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ABSTRACT
In the first part of the present Thesis, the ground state (GS) properties of the quasi-

one-dimensional AB2 Hubbard model are investigated taking the effects of charge
and spin quantum fluctuations on equal footing. Using a functional integral approach,
combined with a perturbative expansion in the strong-coupling regime, we obtain the
Lagrangian density associated with the charge (Grassmann fields) and spin [SU(2)
gauge fields] degrees of freedom. In the strong-coupling regime, we derive a perturba-
tive low-energy theory suitable to describe the ferrimagnetic phase at half filling and
the phases in the hole-doped regime. At half filling, a perturbative spin-wave analysis
allows us to find the GS energy, sublattice magnetizations, and total spin per unit cell
in the Lieb ferrimagnetic GS of the effective quantum Heisenberg model, in very good
agreement with previous results. In the challenging hole doping regime away from
half filling, we derive the corresponding t-J Hamiltonian. Under the assumption that
charge and spin quantum correlations are decoupled, the evolution of the second-order
spin-wave modes in the doped regime unveils the occurrence of spatially modulated
spin structures and the emergence of phase separation in the presence of resonating-
valence-bond (RVB) states. We also calculate the doping-dependent GS energy and
total spin per unit cell, including both Zeeman and orbital contributions, in which case
it is shown that the spiral ferrimagnetic order collapses at a critical hole concentra-
tion. Notably, our analytical results in the doped regime are in very good agreement
with density matrix renormalization group (DMRG) studies, where our assumption of
spin-charge decoupling is numerically supported by the formation of charge-density
waves in anti-phase with the modulation of the magnetic structure. In the second
part, motivated by analogy with photonic lattices, we examine the edge states of a
one-dimensional trimer lattice in the phases with and without inversion symmetry
protection. In contrast to the Su-Schrieffer-Heeger model, we show that the edge states
in the inversion-symmetry broken phase of the trimer model turn out to be chiral, i.e.,
instead of appearing in pairs localized at opposite edges they can appear at a single
edge. Interestingly, these chiral edge states remain robust to large amounts of disorder.
In addition, we use the Zak phase to characterize the emergence of degenerate edge
states in the inversion-symmetric phase of the trimer model. Furthermore, we capture
the essentials of the whole family of trimers through a mapping onto the commensu-
rate off-diagonal Aubry-André-Harper model, which allows us to establish a direct
connection between chiral edge modes in the two models, including the calculation of
Chern numbers. We thus suggest that the chiral edge modes of the trimer lattice have
a topological origin inherited from this effective mapping. Also, we find a nontrivial
connection between the topological phase transition point in the trimer lattice and the
one in its associated two-dimensional parent system, in agreement with results in the



context of Thouless pumping in photonic lattices.

Keywords: Ferrimagnetism. Low-dimensional systems. Strongly-correlated electron
systems. Edge states. Topological insulator.



RESUMO
Na primeira parte da presente Tese, as propriedades do estado fundamental do

modelo de Hubbard na rede quase-unidimensional AB2 foram investigadas conside-
rando os efeitos das flutuações quânticas de carga e spin em pé de igualdade. Usando
uma abordagem de integral funcional, combinada com uma expansão perturbativa
no limite de acoplamento forte, obtivemos a densidade de Lagrangiana associada aos
graus de liberdade de carga (campos de Grassmann) e de spin [campos de calibre
SU(2)]. No regime de acoplamento forte derivamos uma teoria perturbativa de baixa
energia, adequada para descrever a fase ferrimagnética no regime de banda semi-cheia
e as fases no regime dopado por buracos (ausência de elétrons). No regime de banda
semi-cheia, uma análise perturbativa das ondas de spin (excitações magnéticas) nós
permitiu encontrar a energia do estado fundamental, as magnetizações das subredes e o
spin total por célula unitária no estado fundamental ferrimagnético de Lieb do modelo
efetivo quântico de Heisenberg, em muita boa concordância com resultados anteriores.
No desafiante regime dopado por buracos fora da banda semi-cheia derivamos o corres-
pondente Hamiltoniano t-J. Sob a hipótese de que as correlações quânticas de carga e
spin estão desacopladas, a evolução dos modos de ondas de spin, em segunda ordem de
perturbação no regime dopado, revela a ocorrência de estruturas de spin espacialmente
moduladas e o surgimento da separação de fases na presença de estados de ligação de
valência ressonante (RVB). Também calculamos a energia do estado fundamental de-
pendente da dopagem e o spin total por célula unitária, incluindo tanto as contribuições
tipo Zeeman quanto as orbitais, caso em que é mostrado que a ordem espiral magnética
colapsa em uma concentração crítica de buracos. Destacamos que nossos resultados
analíticos no regime dopado estão em muita boa concordância com estudos numéricos
de grupos de renormalização de matriz de densidade (DMRG), onde nossa suposição
de desacoplamento de spin-carga é evidenciada pela formação de ondas de densidade
de carga em anti-fase com a modulação da estrutura ferrimagnética. Na segunda parte,
com motivação na analogia com redes fotônicas, examinamos os estados de borda de
uma rede unidimensional trimerizada nas fases com e sem proteção de simetria de
inversão. Em contraste com o modelo Su-Schrieffer-Heeger, mostramos que os estados
de borda na fase com quebra de simetria de inversão do modelo do trímero se revelam
quirais, ou seja, em vez de aparecerem em pares localizados em bordas opostas eles
podem aparecer em uma borda só. Destacamos que esses estados de borda quirais
permanecem robustos a fortes amplitudes de desordem aleatória. Além disso, usamos a
fase de Zak para caracterizar o surgimento de estados de borda degenerados na fase
com simetria de inversão do modelo de trímeros. Por outro lado, nós capturamos os
fundamentos de toda a família de trímeros através de um mapeamento no modelo de
Aubry-André-Harper não diagonal, que permite estabelecer uma conexão direta entre



os modos de borda quirais nos dois modelos, incluindo o cálculo dos números de Chern.
Neste contexto, sugerimos que os modos de borda quirais da rede trimerizada têm
uma origem topológica herdada deste mapeamento efetivo. Além disso, encontramos
uma conexão não trivial entre o ponto de transição da fase topológica na rede trimeri-
zada e aquela do sistema bidimensional associado, em concordância com resultados no
contexto de bombeamento de Thouless em redes fotônicas.

Palavras-chaves: Ferrimagnetismo. Sistemas de baixa dimensionalidade. Sistemas de
elétrons fortemente correlacionados. Estados da borda. Isolante topológico.
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1 STRONGLY CORRELATED PHA-
SES IN AB2 HUBBARD CHAINS

1.1 Strongly correlated many-particle systems
Understanding the novel properties of different phases of matter and explaining

the new collective behaviors that emerge when many degrees of freedom interact is
a central goal of condensed matter physics. However, despite the great technological
and experimental advances achieved so far, the study of many-body systems remains
an extremely difficult task, mainly because of the large number of quantum particles
interfering with each other, which in consequence produces states that are much more
than the simple sum of its constituent parts. From this point of view, fundamentally
new types of phenomena emerge within complex assemblies of particles which cannot
be predicted from an a priori knowledge of the quantum laws of nature. The essence
of the concept of emergence was captured in the influential paper entitled “More is
different”, written in 1972 (1) by the Nobel laureate in Physics, Philip W. Anderson,
where he wrote:

“The behavior of large and complex aggregations of elementary particles,
it turns out, is not to be understood in terms of a simple extrapolation of
the properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other”.

In addition, it is known that phase transitions are a key sign of emergent behavior.
During the last decades, much attention has been given to a special class of phase
transitions that occur at absolute zero temperature, known as quantum phase transitions
(QPT) (2, 3, 4). These are phenomena characterized by the change of the nature of the
ground state (GS) driven by a non-thermal parameter such as: pressure, magnetic field,
doping, Coulomb repulsion, or competitive interactions. More specifically, they are
driven by quantum fluctuations since there are no thermal fluctuations at T = 0K.

Quantum fluctuations become increasingly important as the dimensionality of the
system is reduced. In this context, low-dimensional systems, in which one or more
spatial dimensions are small enough to consider the quantum mechanical wave func-
tion restricted or confined, exhibit some of the most diverse and fascinating physical
phenomena seen in all of condensed matter physics. Furthermore, low-dimensional
models are the perfect place to explore the effects of strong correlations.
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Now, because our daily experience shows us that we live in a three-dimensional
world, the study of low-dimensional systems was initially seen as a “laboratory” for
the development of theories that would later be applied to three-dimensional systems.
However, these systems present several symmetries that their low-dimensional analogs
do not; hence exhibiting some different characteristics. As an example, we can mention
the Fermi liquid theory (5), which describes most metals in three dimensions, but fails
when applied to one-dimensional systems (6) due to the infrared divergence. Also, as
mentioned before, quantum and thermal fluctuations are more pronounced in low-
dimensional systems, which favors the appearance of new phenomena and phases, with
remarkable experimental realizations, that have no counterpart in three-dimensional
systems.

On the other hand, even with the simplicity of one-dimensional (1D) systems, exact
solutions of many-body models are not always possible, and in some cases, when
obtained, the connection with the observed characteristics is not a trivial task. This
limitation encouraged the development of various analytical and numerical techniques
to investigate the properties of these systems, which we will explore in the next sections.

1.2 Low-dimensional ferrimagnets

(a) (b)

Figura 1 – Scheme representing a finite section of the chains with (a) AB2 and (b)
ABC unit cell topologies (each unit cell contains three sites), as well as the
ferrimagnetic order of both chains. The black circles represent the magne-
tic centers of spin-1/2, whereas the lines illustrate the antiferromagnetic
coupling interaction.

The study of low-dimensional systems with ferrimagnetic characteristics (7, 8) has
attracted considerable theoretical and experimental interest over the years because
of their unique physical properties and very rich phase diagrams (9). Ferrimagnets
belong to a class of magnets in which, below a certain critical temperature, spontaneous
magnetization is reached due to the antiparallel alignment of magnetic moments in
different sublattices and to the near-neighbor antiferromagnetic exchange coupling. We
can usually distinguish two major categories of ferrimagnets: those containing different
magnetic ions in each sublattice, and ferrimagnets of topological origin, also called topo-
logical ferrimagnets, resulting from the topological structure of the unit cell, which has
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different number of magnetic sites (see Fig. 1). The majority of these low-dimensional
systems are also subject to a strong topological connection, that is, their elements can
not change places between them. This fact acquires important consequences in quantum
systems, where elementary excitations can be treated as both fermionic or bosonic
excitations. In this case, some strongly-interacting boson systems can be mapped onto
fermionic systems with simpler interactions and vice versa. This connection can be
achieved through bosonization and quasi-particle fermionization techniques (3).

In particular, the GS of quasi-one-dimensional (quasi-1D) quantum ferrimagnets
with AB2 or ABC unit cell topologies (diamond or trimer chains, see illustration in
Fig. 1) described by the Heisenberg or Hubbard models (10) exhibit unsaturated spon-
taneous magnetization, ferromagnetic and antiferromagnetic spin-wave modes, and
field-dependent magnetization plateaus, among several other features of interest which
we are going to explore next.

Of special interest is the topological origin of the long-range ordered magnetic GS
associated with the unit cell structure of the lattice (10, 11, 12, 13, 14, 15, 16, 17, 18).
These studies have been motivated and supported by exact solutions and rigorous
results (19, 20, 21, 22, 23, 24, 25); in particular, at half filling the total spin per unit cell
obeys Lieb-Mattis (19) (Heisenberg model) or Lieb’s theorem (21) (Hubbard model). On
the other hand, it has been verified that the ferrimagnetic GS of spin-1/2 Heisenberg and
Hubbard/t-J AB2 chains, under the effect of frustration (26, 27, 28, 29, 30) or doping (12,
17, 31, 9), are strongly affected by quantum fluctuations that might cause its destruction
and the occurrence of new exotic phases: spiral incommensurate (IC) spin structures,
Nagaoka (U→ ∞) and resonating-valence-bond (RVB) states, phase separation (PS),
and Luttinger-liquid behavior. These features can enhance the phenomenology in
comparison with a linear chain, which is dominated by the nontrivial Luttinger-liquid
behavior that exhibits fractional excitations (3, 32), emergent fractionalized particles (33),
and fractional-exclusion statistic properties (34, 35) in the spin-incoherent regime (36),
in which case the Bethe ansatz and the bosonization procedures play a significant role.
It is important to remark that a broad class of 1D systems with quantum critical ground
state can be described by the mentioned Luttinger quantum liquid theory (34, 35). Last
but not least, we mention that the investigations of transport properties in AB2 chains
and related structures (37, 38), as well as exactly solved hybrid diamond chain with
localized Ising spins and mobile electrons (39), have also unveiled very interesting
features.

1.3 Phenomenological motivation
Over the years a number of compounds have been synthesized which have atoms

arranged in the form of quasi-one-dimensional chains. The development of optical
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Figura 2 – (a) Trimer chains found in compounds of the family A3Cu3 (PO4)4 (A = Ca,
Sr, Pb). The large and filled circles represent the Cu+2 magnetic moments.
The small and open circles represent the oxygen ions. (b) Schematic view
of magnetic interactions between copper ions: the intertrimer interaction
J2 is much smaller than the intratimer interactions J1 and J

′
1, however, the

ferrimagnetic order is observed in these compounds, and the ground state is
a state with S = 1/2. Taken from Ref. (40).

lattices has also provided several experimental realizations of these low-dimensional
systems (7). For instance, in magnetic systems the interactions are determined by
the compounds’ characteristics: distance between magnetic sites, the superposition
between the orbitals, and so on. In this way, each compound represents a system
with specific couplings that may undergo some change with the variation of external
parameters. Moreover, in optical lattices the interaction between the confined atoms is
controlled in a finer way, allowing the study of theoretically predicted phase transitions.
Some compounds may have in their crystalline structure 1D chains weakly coupled in
comparison with those couplings within the chains, thus allowing the formation of the
aforementioned quasi-1D systems.

Experimental studies (41, 42, 40) of the magnetic properties of homometallic phosphate
compounds of the family A3Cu3 (PO4)4 (A = Ca, Sr, Pb) suggest that in these ma-
terials the line of trimers formed by spin-1/2 Cu+2 ions antiferromagnetically cou-
pled, as shown in Fig. 2, do exhibit ferrimagnetism of topological origin. Although
the intertrimer coupling is much weaker than the intratrimer interaction, the for-
mer is sufficient to establish a ferrimagnetic ground state (40). Further, compounds
Ca3M3(PO4)4(M = Ni,Co) with a wave-like layer structure built by zigzag M-chains
exhibit antiferromagnetic ordering (M = Ni) or paramagnetic behavior (M = Co) (43).

On the other hand, bimetallic compounds, such as CuMn (S2C2O2)2 · 7.5H2O (44)
shown in Fig. 3, can be modeled (44, 45, 46, 47) by alternate spin-1/2 - spin-5/2 chains
and support interesting field-induced quantum critical points and Luttinger-liquid
phase (45). In addition, frustrated diamond (AB2 topology) chains can properly model
the compound azurite, Cu3(CO3)2(OH)2 (see Fig. 4), in which case the occurrence of
the 1/3 magnetization plateau is verified at high fields (48, 49, 50) in agreement with
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topological arguments (51) akin to those invoked in the quantum Hall effect.

Figura 3 – A partial view of a layer of stacked · · ·A (S2C2O2)Mn (H2O)3 (S2C2O2) · · ·
chains, emphasizing the structure generated by the AS4 fragments. A atoms
(Cu or Pd) are shown as black ellipsoids. Taken from Ref. (44).

Figura 4 – (a) Schematic view of the distorted diamond chain, where the solid circles
represent spin-1/2 coupled by the exchange interactions. (b) Scheme repre-
senting the crystal structure of the compound azurite Cu3(CO3)2(OH)2. The
panels below show the high field magnetization curves of this compound
measured below 4.2 K. The magnetic field was applied along the b axis (c)
and perpendicular to the b axis (d), respectively. Taken from Ref. (48).

The spin-1/2 trimer chain compound Cu3(P2O6OH)2, with antiferromagnetic inte-
ractions only, also display the 1/3 magnetization plateau (53). Interestingly, it has been
established that in azurite the magnetization plateau is a dimer-monomer state (52) (see
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Figura 5 – Dimer-monomer model with microscopic couplings J1, J2, J3, and effective
couplings Jmono, Jdimer, characterizing the plateau phase. Taken from Ref. (52).

Fig 5), i.e., the chain is formed by pairs of S = 1/2 monomers and S = 0 dimers, with a
small local polarization of the diamond spins (54), in agreement with reliable electronic
structure calculations using density functional theory (DFT) combined with density
matrix renormalization group (DMRG) results (55). These dimer-monomer states have
been found previously in the context of modeling frustrated AB2 chains (56, 57, 58), and
confirmed through a modeling using quantum rotors (59).

Figura 6 – (a) Schematic view of the crystal structure of A3Cu3AlO2(SO4)4 (A =
K,Rb,Cs). The gray, purple, light blue, and red circles denote Cu, A, Al,
and O atoms, respectively. The inequilateral diamond chains run along the a
axis. (b) Effective spin model of this compound. The circles represent Cu+2

ions with spin 1/2 . The blue broken, dark blue solid, black broken, black
dashed-dotted, red thick solid, red thin solid, red dashed, and red dotted
lines denote the exchange interactions J1, J2, J3, J4, J5, Jm, Jd, and J

′
d, respec-

tively. (c) Magnetization curve for K3Cu3AlO2(SO4)4. The red jagged solid
line is a calculated curve by density matrix renormalization group (DMRG)
at zero temperature for a 120-site periodic chain with the exchange interac-
tions estimated from the spin susceptibility. The blue solid line represents
the experimental result under the magnetic field up to 72 T at 4.2 K (60). The
green dashed line is the exact magnetization curve for the 1D Heisenberg
model. The inset is a schematic view of the spin configuration at the 1/3
plateau with the dimers formed by J5 and the 1D chain with Jd whose spins
are ferromagnetically aligned with the direction of the applied magnetic-field
H. Taken from Ref. (61).
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In contrast to azurite, whose dimers appear perpendicular to the chain direc-
tion, as shown in Fig. 5, in the spin-1/2 inequilateral diamond-chain compounds (61)
A3Cu3AlO2(SO4)4 (A = K,Rb,Cs), the magnetic exchange interactions force the dimers
to lie along the sides of the diamond cells and the monomers form a 1D Heisenberg
chain, (see Fig. 6 and 7). In fact, the low-energy excitations of these new compounds
have been probed and a Tomonaga-Luttinger spin liquid behavior identified (60). It is
worth mentioning that strongly frustrated AB2 chains can exhibit ladder-chain decou-
pling (27), in which case the ladder is formed via the coupling between dimer spins in
neighboring AB2 unit cells.

Figura 7 – (a) The diamond chain of K3Cu3AlO2(SO4)4, which consists of Cu+2 ions
(grey spheres) along the a-axis with nearby oxygen (red spheres) and sulfur
ions (yellow spheres). (b) Effective spin model of this compound with the
nearest-neighbor exchange couplings Ji (i = 1 to 5), and the next nearest-
neighbor exchange couplings of Jm, Jd, and J

′
d. (c) Schematic view of the spin

dimer-monomer ground state configuration for K3Cu3AlO2(SO4)4. Taken
from Ref. (60).

On the other hand, besides the above-mentioned quasi-1D compounds and related
magnetic properties, considerable efforts have been devoted to the study of supercon-
ductivity and intriguing magnetic/charge ordered phases in doped materials (62, 63),
in particular the formation of spin-gapped states in compounds such as the family
of doped (La,Sr,Ca)14Cu24O41. This compound is formed by one-dimensional CuO2

diamond chains, (Sr,Ca) layers, and two-leg Cu2O3 ladders (64). These results certainly
stimulate experimental and theoretical investigations of quasi-1D compounds in the
hole-doped regime, which is the main focus of Part I of this Thesis.

Lastly, it is worth mentioning that the effect of quantum fluctuations is most effecti-
vely appreciated in a recent study of the Kagome lattice compound ZnCu3(OH)6Cl2 (65)
under electron doping, in which case, and against theoretical expectations (66, 67), the
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quantum spin-liquid phase is robust up to the observed doping-induced systematic sup-
pression of magnetic behavior. More recently, a report (63) on optical doping-induced
stable and metastable hidden phases in pristine and doped TaS2 made possible the
in situ visualization through femtosecond electron crystallography. Very interesting
features underlying the observed optical-induced charge density wave transitions are
discussed in the light of similar thermodynamic transitions induced by chemical doping,
pressure and, in particular, temperature. These general trends are corroborated by the
observation (68) of hole-doping induced melting of spin-state ordering in the compound
PrBaCo2O5.5+x, in concurrence with an insulator metal transition. In fact, the results
show that the electronic change is quite the same regardless of whether it is driven by
temperature or hole doping.

1.4 General properties of the AB2 chains
Particular interest centers on the physical properties of low-dimensional strongly-

correlated electron systems with AB2 unit-cell topology, which exhibit unique phases
and behaviors with no linear chain (AB) counterparts. In this context, the main purpose
of this section is to summarize the most fundamental characteristics of low-dimensional
AB2 chains. The source of information discussed in this Section is mainly from Ref. (9),
where the authors studied the magnetic and nonmagnetic phases in doped AB2 t-
J Hubbard chains using data from density matrix renormalization group and exact
diagonalization techniques.

Figura 8 – (a) GS phase diagram for the AB2 t-J model. The different phases are illustra-
ted in panel (b): modulated ferrimagnetism (FERRI), incommensurate (IC),
Nagaoka ferromagnetism (F), short-range resonating valence bond (RVB) sta-
tes, phase separation (PS), and Luttinger liquid (LL). The estimated transition
lines δFERRI,J , δPS,J , and JF,δ are also pointed out. Taken from Ref. (9).

Due to the special unit-cell topology of the AB2 chain, this system displays a very
rich phase diagram (see Fig. 8), as a function of two parameters:
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• J = 4t2/U, i.e., the exchange coupling which measures the relative strength
between the on-site repulsive Coulomb interaction U and the first-neighbor hop-
ping amplitude t,

• the hole doping concentration, δ = 1− Ne/N = Nh/N, where Ne (Nh) is the num-
ber of electrons (holes) present in the system, such that Nh = N − Ne. As a special
case, at half filling (Ne = N), the hole doping concentration δ = 0.

0 0.05 0.1 0.15 0.2

δ

0

0.5

1

S
G
S
/S

L

Numeric J/t = 0.1

Numeric J/t = 0.3

Figura 9 – Ground-state total spin SGS normalized by its value in the undoped regime:
SL ≡ (Nc/2) − 0.5, as function of δ for the indicated values of J and N =
3Nc + 1 = 100. Adapted from Ref. (9).

As shown in Fig. 8, the rich J vs δ phase diagram of AB2 chains exhibits regions of
modulated ferrimagnetism (FERRI), incommensurate (IC), Nagaoka ferromagnetism (F),
short-range resonating valence bond (RVB) states, phase separation (PS), and Luttinger
liquid (LL) physics. Notice that at δ = 0 and for any value of J, the insulating Lieb
ferrimagnetic state was detected with total spin quantum number SGS = SL ≡ Nc/2−
0.5, under open boundary conditions and with an A site on each side, where Nc is the
number of unit cells. In addition, they also calculated SGS as a function of δ from the
energy degeneracy in Sz, with the interest of assessing the stability of this state against
doping.

In Fig. 9 we plot the evolution of SGS, normalized by SL, as a function of δ, using
numerical data from DMRG and Lanczos techniques (9), for J = 0.3 (red squares)
and J = 0.1 (blue circles). In the latter (former) case, the system undergoes a phase
transition, at a critical value δ = δFERRI,J , from the modulated ferrimagnetic phase to
an incommensurate phase with zero (nonzero) SGS. In both cases, the transition is
characterized by a practically linear decrease of SGS from SL to 0 or to a residual value,
regardless of the value that SGS takes after the transition. However, for low-enough J,
SGS of the IC phase increases linearly with δ up to δ = δPS,J , the line at which PS occurs
[see Fig. 8(a)], or up to the boundary, JF,δ , of the Nagaoka F phase.
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Figura 10 – (a) Effective linear chain (spacing a ≡ 1) associated with N = 3Nc + 1 = 100
sites for J = 0.1 used to illustrate the hole, 〈 nh,l 〉, and spin, 〈 Sz

l 〉, profiles.
(b) δ = 4/100 (ferrimagnetic phase) and (c) δ = 18/100 (IC phase). Taken
from Ref. (9).

The profiles of the magnetization, 〈 Sz
l 〉, in the spin sector Sz = SGS, and of the hole

density, 〈 nh,l 〉, were calculated for J = 0.1. Thus identifying a modulated itinerant
ferrimagnetic phase in the underdoped regime, i.e., for δ = 0.04 the holes distort the
ferrimagnetic structure, which displays a modulation with wavelength λ ≈ 17, in
antiphase with that exhibited by the hole (charge) density wave, as shown in Fig. 10(b).
Note that for δ = 0.18 the magnetization profile displays local maxima in correspondence
with those of the hole-density profile, as shown in Fig. 10(c). Therefore, the presence
of ferromagnetic Nagaoka spin polarons (due to a hole-density wave with λ ≈ 4)
characterizes the IC phase.

In order to better understand the rich variety of doping-induced phases in this
system, in Fig. 11 we show the numerical magnetic structure factor:

S(q) =
1

SL(SL + 1)

2Nc+1

∑
l,m

eiq(l−m) 〈 Sl · Sm 〉 , (1.1)

where l, m, and S refer to the lattice representation shown in Fig. 10(a), for J = 0.3
and doping ranging from δ = 0 up to δ = 0.12. In a long-range-ordered ferrimagnetic
state, sharp maxima at q = 0 (ferromagnetism) and q = π (antiferromagnetism) were
observed in the curve S(q) for δ = 0. By adding only two holes to the undoped state,
sharp maxima at q = 0 and π are also observed, while at δ = 0.04, these maxima are
strongly reduced, thus indicating weak ferrimagnetic order which evolves to the IC
phase by increasing hole doping, before phase separation (IC-RVB) at the line δ = δPS,J .
In the inset of Fig. 11(b) it is shown the departure of the maximum of S(q) from q = π.

In the next Chapters, we will adopt a functional integral approach to study a doped
Hubbard model in the regime of strong correlations on the quasi-one-dimensional
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Figura 11 – Chain with N = 3Nc + 1 = 100 and J = 0.3. (a), (b) Magnetic structure factor
S(q) for the indicated values of δ. Inset of panel (b) uses ∆q = qmax − π,
where qmax is the value of q at which the local maximum of S(q) near q = π
is observed. Taken from Ref. (9).

AB2 lattice. Then, we will present a detailed comparison with the numerical data
obtained through DMRG, which is among the most popular numerical methods for one-
dimensional quantum systems. Remarkably, this approach well captures the physical
picture in the strong correlation regime, both at half filling and in the doped case.

1.5 Outline of Part I of the Thesis
Part I of this Thesis is organized as follows. In Chapter 2, we derive the functional

integral representation of the Hubbard Hamiltonian in terms of Grassmann fields
(charge degrees of freedom) and spin SU(2) gauge fields (spin degrees of freedom).
Further, we diagonalize the Hamiltonian associated with the charge degree of freedom
and obtain a perturbative low-energy theory suitable to describe the ferrimagnetic phase
at half filling and the phases in the hole-doped regime. In Chapter 3, we show that
the resultant Hamiltonian at half filling and large-U, maps onto the spin-1/2 quantum
Heisenberg model. In this regime, a perturbative series expansion in powers of 1/S
of the low-lying excitations of the referred Hamiltonian is presented, which allows
us to calculate the GS energy, sublattice magnetizations, and Lieb GS total spin per
unit cell in very good agreement with previous estimates. In Chapter 4, we derive the
low-energy effective t-J Hamiltonian, which accounts for both charge and spin quantum
fluctuations. We also present the evolution of the second-order spin-wave modes, GS
energy and total spin per unit cell as a function of the hole doping, thus identifying
the occurrence of spatially modulated spin structures, with non-zero and zero GS total
spin, and phase separation involving the previous spin structure and RVB states at
hole concentration 1/3. Remarkably, these predictions are in very good agreement with
the DMRG data reported in Ref. (9), particularly in the regime where the Nagaoka
phenomenon is not manifested.
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2 FUNCTIONAL INTEGRAL APPRO-
ACH TO THE AB2 HUBBARD MO-
DEL

The goal of this Chapter is to derive a low-energy perturbative functional integral
approach to the AB2 Hubbard model. In Section 2.1, we review the functional integral
representation of the Hubbard Hamiltonian in terms of Grassmann fields (charge de-
grees of freedom) and spin SU(2) gauge fields (spin degrees of freedom). In Section 2.2,
we diagonalize the Hamiltonian associated with the charge degree of freedom and
obtain a perturbative low-energy theory suitable to describe the ferrimagnetic phase at
half filling and the phases in the hole-doped regime.

2.1 Functional integral representation
The Hubbard model is one of the most simple ways to get insight into how the

interactions between electrons give rise to insulating, magnetic, and even novel super-
conducting and superfluid effects in condensed matter physics. Moreover, the Hubbard
model is the simplest many-particle model one can write down, which cannot be
reduced to a single-particle theory, and with a well-known exact solution (20).

The Hamiltonian of the one-band Hubbard model on chains with AB2 unit cell
topology is given by (12, 13, 15, 16):

H = − ∑
〈iα,jβ〉σ

{tαβ
ij ĉ†

iασ ĉjβσ + H.c.}+ U ∑
iα

n̂iα↑n̂iα↓, (2.1)

where i = 1, . . . ,Nc (= N/3) is the specific position of the unit cell, Nc (N) is the number
of cells (sites), α,β = A, B1, B2 denote the type of site within the unit cell, ĉ†

iασ (ĉiασ) is the
creation (annihilation) operator of electrons with spin σ (=↑ , ↓) at site α of cell i, and
n̂iασ = ĉ†

iασ ĉiασ is the occupancy number operator. The first term in Eq. (2.1) describes
electron hopping, with energy tαβ

ij ≡ t, allowed only between nearest neighbors A-B1

and A-B2 linked sites of sublattices A and B (bipartite lattice), and the second one is the
on-site Coulombian repulsive interaction U > 0, which contributes only in the case of
double occupancy of the site iα.

At this point, it is instructive to digress on some fundamental aspects of the for-
malism used in our work (69, 70, 71, 72). With regard to the large-U doped Hubbard
chain (69, 70), U = ∞ AB2 Hubbard chain (71) and the Hubbard model on the honey-
comb lattice (72), it has been shown that the particle density product in Eq. (2.1) can
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be treated through the use of a decomposition procedure, which consist in expressing
n̂iα↑n̂iα↓ in terms of charge and spin operators:

n̂iα↑n̂iα↓ =
1
2

ρ̂iα − 2
(

ŜSSiα · nnniα

)2
, (2.2)

where
ŜSSiα = 1/2 ∑

σσ
′
ĉ†

iασ
′σσσσ

′
σ ĉiασ, (2.3)

and
ρ̂iα = n̂iα↑ + n̂iα↓, (2.4)

are the spin-1/2 and charge-density operators, respectively, σσσσ
′
σ denotes the Pauli

matrix elements (h̄ ≡ 1), and niα is an arbitrary unit vector at site iα. Notice that,
Eq. (2.2) follows from the identity:

1
2

ρ̂iα − n̂iα↑n̂iα↓ = 2(Ŝx,y,z
iα )2 = 2(Ŝiα · niα)

2. (2.5)

The convenience of using the decomposition defined in Eq. (2.2) with explicit spin-
rotational invariance for the large-U Hubbard model, was discussed at length in
Refs. (69, 70, 71, 72).

We start by using the Trotter-Suzuki formula (73, 74), which allows us to write the
partition function, Z = Tr [exp(−βH)], at a temperature kBT ≡ 1/β, as

Z = Tr{T̂
M

∏
r=1

exp[−δτH(τr)]}, (2.6)

where T̂ denotes the time-ordering operator, the total imaginary time interval is formally
sliced into M discrete intervals of equal size δτ = τr− τr−1, r = 1,2,...,M, with τ0 = 0, and
τM = β = Mδτ, under the limits M→∞ and δτ→ 0. We shall now introduce, between
each discrete time interval, an overcomplete basis of fermionic coherent states (73, 74)∫

∏
iασ

dc†
iασdciασ exp(−∑

iασ

c†
iασciασ)|{ciασ}〉〈{ciασ}| = 1, (2.7)

where {c†
iασ,ciασ} denotes a set of Grassmann fields satisfying anti-periodic boundary

conditions: c†
iασ(0) = −c†

iασ(β) and ciασ(0) = −ciασ(β); while the set of unit vectors
defines the vector field {niα}, satisfying periodic ones: niα(0) = niα(β), under a weight
functional (see below).

Thereby, following standard procedure (73, 74), the partition function reads:

Z =
∫

∏
iασ

Dc†
iασDciασ ∏

iα
D2niαW({niα})e−

∫ β
0 L(τ)dτ, (2.8)

where the corresponding measures are defined by

Dc†
iασDciασ ≡ lim

M→∞,δτ→0

M−1

∏
r=1

dc†
iασ(τr)dciασ(τr), (2.9)
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D2niα ≡ lim
M→∞,δτ→0

M−1

∏
r=1

d2niα(τr), (2.10)

the weight functional, W({niα}), satisfies a normalization condition at each discrete
imaginary time τr: ∫

∏
iα

d2niαW({niα(τr)}) = 1, (2.11)

and the Lagrangian density L(τ) is written in the form:

L(τ) = ∑
iασ

c†
iασ∂τciασ − ∑

ijαβσ

(tαβ
ij c†

iασcjβσ + H.c.) + U ∑
iα
[
ρiα

2
− 2(Siα · niα)

2]. (2.12)

In order to fix W({niα}) one should notice that, in the electron operator formalism:

ρ̂2
iα = ρ̂iα + 2n̂iα↑n̂iα↓. (2.13)

To prove the above equation, we use the anticommutation relation, ĉ†
iασ ĉiασ = 1− ĉiασ ĉ†

iασ,
so that

n̂2
iασ = (ĉ†

iασ ĉiασ)
2 = 1− 2ĉiασ ĉ†

iασ + ĉiασ ĉ†
iασ ĉiασ ĉ†

iασ

= 1− 2ĉiασ ĉ†
iασ + ĉiασ(1− ĉiασ ĉ†

iασ)ĉ
†
iασ

= 1− ĉiασ ĉ†
iασ = ĉ†

iασ ĉiασ = n̂iασ, (2.14)

thus, using the Eq. (2.4) is straightforward to find

ρ̂2
iα = (n̂iα↑ + n̂iα↓)

2 = n̂2
iα↑ + n̂2

iα↓ + 2n̂iα↑n̂iα↓ = ρ̂iα + 2n̂iα↑n̂iα↓. (2.15)

Therefore, using Eq. (2.2), the following identity holds (69, 70):

2(Ŝiα · niα)
2 =

ρ̂iα(2− ρ̂iα)

2
, (2.16)

which means that the square of the spin component operator along the niα direction
has zero eigenvalues if the site is vacant or doubly occupied, and a nonzero value only
for singly occupied sites, i.e., (Ŝiα · niα)

2 = 1/4. Now, taking advantage of our choice of
niα, the local spin-polarization and spin-quantization axes are both chosen along the niα

direction. Therefore, for singly occupied sites, we find

Siα · niα = piα/2, (2.17)

with piα = ±1, corresponding to the two possible spin-1/2 states. Further, by incorpora-
ting vacancy and double occupancy possibilities, corresponding to the four possible
local states of the Hubbard model, one can write (69, 70)

piαŜiα · niα =
ρ̂iα(2− ρ̂iα)

2
, (2.18)
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with p2
iα = (±1)2. We stress that, due to fermion operator properties, the square of

Eq. (2.18) reproduces Eq. (2.16), and a comparison between them implies, at arbitrary
doping and U value, the formal equivalence between 2(Ŝiα · niα)

2 and piα(Ŝiα · niα).
In this context, we remark that the original Coulomb repulsion term of the Hubbard
Hamiltonian in Eq. (2.1) is formally and energetically (eigenvalues) equivalent to both
that in Eq. (2.12) or in its linear version through the following replacement: 2(Ŝiα ·
niα)

2→ piα(Ŝiα · niα). Indeed, using the constraint in Eq. (2.18) we find,

U ∑
iα
[
ρiα

2
− piα(Siα · niα)] = U ∑

iα
[
ρiα

2
− 1

2
ρiα(2− ρiα)], (2.19)

which is zero for ρiα = 0,1; whereas, as expected, for double occupied sites, ρiα = 2, the
local energy is U. Therefore, Eq. (2.18) in its Grassmann version, can be enforced by a
proper choice of the normalized weight functional:

W({niα}) = lim
M→∞,δτ→0

M

∏
r=1

W({niα(τr)})

= C exp
{
−
∫ β

0
dτγ∑

iα
[piαSiα · niα −

ρiα

2
(2− ρiα)]

2
}

, (2.20)

where γ→ ∞ in the continuum limit (M→ ∞, δτ→ 0), with delta-function peaks at
the four local states of the Hubbard model, and C is a normalization factor such that
Eq. (2.11) holds. In fact, the product of W({niα(τr)}) in Eq. (2.20) generates a sum in r in
the exponential of the suitable chosen Gaussian function, i.e., W({niα}) is such that in
the continuum limit, M→∞,δτ→ 0, Eq. (2.20) obtains with a diverging γ, as pointed
out in Ref. (70). In this way, using Eq. (2.20) for the weight functional in Eq. (2.8) for
the partition function Z , and integrating over {niα}, the Lagrangian density L(τ) in
Eq. (2.12) can thus be written in the following linearized form (69):

L(τ) = ∑
iασ

c†
iασ∂τciασ − ∑

ijαβσ

(tαβ
ij c†

iασcjβσ + H.c.)

+ U ∑
iα
[
ρiα

2
− piα(Siα · niα)], (2.21)

where the constraint in Eq. (2.18) was explicitly used.
Now, since we are interested in studying the GS properties of the AB2 Hubbard

chains, we choose the staggered factor piα = +1 (−1) at sites α = B1, B2 (A), consistent
with the long-range ferrimagnetic GS predicted by Lieb’s theorem at half filling and for
any U value (21, 12, 13), in which case we assume broken rotational symmetry along
the z-axis. In this context, by considering the symmetry exhibited by the ferrimagnetic
order, let us define the SU(2)/U(1) unitary rotation matrix (75)

Uiα =

 cos
(

θiα
2

)
−sin

(
θiα
2

)
e−iφiα

sin
(

θiα
2

)
eiφiα cos

(
θiα
2

)
 , (2.22)
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where θiα is the polar angle between the z-axis and the unit local vector niα and φiα ∈
[0,2π) is an arbitrary azimuth angle due to the U(1) gauge freedom of choice for Uiα.
Moreover, a new set of Grassmann fields, {a†

iασ,aiασ} can be obtained, according to the
transformation:

ciασ = ∑
σ′
(Uiα)σσ′aiασ′ , (2.23)

that locally rotates each unit vector niα to the z-direction. On the other hand, if we
express the product σσσ · niα in matrix form (76):

σσσ · niα =

[
cos (θiα) sin (θiα) e−iφiα

sin (θiα) eiφiα −cos (θiα)

]
, (2.24)

we obtain, after using Eq. (2.22),

U†
iα(σσσ · niα)Uiα = σz, (2.25)

which explicitly manifest the broken rotational symmetry along the z-axis. In this way,
by substituting Eqs. (2.22) and (2.23) into Eq. (2.3), and using the above result, we find

Siα · niα =
1
2 ∑

σσ
′
a†

iασ[U
†
iα(σσσ · niα)Uiα]σσ

′ aiασ
′

=
1
2 ∑

σσ
′
a†

iασ(σz)σσ
′ aiασ

′ ≡ Sz
iα; (2.26)

thereby, the constraint in Eq. (2.18) can be written in the form

Siα · niα = piα
ρiα(2− ρiα)

2
=

1
2
(a†

iα↑aiα↑ − a†
iα↓aiα↓), (2.27)

where piα = +1 (−1) at sites α = B1, B2 (A). The choice of piα above implies Lieb’s
ferrimagnetic ordering with the set {θiA = θiB1 = θiB2 = 0}, for all i, at half filling.
However, in the hole doped regime away from half filling, the θiα’s can be nonzero
(e.g., θiα = π for a spin flip, leading to a change in the sign of Sz

iα). Further, Sz
iα can

be zero either by the presence of holes or doubly occupied sites (a†
iα↑aiα↑ = a†

iα↓aiα↓).
Lastly, using Eqs. (2.23) and (2.27) into the Lagrangian, Eq. (2.21), we find, after suitable
rearrangement of terms,

L(τ) = L0(τ) + Ln(τ), (2.28)

where

L0(τ) =∑
iασ

a†
iασ∂τaiασ − ∑

iαjβσ

(tαβ
ij a†

iασajβσ + H.c.)

+
U
2 ∑

iασ

(1− piασ)a†
iασaiασ, (2.29)
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and

Ln(τ) = ∑
iασσ′

a†
iασ′(U

†
iα∂τUiα)σ′σaiασ

− ∑
iαjβσσ′

tαβ
ij [a

†
iασ′(U

†
iαUjβ − 1)σ′σajβσ + H.c.], (2.30)

with the first term in both Eqs. (2.29) and (2.30) being originated from the first term in
Eq. (2.21), the second ones come from the hopping term in Eq. (2.21), after a rearrange-
ment of terms, while the last one in Eq. (2.29) (proportional to U) is obtained by using
Eq. (2.27) in the last term of Eq. (2.21). It is worth mentioning that only charge degrees
of freedom (Grassmann fields) appear in L0(τ), and spin degrees of freedom under the
constraint in Eq. (2.27) [SU(2) gauge fields {U†

iα,Uiα}, which carry all the information
on the vector field {niα}] are now restricted to Ln(τ), which includes both spin and
charge degrees of freedom.

In the large-U regime, double occupancy is energetically unfavorable and the factor
2 − ρiα is no longer needed in Eq. (2.27), i.e., Siα · niα = piα

ρiα
2 , with ρiα = 0 or 1. In

this case, a proper perturbative analysis will allow us to study hole doping effects in
Chapter. 4 in a macroscopic fashion, so we define

δ = 1− 1
N ∑

iα
〈ρiα〉 , (2.31)

which measures the thermodynamic average of hole doping away from half filling.

2.2 Charge degrees of freedom and strong-coupling limit
In this Section, we shall first diagonalize the Hamiltonian associated with the La-

grangian L0(τ) through the use of a special symmetry property of the AB2 chains and
a canonical transformation in reciprocal space. Then, by introducing a perturbative
expansion in the strong-coupling regime, a low-energy effective Lagrangian for the AB2

Hubbard chains at half filling and in the doped regime will be obtained.

2.2.1 Charge degrees of freedom

We begin our discussion by considering the Lagrangian L0 in Eq. (2.29), and its
corresponding Hamiltonian H0, free of the SU(2) gauge fields. By performing the
Legendre transformation:

H0 = −∑
iασ

∂L0

∂(∂τaiασ)
∂τaiασ + L0, (2.32)

where
∂L0

∂(∂τaiασ)
= a†

iασ, (2.33)
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the resultingH0 is given by

H0 = − ∑
〈iα,jβ〉σ

(tαβ
ij a†

iασajβσ + H.c.) +
U
2 ∑

iασ

(1− piασ)a†
iασaiασ. (2.34)

The special AB2 unit cell topology exhibits a symmetry (14, 17, 31, 71, 9) under the
exchange of the labels of the B sites in a given unit cell. Thus, we can construct a new set
of Grassmann fields possessing this symmetry, i.e., either symmetric or antisymmetric
with respect to the exchange operation B1↔ B2:

diσ =
1√
2
(aiB1σ + aiB2σ),

eiσ =
1√
2
(aiB1σ − aiB2σ), (2.35)

biσ = aiAσ.

Because we are interested in diagonalize Eq. (2.34) in momentum space, it is useful to
perform a Fourier transform for the above Grassmann fields as follows

diσ =
1√
Nc

∑
k

eikxi dkσ,

eiσ =
1√
Nc

∑
k

eikxi ekσ, (2.36)

biσ =
1√
Nc

∑
k

eikxi bkσ,

where k = 2π j( 3
N ), with j = 1, . . . ,N/3, and xi = i, with i = 1, . . . ,N/3 is the position of

the i-th unit cell along the x-axis (where the length of the unit cell is set to unity). Then,
we can rewriteH0 as

H0 = −
√

2t∑
kσ

(b†
kσdkσ + eikd†

kσbkσ + H.c.)

+
U
2 ∑

kσ

[(1 + σ)b†
kσbkσ + (1− σ)(d†

kσdkσ + e†
kσekσ)], (2.37)

which is not a diagonal Hamiltonian, even for U = 0. As a signature of the quasi-1D
structure of the AB2 chains, we notice that the B1 and B2 sites are located at a distance
1/2 (in the unit of length used) ahead of the A site. Thus, we can make use of this feature
to properly introduce a phase factor e

ik
2 through the following transformation (71):

Akσ =
1√
2
(dkσ + e

ik
2 bkσ),

Bkσ =
1√
2
(dkσ − e

ik
2 bkσ),

(2.38)
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andH0 in Eq. (2.37) thus becomes

H0 = ∑
kσ

εk[A†
kσ Akσ − B†

kσBkσ] +
U
2 ∑

kσ

(1− σ)e†
kσekσ

+
U
2 ∑

kσ

[A†
kσ Akσ + B†

kσBkσ − σ(A†
kσBkσ + B†

kσ Akσ)], (2.39)

where
εk = −2

√
2tcos(k/2). (2.40)

We can now exactly diagonalizeH0 through the following Bogoliubov transformation:

Akσ = ukαkσ − σvkβkσ,

Bkσ = σvkαkσ + ukβkσ,
(2.41)

with uk and vk satisfying the canonical constraint: (uk)
2 + (vk)

2 = 1, to maintain the
anticommutation relations of the Grassmann fields. Due to the ferrimagnetic order of
the GS, the above transformation is subject to a 4π periodicity of the functions (fields)
{uk,vk} and {αkσ,βkσ}. The diagonalizedH0 thus reads:

H0 = −∑
kσ

(Ek −
U
2
)α†

kσαkσ + ∑
kσ

(Ek +
U
2
)β†

kσβkσ +
U
2 ∑

kσ

(1− σ)e†
kσekσ, (2.42)

where

uk =
1√
2

(
1 +
|εk|
Ek

)1/2

,

vk =
1√
2

(
1− |εk|

Ek

)1/2

,

(2.43)

and
Ek =

√
ε2

k + U2/4. (2.44)

As one can see from Eq. (2.42), the non-interacting tight binding (U = 0) spectrum of
H0 present three electronic bands: a nondispersive flat band (related to the Grassmann
fields {e†

kσ,ekσ}, macroscopically degenerate and containing 1/3 of the energy levels),
and two dispersive ones. In AB2 chains, flat bands are closely associated with ferri-
magnetism (unsaturated ferromagnetism) (12, 13, 10) at half filling, in agreement with
Lieb’s theorem (21, 22), or fully polarized ferromagnetism (24) associated with the flat
lowest band. In fact, the mechanism for ferromagnetism works most effectively when
this flatband is nearly “saturated” but becomes ineffective when the electron filling
factor is too small (12). We also stress that even at this level of approximation and in
the weak coupling regime (U = 2t), it was shown (12) that hole doping [parametrized
by δ defined in Eq. (2.31)] can destroy the ferrimagnetic order and/or induce phase
separation in AB2 chains. As depicted in Fig. 12 (a), the U = 0 spin degeneracy of the
flat bands is removed by the Coulombian repulsive interaction, in which case a gap
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U opens between the ekσ modes: ek↑ = 0, where spins at sites B1 and B2 are up, and
ek↓ = U, where these spins are down. On the other hand, the two dispersive bands are
spin degenerated, and also display a Hubbard gap U separating the low (αkσ)-energy
and high (βkσ)-energy modes (71).

2.2.2 Strong-coupling limit

In this subsection, we shall introduce a perturbative expansion in the strong-coupling
regime (U� t) in order to obtain a low-energy effective Lagrangian for the AB2 Hub-
bard chain at half filling and in the doped regime. Thereby, we first expand Eq. (2.43) in
power of t/U as follows

(uk,vk) ≈
1√
2

[
1± |εk|

U
+O

(
t2

U2

)]
. (2.45)

Next, it will prove useful to define a set of auxiliary spinless Grassmann fields (69, 70, 71)
in direct space associated with diσ and biσ:

(αi,βi) =

√
1

Nc
∑
k,σ

θ(±σ)eikxi(αkσ,βkσ),

(α
1
2
i ,β

1
2
i ) =

√
1

Nc
∑
k,σ

θ(∓σ)eikxi e−
ik
2 (αkσ,βkσ),

(2.46)

while for the antisymmetric component, one has

ei,σ =

√
1

Nc
∑
k

eikxi ek,σ,

where θ(σ) is the Heaviside function and again, the phase factor e−
ik
2 signalizes the

quasi-1D AB2 structure. Now, by using the Eqs. (2.36), (2.38) and (2.41), we can write
the Grassmann fields diσ and biσ in terms of the Bogoliubov fields αkσ and βkσ:

diσ =
1√
2Nc

∑
k

eikxi [(uk + σvk)αkσ + (uk − σvk)βkσ], (2.47)

biσ =
1√
2Nc

∑
k

eik(xi− 1
2 )[(uk − σvk)αkσ − (uk + σvk)βkσ]. (2.48)

Lastly, by substituting Eq. (2.45) into the Eqs. (2.47) and (2.48), and using the inverse
transformation of (2.46), we can derive a perturbative expansion in powers of t/U for
the Grassmann fields diσ and biσ in terms of the spinless Grassmann fields (2.46) up to
order (t2/U2) as follows:

diσ = θ(σ)αi + θ(−σ)βi +
√

2
t
U

θ(−σ)(α
1
2
i + α

1
2
i+1)

+
t
U

θ(σ)[
√

2(β
1
2
i + β

1
2
i+1)−

t
U
(2αi + αi+1 + αi−1)]

− t2

U2 θ(−σ)(2βi + βi+1 + βi−1), (2.49)
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biσ = θ(−σ)α
1
2
i − θ(σ)β

1
2
i +
√

2
t
U

θ(σ)(αi + αi−1)

− t
U

θ(−σ)[
√

2(βi + βi−1) +
t
U
(2α

1
2
i + α

1
2
i+1 + α

1
2
i−1)]

+
t2

U2 θ(σ)(2β
1
2
i + β

1
2
i+1 + β

1
2
i−1). (2.50)

In the above derivation we have used that θ(σ)θ(σ′) = θ(σ)δσ,σ′ . Notice that, if we let
U→∞ in Eqs. (2.49) and (2.50), a Néel order is found in the half filling regime, where

we identify the fields α
1
2
i ≈ aiA↓ and αi ≈ (aiB1↑ + aiB2↑)/

√
2, a result fully consistent

with the low-energy spin configuration of the ferrimagnetic state discussed previously.
Analogously, for the high-energy bands, the opposite spin configuration is observed,
with spin up (down) present at sites A (B1, B2).

Introducing Eqs. (2.49) and (2.50) into Eq. (2.34), with the aid of Eq. (2.35), we obtain
a perturbative expression forH0 (low-energy sector) in terms of the spinless Grassmann
fields up to order J = 4t2/U:

H0 = −J ∑
i
[α†

i αi + α
( 1

2 )†
i α

1
2
i − β†

i βi − β
( 1

2 )†
i β

1
2
i ]

− J
2 ∑

i
[α†

i αi+1 + α
( 1

2 )†
i α

1
2
i+1 − β†

i βi+1 − β
( 1

2 )†
i β

1
2
i+1 + H.c.]

+U ∑
i
[β†

i βi + β
( 1

2 )†
i β

1
2
i + e†

i↓ei↓]. (2.51)

By applying Fourier transform to the above expression and rearranging the terms, we
obtain

H0 = −∑
k

2J cos2(k/2)(α†
kαk + α

( 1
2 )†

k α
1
2
k )

+∑
k
[2J cos2(k/2) + U](β†

k βk + β
( 1

2 )†
k β

1
2
k )

+
U
2 ∑

kσ

(1− σ)e†
kσekσ. (2.52)

In Fig. 12 we plot the electronic spectrum of the HamiltonianH0, both in the weak and
strong-coupling regime: (a) Eq. (2.42) for U = 2t and (b) Eqs. (2.42) and (2.52) for U = 12t
(J = 4t2/U = 1/3), respectively, with t ≡ 1. We can notice the presence of the shrinking
phenomenon (12) as U increases from 2t to 12t (strong-coupling regime) and that, for
U = 12t, Eq. (2.52) is a very good approximation to Eq. (2.42). Noticeably, the t� U

expansion of the fields allow us to identify α
1
2
k ≈ akA↓, αk ≈ (akB1↑ + akB2↑)/

√
2 (triplet

state) and ek↑ ≈ (akB1↑ − akB2↑)/
√

2 (singlet state), as the low-energy spin configuration
of the ferrimagnetic state with single occupancy, where spins at sites A (B1,B2) are down
(up), in agreement with Lieb’s theorem (21, 12, 13).

In order to describe the most relevant low-energy processes that take place in this
regime, one has to additionally project out the high-energy bands from H0, that is,
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Figura 12 – Electronic spectrum of the Hamiltonian H0: (a) Eq. (2.42) for U = 2t and
(b) Eqs. (2.42) and (2.52) for U = 12t (J = 4t2/U = 1/3), with t ≡ 1. Notice
the band shrinking phenomenon as U increases from 2t to 12t (strong-

coupling regime). The t� U expansion of the fields identifies α
1
2
k ≈ akA↓,

αk ≈ (akB1↑ + akB2↑)/
√

2 and ek↑ ≈ (akB1↑ − akB2↑)/
√

2, where spins at sites
A (B1,B2) are down (up), in agreement with Lieb’s theorem.

terms containing only fields related to the high-energy bands: βi,β
1
2
i ,e†

i↓, are excluded.
Therefore, after the Legendre transformation

H0 = −∑
i,ηi

∂L0

∂(∂τηi)
∂τηi + L0, (2.53)

where ηi = αi,α
1
2
i ,ei↑ (fields related to the low-energy bands), with ∂L0

∂(∂τηi)
= η†

i , the
Lagrangian associated withH0 (up to order J) is given by

L0 = ∑
i
[α†

i ∂ταi + α
( 1

2 )†
i ∂τα

1
2
i + e†

i↑∂τei↑]

−J ∑
i
[α†

i αi + α
( 1

2 )†
i α

1
2
i ]−

J
2 ∑

i
[α†

i αi+1 + α
( 1

2 )†
i α

1
2
i+1 + H.c.]. (2.54)

We shall now focus on the U � t perturbative expansion of Ln, Eq. (2.30), which
amounts to consider the most significant low-energy processes. For the sake of clarity
and completeness, the full derivation of the perturbative expansion of Ln is given in the
Appendix A. Here we restrict ourselves to present the main results. In this view, and
after the use of Eqs. (2.49) and (2.50) for diσ and biσ in terms of the spinless Grassmann
fields, however, terms allowing interband transitions between low- and high-energy
bands still exist in Ln. In consequence, we apply a suitable second-order Rayleigh-
Schrödinger perturbation theory (69, 71), consistent with the strong-coupling expansion,
so that the modes associated with the high-energy bands are eliminated. Lastly, by
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adding L0 to the perturbative expansion of Ln, which leads to the cancellation of the
exchange terms in Eq. (2.54), the effective low-energy Lagrangian density of the AB2

Hubbard model in the strong-coupling limit (up to order J) reads:

Le f f (τ) = L(I) + L(I I) + L(I I I) + L(IV), (2.55)

where
L(I) = ∑

i
α†

i ∂ταi + ∑
i

α
( 1

2 )†
i ∂τα

( 1
2 )

i + ∑
i

e†
i↑∂τei↑, (2.56a)

L(I I) = ∑
iσ

{
θ(−σ)(U(b)†

i ∂τU(b)
i )σ,σα

( 1
2 )†

i α
( 1

2 )
i

+ θ(σ)
1
2
[(U(d)†

i ∂τU(d)
i )σ,σ + (U(e)†

i ∂τU(e)
i )σ,σ]

× (α†
i αi + e†

i↑ei↑) +
[

θ(σ)
1
2
[(U(d)†

i ∂τU(e)
i )σ,σ

+(U(e)†
i ∂τU(d)

i )σ,σ]α
†
i ei↑ + H.c.

]}
, (2.56b)

L(I I I) =− t∑
iσ

{
θ(−σ)(U(b)†

i U(d)
i )σ,−σα

( 1
2 )†

i αi

+ θ(σ)(U(d)†
i U(b)

i+1)σ,−σα†
i α

( 1
2 )

i+1

+ θ(−σ)(U(b)†
i U(e)

i )σ,−σα
( 1

2 )†
i ei↑

+θ(σ)
(

U(e)†
i U(b)

i+1

)
σ,−σ

e†
i↑α

( 1
2 )

i+1 + H.c.
}

, (2.56c)

L(IV) =− J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(d)†

i U(b)
i′ )σ,σ|2α†

i αi

− J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(e)†

i U(b)
i′ )σ,σ|2e†

i↑ei↑

− J
4 ∑

i;i′=i,i−1;σ
θ(−σ)[|(U(b)†

i U(d)
i′ )σ,σ|2

+ (U(b)†
i U(e)

i′ )σ,σ|2]α(
1
2 )†

i α
( 1

2 )
i , (2.56d)

where
U(b)

i =UiA,

U(d,e)
i =

1√
2
(UiB1 ±UiB2),

(2.57)

in which case we took advantage of the symmetry of the AB2 chain under the exchange
operation B1↔ B2, in correspondence with Eq. (2.35). From the above equations, we
see that the kinetic term is represented by L(I) and is related to the charge degrees of
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freedom only, whereas L(I I) describes the dynamics of the spin degrees of freedom
coupled to the charge fields. On the other hand, L(I I I) exhibit first-neighbor hopping
contributions between charge degrees of freedom in the presence of SU(2) gauge fields,
while L(IV) is the spin exchange term in the presence of the charge Grassmann fields.
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3 THE AB2 CHAIN AT HALF FIL-
LING

This Chapter deals with the AB2 chain at half filling, more specifically, its spin
degrees of freedom and the underlying spin quantum fluctuations. In Section 3.1, we
show that the resultant Hamiltonian at half filling and large-U maps onto the spin-
1/2 quantum Heisenberg model. Then, in Section 3.2 we present a perturbative series
expansion in powers of 1/S of the spin-wave modes, which allows us to calculate the
GS energy, sublattice magnetizations, and Lieb GS total spin per unit cell in very good
agreement with previous estimates.

3.1 Half filling regime: Heisenberg model
Let us now discuss some basic aspects of the localized magnetic properties re-

lated to the spin degrees of freedom. At half filling, i.e., δ = 0, we have 〈α†
i αi〉 = 1,

〈α(1/2)†
i α

(1/2)
i 〉 = 1, 〈e†

i↑ei↑〉 = 1, and 〈α†
i ei↑〉 = 0 (no band hybridization) as the electrons

tend to fill up the lower-energy bands, whereas the higher-energy ones remain empty. As
a consequence, a ferrimagnetic configuration of localized spins emerges, i.e., the charge
degrees of freedom are completely frozen, such that 〈α†

i ∂ταi〉 = 〈α(1/2)†
i ∂τα

(1/2)
i 〉 =

〈e†
i↑∂τei↑〉 = 0, with forbidden hopping. Therefore, only terms from LI I and LIV in

Eqs. (2.56b) and (2.56d), respectively, give nonzero contributions. Thus, the resulting
strong-coupling effective Lagrangian at half filling, as defined in Eq. (2.55), reads:

LJ
e f f =∑

iασ

θ(piασ)(U†
iα∂τUiα)σ,σ −

J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(d)†

i U(b)
i′ )σ,σ|2α†

i αi

− J
4 ∑

i;i′=i,i−1;σ
θ(−σ)[|(U(b)†

i U(d)
i′ )σ,σ|2 + (U(b)†

i U(e)
i′ )σ,σ|2]α(

1
2 )†

i α
( 1

2 )
i

− J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(e)†

i U(b)
i′ )σ,σ|2e†

i↑ei↑, (3.1)

or in a more compact form:

LJ
e f f = ∑

iασ

θ(piασ)(U†
iα∂τUiα)σ,σ −

J
4 ∑
〈iα,jβ〉σ

θ(piασ)
∣∣∣(U†

iαUjβ)σ,σ

∣∣∣2 , (3.2)

where the staggered factor piα was defined in Eq. (2.18), and use was made of the
matrix transformations defined in Eq. (2.57) in order to sum up the squares of the SU(2)
gauge-field products in the exchange contribution from LIV in Eq. (2.56d). Now, using
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the following Legendre transform:

H J
e f f = −∑

iασ

∂LJ
e f f

∂(∂τUiα)σ,σ
(∂τUiα)σ,σ + LJ

e f f , (3.3)

where
∂LJ

e f f

∂(∂τUiα)σ,σ
= θ(piασ)(U†

iα)σ,σ, (3.4)

we get the respective quantum Heisenberg Hamiltonian written in terms of the SU(2)
gauge fields

HJ
e f f = −

J
4 ∑
〈iα,jβ〉σ

θ(piασ)
∣∣∣(U†

iαUjβ)σ,σ

∣∣∣2 . (3.5)

Further, using the definition of the SU(2)/U(1) unitary rotation matrix Eq. (2.22), it is
possible to write (69, 70, 71, 72)

Uiα = cos(
θiα

2
)I− i sin(

θiα

2
) [cos(φiα)σ

y − sin(φiα)σ
x] , (3.6)

and by making use of the properties of the Pauli matrices: (σx)σ,σ = 0, (σy)σ,σ = 0 and
(σz)σ,σ = σ, the matrix product in Eq. 3.5 can be written as∣∣∣(U†

iαUjβ)σ,σ

∣∣∣2 =cos2(
θiα

2
)cos2(

θjβ

2
) + sin2(

θiα

2
)sin2(

θjβ

2
)

+ 2cos(
θiα

2
)cos(

θjβ

2
)sin(

θiα

2
)sin(

θjβ

2
)cos(φjβ − φiα), (3.7)

which implies that ∣∣∣(U†
iαUjβ)σ,σ

∣∣∣2 = 1
2
(1 + niα · njβ), (3.8)

where we have used the trigonometric identities 2sin( θ
2)cos( θ

2) = sin(θ), sin2( θ
2) =

1
2(1− cosθ) and cos2( θ

2) =
1
2(1 + cosθ), while niα = sin(θiα) [cos(φiα)x̂ + sin(φiα)ŷ] +

cos(θiα)ẑ is the unit vector pointing along the local spin direction. Lastly, by using
the constraint as given in Eq. (2.27), we can identify the spin field {Siα} at the single
occupied sites:

Siα =
1
2

piαniα, (3.9)

where piα = +1 (−1) at sites α = B1, B2 (A), in order to obtain

HJ
e f f = J ∑

i

[
(SB1

i + SB2
i ) · (SA

i + SA
i+1)

]
− JNc. (3.10)

The above expression is indeed that of the quantum antiferromagnetic Heisenberg
spin-1/2 model on the AB2 chain in zero-field, which takes into account the effects of
zero-point quantum spin fluctuations.
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3.2 Spin-wave excitations
At half filling (δ = 0) and in the strong-coupling regime U� t, the itinerant elec-

trons tend to be highly localized, so that the ground state of the AB2 chain exhibit an
unsaturated ferromagnetic or ferrimagnetic long-range order. As mentioned before, the
origin of this non-saturation is the presence of a local Néel order inside the unit cell
which causes the spins at sites B1 and B2 to align in the opposite direction to the spin
of the site A. This assertion is rigorously supported by Lieb’s theorem(21) and several
numerical techniques (12, 10, 9).

In order to take into account the effects of zero-point quantum spin fluctuations, we
will analyze the Heisenberg Hamiltonian by means of the spin-wave theory, which has
proved very successful in describing the properties of the ground state and low-lying
excited states of spin models. Moreover, the predicted results provide a check of the
consistency of our approach and will be fully used in our description of the doped
regime. In our derivation we will use the Holstein-Primakoff approximation for the
operators associated with spin deviations in relation to the Néel configuration.

We first introduce boson creation and annihilation operators via the Holstein-
Primakoff (73) transformation:

SA,z
i = −S + a†

i ai,

SA,+
i =

√
2Sa†

i

(
1− 1

2S
a†

i ai

) 1
2

=
√

2Sa†
i fA(S), (3.11)

SA,−
i =

√
2S
(

1− 1
2S

a†
i ai

) 1
2

ai =
√

2S fA(S)ai,

for a down-spin on the A site, and

SBl ,z
i = S− b†

libli,

SBl ,+
i =

√
2S
(

1− 1
2S

b†
libli

) 1
2

bli =
√

2S fB(S)bli, (3.12)

SBl ,−
i =

√
2Sb†

li

(
1− 1

2S
b†

libli

) 1
2

=
√

2Sb†
li fB(S),

for an up-spin on the Bl site, with l = 1,2, and

fr(S) =
(

1− 1
2S

nr

)1/2

= 1− 1
2

nr

2S
+ . . . , (3.13)

where S is the spin magnitude, and nr = a†
i ai or b†

libli. The operators a†
i and ai (or b†

li, bli)
satisfy the boson commutation rules [ai,a†

i′ ] = δii′ . Using the known relation between
spin operators:

SA
i · SB

j = SA,z
i SB,z

j +
1
2
(SA,+

i SB,−
j + SA,−

i SB,+
j ), (3.14)
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and after some straightforward but slightly tedious algebra, the spin Hamiltonian,
Eq. (3.10), is mapped onto the equivalent boson Hamiltonian:

H J
e f f = E0 − JNc +H1 +H2 +O(S−1), (3.15)

where
E0 = −4S2 JNc, (3.16)

is the classical ground state energy, whereas

H1 = 2JS∑
i
(2a†

i ai + ∑
l=1,2

b†
libli) + JS∑

i,l

(
a†

i b†
li + aibli + b†

lia
†
i+1 + bliai+1

)
, (3.17)

and

H2 =− J ∑
i,l

(
a†

i aib†
libli + a†

i+1ai+1b†
libli

)
− J

4 ∑
i,l

(
a†

i b†
lib

†
libli + a†

i+1b†
lib

†
libli + a†

i a†
i aib†

li + a†
i+1a†

i+1ai+1b†
li + H.c.

)
. (3.18)

are the quadratic and quartic (interacting) terms of the boson Hamiltonian, suitable to
describe the quantum AB2 Heisenberg model via a perturbative series expansion in
powers of 1/S. Now, we introduce the Bloch-type operator ak, blk through the Fourier
transformation

ai =

√
3
N ∑

k
eikxi ak, (3.19)

bli =

√
3
N ∑

k
e−ik(xi+

1
2 )blk, (3.20)

where k varies over N/3 wave vectors in the first Brillouin zone (BZ), and e−
ik
2 is the

phase factor introduced in Eq. (2.38). Thus, the quadratic boson Hamiltonian is then
given by

H1 = 2JS∑
k
(2a†

k ak + ∑
l

b†
lkblk) + ∑

k,l=1,2
2JSγk(a†

kb†
lk + akblk), (3.21)

where we have defined the lattice structure factor as

γk =
1
z ∑

ρ

eikρ = cos(
k
2
), (3.22)

with z denoting the coordination number (z = 4 for the AB2 chain), while ρ = ±1/2
connects the nearest neighbors A-B1 and A-B2 linked sites of sublattices A and B, and

H2 = −
3J
2N ∑

1234,l=1,2
δ12,34

{
4γ1−4a†

1a4b†
l3bl2

+(γ1a†
1b†

l4b†
l3bl2 + γ1+2−3a†

1a†
2a3b†

l4 + H.c.)
}

, (3.23)
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is the quartic boson interacting Hamiltonian in momentum space. For simplicity we
use the convention 1 for k1, 2 for k2, and so on. Also, the δ12,34 = δ(k1 + k2 − k3 − k4)

is the Kronecker δ function, and expresses the conservation of momentum to within a
reciprocal-lattice vector G.

First, we shall consider H1, which is the term leading to linear spin-wave theory
(LSWT). In fact,H1 can be diagonalized by the following Bogoliubov transformation:

ak = ukβk − vkα†
k ,

b1,2k =
1√
2
(ukαk − vkβ†

k ∓ ξk),
(3.24)

where

uk =
3 +

√
9− 8γ2

k√(
3 +

√
9− 8γ2

k

)2
− 8γ2

k

,

vk =
2
√

2γk√(
3 +

√
9− 8γ2

k

)2
− 8γ2

k

,

(3.25)

satisfy the constraint u2
k − v2

k = 1. Thus,

H1 = E1 + ∑
k
(ε

0(α)
k α†

kαk + ε
0(β)
k β†

k βk + ε
0(ξ)
k ξ†

k ξk); (3.26)

with
E1 = JS∑

k
(
√

9− 8γ2
k − 3), (3.27)

and
ε

0(α,β)
k = JS(

√
9− 8γ2

k ∓ 1), ε
0(ξ)
k = 2JS, (3.28)

where E1 is the O(S1) quantum correction to the GS energy, and ε
0(α,β)
k , ε

0(ξ)
k are the

three spin-wave branches provided by LSWT, both in agreement with previous re-
sults (77, 26). In fact, it is well known that systems with a ferrimagnetic GS naturally
have ferromagnetic and antiferromagnetic spin-wave modes as their elementary mag-
netic excitations (magnons). For the AB2 chain, there are three spin-wave branches:
an antiferromagnetic mode (ε0(β)

k ) and two ferromagnetic ones (ε0(α)
k and ε

0(ξ)
k ). The

mode ε
0(α)
k is gapless at k = 0, i.e., the Goldstone mode, with a quadratic (ferromagnetic)

dispersion relation ε
0(α)
k ∼ k2. The other two modes are gapped. Notice that the gapped

ferromagnetic mode ε
0(ξ)
k is flat, and is closely associated with ferrimagnetic properties

at half filling (12, 24). Since the dispersive modes preserve the local triplet bond, they
are identical to those found in the spin-1/2 - spin-1 chains (78, 79, 80, 81). These chains
also exhibit interesting field-induced Luttinger liquid behavior (82).
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3.2.1 Quartic interactions

Now, our aim is to obtain the leading corrections to LSWT, i.e., second-order spin-
wave theory to the GS energy, sublattice magnetizations and Lieb GS total spin per unit
cell. In doing so, we develop a perturbative scheme for the description of this quartic
term. First, we decompose the two-body terms by means of the Wick theorem, via
normal-ordering protocol for boson operators. Conservation of momentum to within
a reciprocal-lattice vector, implies: k1 = k + q, k2 = p− q, k3 = k and k4 = p. Then, we
need to look at the possible pairings of the 4 operators, as for example, in the first term
of Eq. (3.23):

a†
k+qapb†

l,kbl,p−q, a†
k+qapb†

l,kbl,p−q, a†
k+qapb†

l,kbl,p−q.

Under this procedure, and by substituting the Bogoliubov transformation, Eqs. (3.24)-
(3.25), into Eq. (3.23), we find

H2 = E2 + ∑
k
(δε

(α)
k α†

kαk + δε
(β)
k β†

k βk + δε
(ξ)
k ξ†

k ξk), (3.29)

where
E2/Nc = −2J(q2

1 + q2
2 −

3√
2

q1q2), (3.30)

and the corresponding corrections for the spin-wave dispersion relations read:

δε
(α)
k = J[u2

k(
√

2q2 − 2q1) + 2v2
k(
√

2q2 − q1)]

+ 4Jγkukvk

[
3

2
√

2
q1 − q2

]
+O(S−1), (3.31)

δε
(b)
k = J[v2

k(
√

2q2 − 2q1) + 2u2
k(
√

2q2 − q1)]

+ 4Jγkukvk

[
3

2
√

2
q1 − q2

]
+O(S−1), (3.32)

note that δε
(β)
k can be obtained from δε

(α)
k through the exchange of uk↔ vk, and

δε
(ξ)
k = J(

√
2q2 − 2q1) +O(S−1). (3.33)

In Eqs. (3.30)-(3.33) above, the quantities q1 and q2 are defined by (thermodynamic limit)

q1 =
1

2π

∫ π

−π
dk(v2

k),

q2 =
1

2π

∫ π

−π
dk(γkukvk).

(3.34)

We remark that in deriving Eqs. (3.30)-(3.33), we have neglected terms containing
anomalous products, such as, α†

k β†
k and vertex corrections.
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Lastly, the above results of our perturbative 1/S series expansion lead to the effective
Hamiltonian:

H J
e f f = EJ

GS − JNc + ∑
k
(εα

k α†
kαk + ε

(β)
k β†

k βk + ε
(ξ)
k ξ†

k ξk), (3.35)

where
EJ

GS = E0 + E1 + E2, (3.36)

which can be read from Eqs. (3.16), (3.27), and (3.30), respectively, is the second-order
result up to O(1/S) for the GS energy, and

ε
(s)
k = ε

0(s)
k + δε

(s)
k , with s = α, β,ξ, (3.37)

are the corresponding second-order spin-wave modes, where the linear and the second-
order correction terms are given by Eq. (3.28) and Eqs. (3.31)-(3.34), respectively.

3.2.2 Second-order spin-wave analysis

Our perturbative 1/S series expansion approach is able to improve the LSWT result
for the gap ∆ = J of the antiferromagnetic mode, which should be compared with
the second-order result derived from ε

(β)
k , Eqs. (3.28), (3.31) and (3.37), at k = 0: ∆ =

(1+
√

2q2)J ' 1.676J, in full agreement with similar spin-wave calculations for AB2 (26)
and spin-1/2-spin-1 (80, 81) chains, and in agreement with numerical estimates using
exact diagonalization, ∆ = 1.759J, for both AB2 (10) and spin-1/2-spin-1 (79) chains [see
Fig. 13(a) and 13(b)]. On the other hand, the LSWT predicts a gap ∆ f lat = J for the flat

ferromagnetic mode (ε(ξ)k ) in AB2 chain, whereas our second-order spin-wave theory
finds, using Eqs. (3.28), (3.33) and (3.37): ∆ f lat = (1− 2q1 +

√
2q2)J ' 1.066J, in full

agreement with a similar spin-wave procedure (26). Surprisingly, the estimated value
from Exact Diagonalization (ED) (10): ∆ f lat = 1.0004J, lies between these two theoretical
values. In fact, analytical approaches are still unable to reproduce the observed level
crossing found in numerical calculations (10, 26) for the two ferromagnetic modes [see
Fig 13(b)]. This is probably due to the fact that the different symmetries exhibited by the
localized excitation (flat mode) and the ferromagnetic dispersive mode are not explicitly
manifested in the analytical approaches, so the levels avoid the crossing.

3.2.3 Ground state energy

In the thermodynamic limit, the second-order result for the GS energy of the AB2

chain per unit cell reads:

EJ
GS

Nc
= −4JS2 +

JS
2π

∫ π

−π
dk
(√

9− 8γ2
k − 3

)
− 2J(q2

1 + q2
2 −

3√
2

q1q2). (3.38)
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Figura 13 – Ferromagnetic (dispersive F1 and flat F2) and antiferromagnetic (AF) spin-
wave modes of the AB2 chain. (a) Our analytical results, where the solid
lines represent the LSWT results from our calculations, whereas the dashed,
dotted, and dash-dotted lines are the F1, F2 and AF second-order spin-wave
modes, respectively. (b) Numerical results using exact diagonalization tech-
niques, where the dashed lines are guides for the eye. Notice in panel (b) the
level crossing found in the numerical calculations for the two ferromagnetic
modes. Panel (b), adapted from Ref. (10).

We remark that, at half filling, we shall not consider the constant term−JNc in Eq. (3.15),
with the purpose of comparison with preceding results. Performing the integration
over the first BZ and taking S = 1/2, we obtain that the GS energy per site at zero-field
is given by −0.4869J. This result agrees very well with values obtained using exact
diagonalization (56) (−0.485J) and DMRG (83) (−0.4847J) techniques. For the spin-1/2
- spin-1 chain, the value obtained using DMRG (78) is −0.72704J. To compare it with
our finding, we need to multiply this value by 2/3 (ratio between the number of sites of
the two chains), yielding −0.48469J.

3.2.4 Sublattice magnetizations and Lieb GS total spin per unit cell

In order to derive results beyond LSWT, we introduce staggered magnetic fields
coupled to spins SA,z

i and SBl ,z
i , with l = 1,2, through the Zeeman terms: −hA ∑i SA,z

i
and −hBl ∑i SBl ,z

i , which are added to HJ
e f f in Eq. (3.10). Thus, 〈 SA,z 〉 and 〈 SBl ,z 〉

corresponding to sublattices A and Bl are obtained from

〈 SA,z 〉 = −(1/Nc) ∑
i=1,2

[∂Ei(hA)/∂hA]|hA=0, (3.39)

and an analogous equation for 〈 SBl ,z 〉 using Eqs. (3.27) and (3.30), such that

〈 SA,z 〉 = −S +
1

2π

∫ π

−π
dkv2

k −
(

1
2S

)
q1

π

∫ π

−π
dk

γ2
k

(9− 8γ2
k)

3/2
+O( 1

S2 ), (3.40)
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and

〈 SBl ,z 〉 = S− 1
4π

∫ π

−π
dkv2

k +

(
1

2S

)
q1

2π

∫ π

−π
dk

γ2
k

(9− 8γ2
k)

3/2
+O( 1

S2 ). (3.41)

Carrying out the above integration, we obtain 〈 SA,z 〉 = −0.316343 and 〈 SBl ,z 〉 =
0.408172. These results are in good agreement with those obtained using DMRG (17)
and ED (10) techniques: 〈 SA,z 〉 = −0.2925 and 〈 SBl ,z 〉 = 0.3962, respectively, and with
values for 〈 SA,z 〉 and 2 〈 SBl ,z 〉 for the spin-1/2 - spin-1 chain (78, 79, 80, 81). Although
at zero temperature, the sublattice magnetizations are strongly reduced by quantum
fluctuations, as compared with their classical values, the unit cell magnetization remains
SL ≡ 1/2, where SL is the Lieb GS total spin per unit cell, in full agreement with Lieb’s
theorem (21, 10) for bipartite lattices:

SL =
1
2
‖NA − NB‖ , (3.42)

with NA(NB) denoting the total number of spins in sublattice A(B) per unit cell. The
predicted results provide a check of the consistency of our approach and will be fully
used in our description of the doped regime.
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4 THE t-J HAMILTONIAN: DOPING-
INDUCED PHASES, GROUND
STATE ENERGY AND TOTAL SPIN
PER UNIT CELL

The goal of this Chapter is to derive, using the previously developed approach,
the corresponding t-J Hamiltonian suitable to describe the strongly correlated AB2

Hubbard chain in the doped regime, in which case both charge (Grassmann fields) and
spin (SU(2) gauge fields) quantum fluctuations are considered on an equal footing.

4.1 The AB2 t-J Hubbard Hamiltonian
The t-J model was derived many years ago by Bulaevskii and coworkers (84) to

describe the strong-coupling limit of the single-band Hubbard model. But, only after
Anderson’s proposal (85) that is was the appropriate model to describe the basic me-
chanics underlying high-Tc superconductivity in copper oxide compounds (CuO2), the
study of this model became very active. Notice that, although this question remains
open, the suggestion has intensified the research of many related fundamental topics,
such as: itinerant electron magnetism, Mott metal-insulating transition, and critical
quantum phenomena.

Continuing with our approach, the t-J Hamiltonian can be derived by means of the
following Legendre transformation to Eq. (2.55):

Ht-J
e f f = − ∑

i,µ=b,d,e

∂Le f f

∂(∂τU(µ)
i )σ,σ

(∂τU(µ)
i )σ,σ −∑

i,νi

∂Le f f

∂(∂τνi)
∂τνi + Le f f , (4.1)

where
∂Le f f

∂(∂τνi)
= ν†

i , with νi = αi,α
1
2
i ,ei↑, (4.2)

whereas
∂Le f f

∂(∂τU(b)
i )σ,σ

= θ(−σ)(U(b)†
i )σ,σα

( 1
2 )†

i α
( 1

2 )
i , (4.3)

and

∂Le f f

∂(∂τU(d,e)
i )σ,σ

= θ(σ)
1
2
[(U(d,e)†

i )σ,σ(α
†
i αi + e†

i↑ei↑) + (U(e,d)†
i )σ,σ(α

†
i ei↑ + e†

i↑αi)], (4.4)
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from which we can write the effective t-J Hamiltonian as

Ht-J
e f f =Ht +H J , (4.5)

where

Ht =− t∑
iσ
{θ(−σ)(U(b)†

i U(d)
i )σ,−σα

(1/2)†
i αi + θ(σ)(U(d)†

i U(b)
i+1)σ,−σα†

i α
(1/2)
i+1

+ θ(−σ)(U(b)†
i U(e)

i )σ,−σα
(1/2)†
i ei↑ + θ(σ)(U(e)†

i U(b)
i+1)σ,−σe†

i↑α
(1/2)
i+1 + H.c.}, (4.6)

and

H J =− J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(d)†

i U(b)
i′ )σ,σ|2α†

i αi

− J
4 ∑

i;i′=i,i+1;σ
θ(σ)|(U(e)†

i U(b)
i′ )σ,σ|2e†

i↑ei↑

− J
4 ∑

i;i′=i,i−1;σ
θ(−σ)[|(U(b)†

i U(d)
i′ )σ,σ|2

+ |(U(b)†
i U(e)

i′ )σ,σ|2]α(
1
2 )†

i α
( 1

2 )
i . (4.7)

Notice that Eqs. (4.6) and (4.7) are identical to Eqs. (2.56c) and (2.56d), since Eqs. (2.56a)
and (2.56b) were eliminated through the Legendre transformation.

Some digression onHt-J
e f f is in order. One of the key properties of quasi-1D interacting

quantum systems is the phenomenon of spin-charge separation, leading to the formation
of spin and charge-density waves, which move independently and with different
velocities. It has been demonstrated (31) that for δ > 2/3 the low-energy physics of the
doped AB2 Hubbard chain in the U = ∞ coupling limit is described in terms of the
Luttinger-liquid model, with the spin and charge degrees of freedom decoupled. Most
importantly, recently it has been shown that for the AB2 t-J Hubbard chains (9) charge
and spin quantum fluctuations are practically decoupled, as suggested by the emergence
of charge-density waves in anti-phase with the modulation of the ferrimagnetic order.
In this context, one can make use of this feature to formally split each term of the
t-J Hamiltonian, Eqs. (4.5)-(4.7), into a product of two independent terms acting on
different Hilbert spaces, i.e., we can enforce spin-charge separation and calculate the
charge and spin correlation functions in a decoupled fashion. In order to further proceed
with the calculations, it is important to establish the regime of relevance to our model.
We focus on the underdoped regime and values of J > 0, where electrons tend to
become itinerant. In this regime, the formation of ferromagnetic polarons, a signature
of Nagaoka phenomenon, is strongly reduced for not very low values of J (9).

Therefore, from the above discussion, we will consider that the charge correlation
functions are well described by an effective spinless tight-binding model (31, 71, 86),
since the hole (charge) density waves develop along the x-axis in anti-phase with the
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modulation of the ferrimagnetic structure, as numerically observed (9) (see Fig. 10 (b),
Chapter. 1). So, using Eqs. (2.46), with a/2→ a (effective lattice spacing of the linear
chain: distance between A and B sites, see Fig. 10 (a) in Chapter. 1, we find

〈 α
(1/2)†
i αi 〉=

1
Nc

∑
kk′

e−ik(xi−1)eik′xi 〈Ψ0 |α†
kαk′ | Ψ0〉=

1
π

∫ kF(δ)

−kF(δ)
eikdk =

2
π

sin[kF(δ)], (4.8)

with |Ψ0〉 being the hole-doped ferrimagnetic GS, whereas

kF(δ) = π
Nh
N
≡ πδ, (4.9)

is the Fermi wave vector of the spinless tight-binding holes. In the same fashion:

〈 α†
i α

(1/2)
i+1 〉 =

2
π

sin[kF(δ)], (4.10)

and 〈 α
(1/2)†
i ei↑ 〉 = 〈 e†

i↑α
(1/2)
i+1 〉 = 0, while

〈 α†
i αi 〉 = 〈 α

(1/2)†
i α

(1/2)
i 〉 = 〈 e†

i↑ei↑ 〉 = (1− 1
2π

∫ kF(δ)

−kF(δ)
dk) = (1− δ). (4.11)

Here, we remark that the itinerant holes (away from half filling) are associated with the
lower-energy dispersive αk and α

(1/2)
k bands [see Fig. 12 (b)], thus contributing to the

kinetic Hamiltonian in Eq. (4.6). On the other hand, the local correlations related to the
lower-energy bands αk, α

(1/2)
k and ek↑, contribute equally to the exchange Hamiltonian

in Eq. (4.7).
Thereby, using the above tight-binding results for the charge correlation functions,

Ht-J
e f f in Eqs. (4.5)-(4.7) gives rise to the δ-dependent Hamiltonian

Ht-J
e f f (δ) =Ht

e f f (δ) +H J
e f f (δ), (4.12)

which can be written as

Ht-J
e f f (δ) =− t

2
π

sin[kF(δ)]∑
i
[(U(b)†

i U(d)
i )↓↑ + (U(d)†

i U(b)
i+1)↑↓ + H.c.]

− J(1− δ)

4 ∑
〈iα,jβ〉σ

θ(piασ)|(U†
iαUjβ)σ,σ|2, (4.13)

where the sum over σ was evaluated in Eq. (4.6) and the square of the SU(2) gauge-field
products in the exchange contribution have been summed up in Eq. (4.7), so that this
contribution is just (1− δ) timesH J

e f f at half filling, Eq. (3.5), or alternatively, in terms
of spin fields, Eq. (3.10), or spin-waves, Eqs. (3.35)-(3.37).

On the other hand, the SU(2) gauge fields matrix elements:
(

U(b)†
i U(d)

i

)
↓↑

and(
U(d)†

i U(b)
i+1

)
↑↓

, that appears in the kinetic contribution to Eq. (4.13), can be written in
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terms of the spin fields (71, 72) as

(U(b)†
i U(d)

i )↓↑ + H.c. =∑
l

1√
2

(√
1− 2SBl ,z

i + 2SA,z
i − 4SA,z

i SBl ,z
i

+
√

1− 2SA,z
i + 2SBl ,z

i − 4SA,z
i SBl ,z

i

)
, (4.14)

and similarly

(U(d)†
i U(b)

i+1)↑↓ + H.c. =∑
l

1√
2

(√
1− 2SBl ,z

i + 2SA,z
i+1 − 4SA,z

i+1SBl ,z
i

+
√

1− 2SA,z
i+1 + 2SBl ,z

i − 4SA,z
i+1SBl ,z

i

)
. (4.15)

Note that, the above term,
(

U(d)†
i U(b)

i+1

)
↑↓

, can be obtained from Eq. (4.14) through the

replacement SA,z
i → SA,z

i+1. Also notice that these square-root matrix elements depend on
z-spin components only.

At this stage, it will prove useful, in the calculation of the GS total spin in the
doped regime, to consider Ht-J

e f f (δ,h) which describes the system in the presence of a
homogeneous magnetic field h = hẑ = (−hA + hB1 + hB2)ẑ, where the staggered fields
point along the local corresponding magnetizations in the ferrimagnetic phase have the
same magnitude h. The magnetic field couples with the spin fields through the Zeeman
term (see Section 3.2.4) and with the charge degrees of freedom through the magnetic
orbital coupling in the Landau gauge: A = hxŷ. Since our aim is to study doping effect
on the magnetization, we shall assume vanishingly small magnetic field in the context
of linear response theory and perturbative expansion in the strong-coupling regime.
Additionally, the magnetic orbital coupling can be considered through the so-called
Peierls substitution (32, 87, 88):

t→ tei
∫

jβ
iα

A·dl, (4.16)

where iα and jβ are first-neighbor sites, and the flux quantum φ0 = hc/e ≡ 1. If one con-
sider that the carrier is at the site iA, we have four hopping possibilities: iA→ iB1,2 and
iA→ (i + 1)B1,2, so the total phase φ acquired by the carrier in this prescription satisfies
Stokes’ theorem: φ =

∮
unitcell A · dl =

∫∫
S h · dS = ha2 (a ≡ 1). We also remark that, in

order to obtain real values for the zero-field staggered magnetizations, we have conside-
red, for convenience, an imaginary gauge transformation (72, 89): A→ iA. Therefore, by
placing Eq. (4.14) and the similar matrix element into the kinetic term in Eq. (4.13), ma-
king the above Peierls substitution, and using the Holstein-Primakoff and Bogoliubov
transformations introduced in Eqs. (3.11)-(3.13) and Eqs. (3.24)-(3.25), respectively, up to
order O(S−1), we arrive at the following diagonalized kinetic HamiltonianHt

e f f (δ,h):

Ht
e f f (δ,h) = −4

√
2

π
te−(−hA+hB1+hB2 ) sin[kF(δ)]∑

k
[4S− 3v2

k

−(u2
k + 2v2

k)α
†
kαk − (2u2

k + v2
k)β†

k βk − ξ†
k ξk], (4.17)



Capítulo 4. THE t-J HAMILTONIAN: DOPING-INDUCED PHASES, GROUND STATE ENERGY AND
TOTAL SPIN PER UNIT CELL 56

where the doping-induced contributions for the spin dispersion relations are evidenced
in the last three terms. On the other hand, by adding the Zeeman terms (see Section 3.2.4)
to the exchange contribution HJ

e f f (δ), given in Eq. (4.13), we obtain H J
e f f (δ,h). Lastly,

by combining the kinetic and the exchange contributions, we arrive at the effective t-J
Hamiltonian in the presence of a magnetic field:

Ht-J
e f f (δ,h) = −4

√
2

π
te−(−hA+hB1+hB2 ) sin(

kF

2
)∑

k
(4S− 3v2

k) + J(1− δ)(EJ
GS − JNc)

+ ∑
k
[ε

(α)
k (δ)α†

kαk + ε
(β)
k (δ)β†

k βk + ε
(ξ)
k (δ)ξ†

k ξk]

− hA ∑
i

SA,z
i − hB1 ∑

i
SB1,z

i − hB2 ∑
i

SB2,z
i , (4.18)

where EJ
GS is given by Eq. (3.36) and (3.38), and the corresponding spin-wave modes

[see Eqs. (4.17), (3.28), (3.31)-(3.34), and (3.37)] of the doped AB2 t-J chain read:

ε
(α)
k (δ) =

4
√

2
π

tsin(πδ)[u2
k + 2v2

k] + (1− δ)(ε
0(α)
k + δε

(α)
k ), (4.19)

ε
(β)
k (δ) =

4
√

2
π

tsin(πδ)[v2
k + 2u2

k] + (1− δ)(ε
0(β)
k + δε

(β)
k ), (4.20)

note that ε
(β)
k (δ) can also be obtained from ε

(α)
k (δ) through the exchange of uk↔ vk and

the replacements: α→ β, and

ε
(ξ)
k (δ) =

4
√

2
π

tsin(πδ) + (1− δ)(ε
0(ξ)
k + δε

(ξ)
k ). (4.21)

We find it instructive to comment on the analytical structure of the above equations.
Firstly, we mention the presence of the Bogoliubov parameters [see Eqs. (3.25)] in a
symmetric form in the kinetic terms of Eqs. (4.19) and (4.20). Second, although the flat
mode is strongly affected by the presence of holes, note that it remains dispersionless.
In addition, using Eqs. (4.18) and (3.34), the total GS energy (no spin-wave excitations)
per unit cell in the thermodynamic limit is readily obtained:

Et-J
GS(δ,h)/Nc = −

4
√

2
π

te−(−hA+hB1+hB2 ) sin(πδ)(4S− 3q1)

+ (1− δ)(EJ
GS/Nc − J)− 〈 SA,z 〉hA − ∑

l=1,2
〈 SBl ,z 〉hBl , (4.22)

where 〈 SA,z 〉 and 〈 SBl ,z 〉 are the calculated sublattice magnetizations, at half filling
and zero-field, given by Eqs. (3.40) and (3.41).

In Sections 4.2, 4.3, and 4.4, we will show that the underlying competing physical
mechanisms: the magnetic orbital response and the Zeeman contribution embedded in
Eqs. (4.18)-(4.22) will dramatically affect the behavior of the system under hole doping
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and, in particular, will lead to spiral IC spin structures, the breakdown of the spiral
ferrimagnetic GS at a critical value of the hole doping, a region of phase separation, and
RVB states at δ ≈ 1/3.

4.2 Doped regime: Spin-wave modes
Before we go one step further to discuss relevant macroscopic quantities, i.e., the

GS energy and total spin in the doped regime, we shall first undertake a detailed study,
at a microscopic level, of the hole-doping effect on the calculated spin-wave branches
given by Eqs. (4.19)-(4.21).

Figure. 14 depicts the second-order spin-wave dispersion relations at J/t = 0.3 and
for the indicated values of δ. Without loss of generality, we set t = 1 in our numerical
computations. At half filling, the antiferromagnetic mode ε

(β)
k , together with the two

ferromagnetic modes: the dispersive ε
(α)
k and the flat one ε

(ξ)
k , are shown in Fig. 14(a),

which are defined in Eq. (3.37), and can be plotted using Eqs. (3.28) and (3.31)-(3.34).
As the hole doping increases slightly, the abrupt decrease of the peaks at k = 0 and

k = π of the numerical DRMG structure factor (see Fig. 11), associated with the ferri-
magnetic order, manifests itself here through the opening of a gap in the ferromagnetic
Goldstone mode ε

(α)
k , as seen in Fig. 14(b), thus indicating that the system loses its

long-range order. Note that the antiferromagnetic mode ε
(β)
k is also similarly shifted. On

the other hand, although the dispersion relation is modified for small values of the wave
vector k, the minimum value of ε

(α)
k still remains at k = 0 up to the onset of the formation

of spiral IC spin structures at δc(IC) = 0.043 (a value that should be compared with the
numerical DMRG estimate of δ ≈ 0.055± 0.012), characterized by the flattening of the
dispersive spin-wave branches around zero. Upon further increase of δ, two minima
form (around k = 0) and move away from each other as one enhances the hole doping.
This behavior is the signature of the occurrence of spiral IC spin structures (see Fig. 11).
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Onset of IC

Onset of PS

(b)(a)

(c) (d)

Figura 14 – Evolution of the zero-field second-order spin-wave dispersion relations of
the AB2 t-J chain at J/t = 0.3 as a function of hole doping (δ): dispersive
ferromagnetic ε

(α)
k and antiferromagnetic ε

(β)
k modes and the flat ferromag-

netic one ε
(ξ)
k , at (a) half filling; (b) the onset of the spiral IC spin structures

at δc(IC) = 0.043, in which case the flattening of the gap of ε
(α)
k around k = 0

is observed; (c) the onset of PS at δ(PS) = 0.165, characterized by the overlap
of the two ferromagnetic modes at k = 0 and by the spatial coexistence of
two phases: spiral IC spin structures, with modulation fixed at δ(PS), and
RVB states at δ ≈ 1/3. (d) At δ = 1/3 the flat mode presents the lowest
energy, thus indicating that the short-range RVB state is the stable phase.

Figure. 14(c) shows the onset of phase separation (PS) at δ(PS) = 0.165, which is
characterized by the overlap of the two ferromagnetic modes at k = 0. The signature of
this regime is the spatial coexistence of two phases: spiral IC spin structures at δ(PS) =
0.165 and RVB states at δ ≈ 1/3, in very good agreement with the numerical estimate
of δIC−PS ≈ 0.16 (9). At δ ≈ 1/3, the flat mode has the lowest energy, as illustrated in
Fig. 14(d). This behavior indicates that the RVB state is the stable phase at δ ≈ 1/3 and
J/t = 0.3 (9), and also in agreement with the numerical DMRG studies (17, 31) and
analytical prediction at U = ∞ (71).
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Figura 15 – Evolution of kmin (value of k at the local minimum of ε
(α)
k (δ) near k = 0) at

J/t = 0.3 as a function of δ: doped ferrimagnetism for 0 < δ < δc(IC)≈ 0.043;
spiral IC spin structures with non-zero (zero) SGS for δc(IC) < δ < δc ≈ 0.08
(δc < δ < δ(PS) ≈ 0.165), with a second-order quantum phase transition at
δc(IC) characterized by a square-root behavior [δ− δc(IC)]1/2 (blue line),
and a first-order transition at δ(PS) involving the IC spin structure, with
modulation fixed at δ(PS), and short-range RVB states at hole concentration
1/3. The inset shows DMRG data from Ref. (9) for ∆k ≡ kmax − π as a
function of δ, where kmax is the value of k at the local maximum of the
structure factor S(k) near k = π, in qualitative agreement with the second-
order transition at δc(IC).

In order to better understand the rich variety of doping-induced phases in this
system at J/t = 0.3, in Fig. 15 we plot the evolution of the wave vector kmin correspon-
ding to the local minimum of ε

(α)
k (δ), upon increasing the hole doping δ from 0 to 1/3.

The wave vector kmin remains zero until it hits the onset doping value δc(IC) = 0.043,
beyond which a square-root growth behavior takes place (90): [δ− δc(IC)]1/2 (blue line),
for δ close to δc(IC). The square-root growth behavior is the signature of the occurrence
of a second order quantum phase transition from the doped ferrimagnetic phase to
the IC state with a non-zero value of the total GS spin, SGS. This result is supported
by the behavior of ∆k ≡ kmax − π at which the local maximum of the numeric DMRG
structure factor S(k) near k = π is observed, as shown in the inset of Fig. 15 [taken from
the inset of Fig. 11(b)]. For further increase of hole doping our result deviates from
the square-root growth behavior and some very interesting features are to be noticed.
The value of δc = 0.08 indicates the breakdown of the total SGS in the IC phase, as will
be confirmed by the explicit calculation of SGS, a macroscopic quantity, in Section 4.4.
Thus, for 0.08 < δ < 0.165 the system displays an IC phase with zero SGS, in agreement
with the DMRG data (see Fig. 1(c) of Ref. (9)). At δ(PS) = 0.165 the system exhibits
a first-order transition accompanied by the spatially phase separation regime: the IC
phase with zero SGS and modulation fixed by δ(PS) in coexistence with the short-range
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RVB states at δ ≈ 1/3, also consistent with the DMRG data plotted in Fig. 4 of Ref. (9).
Lastly, we emphasize that, despite the occurrence of several doping-induced phases

in the DMRG studies (9): Lieb ferrimagnetism, spiral IC spin structures, RVB states with
finite spin gap, phase separation, and Luttinger-liquid behavior, it is surprising and
very interesting that the second-order spin-wave modes remain stable up to δ ≈ 1/3,
with predictions in very good agreement with the DMRG studies (9). In this context,
it is worth mentioning the long time studied case of rare earth metals (91, 92), where
an external magnetic field can induce non-trivial phase transitions involving spiral
spin structures, well described by spin-wave theory. Further, it is worth mentioning
that the DMRG results clearly indicate that, for δ > 2/3 (onset at δ = 2/3) the system
behaves as a Luttinger liquid (31, 27), which is outside of the scope of the spin-wave
approach used in this work. In fact, in this regime the system can be mapped onto an
effective linear Hubbard chain and the original approach devised in Ref. (69, 70) using
a perturbative scheme based on a soliton representation, including finite hole doping,
allows the derivation of results compatible with those of the Bethe ansatz.

4.3 Doped regime: Ground state energy
Performing the integration over the first BZ in Eqs. (3.34) and (3.38) and by setting

S = 1/2 in Eq. (4.22), we find the AB2 t-J ground state energy per unit cell as a function
of hole doping in zero-field:

Et-J
GS(δ)/JNc = −1.9543

t
J

sin (πδ)− 2.4608 (1− δ) . (4.23)

We shall now examine the case of small hole doping away from half filling, i.e., with
hole concentration ranging from δ = 0 up to δ = 0.2 for two values of J/t: 0.1 and 0.3. In
Fig. 16, we show the evolution of the GS energy per unit cell of the AB2 t-J model as
a function of hole doping for both mentioned values of J/t, and the comparison was
made with the numerical DMRG data (9). From the two results at J/t = 0.3, the only
quantitative difference induced by the increase of the hole concentration is a crossing
feature around δ ≈ 0.1, where our analytical result slightly change its behavior by
lowering the energy with respect to the numerical data (9). In fact, because our model
assumes a ferrimagnetic state as starting point, this change of behavior suggests that
we have entered in a region of strong magnetic instabilities, and possibly indicating
a smooth transition to an incommensurate phase with zero GS total spin beyond
δ ≈ 0.1, as confirmed by the numerical data in Ref. (9) and illustrated in Fig. 15. On
the other hand, at J/t = 0.1, although our results reproduce the numerical data with
acceptable agreement, we observe a discrepancy that increases with δ. The cause of such
discrepancy will be discussed in the next section.
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Figura 16 – Analytical prediction for the ground state energy per unit cell of the doped
AB2 t-J chain as a function of doping, and comparison with numerical data
from DMRG technique for J/t = 0.1 and J/t = 0.3 (9). At half filling (δ = 0),
both results meet at the expected prediction (9): ≈ −2.4678. Note that we
have added the term−JNc with the intention of comparison with numerical
calculation.

Now, with the purpose of determining the interplay between the contribution of
magnetic exchange and the itinerant kinetic energy to the zero-field GS energy, Eq. (4.22),
we take J/t = 0.3 and show its evolution as a function of hole doping in Fig. 17. We can
see in the insets, Fig. 17(a) and Fig. 17(b), the competitive behavior of the two energetic
contributions, i.e., the contribution of the exchange energy increases linearly with δ,
while a practically linear decrease of the hopping term is observed as one enhances the
hole doping. This competition indicates that a phase transition to a paramagnetic phase
should occur at some critical concentration value.

4.4 Doped regime: Ground state total spin
The existence of a transition from an IC spiral ferrimagnetic phase to an IC paramag-

netic one is a most interesting feature observed numerically in doped AB2 t-J Hubbard
chains (9). In order to firmly corroborate the mentioned transition, we have calculated
the GS total spin per unit cell as a function of the hole doping concentration,

SGS(δ) = 〈 SA,z 〉 (δ) + 〈 SB1,z 〉 (δ) + 〈 SB2,z 〉 (δ), (4.24)

by means of the zero-field derivative of Eq. (4.22):

〈 Sα,z 〉 (δ) = −(1/Nc)[∂Et-J
GS(δ,h)/∂hα]|hα=0, α = A,B1,B2. (4.25)
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Figura 17 – Ground-state energy per unit cell for the AB2 t-J chain as a function of δ for
J/t = 0.3. In the insets, we illustrate the two energetic contribution due to
(a) exchange and (b) hopping terms.

Thus, we find

〈 SA,z 〉 (δ) = 〈 SA,z 〉+ 4
√

2
π

tsin(πδ)(4S− 3q1), (4.26)

and

〈 SBl ,z 〉 (δ) = 〈 SBl ,z 〉 − 4
√

2
π

tsin(πδ)(4S− 3q1), with l = 1,2, (4.27)

where 〈 SA,z 〉 and 〈 SBl ,z 〉 are given by Eqs. (3.40) and (3.41). Therefore, by performing
the integration over the first BZ of the three contributions in Eqs. (4.26) and (4.27), we
finally obtain:

SGS (δ)

SL
= 1− 3.9086sin(πδ), (4.28)

where
SL = ∑

α

〈 Sα,z 〉 = 1/2, (4.29)

is Lieb’s reference value for the GS total spin per unit cell at half filling and zero-field
(see Section 3.2.4). We stress that, as discussed in Section 3.2.4, Lieb’s value SL = 1/2
per unit cell at half filling is fixed regardless of the local quantum fluctuations of the
sublattice magnetizations at sites A, B1, and B2, which do depend on the Coulomb
coupling U, as shown by DMRG calculations in Ref. (10).

In Fig. 18 we plot the evolution of SGS, normalized by SL, as a function of δ, and com-
pare it with the numerical data from DMRG and Lanczos techniques (9), for J/t = 0.3
(red squares) and J/t = 0.1 (blue circles). In the latter (former) case, the system un-
dergoes a transition from the modulated itinerant ferrimagnetic phase to an incom-
mensurate phase with zero (nonzero) SGS. Notice that, in both cases, the transition is
characterized by a decrease of SGS from SL to 0 or to a residual value, regardless of the
value that SGS takes after the transition. Indeed, at J/t = 0.1 and δ > 0.1, the formation
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Figura 18 – Numerical (DMRG data) and analytical results of the ground-state total
spin SGS per unit cell (solid magenta line), normalized by its value in the
undoped regime: SL = 1

2 , as a function of hole doping δ for the indicated
values of J/t. In the figure, δc ≈ 0.08 indicates the critical value of doping at
which the magnetic order is suppressed and a second-order phase transition
takes place. DMRG data taken from Ref. (9).

of magnetic polarons (onset of the Nagaoka phenomena that sets in as U→ ∞) with
charge-density waves in phase with the modulation of the ferrimagnetic structure, as
indicated by the DMRG data (9), leads to an incommensurate phase with nonzero SGS.

Most importantly, we can observe in Fig. 18 that the value of SGS decreases practi-
cally linearly with δ until the magnetic order is completely suppressed at δc ≈ 0.08. This
behavior is supported by numerical results (9), particularly in the regime where the
Nagaoka phenomenon is not manifested, that is, at J/t = 0.3, as indicated in Fig. 15, in
which case charge-density waves are in antiphase with the modulation of the ferrimag-
netic structure. In this regime, spin and charge quantum fluctuations destabilize the
ferrimagnetic structure and triggers a transition to an incommensurate paramagnetic
phase at δc, with SGS ∼ (δ− δc)→ 0.

Lastly, we remark that the main results of Part I form the body of a manuscript
submitted for publication in the Journal of Physics: Condensed Matter, entitled “Lieb
and hole-doped ferrimagnetism, spiral, resonating valence-bond states, and phase separation in
large-U AB2 Hubbard chains” (93).
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5 EDGE STATES IN ONE-
DIMENSIONAL LATTICES

5.1 Introduction
Among the greatest achievements of modern condensed matter physics is the disco-

very of graphene and topological insulators. As a result, new families of materials have
emerged expanding the field of research in both basic and applied physics, as well as
spanning across computational sciences and industry in general. In 2004, K. S. Novo-
selov and A. K. Geim isolated graphene for the first time, a material composed solely
of carbon atoms (94). Shortly after, in 2010, the Nobel Prize in Physics was awarded
jointly to K. S. Novoselov and A. K. Geim for groundbreaking experiments regarding
the two-dimensional material graphene. One of the most outstanding properties of
this material is its thickness of only one atom, which is why it can be considered as a
real two-dimensional material (see Fig. 19). Also, due to the strong confinement of the
electrons in its interior it shows many interesting properties that can be very useful in
technological applications (95, 96).

Figura 19 – A partial view of graphene, which is an allotrope (form) of carbon consisting
of a single layer of carbon atoms arranged in a hexagonal lattice. Taken from
Wikipedia.

On the other hand, in 2005 the quantum spin Hall insulator was theorized to exist
in graphene by C. L. Kane and E. J. Mele (97). Remarkably, only two years later it
was experimentally observed, in the group led by Shou-Cheng Zhang, the existence of
topological states in HgCdTe quantum well structures (98) (see Fig. 20). This was the
first determination of an intrinsic topological insulator. Here the definition of intrinsic
is by reference to intrinsic semiconductors: its Fermi level lies in between the bulk
conduction band minimum and the bulk valence band maximum and only intersects
the metallic surface state. A couple of decades earlier, Klaus von Klitzing had discovered
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Figura 20 – Schematic view of the spin-polarized edge channels in a quantum spin Hall
insulator. Taken from Ref. (98).

the quantum Hall effect in a two-dimensional electron gas, in the presence of a strong
magnetic field (99). Both cases aroused great interest in the scientific community due to
the potential applications that can provide the robustness and directionality of electron
and spin transport in topological insulators.

Indeed, these discoveries generated great advances in various fields of physics. One
of them is condensed matter that focuses on the discovery and classification of the
different phases of matter, as well as explain the novel behaviors that emerge when
many degrees of freedom interact. Furthermore, this sequence of breakthroughs allowed
the connection between two scientific areas so far independent: topology (branch of
mathematics) and condensed matter (branch of physics). So, in little more than 10
years, a new field of research was developed whose objective is the theoretical and
experimental study of materials that behave as topological insulators.

Lastly, it is important to mention that, in 1982, D. Thouless and collaborators explai-
ned the very precise quantization of the Hall conductance in two-dimensional electron
gases using topological concepts (100). Soon after, in 1983 Duncan Haldane derived a
theory for spin chains that incorporated effects of topology in a crucial way (101, 102).
He predicted, based on this, that chains with integer and half-integer spins should be
qualitatively different, and this totally unexpected effect was later confirmed by expe-
riments. As a result, in 2016 the Nobel Prize in Physics was awarded with one half to
David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz,
for their theoretical discoveries of topological phase transitions and topological phases
of matter.



Capítulo 5. EDGE STATES IN ONE-DIMENSIONAL LATTICES 66

5.2 Topological insulators
In recent years, physics and mathematics have found a new connection point in the

area of topological insulators (103). Until 1980, the electrical properties of matter were
described using the successfully band theory of solids, widely used in solid-state physics.
In this way, the systems were classified into common insulators (trivial), semiconductors
and metals, according to whether or not they present a gap in the electronic structure.
However, in 1980 Klaus von Klitzing discovered, a novel material with unexplained
and fascinating properties (99), which is now known as a topological insulator.

Roughly speaking, topology is a concept of classifying objects by their global pro-
perties (104). Two objects belong to the same topological class if and only if they can be
continuously transformed into each other without violating certain sets of rules. In other
words, topology describes the properties that remain intact when an object is stretched,
twisted or deformed, but not if it is torn apart. In this view, topological insulators arise
as a new phase of matter.

A topological insulator is characterized by the absence of electrical conduction in the
bulk (hence its name of insulator) and by the presence of metallic states that carry current
at the edges or faces, i.e., the surfaces are metallic because of its topological surface
states. Metallic states are protected by system-specific symmetries such as inversion,
time-reversal or chiral symmetry, among others (103, 105, 106). This protection makes
the electrical conduction extremely robust against disorder or sample imperfections,
a feature that is of great interest for possible applications in the industry in general.
The electrical properties and robustness of these materials can be explained from their
topological character, which is determined by calculating a mathematical invariant (100,
104). As a result, topological order is now considered a main ingredient of modern band
theory.

The starting point in the development of this new branch of physics was mainly
experimental, through the measurement of the integer quantum Hall effect (see Fig. 21)
in two-dimensional electron gases (99). The theoretical connection with topology is,
in fact, more recent in time. However, only through this connection were many of the
previously obtained experimental results justified, in addition to allowing to make
new predictions that expanded the field of study, the interest and the application of
topological insulators.

5.3 Topological invariants
The first theoretical explanation of the integer quantum Hall effect was formulated

in 1982 by David J. Thouless (100), a couple of years after its experimental discovery,
based on a previous argument by Robert B. Laughlin (107). Specifically, it states that the



Capítulo 5. EDGE STATES IN ONE-DIMENSIONAL LATTICES 67

Figura 21 – Resistivities of the integer quantum Hall system, as functions of the mag-
netic field. The red line shows the longitudinal resistivity ρxx, it is zero as
long as ρxy sits on a plateau level and spikes whenever ρxx changes from
one plateau to the next. The green line denotes the Hall resistivity ρxy, it
takes on a plateau form, i.e. it is constant over a range of magnetic fields.
Image adapted from Ref. (99).

Figura 22 – Topology is interested in properties that change step-wise, like the number
of holes in the above objects (left panel). Moreover, topology explains why
electrical conductivity inside thin layers changes in integer steps (right
panel). Taken from Ref. (108).

Hall conductance in a two-dimensional band insulator can be expressed in terms of the
Berry curvature:

σxy =
e2

h̄

∫
BZ

dk
(2π)2 Ωkx,ky = n

e2

h
, (5.1)

with the Berry curvature defined as Ωn(k) = i∇k〈ψn(k)|∇k|ψn(k)〉, where ψn(k) are
the Bloch wave functions. The final result is consistent with what is observed experi-
mentally: the conductance is quantized in integer units of e2/h and is proportional to
the number of edge states (see Fig. 21).

In topology it is possible to classify objects according to an invariant, that is, a
property that does not change in the face of smooth deformations (104). A typical
example of invariant is the number of holes in a material: it is possible to smoothly
deform a sphere until it becomes a glass (0 holes), but to obtain a mug it is necessary
to create a hole (the one in the handle), so the sphere and the mug belong to two
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different topological groups (see Fig. 22). Similarly, the mug can be deformed to obtain
a doughnut but not a pair of glasses (it has two holes). This whole idea can be extended
to physics. Then, it is possible to use the notions of topology to distinguish trivial
insulators from topological insulators.

On the other hand, topological invariants commonly used in physics count, instead
of the number of holes in an object, the number of poles in the wave function of the
material under study (100). For instance, the relevant invariant in two dimensions is the
Berry phase, which is essentially the geometric phase acquired after an adiabatic loop in
the Brillouin zone. The topological invariants are then a non-local measure (involving
the wave function) that characterizes the bulk of the material.

5.4 Bulk-boundary correspondence
The bulk-boundary correspondence in Hermitian systems establishes a relation

between a bulk property of a (translational-invariant) lattice, encoded in a topological
invariant (obtained from the Bloch-type eigenstates), and what happens at its boundary
(surface, edge, end). Let’s consider a piece of (nontrivial) topological insulator. Outside
the material we have vacuum. The vacuum is classified as a trivial insulator (109). In
this way, if we go from inside the sample to outside, we need to change the topology.
In other words, the topological invariant needs to change its value from nonzero to
zero. However, from the previous definition of topology, we know that the topology
cannot change if we deform our system in any continuous way. For instance, one cannot
deform a sphere into a torus (or vice versa) without destroy the surface (see Fig. 22). The
same applies to insulators, as one cannot deform a topological insulator into a trivial
insulator without destroy the insulator. Hence, what we need is to change the topology
when we cross the interface between our sample and the outside. To achieve this change
of topology it is necessary to assume that our insulating state is destroyed when we
traverse the interface, and this implies that the interface is a metal. In physical terms,
this means that, at the interface between both insulators, the material behaves as a metal
(a system without a gap in the band structure, where the invariant is not well defined).
The conducting states that arise at the interface are called topological edge states.

The main difference between an edge state due to electrons located at the boundaries
of the sample and the topological ones is in the robustness against defects and disorder
in the system. As a property of the bulk, topological edge states are originated by the
difference in topological orders of the contiguous or adjacent materials. This is why
they do not depend on the atomic details of the interface and can not be destroyed
by local edge perturbations (such as imperfections) (103). On the contrary, states that
are formed by the existence of a boundary and independently of the topological order
of the material, can be easily modified, destroyed or eliminated. This characteristic of
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topological insulators is important among other reasons because, to define one phase of
matter as different from another, the properties should not be easily destroyed by small
perturbations.

The existence of topological edge states in a material is clearly reflected in the Hall
conductivity. The Hall conductivity is determined by the topology of the quantum wave
function and the topology is not affected by impurities. Also, it is directly related to the
number of these edge states through the topological invariant, and thus inherits the
robustness against perturbations such as disorder or interactions between particles. In
fact, it is known that topological edge states are the responsible for the quantization of
the conductivity in the integer quantum Hall effect of the two-dimensional electron gas
under the action of an external magnetic field (topological insulator in contact with the
vacuum, which is a trivial insulator) (103, 109). This is a very special quantum state of
matter where interactions and impurities play no role. Therefore, the atomistic details of
a sample are irrelevant when it comes to states stemming from the interaction between
two materials of different topological order. The bulk determines what happens at the
boundaries, i.e., the appearance of edge states and how many of them are. This result is
what is known as bulk-edge correspondence (106).
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6 EDGE STATES IN TRIMER LATTI-
CES

The search for novel topological states of matter (100, 102, 110, 111) has rapi-
dly expanded over the last decades since the discovery of topological insulators (97,
112, 98, 103, 105). Examples range from topological states in driven quantum sys-
tems (113, 114, 115) to artificial systems including ultracold matter (116, 117) and pho-
tonic waveguides (118, 119, 120). Although originally most of the studies focused on
two-dimensional (2D) systems (121, 97), later on they evolved to three (122) and one
dimensions (123, 124).

Figura 23 – Experimental observation of adiabatic pumping via topologically protected
boundary states in a photonic quasicrystal. (a) An illustration of the adiaba-
tically modulated photonic quasicrystal, constructed by slowly varying the
spacing between the waveguides along the propagation axis z. The injected
light experiences an adiabatically modulated Hamiltonian and is pumped
across the sample. (b) The spectrum of the model as a function of the phase
φ. The insets depict the spatial density of a boundary eigenstate as a function
of the position at three different stages of the evolution. (c) Experimental
results: Light was injected into the rightmost waveguide (site 1) at z = 0. The
measured intensity distributions as a function of the position are presented
at different stages of the adiabatic evolution. Taken from Ref. (125).

Quasicrystals (127), materials characterized by long-range orientational order but
without the periodicity of crystals (see Fig. 23), appeared to be out of the topological
chart until the work of Kraus and coworkers (125). They showed that lower dimensional
quasiperiodic systems can feel the effect of a higher-dimensional “ancestor” crystal,
through additional degrees of freedom φ that appear as remnants of the higher dimensio-
nality (see Figs. 23 and 24). Shortly after, it was shown that crystal and quasicrystal band
insulators are topologically equivalent (128). Because of these connections, together
with the reduced complexity of low-dimensional lattices and also thanks to the ad-
vance in experimental techniques, research on topological states in 1D systems has been
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Figura 24 – Observation of topological boundary states in an Aubry-André-Harper pho-
tonic quasicrystal. (a) A sketch of the experimental setup. (b) An illustration
of the conducted experiment. Light is injected into one of the waveguides
and tunnels to neighboring waveguides as it propagates. (c)–(e) Experimen-
tal observation of the left boundary state for φ = π/2. Light was initially
injected into a single waveguide (red arrows). The measured outgoing in-
tensity is plotted versus the injection position along the lattice. (c), (d) An
excitation at the middle of the lattice (site 0) and at the rightmost site (site
49) results in a significant spread. (e) For an excitation at the leftmost site
(site 49), the light remains tightly localized at the boundary, marking the
existence of a boundary state. (f) Schematic view of a photonic modulated
waveguide array, which provides an excellent platform for simulating con-
ventional topological systems, as well as for the study of novel topological
phases in photonics systems. Taken from Refs. (125) and (126).

reignited. Indeed, one can probe these states in ultracold atoms (116, 129), photonic crys-
tals (125, 130) and even in photonic Fibonacci quasicrystals (131). In addition, adiabatic
topological pumping (125, 131, 126) [see Figs. 23 and 24(f)] and discrete-time quantum
walks (132, 133) have been investigated in 1D lattices. Also, experimental signatures of
Majorana fermions have been identified in several 1D topological superconductors in
the past few years (134, 135, 136).

In this quite general context, the study of trimer lattices has been the object of
considerable theoretical (124, 137, 138) and experimental (139) interest because of their
unique physical properties and very rich phase diagram (12, 9). Particularly, it has
been reported that the existence of edge states located only at one edge (or end) of a
Hermitian trimerized lattice, is due to a symmetry of the unit cell, which makes the
Berry phase piecewise continuous rather than discrete (138). However, in a typical 1D
Hermitian topological insulator, topological invariants take only one value of a discrete
set of values, and the bulk-boundary correspondence ensures the appearance of, at least,
a pair of localized edge states: one on the left and one on the right. In fact, the capacity
to exhibit a single edge state on one side of a system has been recently attributed to
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non-Hermitian systems (140), where the bulk-boundary correspondence is subject of
intense debate and controversy (140, 141, 142, 143, 144).

6.1 Motivation
Motivated by the ability of photonic lattices to realize various optical devices (145),

here we consider a simple, paradigmatic and nontrivial model consisting of a one-
dimensional lattice with a three-site basis and examine in detail the edge states and
their topological character. Interestingly, this model exhibits diverse in-gap edge states
as the parameters are varied:

1. Chiral edge states, i.e., states that are localized only on one edge of the system
without a counterpart on the opposite edge at the same energy, and which can be
used for manipulating fundamental properties of light in a controllable way.

2. Usual topological states, i.e., one on each edge at the same energy.

Originally fueled by the first type of edge states, apparently violating the bulk-boundary
correspondence we proceeded to find a subtle connection with the physics of super-
lattices. Henceforth, unless otherwise indicated, when talking about chiral edge states
we actually mean the edge modes located only at a single edge and belonging to the
inversion-symmetry broken phase of the trimer lattice.

In this context, one may wonder, is it possible to relate the existence of these chiral
edge states with a topological invariant defined within the bulk? Indeed, as we will
show later in this Chapter, the chiral edge states of the trimer chain can be related to
bulk topological numbers, but defined in an effective two-dimensional parent system.
Furthermore, we show that, the edge states in the inversion-symmetry broken phase
of the trimer lattice turn out to be robust against disorder. We also show that the
topological phase transition point of the trimer lattice correlates with the topological
phase transition in its associated parent system, in which case the Chern numbers are
duplicated and their signs change.

This Chapter is organized as follows. In Section 6.2, we discuss general properties
of the edge states of the trimer lattice, with special emphasis on those states that
are localized only on one edge of the sample without a counterpart on the opposite
edge. Moreover, in the Appendix B we apply the recursive boundary Green function
method to study the regions in the parameter space where edge states appear. In
Section 6.3, we analyze the symmetry exhibited by the trimer lattice and study its
consequences for the edge states through the calculation of the Zak phase (146). In
Section 6.4, we show that the edge states in the inversion-symmetry broken phase of
the trimer lattice turn out to be robust to large amounts of disorder. In Section 6.5, we
find a nontrivial correspondence between the chiral edge states of the trimer chain,
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Figura 25 – Scheme representing a finite section of the trimerized lattice model with
Nc unit cells, where u and v are the intracell hopping amplitudes, w is the
intercell hopping amplitude, and d is the lattice spacing. Each unit cell
contains three sites, A, B and C.

with that of an effective 2D model (Aubry-André-Harper model), which shows that
the system can host states of topological origin, in much the same way as those in
graphene ribbons with zigzag edges (147). Also, we show that, due to this subtle
connection, the topological phase transition point of the trimer lattice allows us to find
the corresponding topological phase transition point in its associated (two-dimensional)
parent system.

6.2 The trimer chain
Consider a system of spinless (or spin-polarized) electrons hopping on a one-

dimensional chain composed of Nc unit cells. Each unit cell hosts three distinct sites,
which we denote as A, B and C (see illustration in Fig. 25); hence we can expect to
find three bands. The length of the unit cell is set to unity (d = 1). We can model this
trimerized lattice by the following tight-binding Hamiltonian:

H =
Nc

∑
n=1

(uc†
A,ncB,n + vc†

B,ncC,n + wc†
C,ncA,n+1 + h.c.), (6.1)

where c†
α,n (cα,n) denotes the creation (annihilation) operator at site α (which can be either

A, B or C type) of the n-th unit cell and u and v are the intracell hopping amplitudes,
whereas w is the intercell hopping amplitude. Assuming periodic boundary conditions
(discrete translational invariance) along the length of the chain and performing Fourier
transform of creation/annihilation operators,

ψn = (1/
√

Nc)∑
k

eiknψk, (6.2)

with ψn = (cA,n,cB,n,cC,n)
T, we can write the Hamiltonian in reciprocal space as H =

∑k ψ†
k H(k)ψk, where

H(k) =

 0 u we−ik

u 0 v
weik v 0

 . (6.3)
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Figura 26 – Energy spectrum and wave functions of the Hamiltonian of Eq. (6.1) with
open boundary conditions for Nc = 20 unit cells. (a) Energy spectrum of the
system for intracell hopping amplitudes u = 1, v = 4 and intercell hopping
amplitude w = 3. Panels (b) and (c) show the wave functions of the two
edge states with energies ε = ±4, both marked as black diamonds in (a),
localized on the right boundary of the system, respectively.

The spectrum of the above Hamiltonian consists of three dispersive bands, which only
touch each other at the boundaries of the first Brillouin zone (BZ), k = 0 and π, when
|u| = |v| = |w|, i.e., in the absence of trimerization. As the parameters are shifted from
that condition, two band gaps appear in the band structure, both with the same value.
Interestingly, these band gaps may host very peculiar edge states as those shown in
Fig. 26, where we have plotted the energy spectrum of a finite trimer lattice for a set of
hopping values of u = 1, v = 4, and w = 3.

Note the presence of two in-gap edge states, with energies ε = ±4, both localized on
the right boundary of the system, with probability distribution at sites of type B and
C [see Figs. 26(b) and 26(c)]. It is worth noting that our system does not exhibit chiral
symmetry, and unlike the states in the Su-Schrieffer-Heeger (SSH) model (148, 106), the
states shown in Figs. 26(b) and 26(c) are chiral in the sense that they are present on
one edge of the sample, but not on the opposite edge. In this context, as we will show
in Section 6.5, these states can be interpreted as inherited from a higher dimension,
through a mapping onto an effective 2D model, which in fact presents robust chiral
states along the edges.

In Fig. 27 we show the energy spectrum of a finite trimer lattice with Nc = 20 unit
cells, as a function of the intercell hopping amplitude w, and with intracell hopping
amplitudes of u = 1 and v = 2. We can observe a different number of in-gap edge states
emerging as w changes. A closer analysis reveals three different regions, as shown in
Fig. 27. The first one (white leftmost region) with no edge states for w < u,v, the second
one [red (dark gray) middle region] with two edge states localized on the right boundary
of the system for u < w < v, and the last one [yellow (light gray) rightmost region] with
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Figura 27 – Energy spectrum of the system under open boundary condition as a func-
tion of the intercell hopping amplitude w, for Nc = 20 unit cells and intracell
hopping amplitudes of u = 1 and v = 2 (inversion-symmetry broken phase).
The bulk states correspond to solid lines, whereas the edge states localized
on the right (left) boundary are denoted with dashed (dash-dotted) lines.
We highlight three different regions: white leftmost region with no edge
states (w < u,v), red (dark gray) middle region with two in-gap edge states
localized on the right boundary (u < w < v), and yellow (light gray) right-
most region with two pairs of edge states localized on both edges of the
system (u,v < w).

two pairs of edge states localized on both ends of the system for u < v < w. Depending
on whether u < w < v or v < w < u, edge states will appear localized on the right or left
boundaries of the system, respectively. Here we assume that 0 < u,v,w for simplicity,
but results can be easily derived in the general case. In fact, we use a recursive boundary
Green function method (149) (see the Appendix B for details) to study the regions in the
parameter space where edge states appear in a general framework.

This apparent violation of the bulk-boundary correspondence, also reported in
Ref. (138) as two new phases characterized by piecewise continuous Berry phases,
motivates us to look closer at this problem. In the following, we explore the localization
properties and topological nature of the in-gap states.

6.3 Inversion-symmetric trimer chain
A general result of the classification of noninteracting topological phases (150, 151,

152) is that topological phases of matter in 1D can only exist through the imposition of
symmetries on the system. Hence, in 1D and in the presence of either chiral (150, 151,
152, 153, 154) or inversion symmetry (155), topological phases will be protected as long
as the symmetry is preserved. Therefore, it is convenient to analyze the symmetries of
the Hamiltonian, which will allow us to determine if there is any symmetry protected
topological phase.
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Figura 28 – Energy spectrum and Zak phase (inset) of the system under open boundary
condition as a function of the intercell hopping amplitude w, for Nc = 20
unit cells and intracell hopping amplitudes u = v = 1 (inversion-symmetric
phase). The bulk states correspond to solid lines, whereas edge states loca-
lized on both ends of the system are denoted with dotted lines. Note that,
when the inversion symmetry is preserved, |w|> 1 (|w|< 1) corresponds to
the topological (non-topological) phase of the trimer lattice.

Similar to the chirally symmetric (Hermitian) SSH model, the topological properties
of the trimerized chain are regulated by the relative strength of the intercell and intracell
hopping amplitudes. In contrast, important distinct features appear since the unit
cells of the two models are different. For u = v, H(k) is inversion symmetric, with the
inversion center lying at the midpoint B between two sites A and C within a unit cell,
i.e., PH(k)P−1 = H(−k), where the inversion operator

P =

 0 0 1
0 1 0
1 0 0

 , P2 = 1; P = P−1, (6.4)

plays the equivalent role as the σx operator for the SSH model (106).
As mentioned before, if the spatial dimension is one and if no symmetry is assu-

med, there are no topological phases (150, 151, 152), i.e., all gapped Hamiltonians in
1D are equivalent to the same trivial phase. However, in 1D and in the presence of
inversion symmetry P, one can classify different insulators by Z, through a quantized
topological index which can take only the values zero or π (modulo 2π), denoting
the trivial and nontrivial topological insulators, respectively. This 1D topological in-
variant, which is intimately related to the existence of edge states through the bulk-
boundary correspondence, is usually called the Zak phase (146, 147, 156) and is defined
as Z = i

∫ π
−π dk〈ψk|∂kψk〉, where ψk are the Bloch wave functions. The Zak phase for the
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lower band can be computed and is found to be

Z =

0 if |u| = |v| > |w|
π if |u| = |v| < |w|

. (6.5)

A nontrivial Zak phase implies that a pair of topologically protected edge states will
appear at the boundaries of the system, one on the right and one on the left when we
cut the chain. Figure. 28 shows the spectrum of the Hamiltonian under open boundary
conditions for |u| = |v| = 1 (inversion-symmetric phase) as a function of w. A direct
manifestation of the nontrivial Zak phase of π is the degenerate gapless modes (dotted
black lines), with energies ε = ±1, appearing at the boundaries of the system. As we
can see the two regions |u| = |v| < |w| and vice versa correspond to two topologically
distinct phases, i.e., the system undergoes a topological phase transition with gap
closing at |u| = |v| = |w|, from a trivial insulator to an inversion symmetry protected
topological insulator. This is a common example of a topological phase transition with
gap closing, as one cannot continuously switch between the two phases without either
closing the bulk energy gaps or breaking the inversion symmetry. It is worth noting
that the spectrum depicted in Fig. 28 resembles that of the SSH model very closely. In
fact, both are symmetrically arranged around zero energy and have in-gap edge states
protected by inversion or chiral symmetry, which appear after the gap-closing-and-
reopening transition (106).

Lastly, and similarly to the SSH model, the topological phase transition and edge
states emergence in the trimer lattice (with u = v) can also be studied using the low-
energy continuum theory (157). As mentioned before, the low-energy excitations of the
trimer model are close to k = 0 and k = π. Near the band degeneracy point (where two
bands cross) we can treat the other band as a perturbation. This procedure, together
with an expansion around these points, generates two effective two-band Hamiltonians.
Then, if we place a domain wall at x = 0, i.e., a Dirac mass term of the form:

m(x) =

> 0 for x > 0

< 0 for x < 0
, (6.6)

separating the two insulating phases, we can obtain a set of Dirac-like equations, leading
to a solitonic solution with energies E = u for k = π and E =−u for k = 0. These solutions
describe the edge modes living at the domain wall, with the topological phase transition
corresponding to the sign change of the Dirac mass term (157).

6.4 Edge states and robustness to disorder
Because of the bulk-boundary correspondence in Hermitian systems, nontrivial

topological invariants imply the existence of gapless states exponentially localized at
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the boundaries of the sample (gap closing at the transition; see Fig. 28). Thus, when the
inversion symmetry is broken, it seems natural to expect the disappearance or at least
the instability of these states. However, as seen in Figs. 26 and 27, there are still in-gap
states which are localized only at one boundary of the system without an equivalent one
at the opposite end. Also, as the robustness against disorder is a characteristic feature of
edge states in the topological insulator phase, a natural question arises as to whether
these chiral edge states are robust to disorder or not, since they are not protected by any
symmetry.
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Figura 29 – Energy spectrum of a finite trimer lattice with Nc = 60 unit cells, under the
effect of increasing amounts of disorder d: (a) in u, (b) in u and v, (c) in w,
and (d) in u, v, and w. Dashed red lines indicate the right edge states. The
starting points for all plots are u = 1, v = 2, and w = 3 (inversion-symmetry
broken phase), and the results are the average over 100 simulations.

In order to gain insight into this question, we numerically investigate the robustness
of the edge states against disorder in the inversion-symmetry broken phase of the trimer
lattice. The Hamiltonian of Eq. (6.1) contains three hopping parameters: u, v and w on
which we introduce random disorder, i.e., un = u+ dγn, vn = v+ dγn and wn = w+ dγn,
where n is the cell index, γn is uniformly distributed between 1 and −1 and d is the
disorder strength. For the sake of generality, we also allow the disorder to be different
for each unit cell, and act on the hopping parameters u, v, and w independently.

Figure. 29 shows the results, averaged over 100 simulations, for four types of disorder
as a function of the disorder strength d. The starting points for all plots are u = 1, v = 2
and w = 3. Disorder in the intracell hopping u and intercell hopping w is depicted in
Figs. 29(a) and 29(c), respectively. On the other hand, in Fig. 29(b) we allow disorder to
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act on u and v, independently. Lastly, Fig. 29(d) shows the spectrum of the system with
disorder acting in u, v, and w, also independently.

We can observe that, even when details of the spectrum are modified, and the
robustness of the right edge states (dashed red lines in Fig. 29) against the disorders
are slightly different, the localized nature of the edge states remain. Moreover, the
eigenvalues (of the right edge states) remain at ε = ±v until the disorder is strong
enough to either cause the eigenvalues to reach the band (becoming extended) or close
the band gap. Remarkably, these edge states are robust to large amounts of disorder
and, as we will see next, we can associate a topological origin to them, originated from
a map onto an effective model in a higher dimension. This contrasts with the case of
the edge states of zigzag graphene ribbons, which have a topological origin rooted in a
lower dimension (147), but are fragile to disorder.

6.5 Topological origin of edge states in the inversion-symmetry
broken phase

The bulk-boundary correspondence dictates the existence of gapless edge states
from bulk topological invariants. Remarkably, depending on the values of the hopping
amplitudes, the trimer lattice can exhibit diverse in-gap edge states which “apparently”
violate the bulk-boundary correspondence, i.e., states appear localized only at one end
of the system without a counterpart at the opposite end. This, combined with the fact
that these edge states turn out to be robust against disorder, makes one wonder about
the bulk-boundary correspondence, and the nature/origin of these edge states in such a
system.

To answer these questions and motivated by the fact that families of 1D band insula-
tors, i.e., systems where the Hamiltonian depend periodically on a parameter φ (defining
an effective 2D model), share the same topological classification as the quantum Hall
effect (158, 125, 128), we model the trimer lattice through the so-called commensurate
off-diagonal Aubry-André-Harper (AAH) model (159, 160). Before studying this specific
Hamiltonian, it is important to add some general comments about the physics of AAH
models involving diagonal and off-diagonal modulation terms, specifically, with regard
to their topology. In Ref. (161) the authors have analytically proved the topological equi-
valence of incommensurate AAH models, regardless of whether the quasiperiodicity
appears as an on-site (diagonal) or hopping (off-diagonal) modulation. This contrasts
with the commensurate diagonal and off-diagonal AAH models, in which case there are
regions in parameter space where the two models have different topological invariants
(Chern numbers), implying that, in general, they are not topologically equivalent (126),
as one cannot continuously deform from one into the other without closing the energy
gap.
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The commensurate off-diagonal AAH model can be described by the following
tight-binding Hamiltonian:

H =
N

∑
n=1

t[1 + λcos(2πbn + φ)c†
n+1cn] + h.c., (6.7)

where N is the number of lattice sites, c†
n (cn) is the creation (annihilation) operator

at site n, t is the hopping amplitude which is set to be the unit of the energy (t =
1), and the parameter λ is the modulation amplitude of the coupling strength. The
modulation periodicity is controlled by b = p/q (p and q are coprime numbers), leading
to a commensurate (incommensurate) modulation with the lattice, whenever b is rational
(irrational). Here, our interest is to discuss the case of b rational or, more specifically,
p = 1 and q = 3 (b ≡ 1/3), which leads to a trimerized model with three bands. On the
other hand, the phase factor φ plays the role of an additional degree of freedom, which
in our case allows us to obtain a whole family of different trimers.

A family of trimers, i.e., {H(φ)|0≤ φ < 2π}, defines an effective model in two
dimensions. Therefore, identifying φ as one component of the wave vector of a 2D
system, we can map this 1D model to a 2D model, in such a way that the topological
properties of our 1D trimer chain can be easily studied by using topological concepts for
2D systems (123, 125). Hence, assuming periodic boundary conditions on the system,
Eq. (6.7), and performing Fourier transforms of creation/annihilation operators, Chern
numbers for individual (n-th) bands can be defined in an effective 2D space, (k,φ), over
the BZ (0≤ k < 2π/q,0≤ φ < 2π) as

νn =
1

2π

∫ 2π/q

0
dk
∫ 2π

0
dφ
(
∂k Aφ − ∂φ Ak

)
, (6.8)

with the Berry connection Ar = i 〈ψ(k,φ)|∂r|ψ(k,φ)〉 (r = k,φ), where ψ(k,φ) are the
Bloch wave functions. We numerically calculate the Chern numbers for individual
bands as a function of λ. We found that, when the modulation amplitude, λ < λc, the
Chern numbers are (ν1,ν2,ν3) = (−1,2,− 1), while for λ > λc the Chern numbers are
(ν1,ν2,ν3) = (2, − 4,2), with λc = 4, predicting a topological phase transition where
not only are the Chern numbers doubled, but they also change in sign, in agreement
with results derived in the context of Thouless pumping (126). As noted in Ref. (126)
this means that, if we perform a particle pumping experiment along the lattice, the
propagation direction will change by the opposite, and it will be faster.

Figure. 30 shows the energy spectrum of the commensurate off-diagonal AAH
model under open boundary condition for a lattice of finite length, N = 60, and two
values of λ: Fig. 30 (a) for λ = 0.5 and Fig. 30 (b) for λ = 5. The bulk Bloch states are
denoted with solid lines, whereas the edge states localized at the right (left) boundary
correspond to dashed (dash-dotted) lines. By keeping b = 1/3 and scanning φ from
zero to 2π one can observe in Fig. 30(a) that the two gaps are closed by a few modes,
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Figura 30 – Energy spectrum of the commensurate off-diagonal AAH model, Eq. (6.7),
under open boundary condition as a function of φ, for b = 1/3, N = 60 sites,
and two different values of λ: (a) λ = 0.5 and (b) λ = 5. The bulk Bloch
states correspond to solid lines, whereas the edge states localized on the
right (left) boundary are denoted with dashed (dash-dotted) lines. Note the
correspondence between the highlighted yellow (light gray) and red (dark
gray) areas in (a) and those in Fig. 27. Chern numbers for individual bands
are: (a) (ν1,ν2,ν3) = (−1,2,− 1) before the transition and (b) (ν1,ν2,ν3) =
(2,− 4,2) after the transition point, λc = 4.

reproducing all possible configurations that appear in Fig. 27. Indeed, each value of
φ ∈ [0,2π) corresponds to a certain set of hopping values, that is, each cut as a function
of φ defines a trimer. In Fig. 30(a) we have highlighted in white, red (dark gray), and
yellow (light gray) the corresponding regions where there are no edge states, two edge
states located either at the right (dashed lines) or left (dash-dotted lines) boundary of the
system, and two pairs of edge states localized on both ends of the system, respectively.
It is worth noting the correspondence between the highlighted yellow (light gray) and
red (dark gray) areas in Fig. 30(a) and those in Fig. 27, in terms of localization and
number of edge states. Also notice that the number of edge modes in Fig. 30(b) is twice
that in Fig. 30(a), while the propagation direction is the opposite.

The individual members of the trimer’s family are not topological in general,
although they exhibit states located at the boundaries of the system. As discussed
in Section 6.3, only when the inversion symmetry is preserved is an element of the
family topological. These are the cases that have a crossing at the inversion-symmetry
point, indicating the emergence of degenerate edge states protected by the inversion
symmetry. On the other hand, only when scanning φ from zero to 2π we can obtain
all the possible variants that the trimer lattice can assume. This suggests that the ap-
pearance of the chiral states has a topological origin because they are associated with
a whole family, and only as a whole family we can define invariants (Chern numbers)
and establish a bulk-boundary correspondence.



Capítulo 6. EDGE STATES IN TRIMER LATTICES 82

0 2 4 6 8 10
λ

0

1

2

3

4

5

H
op

pi
ng

(a)

0 2 4 6 8 10
λ

0

1

2

3

4

5

E
ne

rg
y

ga
p

(b)

Figura 31 – (a) Hopping amplitudes and (b) energy gaps for the commensurate off-
diagonal AAH model as a function of λ, for b = 1/3. In panel (a) the blue
and cyan lines stand for u and w hopping amplitudes when φ = π (u ≡ v
for φ = π), respectively. Note that the point of intersection between the two
hopping amplitudes defines the transition point λc = 4. In panel (b) the two
energy gaps shown in both Figs. 30(a) and 30(b) undergo a closing-and-
reopening transition at λc = 4.

As mentioned before, as the hopping amplitude λ increases, the system undergoes a
topological phase transition (126). The topological phase transition point can be found,
analytically, by solving a cubic equation that results from Eq. (6.7) assuming periodic
boundary conditions and b = 1/3 (126). Here we put forward an interesting connection
between the transition point in 1D and 2D, whereby the precise determination of the
closing gap and the transition point in 1D, correctly determines the corresponding
position of closing gap and transition point in 2D, a property which can be extended to
other systems with rational b and odd q.

The topological phase transition in the trimer lattice, as we saw in Section 6.3, occurs
when |u| = |v| = |w|; thus the position corresponding to the closing gap in the effective
2D system is not changed, only modulated. In this way, we can identify

u = 1 + λcos(2π/3 + φ), (6.9)

v = 1 + λcos(4π/3 + φ), (6.10)

w = 1 + λcos(φ). (6.11)

The hopping amplitudes u and v are always equal when the phase factor is φ = π; then
we have u = v = 1 + λ/2 and w = 1− λ. In fact, by equating

|1 + λ/2| = |1− λ|, (6.12)

we obtain the critical value λc = 4 for the topological phase transition [see Fig. 31(a)],
in full agreement with that found in Ref. (126) in the context of Thouless pumping of
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light in photonic waveguide arrays. Furthermore, as the topological phase transition is
associated with an energy gap closing, we also calculate the evolution of the energy gap
as a function of λ. The energy gap between the n-th and (n + 1)-th bands, defined as
4En = min(En+1 − En), is shown in Fig. 31(b). Lastly, we want to emphasize that this
connection reinforces our suggestion that the trimer lattice can host states of topological
origin.

Lastly, we remark that the main results of Part II form the body of a recent publication
in Physical Review A, entitled “Edge states in trimer lattices” (162).



84

7 CONCLUSIONS

In the first part of this Thesis, we have presented a detailed analytical study of the
large-U Hubbard model on the quasi-one-dimensional AB2 chain. We used a functio-
nal integral approach combined with a perturbative expansion in the strong-coupling
regime that allowed us to properly analyze the referred system at and away from
half filling. The phenomenological motivation was largely discussed and a variety of
compounds were mentioned, particularly those materials in which the line of trimers
formed by spin-1/2 Cu+2 ions exhibit ferrimagnetism of topological origin. Therefore,
the study of doping-induced phases on these materials appears as a promising chal-
lenge. At half filling, our model was mapped onto the quantum Heisenberg model,
and its Lieb ferrimagnetic GS was analyzed through a spin-wave perturbative series
expansion in powers of 1/S. We have demonstrated that the GS energy, spin-wave
modes, and sublattice magnetizations are in very good agreement with previous results.
In the challenging hole doping regime away from half filling, the corresponding t-J
Hamiltonian was derived. Further, under the assumption that charge and spin quantum
correlations are decoupled, the evolution of the second-order spin-wave modes in the
doped regime has unveiled the occurrence of spatially modulated spin structures and
the emergence of phase separation in the presence of resonating-valence-bond states.
The doping-dependent GS energy and total spin per unit cell, including both Zeeman
and orbital contributions where also calculated, in which case the collapse of the spi-
ral magnetic order at a critical hole concentration was observed. It is surprising and
very interesting that the second-order spin- wave modes remain stable up to δ = 1/3.
Remarkably, our above-mentioned analytical results in the doped regime are in very
good agreement with recent density matrix renormalization group studies, where our
assumption of spin-charge decoupling is numerically supported by the formation of
charge-density waves in anti-phase with the modulation of the ferrimagnetic structure.
The comparison between the numerical and analytical findings have provided deep
insights on underlying mechanisms associated with several quantities and phases at
both the microscopic and macroscopic levels.

The reported results evidenced that the present approach, also used in a study on
the compatibility between numerical and analytical outcomes of the large-U Hubbard
model on the honeycomb lattice, was proved suitable for the AB2 chain (a quasi-1D
system), where the impact of charge and spin quantum fluctuations are expected to
manifest in a stronger way. We thus conclude that our approach offers a quite powerful
analytical description of hole-doping induced phases away from half filling in low-
dimensional strongly-correlated electron systems, including superconducting ground
states.
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In the second part, motivated by analogy with photonic lattices, we have studied
the edge states of a one-dimensional trimer lattice and examined its characteristics in
the phases with and without inversion symmetry protection. Remarkably, we have
shown that the edge states in the inversion-symmetry broken phase of the trimer model
may appear located at a single edge. In particular, the emergence of degenerate edge
states in the inversion-symmetric phase of the trimer model has been characterized
through the calculation of the Zak phase. If the inversion symmetry is broken, we have
demonstrated that the chiral edge states remain robust to large amounts of disorder. This
contrasts, for example, with the case of the edge states of zigzag graphene ribbons which
are less robust, and have a topological origin rooted in a lower dimension. In addition,
through the mapping onto the commensurate off-diagonal Aubry-André-Harper model,
we have captured the essentials of the whole family of trimers, which allows us to
establish a direct connection between chiral edge modes in the two models, including the
calculation of Chern numbers in this effective two-dimensional model. We thus suggest
that the chiral edge modes of the trimer lattice have a topological origin inherited
from this effective mapping. We have established a nontrivial connection between the
topological phase transition point in the trimer lattice to that in its associated effective
two-dimensional parent system. The topological phase transition point found here is in
full agreement with results derived in the context of topological Thouless pumping in
photonic lattices. This nontrivial connection strengthens our suggestion that the trimer
lattice, in the inversion-symmetry broken phase, can host states of topological origin.
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[46] STREČKA, J.; VERKHOLYAK, T. Magnetic Signatures of Quantum Critical Points
of the Ferrimagnetic Mixed Spin-(1/2, S) Heisenberg Chains at Finite Temperatu-
res. J. Low. Temp. Phys, v. 187, n. 5, p. 712–718, 2017.

[47] YAN, X.; ZHU, Z.-G.; SU, G. Combined study of Schwinger-boson mean-field
theory and linearized tensor renormalization group on Heisenberg ferromagnetic
mixed spin (S, σ) chains. AIP Advances, v. 5, n. 7, p. 077183, 2015.

[48] KIKUCHI, H.; FUJII, Y.; CHIBA, M.; MITSUDO, S.; IDEHARA, T.; TONEGAWA,
T.; OKAMOTO, K.; SAKAI, T.; KUWAI, T.; OHTA, H. Experimental Obser-
vation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound
Cu3(CO3)2(OH)2. Phys. Rev. Lett., v. 94, p. 227201, Jun 2005.



REFERENCES 90

[49] GU, B.; SU, G. Comment on “Experimental Observation of the 1/3 Magnetization
Plateau in the Diamond-Chain Compound Cu3(CO3)2(OH)2”. Phys. Rev. Lett., v.
97, p. 089701, Aug 2006.

[50] KIKUCHI, H.; FUJII, Y.; CHIBA, M.; MITSUDO, S.; IDEHARA, T.; TONEGAWA,
T.; OKAMOTO, K.; SAKAI, T.; KUWAI, T.; OHTA, H. Kikuchi et al. Reply:. Phys.
Rev. Lett., v. 97, p. 089702, Aug 2006.

[51] OSHIKAWA, M.; YAMANAKA, M.; AFFLECK, I. Magnetization Plateaus in Spin
Chains: “Haldane Gap” for Half-Integer Spins. Phys. Rev. Lett., v. 78, p. 1984, Mar
1997.

[52] RULE, K. C.; WOLTER, A. U. B.; SÜLLOW, S.; TENNANT, D. A.; BRÜHL, A.;
KÖHLER, S.; WOLF, B.; LANG, M.; SCHREUER, J. Nature of the Spin Dynamics
and 1/3 Magnetization Plateau in Azurite. Phys. Rev. Lett., v. 100, p. 117202, Mar
2008.

[53] HASE, M.; KOHNO, M.; KITAZAWA, H.; TSUJII, N.; SUZUKI, O.; OZAWA, K.;
KIDO, G.; IMAI, M.; HU, X. 1/3 magnetization plateau observed in the spin-1/2
trimer chain compound Cu3(P2O6OH)2. Phys. Rev. B, v. 73, p. 104419, Mar 2006.

[54] AIMO, F.; KRÄMER, S.; KLANJ ssEK, M.; HORVATI cć, M.; BERTHIER, C.; KI-
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APÊNDICE A – PERTURBATIVE
EXPANSION OF Ln(τ)

In this appendix we present the main steps of the derivation of the perturbative ex-
pansion of Ln, in Eq. (2.30), up to O(J). In direct connection with the transformations in
Eq. (2.35), it is convenient to define rotation matrices either symmetric or antisymmetric
with respect to the exchange operation B1↔ B2:

U(b)
i =UiA,

U(d,e)
i =

1√
2
(UiB1 ±UiB2),

(A.1)

In the sequence, by substituting both the above transformations and its analogous in
Eq. (2.35) into Eq. (2.30), we find that Ln(τ) can be written as the sum of the following
nine terms

Ln(τ) = L(1)n + L(2)n + L(3)n + L(4)n + L(5)n + L(6)n + L(7)n + L(8)n + L(9)n , (A.2)

where
L(1)n = ∑

iσσ
′
b†

iσ′
(U(b)†

i ∂τU(b)
i )σ

′
σbiσ,

L(2)n =
1
2 ∑

iσσ
′
d†

iσ′

[
U(d)†

i ∂τU(d)
i + U(e)†

i ∂τU(e)
i

]
diσ,

L(3)n =
1
2 ∑

iσσ
′
e†

iσ′

[
U(d)†

i ∂τU(d)
i + U(e)†

i ∂τU(e)
i

]
eiσ

L(4)n =
1
2 ∑

iσσ
′
d†

iσ′

[
U(d)†

i ∂τU(e)
i + U(e)†

i ∂τU(d)
i

]
eiσ

L(5)n =
1
2 ∑

iσσ
′
e†

iσ′

[
U(d)†

i ∂τU(e)
i + U(e)†

i ∂τU(d)
i

]
diσ,

L(6)n = − t ∑
iσσ
′

[
b†

iσ′

(
U(b)†

i U(d)
i −

√
2
)

σ
′
σ

diσ + H.c.
]

,

L(7)n = − t ∑
iσσ
′

[
b†

iσ′

(
U(b)†

i U(e)
i

)
σ
′
σ

eiσ + H.c.
]

,

L(8)n = − t ∑
iσσ
′

[
d†

iσ′

(
U(d)†

i U(b)
i+1 −

√
2
)

σ
′
σ

bi+1σ + H.c.
]

,

L(9)n = − t ∑
iσσ
′

[
e†

iσ′

(
U(e)†

i U(b)
i+1

)
σ
′
σ

bi+1σ + H.c.
]

.

Now, by inserting the expansions (2.49) and (2.50) into the above Lagrangians, and
neglecting terms containing exclusively fields related to the high-energy bands, Ln(τ)
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can be written in terms of the spinless Grassmann fields in a perturbative expansion up
to order J as follows

L(1)n =∑
iσ

θ(−σ)(U(b)†
i ∂τU(b)

i )σ,σα
( 1

2 )†
i α

( 1
2 )

i , (A.3)

L(2)n = ∑
iσ;ν=d,e

θ(σ)

2
(U(ν)†

i ∂τU(ν)
i )σ,σα†

i αi, (A.4)

L(3)n = ∑
iσ,ν=d,e

θ(σ)

2
(U(ν)†

i ∂τU(ν)
i )σ,σe†

i↑ei↑, (A.5)

L(4)n = ∑
iσ;ν,ν′=d,e

ν 6=ν′

θ(σ)

2
(U(ν)†

i ∂τU(ν′)
i )σ,σα†

i ei↑, (A.6)

L(5)n = [L(4)n ]†, (A.7)

L(6)n =− ∑
iσσ′

(
U(b)†

i U(d)
i −

√
2
)

σ,σ′

{
tδσ′,σ[θ(−σ)α

( 1
2 )†

i βi

− θ(σ)β
( 1

2 )†
i αi] + tθ(−σ)δσ′,−σα

( 1
2 )†

i αi

+
√

2
t2

U
δσ′,σ

[
θ(−σ)α

( 1
2 )†

i (α
( 1

2 )
i + α

( 1
2 )

i+1)

+θ(σ)(α†
i + α†

i−1)αi

]
+ H.c.

}
, (A.8)

L(7)n =− ∑
iσσ′

(
U(b)†

i U(e)
i

)
σ,σ′

{
tθ(−σ)δσ′,−σα

( 1
2 )†

i ei↑

+ tδσ′,σ[θ(−σ)α
( 1

2 )†
i ei↓ − θ(σ)β

( 1
2 )†

i ei↑]

+
√

2
t2

U
δσ′,σθ(σ)(α†

i + α†
i−1)ei↑ + H.c.

}
, (A.9)

L(8)n =− ∑
iσσ′

(
U(d)†

i U(b)
i+1 −

√
2
)

σ,σ′

{
tδσ′,σ[θ(−σ)β†

i α
( 1

2 )
i+1

− θ(σ)α†
i β

( 1
2 )

i+1] + tθ(σ)δσ′,−σα†
i α

( 1
2 )

i+1

+
√

2
t2

U
δσ′,σ

[
θ(σ)α†

i (αi + αi+1)

+θ(−σ)(α
( 1

2 )†
i + α

( 1
2 )†

i+1 )α
( 1

2 )
i+1

]
+ H.c.

}
, (A.10)

L(9)n =− ∑
iσσ′

(
U(e)†

i U(b)
i+1

)
σ,σ′

{
tθ(σ)δσ′,−σe†

i↑α
( 1

2 )
i+1

+ tδσ′,σ[θ(−σ)e†
i↓α

( 1
2 )

i+1 − θ(σ)e†
i↑β

( 1
2 )

i+1]

+
√

2
t2

U
δσ′,σθ(σ)e†

i↑(αi + αi+1) + H.c.
}

. (A.11)
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We remark that, in Eqs. (A.3)-(A.7) multiplicative terms of O(t/U) were neglected,
since (U(ν)†

i ∂τU(ν)
i )σ,σ scale with J [see Eq. (3.2)]. However, as we can see in the above

equations, terms allowing interband transitions between low- and high-energy bands
do exist in Ln. In the following, we present the perturbative scheme (69, 71, 72) suitable
to eliminate the referred high-energy states.

We consider that in the unperturbed ferrimagnetic state |Φ0(N)〉 at half-filled band
(Ne = N electrons) and total energy E0(N), the low-energy electronic modes (αk,ek↑)
are filled, while the high-energy (βk,ek↓) ones are empty. In the context of a second-
order Rayleigh-Schrödinger perturbation theory, consistent with the strong-coupling
expansion up to O(t2/U), the virtual excited states |γk,σ〉 contain N − 1 electrons in
the low-energy bands and one electron with spin σ promoted to a high-energy band,
either β [with energy Eγ

k = E0(N − 1) + Ek + U/2] or ek↓ [with Eγ
k = E0(N − 1) + U].

Contributions to the perturbative Hamiltonian H1 (see below) are thus generated from
terms in Eqs. (A.8)-(A.11). Therefore, the energy shift or effective Hamiltonian, derived
through

∆E = ∑
kσ

〈Φ0 |H1|γk,σ〉 〈γk,σ |H1|Φ0〉
E0 − Eγ

k
→He f f , (A.12)

is identical to Eq. (2.56d), after cancellation of extra contributions from ∆E and the last
terms of Eqs. (A.8)-(A.11), so that the remained terms in Eq. (2.56d) give rise to the
quantum Heisenberg model at half filling in Chapter. (3).

Under the above scheme, the perturbative expansion of Ln(τ) obtains in terms of
lower-energy bands only, whose sum with L0(τ), Eq. (2.54), results in Le f f (τ), Eq. (2.55).
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APÊNDICE B – RECURSIVE
BOUNDARY GREEN FUNCTION

In order to investigate the localization properties of the edge states and their relati-
onship with the relative strength of the inter-and intra-cell hopping amplitudes of the
trimer lattice Hamiltonian, in this Appendix we apply the recursive boundary Green
function method which relates the presence or absence of edge states to the fixed points
of the recursion (149).

Following the scheme laid out in Ref. (149), we can extend the system by adding
sites until we obtain a trimer with Nc unit cells. This can be achieved in two ways, either
by extending the system to the right or to the left. In any case, considering that the chain
is long enough (large Nc limit), we expect that the boundary Green function becomes
independent of the number of unit cells, but not on the specific boundary. Indeed, as
we show next, in the inversion-symmetry broken phase of the trimer lattice, the right
and left boundary Green functions behave differently.

The boundary Green function G3Nc of a trimer chain with 3Nc sites can be related to
the boundary Green function G3Nc−1 of a chain with 3Nc − 1 sites through the Dyson
equation:

(g−1
3Nc
−V3Nc−1G3Nc−1V†

3Nc−1)G3Nc = I, (B.1)

where g−1
3Nc

= Iε is the bare Green function and V3Nc−1 is associated with the hopping
terms u, v and w. In this way, by iterating (three times) the recursion Eq. (B.1) from the
right boundary we obtain a recursion for trimer chains with a number of sites multiple
of three:

GR
3Nc

=
(

ε− v2(ε− u2(ε− w2GR
3Nc−3)

−1)−1
)−1

. (B.2)

Analogously, we can study the appearance of edges states localized on the left boundary
of the trimer lattice by iterating (also three times) the recursion Eq. (B.1) from the left
boundary

GL
3Nc

=
(

ε− u2(ε− v2(ε− w2GL
3Nc−3)

−1)−1
)−1

. (B.3)

Notice that the above equation can be obtained from Eq. (B.2) through the exchange
u↔ v. In what follows, we will describe how to obtain the right boundary Green
function (GR) and then extend the results to the left boundary Green function (GL)
through the exchange u↔ v.

It is convenient to rewrite the recursion Eq. (B.2) as GR
3Nc
− GR

3Nc−3 = β(GR
3Nc−3),

where the β function is given by

β(x) =
(

ε− v2(ε− u2(ε− w2x)−1)−1
)−1
− x. (B.4)
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The zeros of the β function define the fixed-point boundary Green function. One can
write the solution for the above quadratic equation as follows:

x =
ε(w2 − u2 + ε2 − v2)

2w2(ε2 − v2)

±
√(

ε(w2 − u2 + ε2 − v2))

2w2(ε2 − v2)

)2

− (ε2 − u2)

w2(ε2 − v2)
, (B.5)

and making an expansion in power series of (ε± v) we obtain

GR
regular = ±

u2 − 4v2 − w2

8vw2 +O(ε± v), (B.6)

GR
singular =

(w2 − u2)

2w2(ε± v)
± u2 − 4v2 − w2

8vw2 +O(ε± v). (B.7)

The above regular and singular (right) boundary Green functions characterize the
absence and presence of edge states localized on the right boundary of the system,
respectively. In fact, the two poles ε = ±v of the singular boundary Green function
indicate the energies of the edge states.

We know that a fixed point is stable when β′(x)< 0. Then, the region of the parameter
space where edge states appear can be analyzed by studying the stability of the fixed-
point Green functions under the recursion, which leads to

β′(GR
regular)

∣∣∣
ε=±v

=
w2

u2 − 1, (B.8)

β′(GR
singular)

∣∣∣
ε=±v

=
u2

w2 − 1. (B.9)

The emergence of edge states located at the right (left) boundary of the trimer lattice,
with energies ε = ±v (ε = ±u), are characterized by the singular boundary Green
function GR

singular (GL
singular), which is stable for |u| < |w| (|v| < |w|). On the other hand,

the regular boundary Green function GR
regular (GL

regular), is stable for |w| < |u| (|w| < |v|),
which means that there are no edge states located at the right (left) boundary of the
trimer lattice in this region of parameter space.

We conclude this Appendix by mentioning that the above results fully support the
findings reported in Section 6.2.
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