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ABSTRACT

In this work we study quantum transport phenomena in two different types

of systems. The first type corresponds to so-called complex quantum systems, such

as chaotic ballistic cavities and disordered quantum wires, which have a complex

distribution of energy levels and transmission eigenvalues. This class of system

does not admit a simple description in terms of a fixed Hamiltonian, and therefore

we will make a statistical approach of its transport properties through Random

Matrices Theory. We obtain exact expressions for the first three moments of the

heat conductance of a quantum chain that crosses over from a superconducting

quantum dot to a superconducting disordered quantum wire. Our analytic solu-

tion provides exact detailed descriptions of some smooth transitions that can be

observed in the system as a function of its length, which include ballistic-metallic

and metallic-insulating transitions. The two Bogolyubov de Gennes symmetry

classes with time-reversal symmetry are accounted for. The striking effect of

total suppression of the insulating regime in systems with broken spin-rotation

invariance is observed at large length scales. For a single channel system, this

anomalous effect can be interpreted as a signature of the presence of the elusive

Majorana fermion in a condensed matter system. The second type of system

corresponds to qubits, which, unlike complex systems, can be described by very

simple Hamiltonians. In this case, we study the properties of open systems using

master equations. We present a study of non-equilibrium thermodynamics of

qubit systems submitted to quantum control. More specifically, we performed

a comparative study of two types of simple two-level non-interacting quantum

transport systems coupled to two bosonic and fermionic reservoirs respectively.

Each system is submitted to a Wiseman-Milburn type feedback scheme in the

formulation of stochastic thermodynamics. We see the effects of finite tempera-

ture and time delay on two specific feedback applications: a heat pump and a

purification protocol. We observed a clear signature of the purity of the qubits in

the Full Counting Statistics observed in the current flowing through the system.



Keywords: Quantum transport. Random Matrix Theory. Quantum feedback. Stochas-

tic thermodynamics.



RESUMO

Neste trabalho estudamos fenômenos de transporte quântico em dois difer-

entes tipos de sistemas. O primeiro corresponde aos chamados sistemas quânticos

complexos, como cavidades balísticas caóticas e fios quânticos desordenados,

que possuem uma distribuição complexa de níveis de energia e de autovalores

de transmissão. Estos sistemas não admitem uma descrição simples em termos

de um hamiltoniano fixo, e portanto faremos uma abordagem estatística das

propriedades de transporte através da teoria da matrizes aleatórias. Obtivemos ex-

pressões exatas para os três primeiros momentos da condutância térmica de uma

cadeia quântica que interpola entre um ponto quântico supercondutor e um fio

quântico desordenado supercondutor. Nossa solução analítica fornece descrições

detalhadas exatas de algumas transições suaves que podem ser observadas no

sistema em função de seu comprimento, que incluem transições balístico-metálico

e metálico-isolante. As duas classes de simetria de Bogolyubov de Gennes com

simetria de inversão de tempo são contabilizadas. O efeito marcante da supressão

total do regime de isolamento em sistemas com invariância de rotação quebrada

é observado em grandes escalas de comprimento. Para um sistema de canal único,

esse efeito anômalo pode ser interpretado como uma assinatura da presença de

um férmion de Majorana em um sistema de matéria condensada. O segundo tipo

de sistema corresponde a qubits, que ao contrário dos sistemas complexos, podem

ser descritos por hamiltonianos simples. Neste caso, estudamos propriedades de

sistemas abertos usando equações mestras. Apresentamos um estudo da termod-

inâmica de não-equilíbrio de sistemas de qubits submetidos a controle quântico.

Especificamente, fizemos um estudo comparativo de dois tipos de sistemas de

transporte quântico simples não interagentes de dois níveis acoplados a dois

reservatórios bosônicos e fermiônicos respectivamente. Cada sistema é submetido

a um esquema de realimentação do tipo Wiseman-Milburn, no âmbito da formu-

lação da termodinâmica estocástica. Vemos os efeitos da temperatura finita e do

tempo de atraso em duas aplicações específicas do feedback: uma máquina de

bombeamento e um protocolo de purificação. Observamos uma clara assinatura

da pureza dos estados nos qubits na estatística de contagem observada na corrente

que atravessa o sistema.



Palavras-chave: Transporte quântico. Teoria de matriz aleatória. Feedback quân-

tico. Termodinâmica estocástica.
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1 INTRODUCTION

Research in quantum physics has been consolidated for almost a century

as a broad and prolific field of theoretical, experimental, and even philosophical

exploration, with surprising and outstanding results for science as a whole. Phe-

nomena such as quantum entanglement at great distances, the tunneling effect,

or quantum superposition in cases like the Schrödinger cat, just to mention a few

of those that have become popular, continue to surprise not only the scientific

community but also the general public, thanks to the effort of science communi-

cation via widespread media. All this is further enhanced by predictions about

the possibilities of quantum technologies, some already realized, such as quan-

tum cryptography and superconductivity-based magnetic levitation of trains; and

others that are still under intensive research, such as perhaps the most awaited

and spectacular of them all: the universal quantum computer.

In a nutshell, the general aim of quantum physics research is to rethink

everything from the quantum perspective, which goes as far as to include a

description of the fundamental units of both the physical systems (particles) and

its information content (qubits). For example, there is not problem about the

measurement in classical systems, since the act of measuring a physical property in

a macroscopic system does not significantly alter the state of the system. However,

when quantum effects are relevant, the act of measuring a physical observable

does significantly affect the state of the system and this context dependence

needs to be included explicitly in the theoretical construction. Much has been

speculated and debated about the profound meaning of this state of affairs but

no consensus has been reached yet, since it essentially involves a choice among

several equally valid interpretations of quantum mechanics [Schlosshauer 2005,

Burgos 2015]. The same applies to thermodynamics, which at the macroscopic

level has an well established set of universal laws that have been consistently

validated over the years through a huge amount of experiments in various regimes

and appears to have a broad domain of validity that extends even beyond physics.

Nevertheless, in the quantum domain the predictions of thermodynamics are valid
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only on average, which is expected since the theory was constructed to describe

macroscopic properties. This opens the possibility of extending the theory to

describe quantum fluctuations of thermodynamic quantities, such as heat and

work. Different interpretations of quantum thermodynamics have been advanced

and include fundamental questions like: What is the meaning of quantum work?

How can entropy and information be defined? [Talkner e Hänggi 2016,Funo e

Quan 2018].

In this dissertation we address several issues related to the field of quan-

tum transport, which was reformulated from the traditional classical approach

to be understood in the framework of quantum physics. In this construction,

fundamental questions were raised, such as: Is there a quantum of resistance or

conductance? What is measured when you measure a resistance? [Stone e Szafer

1988] What about correlations and moments? Much progress has been made in

answering these questions, but quantum transport remains a very active field of

research with many open problems [Mello et al. 2004]. In this introduction we

shall discuss some results related to these questions and in the process we will

give the proper context to the subjects investigated in this work.

We start with the most basic physical transport phenomenon: the transfer

of charge through a conductor. Ohm’s law establishes that in metals, the electric

current I is directly proportional to the applied voltage V

V = IR or I = GV, (1.1)

where R and G are defined as the resistance and the conductance respectively, and

G = 1/R. In a sample of length L, and constant cross section A, the conductance

is given by

G =
σA

L
, (1.2)

where σ is the conductivity; an intensive quantity that depends on the microscopic

characteristics of the material such as the electronic density and the mean free

path. But what happens when the length of the material is very small? Can

one expect an indefinitely large conductance and zero resistance? [Houten e

Beenakker 2005,Beenakker e Houten 1991]



Chapter 1. Introduction 14

The answer came in 1988, when two groups reported the variation of

conductance in steps defined in the form of a ladder, which suggested a quan-

tization of conductance, and therefore of resistance [Wees et al. 1988,Wharam

et al. 1988]. The experiment can be described as follows: A 2D electron gas,

at the interface of a heterojunction of GaAs-AlGaAs is subjected to a potential

difference between two contacts so that it passes through a small constriction of

size of the same order as the Fermi wavelength λF of the electron gas. This allows

there to be ballistic transport through the constriction, which can be studied

by varying a gate voltage applied transversally. By varying the width W of the

constriction through the gate voltage (see figure 1a) we can change the number

of transverse modes that are connected to open transport channels. This kind of

setup is called a quantum point contact. The experimental result obtained was

that the conductance varies in steps of 2e2/h, as the gate voltage is increased, in

temperatures near 0K; and that the steps are flattened with the increase of the

temperature, as shown in the figure 1b. This and other experiments defined the

step or quantum of conductance and resistance, being

G0 =
2e2

h
=

1

12.5kΩ
. (1.3)

This result is theoretically justified by the Landauer formalism, and can be inter-

preted as an indication of the existence of a minimum of resistance in the ballistic

conduction through a single channel, given by 12.5kΩ.

There are many systems in which the phenomenon of quantum transport

can be studied. A paradigmatic one, for its simplicity, is the resonant double barri-

ers, which consists of two potential barriers connecting two electron reservoirs

through a conducting region called a quantum dot (see figure 2). As a quantum

system, the dot has a specific amount of discrete energy levels, which can be in

resonance with the transport modes of electrons passing through the structure.

The potential barriers are characterized by the transition rates ΓL,ΓR that depend

on the tunneling probabilities TL, TR of each barrier ΓLn,Rn = ~νnTL,R, where νn
is the frequency of the n-th resonant level.

One of the most important theoretical result for this system states that the

average current through the quantum dot, due to chemical potential gradients
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(a) (b)

Figure 1 – (a) Schematic representation of the conductance measurement experiment of
a quantum point contact. Note that the flux is longitudinal, going from one
contact to the other, and the transversal gate voltage controls the width W of
the constriction. (b) Quantization of the conductance of an electron flux
through a quantum point contact. As the negative voltage gate increases, so
does the number of open channels in the constriction [Houten e Beenakker
2005].

between the reservoirs, at zero temperature, is

I =
e

~

N∑
n=1

ΓLnΓRn
ΓLn + ΓRn

. (1.4)

This result can be derived both by using the Landauer formalism and via the

master equation approach. It has been applied successfully, in its finite temper-

ature version, to the analysis of experimental data of charge transport through

molecules [Garrigues et al. 2016].

Another paradigmatic system with its transport properties widely studied

are the ballistic cavities. The setup consists of cavities coupled to two or more

electronic reservoirs, through waveguides that can transport a certain number

of scattering modes. Within the cavity all scattering is caused by the boundaries,
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Figure 2 – Schematic view of a quantum dot isolated by two barriers connected to two
reservoirs at different chemical potentials. The difference between these
chemical potentials arises from the application of a voltage between the
reservoirs [Blanter e Büttiker 2000].

so the electrons move in a ballistic way (see figure 3a). Random matrix theory

predicts that the mean value and the variance of the conductance of a ballistic

chaotic cavity with N scattering channels are given respectively by

〈G〉 =
2e2

h

[
N

2
+
β − 2

4β
+O

(
N−1

)]
, var(G) =

e4

2βh2
. (1.5)

The first term of the mean conductance coincides with the value of the classi-

cal conductance, while the second term is a quantum correction, called weak

localization, which results from coherent interferences between the optical paths

of the electron wavefunction. The factor β is a constant that depends on some

discrete symmetries of the system, as we will see later. Now we will only mention

that if the system is invariant under time reversion, then β = 1 and thus the

effect of weak location generates a decrease in conductance. This has indeed

been corroborated experimentally by applying a weak magnetic field to the cavity,

since it breaks the time-reversal symmetry [Keller et al. 1996].

In the figure 3b one can see that just when the magnetic field is zero, i.e.

the only point at which time-reversal symmetry is preserved, a fall in conductance

is observed, as can be deduced from the equation 1.5. The most remarkable

feature of the variance is the fact that it depends only on universal constants and
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(a) (b)

Figure 3 – (a) Representation of a ballistic cavity coupled to two reservoirs, through two
leads that sustain N1 and N2 scattering channels respectively [Brouwer 1997].
(b) Experimental variation of the conductance with respect to changes in an
external magnetic field, applied to a cavity shaped like a "stomach"
(inset) [Keller et al. 1996].

symmetry parameters. This phenomenon became known as universal conductance

fluctuations, a hallmark of mesoscopic physics.

Introducing these devices helps us to contextualize the systems that will

be dealt with in this work. On the one hand, there are complex systems, which, as

in the case of ballistic cavities, have a complex distribution of energy levels and

transmission eigenvalues, that do not admit of a simple description in terms of a

fixed Hamiltonian. On the other hand, we have simple systems like the resonant

double barriers with a configuration of energy levels that can be modeled by

a simple Hamiltonian. Different types of systems need different approaches, so

for quantum complex systems, we will use Random Matrix Theory (RMT) for

the scattering matrix, since it can describe their universal properties, which in

general, do not depend on their specific geometrical configuration. For simple

systems, we will use the matrix density formalism of open systems, that is, the

master equation formalism, which has a consistent thermodynamic construction

in the regime of Markovianity, namely stochastic thermodynamics.

This Thesis is divided into two main parts. The first part, chapters 2 and

3, deals with complex systems. The second part, concerning simple two-level
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systems, is dealt with in Chapters 5 and 6. In chapter 2 we briefly review RMT for

scattering matrices in the framework of the Ten-Fold Way, which is a classification

scheme in terms of all the ten possible general symmetries of physical systems.

Then, we apply a classification scheme for the Brownian motion ensembles of

random matrix theory, which together with a multivariate integral transform

method, both introduced in [Macedo-Junior e Macêdo 2006], are used to solve

analytically the problem presented in chapter 3.

In chapter 3 we employ RMT to study two classes of superconducting

dot-wire systems. We obtain, in the continuum limit of a quantum chain with time-

reversal symmetry, an exact description of thermal conduction of the crossover

between a superconducting chaotic ballistic cavity (a quantum dot) and a dis-

ordered multichannel superconducting quantum wire. The calculations were

guided by the classification scheme of RMT Brownian-motion ensembles and

were performed by means of the multivariate integral transform method referred

to in Chapter 2. More specifically, we obtain exact expressions for the first three

moments of the heat conductance. The analytic solution describes in detail various

types of smooth transitions as a function of the systems’ length, which include

ballistic-metallic and metallic-insulating transitions. If the system is realized as a

single channel topological superconductor with broken spin-rotation invariance,

we can interpret the total suppression of the insulating regime as a signature of

the presence of a condensed matter Majorana fermion.

In chapter 4 we review the formalism of master equations for open quan-

tum systems. More specifically, we study approximations that result in a Markovian

master equation, or Lindblad equation. It allows for a consistent description of the

thermodynamics of open quantum systems and is directly related to the stochastic

thermodynamics approach of classical systems. Based on this formalism, we will

describe a quantum control protocol that has been generically called Wiseman-

Milburn feedback, and we shall include the technique of Full Counting Statistics

in the formalism of master equations.

In chapter 5 we apply the formalism described in chapter 4 to a system

that consists of a qubit coupled to two reservoirs and consider two types of

reservoirs: fermionic and bosonic. These systems could physically correspond, in
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the fermionic case, to a quantum dot coupled to two electronic reservoirs; and in

the bosonic case, to a two-level system coupled to two reservoirs of photons (or

phonons). On each system we consider the Wiseman-Milburn feedback quantum

control operation to execute two tasks: a heat pump and a purification protocol.

We make a comparative analysis of the efficiency of these tasks for each system

and we obtain a clear signature on the Full Counting Statistics for the maximum

efficency.
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2 COHERENT QUANTUM TRANSPORT

The term “mesoscopic” was introduced in the early 1980s as a way to

refer to systems whose size lies between extreme quantum systems and classical

macroscopic systems [Nazarov e Blanter 2009]. These systems are large enough to

generate robust universal statistics for their physical transport properties, but still

small enough to preserve some relevant quantum effects. Typically, they consist

of devices of the order of nanometers, although this characterization became

somewhat restrictive since larger systems can also exhibit quantum coherence

effects. As a matter of fact, transport properties of micron-scale contacts in

semiconductor heterostructures have been shown to be the same as metallic

contacts consisting of one or a few atoms. So, the study of quantum phenomena

related to transport properties is now generically known as quantum transport

and has become a broad and active field of both experimental and theoretical

research [Mello et al. 2004,Nazarov e Blanter 2009].

When we refer to complex systems, we mean systems that have a complex

distribution of energy levels and transmission eigenvalues. This property is shared

by ballistic cavities and disordered systems. Disorder in a material generates

multiple scatterings when particles are transported across its medium, defining its

conduction properties. Two different types of disorder can be identified depend-

ing on the type of scattering [Khalaf 2017]. Static disorder arises from elastic

scattering, since it preserves the coherence of the phase of the wave functions

during collisions, even when averages are made over many realizations, thus in

this type of disorder quantum coherence events will survive. This type of disorder

is characterized by the mean free path le, which broadly is the average distance

between scattering centers, therefore it depends on the concentration of disorder

in the material. The other type of disorder is generated from inelastic scattering

coming from thermal excitations or interactions between different degrees of

freedom of the system. This disorder generates randomness in the wave function

phase each time a collision occurs, which in turn generates a loss of coherence as

more and more collisions occur. We can characterize this type of disorder by the
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dephasing length lφ, which is the characteristic length for coherence loss. Thus,

for distances greater than lφ, the system behaves quasi classically. Unlike the mean

free path, the dephasing length depends on several parameters of the system

and normally decreases with temperature. Therefore, it is expected that at low

temperatures there are two well separated intrinsic scales in the system, lφ � le,

and then there will be quantum effects associated with coherence phenomena,

such as the weak localization effect and universal conductance fluctuations.

There are other quantities that help us characterize transport regimes

in complex quantum systems. For instance, the disorder parameter δp = 1/kF le

for a metallic system of Fermi wave-vector magnitude kF , has a critical value

above which Anderson localization sets in and the system becomes an insulator.

It is worth noting that δp is used as an effective expansion parameter in many-

body diagrammatic perturbation theory of weakly disordered systems [Altshuler

1985, Lee e Stone 1985]. One could also consider the diffusion constant De =

vF le/3 (for 3D systems), where vF = ~kF/m is the Fermi velocity, which together

with the dephasing time τφ = lφ/vF , defines the Thouless length LT = (Deτφ)1/2 ≡√
(1/3)lφle. The length LT corresponds to the distance through which a particle

diffuses before losing its phase coherence. Again, at low temperatures we usually

have le < LT < lφ.

In terms of these length scales, different limits or coherent transport

regimes can be defined depending on the relative value of the length L of the

sample (for weak disorder δp = 1/kF le � 1) [Mello et al. 2004]. We give below a

short list of the most common transport regimes.

• Ballistic: L� le, lφ. In this regime, the particles propagate ballistically, i.e.

without scattering of any kind in the bulk of the sample. There is scattering

only at the boundaries and thus coherence effects are relevant. This is valid,

for instance, in chaotic cavities or quantum dots defined on high-mobility

heterostructures.

• Diffusive: le � L < LT . In this regime, the particles diffuse through the

sample undergoing elastic collisions, or even a few inelastic scattering,
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so that coherent transport is prevalent. Disordered quantum wires are

prototypical examples of systems with this kind of transport.

• Macroscopic: le � LT � L. Due to the increase of inelastic collisions, it

is generally expected that the transport will eventually lose its coherent

properties as the length increases, so in this regime the system will behave

quasi classically.

There are other interesting quantities that help characterize quantum

transport: in the diffusive regime the ergodic time τerg = L2/2De is defined as the

time it takes a particle to diffuse throughout the entire sample. In the ballistic

regime we have τerg ∼ L/vF , and is defined the dwell time, which is the time

during which a confined particle remains in the system: 2π~/τdwell = δ
∑

n Tn,

where δ is the mean level spacing, and Tn is the tunnel probability of mode

n [Beenakker 1997].

2.1 From classical to quantum phase coherent transport

The Drude model [Ashcroft e Mermin 1976] was the first transport model

to successfully describe conductance phenomena in materials. Proposed in 1900

as an application of classical kinetic theory, it interprets transport of a particle

through a sample as a succession of random scatterings due to disorder, between

which the particle moves freely (see figure 4). Of course, the particle’s trajectory

was assumed to be purely classical. This model can be summarized as follows:

The equation of motion of an electron subject to an electric field E and

scattered at random times, with τ being the average time between scattering

events, is

ṗ = −eE− p

τ
. (2.1)

The average time, also called relaxation time is related to the mean free path

through le = vτ , where v is the average electron velocity, which in a low tem-

perature metal is very close to the Fermi velocity. In the steady state, ṗ = 0, and
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Figure 4 – Schematic representation of the Drude model. Particles are diffused
throughout the medium between scatterers and have free movement between
impurities [Wikipedia contributors 2018].

we have p = −eEτ . Using the definition of current density J = −enev, where ne
denotes the electronic density, one obtains Ohm’s law

J = σE, σ =
e2neτ

m
. (2.2)

The main feature of this equation is the prediction that the conductivity σ is

proportional to the relaxation time, or equivalently, to the mean free path. Other

approaches, such as the Boltzmann equation, which is also classical [Emary

2009], or the Sommerfeld model [Ashcroft e Mermin 1976], which incorporates

quantum statistics, also predict Ohm’s law with Drude’s conductivity, albeit the

interpretation of τ is model dependent.

As discussed above, in quantum systems it is necessary to take into account

the quantum effects associated with partial wave interferences between the

different optical paths of the particle in its transport process. This is the case of

the weak localization effect, in which the self-interference between the forward

scattering and backscattering trajectories of a particle, besides the interference

with other particles, generates quantum corrections to the expected classical

conductance that goes beyond a simple renormalization of Drude’s formula. To

see this in a simple argument, note first that quantum mechanics establishes that

the probability of a particle to be transported between two points, is the square
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norm of the sum of the amplitudes of all possible paths connecting the two points

P =

∣∣∣∣ ∑
paths P

AP

∣∣∣∣2 =
∑

paths P,P ′

APA
∗
P ′ =

∑
paths P

|AP |2 +
∑

paths P 6=P ′
APA

∗
P ′ . (2.3)

The first term in the right hand side of the latter equation corresponds to the

classical probability, and the second term is the quantum correction coming from

wave interference. Many particles subject to multiple scatterings will have com-

pletely random phases, so on average, these interference terms will be canceled

out, which leads to a classical Drude-like behavior. However, a few trajectories

will have backscattering contributions, as shown in figure 5.

Figure 5 – Schematic representation of a scattering trajectory self-interfering coherently.
To the left (right) there is presence (absence) of spin-orbit coupling in the
material [Khalaf 2017].

Let us assume that the system has time reversal symmetry. If the material

has spin rotation symmetry, the forward scattering and backscattering trajectories

will interfere with the time reversal trajectories in such a way that they will

reinforce the probability of backscattering (left of the figure 5), which generates a

negative contribution to conductance, since it provides a tendency for the particle

to localize as it was shown in the equation 1.5 for β = 1. This is the phenomenon

known as the weak localization effect. In the case of materials that have significant

spin-orbit coupling (as we will see later this corresponds to a symmetry factor

β = 4), the electron spin direction is coupled to the momentum direction, as

we see from the scheme on the right of the figure 5. Trajectories with opposite
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spin generate destructive interference, leading a negative sign in the quantum

correction of the equation 2.3, so that the backscattering effect is canceled, and

the conductance increases implying a weak anti-localization effect [Bergmann

1984]. When time reversal symmetry is broken (symmetry factor β = 2), e.g.

by applying a magnetic field, these localization effects are lost. Therefore these

interference effects are highly sensitive to magnetic fields, as was discussed for

ballistic cavities in the introduction. The phenomena of weak localization can be

understood as a precursor of the “strong” Anderson localization.

The Anderson localization phenomenon [Evers e Mirlin 2008] is the effect

by which the diffusion of a particle is totally suppressed in a random potential, on

account of quantum interferences. Also known as strong localization, in general

it depends on the degree of disorder in the material. Qualitatively, although this

effect is predicted for 1D and 2D materials in any degree of disorder, for 3D

materials there is a critical disorder at which the transition from conductor to

insulator happens. The phenomena predicted by Anderson in 1958 [Anderson

1958], only had a systematic and consistent description in the seminal papers

[Edwards e Thouless 1972, Abrahams et al. 1979] where the scaling theory of

localization is introduced, describing the conductance in a material in terms of

the sample size length L

β(G(L)) =
d lnG(L)

d lnL
. (2.4)

The β(G) function provides a good phenomenological model for different con-

duction regimes in various dimensions, but a rigorous description requires the

full language of renormalization group theory. In the diffusive regime, Ohm’s

law establishes that the conductance varies as G(L) = σLd−2, which implies that

β(G) = d−2 when the Thouless parameter t ≡ lnG(L) is long. On the other hand,

in the Anderson localization regime, when the conductance falls exponentially

G ∝ e−L/ξ in a localization length ξ, the β(G)-function is β(G) = ln(G) ∝ −L/ξ,
leading to the shape of the graph shown in the figure 6. It can be shown that

when the β(G)-function vanishes, the renormalization-group flow has an unstable

fixed point and the system exhibits a metal-insulating transition. For 1D and 2D

systems we see that there is no such transition, i.e. these systems always have

Anderson localization. For 3D systems there is a critical value β(G) = 0 at which
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the Anderson transition occurs and the system may exhibit metallic diffusive

behavior.

Figure 6 – β(G)-function of the scaling theory of localization for d = 1, 2, 3
dimensions. [Abrahams et al. 1979].

Another effect that has its origin in quantum coherence and which has

no classical analogue, is the universal conductance fluctuations [Lee, Stone e

Fukuyama 1987]. It was found for mesoscopic samples that, when an external

parameter is varied, such as a magnetic field or the Fermi energy, the fluctuations

of the measured conductance have approximately the same value for different

systems, of the order of e2/h. Furthermore, when the number of samples of a

given measurement is varied, the fluctuations present the same value. In the

figure 7 we show typical fluctuations for three different systems. Note that similar

behavior is observed for fluctuations in the same sample by varying different

parameters, thus showing its universal character. Of course, outside the quantum

regime, as the size increases, the fluctuations decrease, until eventually, at the

thermodynamic limit, they become insignificant.

Despite the good qualitative description of the Anderson localization

transition provided by the phenomenological single parameter scaling theory,

it is desirable to have a full fledged microscopic theory that explains transport

phenomena in all regimes and provides non-perturbative quantitative results

that can be tested experimentally. One important approach in this direction is

scattering matrix theory.
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Figure 7 – Comparison of conductance fluctuations for three different samples [Lee,
Stone e Fukuyama 1987].

2.2 Scattering Matrix Theory

The scattering matrix formalism provides a natural framework for the

description of phase-coherence transport properties in quantum systems, since it

allows a description in terms of the probabilities of transmission of the electron

wave functions through the sample [Datta 1997]. It brings a quantum treatment

that accounts for the interferences between wave functions to describe transport

phenomena with phase coherence.

Consider a disordered region, through which electrons are propagated,

due to the difference in temperature and/or chemical potential between two

electronic reservoirs, connected to the sample via ideal leads

Figure 8 – Mesoscopic sample over which electrons are scattered. The amplitudes of the
scattering channels are indicated as aL,R, bL,R according to their direction of
propagation [Emary 2009].



Chapter 2. Coherent quantum transport 28

The wave function of an electron in a lead is

ψ±n ∼ χn exp(iknx) (2.5)

where χn is the transverse component, and defines the propagation modes, or

quantized scattering channels n = 1, 2, ..., N ; kn is the longitudinal moment along

of the longitudinal direction of the lead. The wave functions of the incident and

reflected particles can be written on the basis of the amplitudes of each of the NL

and NR modes on the left (L) and right (R) leads (see figure 8). Let us collect

the incident and the reflected wave functions in two vectors, respectively

a = (aL1, ..., aLNL , aR1, ..., aRNR)T and b = (bL1, ..., bLNL , bR1, ..., bRNR)T .

(2.6)

The scattering S-matrix relates these vectors

b = Sa, (2.7)

and can be written in a block structure

S =

(
r t

t′ r′

)
, (2.8)

where the matrices r and r′ contain the probability amplitudes for a particle

to be reflected on the right or the left of the sample; and the matrices t′ and

t, the probability amplitudes for the transmission from the left to the right and

vice-versa, respectively. The S-matrix is unitary due to the conservation of the

probability current and has dimension (NL +NR)× (NL +NR).

The electron reservoirs are considered macroscopically large, in thermal

equilibrium, and are characterized by their temperature T and their chemical

potential µ. The distribution of the thermalized electrons in the reservoirs corre-

spond to the Fermi distribution

f(E) =
1

exp((E − µ)/kBT ) + 1
. (2.9)

2.2.1 Landauer-Büttiker formalism

The Landauer-Büttiker formalism makes use of scattering matrix theory

to describe quantum transport phenomena [Datta 1997]. Originally developed
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by Landauer for the two terminals problem, it was generalized by Buttiker for N

terminals [Stone e Szafer 1988]. In the second quantization formalism, the ampli-

tudes in the equation 2.6 are related to the creation â†LnL, b̂†LnL and annihilation

âLnL, b̂LnL electron operators, in such a way that

b̂ = Ŝâ, (2.10)

â = (âL1, ..., âLNL , âR1, ..., âRNR)T , b̂ = (b̂L1, ..., b̂LNL , b̂R1, ..., b̂RNR)T . (2.11)

Using the standard form of the probability current operator

ÎL(z, t) =
~e

2im

∫
dr⊥

[
Ψ̂†L(r, t)

∂

∂z
Ψ̂L(r, t)−

(
∂

∂z
Ψ̂†L(r, t)

)
Ψ̂L(r, t)

]
, (2.12)

and the field operators of the second-quantization formalism

Ψ̂L(r, t) =

∫
dEe−iEt/~

NL(E)∑
n=1

χLn (r⊥)

(2π~vLn(E))1/2

[
âLneikLnz + b̂Lne−ikLnz

]
, (2.13)

with kLn = (2m(E − ELn))1/2/~ and vLn = ~kLn/m, can be shown [Blanter e

Büttiker 2000] that the probability current operator through one of the leads (the

left in this case and away from the sample, see figure 8), is given by

ÎL(t) =
e

2π~
∑
n

∫
dE(n̂+

Ln(E, t)− n̂−Ln(E, t)), (2.14)

where n̂±Ln(E, t) are the time-dependent occupation numbers for incident and

reflected electrons in the mode n on the left lead. It is quite intuitive to have the

probability current as the difference between the occupations of the incoming

and outgoing electrons. Taking the average of the probability current operator,

one can find its relation with the non-diagonal blocks of the scattering matrix

〈ÎL(t)〉 =
e

2π~
∑
n

∫
dE Tr

[
t†(E)t(E)

]
(fL(E, t)− fR(E, t)). (2.15)

Assuming small bias and temperature (linear response), it was shown that the

electrical conductance is given by

G = G0 Tr
[
t†t
]

= G0

∑
i

Ti, where G0 =
e2

h
(2.16)
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is the quantum of the electrical conductance. Note that this latter expression was

written in terms of the eigenvalues Ti of the matrix t†t, which is basis independent.

In the same way, assuming the same chemical potential in the two reservoirs, and

a small difference of temperatures δT ; the thermal conductance can be expressed

as

G = G0 Tr
[
t†t
]

= G0

∑
i

Ti, where G0 =
π2kBT

3h
(2.17)

is the quantum of the thermal conductance. We will designate the electrical

and thermal conductance with the same letter G meaning in normal systems,

electrical conductance, and in superconducting systems, thermal conductance,

since in the latter, we will study heat transport phenomena since the charge

transport is not well defined. For the RMT of superconducting systems (samples

with normal-superconducting junctions), it is necessary to add new degrees of

freedom corresponding to the creation of holes in Andreev reflections [Beenakker

1992,Beenakker et al. 2011,Beenakker 2005], as we will see in the next section.

So, the reflection matrix acquires a new block structure

r =

(
ree reh

rhe rhh

)
, (2.18)

where the diagonal blocks ree(hh) represent the usual electron (hole) reflection and

the off-diagonal blocks reh(he) describe the Andreev reflections [Stenberg 2007].

In a superconducting systems the electrical conductance is not conserved; never-

theless, the electrical Andreev conductance through a normal-superconducting

junction is

G = 2G0 Tr
[
r†herhe

]
. (2.19)

Because heat is conserved, the thermal conductance in superconducting systems

is given by the equation 2.17 with an additional factor 1/2 to account for new the

degrees of freedom [Dahlhaus, Béri e Beenakker 2010].

2.3 Andreev reflection and Majorana fermions

Quantum transport analysis can be extended to superconducting systems,

in which scattering phenomena at the normal-superconducting interface (NS)
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play a relevant role. This is the case of so-called Andreev reflection, which has

no classical analog but can nevertheless be understood in comparison with a

classical reflection in a normal-normal interface. Figure 4 presents an outline

of the two types of reflection. In a normal reflection, for example from a metal

to an insulator, an electron is scattered at an angle equal to the incident angle,

both measured from the normal line to the surface. When an electron with an

energy close to Fermi energy is reflected on the N-S interface, it is backscattered

as a hole, with opposite velocity and the same moment since the velocity of a

hole is opposite to its moment. The backscatter of the hole arises because, on

the superconducting side, the electron is absorbed along with another available

electron, in the form of a Cooper pair.

Figure 9 – Normal reflection vs. Andreev reflection. In the first one there is a dispersion
from a normal metal (N) on an insulating surface (I). In the second, reflection
occurs at the N-S interface. In a normal reflection, the charge is conserved but
not the moment; in a Andreev reflection, the moment is conserved but not the
charge [Beenakker 2005].

In a normal reflection the electric charge is conserved but not the moment,

in contrast in an Andreev reflection the charge is not conserved but the moment

is, so in a superconducting system, rather than analyzing the transport of charge,

the transport of heat will be analyzed.

It has been theorized that Andreev reflections should generate the appear-

ance of quasi-particles called Majorana fermions in condensed matter [Elliott e

Franz 2015]. As is known, Majorana fermions take their name from their predic-
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tor [Majorana 1937], and are a kind of fermionic particles, which are at the same

time their own antiparticle. This in contrast to Dirac fermions which are not their

own antiparticle. To understand how Majorana fermions appear in condensed

matter, we retake the anticommutation relations of electrons in second quantiza-

tion formalism, in which an electron characterized by the quantum numbers j

can be created by the c†j operator, and annihilated with the cj operator{
c†i , c

†
j

}
= {ci, cj} = 0,

{
c†i , cj

}
= δij. (2.20)

It is possible to rewrite these operators in the “Majorana basis” as follows

cj =
1

2
(γj1 + iγj2) , c†j =

1

2
(γj1 − iγj2) , (2.21)

or equivalently

γj1 = c†j + cj, γj2 = i
(
c†j − cj

)
. (2.22)

The decomposition of the fermionic operators in the “Majorana basis” is a canoni-

cal transformation of the Hamiltonian in second quantization, that without loss

of generality, can be written in terms of c†j and cj, or the new operators γjα. This

and can be understood as a rewriting in terms of a real part and an imaginary

part that fulfills the following algebra

{γiα, γjβ} = 2δijδαβ, γiα(E) = γ†iα(−E). (2.23)

The last relation precisely accounts for the creation of pairs of electrons with

energy E above the Fermi level, and holes with energy −E below the Fermi level,

in a Andreev reflection. In fact, according to equation 2.22, an isolated Majorana

fermion can be understood as a superposition of a electron and a hole. From

the perspective of the “Majorana basis”, any electron could be understood as

consisting of two fermions of Majorana, however, making this separation for two

Majorana fermions that are not spatially separated does not make much sense, and

only complicates things. However there is a class of materials called topological

superconductors [Avron, Osadchy e Seiler 2003, Khalaf 2017, Elliott e Franz

2015,Beenakker 2015] where the spatial separation of two Majorana fermions to

form an electron is clearly manifested. In such materials, the “Majorana basis” is

the only way to describe the a situation. Such is the case of the Kitaev chain [Kitaev
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2001], in which the topological phases of matter are most simply evidenced, and

where it is has predicted, along with several other systems, the appearance of

Majorana fermions zero modes, i.e. fermions which are their particle and their

antiparticle at the same time. These fermions can only manifest when they are at

Fermi level; this is

γiα(0) = γ†iα(0). (2.24)

Note that it is implicitly being assumed that the charge conjugation operation

corresponds to the complex conjugate operation. Later we will see that the

symmetries of temporal reversal and charge conjugation will be determinant in

classifying the materials.

2.4 Random Matrix Theory

Random Matrix Theory provides a natural framework for the study of

complex systems [Beenakker 1997], for which the description of the microscopic

details is outside the scope of a simple Hamiltonian. This happens because if the

complexity is large enough, the Hamiltonian description can be replaced by a

statistical approach in terms of an ensemble of random matrices, over which the

basic symmetries of the system are imposed, and from which universal properties

can be derived. It is well known that under certain conditions, the behavior of

complex quantum systems do not depend on microscopic details such as the

position of the impurities. Likewise, transport properties ballistic chaotic cavities

do not depend on the shape of the boundaries. Then, a random matrix ensemble

corresponding to a Hamiltonian can also describe closed ballistic chaotic cavities,

while a random matrix ensemble corresponding to a scattering matrix can describe

open ballistic chaotic cavities coupled to reservoirs. A random matrix ensemble

of transfer matrices is convenient to describe disordered quasi-one-dimensional

systems, as will see later [Brouwer 1997].

The symmetries of the system are imposed on the random matrices, and

these determine the functional form of their distributions. Since translation and

rotation symmetries are broken in a complex system; the theory deals only with

the time-reversal (TR) and spin rotation (SR) symmetries, plus the particle-hole

symmetry (PH) in superconducting systems.
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The random matrix ensembles, introduced by Wigner to study the nucleus

of heavy atoms, were classified by Dyson according to the inherent symmetry

of the corresponding Hamiltonian [Mehta 2004], in what became known as the

Three-Fold Way. A Wigner-Dyson (WD) ensemble is an ensemble of hermitian

matrices H with a Gaussian distribution, such that the matrix-values distribution

function has the form

P (H) = c exp{(−βV )}, (2.25)

where V ∝H2, c is a constant and β depends on the symmetry of the system.

2.4.1 Symmetries in RMT: The three fold way

Random matrices are characterized by the presence or absence of time-

reversal symmetry

HT = TH ⇒H = THT −1 (2.26)

where T is the time reversal operator. It is known that T is antiunitary and [Haake

2013]

T =

K for integer spin, T 2 = 1,

iσyK for half-integer spin, T 2 = −1,
(2.27)

with K the operator of complex conjugation. It can be shown that if the system

has time-reversal symmetry, the Hamiltonian can be represented by real elements,

which corresponds to an ensemble with β = 1. For systems with broken time-

reversal symmetry, the Hamiltonian must be represented by complex elements,

and its ensemble has β = 2. In the same way, for systems with broken spin

rotation symmetry, the Hamiltonian can be represented by quaternions, and its

ensemble has β = 4. Note that β matches the number of degrees of freedom of

the Hamiltonian elements (see table 1).

We know that an Hermitian matrix H has eigenvalues E1, E2, ..., EM , cor-

responding to the eigenvector matrix U that is orthogonal (unitary, simpletic), for

β = 1(2, 4) respectively. To find the joint probability distribution of the eigenval-

ues, it is first necessary to find the Jacobian that connects the volume element

dH and the volume element dU
∏M

i dEj. The partial volume element dU is the

invariant measure, or Haar measure of the respective group of the eigenvector



Chapter 2. Coherent quantum transport 35

matrix U (orthogonal, unitary or simpletic) and this group gives the name to each

one of the ensembles GOE (Gaussian Ortogonal Ensemble), GUE (Unitary), GSE

(Simpletic). One can show that

dH = dUJ({Ej})
M∏
i

dEj, J({Ej}) =
M∏
i<j

|Ei − Ej|β. (2.28)

Then the equation 2.25 becomes

P ({Ej}) ∝
M∏
i<j

|Ei − Ej|β
M∏
j

e−βV (Ej). (2.29)

These ensembles describes physical systems when the size of the Hermitian matrix

H is very large M →∞. In this regime the correlation functions between energy

levels do not depend on the heuristic confining potential V . Dyson also studied the

so-called circular ensembles, which are formed by unitary matrices, and therefore

can be applied to the scattering S-matrix, which is intrinsically unitary. The same

analysis of the time reversal symmetry of the scattering matrix

S(E)T = T S−1(E)⇒ S(E) = T S†(E)T −1 (2.30)

shows that for systems with TR and SR symmetries (β = 1) the S-matrix must be

symmetric (Circular Ortogonal Ensemble COE). For systems without TR symmetry

(β = 2) there are no restrictions (S-matrix must always be unitary, CUE); and

for systems without spin rotation, S-matrix must be self-dual (CSE). This is

summarized in the table 1, with the first column indicating the name of the Cartan

classification of the respective compact symmetric spaces [Caselle e Magnea

2004].

An ensemble of scattering matrices S of size 2N × 2N has eigenvalues

eφj where the eigenphase is 0 ≤ φ ≤ 2π and j = 1, ..., 2N . This eigenvalues form

a circular ensemble (note that eigenvalues form a circle in the complex plane).

Thus, in the same way as the equation 2.29, the uniform distribution of the

scattering matrices ensemble has the form

P ({φj}) ∝
∏
i<j

|eφi − eφj |β. (2.31)
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On the other hand, the polar decomposition of the scattering matrix [Beenakker

1997] allows to write it in terms of the transmission eigenvalues T1, ..., TN of the

matrix tt†

S =

(
u 0

0 v

)(
−
√

1− T
√
T√

T
√

1− T

)(
u′ 0

0 v′

)
, (2.32)

with u, u′,v,v′ N ×N unitary matrices and T the diagonal matrix of eigenvalues.

Again, the joint probability distribution is obtained by the Jacobian that connects

the volume elements dS to the products of du, du′, dv, dv′ and
∏N

i dTi [Baranger

e Mello 1994, Jalabert, Pichard e Beenakker 1994]

dS = dudu′dvdv′
N∏
i<j

|Tj − Ti|β
N∏
j

T
−1+β/2
j dTj, (2.33)

We then conclude that

P (T1, ..., TN) ∝
N∏
i<j

|Tj − Ti|β
N∏
j

T
−1+β/2
j . (2.34)

Table 1 – Wigner Dyson ensembles. The tick mark indicates the presence or absence of
the respective symmetry and the columns of H and S indicate the structure of
the matrix components. β is the symmetry factor.

TRS(T 2) SRS β H S

A 1
√

1
real

symmetric
complex unitary

symmetric

AI ×
√
/× 2

complex
hermitian

complex unitary

AII -1 × 4
quaternion
self-dual

complex unitary
self-dual

Note that the construction of the joint probability distribution for the

energy levels 2.29, and the transmission eigenvalues 2.34, are completely analo-

gous, with the difference that, in the case of the hermitian matrix, the probability

distribution only makes physical sense when the number of eigenvalues is very

large. By contrast, for the construction from the scattering matrix, the distribu-

tion makes sense for an arbitrary number of transmission eigenvalues, including

N = 1.
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2.4.2 The ten fold way

Random matrix ensembles beyond the Wigner Dyson ones have also been

studied, since they can account for the properties of superconducting and chiral

systems. The particle-hole (PH) symmetry becomes essential, which together

with the TR symmetry and the SR symmetry, define these ensembles. The new

classification, introduced by Altland and Zirnbauer [Altland e Zirnbauer 1997,

Zirnbauer 2010] extends the Three-fold way in a Ten-fold way of classification

when all symmetries are accounted for. In particular, when the ensembles describe

superconducting systems, they are called Bogoliubov-De Gennes (BG) ensembles.

Here we briefly review their features. Starting from the mean field theory for

superconductors whose Hamiltonian is

H = Ψ̂†HΨ̂, Ψ̂ = (ψ̂, ψ̂†) = (ψ̂↑, ψ̂↓, ψ̂
†
↑, ψ̂

†
↓), (2.35)

H =

(
H0 − EF −iσy∆

iσy∆∗ EF −H0

)
, ∆ = Vo〈ψ̂↑ψ̂↓〉. (2.36)

Both H and Ψ are represented in the second quantization formalism. In the first

quantization, H can be interpreted as the Hamiltonian of the dynamics of the

Bogoliubov quasi-particles.

HΨ(r, t) = −i~ ∂
∂t

Ψ(r, t), (2.37)

Ψ = (ψe, ψh) = (ψe↑, ψe↓, ψh↑, ψh↓). (2.38)

These are the Bogoliubov-de Gennes equation that couples electrons e and holes h

with opossite spin ↑↓ through the pair potential ∆. PH symmetry can be expressed

by the charge conjugation operator

C =

iτyK for integer spin, C2 = −1,

τxK for half-integer spin, C2 = 1,
(2.39)

which is antiunitary, but unlike the time reversion operator, it anti-commutes with

H, then H = −CHC−1. In the “Majorana basis” C = K [Beenakker 2015] (see
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equation 2.24). This symmetry together with the presence or absence of TR and

SR symmetry defines four new classes which are summarized in table 2, where

we used the notation

H =

(
W Z

Z† −W

)
(2.40)

to establish the symmetries on the Hamiltonian of equation 2.36.

Making an analysis similar to the one done for the Wigner Dyson ensem-

bles, was obtain the joint probability distribution of the energy levels of this

classes as [Beenakker 2015]

P ({Ej}) ∝
M∏
i<j

|E2
i − E2

j |βE
M∏
j

|Ej|γEe−βEV (Ej). (2.41)

There are two differences with equation 2.29: the factor |E2
i − E2

j |βE = |Ei −
Ej|βE |Ei + Ej|βE that emerges form the PH symmetry, causing the repulsion

between ±E levels; and the factor |Ej|γE , which acts like a repulsion from the

Fermi energy.

Again from the polar decomposition of the S-matrix, one can obtain the

joint probability distribution of the transmission values

P ({Tj}) ∝
∏
i<j

|Ti − Tj|βT
∏
i

T
βT /2−1
i (1− Ti)γT /2. (2.42)

Note that the α’s and β’s in the equations 2.41 and 2.42 are different and are

specified in the tables 2 and 3.

Finally, the picture is completed by the chiral (CH) symmetry, which is

the composition of the TR and PH symmetry H = −T CHC−1T −1. This is unitary,

anti-commutes with H and defines Hamiltonians of the form

H =

(
0 Z

Z† 0

)
. (2.43)

Systems like the hexagonal carbon lattice of graphene [Macedo-Junior e Macêdo

2002], or superconductors with symmetrical spectrum around εF , satisfy this type

of Hamiltonian. In fact, in table 2 there are already classes with the presence of

this symmetry (W = 0). In table 3 the remaining classes are shown.
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Table 2 – Bogoliubov de Gennes ensembles. The numbers of the symmetries are indicated
in the equations 2.27 and 2.39, the H structure is referred to the equation 2.43,
and the symmetry factor β and γ are different for the H and S ensembles.

PH(C2) TR(T 2) SR βE γE H βT γT S

D 1 × × 2 0
Z complex

skew 1 -1 real ortogonal

DIII 1 -1 × 4 1
Z complex

skew, W = 0
2 -1

real ortogonal
symmetric

C -1 ×
√

2 2
Z complex
symmetric 4 2 sympletic

CI -1 1
√

1 1
Z complex

symmetric, W = 0
2 1

sympletic
symmetric

Table 3 – Chiral ensembles. These are defined when the symmetry number TR and PH
are equal.

CH PH(C2) TR(T 2) βE γE H βT γT S

BDI
√

1 1 1 0
Z real
W = 0

1 -1 real ortogonal

AIII
√

× × 2 1
Z complex
W = 0

2 -1
complex
unitary

CII
√

-1 -1 4 3
Z quaternion
W = 0

4 -1 sympletic

2.5 RMT for quasi-zero and quasi-one dimensional systems

Typically, ensembles of hermitian random matrices are used to describe

the universal statistical properties of closed systems, such as ballistic chaotic

cavities and metallic grains. This is justified as long as the difference between

the energy levels in the cavity is not greater than the inverse of the ergodic time

~/τerg. Otherwise, the universality of the statistical properties breaks down. Simi-

larly, ensembles of scattering random matrices can describe universal transport

properties of in open ballistic cavities if the dwell time τdwell, defined as the time

that an electron remains within the cavity, is much greater than the ergodic time

τdwell � τerg [Brouwer 1997].

Since a ballistic chaotic cavity is an effective quasi-zero dimensional system,
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the next natural step was to establish a RMT for quasi-one-dimensional systems,

namely, for quantum wires in which the length of the system is much greater

than the width. These systems are ergodic in the transverse direction, and since

they are theoretically constructed as the composition of many small slices as we

will see later, the central limit theorem guarantees that the transport properties

of the system are universal, i.e., like the slices, the transport properties do not

depend on the shape of the system [Brouwer 1997]. The natural framework is the

formalism of the transfer matrix, due to its multiplicative composition property

that is not true for the scattering matrix. Unlike the latter, the transfer matrix

relates incident and transfer modes, or equivalently, the left and the right modes

of the sample. This is, on the basis of amplitudes of each mode (Figure 8)

ψleft = (aL1, ..., aLNl , bL1, ..., bLNL)T , ψright = (aR1, ..., aRNR , bR1, ..., bRNR)T ,

(2.44)

the transfer matrix M is

ψleft = Mψright. (2.45)

So it is natural for a chain of N samples to obtain the multiplicative composition

property M = M1M2...MN . Again the polar decomposition relates M with the

transmission eigenvalues T1, ..., TN

M =

(
v 0

0 v
′†

)(√
T−1

√
T−1 − 1√

T−1
√
T−1

)(
u′ 0

0 u†

)
; (2.46)

where u, u′,v,v′ are N×N unitary matrices and T the diagonal matrix of eigenval-

ues of tt†. Taking λi = (1−Ti)/Ti the Jacobian that connects the volume elements

dM and the products of du, du′, dv, dv′ and
∏N

i dλi is

dM = J({λj})dudu′dvdv′
N∏
i

dλi ⇒ J({λj}) =
M∏
i<j

|λi − λj|β. (2.47)

The calculation of the joint probability distribution for the Ti’s was done in the

following way. Assuming that the distribution for a wire of length L is known,

a small slice of size Lo is added to the wire to calculate the variation of the

distribution (Figure 10). Each transmission eigenvalue is modeled as a random

variable in the form of a Brownian motion, so one obtains the equation for the
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evolution of the distribution as a function of the sample’s length L. The calculation

is made assuming that the added slice has a weak disorder (le � λF were λF
is the Fermi wave length of the electron) and is thick enough to be considered

macroscopic, but is sufficiently thin to make the calculations in a perturbative

way (λF � Lo � le).

Figure 10 – Small slice of size Lo added to a quantum wire. This scaling scheme leads to
a Brownian motion of the transmission eigenvalues [Beenakker 1997].

2.5.1 The DMPK equation

Using the perturbation theory at second order in terms of 1−To = O(Lo/le),

being T0 the diagonal matrix of eigenvalues of the tiny slice, and averaging over

the different ensembles of the matrix M , we obtain the first two moments of

the transmission eigenvalues of the added slice δTi expanded to the first order of

δs = Lo/le

〈δTi〉
δs

= −Ti +
2Ti

βN + 2− β

(
1− Ti +

β

2

∑
j 6=i

Ti + Tj − 2TiTj
Ti − Tj

)
,

〈δTiδTj〉
δs

= δij
4T 2

i (1− Ti)
βN + 2− β

. (2.48)

Then, from the Fokker Plank equation for the Brownian motion

∂P

∂s
=

1

δs

N∑
i=1

∂

∂Ti

(
−〈δTi〉P +

1

2

N∑
j=1

∂

∂Tj
〈δTiδTj〉P

)
, (2.49)

and inserting equation 2.48 into 2.49, was derived the DMPK equation for the

WD classes

le
∂P

∂L
=

2

βN + 2− β

N∑
i=1

∂

∂λi
λi(1 + λi)J

∂

∂λi

P

J
. (2.50)
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The DMPK equation for the WD classes was deduced by Dorokhov for β = 2

[Dorokhov 1982], and by Mello, Pereyra and Kumar for β = 1 [Mello, Pereyra e

Kumar 1988], with the extension for β = 4 made by Macêdo and Chalker [Macêdo,

Chalker et al. 1992]. This equation has been extensively and successfully used to

study transport properties in quasi one-dimensional systems with weak disorder.

The extension for chiral and BG classes was then done by Brouwer et al. [Brouwer

et al. 1998,Brouwer et al. 2000]. The Fokker Planck equation for all classes can

be written more compactly in terms of the variable Ti = sech2(qi)

∂P

∂L
=

1

2γle

N∑
i

∂

∂qi
J
∂

∂qi

P

J
, (2.51)

with

J =
∏
i

sinhα(2qi)
∏
j<i

∏
±

sinhβ±(qi ± qj), (2.52)

where we defined γ = (β+ + β−)(N − 1)/2 + 1 + α. For the WD and BG classes

β+ = β− = β and for the chiral classes β+ = 0, β− = β. A further generalization of

the DMPK equation was proposed by Muttalib et al [Muttalib e Gopar 2002,Gopar,

Muttalib e Wölfle 2002], to take into account strong disorder and systems beyond

the quasi one-dimensionality. However, it has the disadvantage that, unlike the

DMPK equation, is not a single parameter scaling equation.

2.5.2 Ten fold way for quasi one-dimensional systems

Table 4 shows the values of the indices of equation 2.52 for all ten classes

defined in the Cartan classification for the S and M matrices, together with some

universal results that we will discuss below.

Brouwer et al. [Brouwer et al. 1998,Brouwer et al. 2000] predicted that

for chiral classes (for odd N) and for superconductors of classes D and DIII, there

is no exponential localization, in contrast with the standard classes. In the limit

of long distances L� Nle, the average conductance falls as 1/
√
L, in a kind of

super-ohmic behavior where the conductance falls even slower than in the ohmnic

case (or equivalently −ln g ∝
√
L as is shown in the table 4) This anomalous

behavior is known as delocalization. They also found that in these classes the
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Table 4 – Then fold way for quasi unidimensional quantum wires. The table shows the
Cartan classification for the S and M matrices, the Jacobian indices (equation
2.52) of the Fokker Planck equation, −ln g for the limit L� Nle, the DOS
when ε→ 0 and the number ν of topologically protected zero modes. The
results for −ln g and ρ(ε) are valid for N even. For odd N the results are the
same as for class D [Brouwer et al. 2005].

Class S M β α −ln g ρ(ε) for ε→ 0 ν

WD
AI CI 1 1 2L/(γl) ρ0 0

A AIII 2 1 2L/(γl) ρ0 0

AII DIII 4 1 2L/(γl) ρ0 0

Chiral
BDI AI 1 0 2βL/(γl) ρ0| ln |ετc|| Z

AIII A 2 0 2βL/(γl) πρ0|ετc ln |ετc|| Z

CII AII 4 0 2βL/(γl) 1
3
πρ0|(ετc)3 ln |ετc|| Z

BdG

CI C 2 2 2αL/(γl) 1
2
πρ0|ετc| 0

C CII 4 3 2αL/(γl) ρ0|ετc|2 0

DIII D 2 0 4
√
L/(2πγl) πρ0/|ετc ln3 |ετc|| Z2

D BDI 1 0 4
√
L/(2πγl) πρ0/|ετc ln3 |ετc|| Z2

behavior of the density of states (DOS) diverges as

ρ(ε) ∼ 1

|ετc ln3(ετc)|
, (2.53)

as the energy ε→ 0 and τc ∼ N2le/vF is the time that the particle needs to diffuse

through a wire of length ∼ Nle. This singularity had already been found by Dyson

in the analysis of disordered linear chains [Dyson 1953] and is known as the

Dyson divergence. On the other hand, Motrunich et al. [Motrunich, Damle e Huse

2001] found, through an analysis of strong-disorder renormalization group (RG),

that generically, systems of classes D and DIII present localization like the WD

classes, and the DOS diverges as a power law ρ(E) ∼ |ετc|δ+1 with δ > 0. However,

at certain critical points of fine-tuning disorder, they observed that delocalization

and Dyson divergence are present. They were also the first to relate this criticality

with transitions between topological phases and to point out the possibility of
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having Majorana zero modes at the ends of the wire. Gruzberg et al. [Gruzberg,

Read e Vishveshwara 2005] confirmed the localization results deducing a gen-

eralized Fokker Plank equation and claimed that the delocalization at critical

points is well described by the DMPK equation for superconductors (see equation

2.51). Furthermore, they proposed a “superuniversality” between the chiral and

superconducting classes D and DIII, since these have equal characteristics at the

critical points, like delocalization and Dyson divergence. Remarkably, in the thick

wire limit, where N � 1, it is predicted that there will always be delocalization,

regardless of the degree of disorder.

Later, Mudry [Mudry 2017] argued that the diverging nature of the density

of states at the band center for five of the ten symmetry classes is a signature of

topologically protected zero modes bound to point defects (see the last column in

the table 4). For quantum wires, these modes are tied to their ends, and in the

superconducting cases, these modes correspond to Majorana fermions [Fulga et

al. 2013]. In conclusion, there is a correspondence between delocalization, Dyson

divergence and topologically protected zero modes common to chiral classes with

odd N and superconducting classes D and DIII (see table 4).

2.6 Brownian-motion ensembles of random matrix theory

2.6.1 A classification scheme

Macedo-Junior and Macêdo constructed a classification scheme for the

Brownian motion ensembles of RMT based on the general theory of Markovian

stochastic processes and on the multivariable generalization of classical orthogo-

nal polynomials [Macedo-Junior e Macêdo 2006,Macedo-Junior e Macêdo 2007].

Given a set of correlated random variables a ≤ xi ≤ b (i = 1, ..., N), an equation

for the evolution of the joint distribution was obtained under the following as-

sumptions: (i) path continuity; (ii) homogeneity; (iii) equilibrium distribution

given by classical random matrix ensembles and (iv) a complete set of generalized

multivariate classical polynomials as eigenfunctions.

Under these conditions, they concluded that the only equation that satisfies
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these assumptions is a Fokker-Planck equation

∂P

∂t
= LFPP, (2.54)

where

LFP =
N∑
i

∂

∂xi

(
JBwNs(xi)

∂

∂xi

1

JBwN

)
(2.55)

is the Fokker-Planck operator with

JB({x}) = |∆N({x})|β, ∆N({x}) =
∏
i<j

(xi − xj), and wN({x}) =
N∏
i

w(xi).

(2.56)

The steady solution of the Fokker Planck equation is

Pst({x}) = CNJβ({x})wN({x}) (2.57)

which reproduces the joint probability distribution of orthogonal polynomial

ensembles (Hermite, Laguerre and Jacobi ensembles) of RMT. The usual con-

straints from the theory of classical orthogonal polynomials were imposed by

construction [Dennery e Krzywicki 2012]: given the interval [a, b], the auxiliary

function s(x) must be a real polynomial with real roots of degree no greater than

2; s(x) = s0 + s1x+ s2x
2 and using the weight function w(x), we define a function

r(x) =
1

w(x)

d

dx
(w(x)s(x)), (2.58)

that must be a polynomial of degree 1, and it must satisfy the boundary condition

w(a)s(a) = 0 = w(b)s(b). (2.59)

These functions will be specified later. In the case of circular ensembles, this

classification can reproduce the joint probability distribution of the eigenvalues in

S-matrix ensembles, and will be useful to describe transport properties in ballistic

chaotic cavities. In general, a Fokker Planck equation in its standard form reads

∂P

∂t
=

N∑
i

(
− ∂

∂xi
D

(1)
i +

∂2

∂2xi
D

(2)
i

)
P. (2.60)
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It can be shown that the drift and diffusion coefficients in the above classification

scheme are given respectively by

D
(1)
i = r(xi) + β

∑
j(6=i)

s(xi)

xi − xj
and D

(2)
i = s(xi). (2.61)

The average of any observable in the form of a function F (x1, ..., xN) can be

calculated as

〈F 〉 =

∫
dNxF ({x})P ({x}, t), (2.62)

and its “time” evolution will be

d

dt
〈F 〉 = 〈L†FPF 〉, (2.63)

where L†FP is the adjoint Fokker–Planck operator

L†FP =
N∑
i

1

JBwN

∂

∂xi

(
JBwNs(xi)

∂

∂xi

)
. (2.64)

The central idea of this classification scheme is the realization that a concrete

matrix representation of the ensembles becomes unnecessary and the scheme

provides an alternative to the Ten Fold Way classification of RMT.

It is possible to solve the Fokker Planck equation 2.54 by performing the

Sutherland similarity transformation

P ({x}, t) = wNJβΨ({x}, t), (2.65)

which maps the Fokker Planck equation onto a Schrödinger equation with imagi-

nary time
∂Ψ

∂t
= −HΨ, (2.66)

with an effective Hamiltonian of the form

H = −
N∑
i

1

w(xi)

∂

∂xi

(
w(xi)s(xi)

∂

∂xi

)
+
β(β − 2)

4

∑
i 6=j

s(xi)

(xi − xj)2
+ V0, (2.67)

where

V0 =
βN(N − 1)

12
(s2β(N − 2) + 3r1), (2.68)
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and the factors s2 and r1 correspond to the coefficients of the polynomials s(x) =

s0 + s1x+ s2x
2 and r(x) = r0 + r1x. The Hamiltonian of this mapping corresponds

to a quantum-type Calogero-Shuterland system, which describes a system of N

non-relativistic particles on a line, interacting with a pairwise inverse-square

potential [Calogero 2008]. The exact eigenfunctions and eigenvalues of H can

be obtained via the transformation Ψ = JβΦ. For the classical random-matrix

ensembles the function Φ yields Jack-type multivariate extensions of the classical

orthogonal polynomials.

In this Thesis we use the functions referred to in the table 5, which

characterize and summarize in a complete way the Brownian-motion ensembles

classification scheme of RMT.

Table 5 – Functions of the classification scheme of the Brownian-motion ensembles of
RMT for the orthogonal polynomial ensembles, S-matrix ensembles and
transfer M matrix ensembles

Ensemble w(x) s(x) r(x) Interval

Hermite e−x
2

1 −2x (−∞,∞)

Laguerre xνe−x (ν > −1) x 1 + ν − x [0,∞)

Jacobi (1− x)ν(1 + x)µ (ν, µ > −1) 1− x2 µ− ν − (2 + µ+ ν)x [−1, 1]

SM-WD xβ/2−1 x(1− x) β(1− x)/2− x [0, 1]

SM-Chiral (1− x2)β/2−1 1− x2 −βx [−1, 1]

SM-BdG xβ/2−1(1− x)γ/2 (γ = −1, 1) x(1− x) β(1− x)/2− x(γ/2 + 1) [0, 1]

TM-WD 1 x2 − 1 2x [1,∞)

TM-Chiral x[(1−N)β−2]/2 x2 [1− β(N − 1)/2]x [1,∞)

TM-BdG (x2 − 1)(α−1)/2 (α = 0, 2) x2 − 1 (1 + α)x [1,∞)

2.6.2 An integral transform method

In reference [Macedo-Junior e Macêdo 2006], Macedo-Junior and Macêdo

introduced a multidimensional integral transform which will allow us to solve

the Fokker Planck equation in an image space ν for the S-matrix and M -matrix

ensembles. Making use of a Sutherland similarity transformation we will be able



Chapter 2. Coherent quantum transport 48

to obtain a ν-space Calogero-Shuterland model. The integral transform is defined

as

W ({ν}, t) = 〈Ωβ({x}, {ν})〉 =

∫
dNx Ωβ({x}, {ν})P ({x}, t), (2.69)

with the kernel chosen as the ratio of products of spectral determinants

Ωβ({x}, {ν}) =

∏n0

k=1 det(X − ν0k1N)∏n1

l=1 detβ/2(X − ν1l1N)
=

N∏
i=1

∏n0

k=1(xi − ν0k)∏n1

l=1(xi − ν1l)β/2
, (2.70)

where n0 and n1 are positive integers satisfying βn1 = 2n2. Such integral transform

can be interpreted as a map transforming the joint distribution P ({x}, t), in x-

space, into the joint distribution W ({ν}, t) in ν-space. This is a powerful tool to

uncouple the hierarchic relations of the n-point correlation function. In the target

space, the time evolution of W ({ν}, t) is

∂

∂t
W ({ν}, t) =

∫
dNx Ωβ({x}, {ν}) ∂

∂t
P ({x}, t)

=

∫
dNx Ωβ({x}, {ν}) LxP ({x}, t)

=

∫
dNx P ({x}, t) L†xΩβ({x}, {ν}). (2.71)

The advantage of working in the image ν-space, is that the number of variables

to be treated, unlike the x-space space, is independent of N , which represents

an effective reduction of variables both in the analytical work and in the numer-

ical analysis. The fundamental premise of the method is the assumption of the

existence of a Fokker-Planck operatorM†
ν acting in the space ν that satisfies the

relation

M†
νΩβ({x}, {ν}) = L†xΩβ({x}, {ν}). (2.72)

From equations 2.71 and 2.72 it follows that the time evolution of W ({ν}, t) is(
∂

∂t
−M†

ν

)
W ({ν}, t) = 0, (2.73)

with the Fokker Planck operatorM†
ν given by

M†
ν =

n0∑
k=1

(
D

(1)
0,k

∂

∂ν0,k

+D
(2)
0,k

∂2

∂ν2
0,k

)
+

n1∑
l=1

(
D

(1)
1,l

∂

∂ν1,l

+D
(2)
1,l

∂2

∂ν2
1,l

)
, (2.74)
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where the drift and diffusion coefficients are

D
(1)
0k = −β

2

1

V B

∂ (s(ν0k)V B)

∂ν0k

, D
(1)
1l =

1

V B

∂ (s(ν1l)V B)

∂ν1l

(2.75)

and

D
(2)
0k = −β

2
s(ν0k), D

(2)
1l = s(ν1l) (2.76)

respectively. With these coefficients, we can regroup the terms of the equation

2.74 in order to write in a compact form

M†
ν =

1

V B

[
n1∑
l=1

∂

∂ν1l

(
s(ν1l)V B

∂

∂ν1l

)
− β

2

n0∑
k=1

∂

∂ν0k

(
s(ν0k)V B

∂

∂ν0k

)]
, (2.77)

where we introduced the functions

V ≡
n0∏
k=1

w0(ν0k)

n1∏
l=1

w1(ν1l), (2.78)

and

B ≡
∏
k<k′

|ν0k − ν0k′|4/β
∏
l<l′

|ν1l − ν1l′ |β
∏
k,l

|ν0k − ν1l|−2, (2.79)

where the functions w0(ν) and w1(ν) related to w(ν) and s(ν) of Table 5 through

w0(ν) = w2/β(ν)s2/β−1(ν), (2.80)

w1(ν) =
sβ/2−1(ν)

w(ν)
. (2.81)

In reference [Macedo-Junior e Macêdo 2007] the authors studied the connection

between Calogero-Sutherland-type quantum systems and the Sutherland similar-

ity transformation in x-space 2.65, in the framework of the classification scheme of

Brownian-motion ensembles. Since these quantum systems have been extensively

studied, mapping the Fokker Planck equation onto a Calogero-Sutherland-type

Hamiltonian allows analytical solutions to different properties of relevant observ-

ables in quantum transport problems. More specifically, the n-point correlation

function can be explicitly calculated. In reference [Macedo-Junior 2006] a similar

analysis was performed in the image space, completing the mapping scheme

represented in the figure 11.
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Figure 11 – Schematic representation of integral transform method and the mappings in
the x-space and the ν-space [Macedo-Junior 2006].

The corresponding Sutherland transformation in image space is given by

W ({ν}, t) = B−1/2Ψ({ν}, t), (2.82)

which maps the Fokker-Planck equation onto a Schrödinger equation with imagi-

nary time
∂Ψ

∂t
= −HνΨ, (2.83)

where the Hamiltonian is defined by

Hν = B1/2M†
νB
−1/2. (2.84)

Writing explicitly the Hamiltonian, we see that it is related to Mν , plus the

addition of a term that depends on B, the latter defined in the equation 2.79.

Hν =M†
ν+

1∑
α=0

nα∑
j=1

{
−1

2
D

(1)
α,j

∂ lnB

∂να,j
+D

(2)
α,j

[
1

4

(
∂ lnB

∂να,j

)2

− 1

2

∂2 lnB

∂ν2
α,j

− ∂ lnB

∂να,j

∂

να,j

]}
.

(2.85)

Calculating the indicated derivatives of

lnB =
4

β

∑
k<k′

ln |ν0k − ν0k′|+ β
∑
l<l′

ln |ν1l − ν1l′| − 2
∑
k,l

ln |ν0k − ν1l|, (2.86)

and grouping the terms, one obtains the final form of the Hamiltonian as the sum

of a non-interacting and an interacting term respectively given by

Hν = H0 + V . (2.87)
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The non-interacting part is

H0 =

n1∑
l=1

[
s(ν1l)

∂2

∂ν2
1l

+

(
β + 2

2
s′(ν1l)− r(ν1l)

)
∂

∂ν1l

]
− β

2

n0∑
k=1

[
s(ν0k)

∂2

∂ν2
ok

+
2

β
r(ν0k)

∂

∂ν0k

]
, (2.88)

which can be written in a way similar to its correspondent term in x-space (see

equation 2.67). Then, from the functions w0(ν) and w1(ν) defined in the equations

2.80 and 2.81, we get

H0 =

n1∑
l=1

1

w1(ν1l)

∂

∂ν1l

(
w1(ν1l)s(ν1l)

∂

∂ν1l

)
−β

2

n0∑
k=1

1

w0(ν0k)

∂

∂ν0k

(
w0(ν0k)s(ν0k)

∂

∂ν0k

)
.

(2.89)

The interaction term is given by

V =
2− β
β

∑
k 6=k′

s(ν0k)

(ν0k − ν0k′)2
+
β(2− β)

4

∑
l 6=l′

s(ν1l)

(ν1l − ν1l′)2
+
β − 2

2

∑
k,l

s(ν0k) + s(ν1l)

(ν0k − ν1l′)2
+V0,

(2.90)

where

V0 =
1

12
(β + 2)

(
(β + 4)s2 − 3r1

)
n1. (2.91)

The full Hamiltonian represents a system with two types of particles: ν0,1, . . . , ν0,n0

and ν1,1, . . . , ν1,n1 , interacting with each other. For β = 2, the Hamiltonian simpli-

fies to the non-interacting case

H0 =
n∑
l=1

w(ν1l)
∂

∂ν1l

(
s(ν1l)

w(ν1l)

∂

∂ν1l

)
−

n∑
k=1

1

w(ν0k)

∂

∂ν0k

(
w(ν0k)s(ν0k)

∂

∂ν0k

)
.

(2.92)

In deriving this equation we used the fact that n0 = n1 = n from the above

condition βn1 = 2n2, and the definitions of the functions w1(ν) = 1/w(ν) and

w0(ν) = w(ν) (see equations 2.80 and 2.81). In the next chapter we will use this

similarity transformation to solve analytically a quantum transport problem in

superconducting systems in the case where the symmetries of the system fix the

value β = 2.
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3 HEAT TRANSPORT AND MAJORANA FERMIONS IN A SUPERCONDUCT-

ING QUANTUM CHAIN: AN EXACT SOLUTION

Random-matrix theory (RMT) has been widely used in the study of phase-

coherent complex quantum systems and has been particularly successful in un-

covering universal properties of quantum transport in chaotic and disordered sys-

tems [Beenakker 1997]. Much of the success of RMT in quantum transport is due

to the strong correspondence between the statistical properties of random-matrix

ensembles and the fluctuations of measured observables of complex quantum

systems as a function of some control parameter, such as energy or magnetic field.

The universality of transport properties, such as the moments of the conductance,

lies in their independence of microscopic details of the scattering source. Never-

theless, random-matrix ensembles are sensitive to certain intrinsic symmetries of

the system, such as time reversal (TR), spin rotation (SR), particle-hole (PH) and

chiral (Ch). It has been established that these symmetries lead to a classification of

RMT ensembles into ten universal classes (the ten-fold way) [Altland e Zirnbauer

1997,Caselle 1996], which are divided into three categories: (i) Wigner Dyson

(WD, three classes), appropriate to describe normal disordered conductors, (ii)

Chiral (CH, three classes), appropriate for systems with a purely off-diagonal

disorder, and (iii) Bogoliubov-de Gennes (BdG, four classes), appropriate for

normal-superconducting (NS) hybrid systems.

From the perspective of quantum transport, phase coherent mesoscopic

systems can be classified into two types: (I) disordered conductors, in which

impurities generate multiple elastic scatterings with an associated mean free path

le that is less than the system’s dimensions and (II) ballistic cavities, where le is

greater than the system’s dimensions and thus the dominant scattering mechanism

is reflection at the border of the cavity. Remarkably, RMT can efficiently describe

both types of systems since universal transport properties do not depend on the

details of either the impurity potential (for disordered systems) or the shape of the

cavity (for ballistic systems) [Beenakker 1997]. This insensitivity to microscopic

details goes as far as to allow an identification, under certain conditions, of a
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multichannel disordered quantum wire with a chain of ballistic cavities [Brouwer

e Altland 2008].

Besides RMT, there are other well-developed approaches to quantum trans-

port in both disordered wires and chaotic ballistic cavities: the field theoretic

non-linear sigma-model [Efetov 1999] and the trajectory-based semiclassical ap-

proach [Richter e Sieber 2002] are the most well known. These three approaches

have many advantages and pitfalls, but since they are constructed from different

and somewhat unrelated statistical hypothesis on the behavior of the underlying

degrees of freedom, they may be considered a complementary, albeit equivalent,

physical description of the system. Notwithstanding, a full fledged mathematical

proof of the equivalence of these three approaches is still missing, in spite of

much effort and some successes in particular systems, such as quantum dots with

ideal couplings to external leads [Berkolaiko e Kuipers 2012, Macedo-Junior e

Macêdo 2014].

In superconducting systems, quantum transport has very striking and dif-

ferent features in comparison with their normal counterpart, which in part is due

to what is known as Andreev reflections (AR). The most remarkable phenomenon

is probably the possibility of a condensed matter realization of Majorana fermions

as protected bound states at the ends of topological superconducting wires [Elliott

e Franz 2015]. Transport observables in these systems, such as the electrical

conductance, can give information about topological invariants and topological

quantum numbers. The thermal conductance, on the other hand, although it

may not contain direct information of topological invariants, as can be seen

from their random matrix description [Dahlhaus 2012], can still provide valuable

information about topological phase transitions [Beenakker 2015].

3.1 The Scattering Problem

Consider a confined quantum system ideally coupled to two electron

reservoirs via point contacts with N1 and N2 open scattering channels respectively.

As we saw in the section 2.4, according to the Landauer-Büttiker scattering

formalism [Datta 1997], coherent particle transfer through such a device can be
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efficiently described by its scattering matrix, which can be generically written as

S =

[
rN1×N1 tN1×N2

t′N2×N1
r′N2×N2

]
, (3.1)

where r, r′ are reflection matrices and t, t′ are transmission matrices. The sub-

scripts denote the matrix dimensions and the matrices tt† and t′t′† are hermitian

and have the same set of non-zero transmission eigenvalues (T1, ..., TN) ∈ [0, 1]N .

Transport observables can be conveniently written in terms of these transmission

eigenvalues. For instance, the thermal conductance of a superconducting system,

at low temperature T , is given by [Dahlhaus, Béri e Beenakker 2010],

G = G0d

N∑
i

Ti, (3.2)

where G0 = π2k2
BT/6h, N = min(N1, N2) and d is the spin and/or particle-hole

degeneracy.

In ballistic chaotic cavities the transmission eigenvalues are strongly cor-

related random variables, which because of assumption of ergodic dynamics

are well described by RMT. According to RMT, the scattering matrix of a ballis-

tic chaotic cavity with ideal contacts is uniformly distributed over its manifold,

and thus the probability density is only restricted by the presence or absence of

certain symmetries. For the BdG classes the corresponding joint distribution of

transmission eigenvalues is given by [Dahlhaus, Béri e Beenakker 2010]

P ({τ}) = CN
∏
i<j

|Ti − Tj|β
∏
i

T
β(µ+1)/2−1
i (1− Ti)γ/2, (3.3)

where µ = |N1 − N2| and CN is a normalization constant. The values of the

parameters β and γ are solely determined by the symmetries, as shown in the

table 2. Note that this equation is more general than equation 2.42 since it includes

the asymmetry between the numbers of channels N1 and N2 (see figure 3). Here

we shall consider only systems in the presence of TR symmetry, which implies

β = 2. Moreover, we must set γ = 1 for systems in the presence of SR symmetry

and γ = −1 for systems with broken SR symmetry. According to the ten-fold way

of classifying random matrix ensembles, these classes are denoted CI and DIII
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respectively. We remark that the system described by the equation 3.3 differs from

a normal ballistic cavity, because, in addition to the two normal contacts coupling

to the reservoirs, the cavity is geometrically defined by a normal-superconducting

interface, which generates Andreev reflections [Beenakker 1997]. As a matter of

fact, this type of cavity is also known as an Andreev quantum dot [Dahlhaus, Béri

e Beenakker 2010]. We remark that if we set γ = 0 in the equation 3.3 we recover

the Wigner Dyson AI class for normal systems with broken TR symmetry (see

table 1), which turns out to be a useful way to compare our exact expressions for

the moments of the thermal conductance with known results of the literature.

We proceed by combining Andreev quantum dots in a chain geometry, as

shown in Figure 12. In such a setup the excitation gap induced by the proximity

effect in the inner region is closed by adjusting the superconducting boundaries

to have a phase difference of π, which also ensures that there is no breaking of

TR symmetry [Beenakker 2015,Dahlhaus, Béri e Beenakker 2010]. The RMT de-

scription of the system can be obtained by appropriately combining the scattering

matrices of the Andreev quantum dots, or from the corresponding product of

random transfer matrices, see [Sena-Junior, Almeida e Macêdo 2014, Pedrosa

et al. 2015] for more details. An equivalent description using the supersymmet-

ric non-linear sigma model is also possible [Iida, Weidenmüller e Zuk 1990].

Since we want to obtain exact analytical results, we follow reference [Macêdo

2000,Duarte-Filho, Macedo-Junior e Macêdo 2007] and take the continuum limit

which leads to a Fokker-Planck equation for the evolution, with the sample’s

length, of the joint probability distribution of transmission eigenvalues with a

zero-length initial condition given by the RMT description of an Andreev quantum

dot. See reference [Iida, Weidenmüller e Zuk 1990,Duarte-Filho, Macedo-Junior

e Macêdo 2007] for the corresponding problem with normal quantum dots.

The Fokker-Planck equation of a disordered Andreev quantum wire of

length L, with N open scattering channels, is given by (see equation 2.51)

[Brouwer et al. 2000]
∂P

∂s
=

N∑
i

∂

∂qi
J
∂

∂qi

P

J
, (3.4)
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where s = L/[2le(βN − β + α + 1)] is an adimensional length and

J =
∏
i<j

| cosh(2qi)− cosh(2qj)|β
N∏
i

sinhα(2qi). (3.5)

The variables qi are related to the transmission eigenvalues through the relation

Ti = sech2(qi) and since we are considering superconducting TR-symmetric

systems, we must set β = 2. The parameter α can take the values α = 2 (in the

presence of SR symmetry) and α = 0 (in the absence of SR symmetry). The WD

class is obtained by setting α = 1 and assuming that TR symmetry is broken (table

4).

The problem has thus been reduced to solving the equation 3.4 with

an initial condition given by the equation 3.3, which is the joint probability

distribution of transmission eigenvalues of an Andreev quantum dot. Remarkably,

an exact analytical solution can be constructed using an integral transform method

[Macedo-Junior e Macêdo 2006] which provides a complete description of the

smooth crossover of the thermal conductance moments as a function of the

system’s length, covering all transport regimes: ballistic, metallic and insulating.

For a related study of a normal dot-wire system (WD class) with broken TR

symmetry, see [Macêdo 2000].

Figure 12 – Chain of Andreev quantum dots. By varying the sample’s length L, we can go
from a quantum dot to a chain of dots, which in the continuous limit is a
quantum wire. The conducting device is bounded by superconductors with a
phase difference of π (order parameters given by ±∆) and connected to
electron reservoirs with different temperatures via ideal contacts.
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3.2 The Integral Transform Method

In the section 2.6 we study a powerful way to represent the probability

distributions of the RMT ensembles is to employ a classification scheme based on

matrix valued Brownian motion ensembles [Macedo-Junior e Macêdo 2006]. In

this section were defined the following functions

Jβ({x}) =
N∏
i<j

|xi − xj|β and ωN({x}) =
N∏
i

ω(xi), (3.6)

where the random variables xi are related to the transmission eigenvalues Ti
via a simple procedure described in [Macedo-Junior e Macêdo 2006]. For a

ballistic cavity we may follow the reference [Souza e Macedo-Junior 2015] and

take xi = Ti and write the joint distribution as the stationary solution of the

corresponding Brownian motion. We thus get

P (0)({x}) = CNJβ({x})ωN({x}), (3.7)

where the function ω(x) is given in the table 6. The equation 3.7 will be used as

the initial condition of our crossover problem. On the other hand, for a quasi-

one-dimensional quantum wire we may follow the reference [Macedo-Junior e

Macêdo 2007] and take xi = cosh(2qi) = (2− Ti)/Ti and write the corresponding

Fokker-Planck equation as

∂P

∂s
=

N∑
i

∂

∂xi
s(xi)ωNJβ

∂

∂xi

P

ωNJβ
, (3.8)

where the functions ω(x) and s(x) are also given in the table 6.

Table 6 – Classification of Brownian motion ensembles for the BdG class

RMT random variable ω(x) s(x) a b
dot xi = Ti xβ(µ+1)/2−1(1− x)γ/2 x(1− x) 0 1
wire xi = 2/Ti − 1 (x2 − 1)(α−1)/2 x2 − 1 1 ∞

Instead of directly solving the Fokker-Plank equation 3.8 with initial condi-

tion 3.7, we employ an integral transform method that effectively maps equation
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3.8 onto a much simpler Fokker-Planck problem in an image space of smaller di-

mension. The multidimensional integral transform was defined in the subsection

2.6.2 as [Macedo-Junior e Macêdo 2006]

W ({ϑ}, s) =

∫
dNx Ωβ({x}, {ϑ})P ({x}, s), (3.9)

where the kernel Ωβ is chosen to have only two {ϑ} variables, which is the

minimal number of image variables that allows the exact calculation of the first

three heat conductance moments. We thus define (analogously to the equation

2.70)

Ωβ({x}, {ϑ}) =
N∏
i

xi − ϑ0,1

xi − ϑ1,1

. (3.10)

The Fokker-Planck equation in image space {ϑ} is given by(
∂

∂s
−M†

ϑ

)
W ({ϑ}, s) = 0, (3.11)

where

M†
ϑ =

1

V B

1∑
i=0

(−1)1+i ∂

∂ϑi,1

(
s(ϑi,1)V B

∂

∂ϑi,1

)
(3.12)

and we defined

V =
ω(ϑ0,1)

ω(ϑ1,1)
and B =

1

(ϑ0,1 − ϑ1,1)2
, (3.13)

in the same way as section 2.6.2. We can now perform the transformation

W ({ϑ}, s) = 1 + ω(ϑ1,1)B−1/2Ψ({ϑ}, s) (3.14)

that maps equation 3.11 onto a Schrödinger equation in imaginary time (s→ it).

Choosing ϑ0,1 = −ϑ0 and ϑ1,1 = −ϑ1:

∂Ψ

∂t
+HΨ = 0, (3.15)

where

H =
1∑
i=0

(−1)i
1

ω(ϑi)

∂

∂ϑi

(
ω(ϑi)s(ϑi)

∂

∂ϑi

)
(3.16)

is a free particle Hamiltonian in image space.
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We proceed by calculating the initial condition W ({ϑ}, 0) using the joint

distribution of the Andrev quantum dot (see equation 3.7). Here we may again

use the integral transform method with the following modified kernel

Ω
(0)
β ({τ}, {ϑ}) =

(
1− ϑ0

1− ϑ1

)N N∏
i

Ti − 2/(1− ϑ0)

Ti − 2/(1− ϑ1)
, (3.17)

where Ti = xi. The choice of kernel is motivated from the connection between

the supersymmetric non-linear sigma model and RMT [Macêdo 2000]. From the

stationary solution of the corresponding Fokker-Planck equation, we find (see the

appendix A)

W ({ϑ}, 0) = 1 + (ϑ0 − ϑ1)
N−1∑
l=0

(1− ϑ0)l

(1− ϑ1)l+1
(fN−l−1(ϑ0)gN−l−1(ϑ1)− 1), (3.18)

where

fn(ϑ0) = F [−n,−n− µ;−2n− µ− γ

2
;
1− ϑ0

2
],

gn(ϑ1) = F [n+ 1, n+ 1 + µ; 2n+ µ+
γ

2
+ 2;

1− ϑ1

2
], (3.19)

and F [a, b; c; z] denotes the hypergeometric function.

We are now in position to unify the notations for the symmetry indices

γ and α of the quantum dot and the quantum wire respectively. For that, we

introduce the new index

ν =
α− 1

2
=
γ

2
, (3.20)

which can have two values: ν = 1/2 (system with TR and SR symmetry) or

ν = −1/2 (systems with TR symmetry and no SR symmetry). In the ten-fold way

of S-matrix classification, these classes correspond to CI and DIII respectively. We

remark that ν = 0 corresponds to the Wigner-Dyson AI class (systems with no TR

symmetry).

3.3 Exact Solution for the Dot-Wire System

We can now address the full problem and solve the equation 3.11, which

describes a superconducting quantum wire, with a quantum dot initial condition
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given by the equation 3.18. It will prove convenient to use the kernel 3.10 with

the choices ϑ0,1 = −ϑ0 and ϑ1,1 = −ϑ1, so that we may write

Ωβ({x}, {ϑ}) =
N∏
i

xi + ϑ0

xi + ϑ1

. (3.21)

Note that after using the relation xi = 2/Ti − 1 we recover the equation 3.17.

Following the procedure introduced in [Macedo-Junior e Macêdo 2006]

and [Macêdo 2000] we can find the eigenvalues of the Hamiltonian H, shown in

the equation 3.16. We start by specifying the domains of the variables ϑ0 and ϑ1.

Inspired by the supersymmetry calculations of the reference [Macêdo 2000], we

set−1 ≤ ϑ0 ≤ 1 and 1 ≤ ϑ0 ≤ ∞. The eigenvalues ofH are εnk = k2+(n+ν+1/2)2

and the corresponding eigenfunctions are (see appendix B):

ϕnk(ϑ0, ϑ1) =
A

(−ν)
k

(h
(ν)
n )1/2

P (ν)
n (ϑ0)

F
(−ν)
k (ϑ1)

ω(ϑi)
, (3.22)

where h(ν)
n andA(ν)

k are normalization constants of the Jacobi polynomials P (ν)
n (ϑ0) ≡

P
(ν,ν)
n (ϑ0) and the hypergeometric function F (ν)

k (ϑ1) = F [ν+ 1
2

+ ik, ν+ 1
2
− ik; ν+

1; 1−ϑ1
2

] respectively (see Appendices A and B).

We can now construct the Green’s function by using its spectral resolution

in terms of the eigenfunctions and the eigenvalues of H. We find

G({ϑ}, {ϑ′}, s) = (1− ϑ′20 )ν(ϑ
′2
1 − 1)ν

∞∑
n=0

∫ ∞
0

dkϕnk(ϑ0, ϑ1)ϕnk(ϑ
′
0, ϑ
′
1)e−εnks.

(3.23)

From the completeness of the eigenfunctions, it follows immediately that

G({ϑ}, {ϑ′}, 0) = δ(ϑ0 − ϑ′0)δ(ϑ1 − ϑ′1) (3.24)

Using the equation 3.23, we can write 3.14 as

W ({ϑ}, s) = 1 + (ϑ0 − ϑ1)ω(ϑ1)

∫ 1

−1

dϑ′0

∫ ∞
1

dϑ′1G({ϑ}, {ϑ′}, s) W (ϑ′, 0)

(ϑ′0 − ϑ′1)ω(ϑ′1)
e−εnks

(3.25)
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Inserting the equation 3.23 into 3.25, we get

W ({ϑ}, s) = 1 + (ϑ0 − ϑ1)
∞∑
n=0

∫ ∞
0

dk
(A

(−ν)
k )2

h
(ν)
n

e−εnksP (ν)
n (ϑ0)F

(−ν)
k (ϑ1)

N−1∑
l=0

(I
(1)
nl J

(1)
kl − I

(0)
nl J

(0)
kl ),

(3.26)

where I(i)
nl and J (i)

kl , i ∈ {0, 1}, are obtained from the following integrals

I
(0)
nl =

∫ 1

−1

dϑ0(1− ϑ2
0)νP (ν)

n (ϑ0)(1− ϑ0)l,

J
(0)
kl =

∫ ∞
1

dϑ1
F

(−ν)
k (ϑ1)

(ϑ2
1 − 1)ν(1− ϑ1)l+1

,

I
(1)
nl =

∫ 1

−1

dϑ0(1− ϑ2
0)νP (ν)

n (ϑ0)(1− ϑ0)lfN−l−1(ϑ0),

J
(1)
kl =

∫ ∞
1

dϑ1
F

(−ν)
k (ϑ1)

(ϑ2
1 − 1)ν(1− ϑ1)l+1

gN−l−1(ϑ1). (3.27)

The integrals are calculated in the Appendix C in terms of the number of open

channels N1 and N2. Note that the information about the number of channels is

encoded in the functions fn(ϑ0) and gn(ϑ1) (see equation 3.19). The final result is

presented in the following theorem

Theorem 1. The solution of the Fokker Planck equation 3.11 with initial condition
given by 3.18, in the space of the coordinates {ϑ}, is given by

W ({ϑ}, s) = 1 + 2(ϑ0 − ϑ1)
N−1∑
n=0

P
(ν)
n (ϑ0)P

(ν)
n (1)

h
(ν)
n

∫ ∞
0

dµnkc
(ν)
nk (N1)c

(ν)
nk (N2)F

(−ν)
k (ϑ1)e−εnks,

(3.28)

where dµnk = dk|Γ(1/2− ν + ik)|2/(|Γ(ik)|2εnk) and

c
(ν)
nk (N) =

|Γ(N + ν + 1/2 + ik)|2

(N − n− 1)!Γ(N + n+ 2ν + 1)
. (3.29)

This theorem is the central result of this work. It can be used as a gen-

erating function to find the first three moments of the thermal conductance.

A noteworthy feature of the exact result is the the separation of the left-right

boundary conditions in the form of the product c(ν)
nk (N1)c

(ν)
nk (N2), which as we will

see later allows a straightforward identification of different conducting regimes.
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3.4 Application: Moments of the Heat Conductance

As an application of the equation 3.28 we calculate the first three moments

of the heat conductance. The Landauer formula for the dimensionless thermal

conductance is

g =
N∑
i

Ti =
N∑
i

2

1 + xi
. (3.30)

From the equations 3.9, 3.21 and 3.30 it is straightforward to verify that the

first three moments of thermal conduction can be obtained from the generating

function as

〈g〉 =
2∂W

∂ϑ0

∣∣∣∣
ϑ0=1=ϑ1

〈g2〉 = − 4∂2W

∂ϑ0∂ϑ1

∣∣∣∣
ϑ0=1=ϑ1

and

〈g3〉 = 4

(
∂3W

∂ϑ0∂ϑ2
1

− ∂3W

∂ϑ1∂ϑ2
0

)∣∣∣∣
ϑ0=1=ϑ1

. (3.31)

From the equation 3.28 we get

〈gm〉 = 4
N−1∑
n=0

(P
(ν)
n (1))2

h
(ν)
n

∫ ∞
0

dµnkg
(m)
nk c

(ν)
nk (N1)c

(ν)
nk (N2)e−εnks, (3.32)

where

g
(1)
nk = 1, g

(2)
nk =

k2 + (1/2− ν)2

(1− ν)
+
n(n+ 2ν + 1)

(1 + ν)
,

g
(3)
nk =

(k2 + (1/2− ν)2)(k2 + (3/2− ν)2)

2(2− ν)(1− ν)
+

2n(n+ 2ν + 1)(k2 + (1/2− ν)2)

(1 + ν)(1− ν)

+
n(n− 1)(n+ 2ν + 1)(n+ 2ν + 2)

2(1 + ν)(2 + ν)
. (3.33)

Equation 3.32 is a very general exact result. It is valid for any number of channels

N1 and N2, and for any value of the dimensionless length of the quantum wire s.

It is the central application of this paper and as it stands it can serve as a useful

tool to compare with results from other non-perturbative approaches, such as the

trajectory-based semiclassical technique and field-theoretic methods.

In the figure 13 we show the behavior of the first three cumulants (denoted

with double brackets) of the thermal conductance, as a function of the system’s

length, of both the WD (full line) and BdG classes DIII (dashed line) and CI
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(dotted line) for the case of a single channel in each lead. This case is particularly

interesting, since as shown in the reference [Dahlhaus, Béri e Beenakker 2010] the

class DIII can be realized using Majorana modes of topological superconductors.

Therefore, the unusual behavior of the heat conductance moments in this class

can be interpret as a signature of the presence of Majorana fermions in the system.

It was, in the study of disordered quantum wires that evidences of the

presence of condensed matter Majorana modes emerged most clearly. These can

be traced back to the prediction [Brouwer et al. 2000] that for quantum wires in

the chiral classes (for odd N open scattering channels) and in the superconducting

D and DIII classes there is no exponential localization, since, unlike its behavior

in the standard classes, the average conductance falls off in the limit of long

distances L� Nl as 1/
√
L, which is a kind of super-ohmic behavior. They also

found that in these special classes the average density of states (DOS) diverges

logarithmically, ρ(ε) ∼ 1/|ετ ln3(ετ)|, as energy ε → 0 (where τ = N2l and the

Fermi velocity has been set to unity). A similar singularity had already been found

by Dyson in the analysis of disordered linear chains [Dyson 1953]. On the other

hand, the reference [Motrunich, Damle e Huse 2001] found through a general

analysis using strong-disorder renormalization group (RG) that systems of classes

D and DIII exhibit localization and an average DOS that vanishes as a power

law ρ(ε) ∼ |ετ |δ−1 with δ > 0, as ε → 0. Remarkably, at certain critical points

obtained by fine-tuning the disorder, both delocalization and Dyson’s divergence

can be present. The authors of the reference [Motrunich, Damle e Huse 2001]

were also among the first to relate this special type of criticality to transitions

between topological phases and also to point out that it could be a signature of the

existence of Majorana zero modes. The reference [Gruzberg, Read e Vishveshwara

2005] confirmed these results and presented evidence that the delocalization

at critical points is well described by the DMPK equation of superconductors.

Furthermore, they claimed that there may be a "superuniversality" combining the

chiral class and the superconducting classes D and DIII, since they have certain

similar characteristics in regards to these critical points. Later, the authors of

the references [Mudry 2017,Morimoto, Furusaki e Mudry 2015] argued that the

diverging nature of the average density of states at the band centre is a signature
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of topologically protected zero modes bound to point defects. As discussed in

the subsection 2.5.2, there is a correspondence between delocalization, Dyson

divergence and topologically Majorana zero modes in the superconducting classes

D and DIII.
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Figure 13 – First three cumulants of the thermal conductance for the WD class A (full
line) and BdG classes DIII (dashed line) and CI (dotted line) with a single
open channel: N1 = N2 = 1. The insets show the small s behaviors. Note the
qualitative difference of the class DIII BdG system. (Color online)

In the long length limit, s � 1, we may use the saddle-point method in

the equation 3.32 to obtain more explicit analytic expressions for each class. For

the class AI, we get

〈g〉 = 4〈g2〉 =
64

9
〈g3〉 = 2c

(0)
00 (N1)c

(0)
00 (N2)

(π
s

)3/2

e−s/4, (3.34)
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whilst for classes DIII and CI we find respectively

〈g〉 =
3

2
〈g2〉 =

15

8
〈g3〉 =

2√
πs
, (3.35)

〈g〉 = s〈g2〉 = 3s〈g3〉 = 4c
(1/2)
00 (N1)c

(1/2)
00 (N2)

e−s√
πs
. (3.36)

From these equations, we see that the BdG DIII class shows anomalous power

law behaviors in all three moments. In contrast, the other two classes (WD and

CI) show a rapid exponential decay of the moments as a function of s, which

is a common signature of Anderson localization. The significant attenuation in

the decay of the moments for the DIII class as a function of the system’s length

is thus a kind of delocalization effect, which can be interpreted as indicating a

type of anomalous metallic behavior. Since a normal disordered quantum wire

shows exponential localization when its length exceeds the localization length,

we must conclude that the localization length vanishes for a class DIII BdG system.

A similar conclusion has been reached in [Macêdo 2002] for a thick quantum

wire in series with a quantum point contact, which can be described by a DMPK

Fokker-Planck equation with a delta function initial condition.

Another noteworthy feature comes from the fact that c(ν)
nk (N) = 1 when

N → ∞. Using this property we can recover several previous results of the

literature. The most interesting cases are: (a) thick wire: we take N1 → ∞
and N2 → ∞, which reproduces the results found in the reference [Mirlin,

Mullergroeling e Zirnbauer 1994] and (b) the disordered quantum wire limit:

we take N1 →∞ with N2 fixed or N2 →∞ with N1 fixed, which reproduces the

results shown in the reference [Macêdo 2002].

It is also useful to investigate the system’s behavior close to the ballistic

limit, i.e. when s� 1/gc, where gc = N1N2/(N1 +N2). For that, we expand the

equation 3.32 around s = 0 to obtain

〈g〉 =
N1N2

N1 +N2 + ν
(1− (N1 + ν)(N2 + ν)(N1 +N2 + 2ν)

(N1 +N2 + ν)2 − 1
s+ ...) (3.37)
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and

〈〈g2〉〉 =
N1(N1 + ν)N2(N2 + ν)

(N1 +N2 + ν)2((N1 +N2 + ν)2 − 1)
(1

+
2((N1 −N2)2 − ν2)(N1 +N2 + 2ν)

(N1 +N2 + ν)2 − 4
s+ ...).

(3.38)

Note that the zero-order terms reproduce the results of the quantum dot for

the three classes [Souza e Macedo-Junior 2015], as expected. The correction

terms are new predictions that may be useful for comparison with alternative

techniques, such as the trajectory-based semiclassical approach.

N = 1

N = 2

N = 3

N = 4

N → ∞

〈g〉

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a)

g2

s
0 2 4 6 8 10

0.06

0.07

0.08

0.09

0.10

0.11

0.12

(b)

g3

s
0 2 4 6 8 10

-0.01

0.00

0.01

0.02

0.03

(c)

Figure 14 – Variation of the first three cumulants of the thermal conductance for the DIII
class with different numbers of channels N . N1 = N2 = N

Finally, in the figure 14 we show the behavior of the first three cumulants

of the DIII class as a function of the number of channels in each lead. We keep

N1 = N2 and compare the result with the thick-wire limit N → ∞. We observe
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that said limit is reached quickly after an increase of a few channels. The same is

also true for the WD and CI classes.
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4 NON-EQUILIBRIUM OPEN QUANTUM SYSTEMS

As we have seen in the previous chapters, scattering matrix theory (SMT)

has had great success in describing quantum transport phenomena, not only

for complex systems (using the RMT) but also with simple systems [Blanter e

Büttiker 2000]. However, SMT says nothing about the interactions inside the

system, because by construction, it only relates the wave functions in the leads,

before and after the scattering, without concern for the interactions inside the

sample. In contrast, the formalism of the master equation has a microscopic

construction starting from the Hamiltonian of the system. It therefore can describe

the interactions of particles within the sample, which is useful in the study of

phenomena related to quantum control operations in simple transport systems,

and the thermodynamics associated with them.

The master equations, originally formulated to the study of quantum optics

systems [Breuer, Petruccione et al. 2002], were adapted to describe solid-state

systems [Kulik e Shekhter 1975, Gurvitz e Prager 1996]. The best known and

used is the master equation type Lindblad, which besides the Markovian property,

it is also consistent with the rotating wave approximation, thus providing it

with a conceptually coherent theoretical framework. Lindblad master equation

is usually derived from a second order perturbative treatment of the coupling

between the system and the environment. Various improvements have been

proposed, such as taking into account higher orders in perturbation theory [Zedler

2011], using Liouvillian form of perturbation theory [Schoeller 2009, Emary

2010], or including memory effects. This latter generates non-Markovian master

equations [Braggio, König e Fazio 2006], which may also have consistency and

interpretation problems, such as the fact that it may yield negative probabilities.

In this Thesis, we use the Lindblad master equation because it allows making a

consistent thermodynamic construction and to make extensions in a simple way,

such as including the Full Counting Statistics.
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4.1 Master equation and full counting statistics

The dynamic evolution of open quantum systems is non-unitary. This is

either due to the interaction with measuring instruments (measurement problem)

or the interaction with the environment (reservoirs for example). Open quantum

systems do not follow the unitary dynamic evolution of closed systems, which

follow the von-Neumann equation

ρ̇(t) = −i[H(t), ρ(t)], (4.1)

whose formal solution can be written as

ρ(t) = U(t)ρ(0)U †(t), (4.2)

with the unitary time evolution operator

U(t) = τ̂ exp

(
−i
∫ t

0

H(t′)dt′
)
, (4.3)

where τ̂ is the time-ordering operator. The von-Neumann equation describes

the unitary evolution of the density matrix of a closed system and preserves all

its intrinsic properties, such as self-adjointness, unit trace, and positivity. So a

general non-unitary evolution of open systems should ideally also preserve these

properties.

The map that represents the most general evolution that preserves the

above cited properties of the density matrix is the Kraus map [Kraus 1983]

ρ(t+ ∆t) =
∑
α

Kα(t,∆t)ρ(t)K†α(t,∆t), (4.4)

where the Kraus operators Kα(t,∆t) are defined as∑
α

Kα(t,∆t)K†α(t,∆t) = 1. (4.5)

The von-Neumann unitary evolution is a particular case of a Kraus map, but a

direct interpretation of the Kraus operators for open systems is not so direct.

If we are led by certain restrictions that may be reasonable for certain

physical systems, it is possible to obtain more practical and simple solutions. This
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is the case of the Lindblad equation, which can be obtained by imposing a locality

in time property and to have constant coefficients. So, under these considerations,

the Lindblad equation is the most general master equation that preserves the

self-adjointness, unit trace, and positivity of the density matrix [Lindblad 1976].

In an N-dimensional Hilbert space, the Lindblad master equation has the

form

ρ̇ =Wρ = −i[H, ρ] +
∑
α,β

γα,β

(
AαρA

†
β −

1

2
{A†βAα, ρ}

)
, (4.6)

where H = H† and γα,β = γ†β,α is a positive semidefinite matrix, i.e. all eigenvalues

of γα,β are non-negative. Note that this equation is composed of a unitary part

(von-Neumann type) and another non-unitary part driven by the damping matrix

γα,β. This damping matrix can be diagonalized using unitary transformations such

that
∑

α,β Uα,α′γα,βU
†
β,β′ = δα′,β′γα′ . These unitary operations can be used to define

a new set of operators Aα =
∑

α′ Uα,α′Lα′ so that the Lindblad equation can be

rewritten in a simplified way [Schaller 2014]

ρ̇ = −i[H, ρ] +
∑
α

γα

(
LαρL

†
α −

1

2
{L†αLα, ρ}

)
. (4.7)

It is possible to make a rigorous derivation of the Lindblad equation from a

few assumptions and approximations considering that the system of interest is

coupled to the environment through a reservoir typically much larger than the

system. The central point of the derivation lies in the consideration that the

coupling between the system and the reservoir is weak, so it will be considered a

perturbative expansion on the environment. The total Hamiltonian is composed

by the Hamiltonian of the system HS, the Hamiltonian of the bath HB and the

Hamiltonian of interactionHI that directly connects the observables of the system

and reservoir respectively, thus

H = HS ⊗ 1 + 1⊗HB +HI , (4.8)

and

HI =
∑
α

Aα ⊗Bα. (4.9)

The size of the reservoir is always considered much larger than the size of the

system (see figure 15). For completeness, a deduction of the Lindblad equation
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will be shown below. It is not intended to be rigorous or step-by-step guided,

but will help us discuss the physical aspects of the approximations used in its

derivation.

Figure 15 – An open system (S) can be considered as a small part of a system coupled to
a much larger bath (B) by means of an interaction described by HI [Schaller
2014].

4.1.1 Born approximation

For convenience, we are going to work in the interaction picture, where

the symbols will be written in bold characters as is usually done. Thus, we may

write the density operator

ρ(t) = ei(HS+HB)tρ(t)e−i(HS+HB)t, (4.10)

which evolves in time according to

ρ̇ = −i[HI(t),ρ] (4.11)

where

HI =
∑
α

Aα(t)⊗Bα(t). (4.12)

Without loss of generality, the operators in HI are considered to be hermitian

A†α = Aα and B†α = Bα. Iterating the formal general solution of equation 4.11

with itself and doing the partial trace on the Hilbert space of the bath to discard

its degrees of freedom, we obtain

ρ̇S = −iTrB{[HI(t),ρ]} −
∫ t

0

TrB{[HI(t), [HI(t
′),ρ(t′)]]dt′}. (4.13)
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Here we make the Born approximation namely, the assumption that the reservoir

are much larger than the system, so that the system hardly affects the reservoir. It

is then is possible to expand the total density matrix as

ρ(t) = ρS(t)⊗ ρB +O{λ}, (4.14)

where λ is the coupling parameter between the system and the reservoir HI ∼
O{λ}, which is assumed small and dimensionless. So the equation 4.13 is inter-

preted as a second order expansion

ρ̇S = −iTrB{[HI(t),ρ]} −
∫ t

0

TrB{[HI(t), [HI(t
′),ρS(t′)⊗ ρB]]}dt′ +O{λ3}.

(4.15)

Substituting the equations 4.12 and 4.14 into 4.15 yields

ρ̇S = −i
∑
α

(Aα(t)ρ0
S(t) Tr{Bα(t)ρB} − ρ0

S(t)Aα(t) Tr{ρBBα(t)}) (4.16)

−
∑
α,β

∫ t

0

( +Aα(t)Aβ(t′)ρS(t′) Tr{Bα(t)Bβ(t′)ρB}

−Aα(t)ρS(t′)Aβ(t′) Tr{Bα(t)ρBBβ(t′)}

−Aβ(t)ρS(t′)Aα(t′) Tr{Bβ(t)ρBBα(t′)}

+ ρS(t′)Aβ(t)Aα(t′) Tr{ρBBβ(t)Bα(t′)} ) dt′, (4.17)

where ρ0
S(t) is the initial density matrix of the system, which is also decorrelated

from the reservoir density matrix ρ = ρ0
S ⊗ ρB. Without loss of generality we

assume that the reservoir operators satisfy

Tr{Bα(t)ρB} = 0, (4.18)

then, equation 4.16 can be rewritten in a more compact way as

ρ̇S = −
∑
α,β

∫ t

0

dt′ (Cα,β(t, t′)[Aα(t),Aβ(t′)ρS(t′)]

+ Cβ,α(t′, t)[ρS(t′)Aβ(t′),Aα(t)]) , (4.19)

where

Cα,β(t1, t2) = Tr{Bα(t1)Bβ(t2)ρB} (4.20)
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is the bath correlation function. This integer-differential equation is non-Markovian

because the matrix density depends on all previous times. Although the equation

preserves trace and hermiticity, it does not necessarily preserve positivity [Schaller

2014], so other approximations are necessary.

4.1.2 Markov approximation

Markov approach relies on the fact that the whole system can be separated

into two parts with well separated time scales: the relaxation time of the bath,

which is much shorter than, the relaxation time of the system. Because it is

assumed that the size of the bath is much larger than the size of the system, the

changes induced in the bath by the weak coupling with the system are considered

small. Thus, it is natural to assume that the bath quickly reaches its equilibrium

state. Then we can say that the dynamics of the density matrix varies very slowly

with respect to the decay times of the correlation function of the bath, so we can

insert ρ(t′)→ ρ(t) into equation 4.15 to obtain

ρ̇S = −
∫ t

0

TrB{[HI(t), [HI(t
′),ρS(t)⊗ ρB]]}dt′. (4.21)

This is the Born-Redfield equation, which is local in time and preserves

trace and hermiticity. However, it still has a complicated time dependence, which

is why ideally time independent coefficients should be imposed. Note that when

the Hamiltonian of the bath commutes with its matrix density [HB, ρB] = 0, the

bath correlation function depends only on the difference of times

Cα,β(t1, t2) = Cα,β(t2 − t1) = Tr{eiHB(t2−t1)Bαe
−iHB(t2−t1)BβρB}, (4.22)

generating the following symmetry

Cα,β(τ) = C∗β,α(−τ). (4.23)

Now we set τ = t − t′ and make the limit of integration go to infinity

in equation 4.21. This does not significantly change the value of the integral,

because the decay time of the bath correlation function is short (see equation

4.19). Then we are left with

ρ̇S = −
∫ ∞

0

TrB{[HI(t), [HI(t
′),ρS(t)⊗ ρB]]}dt′, (4.24)
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or, returning to the Schrödinger picture

ρ̇S = −i[HS, ρS(t)]−
∑
α,β

∫ ∞
0

Cα,β(τ)[Aα, e
−iHSτAβe

iHSτρS(t)]dτ

−
∑
α,β

∫ ∞
0

Cβ,α(−τ)[ρS(t)e−iHSτAβe
iHSτ , Aα]dτ. (4.25)

This equation can be rewritten in a compact form

ρ̇S = −i[HS, ρS(t)]−
∑
α

([Aα,ΛαρS(t)] + [ρS(t)Λ†α, Aα])dτ, (4.26)

with

Λα =
∑
β

∫ ∞
0

Cα,β(τ)e−iHSτAβe
iHSτdτ. (4.27)

This equation is called the Markovian master equation, it contains constant

coefficients, is local in time and preserves two desired properties of the density

matrix: hermiticity and unit trace. However, it does not necessarily ensure the

positivity of the density matrix, so it can lead to non-physical results such as

negative probabilities. Therefore, another approximation must be considered to

arrive at the Lindblad equation. Nonetheless, there are simple examples where

the Markov master equation, and the Redfield equation, has been successfully

applied, making microscopic considerations to the bath correlation function

without generating negative probabilities [Whitney 2008].

4.1.3 Secular approximation

Going back to the interaction picture, we can see that there are several

oscillating terms in the dynamics of the density matrix. The secular approximation

or rotating wave approximation (RWA) averages out most of the rapidly oscillating

dynamic terms. This is justified by the fact that, if we have different scales of

oscillation, the fastest oscillating terms can be discarded because their average is

zero. So, the equation 4.25 written in the interaction picture and expanded into
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the basis of the eigenvectors of the system Hamiltonian HS |a〉 = Ea |a〉 gives

ρ̇S = −
∑
α,β

∫ ∞
0

(Cα,β(τ)[Aα(t),Aβ(t− τ)ρS(t)] + h.c.)dτ

=
∑
α,β

∫ ∞
0

Cα,β(τ)
∑
a,b,c,d

(|a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t) |d〉 〈d|Aα(t) |c〉 〈c|

− |d〉 〈d|Aα(t) |c〉 〈c|a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t))dτ + h.c.. (4.28)

Making explicit the time dependence of the coupling operators and abbreviating

Aa,bα = 〈a|Aα |b〉 and La,b = |a〉 〈b|, we find

ρ̇S =

∫ ∞
0

∑
α,β

Cα,β(τ)
∑
a,b,c,d

(ei(Eb−Ea)(t−τ)ei(Ed−Ec)tAa,bβ Ad,cα La,bρS(t)L†c,d

−ei(Eb−Ea)(t−τ)ei(Ed−Ec)tAa,bβ Ad,cα L
†
c,dLa,bρS(t))dτ + h.c.

=
∑
α,β

∑
a,b,c,d

e−i(Eb−Ea−(Ed−Ec))t
∫ ∞

0

Cα,β(τ)ei(Eb−Ea)τAa,bβ (Ad,cα )∗dτ

×(La,bρS(t)L†c,d − L
†
c,dLa,bρS(t)) + h.c. (4.29)

Denoting w = Eb − Ea and w′ = Ed − Ec; the secular approximation discards

the oscillating terms in t, keeping only those which e−i(w−w′)t ≈ δw,w′ , since when

w 6= w′, the oscillation is considered fast enough to average to zero, regarding

the slow dynamics of the density matrix [Breuer, Petruccione et al. 2002,Harbola,

Esposito e Mukamel 2006]:

ρ̇S =
∑
α,β

∑
a,b,c,d

Γα,β(Eb − Ea)δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗(La,bρS(t)L†c,d − L

†
c,dLa,bρS(t))

+
∑
α,β

∑
a,b,c,d

Γ∗α,β(Eb − Ea)δEb−Ea,Ed−Ec(A
a,b
β )∗Ac,dα (Lc,dρS(t)L†a,b − ρS(t)L†a,bLc,d),

(4.30)

where

Γα,β(w) =

∫ ∞
0

Cα,β(τ)eiwτdτ (4.31)

corresponds to the Fourier transform of the bath correlation function. Doing the

transformation α↔ β, a↔ c and b↔ d in the second line of the equation 4.30,
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and grouping similar terms, we arrive at

ρ̇S =
∑
α,β

∑
a,b,c,d

(Γα,β(Eb − Ea) + Γ∗β,α(Eb − Ea))δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗La,bρS(t)L†c,d

−
∑
α,β

∑
a,b,c,d

Γα,β(Eb − Ea)δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗L†c,dLa,bρS(t)

−
∑
α,β

∑
a,b,c,d

Γ∗β,α(Eb − Ea)δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗ρS(t)L†c,dLa,b.

(4.32)

It is possible to split the Γ factor into an hermitian and an anti-hermitian part

Γα,β(w) =
1

2
γα,β(w) +

1

2
σα,β(w), (4.33)

Γ∗β,α(w) =
1

2
γα,β(w)− 1

2
σα,β(w), (4.34)

with γα,β(w) = γ∗β,α(w) being the hermitian part, and σα,β(w) = −σ∗β,α(w) the

anti-hermitian part. These functions are the full, even and odd, Fourier transform

of the bath correlation function respectively

γα,β(w) = Γα,β(w) + Γ∗β,α(w) =

∫ ∞
−∞

Cα,β(τ)eiwτdτ, (4.35)

σα,β(w) = Γα,β(w)− Γ∗β,α(w) =

∫ ∞
−∞

Cα,β(τ) sgn(τ)eiwτdτ. (4.36)

It can be showed that

σα,β(w) =
i

π
P
∫ ∞
−∞

γα,β(w)

w − Ω
dΩ. (4.37)

So, the master equation becomes

ρ̇S =
∑
α,β

∑
a,b,c,d

γα,β(Eb − Ea)δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗

(
La,bρS(t)L†c,d −

1

2
{L†c,dLa,b,ρS(t)}

)
−
∑
α,β

∑
a,b,c,d

1

2i
σα,β(Eb − Ea)δEb−Ea,Ed−EcA

a,b
β (Ac,dα )∗[L†c,dLa,b,ρS(t)]

=
∑
α,β

∑
a,b,c,d

γα,β(Eb − Ea)δEb−Ea,Ed−EcA
a,b
β (Ac,dα )∗

(
La,bρS(t)L†c,d −

1

2
{L†c,dLa,b,ρS(t)}

)
−
∑
α,β

∑
a,b,c

1

2i
σα,β(Eb − Ea)δEb,EaA

c,b
β (Ac,aα )∗[La,b,ρS(t)].

(4.38)
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Usually the term

HLS =
∑
α,β

∑
a,b,c

1

2i
σα,β(Eb − Ea)δEb,EaA

c,b
β (Ac,aα )∗ |a〉 〈b| (4.39)

is called the Lamb-Shift Hamiltonian because it can be included in the system

Hamiltonian as a renormalization caused by the interaction with the reservoir,

whereas HLS = H†LS and [HLS,HS] = 0. Then we can finally write the master

equation in the Lindblad form, in the Schrödinger picture, putting together the

above definitions

ρ̇S =− i

[
HS +

∑
α,β

σα,β |a〉 〈b| , ρS(t)

]

+
∑
a,b,c,d

γab,cd

(
|a〉 〈b| ρS(t)(|c〉 〈d|)† − 1

2
{(|c〉 〈d|)† |a〉 〈b| , ρS(t)}

)
(4.40)

where we used the new definitions

γab,cd =
∑
α,β

γα,β(Eb − Ea)δEb−Ea,Ed−Ec 〈a|Aβ |b〉 〈c|Aα |d〉
∗ , (4.41)

and

σab =
∑
α,β

∑
c

1

2i
σα,β(Eb − Ea)δEb,Ea 〈c|Aβ |b〉 〈c|Aα |a〉

∗ . (4.42)

This equation is equivalent to the equation 4.6, preserves the hermiticity, trace

and positivity of the density matrix, as was desired. The positivity comes from

the fact that any equation with the Lindblad form preserves the positivity to-

gether with the fact that the γab,cd matrix can be shown to be non-negative, i.e.∑
a,b,c,d x

∗
a,bγab,cdxc,d ≥ 0 for all xa,b.

4.1.4 Thermalization and multi-terminal coupling

In the derivation of the master equation in the Lindblad form, the only

assumptions made on the reservoirs were that its number of freedom degrees

are much greater than the number of freedom degrees in the system and the

requirements [HB, ρB] = 0 and Tr{BαρB} = 0 (see equation 4.18). Then, it is
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reasonable to assume that the reservoir states are close to thermal equilibrium

since the system hardly modifies the bath states, Thus, we may write

ρB =
e−βHB

Tr(e−βHB)
. (4.43)

With this thermal state, the bath correlation function fulfills the Kubo-Martin-

Schwinger (KMS) condition

Cα,β(τ) = Cβ,α(−τ − iβ), (4.44)

which leads to

γα,β(−w) = γβ,α(w)e−βw, (4.45)

or equivalently (from the equation 4.41)

γab,ab
γba,ba

= e−β(Ea−Eb). (4.46)

This equation is known as the detailed balance relation and establishes the general

relation between the transition rates. Equation 4.45 can be used to show the

stationary solution of the master equation when the system is coupled to one

single reservoir, so that

ρs =
e−βHS

Tr(e−βHS)
, (4.47)

i.e., the system is in thermal equilibrium with the reservoir. If the reservoir

exchanges particles with the system, it is in a grand-canonical state

ρB =
e−β(HB−µNB)

Tr(e−β(HB−µNB))
, (4.48)

where µ is the chemical potential, and N = NS + NB is the total number of

particles in the system and the bath respectively, which is a conserved quantity

since [H, N ] = 0; and the master equation solution is

ρB =
e−β(HS−µNS)

Tr(e−β(HS−µNS))
. (4.49)

The case of a system coupled to several reservoirs is very interesting in the

sense that, if each reservoir has a different temperature or chemical potential, the



Chapter 4. Non-equilibrium open quantum systems 79

system will be carried to different states of thermal equilibrium. So, in general

the stationary state of the system will be a non-equilibrium state. Considering

that the different reservoirs do not interact directly, we have

HB =
K∑
l=1

H(l)
B (4.50)

and naturally [H(l)
B ,H

(k)
B ] = 0. If each reservoir has a certain temperature and

chemical potential, then

ρB =
e−β(H(1)

B −µN
(1)
B )

Tr(e−β(H(1)
B −µN

(1)
B ))
⊗ ...⊗ e−β(H(K)

B −µN(K)
B )

Tr(e−β(H(K)
B −µN(K)

B ))
, (4.51)

and the system is coupled directly to each reservoir

HI =
∑
α

Aα ⊗
K∑
l=1

BK
α . (4.52)

Since we are assuming Tr{B(l)
α (t)ρB} = 〈B(l)

α 〉 = 0 from the beginning, the bath

correlation function (see equation 4.20) is also additive

Cα,β(τ) =
K∑
l=1

C
(l)
α,β(τ), (4.53)

which implies that the correlation function between different reservoirs is zero

C
(k,l)
α,β (τ) = δk,lCα,β(τ) (4.54)

and therefore, such additivity is transferred via Fourier Transform (see equations

4.35 and 4.40) to the master equation. This can be written in a compact way

using the notation of the master equation in Liouville space:

W =W(0) +
K∑
l=1

W(l), (4.55)

whereW corresponds to the Liouvillian of the Markovian master equation

ρ̇ =Wρ. (4.56)
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Here we introduced the notation in the Liouville space. As we have seen,

a Markovian master equation is composed of a unitary evolutionW0ρ = −i[H, ρ],

and non-unitary evolutionary terms W(l) which are independent of each other

for the different (l) reservoirs. The density matrices are rewritten in the Lioville

space, as a mapping from the Hilbert space such that

ρ̂ =


ρ1,1 · · · ρ1,N

... . . . ...

ρN,1 · · · ρN,N

⇔ |ρ〉 =



ρ1,1

...

ρN,N

ρ1,2

ρ2,1

...

ρN−1,N

ρN,N−1


, (4.57)

conventionally by first placing the N populations, and then the N(N − 1) coher-

ences. So in Liouville space, the density matrix is a vector of dimension N2 and

the Liouvillian, a matrix N2 ×N2.

4.1.5 Full counting statistics

The simplest multi-terminal case is the two-terminal coupling, in which the

reservoirs are at different temperatures and/or chemical potential. In general, the

system will achieve a non-equilibrium stationary state in the presence of transport

of particles and heat. Understanding transport properties is fundamental to

understanding processes that typically occur out of equilibrium, such as thermal

machines or molecular processes. A powerful tool in the study of transport

properties is the Full Counting Statistics, which allows the calculation of all the

moments or cumulants of transport observables. Roughly, it gives the statistics of

the number of particles that enter or leave one or more reservoirs, in a specific

process during an interval of time [Esposito, Harbola e Mukamel 2009,Schaller

2014]. We will illustrate the counting or monitoring process, on a master equation

with one single reservoir, albeit it can easily be generalized to more reservoirs.
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The structure of the master equation makes it possible to identify “jump”

terms responsible for increasing or decreasing the number of particles in the

system. It is possible to write a n-resolved master equation at time t, as follows

ρ̇(n) =W0ρ
(n) +W+ρ

(n−1) +W−ρ(n+1), (4.58)

where W+ increases by one the number of particles in the reservoir, and W−
decreases it by one. All the other processes are described in W0. Thus, the

complete Liouvillian is

W =W0 +W+ +W−. (4.59)

Making use of the discrete Fourier transform, we can write

ρ(χ, t) =
∑
n

ρ(n)(t)einχ, (4.60)

that generates the following master equation

ρ̇(χ, t) = (W0 + eiχW+ + e−iχW−)ρ(χ, t) =W(χ)ρ(χ, t). (4.61)

The last equation is written in terms of a χ parameter, which is known as the

counting field. The general solution to this master equation is

ρ(χ, t) = eW(χ)tρ(χ, 0) = eW(χ)tρ0, (4.62)

in which ρ(0)(0) = δn,0ρ0 is conventionally assumed as the initial condition. Note

from the equation 4.60 that we can recover the original master equation taking

χ = 0

ρ(t) =
∑
n

ρ(n)(t). (4.63)

The probability distribution of the number of particles in a interval of time can be

obtained as

Pn(t) = Tr
(
ρ(n)(t)

)
. (4.64)

The decomposition of the master equation into its n-resolved equations (also

called conditional equations), increases the number of equations to solve, so it is

not very practical to work with it. However, there is a more direct way to evaluate

the counting statistics, using the fact that

Tr(ρ(χ, t)) = Tr
(
eW(χ)tρ0

)
=
∑
n

Pn(t)einχ, (4.65)
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then is possible evaluate the moments simply by calculating the derivatives with

respect to the counting field

〈nk(t)〉 =
∑
n

nkPn(t) = (−i∂χ)k
∑
n

Pn(t)einχ
∣∣∣∣
χ=0

. (4.66)

Defining the moment generating function as

M(χ, t) = Tr(ρ(χ, t)) = Tr
(
eW(χ)tρ0

)
, (4.67)

the moments can be computed as

〈nk(t)〉 = (−i∂χ)kM(χ, t)

∣∣∣∣
χ=0

. (4.68)

Generically, the initial condition is set to the steady state solution ρ0 = ρ̄0, where

W(0)ρ̄0 = 0. In the same way it is possible to define a cumulant generating

function as

C(χ, t) = lnM(χ, t) = ln Tr
(
eW(χ)tρ0

)
, (4.69)

then the cumulants can be calculated as

〈〈nk(t)〉〉 = (−i∂χ)kC(χ, t)
∣∣∣∣
χ=0

. (4.70)

We can also define the k-th order zero frequency current correlation as

〈
S(k)

〉
=

d

dt

∂k

∂ (iχ)k
C (χ, t)|χ=0,t→∞ =

d

dt
〈〈nk(t)〉〉|t→∞, (4.71)

and the zero-frequency Fano factors as

F (k) =

〈
S(k)

〉
〈S(1)〉

. (4.72)

It can be shown that in the long-time limit, the cumulant generating function

only depends on the dominant eigenvalue λ(χ) of the LiouvillianW(χ) [Esposito,

Harbola e Mukamel 2009]

C(χ, t) ≈ λ(χ)t. (4.73)

Remarkably, this result simplifies the calculations significantly.
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4.2 Feedback in quantum systems

Quantum control refers to the ability to drive a quantum system to a

desired state. Various theoretical and experimental models have been successful

in this effort [Zhang et al. 2017, Emary 2016]. Typically what is needed is a

controller to act on the system. If the controller does not do a feedback process,

the operation is called open loop control. Otherwise, a feedback process is an

operation in which the controller uses output information from the system, as

input for the modification of the system itself. This type of operation is called

closed loop control or feedback control. However, in the realm of quantum, we

have to differentiate between two types of feedback. If the controller uses classical

information from a measurement process, the process is called measurement

feedback quantum control. However it may be the case where the information

processed by the controller is of quantum nature, i.e. information that does

not come from a measurement process, but from a type of quantum signal

(such as light polarization or spin). This type of control is known as coherent

feedback control. In the figure 16 these different types of control are shown

schematically [James e Nurdin 2015]. In this Thesis we will study systems under

Wiseman-Milburn feedback control, which is a measurement feedback quantum

control.

4.2.1 Wiseman-Milburn feedback

The quantum control scheme proposed by Wiseman and Milburn, originally

for quantum optical systems [Wiseman 1994,Wiseman e Milburn 2009], has been

extended to mesoscopic systems, where it has been applied in the stabilization

and purification of quantum states [Pöltl, Emary e Brandes 2011], the design of

thermal machines [Strasberg et al. 2013] and the freezing of current fluctuations

[Brandes 2010], among others. This scheme is based on the possibility of detecting

jumps triggered by the reservoirs in the quantum system. Immediately after the

detection of a jump, the control operation generally unitary is applied so that,

depending on the parameters of the control operation, a desired state can be

obtained. We will now explain each of the steps of this control scheme.
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(a)

(b)

(c)

Figure 16 – Schemes of the different types of quantum control (a) open loop control, (b)
measurement feedback control, (c) coherent feedback control [James e
Nurdin 2015].

In general, a Markovian master equation can be written in Liouville space

as

ρ̇(t) =Wρ(t). (4.74)

In the system Hamiltonian eigenbasis, the Liouvillian has the following block

structure

W =

(
Wpop 0

0 Wcoh,

)
(4.75)

which means that on the Hamiltonian eigenbasis, populations and coherences

evolve independently. Populations have their own evolution equation

ρ̇pop(t) =Wpopρpop(t), (4.76)



Chapter 4. Non-equilibrium open quantum systems 85

while the coherences are exponentially damped until they disappear in the steady

state. It is known that the Liouvillian in Lindblad equations such as 4.7 and

4.40, can be interpreted as the sum of two terms: the first describes the smooth

evolution of the system, and the second describes an evolution by jumps

Wpop =W0 +
∑
ν

∑
i>j

(J ν
j→i + J̄ ν

i→j), (4.77)

where J ν
j→i and J̄ ν

i→j are the superoperators responsible for the quantum jumps

j → i, i→ j in the system triggered by the ν reservoir. Defining |i〉〉 and |j〉〉 as

system states in Liouville space such that Ei − Ej > 0, the jump superoperators

are

J ν
j→i = γνj→i |i〉〉〈〈j| , J̄ ν

i→j = γ̄νi→j |j〉〉〈〈i| , (4.78)

with the transition rates satisfying the local detailed balance

ln

(
γνj→i
γ̄νi→j

)
= −βν(Ei − Ej) (4.79)

such as in equation 4.46. Then, the smooth evolution is

W0 = −
∑
ν

∑
i>j

(γνj→i |j〉〉〈〈j|+ γ̄νi→j |i〉〉〈〈i|). (4.80)

Here we have the same Markovian master equation studied before, unravelled

in terms of jumps and smooth transitions in the Liouville space. Now we can

introduce the Wiseman-Milburn control scheme preserving the Markovianity and

other desirable properties in a master equation, as was discussed before. Assuming

a system coupled to two reservoirs, the control scheme can be understood in three

steps:

• Jump detection: A given reservoir, the one on the left, induces a jump in the

system by transferring a particle to the system: J L
j→i |j〉〉 = γLj→i |i〉〉.

• Control operation: Immediately after the jump, the control operation is ap-

plied, establishing certain parameters to obtain the desired state: CLj→iJ L
j→i |j〉〉 =

γLj→i |k〉〉.
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• Relaxation: The system jumps from the last state to the original state,

emitting the particle to the right reservoir, so that a new process can start:

J R
i→j |k〉〉 = γ′Ri→j |j〉〉.

Note from the first and second step that the control scheme is doing the operation

CLj→i |i〉〉 = |k〉〉. This can be done by a unitary operation, such that in the Hilbert

space is (now we can denote % as density matrix acting in Hilbert space and ρ,

the corresponding vector in Liouville space)

Cρ↔ UC%U
†
C ÛC = e−iθc~n~σ. (4.81)

The unitary operation rotates the state around the unit vector ~n = (sin θ, 0, cos θ).

In the third step, the transition rate is indicated as γ′Ri→j, which is modified with

respect to the original rate γRi→j, because the transition makes the jump k → j,

not i → j. Taking into account all possible transitions in all possible reservoirs,

we can write the master equation of the control process in the Liouville space as

WC =W0 +
∑
ν

∑
i>j

(
Cνj→iJ ν

j→i + Cνi→jJ
ν

i→j
)
, (4.82)

which has the following block structure

WC =

(
WC

pop 0

WC
cp Wcoh

)
. (4.83)

This equation maintains the independence of the populations, but unlike equation

4.75, it couples the coherencies to the populations, so the control operation can

be used to stabilize coherent states. Then the Liouvillian of populations can be

written as

WC
pop=

∑
ν

∑
i>j

γνj→i

(∑
k

(
Cνj→i

)
ki
|k〉〉〈〈j| − |j〉〉〈〈j|

)

+
∑
ν

∑
i>j

γνi→j

(∑
k

(
Cνi→j

)
kj
|k〉〉〈〈i| − |i〉〉〈〈i|

)
.

(4.84)

Notice that that the matrix elements of this equation no longer satisfy the detailed

balance condition and in the absence of feedback
(
Cνj→i

)
ki

= δik, thus recovering

equation 4.77.
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4.2.2 Delayed feedback

The feedback scheme originally proposed by Wiseman and Milburn con-

siders that immediately upon detecting a jump induced by a reservoir, the control

operation is activated. In a realistic scheme, there is a time interval between the

detection of the jump and the implementation of the control operation. Therefore,

a delay time was included in the scheme and its consequences were studied. The

delay time τ is introduced into formalism under a hypothesis called “control-

skipping assumption” [Emary 2013,Strasberg et al. 2013]. It establishes that if

the delay time is greater than the time between two consecutive jumps, there

will be no control operation. This hypothesis is reasonable insofar as it makes

sense to assume that if the delay time triggered by a jump is greater than the time

where the next jump emerges, the control operation is canceled, since otherwise

it would be executed in a time after the next jump (see figure 17). We will see

that as consequence, a non-Markovian master equation will be obtained.

Figure 17 – Control-skipping assumption system scheme. Time flows from right to left.
The control operation is canceled when the delay time is greater than the
time between jumps, as represented by the cross, in the second activation of
the operation [Emary 2013].

We know that the Lindblad master equation can be unraveled in terms of

jumps and smooth evolution, so, within a quantum trajectory interpretation, the

solution of the master equation can be written as [Carmichael 2009]

ρ(t) =
∞∑
n=0

∫ t

0

dtn . . .

∫ t2

0

dt1 Ω0 (tn − tn−1)J . . .JΩ0 (t2 − t1)JΩ0 (t1)︸ ︷︷ ︸
n jumps

ρ(0)

(4.85)

with Ω0(t) = eW0t. This is a sum over all possible paths along the system evolution.

From this perspective it is clear that one should introduce the “control-skipping
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assumption” as follows

Ω0(t)Jα → ΩC
0 (t)Jα =

{
Ω0(t)Jα, t < τα

Ω0 (t− τα) CαΩ0 (τα)Jα, t ≥ τα
(4.86)

where, the first condition is the non-execution of the control operation when the

delay time τ is greater than the time between jumps, and the second condition is

the effective application of the control. This substitution preserves the structure

of the equation 4.85, which in the Laplace space is

ρ(z) =

∫ ∞
0

dte−ztρ(t) =
1

z −W0 −
∑

αDα(z)Jα
ρ0, (4.87)

with a delayed-control operator

Dα(t) = δ(t) + (Cα − 1) eW0ταδ (t− τα) . (4.88)

Returning to the time domain, we find

ρ̇(t) =

(
W0 +

∑
α

Jα

)
ρ(t) +

∑
α

(Cα − 1) eW0ταJαθ (t− τα) ρ (t− τα) . (4.89)

This is a non-Markovian equation, since it depends on time in the past (t−τα). Note

that if there is no control operation C = 1, the master equation without feedback is

recovered, and if the delay time is zero τ = 0, we go back to the master equation

with feedback but without delay. At the limit when the delay time is infinite

limτα→∞ e
W0τα = 0, the master equation without feedback is recovered, which

makes sense since the control operation would never be executed. Returning to

the Laplace space, can be written

zρ̂(z)− ρ(0) =Wdelay(z)ρ̂(z), (4.90)

where

Wdelay(z) =W0 +
∑
α

[
1 + (Cα − 1) e(W0−z)τα

]
Jα. (4.91)

In this Thesis we will focus on steady states ρ = limz→0 zρ̂(z) = limt→∞ ρ(t), so

that when t→∞, ρ (t− τα) ≈ ρ(t) and θ (t− τα) = 1 for all τα. Thus

0 ≈ ∂

∂t
ρ(t) =Wdelay(0)ρ(t), (4.92)

whereWdelay(0) is a Markovian superoperator.
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4.3 Stochastic thermodynamics

In general, the term “stochastic thermodynamics” refers to theoretical

descriptions of small-scale thermodynamic systems where the effects of fluctu-

ations are relevant. Traditionally, classical thermodynamics is restricted to the

description of macroscopic systems in equilibrium or transformations between

equilibrium states. The pioneering works of Onsager and Prigogine [Lebon, Jou

e Casas-Vázquez 2008, Kondepudi e Prigogine 2014] extended such a descrip-

tion to non-equilibrium systems, which together with the advent of the so-called

fluctuation theorems [Bustamante, Liphardt e Ritort 2005], raised the need for

a theory that systematically describe these emerging phenomena. Diverse ap-

proaches at different levels of sofistication have been proposed, including the

field of quantum thermodynamics [Funo e Quan 2018]. Here we work with the

formulation of stochastic thermodynamics that was built into master equations,

since it offers a consistent theoretical framework for describing small-scale non-

equilibrium systems in the Markovian regime [Broeck e Esposito 2015,Esposito e

Mukamel 2006]. This theory reproduces well several important results, such as

fluctuation theorems and the laws of thermodynamics. It has also been successful

in describing nano-thermal engines and molecular machines [Seifert 2012]. In

this section we briefly review the fundamentals of macroscopic non-equilibrium

thermodynamics, and then address the formulation of stochastic thermodynamics.

4.3.1 Non-equilibrium thermodynamics

The classical theory of thermodynamics only accounts for systems in global

equilibrium or in quasi-static transformations (all the time the system is close to

equilibrium infinitesimally). However, the inherent irreversibility in any natural

process made it necessary the formulation of a non-equilibrium theory. This was

carried out under the hypothesis of local equilibrium: the local and instantaneous
relations between thermodynamic quantities in a system out of equilibrium are the
same as for a uniform system in equilibrium. This hypothesis states that locally, in a

sufficiently small space or cell, the system quickly reaches the equilibrium, being

large enough to opose microscopic fluctuations. A pioneer of these investigations

was Onsager who raised the problem for systems close to equilibrium, but in non-



Chapter 4. Non-equilibrium open quantum systems 90

quasi-static transformations, which in a first approximation led him to propose

linear relations between the so-called fluxes Ji and the forces Xi that cause the

fluxes. The latter are, in general, time derivatives of extensive quantities like

mass, heat or charge, whereas the forces are gradients of intensive quantities

like concentration, temperature or electrical potential. Some examples of this

linear dependence were already known before the Onsager’s developments, and

therefore were taken as starting points, such as

• Fourier law of heat conduction: JQ = −κ∂T
∂x

. JQ is the heat flux caused by

the temperature T gradient, and κ is the thermal conductivity constant of

the material.

• Ohm’s law of electrical conduction: J = −σ ∂V
∂x

. J is the charge flux by the

potential V gradient, σ is the electrical conductivity constant.

• Fick’s law of diffusion: Ji = −D ∂Ci
∂x

. Ji is the matter flux of a species i cause

a concentration Ci gradient, and D is the diffusion constant.

Then the following general relation was proposed

J = LX, (4.93)

where L is a transport coefficient. There may be several forces that put the system

out of equilibrium in a linear way, so there are cross effects between fluxes and

forces. If the process is close to equilibrium, new terms can be added to the

equation 4.93 and coupled fluxes appear. Denoting J1 and J2 two coupled fluxes,

and X1 and X2 the forces originating the fluxes, assuming linearity, the relations

are

J1 = L11X1 + L12X2,

J2 = L21X1 + L22X2, (4.94)

where L11, L21, L12, L22 are phenomenological coefficients. These equations,

called linear phenomenological relations, can be written in a most general way

Ji = Li1X1 + Li2X2 + ...+ LinXn =
n∑
k=1

LikXk (i = 1, 2..., n), (4.95)
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where the transport coefficients Lik = (∂Ji/∂Xk)Xi are generalized conductances.

In vector notation, we may write
J1

J2

...

Jn

 =


L11 L12 · · · L1n

L21 L22 · · · L2n

...
... . . . ...

Ln1 Ln2 · · · Lnn



X1

X2

...

Xn

 . (4.96)

Phenomenological coefficients of type Lii correspond to direct effects, and the

coefficients of type Lik with i 6= k correspond to crossed effects. The Onsager

theorem states that the couplings are symmetric. That is, given the set of fluxes Ji
and the associated forces Xk, the matrix of the phenomenological coefficients is

symmetric or antisymmetric

Lik = ±Lki (i 6= k). (4.97)

depending of the parity of the time-reversal symmetry of the fluctuations of

extensive state variables with respect to their equilibrium values [Lebon, Jou

e Casas-Vázquez 2008]. Usually the forces have its origin in the environment,

or external reservoirs to the system, so a thermodynamic description of open

systems was put forward. For this, Prigogine introduced the concepts of entropy

flux and production entropy from the second law of thermodynamics. For the

whole system-environment, the increase in total entropy must be equal to or

greater than zero.

∆Stot = ∆S + ∆Sr ≥ 0, (4.98)

where ∆S is the entropy generated by the system and ∆Sr = ∆Qr/T the entropic

contribution of the environment, which comes exclusively from the heat Qr

flowing to/from the system. If the environment provides heat to the system, then

Qr = −Q, or

∆S ≥ −∆Sr =
Q

T
. (4.99)

Then the entropy flux that enters to the system is defined as ∆eS = −∆Sr and

the entropy production is defined as the total entropy generated ∆iS = ∆Stot, so
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the second law of thermodynamics for a non-isolated system can be written as

∆S = ∆iS + ∆eS ∆iS ≥ 0, (4.100)

dS = diS + deS diS ≥ 0, (4.101)

Ṡ = Ṡi + Ṡe Ṡi ≥ 0. (4.102)

As the traditional formulation of the second law of thermodynamics, the pro-

duction of entropy (total entropy) is inherently irreversible, achieving equality

only for reversible quasistatic processes. Prigogine established for steady states

(Ṡ = 0), that irreversible stationary states produce entropy at a minimal rate. This

is known as Prigogine’s theorem. It can also be shown that the entropy production

can be written as the sum of fluxes times the corresponding forces

Ṡi =
N∑
i=1

JiXi ≥ 0. (4.103)

There is another way to write the laws of thermodynamics in terms of the free

energy state function defined as F = E − TS. In the canonical ensemble ∆F =

∆E − T∆S, the first law of thermodynamics is

∆E = Q+W = T∆eS +W. (4.104)

Combining this with ∆iS = ∆S −∆eS ≥ 0, the second law can be rewritten as

T∆iS = W −∆F ≥ 0. (4.105)

This equation establishes a minimum limit on the work done to make possible

a given transformation. If ∆F is negative, it means that the work can also be

negative, or in other words, work can be extracted from the system. Note that

this reformulation of thermodynamics for non-equilibrium open systems is not

restricted to the linear regime. It is valid for any system arbitrarily out of the

equilibrium.

With the advent of the study of small nano-size systems, it became evident

that fluctuations are important, even determinant in some cases. The consolidation

of the fluctuation theorems, in a regime of nonequilibrium beyond the linear,

helped to understand the relations between thermodynamics and fluctuations.
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One of the first fluctuation theorem was found by Gallavotti and Cohen [Gallavotti

e Cohen 1995], and establishes the relation between the straight and inverse

entropy flux distribution in a steady state process

lim
t→∞

kB
t

ln

(
P (Ṡi)

P (−Ṡi)

)
= Ṡi. (4.106)

This relationship shows a privileged entropy flux direction, which is the same

direction of heat flux. Nevertheless, there may be fluctuations of flux in the

opposite direction. For macroscopic systems, the relationship between probability

distributions of the previous equation grows exponentially, since the entropy is an

extensive magnitude, becoming the fluctuations insignificant. Another fluctuation

theorem is the Jarzynski equality [Jarzynski 1997], that relates the free energy of

a irreversible process between two equilibrium states, with their related work.

e(−β∆F ) =
〈
e−βW

〉
. (4.107)

This equation have as a consequence 〈W 〉 ≥ ∆F which is the second law referred

to in equation 4.105. Again, this theorem states that there may be fluctuations in

work, so for certain trajectories W < ∆F , but on average the second law must be

maintained. A generalized fluctuation theorem was introduced by Crooks [Crooks

1999], in a theorem that relates the distribution of work produced by a irreversible

non-equilibrium process forward in time PF (W ), and the respective backward

process, that is, the time-reversed trajectory PR(W ).

PF (W )

PR(−W )
= eβ(W−∆F ) (4.108)

. Through this Crooks theorem it is possible to deduce the Jarzynski equality and

the Gallavotti-Cohen fluctuation theorem in steady states.

4.3.2 The formulation of stochastic thermodynamics

In the section 4.1 we saw the general form of a Markovian master equation

in Liouville space:

ρ̇ =Wρ. (4.109)
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Can be shown that a Markovian master equation can be written on the diagonal

basis of the density matrix as [Esposito e Mukamel 2006]

ṗm(t) =
∑
m′

Wm,m′(t)pm′(t)

=
∑
m′ 6=m

(Wm,m′(t)pm′(t)−Wm′,m(t)pm(t))

=
∑
m′ 6=m

Jm,m′(t). (4.110)

with the probability current defined as

Jm,m′(t) =Wm,m′(t)pm′(t)−Wm′,m(t)pm(t), (4.111)

where m,m′ are the possible states of the density matrix andWm,m′ is the tran-

sition probability element from state m to state m′, per unit of time. In general,

the basis is time-dependent, as the states and the transitions. The conservation of

probability impose the condition∑
m

Wm,m′ = 0, (4.112)

so, the diagonal elements of the transition probability rates are

Wm,m = −
∑
m′ 6=m

Wm′,m. (4.113)

In the section 4.1 it was also established that a Lindblad equation has constant

coefficients, that is,Wm′,m are independent of time. Each statem can be associated

to the energy εm, and a number of particles nm. The average of the energy and

the number of particles are respectively

E =
∑
m

εmpm, (4.114)

N =
∑
m

nmpm. (4.115)

The first law of thermodynamics can be formulated as

Ė = Ẇ + Q̇+ Ẇchem, (4.116)
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where the work and heat fluxes are defined as

Ẇ =
∑
m

ε̇mpm, (4.117)

and

Q̇+ Ẇchem =
∑
m

εmṗm. (4.118)

This means that changes in the work cause changes in the energy levels, as well

as changes in the heat causes changes in the states of the system, that is, jumps

between states. Chemical work is included into the changes of the states because

it can induce jumps, changing the occupation numbers. The generalization to

multiple reservoirs is straightforward since it is assumed that the transition rates

matrix is additive

W =
∑
ν

W (ν), (4.119)

The other quantities are also additives. We thus have

Q̇ =
∑
ν

Q̇(ν), (4.120)

Ṅ =
∑
ν

Ṅ (ν), (4.121)

Ẇchem =
∑
ν

Ẇ
(ν)
chem, (4.122)

Jm,m′ =
∑
ν

J
(ν)
m,m′ . (4.123)

Now we introduce the condition of local detailed balance, which is equivalent

to the local equilibrium assumption, and assumes that each transition rate W (ν)

at each moment, obeys a detailed balance with respect to the corresponding

equilibrium distribution of the corresponding reservoir ν

W(ν)
m,m′(t)p

eq,v
m′ (t) =W(ν)

m′,m(t)peq,vm (t). (4.124)

The equilibrium distribution in the canonical ensemble is

peq,vm (t) = exp
(
− β(ν)

(
εm(t)− F eq,v(t)

))
, (4.125)
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where

exp
(
−β(ν)F eq,v(t)

)
=
∑
m

exp
(
−β(ν)εm(t)

)
. (4.126)

In the grand canonical ensemble (G = E − TS − µN) and we get

peq,vm (t) = exp
(
− β(ν)

(
εm(t)− µ(ν)nm(t)−Geq,v(t)

))
, (4.127)

where

exp
(
−β(ν)Geq,v(t)

)
=
∑
m

exp
(
−β(ν)(εm(t)− µ(ν)nm(t))

)
. (4.128)

Defining the difference in energy and number of particles in a transition as

εm,m′ = εm − ε′m, (4.129)

nm,m′ = nm − n′m, (4.130)

we may use the equation 4.110 to write the rates of thermodynamic quantities,

induced for each coupling reservoir, in terms of the probability current Jm,m′

(Note that Jm,m′ = −Jm′,m and the external work is zero Ẇ = 0). We get

Ė(ν) =
1

2

∑
m,m′

εm,m′J
(ν)
m,m′ , (4.131)

Ṅ (ν) =
1

2

∑
m,m′

nm,m′J
(ν)
m,m′ , (4.132)

Ẇ
(ν)
chem =

1

2

∑
m,m′

µ(ν)nm,m′J
(ν)
m,m′ ,

= µ(ν)Ṅ (ν), (4.133)

Q̇(ν) =
1

2

∑
m,m′

q
(ν)
m,m′J

(ν)
m,m′ ,

= Ė(ν) − µ(ν)Ṅ (ν), (4.134)

where

q
(ν)
m,m′ = εm,m′ − µ(ν)nm,m′ . (4.135)
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From the equation 4.127 the “local detailed balance assumption” results in

ln
W(ν)

m,m′

W(ν)
m′,m

= ln
peq,vm

peq,vm′
= −β(v)qm,m′ = β(v)qm′,m. (4.136)

This relation is equivalent to the equations 4.46 and 4.79, and allows a direct

connection between the stochastic dynamics of the system with well-established

thermodynamic quantities. The “local detailed balance” assumption describe the

coupling of the system with the reservoirs, however there is no assumption about

the state of the system itself, so it may be arbitrarily far from equilibrium.

Shannon entropy was used to describe entropy, since, because of the

structure of the equation 4.75, in the stationary state the coherences disappear,

and we are left with

S = −kβ
∑
m

pm ln pm. (4.137)

It is straightforward to show that the rate of change of the entropy can be split as

the contribution of two terms

Ṡ = kβ
∑
m,m′,ν

W(v)
m,m′pm′ ln

W(ν)
m,m′pm′

W(ν)
m′,mpm

+ kβ
∑
m,m′,ν

W(v)
m,m′pm′ ln

W(ν)
m,m′

W(ν)
m′,m

, (4.138)

from which the entropy production was identified as

Ṡi = kβ
∑
m,m′,ν

W(v)
m,m′pm′ ln

W(ν)
m,m′pm′

W(ν)
m′,mpm

≥ 0, (4.139)

and the entropy flux as

Ṡe = kβ
∑
m,m′,ν

W(v)
m,m′pm′ ln

W(ν)
m,m′

W(ν)
m′,m

. (4.140)

This identification was chosen because it is consistent with the usual form of ther-

modynamics. The entropy production is always positive because (x−y) lnx/y ≥ 0

and it can be written as the sum of products between fluxes and forces, as the

equation 4.103
diS

dt
=

1

2

∑
m,m′,ν

J
(v)
m,m′X

(v)
m,m′ ≥ 0, (4.141)
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where J (v)
m,m′ is the probability current flux and

X
(v)
m,m′ = kβ ln

W(ν)
m,m′pm′

W(ν)
m′,mpm

(4.142)

is the force causing the flux. From the equation 4.136, the entropy flux is

deS

dt
=
kβ
2

∑
m,m′,ν

J
(v)
m,m′q

(v)
m,m′ =

∑
ν

Q̇(v)

T (v)
. (4.143)

Both definitions, the equations 4.139 and 4.140 are consistent with the standard

formulation of non-equilibrium thermodynamics.

4.3.3 Trajectory stochastic thermodynamics

Up to this point, we have presented the fundamentals of the stochastic

thermodynamics from the point of view of ensembles, however, it is also possible

to make a formulation in terms of trajectories, that is, in terms of individual real-

izations. The stochastic nature of the dynamics has their origin in the fluctuations

caused by the interaction with the environment, that is, from the heat exchange.

However, considering individual realizations, the work becomes stochastic too,

so that each realization can generate a different amount of work. This will be

reflected in the fluctuation theorems, presented here under the formulation of

stochastic thermodynamics. A trajectory, denoted by Π corresponds to the state

of the system in a specific time interval, i.e., m(t), t ∈ [ti, tf ]. The initial state is

mi = m1 = m(ti), there are N − 1 jumps from mj to mj+1 at specific instants of

time tj+1,j, and the final state is mf = mN = m(tf ).

For a single realization, the energy is also a state function, being a mi-

crostate of the system. Using the notation of lower script to specify the thermody-

namic quantities at the trajectory level, we define

e = eΠ = εm(t)(t). (4.144)

The energy difference only depends on the final and initial states

∆e = ef − ei = εm(tf )(tf )− εm(ti)(ti). (4.145)
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Then, as before, work on a trajectory is related to changes in the energy of a given

state; and the heat is related to the jumps between states.

w =[εm1(t2,1)− εm1(ti)] + [εm2(t3,2)− εm2(t2,1)]

+ ...+ [εmN (tf )− εmN (tN,N−1)], (4.146)

q =
∑
jumps

qj+1,j, (4.147)

qj+1,j =εmj+1
(tj+1,j)− εmj(tj+1,j). (4.148)

For multiple reservoirs, it is necessary to specify each reservoir

q =
∑
ν

q(ν), (4.149)

It is also possible to formulate the first law of thermodynamics at the trajectory

level as

∆e = w + q. (4.150)

Routinely in information theory, the entropy of a single event can be

defined as the lack of knowledge or certainty, by Shannon’s formula S = − ln pm.

So, for example, the certainty about an event pm → 1 implies S → 0 and the total

uncertainty pm → 0 leads to entropy growing indefinitely S →∞. Seifert defined

the entropy of a single trajectory in the stochastic thermodynamics [Seifert 2005]

as

s = sΠ(t) = −kβ ln pm(t)(t). (4.151)

This definition is consistent with the Shannon entropy (see equation 4.137) since

it is evident that the average over the ensemble is

S = 〈s〉 = −kβ
∑
m

pm ln pm. (4.152)

Just like energy difference, entropy difference is a state function of the corre-

sponding microstate

∆s = −kβ ln pmf (tf ) + kβ ln pmi(ti). (4.153)

The entropy flux at the trajectory level can be expressed as

∆es =
∑
jumps

q
(ν)
j+1,j

T (ν)
, (4.154)
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or, from the local detailed balance (see equation 4.136)

∆es = −kβ
∑
jumps

ln
W(ν)

j+1,j

W(ν)
j,j+1

. (4.155)

This leads to the following expression for the entropy production

∆is = ∆s−∆es = −kβ ln pmf (tf ) + kβ ln pmi(ti) + kβ
∑
jumps

ln
W(ν)

j+1,j

W(ν)
j,j+1

. (4.156)

This expression for the entropy production of a single realization can be negative.

This is kind of expected since the stochastic character of the system can generate

trajectories with negative entropy.

Introducing the stochastic free energy

f = e− Ts, (4.157)

and combining the equations 4.154 and 4.156 with the stochastic first law (equa-

tion4.150), we obtain

T∆is = w −∆f, (4.158)

which corresponds to the analogous expression 4.105 obtained using ensemble

statistics. For an equilibrium distribution peqm the free energy becomes independent

of the state

f eq = F eq. (4.159)

So, if the initial and final system states are in equilibrium, we get

T∆is = w −∆F eq. (4.160)

This result is important because it indicates, that apart from a fixed quantity ∆F eq,

the stochastic work and the stochastic entropy production behave in the same

way.

There is a central result in the theory of stochastic thermodynamics, a

fundamental relation for the entropy production [Broeck e Esposito 2015]. Given

a trajectory Π one can associate it with a probability P(Π) of observing it. It is

also possible to identify the time reverse path labeled with a “tilde” Π̃, and its
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probability P̃ (Π̃) so that the initial probability of the inverse trajectory is the

final probability of the forward trajectory. So, the entropy production along the

trajectory Π is

∆is = kβ ln
P(Π)

P̃(Π̃)
. (4.161)

The second law of thermodynamics is immediately recovered from this result,

because the ensemble average of the stochastic entropy production is non-negative

∆iS = 〈∆is〉 = kβ
∑
Π

P(Π) ln
P(Π)

P̃(Π̃)
≥ 0. (4.162)

Another result that can be immediately derived is the integral fluctuation

theorem 〈
exp

(
−∆is

kβ

)〉
=

〈
P̃
P

〉
=
∑
Π

P P̃
P

= 1. (4.163)

which is valid for any initial and final probability. For the special case of transitions

between equilibrium states, one can introduce the equation 4.160 in the previous

result to obtain the well-known Jarzynski equality (see the equation 4.107)

〈exp(−βw)〉 = exp(−β∆F eq). (4.164)

Also from equation the 4.161 it is possible to show that

P (∆is)

P̃ (−∆is)
= exp

(
∆is

kβ

)
(4.165)

which is the Gallavotti-Cohen theorem or detailed fluctuation theorem referred

to in the equation 4.106.

4.3.4 Thermodynamics of feedback

At this point, it is possible to formulate the thermodynamics of the

Wiseman-Milburn feedback with the formalism of stochastic thermodynamics.

The starting point is the generator of the master equation 4.77 including the

counting factors in the jump terms

W(χ) =W0 +
∑
ν

∑
i>j

(γνj→ie
iχνj,i |i〉〉〈〈j|+ γ̄νi→je

−iχνj,i |j〉〉〈〈i|). (4.166)
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As we saw in the subsection 4.1.5, the net current associated with the transition

j → i triggered by the reservoir ν, can be calculated by taking the time derivative

of the first moment of the transport statistic

Iν(i,j)(t) =
∂

∂t
〈n〉ν(i,j)(t) =

∂

∂t

∂

∂
(
iχν(i,j)

) tr(ρ(χ, t))

∣∣∣∣
X=0

= tr
(
W ′(0)eW(0)tρ(0) +W(0)

(
eW(0)t

)′
ρ(0)

)
,

(4.167)

where ′ is the notation of the derivative with respect to (iχν(i,j)) evaluated at χ = 0.

The second term vanish because of the condition
∑

iWi,j = 0. Thus, we get

Iν(i,j)(t) = tr (W ′(0)ρ(t)) . (4.168)

So, the probability current associated with the transition (i, j)ν is

Iν(i,j)(t) = γνj→ipj(t)− γ̄νi→jpi(t). (4.169)

Note that this current is the same defined in the equation 4.111. Following this

same procedure, when the feedback is applied, we start from the generator of the

equation 4.82

Iν(i,j)(t) = tr
[(
Cνj→iJ ν

j→i − C
ν

i→jJ
ν

i→j
)
ρ(t)

]
(4.170)

it can be shown that the equation 4.169 is recovered. That is, the probability

current does not change when the control operation is applied. So, in consistence

with the equation 4.134, the heat transfer is defined as

Q̇(ν)(t) =
∑
i>j

(Ei − Ej − µν) Iν(i,j)(t). (4.171)

Each time a jump is detected by the control operation, the feedback is imple-

mented with an energy injection that can be written as(
Ḟ (ν)
E (t)

)
(i,j)

= tr
[
HS

(
Cνj→i − 1

)
J ν
j→iρ(t)

]
+ tr

[
HS

(
Cνi→j − 1

)
J ν

i→jρ(t)
]
.

(4.172)

This quantity is positive if the energy of the system increases, and zero if no control

operation is implemented (Cνj→i, C
ν

i→j = 1). So, the first law of thermodynamics

with feedback is

Ė(t) =
∑
ν

(
Q̇(ν)(t) + Ḟ (ν)

E (t)
)

+ Ẇchem, (4.173)
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with

Ḟ (ν)
E (t) =

∑
i>j

(
Ḟ (ν)
E (t)

)
(i,j)

. (4.174)

The control operation also modifies the entropy production and flux adding new

entropy to the system. From the definitions of entropy of stochastic thermodynam-

ics 4.139, 4.140, one can identify the corresponding entropies in the presence of

feedback as

Ṡi(t) =
∑
ν

∑
i,j

(
WC

)(ν)

ij
pj(t) ln

(
WC

)(ν)

ij
pj(t)

(W)
(ν)
ji pi(t)

> 0, (4.175)

Ṡe(t) =
∑
v

∑
i,j

(
WC

)(ν)

ij
pj(t) ln

(
WC

)(ν)

ji

(WC)(ν)
ij

, (4.176)

where the superscript C refers to the application of control in the master equation.

After some algebraic manipulations, the entropy flow reads [Strasberg et al. 2013]

Ṡe(t) =
∑
ν

Q̇(ν)(t)

Tν
− ḞS(t), (4.177)

where ḞS(t) characterizes the entropy injection. Hence, the second law of ther-

modynamics is given by

Ṡi = Ṡ − Ṡe = Ṡ −
∑
ν

Q̇(ν)

Tν
+ ḞS ≥ 0. (4.178)

This reformulation of the thermodynamic laws shows that the control operation

can inject both energy and entropy into the system, being both additive

ḞE,S =
∑
ν

F (v)
E,S. (4.179)

From this point of view a Maxwell demon could be understood as a feedback

operation where the injected energy flux is zero ḞE = 0, but injected entropy flux

is non-zero ḞE > 0.
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5 THERMODYNAMICS OF FEEDBACK CONTROLLED DYNAMICS WITH

FERMIONIC AND BOSONIC RESERVOIRS

The non-equilibrium thermodynamics of small quantum systems have

been a subject of great recent interest, because the exchange of energy in both,

molecular (biological) machines and thermal engines, occurs far from equilib-

rium [Bustamante, Liphardt e Ritort 2005]. Fluctuations play a relevant role

in the dynamics of these small systems, so the development of the fluctuation

theorems [Evans, Cohen e Morriss 1993,Evans e Searles 2002], the Jarzynski’s

equality [Jarzynski 1997], and the Crocks theorem [Crooks 1999], and their

experimental tests [Ritort 2004], are fundamental steps in the understanding of

such thermodynamic processes.

More recently, the use of quantum control operations to create feedback

protocols, which use information of the system to modify the system itself in a

closed loop, has proved useful and efficient in the execution of tasks that could be

difficult to achieve otherwise. The reduction of noise and quantum decoherence

rate, quantum error correction, the purification and stabilization of quantum

states [Zhang et al. 2017], and the implementation of heat engines [Strasberg

et al. 2013] are examples of the possibilities of application of quantum feedback

control.

The theoretical formulation of stochastic thermodynamics provides a sim-

ple and coherent framework to study the non-equilibrium thermodynamic pro-

cesses for small systems [Broeck e Esposito 2015,Seifert 2012,Esposito, Harbola

e Mukamel 2009]. Assuming that the process is Markovian and under the rotat-

ing wave approximation (RWA), it is possible to obtain a Lindblad type master

equation for the dynamic evolution, and from the formulation of stochastic

thermodynamics we obtain the relevant thermodynamic quantities, even if the

dynamic is modified by a feedback operation.

We are going to study a qubit system coupled with two bosonic and

fermionic reservoirs respectively. Such systems may correspond, in the bosonic

case, to the absorption/emission of photons of a two-level system, from/to coupled
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photon reservoirs, and in the fermionic case, to the transport of electrons through

a quantum point coupled to electron reservoirs.

5.1 Qubit system

A two-level system coupled to two boson reservoirs at different temper-

atures absorbs and emits bosons to and from each reservoir. The system as a

whole can be understood as a system of bosons transport through the two-level

system, from the hot reservoir to the cold reservoir. A quantum dot coupled to

two electron reservoirs at different temperatures and/or chemical potential is a

fermionic transport system through the quantum dot. Both correspond to qubit

systems whose Hamiltonian is composed of the Hamiltonian of the qubit, the

Hamiltonian of the reservoirs and a term describing the interaction between the

system and the reservoirs. We may thus write

H = HS +HB + V, (5.1)

HS =
ε

2
σz, (5.2)

HB =
∑

ν∈{L,R}

∑
k

ωkνb
†
kνbkν , (5.3)

V =
∑

ν∈{L,R}

∑
k

Tkν(b
†
kνcs + bkνc

†
s). (5.4)

where ε, ωkν , Tkν ≥ 0 are the eigenenergy difference in the qubit levels, the normal

modes energy in the reservoirs, and the coupling energy respectively. The system

operators in the eigen-basis are σz = |1〉〈1| − |0〉〈0|, cs = |0〉〈1|, c†s = |1〉〈0|, and

bkν , b
†
kν denotes the annihilation and creation reservoir operators. Each reservoir

is independent and does not interact directly with the other reservoir, and its

operators obey the following (anti-)commutation relations

bkνb
†
lν′ ± b

†
lν′bkν = δklδνν′ , (5.5)

where the anticommutation relation reveals the fermionic character of the opera-

tors, and the commutation, the bosonic character.

This type of transport system has been widely studied due to its simplicity.

Specifically, for a weak bath-system coupling, under the Markovian and RWA
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approximations, corresponds to a Lindblad master equation [Gurvitz e Prager

1996,Harbola, Esposito e Mukamel 2006,Harbola, Esposito e Mukamel 2007]

ρ̇(t) = −i[Hs, ρ(t)] +

( ∑
ν∈{L,R}

γν

)(
c†sρ(t)cs −

1

2
ρ(t)csc

†
s −

1

2
c†scsρ(t)

)
+

( ∑
ν∈{L,R}

γν

)(
csρ(t)c†s −

1

2
ρ(t)c†scs −

1

2
csc
†
sρ(t)

)
, (5.6)

where the transition rates

γν = Γνnν(ε), γν = Γν(1∓ nν(ε)), (5.7)

are determined by the Fermi or Bose distributions as

nν(ε) = (eβν(ε−µν) ± 1)−1, (5.8)

depending on whether the reservoirs are fermionic or bosonic. The convention is

that the upper sign in the equations 5.7,5.8 is maintained for the fermionic case,

and the lower sign for the bosonic case. The tunnel rates Γν are calculated assum-

ing a constant density of states σ in the leads (see figure 2): Γν = 2π
~ σ
∑

k |Tkν |2. It

is well known that the dynamics in a Lindblad equation can be separated in terms

of jumps and continuous evolution. Note that the terms with factors c†sρ(t)cs and

csρ(t)c†s correspond to the jumps in the evolution, since they represent transitions

between the states 0↔ 1, and the rest of the terms correspond to the smooth or

continuous evolution.

The master equation 5.6 can be written in the Liouville basis {p0, p1, ρ0,1, ρ1,0}
as

ρ̇(t) =Wρ(t), (5.9)

withW having the block structure

W =

(
WC

pop 0

0 Wcoh

)
, (5.10)

where

Wpop =
∑
ν

(
−γν γν

γν −γν

)
, (5.11)
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Wcoh =

(
iε−

∑
ν
γν+γν

2
0

0 −iε−
∑

ν
γν+γν

2

)
. (5.12)

The populations and coherences are decoupled, and the coherences decay expo-

nentially. In the steady state the populations are

p0 = 1− p1 =

∑
ν γν∑

ν(γν + γν)
, (5.13)

and the coherences vanish ρ0,1, ρ1,0 = 0. So, as seen in the subsection 4.3.4, we

have that the probability current and the heat flow are respectively

Iν = γνp0 − γ̄νp1, Q̇(ν) = (ε− µν)Iν . (5.14)

Then, the first and second law of thermodynamics are given respectively by

Ė = Q̇L + Q̇R, Ṡi = Ṡ − (βL − βR)Q̇L > 0. (5.15)

5.2 Qubit system with feedback

As we have seen in section 4.2.1, the Wiseman-Milburn feedback is a

protocol implemented by detecting the particles exchanged between the reservoirs

and the system. Immediately after the detection a unitary control operation is

implemented, to drive the system to the desired state. Denoting % as the density

matrix acting in Hilbert space and ρ, the corresponding vector in Liouville space,

the unitary operator Cρ↔ UC%U
†
C in the basis {|0〉 , |1〉} is

U±ν ≡ e−iα
±
ν (|0〉〈1|+|1〉〈0|) =

(
cos(α±ν ) −i sin(α±ν )

−i sin(α±ν ) cos(α±ν )

)
. (5.16)

This operation corresponds to a rotation of α±ν around the x-axis of the Bloch

sphere, and is implemented over the jumps terms of the master equation. The

+/− labels, refer to the triggered operation by the absorption/emission of a

particle in the system from/into the ν reservoir. Under this scheme, the feedback

master equation has the following block structure (the superscript C refers to the

application of control):

ρ̇(t) =WCρ(t), (5.17)
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WC =

(
WC

pop 0

WC
cp Wcoh

)
. (5.18)

with

WC
pop =

∑
v

(
−γv cos2 αv+ γv cos2 αv−

γv cos2 αv+ −γv cos2 αv−

)
, (5.19)

WC
cp =

i

2

∑
ν

(
−γv sin 2αν+ γv sin 2αν−

γv sin 2αv+ −γv sin 2αv−

)
, (5.20)

andWcoh being the same as the equation 5.12. Again, occupations are not coupled

to coherences, but coherences are coupled to occupations through WC
cp terms.

This means that coherent states can also be stabilized by the control operation

because, in the presence of feedback, coherences do not vanish in the steady state.

The solution of the equation 5.17 for the steady state is

p0 = 1− p1 =
γL cos2 αL− + γR cos2 αR−

γL cos2 αL+ + γL cos2 αL− + γR cos2 αR+ + γR cos2 αR−
(5.21)

ρ01 = ρ∗10 =
2iγL cosαL+

[
γL cosαL− sin

(
αL− − αL+

)
+ γR cosαR− sin

(
αR− − αL+

)]
N

+
2iγR cosαR+

[
γL cosαL− sin

(
αL− − αR+

)
+ γR cosαR− sin

(
αR− − αR+

)]
N

,

(5.22)

with

N =
(
γL cos2 αL+ + γL cos2 αL− + γR cos2 αR+ + γR − γR sin2 αR−

)
× (−2iΩ + γL + γL + γR + γR) . (5.23)

Now we can formulate the stochastic thermodynamics of the system in the

presence of feedback, from the definitions established in the section 4.3. The first

law of thermodynamics becomes

Ė(t) = Q̇L(t) + ḞLE(t) + Q̇R(t) + ḞRE (t) + Ẇchem, (5.24)

where the injected energy rate by the feedback is

Ḟ (v)
E (t) = ε (IvF (t)− Iv(t)) , (5.25)
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and IvF (t) is the effective current of the feedback generator of the equation 5.19

IvF (t) = cos2 αν+γvp0(t)− cos2 αν−γνp1(t). (5.26)

In the steady state Ė(t) = 0, and therefore ILF + IRF = 0, or equivalently

ḞE = −Q̇L − Q̇R − Ẇ . In the same way, the injected entropy rate can be found

from the equation 4.177 and the local detailed balance condition

ḞS =
∑
v

Q̇(v)

Tv
+

(
−ε− µL

TL
+
ε− µR
TR

+ fL − fR
)
ILF (5.27)

with fv = ln
cos2 αν+
cos2 αν−

. The second law of thermodynamics has the form

Ṡi = Ṡ − Ṡe = Ṡ −
∑
ν

Q̇(ν)

Tν
+ ḞS ≥ 0. (5.28)

It is feasible to write an integral fluctuation theorem at the trajectory level, when

the feedback protocol is implemented. In the same way as in the section 4.3.3,

reformulating all quantities at the level of trajectories, from the equation 4.163

we have 〈
exp

(
−∆s+

∑
ν
q̇(ν)

Tν
− fS

kβ

)〉
= 1, (5.29)

where fS is the integral injected entropy flux. From this, it is possible to derive

Jarzynski’s equality for the case of a coupling with a single reservoir, and the

detailed fluctuation theorem for stationary states [Esposito e Schaller 2012].

5.3 Qubit system with time-delayed feedback

As was shown in the section 4.2.2, the condition for applying the control

operation instantaneously after the detection of a jump, was relaxed in order

to describe more realistic systems. A time delay τ was introduced under the

“control-skipping assumption” which states that if the delay time is greater than

the time between two consecutive jumps, there will be no control operation. The

generator of the master equation with time-delayed feedback Wdelay(0) in the
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steady state (see equation 4.92), has the following block form in the Liouville

basis

Wdelay(0) =

(
Wdelay

pop 0

Wdelay
cp Wcoh

)
, (5.30)

with

Wdelay
pop =

∑
v

(
−γv(1− exp

(∑
ν γvτ

v
−
)

sin2 αv+) γv(1− exp
(∑

ν γvτ
v
+

)
sin2 αv−)

γv(1− exp
(∑

ν γvτ
v
−
)

sin2 αv+) −γv(1− exp
(∑

ν γvτ
v
+

)
sin2 αv−)

)
,

(5.31)

Wdelay
cp =

i

2

∑
y

(
−γv exp

(∑
ν γvτ

v
−
)

sin 2αν+ γv exp
(∑

ν γvτ
v
+

)
sin 2αν−

γv exp
(∑

ν γvτ
v
−
)

sin 2αv+ −γv exp
(∑

ν γvτ
v
+

)
sin 2αv−

)
,

(5.32)

andWcoh unmodified. The parameter τ ν± is the delay time for each of the related

control operations U±ν . Notice that the delay time introduces a damping, both,

in populations and coherences as it increases. The laws and the equations of

stochastic thermodynamics remain the same as in the previous section, where the

time delay vanishes. Only few changes must be introduced: for the first law of

thermodynamics, the equation 5.24 is maintained, changing IvF for

IvF (t) = (1− e(
∑
ν γvτ

v
−) sin2 αv+)γvp0(t)− (1− e(

∑
ν γvτ

v
+) sin2 αv−)γνp1(t), (5.33)

which is the effective current of the feedback generator of the equation 5.31.

For the law second law of thermodynamics, the equation 5.27 is maintained too,

introducing a new fv

fv = ln
1− e(

∑
ν γvτ

v
−) sin2 αv+

1− e(
∑
ν γvτ

v
+) sin2 αv−

. (5.34)

5.4 Applications: Heat pump

Simple transport systems with a feedback operation can be used to gener-

ate a heat pump. This is a device that, working between two reservoirs at different

temperatures, delivers heat to the hotter reservoir using a given external work.

The efficiency of a conventional heat pump can be characterized by the coefficient

of performance, which quantifies the heat delivered to the hotter reservoir, with
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respect to the used total work. Assuming that the left reservoir is the hotter

reservoir TL > TR, the coefficient of performance is

κC ≡
−Q̇L

Ẇ
≤ TL
TL − TR

≡ 1

ηC
, (5.35)

where ηC is the Carnot coefficient and hence κC is always positive and less than

1/ηC . Strasberg et al [Strasberg et al. 2013] showed that it is possible to design a

heat pump with a two-level system between two reservoirs of phonons at different

temperatures using a Wiseman-Milburn type feedback as an external source of

work since this feedback injects both energy and entropy into the system. They

showed that it is not enough just to take into account the work injected by the

feedback, since a correct description must take into account the work produced by

the entropy injection. From the first and second law of thermodynamics written

in the equations 5.24 and 5.28, for stationary states (Ė = 0, Ṡ = 0), it is easy to

show

TRṠi = ḞE + TRḞS + Ẇchem + Q̇LηC ≥ 0. (5.36)

where Ẇchem = (µL − µR)IL is the work induced by the difference between

chemical potentials in the reservoirs (electrochemical potential, see equation

4.133). If Ẇchem is assumed positive, then

ḞE + TRḞS + Ẇchem ≥ −Q̇LηC ≥ 0. (5.37)

So, as the heat delivered to the left reservoir is negative, the device works as a

heat pump. The performance coefficient is

κC =
−Q̇L

ḞE + TRḞS + Ẇchem

=
1

ηC

(
1− TRṠi

ḞE + TRḞS + Ẇchem

)
≤ 1

ηC
. (5.38)

The fact of considering Ẇchem 6= 0, will allow us to extend the analysis done in

[Strasberg et al. 2013] for bosonic reservoirs (which typically have zero chemical

potential), to systems with fermionic reservoirs. It is possible to change the

difference between chemical potentials simply by applying a potential difference

V = µL − µR between the reservoirs, such as Ẇchem = V IL. We will show the

analysis corresponding to a quantum dot coupled to two electron reservoirs,
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and we will make the comparative analysis with the analog system with bosonic

reservoirs.

The efficiency of the heat pump is maximal, when the parameters minimize

the negative heat flux (see equation 5.14) Q̇(ν) = (ε−µν)(γνp0− γ̄νpν1). This is true

when the occupations are p0 → 0 and p1 → 1; which is fulfilled by the parameters

αν+ = 0, αν− = π/2 (see equation 5.21).

The analysis of the Full Counting Statistic shows us a clear signature on

the efficiency of the system. We allow the free variation of the parameter αν−,

keeping αν+ = 0, and plot the related Fano factors (see equation 4.72), calculated

with the approximation referred to in the equation 4.73, assuming zero delay

time. We see the Fano factors converging to unity when αν− = π/2, that is to say,

when the system has maximum efficiency. In the figure 18 we see such behavior

for the fermionic system, being the behavior of the bosonic system very similar.
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Figure 18 – Variation of the values of the Fano factors with respect to the feedback
parameter αν− for the fermionic system. System parameters: ΓL = 1, ΓR = 1,
ε = 1, TL = 1, TR = 0.5 V = 0 (ηC = 2). Feedback parameters: αν+ = 0.

This behavior can be understood since when the system has maximum

efficiency, the state of the system is pure and without coherence p0 → 0 , p1 → 1,

ρ0,1 = ρ∗1,0 = 0. For this reason, it is expected that these states have classical
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statistics, which corresponds to a cumulant generating function of a Poisson

process, where all Fano factors are equal to unity.
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Figure 19 – Influence of the delay time on the efficiency of the heat pump. System
parameter: ΓL = 1, Γ1 = 1, ε = 1, TL = 1, TR = 0.5 V = 0 (ηC = 2).
Feedback parameters: αν+ = 0, αν− = π/2. (a) Fermionic reservoirs, (a)
Bosonic reservoirs.

Let us try and figure out what happens when the delay time is finite. In the

figure 19, maintaining the maximum efficiency parameters, we see how the delay

time decreases the efficiency of the heat pump, as well as the heat flow transferred

to the hotter reservoir, for both, fermionic and bosonic reservoirs respectively. It

was assumed that all possible control operations have the same delay time τ = τ ν±

and there is not potential difference V = 0. For τ = 0 the efficiency is maximum

κC = 1
ηC

, as expected, regardless of the type of reservoir. For small τ the transfer

of heat to the hotter reservoir is higher when the reservoirs are bosonic, however,

this heat exchange survives for longer delay times in the fermionic case. It can be

seen that for a specific τ , the machine ceases to function as a heat pump, since

the direction of the heat transfer changes its direction Q̇L ≥ 0, at the moment

when the coefficient of efficiency is zero.

An exponential decay occurs in the behavior of the energy and entropy

fluxes injected by the feedback, as shown in the figure 20. The reason is that longer

delay times imply fewer control operations implemented, by the “control-skipping

assumption”.
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Figure 20 – Influence of the delay time on feedback and entropy fluxes. The parameters
are the same as the figure 19 (a) Fermionic reservoirs, (a) Bosonic reservoirs.
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Figure 21 – Influence of potential difference on efficiency of fermionic heat pump. The
parameters are again the same as the figure 19 but varying V .

In the case of fermionic reservoirs, it is interesting to see how the efficiency

of the heat pump is affected when we vary the chemical potential difference

between the reservoirs. In the figure 21 one can observe that when the potential

difference increases, the process reduces its efficiency more quickly, as delay times

grow, which is somehow expected because the negative heat transfer goes against

the temperature difference, as well as the potential difference in the reservoirs.

In other words, a positive potential difference is an additional barrier to the heat

flow provided to the hotter reservoir. In fact, the heat flow is maximized when the
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delay time and potential difference are close to zero, as shown in the figure 22.
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Figure 22 – Influence of potential difference and time delay on heat flux. The parameters
are the same as the figure 19 but varying V .

5.5 Purification of quantum states

The quantum states of open systems become mixed when they interact

with their environment (see figure 15). Some quantum feedback protocols have

been effective in keeping pure the states in open quantum systems. Poltl et

al. [Pöltl, Emary e Brandes 2011] applied the Wiseman-Milburn feedback to

purify the states of a two quantum point system between two reservoirs, at zero

temperature in the high-bias limit; and they analyze the Full Counting Statistics

of the electron transport. Strasberg et al. [Strasberg et al. 2013] applied the same

feedback protocol to purify the states of a qubit coupled to two phonon reservoirs.

They analyze the thermodynamics of the transport system with reservoirs at

finite temperature. We extend these analyzes by studying the application of the

Wiseman-Milburn feedback to the purification of quantum states in a quantum

dot coupled to two electron reservoirs, and we extend the analysis of the Full

Counting Statistics to finite temperatures. The control operation is chosen to point
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to the following target pure state

ρtarget =

(
cos2 α i cosα sinα

−i cosα sinα sin2 α

)
. (5.39)

This state is in a general representation of a pure qubit in terms of the polar angle

with constant azimuthal angle, in the Bloch sphere. With the choice of the control

parameters αν+ = α, αν− = α + π/2 (see equation 5.16), all possible jumps will

point to the target state

Cν+J ν
+ |0〉〉 = ρtarget, Cν−J ν

− |1〉〉 = ρtarget. (5.40)

It is possible to know how far away is any state ρ from the target state ρtarget,

using the trace distance defined by:

D(ρ, ρtarget) =
1

2
tr
√

(ρ− ρtarget)2 =
1

2

∑
i

|λi| (5.41)

where |λi| are the eigenvalues of ρ − ρtarget. D varies between 0 and 1, being

D = 0 the value for indistinguishable states.

In the figure 23 we evaluate the numerical exploration of D, as a mea-

surement of purification, for the variation of the feedback parameter α. In the

reference [Strasberg et al. 2013] it had already been inferred, for the bosonic

system, that at high temperatures (β → 0) the purification is always reached for

arbitrary α (see figure 23 (b)). For the fermionic system, such purification is not

always reached even at high temperatures (see figure 23 (a)). Nevertheless, for

both cases, the feedback achieves the purification with the parameter α = π/2,

at any temperature. In the figure 23 (c),(d) it is shown the behaviour of some

specific values of the parameter α.

In the figure 24 we estimate the variation of the thermodynamic quantities

corresponding to the energy and entropy fluxes, for different temperature values.

From this we emphasize that, for the feedback parameter α = π/4, the fluxes

disappear, which indicates that the control operation generates an equilibrium

steady state, where the fluxes and currents are balanced by canceling each other

out. This is why the feedback protocol cannot function as a Maxwell daemon,

since if the energy injected into the system disappears, so will the injected entropy.



Chapter 5. Thermodynamics of Feedback Controlled Dynamics with Fermionic and Bosonic
Reservoirs 117

(a) (b)

α=π/4

π/20

3/2

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

β



(c)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

β



(d)

Figure 23 – Trace distance between the quantum states and the target state. To the left
the fermionic system and to the right the bosonic system. Below some
specific values of the feedback parameters α referenced in the figure. System
parameters: ΓL = 1, ΓR = 1, V = 0, β = βL = βR. Feedback parameters:
αν+ = α, αν− = α+ π/2.

On the other hand, the analysis of the Full Counting Statistics (see figure

25) shows that Fano factors converge to the unity when the states reach the purity,

that is, when the feedback parameter is α = π/2. In this parameter, the target

state is pure and without coherences (see equation 5.39). So, in the same way

that the heat pump, it is expected that the states obey a classical statistic, with a

Poisson cumulant generating function.

Knowing the signature of a specific operation on the full counting statistics,
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Figure 24 – Variation of the feedback entropy fluxes with respect to the feedback
parameter α, for some values of β = βL = βR referenced in the graph. To the
left the fermionic system and to the right the bosonic system. System and
feedback parameters are the same as the figure 23.

can be useful experimentally to tune the parameters of the operation by compari-

son with the signature [Pöltl, Emary e Brandes 2011]. In the case of a Poissonian

process, the signature corresponds to the convergence of the Fano factors to unity,

however other signatures of other statistics of possible transport systems can be

compared, taking advantage of the fact that high orders in counting statistics are

nowadays experimentally accessible [Flindt et al. 2009].

As can be seen from the equation 5.22, it is also possible to stabilize

coherent quantum states with an adequate choice of feedback parameters. The

question arises whether it is possible to purify such states. The answer given by
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Figure 25 – Variation of the Fano factors with respect to the feedback parameter α, for
βL = βR = 1. System and feedback parameters are the same as the figure 23.

Strasberg [Strasberg et al. 2013] is affirmative for high temperatures, insofar as,

when the temperature of the reservoirs rises, the action of feedback also increases

due to the increasing frequency and detection of jumps, which generates a more

intensive purification process. We do not expect the transport statistics in these

cases to be Poissonian since the states are not classical, however, the study of the

statistics of such quantum states is of special interest and will be addressed in

future work.
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6 SUMMARY AND CONCLUSIONS

In the first part of the Thesis, we employed random-matrix theory and

matrix-valued Brownian motion models to study two classes of superconducting

quantum chains. In the continuum dot-wire limit, we find an exact description

of the crossover in thermal conduction between a superconducting chaotic bal-

listic cavity (a quantum dot) and a disordered multichannel superconducting

quantum wire. We obtained exact expressions for the first three moments of

the heat conductance of two classes of superconducting dot-wire systems with

time-reversal symmetry. The analytic solution describes in detail various types of

smooth transitions as a function of the systems’ length, which include ballistic-

metallic and metallic-insulating transitions. Interestingly, in the single channel

case, if the system is realized experimentally as a topological superconductor,

we can interpret the total suppression of the insulating regime in class DIII as a

signature of the presence of condensed matter Majorana fermions. The results

were contrasted with those already known in the literature for normal class AI.

In the second part of the Thesis, we made a comparative analysis of

non-equilibrium stochastic thermodynamics of a qubit system coupled to two

reservoirs, fermionic and bosonic respectively; subjected to a Wiseman-Milburn

quantum delayed feedback. Two concrete applications of the feedback were

studied: the implementation of a heat pump and the purification of the system

states. The extension of these applications to a fermionic transport system (a

quantum point of a level coupled to two electron reservoirs) was studied, showing

the influence of increasing delay times on the efficiency of the heat pump, with

respect to what is reported in the literature for a bosonic transport system (a two-

level system coupled to two phonon reservoirs). The differences between applying

the purification protocol in the fermionic system and the bosonic system, with

zero delay times, were reported. In both applications, the Full Counting Statistics

analysis leaves a Poissonian statistics signature, when the tasks achieve their

highest performance, i.e., when the heat pump reaches its maximum efficiency,

and when the purification process is achieved.
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APPENDIX A – INITIAL CONDITION: THE ANDREEV QUANTUM DOT

The generating function of the Andreev quantum dot can be calculated

by means of equation (3.16) and the kernel shown in (3.17). Using the variables

η0 = 3+νo
1−νo and η1 = 3+ν1

1−ν1 , we find the effective Hamiltonian

H = (1− η2
0)
∂2

∂η2
0

+ (µ− γ

2
− (2 + µ+

γ

2
)η0)

∂

∂η0

−(1− η2
1)
∂2

∂η2
1

− (µ− γ

2
− (2 + µ+

γ

2
)η1)

∂

∂η1

. (A.1)

The stationary solution of the corresponding Fokker-Planck equation can be

written in terms of the eigenfunctions of (A.1), which are Jacobi polynomials

P
(a,b)
n and Jacobi functions of the second type Q

(a,b)
n . Inserting this result into

equation (3.14) we get

W ({ϑ}, 0) =

(
1− νo
1− ν1

)N (
1 + 23+2µ+γ/2 (ν0 − ν1)(1 + ν1)γ/2

(1− ν0)(1− ν1)µ+γ/2+1
R

)
, (A.2)

where

R =
N−1∑
n=0

1

h
(γ/2,µ)
n

P (γ/2,µ)
n

(
3 + νo
1− νo

)
Q(γ/2,µ)
n

(
3 + ν1

1− ν1

)
, (A.3)

and

h(α,β)
n =

2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

n!(2n+ α + β + 1)Γ(n+ α + β + 1)
, (A.4)

which after some simple algebraic manipulations yields equation (3.18).
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APPENDIX B – EIGENFUNCTIONS OF THE ANDREEV QUANTUM WIRE

The generating function of the Andreev quantum wire can be calculated

by using equation 3.16, which can be written as

H = (ϑ2
0 − 1)

∂2

∂ϑ2
0

+ 2(ν + 1)ϑ0
∂

∂ϑ0

− (ϑ2
1 − 1)

∂2

∂ϑ2
1

− 2(ν + 1)ϑ1
∂

∂ϑ1

. (B.1)

Note that the first two terms of this equation match with the operator of the

Jacobi differential equation with equal parameters P (ν)
n (ϑ0) ≡ P

(ν,ν)
n (ϑ0)

[
(ϑ2

0 − 1)
∂2

∂ϑ2
0

+ 2(ν + 1)ϑ0
∂

∂ϑ0

]
P (ν)
n (ϑ0) = n(n+ 2ν + 1)P (ν)

n (ϑ0). (B.2)

On the other hand, the last two terms of equation (B.1) match with the operator

of the hypergeometric differential equation for F (ν)
k (ϑ1)

[
−(ϑ2

1 − 1)
∂2

∂ϑ2
1

− 2(ν + 1)ϑ1
∂

∂ϑ1

]
F

(ν)
k (ϑ1) = (k2 + ν(ν + 1) + 1/4)F

(ν)
k (ϑ1).

(B.3)

The orthogonality and completeness relations are respectively

∫ 1

−1

dϑ0(1− ϑ2
0)νP (ν)

n (ϑ0)P
(ν)
n′ (ϑ0) = δnn′h

(ν)
n (B.4)

∞∑
n=0

P
(ν)
n (ϑ0)P

(ν)
n (ϑ′0)

h
(ν)
n

=
δ(ϑ0 − ϑ′0)

(1− ϑ2
0)ν

(B.5)

and ∫ ∞
1

dϑ1(ϑ2
1 − 1)νF

(ν)
k (ϑ1)F

(ν)
k′ (ϑ1) =

δ(k − k′)
(A

(ν)
k )2

(B.6)∫ ∞
0

dk(A
(ν)
k )2F

(ν)
k (ϑ1)F

(ν)
k (ϑ′1) =

δ(ϑ1 − ϑ′1)

(ϑ2
1 − 1)ν

, (B.7)
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where

(A
(ν)
k )2 =

|Γ(ν + 1/2 + ik)|2

22ν(Γ(ν + 1))2|Γ(ik)|2
(B.8)

Then the eigenfunctions and the eigenvalues of H are given by

ϕnk(ϑ0, ϑ1) =
A

(ν)
k

(h
(ν)
n )1/2

P (ν)
n (ϑ0)F

(ν)
k (ϑ1) and εnk = k2 + (n+ ν + 1/2)2 (B.9)

with −1 ≤ ϑ0 ≤ 1 and 1 ≤ ϑ0 ≤ ∞. For the calculations of the moments of the

heat conductance it is convenient to replace F (ν)
k (ϑ1) by the following function in

(B.3)

F̃
(ν)
k (ϑ1) ≡ 1

ω(ϑ1)

∫ ∞
0

dx
ω(x)F

(ν)
k (x)

x+ ϑ1

=
1

ω(ϑ1)
|Γ(1/2− ν + ik)|2F (−ν)

k (ϑ1),

(B.10)

so, the new set of eigenfunctions ϕnk(ϑ0, ϑ1) correspond to the equation

(3.22).
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APPENDIX C – INTEGRALS OF THE ANDREEV DOT-WIRE SYSTEM

Let us now show the equivalence between equations (3.26) and (3.28).

First, we calculate the integrals shown in equation (3.26). We know from [Macedo-

Junior e Macêdo 2007] that

I
(0)
nl =

(−1)n2l+2ν+1l!Γ(l + ν + 1)Γ(n+ ν + 1)

(l − n)!n!Γ(n+ l + 2ν + 2)
. (C.1)

Using the identity F (a, b; c; z) = Γ(1− a)Γ(c)P
(c−1,a+b−c)
−a (1− 2z)/Γ(c− a) we can

write

I
(1)
nl =

Γ(1 + n′)Γ(−2n′ − µ− ν)

Γ(−n′ − µ− ν)

∫ 1

−1

dϑ0(1− ϑ0)ν+l(1 + ϑ0)νP (v)
n (ϑ0)P

(−2n′−µ−ν−1,v)
n′ (ϑ0),

(C.2)

where n′ = N − l − 1. This integral can be solved by means of equation (20) of

the chapter 16.4 of [Bateman e Erdelyi 1953]. We find

I
(1)
nl =

22ν+l+1Γ(−l + n)Γ(n+ ν + 1)Γ(l + ν + 1)

n!Γ(−l)Γ(2ν + n+ l + 2)
× (C.3)

4F3[−n′,−n′ − µ, ν + l + 1, l + 1;−2n′ − µ− ν, 2ν + l + n+ 2,−n+ l + 1; 1].

or after using Γ(a− n) = (−1)nΓ(−a)Γ(1 + a)/Γ(n+ 1− a)

I
(1)
nl =(−1)n

22ν+l+1Γ(l + 1)Γ(n+ ν + 1)Γ(l + ν + 1)

Γ(n− 1)Γ(1 + l − n)Γ(2ν + n+ l + 2)
× (C.4)

4F3[−n′,−n′ − µ, ν + l + 1, l + 1;−2n′ − µ− ν, 2ν + l + n+ 2,−n+ l + 1; 1].

The remaining integrals can be calculated representing the hypergeometric func-

tions as Meijer G functions by using the identity

F [a, b, c, z] =
Γ(c)

Γ(b)Γ(a)
G1,2

2,2

(
−z
∣∣∣∣1− a, 1− b,0, 1− c

)
(C.5)

and integration identities of the Meijer G functions [Gradshteyn e Ryzhik

2014, Mathai, Saxena e Haubold 2009]. Performing the change of variables
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−x = (1−ϑ1)/2 and using the identity F [a, b; c; z] = (1−z)c−a−bF [c−a, c− b; c; z]

[Olver 2010], we get

Jkl0 =
1

(−1)l+122ν+l

∫ ∞
0

dx
x−ν−l−1

(x+ 1)ν
F [−ν + 1/2 + ik,−ν + 1/2− ik;−ν + 1;−x]

=
1

(−1)l+122ν+l

∫ ∞
0

dx
F [1/2 + ik, 1/2− ik;−ν + 1;−x]

xν+l+1

=
Γ(−ν + 1)

(−1)l+122ν+l|Γ(1/2 + ik)|2

∫ ∞
0

dx
G1,2

2,2

(
x
∣∣∣ 1

2
+ik, 1

2
−ik,

0,ν

)
xν+l+1

=
Γ(−ν + 1)

(−1)l+122ν+l|Γ(1/2 + ik)|2

∫ ∞
0

dxG1,2
2,2

(
x

∣∣∣∣−1
2

+ ik − ν − l,−1
2
− ik − ν − l,

−ν − l − 1,−ν − 1

)
=

Γ(−ν + 1)Γ(−ν − l)|Γ(1/2 + ik + ν + l)|2

(−1)l+122ν+l|Γ(1/2 + ik)|2Γ(l + 1)
(C.6)

Finally, similarly to (C.6), we get

Jkl1 =
1

(−1)l+122ν+l

∫ ∞
0

dx
x−ν−l−1

(x+ 1)ν
F [−ν + 1/2 + ik,−ν + 1/2− ik;−ν + 1;−x]

× F [n′ + 1, n′ + 1 + µ; 2n′ + µ+ ν + 2;−x]

=
Γ(−ν + 1)

(−1)l+122ν+l|Γ(1/2 + ik)|2
Γ(2n′ + µ+ ν + 2)

Γ(n′ + 1)Γ(n′ + µ+ 1)

×
∫ ∞

0

dxG1,2
2,2

(
x

∣∣∣∣−1
2

+ ik − ν − l,−1
2
− ik − ν − l,

−ν − l − 1,−ν − 1

)
G1,2

2,2

(
x

∣∣∣∣ −n′,−n′ − µ,
0,−2n′ − µ− ν − 1

)
=

Γ(−ν + 1)

(−1)l+122ν+l|Γ(1/2 + ik)|2
Γ(2n′ + µ+ ν + 2)

Γ(n′ + 1)Γ(n′ + µ+ 1)

×G3,3
4,4

(
1

∣∣∣∣ ν + l + 1,−n′,−n′ − µ, l + 1
1
2
− ik + ν + l, 1

2
+ ik + ν + l, 0,−2n′ − µ− ν − 1

)
(C.7)

Once the integrals have been obtained in terms of Meijer G functions,

Theorem 1 follows from using the simple identity

(A
(−v)
k )2

N−1∑
l=0

(Inl1Jkl1− Inl0Jkl0) =
2P

(v)
n (1)|Γ(1/2− ν + ik)|2

|Γ(ik)|2εnk
c

(ν)
nk (N1)c

(ν)
nk (N2).

(C.8)
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or equivalently

N−1∑
l=0

(Inl1Jkl1− Inl0Jkl0) =
Γ(n+ ν + 1)(Γ(−ν + 1))2

22ν−1Γ(n+ 1)Γ(ν + 1)

c
(ν)
nk (N1)c

(ν)
nk (N2)

k2 + (n+ ν + 1/2)2
. (C.9)

which can be checked with the Meijer G function representation of alge-

braic computer systems such as Mathematica [Wolfram Research, Inc.].
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