
Universidade Federal de Pernambuco

Centro de Ciências Exatas e da Natureza

Departamento de Estatística

Programa de Pós-Graduação em Estatística

Wenia Valdevino Félix

Statistical Inference Based on Information
Theory for Pre-shape Data

Recife

2019



Wenia Valdevino Félix

Statistical Inference Based on Information
Theory for Pre-shape Data

Doctoral thesis submitted to the Programa de Pós-
Graduação em Estatística na Universidade Federal de
Pernambuco as a partial requirement for obtaining a
doctorate in Statistics.

Concentration area: Mathematic Statistics.

Advisor: Prof. Dr. Abraão D. C. Nascimento
Co-advisor: Prof. Dr. Getúlio J. A. do Amaral

Recife

2019



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217                  
  

   
 
F316s Félix, Wenia Valdevino    

Statistical inference based on information theory for pre-shape data / Wenia 
Valdevino Félix. – 2019. 

  136 f.: il., fig., tab. 
 
  Orientador: Abraão D. C. Nascimento. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CCEN, 

Estatística, Recife, 2019. 
                       Inclui referências e apêndices. 
 

  1. Estatística. 2. Distâncias estocásticas. I. Nascimento, Abraão D. C. 
(orientador).  II. Título. 
 
      310                     CDD (23. ed.)                          UFPE- MEI 2019-032                            
       

 

 



WENIA VALDEVINO FÉLIX

STATISTICAL INFERENCE BASED ON INFORMATION THEORY FOR PRE-
SHAPE DATA

 

Aprovada em: 27 de fevereiro de 2019.

 BANCA EXAMINADORA

________________________________________________________________________________
Prof.(º) Abraão David Costa do Nascimento 

UFPE

________________________________________________________________________________
Prof.(ª)  Audrey Helen Mariz de Aquino Cysneiros

UFPE

________________________________________________________________________________
Prof.(º) Alex Dias Ramos 

    UFPE

________________________________________________________________________________
Prof.(º) Eufrásio de Andrade Lima Neto 

UFPB

________________________________________________________________________________
Prof.(º) Paulo José Duarte Neto 

      UFRPE 

Tese apresentada ao Programa de Pós-
graduação em Estatística da Universidade 
Federal de Pernambuco, como requisito parcial 
para a obtenção do título  de Doutor em 
Estatística.



Dedico este trabalho à Deus,

a meus pais, João Félix e Elizabeth Valdevino

e a meu esposo, Romildo Lima.



AGRADECIMENTOS

Agradeço a Deus pela oportunidade de ingressar neste doutorado e por me auxiliar nos

momentos difíceis, que com sua graça, foram superados.

Aos meus orientadores, Dr. Abraão David e Dr. Getúlio Amorim, por toda a paciên-

cia, incentivo, compreensão, disponibilidade, confiança e de forma geral por todos os

conhecimentos científicos e lições de vida que me proporcionaram durante esses quatro

anos. Além de serem profissionais muito competentes, sempre transmitindo com muita

seriedade e naturalidade o conhecimento científico. Em especial, por me apresentar as

duas linhas de pesquisa, a saber, Análise Estatística de Formas e Teoria Estatística da In-

formação. Tópicos extremamente interessantes, tanto no aspecto teórico quanto estatístico

e computacional.

A minha família, minha mãe Elizabeth Ribeiro, que por quatro anos, apesar da

distância, esteve sempre ao meu lado me apoiando. A meu pai, João Félix, que estava

sempre em oração e contando os dias para que pudesse conquistar mais essa vitória. A

minha tia Diomar Ribeiro, por todo incentivo e encorajamento que me proporcionou. A

meu esposo, Romildo Lima, pela paciência, carinho, compreensão e auxílio durante este

longo tempo de dedicação acadêmica.

Aos irmãos e amigos da igreja Missão Evangélica a qual fazia parte em Natal, em

especial ao casal Márcia Tavares e Paulo Morais que me auxiliaram diretamente nesses dez

anos de carreira acadêmica. Como também a família do Pastor Gonzaga, pelas orações e

incentivo.

Aos meus amigos e companheiros do doutorado e mestrado por todos os momentos

de estudo e descontração que tivemos. Em especial agradeço aos colegas da minha

turma de doutorado, Luana Cecília, Thiago Vedovatto e Marley Apolinário (sempre

marlerizando). Estendo meus agradecimentos também ao meu amigo Josimar Vasconcelos,

grande estatístico, o qual até hoje me socorre quando o procuro. Como também a nosso

representante de doutorado César Diogo e a sua parceira inseparável Maria Cristina.

Lembro-me das madrugadas de estudo, das pescadas sobre o notebook e também dos

momentos de diversão que tivemos.



Ao professor Dr. Alex Dias por ter aceitado me supervisionar os dois semestres de estágio

à docência que foram realizados na disciplina de Introdução à Análise e Probabilidade IV.

Período de muito aprendizado para minha carreira docente.

A todos os professores do departamento de Estatística da UFPE, pelos conhecimentos

que me foram passados. Aos professores que fizeram parte da minha banca examinadora

de qualificação, a saber, Dra. Audrey Cysneiros e Dr. Alex Dias. Aos participantes da

banca examinadora da defesa, agradeço pelos comentários e sugestões.

A Valéria Bittencourt, secretária do programa de pós-graduação em Estatística, pela

imensa competência e o cuidado no momento de me auxiliar em burocracias acadêmicas.

Como também a todos os funcionários do departamento que direta e indiretamente nos

auxiliaram no decorrer do curso.

A agência de fomento que financiou o desenvolvimento deste trabalho, a Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).



ABSTRACT

An important branch at Multivariate Analysis is Statistical Shape Analysis (SSA). A

common demand in SSA is to study the shape property over objects in images, called

planar-shape. To quantify difference in planar-shape between distinct groups is crucial in

several areas – such as biology, medical image analysis, among others – and we provide

advances in this sense. This thesis assumes pre-shapes which are obtained from two-

dimensional objects follow the complex Bingham (CB) distribution, having like the most

important particular case the complex Watson (CW ) model. From numerical evidence we

present in this thesis, statistical tests which are well-defined in the SSA literature may

provide low empirical test power curves. In order to obtain new alternatives to overcome

this issue, we use information theory measures; in particular, stochastic entropies and

distances. These measures play an important role in statistical theory, specifically into

estimation and hypothesis inference procedures under large samples. First, we propose

new distance-based two-sample hypothesis tests for triangle mean shapes. Closed-form

expressions for the Rényi, Kullback-Leibler (KL), Bhattacharyya and Hellinger distances

for the CW distribution are derived. The performance of proposed tests is quantified and

compared with that due to the F2 test (analysis-of-variance tailored to the SSA literature).

Furthermore, we perform an application to real data. Second, we extend the first topic

proposing new distance-based two-sample hypothesis tests (for both homogeneity and

mean shape) for the CB distribution and landmarks number higher than three. We derive

the Rényi and KL divergences and the Bhattacharyya and Hellinger distances for the

CB distribution. Three from among them may also be used like tests between two mean

shapes or as discrepancy measures between the CB models. We prove also that the KL

discrepancy for the CB model is rotation invariant. In order to evaluate and compare

our proposals with other four SSA mean shape tests, a simulation study is also made to

evaluate asymptotic and robustness properties. Finally an application in evolutionary

biology is made. Third we tackle the proposal of new entropy-based multi-sample tests

for variability in planar-shape. We develop closed-form expressions for the Rényi and

Shannon entropies at the CB and CW models. From these quantities, hypothesis tests



are obtained to assess if multiple spherical samples have the same degree of disorder.

Keywords: Stochastics distance. Complex Watson distribution. Complex Bingham

model. Shannon entropy. Rényi entropy. Mean shape.



RESUMO

Um ramo importante na Análise Multivariada é a Análise Estatística da Forma (AEF).

Uma demanda comum em AEF é estudar propriedades de forma sobre objetos em imagens,

chamada forma-planar. Quantificar diferenças em forma-planar entre grupos distintos é

crucial em várias áreas – tais como biologia, análise de imagens médicas e outras – e nós

apresentamos avanços neste sentido. Esta tese pressupõe que pré-formas obtidas a partir

de objetos bidimensionais seguem a distribuição Bingham complexa (CB), tendo como o

mais importante caso particular o modelo Watson complexo (CW ). A partir de evidências

numéricas que apresentamos nesta tese, testes bem definidos na literatura da AEF podem

fornecer baixas curvas empíricas para o poder do teste. A fim de obter novas alternativas

para superar este problema, usamos medidas da Teoria da Informação; em particular,

entropias e distâncias estocásticas. Essas medidas desempenham um papel importante

na teoria estatística, especificamente nos procedimentos de inferência por estimação e

hipóteses em grandes amostras. Primeiro, propomos novos testes de hipóteses de duas

amostras baseados em distâncias para formas médias de triângulo. Expressões em forma

fechada para as distâncias de Rényi, Kullback-Leibler (KL), Bhattacharyya e Hellinger

para a distribuição CW são derivadas. O desempenho dos testes propostos é quantificado

e comparado com o teste F2 (análise de variância adaptada à literatura de AEF). Além

disso, realizamos uma aplicação a dados reais. Em segundo lugar, estendemos o primeiro

tópico propondo novos testes de hipóteses de duas amostras baseados em distância (tanto

para homogeneidade quanto para forma média) para a distribuição CB e número de pontos

de referência maior que três. Derivamos as divergências de Rényi e KL e as distâncias

de Bhattacharyya e Hellinger para a distribuição CB. Três dentre elas também podem

ser usadas como testes entre duas formas médias ou como medidas de discrepância entre

modelos CB. Provamos também que a divergência KL para o modelo CB é invariante

à rotação. Para avaliar e comparar as nossas propostas com outros quatro testes de

forma média em AEF, também é feito um estudo de simulação para avaliar propriedades

assintóticas e de robustez. Finalmente, uma aplicação em biologia da evolução é feita.

Em terceiro lugar, abordamos a proposta de novos testes de múltiplas amostras baseados



em entropia para a variabilidade em forma-planar. Desenvolvemos expressões em forma

fechada para as entropias de Rényi e Shannon nos modelos CB e CW . A partir dessas

quantidades, testes de hipóteses são obtidos para avaliar se múltiplas amostras esféricas

têm o mesmo grau de desordem.

Palavras-chave: Distâncias estocásticas. Distribuição Watson complexa. Modelo

Bingham complexo, Entropia de Shannon. Entropia de Rényi. Forma média.
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1 INTRODUCTION

In this chapter we first motivate this manuscript. In particular, we discuss about a

possible combination lines between: Statistical Shape Analysis (SSA) and Statistical Infor-

mation Theory (SIT). Further main contributions, computational support and structure

of this thesis are also furnished.

1.1 Motivation

Over the years, SSA has gained attention in the literature due several areas, such as:

• In Biology: Cranial differences between the sexes of apes – in particular male and

female adult gorilla skulls – have been studied by O’Higgins (1989) and O’Higgins and

Dryden (1993). Sonat et al. (2009) have proposed landmarks for the hippocampus in

rat brains based on empirical experiment and have investigated hippocampus shape

changes in rat brain with epilepsy using SSA methods.

• In Medicine: Studies on focal neuroanatomical anomalies in patients with schizophre-

nia have been made by Bookstein (1996), assessing the shape differences in the

brain. In the medical image analysis context, Golland et al. (2005) have presented a

computational framework for image-based analysis and interpretation of statistical

differences in anatomical shape between populations. Colak et al. (2011) have inves-

tigated shape differences of the corpus callosum in patients with Behçet’s disease

using SSA.

• In Geology: Mean shapes of fossils and structures for their variability have been

estimated and studied by Lohmann (1983) and Dryden and Mardia (2016).

• In image detection and processing: Frangi et al. (2002) have provided a generic

framework for automatic selection of corresponding landmarks in three-dimension

(3D) shapes. Subsequently, this technique has been applied at the construction of 3D

shape models for 3D cardiac magnetic resonance imagery. Wang et al. (2003) have

furnished a simple and efficient automatic gait recognition algorithm utilizing SSA.
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The SSA can be understood as a set of procedures for analyzing shapes under un-

certainty (DRYDEN; MARDIA, 2016). The core concept of this theory is the one of

shape, geometrical information which remains after removing the effects of changes in

location, scale and rotation. One manner to work with shapes of objects is to define a

geometrical configuration called landmark configuration, which labels points (known as

landmarks from (i) anatomical, (ii) mathematical and (iii) imputation points of view,

(BROMBIN et al., 2016) over them, according to some common coordinate system; for

instance, Bookstein (BOOKSTEIN, 1986) and Kendall (KENDALL, 1984) systems are

two possibilities. Additionally, the term pre-shape means the landmark configuration

after extracting location and scale. According to Dryden and Mardia (2016), the shape

is an equivalence class and, from a practical probabilistic perspective, it is common to

work in the pre-shape space. To determine our action field in this thesis, we assume that

under-study objects are in the plan (although would be in three or high dimensions), called

as planar-shape.

According to Dryden and Mardia (2016), some SSA goals are: (i) to study how shape

changes during growth; (ii) how shape changes during evolution; (iii) how shape is related

to size; and (iv) how to describe shape variability. In order to model changes in shape it

is necessary to define suitable statistical models according to Kent (1997). Among the

various probability models used in shape data, two of the main distributions are: the

complex Bingham (CB) model proposed by Kent (1994) and, as one of its particular case,

the complex Watson (CW ) model pioneered by Mardia and Dryden (1999). Some of their

theoretical and computational properties have been developed in Dryden and Mardia

(2016). Two reasons for wide demand of these models are their analytically tractable

densities and by their two parameters are aligned with two important geometrical features

in spherical data: mean shape and concentration degree. Biological hypothesis have been

often formulating in the SSA framework, on which resulting data are in a particular Hilbert

space. Tailored tests are then sought to take accurate decision in this area. Considering

the CB and CW models, hypothesis tests have been proposed to check difference of mean

shapes in two or multiple samples. Amaral, Dryden and Wood (2007) have provided a novel

bootstrap hypothesis test based on the lambda statistics for directional and planar-shape

data. Micheas and Dey (2005a) have proposed new Bayesian method based on the CW
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distribution that is used in detecting shape differences between two groups of mice. A

common assumption which is made when formulating hypothesis tests for mean shape in

the unit sphere is “samples should be strongly concentrated”. This fact is geometrically

justified, since models under this assumption are asymptotically equivalent to the ones in

the tangent plan (commonly more tractable). However, sometime we find data having low

concentration. This thesis addresses a way by means of SIT to treat with shape change

on both high and low concentrations, assuming CB and CW probability distributions for

shape data.

According to Salicrú et al. (1994) SIT measures (in particular stochastic divergence

and entropy measures) may play an important role in statistical theory; specifically into

estimation and hypothesis inference procedures under large samples. In this context, several

works have been developed. Basseville (2013) has provided an annotated bibliography for

investigations based on divergence measures for statistical data processing and inference

problems. Nascimento, Cintra and Frery (2010) and Frery, Nascimento and Cintra

(2014) have derived statistical tests based on stochastic distances for speckled intensity

and polarimetric synthetic aperture radar (SAR) data, respectively. Frery, Cintra and

Nascimento (2013) have furnished new entropy-based (for the Shannon, Rényi and restricted

Tsallis entropy) hypothesis tests under the scaled complex Wishart law for polarimetric

SAR data. In general this thesis builds statistical mechanisms to apply SIT to SSA in order

to solve biological issues. New planar-shape tools to check homogeneity, mean shape and

entropy-based variability in spherical samples are given. As first essays, we develop new

distance-based two-sample tests for mean shapes of triangles (two-dimensional objects with

three landmarks) without condition about concentration. To reach this goal, we assume

that pre-shape data are well described by the CW distribution. We derive expressions for

the Rényi, Kullback-Leibler, Bhattacharyya and Hellinger stochastic distances on the CW

distribution.To quantify the performance of the proposed tests in contrast with the F2

literature test for mean shapes Mardia and Dryden (1999), both synthetic and real studies

are made.

Posteriorly, as extensions to the first proposal, we provide new distance-based two-sample

hypothesis tests (for both homogeneity and mean shape) for the CB distribution and

number of landmarks higher than three. We derive the Rényi and Kullback-Leibler
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divergences and the Bhattacharyya and Hellinger distances for the CB distribution. We

prove also that the Kullback-Leibler discrepancy for the CB model is rotation invariant. In

order to evaluate and compare our proposals with other four SSA mean shape tests (based

on Hotelling T 2, Goodall, James and lambda statistics (DRYDEN; MARDIA, 2016)),

a simulation study is also made to evaluate asymptotic and robustness properties. An

application in evolutionary biology is also made. Finally, as third contribution, we tackle

the proposal of new entropy-based multi-sample tests for variability in planar-shape. We

develop closed-form expressions for the Rényi and Shannon entropies at the CB and CW

models. From these quantities, hypothesis tests are obtained to assess if multiple spherical

samples have the same degree of disorder. An application to real data using the second

thoracic vertebra T2 of mice is done to assess possible effects of body weight on the shape

of mouse vertebra.

1.1.1 Main contributions

In general, this thesis advances at proposing new tests, for medical and biological

hypothesis using tools of SIT applied to SSA. As specific contributions, we propose:

i) derivation of expressions for Rényi, Bhattacharyya, Hellinger and Kullback-Leibler

divergence measures under the CB and CW distributions;

ii) proposals of pivotal statistics for two-sample tests based on distances of item (i) for

both triangle and planar-shape data;

iii) derivation of expressions for the Shannon and Rényi entropies under CB and CW

models;

iv) proposals of two multi-sample pivotal statistics based on item (iii) entropies;

v) Monte Carlo experiment which illustrate how to use proposed and literature tests

as well as compare them; discussions of applications on which proposed tests are

successfully employed.

The main contributions of this thesis results in the submission of the following three

papers.
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Paper I: entitled by Distance-based Hypothesis Tests for Triangle Shapes submitted to

the "Journal Computations and Graphical Statistics”.

Paper II: entitled by Divergence-based Pivotal Statistics for Planar-Shape submitted to

the “Journal of Multivariate Analysis”. Status: under review.

Paper III: entitled by Entropy-based Pivotal Statistics for Multi-Sample Problems in

Planar-Shape submitted to the “Test”. Status: under review.

1.2 Computational Support

This manuscript has been written using the LATEX software and its references were

made in the BibTEX . Additional information about this typography system can be found

in Syropoulos, Tsolomitis and Sofroniou (2003) and Grätzer (2007). As computational

support, it has been used the R (Version of this program is freely available at <https:

//cran.r-project.org/>). statistical software. Main R packages and functions that we used

in this thesis are furnished in Table 1.

Table 1 – R packages and functions that we used in this thesis

Packages Functions
shapes resampletest(), procrustes2d(), plotshapes(), procGPA(),

riemdist(), realtocomplex(), preshape(), complextoreal(),
maxLik maxBFGS()
optimx optimx()
MASS truehist(), ginv()
graphics curve(), lines(), abline(), points(), plot(), par(),
hypergeo genhypergeo()
grDevices x11()
utils data()
stats runif(), pchisq(), qchisq(), ks.test(), optimize()
base set.seed(), length(), mean(), var(), summary() , round(),

matrix(), array(), function(), return(), sqrt( ), cbind(),
return(), Conj(), sort( ), ceiling( ), print( ), source(
), qqplot( ), qchisq( ), pf( ), numeric(), facto-
rial(),seq(), list(), eigen(), sum(),Re(),Im(), diag(), re-
quire(),library(),abs(),sin(),cos(),exp(), log() , sample(),
t(), c( ),pf(), qf(),

https://cran.r-project.org/
https://cran.r-project.org/
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1.3 Structure of the thesis

The thesis unfolds as follows. In the first chapter, we present motivation and goals

of this thesis. The second chapter contains a brief survey about some concepts and

preliminaries results which we use in this work. The third chapter describes the hypothesis

testing methodology which is based on the divergence class proposed by Salicrú et al.

(1994) for CW distributed data from triangles in the plan. The fourth chapter presents

divergence-based two-sample hypothesis tests on the CB distribution for planar-shape.

The fifth chapter provides entropy-based multi-sample hypothesis tests for in planar-shape

on the CB distribution. Subsequently, the sixth chapter addresses the main conclusions.

Future works are also presented. Finally, the Appendix chapter tackles in detail the

derivations which are made during this thesis proposal.
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2 BACKGROUND ABOUT STATISTICAL
SHAPE ANALYSIS AND INFORMATION
THEORY

2.1 Statistical Shape Analysis

The main concept of Statistical Shape Analysis (SSA) (KENT, 1995) is the meaning

of shape, which is defined how what remains after removing location, scale and rotation.

According to Dryden and Mardia (2016), the SSA is concerned with methodology for

analyzing shapes in the presence of randomness. The under-study objects could be sampled

at random from a population and the main aims of SSA are to estimate population mean

shapes, to estimate the structure of population shape variability and to carry out inference

on population features.

One way to describe a shape is to indicate a finite set of points in the boundary of the

object. This finite number of points of each object are called landmarks. It is the main

font of data for the description of shapes. Dryden and Mardia (2016) have furnished a

precise definition for landmarks as follows.

Definition 2.1. A landmark is a point of correspondence on each object that matches

between and within populations.

There are three basic types of landmarks : scientific, mathematical and pseudo-landmarks.

a) Scientific landmark: is a point assigned by an expert that corresponds between

objects in some scientifically meaningful way; for example, the corner of an eye or

the meeting of two sutures on a skull. In biological applications, such landmarks are

also known as anatomical landmarks, and they designate parts of an organism

that correspond in terms of biological derivation.

b) Mathematical landmarks are points located on an object according to some

mathematical or geometrical properties of the figure; for instance, at a point of high

curvature or at an extreme point;
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c) Pseudo-landmarks are points on an object, located either around the outline or

in between scientific or mathematical landmarks. Its use is to visualize a shape and

not for analyzing it.

In this thesis, in our applications will take into consideration both mathematical and

anatomical landmarks. The mathematical representation of landmarks in an object is

called configuration.

Definition 2.2. A configuration is the set of landmarks on a particular object. A configu-

ration matrix X is a k ×m matrix of cartesian coordinates of the k + 1 landmarks in m

dimensions. A configuration space is a space of all possible landmark coordinates.

In this thesis, we consider k ≥ 2 landmarks number (triangle and others) in m = 2

dimensions, called of planar-shape. Thus, the configuration matrix is

X = [x1 x2]> =


x1,1 x1,2

x2,1 x2,2
... ...

xk+1,1 xk+1,2

 ,

where x1
j and x2

j indicate coordinates in real and imaginary axes, respectively.

Some transformations must be made in X to remove the effects of location, scale and

rotation. For m = 2, the mathematical configuration must be rewritten as a complex

vector. Define a (k + 1)× 1 complex vector

z0 = [z0
1 , z

0
2 , . . . , z

0
(k+1)]

> = [x1,1 + ix1,2, . . . , x(k+1),2 + ix(k+1),2]> for i =
√
−1,

which corresponds to the complex coordinates for landmarks.

To describe the shape of an object, it is necessary to specify a suitable coordinate

system; i.e, a system that is invariant under translation, scaling and rotation of the

configuration. There are several coordinate systems with this properties in SSA; as,

for example, Bookstein coordinates for planar and triangular shapes Bookstein (1984),

Bookstein (1986).

Watson (1986) have considered a coordinate system for triangle shapes. Kent (1994)

has proposed Kent’s polar coordinates in the tangent space (the tangent space is the

linearized version of the shape space in the vicinity of a particular point of shape space).
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Kendall (1984) has provided a coordinate systems similar to Bookstein’s coordinates, but

location is removed in a different manner. Rohlf (2000a) has compared Kendall’s shape

space, Kendall tangent space and the shape space implied by differences in angles of

lines connecting pairs of landmarks. In this thesis, we will use the Kendall coordinate

systems. To get these coordinates, we need to define the Helmert submatrix, as follows.

According to Dryden and Mardia (2016), the Helmert submatrix (denoted H) is a

k× (k+ 1) Helmert matrix without the first row. The full Helmert matrix HF is a square

(k + 1)× (k + 1) orthogonal matrix with its first row of elements equal to 1/
√
k + 1 and

the remaining rows are orthogonal to the first row. We drop the first row of HF so that

the transformation HX does not depend on the original location of the configuration.

Definition 2.3. The jth row of the Helmert submatrix H is given by

(hj, . . . , hj,−jhj, 0, . . . , 0) for hj = −[j(j + 1)]−1/2.

So the jth row of H consists of hj repeated j times, followed by −jhj and k − j zeros for

j = 1, . . . , k.

The next example illustrates HF and H .

Example 2.1. For k + 1 = 3 the full Helmert matrix is explicit by

HF =



1√
3

1√
3

1√
3

−1√
2

1√
2

0
−1√

6
−1√

6
2√
6

 ,

and the Helmert submatrix is

H =


−1√

2
1√
2

0
−1√

6
−1√

6
2√
6

 .

To remove the location effect in z0 = [z0
1 , . . . , z

0
(k+1)]

>, we pre-multiply it by the Helmert

submatrix H ; i.e.,

zH = Hz0.
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The origin is removed because coincident landmarks are not allowed. We refer to zH as

the Helmertized landmark coordinates. The centred landmark coordinates are an

alternative choice for removing location and are given by:

zC = Cz0 with C = I(k+1) −
1

(k + 1)1(k+1)1>(k+1),

where I(k+1) is the identity matrix of order (k + 1)× (k + 1) and 1(k+1) is an ones vector.

We can revert back to the centred landmark coordinates from the Helmertized landmark

coordinates by pre-multiplying by H>. Thus

H>zH = H>zH = H>Hz0 = Cz0.

Then, zC are the centred landmarks and C is the centring matrix.

Example 2.2. Consider one particular mathematical configuration of an individual which

was obtained of male chimpanzee skull data having k + 1 = 8 landmarks. The full dataset

has already been described in O’Higgins and Dryden (1993) and Dryden and Mardia (2016).

The original complex landmarks of this data are

z0 = [43− 21i, 0 + 0i, 0 + 34i, 14 + 101i, 25 + 179i, 40 + 150i, 75 + 104i, 90 + 31i ]>.

The Helmertized landmarks are

zH = [−30.41 + 14.85i,−17.55 + 36.33i,−0.29 + 83.72i, 9.62 + 134.61i,

21.54 + 83.44i, 50.61 + 27.93i, 57.86− 44.10i ]> .

The centred landmarks are

z0
C = [7.13− 93.25i,−35.87− 72.25i,−35.88− 38.25i,−21.87 + 28.75i,

−10.87 + 106.75i, 4.13 + 77.75i, 39.12 + 31.75i, 54.12− 41.25i ]> .

The Figure 1 represents the original, helmertized and centered settings for a male chimpanzee

skull data. The dataset was assessed by command panm.dat by means of platform R in

the package shapes.
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(b) Helmertized configuration
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(c) Centred configuration

Figure 1 – Illustration of original, helmertized and centered configurations of a male
chimpanzee skull. The full dataset has already been described in Dryden and
Mardia (2016, pp. 19).

To remove the scale effect, we divided the obtained Helmertized configuration (zH) by its

norm

z = zH
||zH ||

= zH√
zH∗zH

,

where (·)∗ represents the complex conjugate operator and || · || denotes the norm of a

complex vector. According to Kendall (1984), this normalized vector z is called pre-shape,

defined as follows.

Definition 2.4. The pre-shape of a configuration matrix X is given by

Z = XH

||XH ||
= HX

||HX||
,

which is invariant under the location and scaling of the original configuration.

Example 2.3. Considering the same dataset of Example 2.2, the pre-shape of a mathe-

matic configuration individual of the male chimpanzee skull is given by

z = [−0.14 + 0.07i,−0.08 + 0.17i, 0.00 + 0.40i,

0.05 + 0.64i, 0.10 + 0.40i, 0.24 + 0.13i, 0.28− 0.21i]> . (2.1)

The Figure 2 draws the pre-shape of the configuration individual 2.1.

The pre-shape space denoted by Skm (k landmarks and m dimensions) is the space of

all possible pre-shapes. Formally Dryden and Mardia (2016) define as follows.
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Figure 2 – Illustration of the pre-shape of a configuration individual from male chimpanzee
skull data.

Definition 2.5. The pre-shape space Skm is the orbit space of the non coincident k

point set configurations in Rm under the action of translation and isotropic scaling. This

space collapses into a complex hypersphere of dimension k, that is,

CSk−1 = {z ∈ Ck; ||z|| = 1},

where Ck is the complex space of dimension k.

Note that the term “pre-shape” means that we are one step away from shape: rotation

still has to be removed.

In order to remove rotation information from the configuration, it identifies all rotated

versions of the pre-shape with each other and this set or equivalence class is the shape of

X.

Definition 2.6. The shape of a configuration matrix X is all the geometrical information

aboutX that is invariant under location, rotation and isotropic scaling (Euclidean similarity

transformations). The shape can be represented by the equivalence class given by

[X] = {ZΓ; Γ ∈ SO(m)},

where SO(m) is the special orthogonal group of rotations and Z is the pre-shape of X.

For m = 2, in the planar-shape case, the shape of an original configuration is given by

[z] = {z exp(iθ); θ ∈ [0, 2π)}.
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Definition 2.7. The shape space is the space of all shapes. Formally, the shape space

denoted by Σk
m is the orbit space of the non coincident k point set configurations in Rm

under the action of the Euclidean similarity transformations (translation, rotation and

scale).
The shape ofX is a set: an equivalence class under the action of the group of similarity

transformations. In order to visualize shapes it is often convenient to choose a particular

member of the shape set [X], which refers to the following concept.

Definition 2.8. An icon is a particular member of the shape set [X] which is taken as

being representative of the shape.

According to Dryden and Mardia (2016), the word icon can mean “image or likeness”

and it is appropriate as we use the icon to picture a representative figure from the shape

equivalence class which has a resemblance to the other members, that is the objects of the

class are all similar. The centred pre-shape is a suitable choice of icon.

Example 2.4. Referring again to dataset of the Example 2.1, the icon of a configuration

individual of the male chimpanzee skull data is

zC = [0.03− 0.44i,−0.17− 0.34i,−0.17− 0.18i,−0.10 + 0.14i,−0.05 + 0.51i

0.02 + 0.37i, 0.19 + 0.15i, 0.26− 0.20i ]> .

In the Figure 3, we can see the illustration of the centred pre-shape icon, the rotation is

unchanged from the original configuration z0.
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Figure 3 – An icon for an individual male chimpanzee skull data, which is the centred
pre-shape.
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Faced with a variety of terminol-
ogy presented until here, we dis-
play in the Figure 4 (adapted from
Dryden and Mardia (2016)) a short
resume about the hierarchies in dif-
ferent spaces. In this diagram, we
show the steps for obtaining the
shape from one of an original con-
figuration.

Figure 4 – The hierarchies of the various
spaces.

Another very important coordinate system in SSA and widely used in the later

chapters is the Kent’s polar pre-shape coordinates. Kent (1994) has proposed some

non standard polar coordinates on the pre-shape sphere for two-dimensional objects. Given

a point [z1, z2, . . . , zk]> on CSk−1, we transform it to [s1, . . . , sk−1, θ1, . . . , θk], where

Re(zj) = s
1/2
j cos(θj) and Im(zj) = s

1/2
j sin(θj),

for j = 1, . . . , k, sj ≥ 0, θ ∈ [0, 2π) and sk = 1 −
k−1∑
i=1

sj. The coordinates s1, s2, . . . , sk−1

are on the (k − 1)-dimensional unit simplex in Rk−1 defined by

Sk−1 =

[s1, . . . , sk−1]>; sj ≥ 0 and
k−1∑
j=1

sj ≤ 1

 .
The vector s = [s1, . . . , sk−1]> follows the truncated multivariate exponential (TME)

distribution to a simplex with density given by Kent, Constable and Er (2004)

fTE(s) = b(λ)
k−1∏
j=1

λjexp(−λjsj), sj ≥ 0, j = 1, . . . k − 1,

where b(λ) =


k−1∏
j=1

[1− exp(−λj)]


−1

. By identifying the complex pre-shape sphere with

Sk−1 × [0, 2π)k, we have the volume measure of CSk−1 as:

21−kds1 . . . dsk−1dθ1 . . . dθk.

The total volume is 2πk/(k − 1)!, since the volume of the j-dimensional simplex (DRYDEN;

MARDIA, 2016) is 1/j!, for j = 1, 2, 3, . . . .
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2.1.1 Full Procrustes coordinates and mean shape

The expression “Procrustes analysis” was first used by Hurley and Cattell (1962) in

factor analysis. In Greek mythology, Procrustes were the nickname of a robber Damastes,

who lived by the road from Eleusis to Athens. He would offer travellers a room for the

night and fit them to the bed; by stretching them. If they were too short or chopping off

their limbs if they were too tall. The analogy is rather tenuous but we can regard one

configuration as the bed and the other as the person being “translated”, “rotated” and

possibly “rescaled” so as to fit as close as possible to the bed.

The goal of full Procrustes coordinates is to match the shape of two objects. The

idea is to be able to compare the shapes between two objects independently of their

rotation and scale. Consider the centred unit size configurations y = [y1, . . . , yk]> and

w = [w1, . . . , wk]> where ||y|| = ||w|| = 1, y∗1k = w∗1k = 0, (·)∗ represents the complex

conjugate operator and 1k is the k×1 vector of ones. In order to compare the configurations

in shape we need to establish a measure of distance between the two shapes. A suitable

procedure is to match w to y using the similarity transformations. The differences between

the fitted and observed indicate the magnitude of the difference in shape between w and

y. Consider the complex regression equation

y = (a+ ib)1k +$ exp(iθ)w + ε = [1k,w]A+ ε = XDA+ ε, (2.2)

where A = [A1,A2]> = [(a + ib)1k, $ exp(iθ)] are the 2 × 1 complex parameters with

translation a a+ ib, scale $ > 0 and rotation 0 ≤ θ < 2π; ε is a k× 1 complex error vector;

and XD = [1k,w] is the k × 2 design matrix. To carry out the superimposition we could

estimate A by minimizing the least squares objective function, the sum of square errors

D2(y,w) = ε∗ε = (y −XDA)∗(y −XDA).

From this expression (2.2), we define the full Procrustes fit (registration) of w onto y.

Definition 2.9. Let w and y in Ck, such that y∗1k = w∗1k = 0. The full Procrustes fit

of w onto y is

wP = XDÂ = (â+ ib̂)1k + $̂ exp(iθ)w,

where Â is obtained by the expression

arg min
a,b,$,θ

(y −XDA)∗(y −XDA) = arg min
a,b,$,θ

||y − (a+ ib)1k −$ exp(iθ)w||2.
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It follows from Dryden and Mardia (2016) that full Procrustes fit has matching

parameters

(â+ ib̂) = 0; θ̂ = arg (w∗y) = − arg (y∗w)) and $̂ = ||w∗y||/||w||2, (2.3)

where arg(·) is the argument of a complex number.

Thus, from Definition 2.9 and Equations in (2.3), we have the full Procrustes fit of w onto

y is given by

wP = XDÂ = (â+ ib̂)1k + $̂ exp(iθ)w = ||w
∗y||

||w||2
exp[i arg(w∗y)]w

= ||w
∗y||

||w||2
w∗y

||w∗y||
w = w∗y

||w||2
w.

In order to define the full Procrustes distance between two shapes, we use the residual

vector given by

r = y −XDÂ = [Ik −XD(X∗DXD)−1X∗D]y.

Therefore, we will to compare shapes by means of wP and y,

dF (y,w) =
√
r∗r =

√
y∗y − (y∗ww∗y)/(w∗w).

Now this expression is not symmetric in y and w unless y∗y = w∗w. A convenient

standardization is to take the configurations to be unit size, that is ||y||2 = ||w||2 = 1. So,

if we include standardization, then we obtain a suitable measure of shape distance.

Definition 2.10. The full Procrustes distance between complex configuration w and

y is expressed by

dF (y,w) = inf
a,b,$,θ

∥∥∥∥∥ y

||y||
− w

||w||
$ exp(iθ)− 1k(a+ ib)

∥∥∥∥∥
=
(

1− y
∗ww∗y

w∗wy∗y

)1/2

.

The full Procrustes distance is natural from a statistical point of view, obtained from

a least squares criterion and optimizing over the full set of similarity parameters. The

squared full Procrustes distance naturally appears exponentiated in the density for many

simple probability distributions for shape (DRYDEN; MARDIA, 2016). However, this is

not the only choice of distance between shapes. Since the shapes of configurations are
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represented by fibres (fibres on the pre-shape sphere correspond one to one with shapes in

the shape space, and so we can think of a fibre as representing the shape of a configuration)

on the pre-shape sphere, we can define the distance between two shapes as the closest

great circle distance between the fibres on the pre-shape sphere. This shape distance is

called the Procrustes (Riemannian) distance in shape space and is denoted by ρ.

Thus, the angle between the complex pre-shapes y and w is defined in Dryden and Mardia

(2016) by

ρ(w,y) = arccos(|y∗w|), where 0 ≤ ρ(w,y) ≤ π/2.

Note that, ρ(·, ·) can be considered as the smallest angle (with respect to rotations of

the pre-shapes) between the vectors corresponding to y and w on the pre-shape sphere.

There exist a relationship between the Procrustes distance and full Procrustes distance,

expressed by

cos(ρ(w,y)) = (1− d2
F (w,y))1/2.

The shape distance allows comparing two configurations, but comparing several at the

same time it is not possible. To solve this problem we present an important concept in

SSA, extensively used in this thesis: the mean shape of a random sample of configurations.

According to Dryden et al. (2014), there are different notions of mean shape, and it

is important to distinguish between them. The different means are obtained by using

different distances, embeddings and projections in the definition of the mean. For example,

Fréchet mean shape Le and Kume (2000), Procrustes mean shape Dryden (1991), extrinsic

and intrinsic mean shape Bhattacharya, Patrangenaru et al. (2003) and Bhattacharya

and Patrangenaru (2005) among others. In this thesis, we use the concepts of full

Procrustes mean shape (is an extrinsic mean for planar landmark data using the complex

Veronese–Whitney embedding on pre-shape space) based in Dryden and Mardia (2016,

chap. 3–4), as follows.

Definition 2.11. Let x be a random quantity on pre-shape space. The population full

Procrustes mean shape is given by

µ = arg inf
µ

E[dF (x,µ)].
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Now, consider the situation where a random sample of centred configurationsw1,w2, . . . ,wn

is available and we wish to estimate a population mean shape, such as the population full

Procrustes mean.

Definition 2.12. The full Procrustes estimate of mean shape [µ̂] is obtained by minimizing

(over µ) the sum of square full Procrustes distances from each wi to an unknown unit size

mean configuration µ, that is

[µ̂] = arg inf
µ

∑
d2
F (wi,µ).

Kent (1994) has furnished an result to obtain the full Procrustes estimate of mean shape

by means of product matrix S, as follows.

Proposition 2.1. The full Procrustes mean shape [µ̂] can be defined as the eigenvector

corresponding to the largest eigenvalue of the complex sum of squares and product matrix

S =
n∑
j=1

zjz
∗
j ,

where zj = wj/||wj|| for j = 1, . . . , n are the pre-shapes.

Thus, µ̂ is given by the complex eigenvector which is corresponding to the largest

eigenvalue, or the dominant eigenvector of S. The eigenvector is unique (up to a rotation -

all rotations of µ̂ are also solutions, but all these correspond in the same way), provided

that there is a single eigenvalue greater than S. A relevant comment about the estimative

of mean shape is made by Rohlf (2003), which has realized sampling experiments were

performed to investigate mean square error and bias in estimates of mean shape produced

by different geometric morphometric methods.

2.2 Shape Distributions

An extremely important step in SSA (like as to detect changes in shape) is to define

a probability model to describe planar-shape data (DRYDEN; MARDIA, 2016). One of

main distributions for planar-shape is the CB model. The real Bingham distribution was

introduced by Bingham (1974) as a generalization of the Dimroth–Watson model Watson

(1965). Its complex version of the Bingham distribution and some of its mathematical
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properties have been derived by Kent (1994). One of its simulation procedures has been

proposed by Kent, Constable and Er (2004). They have shown such algorithm depends

only of the truncated multivariate exponential (TME) distribution. In this thesis, we use

to produce synthetic experiment a truncated simplex method combined with the TME

law.

Several works have been developed using the real Bingham distribution and its complex

counterpart. Kent (1987) has proposed an asymptotic expansion for the Bingham normal-

ization constant. Kume and Wood (2005) have furnished a saddlepoint approximation

for the Bingham normalizing constant. Kume and Wood (2007) have shown that an

arbitrary joint partial derivative of the Bingham normalizing constant may be proportional

to the normalizing constant of a Bingham distribution of higher dimension. Amaral et

al. (2010) have derived bootstrap procedures for constructing confidence regions for the

mean shape of objects labelled by landmarks in two dimensions. Dryden et al. (2005)

have developed a mathematical treatment for the statistical analysis of high-dimensional

spherical and shape data. Dore et al. (2016) have provided a bias-corrected estimation

method for the CB distribution. In the Bayesian context, Micheas, Dey and Mardia (2006)

have proposed a maximum posteriori probability estimators having the CB model like the

posterior distribution. Amaral, Floréz and Cysneiros (2013) have furnished methods to

detect influential observations in samples of pre-shape under such model. Leu and Damien

(2014) have developed full Bayesian analysis for planar landmark data arising from the

CB distribution.

A particular case of the CB distribution is the complex Watson (CW ) model, proposed

by Mardia and Dryden (1999). Maximum likelihood estimation and hypothesis testing

procedures for the CW model in one and two samples are furnished. These models are

adequate for shape analysis data according to Dryden and Mardia (2016). It is relevant to

mention how the CW distribution has been explored in the literature. Micheas and Dey

(2005a) have proposed a novel Bayesian method based on the CW distribution that is

used in detecting shape differences between the second thoracic vertebrae for two groups

of mice, small and large, categorized according to their body weight. Micheas, Dey and

Mardia (2006) have developed maximum likelihood and Bayesian estimation methods to

describe shape and obtain confidence bounds and credible regions for shapes.
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2.2.1 The complex Bingham distribution

In this subsection, we briefly discuss a model we use in this work for describing pre-

shape data, admitting each k-dimensional random vector is associated to an object in the

plan with k + 1 landmarks. The CB distribution is defined on the unit complex sphere

in Ck for k ≥ 2, say CSk−1 = {z = [z1, . . . , zk]>; z∗z = 1}, and its probability density

function (pdf) is given by

f(z;A) = c(A)−1 exp (z∗Az), z ∈ CSk−1,

where (·)∗ represents the complex conjugate operator, A is a k × k hermitian matrix (i.e.

A = A∗) and c(A) is the normalizing constant (DRYDEN; MARDIA, 2016, pp. 221)

given by

c(A) = 2πk
k∑
j=1

aj exp (λj) with a−1
j =

k∏
i=1
i 6=j

(λj − λi), (2.4)

where λ1 < λ2 < · · · < λk−1 < λk = 0 denotes the eigenvalues of A. This normalizing

constant is such that c(A) = c(Λ), where Λ = diag(λ1, λ2, . . . , λk) and diag(·) denotes the

diagonal matrix of a vector argument. This distribution is denote as z ∼ CBk−1(A). The

CB distribution has the property of invariance under scalar rotation; i.e., z and exp(iθ)z

have the same distribution for all θ ∈ [0, 2π), property commonly used to define shape.

Dryden and Mardia (2016) have stated that if an object is rotated, then its density and

statistical properties are similar to those due to object at the original rotation. According

to Kent, Constable and Er (2004), the matrix parametersA andA+ΥIk, for Υ ∈ R, define

the same distribution. Hence, without loss of generality, we may shift the eigenvalues of A

so that they are non positive with the largest one equaling 0. Let λ1 ≥ λ2 ≥ . . . ≥ λk = 0

denote the eigenvalues of −A; i.e. λj, here corresponds to −λj in (2.4), with j = 1, . . . , k.

Kent (1994) has affirmed that the CB distribution can be obtained by conditioning a

zero mean complex multivariate normal distribution to have unit norm. In particular, if

ω ∼ CNk(0,Σ), then ω | {||ω|| = 1} ∼ CBk−1(−1
2Σ−1). To obtain the CB log-likelihood

function, we consider z1, z2, · · · , zn, for n ≥ k, be a sample of (k + 1)-dimensional unit

complex vectors and

S =
n∑
j=1
zjz

∗
j (2.5)
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be k× k complex matrix, termed by product matrix. Suppose that the eigenvalues of S are

positive, distinct and denoted by 0 < l1 < . . . < lk and let g1, . . . , gk be the corresponding

eigenvectors. According to Dryden and Mardia (2016), the log-likelihood function at A is

given by

`(A; z) =
n∑
i=1
z∗iAzi − n log c(A) =

k∑
j=1

λjγ
∗
jSγj − n log c(Λ).

Considering λ1 < λ2 < · · · < λk−1 < λk = 0 constants, the ML estimate of eigenvectors

(γj) referring to matrix A are given by γ̂j = gj, for j = 1, . . . , k. So,

`(A; z) =
k∑
j=1

ljλj − n log c(Λ). (2.6)

Deriving the expression (2.6), we find the system of non linear equations

∂`(A; z)
∂λj

= 1
n
lj, j = 1, . . . , k − 1.

There is not closed-form solution for ML estimators of eigenvalues. Thus, it is need to use

interactive process Nocedal and Wright (2006). Dryden and Mardia (2016) have proved

under high concentrations that

λ̂j ∼= −n/lj for j = 1, . . . , k − 1.

Details about ML estimators can be found in Amaral, Floréz and Cysneiros (2013) and

Dore et al. (2016).

2.2.2 The complex Watson distribution

The CW distribution is an especial case of the CB model, they are defined in the same

support, namely, CSk−1 . The CW pdf (MARDIA, 1999) is defined by

f(z;µ, κ) = c1(κ)−1 exp{κ cos2[ρ(H>z,H>µ)]}, z ∈ CSk−1,

with ρ(H>z,H>µ) = cos−1(|z∗µ|), for 0 ≤ ρ(H>z,H>µ) ≤ π/2, and the function | · |

represents a complex number norm. This distribution is denoted as CWk−1(µ, κ), where

κ is a concentration parameter, µ is the modal vector on pre-shape sphere and ρ is the

Procrustes distance. The integrating constant defined in (??) is given by

c1(κ) = 2πk
(k − 1)! 1F1(1, k, κ),
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where

1F1(a, b, x) = 1 + a

b

x

1! + a(a+ 1)
b(b+ 1)

x2

2! + a(a+ 1)(a+ 2)
b(b+ 1)(b+ 2)

x3

3! + . . . , with a, b, x ∈ R,

is the confluent hypergeometric function (ABRAMOWITZ; STEGUN, 1964). The concen-

tration parameter (κ) can assume negative values, but the assumption κ > 0 is the most

common in shape analysis. For positive concentration, the modal pre-shape direction is

µ exp(iθ), where θ ∈ [0, 2π) is an arbitrary rotation angle. If κ = 0, one gets the uniform

distribution in the complex unitary sphere. Commonly, we consider the case of large κ.

Second Mardia and Dryden (1999), if κ is large, then the CW model tends to a complex

multivariate normal distribution in the tangent space. The CW model has the property of

invariant under scalar rotation according to Kent (1994) and Mardia and Dryden (1999).

This characteristic is very relevant in SSA, because if an object is rotated, then its density

and statistical properties are similar to those due to object at the original rotation.

The ML estimation on CW distribution presented below was found in Dryden and

Mardia (2016). Let z1, . . . ,zn be a random sample from a population modelled by the

CW distribution, with n ≥ k and consider the product matrix defined in (2.5). According

to Mardia and Dryden (1999) the log-likelihood function at (µ, κ) is given by

`(µ, κ; z) = κ tr
 k∑
j=1

ljgjg
∗
j

− n log(c1(κ)).

Assuming κ constant, the ML estimator for µ is

µ̂ = exp (iα̃)gk,

where α̃ is a arbitrary rotation angle (0 ≤ α̃ < 2π). The ML estimator for κ is determined

by solving
∂[log c1(κ)]

∂κ
= 1
n
lk.

Note there is not closed-form expressions, but under high concentration the following an

approximation holds:

κ̂ ≈ n(k − 2)
n− lk

.

2.2.3 The relation between CB and CW models

According to Mardia and Dryden (1989b) the CBk−1(A) and CWk−1(µ, κ) models are

equivalent, that is, when there are just two distinct eigenvalues inA (a single distinct largest
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eigenvalue and all other eigenvalues being equal). In this case all directions orthogonal

to the modal axis have equal weight and so this model implicitly assumes a spherical

error distribution, as would be obtained from independent isotropic landmarks with equal

variances. In this case the complex Bingham distribution can be re-parameterized so that

A = κ (I − µµ∗),

where µ is the modal vector on the pre-shape sphere. This equivalence is used in the

random generation process of the CW model by means of the CB distribution generation.

For this reason, in the Chapter 3, we are interested at studying triangles in the plan and

A is a matrix with order two.

The Proposition 2.2 suggests a parametric relationship between the CB and CW

models; in particular, the CW concentration parameter κ is written in terms of the CB of

vector eigenvalues.

Proposition 2.2. Let z ∼ CBk−1(A) (for k+ 1 = 3). Then A = κ(I −µµ∗) implies in

κ = 2λ1

g(µ) , (2.7)

where g(µ) is the function of the modal vector µ given in Appendix A.

The proof of this result can be found in Appendix A.

2.2.4 Simulation for the CB distribution

By reproducibility issues, we mention CW distributed data are generated from the CB

model. The methods for generation algorithms on CB were proposed by Kent, Constable

and Er (2004), which showed this process depends only from the TME distribution.

In this chapter, we use the truncation to a simplex method combined with the TME

model. First we simulate k outcomes from the truncated exponential, Texp(λ), by the

acceptance-rejection method and then these values are expressed in polar coordinates to

obtain observations of the CB model. The algorithm 1 represents steps to simulate the

TME distribution by means of the acceptance-rejection procedure.

The method for simulating the CB distribution uses observations of the TME model,

as follows.

The algorithm 2 returns a vector k, z = [z1, . . . , zk]> which has a CB distribution.
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Algorithm 1 Simulation of the truncated exponential distribution
1: Generate observations, say uj , of a random sample from uj ∼ U [0, 1], j = 1, . . . , k− 1.
2: Let s′j = −(1/λj) log(1 − uj(1 − exp(−λj)) and s

′ = [s′1, . . . , s
′
k−1]>, such that

s
′
j, j = 1, . . . , k − 1 are outcomes of a random sample from Texp(λj.)

3: If
k−1∑
j=1

s
′

j < 1, set s = s
′
. Otherwise reject s′ and return to 1.

Algorithm 2 Simulation of complex Bingham distribution

1: Generate s′ = [s′1, . . . , s
′
k−1]>, outcomes from sj ∼ Texp(λj) according to the Algo-

rithm 1.

2: If
k∑
j=1

s
′

j < 1, define sk = 1−
k−1∑
j=1

s
′

j. Otherwise, return to step 1.

3: Generate an observed sample, say θj, for j = 1, . . . , k from a random sample from
θ ∼ U [0, 2π), j = 1, . . . , k.

4: Compute zj = s
1/2
j exp(iθj), j = 1, . . . , k.

2.3 Statistical Information Theory

Information Theory (IT) is a branch of the Mathematics which is related to Probability

and Statistics. It plays an important role in Modern Communication Theory. In a concise

way, it can be said that its field of activity is related to the mathematical systematization of

information transmission between communication channels. The first studies in IT aimed

were performed by Hartley (1928). Shannon (1948) has extended this idea, considering –

among other things – the effect of noise on communication channels. The crucial concepts

of Shannon theory lie on two measures: information and entropy. Such concepts have a

considerable impact in several areas, such as, Telecommunication and Statistical Inference

Blatt and Hero (2007). From these concepts, a tool called relative entropy measurement

(a kind of divergence) was introduced by Kullback (1978). This tendency of connecting

Mathematical Statistics and IT has been coined as Statistical Information Theory (SIT).

The first goal of relative entropy was to quantify the error of choosing a variable when

another would be more adjustable to the information. Subsequently, to the first classes of

entropies and divergences class have been invested in the statistical inference context.

Over the years, some divergence classes have been used in statistical inference for various
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purposes, such as the study of their asymptotic properties and proposals of hypothesis

tests. Esteban (1996) have provided entropy-and divergence-based goodness-of-fit and

homogeneity tests can be applied to multinomial populations. Morales, Pardo and Pardo

(2001) have proposed a divergence-based procedure to test composite hypotheses related

to s populations when sample sizes are different. Eguchi and Copas (2006) have explored

a connection between the Kullback-Leibler divergence and the Neyman–Pearson lemma.

Nascimento, Cintra and Frery (2010) have derived and compared eight stochastic distances

in the SAR image processing context. Taneja (2013) have furnished bounds on the

probability of error in terms of generalized symmetric divergence measures. Röver and

Friede (2017) have proposed a method ( in terms of the KL divergence ) of constructing an

easily tractable discrete mixture distribution as an approximation. Contreras-Reyes (2014)

have derived an asymptotic expression for the KL divergence measure of the multivariate

skew-t distribution.

According to Kullback (1978), Information Theory has its mathematical roots in the

concept of disorder or entropy in thermodynamics and statistical mechanics. Rényi et al.

(1961) have stated that the entropy can be interpreted not only as an uncertainty measure

as also an information measure. Pardo (2005) have interpreted the entropy as diversity

measure that appears in many areas. In the field Economy, the diversity quantity is

defined as the presence of a great number of different types of industries in a geographical

area. In Biology, this measure is understand as the number of species in a place as well

as the abundance of those species. In this thesis, the concept of entropy is understood

as a variability multivariate measure approached by Chen et al. (2016). Some entropy

classes have been used in statistical inference for various purposes, such as the study of

their asymptotic properties and proposals of hypothesis tests. Lin (1991) have introduced

a new class of information-theoretic divergence measures based on the Shannon entropy.

He determined the relationship of such measures with the variational distance and the

probability of misclassification error. Nadarajah and Zografos (2005) have derived exact

expressions for Rényi and Shannon entropies for various continuous bivariate distributions.

Baratpour, Ahmadi and Arghami (2008) have explored properties of the Rényi entropy of

order statistics. Frery, Cintra and Nascimento (2013) have furnished analytical expressions

for the Shannon, Rényi, and restricted Tsallis entropy measurements under scaled complex
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Wishart distribution. Pietrzak et al. (2016) have proposed a frequency-based framework

using the Gaussian limit results for the effective number of species (the Hill numbers)

with the approach of the empirical Rényi entropy and divergence. Chen et al. (2016) have

provided some new insights about the behaviors of entropy as a measure of multivariate

variability. Seo and Kang (2014) have derived the entropy of the generalized half-logistic

distribution in terms of Type-II censored samples from a Bayesian perspective.

Song, Song and Kang (2017) have developed two methods which were based on

the maximum entropy principle and the ordinary entropy method for estimating the

parameters of the four-parameter exponential gamma distribution. More information on

these stochastic measures can be found in Rényi et al. (1961), Kailath (1967), Diaconis

and Zabell (1982), Middleton, Electrical and Engineers (1996), MacKay (2003), Pardo

(2005), Liese and Vajda (2006) and Emmert-Streib and Dehmer (2009).

2.3.1 Divergence measures

In this thesis, we admit the convention that a “divergence” represents any non negative

function, say D(x||y) ≥ 0 for x,y ∈ Z ⊆ Cp and p ∈ Z+, between two probability

measures that satisfy the identity of definiteness property (BARTLE; SHERBERT, 1982,

p. 328, chap. 11,); i.e., D(x||y) = 0⇔ x = y. When such a function is also symmetric, it

is called as “distance”, say

d(x,y) ≥ 0 : (i) d(x,y) = 0 ⇔ x = y (definiteness) and (ii) d(x,y) = d(y,x) (symmetry).

Finally, we conceive “metric” as a distance which also satisfies the triangular inequality

(DEZA; DEZA, 2009). Now we particularize this theory to the CB and CW models.

Definition 2.13. Let x1 and x2 be random variables defined over the same probability

space, equipped with densities fx1(z;θ1) and fx2(z;θ2). The Kullback-Leibler and Rényi

divergences are given by, respectively,

DKL(θ1||θ2) =
∫
CSk−1

fx1(z;θ1) log
[
fx1(z;θ1)
fx2(z;θ2)

]
wk(dz) = Eθ1

[
log

(
fx1(z;θ1)
fx2(z;θ2)

)]
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and

Dβ
R(θ1||θ2) = 1

β − 1 log
∫
CSk−1

fβx1(z;θ1) f 1−β
x2 (z;θ2)wk(dz)

= 1
β − 1 logEθ1

(fx1(z;θ1)
fx2(z;θ2)

)β−1
 ,

where β ∈ (0, 1) is the Rényi divergence order, Eθ1(·) is the expected value in terms of θ1

and wk(dz) is the uniform measure on CSk−1. Since the Kullback-Leibler divergence is a

non symmetric measure, Seghouane and Amari (2007) have proposed the symmetrization

of this divergence:

dKL(θ1,θ2) = [DKL(θ1||θ2) + DKL(θ2||θ1) ]
2 .

We denote dKL(θ1,θ2) as the KL distance. The quantity 2 dKL(θ1,θ2) is also known

as J-divergence or Jeffreys divergence. Some strategies have been used to symmetrize

modifications of Dβ
R(·||·), such as for the directed divergence proposed by Chung et al.

(1989). Here, we assume

dβR(θ1,θ2) = 1
β − 1 log

{
exp[(β − 1)Dβ

R(θ1||θ2)] + exp[(β − 1)Dβ
R(θ2||θ1)]

2

}
.

It is important to emphasize that throughout the thesis the value of the order parameter

β is not estimated but chosen. In what follows, we define other used quantities.

Definition 2.14. Under the same conditions in the Definition 2.13, the Bhattacharyya

and Hellinger distances between the probability measures are given by, respectively,

dB(θ1,θ2) = − log
∫
CSk−1

√
fx1(z;θ1) fx2(z;θ2)wk(dz) = − logEθ1


√√√√fx2(z;θ2)
fx1(z;θ1)


and

d̃H(θ1,θ2) =
√

1
2

∫
CSk−1

(√
fx1(z;θ1) −

√
fx2(z;θ2)

)2
wk(dz)

=

√√√√√1− Eθ1


√√√√fx2(z;θ2)
fx1(z;θ1)

.
In this work, by issues of formalism with the Hellinger statistic that we propose next, we

refer the Hellinger distance as dH(θ1,θ2) = [d̃H(θ1,θ2)]2.
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2.3.2 Entropy measures

We discuss the definitions and some properties of these entropy measures a follows.

Definition 2.15. Let x be a random variable having an absolutely continuous distribution

with its pdf given by f(x;θ). The Shannon entropy denoted by (HS) is defined as

HS(x) ≡ HS(θ) = Eθ[−log(f(x;θ))] = −
∫

[log(f(x;θ))]f(x;θ)wk(dx).

The Rényi entropy with order β ∈ R+ − {1} and denoted by (Hβ
R) is expressed by

Hβ
R(x) ≡ Hβ

R(θ) = 1
1− β log

[
Eθ(f(x;θ)β−1)

]
= 1

1− β log
∫
f(x;θ)βwk(dx).

Golshani and Pasha (2010) and Contreras-Reyes (2015) have provided some relevant

properties of the Rényi entropy, listed below:

1. The Rényi entropy can be negative;

2. The Rényi entropy is invariant under a location transformation of the random

variable. For example, for m ∈ R

Hβ
R(x+m) = Hβ

R(x);

3. The Rényi entropy is not invariant under a scale transformation of the random

variable. For example, for m ∈ R we have:

Hβ
R(mx) = Hβ

R(x) + | log(m)|;

4. For β1 < β2 , we have Hβ1
R (x) ≥ Hβ2

R (x) for all x, and the equality holds if and only

if x is a uniform random variable;

5. The Rényi entropy converge for Shannon entropy for all β ∈ R+ − {1}, that is

lim
β→1

Hβ
R(x) = HS(x).

Additional properties about Rényi and Shannon entropies can be found in Pardo (2005),

Cover and Thomas (1991) and Sánchez-Moreno, Angulo and Dehesa (2014).
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3 DISTANCE-BASED HYPOTHESIS
TESTS FOR TRIANGLE SHAPES

3.1 Introduction

This chapter focuses on SSA for pre-shape data obtained from triangles in the plan.

In this context, Kendall has shown how variables for pre-shape of labeled triangles can

be mapped to points on a sphere Mardia and Dryden (1989a). In terms of visualization,

Kendall (1983) has defined one of the half-lunes of the shape sphere like projection area of

unlabeled triangle shapes. Some papers have presented studies about models, inference

and other statistical methods for pre-shapes of triangles as follows. A statistical description

of mean biological form and size-changes by means of linearized significance tests has

been proposed in Kendall (1984). The tests have been based on a convenient parametric

distribution for shape changes in triangles. Mardia and Dryden (1989a) have presented

a distribution for pre-shapes of triangles under the Bookstein model using the Mardia

and Dryden method. Furthermore, it was examined the reduction of this distribution

when the shape space is reduced to a subset of the sphere. Dryden and Mardia (1991)

have investigated the exact distribution for pre-shapes of general Gaussian labeled point

configurations in two dimensions and the triangle case has been considered in detail. Mardia

(1999) has provided an uniformity test for highly dispersed shapes, using the standard

techniques of directional statistics. They have approached the isometric transformation

from triangular shapes to a sphere in three dimensions in order to provide a rich class of

distributions for pre-shapes. Rohlf (1999) has demonstrated that the pre-shape space of

planar triangles Procrustes aligned to a reference triangle corresponds to a unit hemisphere.

A common assumption which is made when formulating hypothesis tests for mean shape

in the unit sphere is “samples should be strongly concentrated”. This fact is geometrically

justified, since models under this assumption are asymptotically equivalent to the ones in

the tangent plan (commonly more tractable). However, sometime we find data having low

concentration. This chapter addresses a way by means of SIT to treat with shape change

on both high and low concentrations. We propose distance-based two-sample hypothesis
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tests for pre-shapes which are extracted from triangles. To obtain novel associated pivotal

statistics, we derive the Hellinger (H), Bhattacharyya (B), Rényi (R) and KL distances

for the CW model. We also prove the KL distance is invariant under rotation, but the

other three outperform this drawback. We carry out Monte Carlo experiments to quantify

the performance of our proposals, adopting as comparison criteria empirical test sizes and

powers. Finally, an application to real data is made using the second thoracic vertebrae

T2 of mice in order to assess possible effects of body weight on the mouse vertebra shape.

Numerical evidences indicate that our proposals may be better detectors of mean shape

difference between samples of triangles than the F2 test (analysis-of-variance tailored to

SSA literature) proposed by Mardia and Dryden (1999).

The chapter is organized as follows. Section 3.2 tackles the two-sample hypothesis

tests based on distance measures for pre-shape data. Numerical results are displayed in

Section 3.4. The conclusion remarks are presented in Section 3.5. Finally, proofs of the

theoretical results are given in Appendix A.

3.2 Distance-Based Measure for the CW Model

In this section, we present new contributions in distance-based statistical inference in

the pre-shape context. We develop closed-form expressions for the Kullback-Leibler, Rényi,

Bhattacharyya and Hellinger stochastic distances between two probability measures which

come from the CW distribution which are enunciated in the following results.

Theorem 3.1. Let x1 ∼ CWk−1(µ1, κ1) and x2 ∼ CWk−1(µ2, κ2) with pdfs given, respec-

tively, by fx1(z;θ1) and fx2(z;θ2). Then the Kullback-Leibler distance (denoted by dKL)

is expressed as

dKL(θ1,θ2) = 1
2

 κ1

c1(κ1)

k∑
j=1

λT1j

∂

∂λM1j

c(ΛM1)− κ2

c1(κ1)

k∑
j=1

λM2j

∂

∂λM1j

c(ΛM1)

+ κ2

c1(κ2)

k∑
j=1

λM2j

∂

∂λT2j

c(ΛT2)− κ1

c1(κ2)

k∑
j=1

λT1j

∂

∂λT2j

c(ΛT2)

 , (3.1)

where c1(·) and c(·) are the CW and CB integration constants, respectively, ∂c(·)
∂λj

is the

first derivative Amaral, Floréz and Cysneiros (2013) of normalization constant of the CB
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model expressed as

∂c(Λ)
∂λi

= 2πk

 k∑
j=1
j 6=i

ajexp(λj)
(λj − λi)

+ aiexp(λi) + aibi exp(λi)

 ,

with Λ = diag(λ1, . . . , λk), a−1
j =

k∏
l=1
l 6=j

(λj − λl) and bi =
∑
l 6=i

1
(λi − λl)

.

Theorem 3.2. Under the same conditions of the Theorem 3.1. The Rényi distance with

order parameter β ∈ (0, 1) (denoted by dβR) is

dβR(θ1,θ2) = 1
(β − 1) log

{
1
2

[(
cβ−1

1 (κ2)c(V1)
cβ1 (κ1)

)
+
(
cβ−1

1 (κ1)c(V2)
cβ1 (κ2)

)]}
, (3.2)

where V1 = (κ1βµ1µ
∗
1 − κ2(β − 1)µ2µ

∗
2) and V2 = (κ2βµ2µ

∗
2 − κ1(β − 1)µ1µ

∗
1) are both

hermitian matrices with order k.

Corollary 3.1. Under the same conditions of the Theorem 3.1. The Bhattacharyya

(denoted by dB) and Hellinger (denoted by dH) distances are given by

dB(θ1,θ2) = − log
 c(A)√

c1(κ1)c1(κ2)

 (3.3)

and

dH(θ1,θ2) = 1− c(A)√
(c1(κ1)c1(κ2))

, (3.4)

where A =
(
κ1

2 µ1µ
∗
1 + κ2

2 µ2µ
∗
2

)
.

The proof of the results above can be found in Appendix A.

Figure 5 illustrates the distances obtained in the results 3.1, 3.2 and 3.1. The graph

was obtained by considering the following configuration: λ = (8, 0)> (vector of eigenvalues),

k + 1 = 3 (number of landmarks) and n = 50 (the size of sample which is used to estimate

κ and µ). From λ fixed, estimates for µ and κ, say µ̂ and κ̂, are obtained from CB

distributed generated data. We then fix µ1 = µ2 = µ̂ and take (κ1, κ2) = (κ̂, (1 + ε)κ̂)

with ε ∈ (−0.01, 0.01). We can see the Hellinger and Bhattacharyya distances are closed

and, when the parameter β increases to one, the Rényi distance approaches of the KL

distance. Similar behavior has been obtained in works Pardo (2005), Frery, Nascimento

and Cintra (2014) and Nascimento, Cintra and Frery (2010).
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Figure 5 – Plot of KL, Rényi, Bhattacharyya and Hellinger distance measures. For graphi-
cal procedure we take λ = (8, 0)>, n = 50 and k + 1 = 3. We fixed the µ and
taking (κ1, κ2) = (κ̂, (1 + ε)κ̂) with ε ∈ (−0.01, 0.01)

In particular, for the CW model, the KL distance is invariant under rotation, as

discussed in the next proposition. This fact poses a disadvantage to discriminate points

which are meaningfully distinct in rotation. Before we enunciate this result, a procedure for

obtaining the rotation matrix described by Amaral, Dryden and Wood (2007) is discussed.

Suppose that a and b are complex unit vectors in C2. For the application to shape analysis,

a pre-shape b̃ should be chosen from the shape [b] of b, where b∗b = 1. Then b̃ moves to

a along a horizontal geodesic in the pre-shape space. Let b̃ = b(b∗a)/|b∗a| so that b̃ has

the same norm as b and b̃∗a is real. Now, define the vector

c̃ = b̃− a(a∗b̃)
|b̃− a(a∗b̃)|

,

the matrix Ã = ac̃∗ − c̃a∗ and the angle ζ̃ = cos−1(a∗b̃). Consider that the vectors

a, b ∈ C2 satisfy |a|2 = 1 and |b|2 = 1, and suppose |b∗a| < 1. Let c̃, Ã and ζ̃ be defined

as above. Then the matrix R = exp(ζ̃Ã) with

exp(ζ̃Ã) ≡ I2 +
∞∑
j=1

ζ̃j

j! Ã
j

satisfies the following properties:

(a) R is 2× 2 unitary matrix; (b) R can be written

R = I2 + sin(ζ̃)Ã+ (cos(ζ̃)− 1)(aa∗ + c̃c̃∗);
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(c) Rb̃ = a; (d) For any z ∈ C2 such that a∗z = 0 = b∗z, the matrix R is the identity

transformation, i.e., Rz = z.

Proposition 3.1. Let x1 ∼ CWk−1(µ1, κ1) and x2 ∼ CWk−1(µ2, κ2). Let R be a rotation

matrix, then the Kullback-Leibler distance is invariant under rotation; that is,

dKL(θ1,θ2) = dKL(θ1,R
∗θ2R).

The proof is given in Appendix A.

3.2.1 New distance-based hypothesis tests

In what follows, we define the mathematical mechanism of the use of the (h, ϕ)-

divergence class, on which the new hypothesis tests are proposed. A way to make

hypothesis tests is through the (h, ϕ)-divergence class, which has been introduced by

Menéndez et al. (1995) and discussed by Salicrú et al. (1994). It is an extension of the

ϕ-divergence class – pioneered by Csiszár (1967) – and defined as follows.

Definition 3.1. Let x1 ∼ CWk−1(µ1, κ1) and x2 ∼ CWk−1(µ2, κ2) be two probability

measures having densities fx1(z;θ1) and fx2(z;θ2), respectively. The (h, ϕ)-divergence,

say dhϕ(θ1,θ2), is defined as

dhϕ(θ1,θ2) = h

(∫
CSk−1

fx2(z;θ2)ϕ
(
fx1(z;θ1)
fx2(z;θ2)

)
wk(dz)

)
= h

(
Eθ2

[
ϕ

(
fx1(z;θ1)
fx2(z;θ2)

)])
,

(3.5)

where h : (0,∞)→ [0,∞) is a strictly increasing (or decreasing) function with h(0) = 0,

and ϕ : (0,∞)→ [0,∞) is a convex (or concave) function such that ϕ(1) = 0, 0ϕ(0/0) = 0

and 0ϕ(x/0) = lim
x→∞

ϕ(x)/x (SALICRU et al., 1993)

Notice that each pair (h, ϕ) in (3.5) yields a particular divergence. Table 2 displays

those we use in this chapter. The measures (3.1), (3.2), (3.3) and (3.4) can be used isolated

from any inferential context (such as in many machine learning and computer science

works), but here we are also interested to study the their asymptotic behavior.

Now we are in position of proposing distance-based two-sample hypothesis tests for

difference mean shapes. We are interested in to test:

H0 : [µ1] = [µ2] vs. H1 : [µ1] 6= [µ2], (3.6)
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Table 2 – (h, ϕ)-distances and their functions

(h, ϕ)-distance h(y) ϕ(x)
Kullback-Leibler y/2 (x− 1) log x
Rényi (order β) 1

β−1 log( (β−1)
2 y + 1) xβ +x1−β −x− 1

β−1
Bhattacharyya − log(−y + 1) −

√
x+ x+1

2
Hellinger y/2 (

√
x− 1)2

where [µj] = {exp(iθ)µ : 0 ≤ θ < 2π}, for j = 1, 2 (i.e. [µj] represents the shape

corresponding to the modal pre-shape µj). For obtaining of the novel pivotal statistics,

under the regularity conditions discussed and proved in Salicrú et al. (1994), we use the

following lemma holds.

Lemma 3.1. Let θ̂1 = (θ̂11, . . . , θ̂1M) and θ̂2 = (θ̂21, . . . , θ̂2M) be ML estimators for

parameter vectors θ1 and θ2 having M0 < M common components based on independent

samples of sizes n1 and n2, respectively. If
n1

n1 + n2
−→ δ ∈ (0, 1) when n1, n2 →∞ and

θ1 = θ2, then

Shϕ(θ̂1, θ̂2) = 2n1n2

n1 + n2

dhϕ(θ̂1, θ̂2)∫
X h
′(0)ϕ′′(1) dυ

In particular for this manuscript,

SD(θ̂1, θ̂2) = ν
2n1 n2

n1 + n2
dD(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2
M−M0 ,

where υ is the σ-finite measure on the measurable space (X ,B), “ D−−−−−→
n1,n2→∞

” represents

the convergence in distribution, D = {KL,R,B,H} and ν is a chosen value according to

the used stochastic distance; i.e., ν = [h′(0)ϕ′′(1)]−1 = {1, 1/β, 4, 4}. In what follows, we

assume X = {1} and υ(1) = 1, which yields
∫
X
h′(0)ϕ′′(1) dυ = h′(0)ϕ′′(1)

(Salicrú et al., 1994, assumption adopted in Example 1).

Based on Lemma (4.1), tests for the null hypothesis θ1 = θ2 can be derived, as given

in the next proposition.

Proposition 3.2. Let n1 and n2 be large and SD(θ̂1, θ̂2) = s, then the null hypothesis

θ1 = θ2, can be rejected at level α if P (s < χ2
M−M0) ≤ α.
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From Lemma 4.1 and Proposition 4.2 combined with the Theorem 5.1, four new hypothesis

tests for the CW distribution come from distance-based pivotal statistics which we provide

subsequently. We divide this discussion in two cases:

Case 1 (κ1 = κ2):

[1.1] Rényi statistics with order β ∈ (0, 1) - SβR(·, ·):

SβR(θ̂1, θ̂2) = β−1 2n1n2

n1 + n2
dβR(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

2. (3.7)

[1.2] Bhattacharyya statistics - SB(·, ·):

SB(θ̂1, θ̂2) = 8n1n2

n1 + n2
dB(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

2.

[1.3] Hellinger statistics - SH(·, ·):

SH(θ̂1, θ̂2) = 8n1n2

n1 + n2
dH(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

2.

From adopting M0 = 1 in Proposition 4.2, the SβR, SB and SH statistics in the case 1

follow asymptotically the chi-squared distribution with degrees of freedom two. This

discussion does not include the KL distance because its associated distance is invariant

under rotation, as proven in Proposition 3.1.

Case 2 (κ1 6= κ2):

[2.1] Kullback-Leibler statistics - SKL(·, ·) :

SKL(θ̂1, θ̂2) = 2n1n2

n1 + n2
dKL(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

1.

[2.2] Rényi statistics with order β ∈ (0, 1) - SβR(·, ·):

SβR(θ̂1, θ̂2) = β−1 2n1n2

n1 + n2
dβR(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

3.

[2.3] Bhattacharyya statistics - SB(·, ·):

SB(θ̂1, θ̂2) = 8n1n2

n1 + n2
dB(Â1, θ̂2) D−−−−−→

n1,n2→∞
χ2

3.

[2.4] Hellinger statistics - SH(·, ·):

SH(θ̂1, θ̂2) = 8n1n2

n1 + n2
dH(θ̂1, θ̂2) D−−−−−→

n1,n2→∞
χ2

3. (3.8)
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In the case 2, the SKL statistic follows the χ2
1 model because - after matrix manipulations

involving quadratic forms - its distance in (3.1) is only the result of comparison between

two non null eigenvalues. The rest of them have the χ2
3 model from plunging M0 = 0 in

Proposition 4.2.

3.3 Asymptotic Results under High Concentration

Mardia and Dryden (1999) have proposed theoretical and asymptotic results for the

CW probability measure under large concentration. Now we highlight some of these results

that we are going to use in section of numerical results. The next proposition defines a

limit relation between CW and complex normal distributions.

Proposition 3.3. If κ is large, then the CW model tends to the complex normal distri-

bution with mean µ and covariance matrix (1/2κ)(Ik − µµ∗)−, where (·)− represents the

generalized inverse.

From Proposition 3.3,

2κ[(z − µ)∗(Ik − µµ∗)(z − µ)] = 2κ(1− z∗µµ∗z) = 2κ sin2(ρ(H>z,H>µ))

follows approximately the χ2
2k−4 distribution for large κ, since the complex rank (Ik−µµ∗)

is k − 2. Then, it holds

S1 = 2κ sin2(ρ(H>z,H>µ)) D−−−−−→
n1,n2→∞

χ2
2k−4. (3.9)

In the next section, we will use (3.9) as a criterion to identify points which indicate low

and high concentration degrees within the CW parametric space.

Mardia and Dryden (1999) have developed a large concentration two-sample test to

detect different between shapes using the Equation (3.9) as follows. Let z1, z2, . . . ,zn

and y1,y2, . . . ,ym be two independent random samples from z ∼ CWk−1(µ1, κ1) and

y ∼ CWk−1(µ2, κ2), respectively.

Suppose that one wants to test the hypothesis (4.3). Using the equation (3.9) for large

κ, it follows that

n∑
i=1

sin2[ρ(zi, µ̂1)] +
m∑
j=1

sin2[ρ(yj, µ̂2)] D−−−−−→
n1,n2→∞

1
2κχ

2
(2k−4)(n+m−2).
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By analogy with analysis-of-variance, we obtain

n∑
i=1

sin2[ρ(zi, ̂̂µ1)] +
m∑
j=1

sin2[ρ(yj, ̂̂µ1)] D−−−−−→
n1,n2→∞

1
2κχ

2
(2k−4)(n+m−1),

where ̂̂µ1 is the overall ML estimator for µ1 if the two groups are pooled.

Setting

B =
n∑
i=1

sin2[ρ(zi, ̂̂µ1)] +
m∑
j=1

sin2[ρ(yj, ̂̂µ1)]−
n∑
i=1

sin2[ρ(zi, µ̂1)]−
m∑
j=1

sin2[ρ(yj, µ̂2)],

we have (under H0)

SF2 = (n+m− 2)B
n∑
i=1

sin2[ρ(zi, µ̂1)] +
m∑
j=1

sin2[ρ(yj, µ̂2)]

D−−−−−→
n1,n2→∞

F2k−4,(2k−4)(n+m−1), (3.10)

which may be defined as decision rule that rejects H0 for large values of SF2.

According to Mardia and Dryden (1999), by using Taylor series expansions for large

concentrations,

B ≈ (n−1 +m−1)−1 sin2[ρ(µ̂1, µ̂2)].

For large κ, the test based on SF2 is equivalent to the two-sample test proposed by Goodall

(1991).

3.4 Numerical Results and discussion

This section addresses a numerical assessment of the performance of the proposed tests,

comparatively to the SF2 test of the SSA literature. This study has been made over both

generated CW and real data.

3.4.1 Analysis with synthetic data

In order to assess the new hypothesis tests which are induced from the combination

between Theorem 5.1 and Proposition 4.2, we have employed CW generated data, using

the simplex method proposed by Kent, Constable and Er (2004) and the mapping given

in (2.7). An important practical procedure in SSA (e.g., for making hypothesis tests) is to

understand if an under-study phenomenon is on low or high concentration. Thus, before
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we carry out a detailed study, a pilot essay has been made to investigate when pre-shape

data are strongly concentrated in terms of Proposition 3.3; i.e.,

H0 : CW=d Complex normal (concentrated strongly data),

where =d indicates equivalence in distribution. In particular, we can use the limit result of

S1 in (3.9). For this initial quantitative study, we also used the Kolmogorov-Smirnov (KS)

test (DARLING, 1957) at the level significance 5%. Based on Monte Carlo experiments

with three thousand replicas, we have furnished values of S1 as input to the KS test.

As prior knowledge, we suspected that scenarios which are governed by indexes (i) λ =

{(1.5, 0), (2, 0)} and (ii) λ = {(8, 0), (15, 0)} represent low and high concentration degrees,

respectively. Figure 6 illustrates such scenarios on the unit sphere through the plot of

four generated samples. Indeed, (i) and (ii) point out by visual inspection low and high

concentrations, respectively.

Note that identifying similarity before low concentration degrees is intuitively more

difficult than in concentrated strongly scenarios. Table 3 displays results of mean KS

Figure 6 – Illustration of the low and high concentrations scenarios, respectively. Consider-
ing the eigenvalues vectors (i) λ = {(1.5, 0), (2, 0)} and (ii) λ = {(8, 0), (15, 0)}.

test p-values ( ¯̂αKS) for three sample sizes (n = 50, 70, 100) and the situations of Figure 6.

Results indicate quantitatively samples indexed at κ = 1.5 and 2 as of low concentration
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and those indexed at κ = 8 and 15 as of high concentration. In the rest of this section, we

assume the last conclusion.

Table 3 – Mean KS test p-value for four concentration degrees

Low concentration High concentration
λ n ¯̂αKS λ n ¯̂αKS

(1.5,0) 50 0.0047 (8,0) 50 0.3453
70 0.0033 70 0.2998
100 5.6230×10−5 100 0.2148

(2,0) 50 0.0480 (9,0) 50 0.3705
70 0.0321 70 0.2504
100 0.0034 100 0.2348

Now, we are in position of performing the size and power studies of the proposed

two-sample tests in contrast with the SF2 test of the SSA literature. We have considered

the cases 1 and 2 as well as two concentration degrees, low and high. We have investigated

initially the asymptotic behavior of the proposed pivotal statistics by means of a short

study. As discussed, we expect the pivotal statistics SβR, SB and SH in the case 1 converge

in distribution (under the null hypothesis) for χ2
2. In numerical terms, we considered 3000

Monte Carlo replicas, on which values of SH for two samples with n1 = n2 = 70 under the

high concentration scenario λ = (8, 0) were obtained. The KS test was employed to an

array of observations of SH , yielding p-value α̂KS = 0.7162 and concluding the observed

array comes from the χ2
2 at level 5%. The SF2 test has also been used over the same data,

indicating the same conclusion (α̂KS = 0.6891). In order to illustrate this behavior, Figure

7 displays the theoretical and empirical densities for SH and SF2 statistics as well as their

respective quantile-quantile plots (qq-plots). Graphics indicate both statistics work well.

For the case 2, we look for the pivotal statistics SβR, SH and SB (under the null

hypothesis) converge in distribution for χ2
3 and SKL for χ2

1. The KS test has been

employed to outcomes of S0.9
R and SH at n1 = n2 = 100 and λ = (8, 0), yielding p-values

α̂KS = 0.9382 and α̂KS = 0.9973, respectively. The same investigating mechanism applied

to observations of SKL has provided α̂KS = 0.8322. Figure 8 illustrates the asymptotic

behavior of these statistics.

All tools reach what is expected. Subsequently, tests we discussed in previous section

are submitted to wider studies.



Chapter 3. DISTANCE-BASED HYPOTHESIS TESTS FOR TRIANGLE SHAPES 63

0 5 10 15
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

SH

E
m

pi
ric

al
 a

nd
  t

he
or

et
ic

al
 d

en
si

tie
s

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SF2

E
m

pi
ric

al
 a

nd
 th

eo
re

tic
al

 d
en

si
tie

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●

●●●
●●
●●
●●
●
●

●

●

0 5 10 15 20

0
5

10
15

20

 Empirical quantiles of H statistics

 T
he

or
et

ic
al

 q
ua

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●
●●●
●●●
●●
●●
●

●
●
●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

Empirical quantiles of F2 statistics

T
he

or
et

ic
al

 q
ua

nt
ile

s

Figure 7 – Histograms and qq-plots of Hellinger and F2 statistics for κ1 = κ2 under high
concentration. The configurations considered for this simulate procedure were:
the eigenvalues vector λ = (8, 0) and sample size n1 = n2 = 70
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Figure 8 – Histograms of the Rényi, Hellinger and KL proposed statistics for κ1 6= κ2
under high concentration. For graphical procedure taking: the eigenvalues
vector λ = (8, 0) and the sample size n1 = n2 = 100
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Tables 4 and 5 present empirical test sizes under low concentration scenarios for the

cases 1 and 2, respectively. In Table 4, rejection rates underestimate the expected value

α = 5%. This case is the hardest situation among those considered, because it offers

only the difference between mean shapes (for triangles, one eigenvalue per sample) as

mechanism for decision rule in a context on which data are strongly mixtured. The lower

the concentration levels, the larger sample sizes are required for tests work as expected.

Although of the F2 test statistic presents a limitation in the low concentration scenario,

we use this statistic in the Table 4. We can verify that the F2 test is extremely liberal

for all sample sizes considered at a adopted nominal level α = 5%. We conclude that

the application of the F2 test statistic is indicated only when the following restrictions

are assumed: the concentration degrees in two samples are equal and over the high

concentration scenario.

Table 5 displays the p-values of all proposed tests for case 2. Note the KL test

performance was also included, since it only can be applied when the concentration

parameters are assumed different. Here we verify the Hellinger and KL tests stand out for

all sample sizes, showing rejection rates which are more closed to the adopted nominal

level. These results are extremely important, since the majority of SSA tools assume to

be under a high concentration scenario (MARDIA; DRYDEN, 1999; MICHEAS; DEY,

2005a; MICHEAS; DEY, 2005b).

Table 4 – Rejection rates under H0 for distance-based (Hellinger, Rényi and Bhattacharyya)
tests with κ1 = κ2 for low concentration scenario. The adopted nominal level
α = 5%.

λ n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SF2

(1.5,0) 30 30 0.011 0.012 0.012 0.011 0.012 0.01 0.176
30 50 0.016 0.016 0.016 0.016 0.016 0.016 0.166
70 70 0.026 0.027 0.027 0.026 0.027 0.026 0.183
100 150 0.035 0.035 0.035 0.035 0.035 0.034 0.178
200 200 0.038 0.038 0.038 0.038 0.038 0.038 0.19

(2,0) 30 30 0.022 0.022 0.022 0.022 0.022 0.019 0.127
30 50 0.028 0.028 0.028 0.028 0.028 0.026 0.114
70 70 0.036 0.036 0.036 0.036 0.037 0.034 0.131
100 150 0.036 0.036 0.036 0.036 0.036 0.036 0.12
200 200 0.04 0.04 0.04 0.04 0.04 0.04 0.132

Table 6 displays empirical test sizes for the high concentration scenario in the case 1.
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Table 5 – Rejection rates under H0 for distance-based (Hellinger, Rényi, Bhattacharyya
and Kullback-Leibler) and F2 tests with κ1 6= κ2 for low concentration scenario.
The adopted nominal level α = 5%

λ n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SKL
(1.5,0) 30 30 0.054 0.056 0.056 0.054 0.056 0.05 0.032

30 50 0.054 0.055 0.055 0.054 0.056 0.05 0.046
70 70 0.05 0.052 0.052 0.05 0.052 0.048 0.043
100 150 0.051 0.051 0.051 0.051 0.051 0.05 0.049
200 200 0.046 0.046 0.046 0.046 0.046 0.046 0.041

(2,0) 30 30 0.054 0.055 0.055 0.054 0.055 0.049 0.039
30 50 0.056 0.057 0.057 0.056 0.057 0.049 0.05
70 70 0.05 0.051 0.051 0.05 0.051 0.048 0.046
100 150 0.05 0.05 0.05 0.05 0.05 0.049 0.052
200 200 0.044 0.044 0.044 0.044 0.044 0.044 0.044

We compare the results of the tests based on SβR, SB and SH with that on SF2. We verify

that they work equivalently under large values of κ. In Table 7, displays empirical test

sizes for the high concentration scenario in the case 2. We can see for small sample sizes,

the p-value underestimates the nominal level of the test, but for large sample sizes the tests

are more significants. In summary, according to the simulation procedures performed with

respect to the significance of the distance-based measures tests, for case 1 we indicate the

Bhattacharyya and Rényi (order β = 0.9) statistics. For case 2 we indicate the Hellinger

statistic.

Table 6 – Rejection rates under H0 for distance-based (Hellinger, Rényi and Bhattacharyya)
and F2 tests with κ1 = κ2 for high concentration scenario. The adopted nominal
level α = 5%

λ n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SF2

(8,0) 30 30 0.05 0.05 0.05 0.05 0.05 0.047 0.051
30 50 0.046 0.046 0.046 0.046 0.047 0.044 0.049
70 70 0.05 0.05 0.05 0.05 0.05 0.048 0.051
100 150 0.043 0.043 0.043 0.043 0.043 0.042 0.045
200 200 0.052 0.052 0.052 0.052 0.052 0.051 0.053

(9,0) 30 30 0.05 0.051 0.051 0.05 0.051 0.046 0.052
30 50 0.047 0.048 0.048 0.047 0.048 0.044 0.049
70 70 0.05 0.05 0.05 0.05 0.05 0.049 0.051
100 150 0.044 0.044 0.044 0.044 0.044 0.043 0.045
200 200 0.052 0.052 0.052 0.052 0.052 0.051 0.053

Tables 8 and 9 extend the previous study by means of empirical test power; that is, the
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Table 7 – Rejection rates under H0 for distance-based (Hellinger, Rényi, Bhattacharyya
and Kullback-Leibler) tests with κ1 6= κ2 for high concentration scenario. The
adopted nominal level α = 5%

λ n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SKL
(8,0) 30 30 0.063 0.061 0.061 0.063 0.06 0.055 0.055

30 50 0.059 0.058 0.058 0.059 0.058 0.052 0.062
70 70 0.057 0.056 0.056 0.057 0.056 0.054 0.057
100 150 0.055 0.055 0.055 0.055 0.055 0.053 0.057
200 200 0.05 0.05 0.05 0.05 0.05 0.05 0.047

(9,0) 30 30 0.063 0.062 0.062 0.063 0.061 0.055 0.054
30 50 0.058 0.057 0.057 0.058 0.057 0.052 0.063
70 70 0.056 0.056 0.056 0.056 0.056 0.053 0.056
100 150 0.056 0.056 0.056 0.056 0.056 0.054 0.056
200 200 0.051 0.051 0.051 0.051 0.051 0.05 0.047

rejection rates when samples come from different distributions, denoted as 1− η̂, where η̂

is the size estimate of error of kind II. For this, it is necessary to determine a mechanism

of separation of H0 in H1. In this thesis, we employ a procedure of transformation of the

null hypothesis described by Amaral, Dryden and Wood (2007). It consists in obtaining a

rotation matrix R that – when applied to the data – allows a sample to have the same

mean shape, but distinct rotations. The angle used in the rotation matrix, say φpower,

assumes values in the interval [0, 2π). We select three values of φpower, say 0.04π, 0.09π

and 0.3π, to illustrate the empirical test power for the case 1 in Table 8 and for the case

2 in Table 9. For φpower ∈ {0.09π, 0.3π}, it is noticeable tests are equivalently powerful.

With exception of (φpower, n) = (0.04π, 70), the F2 test presents rates mildly higher than

others. However, we would like to highlight two advantages of distance-based tests in

contrast to F2. First the statistics (3.10) depends of pre-shape outcomes, differently of

ones (4.5)–(3.8). It imposes the former to higher degrees of computational complexity and

of influence of potential outliers. Second distance-based tests do not have restriction of

working only under high concentration.

Figure 9(a) displays the power function of the Rényi statistics with order β = 0.9

(all the others present the similar behavior) for the case 1 under the low concentra-

tion scenario. The angle vector for all graphics of power functions takes values of φ

in [0.001π, 0.005π, 0.009π, 0.01π, 0.02π, 0.03π, 0.04π, 0.05π, 0.06π, 0.07π, 0.08π, 0.09π, 0.1π,

0.2π, 0, 3π]. Figure 9(b) tackles situations in the low concentration scenario for the case
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Table 8 – Rejection rates under H1 for distance-based (Rényi, Bhattacharyya and Hellinger)
and F2 tests with κ1 = κ2 for high concentration scenario. The adopted nominal
level α = 5%

λ φpower n1 n2 (1− η̂)S0.1
R

(1− η̂)S0.3
R

(1− η̂)S0.7
R

(1− η̂)S0.9
R

(1− η̂)SB
(1− η̂)SH

(1− η̂)SF 2

(8,0) 0.04π 30 30 0.291 0.292 0.292 0.291 0.292 0.279 0.300
70 70 0.631 0.632 0.632 0.631 0.632 0.627 0.637
100 150 0.859 0.859 0.859 0.859 0.859 0.858 0.861

0.09π 30 30 0.924 0.924 0.924 0.924 0.925 0.918 0.928
70 70 0.999 0.999 0.999 0.999 0.999 0.999 0.999
100 150 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3π 30 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00
70 70 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 150 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 9 – Rejection rates under H1 for distance-based (Hellinger, Rényi and Bhattacharyya)
tests with κ1 6= κ2 for high concentration scenario. The adopted nominal level
α = 5%

λ φpower n1 n2 (1− η̂)S0.1
R

(1− η̂)S0.3
R

(1− η̂)S0.7
R

(1− η̂)S0.9
R

(1− η̂)SB (1− η̂)SH
(8,0) 0.04π 30 30 0.286 0.286 0.286 0.286 0.286 0.2869

70 70 0.592 0.591 0.591 0.592 0.591 0.583
100 150 0.821 0.821 0.821 0.821 0.821 0.819

0.09π 30 30 0.901 0.902 0.902 0.901 0.902 0.893
70 70 1.00 1.00 1.00 1.00 1.00 1.00
100 150 1.00 1.00 1.00 1.00 1.00 1.00

0.3π 30 30 1.00 1.00 1.00 1.00 1.00 1.00
70 70 1.00 1.00 1.00 1.00 1.00 1.00
100 150 1.00 1.00 1.00 1.00 1.00 1.00

2. The Rényi distance test (with order β = 0.9) presents the fast increasing of the power

function.

Figure 10 illustrates the empirical test power under high concentration for the cases 1

and 2, respectively. For the case 1, the proposed tests are as powerful as the F2 test.

Additionally, for the case 2, we verify the good performance for all proposed tests, with

exception of SKL (due to its property of invariance under rotation). This means that all

the proposed pivotal statistics are very useful to detect the differences between the mean

shapes on the unit complex sphere for two independent samples coming from the CW

model.
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Figure 9 – Empirical power function of the Rényi (with order β = 0.9) test under low
concentration for three sample sizes n1 = n2 = n ∈ {70, 100, 150}, eigenvalues
vector λ = (8, 0) and the angle selected to compute the rotation matrix φ
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Figure 10 – Empirical power function of distance-based and F2 tests under high concen-
tration for sample sizes n1 = 30 and n2 = 20, eigenvalues vector λ = (8, 0)
and the angle selected to compute the rotation matrix φ

3.4.2 Biological data analysis

Consider we wish to explore in a biology experiment the effect of the body weight on

the shape of mouse vertebrae, such as described in Dryden and Mardia (2016). Three

groups of mice have been considered: large (mice selected at each generation with large
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body weights), small (mice selected with small body weights) and control (unselected

mice). The real data were extracted from the package shapes by mean of the dataset

mice available in the software R (for more details, see <https://cran.r-project.org/web/

packages/shapes/index.html>). In this dataset, 6 landmarks have been measured on each

bone and partitioned in two distinct triangles. as illustrated in Figure 11 and 13.

Figure 11 – Prototype of the second thoracic vertebra T2 of the group mice. Six mathemat-
ical landmarks (+) on a T2 mouse vertebra, together with 54 pseudo-landmarks
around the outline. This figure was taken from Dryden and Mardia (2016,
pp. 9).

The groups small and large had sample sizes of 23 bones; while the group control,

30 bones. This database has been utilized by many works:

1. Mardia and Dryden (1989b) have investigated shape changes in pairs of groups

(control, large) and (control, small) under the exact distribution of Bookstein’s

variables and considering possible geometric insights.

2. Kent (1997) has compared two groups (small and large) of mouse vertebrae in

order to test the difference between mean shapes using the Hotelling’s T 2 test Dryden

and Mardia (2016). This test demonstrated such difference is extremely significant.

3. Micheas, Dey and Mardia (2006) have considered only the small group in order to

make statistical inference for the mean shape by means of both maximum likelihood

and Bayesian methods for the CW model.

More details about the biology experiment we are treated can be found in Falconer (1973),

Johnson et al. (1985) and Johnson, O’Higgins and McAndrew (1988). In our application,

https://cran.r-project.org/web/packages/shapes/index.html
https://cran.r-project.org/web/packages/shapes/index.html
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we have also considered two configurations of triangle shape extracted from the dataset of

mice.

• Configuration A: triangles that are formed by landmarks 3,4 and 5 in Figure 11.

• Configuration B: triangles which are designed by landmarks 1,2 and 6 in Figure 11.

Figures 12a–12c illustrate the database of origin landmarks of the configuration A

for three groups (control, large and small), and Figures 12d–12f exhibit the same for

the configuration B. According to Dryden and Mardia (2016), the landmarks 1 and 2

are at maximum points of an approximate curvature function, 3 and 5 at the extreme

points of negative curvature at the base of the spinous process, 4 at the tip of the spinous

process, and 6 at the maximal curvature point on the opposite side of the bone from 4.

The under-study objects are highly concentrated and all mutually independent Dryden

and Mardia (2016).
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(a) control in the configuration
A
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(b) large in A
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(c) small in A
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(d) control in the configuration
B
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(e) large in B
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(f) small in B

Figure 12 – Databases of triangles (i.e., k + 1 = 3 landmarks) representing T2 vertebrae
of mice at configurations A, (a)–(c), and B, (d)–(f).
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In Figure 13, we use the generalized Procrustes analysis on Kent’s partial tangent

coordinates (DRYDEN; MARDIA, 2016) and we obtain the mean shape of the three

groups for configurations A and B.

Figure 13 – Fit of mean shape of the landmark configurations using the generalized
Procrustes analysis to k+ 1 = 6 landmarks. Illustration of the second thoracic
vertebra T2 of mice.

In our study, we were interested at detecting the difference in the pre-shapes of triangles

between the two groups in the two following contexts: (i) control vs. large and (ii)

control vs. small. We have performed the study considering the cases 1 and 2 under

high concentration. For the selection of the sample sizes 10 and 15 of the two groups, we

made the resampling procedure with 1000 Monte Carlo experiments. We considered the

resamples without replace of two groups.

Table 10 displays the rejection rates under null hypothesis of the proposed and F2 tests

between the groups control and large at the case 1 and configuration A. Note that, for

sample size 10 and 15, we verify the proposed distance-based tests detect the difference

between mean shapes, while the F2 test does not reject the null hypothesis. But when

considering the total sample size all tests present good results. Thus, we may partially

conclude our proposals performed better than F2 in small samples, condition commonly

found in SSA experiments.

In Table 28, we carried out the experiment for the comparison control vs. large at

the case 2. Results indicate that the proposed tests have rejected the equality of mean
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Table 10 – Rejection rates under H0 for control vs. large at κ1 = κ2 and configuration
A

Landmarks n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SF2

(3,4,5) 10 10 0.047 0.048 0.048 0.047 0.048 0.032 0.164
15 15 0.044 0.044 0.044 0.044 0.044 0.03 0.216
30 23 0.04496 0.04492 0.04492 0.04496 0.04491 0.04917 0.0458

shapes as expected, with exception of the KL test at n1 = 30 and n2 = 23.

Table 11 – Rejection rates under H0 for control vs. large at κ1 6= κ2 and the configura-
tion A

Landmarks n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SKL
(3,4,5) 10 10 0.025 0.024 0.024 0.025 0.024 0 0

15 15 0.035 0.034 0.034 0.035 0.033 0 0
30 23 0.0311 0.03417 0.03417 0.0311 0.03519 0.04112 0.06243

Table 12 displays the rejection rates under null hypothesis for control vs. small,

considering the configuration B and case 1. For two smallest sample sizes, the F2 test did

not detect difference between the mean shapes, whilst the proposed tests identified the

discrepancy. The increasing of the sample size tends to correct the F2 performance and all

tests concludes what it is expected, there is difference between groups control and small.

Table 12 – Rejection rates under H0 for group control vs. small at κ1 = κ2 and the
configuration B

Landmarks n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SF2

(1,2,6) 10 10 0.013 0.013 0.013 0.013 0.013 0.008 0.209
15 15 0.025 0.025 0.025 0.025 0.025 0.021 0.322
30 23 0.04997 0.04996 0.04996 0.04997 0 0 0.03165

Table 13 furnishes results for all proposed tests in control vs. small and the case 2.

We recommend the H test because it has presented the empirical test sizes more closed to

5%.

In summary, considering the two configurations for the case 1, we noted the proposed

tests outcomed the F2 test, what indicates our methodology as good tools to detect

differences in complex spherical pre-shapes of triangles in the two-sample context. Taking
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the case 2, the Hellinger statistic obtained better results, particularly for sample sizes

n1 = 30 and n2 = 23.

Table 13 – Rejection rates under H0 for group control vs. small at κ1 6= κ2 and the
configuration B

Landmarks n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH α̂SKL
(1,2,6) 10 10 0.003 0.003 0.003 0.003 0.003 0 0

15 15 0.006 0.004 0.004 0.006 0.004 0 0
30 23 0.03763 0.04231 0.04231 0.03763 0.04388 0.05037 0.02209

3.5 CONCLUSION

This chapter has proposed four distance-based two-sample hypothesis tests for quanti-

fying differences between triangle mean shapes. We have assumed the well-defined complex

Watson (CW ) distribution for describing pre-shape data. We have furnished expressions for

Rényi, Kullback-Leibler, Bhattacharyya and Hellinger distances on the CW model as well

as have motivated their use in SSA for triangle complex spherical data. As a consequence

from the use of proposed stochastic distances, we have provided pivotal quantities, which

have been successfully employed to verify if two samples of triangle pre-shapes come from

the same spherical probability measure on both low and high concentration degrees. The

performance of our proposals has been quantified by means of Monte Carlo experiments

and compared with the SF2 statistics test, well-defined tool for the CW model. Results

have presented evidence that the SR, SB, SH and SKL tests may present estimated type I

errors which are controlled. Moreover, estimated (in terms of rotation matrices) power

functions of the proposed tests (with exception of the Kullback-Leibler version which is

invariant under rotation) have obtained the good behavior, even on low concentration.

Finally, we have illustrated the potentiality of these measures on real data. Our application

has evaluated the difference between mean shapes of the two groups on second thoracic

vertebrae T2 of mice. Results have favored three of our proposed tests, mainly in small

sample size experiments.
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4 DIVERGENCE-BASED PIVOTAL STATIS-
TICS FOR PLANAR-SHAPE

4.1 Introduction

In this chapter, we propose new divergence-based two-sample tests in planar-shape.

First we derive the Rényi, KL, Bhattacharyya and Hellinger distances for the CB distribu-

tion and, as a consequence, provide four relating hypothesis tests. Further we prove that

the KL-based statistics is invariant under rotation and, therefore, it is able only to study

homogeneity. Adopting as figures of merit both (i) test size and power and (ii) robustness,

we make a Monte Carlo study to quantify the performance of our proposals, in comparison

with other four SSA tests: Hotelling T 2, Goodall, James and lambda. Results indicate

divergence-based tests have empirical test size as controlled (closed to adopted nominal

level) as the literature ones; but, our proposals outperform the remainder in terms of

both empirical test power and robustness. Finally, an application to real data is made in

the O’Higgins and Dryden (1993) context. Results provide evidence in favor of all our

proposals, with exception of the KL test (which has statistics invariant under rotation).

The remainder of this chapter is organized as follows. Section 5.1 approaches a survey

of some of main planar-shape literature tests. In section 4.3 addresses the proposal of new

divergence-based hypothesis tests. Section 4.4, we furnish numerical results from synthetic

and actual experiments. Concluding remarks are presented in section 4.5. Subsequently,

the Appendix B provides details about the derived results.

4.2 A survey about some hypothesis tests for planar-shape

Now some hypothesis tests (for mean shapes) which are well-defined in the SSA

literature are discussed. Over the years, proposing statistical inference methods in planar-

shape has been addressing by many papers. Lele and Richtsmeier (1991) have provided a

test for shape difference based on a matrix analysis which was equipped by an Euclidean

distance. Lele and III (1996) have addressed to test the equality of two shapes from
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landmark configuration data when covariance matrices are unequal. Rohlf (2000b) has

presented a survey about important SSA two-sample tests for shape equality as well

as a comparative study of their empirical test powers. Micheas and Dey (2005b) have

derived hypothesis tests and credible regions for average shape difference from a Bayesian

viewpoint, assuming the complex elliptical shape distribution. The hypothesis tests which

were proposed by Hotelling T 2, Goodall F , James (SEBER, 1984) and lambda (AMARAL;

DRYDEN; WOOD, 2007) have aimed to check if there is shape difference between two

independent random samples which are extracted from two-dimensional objects. In what

follows, we discuss these four two-sample tests. The common hypotheses of these tests are

H0 : [µ1] = [µ2] (= [µ0]) vs. H1 : [µ1], [µ2] unrestricted, (4.1)

where [µ0] is the common mean shape. The notation [µj] = {exp(iυ)µj : 0 ≤ υ ≤ 2π}

for j = 1, 2 represents the shape, corresponding to the modal pre-shape µj. The full

Procrustes estimate of mean shape [µ̂] can be defined as the eigenvector which corresponds

to the largest eigenvalue of product matrix S (DRYDEN; MARDIA, 2016). Below, we

describe, briefly, the exiting test present in literature.

a) Lambda statistics (AMARAL; DRYDEN;WOOD, 2007): Consider {Xij ; j = 1, . . . , ni}

for i = 1, . . . , p be p independent samples at Cd and let µ̂i be the estimator for µ0

based on the ith sample. Under the assumptions in Amaral, Dryden and Wood

(2007) and choosing the matrix M̂i for i = 1, . . . , p, such as in this reference, we

have that

n1/2 M̂iµ0
D−−−→

n→∞
CNd−1(0,Gi),

where

Gi has full rank and is a positive definite hermitian matrix. So, assuming

T0(µ) ≡ 2µ∗ Â0µ and Â0 = n
k∑
i=1
M̂ ∗

i Ĝ
−1
i M̂i (4.2)

for Ĝi is the be a consistent estimator for Gi, the lambda statistic – denoted by

λmin – is the smallest eigenvalue of Â0 in (4.2) and µ̂0 is the corresponding unit

eigenvector. So,

λmin = min
{µ:||µ||=1}

[T0(µ)] = T0(µ̂0).
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Under some conditions proposed in Fisher et al. (1996), one has that

λmin
D−−−→

n→∞
χ2

2(p−1)(d−1),

where p is the sample size d is the dimension of the space considered.

b) Hotelling T 2 statistic (AMARAL; DRYDEN; WOOD, 2007; DRYDEN; MARDIA,

2016): Let Xi1 , . . . ,Xini for i = 1, 2 be two independent random samples which

are drawn from population variables with mean shapes µ1 and µ2. We consider

a two-sample test for data in the Procrustes tangent space. In this context, the

pole corresponds to the overall pooled full Procrustes with mean shape µ̂i. Let

v1, . . . ,vn1 and w1, . . . ,wn2 be the partial Procrustes tangent coordinates (with

pole µ̂i, i = 1, 2). A multivariate normal model is proposed in the tangent space,

where vi ∼ N(ξ1,Σ1) for i = 1, 2, . . . , n1, wj ∼ N(ξ2,Σ2) for j = 1, 2, . . . , n2 and vi
and wi are all mutually independent. Let (v,w) and (S1,S2) denote the pairs of

sample means and covariance matrices in each group. If the covariance matrices are

assumed to be equal, then the squared Mahalanobis distance between v and w is

D2 = (v̄ − w̄)>S−u (v̄ − w̄), where Su = (n1 + n2 − 2)−1(n1S1 + n2S2) and S−u is

the Moore-Penrose generalized inverse of Su. Under H0, we have ξ1 = ξ2 and the

two-sample Hotelling T 2 statistics is

FH = n1n2(n1 + n2 −M − 1)
(n1 + n2) (n1 + n2 − 2)MD2,

where M = 2p− 2 is the dimension of the planar-shape space. This statistic follows

the FM,(n1+n2−M−1) distribution under H0 and the associated test is appropriate

when variability is small and hence the tangent space approximation is reasonable.

As decision rule, one rejects H0 for large values of FH .

c) James statistics (JAMES, 1954; SEBER, 1984): When covariance matrices in the

previous item are not assumed to be equal, an alternative is to use the test statistic

proposed by James (1954), given by

FJ = (v̄ − w̄)>
( 1
n1
Sv + 1

n2
Sw

)−
(v̄ − w̄).

This statistics follows asymptotically the χ2
M distribution, under H0, regardless of

whether or not Σ1 and Σ2 are equal. In this case, we reject H0 for large values of

FJ .
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d) Goodall statistics (GOODALL, 1991): If Σ1 = Σ2 = Σ and we have the isotropic co-

variance structure Σ = 2σ2I, then the statistic reduces to Goodall (1991) two-sample

F statistic. Under H0, the following statistic has the FM,(n1+n2−2)M distribution:

FG =
(
n1 + n2 − 2
n1−1 + n2−1

)
· d2

F (µ̂1, µ̂2)
n1∑
i=1

d2
F (X1i, µ̂1) +

n2∑
j=1

d2
F (X2j, µ̂2)

,

this result is valid for small σ and we reject H0 for large values of FG.

Now we discuss shortly assumptions of previous four tests. According to Amaral,

Dryden and Wood (2007), the lambda statistic is designed for highly concentrated data.

The Goodall statistic (DRYDEN; MARDIA, 2016, p. 199) assumes the complex

normal joint distribution on the landmark space, rotational symmetry and equal dispersion

structure across populations. The Hotelling T 2 statistic (DRYDEN; MARDIA, 2016, p.

187) allows general dispersion structures and normality for the observations on the tangent

space. The James statistic (SEBER, 1984, p.115) is a modified version of the Hotelling T 2

statistic, admitting different dispersion structures. The four tests we discussed previously

will be compared.

4.3 New Divergence-Based Tests in Planar-Shape

Now we present closed-form expressions for the KL, Rényi, Bhattacharyya and Hellinger

distances between CB probability measures.

Theorem 4.1. Let x1 ∼ CBk−1(A1) and x2 ∼ CBk−1(A2) with pdfs given, respectively,

by fx1(z;A1) and fx2(z;A2). Then the KL distance is expressed by

dKL(A1,A2) = 1
2

[ k∑
j=1

λ
(1)
j

1
c(Λ(1))

∂c(Λ(1))
∂λ

(1)
j

−
k∑
j=1

λ
(2)
j

1
c(Λ(1))

∂c(Λ(1))
∂λ

(1)
j

]

+1
2

[ k∑
j=1

λ
(2)
j

1
c(Λ(2))

∂c(Λ(2))
∂λ

(2)
j

−
k∑
j=1

λ
(1)
j

1
c(Λ(2))

∂c(Λ(2))
∂λ

(2)
j

]
,

where Λ(q) = diag{λ(q)
1 , λ

(q)
2 , . . . , λ

(q)
k } is the diagonal matrix of eigenvalues of Aq for

q = 1, 2. The expression for the first derivative of the CB normalization constant is

∂c(Λ)
∂λj

= 2πk
 k∑
l 6=j

alexp(λl)
(λl − λj)

+ ajexp(λj)− ajbjexp(λj)
 ,
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with aj =
∏
i 6=j

1
(λj − λi)

and bj =
∑
i 6=j

1
(λj − λi)

.

Theorem 4.2. Under conditions in Theorem 5.1 the Rényi distance (dβR) with order

parameter β ∈ (0, 1) is

dβR(A1,A2) = 1
β − 1 log

{
c−β(Λ1)c(β−1)(Λ2)c(ΛR12) + c−β(Λ2)c(β−1)(Λ1)c(ΛR21)

2

}
,

where Λi is the matrix of eigenvalues of Ai for i = 1, 2, ΛR12 is the matrix of eigenvalues

of [βA1 + (1− β)A2] and ΛR21 is the matrix of eigenvalues of [βA2 + (1− β)A1].

The proof for the two previous theorems is in Appendix B. The following corollary holds

from Theorem 4.2.

Corollary 4.1. Under conditions in Theorem 4.2, Hellinger and the Bhattacharyya

distances are

dH(A1,A2) = 1− [c(Λ1)c(Λ2)]−1/2c[(∆3)],

and

dB(A1,A2) = 1
2log[c(Λ1)c(Λ2)]− log[c(∆3)],

where Λ1 and Λ2 are the matrices of eigenvalues of A1 and A2, respectively, and ∆3 is

the matrix of eigenvalues of 1
2(A1 +A2).

A proof of these results

can be found in Appendix B. According to Kent, Constable and Er (2004), the matrix

parameters A and A+ ΥIk, Υ ∈ R, indicate the CB same distribution. Hence, without

loss of generality, we may shift the eigenvalues of A so that they are non positive with

the largest one equals to 0. Let λ1 ≥ λ2 ≥ . . . ≥ λk = 0 denote the eigenvalues of −A.

This change is used for all simulation procedures in this chapter. Figure 14 illustrates the

behavior of all distances proposed in Theorems 5.1 and 4.2 and Corollary 4.1. For this, we

generate a CB distributed sample with size n = 30, vector of eigenvalues λ = (200, 100, 0)

and number of landmarks k + 1 = 4. We obtain as MLE the matrix

A =

 10.299737 + 0i 35.028267− 5.218285i −0.272037 + 1.593317i
35.028267 + 5.218285i 90.690588− 0i 3.499143− 1.834944i
−0.272037− 1.593317i 3.499143 + 1.834944i 199.009675− 0i

 ,
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which is used to illustrate the derived distances. The distances between A and (1 + τ)A

for |τ | < 0.01 are then plotted in Figure 14. For the Rényi distance, we assume the order

parameter β ∈ {0.1, 0.3, 0.7, 0.9}. It is noticeable the following inequality holds:

d0.1
R ≤ dB ≈ dH ≤ d0.3

R ≤ d0.7
R ≤ d0.9

R ≤ dKL.

Further, dβR tends to dKL when β ↑ 1.
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Figure 14 – Illustration of the Hellinger, Kullback-Leibler, Bhattacharyya and Rényi ( with
order β ∈ {0.1, 0.3, 0.7, 0.9} ) distances. For graphical procedure we consider
the configuration: sample size n = 30, vector eigenvalues λ = (200, 100, 0) and
number of landmarks k + 1 = 4. We compute the distances between A and
(1 + τ)A with |τ | < 0.01

In contrast with the expressions for dβR, dB and dH , the KL distance depends only of

eigenvalues of matrices in its arguments. This fact is linked with the property of rotation

invariant, which is satisfied only by dKL.

Proposition 4.1. Let x1 ∼ CBk−1(A1) and x2 ∼ CBk−1(A2). Let R be a rotation

matrix, then the Kullback-Leibler distance is invariant under scalar rotation, i.e.,

dKL(A1,A2) = dKL(A1,R
∗A2R).

Details about rotation matrix and the proof of Proposition 4.1 are presented in Appendix

B. Figure 15 illustrates this property. In particular, we investigate the effect of rotation
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(dependent of an angle, φ ∈ (0, 0.9π)) over the KL and Hellinger distances. Large values

angle imply high differences between A1 and A2, such as discussed by Amaral, Dryden

and Wood (2007). Note that the Hellinger distance detects the increasing of variation;

while the KL measure is not sensible to such variation.
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Figure 15 – Distances between two matrices with and without rotation in terms of the
angle φ ∈ (0, 0.9π). For graphical procedure we take: eigenvalues vector
λ = (200, 100, 0), sample size n = 30 and number of landmarks k + 1 = 4

4.3.1 New hypothesis tests

Now, we are in position to present the proposed hypothesis tests. Consider Â1 and Â2

be MLEs forA1 andA2 based on two observed samples having sizes n1 and n2, respectively.

We recall MLEs for eigenvectors of the matrix Aj are ones of Sj with j = 1, 2. Further,

one should use an optimization non linear procedure for obtaining MLEs for eigenvalues

of Aj and, as a consequence from the spectral decomposition, matrix MLEs of Aj are

obtained.

Consider initially we are interested to test

H ′0 : A1 = A2 vs. H ′1 : A1 6= A2. (4.3)

Once the matrices Aj are hermitian, it follows from the Spectral Theorem (??) that

Γ∗j Aj Γj = Λj, where Γj is the matrix of eigenvectors of Aj. Thus, the hypotheses

in (4.3) can be rewritten as:

H0 : Λ1 = Λ2 vs. H ′1 : A1 6= A2.
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From the SSA physical perspective, the rejection of H0 may indicate three scenarios:

i) There is difference between diagonal matrices of eigenvalues under common eigen-

vectors taking as nuisance parameters; i.e,

H0 : Λ1 = Λ2 vs. H1 : Λ1 6= Λ2.

ii According to Mardia and Dryden (1999), if λj1 = · · · = λjk−1, for j = 1, 2, then the CB

distribution collapses in the complex Watson CW model, which has as parameters

the mean shape (say µ) and a concentration parameter (say κ). Assuming κ as a

nuisance common parameter, (4.3) is replaced by

H ′′0 : [µ1] = [µ2] vs. H ′′1 : [µ1], [µ2] unrestricted. (4.4)

where µi is the populacional mean shape associated to ith sample for i = 1, 2. The

hypothesis 4.4 are often used in the SSA literature.

iii) There is difference between full matrices. In this case, the test is over 4.3 .

In this chapter, we focus on the conditions i) and ii) because they are related with

tests which were discussed in Section 5.1. By the argument in condition ii) one has –

similarly the CB model which extends the CW distribution – “H0 : Λ1 = Λ2” generalizes

“H0 : [µ1] = [µ2]” under restrictions ii.1) λj1 = · · · = λjk−1 = λj0, ii.2) λjk = 0 and iii.3)

λj0 = q(µj) and q : CSk−1 → R+ is a mapping which is determined from the analytical

relation between the CB and CW models.

Under the regularity conditions discussed in Salicrú et al. (1994), the following lemma

holds.

Lemma 4.1. Let θ̂1 = (θ̂11, . . . , θ̂1M) and θ̂2 = (θ̂21, . . . , θ̂2M) be MLEs for parameter

vectors θ1 and θ2 having M0 < M common components based on independent samples of

sizes n1 and n2, respectively. If n1

n1 + n2
−→ δ ∈ (0, 1) when n1, n2 → ∞ and θ1 = θ2,

then

Shϕ(θ̂1, θ̂2) = 2n1n2

n1 + n2

D−−−−−→
n1,n2→∞

χ2
M−M0 ,

where υ is the σ-finite measure on the measurable space (X ,B), “ D−−−−−→
n1,n2→∞

” represents

the convergence in distribution, D = {KL,R,B,H} and ν is a chosen value according to
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the used stochastic distance; i.e., ν = [h′(0)ϕ′′(1)]−1 = {1, 1/β, 4, 4}. In what follows, we

assume X = {1} and υ(1) = 1, which yields
∫
X
h′(0)ϕ′′(1) dυ = h′(0)ϕ′′(1)

(Salicrú et al., 1994, assumption adopted in Example 1).

Based on Lemma (4.1) (for the proof, see Salicrú et al. (1994, pp. 377-381)), the tests

for the null hypothesis θ1 = θ2 can be derived in the form of the following proposition.

Proposition 4.2. Let n1 and n2 be large and SD(θ̂1, θ̂2) = s, then the null hypothesis

H0 : θ1 = θ2 can be rejected at level α if the observed s is greater than the upper α quantile

of χ2
M−M0 distribution.

It follows from Lemma 4.1 and Proposition 4.2 (taking M0 = 1 due to identifiability

condition of the CB model as discussed in Subsection 2.2) combined with Theorems 5.1

and 4.2 and Corollary 4.1, four new hypothesis tests for the CB distribution. The degrees

of freedom of the pivotal statistics of proposed tests are associated to the condition i)

that generalizes the case ii) (for which four literature tests are alternatives) and represent

the quantity of the eigenvalues minus one (of restrictions λk = 0) to eliminate CB no

identifiability.

a) Kullback-Leibler statistics - SKL(·, ·) :

SKL(Â1, Â2) = 2n1n2

n1 + n2
dKL(Â1, Â2) D

−→
n1,n2→∞

χ2
k−1.

b) Rényi statistics with order β - SβR(·, ·):

SβR(Â1, Â2) = β−1 2n1n2

n1 + n2
dβR(Â1, Â2) D

−→
n1,n2→∞

χ2
k−1. (4.5)

c) Bhattacharyya statistics - SB(·, ·):

SB(Â1, Â2) = 8n1n2

n1 + n2
dB(Â1, Â2) D

−→
n1,n2→∞

χ2
k−1

d) Hellinger statistics - SH(·, ·):

SH(Â1, Â2) = 8n1n2

n1 + n2
dH(Â1, Â2) D

−→
n1,n2→∞

χ2
k−1
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4.4 Numerical Results and Discussion

This section is organized in three parts. First the performance of well-defined and

proposed tests is quantified in terms of estimated test sizes and powers for CB generated

data. Second a robustness study for such tests is made. Finally an application to real

data from a evolutionary biology experiment is designed and discussed. For numerical

assessment, we use the literature tests which are implemented in the function resampletest on

the package shapes (see <https://cran.r-project.org/web/packages/shapes/index.html>)

of the software R.

4.4.1 Asymptotic behavior analysis of pivotal statistics from synthetic data

Here, we investigate how much considered tests approximate of what it is asymptotically

expected. To that end we first present evidence proposed tests follow the chi-squared

distribution with k − 1 degrees of freedom. Once all pivotal statistics are (under null

hypothesis) asymptotically equivalent, we display only results for the Rényi statistic at

order β = 0.9, say S0.9
R . Figures 16 exhibits results of a Monte Carlo simulation study,

having 4000 replications to describe the limit distribution of S0.9
R . In particular, we

use outcomes from two CB distributed random samples having vector of eigenvalues

λ = {200, 100, 0}, number of landmarks k + 1 = 4 and sample sizes n1 = 70 and n2 = 100.

Then, theoretical and empirical densities for values of S0.9
R are displayed in Figures 16a and

16b as well as the respective quantile-quantile plot (qq-plot). It is noticeable results favor

derived statistics are in fact asymptotically chi-squared with k − 1 degrees of freedom.

In quantitative terms, the KS test has been applied to the array of observed statistics,

yielding p-value 0.3513 as expected.

Now we present results of a test size study for proposed Kullback-Leibler, Rényi

(β ∈ {0.1, 0.3, 0.7, 0.9}), Bhattacharyya and Hellinger tests. From the planar-shape

literature as discussed by Dryden and Mardia (2016), it has noticed that the CB distribution

imposes a hard estimation process which depends of the degree of concentration of data

into the unit complex sphere. Then, we divide our study in two scenarios. We define the

first and second scenarios as low and high concentrations, respectively. We use the term

“high concentration” for data generated from the CB distribution at the eigenvalue vector

https://cran.r-project.org/web/packages/shapes/index.html
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(a) Histogram of the Rényi statistic
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(b) Qqplot of the Rényi statistic

Figure 16 – Asymptotic behavior of the Rényi (with order β = 0.9) statistics. For graphical
procedure we consider the configuration: eigenvalues vector λ = {200, 100, 0},
number of landmarks k + 1 = 4 and sample sizes n1 = 70 and n2 = 100

λ = (λ11, λ12, 0), such that λ11 > λ12 and |λ11 − λ12| ≥ 100; for otherwise, we denoted by

“low concentration” Leu and Damien (2014) have used a similar setup. Further, in all the

simulation procedure, we consider 4000 Monte Carlo replications with adopted significance

level α = 0.05.

Table 14 displays the empirical test sizes for the proposed tests under low concentration

scenario. In general distance-based tests have demonstrated controlled empirical test sizes

(i.e., good approximations to the adopted nominal level, 5%) for both small and large

sample sizes. There is mild evidence at the case λ = (8, 2, 0) that better rates are obtained

as the sample size increases.

To compare rates in Table 14 with those of four well-defined planar-shape tests – say

Hotelling T 2, James, Goodall and lambda – Table 15 shows rates of the latter. It has

been observable the FG test performed very poorly for all sample sizes and the λmin test

overestimated meaningfully the adopted nominal level for small sample sizes. About the

λmin statistic, results might be justified because this test has been designed for highly

concentrated data. In general, the FH and FJ tests have approached well 5% (i.e., have

controlled estimated test sizes). These tests have similar rates and this can be justified

because our studies assume samples which are generated under the equal covariance
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Table 14 – Rejection rates under H ′0 of distance-based (Rényi, Bhattacharyya, Hellinger
and Kullback-Leibler) tests for low concentration scenario. The adopted
nominal level α = 5%

λ n1 n2 S0.1
R S0.3

R S0.7
R S0.9

R SB SH SKL
(10,5,0) 30 20 0.056 0.053 0.053 0.056 0.052 0.047 0.057

30 50 0.052 0.05 0.05 0.052 0.052 0.048 0.052
50 50 0.051 0.05 0.05 0.051 0.05 0.048 0.051
70 100 0.048 0.048 0.048 0.048 0.048 0.047 0.049
120 150 0.049 0.048 0.048 0.049 0.048 0.048 0.049

(8,2,0) 30 20 0.054 0.053 0.053 0.054 0.052 0.047 0.055
30 50 0.058 0.058 0.058 0.058 0.058 0.056 0.058
50 50 0.043 0.043 0.043 0.043 0.042 0.039 0.044
70 100 0.05 0.05 0.05 0.05 0.05 0.049 0.051
120 150 0.052 0.052 0.052 0.052 0.052 0.052 0.053

Table 15 – Rejection rates under H ′′0 of literature ( Hotelling T 2, Goodall, James and
lambda) tests for low concentration scenario. The adopted nominal level
α = 5%

λ n1 n2 FH FG FJ λmin
(10,5,0) 30 20 0.05 0.255 0.054 0.074

30 50 0.055 0.271 0.058 0.08
50 50 0.052 0.282 0.053 0.059
70 100 0.057 0.284 0.058 0.066
120 150 0.045 0.275 0.045 0.056

(8,2,0) 30 20 0.052 0.647 0.056 0.086
30 50 0.053 0.663 0.054 0.086
50 50 0.056 0.687 0.056 0.064
70 100 0.052 0.685 0.051 0.062
120 150 0.046 0.679 0.047 0.052

matrices.

Table 16 provides empirical test sizes for the proposed tests under high concentration.

In general all tests have performed well, presenting rates which were closed to the adopted

nominal level α = 0.05. The worst results were obtained by SB and SH . In the Table 17,

results have given evidence that FH and FJ can furnish better rates than FG and λmin,

analogously to what happened on low concentration. In summary, for high concentration

scenarios, results from Tables 16 and 17 have suggested that proposed tests can provide

empirical test sizes as good as those of FH and FJ .

Now we consider a study of test power (i.e., the rejection rates when samples come from
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Table 16 – Rejection rates under H ′0 of distance-based (Rényi, Bhattacharyya, Hellinger
and Kullback-Leibler) tests for high concentration scenario. The adopted
nominal level α = 5%

λ n1 n2 S0.1
R S0.3

R S0.7
R S0.9

R SB SH SKL
(200,100,0) 30 20 0.050 0.048 0.048 0.050 0.047 0.042 0.053

30 50 0.056 0.054 0.054 0.056 0.054 0.051 0.058
50 50 0.050 0.049 0.049 0.050 0.048 0.045 0.052
70 100 0.051 0.051 0.051 0.051 0.050 0.048 0.052
120 150 0.049 0.048 0.048 0.049 0.047 0.046 0.049

(300,150,0) 30 20 0.049 0.047 0.047 0.049 0.046 0.041 0.052
30 50 0.055 0.054 0.054 0.055 0.054 0.051 0.058
50 50 0.049 0.047 0.047 0.049 0.046 0.045 0.050
70 100 0.051 0.050 0.050 0.051 0.049 0.048 0.052
120 150 0.047 0.047 0.047 0.047 0.047 0.046 0.048

Table 17 – Rejection rates under H ′′0 of literature (Hotelling T 2, Goodall, James and
lambda) tests for high concentration scenario. The adopted nominal level
α = 5%

λ n1 n2 FH FG FJ λmin
(200,100,0) 30 20 0.046 0.055 0.048 0.076

30 50 0.046 0.061 0.05 0.078
50 50 0.051 0.062 0.051 0.059
70 100 0.049 0.058 0.048 0.058
120 150 0.058 0.065 0.058 0.063

(300,150,0) 30 20 0.046 0.053 0.049 0.049
30 50 0.046 0.059 0.05 0.078
50 50 0.051 0.06 0.051 0.058
70 100 0.049 0.058 0.048 0.058
120 150 0.058 0.064 0.058 0.063

different distributions). For this, it is necessary to determine a mechanism of separation of

H0 and H1. We employ a procedure called transformation of the null hypothesis, described

by Amaral, Dryden and Wood (2007). In this procedure, we obtain a rotation matrix that

– when applied to data – allows a sample to have the same mean shape. Figures 17a and

17b display several empirical power function cases for proposed and literature tests in

terms of angle φ, respectively. Here the used sequence of angles for graphics of the power

function has been defined in φ ∈ {0, 0.001π, 0.004π, 0.006π, 0.008π, 0.01π, 0.02π}. Under

high concentration scenarios, we considered the vector of eigenvalues λ = (300, 150, 0)

and sample sizes n1 = 30 and n2 = 20. We generated two samples under H0 and
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after transformed one of them to make H0 false, pre-multiplying by the rotation matrix.

Taking the estimated test power as comparison criterion, our proposals have performed

meaningfully better than FH , FG, FJ and λmin tests. Among the literature tests, the

lambda test presented the highest power. For the proposed statistics, the Rényi (with

β ∈ {0.1, 0.9}) tests provided the best rates among both proposed and literature tests.
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Figure 17 – Empirical power function for discussed tests under high concentration. For
graphical configuration we take: eigenvalue of vector λ = (300, 150, 0), sample
sizes n1 = 30 and n2 = 20, number of landmarks k + 1 = 4 and the angle
selected to compute the rotation matrix φ

Table 18 presents values for the power function of proposed distance-based tests under

low concentration. Note that the power values tend to one as the sample size and angle

increase as expected. Results of empirical power function under high concentration are

given in the Table 19. Proposed tests have presented behavior better than those in

lower concentration. It is expected because changes under high concentration are more

apparent, implying in higher empirical power. Table 20 presents a power study for the

literature tests under the low concentration scenarios. The lambda test has presented

the best performance, but its growth was slower than divergence-based tests. Table 21

gives empirical power results under the high concentration scenario. Results pointed out

all tests worked well. In summary, the proposed tests were meaningfully more powerful

than literature tests, more expressive differences are given for low concentration and small
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rotation. For high concentration, considering the angles φpower = {0.001π, 0.008π}, the

proposed ones overcame the literature tests.

Table 18 – Rejection rates under H
′
1 of distance-based (Rényi, Bhattacharyya and

Hellinger) tests for low concentration scenario. The adopted nominal level
α = 5%

λ φpower n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH
(10,5,0) 0.001π 30 50 0.67475 0.67300 0.67300 0.67475 0.67225 0.65975

50 50 0.67850 0.6765 0.6765 0.67850 0.67650 0.66525
70 100 0.68575 0.68525 0.68525 0.68575 0.6850 0.67700

0.008π 30 50 0.70825 0.70550 0.70550 0.70825 0.70525 0.69450
50 50 0.68775 0.6865 0.6865 0.68775 0.68625 0.67825
70 100 0.69700 0.69625 0.69625 0.69700 0.6960 0.68950

0.05π 30 50 0.92475 0.92425 0.92425 0.92475 0.92375 0.91850
50 50 0.95975 0.9595 0.9595 0.95975 0.95925 0.95625
70 100 0.98750 0.98750 0.98750 0.9875 0.9875 0.98725

Table 19 – Rejection rates under H
′′
1 of distance-based (Rényi, Bhattacharyya and

Hellinger) tests for high concentration scenario. The adopted nominal level
α = 5%

λ φpower n1 n2 α̂S0.1
R

α̂S0.3
R

α̂S0.7
R

α̂S0.9
R

α̂SB α̂SH
(200,100,0) 0.001π 30 50 0.6930 0.68875 0.68875 0.6930 0.68725 0.67200

50 50 0.691 0.68675 0.68675 0.691 0.68525 0.6745
70 100 0.67075 0.66775 0.66775 0.67075 0.66725 0.66125

0.008π 30 50 0.8985 0.89725 0.89725 0.8985 0.89725 0.89275
50 50 0.940 0.93975 0.93975 0.940 0.93975 0.9350
70 100 0.98075 0.98075 0.98075 0.98075 0.98050 0.98000

0.05π 30 50 1.00 1.00 1.00 1.00 1.00 1.00
50 50 1.00 1.00 1.00 1.00 1.00 1.00
70 100 1.00 1.00 1.00 1.00 1.00 1.00

Note that the KL test has not been considered in the previous discussion about

power. According to Proposition 4.1, the KL distance is invariant under rotation and,

therefore, the KL test is not adequate to test (4.1). However, this test may be useful to

detect changes in eigenvalues of the CB parameters; meaning changes in the degree of

concentration. To illustrate this, we also perform a second way of variation under the

alternative hypothesis. We consider an additional simulation study to assess power in

terms of change in eigenvalues of the CB parameter. To that end, we adopt the following

setup: (i) two samples of CB generated data at the vectors of eigenvalues λ = (300, 150, 0)
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Table 20 – Rejection rates under H ′′1 of distance-based (Hotelling T 2, James, Goodall
and lambda) tests for low concentration scenario. The adopted nominal level
α = 5%

λ φpower n1 n2 FH FJ FG λmin
(10,5,0) 0.001π 30 50 0.05450 0.05425 0.27600 0.08125

50 50 0.05150 0.05200 0.27975 0.06050
70 100 0.05475 0.05500 0.27275 0.06475

0.008π 30 50 0.05800 0.05600 0.27050 0.08650
50 50 0.06500 0.06500 0.29400 0.07200
70 100 0.06325 0.06200 0.30875 0.07675

0.05π 30 50 0.41625 0.41250 0.66725 0.50925
50 50 0.51850 0.52050 0.75425 0.57225
70 100 0.79175 0.78950 0.91400 0.84300

Table 21 – Rejection rates under H ′′1 of distance-based (Hotelling T 2, James, Goodall
and lambda) tests for high concentration scenario. The adopted nominal level
α = 5%

λ φpower n1 n2 FH FJ FG λmin
(200,100,0) 0.001π 30 50 0.05225 0.05250 0.06550 0.08300

50 50 0.05750 0.05775 0.06375 0.0650
70 100 0.05525 0.05350 0.06450 0.07100

0.008π 30 50 0.35600 0.35475 0.25125 0.44625
50 50 0.47500 0.47725 0.35625 0.51600
70 100 0.70575 0.70800 0.54775 0.74975

0.05π 30 50 1.00 1.00 1.00 1.00
50 50 1.00 1.00 1.00 1.00
70 100 1.00 1.00 1.00 1.00

and (1 + ε) · λ such that ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0}, and (ii) number of

landmarks k + 1 = 4, the sample sizes n1 = 70 and n2 = 100 and 4000 Monte Carlo

replicas. Figure 18 exhibits results of empirical powers. As literature tests are appropriate

only for changes in mean shapes, we do not consider them in this study. We compare

the performance of KL and Rényi (with order β ∈ {0.005, 0.9}) tests. Note that both KL

and Rényi rejection rates have increased for one, but the Rényi test showed to be more

powerful than the KL test. Furthermore, independently if we choose the order (β) close or

away from 1, the behavior of the Rényi statistic is the same.
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Figure 18 – Empirical power function for the proposed Rényi (with order β ∈ {0.005, 0.9})
and KL tests without rotation matrix. For simulation procedure we take:
sample sizes n1 = 70 and n2 = 100, eigenvalues vector λ = (300, 150, 0).
To ensure that the procedure is under the alternative hypothesis we pre-
multiply the eigenvalue vector of the second sample by (1 + ε) such that
ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0}

4.4.2 Robustness analysis from synthetic data

Beside comparing considered tests by their asymptotic performances, we also study

how much they are robust before contaminated spherical samples. Specifically 4000 Monte

Carlo replicas have been considered and we implemented the following procedures:

a) We generate two samples coming of the CB under high concentration scenario with

eigenvalues vector λ1 = {300, 150, 0}) with sample sizes n1 − 2 and n2 − 2;

b) We simulate one pair of the CB generated outcomes, weakly concentrated with

eigenvalues vector λ2 = {10, 5, 0};

c) We concatenate the highly concentrated samples with the two observations obtained

in the low concentration scenario.

Tables 22 and 23 approach empirical rejection rates under contaminated samples

for (i) distance-based and (ii) planar-shape literature tests, respectively. Proposed tests

have presented estimated test sizes which were near to 5%; while the performance of
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remainder tests has been strongly affected by inserting points of low concentrated in highly

concentrated samples.

Table 22 – Rejection rates under H ′0 of distance-based (Rényi, Bhattacharyya, Hellinger
and Kullback-Leibler) tests for contaminated samples. The adopted nominal
level α = 5%

n1 n2 S0.1
R S0.3

R S0.7
R S0.9

R SB SH SKL
30 50 0.051 0.049 0.049 0.051 0.048 0.044 0.053
70 100 0.043 0.042 0.042 0.043 0.041 0.04 0.043
120 80 0.051 0.05 0.05 0.051 0.05 0.049 0.052
140 200 0.049 0.048 0.048 0.049 0.048 0.048 0.049

Table 23 – Rejection rates under H ′′0 of literature (Hotelling T 2, James, Goodall and
lambda) tests for contaminated samples. The adopted nominal level α = 5%

n1 n2 FH FG FJ λmin
30 50 0.015 0.003 0.015 0.015
70 100 0.017 0.011 0.016 0.022
120 80 0.024 0.02 0.024 0.027
140 200 0.035 0.036 0.034 0.044

To complement the previous discussion Figures 19 exhibits curves of power function

for proposed and literature tests, respectively. For this numeric procedure we consider

the angle φ ∈ {0, 0.001π, 0.004π, 0.006π, 0.008π, 0.01π, 0.02π, 0.05π} for computation of

the rotation matrix and the sample sizes n1 = 30 and n2 = 50. It can note for the

literature tests in the Figure 19b that the Goodall test showed worst robustness, while the

lambda test presented the best behavior. For proposed tests in Figure 19a, the Hellinger

test has been the less robust, comparatively those defined from the Rényi (with order

β ∈ {0.1, 0.9}) test. In short, based in the results synthetic and real data, we indicate

the Rényi for any order parameter and Bhattacharyya tests for detect difference between

mean shapes.

4.4.3 Evolutionary biology data analysis

This section addresses an application in evolutionary biology. Specifically, the sexual

dimorphism Oxnard (1983) is investigated in the species Pan troglodytes (chimpanzee),

which is a member of the genus Pan and of the biological family Hominidae (humans,

chimpanzees, gorillas and orangutans).
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(a) Power function for distance-based tests with
the angle φ
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Figure 19 – Empirical power function of considered tests for contaminated samples with
n1 = 30 and n2 = 50

This dataset was discussed by O’Higgins and Dryden (1993).Utilizing some methods

for planar-shape, authors have investigated similarities and differences in cranial sexual

dimorphism of hominoids.

Here we are interested whether samples of male and female chimpanzees skulls have

different mean shapes.

The dataset we use has been constructed based on k = 8 landmarks in the midline of

the cranium of 28 males and 26 females.

Amaral, Dryden and Wood (2007), Dryden and Mardia (2016) and O’Higgins (1989)

have presented discussions about the dataset we consider.

Two-sample tests for equal mean shape are considered for three subsets of landmarks:

• Configuration A: all eight landmarks, denominated by whole skull region;

• Configuration B: five landmarks (3, 4, 5, 6 and 7) consisting of the face region and

• Configuration C: five landmarks (1, 2, 3, 7, and 8) consisting of the braincase region.

The anatomical landmarks located in O’Higgins and Dryden (1993) by an expert biologist

on cranium region of apes are showed in Figure 20.
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Figure 20 – Illustration of the configurations A, B and C. This image was taken from
Dryden and Mardia (2016, pp. 19).
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(a) Female of genus Pan. (b) Male of genus Pan.

Figure 21 – Samples of two-dimensional skulls having k + 1 = 8 landmarks, using full
Procrustes fit.

In order to illustrate this dataset, Figure 21 presents the full Procrustes fit (DRYDEN;

MARDIA, 2016) of the landmarks data for females and males chimpanzees. O’Higgins and

Dryden (1993) have used several methods to study shape difference in the chimpanzees.

According to their studies, considering over all landmarks, there was not statistically

expressive shape difference between male and female chimpanzees. In contrast, an earlier

study O’Higgins et al. (1990) found significant difference between male and female chim-

panzees in terms of a number of facial measurements. Thus, as a take decision criterion,

we have expected that – taking in account all landmarks – the tests do not detect changes

in mean shapes, but in face braincase region the tests present significant difference. We
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remember that the proposed pivotal statistics are developed from the CB distribution,

while Hotelling’s T 2, James and Goodall tests were obtained from the multivariate normal

model and the lambda test has been deduced having as supposition the CN distribution.

Table 24 displays values of rejection rates for the planar-shape literature test in real

data. For the Configuration A, results of James and Hotelling T 2 tests pointed out

there is not evidence to reject the null hypothesis of equal mean shapes, as expected

from O’Higgins and Dryden (1993). In contrast, Lambda and Goodall tests have rejected

such null hypothesis. For Configuration B, James, Hotelling T 2 and Goodall tests have

failed because they did not reject the null hypothesis in discordance with O’Higgins et

al. (1990); but, the lambda test has provided evidence there is mean shape difference in

terms of face between male and female chimpanzees skulls, as discussed by those authors.

Finally, for Configuration C, only the Goodall test has confirmed there is mean shape

difference in terms of braincase between male and female chimpanzees skulls.

Table 24 – Rejection rates under H ′′0 of planar-shape literature tests in real data for
configurations A,B and C. The adopted nominal level α = 5%

Region Statistics pvalue table
Whole skull

λmin 30.577 0.0023
FH 1.530 0.1527
FJ 23.4558 0.112
FG 2.6021 0.0022
Face
λmin 14.356 0.026
FH 1.801 0.119
FJ 12.123 0.107
FG 2.122 0.051

Braincase
λmin 10.544 0.104
FH 1.238 0.304
FJ 8.285 0.293
FG 2.314 0.034

Table 25 gives values of rejection rates for proposed tests in real data. For configuration

A, all tests have indicated there is not difference in mean shape in whole skull between

male and female chimpanzees, what is in concordance with O’Higgins and Dryden (1993).

For configurations B and C, with exception of the KL test, all tests have rejected the null
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hypothesis of mean shape equality with strong significance as expected. We understand

that the poor performance of the KL test can be explained by Proposition 4.1, for this

application was focused on change of mean shape. In summary, this application seems

to recommend Hellinger, Bhattacharyya and Rényi tests as good alternatives to detect

difference in mean shape between samples in planar-shape.

Table 25 – Rejection rates under H ′0 of distance-based tests in real data for configurations
A,B and C. The adopted nominal level α = 5%

Region Statistics Distance pvalue table
Whole skull

S0.1
R 8.874603 0.03291405 0.1807541
S0.3
R 8.86156 0.09859703 0.1815148
S0.7
R 8.86156 0.2300597 0.1815148
S0.9
R 8.874603 0.2962265 0.1807541
SH 8.503285 0.07884227 0.2034996
SB 8.857225 0.082124 0.1817683
SKL 0.02057014 0.0007629036 0.9999998
Face
S0.1
R 8.015961 0.02972953 0.04568298
S0.3
R 8.014831 0.08917601 0.04570618
S0.7
R 8.014831 0.2080774 0.04570618
S0.9
R 8.015961 0.2675657 0.04568298
SH 7.723926 0.07161607 0.05207556
SB 8.014462 0.07430992 0.04571375
SKL 0.0150608 0.0005585737 0.9995106

Braincase
S0.1
R 8.919959 0.03308226 0.03037423
S0.3
R 8.905483 0.09908574 0.03057429
S0.7
R 8.905483 0.2312001 0.03057429
S0.9
R 8.919959 0.2977404 0.03037423
SH 8.543345 0.07921371 0.03602082
SB 8.900723 0.08252731 0.03064037
SKL 0.2277743 0.008447675 0.9729857

4.5 Conclusions

In this chapter, we have proposed four divergence-based two-sample hypothesis tests for

planar-shape. It has been assumed data follow the complex Bingham (CB) distribution,

which is a model widely used in Statistical Shape Analysis (SSA). First we have derived

closed-form expressions for the Hellinger, Bhattacharyya, Kullback-Leibler (KL) and Rényi
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distances between two CB probability measures. Practical insights about the use of them

have been also provided. Second four divergence-based hypothesis tests for homogeneity

in planar-shape have been proposed; particularly, Hellinger, Bhattacharyya and Rényi

tests have also shown good ability to detect differences between mean shapes. We have

proved the KL distance is invariant under rotation and, therefore, the KL test has worked

well only for homogeneity. A Monte Carlo simulation study has been designed to quantify

the performance (in terms of both test size and power and robustness) of new tests, in

comparison with that due to other four SSA tests: Hotelling T 2, James, lambda and

Goodall. Empirical test sizes and powers have provided evidence the proposed tests

overcome the literature tests. An evaluation of robustness of the tests has also indicated

the proposed tests have been more robust than literature ones. In applied terms, the

Rényi, Hellinger and Bhattacharyya tests have obtained the best performance at assessing

sexual dimorphism in chimpanzees skull. In general, numerical results from both simulated

and real data have indicated divergence-based (in particular Bhattacharyya and Rényi)

tests may outperform planar-shape literature tests, assuming the CB model as descriptor

in planar-shape.
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5 ENTROPY-BASED PIVOTAL STATIS-
TICS FOR MULTI-SAMPLE PROBLEMS
IN PLANAR-SHAPE

5.1 Introduction

In recent years, entropy classes have been used in statistical inference for various

purposes; e.g., studying asymptotic properties of estimators alternative to the ML method

Toma and Broniatowski (2011) and proposing robust hypothesis tests (GUL; ZOUBIR,

2016). Chen et al. (2016) have developed new insights about entropy behaviors as a

multivariate variability measure. In this lastly perspective, the present chapter addresses

the proposal of new entropy-based multi-sample tests for variability. To formulate these

tests, we assume that pre-shape data are well-described by the CB distribution. We

derive expressions for the Rényi and Shannon entropies for the CB and CW models.

Moreover, these quantities are understood as entropy-based tests to assess if multiple

spherical samples have the same degree of disorder, a kind of variability. To quantify

the performance of proposed tests, we perform a Monte Carlo study, adopting empirical

test sizes and powers as comparison criteria. An application to real data from the second

thoracic vertebra T2 of mouses is done to assess the effect of body weight on the shape of

mouse vertebra. Numerical results indicate that the test based on the optimized Rényi

entropy may consist in a good tool to recognize similarity on planar-shape data.

The chapter unfolds as follows. Section 5.2 tackles the hypothesis tests for the equality

of the entropies due to r independent populations based on information theory measures.

Numerical results are displayed in Section 5.3. The conclusion remarks are presented in

Section 5.4. Finally, proofs of the theoretical results are given in Appendix C.

5.2 New Entropy-Based Theoretical Results

In the following results, we derive new Shannon and Rényi entropies expressions under

the supposition of the CB distribution for planar-shape .
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Theorem 5.1. Let z ∼ CBk−1(A). For β ∈ R+ − {1}, we have that the Rényi and

Shannon entropies are given by, respectively,

Hβ
R(A) = 1

(1− β) [log c(βA)− β log c(Λ)] (5.1)

and

HS(A) = log c(Λ)−
k−1∑
i=1

λi
1

c(Λ)
∂c(Λ)
∂λi

, (5.2)

According to Pardo (2005), the Rényi entropy converges for the Shannon entropy when

β → 1. The corollary following enunciate this limit result for the CB distribution.

Corollary 5.1. Let z ∼ CBk−1(A), where A is a hermitian matrix. Then for all

β ∈ R+ − {1}, we have

lim
β→1

Hβ
R(A) = HS(A).

As discussed in Subsection 2.2.2, the CW is a special case of the CB model having

two parameters: concentration κ and modal vector µ. The former parameter is the most

explored in practice and larger values of |κ| indicate more concentrated scenes. Now, first

we derive expressions for Rényi and Shannon entropies in Theorem 5.2. Subsequently, we

present the behavior of these entropies when κ increase.

Theorem 5.2. Let z ∼ CWk−1(µ, κ) where µ is modal vector of the spherical pre-shape

and κ is concentration parameter. Then

(a) the Rényi entropy is given by

Hβ
R(µ, κ) = 1

(1− β)

{
− β log[c1(κ)] + log[c1(βκ)]

}
, (5.3)

(b) and the Shannon entropy is expressed as

HS(µ, κ) = log[c1(κ)]− κ

k
· 1F1(2; k + 1;κ)

1F1(1; k;κ) , (5.4)

where c1(·) is the integrating constant.
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According to Mardia and Dryden (1999) and Dryden and Mardia (2016) when the con-

centration parameter κ = 0, the CW model collapses in the spherical uniform distribution

whose density is the constant 2πk/(k − 1)!. While when κ converge for infinite the CW

model collapses in the CN distribution. Motivated by this asymptotic behavior, is relevant

to evaluate the comportment of the entropy measures developed in the Theorem 5.2 when

the concentration parameter κ converge for zero and infinite. In the next result we prove

that, when the concentration parameter of the CW model is close to zero, the Rényi and

Shannon entropies converge to the pdf of the spherical uniform distribution. We also

evaluate the asymptotic behavior of the entropy measures when κ converges to infinity,

but the resulting limit expression does not exist.

Corollary 5.2. Let z ∼ CWk−1(µ, κ). Whereas µ fixed and β ∈ R+ − {1} arbitrary. If

κ→ 0 in the expressions (5.3) and (5.4) respectively, then

lim
κ→0

Hβ
R(µ, κ) = lim

κ→0
HS(µ, κ) =

[
2πk

(k − 1)!

]
.

The proof of all results above are given in the Appendix C.

Now we briefly investigate the behavior of the Shannon and Rényi entropies when

increasing the concentration parameter. Consider the Rényi entropy measure order

β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, κ varying from 0 to 10 and landmarks number k + 1 = 5 (case

which will be analyzed in our simulation study). Figure 22a displays the Shannon and

Rényi entropies curves. Note that when κ is very close to zero, the values of entropies

are similar, as expected from the Corollary 5.2. Moreover, the behavior of measures

indicates more concentrated data tend to have smaller values of entropy. To illustrate

the last statement, Figure 22b shows the plot of three samples drawn from the CW

distribution. As discussed by Mardia (1989) and Dryden and Mardia (2016), these data

are pre-shapes of triangles, which can be represented either CS1 or S3, being the real

pre-shape sphere. In this case, the CW and CB models are similar. Specifically, we assume

they have parameters (λ1, λ2) = (κ, 0); i.e., the value of λ1 given λ2 = 0 and µ = [0, 1]> is

equal to κ by the identity A = κ (I2 − µµ∗). It is noticeable the increasing of κ causes

the concentration high degree in pre-shape data and, as a consequence, one has small
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values of entropy may represent most concentrated spherical phenomena. This conclusion

is important because it simplifies the behavior of complex vector data on the unit sphere

to a real scale quantity, whose distribution and associated quantiles are more easy studied.
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Figure 22 – Illustration for both (i) the values of Shannon and Rényi entropies when β ↑ 1
and κ increases and (ii) behavior of triangles pre-shapes over the unit sphere.

5.2.1 Pivotal statistics

In this subsection, we present some preliminary results that support the hypothesis

test based on the Rényi and Shannon entropies. These tests are substantiated in Salicrú

et al. (1994) and have been highly considered by Arellano-Valle, Contreras-Reyes and

Stehlík (2017). They have established KL divergences between each generalized skew-

normal distribution and the normal one in terms of their negentropies in order to develop

hypothesis testing for normality.

The next Lemma was proposed and proved by Pardo (2005) and is assumed that the

statistical space (X ,A,Pθ)θ∈Θ satisfies some standard regularity conditions.



Chapter 5. ENTROPY-BASED PIVOTAL STATISTICS FOR MULTI-SAMPLE PROBLEMS IN
PLANAR-SHAPE 101

Lemma 5.1. Let θ̂ be the ML estimator of θ based on a random sample of size n drawn

from a model with pdf f(x;θ). Assume the regularity conditions (mentioned before) are

valid, ϕM ∈ C1([0,∞)) (i.e. ϕM is derivable continuously in the interval [0,∞) ) and there

exist a measurable and υ-integrable function F (x) such that∣∣∣∣∣ϕ′M(f(x;θ))∂f(x;θ)
∂θj

∣∣∣∣∣ < F (x), j = 1, . . . , k;

where M = {R, S} denotes the choose between Rényi and Shannon measures, respectively,

and

ϕM(f(x;θ)) =

 −f(x;θ) log[f(x;θ)] , M = S

[f(x;θ)]β , M = R and β ∈ R+ − {1}.
Then

√
n[HM(θ̂)−HM(θ)] D

−→
n→∞

N(0, σ2
M(θ)),

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2, provided

σ2
M(θ) = T>MIF (θ)−1TM (5.5)

and TM = [tM1 , tM2 , . . . , tMk
]> such that

tMj
= ∂HM(θ)

∂θj
, j = {1, 2, . . . , k}. (5.6)

Based on the Lemma 5.1, in order to find the expression for the variance with respect to

each considered entropy in this thesis, we first determine the components of TM in the

following proposition.

Proposition 5.1. Let z ∼ CBk−1(A) with the Shannon entropy given in (5.2), we have

that the vector TS = [tS1 , tS2 , . . . , tSp ]
> in (5.5) is given by

tSi = λi

[
1

c(Λ)2

(
∂c(Λ)
∂λi

2)
− 1
c(Λ)

∂2c(Λ)
∂λ2

i

]
, for i = 1, . . . , k,

where Λ = diag(λ1, . . . , λk−1) is the eigenvalues matrix of A. With respect to the Rényi

entropy in (5.1), we have the vector TR = [tR1 , tR2 , . . . , tRp ]> such that

tRi = 1
(1− β)

[
1

c(βΛ)
∂c(βΛ)
∂λj

− β

c(Λ)
∂c(Λ)
∂Λi

]
,

where β ∈ R+ − {1}.
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Let x1, . . . ,xr such that xj ∼ CBk−1(Aj), Aj be parameters hermitian matrices for

j = 1, 2, . . . , r and r is the number of under-study populations. Consider that we are

interested at testing the null hypothesis

H0 : HM(A1) = HM(A2) = . . . = HM(Ar) = D0

versus H1 : ∃j, k ∈ {1, . . . , r} such that HM(Aj) 6= HM(Ak). Let Âj be the ML estimator

for Aj based on a random sample of size nj drawn from xj, for j = 1, . . . , r. It follows

from Lemma 5.1 that √
nj(HM(Âj)−D0)

σM(Âj)
D
−→
n→∞

N(0, 1)

for j = 1, 2, . . . , r and M ∈ {R, S}. So

r∑
j=1

nj(HM(Âj)−D0)2

σ2
M(Âj)

D
−→
nj→∞

χ2
r.

As D0 is an unknown constant in practice, Pardo (2005) have rewritten this statistics as

r∑
j=1

nj(HM(Âj)−D0)2

σ2
M(Âj)

=
r∑
j=1

nj(HM(Âj)−D)2

σ2
M(Âj)

+
r∑
j=1

nj(D −D0)2

σ2
M(Âj)

(5.7)

where

D =
 r∑
j=1

nj

σ2
M(Âj)

−1
r∑
j=1

njHM(Âj)
σ2
M(Âj)

.

Pardo (2005) has shown that the second parcel of the right side of (5.7) is distributed as

a chi-squared with degree of freedom one. Thus,

SM(Â1, Â2. . . . , Âr) =
r∑
j=1

nj(HM(Âj)−D)2

σ2
M(Âj)

D
−→
n→∞

χ2
r−1. (5.8)

The amount σ2
M(Âj) is obtained from the Lemma 5.1 and Proposition 5.1. Thus, the

following decision rule ensues: the null hypothesis is rejected if

SM(Â1,A2. . . . , Âr) > χ2
(r−1),α,

where χ2
(r−1),α denotes the 100%(1 − α) percentile of the chi-squared distribution with

r − 1 (r is the number of population) degrees of freedom, fixing the significance level at α.
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5.3 Numerical Results

Numerical results related to the proposed tests are presented in this section. First,

their performance is evaluated for generated CB data. To that end, estimated sizes and

powers are considered to compare the proposed methods. After our proposals are applied

to actual data, the dataset mice available in the software R. All results were computed

using functions of the package shapes (for more details, see <https://cran.r-project.org/

web/packages/shapes/index.html>).

5.3.1 Simulation study

Initially, the asymptotic behavior of the proposed pivotal statistics is investigated by

means of a short pilot study. It was performed with 5000 replicas and, over each one, were

computed Shannon and Rényi statistics (with order 0.48, justified subsequently) in (5.8)

for two-samples (r = 2) with size n = 50 and highly concentrated spherical behavior.

Figures 23 and 24 display theoretical and empirical densities for Rényi and Shannon

statistics, respectively, as well as the respective quantile-quantile plots (qq-plots). It was

observable that the Shannon statistic failed to follow the chi-squared distribution, while

the Rényi version at the order 0.48 was successful. The KS test was employed to the

array of observed S0.48
R statistics, yielding p-value 0.2669; i.e., the hypothesis that the

observed array comes from the chi-square distribution is not rejected to α ≤ 5%. In order

to illustrate that the Shannon test achieves the chi-squared behavior in some sample size,

Figure 24 also includes the sample sizes n = 100 and 200. However, the future discussion

focuses on sizes smaller that 100, which is a real demand for the use of morphometry tools

in biological experiments.

From this study, although the Shannon test did not work well, it is noticed that there

is an order, say βotm, that can optimize the Rényi test in the sense of proximity to the

adopted nominal level. Now, we are in position of making a deeper study to confirm

the existence of an order, βotm, for SβR, that becomes this statistic adequate on small

and moderate sample sizes. We suspect initially that the optimized value depends of the

choice of the all quantities involved in tests proposed in Section 4.3: number of landmarks

(k + 1 = 5), sample sizes (30, 50, 70, 100, 150), number of populations (r ∈ {2, 3, 5, 6}) and

https://cran.r-project.org/web/packages/shapes/index.html
https://cran.r-project.org/web/packages/shapes/index.html
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Values of Rényi statistics (for n=50)
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(a) Histogram of the Rényi statistic with order
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Figure 23 – Histogram and qq-plot of the Rényi statistics under high concentration for
samples coming of the CB model. For simulation procedure we consider: eigen-
values vector λ = (99, 42, 1, 0), sample sizes n1 = n2 = n = 50, populacional
number r=2 and k + 1 = 5 landmarks

(a) Histogram of the Shannon statistic
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Figure 24 – Histogram and qq-plot of the Shannon statistics under high concentration
for samples coming of the CB model. For simulation procedure we consider:
eigenvalues vector λ = (99, 42, 1, 0), sample sizes n1 = n2 = n = 50, 100, 200,
populacional number r=2 and k + 1 = 5 landmarks.
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two concentration degrees (low and high). The performance of SS and SβR (with order

parameter β ∈ {0.5, 0.9, βotm}) tests was measured under 5000 Monte Carlo replicas.

Table 26 – Rejection rates under H0 of entropy-based tests for low concentration scenario.
The adopted nominal level α = 5%

λ r n SS S0.5
R S0.9

R SβotmR βotm
(5,2,1,0) 2 30 0.2244 0.0022 0.0066 0.0492 1.9

50 0.3704 0.0024 0.0084 0.046 1.57
70 0.4372 0.0016 0.0072 0.0488 1.6
100 0.5692 0.017 0.0352 0.048 1.3

3 30 0.243 0.0028 0.0078 0.0474 1.8
50 0.4138 0.0014 0.0034 0.0496 1.7
70 0.5014 0.0022 0.0066 0.0464 1.65
100 0.6184 0.0206 0.0364 0.0476 1.25

5 30 0.9866 0.9156 0.9134 0.0506 0.028
50 0.995 0.9814 0.9792 0.0476 0.041
70 0.9944 0.9838 0.986 0.0452 0.048
100 0.9858 0.9722 0.9764 0.051 0.05

6 30 0.9886 0.9262 0.924 0.0426 0.025
50 0.9964 0.9764 0.9748 0.051 0.042
70 0.9962 0.9858 0.984 0.0506 0.048
100 0.9858 0.9736 0.9726 0.0512 0.049

Tables 26 and 27 present values for the test size under the low and high concentration

scenarios. For high concentration, it was observed some cases on which the non optimized

SβR test have presented good results: r = 2, 3, β ∈ {0.5, 0.9} and small size. However,

in general, the test based in the Shannon entropy together with those in terms of the

Rényi measure with order 0.5 and 0.9 have shown unsatisfactory results. But, for both

concentration scenarios, we have found a way to optimize β so that the rejection rates

under the null hypothesis have achieved a good result. We use the methodology described

on Algorithm 3 to determine an acceptable β, βotm.

Algorithm 3 Procedure to obtain βotm with minimizes the rejection rates under the null
hypothesis
1: Given r samples supposed to come from the same population having the support over

the unit sphere, obtain B sets with r vectors of size n.
2: Define a grid of values for β in SβR as wide as possible and after determine an array

with the rejection rates in terms of values of the adopted grid.
3: Choose βotm as the value of β which minimizes the rejection rates in the array of the

previous item.
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Table 27 – Rejection rates under H1 of entropy-based tests for high concentration scenario.
The adopted nominal level α = 5%

λ r n SS S0.5
R S0.9

R SβotmR βotm
(99,42,1,0) 2 30 0 0.015 0.0064 0.0478 0.18

50 0 0.0482 0.0318 0.0498 0.48
70 2e-04 0.0918 0.0704 0.0608 1.68
100 0.001 0.1642 0.1308 0.125 1.22

3 30 0 0.0036 0.0016 0.0448 0.12
50 0 0.029 0.0186 0.0498 0.35
70 0 0.0768 0.0538 0.0524 0.95
100 2e-04 0.1454 0.1056 0.0468 1.36

5 30 0 0.2556 0.0074 0.0462 4.4
50 0 0.7354 0.081 0.0554 2.3
70 4e-04 0.9448 0.2404 0.0496 1.8
100 0.0084 0.9958 0.4992 0.0492 1.55

6 30 0 0.2676 0.008 0.0456 0.71
50 0 0.7676 0.0848 0.0462 0.99
70 2e-04 0.9568 0.2506 0.0488 1.15
100 0.008 0.9968 0.5244 0.053 1.6

In order to illustrate the discriminating capability of the Rényi test with the optimized

order parameter comparatively to the remainder ones, we have quantified their power

functions for some cases. Figure 25a and 25b shows the power function performance for

low concentrations with sample sizes n = 70 and n = 100, respectively. It was considered

the landmarks number k+ 1 = 5, 5000 Monte Carlo replicas, the sample size n = {70, 100}

and population number r = 2. In the simulation procedure, we take the eigenvalue vector

λ = (5, 2, 1, 0) to define the null hypothesis to tests: SβR with β ∈ {0.5, 0.9, 1.3, 1.6}

(βotm = 1.3 for n = 100 and βotm = 1.6 for n = 70, according to Table 26) and SS.

From this, we generate the first sample with λ and the second sample with λ =

(5 · (1− ε)2.5, 2 · (1− ε)2.5, 1, 0) where ε = [0.10, 0.20, 0.30, 0.50, 0.70, 0.90]. Note that the

Shannon test provided a power bigger than the Rényi test. However, as discussed, the SS
empirical test size showed unacceptable before considered sample sizes. On the other hand,

among the possible Rényi tests, the SβotmR power outperformed ones due to the remainder

tests. Further, the Rényi test power increases with the grow of the sample size.

Figure 26 displays the power function for high concentration scenario. For this, we

consider λ = (99, 42, 1, 0) to specify the null hypothesis of tests: SβR with β = (0.5, 0.9, 1.68)

and SS. The choose β = 1.68 is aligned with n = 70 in Table 27. Here, we consider only
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(a) Power function under low concentration
with sample size n1 = n2 = 70.
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(b) Power function under low concentration
with sample size n1 = n2 = 100.

Figure 25 – Empirical power function under low concentration. For this numeric pro-
cedure we consider: eigenvalue vector λ = (5, 2, 1, 0), order parameter
β ∈ {0.5, 0.9, 1.3, 1.6} for the Rényi statistic, populacional number r = 2
and k + 1 = 5 landmarks

one sample size for the power assessment on high concentration because tests performed

accurately at n = 70. To that end, we generated the first sample with λ and the second

with λ = (99 · (1 − ε), 42 · (1 − ε), 1) such that ε = [0.1, 0.2, 0.3, 0.4]>. We note the

performance of the Rényi test power was better than for the Shannon test. In this case,

the empirical power of the SβotmR test was the smallest in the Rényi class, but all these

tests performed very well and almost similarly.

Observe that in this scenario for all orders β in SβR the power function approaches

of 1, that is in the high concentration the Rényi statistic is very powerful. In general,

best results were obtained for larger sample on low and high concentration scenario as

expected.

5.3.2 Application to real data

We employ the derived tests to identify patterns over a database of measurements on

the second thoracic vertebra T2 of mice, presented by Dryden and Mardia (2016) and

previously discussed in Chapter 3. We wish to quantify how the body weight influences

the shape of the mouse T2 vertebrae in the variability context. We work with three groups
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Figure 26 – Empirical power function under high concentration. For this numeric pro-
cedure we consider: eigenvalue vector λ = (99, 42, 1, 0), order parameter
β ∈ {0.5, 0.9, 1.6} for the Rényi statistic,sample size n1 = n2 = n = 70
populacional number r = 2 and k + 1 = 5 landmarks

of mice: control (with 30 elements), large (23) and small (23). Six landmarks were

taken in each individual by a procedure described by Mardia and Dryden (1989a).

The control group contains unselected mice, while the large and small groups are

formed by mice which were selected having large and small body weight, respectively. This

database has been used by several works, it follows some instances of its use:

a. Kent (1994) has illustrated the use of principal components in shape analysis equipped

with the Kendall’s and Bookstein’s coordinates.

b. Dryden and Mardia (1991) have discussed about biological aspects of three groups

of mice. They have aimed both estimating and testing differences between shapes in

two-dimensions over Bookstein’s coordinates.

c. Mardia and Dryden (1989b) have investigated shape changes among groups and

considered possible geometrical descriptions of first (T1) and second (T2) thoracic

vertebrae. The bones they used were subset from the larger study detailed by

Falconer (1973).

Figure 27a presents the full Procrustes fit of landmarks data concerning with the three

groups of mice. For each group we obtain the mean shapes of the fitted data and plot
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the k + 1 = 6 landmarks referring to the three groups (control, large and small). This

graph was made using the function procrustes2d on the package shapes of the software R.

● ●

●

●

●

●

● Control
Large
Small

(a) A vertebra T2 from mouse
which were registered using
the mean shape of full Pro-
crustes fit with six landmarks.

(b) Grey level image of a T2
mouse vertebra with six math-
ematical landmarks and 42
pseudo-landmarks (+). This
figure was taken from Dryden
and Mardia (1998), pp. 4

Figure 27 – Illustration of the second thoracic vertebra T2 of the group mice.

Table 10 displays average values of proposed test statistics (SM), their p-values and

estimated variances (σ̂2
M(Âi)) for various samples size. Before real data, we have verified

the FIM in (5.6) was singular and, consequently, the use of (5.5) was not possible. To

overcome this issue, we obtained σ2
M in (5.5) by means of the non parametric bootstrap

methodology. Initially, in order to construct a random framework from a real dataset

we performed 750 resampling with replacement over each considered group. Since the

implementation had some problems, an alternative method was used to compute the

estimated asymptotic variance. After, we estimated the variance (σ2
M) using the following

expression

σ̂2
M = 1

750

750∑
j=1

(H(j)
M −HM)2,

where H(j)
M is the entropy M = {S,R} which was estimated over the jth bootstrap sample

and HM is the bootstrap average of estimated entropies.

Table 28 shows values for the same quantities of Table 10 for high concentration.

From both tables, the test based in the Rényi entropy rejected the null hypothesis adopting

α ≤ 5%, independent of the considered scenario. On the other hand, the test based on the

Shannon entropy never rejects H0. With respect the difference in pairs of entropies in the
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set {small,large,control}, it is expected there are differences in pairs (small,control)

and (large,control). Thus, these results seem to recommend in practice the Rényi test

may be more adequate to detect the variability in planar pre-shapes over the complex

unitary sphere.

Table 28 – Rejection rates under H0, values of proposed statistics and their variances
based on real data for high concentration. The adopted nominal level α = 5%

Tests {n1, n2, n3} SM pvalue table σ̂2
M(Â1) σ̂2

M(Â2) σ̂2
M(Â3)

SS {10, 10, 10} 0.06285198 0.9690627 0.2868608 0.1290481 0.2586201
S0.00775
R 6.233742 0.04429555 0.1017824 0.06037482 0.07393719
SS {15, 15, 15} 0.1191108 0.9421833 0.1383523 0.0916418 0.1015166

S0.00746
R 6.057827 0.04836815 0.05435652 0.04583011 0.04742249
SS {30, 23, 23} 3.543456 0.1700389 0.02320577 0.06870133 0.1096711

S0.0068
R 11.80529 0.00273221 0.01091856 0.02620905 0.04358041

5.4 Conclusions

This chapter has presented two entropy-based r-samples hypothesis tests for checking

common variability in planar-shape data. The complex Bingham (CB) model is assumed

for the data. We have provided expressions for the CB Shannon and Rényi entropies. Some

properties of these measures were also explored; such as new expressions for the complex

Watson (CW ) particular model and limit relations between those entropies. Geometrical

essays have indicated that the interpretation of entropy as a variability measure is aligned

with the degree of concentration of planar pre-shapes over the unit sphere. Finally,

entropy-based hypothesis tests for variability in planar-shape were proposed as well. The

performance of our proposals has been quantified by means of a Monte Carlo simulation

study. The Rényi entropy test with optimized order parameter obtained the best empirical

test size in all the cases. Among possible tests to be defined from the Rényi class, that

last achieved either lesser (but closed to) empirical power than remainder in the high

concentration scenarios or expressively higher for low concentration. Finally, we illustrated

the potentiality of these measures over real data to evaluate the effect of body weight over

the shape of mouse vertebrae. The Rényi (in particular, with β optimized order) test got

better performance than one in terms of the Shannon entropy.
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6 CONCLUSION

In this chapter, we present some concluding remarks and future works that we intend

to do in the course of this thesis.

6.1 Concluding Remarks

In this manuscript, as first research chapter, has presented four divergence-based

two-sample hypothesis tests for checking the difference between mean triangle shape.

The complex Watson (CW ) distribution was assumed for the data. We have furnished

expressions for Rényi, Kullback-Leibler, Bhattacharyya and Hellinger distances measure

on the CW model and illustrated its behavior. From these stochastic distances, we provide

pivotal statistic and applied to triangle shapes data. The performance of our proposals

has been quantified by means of a Monte Carlo simulation study and we compare our

results with a literature statistics test proposed by Mardia and Dryden (1999). The largest

differential of the our methodology is to be able applied the tests in the low concentration

scenario for large samples and when the κ parameter in two-sample of the CW model were

considered distinct. For the high concentration scenario, we have provided evidence in

favor of the our proposals illustrated for both empirical type I and II errors study. Finally,

was illustrated the performance of these measures over real data to evaluate the difference

between mean shape of the two groups on second thoracic T2 of the mouse vertebrae.

In the second research topic, we have derived expressions for distance measures of

Rényi, Hellinger, Bhattacharyya and Kullback-Leibler under CB distribution. After that,

we have shown new pivotal statistics based in this information theory measures for two

samples of planar-shape. Several simulation procedures were performed investigated

the size and power of the proposed tests and compared them with the literature tests.

Results indicated, under the assumption of CB model, that proposed tests presented the

best performance. We made a brief numerical evaluation with respect the robustness of

the proposed and literature tests. The results showed that the Rényi, Bhattacharyya,

Hellinger and Kullback-Leibler tests can be considered more robust than literature tests.
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Potentiality of our proposals have been illustrated experiments with synthetic and real

data in planar-shape.

In the third topic, we have derived expressions for Shannon and Rényi entropies

measures under the CB and CW models. From this, we have presented two tests for

r-populations based on entropy measures in planar-shape. We have illustrated the discrim-

inatory capability of these measures using on both synthetic and real data. Numerical

results have pointed out that the tests based on the Rényi entropy with optimized β is

indicated to detect changes in variability on the pre-shape vectors on complex sphere.

6.2 Future Research

This thesis has also raised several points, which require deeper studies. Some of them

are presented below:

(i) to propose a nonparametric version of the divergence-based hypothesis tests of the

Chapter 4 using the bootstrap methodology and permutation tests;

(ii) to develops new classifiers for shape data based on distances measures derived in the

Chapter 3 and 4;

(iii) to propose a new regression model with response variable following the CB distribu-

tion. It, will be developed a method for detecting outliers in term over influential

measures based on the pivotal statistics: Rényi, Bhattacharyya, Hellinger and

Kullback-Leibler distances under the CB model;

(iv) to derive a method in optimization process to estimate the order parameter β in the

hypothesis test based on the Rényi entropy;

(v) to provide new estimation procedure for the CB parameters based on the maximum

entropy principle and/or the ordinary entropy method;

(vi) to furnish a procedure for generating random numbers from the complex-valued CW

distribution own;

and
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(vii) to develop new hypothesis tests based on Hotelling-Lawley trace statistic for the

CB model.
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APPENDIX A – PROOF OF THE
RESULTS OF NEW DISTANCES ON CW

DISTRIBUTION

Proof of the Theorem 3.1.

The Kullback-Leibler divergence between two elements in z ∼ CW having densities

f(z;θ1) and f(z;θ2) and using the definition 2.8 we get

DKL(θ1||θ2) = Eθ1

[
log

(
f(z;θ1)
f(z;θ2)

)]
= log

(
c1(κ2)
c1(κ1)

)
+ Eθ1

[
κ1|z∗µ1|2 − κ2|z∗µ2|2

]
= log

(
c1(κ2)
c1(κ1)

)
+ κ1Eθ1 [|z∗µ1|2]− κ2Eθ1 [|z∗µ2|2].

Analogously,

DKL(θ2||θ1) = log
(
c1(κ1)
c1(κ2)

)
+ κ2Eθ2(|z∗µ2|2)− κ1Eθ2(|z∗µ1|2)

Thus

dKL(θ1,θ2) = 1
2[DKL(θ1||θ2) +DKL(θ2||θ1)]

= 1
2 {κ1Eθ1 [z∗µ1µ

∗
1z]− κ2Eθ1 [z∗µ2µ

∗
2z] + κ2Eθ2(z∗µ2µ

∗
2z)− κ1Eθ2(z∗µ1µ

∗
1z)}

(A.1)

In order to find expected values in (A.1), we rewrite their arguments in terms of

quadratic forms and use the Kent’s polar shape coordinates (for details see Kent (1994),

Dryden and Mardia (2016)). Given z = [z1, . . . , zk]> ∼ CW , set sj = z∗j zj for j =

1, . . . , k − 1. The vector s = [s1, . . . , sk−1]> follows the joint TME to a unit simplex

Dryden and Mardia (2016), denoted as Sk−1 and defined by

Sk−1 = {s = [s1, . . . , sk−1]> : sj ≥ 0 and
k−1∑
j=1

sj ≤ 1}.

So, the following quadratic form holds

z∗Tz =
k∑
j=1

λjz
∗
j zj =

k∑
j=1

λjsj.
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This implies that

Eθ2(z∗µ1µ
∗
1z) = Eθ2(z∗T1z)

=
∫
CSk−1

(z∗T1z)c−1
1 (κ2) exp(κ2|zµ∗2|2)wk(dz)

= c−1
1 (κ2)

∫
CSk−1

(z∗T1z) exp(z∗κ2µ2µ
∗
2z)wk(dz)

= c−1
1 (κ2)

∫
CSk−1

(z∗T1z) exp(z∗T2z)wk(dz)

= c−1
1 (κ2)

k∑
j=1

λT1j

∫
Sk−1×[0,2π)k]

sj exp(
k∑
j=1

λT2jsj)21−kνk−1(ds)dθ

= c−1
1 (κ2)

k∑
j=1

λT1j2πk
∫
Sk−1

sj exp(
k∑
j=1

λT2jsj)νk−1(ds)

= c−1
1 (κ2)

k∑
j=1

λT1j2πk
∫
Sk−1

∂

∂λT2j

exp(
k∑
j=1

λT2jsj)
 νk−1(ds)

= c−1
1 (κ2)

k∑
j=1

λT1j

∂

∂λT2j

2πk
∫
Sk−1

exp(
k∑
j=1

λT2jsj)νk−1(ds)


= c−1
1 (κ2)

k∑
j=1

λT1j

∂

∂λT2j

c(ΛT2),

where νk−1(ds) is the uniform measure on Sk−1, T1 = µ1µ
∗
1 , T2 = κ2µ2µ

∗
2 and - assuming

ΛB = diag(λB1 , . . . , λBk) as the diagonal matrix of eigenvalues of B – the first derivatives

of c(ΛB) are given by Amaral, Floréz and Cysneiros (2013)

∂c(ΛB)
∂λBi

= 2πk

 k∑
j=1
j 6=i

ajexp(λBj)
(λBj − λBi)

+ aiexp(λBi) + aibi exp(λBi)

 ,

with a−1
j =

k∏
l=1
l 6=j

(λBj − λBl) and bi =
∑
l 6=i

1
(λBi − λBl)

. Using the same way, we have

Eθ1(z∗µ1µ
∗
1z) = c−1

1 (κ1)
k∑
j=1

λT1j

∂

∂λM1j

c(ΛM1)

for M1 = κ1µ1µ
∗
1,

Eθ1(z∗µ2µ
∗
2z) = c−1

1 (κ1)
k∑
j=1

λM2j

∂

∂λM1j

c(ΛM1)

for M2 = µ2µ
∗
2 and

Eθ2(z∗µ2µ
∗
2z) = c−1

1 (κ2)
k∑
j=1

λM2j

∂

∂λT2j

c(ΛT2)
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for M2 = µ2µ
∗
2. Therefore, the Kullback-Leibler distance is

dKL(θ1,θ2) =1
2
{
κ1Eθ1 [|z∗µ1|2]− κ2Eθ1 [|z∗µ2|2] + κ2Eθ2(|z∗µ2|2)− κ1Eθ2(|z∗µ1|2)

}
=1

2

κ1c
−1
1 (κ1)

k∑
j=1

λT1j

∂

∂λM1j

c(ΛM1)− κ2c
−1
1 (κ1)

k∑
j=1

λM2j

∂

∂λM1j

c(ΛM1)

+ κ2c
−1
1 (κ2)

k∑
j=1

λM2j

∂

∂λT2j

c(ΛT2)− κ1c
−1
1 (κ2)

k∑
j=1

λT1j

∂

∂λT2j

c(ΛT2)

 .

Proof of the Theorem 3.2.

The the Rényi divergence with order β ∈ (0, 1) is given by

Dβ
R(θ1||θ2) = 1

β − 1 logEθ1


[
f(z;θ1)
f(z;θ2)

]β−1


= 1
β − 1 logEθ1


[
c−1

1 (κ1) exp(κ1|z∗µ1|2)
c−1

1 (κ2) exp(κ2|z∗µ2|2)

]β−1


= 1
β − 1 log

(c−1
1 (κ1)
c−1

1 (κ2)

)β−1

· Eθ1 [exp(κ1(β − 1)|z∗µ1|2 − κ2(β − 1)|z∗µ2|2)
 ,

(A.2)

where

Eθ1 [exp(κ1(β − 1)|z∗µ1|2 − κ2(β − 1)|z∗µ2|2)]

=
∫
CSk−1

exp(κ1(β − 1)|z∗µ1|2 − κ2(β − 1)|z∗µ2|2)c−1
1 (κ1) exp(κ1|z∗µ1|2) wk(dz)

= c−1
1 (κ1)

∫
CSk−1

exp(κ1β|z∗µ1|2 − κ2(β − 1)|z∗µ2|2) wk(dz)

= c−1
1 (κ1)

∫
CSk−1

exp[z∗(κ1βµ1µ
∗
1 − κ2(β − 1)µ2µ

∗
2)z] wk(dz)

= c−1
1 (κ1)c(M1)

∫
CSk−1

c−1(M1) exp(z∗M1z) wk(dz)

= c−1
1 (κ1)c(M1), (A.3)

whereM1 = (κ1βµ1µ
∗
1−κ2(β− 1)µ2µ

∗
2) is a hermitian matrix of order k × k. From (A.2)

and (A.3), we have

Dβ
R(θ1||θ2) = 1

β − 1 log
(c−1

1 (κ1)
c−1

1 (κ2)

)β−1

c−1
1 (κ1)c(M1)

 = 1
β − 1 log

(
cβ−1

1 (κ2)c(M1)
cβ1 (κ1)

)
.

Analogously,

Dβ
R(θ2||θ1) = 1

β − 1 log
(
cβ−1

1 (κ1)c(M2)
cβ1 (κ2)

)
,
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where M2 = (κ2βµ2µ
∗
2 − κ1(β − 1)µ1µ

∗
1). Therefore, the Rényi distance is given by

dβR(θ1,θ2) = 1
β − 1 log

{
exp[(β − 1)Dβ

R(θ1||θ2)] + exp[(β − 1)Dβ
R(θ2||θ1)]

2

}

= 1
β − 1 log

[
1
2

(
cβ−1

1 (κ2) c(M1)
cβ1 (κ1)

+ cβ−1
1 (κ1) c(M2)

cβ1 (κ2)

)]
.

Proof of the Corollary 3.1.

The Bhattacharyya distance is

dB(θ1,θ2) = − log
[∫

CSk−1

√
f(z;θ1)(z;θ2) wk(dz)

]
= − log

[∫
CSk−1

√
c−1

1 (κ1) exp(κ1|z∗µ1|2)c−1
1 (κ2) exp(κ2|z∗µ2|2) wk(dz)

]
= − log

[
c
−1/2
1 (κ1)c−1/2

1 (κ2)
∫
CSk−1

exp
(
κ1

2 |z
∗µ1|2 + κ2

2 |z
∗µ2|2

)
wk(dz)

]
= − log

{
c
−1/2
1 (κ1)c−1/2

1 (κ2)
∫
CSk−1

exp
[
z∗
(
κ1

2 µ1µ
∗
1 + κ2

2 µ2µ
∗
2

)
z
]
wk(dz)

}
= − log

{
c
−1/2
1 (κ1)c−1/2

1 (κ2)c(A)
∫
CSk−1

c−1(A) exp (z∗Az) wk(dz)
}

= − log
 c(A)√

c1(κ1)c1(κ2)

 ,
where A =

(
κ1

2 µ1µ
∗
1 + κ2

2 µ2µ
∗
2

)
.

The Hellinger distance is given by

dH(θ1,θ2) = 1−
∫

CSk−1

√
f(z;θ1)f(z;θ2) wk(dz)

= 1−
∫

CSk−1

√
c−1

1 (κ1) exp(κ1|z∗µ1|2)c−1
1 (κ2) exp(κ2|z∗µ2|2) wk(dz)

= 1− c−1/2
1 (κ1)c−1/2

1 (κ2)
∫

CSk−1

exp
(
κ1

2 |z
∗µ1|2 + κ2

2 |z
∗µ2|2

)
wk(dz)

= 1− c−1/2
1 (κ1)c−1/2

1 (κ2)
∫

CSk−1

exp
[
z∗
(
κ1

2 µ1µ
∗
1 + κ2

2 µ2µ
∗
2

)
z
]
wk(dz)

= 1− c−1/2
1 (κ1)c−1/2

1 (κ2)c(A)
∫

CSk−1

c−1(A) exp(z∗Az) wk(dz),

where A =
(
κ1

2 µ1µ
∗
1 + κ2

2 µ2µ
∗
2

)
. So

dH(θ1,θ2) = 1− c(A)√
(c1(κ1)c1(κ2))

.
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Proof of the Proposition 3.1. Let R be a rotation matrix,

dKL(θ1,R
∗θ2R) = 1

2 {κ1Eθ1 [z∗µ1µ
∗
1z]− κ2Eθ1 [z∗µ2µ

∗
2z]

+ κ2ER∗θ2R(z∗R∗(µ2µ
∗
2)Rz)− κ1ER∗θ2R(z∗R∗(µ1µ

∗
1)Rz)}

= 1
2 {κ1Eθ1 [z∗µ1µ

∗
1z]− κ2Eθ1 [z∗µ2µ

∗
2z]

+ κ2ER∗θ2R((Rz)∗(µ2µ
∗
2)Rz)− κ1ER∗θ2R((Rz)∗(µ1µ

∗
1)Rz)}

= 1
2 {κ1Eθ1 [z∗µ1µ

∗
1z]− κ2Eθ1 [z∗µ2µ

∗
2z] + κ2Eθ2(z∗µ2µ

∗
2z)− κ1Eθ2(z∗µ1µ

∗
1z)}

= dKL(θ1,θ2).

Proof of the Proposition 2.2. Let A = κ(I − µµ∗) be a matrix with order two and

parameter of the CB distribution and µ = [a+ ib, c+ id]>.

Consider the problem of determining the eigenvalue of A; i.e., finding the root of

det(A− λ1I) = 0.

After some algebraic manipulations, we arrive in the second degree equation

λ2
1 − λ1(x+ y) + xy − κ2||u||2 = 0, (A.4)

where 
x = κ− κ(a2 + b2),
y = κ− κ(c2 + d2),
u = ac+ bd+ i(bc− cd).

Solving the equation (A.4) and taking the positive root, we find the proportional relation

between λ1 and κ:

κ = 2λ1

g(µ) ,

where g(µ) = 1 +
√

(c2 + d2 − a2 − b2)2 + 4||u||2. where g(µ) = [2− (a2 + b2 + c2 + d2)] +√
(c2 + d2 − a2 − b2)2 + 4||u||2.
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DISTRIBUTION

Proof of the Theorem 5.1. Let x1 ∼ CBk−1(A1) and x2 ∼ CBk−1(A2) and their

densities given by fx1(z;A1) and fx2(z;A2), respectively, having common support z =

[z1, z2, . . . , zk]> ∈ CSk−1. The KL divergence measures are given by

DKL(A1||A2) =
∫
CSk−1

fx1(z;A1) log
(
fx1(z;A1)
fx2(z;A2)

)
wk(dz)

= EA1

[
log

(
fx1(z;A1)
fx2(z;A2)

)]
= EA1

{
log[ c−1(A1) exp(z∗A1z) ]− log[ c−1(A2) exp(z∗A2z) ]

}
= log c(A2)− log c(A1) + EA1( z∗A1z)− EA1( z∗A2z ). (B.1)

and, analogously,

DKL(A2||A1) =
∫
CSk−1

fx2(z;A2) log
(
fx2(z;A2)
fx1(z;A1)

)
wk(dz)

= EA2

[
log

(
fx2(z;A2)
fx1(z;A1)

)]
= log c(A1)− log c(A2) + EA2( z∗A2z)− EA2( z∗A1z ). (B.2)

Replacing (B.1) and (B.2) in

dKL(A1,A2) = [DKL(A1||A2) + DKL(A2||A1) ]
2 ,

we have

dKL(A1,A2) = 1
2 [log c(A2)− log c(A1) + EA1( z∗A1z)− EA1( z∗A2z )

+ log c(A1)− log c(A2) + EA2( z∗A2z)− EA2( z∗A1z )]

= 1
2 [EA1( z∗A1z)− EA1( z∗A2z ) + EA2( z∗A2z)− EA2( z∗A1z )] . (B.3)

In order to derive the expected value at Aq (with q = 1, 2) of the quadratic forms, we

will use a change of variable by means of the Kent polar coordinates. Now assume
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s = [s1, . . . , sk−1]> follows the TME distribution to a simplex and z ∼ CBk−1(Aq) for

q = 1, 2. Further, note the following identities hold:

z∗Aqz =
k−1∑
j=1

λ
(q)
j z

(q)
j

∗
z

(q)
j =

k−1∑
j=1

λ
(q)
j s

(q)
j ,

where s(q)
j = ||z(q)

j ||2 = z
(q)
j

∗
z

(q)
j for q = 1, 2 and λj are jth eigenvalues of A. Thus,

EAq(z∗Aqz) =
k−1∑
j=1

λ
(q)
j EΛq(s

(q)
j . (B.4)

According to Kent (1994) and Dryden and Mardia (2016), we have that

EΛq(s
(q)
j ) = ∂ log c(Λ(q))

∂λ
(q)
j

= 1
c(Λ(q))

∂c(Λ(q))
∂λ

(q)
j

for q = 1, 2, (B.5)

where

c(Λ) = 2πk
k∑
j=1

aj exp(λj) and a−1
j =

∏
i 6=j

(λj − λi). (B.6)

The first derivative of (B.6) is given by

∂c(Λ)
∂λj

= 2πk
 k∑
l 6=j

al exp(λl)
(λl − λj)

+ aj exp(λj)− ajbj exp(λj)
 ,

where bj =
∑
i 6=j

(λj − λi)−1. Substituting the expressions (B.5) in (B.4) and posteriorly in

(B.3),

dKL(A1,A2) = 1
2

[ k∑
j=1

λ
(1)
j

1
c(Λ(1))

∂c(Λ(1))
∂λ

(1)
j

−
k∑
j=1

λ
(2)
j

1
c(Λ(1))

∂c(Λ(1))
∂λ

(1)
j

]

+1
2

[ k∑
j=1

λ
(2)
j

1
c(Λ(2))

∂c(Λ(2))
∂λ

(2)
j

−
k∑
j=1

λ
(1)
j

1
c(Λ(2))

∂c(Λ(2))
∂λ

(2)
j

]
.

Proof of the Theorem 4.2. Let x1 ∼ CBk−1(A1) and x2 ∼ CBk−1(A2) with their

density functions given by fx1(z;A1) and fx2(z;A2), respectively. The Rényi distance

with order parameter β ∈ (0, 1) is

Dβ
R(A1||A2) = 1

(β − 1)log
∫
CSk−1

fβx1(z;A1)f (1−β)
x2 (z;A2)wk(dz),

where
∫
CSk−1

fβx1(z;A1)f (1−β)
x2 (z;A2)wk(dz)

=
∫
CSk−1

[c−1(A1){exp(z∗A1z)]β[c−1(A2)exp(z∗A2z)](1−β)wk(dz)
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= c−β(A1)c(β−1)(A2)
∫
CSk−1

exp[z∗(βA1 + (1− β)A2)z]wk(dz)

= c−β(A1) c(β−1)(A2) c(βA1 + (1− β)A2)

·
∫
CSk−1

c−1(βA1 + (1− β)A2)exp[z∗(βA1 + (1− β)A2)z]wk(dz)

= c−β(A1) c(β−1)(A2) c(βA1 + (1− β)A2)

= c−β(Λ1)c(β−1)(Λ2)c(ΛR12) (B.7)

where Λ1 is the matrix of eigenvalues of A1, Λ2 is the matrix of eigenvalues of A2 and

ΛR12 is the matrix of eigenvalues of βA1 + (1− β)A2.

Analogously,

Dβ
R(A2||A1) = 1

(β − 1)log[c−β(Λ2)c(β−1)(Λ1)c(ΛR21)], (B.8)

where ΛR21 is the matrix of eigenvalues of [βA2 + (1− β)A1]. From (B.7) and (B.8), we

obtain the Rényi distance

dβR(A1,A2) = 1
β − 1 log

{
exp [(β − 1)Dβ

R(A1||A2)] + exp [(β − 1)Dβ
R(A2||A1)]

2

}

= 1
β − 1 log

{
c−β(Λ1)c(β−1)(Λ2)c(ΛR12) + c−β(Λ2)c(β−1)(Λ1)c(ΛR21)

2

}
.

The proof of Corollary 4.1 follows of taking β = 1/2 and the relations (FRERY;

NASCIMENTO; CINTRA, 2014):

dB(A1,A2) = −log(1− dH(A1,A2))

and

dH(A1,A2) = 1− exp
(
−1

2d
1/2
R (A1,A2)

)
.

To demonstrate the Proposition 4.1, we use the rotation matrix described in Section 3.2

of the Chapter 3.

Proof of the Proposition 4.1. Let Â1 and Â2 be MLEs for A1 and A2, respectively,

and be R the rotation matrix . From expression (B.3), we have that

dKL(A1,A2) = 1
2 [EA1( z∗A1z)− EA1( z∗A2z ) + EA2( z∗A2z)− EA2( z∗A1z )] .
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Using the property (d) of the Lemma B.1, it follows that

dKL(A1,A2) = 1
2 [EA1( z∗A1z)− EA1( (Rz)∗A2Rz ) + EA2( (Rz)∗A2Rz)− EA2( z∗A1z )]

= 1
2 [EA1( z∗A1z)− EA1( z∗(R∗A2R)z ) + EA2( z∗(R∗A2R)z)− EA2( z∗A1z )]

= dKL(A1,R
∗A2R).



131

APPENDIX C – PROOFS RELATED TO
THE SHANNON AND RÉNYI ENTROPIES

Proof of the Theorem 5.1. Let z ∼ CBk−1(A) be a random variable with pdf f(z;A),

so the Shannon entropy is given by

HS(A) = EA(− log f(z;A)) = EA{− log[c−1(A) exp(z∗Az)]}

= EA[log c(A)− z∗Az]

= log c(A)− EA(z∗Az).

To solve the expectation involving the quadratic forms, we use a variable change based on

the Kent’s polar shape coordinates. Thus,

z∗Az = tr(z∗Az) = tr
 k∑
j=1

λjγjγ
∗
j z
∗
j zj

 = tr
 k∑
j=1

λjγ
∗
j γjz

∗
j zj

 =
k∑
j=1

λjz
∗
j zj =

k∑
j=1

λjsj.

Then,

EA(z∗Az) =
k∑
j=1

λjEΛ(sj).

According to Kent (1994), we have that

EΛ(sj) = ∂ log c(Λ)
∂λj

= 1
c(Λ)

∂c(Λ)
∂λj

,

where the first derivative of normalizing constant is given by

∂c(Λ)
∂λj

= 2πk
 k∑
l 6=j

al exp(λl)
(λl − λj)

+ aj exp(λj)− ajbj exp(λj)
 .

Using the change above transformations, we have to

HS(A) = log c(A)− EA(z∗Az) = log c(A)− EΛ

(
k∑
i=1

λisi

)
= log c(A)−

k∑
i=1

λiEΛ(si)

= log c(A)−
k∑
i=1

λi
1

c(Λ)
∂c(Λ)
∂λi

= log c(Λ)−
k∑
i=1

λi
1

c(Λ)
∂c(Λ)
∂λi

.

Therefore,

HS(A) = log c(Λ)−
k∑
i=1

λi
1

c(Λ)
∂c(Λ)
∂λi

.
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The Rényi entropy with order parameter β ∈ R+ − {1} is given by

Hβ
R(A) = 1

(1− β) log{EA[fβ−1(z;A)]} = 1
(1− β) log

{∫
CSk−1

[c−1(A) exp(z∗Az)]βdωk(z)
}

= 1
(1− β) log

{∫
CSk−1

c−β(A) exp(z∗βAz)dωk(z)
}

= 1
(1− β) log

{
c−β(A)c(βA)

∫
CSk−1

c−1(βA) exp(z∗βAz)dωk(z)
}

= 1
(1− β) log c(βA)

cβ(A) = 1
(1− β) [log c(βA)− β log c(A)],

where ωk(dz) is the Lebesgue measure on statistical space X ,A . Therefore, the Rényi

entropy is

Hβ
R(A) = 1

(1− β) [log c(βA)− β log c(A)].

Proof of the Corollary 5.1.

lim
β→1

Hβ
R(A) ≡ lim

β→1
Hβ
R(Λ)

= lim
β→1

1
(1− β) [log c(βΛ)− β log c(Λ)], (applying the L’hospital rule)

= lim
β→1

{
∂

∂β
[log c(βΛ)− β log c(Λ)]

}/{
∂

∂β
[(1− β)]

}

= lim
β→1

[
log c(Λ)− 1

c(βΛ)
∂c(βΛ)
∂β

]

= log c(Λ)− lim
β→1

1
c(βΛ)

k∑
i=1

λi
∂c(βΛ)
∂λi

= log c(Λ)−
k∑
i=1

λi
1

c(Λ)
∂c(Λ)
∂λi

= HS(Λ) ≡ HS(A).

The Lebesgue dominated convergence Billingsley (2008) will be used to obtain the

Shannon entropy in the Theorem 5.2.

Theorem C.1 (Lebesgue dominated convergence theorem (TCL)). If |fn| ≤ g almost

everywhere, where g is integrable, and if fn → f almost everywhere, then f and fn are

integrable and
∫
fn →

∫
f.
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Proof of the Theorem 5.2.

(a) Let z ∼ CWk−1(θ) with θ = (µ, κ). The Shannon entropy is obtained as

HS(θ) = Eθ{− log[c−1
1 (κ) exp(κ|z∗µ|2)]} = log[c1(κ)]− κEθ(|z∗µ|2). (C.1)

To find a closed-form expression of Eθ(|z∗µ|2), we resort the transform Kent’s polar

coordinates on CSk−1 given in the proof of the Theorem 5.1 . Initially we take µ =

[1, 0, · · · , 0]T and after a suitable rotation |z∗µ|2 = s1 Mardia and Dryden (1999, p. 915),

this change of variables (in terms of sj ∈ Sk−1 and θ ∈ [0, 2π)) allows that the complex

pre-shape sphere can be identified by Sk−1 × [0, 2π) such that the volume measure on

CSk−1 is given by

2(1−k)ds1, . . . dsk−1dθ1 . . . , dθk

in this way we have

Eθ(|z∗µ|2) =
∫
CSk−1

|z∗µ|2c−1
1 (κ) exp(κ|z∗µ|2)wk(dz)

=
∫
Sk−1×[0,2π)k

s1c
−1
1 (κ) exp(κs1)2(1−k)νk−1(ds)dθ

= c−1
1 (κ)

∫
Sk−1×[0,2π)k

s1 exp(κs1)2(1−k)νk−1(ds)dθ

= c−1
1 (κ)

∫
Sk−1×[0,2π)k

∂

∂κ
[exp(κs1)]2(1−k)νk−1(ds)dθ

= c−1
1 (κ) ∂

∂κ

{
2(1−k)

∫
Sk−1

∫
[0,2π)k

[exp(κs1)]νk−1(ds)dθ
}

= c−1
1 (κ) ∂

∂κ
[c1(κ)].

According to Abramowitz and Stegun (1964, p. 507), the nth derivative of confluent

hypergeometric function is given by

dn

dxn
1F1(a; b;x) = (a)n

(b)n 1F1(a; b;x),

where (a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1), (a)0 = 1. Then

Eθ(|z∗µ|2) = c−1
1 (κ) ∂

∂κ
[c1(κ)] =

[
(k − 1)!

2πk · 1
1F1(1; k;κ)

]
·
[

2πk
(k − 1)!

1
k

1F1(2; k + 1;κ)
]

= 1
k

1F1(2; k + 1;κ)
1F1(1; k;κ) .

To generalize the result to µ 6= [1, 0, . . . , 0]> arbitrary, consider a rotation matrix R

unitary whose first column is µ. A suitable matrix R can be obtained using the QR
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decomposition Seber (2008, p. 340), Golub and Loan (2012, p. 223-236) and Kurz and

Hanebeck (2015), Kurz, Pfaff and Hanebeck (2016) . Thus, we have µ = R[1, 0, . . . , 0]>

and R∗µ = [1, 0, . . . , 0]>. In the integration procedure we use the substitution z = Rt

with t ∈ CSk−1. Then we reduce the problem to the case of µ = [1, 0, . . . , 0]>. Thus

Eθ(|z∗µ|2) =
∫
CSk−1

|z∗µ|2c−1
1 (κ) exp(κ|z∗µ|2)wk(dz)

= c−1
1 (κ)

∫
CSk−1

|(Rt)∗µ|2 exp(κ|(Rt)∗µ|2)wk(dt)

= c−1
1 (κ)

∫
CSk−1

|t∗R∗µ|2 exp(κ|t∗R∗µ|2)wk(dt)

= c−1
1 (κ)

∫
CSk−1

|t∗R∗µ|2 exp(κ|t∗R∗µ|2)wk(dt)

= c−1
1 (κ)

∫
CSk−1

|t∗[1, 0, . . . , 0]>|2 exp(κ|t∗[1, 0, . . . , 0]>|2)wk(dt)

= c−1
1 (κ)

∫
CSk−1

s1 exp(κs1)2(1−k)νk−1(ds)d(θ)

= c−1
1 (κ) ∂

∂κ
[c1(κ)]

= 1
k

1F1(2; k + 1;κ)
1F1(1, k, κ) . (C.2)

Therefore replaced (C.2) in (C.1) we have

HS(µ, κ) = log[c1(κ)]− κ

k
1F1(2, k + 1, κ)

1F1(1, k, κ) .

(b) The Rényi entropy is given by

Hβ
R(µ, κ) = 1

(1− β) logEθ{[c−1
1 (κ) exp(κ|z∗µ|2)](β−1)}

= 1
(1− β){ (1− β) log c1(κ) + log E θ[exp(κ(β − 1)|z∗µ|2)]}. (C.3)

We need to find the closed-form expression for expectation to the right-side in (C.3). Thus

E θ[ exp(κ (β − 1)|z∗µ|2) ] =
∫
CSk−1

exp[ κ(β − 1)|z∗µ|2]c−1
1 (κ) exp(κ|z∗µ|2 )wk(dz)

=
∫
CSk−1

c−1
1 (κ) exp[ κ(β − 1) |z∗µ|2 + κ|z∗µ|2 ]wk(dz)

= c1(κβ)
c1(κ)

∫
CSk−1

c−1
1 (κβ) exp[ κβ |z∗µ|2]wk(dz)

= c1(κβ)
c1(κ) .
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Then,

Hβ
R(µ, κ) = 1

(1− β)

{
(1− β) log c1(κ) + log

[
c1(κβ)
c1(κ)

]}

= 1
(1− β) { (1− β) log[c1(κ)] + log[c1(κβ) ] − log[c1(κ)] }

= 1
(1− β) { log[c1(κβ) − β log[c1(κ)] ] } .

Concluding the proof of the Theorem.

Proof of the Corollary 5.2.

Considering the parameter µ fixed and β ∈ R+−{1} arbitrary. Making κ tend to zero,

we obtain

lim
κ→0

Hβ
R(µ, κ) = lim

κ→0

1
(1− β) {log[c1(βκ)]− β log[c1(κ)]}

= 1
(1− β) lim

κ→0

{
log

[
2πk

(k − 1)!1F1(1; k; βκ)
]
− β log

[
2πk

(k − 1)!

]}

= 1
(1− β)

{
log

[
2πk

(k − 1)!

]
− β log

[
2πk

(k − 1)!

]}

= log
[

2πk
(k − 1)!

]

and Shannon entropy

lim
κ→0

HS(µ, κ) = lim
κ→0

{
log c1(κ)− κ

k
· 1F1(2, k + 1, κ)

1F1(1, k, κ)

}
= log 2πk

(k − 1)! .

Proof of the Proposition 5.1.

For the CB model the entries of matrices TR and TS, respectively, are given by

tRi = ∂HR(A)
∂λi

= ∂

∂λi

[
1

(1− β) (log c(βA)− β log c(A))
]

= 1
(1− β)

[
∂ log c(βA)

∂λi
− β log c(A)

∂λi

]

= 1
(1− β)

[
1

c(βA)
∂c(βA)
∂λi

− β

c(A)
∂c(A)
∂λi

]

= 1
(1− β)

[
1

c(βΛ)
∂c(βΛ)
∂λi

− β

c(Λ)
∂c(Λ)
∂λi

]

and
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tSi = ∂HS(Λ)
∂λi

= 1
c(Λ)

∂c(Λ)
∂λi

−
[

1
c(Λ)

∂c(Λ)
∂λi

+ λi

(
− 1
c(Λ)2

(
∂c(Λ)
∂λi

2)
+ 1
c(Λ)

∂2c(Λ)
∂λi

2

)]

= λi

[
1

c(Λ)2

(
∂c(Λ)
∂λi

2)
− 1
c(Λ)

∂2c(Λ)
∂λi

2

]
.
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