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Abstract

In this work we analyze the problem of creation of Dicke states through the process of
entanglement swapping. First we deal with the tripartite case, presenting a deterministic
protocol based on a source of EPR pairs. Still in this topic we show that it is possible
to create perfect W states (tripartite Dicke states), even when the EPR source does not
yield maximally entangled pairs, with a finite success rate. Subsequently we cope with the n-
partite case, for which we present a probabilistic procedure, also employing EPR-pair sources,
where the output, whenever successful, is perfect. The analysis of this protocol reveals a
critical transition for the success probability, which is characterized in the framework of
Landau theory of second order phase-transitions. Finally we proceed with a study of the
entanglement between bipartitions of systems described by Dicke states, which allows for the
implementation of entanglement witnesses. For each Dicke state we present a highly sensitive
witness.

Keywords:Quantum entanglement. Dicke states. Critical phenomena. Entanglement swap-
ping. Entanglement witness.



Resumo

Neste trabalho analisamos o problema de criagao de estados de Dicke através de um processo
de entanglement swapping. Inicialmente tratamos o caso tripartite, para o qual apresenta-
mos um protocolo deterministico empregando uma fonte de estados EPR. Ainda nesse topico,
mostramos que, com uma taxa de sucesso finita, é possivel produzir estados W (estados de
Dicke tripartite) perfeitos mesmo quando utilizamos uma fonte de estados EPR nao maxima-
mente emaranhados. Em seguida consideramos o caso de n partes, para o qual apresentamos
um procedimento probabilistico, também fazendo uso de uma fonte de estados EPR, em
que o resultado, sempre que bem-sucedido, é perfeito. A andlise deste protocolo revela uma
transicao critica, que é caracterizada no contexto da teoria de transicao de fase de segunda
ordem de Landau. Por tdltimo fazemos um estudo do emaranhamento entre biparticoes de
sistemas descritos por estados de Dicke, que nos permite a implementacao de testemunhas
de emaranhamento. Para cada estado de Dicke, apresentamos uma testemunha com alta
sensibilidade.

Palavras-chave: Emaranhamento quantico. Estados de Dicke. Fenomenos criticos. Troca
de emaranhamento. Testemunhas de emaranhamento.
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Introduction

The term entanglement was formally introduced by E. Schrédinger (1935) in a work enti-
tled “Discussion of Probability Relations Between Separated Systems” [Sch35]. In this work
Schrodinger uses this term to describe what he claims to be the phenomenon of quantum me-
chanics that departs the most from the classical world. In his own words:

I would not call that one but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.

Earlier, in the same year, entangled states had been the main structure of an argument pre-
sented by Einstein, Podolsky and Rosen [EPR35] aiming at proving that quantum mechanics
was an incomplete theory, meaning that it would not completely describe all elements of phys-
ical reality. According to them a satisfactory theory must not only be correct, agreeing with
experiments, it must also be complete, i. e., “...every element of the physical reality must have
a counterpart in the physical theory”. The argument relied on the assumption of local real-
ism, i.e., elements of reality, the spin of a particle for example, cannot be affected by events
that happen at arbitrary distances within arbitrary time intervals. This argument was named
Einstein-Podolsky-Rosen paradox, or yet EPR paradox.

The Einstein-Podolsky-Rosen paradox brought up an apparent problem that led to the
search for a hypothetical theory capable of describing reality in a more trustworthy way than
quantum theory. This search had a huge turnover in 1964 with the publication of the paper
“On the Einstein-Podolsky-Rosen paradox” by John S. Bell [Bel64] in which entanglement
was used to demonstrate, through the violation of an inequality, (later named Bell’s inequality)
that no theory restricted to local realism could possibly agree with the predictions of quantum
theory. Further works tested this violation on experiments and the violation predicted by the
quantum theory was indeed observed [CHSH69, FC72, ADRS82, Asp99, RKM*01], changing
the way many scientists understood reality.

As is illustrated above, a better understanding of entangled states even in very simple sys-
tems has been pushing forward our knowledge. Since the advent of the EPR paradox, a certain
attention was directed to this kind of state. Nevertheless it took time for scientists to realize the
potential behind this phenomenon. It was, however, a few years after the publication of Bell’s
paper, that we had the first experimental realization of entangled states. In 1967 Kocher and
Commins [KC67] reported the execution of an experiment which consisted in observing cor-
relations in the linear polarization of photons which were emitted in a cascade decay process
in calcium atoms. R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki [HHHHO09]

10
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Figure 1.1 In the left, the setup used by Kocher and E. D. Commins and the scheme of levels for the
atom of calcium [KC67]. In the right, the plot of the data from the realization of the experiment [KC67].
Both pictures are from the original paper.

regard the work of C. A. Kocher and E. D. Commins as possibly the first experimental de-
mostration of entangled states. Considering the remarkable historical value of this work, we
present in figure the setup and the data plot of what was perhaps the first time entanglement
was intentionally created in the controlled environment of a laboratory. In the left part of figure
it is displayed the experimental setting employed, the setting was based on the decay of an
atom of calcium (whose detailed transition can be found in the same figure), which generates
two photons in the singlet state of polarization, represented by ¥; and 9. The photons are
directed to distinct polarizers and, after that to the detectors. In the right side a plot of the
coincidence of clicks in both detectors is depicted for two cases: down we have the axes of the
polarizers seted perpendicular to each other leading to a constant signal, up we have a parallel
setting of the polarizers, revealing a peak when the hits happens simultaneously as expected
for the singlet state.

In a first moment the efforts towards the experimental realization of entanglement were
mainly directed to observe the correlations predicted by the EPR paradox. Naturally, after
1964, with the publication of Bell’s work, the interest in testing Bell’s inequality (which would
only be tested with more rigorously in 1981 [AGR81]) took the lead of this struggle. It was
only in the beginning of the decade of 1990, as some theoretical proposals of using entangle-
ment as a tool to perform fundamental tasks of several areas of applied sciences were presented
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to the scientific community, that the interest of experimentally implementing such states grew
with a richer structure.

Amid these groundbreaking theoretical proposals, reference [HHH96] highlights five of
them: quantum key distribution [Eke91], quantum dense coding [BW92], quantum teleporta-
tion [BBC 93], entanglement swapping [ZZHE93, YS92] (which will receive further attention
in the next chapter), and the capacity of overcome the limitations of classical communication
necessary to solve problems distributed among separated parts [BCVDO1]. The first of these
advances was made in Ekert’s work [Eke91], in 1991, entitled “Quantum cryptography based
on Bell’s theorem”, which showed that entangled states could be used to establish a crypto-
graphic key shared between two separated parts in a way that no eavesdroper could ever spy
(to obtain information about the key without being detected). After that, Bennett and Wiesner
[BWO2] showed that it is possible, by using entangled states, to store more information in
one qubit than what was predicted by the Holevo bound [NCO02]. Following the chronological
line, in 1993, Bennett et al. [BBC193] published the seminal work “Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-Rosen channels”. In 1992-1993 two
papers [YS92, ZZHE93] were published showing that it was possible to implement quantum
correlations between separated parts that never met or interacted, a process that was called
entanglement swapping and to which we devote special attention in what follows. The last
of these outstanding works was published in 2001 by Buhrman ef al [BCVDO01], showing the
advantages of employing entanglement to assist distributed computation.

It was also in the beginning of the 90’s that a new interest in a different kind of entangled
states emerged: multipartite entangled states. It is important to make it clear, however, that this
kind of state appeared in the literature quite earlier. In fact the work of R. H. Dicke [Dic54],
which reports on the kind of multipartite entangled states addressed in the present work, was
published in 1954. By new interest we mean the interest in the states themselves as tools that
could facilitate computational or informational tasks.

The work which seems to be the starting point in the use of multipartite states as an inves-
tigative tool dates from 1990. In that year Daniel M. Greenberger, Michael A. Horne, Abner
Shimony, and Anton Zeilinger, [GHSZ90] published the manuscript “Bell’s theorem without
inequalities” where they used the entangled qubit state |GHZ) and for the case of four qubits
can be defined as follows:

1
V2

Their work, as the title suggests, demonstrated that correlations beyond classical limits
could be observed between separated entangled systems. Reference [Bar(9] presents a very
didactic formulation of this work, however this topic is outside the scope of this thesis.

From that point, in the beginning of the 90’s, with all these mentioned publications, it
would be reasonable to say that a new area was established in theoretical physics, devoted to
study the mechanisms, applicability and nature of entangled states. Entanglement started to be
treated as a resource, as it is fundamental to the execution of several new procedures. In 2001,

IGHZ) = — (|0000) + [1111)). (1.1)
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with the publication of “A one-way quantum computer” by Robert Raussendorf, and Hans J.
Briegel [RBO1] raising the possibility of universal computation with single qubit operations
plus multipartite entanglement this approach received even more attention. In fact, modern
books as reference [NCO02] start the chapters dedicated to this subject already introducing con-
cepts of resource theory and in the review “Quantum entanglement” [HHHHO9] it is presented
as the “feature of quantum machinery which lies at the center of interest of physics of the 21st
century”.

One interesting fact about multipartite entanglement is that it has a far richer structure
than bipartite entanglement. When we consider two entangled qubits, any realization of their
entanglement is, in a way, equivalent to each other. This is not the case when we deal with
multipartite entanglement. In this case there are completely inequivalent ways of having en-
tanglement among the parts that compose the system. As an illustration, we recall the work
of Wolfgang Diir, Guifre Vidal, and J Ignacio Cirac [DVCO00], entitled “Three qubits can be
entangled in two inequivalent ways”, published in 2000, which shows that for three partite
qubits systems there is a kind of entanglement inequivalent to that of a GHZ state (the context
of this nonequivalence is addressed forward in this thesis), a state they called W state, which
can be represented in the following way:

1
V3

Interestingly, this state, is just a special case of an already known class of states called
Dicke states [Dic54]. Despite the long time since its discovery, the properties of Dicke states
are modestly known, when compared with that of GHZ states or cluster states [BRO1]. While
we have many generalizations of procedures and structures used in bipartite systems to mult-
partite systems in GHZ states, almost none of them has a similar form for Dicke states. How-
ever, it is already known that Dicke states are more resistant to environment effects than GHZ
states and in the specific scenario of an even number of parts, say 2k-parts, the singlet state is a
particular case of Dicke state, and thus we can add to the applicability of these states all the ma-
chinery of singlet states reported by Adan Cabello in the manuscript “Supersinglets”’[Cab03],
as for instance the solution of the N stranges problem, the secret. sharing problem and the
liar detection problem. Also, Dicke states have been used to detect multipartite entanglement
[LPV ™ 14] and several reports highlights its optimal metrological properties [KSWT11] .

The next chapter, is a collection of tools that we consider to be important for the reminder
of this thesis. First we present a formal definition of entanglement. Although in this work
we are mostly concerned with pure states, the definition will be presented in the general case
for the sake of completeness. After that, we discuss methods of quantifying entanglement, in
the perspective of local operations and classical communication, by introducing the concepts
of entropy of entanglement and entanglement of formation. Then, we present a section about
entanglement witnesses, where we address this subject in a direct and simple way. In the
fourth section the concept of entanglement swapping is discussed in a didactic way. The last
section presents the Dicke state, a family of states whose features are the core of this thesis.

W) (|001) +]010) +[100)). (1.2)
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The introduction of Dicke states is provided through the formalism of creation and annihilation
operators.

In chapter 3 we start by showing that a process similar to entanglement swapping can be
used to remotely create W states (or yet three partite Dicke states) in a deterministic way.
The process is based on a joint entangled measurement in one part of each qubit of three
Einstein-Podolsky-Rosen entangled pairs [MCP16]. The joint measurement is performed in a
complete basis build with states equivalent to W states under single-qubits operations. After
that we show that if the we relax the determinism condition it is possible to have perfect
outputs whenever the protocol succeeds. We argue that this phenomenon amounts to a process
of entanglement concentration.

In the fourth chapter we provide a generalization of the protocol of chapter two for the
case of n qubits. The process here is no longer deterministic. A sketch of an experimental
realization is provided which would in principle be performed using only components of linear
optics and sources of EPR entangled pairs. Curiously by tracking the probability of each
output as a function of the source-state entanglement, we observe a phenomenon analogous
to a second order phase transition in the context of the classical theory of Landau, which
allows us to adjust which kind of Dicke state we want to produce with higher probability. The
phenomenon of critical transition is characterized, and through some relations present in the
system we can effectively establish an upper bound to the amount of entanglement between
partitions of Dicke states based on the amount of entanglement present in the EPR pair used
in the protocol.

Chapter five introduces a different way of expressing a general Dicke state. With this we
are able to derive a general form for the Schmidt decomposition of any possible bipartition of
the system. This allows us to quantify the amount of entanglement between these bipartitions
and compare it with the GHZ case. That also allows us to devise whether or not different
Dick states are equivalent to each other. Furthermore we use these results to provide optimal
entanglement witnesses for each possible Dicke state, specifying its tolerance against noise
admixture and imperfections in entanglement.

Chapter six is entitled conclusion and reiterate in few words the results of this theses.



Entanglement

Let us start this chapter by introducing the concept of entanglement in the simplest scenario,
a bipartite system, and then generalize it to the more complex case of multipartite systems.
Consider two systems A and B whose states lie inside the Hilbert spaces .7¢; and .73 respec-
tively. The dimension of the first Hilbert space, .73, is denoted by ds and {|a)},—1..4 , form an
orthogonal basis of .77, . Likewise, the dimension of .73 is denoted by dp and it is spanned by
the basis {|b) },—1.4,. Hence an arbitrary pure state can be represented by a ket |¥) of the joint
system AB, in the total Hilbert space 74p = ¢4 ® 3, where ® stands for tensor product.
The global state can be written as:

dy dp

W)=Y Y ywla)®b), (2.3)

a=1b=1

d d 2
where Y1 Y2 [Yan|” = 1.
Whenever |¥) cannot be written as the tensor product of a state in .7} and a state in .73,
it is said to be entangled. Otherwise we call it separable. More explicitly, when there are no
|wa) € 7 and |yp) € 5 such that:

¥) = |ya) @ |ya), (2.4)

then |¥) is entangled. At this point we can see that it is characteristic of entanglement
the connection to correlated states, because the absence of the form displayed in equation
(2.4) indicates some superposition like |y) @ |¢) + |w') @ [¢+) (assuming (y*|y) =0 and
(¢|¢) = 0) which has outputs correlated under a measurement defined by the detection oper-
ators |Y)(y|®|9)(¢| and |y)(w|®|d)(¢*|. The kind of correlation that emerges from
these states cannot be reproduced classically, as will become clear when we consider mixed
states.

The generalization of this concept from two parts to n parts compounding a system is
straightforward. If we have a set of systems Ay, Ay, ..., A, whose Hilbert spaces are ¢, 743,
..., &, respectively, a pure state |¥) in 7, = J4 Q@ 5 ® ... ® H;, is said to be separable if
there is a set of states {|y;) € J4},=1 ..., such that:

W) = ly1) @[va) ®.. & [y). (2.5)

15



16 ENTANGLEMENT

Otherwise it is said to be entangled.

Despite the simplicity of this generalization it is important to notice that as the number
of parts compounding the system grows, new inequivalent ways to entangle subsystems may
emerge in the context of resource theory. It is also possible to have entanglement between spe-
cific parts of the system while others remain completely separable, as pointed out in reference
[HHHHO09].

The appearance of new structures of entanglement is observed already in three-partite sys-
tems of qubits. In this case two parts can be entangled and one separable, representing a
bipartite-like entanglement. But we also may have all parts entangled, and this can happen in
two different ways: GHZ-like or W-like [DVCO00]. We will come back to this subject latter.

Having in mind the definition of entanglement for pure states, we can extend it to a more
complex scenario where we may have a source randomly generating states |‘P(i)> each of them
with probability p; (imposing the natural restriction ) ; p; = 1), or more precisely a scenario
where we have an ensemble composed of different quantum states. In this case the system
can no longer be completely described by a ket in .7#,;. Instead we will need a new tool to
describe this ensemble of states. This tool is a Hermitian operator named density operator (or
yet state operator) which is usually represented by:

p=Y P2V, (2.6)

Given a system with Hilbert space .7, the density operator is an element of the set £ (.77)
of operators acting in .7#’. The formalism behind the density operator is of common knowledge
and, among all of its special features, the most relevant, for the definition of entanglement, to
be highlighted here is that the representation of p is not unique. In fact, unless the state is pure,
there are infinite different representations of p using a convex combination (a combination in
which the sum of the coefficients, which are always positive, is equal to 1) of other density
operators. In this case the definition of entanglement acquires a more subtle form. An state p
of n parts is said to be separable if, and only if, there is at least one possible representation for
p with the following structure:

p=Y 5, XpY 2.7

In equation (2.7), p is described in therms of the operators ﬁ,(Q) which are density operators

inZ () and L, pg = 1.

The formulation of separability as presented above, enlightens what the realization of an
entangled state is. It is well known that any classical correlation between systems has to
have the form of equation (2.7), while entangled states are literally defined as something else.
Entangled states go beyond by presenting correlations that can not be reproduced in a classical
system.
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2.1 Quantifying entanglement

Entanglement allowed for a plethora of new protocols, most of them on processing and trans-
porting information. All these advances are related to the possibility of having systems more
correlated than one would have classically. Hence there was an increasing interest into this ex-
tra capacity of correlation which motivated the perspective of entanglement as a resource, and
to build up a theory to establish whether this resource is available and the amount of it needed
to perform some tasks [BP08, BHO' 13, BHN'15]. This kind of approach is called resource
theory. To build this kind of theory it is necessary to define in what context the object under
study represents indeed a resource. In this case the context was pretty clear: entanglement rep-
resents a resource over local operations and classical communication (a formal introduction of
this concept will be provided in what follows).

The demand of the capacity to quantify the amount of entanglement available in one sys-
tem, inherent of this formulation, however is a problem of high complexity and has been the
core of several discussions in the field. V. Vedral et al. presented a work in 1997 [VPRK97],
of which this section borrows its title, listing all necessary features that a good measure of en-
tanglement should have. In the mentioned reference the authors show an interesting measure
based on distance. However it is important to stress that all of their arguments concern only
bipartite systems of arbitrary dimensions. The desired features of a measure of entanglement
E(p) for a state p are listed bellow.

* First, an entanglement measure must be zero only when the state is completely separable.
That is expected, taking into account that from n copies of non separable systems is
always possible to extract asymptomatically an amount m of maximally entangled states,
a process usually named as entanglement distillation [HW97, BBP196].

* The second requirement is that E£(p) must be invariant under local unitary operations.
The idea behind this requirement is the fact that local unitary operations represent only
local change of basis and thus it should not increase nor decrease any correlation among
separate parts.

* Finally, the third feature refers to local operations and classical communications (LOCC)
and can be thought as a generalization of the second requirement. At this point it is
important to define what we consider as local operation: by LOCC we mean any deter-
ministic evolution, whether achieved by unitary transformation or by positive operator
valued measurements (POVM) classically correlated. This kind of process, for a bipar-
tite system, was generalized in in reference [VPRK97]. Here we present a generalization
for the n-partite case:

p=Y A 0al @ . .0aPpa " 0 Al o . 0V, 2.8)
7

where we must have:
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Y APV — 1, 2.9)

for all k.

The third requirement is based in equation (2.8) itself, from which it is evident that this
kind of operation can only create classical correlations.Thus we state it in the following way:
local operations and classical communication can only decrease the amount of entanglement
observed in a system.

In this section we are going to explore two of those concepts of measures: entropy of
entanglement and entanglement of formation.

2.1.1 Entropy of entanglement

Entropy of entanglement is a measure for pure states of bipartite systems, for which we always
have a Schmidt decomposition. Any pure bipartite state |¥') in %, = 74 ® 5, composed
by systems A and B, are described by:

W) =YY Ailaj)a®|bi)s, (2.10)
7K

where the labels A and B indicates the ket belongs to .77} and 73, respectively. This state can
also be written in the following way:

ZA dj)a®|b)5 (2.11)

where |a;)4 and |a’)4 are related trough local unitary operations as well as |b;)p and [b')p.
This is what we call the Schmidt decomposition.

Not only the Schmidt decomposition exists for every pure bipartite state, but also it is
unique [NCO02]. It is characterised by the values of 4 ]’ and the amount of them that are non-
vanishing , which is usually referred to as the Schmidt number (which is itself a good measure
of entanglement). This decomposition gives us a direct notion of entanglement: whenever the
Schmidt number is one, the state is separable, otherwise it is entangled.

Considering the density operator representing the same system, we can write:

Pror = ) (¥| = ZZA ) akla @ |B) (bys. (2.12)

So if we trace one of the parts we have either py or pp, representing the reduced matrix of
systems A and B:



2.1 QUANTIFYING ENTANGLEMENT 19

{pA = X, 1471d)(d;|a (2.13)

ps = Y;|A P60 (0)ls

As equation (2.13) shows, both density operators have the same eigenvalues. Only for
separable states, or yet whenever we have /“t]’. = 1 for a specific j, the partial density opera-
tors represent a pure state. Hence the purity of p4 (or pp) agrees with the first requirement
of a measure of entanglement. The closer of dim(A)~! the value of |)»j’~|2 gets, for all j, and
consequently p4 and pp approach a maximally mixed state, the closer to the maximally entan-
gled system is |¥). It is also a fact that the eigenvalues of ps (or pp) do not depend on local
changes of basis, thus they are invariant under local unitary operations, satisfying the second
requirement for an entanglement measure. Further it is possible to see, from equation (2.8),
that POVMs can only take farther away the system from the maximally entangled state.

These arguments show that a function of {|4;] 2} =1, which is capable of detecting whether
the partial systems are pure states or statistical mixtures, and if the last is true, how close the
partial density operator of each system is from a maximally mixed state would be a good
measure of entanglement.

This leads us to the von Neumann entropy defined as:

S(p) = —Tr(plogp). (2.14)

In equation (2.14), Tr(...) is the trace of the argument, and we take log in base 2 for
convenience.

The von Neumann entropy is a positive function of p and consequently of its eigenvalues.
The entropy is zero if and only if the state is pure. Also the maximum value of S(p) happens
when p is a maximally mixed state.

Regarding this scenario it is quite natural to define the entanglement amount S, for a bi-
partition of a pure state as the von Neumann entropy of the partial trace of its density operator:

Sent :S(pA> :S(pB)- (2.15)

This quantity is called entropy of entanglement.

A very interesting property of entropy of entanglement for an arbitrary state |¥) of qubits,
which by the Schmidt decomposition can always be written as A;|00) + A,|11), is that it quanti-
fies the amount of asymptotically perfect entangled states % (|00) + |11) that can be produced

from a infinite set of copies of |¥) using only classical communications and local procedures.
More precisely, assume that we have a set of n copies of |¥), then it is possible to extract

m < n copies of [¥') = a|00) + b|11), and defining § = \%((00 + (11])|¥'), we must have:

Iimé = 1
n-es (2.16)

lim (2) = Sou(]¥))

n—oo
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This process is called entanglement distillation. It was introduced by Bennett, Popescu and
Schumacher in reference [BBPS96], and in this context °* is also a good way for quantifying
entanglement in more general scenarios. However when we go beyond pure bipartite states of
two qubits, the evaluation of the fraction 7 becomes a challenging task.

2.1.2 Entanglement of formation

When dealing with more complex states, in general, we will employ a measure called entan-
glement of formation. Particularly, this concept seems to be the most well succeeded among
many other potential entanglement measures. For instance, by employing the measure of dis-
tillable entanglement (the proportion of maximally entangled states that can be extracted from
some ensemble p [BDSWO96]), as pointed out by Wootters in reference [Woo0O1], one can find
systems presenting entanglement for which this measure gives zero, a kind of entanglement
classified as bound entanglement [HHH98]. In the same reference Wootters also points out
some unsolved problems with the entropy of formation, an important example being the prob-
lem of additivity: it is not known whether the entropy or formation of a set of n copies of a
quantum state is n times the entropy of formation for a single copy of the same system.

The idea behind this new quantity is to describe the amount of maximally entangled states
necessary to produce some mixed state p. This quantity is defined in reference [BDSW96],
and has the following form:

E = min(}. p;Sen(19)))), (2.17)

J

where S, is defined in equation 2.15.
In this equation, p; and |¢;) are such that we can write:

p=2.pil$;) {9, (2.18)
J

and the minimization is over all possible representations of p.

The quantity E is called entanglement of formation and, from equation 2.17, it becomes
clear that it is nothing but the minimal mean value of the entropy of entanglement, which is
a intuitive way of generalizing this measure. However, it must be considered that mixtures of
entanglement can generate classical correlations that may destroy the quantum ones, as in the
case of state:

Pun = 7 (|@T NPT+ @)D+ ¥ NPT+ [P ) (P ), (2.19)

FN-

where:
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_ 1
{ycpi> = @(\OOHE!”)) (2.20)

[¥%) = —5(/01) £[10))

S

form a basis of a two-qubit system (from now on we will refer to these states as EPR states, a
reference to the work presented by Einstein, Podolsky and Rosen [EPR35]). It is easy to see
that in this case p,,, can also be written in the following way:

Pwn = 7 (100)(00[+[11)(11]4|01){01] 4| +|10){10])

| — =

= 7 (10){0[+[1){1]) @ (J0) {0 +[1)(1]), (2.21)

which represents a system containing only classical correlations, whose implementation would
not require any level of entanglement. Thus justifying the need of taking the minimum value
over all the representations of a state.

2.2 Entanglement witness

In the previous sections we presented concepts with which it is possible to quantify the amount
of entanglement present in a system. However those concepts have a very limited structure,
they can only evaluate entanglement between bipartitions of the entire system. Even when
dealing with bipartitions, if the state of the system of interest is not pure the quantity E, de-
fined in equation (2.17), and many others, is a convex roof construction being very hard to
be evaluated (though recently a great progress was done in this area and reported in reference
[TMGL15]).

Fortunately in 1996 M. Horodecki, P. Horodecki and R. Horodecki published a work an-
alyzing sufficient and necessary conditions for biseparability of mixed states [HHH96]. This
section aims to provide a detailed formulation of a concept build up in one of the results re-
ported by the authors: the concept of entanglement witness. Hence many steps presented here
have the same structure of those present in the referred paper. Given the nature of the results
presented here, this section will have a slightly different approach from the rest of this work,
being more mathematical in nature.

First we go back to equation (2.7), where separable states are defined. Accordingly, a
biseparable density operator p, defined in the space .Z(7,) of linear operators acting in
ooy = S @ A3 would be characterized by the following structure:

p=Y mpMop®. (2.22)
k

Where we must have p; real and positive, and } ; pr = 1. In addition p,EA) and p,EB) are density

operators inside the set o linear operators acting on .7#4 and .73, respectively.
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Now some properties of the set of separable states must be highlighted. First, it is a closed
set, for entangled states can present arbitrarily low quantum correlation (for example, the en-
tropy of entanglement as well as the entropy of formation are continuous and they go to zero
if and only if the state is separable) implying that there are entangled states lying in the neigh-
borhood of separable ones.

The second feature of the set of separable states that must be emphasized here is that, by
definition, it is a convex set. This means that any convex combination of a separable state is
also a separable state.

The last important characteristic of this set is that it is a subset of a Banach space. This
comes from the fact that they are a subset of the Hilbert-Schmidt space, which is a complete
normed space and thus a Banach space.

Those features are important because they allow us to use the Hahn-Banach Theorem,
which, quoting reference [HHH96], states that “If W; and W, are convex closed sets in a real
Banach space and one of them is compact, then there exists a continuous functional f and
o € R such that for all pairs w; € Wy, wp € W, we have: f(w)) < a < f(wy)”. Thus if we
choose the set of all separable states A to play the role of W,, and take a set composed by a
single arbitrary entangled state p, which form a convex complete compact set, to be Wy, for
o0 € A and some o € R we can find a functional f so we can write:

flp) < a < f(o). (2.23)

Now recalling that the set of functionals on a vector space is isomorphic to the vector
space itself, that our functional is real and that the scalar product of the Hilbert-Schmidt space
is defined as the trace (A, B) = Tr(B'A), we can represent any functional of one element in the
set of operators as the trace between this element and another operator W = W

Tr(Wp) < a <Tr(Wo). (2.24)

Once the trace of any density operator is one, we can define the operator W =W — a1, so
that we still have W = W and:

Tr(Wp) < O

{ Te(Wo) > 0 (2.25)

This means that given an entangled state p it is always possible to find an observable whose
mean value is negative if and only if the state is entangled. We will call these observables
entanglement witnesses.

In the same reference [HHH96] mentioned before, there is also a theorem that provides a
necessary and sufficient condition for separability. The theorem is formulated in the following
way:
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Theorem 1. A state p € o] ® o5 is separable iff
Tr(Ap) >0

for any Hermitian operator A satisfying Tr(AP ® Q) > 0, where P and Q are pro-
jections acting on #] and 773, respectively.

In the above quote, 7] and .@% represent the space of linear operators acting on .7¢] and .73,
respectively.

To prove the above theorem first we consider the case where p is separable. In this case
the theorem is satisfied by the definition of A itself. Assuming now that p is inseparable
and nonetheless there is an operator W such that Tr(WP ® Q) > 0, for P and Q representing
projections in separated Hilbert spaces, and Tr(Wp) > 0, we have a contradiction: by the
previous statement, if p is inseparable, there must exist a hermitian operator W’ such that
Tr(W'p) < 0 and Tr(W'c) > 0 for all separable states o, however a separable state happens
to be the tensor product of projections, hence the features of W’ agree with the definition of
W itself, and lead us to the relation Tr(Wp) < 0.

Entanglement witnesses not only detect entanglement but specifically they detect genuine
multipartite entanglement, because in a genuine multipartite entangled system there are no
bipartitions in which it is separable, all parts must be entangled with each other.

As an example of these observables we mention the work of M. Bourennane et al [BEKT04],
where a general form to build entanglement witnesses is provided. The proposed observable
W reads:

W =B1—|y)(v|. (2.26)

The form above depends on the previous knowledge of a genuinely entangled state |y).
Also, the scalar f8 is defined as the maximum value of the modulus squared of the inner product
of |y) and a biseparable state:

2
B = max (Ito1w)?). (227)

To show that W is indeed a witness of entanglement all we have to do is to show that for
any projectors P and Q of any bipartition %} ® .73 of ¢, we have Tr(WP ® Q) > 0. This
property follows immediately from the definition of . In order to provide an efficient way to
evaluate B3, the authors prove that it is “given by the square of the Schmidt coefficient, which
is maximal over all possible bipartite partitions of |y)”.

2.3 Entanglement swapping

As entanglement became a powerful resource, the problem of its distribution among spatially
separated parts turned out to be a relevant issue in the field of quantum information.
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In this context, in 1992 Bernard Yurke and David Stoler showed, in reference [YS92], the
possibility of observing entanglement among two particles coming from different, completely
uncorrelated, and far apart sources. A simplified description of their work is presented in this
section.

Consider two different sources of the EPR states |®7), S| and S, working independently.
S1 sends one of its particles to Alice and the other to Charlie, while the second source S, sends
one particle to Charlie and one to Bob, the situation is depicted in figure 2.2. The total state of
the system is given by the tensor product of the state of each source:

Alice
Charlie
Bob

Figure 2.2 Two sources of EPR pairs S| and S, are represented. S| sends one of the particles to Alice
and the other to Charlie, S, sends one to Bob and one to Charlie

(W) = = (]040¢) + [141¢)) @ (|0c0g) + | 1c13)), (2.28)

l\.)l>—‘

here the index indicates who is holding each particle.
It is possible to rewrite |¥) in the following way:

1
|\P> = E(|0CoCoAOB>+|0choA13>+|1CoclAOB>+HclclAIB>)
= 2\/—(|¢+>|0AOB>+|‘1’ )[0408) + [¥()|0415) + [¥c)|0a15)
+PE) [1408) — W5 )[1408) + |9F) |14 15) — |9 )|1415)) (2.29)
1 e N
= §(|¢g>|cb:3>+|¢c>|¢’AB>+|q’g>|TXB>+|TC>|TAB>)- (2.30)

The collective index AB indicates that the particles in the labeled EPR state are those of
Alice and Bob. This equation enlightens that whenever Charlie makes a measurement in the
EPR basis, Alice’s particle gets maximally entangled with Bob’s one despite the fact that no
interaction ever happened between them.
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A generalization of this process for multipartite systems was proposed by Sougato Bose,
Vlatko Vedral, and Peter L. Knight in reference [BVK9S]. In their work, the process of swap-
ping occurs between systems of arbitrary size in the GHZ state, which in the mentioned refer-
ence is called “cat states”. They show that:

...the entanglement swapping scheme of Zukowski et al. can be generalized to
the case of starting with cat states involving any number of particles, doing local
measurements by selecting any number of particles from the different cat states
and also ending up with cat states involving any number of particles.

To show this mechanism, we are going to use a notation slightly different from the one
used by the authors.
First, let us define the n partite GHZ state:

1
V2

(GHZy) = —= (|0)™" £[1)"). (2.31)

The power ®n in equation (2.31) indicates the tensor product n times, for instance [0)*3 =
|000). Also in our demonstration we take into account that proving the relation for one element
of a class of states defined by local operations is enough for prove it to all elements of the same
class.

For some natural [ < n the state |GHZ;") has the following property:

|GHZr:lt> = % <|0>®l® |0>®(Vl—1) + |1>®l ® |1>®(n—l)>
1 3 . - -~
= 5 [(|GHZI+> +|GHZ, >) ® |()>®( ) (|GHZI+> ~|GHZ; >) ® |1>®( 1)}
1
= ﬁ(\GHZT>®!GHZZE;H!GHZf>®IGHZ,T,l>) (2.32)

Implying that if we perform a measurement in a complete GHZ basis in some elements of
a GHZ state, the remaining system will be in a GHZ state too.

On the other hand, for natural numbers /, m, p, and ¢ the following property also holds:
1 - - m— m—
IGHZ,") ® |GHZ,,) = §(|0>®”|0>®(’ P )P ) S0P @ (10)410) 21 =9) 4 1) 24| 1) = 0n=a))

Assembling p parts of the first system and g parts of the second together:



26 ENTANGLEMENT

1
|GHZ")®|GHZ,}) = 3 [|()> (pt4) g |0y & (Hm=—p=a)
( P @ 6249)0)® p+q)> 2 <]l®(l—p) ®G;Cg)(m_‘1)|0>®(l+m—p—q)> L
( ®p®6®Q|1 ®P+Q)>®<]l®( )®Gx m—q) |1> Q(l+m—p— q)>+
1

> (p+q) ®|1>® H—m—p—q)}

Writing the first p + g qubits in terms of GHZ states:

1
GHZ) 8 |GHZY) = = {(IGHZ, ) +|GHZy, ) © 0}~ 1

2v2

(1% @0 (IGHZy )+

GHZy, )] @ (19070 .67 0y mra))
(1% © 6% (|GHZ,, ) —

GHZy,, )] @ (19070 67 0 ) ettmra)

(I6HZ; )~ |GHZ, ) @ 1) Fmr=a) .

Rearranging the terms of the above equation:

|GHZ) ®|GHZ,;) = IGHZ,,. ,)®|GHZ),,, , )+|GHZ, )®|GHZ,, )+

vl

(]l®p®0'®q‘GH p+q>)®(ﬂ®(l P)®O_x m-q) ‘GH I+m—p— q>> +

(1P @ 09|GHZ p+q))®(11®( P) g g2m=a) IGHZ,,,, , qX}J33)

Thus proving that whenever a joint measurement in the GHZ basis is performed among
parts of two distinct systems in the GHZ state, the remainder of the system can be determinis-
tically set in the GHZ state.

With those properties the general entanglement procedure, as described in the manuscript
in question, is assured. This idea of entanglement swapping is very general and can be used to
remotely manage entanglement among separate parts. The authors of reference [BVK98] pre-
sented some diagrams (reproduced here in figure 2.3) to illustrate possible structural changes
in the entanglement of systems due this kind of entanglement swapping.
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SN

Figure 2.3 Figures from reference [BVK98]. Dots are particles and lines represent GHZ entanglement
between the parts they connect. The dashed line represent measurements to be performed in a complete
GHZ basis. In the left of each figure we have the states before measurement and in the right the state
after measurement

2.4 Dicke states

Dicke states represent a class of entangled states defined for a system of n qubits. They where
first reported in 1954 by R. H. Dicke [Dic54] in a study on the spontaneous emission of light
from a system of two level particles in a small cavity in comparison with the wave length of
the emitted radiation. Whenever a photon was emitted by the cavity, it was not possible to
distinguish from which particle it came.

With this in mind it is expected that the idea of Dicke states must have a close relation with
angular momentum theory. This must be true since the structure of a two level system is, in
all aspects, similar to a particle with spin half; in a way they are pseudo spin-% systems. In
this section we review the phenomena studied by R. Dicke on the view of angular momentum
theory, using creation and annihilation operators to provide a more generic introduction to
Dicke states, considering only the points more relevant from a fundamental perspective. The
details of theory of angular momenta that where not covered here can be found on reference
[STCI95].

First, we use the total angular momentum operators J,, J,, and fy to define the creation and
annihilation operators (/; and J_):

Jo = J+iJ; (2.34)

The effect of the operator /4 acting on an eigenstate of J>, is given by:

TelJ 2y = ep [, J.+1), (2.35)
where:

|5 [P = (T T T 0, ) = T (1 1) = J, (. F 1)
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So, except by a global phase:

). = \/ (Jrex g J;) (Jrex £+ 1) (2.36)

Now let us consider kets written in the computational basis |jj ja...jn), ji = 0,1Vi, and
define the number of excitations k in the following way:

k

Y i (2.37)
=1

It is possible to rewrite cf in therms of k and n:

Cizcki:\/<g:|:ki—g> (gik:Fngl) (2.38)

If the Hamiltonian is proportional to J, the action of J4 is equivalent to an absorption
or emission of a energy quantum. Hence, starting from the non excited state |00...0) the

absorption of k quanta leads to an eigenstate of J,, which for convenience we will call |D£,k)>,
where J;|D,(1k)> =(-%) ID®)), so we can write:

1
Dy = =+/100..0). (2.39)
k

The value of C,j is given by:

k—1
C,j = H)cf
= V() (1)-V(n=1)(2) .-/ (n—k+1) (k)

n! 2
= (mk!) (2.40)

Another feature of fi is that, by its definition, we can write:

Si=0:21®..01 + 100:®1®..01 + ... + 1®..9100:, (2.41)

where 0|0) =|1), 64|1) =0, 0-|0) =0, and o_|1) = |0).
Thus k applications of J, can be described as follows:
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=0, 919.91+100,010..01+ .. +10.0loc)’. (242

However o' |y) = 0, V|y) whenever [ > 1. Hence we will make /. =0 for / > 1. This
leads to:

() nk
P
F=rYy 2910 . 0lec,®..00,.. (2.43)
N————

=1

—

k

Combining equations (2.39), (2.40), and (2.43), we have:

(v) nk
p®y = Ly 015701 . (2.44)
=1 =~
()2 =1 k

The same relation can be derived from successive applications of J/_ on state [11...1).

The state |D£,k)) represents a Dicke state with k excitations. As became clear by the above
demonstration, these states are the result of a sequence of absorptions (emissions) of k (n — k)
energy quanta by a system of n pseudo spin—% parties or, as we will refer from now on, n
qubits.

To better illustrate, the two-qubit Dicke state with zero, one and two excitations reads:

Dy = |00)
DY) = J5(jo1)+10)) (2.45)
Dy = 11

For a three-qubit Dicke states we have:

\D§O)> |000)
DY) = J(j001) + [010) + [100)) 2.46
DY) = J5(011)+ [101) +[110)) -
\D§3)> — I111)

Notice that the W state is defined as |Dg1)).






Remote preparation of W states from imperfect
bipartite sources

The inventory of potential achievements that quantum entanglement may bring about has
steadily grown for decades. It is the concept behind most of the non-trivial, classically pro-
hibitive tasks in information science [NCO02]. However, for entanglement to become a useful
resource in general, much work is yet to be done. The efficient creation of entanglement, often
involving many degrees of freedom, is one of the first challenges to be coped with, whose
simplest instance are the sources of correlated pairs of two-level systems. These sources have
been used to demonstrate the possibility of teleporting an unknown qubit [BBC 93] and to dis-
close the nonlocality of quantum mechanics [BCP'14]. Some other important tasks require
more involved kinds of entanglement, e. g., a prominent framework for measurement-based
quantum computation is possible only if cluster sates are available [RBO1].

In the last two decades the increasing interest in complex entanglement motivated a fair
amount of works aiming at the creation of larger than Einstein-Podolsky-Rosen (EPR) states.
Most of these efforts have produced Greenberger-Horne-Zeilinger (GHZ) states [GHSZ90] in-
volving three [BPD99], four [SKK00], five [ZCZ"04], six [LZG107], and eight [YWX " 12]
qubits. Other multiqubit states have been built though more sparsely, for instance, Dicke states
[WKK'09] and graph states [LZG107]. Intermediate kinds of entanglement have been re-
ported in Ref. [WYO0S].

In this chapter of the thesis we are mainly interested in the creation of tripartite W states,
or yet tripartite Dicke states with one excitation. In the first experimental realization of such
a state [EKBT04], four photons originated from second order parametric down conversion
(PDC) are sent to distinct spatial modes and through linear optical elements. The conditional
detection of one of the photons leaves the remaining three photons in the desired W state
with a probability of 1/32 for each second order PDC event. Since these occurrences are by
themselves rare, the whole process lacks efficiency. A sufficiently robust experiment to en-
able state tomography is described in Ref. [MLFKO05], where three-fold coincidences were
observed with a rate about 40 times higher than that of [EKB04]. However, the creation of W
states remained probabilistic, thus, requiring postselection. In Ref. [MLKO04], an experiment
based on two independent first order PDC events is described, resulting in W states of four
and three photons. The latter being achieved, again, only probabilistically, through a measure-
ment on one of the parties. Projective measurements, that present intrinsic stochasticity, can
also be used to produce W-type entanglement [WKSWO09]. More in the spirit of the present
work, bipartite entanglement can be considered as an available resource, as is the case of Ref.

31
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[TWO™09], that takes two pairs of photons in EPR states as the building blocks to probabilis-
tically produce W states of three parties. Very recently general tripartite entangled states were
encoded in the nuclei of the fluorine atoms of trifluoroiodoethylene molecules, via nuclear
magnetic resonance [DD'15]. This technique, however, is unsuited for remote preparation
because the state is encoded in a spatially localized structure.

In the theoretical front, protocols based on PDC [YTKIO2], linear optics [YBFGHYO0S,
TOY 08, TWO™09, TKO™10], sources of EPR states [XZL08], atomic systems [YZ11], and
nitrogen-vacancy centers [TWCT14] can be found, all being probabilistic. In contrast, the
authors of Ref. [OYB™15] propose a deterministic scheme to create four-partite W states,
which can be extended to generate W states of arbitrary dimension [YBO™16]. More recently,
a procedure was suggested to create entangled states of several degrees of freedom, which is
particularly suited for W states. This fusion operation [OMT"11] corresponds to a swapping
procedure and employs two entangled states with dimension d to produce an entangled state
of dimension D = 2d — 2.

3.1 Deterministic production of W states

We assume that there is a source of bipartite entanglement, ideally delivering identical EPR
pairs. Three such doubles are needed in each run, with one particle of each pair being sent to
three detectors (D1, D, e D3). At this point let us simply consider that the state of three pairs
coming from the source is |¢T)*3:

07)%3 = rlﬁqoom|11>12>®<|oo>34+|11>34>®<|oo>56+|11>56>

1
= ——(]00)12 ®00)34 ®100)s56 + [00) 12 ®|00)34 ® |11
2\/§(| )12 ®[00)34 ® |00)56 +00) 12 ©[00)34 @ [11) 56

’00>12®|11>34®‘OO>56+‘OO>12®‘11>34®‘11>56+
[11)12 ®{00)34 ®]00)56 + [11) 12 ® [00)34 @ |11) 56 +
11)12® [11)34 ®[00)56 +[11) 12 ® [11)34 @ |11)56)

Of course, it does not matter which ERP state one choses, provided that it is known. We
intend to make a triple measurement on the odd labelled particles (subsystem A) which are
sent to the detectors, see Fig. 3.4. We note from the outset that the measurement on subsystem
A may be destructive and will be assumed to be so, although this is not a logical necessity.
The key point of our protocol, which enables the deterministic creation of W states, is the the
following set of kets:
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W-type
entanglement

EPR

Figure 3.4 EPR entangled pairs (1-2, 3-4, and 5-6) produced in sequence in a single source are spatially
separated. Odd-labeled particles are appropriately measured, after which, the remaining particles are
left in a genuine tripartite entangled state.

W) = 7(|001> 010) +{100)) ,
W) = 7<|ooo> 011) +[101)),
W) = 7(|ooo>+|o11>—|11o>)
A %(|000>—|101)+|110>)
Ws) = 7(|110>+|101)+|011>)
W) = %(|111>—|100)+|01o>)
W) = —=(111)+]100) — fo01)).
W) = \%(|111>_|o10>+\001>). (3.47)

The state |W;)(= |W)) is the tripartite W state as we are used to it and |Ws) its negation. The



34 REMOTE PREPARATION OF W STATES FROM IMPERFECT BIPARTITE SOURCES

other six states may not seem to be of the same category, since they are not combinations of
kets with the same number of “excitations”. However, it is easy to see that they also represent
perfect W states, for, |W) is obtainable from any of them via local, unitary operations, e.
g, W) = (I® 0, ® 0y)|Wa) = (0, ® 6, ®1)|Ws), etc. Note also that [W;;4) = 623|W;) and
(W;|Wk) = Ojr. Therefore, we have at our disposal an orthonormal W-state basis, that, in
principle, corresponds to the eigenvectors of some observable that can be measured. Given the
ideal source state |¢+)®3, after conveniently reordering the kets, it can be written as

1
)% = 5.751000)4]000) 5 4-]001)4]001) 5 +-]010}4]010) 5

+1011)4]011)5+ |100)4[100) 5+ [101),4]101) 5
+[110)4[110) 5+ [111)4[111) ] ,

where particles 1, 3, and 5 belong to subsystem A and the remaining particles to the subsystem
B.

Using the inverse of relations 3.47:

000) = 7= (102 + W) + ).
001) = = (W) = W) + W)

010) = = (W) + W) + W)

o11) = %(—!W2>+!W3>+!W5>)7

100) = 7<|W1> We) + W)

101) = 7= (W) = W) + W)

110) = = (=) + Wa) + Ws)) .

iy = %(|W6>+|W7>+|Wg>) (3.48)

We have:
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9)7 = \/— [(IW2)a + [W3)a + [Wa)a) @ (IW2) + [W3) + [Wa)B)+

6

(IWi)a — [We)a + [Wr)a) @ (IW1)g — [We) s+ [W7)B)+
(IWi)a+We)a+ [Ws)a) @ (IW1)p + [We)s + [Ws)B)+

(—=[W2)a + |W3)a+ [Ws)a) @ (—[Wa)p+ [W3)p + [Ws)p)+
( (IW1)B — [We)s + [Wr)8)+

( (W) — [Wa)p+[Ws)p)+

(— ® (—|Ws)+ [Wa)p + |Ws)p)+
([We)s + |W7)p + [Ws)5)]

(Wi)a—[We)a + |W7)a) ®
(Wa)a — [Wa)a+ |Ws)a) ®
(W3)a+ [Wa)a + [Ws)a)
([We)a + [W7)a +[Ws)a) @

Which has the totally correlated form:
1 28‘.
(Wi)a®|W;)p. (3.49)
2\/§ j:1

By executing a projective measurement in this basis for particles in A we deterministically
obtain, after local operations and classical communication (LOCC), a perfect set of pure states
in the standard form |W;) in subsystem B. Of course, the measurements in the entangled
basis (3.47) constitute a technical difficulty in practice, but there is nothing that prevents their
realization, in principle (more on this point in the next sections). The required local unitary
operations are shown in table 3.1. Note, in addition, that it does not matter how far apart are
the particles of system B, thus, the preparation may be remote.

Resultin A | Operation to be done on B
|W1) 0, =1IxIxI

[Wa) 0, =1®0,® 0y

|W3) 03 =0;,00;®I

|Wa) 04 =0:®I®o0;

|W5> 05 = 0, R 0, Q Oy

|We) O =0, Qio, ®I

’W7> Oy :i6y®ﬂ®6x
)

O3 =I®o0,®io,

Table 3.1 Operations to be done on system B after the measurements on A to deterministically produce
[W1).

A more evident, though analogous procedure is possible for GHZ states. The correspond-
ing measurement involves the basis |GHZ; Jk> (|ijk) = |ijk))/+/2, where the overbar denotes
negation and i, j,k = 0, 1. For the ideal source of states (3.47) one gets the result

~ |GHZ) ® |GHZy) + - -+ |GHZ ;) ® |GHZ7,,)
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also enabling deterministic creation of this kind of tripartite state. However, when the source
is imperfect, the process for the two classes of states lead to quite distinct results, as we discuss
below.

3.2 Entanglement concentration and lifting

We are now in position to address a more realistic entanglement source containing a systematic
error. The consideration of source flaws is relevant in the promotion of any theoretical proposal
into a feasible process. This has been considered, for instance, in an experiment for secure
quantum key distribution [XWS™15] (see also [MIT15, YBO™'16]) and also in state prepa-
ration [OMKIO02, SHST09]. The source is now described by |®¢) = (a]00)12 +5b[11)12) ®
(a]00)34 4 b|11)34) ® (a|00)s6 4 b|11)56), Where, hereafter, a is assumed to be real and posi-
tive, and a # |b|. This corresponds to

|®g) = a’|000)4|000) 5+ a>b|001)4]001)p +
a?h[010)4]010) + ab*|011)4|011) 5 +
ab|100)4]100) 3 + ab®[101)4]101) 5 +
ab*[110)4[110) +b3[111)4[111)p (3.50)

where we reordered the state, which, in this case, is expressed in terms of basis (3.47) as

[@o) = a’b|Wi) @ |Wh) +ab®|Ws) @ [Ws)

1
+ W) ® [ab2|Wk> + —(d® — abz)\000>]
k=2.3.4 V3
1
+ W) @ {a2b|Wk>+—(b3—a2b)|111>} . (3.51)
k=678 V3

Therefore, it remains possible to get an ideal set of W states after postselection, because
whenever the result of the measurement is |W;) (|Ws)) the produced state on B is |W;) (|Ws))
no matter the values of a and b. This occurs with probability |a®b|? (|ab?|?). Thus, by postse-
lecting the outcomes |W;) and |Ws), proceeding the appropriate LOCC for the latter, one gets
a pure ensemble of standard W states. The success probability is:

P =|a*b|)? + |ab?|* = a® — a*. (3.52)

Note that it is bounded from above by P = 1 /4, since we are eliminating the other six outcomes
even if they lead to states with high fidelity.

In a more realistic scenario, one may not be able to carry out a full measurement in the basis
(3.47). This is indeed the case of our present technical development. Note however that if we
can unambiguously distinguish |W;) from |Ws), and these from the other states, then we are
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Result in B after measurement in A

State left in B after LOCC (Table 3.1)

[W1)

[W1)

~ (a® +2b%)|Wa) + (a® — b%) (|W53) + [Wa))

~ (a* +2b%)|Wh) + (a® — b%) (|Ws) — [Wr))

~ (> +20%)|W3) + (a” = %) (IWa) + |Wa))

~ (a* +20%)[W1) + (a® — %) (—|Ws) + [We))

~ (a* +20%)|Wa) + (a® = b°) (W) + |W3))

~ (@ +20%)[Wh) + (a® — %) (IW7) — W)

|Ws)

[W1)

~ (b% +24%)[We) + (0% — a®) (W) + W)

~ (02 +2a%)|Wh) + (b7 — @) ([Ws) — [Wr))

~ (b +2a%)|Wr) + (0% — a®) (|We) + [Ws))

~ (b° +2a%)|Wh) + (6% — a®) (—[Ws) + [W))

~ (6% +2a%)|Ws) + (b” — a®) (IWe) + W7))

~ (b +2a%)[Wh) + (0% — a®) (IW7) — W)

Table 3.2 States left in B after the measurement in A (first column), and after the LOCC prescribed
in Table 3.1 (second column). Note that the states |Wa), |W3), [W4), and |Ws) do not appear after the
unitary operations. For the sake of clarity the states are not normalized.

Result in B after measurement in A Probability

W) a*[bl?

~ (> 1+20%)[Wa) + (a* — b*)(IW3) + [Wy)) | a*(a* +2[b")/3

~ (a®> +2b7)|W3) + (a®> — b)) (Wa) + [W4)) | a®(a*+2|b|*")/3

~ (a® +2b%)|Wy) + (a® — b)) (Wa) + [W3)) | a®(a*+2|b|*)/3
[Ws) a’[b|*

~ (b +2a%)[We) + (b* — a®)(IW7) + W) | [b*(1b]* +24%)/3

~ (b +2a%)[Wy) + (b — a®)([We) + W) | [b*(1b]* +24%)/3

~ (b +2a%)[Wg) + (b* — a®)([Ws) + W7)) | [BI*(1b]* +24%)/3

Table 3.3 States left in B after the measurement in A (first column). The second column shows the
probabilities for each outcome. For the sake of clarity the states are not normalized.
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able to remotely produce perfect W states from an imperfect bipartite source with probability
P =a?> —a*. Ttis possible to tackle an equivalent task with linear-optics elements in the case
of a GHZ basis [PZ98].

Although we cannot directly compare the entanglement of systems with two and three
parties, we argue that the previous procedure leads to entanglement concentration [BBPS96].
The source of bipartite states may have arbitrarily low entanglement and the result is always a
highly entangled tripartite state, of course at the cost of a proportional reduction in the number
of elements in the final ensemble. But this is exactly what happens for entanglement concen-
tration between ensembles of states with the same dimensionality [BVK99]. If the source is
composed by N quasi-separable pairs with state:

|We) = €]00) + /1 —€2|11), (3.53)

then we get £2N /2 + O(*) perfect W states, asymptotically. It is evident that any reasonable
measure of multipartite entanglement E, would give E(|W)) > E(|ye)®?), for sufficiently
small €. Also, because the entanglement delivered by the source is bipartite while the product
presents genuine tripartite entanglement, we say that the entanglement has been liffed (from
a “small” Hilbert space to a larger one). This is a remarkable property of W states, and an
analogous situation does not exist for GHZ states. If the source has a # |b|, by any small
extent, then the probability to get an exact GHZ state in any run is zero, and no postselection
could help in getting an ideal GHZ ensemble. This adds to the reasoning that W states are less
entangled than GHZ states, in the sense that from three non-maximally entangled states one
can, via stochastic LOCC (SLOCC) [DVCO00] get a perfect W but not a perfect GHZ.

3.3 High-fidelity W states without postselection

The referred postselection may be a waste of resources if some amount of error can be tolerated
in a scenario where full measurements can be carried out. For a good, but imperfect source,
the outputs are either perfect or so close to the ideal states that the chance that they can be
distinguished in practice is very small. Note from the second line of Eq. (3.51), that if, e. g., we
obtain |W5) in subsystem A, then the state in B is proportional to v/3|W>) + (a® /b — 1)|000).
So, for > = 1/2+ € (|b|> = 1/2 — €), with £ << 1, we get /3|W>) +4ee~219]000) + O(&?),
where b = |b|e®.

We proceed to show that even if all measurement outcomes are utilized, the fidelity of the
resulting state with respect to |W7) is slightly improved in comparison to the fidelity of (3.50)
with respect to the ideal source state |¢ ). Without postselection, the possible states left in
B after the measurement in A are listed in the first column of Table 3.2. The next step is to
proceed with the operations in Table 3.1. That leaves the first state in Table 3.2 unchanged,
while the second (not normalized) state undergoes the transformation

(a® +20%)|Wa) + (a® — B> (|W3) + [Wy)) —
(a4 20%)|Wy) + (a® — b*)(|Wg) — [W4)) ,
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and so on, see the second column of Table 3.2. Gathering these results together and considering
their probabilities (second column of Table 3.3), the resulting density operator for the mixed
state reads, in the W basis [Eq. (3.47)],

p = FIW)Wils+ = (We)(Wels -+ Wa) (Wals+ [Ws) (Wel) —

K (|Ws) (W7 |+ [Wes) (Ws|B + [W7) (Ws |5+
(W7) (Ws B+ [Ws) (We|B + [Ws) (W7 (B) (3.54)

Or in matrix notation:

FOOOO O O O
00000 O O O
00000 O O O
00000 O O O

P=lo0oo0o00 0 o o | (3-55)
000005 -k —K
00000 -k 5f —k
00000 —-K -k LE

3
where the absolute value of the coherences reads K = [4a*(1 —a®)(1+sin?6) 4 1]/9 and

1
F= §(8r2+ 1), (3.56)

with I' = av/1 —a? cos 0 and b = /1 —a2¢'®. The quantity in Eq. (3.56) is the final fidelity,
F = Tr(p|W;)(W;]). Since the described protocol amounts to lifting entanglement from a
Hilbert space with dimension 4 to a Hilbert space with dimension 8, it could be considered
useful even if the final fidelity were smaller than the fidelity of the source, to an acceptable
extent. However, we note that the fidelity of |®g), Eq. (3.50), with respect to an ideal source
is Fy = (@] (|0 T)®3|2, or Fy = (T+1/2)%, with —7/2 < 6 < 1/2. For phase arguments
outside this range the source would better described by the Bell state ¢ ~) ~ |00) —|11). This
leads to

F:§<1—2F01/3>2+%2F0. (3.57)
So that if the source produces single pairs with states |00) +¢™/3[11), whose fidelity is Fy =
(0.905) = 0.74, then we obtain an ensemble whose fidelity with respect to an ideal W state is
F =0.77 (see Fig. 3.5). In particular, a borderline initial fidelity of 0.5 leads to F = 0.56.

It is important to recall that in this whole process, without postselection, there are no losses
but those due to the measurement in A. Whenever the EPR source has N particles the resulting
W-state ensemble has N /2 particles, which renders statistical efficiency to the protocol. In
addition, if the physical realization of the bipartite source is provided by entangled photons,
we only demand first order PDC, that is, three pairs generated in sequence, provided that the
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Figure 3.5 Fidelities F (solid) and F (dashed) as functions of a for (a) 6 = 0 and (b) 6 = 7/5

setup is capable of keeping the coherence of the pairs in the typical window of time for the
occurrence of three PDC events. Let us finally comment on the scenario in which the source, in
addition to the systematic error, presents a fraction f of white noise. A conservative hypothesis
for the state of the triples in the source is:

po = (1= f)|Po)(Po| + fTs4/64, (3.58)

where [ is the D x D identity operator. In this case it is immediate to see that the noise fraction
remains unchanged throughout the protocol, and the obtained density operator reads p = (1 —
f)p + fIg/8, where p is given by Eq. (3.55). That is to say, our lifting procedure leads to
entanglement concentration but probably not to entanglement distillation upon depolarizing
noise.
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3.4 Discussion

It is arguably easier, both conceptually and experimentally, to create a four-partite W state
than to produce a tripartite |W). This is partly due to the fact that most of the measurements
involved in the previous protocols are of Bell type. In this work we provide a full basis of
W states which induces more appropriate measurements to produce the desired type of entan-
glement. Of course, we are aware of the technical difficulties associated with full measure-
ments involving entangled bases, either without interactions between the subsystems [VY99]
or with passive linear elements only [LCS99]. In the last fifteen years, many ways to cir-
cumvent these difficulties have been proposed, employing ancillary systems (hyperentangle-
ment) [SHKW06, WBKO07], nonlinear optics [KKSO01], or even active linear optical elements
[ZvL13]. In addition, we note that in the case of a perfect source, if one can distinguish n basis
elements out of 8, then we have a statistical efficiency of n/8. Even in the case of imperfect
sources, to produce ideal W states only requires the ability to distinguish |W;) from |Ws), and
these states from the rest of the basis elements. This is a much more modest task. Finally, we
note that the measurement on subsystem A can be made in a very localized region of space
(without affecting the remote character of the state left in B), enabling the execution of CNOT
gates involving particles 1, 3, and 5.

Our results can be summarized as follows: When the EPR source is ideal, a pure en-
semble of W states can be deterministically produced. In addition, if the bipartite source is
non-maximally entangled, one can still obtain a set of pure W states, this time at the cost of
postselection. This is a peculiarity of the states |W) that, for instance, does not hold for GHZ
states. In fact one can produce perfect W states from arbitrarily poor entanglement, but, the
poorest the entanglement of the source the smaller the number of states |[W) in the ensemble.
Alternatively, it is possible to profit from every individual run, for, even without post selec-
tion one gets a mixed tripartite state whose fidelity (with respect to |W)) is higher than that
of the triple of pairs coming from the source (in comparison to a perfect triple of EPR pairs).
Finally we emphasize the possibility of creating remote entangled systems, allowing, e. g.,
distribution of keys.






Critical behaviour in the optimal generation of
multipartite entanglement

Quantum entanglement involving two parties has led to groundbreaking advances, of which
preeminent examples are Bell inequalities and nonlocality [Bel04], teleportation [BBC193],
and dense coding [BW92, MWKZ96]. It would be natural to think, at a first sight, that multi-
partite entangled systems would present the same features in a larger scale. However, since the
seminal study on the nonlocality of certain tripartite states in the early 90’s [GHSZ90], it be-
came gradually clear that completely new phenomena and potential applications could arise. It
is now known that n particles can be highly entangled without any pairwise correlation: entan-
glement appears in many different, inequivalent forms, of which the Einstein-Podolsky-Rosen
(EPR) type is the simplest instance [LL12, DVCO00]. As for applications, there are, e. g.,
paradigms for quantum computation which rely on the feasibility of cluster states of several
qubits [RBO1].

It s, then, clear that conceiving means to produce multipartite entangled states is of rele-
vance. To date, there are three ways to meet this goal: controlled interactions between qubits,
measurements in entangled basis, and indistinguishability of identical particles. The first way
relies on the fact that initially uncorrelated interacting subsystems may become entangled. Of
course, the interactions must be finely tuned and the qubits protected from noise. The second
possibility is related to the fact that, to any orthogonal entangled basis corresponds a physical
observable that can be measured, in principle, leaving the system entangled. There are, how-
ever, serious provisos regarding this simplistic picture. Firstly, measurements are commonly
destructive, photo-detection for instance, so, after their realisation there remains no system
whatsoever. This problem can be circumvented if bipartite entanglement is an available re-
source. So, instead of using n qubits, one employs n EPR pairs and proceed with the n-partite
measurement on one particle of each pair. The remaining qubits will end up, with some non-
zero probability, in a n-partite entangled state, see, e. g., [MCP16]. This brings the second
difficulty. In practice, it is very hard to make full measurements in entangled bases, even in
the bipartite case [VY99, LCS99]. The third way is more related to a fundamental principle
than to deliberate procedures, see however [BHO2]. It simply amounts to the fact that two
indistinguishable electrons, e. g., can only exist in an entangled state.

In this chapter we present a procedure for creating arbitrary Dicke states, |D£lk)>, of n par-
ticles and 1 < k < n— 1 excitations. It employs a combination of induced indistinguishability
and, differently from the previous chapter, unentangled Fock measurements. The protocol has
the property that, irrespective of how poor is the source of entanglement, every time a Dicke
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state is created, it is ideal. In addition, the probability of creating ]Dﬁp) behaves similarly
to a thermodynamic potential during a second-order phase transition, as n grows, where the
entanglement of the optimal source undergoes a qualitative change at a critical n. Finally, we

establish exact results on the asymptotic entanglement between any qubit belonging to |D£lk)>
and the rest of the system.

4.1 Entanglement lifting

We begin by sketching an optical realisation of the scheme in the simple case of three photon
pairs. It illustrates what we refer to as entanglement lifting. Differently from usual entan-
glement concentration, we start with M bipartite entangled pairs and, in the end, we obtain
J n-partite entangled systems. More precisely, in the pure case, we will consider the process
|9)*M — |¥)®J with |@) € 5% and |¥) € ¢}, where not only j < M, but also D > d, with
d =dimJ%, and D = dim%ﬁr. It will become clear that lifting also entails concentration.

Consider three identical sources of pairs of polarisation-entangled photons (alternatively
one can consider that there is a single source producing the pairs which are posteriorly dis-
tributed). We initially assume that each pair is maximally entangled, with state:

[67) = (100) +11))/V2, (4.59)

with O (1) denoting horizontal (vertical) polarisation.

One photon of each pair is delivered to Alice, while the others are sent to Bob, Brian and
Brandon. After this, the total quantum state reads:

[Wo) = [¢T)? =272 Y Jijk)a ® i jk)s, (4.60)
i,j,k

where A stands for Alice and B for the spatially separated system of Brandon, Brian and Bob
(fig. 4.6).

Alice synchronizes her photons, e.g., using quantum memories [FCL*06, YCCT07, MHY " 16]
(process denoted by S) before sending them to a polarization beam splitter (PBS). It is impor-
tant that the three wave packets overlap so that the photons are undistinguishable when they
arrive at the PBS. With this, Alice intentionally discards the information on the former holder
of each photon.

After passing the PBS, the photons proceed to detectors capable of discriminating the Fock
state in each spatial mode of Alice’s system [DMB108, MZG*15]. The indistinguishability
induces a natural partition of Alice system’s Hilbert space into subspaces generated by kets
with a fixed number of photons with a given polarisation, so that, states like |001) and |010)
coalesce into |2 horizontal; 1 vertical). In this way, we have four detection possibilities:
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DETECTOR

BOB
Figure 4.6 Three photon pairs are produced in an EPR polarisation state. One photon of each pair
is sent to Alice, while the B-group members receive one photon each. Alice send her synchronised

photons to a PBS, after which they are detected, leaving the B-group with an ideal Dick state with
probability p = 0.75.
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000) — 13 0),
{|001),1010),[100)} — [2;1),
{|011),]101),[110)} — 112>,
I111) — |0;3). (4.61)

The first entry in the kets on the right-hand side gives the photon number of path 2, and
the second entry the photon number of path 1, see fig. 4.6. It is clear that this process is
non unitary since it can map orthogonal states into the same final state. This is due to the
fact that synchronisation can only be achieved through the interaction between the photons
and some ancillary systems which, generally speaking, store the information on the initial
delay between the photons. In [YCC'07], where the possibility of using this technique in
the scalable generation of photonic entanglement is already mentioned, the auxiliary systems
consist of Rubidium atom ensembles. The global unitary evolution of the larger system leads
to the non unitary evolution of the reduced system of the photons to be synchronised.

In the full indistinguishability situation, just before the detection, the state is proportional
to:

1
|3’0>|OOO>+ﬁ|Z’1><ﬁ|OOI> \/_|01o> f|1oo>>

1 1
+\/§|1;2><%|011>+%|101>+%|110>>+|0;3>|111>.

Therefore, after the detection of Alice’s photons there are four possible states left to the B-
group. If all three photons are either detected in path 1 or in path 2 (probability 1/8 for each
event), then, B-group’s state is separable and, after appropriate classical communication, it
is disposed. With probability 3/8 two photons are detected in path 2 and one in path 1 and,
then, B-group’s state is already a W state, g1)> = |W3) o< |001) + |010) 4 |100). Lastly, also
with probability 3/8, two photons are detected in path 1 and one in path 2. In this case, Alice
communicates the B-group members that each of them have to perform a bit-flip operation in
his qubit, and, in the end, ideal W states are prepared with probability 3 /4.

4.2 Dicke states of arbitrary dimension

We now generalise the lifting procedure to the case where n EPR pairs are used per run. We
will see that this leads to the production of arbitrary, unambiguously heralded Dicke states.
The initial state is given by [Wo) = |¢T)®", and it is easy (but crucial) to see that it can be
written as:

1 n/2
|‘P0>=(5) Y 12 jn)a ®|jij2---jn)B; (4.62)
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where j; =0, 1.

Again, one photon of each pair is sent to Alice and the others to each of the elements of the
B-group, now composed by n parties. Alice’s photons are synchronised and sent to the PBS.
Given the indistinguishability:

100...0004 — |n;0),
{2V)00..00004};, — |n—1;1),

{2 VoL, - [lin-1)
L1114 —  |0sn), (4.63)

where @;k) represents the jth non-trivial permutation of the ket entries.

Thus, for each k, we have j =1,2,..., (Z) . It is simple to show that the global state of the
system immediately before the detection of Alice’s photons is

n

1\2
‘\P> = (5) [\n;0>A\OO...OO>B—|— |0;l’l>A‘1...111>B+

n—1 %
)3 <Z) In—k; k)l DY) g | (4.64)
k=1
where
k n _% (Z) A (k /—/k\
Dy = ®)0..0T...11) (4.65)
K)o ETT S

is a n-partite Dicke state with 1 < k < n — 1 excitations. Note in Eq. (4.64), as in eq. (3.3), the
perfect correlation between Alice’s output of an unentangled Fock measurement and the pro-
duction of a specific ideal Dicke state shared by the elements of the B-group. The probability
of having output |n — k; k), or yet, to remotely produce |D£,k)>, is (7) 27". Dicke states with
different number of excitations are generally inequivalent under local operations and classi-
cal communications (LOCC). The obvious exception occurs for k and n — k excitations, since
\D,(j‘)> = @?”\DS,"*]‘)) Therefore, after Alice communicates her outcome, the B-group may
transform all the states with 2k > n-+1 (2k > n), into states with 2k <n—1 (2k < n), for n odd
(even). We will assume that this procedure is always adopted in the remainder of this chapter.
For n even and k = n/2, we already have |D,(1k)> = |D,(1"_k)>.

We are in a position to further extend the scheme to the case of tunable sources producing
pairs with arbitrary entanglement [WJEK99, XWS™ 15, MIT15, MFC*15]: |9) = a|0405) +
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b|141p). In this case the total initial state |¥o) can be written as:

b Zzl:lj[
n . . . o " 7
Z a (;) |J1J2---Jn)A @ | j1J2---Jn) B
J1:j25Jn=0,1

for a #£ 0.
Under full indistinguishability, the surprising result is that after the PBS, and before detec-
tion, the state reads:

n

: (k)
) In—kikali ). 460

n—1
W) = a"[n;0)4]00...00) 5+ b"|0;m)a 1. 111) g + Y @ FbF (
k=1

that is, despite the asymmetry of the source states, whenever an entangled state is produced

it is still a perfect |D£lk)>. It is of great importance to note that, had we kept all initial infor-
mation, namely, the distinguishability of Alice’s photons, then entangled measurements would
be required to leave the B-group with Dicke states. The unbalanced character of the bipar-
tite source, rather than affecting the ideality of the outputs, only changes their probabilities of
occurrence, which are given by

=

with &, = 1 for n odd and ¢, ; = (1 + &, /2)‘1 for n even, and, with the LOCC-equivalence
between k and n — k excitations already considered.

In fie. 4.7 we display (a) 2", ) P2, (©) B, @ PV, (e) B*, and (f) PPY, as
functions of |a|?, for selected values of n. The left panel shows that for n = 3, the optimal
source corresponds to maximally entangled states (|a|?> = 1/2). This is also true for n = 4,

2 2
a"_kbk‘ +‘akb”_k’ )%7,(, (4.67)

but, in this case there is a broad plateau around |a|? = 1/2. For n > 5, PV is maximal for
non-maximally entangled sources and, two symmetric optimal values of |a|? appear. By using
the general expression (4.67) one can analytically determine the bifurcation condition:

1 / 1
n>2k+§+ 2k+ZEr]C. (4.68)

Since the right-hand side of the above equation is not necessarily integer, we define n. = [1.],
which stands for the ceiling function (smallest following integer). For k =1 and k =3, 1. =
ne =4and n. = n, =9, respectively. In these cases the critical value is indeed integer and one
can see the typical behaviour shown in fig. 4.7(a) and 4.7(c) for n = 4 and n = 9, respectively.
In contrast, for k = 2, . ~ 6.56 (= n. =7), see fig. 4.7(b), and the exact critical point is
passed by, for, there is no n for which the plateau appears: for n = 6 there is a single maximum
in PP, whereas for n = 7 there are two maxima. The same happens in figures 4.7(d), 4.7(e)
and 4.7(f). However, the properties hereafter derived are the same no matter if 1. is an integer
or not. In fig. 4.8(a) we plot the optimal source parameter |a,,|* = |d|? against n for k = 1
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Figure 4.7 Probability of producing Dicke states with (a) one excitation and (b) two excitations (c)
three excitations (d) four excitations (e) twenty five excitations (f) fifty excitations for selected values
of n. As n grows there is a transition from functions with a single maximum at |a|> = 1/2 to curves
with two maxima.
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1,

0.8

Figure 4.8 “Pitchfork” bifurcation diagram of |a,|* = |@|? versus n for k = 1 (diamonds), k = 3
(bullets), and k = 5 squares.

(ne=4), k=3 (n.=9) and k =5 (n. = 14). The optimal source state remains maximally
entangled up to n = n,, after which a bifurcation develops.

These features remind us of the classical Landau theory [Cal98, PP72] of second order
phase transitions, with the role of the thermodynamic potential being played by P,gk), la?
as the order parameter, and n inversely related to the temperature. Given this similarity, we
set to find further evidence to support our analogy. Figure 4.9 displays the probability Pn(3)
as n varies. The filled bullets represent P,P) if one employs a maximally entangled source,
|a]2 = 1/2 V¥ n, leading to a steep decay toward zero. As soon as n > n,, if, instead, one uses
the optimal, but less entangled source determined by the lateral maxima, the decay follows a
power law with a finite, non-vanishing asymptotic value. This regime is represented by the
stars in fig. 4.9. We found that the state of the optimal bipartite source for the production of

|D£,k)>, is asymptotically given by:

\¢;,§’<>>_>\/§\oo>+ 1—§|11>,n—>oo, (4.69)

with k finite. The other optimal state is obtained via |a| = |b| [Lower branches in fig. 4.8 tend
to Eq. (4.69)]. Thus, the optimal source tends to a collection of quasi-separable states. Yet, by
using it we end up with a non-zero probability of obtaining n-partite entangled states. In this

limit, the behaviour of the optimal probability, 13,5") , 1s given by:

BY = BO [14+k(2n) "] +0(n?), (4.70)
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Figure 4.9 Probabilities of creating a Dicke state with (a) 3 excitations, (b) 4 excitations, (c) 10 exci-

tations versus n. If EPR pairs are used Pn(k) drops exponentially (bullets). If the optimal source is used,

it undergoes a power-law decay (stars).
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where the constant asymptotic probability reads

k —k
im A = pb — K¢
n—oo k!

4.71)

Although these are asymptotic results, the convergence is fast for small k£’s . The stars in fig.
4.8 are close to the continuous curve [0.224(1 +3/2n)] already for n > 15, see the lower-order

non-constant term in the asymptotic expression for ﬁ,S"), derived further.

Here we give the main steps to demonstrate equations (4.69) to (4.71). We intend to find
the optimal probability of obtaining the state |D£lk)> in the situation n > n.. For n # k/2 the
probability reads

Pk — (Z) [A("—k) (1—Af+ A% (1A, (4.72)
where A = |a|2. Initially we had numeric evidence that the optimized probability would follow
a power law to reach a finite value as n — oo. We, therefore, set to look for a source state that
would support this behaviour. Looking at Eq. (4.72), since 0 <A < 1, we see that as n — oo,
we must have either A — 0 [lower branches in fig. 3 (a)] or A — 1 [uper branches in fig. 3
(a)] in order to observe a Prgk) finite. These two choices are equivalent due to the symmetry of
equation (4.72), so we address the lower branch A — 0 as n — oo. In this case, the first term in
Eq. (4.72) vanishes, leading to the following result:

.ok nm=1)..(n—k+1) (1-A)
}’}l—l;l;lopn - k! A 1—A k
A—0 ’ ( - )
The product nn(n—1)-...- (n—k+1) gives rise to a term of order n* plus lower-order terms.

So the only way to keep P,Sk) finite is to assume that A ~ n~1, say, A = & With this we indeed
obtain the finite asymptotic value:

k k
(04 (VAN (04
lim P = lim & (1 . —) — & o plh)
n—eo n—eo k| n k!
A—0
with & to be determined. Since we are seeking the optimal source, we simply maximize JR
d -~ k
P =0 0=k Ap=A=",

which justifies Eqs. (4.69) to (4.71). Equation (4.70) is obtained by collecting the following

lower order term, leading to
k
s Kkl k
P, 7 e (1 + Zn) .

In general, for small k this regime is quickly reached and, as the number of excitations in-
creases (remaining finite), we observe a longer transient.
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The properties derived so far provide information on the entanglement of Dicke states.
Result (4.71) leads to the conclusion that, if entangled pairs are an available resource, the
probability to create Dicke states as n — oo, with a finite number of excitations k is non-
vanishing even if the source has an arbitrarily low entanglement per pair. For k =1, e. g.,
one obtains AL ~ 0.368, with |@|> — 1/n. This is the signature of entanglement concentra-
tion: the exchange of a large number of copies with low entanglement by a small quantity
of more entangled systems [BBPS96]. Here, in addition to concentration, the initial bipartite

entanglement is lifted to a larger Hilbert space.

Finally, we derive asymptotic results on the amount of entanglement between any single
qubit which is part of a system in a Dicke state and the rest of the system. Therefore we
address the partition (Alice, By, ,Bj_1,Bj+1, -+ ,By|B;) = (I|II), where B; represents any
of the elements in the B group (due to the symmetry of the Dicke state the analysis does not
depend on which qubit is being singled out). Note that, after Alice’s local measurements this
same partition reads (B1,---,Bj_1,Bj+1, -+ ,Bn|B;), which indeed refers to the entanglement
between an arbitrary B-group member and the rest of the group. Suppose one intends to pro-

duce |D,(1k)> with k finite and n arbitrarily large from a reservoir of optimal bipartite states,
given by Eq. (4.69). The initial entanglement between / and 1/ is precisely the entanglement

between B and the rest of the system, i. e., E(| (]S,Sk) )), once local operations and classical com-
munications should not increase the entanglement between any bipartition, the final amount

of entanglement between theses parts are upperbounded by E (|(§,Ek)>) where E is an arbitrary
bipartite measure or monotone. Nevertheless it must also be lowerbounded by the amount of

entanglement P,Ek) X E (1) (\Dslk))) between B; and the rest of the B group —at this point Alice’s
part is completely factorable and plays no role. This holds because we are disregarding the
contributions coming from the other Dick states that may be created. So, we must have,

k)

E(16:)) > BYE 1 (IDP)). (4.73)

As n — oo the left-hand side goes to zero from above. The same must be true for the positive-
definite quantity in the right-hand side. However, in this limit the asymptotic probability is
non-vanishing, which demands

Eqm (ID,(f‘)>) — 0, n— oo, (4.74)

This result is to be contrasted with the entanglement referring to the same partition of a system
in a GHZ state of n qubits: |GHZ,) = 271/2(|0)*" 4 |1)®"), which gives E ;) (|GHZ,)) = 1
ebit, for arbitrary n. As a specific example let us consider the 2-tangle as the bipartite measure.
In this case, equation (4.73) reads, 7y H)(|D,(1k)>) < (41(/15,516))11’1 4+ O(n=?). Therefore, the
2-tangle between an arbitrary qubit in a Dicke state and the rest of the system must go to zero,
at least, as fast as n~!, as n — oo with k fixed.
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4.3 A simplified experimental approach for alignment

In this section we intend to demonstrate one possible execution of the alignment part of our
protocol. The main problem addressed is alignment, which in figure 4.6 is performed by the
box S. The process uses only beam-splitters and polarization-beam-splitters, both objects of
linear optics. Also, our proposal considers only the tripartite case, however a generalization of
the protocol is straightforward. The sketch is depicted in figure 4.10.

First we have the three sources creating the state |¥):

¥ = 2_\1/5 (a;(H)agl(H)+a£1(V)a21<V)> (aEZ(H)aEZ(H)+a£2(V)a22(V)>
(aha(Hats(H) +ahs(V)als (V) ) 0) (4.75)

Here we have changed our notation. H (V) stand for horizontal (vertical) polarization. The
state |0) represents vacuum. The operator a;(Y ) creates a photon in path X with polarization
Y. The reference to the paths are made according to figure 4.10.

Using this notation the effect of a beam-splitter in the evolution of a state is the following:

(%) = —= (a0 0)).
ap(X) = 2= (a0 —d ()
(%) = = (a0 +as )
(%) = = (a0 +a(x)

Thus, after the photons in path E2 and E3 hit the beam-splitter, we employ the relations
above to have:

¥) = 5 (ahi(H)afy () +af, (V)af, (V)
iy (V ety (V)a gy (V) — s (H)atyy (H)ags (H)

(V) al
¥ ¥ ¥ ¥
aB3 aBZ ) +agy(V)ag, (H)> acy(H)ag (V)+
> 4.76)

i
(

Here C represents all the terms with at least one photon in path C2, which represents
evolutions out of our interest.
After the second beam-splitter, we have:
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Figure 4.10 It is presented a protocol to align the photons emitted by the three EPR sources. Whenever
some photon is detected in by detector C we have a failure. The same happens if we have A1B1, A1B2,

A2B1, and A2B2.
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) = % [a}l (H)aly, (H)al(H)ay (H) — a}y (H)ag, (H)ag, (H)ay (H)+

aly (V)ag, (V)ag(V)al? (V) —al, (V)ag,(V)ah, (V)al (V) +

al (H)ag, (V)aks(V)ah(H)ay (V) — aly, (H)ak, (V)al, (V)a) (H)a (V) +

al (V)b (H)aks (H)ay(V)ay (H) — ag, (V)ak, (H)ag, (H)a| (V)ai* (H)+

al (H)ag, (V)aks(H)ay(V)ay (H) — ay (H)ak, (V)ag, (H)a| (V)ai> (H)+

al (H)agy, (H)aks(V)ay(V)ay (H) — ay (H)ak, (H)ah, (V)al (V)ai> (H)+

al (V)ah,(V)ah, (H)ay(H)ay (V) — aly, (V)ak, (V)ags (H)al (H)a 2 (V) +

al (V)ah, (H)ah, (V)ay(H)a (V) — aly, (V)ak, (H)aks (V)al (H)a 2 (V) +
AB+C]10) 4.77)

In equation (4.77) C represents the evolution of C, which is not of our interest and AB is
the term with all evolutions leading to at least one photon in A and one in B simultaneously,
whose realization represents a failure of our protocol.

Finally, after passing the polarization Beam-splitter, we have:

1
W) = —[HHH ®|B2:3)+ |[HHH) ®]A2:3) +
\Wr) 5/ |HHH) ®|B2:3) + [HHH) ® |A2: 3)
VVV)® Bl :3)+ yvvv> ® A1 : 3>
f( |HHV) + —|HVH) + |VHH>)®|BI:1,BZ:2>+
V3 f
\VVH)+ |VHV IHVV) ) ®|B1:2,B2: 1)—
(\f f
( \HHV) + |HVH |VHH)) ®JAL:1,A2:2)—
( \VVH) + \VHV \va ) ®IA1:2,A2: )+ (4.78)

Therefore whenever we have detections on A1 and A2 or Bl and B2, which will occur
with probability 63—4, a Dick state with one excitation, or equivalent under LOCC, is created,
otherwise the output is rejected.

It is worth stressing that this sketch does not represent an optimal protocol. Its presentation
aims at providing some insight on the nature of the process of alignment. The synchronism
is not mentioned above for, in principle, it would be possible to select only detections within
some a priori established time window.
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4.4 Discussion

We presented an efficient protocol to create Dicke states without the need of entangled mea-
surements, a major technical difficulty. The efficiency is due to a high success probability
and to the fact that whenever a Dicke state is produced it is ideal. In optimally executing
this protocol the tunable source states present a behaviour that is analogous to a second-order
phase transition in thermodynamics. In particular, the optimal source is not necessarily made
of maximally entangled pairs.

Although our conclusions rely on the fact that our scheme is possible. In principle, an
experiment seems to be already feasible for a relatively small number of parties. The most im-
portant ingredients, namely, tunable bipartite sources [WJEK99, XWS™ 15, MIT15, MFC*15],
photon-number-resolving detectors [DMB 108, MZG™ 15] and synchronisation techniques [FCL 06,
YCC'07, MHY " 16] are presently available, although, the conjunction of these elements may
pose technical difficulties. The result of such an implementation would be the production of
highly entangled multipartite states with a strong robustness against poor sources and with an
increasing success rate for large n’s. We finally call attention to the fundamental relation be-
tween the information loss induced by synchronisation and the simpler nature of the required
measurements. This counterintuitive fact has been first reported, in a quite distinct context, in
[FLO7] and it deserves further investigation.






All bipartitions of arbitrary Dicke states

The growing interest in multipartite entangled states is partly a consequence of the rush to find,
classify, and quantify useful resources to a great variety of tasks in the field of quantum infor-
mation. For this reason the history of these states is relatively recent. To give a few outstanding
examples, Greenberger-Horne-Zeilinger (GHZ) states appeared in 1990 in the context of Bell
nonlocality, while cluster states were defined in 2001 as a fundamental resource to the realiza-
tion of one-way quantum computing. These states have been formally introduced before any
actual counterpart could be produced in the laboratory.

There is, however, one noticeable exception: Dicke states. They were introduced back in
1954 in an acknowledgedly important study on the spontaneous radiation emitted by a molec-
ular gas. In spite of this specific, but important original goal, these states are becoming the
core of several researches. In this chapter we analyze the amount of entanglement between
bipartitions of systems of qubits in an arbitrary pure Dicke state. The evaluation of the amount
of entanglement is possible through a relation which explicits the Schmidt decomposition of an
arbitrary bipartition. This relation is proved through the principle of finite induction. Regard-
ing this decomposition we are able to derive a property of Dicke states, which so far remained
unclear in the literature: whether Dicke states are equivalent under LOCC. In this regard, we
show that two of them are only equivalent when their number of excitations can be written as k
and n — k. Also, using the decomposition, we derive a form for highly sensitive entanglement
witnesses with respect to the fidelity of an arbitrary state p and the Dicke state associated with
the witness.

5.1 Setting one qubit apart from a Dicke state

As mentioned in the introduction, Dicke states have been introduced as describing the internal
degrees of freedom, ground (0) or excited (1), of a gas composed by n molecules. The system
is admitted to be in a container whose dimensions are small in comparison to the wave length
of the radiation (corresponding to the transitions O <+ 1), but large enough for the overlap
between the individual molecular wave functions to be negligible, thus, avoiding the need
of symmetrization. In this regime, although the molecules are distinguishable, one cannot
identify which molecule emitted or absorbed a photon. Under these conditions the state of the

59
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n-molecule gas with k excited molecules is

-1 ()
N LANER <0

which is the general form of a Dicke state. The operator Pq(") performs the gth permutation on
the n entries of the ket.
The starting point of our study is the observation that definition (5.79) can be rewritten as:

1 (n;l
(k)y _ (m) 2 s(n-1)
D) = (k) 0) ® q;opq \o.}.{.o 1..1)+

S
—
>

or simply

1
—k\? k\? _
\D,S”):(”n > \0>\DE,"21>+<;) DY), (5.80)

where we dropped the tensor product symbol ® (we will do so hereafter). Some comments are
in order. First note that, due to the symmetry of the Dicke state, there is no need to say which
qubit is being singled out from the other (n — 1) qubits. So that, all partitions of the system
into 1 qubit and (n — 1) qubits, which we denote by (1|n— 1) are equivalently described by the
previous state. Note, in addition, that Eq. (5.80) is a Schmidt decomposition for a bipartition
with one qubit in one side, say with Alice and (n — 1) qubits in the other with Bob. This allows
us to use the well-settled theoretical apparatus concerning the entanglement of pure states of
bipartite systems (the fact that the two Hilbert spaces have different dimensions is immaterial).

One can immediately write the entropy of entanglement, S = Try[— Trp (p,(lk))log TrB(p,sk))],

bearing the partition (1|n— 1), with p,gk) = ]D,(lk)> (Dslk) |. The result is

st == (55 o (57) = (e )

where we are going to use log in basis 2. For k = n/2, which can only happen for n even, this
function has an extreme value S(n,n/2) = 1 which means the qubit held by Alice is maximally
entangled with Bob’s part, that is, the entanglement between the qubit and the rest of the system
is equivalent to that between the qubits of an EPR-Bell state. However as the number of parts
n grows and the number of excitations is fixed, the amount of entanglement shared between
Alice and Bob decreases and approaches zero as n — oo. This loss of entanglement present as
n grows and k is fixed was already derived in reference [MP16]. A graphic representation of
the entropy of entanglement behaviour as a function of n for different values of k is displayed
in figure 5.11.
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Figure 5.11 The entropy of entanglement of the partition (1|n — 1) is plotted for different values of k.

In the graphic we can see the relation between ]Dflk)> and \Dﬁ,n_k) ) in the intersections of the curves.
The purple line indicates the maximum amount of entanglement that tho qubits can have.

In graphic 5.11 it is possible to notice that some points superimpose others referring to
different number of excitations. This is expected as a consequence of the fact that Dicke states

|D£,k)> and Dicke states |D$l"7k)> are related trough local operations and classical communica-
tion (LOCC).

5.2 All Bipartitions

Note that we can use Eq. (5.80) into itself to expand the states |D£l]i) ;) and |D£lk:11)> in terms
of Dicke states with k, k — 1, and k — 2 excitations and so forth. By repeating this procedure
self-consistently j times we obtain:

i min(j.k) (n— j)!k!(n—k)! j %D(q) S0y (s
o = qmax(;,j—n-i—k) nl(k—q)!(n—k—j+q)! (q)} | J )®| n—j ). (5.81)

To prove relation (5.81) we use the principle of induction. Thus let us show that it is valid
for j=1:
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D) = ¥ [ D (Y] )

= Nn—k—1+49)! \q

n_l)'k! ) f 0 k

= b nl ) +
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(n—1) 'k' 3E .

Ere ;,] Myt )
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n—k\?2 k\2 _
- (= ) |0>|D$f?1>+(;) DY),

which is relation (5.80).
Now we are going to test if assuming its validity for some arbitrary j it is also valid for
j+ 1. First we consider j < k and O > j —n+k, and use relation (5.80) into (5.81) obtaining:

P - Z A ;>%lzk'(z_];)+q> (M(%ﬁw) D) 0ND- ) +

R N =t

Leading to:

Z{ (n— f—”'k'(” ulk ; (f)F|D§~”>|o>|D,S":ﬁ_>1>+

q)n—k—j+qg—1

. 1
J

n—j—Dk!l(n—k)! i\ |2 / ——
L [ i ()] el

q'=0

Now define ¢’ such that g = ¢’ + 1:

o - &f; (é’“;f@”?“’;:flq) (f':l)F(f% ool

et )] () o

q:

Let us also define j/ = j+1:
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D=

o) = 3 [ q;?,lk'i? flq> ()] (5 q)2| oIe

£ lspis (O] () oo

Using relation (5.80):

]Z A e ({]')f,]);@),,)g;))_

u M\

Recovering the original form.
Now we consider j > k and 0 > j —n -+ k. Again we start using relation (5.80) into (5.81):

- e O] ()
k__l{ (k(nq)jz;k‘(z ];)+q) (;)]é(];_—i)l| DI +

e (,ﬁ)h YD, )

Making ¢ = ¢’ + 1, we have:

(n— ]— )k (n—k!)

b= i’{ Q)!n—k—j—1+q)! (J:I)F<jJ;nlLIq>é|D§'q)>|0>|Dn—j—1<k—Q>>+
(

n—j—1)kl(n—k i1 3
Z{ ( )J’(n>k(1—1)+q)' Hc; )} <J—6|]—1)| >|1>|Dn,)1> (5.82)

e ("Zl)r(ﬁ%)éwﬁ" DD, )+

L (O] (5)

Defining j' = j+ I:

?\T‘Q
'—O
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Using relation (5.80) we recover the original form:
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We follow the same steps for the case j < kand 0 < j —n+k:
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Setting j = j+ 1:
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Through relation (5.80) we have:

0 _ ¥ (n—j)k!(n—k)! Nk (q) (k—q)
o) = L [ )] P e,

q=j—n+k

Finally we consider the case where j > k and O < j —n+ k. As in the previous times, we
start by applying equation (5.80) into equation (5.81):
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Setting again j/ = j+ 1, we have:

ot = R [ Q) (52) ety
~/k§+k+l [n!(k(:;/()n!k—!%—_ ;)i 9)! (2) } | (]2) | DI+
q=j'—n
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Which, by using (5.80), leads us to:

N (n—j)k!(n—k)! Nk (q) (k—q)
b= b [n*(k i ()] Pherin,

completing our demonstration.
Note that Eq. (5.81) is a Schmidt decomposition for all bipartitions (j|n — j). We, there-

fore, can immediately write the entropy of entanglement corresponding to any bipartition. It
reads:

so- Ty (n— )k (n— k)" (1)
gemax(0nipy k=@ n—k—j+q)! \q

o <k( 7 .)o;k‘(’f:_];)iq) @]

Graphics of S, for j =2 and j = 3 are framed in figure 5.12. In this graphics we can see
that for k = 1 the entropy is limited to 1 in both cases, suggesting that the partition entangles
like a single qubit. However for k = 2 the system may present a stronger entanglement, in fact

in both graphics there is a gap between the curve k=1and k=2.

Regarding the relation |D£,k ) P |D ) we expect that the function S(n, k, j) will present

an extreme value for k = n/2, whenever n is even. Setting this value of k in equation 5.84 in
the limit n — oo, for j < n/2 we have:

(5.84)

lim S(n.n/2. —]—% i (é) log K;N | (5.85)
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In equation 5.85 we see that for a fixed j, the entropy of entanglement grows with n but it is
far from the maximum value of entropy by an amount 5; 7=0 ( ) log [ ( ) } , which also grows

with n. Figure 5.13 represents the behaviour of S(n.k, ]) for different values of n and different
values of k. We notice the expected behavior: states with more parts can present higher values
for the entropy of entanglement. Nevertheless it is worth noticing that for small partitions and
a fixed value of excitations systems with smaller number of parties are more entangled than
those with bigger number of parts, and as we approach j = 7, this situation inverts. This is
coherent with the idea presented in reference [MP16] of a dilution of entanglement.

Also, we highlight that in general S(n,k, j) is different from S(n,k’, j), but the mentioned
situation where k' = n — k. This allow us to ensure that Dicke states with different excitations
are not LOCC equivalent.

In a similar argument we must have S(n.k, j) = S(n.k,n — j), for (jln — j) and (n— j|j)
represent the same bipartition, thus we expect to have an extreme value for j = n/2. Once j
and k are symmetric in the equation for n — oo we must have:

Jim S(n,k,n/2) = k= Z ( ) log { (’q‘)} : (5.86)

We notice that when k = n/2 and j = n/2 the limits of the sum in equation 5.84 show
the highest Schmidt measure [EBO1, BRO1]. Hence it shall represent the configuration with
stronger quantum binding for this system.

It is possible to see in equation (5.81) that both j and k play symmetric roles. This implies
in the following relation: a bipartition (j|n — j) of a system in a Dicke state with k excitations
have the same entropy of entanglement than a a partition (k|n — k) of the same system in a
Dicke state with j excitations.

Further more, from equation 5.84 one can easily see that for a fixed value of kK whenever
Jj 1s small in comparison with 7, the entropy of entanglement decreases with n. This indicates
that small partitions of a Dicke state with a fixed value of excitations become nearly separable
as the system grows.

Another interesting relation is that the reduced density operator p,/l(k) of a part of the bipar-
tition, which can be obtained from equation 5.81 has the form:

(=D =K) (7Y @~ @)
q;,/ nl(k—q)!(n—k—j+q)! (Cl) SRR

which is a mixture of Dicke states and thus is likely to present quantum correlations itself. For
the case of j = 2 this property reveals that as n increases two qubits, elements of a Dicke state
of n qubits and k excitations, behave nearly like classically correlated qubits.
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Figure 5.13 Entropy of entanglement as a function of the number of elements in the bipartition j for
selected values of n for (a) k =1 (b)k = 2 and (c)k = 5.
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5.3 Tight multipartite entanglement witness

M. Bourennane et al. [BEK"04] provided a scheme for the construction of multipartite entan-
glement witnesses [HHH96, HHHHO09]. Given an entangled state |¥) the witness they build
would be able to detect entanglement of |¥) and states close to it. The witness # reads:

W = al — PP, (5.87)

where o is the squared modulus of the highest Schmidt coefficient over all possible biparti-
tions.

Since we have an explicit Schmidt representation for all possible bipartitions of a n-partite
system, the implementation of such witness becomes simple. Considering that the partition
that maximizes the Schmidt coefficient must be the same that minimizes the entropy, to find &
we must choose j = 1. A simple calculation shows that the maximization choice for g is ¢ =0
if 1 <k <n/2and g=1forn/2 <k < n. Those results define a set of n — 2 witnesses #;, for

1 <k < n, each of them associated with a specific Dicke state |D,(1k)>.
A direct application of those witnesses is to test the entanglement resistance of Dicke states

against noise. Consider the state py = pg~1 + (1 — py) |D£,k)> <D,(1k) |, the question is how large

n
can py be so that we can still witness entanglement with %. This limit can be appreciated

through the following relation:

(k)\ (k) 5 1<k<3
Tr(|D D < v .
r(|Dn”)( n\pk)_{ LY wkan (5.88)
Which leads to the following condition:
k n
P 1<k<?t
max __ n(1-2-1)» = =2 58
o { n(ln:'zk—")’ 5<k<n’ 89

Géza T6th [T6t07] have already considered the case for k = n/2, which derived the values:

max_l n—72
=3 i) 420

However, here we present a tighter relation and extend it to all possible values of k.

5.4 Discussion

We provide a closed form for a Schmidt decomposition of any bipartition of a n-qubit system
in an arbitrary Dicke state. Using this result we characterize these bipartitions through the
entanglement entropy and derived some properties so far unknown.
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In general, the behavior of the amount of entanglement encompassed by bipartitions in
Dicke states has a rich structure. Generalizations of n-partite Greenberger-Horne-Zeilinger
(GHZ) states [GHZ89, GHSZ90], for example, have a fixed value S = 1 for any possible
bipartition no matter the size of the state displaying a less interesting structure.

Based on our analysis, it was possible to ensure that Dicke states with the same number
of parts and different number of excitations are not LOCC equivalent, unless the excitations k
and K’ of each of them are related as k' = n — k.

Another interesting feature derived was the decrease of quantum correlations between bi-
partitions (j|n — j) with small j compared to n for a fixed .






Conclusion

In this thesis we presented a study on the production and entanglement features of Dicke
states. The process of production here is always based on entanglement-swapping like pro-
cesses starting with entangled pairs of qubits. The features of entanglement are considered
under bipartitions of systems with arbitrary number of qubits.

In chapter three we initiate our study on the production of Dicke states. We have considered
the specific case of three-partite Dicke states. We have show that there is a basis whose ele-
ments are equivalent under local operations and classical communications to the one-excitation
Dicke state, also known as W state. This fact allows us to execute the process deterministically.
Also in that chapter we care for another procedure of creation of W states, which considered
sources of unbalanced EPR states, in this case we present a probabilistic scheme for which the
output, when successful, happens to be always a perfect W state. This last procedure led to
an interpretation of the phenomenon as a process of entanglement concentration and yielded a
final state with high fidelity relative to the W state. With these results in mind and considering
the practical difficulties involved in full entangled measurements, we set to find a way to pro-
duce similar results with unentangled measurements. Our findings were presented in chapter
four.

In chapter 4, we work on the n-partite case. We first introduced a probabilistic way of
creating photons in W states using only EPR pairs and elements of linear optics. The process
is very similar to the probabilistic scheme showed in the third chapter, also having a perfect
output, when successful. Then we generalized this protocol to the case of n qubits. In this
scenario we demonstrated that the protocol can create any kind of Dicke state using unentan-
gled measurements of photons Fock states in paths of an interferometer. This procedure was
inspired in a controlled loss of information of the photons to be measured, which during the
process become indistinguishable. Tracking the success probability as a function of the coef-
ficient a of the unbalanced EPR sources for each case we found a critical transition similar to
the Landau’s model of phase transition. After the critical phenomena the maximum value of
the success probability happens for a value of a different of % We characterized the criti-

cal phenomenon. We also showed that by tracking the a that yields the maximum value, it is
possible to create arbitrarily large Dicke states, with a fixed number of excitations, with finite
probability. That last step provided an opportunity to establish an upperbound to the amount of
entanglement between one part of a system in a Dicke state and the rest of it. Inspired by these
results, we systematically investigated the bipartitions of systems described by Dicke states.
The results of this investigation are displayed in chapter five.

73
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The fifth chapter is dedicated to an analysis of the amount of entanglement between bipar-
titions of systems in a Dicke state. First we have considered the case where a single qubit of the
system is isolated, deriving a formula for the Schmidt decomposition in this case. Using this
result, we calculated the entropy of this specific bipartition for the case of an arbitrary Dicke
state. Afterwards we introduces a representation of the Schmidt decomposition of an arbitrary
bipartition. We proved by induction the relation to be valid and employed it to evaluate the
entropy of entanglement of an arbitrary bipartition of a system in an arbitrary Dicke state. We
also used this Schmidt decomposition to build entanglement witnesses which we showed to be
sensitive to Dicke states even in the presence of noise and imperfections.

In a summary, this thesis presentes protocols for creation and detection of Dicke states with
linear optics devices. The process employed in the creation of these states led to the theoretical
prediction of a new critical phenomenon. We would like to raise the perspective of experimen-
tal verification of this phenomenon. Although we have not reached the point of presenting
an experimental proposal, we believe that the results of chapter 4 and 5, when assembled to-
gether represent a starting point for this quest. Also as a perspective, we intent to conduct
a deeper investigation on the results of chapter five concerning the amount of entanglement
between bipartitions of systems in Dicke states, testing limits and possible connections with
Thermodynamics.
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