




76

Considering memory consumption when the methods used both [NB] and [HT] as base
classifiers, in the first four scenarios DWM] presented the best performance followed by
[OzaBagp| Diversely, in scenario 5, corresponding to real data-sets, was the
algorithm with the best results. When the experiments were performed with classifier [NB]
[FASE] showed the worst results in all 5 scenarios. Particularly in scenario 3, corresponding
to synthetic data-sets with abrupt changes of size 10k, [FASE| and [FASEB]| performed the
worst. On the other hand, when [HT] was considered as base classifier, attained the
worst results in all 5 scenarios.

Analysis of overall memory requirement results, indicated that outper-
formed in 66 out of 70 experiments (94.29 %) being the algorithm with the least
demanding memory among all implemented variants. Only in the particular case of real
data-sets with [HT] as base classifier [FASEO] and [FASEB]| consumed more memory than
[FASE] Also,[FASEO]and [FASEB]|consumed more memory than the other variants. Finally,

the variants with the meta-classifier consumed more memory to perform classification than

the others which use weighted voting.

5.2.5.2 Analysis with NB as base classifier

Here we analyse the five scenarios in terms of accuracy, run-time and memory assuming
each algorithm used [NB] as a base classifier.

Scenario-1{NB} In the synthetic data-sets with gradual changes of size 10k, [FASE]
obtains the best global accuracy, followed by [FASEB| and [FASEO] [FASE] wins at the
data-sets Agrawal and Random-RBF. The variant [FASEB]| has better results than [FASE]
in 3 data-sets (Led, Mixed and Sine) winning in Sine. Whereas wins in Led.
In total, out of the 8 variants, 7 (FASEO 1} [FASEO .2, [FASEO,,,3} [FASEB| [FASEB,,,1}
[FASEB,,.o| and [FASEB,,,3)) outperformed in Led and 2 (FASEO] [FASEB)) in Sine.
In the base Mixed, wins while in Waveform it was[BOLE] The worst result in global
accuracy is seen with [DWM] In this same scenario has the best result with
respect to run time, followed by DWM] which has the best result in memory. All the

[FASE] variants improved its performance in each one of the data-sets in run time and

memory. [FASE] has the worst result in run time and memory in the data-sets Agrawal,
Mixed and Sine, followed by in the other data-sets. [FASE| was the method that
demanded the most resources in terms of run time and memory. Complete results are
shown in Table 2

Scenario-2{NB} In the scenario of synthetic data-sets with gradual changes of size
50k, [FASE] obtains the best result in terms of global accuracy, followed by [FASEB| and
[FASEQ] [FASE] wins in data-sets Agrawal and Random-RBF, while [FASEB]improved the
[FASE] accuracy in the data-sets Led and Sine. Both reached the highest value in the
Mixed base. Particularly, in the Led base, variants [FASEO,,,l [FASEO,,2l, [FASEO,,,3}
(highest accuracy), (highest accuracy) and also outper-
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formed [FASE| [FASEO], [FASEB,,,;| and achieved the same accuracy as that
of [FASE] in the Sine base. BOLE] wins at the Sine and Waveform data-sets. The worst

result in accuracy was reached by [DWM] In the same scenario, had the best
result in run time and DWM]in memory. All variants of [FASE] improved its performance

in each of the data-sets with respect to run time and memory. [FASE| had the worst time
and memory results in Agrawal, Mixed and Sine. In the other data-sets, shared
with [FASE] similar results in terms of memory. Specifically in the base Waveform, it was
the slowest method. [DWM] has the worst run time values in the Led and Random-RBF
data-sets. In general, [FASE] was the method to demand more resources in terms of run
time and memory also in this scenario. See in Table [3]

Scenario-3{NB} In the third scenario of 10k data-sets designed with abrupt changes,
[FASEB|had the best result in accuracy, followed by [FASEQ]and [FASE] [FASE achieved the
highest results in comparison to the other methods in the Agrawal, Mixed and Random-
RBF data-sets. While BOLE] wins in the data-sets Sine and Waveform. In this last base,
although the [FASE] variants are not winners, has the same result as [FASE]|
and the other 7 variants surpass its performance in terms of accuracy. In Led, all [FASE]
variants surpassed its performance and reached the best result. The worst

accuracy was achieved by DWM] Regarding run time and consumed memory, [OzaBag

was the fastest algorithm while DWM]showed lower memory consumption. Except in the
Waveform database where only [FASEB,,,o| and [FASEB,,,3| improved [FASE] performance;
in the rest of the data-sets, all variants of [FASE| had better results than [FASE] in run
time and memory. [FASE] showed the worst result in Agrawal, Mixed and Sine, while
performed the worst in the other data-sets. Again, [FASE] was the algorithm to demanded
more resources in terms of run time and memory (shared with in this scenario.
See Table [ for full results.

Scenario-4{NB} In the 50k data-sets designed with abrupt changes [FASE] obtained
the best ranking in accuracy followed by [FASEB| and [FASEO] [FASE| wins in Agrawal,
Mixed and Random-RBF. While wins in the data-sets Sine and Waveform. Vari-
ants[FASEB,,,]and [FASEB,,, 5| reached the highest value in Led, and with the exception of
[FASEQ| the remaining variants surpassed [FASE]in this data-set. The worst result in accu-
racy was given by DWM] Regarding the other metrics, run time and memory, [OzaBag

was the fastest algorithm and DWM]| demanded the least memory in this scenario. All
[FASE] variants outperformed the original method, except [FASEQ| regarding run time in
the base Sine. The worst run time results by data-set were presented by (Agrawal
and Mixed), DWM]| (Led and Random-RBF), (Sine) and (Waveform).
also presented the highest values of consumed memory in data-sets Led, Waveform and
Random-RBF, while [FASE] presented the highest values in the other data-sets. In this
scenario, the overall worst results in run time and memory were presented by [FASE] See

Table Bl
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Scenario-5{NB} Eleven (11) real data-sets were chosen for performance evaluation
(Connect-4, Covertype, Covertype-Sorted, Lung-cancer, NslIKdd99, Pokerhand, Pokerhand-
1M, Sensor, Wine-Red, Wine-Red-100, and Usenet-2). Concerning accuracy, had
the best overall result, whith winnings in most of the data-sets (Connect-4, Covertype,
Covertype-Sorted, NsIKdd99, Pokerhand, Usenet-2 and Sensor) followed byand

[FASEB,.0} [OzaBagp| wons in the Wine-Red data-set while [FASE] performed better in
Lung-cancer, as well as, the [FASEQ] and [FASEB] variations. In the Pokerhand-1M data-
set, the best methods were [FASEQO,, 2}, [FASEO,,.3}, [FASEB,,,2 [FASEB,, .3, and [DDD]| In
Wine-Red-100, the hightest result was reached by [FASEO,,,3| [FASEB,, .l

In general, in this scenario, several of the proposed methods had similar results or
outperformed in 8 out of 11 data-sets, family methods: in (Lung-
cancer, NslKdd99, Pokerhand-1M, Sensor), (Connect-4, Pokerhand-1M, Wine-
Red-100, Sensor), (Connect-4, Covertype-Sorted, Pokerhand-1M, Wine-Red,
Wine-Red-100, Sensor), (Connect-4, Covertype-Sorted, Pokerhand-1M, Wine-
Red, Wine-Red-100). In addition, the methods of the family [FASEB} [FASEB|in (Lung-
cancer, NsIKdd99, Pokerhand-1M, Sensor), (Connect-4, Pokerhand-1M, Wine-
Red-100, Sensor), (Connect-4, Covertype-Sorted, Pokerhand-1M, Wine-Red,
Wine-Red-100, Sensor) and (Covertype-Sorted, Pokerhand-1M, Wine-Red,
Wine-Red-100, Sensor).

Regarding the other metrics, run-time and memory|OzaBagp| was the fastest algorithm
and demanded the least memory. On the other hand, [FASE] was the algorithm to demand
more of run time and memory. In particular,[DWM]was the most delayed algorithm in the
data-sets Covertype, Covertype-Sorted, Pokerhand, Pokerhand-1M and Sensor, [FASEQ]
in Wine-Red-100, whereas was the worst in the other data-sets. together with
[FASEO,,.. [FASEO,,. [FASEB] [FASEB,,. | [FASEB,,..| and [FASE| were delayed when
compared to the other algorithms in Lung-cancer. Similarly, regarding consumed memory,
[FASE] had the worst performance in Lung-cancer and Wine-Red, [FASEQ] in Wine-Red-
100, DWM] in Pokerhand, Pokerhand-1M and Sensor; [DDD]in the other data-sets.

In this scenario the proposed algorithms do not always improve [FASE] with respect to
run time and memory. Concerning run time, did not improve in (Covertype,
Covertype-Sorted, Pokerhand, Pokerhand-1M, Wine-Red-100), (Lung-cancer,
Usenet-2), (Lung-cancer, NslIKdd99, Wine-Red-100); and did not out-
performed in (Lung-cancer, Wine-Red-100), (Lung-cancer),
(Connect-4, Lung-cancer, Wine-Red-100). Regarding memory, did not improve
in (Covertype, Covertype-Sorted, Wine-Red-100), was not superior to

FASE|in (Covertype, Usenet-2), and [FASEQO,,,2| was not superior to[FASE|in (NslKdd99).
See Table [6l
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5.2.5.3 Analysis with HT as base classifier

Now, we provide the evaluation of the methods considering the five scenarios in terms
of accuracy, time and memory assuming that each algorithm used [HT] as base classifier.

Scenario-1{HT} [FASE] obtains the best global accuracy followed by [FASEB| and
[FASEO] [FASE] wins in the data-sets Agrawal, Sine and Random-RBF. All [FASE] variants
outperformed [FASE] in Led and is the winner in this base. In the base Mixed
win while in Waveform [BOLE] reach the highest accuracy. The worst performance is
presented by[DWM] Regarding the other metrics,[OzaBagp|and DWM]are respectively the

fastest algorithm and that demand less memory consumption in this scenario. In these

metrics the [FASE] variants improved its performance in each base, the exception was
[FASEB| in Agrawal that presented greater memory consumption. In this same scenario,
has the worst result in relation to time in all the data-sets while in memory it
maintains this result except in the Mixed base of 10k with gradual changes where [FASE]
has the worst performance. So is the one that demands more resources in this
scenario. See these results in the table [7

Scenario-2{HT} In this scenario, [FASE] obtains the best global accuracy followed
by [FASEB] and [FASEOQ] [FASE] wins in the data-sets Agrawal and Mixed while [FASEB]|
improved [FASE] and reached the best result in the base Random-RBF. Specifically in
Led, variants [FASEO,,,1} [FASEO,,9, [FASEO,,,3, [FASEB,,,1, [FASEB,,.o| (winner) and
also outperformed [FASE] [BOLE] wins in Sine and Waveform data-sets. DWM]
performs the worst in terms of accuracy. In the same way that in the previous scenario,
[OzaBagp| and [DWM] are, respectively, the fastest algorithm and and the least in memory
consumption. In time, except in Agrawal (FASEO| [FASEO,,,1| [FASEO,,.2} [FASEO.,,.3]
IFASEB|, [FASEB,,1)) the variants of had better performance than [FASE] Respect
to the memory usage cost, except in Agrawal (FASEO| [FASEO,,, 1} [FASEO,, 2}, [FASEO,,.4]
[FASEB| [FASEB,,.1} [FASEB,,.4) all variants of improved its performance. In this
same scenario, DWM] has the worst results of time in the data-sets Led and Random-RBF
and in the others data-sets. In the same way, the experiments showed that it was the
method that consumed most memory. In summary is the method that demanded
more time and memory in this scenario. See these results in the table [§]

Scenario-3{HT} In this scenario, [FASE|obtains the best accuracy followed by [FASEB]|
and [FASEQ| [FASE] wins in the data-sets Agrawal, Mixed and Sine. [FASEB| improved
[FASE] and reached the best result in the base Random-RBF. In Led absolutely all variants
of [FASE] outperformed its accuracy and reaches the highest result while BOLE]
wins in Waveform base. The worst performance in accuracy is presented by DWM] In
the same way that in the previous scenario, [OzaBagp| and [DWM] are respectively the

fastest algorithm and the least in memory consumption. All variants improved the [FASE]

performance in each base against time and memory. In these last metrics, [DDD| has the

worst result in all data-sets. See these results in the table [0
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Scenario-4{HT} In this scenario, [FASE] obtains the best result winning in Agrawal
and Mixed, followed by [FASEB| and [FASEO| Besides, the variant wins in Led,
and with the exception of [FASEQ] and [FASEB] the rest surpasses the results of [FASE] in
this base. [FASEB| improved the results of accuracy in the data-sets Sine and Random-
RBF. Regarding the same data-sets [FASEQ] reached the same accuracy of [FASE] in the
first and wins in Random-RBF. Bole wins in the data-sets Sine and Waveform. Regard-
ing the other metrics also [OzaBagp| and [DWM] are respectively the fastest algorithm
and the least in memory consumption. In time, except in Agrawal (FASEO| [FASEO,,,1}
[FASEO 19} [FASEO.,.3} [FASEB], [FASEB,,1) and Sine (FASEOQ)), the variants had
better performance than . Regarding this metric, the worst results are m (Led
and Random-RBF) and in all the remaining data-sets. In memory, except in the
Agrawal database, all [FASE] variants improved its performance in each base. has
the worst results in all data-sets. In summary is the method that demanded more
time and memory in this scenario. See these results in the table [I0]

Scenario-5{HT} In relation to the accuracy, the best result is obtained by [BOLE]
that wins in most data-sets (except Lung-cancer, Wine-Red and Wine-Red-100) followed
by [DDD| and [OzaBagp| [FASE| method achieved the best result in the Lung-cancer base
with and [FASEBl method wins in Wine-Red database. In Wine-Red-100 all

methods had the same result, outperforming [BOLE] In general, in this scenario, several of

the proposed methods perform equally or improved [FASE]in 8 out of 11 chosen data-sets:

(Connect-4, Covertype-Sorted, Lung-cancer, Pokerhand-1M, Wine-Red-100),
(Covertype-Sorted, Wine-Red-100, Usenet-2, Sensor), (Connect-4,
Covertype-Sorted, Wine-Red, Wine-Red-100, Sensor), (Wine-Red, Wine-Red-
100, Usenet-2, Sensor), (Connect-4, Covertype-Sorted, Lung-cancer, Pokerhand-
1M, Wine-Red-100, Sensor), (Usenet-2, Sensor, Covertype-Sorted, Wine-Red-
100), (Connect-4, Covertype-Sorted, Wine-Red, Wine-Red-100, Sensor) and
(Wine-Red-100, Usenet-2, Sensor).

Regarding other metrics, is the fastest algorithm and the least in memory
consumption whereas demanded more out of these resources.Specifically, [BOLE]
was the algorithm most delayed in the Wine-Red-100 and Usenet-2 data-sets, [DWM] in
Covertype-Sorted, Pokerhand and Pokerhand-1M. in the others data-sets. Concern-
ing the memory consumption [FASE| had the worst performance in Wine-Red-100, [FASEQ|
in Sensor, [FASEB] in Pokerhand and in the other data-sets. In this scenario, the
proposed algorithms are not always the best in terms of time and memory consumed
with respect to[FASE] The algorithms and their respective list of data-sets where they do
not improve performance with respect to time are the following: (Cover-
type, Covertype-Sorted, Lung-cancer, NsIKdd99, Pokerhand, Pokerhand-1M, Wine-Red-
100, Sensor), (Covertype-Sorted, Lung-cancer, NslKdd99, Pokerhand-1M),

FASEQ,,.0| (Covertype-Sorted, Lung-cancer, NsIKdd99), [FASEO,,,s| (Covertype-Sorted,
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Lung-cancer, NslKdd99), (Connect-4, Covertype, Covertype-Sorted, Lung-cancer,
Pokerhand, Pokerhand-1M, Usenet-2, Sensor), (Connect-4, Covertype-Sorted,
Lung-cancer), (Covertype-Sorted, NslKdd99), (Covertype-Sorted,
Lung-cancer, nslKdd99, Pokerhand-1M).

Besides, the algorithms and their respective list of data-sets where they do not out-
perform regarding memory consumption are the following: (Covertype,
Covertype-Sorted, NsIKdd99, Pokerhand, Pokerhand-1M, Sensor), (Covertype-
Sorted, NslKdd99, Pokerhand-1M), (Covertype-Sorted, Lung-cancer, NslKdd99,
Pokerhand-1M), (Covertype-Sorted, NsIKdd99, Pokerhand-1M), (Connect-
4, Covertype, Covertype-Sorted, Lung-cancer, Pokerhand, Pokerhand-1M, Sensor),
(Connect-4, Covertype-Sorted, Lung-cancer, Pokerhand-1M), (Covertype-Sorted,
NslKdd99, Pokerhand-1M), (Covertype-Sorted, NslKdd99, Pokerhand-1M).
See these results in the table [l
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In the next sub-section we will analyze the particular behavior of [FASE] its variants
and the other methods, in detail, to determine if there are significant statistical differences

between them in terms of the addressed metrics.

5.2.5.4 Statistical Analysis

In order to conduct an statistical analysis of the methods studied, the Friedman
test (FRIEDMAN, |1937; DEMSAR, 2006) was applied to identify which of the ensembles
obtained better results regarding accuracy, run-time and memory. The tests were used
with a significance level of 5% and the total of the experiment that was taken into con-
sideration was 35, corresponding to the test performed by base classifier or in
the 5 scenarios of experimentation. That is, to evaluate the methods in each out of 35
synthetic and real data-sets.

More precisely, the Friedman test is used to decide if the difference in the observed
average rank of a specif metric provided by the algorithms are statistically significant
at the level of 5%. The rank results established by the statistical method provide the
criterion for evaluating the ensembles, considering the lower value of the calculated rank
will be the better result in this approach.

Moreover, as the rejection of the null hypothesis of the Friedman test indicates that the
observed differences between the methods are globally statistically significant but does not
define which of them are statistically significant, the Nemenyi post-test (NEMENYT, 1963;
DEMSAR, [2006)) was applied. According to this test, the performance of two algorithms is
considered significantly different if their corresponding average ranks differ by at least a
suitable critical difference (Appendix. [C|explains the tests with more detail). The critical
difference (C'D) determined by the Nemenyi post-test was 3,0842.

Table. [12] present the average ranks of accuracy, run time and memory consumed by
each methods using the classifiers [NB| and [HT] in all scenarios of Concept Drift. The
best measurements were determined by the lower values indicated in bold. Regarding the
proposed methods in relation to[FASE] the best measurements were indicated in bold and
italic. On the other hand, the worst results were highlighted italics.

In addition, Figures[7]to[0]showed the best measurements located in the first positions.

Particularly, Figures and show a comparison of the methods accuracies using
the Friedman and Nemenyi tests in all scenarios of concept drifts using the classifiers [NB]
and [HT] respectively.

Figures and show a comparison of the methods run-time using the Friedman
and Nemenyi tests in all scenarios of concept drifts using the classifiers and [HT]

respectively.

Finally, Figures 9(a)| and [9(b)| show a comparison of the memory consumed by the

methods using the Friedman and Nemenyi tests in all scenarios of concept drifts using
the classifiers [NB| and [HT] respectively.
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Regarding accuracy, the best ranked method was [FASE] With [NB] as base classifier,
[FASE] is significantly better than [FASEO,,3], [FASEB,,.3} [DDD] and DWM] With respect

to the others methods the observed differences were not statistically significants. Besides,
when [HT|was used as base classifier, [FASE] exceeded significantly the results of

FASEB,, 1| [FASEO,,.3 [FASEB, .3l DWM]and [DDD| [DWM]is the worst ranked with both
classifiers, and significantly inferior to all methods (except [FASEQ,,,3| with [HT)).

Concerning run-time, for both and [HT]as base classifier, the best ranked algorithm
was [OzaBagpl With [NB|as base classifier, there was no significant difference between this
method and [BOLE] all the others observed differences were significant. Besides, with [HT]
as base classifier, significantly outperformed all the others methods. Finally, also
for both [NB| and [HT] as base classifier, [FASEO]| [FASEB], [FASE| and are more time
consuming methods. With the classifier NB], [FASE] is the worst ranked and significantly
less fast with respect to all methods (except [FASEO], [FASEB| and [DDDJ). Moreover, with
[HT] as base classifier, is the worst ranked method and significantly less fast respect

to the others (except [FASE)).
Memory consumption was also analyzed, [OzaBagp| and DWM] were the algorithms

with the least memory consumption with both classifiers. Specifically with [NB| these
algorithms also have no significant difference with respect to [BOLE] [FASE] is the worst
ranked with the classifier [NB| and significantly demanded more memory respect to all
methods (except [FASEO] [FASEB|and [DDD)). Besides, with as base classifier, is
the worst ranked method and significantly demanded more memory with respect to the
others (except and [FASEB]).

It can be observed that both [FASEO| and [FASEB], which have the meta-classifier as

a class voting mechanism, perform better in terms of accuracy, but they are slower and

demand more memory than the other variants. With variants that use weighted voting the
opposite happens, they present less favorable results in accuracy but they also demand
fewer resources.

Thus, two main remarks can be made:

« [FASEOQ] [FASEB| [FASEB,, J[FASEO,,.2| did not have significant accuracy loss with

respect to the original algorithm.

 The implemented versions of the [FASE] are significantly faster and require less mem-
ory, with the exception of [FASEB| and [FASEO| that did not present significant im-

provements concerning these metrics.

Therefore, the versions [FASEB,, 5| and [FASEO,,,2] at the same time that they did not

present significant losses of accuracy are noticeably faster and consume less memory than

the original algorithm.
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5.3 FINAL CONSIDERATION

In this chapter, theoretical analysis of the FASEO] and [FASEB]| families was performed.
The space complexity of both families was similar regarding [FASE] The temporal com-

plexity was computed taking into account three situations: Create/Activate a base leaner,
Update the base learners and Update the meta-classifier. The result of the time complex-
ity analysis of both families was similar regarding [FASE] even when in order to Update
the base learners [FASEB]| family can be more complex, in the most of situations it is in-
significant. The variants without meta-classifier have inferior time complexity than [FASE]
In addition, the MOA] framework and Moa Manager tool were used in the empirical eval-
uation of the proposed methods. As part of the empirical study, it was described the
characteristics of the 24 synthetic and 11 real data-sets used in order to evaluate the
proposed methods against the previous state of art methods. The configuration of the
experiments and the parameters used was detailed. In order to make a fair evaluation,
all the methods were left with their default setting, at the same time they were com-
pared with the same number and classifier algorithms. Finally, the results obtained by
each scenario were presented and discussed. Overall, [FASE] presented the best accuracy
in the synthetic data-set. [FASEB] in Scenario 3 with was better ranked than [FASE]
In each scenario, has the worst performance. The other methods (BOLE] [DWM]|
[OzaBagp|, [DDD) are surpassed by the proposed methods in most scenarios. In Scenario 5,
corresponding to the real data-sets, [BOLE]showed the best result with both [NB]and [HT]

In this scenario the methods [FASEO,,,J, [FASEB,, 5| and [FASEB]| performed better than
FASE| in 6 out of 11 data-set using (in the two first) and respectively.

was the algorithm that presented the best performance in terms of run-time using
and [HT] as base classifiers in each scenario, while [FASE] and [DDD] were the worst, re-
spectively. Implemented variants performed better than [FASE] with a lower ranking in

all scenarios. The exception was with HT classifier in Scenario 5, corresponding to real
data sets, where [FASEO] and [FASEB]| performed slower than [FASE] Regarding consumed
memory, when the methods used [NB| and [HT] in the first 4 scenarios presented
the best performance followed by In Scenario 5, was the algorithm
with the best results. When the experiments were performed with the [NB]|classifier, [FASE]
presented the worst results in all 5 scenarios, in Scenario 3, the same as [FASEB| When
[HT] was the base classifier, got the worst results in all scenarios. Only in Scenario 5,
[FASEQ| and [FASEB]| consumed more memory than [FASE] To determine the relevance of
these results it was used the statistical test of Friedman and the Nemenyi post-test. As an

interesting finding, [FASEO,, 2| and [FASEB,,,5 although not showing significant accuracy

losses were notably faster and consume less memory than the original algorithm [FASE]
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6 CONCLUSIONS

This work proposed [FASEB| and [FASEQ] families of algorithms, a total of 8 new
ensemble methods for operation in concept drift scenarios with full access to labeled
classes. The new algorithms are variants of the ensemble (FRIAS-BLANCO et all,
2015).

The main difference of [FASEB] and [FASEQ] families as compared to [FASE]is the up-
date strategy employed by the algorithms. While [FASE] uses adaptive classifiers to keep

the ensemble updated, the implemented algorithms have in common a parallel ensemble
formed by alternative classifiers, activated and set to be trained when one of the classi-
fiers in the main ensemble issues a warning; otherwise, the alternative classifiers remain
inactive.

When a Concept Drift is detected, algorithms in the [FASEB] family boosts the al-
ternative classifier with the greatest accuracy. Algorithms in the [FASEQ] family, instead,
promote the oldest active alternative classifier.

On the other hand, classification is also performed differently in some of the proposed

algorithms. [FASE] uses a meta-classifier to predict the final class of the unlabeled instance

as well as[FASEO|and [FASEB|methods. The other proposed variants, however,
FASEB,,.o|,[FASEB,, .3l and [FASEO,, .|, [FASEO,,2|[FASEQ,,,3 modify the voting strategy

using weighted voting.

The proposed variants were compared to [FASE| and other state-of-the-art ensemble
classifiers through similar parametrization and same testing conditions in order to ac-
cordingly evaluate their performance, using [HT| and [NB| as base learners. Twenty four
(24) synthetic data-sets with abrupt and gradual drifts and eleven (11) real-world data-
sets were employed for experimental evaluation. In terms of accuracy, [FASE| obtained
the best results in most of the tested scenarios using [HT] and [NB] but it was noticed a
very close approximation of [FASEB]| as compared to those of [FASE| DWM] had the worst
performance both in the synthetic and real data-sets among all the algorithms.

In general, the proposed methods achieved a better result in synthetic data-sets gen-
erated from LED, with both abrupt and gradual changes with the two possibles sizes. In
this case, the methods that use weighted majority voting to perform classification pre-
sented the best accuracy, especially [FASEO,,,o| and [FASEB,, .} [FASEB| method had a
good performance using [NBJ as a base classifier in the synthetic data-sets with gradual
changes. At the same time, it was better ranked than [FASE] in Scenario 3. Also, the
proposed algorithms presented better accuracy results than [FASE]in most of the selected
real data-sets. In particular, [FASEO,,,.| and [FASEB,,,o] when the methods use as base
classifier and [FASEB| when the methods use [HT] as base classifier.

Among the new proposals, [FASEB] family performed better than [FASEO| methods
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concerning the considered metrics. In most (artificial) scenarios, variants that use a meta-
classifier (FASEO|and [FASEB]) have better accuracy results, but are slower and consume
more memory than other variants. However, variants that use Weighted Majority Vote
(FASEO 1}, [FASEO 409, [FASEO,,.3), [FASEB 1} [FASEB,,,0, [FASEB,,,3)) have less accu-
racy, but also require fewer resources (time and memory). Regarding the variants that
use Weighted Majority Vote, [FASEO,,,| and [FASEB,, .| that apply approach 2, they have

the best performance with respect to accuracy. However, [FASEO,, 5| and [FASEB,, 3| that
apply approach 3, are faster and consume less memory.

Moreover, run-time and memory were improved by the proposed methods with respect
to [FASE] in the most part of the sudden and gradual change scenarios, on synthetic data-
sets. This was also the case with the real data-sets, although the improvements were less
important. But, the better performance in this sense was reached by method,
while the worst results corresponded to the [FASE| and [DDD| methods.

The statistical significance of the results provided by the experiments were evaluated

using the non-parametric Friedman test together with the Nemeny: post-test. Those

tests confirmed the proposed algorithms were often significantly better than [FASE]| with

respect to run-time and memory. In particular, versions [FASEB,,,o| and [FASEO,,, 5l while
not showing significant accuracy losses, were noticeably faster and consumed less memory

than the original [FASE] algorithm. This can be very useful in contexts that require quick
access to partial information, a high level of accuracy is still needed, but a very fast

decision has to be made.

6.1 MAIN CONTRIBUTIONS

Based on above observations, the main contributions of this work can be summarized

as follows:

 The proposed variants of [FASE] provide improvements with respect to run-time and
memory consumption when compared to [FASE] while keeping competitive perfor-

mance regarding accuracy in some of the variations.

« Particularly, the adaptations in the strategy of updating the set and the voting
mechanism of the classes were among the main contributions. This resulted in
two families of algorithms [FASEO] and [FASEB], designed to work on large data-

streams and to adapt quickly to sudden and gradual changes of concepts more

efficiently. We started from [FASE] because it showed better accuracy results in most
scenarios, in previous works. However, when observing other metrics, the opposite
happened. Therefore, our objective was to balance the behavior between several

metrics without having considerable losses in the accuracy achieved.
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6.2 SECONDARY CONTRIBUTIONS
Also, secondary, but important contributions of this research, can be pointed out:

o The carry out study of the state of the art describing concepts of classification
algorithms and ensemble methods designed to handle gradual and abrupt Concept

Drifts on large data-streamings.

o Characterization of some of the main models of incremental learning adopted for the
processing of large data-streams in presence of Concept Drift; their main strengths

and weaknesses.

o An analysis of the most used data-sets (synthetic and real) in the evaluation and
comparison of incremental algorithms designed to work on large data-streams in
presence of Concept Drift. This allowed distinguishing the essential parameters in

the evaluation of the algorithms treated: accuracy, run-time and memory used.

 Such as [FASE] the families [FASEQ] and [FASEB| were implemented on the frame-
work [MOA] in order to make the process of evaluating the algorithms more feasible

and less costly. This can be further used by other researchers in future works. This
environment include several implementations of classification algorithms and also
allows the monitoring of experiment executions in real time. An experimentation
was designed taking into account a rigid controlled simulation of both gradual and
abrupt Concept Drift. Two base learners were selected: Naive Bayes and Hoeffding
Tree. These learners were chosen because given their broad application in the online
classification. Also, several data-sets were constructed using synthetic data genera-
tors and real databases were also employed. The new algorithms achieved promising
results in the tests, in comparison with state of the art methods also implemented

in the [MOA] environment, taking into account the accuracy, run-time and memory.

An article, with two of the proposed methods (FASEB|and [FASEB,,,3|), was accepted to
be presented and published in the proceedings of the 2019 International Joint Conference
on Neural Networks (IJCNN), which will take place in Budapest, Hungary on July 14-19,
2019.

o “Improving Fast Adaptive Stacking of Ensembles”. Laura M. P. Marino, Juan
I. G. Hidalgo, Roberto S. M. Barros, Germano C. Vasconcelos.

Other papers will be shortly prepared for submission to other conferences and events.

6.3 FUTURE WORKS

This work can be extended in at least two main directions:
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o First, one can explore other aspects of the [FASE] structure that may allow a bet-
ter balance between accuracy and other important metrics, which gain relevance

according to the context where the algorithm is applied.

e Besides, one can extend this study by introducing the Error-Memory-Run-time
(EMR) (PESARANGHADER; VIKTOR; PAQUET, 2016) measure aiming to optimize
and compare the proposed methods regarded [FASE] EMR combines error-rate,
memory usage and runtime for evaluating and ranking learning algorithms in order
to select the “best” model in some domains. In (PESARANGHADER; VIKTOR; PA-
QUET), [2016)) was defined the domain dependent cost weights for error-rate, memory
usage and run-time to emphasize their importance to measure the cost of classifiers,
where a classifier with the lowest EMR is preferred in a multi-strategy learning set-
ting. In real world problems, the values of these three weights will be set to reflect
the current domain of application. For instance, a classifier which has been shown

to be very slow over the last period of time may be made to fade away.

 Finally, in a similar way one can consider the CAR measure (PESARANGHADER;
VIKTOR; PAQUET), 2018)) which not only considers the classification error-rates, mem-
ory usages, and run-times but also the drift detection delays, false positives and false

negatives.



101

REFERENCES

AGGARWAL, C. C. Data classification: algorithms and applications. [S.1.]: CRC Press,
2014.

AGGARWAL, R.; IMIELINSKI, T.; SWAMI, A. N. Database mining: a performance
perspective. IEEE Transactions on Knowledge and Data Engineering, v. 5, n. 6, p.
914-925, 1993.

BACH, S. H.; MALOOF, M. A. Paired Learners for Concept Drift. In: Proceedings of
8th IEEE International Conference on Data Mining (ICDM’08). Pisa, Italy: [s.n.], 2008.
p. 23-32.

BAENA-GARCIA, M.; Del Campo-Avila, J.; FIDALGO, R.; BIFET, A.; GAVALDA,
R.; MORALES-BUENO, R. Early Drift Detection Method. In: International Workshop
on Knowledge Discovery from Data Streams. [S.1.: s.n.], 2006. p. 77-86.

BARROS, R. S. M.; CABRAL, D. R. L.; Gongalves Jr, P. M.; SANTOS, S. G. T. C.
RDDM: Reactive drift detection method. Ezpert Systems with Applications, Elsevier,
v. 90, p. 344-355, 2017.

BARROS, R. S. M.; SANTOS, S. G. T. C. An overview and comprehensive comparison
of ensembles for concept drift. Information Fusion, Elsevier, v. 52, n. C, p. 213-244,
2019.

BARROS, R. S. M.; SANTOS, S. G. T. C.; GONCALVES JR., P. M. A Boosting-like
Online Learning Ensemble. In: Proceedings of IEEE International Joint Conference on
Neural Networks (IJCNN). Vancouver, Canada: [s.n.], 2016. p. 1871-1878.

BIFET, A.; GAVALDA, R. Kalman filters and adaptive windows for learning in data
streams. In: SPRINGER. International Conference on Discovery Science. [S.1.], 2006. p.
29-40.

BIFET, A.; GAVALDA, R. Learning from Time-Changing Data with Adaptive
Windowing. In: Proc. “of 7th SIAM International Conference on Data Mining (SDM’07).
Minneapolis, MN, USA: [s.n.], 2007. p. 443-448.

BIFET, A.; HOLMES, G.; KIRKBY, R.; PFAHRINGER, B. {MOA}: Massive Online
Analysis. Journal of Machine Learning Research, MIT Press, v. 11, p. 1601-1604, 2010.

BIFET, A.; HOLMES, G.: PFAHRINGER, B.; KIRKBY, R.; GAVALDA, R. New
ensemble methods for evolving data streams. In: Proceedings of 15th ACM International
Conference on Knowledge Discovery and Data Mining (KDD’09). Paris, France: [s.n.],
2009. p. 139-148.

BIFET, A.; HOLMES, G.; PFAHRINGER, B.; FRANK, E. Fast Perceptron Decision
Tree Learning from Evolving Data Streams. In: Advances in Knowledge Discovery and
Data Mining. [S.1.]: Springer, 2010, (LNCS, v. 6119). p. 299-310.

BIFET, A.; KIRKBY, R. Data stream mining a practical approach. Citeseer, 20009.



102

BLUM, A. Empirical Support for Winnow and Weighted-Majority Algorithms: Results
on a Calendar Scheduling Domain. Machine Learning, Springer, v. 26, n. 1, p. 5-23,
1997.

BREIMAN, L. Bias, variance, and arcing classifiers. [S.1.], 1996.
BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5-32, 2001.

BREIMAN, L.; FRIEDMAN, J. H.; OLSHEN, R. A.; STONE, C. J. Classification
and Regression Trees. Belmont, California: Wadsworth International Group, 1984.
(Wadsworth Statistics / Probability series).

BRZEZINSKI, D.; STEFANOWSKI, J. Accuracy Updated Ensemble for Data Streams
with Concept Drift. In: CORCHADO, E.; KURZYNSKI, M.; WOZNIAK, M. (Ed.).
Hybrid Artificial Intelligent Systems. [S.1.]: Springer, 2011, (LNCS, v. 6679). p. 155-163.

BRZEZINSKI, D.; STEFANOWSKI, J. Stream classification. In: Encyclopedia of
Machine Learning. [S.1.]: Springer, 2016.

BURTON, A. N.; KELLY, P. H. Performance prediction of paging workloads using
lightweight tracing. Future Generation Computer Systems, Elsevier, v. 22, n. 7, p.
784-793, 2006.

CAUWENBERGHS, G.; POGGIO, T. Incremental and decremental support vector
machine learning. In: Advances in neural information processing systems. [S.l.: s.n.],
2001. p. 409-415.

CIESLAK, D. A.; CHAWLA, N. V. A framework for monitoring classifiers’ performance:
when and why failure occurs? Knowledge and Information Systems, Springer, v. 18, n. 1,
p- 83-108, 2009.

DASH, M.; LIU, H. Hybrid search of feature subsets. In: SPRINGER. Pacific Rim
International Conference on Artificial Intelligence. [S.1.], 1998. p. 238-249.

DAWID, A. P. Present position and potential developments: Some personal views:
Statistical theory: The prequential approach. Journal of the Royal Statistical Society.
Series A (General), JSTOR, p. 278-292, 1984.

DEMSAR, J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of
Machine Learning Research, JMLR.org, v. 7, p. 1-30, 2006.

DITZLER, G.; POLIKAR, R. Hellinger distance based drift detection for nonstationary
environments. In: IEEE. 2011 IEEE Symposium on Computational Intelligence in
Dynamic and Uncertain Environments (CIDUE). [S.1.], 2011. p. 41-48.

DITZLER, G.; ROVERI, M.; ALIPPI, C.; POLIKAR, R. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, IEEE, v. 10, n. 4,
p. 12-25, 2015.

DOMINGOS, P.; HULTEN, G. Mining high-speed data streams. In: Proc. of 6th ACM
SIGKDD Internat. ~Conf. “on Knowledge Discovery and Data Mining. Boston, USA:
ACM, 2000. (KDD ’00), p. 71-80.



103

DU, L.; SONG, Q.; JIA, X. Detecting concept drift: An information entropy based
method using an adaptive sliding window. Intelligent Data Analysis, IOS Press, v. 18,
n. 3, p. 337-364, 2014.

DUA, D.; GRAFF, C. UCI Machine Learning Repository. 2017. Available at:
<http://archive.ics.uci.edu/ml>.

DUDA, R. O.; STORK, D. G.; HART, P. E. Pattern classification. Wiley, 2001.
FAITHFULL, W. J.; RODRIGUEZ, J. J.; KUNCHEVA, L. I. Combining univariate

approaches for ensemble change detection in multivariate data. Information Fusion,
Elsevier, v. 45, p. 202-214, 2019.

FISCHER, I.; POLAND, J. Amplifying the block matrix structure for spectral clustering.
In: CITESEER. Proceedings of the 14th annual machine learning conference of Belgium
and the Netherlands. [S.1.], 2005. p. 21-28.

FORINA, M.; LANTERI, S.; ARMANINO, C. et al. Parvus-an extendible package for
data exploration, classification and correlation, institute of pharmaceutical and food
analysis and technologies, via brigata salerno, 16147 genoa, italy (1988). Av. Loss Av. O
set Av. Hit-Rate, 1991.

FREUND, Y. Boosting a weak learning algorithm by majority. Inform. and Computation,
v. 121, n. 2, p. 256285, 1995.

FRIAS-BLANCO, L. Nuevos métodos para el aprendizaje en flujos de datos no
estacionarios. Phd Thesis (PhD Thesis) — Universidad de Granma, 2014.

FRIAS-BLANCO, I1.; CAMPO-AVILA, J. del; RAMOS-JIMENEZ, G.; MORALES-
BUENO, R.; ORTIZ-DIAZ, A.; CABALLERO-MOTA, Y. Online and Non-Parametric
Drift Detection Methods Based on Hoeffding’s Bounds. IEEFE Transactions on Knowledge
and Data Engineering, v. 27, n. 3, p. 810-823, 2015.

FRIAS-BLANCO, I.; VERDECIA-CABRERA, A.; ORTIZ-DIAZ, A.; CARVALHO, A.
Fast adaptive stacking of ensembles. In: ACM. Proceedings of the 31st Annual ACM
Symposium on Applied Computing. [S.1.], 2016. p. 929-934.

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the american statistical association, Taylor & Francis,
v. 32, n. 200, p. 675-701, 1937.

GAMA, J. Knowledge discovery from data streams. [S.l.]: Chapman and Hall/CRC, 2010.

GAMA, J.; CASTILLO, G. Learning with local drift detection. In: SPRINGER.
International Conference on Advanced Data Mining and Applications. [S.1.], 2006. p.
42-55.

GAMA, J.; GABER, M. M. Learning from data streams: processing techniques in sensor
networks. [S.1.]: Springer, 2007.

GAMA, J.; MEDAS, P.; CASTILLO, G.; RODRIGUES, P. Learning with Drift
Detection. In: Advances in Artificial Intelligence: SBIA 2004. [S.l.]: Springer, 2004,
(LNCS, v. 3171). p. 286-295.


http://archive.ics.uci.edu/ml

104

GAMA, J.; SEBASTIAO, R.; RODRIGUES, P. On evaluating stream learning
algorithms. Machine Learning, Springer, v. 90, n. 3, p. 317-346, 2013.

GAMA, J.; ZLIOBAITE, I.; BIFET, A.; PECHENIZKIY, M.; BOUCHACHIA, A. A
Survey on Concept Drift Adaptation. ACM Computing Surveys, v. 46, n. 4, p. 44:1—-37,
2014.

GODASE, A.; ATTAR, V. Classification of data streams with skewed distribution.
In: Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems
(BAIS). [S.1.: s, 2012. p. 151-156.

GONCALVES, P. M.; BARROS, R. S. M. Speeding Up Statistical Tests to Detect
Recurring Concept Drifts. In: LEE, R. (Ed.). Computer and Information Science. [S.1]:
Springer, 2013, (Studies in Computational Intelligence, v. 493). p. 129-142.

GONCALVES, P. M.; SANTOS, S. G. T. C.; BARROS, R. S. M.; VIEIRA, D. C. L. A
comparative study on concept drift detectors. Fzpert Systems with Applications, Elsevier,
v. 41, n. 18, p. 8144-8156, 2014.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.;
WITTEN, I. H. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, ACM, v. 11, n. 1, p. 10-18, 2009.

HAND, D. J. Classifier technology and the illusion of progress. Statistical science,
JSTOR, p. 1-14, 2006.

HIDALGO, J. I. G. Experiéncias com Variagoes Prequential para Avaliacao da
Aprendizagem em Fluzo de Dados. Master’s Thesis (Master’s Thesis) — Universidade
Federal de Pernambuco, Brazil, 2017.

HIDALGO, J. I. G.; MACIEL, B. I. F.; BARROS, R. S. M. Experimenting with
prequential variations for data stream learning evaluation. Computational Intelligence,
2019. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12208>.

HOEFFDING, W. Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association, v. 58, p. 13-30, 1963.

HOENS, T. R.; POLIKAR, R.; CHAWLA, N. V. Learning from streaming data with
concept drift and imbalance: an overview. Progress in Artificial Intelligence, Springer,
v. 1, n. 1, p. 89-101, 2012.

HOLUB, A.; PERONA, P.; BURL, M. C. Entropy-based active learning for object
recognition. In: IEEE. Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW’08). Anchorage, AK, USA, 2008.
p- 1-8.

HONG, Z.-Q.; YANG, J.-Y. Optimal discriminant plane for a small number of samples
and design method of classifier on the plane. pattern recognition, Elsevier, v. 24, n. 4, p.
317-324, 1991.

HUANG, D. T. J.; KOH, Y. S.; DOBBIE, G.; BIFET, A. Drift detection using stream
volatility. In: SPRINGER. Joint Furopean conference on machine learning and knowledge
discovery in databases. [S.1.], 2015. p. 417-432.


https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12208

105

HULTEN, G.; SPENCER, L.; DOMINGOS, P. Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD Intern. Conf. “on Knowledge Discovery and
Data Mining. San Francisco, USA: [s.n.], 2001. (KDD ’01), p. 97-106.

IENCO, D.; BIFET, A.; ZLIOBAITE, I.; PFAHRINGER, B. Clustering based active
learning for evolving data streams. In: SPRINGER. International Conference on
Discovery Science. [S.1.], 2013. p. 79-93.

JIN, R.; AGRAWAL, G. Efficient decision tree construction on streaming data. In:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: ACM, 2003. (KDD ’03), p. 571-576.

JOHN, G. H.; LANGLEY, P. Estimating continuous distributions in Bayesian classifiers.
In: MORGAN KAUFMANN PUBLISHERS INC. Proceedings of the Eleventh conference
on Uncertainty in artificial intelligence. [S.1.], 1995. p. 338-345.

KATAKIS, I.; TSOUMAKAS, G.; VLAHAVAS, 1. Incremental clustering for the
classification of concept-drifting data streams. [S.1.]: Citeseer, 2008.

KATAKIS, I.; TSOUMAKAS, G.; VLAHAVAS, I. Tracking recurring contexts using
ensemble classifiers: an application to email filtering. Knowledge and Information
Systems, Springer, v. 22, n. 3, p. 371-391, 2010.

KATAKIS, I.; TSOUMAKAS, G.; VLAHAVAS, 1. P. An ensemble of classifiers for
coping with recurring contexts in data streams. In: ECAL [S.1.: s.n.], 2008. p. 763-764.

KHAMASSI, I.; SAYED-MOUCHAWEH, M. Drift detection and monitoring in
non-stationary environments. In: IEEE. 201/ IEEE Conference on Evolving and Adaptive
Intelligent Systems (EAILS). [S.1.], 2014. p. 1-6.

KHAMASSI, I.; SAYED-MOUCHAWEH, M.; HAMMAMI, M.; GHEDIRA, K.
Self-adaptive windowing approach for handling complex concept drift. Cognitive
Computation, Springer, v. 7, n. 6, p. 772-790, 2015.

KHAMASSI, I.; SAYED-MOUCHAWEH, M.; HAMMAMI, M.; GHEDIRA, K.
Discussion and review on evolving data streams and concept drift adapting. Evolving
systems, Springer, v. 9, n. 1, p. 1-23, 2018.

KIFER, D.; BEN-DAVID, S.; GEHRKE, J. Detecting change in data streams. In: VLDB
ENDOWMENT. Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30. [S.1.], 2004. p. 180-191.

KIM, Y.; PARK, C. H. An efficient concept drift detection method for streaming data
under limited labeling. IEICE TRANSACTIONS on Information and Systems, The

Institute of Electronics, Information and Communication Engineers, v. 100, n. 10, p.
2537-2546, 2017.

KOHALIL, S. N. Learning Concept Drift Using Adaptive Training Set Formation Strategy.
Phd Thesis (PhD Thesis) — The Islamic University of Gaza, 2011.

KOHAVI, R.; PROVOST, F. Glossary of terms: Machine learning. 30: 271, v. 274, 1998.



106

KOLTER, J. Z.; MALOOF, M. A. Dynamic Weighted Majority: An Ensemble Method
for Drifting Concepts. Journal of Machine Learning Research, JMLR.org, v. 8, p.
2755-2790, 2007.

KRAWCZYK, B.; MINKU, L. L.; GAMA, J.; STEFANOWSKI, J.; WOZNIAK, M.
Ensemble learning for data stream analysis: A survey. Information Fusion, Elsevier,
v. 37, p. 132-156, 2017.

KRAWCZYK, B.; WOZNIAK, M.; SCHAEFER, G. Cost-sensitive decision tree
ensembles for effective imbalanced classification. Applied Soft Computing, Elsevier, v. 14,
p. 554-562, 2014.

KUMAR, V.; CHAUHAN, H.; PANWAR, D. K-means clustering approach to analyze
nsl-kdd intrusion detection dataset. International Journal of Soft Computing and
Engineering (IJSCE), 2013.

KUNCHEVA, L. I. Classifier ensembles for changing environments. In: SPRINGER.
International Workshop on Multiple Classifier Systems. [S.1.], 2004. p. 1-15.

LICHTENWALTER, R. N.; LUSSIER, J. T.; CHAWLA, N. V. New perspectives
and methods in link prediction. In: ACM. Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining. [S.1], 2010. p.
243-252.

LUGHOFER, E.; WEIGL, E.; HEIDL, W.; EITZINGER, C.; RADAUER, T. Recognizing
input space and target concept drifts in data streams with scarcely labeled and unlabelled
instances. Information Sciences, Elsevier, v. 355, p. 127-151, 2016.

MACIEL, B. I. F.; SANTOS, S. G. T. C.; BARROS, R. S. M. A Lightweight Concept
Drift Detection Ensemble. In: Proc. “of 27th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI’15). Vietri sul Mare, Italy: [s.n.], 2015. p. 1061-1068.

MANAPRAGADA, C.; WEBB, G. I.; SALEHI, M. Extremely Fast Decision Tree.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. [S.1.: s.n.], 2018. p. 1953-1962.

MENAHEM, E.; ROKACH, L.; ELOVICI, Y. Combining one-class classifiers via
meta learning. In: ACM. Proceedings of the 22nd ACM international conference on
Information € Knowledge Management. [S.1.], 2013. p. 2435-2440.

MINKU, L.; YAO, X. {DDD}: A New Ensemble Approach for Dealing with Concept
Drift. IEEE Transactions on Knowledge and Data Engineering, v. 24, n. 4, p. 619-633,
2012.

MINKU, L. L. Online Ensemble Learning in the Presence of Concept Drift. Phd Thesis
(PhD Thesis) — School of Computer Science, The University of Birmingham, 2010.

MINKU, L. L.; WHITE, A. P.; YAO, X. The Impact of Diversity on Online Ensemble
Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data
Engineering, v. 22, n. 5, p. 730-742, 2010.

MITCHELL, T. Machine Learning. New York, NY, USA: McGraw-Hill, 1997.



107

MORENO-SECO, F.; INESTA, J. M.; LEON, P. J. P. D.; MICO, L. Comparison of
classifier fusion methods for classification in pattern recognition tasks. In: SPRINGER.

Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR). [S.1.], 2006. p. 705-713.

MUTHUKRISHNAN, S.; BERG, E. van den; WU, Y. Sequential change detection
on data streams. In: IEEE. Seventh IEEE International Conference on Data Mining
Workshops (ICDMW 2007). [S.1.], 2007. p. 551-550.

NARASIMHAMURTHY, A. M.; KUNCHEVA, L. I. A framework for generating data to
simulate changing environments. In: Artificial Intelligence and Applications. [S.l.: s.n.],
2007. p. 415-420.

NEMENYI, P. Distribution-free multiple comparisons. Princeton University, 1963.

NISHIDA, K.; YAMAUCHI, K. Detecting concept drift using statistical testing. In:
Proceedings of 10th International Conference on Discovery Science (DS°07). [S.1]:
Springer, 2007. (LNCS, v. 4755), p. 264-269.

OLORUNNIMBE, M. K.; VIKTOR, H. L.; PAQUET, E. Intelligent adaptive ensembles
for data stream mining: a high return on investment approach. In: SPRINGER.

International workshop on new frontiers in mining complex patterns. [S.1.], 2015. p.
61-75.

ONAN, A.; KORUKOGLU, S.; BULUT, H. A multiobjective weighted voting ensemble
classifier based on differential evolution algorithm for text sentiment classification. Fxpert
Systems with Applications, Elsevier, v. 62, p. 1-16, 2016.

ORTIZ-DIAZ, A.; CAMPO-AVILA, J. del; RAMOS-JIMENEZ, G.; BLANCO, L.
F.; MOTA, Y. C.; HECHAVARRIA, A. M.; MORALES-BUENO, R. Fast adapting
ensemble: A new algorithm for mining data streams with concept drift. The Scientific
World Journal, Hindawi, v. 2015, 2015.

ORTIZ-DIAZ, A. A. Algoritmo multiclasificador con aprendizaje incremental al que
manipula cambios de conceptos. [S.1.]: Universidad de Granada, 2014.

OZA, N. C.; RUSSELL, S. Online Bagging and Boosting. In: Artif. "Intellig. “and Stat.
[S.L.]: Morgan Kauf., 2001. p. 105-112.

PAGE, E. S. Continuous Inspection Schemes. Biometrika, v. 41, n. 1/2, p. 100-115, 1954.

PEREZ, J. L. M. Comité de métodos estatisticos para detec¢io de mudancas de conceito.
Master’s Thesis (Master’s Thesis) — Universidade Federal de Pernambuco, Brazil, 2018.

PERVEZ, M. S.; FARID, D. M. Feature selection and intrusion classification in
nsl-kdd cup 99 dataset employing svms. In: IEEE. Software, Knowledge, Information
Management and Applications (SKIMA), 2014 8th International Conference on. [S.1.],
2014. p. 1-6.

PESARANGHADER, A.; VIKTOR, H.; PAQUET, E. Reservoir of diverse adaptive
learners and stacking fast hoeffding drift detection methods for evolving data streams.
Machine Learning, Springer, v. 107, n. 11, p. 1711-1743, 2018.



108

PESARANGHADER, A.; VIKTOR, H. L.; PAQUET, E. A framework for classification
in data streams using multi-strategy learning. In: SPRINGER. International conference
on discovery science. [S.1.], 2016. p. 341-355.

PINTO, C.; GAMA, J. Incremental discretization, application to data with concept
drift. In: ACM. Proceedings of the 2007 ACM symposium on Applied computing. [S.1],
2007. p. 467-468.

POLIKAR, R. The wavelet tutorial. 2001. Disponwvel em:< hitp://users. rowan.
edu/polikar/WAVELETS/WTtutorial. html>. Acesso em, v. 12, 2001.

RAFTER, J. A.; ABELL, M. L.; BRASELTON, J. P. Multiple comparison methods for
means. Siam Review, STAM, v. 44, n. 2, p. 259-278, 2002.

RASTIN, P. Automatic and Adaptive Learning for Relational Data Stream Clustering.
150 p. Phd Thesis (PhD Thesis) — L’Université Sorbonne Paris, France, 2018.

REIS, D. M. dos; FLACH, P.; MATWIN, S.; BATISTA, G. Fast unsupervised online
drift detection using incremental kolmogorov-smirnov test. In: ACM. Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. [S.1.], 2016. p. 1545-1554.

REVATHI, S.; MALATHI, A. A detailed analysis on nsl-kdd dataset using various
machine learning techniques for intrusion detection. International Journal of Engineering
Research € Technology (IJERT), Citeseer, v. 2, n. 12, p. 1848-1853, 2013.

ROBERTS, S. Control Chart Tests Based on Geometric Moving Averages. Technometrics,
v. 1, n. 3, p. 239-250, 1959.

ROSS, G. J.; ADAMS, N. M.; TASOULIS, D. K.; HAND, D. J. Exponentially weighted
moving average charts for detecting concept drift. Pattern Recognition Letters, v. 33,
n. 2, p. 191-198, 2012.

SAKTHITHASAN, S.; PEARS, R.; KOH, Y. S. One pass concept change detection for
data streams. In: SPRINGER. Pacific-Asia conference on knowledge discovery and data
mining. [S.1], 2013. p. 461-472.

SANTOS, S. G. T. C.; BARROS, R. S. M.; Gongalves Jr., P. M. Optimizing the
Parameters of Drift Detection Methods Using a Genetic Algorithm. In: Proc. “of 27th
IEEFE Internatational Conference on Tools with Artificial Intelligence (ICTAI’15). Vietri
sul Mare, Italy: [s.n.], 2015. p. 1077-1084.

SANTOS, S. G. T. C.; Gongalves Jr., P. M.; SILVA, G.; BARROS, R. S. M. Speeding
Up Recovery from Concept Drifts. In: Machine Learning and Knowledge Discovery in
Databases. [S.1.]: Springer, 2014, (LNCS, v. 8726). p. 179-194.

SEBASTIAO, R.; GAMA, J.; MENDONCA, T. Fading histograms in detecting
distribution and concept changes. International Journal of Data Science and Analytics,
Springer, v. 3, n. 3, p. 183-212, 2017.

SHAKER, A.; HILLERMEIER, E. Recovery analysis for adaptive learning from
non-stationary data streams: Experimental design and case study. Neurocomputing,
v. 150, p. 250 — 264, 2015. ISSN 0925-2312. Bioinspired and knowledge based



109

techniques and applications The Vitality of Pattern Recognition and Image
Analysis Data Stream Classification and Big Data Analytics. Available at:
<http://www.sciencedirect.com/science/article/pii/S0925231214013216>.

SHEN, H.; LIN, Y.; TTIAN, Q.; XU, K.; JIAO, J. A comparison of multiple classifier
combinations using different voting-weights for remote sensing image classification.
International journal of remote sensing, Taylor & Francis, v. 39, n. 11, p. 3705-3722,
2018.

SONG, G.; YE, Y.; ZHANG, H.; XU, X.; LAU, R. Y. K.; LIU, F. Dynamic clustering
forest: an ensemble framework to efficiently classify textual data stream with concept
drift. Information Sciences, Elsevier, v. 357, p. 125-143, 2016.

STEVENSON, A. Ozford dictionary of English. [S.1.]: Oxford University Press, USA,
2010.

SUDHA, N.; GOVINDARAJAN, D. Opinion mining on news articles using feature
reduction method. International Journal of Latest Engineering and Management
Research (IJLEMR), 2017.

TING, K. M.; WITTEN, I. H. Issues in stacked generalization. Journal of artificial
intelligence research, v. 10, p. 271-289, 1999.

VERDECIA-CABRERA, A.; BLANCO, I. F.; CARVALHO, A. C. An online adaptive
classifier ensemble for mining non-stationary data streams. Intelligent Data Analysis,
IOS Press, v. 22, n. 4, p. 787-806, 2018.

VORBURGER, P.; BERNSTEIN, A. Entropy-based concept shift detection. In: IEEE.
Sixth International Conference on Data Mining (ICDM’06). [S.1], 2006. p. 1113-1118.

WANKHADE, K.; DONGRE, S.; THOOL, R. New evolving ensemble classifier for
handling concept drifting data streams. In: Proceedings of the 2nd IEEFE International
Conference on Parallel Distributed and Grid Computing (PDGC). [S.1.: s.n.], 2012. p.
657-662.

WEBB, G. [.; HYDE, R.; CAO, H.; NGUYEN, H. L.; PETITJEAN, F. Characterizing
concept drift. Data Mining and Knowledge Discovery, Springer, v. 30, n. 4, p. 964-994,
2016.

WIDMER, G.; KUBAT, M. Learning in the Presence of Concept Drift and Hidden
Contexts. Machine Learning, Springer, v. 23, n. 1, p. 69-101, 1996.

WOLPERT, D. H. Stacked generalization. Neural networks, Elsevier, v. 5, n. 2, p.
241-259, 1992.

WOZNIAK, M.; KRAWCZYK, B. Combined classifier based on feature space
partitioning. International Journal of Applied Mathematics and Computer Science,
Versita, v. 22, n. 4, p. 855-866, 2012.

YE, D.; CHEN, Z. Inconsistency classification and discernibility-matrix-based approaches
for computing an attribute core. In: SPRINGER. International Workshop on Rough
Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. [S.1.], 2003. p. 269-273.


http://www.sciencedirect.com/science/article/pii/S0925231214013216

110

ZHENG, F.; WEBB, G. A comparative study of semi-naive Bayes methods in
classification learning. In: Proceedings of Fourth Australasian Data Mining Workshop
(AusDM). Sidney, Australia: [s.n.], 2005. p. 141-156.

ZHONG, S.; TANG, W.; KHOSHGOFTAAR, T. M. Boosted noise filters for identifying
mislabeled data. Department of Computer Science and engineering, Florida Atlantic
University, 2005.

ZHU, Q.; HU, X.; ZHANG, Y.; LI, P.; WU, X. A double-window-based classification
algorithm for concept drifting data streams. In: IEEE. 2010 IEEE International
Conference on Granular Computing. [S.1.], 2010. p. 639-644.

ZLIOBAITE, I. Learning under concept drift: an overview. arXiv preprint
arXiv:1010.4784, 2010.

ZLIOBAITE, I.; BUDKA, M.; STAHL, F. T. Towards cost-sensitive adaptation: When is
it worth updating your predictive model? Neurocomputing, Elsevier, v. 150, p. 240-249,
2015.



111

APPENDIX A - HOEFFDING

This appendix presents the Hoeffding inequality theorem and the pseudo-code of the

Hoeffding Tree base classifier.

A.1 HOEFFDING'S INEQUALITY THEOREM

Let X1, Xs, ..., X,,, be independent random variables such that for every X; € [a;, b;]

where 0 < i < n, and with maximum probability d. Be the empirical average X = 37", e

a random variable whose expected value is F [)_( } Then, for any ey > 0 can be applied

equation [A.T]

Pr(

X - E[X]| > &) < 2¢72/ itz (A1)

The error can be estimated, €5 = 4/ iln% , it is known that the Hoeffding inequalii;y
assumes only independent random variables, but no probability function is assumed. (X)
and error rate (g5 ) can be calculated with O (1) of temporal and spatial complexity,
which makes the theorem applicable to learning in data stream (FRIAS-BLANCO, [2014;

PEREZ, 2018)).

A.2 PSEUDO-CODE OF THE HT CLASSIFIER

Follow the pseudo-code of Hoeffding Tree, one of the most used classifiers in the area
of machine learning in non-stationary data stream.

Already exposed at the beginning of the research, the HT classifier is also known as
VEDT (Very Fast Decision Trees for Mining High-Speed Data Streams). It allows the
use of Information Gain or Gini Index as an evaluation measure (HULTEN; SPENCER;
DOMINGOS, 2001; AGGARWAL, [2014).

As can be seen in the implementation, in the line 1 the algorithm begins with a leaf
node, the root of the tree. When a new instance arrives, it is sorted to its corresponding
sheet, sufficient statistics are collected from the data, and n; is incremented, which is the
number of instances observed in node [(lines 3-5).

In the line 6 it is checked whether sufficient instances have been observed on the
node in question to try to split it. This is done by using the n,,in (minimum number of
instances that must be read for the split attempt) and also checking that all data in the
node up to that time belongs to the same class. If so, there is no need for division.

In the lines 7-9 the information gain heuristic and the Gini Index are used to choose

the two best attributes to be used in the division of the node. To solve the problem of
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Algoritmo 2: Hoeffding tree induction algorithm

Input: n,,;, (minimum number of examples of the tolerance period), 7 (a tie
threshold)

Output: HT decision tree

Let HT be a tree with a single leaft (the root)

=

2 for all training examples do

3 Sort example into leaft [ using HT

4 Update sufficient statistics in [

5 Increment n; the number of examples seen at [

6 if n; mod nym= 0 and examples seen at | not all of same class then
7 Compute Gj(z;) for each attribute

8 Let z, be attribute with highest G,

9 Let z; be attribute with second-highest G,

10 Compute Hoeffding bound ¢ = R2(12nnl/ )
11 if x, # x9 and (G(x,) — Gi(23)) > € ore < 7 then

12 Replace [ with an internal node that splits on z,

13 for all branches of the split do

14 L Add a new leaft with initialized sufficient statistics

deciding exactly how many instances are required for each node, the line 10 uses the
Hoeffding bound (equation [A.1)).

In the line 11 are verified the next conditions:

o 1, # xy: if at least one attribute was chosen, that is, if the best attribute is different

from null;

o (Gy(xq)—Gy(xp)) > e if the difference between the two best attributes is greater than
¢. This condition is tested to avoid dividing a node when two or more attributes have

many values close since one attribute could become the best in the next iterations;

e ¢ < 7:asn (number of instances observed on the node) increases, € decrease. If the
two best attributes have very close values in several iterations, € would be as small

as 7, which is a tiebreaker criterion.

If the condition of the line 11 is satisfied, in the line 12 the sheet [ becomes an internal
node that is divided using the attribute x,. In the line 14 enough statistics are started

for each sheet that results from node splitting (PEREZ, 2018)) .
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APPENDIX B - DATA-SETS CHARACTERISTICS

TheMOA] framework contains a large number of data-set generators. It also allows the
integration of real database (*.arff file). Table|13|show the most used data-set generators at
the moment, each one allows to simulate the different kinds of concept drift. A reasonable

number of real data-sets are also exposed (table available on the internet.
B.1 SYNTHETIC DATA-SETS

Table 13 — Characteristics of the most commonly
used synthetic data-set.

£ 8
Data-set generators <q ~ O
LED LED 24 10
Sine Sine 2 2
Mixed drift Mixed 4 2
Wavefrom Wave2l 21 3
Wavefrom Waved( 40 3
SEA Concept SEA 3 2
Random RBF Simples RBFS 10 2
Random RBF Complexa RBFC 50 2
Random Tree Simples RTS 20 2
Random Tree Complexa RTC 100 2
Function Generator (Agrawal) Agrawal 9 2
STAGGER Concept STAGGER 3 2
Rotating Hyperplane Hyperplane 10 2

Source: Pérez| (2018)
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B.2 REAL DATA-SETS

Table 14 — Characteristics of the most used
real data-sets.

E
<

R
Database < = z =z = O
Airlines AIR 539.382 4 3 mno 2
Adult ADU 32.561 8 6 sim 2
Bank marketing BAN 41.188 9 7 no 2
Connect-4 COM 67.557 21 0 no 3
Forest Covert COoVv 581.012 44 10 no 7
Cars CAR 1.728 6 0 no 4
EEG Eye State EYE 14.980 0 14 no 2
Electricity ELE 45.312 1 7 yes 2
Letter Recognition  LET 20.000 0 16 no 26
Mushroom MUS 8.124 22 0 yes 2
NSL-KDD 99 joined NSLK  148.561 7 34 no 2
Nursey NUR 12.960 8 0 no 5
Outdoor ouT 4.000 0 21 no 40
Poker Hand POK 1.000.000 10 0 no 10
Rialto RIA 82.250 0 27 no 10
Spam coprus 2 SPA 9.323 500 0 no 2
Segment SEG 2.310 0 19 no 7
Usenet1 USE1  1.500 100 0 no 2
Usenet?2 USE2 1.500 100 0 no 2
Usenet3 USE3  3.000 100 0 no 2
WineWhite WINW  4.898 0 11 no 1
WineRed WINR  1.599 0 11 no 1
Weather WEA  18.159 0 8 mno 2

Source: Pérez| (2018)
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APPENDIX C - STATISTICAL TEST

C.1 FRIEDMAN'S TEST

In the machine learning area, the Friedman (FFr) statistic is used to test the null hy-
pothesis of performance equality between the different methods. Fr compares sample data
in paired form, that is, when the same subject is evaluated more than once (HIDALGO)
2017)). This statistical method does not use the metric score directly, it ranks the algo-
rithms for each data set separately, the best performing algorithm getting the rank of 1,
the second best rank 2, and so on. After the ordering is tested the hypothesis of equality
of sum of the posts of each group (FRIEDMAN, 1937; |PEREZ, 2018)

In order to understand the statistic test and its use with the results of the investi-
gation, we provide hereafter a detailed explanation of how the methods proposed in this
dissertation were compared together with the selected methods of the state of the art.

The performance of the compared methods in the experiment can be represented by

the matrix [C.1]

Methods
4§ X X2 o X
§ Xo1 Xoi .. Xon (C.1)
A
X1 X2 . X

where X;; denotes the performance of the j-th method on the i-th data set (for i =1, ...,
mand j =1,...n).

In the first step each method X;; of the matrix are ranked according to the
evaluation measure in ascending order by rows.

Then, each entry is replaced by the corresponding rank as it can be seen in the matrix
expression where R;; is the rank of the jth method in ¢ data set (HIDALGO, 2017}
PEREZ, 2018)).

R Ry ... Ry,
n_ '21 ‘22 | 2 (C.2)

le Rm2 Rmn

Next the average rank for each methods over the different data set is calculated. As
pointed out before, the best method gets rank 1, the second best method gets rank 2, and

so on. In case of ties, average ranks are assigned. However, it should be noted that the
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sum of the j-th column R; = >7", Rfj, V 5 =1,...,n, depends on how the jth data set
behaves in relation to the other data sets (n — 1)(AGGARWAL, 2014).

Thus, under the null hypothesis, all methods are equivalent and hence the average
ranks of the different classifiers should be similar. The test aim to detect a deviation from
this and can detect if there are significant differences between at least two of the methods
(AGGARWAL, 2014)). The test statistic of the Friedman test is given by [C.3| where n and
m refer to the number of rows and columns in the matrix respectively, and R; is the

corresponding rank of each column(HIDALGO, [2017; PEREZ, 2018).
n 2
SR - m(m+ 1)

; J 2

7j=1

Finally, for a sufficient number of data set and methods (as a rule n > 10 and m > 5),

(C.3)

2 12n
Xr = m(m+ 1)

X% approximately follows a chi-square distribution with m — 1 degrees of freedom.
For a small number of data sets and methods, exact critical values have been computed.

Iman and Davenport (1980) derived a better statistic

_ (n=DxE
T (©4)

that is distributed according to the F-distribution with m—1 and (m—1)(Nn—1) degrees

of freedom.

C.2 NEMENYI POST-TEST

When the test of Friedman rejects the null hypothesis, it is necessary to establish
what are the significant differences between the adaptive methods. For this purpose, a
Post-Test is performed (test performed after another global test has been performed).
There are several alternatives to choose when you have to use a Post-test, the first is to
choose which type of comparison fits the research context. The comparisons are grouped

as follows:

« Non-parametric multiple groups One vs All (Comparison of one method against the
others). The Bonferroni-Dunn (DEMSAR/ 2006) is used in the majority of researchs

in the area when this type of comparison is needed.

o Non-parametric multiple groups All vs All. For this case, the usual Post-test found
in the researchs is the Nemenyi (NEMENYTL, [1963]).

In this dissertation was used the Post-test of Nemeny: in order to make multiple
comparisons between the algorithms. Therefore, the performance of two methods is sig-
nificantly different if the ranks of the percentage differences between the corresponding
means differ at least from the Critical Difference (CD) defined by equation
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m(m+ 1)

CD = qa 6 )

(C.5)

where the critical values g, are based on the Studentized Range Statistic cite (RAFTER;
'ABELL; BRASELTON, 2002) divided by /2.
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D.1 SUMMARIZED RESULTS REGARDING FASE BY SCENARIO AND BASE CLASSIFIER

Table 15 — Frequency of improvements reached by proposed methods in accuracy, run-

time, and memory regarding FASE by scenario and base classifier (NB).

NB

FASEO FASEOwvl FASEOwv2 FASEOwv3 FASEB FASEBwvl FASEBwv2 FASEBwv3
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TIME
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11
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9
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Source: Own elaboration (2019)
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Table 16 — Frequency of improvements reached by proposed methods in accuracy, run-
time, and memory regarding FASE by scenario and base classifier (HT).

HT

FASEO FASEOwvl FASEOwv2 FASEOwv3 FASEB FASEBwvl FASEBwv2 FASEBwv3

ACC 1 1 1 1 1 1 1 1
sc1 TIME 6 6 6 6 6 6 6 6
MEMORY 6 6 6 6 5 6 6 6

ACC 1 1 1 1 1 1 1 1

SC2 TIME 5 5 5 5 5 5 6 6
MEMORY 5 5 5 5 5 5 5 6

ACC 1 1 1 1 2 1 1 1

sC3 TIME 6 6 6 6 6 6 6 6
MEMORY 6 6 6 6 6 6 6 6

ACC 2 1 1 1 2 1 1 1

sC4 TIME 4 5 5 5 5 5 6 6
MEMORY 5 5 5 5 5 5 5 5

ACC 5 4 5 4 6 4 5 3

SCs TIME 3 3 8 8 3 8 9 7
MEMORY 5 7 7 8 5 7 8 8

ACC 10 8 9 8 12 8 9 7

BC TIME 24 30 30 30 25 30 33 31
MEMORY 27 29 29 30 26 29 30 31

Source: Own elaboration (2019)

D.2 SUMMARIZED RESULTS REGARDING FASE IN ALL EXPERIMENTS

Table 17 — Frequency and percentage of improvements reached by proposed meth-
ods in accuracy, run-time, and memory in all (70) experiments regarding

FASEO FASEOwvl FASEOwv2 FASEOwv3 FASEB FASEBwvl FASEBwv2 FASEBwv3
18 17 20 18 25 18 21 17
ACCr ¢ 957 24,29 28,57 25,71 35,71 25,71 30,00 24,29
52 62 61 64 57 63 65 66
TIMEr o 7499 88,57 87,14 91,43 81,43 90,00 92,86 94,29
58 61 62 64 60 63 64 66
MEMORY7 o g9 g5 87,14 88,57 91,43 85,71 90,00 91,43 94,29

Source: Own elaboration (2019)
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