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Abstract

Quantum memories are essential for many tasks in quantum information, especially for
long-distance quantum communication protocols, where optical memory would be essential to
the synchronization of the different segments of a linear chain of pairs of entangled atomic en-
sembles. Implementations of atomic-ensemble quantum memory have been carried out using
different techniques. Many of them employ essentially first-order ground-state coherences to
store the phase information of the incident fields, being the overall nonlinear process of stor-
age and retrieval characterized by the third-order nonlinear susceptibility χ(3) of the atomic
medium, which is connected to four-wave mixing. The present work explores new possibilities
for the selective storage of higher order nonlinearity in a sample of cold atoms confined in a
magneto-optical trap. Particularly, we demonstrate the storage of a third-, fifth-, and seventh-
order nonlinear atom-light interaction into the Zeeman structure of hyperfine cesium 6S1/2,
F = 3 ground state. The writing process creates gratings associated with these higher-order
nonlinear processes, which can be selectively read by the read beam after a controlled storage
time. During this writing process, two different types of grating are formed: coherence and
population gratings. Each of them stores only specific orders of nonlinearities, which implies
that part of the information is stored in the populations and the other part in the ground-state
coherence, leading to particular features in the signal of each order. We also demonstrated that
such memories were able to both store and manipulate the orbital angular momentum (OAM)
of an input field, obtaining outputs with topological charges that were algebraic functions of
the input topological charges. For example, one can retrieve the double or triple of the input
topological charges for the memories based on the χ(5) or χ(7) processes, respectively. The
mechanisms of the nonlinear atomic memory are theoretically analyzed since the creation of
the grating until the extraction of the field D, permitting a quantitative calculation of the im-
portant physical features. Since such higher-order nonlinearities are associated with processes
involving a larger number of photons, this kind of memory can in principle be used to gen-
erate multiple quantum-correlated photons, opening the possibility to extend the capability of
many quantum information protocols. In this context, we propose a concrete method to gen-
erate triplets of correlated photons based on a χ(5) memory. Finally, we also demonstrate that
a Laguerre-Gauss mode can be amplified through a nonlinear stimulated Raman process. This
could be important for applications in classical communication using OAM.

Keywords: Atomic memories. Manipulation of information. Higher-order nonlinearities.



Resumo

Memórias quânticas são essenciais para várias tarefas em informação quântica, especial-
mente em protocolos de comunicação quântica para longas distâncias, onde a memória seria
essencial para a sincronização de diferentes segmentos de uma cadeia linear de pares de en-
sembles emaranhados. Implementações de memórias quânticas em ensembles atômicos veem
sendo realizadas utilizando diferentes técnicas. Muitas delas empregam essencialmente coe-
rências de primeira ordem de estados fundamentais para armazenar a informação de fase dos
campos incidentes, onde o processo total de armazenamento e recuperação é caracterizado por
uma susceptibilidade não linear de terceira ordem, χ(3), que está conectada com processos de
mistura de quatro ondas. O presente trabalho explora novas possibilidades de armazenamento
seletivo de ordens de não linearidade numa amostra de átomos frios confinados em uma ar-
madilha magneto-ótica. Particularmente, demonstramos o armazenamento da terceira, quinta e
sétima ordem de não linearidade da interação átomo-luz na estrutura Zeeman do estado hiper-
fino 6S1/2, F = 3 do césio. O processo de escrita cria grades associadas com processos de altas
não linearidades, que podem ser seletivamente lidos por um feixe de leitura depois de um tempo
de armazenamento escolhido. Durante este processo de escrita, dois tipos diferentes de grades
são formadas: grades de coerência e grades de população. Cada uma delas armazena apenas
ordens específicas de não linearidades, implicando que parte da informação é armezanada nas
populações e a outra parte é armazenada nas coerências dos estados fundamentais, levando a
características particulares no sinal de cada ordem. Também demonstramos que estas memórias
são capazes de armazenar e manipular o momento angular orbital (MAO) de um campo de en-
trada, obtendo campos de saída com cargas que são funções algébricas das cargas topológica de
entrada. Por exemplo, pode-se recuperar o dobro ou o triplo da carga topológica original para
as memórias relacionadas aos processos de χ(5) e χ(7), respectivamente. Os mecanismos da
memória atômica não linear são analisados também teoricamente desde a criação da grade até
a extração do campo D, permitindo um cálculo quantitativo de importantes aspectos físicos. Já
que tais ordens de não linearidade estão naturalmente associadas com processos envolvendo um
maior número de fótons, estas memórias podem, em princípio, ser usadas para gerar múltiplos
fótons correlacionados, abrindo a possibilidade de extender a capacidade de vários protocolos
de informação quântica. Neste contexto, propomos um método concreto para gerar tripletos de
fótons correlacionados baseado na memória de χ(5). Finalmente, também demonstramos que
um modo de Laguerre-Gauss pode ser amplificado através de um processo Raman estimulado,
o que pode se mostrar valioso para aplicações em comunicação clássica utilizando MAO.

Palavras-chave: Memórias atômicas. Manipulação de informação. Ordens de não lineari-
dade mais altas.
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Chapter 1

Introduction

1.1 The necessity of quantum memories

The field of quantum information processing (QIP) has driven great interest of the physics
community in the past few decades due to the promise of solving problems intractable by
classical means. Quantum computing, which would allow to perform tasks believed to be
impossible with its classical analog [1], quantum cryptography, which would allow secure key
distribution [2], and teleportation [3, 4] are a few examples. Practical implementations of these
new technologies usually depends on the utilization of quantum memories. In reality, quantum
memories are needed in any application that demands synchronization of several independent
and probabilistic processes. Since in these tasks the information is encoded in the quantum
state, a quantum memory would be a device capable of storing and recovering the quantum
state.

The motivation that triggered the development of quantum memories for communication,
and still one of the most important goals today, are the quantum repeaters for long-distance
quantum communication [5, 6, 7]. After the proposition of the quantum repeaters many other
applications were found leading to intense experimental and theoretical endeavors [8, 9, 10,
11]. Here we present a few of these applications in the context of quantum networks, where
memories are essential.

1.1.1 Quantum Network

Broadly speaking a network is a system consisting in similar parts that are connected to-
gether and sharing information. In classical computing it could be a computer connected to
other computers or to the internet.

In the case of a quantum network the idea is similar [12, 13]. Quantum information is
produced and processed inside individual quantum nodes. The information travels from one
site to another through quantum channels, which are usually photons. Obviously, it is necessary
to convert the quantum state from the atoms to the photons in a reversible way, such that it can
be transferred from the node to the photon and then transferred again to another node. This
general idea can apply to a quantum computer or a quantum communication system.
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1.1.2 Distributed quantum computation

In a quantum computer one must have hundreds of entangled qubits. The problem is that
to maintain and control such entanglement for a long time is very difficult in a practical imple-
mentation, and this difficulty grows as one adds more and more qubits. Therefore, even though
control of small systems is well established for many systems, like ions [14], scaling is still
challenging. This could be circumvented by breaking the computer in smaller units that would
process the information in parallel to be joined in the end [15]. Quantum memories are crucial
for linking all these units.

1.1.3 Quantum Communication

The concept is analogous for long-distance quantum communication using quantum re-
peaters. Maximally entangled states are used in most of quantum communication protocols.
The problem is that direct distribution of entanglement over long distances becomes impossi-
ble due to losses and decoherence during transmission. In classical communication one can
introduce amplifiers periodically throughout the path, avoiding any significant degradation of
the signal. A direct generalization to the quantum mechanical case is foiled by the no-cloning
theorem, which states that one can not conceive a universal device capable of cloning (and as
a consequence, amplifying) an arbitrary quantum state [16, 17]. Fortunately, this hindrance
can be circumvented by the inclusion of the quantum repeaters [6, 7]. The idea of a quantum
repeater is to divide the total distance into shorter segments, where entanglement purification is
performed in each node that are subsequently connected by entanglement swapping. Protocols
using this concept, like the DLCZ protocol [5], are intrinsically probabilistic, forcing all parts
of the network to succeed at the same time if no memory is available. Therefore, the optical
memory would be essential to the synchronization of the different segments.

Many physical systems can be used to implement such idea. Here we highlight atomic
ensembles, since the results of this thesis are taken using a magneto-optical trap. Successful
implementation of atomic ensemble quantum memory has been carried out in many different
physical systems, such as electromagnetically induced transparency (EIT) [18, 19], gradient
echo memories (GEM) [20], and atomic frequency combs (AFC) [21].

1.2 Quantum memories with processing capabilities

As we stated before, photons are the ideal carriers of quantum information over long dis-
tances due to their negligible interaction in free space. However, this also constitutes a problem,
since processing demands some sort of interaction between photons. This means that once the
photon leaves a node its quantum state can not be easily changed. To circumvent this dilemma
one could use a medium to somehow enable photon-photon interaction through nonlinear opti-
cal processes [22].

The problem is that the realization of such nonlinear interaction at the single photon level
is challenging. The issue becomes clear if one is familiar with the advent of nonlinear optics.
As presented briefly in chapter 3, looking at the polarization expansion Pi = P(0)

i + χ(1)E j +
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χ(2)E jEl + χ(3)E jEkEl + · · · we see that at low optical powers, the materials exhibit only the
linear term, and therefore the conventional linear optics. It is only for intense fields that the
higher orders also become relevant. Therefore, it is not obvious that strong nonlinear interac-
tions should be easily seen at the level of single photons.

However, a few proposals have been made and implemented during the last years [22, 11].
We could mention:

• The optical Kerr effect in which it is possible to use one field to shift the phase of a second
one in a third-order (χ(3)) process. However, since its proposal [23] no experimental
implementation was demonstrated.

• Rydberg-blockades have been shown to be an interesting approach to enable two-photon
interactions [24]. The basic idea is to combine the EIT effect with the energy-level shifts
that suppress excitation of nearby atoms. As in a regular EIT process a weak probe field
and a control field induce transparency in an opaque medium. The two fields are coupled
in a Λ system. However, if a third field coupled with another excited state (Rydberg
state) is used, it is possible to destroy the quantum interference associated with EIT by
an amount that depends on the intensity of this new field. Therefore, the probe field
can interact with this third field [22, 11]. Since Rydberg excitation blockade hinders
the simultaneous excitation of another Rydberg atom inside the blockade radius, this
enhances the absorption probability of two photons close in time giving rise to a quantum
nonlinearity.

1.3 Quantum memory using higher nonlinear orders

Here we propose to use higher orders of nonlinear interactions, namely χ(5) and χ(7), for
fundamental studies in quantum optics and applications in quantum information. From the fun-
damental side, since most of the research in quantum optics uses χ(2) and χ(3) processes, these
higher-orders can be used to create new states of light. For quantum information applications
we propose new quantum memories that can integrate a few of the desired properties for a
quantum memory inside a single process. For instance, we show in reference [25] that with
the χ(5) and χ(7) processes it is possible to combine storage and processing abilities (section
5.11) in a single process. This could prove to be useful for quantum information processing in
general, especially in the context of quantum networks.

A quantum memory may be explained in more details as follows. The write process creates
coherence and population gratings associated with high-order nonlinear processes, which can
be selectively retrieved by a reading beam after a controllable storage time. Each kind of grating
can store only specific orders of the nonlinear interaction, leading to special features in each
signal [26]. When we add orbital angular momentum (OAM) in the write fields, each atom of
the ensemble will accumulate a different amount of OAM from the applied laser beams for each
nonlinear process. As a result the new field generated at the read process can have a different
charge from the original ones. More than that, the specific spatial configuration chosen for
the experiment allows to decide which nonlinear order to be accessed, permitting to select the
output charge.
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Moreover, in order to obtain any realistic quantum network, one must connect several nodes
distributed along the network. This would benefit from multipartite entanglement and the gen-
eration of multiphoton quantum correlations. Even though there have been recently an advance
in multipartite entanglement in several systems like OPO [27, 28] and multiplexed light modes
in the time domain [29], most of the theoretical and experimental proposals made so far are
mostly between pairs of nodes [30, 31, 32, 33, 34]. A generalization of theses schemes are
fundamental for scalability. Because such higher-order nonlinearities are associated with pro-
cesses involving a larger number of photons, our scheme can in principle be used to generate
multiple quantum-correlated photons, opening the possibility to extend the capability of many
quantum information protocols.

We propose a concrete method to generate triplets of correlated photons (chapter 7). The
idea is similar to the one proposed in the DLCZ protocol. First the ensemble is prepared in
a pure state with all atoms in the same ground-state |g〉. After that, a write pulse excites just
one atom of the ensemble to the excited state creating a small probability to transfer this atom
to another ground-state |s〉 with the simultaneous emission of a photon that we call photon
1. A second write field transfers this atom back to |g〉 with the simultaneous emission of the
photon 2. Finally, a read field in a mode that fulfills the phase-matching condition, together
with the emission of the photon 3 in the phased-matched direction, closes the χ(5) process. The
correlations among the photons are related to the fact that one is acting over and over on the
same atom of the ensemble. It is possible to see this process also as a multiwave-mixing spaced
in time in one atom. This idea can be expanded for more photons.

Finally, in the context of applications for classical communications using OAM, we demon-
strate in chapter 6 that a LG mode can be amplified through a nonlinear stimulated Raman
process [35]. This is important to reverse propagation losses in the signal, especially for long
distances.

1.4 Thesis structure

This thesis is organized as follows. We begin explaining the basic concepts that are used
throughout the text. Chapter 2 describes briefly the essential concepts behind laser cooling
and trapping of neutral atoms and the operation of a Magneto-Optical Trap (MOT), the system
used for the experiments. Chapter 3 contains useful concepts of nonlinear optics and the basic
nonlinear process that we used to build our memory. In chapter 4 we discuss the OAM of light
used in two different realizations. In one of them we use OAM to demonstrate the capacity
of the memory to manipulate the stored information. The second part of the thesis, going
from chapter 5 to chapter 6, presents the experimental and theoretical results. In chapter 5
we theoretical and experimentally investigate a nonlinear atomic memory in the semi-classical
regime. In chapter 6 we discuss a Raman gain used in the amplification of light carrying OAM.
Finally, in chapter 7 we discuss the nonlinear atomic memory in the single-photon regime.



PART I

Basic Concepts
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Chapter 2

Laser cooling and trapping

2.1 Introduction

Here we will describe briefly the essential concepts behind the operation of a Magneto-
Optical Trap (MOT). We start describing the mechanical effects of light on atoms, namely the
dipole force and the radiation pressure. Then we describe how to use the second force to cool
and trap atoms. Finally, we calculate the minimum temperature achievable by Doppler cooling.
We will follow the standard treatment given in many textbooks [36, 37, 38, 39, 40, 41, 42].

2.2 Force on two-level atoms

There are essentially two types of mechanical forces that light can exert on atoms, which
are associated with the dispersive and the absorptive properties of the interaction. The first one
is a conservative force called the dipole force associated to the potential energy of the dipole
induced by the presence of the electric field. The second is a nonconservative force called
radiation pressure related to absorption and re-emission of photons from the incident field.

2.2.1 Derivation of the forces

If one considers the atom as being infinitely heavy and at rest only the internal degrees
of freedom are important. However, to describe the mechanical effects of light on atoms we
need to consider the external degrees of freedom as well. The Hamiltonian for an atom in the
presence of an external electrical field E is

H =
P2

2M
+HA−d ·E (2.1)

where HA is the Hamiltonian of the free atom and d, P, and M are the electric dipole moment,
the momentum, and the mass of the atom. In classical mechanics the force is given by the
equation

F =
dP
dt

. (2.2)

A quantum version of Newton’s laws can be found using the Ehrenfest theorem, which states
that the expectation value of a quantum mechanical operator must be equivalent to the behavior
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of the same classical quantity. Then, using the Heisenberg equations for P

d
dt
〈P〉= i

h̄

〈 ih̄ ∂H
∂R︷ ︸︸ ︷

[H,P]

〉

=−∂H
∂R

(2.3)

where we used that the operator P = −ih̄∇ and R is the position of the center of mass. Then
using Eq.(2.3) and Eq.(2.1), we find

d
dt
〈P〉= ∑

i=x,y,z
〈di∇REi(R, t)〉 (2.4)

If we consider rc = 〈R〉 as the center of the atom

M
d2

dt2 〈rc〉= ∑
i=x,y,z

〈di∇REi(rc, t)〉 (2.5)

We make two assumptions to solve the right-hand side of Eq.(2.5). In the first we consider
that the de Broglie wavelength of the atom, λB = h/Mv, is frequently much smaller than the
wavelength λ of the incident optical field, which determines the rate of spatial variations of the
electric field. Thus, the electric field does not vary significantly in the region where the atom is
localized and it can be considered constant. Hence one can write

〈di∇REi(rc, t)〉= 〈di〉∇REi(rc, t) (2.6)

The second assumption is that the internal and external degrees of freedom evolve in different
time scales. More specifically, the internal degrees of freedom evolve over time Tint scales on
the order of the excited state lifetime Γ−1, while the external degrees of freedom evolve over
time Text scales on the order of h̄/Erecoil , where Erec is the recoil energy that an atom gains
when it absorbs a photon. In general Γ−1 � h̄/Erecoil (for sodium Text ≈ 400Tint [40]). This
implies that for an appreciable change in the external degrees of freedom [in this case, in rc
on the left-hand side of Eq.(2.5)], the internal degrees of freedom [in this case in the dipole
moment 〈d〉 on the right-hand side of Eq.(2.5)] would have already reached the steady-state.
Therefore, we can use the steady-state solution for 〈d〉 calculated using Bloch equations or in
the Bloch-vector formalism [40]

〈d〉= 2(d12)
[
σ12eiωt +σ21e−iωt]

= 2(d12) [ucos(ωt)− vsin(ωt)] , (2.7)

where u = σ12 +σ21 and v =−i(σ12−σ21). We consider the electric field to be of the form

E(r, t) = eradE0(r)cos [ωt +φ(rrr)] , (2.8)
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where E0(r) and φ(r) are the amplitude and phase, respectively. We assume that the polariza-
tion vector erad does not depend on the position. The time origin can always be chosen so that
φ(0) = 0. Hence

∇E(0, t) = erad [cos(ωt)∇E0(0)−E0(0)sin(ωt)∇φ(0)] . (2.9)

Substituting Eqs.(2.9) in Eq.(2.5), and taking the average in time we find

F = M
d2

dt2 〈rc〉

= ∑
i=x,y,z

(d12)i(erad)i [u∇E0(0)+ vE0(0)∇φ(0)]

= d12 · erad [u∇E0(0)+ vE0(0)∇φ(0)] , (2.10)

There are two contributions in Eq.(2.10). The first is the radiation pressure

Frad = d12 · eradvE0(0)∇φ(0) , (2.11)

and the second is the dipole force

Fdip = d12 · eradu∇E0(0) . (2.12)

It is convenient to rewrite them in terms of the Rabi frequency

Ω =−d12 · erad
E0

h̄
. (2.13)

Then

Fdip =−h̄u∇Ω , (2.14a)
Frad =−h̄vΩ∇φ(0) . (2.14b)

Note that if the electric field amplitude has a null gradient, Fdip vanishes. On the other hand,
if the electric field phase has a null gradient, Frad vanishes. In the next sections we will focus
on Frad , since only this term is relevant to this thesis.

2.2.2 Radiation pressure

Now we will examine in detail the term in (2.11) which is a force due to absorption and
reemission of the incident light. Since it is not possible to reverse the spontaneous emission, the
action of the force is not a reversible process, leading to the conclusion that this is a dissipative
force.

As pointed before, Frad does not vanish for a null gradient of the electric field amplitude.
Therefore, we consider a plane wave with a constant amplitude as our electric field to simplify
our calculations. Then,

E(r, t) = eradE0(r)cos [ωt− kkk · r] (2.15)
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with a constant amplitude E0(r) = E0 and phase φ(r) =−k · r. Then

∇φ(r) =−k (2.16)

and
Frad = vΩh̄k . (2.17)

In the steady-state (see [40])
vΩ = Γρ22 . (2.18)

Then
Frad = Γρ22h̄k . (2.19)

Since Γρ22 is the rate of photons emitted spontaneously, we conclude from (2.19) that the rate
of change of momentum (an thus the force Frad) is equal to the photon momentum h̄k times the
number of photons spontaneously emitted per unit time.

However, in the steady-state the number of photons absorbed per unit time dNph
dt is equal to

the number of photons emitted spontaneously per unit time (see [40]). Thus we have

Frad = h̄k
〈

dNph

dt

〉
. (2.20)

The interpretation of Eq.(2.20) is clear. The rate of momentum transfer to the atom, i.e. the
force acting on it, should be due to absorption, spontaneous emission, and stimulated emission.
Absorption of a photon leads to the transfer of its momentum h̄k from the optical field to the
atom. Stimulated emission of a photon leads to the transfer of momentum h̄k from the atom
back to the incident beam in the same direction. Spontaneous emission also leads to a loss
of momentum h̄k from the atom, but the photon is emitted in random directions. Since the
recoil associated with the spontaneous emission is in a random direction, its average over many
emission events results in a zero net effect on the atomic momentum. However, the recoil
associated with the absorption is always in the same direction. Thus the average momentum
gained by the atom is h̄k times the mean number of photons absorbed. If only absorption
and stimulated emission were present, the atom would absorb and emit in the same direction,
resulting in a zero net force. It is the spontaneous emission that breaks this symmetry, making
the difference between absorption and stimulated emission be nonzero, allowing a net transfer
of momentum to the atoms. If the incident beam is weak, stimulated emission can be neglected
and the force will be basically due to absorption as in Eq.(2.20).

If the beam is strong, the radiative force saturates. By replacing the expression of ρ22 (see
[40]) in the steady-state in Eq.(2.19) we find

Frad = h̄kΓ

(
Ω

2

)2

δ 2 +(Γ

2 )
2 + Ω2

2

. (2.21)

Increasing the intensity does not increase the force indefinitely but it saturates to a maxi-
mum value of h̄kΓ/2, because ρ22 has a maximum value of 1/2. The physical explanation is
quite intuitive. Even though the increase of the intensity would increase the rate of absorption,
and consequently the transfer of momentum from the field to the atom, it would also increase
the rate of stimulated emission, for which the transfer of momentum is opposite in direction
compared to the absorption, compensating the total momentum transfer.
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2.3 Optical Molasses

In section 2.2.2 we presented a discussion of the radiation pressure on the atoms exerted by
a single laser beam. In this section we extend the previous treatment to the case of two counter-
propagating beams with same frequency, intensity and polarization interacting with the atom.
We label the laser propagating in the same direction of the atom as −, since the Doppler effect
decreases its frequency, and the other one as +. We also define the positive direction of the axis
in the direction of the beam −. The total force is then1

Ftot = F−+F+
= Frad(ω−ω0− kv)−Frad(ω−ω0 + kv)

= h̄kΓ

(
Ω

2

)2

(ω−ω0− kv)2 +(Γ

2 )
2 + Ω2

2

+ h̄(−k)Γ

(
Ω

2

)2

(ω−ω0 + kv)2 +(Γ

2 )
2 + Ω2

2

= h̄kΓ

[ (
Ω

2

)2

(ω−ω0− kv)2 +(Γ

2 )
2 + Ω2

2

−
(

Ω

2

)2

(ω−ω0 + kv)2 +(Γ

2 )
2 + Ω2

2

]
. (2.22)

Defining δ = ω−ω0 and x = kv, and assuming low velocities, kv� Γ, we can expand

f±(x) =
1

(δ ± x)2 +(Γ

2 )
2 + Ω2

2

≈ f±(0)+
d f±(x)

dx

∣∣∣
x=0

x =

[
1

δ 2 +(Γ

2 )
2
∓ 2δ[

δ 2 +(Γ

2 )
2
]2 x

]
.

(2.23)

Then

Ftot = F−+F+

= h̄kΓ(
Ω

2
)2

{[
1

δ 2 +(Γ

2 )
2
+

2δ[
δ 2 +(Γ

2 )
2
]2 x

]
−

[
1

δ 2 +(Γ

2 )
2
− 2δ[

δ 2 +(Γ

2 )
2
]2 x

]}

= 4h̄k 2
(

Ω

Γ

)2

︸ ︷︷ ︸
I
Is

2δ

Γ[
1+(2δ

Γ
)2
]2 kv

= 4h̄k2 I
Is

2δ

Γ[
1+(2δ

Γ
)2
]2 v

=−αv , (2.24)

where I = |E0|2 and Is =
πhcΓ

3λ 3 are the intensity and saturation intensity, respectively, and

α =−4h̄k2 I
Is

2δ

Γ[
1+(2δ

Γ
)2
]2 , (2.25)

1Here in this section we consider v as the velocity and not the Bloch component like in section 2.2.2
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is the damping coefficient. Observe that Eq. 2.24 has the form of a viscous force. Therefore, in
the case of the radiation force, the light exerts a frictional force just like a particle in a viscous
fluid. This is the reason why the technique to cool atoms using this force is known in the
literature as optical molasses.

Note also that the force in Eq. 2.24 opposes the velocity for δ < 0 and therefore damps the
movement. For δ > 0 the force is positive and therefore increases the velocity. Thus, cooling
requires red frequency detuning.

With the above results we can calculate the rate of change of the kinetic energy. This would
give a quantitative result for the rate of the cooling process that will also be useful to calculate
the Doppler limit in section 2.5:

d
dt

(
1
2

mv2
)
= mv

dv
dt

= vFtot =−αv2 . (2.26)

2.4 The magneto-optical trap (MOT)

The optical molasses technique can only cool the atoms, but does not trap them. However,
if the counter-propagating laser beams (two for each axis) have opposite circular polarization,
this configuration can be turned into a trap by the addition of a magnetic field gradient, as
illustrated in Fig.2.1. Two coils with currents in opposite directions produce a quadrupole
magnetic field that vanishes at the origin. Consider a simple J = 0 and J = 1 transition to
illustrate the principle of the MOT. Close to the origin, where the magnetic field B = 0, there is
a uniform field gradient that produces a Zeeman shift in the three sub-levels (with MJ = 0,±1)
of the J = 1 level (the J = 0 remains unperturbed). The shift in the z direction is

δE = gJµB
dB
dz

MJz = β z , (2.27)

which varies linearly with the atom’s position (see Fig.2.1). For z > 0 the sub-level MJ = −1
has its energy lowered and the sub-level MJ =+1 has its energy raised, while for z < 0 we have
the opposite (see Fig.2.1). Therefore, since all the beams frequencies are below the resonance
(considering an atom at rest), if the atom is moving in the z > 0 direction it will absorb more
photons from the σ− beam, since it is closer to the resonance. This causes an imbalance in
the radiation force, creating a net force that pushes the atom back towards the trap center. A
similar process occurs for z < 0 but with the σ+ interacting more strongly with the atoms (see
Fig.2.1).

We can analyze this process mathematically by including the Zeeman shift in Eq.(2.22).

FMOT = Fσ+ +Fσ−

= Frad(ω−ω0− kv−β z)−Frad(ω−ω0 + kv+β z)

=−αv− αβ

k
z . (2.28)

The Eq.(2.28) shows that the imbalance in the radiation force caused by the Zeeman effect
leads to a restoring force similar to a spring Kz, with the elastic constant K = αβ

k .
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Figure 2.1 The schematic setup of a three dimensional magneto-optical trap. Three counter-propagating
laser fields with opposite circular polarizations cool down the atoms. A pair of coils in anti-Helmholtz
configuration creates a magnetic field (whose direction is represented by the arrows at the center) that
vanishes at the center and increases linearly as one moves away from it. The figure on the right side
shows the idea of a magneto-optical trap for an atom with a transition J = 0→ J = 1. The inhomoge-
neous magnetic field shifts the Zeeman degeneracy of the upper state inducing the atom to absorb more
photons to the counter-propagating field due to the selection rules. For z > 0 the sub-level MJ =−1 has
its energy lowered and the sub-level MJ = +1 has its energy raised, making the MJ = 0→ MJ = −1
transition resonant and more probable. For z < 0 we have the opposite. As a consequence a net force
appears pushing the atom back towards the trap center.
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vy
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Figure 2.2 The recoil of an atom from each absorption and spontaneous emission causes the atomic
velocity to change by the recoil velocity vr in a random direction. Thus the atom undergoes a random
walk in velocity space with steps of length vr.

2.5 The Doppler cooling limit

Our treatment so far makes it appear as though the atom may be completely stopped by the
cooling force. This is not the case. This apparent discrepancy appears because we have only
considered the average cooling force. Physically, this force results from many absorption and
spontaneous emission cycles, which are accompanied by fluctuations in both processes. These
are responsible for a diffusion of the atomic momentum. These diffusion mechanisms in the
velocity space are responsible for a heating of the translational degrees of freedom.

The spontaneous emission that always accompanies the cooling force causes the atom to
recoil in random directions. Each of these recoils leads to a random walk of the velocity (see
Fig.2.2). We remember that in a random walk all the steps are statistically independent, and
the probability distribution is characterized by a zero mean 〈v〉 = 0 but with a non-vanishing
root-mean-squared

√
Nl, where l is the step length, or a variance Nl2.

In our case a step will occur whenever a photon is absorbed or emitted, and the length of
each step is the photon momentum h̄k. Since scattering means absorption followed by emission
it represents effectively two steps in a random walk in the velocity space with size h̄k/m, where
m is the mass of the atom (see Fig.2.2).

Thus, for an atom initially at rest, after one step we can write the mean squared velocity as〈
v2〉

recoil =

(
h̄k
m

)2

. (2.29)

Since the scattering occurs at a rate Rscatt , after a time t the atom scattered a number of photons
N = Rscattt. Then, the mean squared velocity increased as〈

v2〉= N
(

h̄k
m

)2

= Rscattt2
(

h̄k
m

)2

. (2.30)
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The factor 2 takes into account the fact that a scattering is a two step process as mentioned
above. Thus the heating rate is

d
dt

〈
v2〉

heat = 2Rscatt

(
h̄k
m

)2

, (2.31)

where the scattering rate for six beams is

Rscatt =
6I
Isat

(
Γ

2

)3

∆2 +
(

Γ

2

)2 . (2.32)

Including the heating and the cooling rate into the same equation, we find that

d
dt

〈
v2〉= d

dt

〈
v2〉

heat +
d
dt

〈
v2〉

cool

= 2Rscatt

(
h̄k
m

)2

−α
〈
v2〉 . (2.33)

In the steady state d
dt

〈
v2〉= 0, and

〈
v2〉= 2Rscatt

α

(
h̄k
m

)2

=−3h̄Γ

4m
1+
(2∆

Γ

)2(2∆

Γ

) . (2.34)

According to the equipartition theorem the kinetic energy is related to the temperature by

1
2

m
〈
v2〉= 3

2
kBT , (2.35)

which gives

kBT =− h̄Γ

4
1+
(2∆

Γ

)2(2∆

Γ

) . (2.36)

We can calculate the detuning that will give the lowest temperature by differentiating Eq.2.36
by ∆. We find that the temperature is minimized for ∆ =−Γ

2 , which gives the Doppler temper-
ature TD

TD =− h̄Γ

2kB
. (2.37)

It is possible to achieve temperatures below the Doppler limit. The existence of a Zeeman
structure in the alkalis allows the appearence of new processes. One of the most remarkable
ones is the Sisyphus effect [43]. A detailed description of these effects can be found in the
literature [36, 37, 38, 39, 40, 41, 42].
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Chapter 3

Nonlinear optics

In this chapter we introduce a few concepts of nonlinear optics that are useful for under-
standing the experiments presented later, such as the polarization expansion (section 3.1), the
wave equation for nonlinear interaction (section 3.3), and the phase-matching condition (sec-
tion 3.4). We also introduce in section 3.5 the method to systematically discriminate a specific
higher-order susceptibility that we used later as an inspiration to develop the atomic memory
using higher-order nonlinearities.

3.1 Polarization expansion

It’s well known from classical electrodynamics that the polarization ~P(t) of a material de-
pends upon the strength of the applied electric field ~E(t) [44, 45]. Moreover, the polarization
can be described by a Taylor series in powers of the field strength. For the ith cartesian compo-
nent of the polarization we have

Pi = P(0)
i +∑

j

(
∂Pi

∂E j

)
E j +

1
2! ∑

jk

(
∂Pi

∂E j∂Ek

)
E jEk +

1
3! ∑

jkl

(
∂Pi

∂E j∂Ek∂El

)
E jEkEl + · · ·

= P(0)
i +χ

(1)E j +χ
(2)E jEl +χ

(3)E jEkEl + · · · . (3.1)

In most cases the material doesn’t have a permanent dipole moment making the P(0)
i term zero,

leaving any dipole moment to be induced by the external field. The terms χ(1), χ(2), and χ(3)

are known as first, second, and third order susceptibilities, respectively. In the low-intensity
regime only the first term is relevant and the induced polarization depends only linearly with
the field ~E(t). This case is the conventional linear optics. However, for intense fields the higher
orders also become relevant, and besides the linear term one starts to see that the material’s
response also depends on the second, third, and other powers of the electric field. By strong
fields we mean that the lowest order correction, χ(2)~E(t)~E(t), should be comparable with the
first one χ(1)~E(t), i.e., when the applied electric field is comparable with the internal electric
field E = e/a2

0 where a0 is the Bohr radius, but obviously not strong enough to ionize the atom.
Typically, only laser light is sufficiently intense to provide these nonlinear responses of the
material.

As one can see from Eq. 3.1 the susceptibilities χ(i) are tensors. More specifically, χ(1)

is a second-rank tensor, χ(2) is a third-rank tensor, and so on. In addition, for an isotropic
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medium χ
(1)
jk = χ

(1)
k j , i.e, the tensor is diagonal. Moreover, because of the vectorial nature of

~E and ~P, they are odd under inversion symmetry. These two statements imply that χ(2n), with
n = 1,2,3, ..., vanishes for a medium with inversion symmetry. This is the case for a cloud of
cold atoms, the atomic system used here. Therefore, we will only consider odd terms in the
susceptibilities1

Pi = ε0χ
(1)E j +χ

(3)E jEkEl +χ
(5)E jEkElEmEn · · · . (3.2)

3.2 Nonlinear optical phenomena

The beginning of nonlinear optics is usually attributed to Franken in 1961, with the observa-
tion of second harmonic generation [48]. After that, plentiful nonlinear optical phenomena have
been discovered and applied in many situations, such as sum-frequency generation, difference-
frequency generation, multiwave mixing, self-focusing and self-defocusing, optical bistability,
optical soliton, etc. [47, 49, 50]. Among these various processes we would like to highlight the
multiwave mixing, which is directly related to the work presented in this thesis.

Before describing the multiwave mixing (MWM) process, we start by a simpler example:
the four-wave mixing (FWM) in the sense that appears here in this thesis. Broadly speaking,
FWM is the nonlinear optical process where three input fields interact through the third-order
susceptibility [χ(3)] generating a fourth field. A similar idea holds for the six-wave mixing
process (SWM). In this case, we have a fifth-order nonlinear process mediated by the the fifth-
order susceptibility [χ(5)], where five fields interacts to produce a sixth field. The MWM is a
generalization to the nth order of nonlinearity.

3.3 The wave equation for nonlinear interaction

We have shown previously how the nonlinear response of the medium to the incident fields
can induce a polarization that can even develop new frequency components that were not
present in the input radiation. This induced polarization acts as a source for a new electro-
magnetic field in Maxwell’s equation. Here we show the standard mathematical tools used to
describe and quantify most of the nonlinear processes found in classic textbooks [47, 51, 50].

An electromagnetic wave propagating in the medium obeys the Maxwell equations:

∇ ·DDD = ρ , (3.3a)
∇ ·BBB = 0 , (3.3b)

∇×HHH =
∂DDD
∂ t

+ JJJ , (3.3c)

1A short comment should be made here for completeness. After a substantial advance in the laser industry,
we have today lasers with very high intensities and very short pulse durations, that makes the assumptions for
traditional nonlinear optics no longer applicable. It is possible to find in the literature unexpected χ(2) effects
in inversion symmetric materials [46]. Also this rule for centrosymmetric materials holds in the electric-dipole
approximation. For other multipole processes the second-order susceptibility may not vanish [47].
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∇×EEE =−∂BBB
∂ t

. (3.3d)

with the constitutive relations

DDD = ε0EEE +PPP , (3.4a)
BBB = µ0 (HHH +MMM) , (3.4b)
JJJ = σEEE . (3.4c)

where E and H are the electric and magnetic field strengths, respectively; D and B are the elec-
tric induction and magnetic displacement, respectively; P and M are the electric and magnetic
polarization, respectively; J and σ are the current and charge density, respectively. We consider
here only media with M = 0 and J = 0. One can separate the linear from the nonlinear part of
the polarization leading to the expression

PPP = ε0χ
(1)EEE +PPPNL (3.5)

Then we obtain

DDD = ε0EEE + ε0χ
(1)EEE +PPPNL

= εEEE +PPPNL (3.6)

where ε = ε0

(
1+χ(1)

)
is the linear dielectric coefficient. Finally, the Maxwell equations can

be simplified to

∇×EEE =−∂ (µ0HHH)

∂ t
, (3.7a)

∇×HHH =
∂

∂ t
(εEEE +PPPNL) . (3.7b)

If we apply ∇× on both sides of Eq. (3.7a) and substitute Eq. (3.7b) into it, we find

∇×∇×EEE +µ0ε
∂ 2EEE
∂ t2 =−µ0

∂ 2PPPNL

∂ t2 . (3.8)

or using c = 1/
√

µ0ε0

∇×∇×EEE +
1
c2

ε

ε0

∂ 2EEE
∂ t2 =− 1

ε0c2
∂ 2PPPNL

∂ t2 . (3.9)

This is the wave equation for describing light propagation in the nonlinear medium. If PPPNL = 0
we have only terms on the left side, which is the ordinary wave equation in vacuum. The term
on the right side is the polarization source term that we mentioned before. This is the nonlinear
response of the medium.

We use the relation ∇×∇×E=∇(∇ ·E)−∇2E. If we have an isotropic medium, ∇ ·E= 0,
and Eq. 3.9 reduces to

∇
2EEE− n2

c2
∂ 2EEE
∂ t2 =

1
ε0c2

∂ 2PPPNL

∂ t2 , (3.10)
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where we neglect the tensor nature of χ considering ε a scalar quantity and used n =
√

ε/ε0.
Now suppose we have a monochromatic plane wave propagating along the z direction such

as

EEE(rrr, t) = E(zzz, t)ei(kz−ωt) , (3.11a)

PPPNL(rrr, t) =PNL(zzz, t)ei(k′z−ωt) , (3.11b)

where k and k′ are the wave vectors of the laser and polarization fields, respectively. Substitut-
ing Eqs. (3.11a) and (3.11b) into 3.10, we find

∇
2E (z, t) =

[(
∂ 2

∂ z2 + i2k
∂

∂ z
− k2

)
|E (z, t)|

]
ei(kz−ωt) , (3.12a)

∂ 2

∂ t2 E (z, t) =
[(

∂ 2

∂ t2 + i2ω
∂

∂ t
−ω

2
)
|E (z, t)|

]
ei(kz−ωt) , (3.12b)

∂ 2

∂ t2 PNL(z, t)≈−ω
2 |PNL(z, t)|ei(k′z−ωt) . (3.12c)

We now use the slowly varying field amplitude approximation∣∣∣∣∂ 2E (z, t)
∂ z2

∣∣∣∣� ∣∣∣∣k∂E (z, t)
∂ z

∣∣∣∣ , (3.13a)∣∣∣∣∂ 2E (z, t)
∂ t2

∣∣∣∣� ∣∣∣∣ω ∂E (z, t)
∂ t

∣∣∣∣ , (3.13b)

and the relations ν = c/n and k = (ω/c)n to find

∂E (z, t)
∂ z

+
1
ν

∂E (z, t)
∂ t

=
iω

2ε0cn
∂PNL(z, t)

∂ z
ei∆kz (3.14)

where ∆k = k′− k is the phase mismatch between the electric field and the nonlinear polariza-
tion.

3.4 Phase-matching condition

The phase mismatch introduced in the last section carries an important significance in non-
linear optics and in the experiments described in the following chapters. In this section we
want to introduce the basic concept of the phase matching condition. We choose a three-wave
mixing process as a simple example where it appears naturally.

Two incident monochromatic fields at different frequencies and with the same propagation
direction interact in the nonlinear medium generating a third wave. The two input electrical
fields can be expressed as

Ei(z, t) = Ei(z)ei(kiz−ωit)+ c.c. , (3.15)

where i = 1,2. These fields will induce a polarization P3(z, t) that will be the nonlinear source
term of Eq. 3.14 and can be represented as

P3(z, t) = P3ei(k3z−ω3t)+ c.c. , (3.16)
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where
P3 = ε0χ

(2)E1E2 . (3.17)

Therefore, using the nonlinear wave equation (Eq. 3.14) derived in the previous section, after
the slowly varying amplitude approximation, one ends up with the following equation for the
third field [47, 51]

dE3

dz
=

2ide f f ω2
3

k3c2 E1E2ei∆kz , (3.18)

where ∆k = k1 + k2− k3 and χ(2) = de f f . For simplicity, it is assumed that the power lost by
the input fields E1 and E2 is negligible, i.e. the conversion of the input fields into the generated
field is not too large, and we can consider E1 and E2 as constants. Then, we can just integrate
Eq. 3.18 in z to find

E3 =
2ide f f ω2

3
k3c2 E1E2

∫ L

0
ei∆kzdz

=
2ide f f ω2

3
k3c2 E1E2

[
ei∆kL−1

i∆k

]
. (3.19)

The intensity of the field E3 is given by the time-averaged Poynting vector,

I3 = 2n3ε0c|E3|2 . (3.20)

Then

I3 =

∣∣∣∣2ide f f ω2
3

k3c2 E1E2

∣∣∣∣2 ∣∣∣∣ei∆kL−1
i∆k

∣∣∣∣2

= AI1I2

=1︷ ︸︸ ︷∣∣∣ei ∆kL
2

∣∣∣2 ∣∣∣∣∣ei ∆kL
2 − e−i ∆kL

2

i∆k

∣∣∣∣∣
2

= AI1I2L2 2sin2 (∆kL
2

)
(∆kL2)

2

= AI1I2L2 sin2 (∆kL
2

)(
∆kL2

2

)2

= AI1I2L2sinc2
(

∆kL
2

)
, (3.21)

where A is a constant that absorbed all the other constants that appeared in front of I1 and I2.
From Eq.3.21 we note first that, in second-harmonic generation, the field is proportional to the
intensities I1 and I2 of the input fields, and second that all phase mismatch is in sinc2 (∆kL

2

)
.

This phase-mismatch factor is plotted in Fig.3.1 and shows that the process efficiency decreases
with ∆kL. The explanation is that as L increases and becomes greater than 1/∆k, the generated
wave gets out of phase with the polarization, and the energy flows back to the input waves
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Figure 3.1 Plot of the function sinc2(∆kL
2 ) that defines the amplitude variation of the generated signal

in the phase-matching direction.

[47]. We also see from Fig.3.1 that the highest efficiency is at ∆k = 0 which is the perfect
phase-matching condition.

The physical interpretation for this is the following. If one sees each atom of the material
as an individual oscillating dipole, when this phase matching condition is perfectly fulfilled, all
the dipoles oscillates in phase so that the field emitted by each dipole adds coherently in the
phase matching condition direction. Therefore, the total intensity emitted by this ensemble of
dipoles scales as the square of the number of atoms participating in the process [47].

3.5 The angularly-resolved method

We now consider the importance of the phase-matching condition multiwave mixing pro-
cesses to describe an important work for understanding the experiments presented later in this
thesis. In 1984 Raj and coworkers developed a clever technique to systematically discriminate
specific higher-order susceptibilities [52]. The method allows to generate any MWM process,
one per time, with only three fields by changing only the direction of one of them. The idea is
to use the phase-matching condition to enhance a specific order of nonlinearity with respect to
the others.

We start explaining the FWM to generalize to MWM latter. Two input fields, Probe (P) and
Forward (F), which hereafter we call grating fields, of the same frequency ω and making a small
angle 2θ between them interact in the material producing a grating with a period determined
by ∆~k = ~kF− ~kP. By this we mean that the interference of the two fields P and F in the medium
creates a population (or index) grating, i.e, a spatial modulation of atomic populations (a density
grating) in the region of intersection of the fields [Fig.(3.2a)]. Therefore, the incident counter-
propagating Backward (B) field is diffracted in this grating in the −~kP direction [53]. The
signal corresponding to the diffraction is called here D field.
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Figure 3.2 (a) Two input fields Probe (P) and Forward (F) making a small angle 2θ between them
interact in the material producing a grating (indicated by the blue lines) with a period determined by
∆~k = ~kF − ~kP. The incidence of a third counter-propagating beam called Backward (B) at an angle β

generates a phase-matched signal. (b) Wave vector diagram for the phase matching conditions. (c)
Absorption-emission sequence in two-level systems.
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If the beams are intense, the response of the medium becomes nonlinear and the grating
becomes anharmonic producing terms (∆k)n =

(
~kF − ~kP

)n
. The incidence of the B field with

wavevector~kB, same frequency and at an angle β such that sinβ = nsinθ , generates a phase-
matched signal as in the Fig.(3.2a). Note that for small angles the condition sinβ = nsinθ

corresponds to~kD =~kB + n(~kF − ~kP) as illustrated in Figs.(3.2a) and (3.2b). The lowest or-
der n = 1 corresponds to four-wave mixing, in the well known phase conjugation configuration
(~kF =−~kB and~kP =−~kD). Since in this process, with the forward and backward fields counter-
propagating to each other, both energy and linear momentum are conserved, in isotropic media,
phase-matching is satisfied regardless of the probe direction. In other words, since the momen-
tum contributions of B and F are always canceled, and the D field is always the conjugate of P,
the latter can be in any direction.

The absorption-emission sequences for the first three nonlinear orders are depicted in Fig.
(3.2c). For the (2n+ 1)−order process, n-paired absorptions and emissions of photons from
fields F e P, respectively, are followed by a one-photon absorption of B and one-photon emission
of D. In these cases all beams had the same polarization and the processes could be seen in a
two-level atom. We will see in the following section that, if the polarizations are different, three
or four-level systems are required.

The effectiveness of the method is remarkable and the authors were able to see up to the 11th
order of nonlinearity. However, as expected, the efficiency of the generated signal decreases
with the increase of the order of nonlinearity for multiple reasons. First due to the reduction
of the interaction volume with the order. Second due to the grating fading with atomic motion.
As we showed above, the P and F fields create a grating with period Λ = 2π/n∆k = λ

2nsinθ
.

The thermal motion of the atoms mix the population maxima and minima reducing the grating
contrast. The smaller the angle between the grating fields, the larger the grating period. As
a consequence, the largest conjugated field for four-wave mixing happens when the fields are
almost collinear [53]. Thus, small angles are always preferable in this method. As we showed
above, higher orders have shorter grating periods (it decreases with 1/n). More precisely, the
fifth order has half of the third, the seventh order has one-third of the third order, and so on.
This means that an atom needs to travel two and three time less to blur the fifth and seventh
order gratings, respectively. This will have implications in the storage time, when we discuss
atomic memories in chapter 5.

A third reason would be obviously the nonlinear process itself. In the model used by
the authors, the diffraction efficiency for grating fields with the same intensity scales with
1/
√
(4n2−1), where n = 1 corresponds to χ(3), n = 2 corresponds to χ(5), n = 3 corre-

sponds to χ(7), and so forth [54]. This implies that the ratio between the various diffraction
orders is [4(n2−1)/4(m2−1)]2. Therefore, χ(3)/χ(5) = 25, χ(5)/χ(7) = 5.4, χ(7)/χ(9) = 3.2,
χ(9)/χ(11) = 2.4 [54]. These efficiencies are considered by taking the ratio of the peak intensi-
ties of the signals and not the total energy.

3.5.1 Polarization rules

Until this point we have not commented in detail about the polarization of the fields in-
volved in the process and its role in it, only mentioning the two-level system case [Fig.(3.2c)].
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However, the type of grating created in the medium is polarization dependent. This can lead
to various consequences such as differences in the extraction efficiencies, decay rates, etc. To
enlighten this statement, consider that all fields have the same polarization. In this case the
internal states of the atom can be approximated by a two-level system. Therefore, the fields
will create a spatial modulation of the population of the Zeeman sublevels, which corresponds
to a population grating. One can also see this process as the interference of the two grating
fields in the medium creating an index grating. On the other hand, if the polarizations of the
grating fields are orthogonal to each other, these two fields can interact not only through the
populations, but also through the Zeeman coherences. No intensity interference pattern can oc-
cur. In this case it is the polarization of the total incident field that is spatially modulated, which
results in a spatial modulation in the Zeeman atomic coherence. The distinction of population
and coherence grating is important since the relaxation rates are different [55].

If all incident fields are linearly or circularly polarized, the polarization of the generated
field can be determined from the fact that the atom must return to its initial state at the end of
the process, and from the conservation laws of the angular momentum of light and atom. More
explicitly, the net angular momentum gained by the atom in the exchange with the three fields
must be completely compensated by a single photon of the generated field.

For example, if F and P have the same polarization they will act in a two-level system and
the atom will return to the same initial state after the paired interaction with these fields [see
Fig. (3.2c)]. As a consequence the generated field will always have the same polarization as
the B field (see Fig. (3.2c)). On the other hand, if F and P have orthogonal polarizations,
coherence will also be created, so the generated field can have the same polarization as the B
field or orthogonal to it, depending if the number of interactions with the grating fields is odd
or even.

Conservation laws imply that the process is prohibited if the coherence is created between
∆m > 1 and ∆m > 2 distant sublevels for linear and circular polarizations, respectively. In other
words, if the grating fields have orthogonal circular polarizations σ+ and σ−, only the χ(3)

process can occur, since after n interactions with these fields the atom would have acquired 2nh̄
of angular momentum that would have to be compensated by the absorption of B and emission
of D, which can only compensate 2h̄. Therefore, n = 1, which corresponds to a χ(3) process, is
the only allowed process [see Fig. (3.3a)].

If the grating fields have orthogonal linear polarizations the number of possible processes
is much less restricted. Figure (3.3b) shows the χ(9) case. For an even number of interactions
with F and P the polarization of D is parallel to B, while for an odd number of interactions with
F and P, the polarization of D is orthogonal to B.

This analysis was confirmed by an experiment where the ratios between the signals having
the unexpected polarization and the main signal were always less than 1 : 100 [54].

3.5.2 Frequency up-conversion with χ(5)

It is also possible to use this configuration of multiwave mixing to produce frequency up-
conversion [56]. The idea is to use the backward beam B in such a frequency that its wavevector
cancels the contribution of the forward beam F . For example, consider a nondegenerate back-
ward six-wave mixing. It is a χ(5) process with two paired absorptions and emissions of pho-
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Figure 3.3 Polarization Analysis. (a) If the grating fields have orthogonal circular polarizations σ+ and
σ−, only the χ(3) process can occur, since after n interactions with these fields the atom would have
acquired 2nh̄ of angular momentum and wouldn’t be able to return to the initial state by the absorption
of B and emission of D. (b) χ(9) process for fields with orthogonal linear polarizations. Note that it is
possible to return to the initial state by the end of the process.

tons from fields F e P, respectively, followed by a one-photon absorption of B and one-photon
emission in D. The generated field D will have a wavevector determined by the phase-matching
condition

~kD = 2(~kF −~kP)−~kB . (3.22)

Now if we choose B to have the double of the frequency of F , this also implies that it has the
double of the wavevector~kB = 2~kF , since ω = ck. Thus, Eq.3.22 becomes

~kD =−2~kP . (3.23)

This means that phase matching is automatically guaranteed, independently of the direction of
the probe, and that the D field will also have twice the frequency of P. Figure 3.4 depicts the
idea. Note that in this configuration we have a six-wave mixing process in a four-wave mixing
spatial configuration. The B field is counter-propagating to the F field, and the D field is counter
propagating to the P field. In a sense, we also have phase-conjugation as in four-wave mixing.
More specifically, if F and B are plane waves and the diffraction effects are almost wavelength-
independent, the paths of the input and output fields coincide, restoring the original wave front
at frequency 2ωP [56].

If it is possible to do the inverse process entering with a seed in mode D to see the emission
in mode P, it would be also possible to do frequency down-conversion.
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Figure 3.4 Scheme for multiwave mixing with frequency conversion.
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Chapter 4

Orbital angular momentum of light

In this chapter we discuss briefly the orbital angular momentum (OAM) of light. We suc-
cinctly explain what it is and how it differs from the spin angular momentum. Then we discuss
how to generate beams with OAM and how they can be used in quantum information.

4.1 Orbital Angular Momentum of Light

Light carries energy and both linear and angular momenta. The total angular momentum
contains basically two contributions. The first is related to the polarization of light. The second
part is associated with the spatial profile of the light intensity and phase. Since this is less
intuitive than the first part, it was not explored until the early 1900s.

The spin angular momentum is the most intuitive part in our quantum-mechanical era mind-
set. Since light is constituted by photons, and the photons, by their turn, have spin equal to h̄,
then circularly-polarized light has angular momentum. Even though this is correct, Poynting in
1909, and therefore, before the creation of the concept of photon, already stated that circularly
polarized light can have angular momentum [57]. Therefore, it is possible to show that light has
angular momentum straight from classical electromagnetism without appealing to the concept
of photon or any other quantum aspect of light. That is the approach that we will follow to
demonstrate the existence of orbital angular momentum of light.

Consider a general field whose amplitude is given by u(x,y,z,φ) = u0(x,y,z)e−ikzeiφ l . In
the paraxial approximation the electromagnetic fields can be written as

B = ik
[

uŷ+
i
k

∂u
∂y

ẑ
]

eikz , (4.1a)

E = ik
[

ux̂+
i
k

∂u
∂x

ẑ
]

eikz . (4.1b)

Thus the Poynting vector can be calculated as

ε0 〈E×B〉= ε0

2
(u∇u∗−u∗∇u)+ωkε0|u|2ẑ . (4.2)

Suppose a field such that u(r,φ ,z) = u0(r,z)eilφ , then the φ component of the Poynting vector
is

ε0 〈E×B〉
φ
= ε0ωl

|u|2

r
. (4.3)
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The total angular momentum density is given by the cross product of r and the linear momen-
tum density

jz = r× 1
c2 S = ε0ωl|u|2 . (4.4)

The energy density is

w = cε0 〈E×B〉z = cε0ωk|u|2 = ε0ω
2|u|2 . (4.5)

If we take the ratio between the angular momentum density and the energy density we find

jz
w

=
l
ω
. (4.6)

Integrating
Jz

W
=

∫ ∫
rdrdφ (r×〈E×B〉)z

c
∫ ∫

rdrdφ (〈E×B〉)z
=

l
ω
. (4.7)

If we multiply by h̄ we find that the angular momentum per photon is h̄l.

4.2 Spin and orbital angular momentum

It can be demonstrated that the total angular momentum of the light can be separated into the
spin part, which is associated to the polarization of the electric field, and an orbital part, which
is associated to the phase and intensity structure of the beam. The total angular momentum J
can be written as [58, 59, 60]

JJJ =
∫

dV ε0rrr× (EEE×BBB) = LLL+SSS , (4.8)

where L and S are the orbital and spin parts, respectively. If one writes B in terms of the vector
potential A, it is possible to show after some algebra that Eq. 4.8 can be written as

JJJ = ε0

∫
dV [Ei (rrr×∇∇∇)Ai +(EEE×AAA)]− ε0

∫
(rrr×∇∇∇)EEE ·dSSS . (4.9)

Under some circumstances the surface integral vanishes [58] and we are left with

LLL = ε0

∫
dV Ei (rrr×∇∇∇)Ai , (4.10a)

SSS = ε0

∫
dV (EEE×AAA) . (4.10b)

Note that L depends on the choice of the origin, just like an orbital angular momentum would
(also note the resemblance with the angular momentum operator from quantum mechanics),
while S does not. This means that L is an extrinsic angular momentum, whereas S is an intrinsic
angular momentum. Moreover, the term ∇Ai in L shows the dependence on the phase gradient
of the field [60], while S clearly depends on the vectorial nature of E suggesting a natural
association with the spin.
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4.2.1 OAM in the quantum level

At the end of section 4.1 it was shown that the ratio of OAM to energy is h̄`
h̄ω

. This would
imply that the OAM per photon is h̄`, giving us an integer OAM per photon, which is a quantum
property. However, we have considered so far the orbital angular momentum only in classical
terms. Nonetheless, it is worthy mentioning that OAM is a result of the spatial structure of the
beam. Therefore, one should expect also to observe OAM at the single photon level.

Nienhuis and van Enk described theoretically the propagation of fields with OAM using
operators [61]. They demonstrate that the Gouy phase is equal to the dynamical phase of a
quantum-mechanical harmonic oscillator with time-dependent energy, from where it follows
that ` is the eigenvalue of this operator. The implication is that one has a quantized OAM.

4.3 Generating beams with OAM

There are some well known modes of the electromagnetic field that can carry OAM. One of
the most used, due to the easiness of implementation in laboratories, is the Laguerre-Gaussian
mode LG`

p(ρ,φ). This mode can be described in cylindrical coordinates (ρ,φ ,z) at the plane
z = 0 by

E (~r) = LG`
p(ρ,φ) = E0

(
ρ
√

2
w0

)|`|
e−

ρ2
w0 e−i`φ L|`|p

(
2ρ2

w2
0

)
, (4.11)

where w0 and E are, respectively, the beam waist and amplitude, and L|`|p is the associated
Laguerre polynomial with radial index p.

There are several techniques for generating a Laguerre-Gauss mode that use specially de-
signed laser cavities, cylindrical lenses or phase plates [58]. Here it is presented the method
that became the most common approach to produce Laguerre-Gauss beams and the one used
in this thesis, which uses computer-generated holograms [62]. A hologram is a recorded inter-
ference pattern between the desired field and a reference field. Therefore, in many cases one
wants to produce the interference pattern between the Gaussian mode, that is readily available
from lasers, and the LG mode. If one now shines the reference beam on the hologram, usually
a Gaussian mode, the desired mode will be generated.

If two coherent fields E1eiφ1 and E2eiφ2 interfere, a spatial intensity pattern modulated by
2E1E2 cos(φ1 + φ2) will be produced. This would be the traditional line grating showed in
Fig. (4.1a). When we interfere a plane wave with a Hermite-Gauss mode we produce a pat-

tern E0r/ωe−
ikr2
2R ±iθ [62]. If the beams are collinear, ±θ = (n + 1

2)π + kr2

2R and we have
the interference pattern of Fig. 1 of reference [62]. If the beams are not collinear, then
±θ = (n+ 1

2)π + kr2

2R + kr sinγ cosθ [62], where γ is the angle between the fields, and we have
the interference pattern of Fig. 2 of reference [62]. In Fig. (4.1b) we have a similar interference
pattern between a plane wave with a LG beam. These last patterns created by fields with an
angle between them are the desired ones, since we usually want to separate the fields easily in
the laboratory.

The pattern can be understood as a target phase combined with a diffraction grating. The re-
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Figure 4.1 Interference patterns. (a) Illustrative interference pattern between two plane waves. (b)
Illustrative interference pattern between a plane wave and a Laguerre-Gauss mode when the beams are
not collinear.
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Figure 4.2 Hologram for generation of LG beams. (a) Hologram for `= 0. (b) Hologram for `= 1. (c)
Hologram for `= 2

sult is the "forked-grating" shown in Fig. 4.2 that not only reshapes the reflected beam, but also
diffracts in the first order the LG beam, and all the other spurious beams are scaterred to other
directions (see Fig. 4.3). Therefore, one can separate spatially the field with the desired phase
and amplitude structure. The advantage of this method is that these patterns can be created on
Spatial Light Modulators (SLM), a commercial device that manipulates the intensity and the
phase of the light beams. These gratings can be programed in a computer and reproduced on
the LCD interface of the SLM in real time, making it possible to modify it in real time as well.

Another way to interpret the grating showed in Fig. 4.2 is as a line grating with a dislocation
at the center. The center line actually splits into two. This means that the diffraction angle in
the upper part of the grating it is larger than in the bottom part. This difference exerts a "torque"
on the beam, giving a twist to it. This twist will be larger if the central line splits in three lines
instead of two. Therefore, changing the pattern we can generate beams with different orbital-
angular-momentum values. The important part of this method is to shine not any part of the
grating, but the part that contains the fork.

4.4 OAM in quantum information: high-dimensional spaces

Most of the theoretical proposals and experimental implementations in quantum informa-
tion science are performed in a two dimensional space using qubits, the quantum analog of the
classical smallest unit of data, the bit. In classical computation this basic unit can take two
values, 0 and 1. The quantum counterpart can be in a superposition of 0 and 1. However, it
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Figure 4.3 Laguerre-Gaussian mode generation from a Gaussian beam. An incident Gaussian beam is
transformed by the hologram into a Laguerre-Gauss beam. The order +1 of diffraction generates the
desired mode with a topological charge `′. The order −1 generates a mode with a topological charge
−`′.
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is possible to generalize this idea using higher-dimensional spaces, where the basic unit can
go beyond two states. The first question would be: What is the advantage of using higher-
dimensional spaces? We name a few:

1. Increase of encoding capacity. The first benefit would be the amount of information that
could be encoded in each photon. Usually it is considered that the channel capacity is
given by Shannon’s entropy where one can encode log2(d) bits per photon. For example,
in a fourth dimensional space, where each ququart can encode 2 bits of information
|0〉= |00〉, |1〉= |01〉, |2〉= |10〉, and |3〉= |11〉 [63].

2. More efficient quantum computation. Campbell et al. demonstrated that distillation
techniques using higher-dimensional spaces can outperform qubits counterparts by sev-
eral orders of magnitude [64]. One can also encode qubits in larger spaces like a qutrit to
achieve a more efficient circuit structure [63, 65].

3. Communication without monitoring signal disturbance. Quantum key distribution
(QKD) uses the quantum nature of the states to achieve secure communication. Broadly
speaking since measurements in quantum mechanics change the state, projecting it in a
lower dimensional space, any attempt to distinguish the encoded information in the sent
quantum state will irreversibly transform it, allowing the detection of an eavesdropper.
Therefore, most of the protocols for QKD try to identify parameters that might have been
changed by eavesdropping. Using higher-dimensional spaces it is possible to envisage
quantum key distribution protocol without monitoring signal disturbance [66, 67].

With that said, how could we prepare these higher-dimensional states in practice? There
are various physical systems that can be used, but we focus on orbital angular momentum of
light. Here, we just recall that the topological charge increases in discrete steps of h̄`, where `
is an unbounded integer. Therefore, one can explore OAM to encode information beyond one
bit per photon.

Differently from the qubit systems where one can find complete sets of quantum gates,
general unitary transformations for qudits encoded in OAM are still a challenge [63]. We plan
to give a few suggestions toward this goal using higher-order nonlinear processes in the later
chapters.



PART II

Semi-classical regime
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Chapter 5

Atomic memory in the semi-classical
regime

5.1 Introduction

In this chapter we investigate theoretically and experimentally a nonlinear atomic memory
for light by using higher-order atom-field interactions in the semi-classical regime. This chapter
is organized as follows. We begin explaining the general idea of the experiment in section 5.2.
From section 5.3 to section 5.8 the experimental setup is presented in details. In section 5.9
the theoretical model is explained. This section is subdivided for expository purposes. The
writing, dephasing, and reading processes are considered in subsections 5.9.1, 5.9.2, and 5.9.3,
respectively. Analytical and numerical solutions are derived to have a deeper understanding
of each of these processes and ultimately optimize them. Results and comparisons with the
theoretical model are presented in section 5.10. Finally, in section 5.11 the results regarding
the utilization of this memory with OAM are shown. The results discussed were published in
[26] and [25].

5.2 General idea of the experiment

The basic spatial configuration employed here relies on a method that allows an angular
selection of a specific order of nonlinearity [52], presented in chapter 3. The scheme can be
summarized as follows [Fig. (5.1a)]. Two optical beams W and W ′ (writing beams), with linear
orthogonal polarizations and an angle 2θ ≈ 2◦ between them, interact with the medium, storing
their phase information in it. As a consequence, several gratings, each one corresponding to
a different number of interactions with the writing beams, are created that can be selectively
accessed by properly choosing the angle of incidence β of the reading beam R, that is switched
on after a certain delay ts. The result of the interaction of R with the induced Zeeman coherence
or population is a phased-matched pulse D [see Figs. (5.1a) and (5.1b)], with an electric field
amplitude given by

ED(~r) ∝ χ
(2n+1)ER(~r)[EW (~r)E ∗W ′(~r)]

nei~kD·~r , (5.1)

where Ei(~r) represents the electric field envelop of the beam i (i = W,W ′,R,D) for an atom
at position~r,~ki is its wavevector, and the phase-matching condition and energy conservation
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Figure 5.1 Simplified experimental configuration for generation of nonlinear optical memories. (a) The
cold sample inside the cell is irradiated by two writing beams W and W ′, forming an angle 2θ between
them, generating the population and coherence gratings. A reading beam R switched on after a con-
trollable delay, selects the order of nonlinearity by choosing the angle β with the bisectrix between W
and W ′. The field polarization (FP) of the retrieved signal D is analyzed with a polarizing beam splitter
(PBS), a half wave-plate (HWP), and an avalanche photodetector (APD). The inset shows an example
of the signal D observed directly on the oscilloscope screen. This pulse is generated by the medium at
the moment that the reading field R is switched on. (b) Wave vector diagram for the phase matching
conditions, with colors following the scheme for the fields in panel (a). (c) Absorption-emission se-
quence in a generic four-level system associated with the Zeeman sublevels of the hyperfine transition
(F = 3)→ (F ′ = 2) of cesium D2 line.
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imposes that~kD = n(~kW −~kW ′)+~kR and ωD = n(ωW −ωW ′)+ωR. The inset of Fig. (5.1a)
show an example of such pulse, observed directly on the oscilloscope screen.

Overall, each process is associated with an effective nonlinear susceptibility χ(2n+1). The
absorption-emission sequence for each nonlinear order is depicted in Fig. (5.1c). For the 2n+1
order process, n-paired absorptions and emissions of photons in the modes W and W ′, respec-
tively, are followed by a one-photon absorption of R and one-photon emission of D.

The experiment is performed in a cloud of cold cesium atoms obtained from a magneto-
optical trap (MOT) using the Zeeman structure of the hyperfine levels 6S1/2(F = 3) and 6P3/2(F ′=
2). Three pairs of Helmholtz coils are employed to compensate for residual magnetic fields.
The current values of the compensation coils are found by two techniques: microwave spec-
troscopy in the cesium clock transition 6S1/2(F = 3)→ 6S1/2(F = 4) [68] and observation of
Larmor precession of the atomic memory [69].

In the following sections the formation of the cloud of cold atoms, the fields sequence and
other details of the experimental apparatus are explained in more detail.

5.3 Vacuum housing

The whole system is enclosed in a vacuum chamber at a pressure of approximately 10−8

mbar sustained by an ion pump (Agilent VacIon plus 20). This high vacuum is necessary to
avoid background collisions that would eventually push atoms away from the trapping region.
The sequence to achieve this high vacuum can be summarized as follows. First we connect a
mechanical pump (Varian Mechanical Vacuum Pumps sd 40) that lowers the pressure to 10−3

mbar. Then the turbomolecular pump (Agilent Turbo V81-AG), which is combined with the
previous pump in the same equipment, starts to operate automatically reaching 10−7 mbar. At
this point we can switch on the ion pump to lower the pressure until 10−8 mbar. The ion pump
can only operate at low pressures, otherwise it may be damaged. Once the desired vacuum is
achieved, we close the valve and disconnect the mechanical and turbomolecular pumps. From
this point on, only the ion pump remains responsible for keeping the vacuum.

We use alkali metal dispensers as a controllable atom source (Alvatec AS-Cs-60-S) to load
Cesium atoms in the vacuum chamber. The sublimation point for such alkali in high vacuum
is extremely low. For pure Cesium this can be only 22◦C at 1× 10−6 mbar. Since we work
in pressures around 1×10−8 mbar, pure alkali dispensers would be unsuitable. Therefore, the
dispensers consists of an alloy of an alkali metal with a metal like bismuth inside a stainless
steel tube with a sublimation temperature of 450◦C at 1× 10−6 mbar. The dispenser releases
pure alkali metal when heated by a current, with the flow proportional to the current. Differently
from loading the MOT from a constant background vapor, the dispenser allows to control the
number of atoms in the trap (and consequently to vary the optical depth) and the background
vapor pressure of cesium. This Cesium vapor fills up the whole chamber by free diffusion
including the glass cell, where the MOT will be formed. The glass cell is an octagon with 2.75
cm in height and 5.5 cm in diameter. Each side has a viewport with a diameter of 2.5 cm.
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Figure 5.2 Cesium MOT transitions. The cooling laser is tuned 17 MHz below resonance from the
6S1/2(F = 4)→ 6P3/2(F ′= 5) transition, while the repumper is exactly on resonance with the 6S1/2(F =
3)→ 6P3/2(F ′ = 3) transition. The write and read fields are tuned to the 6S1/2(F = 3)→ 6P3/2(F ′ = 2)
transition. The numbers were taken from [70].
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5.4 Magneto-optical trap (MOT)

In chapter 2 we already discussed the physical principle of the MOT. Here we detail the
practical implementation used in our apparatus. During several years the MOT was the flag-
ship of Atomic Physics. The principles of laser cooling and trapping were already understood
and used in laboratories, but the simple and robust setup of the MOT was responsible for the
popularization of cold atoms. As explained in chapter 2, one needs six counter-propagating
fields, two for each Cartesian axis. The beams are conducted by three independent polarization-
maintaining (PM) optical fibers to the glass chamber. At the exit of each fiber there is a colli-
mator with a lens f = 100mm, that leaves the beam with 1cm of diameter, and a quarter-wave
plate, that changes the linearly polarized light leaving the fiber into circularly polarized light.
In the opposite direction there is a mirror to retroreflect the beam and another quarter-wave
plate that rotates the polarization by 90◦ (since the beam passes through it twice) producing a
counter-propagating beam with orthogonal polarization in the atomic reference frame.

We omitted a practical detail in the explanation of chapter 2. All the analysis was limited
to two-level atoms. However, alkaline atoms are not two-level atoms. They have a whole hy-
perfine structure. The process of cooling consists in absorption-emission cycles, and it usually
takes thousands of them to bring the atom close to rest. Therefore, the first thing we need is
to choose a cyclic transition, i.e., a transition that, due to selection rules, forces the atom to
return to its original ground state after the excitation. Since the selections rules in the dipole
approximation are ∆F = 0,±1, the 6S1/2(F = 4)→ 6P3/2(F ′ = 5) transition of cesium D2 line
is chosen as the cooling transition (see Fig. 5.2).

The hyperfine structure leads to another issue. Every time the laser drives the atom from the
ground to the excited state, there is a probability for the atom to be excited to another state and,
consequently radiate to the other ground state, especially because the cooling beam must be red-
detuned (see chapter 2), interrupting the cooling cycle. This optical pumping can be disastrous
since it takes thousands of absorption-emission cycles to bring the atom from its initial velocity
to rest (for a sodium atomic beam it could be 3×104 cycles [71]), and one would end up with
all the atoms in a "dark" state in less than 1 ms. This optical pumping problem was well known
since the first studies of deceleration of atomic beams [71]. The solution is to use another laser
with a frequency resonant to the transition of the other hyperfine ground state to pump back the
atom to the ground state where the cooling laser is. This laser is called repumper. In the cesium
case it can be in the 6S1/2(F = 3)→ 6P3/2(F ′= 4) or 6S1/2(F = 3)→ 6P3/2(F ′= 3) transition.
In both cases the atoms have a probability to fall to 6S1/2(F = 4) after the excitation.

We use one diode laser (Toptica DL 100), with an output power of approximately 70 mW,
to all the six cooling beams and a second diode laser (Toptica DL 100 with a tampered ampli-
fier), with an output power of approximately 200 mW, for the repumper, write, and read beams.
The cooling laser is amplified by a tampered amplifier (Toptica BoostA 500 mW). Since we
use acousto-optic modulators (AOM) for temporal switching, the cooling laser is locked at the
cross-over F = 4−5, which is exactly midway to the transitions 6S1/2(F = 4)→ 6P3/2(F ′= 4)
and 6S1/2(F = 4)→ 6P3/2(F ′ = 5), while the repumper is locked at the cross-over F = 2−3,
which is exactly midway to the transitions 6S1/2(F = 3)→ 6P3/2(F ′ = 2) and 6S1/2(F = 3)→
6P3/2(F ′ = 3). A pair of independent AOMs are used to tune the cooling laser and repumping
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Figure 5.3 Basic implementation of the MOT. Three independent PM optical fibers conduct the beams
to the glass chamber (z-axis fiber not shown for simplicity). At the exit of each fiber there is a quarter-
wave plate that changes the linearly polarized light that leaves the fiber into circularly polarized light. In
the opposite direction a mirror is placed to retroreflect the beam with another quarter-wave plate in front
to rotate the polarization in 90◦ producing a counter-propagating beam with orthogonal polarization.
Two coils with currents running in opposite directions generate the magnetic field in anti-Helmholtz
configuration.

laser frequencies to 17 MHz below resonance from the 6S1/2(F = 4)→ 6P3/2(F ′ = 5) transi-
tion and exactly on resonance with the 6S1/2(F = 3)→ 6P3/2(F ′ = 3) transition, respectively.
We choose the 6S1/2(F = 3)→ 6P3/2(F ′ = 3) for the repumper instead of 6S1/2(F = 3)→
6P3/2(F ′ = 4), because we use the same laser for the beams of the experiment per se, the writ-
ing and the reading beams, which are tuned to the 6S1/2(F = 3)→ 6P3/2(F ′ = 2) transition.

Two coils with currents running in opposite directions generate the magnetic field gradient
in anti-Helmholtz configuration. The field is zero at the center and increases linearly as we
move away from it. Each coil has 207 turns of copper wire with a diameter of 10.5 cm. The
current flowing is about 4 A producing an estimated gradient of 10 G/cm in the MOT region.

One last comment is about the optimization of the cloud. If the beams configuration is
symmetrical, i.e. the beams are exactly counter-propagating and have the same power, the
cloud should be close to a sphere. However, we deliberately misalign the beams to produce
a pencil-shaped atomic sample that points in the same direction as the writing and reading
beams. This makes the medium optically thicker along the desired direction enhancing the
coupling between light and matter. Consequently, this also increases the measured value of the
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optical depth. The practical consequences are quite significant. For example, we can observe
an improvement on the observed signals amplitude of the order of 16 for a variation of the
optical depth from 1.15 to 4.42.

5.5 Control system

All the pulsed quantities of the experiment, such as the magnetic field, cooling, repumper,
writing, and reading fields, are electronically controlled by a National Instruments board (NI
PCI 6602 80 MHz), operated by a LabVIEW (National Instruments) software. All the pulses
are generated in 23 ms long cycles and they repeat themselves at the end of each cycle. First
we generate a pulse to switch on the cooling and repumper beams for 21 ms and 20 ms, re-
spectively. The MOT magnetic field remains on during the same 20ms of the repumper (see
Fig.5.4). The coils that compensate any residual magnetic fields have no temporal control and
stay on continually. During the extra 1ms of the cooling beams pulse the atoms are optically
pumped from 6S1/2(F = 4) to 6S1/2(F = 3), preparing the desired initial state. After prepar-
ing our initial state, we wait for 1.2 ms to eliminate any magnetic field transients and to avoid
leakage from the MOT beams. The experiment concerning the atomic memory occurs in the
final 800 µ s of the cycle (Fig.5.4). This interval is short enough to guarantee that the atoms
will not leave the confinement region and the cloud will not expand significantly, since they are
sufficiently cold. A simple calculation can clarify this. If we consider an atom initially at rest
we find that it takes 20 ms for its free fall from a 2 mm height, which is a typical cloud diame-
ter. This is about 500 times greater than the total 40 µs window where the memory experiment
takes place.

The write beam stays on for 25 µs imprinting its phase information in the medium. The
grating can be formed in a shorter time, but we intentionally exaggerate the period to guarantee
a steady state. The same goes for the reading beam pulse, that is switched on for 15 µs. As we
will show later, the signal emitted by the medium during the reading process varies between
hundreds of nanoseconds to a few microseconds (less than 10).

5.6 Write and read beams configuration

The writing fields have orthogonal linear polarizations set by the transmission of two polar-
izing beam splitters (PBS) inverted to each other. They both pass through a single acousto-optic
modulator (AOM), which allows to control jointly their frequencies and amplitudes, and have
both a waist of the order of 1.2 mm in the ensemble. The reading beam is controlled by an
independent AOM. It has a waist of approximately 1.5 mm and linear polarization parallel to
W ′. There is no applied magnetic field, thus we define here the quantization axis as being
parallel to the polarization of the W beam. The writing beams are resonant with the transition
6S1/2(F = 3)→ 6P3/2(F ′ = 2) while the reading beam may be detuned by ∆ in relation to this
transition.

All the beams are conducted to the experiment through polarization-maintaining (PM) opti-
cal fibers. We have one fiber for the writing beam, whose power is split with a PBS to produce
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Figure 5.4 Experiment pulse sequence. The cooling beam stays on during 21ms, while the repumper
and the magnetic field are on during 20ms. During the extra 1ms of the cooling beams pulse the atoms
are optically pumped from 6S1/2(F = 4) to 6S1/2(F = 3) preparing the desired initial state. After that
the write beam is switched on for 25 µs imprinting the phase information in the medium. Finally, the
reading beam pulse is switched on after a delay ts for 15 µs recovering a signal.
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the W and W ′ beams. Another fiber is used for the reading beams. The power is split with two
PBSs but into three parts. We preset the direction of the χ(3), χ(5), and χ(7) reading beams
with three pairs of mirrors. We control the power going to each direction by rotating half-wave
plates before each PBS. Therefore, only one direction is used in each measureament. If we
want to see the χ(3) signal we rotate the half-wave plates to leave all the power in the χ(3) read
field direction and zero in the χ(5) and χ(7) directions. The same goes for the other two orders.
In the experiments and results showed below it is never used more than one read field at the
same time. Only one order is observed by turn. We also use three extra PBSs before each pair
of mirrors to clean the polarization for each reading field.

The waist of each beam is crucial. Since we are attempting to investigate higher-order
nonlinearities, the interaction volume of the beams in the sample is very important. We try to
shine almost the entire cloud (about 70%) to include as much atoms as possible in the process,
to increase the signal. The shape of the cloud can also collaborate to the phase-matching of the
different diffraction orders. In our case the W , W ′ have approximately 1.3 mm and the reading
beam 1.5 mm. A smaller waist, say 200 µm, is enough to observe the χ(3) signal, but is not
enough to observe the χ(5) and χ(7) signals, at least with our optical depths. These waists were
the optimum values for our experiment. Obviously if one is able to increase the atomic density
in the cloud even further the optimum values could be different.

5.7 Detection

The detection system here is relatively simple compared to the single photon counter-part
described in chapter 7. Since each signal, as we will show in section 5.9.3, should have a
well defined polarization according to the theory, the whole detection was mounted to enable
the identification of the polarization of the signals. All the polarizations involved are linear
and defined in relation to the reading beam. A PBS is used to split the two components of
the polarization and each component is detected by avalanche photo detectors (Thorlabs APD
110A/M) for intense fields (not for single photons) in free space. This is different from the
single photon case of chapter 7, which has only in-fibers detectors. The model APD 110A/M
has a bandwidth of 50 MHz, which is fast enough to not distort the pulses unlike other models
used previously in our laboratory [72], and operates between a few nW and tenths of µW,
enabling to detect the higher orders which typically are in the nanowatt range. For the stronger
χ(3) signals, that could be above the detector maximum input power, we used filters in front of
it.

The χ(3) signal enters through one port of the PBS and the χ(5) and χ(7) through the other
(see Figure 5.5). This configuration permits to measure the ratio between the two polarization
components of each signal. The χ(3) presented a ratio of 300 to 1 (correct and spurious com-
ponents, respectively), the χ(5) 100 to 1, and the χ(7) 100 to 1. Each APD is connected to
a digital oscilloscope (Keysight DSOX2014A) channel, that by its turn is connected to a PC.
A LabVIEW (National Instruments) software captures, processes (calculating retrieved peak
intensity, energy, and other quantities), and displays graphs of the signal in real time.
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Flip mirror

Figure 5.5 Simplified configuration for detection of different signals.

5.8 Cancellation of spurious magnetic fields

As we will detail in the next sections we can establish two main mechanisms for decoher-
ence in our memory. The first one is inhomogeneous broadening of the ground state by spurious
magnetic fields [73] and the second one is atomic motion [74, 75]. Therefore, cancellation of
stray magnetic fields is crucial to increase the storage time.

5.8.1 Microwave spectroscopy

The principle of the technique explained in this section is also described in [68]. The atoms
are prepared in the hyperfine level 6S1/2(F = 4) and evenly distributed in its Zeeman structure.
A microwave pulse with frequency ω = (9.2+ δ )GHz pumps atoms from 6S1/2(F = 4) to
6S1/2(F = 3) by magnetic dipole transitions with ∆m = 0,±1 when its frequency is resonant
with the transition |F = 4,mF〉 → |F = 3,mF〉 (see Fig.5.6). A optical pulse resonant with the
transition 6S1/2(F = 3)→ 6P3/2(F ′ = 2) probes the population of 6S1/2(F = 3) for each value
of δ .

A homemade rf antenna fed by a microwave analog signal generator (Agilent 8257D PSG)
produces the microwave signal. With an output power of 21dBm the microwave pulse is on
during 150µs. The pulse sequence is displayed in Fig.5.7. We switch on the probe pulse for
15µs before and after the microwave pulse for reasons that will be clear soon.

We detect the probe transmission before and after the microwave and subtract the two sig-
nals. We scan the microwave signal to detect the variation of the probe transmission when the
microwave frequency is resonant with one of the ground state hyperfine transitions |F = 4,mF〉→
|F = 3,m′F〉, as shown in Fig.(5.6a). When the microwave is not resonant with a transition, no
atom is transferred from 6S1/2(F = 4) to 6S1/2(F = 3) and the probe resonant with 6S1/2(F =
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Figure 5.6 Microwave spectroscopy. (a) The atoms are prepared in the hyperfine level 6S1/2(F = 4)
and evenly distributed in its Zeeman structure. A microwave pulse with frequency ω = (9.2+ δ )GHz
pumps atoms from 6S1/2(F = 4) to 6S1/2(F = 3) by magnetic dipole transitions with ∆m = 0,±1, when
its frequency is resonant with one of the 15 independents transition |F = 4,mF〉 → |F = 3,m′F〉. The
transmission of an optical probe pulse which is switched on before and after the microwave is measured.
(b) When the microwave is resonant with one of the transitions, the subtraction is not zero, yielding a
peak in the spectrum. All 15 peaks are seen when the residual field is not compensated.
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Figure 5.7 Microwave spectroscopy pulse sequence. An optical probe pulse is switched on for 15µs
to set the zero level of absorption. After that the microwave pulse is turned on for 150µs. The optical
probe pulse is switched on again for 15µs to probe if any atom was transferred by the microwave.

3) and 6P3/2(F ′ = 2) is not absorbed, yielding a null difference. When the microwave is res-
onant, population is transferred and we have a non-vanishing subtraction between the probe
transmissions, generating peaks, as shown in Fig.(5.6b). There are 21 allowed magnetic dipole
transitions with ∆m = 0,±1. However, some of them have the same frequency, leaving only
15 different frequencies. This is depicted in Fig.(5.6a). The transitions with the same fre-
quency have the same label, e.g., the transition |F = 4,mF =−3〉 → |F = 3,mF =−3〉 and
|F = 4,mF =−2〉 → |F = 3,mF =−2〉 both have the label 3.

The distance between two adjacent peaks also gives a measure of the splitting of the Zee-
man sublevels. Since the displacement of a sublevel mF is µBgFmFB, where µB is the Bohr
magneton and gF is the Landé factor, one finds that the distance between two adjacent peaks is
µBgFB. The width of the whole spectrum is (15−1)µBgFB = 14µBgFB.

Three pairs of Helmholtz coils (one pair for each axis) are used to compensate for stray
magnetic fields. The current for each pair is set independently. As we vary the current, the
peaks can move far apart, indicating that we are increasing the magnetic field, or close together,
indicating that we are minimizing the magnetic field. Therefore, the idea is to cancel the field to
a point that all peaks merge into one with the narrowest width possible. Figure (5.8b) shows the
spectrum after the cancellation, presenting a width of 53 kHz. This corresponds to a residual
field of B = 53 kHz/(14µBgF)≈ 10.6 mG.

This method can also be used to probe the efficiency of the optical pumping. If one uses a
circular polarized beam to pump all atoms to the extremes of the Zeeman structure the atoms
will no longer be evenly distributed and we would see only the outermost peak of the right or
left, depending if one uses a σ+ or σ− beams [76].
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Figure 5.8 Microwave spectroscopy for a cancelled magnetic field. (a) When the residual field is com-
pensated the Zeeman structure becomes completely degenerated. (b) All 15 peaks of Fig.(5.6b) are
merged in one.
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5.9 Theoretical Model

Here we analyze in detail the mechanisms of the nonlinear optical memory since the cre-
ation of the grating up to the extraction of the field D, resulting in a quantitative calculation of
the most relevant physical features. Although the actual polarization configuration used in the
experiment would lead to the coupling of all the Zeeman sublevels, we approximate the Zee-
man degeneracy of cesium as a four-level atom, with two degenerated ground states |1a〉 , |1b〉
with zero energy and two degenerated excited states |2a〉 , |2b〉 with energy h̄ω0.

In order to enlighten the whole process, we divide it into three steps. First, the medium is
irradiated for 25 µs by two writing beams W and W ′, a time long enough to leave the system
in a steady state. During this writing process, two different types of grating are formed: a
coherence and a population grating. As will be shown, each of them stores only specific orders
of nonlinearities, which implies that part of the information is stored in the population and the
other part in the ground-state coherence. By information, we mean, for example, the optical
phase or the phase associated with beams carrying orbital angular momentum of light. Second,
the fields are turned off, letting the system evolve freely. The optical coherences, the excited-
state coherences, and the excited populations decay rapidly, leaving the system with only the
populations of the ground states and the coherences between them. This is the stage where only
the decoherence processes act on the state of the first part. Third, a reading beam R, whose
angle of incidence depends on which order is desired to be accessed, is turned on retrieving
the information stored in the atomic ensemble as a pulse diffracted along the phase-matching
direction with a polarization that leaves the atom in the initial state before the interaction with
the writing beams [see Fig. (5.1c)]. In the reading process we are not looking for the steady-
state solution as in the writing process, but the full temporal evolution of the optical coherences
that induces a polarization in the medium, that, by its turn, generates the detected field.

5.9.1 Writing

We consider an atom excited by two writing fields (W and W ′), with orthogonal linear
polarizations. The field EW propagates along the z direction while the field EW ′ forms a small
angle 2θ as depicted in Fig. (7.6a). Then, we can write

~EW =
1
2
[EW (~r, t)ei(kW z−ωW t)+E ∗W (~r, t)e−i(kW z−ωW t)]x̂ , (5.2a)

~EW ′ =
1
2
[EW ′(~r, t)e

i(~kW ′ ·~r−ωW ′ t)+E ∗W ′(~r, t)e
−i(~kW ′ ·~r−ωW ′ t)]ŷ , (5.2b)

where Ei(~r, t) is the electric field envelope of beam i(i =W,W ′). The system Hamiltonian can
then be written as

Ĥ(t) = Ĥ0 + Ĥint(t) , (5.3)

where
Ĥ0 = h̄ω0 (|2a〉〈2a|+ |2b〉〈2b|) (5.4)
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Figure 5.9 (a) The cold sample inside the cell is irradiated by two writing fields W and W ′, with or-
thogonal linear polarizations and forming an angle 2θ between them. (b) Coupling of the writing fields
with the internal states of the atom.
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is the Hamiltonian for the free atom and

Ĥint(t) =− ~d1a,2a ·~E(t) |1a〉〈2a|− ~d1b,2b ·~E(t) |1b〉〈2b|
− ~d1a,2b ·~E(t) |1a〉〈2b|− ~d1b,2a ·~E(t) |1b〉〈2a|
+h.c.

(5.5)

is the interaction Hamiltonian with ~E = ~EW +~EW ′ . The master equation describing the evolu-
tion of the system is given by

∂ρi j

∂ t
=

1
ih̄
〈i |[ρ,H]| j〉+

(
∂ρi j

∂ t

)
rel

(5.6)

where
(

∂ρi j
∂ t

)
rel

are the relaxation terms, which are introduced phenomenologically. Defining
the slowly varying coherences

σ1a,2a = ρ1a,2ae−iωt , (5.7a)

σ1b,2b = ρ1b,2be−iωt , (5.7b)

σ1a,2b = ρ1a,2be−iωt , (5.7c)

σ1b,2a = ρ1b,2ae−iωt , (5.7d)

in the rotating wave approximation, the time evolution of the slowly varying populations and
coherences are given by the equations:

dρ2a,2a

dt
= βΩ

∗
W ′σ2a,1b +βΩW ′σ1b,2a +Ω

∗
W σ2a,1a +ΩW σ1a,2a−Γρ2a,2a , (5.8a)

dρ2b,2b

dt
= Ω

∗
W ′σ2b,1a +ΩW ′σ1a,2b +αΩ

∗
W σ2b,1b +αΩW σ1b,2b−Γρ2b,2b , (5.8b)

dρ1a,1a

dt
=−Ω

∗
W ′σ2b,1a−ΩW ′σ1a,2b−Ω

∗
W σ2a,1a−ΩW σ1a,2a +

Γ

2
(ρ2a,2a +ρ2b,2b) , (5.8c)

dρ1b,1b

dt
=−βΩ

∗
W ′σ2a,1b−βΩW ′σ1b,2a−αΩ

∗
W σ2b,1b−αΩW σ1b,2b +

Γ

2
(ρ2a,2a +ρ2b,2b) ,

(5.8d)
dσ1a,2a

dt
= βΩ

∗
W ′σ1a,1b−Ω

∗
W ′σ2b,2a +Ω

∗
W ρ1a,1a−Ω

∗
W ρ2a,2a−

(
Γ

2
+ i∆

)
σ1a,2a , (5.8e)

dσ1b,2b

dt
=−βΩ

∗
W ′σ2a,2b +Ω

∗
W ′σ1b,1a +αΩ

∗
W ρ1b,1b−αΩ

∗
W ρ2b,2b−

(
Γ

2
+ i∆

)
σ1b,2b , (5.8f)

dσ1a,2b

dt
= αΩ

∗
W σ1a,1b−Ω

∗
W σ2a,2b +Ω

∗
W ′ρ1a,1a−Ω

∗
W ′ρ2b,2b−

(
Γ

2
+ i∆

)
σ1a,2b , (5.8g)

dσ1b,2a

dt
=−αΩ

∗
W σ2b,2a +Ω

∗
W σ1b,1a−βΩ

∗
W ′ρ2a,2a +βΩ

∗
W ′ρ1b,1b−

(
Γ

2
+ i∆

)
σ1b,2a , (5.8h)

dσ1a,1b

dt
=−αΩW σ1a,2b−Ω

∗
W σ2a,1b−βΩW ′σ1a,2a−Ω

∗
W ′σ2b,1b , (5.8i)

dσ2a,2b

dt
= αΩ

∗
W σ2a,1b +ΩW σ1a,2b +Ω

∗
W ′σ2a,1a +βΩW ′σ1b,2b−Γσ2a,2b , (5.8j)
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where ∆ = ω−ω0 is the detuning,

Ω j(~r, t) =
id jE j(~r, t)ei~k j·~r

4h̄
(5.9)

is the Rabi frequency associated with beam j, and Γ/2π(= 5.2MHz) is the total spontaneous
decay rate of the cesium excited state. The system is considered closed, so ρ1a,1a +ρ1b,1b +
ρ2a,2a +ρ2b,2b = 1, and α and β are dimensionless coefficients, which are taken to be real and
are introduced to take into account the different values of the Clebsch-Gordan coefficients of
the transitions. We considered d1b,2b = αd1a,2a and d1a,2b = βd1b,2a, leaving the equations with
four different Rabi frequencies, namely ΩW , αΩW , ΩW ′ , and βΩW ′ . These differences in the
Rabi frequencies are important as we will see shortly.

The response of the system is found, in the steady state regime, in all orders in the W
field and in first, second, and third order in the W ′ field. The solutions for the coherence and
populations, for ∆ = 0, are

ρ
(0)
1a,1a = ρ

(0)
1b,1b =

(
Γ

2

)2
+ |ΩW |2

2
[(

Γ

2

)2
+2|ΩW |2

] , (5.10a)

ρ
(1)
1a,1a = ρ

(1)
1b,1b = 0 , (5.10b)

σ
(1)
1a,1b = ΩW Ω

∗
W ′A+Ω

∗
W ΩW ′B , (5.10c)

σ
(2)
1a,1b = σ

(2)
1b,1a = 0 , (5.10d)

ρ
(2)
1a,1a = I +[(ΩW Ω

∗
W ′)

2 +(Ω∗W ΩW ′)
2]J , (5.10e)

ρ
(2)
1b,1b = K +[(ΩW Ω

∗
W ′)

2 +(Ω∗W ΩW ′)
2]L , (5.10f)

σ
(3)
1a,1b = ΩW Ω

∗
W ′U +Ω

∗
W ΩW ′X +(ΩW Ω

∗
W ′)

3Y +(Ω∗W ΩW ′)
3 Z . (5.10g)

The quantities A, B, ..., Z, whose full expressions can be found in Appendix A, depend only on
the moduli of ΩW and ΩW ′ , not contributing to the phase-matching condition. We isolate the
(ΩW Ω∗W ′)

n terms with the phase information ein(~kW−~kW ′)·~r outside them. Thus, one can clearly
see that for a χ(2n+1) nonlinearity, the odd terms in n [χ(3), χ(7)] are stored in the coherence
[Eqs. (5.10c) and (5.10g)] and the even terms [χ(5)] are stored in the population [Eqs. (5.10e)
and (5.10f)].

Note that there are two terms in each equation of 5.10. The first is in the form (ΩW Ω∗W ′)
n

and the other is its complex conjugate (Ω∗W ΩW ′)
n. The first corresponds to the process de-

scribed in figure 5.1 where the atoms are absorbing photons from the field W and emitting in
the direction of W ′, whereas the later corresponds to the opposite process, where the atoms
are absorbing photons from the field W ′ and emitting in the direction of W . If the two writing
beams have the same intensities (same waist, power, etc.) the two processes are equally proba-
ble and physically equivalent. Obviously if one wants to retrieve the signal related to the second
process, it is necessary to change the direction of the reading beam and reposition the detector
(see figure 5.10). Since we have fixed the direction of the reading beam and the position of the
detector, we will only focus on the term related with the process depicted in figure 5.1.
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Figure 5.11 Double read. The existence of the two terms (ΩW Ω∗W ′)
n and (Ω∗W ΩW ′)

n in Equation 5.10
creates the possibility of generating two fields, D and D′, from the medium if one uses two fields in the
read process, R and R′.

The existence of these two terms implies that part of the excitation cannot be fully recovered
with a single read field. In other words, part of the information will be in another mode. On
the other hand, this also creates an opportunity. If we use two fields in the read process, say
R and R′, then it is possible to recover two diffracted fields D and D′ (see Fig. 5.11). Usually,
these two signals are independent [77]. We can point out already here something that we will
explain later again. If we use OAM in the write fields, the generated fields will also have OAM.
Therefore, if the D has a topological charge `= 1, then D′ will have a topological charge `=−1
since it is the opposite process in the writing.

Once the writing fields are turned off, the atomic coherences and populations evolve ac-
cording to their respective decay rates (see Eq. 5.8 with ΩW = ΩW ′ = 0). Therefore, after a
time t � Γ−1, all the coherences and populations vanish except the ground-state ones, which
are given by

ρ1a,1a(t) =
1
2
+

1
2
(ρst

1a,1a−ρ
st
1b,1b) , (5.11a)

ρ1b,1b(t) =
1
2
− 1

2
(ρst

1a,1a−ρ
st
1b,1b) , (5.11b)

σ1a,1b(t) = σ
st
1a,1b . (5.11c)

where ρst
i, j and σ st

i, j are the steady-state solutions in (5.10). Note that if the system is considered
symmetric (equal Clebsh-Gordan coefficients) the ground-state populations would be equal
and the phase modulation in them would disappear (ρ1a,1a = ρ1b,1b = 1/2). The reason is quite
simple. If the system is completely symmetrical, equal Clebsh-Gordan coefficients and decay
rates, the beams will create modulations in the four populations that are exactly the same.
After the fields are turned off, the populations will decay equally erasing the modulation in the
ground-state populations [see Fig.(5.12a)]. An asymmetry is needed either in the excitation,
to generate a population difference that would remain even if the decay rates of the excited
states were the same [see Fig.(5.12b)], or in the decay rates of the excited states. Note that no
decay was considered for the ground-state coherence so far. This will be introduced in the next
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Figure 5.12 (a) For a completely symmetrical system, equal Clebsh-Gordan coefficients and decay
rates, the beams will create a modulation in the four populations that are exactly the same, but out of
phase. After the fields are turned off the populations will decay equally erasing the modulation in the
ground-state populations. (b) For a non-symmetrical system, different Clebsh-Gordan coefficients, the
beams will create a modulations in the four populations that are unbalanced. After the fields are turned
off the excited-state populations will decay leaving a modulation in the ground-state populations.

section. It is considered that the magnetic field is well compensated leaving the atomic motion
as the most important dephasing process.

5.9.2 Motional dephasing

After formed the gratings, we switch off the fields and the dephasing process starts, i.e.,
the modulation in Eq. 5.10 starts to be erased. It can be understood as follows. If we ignore
collisions, since we are in a low temperature and density regime, the internal states of the atoms
(or their spins) remain the same. However, the random motion of the atoms will destroy the
modulation imprinted in internal states of the ensemble.

When the write beams are switched off, the population and coherence gratings will be
washed out by the ballistic motion of the atoms. If we assume that the atomic velocities obey
the Maxwell-Boltzmann distribution, then at a time t the average coherence of the ensemble
will be

σ
e
1a,1b(r, t) =

1√
πu

∫
dve−

v2

u2 σ1a,1b(r− vt,0) , (5.12)

where u =
√

2kBT
m is the most probable speed; m, kB, and T are the atomic mass, the Boltzmann

constant, and the temperature, respectively. Here σ1a,1b is the same of Eq. 5.10. The relevant
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part of the coherence in the integral is the phase e−in∆kvt , where ∆k = kW −kW ′ [or ∆k = πsin(θ)
λ

as one can deduce from the geometry of Fig. 5.1]. Then, the result of the integral will be
proportional to exp

[
− (n∆k)2kBTt2

2m

]
. Since the intensity of the retrieved signal is proportional to

the square of the optical coherence, then its expression will be proportional to

ID(t) ∝ e−(
t
τ
)2
, (5.13)

where τ = 1
(n∆k)

√
m

kBT is the decay time. One can also write

τ =
Λ

(nπ)

√
m

kBT
, (5.14)

where Λ = 2π/∆k = λ

2sinθ
is the grating period [78]. For the populations, the calculation is

analogous. Note that the grating decay time has angular and order (n) dependences. It is directly
proportional to the grating period, which is determined by the angle between the writing beams
and the laser wavelength λ , and inversely proportional to n. Therefore, as we increase the order
of nonlinearity the storage time decreases, i.e., the χ(5) decay time should be half of the χ(3)

decay time, and the χ(7) decay time should be one-third of the χ(3) decay time.
Knowing these decays is important since if one wants to recover the information stored in

the atoms, the delay ts between the writing and reading fields must be on the order of τ of Eq.
5.14.

5.9.3 Reading

The stored information in Eq. 5.10 is retrieved from the sample through a reading beam
R that makes an angle β with the bisectrix between W and W ′ and has a linear polarization
parallel to W ′, if the decoherence process described in section 5.9.2 has not erased the grating
completely. Therefore, the set of Bloch equations (omitting the complex conjugated equations)
describing the reading process is obtained in the same way as Eqs. 5.8, substituting ΩW ′ by
ΩR and letting ΩW = 0. The number of equations generated is the same as Eqs. 5.8, but this
time they are not all coupled. This natural dissociation bears an important physical meaning: it
defines the polarization of the signal and, ultimately, guarantees the existence of a parametric
process. This will be detailed shortly. The set of equations can be separated in two systems that
are shown in Eqs. 5.15 and 5.16.

System 1

dρ2a,2a

dt
= βΩ

∗
Rσ2a,1b +βΩRσ1b,2a−Γρ2a,2a , (5.15a)

dρ2b,2b

dt
= Ω

∗
Rσ2b,1a +ΩRσ1a,2b−Γρ2b,2b , (5.15b)

dρ1a,1a

dt
=−Ω

∗
Rσ2b,1a−ΩRσ1a,2b +

Γ

2
(ρ2a,2a +ρ2b,2b) , (5.15c)

dρ1b,1b

dt
=−βΩ

∗
Rσ2a,1b−βΩRσ1b,2a +

Γ

2
(ρ2a,2a +ρ2b,2b) , (5.15d)
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Figure 5.13 (a) The cold sample inside the cell is irradiated by the reading field R with orthogonal
linear polarizations and forming an angle β between them. (b) Coupling of the writing fields with the
internal states of the atom.
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dσ1a,2b

dt
= Ω

∗
Rρ1a,1a−Ω

∗
Rρ2b,2b−

(
Γ

2
+ i∆

)
σ1a,2b , (5.15e)

dσ1b,2a

dt
=−βΩ

∗
Rρ2a,2a +βΩ

∗
Rρ1b,1b−

(
Γ

2
+ i∆

)
σ1b,2a . (5.15f)

System 2

dσ1a,2a

dt
= βΩ

∗
Rσ1a,1b−Ω

∗
Rσ2b,2a−

(
Γ

2
+ i∆

)
σ1a,2a , (5.16a)

dσ1b,2b

dt
=−βΩ

∗
Rσ2a,2b +Ω

∗
Rσ1b,1a−

(
Γ

2
+ i∆

)
σ1b,2b , (5.16b)

dσ1a,1b

dt
=−βΩRσ1a,2a−Ω

∗
Rσ2b,1b , (5.16c)

dσ2a,2b

dt
= Ω

∗
Rσ2a,1a +βΩRσ1b,2b−Γσ2a,2b . (5.16d)

The optical coherences σ1a,2b and σ1b,2a are coupled with the populations, whereas σ1a,2a
and σ1b,2b are coupled only with the ground-state and excited-state coherences. This implies
that the signal generated from the population grating will always have a polarization parallel
to the reading beam and the one from the coherence grating will be always orthogonal to it. If
one considers that the atom starts in the |1a〉 level, it will end in the |1b〉 after an odd number
of interactions with the writing fields, and in the same |1a〉 for an even number of interactions
[see Fig. (5.1c)]. The ground-state coherence stores the first type of interaction, whereas the
ground-state populations store the second, as we have seen above. Thus, for the two kinds of
signal, the atom returns to the initial state |1a〉 after emitting the D field. We have chosen the
reading beam with a polarization parallel to W ′. However, for the orthogonal case, the process
is analogous. In such a case, the populations would be coupled with σ1a,2a and σ1b,2b, and the
ground-state coherence with σ1a,2b and σ1b,2a. Therefore, independently of the reading beam
polarization (as long as it remains linear), the atom will always end where it started in the first
place. This means that the angular momentum is conserved in the whole process. Finally, it
is noteworthy that if the reading field polarization is parallel to the W ′ field, just a three-level
system is necessary to explain the χ(3) process [Fig. (5.1c)]. The other orders still need at least
a four-level system. However, for a reading field polarization parallel to W a four-level system
is required for all three orders.

The retrieved pulse shape is obtained by finding the atomic dipole moment induced by the
reading field, solving the two systems above, and using them as a polarization source term in
Maxwell’s equation, as we did in chapter 3. The polarization expression is found by considering
that the read field will induce a dipole moment ~p in each atom. We calculate this dipole moment
considering its mean value 〈~p〉 [79]. Each dipole moment will add up, producing a macroscopic
polarization P, associated with N atoms of the ensemble in a volume V , given by

PPP =
N
V
〈ppp〉 . (5.17)
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where ν = N
V is the atomic density. For the χ(5) process the dipole moments will be associated

with σ1a,2a and σ1b,2b, which yields

PPP =
N
V
〈ppp〉

= ν
(
d1a,2aρ1a,2a +d1b,2bρ1b,2b + c.c.

)
, (5.18)

while for the χ(3) and χ(7) processes the dipole moments will be associated with σ1a,2b and
σ1b,2a, which yields

PPP =
N
V
〈ppp〉

= ν
(
d1a,2bρ1a,2b +d1b,2aρ1b,2a + c.c.

)
. (5.19)

Naturally, we still need to solve the systems 1 (Eq. 5.15) and 2 (Eq. 5.16) to find the polariza-
tion expression. This time we are not looking for the steady-state solution but the full temporal
evolution of the optical coherences. The differential homogeneous linear system with constant
coefficients can be solved numerically using the fourth-order Runge-Kutta method [80]. As-
suming that the sample is thin and that the absorption of the D field can be neglected, one finds
that the temporal envelope ED(z′, t) is proportional to the induced optical polarization.

ED(z′, t) ∝ P . (5.20)

5.10 Results and discussions

This section is devoted to present, analyze and compare the measurements with the theoreti-
cal model of section 5.9.1. The polarization of each retrieved signal depends on the order being
explored, as anticipated by the theoretical model. Thus, referring to the experimental scheme
depicted in Fig. (5.1a), we have first analyzed the polarization of the retrieved beam with the
PBS and an HWP optical components. The χ(3) and χ(7) retrieved pulses associated with the
coherence grating have polarizations orthogonal to the R beam. The relative ratio between the
parallel and orthogonal components for each signal is about 1 : 300 and 1 : 100 for the χ(3) and
χ(7), respectively. For the χ(5) the main component is parallel, with a ratio also around 1 : 100.

5.10.1 Writing

As the first set of results, we investigate the dependence of the retrieved signal with the
writing fields intensities, since the whole nonlinearity is in the writing process. In Fig. 5.14
we show the dependence of the retrieved signal peak amplitude as a function of the W ′ field
intensity for fixed intensities of the fields W and R (respectively equal to IW = 32 mW/cm2 and
IR = 691 mW/cm2). According to the phase-matching condition, one can separate the different
contributions by isolating the terms ΩW Ω∗W ′ ,

(
ΩW Ω∗W ′

)2 and
(
ΩW Ω∗W ′

)3. The first term, in the
low-intensity limit, represents the χ(3) process, the second, the χ(5) process, and the third, the
χ(7) process, respectively. Therefore, we should expect, for low intensities, a linear, quadratic,
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Figure 5.14 Dependence of the retrieved signal peak amplitude with the intensity of W ′ with fixed W
(IW = 32 mW/cm2) and R (IR = 691 mW/cm2) intensities, and ∆W = ∆W ′ = ∆R = 0. The experimen-
tal data for χ(3), χ(5), and χ(7) are represented by the blue, red, and green circles, respectively. The
beginning of the curve in log-log scale is shown in the inset. The slope associated with each fitting is
1.2±0.1, 1.8±0.2, and 2.8±0.1 for χ(3), χ(5), and χ(7), respectively.

and cubic dependence for the χ(3), χ(5), and χ(7) signals, respectively. In the inset of Fig. 5.14
we plot the retrieved signal as a function of the intensity of W ′, in the low intensity regime,
with fixed W intensity in the log-log scale. The slope associated with each fitting is 1.2±0.1,
1.8±0.2, 2.8±0.1 for χ(3), χ(5), and χ(7), respectively. This is close to the expected values of
1, 2, and 3, since the atoms interact once, twice, and three times with the W ′ field in the χ(3),
χ(5), and χ(7) processes, respectively. For the complete curve, not only for low intensities, one
should see also a fairly distinct behavior between the different orders. Each order saturates at
different intensities, with the lower ones saturating first.

5.10.2 Reading

Theoretically it is expected only two kinds of pulse shapes: one arising from the population
grating (System 1 of the reading Eq. 5.15) and other from the coherence grating (System 2 of
the reading Eq. 5.16). Despite of this, the experiment shows a different behavior. With the
reading beam in resonance, each order presents its particular pulse shape as one can see from
Fig. (5.15a). These discrepancies, however, are a consequence of the fact that we considered
the sample to be sufficiently thin to neglect propagation effects. Therefore, we cannot compare
the pulses observed in resonance directly with our theoretical model, since propagation effects
can alter significantly the pulse shapes in this situation [81]. However, off resonance, the
propagation effects should be mitigated, and a better comparison could be achieved. Indeed,
Fig. (5.15b) shows the results for ∆R = 30 MHz, where one can see that the χ(3) and χ(7) have
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Figure 5.15 Experimental and theoretical pulse shapes of the retrieved signal. The blue, red and green
pulse shapes correspond to the χ(3), χ(5) and χ(7) orders, respectively. (a) Experimental pulses for a
resonant reading beam. The experimental intensities and detunings are IR = 170 mW/cm2, IW = 148
mW/cm2, IW ′ = 122 mW/cm2 and ∆R = ∆W = ∆W ′ = 0 MHz for all pulses. (b) The experimental (first
column) and the theoretical (second column) pulse shapes of the retrieved signal, for a non-resonant
reading beam, for each order of nonlinearity. The theoretical pulses were obtained numerically. The
used parameters for the numerical calculation were ΩR = 0.12Γ, ΩR = 0.25Γ, and ΩR = 0.1Γ for χ(3),
χ(5), and χ(7), respectively, where Γ/2π = 5.2 MHz. The experimental intensities and detunings are
IR = 170 mW/cm2, IW = IW ′ = 148 mW/cm2, ∆W = ∆W ′ = 0 MHz, and ∆R = 30 MHz for all pulses.
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Figure 5.16 Dependence of the retrieved signal with the intensity of R with fixed W and W ′ intensities.
The experimental data for χ(3) (blue), χ(5) (red), and χ(7) (green) are represented by the circles, while
the theoretical fits are represented by the solid curves. The other intensities and detunings are IW = 76
mW/cm2, IW ′ = 74 mW/cm2, and ∆W ′ = ∆W = ∆R = 0 MHz.

more similar pulse shapes, but significantly different from the χ(5) case. However, since the
χ(3) and χ(7) pulse shapes shown in Fig. (5.15b) are not exactly the same, even though they
are similar, one can suppose that another process may be also involved. The Rabi frequencies
employed in the numerical calculations (ΩR = 0.12Γ, ΩR = 0.25Γ, and ΩR = 0.1Γ for χ(3),
χ(5), and χ(7), respectively) of Fig. (5.15b) are satisfactory when compared to the estimated
experimental Rabi frequency of ΩR = 0.8Γ for an average saturation intensity of the transition
of approximately Is = 3.5 mW/cm2. The corresponding retrieved pulses were obtained for a
fixed storage time ts = 500 ns. In other words, we turn on the reading field 500 ns after we turn
off the writing fields and recover the pulses of Fig. 5.15. In the theoretical pulses the field was
multiplied by e−(

t
τ
)2

to include the grating wash-out.
We plot in Fig. 5.16 the experimental and theoretical maximum retrieved-signal amplitude

for each order as a function of the intensity of the reading beam R for fixed intensities of the
writing beams. The numerical parameters used for the simulation are given in the figure cap-
tion. The difference between the experimental and numerical parameters are most likely due to
the simplifications in the model. Differently from the case of the writing beams, all the orders,
in the low intensity regime, have the same linear dependence with the reading beam intensity.
If we plot the same intensity dependence in a logarithmic scale in the low-intensity limit, the
measured slopes are 0.8±0.1, 1.0±0.1, and 0.9±0.2 for χ(3), χ(5), and χ(7), respectively.

5.10.3 Memory Lifetime

Finally, we have investigated the memory lifetime for each nonlinear order. Differently
from the previous measurements, where we read at the same time (around 500 ns after the
writing fields turn off), here we keep the same duration of the reading pulse, but we vary its
delay ts in 500 ns steps (see Fig. 5.17) recovering a pulse with a smaller amplitude. The peak
intensity of each pulse is plotted in Fig. 5.4.
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Figure 5.17 Experiment pulse sequence varying for measuring the storage time. As before, the cooling
beam stays on during 21ms, while the repumper and the magnetic field are on during 20 ms. After that
the write beam is switched on for 25 µs imprinting the phase information in the medium. The reading
beam pulse is switched on at a time ts after the writing fields switch off for 15 µs recovering a signal.
At each cycle, we read at a different time ts (increased in 500 ns steps) recovering a pulse with a smaller
amplitude.
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Figure 5.18 Normalized retrieved signal amplitude for different storage times. The blue, red, and green
circles correspond to the data points of χ(3), χ(5), and χ(7), respectively. The decay predicted for each
order, as described in the text, is represented by the solid curves with the same colors as the data points.
The theoretical parameters are τ = 12µs, τ = 6µs, and τ = 4µs, for χ(3), χ(5) and χ(7), respectively.
Experimental intensities and detunings are IW ′ = IW = 148 mW/cm2, IR = 679 mW/cm2, ∆W ′ = ∆W = 0,
and ∆R = 15 MHz.

As expected and emphasized in the theoretical section, the main dephasing process is due
to atomic motion. Since the period of each grating associated with the nonlinear term χ(2n+1)

is given by Λn = 2π/n∆k, it follows that each order has a different grating period. Atomic
motion along the direction normal to the grating planes tends to “blur” in a scale of time pro-
portional to the time taken by the atom to travel a distance on the order of the grating period.
As a consequence, the smaller the period, the faster will be the decay. And since the spatial
period decreases with n, the lifetime decreases as the order of nonlinearity increases. More
specifically, the lifetime of the χ(5) and χ(7) are half and one-third of the χ(3), respectively.
In Fig. 5.18 we show the decay of the peak intensity of the D pulse signal for different stor-

age times. We fitted the experimental curves by a Gaussian curve e−(
t
τ )

2

, with the theoretical
parameters τ = 12µs, τ = 6µs, and τ = 4µs, for χ(3), χ(5) and χ(7), respectively.

There are a few approaches which should allow to suppress the dephasing by thermal mo-
tion of the atoms such as, for instance, by employing an optical lattice to restrain atomic motion
in the grating direction [75, 82]. Another idea is to simply erase the phase information after
switching off the writing fields. This was proposed in [83] for single photons in the DLCZ
protocol context.

5.11 Manipulation of Orbital Angular Momentum of Light

So far we have focused on the mechanisms of information storage. However, we can show
that this memory capability goes beyond the simple storage of information. In this section we
would like to present an important concept of the nonlinear memory related to its capacity of
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not only store but also manipulate the information stored.

5.12 Experimental set up

The experimental set up is basically the same as the one presented in section 5.2 with two
small changes. The first change is the inclusion of two independent spatial light modulators
(SLMs) to shape the writing beams W and W ′ as Laguerre–Gauss (LG) modes, as shown in
Fig.5.19. These SLMs are voltage-controlled liquid crystals that can change the phase of light
without altering the intensity or the polarization of the incoming field. Thus we modulate the
wavefront of a light beam to generate LG modes.

The second change is the insertion of a CCD camera (Thorlabs DCC3240N) paired with
a lens in the second port of the beam splitter (Fig.5.19) to record the intensity profile of the
generated beam. The camera has a triggered mode and it is sensitive to nanowatts of light.
This is important since our signals are pulses of a few hundreds nanowatts in a few hundreds
of nanoseconds, or a few microseconds in the case of the χ(5) (see Fig.5.15). The importance
of the lens is explained in section 5.12.1.

5.12.1 Characterization of the topological charge

The topological charge is measured using the tilted lens method [84]. Several methods used
to measure the charge are based on interferometry [85]. However, they can be very complex.
Moreover, the interference pattern can be easily affected by misalignment, making the practical
utilization of these techniques in the lab quite cumbersome. Other approaches using the far field
diffraction pattern are not adequate for measuring higher topological charges [86]. The tilted
lens on the other hand is an incredibly simple but extremely robust technique that allows to
measure not only integer values of ` but fractional values, and mixed values (i.e. a beam that
contains several components with different values of topological charges) as well [87].

The optical vortex with a topological charge ` exhibits a self-interference pattern after pass-
ing through an astigmatic optical element, with ` inclined nodes whose orientations are deter-
mined by the sign of the charge. In Fig.5.20, experimental images are shown for vortices with
and without the lens. The clockwise rotated pattern has a positive sign, whereas the counter-
clockwise has a negative sign.

5.13 Theoretical Model for OAM

The theoretical model follows the exact same idea of the one presented in section 5.9 with
a small change. Since the fields can be in Laguerre-Gauss modes other than the fundamental
(` = 0) Gaussian mode, we must include that in the expression for the electromagnetic field.
Instead of using the equations 5.2, we must use the expression for a Laguerre-Gauss beam,
which can be written as

u(r,φ ,z) = EW (~r, t)ei(kW z−ωW t)eiφ l . (5.21)
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Figure 5.19 Simplified experimental configuration for generation of nonlinear atomic memories with
OAM states. (a) The cold sample inside the cell is irradiated by two writing beams W and W ′, forming
an angle 2θ between them, generating the population and coherence gratings. Two independent spatial
light modulators (SLMs) shape the writing beams W and W ′ as Laguerre–Gauss (LG) modes, carrying
topological charges `W and `W ′ for W and W ′, respectively. A Gaussian reading beam R selects the order
of nonlinearity by choosing the angle β with the bisectrix between W and W ′. The field polarization (FP)
of the retrieved signal D is analyzed with a polarizing beam splitter (PBS), a half wave-plate (HWP),
and an avalanche photodetector (APD). A CCD camera and a tilted lens measure the topological charge.



72

l = 0 l = -1 l = 1 l = -2 l = 2

Without lens

With lens

field with
OAM

Tilted lens

CCD camera

Figure 5.20 Tilted lens technique. The optical vortex with a topological charge ` exhibits a self-
interference pattern after passing through an astigmatic optical element with ` inclined nodes whose
orientation determines the sign of the charge. The first and second rows show experimental images for
vortices without and with the lens, respectively.
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Therefore the writing fields can be written as

~EW =
1
2
[EW (~r, t)ei(kW z−ωW t)e−iφ`+E ∗W (~r, t)e−i(kW z−ωW t)eiφ l]x̂ , (5.22a)

~EW ′ =
1
2
[EW ′(~r, t)e

i(~kW ′ ·~r−ωW ′ t)e−iφ l +E ∗W ′(~r, t)e
−i(~kW ′ ·~r−ωW ′ t)eiφ l]ŷ , (5.22b)

where again Ei(~r, t) is the electric field envelope of beam i(i = W,W ′). The Rabi frequency
also must be redefined as

Ω j(~r, t) =
id jE j(~r, t)ei~k j·~reiφ`

4h̄
(5.23)

The rest of the calculation is exactly the same as in section 5.9 and is not fully reproduced here.
The steady-state solutions, in all orders in the W field and in first, second, and third order in the
W ′ field for the coherence and populations are (as in Eq. 5.10)

ρ
(0)
1a,1a = ρ

(0)
1b,1b =

(
Γ

2

)2
+ |ΩW |2

2
[(

Γ

2

)2
+2|ΩW |2

] , (5.24a)

ρ
(1)
1a,1a = ρ

(1)
1b,1b = 0 , (5.24b)

σ
(1)
1a,1b = ΩW Ω

∗
W ′A+Ω

∗
W ΩW ′B , (5.24c)

σ
(2)
1a,1b = σ

(2)
1b,1a = 0 , (5.24d)

ρ
(2)
1a,1a = I +[(ΩW Ω

∗
W ′)

2 +(Ω∗W ΩW ′)
2]J , (5.24e)

ρ
(2)
1b,1b = K +[(ΩW Ω

∗
W ′)

2 +(Ω∗W ΩW ′)
2]L , (5.24f)

σ
(3)
1a,1b = ΩW Ω

∗
W ′U +Ω

∗
W ΩW ′X

+(ΩW Ω
∗
W ′)

3Y +(Ω∗W ΩW ′)
3 Z . (5.24g)

As previuosly, the quantities A, B, ..., Z, whose full expressions can be found in Appendix A,
depend only on the moduli of ΩW and ΩW ′ , not contributing to the phase-matching condition.
Using the new Rabi frequency definition in Eq. 5.23, one can clearly see that for the χ(3) terms
we have

(ΩW Ω
∗
W ′) ∝ e−iφ(`W ′−`W ) , (5.25)

for the χ(5) terms we have
(ΩW Ω

∗
W ′)

2
∝ e−2iφ(`W ′−`W ) , (5.26)

and for the χ(7) terms we have

(ΩW Ω
∗
W ′)

3
∝ e−3iφ(`W ′−`W ) . (5.27)

Therefore, we can conclude that the topological charge of the retrieved beam after the reading
process has the values of −(`W ′ − `W ), −2(`W ′ − `W ), and −3(`W ′ − `W ) for the χ(3), χ(5),
and χ(7) processes, respectively. Again, as explained in section 5.9.1 this is valid for the terms
related to the process where photons are absorbed from W and stimulatedly emitted in W ′. In
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this process when the atom absorbs a photon from the field W it gains a phase eiφ`W , and when
it emits a photon in the same mode as W ′, it gains a phase e−iφ`W ′ . For the opposite process, we
have obviously the contrary, and the topological charge of the retrieved beam after the reading
process has the values of (`W ′− `W ), 2(`W ′− `W ), and 3(`W ′− `W ) for the χ(3), χ(5), and χ(7)

processes, respectively.
Now we come back to the discussion of using two read fields initiated at the end of section

5.9.1. If we attempt to read the grating related to the process for which we have absorption in
mode W (and emission in W ′) and the other related to the process for which we have stimulated
emission in mode W (and absorption in W ′), we may generate correlated beams with opposite
charges. Therefore, if the D has a topological charge `, then D′ will have a topological charge
−` since it is the opposite process in the writing.

All our results were taken with a single read field. We shall concentrate on the first process
(absorption in W) and therefore position the camera accordingly.

5.14 Results with OAM

Two sets of measurements have been implemented. In the first, we set the SLM in the W
beam to generate a fundamental Gaussian mode (`W = 0), while W ′ can carry arbitrary values of
OAM. In the second, both writing beams can have arbitrary topological charges (`W , `W ′ 6= 0).
The reading field is a regular Gaussian beam with null charge (`R = 0) throughout all the
measurements.

In the first case, we store and retrieve the topological charge of the W ′ beam up to `W ′ =±2,
namely `W ′ = −2,−1,0,+1,+2, whereas `W = 0 for the W beam. Figure (5.21b) shows the
measured topological charge of the retrieved beam for different pairs (`W ′, `W ) for each order
of non-linearity. For the χ(3) process the output is always equal to the input. However, for the
χ(5) and χ(7) the charge doubles and triples, respectively. The retrieved charge has a negative
sign since in this process when the atom emits a photon on mode W ′, it gains a phase e−iφ`W ′ .

We have also analyzed the opposite situation where W ′ is in the fundamental Gaussian mode
(`W ′ = 0) and W has a non-vanishing topological charge. This is illustrated in Fig. (5.21c). Note
that the retrieved charge has the opposite sign of Fig. (5.21b), since in this process when the
atom absorbs a photon from field W , it gains a phase eiφ`W .

In the second case both W , W ′may have different OAM states, namely `W =−2,−1,0,+1,+2
and `W ′ =−2,−1,0,+1,+2. Fig. 5.22 shows the measured topological charge of the retrieved
beam for different pairs (`W ′, `W ) for each order of non-linearity. Again, as before, for the χ(3)

process the output is always equal to the input and for the χ(5) and χ(7) the charge doubles
and triples, respectively. As stated before, the topological charge of the retrieved beam after the
reading process has the value of (`W ′−`W ), 2(`W ′−`W ), and 3(`W ′−`W ) for the χ(3), χ(5), and
χ(7) processes, respectively. This allows one to perform algebraic operations like subtraction,
addition and multiplication by factors of 1, 2 and 3 (see Fig. 5.22).

For example, for (`W ′, `W ) = (1,−1) input, we would have an output charge of 2, 4, and
6 for the χ(3), χ(5), and χ(7), respectively. If the beam W ′ was your signal arriving from
any communication system, you could see this process as storage and manipulation of your
original signal, where the W beam would be the responsible for the manipulation coupled with
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Figure 5.21 Input and output states of OAM in the case where one writing field is in the fundamental
Gaussian mode and the other has a non-vanishing topological charge for the χ(3), χ(5), and χ(7) memo-
ries. (a) Self-interference pattern of the incident writing beams W (`W ) and W ′(`W ′) after passing through
a tilted stigmatic lens, evidencing the topological charge of each beam. (b), (c) Retrieved topological
charges in the case where the topological charges of writing beams W and W ′ are, respectively, equal
to (b) `W ′ = −2;−1;0;+1;+2 and `W = 0 and (c) `W ′ = 0 and `W = −2;−1;0;+1;+2. The values of
the pair (`W ′ , `W ) and the values of the retrieved topological charges are indicated, respectively, in the
bottom-right and top-left corners of each frame.
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the nonlinearity of the medium. Clearly the pulse durations used in a typical communication
system are far shorter than the pulse durations required for imprinting the information in our
atomic memory. Nevertheless, these results would be the first implementation of our initial
proposal of integrating storage and manipulation of states of light inside the same quantum
memory.

5.15 Manipulation of superpositions

In the last section we presented the manipulation for simple modes, i.e., beams with a well-
defined charge ` = 0,1,2, .... However, we can use as an input more complex states of light
such as superpositions of OAM modes. For instance, suppose that the W mode is a coherent
superposition of OAM modes with charges `W and `′W . The field can be written as

u(r,φ ,z) = EW (~r, t)ei(kW z−ωW t)
(

eiφ`W + eiφ`′W
)
. (5.28)

Therefore, if W ′ is a Gaussian beam with charge `W ′ = 0, we would have for the χ(3), for the
χ(5), and for the χ(7)

(ΩW Ω
∗
W ′) ∝

(
eiφ`W + eiφ`′W

)
, (5.29a)

(ΩW Ω
∗
W ′)

2
∝

(
eiφ`W + eiφ`′W

)2
=
(

e2iφ`W + e2iφ`′W +2eiφ(`W+`′W )
)
, (5.29b)

(ΩW Ω
∗
W ′)

3
∝

(
eiφ`W + eiφ`′W

)3
=
(

e3iφ`W + e3iφ`′W +3eiφ(2`W+`′W )+3eiφ(`W+2`′W )
)
, (5.29c)

respectively. Therefore, the output of the memory would be a different superposition for the
higher orders.

In order to enlighten the usefulness of this, let’s consider how OAM is used in quantum
information. Usually in this context the topological charge is a good quantum number so that
we may build a base defined by (..., |`=−2〉, |`=−1〉, |`= 0〉, |`= 1〉, |`= 2〉, ...). Thus,
states can be written, for instance, as

|Ψ〉= α |`〉+β
∣∣`′〉 , (5.30)

where α2+β 2 = 1. In reference [63] there are a few experimental examples of such states. The
authors show single-photon images of OAM simple states such as |−1h̄〉, |0h̄〉, |+1h̄〉, |+2h̄〉,
and also superposition states such as |+2h̄〉+ |−2h̄〉, |+3h̄〉+ |−3h̄〉, and |+20h̄〉+ |−20h̄〉.

Now, consider that our initial state is |`= 1〉, our χ(5) memory would transform it into
|`= 2〉. This shows that the transformation presented in the previous sections is nontrivial.
Depending of the context, it can be more than an algebraic operation. In the last example it is
a state transformation similar to a quantum gate.

As another example, we consider the possibility of transforming a superposition state. Let
us suppose the initial photon state is

|Ψ〉= 1√
2
(|`〉+ |−`〉) . (5.31)
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According to the Eq. (5.29b) for the special case with `W =−`′W the χ(5) process gives

(ΩW Ω
∗
W ′)

2
∝

(
e2iφ`W + e2iφ`′W

)
. (5.32)

Therefore, the output would be

|Ψ〉=
√

1/2(|2`〉+ |−2`〉) . (5.33)

We want to stress that even though the experimental results with OAM presented here in-
volves bright beams, the orbital angular momentum is present due to the spatial structure of the
beam. In principle, one should therefore be able to observe the same kind of transformation
even at the single photon level.
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Chapter 6

Raman Gain

6.1 Introduction

Since its first observation [88] many applications have been proposed for light carrying or-
bital angular momentum. To name a few, one can cite micromanipulation [89], imaging [90],
and communication systems [91]. The motivation to use OAM states for applications in quan-
tum information is related to the possibility of enhancing the efficiency of protocols using the
multidimensional state space provided by OAM modes [91]. This is true not only for quantum
communication but also for classical communication. For instance, it was recently demon-
strated experimentally that OAM can be used to increase the channel capacity and spectral
efficiency of millimetre-wave wireless communication links [92] and to implement high rate
data encoding [93].

In this context of classical communication, an important issue is the ability to reverse the
propagation losses, especially for long distances. The common method is to introduce ampli-
fiers along the path to recover the damped signal. Here we demonstrate that a LG mode can
be amplified through a nonlinear stimulated Raman process. The amplification of a mode can
be also done through parametric gain via four-wave mixing, as has been studied exhaustively
in the literature. However, the parametric gain produced by this kind of process can only be
acheived under stringent experimental conditions, such as phase matching, high intensity and
far from resonant detuning. Here it is shown that it is possible to observe gain in a much simpler
configuration. The results discussed here were published in [35].

6.2 Experimental set up

The experimental apparatus used here is very similar to the one presented in the previous
chapters. Therefore, we will not give all the details to avoid repetition. The experiment is
performed in a cloud of cold cesium atoms obtained from the magneto-optical trap (MOT)
using the Zeeman structure of the hyperfine levels 6S1/2(F = 3) and 6P3/2(F ′ = 2). The atoms
are initially pumped into the 6S1/2(F = 3) ground-state via a non resonant excitation induced
by the trapping beams. The writing and reading beams are switched on inside the period of
1 ms in which all MOT beams and magnetic field are off. Three pairs of Helmholtz coils are
employed to compensate for residual magnetic fields.
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Figure 6.1 (a) Simplified spatial configuration of the optical fields. (b) Double-Λ system corresponding
to Zeeman sublevels of the hyperfine transition (F = 3)→ (F ′ = 2). It is also indicated the coupling of
the sublevels with the respective optical fields.

A coupling beam C and a signal beam S, with orthogonal linear polarizations, are shined
on the cold atomic ensemble forming a small angle 2θ ≈ 2◦ as indicated in Fig. (6.1a). The
sample also interacts with a couterpropagating pumping beam P, with the same linear polariza-
tion as the signal beam S. The three beams interact simultaneously for 30µs until the system
reaches the steady state. The fields are temporally modulated by three independent acousto-
optic modulators (AOM), that also enable us to control their frequencies individually. Since no
external magnetic field is applied, we consider the C beam polarization direction as the quan-
tization axis. Therefore, for the particular polarization composition of this set of beams, one
can approximate the light-matter interaction in the whole Zeeman structure as the interaction
in sets of Λ three-level systems as shown in Fig. (6.1b).

As in the memory case, we use a SLM to shape the signal S beam as a Laguerre–Gauss (LG)
mode. The coupling and the pump beams are Gaussian beams with no topological charge.

6.3 Theoretical model

We model our atom as an homogeneously broadened three-level Λ system, as shown in
Fig.6.2, where the states |a〉 and |c〉 are non-relaxing ground states with zero energy and the
state |b〉 is the excited level with energy h̄ω0 and decay rates to the two ground states equal to
Γba and Γbc, respectively, with Γ = Γba +Γbc being the total spontaneous decay rate, Γ/2π =
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Figure 6.2 Simplified Λ system considered in the theoretical model.

5.2MHz.
The role of the P field is only to pump atoms from |c〉 to |a〉 to create a population inversion.

Therefore, instead of considering the coherent coupling between the pump field and the excited
states we treat it as an incoherent pump with an effective rate, that essentially transfers popu-
lation from other Zeeman sublevels to the one interacting with the coupling beam C. In other
words, the strong P field transfers population incoherently at rate ΓP from |c〉 to |a〉, creating a
population inversion between these levels. The C field excites the atom and the S field induces
the stimulated decay, producing a gain. This simplification is sufficient to capture the essential
physical characteristics of the system as we will see in the comparison with the experimental
results.

In the rotating wave approximation, the time evolution of the slowly varying populations
and coherences is given then by the equations:

dσaa

dt
= i [ΩCσba−Ω

∗
Cσab]+Γbaσbb +ΓPσcc , (6.1a)

dσcc

dt
= i [ΩSσbc−Ω

∗
Sσcb]+Γbcσbb−ΓPσcc , (6.1b)

dσbb

dt
=−i [ΩCσba−Ω

∗
Cσab +ΩSσbc−Ω

∗
Sσcb]−Γσbb , (6.1c)

dσab

dt
= i∆Cσab + iΩC (σbb−σaa)− iΩSσac−

Γ

2
σab , (6.1d)

dσcb

dt
= i∆Cσcb + iΩS (σbb−σcc)− iΩCσca−

Γ

2
σcb , (6.1e)

dσac

dt
= iδσac + i [ΩCσbc−Ω

∗
Sσab]− iΩCσca−

Γ

2
σcb . (6.1f)

where δ = ∆C−∆S is the two-photon detuning,

Ω j(~r, t) =
id jE j(~r, t)ei~k j·~r

4h̄
(6.2)

is the Rabi frequency associated with beam j. We consider Γba = Γbc =
Γ

2 . The system is
considered closed, so ρaa +ρbb +ρcc = 1.

The response of the system is found, in the steady state regime, in all orders in the C field
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and in first order in the S field. The solutions for the coherence and populations are

σ
(0)
aa =

(
Γ

2

)2
+ |ΩC|2 +∆2

C(
Γ

2

)2
+ |ΩC|2

(
2+ Γ

2ΓP

)
+∆2

C

, (6.3a)

σ
(0)
bb =

1−σ
(0)
aa

1+ Γ

2ΓP

, (6.3b)

σ
(0)
cc =

Γ

2ΓP

1−σ
(0)
aa

1+ Γ

2ΓP

, (6.3c)

σ
(0)
ab =

Γ

2ΓP

1−
(

2+ Γ

2ΓP

)
σ
(0)
aa(

2+ Γ

2ΓP

)(
i∆C− Γ

2

) , (6.3d)

σ
(1)
cb =

ΩS

(
iΓP

2 −δ

)(
σ
(0)
cc −σ

(0)
bb

)
−ΩCΩSσ

(0)
ba(

ΓP
2 + iδ

)(
i∆2− Γ

2

)
−Ω2

C

. (6.3e)

The dispersion and the absorption of the S field are related to the real and imaginary parts,
respectively, of σcb. Therefore, we can use expression (6.3e) to plot the theoretical signal-beam
transmission spectrum as depicted in Fig. 6.3. In the curves we used ΩC/Γ = 0.1, ΓP/Γ = 0.05
and an optical depth of 3. The one order of magnitude discrepancy in the Rabi frequency for the
coupling beam is probably due to the simplification of the model that ignores the multiplicity
of the Zeeman structure, which results in a smaller effective intensity.

If the P beam is removed, we would be left with a strong and a weak field in a Λ three level
system, which is the exact configuration for EIT. Therefore, it is expected that for ΓP = 0, we
obtain the usual EIT spectrum. This seems to be the case as one can see in Fig. 6.3, where at
δ = 0 we have a transmission maxima.

Equally important is the fact that σcb is proportional to ΩS, which is by its turn proportional
to the phase of the incoming S beam. This means that if we have a Laguerre-Gauss beam
carrying a topological charge instead of a fundamental Gaussian beam, we would end having
an amplified field with the same topological charge after the sample.

6.4 Experimental Results

We present in this section two sets of measurements. In the first, we set the SLM in the S
beam to generate fundamental Gaussian modes (`= 0) to investigate the mechanics of the gain
itself. In the second we set the SLM in the S beam to generate arbitrary values of OAM, to
investigate the amplification of the LG mode.

6.4.1 Spectral analysis of the gain

As stated in the previous section, in this first set of measurements all the beams are gaussian
modes and we investigate the gain itself through its spectral analysis. All fields have their
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Figure 6.3 (a) Experimental spectrum of the transmission of the field S as a function of the frequency
detuning ∆S for different values of the detuning ∆C. (b) Theoretical spectrum of the transmission of field
S as a function of the frequency detuning ∆S for different values of the detuning ∆C.

frequencies tuned around the 6S1/2(F = 3)→ 6P3/2(F ′ = 2) transition. Each field has it own
detuning, namely, ∆S, ∆C, and ∆P.

For the pump beam P blue-detuned by ∆= 1MHz, we examine the signal transmission while
we scan the two-photon detuning δ = ∆C −∆S for three different detunings of the coupling
beam C, namely, ∆C = 0,±5.5 MHz. In Fig. (6.3a) we show curves for 100 kHz steps. The
spectra exhibit gains up to 70% for ∆C = −5.5MHz around δ = 0. This gain also depends on
the intensity and detuning of the pump beam P and cannot be observed in its absence. Since
the fields are in the four wave mixing (FWM) configuration, as one can see from the spatial
arrangement in Fig.(6.1a), one might be induced to assume this is a gain generated by the
nonlinear process. We have also tested orienting the pump beam in a direction which is non-
phase-matched in order to assure that it does not contribute to any parametric gain via FWM.
The gain was resilient to these changes, demonstrating that the P field acts only as an incoherent
pump that generates a population inversion between two Zeeman ground states. We understand
this gain as originating from Raman amplification of the signal beam S due to a population
inversion between the two Zeeman ground states, induced by the pumping beam P.
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6.4.2 Amplification of the LG mode

In the second set of measurements, we use the SLM to generate LG modes with topological
charges `= 1,2,3,4.

We have adjusted the waist of the signal beam to fit inside the intersection of the pump and
coupling fields in order to obtain a homogeneous amplification in the spatial structure of the
field. This is the reason behind the reduction of the gain in the OAM amplification (up to 20%)
showed in Fig. 6.4 compared to the gain without OAM showed (up to 70%) in Fig.(6.1a).

The beam waist increases with the topological charge and its values at the atomic cloud are
0.3 mm, 0.5 mm, 0.7 mm 1.0 mm and 1.1 mm, respectively for the modes with `= 0,1,2,3,4,
which are all smaller than the 1.5 mm of the C and P beams. As a consequence, the beams with
higher topological charge interact with more atoms. This explains why the gain increases with
the topological charge, as may be observed in Fig. 6.4.

6.5 Conclusion

We have experimentally observed the amplification of a weak signal beam in an ensemble of
cold cesium atoms through a stimulated narrow-band Raman gain mechanism. This was used
to demonstrate the amplification of a LG mode carrying OAM. These results might be useful
in classical communication using light modes with OAM-encoded information, particularly
for long-distance communication, which requires amplification nodes that preserves the phase
structure of the mode, to compensate for inevitable losses.

A simple theoretical model using density matrix approximates the whole Zeeman struc-
ture interacting with three fields as sets of Λ three-level systems interacting with two coherent
fields in the presence of an incoherent pumping. The model reproduces qualitatively well the
experimental results, in particular the amplitude and subnatural spectral width of the gain’s
spectrum.
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Figure 6.4 Measurement of the topological charge of the signal beam S. The first column displays the
topological charge of the incident beam, measured without the atoms. The second column displays the
topological charge after the amplification in the atomic system. The third column shows the transversal
profile of the images of the first (red) and second (black) columns.



PART III

Single photon regime
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Chapter 7

Atomic memory in the single-photon
regime

7.1 Introduction

Nonlinear optics is behind the generation and manipulation of many quantum states of light
such as squeezed states [94] and Fock states [95]. Therefore, we expect that, by moving to
higher orders, one would observe new quantum states of light. Moreover, nonlinear optical
phenomena allows the creation of entangled states. Twin photon generation became one of the
most popular procedures to generate entanglement between pairs of photons. However, to go
beyond two dimensional spaces can be quite challenging using the common methods.

Multipartite entanglement provides considerable advantages when compared with bipartite
entanglement in several applications in quantum technologies and fundamental tests of quan-
tum mechanics. For instance, it can be used to create a network with multiple senders and
receivers [96], increase the sensitivity in metrology [97], observe extreme spin squeezing [98],
and so forth. Therefore, generation of photonic multipartite entanglement became an important
goal in quantum optics.

The first step to generate multiphoton entangled states would be the production of photon
triplets. Several theoretical proposals have been suggested for the generation of photon triplets.
A few examples are cascaded spontaneous parametric down-conversion [99], tri-excitons in
quantum dots [100], and combinations of χ(2) processes [101]. However, due to the low effi-
ciency of these processes only a few experimental implementations can be found in the litera-
ture. We highlight the efforts using cascaded spontaneous parametric down-conversion [102]
and a third-order nonlinear process [103].

In cascaded spontaneous parametric down-conversion, the idea is to use one of the photons
from the pair generated by a first down-conversion source pumped by a laser as the pump for
a second down-conversion crystal. However, since conversion efficiency in these crystals are
very low, using a single-photon as a pump field can lead to a low rate of triplet generation. In
reference [102] this rate was approximately 4.7±0.6 counts per hour.

Here we propose a concrete method to generate triplets of correlated photons based on the
configuration presented in the previous chapters. The experiment is not yet finished, therefore
only the concept will be discussed. We believe that the final version of the system will provide
the observation of new quantum states of light. We also expect to have a higher efficiency
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Figure 7.1 Schematic description for photon-pair generation in the DLCZ-protocol scheme. (a) Firstly,
one shines a write beam transferring an atom from |g〉 to the other ground state |s〉 and generating the
Field 1. (b) After a chosen delay, the read field is switched on, transferring the atom back from |s〉 to |g〉
with the emission of the Field 2. (c) The spatial configuration of the fields involved is the same of the
four-wave mixing. The pairs write and read, Field 1 and Field 2 are counter-propagating.

compared to the popular method of spontaneous parametric down-conversion. Our scheme
offers another advantage compared to parametric down-conversion: it has memory.

7.2 Generation of photon-pairs in the DLCZ-protocol
scheme

Before explaining our proposal for generation of multiple quantum-correlated photons, it is
necessary to explain the inspiration for our method, i.e., the generation of photon-pairs in the
DLCZ-protocol scheme [5].

The building block of the protocol is an ensemble with N identical atoms in a Λ config-
uration, interacting with two fields, a writing field W and a reading field R, that induces the
spontaneous generation of two other fields (see Fig. 7.1).

Initially, all the atoms are prepared in the same ground state |g〉, in such a way that the state
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of the system can be written as

|Ψ〉=
N

∏
i=1
|gi〉 (7.1)

A first light field W interacts with the sample, having a small probability of transferring one
atom from |g〉 to the other ground state |s〉, simultaneously with the emission of the field 1 [see
Fig. (7.1a)]. However, since all the atoms illuminated by the writing field have the same proba-
bility of being transferred, we cannot know which one made the transition. This indeterminacy
forces one to write the new state of the system as a superposition of all possibilities, namely

|1a〉=
1
N ∑

i
|g1〉 · · · |si〉 · · · |gN〉 , (7.2)

which is a symmetric collective state. Naturally, during the excitation of the writing field, more
than one atom can be transferred from |g〉 to |s〉. In this case, other states like |2a〉, |3a〉, etc.
would be generated.

In the situation where one has a writing field power low enough to make the higher-order
excitation components negligible, the total state, field 1 and atomic parts, can be written as

∣∣Ψa,1
〉
= |01〉 |0a〉+ eiβ√p |11〉 |1a〉+O(p) , (7.3)

where |n1〉 corresponds to the state of the field 1 with n photons, p is the probability of a single
atomic excitation, O(p) represents the terms with excitation probabilities equal or higher than
p2, and β is the phase determined by the propagation of the writing field. Note that Eq. 7.3
tells that the detection of a photon in the mode of field 1 heralds a single excitation in the
ensemble. That is if field state is |11〉, then the atomic state must be |1a〉. This excitation (and
the superposition that exists in it) remains stored in the ensemble as long as the decoherence
processes do not erase it.

One can access this excitation to generate a second photon. If one switches on a reading
field resonant with the transition |s〉 → |e〉, the atom is transferred back to the state |g〉, and the
collective excitation is mapped back to the photonic state called field 2 [see Fig. (7.1b)]. In this
case the superposition among the atoms is destroyed, erasing completely the information from
the ensemble. The total state of field 1 and 2 is

∣∣Ψ1,2
〉
= |01〉 |02〉+ eiβ ′√p |11〉 |12〉+O(p) . (7.4)

Note that the state in Eq. 7.4 is an entangled state in the number of photon basis, simi-
lar to the one in parametric down-conversion [5]. Therefore, the two photons exhibit strong
correlations between them.

7.3 General idea of the experiment

In this chapter we aim to introduce a full quantum version of the experiment presented in
chapter 5. The basic spatial configuration employed is the same as the one presented in chapter
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Figure 7.2 Simplified experimental set up for generation of triplets. The process consists in one ab-
sorption in the mode W1 and one emission in the mode of photon 1, followed by a second absorption in
the mode W2 and one emission in the mode of the photon 2, followed by a one-photon absorption of R
and one-photon emission of photon 3 in the phased-matched direction.

5 that allows an angular selection of a specific order of nonlinearity. However, instead of using
two write fields W and W ′ (writing beams) with an angle 2θ ≈ 2◦ between them as in chapter
5, where the first excites the atom and the second induces stimulated emission, we remove W ′

to observe spontaneous emission in this mode. We consider only the χ(3) and χ(5) signals,
leaving the χ(7) for future efforts.

Another difference is that, unlike the semi-classical case, where the write process reaches
a steady-state with two strong fields, here we are interested in the pulsed excitations. Only one
atom is excited from the whole ensemble into the target collective mode and, as a consequence,
only one photon is emitted per transition. Therefore, for the χ(5) process one has one absorption
in mode W1 and one emission in the mode of photon 1, followed by a second absorption in
mode W2 and one emission in the mode of the photon 2, followed by a one-photon absorption
of R and one-photon emission of photon 3 in the phased-matched direction. Figure 7.2 depicts
schematically the idea for the χ(5) experiment.

The details of the cloud formation, write and read processes are presented in the following
sections.
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7.4 Magneto-optical trap (MOT)

The basic idea for obtaining a cold sample is the same as explained in the chapter 5. There
are only a few differences between the MOT used in the single-photon experiment and the one
used in the semi-classical experiment. The first difference is the atom. This experiment is
performed in another laboratory that uses Rubidium 87 instead of Cesium.

The cooling laser is locked at the cross-over F = 1− 3, which is exactly midway the
transitions 5S1/2(F = 2)→ 5P3/2(F ′ = 1) and 5S1/2(F = 2)→ 5P3/2(F ′ = 3), while the re-
pumper laser is at the F = 1−2 cross-over, which is exactly midway the transitions 5S1/2(F =
1) → 5P3/2(F ′ = 1) and 5S1/2(F = 1) → 5P3/2(F ′ = 2) (Fig.7.3). A pair of independent
AOMs are used to tune the cooling and repumping laser frequencies to 17 MHz below res-
onance from the 5S1/2(F = 2) → 5P3/2(F ′ = 3) transition and exactly on resonance with
5S1/2(F = 1)→ 5P3/2(F ′ = 2) transition, respectively. The first is kept on for 20 ms together
with the MOT quadrupolar magnetic field, whereas the second for 21 ms, providing a cold
sample with 2 mm diameter and an optical density of approximately 30. During the additional
1 ms the repumping beam is on, it pumps the atoms into the 5S1/2(F = 2) ground-state.

The beams are conducted by three independent polarization maintaining (PM) optical fibers
to the glass chamber. At the exit of each fiber, there is a collimator with a lens f = 100mm, that
leaves the beam with 1cm. Here we have another difference with respect to the MOT presented
in chapter 5. We do not retroreflect the three beams that leave the fibers, instead we split into
two x axis beams in a PBS. The transmitted beam goes to one window of the science chamber,
while the reflected part goes to the opposite window (see Fig.7.4). The same occurs for the y
axis. The z axis remains retroreflected. Before the cell we use quarter-wave plates to change
the linearly polarized light that leaves the fiber into circularly polarized light.

We use one homemade laser head (diode model Thorlabs DL7140-201S), with an output
power of approximately 70mW , for generating all six cooling fields, write, and read beams and
a second diode laser identical to the first, for the repumper. The cooling laser is amplified by a
tampered amplifier (Sacher Lasertechnik – Tapered Littrow Laser 1.5W).

7.5 Experimental set up

We prepare our state by shining the medium with a circularly polarized σ− beam, pumping
all the atoms to the extreme of the Zeeman structure. In other words we prepare the system
with all atoms in the same level through optical pumping to the state |g〉 = |F = 2,mF =−2〉
of the 5S1/2 manifold (see Fig. 7.5). Therefore, we are left with an ensemble of atoms in a
double Λ configuration. The other relevant ground state |s〉 corresponds then to the Zeeman
sublevel |F = 2,mF = 0〉 from the same manifold (Fig.7.5). There are two excited states |e〉
and |e′〉 that correspond to the Zeeman sublevels |F ′ = 3,mF ′ =−1〉 and |F ′ = 2,mF ′ =−1〉,
respectively, from the hyperfine level 5P3/2(F ′ = 2) of the D2 line of Rubidium 87 (Fig.7.5).
The reason we use (F ′ = 2) transition for the second writing beam and not (F ′ = 3) is due to
the fact that the (F ′ = 3) beam would also interact with the other atoms in |g〉. With the beam
tuned to the 5S1/2(F = 2)→ 5P3/2(F ′ = 2) transition, we can use a strong and resonant beam
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Figure 7.5 Transition sequence in a double-Λ system.
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Figure 7.6 Write process.

with a smaller risk of disturbing the rest of the system, since it only interacts strongly with one
atom. The cold ensemble is obtained from a magneto-optical trap (MOT), whose trapping and
repumping lasers are turned off during the experiment period.

7.6 Writing

As in section 7.2, the system is initially prepared with all atoms in the same internal state.
However, unlike in the most of DLCZ discussions, here it is included in the discussion also the
external degrees of freedom, namely, the linear momentum p. The reasons will become clear
in this section.

After preparation of the system in the state |Ψ〉= |g,p〉= |g1〉 |p1〉 |g2〉 |p2〉 · · · |gN〉 |pN〉 we
can start the writing process. A write pulse most likely excites just one atom of the ensemble
in the transition |g〉 → |e〉. To diminish the odds of more than a single excitation, a weak and
20MHz red-detuned write field is used during 50 ns. Therefore, there is a probability to transfer
this atom spontaneously to the state |s〉 with the simultaneous emission of a single photon in
the |e〉 → |s〉 transition, which we call photon 1 [see Fig. (7.6a)]. The detection of photon 1
heralds the transfer of one atom from |g〉 to |s〉. However, we do not know which atom made
this transition. Therefore, we have to take into account all possibilities, leaving the ensemble
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in the state

|Ψ〉=A1(0)ei(kkkW−kkk1)·r̂rr1 |s1〉 |g2〉 · · · |gN〉+A2(0)ei(kkkW−kkk1)·r̂rr2 |g1〉 |s2〉 · · · |gN〉+ · · ·
+AN(0)ei(kkkW−kkk1)·r̂rrN |g1〉 |g2〉 · · · |sN〉

=∑
i

Ai(0) |si〉 |pppi− h̄(kkkW − kkk1)〉 (7.5)

At this point we have two possibilities. One is to switch on the read field in the counter-
propagating direction of the writing field, closing the χ(3) process. The other is to use the
second write field polarized orthogonally to the first one, accessing the χ(5) process. This
would be the quantum version of the selective memory presented in the chapter 5, where we
create all different gratings choosing only one with the direction of the reading field.

In the second scenario, we use a field W2 in the transition |s〉 to |e′〉. Since only one atom
can interact with this field, unlike the first writing beam, we now use a stronger resonant field
that increases the chances of success. Therefore, there is a probability to transfer this atom
spontaneously back to the state |g〉 with the simultaneous emission of a single photon in the
|e′〉 → |g〉 transition, which we call photon 2 [see Fig. (7.6b)]. The detection of the photon 2
leaves the ensemble in the state

|Ψ〉= |g〉∑
i

A′i(0) |pppi− h̄(kkkW1− kkk1)− h̄(kkkW2− kkk2)〉 (7.6)

Note a striking difference between the χ(3) and χ(5) process. The first leaves the ensemble in a
collective state that is entangled in the internal degrees of freedom (Eq. 7.5). The second does
not have entanglement in the internal degrees of freedom because all atoms are back in the |g〉
state. However, even though the atom that performed the two writing transitions returned to
the same internal state, it did not return to the same external state, since it gained momentum
in the (kW1 −k1)+ (kW2 −k2) direction. In other words, in the χ(3) we have entanglement in
the internal degrees of freedom and in the χ(5) we have entanglement in the external degrees of
freedom (Eq. 7.6). The information is stored in different places, similar to the semi-classical
case presented in chapter 5, where we have coherence and population gratings.

7.7 Reading

After the write process, the ensemble is left in the state described by Eq. 7.6, that will live
as long as the written grating is present. The reading process can occur at any time between the
collective state formation and the grating wash out. After a delay chosen by the experimentalist,
a read pulse excites the atom in the transition |g〉 → |e〉 with a probability to transfer this atom
spontaneously back to the state |g〉with the simultaneous emission of a photon 3 in the |e〉→ |g〉
transition (see Fig. 7.7). One can see that the reading process occurs basically in a two level
system.



96

(c)
(3)c (5)c

a1 b1 a1 b1 a1 b1

a2 b2 a2 b2 a2 b2

W

D W’

R

W’

W

W’D

W W W

D W’ W’
R

(7)c

W’

RW

1Fm = -3Fm = -

4Fm = - 3Fm = -

2Fm = -

2Fm = - 1Fm = -

0Fm = 1Fm =

0Fm = 1Fm =

2Fm = 3Fm =

2Fm = 3Fm = 4Fm =

1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13 14 15

g s

e¢

e

R
P3

Figure 7.7 Read process.

7.8 Control system

All the pulses of the experiment, such as the magnetic field, cooling, repumper, writing, and
reading fields are electronically controlled by an Arduino Due board, operated by an Arduino
software. All the pulses are generated in 20ms cycles and they repeat themselves at the end of
each cycle. First we generate a pulse to switch on the cooling and repumper beams for 17ms
and 18ms, respectively. The MOT magnetic field remains on during the same 17ms of the
cooling beams (see Fig.7.8). The coils that compensate for residual magnetic fields have no
temporal control and stay on continuously. During the extra 1ms of the repumper beam pulse
the atoms are optically pumped from 5S1/2(F = 1) to 5S1/2(F = 2), preparing the desired initial
state. Here we have a few differences between the write and read pulses from the semi-classical
memory present in chapter 5 and the ones used here. First of them is the number of pulses per
cycle. In the semi-classical memory the write and read processes occurs once per cycle, i.e.,
we write the information, read it and restart the cycle all over switching on the MOT beams.
Here, since we are dealing with single photons, and the process of creating the excitation is
probabilistic, we perform about 500 trials in each cycle to increase the probability of success.
This means that we turn on and off the optical pump, write 1, write 2, and read pulses 500 times
during each cycle. This is illustrated in Fig.7.8. That is one reason why we use the Arduino
Due instead of the National Instrument (NI) board of chapter 5. The NI board channels only
accepts one TTL pulse for each channel for each cycle, while the Arduino Due permits more
than one pulse per channel for each cycle.

We start with a 260 ns optical pump to prepare the initial state in the extreme of the Zeeman
structure. After that we switch on the write field 1 for 52 ns. We use an OR gate to electronically
filter the TTL signals emitted by the APDs. We leave only a window around each write pulse,
which is when the photon from the process is emitted. We do the same for the write field 2.
Finally, we switch on the read field for 500ns.

7.9 Alignment

The reading beam comes through a different fiber, in the counter-propagating direction
with the same transverse mode as the writing fields. The χ(3) reading field is exactly counter-
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Figure 7.8 Experiment Pulse Sequence. The cooling and repumper beams stay on for 17ms and 18ms,
respectively. The MOT magnetic field remains on during the same 17ms of the repumper. We perform
about 500 write and read trials in each cycle to increase the probability of detecting three photons. This
means that we turn on and off the optical pump, write 1, write 2, read pulses 500 times during each
cycle. A 260 ns optical pump prepares the initial state in the extreme of the Zeeman structure. After that
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process are emitted. The gates are represented by the yellow and beige pulses.
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Figure 7.9 Semi-classical χ(5) signal measured by the SPCM.

propagating to the writing fields and the χ(5) reading field makes an angle θ ≈ 1◦ with respect
to the χ(3) reading field. For the χ(3) signal, the read beam is coupled to the writing beam fiber
with 70% efficiency. This guarantees both that they are exactly counter-propagating and have
the same transverse mode along the path, including inside the MOT, where it matters the most.
The same is done for photons 1 and 2 emitted during the process. We use an input field for
alignment in the fibers used to collect the photons. For the χ(5) process, it is more complicated
since the beams are neither counter-propagating, nor have the same transverse mode. In fact,
before assembling the set up for the single-photon experiment we analyzed the transverse mode
for the χ(5) semi-classical signal. We identified that the χ(5) signal defocus faster than the χ(3).
This is expected since the signal is a convolution of all modes. In the polarization expression

P = χ
(3)EW Ep1ER +χ

(5) (EW Ep1)
2 ER , (7.7)

we see that if the write field is the exact conjugate of the read field (ER = E∗W ), the second
photon in the χ(3) process will be the exact conjugate of the first (Ep2 = E∗p1

). However, this
does not happen for the χ(5). Since all the beams are focused in the MOT, the signal (the last
photon) is also generated with its focus in the MOT. Therefore, our solution is to use a 1m
lens a meter away from the MOT for collimation and then couple the semi-classical signal in
the fiber for alignment. Fig. 7.9 shows the semi-classical χ(5) signal measured by the single
photon counting module (SPCM) with more than 50% efficiency.
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7.10 Conclusion

We have presented a viable scheme to produce photons triplets, which might be expanded
to more photons, based on a multiwave-mixing configuration. The first write pulse excites just
one atom of the ensemble in the transition leading to the emission of one photon in the mode
of photon 1. A second write pulse excites the same one atom back to its original states leading
to the emission of the second photon in the mode of photon 2. A read field finishes the process
exciting the atom leading to the emission of the third photon in the mode of photon 3 in the
phased-matched direction. The process can be expanded to other nonlinear orders like χ(7),
χ(9), etc.

Since nonlinear optics is the standard method to observe many interesting quantum states
of light, like squeezed states observed in the production of photons pairs, we would also expect
that the final state of the triplets will provide the observation of other new quantum states of
light.
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Chapter 8

Conclusions

Here we give the final remarks and discuss the perspectives of the work of this thesis. First,
we have presented an investigation of the writing and readout processes of an optical memory
using higher-order nonlinearities in an atomic medium. A characterization of the dependence
with the intensities of the writing and the reading beams was performed. It was shown that the
information is encoded either in the population or in the coherence of the Zeeman structure of
the hyperfine cesium ground state depending on the order of nonlinearity. The retrieved signal
associated with an odd number of interactions with the writing beams [χ(3), χ(7), etc.] is stored
only in the coherence. However, for an even number of interactions [χ(5), χ(9), etc.], the signal
exists only in the populations. This leads to two different processes, which by consequence
leads to differences in memory features that can be explored for different applications. It is
also shown that each order has a different decay time that decreases as the order increases.

We also propose that these quantum memories can integrate a few of the desired properties
for a quantum memory inside a single process. For instance, we show that, with the χ(5) and
χ(7) processes, it is possible to combine storage and processing abilities in a single process. We
demonstrate this by adding orbital angular momentum in the write fields. As the fields interact
with the ensemble, each atom will accumulate a different amount of OAM from the applied
laser beams for each nonlinear process. As a result the new field generated at the read process
can have a different charge from the original ones.

The same scheme used here can be in principle applied in the single-photon regime. We
propose a method to generate triplets of correlated photons based on the six-wave mixing con-
figuration presented in the semi-classical experiments in this thesis. The idea is to use the many
photons that are naturally involved in multiwave-mixing processes to signalize two photons [in
the case of the χ(5)] or more [in the case of the χ(7), χ(9), etc.] with one. More explicitly
one has one absorption in the mode W1 and one emission in the mode of photon1, followed by
a second absorption in the mode W2 and one emission in the mode of the photon2, followed
by a one-photon absorption of R and one-photon emission of photon3 in the phased-matched
direction.

Finally, we present the amplification of an optical vortex beam carrying orbital angular
momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. This might
be useful for classical communication using OAM, where reversing the propagation losses,
especially for long distances, is crucial.

We expect that the results and proposals presented here contribute to the development of
quantum memories and quantum optics, opening new perspectives in these fields.
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Appendix A - Quantities of the
steady-state solution

The quantities related to the steady-state solution are listed below.
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