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can flow or it can crash. Be
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ABSTRACT

The Thesis is focused on superconducting phenomena that can not be captured by
the standard Ginzburg-Landau (GL) theory. Furthermore, the phenomena of interest can
hardly be investigated in necessary detail by means of the full microscopic formalism,
due to abnormal technical difficulties. This is why the present study is performed
within the extended GL formalism (SHANENKO et al., 2011; VAGOV et al., 2012)
that goes to one order beyond the GL theory in the perturbation expansion of the
microscopic equations over the proximity to Tc but can still be analytically solved in
many physically important cases. One of those phenomena is the formation of a finite
intertype domain (AUER; ULLMAIER, 1973; BRANDT; DAS, 2011; VAGOV et al., 2016)
in the phase diagram between standard superconductivity types I and II, where the
superconducting magnetic response cannot be classified in the conventional terms. First
evidences of such a domain date back to 1960’s but little was known about effects of the
anisotropy on its formation. This point has been clarified in the present Thesis. It has
been recently demonstrated (VAGOV et al., 2016) that the intertype domain is expanded
in the presence of multiple bands (multi-band superconductors) with different spatial
scales. Important competition between band length scales arises from nonlocal effects
beyond the standard GL approach (SARAIVA et al., 2017). It has been demonstrated
in the Thesis that a notable deviation between the coherent scales of different band
condensates can appear even far beyond the regime of nearly decoupled bands. This
allows for a deeper insight on how the band length scales depend on microscopic
parameters and will certainly be appealing to experimentalists, as the conclusions are
relevant for the spatial distribution of the superconducting condensate in the vortex
core of multi-band materials and their possible intertype magnetic response.

Keywords: Superconductivity. Multiband Superconductors. Healing lengths. Intertype
domain. Bogomolny Point.



RESUMO

Esta tese está focada em fenômenos que não podem ser capturados pela teoria de
Ginzburg-Landau (GL) padrão. Por outro lado, esses dificilmente podem ser investi-
gados em tal nível de detalhe pela teoria microscópica devido a dificuldades técnicas.
Portanto, o presente trabalho é realizado no âmbito do formalismo de Ginzburg-Landau
Estendido (SHANENKO et al., 2011; VAGOV et al., 2012), que vai até uma ordem além
da teoria GL na expansão perturbativa das equações microscópicas na vizinhança
da temperatura crítica mas que ainda pode ser resolvido analiticamente em muitos
casos importantes fisicamente. Um desses fenômenos é a formação de um domínio
intertipo (AUER; ULLMAIER, 1973; BRANDT; DAS, 2011; VAGOV et al., 2016), no
diagrama de fases, entre os tipos I e II, onde a resposta magnética do supercondutor não
pode ser classificada nos termos convencionais. As primeiras evidências de tal domínio
aconteceram nos anos 60 mas muito pouco se sabia sobre os efeitos da anisotropia na sua
formação. Esse ponto foi clarificado nessa tese. Recentemente, foi demonstrado (VAGOV
et al., 2016) que o domínio intertipo é expandido na presença de múltiplas bandas
supercondutoras (supercondutores multi-bandas) com escalas espaciais diferentes. Uma
competição importante entre as escalas de comprimento dessas bandas é gerada por
efeitos não-locais além domodelo GL padrão (SARAIVA et al., 2017). Nessa tese também
foi demonstrado que uma diferença notável entre as comprimentos de coerência dos
condensados de bandas diferentes podem aparecer mesmo muito além do regime de
acoplamento fraco entre bandas. Isso possibilitou um entendimento mais profundo de
como as escalas de comprimento dependem dos parâmetros microscópicos e certamente
serão de interesse experimental, um vez que as conclusões são relevantes no que tange à
distribuição espacial do condensado supercondutor no núcleo dos vórtices em materiais
multi-bandas e suas possíveis reposta magnética intertipo.

Palavras-chave: Supercondutividade. Supercondutores multibandas. Comprimento de
coerência. Domínio intertipo. ponto de Bogomolny.
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1 INTRODUCTION

Not like Homer would I write,
Not like Dante if I might,
Not like Shakespeare at his best,
Not like Goethe or the rest,
Like myself, however small,
Like myself, or not at all.

William Allingham -
Blackberries

Chapter Contents
1.1 The Discovery of Superconductivity . . . . . . . . . . . . . . . . . 14

1.2 Early Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 The Microscopic Theory of Superconductivity . . . . . . . . . . . 24

In this chapter we present historically and conceptually this young, about one
century old, beautiful area of condensed matter physics called superconductivity. The
historical presentation contains the most important experiments which contributed
fundamentally in the understanding of the phenomenology. In the theoretical revision,
some of the early phenomenological theories are shown up to the very last steps for
construction of the microscopic theory of superconductivity.



Chapter 1. Introduction 14

1.1 The Discovery of Superconductivity

In the end of the 19th and beginning of the 20th centuries many scientists in
Europe and around the globe pursued the lowest limit of temperature reachable in
nature. Among them was Heike Kamerlingh-Onnes, who devoted himself to studying
this problem not merely as a race for the absolute zero temperature but specially because
extremely cold systems might present new and exciting physical phenomena.

Onnes wrote his doctoral thesis on the van der Waals law of the corresponding
states, which involved measuring thermodynamic quantities of gases at the critical point
(which in gases generally happens at low temperatures) and this was his initial interest
when he began his activities after being appointed professor in experimental physics at
the Leiden University (Netherlands) in 1882. At that time, the final element of the “race”
was believed to be Hydrogen (∼20K), the lightest element, which had been liquefied by J.
Dewar (inventor of the Dewar flasks) in 1889. But with the discovery of Helium on earth,
Onnes could make his first major contribution to science by establishing the liquefying
temperature of 5.2K (the lowest known at that time), even lower than Hydrogen. After
this deed, Onnes was for some years the only scientist capable of studying the properties
of materials at such low temperatures (OUBOTER, 1987) (people called the Leiden
University “coldest place on earth”) because of the unique experimental apparatus in his
possession. Along the years he had the idea of improving the experimental apparatus
with the possibility of measuring physical properties of metals at liquid Hydrogen
or Helium thermal bath, which was an extremely important experiment at that time
for the physics community in order to confirm the limits of thermodynamic laws. As
sketched in Fig. 1, Lord Kelvin considered that resistivity should be infinite because

Figure 1 – On the left, sketches for different theoretical proposals for the physical
behaviour of the resistivity ofmetals in the limit of extremely low temperatures.
On the right, the original plot of the measurements performed by K. Onnes
and collaborators in 1908.
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electrons would “freeze” and become incapable of being conducted, while Matthiessen
considered that should be a minimum disorder in the system which prohibited the
electrons of being in this frozen state imposing a finite value for the resistivity when
T → 0. Dewar, on the other hand, extrapolated the experimental results obtained using
liquid Hydrogen and proposed that the resistivity should go smoothly to zero at lower
temperatures.

Aided by C. Dorsman and G. Holst, Onnes was able to do an experiment to
measure the electric resistance of Mercury at extremely low temperatures in a liquid
Helium thermal bath. They noticed that the resistivity dropped abruptly to zero at
the temperature of 4.2K. This discontinuity in the resistivity curve was against any
expectation. Then, in 1908, Onnes published the discovery of a new state of matter called
“supraconductors” (which he latter changed to superconductors1) which granted him
the Nobel Prize of Physics in 1913 “for his investigations on the properties of matter at
low temperatures which led, inter alia, to the production of liquid helium”.

Another key feature of superconductors was discovered in the 30s by Meissner
and Ochsenfeld. They measured the magnetization of a superconductor under an
applied magnetic field and found that it was completely expelled from the sample
(up to a critical field), the so-called Meissner effect. In other words, superconductors
are perfect diamagnetic materials. The magnetic behavior of superconductors is a key
feature to differ this class of materials from perfect conductors, i.e. materials with
infinite conductivity. It is well known that perfect conductors have null electric field
inside and thus, by the Faraday’s law, the magnetic field must be constant inside these
materials. In the case of superconductors, the magnetic field must be constant and null
(a phenomenon that was understood decades after the discovery of superconductivity).
As shown in Fig. 2, in the process of field cooling (where one applies magnetic field in the
sample and then starts to refrigerate it bellow Tc), the behaviour of a superconductor is
different from a perfect conductor because the field is expelled from the sample, instead
of staying constant. By superposition, the summation of the external field applied
originally in Fig. 2 a) and the field generated by the magnetization of the superconductor
shown in Fig. 2 c), results in the field configuration shown in Fig. 2 b). The Meissner
effect can be a very effective tool for determining the presence of the superconducting
state, once the original way by K. Ohnes involved applying currents which may induce
vortex dynamics in the system causing heating and lowering the critical temperature.

Unfortunately, the physical explanation for this phenomenon has not been given
before Onnes death once the quantum theory was not well developed at that time and
the concept of macroscopic quantum behavior was not applied to this problem until
1 Another contribution by Onnes was coining the term Enthalpy to indicate the function E + PV in the

context of thermodynamics, which was called the Gibbs function at that time (HOWARD, 2002).
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Figure 2 – a) Applied magnetic field lines on a superconducting cylinder for T > Tc . b)
When T < Tc , the magnetic field is expelled from the sample, part of it gets
trapped inside the cavity and part outside. c) Sketch of the magnetic field
lines created by the magnetization of the superconductor in order to screen
the applied field. Figure taken from Ref. (FEYNMAN; LEIGHTON; SANDS,
2011).

the 50s. The comprehension of the superconducting state and other condensates is still
being developed even after more than 100 years after its discovery.

1.2 Early Theories

The first major success towards explaining the phenomenology of superconduc-
tors was given by the brothers Fritz and Heinz London. In their studies, they developed
an equation which described magnetic field in superconductors by improving the Drude
model. The derivation presented here is not the one originally derived but involves more
deep concepts related to their line of thinking. Considering that the ground state of a
superconducting system presents zero average canonical momentum2

〈
~pc

〉
, one gets

〈
~pc

〉
� m

〈
~v
〉
+

Q
c
~A � 0, (1.1)

where m and Q are the mass and the charge of the superconducting charge carriers, left
as incognitos. Originally, the single electronic charge andmass were used in the equation
above because, at that time, it was not known that the mechanism of superconductivity
involved pairs of electrons, the Cooper pairs, which was later demonstrated within the
microscopic theory. Then, one can derive a proportionality relation between the density
of current of superconducting electrons ~js � nsQ

〈
~v
〉
, and the vector potential ~A:

~js � −
nsQ2

mc
~A, (1.2)

2 A theorem derived by Bloch, which was never published.
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where ns is the density of superconducting electrons, also called the superfluid density.
Eq. 1.2 is a key equation in superconductivity and can be used to derive the set of
equations ruling the electrodynamics of superconductors3, e.g. by taking the curl on
both sides,

~E � ∂t (Λ~js ) (1.3)
~h � −c~∇ ×

(
Λ~js

)
(1.4)

where, Λ �
m

ns Q2 . Note that London brothers decided to neglect the term involving the
gradient of the scalar potential in Eq. (1.3) because comparison with experimental values
for the relaxation time of the electric charge density showed negligible values (LONDON,
1950; HIRSCH, 2004). Also, by applying ~∇×~h �

4π
c
~js (accordingly, the Ampère-Maxwell

equation is applied in the quasi-static regime), it is possible to derive an equation solely
for the magnetic field

∇
2~h �

1
λ2

L

~h (1.5)

where
λ2

L �
mc2

4πnsQ2 . (1.6)

For instance, let us consider an ideal infinite superconductor occupying a half-space,
say x > 0 in Cartesian coordinate system. This is a simple model for systems where
the size of the sample is much bigger than λL. If one applies a constant magnetic field
~H � Hk̂, then the field configuration must have translational symmetry along the y and
z directions and then Eq. (1.5) becomes

d2h
dx2 �

1
λ2

L

h (1.7)

The solution to this equation can be generally expressed as a linear combination of
two exponentials but, obviously, the magnetic field must be finite throughout the
entire sample and one must neglect the diverging contribution. Also, the magnetic
field immediately before the interface must me equal to the applied field and thus the
solution becomes

~h(x) � H exp(−x/λL) k̂ (1.8)

This typical decaying length of the magnetic field in the superconducting sample,
highlighted in Fig. 3, is called the London penetration depth and is very important in the
study of superconductors as will be seen later. Note that it is not possible to determine
the charge of the quasi-particles of superconductivity by applying experimental values
for λL because it is independent of how many particles compose the quasi-particles
involved in the mechanism of superconductivity (double mass, double charge and half
density would not change λL or Λ).
3 In this notation, the local magnetic induction is ~h.
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Figure 3 – Plot of the magnetic field configuration as a function of the distance from
a vacuum-superconductor interface in an idealized system of an infinite
superconductor occupying half the space, e.g. for x > 0.

London brothers were the first who assumed that the superfluid properties of
He4 are related to the Bose-Einstein condensation (which was later formally justified by
N. Bogolyubov). Also, in this line of thought, they linked Eq. (1.5) with the equation for
a time-independent field φ(~x) representing the wave function of a spin-0 particle

∇
2φ −

m2c2

~2 φ � 0, (1.9)

where the the length plays the role of mass. As a matter of fact, this screening length was
inspiration for the Higgs mechanism for explaining the mass of elementary particles. At
that time, brothers London could not explain this proposal or produce any important
consequence from it and therefore the scientific community did not pay much attention
to it, but actually they were pioneers in introducing the idea of a condensate, i.e. the
collective behavior of many particles in a single quantum state could be represented by
a macroscopic wave function.

Another typical length in superconductors was proposed by A. Pippard when
he generalized Eq. (1.2) in its non-local form (PIPPARD, 1953) based on the Chamber’s
generalization of the Ohm’s law (TINKHAM, 1996)

~js (~r) �
4π
cλ2

~A→
3

λ2cξ0

∫
d~r′

~R[~R · ~A(~r′)] exp(−R/ξ0)
R4 , (1.10)

where ~R � ~r − ~r′ and ξ0 is a new length. In this formulation, the superconducting
current at the point ~r depends on the vector potential in a sphere of radius ξ0. Pippard
estimated this characteristic length by using the uncertainty principle. By assuming that
only electrons with energy within an interval kTc from the Fermi level contribute, the
uncertainty in the momentum must be around ∆p ≈ kTc

kF
, where vF is the Fermi velocity

and k � 1.38 × 10−23 is the Boltzman constant. This leads to a characteristic length

ξ0 � ap
~vF

kTc
, (1.11)
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where ap is a numerical factor which was determined experimentally to be close to 0.15
in tin and aluminium (later this value was determined by using the microscopic theory
of superconductivity ap ≈ 0.18).

In 1937 L. Landau formulated a theory of broad application in order to describe
systems in the vicinity of a second order phase transition (LANDAU, 1937). Among these
was superconductivity because the specific heat of a superconductor has a discontinuity
at the critical temperature which means it is a second order phase transition. The initial
difficulty was to define the order parameter of the system, the quantity which should be
zero above the critical temperature and non-zero bellow it, representing the disordered
and ordered phases respectively. It is worth remembering the passionate presentation (in
my opinion) of the subject done by A. Abrikosov, Nobel laureate in 2003, one of the most
important students of Landau and great contributor to the field of superconductivity.

“In 1950, Vitalii Ginzburg and Lev Landau published their famous paper
on the theory of superconductivity. The approach was based on the general
theory of the second order phase transitions proposed by Landau in 1937.
There Landau introduced the main variable, the so called ‘order parameter’
which was finite below the transition and zero above it. Different phase
transitions had different order parameters, and whereas it was evident for,
e. g., the ferromagnetic transition, namely, the spontaneous magnetization,
it was far less evident for the superconducting transition. Ginzburg and
Landau had a stroke of genius, when they chose, as the order parameter
some sort of wave function. At that time nobody knew about Cooper pairs,
and about their Bose condensate, where all particles become coherent, i. e.
described by the same wave function. This assumption was the basis of the
new theory, which managed to solve the main contradiction of the old theory
by Fritz and Heinz London, namely, the positive surface energy. Besides it
made many useful predictions, such as the critical magnetic field of thin
films, the critical current in thin wires etc."

A. A. Abrikosov - Nobel Prize Lecture, 2003

According to Ginzburg and Landau, one must expand the free energy of the system in
powers series of the order parameter, where the odd terms are neglected in favour of
the phase symmetry

Fs (Ψ) � Fn + α |Ψ|2 +
β

2
|Ψ|4 + ... (1.12)

The free energy related to others thermodynamic variables is represented by the function
FN and will be treated as a temperature-independent constant because it is assumed
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that the other quantities are well behaved close to the transition. Then one must consider
the superconducting case to happen when the part related to the transition is negative:

∆F � Fs −FN < 0, (1.13)

which means that the superconducting state is energetically more favourable than the
normal state. The series is truncated up to the fourth power by the assumption that the
order parameter is small in the vicinity of Tc and the coefficients α and β appearing
in the expansion must be such that the theory will reproduce the character of most
phase transitions: α(T) � aτ and β � b (historically it is defined that a < 0 and b > 0),
where τ � 1−T/Tc . Thus if T > Tc there is only one energy minimum of the free-energy
functional,Ψ � 0, and if T < Tc (note that α becomes negative) the system has a non
trivial solutionΨ∞ �

√
|a |τ/b, as is shown in Fig. 4. This spontaneous break down of

the symmetry can be found in magnetic systems, structural phase transitions in solids
and even in particle theory serving as basis for the Higgs mechanism.
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Figure 4 – Plots of the free energy density (in units of a2τ2/2b) in dimensionless form.
On the left, the case for T > Tc and on the right, for T < Tc .

Then, for systems with spatial inhomogeneities it is included the simplest scalar
term involving the gradient of the order parameter |~∇Ψ|2. These inhomogeneities may
arise frommany sources, such as interfaces with differentmaterials (resulting in different
boundary conditions), applied electro-magnetic fields, sample imperfections etc. The
case with electric fields involves dynamical problems in superconductors but this is out
of the scope of this thesis. In the case of systems with applied magnetic fields, one must
account for the vector potential through the minimum coupling (~∇ → ~D � ~∇ − i Q

~c
~A)

besides the common term of the magnetic energy4. Note that the order parameter must
gain a phase factor of Q

~cχ when performing a gauge change of ~∇χ in order to have
gauge invariance. Finally, the free energy functional becomes

∆F[Ψ,Ψ∗, ~A] �
∫

d3x fs (Ψ,Ψ∗, ~A) �
∫

d3x
[
aτ |Ψ|2 +

b
2
|ψ |4 +K|~DΨ|2 +

1
8π

(~∇ × ~A)2
]
.

(1.14)
4 This was the step needed in order to construct the energy functional for superconductors. It is not

trivial why the order parameter has to be considered a complex number in superconductors.
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From this functional, one can derive the thermodynamic critical field of the
system by considering the energy necessary to take the system from the uniform solution
(|Ψ∞ |2 � |a |τ/b) at zero field to the normal state:

Fs −Fn � −
(aτ)2

2b
� −

1
8π

H2
c ⇒ H2

c �
4πa2τ2

b
(1.15)

This is the critical field of the Meissner state, where the magnetic field penetrates the
superconductor only up to a certain typical length that will be shown to be λL. The set
of parameters a, b and K are phenomenological and must be determined in order to
match experimental results and within the framework of a microscopic theory where it
was possible to derive analytic expressions for them in terms of microscopic parameters.

The condition ofminimum energy allows the use of the Euler-Lagrange equations
for the free energy density

∂fs
∂q
−

∑
i

∂i
∂fs

∂(∂i q)
� 0, (1.16)

where q stands forΨ and the components of ~A. The result is the GL equations:

aτΨ + b |Ψ|2Ψ −K ~D2Ψ � 0, (1.17)
1

4π
~∇ × ~∇ × ~A � −K

iQ
~c

(
Ψ∗~DΨ −Ψ~D∗Ψ∗

)
. (1.18)

These are called the equation for the order parameter and for the vector potential,
respectively, although they are a set of coupled non-linear equations. They can be
analytically solved in some regimes of approximation and it is possible to derive typical
lengths for the order parameter and for the vector potential.

Consider the system without magnetic field but still with inhomogeneities,
i.e. the gradient term is still present in Eq. (1.17). The order parameter is expressed
in dimensionless units ψ � Ψ/Ψ∞, where Ψ∞ is the solution for the uniform case.
As previously done with the London equation, let us consider the superconducting
sample occupying the half-space, say x > 0, but in this case the material beside the
superconductor prevents the formation of the condensate in the boundary, e.g. magnetic
materials or highly impure materials. By assuming symmetry in the y and z directions,
the equation for the order parameter becomes

ψ − |ψ |2ψ + ξ2 d2ψ

dx2 � 0. (1.19)

The analytic solution for this equation plotted in Fig. 5 is

ψ(x) � tanh(x/
√

2ξ). (1.20)

where the characteristic length

ξ2
�
K

|a |τ
(1.21)
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Figure 5 – Plot of the order parameter in the case of an interface with a material that
prevents the formation of the superconducting condensate in the boundary
in situations where ξ is much smaller than the dimensions of the sample.

is called the coherence length. In systems where spatial variations of the order parameter
can be neglected, i.e. the coherence length is much smaller than the London penetration
length,Ψ can be taken as the uniform solutionΨ2

∞ � |a |τ/b. In this case, Eq. (1.18) is
reduced to the London equation, Eq. (1.2),

c
4π
~∇ × ~∇ × ~A � ~js � −2

KQ2

~2c
|Ψ∞ |

2 ~A (1.22)

with the penetration depth of the magnetic field

λ2
�

b~2c2

8π |a |τKQ2 . (1.23)

Assuming that Ψ can be interpreted as a wave function, |Ψ|2 gives the local density
of superconducting particles. Then, for the uniform solution this density reads ns �

|Ψ∞ |
2 � |a |τ/b. Also, |~DΨ|2 works as a kinetic term and thus one can defineK � ~2/2m,

where instead ofK , the phenomenologic quantity is the mass of the particles involved
m. With such assumptions, London theory is exactly recovered. This is the so-called
London limit of the GL equations. Note that the GL theory not only introduced another
characteristic length of superconductors, the coherence length, but has also provided
their temperature scaling ξ, λ ∼ τ−1/2 in the vicinity of the critical temperature.

Both interface problems examined so far are limiting cases of a more general
picture where ξ and λ may be comparable. Consider, again assuming yz symmetry,
the situation where the magnetic field is so strong that it destroys the superconducting
state for x ≤ 0 and, as the order parameter recovers from zero to its maximum value,
the magnetic field tends to zero, for x > 0. In this case, it will be applied the constraint
that the magnetic field is fixed at H � Hc , while only the magnetic induction h may
vary. This can be done through a Legendre transformation, where one obtains the Gibbs
free energy from the Helmholtz free energy by adding the term −hHc/4π to fs . Thus
we calculate the energy difference per unit area for that particular configuration, the
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so-called surface energy

σsn �

∫
∞

−∞

dx (gsH − gs0) �
∫
∞

−∞

dx
(
fsH −

hHc

4π
− fs0

)
�

∫
∞

−∞

dx
[
α |Ψ|2 +

β

2
|Ψ|4 +K|~DΨ|2 +

(h − Hc)2

8π

]

�

∫
∞

−∞

dx
[
−
β

4
|Ψ|4 +

(h − Hc)2

8π

]
(1.24)

where, after integrating by parts the kinetic term and neglecting the surface term,
we have used Eq. (1.17) in order to obtain the last line. As can be seen, σsn can be
either positive or negative whether the order parameter of field contributions have
larger absolute value, respectively. By solving numerically the GL equations it was
demonstrated that if the GL parameter

κ �
λ
ξ

(1.25)

is larger than κ0 � 1/
√

2, then σsn becomes negative and, otherwise, positive. In other
words, this parameter determines whether the domain-wall solution is energetically
favourable over the trivial solutionΨ � 0 and h � Hc .

As can be seen in Fig. 6, there is a region with length ∼ |ξ − λ | where either the

Figure 6 – On the left, deep type I behaviour (κ � 1). On the right, deep type II behaviour
(κ � 1). Figure taken from Ref. (TINKHAM, 1996)

condensate or the magnetic field part will contribute more to σsn .

In 1957, Alexei Abrikosov published the vortex lattice solution for the Ginzburg-
Landau equations motivated by magnetization measurements of thin films by Lev
Schubnikov et al. (ABRIKOSOV, 1957b; ABRIKOSOV, 1957a). This was a new break-
through in the field because nobody expected vortices in superconductors5. Abrikosov
considered axially symmetric solutions of the GL equations in the limit of high magnetic
5 Even Landau was against the idea of vortices in superconductors once he believed that the high stray

fields energy would not favor vortices. Only after the works of R. Feynman on vortices in superfluids
he agreed with the publication.
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fields, where the order parameter becomes diminished, and therefore its influence over
the vector potential can be neglected together with the cubic term. By doing so, the first
GL equation is reduced to

−~D2Ψ �
1
ξ2Ψ. (1.26)

When considering that the plane of the film is the x y plane, and choosing the vector
potential of the constant field as ~A � Hx ĵ, the equation for the order parameter becomes

−

(
~∇ − i

Q
~c

Hx ĵ
)2
Ψ � −

(
∇

2
− 2i

Q
~c

Hx∂y −
Q2

~2c2 H2x2
)
Ψ �

1
ξ2Ψ. (1.27)

With the ansatz Ψ(x , y) � exp(ik y)ρ(x), one obtains the equation for the quantum
harmonic oscillator

ρ′′ −
(
k −

Q
~c

Hx
)2
ρ � −

1
ξ2 ρ. (1.28)

Therefore, the minimum energy is known and it provides the highest field

Hc2 � −
~c

Qξ2 , (1.29)

which is nucleation field of the vortex phase (note that Hc2 ∼ τ) and the eigenfunctions
can be linearly combined in order to produce solutions with periodic zeros, or a vortex
lattice, such as

ψ(x , y) �
∞∑

n�−∞

Cn exp(ikn y) exp

−

1
ξ2

(
x −

knξ2

H/Hc2

)2
, (1.30)

where Cn and kn are defined accordingly to the symmetry of the vortex lattice. The
lowest energy configuration was initially believed to be the square lattice but latter it
was demonstrated to be the triangular by analysis of the Free energy (KLEINER; ROTH;
AUTLER, 1964) and experimentally confirmedbyBitter decoration technique (TRÄUBLE;
ESSMANN, 1968), which results in the plot of Fig. 7. Abrikosov discovered this new
superconducting state and initiated the traditional classification that distinguishes type-I
and type-II superconductors. More specifically, the first type, with κ < κ0, only present
the Meissner phase and exhibits a first order phase transition to the normal phase at
Hc while the second kind, with κ > κ0, shows second order phase transitions at Hc1

(the field where the first vortex penetrates the sample) and at Hc2 also allows the vortex
state, as shown in Fig. 8.

1.3 The Microscopic Theory of Superconductivity

Although these early theories led tomany predictions which were experimentally
confirmed, they were not developed on a microscopic basis and could not provide the
true explanation for the phenomenon of superconductivity. These early theories and
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Figure 7 – On the left, square modulus of the order parameter for the triangular vortex
lattice solution from Ref. (KLEINER; ROTH; AUTLER, 1964). The figure on
the right is the Scanning-Tunnelling-Microscopy results for NbSe2 at 1.8K
from Ref. (HESS et al., 1989).

Figure 8 – Comparison between magnetization curves with the same value of thermo-
dynamic critical field Hc but with different values of κ. For clarity, Hc2 is only
marked for the curve with highest κ. Figure taken from Ref. (TINKHAM,
1996).

experiments showed that it was reasonable to assume that this phenomenon could not
arise from classical physics, i.e. it is a macroscopic manifestation of quantum mechanics.
The initial idea of pairing of electrons as the mechanism of superconductivity was
introduced in 1946 by R. Ogg Jr (OGG, 1946). Inspired by the phenomenology of liquid
Helium, where the bosonic nature of He4 produces a higher critical temperature than its
fermionic isotope, He3, he proposed a mechanism for obtaining superconductors with
higher Tc when instead of having single electrons, they would be in a paired state. In
essence, the pairing of electrons produces states with spin 0 and 1 which could enable
at least subset of the quasi-particles to condense in the single quantum pair state similar
to the Bose-Einstein condensation. This step was very important towards developing a
microscopic theory for the phenomenon although he could not explain the attractive
interaction between these electrons or produce any accurate prediction about the
critical temperature of the superconductors. In 1950, H. Frölich proposed the interaction
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which is now generally believed to give rise to superconductivity (FRÖHLICH, 1950).
He suggested that the attractive interaction of the conducting electrons arises from
the interaction with the ions of the crystalline lattice. In fact this phonon-mediated
mechanism was experimentally confirmed in the same year with the discovery of the
isotope effect (MAXWELL, 1950; REYNOLDS et al., 1950), i.e. the critical temperature and
field are proportional to the inverse square root of the atomic mass for isotopes of the
same element. By using the jellium model, in which the solid is approximated by a fluid
of electrons and point ions, Bardeen and Pines (BARDEEN; PINES, 1955; PINES, 1958)
were able to derive an analytic expression for the effective Fourier components of the
electron-electron interaction which could become negative. The first contribution, which
is positive-definite, accounted the dielectric (repulsive) response from the conduction
electrons, and the second accounted the phonon mediated interaction, which is of
the same order of the first contribution and therefore could result in negative matrix
elements for the interaction (GENNES, 1999). From these considerations, it became
evident how the pairing process could occur and very good arguments towards the
condensation of the pairs (effective bosons) were produced by Schafroth (SCHAFROTH,
1955).

One of the last conceptual steps towards establishing a consistent microscopic
theory of superconductivity, done by L. Cooper, was to show that the bound state of
two electrons in the case of an arbitrarily small attractive force becomes energetically
favourable in the presence of the Fermi sea of conducting electrons (COOPER, 1956).
Based on the ideas of Frölich and Bardeen and Pines, he was able to produce a very
simplified model for the interaction potential between two electrons:

V (~k ,~k′) �
1
Ω

∫
d3rV (~r)e−i(~k−~k′)·~r

�




−V/Ω, if ~2k2

2me
, ~2k′2

2me
≤ EF + ~ωc

0, otherwise.
(1.31)

In this expression, V is a constant and Ω is the sample volume, also ωc is a frequency of
the order of the Debye frequency, ωD , the limiting frequency of the phonon spectrum.
The solution of the Schrödinger equation for the electron pair in the presence of the
Fermi sea will have very low contribution from states much bellow the Fermi energy,
once the density of states is much more pronounced from the Fermi level above. In other
words, the Fourier transform produces integrals which will approximated as∫

d3k
(2π)3 →

∫
N (ξk)dξk ≈ N (0)

∫ ~ωD

−~ωD

dξk , (1.32)

where ξk �
~2k2

2me
− µ is the single-electron energy measured from the Fermi level and

N (0) is the density of states at the Fermi level. The energy of this paired state is

E ≈ −2~ωD exp [−2/N (0)V] (1.33)
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which means that the energy of the bound pair of electrons is always smaller than the
dissociated case, no matter how weak is the interaction constant V .

This was a prelude to the Nobel prize award publication by J. Bardeen, L. Cooper
and J. Schrieffer (BCS) in 1957 where they explained the existence of the superconducting
state from first principles (BARDEEN; COOPER; SCHRIEFFER, 1957). By considering
that the number of particles is so large that the occupancy of each state ~k depends solely
on the average occupancy of the other states (the Hartree self-consistent field), BCS
could express the superconducting ground state as

|ψG〉 �
∏

~k�~k1...~kM

(u~k + v~k c†~k↑c
†

−~k↓
) |φ0〉 (1.34)

where the summation occurs over all M ~k values present in the band, c†
~k↑

is the creation

operator for an electron with wave number ~k, |u
~k
|
2 + |v

~k
|
2 � 1 and |φ0〉 is the vacuum

statewith no particles. It is easy to show that |v
~k
|
2 is the probability of the state (~k ↑,−~k ↓)

to be occupied and that |ψG〉 is not an eigenstate of the number operator if all u~k and
v~k are finite. In this case, the number of particles is not fixed and instead one has the
mean number of particles N̄ fixed but with small variation from this value for real
materials. As for the Hamiltonian, the interaction part was significantly simplified by
neglecting terms which involved electrons not paired as (~k ↑,−~k ↓), more specifically
the only important diagrams are shown in Fig. 9. The so-called pairing (or reduced)
Hamiltonian is

HBCS �

∑
~kσ

ε~k c†~kσc~kσ ,+
1
2

∑
~k~l

V~k~lc
†

~k↑
c†
−~k↓

〈
c
−~l↓

c~l↑
〉
+ h.c. (1.35)

where σ �↑, ↓ and the average
〈
...

〉
is calculated with |ψG〉. In the next chapter, it will be

demonstrated how the Ginzburg-Landau phenomenological theories of superconduc-
tivity are derived from the microscopic theory.

Figure 9 – Sketch of the attractive interaction between two electrons through a phonon
in the BCS model. Figure taken from Ref. (TINKHAM, 1996).
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2 THEORETICAL METHODS

“Almost no one comes down
here unless of course there is a
problem. That’s how it is with
people: nobody cares how it
works as long as it works. I like
it down here."

Counselor Hamann - The Matrix
Reloaded
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In this chapter the works of L. P. Gor’kov published during the late 1950s are
discussed. With quantum field theory methods it was possible to prove that the Bardeen,
Cooper and Schriefer (BCS) theory results in Ginzburg-Landau (GL) equations. Also,
the experimental deviations from the BCS theory are reviewed that lead to important
generalizations of themodel to the state of the art developments in the field ofmulti-band
superconductors. In particular, the extended GL (EGL) formalism is derived and its
main theoretical achievements are discussed.
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2.1 Gor’kov Derivation of Ginzburg-Landau Theory

In the late 1950’s the works of L. P. Gor’kov (GOR’KOV, 1958; GOR’KOV, 1959)
have established a direct connection between the BCS approach and the GL theory. By
using the BCS-Bogolibov Hamiltonian, i.e., the Hamiltonian formulation of the BCS
model by Bogoliubov and his coauthors, Gor’kov has applied standard methods of
quantum field theory (ABRIKOSOV; DZYALOSHINSKI; GOR’KOV, 1965) to derive the
GL equations. The core of this derivation relies on the assumption that the excitation
gap can be identified as the order parameter of the system. As will be seen later, this
is, in a sense, misleading for compounds with more than one superconducting band
(multi-band superconductors).

The Hamiltonian operatorHBCS includes the usual kinetic part absorbing the
chemical potential in such a way that only the averaged number of particles is controlled
(the grand canonical formalism). The interaction part is the second term shown in
Eq. 2.1. Other terms related to the interaction between particles, i.e., the Hartree and
Fock contributions, are accounted as constants and hidden in the chemical potential µ,
once they do not have a specific reason to vary significantly when crossing Tc .

HBCS �

∑
σ

∫
dD xψ†σ (~x)Txψσ (~x) +

∫
dD x

[
ψ†
↑
(~x)ψ†

↓
(~x)∆(~x) + ∆∗(~x)ψ↓(~x)ψ↑(~x)

]

(2.1)
where Tx is the single-electron kinetic energy operator

Tx ≡ −
~2

2me

(
~∇ − i

e
~c
~A
)2
− µ (2.2)

and the energy gap is
∆(~x) � g

〈
ψ↑(~x)ψ↓(~x)

〉
. (2.3)

The equations of motion can be derived once it is stated that the field operators obey
fermionic commutation rules

{
ψσ (~x), ψ†σ′ (~x

′)
}
� δσ,σ′δ(~x − ~x′), (2.4){

ψσ (~x), ψσ′ (~x′)
}
� 0 (2.5)

and, in order to work with finite temperatures, it will be defined temperature Heisenberg
field-operators

ψσ (~x , t) � exp(HBCSt/~) ψσ (~x) exp(−HBCSt/~), (2.6)

ψσ (~x , t) � exp(HBCSt/~) ψ†σ (~x) exp(−HBCSt/~). (2.7)

Their equations of motion are derived, as described explicitly at appendix A, by using
the commutators of these operators withHBCS

−~∂tψ↑(~x , t) �
[
ψ↑(~x , t),HBCS

]
� Txψ↑(~x , t) + ∆(~x)ψ

↓
(~x , t), (2.8)

−~∂tψ↓(~x , t) �
[
ψ
↓
(~x , t),HBCS

]
� −T

∗
x ψ↓(~x , t) + ∆

∗(~x)ψ↑(~x , t). (2.9)
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or, in the matrix form,

−~∂t *
,

ψ↑(~x , t)
ψ
↓
(~x , t)

+
-
� *

,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-

*
,

ψ↑(~x , t)
ψ
↓
(~x , t)

+
-
. (2.10)

From these equations, one can derive the equations of motion for the correspond-
ing Green functions, as described explicitly at appendix A:

−~∂tG(~x , t;~x′, t′) � ∂t
〈
Ttψ↑(~x , t)ψ↑(~x

′, t′)
〉

� δ(t − t′)δ(~x − ~x′) + TxG(~x , t;~x′, t′) + ∆(~x)F (~x , t;~x′, t′), (2.11)

−~∂tF (~x , t;~x′, t′) � ∂t
〈
Ttψ↓(~x , t)ψ↑(~x

′, t′)
〉

� ∆∗(~x)G(~x , t;~x′, t′) − T ∗x F (~x , t;~x′, t′), (2.12)

−~∂tG(~x , t;~x′, t′) � ∂t
〈
Ttψ↓(~x , t)ψ↓(~x

′, t′)
〉

� δ(t − t′)δ(~x − ~x′) + ∆∗(~x)F (~x , t;~x′, t′) − T ∗x G(~x , t;~x′, t′), (2.13)

−~∂tF (~x , t;~x′, t′) � ∂t
〈
Ttψ↑(~x , t)ψ↓(~x′, t′)

〉
� T

∗
x F (~x , t;~x′, t′) − ∆(~x)F (~x , t;~x′, t′), (2.14)

where Tt is the time-ordering operator. Note that there are no δ functions in the equations
of motion for F and F , thus they are called anomalous Green functions. Also, we can use
the following matrix notations1

G(~x , t;~x′, t′) � *
,

G(~x , t;~x′, t′) F (~x , t;~x′, t′)
F (~x , t;~x′, t′) G(~x , t;~x′, t′)

+
-
, (2.15)

1̆ � *
,

1 0
0 1

+
-
, (2.16)

HBdG � *
,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-
, (2.17)

in order to condense all the equations for the Green functions to the matrix form given
by

−~∂tG(~x , t;~x′, t′) � δ(t − t′)δ(~x − ~x′)1̆ +HBdGG(~x , t;~x′, t′). (2.18)

It is well-known that for the sake of the trace convergence the applicability
domain of the above definitions of the Green functions is restricted to the interval
−β~ < t − t′ < β~. In this interval the Green functions are anti-periodic in t − t′.
Considering, as an example, the case of the Green function

G(~x , t;~x′, t′) � −1
~

〈
Ttψ↑(~x , t)ψ↑(~x

′, t′)
〉
, (2.19)

1 The label BdG at the Hamiltonian matrix refers to the Bogoliubov-de Gennes Hamiltonian appearing
in the matrix equation involving the Green functions.
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we first write it as a function of η ≡ t − t′ (this comes from the fact that the Hamiltonian
operator does not depend explicitly on time). Then defining the advanced, G>(~x , ~x′, η),
and retarded, G<(~x , ~x′, η), Green functions

G(~x , t;~x′, t′) � −1
~




〈
ψ↑(~x , η)ψ

↓
(~x′, 0′)

〉
� G>(~x , ~x′, η), if η>0

−

〈
ψ
↓
(~x′, 0′)ψ↑(~x , η)

〉
� G<(~x , ~x′, η), if η<0

(2.20)

one derives the following relation:

G
>(~x , ~x′, η) � −

〈
exp(−βH ) exp(Hη)ψ↑(~x) exp(−Hη)ψ†

↓
(~x′)

〉
�

� −

〈
exp

[
(η − β)H

]
ψ↑(~x) exp

[
−(η − β)H

]
exp(−βH )ψ†

↓
(~x′)

〉
�

� −

〈
exp(−βH )ψ†

↓
(~x′) exp

[
(η − β)H

]
ψ↑(~x) exp

[
−(η − β)H

]〉
�

�

〈
ψ
↓
(~x′, 0)ψ↑(~x , η − β)

〉
� −G

<(~x , ~x′, η − β). (2.21)

Now, to invoke the time Fourier transform and so significantly simplify our
treatment, we assume that the Green functions are defined for −∞ < t − t′ < ∞ and
anti-periodic, following the above expression. In the interval −β~ < t − t′ < β~ this
construction coincides with the original formulation. In order to do this, one must
change the delta-function δ(t − t′) in Eq. (2.18) by its anti-periodic generalization:

δ(t − t′) →
∞∑

n�−∞

δ(t − t′ + nβ~)(−1)n , (2.22)

as represented in Fig. 10. The only consequence of this replacement is an appearance

-'
-ℏβ ℏβ

0-2ℏβ 2ℏβ

Figure 10 – Sketch of the periodic sum of δ functions introduced in Eq. (2.18) in order to
make the Green functions periodic in the interval 2β~.

of discontinuities at t − t′ � ±β~,±2β~, . . . that can in no way influence the physical
behavior at −β~ < t − t′ < β~. The Fourier components of the reconstructed Green
functionsY �

{
G ,G , F , F

}
are given by

Y(~x , t;~x′, t′) ≡ 1
β~

∞∑
n�−∞

exp
(
−iωnη

)
Yω (~x , ~x′), (2.23)

Yω (~x , ~x′) ≡
1
2

~β∫
−~β

dη exp
(
iωnη

)
Y(~x , τ;~x′, τ′) (2.24)
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where ωn � π(2n + 1)/β~ are the fermionic Matsubara frequencies. Using these Fourier
components, the Gor’kov-Nambu equation

−~∂tG(~x , t;~x′, t′) �
∞∑

n�−∞

δ(t − t′ + nβ~)(−1)nδ(~x − ~x′)1̆ +HBdGG(~x , t;~x′, t′) (2.25)

can be rearranged. When introducing

Gω (~x , ~x′) ≡ *
,

Gω (~x , ~x′) Fω (~x , ~x′)
F ω (~x , ~x′) Gω (~x , ~x′)

+
-
, (2.26)

the left-hand side of Eq. (2.25) becomes

−~∂t



1
β~

∞∑
n�−∞

exp [−iωn (t − t′)] Gω (~x , ~x′)

�

1
β~

∞∑
n�−∞

(i~ωn) exp [−iωn (t − t′)] Gω (~x , ~x′),

(2.27)
and the Fourier transform of the summation of δ functions is2

1
2

~β∫
−~β

dη exp
(
−iωn′η

) ∞∑
n�−∞

δ(η + nβ~)(−1)n
�

�
1
2

~β∫
−~β

dη exp
(
−iωn′η

) (
−δ(η − β~) + δ(η) − δ(η + β~)

]
�

�
1
2

{
−

1
2

exp[−iπ(2n′ + 1)] + 1 − 1
2

exp[iπ(2n′ + 1)]
}
�

1
2

(
1
2
+ 1 +

1
2

) � 1.(2.28)

As the HBdG operator only depends on the spacial variables, the last term is simply
reduced to

HBdGG(~x , t;~x′, t′) � HBdG
1
β~

∞∑
n�−∞

exp
(
−iωnη

)
Gω (~x , ~x′) �

�
1
β~

∞∑
n�−∞

exp
(
−iωnη

)
HBdGGω (~x , ~x′) (2.29)

Finally, the Gor’kov-Nambu equation for the Fourier transforms of the Green functions
reads

i~ωGω (~x , ~x′) � δ(~x − ~x′)1̆ +HBdGGω (~x , ~x′). (2.30)

or, explicitly,

i~ω *
,

Gω (~x , ~x′) Fω (~x , ~x′)
F ω (~x , ~x′) Gω (~x , ~x′)

+
-
� δ(~x−~x′) *

,

1 0
0 1

+
-
+*

,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-

*
,

Gω (~x , ~x′) Fω (~x , ~x′)
F ω (~x , ~x′) Gω (~x , ~x′)

+
-

(2.31)
2 Actually, the normalization constants appearing in front of the Fourier transform and its inverse are

defined such that this terms results one.
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In order to solve these equations, it is convenient to introduce new operators in
the Hilbert space defined as

〈
~x |Ŷω |~x′

〉
� Yω (~x , ~x′) → Ğω � *

,

Ĝω F̂ω

F̂ ω Ĝω

+
-

(2.32)

and 〈
~x |T̂ |~x′

〉
� δ(~x − ~x′)Tx′ , (2.33)〈

~x |∆̂ |~x′
〉
� δ(~x − ~x′)∆(~x′). (2.34)

Also, as theHBdG operator can be expressed as the sum of the kinetic and interaction
(condensate) contributions

T̆ � *
,

T̂ 0
0 −T̂

∗

+
-
, (2.35)

∆̆ � *
,

0 ∆̂

∆̂∗ 0
+
-
, (2.36)

Eq. (2.30) results in

−i~ωn
〈
~x |Ğω |~x′

〉
� δ(~x − ~x′)1̆ +HBdGGω (~x , ~x′) �

�
〈
~x |~x′

〉
1̆ +

∫
d~x′′

〈
~x |(T̆ + ∆̆) |~x′′

〉 〈
~x′′ |Ğω |~x′

〉
�

�
〈
~x |~x′

〉
1̆ +

〈
~x |(T̆ + ∆̆)Ğω |~x′

〉
(2.37)

By using the completeness relation of the Hilbert space, one obtains the Gor’kov-Nambu
equations in the operator form(

i~ωn − T̆
)

Ğω � 1̆ + ∆̆Ğω . (2.38)

In the normal state, i.e., in the absence of condensed pairs, ∆̂ � 0, the normal or
unperturbed Green function operator can be constructed as(

i~ωn − T̆
)

Ğ(0)
ω � 1̆⇒

(
i~ωn − T̆

)
�

[
Ğ(0)
ω

]−1
. (2.39)

In the explicit form Eq. (2.39) writes




(i~ωn − T̂ )Ĝ(0)
ω � 1,

(i~ωn + T̂ ∗)F̂
(0)

ω � 0,
(i~ωn − T̂ )F̂ (0)

ω � 0,

(i~ωn + T̂ ∗)Ĝ
(0)

ω � 1,

⇒




Ĝ
(0)
ω � (i~ωn − T̂ )−1,

Ĝ

(0)

ω � (i~ωn + T̂ ∗ )−1,

F̂

(0)

ω � F̂
(0)
ω � 0.

(2.40)

The next step is to multiply Eq. (2.39) on the left by the inverse of the normal Green
function. This yields

[
Ğ(0)
ω

]−1
Ğω � 1̆ + ∆̆Ğω ⇒ Ğω � Ğ(0)

ω + Ğ(0)
ω ∆̆Ğω , (2.41)
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which is the representation of the Gor’kov-Nambu formalism in the form of the matrix
Dyson equation. By invoking iterations, one obtains

Ğω � Ğ(0)
ω + Ğ(0)

ω ∆̆Ğ(0)
ω + Ğ(0)

ω ∆̆Ğ(0)
ω ∆̆Ğ(0)

ω + ... . (2.42)

To construct the self-consistency equation for the superconducting gap, one needs to
extract the equation for the anomalous Green function. In its explicit form Eq. (2.41) is
given by

*
,

Ĝω F̂ω

F̂ ω Ĝω

+
-
�

*.
,

Ĝ
(0)
ω 0

0 Ĝ

(0)

ω

+/
-
+

*.
,

Ĝ
(0)
ω 0

0 Ĝ

(0)

ω

+/
-

*
,

0 ∆̂

∆̂∗ 0
+
-

*
,

Ĝω F̂ω

F̂ ω Ĝω

+
-
, (2.43)

and one finds



Ĝω � Ĝ

(0)

ω + Ĝ

(0)

ω ∆̂
∗
F̂ω

F̂ω � Ĝ
(0)
ω ∆̂Ĝω

⇒




Ĝω � Ĝ

(0)

ω + Ĝ

(0)

ω ∆̂
∗

[
Ĝ

(0)
ω ∆̂Ĝω

]

F̂ω � Ĝ
(0)
ω ∆̂Ĝω

(2.44)

Iterations lead to

F̂ω � Ĝ
(0)
ω ∆̂Ĝ

(0)

ω + Ĝ
(0)
ω ∆̂Ĝ

(0)

ω ∆̂
∗
Ĝ

(0)
ω ∆̂Ĝ

(0)

ω + ... . (2.45)

Given Eq. (2.14), there is an important relation between the energy gap and the
anomalous Green function:

∆(~x) �
〈
ψ↓(~x)ψ↑(~x)

〉
� −g~ lim

~x′→~x
lim
η→0+

F (~x , t, ~x′, t′)

� −g~ lim
~x′→~x

lim
η→0+

1
β~

∑
ω

exp(−iωη)Fω (~x , ~x′) � −gT lim
~x′→~x

lim
η→0+

∑
ω

exp(−iωη)Fω (~x , ~x′).

(2.46)

Using the completeness relation, i.e., by inserting identity operators 1̂ �
∫
dy |~y

〉 〈
~y | in

Eq. (2.45), one obtains the self-consistency equation whose right-hand-side is expanded
in powers of the order parameter (gap function), i.e.

∆(~x) �
∫

d3 yKa (~x , ~y)∆(~y) +
∫

*
,

3∏
i�1

d3 yi+
-

Kb (~x , ~y1, ~y2, ~y3)∆(~y1)∆∗(~y2)∆(~y3)+

+

∫
*
,

5∏
i�1

d3 yi+
-

Kc (~x , ~y1, ~y2, ~y3, ~y4, ~y5)∆(~y1)∆∗(~y2)∆(~y3)∆∗(~y4)∆(~y5) + . . . ,

(2.47)

wherein the integral kernels are written as

Ka (~x , ~y) � −gT lim
η→0+

∑
ω

exp(−iωη)G(0)
ω (~x , ~y)Ḡ(0)

ω (~y , ~x), (2.48)

Kb (~x , ~y1, ~y2, ~y3) � −gT lim
η→0+

∑
ω

G
(0)
ω (~x , ~y1)Ḡ(0)

ω (~y1, ~y2)G(0)
ω (~y2, ~y3)G(0)

ω (~y3, ~x), (2.49)

Kc (~x , ~y1, ~y5) � −gT lim
η→0+

∑
ω

G
(0)
ω (~x , ~y1)Ḡ(0)

ω (~y1, ~y2) ... Ḡ(0)
ω (~y3, ~y4)G(0)

ω (~y4, ~y5)G(0)
ω (~y5, ~x).(2.50)
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In order to obtain the GL equations, one must truncate the infinite series in powers of
the gap in Eq. (2.47), keeping only the first and third powers (the well-known Gor’kov
truncation). To obtain the EGL formalism, it is of importance to include the fifth-power
term.

In the absence of magnetic fields, for the unperturbed or normal-metal Green
function one gets

G
(0)
ω (~x , ~x′) �

〈
~x |(i~ωn − T̂ )−1

|~x′
〉
�

�

∫
d3k

(2π)3
d3k′

(2π)3

〈
~x |~k

〉 〈
~k |(i~ωn − T̂ )−1

|~k′
〉 〈
~k′|~x′

〉
�

�

∫
d3k

(2π)3
d3k′

(2π)3 exp(i~k · ~x)
1

i~ωn − ξk
(2π)3δ(~k −~k′) exp(−i~k′ · ~x′) �

�

∫
d3k

(2π)3
exp[i~k · (~x − ~x′)]

i~ωn − ξk
, (2.51)

where ξk is the single-particle dispersion. For a spherically symmetric Fermi surface
and in the parabolic band approximation we have

ξk �
~2k2

2me
− µ. (2.52)

For the standard deep-band approximation3, one can determine the unperturbed Green
function as

G
(0)
ω (~x , ~x′) �

∫
d3k

(2π)3

exp
[
i~k ·

(
~x − ~x′

)]

i~ω − ξk

�

∞∫
0

k2 dk
(2π)3

∫ 2π

0
dϕ

∫ 1

−1
d(cos θ)

exp
(
ik |~x − ~x′| cos θ

)
i~ω − ξk

�

∞∫
0

k2 dk
(2π)2

1
i~ω − ξk

exp (ikz) − exp (−ikz)
ikz

� −
me

i~2(2π)2z

∞∫
−µ

dξ
exp

[
i
(
kF +

ξ
~vF

)
z

]
− exp

[
−i

(
kF +

ξ
~vF

)
z

]

ξ − i~ω
(2.53)

where z � |~z | � |~x − ~x′|. The last integral can be calculated performing the analytic
extension of ξ to the complex plane. As sketched in Fig. 11, the first contour is used for
calculating the left term inside the integral and the second contour for the right term.
By doing so, if the pole lays above the horizontal axis, ω > 0, the left term is the only

3 In the deep-band regime, one can approximate ξk �
~2k2

2me
−
~2k2

F
2me

�
~2

2me
(k − k f )(k + kF) ≈ ~

2kF
me

(k − kF) �
~vF (k − kF) once the energy gap is much smaller than the chemical potential (the Fermi energy) and
thus only momenta very close to the Fermi level contribute. The limit of integration is taken so that
µ→∞.
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Re(ξ)

Im(ξ)

iℏω

Re(ξ)

Im(ξ)

iℏω

Figure 11 – Sketches of the contours of integration (straight lines joined to semi-
circumferences) used to calculate Eq. (2.53).

non-zero and vice-versa. The final result is

G
(0)
ω (~x , ~x′) � −

πN (0)
kFz

exp
[
isgn(ω)kFz −

|ω |
vF

z
]
, (2.54)

where N (0) � me kF
2π2~2 is the density of states at the Fermi surface. Following similar steps,

one also finds

G
(0)
ω (~x , ~x′) �

∫
d3k

(2π)3
exp[i~k · (~x − ~x′)]

i~ωn + ξk
� −G

(0)
−ω (~x , ~x′). (2.55)

It is important to note that the characteristic length of the exponential decay of the
unperturbed Green functions, vF

|ω0 |
∝
~vF
T �

~vF
Tc

[
1 + τ + O(τ2)

]
, which is fundamental

in order to get the partial-differential-equation structure of the GL and EGL theories.
This is the typical length of the correlation between two electrons, in agreement to what
was estimated by Pippard in Eq. (1.11), as shown in the Introduction. Also, very close to
the critical temperature, the typical spatial lengths of the order parameter and vector
potential are much larger than this length, once ξ, λ ∼ τ−1/2.

In the presence of magnetic fields, one must include the vector potential in the
Green functions and, in turn, in the self-consistency equation. The original derivation
by Gor’kov incorporates the magnetic-field effects via a phase factor (also known as the
Peierls substitution) in the Green function, i.e.,

G
(0)
Bω (~x , ~x′) � eiΦ(~x ,~x′)

G
(0)
ω (~x , ~x′). (2.56)

From the equation for the normal Green function one obtains

~∇xΦ(~x , ~x′) �
e
~c
~A(~x), (2.57)

which can be cast in the semi-classical approximation

Φ(~x , ~x′) ≈
e
~c
~A(~x′) · (~x − ~x′). (2.58)
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Equation (2.58) is related to the Green function approximation, the path integral
derivation of the Green function in the presence of a magnetic field is presented in detail
in Ref. (VAGOV et al., 2012), Appendix B.

Considering that the system is immediately below the critical temperature, the
gap becomes small enough in order to keep only the first power of the order parameter
in the self-consistency equation. As the characteristic lengths diverge when approaching
Tc , the gap can be considered as a constant. Thus Eq. (2.47) becomes

∆ �

∫
d3zKa (~z)∆⇒ Ia1 �

∫
d3zKa (~z) � gN (0) ln

(2eγ~ωc

πTc

)
� 1. (2.59)

Ia1 is the integral considered in detail in appendix A. The calculation of Ia1 is performed
so that to abandon the well-known ultraviolet divergence by introducing the cut-off
energy ~ωc , which is identified with the Debye energy when the superconductivity
is mediated by phonons. Also, note that the result of the integral was expanded in
τ � 1− T/Tc and the series was truncated to the leading order. This expression provides
the equation for Tc in terms of the microscopic parameters of the superconductor

Tc �
2eγ

π
~ωce−1/gN (0)

≈ 1.14~ωce−1/gN (0) (2.60)

and it is in agreement with the first estimate by Cooper, in Eq. (1.33).

In order to obtain the relevant gap equation, one must consider Eq. 2.47 beyond
the approximation resulting in the calculation of Tc . First, one needs to incorporate the
third powers of the order parameter in Eq. (2.47). Second, considering that the typical
length of the spatial variations of the gap become much larger than the typical spatial
length of the integral kernels, it is reasonable to expand the gap in the Taylor series
around point ~x as (expansion in terms of the order-parameter spatial gradients)

∆(~x′) ≈ ∆(~x) + (~z · ~∇)∆(~x) +
(~z · ~∇)2

2
∆(~x) (2.61)

where, recall, ~z � ~x − ~x′. Finally, as the typical length of the spatial variations of the
vector potential is also much larger than the characteristic lengths of the integral kernels
in the self-consistency equation, we can take

eiΦ(~z)
≈ 1 + i

e
~c
~z · ~A(~x), (2.62)

Now we have all the ingredients at our disposal in order to obtain the GL equation from
Eq. (2.47).

The spherical symmetry of theGreen function significantly simplifies the gradient
expansion (2.61). Indeed, thefirst-order gradient term (~z·~∇) and the crossed contributions
in the second-order gradient term ziz j∂i∂j (with i , j) do not contribute to Eq. (2.61).
Thus only the gradient terms such as z2

i ∂
2
i are to be considered and, in this case, for
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each squared spatial coordinate we can use the replacement z2
i → z2/3. Finally, the gap

expansion yields

∆(~x) �
∫

d3zKa (~z)∆(~x)

+
1
6

∫
d3zKa (~z)z2~D2∆(~x) +

∫
*
,

3∏
i�1

d3 yi+
-

Kb (~x , ~y1, ~y2, ~y3) |∆(~x) |2∆(~x). (2.63)

where4 ~D � ~∇ − i 2e
~c
~A, the so-called gauge invariant derivative. Note that the double

charge appearing from the product of two Green functions confirms that the charge
carriers in superconductors are made of two electrons. Furthermore, after canceling
the term in the left hand side with the leading order term in τ resulting from the first
integral on the right, one obtains the GL equation [recovering Eq. (1.17)]

aτ∆ + b |∆|2∆ −K ~D2∆ � 0, (2.64)

where

a � gN (0), b � gN (0)
7ζ(3)
8π2T2

c
, K � gN (0)

7ζ(3)
48π2T2

c
~2v2

F . (2.65)

Notice that, for the sake of the illustration, we have adopted the superconducting system
in the so-called clean limit.

In order to obtain the GL equation for the current, Gor’kov has employed the
linear response to the magnetic field (GOR’KOV, 1959; FETTER; WALECKA, 2003):

~j(~x) � lim
t−t′→0

lim
~x′→~x

[
i~e
m

(~∇x − ~∇x′)G(~x , t;~x′, t′) − 2e2

mc
~A(~x)G(~x , t;~x′, t′)

]
, (2.66)

where the expression for G must be accounted up to the leading correction δGω given
by

Gω (~x , ~x′) � G
(0)
Bω (~x , ~x′) + δGBω (~x , ~x′), (2.67)

δGω (~x , ~x′) � ~−2
∫

d3 yd3zG
(0)
Bω (~x , ~y)G(0)

Bω (~y ,~z)G
(0)
Bω (~z , ~x′)∆∗(~y)∆(~z). (2.68)

The contribution of G
(0)
Bω (~x , ~x′) to ~j(~x) is zero, considering the linear expansion in the

Pierls factor in Eq. (2.62), i.e.

lim
~x→~x′

ie~
m

(~∇x − ~∇x′)G
(0)
Bω (~x , ~x′) �

2e2

mc
~A(~x)G

(0)
Bω (~x , ~x). (2.69)

4 To be clear, the expression for the kernels Ka and Kb in this equation are in terms of the Greens
functions in the absence of magnetic field, once its effect was accounted with the eiΦ term, which
produced the gauge invariant derivative.
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So the current is reduced to

~j(~x) �
ieT
m

∑
n

[
(~∇x − ~∇x′)δG

(0)
ω (~x , ~x′)

]

~x′→~x
−

2e2T
mc~

~A(~x)
∑

n

δG
(0)
ω (~x , ~x′)

�
ieT

mi~2

∑
n

∫
d3 yd3z∆(~y)∆∗(~z)e iΦ(~y ,~z)

G
(0)
ω (~y ,~z)

{
e iΦ(~z ,~x′)

G
(0)
−ω (~z , ~x′)~∇x

[
e iΦ(~y ,~x)

G
(0)
−ω (~y , ~x)

]

−e iΦ(~y ,~x)
G

(0)
−ω (~y , ~x)~∇x′

[
e iΦ(~x′,~z)

G
(0)
−ω (~x′,~z)

] }
−

2e2T
mc~

~A(~x)
∑

n

δG
(0)
B,ω (~x , ~x′).

(2.70)

Note that this expression is written in terms of G(0)
ω due to Eq. (2.55). Also, due to the

limit t − t′→ 0, the exponential factors from the Fourier transforms. By using Eq. (2.62),
can further simplify the above relation as

~j(~x) �
eT

mi~2

∑
n

∫
d3 yd3zG(0)

ω (~y ,~z)
[
G

(0)
ω ( ~x ,~z)~∇xG

(0)
ω (~y , ~x) − G(0)

ω (~y , ~x)~∇xG
(0)
ω (~x ,~z)

]

×

[
|∆(~x) |2 −

2ie
~c
|∆(~x) |2 ~A(~x) · (~z − ~y) + ∆∗(~x)(~y − ~x) · ~∇∆(~x) + ∆(~x)(~z − ~x) · ~∇∆∗(~x)

]
.

(2.71)

In the presence of the spherical symmetry one finally gets

~j(~x) �
eT

mi~2

∑
n

∫
d3 yd3zG(0)

ω (~y ,~z)
[
G

(0)
ω (~x ,~z)~∇xG

(0)
ω (~y , ~x) − G(0)

ω (~y , ~x)~∇xG
(0)
ω (~x ,~z)

]

×

[
−

2ie
~c
|∆(~x) |2 ~A(~x) · (~z − ~y) + ∆∗(~x)~y · ~∇∆(~x) + ∆(~x)~z · ~∇∆∗(~x)

]
�

� gN (0)
7ζ(3)~2v2

F

16π2T2
c

[
∆∗(~x)~D∆(~x) − ∆(~x)~D∗∆∗(~x)

]
. (2.72)

2.2 The Need for Generalizations of the BCS and GL Theo-
ries

In spite of the success of the BCS and GL theories in describing most phenomena
in superconductors, eventually, some deviations started to be reported in experimental
papers. For example, Ref. (BOORSE, 1959) is one of the first reports compiling experi-
mental results from many groups and comparing them with the BCS predictions. The
author suggested that the discrepancies were due to anisotropy of the superconducting
gap and the BCS theory should be generalized, once there were no anisotropic effects in
the initial formulation. The anisotropy was readily detected by ultrasonic attenuation
experiments, where it was possible to have access to specific regions (in different direc-
tions) of the Fermi surface (remember that this surface was initially treated as spherically
symmetric) (MORSE; OLSEN; GAVENDA, 1959). Even though the BCS theory seemed
to need a generalization, at that time it was known the anisotropic version of the
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GL theory, derived by Ginzburg in 1952 (before the BCS theory), which in principle
was derived to explain these phenomena (for example, anisotropy of the critical field,
Hc2). But only after the generalization by Gor’kov and Melik-Barkhudarov (GOR’KOV;
MELIK-BARKHUDAROV, 1964) of the derivation of the GL theory from the microscopic
theory for systems with anisotropic Fermi surfaces it was possible to understand how
this anisotropy should be considered in the microscopically consistent manner. In 1964,
Tilley et al. (TILLEY; GURP; BERGHOUT, 1964) proposed that the anisotropy in the
critical field, which they had found in Nb samples, would substantiate the anisotropic
GL theory derived by Gor’kov. However, in 1967 Hohenberg and Wherthamer (HO-
HENBERG; WERTHAMER, 1967) has noticed that from the microscopic theory one can
prove that the mass tensor appearing in the GL theory for materials with cubic structure
such as Nb should be proportional to the identity matrix and therefore one should go
to higher order contributions in the gap expansion, increasing non-local effects in the
results. In other words, in case of such simple structures one needed to extend the GL
theory in order to explain the anisotropy in the experimental results.

Another important issue related to the applicability of theBCS andGLapproaches,
dates back to 1959 when the group of M. Tinkham performed measurements of far infra-
red photon absorption in superconductors in order to measure the superconducting
energy gap. Instead of finding a smooth curve followed by an abrupt drop of the
number of reflected photons with energies around the gap, they found a non-trivial
structure (RICHARDS; TINKHAM, 1960; GINSBERG; RICHARDS; TINKHAM, 1959).
Even though the authors suggested that this might be also due to anisotropy, their
results motivated theorists from another group to provide another view on this subject.
Suhl et al. (SUHL; MATTHIAS; WALKER, 1959) proposed that this behavior might
be due to the interaction of multiple condensates in a single compound, i.e., multiple
gaps, which could be a reason for the non-trivial structure of the absorption curve with
distinguished peaks. They justified the appearance of multiple condensates in a single
material with the formation of different bands of conducting electrons from different
atomic orbitals, which is the case of the transition metals (orbitals s and d and possibly
s and p). Therefore, in their seminal paper, Suhl et al. proposed a generalization of
the BCS Hamiltonian to the case of an arbitrary number, N, of the superconducting
condensates (investigated in a more detail the case with N � 2):

H �

N∑
i�1

∑
~kσ

εi ,k a†i ,kσai ,kσ −
1
2

N∑
i , j�1

Vi j

∑
~k~k′

ai ,k↑a
†

i ,−k↓a
†

j,−k′↓a j,k′↑, (2.73)

where εik is the single-electron dispersion corresponding to band i and Vi j is the
averaged interaction energy between electrons in band i and electrons in band j.

The subsequent series of articles, that is discussed below in this section, have
resulted in the formalism which is the basis of the results of the present thesis. The



Chapter 2. Theoretical methods 41

discovery of a superconductor with the relatively high critical temperature Tc � 39K, i.e.,
magnesium diborade (NAGAMATSU et al., 2001), started the flourishing of theoretical
and experimental studies about non-cuprates with high Tc at an impressive rate (for
a review about the articles following the next year after the discovery of MgB2, see
Ref. (BUZEA; YAMASHITA, 2001)). Furthermore, MgB2 has been shown to present
more than one superconducting gap (KARAPETROV et al., 2001; BOUQUET et al.,
2001a; GIUBILEO et al., 2001; LIU; MAZIN; KORTUS, 2001; IAVARONE et al., 2002). An
extensive study of its microscopic properties (BUD’KO et al., 2001; GOLUBOV et al., 2002;
MAZIN; ANTROPOV, 2003) appeared soon after the discovery of its multiband nature,
together with some proposals for generalizing the GL theory for this case (BOUQUET
et al., 2001b; ASKERZADE; GENCER; GüçLü, 2002; KONSIN; SORKIN, 2004), mostly
based on the assumption of a multi-component order parameter. Eventually, many
surprising effects (some of them could not be explained through the traditional physical
picture) started to be reported, such as single-vortices presenting absence of rotational
symmetry (PECHENIK et al., 2002), long-range attraction between vortices (BABAEV;
SPEIGHT, 2005), vortex clusters (MOSHCHALKOV et al., 2009). In 2011, Kogan and
Shmalian criticized (KOGAN; SCHMALIAN, 2011) the so-called multi-component GL
models e.g. Ref’s. (ASKERZADE; GENCER; GüçLü, 2002; BABAEV; SPEIGHT, 2005), by
showing that the coupling terms used were inconsistent with the microscopic theory
and produced equal gap profiles in the scope of the GL theory. Unfortunately, the
microscopic theory presents many technical difficulties in order to effectively investigate
so complicated gap profiles such as vortex lattices. This issue of obtaining a simpler
theory which could produce an effective picture about these new phenomena reported
in multi-band superconductors contributed to the development of an extension of the
GL theory, discussed in the next section.

2.3 The Extended Ginzburg-Landau Formalism

By using the Suhl-Mathias-Walker Hamiltonian (SUHL; MATTHIAS; WALKER,
1959) given by Eq. 2.73, the leading corrections to the GL theory have been derived
in Ref. (SHANENKO et al., 2011; VAGOV et al., 2012) in order to be able to capture
the difference between the spatial profiles of the band-dependent gaps in multi-band
superconductors. Let us consider the Hamiltonian for a system with N overlapping
bands in terms of the field operators, i.e.,

H �

N∑
i�1

∫
d3x



∑
σ

ψ†iσ (~x)Ti (~x)ψiσ (~x) + ψ†i↑(~x)ψ†i↓(~x)∆i (~x) + h.c.


(2.74)

where Tx is the band-dependent single-electron energy operator (it is band-dependent,
i � 1, 2, 3...N , due to the effective electronicmass mi and the chemical potentialmeasured
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from the edge of the band µi)

Tx ≡ −
~2

2mi

(
~∇ − i

e
~c
~A
)2
− µi , (2.75)

and the superconducting band-gap ∆i (~x) is defined as

∆i (~x) �
∑

j

gi j
〈
ψ j↑(~x)ψ j↓(~x)

〉
(2.76)

As will be seen below, in this case, the band-gap function ∆i (~x) is not the true Landau
order parameter of the system. Using these definitions, one can follow the Gor’kov
recipe described previously. The equations of motion for the field operators in the
Heisenberg picture are given by

−~∂t *
,

ψi↑(~x , t)
ψi↓(~x , t)

+
-
� *

,

Tix ∆i (~x)
∆i (~x)∗ −T∗ix

+
-

*
,

ψi↑(~x , t)
ψi↓(~x , t)

+
-
, (2.77)

Introducing the band-dependent Green functions

Gi (~xt, ~x′t′) � −
1
~

〈
Ttψi↑(~x , t)ψi↑(~x

′, t′)
〉
, (2.78)

F i (~xt, ~x′t′) � −
1
~

〈
Ttψi↓(~x , t)ψi↑(~x

′, t′)
〉
, (2.79)

G i (~xt, ~x′t′) � −
1
~

〈
Ttψi↓(~x , t)ψi↓(~x′, t′)

〉
, (2.80)

Fi (~xt, ~x′t′) � −
1
~

〈
Ttψi↓(~x , t)ψi↓(~x′, t′)

〉
, (2.81)

one can obtain their equations of motion (for the Fourier transforms represented as
operators in the Hilbert space and in matrix form)

Ğiω � Ğ(0)
iω + Ğ(0)

iω ∆̆iĞiω . (2.82)

2.3.1 Systems in the absence of magnetic fields

In the absence of magnetic fields, the unperturbed Green functions for each band
i are

G
(0)
iω (~x , ~x′) �

∫
d3k

(2π)3
exp[i~k · (~x − ~x′)]

i~ωn − ξik
� −G

(0)
i ,−ω (~x , ~x′) (2.83)

F
(0)

iω (~x , ~x′) � F
(0)
iω (~x , ~x′) � 0 (2.84)

where ξiω is the band-dependent single-particle dispersion. Then, by using the relation

−gT lim
~x′→~x

lim
η→0+

∑
ω

exp(−iωη)Fiω (~x , ~x′) �
〈
ψi↑(~x)ψi↓(~x)

〉
, (2.85)
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the expansions for the anomalous Green functions in coordinate space become

〈
ψi↑(~x)ψi↓(~x)

〉
�

∫
d~yKia (~x , ~y)∆i (~y) +

∫ 3∏
j�1

d~y jKib

(
~x ,

{
~y
}

3

)
∆i (~y1)∆∗i (~y2)∆i (~y3)+

+

∫ 5∏
j�1

d~y jKic

(
~x ,

{
~y
}

5

)
∆i (~y1)∆∗i (~y2)∆i (~y3)∆∗i (~y4)∆i (~y5) + ...

(2.86)

where the band-dependent kernels read

Kia (~x , ~y) � −gT lim
η→0+

∑
ω

exp(−iωη)G(0)
iω (~x , ~y)G

(0)
iω (~y , ~x), (2.87)

Kib

(
~x ,

{
~y
}

3

)
� −gT lim

η→0+

∑
ω

exp(−iωη)G(0)
iω (~x , ~y1)G

(0)
iω (~y1, ~y2) ... G

(0)
iω (~y3, ~x), (2.88)

Kic
(
~x ,

{
~y
}

5

)
� −gT lim

η→0+

∑
ω

exp(−iωη)G(0)
iω (~x , ~y1)G

(0)
iω (~y1, ~y2) ... G(0)

iω (~y4, ~y5)G
(0)
iω (~y5, ~x).

(2.89)

The series in Eq. (2.86) is truncated so that to include the fifth power of the
corresponding superconducting gap function, which makes it possible to get the next-to-
leading order contributions to the band-dependent gaps. Also, the gaps inside integrals
are expanded in the Taylor series (again, we define ~z � ~y − ~x)

∆i (~y) � ∆i (~z + ~x) �
∞∑

n�0

(
~z · ~∇

)n

n!
∆i (~x). (2.90)

Finally the relevant quantities are expanded in small deviation from the critical temper-
ature τ � 1 − T/Tc such as:

∆i (~y) � τ1/2
∞∑

n�0
τn∆

(n)
i (~x), (2.91)

in order to correctly select the terms of the sameorder ofmagnitude in the self-consistency
equation. Furthermore, as one has ξ ∼ τ−1/2, then any spatial gradient is proportional
to τ1/2, i.e., ∇ ∝ τ1/2. The self-consistency (matrix) equation taken in order τ1/2 gives the
equation for Tc ; when selecting the terms of order τ3/2, one recovers the GL theory; and
finally, selecting the terms of order τ5/2, one obtains the leading correction to the GL
theory. The GL theory taken together with its leading correction is the EGL formalism.
Based on these considerations, it is clear that one should consider the Taylor expansion
of the gaps, i.e. Eq. (2.90), up to the fourth order derivatives for the gaps inside the
integrals involving Kia , up to the second order inside the integrals involving Kib and
just the leading term inside the integral involving Kic . Due to the spherical symmetry
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of the kernels, some odd-order terms of these expansions can be neglected, which is
shown in detail in Appendix A and, after performing the relevant integrations, the
matrix self-consistency equation (before expanding in τ) becomes∑

j

γi j∆ j � ai1∆i + ai2∇
2∆i + ai3∇

2(∇2∆i) − bi1∆i |∆i |
2

− bi2
[
2∆i |~∇∆i |

2
+ 3∆∗i (~∇∆i)2∆2

i∇
2∆∗i + 4|∆i |

2
∇

2∆i
]
+ ci |∆i |

4∆i (2.92)

where

ai1 � Ni (0) ln
(

2eΓ~ωc

πT

)
,

ai2 �
bi1
6
~2v2

i ,

ai3 � Ni (0)
~4v4

i

30
93ζ(5)

128π4T4 ,

bi1 � Ni (0)
7ζ(3)
8π2T2 , (2.93)

bi2 � Ni (0)
~2v2

F

9
93ζ(5)

128π4T4 , (2.94)

ci1 � Ni (0)
93ζ(5)

128π4T4 . (2.95)

and Ni (0) is the density of states at the Fermi level at band i.

In order to get the correct mathematical structures, it is convenient to rescale the
band-dependent gaps and the spatial coordinates as

τ1/2∆(n)
i → ∆

(n)
i (2.96)

~x → τ−1/2~x. (2.97)

Finally, after matching the terms of the same order in τ and invoking the τ-expansion of
the relevant coefficients as

ai1 � Ai − ai

[
τ +

τ2

2
+ O(τ3)

]
, Ai � Ni (0) ln

(
2eΓ~ωc

πTc

)
, ai � −Ni (0) (2.98)

ai2 � Ki[1 + 2τ + O(τ2)], Ki �
bi

6
~2v2

i (2.99)

ai3 � Qi[1 + O(τ)], Qi � Ni (0)
~4v4

i

30
93ζ(5)

128π4T4
c

(2.100)

bi1 � bi[1 + 2τ + O(τ2)], bi � Ni (0)
7ζ(3)
8π2T2

c
(2.101)

bi2 � Li[1 + O(τ)], Li � Ni (0)
~2v2

i

9
93ζ(5)

128π4T4
c

(2.102)

ci1 � ci[1 + O(τ)], ci � Ni (0)
93ζ(5)

128π4T4
c
, (2.103)

one obtains the following set of coupled equations involving the contributions of orders
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τ1/2, τ3/2 and τ5/2∑
j

Li j∆
(0)
j � 0, (2.104)∑

j

Li j∆
(1)
j � −ai∆

(0)
i − bi |∆

(0)
i |

2∆(0)
i +Ki~∇

2∆(0)
i , (2.105)∑

j

Li j∆
(2)
j � −ai∆

(1)
i − bi

(
2∆(1)

i |∆
(0)
i |

2
+ ∆

∗(1)
i ∆

(0)2
i

)
+Ki~∇∆

(1)
i − Fi

(
∆

(0)
i

)
, (2.106)

respectively. Here5
Li j � γi j −Aiδi j (2.107)

and

Fi
(
∆

(0)
i

)
� −

ai

2
∆

(0)
i + 2Ki~∇

2∆(0)
i + Qi~∇

2(~∇2∆(0)
i ) − 2bi |∆

(0)
i |

2∆(0)
i

− Li
[
2∆(0)

i |
~∇∆(0)

i |
2
+ 3∆∗(0)

i (~∇∆(0)
i )2

+ ∆
2(0)
i
~∇2∆∗(0)

i + 4|∆(0)
i |

2~∇2∆(0)
i

]

+ ci |∆
(0)
i |

4∆(0)
i . (2.108)

It is possible to prove that the spatial profiles of the band superconducting
condensates in multi-band superconductors are proportional to one another in the
leading-order in τ, i.e., within theGL theory. For example, in the two-band case Eq. (2.104)
yields

det(L) � (γ11 −A1)(γ22 −A2) − γ2
12 � 0 (2.109)

in the case of a non-trivial solution for ~∆(0). This gives the equation for Tc . Given the set
of microscopic parameters ωc , Ni and gi j , it is possible to get

Tc

~ωc
�

2eγ

π
exp

{
−

g11N1(0) + g22N2(0)

2N1(0)N2(0)
(
g11 g22 − g2

12

)
×


1 −

√
1 − 2N1(0)N2(0)

g11 g22 − g2
12

g11N1(0) + g22N2(0)



}
, (2.110)

exactly the expression firstly derived by Suhl et al. (SUHL; MATTHIAS; WALKER,
1959) from Eq. (2.73) via the Bogoliubov-Valatin transformation. The matrix L has two
eigenvalues (λ1 and λ2) and the two corresponding eigenvectors (~η1 and ~η2). At least one
of these eigenvalues must be zero, say λ1, in order to assure Eq. (2.109). Therefore, the
gap vector must be proportional to the eigenvector associated with the zero eigenvalue,
i.e.,

~∆(0)
� Ψ(~x)~η1. (2.111)

5 Notice that δi j is the Kronecker symbol. Note that Li j is a symmetric matrix, once gi j is symmetric and
so isAiδi j .
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According to this expression, both gaps must have the same spatial profile up to a
proportionality factor given by the entries of ~η1 (SHANENKO et al., 2011), in agreement
with the results by Kogan and Schmalian (KOGAN; SCHMALIAN, 2011). The function
Ψ(~x) can be considered as the true Landau order parameter of the system, which is the
reason why the vector ~∆ is being called gap vector, instead of the order parameter vector.

The next step is to substitute this expression for ~∆(0) in Eq. (2.105), and then the
leading corrections to the gaps can be obtained by calculating ~∆(1) from Eq. (2.106). The
procedure of analytically calculating this leading correction within the EGL formalism
will be considered in chapter 4.

2.3.2 Systems in the presence of magnetic field: superconductivity between
standard types

Although the Abrikosov’s division between types I and II of superconductivity
was very important in order to stablish a basic picture to interpret very complex
phenomena in superconductors, the state of the art publications in the subject show the
need of a wider way of approach. It is long known that the order parameter in type-I
materials with κ ≈ 1/

√
2 may present stable phases in which magnetic field penetrating

the sample in domains much wider than the London penetration length (KRÄGELOH,
1969; KRÄGELOH, ; ESSMANN, 1971; PROZOROV, 2007). In such cases the system
may present a plethora of patterns, not only the Meissner and Abrikosov’s lattice phases
and the magnetic response exhibits a discontinuity at the first critical field, as shown
in Fig. 12. The EGL formalism has also elucidated the situation of the classification of

Figure 12 – On the left, the magnetic field profiles from a Pb-1.89 wt.% Tl sample in a
field of 329 Oe at 1.25K from Ref. (KRÄGELOH, 1969). On the right, the
magnetization curve as function of the external field for Niobium single-
crystal at 4.18K from Ref. (KUMPF, 1971).

the superconductivity types in single- and multi-band superconducting systems. In
2016, Vagov et al (VAGOV et al., 2016). considered the case of single- and two-band
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superconductors under the effect of applied magnetic fields in the vicinity of κ ≈ 1/
√

2.
This work has brought another physical picture for the unusual phenomena observed
in multi-band compounds by considering the Bogomolnyi self-duality into the EGL
equations in order to describe the so-called intertype domain between the standard
types I and II in the (κ, T) plane which can be significantly expanded in two-band (and
more generally, in multi-band) superconductors. One should note that the intertype
domain cannot be captured by the standard GL theory as non-local effects beyond the
GL domain should be taken into account.

In the presence of a magnetic field, the vector potential and the magnetic field
must also be expanded in powers of τ similarly to the gaps, i.e.,

~∆ � τ1/2
(
~∆(0)

+ τ~∆(1)
+ ...

)
(2.112)

~A � τ1/2
(
~A + τ~a + ...

)
(2.113)

~B � τ
(
~B + τ~b + ...

)
(2.114)

Invoking this expansion, the authors of Ref. (VAGOV et al., 2016) derived the equations
for the gaps and magnetic field (in the leading and next-to-leading orders in τ) by
minimizing the free energy density (Fs �

∫
fs d3x) constructed by the standard methods

of quantum field theory (VAGOV et al., 2016; POPOV, 1987). Following the analysis of
Ref. (VAGOV et al., 2016), after matching the terms of the same order in τ one finds that
the EGL free energy density becomes

fs � τ
2
(
τ−1f(−1)

+ f(0)
+ τf(0)

+ ...
)
, (2.115)

and the terms of this expansion are given by6

f(−1)
�

〈
~∆(0)
|L |~∆(0)

〉
, (2.116)

f(0)
�

~B2

8π
+

(〈
~∆(0)
|L |~∆(1)

〉
+ c.c.

)
+

∑
n

[
an |∆

(0)
n |

2
+

bn

2
|∆(0)
|
4
+Kn |D∆

(0)
n |

2
]
, (2.117)

f(1)
�

~B ·~b
2π

+

(〈
~∆(0)
|L |~∆(2)

〉
+ c.c.

)
+

〈
~∆(1)
|L |~∆(1)

〉
+

∑
n

(
f
(1)
n ,1 + f

(1)
n ,2

)
, (2.118)

f
(1)
n ,1 �

an

2
|∆

(0)
n |

2
+ 2Kn |~D∆

(0)
n |

2
+

bn

36
e2~2

m2c2
~B2
|∆

(0)
n |

2
+ bn |∆

(0)
n |

4

− Qn

{
|~D2∆(0)

n |
2
+

1
3

(~in · ~∇ × ~B) +
4e2

~2c2
~B2
|∆

(0)
n |

2
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∆
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f
(1)
n ,2 �

(
an + bn |∆

(0)
n |

2
) (
∆
∗(0)
n ∆

(1)
n + c.c.

)
+Kn

[(
~D∆(0)

n ·
~D∗∆∗(1)

n + c.c.
)
− (~a ·~in)

]

(2.120)

6 Here, 〈...〉 denotes the scalar (inner) product in the band space.
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~D � ~∇ − i 2e
~c
~A is the gauge-invariant derivative with the leading order contribution of

the vector potential and~in � i 2e
~c

(
∆

(0)
n

~
D∗∆

∗(0)
n − ∆

∗(0)
n

~
D∆

(0)
n

)
is the supercurrent density

contribution of band n. From this functional, it is possible to derive the Gibbs free energy
that is used in the criterion of the interchange between types I and II. For illustration, let
us here consider the switching between types I and II in the isotropic single-band case,
which can be the basis for our further consideration in chapter 3.

By invoking the following Legendre transformation7

Gs �

∫
gs d3x , gs � fs +

H2
c

8π
−

HcB
4π

, (2.121)

one is able to calculate the Gibbs free energy functional, taken at the thermodynamic
critical field and measured from the normal state Gibbs free energy, as a series in τ with
the coefficients dependent on κ. Then, the nucleation of a non-uniform condensate/field
configuration can be investigated on the basis of the criterionGs (κ, T) � 0. Using this
criterion for various non-uniform configurations (e.g., for the single vortex solution,
the domain wall between the normal and superconducting state, etc.), it is possible to
find the corresponding value of κ above which a non-uniform pattern (representing the
well-known mixed state) becomes stable. For instance, considering the dimensionless
units

~x → λL
√

2~x , ~A →
H (0)

c λL

κ
~A, ~B→

H (0)
c
√

2κ
~B, ∆(0)

→ Ψ∞Ψ, (2.122)

~i →
H (0)

c

4πKλL
~i , fs →

H (0)2
c

4π
fs , gs →

H (0)2
c

4π
gs , Gs →

H (0)2
c (
√

2λL)3

4π
Gs , (2.123)

the Gibbs free energy difference becomes

gs � τ
2
(
g

(0)
s + τg(1)

s + ...
)
, (2.124)

g
(0)
s �

1
2

*
,
| ~B|
√

2κ
− 1+

-

2

+
1
√

2κ2
|~DΨ|2 − |Ψ|2 +

1
4
|Ψ|4, (2.125)
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8|Ψ|2 |~DΨ|2 + [Ψ2(~D∗Ψ∗)2
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}
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3b2 |Ψ|

6. (2.126)

With this expression, it is possible to determine the boundaries between types I and II
in the (κ, T) plane by expandingGs around κ0 � 1/

√
2

Gs � τ
2 *

,
G

(0)
s +

dG(0)
s

dκ
���κ�κ0

δκ + τG(1)
+ ...+

-
(2.127)

7 Note that critical field Hc used in this expressionmust be expanded in τ. The leading order contribution

calculated in chapter 1 is H (0)
c �

√
4πa2

b and the leading correction is easily found to be H (1)
c �

−

(
1
2 +

ac
3b2

)
H (0)

c from Eq. (2.126).
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where δκ � κ− κ0. The term dG(0)
s /dκ has contributions from the explicit appearance of

κ and its implicit appearance from the derivatives dΨ/dκ and dA/dκ. Notice, that the
implicit contributions are zero because they are proportional to δG(0)

s /δΨ and δg(0)
s /δ~A,

which are zero in the equilibrium, see Ref. (VAGOV et al., 2016). At κ � κ0, a solution to
the GL equations can be obtained by using the Bogomolnyi self-duality equations

(∂y + i∂x)Ψ � (~Ax − i~A)Ψ, (2.128)

| ~B| � 1 − |Ψ|2, (2.129)

that are useful to simplify the integrals inGs . Then, the Gibbs free energy difference
becomes

Gs � τ
2
{
−

√

2Iδκ + τ

[(
1 − ac

3b2 + 2 aQ
K 2

)
I +

(
2 aL

bK
−

ac
3b2 −

5
3

aQ
K 2

)
J

]
+ ...

}
(2.130)

where
I �

∫
|Ψ|2(1 − |Ψ|2)d3x , J �

∫
|Ψ|4(1 − |Ψ|2)d3x (2.131)

are the only two quantities dependent on the the order parameter at κ � κ0. Note that
G

(0)
s is zero, a manifestation of the degeneracy at the Bogomolnyi point.

Figure 13 – Phase diagram of superconductivity types in the (κ, T) plane derived from
the EGL formalism and comparisonwith experimental data, see Ref. (VAGOV
et al., 2016). The curvesmarked by κ∗li and κ

∗

2 correspond to κu and κl defined
by Eqs. (2.133) and (2.134), respectively.

By using the criterion of the nucleation of a particular nonuniform configuration,
i.e.,Gs (κ, T) � 0, one employs Eq. (2.130) to find the boundary between types I and
II, i.e., for type I only the Meissner phase is realized while the nonuniform (the mixed
state) configuration becomes stable in type II. The criterion yields

κ∗ � κ0

{
1 + τ

[
1 − ac

3b2 + 2 aQ
K 2 +

J

I

(
2 aL

bK
−

ac
b2 −

5
3

aQ
K 2

)]}
. (2.132)
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The ratios of material parameters in this expression are independent of the material,
the only term to be calculated is J/I for a given configuration. It is of importance
that the use of different nonuniform condensate/field configurations in the nucleation
criterion results in different boundaries between types I and II. Only for T → Tc this
difference disappears and one arrives at the standard classification: type I is below κ0

while type II is above κ0. Below Tc one gets a finite transitional domain between types I
and II (below it is also referred to as intertype domain), see Fig. 13. The upper (max) and
lower (min) boundaries of this domain in the isotropic single-band superconductors are
material-independent

κmax � κ0(1 + 0.95τ), (2.133)

κmin � κ0(1 − 0.407τ). (2.134)

Notice in the presence of multiple contributing bands the intertype domain is not
material-independent any more, see Ref. (VAGOV et al., 2016).
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3 THE BOGOMOLNY POINT IN ANISOTROPIC SUPER-
CONDUCTORS

“Messing up with the system
never felt so good.”

Tom Morello - 2010

Chapter Contents
3.1 Anisotropic Hamiltonian and scaling scheme . . . . . . . . . . . . 52

3.2 The Bogomolny line and the intertype domain . . . . . . . . . . . 54

In this chapter a scaling approach is applied to prove an equivalence between
the classifications of the superconductivity types in anisotropic and isotropic super-
conductors. This scaling approach, applied here to the extended Ginzburg-Landau
(EGL) formalism, is similar to previous schemes adopted for the Ginzburg-Landau
(GL) equations in single-band superconductors. The objective of the investigation in
this chapter is to generalize the consideration of the intertype (IT) domain in isotropic
single-band superconductors in Ref. (VAGOV et al., 2016) to the case of a system with
a single but anisotropic Fermi Surface, for which the GL parameter κ � λ/ξ becomes
more subtle to determine.
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3.1 Anisotropic Hamiltonian and scaling scheme

Asmentioned in theprevious chapter, theproblemof anisotropic superconductors
may demand some generalizations to the Bardeen, Cooper and Schriefer (BCS) model.
Essentially, anisotropy in superconductors refers to direction-dependent electronic
propagation and magnetic response. Comparing theory and experiment in this case can
become complicated, because the controlling parameters in the fabrication of the sample
such as purity, granularity, doping, etc. are of importance. Also, it is important to note
that some anisotropic superconductors are layered, where the Lawrence-Doniach model
is more adequate (LAWRENCE; DONIACH, ) but this case is beyond our consideration.

In the derivation of the GL theory for anisotropic superconductors Gor’kov and
Melik-Barkhudarov did not specify the Hamiltonian operator, i.e., their results are valid
in the most general case (GOR’KOV; MELIK-BARKHUDAROV, 1964). Here, as we are
interested in the IT domain and needs to go beyond the standard GL formalism, we
restrict ourselves to modeling the anisotropy by introducing the kinetic energy operator
with the direction-dependent electronic masses m j such as

T � −

3∑
j�1

~2

2m j

(
∂j − i

e
~c

A j

)2
− µ. (3.1)

The domain of integration of the unperturbed Green function

G
(0)
ω (~x , ~x′) �

∫
d3k

(2π)3
exp[i~k · (~x − ~x′)]

i~ω − ξk
(3.2)

is the elliptic Fermi surface and the dispersion relation takes the form

ξk �

3∑
j�1

~2

2m j
k2

j − µ. (3.3)

In this case, one can use a simple scaling method to isotropize the Hamiltonian by
finding proper scaling factors αi for the spatial coordinates, the particle momentum
projections, and the vector potential and magnetic field components1

x̃i �
1
√
αi

xi , k̃i �
√
αiki , Ãi �

√
αiAi , B̃i �

1
√
αi

Bi , (3.4)

which results in a unique electronic mass M for each direction

T � −

3∑
i�1

~2

2M

(
∂̃j − i

e
~c

Ãi

)2
− µ (3.5)

1 The notation adopted in this chapter is such that scaled vectors have a tilde instead of arrow ~v → ṽ
and the nth entry of the scaled vector is ṽn . Also, ∂̃n corresponds to the partial derivative with respect
to the nth coordinate ∂/∂x̃n .



Chapter 3. The Bogomolny point in Anisotropic superconductors 53

and does not induce alteration in the elements of volume after this variable change as

αi mi � α j m j � M (∀ i , j), (3.6)
3∏

i�1

√
αi � 1. (3.7)

The single-particle dispersion becomes direction independent so that the Fermi surface is
spherically symmetric. The (unique) real solution to this system of equations is (KLEMM;
CLEM, 1980)

αi �
M
mi
, M � 3

√
mx my mz . (3.8)

Note that the Maxwell equation ∇̃ · B̃ � 0 and the relation B̃ � ∇̃ × Ã remain valid in
this new scheme. In our consideration the magnetic field is chosen to be directed along
one of the principle crystalline axes, in order to avoid unnecessary extra rotations in the
system of coordinates (KLEMM; CLEM, 1980) and to simplify the results. For instance,
let us consider the GL equations for the bulk system and ~H � Hẑ, where ẑ the unit
vector in the positive z direction. By using the isotropic equations and performing the
inverse scaling transformation defined by Eq. (3.4), one derives the following set of
equations:

a∆(0)
+ b |∆(0)

|
2∆(0)

−

(
KxD

2
x +KyD

2
y

)
∆(0)

� 0, (3.9)

∂yB � 4πKxαz i
2e
~c

(
∆0D

∗
x∆
∗

0 − ∆
∗

0Dx∆0
)
, (3.10)

∂xB � −4πKyαz i
2e
~c

(
∆0D

∗
y∆
∗

0 − ∆
∗

0Dy∆0
)
. (3.11)

In this case, a � −N (0), b � N (0) 7ζ(3)
8π2T2

c
andKj �

b
6~

2v2
j . From this set of equations one

extracts the characteristic lengths

ξ(z)
j �

√
Kj

|a |
, λ(z)

j �

√
~2c2b ,

32π2e2Kjαz |a |
(3.12)

where j � x , y and the superscript z reflects the field direction. With these expressions,
one can derive different GL parameters κ j � λ j/ξ j and the fact that one has different κx

and κy might leave an impression that the GL parameter is not unique and, consequently,
the unambiguous definition of the corresponding superconductivity type cannot be
performed. However, the GL parameter k (z) is to be established from the coefficients of
the effective isotropic GL theory. Indeed, using the coefficients of the scaled GL theory,
one obtains that the relevant GL parameter is given by the harmonic average

κ(z)
�

√
κxκy . (3.13)
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3.2 The Bogomolny line and the intertype domain

The fact that the anisotropic GL theory (here with the fixed direction of the
magnetic field along one of the principal crystalline axes) can be reduced to the isotropic
theory and has the uniquely defined GL parameter, Eq. (3.13), has an important physical
consequence that has not been explicitly noted so far: an anisotropic GL theory allows
only for the two standard superconductivity types I and II. The relevant GL parameter,
that corresponds to the field direction (z above) or on the chosen plane (x - y plane
above), is controlled by the two direction-dependent κx and κy parameters so that its
critical value κ0 is in fact the critical curve in the (κx , κy) plane given by the relation
κxκy � κ2

0 � 1/2. Below and above this curve we have, respectively, type I and type II,
see Fig. 14.

κy

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Type I

Type II

Critical Line

κx

Figure 14 – Classification of the superconductivity types illustrated in the (κx , κy) plane.
Types I and II correspond to blue and red regions, respectively. The white
curve represents the critical regime κxκy � κ2

0 � 1/2.

Keeping the link to the isotropic theory, we recall that the critical curve κxκy � κ2
0

separates types I and II only for T → Tc . Below Tc , as has been mentioned in chapter 2,
the finite IT (transitional) domain appears in the phase diagram between types I and II.
Once the scaling scheme is applied to the Hamiltonian, one can expect that the scaling
works to any order in the τ-expansion of the microscopic equations. So, the τ expansion
for the critical GL parameter of the isotropic system

κ∗ � κ0

{
1 + τ

[
1 − ac

3b2 + 2 aQ
K 2 +

J

I

(
2 aL

bK
−

ac
b2 −

5
3

aQ
K 2

)]}
. (3.14)

can be applied for the anisotropic case beyond the standard GL approach. Hence, the
upper boundaries of the IT domain in the anisotropic case are simply extracted from
Eqs. (2.133) and (2.134). In this sense the IT domain appears to be not affected by the
anisotropy. In the (κx , κy) plane any critical parameter given by Eq. (3.14) becomes the
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critical curve determined by κ∗ � √κxκy . Thus, we have two curves that define the
upper and lower boundaries of the IT domain in the (κx , κy) plane, as illustrated in
Fig. 15.

κy

κmax
* (0.5Tc)

κmin
* (0.5Tc)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Type I

Type II

Inter-Type
Domain

κx

Figure 15 – Classification of superconducting types in the (κx , κy) diagram forT � 0.5Tc .
Type I and II correspond to blue and red regions, respectively. The white
region corresponds to the IT domain, i.e. it is expected that the system
presents neither type-I or type-II behavior.

Notice that the present analysis of the intertype behavior is in agreement with
experimental results reported previously for TaN alloys (WEBER; SPORNA; SEIDL,
1978; MOSER; SEIDL; WEBER, 1982; SAUERZOPF et al., 1987). In the experiments
discussed in Refs. (WEBER; SPORNA; SEIDL, 1978; MOSER; SEIDL; WEBER, 1982;
SAUERZOPF et al., 1987), the authors studied the superconducting magnetic response
at various amplitudes and inclinations of the magnetic field and at various temperatures
near the boundary between type I and the IT domain. In addition, the GL parameter of
the system of interest was varied in these experiments by nitrogen doping.

It is important to note that the IT regime is referred to as the type II/1 in
Refs. (WEBER; SPORNA; SEIDL, 1978; MOSER; SEIDL; WEBER, 1982; SAUERZOPF
et al., 1987). The type II/1 concept assumes that single-flux quantum (Abrikosov)
vortices play a role of elementary entities (“particles") of the mixed state in both IT and
type-II superconductors, while relatively weak vortex interactions help to arrange these
“elementary particles" in a particular form of the Abrikosov lattice. Within this picture
all differences between the magnetic properties of IT and type-II superconductors can
be explained only in terms of the change in the vortex interaction which becomes
attractive at long ranges in the intertype regime. Acknowledging this similarity, the
name “type-II/1" has been coined for IT superconductors, while type II is referred
to as “type-II/2". Recently it has been demonstrated that the IT physics is not simply
reduced to attractive single-quantum vortices. Indeed, multi-quantum vortices and
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vortex clusters are of importance near the boundary between the IT and type I regimes,
see Ref. (VAGOV et al., 2016).

This boundary is derived from the measurements of the magnetization. The IT
response reveals itself in a first-order transition between the Meissner and mixed states,
seen as an abrupt drop in the magnetization. In type-I superconductors this drop is
down to zero, i.e., the mixed state disappears and we obtain the first-order transition
from the Meissner state to the normal one. As seen in Fig 16, the superconductivity
type of the superconducting sample depends on the orientation of the applied magnetic
field with respect to the crystal principal directions. Strikingly, there is a situation when

Figure 16 – Phase diagram of superconducting types from Ref. (WEBER; SPORNA;
SEIDL, 1978) in which they report different temperature dependence of the
lower boundary of the IT domain (full lines) depending on the orientation
of the magnetic field. The resistivity at the normal state ρn is translated into
a value of κ by the Gor’kov-Goodman formula.

the superconducting magnetic response is of type I for one direction of the magnetic
field while it is of type-II/1 (i.e., IT) for another direction. This is in agreement with
our findings as the effective GL parameter for the z direction is κ(z) �

√
κxκy while, say,

for the x direction we have a completely different value κ(x) �
√
κyκz . The unexpected

dependence of the superconductivity type on the direction of the applied magnetic field
found in Ref. (WEBER; SPORNA; SEIDL, 1978) has not been explained previously.
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4 GAP HEALING-LENGTHS WITHIN THE EGL THEORY

“I was driving it by a kind of
instinct, only I was in a different
dimension.”

Ayrton Senna - 1993

Chapter Contents
4.1 Analytic solution of the EGL equation for single-band supercon-
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4.2 Analytic solution of the EGL equations for two-band supercon-
ductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Deviation between healing lengths . . . . . . . . . . . . . . . . . . . 68

An analytic solution for a spatially uniform distribution of a two-band condensate
is investigated within the extended Ginzburg-Landau (EGL) formalism in this chapter.
With this solution, it is possible to calculate the leading corrections in τ � 1 − T/Tc to
the Ginzburg-Landau (GL) coherence length in single- and two-band superconductors.
The leading correction is material-independent in the case of a single-band system,
while it is strongly dependent on the relevant material parameters in the two-band
case. In the two-band case we investigate the deviation between the band-dependent
leading corrections to the GL length and find that the spatial characteristic lengths
of the different band condensates can be notably different far beyond the regime of
nearly decoupled bands, contrary to the common expectation. We also discuss a possible
relation of this difference between the band coherent lengthscales to anomalous vortex
distributions found in MgB2.
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4.1 Analytic solution of the EGL equation for single-band
superconductors

Consider the single-band case of the EGL equations, (2.105) and (2.106), in the
absence of magnetic fields

a∆(0)
+ b |∆(0)

|
2∆(0)

−K∇
2∆(0)

� 0, (4.1)

a∆(1)
+ b

[
2∆(1)

|∆(0)
|
2
+ ∆∗(1)

(
∆(0)

)2]
−K∇

2∆(1)
� F

(
∆(0)

)
, (4.2)

F
(
∆(0)

)
�

a
2
∆(0)

+ 2K∇2∆(0)
+ Q∇

2
(
∇

2∆(0)
)
− 2b |∆(0)

|
2∆(0)

− L

[
2∆(0)

|~∇∆(0)
|
2
+ 3∆∗(0)

(
~∇∆(0)

)2
+

(
∆(0)

)2
∇

2∆∗(0)
+ 4|∆(0)

|
2
∇

2∆(0)
]

+ c |∆(0)
|
4∆(0) (4.3)

The constant or uniform solutions of the EGL formalism can be easily found by neglecting
derivatives

∆(0)
�

√
−

a
b
� Ψ∞, (4.4)

∆(1)
� −

(3
4
+

ac
2b2

)
Ψ∞ ⇒

∆(1)

Ψ∞
� −

(3
4
−
α
2

)
≈ −0.068987, (4.5)

where α � −ac/b2 �
93ζ(5)
98ζ(3)2 ≈ 0.681 is a numeric constant recurrent in the following

calculations. As seen, the uniform solution for ∆(1) is easily expressed in units ofΨ∞
and then the coefficients from the τ expansion for ∆ are expressed in dimensionless
units

ψ(~x) �
∆(0) (~x)
Ψ∞

, ϕ(~x) �
∆(1) (~x)
Ψ∞

. (4.6)

As seen, the GL equation provides the characteristic length scale of the gap in the leading
order ξGL �

√
−K/a. After redefining distances in units of ξGL, one obtains the EGL

equations in dimensionless units:

ψ − ψ3
+ ∇

2ψ � 0, (4.7)

(1 − 2|ψ |2)ϕ − ψ2ϕ∗ + ∇2ϕ � F̃(ψ) (4.8)

where

F̃(ψ) � −
1
2
ψ − 2∇2ψ +

aQ
K 2∇

2(∇2ψ) + 2|ψ |2ψ

−
aL
bK

[
2ψ |∇ψ |2 + 3ψ∗(∇ψ)2

+ ψ2
∇

2ψ∗ + 4|ψ |2∇2ψ
]
+

ac
b2 |ψ |

4ψ. (4.9)

Eq. (4.8) can be simplified by considering ψ and ϕ real functions (once the
systems does not involve magnetic field) and also the function F̃ can be manipulated by
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eliminating all the terms involving ∇2ψ by using equation (4.7)

F̃(ψ) �
(

3
2
+

aQ
K 2

)
ψ +

(
5 aL

bK
− 4 aQ
K 2

)
|ψ |2ψ (4.10)

+

(
ac
b2 + 3 aQ

K 2 − 5 aL
bK

)
|ψ |4ψ +

(
6 aQ
K 2 − 5 aL

bK

)
ψ(∇ψ)2, (4.11)

while all the ratios between auxiliary parameters can be written in terms of α

ac
b2 � −α,

aQ
K 2 � −

6
5
α,

aL
bK

�
2
3
α. (4.12)

Finally the EGL equation acquires the form

(1 − 3ψ2)ϕ + ∇
2ϕ � Aψ + Bψ3

+ Cψ5
+ Dψ(∇ψ)2 (4.13)

where de coefficients above are

A �
3
2
−

6
5
α ≈ 0.683, B �

22
15
α ≈ 0.999, (4.14)

C � −
19
15
α ≈ −0.863, D � −

58
15
α ≈ −2.633. (4.15)

With the equations in a simpler form, now we address to the analytic solution
for the domain-wall problem described in chapter (1). By considering very large planar
interfaces, one can assume symmetric solutionswith respect to the longitudinal direction,
depending only on the coordinate perpendicular to the interface, say x. The first integral
to the GL equation can be obtained with the simple integrating factor ψ′

ψ − ψ3
+ ψ′′ � 0⇒ ψψ′ − ψ3ψ′ + ψ′ψ′′ � 0⇒ 2ψ2

− ψ4
+ 2(ψ′)2

� CI . (4.16)

With the boundary conditions ψ(∞) � 1 and ψ′(∞) � 0, the integration constant
becomes determined CI � 1 and the equation can be put in the integral form∫ x

0
dx

ψ′

1 − ψ2 �

∫ ψ(x)

ψ(0)
dz

1
1 − z2 � tanh−1 [

ψ(x)
]
� x/
√

2 (4.17)

and finally it is obtained the solution

ψ(x) � tanh(x/
√

2). (4.18)

In principle, solving Eq. (4.13)may be simpler than the first equation because it is a
linear equation on ϕ and there are standard techniques for solving this type of equations.
The only complication is that the left hand side (1 − 3ψ2)ϕ + ϕ′′ may not immediately
be in the form of a tabled differential equation and, in the case ψ(x) � tanh(x/

√
2), we

found the adequate variable transformation. After we substitute the expression for ψ(x)
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on Eq. (4.13), we get an inhomogeneous second order differential equation (ANTON;
HERR, 1995)

[
1 − 3 tanh2(x/

√

2)
]
ϕ + ϕ′′ � A tanh(x/

√

2) + B tanh3(x/
√

2)

+ C tanh5(x/
√

2) + D tanh(x)sech4(x/
√

2) (4.19)

With the substitution z(x) � tanh(x/
√

2) one obtains the following equation:

[
6(1 − z2) − 4

]
ϕ − 2z(1 − z2)

dϕ
dz

+ (1 − z2)2 d2ϕ

dz2 � 2Az + 2Bz3
+ 2Cz5

+ Dz(1 − z2)2

� (2A + 2B + 2C)z + (D − 2B − 2C)z(1 − z2) − (D + 2C)z3(1 − z2) (4.20)

and dividing both sides by 1 − z2 it is found that

(1 − z2)
d2ϕ

dz2 − 2z
dϕ
dz

+

(
6 − 4

1 − z2

)
ϕ �

� (2A + 2B + 2C)
z

1 − z2 + (D − 2B − 2C)z − (D + 2C)z3. (4.21)

The homogeneous part of Eq. (4.21) is tabled in Ref. (ABRAMOWITZ; STEGUN, 1964)
and its solutions are the so-called Legendre functions of the first and second kinds (see
plots in Fig. 17):

P2
2 (z) � 3(1 − z2),

Q2
2(z) �

z
(
5 − 3z2

)
1 − z2 + 3

(
1 − z2

)
tanh−1(z)

�
2z

1 − z2 + 3z + 3
(
1 − z2

)
tanh−1(z), (4.22)

P2
2(z)

Q2
2(z)
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Figure 17 – Plots of the Legendre functions P2
2 (z) (solid line) and Q2

2(z) (dashed line).

The next step is finding a particular solution, Sp (z), to Eq. (4.21) by looking for
the action of the operator

L̂ ≡ (1 − z2)
d2

dz2 − 2z
d

dz
+

(
6 − 4

1 − z2

)
(4.23)
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at three particular functions

L̂
( z

1 − z2

)
� 6 z

1 − z2 , (4.24)

L̂(z) � −4 z
1 − z2 + 4z , (4.25)

L̂
(
z3

)
� −4 z

1 − z2 + 10z − 6z3. (4.26)

First, one must notice that z/(1 − z2) is eigenfunction of this operator. Second, the
action of L̂ in an odd power term results in the term z/(1 − z2) combined with an odd
polynomial of the same order. Based on this, consider particular solution of the form of
Eq. (4.21)

Sp (z) � α0
z

1 − z2 + α1z + α3z3 (4.27)

where one should match up the coeffiecients α0, α1 and α3 with the coefficients of the
inhomogeneous term in Eq. (4.21), as shown bellow:

L̂
(
Sp

)
� (2A + 2B + 2C)

z
1 − z2 + (2D − 2B − 2C)z − (D + 2C)z3 (4.28)

� (6α0 − 4α1 − 4α3)
z

1 − z2 + (4α1 + 10α3)z − 6α3z3. (4.29)

This system of equations is directly in a triangular form and the solution can be readily
obtained:

α0 �
A − C

3
, α1 � −

3B + 8C + D
6

, α3 �
2C + D

6
. (4.30)

Now, the last task is to determine the linear combination

ϕ(z) � pP2
2 (z) + qQ2

2(z) + Sp (z) (4.31)

of the Legendre functions P2
2 (z) and Q2

2(z) that obeys the boundary conditions when
combined with the particular solution found previously. At x � 0, the gap must be null
in all orders, therefore

0 � ϕ [tanh(0)] � pP2
2 (0) + qQ2

2(0) + Sp (0) � 3p ⇒ p � 0. (4.32)

The second boundary condition, at x → ∞ (z � 1), is a bit more tricky because the
general solution has a pole at z � 1. To avoid this divergence, we impose the coefficient
p to be such that the divergent part of Q2

2(z) cancels the divergent part of Sp (z), i.e. 1

2q � α0 ⇒ q � −
A − C

6
(4.33)

Then the final solution, plotted in Fig. 18, is

ϕ(z) � −
A − C

6
Q2

2(z) + Sp (z). (4.34)
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Figure 18 – Plot of the solution of the next-to-leading order contribution of the super-
conducting gap as function of the distance from the interface.

Note that the maximum absolute value of this function is reached at a distance around
2ξGL, differently from the leading order contribution. The complete solution for the
superconducting gap, plotted in Fig. 19, is

∆(~x , τ)
τ1/2Ψ∞

� tanh(x/
√

2) − τ
[ (3

4
−

47α
30

)
tanh(x/

√

2)

+

(3
4
+
α
30

)
(x/
√

2)sech2(x/
√

2) +
16α
15

tanh3(x/
√

2)
]
. (4.35)

Figure 19 – Plot of the EGL solution for ∆(x , τ) given in units of its asymptotic value, the
uniform solution∆∞(τ) � τ1/2Ψ∞, as a function of the relative distance from
the interface x/ξGL for τ � 0 (dashed curve) and τ � 0.4 (solid curve). The
dotted horizontal line marks δ � tanh(1/

√
2) that determines the condensate

healing length according to Eq.

1 It is easy to prove that non-divergent solutions for ϕ (that do not involve the term z
1−z2 ) always reach

the uniform solution value at z � 1.
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From the analytic solution of the EGL equation, it is possible to stablish an
equation for determining the healing length of the gap, i.e. the length in which the value
of the gap recovers from zero to a certain fraction of the maximum value. We decided
to use the cut-off value from the GL solution so that in the limit τ → 0, the GL value
for the healing-length is naturally recovered. Then, the condition for determining the
healing-length becomes

∆(ξ, τ)
∆(∞, τ)

� δ � tanh(1/
√

2) ≈ 0.609 (4.36)

and, following the perturbation theory used in the EGL formalism, the healing length
will be calculated by considering the leading correction to ξGL:

ξ � ξGL
[
1 + ε + O

(
τ2

)]
. (4.37)

As expected, ε ∼ τ and then it must be be a small correction in the vicinity of Tc , allowing
the Taylor expansion of distances around 1:

∆(1 + ε, τ)
τ1/2Ψ∞

� ψ(1) +
dψ
dx

�����x�1
ε + τϕ(1) �

δ∆(∞, τ)
τ1/2Ψ∞

� δ
[
1 −

(3
2
−
α
2

)
τ

]
. (4.38)

which gives
ξ
ξGL

� 1 +

(3
4
+
α
30
−

√

2δ16α
15

)
τ ≈ 1 + 0.147τ. (4.39)

The comparison between the numerical solution of ξ found numerically from Eq. (4.36)
and the solution from perturbation theory is plotted in Fig. 20. The difference between
the numerical and analytical results becomes significant for τ > 0.3 − 0.4, which defines
the validity domain of Eq. (4.39) as τ . τ∗ � 0.3 − 0.4.

Figure 20 – Condensate healing length versus τ: the analytical result of Eq. (4.39) is
given by the dotted line, whereas the full numerical solution of Eq. (4.36) is
represented by the solid curve.
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4.2 Analytic solution of the EGL equations for two-band
superconductors

In this section, the analysis started in chapter 2 is developed in detail, where
it was proved that in the case of two-band superconductors both gaps have the same
profile in the leading order. For convenience we repeat the set of equations of the EGL
formalism∑

j

Li j∆
(0)
j � 0, (4.40)∑

j

Li j∆
(1)
j � −ai∆

(0)
i − bi |∆

(0)
i |

2∆(0)
i +Ki~∇

2∆(0)
i , (4.41)∑

j

Li j∆
(2)
j � −ai∆

(1)
i − bi

(
2∆(1)

i |∆
(0)
i |

2
+ ∆

∗(1)
i ∆

(0)2
i

)
+Ki~∇∆

(1)
i − Fi

(
∆

(0)
i

)
, (4.42)

where

Fi
(
∆

(0)
i

)
� −

ai

2
∆

(0)
i + 2Ki~∇

2∆(0)
i + Qi~∇

2(~∇2∆(0)
i ) − 2bi |∆

(0)
i |

2∆(0)
i

− Li
[
2∆(0)

i |
~∇∆(0)

i |
2
+ 3∆∗(0)

i (~∇∆(0)
i )2

+ ∆
2(0)
i
~∇2∆∗(0)

i + 4|∆(0)
i |

2~∇2∆(0)
i

]

+ ci |∆
(0)
i |

4∆(0)
i (4.43)

and

A � ln
(

2eΓ~ωc

πTc

)
, Ai � Ni (0)A , ai � −Ni (0), bi � Ni (0)

7ζ(3)
8π2T2

c
, (4.44)

ci � Ni (0)
93ζ(5)

128π4T4
c
, Ki �

bi

6
~2v2

i , Qi �
ci

30
~4v4

i , Li �
ci

9
~2v2

i . (4.45)

The matrix

L � *
,

γ11 − N1(0)A γ12

γ12 γ22 − N2(0)A
+
-

(4.46)

plays a central role in this system of equations and studying it can be extremely helpful
to solve the EGL equations. As seen in chapter 2, by looking for non-trivial solutions for
∆(0), one has det(L) � 0, which provides the critical temperature of the system. Instead,
let us limit to finding the constantA (which is directly related to Tc)2

A �
1

GN1(0)N2(0)



g11N1(0) + g22N2(0)
2

+

√[
g11N1(0) − g22N2(0)

2

]2

+ g2
12N1(0)N2(0)


,

(4.47)
where G � g11 g22 − g2

12. To express the matrix L in a convenient form, let us define the
auxiliary parameter S:

S � −
γ11 − N1(0)A

γ12
�

g22 − N1(0)GA
g12

(4.48)
2 We have chosen the solution with “−” sign once the other one may produce non-physical states.
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and then

L � −γ12 *
,

S −1
−1 S−1

+
-
. (4.49)

Then, λ1 � 0 and λ2 � −γ12(S + S−1). Also, the eigenvectors of L are

~η1 � *
,

1
S

+
-
, ~η2 � *

,

−S
1

+
-

(4.50)

Notice that the eigenvectors given by Eq. (4.50) are not normalized. The EGL formalism
doesnot require such anormalization and, in addition, use of thenormalized eigenvectors
results in more complex expressions. As seen, Eq.(4.40) implies that

~∆(0) (~x) � Ψ(~x)~η1, (4.51)

i.e. the gap profiles are proportional and therefore it is clear that the parameter S is the
ratio between the two gaps, which is commonly measured experimentally (IAVARONE
et al., 2002; GOLUBOV et al., 2002).

ByprojectingEq. (4.41) onto~η1, one finds the equation for the true order parameter
of the system,Ψ,

aΨ + b |Ψ|2Ψ −K∇2Ψ � 0, (4.52)

where we have redefined the parameters

a �

∑
i

aiη
2
+i , b �

∑
i

biη
4
+i , K �

∑
i

Kiη
2
+i . (4.53)

The uniform solution becomes

Ψ∞ �

√
−

a
b
� Tc

√
8π2

7ζ(3)

√
1 + χS2

1 + χS4 , (4.54)

with the ratio between DOS’s χ � N2(0)/N1(0). Also, the healing length of the leading-
order solution becomes3

ξGL �

√
−
K

a
�
~v1
Tc

√
7ζ(3)
48π2

√
1 + ηβ2S4

1 + ηS2 (4.55)

where 4 β � v2/v1 is the ratio of Fermi velocities and, by expressingΨ in terms of the
uniform solution, ψ � Ψ/Ψ∞, the equation for the order parameter becomes exactly the
GL equation, (4.7). Then leading-order solution for the domain-wall problem becomes

~∆(0)
� Ψ∞ tanh(x/

√

2ξGL)~η1 (4.56)
3 This label means that the Ginzburg-Landau contribution corresponds to the leading order term,

inasmuch the EGL label will correspond to the contribution from the next-to-leading order term, even
though both terms were derived in the scope of the EGL foramlism.

4 In this chapter, β is redefined as the ratio between Fermi velocities between band 1 and 2.
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In order to find ~∆(1), it is useful to expand it in terms of the eigenvectors of L

~∆(1) (~x) � Φ1(~x)~η1 +Φ2(~x)~η2 (4.57)

and then project Eq. (4.42) onto ~η2

λ2 |~η2 |
2Φ2 � −γ12S−1(1 + S2)2ϕ−

� −a′Ψ − b′|Ψ|2Ψ +K
′
∇

2Ψ (4.58)

where the new auxiliary parameters were defined

a′ �
∑

i

aiη−iη+i , b′ �
∑

i

biη−iη
3
+i , K

′
�

∑
i

Kiη−iη+i . (4.59)

This equation can be simplified by using Eq. (4.52) in order to remove the Laplacian
term, resulting in

ϕ2(~x) �
Φ2(~x)
Ψ0

� G

[(
K
′

K
−

a′

a

)
ψ(~x) −

(
K
′

K
−

b′

b

)
ψ3(~x)

]
(4.60)

ϕ−
Ψ

����bulk
� G

(
b′

b
−

a′

a

)
, (4.61)

where in this expression we defined the auxiliary parameter

G �
a

λ2 |~η2 |2
�

aGS
g12(1 + S2)2 . (4.62)

This parameter is present only in the multi-band solution of the EGL formalism and
then, if this parameter is zero, the system has only one spatial profile for all bands. More
specifically if G � 0 then ϕ2 � 0 and then the vector ∆(1) presents only the contribution
from η1

∆(~x , τ) �
(
Ψ + τϕ1

)
~η1. (4.63)

Also, from Eq. (4.60), we see that if one has the same density of states at the Fermi level
and the same Fermi velocities for each band, the function ϕ− is null producing again
the case shown in Eq. (4.63). Finally we project Eq (4.42) onto ~η1 to obtain the equation
for ϕ+

aΦ1 + 3bΨ2Φ2 −K∇
2Φ1 � −a′Φ2 − 3b′Ψ2Φ2 +K

′
∇

2Φ2

−
a
2
Ψ + 2K∇2Ψ + Q∇

2(∇2Ψ) − 2bΨ3
− 5L

[
Ψ(~∇Ψ)2

+Ψ2
∇

2Ψ
]
+ c |Ψ|4Ψ (4.64)

where, similarly to the Φ2 equation, we have redefined the parameters

Q ≡

∑
i

Qiη
2
+i , L ≡

∑
i

Liη
4
+i , c ≡

∑
i

ciη
6
+i . (4.65)
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Expressing Φ1 in dimensionless units, ϕ1(~x) � Φ1(~x)/Φ0, one can use Eq’s. (4.52)
and (4.60) in order to remove Laplacian terms, and finally the equation for ϕ1 becomes
identical to that the single-band case

(1 − 3|ψ |2)ϕ+ + ∇
2ϕ+ � AΨ + BΨ3

+ CΨ5
+ DΨ(~∇Ψ)2, (4.66)

again, with redefined auxiliary coefficients

A �

(
3
2
+

aQ
K 2

)
+ G

(
K
′

K
−

a′

a

)2

, (4.67)

B �

(
5 aL

bK
− 4 aQ
K 2

)
− G

(
4K

′2

K 2 − 6 b′K ′

bK
− 2 a′K ′

aK
+ 4 a′b′

ab

)
, (4.68)

C �

(
ac
b2 + 3 aQ

K 2 − 5 aL
bK

)
+ 3G

(
K
′

K
−

b′

b

)2

, (4.69)

D �

(
6 aQ
K 2 − 5 aL

bK

)
+ 6G

(
K
′2

K 2 −
b′K ′

bK

)
. (4.70)

These coefficients are combinations of the auxiliary parameter S, the constant α 93ζ(5)
98ζ(3)2

and the ratio of microscopic parameters χ �
N2(0)
N1(0) and β �

v2
v1

ac
b2 � −α

(1 + χS2)(1 + χS6)
(1 + χS4)2 , (4.71)

aQ
K 2 � −

6
5
α

(1 + χS2)(1 + χβ4S2)
(1 + χβ2S2)2 , (4.72)

aL
bK

�
2
3
α

(1 + χS2)(1 + χβ2S4)
(1 + χS4)(1 + χβ2S2)

, (4.73)

K
′

K
� −S

1 − χβ2

1 + χβ2S2 , (4.74)

a′

a
� −S

1 − χ
1 + ηS2 , (4.75)

b′

b
� −S

1 − χS2

1 + χS4 (4.76)

Thus, we have reduced the problem of finding a solution to that of the single-band case.

ϕ+(x) � −
(3A + 3B + 5C + D

6

)
tanh(x/

√

2)

+

(2C + D
6

)
tanh3(x/

√

2) +
(C − A

2

) x
√

2
sech2(x/

√

2) (4.77)

and thus we have found the solution for all the components of the gaps

~∆(x , τ)
τ1/2Ψ∞

� ψ(x)~η1 + τ
[
ϕ1(x)~η1 + ϕ2(x)~η2

]
. (4.78)
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Also, once we know a solution, we have developed a method for deriving the leading
corrections to the GL coherence length

∆i (ξ, τ) � δ∆i (∞, τ) (4.79)

by expanding this length in τ and considering small perturbations from the GL value,
i.e. the leading corrections

ξi

ξGL
� 1 +

[(C − A
2

)
+ δ
√

2
(2C + D

6

)
− δ
√

2G
(
K
′

K
−

b′

b

)
εi

]
τ (4.80)

where ξi means the EGL result for the healing length in band i � {1, 2}, also εi is the
ratio between the components of the eigenvectors ~η2 and ~η1, i.e. ε1 � −S and ε2 � 1/S.

4.2.1 Deviation between healing lengths

Let us introduce the deviation rate of healing lengths

1
ξGL

d(ξ1 − ξ2)
dτ

�

(C − A
2

)
+ δ
√

2
(2C + D

6

)
− δ
√

2G
(
K
′

K
−

b′

b

)
εi (4.81)

This quantity can serve as themeasure for the length scale disparity because thedifference
between the band healing lengths is usually most pronounced at low temperatures
T � Tc . When analysing this expression, it is found that the ratio of Fermi velocities
plays an important role, as expected, to the deviation between gap healing lengths.
Notwithstanding, in Ref. (ICHIOKA; KOGAN; SCHMALIAN, 2017), Ichioka et al. it is
discussed some different physical picture. In order to stablish that the deviation between
healing lengths is a negligible feature in multi-band superconductors, which they called
named “locking” of length scales, the authors performed numerical simulations of the
microscopic theory of superconductivity in many situations with respect to the density
of states and couplings, but they only used one single value, β � 3, for the ratio of Fermi
velocities. The authors intended to have different coherence lengths in the limit of fully
decoupled bands but it is not clear to us why they only used this value for β knowing
that the Fermi velocities play such an important role on the characteristic lengths. In fact,
this rate of deviation found to have strong dependence on β, as seen in Fig. 21(a). The 3D
plot of the deviation rate versus λ12/λ11 and β is presented in Fig. 21(a). Details of the
dependence on β can be found in Fig. 21(b). The data are shown for λ12/λ11 > 0.1 in order
to check the expectation (ICHIOKA; KOGAN; SCHMALIAN, 2017) that the difference
between the band healing lengths is negligible for such values. For the sake of illustration
we choose λ11 � 0.6, λ22 � 0.4, and χ � 1. Notice that this choice of the couplings and the
band DOS’s ratio is not crucial: similar results are obtained for other sets of microscopic
parameters. From Fig. 21, it is seen that d(ξ2 − ξ1)/dτ is monotonically increasing with
respect to β while monotonically decreasing with respect to λ12. Basically, there are two
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Figure 21 – Deviation rate as function of the ratio of Fermi velocities and the normalized
interband coupling.

contributions to the final values of the healing lengths competing: the intra-band and
the inter-band interaction. As each band has a proper value for the Fermi velocity, they
should have different healing lengths but (remember that, in the regime of decoupled
bands, ξi ∝ vi), once they overlap each other in the same sample, the inter-band
coupling tend to smooth these discrepancies. Furthermore, it is important to note that
the terms in Eq’s. (4.74), (4.75) and (4.76) are bounded with respect to χ, β and S, i.e. the
exponents in the numerators and denominators are equal. Even though, before these
terms saturate with respect to β one can have significant discrepancies between healing
lengths. In quantitative terms, at T � 0.9Tc , one has a deviation from 5% to 55% ξGL,
which indicates to be even larger for lower temperatures. Such deviations can produce
extremely unusual behaviour to the vortex lattice, such as fractional vortices (BABAEV,
2002; NA; SILVA; MILOSEVIC, 2012; LIN; BULAEVSKII, 2013a; LIN; BULAEVSKII,
2013b; SILVA et al., 2014), enhancement of intertype superconductivity (VAGOV et al.,
2016), broken-symmetry vortex patterns (CURRAN et al., 2015), etc.

Let us analyse in detail the limit of nearly decoupled bands. First, by Eq’s. (4.47)
and (4.48), one can obtain the limit of nearly decoupled regime approximation g12 → 0
for the parameter

S →
g12

g11 − g22χ
. (4.82)

Also, one finds that by examining the dependence of the deviation rate with respect to β
one finds that

As an application to real materials we considered the microscopic parameters of
MgB2. This case illustrates how the ratio of Fermi velocities has great importance when
considering multi-band superconductors. As it is widely known, this material presented
in many experiments two clearly distinct superconducting gaps, being actually a pair of
very close Fermi sheets each one of them. The σ band is stronger (1) while the π band
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is the weaker (2). Single-crystals of this material is formed by graphite-type B layers
separated by hexagonal close-packed layers ofMg and it presents anisotropy in the Fermi
velocities. The averaged band Fermi velocities in the a − b plane can be estimated as
v (a−b)

1 � 4.4×105m/s and v (a−b)
2 � 5.35×105m/s. However, the motion of charge carriers

in the c direction changes dramatically due to the quasi-2D character of the σ band. In
particular, one obtains v (c)

1 � 7 × 104m/s, almost an order of magnitude smaller than
v (a−b)

1 , while for the 3D π band the Fermi velocity in the c direction v (c)
2 � 6 × 105m/s

remains close to v (a−b)
2 . The ratios between Fermi velocities vary almost one order of

magnitude, i.e. β(a−b) � 1.2 and β(c) � 8.7, and therefore, as seen before, it is expected
that this disparity will produce two kinds of situations when comparing the band
healing lengths. As can be seen in Fig. 22(a) and (b), the gap profiles at τ � 0.07 present
almost identical profile for β � β(a−b) while they differ significantly for β(c), which
agrees with the previous discussion. Note that we are not dealing with the anisotropic
version of the EGL equations in this chapter, instead we are considering long samples
of single-crystals and measurements of the symmetric cases, where the material is
effectively 1D. Here we utilize the dimensionless coupling constants and DOS’s ratio
reported for MgB2 in Ref. (): λ11 � 2.41, λ22 � 0.78, λ12 � 0.37 ≈ 0.15λ11 , and χ � 1.37.
Using the dotted horizontal line in both panels, one can estimate that the deviation
between the band healing lengths is close to 0.07 ξGL in panel (a) while increasing up to
0.3 ξGL in panel (b).

An important feature appeared in Fig. 22(b): the solution for gap 1 is not a
monotonic function of the distance. This is due to the growth of the coefficient of the
leading correction because, as seen in Fig. 18, this is a characteristic of this term only. We
believe that this is an undesired result of the perturbation theory and that it should not
be present if higher order corrections could be calculated. However, the gap profiles are
clearly unequal, once the weaker band has essentially one strong change of inclination
around 1ξGL and the stronger band rises quickly and present this strange shape. Thus
we find that the band condensates have different healing lengths and, in addition, their
spatial profiles are not similar. Based on this observation, one can expect that reducing
the deviation between the band healing lengths does not necessarily mean that the
system approaches an effectively single-component regime. A mismatch between the
band-condensate spatial profiles can still remain, reflecting an essential role of the
multiple-condensate structure even for a negligible difference between the band healing
lengths.

Finally, we plot in Fig’s.22(c) and (d) the healing lengths for both bands as a
function of τ from the numerical solution of Eq. (4.79) and from the analytic expression
(4.80). It is important to note that these figures give an idea of the deviation between
each band healing length and the GL coherence length. This quantity is also strongly
dependent of the ratio of Fermi velocities. In plot (c), for the case β(a−b), one can see that
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Figure 22 – (a) EGL solution for the band gap ∆i (x , τ) [in units of its asymptotic value
∆i ,∞(τ)] as a function of the distance from the interface (in units of ξGL)
calculated at τ � 0.07 and β � β(a−b); the solid and dashed curves represent
bands 1 and 2, respectively. (b) The same as in panel (a) but for β � β(c).
(c) The relative band healing length ξi/ξGL versus τ at β � β(a−b): the
analytical result of Eq. (4.80) is given by the (c) dashed line, while the full
numerical solution of Eq.(4.79) is represented by the solid curve. (d) The
same as in (c) but now for β � β(c). The dotted lines in panels (a) and (b)
mark δ � tanh(1/

√
2) that determines the band healing length according

to Eq. (4.80). The validity domain of the τ expansion can be estimated as
τ . τ∗ � 0.4 − 0.5 for β � β(a−b) and τ . τ∗ � 0.05 − 0.07 for β � β(c).

both healing lengths increase with temperature, i.e. the leading correction is positive
for this set of microscopic parameter. In plot (c), for the case β(c), the contrary happens.
It is interesting to note that in the single band case, the expression was universal and
the deviation was very small. Now in the multi-band case we see a completely different
scenario, which reinforces the idea that multi-band systems have the possibility of
completely new phenomena. One can also learn from Figs.22(c) and (d) that the validity
domain of the two-band EGL formalism is strongly dependent on the ratio of the band
Fermi velocities. In particular, for β � β(a−b) the analytical results for the band healing
lengths are close to the numerical solutions of Eq. (4.79) up to τ � 0.4 − 0.5 so that the
upper boundary of the validity domain is estimated as τ∗ � 0.4 − 0.5. From Fig.22(d)
we find the considerably smaller value τ∗ � 0.05 − 0.07. This shrinking of the validity
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domain at β � β(c) is a manifestation of the fact that, for great disparity between the
band Fermi velocities, the deviations of the band healing lengths from the GL coherence
length (and also from each other) so rapidly increase with τ that higher orders in τ
should be incorporated already for τ & 0.1.
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5 CONCLUSIONS

“Quo usque tandem abutere,
Catilina, patientia nostra?”

“How long, Catiline, will you go
on abusing our patience?”

Cicero

The thesis is focused on superconducting phenomena that can not be captured by
the standard Ginzburg-Landau (GL) theory. Furthermore, the phenomena of interest can
hardly be investigated in necessary detail by means of the full microscopic formalism,
due to abnormal technical difficulties. This is why the present study is based on the
extended GL (EGL) formalism (SHANENKO et al., 2011) that goes to one order beyond
the standard GL theory in the perturbation expansion of the microscopic equations over
the small proximity to the critical temperature τ � 1 − T/Tc .

The first problem investigated in the present thesis concerns the intertype (IT)
superconductivity regime (i.e., neither type I nor type II) in anisotropic superconductors.
We have developed a scaling approach for anisotropic superconductors, to effectively
isotropize the system, and so constructed a way of extracting anisotropic results from an
auxiliary isotropic model. In particular, we have demonstrated that the self-consistency
equation for the order parameter can be reduced to its auxiliary isotropic variant in any
order of the perturbation theory in the small deviation from the critical temperature
τ � 1−T/Tc . Thismeans that previous results of the isotropic GL and EGL theories can be
used to get the corresponding anisotropic results by simply applying the inverse scaling.
We have found that the self-dual Bogomolnyi regime, where the superconducting state
is specified by the duality between the condensate and magnetic flux, sustains in the
anisotropic case, still separating the standard superconductivity types I and II. We have
calculated the intertype (IT) domain boundaries for anisotropic superconductors, based
on the results for the IT regime obtained previously within the isotropic EGL theory.
While in the isotropic case the superconductivity type of the system is controlled by
the phase diagram in the (κ, T) plane (with κ the GL parameter), one should keep in
mind that for the anisotropic system, the magnetic and coherence lengths are direction
dependent. The GL parameter κ depends on the direction as well, i.e., κx , κy , and κz are
different for the principle axis x, y, and z. Then, for the magnetic field along, say, the z
direction we have obtained that the superconductivity-type phase diagram is controlled
by the three parameters κx , κy , and T. Then, at T � Tc the Bogomolnyi regime is given
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by the curve√κxκy � 1/
√

2 in the (κx , κy) plane, i.e., type II is above this curve and type
I is below. Below Tc this curve unfolds in a finite IT domain in the (κx , κy) plane. The
relevant expressions for the other principle directions can be obtained by the circular
permutation of x, y, and z. Our results demonstrate that there can be a situation when
the superconductivity type of the system of interest depends on the direction of the
applied magnetic field. It is of importance that this conclusion is in agreement with the
experimental results for TaN.

The second problem considered in this thesis deals with the difference between
the spatial profiles of the band condensates in multi-band superconductors. The aim
of the present study is to demonstrate that a notable difference between the band
length scales in multi-band superconductors can appear far beyond the regime of nearly
decoupled bands, contrary to the common expectation. We have analytically calculated
the band-dependent corrections to the GL coherence length for the two-band case. Our
study has demonstrated that a deviation between the resulting band healing lengths is
a product of complex interplay between different tendencies mainly governed by the
interband interactions and band Fermi velocities. The interband coupling tends to wash
out the difference between the band spatial scales while different band velocities help it
to sustain. As a result, the band healing lengths can significantly deviate from each other
far beyond the regime of nearly decoupled bands. Our results allow for a deeper insight
on how the band lengthscales depend on microscopic parameters and will certainly be
appealing to experimentalists, as our conclusions are relevant for the spatial distribution
of the superconducting condensate in the vortex core of multi-band materials.
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APPENDIX A – ANALYTIC DETAILS OF THE EGL
FORMALISM

This appendix contains the thorough derivation of the equations of motion of
the thermal Green’s functions. The generalization to an arbitrary number of bands is
quite straightforward.

A.1 Equations of motion for the thermal Green functions

In order to derive the equations of motion of the field-operators one must
calculate their commutators with the Hamiltonian operator, HBCS. For instance, one
must combine the expression for the field-operators in the Heisenberg’s picture:

ψσ (~x , t) � exp(HBCSt/~) ψσ (~x) exp(−HBCSt/~), (A.1)

ψσ (~x , t) � exp(HBCSt/~) ψ†σ (~x) exp(−HBCSt/~) (A.2)

and calculate their the commutator of these operators withHBCS. Also one must define
the nature of the particles in question. In this case, it is defined to be the fermionic kind:

{
ψσ (~x), ψ†σ′ (~x

′)
}
� δσ,σ′δ(~x − ~x′), (A.3){

ψσ (~x), ψσ′ (~x′)
}
� 0. (A.4)

The equation of motion for the destruction field-operator is

−~∂tψ↑(~x , t) �
[
ψ↑(~x , t),HBCS

]
� exp(HBCSt/~)

[
ψ↑(~x),HBCS

]
exp(−HBCSt/~)

� exp(HBCSt/~) *
,


ψ↑(~x),

∑
σ

∫
dD y ψ†σ (~y)Tyψσ (~y)


+

+

[
ψ↑(~x),

∫
dD y ψ†

↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

])
exp(−HBCSt/~)(A.5)

where it was used the fact that the comutator of an operator and its exponential operator
is null.
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The first equation of motion is calculated as the following1:

ψ↑(~x),

∑
σ

∫
dD y ψ†σ (~y)Tyψσ (~y)


�

∑
σ

∫
dD y

[
ψ↑(~x), ψ†σ (~y)Tyψσ (~y)

]

�

∑
σ

∫
dD y

(
ψ↑(~x)ψ†σ (~y)︸         ︷︷         ︸Tyψσ (~y) − ψ†σ (~y)Ty ψσ (~y)ψ↑(~x)︸         ︷︷         ︸

)
�

∑
σ

∫
dD y

((
δ↑,σδ(~x − ~y) − ψ†σ (~y)ψ↑(~x)

)
Tyψσ (~y) − ψ†σ (~y)Tyψσ (~y)ψ↑(~x)

)
�

∑
σ

∫
dD y

(
δ↑,σδ(~x − ~y)Tyψσ (~y) + ψ†σ (~y)Tyψσ (~y)ψ↑(~x) − ψ†σ (~y)Tyψσ (~y)ψ↑(~x)

)
� Txψ↑(~x) (A.6)

and the second term as the following
[
ψ↑(~x),

∫
dD y

(
ψ†
↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

)]
�

�

∫
dD y

[
ψ↑(~x), ψ†

↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

]

�

∫
dD y

(
ψ↑(~x)ψ†

↑
(~y)︸        ︷︷        ︸ψ†↓(~y)∆(~y) − ψ†

↑
(~y) ψ†

↓
(~y)ψ↑(~x)︸        ︷︷        ︸∆(~y)+

+ ∆∗(~y) ψ↑(~x)ψ↓(~y)︸        ︷︷        ︸ψ↑(~y) − ∆∗(~y)ψ↓(~y) ψ↑(~y)ψ↑(~x)︸        ︷︷        ︸
)

�

∫
dD y

((
δ(~x − ~y) − ψ†

↑
(~y)ψ↑(~x)

)
ψ†
↓
(~y)∆(~y) + ψ†

↑
(~y)ψ↑(~x)ψ†

↓
(~y)∆(~y)

−∆∗(~y)ψ↓(~y)ψ↑(~x)ψ↑(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~x)ψ↑(~y)
)

� ψ†
↓
(~x)∆(~x) (A.7)

And finaly the equation of motion for the destruction field operator in the Heisenberg’s
picture is

−~∂tψ↑(~x , t) � exp(HBCSt/~)
[
Txψ↑(~x) + ψ†

↓
(~x)∆(~x)

]
exp(−HBCSt/~)

� Txψ↑(~x , t) + ∆(~x)ψ
↓
(~x , t) (A.8)

In a similar way we can find the equation of motion for the creation operator in
the Heisenberg’s picture:

−~∂tψ↓(~x , t) �
[
ψ
↓
(~x , t),HBCS

]

� exp(HBCSt/~)
[
ψ†
↓
(~x),HBCS

]
exp(−HBCSt/~)

� exp(HBCSt/~) *
,


ψ†
↓
(~x),

∑
σ

∫
dD y ψ†σ (~y)Tyψσ (~y)


+

+

[
ψ†
↓
(~x),

∫
dD y ψ†

↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

])
exp(−HBCSt/~) (A.9)

1 The underbraces in the equation below indicate the terms where commutators are applied.
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again, it was used the fact that the comutator of an operator and its exponential operator
is null. The first commutator is calculated as

ψ†
↓
(~x),

∑
σ

∫
dD y ψ†σ (~y)Tyψσ (~y)


�

∑
σ

∫
dD y

[
ψ†
↓
(~x), ψ†σ (~y)Tyψσ (~y)

]

�

∑
σ

∫
dD y

(
ψ†
↓
(~x)ψ†σ (~y)︸         ︷︷         ︸Tyψσ (~y) − ψ†σ (~y)Ty ψσ (~y)ψ†

↓
(~x)︸         ︷︷         ︸

)
�

∑
σ

∫
dD y

(
−ψ†σ (~y)ψ†

↓
(~x)Tyψσ (~y) − ψ†σ (~y)Ty

(
δσ,↓δ(~x − ~y) − ψ†

↓
(~x)ψσ (~y)

))
�

∑
σ

∫
dD y

(
−ψ†σ (~y)ψ†

↓
(~x)Tyψσ (~y) + ψ†σ (~y)ψ†

↓
(~x)Tyψσ (~y) − ψ†σ (~y)δσ,↓Tyδ(~y − ~x)

)
� −T

∗
x ψ
†

↓
(~x), (A.10)

where in the last step it was used that the only term changing sign is the one which
involves the first derivative∫

dD yψ†σ (~y) ~A(~y) ·~∇δ(~y−~x) � −
∫

dD yδ(~y−~x) ~A(~y) ·~∇ψ†σ (~y) � −~A ·~∇ψ†σ (~x) (A.11)

and thus the complex conjugate T ∗y appears in the final expression of Eq. A.10. The
second term as the following

[
ψ†
↓
(~x),

∫
dD y

(
ψ†
↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

)]
�

�

∫
dD y

[
ψ†
↓
(~x), ψ†

↑
(~y)ψ†

↓
(~y)∆(~y) + ∆∗(~y)ψ↓(~y)ψ↑(~y)

]

�

∫
dD y

(
ψ†
↓
(~x)ψ†

↑
(~y)︸        ︷︷        ︸ψ†↓(~y)∆(~y) − ψ†

↑
(~y) ψ†

↓
(~y)ψ†

↓
(~x)︸        ︷︷        ︸∆(~y)+

+ ∆∗(~y) ψ†
↓
(~x)ψ↓(~y)︸        ︷︷        ︸ψ↑(~y) − ∆∗(~y)ψ↓(~y) ψ↑(~y)ψ†

↓
(~x)︸        ︷︷        ︸

)
�

∫
dD y

(
−ψ†
↑
(~y)ψ†

↓
(~x)ψ†

↓
(~y)∆(~y) + ψ†

↑
(~y)ψ†

↓
(~x)ψ†

↓
(~y)∆(~y)+

+∆∗(~y)δ(~x − ~y)ψ↑(~y) − ∆∗(~y)ψ↓(~y)ψ†
↓
(~x)ψ↑(~y) + ∆∗(~y)ψ↓(~y)ψ†

↓
(~x)ψ↑(~y)

)
� ∆∗(~x)ψ↑(~x) (A.12)

and finally the equation of motion for the creation field-operator in the Heisenberg’s
picture is:

−~∂tψ↓(~x , t) � −T
∗

x ψ↓(~x , t) + ∆
∗(~x)ψ↑(~x , t) (A.13)

The set of equations of motion of the field operators can be written in matrix
form as

−~∂t *
,

ψ↑(~x , t)
ψ
↓
(~x , t)

+
-
� *

,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-

*
,

ψ↑(~x , t)
ψ
↓
(~x , t)

+
-

(A.14)



APPENDIX A. Analytic details of the EGL formalism 85

One can obtain the equations of motion of the Green’s functions from Eq. (2.10)

−~∂τG(~x , τ;~x′, τ′) � ∂τ
〈
Tτψ↑(~x , τ)ψ

↑
(~x′, τ′)

〉
�

� ∂τ
〈
θ(τ − τ′)ψ↑(~x , τ)ψ

↑
(~x′, τ′) − θ(τ′ − τ)ψ

↑
(~x′, τ′)ψ↑(~x , τ)

〉
�

�

〈[
δ(τ − τ′)ψ↑(~x , τ) + θ(τ − τ′)∂τψ↑(~x , τ)

]
ψ
↑
(~x′, τ′) +

+δ(τ′ − τ)ψ
↑
(~x′, τ′)ψ↑(~x , τ) − θ(τ′ − τ)ψ

↑
(~x′, τ′)∂τψ↑(~x , τ)

〉
�

�

〈
δ(τ − τ′)

{
ψ↑(~x , τ), ψ

↑
(~x′, τ′)

}
−

1
~
θ(τ − τ′)

[
Txψ↑(~x , τ) + ∆(~x)ψ

↓
(~x , τ)

]
×

×ψ
↑
(~x′, τ′) +

1
~
θ(τ′ − τ)ψ

↑
(~x′, τ′)

[
Txψ↑(~x , τ) + ∆(~x)ψ

↓
(~x , τ)

]〉
(A.15)

where θ is the Heaviside’s step function and we used the equation of motion for the
destruction operator.

−~∂τG(~x , τ;~x′, τ′) �

� δ(τ − τ′)δ(~x − ~x′) +

+Tx

(
−

1
~

〈
θ(τ − τ′)ψ↑(~x , τ)ψ

↑
(~x′, τ′) − θ(τ′ − τ)ψ

↑
(~x′, τ′)ψ↑(~x , τ)

〉)
+∆(~x)

(
−

1
~

〈
θ(τ − τ′)ψ

↓
(~x , τ)ψ

↑
(~x′, τ′) − θ(τ′ − τ)ψ

↑
(~x′, τ′)ψ

↓
(~x , τ)

〉)
� δ(τ − τ′)δ(~x − ~x′) + TxG(~x , τ;~x′, τ′) + ∆(~x)F (~x , τ;~x′, τ′) (A.16)

We obtained a differential equation for the Green’s Function G(~x , τ;~x′, τ′). Note that, in
this process, another Green’s function F (~x , τ;~x′, τ′) emerged.

Let us obtain the equation of motion for this other Green’s function

−~∂τF (~x , τ;~x′, τ′) � ∂τ
〈
Tτψ↓(~x , τ)ψ

↑
(~x′, τ′)

〉
�

�

〈
δ(τ − τ′)ψ

↓
(~x , τ)ψ

↑
(~x′, τ′) + θ(τ − τ′)∂τψ↓(~x , τ)ψ

↑
(~x′, τ′)+

+ δ(τ − τ′)ψ
↓
(~x , τ)ψ

↑
(~x′, τ′) − θ(τ′ − τ)ψ

↑
(~x′, τ′)∂τψ↓(~x , τ)

〉
�

� −
1
~

〈
θ(τ − τ′)

[
−T

∗
x ψ↓(~x , τ) + ∆∗(~x)ψ↑(~x , τ)

]
ψ
↑
(~x′, τ′)−

− θ(τ′ − τ)ψ
↑
(~x′, τ′)

[
−T

∗
x ψ↓(~x , τ) + ∆∗(~x)ψ↑(~x , τ)

]〉
⇒

−~∂τF (~x , τ;~x′, τ′) � ∆∗(~x)G(~x , τ;~x′, τ′) − T ∗x F (~x , τ;~x′, τ′) (A.17)

For this Green’s function we do not have δ function in the equation of motion, which is
the reason why its is called "anomalous".
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We can use matrix notation to condense these equations

−~∂τ *
,

G(~x , τ;~x′, τ′)
F (~x , τ;~x′, τ′)

+
-
� δ(τ − τ′)δ(~x − ~x′) *

,

1
0

+
-
+ *

,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-︸               ︷︷               ︸

HBdG

*
,

G(~x , τ;~x′, τ′)
F (~x , τ;~x′, τ′)

+
-

(A.18)
In a similar way, we can calculate the system of equations for the other pair of Green’s
functions

−~∂τ *
,

F (~x , τ;~x′, τ′)
G(~x , τ;~x′, τ′)

+
-
� δ(τ − τ′)δ(~x − ~x′) *

,

0
1

+
-
+ *

,

Tx ∆(~x)
∆∗(~x) −T ∗x

+
-

*
,

F (~x , τ;~x′, τ′)
G(~x , τ;~x′, τ′)

+
-

(A.19)
And we can define a more general matrix which involves all Green’s functions

G(~x , τ;~x′, τ′) ≡ *
,

G(~x , τ;~x′, τ′) F (~x , τ;~x′, τ′)
F (~x , τ;~x′, τ′) G(~x , τ;~x′, τ′)

+
-
, 1̆ ≡ *

,

1 0
0 1

+
-

(A.20)

−~∂τG(~x , τ;~x′, τ′) � δ(τ − τ′)δ(~x − ~x′)1̆ +HBdGG(~x , τ;~x′, τ′) (A.21)

A.2 Main integrals of the EGL formalism

In this section the integrals appearing in the EGL formalism are derived in full
detail. As described in chapter 2, the τ expansion of the relevant quantities is the best
way of separating terms into the correct equation. Therefore, the all the integrals here
are presented already within the expanded form.

A.2.1 Terms involving Ka

In the τ1/2 component of the gap expansion given by Eq. (2.47), appears the
following integral2:

Ia1 �

∫
d3zKa (~z) � −gT lim

η→0+

∑
ω

∫
d3z exp(−iωη)G(0)

ω (~z)G
(0)
ω (−~z) �

� −gT lim
η→0+

∑
ω

∫
d3z

∫
d3k

(2π)3
d3k′

(2π)3 exp(−iωη)
exp(i~k · ~z)
i~ωn − ξk

exp(−i~k′ · ~z)
i~ωn + ξk′

�

� −gT lim
η→0+

∑
ω

∫
d3kd3k′

(2π)3
exp(−iωη)
i~ωn − ξk

exp[−i~x · (~k′ −~k)]
i~ωn + ξk′

1
(2π)3

∫
d3 y exp[i~y · (~k′ −~k)]︸                                   ︷︷                                   ︸

δ(~k′−~k)

� −gT lim
η→0+

∑
ω

∫
d3k

(2π)3
exp(−iωη)

2ξk

( 1
i~ωn − ξk′

−
1

i~ωn + ξk′

)
(A.22)

2 This is the only term in which it is necessary to keep the limit of η→ 0. In all other terms the limit and
the integrals are interchangeable.
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As this integral cannot be directly solved, onemust invert the summation overMatsubara
frequencies and the integral over ~k. The problem now is to calculate

lim
η→0+

∑
ω

exp(−iωη)
1

i~ω ± ξk
. (A.23)

This can be done by the Matsubara’s weighing function

f (z) �
∓β

exp(±βz) + 1
exp(−zη/~)

z ∓ ξk
(A.24)

Such that the contour integral along the paths described in Fig’s. () produces the
summation of Eq. (A.23)

1
2πi

lim
η→0+

∮
C

∓β

exp(±βz) + 1
exp(−zη/~)

z ∓ ξk
� lim
η→0+

∑
ω

exp(−iωnη)
i~ωn ∓ ξk

+
β

exp(∓βξk) + 1
� 0

(A.25)
Therefore, the problem reduces to

Ia1 � −gT
∫

d3k
(2π)3

(
−

β

exp(−βξk) + 1
+

β

exp(βξk) + 1

)
� −g

∫
d3k

(2π)3
1

2ξk

1 − exp(βξk)
exp(βξk) + 1

� g
∫

d3k
(2π)3

1
2ξk

tanh(βξk/2)

� g

~ωD∫
0

dξN (ξ)
tanh(βξ/2)

ξ
≈ gN (0)

~βωD/2∫
0

dx
tanh(x)

x
. (A.26)

In general, the last integral cannot be solved in terms of known functions. As the physical
limit of this formalism is restricted to the case when ~ωD � T, it can be approximated to

~βωD/2∫
0

dx
tanh(x)

x
�

~βωD/2∫
0

dx
[
d ln(x)
dx

]
tanh(x) ≈ ln

(
~βωD

2

)
−

∞∫
0

dx ln(x) sec2(x)

� ln
(
~βωD

2

)
+ Γ − ln(π/4) � ln

(2eγ~ωD

πT

)
. (A.27)

And finally,

Ia1 � gN (0) ln
(2eγ~ωD

πT

)
. (A.28)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

The next integral related to Ka appears in the τ3/2 contribution

I i , j
a2 �

1
2!

∫
d3z Ka (~z)zi z j � −

1
2

gT
∑
ω

∫
d3z G(0)

ω (~z)G
(0)
ω (−~z)ziz j . (A.29)
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By using a property of Fourier’s transforms, the components of the vector ~z in the
integrals can be expressed as derivatives in the Fourier space∫

d3z exp(−i~k · ~z)G(0)
ω (~z)z j �

∫
d~z (i∂k j ) exp(−i~k · ~z)G(0)

ω (~z) � i∂k j G̃
(0)
ω (~k) (A.30)∫

d3z exp(−i~k · ~z)G
(0)
ω (−~z)z j �

∫
d~z(i∂k j ) exp(−i~k · ~z)G

(0)
ω (−~z) � i∂k jG

(0)
ω (~k)

(A.31)

where G(0)
ω (~k) and G

(0)
ω (~k) are the Fourier’s transform of the unperturbed Green’s

functions. Moreover, by the convolution theorem, the integral above can be rewritten in
terms of the Fourier’s transform of the unperturbed Green’s functions3, which gives

I i , j
a2 �

1
2

gT
∑
ω

∫
d3k

(2π)3

(
∂ki

1
i~ω − ξk

) (
∂k j

1
i~ω + ξk

)
�

1
2

gT
∑
ω

∫
d3k

(2π)3

−
~2

m ki

(i~ω − ξk)2

~2

m k j

(i~ω + ξk)2 (A.32)

In the case of spherical Fermi surfaces the integrals are non-zero, clearly, only
when i � j and also k2

i can be substituted by k2/3, then

I i , j
a2 �

δi j

3
gT

(
~2

m

) ∑
ω

∫
d3k

(2π)3
ξk + µ

(~2ω2 + ξ2
k)2

≈
δi j

3
gT

(
~2

m

)
N (0)

∑
ω

∫ ~ωD

−~ωD

dξ
ξ + µ

(~2ω2 + ξ2)2 . (A.33)

By parity, one can easily reduce the expression above to4

I i , j
a2 ≈

δi j

3
gT

(
~2

m

)
mv2

F

2
N (0)

∑
ω

1
|~ω |3

∫
∞

−∞

1
(1 + x2)2︸            ︷︷            ︸
π/2

�
δi j

3
gT
~2v2

F

2
N (0)

π
2

2
(2πT)3

∞∑
n�1

1
(n + 1/2)3︸            ︷︷            ︸

7ζ(3)

(A.34)

�
δi j

6
7ζ(3)
8π2T2~

2v2
F � δi jK [1 + 2τ + O(τ2)] (A.35)

In case of anisotropic Fermi surfaces, the terms with mixed components of the
vector ~z can contribute to the final expression. This is not a critical issue in the elliptic
3 In these derivations it is applied a generalization of the convolution theorem to more dimensions

and products of more functions: given the convolution of two functions f and g with their respective
Fourier transforms f̃ and g̃, ( f ⊗ g)(z) �

∫
dx f (x)g(z − x), then f ⊗ g �

∫
dk f̃ (z) g̃(k) exp(−ikx).

4 In the summation over the Matsubara’s frequencies, one should rememner that
∑
∞

n�1
1

(n+1/2) l �

(2l
− 1)ζ(l)
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case because one can find a new set of coordinates through a linear transformation in
which these mixed terms are zero again. In this case, the dispersion relation becomes

ξk �

∑
j

~2k2
j

2m j
− µ (A.36)

and, taking over from Eq. (A.32),

I i , j
a2 �

1
2

gT
∑
ω

∫
d3k

(2π)3

(
∂ki

1
i~ω − ξk

) (
∂k j

1
i~ω + ξk

)

�
1
2

gT
∑
ω

∫
d3k

(2π)3

−
~2

mi
ki

(i~ω − ξk)2

~2

m j
k j

(i~ω + ξk)2 (A.37)

Now rescaling ~k in terms of the principal axis, it is obtained a spherical domain of
integration

k̃i �
√

miki (A.38)

and thus the single electron energy becomes

ξk̃ �

∑
q

~2k2
q

2mq
�

(
~2 k̃2

2m̃

)
(A.39)

The symmetry of the integrand makes only diagonal terms (i � j) non-zero again and
after making the change of variable d3 k̃

(2π)3 → N (ξ)dξ (integrated up to the cut-off energy
~ωc), one can follow the same steps as in the isotropic case to arrive at

I i , j
a2 �

1
6

N (0)
7ζ(3)
8π2T2~

2v2
i δi , j � Ki[1 + 2τ + O(τ2)]. (A.40)

A similar integral appears in the current equation but instead of having a second
derivative of the gaps, one has first derivative of the gap and first derivative of the
unperturbed Green functions.

The next term we analyse is

∫
d~zKa (~z)

(
~z · ~∇

)4

4!
∆(~x) �

∫
d~zKa (~z)



1
4!

∑
n

z4
n∂

4
n +

1
8

∑
n,m

zm zn∂m∂n


∆(~x) (A.41)

So we have to calculate two kinds of integrals∫
d~zKa (~z)z4

n (A.42)∫
d~zKa (~z)z2

nz2
m , where (m, n). (A.43)
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The first can be solved as∫
d~zKa (~z)z4

n →

∫
d~zKa (~z)z4

1 �

� gT
[
πN (0)

kF

]2
∞∫

0

dz
z4

sinh(z/ξT )︸                ︷︷                ︸
ξ5

T2(1−2−5)Γ(5)ζ(5)

1∫
−1

d(cos θ) sin4 θ

︸                 ︷︷                 ︸
16/15

2π∫
0

dφ cos4 φ

︸          ︷︷          ︸
3π/4

�
4
5

c~4v4
F(A.44)

and the second∫
d~zKa (~z)z2

m z2
n →

∫
d~zKa (~z)z2

1z2
2 �

� gT
[
πN (0)

kF

]2
∞∫

0

dz
z4

sinh(z/ξT )︸                ︷︷                ︸
ξ5

T2(1−2−5)Γ(5)ζ(5)

1∫
−1

d(cos θ) sin4 θ

︸                 ︷︷                 ︸
16/15

2π∫
0

dφ sin2 φ cos2 φ

︸                   ︷︷                   ︸
π/4

�
4

15
c~4v4

F .

(A.45)

The final expression becomes

∫
d~zKa (~z)

(
~z · ~∇

)4

4!
∆(~x) �

c
30
~4v4

F



∑
n

∂2
n +

∑
n,m

∂2
m∂

2
n


∆(~x) � Q∇2(∇2∆). (A.46)

A.2.2 Terms involving Kb

The first integral related to the kernel Kb appears in the gap expansion, Eq. (2.47),
in the form

b1 �

∫
d3 y1d3 y2d3 y3Kb (~x , ~y1, ~y2, ~y3) (A.47)

� −gT
∑
ω

∫
d3 y1d3 y2d3 y3G

(0)
ω (~x , ~y1)G

(0)
ω (~y1, ~y2)G(0)

ω (~y2, ~y3)G
(0)
ω (~z3, ~x) (A.48)

and the convolution theorem can be applied in order to express this expression in terms
of the Fourier transforms of the unperturbed Green’s functions

b1 � −gT
∑
ω

∫
d3k

(2π)3
1

(i~ωn − ξk)2
1

(i~ωn + ξk)2

≈ −gT
∑
ω

N (0)

~ωD∫
−~ωD

dξ
1

(~2ω2
n + ξ2)2

≈ −gT
∑
ω

1
|~ω |3

2
∞∫

0

1
(1 + x2)2︸         ︷︷         ︸
π/4

� −gN (0)T
π

2~3π3 2
∞∑

n�0

β3~3

(2n + 1)3 � −gN (0)
7ζ(3)
8π2T2 (A.49)
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The next term involving involving Kb is of order τ5/2 and then one must consider
that three ∆’s appear in this kernel,which gives already a τ3/2 exponent remaining two
gradient operators (coming from the Taylor expansions) which might appear in the
forms (

~z · ~∇
)
∆(~x) �

∑
n

zn∂n∆(~x) (A.50)

or (
~z · ~∇

)2
∆(~x) �

∑
mn

zm zn∂m∂n∆(~x). (A.51)

The symmetry of the kernel allows us to solve integrals for a given pair of components
zm , zn and extend the result to other direction. Essentially, different terms appear from
the gap expansion, which produce some kinds of integrals, in summary they are∫ 3∏

j�1
d~z jKb

({
~z
}

3
) [(

~z1 · ~∇
)
∆(~x)

]
∆∗(~x)

[(
~z3 · ~∇

)
∆(~x)

]
⇒

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z1m z3n

(A.52)∫ 3∏
j�1

d~z jKb
({
~z
}

3
) [(

~z1 · ~∇
)
∆(~x)

] [(
~z2 · ~∇

)
∆∗(~x)

]
∆(~x) ⇒

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z1m z2n

(A.53)∫ 3∏
j�1

d~z jKb
({
~z
}

3
)
|∆(~x) |2

(
~z1 · ~∇

)2

2!
∆(~x) ⇒

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z1m z1n (A.54)

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)
∆2(~x)

(
~z2 · ~∇

)2

2!
∆∗(~x) ⇒

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z2m z2n (A.55)

Because of the symmetry of Kb and the relation

G
(0)
ω (~z) � −G(0)

−ω (−~z), (A.56)

we can permute ~z1 and ~z3 as

Kb
(
~z1,~z2,~z3

)
� −gT

∑
ω

G
(0)
ω (−~z1)G

(0)
ω (~z1 −~z2)G(0)

ω (~z2 −~z3)G
(0)
−ω (~z3)

� −gT
∑
ω

G
(0)
−ω (~z1)G(0)

−ω (~z2 −~z1)G
(0)
−ω (~z3 −~z2)G(0)

−ω (−~z3) �

� −gT
∑
ω

G
(0)
−ω (−~z3)G

(0)
−ω (~z3 −~z2)G(0)

−ω (~z2 −~z1)G
(0)
−ω (~z1) �

� Kb
(
~z3,~z2,~z1

)
(A.57)
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Each of these terms can be cast in terms of the Fourier transforms of the
unperturbed Greens functions5∫ 3∏

j�1
d~z jKb

({
~z
}

3
)

z1m z3n � gT
∑
ω

∫ 3∏
j�1

d~z j (−z1m)G(0)
ω (−~z1)G

(0)
ω (~z1 −~z2)×

× G
(0)
ω (~z2 −~z3)z3nG

(0)
ω (~z3)

� gT
∑
ω

∫
d3k

(2π)3

[
(i∂km )

1
i~ω − ξk

] 1
i~ω + ξk

1
i~ω − ξk

[
(−i∂kn )

1
i~ω + ξk

]

� gT
∑
ω

∫
d3k

(2π)3

−
~2

m km

(i~ω − ξk)2
1

i~ω + ξk

1
i~ω − ξk


−
−
~2

m kn

(i~ω + ξk)2


� gT

~2

m
2
3

N (0)δmn

∑
ω

∫
∞

−∞

dξ
2(ξ + µ)

(−~2ω2 − ξ2)3

� −gT
~4k2

F

m2
2
3

N (0)δmn

∑
ω

∫
∞

−∞

dξ 1
(~2ω2 + ξ2)3 , (A.58)

and ∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z1m z3n � −gT
2
3

N (0)~2v2
Fδmn

∑
ω

1
|~ω |5︸     ︷︷     ︸

31ζ(5)/(2πT)5

∫
∞

−∞

dα 1
(1 + α2)3︸                ︷︷                ︸

3π/8

� − gN (0)
31ζ(5)

128π4T4︸             ︷︷             ︸
c/3

~2v2
Fδmn . (A.59)

So we have∫ 3∏
j�1

d~z jKb
({
~z
}

3
) [(

~z1 · ∇
)
∆(~x)

]
∆
∗

(~x)
[(
~z3 · ∇

)
∆(~x)

]

� −
c
3
~2v2

F[1 + O(τ)]
∑
mn

∆
∗

(~x)δmn∂m∆(~x)∂n∆(~x) � −
c
3
~2v2

F[1 + O(τ)]∆
∗

(~x)
[
∇ ∆(~x)

]2

(A.60)

For terms involving ~z2, we rewrite them as

z2n z1m � (z1n − z1n + z2n)z1m � (−z1n)(−z1m) + (z1n − z2n)(−z1m) (A.61)

z2n z2m � (−z2n)(−z2m) � (z1n − z1n − z2n)(z1m − z1m − z2m)

� (z1n − z2n)(z1m − z2m) + (z1n − z2n)(−z1m) + (z1m − z2m)(−z1n) + (−z1m)(−z1n)
(A.62)

5 We used the useful property of Fourier transforms:
∫
d3z f (~z)z l

me−i~k·~z �
∫
d3z f (~z)(i∂km ) le−i~k·~z �

(i∂km ) l
∫
d3z f (~z)e−i~k·~z � (i∂km ) lF(~k).
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thus

� −gT
∑
ω

∫
d3k

(2π)3
1

i~ω − ξk

[
(i∂km )(i∂kn )

1
i~ω + ξk

] 1
i~ω − ξk

1
i~ω + ξk

− gT
∑
ω

∫
d3k

(2π)3

[
(−i∂km )

1
i~ω − ξk

] [
(i∂kn )

1
i~ω + ξk

] 1
i~ω − ξk

1
i~ω + ξk

− gT
∑
ω

∫
d3k

(2π)3

[
(−i∂kn )

1
i~ω − ξk

] [
(i∂km )

1
i~ω + ξk

] 1
i~ω − ξk

1
i~ω + ξk

− gT
∑
ω

∫
d3k

(2π)3

[
(−i∂km )(−i∂kn )

1
i~ω − ξk

] 1
i~ω + ξk

1
i~ω − ξk

1
i~ω + ξk

(A.63)

� gT
∑
ω

∫
d3k

(2π)3
1

i~ω − ξk


2

(
−
~2

m

)2
km kn

(i~ω + ξk)3 −
−
~2

m δmn

(i~ω + ξk)2



1
i~ω − ξk

1
i~ω + ξk

−

− gT
∑
ω

∫
d3k

(2π)3

−
~2

m km

(i~ω − ξk)2


−
−
~2

m kn

(i~ω + ξk)2



1
i~ω − ξk

1
i~ω + ξk

−

− gT
∑
ω

∫
d3k

(2π)3

−
~2

m kn

(i~ω − ξk)2


−
−
~2

m km

(i~ω + ξk)2



1
i~ω − ξk

1
i~ω + ξk

+

+ gT
∑
ω

∫
d3k

(2π)3


2

(
−
~2

m

)2
km kn

(i~ω − ξk)3 −
−
~2

m δmn

(i~ω − ξk)2



1
i~ω + ξk

1
i~ω − ξk

1
i~ω + ξk

(A.64)
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And finally∫ 3∏
j�1

d~z jKb
({
~z
}

3
)

z2m z2n �

� gN (0)T
∑
ω

∞∫
−∞

dξ

2

(
−
~2

m

)2 k2

3 δmn

(~2ω2 + ξ2)4 (i~ω − ξ)2
−

−
~2
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which produces the coefficient L of the EGL formalism

∫ 3∏
j�1

d~z jKb
({
~z
}

3
)
∆2(~x)

(
~z2 · ~∇

)2

2!
∆∗(~x)

� −L

∑
mn

δmn∆
2(~x)∂m∂n∆

∗(~x) � −L∆2(~x)~∇2∆∗(~x) (A.67)

and can be similarly calculated for the other terms involving second derivatives and



APPENDIX A. Analytic details of the EGL formalism 95

three gaps.

A.2.3 Terms involving Kc

This last term involves only one term of the order τ5/2:
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Multiband superconductors: Disparity between band length scales
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Multiple condensates in a superconducting material can interfere constructively or destructively and this leads
to unconventional effects not inherent in single-band superconductors. Such effects can be pronounced when the
spatial scales (healing lengths) of different band condensates deviate from each other. Here we show that, contrary
to usual expectations, this deviation can be considerable even far beyond the regime of nearly decoupled bands,
being affected by difference between the band Fermi velocities. Our study is performed within the extended
Ginzburg-Landau (GL) formalism that goes to one order beyond the GL theory in the perturbation expansion of
the microscopic equations over the proximity to Tc. The formalism makes it possible to obtain closed analytical
results for the profiles of the band condensates and for their healing lengths and, at the same time, captures the
difference between the healing lengths which does not appear in the standard GL domain.

DOI: 10.1103/PhysRevB.96.134521

I. INTRODUCTION

Interest in spatial scales of the contributing band con-
densates in multiband superconductors arises in the context
of a search for unusual physics not inherent in single-band
materials. When coexisting in one system, multiple conden-
sates can interfere (interact) constructively or destructively
and this may lead to unusual coherent phenomena [1] such
as, e.g., fractional vortices [2–7], chiral solitons [8,9], a
hidden criticality [10], an enhancement of the intertype
superconductivity [11], a giant paramagnetic Meissner effect
[12], broken-symmetry vortex patterns [13], etc. Such phe-
nomena are sensitive to the difference between the coherence
length scales of available bands and one can expect that the
most promising regime for observing exotic superconducting
phenomena is when the spatial profiles of different band
condensates mismatch. For example, one can imagine two
coexisting superconducting condensates with so different
healing lengths that these condensates, when taken separately,
belong to superconductivity types I and II. Then, the question
arises about the superconductivity type of the aggregate
condensate that incorporates so different coherent entries. This
question has lead to the assumption about a special multiband
superconductivity type [14] and stimulated intense debates
in the literature (see Refs. [15–17] and references therein).
The consequent microscopic calculations proved that the
classification of the superconductivity types does not change
in multiband superconductors [11]. However, the intertype
domain, located in the phase diagram between types I and
II and negligible in single-band superconductors, tends to
expand significantly in the presence of multiple bands with
competing spatial scales [11]. The intertype superconductivity
is governed by the Bogomolnyi self-duality [18,19] resulting in
exotic flux configurations such as lattices of superconducting
islands, labyrinths of vortices, and mixtures of vortex clusters
and giant vortices [20]. Thus the appearance of the competing
band length scales can dramatically change the superconductor
magnetic properties as compared to those in single-band
materials.

It has been known [21] since the 1960s but also confirmed
recently [16,17] that the spatial profiles of different band
condensates in multiband superconductors are the same in the

Ginzburg-Landau (GL) domain, i.e., when only contributions
to the band superconducting gaps of order τ 1/2 are included
(with τ = 1 − T/Tc the proximity to the critical temperature).
However, a general analysis of the τ expansion of the two-band
BCS equations [17,22] has revealed that the spatially depen-
dent band gaps are not any longer proportional to one another
when contributions of order τ 3/2 and higher are incorporated.
In other words, the healing lengths of band condensates are
generally different in multiband superconductors and this
difference disappears only in the limit T → Tc. This result
has been confirmed [23] by numerical investigations of the
two-band extended GL (EGL) formalism [17,22] that goes
to one order beyond the GL theory in the τ expansion of the
microscopic equations. It is also in agreement with the analysis
of the long-range asymptotes of superconducting gaps in the
single-vortex solution of two-gap systems [24].

Recently the band healing lengths have been extracted
from experimental data for several two-band superconducting
compounds. By fitting the results for the spatial distribution of
the zero-bias DOS (density of states) in NbSe2, NbSe1.8S0.2,
and CaKFe4As4 [25,26], it has been found that the two-band
healing lengths are close to one another in these materials
even down to low temperatures T � Tc. Based on numerical
investigations of the two-band Eilenberger equations and
keeping in mind those experimental findings, the authors of
Ref. [27] have suggested that the band healing lengths remain
close to each other below Tc in general and this “locking of
the length scales” is released only for nearly decoupled bands.
According to Ref. [27], such a regime is approached when the
interband coupling is by an order of magnitude smaller than
the intraband couplings.

In the present work we demonstrate that in fact the band
healing lengths can significantly deviate from each other far
beyond the regime of nearly decoupled bands. This deviation
is governed by disparity between the band Fermi velocities.
Notice that the dependence of the healing lengths on the
characteristic velocities has not been studied in much detail,
especially in the case of significant interaction between band
condensates. The investigation of Ref. [27] was focused on
effects of the interband coupling only. From the asymptotic
results of Ref. [24] one can see that the spatial profiles of the
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band condensates are sensitive to the band Fermi velocities but
the related calculations have been done for extremely small
interband couplings; see Fig. 3 in Ref. [24].

Our calculations are performed for a clean two-band system
with the s-wave pairing and spherical Fermi surfaces in both
bands. The present study does not focus on a particular super-
conducting material but considers general trends of the band-
dependent corrections to the GL coherence length as functions
of the band Fermi velocities and interband coupling. Our
investigation is done within the EGL formalism [17,22,28],
where the lowest contribution of order τ 1/2 and the leading
correction of order τ 3/2 are included in superconducting band-
dependent gaps. The main ideas of this approach are similar to
those realized in the 1970s for single-band superconductors by
Jacobs [29–32], who introduced the τ expansion to correct the
so-called Neumann-Tewordt functional [33,34]. (An interested
reader can find relevant details in Ref. [11].) Including the
perturbative corrections to the GL equations does not simply
improve the accuracy of quantitative results but allows for
capturing effects that are not accessible in the standard GL
approach. As already mentioned above, the difference between
the band healing lengths in multiband superconductors is one
of such fundamental effects. We employ the perturbation ex-
pansion in τ rather than the full microscopic equations because
the deviation between the band length scales beyond the regime
of nearly decoupled bands is clearly seen already when includ-
ing corrections of order τ 3/2 in superconducting gaps. Fur-
thermore, the perturbative approach yields closed analytical
expressions for the spatial profiles of the band condensates and
their healing lengths. This allows for a deeper insight on how
the band length scales depend on microscopic parameters and
will certainly be appealing to experimentalists, as our conclu-
sions are relevant for the spatial distribution of the supercon-
ducting condensate in the vortex core of multiband materials.

Our paper is organized as follows. In Sec. II we introduce
an analytical solution to the EGL formalism which makes it
possible to explicitly find the leading correction in τ to the
GL coherence length. To simplify our presentation, we first
discuss the single-band case where calculations and resulting
expressions are relatively simpler. In Sec. III we generalize
the solution to the case of two contributing bands. Based on
this generalization, we again calculate the leading correction
to the GL coherence length but now this correction becomes
band dependent. Then we investigate the band healing lengths
as functions of the relevant microscopic parameters. Our
conclusions are given in Sec. IV.

II. ANALYTICAL SOLUTION AND HEALING LENGTH IN
SINGLE-BAND SUPERCONDUCTOR

In order to calculate the band-dependent corrections to
the GL coherence length, we employ the EGL formalism
and consider a spatially nonuniform configuration where the
superconducting condensate (including all its band compo-
nents) is severely suppressed at some point(s). In this case
each band component recovers its bulk value in a distance
that can be called the band healing length. When T →
Tc, the latter approaches the GL coherence length that is
unique for all contributing bands [16,17,21]. There are two
similar possibilities to arrange such a configuration, viz. by

z

x

Zero Gap Non zero Gap

FIG. 1. Sketch of our calculational setup: the plane x = 0
separates domains with zero (x < 0) and nonzero (x > 0) gaps so
we have the Dirichlet boundary condition for the superconducting
gap(s) at the interface x = 0. The system remains symmetric under
translations in y and z directions.

considering a vortex solution in the presence of a magnetic field
or by invoking appropriate boundary conditions. Both of these
possibilities result in similar band-dependent corrections to the
GL coherence length and, as we are interested in the regime
with significantly different band length scales, the particular
choice of one of these options is not important. Technically it
is easier to work with zero magnetic field, and so we follow the
way employed in Ref. [23] and consider the widely used spatial
configuration [35], where the superconducting condensate
occupies a half space x > 0 and is completely suppressed
for x � 0; see Fig. 1. By construction, spatial variations of the
condensate over any length scale smaller than (or of the order
of) the Cooper-pair radius are beyond the EGL formalism. This
is why our choice of the boundary conditions cannot produce
any Friedel-like oscillations (typical of the superconductor-
insulator interface; see, e.g., Ref. [36]) but yields a spatial
profile of the condensate similar to that in the vortex core. (By
the same reason any features of the Kramer-Pesch collapse in
the vortex core are also beyond our consideration [37,38].)

The main difficulty in finding the condensate spatial
distribution within the EGL formalism concerns solving the
gap equation in the lowest order in τ = 1 − T/Tc, i.e., the
nonlinear GL equation. The corrections to the GL result
are governed by a linear equation [17,22,28] that can be
solved analytically in many important cases. An advantage
of the chosen spatial configuration given by Fig. 1 is that
the solution to the GL equation can be written in this case
in a closed analytical form [35,39]. Below we show that the
leading corrections in τ to this solution can also be found
analytically and therefore one can calculate the corresponding
band-dependent correction to the GL coherence length in an
explicit form.

The simplest way to introduce the analytical procedure
of interest is to first consider the single-band case. Such an
auxiliary study is presented in this section.

As already mentioned in the Introduction, within the EGL
formalism the superconducting gap incorporates two terms
[17,22,28], i.e., the GL contribution of order τ 1/2 and its
leading correction of order τ 3/2. In particular, for the single-
band case one obtains [28]

�(r,τ ) = τ 1/2[�(0)(r) + τ�(1)(r) + O(τ 2)], (1)

where the spatial distribution of the superconducting gap in
the lowest order �(0)(r) obeys the GL equation

a�(0) + b|�(0)|2�(0) − K∇2�(0) = 0, (2)
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TABLE I. Dimensionless coefficients for the single-band and two-band systems, α = 93ζ (5)/[98ζ 2(3)] ≈ 0.68. For the two-band case we
have λij = gijN (0), with gij the interaction coupling constant and N (0) = N1(0) + N2(0) the total DOS, χ = N2(0)/N1(0), and β = vF2/vF1,
where vFi is the band Fermi velocity.

Auxiliary coefficient Single-band expression Two-band expression

ac
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5 α − 6
5 α
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and the leading correction in τ is controlled by the linear
equation

(a + 2b|�(0)|2 + �(0)2)�(1) − K∇2�(1) = F [�(0)], (3)

with the right-hand side F = F [�(0)] given by

F = − a

2
�(0) + 2K∇2�(0) + Q∇2(∇2�(0)) − 2b|�(0)|2�(0)

− L[2�(0)|∇�(0)|2 + 3�(0)∗(∇�(0))2 + �(0)2∇2�(0)∗

+ 4|�(0)|2∇2�(0)] + c|�(0)|4�(0). (4)

The material coefficients a, b, K, c, Q, and L in Eqs. (2), (3),
and (4) are calculated with a specific model of the charge-
carrier states. For the illustration we choose a single-band
system in the clean limit and with a 3D Fermi surface. Then
the material coefficients are obtained as [28]

a = −N (0), b = N (0)
7ζ (3)

8π2T 2
c

, K = b

6
h̄2v2

F ,

c = N (0)
93ζ (5)

128π4T 4
c

, Q = c

30
h̄4v4

F , L = c

9
h̄2v2

F , (5)

where N (0) is the DOS, vF denotes the Fermi velocity, and
ζ (. . .) is the Riemann zeta function. The critical temperature
is given by the ordinary weak-coupling expression Tc =
(2e
/π )h̄ωc exp[−1/gN(0)], with g the Gor’kov coupling
constant, ωc the energy cutoff, and 
 ≈ 0.58 the Euler
constant. Notice that matching the proper orders in the
perturbation expansion in τ requires one to explicitly display
the temperature dependence of both contributions to �(r,τ ).
This is why the material coefficient a appearing in the GL
equation does not include τ . In addition, the spatial coordinates
(and all characteristic lengths) are scaled as τ 1/2r, which
introduces the corresponding scaling in the spatial gradients
∇ ∝ τ 1/2; see Ref. [28].

In the problem of interest the gap function �(r,τ ) can
be chosen real and, due to the symmetry of the system, we
have �(r,τ ) = �(x,τ ). In this case, the relevant equations can
be considerably simplified by introducing the dimensionless
variables

x̄ = x/ξGL, ψ = �(0)/�0, ϕ = �(1)/�0, (6)

where ξGL = √−K/a is the GL coherence length (multiplied
by τ 1/2 due to the scaling) and �0 = √−a/b is the bulk
solution of the GL equation (2). Below the bar over x is
suppressed (this does cause any confusion). Then, the basic
equations acquire the form

ψ − ψ3 + ψ ′′ = 0, (7)

(1 − 3ψ2)ϕ + ϕ′′ = f [ψ], (8)

where f = F/(a�0), after exclusion of higher gradients with
the help of the GL equation, reads

f = Aψ + Bψ3 + Cψ5 + Dψψ ′2. (9)

The dimensionless coefficients A, B, C, and D are given in
Table I. Since they are written in terms of the number α =
93ζ (5)/[98ζ 2(3)] ≈ 0.68, the solution of Eq. (8) is material
independent. So, the order parameter �(x,τ ) obtained within
the single-band EGL formalism depends on microscopic
characteristics only through �0 and ξGL, similar to the solution
of the GL equation. However, as will be seen in Sec. III, the
two-band case exhibits a more complex scenario. The relevant
boundary conditions for Eqs. (7) and (8) are given by

ψ(0) = ψ ′(∞) = 0, ϕ(0) = ϕ′(∞) = 0, (10)

i.e., �(x,τ ) vanishes at the interface x = 0 and rises to its
asymptotic (bulk) value when x → ∞.

As is well known [39], the solution for the 1D nonlinear
Schrödinger equation (7) with the boundary conditions (10) is
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given by (x > 0)

ψ(x) = tanh(x/
√

2). (11)

The key point in solving Eq. (8) is switching to the new variable
ψ defined by Eq. (11). Written in terms of ψ , Eq. (8) reads

DLϕ = 2f/(1 − ψ2), (12)

where DL is the operator of the associated Legendre differen-
tial equation for the azimuthal quantum number 2 and magnetic
quantum number 2, i.e.,

DL = (1 − ψ2)
d2

dψ2
− 2ψ

d

dψ
+

(
6 − 4

1 − ψ2

)
. (13)

The homogeneous equation DLϕ = 0 is well known [40] and
its general solution is given by a linear combination of the first-
and second-kind associated Legendre functions which, in the
case of interest, write

P 2
2 (ψ) = 3(1 − ψ2),

(14)

Q2
2(ψ) = 2ψ

1 − ψ2
+ 3ψ + 3(1 − ψ2) tanh−1(ψ).

As Eq. (12) is inhomogeneous, its general solution is given
by the sum of its particular solution Sp(ψ) and a general
solution of the corresponding homogeneous equation. To
specify Sp(ψ), one first notes that

DL

(
ψ

1 − ψ2

)
= 6ψ

1 − ψ2
, DLψ = − 4ψ

1 − ψ2
+ 4ψ,

DLψ3 = − 4ψ

1 − ψ2
+ 10ψ − 6ψ3. (15)

Then, it remains to mention that the right-hand side of Eq. (12)
can be rearranged as

2f

1 − ψ2
= (2A + 2B + 2C)

ψ

1 − ψ2
− (2B + 2C − D)ψ

− (2C + D)ψ3. (16)

Now, based on Eqs. (15) and (16), it is fairly easy to see that
Sp(ψ) can be written as

Sp = α0
ψ

1 − ψ2
+ α1 ψ + α3 ψ3, (17)

where the coefficients α0, α1, and α3 are obtained when
plugging Eq. (17) into Eq. (12) and using the rearrangement
given by Eq. (16). The resulting system of equations for the
coefficients α0, α1, and α3 is of the triangular form, and so one
easily obtains

α0 = (A − C)/3, α1 = −(3B + 8C + D)/6,

α3 = (2C + D)/6. (18)

Now we have everything at our disposal to find the solution of
Eq. (12). The first-kind Legendre function cannot contribute
as we have P 2

2 (0) = 3, Q2
2(0) = 0, and Sp(0) = 0; see the

boundary conditions in Eq. (10). Moreover, since the solution
in question should be uniform for x → ∞ (ψ → 1), the
divergent term ψ

1−ψ2 that appears in Sp(ψ) and Q2
2(ψ) must

FIG. 2. EGL solution for �(x,τ ) given in units of its asymptotic
value �∞(τ ) as a function of the relative distance from the interface
x/ξGL for τ = 0 (dashed curve) and τ = 0.4 (solid curve). The dotted
horizontal line marks δ = tanh(1/

√
2) that determines the condensate

healing length according to Eq. (21).

be eliminated by an appropriate choice of the coefficient for
Q2

2(ψ). As a result, we get

ϕ = −A − C

6
Q2

2(ψ) + Sp(ψ), (19)

where the boundary conditions (10) are certainly satisfied.
After combining Eqs. (1), (11), and (19), the superconduct-

ing gap calculated up to order τ 3/2 is given by

�(x,τ )

τ 1/2�0
= tanh(x/

√
2) − τ

[
tanh(x/

√
2)

(
3

4
− 47α

30

)

+ (x/
√

2) sech2(x/
√

2)

(
3

4
+ α

30

)

+ tanh3(x/
√

2)
16α

15

]
, (20)

where α is the material-independent number, as already
mentioned previously; see Table I. The spatial profile of the
order parameter is shown in Fig. 2 for τ = 0 and τ = 0.4.
At τ = 0 the EGL solution coincides with the GL result
while below Tc it deviates from the GL order parameter,
recovering the asymptotic value slower than this occurs in
the GL scenario. To quantify this deviation, we define the
healing length ξ as the distance at which the gap taken in units
of �∞(τ ) = limx→∞ �(x,τ ) reaches the characteristic value
δ = tanh(1/

√
2) ≈ 0.61, i.e.,

�(ξ,τ )/�∞(τ ) = δ. (21)

This definition is chosen so that the GL coherence length is
recovered in the limit τ → 0. Based on Eqs. (20) and (21),
one is able to get the τ expansion for ξ . Indeed, by expanding
�(ξ,τ ) in Eq. (21) over a small deviation of ξ from the GL
coherence length [the latter is 1 in the dimensionless units of
Eq. (6)], we obtain

�(ξ,τ )

τ 1/2�0
≈ ψ(1) + dψ

dξ

∣∣∣∣
ξ=1

δξ + τϕ(1), (22)

where only the terms up to order τ are included and it is
taken into consideration that δξ = ξ − 1 ∝ τ . Then, plugging
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FIG. 3. Condensate healing length versus τ : the analytical result
of Eq. (23) is given by the dotted line, whereas the full numerical
solution of Eq. (21) is represented by the solid curve. The difference
between the numerical and analytical results becomes significant for
τ > 0.3−0.4, which defines the validity domain of Eq. (23) as τ �
τ ∗ = 0.3−0.4; see the related discussion in the main text.

Eq. (22) into the definition of the healing length (21), we get
the ratio ξ/ξGL in the lowest and next-to-lowest orders in τ as

ξ/ξGL = 1 + τ

(
3

4
+ α

30
−

√
2δ

16α

15

)
≈ 1 + 0.147τ. (23)

The result given by Eq. (23) is material independent, in
agreement with Eq. (20). The difference between the EGL
healing length and ξGL is not pronounced, e.g., even at τ = 0.4
it is about 5%. However, a similar analytical treatment will be
invoked in Sec. III for a system with two contributing bands
where the situation changes crucially.

In Fig. 3 the analytical result (23) obtained by expanding
Eq. (21) is compared with a numerical solution of Eq. (21)
for ξ . Notice that the left-hand side of Eq. (21) is not a linear
function of τ and so the solution for ξ is given by an infinite
series in powers of τ . However, only the contribution of order
τ is relevant here because the higher orders are incomplete.
As is seen from Fig. 3, the difference between the numerical
and analytical results becomes significant for τ > 0.3−0.4,
where higher orders in τ make considerable contributions to
ξ . This gives the material-independent validity domain for
our results as τ � τ ∗ = 0.3−0.4. For τ > τ ∗ one expects
that higher orders in τ can play a role in �(x,τ ). A similar
estimate is obtained under the criterion that ξ should be larger
than the characteristic length of the integral kernels involved
in the expansion of the gap equation over the powers of the
order parameter [23,39], i.e., ξ > h̄vF /(2πT ). We recall that
the assumption of small � results in a nonlinear integral
gap equation. To get a simpler differential-equation structure,
one needs to invoke a gradient expansion, and its validity is
controlled by the above inequality. When utilizing Eq. (23) for
the healing length, this inequality is reduced to τ < 0.35. It is
worth noting here that in many cases the qualitative predictions
of the EGL theory (and sometimes even quantitative results)
still hold down to low temperatures T � Tc; see discussions
and examples in Refs. [11,22,28].

The analytical solution constructed in this section for
single-band systems can be generalized to the case of multi-

band superconductors. Thus we proceed further and consider
a more complicated variant with two available bands.

III. LENGTH SCALES IN TWO-BAND
SUPERCONDUCTOR

A. Analytical solution for band gaps

In the present section we again employ the spatial con-
figuration of Fig. 1 but the right half-space is now occupied
by a two-band superconductor so that both superconducting
gaps vanish at the interface x = 0. Our starting point is
the self-consistency BCS equation which is written for the
two-band case as (see, e.g., Ref. [22])


�(r,τ ) = ǧ 
R[ 
�(r,τ )], (24)

where ǧ is the 2 × 2 matrix of the coupling constants
gij , 
�(r,τ ) is the column of the band gaps �i(r,τ ) (i = 1,2),
and the elements of 
R are the band-dependent anomalous
Green functions Ri = 〈ψ̂i↑(r)ψ̂i↓(r)〉 [22]. It is convenient to
rearrange Ri in order to separate its lowest-order contribution,
i.e.,

Ri = Ni(0)A�i + �i, (25)

where Ni(0) is the band DOS and A = ln[2e
h̄ωc/(π Tc)],
with 
 and ωc already introduced earlier in Sec. II. Then, the
self-consistency equation (24) reads

Ľ 
�(r,τ ) = 
�[ 
�(r,τ )], (26)

where Ľ is the matrix with the entries Lij = γij −
δijNi(0)A, δij is the Kronecker symbol, and γij is the
element of the inverted interaction matrix γ̌ = ǧ−1. Following
Ref. [22], we expand 
� in τ as


� = τ 1/2[ 
�(0) + τ 
�(1) + τ 2 
�(2) + O(τ 3)]. (27)

The corresponding expansion for 
� is of the form [22]


� = τ 1/2[τ 
�(1) + τ 2 
�(2) + O(τ 3)], (28)

with

�
(1)
i = −ai�

(0)
i − bi

∣∣�(0)
i

∣∣2
�

(0)
i + Ki∇2�

(0)
i (29)

and

�
(2)
i = − ai�

(1)
i − bi

(
2
∣∣�(0)

i

∣∣2
�

(1)
i + �

(0)2
i �

(1)∗
i

)
+ Ki∇2�

(1)
i + Fi

[
�

(0)
i

]
. (30)

Here ai, bi , and Ki depend on a chosen model of the charge-
carrier band states and Fi[�

(0)
i ] is given by Eq. (4) where �(0)

is replaced by �
(0)
i and the coefficients a, b, c, K, Q, and L

acquire the band index i. To demonstrate disparity between
the band length scales beyond the regime of nearly decoupled
bands, it is not necessary to consider unconventional pairing
symmetries or anisotropic systems. We choose a simple variant
of two bands with 3D Fermi surfaces in the clean limit. So the
relevant microscopic parameters are the couplings gij = gji ,
the band Fermi velocities vFi , and the band DOSs Ni(0) (i,j =
1,2). Then the band material coefficients ai, bi, ci, Ki , Qi ,
and Li are given by Eq. (5) but with N (0) and vF replaced by
Ni(0) and vFi . Similar to the single-band case, the spatial
coordinates (and the healing lengths) are scaled as τ 1/2r
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so that ∇ ∝ τ 1/2; see Refs. [22,28]. Notice that due to
the rearrangement (25), the lowest nonzero order in the τ

expansion of 
� is τ 3/2, i.e., 
�(0) = 0. We also remark that, to
find the multiband self-consistency equation in a given order
in τ , one needs to expand the band gaps up to the same order.
This is a distinctive feature of the multiband formalism that
does not appear in the single-band equations. As the equation
for the leading correction to the GL contribution in band
gaps results from the self-consistency equation taken in order
τ 5/2 [see Eq. (46) below], one needs to explicitly display the
contribution of order τ 5/2 in Eq. (27) and introduce 
�(2).

Taken in order τ 1/2, the self-consistency equation (26)
yields

Ľ 
�(0) = 0. (31)

For obtaining a nontrivial solution for �
(0)
i it must be true that

det Ľ = [γ11 − N1(0)A][γ22 − N2(0)A] − γ 2
12 = 0, (32)

and Tc is the largest root of Eq. (32). In addition, Eq. (31)
dictates that the gap vector 
�(0) is proportional to the
eigenvector of the matrix Ľ with the zero eigenvalue, i.e.,


�(0)(r) = �(r)
η1. (33)

Therefore, in order τ 1/2, the band gaps are proportional to one
another [17,22] and �(r) (which controls the spatial profile
of both band condensates) is the Landau order parameter of
the two-band system. To express 
η1 in a convenient form, we
introduce the auxiliary quantity

S = −γ11 − N1(0)A
γ12

= g22 − N1(0)GA
g12

, (34)

where G = g11g22 − g2
12 is the determinant of ǧ. Based on this

definition, we can choose two eigenvectors of Ľ as


η1 =
(

1

S

)
, 
η2 =

(−S

1

)
, (35)

with the eigenvalues

w1 = 0, w2 = −γ12(S + S−1). (36)

Notice that the eigenvectors given by Eq. (35) are not
normalized. The EGL formalism does not require such a nor-
malization and, in addition, use of the normalized eigenvectors
results in more complex expressions.

Taken in order τ 3/2, the self-consistency equation (26) is
reduced to

Ľ 
�(1) = 
�(1). (37)

The two projections of Eq. (37) onto 
η1 and 
η2 should be
examined. The projection onto 
η1 yields the two-band GL
equation

a� + b|�|2� − K∇2� = 0, (38)

where the coefficients a, b, and K [redefined as compared to
Eq. (2)] are averages over the contributing bands

a =
∑

i

aiη
2
1i , b =

∑
i

biη
4
1i , K =

∑
i

Kiη
2
1i , (39)

with η1i the component of 
η1. The uniform solution of Eq. (38)
is given by

�0 =
√

−a

b
=

√
8π2T 2

c

7ζ (3)

1 + χS2

1 + χS4
, (40)

with χ = N2(0)/N1(0). The GL coherence length writes

ξGL =
√

−K
a

=
√

h̄2v2
F1

7ζ (3)

48π2T 2
c

1 + χβ2S2

1 + χS2
, (41)

with β = vF2/vF1. As seen, due to the two-band modification
of the coefficients a, b, and K, �0 and ξGL depend on the
material parameters not only through Tc but also incorporate
S, χ , and β. Keeping in mind that the band-gap functions do
not depend on the spatial coordinates y and z and introducing
dimensionless units similar to that of the single-band case (6),
we obtain that ψ(x) = �/�0 obeys Eq. (7) (the band gaps
are chosen real). As the boundary conditions for ψ in the
two-band case are also given by Eq. (10), the solution remains
ψ = tanh(x/

√
2).

The next step is investigating the projection of Eq. (37) onto

η2. We first define the expansion


�(1)(r) =
∑

α

�α(r)
ηα, (42)

where the index α enumerates the eigenvectors of Ľ and should
not be confounded with the band index i. Now, by projecting
Eq. (37) onto 
η2, we obtain

w2 
η †
2 
η2 �2 = −a′� − b′|�|2� + K′∇2�, (43)

where 
η †
2 = (η21,η22) and

a′ =
∑

i

aiη1iη2i , b ′ =
∑

i

biη
3
1iη2i , K′ =

∑
i

Kiη1iη2i .

(44)

Employing Eq. (38) and introducing the dimensionless func-
tions ϕα = �α/�0, one rewrites Eq. (43) as

ϕ2 = G
[(K′

K − a′

a

)
ψ −

(K′

K − b ′

b

)
ψ3

]
, (45)

with G = a/(w2 
η †
2 
η2).

When considered in order τ 5/2, the self-consistency equa-
tion (26) is of the form

Ľ 
�(2) = 
�(2). (46)

Projecting this equation onto 
η1, one finds

a�1 + b(2|�|2�1 + �2�∗
1) − K∇2�1 = F[�2,�], (47)

with

F[�2,�] = − a′�2 − b ′(2|�|2�2 + �2�∗
2)

+ K′∇2�2 + F [�]. (48)

Here F [�] is given by Eq. (4) but with �(0) replaced by �

and the coefficients a, b, K, Q, L, and c redefined according
to Eq. (39) and

Q =
∑

i

Qiη
2
1i , L =

∑
i

Liη
4
1i , c =

∑
i

ciη
6
1i . (49)
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As �2 obeys Eq. (43), the right-hand side of Eq. (47) can be
expressed only in terms of �. Then, using the dimensionless
functions ϕ1(x) and ψ(x) and switching to the variable ψ =
tanh(x/

√
2), we obtain for ϕ1 an equation that is formally the

same as Eq. (12). However, now the coefficients A, B, C, and
D appearing in f [ψ] are given by new expressions; see Table I.
The boundary conditions for ϕ1 are also the same as those for ϕ

in the single-band case; see Eq. (10). Thus the whole solution
procedure for ϕ1 can be performed through the same steps.

Finally, the complete expression for 
�(x,τ ) up to order τ 3/2

can be assembled as


�(x,τ )

τ 1/2�0
= ψ(x)
η1 + τ [ϕ1(x)
η1 + ϕ2(x)
η2], (50)

where ψ obeys Eq. (11), ϕ1 is given by the right-hand side of
Eq. (19) with the coefficients A, B, C, and D modified for the
two-band case (see Table I), and ϕ2 satisfies Eq. (45). As seen,
the difference between the spatial profiles of the band gaps
appears in the leading correction to the GL result due to the
presence of the term ϕ2(x)
η2, as has been already mentioned
in previous works [17,22]. However, one should take into
consideration that ϕ2 can be equal to zero for some specific
combinations of the microscopic parameters. For example, it
happens when G = 0, resulting in G = 0. As w2 → ∞ for
G → 0, the spatial profiles of the band condensates remain
the same for G = 0 in any order of the perturbation expansion
in τ . One can get a feeling about this case by examining the
projection of Eq. (46) onto 
η2: it is obviously equal to zero as
being inversely proportional to w2.

B. Deviation between band healing lengths

The band healing lengths ξi are calculated by applying the
criterion of Eq. (21) to the band gaps �i given by Eq. (50) so
that we have

�i(ξi,τ )/�i,∞(τ ) = δ, (51)

where �i,∞(τ ) = limx→∞ �i(x,τ ). The solution of Eq. (51),
up to the leading correction to the GL coherence length, is of

the form

ξi/ξGL

= 1 + τ

{
A − C

2
+

√
2δ

[
2C + D

6
+ G

(
b ′

b
− K′

K

)
εi

]}
,

(52)

with ε1 = −S, ε2 = 1/S, and δ = tanh(1/
√

2). In agreement
with the above discussion about the spatial profiles of the band
condensates, see Eq. (50), we find that the healing lengths
become generally different in the leading correction to the
GL coherence length. (One should keep in mind, of course,
exceptions when ϕ2 = 0, e.g., for G = 0.) We introduce the
deviation rate of the band healing lengths d(ξ2 − ξ1)/dτ

given by

1

ξGL

d(ξ2 − ξ1)

dτ
= Gδ

√
2(S + S−1)

(
b ′

b
− K′

K

)
. (53)

This quantity can serve as the measure for the length scale
disparity because the difference between the band healing
lengths is usually most pronounced at low temperatures
T � Tc. (It is important to note that the effect in question
can be further enhanced in the presence of a hidden criticality
[10] but the latter is not captured in the leading correction
to the GL theory.) Notice that all dimensionless quantities
that appear in Eq. (53), and also in Eqs. (50) and (52),
depend on the material parameters through the dimensionless
couplings λij = gijN (0) [N (0) = N1(0) + N2(0)], the band
DOS’s ratio χ , and the ratio of the band Fermi velocities β.
The corresponding expressions are displayed in Table I.

By examining Eq. (53) one finds that the deviation rate is
strongly dependent on the relative interband coupling λ12/λ11,
in agreement with the results of Ref. [27]. However, our study
demonstrates that the difference between the healing lengths
is also very sensitive to the ratio of the band Fermi velocities
β = vF2/vF1. The 3D plot of the deviation rate versus λ12/λ11

and β is presented in Fig. 4(a). Details of the dependence on
β can be found in Fig. 4(b). The data are shown for λ12/λ11 >

0.1 in order to check the expectation [27] that the difference
between the band healing lengths is negligible for such values

FIG. 4. (a) Deviation rate of the band healing lengths in units of the GL coherence length [see Eq. (53)] versus the ratio of the band Fermi
velocities β and the relative interband coupling λ12/λ11 as calculated at χ = N2(0)/N1(0) = 1. (b) The same quantity as in panel (a) but now
given as a function of β for the relative interband couplings 0.2, 0.3, 0.4, and 0.5.

134521-7

APPENDIX B. Scientific publications produced during the doctoral course 103



SARAIVA, DE SOUZA SILVA, AGUIAR, AND SHANENKO PHYSICAL REVIEW B 96, 134521 (2017)

of the relative interband coupling. For the sake of illustration
we choose λ11 = 0.6, λ22 = 0.4, and χ = 1. Notice that this
choice of the intraband couplings and the band DOS’s ratio is
not crucial: similar results are obtained for other sets of λ11,
λ22, and χ . In our consideration band 1 is a stronger band.
It means that λ11 − χλ22 > 0, i.e., the critical temperature of
band 1 considered as an independent superconductor (i.e., at
λ12 = 0) is higher than the superconducting temperature of the
decoupled band 2.

From Fig. 4(a) it is seen that d(ξ2 − ξ1)/dτ is most
pronounced when β > 2−3 and λ12/λ11 < 0.3. In particular,
for these parameters we find that ξ2 − ξ1 taken at τ = 0.1
varies from 0.1ξGL up to almost 0.6ξGL. We emphasize that
such significant deviation between the band length scales
develops almost near Tc. As already mentioned above, the
difference of the band healing lengths is further increased when
lowering the temperature. Another important feature of the plot
in Fig. 4(a) is an increase of the deviation rate with rising β.
Though this increase is more profound at λ12/λ11 = 0.1−0.2,
its effect is clearly seen also for larger interband couplings. For
example, at λ12/λ11 = 0.3 we find that d(ξ2 − ξ1)/dτ ≈ ξGL

for β > 5 while being about 0.2ξGL at β = 1; see Fig. 4(b).
Even at λ12/λ11 = 0.5 the deviation rate increases from 0.1ξGL

at β = 1 up to almost 0.4ξGL at β = 3. The region of the fast
growth of the deviation rate as a function of β shrinks when
the interband coupling rises. In particular, at λ12/λ11 = 0.5 a
saturation is almost reached at β ≈ 4, while at λ12/λ11 = 0.2
the increase is still pronounced for β = 6. As seen, the effect
of β on the deviation between the band healing lengths
is rather important. When β > 5, the deviation rate is not
negligible even for interband couplings λ12/λ11 = 0.4−0.5,
i.e., far beyond the regime of nearly decoupled bands.

The underlying physics for the dependence of the deviation
rate on λ12/λ11 is that the interband interactions tend to wash
out any difference between the contributing band condensates.
To clarify the reason behind the impact of the ratio of the band
Fermi velocities, one can recall that for the decoupled bands
in the clean limit ξi ∝ vFi and so ξ2 − ξ1 ∝ vF2 − vF1. Hence
the larger the difference of the band Fermi velocities, the more
pronounced the deviation between the band length scales of
two decoupled condensates and, physically, this trend should

sustain for small interband couplings. One can note, however,
that the relation ξi ∝ vFi is oversimplified because it is not
applicable at all temperatures below Tc. In particular, it is not
correct in the so-called passive regime of band 2 which is
realized at temperatures above Tc2, i.e., the superconducting
temperature of band 2 taken as a separate superconductor
(Tc2 < Tc). For more detail, it is instructive to examine the
right-hand side of Eq. (53) in the limit λ12 → 0. Using the
explicit form of S given in Table I and taking into account
that λ11 − χλ22 > 0 (band 1 is a stronger band), we derive for
λ12 → 0

S → λ12/(λ11 − χλ22). (54)

As seen, S goes to zero for zero interband coupling and so does
ϕ2 (G → 0); see Eq. (45) and Table I. Then Eq. (50) dictates
that the occupation of band 2 becomes zero. It is clear that one
can hardly use the standard relation ξ2 ∝ vF2 in the absence
of the condensed state. However, the zero-interband-coupling
limit for ξ2 and so for the deviation rate still exist. In particular,
we obtain in the limit λ12 → 0

1

ξGL

d(ξ2 − ξ1)

dτ
∝ β2. (55)

Based on Eq. (55), one concludes that the deviation rate is very
sensitive to the ratio of the band Fermi velocities and enhanced
when the Fermi velocity of the weaker band is larger than that
of the stronger band, in a qualitative agreement with our results
in Fig. 4. We remark that at χ = 1 Eq. (55) is quantitatively
correct only for λ12/λ11 � 0.01. Indeed, our results given in
Fig. 4 exhibit a saturation for large β which is clearly an effect
of interband interactions.

Above we have considered how the rate of the deviation
between the healing lengths is sensitive to the relative interband
coupling and the ratio of the band Fermi velocities. It has
been mentioned that the qualitative picture of our results is
not sensitive to particular values of the intraband couplings
and the band DOS’s ratio. However, quantitative changes due
to variations in λ11, λ22, and χ can be considerable. This is
illustrated in Fig. 5, where d(ξ2 − ξ1)/dτ is shown versus
λ12/λ22 and β for the same intraband couplings as in Fig. 4
but for the DOS’s ratio χ = 0.2. What is seen immediately in

FIG. 5. (a) Deviation rate (53) versus β = vF2/vF1 and λ12/λ11 for the same intraband couplings as in Fig. 4 but the band DOS’s ratio is
now changed to χ = 0.2. (b) The deviation rate as a function of β for λ12/λ11 = 0.2, 0.3, 0.4, and 0.5; the other microscopic parameters are
the same as in panel (a).
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Fig. 5(a) is that the maximum at large β and small λ12 is less
pronounced, being smaller by a factor of about 1.4 as compared
to the case of χ = 1. It might seem that the deviation between
the band length scales is generally reduced here. However, this
is not correct. In particular, one can see in Fig. 5(b) that for
large interband couplings and large ratios of the band Fermi
velocities, the deviation rate is in fact enhanced as compared
to its values for the same parameters in the previous case
with χ = 1. For example, at λ12/λ22 = 0.4 and 0.5 such an
enhancement is about 50%. In addition, the growth of the
deviation rate with β is generally more pronounced for χ =
0.2. For instance, at λ12/λ11 = 0.4 it increases from 0.05ξGL at
β = 1 up to 0.85ξGL at β = 7, see Fig. 5(b), while in Fig. 4(b)
the deviation rate calculated for the same interband coupling
is 0.1ξGL at β = 1 and 0.6ξGL at β = 7.

Thus the interband interactions tend to weaken the deviation
between the band length scales while disparity between the
band Fermi velocities tend to strengthen it. Changes in other
microscopic parameters, like χ , add nuances highlighting
complexity of this confrontation. A balance between these
two confronting tendencies results in the disparity between the
band length scales far beyond the regime of nearly decoupled
band condensates.

C. Discussion

To have an idea about how different the band characteristic
velocities can be in multiband superconductors, several ex-
amples are considered below. Here finding useful illustrations
does not require a difficult search in the literature because
already the well-known multiband compound MgB2 provides
an instructive example. The tunneling spectra for MgB2 exhibit
the presence of two excitation gaps associated with the σ -
and π -band condensates. Based on a number of available first-
principle calculations for such an effectively two-band system,
one can easily extract the characteristic velocities of the charge
carriers. In particular, the averaged band Fermi velocities in
the a-b plane can be estimated as [41] v

(a−b)
F1 = 4.4 × 105 m/s

for the stronger σ band and v
(a−b)
F2 = 5.35 × 105 m/s for the

weaker π band. As seen, they are not significantly different,
giving the ratio β(a−b) = 1.2. However, the motion of charge
carriers in the c direction changes dramatically due to the
quasi-2D character of the σ band. In particular, one obtains
v

(c)
F1 = 7 × 104 m/s, almost an order of magnitude smaller

than v
(a−b)
F1 , while for the 3D π band the Fermi velocity in

the c direction v
(c)
F2 = 6 × 105 m/s remains close to v

(a−b)
F2 .

As a result, the ratio of the band Fermi velocities in the
c direction increases by about an order of magnitude as
compared to that in the a-b plane, namely, β(c) = 8.7. Our
previous analysis of the deviation rate strongly suggests that
this value of β is large enough to have a pronounced disparity
between the healing lengths of the σ and π bands. To go into
more detail on this point, the band-condensate profiles and
the corresponding healing lengths calculated from Eqs. (50)
and (52) are shown in Fig. 6 for β = β(a−b) and β(c). Here we
utilize the dimensionless coupling constants and DOS’s ratio
reported for MgB2 in Ref. [42]: λ11 = 2.41, λ22 = 0.78, λ12 =
0.37 ≈ 0.15λ11, and χ = 1.37. Of course, one should bear in
mind possible uncertainties of the microscopic parameters and

limitations of our simplified consideration with 3D spherical
band Fermi surfaces. Physically, each band Fermi velocity
is averaged over angles in our consideration and, strictly
speaking, anisotropy effects are beyond our consideration.
However, as our problem is effectively one dimensional,
the anisotropy effects can still be captured by changing the
ratio of the band Fermi velocities with the orientation of the
zero-condensate interface.

The spatial distributions of the band gaps, calculated at
τ = 0.07, are shown in Figs. 6(a) and 6(b) for β = β(a−b)

and β(c), respectively. Using the dotted horizontal line in both
panels, one can estimate that the deviation between the band
healing lengths is close to 0.07ξGL in panel (a) while increasing
up to 0.3ξGL in panel (b). This agrees with the general trend
dictated by Eq. (53). In addition, one can see an important
aspect in Fig. 6(b). The point is that the gap associated
with band 1 is not a monotonic function of a distance.
One can see that �1 rises sharply for x < 1.3ξGL but then
slightly decreases down to its local minimum at x ≈ 2.4ξGL.
For x > 2.4ξGL it increases again, slowly approaching the
asymptotic value. At the same time �2 exhibits a monotonic
increase with x. Thus we find that the band condensates
have different healing lengths and, in addition, their spatial
profiles are not similar. Based on this observation, one can
expect that reducing the deviation between the band healing
lengths does not necessarily mean that the system approaches
an effectively single-component regime. A mismatch between
the band-condensate spatial profiles can still remain, reflecting
an essential role of the multiple-condensate structure even for
a negligible difference between the band healing lengths. We
note that the nonmonotonic behavior of �1 in panel (b) can
disappear when higher orders in τ will be included (we are
at the edge of the validity domain). However, higher order
corrections can hardly remove an important mismatch between
the spatial profiles of the band condensates.

In the previous paragraph we have considered how the devi-
ation between the band healing lengths and mismatch between
the band-condensate spatial profiles change with β, focusing
on the particular values β(a−b) and β(c) extracted from the
first-principle calculations for MgB2. To gain further insights
into the role of β, we note that there is another quantity which
depends strongly on the ratio of the band Fermi velocities and
can even change its sign, i.e., the deviation of the band healing
length from the GL coherence length. As discussed in Sec. II,
the leading correction to the GL coherence length is small and
positive (at T < Tc) in the single-band case. However, this is
not correct for multiple bands. In particular, one can see from
Fig. 6(d) that for β = β(c) both healing lengths are smaller
than the GL coherence length below Tc. On the contrary, for
β = β(a−b) we have ξi � ξGL; see Fig. 6(c). Furthermore, the
leading correction to ξGL is close to that of the single-band
system only for band 1 at β = β(a−b). In the other cases the ab-
solute value of the quantity ξi − ξGL appears to be much more
pronounced. For example, in Fig. 6(c) we have ξ2 − ξGL ≈
0.4ξGL at τ = 0.4, which should be compared to 0.05ξGL

obtained previously for the same value of τ in the single-band
case; see the discussion after Eq. (23) in Sec. II. By the way,
one can see that the deviation between the band healing lengths
is not negligible even for β = β(a−b) = 1.22. For example, we
obtain ξ2 − ξ1 ≈ 0.35ξGL at τ = 0.4, where ξ2/ξ1 ≈ 1.3.
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FIG. 6. (a) EGL solution for the band gap �i(x,τ ) [in units of its asymptotic value �i,∞(τ )] as a function of the distance from the interface
(in units of ξGL) calculated at τ = 0.07 and β = β (a−b); the solid and dashed curves represent bands 1 and 2, respectively. (b) The same as in
panel (a) but for β = β (c). (c) The relative band healing length ξi/ξGL versus τ at β = β (a−b): the analytical result of Eq. (52) is given by the
dashed line, while the full numerical solution of Eq. (51) is represented by the solid curve. (d) The same as in (c) but now for β = β (c). The
dotted lines in panels (a) and (b) mark δ = tanh(1/

√
2) that determines the band healing length according to Eq. (51). The validity domain of the

τ expansion can be estimated as τ � τ ∗ = 0.4−0.5 for β = β (a−b) and τ � τ ∗ = 0.05−0.07 for β = β (c); see the discussion in the main text.

One can also learn from Figs. 6(c) and 6(d) that the validity
domain of the two-band EGL formalism is strongly dependent
on the ratio of the band Fermi velocities. In particular, for β =
β(a−b) the analytical results for the band healing lengths are
close to the numerical solutions of Eq. (51) up to τ = 0.4−0.5
so that the upper boundary of the validity domain is estimated
as τ ∗ = 0.4−0.5. (See the discussion about the validity of the
single-band EGL theory in Sec. II.) From Fig. 6(d) we find the
considerably smaller value τ ∗ = 0.05−0.07. This shrinking of
the validity domain at β = β(c) is a manifestation of the fact
that, for great disparity between the band Fermi velocities, the
deviations of the band healing lengths from the GL coherence
length (and also from each other) so rapidly increase with τ that
higher orders in τ should be incorporated already for τ � 0.1.

Continuing our discussion of multiband materials with large
differences between the band Fermi velocities, we turn to
superconductors with shallow bands, where charge carriers
are depleted and have nearly zero velocities [43–46]. Such
superconductors recently attracted attention in the context of
possible routes to the BCS-BEC superconductivity in solids
[44–46]. In particular, it has been found by the ARPES
measurements [44] that there exist three contributing bands
in iron chalcogenide FeSe0.35Te0.65, viz. two shallow hole

pockets and one shallow electron pocket. The obtained data
suggest that the Fermi energy measured from the band edge
in both hole bands can be estimated as 4 meV, whereas for
the electron band it is nearly 10 meV. The hole masses are
about 3.4me (me is the free electron mass) and 14me. As to the
electron effective mass, it is not specified in Ref. [44] but can
be estimated as 2.5me from the results for the electron band
in similar compound FeSe [45]. So one can calculate that the
ratio of the light-hole Fermi velocity to that of the heavy holes
is about 2. The ratio of the electronic band Fermi velocity to
that of the light-hole band is also about 2. Thus the maximal
ratio of the band Fermi velocities in this system goes up to
4. We note that the recent interest in superconductors with
shallow bands and in the related BCS-BEC superconductivity
in multiband materials [43–46] makes it possible to expect
that new shallow-band superconductors will be fabricated in
the near future. Based on the results of the present study, one
can expect that the systems with coexisting deep and shallow
bands, i.e., with disparate band length scales, will be very
promising materials in order to search for superconducting
phenomena not intrinsic to single-band systems.

Another useful and very promising example concerns dirty
superconductors that can provide additional possibilities to
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obtain significantly different spatial scales of the contributing
band condensates. In the dirty limit the band healing lengths
are determined by the band diffusion coefficients; see, e.g.,
Ref. [47]. These coefficients can be considerably different.
For example, in epitaxial MgB2 thin films the diffusivities
are extracted from the experimental data for the upper critical
field [13] as Dσ = 0.23 cm2 s−1 for the σ band and Dπ =
40 cm2 s−1 for the π band. As seen, the diffusion coefficients
Dσ and Dπ are different by two orders of magnitude (around
170 times). To estimate the low-temperature ratio of the
band healing lengths, one can employ the decoupled-band
approximation ξi ∝ √

Di (see, e.g., Ref. [47]), which yields
ξπ/ξσ ≈ 13.2. As argued in Ref. [13], the presence of the two
disparate band length scales is responsible for the formation of
broken symmetry vortex structures (like labyrinths of vortices)
that have been observed [13] in images of the local stray
magnetic fields at the surface of the MgB2 thin films.

IV. CONCLUSIONS

Concluding, we have analytically calculated the band-
dependent corrections to the GL coherence length for the
two-band case. Our study has demonstrated that a deviation
between the resulting band healing lengths is a product of
complex interplay between different tendencies mainly gov-
erned by the interband interactions and band Fermi velocities.
The interband coupling tends to wash out the disparity of the
band spatial scales, while the difference between the band
characteristic velocities helps it to sustain. As a result, the
band healing lengths can significantly deviate from each other
far beyond the regime of nearly decoupled bands.

Our study has been performed for a clean s-wave two-band
superconductor within the EGL formalism that goes to one
order beyond the standard GL theory in the perturbative
expansion of the BCS formalism over the proximity to the
critical temperature τ . The advantage of this approach is that
it allows for deriving closed analytical results that can be
examined in a wide range of the relevant microscopic param-
eters. In particular, we have obtained analytical expressions
for the band gaps in the lowest and next-to-lowest orders
in τ for the spatial configuration where the superconducting
condensate is suppressed in a half-space. Utilizing these
expressions, we have derived the band healing lengths in an
explicit form up to the leading correction to the GL coherence
length and confirmed the previous results that the band length
scales are generally different in the next-to-lowest order in
τ . By investigating the deviation between the band healing

lengths, we have demonstrated that it is rather sensitive to the
interband interactions but also to disparity between the band
Fermi velocities. The universal character of the EGL approach
allows one to expect qualitatively similar results for systems
with an arbitrary number of bands, except for the special case
when there is an additional to U (1) symmetry in the system
so that the band healing lengths are different even at T = Tc;
see, e.g., Ref. [48].

The aim of the present study is to demonstrate that disparate
band length scales in multiband superconductors can appear
far beyond the regime of nearly zero interband couplings.
A complete analysis of healing lengths in multiband super-
conductors, including various pairing symmetries, various
numbers of bands, disorder, and anisotropy, is beyond the
present work. However, given the complex interplay of the
different trends in a relatively simple two-band system with
the s-wave pairing and spherical band Fermi surfaces, one
can expect that the competition of the band length scales
in sophisticated multiband systems is even more tangled and
nontrivial.

Finally, it is of importance to stress again that our ana-
lytical results on the disparity between the band-dependent
corrections to the GL coherence length are relevant for the
spatial distribution of the superconducting condensate in the
vortex core of multiband materials. Here one should keep in
mind that a magnetic field provides an additional coupling
between the band supercurrents and, in turn, between the
band-condensate spatial profiles. This, of course, deserves
additional investigations but, physically, such a magnetic
coupling cannot significantly influence the system for large
interband couplings. Thus our general qualitative conclusions
will not be altered and our findings can motivate experimental-
ists to look for multiband materials with significantly different
band length scales. As argued previously in Refs. [11,20], such
materials can have un unusual magnetic response, belonging to
the intertype regime governed by the Bogomolnyi self-duality.

ACKNOWLEDGMENTS

T.T.S. and C.C.d.S.S. acknowledge support from the
Brazilian Agencies CNPq and FACEPE, under Grants No.
APQ-2017-1.05/12 and No. APQ-0198-1.05/14. J.A.A. and
A.A.S. are thankful to the Brazilian Agencies CNPq (grant
309374/2016-2) and FACEPE (grant APQ-0936-1.05/15).
T.T.S., J.A.A., and A.A.S. thank A. Vagov and A. Perali for
useful discussions.
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Vagov, Phys. Rev. Lett. 106, 047005 (2011).
[18] E. B. Bogomolnyi and A. I. Vainstein, Sov. J. Nucl. Phys. 23,

588 (1976).
[19] E. B. Bogomolnyi, Sov. J. Nucl. Phys. 24, 449 (1976).
[20] W. Y. Córdoba-Camacho, R. M. da Silva, A. Vagov, A. A.

Shanenko, and J. Albino Aguiar, Phys. Rev. B 94, 054511
(2016).

[21] B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Sov. Phys.
Solid State 9, 642 (1967).

[22] A. Vagov, A. A. Shanenko, M. V. Milošević, V. M. Axt, and F.
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Self-duality or matching between the magnetic and the condensate coherence lengths is a fundamental prop-
erty of isotropic superconductors at the critical Bogomolnyi point (B point). The self-dual state of the condensate
is infinitely degenerate, which is the core reason for the sharp transition between the superconductivity types in
the nearest vicinity of the critical temperature Tc. Below Tc nonlocal interactions in the condensate remove
the degeneracy, which leads to the appearance of a finite intertype (IT) domain between types I and II. This
domain exhibits the mixed state with exotic field-condensate configurations and nonstandard magnetic response,
which cannot be understood within the dichotomy of the conventional superconductivity types. At a first glance,
this picture does not apply to an anisotropic system because no spatial matching between the condensate and
magnetic field can be generally expected for direction-dependent characteristic lengths. However, contrary
to these expectations, here we demonstrate that anisotropic superconductors follow the same scenario of the
interchange between types I and II. In anisotropic materials the IT domain is governed by the B point of the
effective isotropic model obtained by the appropriate scaling transformation of the initial anisotropic formalism.
This transformation depends on the direction of the applied magnetic field, and thus the superconductivity type
of strongly anisotropic materials can be dependent on this direction.

DOI: 10.1103/PhysRevB.99.024515

I. INTRODUCTION

Conventional superconductors are traditionally divided
into two classes: ideally diamagnetic type-I materials, and
type-II superconductors with penetration of a magnetic field in
the form of single-quantum vortices arranged in an Abrikosov
lattice. The distinction between these types is routinely ex-
plained within the Ginzburg-Landau (GL) picture [1–3],
where the superconducting magnetic response is fully de-
termined by the GL parameter κ = λ/ξ , with λ and ξ the
magnetic and coherence lengths. Type I is realized when
κ < κ0 = 1/

√
2 and type II occurs for κ > κ0.

However, as is well known since the 1970s, this classifica-
tion of superconductivity types does not apply for materials
with κ ∼ κ0 [4–18]. The GL picture is valid only in the
limit T → Tc while at T < Tc there is a finite temperature-
dependent interval κ∗

min � κ � κ∗
max [7,8,10,12,19], where su-

perconductivity cannot be described within the type-I/type-II
dichotomy. Materials that belong to this domain in the κ-T
plane between types I and II, can be broadly referred to as the
intertype (IT) superconductors (see, e.g., recent results for Nb
[17,18] and ZrB12 [20–22]).

A physical reason for the appearance of the IT supercon-
ductivity is the degeneracy of the self-dual condensate-field
configurations at the Bogomolnyi point (B point) (κ0, Tc )
[23,24] that separates types I and II. When the degeneracy
is removed, e.g., by nonlocal interactions at T < Tc, exotic
self-dual configurations “escape” their confinement at the B
point and shape the mixed state as a finite IT domain [19,25–
27]. Note, that this mechanism is much more complex and
far-reaching than the type-II/1 concept proposed in earlier

works where it was conjectured that the IT superconductivity
can be fully understood in terms of nonmonotonic vortex-
vortex interaction with long-range attraction and short-range
repulsion (see, e.g., Ref. [8]). Recent studies demonstrated
that the nonmonotonic pair vortex interaction is only one
example of the nonconventional IT properties; others include,
e.g., strong many-body (many-vortex) interactions [27,28].
The proximity to the infinitely degenerate B point increases
the sensitivity of the superconducting state to external param-
eters such as temperature, magnetic field, and current, as well
as to impurities and system geometry. This sensitivity opens
the way for controlled manipulations of the superconducting
magnetic properties.

However, until now the relation between the B point and
IT superconductivity has been investigated only for isotropic
materials. At the same time, most of the real superconductors
are anisotropic and in this case the coherence ξj and magnetic
lengths λj (j = x, y, z) are direction dependent and so is the
GL parameter κj = λj/ξj . When these lengths have different
direction dependences, one can hardly expect to achieve the
spatial matching between the condensate and magnetic field,
which questions the relevance of the self-dual properties in
anisotropic materials. Thus, the scenario of the interchange
between superconductivity types worked out for isotropic
superconductors (type I-IT-type II) appears to be inapplicable
for real anisotropic materials.

The goal of this work is to demonstrate that contrary to
these expectations, anisotropic superconductors, even with
a high degree of anisotropy, still follow the above scenario
of the type interchange. The corresponding IT domain is
governed by the B point of an effective isotropic model
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obtained by an appropriate scaling transformation of the
initially anisotropic formalism. However, this transformation
depends on the direction of the applied magnetic field and
thus, the superconductivity type of a strongly anisotropic
material can depend on the orientation of the system.

II. MODEL AND METHOD

To achieve this goal we consider a single-band s-wave
model with an ellipsoidal Fermi surface, as a prototype of
anisotropic superconductors. For the sake of clarity, it is also
assumed that the magnetic field is directed along one of the

principal anisotropic axes. This choice seems to be restrictive
but, in fact, our qualitative conclusions do not depend on
details of the model and hold in a more general case.

The analysis is done using the extended GL (EGL) formal-
ism [29] that accounts for the leading-order corrections to the
GL theory in the perturbative expansion of the microscopic
equations with the proximity to the critical temperature τ =
1 − T/Tc as a small parameter. We briefly recall the main
steps of the derivation of this expansion in order to highlight
important changes introduced by the anisotropy. First, the
condensate contribution to the free energy F is expanded in
powers of the order parameter �(x) known to be small near
Tc. This yields

F =
∫

d3x

⎡
⎣B2(x)

8π
+ |�(x)|2

g
−

∞∑
n=0

1

n

∫ 2n+1∏
j=1

d3yj K2n+1(x, {y}2n+1)�∗(x)�(y1) · · · �∗(y2n)�(y2n+1)

⎤
⎦, (1)

where B(x) is the magnetic field, g denotes the coupling
constant, and {y}2n+1 = {y1, . . . , y2n+1} stays for the set of
spatial coordinates. The integral kernels in Eq. (1) read (m
is odd)

Km(x, {y}m) = −T
∑

ω

G (B )
ω (x, y1)Ḡ (B )

ω (y1, y2)

× · · · G (B )
ω (ym−1, ym)Ḡ (B )

ω (ym, x), (2)

where ω is the fermionic Matsubara frequency, G (B )
ω (x, y) is

the Fourier transform of the normal Green’s function calcu-
lated in the presence of the magnetic field, and Ḡ (B )

ω (x, y) =
−G (B )

−ω (y, x). The magnetic-field dependence of G (B )
ω is taken

into account within the standard Peierls approximation suffi-
cient to derive the extended GL theory

G (B )
ω (x, y) = exp

[
i

e

h̄c

∫ x

y
A(z) · dz

]
G (0)

ω (x, y), (3)

where the contour integral with the vector potential A is
calculated along the classical trajectory of a charged particle
in the magnetic field and the free-particle Green’s function at
zero field writes as

G (0)
ω (x, y) =

∫
d3k

(2π )3

exp[ik · (x − y)]

ih̄ω − ξk
, (4)

where ξk = εk − μ is the single-particle energy measured
from the chemical potential. Equations (1)–(4) are valid for
an arbitrary single-particle dispersion εk. However, analytical
results can be obtained only for a limited number of models.
One of them is the model of an ellipsoidal Fermi surface,
often employed to study anisotropy-related effects. Choosing
the principal axes of the ellipsoidal Fermi surface as the
coordinate system, one gets ξk in the diagonal form as

ξk =
3∑

j=1

h̄2k2
j

2mj

− μ, (5)

where mj is a direction-dependent effective carrier mass.

In the next step of the EGL derivation one substitutes the
gradient expansion for the order parameter �(y) = �(x) +
[(y − x) · ∇]�(x) + · · · as well as for the field into Eqs. (1)–
(3). This allows one to represent nonlocal integrals in Eq. (1)
as a series in powers of the order parameter and field, as well
as of their spatial derivatives. As the single-particle dispersion
is anisotropic, the gradient-dependent contributions to the free
energy functional are also anisotropic. However, it is well
known that the GL contribution to the free energy can be
isotropized for any anisotropic single-particle dispersion by
applying a proper scaling transformation [30–32]. In particu-
lar, for our choice given by Eq. (5) the spatial coordinates and
momenta are scaled as

x̃j = xj/
√

αj , k̃j = √
αjkj , (6)

where

αj = M/mj, M = 3
√

mxmymz, αxαyαz = 1. (7)

This transformation yields the isotropic energy dispersion
ξk̃ = h̄2k̃2/(2M ) − μ with the scaled Fermi wave num-
ber k̃F =

√
2μM/h̄2. Further, the anisotropy in the field-

dependent contributions to the condensation energy is elim-
inated by scaling the components of the vector potential and
magnetic field as

Ãj = √
αjAj , B̃j = Bj/

√
αj , (8)

which obviously preserves the standard relation ∇̃ × Ã = B̃
(with the changed gauge). The scaling transformation given
by Eqs. (6)–(8) ensures that the GL contribution to the con-
densate free energy is isotropic but the magnetic-field energy
becomes anisotropic [30–32] and writes as B2 = ∑

j αj B̃
2
j .

For the case of interest, when the magnetic field is directed
along a principal axis, only a single component remains in the
field contribution (here it is the z component), i.e., B2 = αzB̃

2
z .

Then the factor αz is eliminated by rescaling the total free
energy as f̃ = f/αz and renormalizing the carrier density
of states (DOS) accordingly. As a result, one obtains a fully
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isotropic GL functional

f = B2

8π
+ a|�|2 + K|D�|2 + b

2
|�|4, (9)

where D = ∇ − (2ie/h̄ c)A and, from now on, the tilde mark
for the scaled quantities is suppressed. The coefficients of
this effective isotropic functional are given by the standard
expressions

a = −N (0)τ, b = N (0)

T 2
c

7ζ (3)

8π2
, K = b

6
h̄2v2

F , (10)

where ζ (· · · ) is the Riemann zeta function and one uses
material parameters of the isotropic “scaled” model such as
M and vF = h̄kF /M [see Eq. (7)]. However, a difference
with the usual isotropic case is that the DOS is renormalized
as N (0) = Nin(0)/αz, with Nin(0) = MkF /(2πh̄2) being the
DOS of the original model.

This scaling has been considered earlier in studies of the
mixed state of anisotropic superconductors deep in the type-II
regime [30–32]. Notice, however, that this transformation of
the originally anisotropic GL formalism leads to an important
observation concerning the interchange between supercon-
ductivity types I and II: anisotropic materials also have an
infinitely degenerate B point that separates types I and II at
T → Tc and unfolds into a finite IT domain below Tc. How-
ever, here this point appears in the “scaled” isotropic model.
This observation, which has not been discussed previously,
implies that the anisotropy does not destroy the isotropic
scenario of the type interchange unlike, for example, mecha-
nisms related to finite sample dimensions. The latter eliminate
the B-point degeneracy in superconducting films and wires,
thereby destroying the sharp transition between types I and II
at T → Tc (see Ref. [25]).

In order to investigate a finite IT domain appearing at
T < Tc, the leading corrections to the GL contribution are
to be retained in the free energy [19]. Such additional con-
tributions are also subject to the transformation defined by
Eqs. (6)–(8). However, the final result depends on details of
the band structure. The adopted model with an ellipsoidal
Fermi surface is special in this regard because it ensures that
any term in the expansion of the free energy in powers of
the order parameter given by Eq. (1) becomes isotropic under
the same transformation. This is seen from the fact that the
scaling transformation in Eqs. (6)–(8) reduces the Green’s
function in Eq. (4) to its isotropic form. Then, the scaled
leading corrections to the GL free energy are obtained as

δf = aτ

2
|�|2 + 2τK|D�|2 + τb|�|4 − c

3
|�|6

−Q
(

|D2�|2 + 1

3
rotB · i + 4e2

h̄2c2
B2|�|2

)

− L
2

[8|�|2|D�|2 + (�∗)2(D�)2 + �2(D∗�∗)2], (11)

where i = (e/h̄c)Im[�∗D�] is the supercurrent density, the
relevant coefficients are

c = N (0)

T 4
c

93ζ (5)

128π4
, Q = c

30
h̄4v4

F , L = c

9
h̄2v2

F , (12)

and N (0) is the renormalized DOS introduced in Eq. (10).
Notice that the resulting total free energy density f + δf

coincides with the isotropic Neumann-Tewordt functional
[19,33,34].

The choice of the terms contributing to Eq. (11) is dictated
by the subsequent τ expansion of the free energy obtained
from Eqs. (9)–(12) by substituting � = τ 1/2(�0 + τ�1),
A = τ 1/2(A0 + τA1), and B = τ 1/2(B0 + τB1) and using
the coordinate scaling x′ = xτ−1/2, which is equivalent
to the substitution ∇′ → τ 1/2∇. Then, the GL contributions
to the free energy are of order τ 2 while the leading corrections
are of order τ 3. The obtained τ expansion for the free energy
density produces the EGL equations: the GL equations for
�0 and A0 (B0) and additional equations for �1 and A1

(B1). An important advantage of the formalism is that the
leading-order corrections to the GL stationary free energy
can be expressed only in terms of the solutions of the GL
equations (see Ref. [19]).

We complete the discussion of the formalism by briefly
dwelling on the validity of the used model with an ellipsoidal
Fermi surface. The fact that the leading corrections to the GL
theory and, in general, any higher order contributions to the
free energy can be converted into the isotropic form by the
same scaling transformation is clearly a result of this model.
For a more general choice of the single-particle dispersion, the
GL contributions can still be isotropized by the above scaling
transformation [35]. However, some corrective terms remain
anisotropic. In particular, in the leading corrections these are
the terms with the fourth-order gradients in Eq. (11) (see
the contribution with the coefficient Q). When adopting the
dispersion (5), such fourth-order gradient terms are obtained
as ∑

ijnm

〈kikj knkm〉∇i∇j∇n∇m

∝
⎛
⎝∑

ij

〈kikj 〉∇i∇j

⎞
⎠(∑

nm

〈knkm〉∇n∇m

)
, (13)

where 〈kikj knkm〉 and 〈kikj 〉 are the k-averaging integrals
of the products kikj knkm and kikj (indices denote the vec-
tor components) with the weight given by the product of
the Fourier transforms of G (0)

ω (x, y) and Ḡ (0)
ω (x, y) (details

of the calculation are in Ref. [29]). Equation (13) holds
for an ellipsoidal Fermi surface, which yields 〈kikj knkm〉 ∝
〈kikj 〉〈knkm〉, with a constant proportionality coefficient.
When the principal axes of an ellipsoidal Fermi surface form
the coordinate system, each factor in the right-hand side
of Eq. (13) acquires the diagonal form and is isotropized
simultaneously with the GL contribution.

A more general model for the Fermi surface may result in
deviations from Eq. (13). Such deviations generate additional
anisotropic contributions to the free energy functional that
cannot be made isotropic simultaneously with the GL terms.
Adopting the model with an ellipsoidal Fermi surface is thus
equivalent to neglecting such extra contributions. However, as
already mentioned above, only the terms with the coefficient
Q will be affected. The previous investigations in Refs. [19]
and [26] have demonstrated that the contribution of these
terms to the results for the IT domain is significant only in
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multiband materials with one of the contributing bands being
shallow, i.e., when the chemical potential μ is close to its
edge. However, this case is irrelevant for the current study of
single-band materials.

III. SUPERCONDUCTIVITY-TYPE INTERCHANGE
AND IT DOMAIN

Utilizing earlier results obtained within the isotropic EGL
formalism in Ref. [19], we calculate upper κ∗

min and lower
κ∗

max boundaries of the IT domain on the κ-T plane, where
κ is the GL parameter of the scaled isotropic system. The
critical parameters κ∗

min and κ∗
max are temperature dependent

and defined as follows: at κ > κ∗
min a superconductor can

develop a mixed state, while at κ < κ∗
max vortices become

attractive at long ranges.
These critical parameters κ∗ (and others related to the

internal subdivisions in the IT domain) are calculated using
the difference �G between the Gibbs free energy of a chosen
spatially nonuniform field-condensate configuration and of
the Meissner state, both calculated at the thermodynamic
critical magnetic field Hc [19]. The Gibbs free energy G is
obtained from the free energy by subtracting (H · B)/4π , with
H = (0, 0,Hc ) an external magnetic field.

The calculations are facilitated by performing an additional
perturbation expansion of the Gibbs free energy, this time with
respect to δκ = κ − κ0. Taking into account that δκ ∼ τ , one
keeps only the linear contribution in this series expansion.
The resulting Gibbs free energy difference (normalized to the
sample size Lz in the z direction), obtained from Eq. (11),
writes in the dimensionless units as [19]

�G

τ 2Lz

= τ (A I + B J ) −
√

2Iδκ, (14)

where for single-band superconductors A = −0.407 and B =
0.681 are universal constants and the integrals

I =
∫

|�|2(1 − |�|2)dx, J =
∫

|�|4(1 − |�|2)dx,

(15)

are calculated using a solution � of the self-dual GL equations
at κ0; this solution is normalized as �(x → ∞) → 1 and its
spatial dependence is given in the units of

√
2λ. The absence

of the zero-order term in the right-hand side of Eq. (14) is a
consequence of the degeneracy of the GL theory at κ0. One
can also see that only the GL contribution ∝δκ in Eq. (14)
depends on the microscopic parameters (via κ), whereas its
leading corrections are material independent.

The critical parameters κ∗, that correspond to the appear-
ance/disappearance of a particular field-condensate configura-
tion or a specific property of such a configuration, are found
from the equation �G = 0 (see details and discussions in
Ref. [19]), which resolves as

κ∗ = κ0[1 + τ (A + BJ /I )]. (16)

The critical parameter κ∗
min yields the lower boundary of the

IT domain and is defined by the appearance/disappearance
of the mixed state. In order to calculate this parameter one
considers the limit � → 0 at which J /I → 0 and thus κ∗

min
is obtained by substituting J /I = 0 into Eq. (16). Notice

that this result coincides with the one obtained from the
more conventional definition for this critical parameter, which
follows from the equation Hc = Hc2, where Hc2 is the upper
critical field. The upper boundary of the IT domain κ∗

max is
related to the sign change of the long-distance asymptote of
the vortex-vortex interaction. It is calculated from Eq. (16),
using the GL solution for two vortices at the distance R

one from another. This solution yields the exact asymptotic
result J (R)/I (R) → 2 at R → ∞, which is inserted in
Eq. (16).

In order to see if a material falls into the type-I, type-II,
or IT domains, one needs to compare κmin/max with the GL
parameter κ of the scaled model given by

κ = h̄c

|e|

√
b

32πK2
, (17)

where b and K are given by Eq. (10). The B point separating
conventional superconductivity types I and II at T → Tc is
determined by the condition κ = κ0. Returning to the original
anisotropic GL model, one obtains the direction-dependent
GL parameters as (j = x, y, z)

κj = h̄c

|e|

√
bin

32πK2
in,j

, (18)

where bin = bαz, and Kin,j = Kαzαj are parameters of
the original anisotropic system. Then the relation between
the GL parameter of the scaled isotropic model and the
direction-dependent GL parameters of the original anisotropic
system is

κ = √
κxκy. (19)

An important consequence of this relation is that the critical
B point of the effective isotropic model becomes the critical
B line κxκy = κ2

0 on the plane κx-κy . Experimentally, κj can
be changed, e.g., by nitrogen doping (see Ref. [8]). When the
B line is crossed, the superconductivity type changes (see the
phase diagram in Fig. 1). Below and above this line one has,
respectively, types I and II.

One notices that the GL parameter κ in Eq. (17) depends
on the field direction, which so far is assumed parallel to the
z axis. When the field is directed along the x or y axis, the
corresponding superconductivity type may change because
the isotropic-model GL parameter becomes κ = √

κyκz or
κ = √

κxκz, respectively. Thus the value of κ can be strongly
dependent on the field direction. To demonstrate this, let
us consider the case of strong anisotropy with the effective
masses obeying the inequality mz � my � mx . In this case
one obtains κz � κy � κx . It is then easy to see that if κy ∼ 1
then

√
κzκy � 1 � √

κxκy . This implies that when the field
is parallel to the x axis, the material belongs to type I; for the
field along the z axis it demonstrates a type-II behavior; and
when the field is along the y axis, the material is close to the
IT regime.

When the temperature is lowered, the B point unfolds into
a finite IT interval of κ values. Its boundaries κmax/min(T )
given by Eq. (16) are material independent and coincide with
those obtained for isotropic single-band superconductors [19].
Since the GL parameter κ of the scaled isotropic model is
a function of the two direction-dependent GL parameters of
the anisotropic model (κx and κy for the z-directed field),
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FIG. 1. The phase diagram for superconductivity types in the
κx-κy plane at T → Tc: the blue and red regions correspond to
types I and II, respectively, separated by the white critical B line
κxκy = κ2

0 = 1/2.

the boundaries of the IT domain on the κx-κy plane be-
come temperature-dependent lines, defined by the equations
κ∗

min/max(T ) = √
κxκy (see the phase diagram in Fig. 2). The

width of the IT domain increases when the temperature is
lowered: in Fig. 2 at T = 0.5Tc it occupies a noticeable part in
the phase diagram. Notice that even at these low temperatures
the EGL formalism yields quantitatively accurate results, as
has been demonstrated in the earlier analysis [19].

IV. CONCLUSIONS

In summary, this work has considered the interchange
between superconductivity types I and II in anisotropic su-

FIG. 2. The phase diagram for superconductivity types in the
κx-κy plane at T = 0.5Tc. The blue and red regions correspond
to types I and II, respectively, separated by the white region that
corresponds to the IT domain κ∗

min(T ) <
√

κxκy < κ∗
max(T ).

perconductors. The analysis is based on the single-band EGL
formalism combined with the coordinate-field scaling trans-
formation to isotropize the theory. Calculations have been
done for the ellipsoidal Fermi surface in the case when a
magnetic field is directed along one of the principal anisotropy
axes. We have demonstrated that irrespective of the anisotropy
degree, the scenario of the interchange of the types is the
same as in isotropic superconductors, being governed by the
proximity to the B point at which the field-condensate state
is self-dual and infinitely degenerate. Similarly to isotropic
materials, the degeneracy is removed at lower temperatures,
which opens a finite IT domain between types I and II with
unconventional superconducting magnetic properties.

The obtained conclusions are rather counterintuitive be-
cause the self-duality property generally is not expected in
systems with different direction dependence of the condensate
and magnetic lengths. However, here the B point is still
present in an effective isotropic model obtained by an appro-
priate scaling transformation. It has been shown that this trans-
formation and the corresponding GL parameter of the scaled
isotropic model strongly vary with the direction of an applied
magnetic field so that anisotropic materials can exhibit a qual-
itatively different magnetic response for different field align-
ments, which agrees with the experimental observation [36].

We stress that although our results have been obtained for
the model with the ellipsoidal Fermi surface, our conclusions
hold, at least qualitatively, for more complicated Fermi sur-
faces. This expectation is based on the fact that contributions
neglected in the adopted model can introduce only quantita-
tive corrections to the boundaries of the IT domain but do not
alter the physical mechanism behind the interchange of the
types. Since we have shown that the mechanism related to the
presence of the B point applies to a large class of situations we
expect that the type interchange proceeds qualitatively similar
in all these cases, in particular, when the field is not directed
along one of the principal anisotropy axes. Also, we expect the
conclusions hold for materials with many conduction bands
as long as the anisotropic contributions, that cannot be made
isotropic simultaneously with the GL terms, are marginal,
which is typically the case.

ACKNOWLEDGMENTS

This work was supported by the Brazilian agencies Coor-
denação de Aperfeiçoamento de Pessoal de Nível Superior,
CAPES (Grants 223038.003145/2011-00 and 400510/2014-
6), Conselho Nacional de Desenvolvimento Científico e Tec-
nológico, CNPq (Grants 307552/2012-8 and 141911/2012-3),
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and J. A. Aguiar, Sci. Rep. 5, 12695 (2015).

[29] A. V. Vagov, A. A. Shanenko, M. V. Milošević, V. M. Axt, and
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Abstract
We investigate theoretically the nucleation of superconductivity in a thin film pierced by
ferromagnetic dots. We demonstrate that localized superconductivity near the
ferromagnet/superconductor interface is sustained above the second critical field Hc2 in spite
of the deleterious proximity effect of the ferromagnet. This phase is characterized by
Little–Parks oscillations similar to those found in perforated films, where surface
superconductivity is stabilized by the enhanced properties of the superconductor-vacuum
boundary. Here, localization is provided by field compensation induced by the ferromagnet
stray field near the ferromagnetic dot. We also show that for an array of such ferromagnetic
dots the localized phase around each dot actually percolates through the entire sample,
rendering bulk superconductivity at fields considerably higher than Hc2.

Keywords: superconductor–ferromagnet hybrids, flux compensation effects, confinement

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanostructured superconductors have been the subject of in-
tense research in recent decades. These materials exhibit a
plethora of remarkable phenomena not found in plain films,
single crystals or ceramics. For instance, arrays of mesoscopic
vortex-pinning sites, such as small open holes (antidots),
magnetic inclusions (dots) and blindholes, produce very ef-
ficient pinning of vortices, enhancing the critical current of the
superconducting material up to values orders of magnitudes
higher than those of plain film [1–7]. Moreover, at the so-called
matching fields, which correspond to integer (and sometimes
fractional) occupation numbers of vortices in the pinning array,
the critical currents usually reach even higher values as a
consequence of commensurability effects [8–19].

In addition to the superior vortex-pinning properties, mul-
tiply connected superconducting films, such as films with an-
tidots, present an enhanced critical field, which is revealed by

measurements of the superconductor–normal phase boundary
H∗(T ). The H∗(T ) values measured for a nanostructured film
are often considerably higher than those of a co-evaporated
plain film, where H∗ can be identified as the second critical
field, Hc2 [20]. This is an expected result because the antidots
in the film induce a state of surface superconductivity within
a distance of the order of the coherence length, ξ(T ), which
survives at fields considerably higher than Hc2. In fact, be-
cause measurements in these systems are usually performed
at temperatures close to the critical temperature Tc, the width
w of superconducting material between consecutive antidots
often becomes comparable to or even smaller than ξ(T ). In that
case, the surface superconductivity state around each antidot
coalesces and the whole film becomes superconducting. The
corresponding phase boundary is characterized by re-entrances
of the superconducting phase at integer and a few rational mul-
tiples of the first matching field (H1, field value corresponding
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to one flux quantum per unit cell of the antidot array) because
at these field values the vortex lattice becomes commensurate
to the pinning array.

In some experiments, it has been observed that the
periodic oscillations in the phase boundary at temperatures
close to Tc are replaced by aperiodic oscillations at smaller
temperatures [21–23]. This is often interpreted as a transition
from the collective regime to the so-called single-object
regime, where the sheaths of surface superconductivity around
each antidot do not overlap because, at that temperature range,
ξ(T ) becomes considerably smaller than w. In that case, the
phase boundary is dominated by Little–Parks-like quantum
oscillations with a period that increases when the temperature
decreases even further. This can be understood in terms of an
effective area where superconductivity resides. As temperature
decreases, so does the coherence length and, as a consequence,
the effective area of the localized-superconductivity state also
decreases. Since in this case the flux distributes through an
ever decreasing area, the difference in flux density between
consecutive states increases.

Another efficient way to tailor the properties of supercon-
ducting (SC) films under a perpendicular field is by exploring
the effect of mesoscale inhomogeneous magnetic textures,
such as those produced by ferromagnetic (FM) dots [4, 24, 25].
Because both the intensity and direction of the FM dot magne-
tization can be easily tuned, these SC–FM hybrids provide
a high degree of controllability over the properties of the
superconductor. In general, these systems produce efficient
(and tunable) pinning potentials that prevent vortex motion
up to considerably high current densities [4, 26, 27]. Quite
often, however, the intensity of the magnetic moments of
the dots is high enough to induce vortex–antivortex pairs
into the superconductor with profound consequences for its
critical behavior [28–30]. For instance, Lange et al [24] have
shown experimentally that the H–T phase boundary of a thin
superconducting Pb/Ge film with a lattice of Co/Pd FM dots
deposited on top can have its symmetry axis displaced from
H = 0 to either positive or negative field values depending on
whether the dots are magnetized parallel or antiparallel to an
axis normal to the film surface. This was explained as an effect
of the compensation of interstitial antivortices induced by the
FM dots. A more complete picture of the phenomenon was
offered later by Milošević et al in the framework of Ginzburg–
Landau simulations [31]. Novel strategies for manipulating su-
perconducting properties by exploring vortex–antivortex pairs
and their interaction with external fields and currents have been
widely investigated over the past decade [32–40].

Most of the theoretical and experimental studies on SC–
FM hybrids consider FM dots placed above the supercon-
ducting film and electrically isolated from it by an insulating
layer, thus avoiding local weakening of superconductivity. An
exception can be found in [41], where Marmorkos et al studied
theoretically giant vortex states around a magnetic dot embed-
ded in the superconducting film. In this last case, however, the
study was carried out at zero external field. Another interesting
multiply connected superconductor–ferromagnet system has
been investigated in [42]. In this case, the authors studied ex-
perimentally the phase boundary of a Nb film with embedded

ferromagnetic islands. They found field compensation effects
similar to those found in [24] and periodic Little–Parks-like
oscillations.

In the present work, we investigate the properties of
a superconducting film pierced by ferromagnetic dots as a
function of temperature, dot magnetization, and an additional
homogeneous magnetic field. The dots are magnetized per-
pendicularly to the film plane and actually touch the film, so
superconductivity at the SC–FM dot interface is strongly de-
preciated by the proximity effect. We choose not to follow the
usual procedure of inserting an insulating buffer layer because,
as it is well known, the superconductor-insulator boundary
per se induces localized superconductivity at fields higher
than Hc2. Here we are interested in localized states induced
by the inhomogeneous field only. Indeed, we demonstrate
via analytical calculations and numerical simulations that,
in spite of the depreciative boundary condition, a localized-
superconductivity phase can be formed near an FM dot as a
result of field compensation induced by the dot stray field. In
addition, we show that an array of such FM dots is capable
of holding percolated superconductivity at fields considerably
higher than Hc2.

This paper is organized as follows. In section 2 we
present the theoretical framework of our calculations, which
are based on the Ginzburg–Landau (GL) theory. The results
for the single FM dot case are presented in section 3. First we
present analytical results of a simplified model where the flux
distribution generated by the FM dot into the film is replaced
by a piecewise field profile. This will establish the proof of
concept of how the stray field of the FM dots can induce
localized superconductivity as well as providing physical
insight into the Little–Parks oscillations in this system. Then
we present numerical simulation results of the full GL problem
that corroborate the analytical predictions. In section 4 we
investigate the properties of a square array of such FM dots.
Finally, in section 5 we draw our conclusions.

2. Theoretical formalism

We consider an infinite type-II superconducting thin film
threaded through by either a single cylindrical magnetic dot
of radius a and height h or an array of such dots as depicted
in figures 1(a) and (b) respectively. Our calculations rely on
the minimization of the Gibbs free energy G =

∫
dV F(ψ, EA),

where

F(ψ, EA)= |ψ |2
(

1
2
|ψ |2− 1

)
+

1
1− T

|(−i∇ − EA)ψ |2

+
κ2

(1− T )2

[
|∇ × EA|2− 2 EH · (∇ × EA)

]
(1)

is the Ginzburg–Landau functional. Here, we have expressed
physical quantities in the following unit system: (i) Tc (critical
temperature) for temperature; (ii) the zero-temperature coher-
ence length ξ(0)=

√
h̄2/4mα(0)Tc for distances; (iii) ψ∞(T )

=
√
−α/β for the order parameter; and (iv) Hc2(0)ξ(0) =

80/[2πξ(0)] for the vector potential.
Henceforth, we shall restrict ourselves to a superconduct-

ing film of thickness d much smaller than the coherence length
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Figure 1. Superconductor–ferromagnetic hybrid sample studied. (a) Single-dot case with radius a = 7.5ξ(0), h = 10ξ(0) and magnetization
M out of plane. (b) Dot-array case with ap = 60ξ(0) the distance between adjacent dots.

(ξ ) and the penetration depth (λ). Therefore, the problem is
essentially two-dimensional, i.e., variations of the order pa-
rameter and the vector potential in the direction perpendicular
to the sample can be neglected. Moreover, since in this case
κ∗ = λ2/(dξ)= κλ/d� 1, the effect of screening currents can
be neglected and the vector potential can be well approximated
by EA= EA0, where EA0 is the vector potential of the external field
sources in the absence of the superconductor. Accordingly, the
problem of minimizing equation (1) is reduced to the search
of solutions to the first GL equation,

(i∇ + EA)2ψ + (1− T )(|ψ |2− 1)ψ = 0. (2)

In particular, in the problem of nucleation of superconduc-
tivity, one has |ψ | � 1 and thus equation (2) can be appropri-
ately linearized. For the single FM dot case, we take advantage
of the azimuthal symmetry of the nucleation problem to obtain
analytical solutions of the linearized Ginzburg–Landau (LGL)
equation following similar nucleation studies performed by
other groups [25, 43–46].

In order to find stable solutions beyond the linear approx-
imation, we solve the full non-linear equation (2) numerically.
Our procedure is as follows. We start from a given initial con-
figuration of the order parameter and allow for a fictitious time
relaxation of the order parameter. This is realized by adding the
term−η∂ψ/∂t to the right-hand side of equation (2) and solv-
ing the time-dependent problem by the finite-difference link-
variable method until a stationary solution is reached [47–49].
Numerically, we adopt the following criterion for stationarity
of the order parameter: |ψ |−11|ψ |/h ≤ 10−8, where h is the
time step. Although the time evolution towards a stationary
regime does not represent a real physical situation3, the steady
state solution is a genuine solution of equation (2).

3. Nucleation around a single magnetic dot

3.1. Analytical results: LGL theory

Here we present analytical results that describe the localized
phase of superconductivity for the one-dot case. Our solution
has two main assumptions: (i) the nucleation of the supercon-
ducting state takes place at H > Hc2(T ) so we can neglect the

3 Here, for simplicity, both the scalar potential and time variations of
EA are neglected, thereby ruling out any electric fields by construction.

These are essential ingredients in the time-dependent GL theory
that allow for investigation of real time-dependent problems in
superconducting materials, but they all go to zero when the order
parameter reaches a stationary state.

Figure 2. Numeric and step-like field profiles of a dot with
M z

dot = 0.06Hc2(0), a = 7.5ξ(0) choosing the thickness of the dot
h = 10ξ(0) for the exact profile and the effective range radius
b= 17ξ(0) for the approximated profile.

non-linear term in equation (2); and (ii) the solution at this
field range has azimuthal symmetry, that is, |ψ |2 is invariant
under rotations. The last property allows us to writeψ(ρ, θ)=
f (ρ) exp(iLθ) where L is the total vorticity. By substituting
this into the linearized version of equation (2), one obtains the
following linear equation for the radial function f (ρ):

L f ≡

[
−

1
ρ

d
dρ
ρ

d
dρ
+

(
L
ρ
− Aθ

)2

− (1− T )

]
f

=3 f. (3)

We treat this equation as an eigenvalue problem and search
only those solutions corresponding to lowest eigenvalue 3,
which minimizes the free energy.

The vector potential has two contributions: one from the
constant external magnetic field, Ae

θ (ρ)= Hρ/2, and the other
from the flux density EBdot induced by the magnetization EM of
the FM dot. In order to find simple analytical solutions, we
follow [50] by choosing a piecewise representation of the z
component of the magnetic field profile generated by the dot as
illustrated in figure 2. Inside the dot (region I) the field intensity
is represented by its mean value Bin ≡

1
πa2

∫
ρ<a
EBdot · dEa.

Notice that this equation leads to the relation Bin = γM ,
where γ is a geometrical factor determined by the shape of the
dot. The negative flux threading the superconducting region
outside the FM dot is represented by a negative uniform field
−Bout in the region a < ρ < b (region II). From Gauss law
Bout =

a2

a2−b2 Bin. For ρ > b (region III) we assume the field
is negligible. These restrictions simplify our vector potential,
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which can now be written in the form [51]

Adot
θ (ρ)= c1ρ+

c2

ρ
, (4)

where c1 is half the field intensity in a given region and c2 is a
constant chosen in such a way as to make the vector potential
continuous.

The general solution of equation (3) for each of the above
described regions can now be written as

f (ρ)= z|L
′
|/2e−z/2 [k1 M(A, B, z)+ k2U (A, B, z)] (5)

where z = c1ρ
2, L ′ = L − Boutb2/2, M(A, B, z) and U

(A, B, z) are, respectively, the confluent hypergeometric
functions of the first and second kinds (also known as
Kummer’s functions), with A = 0.5(1 + |L ′| − L ′) − (1 −
T +3)/4c1 and B = |L ′| + 1. Finally the eigenvalue 3 and
coefficients k1 and k2 are determined by the transcendental
equation that arises from the boundary conditions which are
described in more detail in the Appendix.

For a given set of parameters a, b, and γM , describing the
flux induced by the FM dot, we can find the phase boundary
of the system on the H × T diagram for different vorticities
L by solving the transcendental equation while imposing
3 = 0, which gives a null free energy. In figure 3 one can
see that, when the external field is applied parallel to the dot
magnetization, the critical field of the system is higher for
the sample with a magnetized dot (red line) than for the plain
film (black line). This fact can be seen as a compensation
effect, i.e. given a value for the magnetic field H > Hc2 one
can always find a value for M which generates a flux density
Bdot that diminishes the total field around the dot to a value
below Hc2, thus allowing superconductivity. The figure also
shows oscillations at the critical curve due to vorticity transi-
tions. Similar oscillations were found previously for different
systems of superconductors interacting with inhomogeneous
electromagnetic fields [52–55].

In order to understand how the system behaves near the
transition, we calculate the order parameter and the current
density following the method described in the Appendix
(formulas (A.12) and (A.13)). Figure 4 shows a few plots
of the absolute value of the order parameter |ψ(ρ)| and
the superconducting current density jθ (ρ) at points slightly
displaced from the phase boundary by 10−5Tc and indicated
in figure 3. Quite generally, the square modulus of the order
parameter starts with null value at the border of the dot,
increases to a maximum in a distance of the order of 2ξ(T )
and decreases in a distance of the same order outside of
region II. Since ξ(T )∝ (1− T/Tc)

−1/2, the typical size of the
nucleus tends to decrease when decreasing the temperature.
This can be observed in figure 4 except from (d) to (e) where
a vorticity state transition takes place causing a redistribution
of the current density as discussed below.

The current density profiles over the sample evidence
a typical sign inversion at a certain ρ = ρ∗. This value can
be obtained with the help of equation (A.13) by noticing
that the inversion takes place when the superfluid velocity
becomes zero. In this case, ρ∗ is given by the implicit equation

Figure 3. Critical field H∗(T ) for a = 7.5ξ(0), b= 17ξ(0) and
M = 0.06Hc2(0) with a geometrical factor γ ≈ 4.1. In the inset we
see that the minimum vorticity of the critical curve is the L = 2 state
because, differently from all the others, the states L = 0 and L = 1
are always below the 1− T curve.

ρ∗Aθ (ρ∗) = L . This sign change is indeed expected, since
the superconducting current should flow counterclockwise
near the FM dot in order to sustain the flux trapped in it
whereas somewhat further it should flow clockwise in order to
screen the external magnetic field. Depending on whether more
current flows clockwise or counterclockwise the total current
is positive or negative. In fact, all over the phase boundary,
each vorticity transition is followed by a similar redistribution
of current density causing a sudden inversion of circulation of
the total superconducting current.

The behavior described above is very similar to the
current inversions observed in thin superconducting rings
(Little–Parks oscillations), where the total current flips sign
whenever a new vorticity state takes place. To better illustrate
this effect in our system, we present in figure 5 the total
supercurrent, Is, flowing around the FM dot as a function
of field in the vicinity of the phase boundary. One can
observe that, in contrast to the original Little–Parks effect,
where current inversions are periodic, here the magnetic field
interval between consecutive L states is not constant. Indeed,
as one increases the magnetic field while decreasing the
temperature along the phase boundary, the superconducting
nucleus becomes more localized. Therefore the trapped flux
is obliged to distribute over an ever decreasing area, thus
increasing the amount of flux density necessary to stabilize
a new flux quantum.

3.2. Numerical results

In order to corroborate the results obtained via the rather
simplified model described above and to extend the analysis
to fields lower than Hc2(T ), we numerically integrate the
full non-linear problem represented by equation (2) without
imposing a priori any particular symmetry to the system. To
imitate an infinite film, we use periodic boundary conditions
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Figure 4. Plots of the Cooper pair density and superconducting current for: (a) L = 9, T ≈ 0.967Tc and H ≈ 0.053Hc2(0); (b) L = 9,
T ≈ 0.966Tc and H ≈ 0.0552Hc2(0); (c) L = 9, T ≈ 0.964Tc and H ≈ 0.06Hc2(0); (d) L = 9, T = 0.9619Tc and H ≈ 0.063Hc2(0);
(e) L = 10, T = 0.9618Tc and H ≈ 0.0632Hc2(0); (f) L = 10, T ≈ 0.96Tc and H ≈ 0.067Hc2(0).

Figure 5. Total superconducting current along the sample as a
function of the external magnetic field.

for the order parameter over a square simulation cell. Although
strictly speaking this system does not represent the single-dot
problem but rather a periodic array of such dots, we choose
the side l of the simulation cell much larger than both ξ(0)
and the dot radius (a = 7.5ξ(0)): l = 150ξ(0). This way, the
influence of the periodic boundary conditions on all calculated
quantities is negligible in the whole range of parameters except
for temperatures very close to Tc (t ≡ 1− T/Tc . 10−4) (see
below).

Equilibrium states of the system are determined by an-
alyzing the mean free energy G = G/ l2 and Cooper pair
distribution |ψ |2 as functions of the magnetic field for different
dot magnetization values M and temperatures T . For given M
and T values we initialize the order parameter as either ψ = 0
(corresponding to the normal state) or ψ = 1 (Meissner state)

everywhere in the superconducting material. For each case the
magnetic field is slowly swept up and down while the corre-
sponding stationary configurations of the order parameter are
obtained by numerical integration of equation (2) as described
in section 2. This procedure often leads to different states for a
given magnetic field, which allows us to determine the energy
of the lowest lying states, that is, those states closest to the
thermodynamic equilibrium [38].

Figure 6 shows isothermal G× H curves for T = 0.95Tc
and different M values. For M = 0, the demagnetized FM dot
has a minor influence on the superconducting film. However,
for M > 0, the free energy reaches zero at a field H∗

larger than Hc2 (in units of Hc2(T ), H∗ = 1.1 for M =
0.5, up to H∗ = 1.6 for M = 2). Moreover, the monotonic
behavior of G(H) found for H < Hc2 is replaced by an
oscillatory behavior for H > Hc2, similarly to what is observed
in mesoscopic superconductors. Indeed, as revealed by the
absolute value and phase of the order parameter, these trends
are direct manifestations of localized superconductivity around
the magnetic dot similar to the localized phase described in the
previous section.

To illustrate the transition from bulk to localized super-
conductivity we present in figure 7 plots of |ψ |2 for fields close
to and larger than Hc2 for T = 0.95 and M = 1.5Hc2(T ). For
comparison, we also plot |ψ |2 for a few field values for the
M = 0 case. Whereas for M = 0 the sample is completely in
the normal state at Hc2 and above, for the M = 1.5Hc2 case the
bulk of the sample goes to the normal state at Hc2 while in the
region near the FM dot superconductivity remains quite strong,
forming a ring of superconducting condensate, similar to the
localized state predicted by the analytical model. Interestingly,
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Figure 6. Free energy dependence on the external magnetic field
calculated numerically for different values of the dot magnetization
M for the single FM dot case.

for fields at and slightly above Hc2(T ) vortex rings can be
identified surround the ring of localized superconductivity.
For fields smaller than Hc2, the rings gradually change into a
triangular lattice. This behavior is similar to the distribution of
vortices near a pillar observed via Bitter decoration [56], and
can be understood as a compromise between the cylindrical
exclusion region imposed by the enhancement of vortex line
energy in the pillar and the natural tendency of vortices to form
an Abrikosov lattice. In our case vortices are repelled by the
negative flux induced by the dot in the vortex-free ring-like
region.

In figure 8 we present the superconductor–normal state
phase boundary in the H–T plane and the critical vorticity
L∗ as a function of the external magnetic field calculated
numerically for a dot magnetization of 0.06Hc2(0). L is
calculated by counting the number of phase discontinuities
encircling the FM dot. The boundary features the same trends

predicted by the analytical model discussed in the previous
subsection: enhancement of the critical field beyond the
Hc2(T ) line and quantum oscillations associated with vorticity
transitions of the flux captured by the FM dot. For comparison,
we also present the phase boundary obtained by our analytical
model for an FM dot of the same radius and magnetization.
It is worth remembering that, in the piecewise approximation
of the flux profile induced by the dot, the radius b at which
the negative flux distribution is cut off is a free parameter.
Therefore, we plot the phase boundary for different values of
b. The discrepancy between the numerical and the analytical
results is apparent and indeed expected, as the piecewise flux
profile is a rather crude representation of the actual profile.
However, the main physics behind the localized phase and the
quantum oscillations are captured by both models.

Finally, it is worth mentioning that the results shown
here have a close similarity to the surface superconductivity
phenomena seen in perforated superconducting films. In par-
ticular, the Little–Parks-like oscillations observed in the phase
boundaries (Tc(H) curves) are typical of doubly connected
mesoscopic superconducting systems, with a period that in-
creases with H . However, in contrast to perforated supercon-
ductors, the increase of superconductivity near the FM dot does
not result from the boundary condition. On the contrary, the
specific boundary condition for a superconductor–ferromagnet
interface (ψ = 0) is highly depreciative of superconductivity,
as illustrated in figures 7(a)–(e). Rather, localized supercon-
ductivity at fields higher than Hc2 is sustained by a field com-
pensation effect due to the negative magnetic flux generated
by the upward magnetized dot in the close surroundings of the
superconductor–FM interface. This kind of localization has
been predicted before and experimentally observed in different
superconductor–FM hybrids [52, 57, 58]. Here, since the FM
dot is embedded in the superconducting film, the magnetic
texture exhibits a sharp profile rendering a more efficient
localization of the superconducting condensate.

Figure 7. Configurations of |ψ |2 for different values of H (indicated in the bottom-right corner of each panel) for M = 0 ((a)–(e)) and
M = 1.5Hc2(T ) ((f)–(j)).
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Figure 8. (a) H(T ) phase boundary of the single-dot system for
M = 0.06Hc2(0) obtained by the simulation (black line) and 3
different parameters of the analytical solution (colored lines).
(b) The L(H) results for the same case.

A rough schematic illustration of the field compensation
effect is shown in figure 9(a). At a field higher than Hc2 only
a small region around the FM dot remains superconducting
because there the stray field of the FM dot opposes the

applied field H in a way that the local field h ≤ Hc2 in that
region, making it more favorable for the nucleation of the
superconducting state. However, one has to keep in mind that,
since the order parameter has a length ξ to recover from the
normal state at the SC–FM boundary, the superconducting
nucleus is usually displaced from the region where external
field is compensated most efficiently. This can be illustrated
by the plots of the actual profiles of the flux density induced by
the FM dot and the order parameter shown in figure 9(b) (see
also figure 4). Therefore, typically, the nucleus extends over a
length about 4ξ(T ) from the FM dot edge, with a maximum
at ρ ∼ a+ 2ξ(T ).

4. Periodic array of magnetic dots

In the previous section we have shown that a single FM
dot piercing an infinite superconducting film is capable of
stabilizing a localized superconducting state at fields consid-
erably higher than Hc2. An important question is whether such
localized superconductivity can be upgraded to a bulk su-
perconducting phase of enhanced critical field that percolates
throughout the entire film. A possible way to accomplish that is
by, for instance, introducing not one but many FM dots placed
in a way that the localized phases around each of them couple
to one another. To test this idea, we solved equation (2) for
a superconducting film with a square array of threading FM
dots. The calculations were carried out following the same
numerical procedure described in the previous sections. This
time, we take a simulation cell of area 240ξ(0)× 240ξ(0)
with periodic boundary conditions comprising 16 identical FM
dots of radius 7.5ξ(0) arranged in a 4× 4 array of periodicity
60ξ(0). This choice of parameters leads to a widthw= 45ξ(0)
of superconducting material between neighboring FM dots.
For a typical temperature T = 0.98Tc, this givesw= 6.4ξ(T ),
which, based on the results of the previous section, is enough
space for a ring-like superconducting nucleus to form around
each FM dot near the phase boundary.

Figure 9. (a) Schematic illustration of the field compensation effect in the SC–FM hybrid. The black dashed horizontal line indicates the
applied field He. The black loops show the orientation of the flux density generated by the dot. The blue line shows the total magnetic field,
with the minima helping the superconducting domains in the SC–FM hybrid, shown in red. (b) The actual profile of the flux density induced
by the FM dot and the numerically calculated Cooper pair distribution for M = 0.06Hc2(0), H = 0.054Hc2(0) and T = 0.96Tc.
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Figure 10. Phase Diagram of the periodic array of FM dots. The
dashed line shows the Hc2(T ) frontier of a plain film, and the dotted
line depicts the displaced second critical field H ′c2(T ) explained in
the text.

The results for a magnetization M = 0.06Hc2(0) are sum-
marized in the diagram depicted in figure 10. For conve-
nience, here we express H in units of the first matching
field, H1 = 80/ l2, which is the field value corresponding
to one flux quantum per unit cell area of the FM dot array.
This diagram reveals a few remarkable properties. First, the
maximum critical temperature is obtained at a finite posi-
tive magnetic field value rather than at H = 0. This is a
result of the well-known field-induced superconductivity effect
demonstrated experimentally [24, 59] and theoretically [31]
in superconducting films with a periodic array of magnetic
dots on top. This phenomenon results from the ability of
the FM dots to induce antivortices in the interstitial region.
Therefore, a non-negligible positive value of the external
magnetic field (which we shall call the compensation field,
Hcomp) is necessary in order to compensate this negative
flux. Usually, Hcomp is a multiple of the matching field H1,
which is a result of the fact that each FM dot generates an
integer number of antivortices in the interstitial region [60].
Here we found Hcomp = 4H1. For H = Hcomp, all antivortices
are removed from the sample thus enhancing Tc(H) to a
maximum value. The overall effect is a displacement of the
whole diagram 4H1 upwards. On the other hand, the boundary
between the superconductor and the FM dots induces poorer
superconductivity nearby, thus inducing a slight reduction of
the maximum critical temperature down to 0.998Tc. As a
guide to the eye, we plot in figure 10 the modified second
critical field H ′c2(T ), which we define as the boundary of bulk
superconductivity one would expect after displacing the H–T
diagram 4H1 upwards and 0.002Tc leftwards. For comparison,
we also show the plain Hc2(T ) line (dashes). It becomes clear
that the effect of the FM dots is more than a mere translation
of the phase diagram (see below).

Another interesting trend observed in the phase boundary
shown in figure 10 is the presence of both periodic matching
features for H . 10H1 (see the inset) and aperiodic oscillations
for H & 10H1. As usual, these distinct behaviors can be better
identified by plotting the upper critical field (at which the
entire sample goes to the normal state) H∗ as a function of H

Figure 11. The critical field as a function of the applied field
normalized by H1 for the single-dot and dot-array systems. For
convenience we normalized the single-dot critical field by Hc2(T )
and the multi-dot by H ′c2(T ).

(figure 11). Here we normalize H∗ by H ′c2 in order to quantify
the enhancement of the critical field with respect to the H ′c2(T )
line. For comparison, we also present the H∗(H) line for the
single-dot case.

A change of behavior and enhancement of the critical
field similar to those presented in figure 11 has been observed
experimentally only in superconducting films with a periodic
array of antidots [22, 23, 61]. The different behaviors have been
interpreted as a change between two well defined regimes, as
follows. (i) The collective regime, taking place at high T and
low H , is characterized by cusps in Tc(H) at multiples (and
sometimes fractional multiples) of the first matching field. In
this regime, superconductivity is distributed throughout the
entire film and the matching features are essentially collective
(non-local) phenomena, similar to the periodic oscillations of
wire networks. (ii) The single-object regime, taking place at
low temperatures and high fields, is characterized by local-
ization of superconductivity at thin sheaths surrounding the
antidots. In this case, the sample behaves effectively as an array
of uncoupled superconducting loops embedded in a film in the
normal state. The relevant length scale determining which
of the regimes will dominate is ξ(T ). Roughly speaking, the
collective regime dominates when ξ(T )&w, withw the width
of superconducting material between consecutive antidots.

Here, as evidenced by the configurations of the Cooper
pair density, indeed the phase boundary for H & 10H1 is
characterized by strong enhancement of superconductivity at
rings encircling the FM dots, similar to the single FM dot
case studied in the previous section. Therefore, one could say
that this field region corresponds to a single-object regime,
with uncoupled loops of superconducting state. However, a
closer look into the Cooper pair distribution reveals that, at
least for fields up to ∼20H1, these superconducting loops are
in fact coupled to each other by ‘necks’ of non-negligible
density of Cooper pairs. Figure 12 illustrates the evolution of
the order parameter as one approaches the phase boundary by
increasing the temperature at a fixed external field H = 24H1.
Even in the point closest to the boundary one can clearly
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Figure 12. Configurations of |ψ |2 for M = 0.06Hc2(0) and
H = 24H1 for different values of temperature. (a) T = 0.955Tc,
(b) T = 0.963Tc, (c) T = 0.967Tc, (d) T = 0.972Tc. These values
are marked on the H–T phase diagram to see the evolution of the
localized regime.

identify individual vortices in between neighboring rings of
localized superconductivity, indicating non-negligible density
of Cooper pairs at those regions. This means that, even in
the otherwise localized regime, superconductivity percolates
across the whole sample and, therefore, the material is capa-
ble of sustaining a non-negligible macroscopic supercurrent
density. For that reason, the bulk-superconductivity phase is
effectively stretched up to fields considerably larger than H ′c2
in a wide temperature range.

In order to establish which region of the H–T diagram
can safely be taken as bulk superconductivity, in the sense
described above, and which one may be considered as a
phase of localized superconductivity at uncoupled regions, we
adopt the following criterion: the system is assumed to be in
the bulk-superconductivity state when the maximum value of
the order parameter |ψ | along each neck cross-section line
(see figure 12) is larger than 0.1. This guarantees that all
necks have a considerable number of Cooper pairs bridging
the superconducting loops. In contrast, the normal state is
reached when the mean value of |ψ | in the entire sample
is zero within the numerical accuracy of our calculations.
These criteria define the localized-superconductivity and bulk-
superconductivity regions depicted in figure 10.

Recently, the existence of compensation effects as well
as the Little–Parks-like oscillations in a similar multiply con-
nected superconductor–ferromagnet system has been demon-
strated experimentally by Haindl et al [42]. However, in their
case, the typical width of superconducting material confined
in between neighboring ferromagnetic islands is smaller than
ξ(T ), in a way that the localized states probably coalesce in a
wire network state. Accordingly, the oscillations they observe
in the phase boundary are essentially periodic.

5. Conclusion

In summary, we have demonstrated by analytical calculations
within the linearized GL theory and numerical simulations
of the non-linear GL equation that a superconducting film
with a cavity filled by a ferromagnetic dot is capable of
sustaining a localized superconducting phase at fields con-
siderably larger than Hc2. This phase is induced by a field
compensation effect due to the negative flux generated into
the superconductor by the dot, which is magnetized off plane.
In several aspects it resembles the surface superconductiv-
ity regime around a mesoscopic empty cavity. For instance,
the resulting superconductor–normal phase boundary presents
aperiodic Little–Parks-like quantum oscillations associated
with an integer value of the total vorticity trapped by the cavity.
Here, however, the phase boundary can be easily manipulated
by controlling the magnetic state of the dot.

We also analyzed the effect of an array of such ferro-
magnetic dots. In this case, we have found a transition from
periodic, collective oscillations to aperiodic, Little–Parks-like
oscillations in the phase boundary, similar to the transition
between the so-called collective and single-object regimes
of perforated superconducting films observed experimentally.
To our knowledge, the transition between these regimes has
never been investigated theoretically before, either in films
with antidots or with ferromagnetic dots. Nevertheless both
regimes have been addressed separately within the frame-
work of the Ginzburg–Landau theory. Here, our Ginzburg–
Landau simulations allowed us to access the Cooper pair
distribution (from the phase boundary down to deep inside
the bulk-superconductivity state) and conclude that, at least
for moderate fields, what is called a single-object regime is in
fact a phase where the superconducting loops are connected
by bridges of non-negligible superconductivity. Therefore, the
otherwise localized state percolates across the whole sample
even in regions near the part of the phase boundary dominated
by quantum oscillations.
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Appendix. Details of the analytical solution

Here we give the details of the analytical solution of the LGL
equation presented in section 3.1. The linearized GL equation,

[(−i E∇ − EA)2− (1− T )]ψ = 0, (A.1)

may be solved by performing the following separation of
variables: ψ(ρ, θ)= f (ρ) exp(iLθ) (where L is the vorticity
and we impose the rotation symmetry around the dot). This
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procedure makes the equation depend only on ρ and now we
have a linear second order ordinary differential equation

L f ≡

[
−

1
ρ

d
dρ
ρ

d
dρ
+

(
L
ρ
− Aθ

)2

− (1− T )

]
f

= 0 (A.2)

where the vector potential is given by the following piecewise
function:

Aθ (ρ)=



Bin+ H
2

ρ, if ρ ≤ a,

H − Bout

2
ρ+

Boutb2

2ρ
, if a ≤ ρ ≤ b,

Hρ
2
, if b≤ ρ.

(A.3)

The simplified model of the field profile as a step-like function
gives us a vector potential of the form Aθ (ρ)= c1ρ + c2/ρ

(where c1 is twice the local field and c2 can be used to make the
vector potential continuous) and we can transform the equation
above by performing the following change of variable

f (ρ)= (c1ρ
2)|L

′
|/2e−c1ρ

2/2w(ρ), (A.4)

and obtain the Kummer’s equation for the new function w(z),
defining z = c1ρ

2

z
d2w

dz2 + (B− z)
dw
dz
− Aw= 0, (A.5)

where

A≡ 0.5(1+ |L ′| − L ′)− (1− T +3)/4c1
B ≡ |L ′| + 1 (A.6)

and the general solution for w(z) is a linear combination of
the Kummer’s functions M(A, B, z) and U (A, B, z). Now we
have the general solution for f (ρ)

f (ρ)=


0, if ρ ≤ a,
k1 f21(ρ)+ k2 f22(ρ), if a ≤ ρ ≤ b,
k3 f31(ρ)+ k4 f32(ρ), if ρ ≥ b

(A.7)

where in fi j , i denotes the spatial domain (2 for a ≤ ρ ≤ b or 3
for ρ ≥ b) and j determines whether the Kummer’s function is
of the first ( j = 1), M , or the second ( j = 2), U , kind. Here we
describe the boundary conditions for our problem. To account
for the proximity effect at the superconductor/ferromagnet
interface, we take f = 0 at ρ = a. At ρ = b we assume
that the order parameter and its derivative are continuous.
Since we are looking for solutions localized near the FM
dot, we take |ψ |2→ 0 for ρ→∞. The fact that the term
(z)|L

′
|/2 M(A, B, z) dominates over e−z/2 and diverges for

z→∞ requires that k13 = 0 in region III as was done in [21].
To summarize, our boundary conditions are

f (a)= 0

f (b−)= f (b+)

f ′(b−)= f ′(b+)
f (ρ→∞)= 0

(A.8)

and we see that f31(ρ→∞)→∞⇒ k3 = 0 so we make k4 6=

0 to exclude trivial solutions. Now we define f̃ (ρ)= f (ρ)/k4
and with the second and third boundary conditions we obtain

k1

k4
=

f̃ ′222 f312− f̃ ′312 f̃222

f̃ ′222 f̃212− f̃ ′212 f̃222
f̃211 (A.9)

k2

k4
=

f̃ ′312 f̃212− f̃ ′212 f̃312

f̃ ′222 f̃212− f̃ ′212 f̃222
f̃221. (A.10)

The first boundary condition results in a transcendental equa-
tion for 3

f̃211

(
f̃ ′222 f̃322− f̃222 f̃ ′322

)
− f̃221

(
f̃ ′212 f̃322− f̃212 f̃ ′322

)
= 0 (A.11)

where the third index of the notation f̃i jk means that the
function is being evaluated at the radius a (k = 1) or b
(k = 2). We also have to make sure the solutions have the
value f̃212 f̃ ′222 − f̃222 f̃ ′212 6= 0 to avoid divergence on the
order parameter. Finally we impose that k4 is a constant that
minimizes the free energy for the obtained f̃ function. With
this procedure we find [62]

ψ(ρ, θ)= (−3βA)
1/2 f̃ (ρ) exp(iLθ) (A.12)

jθ (ρ)=3βA

[
L
ρ
− Aθ (ρ)

]
f̃ (ρ)2 (A.13)

F = −
32

VβA
(A.14)

where 〈· · · 〉 means average over the superconducting film
and βA = 〈 f 4

〉/〈 f 2
〉
2 is the Abrikosov parameter (which is

independent of k4). Notice that the term L
ρ
− Aθ (ρ) is the only

one that changes sign. Therefore, we can straightforwardly
find the radii values where the current becomes null using the
expression for the vector potential (equation (A.3)).
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The injection of a long piece of flexible rod into a two-dimensional domain yields a complex
pattern commonly studied through elasticity theory, packing analysis, and fractal geometries. The
loop is an one-vertex entity which naturally emerges in this system. Each loop has elastic features
whose function in 2D packing has not yet been discussed. In this Letter we point out how the shape
of a given loop in the complex structure allows to estimate local deformations and forces. First,
we build sets of symmetric free loops and performed compression experiments. Then, tight packing
configurations are analyzed by using image processing. We found that the dimensions of the loops,
confined or not, obey the same dependence on the deformation. The result is consistent with a
simple model based on 2D elastic theory for filaments, where the rod adopts the shape of Euler’s
elasticas between contact points. The force and stored energy is obtained from numerical equations.
In an additional experiment, we obtain that the compression force for deformed loops corroborates
the theoretical findings.

The injection of filaments into cavities is a basic prob-
lem involving elasticity and self-exclusion. These are two
themes of great importance in nature, with wide range
of influence from polymeric packing [1, 2] to DNA pack-
aging in viral capsids [3–5]. In this Letter, we focus on
the two-dimensional confinement, which has been stud-
ied both experimentally and theoretically [6–10]. In a
typical 2D confinement as show in Fig. 1(a), the forma-
tion of self-contact points divides the area of the cavity
in cells with variable number of vertexes. “Loop” is the
term used to designate single-vertex cells [11], as those
highlighted in Fig. 1(b). The identification of loops al-
lows to identify the points of higher curvatures [12] and
helps to determine the morphology of the complex pat-
tern [6]. In addition, the number of loops gives the jam-
ming length and the dynamic state of the system [13, 14].
Despite these intrinsic relevance, the shape of the con-
forming loop has been little studied. Here, we report a
set of three experiments and a model that describes the
deformations of the loop. The main objective is identi-
fying physical quantities in the complex confined system
by analyzing the shape of a single loop.

We built elastic loops from rods and ribbons and com-
pared them with loops in the packing of a single filament
into circular and rectangular cavities. We observed that,
under compression, the dimensions of the loops vary ac-
cording to the same curve irrespective of confinement.
From this result we propose how to infer local informa-
tion in complex patterns from simple analysis of shape
and size of loops. The theoretical description follows the
elastic model for filaments [15–17], and allows us to de-
termine the shape of the loops, as well as the force and
stored energy.

The objective of the first experiment is determining the
mechanical response of a single loop under compression.
The loops were constructed by bending a piece of rod in
order to merge the ends into a vertex point. A bent rod

FIG. 1. (a) The packing of a 1 mm thick nylon fishing line
into a circular cavity with diameter of 200 mm. (b) The loops
(in black) are closed domains with one vertex.

leaves the planar configuration when the ends are close
to each other [17, 18], then transparent parallel plates
are used to constraint it. The rods used are either nylon
fishing lines of 0.80 mm of diameter or polymeric tubes
of 5.0(2.5) mm of outer(inner) diameter. The constraint
plates are made of acrylic with a thickness of 1.0 cm.
We also construct planar loops from ribbons with width
1.0 cm, and made of either A4 paper or transparent My-
lar sheets. An interesting point is that loops made from
ribbons with large width are naturally planar [19], and
have the advantage of eliminating friction effects due to
contact with parallel plates.

The initial conformation is denominated “free loop”.
The perimeter λ = λ0 is defined when the flexible rod
or ribbon is straight, and was chosen randomly in an
interval λ0 = {97 − 366} mm. The loops are large in
order to avoid plasticity effects. The height h of the loop
is defined along its symmetric axis as the distance from
the vertex to the top of the bulge. Perpendicularly, the
largest width of the loop is w [Fig. 2(a)]. Both h and
w are measured with a digital caliper. The initial ratios
h0/λ0 = (0.424 ± 0.007) and w0/λ0 = (0.210 ± 0.008)
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FIG. 2. Superior view of deformed loops: (a-c) compressing
sideways by imposing smaller widths, and (d-f) compressing
along the symmetric axis by imposing smaller heights.

are essentially the same irrespective the type or material.
For rods, we measured the dimensions h0 and w0 from
the neutral axis.

The experiment consists of compressing the loop along
two perpendicular axis (Fig. 2). In the first part, the loop
is compressed between two parallel aluminum plates, re-
quiring w to decrease as illustrated in Fig. 2(a-c). Care is
taken in order to preserve the loop as symmetric as pos-
sible. The system responds by increasing the height h.
The compressing continues until the physical limit w → 0
which leads to h→ λ/2. During this process, the contact
points between the loop and the compression plates move
downwards as indicated by small arrows in Fig. 2(b-c).
In the second part of the experiment, the loop is com-
pressed between two parallel aluminum plates, requiring
h to decrease as illustrated in Fig. 2(d-f). In this case,
the system responds by increasing w. The compressing
continues until the physical limit h → 0 which leads to
w → λ/2. The experiment is performed horizontally over
a table without gravitational effects.

The results of the experiment illustrated in Fig. 2 is
shown in Fig. 3(a-b) as a h× w diagram, normalized by
λ. The diagram is identical for loops built from ribbons
(Fig. 3a) and rods (Fig. 3b), and agrees with the theo-
retical description (solid line) based on Euler’s elastica
which we discuss afterwards. The values for the free loop
are indicated by a big cross. Since compressing w leads
to higher h, the graph in Fig. 3(a-b) must be read from
the cross to the left. On the other hand, compressing h
leads to higher w, and the graph in Fig. 3(a-b) must be
read from the cross to the right. Therefore, the range of
the data shown in the Fig. 3(a-b) covers the entire phys-
ical domain, from values of dimensions for the free loop
to completely crushed shapes.

The free loop has an anisotropic shape and its re-
sponse to compression is different depending on the

FIG. 3. The h × w diagram for deformed loops made of
(a) ribbons, and (b) fishing lines. With image processing,
loops are obtained from (c) the packing of a nylon fishing line
into circular cavities, and (d) the packing of a tubular rod
into rectangular cavities. The big cross indicates the sizes of
the free loop. The solid line is obtained from the theoretical
reasoning. See text for more details.

load axis. While the reduction in w leads to an in-
crease in h until the physical limit h → λ/2, a re-
duction in h leads to an increase in w until a limited
value, w → wm = (0.429 ± 0.005)λ. If the compres-
sion continues beyond this point, the curve follows to-
wards the physical limit w → λ/2 with two discontinu-
ities in its slope [see inset in Fig. 3(a)]. The first dis-
continuity, at h = (0.089 ± 0.002)λ, is due to the emer-
gence of new contact points between the loop and the
plates as shown in Fig. 2(f). The second discontinuity, at
h = (0.042±0.002)λ, is due to the emergence of two self-
contact points which divides the loop into three shapes:
one curved triangle between two small loops.

In order to study the problem of 2D confining, the flex-
ible rod can be split at the contact points into pieces that
are treatable numerically with Euler’s equation [10, 20].
The problem is complex due to the fractal distribution
of contact points [12]. It has been discussed whether
self-contacts define arcs of propagating forces across the
structure [6, 12]. Here, on the other hand, we focus on
the shape of the loops as a guide to access both quali-
tative and quantitative information about local deforma-
tions and energy. The second experiment consists in the
two-dimensional injection of thin rods into planar slender
cavities. The objective is to analyze how the loops, which
are naturally formed in the confinement, behave in light
of the w× h diagram. This experiment is also divided in
two parts. In the first one, nylon fishing lines with a di-
ameter of 1.0 mm are injected into circular cavities with
201 mm in diameter as shown in Fig. 1(a). In the sec-
ond part of the experiment, polymeric tubular rods with
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50 mm in diameter are injected into rectangular cavities
of 400×200 mm2 as illustrated in Fig. 4(a). All injections
are performed manually into a dry cavity, free of lubri-
cants, in a rate about 1 cm/s. The injection stops when
the system jams due to the rigidity around the injection
channel.

FIG. 4. (a) Digital image of the tight packed flexible tube
of 50 mm in diameter inside a rectangular cavity of 200 ×
400 mm2. (b) Each loop is framed inside a rectangle which
defines h and w (see text for details).

The particular conformation presented in Fig. 4(a) is
chosen as a representative case where we can briefly dis-
cuss the role of the elasticity, self-exclusion, and friction
with the cavity. The first loops that formed are pushed
away from the injection channel, shown in the right re-
gion of Fig. 4(a). These loops are larger, and requires low
values for the injection force in the early stages. Observe
that the shape of the loops are prevented from changing
due to the contacts with the cavity and friction. The
rod has small self-contact regions, and the stacked loops
transmit the force through the system by compressing
each other. The geometric pattern and local rigidity are
then governed by the elasticity of the loops. On the other
hand, the last loops are close to the injection channel, see
left region of Fig. 4(a). The injection force in this stage
is higher, which reduces the perimeter of the loops and
limits them to occupy the periphery of the pattern, with-
out contacting the cavity. The rod has large self-contact
regions that transmit the force through the system. In
the case shown in Fig. 4(a) the loops are compressed by
neighbors in a configuration that resembles Fig. 2(a-c).
In a cavity of generic shape, however, we expect that
the loops can interact also as in Fig. 2(d-f). For ex-
ample, there are differences between patterns generated
from circular and rectangular cavities [Compare Fig. 1(a)
and Fig. 4(a)].

In order to construct a h × w diagram for loops in-
side cavities, we need to measure its dimensions non-
invasively. We can select the loops by image processing
[Fig. 4(a)]. However, the loops interact in a complicated
manner and assume non-symmetric shapes, so that we
need to revise the definitions of h and w. We focus here
on the reading of the geometric pattern by prioritizing
simple definitions. First, the selected loop is inscribed
into a rectangle. Rotating the loop will change the as-
pect ratio of the frame. The chosen angle is that which

maximizes the height of the frame, as shown in Fig. 4(b).
This dimension is identified as h or w accordingly to the
position of the tip and the bulge of the loop. Following
this procedure, all symmetrical loops illustrated in Fig. 2
maintain their dimensions. The points at the edge of the
loop are interpolated by a curve that allows us to measure
the dimensions h, w, and λ with the same units. Such
method is repeated for each loop in the image. The re-
sult is shown in Fig. 3(c) for loops inside circular cavities,
and in Fig. 3(d) for loops inside rectangular cavities.

The main result in Fig. 3 is that the loops obtained
from injection of rods (c and d) present the same behav-
ior as the loops outside the cavities (a and b). However,
the data from packed loops distribute themselves majori-
tarily in the left side of the diagram, instead of spread-
ing over the whole diagram. This is in agreement with
the fact that the loops are aligned perpendicular to the
injection channel. The injection force then acts to com-
press the loops laterally, reducing both their perimeter
and width. However, Fig. 3(c) shows that few loops are
also longitudinally compressed in circular cavities. In this
cavity rotation and slippage are more accessible than in
the rectangular one. In the general sense, this confirms
that the way at which the loops populate the diagram
depends on the shape and size of the cavity.

Let us begin our reasoning by considering the free loop.
Between contact points, the vector force is fixed along the
arc length s of the rod, ~F (s) = P î. Therefore, the shape
is governed by infinitesimal torques dΓ(s) = F sin θ ds,
where θ is the angle between d~s and the direction of the
force ~F . The torque is related to the local curvature,
Γ(s) = −µdθds , where µ is the bending rigidity. We can
write

d2θ

dŝ2
= − sin θ, (1)

where the hat over q means q̂ ≡ q
√
F/µ. The coordi-

nates are given by integration of dx̂(ŝ)/dŝ = cos θ and
dŷ(ŝ)/dŝ = sin θ. The general solutions are obtained
in terms of elliptic integrals and elliptic functions, and
the overall shape is determined by the elliptic parameter
p [16]. The free loop corresponds to the elastica with
a self-contact point, at ŝ = ŝ∗, in which the following
conditions hold

x̂(ŝ∗) = x̂(0) and
dx̂(ŝ)

dŝ

∣∣∣
ŝ=ŝ∗

= 0. (2)

The outcome is a numeric equation for p whose solution
is p∗ = 0.731183 [16]. We determine λ, h, and w by com-
puting the vertex point and the points of maximum. We
find h0/λ = 0.424308 and w0/λ = 0.204214, irrespective
of the bending rigidity. These values are in agreement
with the experimental finding, then we can state that
the self-touching elastica describes quite well the shape
of the free loop.
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Our model for a general symmetric loop requires at-
tention to points where an external force acts to deform
the loop. We assume here that the lateral compression of
the loop is equivalent to a longitudinal stretching. In this
manner, all compression in Fig. 2 can be described by the
application of a single normal force ~N = Nĵ at the middle
point of the loop. The loop is thus composed of mirrored
elasticas. The total force becomes ~F = P î+Nĵ and the
reference line of the elasticas changes from the horizontal
to an oblique direction, whose angle is γ0 ≡ tan−1 (N/P ).
Eq. 1 remains valid, but the contour conditions (Eq. 2)
are adapted for rotated coordinates. Then, we obtain a
numeric equation for p whose solution now depends on
the angle γ0. Figs. 5(a-f) show how two symmetrical
elasticas merge in order to compose the deformed loop.
Fig. 5(g) shows how the self-touching condition changes
the elliptic parameter as a function of the angle γ0.

FIG. 5. The symmetric loop is composed of two elasticas
(a-f) rotated respectively by γ0 = {0, 0.60, 1.20, -0.55, -1.27,
-1.82} rad. (g) p∗ dependence with the compression force
through γ0. The dashed line corresponds to γ̇0 = 0 case. See
text for details.

The free loop corresponds to γ0 = 0 and it is illustrated
in Fig. 5(a). In the stretching case γ0 > 0, the elliptic pa-
rameter increases [Fig. 5(g)] and the elasticas have pieces
that cross each other, as shown in Fig. 5(b-c). In the
compressing case γ0 < 0, the elliptic parameter decreases
[Fig. 5(g)] and the elasticas have no crossing points, as
shown in Fig. 5(d-f). The dashed line in Fig. 5(g) shows
where the contact point in the bulge has null curvature,
and corresponds to p∗ = sin2(γ0/2). Because the com-
pressing plate does not allow convex curvature, the con-
tact region becomes a straight line which extends itself
between two inflectional points. From this simple model,
we can determine the lengths λ, h and w, as shown by
solid lines in Fig. 3.

The agreement between the theoretical curve and the
experimental data (Fig. 3) shows the relevance of this
purely elastic model. Furthermore, we can calculate the
force associated with a given shape, F = µ(ŝ/s)2. The

result for the force is shown in Fig. 6 and (inset) the en-

ergy cost of deformation ∆E = W =
∫
~N·d~h. Big crosses

in Fig. 6 indicate the values for the initial condition.

FIG. 6. The force N and (inset) the stored energy E as
functions of the deformation ∆h/λ for purely elastic loops.
Black points corresponds to experimental data. Dashed lines
indicate the physical limit of deformation. See text for details.

In a third experiment, a dynamometer is attached to
the vertex of the loop in order to measure the compres-
sion forceN as function of deformations ∆h. The stretch-
ing part was implemented by fixing the bulge with a
metallic hook. Fig. 6 shows the experimental data as
black points, with instrumental precision of 1 cN, space
steps of 2 mm, and using 10 different ribbons of Mylar
sheets. Due to asymmetry, the force is greater when the
loop is stretched than when it is compressed by a same
extension. The dashed line in Fig. 6 shows the limit of
null curvature, where h = λ/2, and force and energy
diverge because small radius of curvature. The agree-
ment between model and experiment allows us to esti-
mate both the force and stored energy for loops inside
complex patterns. We hope that such results open up
new possibilities for application of statistical techniques
to 2D confining of flexible rods.
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