
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS DA NATUREZA

PÓS-GRADUAÇÃO EM ESTATÍSTICA

FERNANDA VITAL DE PAULA

EXTENDED CIRCULAR DISTRIBUTIONS: MATHEMATICAL

PROPERTIES, INFERENCE AND REGRESSION MODEL

RECIFE

2018



Fernanda Vital de Paula

EXTENDED CIRCULAR DISTRIBUTIONS: MATHEMATICAL
PROPERTIES, INFERENCE AND REGRESSION MODEL

Doctoral thesis submitted to the Graduate Program in

Statistics, Department of Statistics, Federal University

of Pernambuco as a partial requirement for obtaining

a doctorate in Statistics.

Advisor: Professor Ph.D. Getúlio José Amorim do Amaral

Co-advisor: Professor Dr. Abraão David Costa do Nascimento

RECIFE

2018



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217                  
  

   
 
P324e Paula, Fernanda Vital de  

Extended circular distributions: mathematical properties, inference and 
regression model  / Fernanda Vital de Paula. – 2018. 

  116 f.: il., fig., tab. 
 
  Orientador: Getúlio José Amorim do Amaral. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CCEN, 

Estatística, Recife, 2018. 
                       Inclui referências e apêndices. 
 

  1. Estatística. 2. Modelo de regressão. I. Amaral, Getúlio José Amorim do 
(orientador).  II. Título. 
 
      310                   CDD (23. ed.)                          UFPE- MEI 2018-044                             
       

 

 



FERNANDA VITAL DE PAULA

EXTENDED CIRCULAR DISTRIBUTIONS: MATHEMATICAL PROPERTIES,

INFERENCE AND REGRESSION MODEL

Tese apresentada ao Programa de Pós-
Graduação  em  Estatística  da
Universidade  Federal  de  Pernambuco,
como requisito parcial para a obtenção do
título de Doutor em Estatística.

Aprovada em: 14 de março de 2018.

BANCA EXAMINADORA

Prof. Getúlio José Amorim do Amaral
UFPE

Prof.ª Maria do Carmo Soares de Lima
UFPE

Prof.ª Audrey Helen Maria de Aquino Cysneiros
UFPE

Prof.ª Renata Maria Cardoso Rodrigues de Souza
UFPE

Prof. Marcelo Rodrigo Portela Ferreira
UFPB



Agradecimentos

Aos meus pais, que permitiram que eu chegasse até aqui.

Ao meu orientador, Professor Getúlio José Amorim Amaral, por todos os ensinamentos e

incentivo. Pela paciência e disponibilidade. Por acreditar no meu potencial. Pelas reuniões

agradáveis e enriquecedoras.

Ao meu coorientador (meu outro orientador), Professor Abraão David Costa do Nascimento,

por todos os ensinamentos e motivação. Por ter me considerado como uma orientanda. Pela

presença e paciência. Pela confiança. Pelas reuniões aprazíveis e inspiradoras.

Aos membros da banca: Professores Audrey, Marcelo, Maria do Carmo e Renata, pelas

valiosas colaborações que fizeram para concretização deste trabalho.

Ao Professor Gauss Moutinho Cordeiro, a quem muito admiro, pelas colaborações na quali-

ficação que convergiram no Capítulo 5, desta tese.

Aos professores do Programa de Pós-Graduação em Estatística, pelos ensinamentos.

A Pernambuco, esse Estado maravilhoso, que me proporcionou experiências incríveis por meio

de sua cultura (aqui, agradeço em especial ao Grupo Yalu, pelos fins de semana de maracatu e

alegria), de sua tamanha beleza e de pessoas imensamente especiais que encontrei nessas terras

e foram essenciais nesta caminhada.

Aos colegas de trabalho e aos alunos da Universidade Federal do Tocantins, pela força, mo-

tivação e torcida.

À Universidade Federal do Tocantins, pela oportunidade de me qualificar por meio do afas-

tamento concedido.

À Valéria Bittencourt, secretária da pós-graduação em estatística, pela competência, simpatia

e atenção.



Abstract

Circular Statistics is an important branch of the Statistics which has been necessary in var-

ious scientific fields such as Biology, Medicine, Geology, Meteorology and others. During the

performed researches some gaps were observed in this study branch. Thus, the main objective of

this thesis is to collaborate with the enrichment of the literature in Circular Statistics, seeking

to fill these gaps. First, the difficulty in obtaining models with asymmetry, different modality

scenarios and treatable trigonometric moments was noticed. In this way, a new circular distri-

bution is proposed in the Chapter 2, denominated Exponentialized Cardioid (EC). Some of its

mathematical properties are presented, such as trigonometric moments, kurtosis, and asymme-

try. In addition, two estimation methods for EC model parameters were studied. Subsequently,

the lack of hypothesis tests for parameters of circular distributions, in the context of models

distinction, was evidenced in the literature. Apart from, few studies on bootstrap were found in

Circular Statistics. Thus, in Chapter 3, we devote attention to make hypothesis inference on EC

parameters. In particular, adopting as comparison critera estimated type I error size and test

power, we study the performance of tests based on likelihood ratio, Wald, score and gradient

statistics and their bootstrap versions putting emphasis to distinguish the EC distribution re-

gard to Cardioid and uniform models, special cases of the former. From the theoretical point of

view, an important collaboration was the derivation of the EC Fisher information matrix. The

last gap refers to the few models of circular-circular regression in the literature. In Chapter 4,

a new circular-circular regression model having distributed EC angular errors is proposed. Its

regression curve is expressed in terms of the Möbius Transformation. Futher, a complex version

of the EC distribution is also presented, named CEC distribution, and a likelihood-based esti-

mation procedure for parameters of the new model is furnished. The fifth Chapter has the same

purpose as Chapter 2. Four new circular distributions, that extend the Cardioid distribution (C)

are proposed, called beta Cardioid (βC), Kumaraswamy Cardioid (KwC), gamma Cardioid (ΓC)

and Marshall-Olkin Cardioid (MOC). These distributions are rewritten as a family, which is a

result of weighting the C probability density function (pdf). General mathematical expressions



for their trigonometric moments and the idea for estimating the parameters of the proposed

models by the maximum likelihood method are presented. These four chapters present examples

in the area of Meteorology or Biology that point out the success of the new proposed models

in the Chapters 2, 4 and 5 and the good performance of the Wald and gradient tests, in the

Chapter 3.

Keywords: Circular Statistic. EC distribution. Inference.



Resumo

A Estatística Circular é um ramo importante da Estatística que tem sido necessário em diver-

sos campos científicos como Biologia, Medicina, Geologia, Meteorologia, entre outros. Durante

as pesquisas realizadas foram observadas algumas lacunas neste campo de estudo. Dessa forma,

o objetivo principal dessa tese é colaborar com o enriquecimento da literatura em Estatística

Circular, buscando preencher tais lacunas. Primeiramente, a dificuldade em obter modelos com

assimetria, diferentes cenários de modalidade e momentos trigonométricos tratáveis foi notada.

Dessa forma, no Capítulo 2 uma nova distribuição circular é proposta, denominada Cardioide

Exponencializada (EC). Algumas de suas propriedades matemáticas são apresentadas, como mo-

mentos trigonométricos, curtose e assimetria. Além disso, dois métodos de estimação para os

parâmetros do EC modelo foram estudados. Posteriormente, a inexistência de testes de hipóteses

para parâmetros de distribuições circulares, no contexto de distinção de modelos, foi evidenci-

ada na literatura. Ademais, poucos estudos sobre bootstrap foram encontrados em Estatística

Circular. Assim, no Capítulo 3, foi dada atenção à inferência de hipóteses sobre os parâmetros

da EC. Em particular, adotando como critérios de comparação o tamanho do erro tipo I e o

poder do teste estimados, estudamos o desempenho dos testes baseados na estatísticas de razão

de verossimilhança, Wald, escore e gradiente e suas versões bootstrap, com ênfase em distinguir

a distribuição EC dos modelos Cardioide (C) e uniforme, casos especiais da primeira. Do ponto

de vista teórico, uma importante colaboração foi a derivação da matriz de informação de Fisher

da EC. A última lacuna se refere aos poucos modelos de regressão circular-circular existentes

na literatura. No Capítulo 4, um novo modelo de regressão circular-circular, com erros angu-

lares assumindo a distribuição EC, é proposto. A curva de regressão é expressa em termos da

transformação Möbius. Além disso, uma versão complexa da distribuição EC também é apresen-

tada, denominada distribuição CEC e um procedimento, com base na máxima verossimilhança, é

fornecido para estimar os parâmetros do novo modelo. O quinto capítulo tem o mesmo objetivo

do Capítulo 2. Quatro novas distribuições circulares flexíveis que estendem a distribuição Car-

dioide (C) são propostas, denominadas beta Cardioide (βC), Kumaraswamy Cardioide (KwC),



gamma Cardioide (ΓC) e Marshall-Olkin Cardioide (MOC). Estas distribuições são reescritas

como ponderações da função densidade de probabilidade da C. As expressões matemáticas para

seus momentos trigonométricos e a idéia geral para estimar os parâmetros dos modelos propostos

pelo método de máxima verossimilhança são apresentadas. Esses quatro capítulos apresentam

exemplos na área de Meteorologia e Biologia que apontam o sucesso dos novos modelos propostos

nos Capítulos 2, 4 e 5 e o bom desempenho dos testes Wald e gradiente, no Capítulo 3.

Palavras-chave: Distribuição EC. Estatística circular. Inferência.
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1 Introduction

Circular statistics is a particular branch of the Statistics that deals with data that can be

represented as angles or, equivalently, as points on the circumference of the unit circle. According

to Fisher (1995), this branch is situated somewhere between the analysis of linear and spherical

data.

Examples of circular data include directions measured using instruments such as a compass,

protractor, weather vane, sextant or theodolite. It is usual to record such directions as angles

expressed in degrees or radians measured either clockwise or counterclockwise from some origin,

referred to as the zero direction. The requirements to specify the position of the origin and the

direction taken to be positive do not arise for data on the real line; the origin is 0, values to the

left of 0 are negative and those to the right are positive. For circular data, each angle defines a

point on the circumference of the unit circle, just as each value of a linear variable defines a point

on the real line. As the absolute value of a linear variable increases we move further away from

the origin. So, on the real line, a value of 360 is relatively close to a value of 355 but relatively

far from the origin. The situation is very different for circular variables. Whilst an angle of 355

corresponds to a point on the circumference of the unit circle that is close to that corresponding

to 360, the angles 0 and 360 define the exact same point. It is this periodic nature of circular

data that forces us to abandon standard statistical techniques designed for linear data in favor

of those which respect the periodicity of circular data (Pewsey et al., 2014).

Pewsey et al. (2014) still mentions that the support for circular data is the unit circle as op-

posed to the real line which is the support for linear data. Whilst measured directions recorded as

angles constitute one type of circular data, not all circular data are necessarily initially measured
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or recorded as angles. As example, each time of day measured on a 24 hours can be converted

to an angle measured in degrees by multiplying the time in hours by 360/24. Those angles can

then be used to define points around the circumference of the unit circle.

The circular data are of interest in many contexts (Pewsey et al., 2014). Some examples

include

• the bonding angles of molecules (Viftrup et al., 2007),

• the direction of the wind (Davis, 1986),

• time patterns in crime incidence (Brunsdon and Corcoran, 2006),

• time patterns of events in the field of cyber security (Pan et al., 2017),

• the incidence throughout the years of measles (Guo et al., 2010).

Other applications from astronomy, geology, medicine, meteorology, oceanography, physics and

psychology are referred to in Fisher (1995) and Mardia and Jupp (1999). According to Morellato

et al. (2010), variables that characterize the phenology of species, such as powering onset during

the year, are of great interest to biologists. Many of these examples illustrate the importance

of circular statistics in environmental and climate-change analysis. Circular statistics have also

been applied by Mardia et al. (2007) and Boomsma et al. (2008) in the areas of bioinformatics

and proteomics.

Due to the importance of analyzing circular data in the area of Statistics, there are seven

books devoted to this topic more depth: Mardia (1972), Batschelet (1981), Upton and Fingleton

(1989), Fisher (1995), Mardia and Jupp (1999), Jammalamadaka and Sengupta (2001) and

Pewsey et al. (2014). Mardia and Jupp (1999) is a heavily revised, updated and extended

version of Mardia (1972), which, together with Jammalamadaka and Sengupta (2001), provide

the most theoretical treatments of the subject. The last is the only one of them that includes

any code, but the S-Plus based on the CircStats package to which it refers is of rather limited

scope, before the publication of Pewsey et al. (2014) which includes the R code for applications of
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techniques presented in other literatures. Aspects of robust or Bayesian methods are considered

in Mardia and Jupp (1999) and Jammalamadaka and Sengupta (2001). Time series or spatial

analysis for circular data are covered by Fisher (1995).

Construction of a tractable circular model with an asymmetric shape has been a problem in

statistics of circular data. To tackle this problem, some asymmetric extensions of well-known

circular models have been proposed in the literature. Malsimov (1967), Yfantis and Borgmann

(1982) and Gatto and Jammalamadaka (2007) discussed an extension of the vM distribution,

generated through maximization of Shannon’s entropy with restrictions on certain trigonometric

moments. Batschelet (1981) proposed a mathematical method of skewing circular distributions

that has seen renewed interest very recently. In Fernández-Durán (2004), the author proposed

the non-negative trigonometric moment distributions. Pewsey (2008) presented a four parameter

family of distributions on the circle by wrapping the stable distribution and Jammalamadaka and

Kozubowsky (2004) by wrapping the classical exponential and Laplace distributions. Kato and

Jones (2010) proposed a family of distributions arising from the Möbius transformation which

includes the vM and wrapped Cauchy distributions. Umbach and Jammalamadaka (2009) intro-

duced the idea of Azzalini (1985) to circular distributions that typically results in an asymmetric

distribution. Kato and Jones (2013) proposed a mathematical tractability model, obtained from

the wrapped Cauchy, by applying Brownian motion. Unlike familiar symmetric distributions, it

is often difficult to deal with skew models in statistical analysis. This difficulty is partly due

to the lack of some mathematical properties that many of the well known symmetric models

have. For example, existing asymmetric models often have complex normalizing constants and

trigonometric moments, which could cause trouble in analysis (Kato and Jones, 2013).

In relation to statistical inference for the parameters of circular distributions, Jammala-

madaka and Sengupta (2001) cites that not much is known in terms of optimal tests for the

parameters of other circular distributions, besides the vM. Such a distribution is called circular

Normal distribution to emphasize its importance and similarities to the Normal distribution on

the real line. The author still indicates SenGupta and Pal (2001) for a discussion on Wrapped

Stable distributions.
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As regards circular regression models, three types can be cited: linear-circular, circular-linear

and circular-circular. The study of the latter has received very little attention (Pewsey et al.,

2014), although the regression of a circular variable on a circular variable often arises in practice.

Many examples can be cited including the spawning time of a particular fish on the time of the low

tide, wind directions at different times and the orientation of a bird nest on orientation of river.

In circular-circular regression, an angular random variable is modelled in terms of other circular

random variable and both are measured assuming the same zero direction and rotation sense

(Sarma and Jammalamadaka, 1993). Such particularities makes the problem more complicated

than the usual linear regression.

Therefore, the idea of the thesis is to contribute to fill these gaps in the literature of circular

statistics with respect to the:

• proposition of new circular models with asymmetry, different modality scenarios and treat-

able properties;

• statistical inference for the parameters of a circular distributions; and

• proposition of circular-circular regression models.

These contributions resulted in six chapters, including this introductory chapter. The four

independent following chapters are connected by a single object of study: a new circular dis-

tribution. In Chapter 2, the new model is proposed, called Exponentiated Cardioid (EC) and

their properties such as trigonometric moments, kurtosis and skewness are derived. A discussion

about the modality of the studied model is also presented. To fit the EC model, two estimation

methods are presented based on maximum likelihood and quantile least squares procedures. The

performance of proposed estimators is evaluated in a Monte Carlo simulation study and the

proposed model is applied to a dataset about wind directions.

In Chapter 3, the EC distribution is considered in order to study the Type I error rate and

the power of the likelihood ratio, Wald, score and gradient tests and their bootstrap versions

to distinguish the EC distribution from the Cardioid and uniform distributions. In addition, an
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important property of the proposed model is derived (Fisher information matrix) and the tests

and their bootstrap versions are applied to datasets.

In Chapter 4, the EC distribution is assumed as distribution for the angular errors of the a pro-

posed circular-circular regression model. Its regression curve is expressed in terms of the Möbius

transformation. Futher, the complex version of the EC distribution is introduced, named CEC

distribution. The maximum likelihood method is presented to estimate the model parameters.

The usefulness of the new model is illustrated using wind direction real data. Its performance

is compared with those due to models having the vM, wrapped Cauchy and modified vM error

distributions as error angular components. Results indicate that the our proposal may be the

best regression model.

Four new circular distributions that extend the C distribution are introduced in Chapter 5,

called beta Cardioid (βC), Kumaraswamy Cardioid (KwC), gamma Cardioid (ΓC) and Marshall-

Olkin Cardioid (MOC). These distributions are rewritten as a family, which is a result of weight-

ing the C pdf. General mathematical expressions for their trigonometric moments and the idea

for estimating the parameters of the proposed models by the maximum likelihood method are

presented. The usefulness of the new distributions is illustrated using two applications to real

data. Finally, in Chapter 6, some conclusions and ideas for further work are presented.
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2 A new extended Cardioid model: an
application to wind data

Resumo

A distribuição Cardioide é um modelo relevante no tratamento de dados circulares. Porém, este

modelo não é adequado para cenários onde existe assimetria ou multimodalidade. Para resolver

esse problema, um modelo extendido da Cardioide é proposto, chamado distribuição Cardioide

exponencializada (EC). Além disso, algumas de suas propriedades como momentos trigonométri-

cos, curtose, e assimetria são derivadas. Uma discussão sobre a modalidade do modelo estudado

é também apresentada. Para ajustar o modelo EC, são apresentados dois métodos de estimação,

a máxima verossimilhança e mínimos quadrados quantílicos. A performance dos estimadores é

avaliada em um estudo de simulação, adotando viés e erro quadrático médio, como compara-

ção. Finalmente, o modelo proposto é aplicado a um conjunto de dados no contexto de direções

de vento. Resultados indicam que a distribuição EC pode superar distribuições clássicas com

suporte circular tais como a Cardioide e a vM.

Palavras-chave: Cardioide exponencializada. Direção do vento. Modalidade. Momentos trigonométri-

cos.

Abstract

The Cardioid distribution is a relevant model for circular data. However, this model is not suit-

able for scenarios where there is asymmetry or multimodality. In order to solve this problem,

an extended Cardioid model is proposed, which is called Exponentiated Cardioid (EC) distribu-
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tion. Moreover, some of its properties, such as trigonometric moments, kurtosis and skewness

are derived. A discussion about the modality of the studied model is also presented. To fit the

EC model, two estimation methods are presented based on maximum likelihood and quantile

least squares procedures. The performance of proposed estimators is evaluated in a Monte Carlo

simulation study, adopting both average bias and square error as comparison criteria. Finally,

the proposed model is applied to a dataset in the wind direction context. Results indicate that

the EC distribution may outperform some classical distributions with circular support such as

the Cardiod and the von Mises.

Key-words: Exponentiated Cardioid. Modality. Trigonometric moments. Wind direction.

2.1 Introduction

Circular data have been obtained from various fields such as in Biology (Batschelet, 1981),

Zoology (Boles and Lohmann, 2003), Geology (Rao and Sengupta, 1972) and others. Some

examples are related to birds navigational, variation in the onset of leukaemia, orientation data

in textures and wind directions. The periodic nature of circular data imposes a specific treatment

which is appropriate for non-euclidean space. Even though symmetry is assumed by several

circular models, there are many practical situations where asymmetric distributions are necessary.

Thus, a new tractable flexible circular model will be presented in this chapter.

There are some generators for representing circular and directional data. Among them, the

simplest is known as perturbation procedure proposed by Jeffreys (1961) and it is based on the

product of an existing circular density and a function chosen such that the resulting expression

is also a circular density (Pewsey et al., 2014). The Cardioid and sine-skewed (Abe and Pewsey,

2009) distributions are particular cases of this method. The Cardioid distribution was introduced

by Jeffreys (1961) as cosine perturbation of the continuous circular uniform distribution and has

probability density function (pdf) given by

fC(θ) =
1

2π
{1 + 2ρ cos(θ − µ)},

where 0 ≤ µ < 2π is the mean direction parameter and |ρ| ≤ 1
2 is the concentration param-
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eters. Further, the circular uniform distribution is obtained when ρ = 0. Other generator is

stemmed from the real line around the circumference, called wrapping models (Jammalamadaka

and Sengupta, 2001). The wrapped Cauchy and normal models are examples of this method.

Generators defined by transforming the argument of some existing densities, say g(θ), replacing

its argument, θ, by functions of it, can also be mentioned. Some distribution generators in this

way are Jones-Pewsey (Abe et al., 2013), Inverse Batschelet (Jones and Pewsey, 2012), Papakon-

stantinou (Abe et al., 2009) (generated from Cardioid) and Batshelet (Batschelet, 1981) (from

Von Mises) families. Moreover, the von Mises (vM) distribution is particularly useful in this

chapter because its wide application to circular data. Its pdf is given by (for 0 ≤ θ < 2π)

fV (θ) = [2πI0(ρ)]−1 exp[ρ cos(θ − µ)],

where 0 ≤ µ < 2π, ρ ≥ 0 and I0(ρ) =
∫ 2π

0 exp[ρ cos(φ− µ)]dφ is the modified Bessel function of

the first kind and order zero.

A further form to construct a circular model is the called Möbius transformation (see more

details in Hardy and Wright (1979)). An example is the proposed family in Kato and Jones

(2010), derived from vM distribution. Another method is based on the transformation of a

bivariate linear random variable to its directional component. The obtained models are called

offset distributions (Mardia and Sutton, 1975).

The previous generators results in, generally, symmetrical and unimodal distributions. How-

ever, circular data are seldom symmetrically distributed (Pewsey, 2008), besides presenting possi-

ble multimodality as the wind directions used in the application of this chapter, in the subsection

2.5.2. Therefore, tractable models with asymmetric shape and modality scenarios are required in

several applications into the circular context. Some asymmetric extensions have been proposed in

the literature. Among them, finite mixtures of unimodal models (Mardia and Sutton, 1975) and

the application of multiplicative mixing, as that used by Gatto and Jammalamadaka (2007) to

extended the vM law. Pewsey et al. (2014) also made reference to the non-negative trigonometric

moment distributions (Fernández-Durán, 2004). Regarding the modality, the bimodal general-

ized skew-normal and sine-skewed circular distributions were proposed by Hernández-Sánchez
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and Scarpa (2012) and Abe and Pewsey (2009), respectively.

In the Euclidean space, there are several ways to extend well-defined models. One of them

is by exponentiating a cumulative distribution function (cdf), say F , by a positive real number

β, F (·)β , see AL-Hussaini and Ahsanullah (2015). The review carried out indicates that this

approach has not been previously used in the circular data context.

In this chapter, the methodology described by AL-Hussaini and Ahsanullah (2015) is used to

obtain a new asymmetric circular distribution, called the EC model. The additional parameter

may add events of amodality and bimodality to the baseline unimodal C, as it will be shown.

Expressions for its trigonometric moments are also obtained. Two estimation procedures for the

EC parameters are presented: maximum likelihood estimator (MLE) and quantile least squares

estimator (QLSE). In order to compare those estimators, a Monte Carlo simulation study is

performed. The numerical results indicate that the ML estimates have smaller mean square

errors than those of QLS estimates in almost all considered cases. Finally, in order to illustrate

the EC distribution potentiality, a comparison of its fit to those due to C and vM distributions

is provided. Results of Kuiper and Watson goodness-of-fit statistics indicate that our proposal

outperforms the other alternatives.

This chapter is organized as follows. In Sections 2.2 and 2.3, the EC distribution and some

of its mathematical properties are presented, respectively. Section 2.4 deals with estimation

procedures. Finally, numerical results obtained from real data studies are presented and discussed

in Section 2.5.

2.2 The proposed model

The EC distribution has cdf given by (for 0 < θ ≤ 2π)

F (θ;β, ρ, µ) =

{
θ

2π
+
ρ

π
[sen(θ − µ) + sen(µ)]

}β
, (2.1)

where 0 < µ ≤ 2π, 0 ≤ ρ ≤ 0.5 and β > 0 and, therefore, its pdf is

f(θ;β, ρ, µ) =
β

2π

{
θ

2π
+
ρ

π
[sen(θ − µ) + sen(µ)]

}β−1

[1 + 2ρ cos(θ − µ)]. (2.2)
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This situation is denoted as Θ ∼ EC(β, ρ, µ). As special cases, the Cardioid distribution follows

for β = 1 and the uniform distribution is obtained when β = 1 and ρ = 0. In this position, it

is important to mention that the Cardioid extension by exponentiation requires to replacement

zero by 2π in the EC support comparatively to that of the Cardioid model. This change avoids

an undefinition at zero.

Figure 2.1 displays EC pdf curves and their associated histograms drawn from generated

data for several parametric points. It is noticeable bimodal and asymmetric events in contrast

with its baseline at β = 1. Moreover, higher values of ρ indicate more concentrated scenarios, as

illustrated in Figure 2.1(d).



27

θ

f(
θ
)

β = 0.3

β = 0.6

β = 1

β = 2

β = 4

β = 10

0 π 2 π 3π 2 2π

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

(a) For ρ = 0.2 and µ = 2.

0

π

2

π

3π

2

+

β = 0.3

β = 0.6

β = 1

β = 2

β = 4

β = 10

(b) For ρ = 0.2 and µ = 2.

θ

f(
θ
)

ρ = 0.1

ρ = 0.2

ρ = 0.3

ρ = 0.4

ρ = 0.5

0 π 2 π 3π 2 2π

0
.0

0
.1

0
.2

0
.3

0
.4

(c) For β = 2 and µ = 2.

0

π

2

π

3π

2

+

ρ = 0.1

ρ = 0.2

ρ = 0.3

ρ = 0.4

ρ = 0.5

(d) For β = 2 and µ = 2.

θ

f(
θ
)

µ = π 6

µ = π 3

µ = 2π 3

µ = π

µ = 4π 3

µ = 2π

0 π 2 π 3π 2 2π

0
.0

0
.1

0
.2

0
.3

0
.4

(e) For β = 2 and ρ = 0.2.

0

π

2

π

3π

2

+

µ = π 6

µ = π 3

µ = 2π 3

µ = π

µ = 4π 3

µ = 2π

(f) For β = 2 and ρ = 0.2.

Figure 2.1: Theoretical and empirical EC densities for some parametric points.
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2.2.1 Modality essays

The flexibility of the EC distribution is partially portrayed in Table 2.1. It is known that

the Cardioid model (β = 1) is unimodal. In contrast, the EC distribution can be classified as

amodal, unimodal and bimodal for different values of β, ρ and µ. This fact shows that our

proposal has greater flexibility than its corresponding baseline.

Theorem 2.2.1 characterizes the EC modes. The proof is presented in Appendix A.

Theorem 2.2.1. Let Θ ∼ EC(β, ρ, µ). If β ≥ 1, then the equations f ′(θ) = 0 and F (θ) = θ
2π

are equivalent, where F is the EC cdf.

Table 2.1: Modality of the EC distribution, for different values of the parameters, where
∅=Amodal, ♦=Unimodal and �=Bimodal.

β = 0.3 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ ♦ ♦ ♦ ♦
π
3 ♦ ♦ ♦ ♦ ♦

2π
3 ♦ ♦ ♦ ♦ ♦
π ∅ ∅ ∅ ∅ ∅
4π
3 ∅ ♦ ♦ ♦ ♦

2π ♦ ♦ ♦ ♦ ♦

β = 0.6 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ ♦ ♦ ♦ ♦
π
3 ♦ ♦ ♦ ♦ ♦

2π
3 ♦ ♦ ♦ ♦ �
π ∅ ♦ ♦ ♦ ♦
4π
3 ♦ ♦ ♦ ♦ ♦

2π ♦ ♦ ♦ ♦ ♦

β = 1.0 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ ♦ ♦ ♦ ♦
π
3 ♦ ♦ ♦ ♦ ♦

2π
3 ♦ ♦ ♦ ♦ ♦
π ♦ ♦ ♦ ♦ ♦
4π
3 ♦ ♦ ♦ ♦ ♦

2π ♦ ♦ ♦ ♦ ♦

β = 2.0 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ � � � �
π
3 ♦ � � � �

2π
3 ♦ � � � �
π � � � � ♦
4π
3 ♦ ♦ ♦ � �

2π ♦ � � � �

β = 4.0 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ ♦ � � �
π
3 ♦ ♦ � � �

2π
3 ♦ ♦ � � �
π ♦ � � � ♦
4π
3 ♦ ♦ ♦ ♦ ♦

2π ♦ ♦ � � �

β = 10.0 ρ

µ 1
10

1
5

3
10

2
5

1
2

π
6 ♦ ♦ ♦ � �
π
3 ♦ ♦ ♦ � �

2π
3 ♦ ♦ ♦ � �
π ♦ ♦ ♦ � ♦
4π
3 ♦ ♦ ♦ ♦ ♦

2π ♦ ♦ ♦ � �
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2.3 Moments

Expressions for the first two trigonometric moments of the EC model are derived in this

section. Moreover, standard descriptive measures for the proposed model are obtained from

them. In general, EC trigonometric moments do not present closed-form expressions. Thus,

they are represented through expansions in terms of a proposed special function as follows.

Theorem 2.3.1. Let Θ ∼ EC(β, ρ, µ). Its cdf can be represented as

F (θ) =
∞∑
k=0

k∑
s=0

tk,sθ
β−k[sin(θ − µ)]s

{
[sin(θ − µ)]k−2sM0 + [sin(µ)]k−2sM1

}
,

whereM0 = I(| sin(θ−µ)| ≥ | sin(µ)|), M1 = I(| sin(θ−µ)| < | sin(µ)|), I(.) refers to the indicator

function and tk,s is given by

tk,s(β, ρ, µ) =

(
β

k

)(
k

s

)(
1

2π

)β−k (ρ
π

)k
(sen(µ))s.

Using integration by parts, it follows that

E{cos[p(Θ− µ)]} =

∫ 2π

0
cos[p(θ − µ)]dF (θ) = cos(pµ) +

∫ 2π

0
p{[sin[p(θ − µ)]}F (θ)dθ

and

E{sen[p(Θ− µ)]} =

∫ 2π

0
sen[p(θ − µ)]dF (θ) = −sen(pµ)−

∫ 2π

0
p{[cos[p(θ − µ)]}F (θ)dθ

It is known the nth central trigonometric moment of the EC is given by

µp = E{cos[p(Θ− µ)]}+ iE{sen[p(Θ− µ)]}.

When p = 1, applying the Theorem 2.3.1, the EC first moment is given by

µ1 = E{cos[(Θ− µ)]}+ iE{sen[(Θ− µ)]} = α1 + iβ1.

The terms α1 and β1 are determined at the following corollary.
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Corollary 2.3.2. Let Θ ∼ EC(β, ρ, µ). The components of the first central trigonometric mo-

ment are given by

α1 = cos(µ) +
∞∑
k=0

k∑
s=0

tk,s

{
A(β − k, 0, k − s+ 1)M0 + [sin(µ)]k−2sA(β − k, 0, s+ 1)M1

}
and

β1 = − sin(µ)−
∞∑
k=0

k∑
s=0

tk,s

{
A(β − k, 1, k − s)M0 + [sin(µ)]k−2sA(β − k, 1, s)M1

}
,

where

A(a, b, c) =

∫ 2π

0
θa[cos(θ − µ)]b[sin(θ − µ)]cdθ.

The details for derivation of the above expressions are presented in Appendix B. To illustrate

the use of the Corollary 2.3.2, for the Cardioid distribution (β = 1, A(0, 0, 1) = A(0, 1, 1) =

A(0, 1, 0) = 0, M0 = 0 and M1 = 1 or M0 = 0 and M1 = 1), it follows that

α1 = cos(µ) + T0,0{A(1, 0, 1)M0 +A(1, 0, 1)M1}+ T1,0{A(0, 0, 2)M0

+ sin(µ)−1A(0, 0, 1)M1}+ T1,1{A(0, 0, 1)M0 + sin(µ)−1A(0, 0, 2)M1}

= cos(µ) + (2π)−1{−2π cos(µ)(M0 +M1)}+
ρ

π
πM0 +

ρ sin(µ)

π
[π sin(µ)−1]M1

=ρ

and

β1 =− sin(µ)− T0,0{A(1, 1, 0)M0 +A(1, 1, 0)M1} − T1,0{A(0, 1, 1)M0

+ sin(µ)A(0, 1, 0)M1} − T1,1{A(0, 1, 0)M0 + sin(µ)−1A(0, 1, 1)M1}

=− sin(µ) + (2π)−1{2π sin(µ)(M0 +M1)}

=0,
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which corresponds to the components of the first central trigonometric moment of the Cardioid

distribution (Fisher, 1995). In a similar manner, the second moment is

µ2 = E{cos[2(Θ− µ)]}+ iE{sin[2(Θ− µ)]} = α2 + iβ2.

The terms α2 and β2 are determined as follows.

Corollary 2.3.3. Let Θ ∼ EC(β, ρ, µ). The components of the second central trigonometric

moment are given by

α2 = cos(2µ) + 4
∞∑
k=0

k∑
s=0

tk,s{A(β − k, 1, k − s+ 1)M0

+ [sin(µ)]k−2sA(β − k, 1, s+ 1)M1}

and

β2 =− sin(2µ)− 2
∞∑
k=0

k∑
s=0

tk,s{[2A(β − k, 2, k − s)−A(β − k, 0, k − s)]M0

+ [sin(µ)]k−2s[2A(β − k, 2, s)−A(β − k, 0, s)]M1}.

Some standard circular measures are functions of the first and second trigonometric moments.

The second column of Table 2.2 presents expressions (in terms of ρ1, α2 and β2) for mean resultant

length, circular variance, standard deviation, dispersion, skewness and kurtosis of any circular

model. Using results of Corollaries 5.3.2 and 5.3.4, these quantities can be obtained to the EC

model. The ranges to each resulting EC quantities are given in the third column in Table 2.2.

The used notation is the same as in Fisher (1995), where ρi =
√
α2
i + β2

i for i = 1, 2.

In order to illustrate the presented measures, Figure 2.2 displays the plots of the skewness and

kurtosis of Cardioid, EC and vM distributions, which characterize the distribution shape. The

special case of the Cardioid (β = 1) is highlighted. It may be observed the Cardioid (skewness,

kurtosis) pair is overlapped to that of the vM law and the EC pair region covers the two first.

From perspective of this diagram, our model seems to extend the former models. Additionally,

Cardioid and vM skewnesses assume null values, as expected.
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Table 2.2: Ranges of some standard circular measures of the EC distribution.

Measure Expression Range
Mean Resultant Length ρ1 [0, 1]

Circular Variance 1− ρ1 [0, 1]

Circular Standard Deviation
√
−2 log ρ1 [0,∞)

Circular Dispersion (1− α2)/(2ρ1
2) [0,∞)

Circular Skewness β2/(1− ρ1)
3
2 (−∞,∞)

Circular Kurtosis (α2 − ρ1
4)/(1− ρ1)2 (−∞,∞)
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Figure 2.2: Skewness and kurtosis maps for EC, Cardioid and von Mises distributions.

2.4 Estimation Procedures

2.4.1 Maximum Likelihood Estimation

Let θ1, θ2, . . . , θn be observed sample n-points from Θ ∼ EC(β, ρ, µ). Then the log-likelihood

function at δ= (β, ρ, µ)> is given by

l(δ) =n log β + (β − 1)
n∑
i=1

log

{
θi
2π

+
ρ

π
[sin(θi − µ) + sinµ]

}

− n log(2π) +

n∑
i=1

log{1 + 2ρ cos(θi − µ)}.

Therefore, the ML estimates for β, ρ and µ, say β̂, ρ̂ and µ̂, can be defined as solutions of the

following non-linear system (see Nocedal and Wright (2006)). Let

∂`(δ)

∂β

∣∣∣∣∣
δ=δ̂

=
n

β
+

n∑
i=1

log

{
θi
2π

+
ρ

π
[sin(θi − µ) + sinµ]

}
= 0, (2.3)
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∂`(δ)

∂ρ

∣∣∣∣∣
δ=δ̂

=
n∑
i=1

{
(β − 1)

sin(θi − µ) + sinµ

θi + 2ρ[sin(θi − µ) + sinµ]
+

cos(θi − µ)

1 + 2ρ cos(θi − µ)

}
= 0 (2.4)

and

∂`(δ)

∂µ

∣∣∣∣∣
δ=δ̂

=

n∑
i=1

{
(β − 1)

− cos(θi − µ) + cosµ

θi + 2ρ[sin(θi − µ) + sinµ]
+

sin(θi − µ)

1 + 2ρ cos(θi − µ)

}
= 0. (2.5)

This system can be reduced to others under equations 2.4 and 2.5, replacing the ML estimate β̂,

which is obtained from (2.3) by

β̂(ρ, µ) = − n∑n
i=1 log

{
θi
2π + ρ

π [sin(θi − µ) + sinµ]
} . (2.6)

Thus, the ML estimates for ρ and µ are obtained numerically from

∂`(δ)

∂ρ

∣∣∣∣∣
δ=δ̂

= 0 and
∂`(δ)

∂µ

∣∣∣∣∣
δ=δ̂

= 0.

2.4.2 Quantile least squares method

The QLSE for δ can be defined as solutions from minimization of the sum of squares of the

differences between theoretical and empirical quantiles. Consider θ1:n, · · · , θn:n as observed order

statistics drawn from n−points random sample of Θ ∼ EC(β, ρ, µ), where θk:n is the kth order

statistics. Thus, the QLS estimates for EC parameters consist in argument that minimizes the

following goal function:

q(δ) =
n∑
i=1

[
i

n
−
{
θi:n
2π

+
ρ

π
[sin(θi:n − µ) + sin(µ)]

}β]2

. (2.7)

Equivalently to discussed in previous section, the QLS estimates for β, ρ and µ can be defined

as solutions of the following non-linear equations system:

∂q(δ)

∂β
=

n∑
i=1

[
i

n
− F (θ1:n)

]
FC(θ1:n)2β−1 log[FC(θ1:n)] = 0, (2.8)

∂q(δ)

∂ρ
=

n∑
i=1

[
i

n
− F (θ1:n)

]
FC(θ1:n)β−1 1

π
[sin(θ1:n − µ) + sinµ] = 0 (2.9)
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and
∂q(δ)

∂µ
=

n∑
i=1

[
i

n
− F (θ1:n)

]
FC(θ1:n)β−1 ρ

π
[cos(θ1:n − µ)− cosµ] = 0, (2.10)

where FC represents the Cardioid cdf and F is given in (2.1).

2.5 Numerical results

2.5.1 Simulation Study

In this subsection, a Monte Carlo simulation study is performed to assess and compare the

two proposed estimators. To that end, five thousand replications are considered and, on each

one of them, average bias and square error for both procedures were quantified, as comparison

criteria.

Initially, a discussion about the effect of the use of (2.6) is presented in estimation process by

maximum likelihood. That is, the impact of the reduction of the non-linear system from three

to two equations in the ML estimation was quantified through the mean square error (MSE) of

the estimates obtained by considering both forms of obtaining. Here, a sample size n = 100 and

four parametric points were considered. Results are displayed in Table 2.3 and indicate that the

use of (2.6) may imply in more accurate estimates. The most pronounced improvement can be

observed to estimate ρ. Moreover, the estimation considering (2.6) had the mean execution of

83 seconds, while the other was in mean higher, making in 116 seconds. From now on, the best

ML estimates for β, ρ and µ are used.

Now, the two methods of the previous sections are compared. Results are presented in Tables

2.4 and 2.5. They are indexed in terms of mean direction and resultant lenght in ascending order

for the sample sizes n = 30, 50 and 100.

Regard to choose parametric scenarios, vectors (β, ρ, µ) are selected such that they have

different mean directions and resultant lengths. For this, the 180 parametric vectors of Table 2.1

were ordered according to their directional average. Subsequently, seven of these 180 vectors were

chosen so that the first and last have the lowest and highest directional mean and the other five are

equally spaced according to their directional mean. The same process was performed according to
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Table 2.3: MSEs for the ML estimates obtained by the equations 2.3, 2.4 and 2.5 (MSE) and
ML estimates obtained by the equations 2.4 and 2.5 after β (2.6) substitution (MSE’), by the
Monte Carlo method, over 5.000 replications. The size of the sample was set to 100.

(β, ρ, µ) MSE MSE’(
1, 1

2 , 2π
)

(0.0071, 0.2991, 0.0000) (0.0000, 0.0000, 0.0000)(
4, 3

10 ,
2π
3

)
(0.6449, 13.7865, 0.0764) (0.5101, 0.0030, 0.0516)(

1, 3
10 ,

4π
3

)
(0.0658, 0.5818, 0.1883) (0.0293, 0.0073, 0.0936)(

4, 1
2 ,

π
3

)
(0.2384, 11.4078, 0.0119) (0.1761, 0.0001, 0.0056)

the mean result length from the vectors. The idea of this procedure was to verify if the variation

of the mean direction or resultant length influenced the estimation of the parameters, using the

average bias and MSE as evaluation criterion besides comparing the ML and QLS estimates.
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Figure 2.3: MSE for the ML estimates of the seven parametric vectors chosen according to the
mean direction.

The obtained results for three of the considered seven parametric vectors are shown in the

Table 2.4. The vectors of the first column are sorted by mean direction. It can be seen that

the MSE decreases with increasing sample size, as expected. For the majority of cases, MLE

performs better than QLSE, presenting estimates with lower MSE. Similar results are shown in
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Table 2.4: Average bias and MSE for the ML and QLS estimates for different parametric vectors,
by the Monte Carlo method, over 5.000 replications. Sample sizes of 30, 50 and 100 were
considered.

(β, ρ, µ) Method n Bias MSE

(
1, 1

2 , 2π
) MLE

30 (0.0315, 0.0000, 0.0000) (0.0272, 0.3683, 0.0000)
50 (0.0170, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000)
100 (0.0094, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000)

QLSE
30 (0.0685, 0.0000, 0.0000) (0.0213, 0.3398, 0.0000)
50 (0.0546, 0.0000, 0.0000) (0.0129, 0.3176, 0.0000)
100 (0.0421, 0.0000, 0.0000) (0.0071, 0.2991, 0.0000)

(
1, 3

10 ,
4π
3

) MLE
30 (0.1343, 0.0128,−0.1473) (0.2093, 0.0173, 0.5766)
50 (0.0703, 0.0011,−0.0873) (0.0842, 0.0126, 0.2838)
100 (0.0330,−0.0030,−0.0361) (0.0293, 0.0073, 0.0936)

QLSE
30 (0.0823, 0.0419,−0.1351) (0.3230, 0.9282, 0.5750)
50 (0.0337, 0.0254,−0.1035) (0.1420, 0.6792, 0.3726)
100 (0.0185, 0.0104,−0.0679) (0.0658, 0.5818, 0.1883)

(
4, 1

2 ,
π
3

) MLE
30 (0.0683,−0.0089,−0.0067) (0.6570, 0.0006, 0.0215)
50 (0.0249,−0.0068,−0.0045) (0.3651, 0.0003, 0.0123)
100 (0.0112,−0.0041,−0.0025) (0.1761, 0.0001, 0.0056)

QLSE
30 (−0.3654,−0.0311,−0.0570) (1.0033, 10.6952, 0.0581)
50 (−0.2616,−0.0236,−0.0362) (0.4815, 10.9000, 0.0293)
100 (−0.1544,−0.0165,−0.0191) (0.2384, 11.4078, 0.0119)

the Table 2.5, where the parametric vectors of the first column are sorted by mean resultant

length.

Figures 2.3 and 2.5 show the MSEs for the three parameter vectors considered in Table 2.4

and others four for the ML and QLS estimates, respectively. Figures 2.4 and 2.6 show the MSEs

for the ML and QLS estimates, respectively, on points in Table 2.5 and others. In Figure 2.3,

the first point is the vector
(
0.6, 0.2, π6

)
whose mean direction is 0.0279, while (2, 0.3, 2π

3 ), with

mean direction 1.1777, is the second point.

Regard to quantify the impact over varying of mean direction, fourth and seventh points

impose difficulties to both methods for estimating β or ρ and µ, respectively. However, the

impact over ML estimates are smaller than on the QLS estimates. For varying of mean resultant

length, the hardest scenario is the sixth point and the same conclusion can be obtained. In

particular, poor QLS estimates for ρ at third, sixth and seventh points are found, according to

the Figure 2.6, in contrast with respective ML estimates. Additionally, such points refer to β = 4,
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Table 2.5: Average bias e MSE for the MLE and QLSE for different values of β, ρ and µ, by the
Monte Carlo method, over 5.000 replications. Sample sizes of 30, 50 and 100 were considered.

(β, ρ, µ) Method n Bias MSE

(
0.3, 1

2 ,
4π
3

) MLE
30 (0.0131,−0.0076, 0.0135) (0.0041, 0.0007, 0.0242)
50 (0.0069,−0.0049, 0.0017) (0.0021, 0.0002, 0.0113)
100 (0.0036,−0.0029,−0.0035) (0.0010, 0.0001, 0.0048)

QLSE
30 (0.0064,−0.0219,−0.0045) (0.0098, 0.0185, 0.0739)
50 (0.0038,−0.0156, 0.0017) (0.0035, 0.0128, 0.0378)
100 (0.0036,−0.0111, 0.0043) (0.0012, 0.0105, 0.0191)

(
4, 3

10 ,
π
3

) MLE
30 (0.3223, 0.0178, 0.0031) (1.5698, 0.0096, 0.1673)
50 (0.1696, 0.0106,−0.0062) (0.7629, 0.0060, 0.0969)
100 (0.0852, 0.0050,−0.0052) (0.3411, 0.0032, 0.0440)

QLSE
30 (−0.0977, 0.0034,−0.1103) (3.2670, 15.5235, 0.3313)
50 (−0.1147, 0.0027,−0.1092) (1.1496, 13.9908, 0.1954)
100 (−0.0603, 0.0006,−0.0639) (0.5405, 13.7842, 0.0832)

(
10, 1

2 , 2π
) MLE

30 (0.3154, 0.0000, 0.0000) (3.9682, 0.0000, 0.0000)
50 (0.1698, 0.0000, 0.0000) (2.1771, 0.0000, 0.0000)
100 (0.0935, 0.0000, 0.0000) (1.0645, 0.0000, 0.0000)

QLSE
30 (0.3048, 0.0000, 0.0000) (0.2787, 96.3191, 0.0000)
50 (0.3012, 0.0000, 0.0000) (0.2685, 96.2410, 0.0000)
100 (0.2861, 0.0000, 0.0000) (0.2405, 95.9267, 0.0000)
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Figure 2.4: MSE for the ML estimates of the seven parametric vectors chosen according to the
mean resultant length.

β = 4 and β = 10, respectively, which indicates that high values to β difficult the estimation of

ρ.

Other interesting evidence can be found in the Figure 2.6, where the behavior of the MSEs



38

Mean Direction

M
S

E

0 π 2π

0
5

0
1

0
0

ρ

β

Mean Direction

M
S

E

0 π 2π

0
1

2
2

4

µ

Figure 2.5: MSE for the QLS estimates of the seven parametric vectors chosen according to the
mean direction.

for the estimates of ρ is approximately monotone.

In general, the MLE is better than the QLSE in most considered cases, comparing the MSEs

of the estimates. The QLSE is better in the estimation of large β (β = 10) and small ρ (ρ = 1
5),

as can be seen in the Table 2.6.

Table 2.6: MSE for the ML and QLS estimates for different values of β, ρ and µ, by the Monte
Carlo method, over 5.000 replications and sample size n = 100.

(β, ρ, µ) ML QLS(
0.3, 1

5 ,
2π
3

)
(0.0014, 0.0125, 0.4106) (0.0019, 0.0104, 0.4729)(

0.3, 1
5 ,

π
6

)
(0.0011, 0.0111, 0.2384) (0.0013, 0.0106, 0.3574)(

10, 1
2 , 2π

)
(1.0645, 0.0000, 0.0000) (0.2405, 95.9267, 0.0000)
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Figure 2.6: MSE for the QLS estimates of the seven parametric vectors chosen according to the
mean resultant length.

2.5.2 Application

In order to illustrate the potentiality of the EC distribution, an application to real data was

provided. Further, its performance is compared with other due to the Cardioid and vM models.

ML estimates are used to fit considered models to data. All the computations are done using

function maxLik at the R statistical software (R Core Team, 2017).

The dataset consists of 21 wind directions, at a weather station in Milwaukee, at 6.00 am, on

consecutive days (Johnson and Wehrly, 1977). The independence of the data was verified by the

Box-Pierce (Ljung-Box) test (Box and Pierce, 1970), useful for examining the null hypothesis of

independence in time series and results can be checked in Figure 2.7, under a nominal value of

0.05.

The Figure 2.8 shows a qualitative analysis of skewness and kurtosis of the data, represented

by blue color. Sample skewness and kurtosis from under study dataset are 0.4313 and 0.2480,

respectively. It noticeable that the EC model may provide better fit than those due to Cardioid

and vM distributions. Likelihood ratio test was also applied to compare the Cardioid (H0 : β = 1)

and EC (H0 : β 6= 1) distributions. The p-value obtained was 0.0027, indicating the EC model

as the best descriptor for these wind directions.
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Figure 2.7: Ljung-Box test statistic.
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Figure 2.8: Data skewness and kurtosis.

Table 2.7: ML estimates of the model parameters for the data, the corresponding standard errors
(given in parentheses) and the Kuiper and Watson statistics.

Model β ρ µ Kuiper Watson

Cardioid − 0.2436 4.6708
1.0388 0.0592− (0.1463) (0.6835)

EC 2.8757 0.2164 1.1782
0.7369 0.0257− (0.1465) (0.6168)

vM − 0.5322 5.0092
1.1590 0.0711− (0.3250) (0.5899)

First, the ML estimates and their SEs (given in parentheses) were evaluated and, subse-

quently, the values of the Kuiper (K) and Watson (W) statistics are obtained. These aderence

measures may be found in Jammalamadaka and Sengupta (2001) and they are given by

K =
√
n

{
max

1≤i≤n

(
U(i) −

i− 1

n

)
+ max

1≤i≤n

(
i

n
− U(i)

)}
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and

W =
n∑
i=1

[(
U(i) −

i− 0.5

n

)
−
(
U − 0.5

)]2

+
1

12n
,

where U(i) = F (α(i)) in terms of the order statistics α(1) ≤ α(2) ≤ · · · ≤ α(n) . In general, smaller

values of them are associated to better fits. Table 2.7 displays results.

In order to do a qualitative comparison, Figure 2.9 presents empirical and fitted densities.

Results confirm what is concluded from Table 2.7.
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Figure 2.9: Fitted densities of the EC, Cardioid and von Mises models for the data.

2.6 Concluding remarks

An extended Cardioid model was proposed, called the Exponentiated Cardioid distribution.

Our proposal has shown to be able to describe circular asymmetric data, as well as amodality,

unimodality and bimodality scenarios. Expressions for the EC trigonometric moments by means

of expansions were derived and a discussion about its mode was presented. Two estimation

procedures for the EC parameters were proposed regard to maximum likelihood and quantile

least square frameworks. The performance of these estimates was evaluated from a Monte Carlo

simulation study. Finally, an application to real wind data was made and results have indicated

that the EC model may outperform the classic Cardioid and vM distributions.
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3 Inference and hypothesis tests for
the exponentiated Cardioid distribution

Resumo

O modelo Cardioide exponencializado (EC), proposto no Capítulo 2, foi usado com sucesso para

descrever fenômenos assimétricos e multimodais no círculo, superando algumas lacunas deixadas

pelas distribuições clássicas uniforme e Cardioide (C). Este capítulo fornece e compara procedi-

mentos de inferência baseados em hipóteses para os parâmetros da EC sob perspectivas asintótica

e bootstrap. Nós consideramos os testes da razão de verossimilhança, Wald, escore e gradiente.

Primeiro, nós derivamos uma expressão fechada para a matriz de informação de Fisher da EC.

Usando tamanhos do teste e poderes empíricos como critério de comparação, quantificamos o

desempenho dos testes propostos através de um estudo de Monte Carlo. Aplicações a dados reais

ilustram o uso dos testes propostos para o modelo EC em contraste com as distribuições uni-

forme e C. Resultados sugerem que o teste gradiente supera o restante e substituindo a estrutura

assintótica pelo bootstrap uma melhora significativa na tomada de decisão pode ser obtida.

Palavras-chave: Bootstrap vs. assintótico. Cardioide Exponencializada. Informação de Fisher.

Testes de hipóteses.

Abstract

The exponentiated Cardioid (EC) model proposed in the Chapter 2 has been successfully used

to describe asymmetry and multimodal phenomena in the circle, outperforming some gaps left

by the uniform and Cardioid (C) classic distributions. This chapter provides and compares
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hypothesis-based inference procedures for the EC parameters under both bootstrap and asymp-

totic perspectives. We consider likelihood ratio, Wald, score, and gradient tests. First we derive

a closed-form expression for the EC Fisher information matrix. Using empirical test sizes and

powers as comparison criteria, we quantify the performance of employed tests through a Monte

Carlo study. Applications to real data illustrate the use of proposed tests for the EC model in

contrast with the uniform and C distributions. Results advocate the gradient test outperforms

the remainder and replacing the asymptotic framework by bootstrap can improve meaningfully

the decision taking.

Keywords: Bootstrap vs. Asymptotic. Exponentiated Cardioid. Fisher information matrix.

Hypothesis tests.

3.1 Introduction

In order to describe directional spectra of ocean waves, Jeffreys (1961) pioneered the Car-

dioid (C) distribution, which has cumulative distribution function (cdf) and probability density

function (pdf) given by, respectively,

G(θ) =
θ

2π
+

ρ

π
[ sin(θ − µ) + sin(µ) ] (3.1)

and

g(θ) =
1

2π
[ 1 + 2 ρ cos(θ − µ) ]

where θ, µ ∈ [0, 2π) and |ρ| < 1/2. Some works have addressed inference procedure (Rao et al.,

2011; Jones and Pewsey, 2005) and mathematical properties (Rao et al., 2011; Wang and Shimizu,

2012) for this model. However, the C model is not able to describe non-symmetric behaviors.

To outperform this gap, Wang and Shimizu (2012) have derived a new angular distribution

from applying the Möbius transformation into the C model and Abe et al. (2009) studied the

Papakonstantinou’s family, which also extends (3.1). Despite excellent advances made in terms of

mathematical properties, these extensions present hard analytic formulas for their densities. On
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the other hand, the Chapter 2 have introduced a simple extension for the C distribution called

exponentiated Cardioid (EC) distribution, which can describe asymmetric and some bimodal

cases as well.

Given the flexibility of the EC distribution for circular phenomena, proposing hypothesis-

based inference procedures to distinguish the former from C and uniform models is an important

stage to be defined. Due to their well-known first order asymptotic properties, we work with the

likelihood ratio (LR) (Neyman and Pearson, 1928), Wald (Wald, 1943), score (Rao, 1948), and

gradient (Terrell, 2002) tests. It is known they are biased under small and moderate sample sizes;

in particular, considerable distortions in their power functions are often found in practice. Thus,

we aim to answer “what is the test which yields mildest distortions in terms of its asymptotic

distribution?”

The bootstrap framework can be understood like a computationally intensive way to improve

inference methods (estimators and hypothesis tests) before small and moderate size samples.

The bootstrap method is based on resampling and allows to replicate interest measures without

knowing their asymptotic or exact distributions (Cribari-Neto and Cordeiro, 1996). Parametric

bootstrap refers to sampling from a parametric model with parameters estimated from data under

study (Efron, 1979). With respect to applying bootstrap to hypothesis tests, the critical values

of respective statistics are obtained from the empirical distributions of sample test statistics

defined in all considered replications (Cribari-Neto and Queiroz, 2014). Using bootstrap often

yields significance levels that differ from advertised level by O(n−2) as compared to O(n−1) for

tests based on non-pivotal statistics (Fisher and Hall, 1990).

In the circular data context, a detailed discussion of bootstrap methods was given by Fisher

(1995). Fisher and Hall (1992) have furnished other review about bootstrap methods for direc-

tional data. Referring to hypothesis tests equipped with a bootstrap framework, Fisher (1995)

proposed some tests for mean direction. From our research on the existing literature, there are

not works which have addressed performance studies (adopting test size and power as figures of

merit) among asymptotic and bootstrap tests for circular data. In the context of models having

support in the Euclidean space (particularly dispersion models), Lemonte and Ferrari (2012)
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proposed a size and power study and used the von Mises distribution as illustration.

This chapter aims to propose and compare hypothesis-based inference procedures for the EC

distribution. We look for contrasting the EC model versus the C and uniform distributions,

assumptions used in practice with the circular data processing (Fernandez et al., 1997; Tietjen,

1978). To that end, we propose a closed-form expression for the EC Fisher information matrix

(FIM). Four pivotal statistics are considered on both asymptotic and bootstrap perspectives:

LR, Wald, score, and gradient statistics. Through Monte Carlo experiments, the performance

of the associated tests is quantified adopting estimated sizes and powers as comparison crite-

ria. Tests are applied to real data as well. Results indicate the gradient test as the best tool

among considered ones to discriminate models in the EC distribution and adding the bootstrap

methodology may indeed improve the performance of tests.

The subsequent sections are organized as follows. Section 3.2 presents some likelihood-based

inference tools for the EC model. The LR, Wald, score, and gradient tests for such model are

described in Section 3.3. Section 3.4 tackles numerical results of this chapter. Finally, main

conclusions are elected in Section 3.5.

3.2 Likelihood-based tools for the EC model

The Chapter 2 introduced a new three-parameter model having pdf given by: For 0 < θ ≤ 2π,

f(θ;β, ρ, µ) =
β

2π

{
θ

2π
+
ρ

π
[sen(θ − µ) + sen(µ)]

}β−1

[1 + 2ρ cos(θ − µ)],

where 0 < µ ≤ 2π, |ρ| ≤ 1/2, and β > 0. This situation is denoted as Θ ∼ EC(β, ρ, µ).

Some evidences were provided to confirm the EC model may assume asymmetric and bimodal

behaviors. Taking (i) β = 1 and (ii) β = 1 and ρ = 0, the EC model collapses in the C and

uniform laws, respectively. These two models have been widely applied in circular data Chu

et al. (2015); Coles et al. (2004); Flohr et al. (2014); Solman and Kingstone (2014). In what

follows, some likelihood-based tools which were not proposed in the Chapter 2 and are important

to determine inferential procedures are derived.

Let Θ1, . . . ,Θn be a n-points random sample (independent and identically distributed) from
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Θ ∼ EC(β, ρ, µ). Then the EC log-likelihood function, say `, at δ = (β, ρ, µ)> can be expressed

as

`(δ) =n log β + (β − 1)
n∑
i=1

log

{
Θi

2π
+
ρ

π
[sin(Θi − µ) + sin(µ)]

}
− n log(2π)

+
n∑
i=1

log{1 + 2ρ cos(Θi − µ)}. (3.2)

Thus, the maximum likelihood estimators (MLEs) for β, ρ, and µ can be defined as δ̂ =

arg maxδ∈∆ `(δ) for ∆ being the parametric space or, equivalently, as solutions of the following

system of non-linear equations:

(Uβ, Uρ, Uµ) :=

(
∂δ

∂β
,
∂δ

∂ρ
,
∂δ

∂µ

)
= (0, 0, 0),

where

Uβ =
n

β
+

n∑
i=1

log

{
Θi

2π
+
ρ

π
[sin(Θi − µ) + sin(µ)]

}
,

Uρ = 2
n∑
i=1

{
(β − 1)

sin(Θi − µ) + sin(µ)

Θi + 2ρ[sin(Θi − µ) + sin(µ)]
+

cos(Θi − µ)

1 + 2ρ cos(Θi − µ)

}
, (3.3)

and

Uµ = 2ρ

n∑
i=1

{
(β − 1)

− cos(Θi − µ) + cos(µ)

Θi + 2ρ[sin(Θi − µ) + sin(µ)]
+

sin(Θi − µ)

1 + 2ρ cos(Θi − µ)

}
. (3.4)

This system can be reduced by applying the following expression of β̂ in (3.3) and (3.4):

β̂ = β̂(ρ, µ) := − n∑n
i=1 log

{
Θi
2π + ρ

π [sin(Θi − µ) + sin(µ)]
} . (3.5)

Finally, ML estimates for ρ and µ may also be obtained numerically from

Uρ

∣∣∣
β=β̂(ρ,µ)

= 0 and Uµ

∣∣∣
β=β̂(ρ,µ)

= 0.

In the remainder of this chapter, we refer to [Uβ, Uρ, Uµ]> as the score vector.

Other important quantity in statistical inference is the Fisher information matrix (FIM)

defined by

K = K(δ) := E
(
∂`

∂δ

∂`

∂δ>

)
= E

(
− ∂2`

∂δ∂δ>

)
,
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where the last identity follows if satisfied conditions on Lehmann and Casella (2006). It is known

that the ML estimate for δ, δ̂, holds the following asymptotic result: For n→∞,

√
n ( δ̂ − δ )

D→ N3

(
0,K−1

1 (δ)
)
,

where K1(δ) := K(δ)/n is the unit Fisher information and Np represents the p-variate normal

distribution. DerivingK is often a hard task for several distributions. When the FIM is analyti-

cally intractable, the observed information matrix, J :=
{
−∂2 `/∂δ∂δ>

}
, is used as an estimator

for K. In what follows, we present the elements of J = {Jij}i,j=1,2,3 and K = {Kij}i,j=1,2,3 for

the EC model.

Differencing the score vector, the elements of J are given by:

J11 =
n

β2
, J12 = J21 = −2

n∑
i=1

sin(Θi − µ) + sin(µ)

Θi + 2ρ[sin(Θi − µ) + sin(µ)]
,

J13 = J31 = 2ρ

n∑
i=1

cos(Θi − µ)− cos(µ)

Θi + 2ρ[sin(Θi − µ) + sin(µ)]
,

J22 = 4
n∑
i=1

{
(β − 1)

{
sin(Θi − µ) + sin(µ)

Θi + 2ρ[sin(Θi − µ) + sin(µ)]

}2

+

{
cos(Θi − µ)

1 + 2ρ cos(Θi − µ)

}2
}
,

J23 = J32 = 2
n∑
i=1

{
(β − 1)Θi

cos(Θi − µ)− cos(µ)

{Θi + 2ρ[sin(Θi − µ) + sin(µ)]}2
− sin(Θi − µ)

{1 + 2ρ cos(Θi − µ)}2

}
,

and

J33 = 2ρ

n∑
i=1

{
(β − 1)

Θi[sin(Θi − µ) + sin(µ)] + 4ρ[1− cos(Θi)]

{Θi + 2ρ[sin(Θi − µ) + sin(µ)]}2
+

2ρ+ cos(Θi − µ)

{1 + 2ρ cos(Θi − µ)}2

}
.

Now, we are in position of discussing an expression for K. First, we propose the following

theorem.

Theorem 3.2.1. Let Θ ∼ EC(β, ρ, µ). Thus,

E
{
G−1(Θ)

}
=

β

(β − 1)
for β > 1
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and

E
{
G−2(Θ)

}
=

β

(β − 2)
for β > 2,

where G(·) is the C cdf.

Its proof is given in Appendix C. Theorem 3.2.1 expresses moment expressions for two transfor-

mations of the EC model. It will be used for deriving K of the EC distribution.

Now, consider the functions

Ip,k,s,t(β, ρ, µ) =

∫ 2π

0
θp [sin(θ − µ)]kG(θ)β−s g(θ)t dθ

and

Vp,k,s,t(β, ρ, µ) =

∫ 2π

0
θp [cos(θ − µ)]kG(θ)β−s g(θ)t dθ,

where g(·) is the C pdf. The functions Ij,k,s,t and Vj,k,s,t are well-defined for p ∈ R, k ≥ 1,

s ≤ β + 3, and t ∈ R. Figure 3.2 displays curves of the special functions for some values, which

are used into the FIM. It can be observed that both functions are well-defined for the derivation

of K. From Theorem 3.2.1, the elements of the FIM are given by the bellow theorem.

Theorem 3.2.2. Let Θ = (Θ1, . . . ,Θn)> be a random sample from Θ ∼ EC(β, ρ, µ). Its FIM,

K = {Kij}i,j=1,2,3, is determined by:

K11 =
n

β2
, K12 = −nβ

π

[
sin(µ)

β − 1
+ I0,1,2,1(β, ρ, µ)

]
,

K13 =
nβρ

π

[
cos(µ)

1− β
+ V0,1,2,1(β, ρ, µ)

]
,

K22 =
nβ

π2

[
(β − 1)[sin(µ)]2

β − 2
+ (β − 1)I0,2,3,1 + 2(β − 1) sin(µ)I0,1,3,1 + V0,2,1,−1

]
,

K23 =
nβ

2π2
[(1− β) cos(µ)I1,0,3,1 − I0,1,1,−1 + (β − 1)V1,1,3,1] ,
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and

K33 =
nβρ

2π2
{(β − 1) {I1,1,3,1 + sin(µ){I1,0,3,1 + 4ρI0,1,3,1} − 4ρ cos(µ)V0,1,3,1}

+ 2ρV0,0,1,−1 + V0,1,1,−1}+
2nρ2β(β − 1)

π2(β − 2)
.

An outline of the proof of this theorem is given in Appendix D.

3.3 Some hypothesis tests for the EC model

In this section, we present some hypothesis tests for the EC model. As discussed, this

distribution has as particular cases the C (β = 1) and uniform (β = 1 and ρ = 0) laws and our

exposition is focused on two situations:

• Situation a: H0 : β = 1 vs. H1 : β 6= 1;

• Situation b: H0 : λ = λ0 vs. H1 : λ 6= λ0, where λ = [β ρ]> and λ0 = [1 0]>.

To contrast the EC, C, and uniform models, we consider the four tests: LR (T1j), Wald (T2j),

score (T3j), and gradient (T4j) for j ∈ {a, b}. Next, the notation Tij indicates the ith (for

i = 1, 2, 3, 4) test at the jth situation.

The work proposed by Abe et al. (2009) was the single study we found in the literature

discussing hypothesis tests for the C or uniform distributions. Authors adopted the LR test

to distinguish between the C model and one of its extensions proposed by Papakonstantinou.

Although important properties have been derived for such extension, the analytic expression of

its density is hard (dependent of the Bessel function of the first kind) comparatively to the EC

model. In this chapter, we focus on hypothesis-based inference procedures for the EC model.

3.3.1 The likelihood ratio test

The LR statistic, T1a, is defined in terms of the maximum restricted (under null hypothesis,

H0) and unrestricted (under alternative hypothesis, H1) log-likelihoods given by ˜̀ := `(1, ρ̃, µ̃|Θ)

and ̂̀ := `(β̂, ρ̂, µ̂|Θ), respectively, where Θ = (Θ1, . . . ,Θn)> is a n-points random sample from
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Figure 3.1: Illustration of the special functions.
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Θ ∼ EC(β, ρ, µ), ·̃ denotes the restricted ML estimate and ·̂ is its original version. Thus, setting

˜̀
a as the maximized log-likelihood under H0 at the situation a,

T1a = 2 (ˆ̀− ˜̀
a),

where

˜̀
a = −n log(2π) +

n∑
i=1

log
{

1 + 2 ρ̃ cos(Θi − µ̃)
}

and

ˆ̀ =n log β̂ + (β̂ − 1)
n∑
i=1

log

{
Θi

2π
+

ρ̂

π
[sin(Θi − µ̂) + sin(µ̂)]

}
− n log(2π)

+
n∑
i=1

log{ 1 + 2 ρ̂ cos(Θi − µ̂) }. (3.6)

For the situation b, it follows that

T1b = 2 (ˆ̀ − ˜̀
b ),

where the restricted log-likelihood (˜̀b) is a constant, ˜̀
b = −n log(2π).

3.3.2 The Wald test

The Wald test is based on ML estimates under H1. As under the null hypothesis there is one

restriction for the situation a, the Wald statistic is given by:

T2a = (β̂ − 1)2Î−1
11 = n

(
β̂ − 1

β̂

)2

.

where β̂ is given in (3.5).

For the situation b, it holds that

T2b = (λ̂− λ0)>Î−1
λ (λ̂− λ0),

where Îλ is the limit covariance matrix of the ML estimate for λ, λ̂ = [β̂, ρ̂]>, evaluated under

δ̂; that is, Îλ := Iλ(δ̂), where

Iλ =

[
I11 I12

I21 I22

]
.
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3.3.3 The score test

The score statistic for the situation a is obtained by evaluating Uβ and I11 at β = 1, ρ̃, and

µ̃. Thus,

T3a = U2
β̃
Ĩ11 =

1

n

(
n+

n∑
i=1

log

{
Θi

2π
+
ρ̃

π
[sin(Θi − µ̃) + sin(µ̃)]

})2

.

For the situation b, this statistic is given by:

T3b = ũ>λ Ĩλ ũλ,

where ũλ = [Ũβ Ũρ]
> denotes the two first entries of the score vector evaluated at the restricted

ML estimate for δ.

There is a limitation when calculating T3b with respect to obtaining µ̃, since ˜̀
b is a constant

function. In the numerical study of this chapter, µ̃ is estimated from the C model, as a possible

approximation. The same strategy is used for the calculation of T4b as well.

3.3.4 The gradient test

The gradient statistic for the situation a is given by:

T4a = Uβ̃ (β̂ − 1) =

(
n+

n∑
i=1

log

{
Θi

2π
+
ρ̃

π
[sin(Θi − µ̃) + sin(µ̃)]

})
(β̂ − 1).

For situation b,

T4b = ũ>λ (λ̂− λ0) = (β̂ − 1)

[
n +

n∑
i=1

log(Θi)− n log(2π)

]
+ 2 ρ̂

n∑
i=1

cos(Θi − µ̃).

Under the null hypothesis, the statistics T1a, T2a, T3a, and T4a follow χ2
1, while the ones for

situation b are asymptotically distributed as χ2
2.

3.3.5 Bootstrap tests

Parametric bootstrap refers to sampling from a parametric model with parameters estimated

from data under study (Efron, 1979). The bootstrap scheme we use in the synthetic study is

described by the following steps (Cribari-Neto and Queiroz (2014); Davison and Hinkley (2003)):
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1. Let θ = (θ1, . . . , θn)> be a possible observation of a random sample from Θ ∼ EC(β, ρ, µ).

Calculate the test statistic of interest, denoted by Tij(θ) := Tij for i = 1, 2, 3, 4 and j = a, b.

2. Generate n-points bootstrap samples, say θ∗b = (θ∗1, . . . , θ
∗
n)> for b = 1, . . . , B, of the EC

model estimated (under H0) from the original sample, θ.

3. Estimate the model using θ∗b and compute the bootstrap bth statistic, say Tij(θ∗b ).

4. Repeat the steps (2) and (3) for a large number B of times.

5. Compute the p-value, p∗, as

p∗ =

∑B
b=1 I(Tij (θ∗b ) > Tij (θ) )

B
, (3.7)

where I(.) refers to the indicator function.

Finally, as decision rule, if p∗ < α then reject H0.

3.4 Numerical results

In this section, we carry out a synthetic study and an application involving two real data

sets. We aim to compare the performance of the four hypothesis tests for the EC model discussed

previously under asymptotic and bootstrap perspectives. The EC distribution has as particular

cases the C (β = 1) and uniform (β = 1 and ρ = 0) laws and we consider the following hypotheses

in our discussion:

• Situation a: H0 : β = 1 vs. H1 : β 6= 1;

• Situation b: H0 : λ = λ0 vs. H1 : λ 6= λ0.

To quantify the performance under moderate and small size (n = 20, 50, 100, 150) samples,

we use 5.000 Monte Carlo and B = 1.000 bootstrap replications. To the end of study, rejection
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rates of the null hypothesis subject to data come from H0 (named as estimated test size) and H1

(estimated test power) are computed. It is expected that empirical sizes are close to the nominal

values (assumed as α = 1%, 5%, 10%) and, fixed α = 5% for all hypothesis tests, estimated

powers are as great as possible. Further, the variations µ = π/6, 2π/3, 4π/3, 7π/4 (points

in each quadrant of the circle) and ρ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 (from the state “uniformly

distributed in the circle” to “highly concentrated”) are adopted to quantify empirical sizes; while

β ∈ (0.1, 3.4) (from “amodal/unimodal pdfs” to “bimodal”, see Chapter 2) is used to measure

empirical powers.

3.4.1 Performance for asymptotic distribution-based percentiles

Situation a

Table 3.1 reports estimated sizes for ρ = 0.3, µ = 2π/3 and n = 20, 50, 100, 150. In general,

the null hypothesis rejection rates approach the adopted nominal levels as the sample size in-

creases for all the tests. For small samples, all tests were liberal with emphasis on the Wald test;

whereas the score and gradient tests presented the best performance in the majority of cases.

Table 3.1: Rejection rate (%) under the null hypothesis for the situation a, considering ρ = 0.3,
µ = 2π

3 , and different sample sizes.

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 12.68 16.76 13.20 10.58 6.48 12.92 7.60 5.24 1.16 10.06 2.76 1.24

50 12.30 12.28 11.50 11.66 6.80 7.76 6.04 6.20 1.32 3.96 1.26 1.04
100 10.68 10.26 10.32 10.62 5.44 5.08 5.04 5.38 1.20 1.36 1.14 1.08
150 9.84 9.86 10.04 9.68 5.18 4.78 5.02 5.12 0.88 0.86 0.96 0.98

Figure 3.2 shows the estimated power function of the four tests at α = 5%. From what is

expected (since all test statistics follow the chi-square limit distribution), curves became similar

as the sample size increases. For n = 20 and β > 1, the Wald test presented the smallest power

function. The gradient test was the most powerful, followed by the LR and score tests for all

considered sample sizes. On the other hand, for 0 < β < 0.39, the score test was the most

powerful, followed by the Wald, LR, and gradient tests. In the neighborhood of β = 1, this
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(c) For n = 50.
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(d) For n = 100.

Figure 3.2: Estimated power curves on situation a for different sample sizes, considering α = 5%,
ρ = 0.3, and µ = π

6 .
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study suggests the gradient and score tests as the best options to discriminate the C and EC

distributions. On the other hand, with respect to the power function, the score test is the most

powerful for β < 1; while, for β > 1, the gradient test is the best.

Further, other scenarios were considered to quantify the test size for variation of µ and ρ at

n = 20. Results are presented in Table 3.2. It was observed the Wald test is the most liberal

when µ is in the 2st and 3st quadrants of the circle; while, for µ in the 1st and 4st quadrants,

gradient and score tests are most liberal, respectively. With respect to most conservative tests,

the Wald (1st and 4st) and score tests (3st) stand out, considering α = 10%. For the majority

of cases, the empirical test size increases as the concentration parameter, ρ, increases.

Regarding the variation of µ, one noticed that all tests were more liberal when µ belongs

to the 2st and 3st quadrants. For instance, assuming ρ = 0.3, α = 10%, and µ such as in

Table 3.2, the LR test provided the estimated sizes 10.22%, 12.68%, 12.56%, and 9.80%. This

seems indicating the more µ moves away from the origin of the circle, the type I error rate is

higher.

Situation b

Here, the same scenarios of the situation a are used. However, with respect to the equivalent

of Table 3.2, n is changed instead of ρ, which is equal to zero according to H0. Results we provide

are exhibited in Table 3.3. As expected, type I error rate for all the tests approach slowly of the

adopted nominal levels when the sample size increases.

One observed that the score test is the most liberal for 10% and 5% significance levels,

while the Wald test is most liberal for 1% level. We noted also that the Wald test is the most

conservative for 10% and 5% significance levels and the LR test is less liberal for 1%. For the

variation of the mean, it was noticed that all tests are more liberal when the EC average belongs

to the 2st and 3st quadrants. As an example, for the n = 50 and α = 10%, the LR test presented

type I error rate of 10.38%, 12.74%, 12.02% and 10.18%, respectively. The same was observed

in the situation a.

Figure 3.3 shows the behavior of the power of the four tests at α = 5%. One noted the power
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Table 3.2: Rejection rate (%) under the null hypothesis for the situation a, considering n = 20
and different values of (µ, ρ).

µ = π
6

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 11.20 8.18 8.32 12.72 6.08 3.58 3.86 7.44 1.40 0.72 0.70 2.38

0.1 10.78 8.38 8.80 11.38 5.68 4.44 4.42 6.58 1.26 1.00 1.06 2.20

0.2 10.04 8.60 9.78 10.64 5.40 4.66 5.18 6.28 1.12 1.34 1.46 1.80

0.3 10.22 7.90 10.64 10.84 5.12 4.20 5.66 5.78 1.12 1.24 1.78 1.64

0.4 9.72 7.64 13.40 10.38 5.04 4.00 8.06 5.56 1.02 1.22 2.84 1.30

0.5 9.74 5.22 19.02 9.38 4.46 2.78 12.68 4.90 1.06 0.68 6.26 1.10

µ = 2π
3

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 13.74 11.92 10.88 12.76 7.66 7.14 5.60 7.12 2.10 3.52 1.64 2.40

0.1 11.96 13.78 10.64 11.14 6.30 9.50 6.10 5.58 1.40 5.68 1.98 1.50

0.2 12.40 15.76 11.14 10.50 5.98 11.62 6.34 4.96 1.34 7.92 2.18 1.36

0.3 12.68 16.76 13.20 10.58 6.48 12.92 7.60 5.24 1.16 10.06 2.76 1.24

0.4 11.34 14.50 13.96 9.40 6.00 11.94 9.00 4.78 1.06 9.92 3.42 1.04
0.5 7.60 6.50 15.66 7.64 3.74 4.76 10.32 3.68 0.68 3.68 4.62 0.58

µ = 4π
3

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 10.98 12.84 11.00 7.70 5.98 8.24 6.32 3.54 1.58 4.56 2.42 0.34

0.1 10.56 12.42 10.20 9.40 5.34 9.14 6.38 4.72 1.08 5.26 3.08 0.86

0.2 11.44 13.06 9.74 10.60 5.48 9.80 5.92 5.94 1.08 5.82 2.92 1.48

0.3 12.56 14.60 8.50 13.04 6.32 11.24 5.66 7.22 1.12 7.22 2.90 2.42

0.4 14.64 16.72 6.20 18.04 7.36 12.74 4.64 12.10 1.50 7.60 2.80 5.22

0.5 20.16 18.60 3.58 29.84 11.52 14.04 2.68 23.30 2.72 7.48 1.74 13.88

µ = 7π
4

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 7.24 10.10 8.06 6.86 3.34 6.00 4.50 2.82 0.50 2.58 1.88 0.28

0.1 8.68 10.24 9.34 8.56 4.46 6.82 5.36 3.68 0.84 3.50 2.34 0.52

0.2 9.44 9.00 9.96 9.62 4.66 5.50 5.72 4.66 0.78 2.42 2.32 0.84
0.3 9.80 8.16 10.34 10.68 4.72 4.56 6.02 5.34 0.74 1.70 2.18 1.30

0.4 9.56 6.82 11.38 10.58 4.42 3.86 6.60 5.34 0.90 1.20 2.26 1.52

0.5 10.18 5.80 13.56 10.78 5.14 2.50 7.70 6.30 1.04 0.96 3.10 1.60
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Table 3.3: Rejection rate (%) under the null hypothesis for the situation b, considering n = 20
and different values of µ.

µ = π
6

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 11.60 13.40 13.90 11.28 6.46 8.60 7.46 6.04 1.74 4.04 2.56 1.68
50 10.38 10.60 12.78 9.92 5.74 6.54 6.76 5.38 1.20 2.02 1.32 1.36

100 11.46 10.84 13.56 11.30 6.18 5.80 6.80 6.06 1.36 1.60 1.44 1.42

500 10.56 9.18 12.70 10.08 5.24 4.44 6.24 5.00 0.90 0.84 1.20 0.90
µ = 2π

3

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 14.58 15.12 13.44 15.08 8.68 10.16 6.80 8.28 2.72 5.18 2.22 2.94

50 12.74 12.64 12.84 12.72 7.36 8.02 6.88 7.64 1.64 2.54 1.50 2.36

100 12.46 11.46 13.12 13.10 6.88 6.28 7.00 7.60 1.68 1.62 1.26 2.14

500 11.96 10.30 13.26 12.48 5.96 5.04 6.54 6.64 1.20 1.06 1.08 1.56

µ = 4π
3

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 13.12 12.78 15.18 11.10 7.44 8.56 8.16 5.74 1.98 4.02 2.58 1.36
50 12.02 12.54 14.34 11.18 6.70 7.76 7.58 6.10 1.58 2.64 1.96 1.50

100 12.32 11.74 14.48 11.32 6.88 6.46 7.58 6.48 1.70 1.90 1.56 1.54
500 11.12 10.04 13.90 10.64 5.88 5.22 7.00 5.62 1.30 1.08 1.26 1.16

µ = 7π
4

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 11.12 11.10 13.50 10.88 5.86 7.20 6.78 5.44 1.36 3.02 1.70 1.06
50 10.18 10.44 13.44 10.64 5.62 6.44 7.04 5.96 1.28 2.14 1.56 1.32

100 10.98 9.92 13.68 11.32 5.84 5.32 7.12 6.28 1.26 1.52 1.32 1.38

500 10.62 8.80 13.76 11.18 5.44 4.42 6.82 5.74 1.12 0.82 1.16 1.22
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of the tests increases considerably and the curves are close with the increase of the sample size.

The gradient test was more powerful for β > 1, followed by the LR, score, and Wald tests for all

considered sample sizes. There is a disagreement in the neighborhood to the right of β = 1 for

the n = 20, n = 30 and n = 50 where the Wald test was more powerful. While on the left of

β = 1, the score test has shown the more power for β close to zero and the Wald test was the

most powerful in the neighbored of β = 1, followed by the score, LR and gradient tests.
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(d) For n = 100.

Figure 3.3: Estimated power curves on situation b for different sample sizes, considering α = 5%,
ρ = 0.3, and µ = 4π

3 .

3.4.2 Performance for parametric bootstrap-based percentiles

As previously mentioned, for small samples, the asymptotic χ2 distribution may not be a

good approximation to the exact null distribution of the statistics under discussion. Figure 3.4(a)
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shows the χ2
1 q-q plot of T1a, while Figure 3.4(b) displays the χ2

2 q-q plot of T4b. Kolmogorov-

Smirnov test results was performed, giving p-values of 2.2 × 10−16 for both situations; i.e.,

approximating the asymptotic distributions of T1a and T4b by the chi-square law is not adequate.

The parametric bootstrap versions of the tests are alternatives to outperform this problem and

we study their applications to tests for the EC model.
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(a) Q-q plot of T1a for twenty
EC(1, 2π/3, 0.3) generated observa-
tions.
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(b) Q-q plot of T4b for twenty
EC(1, 4π/3, 0) generated observa-
tions.

Figure 3.4: Illustration of bias for the asymptotic distribution of Tij .

By simplicity issues, we approach the use of bootstrap for the situation a, which is the most

common in practice. From results of Table 3.4, null rejection rates for all the tests approach

well the corresponding nominal levels as the sample size increases, as expected. The bootstrap-

based LR and Wald tests were the most liberal for small samples. The score test approaches the

nominal levels more slowly.

Table 3.4: Rejection rate (%) under the null hypothesis for the situation a and boostrap-based
percentiles, considering ρ = 0.3, µ = 2π

3 , and different sample sizes

α = 10% α = 5% α = 1%

n T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

20 11.28 12.52 9.12 10.72 5.48 6.64 4.36 5.38 1.10 1.24 0.58 1.10
50 10.88 10.00 9.96 9.84 5.26 5.00 4.52 4.84 1.00 0.86 0.66 0.86

100 9.92 9.64 9.82 10.04 4.70 4.54 4.80 4.84 0.98 0.72 0.96 0.94

150 9.40 9.70 9.76 9.34 4.94 5.02 5.08 4.86 0.82 0.82 0.84 0.88
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The other scenarios considered in Section 3.4.1 were studied here as well. Table 3.5 presents

such results under the bootstrap perspective. The Wald test was the most liberal in all the

considered quadrants, for α = 10% and α = 5%. For α = 1%, the ratio likelihood test was the

most liberal. For the majority of cases, the type I error rate tends to increase as the parameter ρ

increases. It is also possible to observe that the bootstrap version of tests corrected the inaccuracy

presented by the type I error rate for the extremes of the ρ range. For instance, for µ = 4π
3 ,

ρ = 0.5 and α = 5%, T4a = 23.30% while for the bootstrap version results in 5.18%.

For the variation of µ, it was noticed that T2a and T3a, most of the times, are more liberal

when µ belongs to the 2st and 3st quadrants and T1a and T2a, when µ is in the 1st and 4st

quadrants. For instance, for the ρ = 0.4 and α = 5%, the Wald test presented type I error rate

5.14%, 6.98%, 5.60% and 4.78% and the LR test obtained type I error rate 4.76%, 5.68%, 3.80%

and 4.04%. In general, the bootstrap version of the tests was more conservative than the usual

tests, for n = 20; mainly, for test score.

In terms of the power, results for the bootstrap tests are presented in Figure 3.5, fixing

α = 5%. It was observed that the power increases considerably and the curves are close when

the sample size increases. For n = 20, one noted that, for a small variation on β > 1, the Wald

and score tests have power smaller than α = 5%. Besides that, the power curve of the Wald and

score tests approach faster, compared to the usual tests. The gradient test is the more powerful

for β > 1, followed by the LR, score and Wald tests for all sample sizes considered. While for

β < 1, the score test has shown the lowest power for β close to zero, the Wald test is less powerful

in the vicinity of β = 1.

3.4.3 Application

Now, the tests Tij for the EC model are submitted to three databases: two real sets and one

synthetic. The first of them is defined by twenty one wind directions, measured from a weather

station in Milwaukee at 6.00 a.m. on consecutive days (Johnson and Wehrly, 1977). The second

database represents 9 orientations of core samples at the location 4 of the Pacheco Pass area of the

Diablo Range (California, USA) (Upton and Fingleton, 1989). Upton and Fingleton have been
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Table 3.5: Rejection rate (%) under the null hypothesis for the situation a and boostrap-based
percentiles, considering n = 20 and different values of (µ, ρ)

µ = π
6

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 9.78 9.50 9.02 9.98 5.28 4.80 4.22 5.20 1.10 0.82 0.92 1.10

0.1 9.36 9.12 8.18 9.52 4.76 4.18 3.84 4.90 0.88 0.34 0.50 0.96
0.2 9.00 10.20 8.40 9.18 4.62 4.88 3.94 4.90 0.96 0.78 0.64 1.08

0.3 9.62 10.68 7.96 9.62 4.72 5.26 3.56 4.72 0.88 0.78 0.42 0.90
0.4 9.30 10.06 7.90 9.34 4.76 5.14 3.22 4.80 1.04 0.88 0.44 0.96
0.5 9.54 8.72 10.32 8.90 4.56 4.28 4.94 4.34 0.96 0.96 0.80 0.78

µ = 2π
3

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 10.62 8.64 9.54 10.80 5.38 3.84 4.38 5.44 1.22 0.24 0.66 1.42

0.1 10.02 9.90 9.20 10.36 4.84 4.90 4.58 4.76 1.12 0.66 0.58 1.16

0.2 10.44 10.92 8.90 10.04 5.00 5.46 4.22 4.58 1.04 0.76 0.40 0.98
0.3 11.28 12.52 9.12 10.72 5.48 6.64 4.36 5.38 1.10 1.24 0.58 1.10
0.4 11.42 12.62 8.88 10.68 5.68 6.98 3.80 5.14 1.08 1.36 0.48 1.00
0.5 9.04 7.82 9.26 9.32 4.44 4.16 4.18 4.68 0.80 1.06 0.70 0.66

µ = 4π
3

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 10.00 9.90 10.26 8.76 5.22 4.46 4.78 3.96 1.14 0.80 0.64 0.58

0.1 9.12 8.98 9.98 8.62 4.68 4.74 5.04 3.94 0.90 0.82 1.00 0.50

0.2 9.44 9.20 9.94 8.32 4.40 4.42 4.90 3.44 0.84 0.80 0.98 0.38

0.3 9.58 10.18 9.82 8.08 4.38 5.12 5.02 3.30 0.66 0.96 0.94 0.28

0.4 9.10 10.32 8.78 7.92 3.80 5.60 4.74 2.78 0.78 0.86 0.94 0.16

0.5 10.60 10.86 5.44 11.44 5.22 5.44 3.14 5.18 1.24 1.02 0.62 0.60

µ = 7π
4

α = 10% α = 5% α = 1%

ρ T1a T2a T3a T4a T1a T2a T3a T4a T1a T2a T3a T4a

0.0 8.10 8.94 8.54 7.78 3.74 4.28 4.10 3.36 0.62 0.86 0.70 0.58

0.1 8.82 9.62 9.14 8.14 4.62 5.06 4.58 3.62 1.04 0.92 0.66 0.32

0.2 9.14 9.52 9.18 9.06 4.48 4.64 4.52 3.92 0.74 0.70 0.76 0.30

0.3 9.06 9.86 8.76 9.24 4.46 4.74 4.12 4.02 0.70 0.64 0.46 0.42

0.4 8.86 10.14 8.04 8.96 4.04 4.78 3.54 3.98 0.76 0.60 0.48 0.72

0.5 9.24 9.14 8.80 8.98 4.34 4.28 3.66 4.56 0.78 0.78 0.50 0.70
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(a) For n = 20.
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(b) For n = 30.
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(c) For n = 50.
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(d) For n = 100.

Figure 3.5: Estimated power curves on situation a via boostrap for different sample sizes,
considering α = 5%, ρ = 0.3, and µ = π

6 .
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indicated the C distribution for describing these orientations. In order to align this application to

the previous synthetic study, we also consider a third dataset having 30 observations, generated

from the uniform distribution. The datasets measured in degrees are given bellow.

Data Set 1 356 97 211 232 343 292 157 302 335 302 324
85 324 340 157 238 254 146 232 122 329

Data Set 2 8 194 352 304 50 320 350 314 50

Data Set 3
231 212 346 333 58 152 232 172 11 224 276
64 153 231 315 64 211 96 58 100 92 219
223 60 296 298 85 86 161 349

Here, we aim to quantify the potentiality of discussed tests according to a and b situations for

real data. For the situation a, first and second datasets represent alternative and null hypotheses,

respectively. Thus, it is expected H0 is only rejected for dataset 1. On the other hand, with

respect to the situation b, datasets 1 and 3 indicate H1 and H0, respectively. For this case, one

expects to reject H0 only for dataset 1.

First, we fit EC, Cardioid and uniform models, according to the Table 3.6. Results indicate

acceptable adjustments, although some difficulties have been found to estimate ρ in small sam-

ples (a longer discussion about it was furnished in the Chapter 2). As qualitative evidence of

these fits, empirical and fitted pdfs are presented in Figure 3.6. It is noticeable the EC model

tends to approach the C and uniform laws for second and third databases; while, the former is

meaningfully different of other two for the first database.

Adopting the level of significance of 10%, it can be observed that only the Wald test and

its bootstrap version do not reject the null hypothesis for dataset 1 in the situation b; that

is, they do not reject the uniform assumption when these data are strongly asymmetric (see

Figures 3.6(a) and 3.6(b)). Therefore, this test is not indicated when one wishes to distinguish

between uniform and EC distributions in small samples.
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Figure 3.6: Fitted EC, C, and uniform densities for three databases.
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Table 3.6: ML estimates (SEs) for parameters for considered models
Model Parameter Dataset 1 Dataset 2 Dataset 3

Cardioid
ρ

0.2436 0.3859 −
(0.1239) (0.1411) −

µ
4.6708 0.0002 −
(0.6135) (0.3601) −

Exponentiated
Cardioid

β
2.8764 1.1755 1.2067

(0.8929) (0.3956) (0.2202)

ρ
0.2166 0.3911 0.1166

(0.1185) (0.1431) (0.0000)

µ
1.1789 0.0002 1.8655

(0.5902) (0.0000) (0.0000)

Table 3.7: P -values of the asymptotic (Tij) and bootstrap (T ∗ij) hypothesis tests

Situation a Situation b
Dataset1 Dataset2 Dataset1 Dataset3

T1a 0.0028 0.6381 T1b 0.0031 0.6264
T2a 0.0359 0.6971 T2b 0.1100 0.6695
T3a 0.0360 0.6058 T3b 0.0459 0.8692
T4a 0.0002 0.6285 T4b 0.0000 0.5827
T ∗1a 0.0020 0.6623 T ∗1b 0.0030 0.8032
T ∗2a 0.0719 0.6723 T ∗2b 0.1459 0.6214
T ∗3a 0.0559 0.6464 T ∗3b 0.0120 0.6074
T ∗4a 0.0020 0.6623 T ∗4b 0.0010 0.7892
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3.5 Concluding remarks

The Chapter 2 showed convincing evidence the exponentiated Cardioid (EC) distribution may

assume asymmetric and bimodal behaviors, unlikely the uniform and Cardioid (C) particular

models, which have been widely used in the circular data practice. Testing hypothesis mapped

from circular models is a mandatory activity in several applications. This chapter has presented

hypothesis-based inference procedures to choose among the EC, C, and uniform laws by means

of LR, Wald, score and gradient tests on both asymptotic and bootstrap perspectives. First

a closed-form expression for the EC Fisher information matrix has been derived. In order to

quantify the performance of tests, a Monte Carlo simulation study has been presented, adopting

empirical test size and power as comparison criteria. The gradient and score tests have presented

the best performance in different situations. Finally, the asymptotic and bootstrap tests have

been applied to real datasets. Results indicated the gradient test as the best discriminant tool

and the use of bootstrap has improved meaningfully the performance of considered tests.
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4 A circular-circular regression model
for the exponentiated Cardioid model

Resumo

O modelo Cardioide exponencializado (EC) foi introduzido no Capítulo 2 e empregado com

sucesso para descrever dados circulares. Ao contrário do modelo Cardioide, a distribuição EC

apresenta comportamentos assimétricos e bimodais. Compreender a relação entre duas variáveis

circular é necessário na prática. Neste Capítulo, propomos um modelo de regressão circular-

circular com o erro aleatório assumindo a distribuição EC. Para este fim, empregamos o mapea-

mento do círculo de Möbius como mecanismo técnico. Primeiro, derivamos o modelo complexo

associado aos erros angulares cujo argumento segue a distribuição EC. Um procedimento baseado

no método da máxima verossimilhança é desenvolvido para estimar os parâmetros do modelo pro-

posto. Finalmente, uma aplicação a um conjunto de dados de direções do vento é realizada. Os

resultados indicam que o novo modelo pode superar três outros que possuem a ditribuição von

Mises, wrapped Cauchy e von Mises modificada como suposições para distribuição dos erros

angulares.

Palavras-chave: Distribuição EC. Modelos complexos. Regressão circular-circular. Transfor-

mação de Möbius.

Abstract

The exponentiated Cardioid (EC) model has been introduced in the Chapter 2 and successfully

employed for describing circular data. Unlike the Cardioid model, the EC distribution may fit
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asymmetric and bimodal behaviors. Understanding the relation between two circular variables

is required in practice. In this chapter, we propose a circular-circular regression model with the

random error having EC distributed angular component. This model uses the Möbius circle as

a usel tool. First we derive the complex model associated to the error variable whose argument

follows the EC distribution. A point estimation procedure via maximum likelihood is developed

for the parameters of our proposal. Finally, an application to wind directions data is performed.

Results indicate our model may outperform three other models having the von Mises, wrapped

Cauchy and modified von Mises distributions as angular assumptions for the error variable.

Keywords: Circular-circular regression. Complex models. EC distribution. Möbius transforma-

tion.

4.1 Introduction

Regression models in the Circular Statistics area are often designed under three perspectives

in terms of response and explanatory variables, say response-exploratory: circular-linear, linear-

circular and circular-circular. Illustrating the first kind, the effect of the wind speed over the

angle of the fire propagation was quantified by Li et al. (2017). With respect to the second

kind, Kucwaj et al. (2017) proposed to measure the altimetric (positive-valued measurement)

obtained from satellite signals conditioned to the phase delay, captured by signal before and after

of sensoring an under study surface. SenGupta and Kim (2016) studied the relation between

gene locations for two circular genomes representing the third branch. In this chapter, we provide

advances on this last kind.

In circular-circular regressions, an angular random variable is modelled in terms of other

circular random variable and both are measured assuming the same zero direction and rotation

sense (Sarma and Jammalamadaka, 1993). However, the study of this topic has received very

little attention (Pewsey et al., 2014). The classical regression analysis among real-valued variables

cannot be applied for the circular-circular case because the former is specific for the Euclidean

space.
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The concept of circular-circular regression was introduced by Sarma and Jammalamadaka

(1993). In Rivest (1997), the circular dependent variable is regressed on an independent variable

by decentering the dependent variable. Other models for this purpose are explained by Minh

and Farnum (2003) and Hussin et al. (2004). SenGupta et al. (2013) discussed inverse circular-

circular regression. Downs and Mardia (2002), Kato et al. (2008) and Kato and Jones (2010)

presented a mathematical treatment about a circular-circular regression by using the Möbius

transformation (MT) like link function. Earlier works on circular-circular regression models have

been tackled by Fisher (1995).

The MT that maps the unit disc to itself was used for studying two circular variables in

Downs and Mardia (2002), Kato et al. (2008) and Kato and Jones (2010). These works have

assumed the von Mises (vM), wrapped Cauchy (wC) and modified von Mises (vMM) models as

error angular components, respectively. As one of the earlier works to adopt the MT, McCullagh

et al. (1996) has investigated using the Cauchy distribution as one input to such transformation.

The MT was also used in the context of spherical regression by Chang (1986) and by Minh

and Farnum (2003) to induce probability distributions on the circle. Jones (2004) and Seshadri

(1991) propsed the Möbius distribution to generate new family of distributions. Jha and Biswas

(2017) introduced multiple circular-circular regression models using the MT.

The expontentiated Cardioid (EC) distribution was introduced in the Chapter 2 as an exten-

sion to the Cardioid distribution. This model is very useful since it is suitable for asymmetry and

bimodality situations. Thus, we advocate that using this model as the distribution of angular er-

ror in regression models can be advantageous. In this chapter we propose a new circular-circular

regression model having EC distributed angular errors. Its regression curve is expressed in terms

of the MT. Futher, we also introduce the complex version of the EC distribution, named CEC

distribution. A likelihood-based estimation procedure for the parameters of the new model is

furnished. To illustrate the proposed model potentiality, we compare its performance applied to

wind direction real data with those due to models having the vM, wC and vMM error distribu-

tions as error angular components. Results indicate that our proposal may be the best regression

strategy.
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The subsequent sections are organized as follows. In Section 4.2, the MT and some of its

properties are discussed. The EC model is presented as well as its complex form in Section 4.3.

Section 4.4 presents the used estimation procedure. In Section 4.5 our model is applied to wind

directions data and compared with others models. Finally, 4.6 summarizes the main findings of

the chapter.

4.2 Möbius transformation

Let u be a variable with support in the unit circle or, equivalently, in the unit norm complex

plane. Suppose β0 and β1 are complex parameters with |β0| = 1. Then the link function of the

regression model proposed in this chapter is given by

v = β0
u+ β1

1 + β1u
, (4.1)

where |u| = 1. The mapping with |β1| 6= 1 is called the MT. It is known that this transformation

is a one-to-one mapping which carries the unit circle onto itself, i.e. |v| = 1.

Theorem 4.2.1. |v| = 1.

Proof. Let u = eiθ1 and β1 = aeiθ2 . Without loss of generality, we assume that β0 = 1. It follows

from (a), the modulus of the complex ratio is ratio between modules Ahlfors (1979) that

|v| =
∣∣∣∣ u+ β1

1 + β1u

∣∣∣∣ (a)
=
|u+ β1|
|1 + β1u|

=

√
[cos(θ1) + a cos(θ2)]2 + [sin(θ1) + a sin(θ2)]2√

[1 + a cos(θ1 − θ2)]2 + [a sin(θ1 − θ2)]2
= 1.

Reparametrized MT can be used by putting (u, v) = (eia, eib), β1 = reiθ (r ≥ 0, 0 ≤ θ < 2π)

and β′0 = Arg(β0):

eib = eiβ
′
0
eia + reiθ

1 + rei(a−θ)
or b = β′0 + θ + 2 arctan

[
wr tan

{
1

2
(a− θ)

}]
,

where wr = (1− r)/(1 + r).

Some interesting results about the MT can be checked in Kato et al. (2008). It is worth

mentioning that β0 is a rotation parameter. Already β1 can be intuitively interpreted as the
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parameter that attracts the points on the circle toward β1/|β1|. The concentration of points

about β1/|β1| increases as |β1| increases.

For the possible forms assumed by the MT, it is important to note the symmetry between the

curves v(β0, β1, u) and v(β0, β1, u) in relation to u = 0 and v = 0. This behavior is illustrated

in Figure 4.1(a) and proved in the following Theorem. The Figure 4.1(b) exhibits some possible

forms of the MT.

Theorem 4.2.2. −Arg[v(β0, β1, u)] = Arg[v(β0, β1, u)].

Proof. Let u = eia and β1 = reib. It follows that

−Arg[v(β0, β1, u)]) = −Arg
(
β0

u+ β1

1 + β1u

)
= −[Arg(β0) + Arg(u+ β1)−Arg(1 + β1u)]

= Arg(β0)− arctan

(
− sin a+ r sin b

cos a+ r cos b

)
+ arctan

(
r sin(b− a)

1 + r cos(b− a)

)
= Arg(β0) + arctan

(
sin a+ r sin b

cos a+ r cos b

)
− arctan

(
r sin(b− a)

1 + r cos(b− a)

)
= Arg

(
β0

u+ β1

1 + β1u

)
= Arg[v(β0, β1, u)].
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Figure 4.1: Plots of the regression curve.

Figure 4.2 illustrates the MT and the Theorem 4.2.2 given the complex input u = 0.54+0.84 i,

β0 = −0.99 + 0.14 i and β1 = −0.21 + 0.45 i.

To that end the following six operations are done:

• u 1⇒ u+ β1
2⇒ u+β1

1+β1u

3⇒ β0
u+β1
1+β1u

,

• ū 4⇒ ū+ β1
5⇒ ū+β1

1+β1ū
6⇒ β0

ū+β1
1+β1ū

.

The resulting angles were −1.64 and 1.64, respectively, which show that the results differ only

by a signal, according to the symmetry of the Theorem 4.2.2.

4.3 Exponentiated Cardioid model

The EC distribution was introduced in Chapter 2 as an extension to the Cardioid distribution.

Such a model has the advantage of allowing the description of asymmetric and some bimodality

phenomena. This new three-parameter model has probability density function (pdf) given by

(for 0 < θ ≤ 2π)

f(θ;β, ρ, µ) =
β

2π

{
θ

2π
+
ρ

π
[sen(θ − µ) + sen(µ)]

}β−1

[1 + 2ρ cos(θ − µ)], (4.2)

where 0 < µ ≤ 2π, 0 ≤ ρ ≤ 0.5 and β > 0.



74

Figure 4.2: Symmetry in the Möbius transformation.

Since the MT is suitable to the complex plane, it is important to define the complex dis-

tribution whose the angular component is the EC distribution. This situation is denoted as

Z ∼ CEC(β, φ); i.e., if Θ ∼ EC(µ, ρ, β), then Z = eiΘ ∼ CEC(β, φ) such that φ = ρ ei µ. In

follow theorem, we derive the density of Z.

Theorem 4.3.1. Defining I1 = I(−π+µ,µ)∨(π+µ,2π+µ)(θ), if Z ∼ CEC(β, φ), its pdf is given by

f(z) =− β |z − φ|
2 + |1− |φ|2| − 3

(2π)β
×Arg(z) + (−1)I12ρ

√1−
[
−|z − φ|2 + 1 + |φ|2

2|φ|

]2

+ sin[Arg(φ)]

β−1

,

with z = eiθ, φ = ρeiµ, 0 < ρ ≤ 0.5 and 0 < θ, µ ≤ 2π. | · | and Arg(·) indicate the modulus and

argument of a complex number, respectively.

The proof is presented in Appendix E.

4.4 Circular-circular regression model and likelihood-based estimation

The considered regression model is given by

Y = β0
x+ β1

1 + β1x
ε, |x| = 1,
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where β0, β1 ∈ C such that |β0| = 1, ε ∼ CEC(β, φ) and Arg(Y ) = cons + Arg(ε), with cons =

Arg(β0) + arctan
[

Im(x)+Im(β1)
Re(x)+Re(β1)

]
− arctan

[
Im(β1x)

1+Re(β1x)

]
and Arg(ε) ∼ EC(µ, ρ, β), where Im(·) and

Re(·) are real and imaginary parts of the considered complex number.

A manner to obtained ML estimates for the parameters involved in the proposed regres-

sion model is through of the angular errors distribution. Let Arg(ε1), Arg(ε2), . . . , Arg(εn)

be an observed sample of size n from Arg(ε) ∼ EC(β, ρ, µ). The log-likelihood function at

δ= (β, ρ, µ, β′0, r, β
′
1)>, `, can be expressed as

`(δ) =n log β + (β − 1)
n∑
i=1

log

{
Arg(εi)

2π
+
ρ

π
{sin[Arg(εi)− µ] + sinµ}

}
− n log(2π)

+

n∑
i=1

log{1 + 2ρ cos[Arg(εi)− µ]}, (4.3)

where εi = yi(1 + β1xi)/β0(xi + β1).

To facilitate the derivation of ML estimates, reparametrizations are often used. We adopt

(xi, yi) = (eiθ1i , eiθ2i), β1 = reiβ
′
1 (r ≥ 0, 0 ≤ θ < 2π), β′0 = Arg(β0) and β′1 = Arg(β1). Defining

ψi =


arctan

(
Si
Ci

)
, if Si > 0 and Ci > 0,

arctan
(
S
Ci

)
+ π, if Ci < 0,

arctan
(
S
C

)
+ 2π, if Si < 0 and Ci > 0,

where Si = − sin(θ1i)−2r sin(β′1)+r2 sin(−2β′1+θ1j) and Ci = cos(θ1i)+2r cos(β′1)+r2 cos(−2β′1+

θ1i), it follows that

Arg(εi) =


θ2i − β′0 + ψi, if 0 < θ2i − β′0 + ψi ≤ 2π,
θ2i − β′0 + ψi + 2π, if θ2i − β′0 + ψi ≤ 0,
θ2i − β′0 + ψi − 2π, if θ2i − β′0 + ψi > 2π.

Therefore, the ML estimates for β, ρ, µ, β′0, r and β′1 are solutions of the following system of

non-linear equations:

Uβ =
∂`(δ)

∂β
=
n

β
+

n∑
i=1

log

{
Arg(εi)

2π
+
ρ

π
{sin[Arg(εi)− µ] + sinµ}

}
= 0,
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Uρ =
∂`(δ)

∂ρ
= 2

n∑
i=1

{
(β − 1)

sin[Arg(εi)− µ] + sinµ

arg(εi) + 2ρ{sin[Arg(εi)− µ] + sinµ}
+

cos[Arg(εi)− µ]

1 + 2ρ cos[Arg(εi)− µ]

}
= 0,

Uµ =
∂`(δ)

∂µ
= 2ρ

n∑
i=1

{
(β − 1)

− cos[Arg(εi)− µ] + cosµ

Arg(εi) + 2ρ{sin[Arg(εi)− µ] + sinµ}
+

sin[Arg(εi)− µ]

1 + 2ρ cos[Arg(εi)− µ]

}
= 0,

Uβ′
0

=
∂`(δ)

∂β′0
= 2ρ

n∑
i=1

{
(1− β)

cos[Arg(εi)− µ]

Arg(εi) + 2ρ{sin[Arg(εi)− µ] + sinµ}
+

sin[Arg(εi)− µ]

1 + 2ρ cos[Arg(εi)− µ]

}
= 0,

Ur =
∂`(δ)

∂r
=

n∑
i=1

Ai

{
(β − 1)

1 + 2ρ cos[Arg(εi)− µ]

Arg(εi) + 2ρ{sin[Arg(εi)− µ] + sinµ}
− 2ρ sin[Arg(εi)− µ]

1 + 2ρ cos[Arg(εi)− µ]

}
= 0

and

Uβ′
1

=
∂`(δ)

∂β′1
=

n∑
i=1

Bi

{
(β − 1)

1 + 2ρ cos[Arg(εi)− µ]

Arg(εi) + 2ρ{sin[Arg(εi)− µ] + sinµ}
− 2ρ sin[Arg(εi)− µ]

1 + 2ρ cos[Arg(εi)− µ]

}
= 0,

where Ai = (C2
i + S2

i )−1[−2 sin(β′1) + 2r sin(−2β′1 + θ1i)]C − S[2 cos(β′1) + 2r cos(−2β′1 + θ1i)]

andBi = (C2
i + S2

i )−1[−2r cos(β′1)− 2r2 cos(−2β′1 + θ1i)]C − S[−2r sin(β′1) + 2r2 sin(−2β′1 + θ1i)].

This system of equations can be reduced by applying the following expression for β̂ in the

last identities:

β̂(ρ, µ, β′0, r, β
′
1) = − n∑n

i=1 log
{

Arg(εi)
2π + ρ

π [sin(Arg(εi)− µ) + sinµ]
} . (4.4)

Thus, the ML estimates for ρ, µ, β′0, r and β′1 are obtained numerically from

∂`(δ)

∂ρ

∣∣∣∣∣
β=β̂(ρ,µ,β′

0,r,β
′
1)

= 0,
∂`(δ)

∂µ

∣∣∣∣∣
β=β̂(ρ,µ,β′

0,r,β
′
1)

= 0,
∂`(δ)

∂β′0

∣∣∣∣∣
β=β̂(ρ,µ,β′

0,r,β
′
1)

= 0,

∂`(δ)

∂r

∣∣∣∣∣
β=β̂(ρ,µ,β′

0,r,β
′
1)

= 0 and
∂`(δ)

∂β′1

∣∣∣∣∣
β=β̂(ρ,µ,β′

0,r,β
′
1)

= 0.

In the remainder of this chapter, we refer to [Uβ, Uρ, Uµ, Uβ′
0
, Ur, Uβ′

1
]> as the score vector.

4.5 A Real Data Set

In order to illustrate the potentiality of the proposed model, an application to real data was

made. Further, its performance was compared with three other models, where the vM, wC and

vMM distributions were assumed for Arg(εi). Their respective densities are given by.

fvM =
1

2πI0(κ)
exp{κ cos(θ − µ)}, 0 ≤ θ, µ < 2π and κ ≥ 0,
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fwC =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 ≤ θ, µ < 2π and 0 ≤ ρ < 1 and

fvMM =
1− ρ2

2πI0(κ)
exp

[
κ{ξ cos(θ − η)− 2ρ cos(β)}

1 + ρ2 − 2ρ cos(θ − γ)

]
1

1 + ρ2 − 2ρ cos(θ − γ)
, 0 ≤ θ < 2π,

where ξ =
√
ρ4 + 2ρ2 cos(2β) + 1, η = µ + arg{ρ2 cos(2β) + 1 + iρ2 sin(2β)}, γ = µ + β, 0 ≤

µ, β < 2π, 0 ≤ ρ < 1, κ > 0 and I0(ρ) =
∫ 2π

0 exp[ρ cos(φ− µ)]dφ is the modified Bessel function

of the first kind and order zero.

ML estimates were used to fit considered models to data. All the computations were done

using the function maxLik, which is available at the R statistical software R Core Team (2017).

The dataset consists of 73 pairs of wind directions obtained by a Texas weather station, at

6.00 am and noon, on consecutive days, from May 20 to July 31, inclusive, 2003. The data are

part of a larger dataset which is taken from the Codiac data archive, where the considered station

is denoted by C28_ 1 and is available at http://data.eol.ucar.edu/codiac/dss/id=85.034.

The dataset was the same used in Kato and Jones (2010), in order to compare the results. The

independence of the variables was tested using the statistic r2 proposed by Jupp and Mardia

(1980). Under independence, nr2 ∼ χ2
4, where n is the sample size. Since nr2 = 56.69 and

χ2
4 = 9.49, there is strong evidence for dependence.

Figure 4.3(a) shows a plot of the data and the estimated regression curves which seems to

describe the relationship between wind directions reasonably well. The residuals,

Ârg(εi) = Arg

{
yi(1 +

¯̂
β1xi)

β̂0(xi + β̂1)

}
,

expressed in terms of radians and the fitted EC distribution are displayed in the Figure 4.3(b).

The q-q plot in the Figure 4.3(c) also evidences clearly that the angular errors are distributed

as EC distribution.

Table 4.1 shows the ML estimates, the standard errors, the maximised log-likelihood, AIC and

BIC values for the considered models. It is important to note that the values found for the vMM

distribution are discordant to those in Kato and Jones (2010). Standard errors were calculated

using the jackknife procedure. The jackknife procedure delivers a more accurate asymptotic

inference than the analytic standard errors. According to the AIC and BIC, our model presented

http://data.eol.ucar.edu/codiac/dss/id=85.034
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Figure 4.3: Plots of the special functions.

the best result.

The Figure 4.4 shows the spokeplot, representation introduced by et al. Hussain et al. (2007)

and consists of outer (on which response variable angles, say θ1 are marked) and inner (for

predicted response variable angles, say θ2) rings, on which lines are used to conect the pair (θ1, θ2)

at the same index. The short lines between θ1 and θ2 indicates good fit of the model. Thus,

qualitative evidence seem to recomend our model to this database, according to the spokeplot
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Table 4.1: ML estimates e (SEs) of the models parameters for the datasets.
Model arg(β̂0) |β̂1| arg(β̂1) κ̂ ρ̂ β̂ µ̂ logL AIC BIC

vM 0.2797 0.3839 5.7852 1.7944 - - - −97.5 203.1 212.2(0.1121) (0.0792) (0.1623) (0.2985)

wC 0.2158 0.2990 5.8135 - 0.6091 - - −97.7 203.5 212.6(0.1021) (0.0770) (0.1625) (0.0482)

vMM 0.8407 0.2035 5.6109 2.3531 0.6153 3.9666 0.8407 −93.5 194.9 204.1(0.1271) (0.0486) (0.1738) (0.8494) (0.1082) (0.2549) (0.1271)

EC 6.1671 0.1703 3.8559 − 0.3225 0.5000 0.9800 −91.7 191.4 200.6
(0.0000) (0.0000) (0.0000) − (0.0000) (0.0000) (0.0000)

obtained using the mathematics dynamic software Geogebra (Hohenwarter, 2008).

Figure 4.4: Spokeplot.

4.6 Concluding remarks

A circular-circular regression model has been proposed using the MT as link function and the

exponentiated Cardioid distribution as model for its angular error. We have derived the complex

distribution associated to the EC model and expressions for the score vector which yields support

to the likelihood-based estimation procedure for regression parameters. Finally, an application

to real wind data was made and results have indicated that the proposed model may outperform

the other models that use the vM, wC, vMM distributions for the angular error.
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5 Distribution Generators Applied to
the Cardioid Model: Experiments on
Circular Data

Resumo

A distribuição Cardioide (C) é um dos modelos mais importantes para dados circulares. Embora

algumas propriedades de C tenham sido derivadas, esta distribuição não é apropriada para fenô-

menos assimétricos e multimodais no círculo e extensões são necessárias. Este capítulo propõe

quatro extensões de C com base nos geradores β-G, Kw-G, Γ-G e MO-G. Nós derivamos Algu-

mas propriedades matemáticas para esses novos modelos: extensões e momentos trigonométricos.

Procedimentos de inferência para seus parâmetros também são fornecidos. Executamos duas apli-

cações para dados reais, em que os novos modelos são comparados com a distribuição C e uma

de suas extensões propostas no Capítulo 2.

Palavras-chave: Cardioide extendida. Dados circulares. Função peso. Momentos trigonométri-

cos.

Abstract

The Cardioid (C) distribution is one of the most important model for circle data. Although

some C properties have been derived, this distribution is not appropriate for asymmetry and

multimodal phenomena in the circle and extensions are required. This chapter proposes four C

extensions based on the β-G, Kw-G, Γ-G and MO-G generators. We derive some mathematical

properties for these new models: extensions and trigonometric moments. Inference procedures
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for their parameters are provided as well. We perform two applications to real data, on which

the new models are compared to the C distribution and one of its extensions proposed in the

Chapter 2.

Keywords: Circular data. Extended Cardioid. Trigonometric moments. Weight function.

5.1 Introduction

Fitting densities to data has a long history. Traditionally families of curves have been de-

veloped to aid in fitting densities. Statistical distributions are very useful in describing and

predicting real world phenomena. Numerous classical distributions have been extensively used

over the past decades for modeling data in several disciplines, in particular, in reliability engi-

neering, survival analysis, demography, actuarial study and others. Recent developments address

definitions of new families that extend well-known distributions and, at the same time, provide

great flexibility in modelling real data. Adding parameters to a well-established distribution is

a time honored device for obtaining more flexible new families of distributions. In fact, several

classes of distributions have been introduced by adding one or more parameters to generate new

distributions in the statistical literature. The well-known generators are the Marshall-Olkin-

G (MO-G) (Marshall and Olkin, 1997), beta-G (β-G) (Eugene et al., 2002), gamma-G (Γ-G)

(Zografos and Balakrishnan, 2009), Kumaraswamy-G (Kw-G) (Cordeiro and de Castro, 2011),

exponentiated generalized (Cordeiro et al., 2013), type I half-logistic-G (Cordeiro et al., 2016),

Burr X-G (Yousof et al., 2016) and exponentiated Weibull-H (Cordeiro et al., 2017), among

others.

The two-parameter Cardioid (C) distribution was introduced by Jeffreys (1961) for describing

directional spectra of ocean waves. This model has cumulative distribution function (cdf), G(θ) =

G(θ;µ, ρ), and probability density function (pdf), g(θ) = g(θ;µ, ρ), given by, respectively, (for

0 ≤ θ ≤ 2π)

G(θ) =
θ

2π
+
ρ

π
[sin(θ − µ) + sin(µ)] (5.1)
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and

g(θ) =
1

2π
[1 + 2ρ cos(θ − µ)] , (5.2)

where 0 < µ ≤ 2π is a location parameter and |ρ| ≤ 0.5 represents concentration index.

Some works have addressed to extend the C distribution. A novel circular distribution was

proposed by Wang and Shimizu (2012), who applied the Möbius transformation to the C model.

The Papakonstantinou’s family studied by Abe et al. (2009) also extends (5.1). However, these

extensions present hard analytic formulas for their densities. The Chapter 2 have proposed a

simple extended C distribution called exponentiated Cardioid (EC) distribution. The last was

derived from the exp-G generator and can describe asymmetric and some bimodal cases, beyond

those behaviors described by the C model.

In this chapter, we derive four extensions for the C model through the β-G, Kw-G, Γ-G

and MO-G generators, which extend the exp-G. We propose four new circular distributions

called beta Cardioid (βC), Kumaraswamy Cardioid (KwC), gamma Cardioid (ΓC) and Marshall-

Olkin Cardioid (MOC). These distributions are rewritten like special cases into a new family,

which is the result of weighting the term [1 + 2ρ cos(θ − µ)] in (5.2). Some of properties of new

models are derived: extensions and trigonometric moments. A brief discussion about likelihood-

based estimation procedures is provided. Finally, two applications to real data are performed to

illustrate the flexibility of our proposals.

The remainder of this chapter is organized as follows. New models are proposed in Section 5.2.

Section 5.3 discusses about some of their properties; while an estimation procedure is presented in

Section 5.4. Applications are performed in Section 5.5. Main conclusions are listed in Section 5.6.

5.2 Generalized Cardioid Models

Next, we provide some three- and four-parameter distributions by transforming the C dis-

tribution, according to four generator. Let G(θ) be the cdf of a baseline distribution with p

parameters,
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a) the β-G cdf proposed by Eugene et al. (2002) is

Fβ−G(θ) = IG(θ)(a, b) ; =
1

B(a, b)

∫ G(θ)

0
ωa−1 (1− ω)b−1 dω, (5.3)

where a, b > 0 are two additional parameters, IG(θ)(a, b) is the incomplete beta function

ratio evaluated at G(θ) and B(a, b) =
∫ G(θ)

0 ωa−1(1−ω)b−1dω is the complete beta function;

b) the Kw-G cdf introduced by Cordeiro and de Castro (2011) is

FKw−G(θ) = 1− {1−G(θ)a}b ; (5.4)

c) the Γ-G cdf proposed by Zografos and Balakrishnan (2009) is

FΓ−G(θ) =
γ (a,− log [1−G(θ)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(θ)]

0
ta−1 exp(−t)dt, (5.5)

where a > 0, Γ(a) =
∫∞

0 ta−1 e−t dt denotes the gamma function, and γ(a, z) =
∫ z

0 t
a−1 e−t dt

denotes the incomplete gamma function;

d) the MO-G cdf proposed by Marshall and Olkin Marshall and Olkin (1997) is

FMO−G(θ) = 1− a[1−G(θ)]

1− (1− a)[1−G(θ)]
=

a[1−G(θ)]

G(θ) + a[1−G(θ)]
, (5.6)

For the two first generators, given one baseline cdf as input, one has new (p+ 2)-parameter

models; whereas for remainder generators, (p+ 1)-parameter distributions are furnished.

5.2.1 Beta Cardioid

From applying (5.1) in (5.3), the βC distribution is introduced having cdf, F1(θ) := F1(θ; a, b, µ, ρ),

given by

F1(θ) = I θ
2π

+ ρ
π

[sin(θ−µ)+sin(µ)](a, b).

This case is denoted by Θ ∼ βC(a, b, µ, ρ). By differentiating the last equation, the βC pdf,

f1(θ) := f1(θ; a, b, µ, ρ), is given by

f1(θ) =
h1(θ)

2π B(a, b)︸ ︷︷ ︸
:=ḣ1(θ)

[1 + 2ρ cos(θ − µ)] (5.7)
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where

h1(θ) := h1(θ; a, b, µ, ρ) =

{
θ

2π + ρ
π [sin(θ − µ) + sin(µ)]

}a−1{
1 − θ

2π −
ρ
π [sin(θ − µ) + sin(µ)]

}1−b .

Note that for b = 1 the βC model collapses in the EC distribution proposed in the Chapter

2.
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(d) For a = 2, b = 2 and ρ = 0.2.

Figure 5.1: Theoretical and empirical βC densities for some parametric points.
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5.2.2 Kumaraswamy Cardioid

From introducing (5.1) in (5.4), the KwC distribution is obtained having cdf, F2(θ) :=

F2(θ; a, b, µ, ρ), given by

F2(θ) = 1 −
{

1 −
(
θ

2π
+
ρ

π
[sin(θ − µ) + sin(µ)]

)a}b
.

This case is denoted as Θ ∼ KwC(a, b, µ, ρ). Therefore, the KwC pdf is given by

f2(θ) =
a b h2(θ)

2π︸ ︷︷ ︸
:=ḣ2(θ)

[1 + 2ρ cos(θ − µ)] , (5.8)

where

h2(θ) := h2(θ; a, b, µ, ρ) =

{
θ

2π + ρ
π [sin(θ − µ) + sin(µ)]

}a−1{
1 −

(
θ

2π + ρ
π [sin(θ − µ) + sin(µ)]

)a}1−b .

5.2.3 Gamma Cardioid

From evaluating (5.1) in (5.5), the ΓC distribution is obtained having cdf, F3(θ) := F3(θ; a, µ, ρ),

given by

F3(θ) =

γ

(
a,− log

{
1 − θ

2π
− ρ

π
[sin(θ − µ) + sin(µ)]

})
Γ(a)

;

This case is denoted by Θ ∼ ΓC(a, µ, ρ). By differentiating the last equation, the ΓC density,

f3(θ) := f3(θ; a, µ, ρ), becomes

f3(θ) =
h3(θ)

2π Γ(a)︸ ︷︷ ︸
:=ḣ3(θ)

[1 + 2ρ cos(θ − µ)] , (5.9)

where

h3(θ) := h3(θ; a, µ, ρ) =

(
− log

{
1 − θ

2π
− ρ

π
[sin(θ − µ) + sin(µ)]

})a−1

.
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Figure 5.2: Theoretical and empirical KwC densities for some parametric points.
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Figure 5.3: Theoretical and empirical ΓC densities for some parametric points.
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5.2.4 Marshall-Olkin Cardioid

From evaluating (5.1) in (5.6), we propose the MOC distribution having cdf, F4(θ) :=

F4(θ; a, µ, ρ), given by

F4(θ) =
a
{

1 − θ
2π −

ρ
π [sin(θ − µ) + sin(µ)]

}
θ

2π + ρ
π [sin(θ − µ) + sin(µ)] + a

{
1 − θ

2π −
ρ
π [sin(θ − µ) + sin(µ)]

} .
This case is denoted by Θ ∼ MOC(a, µρ). Thus, the MOC density, f4(θ) := f4(θ; a, µ, ρ),

becomes

f4(θ) =
a h4(θ)

2π︸ ︷︷ ︸
:=ḣ4(θ)

[1 + 2ρ cos(θ − µ)] , (5.10)

where

h4(θ) := h4(θ; a, µ, ρ) =

(
1 − (1− a)

{
1 − θ

2π
− ρ

π
[sin(θ − µ) + sin(µ)]

})−2

.

5.2.5 A general formula

All four extensions have the same support of the C law and their densities may be rewritten

in the general expression:

fi(θ) = ḣi(θ) [1 + 2ρ cos(θ − µ)] , for i = 1, 2, 3, 4, (5.11)

where ḣi(θ) is defined in the bellow table.

Models C βC KwC ΓC MOC
Index (i) • 1 2 3 4

Expressions (2π)−1 ḣ1(θ) ḣ2(θ) ḣ3(θ) ḣ4(θ)

The new models may be understood as results of putting weights over the [1 + 2ρ cos(θ − µ)]

term. Thus, illustrating ḣi in (5.11) is a good activity to study the flexibility of the new models.

Figure 5.5 illustrates the weight functions ḣi(θ). For this case, we fix (µ, ρ) = (2, 0.2) and assume

a = b ∈ (0, 100) for βC and KwC distributions, a ∈ (0, 100) and θ ∈ [0, 2π]. Note that although

ḣ3 and ḣ4 have larger values, ḣ1 and ḣ2 present a larger domain region that result in considerable

values. This fact can make ΓC and MOC more flexible.
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Figure 5.4: Theoretical and empirical MOC densities for some parametric points.
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It is important to note that the obtained models provide different asymmetry and modality

scenarios, according to the Figures 5.1, 5.2, 5.3 and 5.4. Therefore, the proposed distributions can

be attractive in the circular data modeling which, in many cases, are asymmetrically distributed

with possible multimodality.
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Figure 5.5: Weight curves for new models in family fi(θ).

5.3 Mathematical properties

This section addresses the derivation of the trigonometric moments for new models. To that

end, we derive expansions for fi(θ) by means of the following results:
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(Cordeiro and de Castro (2011)):

fβ−G(x) = [abB(a, b)]−1g(x)

∞∑
i=0

(−1)i ab

(
b− 1

i

)
︸ ︷︷ ︸

wi

G(x)a+i−1.and

and

fKw−G(x) = g(x)
∞∑
i=0

(−1)iab

(
b− 1

i

)
︸ ︷︷ ︸

wi

G(x)a(i+1)−1.

(Nadarajah et al. (2015)):

fΓ−G(x) =
∞∑
i=0

(
i+1−a
k

)
(a+ i)Γ(a− 1)

i∑
j=0

(−1)j+i
(
i
j

)
pj,i

a− 1− j︸ ︷︷ ︸
bi

ha+i(x),

where pj,i = i−1
∑i

m=1[i−m(j+1)]cmpj,i−m and ci = (−1)i+1(i+1)−1 for k = 1, 2, · · · , pj,0 = 1,

ha+i(x) denotes the pdf of the exp-G(a+i) distribution.

(Cordeiro et al. (2014)):

fMO−G(x) = g(x)

∞∑
i=0

a(−1)i
j∑

k=0

(
j

i

)
(j + 1)(1− a)j︸ ︷︷ ︸

di

G(x)k.

.

(Consequence of the Theorem 2.3.1):

Let Θ ∼ EC(β, µ, ρ). The cdf of Θ, say F (θ) = F (θ;β, µ, ρ),

F (θ) =

∞∑
k=0

k∑
s=0

vk,s(β) θβ−k Πk,s(θ; ρ, µ), (5.12)

where vk,s(β) =
(
β
k

)(
k
s

)
(2π)k−β and

Πk,s(θ; ρ, µ) =
(ρ
π

)k
[sin(µ)]s [sin(θ − µ)]s

{
[sin(θ − µ)]k−2sM0 + [sin(µ)]k−2sM1

}
depends only on the parameters of the Cardioid distribution. M0 and M1 are defined as in the

Theorem 2.3.1.
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5.3.1 Beta Cardioid

Theorem 5.3.1. Let a, b, β > 0, 0 < µ ≤ 2π and 0 ≤ ρ ≤ 0.5. The pdf of the βC model is given

by

f(θ) =
1

2πabB(a, b)
[1 + 2ρ cos(θ − µ)]

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

wivk,s[a+ i− 1]θa+i−1−kΠk,s(θ; ρ, µ),

where

wi = wi(a, b) = (−1)iab

(
b− 1

i

)
and

∑∞
i=0 = 1.

Corollary 5.3.2. Let Θ ∼ βC(β, ρ, µ). The components of the first central trigonometric mo-

ment are given by

α1 =
(2ρ)−1+z

2πabB(a, b)

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

witk,s[a+ i− 1, ρ, µ]×{
A[a+ i− 1− k, z, k − s]M0 + [sin(µ)]k−2sA[a+ i− 1− k, z, s]M1

}
and

β1 =
(2ρ)−1+z

2πabB(a, b)

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

witk,s[a+ i− 1, ρ, µ]×{
A[a+ i− 1− k, z − 1, k − s+ 1]M0 + [sin(µ)]k−2sA[a+ i− 1− k, z − 1, s+ 1]M1

}
where tk,s is defined as in the Theorem 2.3.1, z ∈ {1, 2} and

A(a, b, c) =

∫ 2π

0
θa[cos(θ − µ)]b[sin(θ − µ)]cdθ.

.

5.3.2 Kumaraswamy Cardioid

Theorem 5.3.3. Let a, b, β > 0, 0 < µ ≤ 2π and 0 ≤ ρ ≤ 0.5. The pdf of the KwC model is

given by

f(θ) =
1

2π
[1 + 2ρ cos(θ − µ)]

∞∑
i=1

a(i+1)−1∑
k=0

k∑
s=0

wivk,s[a(i+ 1)− 1]θa(i+1)−1−kΠk,s(θ; ρ, µ),
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Corollary 5.3.4. Let Θ ∼ KwC(β, ρ, µ). The components of the first central trigonometric

moment are given by

α1 =
(2ρ)−1+z

2π

∞∑
i=0

a(i+1)−1∑
k=0

k∑
s=0

witk,s[a(i+ 1)− 1, ρ, µ]×{
A[a(i+ 1)− 1− k, z, k − s]M0 + [sin(µ)]k−2sA[a(i+ 1)− 1− k, z, s]M1

}
and

β1 =
(2ρ)−1+z

2π

∞∑
i=0

a(i+1)−1∑
k=0

k∑
s=0

witk,s[a(i+ 1)− 1, ρ, µ]×{
A[a(i+ 1)− 1− k, z − 1, k − s+ 1]M0 + [sin(µ)]k−2sA[a(i+ 1)− 1− k, z − 1, s+ 1]M1

}
,

where z = 1, 2.

5.3.3 Gamma Cardioid

Theorem 5.3.5. Let a, β > 0, 0 < µ ≤ 2π and 0 ≤ ρ ≤ 0.5. The pdf of the ΓC model is given

by

f(θ) =
1

2π
[1 + 2ρ cos(θ − µ)]

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

bivk,s(a+ i− 1)θa+i−1−kΠk,s(θ; ρ, µ),

where

bi = bi(a) =

(
i+1−a
i

)
Γ(a− 1)

i∑
j=0

(−1)j+i
(
i
j

)
pj,i

a− 1− j

and

pj,i = i−1
i∑

m=1

[i−m(j + 1)]cmpj,i−m

for i = 1, 2, . . . , pj,0 = 1 and cm = (−1)m+1(m+ 1)−1.

Corollary 5.3.6. Let Θ ∼ ΓC(β, ρ, µ). The components of the first central trigonometric mo-

ment are given by

α1 =
(2ρ)−1+z

2π

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

bitk,s[a+ i− 1, ρ, µ]×{
A[a+ i− 1− k, z, k − s]M0 + [sin(µ)]k−2sA[a+ i− 1− k, z, s]M1

}
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and

β1 =
(2ρ)−1+z

2π

∞∑
i=0

a+i−1∑
k=0

k∑
s=0

bitk,s[a+ i− 1, ρ, µ]×{
A[a+ i− 1− k, z − 1, k − s+ 1]M0 + [sin(µ)]k−2sA[a+ i− 1− k, z − 1, s+ 1]M1

}
where z = 1, 2.

5.3.4 Marshall-Olkin Cardioid

Theorem 5.3.7. Let a, β > 0, 0 < µ ≤ 2π and 0 ≤ ρ ≤ 0.5. The pdf of the MOC model is given

by

f(θ) =
1

2π
[1 + 2ρ cos(θ − µ)]

∞∑
i=0

i∑
k=0

k∑
s=0

divk,s(i)θ
i−kΠk,s(θ; ρ, µ),

where

di = di(a) = a(−1)i
∞∑
j=k

(
j

i

)
(j + 1)(1− a)j .

Corollary 5.3.8. Let Θ ∼ MOC(β, ρ, µ). The components of the first central trigonometric

moment are given by

α1 =
(2ρ)−1+z

2π

∞∑
i=0

i∑
k=0

k∑
s=0

ditk,s[i, ρ, µ]×{
A[i− k, z, k − s]M0 + [sin(µ)]k−2sA[i− k, z, s]M1

}
and

β1 =
(2ρ)−1+z

2π

∞∑
i=0

i∑
k=0

k∑
s=0

ditk,s[i, ρ, µ]×{
A[i− k, z − 1, k − s+ 1]M0 + [sin(µ)]k−2sA[i, z − 1, s+ 1]M1

}
where z = 1, 2.

5.3.5 General Forms

The expansions found for the density function and moments of the proposed distributions

can be written, in general, as
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Theorem 5.3.9. The pdf is given by

f(θ) =
F

2π
[1 + 2ρ cos(θ − µ)]

∞∑
i=0

ci∑
k=0

k∑
s=0

Divk,s(ci)θ
ci−kΠk,s(θ; ρ, µ).

Corollary 5.3.10. The components of the first central trigonometric moment are given by

α1 =
F (2ρ)−1+z

2π

∞∑
i=0

ci∑
k=0

k∑
s=0

Ditk,s[ci, ρ, µ]×{
A[ci − k, z, k − s]M0 + [sin(µ)]k−2sA[ci − k, z, s]M1

}
and

β1 =
F (2ρ)−1+z

2π

∞∑
i=0

ci∑
k=0

k∑
s=0

Ditk,s[ci, ρ, µ]×{
A[ci − k, z − 1, k − s+ 1]M0 + [sin(µ)]k−2sA[ci, z − 1, s+ 1]M1

}
,

where z = 1, 2.

The quantities F , ci and Di are expressed in the Table 5.1, for each proposed distribution.

Table 5.1: The quantities F , ci and Di for each distribution.

Model F ci Di

βC [abB(a, b)]−1 a+ i− 1 wi

KwC 1 a(i+ 1)− 1 wi

ΓC 1 a+ i− 1 bi

MOC 1 i di

5.4 Estimation

This section tackles a brief discussion about maximum likelihood estimation for parameters of

the proposed family with density (5.11). Let θ1, . . . , θn be an observed sample, outcomes obtained

from a random variable having density (5.11). Thus, the associated log-likelihood function at
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δ = (a, b, µ, ρ)> (omit b for three-parameter distributions) is given by (for i = 1, 2, 3, 4)

`i(δ) =
n∑
j=1

log fi(θj) =
n∑
j=1

{ log ḣi(θj) + log[1 + 2 ρ cos(θj − µ)] }.

The associated score vector for `i(θ),

(Ua,i, Ub,i, Uµ,i, Uρ,i) :=

(
d `i(δ)

da
,
d `i(δ)

db
,
d `i(δ)

dµ
,
d `i(δ)

dρ

)
,

is determined by

Ua,i =

n∑
j=1

d ḣi(θj)
da

ḣi(θj)
, Ub,i =

n∑
j=1

d ḣi(θj)
db

ḣi(θj)
,

Uµ,i =
n∑
j=1


d ḣi(θj)

dµ

ḣi(θj)
+

2 ρ sin(θj − µ)

1 + 2 ρ cos(θj − µ)


and

Uρ,i =

n∑
j=1


d ḣi(θj)

dρ

ḣi(θj)
+

2 cos(θj − µ)

1 + 2 ρ cos(θj − µ)

 .

Thus, the ML estimate for δ is defined by δ̂ = argmaxδ∈∆ {`i(δ)} for ∆ being the parametric

space or, equivalently, as solutions of the system Ua,i = Ub,i,= Uµ,i = Uρ,i = 0.

5.5 Applications

In this section, we present two applications to illustrate and compare the flexibility of the

generalized distributions of the Cardioid distribution.

The first dataset consists of 21 wind directions obtained by a Milwaukee weather station, at

6.00 am on consecutive days (Johnson and Wehrly, 1977). The second one corresponds to the

directions taken by 76 turtles after treatment. This dataset was studied by Stephens (1969).

The datasets present positive (0.4313) and negative (−0.0816) skewness, respectively. Besides

comparing the models, the idea here is to verify the effect of the datasets skewness signal in the

adjustment of the models.

First, the ML estimates and their SEs (given in parentheses) are evaluated and, subsequently,

the values of the Kuiper (K) and Watson (W) statistics are obtained. These aderence measures

may be found in Jammalamadaka and Sengupta (2002). ML estimates were used to fit considered
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models to data. All the computations were done using function maxLik at the R statistical

software (R Core Team, 2017). The obtained results for dataset 1 and 2, are given in Tables 5.2

and 5.3, respectively.

Table 5.2: ML estimates of the model parameters for the data, the corresponding standard errors
(given in parentheses) and the Kuiper and Watson statistics.

Model ρ µ a b Kuiper Watson

C 0.2436 4.6708 − −
1.1590 0.0711(0.1463) (0.6835) − −

EC 0.2164 1.1780 2.8755 −
0.7367 0.0257

(0.1465) (0.6168) (0.8929) −

βC 0.2774 0.9093 3.9353 1.4044
0.8060 0.0247(0.0980) (0.5030) (2.6919) (0.6641)

Kw-C 0.2767 0.9381 3.6511 1.4144
0.8038 0.0240(0.0989) (0.4933) (2.1205) (1.1213)

ΓC 0.1364 1.7274 1.8563 −
0.8289 0.0328(0.1349) (0.6820) (0.2566) −

MOC 0.2007 2.0632 4.5765 −
0.8134 0.0327(0.1277) (0.7659) (1.8103) −
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Figure 5.6: Fitted densities of the C, EC, βC, Kw-C, Γ-C and MOC models for the real data.

We emphasize that all generalized models fits the data better than the Cardioid model. For

first dataset, the EC and KwC distributions stand out and the βC model fits the second dataset
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better according to Kuiper and Watson.

Figures 5.6 and 5.7 presents empirical and fitted densities to data. The plots confirm what

is concluded from Tables.

Table 5.3: ML estimates of the model parameters for the data, the corresponding standard errors
(given in parentheses) and the Kuiper and Watson statistics.

Model ρ µ a b Kuiper Watson

C 0.3259 1.2022 − −
2.4852 0.4855(0.0553) (0.3337) − −

EC 0.3067 1.6025 0.7688 −
2.3610 0.4443

(0.1256) (0.0829) (0.5656) −

βC 0.3978 0.1441 1.8836 3.1088
1.2683 0.0917(0.0538) (0.1892) (0.4959) (1.0142)

Kw-C 0.3985 0.1712 1.6295 3.2205
1.3204 0.1007(0.0543) (0.2713) (0.3180) (1.8769)

ΓC 0.2829 1.5308 0.7788 −
2.3005 0.4006(0.0776) (0.4744) (0.0760) −

MOC 0.2160 1.9026 0.3880 −
1.9593 0.2614(0.1088) (0.7594) (1.1475) −
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Figure 5.7: Fitted densities of the C, EC, βC, Kw-C, Γ-C and MOC models for the real data.



99

5.6 Conclusions

In this chapter, we propose four new distributions having support on the circle. These

extensions to the Cardioid (C) distribution are obtained by applying it to the β-G, Kw-G,

Γ-G and MO-G generators. Some properties for new models are proposed: expansions and

trigonometric moments; which are reduced to the weighting of the [1 + 2ρ cos(θ − µ)] Cardioid

pdf term. Further we also discuss the maximum likelihood estimation for their parameters. Two

applications illustrate the flexibility of our proposals on real data. The βC and EC distributions

stand out for the dataset with positive asymmetry and for the dataset with negative asymmetry,

the KwC model is the best. The best performance of EC distribution when compared to the

proposed models in this chapter, for the first considered dataset in the application, highlights

the relevance of the proposed and studied model in this thesis.
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6 Concluding remarks and future
works

In this work, some advances in the field of circular statistics have been presented. Finding

circular models that contemplate scenarios of asymmetry or multimodality and mathematically

treatable properties is a challenge, as mentioned. In this sense, the method used to extend the

Cardioid distribution, until then not used to the best of our knowledge in this field, proved to be

efficient in the generation of a new model, the Exponentiated Cardioid. In Chapter 2, readers can

see that the trigonometric moments of the EC distribution are well defined by special functions.

In addition, the new model presents a lot of flexibility compared to the classical circular models,

being more suitable for the data set considered.

In Chapter 3, the focus was on the inference on the parameters of the EC distribution in the

sense of discriminating the new distribution of the distributions that are their particular cases,

the Cardioid and uniform distributions. These hypothesis tests had not been used in the context

of circular statistics and in the context of discrimination of circular distributions, as far as we

know. The gradient or Wald tests presented better results. In addition, an advance in the field

of circular distributions can be noticed, in the study of bootstrap versions of these tests, which

also performed well. It is interesting to note also that the Fisher information matrix of the new

model is presented by means of special functions and that they are well defined, as shown.

Chapter 4 introduces the EC model as distribution for the angular errors of the proposed

circular-circular regression model using Möbius transformation. The proposed model proved to

be more powerful than the other three models in the literature through its adjustments to wind

direction real data. Another important contribution is the introduction of the complex version
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of the EC distribution, named CEC distribution.

Four new circular distributions that extend the C distribution are introduced in Chapter 5,

called beta Cardioid (βC), Kumaraswamy Cardioid (KwC), gamma Cardioid (ΓC) and Marshall-

Olkin Cardioid (MOC). These distributions are rewritten as a family, which is a result of weight-

ing the C pdf. General mathematical expressions for their trigonometric moments and the idea

for estimating the parameters of the proposed models by the maximum likelihood method are

presented. The usefulness of the new distributions is illustrated using two applications to real

data. In the applications, the βC and EC distributions stand out for the dataset with posi-

tive asymmetry and for the dataset with negative asymmetry the KwC model is the best. The

important contribution of this chapter, besides the presentation of four new flexible models for

circular data, is the mathematical treatability of their trigonometric moments through the special

functions presented in Chapter 2, for EC distribution.

Next, some future topics to be investigated are listed:

• In the Chapter 3 was noted the difficulty in the interpretation of the standard errors of the

estimates obtained for the parameters of the distributions in question, in the applications.

This is a problem in building confidence intervals, for example. Investigating this problem

and proposing solutions and new methodologies is a topic of future research.

• Propose new circular distributions, by the methods used, using new baselines is intended

in future researches.

• Proposed other regression models based on the EC distribution.

• Proposed methods of outliers identification to the presented regression model in this thesis.
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Appendix A - Theorem 2.2.1. proof

Let Θ ∼ EC(β, ρ, µ) and β ≥ 1. Then,

f ′(θ) = 0⇒ (β − 1)FC(θ)β−1

[
1

2π
+
ρ

π
cos(θ − µ)

]2

− FC(θ)β
ρ

π
sin(θ − µ) = 0

⇒ (β − 1)y(θ)β−1y′(θ)
2

+ y(θ)βy′′(θ) = 0,

where FC represents the Cardioid cdf.

The latter is an ordinary differential equation of the second order, whose general solution is

y(θ) = c2(βθ+c1)
1
β , where y(θ) = FC(θ). Given that β ≥ 1, then y(0) = 0 and y(2π) = 1. Thus,

c1 = 0 and c2 = (2πβ)
− 1
β , where does it follow that F (θ) = θ

2π . Equivalence is demonstrated in

a similar way.
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Appendix B - First central trigonometric moment

In this appendix, the expression for the first central trigonometric moment of the EC distri-

bution is derived in detail.

Theorem 6.0.1 (Binomial Theorem). For r ∈ R ou |xy | < 1.

(x+ y)r =

∞∑
k=0

(
r

k

)
xkyr−k.

First, consider also the following trigonometric inequalities and relation: For x ∈ R, i)

| sinx| < x and | cosx| < 1 and ii) sinx + cos y = 2 sin
(x+y

2

)
cos
(x−y

2

)
hold and, consequently,

one has that∣∣∣∣∣ ρπ [sin(θ − µ) + sin(µ)]
θ

2π

∣∣∣∣∣ =

∣∣∣∣2ρ[sin(θ − µ) + sin(µ)]

θ

∣∣∣∣ =

∣∣∣∣4ρθ sin

(
θ

2

)
cos

(
θ − 2µ

2

)∣∣∣∣
<

∣∣∣∣4ρθ θ

2
cos

(
θ − 2µ

2

)∣∣∣∣ ≤ 2ρ ≤ 1.

Thus, from the binomial theorem, the EC cdf can be written as{
θ

2π
+
ρ

π
[sin(θ − µ) + sin(µ)]

}β
=

+∞∑
k=0

(
β

k

)(
θ

2π

)β−k (ρ
π

)k
[sin(θ − µ) + sin(µ)]k.

Further, the term [sin(θ − µ) + sen(µ)]k may be rewritten as

[sin(θ − µ)]k
[
1 +

sin(µ)

sin(θ − µ)

]k
M0 + [sin(µ)]k

[
1 +

sin(θ − µ)

sin(µ)

]k
M1

= [sin(θ − µ)]k
+∞∑
s=0

(
k

s

)[
sin(µ)

sin(θ − µ)

]s
M0 + [sin(µ)]k

+∞∑
s=0

(
k

s

)[
sin(θ − µ)

sin(µ)

]s
M1,

where, M0 = I(| sin(θ − µ)| ≥ | sin(µ)|), M1 = I(| sin(θ − µ)| < | sin(µ)|), I(.) refers to the

indicator function and the portion composed by the quotients are, in module, less than 1. Thus,

from the Binomial Theorem, it follows that

F (θ) =

+∞∑
k=0

k∑
s=0

(
β

k

)(
k

s

)(
θ

2π

)β−k (ρ
π

)k { sin(µ)s

sin(θ − µ)s−k
M0 +

sin(θ − µ)s

sin(µ)s−k
M1

}
.

To simplify this expression, we adopt the notation
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tk,s(β, ρ, µ) =

(
β

k

)(
k

s

)(
1

2π

)β−k (ρ
π

)k
[sin(µ)]s.

Thus,

F (θ) =
+∞∑
k=0

k∑
s=0

tk,sθ
β−k[sin(θ − µ)]s

{
[sin(θ − µ)]k−2sM0 + [sin(µ)]k−2sM1

}
.

Now, using integration by parts, the EC pth central trigonometric moment is given by

µp =E{cos[p(Θ− µ)]}+ iE{sin[p(Θ− µ)]}

=

∫ 2π

0
cos[p(θ − µ)]dF (θ) + i

∫ 2π

0
sin[p(θ − µ)]dF (θ)

= cos(pµ) +

∫ 2π

0
p{[sin[p(θ − µ)]}F (θ)dθ − i

{
sin(pµ) +

∫ 2π

0
p{[cos[p(θ − µ)]}F (θ)dθ

}
.

The first moment is given by

µ1 = E[cos(Θ− µ)] + iE[sin(Θ− µ)],

where

E[cos(Θ−µ)] = cos(µ)+
+∞∑
k=0

k∑
s=0

tk,s

{
A(β − k, 0, k − s+ 1)M0 + [sin(µ)]k−2sA(β − k, 0, s+ 1)M1

}
,

E[sin(Θ− µ)] = − sin(µ)−
+∞∑
k=0

k∑
s=0

tk,s

{
A(β − k, 1, k − s)M0 − [sin(µ)]k−2sA(β − k, 1, s)M1

}
and

A(a, b, c) =

∫ 2π

0
θa[cos(θ − µ)]b[sin(θ − µ)]cdθ.
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Appendix C - Theorem 3.2.1. proof

Let Θ ∼ EC(β, ρ, µ). Then,

E
{
{FC(θ)}−1

}
= β

∫ 2π

0
{FC(θ)}−1{FC(θ)}β−1fC(θ)dθ = β

∫ 2π

0
{FC(θ)}β−2fC(θ)dθ

= β
{FC(θ)}β−1

β − 1

∣∣∣∣∣
2π

0

=
β

β − 1
,

for β > 1 and

E
{
{FC(θ)}−2

}
= β

∫ 2π

0
{FC(θ)}−2{FC(θ)}β−1fC(θ)dθ = β

∫ 2π

0
{FC(θ)}β−3fC(θ)dθ

= β
{FC(θ)}β−2

β − 2

∣∣∣∣∣
2π

0

=
β

β − 2
,

for β > 2, where FC = θ
2π + ρ

π [sen(θ − µ) + sen(µ)] and fC(θ) = 1
2π{1 + 2ρ cos(θ − µ)} is a

Cardioid cdf and pdf, respectively.
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Appendix D - Theorem 3.2.2. proof

The bellow corollary follows from Lehmann and Casella (2006).

Corollary 6.0.2. Let Θ1, · · · ,Θn be a random sample which satisfies the regularity conditions

on Lehmann and Casella (2006) and each Θi has observed information J1, the information of

Θ = (Θ1, · · · ,Θn) is J = nJ1.

Let Θ ∼ EC(β, ρ, µ). From the Theorem 3.2.1,

E[J12] = E
{

sin(Θ− µ) + sin (µ)

Θ + 2ρ[sin(Θ− µ) + sin(µ)]

}
=

β

2π(β − 1)

∫ 2π

0
[sin(θ − µ) + sin(µ)] (β − 1) {G(θ)}β−2 g(θ) dθ

=
β sin(µ)

2π(β − 1)
+

β

2π

∫ 2π

0
sin(θ − µ) {G(θ)}β−2 g(θ) dθ

=
β

2π

[
sin(µ)

β − 1
+ I0,1,2,1(β, ρ, µ)

]
.

Thus, it follows from the Corollary 6.0.2 and the previous identity that

E[J12] =
nβ

2π

[
sin(µ)

β − 1
+ I0,1,2,1(β, ρ, µ)

]
.

The other FIM entries may be deducted in a similar way.
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Appendix E - Derivation of the CEC pdf

Let z = eiθ and φ = ρeiµ. The following equality holds

|z − φ|2 = 1− 2ρ cos(θ − µ) + ρ2

and, therefore,

1 + 2ρ cos(θ − µ) = −|z − φ|2 + 2 + ρ2 (6.1)

and

cos(θ − µ) =
−|z − φ|2 + 1 + ρ2

2ρ
. (6.2)

.

From sin2(θ) + cos2(θ) = 1 and (6.2), we have

sin(θ − µ) = ±

√
1−

(
−|z − φ|2 + 1 + ρ2

2ρ

)2

. (6.3)

The sin(θ−µ) signal will depend on the circumference quadrant in which θ−µ is located. In

this case, the signal will positive and negative for 0 < θ−µ+2kπ ≤ π and π < θ−µ+2kπ ≤ 2π,

respectively, considering k = 0, 1. Defining the indicator function I1 as

I1 =

{
1, if π < θ − µ+ 2kπ ≤ 2π, for k = 0, 1
0, if 0 < θ − µ+ 2kπ ≤ π, for k = 0, 1

,

Applying (6.1)-(6.3) in (4.2), we have

f(z) =− β |z − φ|
2 + |1− |φ|2| − 3

(2π)β
×Arg(θ) + (−1)I12ρ

√1−
[
−|z − φ|2 + 1 + |φ|2

2|φ|

]2

+ sin[Arg(φ)]

β−1

,

with 0 < ρ ≤ 0.5, 0 < θ, µ ≤ 2π and | · | and Arg(·) indicate the modulus and argument of a

complex number, respectively.
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