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ABSTRACT

In this work, we utilized concepts of applied algebraic topology to explore the
very recent ideas of topological phase transitions in complex networks to the context of
the Duplication Divergence model for protein-protein interaction Network. To do so, we
used methods of topological data analysis to compute the Euler characteristic analytically,
and the Betti numbers numerically for two variants of the Duplication Divergence model,
namely the totally asymmetric model and the heterodimerization model. We contrast our
theoretical results with experimental data freely available at online repositories of gene
coexpression networks of Saccharomyces cerevisiae, also known as baker’s yeast, as well
as of the nematode Caenorhabditis elegans. We detected one topological phase transition
in Yeast networks obtained according to different similarity measures, corresponding to
phase transitions at close critical thresholds. Our results give evidence that the Euler
characteristic can be interpreted as an intrinsic bio-marker for Yeast networks and reinforces
the hypothesis of the possibility of using topological phase transitions to build topological
and geometrical biomarkers for networks more generally.

Keywords: Euler characteristic. Homology. Phase transitions. Protein Interaction Net-
works. Topological Data Analysis.



RESUMO

Neste trabalho, utilizamos métodos de topologia algébrica aplicada para explorar
o recente conceito de transições de fase topológicas em redes complexas em modelos de
interação entre proteínas. Em particular, usamos métodos de análise topológica de dados
para computar analiticamente a característica de Euler e numericamente os números de
Betti para duas variações do modelo de Duplicação e Divergência em redes de interação
entre proteínas, a saber, o modelo totalmente assimétrico e o modelo com heterodimerização.
Contrastamos nossos resultados teóricos e numéricos com dados experimentais disponíveis
em repositórios online para redes de coexpressão genética da Saccharomyces cerevisiae,
a levedura utilizada na produção do pão e de cerveja, bem como para o nematoide
Caenorhabditis elegans. Detectamos uma transição de fase nas redes de levedura, obtidas
através de diferentes medidas de similaridade, que corresponde a transições de fase em um
valor de correlação crítica com poucas flutuações. Nosso resultado dá evidências de que a
característica de Euler pode ser interpretada como biomarcador intrínseco para redes de
interação entre proteínas e reitera a possibilidade de utilizar transições de fase topológicas
para construir biomarcadores topológicos e geométricos em redes de uma maneira geral.

Palavras-chave: Caracteristica de Euler. Homologia. Transições de Fase. Rede de Iteração
de Froteinas. Análise Topológica de Dados.
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1 INTRODUCTION

Topology is the area of mathematics that deals with shapes. Two significant
problems in topology are identifying properties of shapes that are preserved through
deformations, stretching, and twisting, and recognize whenever two objects are deformations
of each other.

Given this invariance against deformation, very recently, ideas and concept of
algebraic topology started to be used to analyze comprehend data, an effervescent area
that nowadays is known as Topological Data Analysis (TDA). The recent advances in
experimental methods and the increasing computer power generally, modern science have
to deal with the fact that data is being produced at an unprecedented rate. Moreover, data
is usually complex and noisy due to the inherent nature of the experimental data. In that
sense, topology and geometry come as natural tools to be applied in order to understand
data generically, i.e., avoiding reductionist approaches. Mostly because topology deals
with qualitative geometric information, such as connectivity, topological invariants, etc.,
but also because topology is robust against noise or perturbations since noise can be seen
as deformations on the shape of data [6]. This scientific revolution opened perspective to
experiment several subtopics of topology into to data, which make TDA a very active and
creative field nowadays.

Topology can also be an innovative tool to understand several systems whose
dynamics is usually unknown, the so-called complex systems. In many cases, it is useful
to represent complex systems as graphs or networks, referred here as complex networks,
where the nodes represent the elements of a complex system, and the edges the relations
between them. Examples of complex networks appear in many contexts, like the internet,
financial system, biology, to name a few [7]. Given that the exact dynamics of such
systems are unexplained, we often can extract significant, quantitative information by
associating a network to a complex system. However, the benefits of associating a graph
to data are limited to its low dimensional aspect. The recent use of algebraic topology, by
associating a simplicial complex to a network, has been proved to be useful to address this
limitation [6, 8]. With the use of algebraic topology in data, we are able to find real-world
applications in various interdisciplinary fields, ranging from material science [9], breast
cancer diagnosis [10], neuroscience [1], to computer vision [11], for example.

On the other hand, topology has contributed to the understanding of several
phenomena in physics from quantum field [12] to condensed matter physics [13,14]. One
topic that is studied both in the context of theoretical physics and algebraic topology is
phase transitions [15, 16]. In the context of statistical mechanics of Hamiltonian systems,
phase transitions can also be detected using topology, particularly Morse theory. In fact,



Chapter 1. INTRODUCTION 13

in several works, the Euler characteristic plays an essential whole to detect classical phase
transitions [17–21]. From the mathematical point of view, in particular in graph theory,
the most well-known phase transition is the formation of a giant component in random
graphs [22], i.e., a percolation transition in a random graph. Although the percolation
problem is well established in graph theory, the extension of this problem to more complex
structures, in particular to a simplicial complex, is a very active area of the algebraic
topology [23, chapter 22], in particular, there are very recent results that generalized the
ideas of percolation transitions by Erdos and Reyni for simplicial complexes [24].

Very recently, concepts of TDA, network science, and theoretical physics were
merged to develop a methodology to detect phase transitions on complex networks,
particularly in neuroscience [1]. This recent work opened the perspective of obtaining
reliable topological biomarkers for brain organization.

In this thesis, we will apply the ideas discussed above to the context of Protein-
Protein Interaction Networks (PPIN), i.e., networks where the nodes represent proteins,
and the edges represent relations between them. These relations are usually physical
interactions, but can also be functional. Topological properties of PPIN have been subject
to many relevant studies nowadays [25–27]. An interesting problem in genetics is to identify
which genes correspond to a given phenotype. With co-expression networks, for example,
we can identify groups of proteins that share common expression patterns through various
experiments, raising the hypothesis that the genes regulated by them share a common
functionality [28].

We will focus our attention on two different PPIN models, namely: totally asym-
metric PPIN model and the heterodimerization model. In the first case, we computed the
Euler characteristic analytically and detected a phase transition that corresponds with
the percolation transition, as reported in different models by [22]. We also contrasted our
results with gene co-expression networks from yeast freely available in the Yeastnet v.3 [3]
database and observed topological transitions consistent with the model.

Yeast is an ideal model for studying biological systems, specially because of the
easiness to connect genes and proteins with the functions they represent in the cell. Since
the publication of the genome sequence of S. cerevisiae on April 1996, has been responsible
of several advances and for the establishment of research areas like Functional Genomics
and Systems Biology. Also, nearly 1000 yeast genes are members of orthologous gene
families associated with human disease, which turns useful for the assessment of function
of human proteins associated disease state [29].

Later in this thesis, we analyze the phase transitions numerically for the het-
erodimerization models. In this case, we compared our results with data from C. elegans
collected online on Wormnet database [30]. C. elegans a nematode which is a model system
to study animal development and behavior [31].
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We stress that It is not our intention to be exhaustive, since Its an interdisciplinary
and active topic in the interface of Topology, Theoretical Physics, Data analysis, and
Complex systems.

This thesis is written as follows. The next chapter is dedicated for algebraic topology
concepts which will be of major importance for our analysis. In particular, we will focus on
the homology groups of a simplicial complex, and how to compute it for data through the
use of boundary matrices. In chapter 3 we will discuss briefly on how topology have been
used to improve our understanding about data and digress on how some rigorous results
on phase transitions in simplicial complexes and theoretical physics could be transposed
to data-driven problems; finally, in chapter 4, we will apply the methodology developed to
the PPIN models.



15

2 BASIC ALGEBRAIC TOPOLOGY CONCEPTS

In this chapter, we introduce basic algebraic topology concepts that will be used in
this work. We will digress about simplicial complexes and its geometric realization, and
later we introduce homology groups. These concepts will form the basis for our topological
approach to data.

2.1 Simplicial complexes

The central concept of this section is the simplicial complexes. Here, we will define
the fundamental structures of the simplicial complexes and present the Euler characteristic.
The idea is that a simplicial complex is a simple way to visualize topological spaces. The
"atoms" of a simplicial complex are the k-simplices, which are the simplest structures of
the Euclidean space. We will start by the geometric definition.

Let S = {x0, x1, x2, . . . , xk} a discrete set of points in the Euclidean space Rd.
We say that a point x ∈ Rd is an affine combination of S if there exist real numbers
λ0, λ1, . . . , λk that adds exactly 1, and x can be written as

x =
k∑
i=0

λi · xk.

An affine combination is said a convex combination if λi > 0 for every i. The numbers
λ0, λ1, . . . , λk are called the barycentric coordinates of x. To the set of all points that
are convex combinations of S, we give the name convex hull of S. If no point xi of S is
an affine combination of S − {xi}, we say that S is an affinely independent set.

Example 2.1 (k=1). Suppose that S = {x0, x1} ⊂ R2 where x0 6= x1. The line that
goes passes through x0 and x1 is the set of points that can be written as a function of a
parameter λ as

x0 + λ(x1 − x0) = (1− λ)x0 + λx1.

Observe that the points on the line segment connecting x0 to x1 are obtained by setting
0 6 λ 6 1. If we name λ0 = λ and λ1 = 1− λ it gets clear that λ0, λ1 > 0 and λ0 + λ1 = 1.
So the convex hull of S is the closed segment line connecting x0 to x1.

Example 2.2 (k=2). Now let’s suppose that S = {x0, x1, x2} ⊂ R2. By the previous
example, we can see that if x2 is in the line that contains x0, x1 (x1 6= x2), for example,
than x2 would be an affine combination of S − {x2} = {x0, x1}. So for S to be an affinely
independent set, x0, x1 and x2 cannot be in the same line, i.e., they need to be vertices of
a triangle. In that case, it is an interesting linear algebra exercise to check that the convex
hull of S is the set of points that are on the interior of the triangle with vertices at x0, x1
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and x2 (including the edges end the vertices of the triangle). Also, any set with 4 or more
elements in R2 is not affinely independent.

A k-simplex is the convex hull of an affinely independent set S with k + 1 points.
Each point of S is said to be a vertex of the k-simplex. In simpler terms, a k-simplex is
the smallest convex set of the Euclidean space Rd that contains k + 1 points that do not
belong to a k-dimensional hyperplane. A k-simplex is a k-dimensional topological subspace
of a Euclidean space, i.e., the dimension of a k-simplex σ is dim σ = k.

Name σ the k-simplex with vertices in S. We say that τ is a face of σ if τ is also
a simplex whose vertices are at T ⊆ S. When τ is a face of σ it is often said that σ is a
coface τ . This relation will be indicated by τ 6 σ.

Now we have the necessary background to define a simplicial complex.

Definition 2.3. A simplicial complex is a finite set X of simplices that is closed under
taking intersections and faces, i.e., that satisfies the conditions:

a. If σ ∈ X and τ 6 σ, then τ ∈ X;

b. Whenever σ1 and σ2 are in X, then σ1 ∩ σ2 is either empty or a face of σ1 and σ2.

The dimension of X is the dimension of the largest simplex in X, i.e.,

dimX = max{dim σ|σ ∈ X}.

A simplicial complex can be seen as a finite union of simplices that intersects
themselves in other simplices (or nothing).

Although the above definition is very easy to be visualized, it is not very proper for
computations. The abstract definition that we are going to present next is more suitable
for that propose.

Definition 2.4. Given a set K, an abstract simplicial complex of K is a collection S
of subsets of K such that:

a. {v} ∈ S for all v ∈ K;

b. If τ ⊆ σ, then τ ∈ S.

The unitary subsets ofK are called vertices. The elements of S are called abstract
simplices. A simplex σ is said to be a k-simplex, or a simplex with dimension k

(dim σ = k) if σ has k + 1 elements. The simplex τ is a face of σ (or σ is a coface of τ) if
τ ⊆ σ.
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Given a geometric simplicial complex X, there is a natural way to build an abstract
simplicial complex S associated with it. For every simplex σ of X, consider {v0, v1, . . . , vk}
the set o vertices of σ. Now define

S = {{vertices of σ} | σ ∈ X}.

It is easy to check that S is an abstract simplicial complex. This natural representation of
X through an abstract simplicial complex S is called a vertex scheme of X. The vertex
scheme allow us to easily compare simplicial complexes.

We can use simplicial complexes to represent manifolds and other topological
spaces by its underlying space. The underlying space |X| of a simplicial complex X
is |X| = ∪σ∈Kσ. By itself, |X| is a topological space. When a topological space X is
homeomorphic to the underlying space of a simplicial complex X, we say that |X| is a
triangulation of X. A classical example of triangulation is the one of the sphere that can
be triangulated as a tetrahedron (figure 1).

Definition 2.5. We say that the geometric simplicial complexes X1 and X2 are isomor-
phic if there is an homeomorphism between |X1| and |X2|.

Definition 2.6. Let S1 and S2 abstract simplicial complexes with vertices in V1 and
V2, respectively. We say that S1 and S2 are isomorphic if there exists a 1− 1 function
φ : V1 → V2 such that, changing all the vertices by their image by φ in each member of S1

we obtain S2. The function φ is said to be an isomorphism.

The next theorem, whose proof can be found in [32], will allow us to abandon the
terms "geometric" and "abstract" and call everything simplicial complex.

Theorem 2.7 (Geometric realization theorem). Every abstract simplicial complex S
is isomorphic to the vertex scheme of some geometric simplicial complex X. And two
geometric simplicial complexes are isomorphic if and only if their vertex schemes are
isomorphic as abstract simplicial complexes.

If an abstract simplicial complex S is isomorphic to the vertex scheme of some
geometric simplicial complex X, we say that X is a geometric realization of S. It is
uniquely determined up to linear isomorphism.

This way we can see the simplicial complexes as structures that can be seen by
two manners. Formally, it is a purely combinatorial object that can be easily manipulated
by computers. But it is also a map of the vertices into a space in which it is realized.

The concept of triangulation is very important for computation proposes, for
example. If you want to render a surface into the computer, it would cost too an infinite
amount of time and processing to compute the properties of every point in this surface. So,
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to turn this task possible and fast to achieve one can use a triangulation that approximates
the surface in average and render the triangulation instead. Also, when you have a
triangulation of a topological space X, you have a purely combinatorial representation of
X that, at least for our proposes, will be a lot easier to analyse.

An important problem is to classify spaces based on their fundamental properties.
A common tool for differentiating between spaces is an invariant, i.e., a map that assigns
the same object to spaces of the same topological type. It is possible that an invariant
assign the same object to spaces of different types. But the power of the topological
invariants lies on the fact that even though we cannot say much about spaces that are
assigned to the same object, whenever two spaces are assigned to different objects you
have sure that they belong to different topological types. The measure of "goodness" of an
invariant is exactly the number of spaces that you are able to classify with it.

One important invariant is the so-called Euler characteristic, that is particularly
important for the classification of surfaces, for example. It was originally defined for graph
by Euler.

Definition 2.8. Let S be a simplicial complex. Let’s call sk the total number of k-
complexes in K. The topological invariant called Euler characteristic is the number
χ(S) defined as

χ(S) =
dimS∑
k=0

(−1)ksk.

It is a known fact that if |S1| and |S2| are triangulations of the same space M, then
χ(S1) = χ(S2). So we can say that the Euler characteristic of a triangulation of a space M
is the Euler characteristic of the space χ(M)

2.2 Homology Groups and Betti Numbers

Before introducing homology groups, we must first define orientation in the context
of simplicial complexes.

Definition 2.9. Let σ be a simplex with vertexes v0, v1, . . . , vk. We say that two ordering
of the vertices are equivalent, and indicate by

(vi0 , vi1 , . . . , vik) ∼ (vj0 , vj1 , . . . , vjk),

if they differ only by an even permutation of the vertices. This relation divides the set of
all possible orderings into two equivalence classes. Each one of this classes is said to be an
orientation of σ. An oriented simplex is a simplex together with an orientation of its
vertices.
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For simplicity, will use the indication

v0v1 . . . vk

for the simplex with vertices v0, v1, . . . , vk (independent), and

[v0, v1, . . . , vk]

for the oriented simplex with the same vertices and orientation indicated by the given
ordering of vertices.

Definition 2.10. The pth chain group of a simplicial complex S is the free Abelian
group Cp(S) on the oriented p-simplices, where [σ] = −[τ ] whenever σ = τ and have
different orientations. Every element of Cp(S) is called a p-chain, and has always the
form ∑

q

nq[σq],

where the numbers nq are integers and σq are p-simplices. For convenience, if p < 0 or
p > dimS, we define Cp(S) as the trivial group.

Homology groups are structures that concerns about the connectivity between two
immediate dimensions. So it is necessary to build relations between those p-chain groups.
For that we have the boundary operators.

Definition 2.11. Let S be a simplicial complex and σ ∈ S the simplex given by
σ[v0, v1, . . . , vp]. The boundary of σ, denoted by ∂σ is the element of Cp−1(S) given
by

∂σ =
p∑
i=0

(−1)i[v0, v1, . . . , v̂i, . . . , vp],

where v̂i indicates that vi was deleted from the sequence. The boundary operator defines
an homomorphism ∂p = ∂|Cp(S) : Cp(S)→ Cp−1(S).

It is easy to check that the boundary of a simplex, as defined above, does not
depend on the particular choice of orientation.

Example 2.12 (Boundary of some simplices). :

• ∂[a, b] = [b]− [a];

• ∂[a, b, c] = [b, c]− [a, c] + [a, b];

• ∂[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c].

Observe that the boundary of a p-simplex is exactly the (p− 1)-dimensional faces
of it, with an orientation that is naturally given by the formula. If we take the boundary
of the boundary, we have the result given by the next theorem.
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Theorem 2.13. ∂(∂σ) = 0 for every oriented simplex σ.

Proof. Let σ = [v0, v1, . . . , vk]. So

∂(∂σ) = ∂

(∑
i

(−1)i[v0, . . . , v̂i, . . . , vk]
)

=
∑
j<i

(−1)i(−1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vk]

+
∑
j>i

(−1)i(−1)j−1[v0, . . . , v̂j, . . . , v̂i, . . . , vk].

Observe that switching i and j at the second sum, every term at the first sum will also be
on the second, but with a minus sign. So ∂(∂σ) = 0.

If S is an n-dimensional simplicial complex, the boundary operator give birth to
the chain of homomorfisms that are illustrated bellow:

0 ∂n+1−→ Cn
∂n−→ Cn−1

∂n−1−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0.

The theorem 2.13 show that the composition map of two consecutive homomorfisms
is trivial, i.e., ∂k∂k+1 = 0. Observe that since S has no (n+ 1)-dimensional simplices then
Cn+1 is the trivial group. Observe also that since vertices have no boundary, we could
set the map ∂0 as the trivial homomorphism. Such sequence of homomorphisms between
chain groups is called a chain complex.

Follow immediately from theorem 2.13, and from properties of homomorphisms,
the next theorem.

Theorem 2.14. The sets Im ∂k+1 and Ker ∂k are free Abelian normal subgroups of Ck.
Also Im ∂k+1 is a normal subgroup of Ker ∂k.

Proof. The proof of the first statement comes from a collection of properties of homomor-
phisms and will be omitted.

For the second part, observe that the boundary of each (k+ 1)-simplex is a k-chain
that goes to 0 by ∂k. So the homomorphism ∂k+1 sends k + 1-chains into the kernel of
∂k, i.e., Im ∂k+1 ⊆ Ker ∂k. Since those sets are free Abelian groups of Ck, turns out that
Im ∂k+1 is actually a normal subgroup of Ker ∂k.

Definition 2.15. The kth cycle group is Zk = Ker ∂k. The elements of Zk a called
k-cycles. The kth boundary group is Bk = Im ∂k+1. The elements of Bk are called
k − boundaries.
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Definition 2.16. The kth homology group of a simplicial complex, Hk, is the quotient
of kth cycle group over the kth boundary group, i.e.,

Hk = Zk/Bk = Ker ∂k/Im ∂k+1.

If the k-cycles z1 and z2 belong to the same class of Zk, we say that they are homologous
and denoted by z1 ∼ z2.

As they are factor groups of two free Abelian groups, the homology groups are
finitely generated Abelian. Therefore, the fundamental theorem of finitely generated
Abelian groups applies. So we can use the homology groups to describe spaces through
topological invariants called Betti numbers.

Definition 2.17. The kth Betti number βk of a simplicial complex K is the rank of
the free part of its kth homology group, i.e.,

βk = RankHk = RankZk − RankBk.

The Betti numbers and the Euler characteristic of a simplicial complex S are
related by the formula

χ(S) =
n∑
k=0

(−1)kβk.

So, the Euler characteristics is the alternating sum of the Betti numbers. This result is
known as Euler-Poincaré Formula.

2.3 Computing Homology Groups

Once the main goal of this work is to use Euler characteristic and Betti numbers
to obtain information on real data, an important task is to compute the homology groups.
For that we use the so called boundary matrices.

Let S be a simplicial complex. As the p-chains are free Abelian groups, the
set of oriented p-simplices form the standard basis for for it. The standard matrix
representation of ∂p is a representation of the boundary operator ∂p : Cp → Cp−1 relative
to the standard bases of the chain groups Cp and Cp−1. The boundary matrix Mp = [aji ]
is a (sp−1 × sp) matrix with coefficients in {−1, 0, 1}. Given standard bases of oriented
simplices, lets say (σ1, σ2, . . . , σsp) of p-simplices and (τ1, τ2, . . . , τsp−1) of (p− 1)-simplices,
and given a p-chain c = ∑

aiσi, the boundary of c will be of the form ∂pc = ∑
bjτj, where

the bj are given by 
b1

b2
...

bsp−1

 =


a1

1 a2
1 a3

1 . . . a
sp

1

a1
2 a2

2 a3
2 . . . a

sp

2
... ... ... . . . ...

a1
sp−1 a2

sp−1 a3
sp−1 . . . asp

sp−1




a1

a2
...
asp

 .
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The null-space of Mp corresponds to Zp, while its range-space corresponds to Bp−1.
The next step is to reduceMp to its diagonal form. For that we use a reduction algorithm
that consists of applying the following elementary row (or column) operations:

• switch the places of two rows;

• multiply a row by −1;

• replace row i by (row i) + q(row j), for an integer q and j 6= i.

Each of this elementary row operations are equivalent to making a change of basis for
Cp−1. The reduction algorithm repeats systematically those elementary operations until
Mp is reduced to the form:

M̃p =



b1 0 . . . 0
0 b2 . . . 0
... ... . . . ...
0 0 . . . blp

0

0 0


.

M̃p is called the (Smith) normal form of Mp. The number of non-zero rows lp
of M̃p is the rank of Mp. The normal form indicates explicitly what we need to compute
the homology groups.

• The torsion coefficients of Hp−1 are the bi’s that are greater than 1;

• RankZp is the number of null rows of M̃p. So RankZp = sp − lp;

• The first lp columns forms a basis for Bp−1. Therefore, RankBp = RankMp+1 = lp+1.

Thus, by definition 2.17 we have

βp = RankZp − RankBp = sp − lp − lp+1. (2.1)

In example 2.18 bellow we will see how to compute the boundary matrices the
homology groups of the sphere S2.

Example 2.18. Recall that the sphere S2 can be triangulated as a tetrahedron. So, at
first, we have to describe the tetrahedron by its oriented simplices. Figure 1 shows the
triangulation of the sphere through a tetrahedron.
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Figure 1 – Triangulation of the sphere S2 through a tetrahedron.

C0 {[a], [b], [c], [d]}

C1 {[a, b], [a, c], [a, d], [b, c], [b, d], [c, d]}

C2 {[a, b, c], [a, b, d], [a, c, d], [b, c, d]}

Table 1 – Chain groups bases.

Table 1 presents a basis for the 0, 1 and 2-chain groups. Computing the boundary
of each simplex on the bases, we can build the boundary matrices:

M0 =
[

0 0 0 0
]
, M1 =


−1 −1 −1 0 0 0

1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

 ,

M2 =



1 1 0 0
−1 0 1 0

0 −1 −1 0
1 0 0 1
0 1 0 −1
0 0 1 1


, M3 =


0
0
0
0

 .

Applying elementary row operations we reduce the boundary matrices to their



Chapter 2. BASIC ALGEBRAIC TOPOLOGY CONCEPTS 24

normal forms that are, respectively:

M̃0 =
[

0 0 0 0
]
, M̃1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 ,

M̃2 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


, M̃3 =


0
0
0
0

 .

The python algorithm below describes how we can achieve computationally the
boundary matrices of a simplicial complex.

import numpy as np
def Boundary_matrix (SComplex , k ) :

# k−th Chain complex
source = tuple ( [ s for s in SComplex i f len ( s ) == k+1])
# (k−1)− th Chain complex
t a r g e t = tuple ( [ s for s in SComplex i f len ( s ) == k ] )
i f k == 0 :
M = [ [ 0 ] for s implex in source ]

e l i f k >= max( [ len ( s implex ) for s implex in SComplex ] ) :
M = [ [ 0 for s implex in t a r g e t ] ]

else :
M = [ ]
for s implex in source :

# Boundary i n i t i a t e d wi th a l l c o e f f i c i e n t s be ing 0
boundary = dict ( )
for i in t a r g e t :

boundary [ i ] = 0
# Var iab l e to c o n t r o l the c o e f f i c i e n t s o f the boundary
s i gn = −1
for i in range ( len ( s implex ) ) :

# At each step , remove the i t h e lement o f s imp lex
aux = simplex [ : i ]+ s implex [ i +1: ]
# and m u l t i p l y the c o e f f i c i e n t by −1.
s i gn ∗= −1
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boundary [ aux]= s i gn
M. append ( l i s t ( boundary . va lue s ( ) ) )

return np . array (M) .T. t o l i s t ( )

So, with the boundary matrices we can easily calculate the rank of the boundary
and cycle groups and, with formula 2.1, obtain the Betti numbers of S2, as presented on
the table bellow:

p = 0 p = 1 p = 2
RankZp 4 3 1
RankBp 3 3 0
βp 1 0 1

Table 2 – Homology of S2

Even though the necessary information to compute the Betti numbers comes from
the normal form of the boundary matrix, it is not actually necessary to achieve the
normal form through elementary row operations. For computational proposes, the python’s
package numpy provides us with optimized linear algebra algorithms to compute the
rank of the boundary matrices and the Betti numbers.

The next section will be dedicated to discuss about the description that the
homology groups provide.

2.4 Discussions

Established the definitions and methods to calculate the homology group of simpli-
cial complex, let’s understand what does homology tells us. With that in mind, let’s check
the examples on table 3 bellow. The table shows the homology groups of triangulations of
a few basic 2-manifolds. Those groups can be easily calculated using the method presented
above and definition 2.16 and does not depend on the chosen triangulation.

2-manifold H0 H1 H2
Sphere Z {0} Z
Torus Z Z× Z Z
Projective plane Z Z2 {0}
Klein bottle Z Z× Z2 {0}

Table 3 – Homology groups of basic 2-manifolds.

Because they are all 2-manifolds, their homology groups will be all trivial, except
for the ones presented.

Torsion-free spaces are the ones the have homology that does not have terms
that are finite cyclic groups Zm. For torsion-free spaces in three dimensions (like the
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2-manifolds) the Betti numbers have intuitive interpretations that comes from Alexander
duality. β0 measures the number of components of the complex. β1 is the rank of a basis
for the tunnels, i.e., the number of cycles that are not boundary. β2 is the number of
voids, i.e, empty spaces that are enclosed by the complex.

Now, looking back at the table 3, observe that all of the spaces have a single
component, so H0 = Z and β0 = 1. Both the sphere and the torus enclose an empty
space, so H2 = Z and β2 = 0. The projective space and the Klein bottle otherwise are
nonorientable, which means that those surfaces have a single side. So these surfaces do
not enclose any void and their 2nd homology groups are trivial (β2 = 0).

For H1 observe that every simple closed curve drawn on the sphere is isomorphic to
the boundary of a 2-simplex. So its first homology group is trivial (β1 = 0). But the torus,
otherwise, have two classes of cycles that are not boundaries. Therefore H1 = Z× Z and
β1 = 2. Even though its harder to visualize it for harder dimensions, the Betti numbers βn
can be seen as the number of n-dimensional holes of the space.
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3 ALGEBRAIC TOPOLOGY AND PHASE TRANSI-
TIONS: FROM THEORY TO DATA

In this chapter, we discuss about a recent approach to detect topological phase
transitions in experimental data, particularly to weighted networks. In a nutshell, one can
associate a weighted graph (or network) to experimental data. Later, we can compute the
simplicial complex associated to data. With the simplicial complex in hand, we can make
use of several tools and results from algebraic topology directly into data. That’s the main
idea of Topological Data Analysis (TDA). Since TDA is a very recent topic in applied
mathematics, several subtopics of Algebraic Topology are still under-exploited into the
context of data. On the other hand, some methodologies are already widely spread into
the artificial intelligence entrepreneurship, for instance, by using of the Mapper algorithm
and persistent homology techniques. Very recently, phase transitions in random simplicial
complexes [23, chapter 22], a very active area in Algebraic topology, was also explored
in the context of data [1], with a deep inspiration in results relating phase transitions in
theoretical physics [17, 20,33]. This chapter will pave the way to implement our approach
to protein-protein interaction networks in the next chapter.

3.1 Topological Data Analysis of Weighted Networks

Data is everywhere. From medicine to the stock market, or from astrophysics to
social media, the amount of data we produce is growing exponentially over the last years.
According to [34], in 2018, humanity produced about 2.5 quintillion bytes of data every
day. This data revolution gave us several benefits, such as predictability on the weather,
diagnostic of diseases, music streaming, etc. On the other hand, this data revolution
sometimes gives us with the impression that the scientific method is not being successful
to achieve a theory for data in the same way we have established theories in physics and
mathematics [35]. Topological data analysis (TDA) is a generic approach to process and
understand data and, therefore, is a strong candidate to circumvent this causality issue in
modeling data, which can make data science closer to the standard scientific method. This
large amount of data requires consistent techniques to be explained to obtain information
from it. Although other approaches have been reported in the past, TDA became famous as
a research topic through the works of Edelsbrunner [8], Zomorodian [36], and Carlsson [6].
TDA consists of giving shape to data, that usually comes in the form of a set of points,
and read the data through the topological and geometrical properties of this shape.

Most of the methods inspired by topological and geometrical properties adopt the
following pipeline:

1. The data is assumed to be a set of point distributed on a metric space, or with intrinsic
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pair-wise connectivity defined by an incidence matrix. The metric or connectivity
defined for the data is usually given experimentally or built by some procedure.

2. A chain of simplicial complexes called a filtration, is build on top of the data. This
structure reflects the data on different scales. The main difficulty here is how to
define the filtration in order to achieve relevant information about the data in a way
that can be easy to built and manipulate it.

3. Topological invariants and geometric information are extracted from the data, and
this knowledge can be seen as data’s fingerprint. They can be used to understand
the data better or to be combined with other features for further analysis.

The data that we will analyze in this work comes as a weighted network, i.e.,
a graph that for each edge we associate a real number, often referred to as a weight.
This weight is usually a normalized measure of similarity or the force of some functional
interaction between the nodes. Data like this appears in a vast range of contexts that go
from biological networks, like protein interaction or brain networks, to social networks.

A filtration process can be naturally built on weighted networks. In order to
implement it, we can see the weights as a distance between the nodes and apply the pipeline
described above. LetG = (N,E) be a weighted graph with vertices inN = {1, 2, 3, 4, . . . , n}.
Suppose that each edge (i, j) have weight w(i, j) ∈ [0, 1]. For each ε ∈ [0, 1] define
Gε = (N,Eε) as the graph with same vertices as G and Eε = {(i, j) ∈ E | w(i, j) 6 ε}. To
each Gε we can associate a simplicial complex Xε = X(Gε) that is the clique complex
(or flag complex) of Gε. A clique in a graph Gε is a subset of the vertices of Gε in which
every vertex is connected with each other by an edge of Gε. The clique complex of Gε is
the simplicial complex X(Gε) in which every clique of Gε is a simplex in X(Gε).

The filtration process generates a function F : ε 7→ Xε that traces the topology
of the data on different scales. F(0) = X0 is the complex containing only the vertices
(0-simplices). As ε increases the edges of G are being added, increasing the connectivity of
the network and building higher dimensional simplices. Figure 2 illustrates the process.



Chapter 3. ALGEBRAIC TOPOLOGY AND PHASE TRANSITIONS 29

Figure 2 – Filtration process of brain networks. From [1].

The topological properties of Xε as ε increases can give us reliable information
about the data. Given the geometric realization theorem 2.7, this process is equivalent
to building a hyperpolyhedra adding faces from lower to higher dimensions, where each
k-clique in the network can be seen as k-dimensional face. One may ask, how the topology
of this geometrical simplicial complex evolve during the filtration.

In this work, we propose the usage of the techniques of TDA in order to detect
phase transitions on real data, that comes in the form of a weighted network. Phase
transitions have been studied in a vast range of systems and techniques in theoretical
physics [15, 16], and particularly for classical Hamiltonian systems using methods of
Morse theory [17,20,33]. Particularly, the association between Euler characteristics and
percolation transitions appear in many theoretical models [37–42].

In graph theory, the most well-known phase transition is the so-called giant compo-
nent transition in random graphs studied by Erdös and Rényi in [22]. This transition is also
known as percolation transition and is already applied in several data-driven problems [43].
Although the percolation problem is well established in graph theory, the extension of this
problem to a simplicial complex is quite recent in algebraic topology [23, chapter 22] and
even to data. In fact, there are quite new results that generalized the ideas of percolation
transitions for simplicial complexes [24].

The current, state of art, most spread methodologies in TDA, are the Mapper
algorithm [44] and persistent homology [45]. Several subtopics of algebraic topology,
however, are potential candidates for new topological approaches to understand and
interpret data. Very recently, the ideas of TDA, network theory, phase transitions in
Hamiltonian systems, and phase transition in simplicial complexes were merged in order
to detect phase transitions in data generally, particularly in functional brain networks [1].

In the next section, we will briefly discuss phase transitions from the Erdös-Rényi
model to some random simplicial complexes, in order to move forward to detect phase
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transitions in data.

3.2 Phase Transitions on Erdös-Rényi Model

Random shapes appear naturally in many contexts and the concept of phase
transition have been broadly studied for theoretical models. In this section we will
resume some topological and geometrical properties of random simplicial complexes. We
will start by briefly introducing some commonly studied models and point a few topological
transitions detected on those models.

The study of random graphs was started by Erdös and Rényi in the 1960’s and had
impact on many areas of science, like discrete mathematics, computer science and engi-
neering. During the following years many topological properties had been analysed for the
Erdös-Rényi graph (that will be defined latter), and since graphs are purely 1-dimensional
simplicial complexes, people started to think about what properties should emerge if we
consider more general structures like d-dimensional random simplicial complexes. This
section is devoted to present the Erdös-Rényi graph and some usual generalizations to
higher dimensional simplices.

3.2.1 Erdös-Rényi model

Let n be a positive integer and p ∈ R, 0 6 p 6 1. The Erdös-Rényi graph is a
graph with n vertices in which every edge is added independently with probability p. We
usually think of p a function of n to study asymptotic properties of G(n, p). An event is
said to happens with high probability (w.h.p.) if its probability goes to 1 as n→∞.

One of the main topics about G(n, p) is the search for threshold probabilities.
Given a property P, we want to find a critical value p̄ = p̄(n) for which if p > p̄, then
property P holds w.h.p., and if p < p̄, then property P does not hold w.h.p.

Erdös-Rényi [22] found a sharp threshold for connectivity. They proved that for
p̄ = log n/n the following statement holds:

Proposition 3.1. For every ε > 0, if p > (1 + ε)p̄ then G(n, p) is connected w.h.p. Also,
if p 6 (1− ε)p̄ then G(n, p) is disconnected w.h.p.

Some other important topological threshold found on G(n, p) are listed bellow.

Property Threshold (p̄) Reference
H1(G) 6= 0 1/n [46]

G is not planar 1/n [47]
G is purely 1-dimensional log n/n [22]
G have a giant component 1/n [22]

Table 4 – Phase Transitions on G(n, p)



Chapter 3. ALGEBRAIC TOPOLOGY AND PHASE TRANSITIONS 31

3.2.2 The random d-complex

Many generalizations of the Erdös-Rényi model have been studied, but since we
are interested in topological properties of graphs in the context of simplicial complexes
the following models should fit better.

The random 2-complex Y2(n, p) consists of a simplicial complex with n vertices,
all
(
n
2

)
possible 1-simplices and each of the

(
n
3

)
possible 2-simplices is included independently

with probability p. For random d-complex Yd(n, p) we start with with n vertices and
all (d− 1)-simplices. Every d-dimensional face appears with probability p.

Property Threshold (p̄) Reference
Hd−1(Yd) 6= 0 O(log n/n) [48]

Yd is purely d-dimensional d log n/n [49]

Table 5 – Phase Transitions on Yd(n, p).

3.3 Topological Phase Transitions in Data Driven Systems

Given the previous explanation on phase transitions in simplicial complex and on
how to associate a simplicial complex to data, we are now ready to study topological
phase transitions in simplicial complexes created from data. In fact, as far as we know,
this approach was implemented very recently for random graphs and for functional brain
networks [1]. The potential use of such approach is based on the universal character of a
phase transitions, which roughly speaking, means that the same "material" would have
the same transition temperature, at similar conditions. In other words, one could say that
something that boils at 100oC at sea level is very likely to be water.

Since we have simplicial complexes build from experimental data, we do not expect
that the distribution of the simplices would match the theoretical models explained
here. However, the behavior of the systems discussed here is somehow analogous to the
experimental systems that we are going to discuss in the next chapter. In fact, as was
reported in [1], the distribution of the Betti numbers of brain networks resembles the
results explained here. In order to transpose this idea to data driven systems, we can
hypothesize that some sort of experimental data can be seen as an stochastic realization of
an abstract simplicial complex with a given distribution of simplices. Moreover, knowing
several realizations of the simplicial complexes associated to data, one could find topological
phase transitions. Finally, one could interpret the critical points of the topological phase
transitions as a fingerprint of the data, in the same way the melting, and boiling, etc.,
temperatures of a material at sea level, are signatures of the material.

The random clique complexX(n, p) is simply a way to associate a simplicial complex
to the Erdös-Rényi graph G(n, p). X(n, p) is the simplicial complex whose simplices are
the cliques of G(n, p). It is the maximal simplicial complex compatible with a given graph.
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In ref. [1], X(n, p) was studied in the context of phase transitions in simplicial complexes
and It’s relations to physics. In short, both the logarithm density of the absolute value of
the Euler characteristic, i.e., the Euler entropy, and the distribution of the Betti numbers
are topological indicators for phase transition in this system. The first had inspiration in
physics, but it intimately related to the second, since

χ =
∑
k

(−1)k · βk.

Figure 3 shows the Euler characteristic and the Betti numbers of the random
clique complex as function of the probability p obtained in ref. [1]. It’s easy to see that
the distribution of the Betti number is concentrated in a narrow probability interval,
corroborating qualitatively with the rigorous results on phase transitions in simplicial
complexes [23, chapter 22]. It’s important to notice that even though the Euler characteristic
[50] can be computed analytically, we cannot do the same for the Betti numbers. So
the homology was computed numerically and its average is plotted analytically for 500
realizations in a random clique complex. Observe that the picks of the Euler characteristics
points the exact threshold for the shift in the dominance of the Betti numbers.

Figure 3 – Topological transitions of the random clique complex. Numerical evaluation
obtained from [1].

Once we know how to address numerically phase transitions in X(n, p) we now
proceed to one exemplar of this approach to real data, particularly phase transitions in
functional brain networks. We illustrate a filtration in a brain-network, obtained in [1].
In this case, the filtration parameter was the absolute value of the Pearson correlation
coefficient, in descending order, i.e., the threshold. In figure 4 it was observed that, in
similar conditions, the Euler characteristic of those brain networks (as a function of the
correlation ε between brain regions) present similar behavior. Each individual, considered
here as an stochastic realization of random simplicial complex, is illustrated in gray, while
the average is illustrated in blue. Several transitions were detected on the brain networks,
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all of them in a very narrow interval. This discovery raises the hypothesis that the geometry
and topology of functional brain networks are intrinsic properties that can be seen as
biomarkers that could help on the detection of unhealthy brains. In the last chapter of
this work, we will move forward in this field, trying to check this hypothesis to a different,
and also relevant, type of data, namely protein-protein interaction networks (PPIN).

Figure 4 – Topological phase transitions on functional brain networks [1]. Observe that
the brain network of each individual (gray) presents transitions inside a narrow
interval, around the average (blue).



34

4 TOPOLOGICAL PHASE TRANSITIONS ON PPIN

In this chapter we will use the approach presented in the previous chapters of
this work, to understand the topological properties of protein interaction networks. In
particular, we will digress on standard models of protein interaction networks and will
detect topological phase transitions observed in such models. Finally, we will see that those
transitions also happens on real data, as we are going to illustrate for gene co-expression
network from Saccharomyces cerevisiae and Caenorhabditis elegans.

4.1 Introduction

Nowadays, due to the increase in the availability of technology and new experimental
methods that comes with it, we have massive data production that needs tons of processing
power and new methods to analyze it. Therefore, it is necessary to develop techniques to
obtain information from it [6]. In that sense, topology is a natural tool to be applied.

Topology is the branch of mathematics that concerns in finding properties of objects
that are independent of a coordinate system. Topological properties of a system are usually
global properties that are independent of perspective or frame of reference. One important
problem in topology is to identify and characterize phase transitions in a given system.
Association between phase transitions and topological changes in the configuration space
have been reported in some model systems in theoretical physics using methods of Morse
theory [17,18,20].

One of the topological invariants associated with phase transitions is the Euler
characteristics. In fact, the Euler Characteristic (EC) is an essential topological invariant
[51] and it has been observed that logarithm density of the EC presents singular behavior
around the thermodynamic phase transition in theoretical models [17,33].

For complex networks, EC is computable associating a simplicial complex to it, i.e.,
a set of simplices (node, edges, triangles, tetrahedrons, etc.), whose intersections between
each other are also simplices. If we denote Nk as the total number of k-dimensional
simplices, the EC is given by

χ =
∑
k

(−1)k ·Nk.

The Euler entropy, recently defined in the literature by [20], is the logarithmic density of
the EC. Many works associated, through the Euler entropy, phase transitions on a range
of continuous systems in physics [38–40].

EC is also related to the percolation transition [52]. Recent works on complex
networks verified that the first transition of the Euler entropy is related to the appearance
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of a giant component, i.e., components that involve a significant share of the elements of
the system.

Lately, in [1] the EC was used to detect topological phase transition on functional
brain networks and observed that those transitions could be seen as topological bio-markers
for brain networks.

In this chapter we will use the same techniques proposed at [1] for Protein-Protein
Interaction Networks (PPIN), i.e., networks in which the nodes are proteins the edges
are graphical representations of the interactions between them. Topological properties of
PPIN have been subject of studies on many relevant works [25–27]. In short, we found
topological transitions analogous to the ones obtained at [1] on two models of growth of
PPIN: the totally asymmetric and the heterodimerization duplication-divergence models.

To check if those topological transitions are consistent with real data of PPIN,
we applied the same approach to data of Gene Co-expression Networks (GCN) of yeast
freely available online from project Yeastnet v3 [3]. A GCN is a PPIN in which the edges
are based on experimental measures of correlation on the activity of genes over different
conditions. Each node on the network corresponds to a gene. An edge connects a pair of
genes if they present similar expression patterns over all the experimental conditions [53].
GCN are often used to identify groups of genes that, over many experimental conditions,
displays a similar expression profile. Based on the "guilt-by-association" principle [54], it
is possible to hypothesize that those genes share a common functionality. Therefore, to
understand and compare topological features between co-expression networks may provide
useful information about the strengths (and weaknesses) of the association model used to
infer the co-expression network [55]. We were able to detect a topological phase transition
on the data of GCN from Yeastnet and observed that this transition happen in a narrow
interval for several Yeast datasets, suggesting that these transitions are some sort of
biomarker, i.e., intrinsic properties of those Yeast networks. Moreover, for Yeast networks
with DNA damage [4], we observed that the phase transition happens for a threshold
much lower than the ones detected for other yeast networks, which can be possibly seen
as a sign of network reorganization due to DNA damage.

4.2 From Protein Interaction Networks to Duplication-Divergence

Proteins are macromolecules that participate in a vast range of functions in a cell,
like replication of DNA, response to stimuli or even the transport of molecules, among
others. The interaction between proteins represents a central role in almost every cellular
process. The proper understanding of how proteins interact within a network can be
a crucial advance on the identification of cells’ physiology between normal or disease
state [56]. The interactions between proteins in a cell can be mathematically represented
as a graph, a mathematical structure composed by nodes (or vertices) and edges. Proteins
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are the nodes and links are given to pairs of protein that interact. This representation is
often referred to as a Protein-Protein Interaction Network (PPIN).

In [25] it was first observed that PPIN are scale-free networks, i.e., a few nodes
(proteins), the so-called Hubs, are the most important nodes, participating in the majority
of the cellular functions, i.e., with high degree. In fact, the scale-free property can be
seen in a range of other complexes systems, like world wide web, social networks, etc. [7].
The emergence of such systems is characterized by a preferential attachment principle.
New nodes added to the system are more propense to attach to nodes with higher degree
resulting in a power law degree distribution, i.e., the fraction p(k) of nodes with degree
k in the network is inversely proportional to some power of k. In PPIN, this scale-free
topology is reported to be a consequence of gene duplication [57].

Gene duplication is the process that generates new genetic material during molecular
evolution. The appearance of vertebrates and mammals from unicellular organisms is one
of the exemplars of phenomena that would never be possible without gene duplication [58].

We can assume that duplicated genes produce indistinguishable proteins, that is,
proteins that interact with the same proteins. Every time a gene duplicates, the proteins
that are linked with the product of this gene has one extra link on the network. Thus,
proteins with more links are more likely to have a neighbor to be duplicated. In this
section, we will discuss models for gene duplication. Gene duplication is one of the most
essential factors in evolution. The discovery of a scale-free property in PPIN gave rise to
many models for generating PPIN based on the gene duplication principle [5, 59–62], most
of them relying on divergence, a process in which genes generated by the same ancestral
through duplication accumulate independent changes on their genetic profile over time.

The Duplication-Divergence (DD) model firstly proposed in [59] simulates the
growth of a PPIN by gene duplication and divergence. There are some variants of this
model, which include heterodimerization, arbitrary divergence [5], random mutations [60],
among others.

In this work, we will analyze the simplicial complex associated with two of them.
The first one is the totally asymmetric model of duplication and divergence network growth.
It involves a single parameter p, called retention probability, proposed by [61]. The second
one was proposed by [5] and is quite similar to the first one but with a second parameter
q that will control the heterodimerization process (that will be defined below). We will
also present data from real gene co-expression networks whose behavior corresponds to
what is observed on those models.
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4.3 Phase transition on Totally asymmetric Duplication-Divergence
model

The totally asymmetric model is a duplication-divergence model in which the
divergence process is assumed to happen only on the replica of the duplicated node. This
model, proposed by [61], is based on the hypothesis that, after duplication, there is a slight
chance that the replicate node starts to develop different functions than the original one.
In the model, this change is indicated by the deletion of some edges that goes from the
replica and is supposed to happen a single time during the growth of the network.

The model is defined as follows: Given a number N and a probabilistic parameter
p (0 6 p 6 1), the model generates a graph with N nodes from a single edge following the
presented algorithm:

• Duplication: One node is randomly selected to duplicate with its edges.

• Divergence: Each edge that goes from the replica activates with a retention probability
p. The non-activated edges are removed.

Figure 5 bellow illustrates the process.

Figure 5 – Duplication step of the totally asymmetric model. For each duplication step a
node is selected to be duplicated (red) within its edges. Each edge (dashed lines)
that goes from the replica (pink) is activated with independent probability p.

The duplication step simulates genetic replication in a cell, while the divergence
step simulates the possibility of a mutation after duplication, which can generate new
proteins performing different functions than the original. Some authors [61] consider that
the algorithm should treat as a failure any duplication that produces an isolated node
and remove that node, but for experimental consistency, simplicity, and to make the
computations faster, we will keep the isolated nodes. In fact, this approach can be seen
as a step forward in the understanding of gene co-expression data modeling. As we will
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verify further, experimental data shows isolated nodes for lower levels of co-expression
(� 1). Therefore, keeping the apparent duplication "failures" will make the modeling more
appropriate to match with the experiments.

For the computation of the Euler entropy, observe that this algorithm will only
produce bipartite networks, which implies that the networks produced by this model will
not have cliques with size 3 or greater. The EC, therefore, will be given by the formula

χ = N − E.

In here, N represents the total number of nodes, and E the total number of edges.
Consequently, we are able to obtain the expected mean value of the EC in terms of the
parameter p for a graph with N nodes, by

〈χ〉 = N − 〈E〉. (4.1)

The expected value for the number of edges as function of p for a totally asymmetric
model, is calculated using recurrence method, which after some algebra is given by:

〈E〉(p) =
N−2∏
k=1

( 2
k + 1p+ 1

)

Since the Euler entropy is given by

Sχ = log |〈χ〉|

we have a singularity on Sχ at the values of p where 〈χ〉 = 0, i.e., where

〈E〉(p) =
N−2∏
k=1

( 2
k + 1p+ 1

)
= N.

A graph that has more edges than nodes certainly has cycles [63]. So, the transition point
marks the exact retention probability where it is highly probable that the network has
cycles, i.e., in the vicinity of the emergence of a Giant component in the Network [22].

We define, therefore, phase transitions as the singularities of the Euler entropy.
This definition finds a basis on the obtained on a range of continuous system [17], and
was introduced to data in [1]. In figure 6, we observe the behavior of the Sχ as a function
of the parameter p of the totally asymmetric model, for a network with 1000 nodes. One
can observe that there is a single singularity when p reaches the critical value of ≈ 0.56
(dashed black line).
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Figure 6 – Euler entropy Sχ = log |〈χ〉| as function of the retention probability p of the
Duplication Divergence graph with 1000 nodes. Sχ was determined by (4.1).
The singularities Sχ → −∞ locate the topological phase transitions on the
duplication divergence graphs. We put the number of nodes and edges in a
logarithmic scale to let visible the change of dominance between the number
of nodes and the number of edges that occurs at the same spot as the phase
transition.

To understand the implications and characterize this phase transition, we will
analyze the model through other topological parameters, known as Betti numbers. In
general, Betti numbers, which are usually indicated by βn, and are defined as follows. β0

is the total number of connected components. β1 is the number of cycles on the graph.
For n > 1 it starts to get tricky to understand the structure, but, roughly speaking, βn
indicates the number of n-dimensional "holes" on the network.

Figure 7 presents the behaviour of the Betti numbers β0 and β1 as functions of p
compared with the Euler characteristics. Since we were not able to achieve an analytic
expression for the Betti numbers, they were obtained numerically by generating 1000
simulations for each value of p (from 0 to 1 at steps of 10−2), 1000 nodes each.
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Figure 7 – Betti numbers β0 and β1 of DD graphs as functions of the retention probability
p (N = 1000). At the first phase the graph is totally disconnected, with many
components. As p increases β1 (i.e, the number of cycles) surpasses β0 exactly
when p crosses the transition point, indicating an important change on the
topology of the DD graph.

Notice that the topological phase transition occurs in the vicinity of the value of pc
where the Betti curves β0 and β1 overlap and, consequently, χ = 0. For p < pc the network
is divided into many components because there is a high chance that duplicated nodes
does not connect with any neighbor of the original nodes. As p increases, the number of
components decreases and we have the abundance of cycles in the network. Near pc, the
expected number of cycles is as big as the expected number of components, so there is a
high chance that the graph has a cluster with O(N) nodes.

Figure 8 – Percolation transition on DD model. The three curves shows the fraction of
nodes on the biggest component NG/N as function of the retention probability
p.

Another explanation for the obtained phase transition from the totally asymmetric
model comes from percolation theory. It is a known fact that the first change of sign of
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the EC on complex networks is related with the appearance of a giant component, i.e., of
a connected component on the graph that involves a significant part of the nodes on the
system. Then, for the totally asymmetric model, we observe that the transition obtained
is the percolation transition of the system, i.e., the value on the probabilistic parameter
that maintains most of the proteins interacting as a whole.

Figure 8 shows the expected fraction of nodes that belong to the largest component
as a function of the retention probability p for different numbers of nodes. Observe that
as the number of nodes increases, the point where a significant fraction of nodes are in
the giant component gets closer and closer to the transition in the thermodynamics limit
(N � 1).

4.4 Phase Transitions on GCN

In a biological context, interactions among proteins can be physical interactions,
indicated by the physical contact between them as a result of biochemical events guided
by electrostatic forces [64], but also functional interactions. It is possible for a group of
proteins to perform a common biological function without actually being in direct contact,
regulating some process or even making common use of some other molecule [28].

Driving our focus to functional interactions, there are many methods to identify such
interactions. A common method consists of analyzing gene co-expression patterns. This
method is based on the principle that genes with correlated activity produce interacting
protein [65]. Mapping the correlation on the activity of genes, we build the so-called
co-expression networks. Co-expression networks are PPIN where the links between the
proteins measure the similarity on the expression pattern of its producing gene. These
measures are obtained analyzing the correlation of the activity of genes through different
experiments [28].

We now contrast the theory and numerical simulations presented in the previous
section with gene co-expression networks obtained experimentally from data for yeast
networks in which we can observe topological phase transitions with a similar profile.
Therefore, it makes sense to test if we will also find phase transitions on real data of GCN,
and if such transitions can give us useful information about the network. In this section, we
analyzed 48 GCN data of Saccharomyces cerevisiae, also known as baker’s yeast, available
online from the project YeastNet v3 [3]. The whole data-set covers around 97% of the
yeast coding genome (5730 genes). Each data corresponds to a network with ≈ 800− 3000
nodes and between 7000 to 64000 links. The data is a collection generated through diverse
experimental approaches.
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Figure 9 – Network representation of gene co-expression network for the yeast. This image
was build using the software Cytoscape [2]. The presented network have 1893
nodes and 7955 links and it was collected from Yeastnet v3 [3].

Each of the data-sets analyzed consists of an adjacency matrix for the Yeast network.
Each node on this network corresponds to a gene. Two genes are connected by an edge if
there is significant co-expression relationship between the genes. We associate to each edge
a weight that is the normalized correlation between the expression of the nodes involved.

The GCN then passed to a numerical process of filtration. This process consists of,
for a given ε ∈ [0, 1], to remove all the edges with correlation at most 1− ε. For ε = 0, for
example, we would have an empty network, with all the nodes disconnected. As ε increases,
we include the link with a correlation greater than 1− ε, until ε reaches 1, when the graph
becomes fully connected, with all its edges. In this work, we used the filtration process to
follow the topology of the GCN as a function of the correlation between the genes.

In contrast with the results of the previous case, where the EC was given as
function of the probabilistic parameter p of the totally asymmetric model, the EC is given
as function of the threshold ε by

χ(ε) =
N∑
k=1

(−1)k+1Clk(ε),

where Clk(ε) is the total number of k-cliques that are on the network for a given filtration
level ε.

We stress that the computation of topological invariants is an NP-complete problem,
and therefore, here, we only illustrate data-sets where the computation was feasible, namely,
to 20 Yeast networks. Figure 10 shows the Euler entropy as a function of ε of 20 of the
networks on Yeastnet’s database. The time scale for the numerical computation of the
numbers of k-cliques increases exponentially with the size of the network. As ε increases,
the network becomes denser, and the computations become extensive. Because of that, for
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some of the datasets, we could not compute the Euler characteristics to a threshold where
one could detect a topological phase transition. The Euler entropy averaged over the data
sets (blue line), clearly shows the presence of a singularity.

Observe that most of the singularities happen near ε ≈ 0.876 except for one of
the networks, where the singularity happened at ε ≈ 0.573. This network comes from an
experiment whose goal was to evaluate response to DNA damage. It is a known fact that
eukaryotic cells respond to DNA damage by rearranging its cycle and modulating gene
expression to ensure efficient DNA repair [4]. Therefore, our analysis suggests that the
Euler entropy is sensible to this reorganization process in the damaged Yeast network and
could also be seen as an intrinsic bio-marker with significant potential to be a comparative
measure for GCN under DNA damage. Thus, an analysis is desirable to verify the relation
between DNA damage and percolation transitions on a solid basis.

Figure 10 – Euler entropy Sχ as a function of the correlation threshold ε of 20 co-expression
networks from Yeastnet database. Each gray line corresponds to a co-expression
network, while the blue line is the average of the gray ones. Most of the
topological phase transition was detected on those networks for ε ≈ 0.876,
except for the Yeast network with the DNA damaged, where the transition
happened at ε ≈ 0.573 (red line). This data was designed intended to measure
the response to DNA damage in the network [4], and the shift in the threshold
of the topological transition is apparently sensitive to that response.

In order to provide a characterization of the topological phase transition of GCN,
we also calculated the Betti curves β0 and β1 for the same Yeast networks used before.
For n ≥ 1, βn did not presented significant behaviour to be considered. In Figure 11, we
illustrate the Betti curves for the data Yeast network dataset.
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Figure 11 – Average of the Betti numbers as a function of the correlation threshold ε.
Observe that, as happened with the totally asymmetric model, the dominance
of β0 and β1 shifts at the vicinity of the singularity of the Euler entropy (black
line).

In the whole data sets it we can observe agreement between the threshold transition
of Sχ and the threshold where β1 becomes greater than β0, in analogy with the topological
transitions reported on theoretical models for random simplicial complexes [23,24]. For
values of the threshold below the transition, since β0 is greater than β1, the network is
fragmented in many components. As ε gets closer to the transition threshold, more edges
are added to the network, lowering the number of components, and changing the network
to a denser one and with more cycles. Once the number of components gets smaller, almost
every new edge creates more loops, and the topological transition happens precisely when
the number of loops is greater than the number of components.

Those observations about the behavior of the Betti numbers are compatible with
the results observed in [66], and provides some possible interpretation for this shift in
the critical points of the topological phase transition. In [66] it was observed a linear
correlation of R = −0.55 between the chance of survival of cancer patients and the number
of cycles in the network, also known as the complexity of the cancer PPIN. In fact, the
complexity was measured using persistence homology, specifically by the magnitude of the
Betti number β1, that counts the number of one-dimensional cycles on the network. The
higher the β1, the higher is the complexity, that leads to lower chances of survival. This
study gives evidence that, for cancerous cells, the complexity of the PPIN is associated
with a health state of the cell.

Now, returning to our analysis of gene co-expression networks of Yeast, we observed
that, for one of the networks, the transition indicated by the Euler characteristics happened
at a distinct threshold (≈ 0.573). The analysis of the Betti numbers indicates that this
transition is characterized by a shift of dominance between β0 and β1, as theoretically
described for random simplicial complexes [24]. Thus, during the filtration process, the net-
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work corresponding to Yeast with "DNA damage" reaches the topological phase transition
earlier than the other data (on which the transitions happened near ε ≈ 0.876), indicating
a rapid appearance of cycles on the network, i.e., the increase of network complexity. The
arguments proposed in [66], together with the observations above reinforce the hypothesis
that topological phase transitions have the potential to be used as intrinsic biomarkers for
protein interaction networks more generally.

4.5 Heterodimerization model.

Here, we move forward to a model where the protein interactions display more
complex dynamics. This model is a variation of the totally asymmetric model discussed in
the previous sections. Given a number N and two probabilistic parameters p and q, the
model generates a graph with N nodes from a single edge following the steps below:

• Duplication: One node is randomly selected to duplicate with its edges.

• Divergence: Each edge that goes from the replica activates with probability p.

• Heterodimerization: The replica and the original nodes connect with probability q.

The heterodimerization step mimics the probability that the original node is a dimer, i.e.,
two molecules joined by bonds that can be either strong or weak. This step is important
for clustering and is observed in real PPIN [67]. It is also known that this model produces
cliques with similar size and quantity, of those observed in some real PPIN [5], contrasting
with the totally asymmetric model where we could only observe low clique size.

Figure 12 – Duplication step of the heterodimerization model. For each duplication step a
node is selected to be duplicated (red) within its edges. Each edge (dashed lines)
that goes from the replica (pink) is activated with independent probability
p. Also, an edge going from the replica to the original node (dotted line) is
created with probability q.



Chapter 4. TOPOLOGICAL PHASE TRANSITIONS ON PPIN 46

As previously defined, the phase transitions are the singularities of the Euler entropy.
Here, given the complexity for generating these networks, we implemented it numerically
and compared with experimental data. In figure 13, we observe the average of the Euler
entropy Sχ as a function of the retention probability p for a graph with 1000 nodes
and different values of q. Figure 13 shows the presence of up to three topological phase
transitions and the positions of those transitions depends on the value of q. More transitions
happen mostly because the heterodimerization step turns possible the appearance of cliques
of a higher order. The higher the value o q, more probable it becomes for the appearance
o cliques of bigger sizes. In some real PPIN, it was reported the presence in abundance of
large cliques [68].

Figure 13 – Average of Euler Entropy as function of the retention probability p for different
values o q. Observe that, differently than the previous model, there are
more transitions and their number varies with the value of q. This happens
because the heterodimerization step makes possible the appearance of cliques
of different sizes as observed in real PPIN [5]

.

Because of the higher number of cliques, we were not able to achieve an analytic
expression for the Euler entropy. Also, since the network becomes denser due to the
heterodimerization step, we could not compute the Betti numbers for this model to make
similar conclusions about the transitions, as we did for the totally asymmetric model.
Nevertheless, to reinforce the significance of our analysis, we present experimental data
for PPIN that presents similar phase transitions profile.
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Figure 14 – (top) Euler entropy of PPIN from C. elegans in contrast with simulation with
heterodimerization model (bottom). Both have two singularities

.

In figure 14 (top) we illustrated the Euler entropy of a PPIN for the C. elegans. The
data was obtained from Wormnet v.3 database for this nematode [30]. For this network,
which consists of 2,219 genes and 53,683 links, each link was inferred by analysis of bacterial
and archaeal orthologs, i.e., homologous gene sequences of bacteria and archaea related to
C. elegans by linear descent.

Differently from the data of GCN of yeast presented previously, the Euler entropy
of this network presents two singularities at the vicinity of ε1 = 0.48 and ε2 = 0.82.
This behavior could not be observed if we would consider the growth of a PPIN through
duplication and divergence only. However, with the heterodimerization model, we could
achieve a similar profile of the Euler entropy by simply setting the correct parameters,
as can be seen in the bottom of figure 14. Figure 14 (bottom) shows the expected Euler
entropy as a function of the retention probability p, averaged over 1, 000 simulations for
each value of p (ranging from 0 to 1 with steps of 10−2). For this simulation, we set the
number of nodes as 2, 219 in a way that we can compare with the C. elegans data. We
also set the value of the heterodimerization probability q as 0.05. This value was only set
for comparison proposes, and probably is not the best value to fit the data. This choice
of q was 0.05 because for higher values of q we have more chance of appearance of larger
cliques, which would lead to more transitions.

This analysis suggests the presence of "dimmers" during the growth of the C. elegans
network. Therefore, the topological phase transitions displayed by the heterodimerization
model should fit better for this data. Moreover, other models for PPIN could give us other
insights for those transitions.
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4.6 Conclusions

In this work, we used the recent concept of topological phase transitions, in order
to detect phase transitions in Yeast and co-expression networks. We verified that such
transitions correspond to the emergence of a giant component in the network, as observed
on networks generated by the totally asymmetric duplication-divergence model. Given
that several Yeast datasets had a Topological Phase transitions at a very narrow threshold
interval between 0.756 and 0.958, our results give strong support to the hypothesis that
percolation transitions are strong topological bio-marker in a network.

Besides that, we propose to analyze PPIN through the Euler characteristics, which
is a more straightforward parameter that relates to the Betti numbers. By analyzing a
network for Yeast under DNA damage, we found that the transition point shifted to a value
of 0.573, quite far from the interval [0.756, 0.958], where the topological phase transitions
of the other Yeast network datasets takes place. Therefore, through this work, we have
evidence that zeros of the Euler characteristic, or the singularities of its Euler entropy,
can be seen as suitable topological invariant to distinguish macroscopic properties of the
Yeast networks.

For the C. elegans PPIN, on the other hand, the same approach gave rise to two
topological phase transitions, indicating that the totally asymmetric model does is not
sufficient to capture the topological aspects of the C. elegans PPIN data properly. It
suggests that there should be some other process that leads to the growth of a PPIN. One
possibility could be the presence of dimmers, i.e., two nodes that are parts of the same
protein (or gene) that are connected. To test this hypothesis, we computed the expected
Euler entropy of the heterodimerization duplication-divergence for the model and observed
that, for a suitable set of parameters, we could obtain a similar profile of the Euler entropy
as the one observed on C. elegans network. It is important to emphasize that, in order to
match our theory and numerical simulations to the experimental data, we considered that
the nodes that got isolated after duplication were kept in the network. Further studies are
desired to a proper biological interpretation of this assumption.

It is important to discuss that other models propose different processes for the
growth of a PPIN, which deserves investigation under our approach. In ref. [5] for example,
the authors presents a model with arbitrary divergence in which they could replicate with
high confidence the same number of cliques observed at PPIN data. Many other models
simulate different aspects of the growth of a PPIN [5, 60, 62] and the analysis of such
models through phase transitions of the Euler entropy would give us precious information
about PPIN. In short, this work contributes to a better understanding of the topological
properties of PPIN and gives us the perspective to use topological phase transitions as a
methodology for classifying protein interaction networks more generally.
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