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Resumo

O modelo de Ginzburg-Landau com duas componentes foi aplicado a uma placa
supercondutora com dois parâmetros de ordem, submetida a um campo magnético
estático (H) e a uma densidade de corrente (j), para estudar as configurações e
a dinâmica de vórtices. É demonstrado que, no limite de acoplamento fraco entre
bandas, a interação entre vórtices penetrando na amostra com a superfície da mesma
produz um fenômeno de separação de vórtices, dividindo os vórtices compósitos e
criando vórtices fracionários. A interação entre vórtices, que é atrativa interbandas
e repulsiva intrabanda e é controlada pela densida de corrente aplicada ao sistema,
produz um ordenamento alternado de vórtices. Esse ordenamento cria texturas
de fase de não-equilíbrio, ou domínios com sinais opostos da interação Josephson
entre os condensados. Essa textura de fase possui efeitos significativos na dissipação
causada pelo movimento de vórtices. Em particular, no regime de textura de fase,
a corrente crítica, necessária para o inicio da dissipação, é deslocada para valores
mais altos. É demonstrado também, que o aumento das dimensões da amostra
dificulta o surgimento de vórtices separados, e que a introdução de barreiras lineares
de ancoragem facilita o desacoplamento da rede de vórtices.

palavras-chave: Modelo de Ginzburg-Landau com duas componentes. Vórtices
não compósitos. Barreiras lineares de ancoragem.



Abstract

We demonstrate that in a weak-coupled two-band superconducting slab the in-
teraction between vortices penetrating the sample and its boundaries leads to the
phenomenon of vortex splitting, which divides composite vortices and creates frac-
tional ones. The interaction between vortices, attractive for different bands and
repulsive for the same band, which is controlled by the electric current density flow-
ing through the system, leads to an ordered alternating arrangement of the vortices.
This arrangement creates non-equilibrium interband phase textures or domains with
different signs of the Josephson energy of the interaction between the band conden-
sates. Such phase textures have a significant effect on the dissipation caused by the
vortex motion. In particular, in the phase-texture regime the onset of the dissipa-
tion is shifted to higher current densities. It is also demonstrated that increasing the
sample size hinders the emergence of separate vortices, and that the introduction of
linear pinning barriers facilitates the decoupling of the vortex network.

Keywords: Two Component Ginzburg-Landau model. Non-composite vor-
tices. Linear pinning barrier.
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Introduction

Fundamental physical properties of superconductors were explained by the theory devel-
oped by John Bardeen, Leon Cooper, and Robert Schrieffer , the so called BCS theory of
superconductivity [3]. The mean premise of this theory is that electrons near Fermi surface
form Cooper pairs and condense into a macroscopic quantum state. John Bardeen, Leon
Cooper and Robert Schrieffer received the Nobel Prize in 1972 for their achievment [3].

Many superconducting materials usually involve multiple Fermi surfaces. These su-
perconductors can be described by a multiband BCS theory [4, 5], which was proposed
shortly after the BCS theory. The discover of multiband superconductivity in MgB2 [6]
has attracted a lot of interest of the scientific community on multiband superconductors.
Other materials of this type are the ferropnictides [7], heavy fermion compounds [8] and
borocarbides [9].
The discovery of these types of superconductors brought a new dimension to the supercon-
ductivity research, revealing a variety of intriguing properties that are not found in their
single-component counterparts. Among these properties we have the collective oscillation
of numbers of Cooper pairs between different bands, known as the Leggett mode [10].
Multiband superconductors with interband Josephson coupling allow for the phase kink
or phase soliton excitation due to the degenerate energy minima in the Josephson cou-
pling. The phase soliton was first discussed by Tanaka in 2001 [11]. Other properties is
the appearance of fractional vortices where vortex core can split between multiple band-
specific components of the superconducting condensate [12]. This type of vortices can be
characterized by different winding numbers of the order parameter in the two supercon-
ducting components. Among such vortices one can distinguish a subclass of vortices when
the phase winding exists only in one of the condensates. In general vortex in different
condensates in the ground state is bounded and their normal cores are locked together to
form a composite vortex.
It is an interesting question whether the composite vortex can dissociate. The answer to
this question is the goal of this thesis. We present original results where the dissociation
of composite vortices is analyzed as consequence of external magnetic field and external
current density applied in a two component superconducting slab. The study is performed
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by using the two component Ginzburg Landau (TCGL) theory. We will analize two cases:
A free pinning superconductor and a superconductor with a linear pinning barrier.

1.1 State of art

Now a days the research on multiband superconductors is inclined to discovery and ex-
plain its properties that are not shared by single-band superconductors. Among these
properties, the behavior of a vortex is an interesting topological excitations for studying.
When the phase difference between condensates change by 2π inside superconductors, a
vortex excitation appears.

Alexei Abrikosov introduced the concepts of Abrikosov lattice [13] demonstrating that
vortices in type II superconductor are arranged in a triangular lattice. After this discovery
many works in single band superconductor have been published about the vortex dynamics
in type II superconductors [14–21]. Vodolazov et al., [22] show that with increasing applied
current, the moving vortex lattice changes its structure from a triangular one to a set of
parallel vortex rows in a pinning free superconductor. Grimaldi et al., [23] elaborated a
general phase diagram which includes all possible dynamic configurations of the Abrikosov
lattice in a mesoscopic superconductor.

The calculation of interaction between vortices as a function of separation poses a
challenge to theory since vortices are extended objects. Representative work in single
band superconductor was realized by Jacob et al., [24] determining the interaction energy
of two vortex configurations within the Ginzburg-Landau theory and showing that, when
λ/ξ < 1/

√
2, the surface energy is positive and vortices attract each other ( type I

superconductor). When λ/ξ > 1/
√

2, the surface energy is negative and vortices repel
each other ( type II superconductor). Here λ and ξ are the penetration depth and
coherence length respectively.

To date the understanding of competing vortex interactions in multiband supercon-
ductors has not been conclusively settled. In superconductors with multiple condensates
the interaction between vortices present some interesting features. It is possible that vor-
tices repel at short distant and attract at large separation [25]. Lin et al. [26] implemented
and generalized the variational method for single-band superconductors [24] to calculate
the inter-vortex interaction in a two-band superconductor.

The BCS correction to the Ginzburg-Landau theory for multiband superconductor lead
to nonmonotonic vortex interaction and various works have been published in this matter.
It was found in three-band superconductors with frustrated interband couplings [27]. The
influence of the interband Josephson coupling was studied by Babaev et al. and [28]
Chaves et al. [29] who studied the condition for the non-monotonic interaction.

The magnetic flux quantization in multiband superconductors deserves special at-
tention. For a single band superconductor, the quantization of magnetic field is de-
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fined as follow: The magnetic flux Φ threading a superconducting loop or a hole in a
bulk superconductor is quantized. It is a multiple integer of magnetic flux quantum
Φ0 = h/(2e) ≈ 2.067833831(13) × 10−15 Wb, Φ = nΦ0, with n an integer, namely the
winding number. Bogomolnyi [30] described the vortices carrying nΦ0 quantum flux with
an integer n > 1. These vortices with larger winding number n are called giant vortices.
The energy of this vortices is proportional to n2 thus they are not energetically favor-
able in bulk superconductor, but in mesoscopic superconductors giant vortices may be
stabilized by geometric confinement [31,32].
In multiband superconductors it is possible that the phase associated with the gap func-
tions of condensates changes by different integer multiples of 2π along a closed loop.
Thus, the quantum flux associated with this vortex is not an integer multiple of Φ0. This
type is called a fractional vortex. Using Ginzburg-Landau theory, Babaev et al. [12, 33]
demonstrated that in a two-band superconductor the flux is integer quantized Φ = nΦ0

only when n1 = n2 = n. The other cases correspond with a fractional vortex and the
most important are when n1 = 0, n2 = 1 or n1 = 1, n2 = 0 which are the cases with
minimum energy. In bulk superconductors the fractional vortices are considered unsta-
ble because its energy diverges logarithmically with system size [34, 35]. Therefore in
the ground state these two fractional vortices lock together to form a composite vortex
with equal winding number n1 = n2 = 1 . Rogerio et al. [36] showed that the resulting
fractional vortex configurations leave distinct fingerprints in the static measurements of
the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility,
both of which can be readily used for the detection of these fascinating vortex states in
several existing multiband superconductors. Fractional vortices can also be stabilized in
a mesoscopic two-band superconductor [37–40].

The dissociation of composite vortex lattice in the flux flow region due to the disparity
of the vortex viscosity and flux of the vortex in different bands was predicted in [34].
This prediction was performed using the London free energy functional for two-band
superconductors neglecting the Josephson interband coupling term. This dissociation has
been discussed theoretically in multilayer superconductors too [41,42] and further observed
experimentally [43, 44]. The fractional vortices can be stabilized by pinning arrays [45]
. When the external current is turned off suddenly in the decoupled phase where two
fractional vortex lattices move with different velocities, it is possible that the fractional
vortices get trapped by pinning centers if the density of pinning centers is higher than the
vortex density.
In multicomponent superconductors, some superconducting states are degenerate in free
energy. This leads to the appearance of a domain structure, this is, regions with different
energies. Between these domains, domain walls appear as topological defects. When
magnetic fields are applied to this domain structure, some of the vortices are trapped
at the domain wall. The vortices at the domain wall form an exotic structure called
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a vortex sheet [46], where a conventional vortex splits into two vortices with half flux
quanta [12, 47, 48]. Machida [1] investigated the flux flow and the pinning of the vortex
sheet structure. He found that this moves with the flux flow. In the pinning case it is
observed an emitting process of a conventional vortex from the vortex sheet by combining
a pair of half flux-quantum vortices.

1.2 List of publications of this thesis

• Nonequilibrium interband phase textures induced by vortex splitting in two-band
superconductors [49] .
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Some topics of superconductivity

2.1 London theory

The London theory was developed by the brothers Fritz and Heinz London. This phe-
nomenological theory describe the specific electrodynamic properties of superconduc-
tors [50] . It is based on a two-fluid model [51]. We consider a superconductor composed
of two current carrier (two-fluid) a normal and a superfluid one. The normal fluid carrier
has density nn, the superfluid carrier has density ns, and the total fluid carrier density is
n = nn + ns. The normal fluid obey the Ohm’s law

jn = σnE, (2.1.1)

with the normal conductivity σn given by the Drude’s law

σn =
e2nnτ

m
. (2.1.2)

The supercurrent is given by
js = −ensvs (2.1.3)

with vs the velocity of superfluid.
If we combine the Newton’s equations

d

dt
vs =

F
m

= −eE
m

(2.1.4)

with Eq. (2.1.3), we obtain

∂js
∂t

=
evsns
m

E (2.1.5)

The Eq. (2.1.5) is the first London equation, which is valid only for nn and ns constants
in the space and time. Taking curl of the 2.1.5 and integrating, we obtain the second
London equation

∇× js = −e
2ns
mc

B. (2.1.6)

By Ampere’s law
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∇×B =
4π

c
js +

4π

c
jn. (2.1.7)

.
Taking curl Eq. (2.1.7), using Eqs. (2.1.1) and (2.1.6), and employing some vectorial
identities, finally we obtain

∇2B =
1

λ2L
B, (2.1.8)

where λL is known as London penetration depth

λL =

√
mc2

4πe2ns
. (2.1.9)

Let us consider a semi-infinite superconductor filling the half space x > 0. If we apply a
external magnetic field Ba parallel to the surface, the solution of Eq. 2.1.8 is

B(x) = Bae
−x/λL for x ≥ 0 (2.1.10)

The magnetic field thus decresases exponentially with the distance from the surface of the
superconductor (Figure 1 ).

Figure 1: A magnetic field Ba applied parallel to a plane vacuum-superconductor interface. The magnetic
field decays to Ba/e at a distance x = λL in the superconducting region.

2.2 The Ginzburg-Landau equations

The complete fundamental equations for macroscopic superconductivity were written by
Ginzburg and Landau in 1950 [52]. This classical mean field theory of continuous sec-
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ond order phase transitions introduce an order parameter that is zero above the phase
transition and take values different of zero below of this transition. The phase transition
occur at the critical temperature Tc. The order parameter is a complex function that
conveniently is defined as

Ψ(r) = |Ψ(r)|eiθ(r) =
√
ns(r)eiθr, (2.2.1)

where ns(r) is the superfluid density and θ is the phase that expresses the spontaneous
breaking of the continuous (gauge) symmetry.

The Ginzburg-Landau (GL) total free energy has the form

Ftot(Ψ(r),A(r)) =

ˆ
d3rFGL(r), (2.2.2)

where A(r) is the vector potential and FGL(r) is the GL free energy density. Close to Tc
the order parameter is very small and the free energy density in the absence of an applied
magnetic field can be expanded as follow

FGL = FN + α(T )|Ψ(r)|2 +
1

2
β|Ψ(r)|4 + ... (2.2.3)

FN is the density energy in the normal state and we have truncated the expansion at
fourth order. For T > Tc , α >0 and α < 0 for T < Tc, hence

α ∼= α(T − Tc). (2.2.4)

When the energy density of a magnetic field is accounted, the free energy density of
the superconducting state in GL theory is

FGL = FN+
1

2m∗
|
(
−i}∇+

e∗A(r)

c
Ψ(r)

)
|2 +α(T )|Ψ(r)|2+

1

2
β|Ψ(r)|4+

B(r)2

2π
. (2.2.5)

B(r) is the magnetic induction and m∗ and e∗ are effective mass and charge of electron
respectively.
Minimizing the free functional energy with respect Ψ∗(r) and A(r) , the GL equations
are obtained

1

2m∗

(
−i}∇+

e∗A(r)

c
Ψ(r)

)2

+ α(T )Ψ(r) + β|Ψ(r)|2Ψ(r) = 0 (2.2.6)

c

4π
∇×∇×A(r) =

ie∗~
2m∗

(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r))− e∗2

m∗c
Ψ(r)|2A(r). (2.2.7)

Remembering the Ampere’s law j(r) = c
4π
∇×∇×A(r) the supercurrent can be identified

as
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j(r) =
ie∗~
2m∗

(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r))− e∗2

m∗c
Ψ(r)|2A(r). (2.2.8)

In the limiting case of Ψ(r)| = const the Eq. (2.2.6) is reduced to the London equation Eq.
(2.1.8). The GL theory has been applied to several critical phenomena [53,54], besides to
the superconductivity.

For the case of zero applied field in Eq. (2.2.6) we obtain

− }2

2m∗
∇2Ψ(r) + α(T )Ψ(r) + β|Ψ(r)|2Ψ(r) = 0. (2.2.9)

.
Dividing the last equation by α(T ), the gradient term becomes dimensionless and the
quantity ξ defined by

ξ(T ) ≡
(

}2

2m∗α(T )

)1/2

(2.2.10)

.
has dimension of a length. The quantity ξ is called coherence length which determines
the length over which the order parameter varies significantly.

Now we will find the characteristic length scale on which the magnetic field varies
significantly. For this task we assume that the order parameter is uniform, so the gradient
of |Ψ(r)| in Eq. (2.2.7) can be neglected. We get the follow equation

m∗c2β

4πe∗2|α(T )|
∇ ×∇×A(r) = −A(r) (2.2.11)

.
and the penetration depth λ is defined by

λ(T ) ≡
(

m∗c2β

4πe∗2|α(T )|

)1/2

. (2.2.12)

.
It is convenience to write the GL equations in dimensionless unit. For that we nor-

malize the lengths by λ, the order parameter by |Ψ0(r)| =
√

β
|α| , the vector potential by

A0 = 1√
2Hcλ

, where Hc =
(

8πα2

2β

)1/2
is the critical field. Finally we get the normalize GL

equations (
− i
k
∇+ A(r)

)2

Ψ(r)−Ψ(r) + |Ψ(r)|2Ψ(r) = 0 (2.2.13)

∇×∇×A(r) + |Ψ(r)|2A(r) +
i

2k
(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)) = 0 (2.2.14)
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j(r) =
1

2ik
(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r))− |Ψ(r)|2A(r) (2.2.15)

where k = λ
ξ
is defined as GL parameter.

2.2.1 Boundary conditions

Boundary condition for the vector potential (A)

For a superconductor of finite size a boundary condition for the vector potential requires
that the magnetic field in the surface must be equal to external magnetic field applied
(Ha).

(∇×A)× n̂|s = Ha × n̂|s (2.2.16)

where n̂ is the unit normal vector of a surface.

Boundary condition for the order parameter

For the case of superconductor-vacuum surface

n̂. (−i∇−A) Ψ|s = 0, (2.2.17)

this implies that the normal current perpendicular to the boundary is zero.
A generalization of the condition was made by De Gennes [54]

n̂. (−i∇−A) Ψ|s =
i

b
Ψ|s (2.2.18)

- For superconductor-vacuum or superconductor surfaces b→∞.
- When the interface is superconductor-metal, b > 0. This implies that the superconduc-
tivity is suppressed at the edges of the sample.
- If the interface is superconductor to superconductor of higher Tc , b < 0. In this case
the superconductivity is increased in the boundaries.

2.3 Type I and type II superconductors

Let us consider a superconductor in a presence of external magnetic field. The surface
energy of a boundary between a normal and superconducting region of the superconductor
is proportional to the difference (ξ − λ). Consequently the sign of this surface energy
depend on the value of GL parameter k. When k < 1√

2
, the surface energy is positive

and the superconductor is named type I. If k > 1√
2
, the surface energy is negative and

the superconductor is classified as type II. In the last type the magnetic field penetrates
in small tubes, named vortices, each one carrying a magnetic flux quantum
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Φ = nΦ0 = n
hc

2e
(2.3.1)

For type I superconductor exist only one critical field Hc. Because the phase transition
between the superconducting and normal states is of first order, that is, we can observe a
discontinuity between both states for a magnetic field Hc (see Fig. 2).

Hc(T ) =
Φ0

2
√

2πξ(T )λ(T )
(2.3.2)

For field lower thanHc all magnetic field is expelled from the interior of the superconductor
and above this the superconductivity is completely destroyed.

The type II superconductor have two critical fields Hc1 and Hc2. Because the phase
transition between both states is of second order,thus, there is no discontinuity at a given
Hc, instead, the superconductor enters a mixed state between Hc1 and Hc2 (see Fig. 2).

Hc1(T ) =
Φ0

4πλ2(T )
ln k (2.3.3)

Hc1(T ) =
Φ0

2πξ2(T )
. (2.3.4)

For field lower than Hc1 the superconductor is a perfect diamagnetic, but for field between
Hc1 and Hc2 the superconductivity survive between vortices penetrating the sample
Above the Hc2 the superconductivity is destroyed, in bulk samples. For thin samples, su-
perconductivity is still present up to the third critical field Hc3 , Hc3 > Hc2, in filamentary
regions of the sample [53,54] .
Figure 2 show the magnetization M as the function of the applied field H. The magneti-
zation is defined by

M =
B−H

4π
(2.3.5)

where B the magnetic induction. In the Meissner state B = 0, soM = − H
4π
. The entrance

of vortices cause a decrease in the magnetization until zero. For type I this decrease is
abrupt, but for type II superconductor it occurs gradually.

2.4 Abrikosov vortice

Alexei Abrikosov [55] explained some important characteristic of type II superconductor.
In the region Hc1 < H < Hc2 the vortex and superconducting states are in equilibrium. In
the vortex state, the magnetic field is confined to form magnetic flux lines, the vortices,
by the surrounding circulating superconducting current. With increasing applied field,
these vortices are arranged in a triangular lattice, known as Abrikosov lattice.
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Figure 2: A schematic picture of magnetization curves for bulk type I and type II superconductors.
For type I the phase transition between the superconducting and normal states is of first order. We
can observe a discontinuity between both states for a magnetic field Hc. For type II superconductor,
the phase transition between both states is of second order and there is no discontinuity at a given Hc,
instead, the superconductor enters a mixed state between Hc1 and Hc2.

2.4.1 Forces on Abrikosov vortice

According to [56,57] a vortice of unit length experiment a Lorentz driving force J×Φ0 from
the current of mean density J and a pinning force p from the defects. The critical current
density Jc is calculated from the following force balance equation just before depinning

J× Φ0 + pmax = 0. (2.4.1)

The nature of the driving force has been object of discussion along the years. Some
author have changed the sign of the first term of Eq. (2.4.1) [58–61]. The name "Lorentz
force" was considered improper because the Magnus force include the Lorentz force and the
first one is not a consequence of electromagnetic effects on a vortex [62]. This statement
has been widely refuted and the conventional meaning of the Lorentz force is clearly stated
and applied [63].
Cheng et al. [64] studied the nature of the driving force on an Abrikosov vortices by using
the London equation. It was concluded that the driving force on an Abrikosov vortices
is not a magnetic Lorentz force. In the low ξ/λ limit, the force is dominated by a kinetic
interaction and is proportional to the local densities of vortex and driving current around
the vortex core.

Our discussion of following subsection are base in Gennes’ classical book [54].

2.4.2 Energy (E) of Abrikosov vortice

We assume that a vortice is well pinned so that the more general Magnus force is reduced
to the Lorentz force and there is not effect from normal currents. If the supercurrent
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density and magnetic field have a slow space variation, the London equation can be used

H + λ2∇×∇×H = 0, (2.4.2)

with λ the penetration depth.
For extreme type-II superconductor, the magnetic field inside the vortex with hard core
of very small radius ξ is given by the expression

H + λ2∇×∇×H = Φ0δ(r)/µ0. (2.4.3)

The magnetic field is applied along the z axis.
Integrating the Eq. (2.4.3) on a closed path of radius r and using the curl formula, we
have

ˆ
H.ds + λ2

˛
∇×H.dl = Φ0/µ0. (2.4.4)

When r = ξ the first integral is negligible compared with the second leading

2πλ2r|∇ ×H| = Φ0/µ0 (2.4.5)

The solution of Eq. (2.4.3) is

H(r) =
Φ0

2πµ0λ2
K0

( r
λ

)
(2.4.6)

where K0 is the zero-order second-kind modified Bessel function.
Now, the energy of unit length can be calculated as follow

E =

ˆ [
µ0

2
H2 +

µ0λ
2

2
(∇×H)2

]
dV

=
Φ2

0

4πµ0λ2
ln

(
λ

ξ

)
.

(2.4.7)

In this deduction the low r/λ limit of Eq. (2.4.6) has been used and the volume integration
was taken outside the core. The first and second terms in the integral are field energy and
kinetic energy, respectively. The surface integration was selected on cylindrical surface of
the core with ds directed inwards.

2.4.3 Interaction energy of two Abrikosov vortices

Now, we consider two vortices in a large superconductor, both parallel to z axis. The
equation that determine the field distribution is
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H + λ2∇×∇×H = Φ0 [δ(r− r1) + δ(r− r2)] /µ0, (2.4.8)

with the vortices at the position r1 = (x1, 0) and r2 = (x2, 0) respectively.
H(r) is the superposition of fields of each vortex

Hi(r) =
Φ0

2πµ0λ2
K0

(
|r− ri|
λ

)
(2.4.9)

.
The interaction energy E12 of two vortices can be calculated as

E12 =
µ0λ

2

2

ˆ
ds1.H2 ×∇×H1 + ds2.H1 ×∇×H2. (2.4.10)

.
The integration was performed over cylindrical surface of the cores of both vortices. In
the same way of Eq. (2.4.5) it is obtained

2πλ2|r− ri||∇ ×Hi| = Φ0/µ0 (|r− ri| = ξ) (2.4.11)

and
E12 = Φ0H12 (2.4.12)

.
,where

H12 = H1(r2) = H2(r1) =
Φ0

2πµ2
0

K0

(
x2 − x1

λ

)
. (2.4.13)

E12 decrease with increasing x2 − x1, then it is a repulsive energy. The Ampere law is
employed for calculating the force on the second vortex obtaining

F2x = Φ0J1y(r2) (2.4.14)

and J1y is the density of the current of the first vortex at r2, where the small cylindrical
core of the second vortex is located. The last equation can be written as

F2 = J1(r2)× Φ0, (2.4.15)

and this is agrees with definition of driving force in Eq. (2.4.1).

2.4.4 Quantization of magnetic flux and kinetic nature of driving force

We will present the kinetic nature of driving force as reported in [64].
It is know that Φ0 is a magnetic flux quantum (Φ0 = π~/e = 2.07× 10−15Wb), but

we will see this more detailed. The vector potential A and the current density J can be
included in Eq. (2.4.3) as follow
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∇×A + µ0λ
2∇× J = Φ0δ(r) (2.4.16)

leading to

J =
~en
2m

(
∇θ − 2e

~
A
)

(2.4.17)

where we have used the definition of λ (Eq. 2.2.12) and remembered that the supercurrent
is defined by J = −nev. Here θ is the phase of superconducting order parameter. The
order parameter must be single valued, so making an integration over the interior surface
of a circle, as done for Eq. (2.4.4) and obtaining the vorticity of the phase θ,

1

2π

˛
∇θ.l = 1, (2.4.18)

valid only if Φ0 = π~/e = 2.07× 10−15 Wb.
Φ0 can be understood in two ways:

• The first as the total flux carried by a complete Abrikosov vortex. For r � λ, the
line integral in Eq. (2.4.4) can be ignored due to the high-degree small boundary
current. So µ0

´
H.ds = Φ0 and Φ0 is referred to as the flux quantum and the

driving force in Eq. (2.4.15) seems to be electromagnetic.

• On the other hand if the radius of circle of integration is very small, Eq. (2.4.4)
leads to Eq. (2.4.5). So Φ0 is also the circulation of the current density around
the circle of integration multiplied by µ0λ

2. Then the driving force in Eq.(2.4.15) is
exerted between two currents. For illustrating this point, we can use Eqs. (2.4.10)
and (2.4.11) and the Ampere law to rewrite Eq. (2.4.14) as

F2x = −µ0λ
22πξ|∇ ×H2|∂H1/∂x2

= µ0λ
22πξJ2 (|r− r2| = ξ) J1 (|r− r2| = ξ) .

(2.4.19)

This equation shows that the driving force F2x on the second vortex does not explic-
ity depend on the total flux Φ0 it carries. It is proportional to the circulation of its
own current density along the border of the core, 2πξJ2 (|r− r2| = ξ), and the cur-
rent density of the first vortex on the same border, J1 (|r− r2| = ξ). As J = −nev,
with v the electron velocity, the force between two currents should have a kinetic
origin.

From Eq. (2.4.6) we can calculated the field energy of vortex obtaining

Eh =
Φ2

0

4πµ0λ2

ˆ ∞
ξ/λ

xK2
0(x)dx =

Φ2
0

8πµ0λ2
, (2.4.20)



29

when ξ/λ � 1. Eh is negligible small in the low ξ/λ limit when this is compared with
the total energy expressed by Eq. (2.4.7). We can conclude that the total energy is
dominated by the kinetic energy. The situation is similar for the energy E12. This leads
the conclusion that the nature of the driving force should also be mainly kinetic and the
relevant meaning of the Φ0 appearing in Eq. (2.4.15) is kinetic too. In the Anderson and
Kim’s work [57] the interaction energy was treated as an obvious consequence of magnetic
energy and considered the driving force as Lorentz force.

Many works evidence the kinetic nature of driving force [65, 66].
It is not obvious that the Lorentz force arises in a framework theory where the magnetic

effects of the circulating currents is neglected. But, effectively, when the vortex core does
not carry any flux, the nature of Φ0 in Eq. (2.4.1) is not magnetic but kinetic, and the
driving force can be calculated using a formula containing Φ0 [64]. Remembering that,
J1 = −nev, and Φ0 = π}/e, Eq. (2.4.15) becomes

F = −π}nv× k (2.4.21)

with k the unit vector along the z axis.
The last relation has no explicit relation to e and m. But is proportional to the electron
velocity and the electron density. Except for a sign difference, this is consistent with Eq.
(9) of [62] for the Magnus force, which was derived in terms of the geometric phase. So,
we can generally say that the driving force is a dynamical quantum-mechanical force on
the vortice. This force can be expressed electromagnetically as Eq. (2.4.15), however this
hide the actual nature of the driving force and give rise to a sign confusion. The driving
force can also be expressed kinetically as

F = −nmv× Ω0 (2.4.22)

where Ω0 is the vectorial quantum of the electron-velocity circulation closely around the
vortex core,

Ω0 = π}/m = Φ0e/m = 3.637× 10−4m2/s. (2.4.23)

The kinetic nature of the driving force is explicit in Eq. (2.4.22) and Eq. (2.4.23) explains
precisely the kinetic meaning of Φ0.

It is necessary to emphasize that the nature of driving force depend of the value of
ξ/λ. In the low ξ/λ limit the nature of driving force is kinetic, but as ξ/λ cannot be
zero in any real case and ξ/λ > 0, the energy will have both the kinetic and magnetic
contributions. In both case the driving force is described by the same function.
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2.5 Flux pinning

When an external current is applied to superconductor, there is a critical current at which
the vortices start to move transverse to the applied current density j. The Lorentz force
per unit volume is given by

FL = j× B
c
. (2.5.1)

The electrical field induced by the moving vortices is

E = B× v
c

(2.5.2)

Where v is the velocity of vortex lattice. This electric field produces an energy dissipation
in the superconductor. The pinning force Fp is introduce in order to compensate the
Lorentz force and consequently the superconductor can support higher currents with
lower dissipation energy. The total force that vortex experiment is

F = FL − Fp − FM − ηv (2.5.3)

where −ηv and FM are a viscous damping and Magnus forces respectively.
There are several pinning mechanisms that can be divided in two principal groups [67]:

The electromagnetic pinning and the core pinning. In the first group the responsible for
pinning are the supercurrents around the vortices and the local magnetic fields produced
by the defects. The kinetic energy of the supercurrents can be lowered when vortices
are situated on the pinning sites, resulting in an attraction between vortices and pinning
centers. The important length scale here is the penetration depth λ. In the second group
the attractive interaction between vortices and defects is consequence of the minimization
of free energy when the vortex core is located at the position where Tc or κ have a local
variation. More effective core pinning is achieved when the size of the pinning site is of
order ξ or λ.

The effect of pinning is to strengthen the superconductivity. The pinning defects pin
the vortices causing a decrease of energy dissipation when a external current is applied.
Artificial pinning centres, such as antidots [68–70] or magnetic dots [71–73], are fabricated
on nano-scale. When the stable vortex configurations reproduce the symmetry of the pin-
ning array, a local enhancement of the magnetization M (H) and the critical current is
achieved. These pronounced maxima are named matching features and occur at integer
multiples of the first matching field, which is defined as the field at which the density of
vortices equals the density of pinning sites. The first observation of the matching phenom-
ena in one dimension was reported in [74] . Further experiments with two-dimensional
arrays of holes were reported [75,76]. Later superconductors with a square and triangular
arrays of pinning centers were studied [70,77]. The maximum number of flux quanta that
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can be trapped inside a pinning center, named saturation number, depends on the ratio
between the size of the pinning site and the coherence length [78–80].
Recently, Machida [1] studied the effect of a triangular array of pinning centers in the
properties of vortex lattice. The calculations were performed in a two-dimensional square
with current j flowing, as schematically shown in Fig 3. The pinning centers are square
of size 1.4ξ0 × 1.4ξ0. The dynamics of the domain wall and half flux-quantum vortices of
the vortex sheet structure were investigated. The domain wall moves with the flux flow
both in the free flux flow case and the pinning case. It was observed the creation process
in a way that a pair of half flux-quantum vortices is changed to a conventional vortex and
liberated from the vortex sheet.

Figure 3: Configuration of the simulation. The current density j flows in at righ-hand side boundary
and out at the left-hand side boundary of square superconductor. External fields H+ and H− are
applied outside the lower and upper boundaries, respectively. Pinning centers, where superconductivity
is suppressed are represented by small squares. Taken from Ref. [1].

Jelic et al., [2] investigated the fundamental consequences of a temporally periodic pinning
landscape imprinted on a superconducting condensate. It was considered a superconduct-
ing stripe with longitudinally applied current, in magnetic field perpendicular to its plane,
and with an oscillating depletion line along its middle (See Fig. 4). The generalized time-
dependent Ginzburg-Landau (TDGL) equations were used to calculated the voltage as
function of the applied current, magnetic field, material parameters and the period of the
time dependent pinning. In the TDGL was included the function f(t, r) for the pinning
as follow

u√
1 + γ2|Ψ|2

(
∂

∂t
+
γ2

2

∂|Ψ|2

∂t

)
|Ψ| = (∇− iA)2 |Ψ|+

(
f(t, r)− |Ψ|2

)
Ψ (2.5.4)
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Figure 4: (a) A superconducting stripe of width W with a central, time-dependent, pinning line of width
comparable to the vortex size, and a 4-point probe applied dc current (with density J), and measured
voltage (V at contacts separated by distance L). A depletion region is simulated as sinusoidally oscillating
local heating up to the critical temperature Tc and back to working temperature, with frequency ω. (b)
Possible experimental setup corresponding to (a), by using laser light at the far field region passing through
a metallic mask to create time-dependent and spatially modulated depletion of the superconducting
condensate. Taken from Ref. [2].

∂A
∂t

= Re {Ψ∗(−i∇−A)Ψ} − κ2∇×∇×A (2.5.5)

These equations are expressed in the dimensionless units, where the order parameter, Ψ,
is given in the units of ∆(T ) = 4kBTcu

1/2/π
√

1− T/Tc (kB is the Boltzmann constant,
u = 5.79 is the ratio of the relaxation time of the order parameter phase and the relaxation
time of the order parameter amplitude), A is in units of Φ0/2πξ(T ). The parameter
γ = 2τin∆(T )/}. Time is expressed in the units of Ginzburg-Landau relaxation time,
τGL = π}/8kB(Tc − T )u, and all of the distances are scaled with the coherence length,
ξ(T ).
The time-dependent pinning potential is given by:

f(t, r) =

1, out of the depletion region
1
2

(
1− cos 2πt

τ

)
, in depletion region

(2.5.6)

The term 2π/τ is the angular frequency ω of the pinning. The function f(t, r) provides
oscillations of the order parameter in the depletion region, which shifts between the su-
perconducting state (f = 1), and normal state (f = 0).

It was observed a temporally matching phenomena caused by stroboscopic commensu-
rability between the characteristic frequency of the vortex motion under applied current
and the frequency of the dynamic pinning. This leads to unusual features such as exter-
nally variable resistance/impedance and Shapiro steps in current-voltage characteristic.
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2.6 Kosterlitz-Thouless transition

The focus of this thesis is the study of vortex dissociation process. We consider important
to describe the existing theories about the decoupling of composite vortex . There is the
reason why we expose the Kosterlitz-Thouless transition here.

In several physical system components at one level go together and form certain collec-
tive coherent structures, such as topological defects or topological charges. Among them
we have Coulomb charges in two dimensions, dislocations in two dimensional crystals,
and of our particular interest ,vortices in two dimensional superconductors. The interac-
tion between the topological charges depends in all cases logarithmically on the spatial
separation and this leads to some very general collective behaviour, most spectacularly it
causes a certain type of phase transition namely Kosterlitz-Thouless transition [81].

The Berezinskii-Kosterlitz-Thouless transition (BKT transition) is a phase transition
in the two-dimensional (2-D) XY model. It is a transition from bound vortex-antivortex
pairs at low temperatures to unpaired vortices and anti-vortices at some critical tempera-
ture. The transition is named for condensed matter physicists Vadim Berezinskii, John M.
Kosterlitz and David J. Thouless. BKT transitions can be found in several 2-D systems in
condensed matter physics that are approximated by the XY model, including Josephson
junction arrays and thin disordered superconducting granular films.

2.6.1 The two dimensional XY-model

The hamiltonian of planar rotor of unit length arranged on a two dimensional square
lattice is

H = −J
∑
<ij>

Si.Sj = −J
∑
<ij>

cos(θi − θj), (2.6.1)

< ij > denotes summation over all nearest neighbour sites in the lattice, and θi denotes
the angle of the rotor on site i with respect to some polar direction in the two dimensional
vector space containing the rotors.
The cos function can be aproximated by Taylor expansion assuming that the direction
of the rotor varies smoothly from site to site. The sum over the nearest neighbours
corresponds to the discrete Laplace operator, which can be expressed as

θi − θj = ∂xθ (2.6.2)

for two site i and j which differs by one lattice spacing in the x-direction. The hamiltonian
take the integral form

H = E0 +
J

2

ˆ
dr(∇θ)2. (2.6.3)
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E0 = 2JN is the energy of the completely aligned ground state of N rotors.
The partition function of the system is obtained by

Z = e−βE0

ˆ
D [θ] exp{−βJ

2

ˆ
dr(∇θ)2}. (2.6.4)

The integral over θ(r) can be divided into a sum over the local minima θv of H [θ] plus
fluctuation θsω around the minima

Z = e−βE0

∑
θv

ˆ
D [θsω]

exp{−β
(
H [θv] +

1

2

ˆ
dr1
ˆ
dr2θsω(r1)

δ2H

δθ(r1)δθ(r2)
θsω(r2)

)
}. (2.6.5)

The field configuration corresponding to local minima of "H" are solutions to the external
condition

δH

δθ(r)
= 0⇒ ∇2θ(r) = 0. (2.6.6)

Trivial solution to this equation correspond to the ground state θ(r) = constant.
The other solution is obtained by imposing the following boundary conditions on the
circulation integral of θ(r):

˛
∇θ(r).dl = 2πn. (2.6.7)

Here n 6= 0 for all closed curves encircling the position r0 of the centre of the vortex and
n = 0 for all paths that don‘t encircle the vortex position r0.
The condition n 6= 0 imposes a singularity in the director field. The circulation integral
must be equal to an integer times 2π since we circle a closed path and therefore θ(r) has
to point in the same direction after traversing the path as it did when we started.
The energy of vortex can be estimated considering a spherical symmetric, hence the vortex
field θv must be of the form θ(r) = θ(r). The dependence on r is found from Eq. (2.6.7).
The circulation integral along a circle of radius r centred at the position r0 of the vortex
is

2πn =

˛
∇θ(r).dr = 2πr|∇θ|. (2.6.8)

This implies that

|∇θ| = n/r. (2.6.9)

Replacing this result in Eq. (2.6.3)
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Ev − E0 =
J

2

ˆ
dr [∇θ(r)]2 = πn2J ln

(
L

a

)
. (2.6.10)

∇θ decays only as 1/r leading to a logarithmic divergence of the energy. Consequently
the integral over r in Eq. (2.6.10) is cut-off for large r-values by the finite system size
L and for small r-values by the lattice spacing a. The factor n in Eq. (2.6.7) is called
winding number. The energy of the vortex is quadratic in the n, then the vortex with
n > 1 are not favorable. This type of vortex is named giant-vortex.

Consider a pair of single charged vortex and anti-vortex. For the vortex the integral
in Eq. (2.6.7) is equal to 2π and for anti-vortex is equal −2π. Hence if we select a
path enclosing both vortices the result of integral is zero (0). The distortion of the phase
field θ(r) from the vortex-anti-vortex pair is able to cancel out at distances from the
center of the two vortices large compared to the separation R between the vortex and the
anti-vortex. This explains why the energy of the vortex pair is of the form

E2v(R) = 2Ec + E1ln
(
R

a

)
, (2.6.11)

with Ec the energy of the vortex cores and E1 is proportional to J . The phase field θ2v(r)

of a vortex r = (−a, 0) and anti-vortex located a r = (a, 0) is

θ2v(R) = arctg
(

2ay

a2 − r2

)
. (2.6.12)

2.6.2 Vortex unbinding

The free energy of a single vortex is calculated by F = E − TS. The energy E is given
by Eq. (2.6.10) and the entroly S is S = kBln(L2/a2). Then

F = E0 + (πJ − 2kB)ln(L/a). (2.6.13)

For T < πJ/2kB the free energy diverge to plus infinity as L→∞. For T > πJ/2kB the
system can lower its free energy by producing vortices, hence F → −∞ as L→∞. This
simple heuristic argument points to the fact that the logarithmic dependence on system
size of the energy of the vortex combines with the logarithmic dependence of the entropy
to produce the subtleties of the vortex unbinding transition. It is the logarithmic size
dependence of the 2d vortex nergy that allows the outcome of the competition between
the entropy and the energy to change qualitatively at a certain finite temperature TKT .

2.6.3 The spin wave stiffness

The spin wave stiffness ρRs depends on the temperature and is defined to describe the effect
of the thermally activated vortex pairs. This is the case of what is named a generalised
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rigidity [82]. ρRs gives the energy necessary to apply a twist, or gradient, to the rotors or
spins:

θ(r) = θ0(r) + vex.r, (2.6.14)

where θ0(r) vary according to the canonical ensemble and vex is the applied gradient. The
free energy is increased by

F (vex)− F (0) =
1

2
V ρRs v

2
ex. (2.6.15)

In the superconductivity phenomena θ(r) is the phase of the complex order parameter.
The superscript R in ρRs indicates that thermal excitations renormalise the quantity. From
the hamiltonian (Eq. 2.6.3) follows immediately that at zero temperature ρRs = J = ρs.
The spin wave stiffness is similar to the shear constant of material. The shear constant says
the energy cost of a shear deformation. As temperature is increased the shear constant
decreases and drops abruptly to zero when the solid melts into a liquid.
The detail for calculating ρRs is found in [83] . To obtain ρRs one calculates the left hand
side of Eq. (2.6.15). The phase field is split into two parts

θ0(r) = θs(r) + θv(r). (2.6.16)

The first term describes smooth spin waves and the second term contain the singular
vortex contribution. From the thermodynamic theory F = KbT lnZ and the Eq. (2.6.4)
it is obtained the free energy

ρRs = ρs −
1

2

ρ2s
T
limk→0

〈n̂(k)n̂(-k)〉
k2

, (2.6.17)

where the Fourier transforms of the phase field has been used. n(r) is the correlation
function of the Fourier transform of the vortex density function

n(r) =
∑
α

nαδ(r− rα) (2.6.18)

for a collection of vortices of density nα with centres located at positions rα.

2.6.4 The KT transition

The number of vortex pairs thermally activated increases with increasing temperature. In
consequence ρRs decrease. This correspond to a decrease in the increment of the free energy
induced by a certain twist vex. This is explained because the phase field θ(r) becomes
more and more distorted as the temperature is increased, hence the extra perturbation
caused by vex becomes relatively less important. The spin wave stiffness is given by
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ρRs (T−KT ) =

ρRs (T−KT )
[
1 + const.(TKT − T )1/2

]
, for T < TKT

0 , for T > TKT
(2.6.19)

where TKT is the Kosterlitz-Thouless temperature at which vortex pairs unbind. In the
2d XY -model TKT/J ' 0.893± 0.002 [84].
All systems that undergoes a KT -transition obey the universal relation

ρRs (T−KT )/TKT =
2

π
, (2.6.20)

Since ρRs (T−KT ) = 0, Eq (2.6.20) is referred as the universal jump. The correlation length
ξ(T ) has an unusual behavior as one approaches TKT from above. There is a slow diver-
gence of the ξ(T ) as the critical temperature is approached. However, the KT -transition
diverge much faster, then

ξ(T ) ∼ exp
(

const.

(T − TKT )1/2

)
for T > TKT . (2.6.21)

2.7 Multicomponent superconductivity based on multiband superconductors

It is considered that multiband superconductors present multicomponent superconduc-
tivity when an interband pairing interaction is considerably weaker than the intraband
interactions. In this way each band has a condensate with an amplitude and phase
that weakly interacts with the condensates of the other bands. The system has multiple
quantum phases, which is not a straightforward extension of a conventional single-band
superconductor with only one quantum phase.

To date many materials are useful for studying the multicomponent superconductivity
based on multiband superconductors. The transition metals, Nb and V, have been con-
sidered to present a multiband nature [85,86]. Similarly NbSe2 [87], graphite intercalation
compounds [88,89] and Chevrel compound [90] were investigated. Multilayer cuprate su-
perconductors exhibits the multiband nature [91–94]. MgB2 [6] and pnictides [95] are also
considered as attractive candidates.

The original BCS theory of superconductivity was a simplified model for an isotropic
single superconducting gap [3]. Suhl, Matthias and Walker proposed two-band extension
in 1959 [5]. Two different magnitudes are assigned to two different superconducting gaps,
whereas the superconducting phase is identical for the two gaps. In 1962, Kondo [77] and
Peretti [96] independently introduced different phases for different gaps due to the non-
electron phonon-mediated superconductivity speculated to exist owing to the vanishing
of the isotope effect in some transition metal superconductor, such as Ru and Os. The
phase difference between two gaps is π radians, indicating sign reversal gaps. Leggett
introduced a phase difference other than 0 or π radians as a collective excitation potentially
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present in the transition metal superconductor [10]. Tanaka extended this fluctuation to
2π radians [11], leading an interband phase-difference soliton (i soliton). In multilayer
cuprate superconductor Cu-1234 was considered the topology and multiple components
with regard to the superconductivity in the multiband superconductor. To introduce
the multicomponent picture for multiband superconductor allow to examine the physics
involving a field theory admitting multiple gauge field [79,97–103]. The physics of MgB2

and pnictides has been frequently discussed according to this picture since 2001 [80].
The terms multiband superconductors and multigap superconductors do not always

indicate the same meaning and physics, which seem to vary by researchers and subjects.
It is important to remark that all real superconductors have the ability to change the

isotropic magnitude, phase, and temperature evolution of the gap. These modifications
can be introduced by the effects of the anisotropy of the Fermi surface [104] and pairing
interaction [105], which modify the magnitude of the gap. Gross, Massidda, and their
collaborators are constructing an ultimate modern version of the ab initio calculation of
the anisotropic gap [106].

Other way to modify the isotropic gap is introducing two discrete magnitudes into the
gaps, as Suhl, Mattias, and Walker did [5]. Two gaps originate from two bands. We have
three cases to consider separately: In the first case the magnitude of the gap on one band
is different from that on another band. For the second case, the superconductivity can
emerge by the interband interaction only without the intraband interaction. In this case,
the temperature dependence of the magnitude of the gap normalized by that at 0 K for
each band is similar to that of the isotropic single-gap case. It is, the behaviour is similar
to the single component superconductivity. Thirdly, the temperature dependence of the
gap normalized by that at 0 K differs considerably from that of the isotropic single gap
case when the interband interaction is far smaller than the intraband interaction. That
is, it behaves as a double-component superconductivity.

In [5] the condition of the multiband is converted into the pair interaction and density
of the state. Within the same band, the magnitude of the intraband pair interaction is the
same, as is the density of the state. There is a difference in the magnitude of the intraband
pair interaction and the density of the state between two bands. The magnitude of the
interband interaction is also the same throughout the Fermi surface. Suhl et. al, discussed
two cases: One exhibited a contrast in the strength between two intraband interaction or
in the density of the state between two bands, causing two gaps, and the other exhibited
a contrast in the strength between the intraband interaction and interband interaction,
causing two components when the interband interaction was very weak. Each band could
have any phase and magnitude of the gap. This is the multicomponent superconductivity
based on multiband superconductors.
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2.8 Two-component London superconductivity model

In the London limit the amplitude of order parameter, |Ψ(r)| , in the Ginzburg-Landau
free energy (Eq. 2.2.4) is considered constant. The uniform solution of GL equation
(2.2.6) is obtained by setting the vector potential to zero, as well as the derivatives of the
order parameter. The solution obtained is |Ψ0(r)|2 = −α

β
. For the case of two bands the

order parameter can be write as

Ψj(r) = |Ψ0j(r)|eiθ(j), (2.8.1)

with j = 1, 2 the band index. Replacing Eq. (2.8.1) in Eq. (2.2.4), the London free energy
density is obtained

FL =
∑
j=1,2

1

2
|Ψj|2

(
∇θ(i) + A

)2
+

1

2e2
(∇×A)2 + γ|Ψ1||Ψ2| cos

(
θ(1) − θ(2)

)
, (2.8.2)

where the last term is the Josephson interaction.
The last equation can be write as

FL =
1

2

∑
j=1,2

|Ψj|2
(
∇θ(i) + A

)2
+

1

2
λ2
(
|Ψ1|2 + |Ψ2|2

)
(∇×A)2

+
1

ξ2J

|Ψ1|2|Ψ2|2

|Ψ1|2 + |Ψ2|2
cos
(
θ(1) − θ(2)

)
, (2.8.3)

where λ is the penetration depth and ξJ the Josephson length:

λ =
1

e
√
|Ψ1|2 + |Ψ2|2

, (2.8.4)

ξJ =

√
|Ψ1||Ψ2|

γ (|Ψ1|2 + |Ψ2|2)
. (2.8.5)

2.9 Two-component Ginzburg-Landau (TCGL) model

The Gibbs energy functional of the TCGL model is defined by its energy density

g =
(B−B0)

2

8π
+
∑
j=1,2

{
1

2mj

|DΨj|2 + αj|Ψj|2

+
1

2
βj|Ψj|4

}
+ gJ , gJ = −Γ(Ψ∗1Ψ2 + Ψ1Ψ

∗
2), (2.9.1)

where Ψ1 = |Ψ1| exp(iθ1) and Ψ1 = |Ψ1| exp(iθ2) are complex gap (condensate) functions
of the bands j = 1, 2, D = −i~∇− 2eA/c is the gauge-invariant gradient, B = [∇×A]
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is the magnetic field, B0 is the applied (external) field, gJ is the interband coupling or
the Josephson energy, αj, βj, mj are material constants defined as

αj = −N(0)njχj, βj = N(0)
nj
W 2

,

mj =
3W 2

N(0)njv2j
, Γ = N(0)

λ12
G
,

W 2 =
8π2T 2

c

7ζ(3)
, χj = τ − Sj

njG
, (2.9.2)

where τ = 1 − T/Tc, Nj = N(0)nj is the band density of states (DOS) at the Fermi
energy, N(0) = N1 +N2 is the total DOS (n1 + n2 = 1), λij = gijN(0) are dimensionless
coupling constants for the coupling constants gij, G = λ11λ22 − λ212, vj is the band Fermi
velocity and S1, S2 appears in the solution of the linearised gap equation for the critical
temperature Tc and are defined similar to the earlier works [107]

S1 = λ22 − n1GS, S1 = λ11 − n2GS, (2.9.3)

S =
n1λ11 + n2λ22 ±

√
(n1λ11 + n2λ22)2 + 4n1n2λ212
2n1n2G

.

The time-dependent TCGL equations are found from the stationary condition of the
energy functional with the additional dynamical contributions, this yields

η1
∂Ψ1

∂t
=

1

2m1

D2Ψ1 + α1Ψ1 + |Ψ1|2Ψ1 − ΓΨ2,

η2
∂Ψ2

∂t
=

1

2m2

D2Ψ2 + α2Ψ2 + |Ψ2|2Ψ2 − ΓΨ1, (2.9.4)

where we introduce the relaxation constants ηj for the respective bands. The accompa-
nying Maxwell equation writes as

c

4π
[∇× [∇×A]] = Jn + Js, (2.9.5)

where Js is the supercurrent density

Js = 2eRe

[
1

m1

Ψ1D
∗Ψ∗1 +

1

m2

Ψ2D
∗Ψ∗2

]
, (2.9.6)

and Jn is the normal current density induced by the electric field

Jn = σE = −σ
c

∂A

∂t
, (2.9.7)
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with σ being the normal conductivity of the material.
Although characteristic lengths of this model strongly depend on the coupling between

the bands, one can still define the coherence and the penetration lengths for each band,
considered separately, by using the standard GL expressions

ξj =
~vj√
6W

, λj =

√
3c2

16πN(0)e2njv2j
. (2.9.8)

The critical temperatures of the uncoupled bands (that is, the temperatures at which the
corresponding αj changes sign) are given by the expression

Tcj = Tc

(
1− Sj

njG

)
, (2.9.9)

Notice that both Tcj are always smaller than Tc. There for, Tc1, Tc2 < T < Tc, both αj
are positive and superconductivity survives in the system only due to coupling between
the bands, where as for T < Tc1, Tc2, both bands are active (αj < 0). For temperatures
such that TcP < T < TcA, one of the bands is active(band A) while the other (band P)
is passive, that is, it remains superconducting only because of Cooper pairs coming from
band A.

One can also define the GL parameter κ for each of the band as

κj =
λj
ξj
,

κ2
κ1

=

√
n1

n2

v21
v22
. (2.9.10)

For the numerical calculations it is convenient to scale all relevant quantities using pa-
rameters of the stronger band j = 1,

ψj = W Ψ̃j, r = ξ1 r̃, A = A0Ã,

t = t0 t̃, ηj = ηj0 η̃j, (2.9.11)

where

A0 =
~c

2eξ1
, t0 =

4πσκ21ξ
2
1

c2
, ηj0 = njN(0)t0. (2.9.12)

The scaled TCGL equations read as (hereafter we omit “tilde” for the scaled quantities)

η1
∂Ψ1

∂t
= D2Ψ1 −

(
χ1 − |Ψ1|2

)
Ψ1 − γΨ2,

η2
∂Ψ2

∂t
=

1

α
D2Ψ2 −

(
χ2 − |Ψ2|2

)
Ψ2 −

γ

α

n1

n2

Ψ1, (2.9.13)

where the gradient-invariant derivative is D = −i∇−A, γ = λ12/(n1G) and for the decay
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rates we can assume η1 = η2. Equation (2.9.5) becomes

∂A

∂t
= Re

[
Ψ1D

∗Ψ∗1 +
1

α

n2

n1

Ψ2D
∗Ψ∗2

]
− κ21 [∇× [∇×A]] . (2.9.14)

2.10 Vortex dissociation in the London model

This section is based in the work of Shi-Zeng Lin and Lev N. Bulaevskii [34].
We will study the dissociation of a composite vortice in two-band superconductors by
using the London Model.

The free energy density can be written as

FL =
1

8π

2∑
µ=2

[
1

λ2µ

(
A− Φ0

2π
∇θµ

)2

+ (∇×A)2
]

(2.10.1)

where λµ =
√

(mµc2)/(4πnµe2) is the London penetration depth for each condensate with
superfluid density nµ, A is vector potential, mµ is the electron mass in µ-th band and γ
is the interband Josephson coupling. The effective penetration depth for the two-band
system is λ−2 = Σ2

µ=1λ
−2
µ .

Minimizing FL with respect to A, we obtain the London equation

λ2∇×∇×B + B = Φµ

∑
µ,j

δ(r− rµ,j), (2.10.2)

with Φµ = λ2Φ0/λ
2
µ the fractional quantum flux and rµ,j = (xµ,j, yµ,j) is the vortex

coordinates for the vortex in the µ-th condensate.
FL can be splited into two contribution [35] FL = Fm + Fc. Where Fm is the magnetic
coupling

Fm =
1

8π

[
B2 + λ2(∇×B)2

]
(2.10.3)

and Fc is the coupling due to the phase difference between condensates

Fc =
Φ1Φ2

32π3λ2
[∇(θ1 − θ2)]2 − γcos (θ1 − θ2). (2.10.4)

For a fractional vortex where θ1 changes by 2π around r0 while θ2 does not change, the
self energy per unit length is

Efv =

(
Φ1

4πλ

)2

ln
(
λ

ξ1

)
+

Φ1Φ2

16π2λ2

(
L

ξ1

)
+ |γ|

ˆ
dr2 [1− cos θ1] (2.10.5)

where L is the linear size of the system and ξµ is the coherence length. Ef,v diverges at
L→∞. Thus a fractional vortex is thermodynamically unstable in bulk superconductor.
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To calculate intraband and interband interaction, one need to know θµ. It can be obtained
minimizing Eq. (2.10.4) with respect to θ1

Φ1Φ2

16π3λ2
∇2(θ1 − θ2)− γ sin(θ1 − θ2) = 0 (2.10.6)

subject to the boundary condition accounting for vortices

∇× (∇θµ) = 2π
∑
µ,j

δ(r− rµ,j). (2.10.7)

It can be deduced from the Eqs. (2.10.6) and (2.10.7) that the interaction between vortices
is a many-body interaction. For strong field the sin term in Eq.(2.10.6) becomes smaller
than the Laplacian term, thus the first one can be neglected. The discussion of the
interband and intraband interaction will be analized neglecting the Josephson interband
coupling term. Consequently Fm and Fc are quadratic in B and θµ, so the interaction
between vortices is pairwise. Fm is responsible for short-range interband and intraband
repulsion between vortices with the same polarization. Fc is responsible for long range
interaction.
Defining rµ,ij ≡ rµ,i − rµ,j, the intraband repulsion between two vortices in the same
condensate is

Vintra(rµ,ij) =
Φ2
µ

8π2λ2
K0

(rµ,ij
λ

)
− Φ1Φ2

8π2λ2
ln (rµ,ij) (2.10.8)

and defining r12,ij ≡ r1,i − r2,j, the interband attraction between two vortices in the
different condensates is

Vinter(r12,ij) =
Φ1Φ2

8π2λ2

[
K0

(r12,ij
λ

)
+ ln (r12,ij)

]
. (2.10.9)

The two last equations are valid away from vortex cores.
When external current is applied in the superconductor, the vortices move due to the
Lorentz force. The vortex in each band experiment a viscosity given by the Bardeen-
Stephen model ηµ = Φ2

0/(2πc
2ξ2µ). The dynamic of vortices can be expressed by the follow

equations

ηµ∂trµ,i =
1

8π2λ3

∑
j

[
Φ2
µK1

(rµ,i
λ

)
+

Φ1Φ2λ

rµ,ij

]
+

Φ1Φ2

8π2λ3

∑
j

[
K1

(r12,ij
λ

)
− λ

r12,ij

]
+
JΦµ

c
(2.10.10)

Considering a square lattice and a approximation 2πλ/a� 1, the equation of motion for
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the center of mass of vortex lattice Rµ in each band becomes

η′2∂t(R2 −R1) = −(1 + η′2) sin (R2 −R1) + (Φ′2 − η′2)J (2.10.11)

∂tR1 + η′2∂tR2 = (1 + Φ′2)J (2.10.12)

The equation (2.10.11) are in dimensionless units: length is in unit of a/(2π), time in unit
of η1a/(2πFd), current is in unit of cFd/Φ1, Fd is the maximum attractive force between
two lattices Fd = Φ1Ψ2a/(64π6λ4). Φ′2 ≡ Φ2/Φ1 and η′2 ≡ η2/η1.
For small current , vortices in different bands move with the same velocity v1 = v2 =

(1 + η′2)
−1 × (1 + Φ′2)J . However the center of mass of this lattices vortex are deviated

with a separation sin−1 [(1 + η′2)
−1(Φ′2 + η′2)

−1J ].
The maximum attraction is reached at R2−R1 = π/2 or a/4 in real unit. At a threshold
current

Jd = |
[
(1 + η′2)

−1(Φ′2 + η′2)
−1J
]
| (2.10.13)

the vortices dissociate and move with velocity

vµ = (1 + η′2)
−1 ×

[
1 + Φ′2)J −

η1
ηµ

√
(Φ′2 − η′2)2J2 − (1 + η′2)

2

]
. (2.10.14)

The Fig. 5 show the dependence of vµ on J . For current J � Jd, each lattice move
independently with velocities v1 = J and v2 = J/η′2.
The I-V behavior is calculated by the expression η1v21 + η2v

2
2 = JEa2. The characteristic

I-V curve is shown in vv and it can be observed that the differential resistivity increases
in the decoupled phase.

Figure 5: The dependence of the electric field (a) and of the velocities v1,v2 (b)on the current density J .
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Numerical method

3.1 ψ-U method

The ψ-U method will be applied to discretize the two-component Ginzburg-Landau model.
We first will discretize the time dependent Ginzburg Landau (TDGL) equations for single
band. This method is described in detail in Ref. [108].

3.1.1 Discretization of time dependent Ginzburg-Landau equations

The TDGL equations were deduced in the framework of BCS theory by L.P Gor’kov and
G.M. Èliashberg [109]. The TDGL equations coupled with Maxwell equations with the
zero-scalar potential gauge are written in dimensionless form as

∂tΨ = −1

η

[
(−i∇−A)2 Ψ + (1− T )

(
|Ψ|2 − 1

)
Ψ
]
, (3.1.1)

∂tA = (1− T )Re
[
Ψ (−i∇−A) Ψ

]
− κ2∇×∇×A, (3.1.2)

where lengths have been scaled in units of ξ(0), time in units of t0 = π}/(96kBTc), A in
units of Hc2(0) and temperature in unit of Tc.
We start introducing the auxiliary fields

U x (x, y) = exp

(
−i
ˆ x

x0

Ax(x′, y)dx′
)
, (3.1.3)

U y (x, y) = exp

(
−i
ˆ y

y0

Ay(x, y′)dy′
)
, (3.1.4)

which preserve the gauge invariance of the TDGL equations. (x0, y0) is an arbitrary point.
The discretization of the TDGL are done in a rectangular mesh consisting of Nx×Ny cell
points. The lattice spacing between adjacent cell points is (ax, ay). An arbitrary vertex
point in the mesh is denoted by (xi, yi).
The TDGL equations will be written in term of follow unknowns variables:
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• Ψi,j, with 1 ≤ i ≤ Nx + 1, 1 ≤ j ≤ Ny + 1. This is named vertex variable, so it is
associated to the nodes.

• Ux
i,j, with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny+1. This is named link variable in the x direction.

It is associated to the horizontal cell edges of the mesh.

• Uy
i,j, with 1 ≤ i ≤ Nx+1, 1 ≤ j ≤ Ny. This is named link variable in the y direction.

It is associated to the vertical cell edges of the mesh.

The Fig. 6 show a mesh defining the numbering of discrete variables

Figure 6: Sketch of cells defining the numbering of discrete variables.

The quantities defined by Eqs. (3.1.3) and (3.1.4) can be discretized as follow

U x
i,j =

i−1∏
k=1

Ux
k,j, U y

i,j =

j−1∏
k=1

Uy
k,j, (3.1.5)

leading to

Ux
i,j = U

x

i,jU
x
i+1,j, Uy

i,j = U
y

i,jU
y
i,j+1 (3.1.6)

Now we will discretize each term of the TDGL:

• Term (−i∇−A)2 Ψ: Using the identity

(−i∇−A)2 Ψ = −U
x
∂2xx (U xΨ)−U

y
∂2yy (U yΨ) (3.1.7)

a second order approximation at (xi, yi) reads

(−i∇−A)2 Ψ|(xi,yj) = −
Ux
i,jΨi+1,j − 2Ψi,j + U

x

i−1,jΨi−1,j

a2x

−
Uy
i,jΨi,j+1 − 2Ψi,j + U

y

i,j−1Ψi,j−1

a2y
+ ... (3.1.8)



47

• The term (|Ψ|2 − 1) Ψ is immediately approximated by

(
|Ψ|2 − 1

)
Ψ|(xi,yj) =

(
Ψi,jΨi,j − 1

)
Ψi,j. (3.1.9)

• The term Re
[
Ψ (−i∇−A) Ψ

]
: Using the identity

(−i∂x − Ax) Ψ = −iU x
∂x (U xΨ) (3.1.10)

we obtain that

Re
[
Ψ (−i∂x − Ax) Ψ

]
|xi+ax

2
,yj

= Im

(
U

x

i,jΨi,j + U
x

i+1,jΨi+1,j

2

U x
i+1,jΨi+1,j −U x

i,jΨi,j

ax

)
+ ...

=
1

ax
Im
(

Ψi,jU
x

i,jU
x
i+1,jΨi+1,j

)
+ ... =

1

ax
Im
(
Ψi,jU

x
i,jΨi+1,j

)
+ ..., (3.1.11)

and analogously for the y component.

• The term ∇×∇×A = ∇×B: First , the follow auxiliary variables are introduced

Li,j = Ux
i,jU

y
i+1,jU

x

i,j+1U
y

i,j, (3.1.12)

and by using the Stokes’ identity it is obtained

Li,j = exp
(
−iaxayBz(xi +

ax
2
, yj +

ay
2

)
)

+ ... (3.1.13)

We have considered a magnetic field in a z direction B = (0, 0, Bz)

∇×B = (∂yBz,−∂xBz, 0) (3.1.14)

∂yBz(xi +
ax
2
, yj) =

i

axa2y

(
Li,j−1Li,j − 1

)
+ ... (3.1.15)

−∂xBz(xi, yj + +
ay
2

) =
i

axa2y

(
Li,jLi−1,j − 1

)
+ ... (3.1.16)
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• The term ∂tA: We start from the equality

∂t

[
U

x
(x, y, z)U x(x+ δ, y, t)

]
= −iU x

(x, y, z)U x(x+ δ, y, t)

ˆ x+δ

x

∂tAx (ξ, y, t) dξ

= −iδU x
(x, y, t) U x(x+ δ, y, t)∂tAx

(
x+

δ

2
, y, t

)
+ ... (3.1.17)

and consequently

∂tAx(xi +
ax
2
, yj, t) =

i

ax
U
x

i,j∂tU
x
i,j + ... (3.1.18)

and the same for the y component.

Finally the discretized TDGL equation for single bands are

∂tΨi,j =
Ux
i,jΨi+1,j − 2Ψi,j + U

x

i−1,jΨi−1,j

ηa2x

+
Uy
i,jΨi,j+1 − 2Ψi,j + U

y

i,j−1Ψi,j−1

ηa2y

− 1− T
η

(
Ψi,jΨi,j − 1

)
Ψi,j (3.1.19)

∂tU
x
i,j = −i (1− T )Ux

i,jIm
(
Ψi,jU

x
i,jΨi+1,j

)
− κ2

a2y
Ux
i,j

(
Li,j−1Li,j − 1

)
(3.1.20)

∂tU
y
i,j = −i (1− T )Uy

i,jIm
(
Ψi,jU

y
i,jΨi,j+1

)
− κ2

a2x
Uy
i,j

(
Li,jLi−1,j − 1

)
(3.1.21)

For discretizing the time we use the forward-Euler scheme with step ∆t

Ψi,j(t+ ∆t) = Ψi,j(t) + ∆t∂tΨi,j(t) (3.1.22)

and analogously for Ux
i,j and U

y
i,j.

For the applicability of the Euler step, the condition

∆t 6 min
(
σ2η

4
,
σ2

4κ2

)
(3.1.23)



49

with
σ2 =

2

a−2x + a−2y
(3.1.24)

must be satisfied.

External boundary conditions

The Eq.s (3.1.19)-(3.1.21) are not defined for boundary nodes or links.
The condition n̂. (−i∇−A) Ψ|s = 0 applied in surface boundary aligned with y lead

Ψ1,j = Ux
1,jΨ2,j (3.1.25)

ΨNx+1,j = U
x

Nx,jΨNx,j (3.1.26)

Now, we applied the same condition, but in surface boundary aligned with x,

Ψi,1 = Uy
i,1Ψi,2 (3.1.27)

Ψi,Ny+1 = U
y

i,Ny
Ψi,Ny (3.1.28)

If an external magnetic field Ha is applied, the condition at the cell of the boundary give

Li,j = Ux
i,jU

y
i+1,jU

x

i,j+1U
y

i,j = exp (−iaxayHe) (3.1.29)

3.1.2 Discretization of two-component Ginzburg-Landau (TCGL) equations

The discretization of TCGL equations is a simple generalization of the single band case.
Using Eqs. (3.1.8) - (3.1.18) we obtain the discretized TCGL equations

η1∂tΨ
(1)
i,j =

Ux
i,jΨ

(1)
i+1,j − 2Ψ

(1)
i,j + U

x

i−1,jΨ
(1)
i−1,j

a2x

+
Uy
i,jΨ

(1)
i,j+1 − 2Ψ

(1)
i,j + U

y

i,j−1Ψ
(1)
i,j−1

a2y

−
(
χ1 −Ψ

(1)

i,j Ψ
(1)
i,j

)
Ψ

(1)
i,j − γΨ(2) (3.1.30)
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η2∂tΨ
(2)
i,j =

Ux
i,jΨ

(2)
i+1,j − 2Ψ

(2)
i,j + U

x

i−1,jΨ
(2)
i−1,j

αa2x

+
Uy
i,jΨ

(2)
i,j+1 − 2Ψ

(2)
i,j + U

y

i,j−1Ψ
(2)
i,j−1

αa2y

−
(
χ2 −Ψ

(2)

i,j Ψ
(2)
i,j

)
Ψ

(2)
i,j −

γn1

αn2

Ψ(1) (3.1.31)

For discretizing the time we use the forward-Euler scheme with step ∆t

Ψµ
i,j(t+ ∆t) = Ψµ

i,j(t) + ∆t∂tΨ
µ
i,j(t) (3.1.32)

where µ = 1, 2 is the band index
For obtaining the expressions of the auxiliary fields Ux

i,j and U
y
i,j the procedure is similar.

The boundary conditions for two bands component are equal for the case of single bands,
but applied on each band separately.

3.1.3 Computational details

The discretized TCGL equations were solved by iteration method through the computa-
tional program written in CUDA C.

The system was initialized in the normal state.
For applying the Euler method we selected a time step, ∆t = 0.0025, that is used to

ensure stability [108].
We took a 1,600.000 iterations for reaching the equilibrium state at fixed external

magnetic field and absence of current density. Further we apply an increasing current
density from zero to some finite value, using an increment, dj = 0.0001. For each value
of density current we employed 4,000.000 iterations in order to reach the no transient
dynamical state. After all iterations we save for each current density the files for order
parameters and the voltage induced by the vortex movement.
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Vortex dissociation in two-band superconductors

We use the TCGL model to identify and analyze the non-composite vortex state in a
superconducting slab in a presence of an applied constant external magnetic field (H)

and current density (j) (hereafter briefly named current). We describe through the H-j
diagram, the values of external magnetic field and current at which the composite vortex
lattice are dissociated, showing which states bound the non-composite vortex state. We
study the influence of the rates of entying vortices and the presence of fractional vortices
in the dissociation process, besides the difference between interband vortex velocities. The
roll of the strength of the Josephson interband coupling is also studied. It is presented
the Pearson product-moment correlation coefficient (r) between the order parameters of
the bands as mathematics tool for detecting the presence of this non-composite vortex
state. Finally it is exposed how the non-composite vortex state affect the resistance in
the superconductor.

4.1 Introduction

In superconductors materials, vortices can be seen as elementary entities, serving as build-
ing blocks for all non-trivial phase configurations in 2D structures. Multi-band supercon-
ductors can develop vortex states that are qualitatively different from those in single-band
materials. A trivial configuration is a composite vortex, that comprises two vortices in
the band condensates, that are centred at the same point and have equal winding num-
bers (n). Stationary equilibrium states in two-band bulk superconductors are formed by
the composite vortices. However, an non-equilibrium system can develop a state with
the band vortices that are shifted spatially, the so-called non-composite vortices. Those
vortices are associated with a non-quantised magnetic flux: each of the partial vortices in
the band condensates carry a fraction of the total (quantised) flux, and are often called
fractional vortices. In bulk superconductors fractional vortex states are thermodynami-
cally inestable due to a divergent energy. [12]. However, in samples of finite dimensions
metastable fractional vortices can appear [35–38, 40, 110]. One of the mechanism which
creates non-composite fractional vortices is the dynamical vortex dissociation. This mech-
anism appears, for example, when a superconducting current flows through the sample.
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In this case differences in the driving forces and the viscosity of the vortex matter in each
of the condensates drives the band vortices apart. [34].

4.2 Model and Method

The model system considered was a two-band superconducting slab with infinite dimen-
sions in z and x axis and finite dimension in y direction as is show in Fig 7.

Figure 7: Superconducting slab with infinite dimensions in z and x axis and finite in y direction. A
magnetic field (H) is applied parallel at z and current (I) along the x direction.

The system is immersed in a magnetic field in z direction and an increasing current (I)
is applied along of x axis. We neglect the possibility of the formation of curved vortices in
z direction and the study may be performed in two-dimensional system. The confinement
effects is also neglect because the width is much larger than the field penetration depth.

The numerical simulation is developed in the framework of TCGL theory (section 2.9).
In order to preserve the validity of the model, the individual band critical temperatures
(Tci) were chosen to be close to the superconducting critical temperature of the specimen.
The TCGL equations were integrated on a two-dimensional squared grid with spacings
ax = ay = ξ1, using the U -Ψ method (section 3.1) combined with a stable semi-implicit al-
gorithm [111] for the time evolution. For the boundary conditions, periodic ones were used
along the x direction [Ψ(x) = Ψ(x+ L) and A(x) = A(x+ L)] and Neumann boundary
conditions, (∇− i ~A)ψj|n = 0, was set in the y direction. The vortex dynamics is induced
by the current density, j, introduced by the boundary conditions for ∇× ~A at the inter-
faces perpendicular to y, located at y = 0 and y = W . For (∇× ~A)|y=0 = H −∆H and
(∇× ~A)|y=W = H + ∆H the expected current density is j = c∆H/2π. As an indicative
of vortex movement from a surface (at y = W ) towards the other one (at y = 0), we
have performed voltage, V , calculations along the x direction. The current density (j)
and voltage (V ) were scaled, respectively, by the critical current density (j0) and voltage
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(V0) that set the point in which the normal state is completely reached. The external
magnetic field is scaled in term of the thermodynamical critical field Hc.

For our numerical simulation we took κ1 = 10.0, T = 0.85Tc. We ensure that Tc1 and
Tc2 are close to Tc choosing λ11 ≈ 2λ22 , λ11 = 2.0 , λ22 = 1.03. Using these parameters
one can calculate the critical temperatures for each of the band, taken separately, by
Eq. (2.9.9), which yields Tc1 = 0.9997Tc and Tc2 = 0.9030Tc. As the non-composite
vortex states have more probability of appear at weak Josephson coupling between the
bands [38, 40, 110], we took λ12 = 0.0001. v1/v2 = 0.52 , n1 = 0.3554 , η = 5.0. This set
of parameter were maintened constant in the simulation.

4.3 Phases diagram (H-j) of vortex lattice configurations

The diagram H-j (Fig. 8.a) show several vortex lattice states as a function of applied
magnetic field (H) and current density (j). The slab dimensions wereW = 150 , L = 300.
We named these states by phases I, II, III, IV and V . This phases start at j = 0, j =

JII , j = JIII , j = JIV , j = JV respectively. We have special interest and will emphasize in
the state where the non-composite vortices appear (phase III). We are also interested in
determine which phases bounds non-composite vortex state.

For describing each phase we selected states (b, c, d, e, f, g, h, i, j, k,m and n) along
the three vertical dotted lines in the diagram. This dotted lines correspond to the fields,
H = 2.4Hc, H = 7.3Hc and H = 1.13Hc respectively.

We introduce a reference magnetic field Hp as the field at which the vortices start to
penetrated the weaker band in absent of an applied current density. For our parameters
Hp ∼ 0.65Hc. Then the fields of dotted lines selected in the diagram are: H = 2.4Hc <

Hp, H = 7.3Hc ∼ Hp and H = 1.13Hc > Hp. The classification of fields in reference of
Hp will be useful for organization of our results.

The fractional vortices with winding number n1 = 0 and n2 = 1 are present in all
phases for all magnetic field (Fig. 8.b - 8.n ). This type of fractional vortices find their
equilibrium positions near the surface in a similar fashion to those reported in [35, 36].
The derivation for Bean-Livingston barrier suppression done in [112] was modified in [35]
for taking into consideration the characteristic of a two band superconductor. Analytical
expression for the critical value of magnetic field suppressing the surface barrier was found
to be

Hs =
Φ0

4πλξ
. (4.3.1)

For the parameters used here, here ξ2 > ξ1, so Hs2 < Hs1 and the vortices enter first in
the second (weaker) band.

We start our analysis with H = 0.73 ∼ Hp, because for this field the vortex lattices
present the five phases (I, II, III, IV and V ). The states f, g, h, i and j on the second
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vertical dotted line of diagram correspond to this field. We follow describing each phase:
Phase I: The vortex lattice is stationary. Initially we have vortices only in one band and
further when the current is increased both bands are penetrated. The composite vortices
are present in whole the sample. For a large number of vortices are present in the sample,
they are arranged as a stationary quasi perfect Abrikosov lattice.
Phase II: The threshold current of this phase is the current at which the flux flow regime
start (j = JII). More vortices have penetrated the sample. The composite vortices fill
the central region of the slab. The Abrikosov vortex lattice is maintained (Fig. 8.f), but
now it is moving.

Figure 8: (a) Phase diagram (H-j) of vortex lattice states for W = 150 , L = 300. The state of
dissociated vortex is represented by phase III. (b)-(n) Vortex configurations corresponding to selected
states b, c, d, e, f, g, h, i, j, k,m and n, respectively from (a). The vortices in the first (second) band are
represented by black (magenta) balls. The three vertical green dotted lines correspond to the fields,
H = 0.24Hc, H = 0.73Hc and H = 1.13Hc respectively. For H > Hp (and not comparable with
Hp ∼ 0.65Hc) the phase of non-composite vortex (phase III) is absent, since the second band reaches
the normal state before the composite vortices are dissociated, whereas the first (strong) band is still
active (see (m)).

Phase III: Above a threshold current JIII the composite vortex lattices start to dissociate
(Fig. 8.g - 8.h) [34]. JIII was selected as value of j at which the vortex lattices of two
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band move at different velocities and this will be studied in the next section.
Phase IV : This phase is characterized by the vortices of the first band immersed in a
normal background of the second band (Fig. 8.i). At JIV the second band is 60% in the
normal state.
Phase V : This phase start in the current, JV , at which the continuous nonlinear branch in
the V (j) curve ends and a very high differential resistivity branch or a metastable branch
is followed before transition to the normal state is achieved (diagramatesis.j). For J > JV

both bands are mostly in the normal state.
At j = JII the vortices in each condensates start to move driven by the Lorentz force.

By our set of parameter, the fraction of the quantum flux Φ0 carried by the vortex in
each band are respectively Φ1 = 0.28 Φ0 and Φ2 = 0.72 Φ0. Then the vortices in the
second band experiment stronger force for carrying larger magnetic flux. Besides, the
viscosity of vortex in different bands is different because these vortices have different
coherence lenghs (ξ2 = 2.24ξ1). We have considered the Bardeen-Stephen model where
the viscosity is given by ηµ = Φ2

0/(2πc
2ξ2µ). In this condition the vortices in the second

band move faster then those in the first band. For small current these difference (force and
viscosity) are compensed by the interband vortex attraction due to the coupling to the
same gauge field. For current larger than JIII this attraction is surpassed by the Lorentz
force and composite vortices are dissociated. Although this dissociation was observed by
Lin and Bulaevskii [34] , they did not establish any restriction in the magnetic field for
the observation of this effect. As can be observed in Fig. 8.a the states of non-composites
vortices is present only for some values of H. The phase III not exist for H > Hp. For
understanding this behavior we look in greater detail for the states k, m and n on the
third vertical line (H = 1.13Hc) of the diagram. We observe that for a state for lower
current (Fig. 8.k) and we observe that the vorticities, defined as Lµ for band µ = 1

and µ = 2, in the two bands are large and L2 > L1 because the presence of fractional
vortices in the second band, that are absent in the first one. In the k state of second
band there is a considerable normal region (Ψ2 ≈ 0) on the top of the slab. This normal
region increases with the increasing current and the majority of second band reach the
normal state before the composite vortices are dissociated (Fig. 8.m). For this reason
the non-composite vortex state is not present for H > Hp. For illustrating this point
we plotted the ratio of the normal state to total area for each band as a function of the
current density for H = 1.13Hc (Fig. 9.c) and it observed that the second band reaches
the normal state much earlier than the first band. In can be seen in Fig 9.b that for
H = 0.73Hc ∼ Hp the value of JIV is larger than the value for H = 1.13Hc. In general
JIV decreases with the increasing H not favouring the appearance of a dissociated vortex
state. We emphasize that JII , JIII and JIV decrease with H increasing (Fig. 8.a). This is
due to the fact that for increasing H, the Bean-Livingston barrier is suppressed at smaller
currents and consequently the flux-flow regime start much earlier.
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For H < Hp the phase IV is absent and the state of dissociated vortex in the diagram
is bounded by the phase V, because the two bands reach the normal state simultaneously,
as is illustrated in Fig. 8.e. Nevertheless, the weaker band (second band) allways reaches
the normal state in advance of the stronger band (first band) . The first dotted line in
the diagram illustrate various states (b, c, c and e) for H = 0.24Hc. Since the applied
field H is small, these are vorticity states. In the phase II there are not enough vortices
for conforming the Abrikosov lattice, but this lattice is slightly deformed due to the high
values of JII (Fig. 8.b). The values of JII , JIII and JV are high, because for low fields
the Bean-Livingston barrier is suppressed at higher currents. There is a jump from phase
III to phase V without passing by phase IV , because the fractional vortices with n2 = 1

and n1 = 0 have small contribution to reach the normal state and on the final of phase
III the current is so high leading the two bands reaching the normal state simultaneously
Fig. 9.a.

We emphasize that the presence of fractional vortices makes the weaker band to reach
the normal state first than the strongest band. On the other hand high currents lead the
two bands reach the normal state too. When H < Hp the vorticity is small and fractional
vortices have small contribution for the second band for reaching the normal state, whereas
the high currents makes the two bands reach the normal state simultaneously. This
explain, why for H < Hp the non-composite vortices state are bounded by phase V and
the phase IV is absent. When H > Hp the second band reaches the normal state a lower
currents because the vorticity in this band is high, whereas, the first band reaches the
normal state with predominant influence of high current. Then we have only one active
band and is not possible observe dissociation of vortices. For H ∼ Hp the fractional
vortices and high currents, both are responsible for the second band reach the normal
state and consequently for this fields are present the phases IV and V . The non-composite
vortices state are bounded by the phase IV .
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Figure 9: Ratio of the normal state to total area as a function of current for a)H = 0.24Hc b)H = 0.73Hc

and c) H = 1.13Hc.

4.4 Interband vortex velocities

It was discuss in the section 4.3 that the fractional vortex lattice in some band tends to
move faster. For some value of external applied current density, the attraction between
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vortices in different bands becomes insufficient to balance the difference in the vortex
viscosity and driving force for different bands. As a result, fractional vortex lattices in
different bands decouple from each other and they move with different velocities. In our
results this threshold currents was named JIII . Effectively we found that for currents
J > JIII the composite vortices are dissociated (Figs. 8.d, 8.g, and 8.h), under constraints
for the field exposed in the previous section. But we found that the difference between
interband velocities is not the only reason for this dissociation.

We calculed the average of vortex velocities in each band for various field. We believe
that the interband velocities becomes apreciably different in the lower half of slab. This
task was realize by calculating the time t employed by the vortex to travel some length d in
the lower half of the slab. The mean velocity is d/t. The Figs. 10 and 11 show the results
for H = 0.73Hc and H = 0.24Hc respectively. For J > JIII the vortex lattices of each
band move with different velocities, in agreement with Lin and Bulaevskii [34]. For the
parameters we used, ξ2 = 2.24ξ1 and the in the first and second band carry respectively
a magnetic flux Φ1 = 0.28 Φ0 and Φ1 = 0.72 Φ0, so the vortices in the second band move
faster as expected.
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Figure 10: The dependence of velocities of first (red) and second (blue) bands on the current density j
for H = 0.24Hc. These are the average velocities in the lower half of the slab.
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Figure 11: The dependence of velocities of first (red) and second (blue) bands on the current j for
H = 0.73Hc. These are the average velocities in the lower half of the slab.

We present now results for the average vortex velocities performed at the upper half
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of the slab, for H = 0, 73Hc (Fig. 12). We can see that the velocities are approximately
equal in the upper half of slab, as we expected, because the length is not longer enough
for the velocities becomes appreciable different.
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Figure 12: The dependence of velocities of first (red) and second (blue) bands on the current j for
H = 0.73Hc. These are the average velocities in the upper half of the slab.

It is seen in Figs. 8.g - 8.h that for H = 0.73 the vortices are dissociated in whole
slab, then there are other reasons for the dissociation of vortices besides the difference
between interband velocities. We believe that the entry rate of vortices and the presence
of fractional vortices in the second band at the edge of the slab is other reason. We will
be discuss this in the section 4.6.

4.5 Correlation as a measure to identify the non-composite vortex state

For identification of non-composite vortex state, we employed the Pearson product-moment
correlation coefficient r (briefly correlation r) [113]. It shows a linear relationship between
two sets of data. The values of r oscillates between −1 to 1. In terms of the square
modulus of the order parameters of the two condensates the correlation r is defined as
follow:

r =
cov(|Ψ1|2|Ψ2|2)

σ1σ2
(4.5.1)

where "cov" is the covariance and σ1,2 is the standard deviation of |Ψ1,2|2. For composite
vortices r → 1 and for non-composite vortices r → 0.

Figure 13 presents the voltage V (j) and r(j) curves for H = 0.73Hc ∼ Hp. The
correlation was calculated excluding the effect of frontiers in x direction (y = 0, y = W ).
The points f , g, h , i and j of the diagram (Fig. 8.a) have been represented in the Fig.
13.
In the phases I and II the vortices are composite and the correlation is high. However
in phase II we observe instabilities (point p∗ in Fig. 13) leading to dissociation of the
vortices (see Fig. 14.a) and sudden decrease in the r(j) . In the instability point p∗ the
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vortex lattice have a transition caracterized by a kink in the I-V curve. Just after the
instability the majority of vortices are newly composites (see Fig. 14.b).
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Figure 13: Voltage (black) and correlation (blue) curves in function of current for H = 0, 73Hc, W = 150,
L = 300

Figure 14: a) Dissociation of vortex lattices in the instability point p∗ in Fig. 13. b) The vortices reach
the composite vortex state newly (point p in Fig. 13) after the instability in p∗. W = 150 , L = 300.

In the phase III, the correlation start to decrease at j = JIII and take positive and
negative values around the zero, where the vortices are complety dissociated (Figs. 8.g
and 8.h).
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Figure 15: One possible scheme of non-composite vortex. The red vortex is in the first band and the
red arrow indicating the direction to increase Ψ1. The blue vortex is in the second band and the blue
arrow indicating the direction to increase Ψ2. Then r is calculated in a direction that Ψ1 increase and
Ψ2 decrease, so r < 0.

We use Fig. 15 to understand the minus sign obtained for the correlation r. The red
vortex is in the first band and the red arrow indicates the direction of increasing Ψ1. The
blue vortex is in the second band and the blue arrow indicates the direction of increasing
Ψ2. Then r is calculated in a direction that Ψ1 increase and Ψ2 decrease, so r < 0.
In phase IV the first band is responsable for the superconductivity because the majority
of the second band is in the normal state (Fig. 8.h). The value of correlation close to zero
in this phase does not mean dissociation of vortices.
In phase V the two bands are reaching the normal state (Fig. 8.i). The correlation r is
calculated between Ψ1 → 0 and Ψ2 → 0. Thus r(j) is increasing and not mean existence
of composite vortices.

In Fig. 16 we present the result for the correlation obtained at a lower field H =

0.24Hc. The points b, c, d and e are the same on the first dotted line in the diagram Fig.
8.a.
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Figure 16: Voltage (black) and correlation (blue) curves for H = 0.24Hc, W = 150, L = 300.

We can observe that in the phase III r(j) is decrease taking positive and negative values
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as for the higher field. For lower fields the phase IV is absent as was explained in the
previous section.

4.6 Rate of Entrying Vortices

In order to study qualitatively the influence of the rate (with respect of time) of entrying
vortices (REV ) on the dissociation of vortices we will analyse the behavior of the vorticity
on the first band (L1) and correlation as a function of the current density j (Fig. 17).
The behavior of L(j) curve is not simple, then we analysed its changes by approximated
linear behaviour for particular large and short ranges of currents. Initially, at j = 0, the
vortices have already penetrated the second (weaker) band. However vortices penetrates
the strongest band (first band)only at j ∼ 0.147j0. The first red line, in Fig.17, reveal
that the highest REV is in the phase I, and in this state the vortices are stationary, as
discussed in the section 4.3. The first vertical magenta line, in Fig.17, show that in this
highest REV the correlation has a local decrease. Let us see what happen with the vortex
lattices in this interval of current. It can be seen in Fig. 17.b that some vortices, pointed
by the red arrow, are noticeably deformed. These vortices becoming gradually joined
with increasing current (Figs. 17.c, d) until finally performed a complete static composite
vortex lattice (Fig. 17.e). It is evidently that once the vortices has penetrated, these
need a finite time, namely τeq , is needed, for reaching at new dynamical configuration of
equilibrium. As the vortices penetrated the second band first, the vortex lattice of each
band need a different time for reaching the equilibrium (τ (1)eq 6= τ

(2)
eq ). We suppose that this

equilibrium time must to be proportional to the REV , it is τ (1,2)eq = const(1,2). REV . On
the other hand, REV can be defined as Ne/4 t, with Ne is the number of vortices that
penetrated the sample and 4t is the elapsed time for the penetration of the next group
of vortices. Then the REV can be increased by increasing Ne or decreasing 4t. In our
simulation Ne is changed by increasing the current and consequently Ne is high where L
is high. For convenience we calculated L1 and identified the highest REV in that points
at which the L1 increased. The deformed vortices in Figs. 17.b-d. cannot be explained by
Lin and Bulaevskii formalism [34], because in the phase I the vortex lattices are static.

The second red line in Fig. 17.a illustrate other local increase in the REV . The
correlation have a suddenly decrease and as was show in Fig. 14.a the vortices are suddenly
dissociated in p∗ and further they quickly recombine to form composite vortices (Fig.
14.b).

The orange, yellow and green lines in Fig. 17.a represent three approximated linear
behaviour of L(j). We can see that the slope of yellow line at the beginning of the phase
III is higher than the slope of orange line at the final of phase II.
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Figure 17: a) Vorticity of the first band L1 (violet) and correlation r (blue) in function of current density
j for the slab with L = 300, W = 150 and at H = 0.73Hc. The solid green lines separate the phases I,
II and IV explain in section 4.3. The vorticity curve (purple) is approximated by several linear behavior
of different slopes (red, orange, yellow, and green lines). The magenta vertical lines point at particular
sudden decreasing of r(j) curve (blue) accompanied by high local changes (red lines) of vorticity curve
(purple) . b)-e) Vortex configuration of states b, c, d and e selected respectively in a). The black (magenta)
balls represent the vortices in the first (second) bands. The red arrows point to deformed vortices.

We have seen that the highest REV favour the dissociation of vortices. This finding
complement the prediction of fractional vortex state by Lin and Bulaevskii [34].

For to conclude our analyse of the behavior of L(j) curve we can see that the green
line in Fig. 17.a has a smaller slope than the yellow line and that this is manifested in
r(j) curve, since r(j) increases at the end of phase III.

For fields H < Hp the results are similar to those already discussed here, but as the
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vorticity is low, the L(j) curve not present appreciable changes.
We can conclude that the dissociation of vortices caused by high REV is significant

only for fields H ∼ Hp. Hence for H > Hp the REV make the second band reach the
normal state quickly without dissociation of vortices.

4.7 The influence of Josephson coupling in the dissociation of vortices

The stability regions of fractional state in the λ12 − Φ plane (Φ is the magnetic flux
carrying by vortex)were studied by Piña, et ali., [40]. The cases of (L+1,L) were studied.
It was found shrinking of the stability regions as λ12 increases. Guerts, et ali., [38], studied
the influence of Josephson coupling (γ) in the fractional vortex state and found that by
increasing γ stabilizes the integer flux states, and destabilizes the fractional states.

In Fig. 18 we show the results of the current density dependence of the correlation,
for a slab with L = 150, W = 300 and H = 0.73Hc, for different strenght values of the
Josephson coupling λ12 (these results are in agreement with those obtained by several
authors [38,40,110]). We are interested on the behavior of the correlation (r) in the phase
III, which is between the two green dash lines. As we expect, in this phase, r(j) increases
with increasing λ12. From Fig. 18.a we selected some states b, c, d and e (Fig. 18.b-e
respectively) and it is revealed that the number of dissociated vortices noticeably decrease
when the λ12 coupling is increased.
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Figure 18: (a) Dependence of the correlation (r) on the current density (j) for different strength of
Josephson coupling λ12 values. λ12 = 0.0001 (black curve), λ12 = 0.0002(red), λ12 = 0.0005 (blue),
λ12 = 0.001 (olive), λ12 = 0.001 (orange). The phase III is between two green dash lines and in this
phase the correlation r(j) increase with λ12 increasing. (b)-(e) Vortex configurations corresponding to
selected states b, c, d and e, respectively from (a). The black (magenta) balls represent the vortices in
the first (second) bands. The dimensions of slab and applied magnetic field are W = 300, L = 150 and
H = 0.73Hc respectively

The coupling of the superconducting bands effectively reinforce each other and con-
sequently the two band superconductor has a unique Tc that is higher than the critical
temperatures, Tc1 and Tc2 of each bands taken separately. We considered the Josephson
coupling between the bands in free energy functional (Eq. 2.9.1 ), resulting from the
tunneling of the Cooper pairs from one band to another. This is incorporated trough the
term gJ = −Γ(Ψ∗1Ψ2 + Ψ1Ψ

∗
2), where Γ = N(0)λ12

G
and G = λ11λ22 − λ212 (see section 2.9

for meaning of other parameters). It is easy to deduce from (Eq. 2.9.1) that the sign of Γ

determines the relative phase shift between the order parameter in the two condensates,
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zero (0) when Γ > 0 or π when Γ < 0 in order for the coupling term to provide a negative
energy contribution. However, the sign of Γ has no influence on observables such as the
Cooper pairs density or the magnetic response of the sample. The general consequence
of Γ coupling is an injection of Cooper pairs from one band into the other and vice versa,
favoring the stability of the superconducting state. Then, the average Cooper-pair density
always increases with Γ.

We can explain our results based in the discussion of Chiboratu et ali., [114]. The
Josephson-type interaction favors maximal overlap of order parameters. The free energy
functional can be expressed in term of normalized quantities and approximated to the
first order in k−2

F =
∑
n

Fn [Ψn,A0]− Γ

ˆ
(Ψ∗1Ψ2 + Ψ1Ψ

∗
2)− k−2

ˆ ˆ
j(r)j(r′)
|r− r′|

(4.7.1)

where Fn [Ψn,A0] is the functional of the n-th condensate in the unperturbed applied field
with the vector potential A0. The last term in Eq. (4.7.1) favors the maximal overlap of
the current distributions in the two condensates, it is the maximal similarity of the order
parameters. This explains why the phase of the existence of fractional flux vortices shrink
with the increase of λ12 (Γ =const.λ12).

4.8 I-V characteristics

Lin and Bulaevskii [34], proposed how the dissociation of vortices can be observed ex-
perimentally in transport measurements. Taking into account the velocities of the de-
coupled lattices, the I-V characteristics can be derived from the power balance condition
η1v

2
1 + η2v

2
2 = JEa2, where ηj, vj are the viscosity and velocity of j band, with j = 1, 2.

E is the electric field and a is the lattice constant. As can be seen in Fig. 5 there is a
notable increase of the differential resistivity (dE/dJ) in the decoupled phase.

The decoupling of lattice vortices is not the unique reason for the non-linear increase
of superconductivity. Also Larkin-Ovchinnnikov (LO) instability of vortex lattice may be
important because the decoupling current is usually large [115]. The vortex core shrinks
due to electric field caused by vortex motion and the flux flow resistivity increases with
current [22,23].

In Fig 19 we show the I-V characteristic for H = 0.73Hc,for a slab with L= 300 and
W= 150. The red line indicated that the differential resistivity (dV/dj) is higher in phase
III than in the phase II (orange line). As we expect, in phase III the I-V curve has a
non-linear increase of differential resistivity. We believe that, in this phase, the decoupling
of lattice and LO instability are the responsible for this non-linear increase, whereas in the
phase IV (green line) LO instability is the unique responsible for the non-linear behavior.

The V (j) curve for H = 0.24Hc is showed in Fig. 20. As for the previous field studied
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Figure 19: V(j) curve for H = 0.73Hc, L = 300 andW = 150. In phase III the curve present a non-linear
increase due to the decoupling lattice and the LO instability. In phase IV LO instability is the unique
responsible for the non-linear increase.

(H = 0.73Hc) field, the red line indicated that the differential resistivity (dV/dj) has a
higher change in phase III than in the phase II (orange line). Because of low vorticity
and high values of currents in the phase III, the LO instability has a strong influence
in the non-linear increase of V (j) and the decoupled lattice has a small contributions.
The strong influence of LO the instability make more noticeable the non-linear increase
of resistance at the end of flux flow regime.
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Figure 20: V(j) curve for H = 0, 73Hc, L = 300 and W = 150. In phase III the curve presents a non-
linear behavior due to a strong influence of the LO instability ans small contribution of the decoupling
lattice.

We discuss now the V(j) behavior at a higher H = 1.13Hc at which phase III not
exist. The result are shown in Fig. 21. V(j) presents a linear behaviour in a large range of
flux flow regimen (orange line). As phase III is absent the non-linear increase of resistance
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occur at the final of flux flow regimen, where the LO instability is predominant.
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Figure 21: V(j) curve for H = 1, 13Hc, L = 300 and W = 150.

4.9 Summary

Using TCGL formalism we constructed the magnetic field - current density H-j phase
diagram that describe the values of magnetic fields and currents for which the composite
vortex lattice are dissociated. We found that there are some restriction on the magnetic
field for obtaining such dissociated state. The vortex phase are described in reference to
the magnetic field at which the vortex penetrate the second (weaker) band in absent the
current (Hp).

For H > Hp the phase of non-composite vortex (phase III) is absent, since the second
band reaches the normal state before the composite vortices are dissociated, whereas the
first (strong) band is still active.

The non-composite vortex state (phase III), exist only for H < Hp and H ∼ Hp.
When H < Hp the phase III is bounded by a state where that the bands reach the
normal state simultaneously, namely phase V . For H ∼ Hp the non-composite vortex
state bounded by the phase on which only the first band is active, namely phase IV .

High rates of entrying vortices together with the difference between inter-band vortex
velocities are responsible for the dissociation of composites vortices. The weaker interband
Josephson coupling favour the appearance of non-composite vortex state.

We employed the Pearson correlation coefficient (r) as mathematics tool to identify
the non-composite vortices state, taking into account that for composite vortices r → 1

and for non-composite vortices r → 0.
Finally the dissociation of vortices can be identified as an increase in the differential

resistivity, and also, as a non-linear behavior in the V(j) curve in the phase III.
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Interband phase textures induced by vortex splitting

At certain conditions a multiband superconductor can reveal domains of different phase
structures with quasi-1D walls between them. Appearance of such domain walls, excited
dynamically between regions of contrasting phase difference and decorated by moving
vortex sheets, have been predicted for p-wave multi-band superconductors. [1]. However,
in two-band s-wave superconductors the phase textures has been predicted theoretically
only for quasi-1D structures, where they are induced by imbalances in the normal current
through contact interfaces at the sample edges. [11,116]

In this chapter we describe another mechanism that induces topological phase textures
in a two-band superconductor with s-wave pairing. Contrary to the earlier works [11,116]
it produces quasi-1D domains in 2D samples of finite dimensions when a superconductor
submited to an dc current is placed in a constant magnetic field. We demonstrate that in
such system a non-equilibrium vortex matter is created, forming domains of shifted phases
of the band condensates. A key ingredient of this mechanism is the so-called dynamical
vortex dissociation, where vortices become fractional. This mechanism does not depend
on the special contacts at the ends of the sample and in principle can be found in any
multi-band material.

Our analysis is done for a two-band prototype model described by the two-component
time-dependent Ginzburg-Landau (TCGL) equations. The difference between the band
condensate phases is characterised by the Josephson energy, that enters the free energy
functional of the system. A non-equilibrium vortex matter is created by the applied
magnetic field in a combination with the flowing current. The non-equilibrium vortex
dynamics results in the energy loss, which in turn leads to a finite resistance of the
system, reflected in the current-voltage (I-V ) characteristics.

5.1 Introduction

Appearance of multiple different Cooper pairing channels for different bands in a single
superconductor gives rise to a phenomenon of multiband superconductivity, where multi-
ple gaps (condensates) give rise to additional degrees of freedom of the superconducting
state. For materials with two bands with the singlet s-wave pairing, such as MgB2, one
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of those degrees of freedom is the difference between phases of the band gap condensates.
The phase difference manifests itself, in particular, in the sign of the linear (Josephson)
coupling between the bands, which determines the interaction between the band conden-
sates. The degree of freedom related to the phase difference can be excited (driven out
of equilibrium) by an external force. Such excitations in systems with many condensates
are commonly referred to as the Legget modes [10]. Theoretical studies of their proper-
ties have intensified after discovering the multiband superconductivity in materials such
as MgB2, [117] iron pnictides [118, 119] and others [120]. Experimental evidences of the
Legget modes has been published recently [121].

Non-equilibrium configurations of the phase difference between the gap functions can
be remarkably nontrivial. For example, in superconductors with three or more bands one
has a possibility to achieve a ground state with a broken time-reversal symmetry (BTRS)
[122]. Such states are characterised by fixed differences between the band condensate
phases being at the same time degenerate. In spatially extended samples this degeneracy
can lead to unhomogeneous configurations of the condensate, where domains of different
degenerate states alternate, being separated by the domain walls [123, 124]. Theoretical
studies of formation, stabilisation and detection of such domain walls have been recently
reported [125–127]. In quasi-one dimensional (1D) samples topological solitons or phase
textures can appear, [11, 116, 128] with a 1D structure of domain walls. These states are
non-equilibrium and are induced by imbalanced carriers due to an injected current. To
this date such configurations, however, have not been confirmed experimentally.

5.2 Model and Method

The system and method is similar to described in the preceding chapter, but now we focus
on domain walls present in our two-component superconducting slab.

Nontrivial phase configurations are typically associated with the appearance of elemen-
tary topological structures such as vortices, domains walls, etc. Here we are interested in
the phase configurations specific to two-band systems, in particular, we investigate a phase
difference between the band condensates ∆θ = θ1− θ2. A natural parameter that charac-
terises such two-band phase differences is the Josephson energy gJ = −2γ|Ψ1||Ψ2|cos(θ),
which describes the inter-condensate interaction and was also used to investigate topolog-
ical solitons of alternating phases in quasi-1D samples of two-band superconductors. [116]

We also note, that the phase dynamics is necessarily associated with the energy losses,
which lead to the finite resistivity of the system. In our case this will be detected from
the appearance of a finite potential or voltage across the sample in x-direction for a given
value of the current density j (the I-V curve).
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5.3 Vortices near sample boundaries: general picture

Before presenting results of the numerical calculations we recall that unlike quasi-1D
systems, where domain walls (solitons) form non-trivial phase structures, in 2D infinite
samples vortices are such elementary building blocks that construct non-trivial topological
structures. As mentioned above in infinite equilibrium two-band systems only composite
vortices can exist in the central region of slab in the ground state, where vortices in each
band share the same centre point and have the same winding number. In the edges of this
system fractional vortices with winding number n2 = 1 and n1 = 0, can exist [35]. This
is a manifestation of the attraction between vortices in different bands, that is referred
for simplicity to as the interband attraction. A signature of this attraction is a negative
sign of the Josephson energy for composite vortices. It is easy to see that for fractional
vortices the spatial distribution of the Josephson energy has a domain of positive gJ .
It was explained in the preceding chapter, that vortices enter first in the weaker band
and further when the external field is increased the strongest band is penetrated. The
difference in the penetration time leads to dynamical separation or "dissociation" of com-
posite vortices and thereby to creation of fractional vortices. This in turn leads to the
appearance of domains of gJ > 0, located between separated vortices.
For isolated vortices the interaction with the surface barrier is restricted to the layer of
width l ∼ λj around the boundary. Once fractional vortices move outside this layer,
the influence of the barrier diminishes and vortices tend to become composite again (re-
combine) due to the attractive interaction of the vortices in different bands (interband
attraction). However, this changes for a dense vortex matter, where the distance between
vortices is ∼ λj. In this case the vortex matter is strongly influenced by the interaction
between vortices, in particular, due to the additional repulsion between vortices in the
same band (intraband repulsion). This may lead to appearance of dynamically unstable
but long-lived vortex configurations, with non-trivial spatial distribution of the interband
phase difference.

5.4 Vortex dissociation and phase textures: numerical results

Numerical calculations of the TCGL equations were done for a sample in the form of
a slab with a rectangular crossection with dimensions L = 600ξ1 and w = 150ξ1. The
external magnetic field parallel to z-axis, is H = 0.73Hc and the other parameters are the
same of the preceding chapter.

This vortex state remains stationary if the current is sufficiently small. However, when
j > 0.23j0 (the current is measured in the units of j0, which is the critical current of the
slab of the chosen geometry) vortices start to move from the upper boundary y = W ,
which is their entry point, to the lower one at y = 0, the exit point. Furthermore,
penetrating vortices are no longer composite and create domains of positive Josephson
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Figure 22: Snapshots of the spatial distribution of the Josephson energy gJ , plotted as colour density
plots, as defined in Eq. (2.9.1), calculated for the slab with the crossection 600 × 150 (in the ξ1 units).
Domains of gJ < 0 and gJ > 0 are marked by red and blue, respectively, colour intensity gives the
absolute value |gJ |, white colour corresponds to gJ = 0. Panels a), b), c), d) and e) are calculated,
respectively, for the current j = 0.33, 0.37, 0.47, 0.57, 0.77j0. Parameters of the system are discussed in
the text.

energy.
This is illustrated in Fig. 22, which shows snapshots of spatial distributions of gJ ,

taken at certain time instants, as the colour density plot. Panels a) - e) correspond to few
selected values of the applied current j = 0.33, 0.37, 0.47, 0.57, 0.77j0. Areas with gJ < 0

and gJ > 0 are marked, respectively, red and blue.
Figure 22 a) with j = 0.33j0 represents a situation when the current is only slightly

above the threshold. Vortices inside the sample are still composite and arranged in the
lattice. Still, in the vicinity of the surface fractional vortices appear with small areas of
shifted band phases with gJ > 0.

When the current increases fractional vortices start to penetrate deeper inside the
sample, forming larger domains of gJ > 0. This is illustrated in Fig. 22 b), calculated
for j = 0.37j0. Domains with gj > 0 grows with the current. Eventually they reach the
lower boundary, as is shown in Fig. 22 c), calculated for j = 0.47j0. When the current
further increases, domains of gJ > 0 straighten, forming perpendicular textures [c.f. Fig.
22 d) calculated for j = 0.37j0], similar to solitons observed in quasi-1D systems [116].
For still larger currents the weaker band j = 2 gradually stops to be superconductive,
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starting from the upper boundary with the largest concentration of vortices One sees this
in Fig. 22 e), where absence of the condensate makes gJ = 0 (white) in the upper part of
the sample.

a) b)

c) d)
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Figure 23: Enlarged parts of the colour density plots of gJ shown in Fig. 22, superimposed with the
contour plots for the band condensate densities for the strong band |Ψ1| (black line) and for the weak
band |Ψ2| (magenta line), which reflects the vortex structure in the band condensates.

Further details of the formation of the phase textures and their relation to the process
of vortex dissociation are shown in Fig. 23, which plots a scaled part of the gJ density plot
superimposed with the vortex structure in the bands. The latter are illustrated by the
contour lines of the condensate density |ψj|. Vortices in the stronger band (smaller ξ1) are
represented by the black lines, while those in the weak band (larger ξ2) are represented by
magenta lines. Panels a) - d) in Figs. 22 and 23 are calculated for the same parameters.

One can clearly see, how in the vicinity of the boundary vortices of the weak bands
move faster than those in the strong band making vortices fractional. However, those
fractional vortices quickly recombine and become composite after leaving the boundary
vicinity. For a stronger current the vortex density increased and the recombination is
delayed as shown in Fig. 23 b). Here, some fractional vortices moving inside the sample
arrange themselves in quasi-1D patterns with vortices in one band are located opposite to
vortices in the other band. In the middle of such 1D pattern there are domains of gJ > 0,
which stretch towards the lower boundary. Vortices tend to be attracted to this domain
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and to recombine slower. If the current is not so large all vortices recombine when moving
deeper inside the sample.

When the current increases further, the recombination is delayed even more and do-
mains of gJ > 0 eventually reach the lower boundary, as in Fig. 23 c) and d). Here the
dissociation of vortices that form the domains becomes complete: vortices are separated
by distances comparable or exceeding ξj. Finally, Fig. 23 d) also demonstrates how the
condensate in the weaker band starts to disappear at the upper boundary, together with
the vortex structure.

Figures 22 and 23 demonstrate that quasi-1D domains of the band phase shift is the
result of the process where vortices dissociate and arrange themselves in an alternating
order, somewhat similar to antiferromagnetic spin ordering. This ordering is related to
the balance between the vortex-vortex interactions, which is mainly attractive between
vortices in different bands and is repulsive for vortices within the same band. The bal-
ance of the interactions depends on the band condensate densities and, therefore, on the
current. When the current grows, the condensate is depleted and the repulsion, which is
determined by the magnetic field distribution, gradually becomes dominant.

5.5 Dynamics of the phase textures

At the initial stationary regimen there are fractional vortices near the edges of the slab and
consequently exist a static arrangements of phase textures near the boundaries. Once the
flux flow regime started the phase textures move too. Initially, when the phase textures
begin to spread into the sample near j = 0.37 their dynamics is mainly concentrated in
the lower part of the sample for the larger phase texture domains. Small phase textures
domains travelling from one edge to the other are also present. The Fig 24 illustrates
such changes for four different times and constant current j = 0.37 j0.

When the phase textures channels establish from one edge to another (approximately
at j = 0.47), this picture changes somewhat. Near the channels region the behavior is
about the same„ they are almost static, but between them, there exist some small phase
textures regions travel from one edge to the other. This is depicted in Fig. 25.

We can summarize our finding saying that the phase textures are susceptible to changes
mainly the larger ones in the lower part of the sample where the vortices exit. This picture
holds until the stabilization of the straight channel textures. Since them almost static
channels are set. Small phase textures regions travelling from one side to the other are
also found in both regimes.

5.6 Size effects

As is shown above, the dissociation of vortices which induces interband phase textures is
related to the vortex-boundary interactions. One can suppose that this, as well as other
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Figure 24: Dynamics of phase textures for a constant current j = 0.37 j0. The position of phase textures
in four different and progressing times, t = 0, 400, 800 and 1600 t0, reveal that this domains move toward
the lower boundary (y=0).

phenomena, related to the dissociation of vortices, strongly depend on the system size. In
order to illustrate this dependence we consider dynamics of vortices in slabs of different
sizes.

The results are illustrated in Fig. 26, which shows snapshots of the Josephson energy
for the slabs with the same L = 600ξ1 and two different W = 100ξ1, shown in Fig. 26
a), and W = 300ξ1, shown in Fig. 26 b). Other parameters of the system are the same
as in Fig. 22. Figure 26 also shows contour plots for the spatial distribution of the band
condensates, |ψj|, as in Fig. 23.

The value of the current is taken j = 0.447j0. For the smaller slab this current
corresponds to a situation, where dissociated vortices form perpendicular phase textures
with gJ > 0 [c.f. Fig. 26 a)], that already connect the upper and the lower boundaries.
However, for the larger slab the vortex distribution and gJ change, as shown in Fig. 26
b). Vortices that move towards the lower boundary band gradually recombine so that
deep inside the sample only composite vortices are found. This agrees our conclusion that
fractional vortices are unstable in a bulk superconductor.

We chose to plot the length of the domain wall, Ldw, normalized by w (Ldw/w) as
function of the external current, j. In fig. 27, a set of Ldw(j)/w curves are then shown for
the sizes w/ζ1 = 100, 150 and 300, in which for each w, two values for H are considered,
namely, H/Hc = 0.61 and 1.0. These data reveal that the amount of the relative dissocia-
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Figure 25: Changes of phase textures for a settled current j = 0.47 j0. The spacial distribution of phase
textures in four different and progressing times, t = 0, 400, 800 and 1600 t0, reveal that the channels are
almost static, but between them, some small phase textures regions travel from one edge to the other.

tion (relative because Ldw is divided by w) increases with decreasing w and that all curves
present a maximum. It is also shown that for fixed w, the larger field H inhibits the size
of the domain walls signaling an important dependence of Ldw/w with vortex density.

5.7 Current-voltage (I-V) characteristic

When vortices start to move their motion gives rise to energy dissipation and to the
appearance of a finite voltage between the opposite sample boundaries in the direction
of the current. This is illustrated in Fig. 28, which plots the current-voltage (I-V)
characteristic of the considered sample for λ12 = 0, 0.0001, 0.001, and 0.005. While the
first three values of the interband coupling correspond to the regime of the phase textures
inside the superconductor, the last coupling does not favor vortex splitting inside the
sample. Hence, one can check the effect of the phase textures on the dissipation. Notice
that the points a - e in Fig. 28 (on the curve for λ12 = 0.0001 ) correspond, respectively,
to Figs. 22 a) - e) and Figs. 23 a) -d).

From Fig. 28 one sees that the threshold current density (onset of the dissipation)
practically does not change in the phase-texture regime. It remains near 0.23j0 despite the
interband coupling changes by orders of magnitude. However, when the vortex splitting
and the related phase textures do not penetrate inside the superconducting sample, the
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Figure 26: Snapshots of the Josephson energy distributions calculated for the slabs with L×w = 600ξ1×
100ξ1 (panel a) and with L×w = 600ξ1×300ξ1 (panel b). The contours represent the condensate density
|ψ1| (black lines) and |ψ2| (magenta lines). The current is j = 0.447j0, other parameters are the same as
in Fig. 22.

threshold current density shifts down by about 20%, i.e, increasing the impact of the
dissipation.

However, strikingly enough, one cannot say generally that the dissipation is less pro-
nounced for the couplings related to the penetration of the phase textures. Indeed, at
large current densities the curves for λ12 = 0, 0.0001 and 0.001 exhibit a higher voltage
and higher differential resistance than that of the sample at λ12 = 0.005. We arrive
at the conclusion that the penetration of the phase textures inside the superconductor
has a rather complex effect on the dissipation. For relatively small current densities the
dissipation is less significant in the phasetexture regime, with a larger threshold current
density for the vortex motion. For large current densities one finds the opposite result,
i.e., the dissipation of the energy is more pronounced for the interband couplings favoring
the vortex splitting inside the sample.

As also noted above, when the current density is sufficiently large j > 0.707j0 the
superconductivity in the weak band is destroyed [c.f. Fig. 22 e)]. Then the resistance
increases still further [c.f. point e in Fig. 28], because at such strong currents the repulsion
between vortices of the remaining condensate weakens and its vortices form a fluid instead
of a rigid lattice. In the fluid the mobility of vortices increases considerably, leading to
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Figure 27: (Color online) Total length of the domain wall normalized by w, Ldw/w as function of j
for some chosen values of w and H. Ldw/w measures the extent of vortex dissociation in the two-band
superconducting sample because fractional vortices appear attached to such domain walls.

Figure 28: I-V characteristic for the set of the interband coupling λ12 = 0, 0.0001, 0.001, and 0.005. Points
a-e on the curve for λ12 = 0.0001 correspond to Fig. 1 a) - e) and Fig. 2 a) - c), respectively. Notice that
the I - V characteristic for λ12 = 0, and 0.0001 are almost the same.

an increase in the resistance.

5.8 Summary

This work investigates the mechanism of the formation of phase textures in a 2D two-band
superconductors, placed in the magnetic field. In comparison with equilibrium vortex dis-
tribution, the dynamic vortex matter demonstrates a number of specific properties, in
particular vortex splitting. Composite vortices split spatially and create fractional vor-
tices, each carrying a non-integer part of the unit quantum flux. The interaction between
fractional vortices is a complex pattern, being repulsive for vortices within the same band
and attractive for those in different bands. This interaction is responsible for arranging
vortices in non-equilibrium alternating patterns, which helps to create quasi-1D phase
textures or domains with the changed phase difference between the band condensates.
This mechanism for the formation of the interband phase textures, induced by the vortex
splitting, differs from that considered previously. We have shown that such phase textures
have a significant effect on the dissipation caused by the vortex motion, which deserves
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further investigations.
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Creation of fractional vortices by linear pinning barriers

We saw that for a two-band superconducting slab with large dimension and free of pinning
centers the non-composite vortices are present only in small regions of the sample and
for particular values of the applied current. In this chapter we discuss how a different
arrangments of linear pinning barriers contribute for the creation of fractional vortices
in the whole slab. The linear barriers are sites of the slab at which superconductivity is
destroyed. We study the cases where the linear barriers are perpendicular and parallel to
the direction of movement of vortices. For the study we first describe a free pinning system
with large dimensions and subsenquently we discuss the system with a linear barrier of
pinning centers.

6.1 Introduction

Artificial pinning center are introduced in a superconducting matrial as a strategy to
trap quantum vortices, increasing the maximal magnetic field and applied current that a
superconductor can support with minimal dissipation. Several experimental techniques
have been employed to produce specifically designed arrays of pinning center have been
employed. Among these, pinning centers produced by irradiation with heavy ions [129],
chemically grown defects [130], nanostructured perforation [131] and permanent nano-
magnets [132]. Domain structure appear in multiband superconductor when some super-
conducting states are degenerate in free energy. This domains are regions with different
energies and between them appear domain wall as topological defects. When a magnetic
field is applied some of the vortex are trapped at the domain wall forming an exotic called
a vortex sheet [46], where a conventional vortex splits into two vortices with half flux
quanta [12, 47, 48]. Machida [1] investigated the flux flow and the pinning of the vortex
sheet structure using hexagonal arrays of square pinning center. In the pinning case it is
observed an emitting process of a conventional vortex from the vortex sheet by combining
a pair of half flux-quantum vortices.
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6.2 Model and Method

The system we will discuss in this chapter is exactly the same studied in chapter 4, except
that now we introduce via the quantity χj in TCGL (Eqs. 2.9.13) spacial function.

For pinning barrier perpendicular to the direction of vortex move, χj is defined as
follow

χj(x, y) =

τ −
Sj

njG
, out of the region of linear barrier

− Sj

njG
, in the region of linear barrier along x and with a width ∆y

(6.2.1)
For pinning barrier parallel to the direction of vortex move, χj is defined as follow

χj(x, y) =

τ −
Sj

njG
, out of the region of linear barrier

− Sj

njG
, in the region of linear barrier along y and width ∆x

(6.2.2)

The quantities τ , Sj, nj and G were defined in section 2.9.
We will investigate the behavior of phase difference between the band condensates

∆θ = θ1 − θ2, in the same way as was described in section 5.2.
We use the correlation r for describing some characteristic of the free pinning system.
The non-composite vortex state will be detected qualitatively in the pinned system.

6.3 Two-band pinning free superconductor with large dimensions

In the preceding chapter we showed that the process of vortex dissociation induces in-
terband phase textures, it is, domain walls that separate region of slab with positive
Josephon energy from the region with negative Josephson energy.
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Figure 29: (a) Correlation, voltage and vorticity for the first band (stronger band) curves as a function
of the applied current density, for a pinning free two-band superconducting slab, with H = 0.73Hc,
W = 300 and L = 300. The solid green lines separate the phases I, II and IV explain in section 4.3. The
behavior of vorticity curve (purple) is approximated by four linear behavior (red, yellow, orange and dark
cyan lines). Among this lines, the yellow line has the higher slope, which correspond with a particular
decrease of r(j), enclosed between magenta dotted lines (this is agree that we exposed in section 4.6). (b)
m∗ state in r(j) curve from (a): Domains of gJ < 0 and gJ > 0 are marked by red and blue, respectively.
White colour corresponds to gJ = 0. Here, gJ is the Josephson energy defined in Eq. (2.9.1). The
vortices in first (black line) and second (magenta line) bands are plotted. The domain walls do not cross
the sample and the vortices are dissociated only in small regions of the sample. In the central region of
slab the vortices are composite (c) n∗ state in r(j) curve from (a): Although the current density of this
state is higher than the current density of state m∗, there is a few dissociated vortices and the normal
state in weaker band is more advanced.

It was found that the vortex dissociation process and the formation of domain walls are
scarcely present in large dimensions. The non-composite vortices and interband texture
only appear at the edges of the slab, but do not cross the sample (see Fig 26). The
results presented in Fig.27 show that the length of domain wall decreases as the sample
dimension is increased.

In Fig. 29.a we present the correlation, voltage and vorticity for the first band (stronger
band) curves as a function of the applied current density. The correlation decrease with the
increasing current because the high vorticity and the presence of fractional vortices in the
second band, make this weaker band reach the normal state very earlier. This decrease in
r(j) curve does not implies in dissocation of composite vortices, as was explain in chapter
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4.
Although the r(j) curve present a particular decreasing region (that enclosed between

magenta dotted lines in Fig. 29.a), it is not close to zero and the vortices are only
dissociated in specific regions of slab. To illustrate this, in In Fig. 29.b we show the
vortex configuration in the minimum point m∗ of r(j) (j = 0.27 j0). The majority of
vortices are composites and small regions close the edges present dissociated vortices.
For the point n∗ in the same curve for j = 0.3 j0 the normal state in weaker band is more
advanced and few dissociated vortices are observed (Fig. 29.c). The domain walls yet do
not cross the slab.

We calculated the length of domain walls as a function of the current density for this
dimension and H = 0.73Hc (See Fig. 30). The points m∗ and n∗ are situated in the
maximun of this curve. As we expected the minimum region of r(j) (Fig. 29) correspond
with maximum region in the L(j) curve.
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Figure 30: Domain wall length as a function of the applied current density, for a free pinning system,
with H = 0.73, W = 300 and L = 300.

We can see that in the maximum of L(j) curve the domain wall does not cross the sample.
Increasing the current does not increase the domain walls length, because the weaker band
reaches the normal state, before the vortices dissociation occurs.

On the other hand, in the region where r(j) has a particular decrease, the vorticity
presents its highest rate of entrying vortices (yellow line). This is in agreement with what
was exposed in section 4.6.

6.4 Linear pinning barrier perpendicular to direction of vortex movement

In this section we used the following criterion for determining the diameter of vortices of
each band: We took it as the diameter that cover 80% of maximum value of the Cooper
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pair density. According to this criterion the vortices diameters in the first and second
bands are respectively D1 ≈ 6ξ1 and D2 ≈ 13ξ1.

In Fig. 31.a we show the lenght of a the domain wall for a pinning free (red curve) two-
band superconducting slab and for the same system with one pinning barrier of width 6ξ1,
perpendicular to the direction of vortex movement, for H = 0.73Hc. The slab dimensions
are W = 300 and L = 300. It is observed a noticeable increase of the domain wall lenght,
and, consequently an increase in the number of dissociated vortices, as shown in vortex
configuration, Fig. 31.c, of state m∗1 from Fig. 31.a.



85

Figure 31: System with W = 300, L = 300 and H = 0.73Hc. (a) Length of domain walls for a free
pinning system (black curve) and for a system with one linear barrier of length D1 perpendicular to
vortex move (red curve). (b) Length of domain walls for a systems with one (red curve) and two (olive
curve) perpendicular linear barrier of length D1. From (c) to (f):Domains of gJ < 0 (red) and gJ > 0
(blue). White colour corresponds to gJ = 0. gJ is the Josephson energy defined in Eq. (2.9.1). The
vortices in first (black line) and second (magenta line) bands are plotted. (c) Vortex configuration of
state m∗

1 from L(j) curve in (a). (d) Vortex configuration of state n∗1 from L(j) curve in (a). (e) Vortex
configuration of state m∗

2 from L(j) curve in (b). (f) Vortex configuration of state n∗2 from L(j) curve in
(b).

Fig. 31.c show the vortex configuration for a point m∗1 with same value current of
point m∗ (Fig. 31.a). We can see that in the superior half of slab the interband vortex
cores are dissociated and the external contour of vortices start to overlap, because their
high vorticity.
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The inclusion of a linear pinning barrier allow to the domain walls cross the slab.
However the vortices are dissociated only in the half superior of slab, since the vortex
are dissociated as a consequence of its interaction with the boundaries. The difference in
the penetration time leads to a dynamical separation or dissociation of composite vortices
and thereby to creation of fractional vortices. When a vortice is trapped at the barrier
a new one is emitted. As it does not exist at significant time difference for the emission
of vortex in different bands, they are quickly recombined once liberated from the pinning
barrier.

Fig. 31.d show the vortex configuration for a point n∗1 with the same value of current
of point n∗(see Fig. 31.a). We can see that in the superior half of slab the second band
is in advanced normal state and in the lower half the vortices are completely composite.

Introducing two perpendicular pinning barrier, the length of domain walls increase
considerably, as we can see in Fig. 31.b. We take two states m∗2 and n∗2 in olive curve
(system with two perpendicular barrier of length D1), for the same values of current of
pointsm∗ and n∗, respectively. The results are similar as those presented in the preceeding
subsection. In the upper part of slab the second band is in normal state, in the middle
part the vortices are composite and in the lower part are slightly deformed because they
a closer to the lower boundary. Introducing more than one perpendicular barrier does not
help the dissociation of vortices since once the vortices are emitted by the pinning barrier
they can not interact with the boundary (y = W ) that is responsible for the dissociation
of vortices.

6.5 Linear pinning barrier parallel to direction of vortex movement

Fig. 32.a show the length of domain walls for the same system studied in the previously,
with two (olive curve) perpendicular linear barrier of length D1 and for two parallel linear
barrier of length 2D1 (violet curve) as a function of the applied current, for H = 0.73Hc.
The curves have similar behavior.

Now we take the states m∗3 and n∗3 in the same values of current of states m∗2 and
n∗2 (see Fig. 32.a) respectively. We note that the domain walls cross all the slab with
the dissociated vortices attached them (Figs. 32.b and 32.c). Some vortices attached to
domain walls are composite (Fig. 32.b) because the current is not sufficiently enough for
dissociate them.
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Figure 32: System with W = 300, L = 300 and H = 0.73Hc(a)Length of domain walls for a systems
with two (olive curve) perpendicular linear barrier of length D1 and two parallel linear barrier of length
2D1 (violet curve). (b) Domains of gJ < 0 and gJ > 0 are marked by red and blue, respectively. White
colour corresponds to gJ = 0. Here, gJ is the Josephson energy defined in Eq. (2.9.1). The vortices in
first (black line) and second (magenta line) bands are plotted. The domain walls cross the sample with
some dissociate vortices attached them. Some vortices attached to domain walls are composite because
the current is not sufficiently enough for dissociate them. (c) The domain walls cross the sample with
dissociate vortices attached them.

6.6 Summary

We have studied the phase texture domain wall and vortex dissociation configurations
for a two-band superconducting slab with applied magnetic field and dc current with
and without pinning barriers, both perpendicular and parallel to the vortex movement
direction. It was shown that for a pinning free slab fractional vortices and domain walls
are only present in small regions of the sample. When linear pining barrier are introduced
the domain wall cross all the sample (from y = W to y = 0). For pinning barriers
perpendicular to the vortex move the vortices are dissociated only in the upper part of
slab because the vortices are trapped in the barrier and further newly emitted. Then the
interaction with the boundary that is responsible for creation of fractional vortices does
not exist anymore.
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For the case of pinning barrier parallel to the vortex move, we get to dissociate the
vortices in whole the sample.
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Conclusions

This work investigates the mechanism of the formation of phase textures in 2D two-band
superconductors, placed in the magnetic field. In comparison with equilibrium vortex
distribution, the dynamic vortex matter demonstrates a number of specific properties, in
particular vortex splitting. Composite vortices split spatially and create fractional vor-
tices, each carrying a noninteger part of the unit quantum flux. The interaction between
fractional vortices is a complex pattern, being repulsive for vortices within the same band
and attractive for those in different bands. This interaction is responsible for arrang-
ing vortices in nonequilibrium alternating patterns, which helps to create quasi-1D phase
textures or domains with the changed phase difference between the band condensates.
This mechanism for the formation of the interband phase textures, induced by the vortex
splitting, differs from that considered previously. We have shown that such phase textures
have a significant effect on the dissipation caused by the vortex motion, which deserves
further investigation. We have also shown that for superconducting pinning free slab with
a large dimension the vortex dissociation procces is delay, but the introduction of linear
pinning barrier parallel to the vortex movement facilities the dissociation process.
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