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Abstract

Modelling counts of events can be found in several situations of real life. For instance, the
number of customers in a department store per day, monthly number of cases of some disease
or the number of thunderstorms in a day. The study of integer-valued time series has grown
greatly in recent decades, the reason for this is the need of appropriate models for the statistical
analysis of count time series. Motivated for this, the topic of this work is integer-valued time
series models. This thesis is divided into three parts, composed by three independent papers
about integer-valued time series models. A brief review of the three chapters can be seen below.
The skew integer-valued time series process with generalized Poisson difference distribution
marginal is introduced in Chapter 2. A new thinning operator is defined as the difference of two
quasi-binomial thinning operators and the new process is defined based on it. Some properties
of the process like mean, variance, skewness and kurtosis are presented. The conditional ex-
pectation and variance are obtained, the autocorrelation and spectral function are derived. The
moments estimation is considered and a Monte Carlo simulation is presented to study a perfor-
mance of moments estimators. An application to a real data set is discussed. In Chapter 3, we
consider the first-order integer-valued autoregressive process with geometric marginal distribu-
tions, NGINAR(1) process, and develop a nearly unbiased estimator for one of the parameters
of the process. We consider the Yule-Walker estimators, derive the first order bias for one of
the parameters and propose a new bias-adjusted estimator. Monte Carlo simulation studies are
considered to analyse the behaviour of the new estimator. Finally, in Chapter 4 we introduce
a first order integer-valued autoregressive process with Borel innovations based on the bino-
mial thinning operator. This model is suitable to modelling zero truncated count time series
with equidispersion, underdispersion and overdispersion. The basic properties of the process
are obtained. To estimate the unknown parameters, the Yule-Walker, conditional least squares
and conditional maximum likelihood methods are considered. The asymptotic distribution of
conditional least squares estimators is obtained and hypothesis tests for an equidispersed model
against an underdispersed or overdispersed model are formulated. A Monte Carlo simulation
is presented analysing the estimators performance in finite samples. Two applications to real
data are presented to show that the Borel INAR(1) model is suited to model underdispersed and
overdispersed data counts.

Keywords: Bias correction. Borel distribution. Conditional least squares estimator. Generalized
Poisson distribution. INAR(1) process. Yule-Walker estimator.



Resumo

Eventos de contagem podem ser encontrados em muitas situações práticas. Por exemplo,
o número de clientes em uma loja de departamentos em um dia, o número mensal de casos de
alguma doença ou o número de tempestades em um dia. O estudo de séries temporais assu-
mindo valores inteiros cresceu muito nas recentes décadas, a razão para isto é a necessidade de
modelos apropriados para a análise estatística de séries temporais de contagem. Motivado por
isto, o tópico principal deste trabalho é modelos de séries temporais com valores inteiros. Esta
tese é composta por três artigos, todos dentro desta área e cada capítulo pode ser lido indepen-
dentemente um do outro. No segundo capítulo, definimos um novo processo autorregressivo
para valores inteiros com distribuição marginal diferença de Poisson generalizadas, baseado na
diferença de dois operadores "thinning" quase-binomiais. Este modelo é adequado para con-
juntos de dados com valores positivos e negativos e pode ser visto como uma generalização do
processo INAR(1) com marginal diferença de Poisson. Uma das vantagens da diferença de duas
variáveis aleatórias com distribuição Poisson generalizada é que, em comparação com a difer-
ença de variáveis aleatórias com distribuição Poisson, esta pode apresentar cauda curta ou cauda
longa, sendo mais flexível aos dados. Algumas propriedades estatísticas básicas do processo e
da distribuição condicional são obtidas. Os estimadores de Yule-Walker são considerados para
a estimação dos parâmetros desconhecidos do modelo e simulações de Monte Carlo são ap-
resentadas para o estudo da performance dos estimadores. Uma aplicação a um conjunto de
dados reais é discutida para mostrar o potencial do modelo na prática. No capítulo seguinte, de-
senvolvemos estimadores aproximadamente não viesados para um dos parâmetros do processo
autoregressivo de valores inteiros de primeira ordem com distribuição marginal geométrica,
processo NGINAR(1). Consideramos os estimadores de Yule-Walker do processo, derivamos
o viés de primeira ordem para um dos parâmetros do modelo e propomos um novo estimador
com viés ajustado. Um estudo de simulação de Monte Carlo é considerado para analisar o
comportamento do novo estimador. Finalmente, no capítulo 4 introduzimos o processo autorre-
gressivo de primeira ordem com inovações Borel baseado no "thinning" binomial. Este modelo
é adequado para séries temporais de contagem truncadas no zero que apresentam equidispersão,
subdispersão e sobredispersão. Propriedades básicas do processo são obtidas. Para estimar os
parâmetros desconhecidos são considerados os métodos de estimação de Yule-Walker, míni-
mos quadrados condicionais e máxima verossimilhança condicional. A distribuição assintótica
dos estimadores de mínimos quadrados condicionais é obtida e testes de hipótese para testar
um modelo equidisperso contra um subdisperso ou sobredisperso são formulados. Simulação
de Monte Carlo é apresentada, analisando a performance dos estimadores em amostras finitas.



Duas aplicações com dados reais são apresentadas mostrando que o modelo Borel INAR(1) é
adequado para dados de contagens com subdispersão e sobredispersão.

Palavras-chave: Correção de viés. Distribuição de Borel. Distribuição Poisson generalizada.
Estimador de mínimos quadrados condicional. Estimador de Yule-Walker. Processos INAR(1).
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1 Introduction
Integer-valued time series is a topic that has received much attention in the last three decades.

The reason for this is the need of appropriate models for the statistical analysis of count time
series. Count time series occur naturally in several fields. In medicine, the number of patients
in a hospital at a specific point of time or the number of epileptic seizures a patient suffers each
day. In economics, the number of insurance claims a company receives during each day or
discrete transaction price movements on financial market. Additionally, the number of traffic
accidents, the number of crime ocurrences and so on.

Pioneering works in this theme were McKenzie (1985), Al-Osh and Alzaid (1987) and
McKenzie (1988). These authors introduced in literature the first-order non-negative integer-
valued autoregressive (INAR(1)) process based on the binomial thinning operator by Steutel
and Van Harn (1979).

The idea of thinning operation is to obtain an operator that works in discrete time series in
the same way the multiplication in the classical autoregressive (AR) processes (Box et al, 1994).
Since the procedure of multiplying an integer-valued random variable by a real constant does not
necessarily leads to an integer valued random variable, several authors defined integer-valued
time series making use of thinning operations. Weiß (2008) reviewed some thinning operations
and showed how they are successfully applied to define integer-valued ARMA models.

Several models for count data with different marginal distributions were defined based on
different thinning operations. For instance, McKenzie (1985) reviews integer-valued time-
series models with Poisson, geometric, negative-binomial and binomial marginal distributions.
McKenzie (1986) defined the autoregressive moving-average process with negative-binomial
and geometric marginal distributions. McKenzie (1988) developed a family of models for
discrete-time processes with Poisson marginal distributions. An extension of INAR(1) pro-
cess, the integer-valued pth-order autoregressive structure (INAR(p)) process was considered
by Alzaid and Al-Osh (1990) and Du and Li (1991). Al-Osh and Alzaid (1991) introduced a
family of models for a stationary sequence of dependent binomial random variables. Alzaid
and Al-Osh (1993) defined an autoregressive integer-valued time series with generalized Pois-
son marginal distribution. A first-order integer-valued autoregressive process with geometric
marginal distribution (NGINAR) was introduced by Ristić et al. (2009).

Besides the formulation of the new models, issues as properties (Bakouch, 2010; Weiß and
Kim, 2011), estimation (Jung et al. 2005) and asymptotic distributions of model estimators
(Freeland and McCabe, 2005) have been considered.
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This thesis is divided into three parts, composed by three independent papers. So, we de-
cided that, for this thesis, each of the papers fills a distinct chapter. Therefore, each chapter can
be read independently of each other, since each is self-contained. Additionally, we emphasize
that each chapter contains a thorough introduction to the presented matter, so this general in-
troduction only shows, quite briefly, the context of each chapter. A brief review of the three
chapters can be seen below.

The skew integer-valued time series process with generalized Poisson difference marginal
distribution is introduced in Chapter 2. A new thinning operator is defined based on difference
of two quasi-binomial thinning operators and the new process is defined based on it similarly
as Freeland (2010). Some properties of the process like mean, variance, skewness and kurtosis
are presented. The conditional expectation and the variance are obtained, the autocorrelation
and spectral functions are derived. The moments estimation is considered and a Monte Carlo
simulation study is presented to quantify a performance of moments estimators. An application
to real data set is discussed.

In Chapter 3, we developed nearly unbiased estimators for the parameters of the first-order
integer-valued autoregressive process with geometric marginal distributions (NGINAR(1)) based
on negative binomial thinning (Ristić et al. (2009)). We consider the Yule-Walker estimators,
derive the first order bias for one of the parameters and propose a new bias-adjusted estimator.
A Monte Carlo simulation study is considered to analyse the behaviour of the new estimator.

Chapter 4 develops a new time series model based on the Borel distribution (Consul and
Famoye, 2006). We introduce the shifted first order integer-valued autoregressive process with
Borel innovations. This model is defined based on the binomial thinning with Borel distri-
bution innovations. The Borel INAR(1) model is suited to equidispersed, underdispersed and
overdispersed data counts set. The basic properties of this model are obtained. Closed form
expressions for the conditional least square (CLS) and Yule-Walker estimators of unknown pa-
rameters are derived and we obtain their asymptotic distributions. A hypothesis test based on
the asymptotic distribution of CLS estimator is defined for equidispersed against overdispersed
or underdispersed model. We perform a test power analysis by simulating the rejection rate for
different sample sizes considering the true and estimated value of α and the asymptotic dis-
tribution. Two applications are presented showing that the Borel INAR(1) model is suited to
shifted underdispersed and overdispersed data sets and the results of a hypothesis test confirm
the assessment.
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2 A skew integer-valued time series process with
generalized Poisson difference marginal distri-
bution

Resumo

Neste capítulo, propomos um novo processo autorregressivo para valores inteiros com dis-
tribuição marginal diferença de Poisson generalizada baseado na diferença de dois operadores
"thinning" quase-binomial. Este modelo é adequado para conjuntos de dados sob Z = {. . . ,−1,

0, 1, . . .} e pode ser visto como uma generalização do processo INAR(1) com marginal dife-
rença de Poisson. Uma das vantagens da diferença de duas variáveis aleatórias com distribuição
Poisson generalizada é que, comparada com a diferença de variáveis aleatórias com distribuição
Poisson, pode apresentar cauda curta ou cauda longa, sendo mais flexível aos dados. Algumas
propriedades básicas do processo como média, variancia, coeficiente de assimetria, curtose e
outras propriedades condicionais são obtidas. Os estimadores de Yule-Walker são considerados
para a estimação dos parâmetros desconhecidos do modelo e simulações de Monte Carlo são
apresentadas para o estudo da performance dos estimadores. Uma aplicação a um conjunto de
dados reais é feita para ilustrar o modelo proposto.

Palavras-chave: Distribuição quase-binomial. Processo INAR(1). Processo Poisson genera-
lizada. Séries temporais de valores inteiros.

Abstract

In this chapter, we propose a new integer-valued autoregressive process with generalized Pois-
son difference marginal distributions based on difference of two quasi-binomial thinning opera-
tors. This model is suitable for data sets on Z = {. . . ,−1, 0, 1, . . .} and can be viewed as a
generalisation of the Poisson difference INAR(1) process. An advantage of the difference of
two generalized Poisson random variables is it can have longer or shorter tails compared to the
Poisson difference distribution. We present some basic properties of our process like mean,
variance, skewness, kurtosis and other conditional properties of the process are derived. To
estimate unknown parameters of the model, the Yule-Walker estimators are considered and a
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Monte Carlo simulation is made to study the performance of estimators. An application to a
real data set is discussed to show the potential for practice of our model.

Keywords: Generalized Poisson process. Quasi-binomial distribution. INAR(1) process. Integer-
valued time series.

2.1 Introduction

In the last three decades several authors have discussed models for integer-valued time seri-
es. Al-Osh and Alzaid (1987) introduced the first-order integer-valued autoregressive (INAR(1))
process with Poisson marginal using the binomial thinning operator introduced by Steutal and
Van Harn (1979). Alzaid and Al-Osh (1990) generalized the INAR process, defining an integer-
valued pth-order autoregressive structure, INAR(p) process, in the same way of INAR(1) pro-
cess. Du and Li (1991) proposed the integer-valued autoregressive INAR(p) model using the
binomial thinning operator and added the hypotheses that the innovations series independent
of the counting series. A first-order autoregressive process with generalized Poisson marginal
distribution (GPAR(1)) was defined by Alzaid and Al-Osh (1993) based on the quasi-binomial
thinning operator. Ristić et al. (2009) introduced a count valued time series model with geo-
metric marginal with negative binomial thinning operator. This model is an alternative to the
Poisson INAR(1) when the data set is overdispersed. Several other models were defined for
time series with non-negative values with different thinning operators (see Weiß, 2008). In
many fields it is common to have data sets based on negative and positive values, such as
medicine (Karlis and Ntzoufras, 2006), financial studies (Shahtahmassebi and Moyeed, 2013,
Chesneau and Kachour, 2012), sports (Shahtahmassebi and Moyeed, 2016). Thus, it becomes
necessary to define integer-valued time series models for such specific data sets. Recently, many
authors have presented time series models when the positive and negative integer values arise
as the difference between two discrete distributions. Freeland (2010) defined a first-order sta-
tionary autoregressive process on Z with symmetric Skellam marginals, the new process was
defined by a difference between two independent and identically distributed random variables
with Poisson distribution and a new thinning operator obtained by the difference of two bi-
nomial thinning operators, the process was called True INAR(1) (TINAR(1)). Barreto-Souza
and Bourguignon (2015) defined a modified negative binomial thinning operator by the diffe-
rence of two negative binomial thinning operators and defined an INAR(1) process on Z with
skew discrete Laplace marginals by the difference of two independent NGINAR(1) (Ristić et
al., 2009) process with geometric marginals with means µ1 > 0 and µ2 > 0, respectively.
Some properties of the process were derived, including joint and conditional basic properties,
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characteristic function, moments and estimators for the parameters. Another thinning operator
using the difference of two negative binomial thinning operators was defined by Nástic et al.
(2016). Based on the difference of two independent random variables with geometric marginal
distributions with the same mean µ > 0, they defined a new symmetric INAR(1) process with
discrete Laplace marginal distributions with positive or negative lag-one autocorrelation. The
properties of the new thinning operator were derived and properties of the process were ob-
tained. Alzaid and Omair (2014) defined a new operator called the extended binomial thinning
operator and introduced the Poisson difference integer valued autoregressive model of order
one, PDINAR(1) process, with Poisson difference marginal, Skellam distribution, to model
integer valued time series with possible negative values and either positive or negative correla-
tions. This model was applied to data from the Saudi stock exchange. A stationary first-order
integer valued autoregressive process with geometric-Poisson marginals (NSINAR(1)) was in-
troduced by Bourguingnon and Vasconcellos (2016). The new process allows negative values in
the series. Several properties were established and estimators are defined for unknown parame-
ters by the Yule-Walker method. This process was defined as the difference between geometric
and Poisson random variables and the new thinning operator based on the difference of the
negative binomial thinning operator and the binomial thinning operator.

In this chapter, we propose a new thinning operator based on the idea of Freeland (2010),
using the sequence of quasi-binomial thinning operator defined by Alzaid and Al-Osh (1993).
Then we define the skew integer valued autoregressive process with generalized Poisson diffe-
rence marginal distribution (GPDAR(1)) as the difference between two random variables that
follow generalized Poisson (GP) distribution. The motivation for such a process arises from the
necessity to have adequate models that can be adapted to skew integer valued (including both
negative and positive values) time series. Moreover, this process with generalized Poisson dif-
ference (GPD) marginal has more flexibility in the tails than the process with Poisson difference
(PD) marginal distribution, that, in the some cases, has a tendency to underestimate values in
the tails (see Shahtahmassebi and Moyeed, 2014). The distribution of the difference of two GP
random variables can have longer or shorter tails compared to the PD distribution and the GPD
distribution can be viewed as a generalisation of the PD distribution.

The chapter is organized as follow: In Section 2, we present a review of the GP and quasi-
binomial (QB) distributions, and the GPAR(1) process. The GPDAR(1) process is defined based
on the difference of two quasi-binomial thinning operators. In Section 3, some of its properties
are derived. In Section 4, the Yule-Walker estimators of unknown parameters are presented and
numerical results using Monte Carlo simulation are discussed. In Section 5, an application to a
real life data set is presented. Finally, we conclude the chapter in Section 6.
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2.2 GPDAR(1) process

In this section, we present a stationary first-order integer-valued autoregressive process with
generalized Poisson difference marginals. To that end, we first present a brief review of the
GP distribution (Consul and Jain, 1973 ), QB distribution (Consul and Mital, 1975), and the
GPAR(1) process.

Consul and Jain (1973) defined a new distribution as a generalization of the Poisson dis-
tribution, the GP distribution with two parameters. It was obtained as a limiting form of the
generalized negative binomial distribution. Consul (1989) discussed the properties and applica-
tions of the GP distribution. For example, the author described the application of GP distribution
to the number of chromosome aberrations induced by chemical and physical agents in human
and animal cells. Johnson, Kotz and Kemp (1992) have also described some properties of the
GP distribution. Joe and Zhu (2005) proved that the GP distribution is a mixture of Poisson
distributions and he made a study comparison between the GP and negative binomial distri-
butions. Consul (1986), considering two independent random variables with GP distribution,
defined and obtained the properties of the difference between them.

The probability mass function (pmf) of a random variable (r.v.) X following a generalized
Poisson distribution with parameters λ and θ, denoted by GP(λ, θ), is given by

P (X = x) = λ(λ+ θx)x−1e−(λ+θx)/x!, x = 0, 1, 2, . . . , (2.1)

where λ > 0 and 0 ≤ θ < 1. The GP distribution is also defined for θ < 0, but, in this work,
we shall only consider θ > 0. For more details, see Consul and Jain (1973).

Remark 2.2.1. Note that for θ = 0, we obtain the Poisson distribution with parameter λ as a
special case of the generalized Poisson distribution.

We can obtain some properties about the GP distribution from Johnson, Kotz and Kemp
(2005). We have that the probability generating function (pgf) is given by

G(s) = eλ(t−1), where t satisfies t = s eθ(t−1),

and the mean, variance, the third and fourth central moments are given by

µ = E(X) =
λ

(1− θ)
, σ2 = Var(X) =

λ

(1− θ)3
, (2.2)

µ3 =
λ(1 + 2θ)

(1− θ)5
, µ4 =

3λ2

(1− θ)6
+
λ(1 + 8θ + 6θ2)

(1− θ)7
.

The coefficients of skewness and kurtosis are, respectively,

β1 =
(1 + 2θ)2

λ(1− θ)
, β2 = 3 +

1 + 8θ + 6θ2

λ(1− θ)
. (2.3)
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Figure 4.1 displays the skewness and kurtosis of GP distribution for fixed θ = 0.1, 0.4, 0.8

and λ ∈ {1, 3, 5, 7, 9, 11, 13, 15}.
Note that the skewness of the GP distribution depends on the values of λ for any fixed value

of θ. As the value of λ increases, the skewness of GP distribution decreases and for λ enough
large the skewness converge to 0. For any fixed value of λ, the skewness becomes large for θ
values close to 1.
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(a) Skewness of GP distribution
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(b) Kurtosis of GP distribution

Figure 2.1: Skewness and kurtosis of GP distribution.

Remark 2.2.2. From (2.2) the mean of the GP distribution is smaller than the variance (re-
member that in this work we are considering 0 ≤ θ < 1), which means the GP distribution, in
this case, may be used as a model to overdispersed data set. Furthermore, from (2.3), the GP
distribution adequate to model a skewed data set.

Consul (1986) considered two independent random variables X and Y with GP(λ1, θ) and
GP(λ2, θ) distributions, respectively, with pmf as (2.1), defined a difference distribution Z d

=

X − Y and obtained its properties as pmf, cumulants and pgf. The generalized Poisson diffe-
rence distribution with parameters λ1, λ2, θ (GPD(λ1, λ2, θ)) has pmf given by

P (Z = z) = e−λ1−λ2−zθ
∞∑
y=0

(λ2, θ)y(λ1, θ)y+ze−2yθ, z ∈ Z,

where (λ, θ)y = λ(λ+θy)y−1

y!
. Properties of this distribution will be presented in Section 2.3

In Figure 2.2, we can observe that for λ2 > λ1 the GPD tends to be left skewed and as the
value λ2 increases the GPD tends to have a longer tail. Note that the following type of symmetry
holds to GPD distribution:

P (Z = z;λ1, λ2, θ) = P (Z = −z;λ2, λ1, θ).
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Thus, the GPD behaviour for λ1 > λ2 is symmetric to λ1 < λ2. In the case of λ1 = λ2 we have
a symmetric process with zero mean as will see in Section 2.3. Note that, from Figure 2.4 that,
fixed θ, when λ1 and λ2 increases the tails become heavier.

Finally, observing Figure 2.3 we can see that when θ increases the tails of the GPD distri-
bution become heavier.
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(a) λ1 = 1, θ = 0.3, λ2 = 2
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(b) λ1 = 1, θ = 0.3, λ2 = 4
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(c) λ1 = 1, θ = 0.3, λ2 = 6

Figure 2.2: GPD density θ = 0.3, λ1 = 1 and λ2 = 2, 4, 6.
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(a) λ1 = 1, λ1 = 2, θ = 0.3
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(b) λ1 = 1, λ2 = 2, θ = 0.5
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(c) λ1 = 1, λ2 = 2, θ = 0.6

Figure 2.3: GPD density λ1 = 1, λ2 = 2 and θ = 0.3, 0.5, 0.6.

The QB distribution was introduced by Consul (1974) as an urn model. A new urn model
and a general expression to QB distribution was presented by Consul and Mital (1975). Consul
(1975) considered the characterization of Lagrangian Poisson and quasi-binomial distributions
and the relation between them. Fazal (1976) developed an optimal asymptotic hypothesis test
to the parameter θ = 0. Korwar (1977) characterized the QB distribution in the context of the
Rao-Rubin damage model. Consul (1990) discussed some properties and applications of the
QB distribution, considered its moments and maximum likelihood estimation and applied it to
several data sets.
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(a) λ1 = λ2 = 1, θ = 0.3
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(b) λ1 = λ2 = 5, θ = 0.3,
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(c) λ1 = λ2 = 10, θ = 0.3

Figure 2.4: GPD density θ = 0.3 and λ1 = λ2 = 1, 5, 10.

According to Fazal (1976), a discrete random variable Y is said to follow the QB distribution
if its pmf is given by

P (Y = y) = p q

(
m

y

)
(p+ y θ)y−1[q + (m− y)θ]m−y−1/(1 +mθ)m−1, y = 0, 1, 2, . . . ,m,

where
(
m
y

)
= m!

(m−y)!y! , 0 ≤ p < 1, q = 1− p, 0 ≤ θ < 1.

Remark 2.2.3. Note that for θ = 0, we obtain the binomial distribution with parameters m and
p as a particular case of quasi-binomial distribution.

The mean and the first factorial moment of the QB distribution are given by

E(Y) = mp and E [Y(Y − 1)] = m(m− 1)p− pq
m−2∑
j=0

m!θj

(m− j − 2)!(1 +mθ)j+1
.

Thus, the variance is given by

Var(Y) = pq

[
m2 −

m−2∑
j=0

m!θj

(m− j − 2)!(1 +mθ)j+1

]
.

Shenton (2006) gave an overview on the QB distribution and some properties were listed.
The QB distribution converges in distribution to the GP distribution as m increases. The sum of
quasi-binomial variates in general is not a quasi-binomial variate and properties of the binomial
distribution, such as expressions of the partial sum of probabilities in integral form, are not
readily available for the quasi-binomial distribution.

Alzaid and Al-Osh (1993) introduced the first-order autoregressive process with generali-
zed Poisson marginal distribution (GPAR(1)) based on the quasi-binomial operator and obtained
some properties like mean, variance, autocorrelation function, conditional variance and condi-
tional expectation. This process can be viewed as an extension of Poisson INAR(1) process by
Al-Osh and Alzaid (1987).
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Alzaid and Al-Osh (1993) introduced the quasi-binomial operators as a sequence of random
variables {S(n);n = 0, 1, 2, . . .} such that S(n) has QB(p, θ/λ, n) distribution for some p, θ
and λ. Weiß (2008) called this operator as “quasi-binomial thinning operator”.

The quasi-binomial thinning operator has an interpretation in analogy with the binomial
thinning operator. In the same way of the binomial thinning in the development of the Poisson
INAR(1), the thinned variable S(X) can be understood as the number of survivors from the
population behind X (Weiß, 2008). Unlike the assumption in the Poisson INAR(1) process
that given Xt−1 = x, the number of retained elements to time t is a random variable with
binomial distribution B(α, x), in the development of the GPAR(1) process it was assumed that
given Xt−1 = x the number of retained elements to time t has a quasi-binomial distribution
QB(p, θ, x). An element of the Poisson process at time t− 1, Xt−1, independently of the other
elements and the time of the process has a constant probability of being retained to time t, in the
GPAR(1) process the quasi-binomial thinning operator consider that the probability of retaining
an element is not constant but might depend on the time and the number of elements already
retained (Alzaid and Al-Osh, 1993).

Based on the following proposition, Alzaid and Al-Osh (1993) defined the first-order au-
toregressive process with generalized Poisson marginal distribution.

Proposition 2.2.4. (Alzaid and Al-Osh, 1993) If X is distributed according to the GP(λ, θ)

distribution and the quasi-binomial thinning is performed independently of X, then S(X) is
distributed according to GP(pλ, θ).

The GPAR(1) process {Xt} is defined as

Xt = St(Xt−1) + εt, t ∈ N,

where {εt} is an i.i.d. sequence of random variables with GP(qλ, θ) and {St(·), t = 1, 2, . . .} is
a sequence of i.i.d. quasi-binomial operators independent of εt with QB(p, θ/λ, ·) distribution,
with λ > 0, 0 < θ < 1, 0 < p < 1, q = 1− p.

We have from the definition that St(Xt−1)| (Xt−1 = x) has QB(p, θ/λ, x) distribution. More-
over, assuming that X0 follows a GP(λ, θ) distribution independent of {εt} and {St(·)}, the
GPAR(1) process is a strictly stationary Markov chain with generalized Poisson marginal dis-
tribution (Alzaid and Al-Osh, 1993).

The mean and variance of the GPAR(1) process are given in (2.2), the coefficients of skew-
ness and kurtosis are given in (2.3). It is not difficult to verify that the conditional mean and
variance of the GPAR(1) process given Xt−1 are, respectively,

E(Xt|Xt−1 = x) = px+ µε
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and

Var(Xt|Xt−1 = x) = pq

[
x2 −

x−2∑
j=1

x!θj

(x− j − 2)!(1 + xθ)j+1

]
+ σ2

ε ,

where µε = E(εt) = qλ/(1− θ) and σ2
ε = Var(εt) = qλ/(1− θ)3.

The autocorrelation function of the GPAR(1) is given by

ρX(k) = corr(Xt, Xt−k) = p|k|, k ∈ Z.

Note that the autocorrelation function only depends on the p parameter and its behaviour is
similar to that of the AR(1). Another characteristic of the GPAR(1) process is that its variance
is greater than the mean while the Poisson INAR(1) process has the mean equal to the variance.

Al-Nachawati et al. (1997) compared two methods of estimating the parameters of the
GPAR(1): Yule-Walker and Gaussian estimation. They observe that, for λ > 1, in small and
larger sample sizes the Gaussian method has better results than YW estimator according the
bias and MSE of estimates. For λ ≤ 1, in small and larger sample sizes the YW and Gaussian
methods presented similar results in terms of bias and MSE of estimates.

Now, based on the quasi-binomial operator, we will define the new operator R(·) and, in the
same way to Freeland (2010), we define the new first order autoregressive process with genera-
lized Poisson difference distribution marginals. The main feature of the GPDAR(1) process is
more flexible in tails than the TINAR process (Freeland, 2010), because the GPD distribution
may have longer or shorter tails (Shahtahmassebi and Moyeed, 2014). The process is skew or
symmetric and has positive and negative values, the sequence of innovations has a generalized
Poisson difference distribution, as the marginal of the process.

Definition 2.2.1. Let X and Y be two independent random variables with GP (λ1, θ) and
GP (λ2, θ) distributions, respectively, Z = X − Y following GPD(λ1, λ2, θ) distribution. We
define the operator R(·) as

R(Z)|Z d
= S(X)− S(Y )|(X − Y ), (2.4)

where S(X)| (X = x) and S(Y )| (Y = y) have QB(p, θ/λ1, x) and QB(p, θ/λ2, y) distribu-
tions, respectively and “ d

= " mean distribution equality.

From (2.4) we have that R(Z)
d
= S(X)− S(Y ). Let X and Y be two independent random

variables, so S(X) and S(Y ) are independent random variables. From the Proposition 2.2.4 of
Alzaid and Al-Osh (1993) of the quasi-binomial operator we have that S(X) and S(Y ) have
GP distributions.

Let N0 = {0, 1, 2, . . .}. Let {Xt}t∈N0 and {Yt}t∈N0 be two independent GPAR(1) processes
with Generalized Poisson marginals, GP(λ1, θ) and GP(λ2, θ) distributions, respectively,
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Xt = St(Xt−1) + εt, t ∈ N (2.5)

and
Yt = St(Yt−1) + δt, t ∈ N. (2.6)

Furthermore, the sequences St(Xt−1)| (Xt−1 = x) and St(Yt−1)| (Yt−1 = y) follow
QB(p, θ/λ1, x), QB(p, θ/λ2, y) distributions independent of {εt}t∈N and {δt}t∈N, with λ1 >
0, λ2 > 0, 0 < p < 1, 0 < θ < 1, q = 1 − p. The sequences {εt}t∈N and {δt}t∈N are
independent with GP(qλ1, θ) and GP(qλ2, θ) distributions, respectively.

The integer-valued first-order autoregressive process with generalized Poisson difference
marginals is defined as follow.

Definition 2.2.2. Let Xt and Yt defined as above. We define the integer-valued first-order auto-
regressive process with generalized Poisson difference marginals, GPDAR(1), {Zt}t∈N0 , as a
sequence of a random variables such that

Zt
d
= Xt − Yt

d
= Rt(Zt−1) + νt, (2.7)

where Rt(Zt−1) is a sequence of operators defined as (2.4) and νt = εt − δt.

We have from (2.5) and (2.6) that εt and δt follow GP(qλ1, θ) and GP(qλ2, θ) distribu-
tions, respectively, so we have that νt follows the generalized Poisson difference distribution
GPD(qλ1, qλ2, θ).

Remark 2.2.5. This process can be viewed as an extension of the PDINAR(1) proposed by
Alzaid and Omair (2014).

2.3 Properties of the process

In this section, we shall present some properties of the GPDAR(1) process, such as mean,
variance, skewness and kurtosis coefficients, probability generating and cumulant generating
functions. The autocorrelation and spectral density functions are also obtained. Follow, we
present the marginal distribution properties of the GPDAR(1) process and the distribution pro-
perties of the sequence {νt} can be obtained in the same way of it.

The mean and variance of Zt are given, respectively, by

µZ = E(Zt) = E(Xt)− E(Yt) =
λ1 − λ2
1− θ

(2.8)

and
σ2
Z = Var(Zt) = Var(Xt) + Var(Yt) =

λ1 + λ2
(1− θ)3

. (2.9)



2.3. PROPERTIES OF THE PROCESS 27

Remark 2.3.1. Note that |µZ | < σ2
Z , then the GPDAR(1) process can be used as a model for

overdispersed integer valued time series.

Consul (1986) considered the difference of two independent random variables with genera-
lized Poisson distribution and obtained some properties. From those we have that the pgf of Zt
is given by

GZ(s) = GX(s) ·GY (s) = e[λ1(t1−1)+λ2(t2−1)],

where GX(s) and GY (s) are the Xt and −Yt pgf’s and t1 = s eθ(t1−1), t2 = s−1eθ(t2−1).
The cumulant generating function (cgf) of Zt is given by

ψ(β) = λ1(es1 − 1) + λ2(es2 − 1) = (s1 − β)λ1/θ + (s2 + β)λ2/θ,

where s1 = β + θ(es1 − 1), s2 = −β + θ(es2 − 1), and the first four cumulants are

k1 =
λ1 − λ2
1− θ

, k2 =
λ1 + λ2
(1− θ)3

,

k3 =
(λ1 − λ2)(1 + 2θ)

(1− θ)5
, k4 =

(λ1 + λ2)(1 + 8θ + 6θ2)

(1− θ)7
.

The coefficients of skewness and kurtosis of Zt are given by

γ1 =
(λ1 − λ2)(1 + 2θ)√
(λ1 + λ2)3

√
(1− θ)

and γ2 = 3 +
1 + 8θ + 6θ2

(λ1 + λ2)(1− θ)
,

respectively.

Remark 2.3.2. Note that if λ1 = λ2, we have a symmetric process with zero mean.

It is possible to show that the autocovariance function of Zt process is given by

γ(h) = cov(Zt, Zt−h) =
λ1 + λ2
(1− θ)3

p|h|, h ∈ Z,

and the autocorrelation function (ACF) at lag h is given by

ρ(h) = Corr(Zt, Zt−h) = p|h|, h ∈ Z.

Since 0 < p < 1, the autocorrelation function decays exponentially, like in the AR(1) process.

Remark 2.3.3. The process defined in (2.7) has positive autocorrelation. We can define a
GPDAR(1) process with negative autocorrelation. In the same way of Freeland (2010), we
define
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Zt =

{
Xt − Yt, t = 0, 2, 4, . . .

Yt −Xt, t = 1, 3, 5, . . .

Then, we have in this case that ρ(h) = Corr(Zt, Zt−h) = (−p)h, for h ∈ N. The main properties
of this process can be obtained as in the process defined in (2.7).

The spectral density function f(ω) of the GPDAR(1) process is

f(ω) =
(λ1 + λ2)

2π(1− θ)3
2p(cos(ω)− p)

(1 + p2 − 2p cos(ω))
, ω ∈ (−π, π].

Figure 2.5 displays a sample autocorrelation based on 100 simulated values and the spectral
density function for p = 0.3, λ1 = 1, λ2 = 2 and θ = 0.8.
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Figure 2.5: Sample autocorrelation based on 100 simulated values of the GPDAR(1) and spec-
tral density function for p = 0.3, λ1 = 1, λ2 = 2 and θ = 0.8.

Now, we present two results about the r.v. Rt(Zt−1) and the GPDAR(1) process. In Propo-
sition 2.3.4, we present the conditional probability function of the r.v. Rt(Zt−1) given Zt−1,
this result is particularly useful if our interest is to obtain the transition probabilities from the
process. In Proposition 2.3.5, the conditional expectation and variance of GPDAR(1) process
are obtained. The conditional expectation expression is directly linked to 1-step ahead forecasts
and used the conditional least squares estimators for unknown parameters of the process. The
proof of the propositions can be found in the Appendix.

Proposition 2.3.4. The conditional probability function of the random variable Rt(Zt−1) given
Zt−1 is given by

P (Rt(Zt−1) = j|Zt−1 = k) =
∑∞

l=0

∑min(l,l+k−j)
i=0

(λ1,θ)k+l(λ2,θ)l e
−2lθf(i+j;p,θ/λ1,k+l)f(i;p,θ/λ2,l)∑∞

y=0(λ2,θ)y(λ1,θ)y+ke
−2yθ ,
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for j ≥ 0, k > 0, and

P (Rt(Zt−1) = j|Zt−1 = k) =
∑∞

l=0

∑min(l−j,l−k)
i=0

(λ1,θ)l(λ2,θ)l−k e
−2lθf(i;p,θ/λ1,l)f(i+j;p,θ/λ2,l−k)∑∞

y=0(λ2,θ)y(λ1,θ)y+ke
−2(y+k)θ ,

for j ≥ 0, k < 0, where (λ, θ)y =
λ(λ+ yθ)y−1

y!
and f(i; p, θ, n) is the QB’s probability

mass function with parameters (p, θ, n).

Proposition 2.3.5. Let {Zt}t∈N0 be a GPDAR(1) process according to Definition 2.2.2. The
conditional expectation of Zt given Zt−1 is given by

E(Zt|Zt−1) = pZt−1 + µν ,

where µν = E(νt) = E(εt)− E(δt) =
q(λ1 − λ2)

1− θ
and the conditional variance is given by

Var(Zt|Zt−1 = z) =
∑∞

y=0

(λ2,θ)y(λ1,θ)y+z{p[(z+y)(z+y(1−p))+y2−q[W(z+y)+W(y)]}e−2yθ∑∞
y=0(λ2,θ)y(λ1,θ)z+ye

−2yθ − (pz + µν)
2,

for z ≥ 0, and

Var(Zt|Zt−1 = z) =
∑∞

x=0

(λ2,θ)(x−z)(λ1,θ)x{p[(x−z)(x(1−p)−z)+x2−q(W(x)+W(x−z))]}e−2xθ∑∞
y=0(λ2,θ)y(λ1,θ)y+ze

−2(y+z)θ −(pz+µν)
2,

for z < 0. Where W(x) =
∑x−1

j=0

x!θj

(x− j − 2)!(1 + xθ)j+1
and (λ, θ)y was defined as in Propo-

sition 2.3.4.

Remark 2.3.6. The expressions of the conditional variance are not analytically simple, but it is
not difficult to evaluate them numerically.

2.4 Estimation

In this section, we outline the estimation of the unknown parameters of the GPDAR(1)
process. We investigate the estimation method of moments with Yule-Walker .

Considering the skew process, λ1 6= λ2, we can use Yule-Walker estimation to estimate p.
From a T -points observation Z1, Z2, . . . , ZT , based on the fact that the correlation function is
given by ρ(h) = p|h| we consider the Yule-Walker estimator given by

p̂ = ρ̂(1) =

∑T−1
t=1 (Zt − Z̄)(Zt+1 − Z̄)∑T

t=1(Zt − Z̄)2
.

Based on the method of moments, using the sample mean and variance Z̄ = 1
T

∑T
t=1 Zt,

σ̂2 = 1
T

∑T
t=1(Zt − Z̄)2, and the two first moments given by (2.8) and (2.9), we have
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Z̄ =
λ̂1 − λ̂2
1− θ̂

and σ̂2 =
λ̂1 + λ̂2

(1− θ̂)3
.

Then, after a simple algebra, the estimators for λ1 and λ2 are given by

λ̂1 =
1

2

[
σ̂2(1− θ̂)3 + Z̄(1− θ̂)

]
and

λ̂2 =
1

2

[
σ̂2(1− θ̂)3 − Z̄(1− θ̂)

]
.

Using the sample third momentm3 = 1
T

∑T
t=1(Zt−Z̄)3 and the third cumulant, the moment

estimator of θ satisfies the equation

(1− θ̂)4m3 − Z̄(1 + 2θ̂) = 0. (2.10)

It is not difficult to show that, if m3 and Z are both positive or negative, Equation (2.10) has
a solution in (0, 1) and we can find this solution numerically using some computer software, for
example, the R software (see http://www.r-project.org). Note that the moment estimators for λ1
and λ2 are well defined if σ̂2(1 − θ̂)2 >| Z |. Furthermore, if λ1 = λ2, we have a symmetric
process with zero mean, so the estimators presented above do not have sense in this case and is
necessary an estimator more adequate.

Consider the symmetric process with λ1 = λ2 = λ. Using the sample variance σ̂2 =
1
T

∑T
t=1(Zt−Z)2 and the variance of the process, σ2

Z = 2λ/(1− θ)3, the moment estimator for
λ is given by

λ̂ =
1

2
σ̂2(1− θ̂)3.

Now, consider the fourth cumulant k4 and variance σ2, defined in Section 2.3, and the well
known relation k4 = µ4 − 3µ2

2, where µ4 and µ2 are the fourth and second central moment.
Using the second and fourth sample central moments, m2 = 1

T

∑T
t=1(Zt − Z)2 and m4 =

1
T

∑T
t=1(Zt − Z)4, respectively, the moment estimator of θ satisfies

(1− θ̂)4k̂4 − σ̂2(1 + 8 θ̂ + 6 θ̂2) = 0, (2.11)

where k̂4 = m4 − 3m2
2. The equation (2.11) has solution since that k̂4 > σ̂2. The moment

estimator of θ do not have closed form but we can find it numerically as in the last case.
The conditional least squares method consists of minimizing the function

QT (β) =
T∑
t=2

[Zt − E(Zt|Zt−1)]2,
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where β is a vector of unknown parameters of the process. Here, the function to be minimized
is given by

QT (p, µν) =
T∑
t=2

(Zt − pZt−1 − µν)2 =
T∑
t=2

[Zt − pZt−1 − (1− p)µ]2.

Note that using this method we can not obtain estimators for λ1, λ2 and θ, but only p and
µ = (λ1 − λ2)/(1− θ), for this reason, this method of estimation was not considered.

2.5 Simulation study

A Monte Carlo simulation experiment was performed to study the behaviour of the Yule-
Walker estimators. The number of Monte Carlo replications was 5000 and the considered
sample sizes were T = 50, 100 and 200. For the values of parameters, we considered p =

0.5, 0.6, λ1 = 1, 2, λ2 = 1, 2 and θ = 0.6. The Monte Carlo simulation was performed using
the R programming language, see http://www.r-project.org.Table 1 presents the bias and mean
squared error (MSE) of the estimates of the parameters of the GPDAR(1) process. From the
results we conclude that estimates of the parameters are reasonable, there are convergence to the
true parameters values, and the bias and MSE decrease as the size sample increases as expected.
The bias and MSE of λ1 and λ2 estimates decreases non-uniformly. Note that the MSE values
of λ1 and λ2 estimators are large for θ = 0.6, this is justified because the random sample will
have a large variance and this estimators depends on it directly.

2.6 Application to real data set

In this section, we present an application of the GPDAR(1) model to the GLOBAL Land-
Ocean temperature index. We consider the monthly GLOBAL Land-Ocean temperature index
in 0.01 degrees Celsius for 1950-1962 update december 2015. The temperature index in 0.01 de-
gree Celsius belongs to Z and is our time series of interest here in this section. The data set con-
sist of 156 observations. The data has been downloaded from the National Oceanic and Atmos-
pheric Administration (NOAA), U.S. Department of Commerce, Earth System Research Labo-
ratory (http://www.esrl.noaa.gov/psd/data/climateindices/list), origi-
nally from http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt.

Table 2.2 provides some descriptive measures for the temperature index, which include
central tendency statistics, variance, skewness and kurtosis, among others. We see that the data
set assumes positive and negative integer values.

http://www.esrl.noaa.gov/psd/data/climateindices/list
http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt
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Table 2.1: Bias and mean squared error (in parentheses) of the moment estimates of the pa-
rameters for p = 0.5, 0.6 λ1 = 1, 2, λ2 = 1, 2, θ = 0.6 and T = 50, 100, 200.

T p̂ λ̂1 λ̂2 θ̂

p = 0.6, λ1 = 1.0, λ2 = 2.0 and θ = 0.6

50 −0.0960 (0.0362) 0.1257 (2.6563) 0.3166 (4.2966) −0.0211 (0.0188)

100 −0.0543 (0.0195) 0.0946 (2.2423) 0.2017 (3.0628) −0.0032 (0.0130)

200 −0.0329 (0.0099) 0.1626 (2.9754) 0.2134 (3.6921) 0.0024 (0.0109)

p = 0.5, λ1 = 1.0, λ2 = 2.0 and θ = 0.6

50 −0.0842 (0.0365) 0.1204 (2.6663) 0.2988 (4.1294) −0.0138 (0.0168)

100 −0.0504 (0.0198) 0.1396 (2.6824) 0.2313 (3.5838) −0.0040 (0.0125)

200 −0.0295 (0.0109) 0.1599 (2.7864) 0.1997 (3.3934) 0.0033 (0.0101)

p = 0.6, λ1 = 2.0, λ2 = 1.0 and θ = 0.6

50 −0.0971 (0.0371) 0.3248 (5.2681) 0.1466 (3.5077) −0.0223 (0.0192)

100 −0.0579 (0.0197) 0.1889 (2.9672) 0.0841 (2.0812) −0.0038 (0.0140)

200 −0.0328 (0.0104) 0.2081 (3.5633) 0.1566 (2.8898) 0.0038 (0.0106)

p = 0.5, λ1 = 2.0, λ2 = 1.0 and θ = 0.6

50 −0.0908 (0.0381) 0.2167 (2.8068) 0.0594 (1.6708) −0.0142 (0.0168)

100 −0.0500 (0.0199) 0.2812 (3.9913) 0.1786 (3.0712) −0.0053 (0.0133)

200 −0.0287 (0.0104) 0.1999 (3.3034) 0.1577 (2.7065) 0.0041 (0.0096)
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Table 2.2: Descriptive statistics.
Minimum Median Mean Variance Skewness Kurtosis ρ̂(1) Maximum
−47 −2.50 −4.07 260.8 −0.245 2.60 0.523 38

The time series data and their sample autocorrelations and partial autocorrelations are dis-
played in Figure 2.6. Analyzing Figure 2.6, we conclude that a first order autoregressive model
may be appropriate for the given data series, because of the clear cut-off after lag 1 in the
partial autocorrelations. Furthermore, the behavior of the series indicates that it may be mean
stationary. We compare our model with the TINAR(1) process introduced by Freeland (2010)
(asymmetric version).

The TINAR(1) process considered here has marginals following a Skellam distribution with
parameters λ1(1− p)−1 and λ2(1− p)−1, i.e., the marginals are distributed as Y1−Y2, where Y1
and Y2 are two independent Poisson random variables with mean λ1(1− p)−1 and λ2(1− p)−1,
respectively, and p is the associated thinning parameter of this process.
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Figure 2.6: Time series plot, autocorrelation and partial autocorrelation functions for the
GLOBAL Land-Ocean temperature index.
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In Table 4.6 we present the estimates of the parameters with their MdAE (median absolute
error) and estimated quantities (index of dispersion, skewness and kurtosis) for the fitted models.
The MdAE statistic is defined as follows. For t = 2, . . . , T , consider the expected value of the
observation at the previous time, E[Zt|Zt−1] = pZt−1+(1−p)(λ1−λ2)/(1−θ) (for GPDAR(1)
process). The MdA is obtained as the median of the |Zt−E(Zt|Zt−1)|. In general it is expected
that the best model to fit data presents the smallest values for this statistic. From Table 4.6, note
that all two models exhibit good fit of mean and variance, but only the GPDAR(1) model give
a reasonable fit of skewness and kurtosis, i.e., the TINAR(1) model is not able to reproduce the
skewness and kurtosis. Furthermore, the values of MdAE statistic indicate that the GPDAR(1)
model showed better result compared with TINAR(1) model. Based on these facts, we conclude
that the GPDAR(1) model capture more information of these data. The sample autocorrelations
of the residuals obtained from GPDAR(1) model are shown in Figure 2.7. From this figure, we
conclude that the proposed model fitted the data well.

Table 2.3: Estimates of the parameters, MdAE and estimated quantities for the GPDAR(1) and
TINAR(1) processes.

Model Estimates MdAE σ2
Z/µZ γ1 γ2

GPDAR(1) p̂ = 0.5233 8.6871 −64.071 −0.2433 3.7966
λ̂1 = 3.3152

λ̂2 = 4.5841

θ̂ = 0.6882

TINAR(1) p̂ = 0.5233 8.6909 −64.071 −0.0010 0.0038
λ̂1 = 61.1691

λ̂2 = 63.1088

Empirical −64.071 −0.2433 2.5993

2.7 Concluding remarks

In this chapter, we introduced the GPDAR(1) process. The main advantages of this new
model is the skewness, possible negative values for the time series and the distribution of the
difference of two GP random variables can have longer or shorter tails compared to the PD
distribution and the GPD distribution can be viewed as a generalisation of the PD distribution.
We did a review of the GP, quasi-binomial distribution and the GPAR(1) process. The properties
of the GPDAR(1) process was presented, mean, variance, skewness and kurtosis coefficients,
probability generating and cumulant function. The autocorrelation and spectral density are
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Figure 2.7: Sample autocorrelations of the residuals obtained from GPDAR(1) model.

obtained. The conditional expectation and variance were derived. A Monte Carlo simulation
study shows that the Yule-Walker estimators have a reasonable behaviour. An application to
real data set shows that the GPDAR(1) process is adequate to fit skew data set with positive and
negative values.

2.8 Appendix

Proof of Proposition 2.3.4

First, let us consider the case j ≥ 0 and k ≥ 0. We have,

P (St(Xt−1)− St(Yt−1) = j|Zt−1 = k) = P (St(Xt−1)−St(Yt−1)=j,Zt−1=k)
P (Zt−1=k)

= 1
P (Zt−1=k)

∑∞
l=0 P (St(Xt−1)−St(Yt−1) = j|Xt−1 = k+ l, Yt−1 = l)P (Xt−1 = k+ l, Yt−1 =

l).

We know that the random variables Xt−1 and Yt−1 have GP (λ1, θ) and GP (λ2, θ) distri-
butions, respectively. So, we find P (St(Xt−1) − St(Yt−1) = j|Xt−1 = k + l, Yt−1 = l).
Define U = St(Xt−1)|Xt−1 = k + l and V = St(Yt−1)|Yt−1 = l, with QB(p, θ/λ1, k + l) and
QB(p, θ/λ2, l) distributions respectively. Xt and Yt are independent random variables, so the
conditional distribution P (St(Xt−1)− St(Yt−1) = j|Xt−1 = k+ l, Yt−1 = l) is the convolution
of two random variables with QB distributions.
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Thus, let ∗ denote convolution, let f(i; p, θ, n) be the QB’s pmf, this is

f(i; p, θ, n) =
pq
(
n
i

)
(p+ yθ)y−1[q + (n− y)θ]n−y−1

(1 + nθ)n−1
.

Then,

P (U − V = j) =
∑
i

f(i+ j; p, θ/λ1, k + l)f(i; p, θ/λ2, l).

We have
0 ≤ i ≤ l and i ≤ k + l − j ⇒ 0 ≤ i ≤ min(l, l + k − j).

Thus,

P (U − V = j) =

min(l,l+k−j)∑
i=0

f(i+ j; p, θ/λ1, k + l)f(i; p, θ/λ2, l)

and
P (St(Xt−1)− St(Yt−1) = j|Zt−1 = k)

=
1

P (Zt−1 = k)

∑∞
l=0 P (St(Xt−1) − St(Yt−1) = j|Xt−1 = k + l, Yt−1 = l)P (Xt−1 = k +

l, Yt−1 = l)

=
∑∞

l=0

P (Xt−1 = k + l, Yt−1 = l)

P (Zt−1 = k)

∑min(l,l+k−j)
i=0 f(i+ j; p, θ/λ1, k + l)f(i; p, θ/λ2, l)

=
∑∞

l=0

∑min(l,l+k−j)
i=0

(λ1, θ)k+l(λ2, θ)l e−2lθf(i+ j; p, θ/λ1, k + l)f(i; p, θ/λ2, l)∑∞
y=0(λ2, θ)y(λ1, θ)y+ke−2yθ

.

For j ≥ 0, k < 0 we have

P (St(Xt−1)− St(Yt−1) = j|Zt−1 = k) = P (St(Xt−1)−St(Yt−1)=j,Zt−1=k)
P (Zt−1=k)

= 1
P (Zt−1=k)

∑∞
l=0 P (St(Xt−1) − St(Yt−1) = j|Xt−1 = l, Yt−1 = l − k)P (Xt−1 = l, Yt−1 =

l − k).

In this case, we have

i ≤ l − j and 0 ≤ i ≤ l − k ⇒ 0 ≤ i ≤ min(l − j, l − k)

and P (St(Xt−1)− St(Yt−1) = j|Zt−1 = k)
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=
1

P (Zt−1 = k)

∑∞
l=0 P (St(Xt−1)−St(Yt−1) = j|Xt−1 = l, Yt−1 = l−k)P (Xt−1 = l, Yt−1 =

l − k)

=
∑∞

l=0

P (Xt−1 = l, Yt−1 = l − k)

P (Zt−1 = k)

∑min(l−j,l−k)
i=0 f(i+ j; p, θ/λ1, l)f(i; p, θ/λ2, l − k)

=

∑∞
l=0

∑min(l−j,l−k)
i=0 (λ1, θ)l(λ2, θ)l−k e

−2lθf(i+ j; p, θ/λ1, l)f(i; p, θ/λ2, l − k)∑∞
y=0(λ2, θ)y(λ1, θ)y+ke

−2(y+k)θ .

Proof of Proposition 2.3.5

Using the definition of Zt, we have

E(Zt|Zt−1 = z) = E(St(Xt−1)− St(Yt−1) + νt|Xt−1 − Yt−1 = z)

= E(St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z) + E(νt)

since that νt, Xt−1 and Yt−1 are independent random variables and

E(νt) = E(εt)− E(δt) =
qλ1

1− θ
− qλ2

1− θ
=
q(λ1 − λ2)

1− θ
,

to find the conditional expectation of the Zt given Zt−1 = z we have find

E(St(Xt−1) + St(Yt−1)|Xt−1 − Yt−1 = z).

For z ≥ 0 we have,

E(St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z)

=
∞∑

r=−∞

rP (St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z)

=
∞∑

r=−∞

∞∑
y=0

rP (St(Xt−1)− St(Yt−1)|Xt−1 = z + y, Yt−1 = y)

=
∞∑

r=−∞

∞∑
y=0

r
P (St(Xt−1)− St(Yt−1), Xt−1 = z + y, Yt−1 = y)

P (Xt−1 − Yt−1 = z)

=

∑∞
y=0 P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)

∞∑
r=−∞

rP (St(Xt−1)− St(Yt−1)|Xt−1 = z + y, Yt−1 = y)

=

∑∞
y=0 P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
E(St(Xt−1)− St(Yt−1)|Xt−1 = z + y, Yt−1 = y).



2.8. APPENDIX 38

As defined in 2.2, we know that the random variables St(Xt−1)|Xt−1 = z+y and St(Yt−1)|Yt−1 =

y have QB(p, θ/λ1, z + y) and QB(p, θ/λ2, y) distributions, respectively. Then,

E(St(Xt−1)− St(Yt−1)|Xt−1 = z + y, Yt−1 = y) = (z + y)p− y p = z p

Then,

E(St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z) =

∑∞
y=0 P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
zp = zp.

For z < 0, we have

E(St(Xt−1) + St(Yt−1)|Xt−1 − Yt−1 = z)

=
∞∑

r=−∞

rP (St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z)

=
∞∑

r=−∞

∞∑
x=0

rP (St(Xt−1)− St(Yt−1)|Xt−1 = x, Yt−1 = x− z)

=
∞∑

r=−∞

∞∑
x=0

r
P (St(Xt−1)− St(Yt−1), Xt−1 = x, Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)

=

∑∞
x=0 P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)

∞∑
r=−∞

rP (St(Xt−1)− St(Yt−1)|Xt−1 = x, Yt−1 = x− z)

=

∑∞
x=0 P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
E(St(Xt−1)− St(Yt−1)|Xt−1 = x, Yt−1 = x− z),

so, as above,

E(St(Xt−1)− St(Yt−1)|Xt−1 = x, Yt−1 = x− z) = xp− (x− z)p = z p.

Then,

E(St(Xt−1)− St(Yt−1)|Xt−1 − Yt−1 = z) = zp

∑∞
x=0 P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
= z p.

Then, for Zt−1 = z, z ∈ Z, we have

E(Zt|Zt−1) = pZt−1 + µν ,

where µν = E(νt).
To find conditional variance, Var(Zt|Zt−1 = z) = E(Z2

t |Zt−1 = z) − [E(Zt|Zt−1 = z)]2,
we need to find E(Z2

t |Zt−1 = z). In the same way of conditional expectation, for z ≥ 0 we
have

E(Z2
t |Zt−1 = z) = E[(St(Xt−1)− St(Yt−1))2|Xt−1 − Yt−1 = z]

=
∞∑
y=0

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
E[((St(Xt−1)− St(Yt−1))2|Xt−1 = z + y, Yt−1 = y)],
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where,

E[(St(Xt−1)− St(Yt−1)2|Xt−1 = z + y, Yt−1 = y)]

= E(S2
t (Xt−1)|Xt−1 = z + y, Yt−1 = y)) + E(S2

t (Yt−1)|Xt−1 = z + y, Yt−1 = y))

−E[St(Xt−1)|Xt−1 = z + y, Yt−1 = y)]E[St(Yt−1)|Xt−1 = z + y, Yt−1 = y)]. (2.12)

We know that if the random variable U has quasi-binomial distribution then Var(U) is given
by (2.2), so

E(S2
t (Xt−1)|Xt−1 = z + y) = Var(St(Xt−1)|Xt−1) + E2(St(Xt−1)|Xt−1)

= p q

[
(y + z)2 −

z+y−1∑
j=0

(z + y)!θj

(z + y − j − 2)!(1 + (z + y)θ)j+1

]
+ (z + y)2p2

= p q(y + z)2 − p qW(z+y) + p2(z + y)2 = p[(z + y)2 − qW(z+y)] (2.13)

and
E(S2

t (Yt−1)|Yt−1 = y) = p(y2 − qWy), (2.14)

but W(x) =
∑x−1

j=0
x!θj

(x−j−2)!(1+xθ)j+1 . Xt−1 and Yt−1 are independent random variables, therefore

E[St(Xt−1)|Xt−1 = z + y, Yt−1 = y)]E[St(Yt−1)|Xt−1 = z + y, Yt−1 = y)]

= [p(z + y)][py] = y(z + y)p2. (2.15)

Replace (2.13), (2.14) and (2.15) in (2.12). We have

E(Z2
t |Zt−1 = z)

=
∞∑
y=0

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
{p[(z + y)2 − qW(z+y)] + p(y2 − qW(y))− y(z + y)p2}

=
∞∑
y=0

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
{p[(z + y)(z + y(1− p)) + y2]− pq[W(z+y) −W(y)]}.

Also,

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
=

e−λ1−λ2−zθ−2yθ(λ2, θ)y(λ1, θ)z+y∑∞
y=0 e−λ1−λ2−zθ−2yθ(λ2, θ)y(λ1, θ)z+y

,

where (λ, θ)x = λ(λ+xθ)x−1

x!
.
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Thus,

E(Z2
t |Zt−1 = z)

=
∞∑
y=0

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
{p[(z + y)(z + y(1− p)) + y2]− pq[W(z+y) −W(y)]}

=

∑∞
y=0 e−2yθ(λ2, θ)y(λ1, θ)y+z{p[(z + y)(z + y(1− p)) + y2]− pq[W(z+y) −W(y)]}∑∞

y=0 e−2yθ(λ2, θ)y(λ1, θ)z+y
.

Then, the conditional variance given Zt−1 = z, z ≥ 0 is

Var(Zt|Zt−1 = z) = E(Z2
t |Zt−1 = z)− [E(Zt|Zt−1 = z)]2

=

∑∞
y=0 e

−2yθ(λ2, θ)y(λ1, θ)y+z{p[(z + y)(z + y(1− p)) + y2 − q[W(z+y) +W(y)]}∑∞
y=0 e

−2yθ(λ2, θ)y(λ1, θ)z+y

− (pZt−1 + µν)
2.

For z < 0 we have

E(Z2
t |Zt−1 = z) = E[(St(Xt−1)− St(Yt−1))2|Xt−1 − Yt−1 = z]

=
∞∑
x=0

P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
E[((St(Xt−1)− St(Yt−1))2|Xt−1 = x, Yt−1 = x− z)].

But

E[(St(Xt−1)− St(Yt−1)2|Xt−1 = x, Yt−1 = x− z)]

= E(S2
t (Xt−1)|Xt−1 = x, Yt−1 = x− z)) + E(S2

t (Yt−1)|Xt−1 = x, Yt−1 = x− z))

−E[St(Xt−1)|Xt−1 = x, Yt−1 = x− z)]E[St(Yt−1)|Xt−1 = x, Yt−1 = x− z)]. (2.16)

We know that if the random variable U has quasi-binomial distribution then Var(U) is given
by (2.2), so

E(S2
t (Xt−1)|Xt−1 = x) = Var(St(Xt−1)|Xt−1 = x) + E2(St(Xt−1)|Xt−1 = x)

= p[x2 − qW(x)] (2.17)

and
E(S2

t (Yt−1)|Yt−1 = x− z) = p[(x− z)2 − qW(x−z)], (2.18)

where W(x) =
∑x−2

j=0
x!θj

(x−j−2)!(1+xθ)j+1 . Xt−1 and Yt−1 are independent random variable, there-
fore

E[St(Xt−1)|Xt−1 = x, Yt−1 = x− z)]E[St(Yt−1)|Xt−1 = x, Yt−1 = x− z)]

= x(x− z)p2. (2.19)
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Replacing (2.17), (2.18) and (2.19) in (2.16), we obtain

E(Z2
t |Zt−1 = z)

=
∞∑
x=0

P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
{p[x2 − qW(x)] + p[(x− z)2 − qW(x−z)]− x(x− z)p2}

=
∞∑
x=0

P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
{p[(x− z)(x(1− p)− z) + x2 − q(W(x) +W(x−z))]}.

We have that

P (Xt−1 = x)P (Yt−1 = x− z)

P (Xt−1 − Yt−1 = z)
=

e−λ1−λ2+zθ−2xθ(λ2, θ)(x−z)(λ1, θ)x∑∞
y=0 e−λ1−λ2−zθ−2yθ(λ2, θ)y(λ1, θ)y+z

where (λ, θ)x = λ(λ+xθ)x−1

x!
. Then,

E(Z2
t |Zt−1 = z)

=
∞∑
x=0

P (Xt−1 = z + y)P (Yt−1 = y)

P (Xt−1 − Yt−1 = z)
{p[(x)2 − qW(x)] + p((x− z)2 − qW(x−z))− x(x− z)p2}

=

∑∞
x=0 e−2xθ(λ2, θ)(x−z)(λ1, θ)x{p[(x− z)(x(1− p)− z) + x2 − q(W(x) +W(x−z))]}∑∞

y=0 e−2(y+z)θ(λ2, θ)y(λ1, θ)y+z

Thus, the conditional variance given Zt−1 = z, z < 0 is

Var(Zt|Zt−1 = z) = E(Z2
t |Zt−1 = z)− [E(Zt|Zt−1 = z)]2

=

∑∞
x=0(λ2, θ)(x−z)(λ1, θ)x{p[(x− z)(x(1− p)− z) + x2 − q(W(x) +W(x−z))]}e−2xθ∑∞

y=0(λ2, θ)y(λ1, θ)y+ze
−2(y+z)θ

−(pZt−1 + µν)
2.
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3 Improved estimation for the NGINAR process
Resumo

Neste capítulo, desenvolvemos estimadores aproximadamente não-viesados para um dos parâme-
tros do processo autoregressivo de valores inteiros de primeira ordem com distribuição marginal
geométrica baseado no operador thinning binomial negativo, processo NGINAR(1). Considera-
mos os estimadores de Yule-Walker do processo, derivamos o termo de primeira ordem do viés
para um dos parâmetros do modelo e propomos um novo estimador com viés ajustado. Um
estudo de simulação de Monte Carlo é considerado para analisar o comportamento do novo es-
timador.

Palavras-chave: Correção de viés. Processo NGINAR(1). Estimadores de mínimos quadra-
dos condicionais. Estimadores de Yule-Walker.

Abstract

In this paper, we developed nearly unbiased estimators for the parameters of the first-order
integer-valued autoregressive process with geometric marginal distributions based on the nega-
tive binomial thinning, NGINAR(1) process. We consider the Yule-Walker estimators, derive
the first order term of bias for one of the parameters and propose a new bias-adjusted estimator.
Monte Carlo simulation study is considered to analyse the behaviour of the new estimator.

Keywords: Bias correction. Conditional least square estimator. NGINAR(1) process. Yule-
Walker estimator.

3.1 Introduction

Integer-valued time series have received a lot of attention in recent decades. The motivation
for this was the need for new models that apply to count series whose observations are corre-
lated. McKenzie (1985) and Alzaid and Al-Osh(1987), independently, were the pioneered to
develop a model to time series of integer values based on binomial thinning operator (Steutel
and Van Harn, 1979). They introduced the first-order non-negative integer-valued autoregres-
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sive (INAR(1)) process with Poisson innovations and Poisson marginal distribution to modelling
discrete-valued time series.

McKenzie (1985) and Al-Osh and Aly (1992) proposed INAR(1) models with negative bi-
nomial and geometric marginals based on the binomial thinning operator. Ristić et al. (2009)
defined the negative binomial thinning operator using geometric counting series and introduced
the new stationary first-order integer-valued autoregressive process with geometric marginals
(NGINAR(1)). The authors obtained properties of the negative binomial thinning operator and
several properties of the process. Estimators of the unknown parameters of the model were
obtained by conditional least squares (CLS), as well as a Yule-Walker (YW) and the maximum
likelihood (ML) methods, asymptotic properties of the estimators are presented, simulation
study and an application to real data set to show the applicability of the NGINAR(1) model.
Bakouch (2010) obtained expressions for the factorial and joint higher-order moments and cu-
mulants, the spectral and bispectral densities for NGINAR(1) process. Awale et al. (2017)
compared coherent forecasts of two INAR models with geometric marginal, GINAR(1) model
based on the binomial thinning operator and NGINAR(1) model based on the negative binomial
thinning operator and discuss two applications of geometric INAR models to epidemiological
data.

The NGINAR(1) model is interesting in sense that the Poisson INAR(1) (Alzaid and Al-
Osh, 1987) is not always adequate on real situations since its mean and variance are equal,
when the mean is smaller than the variance (overdispersed data set) the NGINAR(1) is more
adequate than the Poisson INAR(1).

Although researchers have found parameters estimators of the time series models that have
good asymptotic properties, sometimes there is a problem when they work with a small number
of observations. The traditional approaches to parameter estimation in integer-valued time se-
ries, YW, CLS and ML, are biased in finite samples. Some authors in order to try to minimize
this problem have taken as an alternative the bias correction of estimators. For instance, Jung et.
al (2005) considered estimation in AR(1) models with discrete support and the use of bias cor-
rection techniques is applied to simulated Poisson INAR(1) processes. Weiß and Kim (2013)
considered the binomial AR(1) process, presented four approaches for estimating its model pa-
rameters, investigated the finite-sample performance of the estimators in a simulation study and
analyze the effect of applying a 2-block jackknife. Bourguignon and Vasconcellos (2015a) de-
rived the second-order bias of the SD estimator of the Poisson INAR(1) process for one of the
parameters and defined a bias-reduced estimator. Weiss and Schweer (2016) considered Pois-
son INAR(1) and INARCH(1) count data time series, explicit asymptotic approximations for
bias and standard deviation of common moment estimators are derived and their finite-sample
performance is shown by simulations.
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The purpose of this chapter is, considering the NGINAR(1) process, to derive a first-order
term of bias of the YW estimator for one of the parameters based on Weiß and Schweer (2016),
so to obtain a bias reduced estimator. To that end, we obtain some asymptotic results using
the NGINAR(1) process already demonstrated in the paper by Weiß and Kim (2013) for the
Poisson INAR(1) and Poisson INARCH(1) (Heinen, 2003; Weiß 2010) processes.

The chapter unfolds as follows. In Section 2, we introduced the NGINAR(1) process and
some basic properties are outlined and the moment estimators are presented. In Section 3, we
derive the expression of the first-order term of bias of the YW estimator. Numerical results from
Monte Carlo simulations are presented and discussed in Section 4. Finally, Section 5 concludes
the chapter.

3.2 NGINAR(1) process

Ristić et al. (2009) introduced the NGINAR(1) process based on the negative binomial
thinning operator. Let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. The NGINAR(1) process is
given by

Xt = α ∗Xt−1 + εt, t ∈ N, (3.1)

where the operator ∗ is defined as α ∗X =
∑X

i=1 Yi, α ∈ [0, 1), {Xt}N0 is a stationary process
with geometric (µ/(1 + µ)) marginals, with probability mass function given by Pr(Xt = x) =

µx/(1+µ)x+1, x ∈ N0, {Yi} is a sequence of independent identically distributed (i.i.d.) random
variables with geometric(α/(1 + α)) distribution, {εt} is a sequence of i.i.d. random variables
independent of {Yi} and Xt−l and εt are independent for all l ≥ 1. The unconditional mean
and variance of Xt following the NGINAR(1) process are given by µX = E(Xt) = µ and
σ2
X = Var(Xt) = µ(1 + µ), respectively.

Ristić et al. (2009) proved that the random variable εt is a mixture of two random variables
with geometric(µ/(1 + µ)) and geometric(α/(1 +α)) and the probability mass function of εt is
given by

Pr(εt = l) =

(
1− αµ

µ− α

)
µl

(1 + µ)l+1
+

αµ

µ− α
αl

(1 + α)l+1
, l ∈ N,

where α ∈ [0, µ/(1 + µ)], so that the function is well defined. The unconditional mean and
variance of εt are given by E(εt) = (1−α)µ and σ2

ε = Var(εt) = µ(1+α)((1+µ)(1−α)−α).
Let {Xt}N0 be a process following the NGINAR(1) model. Then, Xt follows a strictly

stationary ergodic Markov chain with transition probabilities
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Pr(Xt = k|Xt−1 = 0) =

(
1− αµ

µ− α

)
µk

(1 + µ)k+1
+

αµ

µ− α
αk

(1 + α)k+1
, k ∈ N,

pk|l =
µαk+1

(µ− α)(1 + α)k+l+1

(
l + k

k

)
+

(
1− αµ

µ− α

)
µk

(1 + α)l(1 + µ)k+1

k∑
m=0

(
l +m− 1

l − 1

)[
α(1 + µ)

µ(1 + α)

]m
, l ≥ 1,

where
( ·
·

)
is the standard combinatorial symbol and pk|l := Pr(Xt = k|Xt−1 = l).

The autocorrelation function of the NGINAR(1) process is given by ρ(k) = αk, α ∈
[0, µ/(1 + µ)], k ≥ 0, which has exponential decay, as in the classical Gaussian AR(1) model.

The expressions of k-step ahead conditional mean and variance are given, respectively, by

E(Xt+k|Xt) = αkXt +
1− αk

1− α
µε,

and

Var(Xt+k|Xt) =

αk(1 + α)(1− αk)
1− α

Xt +
1− α2k

1− α2
σ2
ε +

α(1 + α + 2µε)

1− α

(
1− α2k

1− α2
− αk−11− αk

1− α

)
µε

+

[
1− α2k

1− α2
− 1− 2αk + α2k

(1− α)2

]
µ2
ε .

Bakouch (2010) considered the NGINAR(1) process and derived expressions for the joint
higher order moments and cumulants of the process. Such expressions are essential for the
development of the properties of the parameter estimators of the NGINAR(1) model. Denote
the kth-order joint moment of the random variables Xt, Xt+s1 , . . . , Xt+sk−1

by

E(Xt ·Xt+s1 · . . . ·Xt+sk−1
) = µ(s1, . . . , sk−1).

Formulae for second-order, third-order and fourth-order joint moments of the NGINAR(1) pro-
cess by Bakouch (2010) are given below.

Theorem 3.2.1. Let (Xt)N0 be a stationary NGINAR(1) process as (3.1).

(i) The second-order joint moment of the NGINAR(1) process is given by

µ(s) = µ(1 + µ)αs + µ2, s ≥ 0.
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(ii) For the third-order joint moment of the NGINAR(1), we have that

µ(0, s) = µ(1 + 5µ+ 4µ2)αs + µ2(1 + 2µ), s ≥ 0,

µ(s, s) = 2µ(1+µ)2

1−α α2s+1 + 2µ2(1+µ)
1−α α2s + µ(1+µ)(1−2µ)

1−α αs+1 + µ(1+µ)(1+2µ)
1−α αs

+ µ2(1 + 2µ), s ≥ 0,

µ(s, u) = αu−sµ(s, s) + (1− αu−s)µµ(s), u > s.

(iii) For the fourth-order joint moment of the NGINAR(1) process, we have that

µ(0, 0, s) = µ(1 + 13µ+ 30µ2 + 18µ3)αs + µ2(1 + 6µ+ 6µ2), s ≥ 0

µ(0, s, s) = α2µ(0, s− 1, s− 1) + α(1 + α + 2(1− α)µ)µ(0, s− 1)

+ (σ2
ε + µ2

ε)µ(0), s > 0,

µ(0, s, u) = αµ(0, s, u− 1) + (1− α)µµ(0, s), u > s > 0,

µ(s, u, v) = αµ(s, u, v − 1) + (1− α)µµ(s, u), v > u > s > 0,

µ(s, u, u) = α2µ(s, u− 1, u− 1) + α(1 + α + 2(1− α)µ)µ(s, u− 1) + (σ2
ε + µ2

ε),

u > s > 0,

µ(s, s, u) = αµ(s, s, u− 1) + (1− α)µµ(s, s), u > s > 0,

µ(s, s, s) = α3µ(s− 1, s− 1, s− 1) + 3α2(1 + α + (1− α)µ)µ(s− 1, s− 1)

+α(−6αµ2 + 6µ2 − 9α2µ− 3αµ+ 6µ+ 2α2 + 3α + 1)µ(s− 1)

+µ2(−6α3 − 6µα2 − 6α2 − 6µ2α− 6µα− α + 6µ2 + 6µ+ 1), s > 0.

In particular,

E(X2
t ) = µ(0) = µ(1 + 2µ), E(X3

t ) = µ(0, 0) = µ(1 + 6µ+ 6µ2),

E(X4
t ) = µ(0, 0, 0) = µ(1 + 14µ+ 36µ2 + 24µ3).

From Theorem 3.2.1, we obtain that the closed form for µ(0, k, k) and µ(1, k, k) are given
by

µ(0, k, k) = α2kµ(0, 0, 0) + α(1 + α + 2(1− α)µ)

[
µ(1 + µ)(1 + 4µ)

1− α
(αk−1 − α2k−1)

−µµ(0)
α2k

1− α2

]
− (σ2

ε + µ2
ε)µ(0)

α2k

1− α2
+ µ(0)2, (3.2)

and



3.2. NGINAR(1) PROCESS 47

µ(1, k, k) = α2(k−1)µ(1, 1, 1) + α(1 + α + 2(1− α)µ)
[µ(1, 1)

1− α
(αk−2 − α2k−3)

−µµ(1)(
α2k−2

1− α2
+
αk−2 − α2k−3

1− α
)
]
− (σ2

ε + µ2
ε)µ(1)

α2k−2

1− α2

+µ(0)µ(1). (3.3)

3.2.1 Estimation of the unknown parameters

In real situations, it is not possible to know the true values of the model parameters, so
it is needed to estimate them from a given time series data. In the NGINAR(1) model we
are interested in estimating the unknown parameter vector η = (α, µ)>. Estimation of the
NGINAR(1) parameters was considered by Ristić et al. (2009), who present three approaches
for estimating its model parameters based on a given time series data and derived expressions
for the asymptotic distributions of these estimators. The approaches were CLS estimation, YW
estimation or moments estimation and, finally, maximum likelihood (ML) estimation. Here, we
present only the ML and Yule-Walker approaches.

Among the most used estimators in the literature is ML. The ML estimator is obtained by
maximizing the log-likelihood function `(α, µ). The log-likelihood for X1, X2, . . . , XT stem
from a stationary NGINAR(1) process is given by

`(α, µ) = x1 log(µ)− (x1 + 1) log(1 + µ) +
T∑
t=2

log[P (Xt = k|Xt−1 = l)].

where the transition probabilities P (Xt = k|Xt−1 = l) are given by (3.2).
In general, for time series is naturally consider the CML instead the ML estimator when

the marginal distribution is unknown. The CML estimators are obtained by maximizing the
conditional log-likelihood function, for X1, X2, . . . , XT stem from a stationary NGINAR(1)
process, we have the conditional log-likelihood is given by

`c(α, µ) = log

[ T∏
t=2

P (Xt = k|Xt−1 = l)

]
=

T∑
t=2

log[P (Xt = k|Xt−1 = l)],

In general, to obtain the maximum value of the log-likelihood and conditional log-likelihood
function is necessary a numerical method. The YW estimator is a reasonable alternative to ML
and CML, because has a simple expression.

Let X1, . . . , XT be a realization from a NGINAR(1) process with parameters α and µ. Let
X̄T = 1

T

∑T
i=1Xi be the sample mean. We have that µ̂ = X̄T is an unbiased estimator of µ and



3.3. BIAS CORRECTION YULE-WALKER ESTIMATOR 48

knowing that the autocorrelation function is given by ρ(k) = αk, YW estimator of α based on
the empirical first-order autocorrelation is given by the expression

α̂YW = ρ̂(1) =

∑T
t=2(Xt −XT )(Xt−1 −XT )∑T

t=1(Xt −XT )2
.

The asymptotic distribution of YW estimators is given in next proposition.

Proposition 3.2.2. (Ristić et al., 2009) The joint distribution of the YW estimators satisfies
√
T (α̂YW − α, µ̂− µ)>

d→ N(0,Σα,µ).

where

Σα,µ =


(1 + α)(µ+ µ2 + α + αµ− αµ2)

µ(1 + µ)

α(1 + α)

1− α

α(1 + α)

1− α
µ(1 + µ)(1 + α)

1− α


where d→ meaning convergence in distribution.

Ristić et al. (2009) showed that the YW estimators have same asymptotic distribution of
CLS estimators.

3.3 Bias correction Yule-Walker estimator

In general the classical approaches of estimation produce biased estimators, but this is not a
problem when the sample size is large. However, for moderate sample sizes, bias can become a
problem. When the sample size is small it becomes necessary to use a bias correction to obtain
a reduced-bias estimator. In this section, we will derive the first-order bias of the YW estimator
of α and, based on Weiß and Schweer (2016), we propose a bias-corrected YW estimator.

We have that the NGINAR(1) process is a strictly stationary and ergodic process (Ristić et
al. 2009). In the same way of Weiß and Schweer (2016), to obtain the bias correction to α̂
estimator we need the following result whose proof is in the Appendix.

Proposition 3.3.1. Let (Xt)N0 be a stationary NGINAR(1) process as (3.1). Define the trivariate
process ξt by

ξt = (Xt − µ,X2
t − µ(0), XtXt−1 − µ(1))>, with µ(k) := E(XtXt−k). (3.4)

Then,

T−1/2
T∑
t=1

ξt
d−→ N(0,Σ),
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with Σ = (σi,j) being

σi,j = E(ξi0ξ
j
0) +

∞∑
k=1

E(ξi0ξ
j
k) +

∞∑
k=1

E(ξikξ
j
0),

ξht representing the hth component of ξt and the σi,j are given by

σ1,1 =
1 + α

1− α
σ2
X , σ1,2 =

1 + α + α2 − α3

(1− α)(1− α2)
σ2
X +

2 + 3α + 2α2

1− α2
µσ2

X ,

σ1,3 =
α(2 + 2α− 2α3)

(1− α)(1− α2)
σ2
X +

2(1 + 3α + 2α2 + α3)

1− α2
µσ2

X , σ2,1 = σ1,2,

σ2,2 =
1 + α + 3α2 − α3

(1− α)(1− α2)
σ2
X +

1 + 11α + 5α2 − α3

(1− α)(1− α2)
µσ2

X +
9 + 16α + 9α2

1− α2
µ2σ2

X

+
11(1 + α2)

1− α2
σ4
X ,

σ2,3 =
(2 + 3α + 4α2 − α3)

(1− α)(1− α2)
ασ2

X +
(2 + 21α + 4α2 − 11α3)

(1− α)(1− α2)
αµσ2

X

+
(8 + 10α + 19α2 − 2α3)

1− α2
µ2σ2

X +
(6α− 3α2 + 12α3)

1− α2
σ4
X +

3α2(1 + α)µ

1− α2

+
(1 + 6α2 − 6α3)

1− α2
µ2 − 9α3

1− α2
µ3 − 1 + 3α2

1− α2
µ4,

σ3,1 = σ1,3, σ3,2 = σ2,3,

σ3,3 =
α + 2α2 + 10α3 + 5α4 − 6α5

(1− α)(1− α2)
σ2
X +

1 + 19α2 − 6α3 + 14α4

1− α2
σ4
X

+
6α + 7α2 + 25α3 − 21α4 − α5

(1− α)(1− α2)
µσ2

X +
4 + 20α + 11α2 − 15α3 + 25α4 − 43α5

(1− α)(1− α2)
µ2σ2

X

+
α2

1− α2
µ+

4α− α2

1− α2
µ2 +

2

1− α2
µ4.

To obtain the bias correction we will proceed as Weiß and Schweer (2016). Define the
function f : R3 → R:

f(x1, x2, x3) :=
x3 − x21
x2 − x21

.

Considering η = (µX , µ(0), µ(1)), where µX is the mean of the process and µ(k) as defined
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in (3.4), and the vector

XT =

(
1

T

T∑
t=1

Xt,
1

T

T∑
t=1

Xt
2,

1

T

T∑
t=1

XtXt−1

)
,

we have that
f(η) = ρ(1) and f(XT) =

γ̂(1)∗

γ̂(0)∗
,

where γ̂(0)∗ = γ̂(0) = 1
T

∑T
t=1X

2
t − X̄2

T , γ̂(1)∗ = γ̂(1) + 1
T

[X̄T (XT − X̄T ) +X1(X̄T −X0)]

and γ̂(k) = 1
T

∑T−k
t=1 (Xt − X̄T )(Xt+k − X̄T ) is the sample autocovariance function.

To compute the bias correction we need the second-order partial derivatives of the f function
to find the Hessian matrix, so we use a second-order Taylor expansion for f function. The first-
order partial derivatives are

∂f

∂x1
=

2x1(x3 − x2)
(x2 − x21)2

,
∂f

∂x2
=

x21 − x3
(x2 − x21)2

,
∂f

∂x3
=

1

x2 − x21
,

and the Hessian matrix is given by

Hf (x1, x2, x3) =



2(x3 − x2)(x2 + 3x21)

(x2 − x21)3
−2x1(2x3 − x2 − x21)

(x2 − x21)3
2x1

(x2 − x21)2

∗ 2(x3 − x21)
(x2 − x21)3

−1

(x2 − x21)2

∗ ∗ 0


.

We have that (µX , µ(0), µ(1)) = (µ, µ(1 + 2µ), µ(µ+ α(1 + µ))), then

Hf (µX , µ(0), µ(1)) =



−2(1− α)(σ2
X + 4µ2)

σ4
X

2(1− 2α)µ

σ4
X

2µ

σ4
X

∗ 2α

σ4
X

−1

σ4
X

∗ ∗ 0


.

Now, denote the vector YT := 1√
T

∑T
t=1 ξt. By a second order Taylor expansion for f function,

we obtain the bias correction from

B(α̂YW ) := T E[ρ̂(1)− ρ(1)] ≈ E

[
1

2
Y>THf (µ, µ(0), µ(1))YT

]
≈ 1

2
(h1,1σ1,1 + h2,2σ2,2 + 2h1,2σ1,2 + 2h1,3σ1,3 + 2h2,3σ2,3),



3.3. BIAS CORRECTION YULE-WALKER ESTIMATOR 51

where hi,j representing the (i, j) element from Hf , the Hessian matrix. Thus,

B(α̂YW ) =
1

2

[
−2(1− α)(σ2

X + 4µ2)

σ4
X

σ1,1 +
4α

σ4
X

σ2,2 +
4(1− 2α)µ

σ4
X

σ1,2 +
4µ

σ4
X

σ1,3 −
2

σ4
X

σ2,3

]
.

Replacing the terms of covariance matrix given in Proposition 3.3.1, we have

B(α̂YW ) =
1

σ4
X

{
− (1− α)(σ2

X + 4µ2)
1 + α

1− α
σ2
X + 2α

[
1 + α + 3α2 − α3

(1− α)(1− α2)
σ2
X

+
11(1 + α2)

1− α2
σ4
X +

1 + 11α + 5α2 − α3

(1− α)(1− α2)
µσ2

X +
9 + 16α + 9α2

1− α2
µ2σ2

X

]

+ 2(1− 2α)µ

[
2 + 3α + 2α2

1− α2
µσ2

X +
1 + α + α2 − α3

(1− α)(1− α2)
σ2
X

]

+ 2µ

[
α(2 + 2α− 2α3)

(1− α)(1− α2)
σ2
X +

2(1 + 3α + 2α2 + α3)

1− α2
µσ2

X

]

− 2

[
(2 + 3α + 4α2 − α3)

(1− α)(1− α2)
ασ2

X +
(2 + 21α + 4α2 − 11α3)

(1− α)(1− α2)
αµσ2

X

+
(8 + 10α + 19α2 − 2α3)

1− α2
µ2σ2

X +
(6α− 3α2 + 12α3)

1− α2
σ4
X

+
3α2(1 + α)µ

1− α2
+

(1 + 6α2 − 6α3)

1− α2
µ2 − 9α3

1− α2
µ3 − 1 + 3α2

1− α2
µ4

]}
.

After some algebra, we have

B(α̂YW ) =
1

σ4
X

[
2(1− 9α2 − 2α3 + 10α4)

(1− α)(1− α2)
µσ2

X +
2(−8 + α2 + 11α3 + 2α4)

1− α2
µ2σ2

X

+
(−2− 4α− 2α2)α

(1− α)(1− α2)
σ2
X +
−1 + 9α + 7α2 − α3

1− α2
σ4
X −

6α2(1 + α)

1− α2
µ

− 2(1 + 6α2 − 6α3)

1− α2
µ2 +

18α3

1− α2
µ3 +

2(1 + 3α2)

1− α2
µ4

]
.

Finally, the bias is given by

B(α̂YW ) =
−1 + 9α + 7α2 − α3

1− α2
+

1

σ2
X

{
(−2− 10α + 4α2)α

(1− α)(1− α2)
+

2µ

1− α2

[
− 4α3 − 8α2 − 2α

+ (−7 + 4α2 + 1α3 + 2α4)µ
]}

+
6α3µ3

(1− α2)σ4
X

. (3.5)

Note that the bias depends on the α and µ values and it is important to remember that there
is a dependence between α and µ (α ∈ [0, µ/(1 + µ)]), so the bias expression is extremely
influenced by the µ value.
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Using (3.5), we consider a bias-reduced YW estimator α of α as

α = α̂YW −
1

T
B(α̂YW ). (3.6)

It is easy to see that α has the same asymptotic normal distribution as the original estimator
α̂YW given in Proposition 3.2.2, since the first-order bias term is O(T−1).

3.4 Numerical evaluation

In this section, we compare the finite-sample performances of the bias-reduced YW esti-
mates, YW estimates and ML estimates. We performed a Monte Carlo simulation study with
5000 replications and sample sizes T = 45, 60, 75 and 100. The values of α in the simulation
study were α = 0.1, 0.3 and 0.4 for a fixed µ = 1 and we considered α = 0.2, 0.4 and 0.5 for
a fixed µ = 4. The choice of α values was made considering the restriction α ∈ [0, µ/(1 + µ)].
The Monte Carlo simulation experiments were performed using the R programming language;
see http://www.r-project.org.

Tables 3.1 and 3.2 present the simulated mean estimates and mean squared error (MSE) of
the YW, bias-reduced YW (YWc) and ML estimators. Based on both measures, we observe
that, in general, the best estimator of α, in terms of bias, was our proposed estimator the bias-
reduced YW estimator. Also, the YW estimator has the worst performance in terms of bias. In
some cases, for instance, T = 100, the bias-reduced YW is not better than the ML estimator, but
the estimates of both are very close. It is important remember that the bias-reduced estimator
has a closed-form expression of easy implementation, where as the ML estimates have to be
computed using a numerical optimization method. In terms of MSE we have that, in general,
the ML estimators presents the smallest results, while the bias-reduced YW presents the largest
results.

The approximations become better and the MSE become smaller as T increases, as expected.
So, based on our numerical results we recommend the use of the reduced-bias YW as estimator
of the α parameter of an NGINAR(1) process especially in small sample size case.

3.5 Concluding remarks

In this paper, we considered the NGINAR(1) process and developed nearly unbiased esti-
mators for one of the unknown parameters. For this, we consider the Yule-Walker estimators,
derive the second-order bias for the parameter and propose a new bias-adjusted estimator. A
Monte Carlo simulation study is considered to analyse the behaviour of the new estimator. The
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Table 3.1: Simulated mean for estimators and MSEs (in parentheses) of α = 0.1, 0.2 and 0.3

fixed µ = 1.
µ = 1 α = 0.1 α = 0.2 α = 0.3

T α̂YW α̂YWc α̂ML α̂YW α̂YWc α̂ML α̂YW α̂YWc α̂ML

45 0.0656 0.1015 0.1321 0.1575 0.2122 0.2169 0.2380 0.3094 0.3171
(0.0226) (0.0328) (0.0330) (0.0247) (0.0375) (0.0432) (0.0285) (0.0426) (0.0667)

60 0.0748 0.1013 0.1179 0.1650 0.2012 0.2042 0.2523 0.3005 0.3029
(0.0172) (0.0216) (0.0171) (0.0202) (0.0247) (0.0281) (0.0210) (0.0240) (0.0428)

75 0.0785 0.0992 0.1129 0.1736 0.2029 0.2005 0.2616 0.2973 0.2962
(0.0138) (0.0161) (0.0122) (0.0153) (0.0176) (0.0180) (0.0177) (0.0182) (0.0289)

100 0.0858 0.1010 0.1092 0.1803 0.2006 0.1988 0.2710 0.2960 0.2898
(0.0105) (0.0117) (0.0081) (0.0119) (0.0127) (0.0111) (0.0135) (0.0129) (0.0160)

Table 3.2: Simulated mean for estimators and MSEs (in parentheses) of α = 0.2, 0.4 and 0.5

fixed µ = 4.
µ = 4 α = 0.2 α = 0.4 α = 0.5

T α̂YW α̂YWc α̂ML α̂YW α̂YWc α̂ML α̂YW α̂YWc α̂ML

45 0.1633 0.2047 0.2238 0.3412 0.4092 0.3779 0.4250 0.5132 0.4496
(0.0226) (0.0287) (0.0082) (0.0237) (0.0453) (0.0102) (0.0256) (0.0766) (0.0134)

60 0.1705 0.1998 0.2168 0.3538 0.3964 0.3829 0.4427 0.4941 0.4518
(0.0162) (0.0188) (0.0063) (0.0176) (0.0196) (0.0102) (0.0183) (0.0331) (0.0088)

75 0.1765 0.1995 0.2135 0.3635 0.3960 0.3894 0.4538 0.4834 0.4595
(0.0128) (0.0136) (0.0048) (0.0134) (0.0131) (0.0061) (0.0143) (0.0171) (0.0066)

100 0.1833 0.2003 0.2119 0.3729 0.3913 0.3923 0.4647 0.4777 0.4678
(0.0097) (0.0100) (0.0038) (0.0107) (0.0090) (0.0048) (0.0110) (0.0093) (0.0046)
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results of the simulation study showed that the bias-reduced YW estimator had the best perfor-
mance in terms of bias compared with the YW and ML estimators and in terms of the MSE
the ML estimators had the better results. Based on the results, we recommend the use of the
reduced-bias YW as estimator of the α parameter of an NGINAR(1) process especially in small
sample size case.

3.6 Appendix

Proof of Proposition 3.3.1

We have that the stationary NGINAR(1) process is α-mixing with exponentially decreasing
weights, so the proof is similar to that of Schweer and Weiß (2014) Appendix A.4. there exist
a > 0 and 0 < ν < 1 such that the sequence (fn)N of weights can be defined as fn = a · νn.
Consider the multivariate process ξt defined by

ξt := (Xt − µ,X2
t − µ(1 + 2µ), XtXt−1 − µ(µ+ α(1 + µ))).

Since ξt is a function of finitely many random variables for Xt, ξt is also α-mixing with
exponentially decreasing weights f̃n = ã · νn. In particular,

∑
n∈N f̃

1/2
n <∞.

Applying a multivariate version of the result given on p.376 in Billingsley (1979), it follows
that T−1/2

∑T
t=1 ξt has an asymptotically multivariate normal distribution with zero mean vector

and covariance matrix Σ = (σi,j) with

σi,j = E(ξi0ξ
j
0) +

∞∑
k=1

E(ξi0ξ
j
k) +

∞∑
k=1

E(ξikξ
j
0),

where ξht representing the h-th component of ξt. Using the expression for the joint moments
given by Theorem (3.2.1), we have

σ1,1 = E[(ξ10)2] + 2
∞∑
k=1

E[ξ10ξ
1
k] = σ2

X + 2
∞∑
k=1

γ(k) = σ2
X(1 + 2

∞∑
k=1

ρk) = σ2
X

1 + ρ

1− ρ
.

Now, we consider σ1,2.

σ1,2 = E[ξ10ξ
2
0 ] +

∞∑
k=1

E[ξ10ξ
2
k] +

∞∑
k=1

E[ξ1kξ
2
0 ].
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Using formulae of the joint moments, we obtain

E[ξ10ξ
2
0 ] = µ(0, 0)− µµ(0) = µ(1 + 6µ+ 6µ2)− µ2(1 + 2µ)

= (1 + 4µ)σ2
X ,

E[ξ10ξ
2
k] = µ(k, k)− µµ(0) = 2µσ2

Xα
2k + 2µσ2

Xα
k +

αk + αk+1 − 2α2k+1

1− α
σ2
X

+µµ(0)− µµ(0)

= 2µσ2
Xα

2k + 2µσ2
Xα

k +
αk + αk+1 − 2α2k+1

1− α
σ2
X ,

E[ξ1kξ
2
0 ] = µ(0, k)− µµ(0) = µ(1 + 5µ+ 4µ2)αk + µµ(0)− µµ(0) = (1 + 4µ)σ2

Xα
k.

Then,

σ1,2 = (1 + 4µ)σ2
X + 2µσ2

X

α2

1− α2
+ 2µσ2

X

α

1− α
+

σ2
X

1− α
(

α

1− α
+

α2

1− α
− 2α3

1− α2
)

+(1 + 4µ)σ2
X

α

1− α

=
1 + α + α2 − α3

(1− α)(1− α2)
σ2 +

2 + 3α + 2α2

1− α2
µσ2

X .

For σ1,3, we have

σ1,3 =
∞∑
k=1

E[ξ10ξ
3
k] +

∞∑
k=0

E[ξ1kξ
3
0 ].

So,

E[ξ10ξ
3
k] = µ(k − 1, k)− µµ(1) = αµ(k − 1, k − 1) + (1− α)µµ(k − 1)− µµ(1)

= 2µσ2
Xα

2k−1 + 2µσ2
Xα

k +
αk + αk+1 − 2α2k

1− α
σ2
X + (1− α)µσ2

Xα
k−1,

E[ξ1kξ
3
0 ] = µ(1, k + 1)− µµ(1) = αk[µ(1, 1)− µµ(1)].

Thus,

σ1,3 = 2µσ2
X

α

1− α2
+ 2µσ2

X

α

1− α
+ (

α

1− α
+

α2

1− α
− 2α2

1− α2
)
σ2
X

1− α
+ (1− α)

µσ2
X

1− α

+
µ(1, 1)− µµ(1)

1− α
.

We have

µ(1, 1)− µµ(1) = (1 + 2α)ασ2
X + 2α(1 + α)µσ2

X + µµ(0)− µµ(1)

= α(1 + 2α)σ2
X + (α + 2α2 + 1)µσ2

X .

Thus,

σ1,3 =
(2 + 2α− 2α3)α

(1− α)(1− α2)
σ2
X +

2 + 6α + 4α2 + 2α3

1− α2
µσ2

X .
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For σ2,2, we have

σ2,2 = E[(ξ20)2] + 2
∞∑
k=1

E[ξ20ξ
2
k].

Then,

E[(ξ20)2] = µ(0, 0, 0)− (µ(0))2,

E[ξ20ξ
2
k] = µ(0, k, k)− µ(0)2

= α2kµ(0, 0, 0) + α(1 + α + 2(1− α)µ)(µ(1 + 5µ+ 4µ2)
αk−1 − α2k−1

1− α

+µµ(0)
1− α2k

1− α2
) + µε,2µ(0)

1− α2k

1− α2
− µ(0)2

= α2kµ(0, 0, 0) + α(1 + α + 2(1− α)µ)(µ(1 + 5µ+ 4µ2)
αk−1 − α2k−1

1− α
−

µµ(0)
α2k

1− α2
)− µε,2µ(0)

α2k

1− α2
+ α(1 + α + 2(1− α)µ)

µµ(0)

1− α2

+
µε,2µ(0)

1− α2
− µ(0)2.

where µε,2 = E[ε2t ] = σ2
ε + µ2

ε .

We have
α(1 + α + 2(1− α)µ)

µµ(0)

1− α2
+
µε,2µ(0)

1− α2
− µ(0)2 = 0.

So,

E[ξ20ξ
2
k] = α2kµ(0, 0, 0) + α[1 + α + 2(1− α)µ]

[
µ(1 + 5µ+ 4µ2)

αk−1 − α2k−1

1− α

−µµ(0)
α2k

1− α2

]
− µε,2µ(0)

α2k

1− α2
.

Thus,

σ2,2 = µ(0, 0, 0)− (µ(0))2 + 2
∞∑
k=1

{
α2kµ(0, 0, 0)− α(1 + α + 2(1− α)µ)

[
µµ(0)

α2k

1− α2

−µ(1 + 5µ+ 4µ2)
αk−1 − α2k−1

1− α

]
− µε,2µ(0)

α2k

1− α2

}
.

After a exhaustive algebra, and using the formula of the sum of the geometric series, we
have
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σ2,2 =
1 + α + 3α2 − α3

(1− α)(1− α2)
σ2
X +

11(1 + α2)

1− α2
σ4
X +

1 + 11α + 5α2 − α3

(1− α)(1− α2)
µσ2

X

+
9 + 16α + 9α2

1− α2
µ2σ2

X .

For σ2,3, we have that,

σ2,3 =
∞∑
k=1

E[ξ20ξ
3
k] +

∞∑
k=0

E[ξ2kξ
3
0 ].

So,

E[ξ20ξ
3
k] = µ(0, k − 1, k)− µ(0)µ(1)

= µ(0, 0, 0)α2k−1 + α(1 + α + 2(1− α)µ)

[
(1 + 4µ)σ2

X(
αk−1 − α2k−2

1− α
)

−µµ(0)
α2k−1

1− α2

]
− µε,2µ(0)

α2k−1

1− α2
+ µ(1− α)(1 + 4µ)σ2

Xα
k−1,

E[ξ2kξ
3
0 ] = µ(1, k + 1, k + 1)− µ(0)µ(1)

= µ(1, 1, 1)α2k + α(1 + α + 2(1− α)µ)

[
µ(1, 1)

(αk−1 − α2k−1)

1− α
− µµ(1)

(
α2k

1− α2

+
αk−1 − α2k−1

1− α

)]
− µε,2µ(1)

α2k

1− α2
.

Thus,

σ2,3 =
∞∑
k=1

{
µ(0, 0, 0)α2k−1 + α(1 + α + 2(1− α)µ)

[
(1 + 4µ)σ2

X(
αk−1 − α2k−2

1− α
)

−µµ(0)
α2k−1

1− α2

]
− µε,2µ(0)

α2k−1

1− α2
+ µ(1− α)(1 + 4µ)σ2

Xα
k−1
}

+
∞∑
k=0

{
µ(1, 1, 1)α2k + α(1 + α + 2(1− α)µ)

[
µ(1, 1)

(αk−1 − α2k−1)

1− α

−µµ(1)

(
α2k

1− α2
+
αk−1 − α2k−1

1− α

)]
− µε,2µ(1)

α2k

1− α2

}
.
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Using the formula of the sum of the geometric series, σ2,3 can be written as

σ2,3 = µ(0, 0, 0)
α

1− α2
+ α(1 + α + 2(1− α)µ)

[
(1 + 4µ)

1− α
σ2
X(

1

1− α
− 1

1− α2
)

− µµ(0)

1− α2

α

1− α2

]
− µε,2µ(0)

1− α2

α

1− α2
+ µ(1 + 4µ)σ2

X +
µ(1, 1, 1)

α2

+α(1 + α + 2(1− α)µ)

{
µ(1, 1)

1− α

(
α−1

1− α
− α−1

1− α2

)

−µµ(1)

[
1

(1− α2)2
+

1

1− α

(
α−1

1− α
− α−1

1− α2

)]}
− µε,2µ(1)

(1− α2)2
.

After a exhaustive and long algebra, we have

σ2,3 =
α(2 + 21α + 4α2 − 11α3)

(1− α)(1− α2)
µσ2

X +
(8 + 10α + 19α2 − 2α3)

1− α2
µ2σ2

X

+
(2 + 3α + 4α2 − α3)

(1− α)(1− α2)
ασ2

X +
(6α− 3α2 + 12α3)

1− α2
σ4
X +

3α2(1 + α)µ

1− α2

+
(1 + 6α2 − 6α3)

1− α2
µ2 − 9α3

1− α2
µ3 − 1 + 3α2

1− α2
µ4.

Finally, we consider σ3,3. We have that

σ3,3 = E[(ξ30)2] + 2
∞∑
k=1

E[ξ30ξ
3
k]. (3.7)

So,

E[(ξ30)2] = µ(0, 1, 1)− [µ(1)]2 = α2µ(0, 0, 0) + α(1 + α + 2(1− α)µ)µ(0, 0)

+µε,2µ(0)− µ(1)2,

E[ξ30ξ
3
k] = µ(1, k, k + 1)− µ(1)2 = αµ(1, k, k) + (1− α)µµ(1, k)− µ(1)2

= µ(1, 1, 1)α2k−1 + α(1 + α + 2(1− α)µ)

[
µ(1, 1)

1− α
(αk−1 − α2k−2)

−µµ(1)

(
α2k−1

1− α2
+
αk−1 − α2k−2

1− α

)]
µε,2µ(1)

α2k−1

1− α2
+ (1− α)µ[µ(1, 1)

−µµ(1)]αk−1.
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Replacing this expressions in the equation (3.7) and using the formula of the sum of the
geometric series, we have

σ3,3 = µ(1, 1, 1)
2α

1− α2
+ α2µ(0, 0, 0) + α(1 + α + 2(1− α)µ)µ(0, 0) + µε,2µ(0)− µ(1)2

+ [µ(1, 1)− µµ(1)]
2α2(1 + α + 2(1− α)µ)

(1− α)(1− α2)
−
[
αµ(1 + α + 2(1− α)µ)

+µε,2
] 2αµ(1)

(1− α2)2
+ [µ(1, 1)− µµ(1)]

2µ

1− α
.

Replacing αµ(1 + α + 2(1 − α)µ) + µε,2 = (1 − α2)µ(0) and grouping the similar terms,
we have

σ3,3 = µ(1, 1, 1)
2α

1− α2
+ α2µ(0, 0, 0) + α(1 + α + 2(1− α)µ)µ(0, 0) + µε,2µ(0)

−
[
µ(1)(1− α2) + 2αµ(0)

] µ(1)

1− α2
+
[
2µ(1 + α2 − 2α3)

+ 2α2(1 + α)
] µ(1, 1)− µµ(1)

(1− α)(1− α2)
. (3.8)

From Equation (3.3),

µ(1, 1, 1) = α3µ(0, 0, 0) + 3α2(1 + α + (1− α)µ)µ(0, 0) +
[
6ασ2

X − 3α2µ(0)

+ α(1 + α)(1 + 2α)− 9α3µ
]
µ(0) + 6µ2σ2

X(1− α)− 6α2µσ2
X

+ (1− α− 6α3)µ2. (3.9)

So, replacing (3.9) in (3.8) and grouping the similar terms, we have

σ3,3 = α2µ(0, 0, 0)
(1 + α2)

1− α2
+ µ(0, 0)

[
(1 + α)(α + 5α3) + (1− α)(4α3 + 2α)µ

]
1− α2

+
[
(1 + 10α2 − 6α3 + α4)σ2

X − (1− 2α− 4α3 − α4)µ2 − (α + α2 − α3 + 17α4)µ

+ 2α2(1 + α)(1 + 2α)
] µ(0)

1− α2
+

10α(1− α)

1− α2
µ2σ2

X −
12α3

1− α2
+

2α(1− α− 6α3)

1− α2
µ2

− α
2(3− α2)

1− α2
σ4
X +

1 + 2α− α2

1− α2
µ4 +

[
2µ(1 + α2 − 2α3)

+ 2α2(1 + α)
] µ(1, 1)− µµ(1)

(1− α)(1− α2)
.
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Note that µ(0, 0, 0) = (1 + 12σ2
X)µ(0) and µ(0, 0) = µ+ 6µσ2

X , so

σ3,3 =
[
α2(1 + α2)(1 + 12σ2

X) + (1 + 10α2 − 6α3 + α4)σ2
X + (1− 2α− 4α3 − α4)µ2

− (α + α2 − α3 + 17α4)µ+ 2α2(1 + α)(1 + 2α)
] µ(0)

1− α2
+
[
(1 + α)(α + 5α3)

+ (1− α)(4α3 + 2α)µ
] µ

1− α2
+
[
(1 + α)(α + 5α3) + (1− α)(4α3 + 2α)µ

] 6µσ2
x

1− α2

+ 10α(1− α)
µ2σ2

X

1− α2
− 12α3 µσ2

X

1− α2
+ 2α(1− α− 6α3)

µ2

1− α2
− α2(3− α2)

σ4
X

1− α2

+ (1 + 2α− α2)
µ4

1− α2
+
[
α(1 + 2α)2α2(1 + α)

] σ2
X

(1− α)(1− α2)

+
[
2(1 + α2 − 2α3)(α + 2α2) + 2α2(1 + α)(1 + α + 2α2)

] µσ2
X

(1− α)(1− α2)

+
[
2(1 + α2 − 2α3)(1 + α + 2α2)

] µ2σ2
X

(1− α)(1− α2)
.

Thus,

σ3,3 =
[
(1 + 22α2 − 6α3 + 13α4)σ2

X + (1− 2α− 4α3 − α4)µ2 − (α + α2 − α3 + 17α4)µ

+ 3α2 + 6α3 + 5α4
] µ(0)

1− α2
+ (8α + 6α2 + 18α3 + 18α4 − 34α5)

µσ2
X

(1− α)(1− α2)

+ (2 + 24α− 14α2 + 20α3 − 32α5)
µ2σ2

X

(1− α)(1− α2)
− α2(3− α2)

σ4
X

1− α2

+
[
2α3(1 + α)(1 + 2α)

] σ2
X

(1− α)(1− α2)
+ (4α− 4α2 + 4α3 − 16α4)

µ2

1− α2

+ (1 + α)(α + 5α3)
µ

1− α2
+ (1 + 2α− α2)

µ4

1− α2
.

Finally, replacing µ(0) = σ2
X +µ2 and after a tedious algebra, we have the following expression

to σ3,3:

σ3,3 =
α + 2α2 + 10α3 + 5α4 − 6α5

(1− α)(1− α2)
σ2
X +

1 + 19α2 − 6α3 + 14α4

1− α2
σ4
X

+
6α + 7α2 + 25α3 − 21α4 − α5

(1− α)(1− α2)
µσ2

X +
4 + 20α + 11α2 − 15α3 + 25α4 − 43α5

(1− α)(1− α2)
µ2σ2

X

+
α2

1− α2
µ+

4α− α2

1− α2
µ2 +

2

1− α2
µ4.
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4 On shifted integer-valued autoregressive model
for count time series showing equidispersion, un-
derdispersion and overdispersion

Resumo

Neste capítulo, introduzimos o processo autorregressivo de primeira ordem com inovações
Borel baseado no operador "thinning" binomial. Este modelo é adequado para séries tempo-
rais de contagem truncadas no zero que apresentam equidispersão, subdispersão e sobredisper-
são. Propriedades básicas do processo são obtidas. Para estimar os parâmetros desconhecidos
são considerados os métodos de estimação de Yule-Walker, mínimos quadrados condicionais e
máxima verossimilhança condicional. A distribuição assintótica dos estimadores de mínimos
quadrados condicionais é obtida e testes de hipótese para um modelo equidisperso contra um
subdisperso ou sobredisperso são formulados. Simulação de Monte Carlo é apresentada ana-
lisando a performance dos estimadores em amostras finitas. Duas aplicações com dados reais
são apresentadas mostrando que o modelo Borel INAR(1) é adequado para dados de contagens
com subdispersão e sobredispersão.

Palavras-chave: Distribuição de Borel. Normalidade assintótica. Operador thinning binomial.
Séries temporais com valores inteiros.

Abstract

In this chapter, we introduce a first order integer-valued autoregressive process with Borel inno-
vations based on the binomial thinning operator. This model is suitable to modelling zero
truncated count time series with equidispersion, underdispersion and overdispersion. The basic
properties of the process are obtained. To estimate the unknown parameters, the Yule-Walker
(YW), conditional least squares (CLS) and conditional maximum likelihood (CML) methods
are considered. The asymptotic distribution of CLS estimators is obtained and hypothesis tests
to check an equidispersed model against an underdispersed or overdispersed model are formu-
lated. A Monte Carlo simulation is presented in order to quantify the estimators performance
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in finite samples. Two applications to real data are presented to show that the Borel INAR(1)
model is suited to model underdispersed and overdispersed data counts.

Keywords: Asymptotic normality. Binomial thinning operator. Borel distribution. Integer-
valued time series model.

4.1 Introduction

Research in integer-valued time series has grown up in the last three decades. A reason for
this is the numerous situations where we find time series with small integer values. The number
of patients in a hospital at a specific point of time and the number of persons in a queue waiting
for service at a certain moment (Alzaid and Al-Osh, 1987); the daily number of absent workers
in a firm and the monthly number of ongoing strikes in a particular country, region or industry
(Jung and Tremayne, 2006); the number of different IP address (Weiß , 2007) are examples of
integer-valued data time series. The aim is to define a model for integer-valued time series that
has covariance and properties similar structure to the continuous-valued autoregressive (AR)
model.

McKenzie (1985) and Al-Osh and Alzaid (1987), independently, were the first to introduce
an integer-valued autoregressive (INAR) process with Poisson marginals, Poisson INAR(1),
based on the binomial thinning operator (Steutel and Van Harn, 1979). The equidispersion is
the principal characteristic of the Poisson INAR(1) model, i.e., the mean is equal to variance,
however many real-world data sets present overdispersion, variance larger than their mean, or
underdispersion, variance smaller than their mean. For this reason, the Poisson INAR(1) model
is not always suited for modelling integer-valued time series. In this sense, several models with
overdispersion or underdispersion were defined in the recent years.

Ristić et al. (2009) defined the negative binomial thinning operator and based on the new
thinning operator introduced the overdispersed integer-valued time series model with geome-
tric marginal. Weiß (2013) investigated some distributions with underdispersion and com-
bined these models with the INAR(1) process to obtain a process that presents underdispersion.
Schweer and Weiß (2014) considered the compound Poisson INAR(1) processes (CPINAR(1)),
which is suitable for modelling data sets with overdispersion. For such CPINAR(1) processes,
explicit results were derived for joint moments, the k-step-ahead distribution, the stationary
distribution and mixing properties. Closed-form expressions for the asymptotic distribution of
the dispersion index for CPINAR(1) processes were derived and developed a test to overdisper-
sion based on the index of dispersion. Bourguignon and Weiß (2017) defined a new thinning
operator that extends the binomial and negative binomial thinning operators. Based on the
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new thinning introduced the BerG-INAR(1) process, a stationary count data with Bernoulli-
geometric marginals. The BerG distribution was obtained as a convolution of the Bernoulli and
geometric distributions. the BerG-INAR(1) process is suitable for time series data with equidis-
persion, underdispersion and overdispersion. They derived the probability generating function,
moments, transition probabilities and zero probability. The maximum likelihood method was
used for estimated the model parameters.

Although several first order non-negative integer valued time series models have been de-
veloped in recent years, there are some cases where are more suitable truncated models, for
instance, integer-valued time series where zeros are not observed. The truncated models have
not received much attention in research of count data times series, few works have been done
in this case. Bakouch and Ristić (2010) introduced a new stationary INAR(1) process with
zero truncated Poisson marginal distribution (ZTPINAR(1)). Several properties of the process
were derived and applications to two crime data sets were presented. Nastić (2012) defined
two types of shifted geometric INAR(1) models based on the negative binomial thinning ope-
rator. These models are suitable to positive count data and have a simple form with only two
parameters. Their correlation properties are derived, conditional mean and conditional variance
are considered. Statistical properties of the innovations process are obtained, non-parametric
estimators of models parameters are defined and their asymptotic characterizations are given.
Bourguignon and Vasconcellos (2015b) introduced a family of INAR(1) processes with power
series innovations (PSINAR) which is suitable to modelling non-negative integer valued time
series with equidispersion, overdispersion and underdispersion. The PSINAR(1) models has the
flexibility of modelling positive integers data sets, this can be achieved by considering truncated
distributions for the process innovations.

The purpose of this chapter is to introduce a shifted INAR(1) model with Borel innova-
tions based on binomial thinning operator which exhibits equidispersion, overdispersion and
underdispersion. The Borel INAR(1) (BINAR(1)) is a simple model with only two parameters
suitable to zero truncated data sets. The process is an ergodic stationary Markov chain and
its structure is different of other already proposed models. Although the BINAR(1) process in
some cases shows equidispersion, in this cases, it does not coincide with the Poisson INAR(1)
model.

The chapter is organized as follows. In Section 2, we introduce the Borel distribution pro-
posed by Borel (1942), present its definition, properties and moments. Section 3 introduces the
stationary Borel INAR model, its statistical properties are obtained, the transition probabilities,
conditional mean and variance are derived. In Section 4, the parameter estimation is discussed;
we consider CLS, YW and conditional maximum likelihood estimators. A simulation study
is considered in Section 5. Two real data examples are presented in Section 6. Finally, we
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conclude the chapter in Section 7.

4.2 Borel distribution

In this section, we will briefly review about the Borel distribution (Borel, 1942). We present
its definition and properties. Later in Section 4.3, we will consider the Borel distribution to
introduce the Borel INAR(1) model with Borel distribution innovations which is adequate for
truncated data set with equidispersion, overdispersion or underdispersion.

4.2.1 Definition and properties

The Borel distribution is a discrete probability distribution that was first obtained by Borel
(1942). It is included in a subclass of a family of discrete probability distributions known
as Lagrangian probability distributions and is classified within the so called basic Lagrangian
distributions of the first kind. The Borel distribution is a special case of the queuing process
and it can be viewed as a particular case of the Borel-Tanner distribution (Haight end Breuer,
1960). For more details of Lagrangian distributions, see Consul and Famoye (2006).

The probability mass function (pmf) from a discrete random variable Y with Borel distribu-
tion is given by

P(Y = y) =
(yλ)y−1e−λy

y!
, y = 1, 2, 3, . . . , (4.1)

where 0 < λ < 1.
The Borel distribution has a simple interpretation in the theory of queues following Haight

and Brauer (1960): “Suppose a queue is initiated with one member and let λ be equal to the
traffic intensity assuming Poisson arrivals and constant service time. The pmf of Borel distri-
bution, P(Y = y), represents the probability that exactly y members of queue will be served
before the queue first vanishes.”

The properties of the Borel distribution can be found in Section 8.4 from Consul and Famoye
(2006). In particular, the mean and variance of the distribution in (4.1) are given by

µY = (1− λ)−1 and σ2
Y = λ(1− λ)−3.

The Borel distribution satisfies the properties of equidispersion, when λ = 3/2 −
√

5/2,
underdispersion, when 0 < λ < 3/2−

√
5/2 and overdispersion, when 3/2−

√
5/2 < λ < 1.

We have that the probability generating function (pgf), E(uY ) := GY (u), and moment
generating function (mgf), MY , of a random variable Y following the Borel distribution are,
respectively, given by

GY (u) = z, wherezsatisfies z = u eλ(z−1),
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and
MY (β) = es, wheressatisfies s = β + λ(es − 1).

All moments of the Borel distribution exist for 0 < λ < 1. The kth noncentral moment,
µ′k = E(Y k), and the central moment, µk = E(Y − µY )k, satisfy the following recurrence
relations:

µ′k+1 = λ(1− λ)−1
dµ′k
dλ

+ µ′1µ
′
k, k = 0, 1, 2, . . . ,

and
µk+1 = λ(1− λ)−1

dµk
dλ

+ kµ2µk−1, k = 1, 2, 3, . . . ,

where µ′1 = (1− λ)−1 and µ2 = σ2
Y .

In particular, the third and fourth central moments are given by

µ3 = λ(1 + 2λ)(1− λ)−5 and µ4 = λ(1 + 8λ+ 6λ2)(1− λ)−7 + 3µ2
2. (4.2)

Observe that, in the particular case that one the Borel distribution is equidispersed, where
λ = λ0 = 3/2 −

√
5/2 , we have µY = σ2

Y = 1/(1 − λ0) but different of µ3 given in (4.2).
Furthermore, the Poisson distribution with parameter 1/(1 − λ0) has mean, variance and µ3

equal to 1/(1− λ0) being different of the equidispersed Borel distribution.
The coefficients of skewness, β1, and kurtosis, β2, are given by

β1 =
1 + 2λ√
λ(1− λ)

and β2 = 3 +
1 + 8λ+ 6λ2

λ(1− λ)
. (4.3)

Figure 4.1 displays the skewness and kurtosis of the Borel distribution. From 4.3 and Figure
(4.1), we have that the Borel distribution is always positively skewed and leptokurtic.

4.3 Borel INAR(1) model

Let Z be the set of all integers, N be the set of positive integers and N0 the set of non-negative
integers. In this section, we will introduce the first order integer-valued autoregressive process
with Borel distribution innovations on N, Borel INAR(1). This model is suitable for positive
counting processes with equidispersion, overdispersion and underdispersion. Basic properties
of the process are derived. The autocorrelation function, transition probabilities, conditional
mean and variance are obtained.
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Figure 4.1: Skewness and kurtosis of the Borel distribution

4.3.1 Definition and properties of the process

Let X be a non-negative integer valued random variable and α ∈ [0, 1]. Steutel and Van
Harn (1979) introduced the binomial thinning operator as

α ◦X =
X∑
i=1

Wi, (4.4)

where Wi are independent and identically distributed binary random variables, independent of
X with Pr(Wi = 1) = 1 − Pr(Wi = 0) = α, i.e., Wi has Bernoulli distribution with α pa-
rameter. The sequence {Wi}i∈N is called the counting series for α ◦ X . The properties of the
binomial thinning operator can be found in Silva and Oliveira (2004) and Silva (2005). Based
on this operator, we define the first-order integer-valued autoregressive process with Borel in-
novations.

Definition 4.3.1. (Borel INAR(1)) The first-order integer-valued autoregressive process with
Borel innovations {Xt}t∈Z, BINAR(1), is defined by equation

Xt = α ◦Xt−1 + εt, t ∈ Z, (4.5)

where α ∈ [0, 1), α ◦ Xt−1 is the binomial thinning operator defined in (4.4), {εt}t∈Z is the
sequence of innovations with Borel(λ) distribution and εt is independent of Wt−i for all i ≥ 1.
Since that α ∈ [0, 1) and µε, σ2

ε < ∞, from Section 3 and Theorem 2.1 by Du and Li (1991),
the {Xt}t∈Z process in (4.5) is an ergodic stationary Markov chain. The transition probabilities
are given by
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Pr(Xt = k|Xt−1 = l) =

min(k−1,l)∑
i=0

(
l

i

)
αi(1− α)l−i

[(k − i)λ]k−i−1

(k − i)!
e−λ(k−i). (4.6)

It is easy to see that, if µε, σ2
ε <∞, the mean and variance of the INAR(1) process are given

by
µX = µε/(1− α) and σ2

X = (σ2
ε + αµε)/(1− α2),

where µε and σ2
ε are the mean and variance of innovations, respectively. Thus, in the BINAR(1)

process, we have

µX = E(Xt) =
1

(1− α)(1− λ)
and σ2

X = Var(Xt) =
α(1− λ)2 + λ

(1− α2)(1− λ)3
.

The dispersion index of Xt in INAR(1) model, IX , is directly linked with the dispersion
index of the innovations, Iε = σ2

ε/µε, by the expression

IX =
σ2
X

µX
=

(
1 +

Iε
α

)
·
(

1 +
1

α

)−1
.

Thus, we have that the dispersion of the marginal distribution depends of the innovations dis-
persion. The BINAR(1) dispersion index is given by

IX =
λ/(1− λ)2 + α

1 + α
.

Since we have Borel innovations, it follows that this model presents
• equidispersion when λ = 3/2−

√
5/2,

• overdispersion when 3/2−
√

5/2 < λ < 1,
• underdispersion when 0 < λ < 3/2−

√
5/2.

We have that the Borel INAR(1) model is suited when the time series data present overdis-
persion or underdispersion.

The conditional mean and variance of Xt given Xt−1 are, respectively

E(Xt|Xt−1) = αXt−1 +
1

(1− λ)

and

Var(Xt|Xt−1) = α(1− α)Xt−1 +
3λ− 1− λ2

(1− λ)3
+

1

(1− λ)
.

It is also easy to verify that the autocorrelation function (ACF) at lag k is given by

Corr(Xt, Xt−k) = ρ(k) = αk, k ≥ 1, (4.7)

which clearly is restricted to be positive and have the same behaviour as that of the AR(1)
model.
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4.4 Estimation and inference of the unknown parameters

In practice, the true values of the model parameters α and λ are not known but have to be
estimated from a given time series data. This section is concerned with the estimation of the
two parameters of interest. We consider three estimation methods, namely, CLS, YW, ML and
CML.

4.4.1 Conditional least squares estimation

Let X1, X2, . . . , XT stem from a stationary BINAR(1) process {Xt}t∈Z. The CLS estimator
θ̂ = (α̂, λ̂)T of θ = (α, λ)T is given by

θ̂ = arg min
θ

(QT (θ)),

where QT (θ) =
∑T

t=2[Xt − E(Xt|Xt−1)]
2. Thus, following Klimko and Nelson (1978), the

CLS estimators of α and λ can be written in closed form as

α̂CLS =

T∑
t=2

XtXt−1 −
1

T − 1

T∑
t=2

Xt

T∑
t=2

Xt−1

T∑
t=2

X2
t−1 −

1

T − 1

(
T∑
t=2

Xt−1

)2 (4.8)

and
λ̂CLS = 1− T − 1(

T∑
t=2

Xt − α̂CLS

T∑
t=2

Xt−1

) ,
where α̂CLS is given in (4.8).

We establish the asymptotic normality of CLS estimators in the following Theorem having
proof given in the Appendix.

Theorem 4.4.1. The CLS estimators α̂CLS and λ̂CLS are strongly consistent and asymptotic
normal, i.e.

T 1/2(α̂CLS − α, λ̂CLS − λ)
d→ N(0,Σ)

with

Σ =

(
σ2
α σ2

αλ

σ2
αλ σ2

λ

)
,

where
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σ2
α = (1− α2) +

α(1− α)(1− α2)2(1− λ)5

(1− α3)(λ+ α(1− λ)2)2

[
α

1− α
+

3α3

1 + α
+

3α2λ

(1 + α)(1− λ)2
+

1 + 2λ

(1− λ)4

]
,

σ2
αλ = α(1− α)(1− λ)2 − α(1 + α)(1− λ)3

λ+ α(1− λ)2
− [(1 + α) + 3α2(1− α)]α

2(1− α2)(1− λ)7

[λ+ α(1− λ)2]2

− λ(1− α)(1− λ)
λ+ α(1− λ)2

− [3α2λ(1− λ)2 + (1 + 2λ)(1 + α)]
α(1− α)2(1 + α)(1− λ)3

[λ+ α(1− λ)2]2
,

σ2
λ = {1− α[αλ+ (1− 2α)(1 + λ2) + α2(1− λ)2]} 1− λ

(1− α)2
+

α(1 + α)(1− λ)4

(1− α)[λ+ α(1− λ)2]

+
3α3(1− λ)5(1− α2)

(1− α3)[λ+ α(1− λ)2]
+ [(1− α)(1 + 2λ) + α(1− λ)4] α(1 + α)2(1− λ)3

(1− α3)[λ+ α(1− λ)2]2
.

Considering λ0 = 3/2 −
√

5/2, the asymptotic normality of λ̂CLS is particularly useful if
our interest is to test the null hypothesis of an equidispersed model, H0 : λ = λ0, against the
alternative hypothesis of an underdispersed model H1 : λ < λ0 or an overdispersed model,
H1 : λ > λ0.

Based on the asymptotic normality of λ̂CLS estimator, we reject H0 : λ = λ0 against
H1 : λ < λ0 on significance level δ if

λ̂CLS < λ0 + qδ ×
√
σ̂2
λ0
/T (4.9)

and we reject H0 : λ = λ0 against H1 : λ > λ0 on significance level δ if

λ̂CLS > λ0 + q1−δ ×
√
σ̂2
λ0
/T , (4.10)

where σ̂2
λ0

is the variance of λ̂CLS obtained replacing λ0 in the σ2
λ expression, qδ is the δ-quantile

of the standard normal distribution, that is, Φ(qδ) = δ, δ ∈ (0, 1) and Φ is the standard normal
cumulative distribution function. Alternatively, we will reject H0 : λ = λ0 against H1 : λ < λ0

(overdispersion) if

Φ
(

(λ̂− λ0)/
√
σ̂2
λ0
/T
)
< δ.

If the alternative hypothesis of interest is H1 : λ > λ0 (underdispersion), we reject H0 : λ =

λ0 against H1 : λ > λ0 when

1− Φ
(

(λ̂− λ0)/
√
σ̂2
λ0
/T
)
< δ.

Figure 4.2 shows the behaviour of the power functions against λ for sample sizes T =

100, 200, 400. We consider the significance level δ = 0.05, α = 0.15 and λ ∈ (0, 1). We can
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Figure 4.2: Power function against λ for BINAR(1) model.

see, as expected, that the power of dispersion test becomes better as we increase the sample size
T .

Tables 4.1 and 4.2 present results from a simulation to access the quality of asymptotic
approximations in Theorem 4.4.1. We simulated the underdispersed Borel INAR(1) process
with (α, λ) = (0.2, 0.2) and the overdispersed Borel INAR(1) process with (α, λ) = (0.2, 0.5),
respectively. We considered the significance level δ = 0.05 and 10000 replications in both
cases. In the same way of Schweer and Weiß (2014), we show both the empirically observed
results and the values obtained from the asymptotic approximation.

Table 4.1: Simulated Borel INAR(1) with (α, λ) = (0.2, 0.2), significance level δ = 0.05

and 10000 replications: Descriptive statistics and asymptotic properties of λ̂; Empirical and
asymptotic rejection rates (r.r.).

T Mean s.d. s.d.a Skewness q̂0.05 q0.05,a q̂0.95 q0.95,a r.r.α r.r.α̂ r.r.a
100 0.2012 0.1168 0.1066 −0.9253 −0.0100 0.0245 0.3639 0.3754 0.4688 0.4764 0.4660
250 0.2003 0.0731 0.0674 −0.5094 0.0672 0.0890 0.3085 0.3109 0.8597 0.8894 0.8375
500 0.2021 0.0524 0.0476 −0.3405 0.1114 0.1215 0.2833 0.2784 0.9874 0.9927 0.9837

The null rejection rates of a Borel INAR(1) with parameters (α, λ) are presented in both
tables, where the critical value according to (4.9) in the underdispersed case and according to
(4.10) in the overdispersed case was computed either with the true α (r.r.α) or by plugging-in
CLS estimator α̂ (r.r.α̂). We observe, in both cases, that the rejection rate increases as we in-
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crease the sample size, to both for α and α̂ and the asymptotic approximating (r.r.a) and the
empirical values of reject rates are be very close to the ones in the asymptotic approximate. In
general, the empirical results of the quantiles q̂β with β = 0.05, 0.95 and the standard devia-
tion are very close to its asymptotic results for T ≥ 250 as expected. We conclude that the
asymptotic results have reasonable approximations for finite samples in both, underdispersed
and overdispersed cases.

Table 4.2: Simulated Borel INAR(1) with (α, λ) = (0.2, 0.5), significance level δ = 0.05 and
10.000 replicas: Descritive statistics and asymptotic properties of λ̂; empirical and asymptotic
rejection rates.
T Mean s.d. s.d.a Skewness q̂0.05 q0.05,a q̂0.95 q0.95,a r.r.α r.r.α̂ r.r.a

100 0.4970 0.0840 0.0821 −1.0474 0.3421 0.3648 0.6351 0.6100 0.4647 0.4781 0.4527
250 0.4980 0.0522 0.0519 −0.6039 0.4052 0.4145 0.5753 0.5854 0.7303 0.7189 0.7469
500 0.4998 0.0376 0.0367 −0.4280 0.4343 0.4395 0.5569 0.5604 0.9150 0.9003 0.9272

4.4.2 Yule-Walker estimation

Let X1, . . . , XT stem from a stationary BINAR(1) process {Xt}t∈Z. The sample autocorre-
lation function is given by

ρ̂(k) =

T−k∑
t=1

(Xt −X)(Xt+k − Y )∑n
t=1(Xt −X)2

,

where X = (1/T )
∑T

t=1Xt is the sample mean. The Yule-Walker (YW) estimator of α, based
upon the fact that ρ(k) = αk, as in (4.7), is given by

α̂YW = ρ̂(1) =

T−1∑
t=1

(Xt −X)(Xt+1 −X)∑T
t=1(Xt −X)2

. (4.11)

The first moment of {Xt}t∈Z is given by E(Xt) = 1/(1− α)(1− λ). Using this, the estimator
of λ is defined as

λ̂YW = 1− 1

X(1− α̂YW)
,

where α̂YW is given in (4.11).
Freeland and McCabe (2005) considering a Poisson INAR(1) process showed that the YW

and CLS estimators are asymptotically equivalent. The next proposition, which proof is in the
Appendix, shows that the result also holds for the BINAR(1) process.



4.5. ESTIMATORS NUMERICAL COMPARISON 72

Theorem 4.4.2. In the BINAR(1) process(
α̂CLS − α̂YW

λ̂CLS − λ̂YW

)
= op(T

−1/2),

and this is sufficient for the CLS and YW estimators to have the same asymptotic distribution.

In section 4.5 we compare CLS and YW estimators and we see that the results of both are
similar as expected.

4.4.3 Conditional maximum likelihood estimation

Suppose that X1 is fixed. The conditional log-likelihood function is then given by

`(θ) = log

[
T∏
t=2

Pr(Xt = k|Xt−1 = l)

]
=

T∑
t=2

log[Pr(Xt = k|Xt−1 = l)],

with Pr(Xt = k|Xt−1 = l) as in (4.6).
The CML estimator of θ is the value θ̂CML = (α̂CML, λ̂CML)T that maximizes `(θ). Since

`′(θ) is a nonlinear function, the maximum likelihood estimate of θ must be computed by using
numerical methods.

CML estimators, as noted above, do not have closed-form expressions and Fisher’s informa-
tion matrix, K(θ), is also not available. In practice, the observed Fisher information (T−1)J(θ)

can be used to approximate K(θ), and plugging in the obtained estimates allows, for instance,
to approximate the asymptotic standard errors of the CML estimators; also see Freeland and
McCabe (2004).

4.5 Estimators numerical comparison

In this section, we report the results of Monte Carlo simulation experiments that were per-
formed to evaluate the behaviour of the CLS, YW and CML estimators. The Monte Carlo
simulation experiments were performed using the R programming language; see http://www.r-
project.org. The CML estimates of α and λ were obtained by maximizing the conditional
log-likelihood function using the BFGS quasi-Newton nonlinear optimization algorithm with
numerical derivatives. As initial values for the algorithm, we considered the estimates obtained
by CLS method. We performed 5000 replications and the sample sizes considered were T = 50,
100, 200 and 400. For the values of parameters, we considered α = 0.15, 0.3, 0.45, 0.6, 0.75

and λ = 0.3, 0.6. Tables 4.3 and 4.4 present the empirical means and mean squared errors of the
estimates of the parameters of the BINAR(1) process. From the results we conclude that CML
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estimates have smaller bias, as expected since it uses the whole information of the distribution,
and the bias tends to zero for all estimators as the sample size increases, since that the estimators
are asymptotically unbiased. Although the CML has the best performance, the CLS estimator
is more indicated because it has closed form and its performance is very close to that of CML
estimator.

4.6 Empirical illustrations

Here, we present two applications of the Borel INAR(1) model to a real data set. First,
in Section 4.6.1, we consider an underdispersed real data set and second, in Subsection 4.6.2,
we fitted an overdispersed real data set to BINAR(1) model. We considered the CML method
to estimate the unknown parameters of the models in both cases. After, we considered the
λ̂CLS estimator and the asymptotic distribution given in Theorem 4.4.1. So, we carried out
a hypothesis test in both applications to test the hypothesis H0 : λ = 3/2 −

√
5/2 against

H1 : λ < 3/2 −
√

5/2 (underdispersed model) and H0 : λ = 3/2 −
√

5/2 against H1 : λ >

3/2−
√

5/2 (overdispersed model). The required numerical evaluations were carried out using
the R programming language as in Section 4.5.

4.6.1 Modeling underdispersion

Now, we present an application of the Borel INAR(1) model to the real data set in the
underdispersed case. The data set is given by Bakouch and Ristić (2010) as an application of
the ZTPINAR(1) process. Their original data are counts of vagrancy in the 64th police car beat
in Pittsburgh, during one month. The data consist of 144 observations, starting in January 1990
and ending in December 2001 and can be obtained from the crime data section of the forecasting
principles site (http://www.forecastingprinciples.com). With the aim to use the ZTPINAR(1)
model, the authors transformed the series adding 1 to each observation. Here we also consider
the transformed series.

In Table 4.5, we present some empirical descriptive measures for the data set of counts of
vagrancy, which include central tendency statistics, variance, skewness and kurtosis, among
others. We observe that the empirical mean is much larger than the empirical variance, showing
the data are underdispersed.

The time series data and their sample autocorrelation and partial autocorrelation are dis-
played in Figure 4.3. From Figure 4.3, we see that a first order autoregressive model may
be appropriate for the given data series because of the clear cut-off after lag 1 in the partial
autocorrelations.
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Table 4.3: Empirical means and mean squared errors (in parentheses) of the estimates of the
parameters for λ = 0.3 and some values of α and T .

Estimator of α Estimator of λ
T α α̂YW α̂CLS α̂CML λ̂YW λ̂CLS λ̂CML

50 0.15 0.1171 0.1196 0.1554 0.3002 0.2968 0.2833
(0.0210) (0.0217) (0.0050) (0.0186) (0.0197) (0.0071)

0.30 0.2530 0.2588 0.3024 0.3101 0.3029 0.2832
(0.0226) (0.0230) (0.0046) (0.0234) (0.0259) (0.0076)

0.45 0.3884 0.3968 0.4489 0.3303 0.3186 0.2859
(0.0218) (0.0214) (0.0037) (0.0280) (0.0301) (0.0073)

0.60 0.5277 0.5396 0.5996 0.3556 0.3345 0.2859
(0.0212) (0.0201) (0.0023) (0.0387) (0.0431) (0.0073)

0.75 0.6633 0.6797 0.7485 0.4150 0.3743 0.2895
(0.0199) (0.0175) (0.0010) (0.0565) (0.0677) (0.0070)

100 0.15 0.1319 0.1332 0.1532 0.3017 0.3005 0.2931
(0.0115) (0.0116) (0.0025) (0.0102) (0.0104) (0.0034)

0.30 0.2746 0.2776 0.3016 0.3069 0.3037 0.2923
(0.0116) (0.0116) (0.0023) (0.0121) (0.0126) (0.0035)

0.45 0.4192 0.4237 0.4506 0.3147 0.3088 0.2935
(0.0107) (0.0106) (0.0017) (0.0164) (0.0171) (0.0034)

0.60 0.5643 0.5702 0.5994 0.3261 0.3156 0.2933
(0.0091) (0.0087) (0.0011) (0.0223) (0.0235) (0.0034)

0.75 0.7066 0.7143 0.7486 0.3585 0.3383 0.2948
(0.0077) (0.0071) (0.0005) (0.0333) (0.0355) (0.0035)

200 0.15 0.1415 0.1421 0.1513 0.2995 0.2989 0.2960
(0.0060) (0.0060) (0.0012) (0.0050) (0.0051) (0.0017)

0.30 0.2872 0.2887 0.3000 0.3030 0.3015 0.2972
(0.0060) (0.0061) (0.0011) (0.0066) (0.0068) (0.0017)

0.45 0.4349 0.4371 0.4497 0.3064 0.3034 0.2968
(0.0052) (0.0052) (0.0009) (0.0081) (0.0083) (0.0018)

0.60 0.5825 0.5855 0.5995 0.3121 0.3070 0.2972
(0.0043) (0.0042) (0.0006) (0.0117) (0.0120) (0.0017)

0.75 0.7289 0.7328 0.7495 0.3281 0.3174 0.2962
(0.0031) (0.0029) (0.0003) (0.0180) (0.0188) (0.0018)

400 0.15 0.1456 0.1460 0.1506 0.3001 0.2998 0.2984
(0.0030) (0.0030) (0.0006) (0.0026) (0.0026) (0.0008)

0.30 0.2927 0.2934 0.2999 0.3022 0.3015 0.2985
(0.0031) (0.0031) (0.0005) (0.0033) (0.0033) (0.0008)

0.45 0.4413 0.4424 0.4496 0.3048 0.3034 0.2990
(0.0026) (0.0026) (0.0004) (0.0041) (0.0041) (0.0008)

0.60 0.5912 0.5927 0.6004 0.3072 0.3046 0.2983
(0.0020) (0.0019) (0.0003) (0.0058) (0.0059) (0.0009)

0.75 0.7396 0.7416 0.7500 0.3149 0.3095 0.2980
(0.0013) (0.0013) (0.0001) (0.0090) (0.0092) (0.0009)
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Table 4.4: Empirical means and mean squared errors (in parentheses) of the estimates of the
parameters for λ = 0.6 and some values of α and T .

Estimator of α Estimator of λ
T α α̂YW α̂CLS α̂CML λ̂YW λ̂CLS λ̂CML

50 0.15 0.1186 0.1210 0.1553 0.5926 0.5902 0.5826
(0.0173) (0.0182) (0.0031) (0.0095) (0.0103) (0.0060)

0.30 0.2588 0.2645 0.3049 0.5975 0.5930 0.5826
(0.0186) (0.0190) (0.0031) (0.0113) (0.0124) (0.0061)

0.45 0.3971 0.4059 0.4514 0.6075 0.6001 0.5845
(0.0185) (0.0180) (0.0024) (0.0119) (0.0135) (0.0062)

0.60 0.5328 0.5449 0.6006 0.6239 0.6114 0.5832
(0.0177) (0.0162) (0.0015) (0.0149) (0.0652) (0.0063)

0.75 0.6701 0.6864 0.7496 0.6551 0.6289 0.5838
(0.0171) (0.0145) (0.0007) (0.0202) (0.0335) (0.0064)

100 0.15 0.1323 0.1334 0.1525 0.5978 0.5971 0.5929
(0.0095) (0.0096) (0.0015) (0.0048) (0.0049) (0.0027)

0.30 0.2774 0.2803 0.3008 0.5996 0.5977 0.5928
(0.0097) (0.0097) (0.0014) (0.0058) (0.0060) (0.0029)

0.45 0.4219 0.4263 0.4507 0.6031 0.5994 0.5916
(0.0092) (0.0089) (0.0012) (0.0071) (0.0075) (0.0030)

0.60 0.5645 0.5711 0.5998 0.6116 0.6053 0.5909
(0.0081) (0.0075) (0.0008) (0.0083) (0.0088) (0.0031)

0.75 0.7085 0.7165 0.7496 0.6314 0.6197 0.5930
(0.0066) (0.0059) (0.0003) (0.0112) (0.0121) (0.0030)

200 0.15 0.1417 0.1424 0.1514 0.5986 0.5982 0.5965
(0.0052) (0.0052) (0.0007) (0.0024) (0.0024) (0.0013)

0.30 0.2889 0.2903 0.3017 0.5997 0.5988 0.5959
(0.0051) (0.0051) (0.0007) (0.0029) (0.0029) (0.0014)

0.45 0.4340 0.4364 0.4503 0.6025 0.6007 0.5956
(0.0046) (0.0045) (0.0006) (0.0034) (0.0035) (0.0014)

0.60 0.5826 0.5855 0.5997 0.6051 0.6022 0.5956
(0.0038) (0.0036) (0.0004) (0.004) (0.0045) (0.0014)

0.75 0.7303 0.7343 0.7500 0.6138 0.6079 0.5964
(0.0028) (0.0026) (0.0002) (0.0065) (0.0067) (0.0014)

400 0.15 0.1460 0.1463 0.1505 0.5993 0.5991 0.5984
(0.0025) (0.0025) (0.0003) (0.0012) (0.0012) (0.0007)

0.30 0.2952 0.2959 0.3006 0.5993 0.5989 0.5979
(0.0025) (0.0025) (0.0004) (0.0014) (0.0014) (0.0007)

0.45 0.4430 0.4441 0.4501 0.6008 0.6000 0.5985
(0.0024) (0.0024) (0.0003) (0.0019) (0.0019) (0.0007)

0.60 0.5910 0.5925 0.6000 0.6039 0.6025 0.5989
(0.0019) (0.0018) (0.0002) (0.0023) (0.0023) (0.0007)

0.75 0.7396 0.7414 0.7500 0.6074 0.6045 0.5981
(0.0014) (0.0013) (0.0001) (0.0036) (0.0036) (0.0007)

Table 4.5: counts of vagrancy data descriptive statistics.
Minimum Median Mean Variance Skewness Kurtosis ρ̂(1) Maximum

1 1 1.3402 0.4358 2.2851 8.5345 0.1959 4
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Figure 4.3: The time series counts of vagrancy, the autocorrelation function and the partial
autocorrelation function.
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Table 4.6: Estimated parameters (with corresponding standard errors in parentheses), RMS and
AIC.

Model CML estimates RMS AIC
BINAR(1) α̂ = 0.1156 (0.0468) 0.6489 218.9168

λ̂ = 0.1577 (0.0493)

Truncated Poisson INAR(1) α̂ = 0.0867 (0.0600) 0.6507 221.2132
λ̂ = 0.4225 (0.1514)

ZTPINAR(1) α̂ = 0.3886 (0.1394) 0.6468 217.8503
λ̂ = 0.6216 (0.1025)
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Figure 4.4: Sample autocorrelations of the residuals obtained from Borel INAR(1) model.

Furthermore, the behavior of the series indicates that it may be mean stationary. We com-
pare our model with the shifted models: Truncated Poisson INAR(1) model (Bourguignon and
Vasconcellos, 2015) and ZTPINAR(1) model (Bakouch and Ristić, 2010). Table 4.6 presents
the CML estimates with corresponding standard errors in parentheses, Akaike information cri-
terion (AIC) and the root mean square of differences between observed and predicted values
(RMS). From Table 4.6, we observe that the BINAR(1), truncated Poisson INAR(1) and ZT-
PINAR(1) models are competitive. The BINAR(1) model showed better goodness-of-fit statis-
tics compared with the truncated Poisson INAR(1) model. From the results, we conclude that
the BINAR(1) is adequate for this time series.

The sample autocorrelations of the residuals from Borel INAR(1) process are displayed in
Figure 4.4, confirming that a first order model is adequate to fit the data set.

Now, our interest is to test the null hypothesis H0 : λ = λ0 against H1 : λ < λ0, where
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Table 4.7: Results from hypothesis test applied to time series counts of vagrancy: H0 : λ =

λ0 against H1 : λ < λ0.
Data set size λ̂CLS α̂CLS s.d.λ̂CLS

test statistic p-value critical value
144 0.0733 0.1962 1.1469 −3.2290 1 0.0006 0.5082

λ0 = (3 −
√

5)/2 = 0.382 at significance level δ = 0.05. In other words, we want to test
the null hypothesis of an equidispersed model against an underdispersed model. For this, we
considered the CLS estimator and the asymptotic distribution given in Theorem 4.4.1. In Table
4.7 we have the empirical results of the CLS estimators to λ and α, the standard deviation of
the CLS estimator of λ, the test statistic, the p-value and the critical value.

With the results given in Table 4.7, we have that λ̂CLS = 0.0733 < 0.5082 = λ0 +

qδ

√
σ̂2
λ0
/144, therefore we reject the null hypothesis H0 : λ = λ0 in favour of the alterna-

tive hypothesis H1 : λ < λ0 at significance level δ = 0.05. So, we have evidence for an
underdispersed model, as expected. Alternatively, from a p-value analysis we have that p-value
= 0.0006 < 0.05 = δ, confirming the result of the hypothesis test.

4.6.2 Modelling overdispersion

The data set of the our second application consist of 144 observations are from Macdonald
and Zucchini (1970). Consider the series of weekly sales (in integer units) of a particular soap
product in a supermarket. The data are taken from a database provided by the Kilts Center for
Marketing, Graduate School of Business of the University of Chicago,
:http://gbswww.uchicago.edu/kilts/research/db/dominicks (The product is ’Zest White Water 15
oz.’, with code 3700031165). In order to use the BINAR model, as made by Bakouch and Ristić
(2010), we transformed the series adding 1 to each observation.

Table 4.8: Series of weekly sales descriptive statistics.

Minimum Median Mean Variance Skewness Kurtosis ρ̂(1) Maximum
1 5 6.4421 15.4012 1.4998 5.7926 0.3923 23

In Table 4.8 we presents some descriptive measures for the data set of weekly sales, which
include central tendency statistics, variance, skewness and kurtosis, among others. We can
observe that the mean is smaller than the variance, showing overdispersion.

In Figure 4.5, the time series data and their sample autocorrelation and partial autocorrela-
tion are displayed. Figure 4.5 shows that a first order autoregressive model may be appropriate
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for the given data series. Furthermore, the behavior of the series indicates that it may be mean
stationary. The sample autocorrelations of the residuals from Borel INAR(1) process are dis-
played in Figure 4.6.
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Figure 4.5: Time series of weekly sales, the autocorrelation function and the partial autocorre-
lation function.

We compare our model to the Truncated Poisson INAR(1) model (Bourguignon and Vas-
concellos, 2015) and also to the ZTPINAR(1) model (Bakouch and Ristić, 2010). Table 4.9
presents the CML estimates with corresponding standard errors in parentheses, AIC and the
RMS. From Table 4.9, we observe that the BINAR(1) model showed better goodness-of-fit
statistics compared with the other models. From the results, we conclude that the BINAR(1) is
adequate for this time series.

Our interest now lies in testing the null hypothesis H0 : λ = λ0 against H1 : λ > λ0,
where λ0 = (3 −

√
5)/2 = 0.382 on significance level δ = 0.05, that is, we want test the null

hypothesis of an equidispersed model against an overdispersed model. Again, we considered
the CLS estimator to λ and the asymptotic distribution given in Theorem 4.4.1. In Table 4.10
we have the empirical results of the CLS estimator to λ and α, the standard deviation of CLS
estimator, the test statistic, p-value and the critical value.
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Figure 4.6: Sample autocorrelation of the residuals obtained from Borel INAR(1) model.

Table 4.9: Estimated parameters (with corresponding standard errors in parentheses), RMS and
AIC.

Model CML estimates RMS AIC
BINAR(1) α̂ = 0.4647 (0.0211) 3.6093 1317.036

λ̂ = 0.7112 (0.0305)

Truncated Poisson INAR(1) α̂ = 0.2222 (0.0335) 3.6597 1328.947
λ̂ = 4.9934 (0.2564)

ZTPINAR(1) α̂ = 0.2433 (0.0361) 3.6457 1324.429
λ̂ = 6.4567 (0.2109)

With the results given in Table 4.10, we have that λ̂CLS = 0.7455 > 0.5118 = λ0 +

qδ

√
σ̂2
λ0
/144, therefore we reject the null hypothesis H0 : λ = λ0 in favour of the alternative

hypothesis H1 : λ < λ0 at significance level δ = 0.05. So, we have evidence for an overdis-
persed model, as expected. Alternatively, from a p-value analysis, we have a extremely small
p-value = 4.5519 ×10−15 < 0.05 = δ, confirming the result of the hypothesis test.

4.7 Concluding remarks

In this chapter we introduced the shifted first order integer-valued autoregressive process
with Borel innovations. This model was based on the binomial thinning with Borel distribu-
tion innovations. The Borel INAR(1) model is suited to equidispersed, underdispersed and
overdispersed data counts set. The basic properties of this model are obtained. The closed ex-
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Table 4.10: Results from hypothesis test applied to time series weekly sales: H0 : λ =

λ0 against H1 : λ > λ0.
Data set size λ̂CLS α̂CLS s.d.λ̂CLS

test statistic p-value critical value
242 0.7455 0.3925 0.7295 7.7513 4.5519 ×10−15 0.5118

pressions from CLS and YW estimators of unknown parameters are derived and we obtain of
their asymptotic distribution. An hypothesis test based on the asymptotic distribution of CLS
estimators was formulated to test equidispersed against overdispersed or underdispersed model.
We made a test power analysis by simulating the rejected rate for different sample sizes con-
sidering the true and estimated value of α and the asymptotic distribution. Two applications
were presented showing that the Borel INAR(1) model is suited to shifted underdispersed and
overdispersed data sets and the results of a hypothesis test confirmed the assessment.

4.8 Appendix

Proof of Theorem 4.4.1.

The Borel INAR(1) process {Xt}t∈Z is a branching process with immigration whose off-
spring distribution is Bernoulli and the immigration process has Borel distribution, both having
all moments finite. By Klimko and Nelson (1978), the CLS estimators of α and µε are strongly
consistent and their asymptotic joint distribution can be obtained applying the results from Sec-
tion 5 in the same paper. We have,

√
T (α̂CLS − α, µ̂ε;CLS − µε)

d→ N(0,Σ∗)

where α̂CLS is give in (4.8) and µ̂ε;CLS is given by the expression

µ̂ε;CLS =
1

T

(
T∑
t=1

Xt − α̂CLS

T∑
t=2

Xt−1

)
,

with Σ∗ = (σ∗ij) being obtained from the results given in Klimko and Nelson (1978), Section 5,
by
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σ∗11 = (1− α2) +
α(1− α)(1− α2)2(1− λ)5

(1− α3)[λ+ α(1− λ)2]2

[
α

1− α
+

3α3

1 + α
+

3α2λ

(1 + α)(1− λ)2
+

1 + 2λ

(1− λ)4

]
,

σ∗12 = α(1− α)− λ(1− α)
(1− λ)[λ+ α(1− λ)2]

− α(1 + α)(1− λ)
λ+ α(1− λ)2

− [(1 + α)

+ 3α2(1− α)]α
2(1− α2)(1− λ)5

[λ+ α(1− λ)2]2
− [3α2λ(1− λ)2 + (1 + 2λ)(1 + α)]

α(1− α)2(1 + α)(1− λ)
[λ+ α(1− λ)2]2

,

σ∗22 =
1

(1− λ)2(1− α)2
− α

1− λ
+

λ

(1− λ)3
+

α(1 + α)

(1− α)[λ+ α(1− λ)2]

+
α(1− α)(1 + α)2(1− λ)3

(1− α3)[λ+ α(1− λ)2]2

[
α

1− α
+

3α3

1 + α
+

3λα2

(1 + α)(1− λ)2
+

1 + 2λ

(1− λ)4

]
.

Now, we define the function f := R2
∗ → R2, as follows:

f = (f1, f2)
> = (f1(x1, x2), f2(x1, x2)) :=

(
x1, 1−

1

x2

)
,

where R2
∗ := {(x1, x2) ∈ R2;x2 6= 0}. We have that the f function is continuous and

differentiable at its domain. According to the delta method, considering θ = (α, µε) and
YT = (α̂CLS, µ̂ε;CLS), we have

√
T (f(YT)− f(θ))

d→ N(0,DΣ∗D>),

where D is the Jacobian matrix of f with respect to θ.
The first-order partial derivatives of f is given by

∂f1(x1, x2)

∂x1
= 1,

∂f1(x1, x2)

∂x2
= 0,

∂f2(x1, x2)

∂x1
= 0,

∂f2(x1, x2)

∂x2
=

1

x22
,

thus, the Jacobian matrix of f with respect to θ is

D =

(
1 0

0 1
µ2ε

)
.

We have

Σ = DΣ∗D> =

(
σ∗11

1
µ2ε
σ∗12

1
µ2ε
σ∗12

1
µ4εσ
∗
22

)
.
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Finally, we obtain

σ11 = (1− α2) +
α(1− α)(1− α2)2(1− λ)5

(1− α3)[λ+ α(1− λ)2]2

[
α

1− α
+

3α3

1 + α
+

3α2λ

(1 + α)(1− λ)2
+

1 + 2λ

(1− λ)4

]
,

σ12 = α(1− α)(1− λ)2 − λ(1− α)(1− λ)
λ+ α(1− λ)2

− α(1 + α)(1− λ)3

λ+ α(1− λ)2
− [(1 + α)

+ 3α2(1− α)]α
2(1− α2)(1− λ)7

[λ+ α(1− λ)2]2
− [3α2λ(1− λ)2 + (1 + 2λ)(1 + α)]

α(1− α)2(1 + α)(1− λ)3

[λ+ α(1− λ)2]2
,

σ22 = {1− α[αλ+ (1− 2α)(1 + λ2) + α2(1− λ)2]} 1− λ
(1− α)2

+
α(1 + α)(1− λ)4

(1− α)(λ+ α(1− λ)2)

+
3α3(1− λ)5(1− α2)

(1− α3)(λ+ α(1− λ)2)
+ [(1− α)(1 + 2λ) + α(1− λ)4] α(1 + α)2(1− λ)3

(1− α3)[λ+ α(1− λ)2]2
.

Proof of Theorem 4.4.2.

The proof is done in the same way of Freeland and McCabe (2005). The proof to show
that
√
T (α̂CLS − α̂YW) is op(1) in Borel INAR(1) process is identically the proof in Poisson

INAR(1) process.
Let

DCLS =
1

T

[
T∑
t=2

X2
t−1 −

1

T − 1

( T∑
t=2

Xt−1
)2]

and DYW =
1

T

T∑
t=1

(Xt−X̄)2 =
1

T

T∑
t=1

X2
t−X̄2.

Thus,
√
T (α̂YW − α̂CLS) =

√
T

[
DCLS( 1

T

∑T
t=2XtXt−1 − X̄ 1

T

∑T
t=2Xt − X̄ 1

T

∑T
t=2Xt−1 + (1− 1

T
)X̄2)

DCLSDYW

]

−
√
T

[
DYW( 1

T

∑T
t=2XtXt−1 − 1

T (T−1)
∑T

t=2Xt

∑T
t=2Xt−1)

DCLSDYW

]
,

After some algebra, we conclude
√
T (α̂YW − α̂CLS) =

(DCLS −DYW)

DCLSDYW

×
∑T

t=2XtXt−1√
T

−
(DCLS

∑T
t=2

Xt
T
−DYW

∑T
t=2

Xt
T−1)

DCLSDYW

·
∑T

t=1Xt√
T

− DYW

DCLSDYW

·
T∑
t=2

Xt

T − 1

XT√
T

+
DCLS

DCLSDYW

× X̄ (XT − X̄)√
T

= op(1)Op(1)− op(1)Op(1)−Op(1)Op(1)op(1) +Op(1)Op(1)op(1) = op(1).
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For λ estimators, define

DCLS =
1

T

T∑
t=2

Xt − α̂CLS
1

T

T∑
t=2

Xt−1 and DYW = X(1− α̂YW).

Note that DCLS and DYW converges to the same non zero constant µ(1− α).
We have

√
T (λ̂YW − λ̂CLS) =

√
T

[
1

X(1− α̂YW)
− T − 1∑T

t=2Xt − α̂CLS

∑T
t=2Xt−1

]

=
√
T

{
1
T

∑T
t=2Xt − α̂CLS

1
T

∑T
t=2Xt−1 − (1− 1

T
)[X(1− α̂YW)]

DCLSDYW

}
.

After some algebra, we have

√
T (λ̂YW − λ̂CLS) =

1√
T

(XT α̂CLS −X1)−
√
T (α̂CLS − α̂YW)X + X√

T
(1− α̂YW)

DCLSDYW

= op(1)− op(1) + op(1) = op(1).
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